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BIOGRAPHICAL NOTE 

Sir Isaac Newton, 1642-1727 

Newton was born at Woolsthorpe, Lincoln- 
shire, on Christmas Day, 1642. His father, a 
small farmer, died a few months before his 
birth, and when in 1645 his mother married 
the rector of North Witham, Newton was left 
with his maternal grandmother at Wools- 
thorpe. After having acquired the rudiments 
of education at small schools close by, Newton 
was sent at the age of twelve to the grammar 
school at Grantham, where he lived in the 
house of an apothecary. By his own account, 
Newton was at first an indifferent scholar until 
a successful fight with another boy aroused a 
spirit of emulation and led to his becoming 
first in the school. He displayed very early a 
taste and aptitude for mechanical contrivances; 
he made windmills, water-clocks, kites, and 
sun-dials, and he is said to have invented a 
four-wheel carriage which was to be moved by 
the rider. 

After the death of her second husband in 
1656, Newton's mother returned to Wools- 
thorpe and removed her eldest son from school 
so that he might prepare himself to manage 
the farm. But it was soon evident that his in- 
terests were not in farming, and upon the ad- 
vice of his uncle, the rector of Burton Goggles, 
he was sent to Trinity College, Cambridge, 
where he matriculated in 1661 as one of the 
boys who performed menial services in return 
for their expenses. Although there is no record 
of his formal progress as a student, Newton is 
known to have read widely in mathematics 
and mechanics. His first reading at Cambridge 
was in the optical works of Kepler. He turned 
to Euclid because he was bothered by his in- 
ability to comprehend certain diagrams in a 
book on astrology he had bought at a fair; 
finding its propositions self-evident, he put it 
aside as ua trifling book," until his teacher, 
Isaac Barrow, induced him to take up the book 
again. It appears to have been the study of 
Descartes' Geometry which inspired him to do 
original mathematical work. In a small com- 
monplace book kept by Newton as an under- 
graduate, there are several articles on angular 
sections and the squaring of curves, several 
calculations about musical notes, geometrical 

problems from Vieta and Van Schooten, an- 
notations out of Wallis' Arithmetic of Infinities, 
together with observations on refraction, on 
the grinding of spherical optic glasses, on the 
errors of lenses, and on the extraction of all 
kinds of roots. It was around the time of his 
taking the Bachelor's degree, in 1665, that 
Newton discovered the binomial theorem and 
made the first notes on his discovery of the 
amethod of fluxions." 

When the Great Plague spread from London 
to Cambridge in 1665, college was dismissed, 
and Newton retired to the farm in Lincoln- 
shire, where he conducted experiments in op- 
tics and chemistry and continued his mathe- 
matical speculations. From this forced retire- 
ment in 1666 he dated his discovery of the 
gravitational theory: aIn the same year I be- 
gan to think of gravity extending to the orb of 
the Moon, . . . compared the force requisite to 
keep the Moon in her orb with the force of 
gravity at the surface of the earth and found 
them to answer pretty nearly." At about the 
same time his work on optics led to his expla- 
nation of the composition of white light. Of the 
work he accomplished in these years Newton 
later remarked: aAll this was in the two years 
of 1665 and 1666, for in those years I was in 
the prime of my age for invention and minded 
Mathematics and Philosophy more than at 
any time since." 

On the re-opening of Trinity College in 1667, 
Newton was elected a fellow, and two years 
later, a little before his twenty-seventh birth- 
day, he was appointed Lucasian professor of 
mathematics, succeeding his friend and teach- 
er, Dr. Barrow. Newton had already built a 
reflecting telescope in 1668; the second tele- 
scope of his making he presented to the Royal 
Society in December, 1671. Two months later, 
as a fellow of the Society, he communicated his 
discovery on light and thereby started a con- 
troversy which was to run for many years and 
to involve Hooke, Lucas, Linus, and others. 
Newton, who always found controversy dis- 
tasteful, ''blamed my own imprudence for 
parting with so substantial a blessing as my 
quiet to run after a shadow." His papers on 
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optics, the most important of which were com- 
municated to the Royal Society between 1672 
and 1676, were collected in the Optics (1704). 

It was not until 1684 that Newton began to 
think of making known his work on gravity. 
Hooke, Halley, and Sir Christopher Wren had 
independently come to some notion of the law 
of gravity but were not having any success in 
explaining the orbits of the planets. In that 
year Halley consulted Newton on the problem 
and was astonished to find that he had already 
solved it. Newton submitted to him four theo- 
rems and seven problems, which proved to be 
the nucleus of his major work. In some seven- 
teen or eighteen months during 1685 and 1686 
he wrote in Latin the Mathematical Principles 
of Natural Philosophy. Newton thought for 
some time of suppressing the third book, and 
it was only Halley's insistence that preserved 
it. Halley also took upon himself the cost of 
publishing the work in 1687 after the Royal 
Society proved unable to meet its cost. The 
book caused great excitement throughout Eu- 
rope, and in 1689 Huygens, at that time the 
most famous scientist, came to England to 
make the personal acquaintance of Newton. 

While working upon the Principles, Newton 
had begun to take a more prominent part in 
university affairs. For his opposition to the at- 
tempt of James II to repudiate the oath of 
allegiance and supremacy at the university, 
Newton was elected parliamentary member for 
Cambridge. On his return to the university, he 
suffered a serious illness which incapacitated 
him for most of 1692 and 1693 and caused con- 
siderable concern to his friends and fellow- 
workers. After his recovery, he left the univer- 
sity to work for the government. Through his 
friends Locke, Wren, and Lord Halifax, New- 
ton was made Warden of the Mint in 1695 and 
four years later, Master of the Mint, a position 
he held until his death. 

For the last thirty years of his life Newton 
produced little original mathematical work. He 
kept his interest and his skill in the subject; in 

1696 he solved overnight a problem offered by 
Bernoulli in a competition for which six months 
had been allowed, and again in 1716 he worked 
in a few hours a problem which Leibnitz had 
proposed in order to "feel the pulse of the Eng- 
lish analysts." He was much occupied, to his 
own distress, with two mathematical contro- 
versies, one regarding the astronomical obser- 
vations of the astronomer royal, and the other 
with Leibnitz regarding the invention of cal- 
culus. He also worked on revisions for a second 
edition of the Principles, which appeared in 
1713. 

Newton's scientific work brought him great 
fame. He was a popular visitor at the Court 
and was knighted in 1705. Many honors came 
to him from the continent; he was in corre- 
spondence with all the leading men of science, 
and visitors became so frequent as to prove a 
serious discomfort. Despite his fame, Newton 
maintained his modesty. Shortly before his 
death, he remarked: "I do not know what I 
may appear to the world, but to myself I 
seem to have been only like a boy playing on 
the seashore, and diverting myself in now and 
then finding a smoother pebble or a prettier 
shell than ordinary, whilst the great ocean of 
truth lay all undiscovered before me." 

From an early period of his life Newton had 
been much interested in theological studies 
and before 1690 had begun to study the proph- 
ecies. In that year he wrote, in the form of a 
letter to Locke, an Historical Account of Two 
Notable Corruptions of the Scriptures, regarding 
two passages on the Trinity. He left in manu- 
script Observations on the Prophecies of Daniel 
and the Apocalypse and other works of exegesis. 

After 1725 Newton's health was much im- 
paired, and his duties at the Mint were dis- 
charged by a deputy. In February, 1727, he 
presided for the last time at the Royal Society, 
of which he had been president since 1703, and 
died on March 20, 1727, in his eighty-fifth 
year. He was buried in Westminster Abbey 
after lying in state in the Jerusalem Chamber. 
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PREFACE TO THE FIRST EDITION 

Since the ancients (as we are told by Pappus) esteemed the science of me- 
chanics of greatest importance in the investigation of natural things, and 
the moderns, rejecting substantial forms and occult qualities, have endeavored 
to subject the phenomena of nature to the laws of mathematics, I have in this 
treatise cultivated mathematics as far as it relates to philosophy. The ancients 
considered mechanics in a twofold respect; as rational, which proceeds accu- 
rately by demonstration, and practical. To practical mechanics all the manual 
arts belong, from which mechanics took its name. But as artificers do not work 
with perfect accuracy, it comes to pass that mechanics is so distinguished from 
geometry that what is perfectly accurate is called geometrical; what is less so, 
is called mechanical. However, the errors are not in the art, but in the artificers. 
He that works with less accuracy is an imperfect mechanic; and if any could 
work with perfect accuracy, he would be the most perfect mechanic of all, for 
the description of right lines and circles, upon which geometry is founded, be- 
longs to mechanics. Geometry does not teach us to draw these lines, but re- 
quires them to be drawn, for it requires that the learner should first be taught 
to describe these accurately before he enters upon geometry, then it shows how 
by these operations problems may be solved. To describe right lines and circles 
are problems, but not geometrical problems. The solution of these problems is 
required from mechanics, and by geometry the use of them, when so solved, is 
shown; and it is the glory of geometry that from those few principles, brought 
from without, it is able to produce so many things. Therefore geometry is 
founded in mechanical practice, and is nothing but that part of universal me- 
chanics which accurately proposes and demonstrates the art of measuring. But 
since the manual arts are chiefly employed in the moving of bodies, it happens 
that geometry is commonly referred to their magnitude, and mechanics to 
their motion. In this sense rational mechanics will be the science of motions 
resulting from any forces whatsoever, and of the forces required to produce 
any motions, accurately proposed and demonstrated. This part of mechanics, 
as far as it extended to the five powers which relate to manual arts, was cul- 
tivated by the ancients, who considered gravity (it not being a manual power) 
no otherwise than in moving weights by those powers. But I consider philoso- 
phy rather than arts and write not concerning manual but natural powers, and 
consider chiefly those things which relate to gravity, levity, elastic force, the 
resistance of fluids, and the like forces, whether attractive or impulsive; and 
therefore I offer this work as the mathematical principles of philosophy, for the 
whole burden of philosophy seems to consist in this—from the phenomena of 
motions to investigate the forces of nature, and then from these forces to dem- 
onstrate the other phenomena; and to this end the general propositions in the 
first and second books are directed. In the third book I give an example of this 
in the explication of the System of the World; for by the propositions mathe- 
matically demonstrated in the former books in the third I derive from the 
celestial phenomena the forces of gravity with which bodies tend to the sun and 
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2 Mathematical Principles 
the several planets. Then from these forces, by other propositions which are 
also mathematical, I deduce the motions of the planets, the comets, the moon, 
and the sea. I wish we could derive the rest of the phenomena of Nature by 
the same kind of reasoning from mechanical principles, for I am induced by 
many reasons to suspect that they may all depend upon certain forces by 
which the particles of bodies, by some causes hitherto unknown, are either 
mutually impelled towards one another, and cohere in regular figures, or are 
repelled and recede from one another. These forces being unknown, philo- 
sophers have hitherto attempted the search of Nature in vain; but I hope 
the principles here laid down will afford some light either to this or some truer 
method of philosophy. 

In the publication of this work the most acute and universally learned Mr. 
Edmund Halley not only assisted me in correcting the errors of the press and 
preparing the geometrical figures, but it was through his solicitations that it 
came to be published; for when he had obtained of me my demonstrations of the 
figure of the celestial orbits, he continually pressed me to communicate the 
same to the Royal Society, who afterwards, by their kind encouragement and 
entreaties, engaged me to think of publishing them. But after I had begun to 
consider the inequalities of the lunar motions, and had entered upon some 
other things relating to the laws and measures of gravity and other forces; and 
the figures that would be described by bodies attracted according to given 
laws; and the motion of several bodies moving among themselves; the motion 
of bodies in resisting mediums; the forces, densities, and motions, of mediums; 
the orbits of the comets, and such like, I deferred that publication till I had 
made a search into those matters, and could put forth the whole together. 
What relates to the lunar motions (being imperfect), I have put all together in 
the corollaries of Prop. 66, to avoid being obliged to propose and distinctly 
demonstrate the several things there contained in a method more prolix than 
the subject deserved and interrupt the series of the other propositions. Some 
things, found out after the rest, I chose to insert in places less suitable, rather 
than change the number of the propositions and the citations. I heartily beg 
that what I have here done may be read with forbearance; and that my labors 
in a subject so difficult may be examined, not so much with the view to censure, 
as to remedy their defects. 

Is. Newton 
Cambridge, Trinity College, May 8, 1686 

PREFACE TO THE SECOND EDITION 

In this second edition of the Principia there are many emendations and some 
additions. In the second section of the first book, the determination of forces, 
by which bodies may be made to revolve in given orbits, is illustrated and en- 
larged. In the seventh section of the second book the theory of the resistances 
of fluids was more accurately investigated, and confirmed by new experiments. 
In the third book the lunar theory and the precession of the equinoxes were 
more fully deduced from their principles; and the theory of the comets was 
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confirmed by more examples of the calculation of their orbits, done also with 
greater accuracy. 

Is. Newton 
London, March 28, 1713 

PREFACE TO THE THIRD EDITION 

In this third edition, prepared with much care by Henry Pemberton, M.D., a 
man of the greatest skill in these matters, some things in the second book on 
the resistance of mediums are somewhat more comprehensively handled than 
before, and new experiments on the resistance of heavy bodies falling in air are 
added. In the third book, the argument to prove that the moon is retained in 
its orbit by the force of gravity is more fully stated; and there are added new 
observations made by Mr. Pound, concerning the ratio of the diameters of 
Jupiter to one another. Some observations are also added on the comet which 
appeared in the year 1680, made in Germany in the month of November by 
Mr. Kirk; which have lately come to my hands. By the help of these it becomes 
apparent how nearly parabolic orbits represent the motions of comets. The 
orbit of that comet is determined somewhat more accurately than before, by 
the computation of Dr. Halley, in an ellipse. And it is shown that, in this ellip- 
tic orbit, the comet took its course through the nine signs of the heavens, with 
as much accuracy as the planets move in the elliptic orbits given in astronomy. 
The orbit of the comet which appeared in the year 1723 is also added, computed 
by Mr. Bradley, Professor of Astronomy at Oxford. 

Is. Newton 
London, Jan. 12, 1725-6 
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DEFINITIONS 

DEFINITION I 

The quantity of matter is the measure of the same, arising from its density and 
bulk conjointly. 

Thus air of a double density, in a double space, is quadruple in quantity; in 
a triple space, sextuple in quantity. The same thing is to be understood of 
snow, and fine dust or powders, that are condensed by compression or lique- 
faction, and of all bodies that are by any causes whatever differently con- 
densed. I have no regard in this place to a medium, if any such there is, that 
freely pervades the interstices between the parts of bodies. It is this quantity 
that I mean hereafter everywhere under the name of body or mass. And the 
same is known by the weight of each body, for it is proportional to the weight, 
as I have found by experiments on pendulums, very accurately made, which 
shall be shown hereafter. 

DEFINITION II 
The quantity of motion is the measure of the same, arising from the velocity and 
quantity of matter conjointly. 

The motion of the whole is the sum of the motions of all the parts; and there- 
fore in a body double in quantity, with equal velocity, the motion is double; 
with twice the velocity, it is quadruple. 

DEFINITION III 
The vis insita, or innate force of matter, is a power of resisting, by which every 
body, as much as in it lies, continues in its present state, whether it be of rest, or of 
moving uniformly forwards in a right line. 

This force is always proportional to the body whose force it is and differs 
nothing from the inactivity of the mass, but in our manner of conceiving it. A 
body, from the inert nature of matter, is not without difficulty put out of its 
state of rest or motion. Upon which account, this vis insita may, by a most sig- 
nificant name, be called inertia (vis inertice) or force of inactivity. But a body 
only exerts this force when another force, impressed upon it, endeavors to 
change its condition; and the exercise of this force may be considered as both 
resistance and impulse; it is resistance so far as the body, for maintaining its 
present state, opposes the force impressed; it is impulse so far as the body, by 
not easily giving way to the impressed force of another, endeavors to change 
the state of that other. Resistance is usually ascribed to bodies at rest, and im- 
pulse to those in motion; but motion and rest, as commonly conceived, are only 
relatively distinguished; nor are those bodies always truly at rest, which com- 
monly are taken to be so. 

5 



6 Mathematical Principles 

DEFINITION IV 
An impressed force is an action exerted upon a body, in order to change its state, 
either of rest, or of uniform motion in a right line. 

This force consists in the action only, and remains no longer in the body 
when the action is over. For a body maintains every new state it acquires, by 
its inertia only. But impressed forces are of different origins, as from percus 
sion, from pressure, from centripetal force. 

DEFINITION V 
A centripetal force is that by which bodies are drawn or impelled, or any way tend, 
towards a point as to a centre. 

Of this sort is gravity, by which bodies tend to the centre of the earth; mag- 
netism, by which iron tends to the loadstone; and that force, whatever it is, 
by which the planets are continually drawn aside from the rectilinear motions, 
which otherwise they would pursue, and made to revolve in curvilinear orbits. 
A stone, whirled about in a sling, endeavors to recede from the hand that turns 
it; and by that endeavor, distends the sling, and that with so much the greater 
force, as it is revolved with the greater velocity, and as soon as it is let go, flies 
away. That force which opposes itself to this endeavor, and by which the sling 
continually draws back the stone towards the hand, and retains it in its orbit, 
because it is directed to the hand as the centre of the orbit, I call the centripe- 
tal force. And the same thing is to be understood of all bodies, revolved in any 
orbits. They all endeavor to recede from the centres of their orbits; and were it 
not for the opposition of a contrary force which restrains them to, and detains 
them in their orbits, which I therefore call centripetal, would fly off in right 
lines, with an uniform motion. A projectile, if it was not for the force of gravity, 
would not deviate towards the earth, but would go off from it in a right line, 
and that with an uniform motion, if the resistance of the air was taken away. 
It is by its gravity that it is drawn aside continually from its rectilinear course, 
and made to deviate towards the earth, more or less, according to the force of 
its gravity, and the velocity of its motion. The less its gravity is, or the quan- 
tity of its matter, or the greater the velocity with which it is projected, the less 
will it deviate from a rectilinear course, and the farther it will go. If a leaden 
ball, projected from the top of a mountain by the force of gunpowder, with a 
given velocity, and in a direction parallel to the horizon, is carried in a curved 
line to the distance of two miles before it falls to the ground; the same, if the 
resistance of the air were taken away, with a double or decuple velocity, would 
fly twice or ten times as far. And by increasing the velocity, we may at pleasure 
increase the distance to which it might be projected, and diminish the curva- 
ture of the line which it might describe, till at last it should fall at the distance 
of 10, 30, or 90 degrees, or even might go quite round the whole earth before it 
falls; or lastly, so that it might never fall to the earth, but go forwards into the 
celestial spaces, and proceed in its motion in infinitum. And after the same 
manner that a projectile, by the force of gravity, may be made to revolve in an 
orbit, and go round the whole earth, the moon also, either by the force of 
gravity, if it is endued with gravity, or by any other force, that impels it to- 
wards the earth, may be continually drawn aside towards the earth, out of the 
rectilinear way which by its innate force it would pursue; and would be made 
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to revolve in the orbit which it now describes; nor could the moon without 
some such force be retained in its orbit. If this force was too small, it would not 
sufficiently turn the moon out of a rectilinear course; if it was too great, it 
would turn it too much, and draw down the moon from its orbit towards the 
earth. It is necessary that the force be of a just quantity, and it belongs to the 
mathematicians to find the force that may serve exactly to retain a body in a 
given orbit with a given velocity; and vice versa, to determine the curvilinear 
way into which a body projected from a given place, with a given velocity, 
may be made to deviate from its natural rectilinear way, by means of a given 
force. 

The quantity of any centripetal force may be considered as of three kinds: 
absolute, accelerative, and motive. 

DEFINITION VI 
The absolute quantity of a centripetal force is the measure of the same, proportional 
to the efficacy of the cause that propagates it from the centre, through the spaces 
round about. 

Thus the magnetic force is greater in one loadstone and less in another, ac- 
cording to their sizes and strength of intensity. 

DEFINITION VII 
The accelerative quantity of a centripetal force is the measure of the same, propor- 
tional to the velocity which it generates in a given time. 

Thus the force of the same loadstone is greater at a less distance, and less at 
a greater: also the force of gravity is greater in valleys, less on tops of exceeding 
high mountains; and yet less (as shall hereafter be shown), at greater distances 
from the body of the earth; but at equal distances, it is the same everywhere; 
because (taking away, or allowing for, the resistance of the air), it equally ac- 
celerates all falling bodies, whether heavy or light, great or small. 

DEFINITION VIII 
The motive quantity of a centripetal force is the measure of the same, proportional 
to the motion which it generates in a given time. 

Thus the weight is greater in a greater body, less in a less body; and, in the 
same body, it is greater near to the earth, and less at remoter distances. This 
sort of quantity is the centripetency, or propension of the whole body towards 
the centre, or, as I may say, its weight; and it is always known by the quantity 
of an equal and contrary force just sufficient to hinder the descent of the body. 

These quantities of forces, we may, for the sake of brevity, call by the names 
of motive, accelerative, and absolute forces; and, for the sake of distinction, 
consider them with respect to the bodies that tend to the centre, to the places 
of those bodies, and to the centre of force towards which they tend; that is to 
say, I refer the motive force to the body as an endeavor and propensity of the 
whole towards a centre, arising from the propensities of the several parts taken 
together; the accelerative force to the place of the body, as a certain power dif- 
fused from the centre to all places around to move the bodies that are in them; 
and the absolute force to the centre, as endued with some cause, without which 
those motive forces would not be propagated through the spaces round about; 
whether that cause be some central body (such as is the magnet in the centre 
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of the magnetic force, or the earth in the centre of the gravitating force), or 
anything else that does not yet appear. For I here design only to give a mathe- 
matical notion of those forces, without considering their physical causes and 
seats. 

Wherefore the accelerative force will stand in the same relation to the motive, 
as celerity does to motion. For the quantity of motion arises from the celerity 
multiplied by the quantity of matter; and the motive force arises from the ac- 
celerative force multiplied by the same quantity of matter. For the sum of the 
actions of the accelerative force, upon the several particles of the body, is the 
motive force of the whole. Hence it is, that near the surface of the earth, where 
the accelerative gravity, or force productive of gravity, in all bodies is the same, 
the motive gravity or the weight is as the body; but if we should ascend to 
higher regions, where the accelerative gravity is less, the weight would be 
equally diminished, and would always be as the product of the body, by the ac- 
celerative gravity. So in those regions, where the accelerative gravity is di- 
minished into one-half, the weight of a body two or three times less, will be four 
or six times less. 

I likewise call attractions and impulses, in the same sense, accelerative, and 
motive; and use the words attraction, impulse, or propensity of any sort to- 
wards a centre, promiscuously, and indifferently, one for another; considering 
those forces not physically, but mathematically: wherefore the reader is not to 
imagine that by those words I anywhere take upon me to define the kind, or 
the manner of any action, the causes or the physical reason thereof, or that I 
attribute forces, in a true and physical sense, to certain centres (which are only 
mathematical points); when at any time I happen to speak of centres as at- 
tracting, or as endued with attractive powers. 

Scholium 
Hitherto I have laid down the definitions of such words as are less known, 

and explained the sense in which I would have them to be understood in the 
following discourse. I do not define time, space, place, and motion, as being 
well known to all. Only I must observe, that the common people conceive those 
quantities under no other notions but from the relation they bear to sensible 
objects. And thence arise certain prejudices, for the removing of which it will 
be convenient to distinguish them into absolute and relative, true and apparent, 
mathematical and common. 

I. Absolute, true, and mathematical time, of itself, and from its own nature, 
flows equably without relation to anything external, and by another name is 
called duration: relative, apparent, and common time, is some sensible and 
external (whether accurate or unequable) measure of duration by the means of 
motion, which is commonly used instead of true time; such as an hour, a day, 
a month, a year. 

II. Absolute space, in its own nature, without relation to anything external, 
remains always similar and immovable. Relative space is some movable dimen- 
sion or measure of the absolute spaces; which our senses determine by its posi- 
tion to bodies; and which is commonly taken for immovable space; such is the 
dimension of a subterraneous, an aerial, or celestial space, determined by its 
position in respect of the earth. Absolute and relative space are the same in 
figure and magnitude; but they do not remain always numerically the same. 
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For if the earth, for instance, moves, a space of our air, which relatively and in 
respect of the earth remains always the same, will at one time be one part of 
the absolute space into which the air passes; at another time it will be another 
part of the same, and so, absolutely understood, it will be continually changed. 

III. Place is a part of space which a body takes up, and is according to the 
space, either absolute or relative. I say, a part of space; not the situation, nor 
the external surface of the body. For the places of equal solids are always equal; 
but their surfaces, by reason of their dissimilar figures, are often unequal. Posi- 
tions properly have no quantity, nor are they so much the places themselves, 
as the properties of places. The motion of the whole is the same with the sum 
of the motions of the parts; that is, the translation of the whole, out of its 
place, is the same thing with the sum of the translations of the parts out of 
their places; and therefore the place of the whole is the same as the sum of the 
places of the parts, and for that reason, it is internal, and in the whole body. 

IV. Absolute motion is the translation of a body from one absolute place 
into another; and relative motion, the translation from one relative place into 
another. Thus in a ship under sail, the relative place of a body is that part of 
the ship which the body possesses; or that part of the cavity which the body 
fills, and which therefore moves together with the ship: and relative rest is the 
continuance of the body in the same part of the ship, or of its cavity. But real, 
absolute rest, is the continuance of the body in the same part of that immov- 
able space, in which the ship itself, its cavity, and all that it contains, is moved. 
Wherefore, if the earth is really at rest, the body, which relatively rests in the 
ship, will really and absolutely move with the same velocity which the ship has 
on the earth. But if the earth also moves, the true and absolute motion of the 
body will arise, partly from the true motion of the earth, in immovable space, 
partly from the relative motion of the ship on the earth; and if the body moves 
also relatively in the ship, its true motion will arise, partly from the true mo- 
tion of the earth, in immovable space, and partly from the relative motions as 
well of the ship on the earth, as of the body in the ship; and from these relative 
motions will arise the relative motion of the body on the earth. As if that part 
of the earth, where the ship is, was truly moved towards the east, with a veloc- 
ity of 10,010 parts; while the ship itself, with a fresh gale, and full sails, is 
carried towards the west, with a velocity expressed by 10 of those parts; but a 
sailor walks in the ship towards the east, with 1 part of the said velocity; then 
the sailor will be moved truly in immovable space towards the east, with a 
velocity of 10,001 parts, and relatively on the earth towards the west, with a 
velocity of 9 of those parts. 

Absolute time, in astronomy, is distinguished from relative, by the equation 
or correction of the apparent time. For the natural days are truly unequal, 
though they are commonly considered as equal, and used for a measure of time; 
astronomers correct this inequality that they may measure the celestial mo- 
tions by a more accurate time. It may be, that there is no such thing as an 
equable motion, whereby time may be accurately measured. All motions may 
be accelerated and retarded, but the flowing of absolute time is not liable to 
any change. The duration of perseverance of the existence of things remains the 
same, whether the motions are swift or slow, or none at all: and therefore this 
duration ought to be distinguished from what are only sensible measures there- 
of; and from which we deduce it, by means of the astronomical equation. The 
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necessity of this equation, for determining the times of a phenomenon, is evinced 
as well from the experiments of the pendulum clock, as by eclipses of the satel- 
lites of Jupiter. 

As the order of the parts of time is immutable, so also is the order of the 
parts of space. Suppose those parts to be moved out of their places, and they 
will be moved (if the expression may be allowed) out of themselves. For times 
and spaces are, as it were, the places as well of themselves as of all other things. 
All things are placed in time as to order of succession; and in space as to order 
of situation. It is from their essence or nature that they are places; and that the 
primary places of things should be movable, is absurd. These are therefore the 
absolute places; and translations out of those places, are the only absolute 
motions. 

But because the parts of space cannot be seen, or distinguished from one 
another by our senses, therefore in their stead we use sensible measures of 
them. For from the positions and distances of things from any body considered 
as immovable, we define all places; and then with respect to such places, we 
estimate all motions, considering bodies as transferred from some of those 
places into others. And so, instead of absolute places and motions, we use 
relative ones; and that without any inconvenience in common affairs; but in 
philosophical disquisitions, we ought to abstract from our senses, and consider 
things themselves, distinct from what are only sensible measures of them. For 
it may be that there is no body really at rest, to which the places and motions 
of others may be referred. 

But we may distinguish rest and motion, absolute and relative, one from the 
other by their properties, causes, and effects. It is a property of rest, that bodies 
really at rest do rest in respect to one another. And therefore as it is possible, 
that in the remote regions of the fixed stars, or perhaps far beyond them, there 
may be some body absolutely at rest; but impossible to know, from the position 
of bodies to one another in our regions, whether any of these do keep the same 
position to that remote body, it follows that absolute rest cannot be determined 
from the position of bodies in our regions. 

It is a property of motion, that the parts, which retain given positions to 
their wholes, do partake of the motions of those wholes. For all the parts of 
revolving bodies endeavor to recede from the axis of motion; and the impetus 
of bodies moving forwards arises from the joint impetus of all the parts. There- 
fore, if surrounding bodies are moved, those that are relatively at rest within 
them will partake of their motion. Upon which account, the true and absolute 
motion of a body cannot be determined by the translation of it from those 
which only seem to rest; for the external bodies ought not only to appear at 
rest, but to be really at rest. For otherwise, all included bodies, besides their 
translation from near the surrounding ones, partake likewise of their true mo- 
tions; and though that translation were not made, they would not be really at 
rest, but only seem to be so. For the surrounding bodies stand in the like rela- 
tion to the surrounded as the exterior part of a whole does to the interior, or as 
the shell does to the kernel; but if the shell moves, the kernel will also move, as 
being part of the whole, without any removal from near the shell. 

A property, near akin to the preceding, is this, that if a place is moved, 
whatever is placed therein moves along with it; and therefore a body, which is 
moved from a place in motion, partakes also of the motion of its place. Upon 
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which account, all motions, from places in motion, are no other than parts of 
entire and absolute motions; and every entire motion is composed of the motion 
of the body out of its first place, and the motion of this place out of its place; 
and so on, until we come to some immovable place, as in the before-mentioned 
example of the sailor. Wherefore, entire and absolute motions can be no other- 
wise determined than by immovable places; and for that reason I did before 
refer those absolute motions to immovable places, but relative ones to mov- 
able places. Now no other places are immovable but those that, from infinity 
to infinity, do all retain the same given position one to another; and upon this 
account must ever remain unmoved; and do thereby constitute immovable 
space. 

The causes by which true and relative motions are distinguished, one from 
the other, are the forces impressed upon bodies to generate motion. True mo- 
tion is neither generated nor altered, but by some force impressed upon the 
body moved; but relative motion may be generated or altered without any 
force impressed upon the body. For it is sufficient only to impress some force 
on other bodies with which the former is compared, that by their giving way, 
that relation may be changed, in which the relative rest or motion of this other 
body did consist. Again, true motion suffers always some change from any 
force impressed upon the moving body; but relative motion does not necessarily 
undergo any change by such forces. For if the same forces are likewise impressed 
on those other bodies, with which the comparison is made, that the relative 
position may be preserved, then that condition will be preserved in which the 
relative motion consists. And therefore any relative motion may be changed 
when the true motion remains unaltered, and the relative may be preserved 
when the true suffers some change. Thus, true motion by no means consists in 
such relations. 

The effects which distinguish absolute from relative motion are, the forces 
of receding from the axis of circular motion. For there are no such forces in a 
circular motion purely relative, but in a true and absolute circular motion, 
they are greater or less, according to the quantity of the motion. If a vessel, 
hung by a long cord, is so often turned about that the cord is strongly twisted, 
then filled with water, and held at rest together with the water; thereupon, by 
the sudden action of another force, it is whirled about the contrary way, and 
while the cord is untwisting itself, the vessel continues for some time in this 
motion; the surface of the water will at first be plain, as before the vessel began 
to move; but after that, the vessel, by gradually communicating its motion to 
the water, will make it begin sensibly to revolve, and recede by little and little 
from the middle, and ascend to the sides of the vessel, forming itself into a 
concave figure (as I have experienced), and the swifter the motion becomes, 
the higher will the water rise, till at last, performing its revolutions in the same 
times with the vessel, it becomes relatively at rest in it. This ascent of the water 
shows its endeavor to recede from the axis of its motion; and the true and 
absolute circular motion of the water, which is here directly contrary to the 
relative, becomes known, and may be measured by this endeavor. At first, 
when the relative motion of the water in the vessel was greatest, it produced no 
endeavor to recede from the axis; the water showed no tendency to the circum- 
ference, nor any ascent towards the sides of the vessel, but remained of a plain 
surface, and therefore its true circular motion had not yet begun. But after- 
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wards, when the relative motion of the water had decreased, the ascent thereof 
towards the sides of the vessel proved its endeavor to recede from the axis; and 
this endeavor showed the real circular motion of the water continually increas- 
ing, till it had acquired its greatest quantity, when the water rested relatively 
in the vessel. And therefore this endeavor does not depend upon any translation 
of the water in respect of the ambient bodies, nor can true circular motion be 
defined by such translation. There is only one real circular motion of any one 
revolving body, corresponding to only one power of endeavoring to recede from 
its axis of motion, as its proper and adequate effect; but relative motions, in 
one and the same body, are innumerable, according to the various relations it 
bears to external bodies, and, like other relations, are altogether destitute of 
any real effect, any otherwise than they may perhaps partake of that one only 
true motion. And therefore in their system who suppose that our heavens, 
revolving below the sphere of the fixed stars, carry the planets along with them; 
the several parts of those heavens, and the planets, which are indeed relatively 
at rest in their heavens, do yet really move. For they change their position one 
to another (which never happens to bodies truly at rest), and being carried 
together with their heavens, partake of their motions, and as parts of revolving 
wholes, endeavor to recede from the axis of their motions. 

Wherefore relative quantities are not the quantities themselves, whose names 
they bear, but those sensible measures of them (either accurate or inaccurate), 
which are commonly used instead of the measured quantities themselves. And 
if the meaning of words is to be determined by their use, then by the names 
time, space, place, and motion, their [sensible] measures are properly to be 
understood; and the expression will be unusual, and purely mathematical, if 
the measured quantities themselves are meant. On this account, those violate 
the accuracy of language, which ought to be kept precise, who interpret these 
words for the measured quantities. Nor do those less defile the purity of math- 
ematical and philosophical truths, who confound real quantities with their 
relations and sensible measures. 

It is indeed a matter of great difficulty to discover, and effectually to dis- 
tinguish, the true motions of particular bodies from the apparent; because the 
parts of that immovable space, in which those motions are performed, do by no 
means come under the observation of our senses. Yet the thing is not altogether 
desperate; for we have some arguments to guide us, partly from the apparent 
motions, which are the differences of the true motions; partly from the forces, 
which are the causes and effects of the true motions. For instance, if two globes, 
kept at a given distance one from the other by means of a cord that connects 
them, were revolved about their common centre of gravity, we might, from the 
tension of the cord, discover the endeavor of the globes to recede from the axis 
of their motion, and from thence we might compute the quantity of their 
circular motions. And then if any equal forces should be impressed at once on 
the alternate faces of the globes to augment or diminish their circular motions, 
from the increase or decrease of the tension of the cord, we might infer the 
increment or decrement of their motions; and thence would be found on what 
faces those forces ought to be impressed, that the motions of the globes might 
be most augmented; that is, we might discover their hindmost faces, or those 
which, in the circular motion, do follow. But the faces which follow being 
known, and consequently the opposite ones that precede, we should likewise 
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know the determination of their motions. And thus we might find both the 
quantity and the determination of this circular motion, even in an immense 
vacuum, where there was nothing external or sensible with which the globes 
could be compared. But now, if in that space some remote bodies were placed 
that kept always a given position one to another, as the fixed stars do in our 
regions, we could not indeed determine from the relative translation of the 
globes among those bodies, whether the motion did belong to the globes or to 
the bodies. But if we observed the cord, and found that its tension was that 
very tension which the motions of the globes required, we might conclude the 
motion to be in the globes, and the bodies to be at rest; and then, lastly, from 
the translation of the globes among the bodies, we should find the determi- 
nation of their motions. But how we are to obtain the true motions from their 
causes, effects, and apparent differences, and the converse, shall be explained 
more at large in the following treatise. For to this end it was that I composed it. 



AXIOMS, OR LAWS OF MOTION 

LAW I 
Every body continues in its state of rest, or of uniform motion in a right line, unless 
it is compelled, to change that state by forces impressed upon it. 

Projectiles continue in their motions, so far as they are not retarded by the 
resistance of the air, or impelled downwards by the force of gravity. A top, 
whose parts by their cohesion are continually drawn aside from rectilinear mo- 
tions, does not cease its rotation, otherwise than as it is retarded by the air. 
The greater bodies of the planets and comets, meeting with less resistance in 
freer spaces, preserve their motions both progressive and circular for a much 
longer time. 

LAW II 
The change of motion is proportional to the motive force impressed; and is made in 
the direction of the right line in which that force is impressed. 

If any force generates a motion, a double force will generate double the mo- 
tion, a triple force triple the motion, whether that force be impressed alto- 
gether and at once, or gradually and successively. And this motion (being al- 
ways directed the same way with the generating force), if the body moved be- 
fore, is added to or subtracted from the former motion, according as they 
directly conspire with or are directly contrary to each other; or obliquely 
joined, when they are oblique, so as to produce a new motion compounded from 
the determination of both. 

LAW III 
To every action there is always opposed an equal reaction: or, the mutual actions of 
two bodies upon each other are always equal, and directed to contrary parts. 

Whatever draws or presses another is as much drawn or pressed by that 
other. If you press a stone with your finger, the finger is also pressed by the 
stone. If a horse draws a stone tied to a rope, the horse (if I may so say) will 
be equally drawn back towards the stone; for the distended rope, by the same 
endeavor to relax or unbend itself, will draw the horse as much towards the 
stone as it does the stone towards the horse, and will obstruct the progress of 
the one as much as it advances that of the other. If a body impinge upon 
another, and by its force change the motion of the other, that body also (be- 
cause of the equality of the mutual pressure) will undergo an equal change, in 
its own motion, towards the contrary part. The changes made by these actions 
are equal, not in the velocities but in the motions of bodies; that is to say, if the 
bodies are not hindered by any other impediments. For, because the motions 
are equally changed, the changes of the velocities made towards contrary parts 
are inversely proportional to the bodies. This law takes place also in attractions, 
as will be proved in the next Scholium. 

14 
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COROLLARY I 

A body, acted on by two forces simultaneously, will describe the diagonal of a paral- 
lelogram in the same time as it would describe the sides by those forces separately. 

If a body in a given time, by the force M impressed apart in the place A, 
should with an uniform motion be carried from A to B, and by the force N im- 
pressed apart in the same place, should be carried from A to C, let the paral- 

lelogram ABCD be completed, and, by both forces 
acting together, it will in the same time be carried 
in the diagonal from A to D. For since the force 
N acts in the direction of the line AC, parallel to 
BD, this force (by the second Law) will not at all 
alter the velocity generated by the other force M, 

by which the body is carried towards the line BD. The body therefore will 
arrive at the line BD in the same time, whether the force N be impressed or 
not; and therefore at the end of that time it will be found somewhere in the 
hne BD. By the same argument, at the end of the same time it will be found 
somewhere in the line CD. Therefore it will be found in the point D, where 
both lines meet. But it will move in a right line from A to D, by Law i. 

COROLLARY II 
And hence is explained the composition of any one direct force AD, out of any two 
oblique forces AC and CD; and, on the contrary, the resolution of any one direct 
force AD into two oblique forces AC and CD: which composition and resolution are 
abundantly confirmed from mechanics. 

As if the unequal radii OM and ON drawn from the centre 0 of any wheel, 
should sustain the weights A and P by the cords MA and NP; and the forces of 
those weights to move the wheel were required. Through the centre 0 draw 
the right line KOL, meeting the cords perpendicularly in K and L; and from 
the centre 0, with OL the greater of the distances OK and OL, describe a cir- 
cle, meeting the cord MA in D; and drawing OD, make AC parallel and DC 
perpendicular thereto. Now, it being indifferent whether the points K, L, 
D, of the cords be fixed to the plane of the 
wheel or not, the weights will have the same 
effect whether they are suspended from the 
points K and L, or from D and L. Let the 
whole force of the weight A be represented by 
the line AD, and let it be resolved into the 
forces AC and CD, of which the force AC, 
drawing the radius OD directly from the 
centre, will have no effect to move the wheel; 
but the other force DC, drawing the radius 
DO perpendicularly, will have the same effect 
as if it drew perpendicularly the radius OL 
equal to OD; that is, it will have the same A 

effect as the weight P, if 
P : A = DC : DA, 

but because the triangles ADC and DOK are similar, 
DC : DA = OK : OD = OK: OL. 
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Therefore, 

P : A = radius OK : radius OL. 
As these radii lie in the same right line they will be equipollent, and so remain 
in equilibrium; which is the well-known property of the balance, the lever, and 
the wheel. If either weight is greater than in this ratio, its force to move the 
wheel will be so much greater. 

If the weight p = P, is partly suspended by the cord Np, partly sustained by 
the oblique plane pG; draw pH, NH, the former perpendicular to the horizon, 
the latter to the plane pG; and if the force of the weight p tending downwards 
is represented by the line pH, it may be resolved into the forces pN, HN. If 
there was any plane pQ, perpendicular to the cord pN, cutting the other plane 
pG in a line parallel to the horizon, and the weight p was supported only by 
those planes pQ, pG, it would press those planes perpendicularly with the 
forces pN, HN; to wit, the plane pQ with the force pN, and the plane pG with 
the force HN. And therefore if the plane pQ was taken away, so that the weight 
might stretch the cord, because the cord, now sustaining the weight, supplied 
the place of the plane that was removed, it would be strained by the same force 
pN which pressed upon the plane before. Therefore, the 

tension of pN : tension of PN = line pN : line pH. 
Therefore, if p is to A in a ratio which is the product of the inverse ratio of the 
least distances of their cords pN and AM from the centre of the wheel, and of 
the ratio pH to pN, then the weights p and A will have the same effect to- 
wards moving the wheel, and will, therefore, sustain each other; as anyone 
may find by experiment. 

But the weight p pressing upon those two oblique planes, may be considered 
as a wedge between the two internal surfaces of a body split by it; and hence 
the forces of the wedge and the mallet may be determined: because the force 
with which the weight p presses the plane pQ is to the force with which the 
same, whether by its own gravity, or by the blow of a mallet, is impelled in the 
direction of the line pH towards both the planes, as 

pN : pH; 
and to the force with which it presses the other plane pG, as 

pN : NH. 
And thus the force of the screw may be deduced from a like resolution of 
forces; it being no other than a wedge impelled with the force of a lever. There- 
fore the use of this Corollary spreads far and wide, and by that diffusive ex- 
tent the truth thereof is further confirmed. For on what has been said depends 
the whole doctrine of mechanics variously demonstrated by different authors. 
For from hence are easily deduced the forces of machines, which are com- 
pounded of wheels, pullies, levers, cords, and weights, ascending directly or 
obliquely, and other mechanical powers; as also the force of the tendons to 
move the bones of animals. 

COROLLARY III 
The quantity of motion, which is obtained by taking the sum of the motions directed 
towards the same parts, and the difference of those that are directed to contrary 
parts, suffers no change from the action of bodies amoiig themselves. 

For action and its opposite reaction are equal, by Law m, and therefore, by 
Law ii, they produce in the motions equal changes towards opposite parts. 
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Therefore if the motions are directed towards the same parts, whatever is 
added to the motion of the preceding body will be subtracted from the motion 
of that which follows; so that the sum will be the same as before. If the bodies 
meet, with contrary motions, there will be an equal deduction from the mo- 
tions of both; and therefore the difference of the motions directed towards op- 
posite parts will remain the same. 

Thus, if a spherical body A is 3 times greater than the spherical body B, and 
has a velocity = 2, and B follows in the same direction with a velocity =10, then 
the 

motion of A : motion of B = 6 : 10. 
Suppose, then, their motions to be of 6 parts and of 10 parts, and the sum will 
be 16 parts. Therefore, upon the meeting of the bodies, if A acquire 3, 4, or 5 
parts of motion, B will lose as many; and therefore after reflection A will pro- 
ceed with 9, 10, or 11 parts, and B with 7, 6, or 5 parts; the sum remaining al- 
ways of 16 parts as before. If the body A acquire 9, 10, 11, or 12 parts of mo- 
tion, and therefore after meeting proceed with 15, 16, 17, or 18 parts, the body 
B, losing so many parts as A has got, will either proceed with 1 part, having 
lost 9, or stop and remain at rest, as having lost its whole progressive motion of 
10 parts; or it will go back with 1 part, having not only lost its whole motion, 
but (if I may so say) one part more; or it will go back with 2 parts, because a 
progressive motion of 12 parts is taken off. And so the sums of the conspiring 
motions, 

15+1 or 16+0, 
and the differences of the contrary motions, 

17-1 and 18-2, 
will always be equal to 16 parts, as they were before the meeting and reflection 
of the bodies. But the motions being known with which the bodies proceed 
after reflection, the velocity of either will be also known, by taking the velocity 
aftertothe velocity before reflection, as the motion after is to the motion before. 
As in the last case, where the 

motion of A before reflection (6) : motion of A after (18) 
= velocity of A before (2) : velocity of A after (x); 

that is, 
6 : 18 = 2 : a:, a: = 6. 

But if the bodies are either not spherical, or, moving in different right lines, 
impinge obliquely one upon the other, and their motions after reflection are re- 
quired, in those cases we are first to determine the position of the plane that 
touches the bodies in the point of impact, then the motion of each body (by 
Cor. n) is to be resolved into two, one perpendicular to that plane, and the 
other parallel to it. This done, because the bodies act upon each other in the 
direction of a line perpendicular to this plane, the parallel motions are to be 
retained the same after reflection as before; and to the perpendicular motions 
we are to assign equal changes towards the contrary parts; in such manner 
that the sum of the conspiring and the difference of the contrary motions may 
remain the same as before. From such kind of reflections sometimes arise also 
the circular motions of bodies about their own centres. But these are cases 
which I do not consider in what follows; and it would be too tedious to demon- 
strate every particular case that relates to this subject. 
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COROLLARY IV 
The common centre of gravity of two or more bodies does not alter its state of motion 
or rest by the actions of the bodies among themselves; and therefore the common 
centre of gravity of all bodies acting upon each other {excluding external actions and 
impediments) is either at rest, or moves uniformly in a right line. 

For if two points proceed with an uniform motion in right lines, and their 
distance be divided in a given ratio, the dividing point will be either at rest, or 
proceed uniformly in a right line. This is demonstrated hereafter in Lem. 23 
and Corollary, when the points are moved in the same plane; and by a like way 
of arguing, it may be demonstrated when the points are not moved in the same 
plane. Therefore if any number of bodies move uniformly in right lines, the 
common centre of gravity of any two of them is either at rest, or proceeds 
uniformly in a right line; because the line which connects the centres of those 
two bodies so moving is divided at that common centre in a given ratio. In like 
manner the common centre of those two and that of a third body will be either 
at rest or moving uniformly in a right line; because at that centre the distance 
between the common centre of the two bodies, and the centre of this last, is 
divided in a given ratio. In like manner the common centre of these three, and 
of a fourth body, is either at rest, or moves uniformly in a right line; because 
the distance between the common centre of the three bodies, and the centre of 
the fourth, is there also divided in a given ratio, and so on in infinitum. There- 
fore, in a system of bodies where there is neither any mutual action among 
themselves, nor any foreign force impressed upon them from without, and 
which consequently move uniformly in right lines, the common centre of gravity 
of them all is either at rest or moves uniformly forwards in a right line. 

Moreover, in a system of two bodies acting upon each other, since the dis- 
tances between their centres and the common centre of gravity of both are 
reciprocally as the bodies, the relative motions of those bodies, whether of 
approaching to or of receding from that centre, will be equal among themselves. 
Therefore since the changes which happen to motions are equal and directed to 
contrary parts, the common centre of those bodies, by their mutual action 
between themselves, is neither accelerated nor retarded, nor suffers any change 
as to its state of motion or rest. But in a system of several bodies, because the 
common centre of gravity of any two acting upon each other suffers no change 
in its state by that action; and much less the common centre of gravity of the 
others with which that action does not intervene; but the distance between 
those two centres is divided by the common centre of gravity of all the bodies 
into parts inversely proportional to the total sums of those bodies whose centres 
they are; and therefore while those two centres retain their state of motion or 
rest, the common centre of all does also retain its state: it is manifest that the 
common centre of all never suffers any change in the state of its motion or rest 
from the actions of any two bodies between themselves. But in such a system 
all the actions of the bodies among themselves either happen between two 
bodies, or are composed of actions interchanged between some two bodies; and 
therefore they do never produce any alteration in the common centre of all as 
to its state of motion or rest. Wherefore since that centre, when the bodies do 
not act one upon another, either is at rest or moves uniformly forwards in some 
right line, it will, notwithstanding the mutual actions of the bodies among 
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themselves, always continue in its state, either of rest, or of proceeding uni- 
formly in a right line, unless it is forced out of this state by the action of some 
power impressed from without upon the whole system. And therefore the same 
law takes place in a system consisting of many bodies as in one single body, 
with regard to their persevering in their state of motion or of rest. For the 
progressive motion, whether of one single body, or of a whole system of bodies, 
is always to be estimated from the motion of the centre of gravity. 

COROLLARY V 
The motions of bodies included in a given space are the same among themselves, 
whether that space is at rest, or moves uniformly forwards in a right line without 
any circular motion. 

For the differences of the motions tending towards the same parts, and the 
sums of those that tend towards contrary parts, are, at first (by supposition), 
in both cases the same; and it is from those sums and differences that the col- 
lisions and impulses do arise with which the bodies impinge one upon another. 
Wherefore (by Law 2), the effects of those collisions will be equal in both cases; 
and therefore the mutual motions of the bodies among themselves in the one 
case will remain equal to the motions of the bodies among themselves in the 
other. A clear proof of this we have from the experiment of a ship; where all 
motions happen after the same manner, whether the ship is at rest, or is carried 
uniformly forwards in a right line. 

COROLLARY YI 
If bodies, moved in any manner among themselves, are urged in the direction of 
parallel lines by equal accelerative forces, they will all continue to move among 
themselves, after the same manner as if they had not been urged by those forces. 

For these forces acting equally (with respect to the quantities of the bodies 
to be moved), and in the direction of parallel lines, will (by Law 2) move all the 
bodies equally (as to velocity), and therefore will never produce any change in 
the positions or motions of the bodies among themselves. 

Scholium 
Hitherto I have laid down such principles as have been received by mathe- 

maticians, and are confirmed by abundance of experiments. By the first two 
Laws and the first two Corollaries, Galileo discovered that the descent of bodies 
varied as the square of the time (in duplicata ratione temporis) and that the 
motion of projectiles was in the curve of a parabola; experience agreeing with 
both, unless so far as these motions are a little retarded by the resistance of the 
air. When a body is falling, the uniform force of its gravity acting equally, 
impresses, in equal intervals of time, equal forces upon that body, and there- 
fore generates equal velocities; and in the whole time impresses a whole force, 
and generates a whole velocity proportional to the time. And the spaces de- 
scribed in proportional times are as the product of the velocities and the times; 
that is, as the squares of the times. And when a body is thrown upwards, its 
uniform gravity impresses forces and reduces velocities proportional to the 
times; and the times of ascending to the greatest heights are as the velocities to 
be taken away, and those heights are as the product of the velocities and the 
times, or as the squares of the velocities. And if a body be projected in any 
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direction, the motion arising from its projection is compounded with the mo- 
tion arising from its gravity. Thus, if the body A by its motion of projection 
alone could describe in a given time the right line AB, and with its motion of 
falling alone could describe in the same time the altitude AC; complete the 
parallelogram ABCD, and the body by that compounded 
motion will at the end of the time be found in the place D; 
and thocurved line AED, which that body describes, will be 
a parabola, to which the right line AB will be a tangent at A; 
and whose ordinate BD will be as the square of the line AB. 
On the same Laws and Corollaries depend those things which 
have been demonstrated concerning the times of the vibra- 
tion of pendulums, and are confirmed by the daily experi- 
ments of pendulum clocks. By the same, together with Law 
3, Sir Christopher Wren, Dr. Wallis, and Mr. Huygens, the greatest geometers 
of our times, did severally determine the rules of the impact and reflection of 
hard bodies, and about the same time communicated their discoveries to the 
Royal Society, exactly agreeing among themselves as to those rules. Dr. Wallis, 
indeed, was somewhat earlier in the publication; then followed Sir Christopher 
Wren, and, lastly, Mr. Huygens. But Sir Christopher Wren confirmed the 
truth of the thing before the Royal Society by the experiments on pendulums, 
which M. Mariotte soon after thought fit to explain in a treatise entirely upon 
that subject. But to bring this experiment to an accurate agreement with the 
theory, we are to have due regard as well to the resistance of the air as to the 
elastic force of the concurring bodies. Let the spherical bodies A, B be sus- 

pended by the parallel and equal strings AC, 
BD, from the centres C, D. About these cen- 
tres, with those lengths as radii, describe the 
semicircles EAF, GBH, bisected respectively 
by the radii CA, DB. Bring the body A to 
any point R of the arc EAF, and (withdraw- 
ing the body B) let it go from thence, and 
after one oscillation suppose it to return to 

the point V: then RV will be the retardation arising from the resistance of the 
air. Of this RV let ST be a fourth part, situated in the middle, namely, so that 

RS = TV, 
and 

RS : ST = 3 ; 2, 
then will ST represent very nearly the retardation during the descent from S to 
A. Restore the body B to its place: and, supposing the body A to be let fall from 
the point S, the velocity thereof in the place of reflection A, without sensible 
error, will be the same as if it had descended in vacuo from the point T. Upon 
which account this velocity may be represented by the chord of the arc TA. 
For it is a proposition well known to geometers, that the velocity of a pendulous 
body in the lowest point is as the chord of the arc which it has described in its 
descent. After reflection, suppose the body A comes to the place s, and the 
body B to the place k. Withdraw the body B, and find the place v, from which 
if the body A, being let go, should after one oscillation return to the place r, st 
may be a fourth part of rv, so placed in the middle thereof as to leave rs equal 
to tv, and let the chord of the arc ^A represent the velocity which the body A 

\R 

svr 
v\ 

vaW 
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had in the place A immediately after reflection. For t will be the true and correct 
place to which the body A should have ascended, if the resistance of the air had 
been taken off. In the same way we are to correct the place k to which the body 
B ascends, by finding the place I to which it should have ascended in vacuo. 
And thus everything may be subjected to experiment, in the same manner as 
if we were really placed in vacuo. These things being done, we are to take the 
product (if I may so say) of the body A, by the chord of the arc TA (which 
represents its velocity), that we may have its motion in the place A immediately 
before reflection; and then by the chord of the arc tK, that we may have its 
motion in the place A immediately after reflection. And so we are to take the 
product of the body B by the chord of the arc B^, that we may have the motion 
of the same immediately after reflection. And in like manner, when two bodies 
are let go together from different places, we are to find the motion of each, as 
well before as after reflection; and then we may compare the motions between 
themselves, and collect the effects of the reflection. Thus trying the thing with 
pendulums of 10 feet, in unequal as well as equal bodies, and making the bodies 
to concur after a descent through large spaces, as of 8, 12, or 16 feet, I found 
always, without an error of 3 inches, that when the bodies concurred together 
directly, equal changes towards the contrary parts were produced in their 
motions, and, of consequence, that the action and reaction were always equal. 
As if the body A impinged upon the body B at rest with 9 parts of motion, and 
losing 7, proceeded after reflection with 2, the body B was carried backwards 
with those 7 parts. If the bodies concurred with contrary motions, A with 12 
parts of motion, and B with 6, then if A receded with 2, B receded with 8; 
namely, with a deduction of 14 parts of motion on each side. For from the 
motion of A subtracting 12 parts, nothing will remain; but subtracting 2 parts 
more, a motion will be generated of 2 parts towards the contrary way; and so, 
from the motion of the body B of 6 parts, subtracting 14 parts, a motion is 
generated of 8 parts towards the contrary way. But if the bodies were made 
both to move towards the same way, A, the swifter, with 14 parts of motion, 
B, the slower, with 5, and after reflection A went on with 5, B likewise went on 
with 14 parts; 9 parts being transferred from A to B. And so in other cases. By 
the meeting and collision of bodies, the quantity of motion, obtained from the 
sum of the motions directed towards the same way, or from the difference of 
those that were directed towards contrary ways, was never changed. For the 
error of an inch or two in measures may be easily ascribed to the difficulty of 
executing everything with accuracy. It was not easy to let go the two pendu- 
lums so exactly together that the bodies should impinge one upon the other in 
the lowermost place AB; nor to mark the places s, and k, to which the bodies 
ascended after impact. Nay, and some errors, too, might have happened from 
the unequal density of the parts of the pendulous bodies themselves, and from 
the irregularity of the texture proceeding from other causes. 

But to prevent an objection that may perhaps be alleged against the rule, 
for the proof of which this experiment was made, as if this rule did suppose that 
the bodies were either absolutely hard, or at least perfectly elastic (whereas no 
such bodies are to be found in Nature), I must add, that the experiments we 
have been describing, by no means depending upon that quality of hardness, 
do succeed as well in soft as in hard bodies. For if the rule is to be tried in bodies 
not perfectly hard, we are only to diminish the reflection in such a certain 
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proportion as the quantity of the elastic force requires. By the theory of Wren 
and Huygens, bodies absolutely hard return one from another with the same 
velocity with which they meet. But this may be affirmed with more certainty 
of bodies perfectly elastic. In bodies imperfectly elastic the velocity of the re- 
turn is to be diminished together with the elastic force; because that force 
(except when the parts of bodies are bruised by their impact, or suffer some 
such extension as happens under the strokes of a hammer) is (as far as I can 
perceive) certain and determined, and makes the bodies to return one from the 
other with a relative velocity, which is in a given ratio to that relative velocity 
with which they met. This I tried in balls of wool, made up tightly, and strongly 
compressed. For, first, by letting go the pendulous bodies, and measuring their 
reflection, I determined the quantity of their elastic force; and then, according 
to this force, estimated the reflections that ought to happen in other cases of 
impact. And with this computation other experiments made afterwards did 
accordingly agree; the balls always receding one from the other with a relative 
velocity, which was to the relative velocity with which they met as about 5 to 
9. Balls of steel returned with almost the same velocity; those of cork with a 
a velocity something less; but in balls of glass the proportion was as about 15 
to 16. And thus the third Law, so far as it regards percussions and reflections, 
is proved by a theory exactly agreeing with experience. 

In attractions, I briefly demonstrate the thing after this manner. Suppose an 
obstacle is interposed to hinder the meeting of any two bodies A, B, attracting 
one the other; then if either body, as A, is more attracted towards the other 
body B, than that other body B is towards the first body A, the obstacle will be 
more strongly urged by the pressure of the body A than by the pressure of the 
body B, and therefore will not remain in equilibrium: but the stronger pressure 
will prevail, and will make the system of the two bodies, together with the 
obstacle, to move directly towards the parts on which B lies; and in free spaces, 
to go forwards in infinitum with a motion continually accelerated; which is 
absurd and contrary to the first Law. For, by the first Law, the system ought to 
continue in its state of rest, or of moving uniformly forwards in a right line; and 
therefore the bodies must equally press the obstacle, and be equally attracted 
one by the other. I made the experiment on the loadstone and iron. If these, 
placed apart in proper vessels, are made to float by one another in standing 
water, neither of them will propel the other; but, by being equally attracted, 
they mil sustain each other's pressure, and rest at last in an equilibrium. 

So the gravitation between the earth and its parts is mutual. Let the earth 
FI by cut by any plane EG into two parts EGF and EGI, and their weights 
one towards the other will be mutually equal. For if 
by another plane HK, parallel to the former EG, the 
greater part EGI is cut into two parts EGKH and 
HKI, whereof HKI is equal to the part EFG, first cut 
off, it is evident that the middle part EGKH will have 
no propension by its proper weight towards either 
side, but will hang as it were, and rest in an equilib- 
rium between both. But the one extreme part HKI 
will with its whole weight bear upon and press the 
middle part towards the other extreme part EGF; and therefore the force 
with which EGI, the sum of the parts HKI and EGKH, tends towards the 
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third part EGF, is equal to the weight of the part HKI, that is, to the weight 
of the third part EGF. And therefore the weights of the two parts EG I and 
EGF, one towards the other, are equal, as I was to prove. And indeed if those 
weights were not equal, the whole earth floating in the nonresisting ether would 
give way to the greater weight, and, retiring from it, would be carried off in 
infinitum. 

And as those bodies are equipollent in the impact and reflection, whose ve- 
locities are inversely as their innate forces, so in the use of mechanic instruments 
those agents are equipollent, and mutually sustain each the contrary pressure 
of the other, whose velocities, estimated according to the determination of the 
forces, are inversely as the forces. 

So those weights are of equal force to move the arms of a balance, which 
during the play of the balance are inversely as their velocities upwards and 
downwards; that is, if the ascent or descent is direct, those weights are of equal 
force, which are inversely as the distances of the points at which they are sus- 
pended from the axis of the balance; but if they are turned aside by the inter- 
position of oblique planes, or other obstacles, and made to ascend or descend 
obliquely, those bodies will be equipollent, which are inversely as the heights 
of their ascent and descent taken according to the perpendicular; and that on 
account of the determination of gravity downwards. 

And in like manner in the pulley, or in a combination of pulleys, the force of 
a hand drawing the rope directly, which is to the weight, whether ascending 
directly or obliquely, as the velocity of the perpendicular ascent of the weight 
to the velocity of the hand that draws the rope, will sustain the weight. 

In clocks and such like instruments, made up from a combination of wheels, 
the contrary forces that promote and impede the motion of the wheels, if they 
are inversely as the velocities of the parts of the wheel on which they are 
impressed, will mutually sustain each other. 

The force of the screw to press a body is to the force of the hand that turns 
the handles by which it is moved as the circular velocity of the handle in that 
part where it is impelled by the hand is to the progressive velocity of the screw 
towards the pressed body. 

The forces by which the wedge presses or drives the two parts of the wood it 
cleaves are to the force of the mallet upon the wedge as the progress of the 
wedge in the direction of the force impressed upon it by the mallet is to the 
velocity with which the parts of the wood yield to the wedge, in the direction 
of lines perpendicular to the sides of the wedge. And the like account is to be 
given of all machines. 

The power and use of machines consist only in this, that by diminishing the 
velocity we may augment the force, and the contrary; from whence, in all sorts 
of proper machines, we have the solution of this problem: To move a given 
weight with a given power, or with a given force to overcome any other given 
resistance. For if machines are so contrived that the velocities of the agent and 
resistant are inversely as their forces, the agent will just sustain the resistant, 
but with a greater disparity of velocity will overcome it. So that if the disparity 
of velocities is so great as to overcome all that resistance which commonly 
arises either from the friction of contiguous bodies as they slide by one another, 
or from the cohesion of continuous bodies that are to be separated, or from the 
weights of bodies to be raised, the excess of the force remaining, after all those 
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resistances are overcome, will produce an acceleration of motion proportional 
thereto, as well in the parts of the machine as in the resisting body. But to treat 
of mechanics is not my present business. I was aiming only to show by those 
examples the great extent and certainty of the third Law of Motion. For if we 
estimate the action of the agent from the product of its force and velocity, and 
likewise the reaction of the impediment from the product of the velocities of its 
several parts, and the forces of resistance arising from the friction, cohesion, 
weight, and acceleration of those parts, the action and reaction in the use of all 
sorts of machines will be found always equal to one another. And so far as the 
action is propagated by the intervening instruments, and at last impressed 
upon the resisting body, the ultimate action will be always contrary to the 
reaction. 



BOOK ONE 

THE MOTION OF BODIES 

SECTION I 

K 

The method of first and last ratios of quantities, by the help of which 
WE DEMONSTRATE THE PROPOSITIONS THAT FOLLOW 

Lemma 1 
Quantities, and the ratios of quantities, which in any finite time converge contin- 
ually to equality, and before the end of that time approach nearer to each other than 
by any given difference, become ultimately equal. 

If you deny it, suppose them to be ultimately unequal, and let D be their 
ultimate difference. Therefore they cannot approach nearer to equality than 
by that difference D; which is contrary to the supposition. 

Lemma 2 
If in any figure AacE, terminated by the right lines Aa, 
AE, and the curve acE, there be inscribed any number of 
parallelograms Ab, Be, Cd, &c., comprehended under equal 
bases AB, BC, CD, &c., and the sides, Bb, Cc, Dd, &c., 
parallel to one side Aao/ the figure; and the parallelograms 
aKbl, bLcm, cMdn, &c., are completed: then if the breadth 
of those parallelograms be supposed to be diminished, and 
their number to be augmented in infinitum, I say, that the 
ultimate ratios which the inscribed figure AKbLcMdD, 
the circumscribed figure AalbmcndoE, and curvilinear 

figure AabcdE, will have to one another, are ratios of equality. 
For the difference of the inscribed and circumscribed figures is the sum of 

the parallelograms KZ, Lm, Mn, Do, that is (from the equality of all their 
bases), the rectangle under one of their bases Kb and the sum of their altitudes 
Aa, that is, the rectangle AB^a. But this rectangle, because its breadth AB is 
supposed diminished in infinitum, becomes less than any given space. And 
therefore (by Lem. 1) the figures inscribed and circumscribed become ulti- 
mately equal one to the other; and much more will the intermediate curvilinear 
figure be ultimately equal to either. q.e.d. 

Lemma 3 
The same ultimate ratios are also ratios of equality, when the breadths AB, 
BC, DC, dec., of the parallelograms are unequal, and are all diminished in in- 
finitum. 

For suppose AF equal to the greatest breadth, and complete the parallelo- 
gram FAaf. This parallelogram will be greater than the difference of the in- 
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scribed and circumscribed figures; but, because its breadth AF is diminished 
in infinitum, it will become less than any given rectangle. q.e.d. 

Cor. i. Hence the ultimate sum of those evanescent 
parallelograms will in all parts coincide with the curvi- 
linear figure. 

Cor. ii. Much more will the rectilinear figure com- 
prehended under the chords of the evanescent arcs ah, 
be, cd, &c., ultimately coincide with the curvilinear 
figure. 

Cor. hi. And also the circumscribed rectilinear figure 
comprehended under the tangents of the same arcs. 

Cor. iv. And therefore these ultimate figures (as to 
their perimeters acE) are not rectilinear, but curvilinear a B F C 
limits of rectilinear figures. 

Lemma 4 
If in two figures AacE, PprT, there are inscribed {as before) two series of parallelo- 
grams, an equal number in each series, arid, their breadths being diminished in 
infinitum, if the ultimate ratios of the parallelograms in one figure to those in the 
other, each to each respectively, are the same: I say, that those two figures, AacE, 
PprT, are to each other in that same ratio. 
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For as the parallelograms in the one are severally to the parallelograms in 
the other, so (by composition) is the sum of all in the one to the sum of all in 
the other; and so is the one figure to the other; because (by Lem. 3) the former 
figure to the former sum, and the latter figure to the latter sum, are both in 
the ratio of equality. q.e.d. 

Cor. Hence if two quantities of any kind are divided in any manner into an 
equal number of parts, and those parts, when their number is augmented, and 
their magnitude diminished in infinitum, have a given ratio to each other, the 
first to the first, the second to the second, and so on in order, all of them taken 
together will be to each other in that same given ratio. For if, in the figures of 
this Lemma, the parallelograms are taken to each other in the ratio of the 
parts, the sum of the parts will always be as the sum of the parallelograms; and 
therefore supposing the number of the parallelograms and parts to be aug- 
mented, and their magnitudes diminished in infinitum, those sums will be in 
the ultimate ratio of the parallelogram in the one figure to the correspondent 
parallelogram in the other; that is (by the supposition), in the ultimate ratio 
of any part of the one quantity to the correspondent part of the other. 
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Lemma 5 
All homologous sides of similar figures, whether curvilinear or rectilinear, are pro- 
portional; and the areas are as the squares of the homologous sides. 

Lemma 6 
If any arc ACB, given in position, is sub- 
tended by its chord AB, and in any point A, 
in the middle of the continued curvature, is 
touched by a right line AD, produced both 
ways; then if the points A and B approach 
one another and meet, I say, the angle BAD, 
contained between the chord and the tan- 
gent, will be diminished in infinitum, and 
ultimately will vanish. 

For if that angle does not vanish, the arc 
ACB will contain with the tangent AD an angle equal to a rectilinear angle; 
and therefore the curvature at the point A will not be continued, which is 
against the supposition. 

Lemma 7 
The same things being supposed, I say that the ultimate ratio of the arc, chord, and 
tangent, any one to any other, is the ratio of equality. 

For while the point B approaches towards the point A, consider always AB 
and AD as produced to the remote points b and d; and parallel to the secant 
BD draw bd; and let the arc Acb be always similar to the arc ACB. Then, sup- 
posing the points A and B to coincide, the angle dAb will vanish, by the pre- 
ceding Lemma; and therefore the right lines Ab, Ad (which are always finite), 
and the intermediate arc Ac6, will coincide, and become equal among them- 
selves. Wherefore, the right lines AB, AD, and the intermediate arc ACB 
(which are always proportional to the former), will vanish, and ultimately ac- 
quire the ratio of equality. q.e.d. 

Cor. i. Whence if through B we draw BF parallel to the tangent, always 
cutting any right line AF passing through A in F, this line BF will be ultimate- 
ly in the ratio of equality with the evanescent arc ACB ; because, completing 
the parallelogram AFBD, it is always in a ratio of equality with AD. 

Cor. ii. And if through B and A more right 
lines are drawn, as BE, BD, AF, AG, cutting   _ /d 
the tangent AD and its parallel BF; the ulti- 
mate ratio of all the abscissas AD, AE, BF, F/" 
BG, and of the chord and arc AB, any one to 
any other, will be the ratio of equality. 

Cor. hi. And therefore in all our reasoning about ultimate ratios, we may 
freely use any one of those lines for any other. 

Lemma 8 
If the right lines AR, BR, with the arc ACB, the chord AB, and the tangent AD, 
constitute three triangles RAB, RACB, RAD, and the points A and B approach 
and meet: I say, that the ultimate form of these evanescent triangles is that of simil- 
itude, and their ultimate ratio that of equality. 
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For while the point B approaches towards the point A, consider always AB, 

AD, AR, as produced to the remote points h, d, and r, and rbd as drawn parallel 
to RD, and let the arc Ach be always simi- 
lar to the arc ACB. Then supposing the 
points A and B to coincide, the angle hAd 
will vanish; and therefore the three tri- 
angles rAh, rAch, rAd (which are always 
finite), will coincide, and on that account 
become both similar and equal. And there- 
fore the triangles RAB, RACB, RAD, 
which are always similar and proportional 
to these, will ultimately become both simi- 
lar and equal among themselves. 

Cor. And hence in all reasonings about ultimate ratios, we may use any 
one of those triangles for any other. 

Q.E.D. 

Lemma 9 
If a right line AE, and a curved line ABC, both given by position, cut each other in 
a given angle, A; and to that right line, in another given angle, BD, CE are ordi- 
nately applied, meeting the curve in B, C; and the points B and C together ap- 
proach towards and meet in the point A: I say, that the areas of the triangles ABD, 
ACE, will ultimately be to each other as the squares of homologous sides. 

For while the points B, C, approach towards the point A, suppose always 
AD to be produced to the remote points d and e, so as Ad, Ae may be propor- 

tional to AD, AE; and the ordinates db, ec, to 
be drawn parallel to the ordinates DB and EC, 
and meeting AB and AC produced in b and c. 
Let the curve Abe be similar to the curve ABC, 
and draw the right line Ag so as to touch both 
curves in A, and cut the ordinates DB, EC, db, 
ec, in F, G, /, g. Then, supposing the length Ae 
to remain the same, let the points B and C meet 
in the point A; and the angle cAg vanishing, 
the curvilinear areas Abd, Ace will coincide with 
the rectilinear areas Afd, Age; and therefore (by 
Lem. 5) will be one to the other in the dupli- 

cate ratio of the sides Ad, Ae. But the areas ABD, ACE are always propor- 
tional to these areas; and so the sides AD, AE are to these sides. And there- 
fore the areas ABD, ACE are ultimately to each other as the squares of the 
sides AD, AE. q.e.d. 

Lemma 10 
The spaces which a body describes by any finite force urging it, whether that force 
is determined and immutable, or is continually augmented or continually dimin- 
ished, are in the very beginning of the motion to each other as the squares of the 
times. 

Let the times be represented by the lines AD, AE, and the velocities gen- 
erated in those times by the ordinates DB, EC. The spaces described with 
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these velocities will be as the areas ABD, ACE, described by those ordinates, 
that is, at the very beginning of the motion (by Lem. 9), in the duplicate ratio 
of the times AD, AE. q.e.d. 

Cor. i. And hence one may easily infer, that the errors of bodies describing 
similar parts of similar figures in proportional times, the errors being generated 
by any equal forces similarly applied to the bodies, and measured by the dis- 
tances of the bodies from those places of the similar figures, at which, without 
the action of those forces, the bodies would have arrived in those proportional 
times—are nearly as the squares of the times in which they are generated. 

Cor. ii. But the errors that are generated by proportional forces, similarly 
applied to the bodies at similar parts of the similar figures, are as the product 
of the forces and the squares of the times. 

Cor. hi. The same thing is to be understood of any spaces whatsoever de- 
scribed by bodies urged with different forces; all which, in the very beginning 
of the motion, are as the product of the forces and the squares of the times. 

Cor. iv. And therefore the forces are directly as the spaces described in the 
very beginning of the motion, and inversely as the squares of the times. 

Cor. v. And the squares of the times are directly as the spaces described, 
and inversely as the forces. 

Scholium 
If in comparing with each other indeterminate quantities of different sorts, 

any one is said to be directly or inversely as any other, the meaning is, that the 
former is augmented or diminished in the same ratio as the latter, or as its re- 
ciprocal. And if any one is said to be as any other two or more, directly or in- 
versely, the meaning is, that the first is augmented or diminished in the ratio 
compounded of the ratios in which the others, or the reciprocals of the others, 
are augmented or diminished. Thus, if A is said to be as B directly, and C 
directly, and D inversely, the meaning is, that A is augmented or diminished 
in the same ratio as B • C • -q, that is to say, that A and ^ are to each other 
in a given ratio. 

Lemma 11 
The evanescent subtense of the angle of contact, in all curves which at the point of 
contact have a finite curvature, is ultimately as the square of the subtense of the con- 

A ^ r> terminous arc. 
Case 1. Let AB be that arc, AD its tangent, BD the 

subtense of the angle of contact perpendicular on the tan- 
gent, AB the subtense of the arc. Draw BG perpendicular 
to the subtense AB, and AG perpendicular to the tangent 
AD, meeting in G; then let the points D, B, and G approach 
to the points d, b, and g, and suppose J to be the ultimate 
intersection of the lines BG, AG, when the points D, B 
have come to A. It is evident that the distance GJ may be 
less than any assignable distance. But (from the nature 
of the circles passing through the points A, B, G, and 
through A, b, g), 

AB2 = AG • BD, and 
Ab2 = Ag-bd. 
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But because GJ may be assumed of less length than any assignable, the ratio 
of AG to Ag may be such as to differ from unity by less than any assignable 
difference; and therefore the ratio of AB2 to Ah2 may be such as to differ from 
the ratio of BD to hd by less than any assignable difference. Therefore, by 
Lem. 1, ultimately, AT.9 A ,9 , AB2 : A52 = BD : bd q.e.D. 

Case 2. Now let BD be inclined to AD in any given angle, and the ultimate 
ratio of BD to hd will always be the same as before, and therefore the same with 
the ratio of AB2 to Ah2. q.e.d. 

Case 3. And if we suppose the angle D not to be given, but that the right 
line BD converges to a given point, or is determined by any other condition 
whatever; nevertheless the angles D, d, being determined by the same law, 
will always draw nearer to equality, and approach nearer to each other than 
by any assigned difference, and therefore, by Lem. 1, will at last be equal; and 
therefore the lines BD, hd are in the same ratio to each other as before, q.e.d. 

Cor. i. Therefore since the tangents AD, Ad, the arcs AB, Ah, and their 
sines, BC, he, become ultimately equal to the chords AB, Ah, their squares 
will ultimately become as the subtenses BD, hd. 

Cor. ii. Their squares are also ultimately as the versed sines of the arcs, 
bisecting the chords, and converging to a given point. For those versed sines 
are as the subtenses BD, hd. 

Cor. hi. And therefore the versed sine is as the square of 
the time in which a body will describe the arc with a given 
velocity. 

Cor. iv. The ultimate proportion, 
A ADB : AAdh = AD3 : Ad3 = DB3/2 : dh*'2, 

is derived from 
A ADB : AA(i6 = AD-DB : Ad • db 

and from the ultimate proportion 
AD2 : Ad2 = DB : dh. 

So also is obtained ultimately 
A ABC : AA5c = BC3 : 6c3. 
Cor. v. And because DB, dh are ultimately parallel and as the squares of the 

lines AD, Ad, the ultimate curvilinear areas ADB, Adh will be (by the nature 
of the parabola) two-thirds of the rectilinear triangles ADB, Adh, and the 
segments, AB, Ah will be one-third of the same triangles. And thence those 
areas and those segments will be as the cubes of the tangents AD, Ad, and also 
of the chords and arcs AB, Ah. 

Scholium 
But we have all along supposed the angle of contact to be neither infinitely 

greater nor infinitely less than the angles of contact made by circles and their 
tangents; that is, that the curvature at the point A is neither infinitely small 
nor infinitely great, and that the interval AJ is of a finite magnitude. For DB 
may be taken as AD3: in which case no circle can be drawn through the point 
A, between the tangent AD and the curve AB, and therefore the angle of con- 
tact will be infinitely less than those of circles. And by a like reasoning, if DB 
be made successfully as AD4, AD5, AD6, AD7, &c., we shall have a series of 
angles of contact, proceeding in infinitum, wherein every succeeding term is in- 
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finitely less than the preceding. And if DB be made successively as AD2, 
AD3/2, AD4/3, AD5/4, AD6/5, AD7/6, &c., we shall have another infinite series of 
angles of contact, the first of which is of the same sort with those of circles, the 
second infinitely greater, and every succeeding one infinitely greater than the 
preceding. But between any two of these angles another series of intermediate 
angles of contact may be interposed, proceeding both ways in infinitum, 
wherein every succeeding angle shall be infinitely greater or infinitely less than 
the preceding. As if between the terms AD2 and AD3 there were interposed the 
series AD13/6, AD11/5, AD9/4, AD7/3, AD5/2, AD3/3, AD11/4, AD14/6, AD17/6, &c. 
And again, between any two angles of this series, a new series of intermediate 
angles may be interposed, differing from one another by infinite intervals. 
Nor is Nature confined to any bounds. 

Those things which have been demonstrated of curved lines, and the sur- 
faces which they comprehend, may be easily applied to the curved surfaces 
and contents of solids. These Lemmas are premised to avoid the tediousness of 
deducing involved demonstrations ad absurdum, according to the method of 
the ancient geometers. For demonstrations are shorter by the method of indi- 
visibles; but because the hypothesis of indivisibles seems somewhat harsh, and 
therefore that method is reckoned less geometrical, I chose rather to reduce 
the demonstrations of the following Propositions to the first and last sums and 
ratios of nascent and evanescent quantities, that is, to the limits of those sums 
and ratios, and so to premise, as short as I could, the demonstrations of those 
limits. For hereby the same thing is performed as by the method of indivisibles; 
and now those principles being demonstrated, we may use them with greater 
safety. Therefore if hereafter I should happen to consider quantities as made 
up of particles, or should use little curved lines for right ones, I would not be 
understood to mean indivisibles, but evanescent divisible quantities; not the 
sums and ratios of determinate parts, but always the limits of sums and ratios; 
and that the force of such demonstrations always depends on the method laid 
down in the foregoing Lemmas. 

Perhaps it may be objected, that there is no ultimate proportion of evanes- 
cent quantities; because the proportion, before the quantities have vanished, 
is not the ultimate, and when they are vanished, is none. But by the same ar- 
gument it may be alleged that a body arriving at a certain place, and there 
stopping, has no ultimate velocity; because the velocity, before the body 
comes to the place, is not its ultimate velocity; when it has arrived, there is 
none. But the answer is easy; for by the ultimate velocity is meant that with 
which the body is moved, neither before it arrives at its last place and the mo- 
tion ceases, nor after, but at the very instant it arrives; that is, that velocity 
with which the body arrives at its last place, and with which the motion ceases. 
And in like manner, by the ultimate ratio of evanescent quantities is to be 
understood the ratio of the quantities not before they vanish, nor afterwards, 
but with which they vanish. In like manner the first ratio of nascent quantities 
is that with which they begin to be. And the first or last sum is that with which 
they begin and cease to be (or to be augmented or diminished). There is a limit 
which the velocity at the end of the motion may attain, but not exceed. This 
is the ultimate velocity. And there is the like limit in all quantities and propor- 
tions that begin and cease to be. And since such limits are certain and definite, 
to determine the same is a problem strictly geometrical. But whatever is geo- 
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metrical we may use in determining and demonstrating any other thing that is 
also geometrical. 

It may also be objected, that if the ultimate ratios of evanescent quantities 
are given, their ultimate magnitudes will be also given: and so all quantities 
will consist of indivisibles, which is contrary to what Euclid has demonstrated 
concerning incommensurables, in the tenth book of his Elements. But this ob- 
jection is founded on a false supposition. For those ultimate ratios with which 
quantities vanish are not truly the ratios of ultimate quantities, but limits to- 
wards which the ratios of quantities decreasing without limit do always con- 
verge; and to which they approach nearer than by any given difference, but 
never go beyond, nor in effect attain to, till the quantities are diminished in 
infinitum. This thing will appear more evident in quantities infinitely great. If 
two quantities, whose difference is given, be augmented in infinitum, the ulti- 
mate ratio of these quantities will be given, namely, the ratio of equality; but 
it does not from thence follow, that the ultimate or greatest quantities them- 
selves, whose ratio that is, mil be given. Therefore if in what follows, for the 
sake of being more easily understood, I should happen to mention quantities 
as least, or evanescent, or ultimate, you are not to suppose that quantities of 
any determinate magnitude are meant, but such as are conceived to be always 
diminished without end. 

SECTION II 

The determination of centripetal forces 

Proposition 1. Theorem 1 
The areas which revolving bodies describe by radii drawn to an immovable centre 
of force do lie in the same immovable planes, and are proportional to the times in 
which they are described. 

For suppose the time to be divided into equal parts, and in the first part of 
that time let the body by its innate force describe the right line AB. In the 
second part of that time, the same would (by Law i), if not hindered, proceed 
directly to c, along the line Be equal to AB; so that by the radii AS, BS, cS, 
drawn to the centre, the equal areas ASB, BSc, would be described. But when 
the body is arrived at B, suppose that a centripetal force acts at once with a 
great impulse, and, turning aside the body from the right line Be, compels it 
afterwards to continue its motion along the right line BC. Draw cC parallel to 
BS, meeting BC in C; and at the end of the second part of the time, the body 
(by Cor. i of the Laws) will be found in C, in the same plane with the triangle 
ASB. Join SC, and, because SB and Cc are parallel, the triangle SBC will be 
equal to the triangle SBc, and therefore also to the triangle SAB. By the like 
argument, if the centripetal force acts successively in C, D, E, &c., and makes 
the body, in each single particle of time, to describe the right lines CD, DE, 
EF, &c., they will all lie in the same plane; and the triangle SCD will be equal 
to the triangle SBC, and SDE to SCD, and SEF to SDE. And therefore, in 
equal times, equal areas are described in one immovable plane: and, by com- 
position, any sums SADS, SAFS, of those areas, are to each other as the times 
in which they are described. Now let the number of those triangles be aug- 
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merited, and their breadth diminished in infinitum; and (by Cor. iv, Lem. 3) 
their ultimate perimeter ADF will be a curved line: and therefore the centrip- 
etal force, by which the body is continually drawn back from the tangent of 

this curve, will act continually; 
and any described areas SADS, 
SAFS, which are always pro- 
portional to the times of de- 
scription, will, in this case also, 
be proportional to those times. 

Q.E.D. 
Cor. i. The velocity of a 

body attracted towards an im- 
movable centre, in spaces void 
of resistance, is inversely as the 
perpendicular let fall from that 
centre on the right line that 
touches the orbit. For the ve- 
locities in those places A, B, C, 
D, E, are as the bases AB, BC, 
CD, DE, EF, of equal triangles; 
and these bases are inversely 
as the perpendiculars let fall 
upon them. 

Cor. ii. If the chords AB, BC of two arcs, successively described in equal 
times by the same body, in spaces void of resistance, are completed into a 
parallelogram ABCV, and the diagonal BY of this parallelogram, in the posi- 
tion which it ultimately acquires when those arcs are diminished in infinitum, 
is produced both ways, it will pass through the centre of force. 

Cor. hi. If the chords AB, BC, and DE, EF, of arcs described in equal times, 
in spaces void of resistance, are completed into the parallelograms ABCV, 
DEFZ, the forces in B and E are one to the other in the ultimate ratio of the 
diagonals BY, EZ, when those arcs are diminished in infinitum. For the motions 
BC and EF of the body (by Cor. 1 of the Laws) are compounded of the motions 
Be, BY, and E/, EZ; but BY and EZ, which are equal to Cc and F/, in the 
demonstration of this Proposition, were generated by the impulses of the cen- 
tripetal force in B and E, and are therefore proportional to those impulses. 

Cor. iv. The forces by which bodies, in spaces void of resistance, are drawn 
back from rectilinear motions, and turned into curvilinear orbits, are to each 
other as the versed sines of arcs described in equal times; which versed sines 
tend to the centre of force, and bisect the chords when those arcs are diminished 
to infinity. For such versed sines are the halves of the diagonals mentioned in 
Cor. hi. 

Cor. v. And therefore those forces are to the force of gravity as the said 
versed sines to the versed sines perpendicular to the horizon of those parabolic 
arcs which projectiles describe in the same time. 

Cor. vi. And the same things do all hold good (by Cor. v of the Laws) when 
the planes in which the bodies are moved, together with the centres of force 
which are placed in those planes, are not at rest, but move uniformly forwards 
in right lines. 
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Proposition 2. Theorem 2 
Every body that moves in any curved line described in a plane, and by a radius 
drawn to a point either immovable, or moving forwards with an uniform rectilinear 
motion, describes about that point areas proportional to the times, is urged by a 
centripetal force directed to that point. 

Case 1. For every body that moves in a curved line is (by Law i) turned 
aside from its rectilinear course by the action of some force that impels it. And 
that force by which the body is turned off from its rectilinear course, and is 
made to describe, in equal 
times, the equal least triangles 
SAB, SBC, SCD, &c., about 
the immovable point S (by 
Prop. 40, Book 1, Elements of 
Euclid, and Law ii), acts in the 
place B, according to the direc- 
tion of a line parallel tocC, that 
is, in the direction of the line 
BS; and in the place C, accord- 
ing to the direction of a line 
parallel to dD, that is, in the 
direction of the line CS, &c.; 
and therefore acts always in 
the direction of lines tending to 
the immovable point S. q.e.d. 

Case 2. And (by Cor. v of 
the Laws) it is indifferent 
whether the surface in which a 
body describes a curvilinear figure be at rest, or moves together with the body, 
the figure described, and its point S, uniformly forwards in a right line. 

Cor. i. In nonresisting spaces or mediums, if the areas are not proportional 
to the times, the forces are not directed to the point in which the radii meet, 
but deviate therefrom towards the part to which the motion is directed, if the 
description of the areas is accelerated, and away from that part, if retarded. 

Cor. ii. And even in resisting mediums, if the description of the areas is 
accelerated, the directions of the forces deviate from the point in which the 
radii meet, towards the part to which the motion tends. 

Scholium 
A body may be urged by a centripetal force compounded of several forces; in 

which case the meaning of the Proposition is, that the force which results out 
of all tends to the point S. But if any force acts continually in the direction of 
lines perpendicular to the described surface, this force will make the body to 
deviate from the plane of its motion; but will neither augment nor diminish the 
area of the described surface, and is therefore to be neglected in the composition 
of forces. 

F. 
D, 
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Proposition 3. Theorem 3 
Every body, that by a radius drawn to the centre of another body, howsoever moved, 
describes areas about that centre proportional to the times, is urged by a force 
compounded of the centripetal force tending to that other body, and of all the ac- 
celerative force by which that other body is impelled. 

Let L represent the one, and T the other body; and (by Cor. vi of the Laws) 
if both bodies are urged in the direction of parallel lines, by a new force equal 
and contrary to that by which the second body T is urged, the first body L will 
go on to describe about the other body T the same areas as before: but the 
force by which that other body T was urged will be now destroyed by an equal 
and contrary force; and therefore (by Law i) that other body T, now left to 
itself, will either rest, or move uniformly forwards in a right line: and the first 
body L, impelled by the difference of the forces, that is, by the force remaining, 
will go on to describe about the other body T areas proportional to the times. 
And therefore (by Theor. 2) the difference of the forces is directed to the other 
body T as its centre. q.e.d. 

Cor. i. Hence if the one body L, by a radius drawn to the other body T, 
describes areas proportional to the times; and from the whole force, by which 
the first body L is urged (whether that force is simple, or, according to Cor. ii 
of the Laws, compounded out of several forces), we subtract (by the same Cor.) 
that whole accelerative force by which the other body is urged; the whole 
remaining force by which the first body is urged will tend to the other body T, 
as its centre. 

Cor. ii. And, if these areas are proportional to the times nearly, the remain- 
ing force will tend to the other body T nearly. 

Cor. hi. And vice versa, if the remaining force tends nearly to the other body 
T, those areas wall be nearly proportional to the times. 

Cor. iv. If the body L, by a radius drawn to the other body T, describes 
areas, which, compared with the times, are very unequal; and that other body 
T be either at rest, or moves uniformly forwards in a right line: the action of 
the centripetal force tending to that other body T is either none at all, or it is 
mixed and compounded with very powerful actions of other forces: and the 
whole force compounded of them all, if they are many, is directed to another 
(immovable or movable) centre. The same thing obtains, when the other body 
is moved by any motion whatsoever; provided that centripetal force is taken, 
which remains after subtracting that whole force acting upon that other body T. 

Scholium 
Since the equable description of areas indicates that there is a centre to 

which tends that force by which the body is most affected, and by which it is 
drawn back from its rectilinear motion, and retained in its orbit, why may we 
not be allowed, in the following discourse, to use the equable description of 
areas as an indication of a centre, about which all circular motion is performed 
in free spaces? 

Proposition 4. Theorem 4 
The centripetal forces of bodies, which by equable motions describe different circles, 
tend to the centres of the same circles; and are to each other as the squares of the arcs 
described in equal times divided respectively by the radii of the circles. 
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These forces tend to the centres of the circles (by Prop. 2, and Cor. n, Prop. 

1), and are to one another as the versed sines of the least arcs described in equal 
times (by Cor. iv, Prop. 1); that is, as the squares of the same arcs divided by 
the diameters of the circles (by Lem. 7); and therefore since those arcs are as 
arcs described in any equal times, and the diameters are as the radii, the forces 
will be as the squares of any arcs described in the same time divided by the 
radii of the circles. q.e.d. 

Cor. i. Therefore, since those arcs are as the velocities of the bodies, the 
centripetal forces are as the squares of the velocities divided by the radii. 

Cor. ii. And since the periodic times are as the radii divided by the veloc- 
ities, the centripetal forces are as the radii divided by the square of the periodic 
times. 

Cor. hi. Whence if the periodic times are equal, and the velocities therefore 
as the radii, the centripetal forces will be also as the radii; and conversely. 

Cor. iv. If the periodic times and the velocities are both as the square roots 
of the radii, the centripetal forces will be equal among themselves; and con- 
versely. 

Cor. v. If the periodic times are as the radii, and therefore the velocities 
equal, the centripetal forces will be inversely as the radii; and conversely. 

Cor. vi. If the periodic times are as the y^th powers of the radii, and there- 
fore the velocities inversely as the square roots of the radii, the centripetal 
forces will be inversely as the squares of the radii; and conversely. 

Cor. vii. And universally, if the periodic time is as any power Rn of the 
radius R, and therefore the velocity inversely as the power R11-1 of the radius, 
the centripetal force will be inversely as the power R211-1 of the radius; and 
conversely. 

Cor. viii. The same things hold concerning the times, the velocities, and the 
forces by which bodies describe the similar parts of any similar figures that 
have their centres in a similar position with those figures; as appears by apply- 
ing the demonstration of the preceding cases to those. And the application is 
easy, by only substituting the equable description of areas in the place of 
equable motion, and using the distances of the bodies from the centres instead 
of the radii. 

Cor. ix. From the same demonstration it likewise follows, that the arc which 
a body, uniformly revolving in a circle with a given centripetal force, describes 
in any time, is a mean proportional between the diameter of the circle, and the 
space which the same body falling by the same given force would describe in 
the same given time. 

Scholium 
The case of the sixth Corollary obtains in the celestial bodies (as Sir Christo- 

pher Wren, Dr. Hooke, and Dr. Halley have severally observed); and therefore 
in what follows, I intend to treat more at large of those things which relate to 
centripetal force decreasing as the squares of the distances from the centres. 

Moreover, by means of the preceding Proposition and its Corollaries, we 
may discover the proportion of a centripetal force to any other known force, 
such as that of gravity. For if a body by means of its gravity revolves in a circle 
concentric to the earth, this gravity is the centripetal force of that body. But 
from the descent of heavy bodies, the time of one entire revolution, as well as 
the arc described in any given time, is given (by Cor. ix of this Prop.). And by 
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such propositions, Mr. Huygens, in his excellent book De horologio oscillatorio, 
has compared the force of gravity with the centrifugal forces of revolving 
bodies. 

The preceding Proposition may be likewise demonstrated after this manner. 
In any circle suppose a polygon to be inscribed of any number of sides. And if 
a body, moved with a given velocity along the sides of the polygon, is reflected 
from the circle at the several angular points, the force, with which at every 
reflection it strikes the circle, will be as its velocity: and therefore the sum of 
the forces, in a given time, will be as the product of that velocity and the num- 
ber of reflections; that is (if the species of the polygon be given), as the length 
described in that given time, and increased or diminished in the ratio of the 
same length to the radius of the circle; that is, as the square of that length 
divided by the radius; and therefore the polygon, by having its sides diminished 
in infinitum, coincides with the circle, as the square of the arc described in a 
given time divided by the radius. This is the centrifugal force, with which the 
body impels the circle; and to which the contrary force, wherewith the circle 
continually repels the body towards the centre, is equal. 

Proposition 5. Problem 1 
There being given, in any places, the velocity with which a body describes a given 
figure, by means of forces directed to some common centre: to find that centre. 

Let the three right lines PT, TQV, VR touch the figure described in as many 
points, P, Q, R, and meet in T and Y. On the tangents erect the perpendiculars 

PA, QB, RC, inversely proportional to the ve- 
locities of the body in the points P, Q, R, from 
which the perpendiculars were raised; that is, 
so that PA may be to QB as the velocity in Q 
to the velocity in P, and QB to RC as the ve- 
locity in R to the velocity in Q. Through the 
ends A, B, C of the perpendiculars draw AD, 
DBE, EC, at right angles, meeting in D and 
E: and the right lines TD, YE produced, will 
meet in S, the centre required. 

For the perpendiculars let fall from the centre S on the tangents PT, QT, 
are inversely as the velocities of the bodies in the points P and Q (by Cor. i, 
Prop. 1), and therefore, by construction, directly as the perpendiculars AP, 
BQ; that is, as the perpendiculars let fall from the point D on the tangents. 
Whence it is easy to infer that the points S, D, T are in one right line. And by 
the like argument the points S, E, Y are also in one right line; and therefore 
the centre S is in the point where the right lines TD, YE meet. q.e.d. 

Proposition 6. Theorem 5 
In a space void of resistance, if a body revolves in any orbit about an immovable 
centre, and in the least time describes any arc just then nascent; and the versed sine 
of that arc is supposed to be drawn bisecting the chord, and produced passing 
through the centre of force: the centripetal force in the middle of the arc will be 
directly as the versed sine and inversely as the square of the time. 

For the versed sine in a given time is as the force (by Cor. iv, Prop. 1); and 
augmenting the time in any ratio, because the arc will be augmented in the 
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same ratio, the versed sine will be augmented in the square of that ratio (by 
Cor. ii and m, Lem. 11), and therefore is as the force and the square of the 
time. Divide both sides by the square of the time, and the force will be directly 
as the versed sine, and inversely as the square of the time. q.e.d. 

And the same thing may also be easily demonstrated by Cor. iv, Lem. 10. 
Cor. i. If a body P revolving about the centre S describes a curved line APQ, 

which a right line ZPR touches in any point P; 
and from any other point Q of the curve, QR is 
drawn parallel to the distance SP, meeting the 
tangent in R; and QT is drawn perpendicular to 
the distance SP; the centripetal force will be in- 

versely as the solid •£ ^ ^a]ien DR 
of that magnitude which it ultimately acquires 
when the points P and Q coincide. For QR is equal to the versed sine of double 
the arc QP, whose middle is P: and double the triangle SQP, or SP-QT is pro- 
portional to the time in which that double arc is described; and therefore 
may be used to represent the time. 

Cor. ii. By a like reasoning, the centripetal force is inversely as the solid 
SY2 * OP2 

——; if SY is a perpendicular from the centre of force on PR, the tangent 
QK 

of the orbit. For the rectangles SY-QP and SP-QT are equal. 
Cor. hi. If the orbit is either a circle, or touches or cuts a circle concentri- 

cally, that is, contains with a circle the least angle of contact or section, having 
the same curvature and the same radius of curvature at the point P; and if PY 
be a chord of this circle, drawn from the body through the centre of force; the 

OP2 

centripetal force will be inversely as the solid SY2-PV. For PV is 
QR 

Cor. iv. The same things being supposed, the centripetal force is as the 
square of the velocity directly, and the chord inversely. For the velocity is 
reciprocally as the perpendicular SY, by Cor. i, Prop. 1. 

Cor. v. Hence if any curvilinear figure APQ is given, and therein a point S is 
also given, to which a centripetal force is continually directed, that law of cen- 
tripetal force may be found, by which the body P will be continually drawn 
back from a rectilinear course, and, being detained in the perimeter of that 
figure, will describe the same by a continual revolution. That is, we are to find, 

SP2 • QT2 

by computation, either the solid —— or the solid SY2 • PV, inversely pro- 

portional to this force. Examples of this we shall give in the following Problems. 

Proposition 7. Problem 2 
If a body revolves in the circumference of a circle, it is proposed to find the law of 

centripetal force directed to any given point. 
Let VQPA be the circumference of the circle; S the given point to which as 

to a centre the force tends; P the body moving in the circumference; Q the next 
place into which it is to move; and PRZ the tangent of the circle at the preced- 
ing place. Through the point S draw the chord PV, and the diameter VA of the 
circle; join AP, and draw QT perpendicular to SP, which produced, may meet 
the tangent PR in Z; and lastly, through the point Q, draw LR parallel to SP, 



Book I: The Motion of Bodies 39 

meeting the circle in L, and the tangent PZ in R. And, because of the similar 
triangles ZQR, ZTP, VPA, we shall have 

RP2 : QT2 = AV2: PV2. 

Since RP2 = RL • QR, QT2 - RL QR PV2 

AV2 

SP2 

the Multiply those equals by and 

points P and Q coinciding, for RL write 
PV; then we shall have 

SP2-PV3 SP2QT2 

AY2 ~ QR - 

And therefore (by Cor. i and v, Prop. 6) 
the centripetal force is inversely as 
SP2 • PV3 

——; that is (because AY2 is given), A. V 
inversely as the product of SP2 and PV3. 

Q.E.I. 
The same otherwise. 

On the tangent PR produced let fall the perpendicular SY; and (because of 
the similar triangles SYP, VPA) we shall have AV to PV as SP to SY, and 

SP • PV SP2 • PV3 

therefore —ATr = SY, and —— = SY2 • PV. And therefore (by Cor. hi and A. V AV 

v, Prop. 6) the centripetal force is inversely as 
SP2PV3 

AV2 ; that is (because AV is 

given), inversely as SP2-PV3. q.e.i. 
Cor. i. Hence if the given point S, to which the centripetal force always 

tends, is placed in the circumference of the circle, as at V, the centripetal force 
will be inversely as the fifth power of the altitude SP. 

Cor. ii. The force by which the body P in the circle APTV revolves about 
the centre of force S is to the force by which the same body P may revolve in 
the same circle, and in the same periodic time, 
about any other centre of force R, as RP2-SP to 
the cube of the right line SG, which from the first 
centre of force S is drawn parallel to the distance 
PR of the body from the second centre of force R, 
meeting the tangent PG of the orbit in G. For by 
the construction of this Proposition, the former 
force is to the latter as RP2-PT3 to SP2-PV3; that 

is, as SP • RP2 to Sps.pv3 

PT3 ; or (because of the similar triangles PSG, TPV) toSG3. 

Cor. m. The force by which the body P in any orbit revolves about the 
centre of force S, is to the force by which the same body may revolve in the 
same orbit, and the same periodic time, about any other centre of force R, as 
the solid SP-RP2, contained under the distance of the body from the first 
centre of force S, and the square of its distance from the second centre of force 
R, to the cube of the right line SG, drawn from the first centre of the force S, 
parallel to the distance RP of the body from the second centre of force R, 
meeting the tangent PG of the orbit in G. For the force in this orbit at any 
point P is the same as in a circle of the same curvature. 
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Proposition 8. Problem 3 
If a body moves in the semicircumference PQA; it is proposed to find the law of the 
centripetal force tending to a point S, so remote, that all the lines PS, RS drawn 
thereto, may he taken for parallels. 

From C, the centre of the semicircle, let the semidiameter CA be drawn, 
cutting the parallels at right angles in M and N, and join CP. Because of the 
similar triangles CPM, PZT, and RZQ, we 
shall have CP2 : PM2 = PR2 : QT2. From the 
nature of the circle, PR2 = QR(RN + QN) = 
QR-2PM, when the points P and Q coincide. 
Therefore CP2 : PM2 = QR-2PM : QT2; and 
QT2_2PM3 QT2 • SP2 _ 2PM3 • SP2 A 
QR CP2 ' QR CP2 * 
therefore (by Cor. i and v, Prop. 6) the cen- 
. • . ir • • i 2PM3.SP2 , . tnpetal force is inversely as ——; that is 

2SP2 

(neglecting the given ratio inversely as PM3. q.e.i. 

And the same thing is likewise easily inferred from the preceding Propo- 
sition. 

Scholium 
And by a like reasoning, a body will be moved in an ellipse, or even in an 

hyperbola, or parabola, by a centripetal force which is inversely as the cube of 
the ordinate directed to an infinitely remote centre of force. 

Proposition 9. Problem 4 
If a body revolves in a spiral PQS, cutting all the radii SP, SQ, (fee., in a given 
angle; it is proposed to find the law of the centripetal force tending to the centre of 
that spiral. 

Suppose the indefinitely small angle PSQ to be given; because, then, all the 
angles are given, the figure SPRQT will be given in kind. Therefore the ratio 
QT QT2 

Qp- is also given, and is as QT, that is (because the figure is given in kind), 

as SP. But if the angle PSQ is any way changed, the right line QR, subtending 
the angle of contact QPR (by Lem. 11) will be changed in the ratio of PR2 or 

QT2 

QT2. Therefore the ratio 7^5- remains the same as before, that is, as SP. And QK 
QT2 • SP2 

QR is as SP3, and therefore (by Cor. 1 and v, Prop. 6) the centripetal force 

is inversely as the cube of the distance SP. Q.E.I. 
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The same otherwise. 

The perpendicular SY let fall upon the tangent, and the chord PV of the 
circle concentrically cutting the spiral, are in given ratios to the height SP; and 
therefore SP3 is as SY2-PV, that is (by Cor. m and v, Prop. 6) inversely as the 
centripetal force. 

Lemma 12 
All parallelograms circumscribed about any conjugate diameters of a given ellipse 
or hyperbola are equal among themselves. 

This is demonstrated by the writers on the conic sections. 

Proposition 10. Problem 5 
If a body revolves in an ellipse; it is proposed to find the law of the centripetal force 
tending to the centre of the ellipse. 

Suppose CA, CB to be semiaxes of the ellipse; GP, DK, conjugate diam- 
eters; PF, QT, perpendiculars to those diameters; Q^, an ordinate to the diam- 

eter GP; and if the parallelogram 
Qz;PR be completed, then (by the 
properties of the conic sections) 
FvvG : Qv2 = PC2: CD2, and, be- 
cause of the similar triangles Q^T, 
PCF, Qv2 : QT2 = PC2 : PF2; and 

QT2 

by eliminating qv2, z;G : = 

PT)2 • PP2 

PC2 : pQ2 • Since = 

and (by Lem. 12) BC-CA = 
CD-PF, and, when the points P 
and Q coincide, 2PC = ^G, we shall 
have, multiplying the extremes 

QT2PC2_ 

uX^t \ 

\v/ 

FN / 

and means together, 
QR 

. Therefore (by Cor. v, Prop. 6), the centripetal force is inversely as 

that is (because 2BC2-CA2 is given), inversely as —that is, di- 

2BC2 • CA2 

PC 
2BC2 • CA2 

PC 
rectly as the distance PC. q.e.i. 

The same otherwise. 
In the right line PG on the other side of the point T, take the point u so that 

Tu may be equal to Tz;; then take u\, such that u\ : vG = DC2 : PC2. Since, by 
the conic sections, qv2 : Pz;-z;G = DC2 : PC2, we have qv2 = Fv-uV. Add Pzz Py 
to both sides, and the square of the chord of the arc PQ will be equal to the 
rectangle PV -Pzq and therefore a circle which touches the conic section in P, 
and passes through the point Q, will pass also through the point V. Now let the 
points P and Q meet, and the ratio of uV to ^G, which is the same with the 
ratio of DC2 to PC2, will become the ratio of PV to PG, or PV to 2PC; and 

2DC2 

therefore PV will be equal to x:)r< . And therefore the force by which the body 
2DC2 

P revolves in the ellipse will be inversely ; PC • PF2 (by Cor. m, Prop. 6); 

that is (because 2DC2-PF2 is given), directly as PC. Q.E.I. 
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Cor. i. And therefore the force is as the distance of the body from the centre 

of the ellipse; and, vice versa, if the force is as the distance, the body will move 
in an ellipse whose centre coincides with the centre of force, or perhaps in a 
circle into which the ellipse may degenerate. 

Cor. ii. And the periodic times of the revolutions made in all ellipses what- 
soever about the same centre will be equal. For those times in similar ellipses 
will be equal (by Cor. m and vm, Prop. 4); but in ellipses that have their 
greater axis common, they are to each other as the whole areas of the ellipses 
directly, and the parts of the areas described in the same time inversely; that 
is, as the lesser axes directly, and the velocities of the bodies in their principal 
vertices inversely; that is, as those lesser axes directly, and the ordinates to the 
same point of the common axes inversely; and therefore (because of the equal- 
ity of the direct and inverse ratios) in the ratio of equality, i : i. 

Scholium 
If the ellipse, by having its centre removed to an infinite distance, degen- 

erates into a parabola, the body will move in this parabola; and the force, now 
tending to a centre infinitely remote, will become constant. This is Galileo's 
theorem. And if the parabolic section of the cone (by changing the inclination 
of the cutting plane to the cone) degenerates into an hyperbola, the body will 
move in the perimeter of this hyperbola, having its centripetal force changed 
into a centrifugal force. And in like manner as in the circle, or in the ellipse, if the 
forces are directed to the centre of the figure placed in the abscissa, those forces 
by increasing or diminishing the ordinates in any given ratio, or even by chang- 
ing the angle of the inclination of the ordinates to the abscissa, are always 
augmented or diminished in the ratio of the distances from the centre; provided 
the periodic times remain equal; so also in all figures whatsoever, if the or- 
dinates are augmented or diminished in any given ratio, or their inclination is 
any way changed, the periodic time remaining the same, the forces directed to 
any centre placed in the abscissa are in the several ordinates augmented or 
diminished in the ratio of the distances from the centre. 

SECTION III 

The motion of bodies in eccentric conic sections 

Proposition 11. Problem 6 
If a body revolves in an ellipse; it is required to find the law of the centripetal force 
tending to the focus of the ellipse. 

Let S be the focus of the ellipse. Draw SP cutting the diameter DK of the 
ellipse in E, and the ordinate Qv in and complete the parallelogram QrrPR. It 
is evident that EP is equal to the greater semiaxis AC: for drawing HI from the 
other focus H of the ellipse parallel to EC, because CS, CH are equal, ES, El 
will also be equal; so that EP is the half-sum of PS, PI, that is (because of the 
parallels HI, PR, and the equal angles IPR, HPZ), of PS, PH, which taken 
together are equal to the whole axis 2AC. Draw QT perpendicular to SP, and 

2BC2 

putting L for the principal latus rectum of the ellipse (or for ^ ), we shall have 
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xf) 
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\\^P 

J*r// / Vs 

S / 

\gX 

NT h I 

\k/ 

come equal to SP2 • QT2 

QR 

L QR : L Fv = QR : Pz; = PE : PC = AC : PC, 
also, L Fv :Gv Fv = L :Gv, and, G?; Pz; : Qz;2 = PC2 : CD2. 

By Cor. n, Lem. 7, when the 
points P and Q coincide, Qz^2 = Qx2, 
and Qx2 or Qz;2: QT2 = EP2: PF2 = 
CA2 : PF2, and (by Lem. 12) = 
CD2 : CB2. Multiplying together 
corresponding terms of the four 
proportions, and simplifying, we 
shall have L-QR : QT2 = AC-L- 
PC2 • CD2 : PC • Gz; • CD2 • CB2 = 
2PC : Gv, since AC L = 2BC2. 
But the pointsQ and P coinciding, 
2PC and Gz; are equal. And there- 
fore the quantities L • QR and QT2, 
proportional to these, will be also 
equal. Let those equals be multi- 

plied by and L • SP2 will be- 

And therefore (by Cor. i and v, Prop. 6) the cen- 

tripetal force is inversely as L-SP2, that is, inversely as the square of the dis- 
tance SP. Q.E.I. 

The same otherwise. 
Since the force tending to the centre of the ellipse, by which the body P may 

revolve in that ellipse, is (by Cor. i, Prop. 10) as the distance CP of the body 
from the centre C of the ellipse, let CE be drawn parallel to the tangent PR of 
the ellipse; and the force by which the same body P may revolve about any 

PE3 

other point S of the ellipse, if CE and PS intersect in E, will be as (by 

Cor. hi, Prop. 7); that is, if the point S is the focus of the ellipse, and there- 
fore PE be given as SP2 reciprocally. q.e.i. 

With the same brevity with which we reduced the fifth Problem to the 
parabola, and hyperbola, we might do the like here; but because of the dignity 
of the Problem and its use in what follows, I shall confirm the other cases by 
particular demonstrations. 

Proposition 12. Problem 7 
Suppose a body to move in an hyperbola; it is required to find the law of the 
centripetal force tending to the focus of that figure. 

Let CA, CB be the semiaxes of the hyperbola; PG, KD other conjugate 
diameters; PF a perpendicular to the diameter KD; and Qz; an ordinate to the 
diameter GP. Draw SP cutting the diameter DK in E, and the ordinate Qz; in 
x, and complete the parallelogram QRPa;. It is evident that EP is equal to the 
semitransverse axis AC; for drawing HI, from the other focus H of the hyper- 
bola, parallel to EC, because CS, CH are equal, ES, El will be also equal; so 
that EP is the half difference of PS, PI; that is (because of the parallels IH, 
PR, and the equal angles IPR, HPZ), of PS, PH, the difference of which is 
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equal to the whole axis 2AC. Draw QT perpendicular to SP; and putting L for 

2BC2 

the principal latus rectum of the hyperbola (that is, for ^ ), we shall have 
L QR : L • Pv = QR : Pz; = P^ : Pi; = PE : PC = AC : PC, 

also, L-Pv : Gv Pv = L : Gv, and Gv-Pv : Qz;2 = PC2 : CD2. By Cor. n, Lem. 7, 
when P and Q coincide, Qx2 = Qv2, and, 

Qx2 or qv2 : QT2 = EP2 : PF2 = CA2 : PF2, by Lem. 12, =CD2 : CB2. 

.. p tB 

A S 

Multiplying together corresponding terms of the four proportions, and simpli- 
fying, 

L QR : QT2 = AC • L • PC2 • CD2 : PC G^CD2 CB2 = 2PC : Gv, 
since AC • L = 2BC2. But the points P and Q coinciding, 2PC and Gv are equal. 
And therefore the quantities L • QR and QT2, proportional to them, will also be 

SP2 

equal. Let those equals be drawn into 7^, and we shall have L-SP2 equal to 
SP2 • QT2 

QR 
-. And therefore (by Cor. 1 and v, Prop. 6) the centripetal force is 

inversely as L-SP2, that is, inversely as the square of the distance SP. q.e.i. 
The same otherwise. 

Find out the force tending from the centre C of the hyperbola. This will be 
proportional to the distance CP. But from thence (by Cor. m, Prop. 7) the 

PE3 

force tending to the focus S will be as -gp-2, that is, because PE is given re- 
ciprocally as SP2. q.e.i. 

And the same way may it be demonstrated, that the body having its centri- 
petal changed into a centrifugal force, will move in the conjugate hyperbola. 
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Lemma 13 
The latus rectum of a parabola belonging to any vertex is four times the distance of 
that vertex from the focus of the figure. 

This is demonstrated by the writers on the conic sections. 

Lemma 14 
The perpendicular, let fall from the focus of a parabola on its tangent, is a mean 
proportional between the distances of the focus from the point of contact, and from 
the principal vertex of the figure. 

For, let AP be the parabola, S its focus, A its principal vertex, P the point of 
contact, PO an ordinate to the principal diameter, PM the tangent meeting the 

principal diameter in M, and SN the per- 
pendicular from the focus on the tangent: 
join AN, and because of the equal lines 
MS and SP, MN and NP, MA and AO, 
the right lines AN, OP will be parallel; 
and thence the triangle SAN will be right- 
angled at A, and similar to the equal tri- 
angles SNM, SNP; therefore PS is to SN 
as SN is to SA. q.e.d. 

Cor. i. PS2 is to SN2 as PS is to SA. 
Cor. ii. And because SA is given, SN2 will vary as PS. 
Cor. hi. And the intersection of any tangent PM, with the right line SN, 

drawn from the focus perpendicular on the tangent, falls in the right line AN 
that touches the parabola in the principal vertex. 

Proposition 13. Problem 8 
If a body moves in the perimeter of a parabola; it is required to find the law of the 
centripetal force tending to the focus of that figure. 

Retaining the construction of the preceding Lemma, let P be the body in the 
perimeter of the parabola; and from the place Q, into which it is next to suc- 
ceed, draw QR parallel and QT per- 
pendicular to SP, as also Qy parallel 
to the tangent, and meeting the di- 
ameter PG in v, and the distance SP 
in x. Now because of the similar tri- 
angles Vxv, SPM, and of the equal 
sides SP, SM of the one, the sides Pa: 
or QR and Fv of the other will be also 
equal. But (by the conic sections) the 
square of the ordinate Qv is equal to 
the rectangle under the latus rectum 
and the segment Fv of the diameter; that is (by Lem. 13), to the rectangle 
4PS-Pz;, or 4PS-QR; and the points P and Q coinciding, (by Cor. n, Lem. 7), 
Qa: = Qz;. And therefore Qa:2, in this case, becomes equal to the rectangle 
4PS-QR. But (because of the similar triangles QxT, SPN), 

Qx2 : QT2 = PS2 : SN2 = PS : SA (by Cor. i, Lem. 14), 
= 4PS • QR : 4SA QR. 
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Therefore (by Prop. 9, Book y, Elements of Euclid), QT2 = 4SA-QR. Multiply 

SP2 SP2QT2 

these equals by and —^5— will become equal to SP2-4SA: and therefore qjK 
(by Cor. 1 and v, Prop. 6), the centripetal force is inversely as SP2-4SA; that 
is, because 4SA is given, inversely as the square of the distance SP. q.e.i. 

Cor. 1. From the three last Propositions it follows, that if any body P goes 
from the place P with any velocity in the direction of any right line PR, and at 
the same time is urged by the action of a centripetal force that is inversely 
proportional to the square of the distance of the places from the centre, the 
body will move in one of the conic sections, having its focus in the centre of 
force; and conversely. For the focus, the point of contact, and the position of 
the tangent, being given, a conic section may be described, which at that point 
shall have a given curvature. But the curvature is given from the centripetal 
force and velocity of the body being given; and two orbits, touching one the 
other, cannot be described by the same centripetal force and the same velocity. 

Cor. 11. If the velocity with which the body goes from its place P is such, 
that in any infinitely small moment of time the small line PR may be thereby 
described; and the centripetal force such as in the same time to move the same 
body through the space QR; the body will move in one of the conic sections, 

QT2 

whose principal latus rectum is the quantity ^7- in its ultimate state, when the v^-TV/ 
small lines PR, QR are diminished in infinitum. In these Corollaries I consider 
the circle as an ellipse; and I except the case where the body descends to the 
centre in a right line. 

Proposition 14. Theorem 6 
If several bodies revolve about one common centre, and the centripetal force is 
inversely as the square of the distance of places from the centre: I say, that the 
principal latera recta of their orbits are as the squares of the areas, which the bodies 
by radii drawn to the centre describe in the same time. 

QT2 

For (by Cor. 11, Prop. 13) the latus rectum L is equal to the quantity in 

its ultimate state when the points P and Q coincide. But the small line QR in a 
given time is as the generating centripetal force; 
that is (by supposition), inversely as SP2. and 

therefore is as QT2 • SP2; that is, the latus rec- 
QR 

turn L is as the square of the area QT • SP. q.e.d. 
Cor. Hence the whole area of the ellipse, and 

the rectangle under the axes, which is propor- 
tional to it, is as the product of the square root 
of the latus rectum, and the periodic time. For 
the whole area is as the area QT • SP, described in a given time, multiplied by 
the periodic time. ^ ^ ^ 

Proposition 15. Theorem 7 
The same things being supposed, I say, that the periodic times in ellipses are as the 
'Ath power (in ratione sesquiplicata) of their greater axes. 

For the lesser axis is a mean proportional between the greater axis and the 
latus rectum; and, therefore, the product of the axes is equal to the product of 
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the square root of the latus rectum and the y^th power of the greater axis. But 
the product of the axes (by Cor., Prop. 14) varies as the product of the square 
root of the latus rectum, and the periodic time. Divide both sides by the square 
root of the latus rectum and it follows that the /^th power of the greater axis 
varies as the periodic time. q.e.d. 

Cor. Therefore the periodic times in ellipses are the same as in circles whose 
diameters are equal to the greater axes of the ellipses. 

Proposition 16. Theorem 8 
The same things being supposed, and right lines being drawn to the bodies that 
shall touch the orbits, and perpendiculars being let fall on those tangents from the 
common focus: I say, that the velocities of the bodies vary inversely as the perpen- 
diculars and directly as the square roots of the principal latera recta. 

From the focus S draw SY perpendicular to the tangent PR, and the velocity 
SY2 

of the body P varies inversely as the square root of the quantity For that 
velocity is as the infinitely small arc PQ described in a given moment of time, 

that is (by Lem. 7), as the tangent PR; that is 
(because of the proportion, PR : QT = SP : SY), 

as ; or inversely as SY, and directly as b 1 
SP-QT; but SP-QT is as the area described in 
the given time, that is (by Prop. 14), as the 
square root of the latus rectum. q.e.d. 

Cor. i. The principal latera recta vary as the 
squares of the perpendiculars and the squares of 
the velocities. 

Cor. ii. The velocities of bodies, in their greatest and least distances from 
the common focus, are inversely as the distances and directly as the square 
root of the principal latera recta. For those perpendiculars are now the distances. 

Cor. hi. And therefore the velocity in a conic section, at its greatest or least 
distance from the focus, is to the velocity in a circle, at the same distance from 
the centre, as the square root of the principal latus rectum is to the square root 
of double that distance. 

Cor. iv. The velocities of the bodies revolving in ellipses, at their mean 
distances from the common focus, are the same as those of bodies revolving in 
circles, at the same distances; that is (by Cor. vi, Prop. 4), inversely as the 
square root of the distances. For the perpendiculars are now the lesser semi- 
axes, and these are as mean proportionals between the distances and the latera 
recta. Let the inverse of this ratio [of the minor semiaxes] be multiplied by the 
square root of the direct ratio of the latera recta, and we shall have the square 
root of the inverse ratio of the distances. 

Cor. v. In the same figure, or even in different figures, whose principal latera 
recta are equal, the velocity of a body is inversely as the perpendicular let fall 
from the focus on the tangent. 

Cor. vi. In a parabola, the velocity is inversely as the square root of the 
ratio of the distance of the body from the focus of the figure; it is more variable 
in the ellipse, and less in the hyperbola, than according to this ratio. For (by 
Cor. ii, Lem. 14) the perpendicular let fall from the focus on the tangent of a 
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parabola is as the square root of the distance. In the hyperbola the perpen- 
dicular is less variable; in the ellipse, more. 

Cor. vii. In a parabola, the velocity of a body at any distance from the focus 
is to the velocity of a body revolving in a circle, at the same distance from the 
centre, as the square root of the ratio of the number 2 to 1; in the ellipse it is 
less, and in the hyperbola greater, than according to this ratio. For (by Cor. ii 
of this Prop.) the velocity at the vertex of a parabola is in this ratio, and (by 
Cor. vi of this Prop, and Prop. 4) the same proportion holds in all distances. 
And hence, also, in a parabola, the velocity is everywhere equal to the velocity 
of a body revolving in a circle at half the distance; in the ellipse it is less, and in 
the hyperbola greater. 

Cor. viii. The velocity of a body revolving in any conic section is to the 
velocity of a body revolving in a circle, at the distance of half the principal 
latus rectum of the section, as that distance to the perpendicular let fall from 
the focus on the tangent of the section. This appears from Cor. v. 

Cor. ix. Wherefore, since (by Cor. vi, Prop. 4) the velocity of a body revolv- 
ing in this circle is to the velocity of another body revolving in any other circle, 
inversely as the square root of the ratio of the distances; therefore, likewise, 
the velocity of a body revolving in a conic section will be to the velocity of a 
body revolving in a circle at the same distance as a mean proportional between 
that common distance, and half the principal latus rectum of the section, to 
the perpendicular let fall from the common focus upon the tangent of the 
section. 

Supposing the centripetal force to he inversely proportional to the squares of the 
distances of places from the centre, and that the absolute value of that force is known; 
it is required to determine the line which a body will describe that is let go from a 
given place with a given velocity in the direction of a given right line. 

Let the centripetal force tending to the point S be such as will make the body 
p revolve in any given orbit pq] and suppose the velocity of this body in the 

let fall on those tangents, the principal latus rectum of the conic section (by 
Cor. i, Prop. 16) will be to the principal latus rectum of that orbit in a ratio 
compounded of the squared ratio of the perpendiculars, and the squared ratio 
of the velocities; and is therefore given. Let this latus rectum be L; the focus S 
of the conic section is also given. Let the angle RPH be the supplement of the 
angle RPS, and the line PH, in which the other focus H is placed, is given by 

Proposition 17. Problem 9 

place p is known. Then from the 
place P suppose the body P to be 
let go with a given velocity in the 
direction of the line PR; but by 
virtue of a centripetal force to be 
immediately turned aside from 

|d that right line into the conic sec- 
tion PQ. This, the right line PR 
will therefore touch in P. Suppose 
likewise that the right line pr 
touches the orbit pq in p; and if 
from S you suppose perpendiculars 
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position. Let fall SK perpendicular on PH, and erect the conjugate semiaxis 
BC; this done, we shall have 

SP2 - 2PH • PK+PH2 = SH2 = 4CH2 = 4 (BH2 - BC2) = 
(SP+PH)2 —L(SP+PH)=SP2+2PSPH + PH2-L(SP + PH). 

Add on both sides 
2PK • PH - SP2 - PH2+L (SP+PH), 

and we shall have 
L(SP+PH) =2PS PH+2PK PH, or 

(SP+PH) : PH = 2 (SP+KP) : L. 
Hence PH is given both in length and position. That is, if the velocity of the 
body in P is such that the latus rectum L is less than 2SP+2KP, PH will lie on 
the same side of the tangent PR with the line SP; and therefore the figure will 
be an ellipse, which from the given foci S, H, and the principal axis SP+PH, is 
given also. But if the velocity of the body is so great, that the latus rectum L 
becomes equal to 2SP+2KP, the length PH will be infinite; and therefore, the 
figure will be a parabola, which has its axis SH parallel to the line PK, and is 
thence given. But if the body goes from its place P with a yet greater velocity, 
the length PH is to be taken on the other side the tangent; and so the tangent 
passing between the foci, the figure will be an hyperbola having its principal 
axis equal to the difference of the lines SP and PH, and thence is given. For if 
the body, in these cases, revolves in a conic section so found, it is demonstrated 
in Props. 11,12, and 13, that the centripetal force will be inversely as the square 
of the distance of the body from the centre of force S; and therefore we have 
rightly determined the line PQ, which a body let go from a given place P with 
a given velocity, and in the direction of the right line PR given by position, 
would describe with such a force. q.e.f. 

Cor. i. Hence in every conic section, from the principal vertex D, the latus 
rectum L, and the focus S given, the other focus H is given, by taking DH to 
DS as the latus rectum to the difference between the latus rectum and 4DS. 
For the proportion 

SP+PH : PH-2SP+2KP : L 
becomes, in the case of this Corollary, 

DS + DH : DH = 4DS : L, 
and DS : DH = 4DS-L : L. 

Cor. ii. Whence if the velocity of a body in the principal vertex D is given, 
the orbit may be readily found; namely, by taking its latus rectum to twice the 
distance DS, in the squared ratio of this given velocity to the velocity of a body 
revolving in a circle at the distance DS (by Cor. m, Prop. 16), and then taking 
DH to DS as the latus rectum to the difference between the latus rectum and 
4DS. 

Cor. hi. Hence also if a body move in any conic section, and if forced out of 
its orbit by any impulse, you may discover the orbit in which it will afterwards 
pursue its course. For by compounding the proper motion of the body with 
that motion, which the impulse alone would generate, you will have the motion 
with which the body will go off from a given place of impulse in the direction of 
a right line given in position. 

Cor. iv. And if that body is continually disturbed by the action of some 
foreign force, we may nearly know its course, by collecting the changes which 
that force introduces in some points, and estimating the continual changes it 
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will undergo in the intermediate places, from the analogy that appears in the 
progress of the series. 

Scholium 
If a body P, by means of a centripetal 

force tending to any given point R, move in 
the perimeter of any given conic section whose 
centre is C; and the law of the centripetal 
force is required: draw CG parallel to the 
radius RP, and meeting the tangent PG ol 
the orbit in G; and the force required (by 
Cor. i and Schol., Prop. 10, and Cor. m, 

Prop. 7) will be as RP 

SECTION IV 

The finding of elliptic, parabolic, and hyperbolic orbits, from the 
FOCUS GIVEN 

Lemma 15 
If from the two foci S, H, of any ellipse or hyperbola, we draw to any third point Y 
the right lines SY, HV, whereof one HV is equal to the principal axis of the figure, 

that is, to the axis in which the foci are situated, the other, 
SY, is bisected in T by the perpendicular TR let fall 
upon it; that perpendicular TH will somewhere touch the 
conic section: and, vice versa, if it does touch it, HY 
will be equal to the principal axis of the figure. 

For, let the perpendicular TR cut the right line HV, produced, if need be, in 
R; and join SR. Because TS, TY are equal, therefore the right lines SR, YR, as 
well as the angles TRS, TRY, will be also equal. Whence the point R will be in 
the conic section, and the perpendicular TR will touch the same; and the 
contrary. q.e.d. 

Proposition 18. Problem 10 
From a focus and the principal axes given, to describe elliptic and hyperbolic curves 
which shall pass through given points, and touch right lines given by position. 

Let S be the common focus of the figures; AB the length of the principal axis 
of any conic; P a point through which the conic should pass; and TR a right 
line which it should touch. About the centre P, 
with the radius AB — SP, if the orbit is an ellipse, 
or AB + SP, if the orbit is an hyperbola, describe 
the circle HG. On the tangent TR let fall the 
perpendicular ST, and produce the same to V, so 
that TV may be equal to ST; and about V as a 
centre with the interval AB describe the circle 
FH. In this manner, whether two points P, p, are given, or two tangents TR, 
tr, or a point P and a tangent TR, we are to describe two circles. Let H be their 
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common intersection, and from the foci S, H, with the given axis describe the 
conic: I say, the thing is done. For (because PH + SP in the ellipse, and PH — SP 
in the hyperbola, is equal to the axis) the described conic will pass through 
the point P, and (by the preceding Lemma) will touch the right line TR. And 
by the same argument it will either pass through the two points P, p, or touch 
the two right lines TR, q.e.f. 

Proposition 19. Problem 11 
About a given focus, to describe a parabola which shall pass through given points 
and touch right lines given by position. 

Let S be the focus, P a point, and TR a tangent of the curve to be described. 
About P as a centre, with the radius PS, describe the circle FG. From the focus 
let fall ST perpendicular on the tangent, and produce the same to V, so as TV 

may be equal to ST. After the same manner another circle 
/ }g is to be described, if another point p is given; or another 
' point v is to be found, if another tangent tr is given; then 
F /P draw the right line IF, which shall touch the two circles 
\g /R / ^ ^wo P0*11^8 P? V are given; or pass through the 

/ / two points V, v, if two tangents TR, tr, are given; or touch 
"■•••••/r / circie FG, and pass through the point V, if the point 

I / "••••■••  P and the tangent TR are given. On FI let fall the perpen- 
/K s dicular SI, and bisect the same in K; and with the axis 

SK and principal vertex K describe a parabola: I say, the 
thing is done. For this parabola (because SK is equal to IK, and SP to FP) 
will pass through the point P; and (by Cor. m, Lem. 14) because ST is equal 
to TV, and STR a right angle, it will touch the right line TR. q.e.f. 

Proposition 20. Problem 12 
About a given focus, to describe any given conic which shall pass through given 
points and touch right lines given by position. 

Case 1. About the focus S it is required to describe a conic ABC, passing 
through two points B, C. Because the conic is given in kind, the ratio of the 
principal axis to the distance of the foci will 
be given. In that ratio take KB to BS, and LC 
to CS. About the centres B, C, with the in- 
tervals BK, CL, describe two circles; and on 
the right line KL, that touches the same in K 
and L, let fall the perpendicular SG; which GAS A a 

cut in A and a, so that GA may be to AS, and Ga to aS, as KB to BS; and with 
the axis Aa, and vertices A, a, describe a conic: I say, the thing is done. For let 
H be the other focus of the described figure, and seeing that GA : AS = Ga : aS, 
we shall have 
Ga —GA : aS —AS = GA : AS, or Aa : SH = GA : AS, and therefore GA and 
AS are in the ratio which the principal axis of the figure to be described has to 
the distance of its foci; and therefore the described figure is of the same kind 
with the figure which was to be described. And since KB to BS, and LC to CS, 
are in the same ratio, this figure will pass through the points B, C, as is mani- 
fest from the conic sections. 

Case 2. About the focus S it is required to describe a conic which shall some- 
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where touch two right lines TR, tr. From the focus on those tangents let fall 
the perpendiculars ST, S^, which produce to V, v, so that TV, tv may be equal 
to TS, £S. Bisect Vz; in O, and erect the indefinite perpendicular OH, and cut 
the right line VS infinitely produced in K and k, 
so that VK be to KS, and VA- to /rS, as the prin- 
cipal axis of the conic to be described is to the 
distance of its foci. On the diameter KA* describe 
a circle cutting OH in H; and with the foci S, H, 
and principal axis equal to VH, describe a 
conic: I say, the thing is done. For bisecting KA* 
in X, and joining HX, HS, HV, Hv, because VK 
is to KS as VA* to /rS; and by composition, as 
VK-f VA* to KST-A-S; and by subtraction, as VA-—VK to AB —KS, that is, as 
2VX to 2KX, and 2KX to 2SX, and therefore as VX to HX and HX to SX, 
the triangles VXH, HXS will be similar; therefore VH will be to SH as VX to 
XH; and therefore as VK to KS. Wherefore VH, the principal axis of the de- 
scribed conic, has the same ratio to SH, the distance of the foci, as the prin- 
cipal axis of the conic which was to be described has to the distance of its foci; 
and is therefore of the same kind. And seeing VH, ^H are equal to the principal 
axis, and VS, ^S are perpendicularly bisected by the right lines TR, tr, it is ev- 
ident (by Lem. 15) that those right lines touch the described conic. q.e.f. 

Case 3. About the focus S it is required to describe a conic which shall touch 
a right line TR in a given point R. On the right line TR let fall the perpendicu- 

lar ST, which produce to V, so that TV may 
jj ...• be equal to ST; join VR, and cut the right 
 line VS indefinitely produced in K and k, so 

\ that VK may be to SK, and VA* to SA*, as the 
\ principal axis of the ellipse to be described to 

   ].  the distance of its foci; and on the diameter 
K s k Kk describing a circle, cut the right line VR 

produced in H; then with the foci S, H, and 
principal axis equal to VH, describe a conic: I say, the thing is done. For 
VH : SH = VK : SK, and therefore as the principal axis of the conic which was 
to be described to the distance of its foci (as appears from what we have dem- 
onstrated in Case 2); and therefore the described conic is of the same kind 
with that which was to be described; but that the right line TR, by which 
the angle VRS is bisected, touches the conic in the point R, is certain from the 
properties of the conic sections. q.e.f. 

Case 4. About the focus S it is required to describe a conic ARB that shall 
touch a right line TR, and pass through any given point P without the tangent, 
and shall be similar to the figure aph, described with the principal axis ah, and 
foci s, h. On the tangent TR let fall the perpendicular ST, which produce to V, 
so that TV may be equal to ST; and making the angles hsq, shq, equal to the 
angles VSP, SVP, about g as a centre, and with a radius which shall be to ah as 
SP to VS, describe a circle cutting the figure aph in p. Join sp, and draw SH 
such that it may be to sh as SP is to sp, and may make the angle PSH equal to 
the angle psh, and the angle VSH equal to the angle psq. Then with the foci 
S, H, and principal axis AB, equal to the distance VH, describe a conic section: 
I say, the thing is done; for if sv is drawn so that it shall be to sp as sh is to sq, 
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and shall make the angle vsp equal to the angle hsq, and the angle vsh equal to 
the angle psq, the triangles svh, spq, will be similar, and therefore vh will be to 
pq as sh is to sq) that is (because of the similar triangles VSP, hsq), as VS is to 
SP, or as ah to pq. Wherefore vh and ah are equal. But, because of the similar 
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triangles VSH, vsh, VH is to SH as vh to sh] that is, the axis of the conic section 
now described is to the distance of its foci as the axis ah to the distance of the 
foci sh; and therefore the figure now described is similar to the figure aph. But, 
because the triangle PSH is similar to the triangle psh, this figure passes through 
the point P; and because VH is equal to its axis, and VS is perpendicularly 
bisected by the right line TR, the said figure touches the right line TR. q.e.f. 

Lemma 16 
From three given points to draw to a fourth point that is not given three right lines 
whose differences either shall he given or are zero. 

Case 1. Let the given points be A, B, C, and Z the fourth point which we are 
to find; because of the given difference of the lines AZ, BZ, the locus of the 
point Z will be an hyperbola whose foci are A and B, and whose principal axis 

is the given difference. Let that axis be MN. 
Taking PM to MA as MN to AB, erect PR per- 
pendicular to AB, and let fall ZR perpendicular 
to PR; then from the nature of the hyperbola, 
ZR : AZ = MN : AB. And by the like argument, 
the locus of the point Z will be another hyper- 
bola, whose foci are A, C, and whose principal 
axis is the difference between AZ and CZ; and QS 
a perpendicular on AC may be drawn, to which 
(QS) if from any point Z of this hyperbola a per- 
pendicular ZS is let fall, (this ZS) shall be to AZ 
as the difference between AZ and CZ is to AC. 

Wherefore the ratios of ZR and ZS to AZ are given, and consequently the ratio 
of ZR to ZS one to the other; and therefore if the right lines RP, SQ, meet in 
T, and TZ and TA are drawn, the figure TRZS will be given in kind, and 
the right line TZ, in which the point Z is somewhere placed, will be given in 
position. There will be given also the right line TA, and the angle ATZ; and 

R . 
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because the ratios of AZ and TZ to ZS are given, their ratio to each other is 
given also; and thence will be given likewise the triangle ATZ, whose vertex is 
the point Z. q.e.i. 

Case 2. If two of the three lines, for example AZ and BZ, are equal, draw the 
right line TZ so as to bisect the right line AB; then find the triangle ATZ as 
above. q.e.i. 

Case 3. If all the three are equal, the point Z will be placed in the centre of a 
circle that passes through the points A, B, C. q.e.i. 

This problematic Lemma is likewise solved in the Book of Tactions of Apol- 
lonius [of Perga], restored by Vieta. 

Proposition 21. Problem 13 
About a given focus, to describe a conic that shall pass through given points and 
touch right lines given by position. 

Let the focus S, the point P, and the tangent TR be given, and suppose that 
the other focus H is to be found. On the tangent let fall the perpendicular ST, 
which produce to Y, so that TY may be equal to ST, and YH will be equal to 
the principal axis. Join SP, HP, and SP will be the 
difference between HP and the principal axis. 
After this manner, if more tangents TR are given, 
or more points P, we shall always determine as 
many lines YH, or PH, drawn from the said points 
Y or P, to the focus H, which either shall be equal 
to the axes, or differ from the axes by given lengths 
SP; and therefore which shall either be equal among themselves, or shall have 
given differences; from whence (by the preceding Lemma), that other focus H 
is given. But having the foci and the length of the axis (which is either YH, 
or, if the conic be an ellipse, PH+SP; or PH —SP, if it be an hyperbola), the 
conic is given. q.e.i. 

Scholium 
When the conic is an hyperbola, I do not include its conjugate hyperbola 

under the name of this conic. For a body going on with a continued motion can 
never pass out of one hyperbola into its conjugate hyperbola. 

The case when three points are 
K    ^ given is more readily solved thus. 

Let B, C, D be the given points. 
Join BC, CD, and produce them 
to E, F, so as EB may be to EC as 
SB to SC; and FC to FD as SC to 
SD. On EF drawn and produced 
let fall the perpendiculars SG, BH, 
and in GS produced indefinitely 
take GA to AS, and Ga to aS, as 
HB is to BS: then A will be the 

E vertex, and Aa the principal axis 
of the conic; which, according as GA is greater than, equal to, or less than AS, 
will be either an ellipse, a parabola, or an hyperbola; the point a in the first 
case falling on the same side of the line GF as the point A; in the second, going 
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off to an infinite distance; in the third, falling on the other side of the line GF. 
For if on GF the perpendiculars CI, DK are let fall, IC will be to HB as EC to 
EB; that is, as SC to SB; and by permutation, IC to SC as HB to SB, or as GA 
to SA. And, by the like argument, we may prove that KD is to SD in the same 
ratio. Wherefore the points B, C, D lie in a conic section described about 
the focus S, in such manner that all the right lines drawn from the focus S to 
the several points of the section, and the perpendiculars let fall from the same 
points on the right line GF, are in that given ratio. 

That excellent geometer M. de la Hire has solved this Problem much after 
the same way, in his Conies, Prop. 25, Book vm. 

SECTION V 

HOW THE ORBITS ARE TO BE FOUND WHEN NEITHER FOCUS IS GIVEN 

Lemma 17 
If from any point F of a given conic section, to the four produced sides AB, CD, 
AC, DB of any trapezium ABDC inscribed in that section, as many right lines 
PQ, PR, PS, PT are drawn in given angles, each line to each side; the rectangle 
PQ-PR of those on the opposite sides AB, CD, will he to the rectangle PS-PT of 
those on the other two opposite sides AC, BD, in a given ratio. 

Case 1. Let us suppose, first, that the lines 
drawn to one pair of opposite sides are parallel 
to either of the other sides; as PQ and PR to 
the side AC, and PS and PT to the side AB. And 
further, that one pair of the opposite sides, as 
AC and BD, are parallel between themselves; 
then the right line which bisects those parallel 
sides will be one of the diameters of the conic 
section, and will likewise bisect RQ. Let 0 be 
the point in which RQ is bisected, and PO will 
be an ordinate to that diameter. Produce PO 

to K, so that OK may be equal to PO, and OK will be an ordinate on the other 
side of that diameter. Since, therefore, the points A, B, P, and K are placed in 
the conic section, and PK cuts AB in a given angle, the rectangle PQ • QK (by 
Props. 17, 19, 21, and 23, Book m, Conies of Apollonius) will be to the rec- 
tangle AQ-QB in a given ratio. But QK and Cp 
PR are equal, as being the differences of the 
equal lines OK, OP, and OQ, OR; whence the 
rectangles PQ-QK and PQ-PR are equal; and 
therefore the rectangle PQ-PR is to the rec- 
tangle AQ • QB, that is, to the rectangle PS • PT, 
in a given ratio. q.e.d. 

Case 2. Let us next suppose that the opposite 
sides AC and BD of the trapezium are not par- 
allel. Draw Bd parallel to AC, and meeting as 
well the right line ST in t, as the conic section in d. Join Cd cutting PQ in r, 
and draw DM parallel to PQ, cutting Cd in M, and AB in N. Then (because of 
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the similar triangles BTt, DBN)B^ or PQ :T^ = DN :NB. AndsoRr : AQorPS = 
DM : AN. Wherefore, by multiplying the antecedents by the antecedents, and 
the consequents by the consequents, as the rectangle PQ • Rr is to the rectangle 
PS-T/., so will the rectangle DN-DM be to the rectangle NA-NB; and (by 
Case 1) so is the rectangle PQ-Pr to the rectangle PS-P^, and, by division, so 
is the rectangle PQ-PR to the rectangle PS-PT. q.e.d. 

Case 3. Let us suppose, lastly, the four lines PQ, PR, PS, PT not to be 
parallel to the sides AC, AB, but any way in- 
clined to them. In their place draw P^, Pr, par- 
allel to AC; and Fs, Ft parallel to AB; and be- 
cause the angles of the triangles PQg, PRr, PSs, 
PT^ are given, the ratios of PQ to Pg, PR to Pr, 
PS to Fs, PT to P^ will be also given; and there- 
fore the compounded ratios PQ-PR to Fq-Fr, 
and PS • PT to Fs • P^ are given. But from what 
we have demonstrated before, the ratio of Pg • Pr 
to Fs • P^ is given; and therefore also the ratio of 
PQ • PR to PS • PT. Q.E.D. 

Lemma 18 
The same things supposed, if the rectangle PQ • PR of the lines drawn to the two 
opposite sides of the trapezium is to the rectangle PS • PT of those drawn to the other 
two sides in a given ratio, the point P, from whence those lines are drawn, will be 
placed in a conic section described about the trapezium. 

Conceive a conic section to be described passing through the points A, B, C, 
D, and any one of the infinite number of points P, as for example p: I say, the 
point P will be always placed in this section. If you deny the thing, join AP 

cutting this conic section somewhere else, if 
possible, than in P, as in b. Therefore if from 
those points p and b, in the given angles to 
the sides of the trapezium, we draw the right 
lines pq, pr, ps, pt, and bk, bn, bf, bd, we shall 
have, as bk-bn to bf-bd, so (by Lem. 17) 
pq-pr to ps-pt; and so (by supposition) 
PQ • PR to PS • PT. And because of the sim- 
ilar trapezia bkAf, PQAS, as bk to bf, so PQ 
to PS. Wherefore by dividing the terms of 
the preceding proportion by the correspond- 
ent terms of this, we shall have bn to bd as 
PR to PT. And therefore the equiangular 

trapezia F)nbd, DRPT, are similar, and consequently their diagonals D6, DP 
do coincide. Wherefore b falls in the intersection of the right lines AP, DP, and 
consequently coincides with the point P. And therefore the point P, wherever 
it is taken, falls within the assigned conic section. q.e.d. 

Cor. Hence if three right lines PQ, PR, PS are drawn from a common point 
P, to as many other right lines given in position, AB, CD, AC, each to each, in 
as many angles respectively given, and the rectangle PQ • PR under any two of 
the lines drawn be to the square of the third PS in a given ratio; the point P, 
from which the right lines are drawn, will be placed in a conic section that 
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touches the lines AB, CD in A and C; and the contrary. For the position of the 
three right lines AB, CD, AC remaining the same, let the line BD approach to 
and coincide with the line AC; then let the line PT come likewise to coincide 
with the line PS; and the rectangle PS - PT will become PS2, and the right lines 
AB, CD, which before did cut the curve in the points A and B, C and D, can no 
longer cut, but only touch, the curve in those coinciding points. 

Scholium 
In this Lemma, the name of conic section is to be understood in a large sense, 

comprehending as well the rectilinear section through the vertex of the cone, 
as the circular one parallel to the base. For if the point p happens to be in a 
right line, by which the points A and D, or C and B are joined, the conic section 

will be changed into two right lines, one of 
which is that right line upon which the 
point p falls, and the other is a right line 
that joins the other two of the four points. 
If the two opposite angles of the trapezium 
taken together are equal to two right angles, 
and if the four lines PQ, PR, PS, PT are 
drawn to the sides thereof at right angles, 
or any other equal angles, and the rectangle 
PQ • PR under two of the lines draAvn PQ 
and PR, is equal to the rectangle PS • PT 
under the other two PS and PT, the conic 
section will become a circle. And the same 

thing will happen if the four lines are drawn in any angles, and the rectangle 
PQ • PR, under one pair of the lines drawn, is to the rectangle PS • PT under 
the other pair as the rectangle under the sines of the angles S, T, in which the 
two last lines PS, PT are drawn, to the rectangle under the sines of the angles 
Q, R, in which the first two PQ, PR are drawn. In all other cases the locus of 
the point P will be one of the three figures which pass commonly by the name of 
the conic sections. But in place of the trapezium ABCD, we may substitute a 
quadrilateral figure whose two opposite sides cross one another like diagonals. 
And one or two of the four points A, B, C, D may be supposed to be removed 
to an infinite distance, by which means the sides of the figure which converge 
to those points, will become parallel; and in this case the conic section will pass 
through the other points, and will go the same way as the parallels in infin- 
itum. 

Lemma 19 
To find a point P from which if four right lines PQ, PR, PS, PT are drawn to as 
many other right lines AB, CD, AC, BD, given hy position, each to each, at given 
angles, the rectangle PQ-PR, under any two of the lines drawn, shall he to the 
rectangle PS • PT, under the other two, in a given ratio. 

Suppose the lines AB, CD, to which the two right lines PQ, PR, containing 
one of the rectangles, are drawn to meet two other lines, given by position, in 
the points A, B, C, D. From one of those, as A, draw any right line AH, in 
which you would find the point P. Let this cut the opposite lines BD, CD, in H 
and I; and, because all the angles of the figure are given, the ratio of PQ to PA, 

P  
P  
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and PA to PS, and therefore of PQ to PS, will be also given. This ratio taken as 
a divisor of the given ratio of PQ • PR to PS • PT, gives the ratio of PR to PT; 
and multiplying the given ratios of PI to 
PR, and PT to PH, the ratio of PI to PH, 
and therefore the point P, will be given. 

Q.E.I. 
Cor. i. Hence also a tangent may be 

drawn to any point D of the locus of all the 
points P. For the chord PD, where the 
points P and D meet, that is, where AH is 
drawn through the point D, becomes a 
tangent. In which case the ultimate ratio 
of the evanescent lines IP and PH will be 
found as above. Therefore draw CF parallel to AD, meeting BD in F, and cut 
it in E in the same ultimate ratio, then DE will be the tangent; because CF 
and the evanescent IH are parallel, and similarly cut in E and P. 

Cor. ii. Hence also the locus of all the points P may be determined. Through 
any of the points A, B, C, D, as A, draw AE touching the locus, and through 

xF any other point B, parallel to the tangent, 
^ draw BF meeting the locus in F; and find the 

point F by this Lemma. Bisect BF in G, and, 
Hn\ drawing the indefinite line AG, this will be 

the position of the diameter to which BG 
and FG are ordinates. Let this AG meet the 

\ \ locus in H, and AH will be its diameter or 
\ \ latus transversum, to which the latus rectum 

\ \\ will be as BG2 to AG-GH. If AG nowhere 
A|C  meets the locus, the line AH being infinite, 

* the locus will be a parabola; and its latus 
rectum corresponding to the diameter AG 

BG2 

will be . But if it does meet it anywhere, the locus will be an hyperbola, 

when the points A and H are placed on the same side of the point G; and an 
ellipse, if the point G falls between the points A and H; unless, perhaps, the 
angle AGB is a right angle, and at the same time BG2 equal to the rectangle 
GA-GH, in which case the locus will be a circle. 

And so we have given in this Corollary a solution of that famous Problem 
of the ancients concerning four lines, begun by Euclid, and carried on by 
Apollonius; and this not an analytical calculus but a geometrical composition, 
such as the ancients required. 

Lemma 20 
If the two opposite angular points A and P of any parallelogram ASPQ touch any 
conic section in the points A and P; and the sides AQ, AS of one of those angles, 
indefinitely produced, meet the same conic section in B and C; and from the points 
of meeting B and C to any fifth point D of the conic section, two right lines BD, 
CD are drawn meeting the two other sides PS, PQ of the parallelogram, indefinitely 
produced, in T and R; the parts PR and PT, cut off from the sides, will always be 
one to the other in a given ratio. And conversely, if those parts cut off are one to the 
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other in a given ratio, the locus of the point D will be a conic section passing through 
the four points A, B, C, P. 

Case 1. Join BP, CP, and from the point D draw the two right lines DC, 
DE, of which the first DG shall be parallel to AB, and meet PB, PQ, CA, in H, 
^ I, G; and the other DE shall be parallel to 

AC, and meet PC, PS, AB, in F, K, E; and 
(by Lem. 17) the rectangle DE • DF will be 
to the rectangle DG • DH in a given ratio. 
But PQ is to DE (or IQ) as PB to HB, and 
consequently as PT to DH; and by permu- 
tation PQ is to PT as DE to DH. Likewise 
PR is to DF as RC to DC, and therefore 
as (IG or) PS to DG; and by permutation 
PR is to PS as DF to DG; and, by com- 
pounding those ratios, the rectangle 
PQ • PR will be to the rectangle PS • PT as 
the rectangle DE-DF is to the rectangle 
DG-DH, and consequently in a given 

ratio. But PQ and PS are given, and therefore the ratio of PR to PT is given. 
Q.E.D. 

Case 2. But if PR and PT are supposed to be in a given ratio one to the 
other, then by going back again, by a like reasoning, it will follow that the 
rectangle DE • DF is to the rectangle DG • DH in a given ratio; and so the point 
D (by Lem. 18) will lie in a conic section passing through the points A, B, C, P, 
as its locus. Q.E.D. 

Cor. i. Hence if we draw BC cutting PQ in r and in PT take P^ to Pr in the 
same ratio which PT has to PR; then B^ will touch the conic section in the 
point B. For suppose the point D to coalesce with the point B, so that the 
chord BD vanishing, BT shall become a tangent; and CD and BT will coincide 
with CB and Bt. 

Cor. ii. And, vice versa, if B^ is a tangent, and the lines BD, CD meet in any 
point D of a conic section, PR will be to PT as Pr to P^. And, on the contrary, 
if PR is to PT as Pr to P^, then BD and CD will meet in some point D of a 
conic section. 

Cor. hi. One conic section cannot cut another conic section in more than 
four points. For, if it is possible, let two conic sections pass through the five 
points A, B, C, P, 0; and let the right line BD cut them in the points D, d, and 
the right line Cd cut the right line PQ in q. Therefore PR is to PT as Pg to PT: 
whence PR and Bq are equal one to the other, against the supposition. 

Lemma 21 
If two movable and indefinite right lines BM, CM drawn through given points B, 
C, as poles, do by their point of meeting M describe a third right line MN given by 
position; and other two indefinite right lines BD, CD are drawn, making with the 
former two at those given points B, C, given angles, MBD, MCD: I say, that those 
two right lines BD, CD will by their point of meeting D describe a conic section 
passing through the points B, C. And conversely, if the right lines BT), CT) do by 
their point of meeting D describe a conic section passing through the given points 
B, C, A, and the angle DBM is always equal to the given angle ABC, as well as the 
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angle DCM always equal to the given angle ACB, the point M will lie in a right 
line given by position, as its locus. 

For in the right line MN let a point N be given, and when the movable point 
M falls on the immovable point N, let the movable point D fall on an immov- 
able point P. Join CN, BN, CP, 
BP, and from the point P draw 
the right lines PT, PR meeting 
BD, CD in T and R, and 
making the angle BPT equal to 
the given angle BNM, and the 
angle CPR equal to the given 
angle CNM. Wherefore since 
(by supposition) the angles 
MBD, NBP are equal, as also 
the angles MCD, NCP, take 
away the angles NBD and 
NCD that are common, and 
there will remain the angles 
NBM and PBT, NCM and PCR equal; and therefore the triangles NBM, PBT 
are similar, as also the triangles NCM, PCR. Wherefore PT is to NM as PB 
to NB; and PR to NM as PC to NC. But the points B, C, N, P are immov- 
able: wherefore PT and PR have a given ratio to NM, and consequently a 
given ratio between themselves; and therefore, (by Lem. 20) the point D 
wherein the movable right lines BT and CR continually concur, will be placed 
in a conic section passing through the points B, C, P. q.e.d. 

And conversely, if the movable point D lies in a conic section passing through 
the given points B, C, A; and the angle DBM is always equal to the given 

angle ABC, and the angle DCM 
always equal to the given angle 
ACB, and when the point D falls 
successively on any two immov- 
able points p, P, of the conic sec- 
tion, the movable point M falls 
successively on two immovable 
points n, N. Through these points 
n, N, draw the right line nN: this 
line nN will be the continual locus 
of that movable point M. For, if 
possible, let the point M be placed 
in any curved line. Therefore the 
point D will be placed in a conic 
section passing through the five 

points B, C, A, p, P, when the point M is continually placed in a curved 
line. But from what was demonstrated before, the point D will be also placed 
in a conic section passing through the same five points B, C, A, p, P, when 
the point M is continually placed in a right line. Wherefore the two 
conic sections will both pass through the same five points, against Cor. m, 
Lem. 20. It is therefore absurd to suppose that the point M is placed in a 
curved line. q.e.d. 

PI 

A \ \ 

N    

c 

— 

\n 



Book I: The Motion of Bodies 61 

Proposition 22. Problem 14 
To describe a conic that shall pass through five given points. 

Let the five given points be A, B, C, P, D. From any one of them, as A, to 
any other two as B, C, which may be called the poles, draw the right lines AB, 

AC, and parallel to those the lines 
TPS, PRQ through the fourth point P. 
Then from the two poles B, C, draw 
through the fifth point D two indefi- 
nite lines BDT, CRD, meeting with 
the last drawn lines TPS, PRQ (the 
former with the former, and the latter 
with the latter) in T and R. And then 
draw the right line tr parallel to TR, 
cutting off from the right lines PT, 
PR, any segments P^Pr, proportional 
to PT, PR; and if through their ex- 

tremities t, r, and the poles B, C, the right lines B^, Cr are drawn, meeting in 
d, that point d will be placed in the conic required. For (by Lem. 20) that 
point d is placed in a conic section passing through the four points A, B, C, P; 
and the lines Rr, T^ vanishing, the point d comes to coincide with the point D. 
Wherefore the conic section passes through the five points A, B, C, P, D. 

Q.E.D. 
The same otherwise. 

Of the given points join any three, as A, B, C; and about two of them B, C, 
as poles, making the angles ABC, ACB of a given magnitude to revolve, apply 
the legs BA, CA, first to the 
point D, then to the point P, and 
mark the points M, N, in which 
the other legs BL, CL intersect 
each other in both cases. Draw 
the indefinite right line MN, and 
let those movable angles revolve 
about their poles B, C, in such 
manner that the intersection, 
which is now supposed to be m, 
of the legs BL, CL, or BM, CM, 
may always fall in that indefinite 
right line MN; and the intersec- 
tion, which is now supposed to 
be d, of the legs BA, CA, or BD, 
CD, will describe the conic re- 
quired, PADdB. For (by Lem. 
21) the point d will be placed in a conic section passing through the points 
B, C; and when the point m comes to coincide with the points L, M, N, the 
point d will (by construction) come to coincide with the points A, D, P. 
Wherefore a conic section will be described that shall pass through the five 
points A, B, C, P, D. q.e.f. 

Cor. i. Hence a right line may be readily drawn which shall be a tangent to 
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the conic in any given point B. Let the point d come to coincide with the point 
B, and the right line Bd will become the tangent required. 

Cor. ii. Hence also may be found the centres, diameters, and latera recta of 
the conics, as in Cor. 11, Lem. 19. 

Scholium 
The former of these constructions will become something more simple by 

joining B, P, and in that line, produced, if need be, taking Bp to BP as PR is to 
PT; and through p draw the indefinite right line 
pe parallel to SPT, and in that line pe taking 
always pe equal to Pr; and draw the right lines 
Be, Cr to meet in d. For since Pr to P^, PR to PT, 
pB to PB, pe to P^, are all in the same ratio, pe 
and Pr will be always equal. After this manner 
the points of the conic are most readily found, 
unless you would rather describe the curve me- 
chanically, as in the second construction. 

Proposition 23. Problem 15 
To describe a conic that shall pass through four given points, and touch a given 
right line. 

Case 1. Suppose that HB is the given tangent, B the point of contact, and 
C, D, P, the three other given points. Join BC, and draw PS parallel to BH, 

and PQ parallel to BC; complete 
the parallelogram BSPQ. Draw BD 
cutting SP in T, and CD cutting 
PQ in R. Lastly, draw any line tr 
parallel to TR, cutting off from PQ, 
PS, the segments Pr, P^ propor- 
tional to PR, PT respectively, 
and draw Cr, B^; their point of 
intersection d will (by Lem. 20) 
always fall on the conic to be des- 
cribed. 

The same otherwise. 
Let the angle CBH of a given magnitude revolve 

about the pole B, as also the rectilinear radius DC, 
both ways produced, about the pole C. Mark the 
points M, N, on which the leg BC of the angle cuts 
that radius when BH, the other leg thereof, meets 
the same radius in the points P and D. Then drawing 
the indefinite line MN, let that radius CP or CD 
and the leg BC of the angle continually meet in this 
fine; and the point of meeting of the other leg BH 
with the radius will dehneate the conic required. 

For if in the constructions of the preceding Prob- 
lem the point A comes to a coincidence with the 
point B, the lines CA and CB will coincide, and the 
line AB, in its last situation, will become the tan- 
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gent BH; and therefore the constructions there set down will become the same 
with the constructions here described. Wherefore the intersection of the leg 
BH with the radius will describe a conic section passing through the points C, 
D, P, and touching the line BH in the point B. q.e.f. 

Case 2. Suppose the four points B, C, D, P, given, being situated without 
the tangent HI. Join each two by the lines BD, CP meeting in G, and cutting 
the tangent in H and I. Cut the tangent in A in such manner that HA may be 

to IA as the product of the mean propor- 
tional between CG and GP, and the mean 
proportional between BH and HD is to the 
product of the mean proportional between 
GD and GB, and the mean proportional be- 
tween PI and IC, and A will be the point of 
contact. For if HX, a parallel to the right 
line PI, cuts the conic in any points X and 
Y, the point A (by the properties of the 
conic sections) will come to be so placed, 
that HA2 will become to AI2 in a ratio that 

is compounded out of the ratio of the rectangle HX-HY to the rectangle 
BH • HD, or of the rectangle CG • GP to the rectangle DG • GB; and the ratio of 
the rectangle BH • HD to the rectangle PI • IC. But after the point of contact A 
is found, the conic will be described as in the first Case, q.e.f. But the point 
A may be taken either between or without the points H and I, upon which 
account a two-fold conic may be described. 

Proposition 24. Problem 16 
To describe a conic that shall pass through three given points, and touch two given 
right lines. 

Suppose HI, KL to be the given tangents and B, C, D the given points. 
Through any two of those points, as B, D, draw the indefinite right line BD 
meeting the tangents in the points H, K. Then likewise through any other two 
of these points, as C, D, draw the indefinite 
right line CD meeting the tangents in the 
points I, L. Cut the lines drawn in R and S, 
so that HR may be to KR as the mean pro- 
portional between BH and HD is to the 
mean proportional between BK and KD, 
and IS to LS as the mean proportional be- 
tween CI and ID is to the mean proportion- 
al between CL and LD. But you may cut, at 
pleasure, either within or between the points 
K and H, I and L, or without them. Then 
draw RS cutting the tangents in A and P, 
and A and P will be the points of contact. For if A and P are supposed to be 
the points of contact, situated anywhere else in the tangents, and through any 
of the points H, I, K, L, as I, situated in either tangent HI, a right line IY 
is drawn parallel to the other tangent KL, and meeting the curve in X and 
Y, and in that right line there be taken IZ equal to a mean proportional be- 
tween IX and IY, the rectangle XI-IY or IZ2 will (by the properties of the 
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conic sections) be to LP2 as the rectangle CI-ID is to the rectangle CL-LD; 
that is (by the construction), as SI is to SL2, and therefore IZ : LP = SI : SL. 
Wherefore the points S, P, Z are in one right line. Moreover, since the tan- 
gents meet in G, the rectangle XI • IY or IZ2 will (by the properties of the 
conic sections) be to I A2 as GP2 is to GA2, and consequently IZ : IA = GP : GA. 
Wherefore the points P, Z, A lie in one right line, and therefore the points S, 
P, and A are in one right line. And the same argument will prove that the 
points R, P, and A are in one right line. Wherefore the points of contact A and 
P lie in the right line RS. But after these points are found, the conic may be 
described, as in the first Case of the preceding Problem. q.e.f. 

In this Proposition, and Case 2 of the foregoing, the constructions are the 
same, whether the right line XY cuts the conic in X and Y, or not; neither do 
they depend upon that section. But the constructions being demonstrated 
where that right line does cut the conic, the constructions where it does not are 
also known; and therefore, for brevity's sake, I omit any further demonstration 
of them. 

Lemma 22 
To transform figures into other figures of the same kind. 

Suppose that any figure HGI is to be transformed. Draw, at pleasure, two 
parallel lines AO, BL, cutting any given third line AB in A and B, and from 
any point G of the figure, draw out any right line GD, parallel to OA, till it 
meets the right line AB. Then from any 
given point O in the line OA, draw to 
the point D the right line OD, meeting 
BL in d] and from the point of intersec- 
tion raise the right line dg containing any 
given angle with the right line BL, and 
having such ratio to Od as DG has to 
OD; and g will be the point in the new 
figure hgi, corresponding to the point G. 
And in like manner the several points of 
the first figure will give as many corre- 
spondent points of the new figure. If we 
therefore conceive the point G to be carried along by a continual motion 
through all the points of the first figure, the point g will be likewise carried 
along by a continual motion through all the points of the new figure, and de- 
scribe the same. For distinction's sake, let us call DG the first ordinate, dg the 
new ordinate, AD the first abscissa, ad the new abscissa, 0 the pole, OD the 
abscinding radius, OA the first ordinate radius, and Oa (by which the paral- 
lelogram OABa is completed) the new ordinate radius. 

I say, then, that if the point G is placed in a given right line, the point g will 
be also placed in a given right line. If the point G is placed in a conic section, 
the point g will be likewise placed in a conic section. And here I understand the 
circle as one of the conic sections. But further, if the point G is placed in a line 
of the third analytical order, the point g will also be placed in a line of the third 
order, and so on in curved lines of higher orders. The two lines in which the 
points G, g are placed, will be always of the same analytical order. For as 

OA-AB 
ad : OA = Od : OD = dg : DG = AB : AD; and therefore AD is equal to —^—, 
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and DG equal to Now if the point G is placed in a right line, and there- 

fore, in any equation by which the relation between the abscissa AD and the 
ordinate GD is expressed, those indetermined lines AD and DG rise no higher 

OA • AB 
than to one dimension, by writing this equation —^— in place of AD, and 

P^ace a new eclua^on wiM produced, in which the new 
abscissa ad and new ordinate dg rise only to one dimension; and which therefore 
must denote a right line. But if AD and DG (or either of them) had risen to two 
dimensions in the first equation, ad and dg would likewise have risen to two 
dimensions in the second equation. And so on in three or more dimensions. The 
indetermined lines, ad, dg in the second equation, and AD, DG in the first, will 
always rise to the same number of dimensions; and therefore the lines in which 
the points G, g are placed are of the same analytical order. 

I say, further, that if any right line touches the curved line in the first figure, 
the same right line transferred the same way with the curve into the new figure 
will touch that curved line in the new figure, and conversely. For if any two 
points of the curve in the first figure are supposed to approach one the other till 
they come to coincide, the same points transferred will approach one the other 
till they come to coincide in the new figure; and therefore the right lines with 
which those points are joined will become together tangents of the curves in 
both figures. I might have given demonstrations of these assertions in a more 
geometrical form; but I study to be brief. 

Wherefore if one rectilinear figure is to be transformed into another, we need 
only transfer the intersections of the right lines of which the first figure con- 
sists, and through the transferred intersections to draw right lines in the new 
figure. But if a curvilinear figure is to be transformed, we must transfer the 
points, the tangents, and other right lines, by means of which the curved line is 
defined. This Lemma is of use in the solution of the more difficult Problems; 
for thereby we may transform the proposed figures, if they are intricate, into 
others that are more simple. Thus any right lines converging to a point are 
transformed into parallels, by taking for the first ordinate radius any right line 
that passes through the point of intersection of the converging lines, and that 
because their point of intersection is by this means made to go off in infinitum; 
and parallel lines are such as tend to a point infinitely remote. And after the 
problem is solved in the new figure, if by the inverse operations we transform 
the new into the first figure, we shall have the solution required. 

This Lemma is also of use in the solution of solid problems. For as often as 
two conic sections occur, by the intersection of which a problem may be solved, 
any one of them may be transformed, if it is an hyperbola or a parabola, into 
an ellipse, and then this ellipse may be easily changed into a circle. So also a 
right line and a conic section, in the construction of plane problems, may be 
transformed into a right line and a circle. 

Proposition 25. Problem 17 
To describe a conic that shall pass through two given points, and touch three given 
right lines. 

Through the intersection of any two of the tangents one with the other, and 
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the intersection of the third tangent with the right line which passes through 
the two given points, draw an indefinite right line; and, taking this line for the 
first ordinate radius, transform the figure by the preceding Lemma into a new 
figure. In this figure those two tangents will be- . 
come parallel to each other, and the third tan- ~ 
gent will be parallel to the right line that passes 
through the two given points. Suppose hi, kl to 
be those two parallel tangents, ik the third tan- 
gent, and hi a right line parallel thereto, passing 
through those points a, h, through which the 
conic section ought to pass in this new figure; and 
completing the parallelogram hikl, let the right 
lines hi, ik, kl be so cut in c, d, e, that he may be to 
the square root of the rectangle ahh, ic to id, and 
ke to kd, as the sum of the right lines hi and kl is to the sum of the three lines, 
the first whereof is the right line ik, and the other two are the square roots of 
the rectangles ahb and alb; and c, d, e will be the points of contact. For by the 
properties of the conic sections, 

he2 : ah-hb = ic2 : id2 = ke2 : kd2 = el2 : al • lb. 
Therefore, 

he : V{ah • hb) = ic : id = ke : kd = el: \/{al-lb) 
= hc-\-ic-^-ke-\-el -sj{ah • hh) -\-id-\-kd-\-sjal • lb 

= hi+kl : \/{ah-hb)-\-ik+V(al'lb). 
Wherefore from that given ratio we have the points of contact c, d, e, in the 
new figure. By the inverted operations of the last Lemma, let those points be 
transferred into the first figure, and the conic will be there described by Prob. 
14. q.e.f. But according as the points a, b, fall between the points h, I, or with- 
out them, the points c, d, e must be taken either between the points h, i, k, I, 
or without them. If one of the points a, b falls between the points h, i, and the 
other without the points h, I, the Problem is impossible. 

Proposition 26. Problem 18 
To describe a conic that shall pass through a given point, and touch four given right 
lines. 

From the common intersections of any two of the tangents to the common 
intersection of the other two, draw an indefinite right line; and taking this line 

for the first ordinate radius, transform the figure 
- (by Lem. 22) into a new figure, and the two 

pairs of tangents, each of which before concurred 
in the first ordinate radius, will now become 
parallel. Let hi and kl, ik and hi, be those pairs 
of parallels completing the parallelogram hikl. 
And let p be the point in this new figure corre- 
sponding to the given point in the first figure. 
Through 0 the centre of the figure draw pq: and 
Oq being equal to Op, q will be the other point 
through which the conic section must pass in 

this new figure. Let this point be transferred, by the inverse operation of Lem. 
22, into the first figure, and there we shall have the two points through which 
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the conic is to be described. But through those points that conic may be de- 
scribed by Prop. 17. T 00 Lemma 23 

If two given right lines, as AC, BD, terminating in given points A, B, are in a 
given ratio one to the other, and the right line CD, by which the indetermined points 
C, D are joined is cut in K in a given ratio: I say, that the point K will be placed in 
a given right line. 

For let the right lines AC, BD meet in E, and in BE take BG to AE as BD 
is to AC, and let FD be always equal to the given line EG; and, by construc- 

tion, EC will be to GD, that is, to EF, as 
AC to BD, and therefore in a given ratio; 
and therefore the triangle EFC will be 
given in kind. Let CF be cut in L so as CL 
may be to CF in the ratio of CK to CD; 
and because that is a given ratio, the tri- 
angle EFL will be given in kind, and there- 
fore the point L will be placed in the given 
right line EL. Join LK, and the triangles 
CLK, CFD will be similar; and because 
FD is a given line, and LK is to FD in a 

given ratio, LK wdll be also given. To this let EH be taken equal, and ELKH 
will be always a parallelogram. And therefore the point K is always placed in 
the given side HK of that parallelogram. q.e.d. 

Cor. Because the figure EFLC is given in kind, the three right lines EF, EL, 
and EC, that is, GD, HK, and EC, will have given ratios to each other. 

Lemma 24 
If three right lines, two whereof are parallel, and given in position, touch any conic 
section: I say, that the semidiameter of the section which is parallel to those two is a 
mean proportional between the segments of those two that are intercepted between 
the points of contact and the third tangent. 

Let AF, GB be the two parallels touch- 
ing the conic section ADB in A and B; 
EF the third right line touching the 
conic section in I, and meeting the two 
former tangents in F and G, and let CD 
be the semidiameter of the figure parallel 
to those tangents: I say, that AF, CD, 
BG are continually proportional. For if 
the conjugate diameters AB, DM meet 
the tangent FG in E and H, and cut one 
the other in C, and the parallelogram 
IKCL be completed; from the nature of 
the conic sections, 

EC : CA = CA : CL; 
thence, EC - CA : CA - CL = EC : 

EA : AL = EC : CA; 
CA 

or 
thence, 
or 

EA : EA+AL 
EA : EL = 

= EC 
= EC : 

EC+CA 
EB. 
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Therefore, because of the similitude of the triangles EAF, ELI, ECH, EBG, 

AF : LI = CH : BG. 
Likewise, from the nature of the conic sections, 

LI or CK : CD = CD : CH. 
Taking the products of corresponding terms in the last two proportions and 
simplifying, 

AF : CD = CD : BG. Q.e.D. 
Cor. i. Hence if two tangents FG, PQ meet two parallel tangents AF, BG in 

F and G, P and Q, and cut one the other in 0; then by the Lemma applied to 
EG and PQ, 

AF : CD = CD : BG, 
BQ : CD = CD : AP. 

Therefore, AF : AP = BQ : BG 
and AP-AF : AP = BG—BQ : BG 
or PF : AP = GQ : BG, 
and AP : BG = PF : GQ = F0 : G0 = AF : BQ. 

Cor. ii. Whence also the two right lines PG, FQ drawn through the points 
P and G, F and Q, will meet in the right line ACB passing through the centre 
of the figure and the points of contact A, B. 

Lemma 25 
If four sides of a parallelogram indefinitely produced touch any conic section, and 
are cut by a fifth tangent: I say, that, taking those segments of any two conterminous 
sides that terminate in opposite angles of the parallelogram, either segment is to the 
side from which it is cut off as that part of the other conterminous side which is 
intercepted between the point of contact and the third side is to the other segment. 

Let the four sides ML, IK, KL, 
MI of the parallelogram MLIK F MA L 
touch the conic section in A, B, C, 
D; and let the fifth tangent FQ cut 
those sides in F, Q, H, and E; and 
taking the segments ME, KQ of the 
sides MI, KI, or the segments KH, 
MF of the sides KL, ML: I say, that 

ME : MI = BK : KQ, 
and KH : KL = AM : MF. 
For, by Cor. i of the preceding 
Lemma, 

ME : El = AM or BK : BQ, 
and by addition, 

ME : MI = BK : KQ. q.E.D. 
Also, KH : HL = BK or AM : AF, 

and by subtraction, 
KH : KL = AM : MF. Q.e.D. 

Cor. i. Hence if a parallelogram IKLM described about a given conic section 
is given, the rectangle KQ • ME, as also the rectangle KH • MF equal thereto, 
will be given. For, by reason of the similar triangles KQH, MFE, those rec- 
tangles are equal. 

Cor. ii. And if a sixth tangent eg is drawn meeting the tangents KI, MI in g 

I CI Q 
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and e, the rectangle KQ-ME will be equal to the rectangle and 

KQ \Me = Kq : ME, 
and by subtraction 

KQ : Me = Qg : Ec. 
Cor. hi. Hence, also, if Eg, cQ are joined and bisected, and a right line is 

drawn through the points of bisection, this right line will pass through the 
centre of the conic section. For since Qg : Ee = KQ : Mc, the same right line 
will pass through the middle of all the lines Eg, eQ, MK (by Lem. 23), and the 
middle point of the right line MK is the centre of the section. 

Proposition 27. Problem 19 
To describe a conic that may touch five right lines given in position. 

Supposing ABG, BCF, CCD, FDE, EA to be the tangents given in position. 
Bisect in M and N, AF, BE, the diagonals of the quadrilateral figure ABFE 
contained under any four of them; and (by Cor. m, Lem. 25) the right line MN 

A 

drawn through the points of bisection will pass through the centre of the conic. 
Again, bisect in P and Q the diagonals (if I may so call them) BD, GF of the 
quadrilateral figure BGDF contained under any other four tangents, and the 
right line PQ drawn through the points of bisection will pass through the centre 
of the conic; and therefore the centre will be given in the intersection of the 
bisecting lines. Suppose it to be O. Parallel to any tangent BC draw KL at such 
distance that the centre O may be placed in the middle between the parallels; 
this KL will touch the conic to be described. Let this cut any other two tan- 
gents GCD, FDE, in L and K. Through the points C and K, F and L, where 
the tangents not parallel, CL, FK, meet the parallel tangents CF, KL, draw 
CK, FL meeting in R; and the right line OR, drawn and produced, will cut the 
parallel tangents CF, KL, in the points of contact. This appears from Cor. n, 
Lem. 24. And by the same method the other points of contact may be found, 
and then the conic may be described by Prob. 14. q.e.f. 

Scholium 
Under the preceding Propositions are comprehended those Problems where- 

in either the centres or asymptotes of the conics are given. For when points and 
tangents and the centre are given, as many other points and as many other 



70 Mathematical Principles 
tangents are given at an equal distance on the other side of the centre. And an 
asymptote is to be considered as a tangent, and its infinitely remote extremity 
(if we may say so) is a point of contact. Conceive the point of contact of any 
tangent removed in infinitum, and the tangent will degenerate into an asymp- 
tote, and the constructions of the preceding Problems will be changed into the 
constructions of those Problems wherein the asymptote is given. 

After the conic is described, we may find its axes and foci in this manner. In 
the construction and figure of Lem. 21, let those legs BP, CP, of the movable 
angles PBN, PCN, by the intersection of 
which the conic was described, be made par- 
allel one to the other; and retaining that po- 
sition, let them revolve about their poles B, C, 
in that figure. In the meanwhile let the other 
legs CN, BN, of those angles, by their inter- 
section K or k, describe the circle BKGC. Let 
0 be the centre of this circle; and from this 
centre upon the ruler MN, wherein those legs 
CN, BN did concur while the conic was de- 
scribed, let fall the perpendicular OH meeting 
the circle in K and L. And when those other 
legs CK, BK meet in the point K that is nearest to the ruler, the first legs CP, 
BP will be parallel to the greater axis, and perpendicular on the lesser; and the 
contrary will happen if those legs meet in the remotest point L. Whence if the 
centre of the conic is given, the axes will be given; and those being given, the 
foci will be readily found. 

But the squares of the axes are one to the other as KH to LH, and thence it 
is easy to describe a conic given in kind through four given points. For if two of 

the given points are made the poles C, B, the 
third will give the movable angles PCK, 
PBK; but those being given, the circle 
BGKC may be described. Then, because 
the conic is given in kind, the ratio of OH 
to OK, and therefore OH itself, will be 
given. About the centre 0, with the interval 
OH, describe another circle, and the right 
line that touches this circle, and passes 
through the intersection of the legs CK, 
BK, when the first legs CP, BP meet in the 
fourth given point, will be the ruler MN, 

by means of which the conic may be described. Whence also on the other 
hand a trapezium given in kind (excepting a few cases that are impossible) 
may be inscribed in a given conic section. 

There are also other Lemmas, by the help of which conics given in kind may 
be described through given points, and touching given lines. Of such a sort is 
this, that if a right line is drawn through any point given in position, that may 
cut a given conic section in two points, and the distance of the intersections is 
bisected, the point of bisection will touch another conic section of the same 
kind with the former, and having its axes parallel to the axes of the former. 
But I hasten to things of greater use. 
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Lemma 26 
To place the three angles of a triangle, given both in kind and in magnitude, in 
respect to as many right lines given in position, provided they are not all parallel 
among themselves, in such manner that the several angles may touch the several 
lines. 

Three indefinite right lines AB, AC, BC are given in position, and it is re- 
quired so to place the triangle DEF that its angle D may touch the line AB, its 

angle E the line AC, and its angle F the 
line BC. Upon DE, DF, and EF describe 
three segments of circles DRE, DGF, 
EMF, capable of angles equal to the 
angles BAC, ABC, ACB respectively. 
But those segments are to be described 
towards such sides of the lines DE, DF, 
EF, that the letters DRED may turn 
round about in the same order with the 
letters BACB; the letters DGFD in the 
same order with the letters ABCA; and 

the letters EMFE in the same order with the letters ACBA; then, completing 
those segments into entire circles, let the two former circles cut each other in 
G, and suppose P and Q to be their centres. Then joining GP, PQ, take 

Ga : AB = GP : PQ; 
and about the centre G, with the interval Ga, describe a circle that may cut the 
first circle DGE in a. Join aD cutting the second circle DFG in b, as well as aE 
cutting the third circle EMF in c. Complete the figure ABCdc/ similar and 
equal to the figure a6cDEF: I say, the thing is done. 

For drawing Fc meeting aD in n, and joining aG, bG, QG, QD, PD, by 
construction the angle EaD is equal to the angle CAB, and the angle ocF equal 
to the angle ACB; and therefore the 
triangle anc equiangular to the tri- 
angle ABC. Wherefore the angle anc 
or FnD is equal to the angle ABC, 
and consequently to the angle F6D; 
and therefore the point n falls on 
the point b. Moreover the angle 
GPQ, which is half the angle GPD 
at the centre, is equal to the angle 
GaD at the circumference; and the 
angle GQP, which is half the angle 
GQD at the centre, is equal to the 
supplement of the angle G6D at the 
circumference, and therefore equal 
to the angle Gba. Upon which ac- 
count the triangles GPQ, Ga6 are 
similar, and 

Ga : a6 = GP : PQ 
and, by construction, 

GP:PQ = Ga: AB. 
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Wherefore ah and AB are equal; and consequently the triangles abc, ABC, 
which we have now proved to be similar, are also equal. And therefore since the 
angles D, E, F of the triangle DEF do respectively touch the sides ah, ac, he of 
the triangle ahc, the figure ABCdef may be completed similar and equal to the 
figure ahcDEF, and by completing it the Problem will be solved. q.e.f. 

Cor. Hence a right line may be drawn whose parts given in length may be 
intercepted between three right lines given in position. Suppose the triangle 
DEF, by the approach of its point D to the side EF, and by having the sides 
DE, DF placed into the same straight line, to be itself changed into a right line 
whose given part DE is to be placed between the right lines AB, AC given in 
position; and its given part DF is to be placed between the right lines AB, BC 
given in position; then, by applying the preceding construction to this case, the 
Problem will be solved. 

Proposition 28. Problem 20 
To descrihe a conic given hoth in kind and in magnitude, given parts of which shall 
be placed between three right lines given in position. 

Suppose a conic is to be described that may be similar and equal to the 
curved line DEF, and may be cut by three right lines AB, AC, BC, given in 
position, into parts DE and EF, similar and equal to the given parts of this 
curved line. 

ei;.. 

Draw the right lines DE, EF, DF; and place the angles D, E, F, of this 
triangle DEF, so as to touch those right lines given in position (by Lem. 26). 
Then about the triangle describe the conic, similar and equal to the curve 
DEF. Q.E.F. 

Lemma 27 

To descrihe a trapezium given in kind, the angles whereof may respectively touch 
four right lines given in position, that are neither all parallel among themselves, nor 
converge to one common point. 

Let the four right lines ABC, AD, BD, CE be given in position; the first 
cutting the second in A, the third in B, and the fourth in C; and suppose a 
trapezium fghi is to be described that may be similar to the trapezium FGHI, 
and whose angle/, equal to the given angle F, may touch the right line ABC; 
and the other angles g, h, i, equal to the other given angles G, H, I, may touch 
the other lines AD, BD, CE respectively. Join FH, and upon FG, FH, FI 
describe as many segments of circles FSG, FTH, FVI, the first of which FSG 
may be capable of an angle equal to the angle BAD; the second FTH capable 
of an angle equal to the angle CBD; and the third FVI of an angle equal to the 
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angle ACE. But the segments are to be described towards those sides of the 
lines FG, FH, FI, that the circular order of the letters FSGF may be the same 
as of the letters BADB, and that the letters FTHF may turn about in the 
same order as the letters CBDC, and the letters FYIF in the same order as the 
letters ACEA. Complete the segments into entire circles, and let P be the centre 

of the first circle FSG, Q the centre of the second FTH. Join and produce both 
ways the line PQ, and in it take QR so that QR : PQ = BC : AB. But QR is to 
be taken towards that side of the point Q, that the order of the letters P, Q, R 
may be the same as of the letters A, B, C; and about the centre R with the 
radius RF describe a fourth circle FNc cutting the third circle FYI in c. Join 
Fc cutting the first circle in a, and the second in h. Draw aG, 6H, cl, and let the 
figure KECfghi be made similar to the figure a6cFGHI; and the trapezium fghi 
will be that which was required to be described. 

For let the two first circles FSG, FTH cut one the other in K; join PK, QK, 
RK, aK, 6K, cK, and produce QP to L. The angles FaK, F6K, FcK at the 
circumferences are the halves of the angles FPK, FQK, FRK at the centres, 
and therefore equal to LPK, LQK, LRK, the halves of those angles. Therefore 
the figure PQRK is equiangular and similar to the figure ahcK, and conse- 
quently ah is to he as PQ to QR, that is, as AB to BC. But by construction the 
angles/Agr, fBh, fCi are equal to the angles FaG, F6H, Fcl. And therefore the 
figure ABCfghi may be completed similar to the figure afecFGHI. This done, a 
trapezium fghi will be constructed similar to the trapezium FGHI, and by its 
angles/, g, h, i will touch the right lines ABC, AD, BD, CE. q.e.f. 

Cor. Hence a right line may be drawn whose parts intercepted in a given 
order, between four right lines given by position, shall have a given proportion 
among themselves. Let the angles FGH, GHI be so far increased that the right 
lines FG, GH, HI may lie in the same line; and by constructing the Problem in 
this case, a right line fghi will be drawn, whose parts fg} gh, hi, intercepted 
between the four right lines given in position, AB and AD, AD and BD, BD 
and CE, will be to each other as the lines FG, GH, HI, and will observe the 
same order among themselves. But the same thing may be more readily done 
in this manner: 



74 Mathematical Principles 
Produce AB to K and BD to L, so as BK may be to AB as HI to GH; and 

DL to BD as GI to FG; and join KL meeting the right line CE in i. Produce 
{L to M, so as LM may be to iL as GH to HI; then draw MQ parallel to LB, 
and meeting the right line AD in g, and join gi cutting AB, BD in /, h: I say, 
the thing is done. 

For let Mgr cut the right line AB in Q, and AD the right line KL in S, and 
draw AP parallel to BD and meeting iL in P, and grM to \Ji {gi to hi, Mi to Li, 
GI to HI, AK to BK) and AP to BL will be in the same ratio. Cut DL in R, so 

P.-.---  
C 

H 

   

as DL to RL may be in that same ratio; and because grS to AS to AP, and 
DS to DL are proportional; therefore, as grS to Lh, so will AS be to BL, and DS 
to RL; and mixtly, BL —RL to L/i —BL, as AS —DS to grS—AS. That is, BR is 
to Bh as AD is to Ag, and therefore as BD to gQ. And alternately BR is to BD 
as Bh to gQ, or asfh tofg. But by construction the line BL was cut in D and R 
in the same ratio as the line FI in G and H; and therefore BR is to BD as FH 
to FG. Therefore/^ is tofg as FH to FG. Since, therefore, gi to hi likewise is as 
Mi to Li, that is, as GI to HI, it is manifest that the lines FI, fi are similarly 
cut in G and H, g and h, q.e.f. 

In the construction of this Corollary, after the line LK is drawn cutting CE 
in i, we may produce iE to V, so as EV may be to Ei as FH to HI, and then 
draw V/ parallel to BD. It will come to the same, if about the centre i with an 
interval IH, we describe a circle cutting BD in X, and produce iX to Y so as 
iY may be equal to IF, and then draw Y/ parallel to BD. 

Sir Christopher Wren and Dr. Wallis have long ago given other solutions of 
this Problem. 

Proposition 29. Problem 21 
To describe a conic given in kind, that may he cut by four right lines given in 
position, into parts given in order, kind, and proportion. 

Suppose a conic is to be described that may be similar to the curved line 
FGHI, and whose parts, similar and proportional to the parts FG, GH, HI of 
the other, may be intercepted between the right lines AB and AD, AD and BD, 
BD and CE given in position, viz., the first between the first pair of those lines, 
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the second between the second, and the third between the third. Draw the 
right lines FG, GH, HI, FI; and (by Lem. 27) describe a trapezium fghi that 
may be similar to the trapezium FGHI, and whose angles/, g, h, i may touch 
the right lines given in position AB, AD, BD, CE, severally according to their 
order. And then about this trapezium describe a conic, that conic will be similar 
to the curved line FGHI. 

This problem may be likewise constructed in the following manner. Joining 
FG, GH, HI, FI, produce GF to Y, and join FH, IG, and make the angles 
CAK, DAL equal to the angles FGH, VFH. Let AK, AL meet the right line 
BD in K and L, and thence draw KM, LN, of which let KM make the angle 
AKM equal to the angle GHI, and be itself to AK as HI is to GH; and let LN 
make the angle ALN equal to the angle FHI, and be itself to AL as HI to FH. 
But AK, KM, AL, LN are to be drawn towards those sides of the lines AD, 

AK, AL, that the letters CAKMC, ALKA, DALND may be carried round in 
the same order as the letters FGHIF; and draw MN meeting the right line CE 
in i. Make the angle z'EP equal to the angle IGF, and let PE be to Ez as FG to 
GI; and through P draw PQ/ that may with the right line ADE contain an 
angle PQE equal to the angle FIG, and may meet the right line AB in /, and 
join /z. But PE and PQ are to be drawn towards those sides of the lines CE, 
PE that the circular order of the letters PEzP and PEQP may be the same as of 
the letters FGHIF; and if upon the line /z, in the same order of letters, and 
similar to the trapezium FGHI, a trapezium fghi is constructed, and a conic 
given in kind is circumscribed about it, the Problem will be solved. 

So far concerning the finding of the orbits. It remains that we determine the 
motions of bodies in the orbits so found. 

Scholium 

F 

G 

/ 



76 Mathematical Principles 

SECTION VI 

HOW THE MOTIONS ARE TO BE FOUND IN GIVEN ORBITS 

Proposition 30. Problem 22 
To find at any assigned time the place of a body moving in a given parabola. 
Let S be the focus, and A the principal vertex of the parabola; and suppose 

4AS'M equal to the parabolic area to be cut off APS, which either was de- 
scribed by the radius SP, since the body's departure 
from the vertex, or is to be described thereby before 
its arrival there. Now the quantity of that area to 
be cut off is known from the time which is propor- 
tional to it. Bisect AS in G, and erect the perpen- 
dicular GH equal to 3M, and a circle described 
about the centre H, with the radius HS, will cut the 
parabola in the place P required. For letting fall PO 
perpendicular on the axis, and drawing PH, there 
will be ^ ~ w v, 

AG2+GH2( = HP2 = (AO - AG)2+ (PO - GH)2) 
= AO2+PO2 - 2AO • AG - 2GH • PO+AG2+GH2. 

Whence 
2GH-P0( = A02+P02-2A0 AG)=A02+MP02. For AO2 

PO2 

write AO -jjg; then dividing all the terms by 3PO, and multiplying them by 

2AS, we shall have 
4^GH ■ AS (= HAO ■ PO+HAS • PO = A0+3AS. pq 4AQ ~ 380 ■ PO = to the 6 6 
area, APO —SPO) =to the area APS. But GH was 3M, and therefore 

VaGH • AS is 4AS-M. 
Therefore the area cut off APS is equal to the area that was to be cut off 
4AS-M. Q.E.D. 

Cor. i. Hence GH is to AS as the time in which the body described the arc 
AP to the time in which the body described the arc between the vertex A and 
the perpendicular erected from the focus S upon the axis. 

Cor. ii. And supposing a circle ASP continually to pass through the moving 
body P, the velocity of the point H is to the velocity which the body had in the 
vertex A as 3 to 8; and therefore in the same ratio is the line GH to the right 
line which the body, in the time of its moving from A to P, would describe with 
that velocity which it had in the vertex A. 

Cor. hi. Hence, also, on the other hand, the time may be found in which the 
body has described any assigned arc AP. Join AP, and on its middle point erect 
a perpendicular meeting the right line GH in H. 

Lemma 28 
There is no oval figure whose area, cut off by right lines at pleasure, can be 
universally found by means of equations of any number of finite terms and 
dimensions. 

Suppose that within the oval any point is given, about which as a pole a 
right line is continually revolving with an uniform motion, while in that right 
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line a movable point going out from the pole moves always forwards with a 
velocity proportional to the square of that right line within the oval. By this 
motion that point will describe a spiral with infinite circumgyrations. Now if a 
portion of the area of the oval cut off by that right line could be found by a 
finite equation, the distance of the point from the pole, which is proportional 
to this area, might be found by the same equation, and therefore all the points 
of the spiral might be found by a finite equation also; and therefore the inter- 
section of a right line given in position with the spiral might also be found by a 
finite equation. But every right line infinitely produced cuts a spiral in an 
infinite number of points; and the equation by which any one intersection of 
two lines is found at the same time exhibits all their intersections by as many 
roots, and therefore rises to as many dimensions as there are intersections. 
Because two circles cut one another in two points, one of those intersections is 
not to be found but by an equation of two dimensions, by which the other 
intersection may be also found. Because there may be four intersections of two 
conic sections, any one of them is not to be found universally, but by an equa- 
tion of four dimensions, by which they may be all found together. For if those 
intersections are severally sought, because the law and condition of all is the 
same, the calculus will be the same in every case, and therefore the conclusion 
always the same, which must therefore comprehend all those intersections at 
once within itself, and exhibit them all indifferently. Hence it is that the inter- 
sections of the conic sections with the curves of the third order, because they 
may amount to six, come out together by equations of six dimensions; and the 
intersections of two curves of the third order, because they may amount to 
nine, come out together by equations of nine dimensions. If this did not nec- 
essarily happen, we might reduce all solid to plane Problems, and those higher 
than solid to solid Problems. But here I speak of curves irreducible in power. 
For if the equation by which the curve is defined may be reduced to a lower 
power, the curve will not be one single curve, but composed of two, or more, 
whose intersections may be severally found by different calculi. After the same 
manner the two intersections of right lines with the conic sections come out 
always by equations of two dimensions; the three intersections of right lines 
with the irreducible curves of the third order, by equations of three dimensions; 
the four intersections of right lines with the irreducible curves of the fourth 
order, by equations of four dimensions; and so on in infinitum. Wherefore the 
innumerable intersections of a right line with a spiral, since this is but one 
simple curve, and not reducible to more curves, require equations infinite in 
number of dimensions and roots, by which they may be all exhibited together. 
For the law and calculus of all is the same. For if a perpendicular is let fall from 
the pole upon that intersecting right line, and that perpendicular together with 
the intersecting line revolves about the pole, the intersections of the spiral will 
mutually pass the one into the other; and that which was first or nearest, after 
one revolution, will be the second; after two, the third; and so on: nor will the 
equation in the meantime be changed but as the magnitudes of those quantities 
are changed, by which the position of the intersecting line is determined. 
Therefore since those quantities after every revolution return to their first 
magnitudes, the equation will return to its first form; and consequently one 
and the same equation will exhibit all the intersections, and will therefore have 
an infinite number of roots, by which they may be all exhibited. Therefore the 
intersection of a right line with a spiral cannot be universally found by any 
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finite equation; and hence there is no oval figure whose area, cut off by right 
lines at pleasure, can be universally exhibited by any such equation. 

By the same argument, if the interval of the pole and point by which the 
spiral is described is taken proportional to that part of the perimeter of the 
oval which is cut off, it may be proved that the length of the perimeter cannot 
be universally exhibited by any finite equation. But here I speak of ovals that 
are not touched by conjugate figures running out in infinitum. 

Cor. Hence the area of an ellipse, described by a radius drawn from the 
focus to the moving body, is not to be found from the time given by a finite 
equation; and therefore cannot be determined by the description of curves 
geometrically rational. Those curves I call geometrically rational, all the points 
whereof may be determined by lengths that are definable by equations; that 
is, by the complicated ratios of lengths. Other curves (such as spirals, quad- 
ratrixes, and cycloids) I call geometrically irrational. For the lengths which are 
or are not as number to number (according to Book x, Elements of Euclid) are 
arithmetically rational or irrational. And therefore I cut off an area of an 
ellipse proportional to the time in which it is described by a curve geometrically 
irrational, in the following manner: 

To find the place of a body moving in a given ellipse at any assigned time. 
Suppose A to be the principal vertex, S the focus, and 0 the centre of the 

ellipse APB; and let P be the place of the body to be found. Produce OA to G 
so that OG : OA = OA : OS. Erect the perpendicular GH; and about the centre 

O, with the radius OG, describe the circle GEF; and on the ruler GH, as a base, 
suppose the wheel GEF to move forwards, revolving about its axis, and in the 
meantime by its point A describing the cycloid ALI. This done, take GK to the 
perimeter GEFG of the wheel, in the ratio of the time in which the body pro- 
ceeding from A described the arc AP, to the time of a whole revolution in the 
ellipse. Erect the perpendicular KL meeting the cycloid in L; then LP drawn 
parallel to KG will meet the ellipse in P, the required place of the body. 

For about the centre 0 with the radius OA describe the semicircle AQB, and 
let LP, produced, if need be, meet the arc AQ in Q, and join SQ, OQ. Let OQ 
meet the arc EFG in F, and upon OQ let fall the perpendicular SR. The area 
APS varies as the area AQS, that is, as the difference between the sector OQA 
and the triangle OQS, or as the difference of the rectangles J^OQ-AQ, and 

Proposition 31. Problem 23 
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J^OQ • SR, that is, because is given, as the difference between the arc 
AQ and the right line SR; and therefore (because of the equality of the given 
ratios SR to the sine of the arc AQ, OS to OA, OA to OG, AQ to GF; and by 
division, AQ —SR to GF —sine of the arc AQ) as GK, the difference between 
the arc GF and the sine of the arc AQ. q.e.d. 

Scholium 
But since the description of this curve is difficult, a solution by approxima- 

tion will be preferable. First, then, let there be found a certain angle B which 
may be to an angle of 57.29578 degrees, which an arc equal to the radius sub- 
tends, as SH, the distance of the foci, to AB, the diameter of the ellipse. 

Secondly, a certain length L, 
which may be to the radius in 

■—the same ratio inversely. And 
these being found, the Problem 

\\ may be solved by the following 
\\ analysis. By any construction 
^ (or even by conjecture), sup- 
\ pose we know P the place of the 
\ body near its true place p. Then 

 g g letting fall on the axis of the 
ellipse the ordinate PR from the 

proportion of the diameters of the ellipse, the ordinate RQ of the circumscribed 
circle AQB will be given; which ordinate is the sine of the angle AOQ, sup- 
posing AO to be the radius, and also cuts the ellipse in P. It will be sufficient 
if that angle is found by a rude calculus in numbers near the truth. Suppose 
we also know the angle proportional to the time, that is, which is to four right 
angles as the time in which the body described the arc Ap to the time of one 
revolution in the ellipse. Let this angle be N. Then take an angle D, which may 
be to the angle B as the sine of the angle AOQ to the radius; and an angle E 
which may be to the angle N —AOQ+D as the length L to the same length L 
diminished by the cosine of the angle AOQ, when that angle is less than a right 
angle, or increased thereby when greater. In the next place, take an angle F 
that may be to the angle B as the sine of the angle AOQ+E to the radius, and 
an angle G, that may be to the angle N — AOQ —E+F as the length L to 
the same length L diminished by the cosine of the angle AOQ-t-E, when that 
angle is less than a right angle, or increased thereby when greater. For the 
third time take an angle H, that may be to the angle B as the sine of the angle 
AOQ+E+G to the radius; and an angle I to the angle N —AOQ —E —G-fH, 
as the length L is to the same length L diminished by the cosine of the angle 
AOQ+E+G, when that angle is less than a right angle, or increased thereby 
when greater. And so we may proceed in infinitum. Lastly, take the angle 
AOg equal to the angle AOQ+E+G+I + , &c., and from its cosine Or and 
the ordinate pr, which is to its sine qr as the lesser axis of the ellipse to the 
greater, we shall have p the correct place of the body. When the angle N — 
AOQ+D happens to be negative, the sign + of the angle E must be every- 
where changed into —, and the sign — into +. And the same thing is to be 
understood of the signs of the angles G and I, when the angles N — AOQ — E+F, 
and N —AOQ —E —G+H come out negative. But the infinite series AOQ + 

Q * 
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E+G+I+, &c., converges so very fast, that it will be scarcely ever needful 
to proceed beyond the second term E. And the calculus is founded upon this 
Theorem, that the area APS varies as the difference between the arc AQ and 
the right line let fall from the focus S perpendicularly upon the radius OQ. 

And by a calculus not unlike, the Problem is solved in the hyperbola. Let its 
centre be 0, its vertex A, its focus S, and asymptote OK; and suppose the 
amount of the area to be cut off is known, as being proportional to the time. 
Let that be A, and by conjecture suppose 
we know the position of a right line SP, 
that cuts off an area APS near the truth. 
Join OP, and from A and P to the asymp- 
tote draw AI, PK, parallel to the other 
asymptote; and by the table of logarithms 
the area AIKP will be given, and equal 
thereto the area OPA, which, subtracted 
from the triangle OPS, will leave the area 
cut off APS. And by applying 2APS —2A, 
or 2A —2APS, the double difference of the 
area A that was to be cut off, and the area 
APS that is cut off, to the line SN that is let fall from the focus S, perpendicular 
upon the tangent TP, we shall have the length of the chord PQ. Which chord 
PQ is to be inscribed between A and P, if the area APS that is cut off be 
greater than the area A that was to be cut off, but towards the contrary side 
of the point P, if otherwise: and the point Q will be the place of the body more 
accurately. And by repeating the computation the place may be found con- 
tinually to greater and greater accuracy. 

And by such computations we have a general analytical resolution of the 
Problem. But the particular calculus that follows is better fitted for astro- 
nomical purposes. Supposing AO, OB, OD to be the semiaxes of the ellipse, and 
L its latus rectum, and D the difference between the lesser semiaxis OD, and 

J^L the half of the latus rectum: let an angle Y 
be found, whose sine may be to the radius as the 
rectangle under that difference D, and AO+OD 
the half sum of the axes, to the square of the 
greater axis AB. Find also an angle Z, whose 
sine maybe to the radius as the double rectangle 
under the distance of the foci SH and that dif- 
ference D, to triple the square of half the greater 
semiaxis AO. Those angles being once found, 
the place of the body may be thus determined. 

Take the angle T proportional to the time in which the arc BP was described, 
or equal to what is called the mean motion; and take an angle Y, the first 
equation of the mean motion, to the angle Y, the greatest first equation, as the 
sine of double the angle T is to the radius; and take an angle X, the second 
equation, to the angle Z, the second greatest equation, as the cube of the sine 
of the angle T is to the cube of the radius. Then take the angle BHP, the mean 
equated motion either equal to T+X+Y, the sum of the angles T, V, X, if 
the angle T is less than a right angle, or equal to T+X—V, the difference of 
the same, if that angle T is greater than one and less than two right angles; and 

J\p 

kl s c ) H 1 



Book I: The Motion of Bodies 81 
if HP meets the ellipse in P, draw SP, and it will cut off the area BSP, nearly 
proportional to the time. 

This practice seems to be expeditious enough, because the angles V and X, 
taken in fractions of seconds, if you please, being very small, it will be suffi- 
cient to find two or three of their first figures. But it is likewise sufficiently ac- 
curate to answer to the theory of the planets' motions. For even in the orbit of 
Mars, where the greatest equation of the centre amounts to ten degrees, the 
error will scarcely exceed one second. But when the angle of the mean motion 
equated BHP is found, the angle of the true motion BSP, and the distance SP, 
are readily had by the known methods. 

And so far concerning the motion of bodies in curved lines. But it may also 
come to pass that a moving body shall ascend or descend in a right line; and I 
shall now go on to explain what belongs to such kind of motions. 

SECTION VII 

The rectilinear ascent and descent of bodies 

Proposition 32. Problem 24 
Supposing that the centripetal force is inversely proportional to the square of the 
distance of the places from the centre; it is required to define the spaces which a 
body, falling directly, describes in given times. 

Case 1. If the body does not fall perpendicularly, it will (by Cor. i, Prop. 13) 
describe some conic section whose focus is placed in the centre of force. Sup- 

pose that conic section to be ARPB and its focus S. And, 
first, if the figure be an ellipse, upon the greater axis thereof 
AB describe the semicircle ADB, and let the right line 
DPC pass through the falling body, making right angles 
with the axis; and drawing DS, PS, the area ASD will be 
proportional to the area ASP, and therefore also to the 
time. The axis AB still remaining the same, let the breadth 
of the ellipse be continually diminished, and the area ASD 
will always remain proportional to the time. Suppose that 
breadth to be diminished in infinitum; and the orbit APB 
in that case coinciding with the axis 
AB, and the focus S with the ex- 
treme point of the axis B, the body 

will descend in the right line AC, and the area ABD will 
become proportional to the time. Therefore the space 
AC will be given which the body describes in a given 
time by its perpendicular fall from the place A, if the 
area ABD is taken proportional to the time, and from 
the point D the right line DC is let fall perpendicularly 
on the right line AB. q.e.i. 

Case 2. If the figure RPB is an hyperbola, on the 
same principal diameter AB describe the rectangular 
hyperbola BED; and because there exist between the 
several areas and the heights CP and CD relations, 
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CSP : CSD = CB/P : CBED = SP/B : SDEB = CP : CD, and since the area 
SP/B varies as the time in which the body P will move through the arc P/B, 
the area SDEB will also vary as that time. Let the latus rectum of the hy- 
perbola RPB be diminished in infinitum, the transverse axis remaining the 
same; and the arc PB will come to coincide with the right line CB, and the 
focus S with the vertex B, and the right line SD with the right line BD. And 
therefore the area BDEB will vary as the time in which 
the body C, by its perpendicular descent, describes the 
line CB. q.e.i. 

Case 3. And by the like argument, if the figure RPB 
is a parabola, and to the same principal vertex B another 
parabola BED is described, that may always remain 
given while the former parabola in whose perimeter the 
body P moves, by having its latus rectum diminished 
and reduced to nothing, comes to coincide with the line CB, the parabolic seg- 
ment BDEB will vary as the time in which that body P or C will descend to 
the centre S or B. q.e.i. 

Proposition 33. Theorem 9 
The things above found being supposed, I say, that the velocity of a falling body in 
any place C is to the velocity of a body, describing a circle about the centre B at the 
distance BC, as the square root of the ratio of AC, the distance of the body from the 
remoter vertex A of the circle or rectangular hyperbola, to J^AB, the principal semi- 
diameter of the figure. 

Let AB, the common diameter of both figures RPB, DEB, be bisected in 0; 
and draw the right line PT that may touch the figure RPB in P, and likewise 
cut that common diameter AB (produced, if need be) in T; and let SY be 
perpendicular to this line, and BQ perpendicular to this diameter, and suppose 

the latus rectum of the figure RPB 
to be L. From Cor. ix, Prop. 16, it 
is manifest that the velocity of a 
body, moving in the line RPB 
about the centre S, in any place 
P, is to the velocity of a body 
describing a circle about the same 
centre, at the distance SP, as the 
square root of the ratio of the 
rectangle J^L-SP to SY2. For 
by the properties of the conic 
sections AC-CB is to CP2 as 

2A0 to L, and therefore ^ ^ ■ 
is equal to L. Therefore those 
velocities are to each other as 
the square root of the ratio of 
CP2 AO SP to gY2 Moreover) 

:Q 

AC-CB 
by the properties of the conic 
sections, 
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CO : BO = BO : TO, 

thence, CO+BO : BO = BO + TO : TO, 
and CO : BO = CB : BT. 
From this, BO - CO : BO = BT - CB :BT 
and AC : AO = TC : BT = CP : BQ; 

, . bqac and, since CP = —, 
CP2 • AO • SP lx BQ2 • AC • SP 

one obtains —AC CB— eclua^ —AO BC—" 

Now suppose CP, the breadth of the figure RPB, to be diminished in infinitum, 
so that the point P may come to coincide with the point C, and the point S 
with the point B, and the line SP with the line BC, and the line SY with the 
line BQ; and the velocity of the body now descending perpendicularly in the 
line CB will be to the velocity of a body describing a circle about the centre B, 

BQ2 • AC • SP 
at the distance BC, as the square root of the ratio of —— to SY2, that 

is (neglecting the ratios of equality of SP to BC, and BQ2 to SY2), as the square 
root of the ratio of AC to AO, or 3^AB. q.e.d. 

cor. i. When the points B and S come to coincide, TC will become to TS as 
AC to AO. 

Cor. h. A body revolving in any circle at a given distance from the centre, 
by its motion converted upwards, will ascend to double its distance from the 
centre 

Proposition 34. Theorem 10 
If the figure BED is a parabola, I say, that the velocity of a falling body in any 
place C is equal to the velocity by which a body may uniformly describe a circle 
about the centre B at half the interval BC. 

For (by Cor. vii, Prop. 16) the velocity of 
a body describing a parabola RPB about the 
centre S, in any place P, is equal to the velocity 
of a body uniformly describing a circle about 
the same centre S at half the interval SP. Let 
the breadth CP of the parabola be diminished 
in infinitum, so that the parabolic arc P/B may 
come to coincide with the right line CB, the 
centre S with the vertex B, and the interval SP 
with the interval BC, and the Proposition will 
be manifest. q.e.d. 

Proposition 35. Theorem 11 
The same things supposed, I say, that the area of the figure DES, described by the 
indefinite radius SD, is equal to the area which a body with a radius equal to half 
the latus rectum of the figure DES describes in the same time, by uniformly revolv- 
ing about the centre S. 

For suppose a body C in the smallest moment of time describes in falling the 
infinitely little line Cc, while another body K, uniformly revolving about the 
centre S in the circle OK/r, describes the arc K/r. Erect the perpendiculars CD, 
cd, meeting the figure DES in D, d. Join SD, Sd, SK, S/r, and draw Dd meeting 
the axis AS in T, and thereon let fall the perpendicular SY. 
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Case 1. If the figure DES is a circle, or a rectangular hyperbola, bisect its 

transverse diameter AS in O, and SO will be half the latus rectum. And because 
TC : TD = Cc : Dd, 

and TD : TS = CD : Si/, 
there follows TC : TS = CD • Cc : SY • Bd. 
But (by Cor. i, Prop. 33) TC : TS = AC : AO, 
namely, if in the coalescence of the points D, d the ultimate ratios of the lines 
are taken. Therefore, 

AC : AO or SK^CD Cc : SY-Dd. 
Further, the velocity of the descending body in C is to the velocity of a body 
describing a circle about the centre S, at the interval SC, as the square root of 
the ratio of AC to AO or SK (by Prop. 33); and this velocity is to the velocity 
of a body describing the circle OKA- as the square root of the ratio of SK to SC 
(by Cor. vi, Prop. 4); and, consequently, the first velocity is to the last, that is, 
the little line Cc to the arc K/r, as the square root of the ratio of AC to SC, that 
is, in the ratio of AC to CD. Therefore, 

CD • Cc = AC • KA*, 
hence, AC : SK = AC • KA* : SY • Dd, 
and SK • KA* = S Y • Dd, 
and HSK-KA-^^SY-Dd, 
that is, the area KSA- is equal to the area 
SDd. Therefore in every moment of time two 
equal particles, KSA* and SDd, of areas are 
generated, which, if their magnitude is dimi- 
nished, and their number increased in infini- / 
turn, obtain the ratio of equality, and conse- / 
quently (by Cor., Lem. iv) the whole areas / 
together generated are always equal, q.e.d. j 

Case 2. But if the figure DES is a parabola, \ 
we shall find, as above, \ 

CD • Cc : SY • Dd = TC : TS, 
that is, =2:1; therefore, '*•••• 

MCD Cc = ^ SY-Dd. 
But the velocity of the falling body in C is 
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equal to the velocity with which a circle may be uniformly described at the 
interval 3^SC (by Prop. 34). And this velocity to the velocity with which a 
circle may be described with the radius SK, that is, the little line Cc to the arc 
K/r, is (by Cor. vi, Prop. 4) as the square root of the ratio of 8K to HSC; 
that is, in the ratio of SK to J^CD. Therefore • K/r is equal to }4CD- Cc, 
and therefore equal to -Dd; that is, the area KS/r is equal to the area 
SDd, as above. q.e.d. 

Proposition 36. Problem 25 
To determine the times of the descent of a body falling from a given 
place A. 

Upon the diameter AS, the distance of the body from the 
centre at the beginning, describe the semicircle ADS, as like- 
wise the semicircle OKH equal thereto, about the centre S. 
From any place C of the body erect the ordinate CD. Join SD, 
and make the sector OSK equal to the area ASD. It is evident 
(by Prop. 35) that the body in falling will describe the space AC 
in the same time in which another body, uniformly revolving 
about the centre S, may describe the arc OK. q.e.f. 

Proposition 37. Problem 26 
To define the times of the ascent or descent of a body projected upwards or down- 
wards from a given place. 
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Suppose the body to go off from the given place G, in the direction of the line 
GS, with any velocity. Take GA to J^AS as the square of the ratio of this 
velocity to the uniform velocity in a circle, with which the body may revolve 
about the centre S at the given interval SG. If that ratio is the same as of the 
number 2 to 1, the point A is infinitely remote; in which case a parabola is to be 
described with any latus rectum to the vertex S, and axis SG; as appears by 
Prop. 34. But if that ratio is less or greater then the ratio of 2 to 1, in the former 
case a circle, in the latter a rectangular hyperbola, is to be described on the 
diameter SA; as appears by Prop. 33. Then about the centre S, with a radius 
equal to half the latus rectum, describe the circle H/rK; and at the place G of 
the ascending or descending body, and at any other place C, erect the perpen- 
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diculars GI, CD, meeting the conic section or circle in I and D. Then joining 
SI, SD, let the sectors HSK, HSA* be made equal to the segments SEIS,SEDS, 
and (by Prop. 35) the body G will describe the space GC in the same time in 
which the body K may describe the arc K/r. q.e.f. 

Proposition 38. Theorem 12 
Supposing that the centripetal force is proportional to the altitude or distance of 
places from the centre, I say, that the times and velocities of falling bodies, and the 
spaces which they describe, are respectively proportional to the arcs, and the sines 
and versed sines of the arcs. 

Suppose the body to fall from any place A in the right 
line AS; and about the centre of force S, with the radius 
AS, describe the quadrant of a circle AE; and let CD be 
the sine of any arc AD; and the body A will in the time 
AD in falling describe the space AC, and in the place C 
will acquire the velocity CD. 

This is demonstrated the same way from Prop. 10, as 
Prop. 32 was demonstrated from Prop. 11. 

Cor. i. Hence the times are equal in which one body falling from the place 
A arrives at the centre S, and another body revolving describes the quadrantal 
arc ADE. 

Cor. ii. Therefore all the times are equal in which bodies falling from what- 
soever places arrive at the centre. For all the periodic times of revolving bodies 
are equal (by Cor. m, Prop. 4). 

Proposition 39. Problem 27 
Supposing a centripetal force of any kind, and granting the quadratures of curvi- 
linear figures; it is required to find the velocity of a body, ascending or descending 
in a right line, in the several places through which it passes, as also the time in 
which it will arrive at any place; and conversely. 

Suppose the body E to fall from any place A in the right line ADEC; and 
from its place E imagine a perpendicular EG always erected proportional to 
the centripetal force in that place tending to the centre C; and let BFG be a 

curved line, the locus of the point G. And in the 
beginning of the motion suppose EG to coincide 
with the perpendicular AB; and the velocity of 
the body in any place E will be as a right line 
whose square is equal to the curvilinear area 
ABGE. q.E.I. 

In EG take EM inversely proportional to a 
right line whose square is equal to the area 
ABGE, and let VLM be a curved line wherein the 
point M is always placed, and to which the right 
line AB produced is an asymptote; and the time 
in which the body in falling describes the line 
AE, will be as the curvilinear area ABTYME. 

Q.E.I. 
For in the right line AE let there be taken the 

very small line DE of a given length, and let 

7m h\g 
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DLF be the place of the line EMG, when the body was in D; and if the 
centripetal force be such, that a right line, whose square is equal to the 
area ABGE, is as the velocity of the descending body, the area itself will 
be as the square of that velocity; that is, if for the velocities in I) and E 
we write V and V+I, the area ABED will be as VV, and the area ABGE as 
YY+2YI + II; and by subtraction, the area DFGE as 2VI+ 11, and therefore 

^DE^ be as that is, if we take the first ratios of those quantities 
2 VI 

when just nascent, the length DF is as the quantity and therefore also as 
IV 

half that quantity But the time in which the body in falling describes the 

very small line DE, is directly as that line and inversely as the velocity V; and 
the force will be directly as the increment I of the velocity and inversely as the 
time; and therefore if we take the first ratios when those quantities are just 

IV 
nascent, as that is, as the length DF. Therefore a force proportional to 

DF or EG will cause the body to descend with a velocity that is as the right 
line whose square is equal to the area ABGE. q.e.d. 

Moreover, since the time in which a very small line DE of a given length 
may be described is inversely as the velocity and therefore also inversely as a 
right line whose square is equal to the area ABFD; and since the line DL, and 
by consequence the nascent area DLME, will be inversely as the same right 
line, the time will be as the area DLME, and the sum of all the times will be as 
the sum of all the areas; that is (by Cor., Lem. 4), the whole time in which the 
line AE is described will be as the whole area ATVME. q.e.d. 

Cor. i. Let P be the place from whence a body ought to fall, so as that, when 
urged by any known uniform centripetal force (such as gravity is commonly 
supposed to be), it may acquire in the place D a velocity equal to the velocity 
which another body, falling by any force whatever, hath acquired in that place 
D. In the perpendicular DF let there be taken DR, which may be to DF as 
that uniform force to the other force in the place D. Complete the rectangle 
PDRQ, and cut off the area ABFD equal to that rectangle. Then A will be the 
place from whence the other body fell. For completing the rectangle DRSE, 
since the area ABFD is ro the area DFGE as VV to 2VI, and therefore as 3^V 
to I, that is, as half the whole velocity to the increment of the velocity of the 
body falling by the variable force; and in like manner the area PQRD to the 
area DRSE as half the whole velocity to the increment of the velocity of the 
body falling by the uniform force; and since those increments (by reason of the 
equality of the nascent times) are as the generating forces, that is, as the or- 
dinates DF, DR, and consequently as the nascent areas DFGE, DRSE; there- 
fore, the whole areas ABFD, PQRD will be to each other as the halves of the 
whole velocities; and therefore, because the velocities are equal, they become 
equal also. 

Cor. ii. Whence if any body be projected either upwards or downwards with 
a given velocity from any place D, and there be given the law of centripetal 
force acting on it, its velocity will be found in any other place, as e, by erecting 
the ordinate eg, and taking that velocity to the velocity in the place D as a 
right line whose square is equal to the rectangle PQRD, either increased by the 
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curvilinear area DF^e, if the place e is below the A 
place D, or diminished by the same area DF^re, if 
it be higher, is to the right line whose square is p 
equal to the rectangle PQRD alone. 

Cor. hi. The time is also known by erecting 
the ordinate em inversely proportional to the 
square root of PQRD + or —DF^e, and taking d 
the time in which the body has described the E 

line De to the time in which another body has 
fallen with an uniform force from P, and in 
falling arrived at D in the proportion of the cur- e 
vilinear area DLme to the rectangle 2PD • DL. 
For the time in which a body falling with an 
uniform force hath described the line PD is to 
the time in which the same body hath described c 
the line PE as the square root of the ratio of PD to PE; that is (the very 
small line DE being just nascent), in the ratio of PD to PD+J^DE or 2PE) 
to2PD + DE, and, by subtraction, to the time in which the body hath de- 
scribed the small line DE, as 2PD to DE, and therefore as the rectangle 
2PD-DL to the area DLME; and the time in which both the bodies de- 
scribed the very small line DE is to the time in which the body with the 
variable motion described the line De as the area DLME to the area DLme; 
and therefore the first mentioned of these times is to the last as the rectangle 
2PD • DL to the area DLme. 

SECTION VIII 

The determination of orbits in which bodies will revolve, being acted 
UPON BY ANY SORT OF CENTRIPETAL FORCE 

Proposition 40. Theorem 13 
// a body, acted upon by any centripetal force, is moved in any manner, and an- 
other body ascends or descends in a right line, and their velocities be equal in any 
one case of equal altitudes, their velocities will be also equal at all equal altitudes. 

Let a body descend from A through D and E, to the centre C; and let an- 
other body move from V in the curved line YIKA*. From the centre C, with any 
distances, describe the concentric circles DI, EK, meeting the right line AC in 
D and E, and the curve YIK in I and K. Draw IC meeting KE in N, and on 
IK let fall the perpendicular NT; and let the interval DE or IN between the 
circumferences of the circles be very small^ and imagine the bodies in D and I 
to have equal velocities. Then because the distances CD and CI are equal, the 
centripetal forces in D and I will be also equal. Let those forces be expressed 
by the equal short lines DE and IN; and let the force IN (by Cor. ii of the 
Laws of Motion) be resolved into two others, NT and IT. Then the force NT 
acting in the direction of the line NT perpendicular to the path ITK of the 
body will not at all affect or change the velocity of the body in that path, but 
only draw it aside from a rectilinear course, and make it deflect continually 
from the tangent of the orbit, and proceed in the curvilinear path ITK/r. That 

H\G 
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"A whole force, therefore, will be spent in producing this effect; but 

the other force IT, acting in the direction of the course of the 
body, will be all employed in accelerating it, and in the least 
given time will produce an acceleration proportional to itself. 
Therefore the accelerations of the bodies in D and I, produced 
in equal times, are as the lines DE, IT (if we take the first ratios 
of the nascent lines DE, IN, IK, IT, NT); and in unequal times 
as the product of those lines and the times. But the times in which 
DE and IK are described, are, by reason of the equal velocities (in 
D and I), as the spaces described DE and IK, and therefore the 
accelerations in the course of the bodies through the lines DE 
and IK are as DE and IT, and DE and IK conjointly; that is, 
as the square of DE to the rectangle IT-IK. But the rectangle 
IT ■ IK is equal to the square of IN, that is, equal to the square 
of DE; and therefore the accelerations generated in the passage 

of the bodies from D and I to E and K are equal. Therefore the velocities of 
the bodies in E and K are also equal: and by the same reasoning they will 
always be found equal in any subsequent equal distances. q.e.d. 

By the same reasoning, bodies of equal velocities and equal distances from 
the centre will be equally retarded in their ascent to equal distances, q.e.d. 

Cor. i. Therefore if a body either oscillates by hanging to a string, or by any 
polished and perfectly smooth impediment is forced to move in a curved line; 
and another body ascends or descends in a right line, and their velocities be 
equal at any one equal altitude, their velocities will be also equal at all other 
equal altitudes. For by the string of the pendulous body, or by the impediment 
of a vessel perfectly smooth, the same thing will be effected as by the trans- 
verse force NT. The body is neither accelerated nor retarded by it, but only is 
obliged to leave its rectilinear course. 

Cor. ii. Suppose the quantity P to be the greatest distance from the centre 
to which a body can ascend, whether it be oscillating, or revolving in a curve, 
and so the same projected upwards from any point of a curve with the velocity 
it has in that point. Let the quantity A be the distance of the body from the 
centre in any other point of the orbit; and let the centripetal force be always as 
the power An_1, of the quantity A, the index of which power n—lis any num- 
ber n diminished by unity. Then the velocity in every altitude A will be as 
\/(Pn —An), and therefore will be given. For by Prop. 39, the velocity of a body 
ascending and descending in a right line is in that very ratio. 

Proposition 41. Problem 28 
Supposing a centripetal force of any kind, and granting the quadratures of curvi- 
linear figures; it is required to find as well the curves in which bodies will move, as 
the times of their motions in the curves found. 

Let any centripetal force tend to the centre C, and let it be required to find 
the curve VIKA*. Let there be given the circle VR, described from the centre C 
with any radius CV; and from the same centre describe any other circles ID, 
KE, cutting the curve in I and K, and the right line CV in D and E. Then 
draw the right line CNIX cutting the circles KE, VR in N and X, and the right 
line CKY meeting the circle VR in Y. Let the points I and K be indefinitely 
near; and let the body go on from V through I and K to /r; and let the point A 
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be the place from which another body is to fall, so as in the place D to acquire 
a velocity equal to the velocity of the first body in I. And things remaining as 
in Prop. 39, the short line IK, described in the least given time, will be as the 
velocity, and therefore as the right line whose square is equal to the area 
ABFD, and the triangle ICK proportional to the time will be given, and there- 
fore KN will be inversely as the altitude IC; that is (if there be given any 

quantity Q, and the altitude IC be called A), as^. This quantity^call Z, and 

suppose the magnitude of Q to be such that in some one case 
VABFD : Z = IK : KN, 

and then in all cases 

and 
and by subtraction, 

VABFD : Z = IK : KN, 
ABFD : ZZ = IK2 : KN2, 

ABFD —ZZ : ZZ = IN2 : KN2, 
and therefore 

and 

Since 
it follows that 

V(ABFD-ZZ) : Z or ^ = IN : KN, 

a.kn=  . ^ VCABfd-zz) 
YX -XC : A • KN = CX2 : AA, 

YX • XC = Q • IN • CX2 

AAV (ABFD — ZZ) 
Therefore in the perpendicular DF let there be taken continually D6, Dc equal 

to 2\/(ABFD —ZZ)' 2AAV?ABFD-ZZ) respeCtlvely' and let the curved 111168 

ab, ac, the foci of the points h and c, be described; and from the point V let the 
perpendicular Va be erected to the line AC, cutting off the curvilinear areas 
VD6a, VDca, and let the ordinates Ez, Ex, be erected also. Then because the 
rectangle Eh • IN or EhzE is equal to half the rectangle A • KN, or to the tri- 
angle ICK; and the rectangle DcTN or EcxE is equal to half the rectangle 
YX-XC, or to the triangle XCY; that is, because the nascent particles D6zE, 
ICK of the areas YEha, VIC are always equal; and the nascent particles EcxE, 
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XCY of the areas VDca, VCX are always equal: therefore the generated area 
VD6a will be equal to the generated area YIC, and therefore proportional to 
the time; and the generated area YDca is equal to the generated sector VCX. 
If, therefore, any time be given during which the body has been moving from 
V, there will be also given the area proportional to it YD6a; and thence will be 
given the altitude of the body CD or CI; and the area YDca, and the sector 
VCX equal thereto, together with its angle VCI. But the angle YCI, and the 
altitude CI being given, there is also given the place I, in which the body will 
be found at the end of that time. q.e.i. 

Cor. i. Hence the greatest and least altitudes of the bodies, that is, the ap- 
sides of the curves, may be found very readily. For the apsides are those points 
in which a right line IC drawn through the centre falls perpendicularly upon 
the curves VIK; which comes to pass when the right lines IK and NK become 
equal; that is, when the area ABFD is equal to ZZ. 

Cor. ii. So also the angle KIN, in which the curve at any place cuts the line 
IC, may be readily found by the given altitude IC of the body; namely, by 
making the sine of that angle to the radius as KN to IK, that is, as Z to the 
square root of the area ABFD. 

Cor. hi. If to the centre C, and the principal vertex Y, there be described a 
conic section YRS; and from any point thereof, as R, there be drawn the tan- 
gent RT meeting the axis CV indefinitely produced in the point T; and then 

joining CR there be drawn the right line CP, 
equal to the abscissa CT, making an angle YCP 

iT proportional to the sector VCR; and if a centri- 
petal force inversely proportional to the cubes 

'v of the distances of the places from the centre, 
tends to the centre C; and from the place V 
there sets out a body with a just velocity in the 
direction of a line perpendicular to the right line 

Jc CV; that body will proceed in a curve VPQ, 
which the point P will always touch; and there- 
fore if the conic section YRS be an hyperbola, 

the body will descend to the centre; but if it be an ellipse, it will ascend con- 
tinually, and go farther and farther off in infinitum. And, on the contrary, if 
a body endued with any velocity goes off from the place V, and according as 
it begins either to descend obliquely to the centre, or to ascend obliquely from 
it, the figure YRS be either an hyperbola or an ellipse, the curve may be found 
by increasing or diminishing the angle YCP in a given ratio. And the centripetal 
force becoming centrifugal, the body will ascend obliquely in the curve YPQ, 
which is found by taking the angle YCP proportional to the elliptic sector YRC, 
and the length CP equal to the length CT, as before. All these things follow 
from the foregoing Proposition, by the quadrature of a certain curve, the in- 
vention of which, as being easy enough, for brevity's sake I omit. 

Proposition 42. Problem 29 
The law of centripetal force being given, it is required to find the motion of a body set- 
ting out from a given place, with a given velocity, in the direction of a given right line. 

Suppose the same things as in the three preceding Propositions; and let the 
body go off from the place I in the direction of the little line IK, with the same 
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velocity as another body, by falling with an uniform centripetal force from the 
place P, may acquire in D; and let this uniform force be to the force with which 
the body is at first urged in I, as DR to DF. Let the body go on towards k] and 

about the centre C, with the radius Ck, describe the circle ke, meeting the right 
line PD in e, and let there be erected the lines eg, ev, ew, ordinately applied to 
the curves BF^, abv, acw. From the given rectangle PDRQ and the given law of 
centripetal force, by which the first body is acted on, the curved line BFgr is 
also given, by the construction of Prop. 27, and its Cor. i. Then from the given 
angle CIK is given the proportion of the nascent lines IK, KN; and thence, by 
the construction of Prob. 28, there is given the quantity Q, with the curved 
lines abv, acw, and therefore, at the end of any time Dbve, there is given both 
the altitude of the body Ce or Ck, and the area T)cwe, with the sector equal to 
it XC?/, the angle ICA-, and the place k, in which the body will then be found. 

We suppose in these Propositions the centripetal force to vary in its recess 
from the centre according to some law, which anyone may imagine at pleasure, 
but at equal distances from the centre to be everywhere the same. 

I have hitherto considered the motions of bodies in immovable orbits. It 
remains now to add something concerning their motions in orbits which re- 
volve round the centres of force. 

The motion of bodies in movable orbits; and the motion of the apsides 

It is required to make a body move in a curve that revolves about the centre of force 
in the same manner as another body in the same curve at rest. 

In the fixed orbit VPK, let the body P revolve, proceeding from Y towards 
K. From the centre C let there be continually drawn Cp, equal to CP, making 
the angle YCp proportional to the angle YCP; and the area which the line Cp 
describes will be to the area YCP, which the line CP describes at the same time, 
as the velocity of the describing line Cp to the velocity of the describing line 

Q.E.I. 

SECTION IX 

Proposition 43. Problem 30 
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CP; that is, as the angle YCp to the angle VCP, therefore in a given ratio, and 
therefore proportional to the time. Since, then, the area described by the line 
Cp in a fixed plane is proportional to the time, it is manifest that a body, being 

acted upon by a suitable centripetal force, may re- 
volve with the point p in the curved line which the 
same point p, by the method just now explained, 
may be made to describe in a fixed plane. Make 
the angle VCt^ equal to the angle PCp, and the line 
Cu equal to CV, and the figure uCp equal to the 
figure VCP, and the body being always in the 
point p, will move in the perimeter of the revolving 
figure uCp, and will describe its (revolving) arc up 
in the same time that the other body P describes 
the similar and equal arc VP in the fixed figure 
VPK. Find, then, by Cor. v, Prop. 6, the centrip- 

etal force by which the body may be made to revolve in the curved line which 
the point p describes in a fixed plane, and the Problem will be solved, q.e.f. 

Proposition 44. Theorem 14 
The difference of the forces, by which two bodies may be made to move equally, one 
in a fixed, the other in the same orbit revolving, varies inversely as the cube of their 
common altitudes. 

Let the parts of the fixed orbit VP, PK be similar and equal to the parts of 
the revolving orbit up, pk; and let the distance of the points P and K be sup- 
posed of the utmost smallness. Let fall a perpendicular kr from the point k to 
the right line pC, and produce it to 
m, so that mr may be to kr as the 
angle VCp to the angle VCP. Be- 
cause the altitudes of the bodies PC 
and pC, KC and kC, are always 
equal, it is manifest that the in- 
crements or decrements of the lines 
PC and pC are always equal; and 
therefore if each of the several mo- 
tions of the bodies in the places P 
and p be resolved into two (by 
Cor. ii of the Laws of Motion), one 
of which is directed towards the 
centre, or according to the lines PC, 
pC, and the other, transverse to the 
former, hath a direction perpendic- 
ular to the lines PC and pC; the 
motions towards the centre will be 
equal, and the transverse motion 
of the body p will be to the trans- 
verse motion of the body P as the angular motion of the line pC to the angular 
motion of the line PC; that is, as the angle VCp to the angle VCP. Therefore, 
at the same time that the body P, by both its motions, comes to the point K, 
the body p, having an equal motion towards the centre, will be equally moved 
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from p towards C; and therefore that time being expired, it will be found some- 
where in the line mkr, which, passing through the point k, is perpendicular to 
the line pC; and by its transverse motion will acquire a distance from the line 
pC, that will be to the distance which the other body P acquires from the line 
PC as the transverse motion of the body p to the transverse motion of the 
other body P. Therefore since kr is equal to the distance which the body P ac- 
quires from the line PC, and mr is to kr as the angle YCp to the angle VCP, 
that is, as the transverse motion of the body p to the transverse motion of 
the body P, it is manifest that the body p, at the expiration of that time, 
will be found in the place m. These things will be so, if the bodies p and P are 
equally moved in the directions of the lines pC and PC, and are therefore urged 
with equal forces in those directions. But if we take an angle pCn that is to 
the angle pCk as the angle YCp to the angle VCP, and nC be equal to kC, in 
that case the body p at the expiration of the time will really be in n; and is 
therefore urged with a greater force than the body P, if the angle nCp is greater 
than the angle kCp, that is, if the orbit upk moves either progressively, or in a 
retrograde direction, with a velocity greater than the double of that with which 
the line CP is carried forwards; and with a less force if the retrograde motion 
of the orbit is slower. And the difference of the forces will be as the interval mn 
of the places through which the body would be carried by the action of that 
difference in that given space of time. About the centre C with the interval Cn 
or Ck suppose a circle described cutting the lines mr, mn produced in s and t, 
and the rectangle mn-mt will be equal to the rectangle mk-ms, and therefore 

mk' ms mn will be equal to ———. But since the triangles pCk, pCn, in a given time, 

are of a given magnitude, kr and mr, and their difference mk, and their sum ms, 
are inversely as the altitude pC, and therefore the rectangle mk-ms is inversely 
as the square of the altitude pC. Moreover, mt is directly as yfant, that is, as the 

altitude nC. These are the first ratios of the nascent lines; and hence mS, mt 
that is, the nascent short line mn, and the difference of the forces proportional 
thereto, are inversely as the cube of the altitude pC. q.e.d. 

Cor. i. Hence the difference of the forces in the places P and p, or K and k, 
is to the force with which a body may revolve with a circular motion from R to 
K, in the same time that the body P in a fixed orbit describes the arc PK, as 

the nascent line mn to the versed sine of the nascent arc RK, that is, as —— ' mt 

to or as mk-ms to the square of rk] that is, if we take given quantities F 

and G in the same ratio to each other as the angle VCP bears to the angle VCp, 
as GG —FF to FF. And, therefore, if from the centre C, with any distance CP 
or Cp, there be described a circular sector equal to the whole area VPC, which 
the body revolving in a fixed orbit hath by a radius drawn to the centre de- 
scribed in any certain time, the difference of the forces, with which the body P 
revolves in a fixed orbit, and the body p in a movable orbit, will be to the cen- 
tripetal force, with which another body by a radius drawn to the centre can 
uniformly describe that sector in the same time as the area VPC is described, 
as GG —FF to FF. For that sector and the area pCk are to each other as the 
times in which they are described. 
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Cor. ii. If the orbit VPK be an ellipse, having its focus C, and its highest 

apse V, and we suppose the ellipse wpk similar and equal to it, so that pC may 
be always equal to PC, and the angle VCp be to the angle VCP in the given 
ratio of G to F; and for the altitude PC or pC we put A, and 2R for the latus 

rectum of the ellipse, the force with 
which a body may be made to re- 
volve in a movable ellipse will be as 
FF , RGG-RFF , . — H ^ , and conversely. 

Let the force with which a body 
may revolve in a fixed ellipse be ex- 

FF pressed by the quantity and 

FF the force in V wdl be r^rr-. But the L V 
force with which a body may re- 
volve in a circle at the distance CV, 
with the same velocity as a body 
revolving in an ellipse has in V, is 
to the force with which a body re- 
volving in an ellipse is acted upon 
in the apse V, as half the latus rec- 
tum of the ellipse to the semidiam- 
eter CV of the circle, and there- 

RFF 
CV3' 

RGG-RFF 
fore is as 

CV3 

and the force which is to this as GG —FF to FF, is as 

and this force (by Cor. i of this Prop.) is the difference of the 

forces in V, with which the body P revolves in the fixed ellipse VPK, and the 
body p in the movable ellipse wp/r. Then since by this Proposition that differ- 

ence at any other altitude A is to itself at the altitude CV as ^3to the 
 RFF 

same difference in every altitude A will be as   . Therefore to the A3 

FF force by which the body may revolve in a fixed ellipse VPK, add the excess 

RGG-RFF , and the sum will be the whole force 
A3 AA A3 

a body may revolve in the same time in the movable ellipse upk. 
Cor. m. In the same manner it will be found, that, if the fixed orbit VPK be 

an ellipse having its centre in the centre of the forces C, and there be supposed 
a movable ellipse upk, similar, equal, and concentric to it; and 2R be the prin- 
cipal latus rectum of that ellipse, and 2T the latus transversum, or greater 
axis; and the angle VCp be continually to the angle VCP as G to F; the forces 
with which bodies may revolve in the fixed and movable ellipse, in equal times, 

FFA ^ FFA , RGG-RFF , will be as and   respectively. 

Cor. iv. And universally, if the greatest altitude CV of the body be called T, 
and the radius of the curvature which the orbit VPK has in V, that is, the 

FF , RGG-RFF by which 
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radius of a circle equally curved, be called R, and the centripetal force with 
which a body may revolve in any fixed curve VPK at the place V be called 
VFF and in other places P be indefinitely styled X; and the altitude CP be 

called A, and G be taken to F in the given ratio of the angle YCp to the angle 
VCP; the centripetal force with which the same body will perform the same 
motions in the same time, in the same curve upk revolving with a circular 

..u r v , VRGG —VRFF motion, will be as the sum of the forces XH t-t . A3 

Cor. v. Therefore the motion of a body in a fixed orbit being given, its angu- 
lar motion round the centre of the forces may be increased or diminished in a 
given ratio; and thence new fixed orbits may be found in which bodies may 
revolve with new centripetal forces. 

Cor. vi. Therefore if there be erected the line VP of an indeterminate length, 
perpendicular to the line CV given by position, and CP be drawn, and Cp 
equal to it, making the angle YCp having a given 
ratio to the angle VCP, the force with which a body 
may revolve in the curved line Ypk, which the point 
p is continually describing, will be inversely as the 
cube of the altitude Cp. For the body P, by its inertia 
alone, no other force impelling it, will proceed uni- 
formly in the right line VP. Add, then, a force tending 
to the centre C inversely as the cube of the altitude 
CP or Cp, and (by what was just demonstrated) the 
body will deflect from the rectilinear motion into the curved line Ypk. But this 
curve Ypk is the same with the curve VPQ found in Cor. m, Prop. 41, in which, 
I said, bodies attracted with such forces would ascend obliquely. 

Proposition 45. Problem 31 
To find the motion of the apsides in orbits approaching very near to circles. 

This problem is solved arithmetically by reducing the orbit, which a body 
revolving in a movable ellipse (as in Cor. ii and m of the above Prop.) de- 
scribes in a fixed plane, to the figure of the orbit whose apsides are required; 
and then seeking the apsides of the orbit which that body describes in a fixed 
plane. But orbits acquire the same figure, if the centripetal forces with which 
they are described, compared between themselves, are made proportional at 
equal altitudes. Let the point V be the highest apse, and write T for the great- 
est altitude CV, A for any other altitude CP or Cp, and X for the difference of 
the altitudes CV —CP; and the force with which a body moves in an ellipse 
revolving about its focus C (as in Cor. ii), and which in Cor. n was as 
FF , RGG-RFF ^ , . FFA+RGG-RFF u ^   , that is, as  ^ , by substituting 1 —X tor 

RGG — RFF+TFF — FFX 
A, will become as  . In like manner any other centrip- 

etal force is to be reduced to a fraction whose denominator is A3, and the 
numerators are to be made analogous by collating together the homologous 
terms. This will be made plainer by Examples. 

Exam. i. Let us suppose the centripetal force to be uniform, and therefore as 
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A3 ... ^ A . . T3 —3TTX+3TXX —X3 u or, writing T — X for A m the numerator, as ^3 . 1 hen 

collating together the correspondent terms of the numerators, that is, those 
that consist of given quantities with those of given quantities, and those of 
quantities not given with those of quantities not given, it will become 

RGG - RFF+TFF : T3 = - FFX : - 3TTX+3TXX - X3 

= -FF : — 3TT+3TX —XX. 
Now since the orbit is supposed extremely near to a circle, let it coincide with a 
circle; and because in that case R and T become equal, and X is infinitely 
diminished, the last ratios will be 

GG : T2= — FF : -3TT, 
and again, GG : FF = TT : 3TT = 1:3; 
and therefore G is to F, that is, the angle VCp to the angle VCP, as 1 to \/3. 
Therefore since the body, in a fixed ellipse, in descending from the upper to the 
lower apse, describes an angle, if I may so speak, of 180°, the other body in a 
movable ellipse, and therefore in the fixed plane we are treating of, will in its 

180° descent from the upper to the lower apse, describe an angle YCp of —75-. And 
V o 

this comes to pass by reason of the likeness of this orbit which a body acted 
upon by an uniform centripetal force describes, and of that orbit which a body 
performing its circuits in a revolving ellipse will describe in a fixed plane. By 
this collation of the terms, these orbits are made similar; not universally, in- 
deed, but then only when they approach very near to a circular figure. A body, 
therefore, revolving with an uniform centripetal force in an orbit nearly cir- 

180° cular, will always describe an angle of —75, or 103° Sfi' 23^ at the centre; V o 
moving from the upper apse to the lower apse when it has once described that 
angle, and thence returning to the upper apse when it has described that angle 
again; and so on in infinitum. 

Exam. 2. Suppose the centripetal force to be as any power of the altitude A, 
A« 

as, for example, An_3, or where n —3 and n signify any indices of powers 

whatever, whether integers or fractions, rational or surd, affirmative or nega- 
tive. That numerator An or (T —X)n being reduced to an indeterminate series 
by my method of converging series, will become 

T»-nXT"-1+^P^ XXT"-2, &c. 

And comparing these terms with the terms of the other numerator, 
RGG - RFF+TFF - FFX, 

it becomes 

RGG — RFF+TFF : T»= -FF : XT-2, &c. 

And taking the last ratios where the orbits approach to circles, it becomes 
RGG : Tn= — FF : -nT""1, 

or, GG : T^-^FF : nT-"1, 
and again, GG : FF = Tn~1 : nT"-^ 1 : n; 
and therefore G is to F, that is, the angle YCp to the angle VCP, as 1 to \/n. 
Therefore since the angle YCP, described in the descent of the body from the 
upper apse to the lower apse in an ellipse, is of 180°, the angle YCp, described 
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in the descent of the body from the upper apse to the lower apse in an orbit 
nearly circular which a body describes with a centripetal force proportional to 

280° the power A71-3, mil be equal to an angle of and this angle being repeated, 

the body will return from the lower to the upper apse, and so on in infinitum. 
As if the centripetal force be as the distance of the body from the centre, that 

A4 

is, as A, or -^3, n will be equal to 4, and \/n equal to 2; and therefore the angle 
180° between the upper and the lower apse mil be equal to ~2~, or 90°- Therefore 

the body having performed a fourth part of one revolution, will arrive at the 
lower apse, and having performed another fourth part, will arrive at the upper 
apse, and so on in infinitum. This appears also from Prop. x. For a body acted 
on by this centripetal force will revolve in a fixed ellipse, whose centre is the 
centre of force. If the centripetal force is inversely as the distance, that is, 

1 A2 

directly as or n eclual 2; and therefore the angle between the 
180° 

upper and the lower apse will be or 127° Ifi' 45'/; and hence a body re- 

volving with such a force will, by a continual repetition of this angle, move 
alternately from the upper to the lower and from the lower to the upper apse 
forever. So, also, if the centripetal force be inversely as the fourth root of the 
eleventh power of the altitude, that is, inversely as A^, and therefore directly 

1 A^ 180° 
as ^Ti, or as n will be equal to }/i, and will be equal to 360°; and 

therefore the body parting from the upper apse, and from thence continually 
descending, will arrive at the lower apse when it has completed one entire revo- 
lution; and thence ascending continually, when it has completed another entire 
revolution, it will arrive again at the upper apse; and so alternately forever. 

Exam. 3. Taking m and n for any indices of the powers of the altitude, and h 
and c for any given numbers, suppose the centripetal force to be as {hAm+cAn) 
-^A3, that is, as [6(T —X)7n-i-c(T —X)n]-i-A3, or (by the method of converging 
series above mentioned) as 

[6T-+cT* - m6XT—1 - ncXT^1+mm~m 6XXT—2+ 

— cXXT71-2, &c.]-i-A3; 
and comparing the terms of the numerators, there will arise, 

RGG-RFF-hTFF : 6T-+cT-= -FF : -mhTm-1-ncTn-1+ 
mm ~ m 5XT—2+^:-n cXTn-2, &c. 

And taking the last ratios that arise when the orbits come to a circular form, 
there will come forth 

GG : ?>Tm_1+cTn_1 = FF : mFT^^+ncT71-1; 
and again, GG : FF = 6Tm~1+cTn_1 : m6Tn_1+ncTn_1. 
This proportion, by expressing the greatest altitude CY or T arithmetically by 

7nh nc 
unity, becomes, GG : FF = 6+c : m6+nc = l : • Whence G becomes to 

7nb "f- nc 
F, that is, the angle VCp to the angle VCP, as 1 to V . And therefore, 



Book I: The Motion of Bodies 99 
since the angle VCP between the upper and the lower apse, in a fixed ellipse, is 
of 180°, the angle VCp between the same apsides in an orbit which a body 

^Am-)-cAw 

describes with a centripetal force, that is, as ^ , will be equal to an 
h ~j~ c 

angle of 180° And by the same reasoning, if the centripetal force be 
hAm-cAn 

A3 the angle between the apsides will be found equal to 

180° V b~C 

mh — nc 
After the same manner the Problem is solved in more difficult cases. The 
quantity to which the centripetal force is proportional must always be resolved 
into a converging series whose denominator is A3. Then the given part of the 
numerator arising from that operation is to be supposed in the same ratio to 
that part of it which is not given, as the given part of this numerator RGG 
— RFF+TFF —FFX is to that part of the same numerator which is not given. 
And taking away the superfluous quantities, and writing unity for T, the pro- 
portion of G to F is obtained. 

Cor. i. Hence if the centripetal force be as any power of the altitude, that 
power may be found from the motion of the apsides; and conversely. That is, 
if the whole angular motion, with which the body returns to the same apse, be 
to the angular motion of one revolution, or 360°, as any number as m to another 
as n, and the altitude be called A; the force will be as the power A^-3 of the 

TlTl 
altitude A; the index of which power is —3. This appears by the second 

Example. Hence it is plain that the force in its recess from the centre cannot 
decrease in a greater than a cubed ratio of the altitude. A body revolving with 
such a force, and parting from the apse, if it once begins to descend, can never 
arrive at the lower apse or least altitude, but will descend to the centre, de- 
scribing the curved line treated of in Cor. m, Prop. 41. But if it should, at its 
parting from the lower apse, begin to ascend ever so little, it will ascend in 
infinitum, and never come to the upper apse; but will describe the curved line 
spoken of in the same Cor., and Cor. vi, Prop. 45. So that where the force in its 
recess from the centre decreases in a greater than a cubed ratio of the altitude, 
the body at its parting from the apse, will either descend to the centre, or 
ascend in infinitum, according as it descends or ascends at the beginning of its 
motion. But if the force in its recess from the centre either decreases in a less 
than a cubed ratio of the altitude, or increases in any ratio of the altitude what- 
soever, the body will never descend to the centre, but will at some time arrive 
at the lower apse; and, on the contrary, if the body alternately ascending and 
descending from one apse to another never comes to the centre, then either the 
force increases in the recess from the centre, or it decreases in a less than a 
cubed ratio of the altitude; and the sooner the body returns from one apse to 
another, the farther is the ratio of the forces from the cubed ratio. As if the 
body should return to and from the upper apse by an alternate descent and 
ascent in 8 revolutions, or in 4, or 2, or 13^; that is, if m should be to n as 8, or 

4, or 2, or to 1, and therefore ^^ — 3, be — or Vie-3, or 3^ — 3, or % 

— 3; then the force will be as Ay64~3, or A^6-3, or Ay4_3, or A^~3; that is, it will be 
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inversely as A3-^4, or A3 or A3 V4, or A3-^. If the body after each revo- 
lution returns to the same apse, and the apse remains unmoved, then m will be 

nn_3 . 1 
to n as 1 to 1, and therefore Amm will be equal to A-2, or and therefore the 

decrease of the forces will be in a squared ratio of the altitude; as was demon- 
strated above. If the body in three fourth parts, or two thirds, or one third, or 
one fourth part of an entire revolution, return to the same apse; m will be to n 
as ^ or ^ or 3^ or 34 to 1, and therefore A^-3 is equal to A1^-3, or A9/4~3, or 
A9-3, or A16-3; and therefore the force is either inversely as A1^ or A^4, or 
directly as A6 or A13. Lastly if the body in its progress from the upper apse to 
the same upper apse again, goes over one entire revolution and three degrees 
more, and therefore that apse in each revolution of the body moves forward 
three degrees, then m will be to n as 363° to 360°, or as 121 to 120, and therefore 
A^-3 will be equal to A- i464*, and therefore the centripetal force will be in- 

29523 . 2 4 
versely as A 1464b or inversely as A 243 very nearly. Therefore the centripetal 
force decreases in a ratio something greater than the squared ratio; but ap- 
proaching 59% times nearer to the squared than the cubed. 

Cor. ii. Hence also if a body, urged by a centripetal force which is inversely 
as the square of the altitude, revolves in an ellipse whose focus is in the centre 
of the forces; and a new and foreign force should be added to or subtracted 
from this centripetal force, the motion of the apsides arising from that foreign 
force may (by the third Example) be known; and conversely: If the force with 

which the body revolves in the ellipse be as and the foreign force as cA, 
A —cA4 

and therefore the remaining force as ——; then (by the third Example) b 

will be equal to 1, m equal to 1, and n equal to 4; and therefore the angle of 
1 —c revolution between the apsides is equal to 180°V Suppose that foreign 

force to be 357.45 times less than the other force with which the body revolves 
in the ellipse; that is, c to be 35745, A or T being equal to 1; and then 180° 

v bT wil1 be 1800 VMtt or 180°-7623, that is, 180° 45' 44". Therefore the 

body, parting from the upper apse, will arrive at the lower apse with an angular 
motion of 180° 45' 44and this angular motion being repeated, will return to 
the upper apse; and therefore the upper apse in each revolution will go forward 
1° 31' 28L The apse of the moon is about twice as swift. 

So much for the motion of bodies in orbits whose planes pass through the 
centre of force. It now remains to determine those motions in eccentric planes. 
For those authors who treat of the motion of heavy bodies used to consider the 
ascent and descent of such bodies, not only in a perpendicular direction, but at 
all degrees of obliquity upon any given planes; and for the same reason we are 
to consider in this place the motions of bodies tending to centres by means of 
any forces whatsoever, when those bodies move in eccentric planes. These 
planes are supposed to be perfectly smooth and polished, so as not to retard the 
motion of the bodies in the least. Moreover, in these demonstrations, instead 
of the planes upon which those bodies roll or slide, and which are therefore 
tangent planes to the bodies, I shall use planes parallel to them, in which the 
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centres of the bodies move, and by that motion describe orbits. And by the 
same method I afterwards determine the motions of bodies performed in curved 
surfaces. 

SECTION X 

The motion of bodies in given surfaces; and the oscillating 
PENDULOUS MOTION OF BODIES 

Proposition 46. Problem 32 
Any kind of centripetal force being supposed, and the centre of force, and any plane 
whatsoever in which the body revolves, being given, and the quadratures of curvi- 
linear figures being allowed; it is required to determine the motion of a body going 
off from a given plane with a given velocity, in the direction of a given right line in 
that plane. 

Let S be the centre of force, SC the least distance of that centre from the 
given plane, P a body issuing from the place P in the direction of the right line 
PZ, Q the same body revolving in its curve, and PQR the curve itself which is 
required to be found, described in that given plane. Join CQ, QS, and if in QS 

we take SV proportional to the cen- 
tripetal force with which the body 
is attracted towards the centre S, 
and draw VT parallel to CQ, and 
meeting SC in T; then will the force 
SV be resolved into two (by Cor. ii 
of the Laws of Motion), the force 
ST, and the force TV; of which ST 
attracting the body in the direction 
of a line perpendicular to that plane, 
does not at all change its motion in 
that plane. But the action of the 
other force TV, coinciding with the 
position of the plane itself, attracts 
the body directly towards the given 

point C in that plane; and therefore causes the body to move in the plane in 
the same manner as if the force ST were taken away, and the body were to re- 
volve in free space about the centre C by means of the force TV alone. But 
there being given the centripetal force TV with which the body Q revolves in 
free space about the given centre C, there is given (by Prop. 42) the curve 
PQR which the body describes; the place Q, in which the body will be found 
at any given time; and, lastly, the velocity of the body in that place Q. And 
conversely. q.e.i. 

Proposition 47. Theorem 15 
Supposing the centripetal force to be proportional to the distance of the body from 
the centre; all bodies revolving in any planes whatsoever will describe ellipses, and 
complete their revolutions in equal times; and those which move in right lines, run- 
ning backwards and forwards alternately, will complete their several periods of 
going and returning in the same times. 
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For letting all things stand as in the foregoing Proposition, the force SY, 

with which the body Q revolving in any plane PQR is attracted towards the 
centre S, is as the distance SQ; and therefore because SV and SQ, TV and CQ 
are proportional, the force TV with which the body is attracted towards the 
given point C in the plane of the orbit, is as the distance CQ. Therefore the 
forces with which bodies found in the plane PQR are attracted towards the 
point C, are in proportion to the distances equal to the forces with which the 
same bodies are attracted every way towards the centre S; and therefore the 
bodies will move in the same times, and in the same figures, in any plane PQR 
about the point C, as they would do in free spaces about the centre S; and 
therefore (by Cor. 11, Prop. 10, and Cor. 11, Prop. 38) they will in equal times 
either describe ellipses in that plane about the centre C, or move to and fro in 
right lines passing through the centre C in that plane; completing the same 
periods of time in all cases. q.e.d. 

Scholium 
The ascent and descent of bodies in curved surfaces has a near relation to 

these motions we have been speaking of. Imagine curved lines to be described 
on any plane, and to revolve about any given axes passing through the centre 
of force, and by that revolution to describe curved surfaces; and that the bodies 
move in such sort that their centres may be always found in those surfaces. If 
those bodies oscillate to and fro with an oblique ascent and descent, their 
motions will be performed in planes passing through the axis, and therefore in 
the curved lines, by whose revolution those curved surfaces were generated. In 
those cases, therefore, it will be sufficient to consider the motion in those 
curved lines. 

Proposition 48. Theorem 16 
If a wheel stands upon the outside of a globe at right angles thereto, and revolving 
about its own axis goes forwards in a great circle, the length of the curvilinear path 
which any point, given in the perimeter of the wheel, hath described since the time 
that it touched the globe {which curvilinear path we may call the cycloid or epi- 
cycloid) , will be to double the versed sine of half the arc which since that time hath 
touched the globe in passing over it, as the sum of the diameters of the globe and the 
wheel to the semidiameter of the globe. 

Proposition 49. Theorem 17 

If a wheel stands upon the inside of a concave globe at right angles thereto, and 
revolving about its own axis goes forwards in one of the great circles of the globe, the 
length of the curvilinear path which any point, given in the perimeter of the wheel, 
hath described since it touched the globe, will be to the double of the versed sine of 
half the arc which in all that time hath touched the globe in passing over it, as the 
difference of the diameters of the globe and the wheel to the semidiameter of the 
globe. 

Let ABL be the globe, C its centre, BPV the wheel resting on it, E the centre 
of the wheel, B the point of contact, and P the given point in the perimeter of 
the wheel. Imagine this wheel to proceed in the great circle ABL from A 
through B towards L, and in its progress to revolve in such a manner that the 
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arcs AB, PB may be always equal one to the other, and the given point P in the 
perimeter of the wheel may describe in the meantime the curvilinear path A P. 
Let AP be the whole curvilinear path described since the wheel touched the 
globe in A, and the length of this path AP will be to twice the versed sine of 
the arc J^PB as 2CE to CB. For let the right line CE (produced if need be) 
meet the wheel in V, and join CP, BP, EP, VP; produce CP, and let fall there- 
on the perpendicular YF. Let PH, VH, meeting in H, touch the circle in P and 
V, and let PH cut YF in G, and to YP let fall the perpendiculars GI, HK. From 

s y 

the centre C with any radius let there be described the circle nom, cutting the 
right line CP in n, the perimeter of the wheel BP in o, and the curvilinear path 
AP in m; and from the centre V with the radius Yo let there be described a 
circle cutting VP produced in q. 

Because the wheel in its progress always revolves about the point of contact 
B, it is manifest that the right line BP is perpendicular to that curved line AP 
which the point P of the wheel describes, and therefore that the right line YP 
will touch this curve in the point P. Let the radius of the circle nom be grad- 
ually increased or diminished so that at last it becomes equal to the distance 
CP; and by reason of the similitude of the evanescent figure Fnomq, and the 
figure PFGYI, the ultimate ratio of the evanescent short lines Pm, Pn, Po, Fq, 
that is, the ratio of the momentary increments of the curve AP, the right line 
CP, the circular arc BP, and the right line YP, will be the same as of the lines 
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PV, PF, PG, PI, respectively. But since YF is perpendicular to CF, and VH to 
CV, and therefore the angles HYG, YCF equal; and the angle YHG (because 
the angles of the quadrilateral HYEP are right in V and P) is equal to the angle 
CEP, the triangles YHG, CEP will be similar; and thence it will come to pass 
that EP : CE = HG : HY or HP = KI : PK, 
and by addition or subtraction, 

CB : CE = PI : PK, 
and CB : 2CE = PI : FY = Fq : Pm. 
Therefore the decrement of the line YP, that is, the increment of the line 
BY — VP to the increment of the curved line AP is in a given ratio of CB to 
2CE, and therefore (by Cor., Lem. 4) the lengths BY —VP and AP, generated 
by those increments, are in the same ratio. But if BY be radius, YP is the cosine 
of the angle BVP or J^BEP, and therefore BY —VP is the versed sine of the 
same angle, and therefore in this wheel, whose radius is 3^BV, BY—YP will be 
double the versed sine of the arc 3^BP. Therefore AP is to double the versed 
sine of the arc J^BP as 2CE to CB. q.e.d. 

The line AP in the former of these Propositions we shall name the cycloid 
without the globe, the other in the latter Proposition the cycloid within the 
globe, for distinction's sake. 

Cor. i. Hence if there be described the entire cycloid ASL, and the same be 
bisected in S, the length of the part PS will be to the length PY (which is the 
double of the sine of the angle VBP, when EB is radius) as 2CE to CB, and 
therefore in a given ratio. 

Cor. ii. And the length of the semidiameter of the cycloid AS will be equal 
to a right line which is to the diameter of the wheel BY as 2CE to CB. 

Proposition 50. Problem 33 
To cause a pendulous body to oscillate in a given cycloid. 

Let there be given within the globe QVS described with the centre C, the 
cycloid QRS, bisected in R, and meeting the surface of the globe with its ex- 
treme points Q and S on either 
hand. Let there be drawn CR B A 
bisecting the arc QS in 0, and 
let it be produced to A in such 
sort that CA may be to CO as 
CO to CR. About the centre C, 
with the radius CA, let there 
be described an exterior globe 
DAF; and within this globe, by 
a wheel whose diameter is AO, 
let there be described two semi- 
cycloids AQ, AS, touching the 
interior globe in Q and S, and 
meeting the exterior globe in A. 
From that point A, with a 
thread APT in length equal to 
the line AR, let the body T be 
suspended and oscillated in 
such manner between the two 

W\ R 
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semicycloids AQ, AS, that, as often as the pendulum parts from the perpen- 
dicular AR, the upper part of the thread AP may be applied to that semi- 
cycloid APS towards which the motion tends, and fold itself round that curved 
line, as if it were some solid obstacle, the remaining part of the same thread 
PT which has not yet touched the semicycloid continuing straight. Then will 
the weight T oscillate in the given cycloid QRS. q.e.f. 

For let the thread PT meet the cycloid QRS in T, and the circle QOS in V, 
and let CV be drawn; and to the rectilinear part of the thread PT from the ex- 
treme points P and T let there be erected the perpendiculars BP, TW, meeting 
the right line CV in B and W. It is evident, from the construction and genera- 
tion of the similar figures AS, SR, that those perpendiculars PB, TW, cut off 
from CV the lengths VB, YW, equal the diameters of the wheels OA, OR. 
Therefore TP is to VP (which is double the sine of the angle VBP when 3^BV 
is radius) as BW to BV, or AO+OR to AO, that is (since CA and CO, CO and 
CR, and by division AO and OR are proportional), as CA+CO to CA, or, if 
BV be bisected in E, as 2CE to CB. Therefore (by Cor. i, Prop. 49), the length 
of the rectilinear part of the thread PT is always equal to the arc of the cycloid 
PS, and the whole thread APT is always equal to half the cycloid APS, that is 
(by Cor. 11, Prop. 49), to the length AR. And conversely, if the string is always 
equal to the length AR, the point T will always move in the given cycloid QRS. 

Q.E.D. 
Cor. The string AR is equal to the semicycloid AS, and therefore has the 

same ratio to AC, the semidiameter of the exterior globe, as the like semicycloid 
SR has to CO, the semidiameter of the interior globe. 

Proposition 51. Theorem 18 
If a centripetal force tending on all sides to the centre C of a globe, be in all places 
as the distance of the place from the centre; and, by this force alone acting upon it, 

the body T oscillate {in the manner above 
described) in the perimeter of the cycloid 
QRS: I say, that all the oscillations, how- 
soever unequal in themselves, will be per- 
formed in equal times. 

For upon the tangent TW indefinitely 
produced let fall the perpendicular CX, 
and join CT. Because the centripetal 
force with which the body T is impelled 
towards C is as the distance CT, let this 
(by Cor. ii of the Laws) be resolved into 
the parts CX, TX, of which CX impelling 
the body directly from P stretches the 
thread PT, and by the resistance the 
thread makes to it is totally employed, 
producing no other effect; but the other 
part TX, impelling the body transversely 
or towards X, directly accelerates the 
motion in the cycloid. Then it is plain 

that the acceleration of the body, proportional to this accelerating force, will 
be every moment as the length TX, that is (because CV, WV, and TX, TW 
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proportional to them are given), as the length TW, that is (by Cor. i, Prop. 
39), as the length of the arc of the cycloid TR. If therefore two pendulums 
APT, Kpt, be unequally drawn aside from the perpendicular AR, and let fall 
together, their accelerations will be always as the arcs to be described TR, ^R. 
But the parts described at the beginning of the motion are as the accelerations, 
that is, as the whole spaces that are to be described at the beginning, and there- 
fore the parts which remain to be described, and the subsequent accelerations 
proportional to those parts, are also as the whole, and so on. Therefore the ac- 
celerations, and consequently the velocities generated, and the parts described 
with those velocities, and the parts to be described, are always as the whole; 
and therefore the parts to be described preserving a given ratio to each other 
will vanish together, that is, the two bodies oscillating will arrive together at 
the perpendicular AR. And since on the other hand the ascent of the pendu- 
lums from the lowest place R through the same cycloidal arcs with a retro- 
grade motion, is retarded in the several places they pass through by the same 
forces by which their descent was accelerated, it is plain that the velocities of 
their ascent and descent through the same arcs are equal, and consequently 
performed in equal times; and, therefore, since the two parts of the cycloid RS 
and RQ lying on either side of the perpendicular are similar and equal, the 
two pendulums will perform as well the whole as the half of their oscillations 
in the same times. q.e.d. 

Cor. The force with which the body T is accelerated or retarded in any place 
T of the cycloid, is to the whole weight of the same body in the highest place S 
or Q as the arc of the cycloid TR is to the arc SR or QR. 

Proposition 52. Problem 34 
To define the velocities of pendulums in the several places, and the times in which 
both the entire oscillations and their several parts are performed. 

About any centre G, with the radius GH equal to the arc of the cycloid RS, 
describe a semicircle HKM bisected by the semidiameter GK. And if a centri- 
petal force proportional to the distance of the places from the centre tend to 
the centre G, and it be in the perimeter HIK equal to the 
centripetal force in the perimeter of the globe QOS tending 
towards its centre, and at the same time that the pendulum 
T is let fall from the highest place S, a body, as L, is let fall 
from H to G; then because the forces which act upon the 
bodies are equal at the beginning, and always proportional 
to the spaces to be described TR, LG, and therefore if TR 
and LG are equal, are also equal in the places T and L, it is 
plain that those bodies describe at the beginning equal spaces 
ST, HL, and therefore are still acted upon equally, and con- 
tinue to describe equal spaces. Therefore by Prop. 38, the 
time in which the body describes the arc ST is to the time of 
one oscillation, as the arc HI the time in which the body H arrives at L, to 
the semiperiphery HKM, the time in which the body H will come to M. And 
the velocity of the pendulous body in the place T is to its velocity in the 
lowest place R, that is, the velocity of the body H in the place L to its velocity 
in the place G, or the momentary increment of the line HL to the momentary 
increment of the line HG (the arcs HI, HK increasing with an uniform velocity) 



Book I: The Motion of Bodies 107 

as the ordinate LI to the radius GK, or as VCSR2 —TR2) to SR. Hence, since 
in unequal oscillations there are described in equal times arcs proportional to 
the entire arcs of the oscillations, there are obtained, from the times given, 
both the velocities and the arcs described in all the oscillations universally. 
Which was first required. 

Let now any pendulous bodies oscillate in different cycloids described within 
different globes, whose absolute forces are also different; and if the absolute 
force of any globe QOS be called V, the accelerative force with which the pen- 

dulum is acted on in the circumference of this 
globe, when it begins to move directly towards 
its centre, will be as the distance of the pendulous 
body from that centre and the absolute force of 
the globe conjointly, that is, as CO-V. Therefore 
the short line HY, which is as this accelerated 
force CO-V, will be described in a given time; 
and if there be erected the perpendicular YZ 
meeting the circumference in Z, the nascent arc 
HZ will denote that given time. But that nascent 
arc HZ varies as the square root of the rectangle 
GH-HY, and therefore as V(GH-CO-V). 
Whence the time of an entire oscillation in the 
cycloid QRS (it being as the semiperiphery 
HKM, which denotes that entire oscillation, di- 

rectly; and as the arc HZ, which in like manner denotes a given time, in- 
versely) will be as GH direct^ and VCGH-CO-V) inversely; that is, because 
GH and SR are equal, as V: SR or (by Cor., Prop. 50), as V- AR There- CO-V' v J '' ^ " v AC-W 
fore the oscillations in all globes and cycloids, performed with any absolute 
forces whatever, vary directly as the square root of the length of the string, and 
inversely as the square root of the distance between the point of suspension 
and the centre of the globe, and also inversely as the square root of the absolute 
force of the globe. q.e.i. 

Cor. i. Hence also the times of oscillating, falling, and revolving bodies may 
be compared among themselves. For if the diameter of the wheel with which 
the cycloid is described within the globe is supposed equal to the semidiameter 
of the globe, the cycloid will become a right line passing through the centre of 
the globe, and the oscillation will be changed into a descent and subsequent 
ascent in that right line. Hence there is given both the time of the descent from 
any place to the centre, and the time equal to it in which the body revolving 
uniformly about the centre of the globe at any distance describes an arc of a 
quadrant. For this time (by Case 2) is to the time of half the oscillation in any 

AR 
cycloid QRS as 1 to 

Cor. ii. Hence also follow what Sir Christopher Wren and Mr. Huygens 
have discovered concerning the common cycloid. For if the diameter of the 
globe be infinitely increased, its spherical surface will be changed into a plane, 
and the centripetal force will act uniformly in the direction of lines perpendicu- 
lar to that plane, and our cycloid will become the same with the common 
cycloid. But in that case the length of the arc of the cycloid between that plane 
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and the describing point will become equal to four times the versed sine of half 
the arc of the wheel between the same plane and the describing point, as was 
discovered by Sir Christopher Wren. And a pendulum between two such cy- 
cloids will oscillate in a similar and equal cycloid in equal times, as Mr. Huy- 
gens demonstrated. The descent of heavy bodies also in the time of one oscil- 
lation will be the same as Mr. Huygens exhibited. 

The Propositions here demonstrated are adapted to the true constitution of 
the earth, so far as wheels moving in any of its great circles will describe, by the 
motions of nails fixed in their perimeters, cycloids without the globe; and 
pendulums, in mines and deep caverns of the earth, must oscillate in cycloids 
within the globe, that those oscillations may be performed in equal times. For 
gravity (as will be shown in the third book) decreases in its progress from the 
surface of the earth; upwards as the square root of the distances from the 
centre of the earth; downwards as these distances. 

Proposition 53. Problem 35 
Granting the quadratures of curvilinear figures, it is required to find the forces with 
which bodies moving in given curved lines may always perform their oscillations in 
equal times. 

Let the body T oscillate in any curved line STRQ, whose axis is AR passing 
through the centre of force C. Draw TX touching that curve in any place of 
the body T, and in that tangent TX take TY 
equal to the arc TR. The length of that arc is 
known from the common methods used for the 
quadratures of figures. From the point Y draw 
the right line YZ perpendicular to the tangent. 
Draw CT meeting YZ in Z, and the centripetal 
force will be proportional to the right line TZ. 

Q.E.I. 
For if the force with which the body is at-^ 

tracted from T towards C be expressed by the 
right line TZ taken proportional to it, that force 
will be resolved into two forces TY, YZ, of which 
YZ, drawing the body in the direction of the 
length of the thread PT, does not at all change 
its motion; whereas the other force TY directly 
accelerates or retards its motion in the curve 
STRQ. Therefore since that force is as the 
space to be described TR, the accelerations or 
retardations of the body in describing two pro- 
portional parts (a greater and a less) of two oscillations, will be always as those 
parts, and therefore will cause those parts to be described together. But bodies 
which continually describe in the same time parts proportional to the whole, 
will describe the whole in the same time. q.e.d. 

Cor. i. Hence if the body T, hanging by a rectilinear thread AT from the 
centre A, describe the circular arc STRQ, and in the meantime be acted on by 
any force tending downwards with parallel directions, which is to the uniform 
force of gravity as the arc TR to its sine TN, the times of the several oscilla- 
tions will be equal. For because TZ, AR are parallel, the triangles ATN, ZTY 
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are similar; and thereforeTZ will be to AT as TY to TN; 
that is, if the uniform force of gravity be expressed by 
the given length AT, the force TZ, by which the oscil- 
lations become isochronous, will be to the force of grav- 
ity AT, as the arc TR equal to TY is to TN the sine of 
that arc. 

Cor. ii. And therefore in clocks, if forces are im- 
pressed by some machine upon the pendulum which con- 
tinues the motion, and so compounded with the force of 
gravity that the whole force tending downwards will be 

always as a line which is obtained by dividing the product of the arc TR 
and the radius AR, by the sine TN, then all the oscillations will become 
isochronous. 

Proposition 54. Problem 36 
Granting the quadratures of curvilinear figures, it is required to find the times in 
which bodies by means of any centripetal force will descend or ascend in any curved 
lines in a plane passing through the centre of force. 

Let the body descend from any place S, and move in any curve ST^R given 
in a plane passing through the centre of force C. Join CS, and let it be divided 
into innumerable equal parts, and let Dd be one 
of those parts. From the centre C, with the radii 
CD, Cd,let the circles DT,d^ be described, meeting 
the curved line ST^R in T and t. And because the 
law of centripetal force is given, and also the alti- 
tude CS from which the body at first fell, there 
will be given the velocity of the body in any other 
altitude CT (by Prop. 39). But the time in which 
the body describes the short line T^ is as the length 
of that short line, that is, directly as the secant 
of the angle ^TC and inversely as the velocity. 
Let the ordinate DN, proportional to this time, 
be made perpendicular to the right line CS at the 
point D, and because Dd is given, the rectangle 
Dd-DN, that is, the area DNnd, will be propor- 
tional to the same time. Therefore if PNn be a 
curved line which the point N continually touches, and its asymptote be the 
right line SQ standing upon the line CS at right angles, the area SQPND will 
be proportional to the time in which the body in its descent hath described the 
line ST; and therefore that area being found, the time is also given. q.e.i. 

Proposition 55. Theorem 19 
If a body move in any curved surface, whose axis passes through the centre offeree, 
and from the body a perpendicular be let fall upon the axis; and a line parallel and 
equal thereto be drawn from any given point of the axis: I say, that this parallel line 
will describe an area proportional to the time. 

Let BKL be a curved surface, T a body revolving in it, STR a curve which 
the body describes in the same, S the beginning of the curve, OMK the axis of 
the curved surface, TN a right line let fall perpendicularly from the body to the 
axis; OP a line parallel and equal thereto drawn from the given point O in the 

nj 
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axis; AP the path described by the point 
P in the plane AOP in which the re- 
volving line OP is found; A the be- B 
ginning of that path answering to the 
point S; TC a right line drawn from the 
body to the centre; TG a part thereof 
proportional to the centripetal force with 
which the body tends towards the centre 
C; TM a right line perpendicular to the 
curved surface; TI a part thereof pro- 
portional to the force of pressure with 
which the body urges the surface, and 
therefore with which it is again repelled 
by the surface towards M; PTF a right 
line parallel to the axis and passing 
through the body, and GF, IH right 
lines let fall perpendicularly from the 
points G and I upon that parallel PHTF. I say, now, that the area AOP, de- 
scribed by the radius OP from the beginning of the motion, is proportional to 
the time. For the force TG (by Cor. 11 of the Laws of Motion) is resolved into 
the forces TF, FG; and the force TI into the forces TH, HI; but the forces 
TF, TH, acting in the direction of the line PF perpendicular to the plane 
AOP, introduce no change in the motion of the body but in a direction perpen- 
dicular to that plane. Therefore its motion, so far as it hath the same direction 
with the position of the plane, that is, the motion of the point P, by which the 
projection AP of the curve is described in that plane, is the same as if the forces 
TF, TH were taken away, and the body were acted on by the forces FG, HI 
alone; that is, the same as if the body were to describe in the plane AOP the 
curve AP by means of a centripetal force tending to the centre 0, and equal 
to the sum of the forces FG and HI. But with such a force as that (by Prop.l) 
the area AOP will be described proportional to the time. q.e.d. 

Cor. By the same reasoning, if a body, acted on by forces tending to two or 
more centres in the same given right line CO, should describe in a free space 
any curved line ST, the area AOP would be always proportional to the time. 

Proposition 56. Problem 37 
Granting the quadratures of curvilinear figures, and supposing that there are given 
both the law of centripetal force tending to a given centre, and the curved surface 
whose axis passes through that centre; it is required to find the curve which a body 
will describe in that surface, when going off from a given place with a given velocity, 
and in a given direction in that surface. 

The last construction remaining, let the body T go from the given place S, 
in the direction of a line given by position, and turn into the curve sought STR, 
whose orthographic projection in the plane BDO is AP. And from the given 
velocity of the body in the altitude SC, its velocity in any other altitude TC 
will be also given. With that velocity, in a given moment of time, let the body 
describe the segment T^ of its curve and let Fp be the projection of that seg- 
ment described in the plane AOP. Join Op, and a little circle being described 
upon the curved surface about the centre T with the radius T^, let the pro- 
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R , 

jection of that little circle in the plane 
AOP be the ellipse pQ. And because the 
magnitude of that little circle T£, and 
TN or PO its distance from the axis CO 
is also given, the ellipse pQ will be given 
both in kind and magnitude, as also its 
position to the right line PO. And since 
the area POp is proportional to the time, 
and therefore given because the time is 
given, the angle POp will be given. And 
thence will be given p the common in- 
tersection of the ellipse and the right 
line Op, together with the angle OPp, in 
which the projection APp of the curve 
cuts the line OP. But from thence (by 
comparing Prop. 41, wdth its Cor. 11) the 
manner of determining the curve APp 

easily appears. Then from the several points P of that projection erecting to 
the plane AOP, the perpendiculars PT meeting the curved surface in T, there 
will be given the several points T of the curve. q.e.i. 
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SECTION XI 

The motions of bodies tending to each other with centripetal forces 
I have hitherto been treating of the attractions of bodies towards an im- 

movable centre; though very probably there is no such thing existent in na- 
ture. For attractions are made towards bodies, and the actions of the bodies 
attracted and attracting are always reciprocal and equal, by Law m; so that 
if there are two bodies, neither the attracted nor the attracting body is truly 
at rest, but both (by Cor. iv of the Laws of Motion), being as it were mutually 
attracted, revolve about a common centre of gravity. And if there be more 
bodies, which either are attracted by one body, which is attracted by them 
again, or which all attract each other mutually, these bodies will be so moved 
among themselves, that their common centre of gravity will either be at rest, 
or move uniformly forwards in a right line. I shall therefore at present go on to 
treat of the motion of bodies attracting each other; considering the centripetal 
forces as attractions; though perhaps in a physical strictness they may more 
truly be called impulses. But these Propositions are to be considered as purely 
mathematical; and therefore, laying aside all physical considerations, I make 
use of a familiar way of speaking, to make myself the more easily understood 
by a mathematical reader. 

Proposition 57. Theorem 20 
Two bodies attracting each other mutually describe similar figures about their com- 
mon centre of gravity, and about each other mutually. 

For the distances of the bodies from their common centre of gravity are 
inversely as the bodies; and therefore in a given ratio to each other; and thence, 
by composition of ratios, in a given ratio to the wdiole distance between the 
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bodies. Now these distances are carried round their common extremity with an 
uniform angular motion, because lying in the same right line they never change 
their inclination to each other. But right lines that are in a given ratio to each 
other, and are carried round their extremities with an uniform angular motion, 
describe upon planes, which either rest together with them, or are moved with 
any motion not angular, figures entirely similar round those extremities. There- 
fore the figures described by the revolution of these distances are similar, q.e.d. 

Proposition 58. Theorem 21 
If two bodies attract each other with forces of any kind, and revolve about the com- 
mon centre of gravity: I say, that, by the same forces, there may be described round 
either body unmoved a figure similar and equal to the figures which the bodies so 
moving describe round each other. 

Let the bodies S and P revolve about their common centre of gravity C, 
proceeding from S to T, and from P to Q. From the given point s let there be 
continually drawn sp, sq, equal and parallel to SP, TQ; and the curve pqv, 
which the point p describes in its revolution round the fixed point s, will be 

.. •••• * C P s- tip 

similar and equal to the curves which the bodies S and P describe about each 
other; and therefore, by Theor. 20, similar to the curves ST and PQV which the 
same bodies describe about their common centre of gravity C; and that be- 
cause the proportions of the lines SC, CP, and SP or sp, to each other, are given. 

Case 1. The common centre of gravity C (by Cor. iv of the Laws of Motion) 
is either at rest, or moves uniformly in a right line. Let us first suppose it at 
rest, and in s and p let there be placed two bodies, one immovable in s, the 
other movable in p, similar and equal to the bodies S and P. Then let the right 
lines PR and pr touch the curves PQ and pq in P and p, and produce CQ and 
sq to R and r. And because the figures CPRQ, sprq are similar, RQ will be to 
rq as CP to sp, and therefore in a given ratio. Hence if the force with which the 
body P is attracted towards the body S, and by consequence towards the 
intermediate centre C, were to the force with which the body p is attracted 
towards the centre s, in the same given ratio, these forces would in equal times 
attract the bodies from the tangents PR, pr to the arcs PQ, pq, through the 
intervals proportional to them RQ, rq] and therefore this last force (tending 
to s) would make the body p revolve in the curve pqv, which would become 
similar to the curve PQV, in which the first force obliges the body P to revolve; 
and their revolutions would be completed in the same times. But because those 
forces are not to each other in the ratio of CP to sp, but (by reason of the simi- 
larity and equality of the bodies S and s, P and p, and the equality of the dis- 
tances SP, sp) mutually equal, the bodies in equal times will be equally drawn 
from the tangents; and therefore that the body p may be attracted through the 
greater interval rq, there is required a greater time, which mil vary as the 
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square root of the intervals; because, by Lem. 10, the spaces described at the 
beginning of the motion are as the square of the times. Suppose, then, the 
velocity of the body p to be to the velocity of the body P as the square root of 
the ratio of the distance sp to the distance CP, so that the arcs pep PQ, which 
are in a simple proportion to each other, may be described in times that are 
as the square root of the distances; and the bodies P, p, always attracted by 
equal forces, will describe round the fixed centres C and s similar figures PQV, 
pqv, the latter of which pqv is similar and equal to the figure which the body 
P describes round the movable body S. q.e.d. 

Case 2. Suppose now that the common centre of gravity, together with the 
space in which the bodies are moved among themselves, proceeds uniformly 
in a right line; and (by Cor. vi of the Laws of Motion) all the motions in this 
space will be performed in the same manner as before; and therefore the bodies 
will describe about each other the same figures as before, which will be there- 
fore similar and equal to the figure pqv. q.e.d. 

Cor i. Hence two bodies attracting each other with forces proportional to 
their distance, describe (by Prop. 10), both round their common centre of 
gravity, and round each other, concentric ellipses; and, conversely, if such 
figures are described, the forces are proportional to the distances. 

Cor. ii. And two bodies, whose forces are inversely proportional to the 
square of their distance, describe (by Props. 11, 12, 13), both round their com- 
mon centre of gravity, and round each other, conic sections having their focus 
in the centre about which the figures are described. And, conversely, if such 
figures are described, the centripetal forces are inversely proportional to the 
square of the distance. 

Cor. hi. Any two bodies revolving round their common centre of gravity 
describe areas proportional to the times, by radii drawn both to that centre 
and to each other. ^ ^ ™ 

Proposition 59. Theorem 22 
The periodic time of two bodies S and P revolving round their common centre of 
gravity C, is to the periodic time of one of the bodies P revolving round the other S 
remaining fixed, and describing a figure similar and equal to those which the bodies 
describe about each other, as VS is to \/(S+P). 

For, by the demonstration of the last Proposition, the times in which any 
similar arcs PQ and pq are described are as VCP is to VSP, or Vsp, that is, 
as VS is to V(S-hP). And by composition of ratios, the sums of the times in 
which all the similar arcs PQ and pq are described, that is, the whole times in 
which the whole similar figures are described, are in the same ratio, VS to 
V(S + P)- „ ^ Q.E.D. Proposition 60. Theorem 23 
If two bodies S and P, attracting each other with forces inversely proportional to 
the square of their distance, revolve about their common centre of gravity: I say, 
that the principal axis of the ellipse which either of the bodies, as P, describes by 
this motion about the other S, will be to the principal axis of the ellipse, which the 
same body P may describe in the same periodic time about the other body S fixed, 
as the sum of the two bodies S+P to the first of two mean proportionals between 
that sum and the other body S. 

For if the ellipses described were equal to each other, their periodic times by 
the last Theorem would be as the square root of the ratio of the body S to the 
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sum of the bodies S+P. Let the periodic time in the latter ellipse be diminished 
in that ratio, and the periodic times will become equal; but, by Prop. 15, the 
principal axis of the ellipse will be diminished in a ratio which is the power 
of the former ratio; that is, in a ratio to which the ratio of S to S+P is the cube, 
and therefore that axis will be to the principal axis of the other ellipse as the 
first of two mean proportionals between S+P and S to S+P. And inversely the 
principal axis of the ellipse described about the movable body will be to the 
principal axis of that described round the immovable as S+P to the first of 
two mean proportionals between S+P and S. q.e.d. 

Proposition 61. Theorem 24 
If two bodies attracting each other with any kind of forces, and not otherwise 
agitated or obstructed, are moved in any manner whatsoever, those motions will be 
the same as if they did not at all attract each other, but were both attracted with the 
same forces by a third body placed in their common centre of gravity; and the law 
of the attracting forces will be the same in respect of the distance of the bodies from 
the common centre, as in respect of the distance between the two bodies. 

For those forces with which the bodies attract each other, by tending to the 
bodies, tend also to the common centre of gravity lying directly between them; 
and therefore are the same as if they proceeded from an intermediate body. 

Q.E.D. 
And because there is given the ratio of the distance of either body from that 

common centre to the distance between the two bodies, there is given, of 
course, the ratio of any power of one distance to the same power of the other 
distance; and also the ratio of any quantity derived in any manner from one of 
the distances compounded in any manner with given quantities, to another 
quantity derived in like manner from the other distance, and as many given 
quantities having that given ratio of the distances to the first. Therefore if the 
force with which one body is attracted by another be directly or inversely as 
the distance of the bodies from each other, or as any power of that distance; 
or, lastly, as any quantity derived after any manner from that distance com- 
pounded with given quantities; then will the same force with which the same 
body is attracted to the common centre of gravity be in like manner directly 
or inversely as the distance of the attracted body from the common centre, or 
as any power of that distance; or, lastly, as a quantity derived in like sort from 
that distance compounded with analogous given quantities. That is, the law 
of attracting force will be the same with respect to both distances. q.e.d. 

Proposition 62. Problem 38 
To determine the motions of two bodies which attract each other with forces inversely 
proportional to the squares of the distance between them, and are let fall from given 
places. 

The bodies, by the last Theorem, will be moved in the same manner as if 
they were attracted by a third placed in the common centre of their gravity; 
and by the hypothesis that centre will be fixed at the beginning of their motion, 
and therefore (by Cor. iv of the Laws of Motion) will be always fixed. The 
motions of the bodies are therefore to be determined (by Prob. 25) in the same 
manner as if they were impelled by forces tending to that centre; and then we 
shall have the motions of the bodies attracting each other. q.e.i. 
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Proposition 63. Problem 39 
To determine the motions of two bodies attracting each other with forces inversely 
proportional to the squares of their distance, and going off from given places in 
given directions with given velocities. 

The motions of the bodies at the beginning being given, there is given also 
the uniform motion of the common centre of gravity, and the motion of the 
space which moves along with this centre uniformly in a right line, and also 
the very first,or beginning motions of the bodies in respect of this space. Then 
(by Cor. v of the Laws, and the last Theorem) the subsequent motions will be 
performed in the same manner in that space, as if that space together with the 
common centre of gravity were at rest, and as if the bodies did not attract each 
other, but were attracted by a third body placed in that centre. The motion 
therefore in this movable space of each body going off from a given place, in 
a given direction, with a given velocity, and acted upon by a centripetal force 
tending to that centre, is to be determined by Probs. 9 and 26, and at the same 
time will be obtained the motion of the other round the same centre. With 
this motion compound the uniform progressive motion of the entire system of 
the space and the bodies revolving in it, and there will be obtained the absolute 
motion of the bodies in immovable space. q.e.i. 

Proposition 64. Problem 40 
Supposing forces with which bodies attract each other to increase in a simple ratio 
of their distances from the centres; it is required to find the motions of several bodies 
among themselves. 

Suppose the first two bodies T and L to have their common centre of gravity 
in D. These, by Cor. i, Theor. 21, will describe ellipses having their centres in 
D, the magnitudes of which ellipses are known by Prob. 5. 

Let now a third body S attract the two former T and L with the accelerative 
forces ST, SL, and let it be attracted again by them. The force ST (by Cor. ii 
of the Laws of Motion) is resolved into the forces SD, DT; and the force SL 
into the forces SD and DL. Now the forces DT, DL, which are as their sum 

TL, and therefore as the accelerative 
forces with which the bodies T and L at- 
tract each other, added to the forces of the 
bodies T and L, the first to the first, and 
the last to the last, compose forces propor- 
tional to the distances DT and DL as be- 

L fore, but only greater than those former 
forces; and therefore (by Cor. i, Prop. 10, 
and Cor. i and vm, Prop. 4) they will 

cause those bodies to describe ellipses as before, but with a swifter motion. 
The remaining accelerative forces SD and DL, by the motive forces SD-T 
and SD • L, which are as the bodies attracting those bodies equally and in the 
direction of the lines TI, LK parallel to DS, do not at all change their situations 
with respect to one another, but cause them equally to approach to the line 
IK; which must be imagined drawn through the middle of the body S, and 
perpendicular to the line DS. But that approach to the line IK will be hindered 
by causing the system of the bodies T and L on one side, and the body S on the 
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other, with proper velocities, to revolve round the common centre of gravity 
C. With such a motion the body S, because the sum of the motive forces 
SD-T and SD-L is proportional to the distance CS, tends to the centre C, 
and will describe an ellipse round that centre; and the point D, because the 
lines CS and CD are proportional, will describe a like ellipse over against it. 
But the bodies T and L, attracted by the motive forces SD • T and SD • L, the 
first by the first, and the last by the last, equally and in the direction of the 
parallel lines TI and LK, as was said before, will (by Cor. v and vi of the Laws 
of Motion) continue to describe their ellipses round the movable centre D, as 
before. q.e.i. 

Let there be added a fourth body Y, and, by the like reasoning, it will be 
demonstrated that this body and the point C will describe ellipses about the 
common centre of gravity B; the motions of the bodies T, L, and S round the 
centres D and C remaining the same as before, but accelerated. And by the 
same method one may add yet more bodies at pleasure. q.e.i. 

This would be the case, though the bodies T and L should attract each other 
with accelerative forces greater or less than those with which they attract the 
other bodies in proportion to their distance. Let all the accelerative attractions 
be to each other as the distances multiplied into the attracting bodies; and 
from what has gone before it will easily be concluded that all the bodies will 
describe different ellipses with equal periodic times about their common centre 
of gravity B, in an immovable plane. q.e.i. 

Proposition 65. Theorem 25 
Bodies, whose forces decrease as the square of their distances from their centres, 
may move among themselves in ellipses; and by radii drawn to the foci may describe 
areas very nearly proportional to the times. 

In the last Proposition we demonstrated that case in which the motions will 
be performed exactly in ellipses. The more distant the law of the forces is 
from the law in that case, the more will the bodies disturb each other's motions; 
neither is it possible that bodies attracting each other according to the law 
supposed in this Proposition should move exactly in ellipses, unless by keeping 
a certain proportion of distances from each other. However, in the following 
cases the orbits will not much differ from ellipses. 

Case 1. Imagine several lesser bodies to revolve about some very great one 
at different distances from it, and suppose absolute forces tending to every one 
of the bodies proportional to each. And because (by Cor. iv of the Laws) the 
common centre of gravity of them all is either at rest, or moves uniformly 
forwards in a right line, suppose the lesser bodies so small that the great body 
may be never at a sensible distance from that centre; and then the great body 
will, without any sensible error, be either at rest, or move uniformly forwards 
in a right line; and the lesser will revolve about that great one in ellipses, and 
by radii drawn thereto will describe areas proportional to the times; if we ex- 
cept the errors that may be introduced by the receding of the great body from 
the common centre of gravity, or by the actions of the lesser bodies upon each 
other. But the lesser bodies may be so far diminished, as that this recess and 
the actions of the bodies on each other may become less than any assignable; 
and therefore so as that the orbits may become ellipses, and the areas answer 
to the times, without any error that is not less than any assignable. q.e.o. 
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Case 2. Let us imagine a system of lesser bodies revolving about a very 

great one in the manner just described, or any other system of two bodies 
revolving about each other, to be moving uniformly forwards in a right line, 
and in the meantime to be impelled sideways by the force of another vastly 
greater body situate at a great distance. And because the equal accelerative 
forces with which the bodies are impelled in parallel directions do not change 
the situation of the bodies with respect to each other, but only oblige the whole 
system to change its place while the parts still retain their motions among 
themselves, it is manifest that no change in those motions of the attracted 
bodies can arise from their attractions towards the greater, unless by the in- 
equality of the accelerative attractions, or by the inclinations of the lines to- 
wards each other, in whose directions the attractions are made. Suppose, 
therefore, all the accelerative attractions made towards the great body to be 
among themselves inversely as the squares of the distances; and then, by in- 
creasing the distance of the great body till the differences of the right lines 
drawn from that to the others in respect of their length, and the inclinations 
of those lines to each other, be less than any given, the motions of the parts of 
the system will continue without errors that are not less than any given. And 
because, by the small distance of those parts from each other, the whole sys- 
tem is attracted as if it were but one body, it will therefore be moved by this 
attraction as if it were one body; that is, its centre of gravity will describe 
about the great body one of the conic sections (that is, a parabola or hyperbola 
when the attraction is but languid and an ellipse when it is more vigorous); and 
by radii drawn thereto, it will describe areas proportional to the times, without 
any errors but those which arise from the distances of the parts, and these are 
by the supposition exceedingly small, and maybe diminished at pleasure, q.e.o. 

By a like reasoning one may proceed to more complicated cases in infinitum. 
Cor. i. In the second Case, the nearer the very great body approaches to 

the system of two or more revolving bodies, the greater will the perturbation 
be of the motions of the parts of the system among themselves; because the 
inclinations of the lines drawn from that great body to those parts become 
greater; and the inequality of the proportion is also greater. 

Cor. ii. But the perturbation will be greatest of all, if we suppose the accel- 
erative attractions of the parts of the system towards the greatest body of all 
are not to each other inversely as the squares of the distances from that great 
body; especially if the inequality of this proportion be greater than the in- 
equality of the proportion of the distances from the great body. For if the ac- 
celerative force, acting in parallel directions and equally, causes no perturba- 
tion in the motions of the parts of the system, it must of course, when it acts 
unequally, cause a perturbation somewhere, which will be greater or less as 
the inequality is greater or less. The excess of the greater impulses acting upon 
some bodies, and not acting upon others, must necessarily change their situa- 
tion among themselves. And this perturbation, added to the perturbation 
arising from the inequality and inclination of the lines, makes the whole per- 
turbation greater. 

Cor. hi. Hence if the parts of this system move in ellipses or circles without 
any remarkable perturbation, it is manifest that, if they are at all impelled by 
accelerative forces tending to any other bodies, the impulse is very weak, or 
else is impressed very near equally and in parallel directions upon all of them. 
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Proposition 66. Theorem 26 
If three bodies, whose forces decrease as the square of the distances, attract each 
other; and the accelerative attractions of any two towards the third he between them- 
selves inversely as the squares of the distances; and the two least revolve about the 
greatest: I say, that the interior of the two revolving bodies will, by radii drawn to 
the innermost and greatest, describe round that body areas more proportional to the 
times, and a figure more approaching to that of an ellipse having its focus in the 
point of intersection of the radii, if that great body be agitated by those attractions, 
than it would do if that great body were not attracted at all by the lesser, but re- 
mained at rest; or than it would do if that great body were very much more or very 
much less attracted, or very much more or very much less agitated, by the attractions. 

This appears plainly enough from the demonstration of the second Corollary 
of the foregoing Proposition; but it may be made out after this manner by a 
way of reasoning more distinct and more universally convincing. 

Case 1. Let the lesser bodies P and S revolve in the same plane about the 
greatest body T, the body P describing the interior orbit PAB, and S the 
exterior orbit ESE. Let SK be the mean distance of the bodies P and S; and 
let the accelerative attraction of the body P towards S, at that mean distance, 
be expressed by that line SK. Make SL to SK as the square of SK to the 
square of SP, and SL will be the accelerative attraction of the body P towards S 
at any distance SP. Join PT, and draw LM parallel to it meeting ST in M; and 
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the attraction SL will be resolved (by Cor. ii of the Laws of Motion) into the 
attractions SM, LM. And so the body P will be urged with a threefold accel- 
erative force. One of these forces tends towards T, and arises from the mutual 
attraction of the bodies T and P. By this force alone the body P would describe 
round the body T, by the radius PT, areas proportional to the times, and an 
ellipse whose focus is in the centre of the body T; and this it would do whether 
the body T remained unmoved, or whether it were agitated by that attraction. 
This appears from Prop. 11, and Cor. n and in of Theor. 21. The other force is 
that of the attraction LM, which, because it tends from P to T, will be super- 
added to and coincide with the former force; and cause the areas to be still 
proportional to the times, by Cor. m, Theor. 21. But because it is not inversely 
proportional to the square of the distance PT, it will compose, when added to 
the former, a force varying from that proportion; this variation will be the 
greater by as much as the proportion of this force to the former is greater, 
other things remaining the same. Therefore, since by Prop. 11, and by Cor. ii, 
Theor. 21, the force with which the ellipse is described about the focus T ought 
to be directed to that focus, and to be inversely proportional to the square of 
the distance PT, that compounded force varying from that proportion will 
make the orbit PAB vary from the figure of an ellipse that has its focus in the 
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point T; and so much the more by as much as the variation from that propor- 
tion is greater; and in consequence by as much as the proportion of the second 
force LM to the first force is greater, other things remaining the same. But now 
the third force SM, attracting the body P in a direction parallel to ST, com- 
poses with the other forces a new force which is no longer directed from P to T; 
and this varies so much more from this direction by as much as the proportion 
of the third force to the other forces is greater, other things remaining the 
same; and therefore causes the body P to describe, by the radius TP, areas no 
longer proportional to the times; and therefore makes the variation from that 
proportionality so much greater by as much as the proportion of this force to 
the others is greater. But this third force will increase the variation of the orbit 
PAB from the elliptical figure before mentioned upon two accounts: first, be- 
cause that force is not directed from P to T; and, secondly, because it is not 
inversely proportional to the square of the distance PT. These things being 
premised, it is manifest that the areas are then most nearly proportional to the 
times, when that third force is the least possible, the rest preserving their former 
quantity; and that the orbit PAB does then approach nearest to the elliptical 
figure above mentioned, when both the second and third, but especially the 
third force, is the least possible; the first force remaining in its former quantity. 

Let the accelerative attraction of the body T towards S be expressed by the 
line SN; then if the accelerative attractions SM and SN were equal, these, 
attracting the bodies T and P equally and in parallel directions, would not at 
all change their situation with respect to each other. The motions of the bodies 
between themselves would be the same in that case as if those attractions did 
not act at all, by Cor. vi of the Laws of Motion. And, by a like reasoning, if the 
attraction SN is less than the attraction SM, it will take away out of the at- 
traction SM the part SN, so that there will remain only the part (of the attrac- 
tion) MN to disturb the proportionality of the areas and times, and the ellip- 
tical figure of the orbit. And in like manner if the attraction SN be greater 
than the attraction SM, the perturbation of the orbit and proportion will be 
produced by the difference MN alone. After this manner the attraction SN 
reduces always the attraction SM to the attraction MN, the first and second 
attractions remaining perfectly unchanged; and therefore the areas and times 
come then nearest to proportionality, and the orbit PAB to the above-men- 
tioned elliptical figure, when the attraction MN is either none, or the least 
that is possible; that is, when the accelerative attractions of the bodies P and 
T approach as near as possible to equality; that is, when the attraction SN is 
neither none at all, nor less than the least of all the attractions SM, but is, as 
it were, a mean between the greatest and least of all those attractions SM, 
that is, not much greater nor much less than the attraction SK. q.e.d. 

Case 2. Let now the lesser bodies P, S revolve about a greater T in different 
planes; and the force LM, acting in the direction of the line PT situated in the 
plane of the orbit PAB, will have the same effect as before; neither will it draw 
the body P from the plane of its orbit. But the other force NM, acting in the 
direction of a line parallel to ST (and therefore, when the body S is without the 
line of the nodes, inclined to the plane of the orbit PAB), besides the perturba- 
tion of the motion just now spoken of as to longitude, introduces another per- 
turbation also as to latitude, attracting the body P out of the plane of its orbit. 
And this perturbation, in any given situation of the bodies P and T to each 
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other, will be as the generating force MN; and therefore becomes least when 
the force MN is least, that is (as was just now shown), where the attraction 
SN is not much greater nor much less than the attraction SK. q.e.d. 

Cor. i. Hence it may be easily inferred, that if several less bodies P, S, R, 
&c., revolve about a very great body T, the motion of the innermost revolving 
body P will be least disturbed by the attractions of the others, when the great 
body is as well attracted and agitated by the rest (according to the ratio of the 
accelerative forces) as the rest are by each other. 

Cor. ii. In a system of three bodies T, P, S, if the accelerative attractions 
of any two of them towards a third be to each other inversely as the squares 
of the distances, the body P, by the radius PT, will describe its area about the 
body T swifter near the conjunction A and the opposition B than it will near 
the quadratures C and D. For every force with which the body P is acted on 
and the body T is not, and which does not act in the direction of the line PT, 
does either accelerate or retard the description of the area, according as its 
direction is the same as, or contrary to that of the motion of the body. Such is 
the force NM. This force in the passage of the body P from C to A tends in the 
direction in which the body is moving, and therefore accelerates it; then as far 
as D, it tends in the opposite direction, and retards the motion; then in the 
direction of the body, as far as B; and lastly in a contrary direction, as it moves 
from B to C. 

Cor. m. And from the same reasoning it appears that the body P, other 
things remaining the same, moves more swiftly in the conjunction and opposi- 
tion than in the quadratures. 

Cor. iv. The orbit of the body P, other things remaining the same, is more 
curved at the quadratures than at the conjunction and opposition. For the 
swifter bodies move, the less they deflect from a rectilinear path. And besides, 
the force KL, or NM, at the conjunction and opposition, is contrary to the 
force with which the body T attracts the body P, and therefore diminishes that 
force; but the body P will deflect the less from a rectilinear path the less it is 
impelled towards the body T. 
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Cor. v. Hence the body P, other things remaining the same, goes farther 
from the body T at the quadratures than at the conjunction and opposition. 
This is said, however, when no account is taken of the variable eccentricity. 
For if the orbit of the body P be eccentric, its eccentricity (as will be shown 
presently by Cor. ix) will be greatest when the apsides are in the syzygies; 
and thence it may sometimes come to pass that the body P, in its near approach 
to the farther apse, may go farther from the body T at the syzygies than at the 
quadratures. 

Cor. vi. Because the centripetal force of the central body T, by which the 
body P is retained in its orbit, is increased at the quadratures by the addition 
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caused by the force LM, and diminished at the syzygies by the subtraction 
of the force KL, and, because the force KL is greater than LM, it is more 
diminished than increased; and, moreover, since that centripetal force (by Cor. 
ii, Prop. 4) varies directly as the radius TP, and inversely as the square of the 
periodical time, it is plain that the resulting ratio is diminished by the action 
of the force KL; and therefore that the periodical time, supposing the radius 
of the orbit PT to remain the same, will be increased, and that as the square 
root of that ratio in which the centripetal force is diminished; and, therefore, 
supposing this radius increased or diminished, the periodical time will be in- 
creased more or diminished less than in the %th power of this radius, by Cor. 
vi, Prop. 4. If that force of the central body should gradually decay, the body 
P being less and less attracted would go farther and farther from the centre T; 
and, on the contrary, if it were increased, it would draw nearer to it. Therefore 
if the action of the distant body S, by which that force is diminished, were to 
increase and decrease by turns, the radius TP would be also increased and 
diminished by turns; and the periodical time would be increased and dimin- 
ished in a ratio compounded of the /^th power of the ratio of the radius, and 
of the square root of that ratio in which the centripetal force of the central 
body T was diminished or increased, by the increase or decrease of the action 
of the distant body S. 

Cor. vii. It also follows, from what was before laid down, that the axis of 
the ellipse described by the body P, or the line of the apsides, does as to its 
angular motion go forwards and backwards by turns, but more forwards than 
backwards, and by the excess of its direct motion is on the whole carried for- 
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wards. For the force with which the body P is urged to the body T at the 
quadratures, where the force MN vanishes, is compounded of the force LM 
and the centripetal force with which the body T attracts the body P. The 
first force LM, if the distance PT be increased, is increased in nearly the same 
proportion with that distance, and the other force decreases as the square 
of the ratio of the distance; and therefore the sum of these two forces de- 
creases in less than the square of the ratio of the distance PT; and therefore, 
by Cor. i, Prop. 45, will make the line of the apsides, or, which is the same 
thing, the upper apse, to go backwards. But at the conjunction and opposition 
the force with which the body P is urged towards the body T is the difference 
of the force KL, and of the force with which the body T attracts the body P; 
and that difference, because the force KL is very nearly increased in the ratio 
of the distance PT, decreases in more than the square of the ratio of the dis- 
tance PT; and therefore, by Cor. i, Prop. 45, causes the line of the apsides to 
go forwards. In the places between the syzygies and the quadratures, the 
motion of the line of the apsides depends upon both of these causes conjointly, 
so that it either goes forwards or backwrards in proportion to the excess of one 
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of these causes above the other. Therefore since the force KL in the syzygies 
is almost twice as great as the force LM in the quadratures, the excess will be 
on the side of the force KL, and by consequence the line of the apsides will be 
carried forwards. The truth of this and the foregoing Corollary will be more 
easily understood by conceiving the system of the two bodies T and P to be 
surrounded on every side by several bodies S, S, S, &c., disposed about the 
orbit ESE. For by the actions of these bodies the action of the body T will be 
diminished on every side, and decrease in more than the square of the ratio of 
the distance. 

Cor. viii. But since the direct or retrograde motion of the apsides depends 
upon the decrease of the centripetal force, that is, upon its being in a greater 
or less ratio than the square of the ratio of the distance TP, in the passage of 
the body from the lower apse to the upper; and upon a like increase in its 
return to the lower apse again; and therefore becomes greatest where the pro- 
portion of the force at the upper apse to the force at the lower apse recedes 
farthest from the inverse square of the ratio of the distances; it is plain that, 
when the apsides are in the syzygies, they will, by reason of the subtracted 
force KL or NM-LM, go forwards more swiftly; and in the quadratures by 
the additional force LM go backwards more slowly. Because the velocity of the 
progression or the slowness of the retrogression is continued for a long time, 
this inequality becomes exceedingly great. 

Cor. ix. If a body is obliged, by a force inversely proportional to the square 
of its distance from any centre, to revolve in an ellipse round that centre; and 
afterwards in its descent from the upper apse to the lower apse, that force by 
a continual accession of new force is increased in more than the square of the 
ratio of the diminished distance; it is manifest that the body, being impelled 
always towards the centre by the continual accession of this new force, will 
incline more towards that centre than if it were urged by that force alone which 
decreases as the square of the diminished distance, and therefore will describe 
an orbit interior to that elliptical orbit, and at the lower apse approaching 
nearer to the centre than before. Therefore the orbit by the accession of this 
new force will become more eccentric. If now, while the body is returning from 
the lower to the upper apse, it should decrease by the same degrees by which 
it increased before, the body would return to its first distance; and therefore if 
the force decreases in a yet greater ratio, the body, being now less attracted 
than before, will ascend to a still greater distance, and so, the eccentricity of the 
orbit will be increased still more. Therefore if the ratio of the increase and 
decrease of the centripetal force be augmented with each revolution, the eccen- 
tricity will be augmented also; and, on the contrary, if that ratio decrease, it 
will be diminished. 

Now, therefore, in the system of the bodies T, P, S, when the apsides of the 
orbit PAB are in the quadratures, the ratio of that increase and decrease is 
least of all, and becomes greatest when the apsides are in the syzygies. If the 
apsides are placed in the quadratures, the ratio near the apsides is less, and 
near the syzygies greater, than the square of the ratio of the distances; and 
from that greater ratio arises a direct motion of the line of the apsides, as was 
just now said. But if we consider the ratio of the whole increase or decrease in 
the progress between the apsides, this is less than the square of the ratio of the 
distances. The force in the lower is to that in the upper apse in less than the 
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square of the ratio of the distance of the upper apse from the focus of the ellipse 
to the distance of the lower apse from the same focus; and conversely, when 
the apsides are placed in the syzygies, the force in the lower apse is to the force 
in the upper apse in a greater than the square of the ratio of the distances. For 
the forces LM in the quadratures added to the forces of the body T, compose 
forces in a less ratio; and the forces KL in the syzygies subtracted from the 
forces of the body T, leave the forces in a greater ratio. Therefore the ratio of 
the whole increase and decrease in the passage between the apsides is least at 
the quadratures and greatest at the syzygies; and therefore in the passage of 
the apsides from the quadratures to the syzygies it is continually augmented, 
and increases the eccentricity of the ellipse; and in the passage from the syzygies 
to the quadratures it is continually decreasing, and diminishes the eccentricity. 

Cor. x. That we may give an account of the errors of latitude, let us suppose 
the plane of the orbit EST to remain immovable; and from the cause of the 
errors above explained, it is manifest that, of the two forces NM, ML, which 
are the only and entire cause of them, the force ML acting always in the plane 
of the orbit PAB never disturbs the motions as to latitude; and that the force 
NM, when the nodes are in the syzygies, acting also in the same plane of the 
orbit, does not at that time affect those motions. But when the nodes are in the 
quadratures, it disturbs them very much, and, attracting the body P contin- 
ually out of the plane of its orbit, it diminishes the inclination of the plane in 
the passage of the body from the quadratures to the syzygies, and again in- 
creases the same in the passage from the syzygies to the quadratures. Hence it 
comes to pass that when the body is in the syzygies, the inclination is then 
least of all, and returns to the first magnitude nearly, when the body arrives 
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at the next node. But if the nodes are situated at the octants after the quad- 
ratures, that is, between C and A, D and B, it will appear, from what was just 
now shown, that in the passage of the body P from either node to the ninetieth 
degree from thence, the inclination of the plane is continually diminished; 
then, in the passage through the next 45 degrees to the next quadrature, the 
inclination is increased; and afterwards, again, in its passage through another 
45 degrees to the next node, it is diminished. Therefore the inclination is more 
diminished than increased, and is therefore always less in the subsequent node 
than in the preceding one. And, by a like reasoning, the inclination is more 
increased than diminished when the nodes are in the other octants between 
A and D, B and C. The inclination, therefore, is the greatest of all when the 
nodes are in the syzygies. In their passage from the syzygies to the quadratures 
the inclination is diminished at each appulse of the body to the nodes; and 
becomes least of all when the nodes are in the quadratures, and the body in the 
syzygies; then it increases by the same degrees by which it decreased before; and, 
when the nodes come to the next syzygies, returns to its former magnitude. 
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Cor. xi. Because when the nodes are in the quadratures the body P is con- 

tinually attracted from the plane of its orbit; and because this attraction is 
made towards S in its passage from the node C through the conjunction A to 
the node D; and in the opposite direction in its passage from the node D 
through the opposition B to the node C; it is manifest that, in its motion from 
the node C, the body recedes continually from the former plane CD of its orbit 
till it comes to the next node; and therefore at that node, being now at its 
greatest distance from the first plane CD, it will pass through the plane of the 
orbit EST not in D, the other node of that plane, but in a point that lies nearer 
to the body S, which therefore becomes a new place of the node behind its 
former place. And, by a like reasoning, the nodes will continue to recede in 
their passage from this node to the next. The nodes, therefore, when situated 
in the quadratures, recede continually; and at the syzygies, where no perturba- 
tion can be produced in the motion as to latitude, are quiescent; in the inter- 
mediate places they partake of both conditions, and recede more slowly; and, 
therefore, being always either retrograde or stationary, they will be carried 
backwards, or made to recede in each revolution. 

Cor. xii. All the errors described in these Corollaries are a little greater at 
the conjunction of the bodies P, S than at their opposition; because the gen- 
erating forces NM and ML are greater. 

Cor. xiii. And since the causes and proportions of the errors and variations 
mentioned in these Corollaries do not depend upon the magnitude of the body 
S, it follows that all things before demonstrated will happen, if the magnitude 
of the body S be imagined so great that the system of the two bodies P and T 
may revolve about it. And from this increase of the body S, and the consequent 
increase of its centripetal force, from which the errors of the body P arise, it 
will follow that all these errors, at equal distances, will be greater in this case, 
than in the other where the body S revolves about the system of the bodies P 
and T. 

Cor. xiv. But since the forces NM, ML, when the body S is exceedingly 
distant, are very nearly as the force SK and the ratio PT to ST conjointly; 
that is, if both the distance PT and the absolute force of the body S be given, 
inversely as ST3; and since those forces NM, ML are the causes of all the errors 
and effects treated of in the foregoing Corollaries; it is manifest that all those 
effects, if the system of bodies T and P continue as before, and only the dis- 
tance ST and the absolute force of the body S be changed, will be very nearly 
in a ratio compounded of the direct ratio of the absolute force of the body S, 
and the cubed inverse ratio of the distance ST. Hence if the system of bodies 
T and P revolve about a distant body S, those forces NM, ML, and their ef- 
fects, will be (by Cor. 11 and vi, Prop. 4) inversely as the square of the periodical 
time. And thence, also, if the magnitude of the body S be proportional to its 
absolute force, those forces NM, ML, and their effects, will be directly as the 
cube of the apparent diameter of the distant body S viewed from T; and con- 
versely. For these ratios are the same as the compounded ratio above men- 
tioned. 

Cor. xv. If the orbits ESE and PAB, retaining their figure, proportions, and 
inclination to each other, should alter their magnitude, and if the forces of the 
bodies S and T should either remain unaltered or be changed in any given 
ratio, then these forces (that is, the force of the body T, which obliges the body 
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P to deflect from a rectilinear course into the orbit PAB, and the force of the 
body S, which causes the body P to deviate from that orbit) will act always in 
the same manner, and in the same proportion. Consequently it follows, that 
all the effects will be similar and proportional, and the times of those effects 
will be proportional also; that is, that all the linear errors will be as the diam- 
eters of the orbits, the angular errors the same as before; and the times of 
similar linear errors, or equal angular errors, are as the periodical times of the 
orbits. 

Cor. xvi. Therefore if the figures of the orbits and their inclination to each 
other be given, and the magnitudes, forces, and distances of the bodies be 
changed in any manner, we may, from the errors and times of those errors in 
one case, obtain very nearly the errors and times of the errors in any other 
case. But this may be done more expeditiously by the following method. The 
forces NM, ML, other things remaining unaltered, are as the radius TP; and 
their periodical effects (by Cor. n, Lem. 10) are as the forces and the square of 
the periodical time of the body P jointly. These are the linear errors of the 
body P; and hence the angular errors as they appear from the centre T (that 
is, the motion of the apsides and of the nodes, and all the apparent errors of 
longitude and latitude) are in each revolution of the body P as the square of 
the time of the revolution, very nearly. Let these ratios be compounded with 
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the ratios in Cor. xiv, and in any system of bodies T, P, S, where P revolves 
about T very near to it, and T revolves about S at a great distance, the angular 
errors of the body P, observed from the centre T, will be in each revolution of 
the body P directly as the square of the periodical time of the body P, and in- 
versely as the square of the periodical time of the body T. And therefore the 
mean motion of the line of the apsides will be in a given ratio to the mean 
motion of the nodes; and both those motions will be directly as the periodical 
time of the body P, and inversely as the square of the periodical time of the 
body T. The increase or diminution of the eccentricity and inclination of the 
orbit PAB makes no sensible variation in the motions of the apsides and nodes, 
unless that increase or diminution be very great indeed. 

Cor. xvii. Since the line LM becomes sometimes greater and sometimes less 
than the radius PT, let the mean quantity of the force LM be expressed by 
that radius PT; and then that mean force will be to the mean force SK or SN 
(which may be also expressed by ST) as the length PT to the length ST. But 
the mean force SN or ST, by which the body T is retained in the orbit it 
describes about S, is to the force with which the body P is retained in its orbit 
about T in a ratio compounded of the ratio of the radius ST to the radius PT, 
and the squared ratio of the periodical time of the body P about T to the 
periodical time of the body T about S. And, consequently, the mean force LM 
is to the force by which the body P is retained in its orbit about T (or by which 
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the same body P might revolve at the distance PT in the same periodical time 
about any immovable point T) in the same squared ratio of the periodical 
times. The periodical times therefore being given, together with the distance 
PT, the mean force LM is also given; and that force being given, there is 
given also the force MN, very nearly, by the analogy of the lines PT and MN. 

Cor. xviii. By the same laws by which the body P revolves about the body 
T, let us suppose many fluid bodies to move round T at equal distances from 
it; and to be so numerous, that they may all become contiguous to each other, 
so as to form a fluid annulus, or ring, of a round figure, and concentric to the 
body T; and the several parts of this ring, performing their motions by the 
same law as the body P, will draw nearer to the body T, and move swifter in 
the conjunction and opposition of themselves and the body S, than in the 
quadratures. And the nodes of this ring or its intersections with the plane of 
the orbit of the body S or T, will rest at the syzygies; but out of the syzygies 
they will be carried backwards, or in a retrograde direction, with the greatest 
swiftness in the quadratures, and more slowly in other places. The inclination 
of this ring also will vary, and its axis will oscillate in each revolution, and when 
the revolution is completed will return to its former situation, except only that 
it will be carried round a little by the precession of the nodes. 

Cor. xix. Suppose now the spherical body T, consisting of some matter not 
fluid, to be enlarged, and to extend itself on every side as far as that ring, and 
that a channel were cut all round its circumference containing water; and that 
this sphere revolves uniformly about its own axis in the same periodical time. 
This water being accelerated and retarded by turns (as in the last Corollary), 
will be swifter at the syzygies, and slower at the quadratures, than the surface 
of the globe, and so will ebb and flow in its channel after the manner of the sea. 
If the attraction of the body S were taken away, the water would acquire no 
motion of flux and reflux by revolving round the quiescent centre of the globe. 
The case is the same of a globe moving uniformly forwards in a right line, and 
in the meantime revolving about its centre (by Cor. v of the Laws of Motion), 
and of a globe uniformly attracted from its rectilinear course (by Cor. vi of the 
same Laws). But let the body S come to act upon it, and by its varying attrac- 
tion the water will receive this new motion; for there will be a stronger attrac- 
tion upon that part of the water that is nearest to the body, and a weaker upon 
that part which is more remote. And the force LM will attract the water down- 
wards at the quadratures, and depress it as far as the syzygies; and the force 
KL will attract it upwards in the syzygies, and withhold its descent, and make 
it rise as far as the quadratures; except only so far as the motion of flux and 
reflux may be directed by the channel, and be a little retarded by friction. 

Cor. xx. If, now, the ring becomes hard, and the globe is diminished, the 
motion of flux and reflux will cease; but the oscillating motion of the inclina- 
tion and the precession of the nodes will remain. Let the globe have the same 
axis with the ring, and perform its revolutions in the same times, and at its 
surface touch the ring within, and adhere to it; then the globe partaking of the 
motion of the ring, this whole body will oscillate, and the nodes will go back- 
wards for the globe, as we shall show presently, is perfectly indifferent to the 
receiving of all impressions. The greatest angle of the inclination of the ring 
alone is when the nodes are in the syzygies. Thence in the progress of the nodes 
to the quadratures, it endeavors to diminish its inclination, and by that en- 
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deavor impresses a motion upon the whole globe. The globe retains this motion 
impressed, till the ring by a contrary endeavor destroys that motion, and im- 
presses a new motion in a contrary direction. And by this means the greatest 
motion of the decreasing inclination happens when the nodes are in the quadra- 
tures, and the least angle of inclination in the octants after the quadratures; 
and, again, the greatest motion of the reclination happens when the nodes are 
in the syzygies; and the greatest angle of inclination in the octants following. 
And the case is the same of a globe without this ring, if it be a little higher or 
a little denser in the equatorial than in the polar regions; for the excess of that 
matter in the regions near the equator supplies the place of the ring. And al- 
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though we should suppose the centripetal force of this globe to be increased in 
any manner, so that all its parts tend downwards, as the parts of our earth 
gravitate to the centre, yet the phenomena of this and the preceding Corollary 
would scarce be altered; except that the places of the greatest and least height 
of the water will be different; for the water is now no longer sustained and kept 
in its orbit by its centrifugal force, but by the channel in which it flows. And, 
besides, the force LM attracts the water downwards most in the quadratures, 
and the force KL or NM-LM attracts it upwards most in the syzygies. And 
these forces conjoined cease to attract the water downwards, and begin to at- 
tract it upwards in the octants before the syzygies; and cease to attract the 
water upwards, and begin to attract the water downwards in the octants after 
the syzygies. And thence the greatest height of the water may happen about 
the octants after the syzygies; and the least height about the octants after the 
quadratures; excepting only so far as the motion of ascent or descent im- 
pressed by these forces may by the inertia of the water continue a little 
longer, or be stopped a little sooner by impediments in its channel. 

Cor. xxi. For the same reason that redundant matter in the equatorial 
regions of a globe causes the nodes to go backwards, and therefore by the in- 
crease of that matter that retrograde motion is increased, by the diminution 
is diminished, and by the removal quite ceases; it follows, that, if more than 
that redundant matter be taken away, that is, if the globe be either more 
depressed, or of a rarer consistence near the equator than near the poles, there 
will arise a direct motion of the nodes. 

Cor. xxii. And thence from the motion of the nodes is known the constitu- 
tion of the globe. That is, if the globe retains unalterably the same poles, and 
the motion (of the nodes) is retrograde, there is a redundance of the matter 
near the equator; but if that motion is direct, a deficiency. Suppose a uniform 
and exactly spherical globe to be first at rest in a free space; then by some 
impulse made obliquely upon its surface to be driven from its place, and to 
receive a motion partly circular and partly straight forward. Since this globe 
is perfectly indifferent to all the axes that pass through its centre, nor has a 
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greater propensity to one axis or to one situation of the axis than to any other, 
it is manifest that by its own force it will never change its axis, or the inclina- 
tion of its axis. Let now this globe be impelled obliquely by a new impulse in 
the same part of its surface as before; and since the effect of an impulse is not 
at all changed by its coming sooner or later, it is manifest that these two 
impulses, successively impressed, will produce the same motion, as if they had 
been impressed at the same time; that is, the same motion, as if the globe had 
been impelled by a simple force compounded of them both (by Cor. 11 of the 
Laws), that is, a simple motion about an axis of a given inclination. And the 
case is the same if the second impulse were made upon any other place of the 
equator of the first motion; and also if the first impulse were made upon any 
place in the equator of the motion which would be generated by the second 
impulse alone; and therefore, also, when both impulses are made in any places 
whatsoever; for these impulses will generate the same circular motion as if they 
were impressed together, and at once, in the place of the intersections of the 
equators of those motions, which would be generated by each of them sepa- 
rately. Therefore, a homogeneous and perfect globe will not retain several 
motions distinct, but will unite all those that are impressed on it, and reduce 
them into one; revolving, as far as in it lies, always with a simple and uniform 
motion about one single given axis, with an inclination always invariable. And 
the inclination of the axis, or the velocity of the rotation, will not be changed by 
centripetal force. For if the globe be supposed to be divided into two hemi- 
spheres, by any plane whatsoever passing through its own centre, and the 
centre to which the force is directed, that force will always urge each hemi- 
sphere equally; and therefore will not incline the globe to any side with respect 
to its motion round its own axis. But let there be added anywhere between the 
pole and the equator a heap of new matter like a mountain, and this, by its 
continual endeavor to recede from the centre of its motion, will disturb the 
motion of the globe, and cause its poles to wander about its surface describing 
circles about themselves and the points opposite to them. Neither can this 
enormous deviation of the poles be corrected otherwise than by placing that 
mountain either in one of the poles, in which case, by Cor. xxi, the nodes of 
the equator will go forwards; or in the equatorial regions, in which case, by 
Cor. xx, the nodes will go backwards; or, lastly, by adding on the other side 
of the axis a new quantity of matter, by which the mountain may be balanced 
in its motion; and then the nodes will either go forwards or backwards, as the 
mountain and this newly added matter happen to be nearer to the pole or to 
the equator. ^ ^ 

Proposition 67. Theorem 27 
The same laws of attraction being supposed, I say, that the exterior body S does, by 
radii drawn to the point 0, the common centre of gravity of the interior bodies P and 
T, describe round that centre areas more proportional to the times, and an orbit 
more approaching to the form of an ellipse having its focus in that centre, than it 
can describe round the innermost and greatest body ^ ^ 
T by radii drawn to that body. / N. 

For the attractions of the body S towards T / [ "'• P \ 
and P compose its absolute attraction, which is S© b- •© I 
more directed towards 0, the common centre of \ V / 
gravity of the bodies T and P, than it is to the ^ 
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greatest body T; and which approaches nearer to the inverse proportion of the 
square of the distance SO, than of the square of the distance ST; as will easily 
appear by a little consideration. 

Proposition 68. Theorem 28 
The same laws of attraction supposed, I say, that the exterior body S will, by radii 
drawn to 0, the common centre of gravity of the interior bodies P and T, describe 
round that centre areas more proportional to the times, and an orbit more approach- 
ing to the form of an ellipse having its focus in that centre, if the innermost and 
greatest body be agitated by these attractions as well as the rest, than it would do if 
that body either were at rest and not attracted at all, or were much more or much less 
attracted, or were much more or much less agitated. 

This may be demonstrated after the same manner as Prop. 66, but by a 
more prolix reasoning, which I therefore pass over. It will be sufficient to con- 
sider it after this manner. From the demonstration of the last Proposition it 
is plain, that the centre, towards which the body S is urged by the two forces 
conjointly, is very near to the common centre of gravity of those two other 
bodies. If this centre were to coincide with that common centre, and moreover 
the common centre of gravity of all the three bodies were at rest, the body S on 

©one side, and the common centre of gravity of the 
other two bodies on the other side, would describe 
true ellipses about that quiescent common centre. 
This appears from Cor. ii, Prop. 58, compared 
with what was demonstrated in Props. 64 and 65. 
Now this accurate elliptical motion will be dis- 
turbed a little by the distance of the centre of the 

two bodies from the centre towards which the third body S is attracted. Let 
there be added, moreover, a motion to the common centre of the three, and 
the perturbation will be increased yet more. Therefore the perturbation is least 
when the common centre of the three bodies is at rest; that is, when the inner- 
most and greatest body T is attracted according to the same law as the rest 
are; and is always greatest when the common centre of the three, by the dimi- 
nution of the motion of the body T, begins to be moved, and is more and more 
agitated. 

Cor. And hence if several smaller bodies revolve about the great one, it may 
easily be inferred that the orbits described will approach nearer to ellipses; and 
the descriptions of areas will be more nearly uniform, if all the bodies attract 
and agitate each other with accelerative forces that are directly as their abso- 
lute forces, and inversely as the squares of the distances, and if the focus of 
each orbit be placed in the common centre of gravity of all the interior bodies 
(that is, if the focus of the first and innermost orbit be placed in the centre of 
gravity of the greatest and innermost body; the focus of the second orbit in 
the common centre of gravity of the two innermost bodies; the focus of the 
third orbit in the common centre of gravity of the three innermost; and so on), 
than if the innermost body were at rest, and was made the common focus of 
all the orbits. 
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Proposition 69. Theorem 29 
In a system of several bodies A, B, C, D, &c., if any one of those bodies, as A, 
attract all the rest, B, C, D, &c., with accelerative forces that are inversely as the 
squares of the distances from the attracting body; and another body, as B, attracts 
also the rest, A, C, D, &c., with forces that are inversely as the squares of the 
distances from the attracting body; the absolute forces of the attracting bodies A and 
B will be to each other as those very bodies A and B to which those forces belong. 

For the accelerative attractions of all the bodies B, C, D, towards A, are 
by the supposition equal to each other at equal distances; and in like manner 
the accelerative attractions of all the bodies towards B are also equal to each 
other at equal distances. But the absolute attractive force of the body A is to 
the absolute attractive force of the body B as the accelerative attraction of all 
the bodies towards A is to the accelerative attraction of all the bodies towards 
B at equal distances; and so is also the accelerative attraction of the body B 
towards A to the accelerative attraction of the body A towards B. But the 
accelerative attraction of the body B towards A is to the accelerative attrac- 
tion of the body A towards B as the mass of the body A is to the mass of 
the body B; because the motive forces which (by the second, seventh and 
eighth Definitions) are as the accelerative forces and the bodies attracted con- 
jointly are here equal to one another by the third Law. Therefore the absolute 
attractive force of the body A is to the absolute attractive force of the body B 
as the mass of the body A is to the mass of the body B. q.e.d. 

Cor. i. Therefore if each of the bodies of the system A, B, C, D, &c., does 
singly attract all the rest with accelerative forces that are inversely as the 
squares of the distances from the attracting body, the absolute forces of all 
those bodies will be to each other as the bodies themselves. 

Cor. ii. By a like reasoning, if each of the bodies of the system A, B, C, D, 
&c., does singly attract all the rest with accelerative forces, which are either 
inversely or directly in the ratio of any power whatever of the distances from 
the attracting body; or which are defined by the distances from each of the 
attracting bodies according to any common law; it is plain that the absolute 
forces of those bodies are as the bodies themselves. 

Cor. hi. In a system of bodies whose forces decrease as the square of the 
distances, if the lesser revolve about one very great one in ellipses, having their 
common focus in the centre of that great body, and of a figure exceedingly 
accurate; and moreover by radii drawn to that great body describe areas pro- 
portional to the times exactly; the absolute forces of those bodies to each other 
will be either accurately or very nearly in the ratio of the bodies. And so con- 
versely. This appears from Cor. of Prop. 68, compared with the first Corollary 
of this Proposition. 

Scholium 
These Propositions naturally lead us to the analogy there is between centrip- 

etal forces and the central bodies to which those forces are usually directed; 
for it is reasonable to suppose that forces which are directed to bodies should 
depend upon the nature and quantity of those bodies, as we see they do in 
magnetical experiments. And when such cases occur, we are to compute the 
attractions of the bodies by assigning to each of their particles its proper force, 
and then finding the sum of them all. I here use the word attraction in general 
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for any endeavor whatever, made by bodies to approach to each other, whether 
that endeavor arise from the action of the bodies themselves, as tending to 
each other or agitating each other by spirits emitted; or whether it arises from 
the action of the ether or of the air, or of any medium whatever, whether cor- 
poreal or incorporeal, in any manner impelling bodies placed therein towards 
each other. In the same general sense I use the word impulse, not defining in 
this treatise the species or physical qualities of forces, but investigating the 
quantities and mathematical proportions of them; as I observed before in the 
Definitions. In mathematics we are to investigate the quantities of forces with 
their proportions consequent upon any conditions supposed; then, when we 
enter upon physics, we compare those proportions with the phenomena of 
Nature, that we may know what conditions of those forces answer to the sev- 
eral kinds of attractive bodies. And this preparation being made, we argue 
more safely concerning the physical species, causes, and proportions of the 
forces. Let us see, then, with what forces spherical bodies consisting of particles 
endued with attractive powers in the manner above spoken of must act upon 
one another; and what kind of motions will follow from them. 

SECTION XII 

The attractive forces of spherical bodies 
Proposition 70. Theorem 30 

If to every point of a spherical surface there tend equal centripetal forces decreasing 
as the square of the distances from those points, I say, that a corpuscle placed 
within that surface will not be attracted by those forces any way. 

Let HIKL be that spherical surface, and P a corpuscle placed within. 
Through P let there be drawn to this surface two lines HK, IL, intercepting 
very small arcs HI, KL; and because (by Cor. m, Lem. 7) the triangles HPI, 

LPK are aJike, those arcs will be proportional to the 
distances HP, LP; and any particles at HI and KL of 
the spherical surface, terminated by right lines passing 
through P, will be as the square of those distances. 
Therefore the forces of these particles exerted upon the 
body P are equal between themselves. For the forces 
are directly as the particles, and inversely as the square 
of the distances. And these two ratios compose the 
ratio of equality, 1:1. The attractions therefore, 
being equal, but exerted in opposite directions, de- 

stroy each other. And by a like reasoning all the attractions through the whole 
spherical surface are destroyed by contrary attractions. Therefore the body 
P will not be any way impelled by those attractions. q.e.d. 

Proposition 71. Theorem 31 
The same things supposed as above, I say, that a corpuscle placed without the 
spherical surface is attracted towards the centre of the sphere with a force inversely 
proportional to the square of its distance from that centre. 

Let AHKB, ahkb be two equal spherical surfaces described about the centres 
S, s; their diameters AB, ab; and let P and p be two corpuscles situate without 
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the spheres in those diameters produced. Let there be drawn from the cor- 
puscles the lines PHK, PIL, yhk, pil, cutting off from the great circles AHB, 
ahh, the equal arcs HK, hk, IL, il; and to those lines let fall the perpendiculars 
SD, sd, SE, se, IR, ir; of which let SD, sd, cut PL, pi, in F and/. Let fall also 

to the diameters the perpendiculars IQ, iq. Let now the angles DPE, dpe 
vanish; and because DS and ds, ES and es are equal, the lines PE, PF, and pe, 
pf, and the short lines DF, df may be taken for equal; because their last ratio, 
when the angles DPE, dpe vanish together, is the ratio of equality. These 
things being thus determined, it follows that 

PI : PF = RI : DF 
and pf : pi = df or DF : ri. 
Multiplying corresponding terms, 

Fl pf : FF pi = Rl : n = arc IH : arc ih (by Cor. m, Lem. vn). 
Again, PI : PS = IQ : SE 
and ps : pi = se or SE : iq. 
Hence, PI • ps : PS • pi = IQ : iq. 
Multiplying together corresponding terms of this and the similarly derived 
preceding proportion, 

PP p/ ps : pi2■ PF• PS = HI• IQ : ih-iq, 
that is, as the circular surface which is described by the arc IH, as the semi- 
circle AKB revolves about the diameter AB, is to the circular surface described 
by the arc ih as the semicircle akh revolves about the diameter ah. And the 
forces with which these surfaces attract the corpuscles P and p in the direction 
of lines tending to those surfaces are directly, by the hypothesis, as the surfaces 
themselves, and inversely as the squares of the distances of the surfaces from 
those corpuscles; that is, as pf-ps to PF • PS. And these forces again are to the 
oblique parts of them which (by the resolution of forces as in Cor. 11 of the 
Laws) tend to the centres in the directions of the lines PS, ps, as PI to PQ, and 
pi to pq] that is (because of the like triangles PIQ and PSF, piq and psf), as PS 
to PF and ps to pf. Thence, the attraction of the corpuscle P towards S is to 

the attraction of the corpuscle p towards s as 
FF-Pf'ps. + p/-PF-PS 

PS - is to that 

is, as ps2 to PS2. And, by a like reasoning, the forces with which the surfaces 
described by the revolution of the arcs KL, kl attract those corpuscles, will be 
as ps2 to PS2. And in the same ratio will be the forces of all the circular surfaces 
into which each of the spherical surfaces may be divided by taking sd always 
equal to SD, and se equal to SE. And therefore, by composition, the forces of 
the entire spherical surfaces exerted upon those corpuscles will be in the same 
ratio. q.e.d. 
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Proposition 72. Theorem 32 
If to the several points of a sphere there tend equal centripetal forces decreasing as 
the square of the distances from those points; and there he given both the density of 
the sphere and the ratio of the diameter of the sphere to the distance of the corpuscle 
from its centre: I say, that the force with which the corpuscle is attracted is pro- 
portional to the semidiameter of the sphere. 

For conceive two corpuscles to be severally attracted by two spheres, one by 
one, the other by the other, and their distances from the centres of the spheres 
to be proportional to the diameters of the spheres respectively; and the spheres 
to be resolved into like particles, disposed in a like situation to the corpuscles. 
Then the attractions of one corpuscle towards the several particles of one 
sphere will be to the attractions of the other towards as many analogous par- 
ticles of the other sphere in a ratio compounded of the ratio of the particles 
directly, and the square of the distances inversely. But the particles are as the 
spheres, that is, as the cubes of the diameters, and the distances are as the 
diameters; and the first ratio directly with the last ratio taken twice inversely, 
becomes the ratio of diameter to diameter. q.e.d. 

Cor. i. Hence if corpuscles revolve in circles about spheres composed of 
matter equally attracting, and the distances from the centres of the spheres 
be proportional to their diameters, the periodic times will be equal. 

Cor. ii. And, vice versa, if the periodic times are equal, the distances will be 
proportional to the diameters. These two Corollaries appear from Cor. m, 
Prop. 4. 

Cor. m. If to the several points of any two solids whatever, of like figure 
and equal density, there tend equal centripetal forces decreasing as the square 
of the distances from those points, the forces, with which corpuscles placed in 
a like situation to those two solids will be attracted by them, will be to each 
other as the diameters of the solids. 

Proposition 73. Theorem 33 
If to the several points of a given sphere there tend equal centripetal forces decreas- 
ing as the square of the distances from the points, I say, that a corpuscle placed 
within the sphere is attracted by a force proportional to its distance from the centre. 

In the sphere ACBD, described about the centre 
S, let there be placed the corpuscle P; and about the 
same centre S, with the interval SP, conceive de- 
scribed an interior sphere PEQF. It is plain (by Prop. 
70) that the concentric spherical surfaces of which the 
difference AEBF of the spheres is composed, have 
no effect at all upon the body P, their attractions 
being destroyed by contrary attractions. There re- 
mains, therefore, only the attraction of the interior 
sphere PEQF. And (by Prop. 72) this is as the dis- 

tance PS. ^ q.e.d. 
Scholium 

By the surfaces of which I here imagine the solids composed, I do not mean 
surfaces purely mathematical, but orbs so extremely thin, that their thickness 
is as nothing; that is, the evanescent orbs of which the sphere will at last con- 
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sist, when the number of the orbs is increased, and their thickness diminished 
without end. In like manner, by the points of which lines, surfaces, and solids 
are said to be composed, are to be understood equal particles, whose magnitude 
is perfectly inconsiderable. 

Proposition 74. Theorem 34 
The same things supposed, I say, that a corpuscle situated without the sphere is 
attracted with a force inversely proportional to the square of its distance from the 
centre. 

For suppose the sphere to be divided into innumerable concentric spherical 
surfaces, and the attractions of the corpuscle arising from the several surfaces 
will be inversely proportional to the square of the distance of the corpuscle 
from the centre of the sphere (by Prop. 71). And, by composition, the sum of 
those attractions, that is, the attraction of the corpuscle towards the entire 
sphere, will be in the same ratio. q.e.d. 

Cor. i. Hence the attractions of homogeneous spheres at equal distances 
from the centres will be as the spheres themselves. For (by Prop. 72) if the 
distances be proportional to the diameters of the spheres, the forces will be as 
the diameters. Let the greater distance be diminished in that ratio; and the 
distances now being equal, the attraction will be increased as the square of 
that ratio; and therefore will be to the other attraction as the cube of that 
ratio; that is, in the ratio of the spheres. 

Cor. ii. At any distances whatever the attractions are as the spheres applied 
to the squares of the distances. 

Cor. hi. If a corpuscle placed without an homogeneous sphere is attracted 
by a force inversely proportional to the square of its distance from the centre, 
and the sphere consists of attractive particles, the force of every particle will 
decrease as the square of the distance from each particle. 

Proposition 75. Theorem 35 
If to the several points of a given sphere there tend equal centripetal forces decreas- 
ing as the square of the distances from the point, I say, that another similar sphere 
will he attracted by it with a force inversely proportional to the square of the distance 
of the centres. 

For the attraction of every particle is inversely as the square of its distance 
from the centre of the attracting sphere (by Prop. 74), and is therefore the 
same as if that whole attracting force issued from one single corpuscle placed 
in the centre of this sphere. But this attraction is as great as on the other hand 
the attraction of the same corpuscle would be, if that were itself attracted by 
the several particles of the attracted sphere with the same force with which 
they are attracted by it. But that attraction of the corpuscle would be (by 
Prop. 74) inversely proportional to the square of its distance from the centre 
of the sphere; therefore the attraction of the sphere, equal thereto, is also in 
the same ratio. q.e.d. 

Cor. i. The attractions of spheres towards other homogeneous spheres are 
as the attracting spheres applied to the squares of the distances of their centres 
from the centres of those which they attract. 

Cor.ii. The case is the same when the attracted sphere does also attract. 
For the several points of the one attract the several points of the other with 
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the same force with which they themselves are attracted by the others again; 
and therefore since in all attractions (by Law m) the attracted and attracting 
point are both equally acted on, the force will be doubled by their mutual 
attractions, the proportions remaining. 

Cor. hi. Those several truths demonstrated above concerning the motion 
of bodies about the focus of the conic sections will take place when an attract- 
ing sphere is placed in the focus, and the bodies move without the sphere. 

Cor. iv. Those things which were demonstrated before of the motion of 
bodies about the centre of the conic sections take place when the motions are 
performed within the sphere. 

Proposition 76. Theorem 36 
If spheres he however dissimilar {as to density of matter and attractive force) in 
the same ratio onwards from the centre to the circumference; hut everywhere similar, 
at every given distance from the centre, on all sides round about; and the attractive 
force of every point decreases as the square of the distance of the hody attracted: 
I say, that the whole force with which one of these spheres attracts the other will he 
inversely proportional to the square of the distance of the centres. 

Imagine several concentric similar spheres AB, CD, EF, &c., the innermost 
of which added to the outermost may compose a matter more dense towards 
the centre, or subtracted from them may leave the same more lax and rare. 

Then, by Prop. 75, these spheres will 
attract other similar concentric 
spheres GH, IK, LM, &c., each the 
other, with forces inversely propor- 
tional to the square of the distance 
SP. And, by addition or subtraction, 
the sum of all those forces, or the ex- 
cess of any of them above the others; 
that is, the entire force with which the 
whole sphere AB (composed of any 

concentric spheres or of their differences) will attract the whole sphere GH 
(composed of any concentric spheres or their differences) in the same ratio. Let 
the number of the concentric spheres be increased in infinitum, so that the 
density of the matter together with the attractive force may, in the progress 
from the circumference to the centre, increase or decrease according to any 
given law; and by the addition of matter not attractive, let the deficient den- 
sity be supplied, that so the spheres may acquire any form desired; and the 
force with which one of these attracts the other will be still, by the former 
reasoning, in the same inverse ratio of the square of the distance. q.e.d. 

Cor. i. Hence if many spheres of this kind, similar in all respects, attract 
each other, the accelerative attractions of each to each, at any equal distances 
of the centres, will be as the attracting spheres. 

Cor. ii. And at any unequal distances, as the attracting spheres divided by 
the squares of the distances between the centres. 

Cor. hi. The motive attractions, or the weights of the spheres towards one 
another, will be at equal distances of the centres conjointly as the attracting 
and attracted spheres; that is, as the products arising from multiplying the 
spheres into each other. 

© 
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Cor. iv. And at unequal distances directly as those products and inversely 

as the squares of the distances between the centres. 
Cor. v. These proportions hold true also when the attraction arises from 

the attractive power of both spheres exerted upon each other. For the attrac- 
tion is only doubled by the conjunction of the forces, the proportions remain- 
ing as before. 

Cor. vi. If spheres of this kind revolve about others at rest, each about 
each, and the distances between the centres of the quiescent and revolving 
bodies are proportional to the diameters of the quiescent bodies, the periodic 
times will be equal. 

Cor. vii. And, again, if the periodic times are equal, the distances will be 
proportional to the diameters. 

Cor. viii. All those truths above demonstrated, relating to the motions of 
bodies about the foci of conic sections, will take place when an attracting 
sphere, of any form and condition like that above described, is placed in the 
focus. 

Cor. ix. And also when the revolving bodies are also attracting spheres of 
any condition like that above described. 

Proposition 77. Theorem 37 
If to the several points of spheres there tend centripetal forces proportional to the 
distances of the points from the attracted bodies, I say, that the compounded force 
with which two spheres attract each other is as the distance between the centres of 
the spheres. 

Case 1. Let AEBF be a sphere; S its centre; P a corpuscle attracted; PASB 
the axis of the sphere passing through the centre of the corpuscle; EF, ef two 
planes cutting the sphere, and perpendicular to the axis, and equidistant, one 
on one side, the other on the other, from the centre of the sphere; G and g the 
intersections of the planes and the axis; 
and H any point in the plane EF. The cen- 
tripetal force of the point H upon the cor- 
puscle P, exerted in the direction of the 
line PH, is as the distance PH; and (by 
Cor. ii of the Laws) the same exerted in 
the direction of the line PG, or towards 
the centre S, is as the length PG. Therefore 
the force of all the points in the plane EF 
(that is, of that whole plane) by which the corpuscle P is attracted towards 
the centre S is as the distance PG multiplied by the number of those points, 
that is, as the solid contained under that plane EF and the distance PG. And 
in like manner the force of the plane ef, by which the corpuscle P is attracted 
towards the centre S, is as that plane multiplied by its distance Vg, or as the 
equal plane EF multiplied by that distance P*/; and the sum of the forces of 
both planes as the plane EF multiplied by the sum of the distances PG-pP^, 
that is, as that plane multiplied by twice the distance PS of the centre and the 
corpuscle; that is, as twice the plane EF multiplied by the distance PS, or as 
the sum of the equal planes EF+e/ multiphed by the same distance. And, by 
a-like reasoning, the forces of all the planes in the whole sphere, equidistant 
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on each side from the centre of the sphere, are as the sum of those planes mul- 
tiplied by the distance PS, that is, as the whole sphere and the distance PS 
conjointly. q.e.d. 

Case 2. Let now the corpuscle P attract the sphere AEBF. And, by the 
same reasoning, it will appear that the force with which the sphere is attracted 
is as the distance PS. q.e.d. 

Case 3. Imagine another sphere composed of innumerable corpuscles P; and 
because the force with which every corpuscle is attracted is as the distance of 
the corpuscle from the centre of the first sphere, and as the same sphere con- 
jointly, and is therefore the same as if it all proceeded from a single corpuscle 
situated in the centre of the sphere, the entire force with which all the cor- 
puscles in the second sphere are attracted, that is, with which that whole 
sphere is attracted, will be the same as if that sphere were attracted by a force 
issuing from a single corpuscle in the centre of the first sphere; and is therefore 
proportional to the distance between the centres of the spheres. q.e.d. 

Case 4. Let the spheres attract each other, and the force will be doubled, 
but the proportion will remain. q.e.d. 

Case 5. Let the corpuscle p be placed within the sphere AEBF; and because 
the force of the plane ef upon the corpuscle is as the solid contained under that 
plane and the distance pg; and the contrary force of the plane EF as the solid 

contained under that plane and the distance pG; the 
force compounded of both will be as the difference of 
the solids, that is, as the sum of the equal planes 
multiplied by half the difference of the distances; 
that is, as that sum multiplied by pS, the distance of 
the corpuscle from the centre of the sphere. And, by 
a like reasoning, the attraction of all the planes EF, 
ef, throughout the whole sphere, that is, the attrac- 
tion of the whole sphere, is conjointly as the sum of 

all the planes, or as the whole sphere, and as pS, the distance of the corpuscle 
from the centre of the sphere. q.e.d. 

Case 6. And if there be composed a new sphere out of innumerable corpus- 
cles such as p, situated within the first sphere AEBF, it may be proved, as 
before, that the attraction, whether single of one sphere towards the other, or 
mutual of both towards each other, will be as the distance pS of the centres. 

Q.E.D. 

Proposition 78. Theorem 38 
If spheres in the progress from the centre to the circumference he however dissimilar 
and unequable, hut similar on every side round about at all given distances from 
the centre; and the attractive force of every point he as the distance of the attracted 
body: I say, that the entire force with which two spheres of this kind attract each 
other mutually is proportional to the distance between the centres of the spheres. 

This is demonstrated from the foregoing Proposition, in the same manner 
as Prop. 76 was demonstrated from Prop. 75. 

Cor. Those things that were above demonstrated in Props. 10 and 64, of 
the motion of bodies round the centres of conic sections, take place when all 
the attractions are made by the force of spherical bodies of the condition above 
described, and the attracted bodies are spheres of the same kind. 
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Scholium 

I have now explained the two principal cases of attractions; to wit, when 
the centripetal forces decrease as the square of the ratio of the distances, or 
increase in a simple ratio of the distances, causing the bodies in both cases to 
revolve in conic sections, and composing spherical bodies whose centripetal 
forces observe the same law of increase or decrease in the recess from the 
centre as the forces of the particles themselves do; which is very remarkable. 
It would be tedious to run over the other cases, whose conclusions are less 
elegant and important, so particularly as I have done these. I choose rather to 
comprehend and determine them all by one general method as follows. 

Lemma 29 
If about the centre S there he described any circle as AEB, and about the centre P 
there be also described two circles EF, ef, cutting the first in E and e, and the line 
PS in F and f; and there be let fall to PS the perpendiculars ED, ed: I say, that if 

E . 

B T 

the distance of the arcs EF, ef be supposed to be infinitely diminished, the last ratio 
of the evanescent line Dd to the evanescent line Ff is the same as that of the line PE 
to the line PS. 

For if the line Pe cut the arc EF in q; and the right line Ee, which coincides 
with the evanescent arc Ee, be produced, and meet the right line PS in T; and 
there be let fall from S to PE the perpendicular SG; then, because of the like 
triangles DTE, dTe, DES, 

Bd : Ee = BT : TE = DE : ES; 
and because the triangles, Eeq, ESG (by Lem. 8, and Cor. m, Lem. 7) are 
similar, Ee : eq or F/ = Es : SG. 
Multiplying together corresponding terms of the two proportions, 

Dd : F/=DE : SG = PE : PS 
(because of the similar triangles PDE, PGS). q.e.d. 

Proposition 79. Theorem 39 
Suppose a surface as EFfe to have its breadth infinitely diminished, and to be just 
vanishing; and that the same surface by its revolution round the axis PS describes a 
spherical concavoconvex solid, to the several equal particles of which there tend equal 
centripetal forces: I say, that the force with which that solid attracts a corpuscle 
situated in P is in a ratio compounded of the ratio of the solid DE2 • Ff and the ratio 
of the force with which the given particle in the place Ff would attract the same 
corpuscle. 

For if we consider, first, the force of the spherical surface FE which is gen- 
erated by the revolution of the arc FE, and is cut anywhere, as in r, by the line 

Dd 
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de, the annular part of the surface generated by the revolution of the arc rE 
will be as the short line T>d, the radius of the sphere PE remaining the same; 
as Archimedes has demonstrated in his Book on the Sphere and Cylinder. And 
the force of this surface exerted in the direction of the lines PE or Pr situated 

all round in the conical surface, will be as 
this annular surface itself; that is, as the 
short line Dd, or, which is the same, as the 
rectangle under the given radius PE of the 
sphere and the short line Drf; but that force, 
exerted in the direction of the line PS tend- 
ing to the centre S, will be less in the ratio 
PD to PE, and therefore will be as PD • Dd. 
Suppose now the line DF to be divided 
into innumerable little equal particles, each 
of which call Dc?, and then the surface FE 

will be divided into so many equal annuli, whose forces will be as the sum 
of all the rectangles PD-Dd, that is, as J^PF2 — ^PD2, and therefore as DE2. 
Let now the surface FE be multiplied by the altitude F/; and the force of the 
solid EF/e exerted upon the corpuscle P will be as DE2-F/; that is, if the force 
be given which any given particle as F/ exerts upon the corpuscle P at the 
distance PF. But if that force be not given, the force of the solid EFfe will be 
conjointly as the solid DE2-F/ and that force not given. q.e.d. 

  

Al s F/ r 

Proposition 80. Theorem 40 

If to the several equal parts of a sphere ABE described about the centre S there tend 
equal centripetal forces; and from the several points D in the axis of the sphere AB 
in which a corpuscle, as P, is placed, there be erected the perpendiculars DE meet- 
ing the sphere in E, and if in those perpendiculars the lengths DN be taken as the 

DE2 • PS quantity PE and as the force which a particle of the sphere situated in the 

axis exerts at the distance PE upon the corpuscle P conjointly: I say, that the whole 
force with which the corpuscle P is attracted towards the sphere is as the area AXB, 
comprehended under the axis v 
of the sphere AB, and the curved 
line ANB, the locus of the 
point N. 

For supposing the con- 
struction in the last Lemma 
and Theorem to stand, con- 
ceive the axis of the sphere 
AB to be divided into innu- 
merable equal particles Ed, 
and the whole sphere to be 
divided into so many spheri- 
cal concavoconvex laminae EFfe; and erect the perpendicular dn. By the last 
Theorem, the force with which the laminae EFfe attract the corpuscle P is as 
DE2 • Ff and the force of one particle exerted at the distance PE or PF, con- 
jointly. But (by the last Lemma) Ed is to Ff as PE to PS, and therefore Ff is 

s i 
h A1 V E 

\  

d 

in 
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• P)^ P)P2 • PS 

equal to — ; and DE2 • F/ is equal to Dd —==—; and therefore the force PE PE 
DE2 • PS of the lamina EF/e is as Dd—=-=— and the force of a particle exerted at PE 

the distance PF conjointly; that is, by the supposition, as DN-Dd, or as the 
evanescent area DNnd. Therefore the forces of all the laminae exerted upon the 
corpuscle P are as all the areas DNnd, that is, the whole force of the sphere will 
be as the whole area ANB. q.e.d. 

Cor. i. Hence if the centripetal force tending to the several particles remain 
DE2 • PS 

always the same at all distances, and DN be made as ——, the whole force PE 
with which the corpuscle is attracted by the sphere is as the area ANB. 

Cor. ii. If the centripetal force of the particles be inversely as the distance 
DE2 • PS 

of the corpuscle attracted by it, and DN be made as ——, the force with PE 
which the corpuscle P is attracted by the whole sphere will be as the area ANB. 

Cor. hi. If the centripetal force of the particles be inversely as the cube of 
DE2 • PS 

the distance of the corpuscle attracted by it, and DN be made as ——, the PE 
force with which the corpuscle is attracted by the whole sphere will be as the 
area ANB. 

Cor. iv. And universally if the centripetal force tending to the several par- 
ticles of the sphere be supposed to be inversely as the quantity V; and DN be 

DE2 • PS 
made as T:)T-. Tr ; the force with which a corpuscle is attracted by the whole PE • V 
sphere will be as the area ANB. 

Proposition 81. Problem 41 

The things remaining as above, it is required to measure the area ANB. 
From the point P let there be drawn the right line PH touching the sphere in 

H; and to the axis PAB, letting fall the perpendicular HI, bisect PI in L; and 
(by Prop. 12, Book n, Elements of Euclid) PE2 is equal to PS2+SE2+2PS • SD. 
But because the triangles SPH, 
SHI are alike, SE2 or SH2 is 
equal to the rectangle PS-IS. 
Therefore PE2 is equal to the 
rectangle contained under PS 
and PS+SI+2SD; that is, 
under PS and 2LS+2SD; that P 
is, under PS and 2LD. More- 
over DE2 is equal to SE2 — SD2, 
or 

SE2 - LS2+2LS • LD - LD2, 
that is, 

2LS • LD — LD2 — LA • LB. 
For LS2 — SE2 or LS2-SA2 (by Prop. 6, Book n, Elements of Euclid) is equal to 
the rectangle LA-LB. Therefore if instead of DE2 we write 

2LS • LD — LD2—LA • LB, 

I 

L Aj K 1 S t) 
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DE2 • PS 

the quantity y ,which (by Cor. iv of the foregoing Prop.) is as the length 

of the ordinate DN, will now resolve itself into three parts 
2SLD PS LD2 - PS ALB PS 

PE-V PE V PE V ; 

where if instead of V we write the inverse ratio of the centripetal force, and 
instead of PE the mean proportional between PS and 2LD, those three parts 
will become ordinates to so many curved lines, whose areas are discovered by 
the common methods. q.e.d. 

Exam. 1. If the centripetal force tending to the several particles of the sphere 
be inversely as the distance; instead of V write PE the distance, then 2PS • LD 

for PE2; and DN will become as SL- J^LD - 

LA LB Suppose DN equal to its double 2SL —LD — 
LD 

and 2SL the given part of the ordinate drawn into the 
length AB will describe the rectangular area 2SL-AB; 
and the indefinite part LD, drawn perpendicularly into 
the same length with a continued motion, in such sort as 
in its motion one way or another it may either by in- 

creasing or decreasing remain always equal to the length LD, will describe 
LB2 —LA2 

the area    , that is, the area SL• AB; which taken from the former area 

2SL-AB, leaves the area SL-AB. But the third part LA LB 
LD ' drawn after the 

same manner with a continued motion perpendicularly into the same length, 
will describe the area of an hyperbola, which subtracted from the area SL • AB 
will leave ANB the area sought. Whence arises this construction of the Prob- 
lem. At the points L, A, B, erect the perpendiculars L£, Aa, Bh; making Aa 
equal to LB, and Bh equal to LA. Making L^ and LB asymptotes, describe 
through the points a, h the hyperbolic curve ah. And the chord ha being drawn, 
will inclose the area aha equal to the area sought ANB. 

Exam. 2. If the centripetal force tending to the several particles of the sphere 
be inversely as the cube of the distance, or (which is the same thing) as that 

PE3 

cube applied to any given plane; write for Y, 

and 2PS-LD for PE2; and DN will become as 
SL-AS2 AS2 LA-LB-AS2 

PS-LD 2PS 2PS LD2 ' 
that is (because PS, AS, SI are continually propor- 
tional), as 

LSI 1/aT LA LB-SI 
LD"^SI" 2LD2 

SL - SI 
LD will If we draw then these three parts into the length AB, the first 

generate the area of an hyperbola; the second ^SI the area 3^AB • SI; the third 
LA LB SI LA • LB • SI LALBST 1/AT)C,TT. , , —2LD2— area 2LA —2LB ' 1S' ^ ^ From the first 

subtract the sum of the second and third, and there will remain ANB the area 
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sought. Whence arises this construction of the Problem. At the points L, A, S, 
B, erect the perpendiculars LI, Aa, Ss, B6, of which suppose Ss equal to SI; 
and through the point s, to the asymptotes U, LB, describe the hyperbola asb 
meeting the perpendiculars Aa, Bh in a and h] and the rectangle 2SA-SI sub- 
tracted from the hyperbolic area AasbB, will leave ANB the area sought. 

Exam. 3. If the centripetal force tending to the several particles of the 
spheres decrease as the fourth power of the distance from the particles; write 
PE4 

^-3 for Y, then V^PS + LD) for PE, and DN mil become as 
SP-SL 1 SI2 1 SI2 LA-LB 1 
V2SI * VLB3 2 V2SI' VLB 2 V2SI ' VLB^' 

These three parts drawn into the length AB, produce so many areas, viz., 
2SI2 SL . , / 1 1 \ SI2 . „ /T A\ a 

into V (LB — V LA); and 

SP LA LB . 

SP-SL. / I 1 \ 
V2SI mto\VLA VLB/ 

(-A L_\ 
y VLA3 VLB3/ 

V2SI 

And these after due reduction come forth 3V2SI 
2SPSL 2SI3 

SP, and 3Jj- these by subtracting the last from the first, LI 
4SI3 

become-^j-j. Therefore the entire force with which the corpuscle P is attracted 
SP towards the centre of the sphere is as that is, inversely as PS3-PI. q.e.i- 

By the same method one may determine the attraction of a corpuscle sit- 
uated within the sphere, but more expeditiously by the following Theorem. 

Proposition 82. Theorem 41 
In a sphere described about the centre S with the radius SA, if there be taken SI, 
SA, SP continually proportional: I say, that the attraction of a corpuscle within the 
sphere in any place I is to its attraction without the sphere in the place P in a ratio 
compounded of the square root of the ratio of IS, PS, the distances from the centre, 
and the square root of the ratio of the centripetal forces tending to the centre in those 
places P and I. 

As, if the centripetal forces of the particles of the sphere be inversely as the 
distances of the corpuscle attracted by them, the force with which the cor- 
puscle situated in I is attracted by the entire sphere mil be to the force with 
which it is attracted in P in a ratio compounded of the square root of the ratio 
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of the distance SI to the distance SP, and the square root of the ratio of the 
centripetal force in the place I arising from any particle in the centre to the 
centripetal force in the place P arising from the same particle in the centre; 
that is, inversely as the square root of the ratio of the distances SI, SP to each 

the semidiameter SA of the sphere. If those forces are inversely as the cube of 
the ratio of the distances, the attractions in I and P will be to each other as 
SP2 to SA2; if as the fourth power of the ratio, as SP3 to SA3. Therefore since 
the attraction in P was found in this last case to be inversely as PS3-PI, the 
attraction in I will be inversely as SA3-PI, that is, because SA3 is given, in- 
versely as PI. And the progression is the same in infinitum. The demonstra- 
tion of this Theorem is as follows: 

The things remaining as above constructed, and a corpuscle being in any 
DE2 • PS 

place P, the ordinate DN was found to be as y . Therefore if IE be 

drawn, that ordinate for any other place of the corpuscle, as I, will become 
DE2 • IS (other things being equal) as TTr . Suppose the centripetal forces flowing iii/ • V 

from any point of the sphere, as E, to be to each other at the distances IE and 
PE as PEn to IEn (where the number n denotes the index of the powers of PE 

and IE), and those ordinates will become as an(^ IE IE71' w^lose ra^0 

to each other is as PS • IE • IEn to IS • PE • PEn. Because SI, SE, SP are in con- 
tinued proportion, the triangles SPE, SEI are alike; and thence IE is to PE as 
IS to SE or SA. For the ratio of IE to PE write the ratio of IS to SA; and the 
ratio of the ordinates becomes that of PS-IEn to SA-PEn. But the ratio of PS 
to SA is the square root of that of the distances PS, SI; and the ratio of IEn to 
PEn (because IE is to PE as IS to SA) is the square root of that of the forces at 
the distances PS, IS. Therefore the ordinates, and consequently the areas 
which the ordinates describe, and the attractions proportional to them, are in a 
ratio compounded of the square root of those ratios. q.e.d. 

To find the force with which a corpuscle placed in the centre of a sphere is attracted 
towards any segment of that sphere whatsoever. 

Let P be a body in the centre of that sphere, and RBSD a segment thereof 
contained under the plane RDS and the spherical surface RBS. Let DB be cut 
in F by a spherical surface EFG described from the centre P, and let the seg- 

E other. These two square roots 
of ratios compose the ratio of 
equality, and therefore the at- 
tractions in I and P produced 
by the whole sphere are equal. 
By the like calculation, if the 

|B forces of the particles of the 
sphere are inversely as the 
square of the ratio of the dis- 
tances, it will be found that the 
attraction in I is to the attrac- 
tion in P as the distance SP to 

Proposition 83. Problem 42 
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ment be divided into the parts BREFGS, FEDG. Let us suppose that segment 
to be not a purely mathematical but a physical surface, having some, but a 
perfectly inconsiderable thickness. Let that thickness 
be called O, and (by what Archimedes hath dem- 
onstrated) that surface will be as PF • DF • O. Let us 
suppose, besides, the attractive forces of the particles 
of the sphere to be inversely as that power of the dis- 
tances, of which n is index; and the force with which 
the surface EFG attracts the body P will be (by 
^ _ DE20^,. 2DF-0 DF20 Prop. 79) as - — — that is, as • . Let PO- 

/7 

pjTn ' ppn-1 pp 
the perpendicular FN multiplied by 0 be propor- 
tional to this quantity; and the curvilinear area 
BDI, which the ordinate FN, drawn through the 
length DB with a continued motion will describe, will 
be as the whole force with which the whole segment 
RBSD attracts the body P. q.e.i. 

Proposition 84. Problem 43 
To find the force with which a corpuscle, placed without the centre of a sphere in the 
axis of any segment, is attracted hy that segment. 

Let the body P placed in the axis ADB 
of the segment EBK be attracted by that 
segment. About the centre P, with the ra- 
dius PE, let the spherical surface EFK be 
described; and let it divide the segment 
into two parts EBKFE and EFKDE. 
Find the force of the first of those parts 
by Prop. 81, and the force of the latter 
part by Prop. 83, and the sum of the 
forces will be the force of the whole seg- 
ment EBKDE. q.e.i. 

Scholium 
The attractions of spherical bodies being now explained, it comes next in 

order to treat of the laws of attraction in other bodies consisting in like man- 
ner of attractive particles; but to treat of them particularly is not necessary to 
my design. It will be sufficient to add some general Propositions relating to the 
forces of such bodies, and the motions thence arising, because the knowledge of 
these will be of some little use in philosophical inquiries. 

section xiii 

The attractive forces of bodies which are not spherical 

Proposition 85. Theorem 42 
If a body he attracted hy another, and its attraction he vastly stronger when it is 
contiguous to the attracting body than when they are separated from each other hy a 
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very small interval; the forces of the yarticles of the attracting body decrease, in the 
recess of the body attracted, in more than the squared ratio of the distance of the 
particles. 

For if the forces decrease as the square of the distances from the particles, 
the attraction towards a spherical body being (by Prop. 74) inversely as the 
square of the distance of the attracted body from the centre of the sphere, will 
not be sensibly increased by the contact, and it will be still less increased by it, 
if the attraction, in the recess of the body attracted, decreases in a still less 
proportion. The Proposition, therefore, is evident concerning attractive spheres. 
And the case is the same of concave spherical orbs attracting external bodies. 
And much more does it appear in orbs that attract bodies placed within them, 
because there the attractions diffused through the cavities of those orbs are (by 
Prop. 70) destroyed by contrary attractions, and therefore have no effect even 
in the place of contact. Now if from these spheres and spherical orbs we take 
away any parts remote from the place of contact, and add new parts anywhere 
at pleasure, we may change the figures of the attractive bodies at pleasure; but 
the parts added or taken away, being remote from the place of contact, will 
cause no remarkable excess of the attraction arising from the contact of the 
two bodies. Therefore the Proposition holds good in bodies of all figures, q.e.d. 

Proposition 86. Theorem 43 
If the forces of the particles of which an attractive body is composed decrease, in the 
recession of the attractive body, as the third or more than the third power of the dis- 
tance from the particles, the attraction will be vastly stronger in the point of contact 
than when the attracting and attracted bodies are separated from each other, though 
by ever so small an interval. 

For that the attraction is infinitely increased when the attracted corpuscle 
comes to touch an attracting sphere of this kind, appears, by the solution of 
Problem 41, exhibited in the second and third Examples. The same will also 
appear (by comparing those Examples and Theor. 41 together) of attractions 
of bodies made towards concavoconvex orbs, whether the attracted bodies be 
placed without the orbs, or in the cavities within them. And by adding to or 
taking from those spheres and orbs any attractive matter anywhere without 
the place of contact, so that the attractive bodies may receive any assigned 
figure, the Proposition will hold good of all bodies universally. q.e.d. 

Proposition 87. Theorem 44 
If two bodies similar to each other, and consisting of matter equally attractive, 
attract separately two corpuscles proportional to those bodies, and in a like situation 
to them, the accelerative attractions of the corpuscles towards the entire bodies will 
be as the accelerative attractions of the corpuscles towards particles of the bodies 
proportional to the wholes, and similarly situated in them. 

For if the bodies are divided into particles proportional to the wholes, and 
alike situated in them, it will be, as the attraction towards any particle of one 
of the bodies to the attraction towards the correspondent particle in the other 
body, so are the attractions towards the several particles of the first body, to 
the attractions towards the several correspondent particles of the other body; 
and, by composition, so is the attraction towards the first whole body to the 
attraction towards the second whole body. q.e.d. 
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Cor. i. Therefore if, as the distances of the corpuscles attracted increase, the 

attractive forces of the particles decrease in the ratio of any power of the dis- 
tances, the accelerative attractions towards the whole bodies will be directly as 
the bodies, and inversely as those powers of the distances. As if the forces of 
the particles decrease as the square of the distances from the corpuscles at- 
tracted, and the bodies are as A3 and B3, and therefore both the cubic sides of 
the bodies, and the distance of the attracted corpuscles from the bodies, are as 

A3 B3 

A and B; the accelerative attractions towards the bodies will be as ^ and 

that is, as A and B the cubic sides of those bodies. If the forces of the particles 
decrease as the cube of the distances from the attracted corpuscles, the ac- 

A3 B3 

celerative attractions towards the whole bodies will be as -r^ and that is, A3 B3 

equal. If the forces decrease as the fourth power, the attractions towards the 
A3 B3 

bodies will be as ^ and that is, inversely as the cubic sides A and B. And so 

in other cases. 
Cor. ii. Hence, on the other hand, from the forces with which like bodies 

attract corpuscles similarly situated, may be obtained the ratio of the decrease 
of the attractive forces of the particles as the attracted corpuscle recedes from 
them; if only that decrease is directly or inversely in any ratio of the distances. 

Proposition 88. Theorem 45 
If the attractive forces of the equal particles of any body be as the distance of the 
places from the particles, the force of the whole body will tend to its centre of gravity; 
and will be the same with the force of a globe, consisting of similar and equal matter, 
and having its centre in the centre of gravity. 

Let the particles A, B of the body RSTY attract any corpuscle Z with forces 
which, supposing the particles to be equal between themselves, are as the 
distances AZ, BZ; but, if they are supposed unequal, are as those particles and 
their distances AZ, BZ conjointly, or (if I may so speak) as those particles 
multiplied by their distances AZ, BZ respec- 
tively. And let those forces be expressed by RP~   
the contents under A-AZ, and B-BZ. Join  / a \ 
AB, and let it be cut in G, so that AG may ;;x/ \ 
be to BG as the particle B to the particle A; ■• ? ■■■/..  / \ 
and G will be the common centre of gravity ■ J g £ \ 
of the particles A and B. The force A-AZ / JB \ 
will (by Cor. ii of the Laws) be resolved into / \ 
the forces A-GZ and A-AG; and the force y' T 
B • BZ into the forces B • GZ and B • BG. Now 
the forces A-AG and B-BG, because A is proportional to B, and BG to AG, 
are equal, and therefore having contrary directions destroy one another. There 
remain then the forces A • GZ and B • GZ. These tend from Z towards the 
centre G, and compose the force (A+B) - GZ; that is, the same force as if the 
attractive particles A and B were placed in their common centre of gravity G, 
composing there a little globe. 

By the same reasoning, if there be added a third particle C, and the force of 
it be compounded with the force (A+B) • GZ tending to the centre G, the force 
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thence arising will tend to the common centre of gravity of that globe in G and 
of the particle C; that is, to the common centre of gravity of the three particles 
A, B, C; and will be the same as if that globe and the particle C were placed in 
that common centre composing a greater globe there; and so we may go on in 
infinitum. Therefore the whole force of all the particles of any body whatever 
RSTY is the same as if that body, without removing its centre of gravity, were 
to put on the form of a globe. q.e.d. 

Cor. Hence the motion of the attracted body Z will be the same as if the 
attracting body RSTY were spherical; and therefore if that attracting body be 
either at rest, or proceed uniformly in a right line, the body attracted will move 
in an ellipse having its centre in the centre of gravity of the attracting body. 

Proposition 89. Theorem 46 
7/ there he several bodies consisting of equal particles whose forces are as the dis- 
tances of the places from each, the force compounded of all the forces by which any 
corpuscle is attracted will tend to the common centre of gravity of the attracting 
bodies; and will be the same as if those attracting bodies, preserving their common 
centre of gravity, should unite there, and be formed into a globe. 

This is demonstrated after the same manner as the foregoing Proposition. 
Cor. Therefore the motion of the attracted body will be the same as if the 

attracting bodies, preserving their common centre of gravity, should unite 
there, and be formed into a globe. And, therefore, if the common centre of 
gravity of the attracting bodies be either at rest, or proceed uniformly in a 
right line, the attracted body will move in an ellipse having its centre in the 
common centre of gravity of the attracting bodies. 

Proposition 90. Problem 44 
If to the several points of any circle there tend equal centripetal forces, increasing or 
decreasing in any ratio of the distances; it is required to find the force with which a 
corpuscle is attracted, that is, situated anywhere in a right line which stands at 
right angles to the plane of the circle at its centre. 

Suppose a circle to be described about the centre A with any radius AD in a 
plane to which the right line AP is perpendicular; and let it be required to find 

the force with which a corpuscle P is attracted 
towards the same. From any point E of the 
circle, to the attracted corpuscle P, let there be 
drawn the right line PE. In the right line PA 
take PF equal to PE, and make a perpendicular 
FK, erected at F, to be as the force with which 
the point E attracts the corpuscle P. And let 

^ F H the curved line IKL be the locus of the point 
j j ; K. Let that curve meet the plane of the circle 
| :  j- in L. In PA take PH equal to PD, and erect the 
•^K perpendicular HI meeting that curve in I; and 

the attraction of the corpuscle P towards the 
circle will be as the area AHIL multiplied by the altitude AP. q.e.i. 

For let there be taken in AE a very small line Ec. Join Pc, and in PE, PA 
take PC, P/, both equal to Pc. And because the force, with which any point E 
of the ring described about the centre A with the radius AE in the aforesaid 
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plane attracts to itself the body P, is supposed to be as FK; and, therefore, the 

AP • FK force with which that point attracts the body P towards A is as —^—; and PK 
the force with which the whole ring attracts the body P towards A is as the 

AP-FK 
ring and —— conjointly; and that ring also is as the rectangle under the 

radius AE and the breadth Ee, and this rectangle (because PE and AE, Ee and 
CE are proportional) is equal to the rectangle PE • CE or PE • F/; the force with 

AP • FK which that ring attracts the body P towards A will be as PE • F/ and —^— PE 
conjointly; that is, as the content under F/-FK-AP, or as the area FKA*/mul- 
tiplied by AP. And therefore the sum of the forces with which all the rings, in 
the circle described about the centre A with the radius AD, attract the body P 
towards A, is as the whole area AHIKL multiplied by AP. q.e.d. 

Cor. i. Hence if the forces of the points decrease as the square of the dis- 

tances, that is, if FK be as p^, and therefore the area AHIKL as ]5^ —pjj4 

the attraction of the corpuscle P towards the circle will be as 

1 pjj' a is, as pjj* 

Cor. ii. And universally if the forces of the points at the distances D be 

inversely as any power Dn of the distances; that is, if FK be as and there- 

fore the area AHIKL as 
1 

pAn-l 

towards the circle will be as 

-pHn-1? the attraction of the corpuscle P 
PA 

PA""2 PH"-r 

Cor. hi. And if the diameter of the circle be increased in infinitum, and the 
number n be greater than unity; the attraction of the corpuscle P towards the 

PA whole infinite plane will be inversely as PA"-2, because the other term P H" i 
vanishes. 

Proposition 91. Problem 45 
To find the attraction of a corpuscle situated in the axis of a round solid, to whose 
several points there tend equal centripetal forces decreasing in any ratio of the 
distances whatsoever. 

Let the corpuscle P, situated in the axis 
AB of the solid DECG, be attracted towards 
that solid. Let the solid be cut by any circle 
as RFS, perpendicular to the axis; and in its 
semidiameter FS, in any plane PALKB pass- 
ing through the axis, let there be taken (by 
Prop. 90) the length FK proportional to the 
force with which the corpuscle P is attracted 
towards that circle. Let the locus of the point 
K be the curved line LKI, meeting the planes 
of the outermost circles AL and BI in L and I; and the attraction of the cor- 
puscle P towards the solid will be as the area LABI. q.e.i. 
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Cor. i. Hence if the solid be a cylinder described by the parallelogram 

ADEB revolved about the axis AB, and the centripetal forces tending to the 
several points be inversely as the squares of the distances from the points; the 

attraction of the corpuscle P towards this 
cylinder will be as AB —PE + PD. For the 
ordinate FK (by Cor. i, Prop. 90) will be as 

PF The part 1 of this quantity, multi- 

K 
F 

1- 
PR' 

plied by the length AB, describes the area 
PF 1 • AB; and the other part multiplied by 1 K 

the length PB, describes the area 1(PE — 
L AD) (as may be easily shown from the quad- 

rature of the curve LKI); and, in like manner, the same part multiplied by 
the length PA describes the area 1-(PD —AD), and multiplied by AB, the 
difference of PB and PA, describes 1-(PE —PD), the difference of the areas. 
From the first content 1*AB take away the last content 1-(PE —PD), and 
there will remain the area LABI equal to 1 • (AB —PE+PD). Therefore the 
force, being proportional to this area, is as AB — PE+PD. 

Cor. ii. Hence also is known the force by which a spheroid AGBC attracts 
any body P situate externally in its axis AB. Let NKRM be a conic section 
whose ordinate ER perpendicular to 
PE may be always equal to the 
length of the line PD, continually 
drawn to the point D in which that 
ordinate cuts the spheroid. From the 
vertices A, B of the spheroid, let 
there be erected to its axis AB the 
perpendiculars AK, BM, respective- 
ly equal to AP, BP, and therefore 
meeting the conic section in K and 
M; and join KM cutting off from it 
the segment KMRK. Let S be the 
centre of the spheroid, and SC its 
greatest semidiameter; and the force with which the spheroid attracts the 
body P will be to the force with which a sphere described with the diameter 
AB attracts the same body as AS CS2-PS KMRK . is to AS3 

And by a PS2+CS2 —AS2 BPS2" 
calculation founded on the same principles may be found the forces of the seg- 
ments of the spheroid. 

Cor. hi. If the corpuscle be placed within the spheroid and in its axis, the 
attraction will be as its distance from the centre. This may be easily inferred 
from the following reasoning, whether the particle be in the axis or in any other 
given diameter. Let AGOF be an attracting spheroid, S its centre, and P the 
body attracted. Through the body P let there be drawn the semidiameter SPA, 
and two right lines DE, FG meeting the spheroid in D and E, F and G; and let 
PCM, HLN be the surfaces of two interior spheroids similar and concentric to 
the exterior, the first of which passes through the body P, and cuts the right 
lines DE, FG in B and C; the latter cuts the same right lines in H and I, K and 
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DF L. Let the spheroids have all one common axis, 

and the parts of the right lines intercepted on 
both sides DP and BE, FP and CG, DH and IE, 
FK and LG, will be mutually equal; because the 
right lines DE, PB, and HI are bisected in the 
same point, as are also the right lines FG, PC, 
and KL. Conceive now DPF, EPG to represent 
opposite cones described with the infinitely small 
vertical angles DPF, EPG, and the lines DH, 
El to be infinitely small also. Then the particles of the cones DHKF, GLIE, 
cut off by the spheroidal surfaces, by reason of the equality of the lines DH 
and El, will be to one another as the squares of the distances from the body P, 
and will therefore attract that corpuscle equally. And by a like reasoning if the 
spaces DPF, EGCB be divided into particles by the surfaces of innumerable 
similar spheroids concentric to the former and having one common axis, all 
these particles will equally attract on both sides the body P towards contrary 
parts. Therefore the forces of the cone DPF, and of the conic segment EGCB, 
are equal, and by their opposed actions destroy each other. And the case is 
the same of the forces of all the matter that lies without the interior spheroid 
PCBM. Therefore the body P is attracted by the interior spheroid PCBM 
alone, and therefore (by Cor. m, Prop. 72) its attraction is to the force with 
which the body A is attracted by the wiiole spheroid AGOD as the distance 
PS is to the distance AS. q.e.d. 

Proposition 92. Problem 46 
An attracting body being given, it is required to find the ratio of the decrease of the 
centripetal forces tending to its several points. 

The body given must be formed into a sphere, a cylinder, or some regular 
figure, whose lawr of attraction answering to any ratio of decrease may be found 
by Props. 80, 81, and 91. Then, by experiments, the force of the attractions 
must be found at several distances, and the law of attraction towards the 
whole, made known by that means, will give the ratio of the decrease of the 
forces of the several parts; winch was to be found. 

Proposition 93. Theorem 47 
If a solid be plane on one side, and infinitely extended on all other sides, and consist 
of equal particles equally attractive, whose forces decrease, in receding from the 
solid, in the ratio of any power greater than the square of the distances; and a 
corpuscle placed towards either part of the plane is attracted by the force of the 
whole solid: I say, that the attractive force of the whole solid, in receding from its 
plane surface will decrease in the ratio of a power whose side is the distance of the 
corpuscle from the plane, and its index less by 3 than the index of the power of the 
distances. 

Case 1. Let LG^ be the plane by which the solid is terminated. Let the solid 
lie on that side of the plane that is towards I, and let it be resolved into innumer- 
able planes mHM, nIN, oKO, &c., parallel to GL. And first let the attracted 
body C be placed without the solid. Let there be drawm CGHI perpendicular to 
those innumerable planes, and let the attractive forces of the points of the solid 
decrease in the ratio of a powder of the distances Avhose index is the number n 
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not less than 3. Therefore (by Cor. m, 
Prop. 90) the force with which any 
plane mHM attracts the point C is in- 
versely as CHn_2. In the plane mHM 
take the length HM inversely propor- 
tional to CHn-2, and that force will be 
as HM. In like manner in the several 
planes IGL, nIN, oKO, &c., take the 
lengths GL, IN, KO, &c., inversely 
proportional to CGn_2, CIn~2, CKn~2, 
&c., and the forces of those planes will 

be as the lengths so taken, and therefore the sum of the forces as the sum of 
the lengths, that is, the force of the whole solid as the area GLOK produced 
infinitely towards OK. But that area (by the known methods of quadratures) 
is inversely as CG71-3, and therefore the force of the whole solid is inversely as 
CG71-3. Q.E.D. 

Case 2. Let the corpuscle C be now placed on that side of the plane /GL that 
is within the solid, and take the distance CK equal to the distance CG. And the 
part of the solid LG/oKO terminated by the par- 
allel planes /GL, oKO, will attract the corpuscle 
C, situated in the middle, neither one way nor 
another, the contrary actions of the opposite points 
destroying one another by reason of their equality. 
Therefore the corpuscle C is attracted by the force 
only of the solid situated beyond the plane OK. 
But this force (by Case 1) is inversely as CKn~3, 
that is (because CG, CK are equal), inversely as 
CGn~3. Q.E.D. 

Cor. i. Hence if the solid LGIN be terminated on each side by two infinite 
parallel planes LG, IN, its attractive force is known, subtracting from the 
attractive force of the whole infinite solid LGKO the attractive force of the 
more distant part NIKO infinitely produced towards KO. 

Cor. ii. If the more distant part of this solid be rejected, because its attrac- 
tion compared with the attraction of the nearer part is inconsiderable, the 
attraction of that nearer part will, as the distance increases, decrease nearly in 
the ratio of the power CGn~3. 

Cor. hi. And hence if any finite body, plane on one side, attract a corpuscle 
situated over against the middle of that plane, and the distance between 
the corpuscle and the plane compared with the dimensions of the attracting 
body be extremely small; and the attracting body consist of homogen- 
eous particles, whose attractive forces decrease in the ratio of any power 
of the distances greater than the fourth; the attractive force of the whole 
body will decrease very nearly in the ratio of a power whose side is that 
very small distance, and the index less by 3 than the index of the former 
power. This assertion does not hold good, however, of a body consisting of 
particles whose attractive forces decrease in the ratio of the third power of 
the distances; because, in that case, the attraction of the remoter part of the 
infinite body in the second Corollary is always infinitely greater than the 
attraction of the nearer part. 

N O 

c I K 

0 
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Scholium 
If a body is attracted perpendicularly towards a given plane, and from the 

law of attraction given, the motion of the body be required; the Problem will 
be solved by seeking (by Prop. 39) the motion of the body descending in a right 
line towards that plane, and (by Cor. 11 of the Laws) compounding that motion 
with an uniform motion performed in the direction of lines parallel to that 
plane. And, on the contrary, if there be required the law of the attraction tend- 
ing towards the plane in perpendicular directions, by which the body may be 
caused to move in any given curved line, the Problem will be solved by working 
after the manner of the third Problem. 

But the operations may be contracted by resolving the ordinates into con- 
verging series. As if to a base A the length B be ordinately applied in any given 
angle, and that length be as any power of the base A^; and there be sought the 
force with which a body, either attracted towards the base or driven from it in 
the direction of that ordinate, may be caused to move in the curved line which 
that ordinate always describes with its superior extremity; I suppose the base 
to be increased by a very small part 0, and I resolve the ordinate (A+0)Tl into 
an infinite series m w _ mTO_TOn ^ 

n" 2nn 00A » &<=- 
and I suppose the force proportional to the term of this series in which 0 is of 

77X771 — 77X77/ m ~2w' two dimensions, that is, to the term —^ OOA n Therefore the force 2nn 
. j . 71X771 —77X71 . m-2n i • , . ,i • 77X77X — 77X7X ™-2n. 

sought is as A n , or, which is the same thing, as B n As txtx 0 nn 
if the ordinate describe a parabola, m being =2, and n = 1, the force will be as 
the given quantity 2B0, and therefore is given. Therefore with a given force the 
body will move in a parabola, as Galileo hath demonstrated. If the ordinate 
describe an hyperbola, m being =0 — 1, and n = 1, the force will be as 2A~3 or 
2B3; and therefore a force which is as the cube of the ordinate will cause the 
body to move in an hyperbola. But leaving Propositions of this kind, I shall go 
on to some others relating to motion which I have not yet touched upon. 

SECTION XIV 

The motion of very small bodies when agitated by centripetal forces 
TENDING TO THE SEVERAL PARTS OF ANY VERY GREAT BODY 

Proposition 94. Theorem 48 
If two similar mediums he separated from each other by a space termiTxated on both 
sides by parallel planes, and a body in its passage through that space he attracted or 
impelled perpendicularly towards either of those mediums, and not agitated or 
hindered by any other force; and the attraction be everywhere the same at equal 
distances from either plane, taken towards the same side of the plane: I say, that 
the sine of incidence upon either plane will he to the sine of emergence from the other 
plane in a given ratio. 

Case 1. Let Aa and B6 be two parallel planes, and let the body light upon the 
first plane Aa in the direction of the line GH, and in its whole passage through 
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the intermediate space let it be attracted 
or impelled towards the medium of inci- 
dence, and by that action let it be made to 
describe a curved line HI, and let, it emerge 
in the direction of the line IK. Let there be 
erected IM perpendicular to B6 the plane 
of emergence, and meeting the line of in- 
cidence GH prolonged in M, and the plane 
of incidence Aa in R; and let the line of 
emergence KI be produced and meet HM 
in L. About the centre L, with the radius 
LI, let a circle be described cutting both 
HM in P and Q, and MI produced in N; 

and, first, if the attraction or impulse be supposed uniform, the curve HI (by 
what Galileo hath demonstrated) will be a parabola, whose property is that of 
a rectangle under its given latus rectum, and the line IM equal to the square of 
HM; and moreover the line HM will be bisected in L. Hence if to MI there be 
let fall the perpendicular LO, then MO, OR will be equal; and adding the equal 
lines ON, 01, the wholes MN, IR will be equal also. Therefore since IR is 
given, MN is also given, and the rectangle MI • MN is to the rectangle under 
the latus rectum and IM, that is, to HM2 in a given ratio. But the rectangle 
MI-MN is equal to the rectangle MP-MQ, that is, to the difference of the 
squares ML2, and PL2 or LI2; and HM2 hath a given ratio to its fourth part 
ML2; therefore the ratio of ML2 —LI2 to ML2 is given, and by conversion the 
ratio of LI2 to ML2, and its square root, the ratio of LI to ML. But in every 
triangle, as LMI, the sines of the angles are proportional to the opposite sides. 
Therefore the ratio of the sine of the angle of incidence LMR to the sine of the 
angle of emergence LIR is given. q.e.d. 

Case 2. Let now the body pass successively through several spaces termi- 
nated with parallel planes Aa6B, B6cC, &c., and let it be acted on by a force 
which is uniform in each of them separately, but different in the different 

spaces; and by what was just demonstrated, the 
sine of the angle of incidence on the first plane 
Aa is to the sine of emergence from the second 
plane B6 in a given ratio; and this sine of inci- 
dence upon the second plane B5 will be to the 
sine of emergence from the third plane Cc in a 
given ratio; and this sine to the sine of emergence 

from the fourth plane Dd in a given ratio; and so on in infinitum; and, by 
multiplication of equals, the sine of incidence on the first plane is to the sine 
of emergence from the last plane in a given ratio. Let now the intervals of the 
planes be diminished, and their number be infinitely increased, so that the 
action of attraction or impulse, exerted according to any assigned law, may 
become continual, and the ratio of the sine of incidence on the first plane to 
the sine of emergence from the last plane being all along given, will be given 
then also. q.e.d. 

is: 
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Proposition 95. Theorem 49 
The same things being supposed, I say, that the velocity of the body before its 
incidence is to its velocity after emergence as the sine of emergence to the sine of 
incidence. 

Make AH and Id equal, and erect the perpendiculars AG, dK meeting the 
lines of incidence and emergence GH, IK in G and K. In GH take TH equal to 
IK, and to the plane Aa let fall a perpendicular Ti'. And (by Cor. ii of the Laws 
of Motion) let the motion of the body be re- 
solved into two, one perpendicular to the 
planes Aa, B5, Cc, &c., and another parallel 
to them. The force of attraction or impulse, 
acting in directions perpendicular to those 
planes, does not at all alter the motion in par- 
allel directions; and therefore the body pro- 
ceeding with this motion will in equal times 
go through those equal parallel intervals that 
lie between the line AG and the point H, and it 
between the point I and the line dK; that is, they will describe the lines GH, 
IK in equal times. Therefore the velocity before incidence is to the velocity 
after emergence as GH to IK or TH, that is, as AH or Id to ^H, that is (suppo- 
sing TH or IK radius), as the sine of emergence to the sine of incidence, q.e.d. 

Proposition 96. Theorem 50 
The same things being supposed, and that the motion before incidence is swifter 
than afterwards: I say, that if the line of incidence be inclined continually, the body 
will be at last reflected, and the angle of reflection will be equal to the angle of 
incidence. 

For conceive the body passing between the parallel planes Aa, B?>, Cc, &c., 
to describe parabolic arcs as above; and let those arcs be HP, PQ, QR, &c. And 
let the obliquity of the line of incidence GH to the first plane Aa be such that 
the sine of incidence may be to the radius of the circle whose sine it is, in the 
same ratio which the same sine of incidence hath to the sine of emergence from 
the plane Dd into the space DdcE; and because the sine of emergence is now 
become equal to the radius, the angle of emergence will be a right one, and 
therefore the line of emergence will coincide with the plane Dd. Let the body 
come to this plane in the point R; and because the line of emergence coincides 
with that plane, it is manifest that the body can proceed no farther towards the 

plane Ec. But neither can it proceed in 
the line of emergence Rd; because it is 
perpetually attracted or impelled to- 
wards the medium of incidence. It will 
return, therefore, between the planes 
Cc, Dd, describing an arc of a parabola 

QRg, whose principal vertex (by what Galileo hath demonstrated) is in R, 
cutting the plane Cc in the same angle at q, that it did before at Q; then going 
on in the parabolic arcs qp, ph, &c., similar and equal to the former arcs QP, 
PH, &c., it will cut the rest of the planes in the same angles at p, h, &c., as it 

\p 
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did before in P, H, &c., and will emerge at last with the same obliquity at h 
with which it first impinged on that plane at H. Conceive now the intervals of 
the planes Aa, Bh, Cc, Dd, Be, &c., to be infinitely diminished, and the number 
infinitely increased, so that the action of attraction or impulse, exerted accord- 
ing to any assigned law, may become continual; and, the angle of emergence 
remaining all along equal to the angle of incidence, will be equal to the same 
also at last. q.e.d. 

Scholium 

These attractions bear a great resemblance to the reflections and refractions 
of light made in a given ratio of the secants, as was discovered by Snell; and 

consequently in a given ratio of the sines, as was 
\ / exhibited by Descartes. For it is now certain 

f •\ / from the phenomena of Jupiter's satellites, con- 
/ ' \ / firmed by the observations of different astron- 
g \ / omers, that light is propagated in succession, 

Cf/ . ■   / an(i requires about seven or eight minutes to 
  travel from the sun to the earth. Moreover, the ^• rr. . f*      O ^ 9 w 0 rays of light that are in our air (as lately was 

discovered by Grimaldi, by the admission of light into a dark room through 
a small hole, which I have also tried) in their passage near the angles of 
bodies, whether transparent or opaque (such as the circular and rectangular 
edges of gold, silver, and brass coins, or of knives, or broken pieces of stone or 
glass), are bent or inflected round those bodies as if they were attracted to 
them; and those rays which in their passage come nearest to the bodies are 
the most inflected, as if they were most attracted; which thing I myself have 
also carefully observed. And those which pass at greater distances are less in- 
flected; and those at still greater distances are a little inflected the contrary 
way, and form three fringes of colors. In the figure s represents the edge of a 
knife, or any kind of wedge AsB; and gowog, fnunf, emtme, dlsld are rays in- 
flected towards the knife in the arcs owo, nun, mtm, hi; which inflection is 
greater or less according to their distance from the knife. Now since this in- 
flection of the rays is performed in the air without the knife, it follows that the 
rays which fall upon the knife are first inflected in the air before they touch the 
knife. And the case is the same of the rays falling upon glass. The refraction, 
therefore, is made not in the point of incidence, but c b a 
gradually, by a continual inflection of the rays; 
which is done partly in the air before they touch x-G-v" 
the glass, partly (if I mistake not) within the glass, ^ v ' - V'"' 
after they have entered it; as is represented in the  r j 'py 
rays ckzc, hiyh, ahxa, falling upon r, q, p, and in- z/ y/x/ 
fleeted between k and z, i and y, h and x. Therefore / / / 
because of the analogy there is between the propa- / / 
gation of the rays of light and the motion of bodies, 
I thought it not amiss to add the following Propo- r ^ a 

sitions for optical uses; not at all considering the nature of the rays of light, 
or inquiring whether they are bodies or not ; but only determining the curves 
of bodies which are extremely like the curves of the rays. 
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Proposition 97. Problem 47 
Supposing the sine of incidence upon any surface to he in a given ratio to the sine 
of emergence; and that the inflection of the paths of those bodies near that surface is 
performed in a very short space, which may he considered as a point; it is required 
to determine such a surface as may cause all the corpuscles issuing from any one 
given place to converge to another given place. 

Let A be the place from whence the corpuscles diverge; B the place to which 
they should converge; CDE the curved line which by its revolution round the 
axis AB describes the surface sought; D, E any two points of that curve; and 
EE, EG perpendiculars let fall on the 
paths of the bodies AD, DB. Let the 
point D approach to and coalesce with 
the point E; and the ultimate ratio of 
the line DF by which AD is increased, 
to the line DG by which DB is dimin- 
ished, will be the same as that of the sine of incidence to the sine of emergence. 
Therefore the ratio of the increment of the line AD to the decrement of the 
line DB is given; and therefore if in the axis AB there be taken anywhere the 
point C through which the curve CDE must pass, and CM the increment of 
AC be taken in that given ratio to CN the decrement of BC, and from the 
centres A, B, with the radii AM, BN, there be described two circles cutting 
each other in D; that point D will touch the curve sought CDE, and, by touch- 
ing it anywhere at pleasure, will determine that curve. q.e.i. 

Cor. i. By causing the point A or B to go off sometimes in infinitum, and 
sometimes to move towards other parts of the point C, will be obtained all 
those figures which Descartes has exhibited in his Optics and Geometry relating 
to refractions. The invention of which Descartes having thought fit to conceal 
is here laid open in this Proposition. 

Cor. ii. If a body lighting on any surface 
CD in the direction of a right line AD, drawn 
according to any law, should emerge in the Q 
direction of another right line DK; and from 
the point C there be drawn curved lines CP, 
CQ, always perpendicular to AD, DK; the ^ 
increments of the lines PD, QD, and there- A 

fore the lines themselves PD, QD, generated by those increments, mil be as 
the sines of incidence and emergence to each other, and conversely. 

Proposition 98. Problem 48 
The same things supposed; if round the axis AB any attractive surface he described, 
as CD, regular or irregular, through which the bodies issuing from the given place 
A must pass; it is required to find a second attractive surface EF, which may make 
those bodies converge to a given place B. 

Let a line joining AB cut the first surface in C and the second in E, the point 
D being taken in any manner at pleasure. And supposing the sine of incidence 
on the first surface to the sine of emergence from the same, and the sine of 
emergence from the second surface to the sine of incidence on the same, to be 
as any given quantity M to another given quantity N; then produce AB to G, so 
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that BG may be to CE as M - N to N; and AD to H, so that AH may be equal 
to AG; and DF to K, so that DK may be to DH as N to M. Join KB, and about 
the centre D with the radius DH describe a circle meeting KB produced in L, 

2 
D •••.: p 

and draw BF parallel to DL; and the point F will touch the line EF, which, 
being turned round the axis AB, will describe the surface sought. q.e.f. 

For conceive the lines CP, CQ to be everywhere perpendicular to AD, DF, 
and the lines ER, ES to FB, FD respectively, and therefore QS to be always 
equal to CE; and (by Cor. 11, Prop. 97) PD will be to QD as M to N, and there- 
fore as DL to DK, or FB to FK; and by subtraction, as DL — FB or PH — PD — 
FB to FD or FQ —QD; and by addition as PH —FB to FQ, that is (because 
PH and CG, QS and CE, are equal), as CE+BG —FR to CE —FS. But (be- 
cause BG is to CE as M — N to N) it comes to pass also that CE-(-BG is to CE 
as M to N; and therefore, by subtraction, FR is to FS as M to N; and therefore 
(by Cor. ii, Prop. 97) the surface EF compels a body, falling upon it in the 
direction DF, to go on in the line FR to the place B. q.e.d. 

Scholium 
In the same manner one may go on to three or more surfaces. But of all 

figures the spherical is the most proper for optical uses. If the object glasses of 
telescopes were made of two glasses of a spherical figure, containing water be- 
tween them, it is not unlikely that the errors of the refractions made in the 
extreme parts of the surfaces of the glasses may be accurately enough corrected 
by the refractions of the water. Such object glasses are to be preferred before 
elliptic and hyperbolic glasses, not only because they may be formed with more 
ease and accuracy, but because the pencils of rays situated without the axis of 
the glass would be more accurately refracted by them. But the different re- 
frangibility of different rays is the real obstacle that hinders optics from being 
made perfect by spherical or any other figures. Unless the errors thence arising 
can be corrected, all the labor spent in correcting the others is quite thrown 
away. 





BOOK TWO 

THE MOTION OF BODIES 

IN RESISTING MEDIUMS 

SECTION I 

The motion of bodies that are resisted in the ratio of the velocity 

Proposition 1. Theorem 1 
If a body is resisted in the ratio of its velocity, the motion lost by resistance is as the 
space gone over in its motion. 

For since the motion lost in each equal interval of time is as the velocity, 
that is, as the small increment of space gone over, then, by composition, the 
motion lost in the whole time will be as the whole space gone over. q.e.d. 

Cor. Therefore if the body, destitute of all gravity, move by its innate force 
only in free spaces, and there be given both its whole motion at the beginning, 
and also the motion remaining after some part of the way is gone over, there 
will be given also the whole space which the body can describe in an infinite 
time. For that space will be to the space now described as the whole motion at 
the beginning is to the part lost of that motion. 

Lemma 1 
Quantities proportional to their differences are continually proportional. 

Let A : A —B = B : B-C = C : C-D = &c.; 
then, by subtraction, 

A : B = B : C = C : D = &c. q.e.d. 

Proposition 2. Theorem 2 
If a body is resisted in the ratio of its velocity, and moves, by its inertia only, 
through an homogeneous medium, and the times be taken equal, the velocities in the 
beginning of each of the times are in a geometrical progression, and the spaces 
described in each of the times are as the velocities. 

Case 1. Let the time be divided into equal intervals; and if at the very begin- 
ning of each interval we suppose the resistance to act with one single impulse 
which is as the velocity, the decrement of the velocity in each of the intervals 
of time will be as the same velocity. Therefore the velocities are proportional to 
their differences, and therefore (by Lem. 1, Book ii) continually proportional. 
Therefore if out of an equal number of intervals there be compounded any 
equal portions of time, the velocities at the beginning of those times will be as 
terms in a continued progression, which are taken by jumps, omitting every- 
where an equal number of intermediate terms. But the ratios of these terms are 
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D 

compounded of the equal ratios of the intermediate terms equally repeated, 
and therefore are equal. Therefore the velocities, being proportional to those 
terms, are in geometrical progression. Let those equal intervals of time be 
diminished, and their number increased in infinitum, so that the impulse of 
resistance may become continual; and the velocities at the beginnings of equal 
times, always continually proportional, will be also in this case continually 
proportional. q.e.d. 

Case 2. And, by division, the differences of the velocities, that is, the parts 
of the velocities lost in each of the times, are as the wholes; but the spaces 
described in each of the times are as the lost parts of the 
velocities (by Prop. 1, Book i), and therefore are also as 
the wholes. q.e.d. 

Cor. Hence if to the rectangular asymptotes AC, CH, 
the hyperbola BG is described, and AB, DG be drawn 
perpendicular to the asymptote AC, and both the velo- 
city of the body, and the resistance of the medium, at 
the very beginning of the motion, be expressed by any given line AC, and, 
after some time is elapsed, by the indefinite line DC; the time may be ex- 
pressed by the area ABGD, and the space described in that time by the line 
AD. For if that area, by the motion of the point D, be uniformly increased in 
the same manner as the time, the right line DC will decrease in a geometrical 
ratio in the same manner as the velocity; and the parts of the right line AC, 
described in equal times, will decrease in the same ratio. 

Proposition 3. Problem 1 
To define the motion of a body which, in an homogeneous medium, ascends or 
descends in a right line, and is resisted in the ratio of its velocity, and acted upon by 
an uniform force of gravity. 

The body ascending, let the gravity be represented by any given rectangle 
BACH; and the resistance of the medium, at the beginning of the ascent, by 

the rectangle BADE, taken on the contrary 
side of the right line AB. Through the point 
B, with the rectangular asymptotes AC, 
CH, describe an hyperbola, cutting the per- 
pendiculars DE, de in G, <7; and the body 
ascending will in the time T)Ggd describe 
the space EGgre; in the time DGBA, the 
space of the whole ascent EGB; in the time 
ABKI, the space of descent BFK; and in 
the time YKki the space of descent KFfk; 
and the velocities of the bodies (propor- 

tional to the resistance of the medium) in these periods of time will be ABED, 
ABed, o, ABFI, ABfi respectively; and the greatest velocity which the body 
can acquire by descending will be BACH. 

For let the rectangle BACH be resolved into innumerable rectangles Ak, Kl, 
Lm, Mn, &c., which shall be as the increments of the velocities produced in so 
many equal times; then will o, Ak, Al, Am, An, &c., be as the whole velocities, 
and therefore (by supposition) as the resistances of the medium in the begin- 
ning of each of the equal times. Make AC to AK, or ABHC to AB/rK, as the 
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force of gravity to the resistance in the beginning of the second time; then from 
the force of gravity subtract the resistances, and ABHC, K/rHC, liHC, Mm- 
HC, &c., will be as the absolute forces with which the body is acted upon in the 
beginning of each of the times, and therefore (by Law i) as the increments of 
the velocities, that is, as the rectangles A/r, Kl, Lm, Mn, &c., and therefore (by 
Lem. 1, Book 11) in a geometrical progression. Therefore, if the right lines K/r, 
LI, Mm, Nn, &c., are produced so as to meet the hyperbola in q, r, s, t, &c., the 
areas ABgK, KqrL, LrsM, Ms^N, &c., will be equal, and therefore analogous to 

the equal times and equal gravitating forces. 
But the area AB^K (by Cor. m, Lems. 7 and 
8, Book i) is to the area Bkq as Kq to }/zkq, 
or AC to that is, as the force of grav- 
ity to the resistance in the middle of the first 
time. And by the like reasoning, the areas 

-H qKLr, rLMs, sMN^, &c., are to the areas qklr, 
rims, smnt, &c., as the gravitating forces to 
the resistances in the middle of the second, 
third, fourth time, and so on. Therefore since 

the equal areas BAKg, qKLr, rLMs, sMN^, &c., are analogous to the gravi- 
tating forces, the areas B/r^, qklr, rims, smnt, &c., will be analogous to the 
resistances in the middle of each of the times, that is (by supposition), to the 
velocities, and so to the spaces described. Take the sums of the analogous 
quantities, and the areas Bkq, Blr, Bms, Bnt, &c., will be analogous to the 
whole spaces described; and also the areas ABgK, ABrL, ABsM, AB^N, &c., 
to the times. Therefore the body, in descending, will in any time ABrL de- 
scribe the space BZr, and in the time Lr^N the space rlnt. q.e.d. And the like 
demonstration holds in ascending motion. 

Cor. i. Therefore the greatest velocity that the body can acquire by falling 
is to the velocity acquired in any given time as the given force of gravity which 
continually acts upon it to the resisting force which opposes it at the end of 
that time. 

Cor. ii. But the time being augmented in an arithmetical progression, the 
sum of that greatest velocity and the velocity in the ascent, and also their 
difference in the descent, decreases in a geometrical progression. 

Cor. hi. Also the differences of the spaces, which are described in equal 
differences of the times, decrease in the same geometrical progression. 

Cor. iv. The space described by the body is the difference of two spaces, 
whereof one is as the time taken from the beginning of the descent, and the 
other as the velocity; which [spaces] also at the beginning of the descent are 
equal among themselves. 

Proposition 4. Problem 2 
Supposing the force of gravity in any homogeneous medium to he uniform, and to 
tend perpendicularly to the plane of the horizon: to define the motion of a projectile 
therein, which suffers resistance proportional to its velocity. 

Let the projectile go from any place D in the direction of any right line DP, 
and let its velocity at the beginning of the motion be represented by the length 
DP. From the point P let fall the perpendicular PC on the horizontal line DC, 
and cut DC in A, so that DA may be to AC as the vertical component of the 
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resistance of the medium arising from the 
motion upwards at the beginning, to the 
force of gravity; or (which comes to the 
same) so that the rectangle under DA and 
DP may be to that under AC and CP as 
the whole resistance at the beginning of 
the motion, to the force of gravity. With 
the asymptotes DC, CP describe any hy- 
perbola GTBS cutting the perpendiculars 
DG, AB in G and B; complete the paralle- 
logram DGKC, and let its side GK cut AB 
in Q. Take a line N in the same ratio to QB 
as DC is in to CP; and from any point R 
of the right line DC erect RT perpendicu- 
lar to it, meeting the hyperbola in T, and 
the right lines EH, GK, DP in I, ^ and V; 
in that perpendicular take Vr equal to 
tGT 
N : 

equal to 

or, which is the same thing, take Rr 

GTIE 
N and the projectile in the 

Y 

X 

TP / 

, /A 

/ 

f 

/////^ 

T 
B \ 
Q \ 

> R / L F 
time DRTG will arrive at the point r, de- 
scribing the curved line DmF, the locus of 
the point r; thence it will come to its greatest height a in the perpendicular 
AB; and afterwards ever approach to the asymptote PC. And its velocity in 
any point r will be as the tangent rL to the curve. q.e.i. 

For N : QB = DC : CP = DR : RV, 

and therefore RV is equal to 
DR-QB 

N ' and Rr 

that is, RV—Vr, or 
DRQB —*GT\.  ^  j is equal to DRAB-RDGT 

N Now let 

the time be represented by the area RDGT, and (by Laws, Cor. 11) distinguish 
the motion of the body into two others, one of ascent, the other lateral. And 
since the resistance is as the motion, let that also be distinguished into two 
parts proportional and contrary to the parts of the motion: and therefore the 
length described by the lateral motion will be (by Prop. 2, Book 11) as the line 
DR, and the height (by Prop. 3, Book ii) as the area DR-AB — RDGT, that is, 
as the line Rr. But in the very beginning of the motion the area RDGT is equal 

to the rectangle DR-AQ, and therefore that line Rr ^ or 

will then be to DR as AB — AQ or QB to N, that is, as CP to DC; and therefore 
as the motion upwards to the motion lengthwise at the beginning. Since, there- 
fore, Rr is always as the height, and DR always as the length, and Rr is to DR 
at the beginning as the height to the length, it follows, that Rr is always to DR 
as the height to the length; and therefore that the body mil move in the line 
DmF, which is the locus of the point r. q.e.d. 

n £ T> • i + DRAB RDGT Cor. i. 1 here!ore Rr is equal to — — : and therefore if RT be 
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produced to X so that RX may be equal to 
DRAB 

N ' that is, if the parallel- 

ogram ACPY be completed, and DY cutting CP in Z be drawn, and RT be 
RDGT 

produced till it meets DY in X; Xr will be equal to —^—, and therefore 

proportional to the time. 
Cor. ii. Whence if innumerable lines CR, or, which is the same, innumerable 

lines ZX, be taken in a geometrical progression ,there will be as many lines Xr 
in an arithmetical progression. And hence the curve DraF is easily delineated 
by the table of logarithms. 

Cor. hi. If a parabola be constructed to the vertex D, and the diameter DG 
produced downwards, and its latus rectum is to 2DP as the whole resistance at 
the beginning of the motion to the gravitating force, the velocity with which 
the body ought to go from the place D, in the direction of the right line DP, so 

' P as in an uniform resisting medium to de- 
scribe the curve DraF, will be the same as 
that with which it ought to go from the 
same place D in the direction of the same 
right line DP, so as to describe a parabola 
in a nonresisting medium. For the latus 
rectum of this parabola, at the very be- 

DV2 

ginning of the motion, is and Vr is 

D R 

CK DR 

*GT DRT* 
Vr 

, and N is QB • DC 

"X" 0r —2N—' a line which, 
if drawn, would touch the hyperbola GTS 
in G, is parallel to DK, and therefore Tt is 

DR2 • CK • CP . And therefore Vr is equal to ; 

DC ' CP 

(because DR and DC, DV and DP are proportionals), to 

2DC2 QB 'thatls 

DV2 • CK • •CP 
2DP2 • QB ' 

DV2 2DP2 • OB and the latus rectum comes out ^ , that is (because QB and CK, Vr 
DA and AC are proportionals), 

CK • CP 
2DP2 • DA 

and therefore is to 2DP as DP • DA AC CP 
to CP-AC; that is, as the resistance to the gravity. q.e.d. 

Cor. iv. Hence if a body be projected from any place D with a given velocity, 
in the direction of a right line DP given by position, and the resistance of the 
medium, at the beginning of the motion, be given, the curve DraF, which that 
body will describe, may be found. For the velocity being given, the latus rec- 
tum of the parabola is given, as is well known. And taking 2DP to that latus 
rectum, as the force of gravity to the resisting force, DP is also given. Then 
cutting DC in A, so that CP-AC may be to DP-DA in the same ratio of 
the gravity to the resistance, the point A will be given. And hence the curve 
DraF is also given. 

Cor. v. And conversely, if the curve DraF be given, there will be given both 
the velocity of the body and the resistance of the medium in each of the places 
r. For the ratio of CP-AC to DP-DA being given, there is given both the re- 
sistance of the medium at the beginning of the motion, and the latus rectum of 
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the parabola; and thence the velocity at 
the beginning of the motion is given also. 
Then from the length of the tangent rh 
there is given both the velocity propor- 
tional to it, and the resistance proportional 
to the velocity in any place r. 

Cor. vi. But since the length 2DP is to 
the latus rectum of the parabola as the 
gravity to the resistance in D, and, from 
the velocity augmented, the resistance is 
augmented in the same ratio, but the latus 
rectum of the parabola is augmented as 
the square of that ratio, it is plain that 
the length 2DP is augmented in that 
simple ratio only; and is therefore always 
proportional to the velocity; nor will it be 
augmented or diminished by the change 
of the angle CDP, unless the velocity be 
also changed. 

Cor. vii. Hence appears the method of 
determining the curve DmF nearly from 
the phenomena, and thence finding the re- 
sistance and velocity with which the body 
is projected. Let two similar and equal bodies be projected with the same ve- 
locity, from the place D, in different angles CDP, CDp; and let the places 
F, /, where they fall upon the horizontal plane DC, be known. Then taking 
any length for DP or Dp suppose the resistance in D to be to the gravity in any 
ratio whatsoever, and let that ratio be represented by any length SM. Then, 
by computation, from that assumed length DP, find the lengths DF, D/; 

Ff and from the ratio found by calcu- Ur 
lation, subtract the same ratio as found 
by experiment; and let the difference be 
represented by the perpendicular MN. 
Repeat the same a second and a third 
time, by assuming always a new ratio 
SM of the resistance to the gravity, and 
collecting a new difference MN. Draw 
the positive differences on one side of the 
right line SM, and the negative on the 
other side; and through the points N, N, 
N, draw a regular curve NNN, cutting 
the right line SMMM in X, and SX will 
be the true ratio of the resistance to the 
gravity, which was to be found. From 
this ratio the length DF is to be found 
by calculation; and a length, which is to 
the assumed length DP as the length DF 
known by experiment to the length DF 

I^x 
M M 

IT 
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just now found, will be the true length DP. This being known, you will have 
both the curved line DmF which the body describes, and also the velocity and 
resistance of the body in each place. 

Scholium 

However, that the resistance of bodies is in the ratio of the velocity, is more 
a mathematical hypothesis than a physical one. In mediums void of all tenac- 
ity, the resistances made to bodies are as the square of the velocities. For by 
the action of a swifter body, a greater motion in proportion to a greater veloc- 
ity is communicated to the same quantity of the medium in a less time; and in 
an equal time, by reason of a greater quantity of the disturbed medium, a 
motion is communicated as the square of the ratio greater; and the resistance 
(by Laws 11 and m) is as the motion communicated. Let us, therefore, see what 
motions arise from this law of resistance. 

SECTION II 

The motion of bodies that are resisted as the square 
OF THEIR VELOCITIES 

Proposition 5. Theorem 3 
If a body is resisted as the square of its velocity, and moves by its innate force only 
through an homogeneous medium; and the times be taken in a geometrical progres- 
sion, proceeding from less to greater terms: I say, that the velocities at the beginning 
of each of the times are in the same geometrical progression inversely; and that the 
spaces are equal, which are described in each of the times. 

For since the resistance of the medium is proportional to the square of the 
velocity, and the decrement of the velocity is proportional to the resistance: 
if the time be divided into innumerable equal intervals, the squares of the 
velocities at the beginning of each of the times will be proportional to the dif- 

ferences of the same velocities. Let those inter- 
vals of time be AK, KL, LM, &c., taken in the 
right line CD; and erect the perpendiculars AB, 
Kk, LI, Mm, &c., meeting the hyperbola LklmG, 
described with the centre C, and the rectangular 
asymptotes CD, CH, in B, k, I, m, &c.; then AB 
will be to KA* as CK to CA, and, by division, 
AB —K/r to K/r as AK to CA, and alternately, 
AB —K/r to AK as KA* to CA; and therefore as 

D AB-KAr to AB-CA. Therefore since AK and 
AB-CA are given, AB —KA- will be as AB-KA*; and, lastly, when AB and KA* 
coincide, as AB2. And, by the like reasoning, Kk — Ll, LI —Mm, &c., will be as 
KA-2, LZ2, &c. Therefore the squares of the lines AB, KA-, LI, Mm, &c., are as 
their differences; and, therefore, since the squares of the velocities were shown 
above to be as their differences, the progression of both will be alike. This being 
demonstrated it follows also that the areas described by these lines are in a like 
progression with the spaces described by these velocities. Therefore if the ve- 
locity at the beginning of the first time AK be represented by the line AB, and 
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the velocity at the beginning of the second time KL by the line Kk, and the 
length described in the first time by the area AK/rB, all the following velocities 
will be represented by the following lines hi, Mm, &c., and the lengths de- 
scribed by the areas Kl, Lm, &c. And, by composition, if the whole time be 
represented by AM, the sum of its parts, the whole length described will be 
represented by AMmB, the sum of its parts. Now conceive the time AM to be 
divided into the parts AK, KL, LM, &c., so that CA, CK, CL, CM, &c., may 
be in a geometrical progression; and those parts will be in the same progression, 
and the velocities AB, KA*, hi, Mm, &c., will be in the same progression in- 
versely, and the spaces described Ak, Kl, Lm, &c., will be equal. q.e.d. 

Cor. i. Hence it appears, that if the time be represented by any part AD of 
the asymptote, and the velocity in the beginning of the time by the ordinate 
AB, the velocity at the end of the time will be represented by the ordinate DG; 
and the whole space described by the adjacent hyperbolic area ABGD; and the 
space which any body can describe in the same time AD, with the first velocity 
AB, in a nonresisting medium, by the rectangle AB-AD. 

Cor. ii. Hence the space described in a resisting medium is given, by taking 
it to the space described with the uniform velocity AB in a nonresisting me- 
dium, as the hyperbolic area ABGD to the rectangle AB-AD. 

Cor. hi. The resistance of the medium is also given, by making it equal, in 
the very beginning of the motion, to an uniform centripetal force, which could 
generate, in a body falling through a nonresisting medium, the velocity AB in 
the time AC. For if BT be drawn touching the hyperbola in B, and meeting the 
asymptote in T, the right line AT will be equal to AC, and will express the time 
in which the first resistance, uniformly continued, may take away the whole 
velocity AB. 

Cor. iv. And thence is also given the proportion of this resistance to the 
force of gravity, or any other given centripetal force. 

Cor. v. And, conversely, if there is given the proportion of the resistance to 
any given centripetal force, the time AC is also given, in which a centripetal 
force equal to the resistance may generate any velocity as AB; and thence is 
given the point B, through which the hyperbola, having CH, CD for its asymp- 
totes, is to be described; as also the space ABGD, which a body, by beginning 
its motion with that velocity AB, can describe in any time AD, in an homo- 
geneous resisting medium. 

Proposition 6. Theorem 4 
Homogeneous and equal spherical bodies, opposed by resistances that are as the 
square of the velocities, and moving on by their innate force only, will, in times 
which are inversely as the velocities at the beginning, 
describe equal spaces, and lose parts of their veloc- 
ities proportional to the wholes. 

To the rectangular asymptotes CD, CH des- 
cribe any hyperbola B6Ec, cutting the perpen- 
diculars AB, ab, DE, de in B, b, E, c; let the ini- 
tial velocities be represented by the perpendiculars 
AB, DE, and the times by the lines Aa, Dd. 
Therefore as Aa is to Dd, so (by the hypothesis) 
is DE to AB, and so (from the nature of the hy- 

V 
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perbola) is CA to CD; and, by composition, so is Ca to Cd. Therefore the 
areas AB6a, DEed, that is, the spaces described, are equal among themselves, 
and the first velocities AB, DE are proportional to the last ah, de; and there- 
fore, by subtraction, proportional to the parts of the velocities lost, AB —a6, 
DE-de. q.e.d. 

Proposition 7. Theorem 5 
If spherical bodies are resisted as the squares of their velocities, in times which are 
directly as the first motions, and inversely as the first resistances, they will lose parts 
of their motions proportional to the wholes, and will describe spaces proportional 
to the product of those times and the first velocities. 

For the parts of the motions lost are as the product of the resistances and 
times. Therefore, that those parts may be proportional to the wholes, the 
product of the resistance and time ought to be as the motion. Therefore the 
time will be as the motion directly and the resistance inversely. Therefore the 
intervals of the times being taken in that ratio, the bodies will always lose parts 
of their motions proportional to the wholes, and therefore will retain velocities 
always proportional to their first velocities. And because of the given ratio of 
the velocities, they will always describe spaces which are as the product of the 
first velocities and the times. q.e.d. 

Cor. i. Therefore if bodies equally swift are resisted as the square of their 
diameters, homogeneous globes moving with any velocities whatsoever, by 
describing spaces proportional to their diameters, will lose parts of their mo- 
tions proportional to the wholes. For the motion of each globe will be as the 
product of its velocity and mass, that is, as the product of the velocity and the 
cube of its diameter; the resistance (by supposition) will be as the product of 
the square of the diameter and the square of the velocity; and the time (by 
this Proposition) is in the former ratio directly, and in the latter inversely, that 
is, as the diameter directly and the velocity inversely; and therefore the space, 
which is proportional to the time and velocity, is as the diameter. 

Cor. ii. If bodies equally swift are resisted as the J^th power of their diam- 
eters, homogeneous globes, moving with any velocities whatsoever, by describ- 
ing spaces that are as the /^th power of the diameters, will lose parts of their 
motions proportional to the wholes. 

Cor. hi. And universally, if equally swift bodies are resisted in the ratio of 
any power of the diameters, the spaces, in which homogeneous globes, moving 
with any velocity whatsoever, will lose parts of their motions proportional to 
the wholes, will be as the cubes of the diameters applied to that power. Let 
those diameters be D and E; and if the resistances, where the velocities are 
supposed equal, are as Dn and En; the spaces in which the globes, moving with 
any velocities whatsoever, will lose parts of their motions proportional to the 
wholes, will be as D3-n and E3_n. And therefore homogeneous globes, in de- 
scribing spaces proportional to D3_n and E3_n, will retain their velocities in the 
same ratio to one another as at the beginning. 

Cor. iv. Now if the globes are not homogeneous, the space described by the 
denser globe must be augmented in the ratio of the density. For the motion, 
with an equal velocity, is greater in the ratio of the density, and the time (by 
this Proposition) is augmented in the ratio of motion directly, and the space 
described in the ratio of the time. 
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Cor. v. And if the globes move in different mediums, the space, in a medium 

which, other things being equal, resists the most, must be diminished in the 
ratio of the greater resistance. For the time (by this Proposition) will be dimin- 
ished in the ratio of the augmented resistance, and the space in the ratio of 
the time. 

Lemma 2 
The moment of any genitum is equal to the moments of each of the generating sides 
multiplied by the indices of the powers of those sides, and by their coefficients 
continually. 

I call any quantity a genitum which is not made by addition or subtraction 
of divers parts, but is generated or produced in arithmetic by the multiplica- 
tion, division, or extraction of the root of any terms whatsoever; in geometry 
by the finding of contents and sides, or of the extremes and means of propor- 
tionals. Quantities of this kind are products, quotients, roots, rectangles, squares, 
cubes, square and cubic sides, and the like. These quantities I here consider as 
variable and indetermined, and increasing or decreasing, as it were, by a con- 
tinual motion or flux; and I understand their momentary increments or decre- 
ments by the name of moments; so that the increments may be esteemed as 
added or affirmative moments; and the decrements as subtracted or negative 
ones. But take care not to look upon finite particles as such. Finite particles 
are not moments, but the very quantities generated by the moments. We are 
to conceive them as the just nascent principles of finite magnitudes. Nor do we 
in this Lemma regard the magnitude of the moments, but their first propor- 
tion, as nascent. It will be the same thing, if, instead of moments, we use either 
the velocities of the increments and decrements (which may also be called the 
motions, mutations, and fluxions of quantities), or any finite quantities pro- 
portional to those velocities. The coefficient of any generating side is the quan- 
tity which arises by applying the genitum to that side. 

Wherefore the sense of the Lemma is, that if the moments of any quantities 
A, B, C, &c., increasing or decreasing by a continual flux, or the velocities of 
the mutations which are proportional to them, be called a, b, c, &c., the moment 
or mutation of the generated rectangle AB will be aB+6A; the moment of the 
generated content ABC will be aBC+6AC+cAB; and the moments of the 
generated powers A2, A3, A4, A1/2, A3/2, A1/3, A2/3, A-1, A-2, A-1/2 will be 2aA, 
3aA2, 4aA3, y^aAr1'2, faA1/2, yakr2'*, HaA-1'*, -aA"2, -2aA-3, -^aA""3'2 

n 
respectively; and, in general, that the moment of any power A^ will be 

— aA-™-. Also, that the moment of the generated quantity A2B will be 
2aAB-f &A2; the moment of the generated quantity A3B4C2 mil be 3aA2B4C2+ 

A3 

46A3B3C2H-2cA3B4C; and the moment of the generated quantity jp or A3B_2 

will be 3aA2B_2 —26A3B_3; and so on. The Lemma is thus demonstrated. 
Case 1. Any rectangle, as AB, augmented by a continual flux, when, as yet, 

there wanted of the sides A and B half their moments ya and yb, was 
A — ya into B —3^6, or AB —^a B —3^b A+J^q but as soon as the sides 
A and B are augmented by the other half-moments, the rectangle becomes 
A+3^a into V> + yb, or AB + M® B + J^6 A+yab. From this rectangle sub- 
tract the former rectangle, and there will remain the excess aB+6A. There- 
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fore with the whole increments a and h of the sides, the increment aB + bA of 
the rectangle is generated. q.e.d. 

Case 2. Suppose AB always equal to G, and then the moment of the content 
ABC or GC (by Case 1) will be gC+cG, that is (putting AB and aB+5A for 
G and g), aBC+6AC+cAB. And the reasoning is the same for contents under 
ever so many sides. q.e.d. 

Case 3. Suppose the sides A, B, and C, to be always equal among them- 
selves; and the moment aB+6A, of A2, that is, of the rectangle AB, will be 2aA; 
and the moment aBC + 6AC+cAB of A3, that is, of the content ABC, will be 3aA2. 
And by the same reasoning the moment of any power An is naA"-1. q.e.d. 

Case 4. Therefore since into A is 1, the moment of ^ multiplied by A, 

together with y multiplied by a, will be the moment of 1, that is, nothing. 

Therefore the moment of i, or of A"1, is And generally since ^ into 

An is 1, the moment of ~ multiplied by A" together with ^ into naA^1 will 

be nothing. And, therefore, the moment of or A_n will be — Q.e.d. 

Case 5. And since A1/2 into A1/2 is A, the moment of A1/2 multiplied by 

2A1/2 will be a (by Case 3); and, therefore, the moment of A1/2 will be 
m 

or }/2aA~1/2. And generally, putting An equal to B, then Am will be equal to 
Bn, and therefore maAm_1 equal to nbBn~l, and maA-1 equal to nbB~l, or 

_m m n-m 
nbA~n; and therefore naA n is equal to b, that is, equal to the moment of 

m 
An. Q.E.D. 

Case 6. Therefore the moment of any generated quantity AmBn is the 
moment of Am multiplied by Bn, together with the moment of Bn multiplied 
by Am, that is, maA771-1 Bn+n6Bn-1 Am; and that whether the indices m and n 
of the powers be whole numbers or fractions, affirmative or negative. And the 
reasoning is the same for higher powers. q.e.d. 

Cor. i. Hence in quantities continually proportional, if one term is given, 
the moments of the rest of the terms will be as the same terms multiplied by 
the number of intervals between them and the given term. Let A, B, C, D, 
E, F be continually proportional; then if the term C is given, the moments of 
the rest of the terms will be among themselves as — 2A, — B, D, 2E, 3F. 

Cor. ii. And if in four proportionals the two means are given, the moments 
of the extremes will be as those extremes. The same is to be understood of the 
sides of any given rectangle. 

Cor. hi. And if the sum or difference of two squares is given, the moments 
of the sides will be inversely as the sides. 

Scholium 
In a letter of mine to Mr. J. Collins, dated December 10, 1672, having de- 

scribed a method of tangents, which I suspected to be the same with Sluse's 
method, which at that time was not made public, I added these words: This is 
one particular, or rather a Corollary, of a general method, which extends itself, 
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without any troublesome calculation, not only to the drawing of tangents to any 
curved lines, whether geometrical or mechanical or in any manner respecting right 
lines or other curves, hut also to the resolving other ahstruser kinds of problems 
about the crookedness, areas, lengths, centres of gravity of curves, dec.; nor is it 
{as Hudden's method de maximis et minimis) limited to equations which are free 
from surd quantities. This method I have interwoven with that other of working in 
equations, by reducing them to infinite series. So far that letter. And these last 
words relate to a treatise I composed on that subject in the year 1671. The 
foundation of that general method is contained in the preceding Lemma. 

Proposition 8. Theorem 6 
If a body in an uniform medium, being uniformly acted upon by the force of 
gravity, ascends or descends in a right line; and the whole space described be 
divided into equal parts, and in the beginning of each of the parts {by adding or 
subtracting the resisting force of the medium to or from the force of gravity, when 
the body ascends or descends) you derive the absolute forces: I say, that those 
absolute forces are in a geometrical progression. 

Let the force of gravity be represented by the given line AC; the force of 
resistance by the indefinite line AK; the absolute force in the descent of the 
body by the difference KC; the velocity of the body by a line AP, which shall 
be a mean proportional between AK and AC, and therefore as the square root 
of the resistance; the increment of the re- 
sistance made in a given interval of time 
by the short line KL, and the contempora- 
neous increment of the velocity by the 
short line PQ; and with the centre C, and 
rectangular asymptotes CA, CH, describe 
any hyperbola BNS meeting the erected 
perpendiculars AB, KN, LO in B, N, and 
0. Because AK is as AP2, the moment KL 
of the one will be as the moment 2AP • PQ of the other, that is, as AP • KC; for 
the increment PQ of the velocity is (by Law ii) proportional to the generating 
force KC. Let the ratio of KL be multiplied by the ratio KN, and the rectangle 
KL • KN will become as AP • KC • KN; that is (because the rectangle KC • KN 
is given), as AP. But the ultimate ratio of the hyperbolic area KNOL to the 
rectangle KL-KN becomes, when the points K and L coincide, the ratio of 
equality. Therefore that hyperbolic evanescent area is as AP. Therefore the 
whole hyperbolic area ABOL is composed of intervals KNOL which are always 
proportional to the velocity AP; and therefore is itself proportional to the space 
described with that velocity. Let that area be now divided into equal parts, as 
ABMI, IMNK, KNOL, &c., and the absolute forces AC, IC, KC, LC, &c., 
will be in a geometrical progression, q.e.d. And by a like reasoning, in the ascent 
of the body, taking, on the contrary side of the point A, the equal areas ABmf, 
imnk, knol, &c., it will appear that the absolute forces AC, iC, kC, IC, &c., are 
continually proportional. Therefore if all the spaces in the ascent and descent 
are taken equal, all the absolute forces IC, kC, iC, AC, IC, KC, LC, &c., will 
be continually proportional. q.e.d. 

Cor. i. Hence if the space described be represented by the hyperbolic area 
ABNK, the force of gravity, the velocity of the body, and the resistance of the 

L K I 
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medium, may be represented by the lines AC, AP, and AK respectively; and 
conversely. 

Cor. ii. And the greatest velocity which the body can ever acquire in an 
infinite descent mil be represented by the line AC. 

Cor. hi. Therefore if the resistance of the medium answering to any given 
velocity be known, the greatest velocity will be found, by taking it to that 
given velocity, as the square root of the ratio which the force of gravity bears 
to that known resistance of the medium. 

Proposition 9. Theorem 7 

Supposing what is above demonstrated, I say, that if the tangents of the angles of 
the sector of a circle, and of an hyperbola, be taken proportional to the velocities, 
the radius being of a fit magnitude, all the time of the ascent to the highest place will 
be as the sector of the circle, and all the time of descending from the highest place 
as the sector of the hyperbola. 

To the right line AC, which expresses the force of gravity, let AD be drawn 
perpendicular and equal. From the centre D, with the semidiameter AD 
describe as well the quadrant A® of a circle, as the rectangular hyperbola 
AVZ, whose axis is AK, principal vertex A, and asymptote DC. Let Dp, DP 

o v..N 

<7 P 

be drawn; and the circular sector A7D will be as all the time of the ascent to the 
highest place; and the hyperbolic sector ATD as all the time of descent from 
the highest place; if so be that the tangents Ap, AP of those sectors be as the 
velocities. 

Case 1. Draw T>vq cutting off the moments or least intervals tDv and gDp, 
described in the same time, of the sector AD7 and of the triangle ADp. Since 
those intervals (because of the common angle D) are as the square of the sides, 

qDp'tD'1 oDp the interval tDv will be as -——, that is (because tD is given), as But 
pD* pD^ 

pD2 is AD2+Ap2, that is, AD2-1-AD-AA*, or AD-CAq and gDp is f^AD-pq. 

Therefore tDv, the interval of the sector, is as that is, directly as the least 
C/r 

decrement pq of the velocity, and inversely as the force Ck which diminishes 
the velocity; and therefore as the interval of time answering to the decrement 
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of the velocity. And, by composition, the sum of all the intervals tDv in the 
sector AD^ will be as the sum of the intervals of time answering to each of the 
lost intervals pq of the decreasing velocity Ap, till that velocity, being dimin- 
ished into nothing, vanishes; that is, the whole sector AD^ is as the whole time 
of ascent to the highest place. q.e.d. 

Case 2. Draw DQV cutting off the least intervals TDV and PDQ of the 
sector DAY, and of the triangle DAQ; and these intervals will be to each other 
as DT2 to DP2, that is (if TX and AP are parallel), as DX2 to DA2 or TX2 to 

\o •-.N 
T--... B 

\vj I v" •• « 
k\ 1 P 

;\ Q\P\I - K A / 
vSc 

\ \\ 

//*\ 

AP2; and, by subtraction, as DX2 —TX2 to DA2 —AP2. But, from the nature 
of the hyperbola, DX2 —TX2 is AD2; and, by the supposition, AP2 is AD-AK. 
Therefore the intervals are to each other as AD2 to AD2 —AD-AK; that is, 
as AD to AD —AK or AC to CK; and therefore the interval TDV of the sector 

is anc* therefore (because AC and AD are given) as that is, 

directly as the increment of the velocity, and inversely as the force generating 
the increment; and therefore as the interval of the time answering to the incre- 
ment. And, by composition, the sum of the intervals of time, in which all the 
intervals PQ of the velocity AP are generated, will be as the sum of the in- 
tervals of the sector ATD; that is, the whole time will be as the whole sector. 

Q.E.D. 
Cor. i. Hence if AB be equal to a fourth part of AC, the space which a body 

will describe by falling in any time will be to the space which the body could 
describe, by moving uniformly on in the same time with its greatest velocity 
AC, as the area ABNK, which expresses the space described in falling to the 
area ATD, which expresses the time. For since 

AC : AP = AP : AK, 
and by Cor. i, Lem. 2, of this Book, 

LK : PQ = 2AK : AP = 2AP : AC, 
therefore LK : HPQ = AP : ^AC or AB, 
and since KN : AC or AD = AD : CK, 
multiplying together corresponding terms, 

LKNO : DPQ = AP: CK. 
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As shown above, 
DPQ : DTV = CK : AC. 

Hence, LKNO : DTV = AP : AC; 
that is, as the velocity of the falling body to the greatest velocity which the 
body by falling can acquire. Since, therefore, the moments LKNO and DTV 
of the areas ABNK and ATD are as the velocities, all the parts of those areas 
generated in the same time will be as the spaces described in the same time; 
and therefore the whole areas ABNK and ADT, generated from the beginning, 
will be as the whole spaces described from the beginning of the descent, q.e.d. 

Cor. ii. The same is true also of the space described in the ascent. That is to 
say, that all that space is to the space described in the same time, with the 
uniform velocity AC, as the area ABnk is to the sector AD^. 

Cor. hi. The velocity of the body, falling in the time ATD, is to the velocity 
which it would acquire in the same time in a nonresisting space, as the triangle 
APD to the hyperbolic sector ATD. For the velocity in a nonresisting medium 
would be as the time ATD, and in a resisting medium is as AP, that is, as the 
triangle APD. And those velocities, at the beginning of the descent, are equal 
among themselves, as well as those areas ATD, APD. 

Cor. iv. By the same argument, the velocity in the ascent is to the velocity 
with which the body in the same time, in a nonresisting space, would lose all 
its motion of ascent, as the triangle ApD to the circular sector A®; or as the 
right line Ap to the arc A^. 

Cor. v. Therefore the time in which a body, by falling in a resisting medium, 
would acquire the velocity AP, is to the time in which it would acquire its 
greatest velocity AC, by falling in a nonresisting space, as the sector ADT to 
the triangle ADC; and the time in which it would lose its velocity Ap, by 
ascending in a resisting medium, is to the time in which it would lose the same 
velocity by ascending in a nonresisting space, as the arc A^ to its tangent Ap. 

Cor. vi. Hence from the given time there is given the space described in the 
ascent or descent. For the greatest velocity of a body descending in infinitum 
is given (by Cor. 11 and m, Theor. 6, of this book); and thence the time is given 
in which a body would acquire that velocity by falling in nonresisting space. 
Taking the sector ADT or AD/ to the triangle ADC in the ratio of the given 
time to the time just found, there will be given both the velocity AP or Ap, and 
the area ABNK or ABnA*, which is to the sector ADT, or AD/ as the space 
sought to that which would, in the given time, be uniformly described with 
that greatest velocity found just before. 

Cor. vii. And by going backwards, from the given space of ascent or descent 
ABnk or ABNK, there will be given the time AD/ or ADT. 

Proposition 10. Problem 3 
Suppose the uniform force of gravity to tend directly to the plane of the horizon, and 
the resistance to be as the product of the density of the medium and the square of 
the velocity: it is proposed to find the density of the medium in each place, which 
shall make the body move in any given curved line, the velocity of the body, and the 
resistance of the medium in each place. 

Let PQ be a plane perpendicular to the plane of the scheme itself; PFHQ 
a curved line meeting that plane in the points P and Q; G, H, I ,K four places 
of the body going on in this curve from F to Q; and GB, HC, ID, KE four 
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parallel ordinates let fall from these points to the horizon, and standing on the 
horizontal line PQ at the points B, C, D, E; and let the distances BC, CD, DE 
of the ordinates be equal among themselves. From the points G and H let the 
right lines GL, HN be drawn touching the 
curve in G and H, and meeting the ordi- 
nates CH, DI, produced upwards, in L and 
N; and complete the parallelogram HCDM. 
And the times in which the body describes 
the arcs GH, HI, will be as the square 
root of the altitudes LH, NI, which the 
bodies would describe in those times, by 
falling from the tangents; and the velocities 
will be directly as the lengths described 
GH, HI, and inversely as the times. Let the times be represented by T and t, 

GH HI and the velocities by and —; and the decrement of the velocity produced 

in the time t will be represented by This decrement arises from the 

resistance which retards the body, and from the gravity which accelerates it. 
Gravity, in a falling body, which in its fall describes the space NI, produces a 
velocity with which it would be able to describe twice that space in the same 

time, as Galileo hath demonstrated; that is, the velocity —j-- but if the body 

describes the arc HI, it augments that arc only by the length HI —HN or 

and therefore generates only the velocity Let this velocity HI t' Hi 
be added to the before-mentioned decrement, and we shall have the decrement 

of the velocity arising from the resistance alone, that is, I t t'til 
Therefore since, in the same time, the action of gravity generates, in a falling 

body, the velocity -y-> tbe resistance will be to the gravity as 

GH HI , 2MI NI + 2NI t-GB. UT , 2MI NI , OATT 
+ t0 — or 3,8 "r HIH gj to 2NI. 

Now, for the abscissas CB, CD, CE, put —o, o, 2o. For the ordinate CH 
put P; and for MI put any series Qo+Ro2H-So34-, &c. And all the terms of the 
series after the first, that is, Ro2H-So3-h, &c., will be NI; and the ordinates DI, 
EK, and BG will be P-Qo-Ro2-So3-, &c., P-2Qo-4Ro2-8So3-, &c., 
and P-f-Qo —Ro2-t-So3 —, &c., respectively. And by squaring the differences of 
the ordinates BG —CH and CH —DI, and to the squares thence produced 
adding the squares of BC and CD themselves, you will have oo+QQoo — 
2QRo3+, &c., and ooH-QQooH-2QRo3+, &c., the squares of the arcs GH, HI; 

are the whose roots ovXl+QQ) — - QRoo and oVCl+QQ)^-- QRoo 
V(l+QQ) vv 1 ^ ' V(l+QQ) 

arcs GH and HI. Moreover, if from the ordinate CH there be subtracted half 
the sum of the ordinates BG and DI, and from the ordinate DI there be sub- 
tracted half the sum of the ordinates CH and EK, there will remain Roo and 
Roo+3So3, the versed sines of the arcs GI and HK. And these are proportional 
to the short lines LH and NI, and therefore are as the squares of the infinitely 
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small times T and t\ and thence the ratio ^ varies as the square root of 

175 
R+3So 

R 

or 
R+^S?; and <Xi?H - HI +

2MR><NI by substituting the values of ', GH, 
Rim i 

HI, MI, and NI just found, becomes VCl+QQ)- And since 2NI is 2Roo, Zrl 
3Soo 

the resistance will be now to the gravity as -^-VU+QQ) to 2Roo, that is, as 2K 
3Sv/(l+QQ) to 4RR. 

And the velocity will be such, that a body going off therewith from any place 
H, in the direction of the tangent HN, would describe/in a vacuum, a parabola, 
whose diameter is HC, and its latus rectum or lltQQ. JN i K 

And the resistance is as the product of the density of the medium and the 
square of the velocity; and therefore the 
density of the medium is directly as the re- 
sistance, and inversely as the square of the 

velocity; that is, directly as 3SV(1+QQ) 

and inversely 

S 

4RR 

that is, K 

RVd+QQ)' QEI' 
Cor. i. If the tangent HN be produced 

HT both ways, so as to meet any ordinate AF in T, will be equal to \/(l + 

QQ), and therefore in what has gone before may be put for VU+QQ)- By 
this means the resistance will be to the gravity as 3S-HT to 4RR AC; the 

HT g. ac velocity will be as . ^ and the density of the medium will be as ^ TTr„. 
ACvR K-Hi 

Cor. ii. And hence, if the curved line PFHQ be defined by the relation be- 
tween the base or abscissa AC and the ordinate CH, as is usual, and the value 
of the ordinate be resolved into a converging series, the Problem will be ex- 
peditiously solved by the first terms of the series; as in the following Examples. 

Exam. 1. Let the line PFHQ be a semicircle described upon the diameter 
PQ; to find the density of the medium that shall make a projectile move in 
that line. 

Bisect the diameter PQ in A; and call AQ, n; AC, a; CH, e; and CD, o; then 
DP or AQ2 —AD2 = nn —aa —2ao —oo, or ee —2ao —oo; and the root being 
extracted by our method, will give 

oo aaoo aoz a3o3 

DI _ ao 
= e_7' 2e 2e3 2e3 2e6' &c. 

,&c. tt . r . j tvt *n i_ ao nnoo anno3 
Here put nn for ee+aa, and DI mil become =ee —^ —— - 

e 2e3 2e5 

In such a series I distinguish the successive terms after this manner: I call 
that the first term in which the infinitely small quantity o is not found; the 
second, in which that quantity is of one dimension only; the third, in which 
it arises to two dimensions; the fourth, in which it is of three; and so ad 
infinitum. And the first term, which here is e, will always denote the length of 
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the ordinate CH, erected at the starting point of the indefinite quantity o. The 
second term, which here is —, will denote the difference between CH and DN; e 
that is, the short line MN which is cut off by completing the parallelogram 
HCDM; and therefore always determines the position of the tangent HN; as, 

in this case, by taking MN : HM = - . The third term, which here is 

2ez , will represent the short line IN, which lies between the tangent and the 

curve; and therefore determines the angle of contact IHN, or the curvature 
which the curved line has in H. If that short line IN is of a finite magnitude, it 
will be expressed by the third term, to- 
gether with those that follow in infinitum. 
But if that short line be diminished in in- 
finitum, the terms following become infin- 
itely less than the third term, and there- 
fore may be neglected. The fourth term 
determines the variation of the curvature; 
the fifth, the variation of the variation; and 
so on. From this, by the way, appears the 
use, not to be disdained, which may be 
made of these series in the solution of problems that depend upon tangents, 
and the curvature of curves. 

Now compare the series 
ao nnoo anno* 

6 e 2? 2? 
with the series 

P — Qo — Roo — So3 — &c., 

and for P, Q, R and S, put ancl 7^ an<i for VCl + QQ) put 

Tl • . . Q/ or -; and the density of the medium will come out as —; that is (because n is 
e ne 

— &c., 

a/(1+S) 

given) a AC 
aS e 0r CH' that is, as that length of the tangent HT, which is term- 

inated at the semidiameter AF standing perpendicularly on PQ: and the 
resistance will be to the gravity as 3a to 2n, that is, as 3AC to the diameter 
PQ of the circle; and the velocity will be as \/CH. Therefore if the body goes 
from the place F, with a due velocity, in the direction of a line parallel to PQ, 
and the density of the medium in each of the places H is as the length of the 
tangent HT, and the resistance also in any place H is to the force of gravity as 
3AC to PQ, that body will describe the quadrant FHQ of a circle. q.e.i. 

But if the same body should go from the place P, in the direction of a line 
perpendicular to PQ, and should begin to move in an arc of the semicircle 
PFQ, we must take AC or a on the contrary side of the centre A; and therefore 
its sign must be changed, and we must put —a for-fa. Then the density of the 
medium would come out as —But Nature does not admit of a negative e 
density, that is, a density which accelerates the motion of bodies; and therefore 
it cannot naturally come to pass that a body by ascending from P should 
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describe the quadrant PF of a circle. To produce such an effect, a body ought 
to be accelerated by an impelling medium, and not impeded by a resisting one. 

Exam. 2. Let the line PFQ be a parabola, having its axis AF perpendicular 
to the horizon PQ; to find the density of the medium, which will make a pro- 
jectile move in that line. 

From the nature of the parabola, the rectangle — PD • DQ is equal to the 
rectangle under the ordinate DI and some given right line; that is, if that right 
line be called h; PC, a; PQ, c; CH, e; and CD, o; the rectangle 

(a+o)(c —a —o) =ac — aa — 2ao+co — oo = 6 • DI; 
ac — aa.c — 2a oo therefore DI=—r ; o—t-. boo 

CD 

Now the second term c —2a o of this series is to be put 

for Qo, and the third term for Rao. But since there 

are no more terms, the coefficient S of the fourth term 
S will vanish; and therefore the quantity ^, 

Rv(i+QQ) 
to which the density of the medium is proportional, will be nothing There- 
fore, where the medium is of no density, the projectile will move in a parabola; 
as Galileo hath heretofore demonstrated. q.e.i. 

Exam. 3. Let the line AGK be an hyperbola, having its asymptote NX per- 
pendicular to the horizontal plane AK: to find the density of the medium that 
will make a projectile move in that line. 

Let MX be the other asymptote, meeting the ordinate DG produced in V; 
and from the nature of the hyperbola, the rectangle of XY into VG will be 
given. There is also given the ratio of DN to YX, and therefore the rectangle 
of DN into YG is given. Let that be hh; and, completing the parallelogram 
DNXZ, let BN be called a; BD, a; NX, c; and let the given ratio of YZ to ZX 
or DN be —. Then DN will be equal to a —a, VG equal to VZ equal to 

-•(a-o) and GD or NX- n 

Let the term hh 

VZ —VG equal to 

m , m hh c aH—a , n n a—o 

a- be resolved into the con- 

verging series 
hh hh . hh t hh , c  ^ o-\—^aaH—to3, &c., a aa a* a4 

and GD will become equal to 
m hh , m hh hh .  1—o o ^o- an aa a6 ■ -a- n 

hh 
a* &c. 

The second term — a ——a of this series is to 
n aa 

be used for Qo; the third —^o2, with its sign 

changed for Ro2; and the fourth ^o3, with 
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its sign changed also for So3, and their coef- 

_ . ^ m hh hh ,66 x , 
ncients , —v and —. are to be put n aa a6 cr 
for Q, R, and S in the former rule. Which 
being done, the density of the medium will 
come out as 

66 

2mhb 
+ -) a4/ 

4' 
, mm 2mhb , 64 

acH aa 1  nn n aa J fiD 
2mbb | 64 

n aa that is, if in VZ you take VY equal to VG, as^^. For aa and ^ a2 

are the squares of XZ and ZY. But the ratio of the resistance to gravity is 
found to be that of 3XY to 2YG; and the velocity is that with which the body 
would describe a parabola, whose vertex is G, diameter DG, latus rectum 
XY2 

^77^-. Suppose, therefore, that the densities of the medium in each of the places V G 
G are inversely as the distances XY, and that the resistance in any place G is 
to the gravity as 3XY to 2YG; and a body let go from the place A, with a due 
velocity, will describe that hyperbola AGK. q.e.i. 

Exam. 4. Suppose, indefinitely, the line AGK to be an hyperbola described 
with the centre X, and the asymptotes MX, NX, so that, having constructed 
the rectangle XZDN, whose side ZD cuts the hyperbola in G and its asymptote 
in V, VG may be inversely as any power DNn of the line ZX or DN, whose 
index is the number n: to find the density of the medium in which a projected 
body will describe this curve. 

For BN, BD, NX, put A, 0, C, respectively, and let YZ be to XZ or DN as 

d to e, and VG be equal to fhen DN will be equal to A —0, VG = ^ (A —C)"' 

VZ = -(A —0) and GD or NX-VZ-VG equal to 

Let the term 66 
-0)" (A- 

66 nbb 0 

A" An+1 * 2An+2 

^ d . . cL, 66 C A + -0- j-r Trr-. e e (A —0)n 

be resolved into an infinite series 

nn+n 6602+ n
3H-3nn+2n 

6An+3 6603, &c., 

and GD will be equal to 
c --A - f +-0 - ^0 - - +^+2-W, &c. 

e An e An+1 2An+2 6An+3 

The second term -0- e 
nn+n. 

nbb 
A"*1 0 of this series is to be used for Qo, the third 

2An+2 6602 for Roo, the fourth n
i-\-Snn-\-2n] 

6An+3 660 for So3. And thence the density 
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of the medium: RV (l+QQ) 
, in any place G, will be 

n+2 

3^A2+^A2- 2dnhh. nn^V 
A2n / 

and therefore if in VZ you take VY equal to n-YG, that density is reciprocally 

as XY. For A2 and _2drMA+rw^^ the res of xz and ZY But ee eAn Azn 

XY 
the resistance in the same place G is to the force of gravity as 3S • to 4RR, 

that is, as XY to ^nn~^n yQ, And the velocity there is the same wherewith ' n+2 
the projected body would move in a parabola, whose vertex is G, diameter 

I _i_ qq 2XY2 

GD, and latus rectum—or 7 ^q.e.i. ' R (nn+n)-VG 

Scholium 
In the same manner that the density of 

the medium comes out to be as S—in R • II1 
Cor. 1, if the resistance is put as any power 
Vn of the velocity V, the density of the 
medium will come out to be as 

S /ACA +- 
0 

that the ratio of 

rtF VHTy 
And therefore, if a curve can be found, such 

S2 

or of 777^ to (l+QQ)n~1 may be given; the R 71 
uV'"Uv 

body, in an uniform medium, whose resistance is as the power Vn of the velocity 
V, will move in this curve. But let us return to more simple curves. 

Since there can be no motion in a parabola except in a nonresisting medium, 
but in the hyperbolas here described it is produced by a continual resistance; 
it is evident that the line which a projectile describes in an uniformly resisting 

medium approaches nearer to these hyper- 
bolas than to a parabola. That line is certain- 
ly of the hyperbolic kind, but about the vertex 
it is more distant from the asymptotes, and 
in the parts remote from the vertex draws 
nearer to them than these hyperbolas here 
described. The difference, however, is not so 
great between the one and the other but 
that these latter may be commodiously 
enough used in practice instead of the for- 
mer. And perhaps these may prove more 
useful than an hyperbola that is more ac- 
curate, and at the same time more com- 
plex. They may be made use of, then, in 

M a rD k N this manner. 
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Complete the parallelogram XYGT, and the right line GT will touch the 

hyperbola in G, and therefore the density of the medium in G is inversely as 

the tangent GT, and the velocity there j 
2rm+2n 

■J 
'GT2 

and the resistance is to the 

force of gravity as GT to n-f2 •GV. 

Therefore if a body projected from the place A, in the direction of the right 
line AH, describes the hyperbola AGK, and AH produced meets the asymptote 
NX in H, and AI drawn parallel to it meets the other asymptote MX in I; the 
density of the medium in A will be inversely as AH and the velocity of the 

AH2 

AI 
AI. Hence the following Rules are deduced. 

/Axx body as and the resistance there to the force of gravity as AH to 
2nn+2n 

X 

yfv H 

;F 

IX \ i     iV... 

/l 
T : 

M A /E k K N 

u-\-<2 
Rule 1. If the density of the me- 

dium at A, and the velocity with 
which the body is projected, remain 
the same, and the angle NAH be 
changed; the lengths AH, AI, HX 
will remain. Therefore if those 
lengths, in any one case, are found, 
the hyperbola may afterwards be 
easily determined from any given 
angle NAH. 

Rule 2. If the angle NAH, and 
the density of the medium at A, re- 
main the same, and the velocity with 
which the body is projected be 
changed, the length AH will continue 
the same; and AI will be changed in- 
versely as the square of the velocity. 

Rule 3. If the angle NAH, the velocity of the body at A, and the accelera- 
tive gravity remain the same, and the proportion of the resistance at A to the 
motive gravity be augmented in any ratio; the proportion of AH to AI will be 
augmented in the same ratio, the latus rectum of the above-mentioned parab- 

AH2 

ola remaining the same, and also the length ——proportional to it; and there- 

fore AH will be diminished in the same ratio, and AI will be diminished as the 
square of that ratio. But the proportion of the resistance to the weight is aug- 
mented, when either the specific gravity is made less, the magnitude remaining 
equal, or when the density of the medium is made greater, or when, bj^ dimin- 
ishing the magnitude, the resistance becomes diminished in a less ratio than 
the weight. 

Rule 4. Because the density of the medium is greater near the vertex of the 
hyperbola than it is in the place A, that a mean density may be preserved, the 
ratio of the least of the tangents GT to the tangent AH ought to be found, and 
the density in A augmented in a ratio a little greater than that of half the sum 
of those tangents to the least of the tangents GT. 

Rule 5. If the lengths AH, AI are given, and the figure AGK is to be de- 
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scribed, produce HN to X, so that HX may be to AI as n+1 to 1; and with 
the centre X, and the asymptotes MX, NX, describe an hyperbola through the 
point A, such that AI may be to any of the lines VG as XVn to XT1. 

" h 

k K N M A E 

Rule 6. By how much the greater the number n is, so much the more accu- 
rate are these hyperbolas in the ascent of the body from A, and less accurate 
in its descent to K; and conversely. The conic hyperbola keeps a mean ratio 
between these, and is more simple than the rest. Therefore if the hyperbola be 
of this kind, and you are to find the point K, where the projected body falls 
upon any right line AN passing through the point A, let AN produced meet the 
asymptotes MX, NX in M and N, and take NK equal to AM. 

Rule 7. And hence appears an expeditious method of determining this hy- 
perbola from the phenomena. Let two similar and equal bodies be projected 
with the same velocity, in different angles HAK, hAk, and let them fall upon 
the plane of the horizon in K and k; and note the proportion of AK to Ak. Let 
it be as d to e. Then erecting a perpendicular AI of any length, assume any 

length AH or Ah, and thence graph- 
ically, or by scale and compass, 
collect the lengths AK, Ak (by Rule 
6). If the ratio of AK to Ak be the 
same with that of d to e, the length 
of AH was rightly assumed. If not, 
take on the indefinite right line SM, 
the length SM equal to the assumed 
AH; and erect a perpendicular MN 

equal to the difference ^-r — - of the 
Ak e 

ratios multiplied by any given right 
line. By the like method, from several 
assumed lengths AH, you may find 
several points N; and draw through 
them all a regular curve NNXN, 
cutting the right line SMMM in X. 

h\\ 
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Lastly, assume AH equal to the abscissa SX, and thence find again the length 
AK; and the lengths, which are to the assumed length AI, and this last AH, 
as the length AK known by experiment, to the length AK last found, will be 
the true lengths AI and AH, which were to be found. But these being given, 
there will be given also the resisting force of the medium in the place A, it 
being to the force of gravity as AH to %AL Let the density of the medium be 
increased by Rule 4, and if the resisting force just found be increased in the 
same ratio, it will become still more accurate. 

Rule 8. The lengths AH, HX being found; let there be now required the 
position of the line AH, according to which a projectile thrown with that given 
velocity shall fall upon any point K. At the points A and K, erect the lines AC, 
KF perpendicular to the horizon; whereof let AC be drawn downwards, and 
be equal to AI or 3^HX. With the asymptotes AK, KF, describe an hyperbola, 
whose conjugate shall pass through the point C; and from the centre A, with 
the interval AH, describe a circle cutting that hyperbola in the point H; then 
the projectile thrown in the direction of the right line AH will fall upon the 
point K. q.e.i. For the point H, because of the given length AH, must be some- 
where in the circumference of the described circle. Draw CH meeting AK and 
KF in E and F; and because CH, MX are parallel, and AC, AI equal, AE will 
be equal to AM, and therefore also equal to KN. But CE is to AE as FH to 
KN, and therefore CE and FH are equal. Therefore the point H falls upon the 
hyperbolic curve described with the asymptotes AK, KF whose conjugate 
passes through the point C; and is therefore found in the common intersection 
of this hyperbolic curve and the circumference of the described circle, q.e.d. 
It is to be observed that this operation is the same, whether the right line AKN 
be parallel to the horizon, or inclined thereto in any angle; and that from two 
intersections H, /i, there arise two angles NAH, NA/i; and that in mechanical 
practice it is sufficient once to describe a circle, then to apply a ruler CH, of an 
indeterminate length, so to the point C, that its part FH, intercepted between 
the circle and the right line FK, may be equal to its part CE placed between 
the point C and the right line AK. 

What has been said of hyperbolas may be easily 
applied to parabolas. For if a parabola be represented 
by XAGK, touched by a right line XY in the vertex X, 
and the ordinates I A, VG be as any powers XIn, XVn, 
of the abscissas XI, XY; draw XT, GT, AH, whereof 
let XT be parallel to VG, and let GT, AH touch the 
parabola in G and A: and a body projected from any 
place A, in the direction of the right line AH, with a 
due velocity, will describe this parabola, if the den- 
sity of the medium in each of the places G be inversely 
as the tangent GT. In that case the velocity in G will 
be the same as would cause a body, moving in a nonresisting space, to describe 
a conic parabola, having G for its vertex, YG produced downwards for its 

2GT2 

diameter, and 7 N for its latus rectum. And the resisting force in G (rm —n)-YG 

will be to the force of gravity as GT to ^'nn YG. Therefore if NAK repre- 71 — Z 
sent an horizontal line, and both the density of the medium at A, and the 
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velocity with which the body is projected, remaining the same, the angle NAH 
be anyhow altered, the lengths AH, AI, HX will remain; and thence will be 
given the vertex X of the parabola, and the position of the right line XI; and 
by taking VG to IA as XVn to XIn, there will be given all the points G of the 
parabola, through which the projectile will pass. 

SECTION III 

The motion of bodies that are resisted partly in the ratio of the 
VELOCITIES, AND PARTLY AS THE SQUARE OF THE SAME RATIO 

Proposition 11. Theorem 8 
If a body he resisted partly in the ratio and partly as the square of the ratio of its 
velocity, and moves in a similar medium by its innate force only; and the times be 
taken in arithmetical progression: then quantities inversely proportional to the 
velocities, increased by a certain given quantity, will he in geometrical progression. 

With the centre C, and the rectangular asymptotes CADd and CH, describe 
an hyperbola BEc, and let AB, DE, de be parallel to the asymptote CH. In 

the asymptote CD let A, G be given points; and if 
the time be represented by the hyperbolic area 
ABED uniformly increasing, I say, that the velocity 
may be expressed by the length DF, whose reciprocal 
GD, together with the given line CG, compose the 
length CD increasing in a geometrical progression. 

For let the small area DEed be the least given 
increment of the time, and Dd will be inversely as 
DE, and therefore directly as CD. Therefore the decre- 

ment of —which (by Lem. 2, Book ii) is ;S^L will be also as or GD GE^ GIT 
that is, as Therefore, the time ABED uniformly in- GD GD GE 

creasing by the addition of the given intervals EDdc, it follows that de- GD 
creases in the same ratio with the velocity. For the decrement of the velocity 
is as the resistance, that is (by the supposition), as the sum of two quantities, 
whereof one is as the velocity, and the other as the square of the velocity; and 

1 1 CG the decrement of is as the sum of the quantities and whereof the GE GE GE^ 
first is itself, and the last is as therefore —^ is as the velocity, GE GE GE GE 
the decrements of both being analogous. And if the quantity GD inversely 

proportional to —^r, be augmented by the given quantity CG; the sum CD, GE 
the time ABED uniformly increasing, will increase in a geometrical progres- 
sion. Q.E.D. 

Cor. i. Therefore, if, having the points A and G given, the time be repre- 
sented by the hyperbolic area ABED, the velocity may be represented by 7-^ 

GD 
the reciprocal of GD. 



184 Mathematical Principles 
Cor. ii. And by taking GA to GD as the reciprocal of the velocity at the 

beginning to the reciprocal of the velocity at the end of any time ABED, the 
point G will be found. And that point being found, the velocity may be found 
from any other time given. 

Proposition 12. Theorem 9 
The same things being supposed, I say, that if the spaces described are taken in 
arithmetical progression, the velocities augmented by a certain given quantity will 
be in geometrical progression. 

In the asymptote CD let there be given the point R, and, erecting the 
perpendicular RS meeting the hyperbola in S, h 
let the space described be represented by the 
hyperbolic area RSED; and the velocity will 
be as the length GD, which, together with the 
given line CG, composes a length CD decreasing 
in a geometrical progression, while the space 
RSED increases in an arithmetical progression.     

For, because the increment EDde of the space C g A T>d R 
is given, the short line Dd, which is the decrement of GD, will be reciprocally 
as ED, and therefore directly as CD; that is, as the sum of the same GD and 
the given length CG. But the decrement of the velocity, in a time inversely 
proportional thereto, in which the given interval of space DdcE is described, 
is as the resistance and the time conjointly, that is, directly as the sum of two 
quantities, whereof one is as the velocity, the other as the square of the velocity, 
and inversely as the velocity; and therefore directly as the sum of two quantities, 
one of which is given, the other is as the velocity. Therefore the decrement both 
of the velocity and of the line GD is as a given quantity and a decreasing quan- 
tity conjointly; and, because the decrements are analogous, the decreasing quan- 
tities will always be analogous; viz., the velocity, and the line GD. q.e.d. 

Cor. i. If the velocity be represented by the length GD, the space described 
will be as the hyperbolic area DESR. 

Cor. ii. And if the point R be assumed anywhere, the point G will be found, 
by taking GR to GD as the velocity at the beginning to the velocity after any 
space RSED is described. The point G being given, the space is given from the 
given velocity; and conversely. 

Cor. hi. Whence since (by Prop. 11) the velocity is given from the given 
time, and (by this Proposition) the space is given from the given velocity, the 
space will be given from the given time; and conversely. 

Proposition 13. Theorem 10 
Supposing that a body attracted downwards by an uniform gravity ascends or 
descends in a right line; and that the same is resisted partly in the ratio of its 
velocity, and partly as the square of the ratio thereof: I say, that, if right lines 
parallel to the diameters of a circle and an hyperbola be drawn through the ends of 
the conjugate diameters, and the velocities be as some segments of those parallels 
drawn from a given point, the times will be as the sectors of the areas cut off by 
right lines drawn from the centre to the ends of the segments; and conversely. 

Case 1. Suppose first that the body is ascending, and from the centre D, 
with any semidiameter DB, describe a quadrant BETF of a circle, and through 
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-..A the end B of the semidiameter DB draw the indefinite 
line BAP, parallel to the semidiameter DF. In that line 
let there be given the point A, and take the segment 
AP proportional to the velocity. And since one part of 
the resistance is as the velocity, and another part as the 
square of the velocity, let the whole resistance be as 
AP2+2BA-AP. Join DA, DP, cutting the circle in E and 
T, and let the gravity be represented by DA2, so that 
the gravity shall be to the resistance in P as DA2 to 

AP2+2BA-AP; and the time of the whole ascent will be as the sector EDT of 
the circle. 

For draw DVQ, cutting off the moment PQ of the velocity AP, and the 
moment DTV of the sector DET answering to a given moment of time; and 
that decrement PQ of the velocity will be as the sum of the forces of gravity 
DA2 and of resistance AP2-i-2BA-AP; that is (by Prop. 12, Book 11, Elements 
of Euclid), as DP2. Then the area DPQ, proportional to PQ, is as DP2, and the 
area DTV, which is to the area DPQ as DT2 to DP2, is as the given quantity 
DT2. Therefore the area EDT decreases uniformly according to the rate of the 
future time, by subtraction of given intervals DTV, and is therefore propor- 
tional to the time of the whole ascent. q.e.d. 

Case 2. If the velocity in the ascent of the body be represented by the length 
AP as before, and the resistance be made as 
AP2-h2BA-AP; and if the force of gravity be B • 
less than can be expressed by DA2; take BD 
of such a length, that AB2 —BD2 may be pro- 
portional to the gravity, and let DF be per- 
pendicular and equal to DB, and through 
the vertex F describe the hyperbola FTVE, 
whose conjugate semidiameters are DB and 
DF, and which cuts DA in E, and DP, DQ in 
T and V; and the time of the whole ascent will be as the hyperbolic sector TDE. 

For the decrement PQ of the velocity, produced in a given interval of time, 
is as the sum of the resistance AP2+2BA-AP and of the gravity AB2 —BD2, 
that is, as BP2 —BD2. But the area DTV is to the area DPQ as DT2 to DP2; 
and, therefore, if GT be drawn perpendicular to DF, as GT2 or GD2 —DF2 to 
BD2, and as GD2 to BP2, and, by subtraction, as DF2 to BP2 —BD2. Therefore 
since the area DPQ is as PQ, that is, as BP2 —BD2, the area DTV will be as the 
given quantity DF2. Therefore the area EDT decreases uniformly in each of 
the equal intervals of time, by the subtraction of so many given intervals DTV, 
and therefore is proportional to the time. q.e.d. 

Case 3. Let AP be the velocity in the descent of the body, and AP2-|-2BA- 
AP the force of resistance, and BD2 —AB2 the force of gravity, the angle DBA 
being a right one. And if with the centre D, and the principal vertex B, there 
be described a rectangular hyperbola BETV cutting DA, DP, and DQ pro- 
duced in E, T, and V; the sector DET of this hyperbola will be as the whole 
time of descent. 

For the increment PQ of the velocity, and the area DPQ proportional to it. 
is as the excess of the gravity above the resistance, that is, as 

BD2 - AB2 - 2BA • AP - AP2 
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or BD2 —BP2. And the area DTY is to the area DPQ 
as DT2 to DP2; and therefore as GT2 or GD2 —BD2 to 
BP2; and as GD2 to BD2, and, by subtraction, as BD2 to 
BD2 —BP2. Therefore since the area DPQ is as BD2 — 
BP2, the area DTY will be as the given quantity BD2. 
Therefore the area EDT increases uniformly in the several 
equal intervals of time by the addition of as many given 
intervals DTY, and therefore is proportional to the time 
of the descent. q.e.d. 

Cor. If with the centre D and the semidiameter DA 
there be drawn through the vertex A an arc A^ similar to the arc ET, and 
similarly subtending the angle ADT, the velocity AP will be to the velocity 
which the body in the time EDT, in a nonresisting space, can lose in its as- 
cent, or acquire in its descent, as the area of the triangle DAP to the area of 
the sector DA^; and therefore is given from the time given. For the velocity 
in a nonresisting medium is proportional to the time, and therefore to this 
sector; in a resisting medium, it is as the triangle; and in both mediums, 
where it is least, it approaches to the ratio of equality, as the sector and 
triangle do. 

Scholium 
One may demonstrate also that case in the ascent of the body, where the 

force of gravity is less than can be expressed by DA2 or AB2+BD2, and greater 
than can be expressed by AB2 —DB2, and must be expressed by AB2. But I 
hasten to other things. 

Proposition 14. Theorem 11 
The same things being supposed, I say, that the space described in the ascent or 
descent is as the difference of the area by which the time is expressed, and of some 
other area which is augmented or diminished in an arithmetical progression; if 
the forces compounded of the resistance and the gravity be taken in a geometrical 
progression. 

Take AC (in these three figures) proportional to the gravity, and AK to the 
resistance; but take them on the same side of the point A, if the body is de- 
scending, otherwise on the contrary. Erect Ab, which make to DB as DB2 to 
4BA-CA; and to the rectangular asymptotes CK, CH, describe the hyperbola 
6N; and, erecting KN perpendicular to CK, the area A6NK will be augmented 
or diminished in an arithmetical progression, while the forces CK are taken in 
a geometrical progression. I say, therefore, that the distance of the body from 
its greatest altitude is as the excess of the area A6NK above the area DET. 

For since AK is as the resistance, that is, as AP2-2BA-AP; assume any 
AP2+2BA-AP given quantity Z, and put AK equal to ^1 ^en Lem. 2 of 

this book) the moment KL of AK will be equal to APH-2BA PQ L 
2PQ • BP or — , and the moment KLON of the area A6NK will be equal to 

2PQBP-LO PQBPBD3 

Z 0r 2Z • CK • AB ' 
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Case 1. Now if the body ascends, and the gravity be as AB2+BD2, BET 
being a circle, the line AC, which is proportional to the gravity, will be 
AB-+Biy and Dp2 or Ap2+2BA-AP+AB2+BD2 will be AK Z+AC Z or 

z 
CK-Z; and therefore the area DTV will be to the area DPQ as DT2 or DB2 

to CK-Z. 

H 

H \ Jb 
/ 

C A y, 

> 1 

^ L K 

L 

V 
^ NsT B A K O P 

L K Q\\ A 

Case 2. If the body ascends, and the gravity be as AB2 —BD2, the line AC 
AT*2 —BD2 

will be „ , and DT2 will be to DP2 as DP2 or DB2 to BP2-BD2 or Z 
AP2+2BA-AP+AB2 —BD2, that is, to AK-Z+AC-Z or CK-Z. And therefore 
the area DTV will be to the area DPQ as DB2 to CK • Z. 

Case 3. And by the same reasoning, if the body descends, and therefore the 
BD2 —AB2 

gravity is as BD2 —AB2, and the line AC becomes equal to  ^ ; the Z 
area DTV will be to the area DPQ as DB2 to CK • Z: as above. 

Since, therefore, these areas are always in this ratio, if for the area DTV, by 
which the moment of the time, always equal to itself, is expressed, there be 
put any determinate rectangle, as BD-m, the area DPQ, that is, J^BD-PQ, 
will be to BD-m as CK-Z to BD2. And thence PQ-BD3 becomes equal to 
2BD-m-CK Z, and the moment KLON of the area A6NK, found before, 

BP - BD • m becomes r-pr . From the area DET subtract its moment DTV or BD • m, AB 
and there wall remain ^ m Therefore the difference of the moments, 

AB • ' 
.u . • .i. . , ^ i• /v» . . AP-BD •m that is, the moment of the difference of the areas, is equal to  ; and 

AB 
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therefore (because of the given quantity m) as the velocity AP; that is, 
AJD 

as the moment of the space which the body describes in its ascent or descent. 
And therefore the difference of the areas, and that space, increasing or de- 
creasing by proportional moments, and beginning together or vanishing to- 
gether, are proportional. q.e.d 

On 
QP 

L K 

\N 

H> ^ XN B A K O P 

L K Q 

Cor. If the length, which arises by applying the area DET to the line BD, 
be called M; and another length Y be taken in that ratio to the length M, 
which the line DA has to the line DE; the space which a body, in a resisting 
medium, describes in its whole ascent or descent, will be to the space which a 
body, in a nonresisting medium, falling from rest, can describe in the same 

BDY2 

time, as the difference of the aforesaid areas to —. ; and therefore is given AB 
from the time given. For the space in a nonresisting medium is as the square 

BDY2 

of the time, or as V2; and, because BD and AB are given, as —r^—• This area 

is equal to the area DA2BDM2 

moment of this area is 

DE2 • AB 
DA2 • BD • 2M • m 

DE2 • AB 

AB 
and the moment of M is m; and therefore the 

But this moment is to the moment of 

the difference of the aforesaid areas DET and A6NK, viz., to 
APBD-m 

AB ' 
DA2 • BD • M to ^BD • AP, or j DA2. into DET to DAP; and, therefore, when DE2 - DE2 

the areas DET and DAP are least, in the ratio of equality. Therefore the area 
BDY2 

AB and the difference of the areas DET and A6NK, when all these areas 
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are least, have equal moments; and are therefore equal. Therefore since the 
velocities, and therefore also the spaces in both mediums described together, 
in the beginning of the descent, or the end of the ascent, approach to equality, 

BDV2 

and therefore are then one to another as the area —, and the difference of Ai:> 
the areas DET and A6NK; and moreover since the space, in a nonresisting 
medium, is continually as , and the space, in a resisting medium, is AB 
continually as the difference of the areas DET and A&NK; it necessarily fol- 
lows, that the spaces, in both mediums, described in any equal times, are one 

BDV2 

to another as that area —r^—, and the difference of the areas DET and AB 
A6NK. q.e.d. 

Scholium 
The resistance of spherical bodies in fluids arises partly from the tenacity, 

partly from the attrition, and partly from the density of the medium. And that 
part of the resistance which arises from the density of the fluid is, as I said, as 
the square of the velocity; the other part, which arises from the tenacity of 
the fluid, is uniform, or as the moment of the time; and, therefore, we might 
now proceed to the motion of bodies, which are resisted partly by an uniform 
force, or in the ratio of the moments of the time, and partly as the square of 
the velocity. But it is sufficient to have cleared the way to this speculation in 
Props. 8 and 9 foregoing, and their Corollaries. For in those Propositions, in- 
stead of the uniform resistance made to an ascending body arising from its 
gravity, one may substitute the uniform resistance which arises from the te- 
nacity of the medium, when the body moves by its inertia alone; and when the 
body ascends in a right line, add this uniform resistance to the force of gravity, 
and subtract it when the body descends in a right line. One might also go on 
to the motion of bodies which are resisted in part uniformly, in part in the 
ratio of the velocity, and in part as the square of the same velocity. And I 
have opened a way to this in Props. 13 and 14 foregoing, in which the uniform 
resistance arising from the tenacity of the medium may be substituted for the 
force of gravity, or be compounded with it as before. But I hasten to other 
things. 

SECTION IV 

The circular motion of bodies in resisting mediums 

Lemma 3 
Let PQR he a spiral cutting all the radii SP, SQ, SR, &c., in equal angles. Draw 
the right line PT touching the spiral in any point P, and cutting the radius SQ in 
T; draw PO, QO perpendicular to the spiral, and meeting in O, and join SO: 1 
say, that if the points P and Q approach and coincide, the angle PSO will become 
a right angle, and the ultimate ratio of the rectangle TQ • 2PS to PQ2 will he the 
ratio of equality. 

For, from the right angles OPQ, OQR, subtract the equal angles SPQ, SQR, 
and there will remain the equal angles OPS, OQS. Therefore a circle which 
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Q.E.D. 

passes through the points OSP will pass also through the point Q. Let the 
points P and Q coincide, and this circle will touch the spiral in the place of 
coincidence PQ, and mil therefore cut the right line OP perpendicularly. 
Therefore OP will become a diameter of this circle, and the angle OSP, being 
in a semicircle, becomes a right one. 

Draw QD, SE perpendicular to OP, and 
the ultimate ratios of the lines will be as 
follows: 

TQ : PD = TS or PS : PE = 2PO : 2PS; 
and PD : PQ = PQ : 2PO; 
multiplying together corresponding terms 
of equal ratios, 

TQ : PQ = PQ : 2PS. 
Whence PQ2 becomes equal to TQ-2PS. 

Q.E.D. 

Proposition 15. Theorem 12 
If the density of a medium in each place thereof be inversely as the distance of the 
places from an immovable centre, and the centripetal force be as the square of the 
density: I say, that a body may revolve in a spiral which cuts all the radii drawn 
from that centre in a given angle. 

Suppose everything to be as in the foregoing Lemma, and produce SQ to V 
so that SV may be equal to SP. In any time let a body, in a resisting medium, 
describe the least arc PQ, and in double the time the least arc PR; and the 
decrements of those arcs arising from the resistance, or their differences from 

the arcs which wTould be described in a non- 
resisting medium in the same times, will be 
to each other as the squares of the times in 
which they are generated; therefore the 
decrement of the arc PQ is the fourth part 
of the decrement of the arc PR. Whence also 
if the area QSr be taken equal to the area 
PSQ, the decrement of the arc PQ will be 
equal to half the short line Rr; and therefore 
the force of resistance and the centripetal 
force are to each other as the short line 

HRr and TQ which they generate in the same time. Because the centripetal 
force with which the body is urged in P is inversely as SP2, and (by Lem. 10, 
Book i) the short line TQ, which is generated by that force, is in a ratio com- 
pounded of the ratio of this force and the squared ratio of the time in which the 
arc PQ is described (for in this case I neglect the resistance, as being infinitely 
less than the centripetal force), it follows that TQ-SP2, that is (by the last 
Lemma), 3^PQ2-SP, will be as the square of the time, and therefore the time is 
as PQ • VSP; and the velocity of the body, with which the arc PQ is described 

PO 1 in that time, as ^ /Q or , that is, inversely as the square root of SP. 
PQ " V feP v or 

And, by a like reasoning, the velocity with which the arc QR is described, is 
inversely as the square root of SQ. Now those arcs PQ and QR are as the 
describing velocities to each other; that is, as the square root of the ratio of 
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SQ to SP, or as SQ to VCSP-SQ); and, because of the equal angles SPQ, SQr, 
and the equal areas PSQ, QSr, the arc PQ is to the arc Qr as SQ to SP. Take the 
differences of the proportional consequents, and the arc PQ will be to the arc 
Rr as SQ to SP — VO^P-SQ), or J^VQ. For, the points P and Q coinciding, the 
ultimate ratio of SP —\/(SP-SQ) to 3^VQ is the ratio of equality. Since the 
decrement of the arc PQ arising from the resistance, or its double Rr, is as the 
resistance and the square of the time conjointly, the resistance will be as 

Rr Rr 
otv PQ was as SQ ^VQ, and thence r c becomes as PQ • SP 1 Q • bP 

or as r^^L- Por' P0infs P and Q coinciding, SP and SQ 
PQ • bP • bQ OP • bP 
coincide also, and the angle PVQ becomes a right one; and, because of the 
similar triangles PVQ, PSO, PQ becomes to 3^ VQ as OP to 3^0S. Therefore 

OS gp2 is as the resistance, that is, in the ratio of the density of the medium 

in P and the squared ratio of the velocity conjointly. Subtract the squared 

ratio of the velocity, namely, the ratio ^5, and there will remain the density of bP 
OS 

the medium in P, as , vi:> Q . Let the spiral be given, and, because of the given OP * bP 

ratio of OS to OP, the density of the medium in P will be as Therefore in a bP 
medium whose density is inversely as SP the distance from the centre, a body 
will revolve in this spiral. q.e.d. 

Cor. 1. The velocity in any place P, is always the same wherewith a body in 
a nonresisting medium with the same centripetal force would revolve in a 
circle, at the same distance SP from the centre. 

OS Cor. 11. The density of the medium, if the distance SP be given, is as but 
OS 

if that distance is not given, as Qp-gp* thence a spiral may be fitted to 

any density of the medium. 
Cor. hi. The force of the resistance in any place P is to the centripetal force 

in the same place as 3^08 to OP. For those forces are to each other as 3^Rr and 

TQ, or as ^ an<^ > ^at as /^VQ and PQ, or 3^0S and OP. The 

spiral therefore being given, there is given 
the proportion of the resistance to the cen- 
tripetal force; and, conversely, from that 
proportion given the spiral is given. 

Cor. iv. Therefore the body cannot re- 
volve in this spiral, except where the force 
of resistance is less than half the centripetal 
force. Let the resistance be made equal to 
half the centripetal force, and the spiral 
will coincide with the right line PS, and in 
that right line the body will descend to the 

centre with a velocity that is to the velocity with which it was proved before 
in the case of the parabola (Theor. 10, Book 1) that the descent would be made 
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in a nonresisting medium, as the square root of the ratio of unity to the num- 
ber 2. And the times of the descent will be here inversely as the velocities, and 
therefore given. 

Cor. v. And because at equal distances from the centre the velocity is the 
same in the spiral PQR as it is in the right line SP, and the length of the spiral 
is to the length of the right line PS in a given ratio, namely, in the ratio of OP 
to OS; the time of the descent in the spiral will be to the time of the descent in 
the right line SP in the same given ratio, and therefore given. 

Cor. vi. If from the centre S, with any two given radii, two circles are de- 
scribed; and these circles remaining, the angle which the spiral makes with the 
radius PS be changed in any manner; the number of revolutions which the body 
can complete in the space between the circumferences of those circles, going 

PS round in the spiral from one circumference to another, will be as or as the 
OS 

tangent of the angle which the spiral makes with the radius PS; and the time of 
OP the same revolutions will be as that is, as the secant of the same angle, or 

inversely as the density of the medium. 
Cor. vii. If a body, in a medium whose density is inversely as the distances 

of places from the centre, revolves in any curve AEB about that centre, and 
cuts the first radius AS in the same angle in B as it did before in A, and that 
with a velocity that shall be to its first velocity in A inversely as the square 
root of the distances from the cen- 
tre (that is, as AS to a mean pro- 
portional between AS and BS), 
that body wall continue to de- 
scribe innumerable similar revolu- 
tions BFC, CCD, &c., and by its 
intersections will divide the radius 
AS into parts AS, BS, CS, DS, ^ 
&c., that are continually propor- 
tional. But the times of the revo- 
lutions will be directly as the per- 
imeters of the orbits AEB, BFC, 
CCD, &c., and inversely as the 
velocities at the beginnings A, B, 
C of those orbits; that is, as AS3/2, 
BS3/2, CS3/2. And the whole time 
in which the body will arrive at the centre, will be to the time of the first rev- 
olution as the sum of all the continued proportionals AS3/2, BS3/2, CS3/2, going 
on ad infinitum, is to the first term AS3/2; that is, as the first term AS3/2 is to the 
difference of the two first AS3/2-BS3/2, or as %AS is toAB, very nearly. Whence 
the whole time may be easily found. 

Cor. viii. From hence also may be deduced, near enough, the motions of 
bodies in mediums whose density is either uniform, or observes any other as- 
signed law. From the centre S, with radii SA, SB, SC, &c., continually propor- 
tional, describe as many circles; and suppose the time of the revolutions be- 
tween the perimeters of any two of those circles, in the medium whereof we 
treated, to be to the time of the revolutions between the same in the medium 
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proposed as the mean density of the proposed medium between those circles is 
to the mean density of the medium whereof we treated, between the same cir- 
cles, nearly; and that the secant of the angle in which the spiral above deter- 
mined, in the medium whereof we treated, cuts the radius AS, is in the same 
ratio to the secant of the angle in which the new spiral, in the proposed medi- 
um, cuts the same radius; and also that the number of all the revolutions 
between the same two circles is nearly as the tangents of those angles. If this 
be done everywhere between every two circles, the motion will be continued 
through all the circles. And by this means one may without difficulty ascertain 
at what rate and in what time bodies ought to revolve in any regular medium. 

Cor. ix. And although these motions becoming eccentric should be per- 
formed in spirals approaching to an oval figure, yet, assuming the several 
revolutions of those spirals to be at the same distances from each other, and to 
approach to the centre by the same degrees as the spiral above described, we 
may also understand how the motions of bodies may be performed in spirals of 
that kind. 

Proposition 16. Theorem 13 
If the density of the medium in each of the places be inversely as the distance of the 
places from the immovable centre, and the centripetal force be inversely as any 
power of the same distance: I say, that the body may revolve in a spiral intersecting 
all the radii drawn from that centre in a given angle. 

This is demonstrated in the same manner as the foregoing Proposition. For 
if the centripetal force in P be inversely as any power SPn+1 of the distance SP 

whose index is n+1; it will be concluded, 
as above, that the time in which the body 
describes any arc PQ, will be as PQ-PS1/2n; 

Rr 

VT 

and the resistance in P 
PQ2SPn' 

(1 —V2n)-VQ andthcrcforcaJl-^).OS 
PQ• SP"• SQ ' tnereloreas 0p.gp„,+1 . 

■ i . ■ ,, (l-Hn)-OS . that is (because     is a given 

quantity), inversely as SPn+1. And there- 
fore, since the velocity is inversely as SP1/2ri, the density in P will be recipro- 
cally as SP. 

Cor. i. The resistance is to the centripetal force as (1 —3^2n)-OS to OP. 
Cor. ii. If the centripetal force be inversely as SP3, 1 — will be =0; and 

therefore the resistance and density of the medium will be nothing, as in Prop. 
9, Book i. 

Cor. m. If the centripetal force be inversely as any power of the radius SP, 
whose index is greater than the number 3, the positive resistance will be changed 
into a negative. 

Scholium 
This Proposition and the former, which relate to mediums of unequal den- 

sity, are to be understood as applying only to the motion of bodies that are so 
small, that the greater density of the medium on one side of the body above 
that on the other is not to be considered. I suppose also the resistance, other 
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things being equal, to be proportional to its density. Hence, in mediums whose 
force of resistance is not as the density, the density must be so much aug- 
mented or diminished, that either the excess of the resistance may be taken 
away, or the defect supplied. 

Proposition 17. Problem 4 
To find the centripetal force and the resisting   
force of the medium, by which a body, the law ^ 
of the velocity being given, shall revolve in a 
given spiral. / 

Let that spiral be PQR. From the veloc- / 
ity, with which the body goes over the very / 
small arc PQ, the time will be given; and / 
from the altitude TQ, which is as the cen- Pf—\ 
tripetal force, and the square of the time, Aq ^—.<■. \ 
that force will be given. Then from the dif- tt 1 
ference RSr of the areas PSQ and QSR de- / 
scribed in equal intervals of time, the retar- r \ / 
dation of the body will be given; and from \. / 
the retardation will be found the resisting 
force and density of the medium.    

Proposition 18. Problem 5 
The law of centripetal force being given, to find the density of the medium in each of 
the places thereof, by which a body may describe a given spiral. 

From the centripetal force the velocity in each place must be found; then 
from the retardation of the velocity the density of the medium is found, as in 
the foregoing Proposition. 

But I have explained the method of managing these Problems in the tenth 
Proposition and second Lemma of this book; and will no longer detain the 
reader in these complicated investigations. I shall now add some things relating 
to the forces of progressive bodies, and to the density and resistance of those 
mediums in which the motions hitherto discussed, and those akin to them, are 
performed. 

SECTION v 

The density and compression of fluids; hydrostatics. 
THE DEFINITION OF A FLUID 

A FLUID IS ANY BODY WHOSE PARTS YIELD TO ANY FORCE IMPRESSED ON IT, AND, 
BY YIELDING, ARE EASILY MOVED AMONG THEMSELVES 

Proposition 19. Theorem 14 
All the parts of an homogeneous and unmoved fluid included in any unmoved 
vessel, and compressed on every side {setting aside the consideration of condensa- 
tion, gravity, and all centripetal forces), will be equally pressed on every side, and 
remain in their places without any motion arising from that pressure. 

Case 1. Let a fluid be included in the spherical vessel ABC, and uniformly 
compressed on every side: I say, that no part of it will be moved by that pres- 
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sure. For if any part, as D, be moved, all such parts at the same distance from 
the centre on every side must necessarily be moved at the same time by a like 

motion; because the pressure of them all is similar and 
equal; and all other motion is excluded that does not 
arise from that pressure. But if these parts come all of 
them nearer to the centre, the fluid must be condensed 
towards the centre, contrary to the supposition. If they 
recede from it, the fluid must be condensed towards 
the circumference; which is also contrary to the suppo- 
sition. Neither can they move in any one direction re- 
taining their distance from the centre, because, for the 
same reason, they may move in a contrary direction; 

but the same part cannot be moved contrary ways at the same time. Therefore 
no part of the fluid will be moved from its place. q.e.d. 

Case 2.1 say now, that all the spherical parts of this fluid are equally pressed 
on every side. For let EF be a spherical part of the fluid; if this be not pressed 
equally on every side, augment the lesser pressure till it be pressed equally on 
every side; and its parts (by Case 1) will remain in their places. But before the 
increase of the pressure, they would remain in their places (by Case 1); and by 
the addition of a new pressure they will be moved, by the definition of a fluid, 
from those places. Now these two conclusions contradict each other. Therefore 
it was false to say that the sphere EF was not pressed equally on every side. 

Q.E.D. 
Case 3.1 say besides, that different spherical parts have equal pressures. For 

the contiguous spherical parts press each other mutually and equally in the 
point of contact (by Law m). But (by Case 2) they are pressed on every side 
with the same force. Therefore any two spherical parts not contiguous, since 
an intermediate spherical part can touch both, will be pressed with the same 
force. q.e.d. 

Case 4. I say now, that all the parts of the fluid are everywhere pressed 
equally. For any two parts may be touched by spherical parts in any points 
whatever; and there they will equally press those spherical parts (by Case 3), 
and are in reaction equally pressed by them (by Law m). q.e.d. 

Case 5. Since, therefore, any part GHI of the fluid is inclosed by the rest of 
the fluid as in a vessel, and is equally pressed on every side; and also its parts 
equally press one another, and are at rest among themselves; it is manifest that 
all the parts of any fluid as GHI, which is pressed equally on every side, do 
press each other mutually and equally, and are at rest among themselves. 

Q.E.D. 
Case 6. Therefore if that fluid be included in a vessel of a yielding substance, 

or that is not rigid, and be not equally pressed on every side, the same will give 
way to a stronger pressure, by the definition of fluidity. 

Case 7. And therefore, in an inflexible or rigid vessel, a fluid will not sustain 
a stronger pressure on one side than on the other, but will give way to it, and 
that in a moment of time; because the rigid side of the vessel does not follow 
the yielding liquor. But the fluid, by thus yielding, will press against the op- 
posite side, and so the pressure will tend on every side to equality. And because 
the fluid, as soon as it endeavors to recede from the part that is most pressed, 
is withstood by the resistance of the vessel on the opposite side, the pressure 
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will on every side be reduced to equality, in a moment of time, without any 
local motion; and from thence the parts of the fluid (by Case 5) will press each 
other mutually and equally, and be at rest among themselves. q.e.d. 

Cor. Hence neither will a motion of the parts of the fluid among themselves 
be changed by a pressure communicated to the external surface, except so far 
as either the figure of the surface may be somewhere altered, or that all the 
parts of the fluid, by pressing one another more intensely or remissly, may slide 
with more or less difficulty among themselves. 

Proposition 20. Theorem 15 
If all the parts of a spherical fluid, homogeneous at equal distances from the centre, 
lying on a spherical concentric bottom, gravitate towards the centre of the whole, the 
bottom will sustain the weight of a cylinder, whose base is equal to the surface of the 
bottom, and whose altitude is the same with that of the incumbent fluid. 

Let DHM be the surface of the bottom, and AEI the upper surface of the 
fluid. Let the fluid be divided into concentric orbs of equal thickness, by the 
innumerable spherical surfaces BFK, CGL; and conceive the force of gravity 
to act only in the upper surface of every orb, and the actions to be equal on the 
equal parts of the surfaces. Therefore the upper surface AE is pressed by the 
single force of its own gravity, by which all the parts of the upper orb, and the 
second surface BFK, will (by Prop. 19), according to its measure, be equally 
pressed. The second surface BFK is pressed 
likewise by the force of its own gravity, which, 
added to the former force, makes the pressure /' 
double. The third surface CGL is, according to ///'/ 
its measure, acted on by this pressure and the / / / 
force of its own gravity besides, which makes its / / / / 
pressure triple. And in like manner the fourth | I i I 
surface receives a quadruple pressure, the fifth \ \ \ \ / / / / 
surface a quintuple, and so on. Therefore the \ \g\Vs^ / 
pressure acting on every surface is not as the e\\^-  
solid quantity of the incumbent fluid, but as the ' •  S-*" 
number of the orbs reaching to the upper sur- 
face of the fluid; and is equal to the gravity of the lowest orb multiplied by 
the number of orbs; that is, to the gravity of a solid whose ultimate ratio to 
the cylinder above mentioned (when the number of the orbs is increased and 
their thickness diminished, ad infinitum, so that the action of gravity from the 
lowest surface to the uppermost may become continued) is the ratio of equal- 
ity. Therefore the lowest surface sustains the weight of the cylinder above 
determined, q.e.d. And by a like reasoning the Proposition will be evident, 
where the gravity of the fluid decreases in any assigned ratio of the distance 
from the centre, and also where the fluid is more rare above and denser below. 

Q.E.D. 
Cor. i. Therefore the bottom is not pressed by the whole weight of the in- 

cumbent fluid, but only sustains that part of it which is described in the Prop- 
osition; the rest of the weight being sustained archwise by the spherical figure 
of the fluid. 

Cor. ii. The quantity of the pressure is the same always at equal distances 
from the centre, whether the surface pressed be parallel to the horizon, or 



Book II: The Motion of Bodies 197 
perpendicular, or oblique; or whether the fluid, continued upwards from the 
compressed surface, rises perpendicularly in a rectilinear direction, or creeps 
obliquely through crooked cavities and canals, whether those passages be reg- 
ular or irregular, wide or narrow. That the pressure is not altered by any of 
these circumstances, may be inferred by applying the demonstration of this 
Theorem to the several cases of fluids. 

Cor. hi. From the same demonstration it may also be concluded (by Prop. 
19), that the parts of a heavy fluid acquire no motion among themselves by the 
pressure of the incumbent weight, except that motion which arises from con- 
densation. 

Cor. iv. And therefore if another body of the same specific gravity, incapable 
of condensation, be immersed in this fluid, it will acquire no motion by the 
pressure of the incumbent weight: it will neither descend nor ascend, nor 
change its figure. If it be spherical, it will remain so, notwithstanding the pres- 
sure; if it be square, it will remain square; and that, whether it be soft or fluid; 
whether it swims freely in the fluid, or lies at the bottom. For any internal part 
of a fluid is in the same state with the submersed body; and the case of all sub- 
mersed bodies that have the same magnitude, figure, and specific gravity, is 
alike. If a submersed body, retaining its weight, should dissolve and put on the 
form of a fluid, this body, if before it should have ascended, descended, or from 
any pressure assumed a new figure, would now likewise ascend, descend, or put 
on a new figure; and that, because its gravity and the other causes of its 
motion remain. But (by Case 5, Prop. 19) it would now be at rest, and retain 
its figure. Therefore also in the former case. 

Cor. v. Therefore a body that is specifically heavier than a fluid contiguous 
to it will sink; and that which is specifically lighter will ascend, and attain so 
much motion and change of figure as that excess or defect of gravity is able to 
produce. For that excess or defect is the same thing as an impulse, by which a 
body, otherwise in equilibrium with the parts of the fluid, is acted on; and may 
be compared with the excess or defect of a weight in one of the scales of a 
balance. 

Cor. vi. Therefore bodies placed in fluids have a twofold gravity: the one 
true and absolute, the other apparent, common, and comparative. Absolute 
gravity is the whole force with which the body tends downwards; relative and 
common gravity is the excess of gravity with which the body tends downwards 
more than the ambient fluid. By the first kind of gravity the parts of all fluids 
and bodies gravitate in their proper places; and therefore their weights taken 
together compose the weight of the whole. For the whole taken together is 
heavy, as may be experienced in vessels full of liquor; and the weight of the 
whole is equal to the weights of all the parts, and is therefore composed of 
them. By the other kind of gravity bodies do not gravitate in their places; that 
is, compared with one another, they do not preponderate, but, hindering one 
another's endeavor to descend, remain in their proper places as if they were 
not heavy. Those things which are in the air, and do not preponderate, are 
commonly looked on as not heavy. Those which do preponderate are com- 
monly reckoned heavy, inasmuch as they are not sustained by the weight of 
the air. The common weights are nothing else but the excess of the true weights 
above the weight of the air. Hence also, commonly, those things are called 
light which are less heavy, and, by yielding to the preponderating air, mount 
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upwards. But these are only comparatively light, and not truly so, because they 
descend in a vacuum. Thus, in water, bodies which, by their greater or less 
gravity, descend or ascend, are comparatively and apparently heavy or light; 
and their comparative and apparent gravity or levity is the excess or defect by 
which their true gravity either exceeds the gravity of the water or is exceeded 
by it. But those things which neither by preponderating descend, nor, by 
yielding to the preponderating fluid, ascend, although by their true weight 
they do increase the weight of the whole, yet comparatively, and as commonly 
understood, they do not gravitate in the water. For these cases are alike 
demonstrated. 

Cor. vii. These things which have been demonstrated concerning gravity 
take place in any other centripetal forces. 

Cor. viii. Therefore if the medium in which any body moves be acted on 
either by its own gravity, or by any other centripetal force, and the body be 
urged more powerfully by the same force; the difference of the forces is that 
very motive force, which, in the foregoing Proposition, I have considered as a 
centripetal force. But if the body be more lightly urged by that force, the differ- 
ence of the forces becomes a centrifugal force, and is to be considered as such. 

Cor. ix. But since fluids by pressing the included bodies do not change their 
external figures, it appears also (by Cor., Prop. 19) that they will not change 
the situation of their internal parts in relation to one another; and therefore if 
animals were immersed therein, and if all sensation did arise from the motion 
of their parts, the fluid would neither hurt the immersed bodies, nor excite any 
sensation, unless so far as those bodies might be condensed by the compression. 
And the case is the same of any system of bodies encompassed with a 
compressing fluid. All the parts of the system will be agitated with the same 
motions as if they were placed in a vacuum, and would only retain their com- 
parative gravity; unless so far as the fluid may somewhat resist their motions, 
or be requisite to unite them by compression. 

Proposition 21. Theorem 16 
Let the density of any fluid he proportional to the compression, and its parts he 
attracted downwards hy a centripetal force inversely proportional to the distances 
from the centre: I say, that, if those distances he taken continually proportional, the 
densities of the fluid at the same distances will he also continually proportional. 

Let ATY denote the spherical bottom of the fluid, S the centre, SA, SB, SC, 
SD, SE, SF, &c., distances continually proportional. Erect the perpendiculars 
AH, BI, CK, DL, EM, FN, &c., which shall be as the densities of the medium 
in the places A, B, C, D, E, F; and the specific gravities in those places will be 

AH BI CK „ i.i. |i AH BI CK . ^ + as gg, ^jg-, &c., or, which is all one, as gg,, &c. Suppose, hrst, 

these gravities to be uniformly continued from A to B, from B to C, from C to 
D, &c., the decrements in the points B, C, D, &c., being taken by steps. And 
these gravities multiplied by the altitudes AB, BC, CD, &c., will give the 
pressures AH, BI, CK, &c., by which the bottom ATY is acted on (by Theor. 
15). Therefore the particle A sustains all the pressures AH, BI, CK, DL, &c., 
proceeding in infinitum; and the particle B sustains the pressures of all but the 
first AH; and the particle C all but the two first AH, BI; and so on: and there- 
fore the density AH of the first particle A is to the density BI of the second 
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particle B as the sum of all AH + BI + CK-j-DL, in in- 
finitum, to the sum of all BI + CK + DL, &c. And BI 
the density of the second particle B is to CK the den- 
sity of the third C, as the sum of all BI + CK-f DL, 
&c., to the sum of all CK+DL, &c. Therefore these 
sums are proportional to their differences AH, BI, CK, 
&c., and therefore continually proportional (by Lem. 
1 of this book); and therefore the differences AH, BI, 
CK, &c., proportional to the sums, are also continually 
proportional. Therefore since the densities in the places 
A, B, C, &c., are as AH, BI, CK, &c., they will also 
be continually proportional. Proceed intermissively, 
and, at the distances SA, SC, SE, continually propor- 
tional, the densities AH, CK, EM will be continually 
proportional. And by the same reasoning, at any dis- 
tances SA, SD, SG, continually proportional, the den- 

sities AH, DL, GO will be continually proportional. Let now the points A, B, 
C, D, E, &c., coincide, so that the progression of the specific gravities from 
the bottom A to the top of the fluid may be made continual; and at any dis- 
tances SA, SD, SG, continually proportional, the densities AH, DL, GO, being 
all along continually proportional, will still remain continually proportional. 

Q.E.D. 
Cor. Hence if the density of the fluid in two places, as A and E, be given, its 

density in any other place Q may be obtained. With the centre S, and the 
rectangular asymptotes SQ, SX, describe an hyperbola cutting the perpen- 

diculars AH, EM, QT in a, e, and q, as also the 
perpendiculars HX, MY, TZ, let fall upon the 
asymptote SX, mh, m, and t. Make the area YmtZ 
to the given area YmhX as the given area Ec^Q 
to the given area EcaA; and the line Zt produced 
will cut off the line QT proportional to the den- 
sity. For if the lines SA, SE, SQ are continually 
proportional, the areas Ee^Q, EcaA will be equal, 
and thence the areas YmtZ, X.hmY, proportional 
to them, will be also equal; and the lines SX, SY, 
SZ, that is, AH, EM, QT continually proportional, 
as they ought to be. And if the lines SA, SE, SQ 

obtain any other order in the series of continued proportionals, the lines AH, 
EM, QT, because of the proportional hyperbolic areas, will obtain the same 
order in another series of quantities continually proportional. 

Proposition 22. Theorem 17 
Let the density of any fluid he proportional to the compression, and its parts be 
attracted downwards by a gravitation inversely proportional to the squares of the 
distances from the centre: I say, that if the distances be taken in harmonic progres- 
sion, the densities of the fluid at those distances will be in a geometrical progression. 

Let S denote the centre, and SA, SB, SC, SD, SE the distances in geometrical 
progression. Erect the perpendiculars AH, BI, CK, &c., which shall be as the 
densities of the fluid in the places A, B, C, D, E, &c., and the specific gravities 
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AH BI CK thereof in those places will be as g^2, &c. Suppose these gravities to 

be uniformly continued, the first from A to B, the second from B to C, the 
third from C to D, &c. And these multiplied by the altitudes AB, BC, CD, DE, 
&c., or, which is the same thing, by the distances SA, SB, SC, &c., proportional 

to those altitudes, will give &c., representing the pressures. 

Therefore since the densities are as the sums of those pressures, the differences 
AH — BI, BI — CK, &c., of the densities will be as the differences of those sums 

SA' SB' SCC <^C" cen^re S, and the asymptotes SA, Sx, describe any 
hyperbola, cutting the perpendiculars AH, BI, CK, &c., in a, h, c, &c., and the 
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perpendiculars H^, Iw, Kw, let fall upon the asymptote 8x, in h, i, k; and the 
AH BI differences of the densities, tu, uw, &c., will be as ^-r-, &c. And the rec- oA bB 

tangles tu-th, uw-ui, &c., or tp, uq, &c., as AH th BI -ui &c., that is, as Aa, SA ' SB 
B5, &c. For, by the nature of the hyperbola, SA is to AH or S^ as th to Aa, and 

therefore ^ is equal to Aa. And, by a like reasoning, ^ m is equal to Bh, SA SB 
&c. But Aa, Bh, Cc, &c., are continually proportional, and therefore propor- 
tional to their differences Aa —B6, B6 —Cc, &c., therefore the rectangles tp, uq, 
&c., are proportional to those differences; as also the sums of the rectangles 
tp-\-uq or tp+uq-\-wr to the sums of the differences Aa —Cc or Aa —Dd. Sup- 
pose several of these terms, and the sum of all the differences, as Aa — F/, will 
be proportional to the sum of all the rectangles, as zthn. Increase the number of 
terms, and diminish the distances of the points A, B, C, &c., in infinitum, and 
those rectangles will become equal to the hyperbolic area zthn, and therefore 
the difference Aa —F/ is proportional to this area. Take now any distances, as 
SA, SD, SF, in harmonic progression, and the differences Aa —Dd, Dd —F/ will 
be equal; and therefore the areas thlx, xlnz, proportional to those differences, 
will be equal among themselves, and the densities S^, Sx, Sz, that is, AH, DL, 
FN, continually proportional. q.e.d. 

Cor. Hence if any two densities of the fluid, as AH and BI, be given, the 
area thiu, answering to their difference tu, will be given; and thence the density 
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FN will be found at any height SF, by taking the area thnz to that given area 
thiu as the difference Aa-F/ to the difference Aa-Bb. 

Scholium 

By a like reasoning it may be proved, that if the gravity of the particles of a 
fluid diminishes as the cube of the distances from the centre, and the recipro- 

SA3 SA3 SA3 

cals of the squares of the distances SA, SB, SC, &c., (namely, g^, g^) 

be taken in an arithmetical progression, the densities AH, BI, CK, &c., will be in 
a geometrical progression. And if the gravity be diminished as the fourth power 

SA4 SA4 

of the distances, and the reciprocals of the cubes of the distances (as g^, g^, 

SA4 
——, &c.) be taken in arithmetical progression, the densities AH, BI, CK, &c., 
SC 
will be in geometrical progression. And so in infinitum. Again; if the gravity of 
the particles of the fluid be the same at all distances, and the distances be in 
arithmetical progression, the densities will be in a geometrical progression, as 
Dr. Halley hath found. If the gravity be as the distance, and the squares of the 
distances be in arithmetical progression, the densities will be in geometrical 
progression. And so in infinitum. These things will be so, when the density of 
the fluid condensed by compression is as the force of compression; or, which is 
the same thing, when the space possessed by the fluid is inversely as this force. 
Other laws of condensation may be supposed, as that the cube of the compress- 
ing force may be as the fourth power of the density, or the cube of the ratio of 
the force the same with the fourth power of the ratio of the density: in which 
case, if the gravity be inversely as the square of the distance from the centre, 
the density will be inversely as the cube of the distance. Suppose that the cube 
of the compressing force be as the fifth power of the density; and if the gravity 
be inversely as the square of the distance, the density will be inversely as the 
^th power of the distance. Suppose the compressing force to be as the square 
of the density, and the gravity inversely as the square of the distance, then the 
density will be inversely as the distance. To run over all the cases that might 
be offered would be tedious. But as to our own air, this is certain from experi- 
ment, that its density is either accurately, or very nearly at least, as the com- 
pressing force; and therefore the density of the air in the atmosphere of the 
earth is as the weight of the whole incumbent air, that is, as the height of the 
mercury in the barometer. 

Proposition 23. Theorem 18 
1} a fluid he composed of particles fleeing from each other, and the density he as the 
compression, the centrifugal forces of the particles will he inversely proportional to 
the distances of their centres. And, conversely, particles fleeing from each other, 
with forces that are inversely proportional to the distances of their centres, compose 
an elastic fluid, whose density is as the compression. 

Let the fluid be supposed to be included in a cubic space ACE, and then to 
be reduced by compression into a lesser cubic space ace; and the distances of 
the particles retaining a like situation with respect to each other in both the 
spaces, will be as the sides AB, ah of the cubes; and the densities of the medi- 
ums will be inversely as the containing spaces AB3, ah*. In the plane side of the 
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greater cube ABCD take the square DP . ^ 7iE 
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equal to the plane side dh of the lesser cube 
and, by the supposition, the pressure with 
which the square DP urges the inclosed fluid 
mil be to the pressure with which that square 
dh urges the inclosed fluid as the densities of 
the mediums are to each other, that is, as aW 
to AB3. But the pressure Avith Avhich the square DB urges the included fluid is 
to the pressure with which the square DP urges the same fluid as the square DB 
to the square DP, that is, as AB2 to ah2. Therefore, multiplying together cor- 
responding terms of the proportions, the pressure with which the square DB 
urges the fluid is to the pressure with which the square dh urges the fluid as ah 
to AB. Let the planes FGHJgh be drawn through the interior of the two cubes, 
and divide the fluid into two parts. These parts will press each other with the 
same forces Avith which they are themselves pressed by the planes AC, ac, that 
is, in the proportion of ah to AB: and therefore the centrifugal forces by which 
these pressures are sustained are in the same ratio. The number of the particles 
being equal, and the situation alike, in both cubes, the forces which all the 
particles exert, according to the planes FGH, fgh, upon all, are as the forces 
which each exerts on each. Therefore the forces which each exerts on each, 
according to the plane FGH in the greater cube, are to the forces which each 
exerts on each, according to the plane/gr/i in the lesser cube, as ah to AB, that 
is, inversely as the distances of the particles from each other. q.e.d. 

And, conversely, if the forces of the single particles are inversely as the 
distances, that is, inversely as the sides of the cubes AB, ah] the sums of the 
forces Avill be in the same ratio, and the pressures of the sides DB, dh as the 
sums of the forces; and the pressure of the square DP to the pressure of 
the side DB as ah2 to AB2. And, multiplying together corresponding terms 
of the proportions, one obtains the pressure of the square DP to the pressure of 
the side dh as ah* to AB3; that is, the force of compression in the one is to the 
force of compression in the other as the density in the former to the density 
in the latter. q.e.d. 

Scholium 
By a like reasoning, if the centrifugal forces of the particles are inversely as 

the square of the distances between the centres, the cubes of the compressing 
forces will be as the fourth power of the densities. If the centrifugal forces be 
inversely as the third or fourth power of the distances, the cubes of the com- 
pressing forces Avill be as the fifth or sixth power of the densities. And univer- 
sally, if D be put for the distance, and E for the density of the compressed fluid, 
and the centrifugal forces be inversely as any power Dn of the distance, whose 
index is the number n, the compressing forces will be as the cube roots of the 
power En+2, whose index is the number n+2; and conversely. All these things 
are to be understood of particles whose centrifugal forces terminate in those 
particles that are next them, or are diffused not much farther. We have an 
example of this in magnetic bodies. Their attractive force is terminated nearly 
in bodies of their OAvn kind that are next them. The force of the magnet is 
reduced by the interposition of an iron plate, and is almost terminated at it: 
for bodies farther off are not attracted by the magnet so much as by the iron 
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plate. If in this manner particles repel others of their own kind that lie next 
them, but do not exert their force on the more remote, particles of this kind will 
compose such fluids as are treated of in this Proposition. If the force of any 
particle diffuse itself every way in infinitum, there will be required a greater- 
force to produce an equal condensation of a greater quantity of the fluid. But 
whether elastic fluids do really consist of particles so repelling each other, is a 
physical question. We have here demonstrated mathematically the property of 
fluids consisting of particles of this kind, that hence philosophers may take 
occasion to discuss that question. 

SECTION VI 

The motion and resistance of pendulous bodies 

Proposition 24. Theorem 19 
The quantities of matter in pendulous bodies, whose centres of oscillation are 
equally distant from the centre of suspension, are in a ratio compounded of the 
ratio of the weights and the squared ratio of the times of the oscillations in a 
vacuum. 

For the velocity which a given force can generate in a given matter in a 
given time is directly as the force and the time, and inversely as the matter. 
The greater the force or the time is, or the less the matter, the greater the 
velocity generated. This is manifest from the second Law of Motion. Now if 
pendulums are of the same length, the motive forces in places equally distant 
from the perpendicular are as the weights: and therefore if two bodies by 
oscillating describe equal arcs, and those arcs are divided into equal parts; 
since the times in which the bodies describe each of the correspondent parts of 
the arcs are as the times of the whole oscillations, the velocities in the corres- 
pondent parts of the oscillations will be to each other directly as the motive 
forces and the whole times of the oscillations, and inversely as the quantities 
of matter: and therefore the quantities of matter are directly as the forces and 
the times of the oscillations, and inversely as the velocities. But the velocities 
are inversely as the times, and therefore the times are directly and the veloci- 
ties inversely as the squares of the times; and therefore the quantities of mat- 
ter are as the motive forces and the squares of the times, that is, as the weights 
and the squares of the times. q.e.d. 

Cor. i. Therefore if the times are equal, the quantities of matter in each of 
the bodies are as the weights. 

Cor. ii. If the weights are equal, the quantities of matter will be as the 
squares of the times. 

Cor. hi. If the quantities of matter are equal, the weights will be inversely 
as the squares of the times. 

Cor. iv. Since the squares of the times, other things being equal, are as the 
lengths of the pendulums, therefore if both the times and the quantities of 
matter are equal, the Aveights will be as the lengths of the pendulums. 

Cor. v. And, in general, the quantity of matter in the pendulous body is 
directly as the weight and the square of the time, and inversely as the length of 
the pendulum. 
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Cor. vi. But in a nonresisting medium, the quantity of matter in the pen- 

dulous body is directly as the comparative weight and the square of the time, 
and inversely as the length of the pendulum. For the comparative weight is the 
motive force of the body in any heavy medium, as was shown above; and 
therefore does the same thing in such a nonresisting medium as the absolute 
weight does in a vacuum. 

Cor. vii. And hence appears a method both of comparing bodies one with 
another, as to the quantity of matter in each; and of comparing the weights of 
the same body in different places, to know the variation of its gravity. And by 
experiments made with the greatest accuracy, I have always found the quan- 
tity of matter in bodies to be proportional to their weight. 

Proposition 25. Theorem 20 
Pendulous bodies that are, in any medium, resisted in the ratio of the moments of 
time, and pendulous bodies that move in a nonresisting medium of the same specific 
gravity, perform their oscillations in a cycloid in the same time, and describe 
proportional parts of arcs together. 

Let AB be an arc of a cycloid, which a body D, by vibrating in a nonresisting 
medium, shall describe in any time. Bisect that arc in C, so that C may be the 
lowest point thereof; and the accelerative force with which the body is urged in 
any place D, or d, or E, will be as the length of the arc CD, or Cd, or CE. Let 
that force be expressed by that same arc; and since the resistance is as the 
moment of the time, and therefore given, let it be expressed by the given part 
CO of the cycloidal arc, and take the arc Od in the same ratio to the arc CD 
that the arc OB has to the arc CB: and the force with which the body in d is 
urged in a resisting medium, being the excess of the force Cd above the resist- 
ance CO, will be expressed by the arc Od, and will therefore be to the force with 
which the body D is urged in a non- 
resisting medium in the place D, A 
as the arc Od to the arc CD; and yd/ V 
therefore also in the place B, as the 
arc OB to the arc CB. Therefore if 
two bodies D, d go from the place r  / / >\  yZ 
B, and are urged by these forces; \ / / \\ J 
since the forces at the beginning / / \\ 
are as the arcs CB and OB, the first / / \ \ 
velocities and arcs first described 
will be in the same ratio. Let those E —+—g D 
arcs be BD and Bd, and the remain- 
ing arcs CD, Od will be in the same ratio. Therefore the forces, being propor- 
tional to those arcs CD, Od, will remain in the same ratio as at the beginning, 
and therefore the bodies will continue describing together arcs in the same 
ratio. Therefore the forces and velocities and the remaining arcs CD, Od, will 
be always as the whole arcs CB, OB, and therefore those remaining arcs will 
be described together. Therefore the two bodies D and d will arrive together 
at the places C and 0; that which moves in the nonresisting medium, at the 
place C, and the other, in the resisting medium, at the place 0. Now since the 
velocities in C and O are as the arcs CB, OB, the arcs which the bodies describe 
when they go farther will be in the same ratio. Let those arcs be CE and Oe. 
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The force with which the body D in a nonresisting medium is retarded in E 
is as CE, and the force with which the body d in the resisting medium is re- 
tarded in e, is as the sum of the force Ce and the resistance CO, that is, as Oe; 
and therefore the forces with which the bodies are retarded are as the arcs CB, 
OB, proportional to the arcs CE, Oe; and therefore the velocities, retarded in 
that given ratio, remain in the same given ratio. Therefore the velocities and 
the arcs described with those velocities are always to each other in that given 
ratio of the arcs CB and OB; and therefore if the entire arcs AB, aB are taken 
in the same ratio, the bodies D and d will describe those arcs together, and in 
the places A and a will lose all their motion together. Therefore the whole oscil- 
lations are isochronal, or are performed in equal times; and any parts of the 
arcs, as BD, Bd, or BE, Be, that are described together, are proportional to 
the whole arcs BA, Ba. q.e.d. 

Cor. Therefore the swiftest motion in a resisting medium does not fall upon 
the lowest point C, but is found in that point O, in which the whole arc de- 
scribed Ba is bisected. And the body, proceeding from thence to a, is retarded 
at the same rate with which it was accelerated before in its descent from B to 0. 

Pendulous bodies, that are resisted in the ratio of the velocity, have their oscillations 
in a cycloid isochronal. 

For if two bodies, equally distant from their centres of suspension, describe, 
in oscillating, unequal arcs, and the velocities in the correspondent parts of the 
arcs be to each other as the whole arcs; the resistances, proportional to the 
velocities, will be also to each other as the same arcs. Therefore if these resist- 
ances be subtracted from or added to the motive forces arising from gravity 
which are as the same arcs, the differences or sums will be to each other in the 
same ratio of the arcs; and since the increments and decrements of the veloci- 
ties are as these differences or sums, the velocities will be always as the whole 
arcs; therefore if the velocities are in any one case as the whole arcs, they will 
remain always in the same ratio. But at the beginning of the motion, when the 
bodies begin to descend and describe those arcs, the forces, which at that time 
are proportional to the arcs, will generate velocities proportional to the arcs. 
Therefore the velocities will be always as the whole arcs to be described, and 
therefore those arcs will be described in the same time. q.e.d. 

Proposition 27. Theorem 22 
If pendulous bodies are resisted as the square of their velocities, the differences 

Proposition 26. Theorem 21 

between the times of the oscillations 
in a resisting medium, and the times 
of the oscillations in a nonresisting 
medium of the same specific gravity, 
will be proportional to the arcs de- 

1Z scribed in oscillating, nearly. 

e C O 

For let equal pendulums in a re- 
sisting medium describe the un- 
equal arcs A, B; and the resistance 
of the body in the arc A will be tc 
the resistance of the body in the 
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correspondent part of the arc B as the square of the velocities, that is, as AA to 
BB, nearly. If the resistance in the arc B were to the resistance in the arc A as 
AB to AA, the times in the arcs A and B would be equal (by the last Proposi- 
tion). Therefore the resistance AA in the arc A, or AB in the arc B, causes the 
excess of the time in the arc A above the time in a nonresisting medium; and 
the resistance BB causes the excess of the time in the arc B above the time in a 
nonresisting medium. But those excesses are as the efficient forces AB and BB 
nearly, that is, as the arcs A and B. q.e.d. 

Cor. i. Hence from the times of the oscillations in unequal arcs in a resisting 
medium, may be known the times of the oscillations in a nonresisting medium 
of the same specific gravity. For the difference of the times will be to the excess 
of the time in the shorter arc above the time in a nonresisting medium as the 
difference of the arcs is to the shorter arc. 

Cor. ii. The shorter oscillations are more isochronal, and very short ones are 
performed nearly in the same times as in a nonresisting medium. But the times 
of those which are performed in greater arcs are a little greater, because the 
resistance in the descent of the body, by which the time is prolonged, is greater, 
in proportion to the length described in the descent than the resistance in the 
subsequent ascent, by which the time is contracted. But the time of the oscil- 
lations, both short and long, seems to be prolonged in some measure by the 
motion of the medium. For retarded bodies are resisted somewhat less in pro- 
portion to the velocity, and accelerated bodies somewhat more than those that 
proceed uniformly forwards; because the medium, by the motion it has re- 
ceived from the bodies, going forwards the same way with them, is more agi- 
tated in the former case, and less in the latter; and so conspires more or less 
with the bodies moved. Therefore it resists the pendulums in their descent 
more, and in their ascent less, than in proportion to the velocity; and these two 
causes concurring prolong the time. 

Proposition 28. Theorem 23 
If a "pendulous body, oscillating in a cycloid, he resisted in the ratio of the moments 
of the time, its resistance will he to the force of gravity, as the excess of the arc de- 
scribed in the whole descent above the arc described in the subsequent ascent is to 
twice the length of the pendulum. 

Let BC represent the arc described in the descent, Ca the arc described in 
the ascent, and Aa the difference 
of the arcs: and things remaining 
as they were constructed and de- 
monstrated in Prop. 25, the force 
with which the oscillating body is 
urged in any place D will be to 
the force of resistance as the arc 
CD to the arc CO, which is half of 
that difference Aa. Therefore the 
force with which the oscillating 
body is urged at the beginning or 
the highest point of the cycloid, 
that is, the force of gravity, will be to the resistance as the arc of the cycloid, 
between that highest point and the lowest point C, is to the arc CO; that is 
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(doubling those arcs), as the whole cycloidal arc, or twice the length of the 
pendulum, is to the arc Aa. q.e.d. 

Proposition 29. Problem 6 
Supposing that a body oscillating in a cycloid is resisted as the square of the 

velocity; to find the resistance in each place. 
Let Ba be an arc described in one entire oscillation, C the lowest point of the 

cycloid, and CZ half the whole cycloidal arc, equal to the length of the pen- 
dulum; and let it be required to find the resistance of the body in any place D. 
Cut the indefinite right line OQ in the points 0, S, P, Q, so that (erecting the 
perpendiculars OK, ST, PI, QE, and with the centre 0, and the asymptotes 
OK, OQ, describing the hyperbola TIGE cutting the perpendiculars ST, PI, 
QE in T, I, and E, and through the point I drawing KF, parallel to the asymp- 
tote, OQ, meeting the asymptote OK in K, and the perpendiculars ST and QE 
in L and F) the hyperbolic area PIEQ may be to the hyperbolic area PITS as 
the arc BC, described in the descent of the body, is to the arc Ca described in 
the ascent; and that the area IEF may be to the area ILT as OQ to OS. Then 

K L \I hH F 

inl i N 

O S P rR Q M 

with the perpendicular MN cut off the hyperbolic area PINM, and let that 
area be to the hyperbolic area PIEQ as the arc CZ to the arc BC described in 
the descent. And if the perpendicular RG cuts off the hyperbolic area PIGR, 
which shall be to the area PIEQ as any arc CD is to the arc BC described in the 
whole descent, the resistance in any place D will be to the force of gravity as 

the area IEF —IGH is to the area PINM. 

For since the forces arising from gravity with which the body is urged in the 
places Z, B, D, a are as the arcs CZ, CB, CD, Ca, and those arcs are as the areas 
PINM, PIEQ, PIGR, PITS; let those areas represent both the arcs and the 
forces respectively. Let Dd be a very small space described by the body in its 
descent; and let it be expressed by the very small area RGgr, comprehended 
between the parallels RG, ry, and produce rg to h, so that GH% and HGgr may 
be the contemporaneous decrements of the areas IGH, PIGR. And the incre- 

ment GUhg-— IEF, or Rr-HG-^ IEF, of the area ^ IEF- 
vJD DD dq 

IGH will 

IEF . be to the decrement RGgrr, or Rr • RG, of the area PIGR, as HG — is to 

OR 
OQ 

RG; and therefore as OR-HG —IEF is to OR-GR or OP PI, that is (be- 

cause of the equal quantities OR-HG, OR-HR —OR-GR, ORHK —OPIK, 
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OR PIHR and PIGR+IGH), as PIGR+IGH-^ IEF is to OPIK. Therefore if 

OR the area IEF —IGH be called Y, and RGgrr the decrement of the area 

PIGR be given, the increment of the area Y will be as PIGR —Y. 
Then if V represent the force arising from the gravity, proportional to the 

arc CD to be described, by which the body is acted upon in D, and R be put 
for the resistance, Y — R will be the whole force with which the body is urged 
in D. Therefore the increment of the velocity is as Y —R and the interval of 
time in which it is generated conjointly. But the velocity itself is directly as the 
contemporaneous increment of the space described and inversely as the same 
interval of time. Therefore, since the resistance is, by the supposition, as the 
square of the velocity, the increment of the resistance will (by Lem. 2) be as 
the velocity and the increment of the velocity conjointly, that is, as the mo- 
ment of the space and Y —R conjointly; and, therefore, if the moment of the 
space be given, as Y —R; that is, if for the force V we put its expression PIGR, 
and the resistance R be expressed by any other area Z, as PIGR —Z. 

Therefore the area PIGR uniformly decreasing by the subtraction of given 
moments, the area Y increases in proportion of PIGR — Y, and the area Z in 
proportion of PIGR — Z. And therefore if the areas Y and Z begin together, and 
at the beginning are equal, these, by the addition of equal moments, will con- 
tinue to be equal; and in like manner decreasing by equal moments, will vanish 
together. And, conversely, if they together begin and vanish, they will have 
equal moments and be always equal. For, if the resistance Z be augmented, 
then the velocity together with the arc Ca, described in the ascent of the body, 
will be diminished; and, the point in which all the motion together with the 
resistance ceases, coming nearer to the point C, then the resistance vanishes 
sooner than the area Y. And the contrary will happen when the resistance is 
diminished. 

Now the area Z begins and ends where the resistance is nothing, that is, at 
the beginning of the motion where the arc CD is equal to the arc CB, and the 
right line RG falls upon the right line QE; and at the end of the motion where 
the arc CD is equal to the arc Ca, and RG falls upon the right line ST. And the 

OR area Y or IEF — IGH begins and ends also where the resistance is nothing, 
OR and therefore where -xxx lEFand IGH are equal; that is (by the construction), 
uo 

where the right line RG falls successively upon the right lines QE and ST. 
Therefore those areas begin and vanish together, and are therefore always 

O S P rR q M 

K_L _\l AH F 
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equal. Hence, the area IEF —IGH is equal to the area Z, by which the 
uo 

resistance is expressed, and therefore is to the area PINM, by which the gravity 
is expressed, as the resistance is to the gravity. q.e.d. 

Cor. i. Therefore the resistance in the lowest place C is to the force of 
OP gravity as the area qq IEF is to the area PINM. 

Cor. ii. But it becomes greatest where the area PIHR is to the area IEF as 
OR is to OQ. For in that case its moment (that is, PIGR —Y) becomes nothing. 

Cor. hi. Hence also may be known the velocity in each place, as varying as 
the square root of the resistance, and at the beginning of the motion being 
equal to the velocity of the body oscillating in the same cycloid without any 
resistance. 

However, by reason of the difficulty of the calculation by which the resist- 
ance and the velocity are found by this Proposition, we have thought fit to 
subjoin the Proposition following. 

Proposition 30. Theorem 24 
If a right line aB be equal to the arc of a cycloid which an oscillating body describes, 
and at each of its points D the perpendiculars DK be erected, which shall be to the 
length of the pendulum as the resistance of the body in the corresponding points of 
the arc is to the force of gravity: I say, that the difference between the arc described 
in the whole descent and the arc described in the whole subsequent ascent multiplied 
by half the sum of the same arcs will be equal to the area BKa which all those 
perpendiculars take up. 

Let the arc of the cycloid, described in one entire oscillation, be expressed by 
the right line aB, equal to it, and the arc which would have been described in a 
vacuum by the length AB. Bisect AB in C, and the point C will represent the 
lowest point of the cycloid, and CD will be as the force arising from gravity, 
with which the body in D is urged in the direction of the tangent of the cycloid, 
and will have the same ratio to the length of the pendulum as the force in D has 

to the force of gravity. Let that 
force, therefore, be expressed by that 
length CD, and the force of gravity 
by the length of the pendulum; and if 
in DE you take DK in the same ratio 
to the length of the pendulum as the 
resistance is to the gravity, DK will 

JB be the exponent of the resistance. 
From the centre C with the interval 

CA or CB describe a semicircle BEcA. Let the body describe, in the least time, 
the space Dd; and, erecting the perpendiculars DE, de, meeting the circum- 
ference in E and e, they will be as the velocities which the body descending 
in a vacuum from the point B would acquire in the places D and d. This ap- 
pears by Prop. 52, Book i. Let, therefore, these velocities be expressed by those 
perpendiculars DE, de; and let DF be the velocity which it acquires in D by 
falling from B in the resisting medium. And if from the centre C with the in- 
terval CF we describe the circle F/M meeting the right lines de and AB in / and 
M, then M will be the place to which it would thenceforward, without further 
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resistance, ascend, and df the velocity it would acquire in d. Hence, also, if 
F(7 represent the moment of the velocity which the body D, in describing the 
least space Dd, loses by the resistance of the medium; and CN be taken equal 
to C(7; then will N be the place to which the body, if it met no further resis- 
tance, would thenceforward ascend, and MN will be the decrement of the 
ascent arising from the loss of that velocity. Draw Fm perpendicular to df, and 
the decrement F^ of the velocity DF generated by the resistance DK will be to 
the increment fm of the same velocity, generated by the force CD, as the gen- 
erating force DK to the generating force CD. But because of the similar tri- 
angles Fmf, Fhg, FDC, fm is to Fm or Dd as CD to DF; and, by multiplication 
of corresponding terms, Fgr to Dd as DK to DF. Also Yh is to F^ as DF to CF; 
and, again by multiplication of corresponding terms, Yh or MN to Dd as DK 
to CF or CM; and therefore the sum of all the MN -CM will be equal to the 
sum of all the Dd • DK. At the movable point M suppose always a rectangular 
ordinate erected equal to the indeterminate CM, which by a continual motion 
is multiplied by the whole length Aa; and the trapezium described by that 
motion, or its equal, the rectangle Aa • y^aB, will be equal to the sum of all the 
MN-CM, and therefore to the sum of all the Dd-DK, that is, to the area 
BKVTa. q.e.d. 

Cor. Hence from the law of resistance, and the difference Aa of the arcs 
Ca, CB, may be derived the proportion of the resistance to the gravity, 
nearly. 

For if the resistance DK be uniform, the figure BKTa will be a rectangle 
under Ba and DK; and hence the rectangle under ^Ba and Aa will be equal to 
the rectangle under Ba and DK, and DK will be equal to J^Aa. Therefore since 
DK represents the resistance, and the length of the pendulum represents the 
gravity, the resistance will be to the gravity as ^Aa is to the length of the 
pendulum; altogether as in Prop. 28 is demonstrated. 

If the resistance be as the velocity, the figure BKTa will be nearly an ellipse. 
For if a body, in a nonresisting medium, by one entire oscillation, should de- 
scribe the length BA, the velocity in any place D would be as the ordinate DE 
of the circle described on the diameter AB. Therefore since Ba in the resisting 
medium, and BA in the nonresisting one, are described nearly in the same 
times; and therefore the velocities in each of the points of Ba are to the vel- 
ocities in the corresponding points of the length BA nearly as Ba is to BA, the 
velocity in the point D in the resisting medium will be as the ordinate of the 
circle or ellipse described upon the diameter Ba; and therefore the figure 
BKYTa will be nearly an ellipse. Since the resistance is supposed proportional 
to the velocity, let OV represent the resistance in the middle point 0; and an 
ellipse BRVSa described with the centre 0, and the semiaxes OB, OV, will be 
nearly equal to the figure BKVTa, and to its equal the rectangle Aa-BO. 
Therefore Aa • BO is to OV • BO as the area of this ellipse to OV • BO; that is, Aa 
is to OV as the area of the semicircle is to the square of the radius, or as 11 to 7 
nearly; and, therefore, J/n Aa is to the length of the pendulum as the resistance 
of the oscillating body in 0 is to its gravity. 

Now if the resistance DK varies as the square of the velocity, the figure 
BKVTa will be almost a parabola having V for its vertex and OV for its axis, 
and therefore will be nearly equal to the rectangle under %Ba and OV. There- 
fore the rectangle under 3^>Ba and Aa is equal to the rectangle %Ba • OV, and 
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therefore OV is equal to J^Aa; and therefore the resistance in 0 made to the 
oscillating body is to its gravity as %Ka is to the length of the pendulum. 

And I take these conclusions to be accurate enough for practical uses. For 
since an ellipse or parabola BRYSa falls in with the figure BKVTa in the 
middle point V, that figure, if greater towards the part BUY or VSa, is less 
towards the contrary part, and is therefore nearly equal to it. 

Proposition 31. Theorem 25 
If the resistance made to an oscillating body in each of the proportional parts of the 
arcs described be augmented or diminished in a given ratio, the difference between 
the arc described in the descent and the arc described in the subsequent ascent will be 
augmented or diminished in the same ratio. 

For that difference arises from the retardation of the pendulum by the resist- 
ance of the medium, and therefore is as the whole retardation and the retarding 

resistance proportional thereto. In the 
foregoing Proposition the rectangle 
under the right line 3^aB and the 
difference Aa of the arcs CB, Ca, was 
equal to the area BKTa. And that 
area, if the length aB remains, is aug- 
mented or diminished in the ratio of 

B the ordinates DK; that is, in the ratio 
of the resistance, and is therefore as 

the length aB and the resistance conjointly. And therefore the rectangle under 
Aa and is as aB and the resistance conjointly, and therefore Aa is as 
the resistance. q.e.d. 

Cor. i. Hence if the resistance be as the velocity, the difference of the arcs in 
the same medium will be as the whole arc described; and conversely. 

Cor. ii. If the resistance varies as the square of the velocity, that difference 
will vary as the square of the whole arc; and conversely. 

Cor. hi. And generally, if the resistance varies as the third or any other 
power of the velocity, the difference will vary as the same power of the whole 
arc; and conversely. 

Cor. iv. If the resistance varies partly as the first power of the velocity and 
partly as the square of the same, the difference will vary partly as the first 
power and partly as the square of the whole arc; and conversely. So that the 
law and ratio of the resistance will be the same for the velocity as the law and 
ratio of that difference for the length of the arc. 

Cor. v. And therefore if a pendulum describe successively unequal arcs, and 
we can find the ratio of the increment or decrement of this difference for the 
length of the arc described, there will be had also the ratio of the increment or 
decrement of the resistance for a greater or less velocity. 

General Scholium 
From these Propositions we may find the resistance of mediums by pendu- 

lums oscillating therein. I found the resistance of the air by the following 
experiments. I suspended a wooden globe or ball weighing ounces troy, 
its diameter 6% London inches, by a fine thread on a firm hook, so that the 
distance between the hook and the centre of oscillation of the globe was 103^2 
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feet. I marked on the thread a point 10 feet and 1 inch distant from the centre 
of suspension; and even with that point I placed a ruler divided into inches, by 
the help of which I observed the lengths of the arcs described by the pendulum. 
Then I numbered the oscillations in which the globe would lose 3^8 part of its 
motion. If the pendulum was drawn aside from the perpendicular to the dis- 
tance of 2 inches, and then let go, so that in its whole descent it described an 
arc of 2 inches, and in the first whole oscillation, compounded of the descent 
and subsequent ascent, an arc of almost 4 inches, the pendulum in 164 oscilla- 
tions lost Ys part of its motion, so as in its last ascent to describe an arc of 1^ 
inches. If in the first descent it described an arc of 4 inches, it lost 3d? part of its 
motion in 121 oscillations, so as in its last ascent to describe an arc of 33^ 
inches. If in the first descent it described an arc of 8, 16, 32, or 64 inches, it lost 
3d? part of its motion in 69, 353^2, 183^, 9% oscillations, respectively. Therefore 
the difference between the arcs described in the first descent and the last ascent 
was in the 1st, 2d, 3d, 4th, 5th, 6th cases, 3^5 2, 4, 8 inches, respectively. 
Divide those differences by the number of oscillations in each case, and in one 
mean oscillation, in which an arc of 3^, 73^, 15, 30, 60, 120 inches was de- 
scribed, the difference of the arcs described in the descent and subsequent as- 
cent will be 3/656, 3/242, 3/69, Mi, Mr, ^9 parts of an inch, respectively. But these 
differences in the greater oscillations are as the square of the arcs described, 
nearly, but in lesser oscillations somewhat greater than in that ratio; and there- 
fore (by Cor. 11, Prop. 31 of this Book) the resistance of the globe, when it 
moves very swiftly, varies as the square of the velocity, nearly; and when it 
moves slowly, in a somewhat greater ratio. 

Now let Y represent the greatest velocity in any oscillation, and let A, B, 
and C be given quantities, and let us suppose the difference of the arcs to be 
AY+BY3/2+CY2. Since the greatest velocities are in the cycloid as the arcs 
described in oscillating, and in the circle as Y the chords of those arcs; and 
therefore in equal arcs are greater in the cycloid than in the circle in the ratio 
of Yi the arcs to their chords; but the times in the circle are greater than in the 
cycloid, in a ratio inversely as the velocity; it is plain that the differences of the 
arcs (which are as the resistance and the square of the time conjointly) are 
nearly the same in both curves: for in the cycloid those differences must be on 
the one hand augmented, with the resistance, in about the squared ratio of the 
arc to the chord, because of the velocity augmented in the simple ratio of the 
same; and on the other hand diminished, with the square of the time, in the 
same squared ratio. Therefore to reduce these observations to the cycloid, we 
must take the same differences of the arcs as were observed in the circle, and 
suppose the greatest velocities analogous to the half, or the whole arcs, that is, 
to the numbers 3^2,1, 2, 4, 8, 16. Therefore in the 2d, 4th, and 6th cases put 1, 4, 
and 16 for Y; and the difference of the arcs in the 2d case will become tiIt = A 
-f B + C; in the 4th case, =4A+8B + 16C; in the 6th case, -g^ = 16A-h64B 
+256C. These equations reduced give A = 0.0000916, B = 0.0010847, and C = 
0.0029558. Therefore the difference of the arcs is as 0.0000916V-f 0.0010847V3/2 

+0.0029558Y2; and therefore since (by Cor., Prop. 30, applied to this case) the 
resistance of the globe in the middle of the arc described in oscillating, where 
the velocity is V, is to its weight as MiAY+MoBV3/2+MCV2 is to the length 
of the pendulum, if for A, B, and C you put the numbers found, the resistance 
of the globe will be to its weight as 0.0000583Y+0.0007593Y3/2-h0.0022169Y2 
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is to the length of the pendulum between the centre of suspension and the 
ruler, that is, to 121 inches. Therefore since V in the second case represents 1, 
in the 4th case 4 and in the 6th case 16, the resistance will be to the weight of 
the globe, in the 2d case, as 0.0030345 is to 121; in the 4th, as 0.041748 is to 
121; in the 6th, as 0.61705 is to 121. 

The arc, which the point marked in the thread described in the 6th case, was 
120—9%, or 119A inches. And therefore since the radius was 121 inches, and 
the length of the pendulum between the point of suspension and the centre of 
the globe was 126 inches, the arc which the centre of the globe described was 
124A inches. Because the greatest velocity of the oscillating body, by reason 
of the resistance of the air, does not fall on the lowest point of the arc described, 
but near the middle place of the whole arc, this velocity will be nearly the same 
as if the globe in its whole descent in a nonresisting medium should describe 
62A inches, the half of that arc, and that in a cycloid, to which we have above 
reduced the motion of the pendulum; and therefore that velocity will be equal 
to that which the globe would acquire by falling perpendicularly from a height 
equal to the versed sine of that arc. But that versed sine in the cycloid is to 
that arc 62A as the same arc to twice the length of the pendulum 252, and 
therefore equal to 15.278 inches. Therefore the velocity of the pendulum is the 
same which a body would acquire by falling, and in its fall describing a space 
of 15.278 inches. Therefore with such a velocity the globe meets with a resist- 
ance which is to its weight as 0.61705 is to 121, or (if we take that part only of 
the resistance which is in the squared ratio of the velocity) as 0.56752 to 121. 

I found, by an hydrostatical experiment, that the weight of this wooden 
globe was to the weight of a globe of water of the same magnitude as 55 to 97; 
and therefore since 121 is to 213.4 in the same ratio, the resistance made to this 
globe of water, moving forwards with the above-mentioned velocity, will be to 
its weight as 0.56752 to 213.4, that is, as 1 to 376A- Since the weight of a globe 
of water, in the time in which the globe with a velocity uniformly continued 
describes a length of 30.556 inches, will generate all that velocity in the falling 
globe, it is manifest that the force of resistance uniformly continued in the same 
time will take away a velocity, which will be less than the other in the ratio of 
1 to 376A, that is, the part of the whole velocity. And therefore in the 
time that the globe, with the same velocity uniformly continued, would de- 
scribe the length of its semidiameter, or Stg inches, it would lose the 3-A2" part 
of its motion. 

I also counted the oscillations in which the pendulum lost part of its 
motion. In the following table the upper numbers denote the length of the arc 
described in the first descent, expressed in inches and parts of an inch; the 
middle numbers denote the length of the arc described in the last ascent; and 
in the lowest place are the numbers of the oscillations. I give an account of this 
experiment, as being more accurate than that in which only 3d* part of the 
motion was lost. I leave the calculation to such as are disposed to make it. 

First descent 2 4 8 16 32 64 
Last ascent IK 3 6 12 24 48 
No. of oscillations 374 272 1623/2 833d 41% 22% 

I afterwards suspended a leaden globe of 2 inches in diameter, weighing 263^ 
ounces troy by the same thread, so that between the centre of the globe and 
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the point of suspension there was an interval of 10)^ feet, and I counted the 
oscillations in which a given part of the motion was lost. The first of the follow- 
ing tables exhibits the number of oscillations in which 3^8 Parf of the whole 
motion was lost; the second the number of oscillations in which there was lost 
M Part of the same. 

First descent 1 2 4 8 16 32 64 
Last ascent Vs 7/4 334 7 14 28 56 
No. of oscillations 226 228 193 140 9034 53 30 
First descent 1 2 4 8 16 32 64 
Last ascent 134 3 6 12 24 48 
No. of oscillations 510 518 420 318 204 121 70 

Selecting in the first table the 3d, 5th, and 7th observations, and expressing 
the greatest velocities in these observations particularly by the numbers 1,4, 
16, respectively, and generally by the quantity Y as above, there will come out 
in the 3d observation tf3=A+B + C, in the 5th observation 9-^=4A+8B 
+ 16C, in the 7th observation ^8o = 16A4-64B+256C. These equations reduced 
give A = 0.001414,B = 0.000297, C = 0.000879. And thence the resistance of the 
globe moving with the velocity Y will be to its weight 2634 ounces in the same 
ratio as 0.0009Y+0.000208Y3/2+0.000659Y2 to 121 inches, the length of the 
pendulum. And if we regard that part only of the resistance which is as the 
square of the velocity, it will be to the weight of the globe as 0.000659V2 to 121 
inches. But this part of the resistance in the first experiment was to the weight 
of the wooden globe of hl1/^ ounces as 0.002217Y2 to 121; hence the resistance 
of the wooden globe is to the resistance of the leaden one (their velocities being 
equal) as 57^2 into 0.002217 to 2634 into 0.000659, that is, as 734 to 1. The 
diameters of the two globes were 6% and 2 inches, and the squares of these are 
to each other as 47J4 and 4, or ll1/^ and 1, nearly. Therefore the resistances 
of these equally swift globes were in less than a squared ratio of the diameters. 
But we have not yet considered the resistance of the thread, which was cer- 
tainly very considerable, and ought to be subtracted from the resistance of the 
pendulums here found. I could not determine this accurately, but I found it 
greater than 34 part of the whole resistance of the lesser pendulum; hence I 
gathered that the resistances of the globes, when the resistance of the thread is 
subtracted, are nearly in the squared ratio of their diameters. For the ratio of 
714-34 to 1 — 34, or 1034 to 1 is not very different from the squared ratio of 
the diameters ll^e to 1. 

Since the resistance of the thread is of less moment in greater globes, I tried 
the experiment also with a globe whose diameter was 18^4 inches. The length 
of the pendulum between the point of suspension and the centre of oscillation 
was 12234 inches, and between the point of suspension and the knot in the 
thread 10934 inches. The arc described by the knot at the first descent of the 
pendulum was 32 inches. The arc described by the same knot in the last ascent 
after five oscillations was 28 inches. The sum of the arcs, or the whole arc de- 
scribed in one mean oscillation, was 60 inches; the difference of the arcs, 4 
inches. The 34o part of this, or the difference between the descent and ascent in 
one mean oscillation, is of an inch. Then as the radius 10934 is fo the radius 
12234? 80 is fhe whole arc of 60 inches described by the knot in one mean oscil- 
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lation to the whole arc of 67H inches described by the centre of the globe in one 
mean oscillation; and so is the difference % to a new difference 0.4475. If the 
length of the arc described were to remain, and the length of the pendulum 
should be augmented in the ratio of 126 to 122^, the time of the oscillation 
would be augmented, and the velocity of the pendulum would be diminished as 
the square root of that ratio; so that the difference 0.4475 of the arcs described 
in the descent and subsequent ascent would remain. Then if the arc described 
be augmented in the ratio of 124^1 to 67H, that difference 0.4475 would be 
augmented as the square of that ratio, and so would become 1.5295. These 
things would be so upon the supposition that the resistance of the pendulum 
were as the square of the velocity. Therefore if the pendulum describe the 
whole arc of 124^1 inches, and its length between the point of suspension and 
the centre of oscillation be 126 inches, the difference of the arcs described in the 
descent and subsequent ascent would be 1.5295 inches. And this difference 
multiplied by the weight of the pendulous globe, which was 208 ounces, pro- 
duces 318.136. Again, in the pendulum above mentioned, made of a wooden 
globe, when its centre of oscillation, being 126 inches from the point of suspen- 
sion, described the whole arc of 124%i inches, the difference of the arcs de- 
scribed in the descent and ascent was 12%2i into 9%. This multiplied by the weight 
of the globe, which was 57/^2 ounces, produces 49.396. But I multiply these 
differences by the weights of the globes, in order to find their resistances. For 
the differences arise from the resistances, and are as the resistances directly 
and the weights inversely. Therefore the resistances are as the numbers 318.136 
and 49.396. But that part of the resistance of the lesser globe, which is as the 
square of the velocity, was to the whole resistance as 0.56752 to 0.61675, that 
is, as 45.453 to 49.396, whereas that part of the resistance of the greater globe 
is almost equal to its whole resistance, and so those parts are nearly as 318.136 
and 45.453, that is, as 7 and 1. But the diameters of the globes are 18^ and 
6%; and their squares 351/^6 and 471/^4 are as 7.438 and 1, that is, nearly as 
the resistances of the globes 7 and 1. The difference of these ratios is barely 
greater than may arise from the resistance of the thread. Therefore those parts 
of the resistances which are, when the globes are equal, as the squares of 
the velocities, are also, when the velocities are equal, as the squares of the 
diameters of the globes. 

But the greatest of the globes I used in these experiments was not perfectly 
spherical, and therefore in this calculation I have, for brevity's sake, neglected 
some little niceties; being not very solicitous for an accurate calculus in an 
experiment that was not very accurate. So that I could wish that these ex- 
periments were tried again with other globes, of a larger size, more in number, 
and more accurately formed; since the demonstration of a vacuum depends 
thereon. If the globes be taken in a geometrical proportion, whose diameters, 
let us suppose, are 4, 8, 16, 32 inches; one may infer from the progression ob- 
served in the experiments what would happen if the globes were still larger. 

In order to compare the resistances of different fluids with each other, I made 
the following trials. I procured a wooden vessel 4 feet long, 1 foot broad, and 
1 foot high. This vessel, being uncovered, I filled with spring water, and, having 
immersed pendulums therein, I made them oscillate in the water. And I found 
that a leaden globe weighing 166^6 ounces, and in diameter 3% inches, moved 
therein as it is set down in the following table; the length of the pendulum from 
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the point of suspension to a certain point marked in the thread being 126 
inches, and to the centre of oscillation 134^8 inches. 

The arc described in the 
first descent, by a point 
marked in the thread 
was inches 
The arc described in the 
last ascent was inches 
The difference of the 
arcs, proportional to the 
motion lost, was inches 
The number of the oscil- 
lations in water 
The number of the oscil- 
lations in air 

64 

48 

16 

32 

24 

16 

12 

760 • P/s 

853^ . 287 . 535 

1/^ 

^ ^ 

7 . HM 

Ke 

13^ 

In the experiments of the 4th column there were equal motions lost in 535 
oscillations made in the air, and 1^5 in water. The oscillations in the air were 
indeed a little swifter than those in the water. But if the oscillations in the 
water were accelerated in such a ratio that the motions of the pendulums might 
be equally swift in both mediums, there would be still the same number of 1% 
oscillations in the water, and by these the same quantity of motion would be 
lost as before; because the resistance is increased, and the square of the time 
diminished in the same squared ratio. The pendulums, therefore, being of equal 
velocities, there were equal motions lost in 535 oscillations in the air, and 1^5 
in the water; and therefore the resistance of the pendulum in the water is to its 
resistance in the air as 535 to ij/s- This is the proportion of the whole resist- 
ances in the case of the 4th column. 

Now let AY+CV2 represent the difference of the arcs described in the de- 
scent and subsequent ascent by the globe moving in air with the greatest vel- 
ocity V; and since the greatest velocity is in the case of the 4th column to the 
greatest velocity in the case of the 1st column as 1 is to 8; and that difference 
of the arcs in the case of the 4th column to the difference in the case of the 1st 
column as sirs- to 8t%, or as 853^ to 4280; put in these cases 1 and 8 for the vel- 
ocities, and 853^2 and 4280 for the differences of the arcs, and A+C will be 
= 853^2, and 8A-f64C = 4280 or A+8C = 535; and then, by reducing these 
equations, there will come out 7C = 4493^ and C = 64A and A = 21f; and 
therefore the resistance, which is as /^iAVH-^CV2, mil become as 13/^iV 
+48%6V2. Therefore in the case of the 4th column, where the velocity was 1, 
the whole resistance is to its part proportional to the square of the velocity as 
13Mi+48%6 or Ol1^? fo 48%6; and therefore the resistance of the pendulum 
in water is to that part of the resistance in air, which is proportional to the 
square of the velocity, and which in swift motions is the only part that deserves 
consideration, as Ql12/i7 to 48%6 and 535 to 1% conjointly, that is, as 571 to 
I. If the whole thread of the pendulum oscillating in the water had been im- 
mersed, its resistance would have been still greater; so that the resistance of 
the pendulum oscillating in the water, that is, that part which is proportional to 
the square of the velocity, and which only needs to be considered in swift 
bodies, is to the resistance of the same whole pendulum, oscillating in air with 
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the same velocity, as about 850 to 1, that is, as the density of water is to the 
density of air, nearly. 

In this calculation we ought also to have taken in that part of the resistance 
of the pendulum in the water which was as the square of the velocity; but I 
found (which will perhaps seem strange) that the resistance in the water was 
augmented in more than a squared ratio of the velocity. In searching after the 
cause, I thought upon this, that the vessel was too narrow for the magnitude of 
the pendulous globe, and by its narrowness obstructed the motion of the water 
as it yielded to the oscillating globe. For when I immersed a pendulous globe, 
whose diameter was one inch only, the resistance was augmented nearly as the 
square of the velocity. I tried this by making a pendulum of two globes, of 
which the lesser and lower oscillated in the water, and the greater and higher 
was fastened to the thread just above the water, and, by oscillating in the air, 
assisted the motion of the pendulum, and continued it longer. The experiments 
made by this contrivance resulted as shown in the following table. 

Arc described in first descent 16 . 8 . 4 . 2 1 . H M 
Arc described in last ascent 12 . 6 . 3 . m■ 3A ■ Vs ■ % 
Difference of arcs, proportional to 
motion lost 4 . 2 1 ^ . M • Ts • He 
Number of oscillations 3^ ■ 63^ . 12yi2 . 2176 . 34 . 53 . 6275 

In comparing the resistances of the mediums with each other, I also caused 
iron pendulums to oscillate in quicksilver. The length of the iron wire was 
about 3 feet, and the diameter of the pendulous globe about 3^ of an inch. To 
the wire, just above the quicksilver, there was fixed another leaden globe of a 
bigness sufficient to continue the motion of the pendulum for some time. Then 
a vessel, that would hold about 3 pounds of quicksilver, was filled by turns with 
quicksilver and common water, so that, by making the pendulum oscillate 
successively in these two different fluids, I might find the proportion of their 
resistances; and the resistance of the quicksilver proved to be to the resistance 
of water as about 13 or 14 to 1; that is, as the density of quicksilver to the 
density of water. When I made use of a pendulous globe something bigger, as 
of one whose diameter was about ^ or % of an inch, the resistance of the 
quicksilver proved to be to the resistance of the water as about 12 or 10 to 1. 
But the former experiment is more to be relied on, because in the latter the vessel 
was too narrow in proportion to the magnitude of the immersed globe; for the 
vessel ought to have been enlarged together with the globe. I intended to repeat 
these experiments with larger vessels, and in melted metals, and other liquors 
both cold and hot; but I had not leisure to try all; and besides, from what is 
already described, it appears sufficiently that the resistance of bodies moving 
swiftly is nearly proportional to the densities of the fluids in which they move. 
I do not say accurately; for more tenacious fluids, of equal density, mil un- 
doubtedly resist more than those that are more liquid; as cold oil more than 
warm, warm oil more than rain water, and water more than spirit of Avine. But 
in liquors, which are sensibly fluid enough, as in air, in salt and fresh water, in 
spirit of wine, of turpentine, and salts, in oil cleared of its feces by distillation 
and warmed, in oil of vitriol, and in mercury, and melted metals, and any other 
such like, that are fluid enough to retain for some time the motion impressed 
upon them by the agitation of the vessel, and which being poured out are easily 
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resolved into drops, I doubt not that the rule already laid down may be accu- 
rate enough, especially if the experiments be made with larger pendulous bodies 
and more swiftly moved. 

Lastly, since it is the opinion of some that there is a certain ethereal medium 
extremely rare and subtile, which freely pervades the pores of all bodies; and 
from such a medium, so pervading the pores of bodies, some resistance must 
needs arise; in order to try whether the resistance, which we experience in 
bodies in motion, be made upon their outward surfaces only, or whether their 
internal parts meet with any considerable resistance upon their surfaces, I 
thought of the following experiment. I suspended a round deal box by a thread 
11 feet long, on a steel hook, by means of a ring of the same metal, so as to 
make a pendulum of the aforesaid length. The hook had a sharp hollow edge on 
its upper part, so that the upper arc of the ring pressing on the edge might 
move the more freely; and the thread was fastened to the lower arc of the ring. 
The pendulum being thus prepared, I drew it aside from the perpendicular to 
the distance of about 6 feet, and that in a plane perpendicular to the edge of 
the hook, lest the ring, while the pendulum oscillated, should slide to and fro 
on the edge of the hook; for the point of suspension, in which the ring touches 
the hook, ought to remain immovable. I therefore accurately noted the place 
to which the pendulum was brought, and letting it go, I marked three other 
places, to which it returned at the end of the 1st, 2d, and 3d oscillation. This 
I often repeated, that I might find those places as accurately as possible. Then 
I filled the box with lead and other heavy metals that were near at hand. But 
first, I weighed the box when empty, and that part of the thread that went 
round it, and half the remaining part, extended between the hook and the sus- 
pended box; for the thread so extended always acts upon the pendulum, when 
drawn aside from the perpendicular, with half its weight. To this weight I 
added the weight of the air contained in the box. And this whole weight was 
about ^78 of the weight of the box when filled with the metals. Then because 
the box when full of the metals, by extending the thread with its weight, in- 
creased the length of the pendulum, I shortened the thread so as to make the 
length of the pendulum, when oscillating, the same as before. Then drawing 
aside the pendulum to the place first marked, and letting it go, I reckoned 
about 77 oscillations before the box returned to the second mark, and as many 
afterwards before it came to the third mark, and as many after that before it 
came to the fourth mark. From this I conclude that the whole resistance of the 
box, when full, had not a greater proportion to the resistance of the box, when 
empty, than 78 to 77. For if their resistances were equal, the box, when full, by 
reason of its inertia, which was 78 times greater than the inertia of the same 
when empty, ought to have continued its oscillating motion so much the longer, 
and therefore to have returned to those marks at the end of 78 oscillations. But 
it returned to them at the end of 77 oscillations. 

Let, therefore, A represent the resistance of the box upon its external surface, 
and B the resistance of the empty box on its internal surface, and if the resist- 
ances to the internal parts of bodies equally swift be as the matter, or the 
number of particles that are resisted, then 78B will be the resistance made to 
the internal parts of the box, when full; and therefore the whole resistance 
A+B of the empty box will be to the whole resistance A-h78B of the full box 
as 77 to 78, and, by subtraction, A-j-B to 77B as 77 to 1; and thence A+B to 
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B as 77 • 77 to 1, and, by subtraction, again, A to B as 5928 to 1. Therefore the 
resistance of the empty box in its internal parts will be above 5000 times less 
than the resistance on its external surface. This reasoning depends upon the 
supposition that the greater resistance of the full box arises not from any other 
latent cause, but only from the action of some subtile fluid upon the included 
metal. 

This experiment is related by memory, the paper being lost in which I had 
described it; so that I have been obliged to omit some fractional parts, which 
are slipped out of my memory; and I have no leisure to try it again. The first 
time I made it, the hook being weak, the full box was retarded sooner. The 
cause I found to be, that the hook was not strong enough to bear the weight of 
the box; so that, as it oscillated to and fro, the hook was bent sometimes this 
and sometimes that way. I therefore procured a hook of sufficient strength, so 
that the point of suspension might remain unmoved, and then all things hap- 
pened as is above described. 

SECTION VII 

The motion of fluids, and the resistance made to projected bodies 

Proposition 32. Theorem 26 
Suppose two similar systems of bodies consisting of an equal number of particles, 
and let the correspondent particles be similar and proportional, each in one system 
to each in the other, and have a like situation among themselves, and the same given 
ratio of density to each other; and let them begin to move among themselves in 
proportional times, and with like motions {that is, those in one system among one 
another, and those in the other among one another). And if the particles that are in 
the same system do not touch one another, except in the moments of reflection; nor 
attract, nor repel each other, except with accelerative forces that are inversely as the 
diameters of the correspondent particles, and directly as the squares of the velocities: 
I say, that the particles of those systems will continue to move among themselves 
with like motions and in proportional times. 

Like bodies in like situations are said to be moved among themselves with 
like motions and in proportional times, when their situations at the end of 
those times are always found alike in respect of each other; as suppose we com- 
pare the particles in one system with the correspondent particles in the other. 
Hence the times will be proportional, in which similar and proportional parts 
of similar figures will be described by correspondent particles. Therefore if we 
suppose two systems of this kind, the correspondent particles, by reason of the 
similitude of the motions at their beginning, will continue to be moved with 
like motions, so long as they move without meeting one another; for if they are 
acted on by no forces, they will go on uniformly in right lines, by the first Law. 
But if they agitate one another with some certain forces, and those forces are 
inversely as the diameters of the correspondent particles and directly as the 
squares of the velocities, then, because the particles are in like situations, and 
their forces are proportional, the whole forces with which correspondent par- 
ticles are agitated, and which are compounded of each of the agitating forces 
(by Cor. ii of the Laws), will have like directions, and have the same effect as 
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if they respected centres places alike among the particles; and those whole 
forces will be to each other as the several forces which compose them, that is, 
inversely as the diameters of the correspondent particles and directly as the 
squares of the velocities: and therefore will cause correspondent particles to 
continue to describe like figures. These things will be so (by Cor. i and vm, 
Prop. 4, Book i), if those centres are at rest; but if they are moved, yet, by 
reason of the similitude of the translations, their situations among the particles 
of the system will remain similar, so that the changes introduced into the 
figures described by the particles will still be similar. So that the motions of 
correspondent and similar particles will continue similar till their first meeting 
with each other; and thence will arise similar collisions, and similar reflections; 
which will again beget similar motions of the particles among themselves (by 
what was just now shown), till they mutually fall upon one another again, and 
so on ad infinitum. q.e.d. 

Cor. i. Hence if any two bodies, which are similar and in like situations to 
the correspondent particles of the systems, begin to move amongst them in like 
manner and in proportional times, and their magnitudes and densities be to 
each other as the magnitudes and densities of the corresponding particles, these 
bodies will continue to be moved in like manner and in proportional times; for 
the case of the greater parts of both systems and of the particles is the very 
same. 

Cor. ii. And if all the similar and similarly situated parts of both systems be 
at rest among themselves; and two of them, which are greater than the rest, 
and mutually correspondent in both systems, begin to move in lines alike 
posited, with any similar motion whatsoever, they will excite similar motions 
in the rest of the parts of the systems, and will continue to move among those 
parts in like manner and in proportional times; and will therefore describe 
spaces proportional to their diameters. 

Proposition 33. Theorem 27 
The same things being supposed, I say, that the greater parts of the systems are 
resisted in a ratio compounded of the squared ratio of their velocities, and the 
squared ratio of their diameters, and the simple ratio of the density of the parts of 
the systems. 

For the resistance arises partly from the centripetal or centrifugal forces with 
which the particles of the system act on each other, partly from the collisions 
and reflections of the particles and the greater parts. The resistances of the first 
kind are to each other as the whole motive forces from which they arise, that is, 
as the whole accelerative forces and the quantities of matter in corresponding 
parts; that is (by the supposition), directly as the squares of the velocities and 
inversely as the distances of the corresponding particles, and directly as the 
quantities of matter in the correspondent parts: and therefore since the dis- 
tances of the particles in one system are to the correspondent distances of the 
particles in the other, as the diameter of one particle or part in the former 
system to the diameter of the correspondent particle or part in the other, and 
since the quantities of matter are as the densities of the parts and the cubes of 
the diameters, the resistances are to each other as the squares of the velocities 
and the squares of the diameters and the densities of the parts of the systems. 
q.e.d. The resistances of the latter sort are as the number of correspondent 
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reflections and the forces of those reflections conjointly; but the number of the 
reflections are to each other directly as the velocities of the corresponding parts 
and inversely as the spaces between their reflections. And the forces of the 
reflections are as the velocities and the magnitudes and the densities of the 
corresponding parts conjointly; that is, as the velocities and the cubes of the 
diameters and the densities of the parts. And, joining all these ratios, the resist- 
ances of the corresponding parts are to each other as the squares of the vel- 
ocities and the squares of the diameters and the densities of the parts conjointly. 

Q.E.D. 
Con. i. Therefore if those systems are two elastic fluids, like our air, and 

their parts are at rest among themselves; and two similar bodies proportional 
in magnitude and density to the parts of the fluids, and similarly situated 
among those parts, be in any manner projected in the direction of lines sim- 
ilarly posited; and the accelerative forces with which the particles of the fluids 
act upon each other are inversely as the diameters of the bodies projected and 
directly as the squares of their velocities; those bodies will excite similar mo- 
tions in the fluids in proportional times, and will describe similar spaces and 
proportional to their diameters. 

Cor. ii. Therefore in the same fluid a projected body that moves swiftly 
meets with a resistance that is as the square of its velocity, nearly. For if the 
forces with which distant particles act upon one another should be augmented 
as the square of the velocity, the projected body would be resisted in the same 
squared ratio accurately; and therefore in a medium, whose parts when at a 
distance do not act with any force on one another, the resistance is as the 
square of the velocity, accurately. Let there be, therefore, three mediums A, 
B, C, consisting of similar and equal parts regularly disposed at equal distances. 
Let the parts of the mediums A and B recede from each other with forces that 
are among themselves as T and V; and let the parts of the medium C be en- 
tirely destitute of any such forces. And if four equal bodies D, E, F, G move in 
these mediums, the two first D and E in the two first A and B, and the other 
two F and G in the third C; and if the velocity of the body D be to the velocity 
of the body E, and the velocity of the body F to the velocity of the body G, as 
the square root of the ratio of the force T to the force V; then the resistance of 
the body D to the resistance of the body E, and the resistance of the body F to 
the resistance of the body G, will be as the square of the velocities; and there- 
fore the resistance of the body D will be to the resistance of the body F as the 
resistance of the body E to the resistance of the body G. Let the bodies D and 
F be equally swift, as also the bodies E and G; and, augmenting the velocities 
of the bodies D and F in any ratio, and diminishing the forces of the particles 
of the medium B as the square of the same ratio, the medium B will approach 
to the form and condition of the medium C at pleasure; and therefore the 
resistances of the equal and equally swift bodies E and G in these mediums will 
continually approach to equality, so that their difference will at last become 
less than any given. Therefore since the resistances of the bodies D and F are 
to each other as the resistances of the bodies E and G, those will also in like 
manner approach to the ratio of equality. Therefore the bodies D and F, when 
they move with very great swiftness, meet with resistances very nearly equal; 
and therefore since the resistance of the body F is in a squared ratio of the 
velocity, the resistance of the body D mil be nearly in the same ratio. 
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Cor. hi. Hence the resistance of a body moving very swiftly in an elastic 

fluid is almost the same as if the parts of the fluid were destitute of their 
centrifugal forces, and did not fly from each other; provided only that the 
elasticity of the fluid arise from the centrifugal forces of the particles, and the 
velocity be so great as not to allow the particles time enough to act. 

Cor. iv. Since the resistances of similar and equally swift bodies, in a me- 
dium whose distant parts do not fly from each other, are as the squares of the 
diameters, therefore the resistances made to bodies moving with very great and 
equal velocities in an elastic fluid will be as the squares of the diameters, nearly. 

Cor. v. And since similar, equal, and equally swift bodies, moving through 
mediums of the same density, whose particles do not fly from each other, will 
strike against an equal quantity of matter in equal times, whether the particles 
of which the medium consists be more and smaller, or fewer and greater, and 
therefore impress on that matter an equal quantity of motion, and in return 
(by the third Law of Motion) suffer an equal reaction from the same, that is, 
are equally resisted; it is manifest, also, that in elastic fluids of the same den- 
sity, when the bodies move with extreme swiftness, their resistances are nearly 
equal, whether the fluids consist of gross parts, or of parts ever so subtile. For 
the resistance of projectiles moving with exceedingly great celerities is not 
much diminished by the sub tilt y of the medium. 

Cor. vi. All these things are so in fluids whose elastic force takes its rise from 
the centrifugal forces of the particles. But if that force arise from some other 
cause, as from the expansion of the particles after the manner of wool, or the 
boughs of trees, or any other cause, by which the particles are hindered from 
moving freely among themselves, the resistance, by reason of the lesser fluidity 
of the medium, will be greater than in the Corollaries above. 

Proposition 34. Theorem 28 
If in a rare medium, consisting of equal particles freely disposed at equal distances 
from each other, a globe and a cylinder described on equal diameters move with 
equal velocities in the direction of the axis of the cylinder, the resistance of the globe 
will be but half as great as that of the cylinder. 

For since the action of the medium upon the body is the same (by Cor. v of 
the Laws) whether the body move in a quiescent medium, or whether the 
particles of the medium impinge with the same velocity upon the quiescent 
body, let us consider the body as if it were quiescent, and see with what force 
it would be impelled by the moving medium. r k n 
Let, therefore, ABKI represent a spherical 
body described from the centre C with the 
semidiameter CA, and let the particles of the 
medium impinge with a given velocity upon ^ 
that spherical body in the directions of right 
lines parallel to AC; and let FB be one of 
those right lines. In FB take LB equal to the 
semidiameter CB, and draw BD touching the q 
sphere in B. Upon KC and BD let fall the 
perpendiculars BE, LD; and the force with which a particle of the medium, im- 
pinging on the globe obliquely in the direction FB, would strike the globe in B, 
will be to the force with which the same particle, meeting the cylinder ONGQ 
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described about the globe with the axis ACI, would strike it perpendicularly 
in h, as LD is to LB, or BE to BC. Again; the efficacy of this force to move the 
globe, according to the direction of its incidence FB or AC, is to the efficacy 
of the same to move the globe, according to the direction of its determination, 
that is, in the direction of the right line BC in which it impels the globe di- 
rectly, as BE to BC. And, joining these ratios, the efficacy of a particle, falling 
upon the globe obliquely in the direction of the right line FB, to move the globe 
in the direction of its incidence, is to the efficacy of the same particle falling in 
the same line perpendicularly on the cylinder, to move it in the same direction, 
as BE2 to BC2. Therefore if in 6E, which is perpendicular to the circular base 

BE2 

of the cylinder NAO, and equal to the radius AC, we take 6H equal to 

then 5H mil be to hE as the effect of the particle upon the globe to the effect 
of the particle upon the cylinder. And therefore the solid which is formed by 
all the right lines hE will be to the solid formed by all the right lines hE as the 
effect of all the particles upon the globe to the effect of all the particles upon 
the cylinder. But the former of these solids is a paraboloid whose vertex is C, 
its axis CA, and latus rectum CA, and the latter solid is a cylinder circumscrib- 
ing the paraboloid; and it is known that a paraboloid is half its circumscribed 
cylinder. Therefore the whole force of the medium upon the globe is half the 
entire force of the same upon the cylinder. And therefore if the particles of 
the medium are at rest, and the cylinder and globe move with equal velocities, 
the resistance of the globe will be half the resistance of the cylinder. q.e.d. 

Scholium 
By the same method other figures may be compared together as to their 

resistance; and those may be found which are most apt to continue their mo- 
tions in resisting mediums. As if upon the circular 
base CEBH from the centre O, with the radius OC, 
and the altitude OD, one would construct a frustum 
CBGF of a cone, which should meet with less resist- 
ance than any other frustum constructed with the 
same base and altitude, and going forwards towards 
D in the direction of its axis: bisect the altitude OD 
in Q, and produce OQ to S, so that QS may be equal 
to QC, and S will be the vertex of the cone whose frus- 
tum is sought. 

Incidentally, since the angle CSB is p N 
always acute, it follows from the above 
that, if the solid ADBE be generated by 
the convolution of an elliptical or oval 
figure ADBE about its axis AB, and the 
generating figure be touched by three 
right lines FG, GH, HI, in the points F, 
B, and I, so that GH shall be perpen- 
dicular to the axis in the point of contact 
B, and FG, HI may be inclined to GH 
in the angles FGB, BHI of 135 degrees: the solid arising from the convolution 
of the figure ADFGHIE about the same axis AB mil be less resisted than the 
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former solid, provided that both move forwards in the direction of their axis 
AB, and that the extremity B of each go foremost. This Proposition I conceive 
may be of use in the building of ships. 

If the figure DNFG be such a curve, that if, from any point thereof, as N, 
the perpendicular NM be let fall on the axis AB, and from the given point G 
there be drawn the right line GR parallel to a right line touching the figure in 
N, and cutting the axis produced in R, MN becomes to GR as GR3 to 4BR • GB2, 
the solid described by the revolution of this figure about its axis AB, moving in 
the before-mentioned rare medium from A towards B, will be less resisted than 
any other circular solid whatsoever, described of the same length and breadth. 

Proposition 35. Problem 7 
If a rare medium consist of very small quiescent particles of equal magnitudes, and 
freely disposed at equal distances from one another: to find the resistance of a globe 
moving uniformly forwards in this medium. 

Case 1. Let a cylinder described with the same diameter and altitude be 
conceived to go forwards with the same velocity in the direction of its axis 
through the same medium; and let us suppose that the particles of the medium, 
on which the globe or cylinder falls, fly back with as great a force of reflection 
as possible. Then since the resistance of the globe (by the last Proposition) is 
but half the resistance of the cylinder, and since the globe is to the cylinder as 
2 to 3, and since the cylinder by falling perpendicularly on the particles, and 
reflecting them with the utmost force, communicates to them a velocity double 
to its own: it follows that the cylinder in moving forwards uniformly half the 
length of its axis, will communicate a motion to the particles which is to the 
whole motion of the cylinder as the density of the medium to the density of the 
cylinder; and that the globe, in the time it describes one length of its diameter 
in moving uniformly forwards, will communicate the same motion to the par- 
ticles; and, in the time that it describes two-thirds of its diameter, will com- 
municate a motion to the particles which is to the whole motion of the globe as 
the density of the medium to the density of the globe. And therefore the globe 
meets with a resistance, which is to the force by which its whole motion may be 
either taken away or generated in the time in which it describes two-thirds of 
its diameter moving uniformly forwards, as the density of the medium is to the 
density of the globe. 

Case 2. Let us suppose that the particles of the medium incident on the 
globe or cylinder are not reflected; and then the cylinder falling perpendicularly 
on the particles will communicate its own simple velocity to them, and there- 
fore meets a resistance but half so great as in the former case, and the globe 
also meets with a resistance but half so great. 

Case 3. Let us suppose the particles of the medium to fly back from the 
globe with a force which is neither the greatest, nor yet none at all, but with a 
certain mean force; then the resistance of the globe will be in the same mean 
ratio between the resistance in the first case and the resistance in the second. 

Q.E.I. 
Cor. i. Hence if the globe and the particles are infinitely hard, and destitute 

of all elastic force, and therefore of all force of reflection, the resistance of the 
globe will be to the force by which its whole motion may be destroyed or 
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generated, in the time that the globe describes four third parts of its diameter, 
as the density of the medium is to the density of the globe. 

Cor. ii. The resistance of the globe, other things being equal, varies as the 
square of the velocity. 

Cor. hi. The resistance of the globe, other things being equal, varies as the 
square of the diameter. 

Cor. iv. The resistance of the globe, other things being equal, varies as the 
density of the medium. 

Cor. v. The resistance of the globe varies jointly as the square of the veloc- 
ity, as the square of the diameter, and as the density of the medium. 

Cor. vi. The motion of the globe and its resistance may be thus represented. 
Let AB be the time in which the globe may, by its resistance uniformly con- 
tinued, lose its whole motion. Erect AD, BC perpendicular to AB. Let BC be 
that whole motion, and through the point C, the asymptotes being AD, AB, 

describe the hyperbola CF. Produce AB to any 
point E. Erect the perpendicular EE meeting the 
hyperbola in F. Complete the parallelogram CBEG, 
and draw AF meeting BC in H. Then if the globe in 
any time BE, with its first motion BC uniformly 
continued, describes in a nonresisting medium the 
space CBEG represented by the area of the paral- 

lelogram, the same in a resisting medium will describe the space CBEF, rep- 
resented by the area of the hyperbola; and its motion at the end of that time 
will be represented by EF, the ordinate of the hyperbola, there being lost of 
its motion the part FG. And its resistance at the end of the same time will be 
represented by the length BH, there being lost of its resistance the part CH. 
All these things appear by Cor. i and m, Prop. 5, Book 11. 

Cor. vii. Hence if the globe in the time T by the resistance R uniformly 
continued to lose its whole motion M, the same globe in the time t in a resisting 
medium, wherein the resistance R decreases as the square of the velocity, will 

tM TM lose out of its motion M the part the part remaining; and will 

describe a space which is to the space described in the same time t, with the 
T+£ uniform motion M, as the logarithm of the number — multiplied by the 

number 2.302585092994 is to the number because the hyperbolic area BCFE 

is to the rectangle BCGE in that proportion. 

Scholium 
I have exhibited in this Proposition the resistance and retardation of spheri- 

cal projectiles in mediums that are not continued, and shown that this resist- 
ance is to the force by which the whole motion of the globe may be destroyed or 
produced in the time in which the globe can describe two-thirds of its diameter, 
with a velocity uniformly continued, as the density of the medium is to the 
density of the globe, provided the globe and the particles of the medium be 
perfectly elastic, and are endued with the utmost force of reflection; and that 
this force, where the globe and particles of the medium are infinitely hard and 
void of any reflecting force, is diminished one-half. But in continued mediums, 



226 Mathematical Principles 
as water, hot oil, and quicksilver, the globe as it passes through them does not 
immediately strike against all the particles of the fluid that generate the resist- 
ance made to it, but presses only the particles that lie next to it, which press 
the particles beyond, which press other particles, and so on; and in these 
mediums the resistance is diminished one other half. A globe in these extremely 
fluid mediums meets with a resistance that is to the force by which its whole 
motion may be destroyed or generated in the time wherein it can describe, with 
that motion uniformly continued, eight third parts of its diameter, as the den- 
sity of the medium is to the density of the globe. This I shall endeavor to show 
in what follows. 

Proposition 36. Problem 8 
To find the motion of water running out of a cylindrical vessel through a hole made 
at the bottom. 

Let ACDB be a cylindrical vessel, AB the mouth of it, CD the bottom 
parallel to the horizon, EF a circular hole in the middle of the bottom, G the 
centre of the hole, and GH the axis of the cylinder perpendicular to the horizon. 
And suppose a cylinder of ice APQB to be of the same breadth with the cavity 
of the vessel, and to have the same axis, and to de- 
scend continually with an uniform motion, and that 
its parts, as soon as they touch the surface AB, dis- 
solve into water, and flow down by their weight into 
the vessel, and in their fall compose the cataract or 
column of water ABNFEM, passing through the hole 
EF, and filling up the same exactly. Let the uniform 
velocity of the descending ice and of the contiguous 
water in the circle AB be that which the water would 
acquire by falling through the space IH; and let IH 
and HG lie in the same right line; and through the 
point I let there be drawn the right line KL parallel 
to the horizon, and meeting the ice on both the sides 
thereof in K and L. Then the velocity of the water running out at the hole EF 
will be the same that it would acquire by falling from I through the space IG. 
Therefore, by Galileo's Theorems, IG will be to IH as the square of the velocity 
of the water that runs out at the hole to the velocity of the water in the circle 
AB, that is, as the square of the ratio of the circle AB to the circle EF; those 
circles being inversely as the velocities of the water which in the same time and 
in equal quantities passes through each of them, and completely fills them both. 
We are now considering the velocity with which the water tends to the plane of 
the horizon. But the motion parallel to the same, by which the parts of the 
falling water approach to each other, is not here taken notice of; since it is 
neither produced by gravity, nor at all changes the motion perpendicular to 
the horizon which the gravity produces. We suppose, indeed, that the parts of 
the water cohere a little, that by their cohesion they may in falling approach 
to each other with motions parallel to the horizon in order to form one single 
cataract, and to prevent their being divided into several; but the motion par- 
allel to the horizon arising from this cohesion does not come under our present 
consideration. 

Case 1. Conceive now the whole cavity in the vessel, which surrounds the 
falling water ABNFEM, to be full of ice, so that the water may pass through 
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the ice as through a funnel. Then if the water pass very near to the ice only, 
without touching it; or, which is the same thing, if by reason of the perfect 
smoothness of the surface of the ice, the water, though touching it, glides over 
it with the utmost freedom, and without the least resistance; the water will run 
through the hole EF with the same velocity as before, and the whole weight of 
the column of water ABNFEM will be taken up as before in forcing out the 
water, and the bottom of the vessel will sustain the weight of the ice surround- 
ing that column. 

Let now the ice in the vessel dissolve into water; but the efflux of the water 
will remain, as to its velocity, the same as before. It will not be less, because 
the ice now dissolved will endeavor to descend; it will not be greater, because 
the ice, now become water, cannot descend without hindering the descent of 
other water equal to its own descent. The same force ought always to generate 
the same velocity in the effluent water. 

But the hole at the bottom of the vessel, by reason of the oblique motions of 
the particles of the effluent water, must be a little greater than before. For now 
the particles of the water do not all of them pass through the hole perpen- 
dicularly, but, flowing down on all parts from the sides of the vessel, and 
converging towards the hole, pass through it with oblique motions; and in 
tending downwards they meet in a stream whose diameter is a little smaller 
below the hole than at the hole itself; its diameter being to the diameter of the 
hole as 5 to 6, or as 53^ to 63^, very nearly, if I measured those diameters 
rightly. I procured a thin flat plate, having a hole pierced in the middle, the 
diameter of the circular hole being five eighth parts of an inch. And that the 
stream of running water might not be accelerated in falling, and by that accel- 
eration become narrower, I fixed this plate not to the bottom, but to the side of 
the vessel, so as to make the water go out in the direction of a line parallel to 
the horizon. Then, when the vessel was full of water, I opened the hole to let it 
run out; and the diameter of the stream, measured with great accuracy at the 
distance of about half an inch from the hole, was 21/io of an inch. Therefore the 
diameter of this circular hole was to the diameter of the stream very nearly as 
25 to 21. So that the water in passing through the hole converges on all sides, 
and, after it has run out of the vessel, becomes smaller by converging in that 
manner, and by becoming smaller is accelerated till it comes to the distance of 
half an inch from the hole, and at that distance flows in a smaller stream and 
with greater celerity than in the hole itself, and this in the ratio of 25 • 25 to 
21-21, or 17 to 12, very nearly; that is, in about the ratio of \/2 to 1. Now it is 
certain from experiments, that the quantity of water running out in a given 
time through a circular hole made in the bottom of a vessel is equal to the 
quantity, which, flowing freely with the aforesaid velocity, would run out in 
the same time through another circular hole, whose diameter is to the diameter 
of the former as 21 to 25. And therefore this running water in passing through 
the hole itself has a velocity downwards nearly equal to that which a heavy 
body would acquire in falling through half the height of the stagnant water in 
the vessel. But then, after it has run out, it is still accelerated by converging, 
till it arrives at a distance from the hole that is nearly equal to its diameter, 
and acquires a velocity greater than the other in about the ratio of V2 to 1; 
this velocity a heavy body would nearly acquire by falling freely through the 
whole height of the stagnant water in the vessel. 
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Therefore in what follows let the diameter of the stream be represented by 

that lesser hole which we shall call EF. And imagine another plane YW above 
the hole EF, and parallel to the plane thereof, to be placed at a distance equal 
to the diameter of the same hole, and to be pierced through with a greater hole 
ST, of such a magnitude that a stream which will 
exactly fill the lower hole EF may pass through it; ^   -^\B 
the diameter of this hole will therefore be to the di- H 

ameter of the lower hole nearly as 25 to 21. By this \ "0 / 
means the water will run perpendicularly out at the m\ /n 
lower hole; and the quantity of the water running \ 
out will be, according to the magnitude of this last y s\r - L. w 
hole, very nearly the same as that which the solution  11 "zr  
of the Problem requires. The space included between J 
the two planes and the falling stream may be con- 
sidered as the bottom of the vessel. But to make the solution more simple and 
mathematical, it is better to take the lower plane alone for the bottom of the 
vessel, and to suppose that the water which flowed through the ice as through 
a funnel, and ran out of the vessel through the hole EF made in the lower 
plane, preserves its motion continually, and that the ice continues at rest. 
Therefore in what follows let ST be the diameter of a circular hole described 
from the centre Z, and let the stream run out of the vessel through that hole, 
when the water in the vessel is all fluid. And let EF be the diameter of the hole, 
which the stream, in falling through, exactly fills up, whether the water runs 
out of the vessel by that upper hole ST, or flows through the middle of the ice in 
the vessel, as through a funnel. And let the diameter of the upper hole ST be to 
the diameter of the lower EF as about 25 to 21, and let the perpendicular dis- 
tance between the planes of the holes be equal to the diameter of the lesser 
hole EF. Then the velocity of the water downwards, in running out of the 
vessel through the hole ST, will be in that hole the same that a body may ac- 
quire by falling freely from half the height IZ; and the velocity of both the 
falling streams will be in the hole EF, the same which a body would acquire by 
falling freely from the whole height IG. 

Case 2. If the hole EF be not in the middle of the bottom of the vessel, but 
in some other part thereof, the water will still run out with the same velocity 
as before, if the magnitude of the hole be the same. For though a heavy body 
takes a longer time in descending to the same depth, by an oblique line, than 
by a perpendicular line, yet in both cases it acquires in its descent the same 
velocity; as Galileo hath demonstrated. 

Case 3. The velocity of the water is the same when it runs out through a hole 
in the side of the vessel. For if the hole be small, so that the interval between 
the surfaces AB and KL may vanish as to sense, and the stream of water 
horizontally issuing out may form a parabolic figure; from the latus rectum of 
this parabola one may see, that the velocity of the effluent water is that which 
a body may acquire by falling the height IG or HG of the stagnant water in the 
vessel. For, by making an experiment, I found that if the height of the stagnant 
water above the hole were 20 inches, and the height of the hole above a plane 
parallel to the horizon were also 20 inches, a stream of water springing out from 
thence would fall upon the plane, at the distance of very nearly 37 inches, from 
a perpendicular let fall upon that plane from the hole. For without resistance 
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the stream would have fallen upon the plane at the distance of 40 inches, the 
latus rectum of the parabolic stream being 80 inches. 

Case 4. If the effluent water tend upwards, it will still issue forth with the 
same velocity. For the small stream of water springing upwards, ascends with 
a perpendicular motion to GH or GI, the height of the stagnant water in the 
vessel; except so far as its ascent is hindered a little by the resistance of the air, 
and therefore it springs out with the same velocity that it would acquire in 
falling from that height. Every particle of the stagnant water is equally pressed 
on all sides (by Prop. 19, Book n), and, yielding to the pressure, tends always 
with an equal force, whether it descends through the hole in the bottom of the 
vessel, or gushes out in an horizontal direction through a hole in the side, or 
passes into a canal, and springs up from thence through a little hole made in 
the upper part of the canal. And it may not only be inferred from reasoning, 
but is manifest also from the well-known experiments just mentioned, that the 
velocity with which the water runs out is the very same that is assigned in this 
Proposition. 

Case 5. The velocity of the effluent water is the same, whether the figure of 
the hole be circular, or square, or triangular, or of any other figure whatever 
equal to the circular; for the velocity of the effluent water does not depend 
upon the figure of the hole, but arises from such depth of the hole as it may 
have below the plane KL. 

Case 6. If the lower part of the vessel ABDC be immersed into stagnant 
water, and the height of the stagnant water above the bottom of the vessel be 

GR, the velocity with which the water that is in the 
vessel will run out at the hole EF into the stagnant 

B water will be the same which the water would ac- 
quire by falling from the height IR; for the weight of 
all the water in the vessel that is below the surface of 
the stagnant water will be sustained in equilibrium 
by the weight of the stagnant water, and therefore 
does not at all accelerate the motion of the descend- 
ing water in the vessel. This case will also become 

D evident from experiments, measuring the times in 
which the water will run out. 

Cor. i. Hence if CA, the depth of the water, be produced to K, so that AK 
may be to CK as the square of the ratio of the area of a hole made in any part 
of the bottom to the area of the circle AB, the velocity of the effluent water will 
be equal to the velocity which the water would acquire by falling freely from 
the height KC. 

Cor. ii. And the force with which the whole motion of the effluent water may 
be generated is equal to the weight of a cylindric column of water, whose base 
is the hole EF, and its altitude 2GI or 2CK. For the effluent water, in the time 
it becomes equal to this column, may acquire, by falling by its own weight 
from the height GI, a velocity equal to that with which it runs out. 

Cor. hi. The weight of all the water in the vessel ABDC is to that part of 
the weight which is employed in forcing out the water as the sum of the circles 
AB and EF is to twice the circle EF. For let 10 be a mean proportional be- 
tween IH and IG, and the water running out at the hole EF will, in the time 
that a drop falling from I would describe the altitude IG, become equal to a 
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cylinder whose base is the circle EF and its altitude 2IG, that is, to a cylinder 
whose base is the circle AB, and whose altitude is 210. For the circle EF is to 
the circle AB as the square root of the ratio of the altitude IH to the altitude 
IG; that is, in the simple ratio of the mean proportional 10 to the altitude IG. 
Moreover, in the time that a drop falling from I can describe the altitude IH, 
the water that runs out will have become equal to a cylinder whose base is the 
circle AB, and its altitude 2IH; and in the time that a drop falling from I 
through H to G describes HG, the difference of the altitudes, the effluent water, 
that is, the water contained within the solid ABNFEM, will be equal to the 
difference of the cylinders, that is, to a cylinder whose base is AB, and its 
altitude 2HO. And therefore all the water contained in the vessel ABDC is to 
the whole falling water contained in the said solid ABXFEM as HG is to 2HO, 
that is, as HO + OG to 2HO, or IH+IO to 2IH. But the weight of all the water 
in the solid ABXFEM is employed in forcing out the water ; and therefore the 
weight of all the water in the vessel is to that part of the weight that is em- 
ployed in forcing out the water as IH + IO is to 2IH, and therefore as the sum 
of the circles EF and AB is to twice the circle EF. 

Cor. iv. And hence the weight of all the water in the vessel ABDC is to the 
other part of the weight which is sustained by the bottom of the vessel as the 
sum of the circles AB and EF is to the difference of the same circles. 

Cor. v. And that part of the weight which the bottom of the vessel sustains 
is to the other part of the weight employed in forcing out the water as the 
difference of the circles AB and EF is to twice the lesser circle EF, or as the 
area of the bottom to twice the hole. 

Cor. vi. That part of the weight which presses upon the bottom is to the 
whole weight of the water perpendicularly incumbent thereon as the circle AB 
is to the sum of the circles AB and EF, or as the circle AB is to the excess of 
twice the circle AB above the area of the bottom. For that part of the weight 
which presses upon the bottom is to the weight of the whole water in the vessel 
as the difference of the circles AB and EF is to the sum of the same circles (by 
Cor. iv); and the weight of the whole water in the vessel is to the weight of the 
whole water perpendicularly incumbent on the bottom as the circle AB is to 
the difference of the circles AB and EF. Therefore, multiplying together corres- 
ponding terms of the two proportions, that part of the weight which presses 
upon the bottom is to the weight of the whole water perpendicularly incumbent 
thereon as the circle AB to the sum of the circles AB and EF, or the excess of 
twice the circle AB above the bottom. 

Cor. vii. If in the middle of the hole EF there be placed the little circle PQ 
described about the centre G, and parallel to the j ^ 
horizon, the weight of water which that little circle Kf I™   1 
sustains is greater than the weight of a third part A 
of a cylinder of water whose base is that little circle 
and its height GH. For let ABXFEM be the cat- 
aract or column of falling water whose axis is GH, 
as above, and let all the water, whose fluidity is 
not requisite for the ready and quick descent of the 
water, be supposed to be congealed, as well round 
about the cataract, as above the little circle. And 
let PHQ be the column of water congealed above c E PGQ F D 

M • i | i ; N 



Book II: The Motion of Bodies 231 

the little circle, whose vertex is H, and its altitude GH. And suppose this cat- 
aract to fall with its whole weight downwards, and not in the least to lie against 
or to press PHQ, but to glide freely by it without any friction, unless, perhaps, 
just at the very vertex of the ice, where the cataract at the beginning of its 
fall may tend to a concave figure. And as the congealed water AMEC, BNFD, 
lying round the cataract, is convex in its internal surfaces AME, BNF towards 
the falling cataract, so this column PHQ will be convex towards the cataract 
also, and will therefore be greater than a cone whose base is that little circle 
PQ and its altitude GH; that is, greater than a third part of a cylinder des- 
cribed with the same base and altitude. Now that little circle sustains the 
weight of this column, that is, a weight greater than the weight of the cone, 
or a third part of the cylinder. 

Cor. viii. The weight of water which the circle PQ, when very small, sus- 
tains, seems to be less than the weight of two-thirds of a cylinder of water 
whose base is that little circle, and its altitude HG. For, things standing as 
above supposed, imagine the half of a spheroid described whose base is that 
little circle, and its semiaxis or altitude HG. This figure will be equal to two- 
thirds of that cylinder, and will comprehend within it the column of congealed 
water PHQ, the weight of which is sustained by that little circle. For though 
the motion of the water tends directly downwards, the external surfaces of that 
column must yet meet the base PQ in an angle somewhat acute, because the 
water in its fall is continually accelerated, and by reason of that acceleration 
becomes narrower. Therefore, since that angle is less than a right one, this 
column in the lower parts thereof will lie within the hemispheroid. In the upper 
parts also it will be acute or pointed; because to make it otherwise, the hor- 
izontal motion of the water must be at the vertex infinitely more swift than its 
motion towards the horizon. And the less this circle PQ is, the more acute will 
the vertex of this column be; and the circle being diminished in infinitum, the 
angle PHQ will be diminished in infinitum, and therefore the column will lie 
within the hemispheroid. Therefore that column is less than that hemispheroid, 
or than two third parts of the cylinder whose base is that little circle, and its 
altitude GH. Now the little circle sustains a force of water equal to the weight 
of this column, the weight of the ambient water being employed in causing its 
efflux out at the hole. 

Cor. ix. The weight of water which the little circle PQ sustains, when it is 
very small, is very nearly equal to the weight of a cylinder of water whose base 
is that little circle, and its altitude 3^GrH; for this weight is an arithmetical 
mean between the weights of the cone and the hemispheroid above mentioned. 
But if that little circle be not very small, but on the contrary increased till it be 
equal to the hole EF, it will sustain the weight of all the water lying perpen- 
dicularly above it, that is, the weight of a cylinder of water whose base is that 
little circle, and its altitude GH. 

Cor. x. And (as far as I can judge) the weight which this little circle sustains 
is always to the weight of a cylinder of water whose base is that little circle, 
and its altitude 3^GH, as EF2 is to EF2 —J^PQ2, or as the circle EF is to the 
excess of this circle above half the little circle PQ, very nearly. 
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Lemma 4 
// a cylinder moves uniformly forwards in the direction of its length, the resistance 
made thereto is not at all changed by augmenting or diminishing that length; and is 
therefore the same with the resistance of a circle, described with the same diameter, 
and moving forwards with the same velocity in the direction of a right line perpen- 
dicular to its plane. 

For the sides are not at all opposed to the motion; and a cylinder becomes a 
circle when its length is diminished in infinitum. 

Proposition 37. Theorem 29 
If a cylinder moves uniformly forwards in a compressed, infinite, and nonelastic 
fluid, in the direction of its length, the resistance arising from the magnitude of its 
transverse section is to the force by which its whole motion may be destroyed or 
generated, in the time that it moves four times its length, as the density of the me- 
dium is to the density of the cylinder, nearly. 

For let the vessel ABDC touch the surface of stagnant water with its bottom 
CD, and let the water run out of this vessel into the stagnant water through 
the cylindric canal EFTS perpendicular to the hori- 
zon ; and let the little circle PQ be placed parallel to 
the horizon anywhere in the middle of the canal; 
and produce CA to K, so that AK may be to CK as 
the square of the ratio, which the excess of the orifice 
of the canal EF above the little circle PQ bears to r C 
the circle AB. Then it is manifest (by Case 5, Case 6, 
and Cor. i, Prop. 36) that the velocity of the water 
passing through the annular space between the little 
circle and the sides of the vessel will be the very 
same as that which the water would acquire by fall- 
ing, and in its fall describing the altitude KC or IG. 

And (by Cor. x, Prop. 36) if the breadth of the vessel be infinite, so that the 
short line HI may vanish, and the altitudes IG, HG become equal; the force of 
the water that flows down and presses upon the circle will be to the weight of a 
cylinder whose base is that little circle, and the altitude as EF2 is to 
EF2 —3^PQ2, very nearly. For the force of the water flowing downwards uni- 
formly through the whole canal will be the same upon the little circle PQ in 
whatsoever part of the canal it be placed. 

Let now the orifices of the canal EF, ST be closed, and let the little circle 
ascend in the fluid compressed on every side, and by its ascent let it oblige the 
water that lies above it to descend through the annular space between the little 
circle and the sides of the canal. Then will the velocity of the ascending little 
circle be to the velocity of the descending water as the difference of the circles 
EF and PQ is to the circle PQ; and the velocity of the ascending little circle will 
be to the sum of the velocities, that is, to the relative velocity of the descending 
water with which it passes by the little circle in its ascent, as the difference of 
the circles EF and PQ is to the circle EF, or as EF2 —PQ2 to EF2. Let that 
relative velocity be equal to the velocity with which it was shown above that 
the water would pass through the annular space, if the circle were to remain 
unmoved, that is, to the velocity which the water would acquire by falling, and 
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in its fall describing the altitude IG; and the force of the water upon the as- 
cending circle will be the same as before (by Cor. v of the Laws of Motion); 
that is, the resistance of the ascending little circle will be to the weight of a 
cylinder of water whose base is that little circle, and its altitude y^lG, as EF2 

is to EF2 —J^PQ2, nearly. But the velocity of the little circle will be to the 
velocity which the water acquires by falling, and in its fall describing the 
altitude IG, as EF2 —PQ2 is to EF2. 

Let the breadth of the canal be increased in infinitum; and the ratios between 
EF2 —PQ2 and EF2, and between EF2 and EF2 —^PQ2, will become at last 
ratios of equality. And therefore the velocity of the little circle will now be the 
same as that which the water would acquire in falling, and in its fall describing 
the altitude IG; and the resistance will become equal to the weight of a cylinder 
whose base is that little circle, and its altitude half the altitude IG, from which 
the cylinder must fall to acquire the velocity of the ascending circle; and with 
this velocity the cylinder in the time of its fall will describe four times its 
length. But the resistance of the cylinder moving forwards with this velocity in 
the direction of its length is the same with the resistance of the little circle (by 
Lem. 4), and is therefore nearly equal to the force by which its motion may be 
generated while it describes four times its length. 

If the length of the cylinder be augmented or diminished, its motion, and 
the time in which it describes four times its length, will be augmented or 
diminished in the same ratio, and therefore the force by which the motion, so 
increased or diminished, may be destroyed or generated, will continue the same; 
because the time is increased or diminished in the same proportion; and there- 
fore that force remains still equal to the resistance of the cylinder, because (by 
Lem. 4) that resistance will also remain the same. 

If the density of the cylinder be augmented or diminished, its motion, and 
the force by which its motion may be generated or destroyed in the same time, 
will be augmented or diminished in the same ratio. Therefore the resistance of 
any cylinder whatsoever will be to the force by which its whole motion may be 
generated or destroyed, in the time during which it moves four times its length, 
as the density of the medium is to the density of the cylinder, nearly, q.e.d. 

A fluid must be compressed to become continued; it must be continued and 
nonelastic, that all the pressure arising from its compression may be propa- 
gated in an instant; and so, acting equally upon all parts of the body moved, 
may produce no change of the resistance. The pressure arising from the motion 
of the body is spent in generating a motion in the parts of the fluid, and this 
creates the resistance. But the pressure arising from the compression of the 
fluid, be it ever so forcible, if it be propagated in an instant, generates no 
motion in the parts of a continued fluid, produces no change at all of motion 
therein; and therefore neither augments nor lessens the resistance. This is cer- 
tain, that the action of the fluid arising from the compression cannot be 
stronger on the hinder parts of the body moved than on its fore parts, and 
therefore cannot lessen the resistance described in this Proposition. And if its 
propagation be infinitely swifter than the motion of the body pressed, it will 
not be stronger on the fore parts than on the hinder parts. But that action will 
be infinitely swifter, and propagated in an instant, if the fluid be continued and 
nonelastic. 

Cor. i. The resistances, made to cylinders going uniformly forwards in the 
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direction of their lengths through continued infinite mediums, are in a ratio 
compounded of the square of the ratio of the velocities and the square of the 
ratio of the diameters, and the ratio of the density of the mediums. 

Cor. ii. If the breadth of the canal be not infinitely increased, but the cylin- 
der go forwards in the direction of its length through an included quiescent 
medium, its axis all the while coinciding with the axis of the canal, its resistance 

will be to the force by which its whole motion, in the 
time in which it describes four times its length, may 
be generated or destroyed, in a ratio compounded of 
the ratio of EF2 to EF2 —J^PQ2, and the square of 
the ratio of EF2 to EF2 —PQ2, and the ratio of the 
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Cor. hi. The same thing supposed, and that a 
length L is to four times the length of the cylinder 
in a ratio compounded of the ratio EF2 —^PQ2 to 
EF2, and the square of the ratio of EF2 —PQ2 to EF2: 
the resistance of the cylinder will be to the force by 
which its whole motion, in the time during which it 

describes the length L, may be destroyed or generated, as the density of the 
medium is to the density of the cylinder. 

Scholium 
In this Proposition we have investigated that resistance alone which arises 

from the magnitude of the transverse section of the cylinder, neglecting that 
part of the same which may arise from the obliquity of the motions. For as, in 
Case 1 of Prop. 36, the obliquity of the motions with which the parts of the 
water in the vessel converged on every side to the hole EF hindered the efflux 
of the water through the hole, so, in this Proposition, the obliquity of the 
motions, with which the parts of the water, pressed by the antecedent ex- 
tremity of the cylinder, yield to the pressure, and diverge on all sides, retards 
their passage through the places that lie round that antecedent extremity, 
towards the hinder parts of the cylinder, and causes the fluid to be moved to a 
greater distance; which increases the resistance, and that in the same ratio 
almost in which it diminished the efflux of the water out of the vessel, that is, 
in the squared ratio of 25 to 21, nearly. And as, in Case 1 of that Proposition, 
we made the parts of the water pass through the hole EF perpendicularly and 
in the greatest plenty, by supposing all the water in the vessel lying round the 
cataract to be frozen, and that part of the water whose motion was oblique and 
useless to remain without motion, so in this Proposition, that the obliquity of 
the motions may be taken away, and the parts of the water may give the freest 
passage to the cylinder, by yielding to it with the most direct and quick motion 
possible, so that only so much resistance may remain as arises from the magni- 
tude of the transverse section, and as is incapable of diminution, unless by 
diminishing the diameter of the cylinder; we must conceive those parts of the 
fluid whose motions are oblique and useless, and produce resistance, to be at 
rest among themselves at both extremities of the cylinder, and there to cohere, 
and be joined to the cylinder. Let ABCD be a rectangle, and let AE and BE 
be two parabolic arcs, described with the axis AB, and with a latus rectum that 
is to the space HG, which must be described by the cylinder in falling, in order 
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to acquire the velocity with which it moves, as HG to ^AB. Let CF and DF 
be two other parabolic arcs described with the axis CD, and a latus rectum 
four times the former; and by the revolution of the figure about the axis EF let 
there be generated a solid, whose middle part ABDC is the cylinder we are here 

speaking of, and whose extreme parts ABE 
Hi 'G an(i CDF contain the parts of the fluid at rest 

C A among themselves, and concreted into two 
' ■;>£. hard bodies, adhering to the cylinder at each 

^ end like a head and tail. Then if this solid 
EACFDB move in the direction of the length 

of its axis FE towards the parts beyond E, the resistance will be nearly the 
same as that which we have here determined in this Proposition; that is, it will 
have the same ratio to the force with which the whole motion of the cylinder 
may be destroyed or generated, in the time that it is describing the length 4AC 
with that motion uniformly continued, as the density of the fluid has to the 
density of the cylinder, nearly. And (by Cor. vii, Prop. 36) the resistance must 
be to this force in the ratio of 2 to 3, at the least. 

Lemma 5 
If a cylinder, a sphere, and a spheroid, of equal breadths he placed successively in 
the middle of a cylindric canal, so that their axes may coincide with the axis of the 
canal, these bodies will equally hinder the passage of the water through the canal. 

For the spaces lying between the sides of the canal, and the cylinder, sphere, 
and spheroid, through which the water passes, are equal; and the water will 
pass equally through equal spaces. 

This is true, upon the supposition that all the water above the cylinder, 
sphere, or spheroid, whose fluidity is not necessary to make the passage of the 
water the quickest possible, is congealed, as was explained above in Cor. vii, 
Prop. 36. 

Lemma 6 
The same supposition remaining, the fore-mentioned bodies are equally acted on by 
the water flowing through the canal. 

This appears by Lem. 5 and the third Law. For the water and the bodies act 
upon each other mutually and equally. 

Lemma 7 
If the water be at rest in the canal, and these bodies move with equal velocity and 
in opposite directions through the canal, their resistances will be equal among 
themselves. 

This appears from the last Lemma, for the relative motions remain the same 
among themselves. 

Scholium 
The case is the same for all convex and round bodies, whose axes coincide 

with the axis of the canal. Some difference may arise from a greater or less 
friction; but in these Lemmas we suppose the bodies to be perfectly smooth, 
and the medium to be void of all tenacity and friction; and that those parts of 
the fluid which by their oblique and superfluous motions may disturb, hinder, 
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and retard the flux of the water through the canal, are at rest among themselves; 
being fixed like water by frost, and adhering to the force and hinder parts of 
the bodies in the manner explained in the Scholium of the last Proposition; for 
in what follows we consider the very least resistance that round bodies de- 
scribed with the greatest given transverse sections can possibly meet with. 

Bodies swimming upon fluids, when they move straight forwards, cause the 
fluid to ascend at their fore parts and subside at their hinder parts, especially 
if they are of an obtuse figure; and hence they meet with a little more resistance 
than if they were acute at the head and tail. And bodies moving in elastic 
fluids, if they are obtuse behind and before, condense the fluid a little more at 
their fore parts, and relax the same at their hinder parts; and therefore meet 
also with a little more resistance than if they were acute at the head and tail. 
But in these Lemmas and Propositions we are not treating of elastic but non- 
elastic fluids; not of bodies floating on the surface of the fluid, but deeply 
immersed therein. And when the resistance of bodies in nonelastic fluids is once 
known, we may then augment this resistance a little in elastic fluids, as our air; 
and in the surfaces of stagnating fluids, as lakes and seas. 

Proposition 38. Theorem 30 
If a globe move uniformly forwards in a compressed, infinite, and nonelastic fluid, 
its resistance is to the force by which its whole motion may be destroyed or generated, 
in the time that it describes eight third parts of its diameter, as the density of the 
fluid is to the density of the globe, very nearly. 

For the globe is to its circumscribed cylinder as 2 to 3; and therefore the 
force which can destroy all the motion of the cylinder, while the same cylinder 
is describing the length of four of its diameters, will destroy all the motion of 
the globe, while the globe is describing two-thirds of this length, that is, eight 
third parts of its own diameter. Now the resistance of the cylinder is to this 
force very nearly as the density of the fluid is to the density of the cylinder or 
globe (by Prop. 37), and the resistance of the globe is equal to the resistance of 
the cylinder (by Lems. 5, 6, 7). q.e.d. 

Cor. i. The resistances of globes in infinite compressed mediums are in a 
ratio compounded of the squared ratio of the velocity, and the squared ratio of 
the diameter, and the ratio of the density of the mediums. 

Cor. ii. The greatest velocity, with which a globe can descend by its com- 
parative weight through a resisting fluid, is the same as that which it may 
acquire by falling with the same weight, and without any resistance, and in its 
fall describing a space that is to four third parts of its diameter as the density 
of the globe is to the density of the fluid. For the globe in the time of its fall, 
moving with the velocity acquired in falling, will describe a space that will be 
to eight third parts of its diameter as the density of the globe is to the density 
of the fluid; and the force of its weight which generates this motion will be to 
the force that can generate the same motion, in the time that the globe de- 
scribes eight third parts of its diameter, with the same velocity as the density 
of the fluid is to the density of the globe; and therefore (by this Proposition) 
the force of weight will be equal to the force of resistance, and therefore cannot 
accelerate the globe. 

Cor. hi. If there be given both the density of the globe and its velocity at 
the beginning of the motion, and the density of the compressed quiescent fluid 
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in which the globe moves, there is given at any time both the velocity of the 
globe and its resistance, and the space described by it (by Cor. vii, Prop. 35). 

Cor. iv. A globe moving in a compressed quiescent fluid of the same density 
with itself will lose half its motion before it can describe the length of two of its 
diameters (by the same Cor. vii). 

Proposition 39. Theorem 31 

If a globe move uniformly forwards through a fluid inclosed and compressed in a 
cylindric canal, its resistance is to the force by which its whole motion may be 
generated or destroyed, in the time in which it describes eight third parts of its 
diameter, in a ratio compounded of the ratio of the orifice of the canal to the excess 
of that orifice above half the greatest circle of the globe; and the squared ratio of the 
orifice of the canal to the excess of that orifice above the greatest circle of the globe; 
and the ratio of the density of the fluid to the density of the globe, nearly. 

This appears by Cor. ii, Prop. 37, and the demonstration proceeds in the 
same manner as in the foregoing Proposition. 

Scholium 
In the last two Propositions we suppose (as was done before in Lem. 5) that 

all the water which precedes the globe, and whose fluidity increases the resist- 
ance of the same, is congealed. Now if that water becomes fluid, it will some- 
what increase the resistance. But in these Propositions that increase is so small, 
that it may be neglected, because the convex surface of the globe produces the 
very same effect almost as the congelation of the water. 

Proposition 40. Problem 9 
To find by experiment the resistance of a globe moving through a perfectly fluid 
compressed medium. 

Let A be the weight of the globe in a vacuum, B its weight in the resisting 
medium, D the diameter of the globe, F a space which is to %D as the density 
of the globe is to the density of the medium, that is, as A is to A — B, G the time 
in which the globe falling with the weight B without resistance describes the 
space F, and H the velocity which the body acquires by that fall. Then H will 
be the greatest velocity with which the globe can possibly descend with the 
weight B in the resisting medium, by Cor. ii, Prop. 38; and the resistance 
which the globe meets with, when descending with that velocity, will be equal 
to its weight B; and the resistance it meets with in any other velocity will be to 
the weight B as the square of the ratio of that velocity to the greatest velocity 
H, by Cor. i, Prop. 38. 

This is the resistance that arises from the inactivity of the matter of the 
fluid. That resistance which arises from the elasticity, tenacity, and friction of 
its parts, may be thus investigated. 

Let the globe be let fall so that it may descend in the fluid by the weight B; 
and let P be the time of falling, and let that time be expressed in seconds, if the 
time G be given in seconds. Find the absolute number N agreeing to the log- 

2P N4-1 arithm 0.4342944819 -g-, and let L be the logarithm of the number ; and 
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N —1 the velocity acquired in falling will be and the height described will be 

2PF — -1.386294361 IF+4.605170186LF. If the fluid be of a sufficient depth, we 
opF 

may neglect the term 4.605170186LF; and  1.3862943611F mil be the (jr 
altitude described, nearly. These things appear by Prop. 9, Book ii, and its 
Corollaries, and are true upon this supposition, that the globe meets with no 
other resistance but that which arises from the inactivity of matter. Now if it 
really meet with any resistance of another kind, the descent will be slower, and 
from the amount of that retardation will be known the amount of this new 
resistance. 

That the velocity and descent of a body falling in a fluid might more easily 
be known, I have composed the following table, the first column of which 

The Times 
P 

Velocities of 
the body falling in 

the fluid 
The spaces 

described in falling 
in the fluid 

The spaces 
described with the 

greatest motion 
The spaces 

described by falling 
in a vacuum 

0.001G 9999929/3O 0.00000IF 0.002F 0.000001F 
0.01G 999967 0.0001F 0.02F 0.0001F 
0.1G 9966799 0.0099834F 0.2F 0.01F 
0.2G 19737532 0.0397361F 0.4F 0.04F 
0.3G 29131261 0.0886815F 0.6F 0.09F 
0.4G 37994896 0.1559070F 0.8F 0.16F 
0.5G 46211716 0.2402290F 1.0F 0.25F 
0.6G 53704957 0.3402706F 1.2F 0.36F 
0.7G 60436778 0.4545405F 1.4F 0.49F 
0.8G 66403677 0.5815071F 1.6F 0.64F 
0.9G 71629787 0.7196609F 1.8F 0.81F 
1G 76159416 0.8675617F 2F IF 
2G 96402758 2.6500055F 4F 4F 
3G 99505475 4.6186570F 6F 9F 
4G 99932930 6.6143765F 8F 16F 
5G 99990920 8.6137964F 10F 25F 
6G 99998771 10.6137179F 12F 36F 
7G 99999834 12.6137073F 14F 49F 
8G 99999980 14.6137059F 16F 64F 
9G 99999997 16.6137057F 18F 81F 

10G 999999993/5 18.6137056F 20F 100F 

denotes the times of descent; the second shows the velocities acquired in 
falling, the greatest velocity being 100,000,000; the third exhibits the spaces 
described by falling in those times, 2F being the space which the body describes 
in the time G with the greatest velocity; and the fourth gives the spaces de- 
scribed with the greatest velocity in the same times. The numbers in the fourth 

2P column are -Fr, and by subtracting the number 1.3862944 —4.6051702L, are 
G 

found the numbers in the third column; and these numbers must be multiplied 
by the space F to obtain the spaces described in falling. A fifth column is added 
to all these, containing the spaces described in the same times by a body falling 
in a vacuum with the force of B its comparative weight. 
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Scholium 

In order to investigate the resistances of fluids from experiments, I procured 
a square wooden vessel, whose length and breadth on the inside was 9 inches 
English measure, and itsdepth 9^ feet; this I filled with rain water; and having 
provided globes made up of wax, and lead included therein, I noted the times 
of the descents of these globes, the height through which they descended being 
112 inches. A solid cubic foot of English measure contains 76 pounds troy 
weight of rain water; and a solid inch contains ^6 ounces troy weight, or 2533^ 
grains; and a globe of water of one inch in diameter contains 132.645 grains in 
air, or 132.8 grains in a vacuum; and any other globe will be as the excess of 
its weight in a vacuum above its weight in water. 

Exper. 1. A globe whose weight was 1563^ grains in air, and 77 grains in 
water, described the whole height of 112 inches in 4 seconds. And, upon re- 
peating the experiment, the globe spent again the very same time of 4 seconds 
in falling. 

The weight of this globe in a vacuum is ISb1/^ grains; and the excess of this 
weight above the weight of the globe in water is 791^38 grains. Hence the diam- 
eter of the globe appears to be 0.84224 parts of an inch. Then it will be, as that 
excess to the weight of the globe in a vacuum, so is the density of the water to 
the density of the globe; and so is % parts of the diameter of the globe (viz., 
2.24597 inches) to the space 2F, which will be therefore 4.4256 inches. Now a 
globe falling in a vacuum with its whole weight of ISb1/^ grains in one second 
of time will describe 193inches; and falling in water in the same time with 
the weight of 77 grains without resistance, will describe 95.219 inches; and in 
the time G,which is to one second of time as the square root of the ratio of the 
space F, or of 2.2128 inches to 95.219 inches, will describe 2.2128 inches, and 
will acquire the greatest velocity H with which it is capable of descending in 
water. Therefore the time G is 0.15244 seconds. And in this time G, with that 
greatest velocity H, the globe will describe the space 2F, which is 4.4256 inches; 
and therefore in 4 seconds will describe a space of 116.1245 inches. Subtract 
the space 1.3862944-F, or 3.0676 inches, and there will remain a space of 
113.0569 inches, which the globe falling through water in a very wide vessel 
will describe in 4 seconds. But this space, by reason of the narrowness of the 
wooden vessel before mentioned, ought to be diminished in a ratio compounded 
of the square root of the ratio of the orifice of the vessel to the excess of this 
orifice above half a great circle of the globe, and of the simple ratio of the same 
orifice to its excess above a great circle of the globe, that is, in a ratio of 1 to 
0.9914. This done, we have a space of 112.08 inches, which a globe falling 
through the water in this wooden vessel in 4 seconds of time ought nearly to 
describe by this theory; but it described 112 inches by the experiment. 

Exper. 2. Three equal globes, whose weights were severally 763^ grains in 
air, and 5^6 grains in water, were let fall successively; and every one fell 
through the water in 15 seconds of time, describing in its fall a height of 112 
inches. 

By computation, the weight of each globe in a vacuum is 76^2 grains; the 
excess of this weight above the weight in water is 711/^8 grains; the diameter of 
the globe 0.81296 of an inch; /"a parts of this diameter 2.16789 inches; the 
space 2F is 2.3217 inches; the space which a globe of 5/^6 grains in weight would 
describe in one second without resistance, 12.808 inches, and the time G 
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0.301056 seconds. Therefore the globe, with the greatest velocity it is capable of 
receiving from a weight of 5/^6 grains in its descent through water, will describe 
in the time 0.301056 seconds the space 2.3217 inches; and in 15 seconds the 
space 115.678 inches. Subtract the space 1.3862944F, or 1.609 inches, and 
there remains the space 114.069 inches; which therefore the falling globe ought 
to describe in the same time, if the vessel were very wide. But because our 
vessel was narrow, the space ought to be diminished by about 0.895 of an inch. 
And so the space will remain 113.174 inches, which a globe falling in this vessel 
ought nearly to describe in 15 seconds. But by the experiment it described 112 
inches. The difference is not sensible. 

Exper. 3. Three equal globes, whose weights were severally 121 grains in 
air, and 1 grain in water, were successively let fall; and they fell through the 
water in the times 46 seconds, 47 seconds, and 50 seconds, describing a height 
of 112 inches. 

By the theory, these globes ought to have fallen in about 40 seconds. Now 
whether their falling more slowly were occasioned from the consideration that 
in slow motions the resistance arising from the force of inactivity does really 
bear a less proportion to the resistance arising from other causes; or whether 
it is to be attributed to little bubbles that might chance to stick to the globes, 
or to the rarefaction of the wax by the warmth of the weather, or of the hand 
that let them fall; or, lastly, whether it proceeded from some insensible errors 
in weighing the globes in the water, I am not certain. Therefore the weight of 
the globe in water should be of several grains, that the experiment may be 
certain, and to be depended on. 

Exper. 4. I began the foregoing Experiments to investigate the resistances 
of fluids, before I was acquainted with the theory laid down in the Proposi- 
tions immediately preceding. Afterwards, in order to examine the theory after 
it was discovered, I procured a wooden vessel, whose breadth on the inside was 
8% inches, and its depth 15^ feet. Then I made four globes of wax, with lead 
included, each of which weighed 139K grains in air, and 7^ grains in water. 
These I let fall, measuring the times of their falling in the water with a pen- 
dulum oscillating to half-seconds. The globes were cold, and had remained so 
some time, both when they were weighed and when they were let fall; because 
warmth rarefies the wax, and by rarefying it diminishes the weight of the globe 
in the water; and wax, when rarefied, is not instantly reduced by cold to its 
former density. Before they were let fall, they were totally immersed under 
water, lest, by the weight of any part of them that might chance to be above 
the water, their descent should be accelerated in its beginning. Then, when 
after their immersion they were perfectly at rest, they were let go with the 
greatest care, that they might not receive any impulse from the hand that let 
them down. And they fell successively in the times of 473^, 483^, 50, and 51 
oscillations, describing a height of 15 feet and 2 inches. But the weather was 
now a little colder than when the globes were weighed, and therefore I re- 
peated the experiment another day; and then the globes fell in the times of 
49, 493^2, 50, and 53; and at a third trial in the times of 493^, 50, 51, and 53 
oscillations. And by making the experiment several times over, I found that 
the globes fell mostly in the times of 493^2 an(i 50 oscillations. When they fell 
slower, I suspect them to have been retarded by striking against the sides of 
the vessel. 
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Now, computing from the theory, the weight of the globe in a vacuum is 

139% grains; the excess of this weight above the weight of the globe in water 
1321/<o grains; the diameter of the globe 0.99868 of an inch; % parts of the 
diameter 2.66315 inches; the space 2F 2.8066 inches; the space which a globe 
weighing 73d* grains falling Avithout resistance describes in a second of time 
9.88164 inches; and the time G 0.376843 seconds. Therefore the globe with 
the greatest velocity with which it is capable of descending through the water 
by the force of a weight of 7% grains, will in the time 0.376843 seconds de- 
scribe a space of 2.8066 inches, and in one second of time a space of 7.44766 
inches, and in the time 25 seconds, or in 50 oscillations, the space 186.1915 
inches. Subtract the space 1.386294F, or 1.9454 inches, and there will remain 
the space 184.2461 inches which the globe will describe in that time in a very 
wide vessel. Because our vessel was narrow, let this space be diminished in a 
ratio compounded of the square root of the ratio of the orifice of the vessel to 
the excess of this orifice above half a great circle of the globe, and of the simple 
ratio of the same orifice to its excess above a great circle of the globe; and we 
shall have the space of 181.86 inches, which the globe ought by the theory to 
describe in this vessel in the time of 50 oscillations, nearly. But it described 
the space of 182 inches, by experiment, in 49% or 50 oscillations. 

Exper. 5. Four globes weighing 154% grains in air, and 21% grains in 
water, being let fall several times, fell in the times of 28%, 29, 29%, and 30, 
and sometimes of 31, 32, and 33 oscillations, describing a height of 15 feet and 
2 inches. 

They ought by the theory to have fallen in the time of 29 oscillations, nearly. 
Exper. 6. Five globes, weighing 212% grains in air, and 79% in water, being 

several times let fall, fell in the times of 15, 15%, 16, 17, and 18 oscillations, 
describing a height of 15 feet and 2 inches. 

By the theory they ought to have fallen in the time of 15 oscillations, 
nearly. 

Exper. 7. Four globes, weighing 293% grains in air, and 35% grains in 
water, being let fall several times, fell in the times of 29%, 30, 30%, 31, 32, 
and 33 oscillations, describing a height of 15 feet and 1% inches. 

By the theory they ought to have fallen in the time of 28 oscillations, nearly. 
In searching for the cause that occasioned these globes of the same weight 

and magnitude to fall, some swifter and some slower, I hit upon this: that the 
globes, when they were first let go and began to fall, oscillated about their 
centres; that side which chanced to be the heavier descending first, and pro- 
ducing an oscillating motion. Now by oscillating thus, the globe communicates 
a greater motion to the water than if it descended without any oscillations; 
and by this communication loses part of its own motion with which it should 
descend; and therefore as this oscillation is greater or less, it will be more or 
less retarded. Besides, the globe always recedes from that side of itself which 
is descending in the oscillation, and by so receding comes nearer to the sides 
of the vessel, so as even to strike against them sometimes. And the heavier the 
globes are, the stronger this oscillation is; and the greater they are, the more is 
the water agitated by it. Therefore to diminish this oscillation of the globes, I 
made new ones of lead and wax, sticking the lead in one side of the globe very 
near its surface; and I let fall the globe in such a manner, that, as near as possi- 
ble, the heavier side might be lowest at the beginning of the descent. By this 
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means the oscillations became much less than before, and the times in which 
the globes fell were not so unequal: as in the following Experiments. 

Exper. 8. Four globes weighing 139 grains in air, and in water, were let 
fall several times, and fell mostly in the time of 51 oscillations, never in more 
than 52, or in fewer than 50, describing a height of 182 inches. 

By the theory they ought to fall in about the time of 52 oscillations. 
Exper. 9. Four globes weighing 27334 grains in air, and 140^4 in water, 

being several times let fall, fell in never fewer than 12, and never more than 
13 oscillations, describing a height of 182 inches. 

These globes by the theory ought to have fallen in the time of 1134 oscilla- 
tions, nearly. 

Exper. 10. Four globes, weighing 384 grains in air, and 11934 in water, 
being let fall several times, fell in the times of 17^, 18, 1834? and 19 oscilla- 
tions, describing a height of 18134 inches. And when they fell in the time of 19 
oscillations, I sometimes heard them hit against the sides of the vessel before 
they reached the bottom. 

By the theory they ought to have fallen in the time of 15% oscillations, 
nearly. 

Exper. 11. Three equal globes, weighing 48 grains in air, and 32%2 in water, 
being several times let fall, fell in the times of 4334? 44, 4434? 45, and 46 oscilla- 
tions, and mostly in 44 and 45, describing a height of 18234 inches, nearly. 

By the theory they ought to have fallen in the time of 46% oscillations, 
nearly. 

Exper. 12. Three equal globes, weighing 141 grains in air, and 4^4 in water, 
being let fall several times, fell in the times of 61, 62, 63, 64, and 65 oscillations, 
describing a space of 182 inches. 

And by the theory they ought to have fallen in 6434 oscillations, nearly. 
From these Experiments it is manifest, that when the globes fell slowly, as 

in the second, fourth, fifth, eighth, eleventh, and twelfth Experiments, the 
times of falling are rightly exhibited by the theory; but when the globes fell 
more swiftly, as in the sixth, ninth, and tenth Experiments, the resistance was 
somewhat greater than the square of the velocity. For the globes in falling 
oscillate a little; and this oscillation, in those globes that are light and fall 
slowly, soon ceases by the weakness of the motion; but in greater and heavier 
globes, the motion being strong, it continues longer, and is not to be checked 
by the ambient water till after several oscillations. Besides, the more swiftly 
the globes move, the less are they pressed by the fluid at their hinder parts; 
and if the velocity be continually increased, they will at last leave an empty 
space behind them, unless the compression of the fluid be increased at the same 
time. For the compression of the fluid ought to be increased (by Props. 32 and 
33) as the square of the velocity, in order to maintain the resistance in the 
same squared ratio. But because this is not done, the globes that move swiftly 
are not so much pressed at their hinder parts as the others; and by the defect of 
this pressure it comes to pass that their resistance is a little greater than the 
square of their velocity. 

So that the theory agrees with the experiments on bodies falling in water. 
It remains that we examine the observations of bodies falling in air. 

Exper. 13. From the top of St. Paul's Church in London, in June, 1710, 
there were let fall together two glass globes, one full of quicksilver, the other 
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of air; and in their fall they described a height of 220 English feet. A wooden 
table was suspended upon iron hinges on one side, and the other side of the 
table was supported by a wooden pin. The two globes lying upon this table 
were let fall together by pulling out the pin by means of an iron wire reaching 
thence down to the ground; so that, the pin being removed, the table, which 
had then no support but the iron hinges, fell downwards, and turning round 
upon the hinges, gave leave to the globes to drop off from it. At the same in- 
stant, with the same pull of the iron wire that took out the pin, a pendulum 
oscillating to seconds was let go, and began to oscillate. The diameters and 
weights of the globes, and their times of falling, are exhibited in the accom- 
panying table. 

The globes filled with mercury The globes full of air 

Weights Diameters Times in 
falling Weights Diameters Times in 

falling 
grains 

908 
983 
866 
747 
808 
784 

inches 
0.8 
0.8 
0.8 
0.75 
0.75 
0.75 

seconds 
4 
4- 
4 
4+ 
4 
4+ 

grains 
510 
642 
599 
515 
483 
641 

inches 
5.1 
5.2 
5.1 
5.0 
5.0 
5.2 

seconds 
VA 
8 
8 
m 
m 
8 

But the times observed must be corrected; for the globes of mercury (by 
Galileo's theory), in 4 seconds of time, will describe 257 English feet, and 220 
feet in only 3 seconds 42 thirds. So that the wooden table, when the pin was 
taken out, did not turn upon its hinges so quickly as it ought to have done; 
and the slowness of that revolution hindered the descent of the globes at the 
beginning. For the globes lay about the middle of the table, and indeed were 
rather nearer to the axis upon which it turned than to the pin. And hence the 
times of falling were prolonged about 18 thirds; and therefore ought to be 
corrected by subtracting that excess, especially in the larger globes, which, by 
reason of the largeness of their diameters, lay longer upon the revolving table 
than the others. This being done, the times in which the six larger globes fell 
will come forth 8 seconds 12 thirds, 7 seconds 42 thirds, 7 seconds 42 thirds, 
7 seconds 57 thirds, 8 seconds 12 thirds, and 7 seconds 42 thirds. 

Therefore the fifth in order among the globes that were full of air being 5 
inches in diameter, and 483 grains in weight, fell in 8 seconds 12 thirds, de- 
scribing a space of 220 feet. The weight of a bulk of water equal to this globe 
is 16,600 grains; and the weight of an equal bulk of air is grains, or 19^0 
grains; and therefore the weight of the globe in a vacuum is 502^o grains; and 
this weight is to the weight of a bulk of air equal to the globe as 502^o is to 
19Mo; and so is 2F to of the diameter of the globe, that is, to 133^ inches. 
Hence 2F becomes 28 feet 11 inches. A globe, falling in a vacuum with its 
whole weight of 502^o grains, will in one second of time describe 19334* inches 
as above; and with the weight 483 grains will describe 185.905 inches; and with 
that weight 483 grains in a vacuum will describe the space F, or 14 feet 53^ 
inches, in the time of 57 thirds and 58 fourths, and acquire the greatest veloc- 
ity it is capable of descending with in the air. With this velocity the globe in 
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8 seconds 12 thirds of time will describe 245 feet and inches. Subtract 
1.3863-F, or 20 feet and an inch, and there remain 225 feet 5 inches. This 
space, therefore, the falling globe ought by the theory to describe in 8 seconds 
12 thirds. But by the experiment it described a space of 220 feet. The differ- 
ence is inappreciable. 

By like calculations applied to the other globes full of air, I composed the 
following table. 

The weights of 
the globes 

The 
diameters 

The times 
of falling from 

a height of 
220 feet 

The spaces which 
they would describe 

by the theory 
The excesses 

grains inches seconds thirds feet inches feet inches 
510 5.1 8 12 226 11 6 11 
642 5.2 7 42 230 9 10 9 
599 5.1 7 42 227 10 7 0 
515 5 7 57 224 5 4 5 
483 5 8 12 225 5 5 5 
641 5.2 7 42 230 7 10 7 

Exper. 14. In the year 1719, in the month of July, Dr. Desaguliers made 
some experiments of this kind again, by forming hogs' bladders into spherical 
orbs; which was done by means of a concave wooden sphere, which the blad- 
ders, being wetted well first, were put into. After that, being blown full of air, 
they were obliged to fill up the spherical cavity that contained them; and then, 
when dry, were taken out. These were let fall from the lantern on the top of the 
cupola of the same church, namely, from a height of 272 feet; and at the same 
moment of time there was let fall a leaden globe, whose weight was about 2 
pounds troy weight. And in the meantime some persons standing in the upper 
part of the church where the globes were let fall observed the whole times of 
falling; and others standing on the ground observed the differences of the 
times between the fall of the leaden weight and the fall of the bladder. The 
times were measured by pendulums oscillating to half-seconds. And one of 
those that stood upon the ground had a machine vibrating four times in one 
second; and another had another machine accurately made with a pendulum 
vibrating four times in a second also. One of those also who stood at the top of 
the church had a like machine; and these instruments were so contrived, that 
their motions could be stopped or renewed at pleasure. Now the leaden globe 
fell in about 4}^ seconds of time; and from the addition of this time to the 
difference of time above spoken of, was obtained the whole time in which the 
bladder was falling. The times which the five bladders spent in falling, after 
the leaden globe had reached the ground, were, the first time, 14^ seconds, 
12% seconds, 14% seconds, 17% seconds, and 16% seconds; and the second time, 
14% seconds, 14% seconds, 14 seconds, 19 seconds, and 16% seconds. Add to 
these 4% seconds, the time in which the leaden globe was falling, and the 
whole times in which the five bladders fell were, the first time, 19 seconds, 17 
seconds, 18% seconds, 22 seconds, and 21% seconds; and the second time, 
18% seconds, 18% seconds, 18% seconds, 23% seconds, and 21 seconds. The 
times observed at the top of the church were, the first time, 19% seconds, 17% 
seconds, 18% seconds, 22% seconds, and 21% seconds; and the second time, 
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19 seconds, 185^ seconds, IS^g seconds, 24 seconds, and 2134 seconds. But the 
bladders did not always fall directly down, but sometimes fluttered a little in the 
air, and waved to and fro, as they were descending. And by these motions the 
times of their falling were prolonged, and increased by half a second some- 
times, and sometimes by a whole second. The second and fourth bladders fell 
most directly the first time, and the first and third the second time. The fifth 
bladder was wrinkled, and by its wrinkles was a little retarded. I found their 
diameters by their circumferences measured with a very fine thread wound 
about them twice. In the following table I have compared the experiments 
with the theory; making the density of air to be to the density of rain water as 
1 to 860, and computing the spaces which by the theory the globes ought to 
describe in falling. 

The weights of 
the bladders 

The 
diameters 

The times 
of falling from 

a height of 
272 feet 

The spaces 
which by the theory 

ought to have been de- 
scribed in those times 

The difference 
between the theory 

and the 
experiments 

grains inches seconds feet inches feet inches 
128 5.28 19 271 11 - 0 1 
156 5.19 17 272 03^ + 0 0^ 
137^ 5.3 18 272 7 + 0 7 
97 5.26 22 277 4 + 5 4 
99^ 5 2m 282 0 +10 0 

Our theory, therefore, exhibits rightly, within a very little, all the resistance 
that globes moving either in air or in water meet with; which appears to be 
proportional to the densities of the fluids in globes of equal velocities and 
magnitudes. 

In the Scholium subjoined to the sixth Section, we showed, by experiments 
of pendulums, that the resistances of equal and equally swift globes moving 
in air, water, and quicksilver, are as the densities of the fluids. We here prove 
the same more accurately by experiments of bodies falling in air and water. 
For pendulums at each oscillation excite a motion in the fluid always contrary 
to the motion of the pendulum in its return; and the resistance arising from 
this motion, as also the resistance of the thread by which the pendulum is 
suspended, makes the whole resistance of a pendulum greater than the resist- 
ance deduced from the experiments of falling bodies. For by the experiments 
of pendulums described in that Scholium, a globe of the same density as water 
in describing the length of its semidiameter in air would lose the part of 
its motion. But by the theory delivered in this seventh Section, and confirmed 
by experiments of falling bodies, the same globe in describing the same length 
would lose only a part of its motion equal to tfTg, supposing the density of 
water to be to the density of air as 860 to 1. Therefore the resistances were 
found greater by the experiments of pendulums (for the reasons just men- 
tioned) than by the experiments of falling globes; and that in the ratio of about 
4 to 3. But yet since the resistances of pendulums oscillating in air, water, and 
quicksilver, are alike increased by like causes, the proportion of the resistances 
in these mediums will be rightly enough exhibited by the experiments of pen- 
dulums, as well as by the experiments of falling bodies. And from all this it 
may be concluded, that the resistances of bodies, moving in any fluids whatso- 
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ever, though of the most extreme fluidity, are, other things being equal, as the 
densities of the fluids. 

These things being thus established, we may now determine what part of 
its motion any globe projected in any fluid whatsoever would nearly lose in a 
given time. Let D be the diameter of the globe, and V its velocity at the begin- 
ning of its motion, and T the time in which a globe with the velocity V can 
describe in a vacuum a space that is to the space /^D as the density of the 
globe to the density of the fluid; and the globe projected in that fluid will, in 

tV TV any other time t lose the part fhe part remaining; and will describe 

a space, which will be to that described in the same time in a vacuum with the 
T+^ uniform velocity V, as the logarithm of the number —^ multiplied by the 

number 2.302585093 is to the number ^ by Cor. vii, Prop. 35. In slow motions 

the resistance may be a little less, because the figure of a globe is more adapted 
to motion than the figure of a cylinder described with the same diameter. In 
swift motions the resistance may be a little greater, because the elasticity and 
compression of the fluid do not increase as the square of the velocity. But 
these little niceties I take no notice of. 

And though air, water, quicksilver, and the like fluids, by the division of 
their parts in infinitum, should be subtilized, and become mediums infinitely 
fluid, nevertheless, the resistance they would make to projected globes would 
be the same. For the resistance considered in the preceding Propositions arises 
from the inactivity of the matter; and the inactivity of matter is essential to 
bodies, and always proportional to the quantity of matter. By the division of 
the parts of the fluid the resistance arising from the tenacity and friction of the 
parts may be indeed diminished; but the quantity of matter will not be at all 
diminished by this division; and if the quantity of matter be the same, its 
force of inactivity will be the same; and therefore the resistance here spoken of 
will be the same, as being always proportional to that force. To diminish this 
resistance, the quantity of matter in the spaces through which the bodies move 
must be diminished; and therefore the celestial spaces, through which the 
globes of the planets and comets are continually passing towards all parts, 
with the utmost freedom, and without the least sensible diminution of their 
motion, must be utterly void of any corporeal fluid, excepting, perhaps, some 
extremely rare vapors and the rays of light. 

Projectiles excite a motion in fluids as they pass through them, and this 
motion arises from the excess of the pressure of the fluid at the fore parts of 
the projectile above the pressure of the same at the hinder parts; and cannot 
be less in mediums infinitely fluid than it is in air, water, and quicksilver, in 
proportion to the density of matter in each. Now this excess of pressure does, 
in proportion to its quantity, not only excite a motion in the fluid, but also 
acts upon the projectile so as to retard its motion; and therefore the resistance 
in every fluid is as the motion excited by the projectile in the fluid; and cannot 
be less in the most subtile ether in proportion to the density of that ether, than 
it is in air, water, and quicksilver, in proportion to the densities of those fluids. 
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SECTION VIII 

The motion propagated through fluids 

Proposition 41. Theorem 32 
A pressure is not propagated through a fluid in rectilinear directions except where 
the particles of the fluid lie in a right line. 

If the particles a, 5, c, d, e lie in a right line, the pressure may be indeed 
directly propagated from ato e; but then the particle e will urge the obliquely 
posited particles / and g obliquely, and those particles / and g will not sustain 

this pressure, unless they be supported by the par- 
ticles h and k lying beyond them; but the particles 
that support them are also pressed by them; and 
those particles cannot sustain that pressure, with- 
out being supported by, and pressing upon, those 
particles that lie still farther, as I and m, and so on 
in infinitum. Therefore the pressure, as soon as it is 
propagated to particles that lie out of right lines, 
begins to deflect towards one hand and the other, 

and will be propagated obliquely in infinitum; and after it has begun to be pro- 
pagated obliquely, if it reaches more distant particles lying out of the right 
line, it will deflect again on each hand; and this it will do as often as it lights 
on particles that do not lie exactly in a right line. q.e.d. 

Cor. If any part of a pressure, propagated through a fluid from a given 
point, be intercepted by any obstacle, the remaining part, which is not inter- 
cepted, will deflect into the spaces behind the obstacle. This may be demon- 
strated also after the following manner. Let a pressure be propagated from the 
point A towards any part, and, if it be possible, in rectilinear directions; and 
the obstacle NBCK being perforated in BC, let all the pressure be intercepted 
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but the coniform part APQ passing through the circular hole BC. Let the cone 
APQ be divided into frustums by the transverse planes, de, fg, hi. Then while 
the cone ABC, propagating the pressure, urges the conic frustum degf beyond 
it on the surface de, and this frustum urges the next irusiumfgih on the surface 
fg, and that frustum urges a third frustum, and so in infinitum; it is manifest 
(by the third Law) that the first frustum defg is, by the reaction of the second 
frustum fghi, as much urged and pressed on the surface fg, as it urges and 
presses that second frustum. Therefore the frustum degf is compressed on both 
sides, that is, between the cone Ade and the frustum fhig; and therefore (by 
Case 6, Prop. 19) cannot preserve its figure, unless it be compressed with the 
same force on all sides. Therefore with the same force "with which it is pressed 
on the surfaces de, fg, it will endeavor to break forth at the sides df, eg; and 
there (being not in the least tenacious or hard, but perfectly fluid) it will run 
out, expanding itself, unless there be an ambient fluid opposing that endeavor. 
Therefore, by the effort it makes to run out, it will press the ambient fluid, 
at its sides df, eg, with the same force that it does the frustum fghi; and 
therefore, the pressure will be propagated as much from the sides df, eg, into 
the spaces NO, KL this way and that way, as it is propagated from the 
surface fg towards PQ. q.e.d. 

Proposition 42. Theorem 33 
All motion propagated through a fluid diverges from a rectilinear progress into 

the unmoved spaces. 
Case 1. Let a motion be propagated from the point A through the hole BC, 

and, if it be possible, let it proceed in the conic space BCQP according to right 
lines diverging from the point A. And let us first suppose this motion to be 

O ' 

that of waves in the surface of standing water; and let de, fg, hi, hi, &c., be the 
tops of the several waves, divided from each other by as many intermediate 
valleys or hollows. Then, because the water in the ridges of the waves is higher 
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than in the unmoved parts of the fluid KL, NO, it will run down from off the 
tops of those ridges, e, g, i, I, &c., d, f, h, k, &c., this way and that way towards 
KL and NO; and because the water is more depressed in the hollows of the 
waves than in the unmoved parts of the fluid KL, NO, it will run down into 
those hollows out of those unmoved parts. By the first deflux the ridges of the 
waves will dilate themselves this way and that way, and be propagated to- 
wards KL and NO. And because the motion of the waves from A towards PQ 
is carried on by a continual deflux from the ridges of the waves into the hollows 
next to them, and therefore cannot be swifter than in proportion to the celerity 
of the descent; and the descent of the water on each side towards KL and NO 
must be performed with the same velocity: it follows that the dilatation of the 
waves on each side towards KL and NO will be propagated with the same 
velocity as the waves themselves go forwards directly from A to PQ. And 
therefore the whole space this way and that way towards KL and NO will be 
filled by the dilated waves rfgr, shis, tklt, vmnv, &c. q.e.d. That these things 
are so, anyone may find by making the experiment in still water. 

Case 2. Let us suppose that de, fg, hi, kl, mn represent pulses successively 
propagated from the point A through an elastic medium. Conceive the pulses 
to be propagated by successive condensations and rarefactions of the medium, 
so that the densest part of every pulse may occupy a spherical surface de- 
scribed about the centre A, and that equal intervals intervene between the 
successive pulses. Let the lines de, fg, hi, kl, &c., represent the densest parts of 
the pulses, propagated through the hole BC; and because the medium is denser 
there than in the spaces on either side towards KL and NO, it will dilate itself 
as well towards those spaces KL, NO, on each hand, as towards the rare inter- 
vals between the pulses; and hence the medium, becoming always more rare 
next the intervals, and more dense next the pulses, will partake of their motion. 
And because the progressive motion of the pulses arises from the continual 
relaxation of the denser parts towards the antecedent rare intervals; and since 
the pulses will relax themselves on each hand towards the quiescent parts of 
the medium KL, NO with very near the same celerity; therefore the pulses 
will dilate themselves on all sides into the unmoved parts KL, NO with almost 
the same celerity with which they are propagated directly from the centre A; 
and therefore will fill up the whole space KLON. q.e.d. And we find the same 
by experience also in sounds which are heard through a mountain interposed; 
and, if they come into a chamber through the window, dilate themselves into 
all the parts of the room, and are heard in every corner; and not as reflected 
from the opposite walls, but directly propagated from the window, as far as 
our sense can judge. 

Case 3. Let us suppose, lastly, that a motion of any kind is propagated from 
A through the hole BC. Then since the cause of this propagation is that the 
parts of the medium that are near the centre A disturb and agitate those which 
lie farther from it; and since the parts which are urged are fluid, and therefore 
recede every way towards those spaces where they are less pressed: they will 
by consequence recede towards all the parts of the quiescent medium, as well 
to the parts on each hand, as KL and NO, as to those right before, as PQ; and 
by this means all the motion, as soon as it has passed through the hole BC, 
will begin to dilate itself, and from thence, as from its principle and centre, 
will be propagated directly every way. q.e.d. 
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Proposition 43. Theorem 34 
Every tremulous body in an elastic medium propagates the motion of the pulses on 
every side straight forwards; hut in a nonelastic medium excites a circular motion. 

Case 1. The parts of the tremulous body, alternately going and returning, 
do in going urge and drive before them those parts of the medium that lie 
nearest, and by that impulse compress and condense them; and in returning 
suffer those compressed parts to recede again, and expand themselves. There- 
fore the parts of the medium that lie nearest to the tremulous body move to 
and fro by turns, in like manner as the parts of the tremulous body itself do; 
and for the same cause that the parts of this body agitate these parts of the 
medium, these parts, being agitated by like tremors, will in their turn agitate 
others next to themselves; and these others, agitated in like manner, will agi- 
tate those that lie beyond them, and so on in infinitum. And in the same man- 
ner as the first parts of the medium were condensed in going, and relaxed in 
returning, so will the other parts be condensed every time they go, and expand 
themselves every time they return. And therefore they will not be all going and 
all returning at the same instant (for in that case they would always maintain 
determined distances from each other, and there could be no alternate conden- 
sation and rarefaction); but since, in the places where they are condensed, 
they approach to, and, in the places where they are rarefied, recede from each 
other, therefore some of them will be going while others are returning; and so 
on in infinitum. The parts so going, and in their going condensed, are pulses, 
by reason of the progressive motion with which they strike obstacles in their 
way; and therefore the successive pulses produced by a tremulous body will 
be propagated in rectilinear directions; and that at nearly equal distances from 
each other, because of the equal intervals of time in which the body, by its 
several tremors, produces the several pulses. And though the parts of the 
tremulous body go and return in some certain and determinate direction, yet 
the pulses propagated from thence through the medium will dilate themselves 
towards the sides, by the foregoing Proposition; and will be propagated on all 
sides from that tremulous body, as from a common centre, in surfaces nearly 
spherical and concentric, as in waves excited by shaking a finger in water, 
which proceed not only forwards and backwards agreeably to the motion of 
the finger, but spread themselves in the manner of concentric circles all round 
the finger, and are propagated on every side. For the gravity of the water 
supplies the place of elastic force. 

Case 2. If the medium be not elastic, then, because its parts cannot be 
condensed by the pressure arising from the vibrating parts of the tremulous 
body, the motion will be propagated in an instant towards the parts where the 
medium yields most easily, that is, to the parts which the tremulous body 
would otherwise leave vacuous behind it. The case is the same with that of a 
body projected in any medium whatever. A medium yielding to projectiles 
does not recede in infinitum, but with a circular motion comes round to the 
spaces which the body leaves behind it. Therefore as often as a tremulous body 
tends to any part, the medium yielding to it comes round in a circle to the 
parts which the body leaves; and as often as the body returns to the first 
place, the medium will be driven from the place it came round to, and return 
to its original place. And though the tremulous body be not firm and hard, but 
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every way flexible, yet if it continue of a given magnitude, since it cannot 
impel the medium by its tremors anywhere without yielding to it somewhere 
else, the medium receding from the parts of the body where it is pressed will 
always come round in a circle to the parts that yield to it. q.e.d. 

Cor. Hence it is a mistake to think that the agitation of the parts of flame 
conduces to the propagation of a pressure in rectilinear directions through an 
ambient medium. Such a pressure must be derived not from the agitation only 
of the parts of flame, but from the dilatation of the whole. 

Proposition 44. Theorem 35 
If water ascend and descend alternately in the erected legs KL, MN of a canal or 
pipe; and a pendulum he constructed whose length between the point of suspension 
and the centre of oscillation is equal to half the length of the water in the canal: I 
say, that the water will ascend and descend in the same times in which the pendu- 
lum oscillates. 

I measure the length of the water along the axes of the canal and its legs, 
and make it equal to the sum of those axes; and take no notice of the resistance 
of the water arising from its attrition by the sides of the canal. Let, therefore, 
AB, CD represent the mean height of the water in both legs; and when the 
water in the leg KL ascends to the height EF, the water will descend in the 

o 

-o- 

leg MN to the height GH. Let P be a pendulous body, VP the thread, V the 
point of suspension, RPQS the cycloid which the pendulum describes, P its 
lowest point, PQ an arc equal to the height AE. The force with which the 
motion of the water is accelerated and retarded alternately is the excess of the 
weight of the water in one leg above the weight in the other; and, therefore, 
when the water in the leg KL ascends to EF, and in the other leg descends to 
GH, that force is double the weight of the water EABF, and therefore is to the 
weight of the whole water as AE or PQ to VP or PR. The force also with which 
the body P is accelerated or retarded in any place, as Q, of a cycloid, is (by 
Cor., Prop. 51, Book i) to its whole weight as its distance PQ from the lowest 
place P to the length PR of the cycloid. Therefore the motive forces of the 
water and pendulum, describing the equal spaces AE, PQ, are as the weights 
to be moved; and therefore if the water and pendulum are quiescent at first, 
those forces will move them in equal times, and will cause them to go and 
return together with a reciprocal motion. q.e.d. 

Cor. i. Therefore the reciprocations of the water in ascending and descend- 
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ing are all performed in equal times, whether the motion be more or less intense 
or remiss. 

Cor. ii. If the length of the whole water in the canal be of 6^9 feet of French 
measure, the water will descend in one second of time, and will ascend in an- 
other second, and so on by turns in infinitum; for a pendulum of Bj/is such feet 
in length Mill oscillate in one second of time. 

Cor. hi. But if the length of the water be increased or diminished, the time 
of the reciprocation will be increased or diminished as the square root of the 
length. 

Proposition 45. Theorem 36 
The velocity of waves varies as the square root of the breadths. 

This follows from the construction of the following Proposition. 

Proposition 46. Problem 10 
To find the velocity of waves. 

Let a pendulum be constructed, whose length between the point of suspen- 
sion and the centre of oscillation is equal to the breadth of the waves, and in 
the time that the pendulum will perform one single oscillation the waves will 
advance forwards nearly a space equal to their breadth. 

That which I call the breadth of waves is the transverse measure lying be- 
tween the deepest part of the hollows, or the tops of the ridges. Let ABCDEF 
represent the surface of stagnant water ascending and descending in successive 

ACE 

B D F 

waves; and let A, C, E, &c., be the tops of the waves; and let B, D, F, &c., be 
the intermediate hollows. Because the motion of the waves is carried on by the 
successive ascent and descent of the water, so that the parts thereof, as A, C, 
E, &c., which are highest at one time, become lowest immediately after; and 
because the motive force, by which the highest parts descend and the lowest 
ascend, is the weight of the elevated water, that alternate ascent and descent 
will be analogous to the reciprocal motion of the water in the canal, and will 
observe the same laws as to the times of ascent and descent; and therefore 
(by Prop. 44) if the distances between the highest places of the waves A, C, E 
and the lowest B, D, F be equal to twice the length of any pendulum, the 
highest parts A, C, E will become the lowest in the time of one oscillation, and 
in the time of another oscillation will ascend again. Therefore with the passage 
of each wave, the time of two oscillations will occur; that is, the wave mil 
describe its breadth in the time that pendulum will oscillate twice; but a pen- 
dulum of four times that length, and therefore equal to the breadth of the 
waves, will just oscillate once in that time. q.e.i. 

Cor. i. Therefore, waves whose breadth is equal to 3/^8 French feet, will 
advance through a space equal to their breadth in one second of time; and 
therefore in one minute will go over a space of 1833^ feet; and in an hour, a 
space of 11,000 feet, nearly. 

Cor. ii. And the velocity of greater or less waves will be augmented or 
diminished as the square root of their breadth. 
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These things are true upon the supposition that the parts of water ascend or 

descend in a straight line; but, in truth, that ascent and descent is rather per- 
formed in a circle; and therefore I give the time defined by this Proposition as 
only approximate. 

Proposition 47. Theorem 37 
If pulses are propagated through a fluid, the several particles of the fluid, going and 
returning with the shortest reciprocal motion, are always accelerated or retarded 
according to the law of the oscillating pendulum. 

Let AB, BC, CD, &c., represent equal distances of successive pulses; ABC 
the line of direction of the motion of the successive pulses propagated from 
A to B; E, F, G three physical points of the quiescent medium situate in the 
right line AC at equal distances from each other; Ee, F/, Gg equal spaces of 
extreme shortness, through which those points go and return with a reciprocal 
motion in each vibration; e, </>, 7 any intermediate places of the 
same points; EF, FG physical short lines, or linear parts of the 
medium lying between those points, and successively transferred 
into the places ecf), (fry, and ef, fg. Let there be drawn the right 
line PS equal to the right line Ee. Bisect the same in 0, and from 
the centre 0, with the radius OP, describe the circle SIPi. Let 
the whole time of one vibration, with its proportional parts, be 
represented by the whole circumference of this circle and its 
parts, in such sort, that, when any time PH or PHS/i is com- 
pleted, if there be let fall to PS the perpendicular HL or hi, and 
there be taken Ee equal to PL or Fl, the physical point E may 
be found in e. A point, as E, moving according to this law with 
a reciprocal motion, in its going from E through e to e, and re- 
turning again through e to E, will perform its several vibrations 
with the same degrees of acceleration and retardation with 
those of an oscillating pendulum. We are now to prove that the 
several physical points of the medium will be agitated with such 
a kind of motion. Let us suppose, then, that a 
medium hath such a motion excited in it from 
any cause whatsoever, and consider what will 
follow from thence. 

In the circumference PHS/i let there be taken 
the equal arcs, HI, IK, or hi, ik, having the same 
ratio to the whole circumference as the equal k" 
right lines EF, FG have to BC, the whole in- P 
terval of the pulses. Let fall the perpendiculars 
IM, KN, or im, kn; then because the points E, F, G are succes- 
sively agitated with like motions, and perform their entire vi- 
brations composed of their going and return, while the pulse 
is transferred from B to C; if PH or PHS/i be the time elapsed 
since the beginning of the motion of the point E, then will PI 
or PHSt be the time elapsed since the beginning of the motion 
of the point F, and PK or PHSA: the time elapsed since the 
beginning of the motion of the point G; and therefore Ee, F0, 
G7 will be respectively equal to PL, PM, PN, w hile the points 
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are going, and to PZ, Pm, Pn, when the points are returning. Therefore ey or 
EG+G7 —Ee will, when the points are going, be equal to EG —LN, and in 
their return equal to EG + Zn. But ey is the breadth or expansion of the part 
EG of the medium in the place ey, and therefore the expansion of that part in 
its going is to its mean expansion as EG —LN to EG; and in its return, as 
EG+Zn or EG + LN is to EG. Therefore since LN is to KH as IM to the radius 
OP, and KH to EG as the circumference PHS/iP to BC; that is, if we put Y 
for the radius of a circle whose circumference is equal to BC, the interval of 
the pulses, as OP is to V; and, multiplying together corresponding terms of the 
proportions, we obtain LN to EG as IM to Y; the expansion of the part EG, 
or of the physical point F in the place €7, is to the mean expansion of the 
same part in its first place EG, as V —IM is to Y in going, and as V+m is 
to V in its return. Hence the elastic force of the point F in the place €7 is to its 
mean elastic force in the place EG as ^ is to ^ in its going, and as 

^ is to ^ in its return. And by the same reasoning the elastic forces of 
Y+m Y" 

the physical points E and G in going are as y and y _ is to ^; and 

the difference of the forces is to the mean elastic force of the medium as 
HL-KN . + 1 HL-KN . , 1 is to that is, as —— is to or as YY-YHL-VKN+HLKN 0 ^ ^ yy ^ y 

HL —KN is to V; if we suppose (by reason of the very short extent of the vi- 
brations) HL and KN to be indefinitely less than the quantity Y. Therefore 
since the quantity Y is given, the difference of the forces is as HL — KN; that 
is (because HL —KN is proportional to HK, and OM to 01 or OP; and be- 
cause HK and OP are given), as OM; that is, if F/ be bisected in Q, as I2</). 
And for the same reason the difference of the elastic forces of the physical 
points € and 7, in the return of the physical short line ey, is as Q0. But that 
difference (that is, the excess of the elastic force of the point e above the elastic 
force of the point 7) is the very force by which the intervening physical short 
line ey of the medium is accelerated in going, and retarded in returning; and 
therefore the accelerative force of the physical short line ey is as its distance 
from Q, the middle place of the vibration. Therefore (by Prop. 38, Book 1) the 
time is rightly represented by the arc PI; and the linear part of the medium ey 
is moved according to the law above mentioned, that is, according to the law 
of a pendulum oscillating; and the case is the same of all the linear parts of 
which the whole medium is compounded. q.e.d. 

Cor. Hence it appears that the number of the pulses propagated is the same 
with the number of the vibrations of the tremulous body, and is not multiplied 
in their progress. For the physical short line ey as soon as it returns to its first 
place is at rest; neither mil it move again, unless it receives a new motion 
either from the impulse of the tremulous body, or of the pulses propagated 
from that body. As soon, therefore, as the pulses cease to be propagated from 
the tremulous body, it mil return to a state of rest, and move no more. 
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Proposition 48. Theorem 38 

The velocities of pulses propagated in an elastic fluid are in a ratio compounded of 
the square root of the ratio of the elastic force directly, and the square root of the 
ratio of the density inversely; supposing the elastic force of the fluid to he propor- 
tional to its condensation. 

Case 1. If the mediums be homogeneous, and the distances of the pulses in 
those mediums be equal amongst themselves, but the motion in one medium is 
more intense than in the other, the contractions and dilatations of the corre- 
sponding parts will be as those motions; not that this proportion is perfectly 
accurate. However, if the contractions and dilatations are not exceedingly in- 
tense, the error will not be sensible; and therefore this proportion may be 
considered as physically exact. Now the motive elastic forces are as the con- 
tractions and dilatations; and the velocities generated in the same time in equal 
parts are as the forces. Therefore equal and corresponding parts of correspond- 
ing pulses will go and return together, through spaces proportional to their 
contractions and dilatations, with velocities that are as those spaces; and there- 
fore the pulses, which in the time of one going and returning advance forwards 
a space equal to their breadth, and are always succeeding into the places of the 
pulses that immediately go before them, will, by reason of the equality of the 
distances, go forwards in both mediums with equal velocity. 

Case 2. If the distances of the pulses or their lengths are greater in one 
medium than in another, let us suppose that the correspondent parts describe 
spaces, in going and returning, each time proportional to the breadths of the 
pulses; then will their contractions and dilatations be equal; and therefore if 
the mediums are homogeneous, the motive elastic forces, which agitate them 
with a reciprocal motion, will be equal also. Now the matter to be moved by 
these forces is as the breadth of the pulses; and the space through which they 
move every time they go and return is in the same ratio. And, moreover, the 
time of one going and returning is in a ratio compounded of the square root of 
the matter and the square root of the space; and therefore is as the space. But 
the pulses advance a space equal to their breadths in the times of going once 
and returning once; that is, they go over spaces proportional to the times, and 
therefore are equally swift. 

Case 3. And therefore in mediums of equal density and elastic force, all the 
pulses are equally swift. Now if the density or the elastic force of the medium 
were augmented, then, because the motive force is increased in the ratio of the 
elastic force, and the matter to be moved is increased in the ratio of the density, 
the time which is necessary for producing the same motion as before will be 
increased as the square root of the ratio of the density, and will be diminished 
as the square root of the ratio of the elastic force. And therefore the velocity of 
the pulses will be in a ratio compounded of the square root of the inverse ratio 
of the density of the medium, and the square root of the direct ratio of the 
elastic force. q.e.d. 

This Proposition will be made clearer from the construction of the following 
Problem. 
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Proposition 49. Problem 11 
The density and elastic force of a medium being given, to find the velocity of the 
pulses. 

Suppose the medium to be pressed by an incumbent weight after the man- 
ner of our air; and let A be the height of an homogeneous medium, whose 
weight is equal to the incumbent weight, and whose density is the same with 
the density of the compressed medium in which the pulses are propagated. 
Suppose a pendulum to be constructed whose length between 
the point of suspension and the centre of oscillation is A: and 
in the time in which that pendulum will perform one entire os- 
cillation composed of its going and returning, the pulse will be 
propagated right onwards through a space equal to the circum- 
ference of a circle described with the radius A. 

For, letting those things stand which were constructed in 
Prop. 47, if any physical line, as EF, describing the space PS in 
each vibration, be acted on in the extremities P and S of every 
going and return that it makes by an elastic force that is equal 
to its weight, it will perform its several vibrations in the time in 
which the same might oscillate in a cycloid whose whole peri- 
meter is equal to the length PS; and that because equal forces will 
impel equal corpuscles through equal spaces in the same or equal 
times. Therefore since the times of the oscillations are as the 
square root of the lengths of the pendulums, and the length of the 
pendulum is equal to half the arc of the whole cycloid, the time 
of one vibration would be to the time of the os- 
cillation of a pendulum whose length is A as the 
square root of the length or PO to the 
length A. But the elastic force with which the 
physical short line EG is urged, when it is found 
in its extreme places P, S, was (in the demon- 
stration of Prop. 47) to its whole elastic force as 
HL — KN is to Y, that is (since the point K now 
falls upon P), as HK to V; and all that force, 
or, which is the same thing, the incumbent weight by which the 
short line EG is compressed, is to the weight of the short line as 
the altitude of the incumbent weight is to EG the length of the 
short line; and therefore, taking the product of corresponding 
terms, the force with which the short line EG is urged in the 
places P and S is to the weight of that short line as HK • A is to 
V • EG; or as PO • A is to YV; because HK was to EG as PO to 
Y. Therefore, since the times in which equal bodies are impelled 
through equal spaces are inversely as the square root of the forces, 
the time of one vibration, produced by the action of that elastic 
force, will be to the time of a vibration, produced by the impulse of the weight, 
as the square root of the ratio of YV to PO • A, and therefore to the time of the 
oscillation of a pendulum whose length is A as the square root of the ratio of VV 
to PO • A, and as the square root of the ratio of PO to A conjointly; that is, in 
the entire ratio of Y to A. But in the time of one vibration composed of the going 
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and returning of the pendulum, the pulse will be propagated right onwards 
through a space equal to its breadth BC. Therefore the time in which a pulse 
runs over the space BC is to the time of one oscillation composed of the going 
and returning of the pendulum as V is to A, that is, as BC is to the circumfer- 
ence of a circle whose radius is A. But the time in which the pulse will run over 
the space BC is to the time in which it will run over a length equal to that cir- 
cumference in the same ratio; and therefore in the time of such an oscillation 
the pulse will run over a length equal to that circumference. q.e.d. 

Cor. i. The velocity of the pulses is equal to that which heavy bodies acquire 
by falling with an equally accelerated motion, and in their fall describing half 
the altitude A. For the pulse will, in the time of this fall, supposing it to move 
with the velocity acquired by that fall, run over a space that will be equal to 
the whole altitude A; and therefore in the time of one oscillation composed of 
one going and return, will go over a space equal to the circumference of a circle 
described with the radius A; for the time of the fall is to the time of oscillation 
as the radius of a circle to its circumference. 

Cor. ii. Therefore since that altitude A is directly as the elastic force of the 
fluid, and inversely as the density of the same, the velocity of the pulses will be 
in a ratio compounded of the square root of the ratio of the density inversely, 
and the square root of the ratio of the elastic force directly. 

Proposition 50. Problem 12 
To find the distances of the pulses. 

Let the number of the vibrations of the body, by whose tremor the pulses 
are produced, be found to any given time. By that number divide the space 
which a pulse can go over in the same time, and the part found will be the 
breadth of one pulse. q.e.i. 

Scholium 
The last Propositions respect the motions of light and sounds; for since light 

is propagated in right lines, it is certain that it cannot consist in action alone 
(by Props. 41 and 42). As to sounds, since they arise from tremulous bodies, 
they can be nothing else but pulses of the air propagated through it (by Prop. 
43); and this is confirmed by the tremors which sounds, if they be loud and 
deep, excite in the bodies near them, as we experience in the sound of drums; 
for quick and short tremors are less easily excited. But it is well known that any 
sounds, falling upon strings in unison with the sonorous bodies, excite tremors 
in those strings. This is also confirmed from the velocity of sounds; for since the 
specific gravities of rain water and quicksilver are to one another as about 1 to 
13%, and when the mercury in the barometer is at the height of 30 inches of 
our measure, the specific gravities of the air and of rain water are to one 
another as about 1 to 870, therefore the specific gravities of air and quicksilver 
are to each other as 1 to 11,890. Therefore when the height of the quicksilver is 
at 30 inches, a height of uniform air, whose weight would be sufficient to com- 
press our air to the density we find it to be of, must be equal to 356,700 inches, 
or 29,725 feet of our measure; and this is that very height of the medium, which 
I have called A in the construction of the foregoing Proposition. A circle whose 
radius is 29,725 feet is 186,768 feet in circumference. And since a pendulum 39^ 
inches in length completes one oscillation, composed of its going and return, in 
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two seconds of time, as is commonly known, it follows that a pendulum 29,725 
feet, or 356,700 inches in length will perform a like oscillation in 190% seconds. 
Therefore in that time a sound will go right onwards 186,768 feet, and therefore 
in one second, 979 feet. 

But in this computation we have made no allowance for the crassitude of the 
solid particles of the air, by which the sound is propagated instantaneously. 
Because the weight of air is to the weight of water as 1 to 870, and because salts 
are almost twice as dense as water; if the particles of air are supposed to be of 
about the same density as those of water or salt, and the rarity of the air arises 
from the intervals of the particles, the diameter of one particle of air will be to 
the interval between the centres of the particles as 1 to about 9 or 10, and to 
the interval between the particles themselves as 1 to 8 or 9. Therefore to 979 
feet, which, according to the above calculation, a sound will advance forwards 
in one second of time, we may add -Sp-, or about 109 feet, to compensate for the 
crassitude of the particles of the air: and then a sound will go forwards about 
1088 feet in one second of time. 

Moreover, the vapors floating in the air being of another spring, and a differ- 
ent tone, will hardly, if at all, partake of the motion of the true air in which 
the sounds are propagated. Now if these vapors remain unmoved, that motion 
will be propagated the swifter through the true air alone, and that as the square 
root of the defect of the matter. So if the atmosphere consist of ten parts of 
true air and one part of vapors, the motion of sounds will be swifter as the 
square root of the ratio of 11 to 10, or very nearly in the entire ratio of 21 to 20 
than if it were propagated through eleven parts of true air: and therefore the 
motion of sounds above discovered must be increased in that ratio. By this 
means the sound will pass through 1142 feet in one second of time. 

These things will be found true in spring and autumn, when the air is rarefied 
by the gentle warmth of those seasons, and by that means its elastic force 
becomes somewhat more intense. But in winter, when the air is condensed by 
the cold, and its elastic force is somewhat remitted, the motion of sounds will 
be slower as the square root of the density; and, on the other hand, swifter in 
the summer. 

Now by experiments it actually appears that sounds do really advance in one 
second of time about 1142 feet of English measure, or 1070 feet of French 
measure. 

The velocity of sounds being known, the intervals of the pulses are known 
also. For M. Sauveur, by some experiments that he made, found that an open 
pipe about five Paris feet in length gives a sound of the same tone with a viol 
string that vibrates a hundred times in one second. Therefore there are near 100 
pulses in a space of 1070 Paris feet, which a sound runs over in a second of time; 
and therefore one pulse fills up a space of about lOj/Jo Paris feet, that is, about 
twice the length of the pipe. From this it is probable that the breadths of the 
pulses, in all sounds made in open pipes, are equal to twice the length of the pipes. 

Moreover, from the Corollary of Prop. 47 appears the reason why the sounds 
immediately cease with the motion of the sonorous body, and why they are 
heard no longer when we are at a great distance from the sonorous bodies than 
when we are very near them. And besides, from the foregoing principles, it 
plainly appears how it comes to pass that sounds are so mightily increased in 
speaking-trumpets; for all reciprocal motion tends to be increased by the gen- 
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erating cause at each return. And in tubes hindering the dilatation of the 
sounds, the motion decays more slowly, and recurs more forcibly; and therefore 
is the more increased by the new motion impressed at each return. And these 
are the principal phenomena of sounds. 

SECTION IX 

The circular motion of fluids 

HYPOTHESIS 
The resistance arising from the want of lubricity in the parts of a fluid, is, other 
things being equal, proportional to the velocity with which the parts of the fluid are 
separated from one another. 

Proposition 51. Theorem 39 
If a solid cylinder infinitely long, in an uniform and infinite fluid, revolves with an 
uniform motion about an axis given in position, and the fluid be forced round by 
only this impulse of the cylinder, and every part of the fluid continues uniformly 
in its motion: I say, that the periodic times of the parts of the fluid are as their 
distances from the axis of the cylinder. 

Let AFL be a cylinder turning uniformly about the axis S, and let the con- 
centric circles BGM, CHN, DIO, EKP, &c., divide the fluid into innumerable 
concentric cylindric solid orbs of the same thickness. Then, because the fluid is 
homogeneous, the impressions which the contiguous orbs make upon each 

other will be (by the Hypothesis) as 
their translations from each other, and 
as the contiguous surfaces upon which 
the impressions are made. If the impres- 
sion made upon any orb be greater or 
less on its concave than on its convex 
side, the stronger impression will pre- 
vail, and will either accelerate or retard 
the motion of the orb, according as it 
agrees with, or is contrary to, the mo- 
tion of the same. Therefore, that every 
orb may continue uniformly in its mo- 
tion, the impressions made on both 
sides must be equal and their directions 
contrary. Therefore since the impres- 
sions are as the contiguous surfaces, 
and as their translations from one 

another, the translations will be inversely as the surfaces, that is, inversely as 
the distances of the surfaces from the axis. But the differences of the angular 
motions about the axis are as those translations applied to the distances, or 
directly as the translations and inversely as the distances; that is, joining these 
ratios together, inversely as the squares of the distances. Therefore if there be 
erected the lines Aa, B6, Cc, Dd, Ee, &c., perpendicular to the several parts 
of the infinite right line SABCDEQ, and inversely proportional to the squares 
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of SA, SB, SC, SD, SE, &c., and through the extremities of those perpendicu- 
lars there be supposed to pass an hyperbolic curve, the sums of the differences, 
that is, the whole angular motions, will be as the correspondent sums of the 
lines Aa, B6, Cc, Dd, Ee, that is (if to constitute a medium uniformly fluid 
the number of the orbs be increased and their breadth diminished in infini- 
tum), as the hyperbolic areas AaQ, B5Q, CcQ, DdQ, EeQ, &c., analogous to 
the sums; and the times, inversely proportional to the angular motions, will be 
also inversely proportional to those areas. Therefore the periodic time of any 
particle, as D, is inversely as the area DdQ, that is (as appears from the known 
methods of quadratures of curves), directly as the distance SD. q.e.d. 

Cor. i. Hence the angular motions of the particles of the fluid are inversely as 
their distances from the axis of the cylinder, and the absolute velocities are equal. 

Cor. ii. If a fluid be contained in a cylindric vessel of an infinite length, and 
contain another cylinder within, and both the cylinders revolve about one 
common axis, and the times of their revolutions be as their semidiameters, and 
every part of the fluid continues in its motion, the periodic times of the several 
parts will be as the distances from the axis of the cylinders. 

Cor. hi. If there be added or taken away any common quantity of angular 
motion from the cylinder and fluid moving in this manner, yet because this new 
motion will not alter the mutual attrition of the parts of the fluid, the motion 
of the parts among themselves will not be changed; for the translations of the 
parts from one another depend upon the attrition. Any part will continue in 
that motion, which, by the attrition made on both sides with contrary direc- 
tions, is no more accelerated than it is retarded. 

Cor. vi. Therefore if there be taken away from this whole system of the 
cylinders and the fluid all the angular motion of the outward cylinder, we shall 
have the motion of the fluid in a quiescent cylinder. 

Cor. v. Therefore if the fluid and outward cylinder are at rest, and the in- 
ward cylinder revolve uniformly, there will be communicated a circular motion 
to the fluid, which will be propagated by degrees through the whole fluid; and 
will go on continually increasing, till such time as the several parts of the fluid 
acquire the motion determined in Cor. iv. 

Cor. vi. And because the fluid endeavors to propagate its motion still far- 
ther, its impulse will carry the outmost cylinder also about with it, unless the 
cylinder be forcibly held back; and accelerate its motion till the periodic times 
of both cylinders become equal with each other. But if the outward cylinder be 
forcibly held fast, it will make an effort to retard the motion of the fluid; and 
unless the inward cylinder preserve that motion by means of some external 
force impressed thereon, it will make it cease by degrees. 

All these things will be found true by making the experiment in deep stand- 
ing water. Proposition 52. Theorem 40 

If a solid sphere, in an uniform and infinite fluid, revolves about an axis given in 
position with an uniform motion, and the fluid be forced round by only this impulse 
of the sphere; and every part of the fluid continues uniformly in its motion: I say, 
that the periodic times of the parts of the fluid are as the squares of their distances 
from the centre of the sphere. 

Case 1. Let AFL be a sphere turning uniformly about the axis S, and let the 
concentric circles BGM, CHN, DIO, EKP, &c., divide the fluid into innumer- 
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able concentric orbs of the same thickness. Suppose those orbs to be solid; and, 
because the fluid is homogeneous, the impressions which the contiguous orbs 
make one upon another will be (by the supposition) as their translations from 
one another, and the contiguous surfaces upon which the impressions are made. 
If the impression upon any orb be greater or less upon its concave than upon 
its convex side, the more forcible impression will prevail, and will either ac- 

celerate or retard the velocity of the 
orb, according as it is directed with a 
conspiring or contrary motion to that 
of the orb. Therefore that every orb 
may continue uniformly in its motion, 
it is necessary that the impressions 
made upon both sides of the orb should 
be equal, and have contrary directions. 
Therefore since the impressions are as 
the contiguous surfaces, and as their 
translations from one another, the trans- 
lations will be inversely as the surfaces, 
that is, inversely as the squares of the 
distances of the surfaces from the cen- 
tre. But the differences of the angular 
motions about the axis are as those 
translations applied to the distances, or 

directly as the translations and inversely as the distances; that is, by com- 
pounding those ratios, inversely as the cubes of the distances. Therefore, if 
upon the several parts of the infinite right line SABCDEQ there be erected 
the perpendiculars Aa, B6, Cc, Dd, Ee, &c., inversely proportional to the cubes 
of SA, SB, SC, SD, SE, &c., the sums of the differences, that is, the whole an- 
gular motions, will be as the corresponding sums of the lines Aa, Bh, Cc, Dd, 
Ec, &c., that is (if to constitute an uniformly fluid medium the number of the 
orbs be increased and their thickness diminished in infinitum), as the hyper- 
bolic areas AaQ, B5Q, CcQ, DdQ, EeQ, &c., analogous to the sums; and the 
periodic times being inversely proportional to the angular motions, will be also 
inversely proportional to those areas. Therefore the periodic time of any orb 
DIO is inversely as the area DdQ, that is (by the known methods of quadra- 
tures), directly as the square of the distance SD. Which was first to be demon- 
strated. 

Case 2. From the centre of the sphere let there be drawn a great number of 
indefinite right lines, making given angles with the axis, exceeding one another 
by equal differences; and, by these lines revolving about the axis, conceive the 
orbs to be cut into innumerable annuli; then will every annulus have four 
annuli contiguous to it, that is, one on its inside, one on its outside, and two on 
each hand. Now each of these annuli cannot be impelled equally and with 
contrary directions by the attrition of the interior and exterior annuli, unless 
the motion be communicated according to the law which we demonstrated in 
Case 1. This appears from that demonstration. And therefore any series of 
annuli, taken in any right line extending itself in infinitum from the globe, will 
move according to the law of Case 1, except we should imagine it hindered by 
the attrition of the annuli on each side of it. But now in a motion, according to 
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this law, no such is, and therefore cannot be, any obstacle to the motions con- 
tinuing according to that law. If annuli at equal distances from the centre 
revolve either more swiftly or more slowly near the poles than near the ecliptic 
they will be accelerated if slow, and retarded if swift, by their mutual attrition; 
and so the periodic times will continually approach to equality, according to 
the law of Case 1. Therefore this attrition will not at all hinder the motion from 
going on according to the law of Case 1, and therefore that law will take place; 
that is, the periodic times of the several annuli will be as the squares of their 
distances from the centre of the globe. Which was to be demonstrated in the 
second place. 

Case 3. Let now every annulus be divided by transverse sections into in- 
numerable particles constituting a substance absolutely and uniformly fluid; 
and because these sections do not at all respect the law of circular motion, but 
only serve to produce a fluid substance, the law of circular motion will continue 
the same as before. All the very small annuli will either not at all change their 
asperity and force of mutual attrition upon account of these sections, or else 
they will change the same equally. Therefore the proportion of the causes 
remaining the same, the proportion of the effects will remain the same also; 
that is, the proportion of the motions and the periodic times, q.e.d. But now as 
the circular motion, and the centrifugal force thence arising, is greater at the 
ecliptic than at the poles, there must be some cause operating to retain the 
several particles in their circles; otherwise the matter that is at the ecliptic will 
always recede from the centre, and come round about to the poles by the out- 
side of the vortex, and from thence return by the axis to the ecliptic with a 
continual circulation. 

Cor. i. Hence the angular motions of the parts of the fluid about the axis of 
the globe are inversely as the squares of the distances from the centre of the 
globe, and the absolute velocities are inversely as the same squares applied to 
the distances from the axis. 

Cor. ii. If a globe revolve with an uniform motion about an axis of a given 
position in a similar and infinite quiescent fluid with an uniform motion, it will 
communicate a whirling motion to the fluid like that of a vortex, and that 
motion will by degrees be propagated onwards in infinitum; and this motion 
will be increased continually in every part of the fluid, till the periodical times 
of the several parts become as the squares of the distances from the centre of 
the globe. 

Cor. hi. Because the inward parts of the vortex are by reason of their greater 
velocity continually pressing upon and driving forwards the external parts, and 
by that action are continually communicating motion to them, and at the 
same time those exterior parts communicate the same quantity of motion to 
those that lie still beyond them, and by this action preserve the quantity of 
their motion continually unchanged, it is plain that the motion is continually 
transferred from the centre to the circumference of the vortex, till it is quite 
swallowed up and lost in the boundless extent of that circumference. The mat- 
ter between any two spherical surfaces concentric to the vortex will never be 
accelerated; because that matter will be always transferring the motion it 
receives from the matter nearer the centre to that matter which lies nearer the 
circumference. 

Cor. iv. Therefore, in order to continue a vortex in the same state of motion, 
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some active principle is required from which the globe may receive continually 
the same quantity of motion which it is always communicating to the matter 
of the vortex. Without such a principle it will undoubtedly come to pass that 
the globe and the inward parts of the vortex, being always propagating their 
motion to the outward parts, and not receiving any new motion, will gradually 
move slower and slower, and at last be carried round no longer. 

Cor. v. If another globe should be swimming in the same vortex at a certain 
distance from its centre, and in the meantime by some force revolve constantly 
about an axis of a given inclination, the motion of this globe will drive the fluid 
round after the manner of a vortex; and at first this new and small vortex will 
revolve with its globe about the centre of the other; and in the meantime its 
motion will creep on farther and farther, and by degrees be propagated in 
infinitum, after the manner of the first vortex. And for the same reason that the 
globe of the new vortex was carried about before by the motion of the other 
vortex, the globe of this other will be carried about by the motion of this new 
vortex, so that the two globes will revolve about some intermediate point, and 
by reason of that circular motion mutually fly from each other, unless some 
force restrains them. Afterwards, if the constantly impressed forces, by which 
the globes continue in their motions, should cease, and everything be left to 
act according to the laws of mechanics, the motion of the globes will languish 
by degrees (for the reason assigned in Cor. m and iv), and the vortices at last 
will quite stand still. 

Cor. vi. If several globes in given places should constantly revolve with 
determined velocities about axes given in position, there would arise from them 
as many vortices going on in infinitum. For upon the same account that any 
one globe propagates its motion in infinitum, each globe apart will propagate 
its motion in infinitum also; so that every part of the infinite fluid will be 
agitated with a motion resulting from the actions of all the globes. Therefore 
the vortices will not be confined by any certain limits, but by degrees run into 
each other; and by the actions of the vortices on each other, the globes will be 
continually moved from their places, as was shown in the last Corollary; 
neither can they possibly keep any certain position among themselves, unless 
some force restrains them. But if those forces, which are constantly impressed 
upon the globes to continue these motions, should cease, the matter (for the rea- 
son assigned in Cor. m and iv) will gradually stop, and cease to move in vortices. 

Cor. vii. If a similar fluid be inclosed in a spherical vessel, and, by the uni- 
form rotation of a globe in its centre, be driven round in a vortex; and the globe 
and vessel revolve the same way about the same axis, and their periodic times 
be as the squares of the semidiameters: the parts of the fluid will not go on in 
their motions without acceleration or retardation, till their periodical times are 
as the squares of their distances from the centre of the vortex. No constitution 
of a vortex can be permanent but this. 

Cor. viii. If the vessel, the inclosed fluid, and the globe, retain this motion, 
and revolve besides with a common angular motion about any given axis, 
because the mutual attrition of the parts of the fluid is not changed by this 
motion, the motions of the parts among themselves will not be changed; for the 
translations of the parts among themselves depend upon this attrition. Any 
part will continue in that motion in which its attrition on one side retards it 
just as much as its attrition on the other side accelerates it. 
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Cor. ix. Therefore if the vessel be quiescent, and the motion of the globe be 

given, the motion of the fluid will be given. For conceive a plane to pass through 
the axis of the globe, and to revolve with a contrary motion; and suppose the 
sum of the time of this revolution and of the revolution of the globe to 
be to the time of the revolution of the globe as the square of the semidiam- 
eter of the vessel to the square of the semidiameter of the globe; and the 
periodic times of the parts of the fluid in respect of this plane will be as the 
squares of their distances from the centre of the globe. 

Cor. x. Therefore if the vessel move about the same axis with the globe, or 
with a given velocity about a different one, the motion of the fluid will be given. 
For if from the whole system we take away the angular motion of the vessel, 
all the motions will remain the same among themselves as before, by Cor. vm, 
and those motions will be given by Cor. ix. 

Cor. xi. If the vessel and the fluid are quiescent, and the globe revolves with 
an uniform motion, that motion will be propagated by degrees through the 
whole fluid to the vessel, and the vessel will be carried round by it, unless 
forcibly held back; and the fluid and the vessel will be continually accelerated 
till their periodic times become equal to the periodic times of the globe. If the 
vessel be either restrained by some force, or revolve with any constant and 
uniform motion, the medium will come little by little to the state of motion 
defined in Cor. vm, ix, x, nor will it ever continue in any other state. But if 
then the forces, by which the globe and vessel revolve with certain motions, 
should cease, and the whole system be left to act according to the mechanical 
laws, the vessel and globe, by means of the intervening fluid, will act upon each 
other, and will continue to propagate their motions through the fluid to each 
other, till their periodic times become equal among themselves, and the whole 
system revolves together like one solid body. 

Scholium 
In all these reasonings I suppose the fluid to consist of matter of uniform 

density and fluidity; I mean, that the fluid is such, that a globe placed any- 
where therein may propagate with the same motion of its own, at distances 
from itself continually equal, similar and equal motions in the fluid in the same 
interval of time. The matter by its circular motion endeavors to recede from 
the axis of the vortex, and therefore presses all the matter that lies beyond. 
This pressure makes the attrition greater, and the separation of the parts more 
difficult; and by consequence diminishes the fluidity of the matter. Again; if 
the parts of the fluid are in any one place denser or larger than in the others, 
the fluidity mil be less in that place, because there are fewer surfaces where the 
parts can be separated from each other. In these cases I suppose the defect of 
the fluidity to be supplied by the smoothness or softness of the parts, or some 
other condition; otherwise the matter where it is less fluid mil cohere more, 
and be more sluggish, and therefore will receive the motion more slowly, and 
propagate it farther than agrees with the ratio above assigned. If the vessel be 
not spherical, the particles will move in lines not circular, but answering to the 
figure of the vessel; and the periodic times will be nearly as the squares of the 
mean distances from the centre. In the parts between the centre and the cir- 
cumference the motions will be slower where the spaces are wide, and swifter 
where narrow; nevertheless, the particles mil not tend to the circumference at 
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all the more because of their greater swiftness; for they then describe arcs of 
less curvity, and the tendency to recede from the centre is as much diminished 
by the lessening of this curvature as it is augmented by the increase of the 
velocity. As they go out of narrow into wide spaces, they recede a little farther 
from the centre, but in doing so are retarded; and when they come out of wide 
into narrow spaces, they are again accelerated; and so each particle is retarded 
and accelerated by turns forever. These things will come to pass in a rigid ves- 
sel; for the state of vortices in an infinite fluid is known by Cor. vi of this Prop- 
osition. 

I have endeavored in this Proposition to investigate the properties of vor- 
tices, that I might find whether the celestial phenomena can be explained by 
them; for the phenomenon is this, that the periodic times of the planets revolv- 
ing about Jupiter are as the /^th power of their distances from Jupiter's centre; 
and the same rule obtains also among the planets that revolve about the sun. 
And these rules obtain also with the greatest accuracy, as far as has been yet 
discovered by astronomical observation. Therefore if those planets are carried 
round in vortices revolving about Jupiter and the sun, the vortices must re- 
volve according to that law. But here we found the periodic times of the parts 
of the vortex to be as the square of the distances from the centre of motion; and 
this ratio cannot be diminished and reduced to the ^th power, unless either 
the matter of the vortex be more fluid the farther it is from the centre, or the 
resistance arising from the want of lubricity in the parts of the fluid should, as 
the velocity with which the parts of the fluid are separated goes on increasing, 
be augmented with it in a greater ratio than that in which the velocity in- 
creases. But neither of these suppositions seems reasonable. The more gross 
and less fluid parts will tend to the circumference, unless they are heavy to- 
wards the centre. And though, for the sake of demonstration, I proposed, at 
the beginning of this Section, an Hypothesis that the resistance is proportional 
to the velocity, nevertheless, it is in truth probable that the resistance is in a 
less ratio than that of the velocity; which granted, the periodic times of the 
parts of the vortex will be in a greater ratio than the square of the distances 
from its centre. If, as some think, the vortices move more swiftly near the 
centre, then slower to a certain limit, then again swifter near the circumference, 
certainly neither the /^th poAver, nor any other certain and determinate poAArer, 
can obtain in them. Let philosophers then see hoAV that phenomenon of the 
/^th power can be accounted for by vortices. 

Proposition 53. Theorem 41 
Bodies carried about in a vortex, and returning in the same orbit, are of the same 
density with the vortex, and are moved according to the same law with the parts of 
the vortex, as to velocity and direction of motion. 

For if any small part of the vortex, whose particles or physical points con- 
tinue a given situation among themselves, be supposed to be congealed, this 
particle will move according to the same laAV as before, since no change is made 
either in its density, inertia, or figure. And again; if a congealed or solid part of 
the vortex be of the same density with the rest of the vortex, and be resolved 
into a fluid, this Avill move according to the same laAV as before, except so far as 
its particles, now become fluid, may be moved among themselves. Neglect, 
therefore, the motion of the particles among themselves as not at all concerning 



266 Mathematical Principles 
the progressive motion of the whole, and the motion of the whole will be the 
same as before. But this motion will be the same with the motion of other parts 
of the vortex at equal distances from the centre; because the solid, now resolved 
into a fluid, is become exactly like the other parts of the vortex. Therefore a 
solid, if it be of the same density with the matter of the vortex, will move with 
the same motion as the parts thereof, being relatively at rest in the matter that 
surrounds it. If it be more dense, it will endeavor more than before to recede 
from the centre; and therefore overcoming that force of the vortex, by which, 
being, as it were, kept in equilibrium, it was retained in its orbit, it will recede 
from the centre, and in its revolution describe a spiral, returning no longer into 
the same orbit. And, by the same argument, if it be more rare, it will approach 
to the centre. Therefore it can never continually go round in the same orbit, 
unless it be of the same density with the fluid. But we have shown in that case 
that it would revolve according to the same law with those parts of the fluid 
that are at the same or equal distances from the centre of the vortex. 

Cor. i. Therefore a solid revolving in a vortex, and continually going round 
in the same orbit, is relatively quiescent in the fluid that carries it. 

Cor. ii. And if the vortex be of an uniform density, the same body may 
revolve at any distance from the centre of the vortex. 

Scholium 
Hence it is manifest that the planets are not carried round in corporeal 

vortices; for, according to the Copernican hypothesis, the planets going round 
the sun revolve in ellipses, having the sun in their common focus; and by radii 
drawn to the sun describe areas proportional to the times. But the parts of a 
vortex can never revolve with such a motion. For, let AD, BE, CF represent 
three orbits described about the sun S, of which let the outmost circle CF be 
concentric to the sun; let the aphelions of the two innermost be A, B; and their 
perihelions D, E. Hence a body revolving in the orb CF, describing, by a radius 
drawn to the sun, areas proportional to the times, will move with an uniform 
motion. And, according to the laws of astronomy, the body revolving in the 
orbit BE will move slower in its aphelian 
B, and swifter in its perihelion E; whereas, 
according to the laws of mechanics, the mat- 
ter of the vortex ought to move more swiftly 
in the narrow space between A and C than in 
the wide space between D and F; that is, 
more swiftly in the aphelion than in the peri- 
helion. Now these two conclusions contradict 
each other. So at the beginning of the sign 
of Virgo, where the aphelion of Mars is at 
present, the distance between the orbits of 
Mars and Venus is to the distance between 
the same orbits, at the beginning of the sign 
of Pisces, as about 3 to 2; and therefore the matter of the vortex between those 
orbits ought to be swifter at the beginning of Pisces than at the beginning of 
Virgo in the ratio of 3 to 2; for the narrower the space is through which the 
same quantity of matter passes in the same time of one revolution, the greater 
will be the velocity with which it passes through it. Therefore if the earth 
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being relatively at rest in this celestial matter should be carried round by it, 
and revolve together with it about the sun, the velocity of the earth at the be- 
ginning of Pisces would be to its velocity at the beginning of Virgo in the ratio 
of 3 to 2. Therefore the sun's apparent diurnal motion at the beginning of Vir- 
go ought to be above 70 minutes, and at the beginning of Pisces less than 48 
minutes; whereas, on the contrary, that apparent motion of the sun is really 
greater at the beginning of Pisces than at the beginning of Virgo, as experience 
testifies; and therefore the earth is swifter at the beginning of Virgo than at 
the beginning of Pisces; so that the hypothesis of vortices is utterly irrecon- 
cilable with astronomical phenomena, and rather serves to perplex than explain 
the heavenly motions. How these motions are performed in free spaces without 
vortices, may be understood by the first book; and I shall now more fully treat 
of it in the following book. 





BOOK THREE 

SYSTEM OF THE WORLD 

(IN MATHEMATICAL TREATMENT) 

In the preceding books I have laid down the principles of philosophy; principles 
not philosophical but mathematical: such, namely, as we may build our reason- 
ings upon in philosophical inquiries. These principles are the laws and con- 
ditions of certain motions, and powers or forces, which chiefly have respect to 
philosophy; but, lest they should have appeared of themselves dry and barren, 
I have illustrated them here and there with some philosophical scholiums, giv- 
ing an account of such things as are of more general nature, and which philos- 
ophy seems chiefly to be founded on; such as the density and the resistance of 
bodies, spaces void of all bodies, and the motion of light and sounds. It remains 
that, from the same principles, I now demonstrate the frame of the System of 
the World. Upon this subject I had, indeed, composed the third book in a 
popular method, that it might be read by many; but afterwards, considering 
that such as had not sufficiently entered into the principles could not easily 
discern the strength of the consequences, nor lay aside the prejudices to which 
they had been many years accustomed, therefore, to prevent the disputes 
which might be raised upon such accounts, I chose to reduce the substance of 
this book into the form of Propositions (in the mathematical way), which 
should be read by those only who had first made themselves masters of the 
principles established in the preceding books: not that I would advise anyone 
to the previous study of every Proposition of those books; for they abound 
with such as might cost too much time, even to readers of good mathematical 
learning. It is enough if one carefully reads the Definitions, the Laws of Mo- 
tion, and the first three sections of the first book. He may then pass on to this 
book, and consult such of the remaining Propositions of the first two books, as 
the references in this, and his occasions, shall require. 
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RULES OF REASONING IN PHILOSOPHY 

RULE I 
We are to admit no more causes of natural things than such as are both true and 
sufficient to explain their appearances. 

To this purpose the philosophers say that Nature does nothing in vain, and 
more is in vain when less will serve; for Nature is pleased with simplicity, and 
affects not the pomp of superfluous causes. 

RULE II 
Therefore to the same natural effects we must, as far as possible, assign the same 
causes. 

As to respiration in a man and in a beast; the descent of stones in Europe 
and in America; the light of our culinary fire and of the sun; the reflection of 
light in the earth, and in the planets. 

RULE III 
The qualities of bodies, which admit neither intensification nor remission of de- 
grees, and which are found to belong to all bodies within the reach of our experi- 
ments, are to be esteemed the universal qualities of all bodies whatsoever. 

For since the qualities of bodies are only known to us by experiments, we are 
to hold for universal all such as universally agree with experiments; and such 
as are not liable to diminution can never be quite taken away. We are certainly 
not to relinquish the evidence of experiments for the sake of dreams and vain 
fictions of our own devising; nor are we to recede from the analogy of Nature, 
which is wont to be simple, and always consonant to itself. We no other way 
know the extension of bodies than by our senses, nor do these reach it in all 
bodies; but because we perceive extension in all that are sensible, therefore we 
ascribe it universally to all others also. That abundance of bodies are hard, we 
learn by experience; and because the hardness of the whole arises from the 
hardness of the parts, we therefore justly infer the hardness of the undivided 
particles not only of the bodies we feel but of all others. That all bodies are 
impenetrable, we gather not from reason, but from sensation. The bodies which 
we handle we find impenetrable, and thence conclude impenetrability to be an 
universal property of all bodies whatsoever. That all bodies are movable, and 
endowed with certain powers (which we call the inertia) of persevering in their 
motion, or in their rest, we only infer from the like properties observed in the 
bodies which we have seen. The extension, hardness, impenetrability, mobility, 
and inertia of the whole, result from the extension, hardness, impenetrability, 
mobility, and inertia of the parts; and hence we conclude the least particles of 
all bodies to be also all extended, and hard and impenetrable, and movable, 
and endowed with their proper inertia. And this is the foundation of all philos- 
ophy. Moreover, that the divided but contiguous particles of bodies may be 
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separated from one another, is matter of observation; and, in the particles that 
remain undivided, our minds are able to distinguish yet lesser parts, as is 
mathematically demonstrated. But whether the parts so distinguished, and 
not yet divided, may, by the powers of Nature, be actually divided and sepa- 
rated from one another, we cannot certainly determine. Yet, had we the proof 
of but one experiment that any undivided particle, in breaking a hard and 
solid body, suffered a division, we might by virtue of this rule conclude that the 
undivided as well as the divided particles may be divided and actually sepa- 
rated to infinity. 

Lastly, if it universally appears, by experiments and astronomical observa- 
tions, that all bodies about the earth gravitate towards the earth, and that in 
proportion to the quantity of matter which they severally contain; that the 
moon likewise, according to the quantity of its matter, gravitates towards the 
earth; that, on the other hand, our sea gravitates towards the moon; and all 
the planets one towards another; and the comets in like manner towards the 
sun; we must, in consequence of this rule, universally allow that all bodies 
whatsoever are endowed with a principle of mutual gravitation. For the argu- 
ment from the appearances concludes with more force for the universal grav- 
itation of all bodies than for their impenetrability; of which, among those in 
the celestial regions, we have no experiments, nor any manner of observation. 
Not that I affirm gravity to be essential to bodies: by their vis insita I mean 
nothing but their inertia. This is immutable. Their gravity is diminished as 
they recede from the earth. 

RULE IV 
In experimental philosophy we are to look upon propositions inferred hy general 
induction from phenomena as accurately or very nearly true, notwithstanding any 
contrary hypotheses that may he imagined, till such time as other phenomena occur, 
hy which they may either he made more accurate, or liable to exceptions. 

This rule we must follow, that the argument of induction may not be evaded 
by hypotheses. 



PHENOMENA1 

PHENOMENON I 
That the circumjovial planets, by radii drawn to Jupiter's centre, describe areas 
proportional to the times of description; and that their periodic times, the fixed 
stars being at rest, are as the l/fih power of their distances from its centre. 

This we know from astronomical observations. For the orbits of these 
planets differ but insensibly from circles concentric to Jupiter; and their 
motions in those circles are found to be uniform. And all astronomers agree 
that their periodic times are as the /^th power of the semidiameters of their 
orbits; and so it manifestly appears from the following table. 

The periodic times of the satellites of Jupiter. 
ld. 18h. 27m. 34s., 3d. 13h. 13m. 42s., 7d. 3h. 42m. 36s., 16d. 16h. 32m. 9s. 

The distances of the satellites from Jupiter's centre. 

1 2 3 4 
From the observations of: 

Borelli 8^ 14 24^ 
Townly by the micrometer 5.52 8.78 13.47 24.72 Semi- 
Cassini by the telescope 5 8 13 23 diameter of 
Cassini by the eclipse of the satel- Jupiter 

lites 5M 9 1423/6O 253/io 
From the periodic times 5.667 9.017 14.384 25.299 

Mr. Pound hath determined, by the help of excellent micrometers, the diam- 
eters of Jupiter and the elongation of its satellites after the following manner. 
The greatest heliocentric elongation of the fourth satellite from Jupiter's 
centre was taken with a micrometer in a 15-foot telescope, and at the mean 
distance of Jupiter from the earth was found about 8' IGT The elongation of 
the third satellite was taken with a micrometer in a telescope of 123 feet, and 
at the same distance of Jupiter from the earth was found 4' 42/,. The greatest 
elongations of the other satellites, at the same distance of Jupiter from the 
earth, are found from the periodic times to be 2' 47,/,, and V 51" G"'. 

The diameter of Jupiter taken with the micrometer in a 123-foot telescope 
several times, and reduced to Jupiter's mean distance from the earth, proved 
always less than 40", never less than 38", generally 39". This diameter in 
shorter telescopes is 40", or 41"; for Jupiter's light is a little dilated by the 
unequal refrangibility of the rays, and this dilatation bears a less ratio to the 
diameter of Jupiter in the longer and more perfect telescopes than in those 
which are shorter and less perfect. The times in which two satellites, the first 
1[In the following parts of Book III, scattered words and phrases in italics (except in Latin 
expressions and in names of writings) are, in Motte's translation, interpolations of words and 
phrases not in the Latin text of the Principles; and a few are departures from a literal trans- 
lation of the Latin]. 
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and the third, passed over Jupiter's body, were observed, from the beginning of 
the ingress to the beginning of the egress, and from the complete ingress to the 
complete egress, with the long telescope. And from the transit of the first 
satellite, the diameter of Jupiter at its mean distance from the earth came 
forth and from the transit of the third 37^/,. There was observed also 
the time in which the shadow of the first satellite passed over Jupiter's body, 
and thence the diameter of Jupiter at its mean distance from the earth came 
out about 37//. Let us suppose its diameter to be 37very nearly, and then 
the greatest elongations of the first, second, third, and fourth satellite will be 
respectively equal to 5.965, 9.494, 15.141, and 26.63 semidiameters of Jupiter. 

PHENOMENON II 
That the circumsaturnal planets, by radii drawn to Saturn's centre, describe areas 
proportional to the times of description; and that their periodic times, the fixed 
stars being at rest, are as the ^/fih power of their distances from its centre. 

For, as Cassini from his own observations hath determined, their distances 
from Saturn's centre and their periodic times are as follows: 

The periodic times of the satellites of Saturn. 
ld. 21h. 18m. 27s., 2d. 17h. 41m. 22s., 4d. 12h. 25m. 12s., 15d. 22h. 41m. 148., 

79d. 7h. 48m. 008. 

The distances of the satellites from Saturn's centre, in semidiameters 
of its ring. 

From observations l^o 2}^ 3^2 8 24 
From the periodic times 1.93 2.47 3.45 8 23.35 

The greatest elongation of the fourth satellite from Saturn's centre is com- 
monly determined from the observations to be eight of those semidiameters, 
very nearly. But the greatest elongation of this satellite from Saturn's centre, 
when taken with an excellent micrometer in Mr. Huygens' telescope of 123 
feet, appeared to be eight semidiameters and ^io of a semidiameter. And from 
this observation and the periodic times the distances of the satellites from 
Saturn's centre in semidiameters of the ring are 2.1, 2.69, 3.75, 8.7, and 25.35. 
The diameter of Saturn observed in the same telescope was found to be to the 
diameter of the ring as 3 to 7; and the diameter of the ring, May 28-29, 1719, 
was found to be dS''; and hence the diameter of the ring when Saturn is at its 
mean distance from the earth is 42//, and the diameter of Saturn IS''. These 
things appear so in very long and excellent telescopes, because in such tele- 
scopes the apparent magnitudes of the heavenly bodies bear a greater propor- 
tion to the dilatation of light in the extremities of those bodies than in shorter 
telescopes. If, then, we reject all the spurious light, the diameter of Saturn will 
not amount to more than lb''. 

PHENOMENON III 
That the five primary planets, Mercury, Venus, Mars, Jupiter, and Saturn, 

with their several orbits, encompass the sun. 
That Mercury and Venus revolve about the sun, is evident from their moon- 

like appearances. When they shine out with a full face, they are, in respect of 
us, beyond or above the sun; when they appear half full, they are about the 
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same height on one side or other of the sun; when horned, they are below or 
between us and the sun; and they are sometimes, when directly under, seen like 
spots traversing the sun's disk. That Mars surrounds the sun, is as plain from 
its full face when near its conjunction with the sun, and from the gibbous 
figure which it shows in its quadratures. And the same thing is demonstrable 
of Jupiter and Saturn, from their appearing full in all situations; for the shad- 
ows of their satellites that appear sometimes upon their disks make it plain 
that the light they shine with is not their own, but borrowed from the sun. 

PHENOMENON IV 
That the fixed stars being at rest, the periodic times of the five primary planets, and 
{whether of the sun about the earth, or) of the earth about the sun, are as the %th 
power of their mean distances from the sun. 

This proportion, first observed by Kepler, is now received by all astron- 
omers; for the periodic times are the same, and the dimensions of the orbits 
are the same, whether the sun revolves about the earth, or the earth about the 
sun. And as to the measures of the periodic times, all astronomers are agreed 
about them. But for the dimensions of the orbits, Kepler and Boulliau, above 
all others, have determined them from observations with the greatest accuracy; 
and the mean distances corresponding to the periodic times differ but insen- 
sibly from those which they have assigned, and for the most part fall in be- 
tween them; as we may see from the following table. 

The periodic times, with respect to the fixed stars, of the planets and earth 
revolving about the sun, in days and decimal parts of a day. 

b at c? s 9 § 
10759.275 4332.514 686.9785 365.2565 224.6176 87.9692 

The mean distances of the planets and of the earth from the sun. 
b % cT1 

According to Kepler 951,000 519,650 152,350 
<< " Boulliau 954,198 522,520 152,350 
u " the periodic times 954,006 520,096 152,369 

6 9 a 
According to Kepler 100,000 72,400 38,806 

u " Boulliau 100,000 72,398 38,585 
" " the periodic times 100,000 72,333 38,710 

As to Mercury and Venus, there can be no doubt about their distances from 
the sun; for they are determined by the elongations of those planets from the 
sun; and for the distances of the superior planets, all dispute is cut off by 
the eclipses of the satellites of Jupiter. For by those eclipses the position of the 
shadow which Jupiter projects is determined; from this we have the helio- 
centric longitude of Jupiter. And from its heliocentric and geocentric longitudes 
compared together, we determine its distance. 

PHENOMENON V 
Then the primary planets, by radii drawn to the earth, describe areas in no wise 
proportional to the times; but the areas which they describe by radii drawn to the sun 
are proportional to the times of description. 
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For to the earth they appear sometimes direct, sometimes stationary, nay, 

and sometimes retrograde. But from the sun they are always seen direct, and 
to proceed with a motion nearly uniform, that is to say, a little swifter in the 
perihelion and a little slower in the aphelion distances, so as to maintain an 
equality in the description of the areas. This is a noted proposition among 
astronomers, and particularly demonstrable in Jupiter, from the eclipses of his 
satellites; by the help of these eclipses, as we have said, the heliocentric longi- 
tudes of that planet, and its distances from the sun, are determined. 

PHENOMENON VI 
That the moon, by a radius drawn to the earth's centre, describes an area propor- 
tional to the time of description. 

This we gather from the apparent motion of the moon, compared with its 
apparent diameter. It is true that the motion of the moon is a little disturbed 
by the action of the sun: but in laying down these Phenomena, I neglect those 
small and inconsiderable errors. 



PROPOSITIONS 

Proposition 1. Theorem 1 
That the forces by which the circumjovial planets are continually drawn off from 
rectilinear motions, and retained in their proper orbits, tend to Jupiter's centre; 
and are inversely as the squares of the distances of the places of those planets from 
that centre. 

The former part of this Proposition appears from Phen. i, and Prop. 2 or 3, 
Book i; the latter from Phen. i, and Cor. vi, Prop. 4, of the same book. 

The same thing we are to understand of the planets which encompass Saturn, 
by Phen. ii. 

Proposition 2. Theorem 2 
That the forces by which the primary planets are continually drawn off from 
rectilinear motions, and retained in their proper-orbits, tend to the sun; and are 
inversely as the squares of the distances of the places of those planets from the sun's 
centre. 

The former part of the Proposition is manifest from Phen. v, and Prop. 2, 
Book i; the latter from Phen. iv, and Cor. vi, Prop. 4, of the same book. But 
this part of the Proposition is, with great accuracy, demonstrable from the 
quiescence of the aphelion points; for a very small aberration from the propor- 
tion according to the inverse square of the distances would (by Cor. i, Prop. 45, 
Book i) produce a motion of the apsides sensible enough in every single revo- 
lution, and in many of them enormously great. 

Proposition 3. Theorem 3 
That the force by which the moon is retained in its orbit tends to the earth; and is 
inversely as the square of the distance of its place from the earth's centre. 

The former part of the Proposition is evident from Phen. vi, and Prop. 2 or 
3, Book i; the latter from the very slow motion of the moon's apogee; which in 
every single revolution amounting but to 3° 3' forwards, may be neglected. For 
(by Cor. i, Prop. 45, Book i) it appears that, if the distance of the moon from 
the earth's centre is to the semidiameter of the earth as D to 1, the force, from 
which such a motion will result, is inversely as i.e., inversely as the power 
of D, whose exponent is 2^/243; that is to say, in the proportion of the distance 
somewhat greater than the inverse square, but which comes 59% times nearer 
to the proportion according to the square than to the cube. But since this 
increase is due to the action of the sun (as we shall afterwards show), it is here 
to be neglected. The action of the sun, attracting the moon from the earth, is 
nearly as the moon's distance from the earth; and therefore (by what we have 
shown in Cor. 11, Prop. 45, Book 1) is to the centripetal force of the moon as 2 to 
357.45, or nearly so; that is, as 1 to 1782%o- And if we neglect so inconsiderable 
a force of the sun, the remaining force, by which the moon is retained in its orb, 
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will be inversely as D2. This will yet more fully appear from comparing this 
force with the force of gravity, as is done in the next Proposition. 

Cor. If we augment the mean centripetal force by which the moon is re- 
tained in its orb, first in the proportion of 1772%) to 1782%o, and then in the 
proportion of the square of the semidiameter of the earth to the mean distance 
of the centres of the moon and earth, we shall have the centripetal force of the 
moon at the surface of the earth; supposing this force, in descending to the 
earth's surface, continually to increase inversely as the square of the height. 

Proposition 4. Theorem 4 
That the moon gravitates towards the earth, and by the force of gravity is continually 
drawn off from a rectilinear motion, and retained in its orbit. 

The mean distance of the moon from the earth in the syzygies in semi- 
diameters of the earth, is, according to Ptolemy and most astronomers, 59; 
according to Vendelin and Huygens, 60; to Copernicus, 60)^; to Street, 60%; 
and to Tycho, 56%. But Tycho, and all that follow his tables of refraction, 
making the refractions of the sun and moon (altogether against the nature of 
light) to exceed the refractions of the fixed stars, and that by four or five 
minutes near the horizon, did thereby increase the moon's horizontal parallax by 
a like number of minutes, that is, by a twelfth or fifteenth part of the whole 
parallax. Correct this error, and the distance will become about 60% semi- 
diameters of the earth, near to what others have assigned. Let us assume the 
mean distance of 60 diameters in the syzygies; and suppose one revolution of 
the moon, in respect of the fixed stars, to be completed in 27d'7h-43m., as 
astronomers have determined; and the circumference of the earth to amount 
to 123,249,600 Paris feet, as the French have found by mensuration. And now 
if we imagine the moon, deprived of all motion, to be let go, so as to descend 
towards the earth with the impulse of all that force by which (by Cor. Prop. 3) 
it is retained in its orb, it will in the space of one minute of time, describe in its 
fall 15%2 Paris feet. This we gather by a calculus, founded either upon Prop. 
36, Book i, or (which comes to the same thing) upon Cor. ix, Prop. 4, of the 
same book. For the versed sine of that arc, which the moon, in the space of one 
minute of time, would by its mean motion describe at the distance of 60 semi- 
diameters of the earth, is nearly 15%2 Paris feet, or more accurately 15 feet, 
1 inch, and 1 line %. Wherefore, since that force, in approaching to the earth, 
increases in the proportion of the inverse square of the distance, and, upon that 
account, at the surface of the earth, is 60 • 60 times greater than at the moon, a 
body in our regions, falling with that force, ought in the space of one minute of 
time, to describe 60-60-15%2 Paris feet; and, in the space of one second of 
time, to describe 15%2 of those feet; or more accurately 15 feet, 1 inch, and 1 
line %. And with this very force we actually find that bodies here upon earth 
do really descend; for a pendulum oscillating seconds in the latitude of Paris 
will be 3 Paris feet, and 8 lines % in length, as Mr. Huygens has observed. And 
the space which a heavy body describes by falling in one second of time is to 
half the length of this pendulum as the square of the ratio of the circumference 
of a circle to its diameter (as Mr. Huygens has also shown), and is therefore 15 
Paris feet, 1 inch, 1 line %. And therefore the force by which the moon is re- 
tained in its orbit becomes, at the very surface of the earth, equal to the force 
of gravity which we observe in heavy bodies there. And therefore (by Rules 1 
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and 2) the force by which the moon is retained in its orbit is that very same 
force which we commonly call gravity; for, were gravity another force different 
from that, then bodies descending to the earth with the joint impulse of both 
forces would fall with a double velocity, and in the space of one second of time 
would describe BO1/^ Paris feet; altogether against experience. 

This calculus is founded on the hypothesis of the earth's standing still; for 
if both earth and moon move about the sun, and at the same time about their 
common centre of gravity, the distance of the centres of the moon and earth 
from one another will be 603^ semidiameters of the earth; as may be found by 
a computation from Prop. 60, Book i. 

Scholium 
The demonstration of this Proposition may be more diffusely explained after 

the following manner. Suppose several moons to revolve about the earth, as in 
the system of Jupiter or Saturn; the periodic times of these moons (by the 
argument of induction) would observe the same law which Kepler found to 
obtain among the planets; and therefore their centripetal forces would be in- 
versely as the squares of the distances from the centre of the earth, by Prop. 1, 
of this book. Now if the lowest of these were very small, and were so near the 
earth as almost to touch the tops of the highest mountains, the centripetal 
force thereof, retaining it in its orbit, would be nearly equal to the weights of 
any terrestrial bodies that should be found upon the tops of those mountains, 
as may be known by the foregoing computation. Therefore if the same little 
moon should be deserted by its centrifugal force that carries it through its 
orbit, and be disabled from going onward therein, it would descend to the 
earth; and that with the same velocity, with which heavy bodies actually fall 
upon the tops of those very mountains, because of the equality of the forces 
that oblige them both to descend. And if the force by which that lowest moon 
would descend were different from gravity, and if that moon were to gravitate 
towards the earth, as we find terrestrial bodies do upon the tops of mountains, 
it would then descend with twice the velocity, as being impelled by both these 
forces conspiring together. Therefore since both these forces, that is, the grav- 
ity of heavy bodies, and the centripetal forces of the moons, are directed to the 
centre of the earth, and are similar and equal between themselves, they will 
(by Rules 1 and 2) have one and the same cause. And therefore the force which 
retains the moon in its orbit is that very force which we commonly call gravity; 
because otherwise this little moon at the top of a mountain must either be 
without gravity, or fall twice as swiftly as heavy bodies are wont to do. 

Proposition 5. Theorem 5 
That the cir cum jovial planets gravitate towards Jupiter; the circumsaturnal to- 
wards Saturn; the circumsolar towards the sun; and by the forces of their gravity 
are drawn off from rectilinear motions, and retained in curvilinear orbits. 

For the revolutions of the circumjovial planets about Jupiter, of the circum- 
saturnal about Saturn, and of Mercury and Venus, and the other circumsolar 
planets, about the sun, are appearances of the same sort with the revolution of 
the moon about the earth; and therefore, by Rule 2, must be owing to the same 
sort of causes; especially since it has been demonstrated, that the forces upon 
which those revolutions depend tend to the centres of Jupiter, of Saturn, and 
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of the sun; and that those forces, in receding from Jupiter, from Saturn, and 
from the sun, decrease in the same proportion, and according to the same law, 
as the force of gravity does in receding from the earth. 

Cor. i. There is, therefore, a power of gravity tending to all the planets; for, 
doubtless, Venus, Mercury, and the rest, are bodies of the same sort with 
Jupiter and Saturn. And since all attraction (by Law m) is mutual, Jupiter will 
therefore gravitate towards all his own satellites, Saturn towards his, the earth 
towards the moon, and the sun towards all the primary planets. 

Cor. ii. The force of gravity which tends to any one planet is inversely as the 
square of the distance of places from that planet's centre. 

Cor. hi. All the planets do gravitate towards one another, by Cor. i and n. 
And hence it is that Jupiter and Saturn, when near their conjunction, by their 
mutual attractions sensibly disturb each other's motions. So the sun disturbs 
the motions of the moon; and both sun and moon disturb our sea, as we shall 
hereafter explain. _ Scholium 

The force which retains the celestial bodies in their orbits has been hitherto 
called centripetal force; but it being now made plain that it can be no other 
than a gravitating force, we shall hereafter call it gravity. For the cause of that 
centripetal force which retains the moon in its orbit will extend itself to all the 
planets, by Rules 1, 2, and 4. 

Proposition 6. Theorem 6 
That all bodies gravitate towards every planet; and that the weights of bodies towards 
any one planet, at equal distances from the centre of the planet, are proportional to 
the quantities of matter which they severally contain. 

It has been, now for a long time, observed by others, that all sorts of heavy 
bodies (allowance being made for the inequality of retardation which they suf- 
fer from a small power of resistance in the air) descend to the earth from equal 
heights in equal times; and that equality of times we may distinguish to a great 
accuracy, by the help of pendulums. I tried experiments with gold, silver, lead, 
glass, sand, common salt, wood, water, and wheat. I provided two wooden 
boxes, round and equal: I filled the one with wood, and suspended an equal 
weight of gold (as exactly as I could) in the centre of oscillation of the other. 
The boxes, hanging by equal threads of 11 feet, made a couple of pendulums 
perfectly equal in weight and figure, and equally receiving the resistance of the 
air. And, placing the one by the other, I observed them to play together for- 
wards and backwards, for a long time, with equal vibrations. And therefore the 
quantity of matter in the gold (by Cor. i and vi, Prop. 24, Book ii) was to the 
quantity of matter in the wood as the action of the motive force (or vis motrix) 
upon all the gold to the action of the same upon all the wood; that is, as the 
weight of the one to the weight of the other: and the like happened in the other 
bodies. By these experiments, in bodies of the same weight, I could manifestly 
have discovered a difference of matter less than the thousandth part of the 
whole, had any such been. But, without all doubt, the nature of gravity to- 
wards the planets is the same as towards the earth. For, should we imagine our 
terrestrial bodies taken to the orbit of the moon, and there, together with the 
moon, deprived of all motion, to be let go, so as to fall together towards the 
earth, it is certain, from what we have demonstrated before, that, in equal 
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times, they would describe equal spaces with the moon, and of consequence are 
to the moon, in quantity of matter, as their weights to its weight. Moreover, 
since the satellites of Jupiter perform their revolutions in times which observe 
the /^th power of the proportion of their distances from Jupiter's centre, their 
accelerative gravities towards Jupiter will be inversely as the squares of their 
distances from Jupiter's centre; that is, equal, at equal distances. And, there- 
fore, these satellites, if supposed to fall towards Jupiter from equal heights, 
would describe equal spaces in equal times, in like manner as heavy bodies do 
on our earth. And, by the same argument, if the circumsolar planets were 
supposed to be let fall at equal distances from the sun, they would, in their 
descent towards the sun, describe equal spaces in equal times. But forces which 
equally accelerate unequal bodies must be as those bodies: that is to say, the 
weights of the planets towards the sun must be as their quantities of matter. 
Further, that the weights of Jupiter and of his satellites towards the sun are 
proportional to the several quantities of their matter, appears from the exceed- 
ingly regular motions of the satellites (by Cor. m, Prop. 65, Book i). For if 
some of those bodies were more strongly attracted to the sun in proportion to 
their quantity of matter than others, the motions of the satellites would be 
disturbed by that inequality of attraction (by Cor. ii, Prop. 65, Book i). If, at 
equal distances from the sun, any satellite, in proportion to the quantity of its 
matter, did gravitate towards the sun with a force greater than Jupiter in 
proportion to his, according to any given proportion, suppose of d to e; then the 
distance between the centres of the sun and of the satellite's orbit would be 
always greater than the distance between the centres of the sun and of Jupiter, 
nearly as the square root of that proportion: as by some computations I have 
found. And if the satellite did gravitate towards the sun with a force, less in the 
proportion of e to d, the distance of the centre of the satellite's orbit from the 
sun would be less than the distance of the centre of Jupiter from the sun as the 
square root of the same proportion. Therefore if, at equal distances from the 
sun, the accelerative gravity of any satellite towards the sun were greater or 
less than the accelerative gravity of Jupiter towards the sun but by one ttio o 
part of the whole gravity, the distance of the centre of the satellite's orbit from 
the sun would be greater of less than the distance of Jupiter from the sun by 
one 2000 part of the whole distance; that is, by a fifth part of the distance of the 
utmost satellite from the centre of Jupiter; an eccentricity of the orbit which 
would be very sensible. But the orbits of the satellites are concentric to Jupiter, 
and therefore the accelerative gravities of Jupiter, and of all its satellites to- 
wards the sun, are equal among themselves. And by the same argument, the 
weights of Saturn and of his satellites towards the sun, at equal distances from 
the sun, are as their several quantities of matter; and the weights of the moon 
and of the earth towards the sun are either none, or accurately proportional to 
the masses of matter which they contain. But some weight they have, by Cor. 
i and hi, Prop. 5. 

But further; the weights of all the parts of every planet towards any other 
planet are one to another as the matter in the several parts; for if some parts 
did gravitate more, others less, than for the quantity of their matter, then the 
whole planet, according to the sort of parts with which it most abounds, would 
gravitate more or less than in proportion to the quantity of matter in the whole. 
Nor is it of any moment whether these parts are external or internal; for if, for 
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example, we should imagine the terrestrial bodies with us to be raised to the 
orbit of the moon, to be there compared with its body; if the weights of such 
bodies were to the weights of the external parts of the moon as the quantities 
of matter in the one and in the other respectively, but to the weights of the 
internal parts in a greater or less proportion, then likewise the weights of those 
bodies would be to the weight of the whole moon in a greater or less proportion; 
against what we have shown above. 

Cor. i . Hence the weights of bodies do not depend upon their forms and textures; 
for if the weights could be altered with the forms, they would be greater or less, 
according to the variety of forms, in equal matter; altogether against experience. 

Cor. ii. Universally, all bodies about the earth gravitate towards the earth; 
and the weights of all, at equal distances from the earth's centre, are as the 
quantities of matter which they severally contain. This is the quality of all 
bodies within the reach of our experiments; and therefore (by Rule 3) to be 
affirmed of all bodies whatsoever. If the ether, or any other body, were either 
altogether void of gravity, or were to gravitate less in proportion to its quan- 
tity of matter, then, because (according to Aristotle, Descartes, and others) 
there is no difference between that and other bodies but in mere form of matter, 
by a successive change from form to form, it might be changed at last into a 
body of the same condition with those which gravitate most in proportion to 
their quantity of matter; and, on the other hand, the heaviest bodies, acquiring 
the first form of that body, might by degrees quite lose their gravity. And there- 
fore the weights would depend upon the forms of bodies, and with those forms, 
might be changed: contrary to what was proved in the preceding Corollary. 

Cor. hi. All spaces are not equally full; for if all spaces were equally full, 
then the specific gravity of the fluid which fills the region of the air, on account 
of the extreme density of the matter, would fall nothing short of the specific 
gravity of quicksilver, or gold, or any other the most dense body; and, there- 
fore, neither gold, nor any other body, could descend in air; for bodies do not 
descend in fluids, unless they are specifically heavier than the fluids. And if the 
quantity of matter in a given space can, by any rarefaction, be diminished, 
what should hinder a diminution to infinity? 

Cor. iv. If all the solid particles of all bodies are of the same density, and 
cannot be rarefied without pores, then a void, space, or vacuum must be 
granted. By bodies of the same density, I mean those whose inertias are in the 
proportion of their bulks. 

Cor. v. The power of gravity is of a different nature from the power of 
magnetism; for the magnetic attraction is not as the matter attracted. Some 
bodies are attracted more by the magnet; others less; most bodies not at all. 
The power of magnetism in one and the same body may be increased and 
diminished; and is sometimes far stronger, for the quantity of matter, than the 
power of gravity; and in receding from the magnet decreases not as the square 
but almost as the cube of the distance, as nearly as I could judge from some 
rude observations. _ 

Proposition 7. Theorem 7 
That there is a power of gravity pertaining to all bodies, proportional to the several 
quantities of matter which they contain. 

That all the planets gravitate one towards another, we have proved before; 
as well as that the force of gravity towards every one of them, considered 
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apart, is inversely as the square of the distance of places from the centre of the 
planet. And thence (by Prop. 69, Book i, and its Corollaries) it follows that the 
gravity tending towards all the planets is proportional to the matter which 
they contain. 

Moreover, since all the parts of any planet A gravitate towards any other 
planet B; and the gravity of every part is to the gravity of the whole as the 
matter of the part to the matter of the whole; and (by Law m) to every action 
corresponds an equal reaction; therefore the planet B will, on the other hand, 
gravitate towards all the parts of the planet A; and its gravity towards any one 
part will be to the gravity towards the whole as the matter of the part to the 
matter of the whole. q.e.d. 

Cor. i. Therefore the force of gravity towards any whole planet arises from, 
and is compounded of, the forces of gravity towards all its parts. Magnetic and 
electric attractions afford us examples of this; for all attraction towards the 
whole arises from the attractions towards the several parts. The thing may be 
easily understood in gravity, if we consider a greater planet, as formed of a 
number of lesser planets, meeting together in one globe; for hence it would 
appear that the force of the whole must arise from the forces of the component 
parts. If it is objected that, according to this law, all bodies with us must grav- 
itate one towards another, whereas no such gravitation anywhere appears, I 
answer, that since the gravitation towards these bodies is to the gravita- 
tion towards the whole earth as these bodies are to the whole earth, the grav- 
itation towards them must be far less than to fall under the observation of our 
senses. 

Cor. ii. The force of gravity towards the several equal particles of any body 
is inversely as the square of the distance of places from the particles; as appears 
from Cor. m, Prop. 74, Book i. 

Proposition 8. Theorem 8 
In two spheres gravitating each towards the other, if the matter in places on all sides 
round about and equidistant from the centres is similar, the weight of either sphere 
towards the other will be inversely as the square of the distance between their centres. 

After I had found that the force of gravity towards a whole planet did arise 
from and was compounded of the forces of gravity towards all its parts, and 
towards every one part was in the inverse proportion of the squares of the 
distances from the part, I was yet in doubt whether that proportion inversely 
as the square of the distance did accurately hold, or but nearly so, in the total 
force compounded of so many partial ones; for it might be that the proportion 
which accurately enough took place in greater distances should be wide of the 
truth near the surface of the planet, where the distances of the particles are 
unequal, and their situation dissimilar. But by the help of Props. 75 and 76, 
Book i, and their Corollaries, I was at last satisfied of the truth of the Proposi- 
tion, as it now lies before us. 

Cor. i. Hence we may find and compare together the weights of bodies 
towards different planets; for the weights of bodies revolving in circles about 
planets are (by Cor. ii, Prop. 4, Book i) directly as the diameters of the circles 
and inversely as the squares of their periodic times; and their weights at the 
surfaces of the planets, or at any other distances from their centres, are (by 
this Proposition) greater or less inversely as the square of the distances. Thus 
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from the periodic times of Venus, revolving about the sun, in 224d-16%h.; of 
the utmost circumjovial satellite revolving about Jupiter, in 16d., 16^i5h.; of the 
Huygenian satellite about Saturn, in 15d. 22%h.; and of the moon about the 
earth, in 27d 7h. 43m.; compared with the mean distance of Venus from the sun, 
and with the greatest heliocentric elongations of the outmost circumjovial 
satellite from Jupiter's centre, 8' 16"; of the Huygenian satellite from the 
centre of Saturn, 3' 4"; and of the moon from the earth, KT 33"; by computa- 
tion I found that the weight of equal bodies, at equal distances from the centres 
of the sun, of Jupiter, of Saturn, and of the earth, towards the sun, Jupiter, 
Saturn, and the earth, were one to another, as 1, ttft, and tbwst respec- 
tively. Then because as the distances are increased or diminished, the weights are 
diminished or increased in a squared ratio, the weights of equal bodies towards 
the sun, Jupiter, Saturn, and the earth, at the distances 10,000, 997, 791, and 
109 from their centres, that is, at their very surfaces, will be as 10,000, 943, 529, 
and 435 respectively. How much the weights of bodies are at the surface of the 
moon, will be shown hereafter. 

Cor. ii. Hence likewise we discover the quantity of matter in the several 
planets; for their quantities of matter are as the forces of gravity at equal 
distances from their centres; that is, in the sun, Jupiter, Saturn, and the earth, 
as 1, tfstj wst, and ! 6 ^2 g 2 respectively. If the parallax of the sun be taken 
greater or less than 10" SO'", the quantity of matter in the earth must be aug- 
mented or diminished as the cube of that proportion. 

Cor. hi. Hence also we find the densities of the planets; for (by Prop. 72, 
Book 1) the weights of equal and similar bodies towards similar spheres are, at 
the surfaces of those spheres, as the diameters of the spheres; and therefore the 
densities of dissimilar spheres are as those weights applied to the diameters of 
the spheres. But the true diameters of the sun, Jupiter, Saturn, and the earth, 
were one to another as 10,000, 997, 791, and 109; and the weights towards the 
same as 10,000, 943, 529, and 435 respectively; and therefore their densities are 
as 100, 94^/2, 67, and 400. The density of the earth, which comes out by this 
computation, does not depend upon the parallax of the sun, but is determined 
by the parallax of the moon, and therefore is here truly defined. The sun, there- 
fore, is a little denser than Jupiter, and Jupiter than Saturn, and the earth four 
times denser than the sun; for the sun, by its great heat, is kept in a sort of 
rarefied state. The moon is denser than the earth, as shall appear afterwards. 

Cor. iv. The smaller the planets are, they are, other things being equal, of so 
much the greater density; for so the powers of gravity on their several surfaces 
come nearer to equality. They are likewise, other things being equal, of the 
greater density, as they are nearer to the sun. So Jupiter is more dense than 
Saturn, and the earth than Jupiter; for the planets were to be placed at differ- 
ent distances from the sun, that, according to their degrees of density, they 
might enjoy a greater or less proportion of the sun's heat. Our water, if it were 
removed as far as the orbit of Saturn, would be turned into ice, and in that of 
Mercury would quickly fly away in vapor; for the light of the sun, to which its 
heat is proportional, is seven times denser in the orb of Mercury than with us: 
and by the thermometer I have found that a sevenfold heat of our summer sun 
will make water boil. Nor are we to doubt that the matter of Mercury is 
adapted to its heat, and is therefore more dense than the matter of our earth; 
since, in a denser matter, the operations of Nature require a stronger heat. 
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Proposition 9. Theorem 9 
That the force of gravity, considered downwards from the surface of the planets, 
decreases nearly in the proportion of the distances from the centre of the planets. 

If the matter of the planet were of an uniform density, this Proposition would 
be accurately true (by Prop. 73, Book i). The error, therefore, can be no greater 
than what may arise from the inequality of the density. 

Proposition 10. Theorem 10 
That the motions of the planets in the heavens may subsist an exceedingly long time. 

In the Scholium of Prop. 40, Book ii, I have shown that a globe of water 
frozen into ice, and moving freely in our air, in the time that it would describe 
the length of its semidiameter, would lose by the resistance of the air ttqq part 
of its motion; and the same proportion holds nearly in all globes, however 
great, and moved with whatever velocity. But that our globe of earth is of 
greater density than it would be if the whole consisted of water only, I thus 
make out. If the whole consisted of water only, whatever was of less density 
than water, because of its less specific gravity, would emerge and float above. 
And upon this account, if a globe of terrestrial matter, covered on all sides with 
water, was less dense than water, it would emerge somewhere; and, the subsid- 
ing water falling back, would be gathered to the opposite side. And such is the 
condition of our earth, which in a great measure is covered with seas. The earth, 
if it was not for its greater density, would emerge from the seas, and, according 
to its degree of levity, would be raised more or less above their surface, the 
water of the seas flowing backwards to the opposite side. By the same argu- 
ment, the spots of the sun, which float upon the lucid matter thereof, are lighter 
than that matter; and, however the planets have been formed while they were 
yet in fluid masses, all the heavier matter subsided to the centre. Since, there- 
fore, the common matter of our earth on the surface thereof is about twice as 
heavy as water, and a little lower, in mines, is found about three, or four, or 
even five times heavier, it is probable that the quantity of the whole matter of 
the earth may be five or six times greater than if it consisted all of water; 
especially since I have before shown that the earth is about four times more 
dense than Jupiter. If, therefore, Jupiter is a little more dense than water, in 
the space of thirty days, in which that planet describes the length of 459 of its 
semidiameters, it would, in a medium of the same density with our air, lose 
almost a tenth part of its motion. But since the resistance of mediums decreases 
in proportion to their weight or density, so that water, which is 13% times 
lighter than quicksilver, resists less in that proportion; and air, which is 860 
times lighter than water, resists less in the same proportion; therefore in the 
heavens, where the weight of the medium in which the planets move is im- 
mensely diminished, the resistance will almost vanish. 

It is shown in the Scholium of Prop. 22, Book ii, that at the height of 200 
miles above the earth the air is more rare than it is at the surface of the earth in 
the ratio of 30 to 0.0000000000003998, or as 75,000,000,000,000 to 1, nearly. And 
hence the planet Jupiter, revolving in a medium of the same density with that 
superior air, would not lose by the resistance of the medium the 1,000,000th part 
of its motion in 1,000,000 years. In the spaces near the earth the resistance is 
produced only by the air, exhalations, and vapors. When these are carefully 
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exhausted by the air pump from under the receiver, heavy bodies fall within 
the receiver with perfect freedom, and without the least sensible resistance: 
gold itself, and the lightest down, let fall together, will descend with equal 
velocity; and though they fall through a space of four, six, and eight feet, they 
will come to the bottom at the same time; as appears from experiments. And 
therefore, the celestial regions being perfectly void of air and exhalations, the 
planets and comets meeting no sensible resistance in those spaces will continue 
their motions through them for an immense tract of time. 

HYPOTHESIS I 
That the centre of the system of the world is immovable. 

This is acknowledged by all, while some contend that the earth, others that 
the sun, is fixed in that centre. Let us see what may from hence follow. 

Proposition 11. Theorem 11 
That the common centre of gravity of the earth, the sun, and all the planets, is 
immovable. 

For (by Cor. iv of the Laws) that centre either is at rest, or moves uniformly 
forwards in a right line; but if that centre moved, the centre of the world would 
move also, against the Hypothesis. 

Proposition 12. Theorem 12 
That the sun is agitated by a continual motion, but never recedes far from the 
common centre of gravity of all the planets. 

For since (by Cor. ii, Prop. 8) the quantity of matter in the sun is to the 
quantity of matter in Jupiter as 1067 to 1; and the distance of Jupiter from the 
sun is to the semidiameter of the sun in a proportion but a small matter greater, 
the common centre of gravity of Jupiter and the sun will fall upon a point a 
little without the surface of the sun. By the same argument, since the quantity 
of matter in the sun is to the quantity of matter in Saturn as 3021 to 1, and the 
distance of Saturn from the sun is to the semidiameter of the sun in a propor- 
tion but a small matter less, the common centre of gravity of Saturn and the 
sun will fall upon a point a little within the surface of the sun. And, pursuing 
the principles of this computation, we should find that though the earth and all 
the planets were placed on one side of the sun, the distance of the common 
centre of gravity of all from the centre of the sun would scarcely amount to one 
diameter of the sun. In other cases, the distances of those centres are always 
less; and therefore, since that centre of gravity is continually at rest, the sun, 
according to the various positions of the planets, must continually be moved 
every way, but will never recede far from that centre. 

Cor. Hence the common centre of gravity of the earth, the sun, and all the 
planets, is to be esteemed the centre of the world; for since the earth, the sun, 
and all the planets gravitate one towards another, and are, therefore, according 
to their powers of gravity, in continual agitation, as the Laws of Motion re- 
quire, it is plain that their movable centres cannot be taken for the immovable 
centre of the world. If that body were to be placed in the centre, towards which 
other bodies gravitate most (according to common opinion), that privilege 
ought to be allowed to the sun; but since the sun itself is moved, a fixed point 
is to be chosen from which the centre of the sun recedes least, and from which 
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it would recede yet less if the body of the sun were denser and greater, and 
therefore less apt to be moved. 

Proposition 13. Theorem 13 
The planets move in ellipses which have their common focus in the centre of the sun; 
and, by radii drawn to that centre, they describe areas proportional to the times of 
description. 

We have discoursed above on these motions from the Phenomena. Now that 
we know the principles on which they depend, from those principles we deduce 
the motions of the heavens a priori. Because the weights of the planets towards 
the sun are inversely as the squares of their distances from the sun's centre, if 
the sun were at rest, and the other planets did not act one upon another, their 
orbits would be ellipses, having the sun in their common focus; and they would 
describe areas proportional to the times of description, by Props. 1 and 11, and 
Cor. i, Prop. 13, Book i. But the actions of the planets one upon another are so 
very small, that they may be neglected; and by Prop. 66, Book i, they disturb 
the motions of the planets around the sun in motion, less than if those motions 
were performed about the sun at rest. 

It is true, that the action of Jupiter upon Saturn is not to be neglected; for 
the force of gravity towards Jupiter is to the force of gravity towards the sun 
(at equal distances, Cor. ii, Prop. 8) as 1 to 1067; and therefore in the conjunc- 
tion of Jupiter and Saturn, because the distance of Saturn from Jupiter is to 
the distance of Saturn from the sun almost as 4 to 9, the gravity of Saturn 
towards Jupiter will be to the gravity of Saturn towards the sun as 81 to 
16 • 1067; or, as 1 to about 211. And hence arises a perturbation of the orbit of 
Saturn in every conjunction of this planet with Jupiter, so sensible, that as- 
tronomers are puzzled with it. As the planet is differently situated in these 
conjunctions, its eccentricity is sometimes augmented, sometimes diminished; 
its aphelion is sometimes carried forwards, sometimes backwards, and its mean 
motion is by turns accelerated and retarded; yet the whole error in its motion 
about the sun, though arising from so great a force, may be almost avoided 
(except in the mean motion) by placing the lower focus of its orbit in the com- 
mon centre of gravity of Jupiter and the sun (according to Prop. 67, Book i), 
and therefore that error, when it is greatest, scarcely exceeds two minutes; and 
the greatest error in the mean motion scarcely exceeds two minutes yearly. But 
in the conjunction of Jupiter and Saturn, the accelerative forces of gravity of 
the sun towards Saturn, of Jupiter towards Saturn, and of Jupiter towards the 

16•81•3021 
sun, are almost as 16, 81, and — , or 156,609; and therefore the differ- 25 
ence of the forces of gravity of the sun towards Saturn, and of Jupiter towards 
Saturn, is to the force of gravity of Jupiter towards the sun as 65 to 156,609, or 
as 1 to 2409. But the greatest power of Saturn to disturb the motion of Jupiter 
is proportional to this difference; and therefore the perturbation of the orbit of 
Jupiter is much less than that of Saturn's. The perturbations of the other orbits 
are yet far less, except that the orbit of the earth is sensibly disturbed by the 
moon. The common centre of gravity of the earth and moon moves in an ellipse 
about the sun in the focus thereof, and, by a radius drawn to the sun, describes 
areas proportional to the times of description. But the earth in the meantime 
by a menstrual motion is revolved about this common centre. 
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Proposition 14. Theorem 14 
The aphelions and nodes of the orbits of the planets are fixed. 

The aphelions are immovable by Prop. 11, Book i; and so are the planes of 
the orbits, by Prop. 1 of the same book. And if the planes are fixed, the nodes 
must be so too. It is true that some inequalities may arise from the mutual 
actions of the planets and comets in their revolutions, but these will be so 
small, that they may be here passed by. 

Cor. i. The fixed stars are immovable, seeing they keep the same position to 
the aphelions and nodes of the planets. 

Cor. ii. And since these stars are liable to no sensible parallax from the 
annual motion of the earth, they can have no force, because of their immense 
distance, to produce any sensible effect in our system. Not to mention that the 
fixed stars, everywhere promiscuously dispersed in the heavens, by their con- 
trary attractions destroy their mutual actions, by Prop. 70, Book i. 

Scholium 
Since the planets near the sun (viz., Mercury, Venus, the earth, and Mars) 

are so small that they can act with but little force upon one another, therefore 
their aphelions and nodes must be fixed, except so far as they are disturbed by 
the actions of Jupiter and Saturn, and other higher bodies. And hence we may 
find, by the theory of gravity, that their aphelions move forwards a little, in 
respect of the fixed stars, and that as the l/fih power of their several distances 
from the sun. So that if the aphelion of Mars, in the space of a hundred years, 
is carried forwards SB' 20,,, in respect of the fixed stars, the aphelions of the 
earth, of Venus, and of Mercury, will in a hundred years be carried forwards 
17' 40/,, Ky SB^, and 4' IG'', respectively. But these motions are so inconsider- 
able, that we have neglected them in this Proposition. 

Proposition 15. Problem 1 
To find the principal diameters of the orbits of the planets. 

They are to be taken as the %th power of the periodic times, by Prop. 15, 
Book i, and then to be severally augmented in the proportion of the sum of the 
masses of matter in the sun and each planet to the first of two mean propor- 
tionals between that sum and the quantity of matter in the sun, by Prop. 60, 
Book i. 

Proposition 16. Problem 2 
To find the eccentricities and aphelions of the planets. 

This Problem is resolved by Prop. 18, Book i. 

Proposition 17. Theorem 15 
That the diurnal motions of the planets are uniform, and that the libration of the 
moon arises from its diurnal motion. 

The Proposition is proved from the first Law of Motion, and Cor. xxii, 
Prop. 66, Book i. Jupiter, with respect to the fixed stars, revolves in 9h. 56m.; 
Mars in 24h. 39m.; Venus in about 23h.; the earth in 23h. 56m.; the sun in 253^d., 
and the moon in 27d. 7h. 43m. These things appear by the Phenomena. The 
spots in the sun's body return to the same situation on the sun's disk, with 
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respect to the earth, in 27}^ days; and therefore with respect to the fixed stars 
the sun revolves in about 253^2 days. But because the lunar day, arising from 
its uniform revolution about its axis, is menstrual, that is, equal to the time of its 
periodic revolution in its orbit, hence the same face of the moon will be always 
nearly turned to the upper focus of its orbit; but, as the situation of that focus 
requires, will deviate a little to one side and to the other from the earth in the 
lower focus; and this is the libration in longitude; for the libration in latitude 
arises from the moon's latitude, and the inclination of its axis to the plane of 
the ecliptic. This theory of the libration of the moon, Mr. N. Mercator, in his 
Astronomy, published at the beginning of the year 1676, explained more fully 
out of the letters I sent him. The utmost satellite of Saturn seems to revolve 
about its axis with a motion like this of the moon, respecting Saturn continually 
with the same face; for in its revolution round Saturn, as often as it comes to 
the eastern part of its orbit, it is scarcely visible, and generally quite disap- 
pears; this is probably occasioned by some spots in that part of its body, wdiich 
is then turned towrards the earth, as M. Cassini has observed. So also the ut- 
most satellite of Jupiter seems to revolve about its axis with a like motion, 
because in that part of its body which is turned from Jupiter it has a spot, 
which always appears as if it were in Jupiter's own body, whenever the satellite 
passes between Jupiter and our eye. 

Proposition 18. Theorem 16 
That the axes of the planets are less than the diameters drawn perpendicular to the 
axes. 

The equal gravitation of the parts on all sides wTould give a spherical figure 
to the planets, if it was not for their diurnal revolution in a circle. By that 
circular motion it comes to pass that the parts receding from the axis endeavor 
to ascend about the equator; and therefore if the matter is in a fluid state, by 
its ascent towards the equator it will enlarge the diameters there, and by its 
descent towards the poles it mil shorten the axis. So the diameter of Jupiter (by 
the concurring observations of astronomers) is found shorter between pole and 
pole than from east to west. And, by the same argument, if our earth was not 
higher about the equator than at the poles, the seas would subside about the 
poles, and, rising towrards the equator, would lay all things there under water. 

Proposition 19. Problem 3 
To find the proportion of the axis of a planet to the diameters perpendicular thereto. 

Our countryman, Mr. Norwood, measuring a distance of 905,751 feet of 
London measure between London and York, in 1635, and observing the differ- 
ence of latitudes to be 2° 28', determined the measure of one degree to be 
367,196 feet of London measure, that is, 57,300 Paris toises. M. Picard, measur- 
ing an arc of one degree, and 22' SS'' of the meridian between Amiens and 
Malvoisine, found an arc of one degree to be 57,060 Paris toises. M. Cassini, the 
father, measured the distance upon the meridian from the town of Collioure in 
Roussillon to the Observatory of Paris; and his son added the distance from 
the Observatory to the Citadel of Dunkirk. The whole distance was 4861563^ 
toises and the difference of the latitudes of Collioure and Dunkirk was 8 de- 
grees, and SI' Hence an arc of one degree appears to be 57,061 Paris 
toises. And from these measures we conclude that the circumference of the 
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earth is 123,249,600, and its semidiameter 19,615,800 Paris feet, upon the sup- 
position that the earth is of a spherical figure. 

In the latitude of Paris a heavy body falling in a second of time describes 15 
Paris feet, 1 inch, lines, as above, that is, 2173^ lines. The weight of the 
body is diminished by the weight of the ambient air. Let us suppose the weight 
lost thereby to be ttfoo part of the whole weight; then that heavy body fall- 
ing in a vacuum will describe a height of 2174 lines in one second of time. 

A body in every sidereal day of 23h. 56m. 4s. uniformly revolving in a circle 
at the distance of 19,615,800 feet from the centre, in one second of time describes 
an arc of 1433.46 feet; the versed sine of which is 0.05236561 feet, or 7.54064 
lines. And therefore the force with which bodies descend in the latitude of Paris 
is to the centrifugal force of bodies in the equator arising from the diurnal 
motion of the earth as 2174 to 7.54064. 

The centrifugal force of bodies in the equator is to the centrifugal force with 
which bodies recede directly from the earth in the latitude of Paris, 48° SO710", 
as the square of the ratio of the radius to the cosine of the latitude, that is, as 
7.54064 to 3.267. Add this force to the force with which bodies descend by their 
weight in the latitude of Paris, and a body, in the latitude of Paris, falling by 
its whole undiminished force of gravity, in the time of one second, will describe 
2177.267 lines, or 15 Paris feet, 1 inch, and 5.267 lines. And the total force of 
gravity in that latitude will be to the centrifugal force of bodies in the equator 
of the earth as 2177.267 to 7.54064, or as 289 to 1. 

Therefore if APBQ represent the figure of the earth, now no longer spherical, 
but generated by the rotation of an ellipse about its lesser axis PQ; and ACQgca 
a canal full of water, reaching from the pole to the centre Cc, and thence 
rising to the equator Aa; the weight of the water in the leg of the canal ACca 

will be to the weight of water in the other leg QCcg as 
289 to 288, because the centrifugal force arising from the 
circular motion sustains and takes off one of the 289 
parts of the weight (in the one leg), and the weight of 
288 in the other sustains the rest. But by computation 
(from Cor. ii, Prop. 91, Book i) I find, that, if the mat- 
ter of the earth was all uniform, and without any motion, 
and its axis PQ were to the diameter AB as 100 to 101, 
the force of gravity in the place Q towards the earth 
would be to the force of gravity in the same place Q 

towards a sphere described about the centre C with the radius PC, or QC, as 
126 to 125. And, by the same argument, the force of gravity in the place A 
towards the spheroid generated by the rotation of the ellipse APBQ about the 
axis AB is to the force of gravity in the same place A, towards the sphere de- 
scribed about the centre C with the radius AC, as 125 to 126. But the force of 
gravity in the place A towards the earth is a mean proportional between the 
forces of gravity towards the spheroid and this sphere; because the sphere, by 
having its diameter PQ diminished in the proportion of 101 to 100, is trans- 
formed into the figure of the earth; and this figure, by having a third diameter 
perpendicular to the two diameters AB and PQ diminished in the same pro- 
portion, is converted into the said spheroid; and the force of gravity in A, in 
either case, is diminished nearly in the same proportion. Therefore the force of 
gravity in A towards the sphere described about the centre C with the radius 
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AC, is to the force of gravity in A towards the earth as 126 is to 1253^. And 
the force of gravity in the place Q towards the sphere described about the 
centre C with the radius QC, is to the force of gravity in the place A towards 
the sphere described about the centre C with the radius AC, in the proportion 
of the diameters (by Prop. 72, Book i), that is, as 100 to 101. If, therefore, we 
compound those three proportions 126 to 125, 126 to 1253^2, and 100 to 101, 
into one, the force of gravity in the place Q towards the earth will be to the 
force of gravity in the place A towards the earth as 126 • 126 • 100 to 125 • 1253^ • 
101; or as 501 to 500. 

Now since (by Cor. m, Prop. 91, Book i) the force of gravity in either leg 
of the canal ACca, or QCcg', is as the distance of the places from the centre of 
the earth, if those legs are conceived to be divided by transverse, parallel, and 
equidistant surfaces, into parts proportional to the wholes, the weights of any 
number of parts in the one leg ACca will be to the weights of the same number 
of parts in the other leg as their magnitudes and the accelerative forces of their 
gravity conjointly, that is, as 101 to 100, and 500 to 501, or as 505 to 501. And 
therefore if the centrifugal force of every part in the leg ACca, arising from the 
diurnal motion, was to the weight of the same part as 4 to 505, so that from the 
weight of every part, conceived to be divided into 505 parts, the centrifugal 
force might take off four of those parts, the weights would remain equal in each 
leg, and therefore the fluid would rest in an equilibrium. But the centrifugal 
force of every part is to the weight of the same part as 1 to 289; that is, the 
centrifugal force, which should be sw parts of the weight, is only 2^9 part there- 
of. And, therefore, I say, by the rule of proportion, that if the centrifugal force 5^5- 
make the height of the water in the leg ACca to exceed the height of the water 
in the leg QCcgby two part of its whole heightthecentrifugalforce 2+9 will make 
the excess of the height in the leg ACca only ^-§-9 part of the height of the water in 
the other leg QCcg; and therefore the diameter of the earth at the equator is to 
its diameter from pole to pole as 230 to 229. And since the mean semidiameter 
of the earth, according to Picard's mensuration, is 19,615,800 Paris feet, or 
3923.16 miles (reckoning 5000 feet to a mile), the earth will be higher at the 
equator than at the poles by 85,472 feet, or 17/^o miles. And its height at the 
equator will be about 19,658,600 feet, and at the poles 19,573,000 feet. 

If, the density and periodic time of the diurnal revolution remaining the 
same, the planet was greater or less than the earth, the proportion of the cen- 
trifugal force to that of gravity, and therefore also of the diameter between the 
poles to the diameter at the equator, would likewise remain the same. But if 
the diurnal motion was accelerated or retarded in any proportion, the centrifu- 
gal force would be augmented or diminished nearly in the same proportion 
squared; and therefore the difference of the diameters will be increased or 
diminished in the same squared ratio, very nearly. And if the density of the 
planet was augmented or diminished in any proportion, the force of gravity 
tending towards it would also be augmented or diminished in the same pro- 
portion: and the difference of the diameters on the contrary would be dimin- 
ished in proportion as the force of gravity is augmented, and augmented in 
proportion as the force of gravity is diminished. Therefore, since the earth, in 
respect of the fixed stars, revolves in 23h. 56m., but Jupiter in 9h. 56m., and the 
squares of their periodic times are as 29 to 5, and their densities as 400 to 943^, 
the difference of the diameters of Jupiter will be to its lesser diameter as 
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to 1, or as 1 to 93^, nearly. Therefore the diameter of Jupiter from 

east to west is to its diameter from pole to pole nearly as 10^ to 93^. Therefore, 
since its greatest diameter is 37//, its lesser diameter lying between the poles 
will be 25///. Add thereto about 3" for the irregular refraction of light, and 
the apparent diameters of this planet will become 40// and SG'' 25///; which are 
to each other as to ICfJ/e, very nearly. These things are so upon the sup- 
position that the body of Jupiter is uniformly dense. But now if its body be 
denser towards the plane of the equator than towards the poles, its diameters 
may be to each other as 12 to 11, or 13 to 12, or perhaps as 14 to 13. 

And Cassini observed, in the year 1691, that the diameter of Jupiter reaching 
from east to west is greater by about a fifteenth part than the other diameter. 
Mr. Pound with his 123-foot telescope, and an excellent micrometer, measured 
the diameters of Jupiter in the year 1719, and found them as follows: 

The times Greatest diameter Lesser diameter The diameters to each other 
days hours Parts Parts 

January 28 6 13.40 12.28 As 12 to 11 
March 6 7 13.12 12.20 \Z% to 12% 
March 9 7 13.12 12.08 12% to 11% 
April 9 9 12.32 11.48 14% to 13% 

So that the theory agrees with the phenomena; for the planets are more 
heated by the sun's rays towards their equators, and therefore are a little more 
condensed by that heat than towards their poles. 

Moreover, that there is a diminution of gravity occasioned by the diurnal 
rotation of the earth, and therefore the earth rises higher there than it does at 
the poles (supposing that its matter is uniformly dense), will appear by the 
experiments of pendulums related under the following Proposition. 

Proposition 20. Problem 4 
To find and compare together the weights of bodies in the different regions of 
our earth. 

Because the weights of the unequal legs of the canal of water ACQgca are 
equal; and the weights of the parts proportional to the whole legs, and alike 
situated in them, are one to another as the weights of the wholes, and therefore 
equal between themselves; the weights of equal parts, and alike situated in the 

legs, will be inversely as the legs, that is, inversely as 230 
to 229. And the case is the same in all homogeneous 
equal bodies alike situated in the legs of the canal. 

q Their weights are inversely as the legs, that is, inversely 
q as the distances of the bodies from the centre of the 

earth. Therefore if the bodies are situated in the upper- 
most parts of the canals, or on the surface of the earth, 
their weights will be one to another inversely as their dis- 
tances from the centre. And, by the same argument, the 

weights in all other places round the whole surface of the earth are inversely 
as the distances of the places from the centre; and, therefore, on the hypothesis 
of the earth's being a spheroid, are given in proportion. 

From this arises the theorem that the increase of weight in passing from the 
equator to the poles is nearly as the versed sine of double the latitude; or, 
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which comes to the same thing, as the square of the sine of the latitude; and the 
arcs of the degrees of latitude in the meridian increase nearly in the same pro- 
portion. And, therefore, since the latitude of Paris is 48° SO7, that of places 
under the equator 00o00/, and that of places under the poles 90°; and the 
versed sines of double those arcs are 1,133,400,000 and 20,000, the radius being 
10,000; and the force of gravity at the pole is to the force of gravity at the 
equator as 230 to 229; and the excess of the force of gravity at the pole to the 
force of gravity at the equator is as 1 to 229; the excess of the force of gravity 
in the latitude of Paris mil be to the force of gravity at the equator as 1 -iMM 
to 229, or as 5667 to 2,290,000. And therefore the whole forces of gravity in those 
places will be one to the other as 2,295,667 to 2,290,000. Therefore, since the 
lengths of pendulums vibrating in equal times are as the forces of gravity, and 
in the latitude of Paris the length of a pendulum vibrating seconds is 3 Paris 
feet and 8^2 lines, or rather, because of the weight of the air, 8% lines, the 
length of a pendulum vibrating in the same time under the equator will be 
shorter by 1.087 lines. And by a like calculus the following table is made. 

Latitude 
of the place 

Length 
of the 

pendulum 
Measure of 

one degree in 
the meridian 

Latitude 
of the place 

Length 
of the 

pendulum 
Measure of 

one degree in 
the meridian 

degrees feel 5 lines toises degrees feei i lines toises 
0 3 . 7.468 56637 6 3 . 8.461 57022 
5 3 . 7.482 56642 7 3 . 8.494 57035 

10 3 . 7.526 56659 8 3 . 8.528 57048 
15 3 . 7.596 56687 9 3 . 8.561 57061 
20 3 . 7.692 56724 50 3 . 8.594 57074 
25 3 . 7.812 56769 55 3 . 8.756 57137 
30 3 . 7.948 56823 60 3 . 8.907 57196 
35 3 . 8.099 56882 65 3 . 9.044 57250 
40 3 . 8.261 56945 70 3 . 9.162 57295 

1 3 . 8.294 56958 75 3 . 9.258 57332 
2 3 . 8.327 56971 80 3 . 9.329 57360 
3 3 . 8.361 56984 85 3 . 9.372 57377 
4 3 . 8.394 56997 90 3 . 9.387 57382 

45 3 . 8.428 57010 

By this table, therefore, it appears that the inequality of degrees is so small 
that the figure of the earth, in geographical matters, may be considered as 
spherical; especially if the earth be a little denser towards the plane of the 
equator than towards the poles. 

Now several astronomers, sent into remote countries to make astronomical 
observations, have found that pendulum clocks do accordingly move slower 
near the equator than in our climates. And, first of all, in the year 1672, M. 
Richer took notice of it in the island of Cayenne; for when, in the month of 
August, he was observing the transits of the fixed stars over the meridian, he 
found his clock to go slower than it ought in respect of the mean motion of the 
sun at the rate of 2m. 28s. a day. Therefore, fitting up a simple pendulum to 
vibrate in seconds, which were measured by an excellent clock, he observed the 
length of that simple pendulum; and this he did over and over every week for 
ten months together. And upon his return to France, comparing the length of 
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that pendulum with the length of the pendulum at Paris (which was 3 Paris 
feet and 8^4 lines), he found it shorter by 134 lines. 

Afterwards, our friend Dr. Halley, about the year 1677, arriving at the 
island of St. Helena, found his pendulum clock to go slower there than at Lon- 
don without marking the difference. But he shortened the rod of his clock by 
more than 34 of an inch, or 134 lines; and, to effect this, because the length of 
the screw at the lower end of the rod was not sufficient, he interposed a wooden 
ring between the nut and the ball. 

Then, in the year 1682, M. Varin and M. des Hayes found the length of a 
simple pendulum vibrating in seconds at the Royal Observatory of Paris to be 
3 feet and 8^4 lines. And by the same method in the island of Goree, they found 
the length of an isochronal pendulum to be 3 feet and 6/^ lines, differing from 
the former by two lines. And in the same year, going to the islands of Guad- 
aloupe and Martinico, they found that the length of an isochronal pendulum 
in those islands was 3 feet and 634 lines. 

After this, M. Couplet, the son, in the month of July, 1697, at the Royal 
Observatory of Paris, so fitted his pendulum clock to the mean motion of the 
sun, that for a considerable time together the clock agreed with the motion of 
the sun. In November following, upon his arrival at Lisbon, he found his clock 
to go slower than before at the rate of 2m. 13s. in 24 hours. And the following 
March, coming to Paraiba, he found his clock to go slower than at Paris, and 
at the rate 4m. 12s. in 24 hours; and he affirms that the pendulum vibrating in 
seconds was shorter at Lisbon by 234 lines, and at Paraiba by 3% lines, than 
at Paris. He would have done better to have reckoned those differences 134 anci 
2%: for these differences correspond to the differences of the times 2m. 13s. 
and 4m. 12s. But this gentleman's observations are so gross, that we cannot 
confide in them. 

In the following years, 1699 and 1700, M. des Hayes, making another voyage 
to America, determined that in the islands of Cayenne and Granada the length 
of the pendulum vibrating in seconds was a small matter less than 3 feet and 
634 lines; that in the island of St. Christopher it was 3 feet and 6^ lines; and 
in the island of St. Domingo 3 feet and 7 lines. 

And, in the year 1704, Feuille, at Puerto Bello in America, found that the 
length of the pendulum vibrating in seconds was 3 Paris feet and only SiV 
lines, that is, almost 3 lines shorter than at Paris; but the observation was 
faulty. For afterwards, going to the island of Martinico, he found the length of 
the isochronal pendulum there 3 Paris feet and lines. 

Now the latitude of Paraiba is 6° 38' south; that of Puerto Bello, 9° 33' north; 
and the latitudes of the islands Cayenne, Goree, Guadaloupe, Martinico, 
Granada, St. Christopher, and St. Domingo, are respectively 4° 55', 14° 40,,, 
15° OO', 14° 44', 12° 06', 17° 19', and 19° 48', north. And the excesses of the 
length of the pendulum at Paris above the lengths of the isochronal pendulums 
observed in those latitudes are a little greater than by the table of the lengths 
of the pendulum before computed. And therefore the earth is a little higher 
under the equator than by the preceding calculus, and a little denser at the 
centre than in mines near the surface, unless, perhaps, the heats of the torrid 
zone have a little extended the length of the pendulums. 

For M. Picard has observed that a rod of iron, which in frosty weather in the 
winter season was one foot long, when heated by fire, was lengthened into one 
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foot and x/i line. Afterwards M. de la Hire found that a rod of iron, which in the 
like winter season was 6 feet long, when exposed to the heat of the summer sun, 
was extended into 6 feet and % line. In the former case the heat was greater 
than in the latter; but in the latter it was greater than the heat of the external 
parts of a human body; for metals exposed to the summer sun acquire a very 
considerable degree of heat. But the rod of a pendulum clock is never exposed 
to the heat of the summer sun, nor ever acquires a heat equal to that of the 
external parts of a human body; and, therefore, though the 3-foot rod of a 
pendulum clock will indeed be a little longer in the summer than in the winter 
season, yet the difference will scarcely amount to line. Therefore the total 
difference of the lengths of isochronal pendulums in different climates cannot 
be ascribed to the difference of heat; nor indeed to the mistakes of the French 
astronomers. For although there is not a perfect agreement between their 
observations, yet the errors are so small that they may be neglected; and in this 
they all agree, that isochronal pendulums are shorter under the equator than 
at the Royal Observatory of Paris, by a difference not less than lines, nor 
greater than 2% lines. By the observations of M. Richer, in the island of 
Cayenne, the difference was \}/± lines. That difference being corrected by those 
of M. des Hayes, becomes lines or 1% lines. By the less accurate observa- 
tions of others, the same was made about 2 lines. And this disagreement might 
arise partly from the errors of the observations, partly from the dissimilitude 
of the internal parts of the earth, and the height of mountains; partly from the 
different temperatures of the air. 

I take an iron rod 3 feet long to be shorter by a sixth part of one line in winter 
time with us here in England than in the summer. Because of the great heats 
under the equator, subtract this quantity from the difference of 134 llnes ob- 
served by M. Richer, and there will remain 1/^2 lines, which agrees very well 
with Ixlhro lines, obtained earlier by the theory. M. Richer repeated his observa- 
tions, made in the island of Cayenne, every week for ten months together, and 
compared the lengths of the pendulum which he had there noted in the iron 
rods with the lengths thereof which he observed in France. This diligence and 
care seems to have been wanting to the other observers. If this gentleman's 
observations are to be depended on, the earth is higher under the equator than 
at the poles, and that by an excess of about 17 miles; as appeared above by 
the theory. 

Proposition 21. Theorem 17 
That the equinoctial points go backwards, and that the axis of the earth, by a 
nutation in every annual revolution, twice vibrates towards the ecliptic, and as often 
returns to its former position. 

The Proposition appears from Cor. xx, Prop. 66, Book i; but that motion of 
nutation must be very small, and, indeed, scarcely perceptible. 

Proposition 22. Theorem 18 
That all the motions of the moon, and all the inequalities of those motions, follow 
from the principles which we have laid down. 

That the greater planets, while they are carried about the sun, may in the 
meantime carry other lesser planets, revolving about them, and that those 
lesser planets must move in ellipses which have their foci in the centres of the 
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greater, appears from Prop. 65, Book i. But then their motions will be in 
several ways disturbed by the action of the sun, and they will suffer such in- 
equalities as are observed in our moon. Thus our moon (by Cor. n, m, iv, and 
v, Prop. 66, Book i) moves faster, and, by a radius drawn to the earth, de- 
scribes an area greater for the time, and has its orbit less curved, and therefore 
approaches nearer to the earth in the syzygies than in the quadratures, except- 
ing so far as these effects are hindered by the motion of eccentricity; for (by 
Cor. ix, Prop. 66, Book i) the eccentricity is greatest when the apogee of the 
moon is in the syzygies, and least when the same is in the quadratures; and 
upon this account the perigean moon is swifter, and nearer to us, but the 
apbgean moon slower and farther from us, in the syzygies than in the quad- 
ratures. Moreover, the apogee goes forwards, and the nodes backwards; and 
this is done not with a regular but an unequal motion. For (by Cor. vii and 
viii, Prop. 66, Book i) the apogee goes more swiftly forwards in its syzygies, 
more slowly backwards in its quadratures; and, by the excess of its progress 
above its regress, advances yearly forwards. But the nodes, on the contrary 
(by Cor. xi, Prop. 66, Book i), are quiescent in their syzygies, and go fastest 
back in their quadratures. Further, the greatest latitude of the moon (by Cor. 
x, Prop. 66, Book i) is greater in the quadratures of the moon than in its 
syzygies. And (by Cor. vi, Prop. 66, Book i) the mean motion of the moon is 
slower in the perihelion of the earth than in its aphelion. And these are the 
principal inequalities (of the moon) taken notice of by astronomers. 

But there are yet other inequalities not observed by former astronomers, by 
which the motions of the moon are so disturbed that to this day we have not 
been able to bring them under any certain rule. For the velocities or hourly 
motions of the apogee and nodes of the moon, and their equations, as well as 
the difference between the greatest eccentricity in the syzygies and the least 
eccentricity in the quadratures, and that inequality which we call the varia- 
tion, are (by Cor. xiv, Prop. 66, Book i) in the course of the year augmented 
and diminished as the cube of the sun's apparent diameter. And besides (by 
Cor. i and ii, Lem. 10, and Cor. xvi, Prop. 66, Book i) the variation is aug- 
mented and diminished nearly as the square of the time between the quad- 
ratures. But, in astronomical calculations, this inequality is commonly thrown 
into and combined with the equation of the moon's centre. 

Proposition 23. Problem 5 
To derive the unequal motions of the satellites of Jupiter and Saturn from the 
motions of our moon. 

From the motions of our moon we deduce the corresponding motions of the 
moons or satellites of Jupiter in this manner, by Cor. xvi, Prop. 66, Book i. The 
mean motion of the nodes of the outmost satellite of Jupiter is to the mean 
motion of the nodes of our moon in a proportion compounded of the squared 
ratio of the periodic times of the earth about the sun to the periodic times of 
Jupiter about the sun, and the simple ratio of the periodic time of the satellite 
about Jupiter to the periodic time of our moon about the earth; and therefore, 
those nodes, in the space of an hundred years, are carried 8° 24' backwards or 
forwards. The mean motions of the nodes of the inner satellites are to the 
mean motion of the nodes of the outmost as their periodic times are to the 
periodic time of the former, by the same Corollary, and are thence given. And 
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the forward motion of the apse of every satellite is to the backward motion of 
its nodes as the motion of the apogee of our moon to the motion of its nodes (by 
the same Corollary), and is thence given. But the motions of the apsides thus 
found must be diminished in the proportion of 5 to 9, or of about 1 to 2, on 
account of a cause which I cannot here stop to explain. The greatest equations 
of the nodes, and of the apse of every satellite, are to the greatest equations of 
the nodes, and apogee of our moon respectively, as the motions of the nodes 
and apsides of the satellites, in the time of one revolution of the former equa- 
tions, to the motions of the nodes and apogee of our moon, in the time of one 
revolution of the latter equations. The variation of a satellite seen from Jupiter 
is to the variation of our moon in the same proportion as the whole motions of 
their nodes respectively during the times in which the satellite and our moon 
(after parting from) are revolved (again) to the sun, by the same Corollary; 
and therefore in the outmost satellite the variation does not exceed 5s 12th. 

Proposition 24. Theorem 19 
That the flux and reflux of the sea arise from the actions of the sun and moon. 

By Cor. xix and xx, Prop. 66, Book i, it appears that the waters of the sea 
ought twice to rise and twice to fall every day, as well lunar as solar; and that 
the greatest height of the waters in the open and deep seas ought to follow the 
approach of the luminaries to the meridian of the place by a less interval than 
six hours; as happens in all that eastern tract of the Atlantic and Ethiopic seas 
between France and the Cape of Good Hope; and on the coasts of Chile and 
Peru in the South Sea; in all which shores the flood falls out about the second, 
third, or fourth hour, unless where the motion propagated from the deep ocean 
is by the shallowness of the channels, through which it passes to some partic- 
ular places, retarded to the fifth, sixth, or seventh hour, and even later. The 
hours I reckon from the approach of each luminary to the meridian of the 
place, as well under as above the horizon; and by the hours of the lunar day I 
understand the 24th parts of that time which the moon, by its apparent diurnal 
motion, employs to come about again to the meridian of the place which it left 
the day before. The force of the sun or moon in raising the sea is greatest in the 
approach of the luminary to the meridian of the place; but the force impressed 
upon the sea at that time continues a little while after the impression, and is 
afterwards increased by a new though less force still acting upon it. This makes 
the sea rise higher and higher, till, this new force becoming too weak to raise it 
any more, the sea rises to its greatest height. And this will come to pass, per- 
haps, in one or two hours, but more frequently near the shores in about three 
hours, or even more, where the sea is shallow. 

The two luminaries excite two motions, which will not appear distinctly, but 
between them will arise one mixed motion compounded out of both. In the 
conjunction or opposition of the luminaries their forces will be conjoined, and 
bring on the greatest flood and ebb. In the quadratures the sun will raise the 
waters which the moon depresses, and depress the waters which the moon 
raises, and from the difference of their forces the smallest of all tides will follow. 
And because (as experience tells us) the force of the moon is greater than that 
of the sun, the greatest height of the waters will happen about the third lunar 
hour. Out of the syzygies and quadratures, the greatest tide, which by the 
single force of the moon ought to fall out at the third lunar hour, and by the 
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single force of the sun at the third solar hour, by the compounded forces of both 
must fall out in an intermediate time that approaches nearer to the third hour 
of the moon than to that of the sun. And, therefore, while the moon is passing 
from the syzygies to the quadratures, during which time the third hour of the 
sun precedes the third hour of the moon, the greatest height of the waters will 
also precede the third hour of the moon, and that, by the greatest interval, a 
little after the octants of the moon; and, by like intervals, the greatest tide will 
follow the third lunar hour, while the moon is passing from the quadratures to 
the syzygies. Thus it happens in the open sea; for in the mouths of rivers the 
greater tides come later to their height. 

But the effects of the luminaries depend upon their distances from the earth; 
for when they are less distant, their effects are greater, and when more distant, 
their effects are less, and that as the cube of their apparent diameter. Therefore 
it is that the sun, in the winter time, being then in its perigee, has a greater 
effect, and makes the tides in the syzygies somewhat greater, and those in the 
quadratures somewhat less than in the summer season; and every month the 
moon, while in the perigee, raises greater tides than at the distance of fifteen 
days before or after, when it is in its apogee. From this it comes to pass that 
two highest tides do not follow one the other in two immediately succeeding 
syzygies. 

The effect of either luminary doth likewise depend upon its declination or 
distance from the equator; for if the luminary was placed at the pole, it would 
constantly attract all the parts of the waters without any intensification or 
remission of its action, and could cause no reciprocation of motion. And, there- 
fore, as the luminaries decline from the equator towards either pole they will, 
by degrees, lose their force, and on this account will excite lesser tides in the 
solstitial than in the equinoctial syzygies. But in the solstitial quadratures they 
will raise greater tides than in the quadratures about the equinoxes; because 
the force of the moon, then situated in the equator, most exceeds the force of 
the sun. Therefore the greatest tides occur in those syzygies, and the least in 
those quadratures, which happen about the time of both equinoxes; and the 
greatest tide in the syzygies is always succeeded by the least tide in the quad- 
ratures, as we find by experience. But, because the sun is less distant from the 
earth in winter than in summer, it comes to pass that the greatest and least 
tides more frequently appear before than after the vernal equinox, and more 
frequently after than before the autumnal. 

Moreover, the effects of the luminaries depend upon the latitudes of places. 
Let ApEP represent the earth covered with deep waters; C its centre; P, p its 
poles; AE the equator; F any place without the equator; F/ the parallel of the 

place; Dd the correspondent parallel on 
K N the other side of the equator; L the place 

of the moon three hours before; H the 
place of the earth directly under it; h the 
opposite place; K, k the places at 90 de- 

L grees distance; CH, Qh, the greatest heights 
of the sea from the centre of the earth; and 
CK, Ck its least heights: and if with the 
axes H/i, Kk, an ellipse is described, and 
by the revolution of that ellipse about its 
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longer axis H/i a spheroid WPKhpk is formed, this spheroid will nearly repre- 
sent the figure of the sea; and CF, C/, CD, Cd, will represent the heights of 
the sea in the places F/, Dd. But further; in the said revolution of the ellipse 
any point N describes the circle NM cutting the parallels F/, Dd, in any places 
RT, and the equator AE in S; CN will represent the height of the sea in all 
those places, R, S, T, situated in this circle. Therefore, in the diurnal revolution 
of any place F, the greatest flood will be in F, at the third hour after the ap- 
pulse of the moon to the meridian above the horizon; and afterwards the 
greatest ebb in Q, at the third hour after the setting of the moon; and then the 
greatest flood in /, at the third hour after the appulse of the moon to the merid- 
ian under the horizon; and, lastly, the greatest ebb in Q, at the third hour after 
the rising of the moon; and the latter flood in/ will be less than the preceding 
flood in F. For the whole sea is divided into two hemispherical floods, one in 
the hemisphere KH/r on the north side, the other in the opposite hemisphere 
~Khk, which we may therefore call the northern and the southern floods. These 
floods, being always opposite the one to the other, come by turns to the merid- 
ians of all places, after an interval of twelve lunar hours. And as the northern 
countries partake more of the northern flood, and the southern countries more 
of the southern flood, thence arise tides, alternately greater and less in all 
places without the equator, in which the luminaries rise and set. But the great- 
est tide will happen when the moon declines towards the vertex of the place, 
about the third hour after the appulse of the moon to the meridian above the 
horizon; and when the moon changes its declination to the other side of the 
equator, that which was the greater tide will be changed into a lesser. And the 
greatest difference of the floods will fall out about the times of the solstices; 
especially if the ascending node of the moon is about the first of Aries. So it is 
found by experience that the morning tides in winter exceed those of the eve- 
ning, and the evening tides in summer exceed those of the morning; at Plym- 
outh by the height of one foot, but at Bristol by the height of fifteen inches, 
according to the observations of Colepress and Sturmy. 

But the motions which we have been describing suffer some alteration from 
that force of reciprocation, which the waters, being once moved, retain a little 
while by their inertia. Whence it comes to pass that the tides may continue for 
some time, though the actions of the luminaries should cease. This power of 
retaining the impressed motion lessens the difference of the alternate tides, 
and makes those tides which immediately succeed after the syzygies greater, 
and those which follow next after the quadratures less. And hence it is that 
the alternate tides at Plymouth and Bristol do not differ much more from each 
other than by the height of a foot or fifteen inches, and that the greatest tides 
at those ports are not the first but the third after the syzygies. And, besides, 
all the motions are retarded in their passage through shallow channels, so that 
the greatest tides of all, in some straits and mouths of rivers, are the fourth or 
even the fifth after the syzygies. 

Further, it may happen that the tide may be propagated from the ocean 
through different channels towards the same port, and may pass quicker 
through some channels than through others; in which case the same tide, 
divided into two or more succeeding one another, may compound new motions 
of different kinds. Let us suppose two equal tides flowing towards the same 
port from different places, one preceding the other by six hours; and suppose 
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the first tide to happen at the third hour of the approach of the moon to the 
meridian of the port. If the moon at the time of the approach to the meridian 
was in the equator, every six hours alternately there would arise equal floods, 
which, meeting with as many equal ebbs, would so balance each other that for 
that day the water would stagnate and be quiet. If the moon then declined 
from the equator, the tides in the ocean would be alternately greater and less, 
as was said; and from thence two greater and two less tides would be alter- 
nately propagated towards that port. But the two greater floods would make 
the greatest height of the waters to fall out in the middle time between both; 
and the greater and less floods would make the waters to rise to a mean height 
in the middle time between them, and in the middle time between the two less 
floods the waters would rise to their least height. Thus in the space of twenty- 
four hours the waters would come, not twice, as commonly, but once only to 
their greatest, and once only to their least height; and their greatest height, if 
the moon declined towards the elevated pole, would happen at the sixth or 
thirtieth hour after the approach of the moon to the meridian; and when the 
moon changed its declination, this flood would be changed into an ebb. An 
example of this Dr. Halley has given us, from the observations of seamen in 
the port of Batshaw, in the kingdom of Tunquin, in the latitude of 20° 50/ 

north. In that port, on the day which follows after the passage of the moon 
over the equator, the waters stagnate: when the moon declines to the north, 
they begin to flow and ebb, not twice, as in other ports, but once only every 
day; and the flood happens at the setting, and the greatest ebb at the rising of 
the moon. This tide increases with the declination of the moon till the seventh 
or eighth day; then for the seven or eight days following it decreases at the 
same rate as it had increased, and ceases when the moon changes its declina- 
tion, crossing over the equator to the south. After which the flood is immedi- 
ately changed into an ebb; and thenceforth the ebb happens at the setting and 
the flood at the rising of the moon; till the moon, again passing the equator, 
changes its declination. There are two inlets to this port and the neighboring 
channels, one from the seas of China, between the continent and the island of 
Leuconia; the other from the Indian Sea, between the continent and the island 
of Borneo. But whether there be really two tides propagated through the said 
channels, one from the Indian Sea in the space of twelve hours, and one from 
the sea of China in the space of six hours, which therefore happening at the 
third and ninth lunar hours, by being compounded together, produce those 
motions; or whether there be any other circumstances in the state of those 
seas, I leave to be determined by observations on the neighboring shores. 

Thus I have explained the causes of the motions of the moon and of the sea. 
Now it is fit to subjoin something concerning the amount of those motions. 

Proposition 25. Problem 6 

To find the forces with which the sun disturbs the motions of the moon. 
Let S represent the sun, T the earth, P the moon, CADB the moon's orbit. 

In SP take SK equal to ST; and let SL be to SK as the square of SK to SP: 
draw LM parallel to PT; and if ST or SK is supposed to represent the accel- 
erated force of gravity of the earth towards the sun, SL will represent the 
accelerative force of gravity of the moon towards the sun. But that force is 
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compounded of the parts SM and LM, of which the force LM, and that part 
of SM which is represented by TM, disturb the motion of the moon, as we have 
shown in Prop. 66, Book i, and its Corollaries. Forasmuch as the earth and 
moon are revolved about their common centre of gravity, the motion of the 
earth about that centre will be also disturbed by the like forces; but we may 
consider the sums both of the forces 
and of the motions as in the moon, 
and represent the sum of the forces 
by the lines TM and ML, which are 
analogous to them both. The force s' 
ML (in its mean amount) is to the 
centripetal force by which the moon 
may be retained in its orbit revolv- 
ing about the earth at rest, at the 
distance PT, as the square of the ratio of the periodic time of the moon about 
the earth to the periodic time of the earth about the sun (by Cor. xvii, Prop. 
66, Book i); that is, as the square of 27d-7h-43in- to 365d-6h-9m-; or as 1000 
to 178725; or as 1 to 1782%o- But in Prop. 4 of this book we found that, if 
both earth and moon were revolved about their common centre of gravity, 
the mean distance of the one from the other would be nearly 603^ mean semi- 
diameters of the earth; and the force by which the moon may be kept revolving 
in its orbit about the earth at rest at the distance PT of 603^ semidiameters of 
the earth, is to the force by which it may be revolved in the same time, at the 
distance of 60 semidiameters, as 603^ is to 60: and this force is to the force of 
gravity with us very nearly as 1 is to 60 • 60. Therefore the mean force ML is 
to the force of gravity on the surface of our earth as 1 • 603^ to 60 • 60 • 60 • 
1782%o, or as 1 to 638092.6; hence, by the proportion of the lines TM, ML, 
the force TM is also given; and these are the forces with which the sun disturbs 
the motions of the moon. q.e.i. 

Proposition 26. Problem 7 
To find the hourly increment of the area which the moon, by a radius drawn to 
the earth, describes in a circular orbit. 

We have above shown that the area which the moon describes by a radius 
drawn to the earth is proportional to the time of description, excepting so far 
as the moon's motion is disturbed by the action of the sun; and here we propose 
to investigate the inequality of the moment, or hourly increment of that area or 
motion so disturbed. To render the calculus more easy, we shall suppose the 
orbit of the moon to be circular, and neglect all inequalities but that only 
which is now under consideration; and, because of the immense distance of the 
sun, we shall further suppose that the lines SP and ST are parallel. By this 
means, the force LM will be always reduced to its mean amount TP, as well as 
the force TM to its mean amount 3PK. These forces (by Cor. ii of the Laws of 
Motion) compose the force TL; and this force, by letting fall the perpendicular 
LE upon the radius TP, is resolved into the forces TE, EL; of which the force 
TE, acting constantly in the direction of the radius TP, neither accelerates nor 
retards the description of the area TPC made by that radius TP; but EL, 
acting on the radius TP in a perpendicular direction, accelerates or retards the 
description of the area in proportion as it accelerates or retards the moon. That 
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acceleration of the moon, in its passage from the quadrature C to the conjunc- 
tion A, is in every moment of time as the generating accelerative force EL, OT) T/" rpT{' 
that is, as —. Let the time be represented by the mean motion of the 

moon, or (which comes to the same thing) by the angle CTP, or even by the 
arc CP. At right angles upon CT erect CG equal to CT; and, supposing the 

quadrantal arc AC to be divided into an infinite number of equal parts Pp, 
&c., these parts may represent the like infinite number of the equal parts of 
time. Let fall pk perpendicular on CT, and draw TG meeting with KP, kp 
produced in F and/; then will FK be equal to TK, and K/r be to PK as Pp is to 
Tp, that is, in a given proportion; and therefore FK-K/r, or the area FKA/, 

3PK • TK will be as —pp—, that is, as EL; and, compounding, the whole area GCKF 

will vary as the sum of all the forces EL impressed upon the moon in the whole 
time CP; and therefore also as the velocity generated by that sum, that is, as 
the acceleration of the description of the area CTP, or as the increment of the 
moment thereof. The force by which the moon may in its periodic time CADB 
of 27d. 7h. 43m. be retained revolving about the earth at rest at the distance 
TP, would cause a body falling in the time CT to describe the length j^CT, 
and at the same time to acquire a velocity equal to that with which the moon 
is moved in its orbit. This appears from Cor. ix, Prop. 4, Book i. But since 
Kd, drawn perpendicular on TP, is hut a third part of EL, and equal to the half 
of TP, or ML, in the octants, the force EL in the octants, where it is greatest, 
will exceed the force ML in the ratio of 3 to 2; and therefore will be to that 
force by which the moon in its periodic time may be retained revolving about 
the earth at rest as 100 is to 178723^, or 11915; and in the time CT will 
generate a velocity equal to ttittt parts of the velocity of the moon; but in 
the time CPA will generate a greater velocity in the proportion of CA to CT 
or TP. Let the greatest EL force in the octants be represented by the area 
FK • K/r, or by the rectangle 3^TP • Pp, which is equal thereto; and the velocity 
which that greatest force can generate in any time CP will be to the velocity 
which any other lesser force EL can generate in the same time as the rectangle 
I^TP • CP to the area KCGF; but the velocities generated in the whole time 
CPA will be one to the other as the rectangle 34TP • CA is to the triangle TCG, 
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or as the quadrantal arc CA is to the radius TP; and therefore the latter 
velocity generated in the whole time will be ttittt parts of the velocity of the 
moon. To this velocity of the moon, which is proportional to the mean moment 
of the area (supposing this mean moment to be represented by the number 
11,915), we add and subtract the half of the other velocity; the sum 11,915+50, 
or 11,965, will represent the greatest moment of the area in the syzygy A; and 
the difference 11,915 - 50, or 11,865, the least moment thereof in the quadratures. 
Therefore the areas which in equal times are described in the syzygies and 
quadratures are one to the other as 11,965 to 11,865. And if to the least moment 
11,865 we add a moment which shall be to 100, the difference of the two former 
moments, as the trapezium FKCG is to the triangle TCG, or, which comes to 
the same thing, as the square of the sine PK is to the square of the radius TP 
(that is, as Pd to TP), the sum will represent the moment of the area when the 
moon is in any intermediate place P. 

But these things take place only in the hypothesis that the sun and the 
earth are at rest, and that the synodical revolution of the moon is finished in 
27d. 7h. 43m. But since the moon's synodical period is really 29d. 12h. 44m., the 
increments of the moments must be enlarged in the same proportion as the 
time is, that is, in the proportion of 1,080,853 to 1,000,000. Upon which account, 
the whole increment, which was rnrrT parts of the mean moment, will now 
become tttHts- parts thereof; and therefore the moment of the area in the quad- 
rature of the moon will be to the moment thereof in the syzygy as 11,023 — 50 to 
11,023+50; or as 10,973 to 11,073; and to the moment thereof, when the moon is 
in any intermediate place P, as 10,973 to 10,973+Pd; that is, supposing TP = 100. 

The area, therefore, which the moon, by a radius drawn to the earth, de- 
scribes in the several little equal parts of time, is nearly as the sum of the 
number 219.46, and the versed sine of the double distance of the moon from 
the nearest quadrature, considered in a circle which hath unity for its radius. 
Thus it is when the variation in the octants is in its mean quantity. But if the 
variation there is greater or less, that versed sine must be augmented or dimin- 
ished in the same proportion. 

Proposition 27. Problem 8 
From the hourly motion of the moon to find its distance from the earth. 

The area which the moon, by a radius drawn to the earth, describes in every 
moment of time, is as the hourly motion of the moon and the square of the 
distance of the moon from the earth conjointly. And therefore the distance of 
the moon from the earth varies directly as the square root of the area and 
inversely as the square root of the hourly motion, taken jointly. q.e.i. 

Cor. i. Hence the apparent diameter of the moon is given; for it is inversely 
as the distance of the moon from the earth. Let astronomers try how accu- 
rately this rule agrees with the phenomena. 

Cor. ii. Hence also the orbit of the moon may be more exactly defined from 
the phenomena than hitherto could be done. 

Proposition 28. Problem 9 
To find the diameters of the orbit, in which, without eccentricity, the moon would move. 

The curvature of the orbit which a body describes, if attracted in lines per- 
pendicular to the orbit, is directly as the force of attraction, and inversely as 



Book III: The System of the World 303 
the square of the velocity. I estimate the curvatures of lines compared one 
with another according to the evanescent ratio of the sines or tangents of their 
angles of contact to equal radii, supposing those radii to be infinitely dimin- 
ished. But the attraction of the moon towards the earth in the syzygies is the 
excess of its gravity towards the earth above the force of the sun 2PK (see 
Fig., Prop. 25), by which force the accelerative gravity of the moon towards 
the sun exceeds the accelerative gravity of the earth towards the sun or is 
exceeded by it. But in the quadratures that attraction is the sum of the gravity 
of the moon towards the earth, and the sun's force KT, by which the moon is 

AT+CT attracted towards the earth. And these attractions, putting N for   , 

are nearly as 178725 2000 , 178725 , and 7^^ + 1000 or as 178,725N-CT2 — 
AT2 CTN CT2 1 AT-N' 

2000AT2 • CT, and 178,725N • AT2+1000CT2-AT. For if the accelerative 
gravity of the moon towards the earth be represented by the number 178,725, 
the mean force ML, which in the quadratures is PT or TK, and draws the 
moon towards the earth, will be 1000, and the mean force TM in the syzygies 
will be 3000; from which, if we subtract the mean force ML, there will remain 
2000, the force by which the moon in the syzygies is drawn from the earth, 
and which we above called 2PK. But the velocity of the moon in the 
syzygies A and B is to its velocity in the quadratures C and D as CT is to 
AT, and as the moment of the area, which the moon by a radius drawn to 
the earth describes in the syzygies, is to the moment of that area described 
in the quadratures conjointly; that is, as 11,073CT is to 10,973AT. Take the 
square of this ratio inversely, and the former ratio directly, and the curvature 
of the moon's orbit in the syzygies will be to the curvature thereof in the 
quadratures as 120,406,729 • 178,725AT2 • CT2 • N -120,406,729 • 2000AT4 • CT is 
to 122,611,329 • 178,725AT2 • CT2 • N -f- 122,611,329 • 1000CT4 • AT, that is, as 
2,151,969AT • CT • N - 24,081AT3 is to 2,191,371 AT • CT • N+12,261CT3. 

Because the figure of the moon's orbit is unknown, let us, in its stead, assume 
the ellipse DBCA, in the centre of which we suppose the earth to be situated, 
and the greater axis DC to lie between the quadratures as the lesser AB be- 
tween the syzygies. But since the plane of this ellipse is revolved about the 

earth by an angular motion, and the orbit, 
whose curvature we now examine, should be 
described in a plane void of such motion, we 
are to consider the figure which the moon, while 
it is revolved in that ellipse, describes in this 
plane, that is to say, the figure Cpa, the several 
points p of which are found by assuming any 
point P in the ellipse, which may represent the 
place of the moon, and drawing Tp equal to TP 
in such manner that the angle PTp may be equal 
to the apparent motion of the sun from the time 
of the last quadrature in C; or (which comes to 
the same thing) that the angle CTp may be to 
the angle CTP as the time of the synodic rev- 
olution of the moon to the time of the periodic 
revolution thereof, or as 29d. 12h. 44m. to 27d. 
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7h. 43m. If, therefore, in this proportion we take the angle CTa to the right 
angle CTA, and make Ta of equal length with TA, we shall have a the lower 
and C the upper apse of this orbit Cpa. But, by computation, I find that the 
difference between the curvature of this orbit Cpa at the vertex a, and the 
curvature of a circle described about the centre T with the interval TA, is to 
the difference between the curvature of the ellipse at the vertex A, and the cur- 
vature of the same circle, as the square of the ratio of the angle CTP to the 
angle CTp; and that the curvature of the ellipse in A is to the curvature of 
that circle as the square of the ratio of TA is to TC; and the curvature of that 
circle is to the curvature of a circle described about the centre T with the 
radius TC as TC is to TA; but that the curvature of this last arch is to the 
curvature of the ellipse in C as the square of the ratio of TA is to TC; and 
that the difference between the curvature of the ellipse in the vertex C, and 
the curvature of this last circle, is to the difference between the curvature of 
the figure Tpa, at the vertex C, and the curvature of this same last circle, as 
the square of the ratio of the angle CTp to the angle CTP. All these relations 
are easily derived from the sines of the angles of contact, and of the differences 
of those angles. But, by comparing those ratios, we find the curvature of the 
figure Cpa at a to be to its curvature at C as AT3 —rtnnnnr CT2-AT is to 
CT3+-nnnnny AT2-CT; where the number rinnnnr represents the difference of 
the squares of the angles CTP and CTp, divided by the square of the lesser 
angle CTP; or (which is all one) the difference of the squares of the times 27d. 
7h. 43m. and 29d. 12h. 44m. divided by the square of the time 27d. 7h. 43m. 

Since, therefore, a represents the syzygy of the moon, and C its quadrature, 
the ratio now found must be the same as the ratio of the curvature of the 
moon's orb in the syzygies to the curvature thereof in the quadratures, which 
we found above. Therefore, in order to find the ratio of CT to AT, let us 
multiply the extremes and the means of the resulting proportion, and the 
terms which come out, divided by AT-CT, yield the following equation: 
2062.79CT4 - 2,151,969N • CT3 + 368,676N • AT • CT2 + 36,342AT2 • CT2- 
362,047N • AT2 • CT + 2,191,371N • AT3 + 4051.4AT4 = 0. Now if for the half 
sum N of the terms AT and CT we put 1, and x for their half difference, 
then CT will be = 1+a:, and AT — 1 — x. And substituting those values in the 
equation, after resolving thereof, we shall find a; = 0.00719; and from thence 
the semidiameter CT = 1.00719, and the semidiameter AT = 0.99281, which 
numbers are nearly as 70^24, and 69^4. Therefore the moon's distance from 
the earth in the syzygies is to its distance in the quadratures (setting aside 
the consideration of eccentricity) as 69/4i to 70/4*; or, in round numbers, as 
69 to 70. Proposition 29. Problem 10 

To find the variation of the moon. 
This inequality is due partly to the elliptic figure of the moon's orbit, partly 

to the inequality of the moments of the area which the moon by a radius 
drawn to the earth describes. If the moon P revolved in the ellipse DBCA 
about the earth quiescent in the centre of the ellipse, and by the radius TP, 
drawn to the earth, described the area CTP, proportional to the time of de- 
scription; and the greatest semidiameter CT of the ellipse was to the least TA 
as 70 to 69; the tangent of the angle CTP would be to the tangent of the angle 
of the mean motion, computed from the quadrature C, as the semidiameter 
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TA of the ellipse to its semidiameter TC, or as 69 to 70. But the description of 
the area CTP as the moon advances from the quadrature to the syzygy, ought 
to be in such manner accelerated, that the moment of the area in the moon's 
syzygy may be to the moment thereof in its quadrature as 11,073 to 10,973; and 
that the excess of the moment in any intermediate place P above the moment 
in the quadrature may be as the square of the sine of the angle CTP; which we 
may effect with accuracy enough, if we diminish the tangent of the angle CTP 
in the ratio obtained from the square root of the ratio of the number 10,973 to 
the number 11,073, that is, in the ratio of the number 68.6877 to the number 
69. On this account the tangent of the angle CTP will now be to the tangent of 
the mean motion as 68.6877 is to 70; and the angle CTP in the octants, where 
the mean motion is 45°, will be found 44° 27' 28", which subtracted from 45°, 
the angle of the mean motion, leaves the greatest variation 32' 32". Thus it 
would be, if the moon, in passing from the quadrature to the syzygy, described 
an angle CTA of 90° only. But because of the motion of the earth, by which the 
sun is apparently transferred forwards, the moon, before it overtakes the sun, 
describes an angle CTa, greater than a right angle, in the ratio of the time of 
the synodic revolution of the moon to the time of its periodic revolution, that 
is, in the ratio of 29d. 12h. 44m. to 27d. 7h. 43m. Whence it comes to pass that all 
the angles about the centre T are dilated in the same ratio; and the greatest 
variation, which otherwise would be hut 32' 32", now augmented in the said 
proportion, becomes 35' 10". 

And this is its magnitude in the mean distance of the sun from the earth, 
neglecting the differences which may arise from the curvature of the great 
orbit, and the stronger action of the sun upon the moon when horned and new, 
than when gibbous and full. In other distances of the sun from the earth, the 
greatest variation is in a ratio compounded, directly of the square of the ratio 
of the time of the synodic revolution of the moon (the time of the year being 
given), and inversely as the cube of the ratio of the distance of the sun from 
the earth. And, therefore, in the apogee of the sun, the greatest variation is 
33' 14", and in its perigee 37' 11", if the eccentricity of the sun is to the trans- 
verse semidiameter of the great orbit as Ib1^ to 1000. 

Hitherto we have investigated the variation in an orbit not eccentric, in 
which, to wit, the moon in its octants is always in its mean distance from the 
earth. If the moon, on account of its eccentricity, is more or less removed from 
the earth than if placed in this orbit, the variation may be something greater, 
or something less, than according to this rule. But I leave the excess or defect 
to the determination of astronomers from the phenomena. 

Proposition 30. Problem 11 
To find the hourly motion of the nodes of the moon in a circular orbit. 

Let S represent the sun, T the earth, P the moon, NPn the orbit of the moon, 
Npn the orthographic projection of the orbit upon the plane of the ecliptic; 
N, n the nodes, nTNm the line of the nodes produced indefinitely; PI, PK 
perpendiculars upon the lines ST, Qg; Pp a perpendicular upon the plane of 
the ecliptic; A, B the moon's syzygies in the plane of the ecliptic; AZ a perpen- 
dicular let fall upon Nn, the line of the nodes; Q, q the quadratures of the moon 
in the plane of the ecliptic, and pK a perpendicular on the line Qg lying be- 
tween the quadratures. The force of the sun to disturb the motion of the moon 
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(by Prop. 25) is twofold, one proportional to the line LM, the other to the line 
MT, in the scheme of that Proposition; and the moon by the former force is 
drawn towards the earth, by the latter towards the sun, in a direction parallel 
to the right line ST joining the earth and the sun. The former force LM acts in 
the direction of the plane of the moon's orbit, and therefore makes no change 
upon the situation thereof, and is upon that account to be neglected; the latter 
force MT, by which the plane of the moon's orbit is disturbed, is the same with 
the force 3PK or 3IT. And this force (by Prop. 25) is to the force by which the 
moon may, in its periodic times, be uniformly revolved in a circle about the 
earth at rest, as SIT to the radius of the circle multiplied by the number 
178.725, or as IT to the radius thereof multiplied by 59.575. But in this cal- 
culus, and all that follows, I consider all the lines drawn from the moon to the 
sun as parallel to the line which joins the earth and the sun; because what 
inclination there is almost as much diminishes all effects in some cases as it 
augments them in others; and we are now inquiring after the mean motions 
of the nodes, neglecting such niceties as are of no moment and would only serve 
to render the calculus more complicated. 

Now suppose PM to represent an arc which the moon describes in the least 
moment of time, and ML a little line, the half of which the moon, by the im- 
pulse of the said force 3IT, would describe in the same time; and joining PL, 
MP, let them be produced to m and I, where they cut the plane of the ecliptic, 
and upon Tm let fall the perpendicular PH. Now, since the right line ML is 
parallel to the plane of the ecliptic, and therefore can never meet with the right 
line ml which lies in that plane, and yet both those right lines lie in one common 
plane LMPmZ, they will be parallel, and upon that account the triangles LMP, 
ImP will be similar. And seeing MPm lies in the plane of the orbit, in which the 
moon did move while in the place P, the point m will fall upon the line Nn, 
which passes through the nodes N, n, of that orbit. And because the force by 
which the half of the little line LM is generated, if the whole had been together, 
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and at once impressed in the point P, would have generated that whole line, 
and caused the moon to move in the arc whose chord is LP; that is to say, 
would have transferred the moon from the plane MPmT into the plane LPIT; 
therefore the angular motion of the nodes generated by that force will be equal 
to the angle mTL But ml is to mP as ML to MP; and since MP, because of the 
time given, is also given, ml will be as the rectangle ML-mP, that is, as the 

iwl 
rectangle IT • mP. And if Tml is a right angle, the angle mTl will be as and 

IT* * Ptti therefore as —7^ , that is (because Tm and mP, TP and PH are propor- Im 
IT • PH tional), as —r^p ; and, therefore, because TP is given, as IT-PH. But if the 

angle Tml or STN is oblique, the angle mTl will be yet less, in proportion of the 
sine of the angle STN to the radius, or AZ to AT. And therefore the velocity 
of the nodes is as IT • PH • AZ, or as the product of the sines of the three angles 
TPI, PTN, and STN. 

If these are right angles, as happens when the nodes are in the quadratures, 
and the moon in the syzygy, the little line ml will be removed to an infinite 
distance, and the angle mTl will become equal to the angle mTL But in this 
case the angle mPl is to the angle PTM, which the moon in the same time by 
its apparent motion describes about the earth, as 1 to 59.575. For the angle 
mTl is equal to the angle LPM, that is, to the angle of the moon's deflection 
from a rectilinear path; which angle, if the gravity of the moon should have 
then ceased, the said force of the sun BIT would by itself have generated in 
that given time; and the angle PTM is equal to the angle of the moon's deflec- 
tion from a rectilinear path; which angle, if the force of the sun BIT should 
have then ceased, the force alone by which the moon is retained in its orbit 
would have generated in the same time. And these forces (as we have above 
shown) are the one to the other as 1 to 59.575. Since, therefore, the mean 
hourly motion of the moon (in respect of the fixed stars) is 32m 56s 27th 123^iv 

the hourly motion of the node in this case will be 33 s 10th 33iv 12v. But in other 
cases the hourly motion will be to 33s 10th 33iv 12v as the product of the sines 
of the three angles TPI, PTN, and STN (or of the distances of the moon from 
the quadrature, of the moon from the node, and of the node from the sun) to 
the cube of the radius. And as often as the sine of any angle is changed from 
positive to negative, and from negative to positive, so often must the regressive 
be changed into a progressive, and the progressive into a regressive motion. 
Whence it comes to pass that the nodes are progressive as often as the moon 
happens to be placed between either quadrature, and the node nearest to that 
quadrature. In other cases they are regressive, and by the excess of the regress 
above the progress, they are monthly transferred backwards. 

Cor. 1. Hence if from P and M, the extreme points of a least arc PM, on the 
line Qq joining the quadratures we let fall the perpendiculars PK, Mk, and 
produce the same till they cut the line of the nodes Nn in D and d, the hourly 
motion of the nodes will be as the area MPDd, and the square of the line AZ, 
conjointly. For let PK, PH, and AZ be the three said sines, viz., PK the sine 
of the distance of the moon from the quadrature, PH the sine of the distance 
of the moon from the node, and AZ the sine of the distance of the node from 
the sun; and the velocity of the node will be as the product PK-PH-AZ. But 
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PT is to PK as PM to K/r; and, therefore, because PT and PM are given, KA* 
will be as PK. Likewise AT is to PD as AZ is to PH, and therefore PH is as the 
rectangle PD-AZ; and, by compounding those proportions, PK-PH is as the 
solid content K/c-PD-AZ, and PK-PH-AZ as KA*-PD-AZ2; that is, as the 
area PDdM and AZ2 conjointly. q.e.d. 

Cor. ii. In any given position of the nodes their mean hourly motion is half 
their hourly motion in the moon's syzygies; and therefore is to 16s 35th 16iv36v as 
the square of the sine of the distance of the nodes from the syzygies is to the 
square of the radius, or as AZ2 to AT2. For if the moon, by an uniform motion, 
describes the semicircle QAg, the sum of all the areas PDdM, during the time 
of the moon's passage from Q to M, will make up the area QMdE, terminating 
at the tangent QE of the circle; and by the time that the moon has arrived at 
the point n, that sum will make up the whole area EQAn described by the line 
PD: but when the moon proceeds from n to g, the line PD will fall without the 
circle, and describe the area nqe, terminating at the tangent qe of the circle, 
which area, because the nodes were before regressive, but are now progressive, 
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must be subtracted from the former area, and, being itself equal to the area 
QEN, will leave the semicircle NQAn. While, therefore, the moon describes a 
semicircle, the sum of all the areas PDdM will be the area of that semicircle; 
and while the moon describes a complete circle, the sum of those areas will be 
the area of the whole circle. But the area PDdM, when the moon is in the syzy- 
gies, is the rectangle of the arc PM into the radius PT; and the sum of all the 
areas, every one equal to this area, in the time that the moon describes a com- 
plete circle, is the rectangle of the whole circumference into the radius of the 
circle; and this rectangle, being double the area of the circle, will be double the 
former sum. If, therefore, the nodes went on with that velocity uniformly con- 
tinued which they acquire in the moon's syzygies, they would describe a space 
double that which they describe in fact; and, therefore, the mean motion, by 
which, if uniformly continued, they would describe the same space with that 
which they do in fact describe by an unequal motion, is hut one-half of that 
motion which they are possessed of in the moon's syzygies. Wherefore, since 
their greatest hourly motion, if the nodes are in the quadratures, is 33s 10th 

33iv 12v, their mean hourly motion in this case will be 16s 35th 16iv 36v. And 
seeing the hourly motion of the nodes is everywhere as AZ2 and the area PDdM 
conjointly, and, therefore, in the moon's syzygies, the hourly motion of the 
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nodes is as AZ2 and the area PDdM conjointly, that is (because the area 
PDdM described in the syzygies is given), as AZ2, therefore the mean motion 
also will be as AZ2; and, therefore, when the nodes are without the quadra- 
tures, this motion will be to 16s 35th 16iv 36v as AZ2 to AT2. q.e.d. 

Proposition 31. Problem 12 
To find the hourly motion of the nodes of the moon in an elliptic orbit. 

Let Qpmaq represent an ellipse described with the greater axis Qg and the 
less axis ah; QAgB a circle circumscribed; T the earth in the common centre of 
both; S the sun; p the moon moving in this ellipse; and pm an arc which it 
describes in the least moment of time; N and n the nodes joined by the line 
Nn; pK and mk perpendiculars upon the axis Qg, produced both ways till they 
meet the circle in P and M, and the line of the nodes in D and d. And if the 
moon, by a radius drawn to the earth, describes an area proportional to the 
time of description, the hourly motion of the node in the ellipse will be as the 
area pDdm and AZ2 conjointly. 

For let PF touch the circle in P, and produced meet TN in F; and pf touch 
the ellipse in p, and produced meet the same TN in/, and both tangents concur 
in the axis TQ at Y; and let ML represent the space which the moon, by the 
impulse of the above-mentioned force 3IT or 3PK, would describe with a 
transverse motion, in the meantime while revolving in the circle it describes 
the arc PM; and ml denote the space which the moon revolving in the ellipse 
would describe in the same time by the impulse of the same force 3IT or 3PK; 
and let LP and Ip be produced till they meet the plane of the ecliptic in G and gy 
and FG and fg be joined, of which FG produced may cut pf, pg, and TQ, in 

L 
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c, e, and R respectively; and fg produced may cut TQ in r. Because the force 
BIT or 3PK in the circle is to the force BIT or 3pK in the ellipse as PK to pK, 
or as AT to aT, the space ML generated by the former force will be to the 
space ml generated by the latter as PK to pK; tliat is, because of the similar 
figures PYKp and FYRc, as FR to cR. But (because of the similar triangles 
PLM, PGF) ML is to FG as PL is to PG, that is (on account of the parallels 
LA*, PK, GR), as pi is to pe, that is (because of the similar triangles plm, cpe), 
as Im is to ce; and inversely as LM is to Im, or as FR is to cR, so is FG to ce. 
And therefore if fg was to ce as/p to cY, that is, as/r to cR (that is, as/r to FR 
and FR to cR conjointly, that is, as/T to FT, and FG to ce conjointly), because 
the ratio of FG to ce, expunged on both sides, leaves the ratios fg to FG and 
/T to FT, fg would be to FG as/T to FT; and, therefore, the angles which FG 
and fg would subtend at the earth T would be equal to each other. But these 
angles (by what we have shown in the preceding Proposition) are the motions 
of the nodes, while the moon describes in the circle the arc PM, in the ellipse 
the arc pm; and therefore the motions of the nodes in the circle and in the 
ellipse would be equal to each other. Thus, I say, it would be, if fg was to ce as 

C6 • /Y to cY, that is, if fg was equal to ^ . But because of the similar triangles 

C6 • fj) fgp, cep, fg is to ce as fp to cp; and therefore fg is equal to ——; and therefore 
cp 

the angle which fg subtends in fact is to the former angle which FG subtends, 
that is to say, the motion of the nodes in the ellipse is to the motion of the 

C€ • fj) C6 • fY same in the circle as this fg or ^ to the former fg or ^ , that is, as/p-cY 

to fY -cp, or as fp to fY, and cY to cp; that is, if ph parallel to TN meet FP in 
h, as ¥h to FY and FY to FP; that is, as ¥h to FP or Dp to DP, and therefore 
as the area Dpmd to the area DPMd. And, therefore, seeing (by Cor. i, Prop. 
30) the latter area and AZ2 conjointly are proportional to the hourly motion of 
the nodes in the circle, the former area and AZ2 conjointly will be proportional 
to the hourly motion of the nodes in the ellipse. q.e.d. 

Cor. Since, therefore, in any given position of the nodes, the sum of all the 
areas pDdm, in the time while the moon is carried from the quadrature to any 
place m, is the area mpQEd terminated at the tangent of the ellipse QE; and the 
sum of all those areas, in one entire revolution, is the area of the whole ellipse; 
the mean motion of the nodes in the ellipse will be to the mean motion of the 
nodes in the circle as the ellipse to the circle; that is, as Ta to TA, or 69 to 70. 
And, therefore, since (by Cor. n, Prop. 30) the mean hourly motion of the nodes 
in the circle is to 16s 35th (16iv 36v as AZ2 to AT2, if we take the angle 16® 21th 3iv 

30v to the angle 16s 35th 16iv 36v as 69 to 70, the mean hourly motion of the nodes 
in the ellipses will be to 16s 21th 3iv 30v as AZ2 to AT2; that is, as the square of 
the sine of the distance of the node from the sun to the square of the radius. 

But the moon, by a radius drawn to the earth, describes the area in the 
syzygies with a greater velocity than it does that in the quadratures, and upon 
that account the time is contracted in the syzygies, and prolonged in the quad- 
ratures; and together with the time the motion of the nodes is likewise aug- 
mented or diminished. But the moment of the area in the quadratures of the 
moon was to the moment thereof in the syzygies as 10,973 to 11,073; and there- 
fore the mean moment in the octants is to the excess in the syzygies, and to the 
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defect in the quadratures, as 11,023, the half-sum of those numbers, is to their 
half-difference 50. Wherefore, since the time of the moon in the several little 
equal parts of its orbit is inversely as its velocity, the mean time in the octants 
will be to the excess of the time in the quadratures, and to the defect of the 
time in the syzygies arising from this cause, nearly as 11,023 to 50. But, reckon- 
ing from the quadratures to the syzygies, I find that the excess of the moments 
of the area, in the several places above the least moment in the quadratures, 
is nearly as the square of the sine of the moon's distance from the quadratures; 
and therefore the difference between the moment in any place, and the mean 
moment in the octants, is as the difference between the square of the sine of 
the moon's distance from the quadratures, and the square of the sine of 45 
degrees, or half the square of the radius; and the increment of the time in the 
several places between the octants and quadratures, and the decrement thereof 
between the octants and syzygies, is in the same proportion. But the motion of 
the nodes, while the moon describes the several little equal parts of its orbit, 
is accelerated or retarded as the square of the time; for that motion, while the 
moon describes PM, is (other things being equal) as ML, and ML varies as the 
square of the time. Wherefore, the motion of the nodes in the syzygies, in the 
time while the moon describes given little parts of its orbit, is diminished as 
the square of the ratio of the number 11,073 to the number 11,023; and the 
decrement is to the remaining motion as 100 to 10,973; but to the whole motion 
is as 100 to 11,073, nearly. But the decrement in the places between the octants 
and syzygies, and the increment in the places between the octants and quad- 
ratures, is to this decrement nearly as the whole motion in these places to the 
whole motion in the syzygies, and the difference between the square of the 
sine of the moon's distance from the quadrature, and the half-square of the 
radius, is to the half-square of the radius conjointly. Wherefore, if the nodes 
are in the quadratures, and we take two places, one on one side, one on the 
other, equally distant from the octant and other two distant by the same inter- 
val, one from the syzygy, the other from the quadrature, and from the decre- 
ments of the motions in the two places between the syzygy and octant we 
subtract the increments of the motions in the two other places between the 
octant and the quadrature, the remaining decrement will be equal to the decre- 
ment in the syzygy, as will easily appear by computation; and therefore the 
mean decrement, which ought to be subtracted from the mean motion of the 
nodes, is the fourth part of the decrement in the syzygy. The whole hourly 
motion of the nodes in the syzygies (when the moon by a radius drawn to the 
earth was supposed to describe an area proportional to the time) was 32s 42th 

7iv. And we have shown that the decrement of the motion of the nodes, in the 
time while the moon, now moving with greater velocity, describes the same 
space, was to this motion as 100 to 11,073; and therefore this decrement is 17th 

431V llv. The fourth part of which 4th 25iv 48v subtracted from the mean hourly 
motion above found, 16s 21th 31V 30v, leaves 16s 16th 37iv 42v, their correct mean 
hourly motion. 

If the nodes are without the quadratures, and two places are considered, 
one on one side, one on the other, equally distant from the syzygies, the sum 
of the motions of the nodes, when the moon is in those places, will be to the 
sum of their motions, when the moon is in the same places and the nodes in the 
quadratures, as AZ2 to AT2. And the decrements of the motions arising from 
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the causes but now explained will be mutually as the motions themselves, and 
therefore the remaining motions will be mutually between themselves as AZ2 

to AT2; and the mean motions will be as the remaining motions. And, therefore, 
in any given position of the nodes, their correct mean hourly motion is to 168 

16th 37iv 42v as AZ2 to AT2; that is, as the square of the sine of the distance of 
the nodes from the syzygies to the square of the radius. 

Proposition 32. Problem 13 
To find the mean motion of the nodes of the moon. 

The yearly mean motion is the sum of all the mean hourly motions through- 
out the course of the year. Suppose that the node is in N, and that, after every 
hour is elapsed, it is drawn back again to its former place; so that, notwith- 
standing its proper motion, it may constantly remain in the same situation 
with respect to the fixed stars; while in the meantime the sun S, by the motion 
of the earth, is seen to leave the node, and to proceed till it completes its ap- 
parent annual course by an uniform motion. Let Aa represent a given least arc, 
which the right line TS always drawn to the sun, by its intersection with the 
circle NAn, describes in the least given moment of time; and the mean hourly 
motion (from what we have above shown) will be as AZ2, that is (because AZ 
and ZY are proportional), as the rectangle of AZ into ZY, that is, as the area 
AZYa; and the sum of all the mean hourly motions from the beginning will be 
as the sum of all the areas aYZA, that is, as the area NAZ. But the greatest 
AZYa is equal to the rectangle of the arc Aa into the radius of the circle; and 
therefore the sum of all these rectangles in the whole circle will be to the like 
sum of all the greatest rectangles as the area of the whole circle to the rectangle 
of the whole circumference into the radius, that is, as 1 to 2. But the hourly 
motion corresponding to that greatest rectangle was 16s 16th 37iv 42v and this 
motion in the complete course of the sidereal year, 365d. 6h. 9s., amounts to 
39° 3S' 1" 50//,; and therefore the half thereof, 19° 49' 3" 55,,/, is the mean 
motion of the nodes corresponding to the whole circle. And the motion of the 
nodes, in the time while the sun is carried from N to A, is to 19° 49' 3" 55,/, as 
the area NAZ to the whole circle. 

Thus it would be if the node was after every hour drawn back again to its 
former place, that so, after a complete revolution, the sun at the year's end 
would be found again in the same node which it had left when the year began. 
But, because of the motion of the node in the meantime, the sun must needs 
meet the node sooner; and now it remains that we compute the abbreviation 
of the time. Since, then, the sun, in the course of the year, travels 360 degrees, 
and the node in the same time by its greatest motion would be carried 39° 38' 
1" 50//,, or 39.6355 degrees; and the mean motion of the node in any place N 
is to its mean motion in its quadratures as AZ2 to AT2; the motion of the sun 
will be to the motion of the node in N as 360 AT2 to 39.6355AZ2; that is, as 
9.0827646AT2 to AZ2. Therefore, if we suppose the circumference NAn of the 
whole circle to be divided into little equal parts, such as Aa, the time in which 
the sun would describe the little arc Aa, if the circle was quiescent, will be to 
the time in which it would describe the same arc, supposing the circle together 
with the nodes to be revolved about the centre T, inversely as 9.0827646AT2 

to 9.0827646AT2+AZ2; for the time is inversely as the velocity with which the 
little arc is described, and this velocity is the sum of the velocities of both sun 
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and node. If, therefore, the sector NTA represent the time in which the sun by 
itself, without the motion of the node, would describe the arc NA, and the 
indefinitely small part ATa of the sector represent the little moment of the 

if the curve NdGn is the locus where the point d is always found, the curvi- 
linear area NdZ will be as the whole decrement 0/ time while the whole arc 
NA is described; and, therefore, the excess of the sector NAT above the area 
NdZ will be as the whole time. But because the motion of the node in a less 
time is less in proportion to the time, the area AaYZ must also be diminished 
in the same proportion; which may be done by taking in AZ the line eZ of 
such length, that it may be to the length of AZ as AZ2 to 9.0827646AT2+AZ2; 
for so the rectangle of eZ into ZY will be to the area AZYa as the decrement 
of the time in which the arc Aa is described to the whole time in which it would 
have been described, if the node had been quiescent; and, therefore, that rec- 
tangle will be as the decrement of the motion of the node. And if the curve 
NcFn is the locus of the point e, the whole area NeZ, which is the sum of all 
the decrements 0} that motion, will be as the whole decrement thereof during 
the time in which the arc AN is described; and the remaining area NAe will be 
as the remaining motion, which is the true motion of the node, during the time 
in which the whole arc NA is described by the joint motions of both sun and 
node. Now the area of the semicircle is to the area of the figure NeFn found 
by the method of infinite series nearly as 793 to 60. But the motion correspond- 
ing or proportional to the whole circle was 19° 49' 3" 55'"; and therefore the 
motion corresponding to double the figure NeFn is 1° 29' 58" 2'", which taken 
from the former motion leaves 18° 19' 5" 53'", the whole motion of the node 
with respect to the fixed stars in the interval between two of its conjunctions 
with the sun; and this motion subtracted from the annual motion of the sun, 
360°, leaves 341° 40/ 54,, 7'", the motion of the sun in the interval between 
the same conjunctions. But as this motion is to the annual motion 360°, so is 
the motion of the node but just now found 18° 19' 5" 53'" to its annual mo- 
tion, which will therefore be 19° 18' 1" 23'"; and this is the mean motion of 
the nodes in the sidereal year. By astronomical tables, it is 19° 21' 21,, 50/,,. 
The difference is less than 3^0 part of the whole motion, and seems to arise 
from the eccentricity of the moon's orbit, and its inclination to the plane of the 
ecliptic. By the eccentricity of this orbit the motion of the nodes is too much 
accelerated; and, on the other hand, by the inclination of the orbit, the motion 
of the nodes is somewhat retarded, and reduced to its just velocity. 

N time in which it would describe 
the least arc Aa; and (letting fall 
aY perpendicular upon Nn) if in 
AZ we take dZ of such length that 
the rectangle of dZ into ZY may be 
to the least part ATa of the sector 
as AZ2 to 9.0827646AT2+AZ2; that 
is to say, that dZ may be to 3^AZ 
as AT2 to 9.0827646AT2+AZ2; the 
rectangle of dZ into ZY will repre- 
sent the decrement of the time 
arising from the motion of the node, 
while the arc Aa is described; and 
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Proposition 33. Problem 14 
To find the true motion of the nodes of the moon. 

In the time which is as the area NTA —Nc?Z (in the preceding Fig.) that 
motion is as the area NAe, and hence is given; but because the calculus is too 
difficult, it will be better to use the following construction of the Problem. 
About the centre C, with any radius CD, describe the circle BEFD; produce 
DC to A so as AB may be to AC as the mean motion to half the mean true 
motion when the nodes are in their quadratures (that is, as 19° IS' l" 23/// to 
19° 49' 3" and therefore BC is to AC as the difference of those motions 
0° 31/ 2,/ 32/,/ to the latter motion 19° 49' 3" 55"', that is, as 1 to 38%)) • Then 
through the point D draw the 
indefinite li ne G#, touching the G e 
circle in D; and if we take the 
angle BCE, or BCF, equal to 
the double distance of the sun 
from the place of the node, as 
found by the mean motion, and 
drawing AE or AF cutting the 
perpendicular DG in G, we 
take another angle which shall be to the whole motion of the node in the interval 
between its syzygies (that is, to 9° 11' 3") as the tangent DG to the whole 
circumference of the circle BED, and add this last angle (for which the angle 
DAG may be used) to the mean motion of the nodes, while they are passing from 
the quadratures to the syzygies, and subtract it from their mean motion while 
they are passing from the syzygies to the quadratures, we shall have their true 
motion; for the true motion so found will nearly agree with the true motion 
which comes out from assuming the times as the area NTA —NdZ, and the mo- 
tion of the node as the area NAc; as anyone who chooses to examine and make 
the computations will find: and this is the semimenstrual equation of the mo- 
tion of the nodes. But there is also a menstrual equation, but which is by no 
means necessary for finding of the moon's latitude; for since the variation of 
the inclination of the moon's orbit to the plane of the ecliptic is liable to a 
twofold inequality, the one semimenstrual, the other menstrual, the menstrual 
inequality of this variation, and the menstrual equation of the nodes, so mod- 
erate and correct each other, that in computing the latitude of the moon both 
may be neglected. 

Cor. From this and the preceding Proposition it appears that the nodes are 
quiescent in their syzygies, but regressive in their quadratures, by an hourly 
motion of 16s 19th 26iv; and that the equation of the motion of the nodes in 
the octants is 1° 30'; all of which exactly agree with the phenomena of the 
heavens. 

Scholium 
Mr. Machin, Professor Gresham, and Dr. Henry Pemberton, separately 

found out the motion of the nodes by a different method. Mention has been 
made of this method in another place. Their papers, which I have seen, con- 
tained two Propositions, and exactly agreed with each other in both of them. 
Mr. Machin's paper, coming first to my hands, I shall here insert. 



THE MOTION OF THE MOON'S NODES 

^Proposition 1 

"The mean motion of the sun from the node is defined by a geometric mean pro- 
portional between the mean motion of the sun and that mean motion with which the 
sun recedes with the greatest swiftness from the node in the quadratures. 

"Let T be the earth's place, Nn the line of the moon's nodes at any given 
time, KTM a perpendicular thereto, TA a right line revolving about the centre 
with the same angular velocity with which the sun and the node recede from 
each other, in such sort that the angle between the quiescent right line Nn and 
the revolving line TA may be always equal to the distance of the places of the 
sun and node. Now if any right line TK be divided into parts TS and SK, and 
those parts be taken as the mean hourly motion of the sun to the mean hourly 
motion of the node in the quadratures, and there be taken the right line TH, 
a mean proportional between the part TS and the whole TK, this right line will 
be proportional to the sun's mean motion from the node. 

"For let there be described the circle NKnM from the centre T and with the 
radius TK, and about the same centre, with the semiaxes TH and TN, let 
there be described an ellipse NHnL; and in the time in which the sun recedes 
from the node through the arc Na, if there be drawn the right line T6a, the area 
of the sector NTa will be the exponent of the sum of the motions of the sun and 
node in the same time. Let, therefore, the extremely small arc aA be that which 
the right line T6a, revolving according to the aforesaid law, will uniformly 
describe in a given interval of time, and the extremely small sector TAa will be 
as the sum of the velocities with which the sun and node are carried two differ- 
ent ways in that time. Now the sun's velocity is almost uniform, its inequality 
being so small as scarcely to produce the least inequality in the mean motion 
of the nodes. The other part of this sum, namely, the mean quantity of the 
velocity of the node, is increased in the recess from the syzygies in a squared 
ratio of the sine of its distance from the sun (by Cor., Prop. 31 of this book), 
and, being greatest in its quadratures with the sun in K, is in the same ratio to 
the sun's velocity as SK to TS, that is, as (the difference of the squares of TK 
and TH, or) the rectangle KHM to TH2. But the ellipse NBH divides the 
sector ATa, the exponent of the sum of these two velocities, into two parts 
AB6a and BT6, proportional to the velocities. For, produce BT to the circle in 
(3, and from the point B let fall upon the greater axis the perpendicular BG, 
which being produced both ways may meet the circle in the points F and /; and 
because the space AB6a is to the sector TB?> as the rectangle AB/3 is to BT2 

(that rectangle being equal to the difference of the squares of TA and TB, be- 
cause the right line A/3 is equally cut in T, and unequally in B), therefore when 
the space AB6a is the greatest of all in K, this ratio will be the same as the ratio 
of the rectangle KHM to HT2. But the greatest mean velocity of the node was 
shown above to be in that very ratio to the velocity of the sun; and therefore in 
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the quadratures the sector ATa is 
divided into parts proportional to the 
velocities. And because the rectangle 
KHM is to HT2 as FB/ to BG2, and 
the rectangle ABjS is equal to the rec- 
tangle FB/, therefore the little area 
AB6a, where it is greatest, is to the 
remaining sector TB6 as the rectangle 
AB/S is to BG2. But the ratio of these 
little areas always was as the rectangle 
ABjS to BT2; and therefore the little 
area AB6a in the place A is less than 
its correspondent little area in the 
quadratures in the squared ratio of 
BG to BT, that is, in the squared 
ratio of the sine of the sun's distance from the node. And therefore the sum 
of all the little areas AB5a, namely, the space ABN, will be as the motion of 
the node in the time in which the sun hath been going over the arc NA since he 
left the node; and the remaining space, namely, the elliptic sector NTB, will 
be as the sun's mean motion in the same time. And because the mean annual 
motion of the node is that motion which it performs in the time that the sun 
completes one period of its course, the mean motion of the node from the 
sun will be to the mean motion of the sun itself as the area of the circle is to 
the area of the ellipse; that is, as the right line TK to the right lineTH, which is 
a mean proportional between TK and TS; or, which comes to the same, as the 
mean proportional TH to the right line TS. 

"Proposition 2 
"The mean motion of the mooris nodes being given, to find their true motion. 

"Let the angle A be the distance of the sun from the mean place of the node, 
or the sun's mean motion from the 
node. Then if we take the angle B, 
whose tangent is to the tangent of the 
angle A as TH to TK, that is, as the 
square root of the ratio of the mean 
hourly motion of the sun to the mean 
hourly motion of the sun from the 
node, when the node is in the quadra- 
ture, that angle B will be the distance 
of the sun from the node's true place. 
For join FT, and, by the demonstra- 
tion of the last Proposition, the angle 
FTN will be the distance of the sun 
from the mean place of the node, and 
the angle ATN the distance from the 
true place, and the tangents of these 

angles are between themselves as TK to TH. 
"Cor. Hence the angle FTA is the equation of the moon's nodes; and the 

sine of this angle, where it is greatest in the octants, is to the radius as KH is 
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to TK+TH. But the sine of this equation in any other place A is to the greatest 
sine as the sine of the sums of the angles FTN+ATN is to the radius; that is, 
nearly as the sine of double the distance of the sun from the mean place of the 
node (namely, 2FTN) to the radius. 

"If the mean hourly motion of the nodes in the quadratures be IG^ 16"' 
37iv 42^ that is, in a whole sidereal year, 39° 38' 7" 50'", TH will be to TK as 
the square root of the ratio of the number 9.0827646 to the number 10.0827646, 
that is, as 18.6524761 to 19.6524761. And, therefore, TH is to HK as 18.6524761 
to 1; that is, as the motion of the sun in a sidereal year to the mean motion of 
the node 19° 18' 1" 23%'". 

"But if the mean motion of the moon's nodes in 20 Julian years is 386° 50' 
16", as is obtained from the observations made use of in the theory of the moon, 
the mean motion of the nodes in one sidereal year will be 19° 20' 31" 58'" and 
TH will be to HK as 360° to 19° 20' 31" 58'"; that is, as 18.61214 to 1: and from 
hence the mean hourly motion of the nodes in the quadratures will come out 
16" 18'" 48iv. And the greatest equation of the nodes in the octants will be 
1° 29' 57"." 

To find the hourly variation of the inclination of the moon's orbit to the plane of 
the ecliptic. 

Let A and a represent the syzygies; Q and q the quadratures; N and n the 
nodes; P the place of the moon in its orbit; p the orthographic projection of 
that place upon the plane of the ecliptic; and mTZ the momentary motion of 
the nodes as above. If upon Tm we let fall the perpendicular PG, and joining 

"Scholium 

Proposition 34. Problem 15 

m I 

H 
V 

a 
S 
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pG we produce it till it meet T7 in <7, and join also Pgr, the angle PGp will be the 
inclination of the moon's orbit to the plane of the ecliptic when the moon is in 
P; and the angle Fgp will be the inclination of the same after a small moment 
of time is elapsed; and therefore the angle GPg will be the momentary variation 
of the inclination. But this angle GFg is to the angle GTr? as TG to PG and Pp 
to PG conjointly. And, therefore, if for the moment of time we assume an hour, 
since the angle GT</ (by Prop. 30) is to the angle 33" 10,/, 33iv as IT-PG-AZ 
to AT3, the angle GP^ (or the hourly variation of the inclination) will be to the 
angle 33" 10"' 33* as IT-AZ-TG-^ to AT3. q.e.i. PG 

And thus it would be if the moon were uniformly revolved in a circular orbit. 
But if the orbit is elliptical, the mean motion of the nodes will be diminished in 
proportion of the less axis to the greater, as we have shown above; and the 
variation of the inclination will be also diminished in the same proportion. 

Cor. i. Upon Nn erect the perpendicular TF, and let pM be the hourly 
motion of the moon in the plane of the ecliptic; upon QT let fall the perpen- 
diculars pK, Mk, and produce them till they meet TF in H and h] then IT will 
be to AT as KA* to Mp; and TG to Hp as TZ to AT; and, therefore, IT • TG will 
be equal to — —, that is, equal to the area HpM/i multiplied into the 

TZ ratio rr-r-: and therefore the hourly variation of the inclination will be to 33" Mp 17 

IQ/// 33iv ag ^ area HpM/i multiplied into 

Cor. ii. And, therefore, if the earth and nodes were after every hour drawn 
back from their new and instantly restored to their old places, so that their 
situation might continue given for a whole periodic month together, the whole 
variation of the inclination during that month would be to 33" 10,/, 33iy as the 
aggregate of all the areas HpM/i, generated in the time of one revolution of the 
point p (with due regard in summing to their proper signs H—), multiplied 

Pu into AZ-TZ-^ to Mp-AT3; that is, as the whole circle QA^a multiplied into 
PG 

Fv AZ-TZ-p^ to Mp-AT3, that is, as the circumference QAga multiplied into 

AZ-TZ-^ to 2Mp • AT2. PG 
Cor. hi. And, therefore, in a given position of the nodes, the mean hourly 

variation, from which, if uniformly continued through the whole month, that 
Pp 

menstrual variation might be generated, is to 33" 10/,, 331V as AZ-TZ ^ is to PG 
A/. 'py 

2AT2, or as Pp • , ^ is to PG •4AT; that is (because Pp is to PG as the sine 72 AI 
AZ • TZ 

of the aforesaid inclination to the radius, and 1 ,. ^ to 4AT as the sine of 72 A i 
double the angle ATn to four times the radius), as the sine of the same inclin- 
ation multiplied into the sine of double the distance of the nodes from the sun 
to four times the square of the radius. 

Cor. iv. Seeing the hourly variation of the inclination, when the nodes are 
in the quadratures, is (by this Prop.) to the angle 33" 10//, 331V as IT-AZ-TG• 
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is to AT3, that is, as ^ to 2AT, that is, as the sine of double the PG MjA i FLj 
Pi? 

distance of the moon from the quadratures multiplied into pQ is to twice the 

radius, the sum of all the hourly variations during the time that the moon, in 
this situation of the nodes, passes from the quadrature to the syzygy (that is, 
in the space of 177K hours) will be to the sum of as many angles 10,,, 33iv 

or 5878", as the sum of all the sines of double the distance of the moon from the 
quadratures multiplied into is to the sum of as many diameters; that is, as 

the diameter multiplied into ^ is to the circumference; that is, if the inclin- P G 
ation be 5° 1', as 7 • rShrfo is to 22, or as 278 to 10,000. And, therefore, the whole 
variation, composed out of the sum of all the hourly variations in the aforesaid 
time, is \58", or 2' 43//. 

Proposition 35. Problem 16 
To a given time to find the inclination of the mooris orbit to the plane of the ecliptic. 

Let AD be the sine of the greatest inclination, and AB the sine of the least. 
Bisect BD in C; and round the centre C, with the radius BC, describe the circle 

nh EC 

BGD. In AC take CE in the same proportion to EB as EB to twice BA. And if 
to the time given we set off the angle AEG equal to double the distance of the 
nodes from the quadratures, and upon AD let fall the perpendicular GH, AH 
will be the sine of the inclination required. 

For GE2 is equal to 
GH2 -f HE2 = BHD+HE2 = HBD+HE2 - BH2 = HB D+BE2 - 
2BH • BE = BE2+2EC • BH = 2EC • AB+2EC • BH = 2EC • AH; 

wherefore, since 2EC is given, GE2 will be as AH. Now let AEg represent 
double the distance of the nodes from the quadratures, in a given moment of 
time after, and the arc Gg, on account of the given angle GEgr, will be as the 
distance GE. But H/i is to Gg as GH to GC, and, therefore, Eh is as the rec- 

tangle GH • Gg, or GH • GE, that is, as • GE2, or • AH; that is, as AH and 

the sine of the angle AEG conjointly. If, therefore, in any one case, AH be the 
sine of inclination, it will increase by the same increments as the sine of inclin- 
ation doth (by Cor. m of the preceding Prop.), and therefore will always con- 
tinue equal to that sine. But when the point G falls upon either point B or D, 
AH is equal to this sine, and therefore remains always equal thereto, q.e.d. 

In this demonstration I have supposed that the angle BEG, representing 
double the distance of the nodes from the quadratures, increaseth uniformly; 
for I cannot descend to every minute circumstance of inequality. Now suppose 
that BEG is a right angle, and that G<7 is in this case the hourly increment of 
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double the distance of the nodes from the sun; then (by Cor. m of the last 
Prop.) the hourly variation of the inclination in the same case will be to 
10/// 33iv as the rectangle of AH, the sine of the inclination, into the sine of the 
right angle BEG, double the distance of the nodes from the sun, is to four times 
the square of the radius; that is, as AH, the sine of the mean inclination, is to 
four times the radius; that is, seeing the mean inclination is about 5° 83^', as 
its sine 896 is to 40,000, the quadruple of the radius, or as 224 to 10,000. But the 
whole variation corresponding to BD, the difference of the sines, is to this 
hourly variation as the diameter BD is to the arc G*/, that is, conjointly as the 
diameter BD to the semicircumference BGD, and as the time of 2079/^o hours, 
in which the node proceeds from the quadratures to the syzygies, is to one 
hour, that is, as 7 to 11, and 2079/k) to 1. Therefore compounding all these 
proportions, we shall have the whole variation BD to ?>?>" 10/// 33iv as 224•7* 
2079//io is to 110,000, that is, as 29,645 to 1000; and from thence that variation 
BD will come out 16' 233/^/,. 

And this is the greatest variation of the inclination, abstracting from the 
situation of the moon in its orbit; for, if the nodes are in the syzygies, the in- 
clination suffers no change from the various positions of the moon. But if the 
nodes are in the quadratures, the inclination is less when the moon is in the 
syzygies than when it is in the quadratures by a difference of 2' 43,,, as we 
showed (Cor. iv of the preceding Prop.); and the whole mean variation BD, 
diminished by V 2l3^/,, the half of this excess, becomes \b' 2", when the moon 
is in the quadratures; and, increased by the same, becomes 17' 45,, when the 
moon is in the syzygies. If, therefore, the moon be in the syzygies, the whole 
variation in the passage of the nodes from the quadratures to the syzygies will 
be 17' 45,/; and, therefore, if the inclination be 5° 17' 20/,, when the nodes 
are in the syzygies, it will be 4° 59/ ?>§" when the nodes are in the quadra- 
tures and the moon in the syzygies. The truth of all this is confirmed by ob- 
servations. 

Now if the inclination of the orbit should be required when the moon is in 
the syzygies, and the nodes anywhere between them and the quadratures, let 
AB be to AD as the sine of 4° 59' SS'' is to the sine of 5° 17' 20/,, and take the 
angle AEG equal to double the distance of the nodes from the quadratures; 
and AH will be the sine of the inclination desired. To this inclination of the 
orbit the inclination of the same is equal, when the moon is 90° distant from 
the nodes. In other situations of the moon, this menstrual inequality, to which 
the variation of the inclination is subject in the calculus of the moon's latitude, 
is balanced, and in a manner taken off, by the menstrual inequality of the 
motion of the nodes (as we said before), and therefore may be neglected in the 
computation of the said latitude. 

Scholium 
By these computations of the lunar motions I was desirous of showing that 

by the theory of gravity the motions of the moon could be calculated from their 
physical causes. By the same theory I moreover found that the annual equation 
of the mean motion of the moon arises from the varying dilatation which the 
orbit of the moon suffers from the action of the sun according to Cor. vi, Prop. 
66, Book i. The force of this action is greater in the perigean sun, and dilates 
the moon's orbit; in the apogean sun it is less, and permits the orbit to be again 
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contracted. The moon moves slower in the dilated and faster in the contracted 
orbit; and the annual equation, by which this inequality is regulated, vanishes 
in the apogee and perigee of the sun. In the mean distance of the sun from the 
earth it rises to about IT 50,,; in other distances of the sun it is proportional to 
the equation of the sun's centre, and is added to the mean motion of the moon, 
while the earth is passing from its aphelion to its perhelion, and subtracted 
while the earth is in the opposite semicircle. Taking for the radius of the great 
orbit 1000, and 16% for the earth's eccentricity, this equation, when of the 
greatest magnitude, by the theory of gravity comes out IT 49,/. But the eccen- 
tricity of the earth seems to be somewhat greater, and with the eccentricity 
this equation will be augmented in the same proportion. Suppose the eccen- 
tricity IG1^, and the greatest equation will be IT SIT 

Further, I found that the apogee and nodes of the moon move faster in the 
perihelion of the earth, where the force of the sun's action is greater, than in 
the aphelion thereof, and that inversely as the cube of the ratio of the earth's 
distance from the sun; and hence arise annual equations of those motions 
proportional to the equation of the sun's centre. Now the motion of the sun 
varies inversely as the square of the earth's distance from the sun; and the 
greatest equation of the centre which this inequality generates is 1° SG' 20/,, 
corresponding to the above-mentioned eccentricity of the sun, IG1^- But if 
the motion of the sun had been inversely as the cube of the distance, this in- 
equality would have generated the greatest equation 2° 54' 30/,; and therefore 
the greatest equations which the inequalities of the motions of the moon's 
apogee and nodes do generate are to 2° 54' SCT as the mean diurnal motion of 
the moon's apogee and the mean diurnal motion of its nodes are to the mean 
diurnal motion of the sun. Hence the greatest equation of the mean motion of 
the apogee comes out 19' 43,/, and the greatest equation of the mean motion 
of the nodes 9' 24//. The former equation is added, and the latter subtracted, 
while the earth is passing from its perihelion to its aphelion, and contrariwise 
when the earth is in the opposite semicircle. 

By the theory of gravity I likewise found that the action of the sun upon the 
moon is somewhat greater when the transverse diameter of the moon's orbit 
passes through the sun than when the same is perpendicular upon the line 
which joins the earth and the sun; and therefore the moon's orbit is somewhat 
larger in the former than in the latter case. And hence arises another equation 
of the moon's mean motion, depending upon the situation of the moon's apogee 
in respect of the sun, which is greatest when the moon's apogee is in the octants 
of the sun, and vanishes when the apogee arrives at the quadratures or syzygies; 
and it is added to the mean motion while the moon's apogee is passing from 
the quadrature of the sun to the syzygy, and subtracted while the apogee 
is passing from the syzygy to the quadrature. This equation, which I shall call 
the semiannual, when greatest in the octants of the apogee, arises to about 
3' 45/,, so far as I could determine from the phenomena: and this is its quantity 
in the mean distance of the sun from the earth. But it is increased and dimin- 
ished inversely as the cube of the sun's distance, and therefore is nearly 3' 34// 

when that distance is greatest, and 3' SG^ when least. But when the moon's 
apogee is without the octants, it becomes less, and is to its greatest amount as 
the sine of double the distance of the moon's apogee from the nearest syzygy or 
quadrature is to the radius. 
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By the same theory of gravity, the action of the sun upon the moon is some- 

what greater when the line of the moon's nodes passes through the sun than 
when it is at right angles with the line which joins the sun and the earth; and 
hence arises another equation of the moon's mean motion, which I shall call 
the second semiannual; and this is greatest when the nodes are in the octants 
of the sun, and vanishes when they are in the syzygies or quadratures; and in 
other positions of the nodes is proportional to the sine of double the distance 
of either node from the nearest syzygy or quadrature. And it is added to the 
mean motion of the moon, if the sun is behind the node which is nearest to him, 
and is subtracted, if forward; and in the octants, where it is of the greatest 
magnitude, it arises to 47// in the mean distance of the sun from the earth, as I 
find from the theory of gravity. In other distances of the sun, this equation, 
greatest in the octants of the nodes, is inversely as the cube of the sun's dis- 
tance from the earth; and therefore in the sun's perigee it comes to about 49,,, 
and in its apogee to about 45,/. 

By the same theory of gravity, the moon's apogee goes forwards at the 
greatest rate when it is either in conjunction with or in opposition to the sun, 
but in its quadratures with the sun it goes backwards; and the eccentricity 
comes, in the former case, to its greatest quantity; in the latter, to its least, by 
Cor. vii, viii, and ix, Prop. 66, Book i. And those inequalities, by the Corol- 
laries we have named, are very great, and generate the principle which I call 
the semiannual equation of the apogee; and this semiannual equation in its 
greatest quantity comes to about 12° IS', as nearly as I could determine from 
the phenomena. Our countryman, Horrox, was the first who advanced the 
theory of the moon's moving in an ellipse about the earth placed in its lower 
focus. Dr. Halley improved the notion, by putting the centre of the ellipse in 
an epicycle whose centre is uniformly revolved about the earth; and from the 
motion in this epicycle the mentioned inequalities in the progress and regress 
of the apogee, and in the quantity of eccentricity, do arise. Suppose the mean 
distance of the moon from the earth to be divided into 100,000 parts, and let T 
represent the earth, and TC the moon's mean eccentricity of 5505 such parts. 
Produce TC to B, so as CB may be the sine of the greatest semiannual equation 
12° IS' to the radius TC; and the circle BDA described about the centre C, 
with the radius CB, will be the epicycle spoken of, 
in which the centre of the moon's orbit is placed, 
and revolved according to the order of the letters \ 
BDA. Set off the angle BCD equal to twice the   c )B 

annual argument, or twice the distance of the V J 
sun's true place from the place of the moon's apogee 
once corrected, and CTD will be the semiannual 
equation of the moon's apogee, and TD the eccentricity of its orbit, tending 
to the place of the apogee now twice corrected. But, having the moon's mean 
motion, the place of its apogee, and its eccentricity, as well as the longer axis of 
its orbit 200,000, from these data the true place of the moon in its orbit, to- 
gether with its distance from the earth, may be determined by the methods 
commonly known. 

In the perihelion of the earth, where the force of the sun is greatest, the 
centre of the moon's orbit moves faster about the centre C than in the aphelion, 
and that inversely as the cube of the sun's distance from the earth. But, be- 
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cause the equation of the sun's centre is included in the annual argument, the 
centre of the moon's orbit moves faster in its epicycle BDA, inversely as the 
square of the sun's distance from the earth. Therefore, that it may move yet 
faster, inversely as the distance, suppose that from D, the centre of the orbit, a 
right line DE is drawn, tending towards the moon's apogee once corrected, that 
is, parallel to TC; and set off the angle EDF equal to the excess of the afore- 
said annual argument above the distance of the moon's apogee from the sun's 
perigee forwards; or, which comes to the same thing, take the angle CDF equal 
to the complement of the sun's true anomaly to 360°; and let DF be to DC as 
twice the eccentricity of the great orbit to the sun's mean distance from the 
earth, and the sun's mean diurnal motion from the moon's apogee to the sun's 
mean diurnal motion from its own apogee conjointly, that is, as 33% to 1000, 
and 52' 27,/16/// to SO'S7' 10/// conjointly, or as 3 to 100; and imagine the centre 
of the moon's orbit placed in the point F to be revolved in an epicycle whose 
centre of the moon's orbit placed in the point F to be revolved in an epicycle 
whose centre is D, and radius DF, while the point D moves in the circumfer- 
ence of the circle DABD: for by this means the centre of the moon's orbit 
comes to describe a certain curved line about the centre C, with a velocity 
which will be almost inversely as the cube of the sun's distance from the earth, 
as it ought to be. 

The calculus of this motion is difficult, but may be rendered easier by the 
following approximation. Assuming, as above, the moon's mean distance from 
the earth of 100,000 parts, and the eccentricity TC of 5505 such parts, the line 
CB or CD will be found 1172%, and DF 35^/5 of those parts; and this line DF 
at the distance TC subtends the angle at the earth, which the removal of the 
centre of the orbit from the place D to the place F generates in the motion of 
this centre; and double this line DF in a parallel position, at the distance of the 
upper focus of the moon's orbit from the earth, subtends at the earth the same 
angle as DF did before, which that removal generates in the motion of this 
upper focus; but at the distance of the moon from the earth this double line 
2DF at the upper focus, in a parallel position to the first line DF, subtends an 
angle at the moon, which the said removal generates in the motion of the moon, 
which angle may be therefore called the second equation of the moon's centre; 
and this equation, in the mean distance of the moon from the earth, is nearly as 
the sine of the angle which that line DF contains with the line drawn from the 
point F to the moon, and when greatest amounts to 2' 25'/. But the angle which 
the line DF contains with the line drawn from the point F to the moon is found 
either by subtracting the angle EDF from the mean anomaly of the moon, or 
by adding the distance of the moon from the sun to the distance of the moon's 
apogee from the apogee of the sun; and as the radius is to the sine of the angle 
thus found, so is 2' 2b" to the second equation of the centre: to be added, if the 
fore-mentioned sum be less than a semi-circle; to be subtracted, if greater. And 
from the moon's place in its orbit thus corrected, its longitude may be found in 
the syzygies of the luminaries. 

The atmosphere of the earth to the height of 35 or 40 miles refracts the sun's 
light. This refraction scatters and spreads the light over the earth's shadow; 
and the dissipated light near the limits of the shadow dilates the shadow. On 
this account, to the diameter of the shadow, as it comes out by the parallax, I 
add 1 or 1% minutes in lunar eclipses. 
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But the theory of the moon ought to be examined and proved from the 

phenomena, first in the syzygies, then in the quadratures, and last of all in the 
octants; and whoever pleases to undertake the work will find it not amiss to 
assume the following mean motions of the sun and moon at the Royal Observ- 
atory of Greenwich, to the last day of December at noon, in the year 1700, o.s.: 
the mean motion of the sun 20° 43/ 40//, and of its apogee ^ 7° 44' SO''; the 
mean motion of the moon «« 15° 21' 00//; of its apogee, ^ 8° 20' OO^; and of its 
ascending node Q 27° 24' 20/,; and the difference of meridians between the 
Observatory at Greenwich and the Royal Observatory at Paris, 0h. 9m. 208.: 
but the mean motion of the moon and of its apogee are not yet obtained with 
sufficient accuracy. 

Proposition 36. Problem 17 
To find the force of the sun to move the sea. 

The sun's force ML or PT to disturb the motions of the moon was (by Prop. 
25), in the moon's quadratures, to the force of gravity with us, as 1 to 638092.6; 
and the force TM — LM or 2PK in the moon's syzygies is double that quantity. 
But, descending to the surface of the earth, these forces are diminished in pro- 
portion of the distances from the centre of the earth, that is, in the proportion 
of 60)/2 fo 15 and therefore the former force on the earth's surface is to the force 
of gravity as 1 to 38,604,600; and by this force the sea is depressed in such places 
as are 90 degrees distant from the sun. But by the other force, which is twice 
as great, the sea is raised not only in the places directly under the sun, but in 
those also which are directly opposed to it; and the sum of these forces is to the 
force of gravity as 1 to 12,868,200. And because the same force excites the same 
motion, whether it depresses the waters in those places which are 90 degrees 
distant from the sun, or raises them in the places which are directly under and 
directly opposed to the sun, the aforesaid sum will be the total force of the sun 
to disturb the sea, and will have the same effect as if the whole was employed 
in raising the sea in the places directly under and directly opposed to the sun, 
and did not act at all in the places which are 90 degrees removed from the sun. 

And this is the force of the sun to disturb the sea in any given place, where 
the sun is at the same time both vertical, and in its mean distance from the 
earth. In other positions of the sun, its force to raise the sea is directly as the 
versed sine of double its altitude above the horizon of the place, and inversely 
as the cube of the distance from the earth. 

Cor. Since the centrifugal force of the parts of the earth, arising from the 
earth's diurnal motion, which is to the force of gravity as 1 is to 289, raises the 
waters under the equator to a height exceeding that under the poles by 85,472 
Paris feet, as above, in Prop. 19, the force of the sun, which we have now shown 
to be to the force of gravity as 1 is to 12,868,200, and therefore is to that centrif- 
ugal force as 289 to 12,868,200, or as 1 to 44,527, will be able to raise the waters 
in the places directly under and directly opposed to the sun to a height exceed- 
ing that in the places which are 90 degrees removed from the sun only by one 
Paris foot and HSj/so inches; for this measure is to the measure of 85,472 feet as 
1 to 44,527. 

Proposition 37. Problem 18 
To find the force of the moon to move the sea. 

The force of the moon to move the sea is to be deduced from its ratio to the 
force of the sun, and this ratio is to be determined from the ratio of the motions 
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of the sea, which are the effects of those forces. Before the mouth of the river 
Avon, three miles below Bristol, the height of the ascent of the water in the 
vernal and autumnal syzygies of the luminaries (by the observations of Samuel 
Sturmy) amounts to about 45 feet, but in the quadratures to 25 only. The 
former of those heights arises from the sum of the aforesaid forces, the latter 
from their difference. If, therefore, S and L are supposed to represent respec- 
tively the forces of the sun and moon while they are in the equator, as well as in 
their mean distances from the earth, we shall have L-fS to L —S as 45 to 25, 
or as 9 to 5. 

At Plymouth (by the observations of Samuel Colepress) the tide in its mean 
height rises to about 16 feet, and in the spring and autumn the height thereof 
in the syzygies may exceed that in the quadratures by more than 7 or 8 feet. 
Suppose the greatest difference of those heights to be 9 feet, and L+S will be 
to L —S as 203^ to 113/2, or as 41 to 23; a proportion that agrees well enough 
with the former. But because of the great tide at Bristol, we are rather to de- 
pend upon the observations of Sturmy; and, therefore, till we procure some- 
thing that is more certain, we shall use the proportion of 9 to 5. 

But because of the reciprocal motions of the waters, the greatest tides do not 
happen at the times of the syzygies of the luminaries, but, as we have said 
before, are the third in order after the syzygies; or (reckoning from the syzygies) 
follow next after the third approach of the moon to the meridian of the place 
after the syzygies; or rather (as Sturmy observes) are the third after the day of 
the new or full moon, or rather nearly after the twelfth hour from the new or 
full moon, and therefore fall nearly upon the forty-third hour after the new or 
full moon. But in this port they come to pass about the seventh hour after the 
approach of the moon to the meridian of the place; and therefore follow next 
after the approach of the moon to the meridian, when the moon is distant from 
the sun, or from opposition with the sun by about 18 or 19 degrees forwards. So 
the summer and winter seasons come not to their height in the solstices them- 
selves, but when the sun is advanced beyond the solstices by about a tenth part 
of its whole course, that is, by about 36 or 37 degrees. In like manner, the 
greatest tide is raised after the approach of the moon to the meridian of the 
place, when the moon has passed by the sun, or the opposition thereof, by about 
a tenth part of the whole motion from one greatest tide to the next following 
greatest tide. Suppose that distance about ISJ^ degrees; and the sun's force in 
this distance of the moon from the syzygies and quadratures will be of less 
moment to augment and diminish that part of the motion of the sea which 
proceeds from the motion of the moon than in the syzygies and quadratures 
themselves in the proportion of the radius to the cosine of double this distance, 
or of an angle of 37 degrees; that is, in the ratio of 10,000,000 to 7,986,355; and, 
therefore, in the preceding analogy, in place of S we must put 0.7986355S. 

But further, the force of the moon in the quadratures must be diminished, 
on account of its declination from the equator; for the moon in those quad- 
ratures, or rather in 183^ degrees past the quadratures, declines from the equa- 
tor by about 23° 13'; and the force of either luminary to move the sea is dimin- 
ished as it declines from the equator nearly as the square of the cosine of the 
declination; and therefore the force of the moon in those quadratures is only 
0.8570327L; hence we have L+0.7986355S to 0.8570327L-0.7986355S as 9 
to 5. 
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Further yet, the diameters of the orbit in which the moon should move, 

setting aside the consideration of eccentricity, are one to the other as 69 to 70; 
and therefore the moon's distance from the earth in the syzygies is to its dis- 
tance in the quadratures, other things being equal, as 69 to 70; and its distances, 
when I8J/2 degrees advanced beyond the syzygies, where the greatest tide was 
excited, and when degrees passed by the quadratures, where the least tide 
was produced, are to its mean distance as 69.098747 and 69.897345 to 693^. 
But the force of the moon to move the sea varies inversely as the cube of its 
distance; and therefore its forces, in the greatest and least of those distances, 
are to its force in its mean distance as 0.9830427 and 1.017522 is to 1. From this 
we have 1.017522L-0.79863558 to 0.9830427 •0.8570327L-0.79863558 as 9 to 
5; and 8 to L as 1 to 4.4815. Therefore, since the force of the sun is to the force 
of gravity as 1 to 12,868,200, the moon's force will be to the force of gravity as 
1 to 2,871,400. 

Cor. i. Since the waters attracted by the sun's force rise to the height of 1 
foot and ll/^o inches, the moon's force will raise the same to the height of 8 
feet and 75^22 inches; and the joint forces of both mil raise the same to the 
height of 103/2 feet; and when the moon is in its perigee to the height of 123/2 
feet, and more, especially when the wind sets the same way as the tide. And a 
force of that amount is abundantly sufficient to produce all the motions of the 
sea, and agrees well with the ratio of those motions; for in such seas as lie free 
and open from east to west, as in the Pacific sea, and in those tracts of the 
Atlantic and Ethiopic seas which lie without the tropics, the waters commonly 
rise to 6, 9, 12, or 15 feet; but in the Pacific sea, which is of a greater depth, as 
well as of a larger extent, the tides are said to be greater than in the Atlantic 
and Ethiopic seas; for, to have a full tide raised, an extent of sea from east to 
west is required of no less than 90 degrees. In the Ethiopic sea, the waters rise 
to a less height within the tropics than in the temperate zones: because of the 
narrowness of the sea between Africa and the southern parts of America. In 
the middle of the open sea the waters cannot rise without falling together, and 
at the same time, upon both the eastern and western shores, when, notwith- 
standing, in our narrow seas, they ought to fall on those shores by alternate 
turns; upon this account there is commonly but a small flood and ebb in such 
islands as lie far distant from the continent. On the contrary, in some ports, 
where to fill and empty the bays alternately the waters are with great violence 
forced in and out through shallow channels, the flood and ebb must be greater 
than ordinary; as at Plymouth and Chepstow Bridge in England, at the moun- 
tains of St. Michael, and the town of Avranches, in Normandy, and at Cam- 
baia and Pegu in the East Indies. In these places the sea is hurried in and out 
with such violence as sometimes to lay the shores under water, sometimes to 
leave them dry for many miles. Nor is this force of the influx and efflux to be 
stopped till it has raised and depressed the waters to 30, 40, or 50 feet and 
above. And a like account is to be given of long and shallow channels or straits, 
such as the Magellanic straits, and those channels which environ England. The 
tide in such ports and straits, by the violence of the influx and efflux, is aug- 
mented greatly. But on such shores as lie towards the deep and open sea with 
a steep descent, where the waters may freely rise and fall without that pre- 
cipitation of influx and efflux, the ratio of the tides agrees with the forces of the 
sun and moon. 
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Cor. ii. Since the moon's force to move the sea is to the force of gravity as 

1 to 2,871,400, it is evident that this force is inappreciable in statical or hydro- 
statical experiments, or even in those of pendulums. It is in the tides only that 
this force shows itself by any sensible effect. 

Cor. hi. Because the force of the moon for moving the sea is to the like force 
of the sun as 4.4815 to 1, and those forces (by Cor. xiv, Prop. 66, Book i) are 
as the densities of the bodies of the sun and moon and the cubes of their 
apparent diameters conjointly, the density of the moon will be to the density 
of the sun directly as 4.4815 to 1, and inversely as the cube of the moon's 
diameter to the cube of the sun's diameter; that is (seeing the mean apparent 
diameters of the moon and sun are SP 16^2//, and 32' 12//), as 4891 to 1000. 
But the density of the sun was to the density of the earth as 1000 to 4000; and 
therefore the density of the moon is to the density of the earth as 4891 is to 
4000, or as 11 to 9. Therefore the body of the moon is more dense and more 
earthly than the earth itself. 

Cor. iv. And since the true diameter of the moon (from the observations of 
astronomers) is to the true diameter of the earth as 100 to 365, the mass of 
matter in the moon will be to the mass of matter in the earth as 1 to 39.788. 

Cor. v. And the accelerative gravity on the surface of the moon will be about 
three times less than the accelerative gravity on the surface of the earth. 

Cor. vi. And the distance of the moon's centre from the centre of the earth 
will be to the distance of the moon's centre from the common centre of gravity 
of the earth and moon as 40.788 to 39.788. 

Cor. vii. And the mean distance of the centre of the moon from the centre 
of the earth will be (in the moon's octants) nearly 60% of the greatest semi- 
diameters of the earth; for the greatest semidiameter of the earth was 19,658,600 
Paris feet, and the mean distance of the centres of the earth and moon, consist- 
ing of 60% such semidiameters, is equal to 1,187,379,440 feet. And this distance 
(by the preceding Cor.) is to the distance of the moon's centre from the com- 
mon centre of gravity of the earth and moon as 40.788 to 39.788; which latter 
distance, therefore, is 1,158,268,534 feet. And since the moon, in respect of the 
fixed stars, performs its revolution in 27d. 7h. 43fm., the versed sine of that 
angle which the moon in a minute of time describes is 12,752,341 to the radius 
1,000,000,000,000,000; and as the radius is to this versed sine, so are 1,158,268,534 
feet to 14.7706353 feet. The moon, therefore, falling towards the earth by that 
force which retains it in its orbit, would in one minute of time describe 14.7706353 
feet; and, if we augment this force in the proportion of 1782%o to 1772%o, we 
shall have the total force of gravity at the orbit of the moon, by Cor., Prop. 3; 
and the moon falling by this force, in one minute of time would describe 
14.8538067 feet. And at the 60th part of the distance of the moon from the 
earth's centre, that is, at the distance of 197,896,573 feet from the centre of the 
earth, a body falling by its weight, would, in one second of time, likewise de- 
scribe 14.8538067 feet. And, therefore, at the distance of 19,615,800, which 
compose one mean semidiameter of the earth, a heavy body would describe in 
falling 15.11175, or 15 feet, 1 inch, and 4%i lines, in the same time. This will 
be the descent of bodies in the latitude of 45 degrees. And by the foregoing 
table, to be found under Prop. 20, the descent in the latitude of Paris will be a 
little greater by an excess of about % parts of a line. Therefore, by this com- 
putation, heavy bodies in the latitude of Paris falling in a vacuum will describe 
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15 Paris feet, 1 inch, 42/^3 lines, very nearly, in one second of time. And if the 
gravity be diminished by taking away a quantity equal to the centrifugal force 
arising in that latitude from the earth's diurnal motion, heavy bodies falling 
there will describe in one second of time 15 feet, 1 inch, and IJ^ lines. And with 
this velocity heavy bodies do really fall in the latitude of Paris, as we have 
shown above in Props. 4 and 19. 

Cor. viii. The mean distance of the centres of the earth and moon in the 
syzygies of the moon is equal to 60 of the greatest semidiameters of the earth, 
subtracting only about one 30th part of a semidiameter; and in the moon's 
quadratures the mean distance of the same centres is 60% such semidiameters 
of the earth; for these two distances are to the mean distance of the moon in 
the octants as 69 and 70 to 69%, by Prop. 28. 

Cor. ix. The mean distance of the centres of the earth and moon in the 
syzygies of the moon is 60 mean semidiameters of the earth, and a 10th part of 
one semidiameter; and in the moon's quadratures the mean distance of the same 
centres is 61 mean semidiameters of the earth, subtracting one 30th part of one 
semidiameter. 

Cor. x. In the moon's syzygies its mean horizontal parallax in the latitudes 
of 0, 30, 38, 45, 52, 60, 90 degrees is 57' 20,,, 57' 16", 57' 14", 57' 12", 57' 10", 
57' 8", 57' 4", respectively. 

In these computations I do not consider the magnetic attraction of the earth, 
whose quantity is very small and unknown: if this quantity should ever be 
found out, and the measures of degrees upon the meridian, the lengths of 
isochronous pendulums in different parallels, the laws of the motions of the sea, 
and the moon's parallax, with the apparent diameters of the sun and moon, 
should be more exactly determined from phenomena: we should then be en- 
abled to bring this calculation to a greater accuracy. 

Proposition 38. Problem 19 

To find the figure of the mooris body. 
If the moon's body were fluid like our sea, the force of the earth to raise that 

fluid in the nearest and remotest parts would be to the force of the moon by 
which our sea is raised in the places under and opposite to the moon as the 
accelerative gravity of the moon towards the earth is to the accelerative grav- 
ity of the earth towards the moon, and the diameter of the moon is to the di- 
ameter of the earth conjointly; that is, as 39.788 to 1, and 100 to 365 conjointly, 
or as 1081 to 100. Therefore, since our sea, by the force of the moon, is raised 
to 8% feet, the lunar fluid would be raised by the force of the earth to 93 feet; 
and upon this account the figure of the moon would be a spheroid, whose 
greatest diameter produced would pass through the centre of the earth, and 
exceed the diameters perpendicular thereto by 186 feet. Such a figure, there- 
fore, the moon possesses, and must have had from the beginning. q.e.i. 

Cor. Hence it is that the same face of the moon always is turned toward the 
earth; nor can the body of the moon possibly rest in any other position, but 
would return always by a libratory motion to this situation; but those librations, 
however, must be exceedingly slow, because of the weakness of the forces 
which excite them; so that the face of the moon, which should be always di- 
rected to the earth, may, for the reason assigned in Prop. 17, be turned towards 
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the other focus of the moon's orbit, without being immediately drawn back, 
and turned again towards the earth. 

If APEp represent the earth uniformly dense, marked with the centre C, the poles 
P, p, and the equator AE; and if about the centre C, with the radius CP, we suppose 
the sphere Pape to he described, and QR to denote the plane on which a right line, 
drawn from the centre of the sun to the centre of the earth, stands at right angles; and 
further suppose that the several particles of the whole exterior earth PapAPepE, 
without the height of the said sphere, endeavor to recede towards this side and that 
side from the plane QR, every particle by a force proportional to its distance from 
that plane; I say, in the first place, that the whole force and efficacy of all the par- 
ticles that are situated in AE, the circle of the equator, and disposed uniformly 
without the globe, encompassing the same after the manner of a ring, to wheel the 
earth about its centre, is to the whole force and efficacy of as many particles in that 
point A of the equator which is at the greatest distance from the plane QR, to wheel 
the earth about its centre with a like circular motion as is I to 2. And that circular 
motion will be performed about an axis lying in the common section of the equator 
and the plane QR. 

For let there be described from the centre K, with the diameter IL, the 
semicircle INL. Suppose the semicircumference INL to be divided into in- 
numerable equal parts, and from the several parts N to the diameter IL let fall 
the sines NM. Then the sums of the squares of all the sines NM will be equal 

to the sums of the squares of the sines KM, and both sums together will be 
equal to the sums of the squares of as many semidiameters KN; and therefore 
the sum of the squares of all the sines NM will be but half so great as the sum 
of the squares of as many semidiameters KN. 

Suppose now the circumference of the circle AE to be divided into the like 
number of little equal parts, and from every such part F a perpendicular FG to 
be let fall upon the plane QR, as well as the perpendicular AH from the point 
A. Then the force by which the particle F recedes from the plane QR will (by 
supposition) be as that perpendicular FG; and this force multiplied by the 
distance CG will represent the power of the particle F to turn the earth round 
its centre. And, therefore, the power of a particle in the place F will be to the 
power of a particle in the place A as FG • GC is to AH • HC; that is, as FC2 to 
AC2: and therefore the whole power of all the particles F, in their proper places 

Lemma 1 

Q 

R 



330 Mathematical Principles 
F, will be to the power of the like number of particles in the place A as the sum 
of all the FC2 is to the sum of all the AC2, that is (by what we have demon- 
strated before), as 1 to 2. q.e.d. 

And because the action of those particles is exerted in the direction of lines 
perpendicularly receding from the plane QR, and that equally from each side 
of this plane, they will wheel about the circumference of the circle of the equa- 
tor, together with the adherent body of the earth, round an axis which lies as 
well in the plane QR as in that of the equator. 

Lemma 2 
The same things still supposed, I say, in the second place, that the total force or 
power of all the particles situated everywhere about the sphere to turn the earth about 
the said axis is to the whole force of the like number of particles, uniformly disposed 
round the whole circumference of the equator AE in the fashion of a ring, to turn the 
whole earth about with the like circular motion as is 2 to b. 

For let IK be any lesser circle parallel to the equator AE, and let 12 be any 
two equal particles in this circle, situated without the sphere Pape; and if upon 
the plane QR, which is at right angles with a radius drawn to the sun, we let 
fall the perpendiculars LM, Im, the total forces by which these particles recede 
from the plane QR will be proportional to the perpendiculars LM, Im. Let the 
right line 12 be drawn parallel to the plane Vape, and bisect the same in X; and 
through the point X draw Nn parallel to 
the plane QR, and meeting the perpendic- 
ulars LM, Im, in N and n; and upon the 
plane QR let fall the perpendicular XY. 
And the contrary forces of the particles L 
and I to wheel about the earth contrariwise 
are as LM-MC, and Im-mC; that is, as 
LN-MC+NM-MC, and In-mC—nm-mC; 
or LN-MC+NM-MC, and LN-mC- 
NM-mC, and LN-Mm-NM-(MC+mC), 
the difference of the two, is the force of both 
taken together to turn the earth round. The 
positive part of this difference LN • Mm, or 
2LN • NX, is to 2AH • HC, the force of two 
particles of the same size situated in A, as LX2 to AC2; and the negative part 
NM • (MC+mC), or 2XY • CY, is to 2AH • HC, the force of the same two par- 
ticles situated in A, as CX2 to AC2. And therefore the difference of the parts, 
that is, the force of the two particles L and I, taken together, to wheel the 
earth about, is to the force of two particles, equal to the former and situated in 
the place A, to turn in like manner the earth round, as LX2 — CX2 is to AC2. 
But if the circumference IK of the circle IK is supposed to be divided into an 
infinite number of little equal parts L, all the LX2 will be to the like number of 
IX2 as 1 to 2 (by Lem. 1); and to the same number of AC2 as IX2 is to 2AC2; 
and the same number of CX2 to as many AC2 as 2CX2 is to 2AC2. Therefore the 
united forces of all the particles in the circumference of the circle IK are to the 
joint forces of as many particles in the place A as IX2 —2CX2 is to 2AC2; and 
therefore (by Lem. 1) to the united forces of as many particles in the circumfer- 
ence of the circle AE as IX2 — 2CX2 is to AC2. 
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Now if Pp, the diameter of the sphere, is conceived to be divided into an 

infinite number of equal parts, upon which a like number of circles IK are 
supposed to stand, the matter in the circumference of every circle IK will be as 
IX2; and therefore the force of that matter to turn the earth about will be as 
IX2 into IX2 —2CX2; and the force of the same matter, if it was situated in the 
circumference of the circle AE, would be as IX2 into AC2. And therefore the 
force of all the particles of the whole matter situated without the sphere in the 
circumferences of all the circles is to the force of the like number of particles 
situated in the circumference of the greatest circle AE as all the IX2 into 
IX2 —2CX2 is to as many IX2 into AC2; that is, as all the AC2 —CX2 into 
AC2 —3CX2 to as many AC2 —CX2 into AC2; that is, as all the AC4 —4AC2- 
CX2+3CX4 to as many AC4 —AC2-CX2; that is, as the whole fluent quantity 
whose fluxion is AC4-4AC2-CX2-1-3CX4, is to the whole fluent quantity, 
whose fluxion is AC4 —AC2-CX2; and, therefore, by the method of fluxions, as 
AC4 • CX -^AC2 • CX3+%CX5 is to AC4 • CX - ^AC2 • CX3; that is, if for CX 
we write the whole Cp, or AC, as Ms^C5 is to %AC5; that is, as 2 is to 5. q.e.d. 

Lemma 3 
The same things still supposed, I say, in the third place, that the motion of the 
whole earth about the axis above named arising from the motions of all the particles, 
will be to the motion of the aforesaid ring about the same axis in a ratio compounded 
of the ratio of the matter in the earth to the matter in the ring; and the ratio of three 
squares of the quadrantal arc of any circle to two squares of its diameter, that is, in the 
ratio of the matter to the matter, and of the number 925,275 to the number 1,000,000. 

For the motion of a cylinder revolved about its quiescent axis is to the 
motion of the inscribed sphere revolved together with it as any four equal 
squares are to three circles inscribed in three of those squares, and the motion 
of this cylinder is to the motion of an exceedingly thin ring surrounding both 
sphere and cylinder in their common contact as double the matter in the 
cylinder is to triple the matter in the ring; and this motion of the ring, uni- 
formly continued about the axis of the cylinder, is to the uniform motion of the 
same about its own diameter performed in the same periodic time as is the 
circumference of a circle to double its diameter. 

HYPOTHESIS II 
IF THE OTHER PARTS OF THE EARTH WERE TAKEN AWAY, AND THE REMAINING 

RING WAS CARRIED ALONE ABOUT THE SUN IN THE ORBIT OF THE EARTH BY 
THE ANNUAL MOTION, WHILE BY THE DIURNAL MOTION IT WAS IN THE MEAN- 
TIME REVOLVED ABOUT ITS OWN AXIS INCLINED TO THE PLANE OF THE ECLIPTIC 
BY AN ANGLE OF 23^ DEGREES, THE MOTION OF THE EQUINOCTIAL POINTS 
WOULD BE THE SAME, WHETHER THE RING WERE FLUID, OR WHETHER IT 
CONSISTED OF A HARD AND RIGID MATTER. 

Proposition 39. Problem 20 
To find the precession of the equinoxes. 

The middle hourly motion of the moon's nodes in a circular orbit, when the 
nodes are in the quadratures, was 16// 16iv 36v; the half of which, 8" 17/,, 

38 iv jgv (for reasons above explained), is the mean hourly motion of the nodes 
in such an orbit, which motion in a whole sidereal year becomes 20° IP 46/,. 
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Since, therefore, the nodes of the moon in such an orbit would be yearly 
transferred 20° 11/ 46,, backwards, and, if there were more moons, the motion 
of the nodes of every one (by Cor. xvi, Prop. 66, Book i) would be as its peri- 
odic time, if upon the surface of the earth a moon was revolved in the time of a 
sidereal day, the annual motion of the nodes of this moon would be to 20° IP 
46// as 23h. 56m., the sidereal day, is to 27d. 7h. 43m., the periodic time of our 
moon, that is, as 1436 is to 39,343. And the same thing would happen to the 
nodes of a ring of moons encompassing the earth, whether these moons did not 
mutually touch each the other, or whether they were molten, and formed into 
a continued ring, or whether that ring should become rigid and inflexible. 

Let us, then, suppose that this ring is in quantity of matter equal to the 
whole exterior earth PapAPepE, which lies without the sphere Pape (see Fig., 
Lem. 2); and because this sphere is to that exterior earth as aC2 is to AC2 — aC2, 
that is (seeing PC or aC the least semidiameter of the earth is to AC the great- 
est semidiameter of the same as 229 is to 230), as 52,441 is to 459; if this ring 
encompassed the earth round the equator, and both together were revolved 
about the diameter of the ring, the motion of the ring (by Lem. 3) would be to 
the motion of the inner sphere as 459 to 52,441 and 1,000,000 to 925,275 con- 
jointly, that is, as 4590 to 485,223; and therefore the motion of the ring would 
be to the sum of the motions of both ring and sphere as 4590 is to 489,813. 
Therefore, if the ring adheres to the sphere, and communicates its motion to 
the sphere, by which its nodes or equinoctial points recede, the motion remain- 
ing in the ring will be to its former motion as 4590 is to 489,813; on account of 
which the motion of the equinoctial points will be diminished in the same ratio. 
Therefore, the annual motion of the equinoctial points of the body, composed 
of both ring and sphere, will be to the motion 20° IP 46// as 1436 to 39,343 and 
4590 to 489,813 conjointly, that is, as 100 to 292,369. But the forces by which 
the nodes of a number of moons (as we explained above), and therefore by 
which the equinoctial points of the ring recede (that is, the forces SIT, in Fig., 
Prop. 30), are in the several particles as the distances of those particles from 
the plane QR; and by these forces the particles recede from that plane: and 
therefore (by Lem. 2) if the matter of the ring was spread all over the surface of 
the sphere, after the fashion of the figure PapAPepE, in order to make up that 
exterior part of the earth, the total force or power of all the particles to wheel 
about the earth round any diameter of the equator, and therefore to move the 
equinoctial points, would become less than before in the proportion of 2 to 5. 
Therefore the annual regress of the equinoxes now would be to 20° IP 46,/ as 
10 is to 73,092; that is, would be 9// 56/,, 50iv. 

But because the plane of the equator is inclined to that of the ecliptic, this 
motion is to be diminished in the ratio of the sine 91,706 (which is the cosine of 23 Yi 
degrees) to the radius 100,000; and the remaining motion will now be O'' 1"' 20iv, 
which is the annual precession of the equinoxes arising from the force of the sun. 

But the force of the moon to move the sea was to the force of the sun nearly 
as 4.4815 to 1; and the force of the moon to move the equinoxes is to that of the 
sun in the same proportion. Whence the annual precession of the equinoxes 
proceeding from the force of the moon comes out 40// 52//, 52iv, and the total 
annual precession arising from the united forces of both will be 50,, 00,,/ 121V, 
the amount of which motion agrees with the phenomena; for the precession of 
the equinoxes, by astronomical observations, is about SO'' yearly. 
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If the height of the earth at the equator exceeds its height at the poles by 

more than 17/^ miles, the matter thereof will be more rare near the surface 
than at the centre; and the precession of the equinoxes will be augmented by 
the excess of height, and diminished by the greater rarity. 

And now we have described the system of the sun, the earth, moon, and 
planets, it remains that we add something about the comets. 

Lemma 4 
The comets are more remote than the moon, and are in the regions of the planets. 

As the comets were placed by astronomers beyond the moon, because they 
were found to have no diurnal parallax, so their annual parallax is a convincing 
proof of their descending into the regions of the planets; for all the comets 
which move in a direct course according to the order of the signs, about the 
end of their appearance become more than ordinarily slow or retrograde, if the 
earth is between them and the sun; and more than ordinarily swift, if the earth 
is approaching to a heliocentric opposition with them; on the other hand, 
those which move against the order of the signs, towards the end of their 
appearance appear swifter than they ought to be, if the earth is between them 
and the sun; and slower, and perhaps retrograde, if the earth is in the other 
side of its orbit. And these appearances proceed chiefly from the diverse situ- 
ations which the earth acquires in the course of its motion, after the same 
manner as it happens to the planets, which appear sometimes retrograde, some- 
times more slowly, and sometimes more swiftly, progressive, according as the 
motion of the earth falls in with that of the planet, or is directed in the contrary 
way. If the earth move the same way with the comet, but, by an angular 
motion about the sun, so much swifter that right lines drawn from the earth to 
the comet converge towards the parts beyond the comet, the comet seen from 
the earth, because of its slower motion, will appear retrograde; and even if the 
earth is slower than the comet, the motion of the earth being subtracted, the 
motion of the comet will at least appear retarded; but if the earth tends the 
contrary way to that of the comet, the motion of the comet will from thence 
appear accelerated; and from this apparent acceleration, or retardation, or 
regressive motion, the distance of the comet may be inferred in this manner. 

G F c B a LetTQA,TQB,TQCbe three observed 
T 7 y longitudes of the comet about the 

\ 1 / / time of its first appearing, and TQF its 
\. \ 1 / / last observed longitude before its dis- 
\\ 1 / / appearing. Draw the right line ABC, 

\\ 1 / / whose parts AB, BC, intercepted be- 
\\ 1 / / tween the right lines QA and QB, QB 

and QC, may be one to the other as the 
qT two times between the three first obser- 

vations. Produce AC to G, so that AG 
may be to AB as the time between the first and last observations is to the time 
between the first and second; and join QG. Now if the comet did move uni- 
formly in a right line, and the earth either stood still, or was likewise carried 
forwards in a right line by an uniform motion, the angle TQG would be the 
longitude of the comet at the time of the last observation. Therefore, the angle 
FQG, which is the difference of the longitude, proceeds from the inequality 
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of the motions of the comet and the earth; and if the earth and comet move 
contrary ways, this angle is added to the angle TQG, and accelerates the 
apparent motion of the comet; but if the comet moves the same way with the 
earth, it is subtracted, and either retards the motion of the comet, or perhaps 
renders it retrograde, as we have just now explained. This angle, therefore, 
proceeding chiefly from the motion of the earth, is justly to be esteemed the 
parallax of the comet, there being neglected thereby some little increment or 
decrement that may arise from the unequal motion of the comet in its orbit. 
From this parallax we thus deduce the distance of the comet. Let S represent 
the sun, acT the great orbit, a the earth's v 
place in the first observation, c the place 
of the earth in the third observation, T 
the place of the earth in the last observa- 
tion, and TT a right line drawn to the 
beginning of Aries. Set off the angle TTV 
equal to the angle TQF, that is, equal 
to the longitude of the comet at the time 
when the earth is in T; join ac, and pro- 
duce it to g, so that ag may be to ac as 
AG is to AC; and g will be the place at 
which the earth would have arrived in 
the time of the last observation, if it had 
continued to move uniformly in the right 
line ac. Therefore, if we draw gT parallel 
to TT, and make the angle "tgW equal to the angle TQG, this angle T^V will 
be equal to the longitude of the comet seen from the place g, and the angle TV^ 
will be the parallax which arises from the earth's being transferred from the 
place g into the place T; and therefore Y will be the place of the comet in the 
plane of the ecliptic. And this place V is commonly lower than the orbit of Jupiter. 

The same thing may be deduced from the incurvation of the way of the 
comets; for these bodies move almost in great circles, while their velocity is 
great; but about the end of their course, when that part of their apparent 
motion which arises from the parallax bears a greater proportion to their whole 
apparent motion, they commonly deviate from those circles, and when the 
earth goes to one side, they deviate to the other; and this deflection, because of 
its corresponding with the motion of the earth, must arise chiefly from the 
parallax; and the quantity thereof is so considerable, as, by my computation, 
to place the disappearing comets a good deal lower than Jupiter. Hence it 
follows that when they approach nearer to us in their perigees and perihelions 
they often descend below the orbits of Mars and the inferior planets. 

The near approach of the comets is further confirmed from the light of their 
heads; for the light of a celestial body, illuminated by the sun, and receding to 
remote parts, diminishes as the fourth power of the distance; namely, as the 
square, on account of the increase of the distance from the sun, and as another 
square, on account of the decrease of the apparent diameter. Therefore, if both 
the quantity of light and the apparent diameter of a comet are given, its dis- 
tance will be given also, by taking the distance of the comet to the distance of a 
planet directly as their diameters and inversely as the square root of their 
lights. Thus, in the comet of the year 1682, Mr. Flamsteed observed with a 
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telescope of 16 feet, and measured with a micrometer, the least diameter of its 
head, 2' 00//; but the nucleus or star in the middle of the head scarcely amounted 
to the tenth part of this measure, and therefore its diameter was only IT' or 
12"; but in the light and splendor of its head it surpassed that of the comet in 
the year 1680, and might be compared with the stars of the first or second 
magnitude. Let us suppose that Saturn with its ring was about four times more 
lucid; and because the light of the ring was almost equal to the light of the 
globe within, and the apparent diameter of the globe is about 21", and there- 
fore the united light of both globe and ring would be equal to the light of a 
globe whose diameter is 30", it follows that the distance of the comet was to the 
distance of Saturn inversely as 1 to v/4, and directly as 12" to 30"; that is, as 
24 to 30, or 4 to 5. Again; the comet in the month of April, 1665, as Hewelcke 
informs us, excelled almost all the fixed stars in splendor, and even Saturn 
itself, as being of a much more vivid color; for this comet was more lucid than 
that other which had appeared about the end of the preceding year, and had 
been compared to the stars of the first magnitude. The diameter of its head 
was about 6'; but the nucleus, compared with the planets by means of a tele- 
scope, was plainly less than Jupiter; and sometimes judged less, sometimes 
judged equal, to the globe of Saturn within the ring. Since, then, the diameters 
of the heads of the comets seldom exceed 8' or 12', and the diameter of the 
nucleus or central star is but about a tenth or perhaps fifteenth part of the 
diameter of the head, it appears that these stars are generally of about the 
same apparent magnitude with the planets. But since their light may be often 
compared with the light of Saturn, yea, and sometimes exceeds it, it is evident 
that all comets in their perihelions must either be placed below or not far above 
Saturn; and they are much mistaken who remove them almost as far as the 
fixed stars; for if it were so, the comets could receive no more light from our sun 
than our planets do from the fixed stars. 

So far we have gone, without considering the obscuration which comets suffer 
from that plenty of thick smoke which encompasses their heads, and through 
which the heads always show dull, as through a cloud. But the more a body is 
obscured by this smoke, the nearer must it be allowed to come to the sun, that 
it may vie with the planets in the quantity of light which it reflects. Hence it is 
probable that the comets descend far below the orbit of Saturn, as we proved 
before from their parallax. But, above all, the thing is evinced from their tails, 
which must be due either to the sun's light reflected by a smoke arising from 
them, and dispersing itself through the ether, or to the light of their own heads. 
In the former case, we must shorten the distance of the comets, lest we be 
obliged to allow that the smoke arising from their heads is propagated through 
such a vast extent of space, and with such a velocity and expansion as will seem 
altogether incredible; in the latter case, the whole light of both head and tail is 
to be ascribed to the central nucleus. But, then, if we suppose all this light to be 
united and condensed within the disk of the nucleus, certainly the nucleus will 
by far exceed Jupiter itself in splendor, especially when it emits a very large 
and lucid tail. If, therefore, under a less apparent diameter, it reflects more 
light, it must be much more illuminated by the sun, and therefore much nearer 
to it; and the same argument will bring down the heads of comets sometimes 
within the orbit of Venus, viz., when, being hid under the sun's rays, they emit 
such huge and splendid tails, like beams of fire, as sometimes they do; for if all 
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that light was supposed to be gathered together into one star, it would some- 
times exceed not one Venus only, but a great many such united into one. 

Lastly, the same thing is inferred from the light of the heads, which increases 
in the recess of the comets from the earth towards the sun, and decreases in 
their return from the sun towards the earth. Thus, the comet of the year 1665 
(by the observations of Hewelcke), from the time that it was first seen, was 
always losing of its apparent motion, and therefore had already passed its 
perigee; but yet the splendor of its head was daily increasing, till, being hid 
under the sun's rays, the comet ceased to appear. The comet of the year 1683 
(by the observations of the same Hewelcke), about the end of July, when it 
first appeared, moved at a very slow rate, advancing only about 40 or 45 
minutes in its orbit in a day's time; but from that time its diurnal motion was 
continually upon the increase, till September 4, when it arose to about 5 de- 
grees; and therefore, in all this interval of time, the comet was approaching to 
the earth. This is likewise proved from the diameter of its head, measured with 
a micrometer; for, on August 6, Hewelcke found it only 6' 5", including the 
coma, which, on September 2, he observed to be 9' 1"] and therefore its head 
appeared far less about the beginning than towards the end of the motion, 
though about the beginning, because nearer to the sun, it appeared far more 
lucid than towards the end, as the same Hewelcke declares. Therefore in all this 
interval of time, on account of its recess from the sun, it decreased in splendor, 
notwithstanding its approach towards the earth. The comet of the year 1618, 
about the middle of December, and that of the year 1680, about the end of the 
same month, did both move with their greatest velocity, and were therefore 
then in their perigees, but the greatest splendor of their heads was seen two 
weeks before, when they had just got clear of the sun's rays, and the greatest 
splendor of their tails a little earlier, when yet nearer to the sun. The head of 
the former comet (according to the observations of Cysat), on December 1, 
appeared greater than the stars of the first magnitude; and, on December 16 
(then in the perigee), it was diminished but little in magnitude, but much 
diminished in the splendor and brightness of its light. On January 7, Kepler, 
being uncertain about the head, left off observing. On December 12, the head 
of the latter comet was seen and observed by Mr. Flamsteed, when but 9 de- 
grees distant from the sun, which is scarcely to be done in a star of the third 
magnitude. On December 15 and 17, it appeared as a star of the third magni- 
tude, its luster being diminished by the brightness of the clouds near the setting 
sun. On December 26, when it moved with the greatest velocity, being almost 
in its perigee, it was less than the mouth of Pegasus, a star of the third magni- 
tude. On January 3, it appeared as a star of the fourth. On January 9, as one of 
the fifth. On January 13, it was hid by the splendor of the moon, then in her 
increase. On January 25, it was scarcely equal to the stars of the seventh 
magnitude. If we compare equal intervals of time, taken on one side of the 
perigee and then on the other, we shall find that the head of the comet, which 
at both intervals of time was far, but yet equally removed from the earth, and 
should therefore have shone with equal splendor, appeared brightest on the 
side of the perigee towards the sun, and disappeared on the other. Therefore, 
from the great difference of light in the one situation and in the other, we con- 
clude the great vicinity of the sun and comet in the former, for the light of 
comets tends to be regular, and to appear greatest when the heads move fast- 
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est, and are therefore in their perigees, except so far as it is increased by their 
nearness to the sun. 

Cor. i. Therefore the comets shine by the sun's light, which they reflect. 
Cor. ii. From what has been said, we may likewise understand why comets 

are so frequently seen in that region in which the sun is, and so seldom in the 
other. If they were visible in the regions far above Saturn, they would appear 
more frequently in the parts opposite to the suh; for such as were in those parts 
would be nearer to the earth, whereas the presence of the sun must obscure and 
hide those that appear in the region in which he is. Yet, looking over the history 
of comets, I find that four or five times more have been seen in the hemisphere 
towards the sun than in the opposite hemisphere; besides, without doubt, not 
a few, which have been hid by the light of the sun: for comets descending into 
our parts neither emit tails, nor are so well illuminated by the sun as to reveal 
themselves to our naked eyes, until they have come nearer to us than Jupiter. 
But the far greater part of that spherical space, which is described about the 
sun with so small a radius, lies on that side of the earth which faces the sun; 
and the comets in that greater part are commonly more strongly illuminated, 
for they are for the most part nearer to the sun. 

Cor. hi. Hence also it is evident that the celestial spaces are void of resist- 
ance; for though the comets are carried in oblique paths, and sometimes con- 
trary to the course of the planets, yet they move every way with the greatest 
freedom, and preserve their motions for an exceeding long time, even where 
contrary to the course of the planets. I am out in my judgment, if they are not 
a sort of planets revolving in orbits returning into themselves with a continual 
motion; for the opinion of some writers, that they are no other than meteors, 
an opinion based on the continual changes that happen to their heads, seems to 
have no foundation; for the heads of comets are encompassed with huge atmos- 
pheres, and the lowermost parts of these atmospheres must be the densest; and 
therefore it is in the clouds only, not in the bodies of the comets themselves, 
that these changes are seen. Thus the earth, if it were viewed from the planets, 
would, without all doubt, shine by the light of its clouds, and the solid body 
would scarcely appear through the surrounding clouds. Thus also the belts of 
Jupiter are formed in the clouds of that planet, for they change their position 
to each other, and the solid body of Jupiter is hardly to be seen through them; 
and much more must the bodies of comets be hid under their atmospheres, 
which are both deeper and thicker. 

Proposition 40. Theorem 20 
That the comets move in some of the conic sections, having their foci in the centre of 
the sun, and by radii drawn to the sun describe areas proportional to the times. 

This Proposition appears from Cor. i, Prop. 13, Book i, compared with 
Props. 8, 12, and 13, Book m. 

Cor. i. Hence if comets revolve in orbits returning into themselves, the 
orbits will be ellipses; and their periodic times will be to the periodic times of 
the planets as the /^th power of their principal axes. And therefore the comets, 
which for the most part of their course are more remote than the planets, and 
upon that account describe orbits with greater axes, will require a longer time 
to finish their revolutions. Thus if the axis of a comet's orbit was four times 
greater than the axis of the orbit of Saturn, the time of the revolution of the 
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comet would be to the time of the revolution of Saturn, that is, to 30 years, as 
4\/4 (or 8) is to 1, and would therefore be 240 years. 

Cor. ii. But their orbits will be so near to parabolas, that parabolas may be 
used for them without sensible error. 

Cor. hi. And, therefore, by Cor. vn, Prop. 16, Book i, the velocity of every 
comet will always be to the velocity of any planet, supposed to be revolved at 
the same distance in a circle about the sun, nearly as the square root of double 
the distance of the planet from the centre of the sun to the distance of the 
comet from the sun's centre. Let us suppose the radius of the great orbit, or the 
greatest semidiameter of the ellipse which the earth describes, to consist of 
100,000,000 parts; and then the earth by its mean diurnal motion will describe 
1,720,212 of those parts, and 71,675J^ by its hourly motion. And therefore the 
comet, at the same mean distance of the earth from the sun, with a velocity 
which is to the velocity of the earth as \/2 to 1, would by its diurnal motion 
describe 2,432,747 parts, and 101,364^ parts by its hourly motion. But at 
greater or less distances both the diurnal and hourly motion will be to this 
diurnal and hourly motion inversely as the square root of the distances, and is 
therefore given. 

Cor. iv. Therefore if the latus rectum of the parabola is four times the radius 
of the great orbit, and the square of that radius is supposed to consist of 
100,000,000 parts, the area which the comet will daily describe by a radius 
drawn to the sun will be 1,216,3733^2 parts, and the hourly area will be 50,68234 
parts. But, if the latus rectum is greater or less in any ratio, the diurnal and 
hourly area will be less or greater inversely as the square root of that ratio. 

Lemma 5 
To find a curved line of the parabolic kind which shall pass through any given 
number of points. 

Let those points be A, B, C, D, E, F, &c., and from the same to any right 
line HN, given in position, let fall as many perpendiculars AH, BI, CK, DL, 
EM, EN, &c. 
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Case 1. If HI, IK, KL, &c., the intervals 

of the points H, I, K, L, M, N, &c., are equal, 
take 6, 26, 36, 46, 56, &c., the first differences 
of the perpendiculars AH, BI, CK, &c.; their second differences, c, 2c, 3c, 4c, 
&c.; their third, d, 2d, 3d, &c., that is to say, so as AH —BI may be = 6, BI — 
CK = 26, CK —DL = 36, DL-f EM = 46, -EM+FN = 56, &c.; then 6-26 = c, 
&c., and so on to the last difference, which is here /. Then, erecting any per- 
pendicular RS, which may be considered as an ordinate of the curve required, 
in order to find the length of this ordinate, suppose the intervals HI, IK, KL, 
LM, &c., to be units, and let AH = a, — HS = p, into —18 = ^, 3dj# "R0 

+SK = r, 34r into+SL = s, ybs nto+SM = ^ proceeding in this manner, to 
ME, the last perpendicular but one, and prefixing negative signs before the 
terms HS, IS, &c., which lie from S towards A; and positive signs before the 
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terms SK, SL, &c., which lie on the other side of the point S; and, observing 
well the signs, RS will be =a-\-bp-\-cqJrdr-\-es-\-}t, +&c. 

Case 2. But if HI, IK, &c., the intervals of the points H, I, K, L, &c., are 
unequal, take h, 26, 36, 46, 56, &c., the first differences of the perpendiculars 
AH, BI, CK, &c., divided by the intervals between those perpendiculars; c, 2c, 
3c, 4c, &c., their second differences, divided by the intervals between every two; 
d, 2d, 3d, &c., their third differences, divided by the intervals between every 
three; e, 2c, &c., their fourth differences, divided by the intervals between 
every four; and so forth; that is, in such manner, that 6 may be 

OL BI —CK CK-DL , ^ 6-26 0 26-36 0 36-46 , 
ik '36=lor-'&c"then c=w• 2c=T!r' 3c=Tar'&c" 

then rf = c 2c, 2rf = 2c
T1. 3c, &c. And those differences being found, let AH be HL IM 

= a, — HS = p, pinto — IS = g, ginto +SK = r, rinto +SL = s, sinto +SM = ^; 
proceeding in this manner to ME, the last perpendicular but one; and the 
ordinate RS will be = u-h6p-t-c(7-l-dr-|-cs-|-/^T'&c. 

Cor. Hence the areas of all curves may be nearly found; for if some number 
of points of the curve to be squared are found, and a parabola be supposed to 
be drawn through those points, the area of this parabola will be nearly the same 
with the area of the curvilinear figure proposed to be squared: but the parabola 
can be always squared geometrically by methods generally known. 

Lemma 6 
Certain observed places of a comet being given, to find the place of the same at any 
intermediate given time. 

Let HI, IK, KL, LM (in the preceding Fig.) represent the times between the 
observations; HA, IB, KC, LD, ME, five observed longitudes of the comet; 
and HS the given time between the first observation and the longitude re- 
quired. Then if a regular curve ABCDE is supposed to be drawn through the 
points A, B, C, D, E, and the ordinate RS is found out by the preceding Lem- 
ma, RS will be the longitude required. 

By the same method, from five observed latitudes, we may find the latitude 
at a given time. 

If the differences of the observed longitudes are small, let us say 4 or 5 
degrees, then three or four observations will be sufficient to find a new longi- 
tude and latitude; but if the differences are greater, as of 10 or 20 degrees, five 
observations ought to be used. 

Lemma 7 
Through a given point P to drawn a right line BC, whose parts PB, PC, cut off 

by two right lines AB, AC, given in position, may be 
one to the other in a given ratio. 

From the given point P suppose any right line PD 
to be drawn to either of the right lines given, as AB; 
and produce the same towards AC, the other given 
right line, as far as E, so as PE may be to PD in the 
given ratio. Let EC be parallel to AD. Draw CPB, 
and PC will be to PB as PE to PD. 

Q.E.F. 
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Lemma 8 
Let ABC he a parabola, having its focus in S. By the chord AC bisected in I cut 
off the segment ABCI, whose diameter is I/x and vertex y. In ly produced take 
pO equal to one-half of lp. Join OS, and produce it to £, so that S^ may be equal 
to 2SO. Now, supposing a comet to revolve in the arc CBA, draw £B, cutting AC 
m E: 7 say, the point E will cut off from the chord AC the segment AE, nearly 
proportional to the time. 

For if we join EO, cutting the parabolic arc ABC in Y, and draw pX. touch- 
ing the same arc in the vertex p, and meeting EO in X, the curvilinear area 
AEX/xA will be to the curvilinear area ACYpA as AE to AC; and, therefore, 

ft *•.. 

since the triangle ASE is to the triangle ASC in the same ratio, the whole area 
ASEX/iA will be to the whole area ASCY/iA as AE is to AC. But, because ^O 
is to SO as 3 to 1, and EO to XO in the same ratio, SX will be parallel to EB; 
and, therefore, joining BX, the triangle SEB will be equal to the triangle XEB. 
Therefore, if to the area ASEX/xA we add the triangle EXB, and from the sum 
subtract the triangle SEB, there will remain the area ASBX/xA, equal to the 
area ASEX/xA, and therefore in the ratio to the area ASCYjtxA as AE to AC. 
But the area ASBY/xA is nearly equal to the area ASBX^xA; and this area 
ASBY/xA is to the area ASCY/xA as the time of description of the arc AB is to 
the time of description of the whole arc AC; and, therefore, AE is to AC nearly 
in the proportion of the times. q.e.d. 

Cor. When the point B falls upon the vertex p of the parabola, AE is to 
AC accurately in the proportion of the times. 

Scholium 

If we join p£ cutting AC in 5, and in it take in proportion to pB as 27MI 
to 16 M/x, and draw Bn, this Bn will cut the chord AC, in the ratio of the times, 
more accurately than before; but the point n is to be taken beyond or on this 
side the point according as the point B is more or less distant from the prin- 
cipal vertex of the parabola than the point p. 

Lemma 9 

AP 
The right lines lp and pM, and the length equal among themselves. 

For 4Sm is the latus rectum of the parabola belonging to the vertex p. 
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H N 

Lemma 10 

Produce Sm to N and P, so that /xN may he one-third of /J, and SP may he to SN 
as SN to S^; and in the time that a comet would describe the arc A/xC, if it was sup- 
posed to move always forwards with the velocity which it has in a height equal to 
SP, it would describe a length equal to the chord AC. 

For if the comet with the velocity which it hath in /x was in the said time 
supposed to move uniformly forwards in the right line which touches the 
parabola in fx, the area which it would describe by a radius drawn to the point S 

would be equal to the parabolic area ASC/xA; 
and therefore the space contained under the 
length described in the tangent and the length 
S/x would be to the space contained under the 
lengths AC and SM as the area ASC/xA is to 
the triangle ASC, that is, as SN to SM. There- 
fore AC is to the length described in the tan- 
gent as S/x to SN. But since the velocity of the 
comet in the height SP (by Cor. vi, Prop. 16, 
Book i) is to the velocity of the same in the 
height S/x, inversely as the square root of SP 

to S/x, that is, in the ratio of S/x to SN, it follows that the length described 
with this velocity will be to the length in the same time described in the tan- 
gent, as S/x to SN. Therefore, since AC, and the length described with this new 
velocity, are in the same proportion to the length described in the tangent, 
they must be equal between themselves. q.e.d. 

Cor. Therefore a comet, with that velocity which it hath in the height 
S/x-|-%I/x, would in the same time nearly describe the chord AC. 

Lemma 11 
If a comet void of all motion was let fall from the height SN, or S/x+MImj towards 
the sun, and was still impelled to the sun hy the same force uniformly continued 
by which it was impelled at first, the same, in one-half of that time in which it 
might describe the arc AC in its own orbit, would in descending describe a space 
equal to the length I/x. 

For in the same time that the comet would require to describe the parabolic 
arc AC, it would (by the last Lemma), with that velocity which it hath in the 
height SP, describe the chord AC; and, there- 
fore (by Cor. vn, Prop. 16, Book i), if it was 
in the same time supposed to revolve by the 
force of its own gravity in a circle whose semi- 
diameter was SP, it would describe an arc of 
that circle, the length of which would be to 
the chord of the parabolic arc AC in the ratio 
of 1 to v/2. Therefore, if with that weight, 
which in the height SP it hath towards the 
sun, it should fall from that height towards 
the sun, it would (by Cor. ix, Prop. 16, Book 
i) in half the said time describe a space equal to the square of half the said 
chord, divided by four times the height SP, that is, it would describe the space 
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AP -^=. But since the weight of the comet towards the sun in the height SN is 

4k5P 
to the weight of the same towards the sun in the height SP as SP to S^u, the 
comet, by the weight which it hath in the height SN, in falling from that 

AP height towards the sun, would in the same time describe the space that 

is, a space equal to the length I/x or q.e.d. 

Proposition 41. Problem 21 
From three given observations to determine the orbit of a comet moving in a 

parabola. 
This being a Problem of very great difficulty, I tried many methods of 

resolving it; and several of those Problems, the composition whereof I have 
given in the first book, tended to this purpose. But afterwards I contrived the 
following solution, which is somewhat more simple. 

Select three observations distant one from another by intervals of time 
nearly equal; but let that interval of time in which the comet moves more 
slowly be somewhat greater than the other; namely, so that the difference of 
the times may be to the sum of the times as the sum of the times is to about 
600 days; or that the point E may fall nearly upon M and may err therefrom 
rather towards I than towards A. If such direct observations are not at hand, 
a new place of the comet must be found, by Lemma 6. 

Let S represent the sun; T, t, r three places of the earth in the earth's orbit; 
TA, tB, tC three observed longitudes of the comet; V the time between the 
first observation and the second; W the time between the second and the third; 
X the length which in the whole time Y-fW the comet might describe with 
that velocity which it has in the mean distance of the earth from the sun, 
which length is to be found by Cor. m, Prop, xl, Book m; and tV a perpendic- 
ular upon the chord Tr. In the mean observed longitude £B take at pleasure 

the point B, for the place of the comet in the plane of the ecliptic; and from 
thence, towards the sun S, draw the line BE, which may be to the perpendic- 
ular as the product of SB and S^2 is to the cube of the hypothenuse of the 
right-angled triangle whose sides are SB and the tangent of the latitude of the 
comet in the second observation to the radius tB. And through the point E (by 
Lem. 7) draw the right line AEC, whose parts AE and EC, terminating in the 
right lines TA and rC, may be one to the other as the times V and W: then A 
and C will be nearly the places of the comet in the plane of the ecliptic in the 
first and third observations, if B was its place rightly assumed in the second. 

Upon AC, bisected in I, erect the perpendicular li. Through B imagine the 
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line drawn parallel to AC. Imagine the line Si drawn, cutting AC in X, and 
complete the parallelogram HX/jl. Take la equal to SIX; and through the sun S 
imagine the line a% drawn equal to SSa-fSiX. Then, canceling the letters A, 
E, C, I, from the point B towards the point £, imagine the new line BE drawn, 
which may be to the former BE as the square of the ratio of the distance BS to 
the quantity S/x+J^fX. And through the point E draw again the right line 
AEC by the same rule as before; that is, so that its parts AE and EC may be 
one to the other as the times V and W between the observations. Thus A and C 
will be the places of the comet more accurately. 

Upon AC, bisected in I, erect the perpendiculars AM, CN, 10, of which AM 
and CN may be the tangents of the latitudes in the first and third observa- 
tions, to the radii TA and rC. Join MN, cutting 10 and 0. Draw the rec- 
tangular parallelogram flX/x, as before. In IA produced take ID equal to 

+ %£X. Then in MN, towards N, take MP, which may be to the above-found 
length X as the square root of the ratio of the mean distance of the earth from 
the sun (or of the semidiameter of the earth's orbit) to the distance OD. If the 
point P fall upon the point N; A, B, and C will be three places of the comet, 
through which its orbit is to be described in the plane of the ecliptic. But if the 
point P falls not upon the point N, in the right line AC take CG equal to NP, 
so that the points G and P may lie on the same side of the line NC. 

By the same method as the points E, A, C, G were found from the assumed 
point B, from other points h and (3 assumed at pleasure, find out the new points 
e, a, c, g; and e, a, k, y. Then through G, g, and y draw the circumference of a 
circle Qgy, cutting the right line rC in Z: and Z will be one place of the comet 
in the plane of the ecliptic. And in AC, ac, a/c, taking AF, a/, a0, equal re- 
spectively to CG, eg, Ky; through the points F, /, and </>, draw the circumference 
of a circle F/(/), cutting the right line AT in X; and the point X will be another 
place of the comet in the plane of the ecliptic. And at the points X and Z, 
erecting the tangents of the latitudes of the comet to the radii TX and rZ, 
two places of the comet in its own orbit will be determined. Lastly, if (by Prop. 
19, Book i) to the focus S a parabola is described passing through those two 
places, this parabola will be the orbit of the comet. q.e.i. 

The demonstration of this construction follows from the preceding Lemmas, 
because the right line AC is cut in E in the proportion of the times, by Lemma 
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7, as it ought to be by Lemma 8; and BE, by Lemma 11, is a portion of the 
right line BS or Bij in the plane of the ecliptic, intercepted between the arc 
ABC and the chord AEC; and MP (by Cor., Lem. 10) is the length of the 
chord of that arc, which the comet should describe in its proper orbit between 
the first and third observations, and therefore is equal to MN, providing B is a 
true place of the comet in the plane of the ecliptic. 

But it will be convenient to assume the points B, h, 0, not at random, but 
nearly true. If the angle AQ^, at which the projection of the orbit in the plane 
of the ecliptic cuts the right line £B, is roughly known, at that angle with Bi 
draw the line AC, which may be to |Tt as the square root of the ratio of SQ 
to St; and, drawing the right line SEB so as its part EB may be equal to the 
length V^, the point B will be determined, which we are to use for the first time. 
Then, canceling the right line AC and drawing anew AC according to the 
preceding construction, and, moreover, finding the length MP, in take the 
point h, by this rule, that, if TA and rC intersect each other in Y, the distance 
Yh may be to the distance YB in a ratio compounded of the ratio of MP to 
MN, and the square root of the ratio of SB to Sh. And by the same method 
you may find the third point 0, if you please to repeat the operation the third 
time; but if this method is followed, two operations generally will be sufficient; 
for if the distance Bh happens to be very small, after the points F, /, and G, g, 
are found, draw the right lines F/ and Gg, and they will cut TA and rC in the 
points required, X and Z. 

EXAMPLE 
Let the comet of the year 1680 be proposed. The following table shows the 

motion thereof, as observed by Flamsteed, and calculated afterwards by him 
from his observations, and corrected by Dr. Halley from the same observa- 
tions. 

Time Sun's longitude Comet's 
Apparent True Longitude Latitude north 

h m h m s o / // O t If o r n 
1680, Dec. 12 4.46 4.46. 0 V3 1.51.23 \5 6.32.30 8.28. 0 

21 6.32^ 6.36.59 11.06.44 5.08.12 21.42.13 
24 6.12 6.17.52 14.09.26 18.49.23 25.23. 5 
26 5.14 5.20.44 16.09.22 28.24.13 27.00.52 
29 7.55 8.03.02 19.19.43 K13.10.41 28.09.58 
30 8.02 8.10.26 20.21.09 17.38.20 28.11.53 

1681, Jan. 5 5.51 6.01.38 26.22.18 T 8.48.53 26.15. 7 
9 6.49 7.00.53 0.29.02 18.44.04 24.11.56 

10 5.54 6.06.10 1.27.43 20.40.50 23.43.52 
13 6.56 7.08.55 4.33.20 25.59.48 22.17.28 
25 7.44 7.58.42 16.45.36 ^ 9.35. 0 17.56.30 
30 8.07 8.21.53 21.49.58 13.19.51 16.42.18 

Feb. 2 6.20 6.34.51 24.46.59 15.13.53 16.04. 1 
5 6.50 7.04.41 27.49.51 16.59.06 15.27. 3 

To these you may add some observations of mine. 
These observations were made by a telescope of 7 feet, with a micrometer 

and threads placed in the focus of the telescope; by these instruments we 
determined the positions both of the fixed stars among themselves, and of the 
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Apparent 

time 
Comet1 s 

Longitude Latitude north 

1681, Feb. 25 
h 
8 

m 
.30 

O / If 
26.18.35 

O / // 
12.46.46 

27 8 .15 27.04.30 12.36.12 
Mar. 1 11 . 0 27.52.42 12.23.40 

2 8 . 0 28.12.48 12.19.38 
5 11 .30 29.18. 0 12.03.16 
7 9 .30 K 0. 4. 0 11.57. 0 
9 8, .30 0.43. 4 11.45.52 

comet in respect of the fixed stars. Let A represent the star of the fourth mag- 
nitude in the left heel of Perseus (Bayer's o), B the following star of the third 
magnitude in the left foot (Bayer's D, C a star of the sixth magnitude (Bayer's 

m D E 

m * p 
* C n 
N .v5 e * v 

L M s R o 
T *- 

YivPX * 
p 

*• 
T 

* * W ^ #H G A 
T K 1 

*5 

n) in the heel of the same foot, and D, E, F, G, H, I, K, L, M, N, 0, Z, a, (3, 
y, 8 other smaller stars in the same foot; and let p, P, Q, R, S, T, V, X represent 
the places of the comet in the observations above set down; and, reckoning the 
distance AB of 80^2 parts, AC was 523^ of those parts; BC, 58%; AD, 57%2; 
BD, 82%!; CD, 23%; AE, 29%; CE, 57%; DE, 49%; AI, 27% BI, 52%; CI, 
36% DI, 53% AK, 38%; BK, 43; CK, 31%; FK, 29; FB, 23; FC, 36%; 
AH, 18%; DH, 50%; BN, 46% CN, 31%; BL, 45%2; NL, 31%. HO was 
to HI as 7 to 6, and, produced, did pass between the stars D and E, so as the 
distance of the star D from this right line was %CD. LM was to LN as 2 
to 9, and, produced, did pass through the star H. Thus were the positions of 
the fixed stars determined in respect to one another. 

The fixed 
stars 

Their 
longitudes 

Latitude 
north 

The fixed 
stars 

Their 
longitudes 

Latitude 
north 

A ^26.41.50 
O t H 
12. 8.36 L 

O / // 
29.33.34 

O ! U 
12. 7.48 

B 28.40.23 11.17.54 M 29.18.54 12. 7.20 
C 27.58.30 12.40.25 N 28.48.29 12.31. 9 
E 26.27.17 12.52. 7 Z 29.44.48 11.57.13 
F 28.28.37 11.52.22 a 29.52. 3 11.55.48 
G 26.56. 8 12. 4.58 P K 0. 8.23 11.48.56 
H 27.11.45 12. 2. 1 7 0.40.10 11.55.18 
I 27 25. 2 11.-53.11 8 1. 3.20 11.30.42 
K 27.42. 7 11.53.26 
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Mr. Pound has since observed a second time the positions of these fixed stars 

amongst themselves, and obtained their longitudes and latitudes according to 
the preceding table. 

The positions of the comet to these fixed stars were observed to be as 
follows: 

Friday, February 25, o.s., at 8^h. p.m., the distance of the comet in p from 
the star E was less than AE, and* greater than /^AE, and therefore nearly 
equal to /^AE; and the angle ApE was a little obtuse, but almost right. For 
from A, letting fall a perpendicular on pE, the distance of the comet from that 
perpendicular was VspE. 

The same night, at 93^h., the distance of the comet in P from the star E was 
greater than and less than ^^AE, and therefore nearly equal to ]/^A of 
AE, or /"sg AE. But the distance of the comet from the perpendicular let fall 
from the star A upon the right line PE was %PE. 

Sunday, February 27, 834h- p-M-> the distance of the comet in Q from the star 
O was equal to the distance of the stars 0 and H; and the right line QO pro- 
duced passed between the stars K and B. I could not, by reason of intervening 
clouds, determine the position of the star to greater accuracy. 

Tuesday, March 1, llh. p.m., the comet in R lay exactly in a line between 
the stars K and C, so as the part CR of the right line CRK was a little greater 
than 3d?CK, and a little less than 34CK+J^CR, and therefore = 34CK+3/i6CR, 
or 1%5CK. 

Wednesday, March 2, 8h. p.m., the distance of the comet in S from the star C 
was nearly %FC; the distance of the star F from the right line CS produced 
was 3/24FC; and the distance of the star B from the same right line was five 
times greater than the distance of the star F; and the right line NS produced 
passed between the stars H and I five or six times nearer to the star H than to 
the star I. 

Saturday, March 5, 1134h- p-m., when the comet was in T, the right line MT 
was equal to and the right line LT produced passed between B and F 
four or five times nearer to F than to B, cutting off from BF a fifth or sixth part 
thereof towards F; and MT produced passed on the outside of the space BF 
towards the star B four times nearer to the star B than to the star F. M was a 
very small star, scarcely to be seen by the telescope; but the star L was- 
greater, and of about the eighth magnitude. 

Monday, March 7, 9}4h- p-m., the comet being in V, the right line Va pro- 
duced did pass between B and F, cutting off, from BF towards F, Mo of BF, 
and was to the right line VjS as 5 to 4. And the distance of the comet from the 
right line was 34ViS. 

Wednesday, March 9, P-M-> the comet being in X, the right line 7X 
was equal to 347<b and the perpendicular let fall from the star <5 upon the right 
line 7X was % of 76. 

The same night, at 12h., the comet being in Y, the right line 7Y was equal 
to 34 7 <5? or a little less, as perhaps Me of 76; and a perpendicular let fall 
from the star <5 on the right line 7Y was equal to about or 34 76. But the 
comet, being then extremely near the horizon, was scarcely discernible, and 
therefore its place could not be determined with the same certainty as in the 
foregoing observations. 

From these observations, by constructions of figures and calculations, I 
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deduced the longitudes and latitudes of the comet; and Mr. Pound, by cor- 
recting the places of the fixed stars, has determined more correctly the places 
of the comet, which correct places are set down above. Though my micrometer 
was none of the best, yet the errors in longitude and latitude (as derived from 
my observations) scarcely exceed one minute. The comet (according to my 
observations), about the end of its motion, began to decline sensibly towards 
the north, from the parallel which it described about the end of February. 

Now, in order to determine the orbit of the comet from the observations 
above described, I selected those three which Flamsteed made (Dec. 21, Jan. 
5, and Jan. 25); from which I found of 9842.1 parts, and Yt of 455, supposing 
the semidiameter of the earth's orbit contains 10,000. Then, for the first obser- 
vation, assuming tB of 5657 of those parts, I found SB 9747, BE for the first 
time 412, S/x 9503, fX413, BE for the second time 421, OD 10,186, X 8528.4, 
PM 8450, MN 8475, NP 25; from this, by the second operation, I obtained the 
distance th 5640; and by this operation I at last deduced the distances TX 4775 
and rZ 11,322. From these values, determining the orbit, I found its descending 
node in 23, and ascending node in \3 1° 53'; the inclination of its plane to the 
plane of the ecliptic 61° 203^/, the vertex thereof (or the perihelion of the comet) 
distant from the node 8° SS', and in ^ 27° 43', with latitude 7° 34' south; its 
latus rectum 236.8; and the diurnal area described b}^ a radius drawn to the 
sun 93,585, supposing the square of the semidiameter of the earth's orbit 
100,000,000; that the comet in this orbit moved directly according to the order 
of the signs, and on Dec. 8d. 00h. 04m. p.m. was in the vertex or perihelion of its 
orbit. All this I determined by scale and compass, and the chords of angles, 
taken from the table of natural sines, in a pretty large figure, in which, to wit, 
the radius of the earth's orbit (consisting of 10,000 parts) was equal to 16^3 
inches of an English foot. 

Lastly, in order to discover whether the comet did truly move in the orbit 
so determined, I investigated its places in this orbit partly by arithmetical 
operations, and partly by scale and compass, to the times of some of the ob- 
servations, as may be seen in the following table: 

The Comet's 
Distance 

from sun 
Longitude 
computed 

Latitude 
computed 

Longitude 
observed 

Latitude 
observed 

Difference 
longitude 

Difference 
latitude 

Dec. 12 
29 

Feb. 5 
Mar. 5 

2792~ 
8403 

16669 
21737 

V3 6° 32' 
Kl3.13^ 
bT7.00 

29.19^ 

8°183^ 
28.00 
15.29% 
12. 4 

V3 6° 31% 
K13.11% 
b116.59% 

29.206/7 

8° 26 
28.10/2 
15.27/5 
12. 3% 

+ 1 
+2 
+0 
-1 

- m 
— IO/2 
+ 2% 
+ % 

But afterwards Dr. Halley did determine the orbit to a greater accuracy by 
an arithmetical calculus than could be done by graphic operations; and, retain- 
ing the place of the nodes in ^ and 1° SS', and the inclination of the plane of 
the orbit to the ecliptic 61° 203^/, as well as the time of the comet's being in 
perihelion, Dec. 8d. 00h. 04m. he found the distance of the perihelion from the 
ascending node measured in the comet's orbit 9° 20', and the latus rectum of 
the parabola 2430 parts, supposing the mean distance of the sun from the earth 
to be 100,000 parts; and from these data by an accurate arithmetical calculus, 
he computed the places of the comet to the times of the observations as given 
in the table on page 348. 
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This comet also appeared in the November before, and at Coburg, in Saxony, 

was observed by Mr. Gottfried Kirch, on the 4th of that month, on the 6th and 
11th, o.s.; from its positions to the nearest fixed stars observed with sufficient 
accuracy, sometimes with a two-foot, and sometimes with a ten-foot telescope; 
from the difference of longitudes of Coburg and London, 11°; and from the 
places of the fixed stars observed by Mr. Pound, Dr. Halley has determined 
the places of the comet as follows: 

Nov. 3, 17h. 2m., apparent time at London, the comet was in & 29° 51', with 
1° 17' 45// latitude north. 

Nov. 5, 15h. 58m., the comet was in Tiy 3° 23', with 1° G' latitude north. 
Nov. 10, 16h. 31m., the comet was equally distant from two stars in Q, 

which are designated a and r in Bayer; but it had not quite touched the right 
line that joins them, but was very little distant from it. In Flamsteed's cat- 

The Comet's Errors in 
True time Distance Longitude Latitude 

from the sun computed computed Longitude Latitude 
d h m 0 t // 0 r n / // / U 

Dec. 12. 4.46. 28028 V3 6.29.25 8.26. 0 bor. -3. 5 -2. 0 
21. 6.37. 61076 - 5. 6.30 21.43.20 -1.42 + 1. 7 
24. 6.18. 70008 18.48.20 25.22.40 -1. 3 -0.25 
26. 5.20. 75576 28.22.45 27. 1.36 -1.28 +0.44 
29. 8. 3. 84021 >-(13.12.40 28.10.10 + 1.59 +0.12 
30. 8.10. 86661 17.40. 5 28.11.20 + 1.45 -0.33 

Jan. 5. 6. l.J/2 101440 T 8.49.49 26.15.15 +0.56 +0. 8 
9. 7. 0. 110959 18.44.36 24.12.54 +0.32 +0.58 

10. 6. 6. 113162 20.41. 0 23.44.10 +0.10 +0.18 
13. 7. 9. 120000 26. 0.21 22.17.30 +0.33 +0. 2 
25. 7.59. 145370 ^ 9.33.40 17.57.55 -1.20 + 1.25 
30. 8.22. 155303 13.17.41 16.42. 7 -2.10 -0.11 

Feb. 2. 6.35. 160951 15.11.11 16. 4.15 -2.42 +0.14 
5. 7. 4.y2 166686 16.58.55 15.29.13 -0.41 +2. 0 

25. 8.41. 202570 26.15.46 12.48. 0 -2.49 + 1.10 
Mar. 5.11.39. 216205 29.18.35 12. 5.40 +0.35 +2.14 

alogue this star a was then in ny 14° 15', with 1° 41' latitude north nearly, and 
r in mD0 3^ with 0° 34' latitude south; and the middle point between those 
stars was UP 15° 39^', with 0° latitude north. Let the distance of the 
comet from that right line be about 10' or 12'; and the difference of the longi- 
tude of the comet and that middle point will be 7'; and the difference of the 
latitude nearly 7}/2 and thence it follows that the comet was in UP 15° 32', 
with about 26/ latitude north. 

The first observation from the position of the comet with respect to certain 
small fixed stars had all the exactness that could be desired; the second also was 
accurate enough. In the third observation, which was the least accurate, there 
might be an error of 9' or 7', but hardly greater. The longitude of the comet, as 
found in the first and most accurate observation, being computed in the afore- 
said parabolic orbit, comes out Q 29° SO' 32//, its latitude north 1° 25' 7//, and 
its distance from the sun 115,546. 

Moreover, Dr. Halley, observing that a remarkable comet had appeared 
four times at equal intervals of 575 years (that is, in the month of September 
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after Julius Caesar was killed; [in a.d.] 531, in the consulate of Lampadius and 
Orestes; [in] 1106, in the month of February: and at the end of the year 1680; 
and that with a long and remarkable tail, except when it was seen after 
Caesar's death, at which time, by reason of the inconvenient situation of the 
earth, the tail was not so conspicuous), set himself to find out an elliptic orbit 
whose greater axis should be 1,382,957 parts, the mean distance of the earth 
from the sun containing 10,000 such; in this orbit a comet might revolve in 575 
years; and, placing the ascending node in ^ 2° 2', the inclination of the plane 
of the orbit to the plane of the ecliptic in an angle of 61° 6' the perihelion 
of the comet in this plane in ^ 22° 44' 25//, the equal time of the perihelion 
Dec. 7d. 23h. O111., the distance of the perihelion from the ascending node in the 

True time 
Longitude 
observed 

Latitude N 
observed 

Longitude 
computed 

Latitude 
computed 

Errors in 
longitude 

Errors in 
latitude 

d h m o / „ O / „ o / // o / ' // / // 
Nov. 3.16.47 £>29.51. 0 1.17.45 ^29.51.22 1.17.32 N +0.22 -0.13 

5.15.37 HP 3.23. 0 1. 6. 0 HP 3.24.32 1. 6. 9 + 1.32 +0. 9 
10.16.18 15.32. 0 0.27. 0 15.33. 2 0.25. 7 + 1. 2 -1.53 
16.17.00 = 8.16.45 0.53. 7 S 
18.21.34 18.52.15 1.26.54 
20.17. 0 28.10.36 1.53.35 
23.17. 5 mi3.22.42 2.29. 0 

Dec. 12. 4.46 V3 6.32.30 8.28. 0 V3 6 .31.20 8.29 .6 N -1.10 + 1. 6 
21. 6.37 «« 5. 8.12 21.42.13 5. 6.14 21.44.42 -1.58 +2.29 
24. 6.18 18.49.23 25.23. 5 18.47.30 25.23.35 -1.53 +0.30 
26. 5.21 28.24.13 27. 0.52 28.21.42 27. 2. 1 -2.31 + 1. 9 
29. 8. 3 K13.10.41 28. 9.58 K13.ll.14 28.10.38 +0.33 +0.40 
30. 8.10 17.38. 0 28.11.53 17.38.27 28.11.37 +0. 7 -0.16 

Jan. 5. 6. l}/2 T 8.48.53 26.15. 7 T 8.48.51 26.14.57 -0. 2 -0.10 
9. 7. 1 18.44. 4 24.11.56 18.43.51 24.12.17 -0.13 +0.21 

10. 6. 6 20.4C.50 23.43.32 20.40.23 23.43.25 -0.27 -0. 7 
13. 7. 9 25.59.48 22.17.28 26. 0. 8 22.16.32 +0.20 -0.56 
25. 7.59 ^ 9.35. 0 17.56.30 K 9.34.11 17.56. 6 -0.49 -0.24 
30. 8.22 13.19.51 16.42.18 13.18.28 16.40. 5 -1.23 -2.13 

Feb. 2. 6.35 15.13.53 16. 4. 1 15.11.59 16. 2.17 -1.54 -1.54 
5. 7. 41^ 16.59. 6 15.27. 3 16.59.17 15.27. 0 +0.11 -0. 3 

25. 8.41 26.18.35 12.46.46 26.16.59 12.45.22 -1.36 -1.24 
Mar. 1.11.10 27.52.42 12.23.40 27.51.47 12.22.28 -0.55 -1.12 

5.11.39 29.18. 0 12. 3.16 29.20.11 12. 2.50 +2.11 -0.26 
9. 8.38 H 0.43. 4 11.45.52 MO.42.43 11.45.35 -0.21 -0.17 

plane of the ecliptic 9° 17' SS'', and its conjugate axis 18,481.2, he computed the 
motions of the comet in this elliptic orbit. The places of the comet, as deduced 
from the observations, and as arising from computation made in this orbit, 
may be seen in the preceding table. 

The observations of this comet from the beginning to the end agree as per- 
fectly with the motion of the comet in the orbit just now described as the 
motions of the planets do with the theories from whence they are calculated, 
and by this agreement plainly evince that it was one and the same comet that 
appeared all that time, and also that the orbit of that comet is here rightly 
defined. 

In the foregoing table we have omitted the observations of Nov. 16, 18, 20, 
and 23, as not sufficiently accurate, for at those times several persons had 
observed the comet. Nov. 17, o.s., Ponthio and his companions, at 6h. in the 
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morning at Rome (that is, 5h. 10m. at London), by threads directed to the 
fixed stars, observed the comet in ^ 8° SO', with latitude 0° dO' south. Their 
observations may be seen in a treatise which Ponthio published concerning 
this comet. Cellio, who was present, and communicated his observations in a 
letter to Cassini, saw the comet at the same hour in ^ 8° 30', with latitude 0° 
SO' south. It was likewise seen by Gallet at the same hour at Avignon (that is, 
at 5h. 42m. morning at London) in ^ 8° without latitude. But by the theory the 
comet was at that time in ^ 8° 16' 45//, and its latitude was 0° 53' 1" south. 

Nov.18, at 6h. 30m. in the morning at Rome (that is, at 5h.40m. at London), 
Ponthio observed the comet in = 13° 30', with latitude 1° 20/ south; and Cellio 
in ^ 13° 3(y, with latitude 1° 00' south. But at 5h. 30m. in the morning at 
Avignon, Gallet saw it in ^ 13° 00/, with latitude 1° 00' south. In the Uni- 
versity of La Fleche, in France, at 5h. in the morning (that is, at 5h. 9m. at 
London), it was seen by Ango, in the middle between two small stars, one of 
which is the middle of the three which lie in a right line in the southern hand of 
Virgo, Bayer's T; and the other is the outmost of the wing, Bayer's 6. Hence, 
the comet was then in ^ 12° dfi' with latitude 50' south. And I was informed 
by Dr. Halley, that on the same day at Boston in New England, in the latitude 
of 42J/^', at 5h. in the morning (that is, at 9h. 44m. in the morning at London) 
the comet was seen near ^ 14°, with latitude 1° SO7 south. 

Nov. 19, at 4^h. at Cambridge, the comet (by the observation of a young 
man) was distant from Spica W about 2° towards the northwest. Now the 
Spike was at that time in = 19° 23/ 47", with latitude 2° P 59// south. The 
same day, at 5h. in the morning, at Boston in New England, the comet was 
distant from Spica ny 1°, with the difference of 40' in latitude. The same day, 
in the island of Jamaica, it was about 1° distant from Spica if. The same day, 
Mr. Arthur Storer, at the river Patuxent, near Hunting Creek, in Maryland, in 
the confines of Virginia in latitude 383^°, at 5h. in the morning (that is, at 10h. 
at London), saw the comet above Spica if, and very nearly joined with it, the 
distance between them being about % of one degree. And from these observa- 
tions compared, I conclude, that at 9h. 44m. at London the comet was in 
^18° SO', with about 1° 25' latitude south. Now by the theory the comet was 
at that time in ^ 18° 52' 15", with 1° 26/ 54" latitude south. 

Nov. 20, Montenari, Professor of Astronomy at Padua, at 6h. in the morning 
at Venice (that is, 5h. 10m. at London), saw the comet in ^ 23°, with latitude 
1° SO' south. The same day, at Boston, it was distant from Spica if by about 
4° of longitude east, and therefore was in ^ 23° 24', nearly. 

Nov. 21, Ponthio and his companions, at 734h. in the morning, observed the 
comet in ^ 27° 50', with latitude 1° 16/ south; Cellio, in ^ 28°; Ango at 5h. 
in the morning, in ^ 27° 45'; Montenari in ^ 27° SP. The same day, in the 
island of Jamaica, it was seen near the beginning of if, and of about the same 
latitude with Spica if, that is, 2° 2/. The same day, at 5h. morning, at Bal- 
lasore, in the East Indies (that is, at llh. 20m. of the night preceding at Lon- 
don), the distance of the comet from Spica if was taken 7° 35' to the east. It 
was in a right line between the Spike and the Balance, and therefore was then 
in ^ 26° 58', with about 1° IP latitude south; and after 5h. 40m. (that is, at 
5h. in the morning at London), it was in ^ 28° 12' with 1° IG' latitude south. 
Nowt by the theory the comet was then in = 28° lO' 36", with 1° 53' 35" 
latitude south. 
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Nov. 22, the comet was seen by Montenari in m 2° SS'; but at Boston in New 

England it was found in about m 3°, and with almost the same latitude as be- 
fore, that is, 1° SO'. The same day, at 5h. morning at Ballasore, the comet was 
observed in m 1° SO'; and therefore at 5h. morning at London, the comet was 
in m 3° 5', nearly. The same day at 6)4h- in the morning at London, Dr. Hooke 
observed it in about m 3° 30', and that in the right line which passeth through 
Spica ny and Cor Leonis; not, indeed, exactly, but deviating a little from that 
line towards the north. Montenari likewise observed, that this day, and some 
days after, a right line drawn from the comet through Spica passed by the 
south side of Cor Leonis at a very small distance therefrom. The right line 
through Cor Leonis and Spica UP did cut the ecliptic in UP 3° 46/ at an angle of 
2° SL; and, if the comet had been in this line and in m 3°, its latitude would 
have been 2° 26/; but since Hooke and Montenari agree that the comet was at 
some small distance from this line towards the north, its latitude must have 
been somewhat less. On the 20th, by the observation of Montenari, its latitude 
was almost the same with that of Spica UP, that is, about 1° SO7. But by the 
agreement of Hooke, Montenari, and Ango, the latitude was continually in- 
creasing, and therefore must now, on the 22d, be sensibly greater than 1° 30'; 
and, taking a mean between the extreme limits but now stated, 2° 26/ and 
1° 30', the latitude will be about 1° SS'. Hooke and Montenari agree that the 
tail of the comet was directed towards Spica UP, declining a little from that 
star towards the south according to Hooke, but towards the north according to 
Montenari; and, therefore, that declination was scarcely sensible; and the tail, 
lying nearly parallel to the equator, deviated a little irom the opposition of the 
sun towards the north. 

Nov. 23, o.s., at 5h. morning, at Nuremberg (that is, at 43^h. at London), 
Mr. Zimmerman saw the comet in ui 8° 8', with 2° 3L south latitude, its place 
being obtained by taking its distances from fixed stars. 

Nov. 24, before sunrise, the comet was seen by Montenari in ui 12° 527 on 
the north side of the right line through Cor Leonis and Spica UP, and therefore 
its latitude was somewhat less than 2° SS7; and since the latitude, as we said, 
by the concurring observations of Montenari, Ango, and Hooke, was con- 
tinually increasing, therefore, it was now, on the 24th, somewhat greater than 
1° SS7; and, taking the mean quantity, may be reckoned 2° IS', without any 
considerable error. Ponthio and Gallet will have it that the latitude was now 
decreasing; and Cellio, and the observer in New England, that it continued the 
same, viz., of about 1°, or 13^2°. The observations of Ponthio and Cellio are 
rougher, especially those which were made by taking the azimuths and alti- 
tudes; as are also the observations of Gallet. Those are better which were made 
by taking the position of the comet to the fixed stars by Montenari, Hooke, 
Ango, and the observer in New England, and sometimes by Ponthio and 
Cellio. The same day, at 5h. morning, at Ballasore, the comet was observed in 
1U 11° 45'; and, therefore, at 5h. morning at London, was in up 13°, nearly. 
And, by the theory, the comet was at that time in m 13° 22' 42//. 

Nov. 25, before sunrise, Montenari observed the comet in ui 17^°, nearly; 
and Cellio observed at the same time that the comet was in a right line be- 
tween the bright star in the right thigh of Virgo and the southern scale of 
Libra; and this right line cuts the comet's way in ml 8° 36'. And, by the theory, 
the comet was in m 183^°, nearly. 
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From all this it is plain that these observations agree with the theory, so far 

as they agree with one another; and by this agreement it is made clear that it 
was one and the same comet that appeared all the time from Nov. 4 to Mar. 9. 
The path of this comet did twice cut the plane of the ecliptic, and therefore was 
not a right line. It did cut the ecliptic not in opposite parts of the heavens, but 
in the end of Virgo and beginning of Capricorn, including an arc of about 98°; 
and therefore the way of the comet did very much deviate from the path of a 
great circle; for in the month of Nov. it declined at least 3° from the ecliptic 
towards the south; and in the month of Dec. following it declined 29° from the 
ecliptic towards the north; the two parts of the orbit in which the comet 
descended towards the sun, and ascended again from the sun, declining one 
from the other by an apparent angle of above 30°, as observed by Montenari. 
This comet traveled over nine signs, namely, from the last degree of Q to the 
beginning of K, beside the sign of ^, through which it passed before it began 
to be seen; and there is no other theory by which a comet can go over so great a 
part of the heavens with a regular motion. The motion of this comet was very 
unequable; for about the 20th of Nov. it described about 5° a day. Then its 
motion being retarded between Nov. 26 and Dec. 12, to wit, in the space of 
153^ days, it described only 40°. But the motion thereof being afterwards 
accelerated, it described near 5° a day, till its motion began to be again re- 
tarded. And the theory which justly corresponds with a motion so unequable, 
and through so great a part of the heavens, which observes the same laws with 
the theory of the planets, and which accurately agrees with accurate astronom- 
ical observations, cannot be otherwise than true. 

And, thinking it would not be improper, I have given in the annexed figure, 
plotted in the plane of the curve, a true representation of the orbit which this 
comet described, and of the tail which it emitted in several places. In this 
drawing ABC represents the orbit of the comet, D the sun, DE the axis of the 
orbit, DF the line of the nodes, GH the intersection of the sphere of the earth's 

orbit with the plane of the comet's orbit, I the place of the comet Nov. 4, 
1680; K the place of the same Nov. 11; L the place of the same Nov. 19; M its 
place Dec. 12; N its place Dec. 21; O its place Dec. 29; P its place Jan. 5 follow- 
ing; Q its place Jan. 25; R its place Feb. 5; S its place Feb. 25; T its place 
March 5; and V its place March 9. In determining the length of the tail, I 
made the following observations: 

Nov. 4 and 6, the tail did not appear; Nov. 11, the tail just began to show 
itself, but did not appear above Yz degree long through a 10-foot telescope; 
Nov. 17, the tail was seen by Ponthio more than 15° long; Nov. 18, in New 
England, the tail appeared 30° long, and directly opposite to the sun, extending 

■A 

C 

E 
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itself to the planet Mars, which was then in Tiy, 9° 54'; Nov. 19, in Maryland, 
the tail was found 15° or 20° long; Dec. 10 (by the observation of Mr. Flam- 
steed), the tail passed through the middle of the distance intercepted between 
the tail of the serpent of Ophiuchus and the star 6 in the south wing of Aquila, 
and did terminate near the stars A, co, 6 in Bayer's tables. Therefore the end of 
the tail was in v3 19^°, with latitude about 34^° north; Dec. 11, it ascended 
to the head of Sagitta (Bayer's a, jS), terminating in v3 26° 43', with latitude 
38° Sd7 north; Dec. 12, it passed through the middle of Sagitta, nor did it reach 
much farther; terminating in ~ 4°, with latitude 42^° north, nearly. But these 
things are to be understood of the length of the brighter part of the tail; for, 
with a more faint light, observed, too, perhaps, in a serener sky, at Rome, 
Dec. 12, 5h. 40m., by the observation of Ponthio, the tail arose to 10° above the 
rump of the Swan, and the side thereof towards the west and towards the north 
was 45' distant from this star. But about that time the tail was 3° broad 
towards the upper end; and therefore the middle thereof was 2° 15' distant 
from that star towards the south, and the upper end was in K 22°, with latitude 
61° north; and thence the tail was about 70° long; Dec. 21, it extended almost 
to Cassiopeia's Chair, equally distant from (3 and from Schedir, so as its dis- 
tance from either of the two was equal to the distance of the one from the 
other, and therefore did terminate in t 24°, with latitude 473/2°; Dec. 29, it 
reached to a contact with Scheat on its left, and exactly filled up the space 
between the two stars in the northern foot of Andromeda, being 54° in length; 
and therefore terminated in ^ 19°, with 35° of latitude; Jan. 5, it touched the 
star tt in the breast of Andromeda on its right side, and the star ^ of the girdle 
on its left; and, according to our observations, was 40° long; but it was curved, 
and the convex side thereof lay to the south; and near the head of the comet it 
made an angle of 4° with the circle which passed through the sun and the 
comet's head; but towards the other end it was inclined to that circle in an 
angle of about 10° or 11°; and the chord of the tail contained with that circle an 
angle of 8°. Jan. 13, the tail terminated between Alamech and Algol, with a 
light that was sensible enough; but with a faint light it ended over against the 
star k in Perseus' side. The distance of the end of the tail from the circle passing 
through the sun and the comet was 3° SCT; and the inclination of the chord of 
the tail to that circle was 83^°. Jan. 25 and 26, it shone with a faint light to the 
length of 6° or 7°; and, for a night or two after, when there was a very clear 
sky, it extended to the length of 12°, or somewhat more, with a light that was 
very faint and very hardly to be seen; but the axis thereof was exactly directed 
to the bright star in the eastern shoulder of Auriga, and therefore deviated 
from the opposition of the sun towards the north by an angle of 10°. Lastly, 
Feb. 10, with a telescope I observed the tail 2° long; for that fainter light which 
I spoke of did not appear through the glasses. But Ponthio writes that, on 
Feb. 7, he saw the tail 12° long. Feb. 25, the comet was without a tail, and so 
continued till it disappeared. 

Now if one reflects upon the orbit described, and duly considers the other 
appearances of this comet, he will be easily satisfied that the bodies of comets 
are solid, compact, fixed, and durable, like the bodies of the planets; for if they 
were nothing else but the vapors or exhalations of the earth, of the sun, and 
other planets, this comet, in its passage by the neighborhood of the sun, would 
have been immediately dissipated; for the heat of the sun is as the density of 



354 Mathematical Principles 
its rays, that is, inversely as the square of the distance of the places from the 
sun. Therefore, since on Dec. 8, when the comet was in its perihelion, the dis- 
tance thereof from the centre of the sun was to the distance of the earth from 
the same as about 6 to 1000, the sun's heat on the comet was at that time to 
the heat of the summer-sun with us as 1,000,000 to 36, or as 28,000 to 1. But the 
heat of boiling water is about three times greater than the heat which dry earth 
acquires from the summer-sun, as I have tried; and the heat of red-hot iron 
(if my conjecture is right) is about three or four times greater than the heat of 
boiling water. And therefore the heat which dry earth on the comet, while in 
its perihelion, might have received from the rays of the sun, was about 2000 
times greater than the heat of red-hot iron. But by so fierce a heat, vapors and 
exhalations, and every volatile matter, must have been immediately consumed 
and dissipated. 

This comet, therefore, must have received an immense heat from the sun, 
and retained that heat for an exceeding long time; for a globe of iron of an inch 
in diameter, exposed red-hot to the open air, will scarcely lose all its heat in an 
hour's time; but a greater globe would retain its heat longer in the ratio of its 
diameter, because the surface (in proportion to which it is cooled by the con- 
tact of the ambient air) is in that ratio less in respect of the quantity of the 
included hot matter; and therefore a globe of red-hot iron equal to our earth, 
that is, about 40,000,000 feet in diameter, would scarcely cool in an equal num- 
ber of days, or in above 50,000 years. But I suspect that the duration of heat 
may, on account of some latent causes, increase in a yet less ratio than that of 
the diameter; and I should be glad that the true ratio was investigated by 
experiments. 

It is further to be observed, that the comet in the month of December, just 
after it had been heated by the sun, did emit a much longer tail, and much 
more splendid, than in the month of November before, when it had not yet 
arrived at its perihelion; and, universally, the greatest and most fulgent tails 
always arise from comets immediately after their passing by the neighborhood 
of the sun. Therefore the heat received by the comet conduces to the greatness 
of the tail: from this, I think I may infer, that the tail is nothing else but a very 
fine vapor, which the head or nucleus of the comet emits by its heat. 

But we have had three several opinions about the tails of comets: for some 
will have it that they are nothing else but the beams of the sun's light trans- 
mitted through the comets' heads, which they suppose to be transparent; 
others, that they proceed from the refraction which light suffers in passing 
from the comet's head to the earth; and, lastly, others, that they are a sort of 
cloud or vapor constantly rising from the comets' heads, and tending towards 
the parts opposite to the sun. The first is the opinion of such as are yet un- 
acquainted with optics; for the beams of the sun are seen in a darkened room 
only in consequence of the light that is reflected from them by the little par- 
ticles of dust and smoke which are always flying about in the air; and, for that 
reason, in air impregnated with thick smoke, those beams appear with great 
brightness, and impress the eye more strongly; in a yet finer air they appear 
more faint, and are less easily discerned; but in the heavens, where there is no 
matter to reflect the light, they can never be seen at all. Light is not seen as it 
is in the beam, but as it is thence reflected to our eyes; for vision can be pro- 
duced in no other way than by rays falling upon the eyes; and, therefore, there 



Book III: The System of the World 355 
must be some reflecting matter in those parts where the tails of the comets are 
seen: for otherwise, since all the celestial spaces are equally illuminated by the 
sun's light, no part of the heavens could appear with more splendor than an- 
other. The second opinion is liable to many difficulties. The tails of comets are 
never seen variegated with those colors which commonly are inseparable from 
refraction; and the distinct transmission of the light of the fixed stars and 
planets to us is a demonstration that the ether or celestial medium is not en- 
dowed with any refractive power: for, as to what is alleged, that the fixed stars 
have been sometimes seen by the Egyptians environed with a coma, because 
that has but rarely happened, it is rather to be ascribed to a casual refraction of 
clouds; and so the radiation and scintillation of the fixed stars to the refrac- 
tions both of the eyes and air; for, upon laying a telescope to the eye, those 
radiations and scintillations immediately disappear. By the tremulous agita- 
tion of the air and ascending vapors, it happens that the rays of light are 
alternately turned aside from the narrow space of the pupil of the eye; but no 
such thing can have place in the much wider aperture of the object glass of a 
telescope ; and hence it is that a scintillation is occasioned in the former case, 
which ceases in the latter; and this cessation in the latter case is a demonstra- 
tion of the regular transmission of light through the heavens, without any 
perceptible refraction. But, to obviate an objection that may be made from 
the appearing of no tail in such comets as shine but with a faint light, as if the 
secondary rays were then too weak to affect the eyes, and for that reason it is 
that the tails of the fixed stars do not appear, we are to consider, that by the 
means of telescopes the light of the fixed stars may be augmented above an 
hundredfold, and yet no tails are seen; that the light of the planets is yet more 
copious without any tail; but that comets are seen sometimes with huge tails, 
when the light of their heads is but faint and dull. For so it happened in the 
comet of the year 1680, when in the month of December it was scarcely equal 
in light to the stars of the second magnitude, and yet emitted a notable tail, 
extending to the length of 40°, 50°, 60°, or 70°, and upwards; and afterwards, 
on the 27th and 28th of January, when the head appeared but as a star of the 
7th magnitude, yet the tail (as we said above), with a light that was clearly 
perceptible, though faint, was stretched out to 6° or 7° in length, and with a 
languishing light that was more difficult to see, even to 12°, and upwards. But 
on the 9th and 10th of February, when to the naked eye the head appeared no 
more, through a telescope I viewed the tail of 2° in length. But further: if the 
tail was due to the crumbling of the celestial matter, and did deviate from the 
opposition of the sun, according to the figure of the heavens, that deviation in 
the same places of the heavens should be always directed towards the same 
parts. But the comet of the year 1680, December 28d. 8^h. p.m. at London, 
was seen in x 8° 41', with latitude north 28° 6'; while the sun was in v3 18° 
26/. And the comet of the year 1577, December 29d., was in x 8° dL, with 
latitude north 28° 40', and the sun, as before, in about \3 18° 26/. In both cases 
the situation of the earth was the same, and the comet appeared in the same 
place of the heavens; yet in the former case the tail of the comet (as well by my 
observations as by the observations of others) deviated from the opposition of 
the sun towards the north by an angle of 43^ degrees; whereas in the latter 
there was (according to the observations of Tycho) a deviation of 21 degrees 
towards the south. The crumbling, therefore, of the heavens being thus dis- 
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proved, it remains that the phenomena of the tails of comets must be derived 
from some reflecting matter. 

And that the tails of comets do arise from their heads, and tend towards the 
parts opposite to the sun, is further confirmed from the laws which the tails 
observe: As that, lying in the planes of the comets' orbits which pass through 
the sun, they constantly deviate from the opposition of the sun towards the 
parts which the comets' heads in their progress along these orbits have left. 
That to a spectator, placed in those planes, they appear in the parts directly 
opposite to the sun; but, as the spectator recedes from those planes, their 
deviation begins to appear, and daily becomes greater. That the deviation, 
other things being equal, appears less when the tail is more oblique to the orbit 
of the comet, as well as when the head of the comet approaches nearer to the 
sun, especially if the angle of deviation is estimated near the head of the comet. 
That the tails which have no deviation appear straight, but the tails which 
deviate are likewise bended into a certain curvature. That this curvature is 
greater when the deviation is greater; and is more sensible when the tail, other 
things being equal, is longer; for in the shorter tails the curvature is hardly to 
be perceived. That the angle of deviation is less near the comet's head, but 
greater towards the other end of the tail; and that because the convex side of 
the tail regards the parts from which the deviation is made, and which lie in a 
right line drawn out infinitely from the sun through the comet's head. And 
that the tails that are long and broad, and shine with a stronger light, appear 
more resplendent and more exactly defined on the convex than on the concave 
side. Upon these accounts it is plain that the phenomena of the tails of comets 
depend upon the motions of their heads, and by no means upon the places of 
the heavens in which their heads are seen; and that, therefore, the tails of 
comets do not proceed from the refraction of the heavens, but from their own 
heads, which furnish the matter that forms the tail. For, as in our air, the 
smoke of a heated body ascends either perpendicularly if the body is at rest, or 
obliquely if the body is moved obliquely, so in the heavens, where all bodies 
gravitate towards the sun, smoke and vapor must (as we have already said) 
ascend from the sun, and either rise perpendicularly if the smoking body is at 
rest, or obliquely if the body, in all the progress of its motion, is always leaving 
those places from which the upper or higher parts of the vapor had risen before; 
and that obliquity will be least where the vapor ascends with most velocity, 
namely, near the smoking body, when that is near the sun. But, because the 
obliquity varies, the column of vapor will be incurvated; and because the vapor 
in the preceding side is something more recent, that is, has ascended something 
more late from the body, it will therefore be somewhat more dense on that side, 
and must on that account reflect more light, as well as be better defined. I add 
nothing concerning the sudden uncertain agitation of the tails of comets, and 
their irregular figures, which authors sometimes describe, because they may 
arise from the mutations of our air, and the motions of our clouds, in part 
obscuring those tails; or, perhaps, from parts of the Milky Way which might 
have been confounded with and mistaken for parts of the tails of the comets 
as they passed by. 

But that the atmospheres of comets may furnish a supply of vapor great 
enough to fill so immense spaces, we may easily understand from the rarity of 
our own air; for the air near the surface of our earth possesses a space 850 
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times greater than water of the same weight; and therefore a cylinder of air 
850 feet high is of equal weight with a cylinder of water of the same breadth, 
and but one foot high. But a cylinder of air reaching to the top of the atmos- 
phere is of equal weight with a cylinder of water about 33 feet high: and, there- 
fore, if from the whole cylinder of air the lower part of 850 feet high is taken 
away, the remaining upper part will be of equal weight with a cylinder of 
water 32 feet high: and from thence (and by the hypothesis, confirmed by 
many experiments, that the compression of air is as the weight of the incum- 
bent atmosphere, and that the force of gravity is inversely as the square of the 
distance from the centre of the earth) proceeding by calculation, by Cor., Prop. 
22, Book ii, I found, that, at the height of one semidiameter of the earth, 
reckoned from the earth's surface, the air is more rare than with us in a far 
greater ratio than that of the whole space within the orbit of Saturn to a 
spherical space one inch in diameter; and therefore, if a sphere of our air of 
but one inch in thickness was equally rarefied with the air at the height of one 
semidiameter of the earth from the earth's surface, it would fill all the regions 
of the planets to the orb of Saturn, and far beyond it. Therefore, since the air 
at greater distances is immensely rarefied, and the coma or atmosphere of 
comets is ordinarily about ten times higher, reckoning from their centres, than 
the surface of the nucleus, and the tails rise yet higher, they must therefore be 
exceedingly rare; and though, on account of the much thicker atmospheres of 
comets, and the great gravitation of their bodies towards the sun, as well as of 
the particles of their air and vapors towards each other, it may happen that 
the air in the celestial spaces and in the tails of comets is not so vastly rarefied, 
yet from this computation it is plain that a very small quantity of air and 
vapor is abundantly sufficient to produce all the appearances of the tails of 
comets; for that they are, indeed, of a very notable rarity appears from the 
shining of the stars through them. The atmosphere of the earth, illuminated by 
the sun's light, though but of a few miles in thickness, quite obscures and ex- 
tinguishes the light not only of all the stars, but even of the moon itself; where- 
as the smallest stars are seen to shine through the immense thickness of the 
tails of comets, likewise illuminated by the sun, without the least diminution 
of their splendor. Nor is the brightness of the tails of most comets ordinarily 
greater than that of our air, an inch or two in thickness, reflecting in a dark- 
ened room the light of the sunbeams let in by a hole of the window shutter. 

And we may pretty nearly determine the time spent during the ascent of the 
vapor from the comet's head to the extremity of the tail, by drawing a right 
line from the extremity of the tail to the sun, and marking the place where 
that right line intersects the comet's orbit; for the vapor that is now in the 
extremity of the tail, if it has ascended in a right line from the sun, must have 
begun to rise from the head at the time when the head was in the point of 
intersection. It is true, the vapor does not rise in a right line from the sun, but, 
retaining the motion which it had from the comet before its ascent, and com- 
pounding that motion with its motion of ascent, arises obliquely; and, there- 
fore, the solution of the Problem will be more exact, if we draw the line which 
intersects the orbit parallel to the length of the tail; or rather (because of the 
curvilinear motion of the comet) diverging a little from the line or length of 
the tail. And by means of this principle I found that the vapor which, January 
25, was in the extremity of the tail, had begun to rise from the head before 
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December 11, and therefore had spent in its whole ascent 45 days; but that the 
whole tail which appeared on December 10 had finished its ascent in the space 
of the two days then elapsed from the time of the comet's being in its peri- 
helion. The vapor, therefore, about the beginning and in the neighborhood of 
the sun rose with the greatest velocity, and afterwards continued to ascend 
with a motion constantly retarded by its own gravity; and the higher it as- 
cended, the more it added to the length of the tail; and while the tail con- 
tinued to be seen, it was made up of almost all that vapor which had risen since 
the time of the comet's being in its perihelion; nor did that part of the vapor 
which had risen first, and which formed the extremity of the tail, cease to ap- 
pear, till its too great distance, as well from the sun, from which it received its 
light, as from our eyes, rendered it invisible. Whence also it is that the tails 
of other comets which are short do not rise from their heads with a swift and 
continued motion, and soon after disappear, but are permanent and lasting 
columns of vapors and exhalations, which, ascending from the heads with a 
slow motion of many days, and partaking of the motion of the heads which 
they had from the beginning, continue to go along together with them through 
the heavens. From this again we have another argument proving the celestial 
spaces to be free, and without resistance, since in them not only the solid 
bodies of the planets and comets, but also the extremely rare vapors of comets' 
tails, maintain their rapid motions with great freedom, and for an exceeding 
long time. 

Kepler ascribes the ascent of the tails of the comets to the atmospheres of 
their heads; and their direction towards the parts opposite to the sun to the 
action of the rays of light carrying along with them the matter of the comets' 
tails; and without any great incongruity we may suppose that, in so free 
spaces, so fine a matter as that of the ether may yield to the action of the rays 
of the sun's light, though those rays are not able sensibly to move the gross 
substances in our parts, which are clogged with so palpable a resistance. An- 
other author thinks that there may be a sort of particles of matter endowed 
with a principle of levity, as well as others are with a power of gravity; that 
the matter of the tails of comets may be of the former sort, and that its ascent 
from the sun may be owing to its levity; but, considering that the gravity of 
terrestrial bodies is as the matter of the bodies, and therefore can be neither 
more nor less in the same quantity of matter, I am inclined to believe that this 
ascent may rather proceed from the rarefaction of the matter of the comets' 
tails. The ascent of smoke in a chimney is due to the impulse of the air with 
which it is entangled. The air rarefied by heat ascends, because its specific 
gravity is diminished, and in its ascent carries along with it the smoke which 
floats in it; and why may not the tail of a comet rise from the sun after the same 
manner? For the sun's rays do not act upon the mediums which they pervade 
otherwise than by reflection and refraction; and those reflecting particles 
heated by this action, heat the matter of the ether which is involved with them. 
That matter is rarefied by the heat which it acquires, and because, by this 
rarefaction, the specific gravity with which it tended towards the sun before is 
diminished, it will ascend therefrom, and carry along with it the reflecting 
particles of which the tail of the comet is composed. But the ascent of the 
vapors is further promoted by their circumgyration about the sun; in conse- 
quence thereof they endeavor to recede from the sun, while the sun's atmos- 
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phere and the other matter of the heavens are either altogether quiescent, or 
are only moved with a slower circumgyration derived from the rotation of the 
sun. And these are the causes of the ascent of the tails of the comets in the 
neighborhood of the sun, where their orbits are bent into a greater curvature, 
and the comets themselves are plunged into the denser and therefore heavier 
parts of the sun's atmosphere: upon which account they do then emit tails of 
an huge length; for the tails which then arise, retaining their own proper mo- 
tion, and in the meantime gravitating towards the sun, must be revolved in 
ellipses about the sun in like manner as the heads are, and by that motion 
must always accompany the heads, and freely adhere to them. For the gravi- 
tation of the vapors towards the sun can no more force the tails to abandon 
the heads, and descend to the sun, than the gravitation of the heads can oblige 
them to fall from the tails. They must by their common gravity either fall 
together towards the sun, or be retarded together in their common ascent 
therefrom; and, therefore (whether from the causes already described, or from 
any others), the tails and heads of comets may easily acquire and freely retain 
any position one to the other, without disturbance or impediment from that 
common gravitation. 

The tails, therefore, that rise in the perihelian positions of the comets will 
go along with their heads into far remote parts, and together with the heads 
will either return again from thence to us, after a long course of years, or rather 
will be there rarefied, and by degrees quite vanish away; for afterwards, in the 
descent of the heads towards the sun, new short tails will be emitted from the 
heads with a slow motion; and those tails by degrees will be augmented im- 
mensely, especially in such comets as in their perihelian distances descend as 
low as the sun's atmosphere; for all vapor in those free spaces is in a perpetual 
state of rarefaction and dilatation; and from hence it is that the tails of all 
comets are broader at their upper extremity than near their heads. And it is 
not unlikely but that the vapor, thus continually rarefied and dilated, may be 
at last dissipated and scattered through the whole heavens, and by little and 
little be attracted towards the planets by its gravity, and mixed with their 
atmosphere; for as the seas are absolutely necessary to the constitution of our 
earth, that from them, the sun, by its heat, may exhale a sufficient quantity of 
vapors, which, being gathered together into clouds, may drop down in rain, 
for watering of the earth, and for the production and nourishment of vege- 
tables; or, being condensed with cold on the tops of mountains (as some philos- 
ophers with reason judge), may run down in springs and rivers; so for the 
conservation of the seas, and fluids of the planets, comets seem to be required, 
that, from their exhalations and vapors condensed, the wastes of the planetary 
fluids spent upon vegetation and putrefaction, and converted into dry earth, 
may be continually supplied and made up; for all vegetables entirely derive 
their growths from fluids, and afterwards, in great measure, are turned into 
dry earth by putrefaction; and a sort of slime is always found to settle at the 
bottom of putrefied fluids; and hence it is that the bulk of the solid earth is 
continually increased; and the fluids, if they are not supplied from without, 
must be in a continual decrease, and quite fail at last. I suspect, moreover, that 
it is chiefly from the comets that spirit comes, which is indeed the smallest but 
the most subtle and useful part of our air, and so much required to sustain the 
life of all things with us. 
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The atmospheres of comets, in their descent towards the sun, by running 

out into the tails, are spent and diminished, and become narrower, at least on 
that side which regards the sun; and in receding from the sun, when they less 
run out into the tails, they are again enlarged, if Hewelcke has justly marked 
their appearances. But they are seen least of all just after they have been most 
heated by the sun, and on that account then emit the longest and most re- 
splendent tails; and, perhaps, at the same time, the nuclei are environed with 
a denser and blacker smoke in the lowermost parts of their atmosphere; for 
smoke that is raised by a great and intense heat is commonly the denser and 
blacker. Thus the head of that comet which we have been describing, at equal 
distances both from the sun and from the earth, appeared darker after it had 
passed by its perihelion than it did before; for in the month of December it 
was commonly compared with the stars of the third magnitude, but in No- 
vember with those of the first or second; and such as saw both appearances 
have described the first as of another and greater comet than the second. For, 
November 19, this comet appeared to a young man at Cambridge, though with a 
pale and dull light, yet equal to Spica Virginis; and at that time it shone with 
greater brightness than it did afterwards. And Montenari, November 20, o.s., 
observed it larger than the stars of the first magnitude, its tail being then 2 
degrees long. And Mr. Storer (by letters which have come into my hands) 
writes that in the month of December, when the tail appeared of the greatest 
bulk and splendor, the head was but small, and far less than that which was 
seen in the month of November before sun rising; and, conjecturing at the 
cause of the appearance, he judged it to proceed from the existence of a greater 
quantity of matter in the head at first, which was afterwards gradually spent. 

And, for the same reason, I find, that the heads of other comets, which did 
put forth tails of the greatest bulk and splendor, have appeared but obscure 
and small. For in Brazil, March 5, 1668, n.s., 7h. p.m., Valentin Estancel saw 
a comet near the horizon, and towards the southwest, with a head so small as 
scarcely to be discerned, but with a tail above measure splendid, so that the 
reflection thereof from the sea was easily seen by those who stood on the shore; 
it looked like a fiery beam extended 23 degrees in length from the west to 
south, almost parallel to the horizon. But this excessive splendor continued 
only three days, decreasing apace afterwards; and while the splendor was de- 
creasing, the bulk of the tail increased: also in Portugal it is said to have taken 
up one-quarter of the heavens, that is, 45 degrees, extending from west to east 
with a very notable splendor, though the whole tail was not seen in those parts, 
because the head was always hid under the horizon: and from the increase of 
the bulk and decrease of the splendor of the tail, it appears that the head was 
then in its recess from the sun, and had been very near to it in its perihelion, as 
the comet of 1680 was. And we read, in the Saxon Chronicle, of a like comet 
appearing in the year 1106, the star whereof was small and obscure (as that of 
1680), hut the splendor of its tail was very bright, and like a huge fiery beam 
stretched out in a direction between the east and north, as Hewelcke has it also 
from Simeon, the monk of Durham. This comet appeared in the beginning of 
February, about the evening, and towards the southwest part of heaven; from 
this, and from the position of the tail, we infer that the head was near the sun. 
Matthew Paris says, It was distant from the sun by about a cubit, from three 
o'clock (rather six) till nine, putting forth a long tail. Such also was that re- 
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splendent comet described by Aristotle, Meteorology, i, 6. The head whereof 
could not he seen, because it had set before the sun, or at least was hid under the 
sun's rays; but next day it was seen as well as might he; for, having left the sun hut 
a very little way, it set immediately after it. And the scattered light of the head, 
obscured by the too great splendor (of the tail) did not yet appear. But afterwards 
(as Aristotle says) when the splendor (of the tail) had diminished, (the head of) 
the comet recovered its native brightness; and the splendor (of its tail) reached now 
to a third part of the heavens (that is, to 60°). This appearance was in the winter 
season (the fourth year of the 101st Olympiad), and, rising to Orion's girdle, it 
there vanished away. It is true that the comet of 1618, which came out directly 
from under the sun's rays with a very large tail, seemed to equal, if not to 
exceed, the stars of the first magnitude; but then, abundance of other comets 
have appeared yet greater than this, that put forth shorter tails; some of which 
are said to have appeared as big as Jupiter, others as big as Venus, or even as 
the moon. 

We have said that comets are a sort of planets revolved in very eccentric 
orbits about the sun; and as, in the planets which are without tails, those are 
commonly less which are revolved in lesser orbits, and nearer to the sun, so in 
comets it is probable that those which in their perihelion approach nearer to 
the sun are generally of less magnitude, that they may not agitate the sun too 
much by their attractions. But as to the transverse diameters of their orbits, 
and the periodic times of their revolutions, I leave them to be determined by 
comparing comets together which after long intervals of time return again in 
the same orbit. In the meantime, the following Proposition may give some fight 
in that inquiry. ^ ^ ^ 

Proposition 42. Problem 22 
To correct a comet's orbit found as above. 

Operation 1. Assume that position of the plane of the orbit which was 
determined according to the preceding Proposition; and select three places of 
the comet, deduced from very accurate observations, and at great distances 
one from the other. Then suppose A to represent the time between the first 
observation and the second, and B the time between the second and the third; 
but it will be convenient that in one of those times the comet be in its perigee, 
or at least not far from it. From those apparent places find, by trigonometric 
operations, the three true places of the comet in that assumed plane of the 
orbit; then through the places found, and about the centre of the sun as the 
focus, describe a conic section by arithmetical operations, according to Prop. 
21, Book i. Let the areas of this figure which are terminated by radii drawn 
from the sun to the places found be D and E; namely, D the area between the 
first observation and the second, and E the area between the second and third; 
and let T represent the whole time in which the whole area D+E should be 
described with the velocity of the comet found by Prop. 16, Book i. 

Oper. 2. Retaining the inclination of the plane of the orbit to the plane of 
the ecliptic, let the longitude of the nodes of the plane of the orbit be increased 
by the addition of 20/ or 30', which call P. Then from the aforesaid three 
observed places of the comet let the three true places be found (as before) in 
this new plane; as also the orbit passing through those places, and the two 
areas of the same described between the two observations, which call d and e\ 
and let t be the whole time in which the whole area d+e should be described. 
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Oper. 3. Retaining the longitude of the nodes in the first operation, let the 

inclination of the plane of the orbit to the plane of the ecliptic be increased by 
adding thereto 20/ or SO', which call Q. Then from the aforesaid three observed 
apparent places of the comet let the three true places be found in this new 
plane, as well as the orbit passing through them, and the two areas of the same 
described between the observation, which call 5 and e; and let r be the whole 
time in which the whole area 5+e should be described. 

Then taking C to 1 as A to B; and G to 1 as D to E; and <7 to 1 as d to e; 
and 7 to 1 as 5 to e; let S be the true time between the first observation and the 
third; and, observing well the signs + and —, let such numbers m and n be 
found out as will make 2G —2C = mG —nG —^7; and 2T —2S = mT — 
+nT —nr. And if, in the first operation, I represents the inclination of the 
plane of the orbit to the plane of the ecliptic, and K the longitude of either 
node, then I+nQ will be the true inclination of the plane of the orbit to the 
plane of the ecliptic, and K-fmP the true longitude of the node. And, lastly, 
if in the first, second, and third operations, the quantities R, r, and p, represent 

the parameters of the orbit, and the quantities y? y the transverse diameters 

of the same, then R+mr —mR+np —nR will be the true parameter, and 

— — ^rue ^ransverse diameter of the orbit which 
the comet describes; and from the transverse diameter given the periodic time 
of the comet is also given, q.e.i. But the periodic times of the revolutions of 
comets, and the transverse diameters of their orbits, cannot be accurately 
enough determined but by comparing comets together which appear at differ- 
ent times. If, after equal intervals of time, several comets are found to have 
described the same orbit, we may thence conclude that they are all but one and 
the same comet revolved in the same orbit; and then from the times of their 
revolutions the transverse diameters of their orbits will be given, and from 
those diameters the elliptic orbits themselves will be determined. 

To this purpose the orbits of many comets ought to be computed, supposing 
those orbits to be parabolic; for such orbits will always nearly agree with the 
phenomena, as appears not only from the parabolic orbit of the comet of the 
year 1680, which I compared above with the observations, but likewise from 
that of the notable comet which appeared in the year 1664 and 1665, and was 
observed by Hewelcke, who, from his own observations, calculated the longi- 
tudes and latitudes thereof, though with little accuracy. But from the same 
observations Dr. Halley did again compute its places; and from those new 
places determined its orbit, finding its ascending node in 21° 13' 55/,; the 
inclination of the orbit to the plane of the ecliptic 21° IS' 40//; the distance of 
its perihelion from the node, estimated in the comet's orbit, 49° 27' 30//, its 
perihelion in Q 8° 40/ 30//, with heliocentric latitude south 16° OB the 
comet to have been in its perihelion November 24d. llh. 52m. p.m. equal time 
at London, or 13h. 8m. at Danzig, o.s.; and that the latus rectum of the parab- 
ola was 410,286 of such parts as the sun's mean distance from the earth is 
supposed to contain 100,000. And how nearly the places of the comet computed 
in this orbit agree with the observations, will appear from the table calculated 
by Dr. Halley (p 364). 

In February, the beginning of the year 1665, the first star of Aries, which I 



Book III: The System of the World 363 

shall hereafter call 7, was in T 28° SO' IS'', with 7° 8' SS'' north latitude; the 
second star of Aries was in T 29° 17' IS^, with 8° 28' 16/, north latitude; 
another star of the seventh magnitude, which I call A, was in T 28° 24/ , 
with 8° 28' %?>" north latitude. The comet Feb. 7d. 7h. 30m. at Paris (that is, 
Feb. 7d. 8h. 37m. at Danzig), o.s., made a triangle with those stars 7 and A, 
which was right-angled in 7; and the distance of the comet from the star 7 was 
equal to the distance of the stars 7 and A, that is, 1° lO' 4;6// of a great circle; 
and therefore in the parallel of the latitude of the star 7 it was 1° 20/ 26//. 
Therefore if from the longitude of the star 7 there be subtracted the longitude 
1° 20/ 26//, there will remain the longitude of the comet T 27° 9' 49//. M. 
Auzout, from this observation of his, placed the comet in T 27° 0', nearly; and, 
by the drawing in which Dr. Hooke delineated its motion, it was then in T 
26° 59' 24//. I place it in T 27° 4' 46//, taking the middle between the two 
extremes. 

From the same observations, M. Auzout made the latitude of the comet at 
that time 7° and 4' or 5' to the north; but he had done better to have made it 
7° 3' 29//, the difference of the latitudes of the comet and the star 7 being 
equal to the difference of the longitude of the stars 7 and A. 

February 22d. 7h. 30m. at London, that is, February 22d. 8h. 46m. at Danzig, 
the distance of the comet from the star A, according to Dr. Hooke's observa- 
tion, as was delineated by himself in a scheme, and also by the observations of 
M. Auzout, delineated in like manner by M. Petit, was a fifth part of the dis- 
tance between the star A and the first star of Aries, or 15/ 57//; and the distance 
of the comet from a right line joining the star A and the first of Aries was a 
fourth part of the same fifth part, that is, 4'; and therefore the comet was in 
T 28° 29' 46", with 8° ^ 36" north latitude. 

March 1, 7h. 0m. at London, that is, March 1, 8h. 16m. at Danzig, the comet 
was observed near the second star in Aries, the distance between them being 
to the distance between the first and second stars in Aries, that is, to 1° 33', 
as 4 to 45 according to Dr. Hooke, or as 2 to 23 according to M. Gottignies. 
And, therefore, the distance of the comet from the second star in Aries was 
S7 16" according to Dr. Hooke, or 8' 5" according to M. Gottignies; or, taking 
a mean between both, 8' 10". But, according to M. Gottignies, the comet had 
gone beyond the second star of Aries about a fourth or a fifth part of the space 
that it commonly went over in a day, to wit, about V 35" (in which he agrees 
very well with M. Auzout); or, according to Dr. Hooke, not quite so much, as 
perhaps only V. Therefore if to the longitude of the first star in Aries we add 
P, and 8' 10" to its latitude, we shall have the longitude of the comet T 29° IS', 
with 8° 36' 26" north latitude. 

March 7, 7h. 30m. at Paris, that is, March 7, 7h. 37m. at Danzig, from the 
observations of M. Auzout, the distance of the comet from the second star in 
Aries was equal to the distance of that star from the star A, that is, 52/ 29"; 
and the difference of the longitude of the comet and the second star in Aries 
was 45' or 46', or, taking a mean quantity, 45' 30"; and therefore the comet was 
in b' 0o2/48". From the drawing constructed by M. Petit, based on the obser- 
vations of M. Auzout, Hewelcke determined the latitude of the comet 8° fid/ 
But the engraver did not rightly trace the curvature of the comet's way to- 
wards the end of the motion; and Hevelius, in the drawing of M. Auzout's 
observations which he constructed himself, corrected this irregular curvature, 



364 Mathematical Principles 

Apparent 
time at 
Danzig 

The observed distances of the comet from The observed places 
The places 

computed in 
the orbit 

December 
d h m 
3.18.29H 

The Lion's heart 46.24.20 
The Virgin's spike 22.52.10 

o / // 
Long. 7.01.00 
Lat. S. 21.39. 0 

Off! 
^ 7. 1.29 

21.38.50 

- 00 The Lion's heart 46. 2.45 
The Virgin's spike 23.52.40 

Long. — 6.15. 0 
Lat. S, 22.24.0 

- 6.16. 5 
22.24. 0 

7.17.48 The Lion's heart 44.48. 0 
The Virgin's spike 27.56.40 

Long. 3. 6. 0 
Lat. S. 25.22.0 

- 3. 7.33 
25.21.40 

17.14.43 The Lion's heart 53.15.15 
Orion's right shoulder 45.43.30 

Long. D 2.56. 0 
Lat. S. 49.25. 0 

D 2.56. 0 
49.25. 0 

19. 9.25 Procyon 35.13.50 
Bright star of Whale's jaw 52.56. 0 

Long. H 28.40.30 
Lat. S. 45.48.0 

K 28.43. 0 
45.46. 0 

20. 9.533^ Procyon 40.49. 0 
Bright star of Whale's jaw 40.04. 0 

Long, ft 13.03. 0 
Lat. S. 39.54.0 

K 13. 5. 0 
39.53. 0 

21. 9. 9H Orion's right shoulder 26.21.25 
Bright star of Whale's jaw 29.28. 0 

Long. K 2.16. 0 
Lat. S. 33.41.0 

K 2.18.30 
33.39.40 

22. 9. 0 Orion's right shoulder 29.47. 0 
Bright star of Whale's jaw 20.29.30 

Long, 24.24. 0 
Lat. S. 27.45.0 

b 24.27. 0 
27.46. 0 

26. 7.58 The bright star of Aries 23.20. 0 
Aldebaran 26.44. 0 

Long, b" 9. 0. 0 
Lat. S. 12.36.0 

b 9. 2.28 
12.34.13 

27. 6.45 The bright star of Aries 20.45. 0 
Aldebaran 28.10. 0 

Long, b 7. 5.40 
Lat. S. 10.23. 0 

b 7. 8.45 
10.23.13 

28. 7.39 The bright star of Aries 18.29. 0 
Palilicium 29.37. 0 

Long, b 5.24.45 
Lat. S. 8.22.50 

b 5.27.52 
8.23.37 

31. 6.45 Andromeda's girdle 30.48.10 
Palilicium 32.53.30 

Long, b 2. 7.40 
Lat. S. 4.13.0 

b 2. 8.20 
4.16.25 

Jan. 1665 
7. 7.373/2 

Andromeda's girdle 25.11. 0 
Palilicium 37.12.25 

Long. T 28.24.47 
Lat. N. 0.54. 0 

T 28.24. 0 
0.53. 0 

o CO r-H Andromeda's head 28. 7.10 
Palilicium 38.55.20 

Long. T 27. 6.54 
Lat. N. 3. 6.50 

T 27. 6.39 
3. 7.40 

24. 7.29 Andromeda's girdle 20.32.15 
Palilicium 40. 5. 0 

Long. T 26.29.15 
Lat. N. 5.25.50 

T 26.28.50 
5.26. 0 

February 
7. 8.37 

Long. T 27. 4.46 
Lat. N. 7. 3.29 

T 27.24.55 
7. 3.15 

22. 8.46 Long. T 28.29.46 
Lat. N. 8.12.36 

T 28.29.58 
8.10.25 

March 
1. 8.16 

Long. T 29.18.15 
Lat. N. 8.36.26 

T 29.18.20 
8.36.12 

7. 8.37 Long. b 0. 2.48 
Lat. N. 8.56.30 

b 0. 2.42 
8.56.56 
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and so made the latitude of the comet 8° 55' SOT And, by further correcting 
this irregularity, the latitude may become 8° 56', or 8° 57'. 

This comet was also seen March 9, and at that time its place must have been 
in ^ 0° 18', with 9° 3K' north latitude, nearly. 

This comet appeared for three months, in which space of time it traveled 
over almost six signs, and in one of the days described almost 20 degrees. Its 
course did very much deviate from a great circle, bending towards the north, 
and its motion towards the end from retrograde became direct; and, notwith- 
standing that its course was so uncommon, yet by the table it appears that 
the theory, from beginning to end, agrees with the observations no less accu- 
rately than the theories of the planets usually do with the observations of them; 
but we are to subtract about 2' when the comet was swiftest, which we may 
effect by taking off 12" from the angle between the ascending node and the 
perihelion, or by making that angle 49° 27' 18". The annual parallax of both 
these comets (this and the preceding) was very conspicuous, and by its quan- 
tity demonstrates the annual motion of the earth in the earth's orbit. 

This theory is likewise confirmed by the motion of that comet, which in the 
year 1683 appeared retrograde, in an orbit whose plane contained almost a 
right angle with the plane of the ecliptic, and whose ascending node (by the 
computation of Dr. Halley) was in ny 23° 23'; the inclination of its orbit to 
the ecliptic 83° 11'; its perihelion in x 25° 29' 30"; its perihelian distance from 
the sun 56,020 of such parts as the radius of the earth's orbit contains 100,000; 
and the time of its perihelion was July 2d. 3h. 50m. And the places thereof, 
computed by Dr. Halley in this orbit, are compared with the places observed 
by Mr. Flamsteed, in the following table. 

This theory is yet further confirmed by the motion of that retrograde comet 
which appeared in the year 1682. The ascending node of this (by Dr. Halley's 

1683 Sun's 
place 

Comet's Latitude Comet's Latitude Dif- Dif- 
Equatorial longitude north longitude north ference ference 

time computed computed observed observed longitude latitude 
d h m O / 1/ Off/ o t ir Of!/ 0 , „ , „ , „ 

July 13.12.55 & 1.02.30 ^ 13.05.42 29.28.13 ^13. 6.42 29.28.20 + 1.00 +0.07 
15.11.15 2.53.12 11.37.48 29.34. 0 11.39.43 29.34.50 + 1.55 +0.50 
17.10.20 4.45.45 10. 7. 6 29.33.30 10. 8.40 29.34. 0 + 1.34 +0.30 
23.13.40 10.38.21 5.10.27 28.51.42 5.11.30 28.50.28 + 1.03 -1.14 
25.14. 5 12.35.28 3.27.53 24.24.47 3.27. 0 28.23.40 -0.53 -1. 7 
31. 9.42 18.09.22 *27.55. 3 26.22.52 *27.54.24 26.22.25 -0.39 -0.27 
31.14.55 18.21.53 27.41. 7 26.16.57 27.41. 8 26.14.50 +0. 1 -2. 7 

Aug. 2.14,56 20,17.16 25.29.32 25.16.19 25.28.46 25.17.28 -0.46 + 1. 9 
4.10.49 22.02.50 23.18.20 24.10.49 23.16.55 24.12.19 -1.25 + 1.30 
6.10. 9 23.56.45 20.42.23 22.47. 5 20.40.32 22.49. 5 -1.51 +2. 0 
9.10.26 26.50.52 16. 7.57 20. 6.37 16. 5.55 20. 6.10 -2. 2 -0.27 

15.14. 1 TTF 2.47.13 3.30.48 11.37.33 3.26.18 11.32. 1 -4.30 -5.32 
16.15.10 3.48. 2 0.43. 7 9.34.16 0.41.55 9.34.13 -1.12 -0. 3 
18.15.44 5.45.33 *24.52.53 5.11.15 

South 
*24.49. 5 5. 9.11 

South 
-3.48 -2. 4 

22.14.44 9.35.49 11. 7.14 5.16.58 11.07.12 5.16.58 -0. 2 -0. 3 
23.15.52 10.36.48 7. 2.18 8.17. 9 7. 1.17 8.16.41 -1. 1 -0.28 
26.16. 2 13.31.10 T24.45.31 16.38. 0 T24.44.00 16.38.20 -1.31 +0.20 
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computation) was in b' 21o16/30//; the inclination of its orbit to the plane of 
the ecliptic 17° dQ' 00//; its perihelion in ~ 2° 52' 50,/; its perihelian distance 
from the sun 58,328 parts, of which the radius of the earth's orbit contains 
100.000; the equal time of the comet's being in its perihehon September 4d. 7h. 
39m. And its places determined from Mr. Flamsteed's observations, are com- 
pared with its places computed from our theory in the following table: 

1682 
App. iime 

Sun's 
place 

Comet's Latitude Comet's Latitude Dif- Dif- 
longitude north longitude north ference ference 
computed computed observed observed longitude latitude 

d h m o t u o / // O / A/ o , , o r u A tf , „ 
Aug. 19.16.38 ny 7. o. 7 £) 18.14.28 25.50. 7 £18.14.40 25.49.55 -0.12 +0.12 

20.15.38 7.55.52 24.46.23 26.14.42 24.46.22 26.12.52 +0. 1 + 1.50 
21. 8.21 8.36.14 29.37.15 26.20. 3 29.38.02 26.17.37 -0.47 +2.26 
22. 8. 8 9.33.55 W 6.29.53 26. 8.42 ny 6.30. 3 26. 7.12 -0.10 + 1.30 
29.08.20 16.22.40 ^12.37.54 18.37.47 — 12.37.49 18.34. 5 +0. 5 +3.42 
30. 7.45 17.19.41 15.36. 1 17.26.43 15.35.18 17.27.17 +0.43 -0.34 

Sept. 1. 7.33 19.16. 9 20.30.53 15.13. 0 20.27. 4 15. 9.49 +3.49 +3.11 
4. 7.22 22.11.28 25.42. 0 12.23.48 25.40.58 12.22. 0 + 1. 2 + 1.48 
5. 7.32 23.10.29 27. 0.46 11.33.08 26.59.24 11.33.51 + 1.22 -0.43 
8. 7.16 26. 5.58 29.58.44 9.26.46 29.58.45 9.26.43 -0. 1 +0. 3 
9. 7.26 27. 5. 9 lU 0.44.10 8.49.10 lU 0.44. 4 8.48.25 +0. 6 +0.45 

This theory is also confirmed by the retrograde motion of the comet that 
appeared in the year 1723. The ascending node of this comet (according to the 
computation of Mr. Bradley, Savilian Professor of Astronomy at Oxford) was 
in T 14° 16', the inclination of the orbit to the plane of the ecliptic 49° 59/. Its 
perihelion was in b' 12° IS' 20//, its perihelian distance from the sun 998,651 
parts, of which the radius of the earth's orbit contains 1,000,000, and the equal 
time of its perihelion September 16d. I6h. 10m. The places of this comet com- 
puted in this orbit by Mr. Bradley, and compared with the places observed by 
himself, his uncle Mr. Pound, and Dr. Halley, may be seen in the following table. 

1723 
Equatorial 

time 

Comet's 
longitude 
observed 

Latitude 
north 

observed 

Comet's 
longitude 
computed 

Latitude 
north 

computed 
Difference 
longitude 

Difference 
latitude 

Oct. 
d h m 
9.8. 5 ^7.22.15 5. 2. 0 

o r tf 
~7.21.26 5. 2.47 +49 -47 

10.6.21 6.41.12 7.44.13 6.41.42 7.48.18 -50 + 55 
12.7.22 5.39.58 11.55. 0 5.40.19 11.54.55 -21 + 5 
14.8.57 4.59.49 14.43.50 5. 0.37 14.44. 1 -48 -11 
15.6.35 4.47.41 15.40.51 4.47.45 15.40.55 - 4 - 4 
21.6.22 4. 2.32 19.41.49 4. 2.21 19.42. 3 + 11 -14 
22.6.24 3.59. 2 20. 8.12 3.59.10 20. 8.17 - 8 - 5 
24.8. 2 3.55.29 20.55.18 3.55.11 20.55. 9 + 18 + 9 
29.8.56 3.56.17 22.20.27 3.56.42 22.20.10 -25 + 17 
30.6.20 3.58. 9 22.32.28 3.58.17 22.32.12 - 8 + 16 

Nov. 5.5.53 4.16.30 23.38.33 4.16.23 23.38. 7 + 7 +26 
8.7. 6 4.29.36 i 24. 4.30 4.29.54 24. 4.40 -18 -10 

14.6.20 5. 2.16 24.48.46 5. 2.51 24.48.16 -35 +30 
20.7.45 5.42.20 25.24.45 5.43.13 25.25.17 -53 -32 

Dec. 7.6.45 8. 4.13 1 26.54.18 8. 3.55 26.53.42 + 18 +36 
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From these examples it is abundantly evident that the motions of comets 

are no less accurately represented by our theory than the motions of the plan- 
ets commonly are by the theories of them; and, therefore, by means of this 
theory, we may enumerate the orbits of comets, and so discover the periodic 
time of a comet's revolution in any orbit; hence, at last, we shall have the 
transverse diameters of their elliptic orbits and their aphelian distances. 

That retrograde comet which appeared in the year 1607 described an orbit 
whose ascending node (according to Dr. Halley's computation) was in ^ 20° 
21'; and the inclination of the plane of the orbit to the plane of the ecliptic 
17° 2/; whose perihelion was in - 2° 16'; and its perihelian distance from the 
sun 58,680 of such parts as the radius of the earth's orbit contains 100,000; and 
the comet was in its perihelion October 16d. 3h. 50m.; which orbit agrees very 
nearly with the orbit of the comet which was seen in 1682. If these were not 
two different comets, but one and the same, that comet will finish one revolu- 
tion in the space of 75 years; and the greater axis of its orbit will be to the 
greater axis of the earth's orbit as \//752 to 1, or as 1778 to 100, nearly. And the 
aphelian distance of this comet from the sun will be to the mean distance of 
the earth from the sun as about 35 to 1; from these data it will be no hard mat- 
ter to determine the elliptic orbit of this comet. But these things are to be 
supposed on condition that, after the space of 75 years, the same comet shall 
return again in the same orbit. The other comets seem to ascend to greater 
heights, and to require a longer time to perform their revolutions. 

But, because of the great number of comets, of the great distance of their 
aphelions from the sun, and of the slowness of their motions in the aphelions, 
they will, by their mutual gravitations, disturb each other; so that their eccen- 
tricities and the times of their revolutions will be sometimes a little increased, 
and sometimes diminished. Therefore, we are not to expect that the same 
comet will return exactly in the same orbit, and in the same periodic times: it 
will be sufficient if we find the changes no greater than may arise from the 
causes just spoken of. 

And hence a reason may be assigned why comets are not comprehended 
within the limits of a zodiac, as the planets are; but, being confined to no 
bounds, are with various motions dispersed all over the heavens; namely, to 
this purpose, that in their aphelions, where their motions are exceedingly slow, 
receding to greater distances one from another, they may suffer less disturb- 
ance from their mutual gravitations: and hence it is that the comets which 
descend the lowest, and therefore move the slowest in their aphelions, ought 
also to ascend the highest. 

The comet which appeared in the year 1680 was in its perihelion less distant 
from the sun than by a sixth part of the sun's diameter; and because of its 
extreme velocity in that proximity to the sun, and some density of the sun's 
atmosphere, it must have suffered some resistance and retardation; and there- 
fore, being attracted somewhat nearer to the sun in every revolution, will at 
last fall down upon the body of the sun. Nay, in its aphelion, where it moves the 
slowest, it may sometimes happen to be yet further retarded by the attractions 
of other comets, and in consequence of this retardation descend to the sun. So 
fixed stars, that have been gradually wasted by the light and vapors emitted 
from them for a long time, may be recruited by comets that fall upon them; 
and from this fresh supply of new fuel those old stars, acquiring new splendor, 
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may pass for new stars. Of this kind are such fixed stars as appear on a sudden, 
and shine with a wonderful brightness at first, and afterwards vanish by little 
and little. Such was that star which appeared in Cassiopeia's Chair; which 
Cornelis Gemma did not see upon the 8th of November, 1572, though he was 
observing that part of the heavens upon that very night, and the sky was 
perfectly serene; but the next night (November 9) he saw it shining much 
brighter than any of the fixed stars, and scarcely inferior to Venus in splendor. 
Tycho Brahe saw it upon the 11th of the same month, when it shone with the 
greatest lustre; and from that time he observed it to decay by little and little; 
and in 16 months' time it entirely disappeared. In the month of November, 
when it first appeared, its light was equal to that of Venus. In the month of 
December, its light was a little diminished, and was now become equal to that 
of Jupiter. In January, 1573, it was less than Jupiter, and greater than Sirius, 
and about the end of February and the beginning of March became equal to 
that star. In the months of April and May it was equal to a star of the second 
magnitude; in June, July, and August, to a star of the third magnitude; in 
September, October, and November, to those of the fourth magnitude; in De- 
cember and January, 1574, to those of the fifth; in February to those of the 
sixth magnitude; and in March it entirely vanished. Its color at the beginning 
was clear, bright, and inclining to white; afterwards it turned a little yellow; 
and in March, 1573, it became ruddy, like Mars or Aldebaran; in May it 
turned to a kind of dusky whiteness, like that we observe in Saturn; and that 
color it retained ever after, but growing always more and more obscure. Such 
also was the star in the right foot of Serpentarius, which Kepler's scholars 
first observed September 30, o.s., 1604, with a light exceeding that of Jupiter, 
though the night before it was not to be seen; and from that time it decreased 
by little and little, and in 15 or 16 months entirely disappeared. Such a new 
star appearing with an unusual splendor is said to have moved Hipparchus to 
observe, and make a catalogue of, the fixed stars. As to those fixed stars that 
appear and disappear by turns, and increase slowly and by degrees, and scarce- 
ly ever exceed the stars of the third magnitude, they seem to be of another 
kind, which revolve about their axes, and, having a light and a dark side, show 
those two different sides by turns. The vapors which arise from the sun, the 
fixed stars, and the tails of the comets, may meet at last with, and fall into, 
the atmospheres of the planets by their gravity, and there be condensed and 
turned into water and humid spirits; and from thence, by a slow heat, pass 
gradually into the form of salts, and sulphurs, and tinctures, and mud, and 
clay, and sand, and stones, and coral, and other terrestrial substances. 
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The hypothesis of vortices is pressed with many difficulties. That every planet 
by a radius drawn to the sun may describe areas proportional to the times of 
description, the periodic times of the several parts of the vortices should ob- 
serve the square of their distances from the sun; but that the periodic times of 
the planets may obtain the J^th power of their distances from the sun, the 
periodic times of the parts of the vortex ought to be as the ^th power of their 
distances. That the smaller vortices may maintain their lesser revolutions 
about Saturn, Jupiter, and other planets, and swim quietly and undisturbed 
in the greater vortex of the sun, the periodic times of the parts of the sun's 
vortex should be equal; but the rotation of the sun and planets about their 
axes, which ought to correspond with the motions of their vortices, recede far 
from all these proportions. The motions of the comets are exceedingly regular, 
are governed by the same laws with the motions of the planets, and can by no 
means be accounted for by the hypothesis of vortices; for comets are carried 
with very eccentric motions through all parts of the heavens indifferently, with 
a freedom that is incompatible with the notion of a vortex. 

Bodies projected in our air suffer no resistance but from the air. Withdraw 
the air, as is done in Mr. Boyle's vacuum, and the resistance ceases; for in this 
void a bit of fine down and a piece of solid gold descend with equal velocity. 
And the same argument must apply to the celestial spaces above the earth's 
atmosphere; in these spaces, where there is no air to resist their motions, all 
bodies will move with the greatest freedom; and the planets and comets will 
constantly pursue their revolutions in orbits given in kind and position, ac- 
cording to the laws above explained; but though these bodies may, indeed, 
continue in their orbits by the mere laws of gravity, yet they could by no 
means have at first derived the regular position of the orbits themselves from 
those laws. 

The six primary planets are revolved about the sun in circles concentric 
with the sun, and with motions directed towards the same parts, and almost 
in the same plane. Ten moons are revolved about the earth, Jupiter, and Sat- 
urn, in circles concentric with them, with the same direction of motion, and 
nearly in the planes of the orbits of those planets; but it is not to be conceived 
that mere mechanical causes could give birth to so many regular motions, 
since the comets range over all parts of the heavens in very eccentric orbits; 
for by that kind of motion they pass easily through the orbs of the planets, 
and with great rapidity; and in their aphelions, where they move the slowest, 
and are detained the longest, they recede to the greatest distances from each 
other, and hence suffer the least disturbance from their mutual attractions. 
This most beautiful system of the sun, planets, and comets, could only proceed 
from the counsel and dominion of an intelligent and powerful Being. And if the 
fixed stars are the centres of other like systems, these, being formed by the like 
wise counsel, must be all subject to the dominion of One; especially since the 

369 
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light of the fixed stars is of the same nature with the light of the sun, and from 
every system light passes into all the other systems: and lest the systems of the 
fixed stars should, by their gravity, fall on each other, he hath placed those 
systems at immense distances from one another. 

This Being governs all things, not as the soul of the world, but as Lord over 
all; and on account of his dominion he is wont to be called Lord God tclvtokpcl- 
rcop, or Universal Ruler; for God is a relative word, and has a respect to serv- 
ants; and Deity is the dominion of God not over his own body, as those imagine 
who fancy God to be the soul of the world, but over servants. The Supreme 
God is a Being eternal, infinite, absolutely perfect; but a being, however per- 
fect, without dominion, cannot be said to be Lord God; for we say, my God, 
your God, the God of Israel, the God of Gods, and Lord of Lords; but we do 
not say, my Eternal, your Eternal, the Eternal of Israel, the Eternal of Gods; 
we do not say, my Infinite, or my Perfect: these are titles which have no 
respect to servants. The word God1 usually signifies Lord; but every lord is not 
a God. It is the dominion of a spiritual being which constitutes a God: a true, 
supreme, or imaginary dominion makes a true, supreme, or imaginary God. 
And from his true dominion it follows that the true God is a living, intelligent, 
and powerful Being; and, from his other perfections, that he is supreme, or 
most perfect. He is eternal and infinite, omnipotent and omniscient; that is, 
his duration reaches from eternity to eternity; his presence from infinity to 
infinity; he governs all things, and knows all things that are or can be done. He 
is not eternity and infinity, but eternal and infinite; he is not duration or space, 
but he endures and is present. He endures forever, and is everywhere present; 
and, by existing always and everywhere, he constitutes duration and space. 
Since every particle of space is always, and every indivisible moment of dura- 
tion is everywhere, certainly the Maker and Lord of all things cannot be never 
and nowhere. Every soul that has perception is, though in different times and 
in different organs of sense and motion, still the same indivisible person. There 
are given successive parts in duration, coexistent parts in space, but neither 
the one nor the other in the person of a man, or his thinking principle; and 
much less can they be found in the thinking substance of God. Every man, so 
far as he is a thing that has perception, is one and the same man during his 
whole life, in all and each of his organs of sense. God is the same God, always 
and everywhere. He is omnipresent not virtually only, but also substantially; 
for virtue cannot subsist without substance. In him2 are all things contained 
and moved; yet neither affects the other: God suffers nothing from the motion 
of bodies; bodies find no resistance from the omnipresence of God. It is allowed 
by all that the Supreme God exists necessarily; and by the same necessity he 

1Dr. Pocock derives the Latin word Deus from the Arabic du (in the oblique case di), which 
signifies Lord. And in this sense princes are called gods, Psalms, 82.6; and John, 10.35. And 
Moses is called a god to his brother Aaron, and a god to Pharaoh, Exodus, 4.16; and 7.1. And 
in the same sense the souls of dead princes were formerly, by the heathens, called gods, but 
falsely, because of their want of dominion. 2This was the opinion of the ancients. So Pythagoras, in Cicero De natura deorum i. Thales, 
Anaxagoras, Virgil, in Georgics iv. 220; and Aeneid vi. 721. Philo, Allegories, at the beginning 
of Book I. Aratus, in his Phcenomena, at the beginning. So also the sacred writers; as St. Paul, 
in Acts, 17.27, 28. St. John's Gospel, 14.2. Moses, in Deuteronomy, 4,39; and 10.14. David, 
in Psalms, 139.7,8,9. Solomon, in I Kings, 8.27. Job, 22.12,13,14. Jeremiah, 23.23,24. The 
idolaters supposed the sun, moon, and stars, the souls of men, and other parts of the world, 
to be parts of the Supreme God, and therefore to be worshipped; but erroneously. 
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exists always and everywhere. Whence also he is all similar, all eye, all ear, all 
brain, all arm, all power to perceive, to understand, and to act; but in a man- 
ner not at all human, in a manner not at all corporeal, in a manner utterly 
unknown to us. As a blind man has no idea of colors, so have we no idea of the 
manner by which the all-wise God perceives and understands all things. He is 
utterly void of all body and bodily figure, and can therefore neither be seen, 
nor heard, nor touched; nor ought he to be worshiped under the representation 
of any corporeal thing. We have ideas of his attributes, but what the real 
substance of anything is we know not. In bodies, we see only their figures and 
colors, we hear only the sounds, we touch only their outward surfaces, we 
smell only the smells, and taste the savors; but their inward substances are 
not to be known either by our senses, or by any reflex act of our minds: much 
less, than, have we any idea of the substance of God. We know him only by 
his most wise and excellent contrivances of things, and final causes; we admire 
him for his perfections; but we reverence and adore him on account of his 
dominion: for we adore him as his servants; and a god without dominion, 
providence, and final causes, is nothing else but Fate and Nature. Blind meta- 
physical necessity, which is certainly the same always and everywhere, could 
produce no variety of things. All that diversity of natural things which we 
find suited to different times and places could arise from nothing but the ideas 
and will of a Being necessarily existing. But, by way of allegory, God is said 
to see, to speak, to laugh, to love, to hate, to desire, to give, to receive, to 
rejoice, to be angry, to fight, to frame, to work, to build; for all our notions of 
God are taken from the ways of mankind by a certain similitude, which, though 
not perfect, has some likeness, however. And thus much concerning God; to 
discourse of whom from the appearances of things, does certainly belong to 
natural philosophy. 

Hitherto we have explained the phenomena of the heavens and of our sea 
by the power of gravity, but have not yet assigned the cause of this power. 
This is certain, that it must proceed from a cause that penetrates to the very 
centres of the sun and planets, without suffering the least diminution of its 
force; that operates not according to the quantity of the surfaces of the par- 
ticles upon which it acts (as mechanical causes used to do), but according to 
the quantity of the solid matter which they contain, and propagates its virtue 
on all sides to immense distances, decreasing always as the inverse square of 
the distances. Gravitation towards the sun is made up out of the gravitations 
towards the several particles of which the body of the sun is composed; and in 
receding from the sun decreases accurately as the inverse square of the dis- 
tances as far as the orbit of Saturn, as evidently appears from the quiescence 
of the aphelion of the planets; nay, and even to the remotest aphelion of the 
comets, if those aphelions are also quiescent. But hitherto I have not been able 
to discover the cause of those properties of gravity from phenomena, and I 
frame no hypotheses; for whatever is not deduced from the phenomena is to 
be called an hypothesis; and hypotheses, whether metaphysical or physical, 
whether of occult qualities or mechanical, have no place in experimental philos- 
ophy. In this philosophy particular propositions are inferred from the phenom- 
ena, and afterwards rendered general by induction. Thus it was that the im- 
penetrability, the mobility, and the impulsive force of bodies, and the laws of 
motion and of gravitation, were discovered. And to us it is enough that gravity 
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does really exist, and act according to the laws which we have explained, and 
abundantly serves to account for all the motions of the celestial bodies, and 
of our sea. 

And now we might add something concerning a certain most subtle spirit 
which pervades and lies hid in all gross bodies; by the force and action of which 
spirit the particles of bodies attract one another at near distances, and cohere, 
if contiguous; and electric bodies operate to greater distances, as well repelling 
as attracting the neighboring corpuscles; and light is emitted, reflected, re- 
fracted, inflected, and heats bodies; and all sensation is excited, and the mem- 
bers of animal bodies move at the command of the will, namely, by the vibra- 
tions of this spirit, mutually propagated along the solid filaments of the nerves, 
from the outward organs of sense to the brain, and from the brain into the 
muscles. But these are things that cannot be explained in few words, nor are 
we furnished with that sufficiency of experiments which is required to an accu- 
rate determination and demonstration of the laws by which this electric and 
elastic spirit operates. 
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ADVERTISEMENT TO FIRST EDITION 

Part of the ensuing discourse about light was written at the desire of some 
gentlemen of the Royal Society, in the year 1675, and then sent to their Secre- 
tary, and read at their meetings, and the rest was added about twelve years 
after to complete the theory; except the third book, and the last proposition of 
the second, which were since put together out of scattered papers. To avoid 
being engaged in disputes about these matters, I have hitherto delayed the 
printing, and should still have delayed it, had not the importunity of friends 
prevailed upon me. If any other papers writ on this subject are got out of my 
hands they are imperfect, and were perhaps written before I had tried all the 
experiments here set down, and fully satisfied myself about the laws of refrac- 
tions and composition of colours. I have here published what I think proper to 
come abroad, washing that it may not be translated into another language 
without my consent. 

The crowns of colours, which sometimes appear about the Sun and Moon, I 
have endeavoured to give an account of; but for want of sufficient observations 
leave that matter to be further examined. The subject of the third book I have 
also left imperfect, not having tried all the experiments which I intended when 
I wras about these matters, nor repeated some of those which I did try, until I 
had satisfied myself about all their circumstances. To communicate what I 
have tried, and leave the rest to others for further enquiry, is all my design in 
publishing these papers. 

In a letter written to Mr. Leibnitz in the year 1679, and published by Dr. 
Wallis, I mentioned a method by which I had found some general theorems 
about squaring curvilinear figures, or comparing them wdth the conic sections, 
or other the simplest figures with which they may be compared. And some 
years ago I lent out a manuscript containing such theorems, and having since 
met writh some things copied out of it, I have on this occasion made it public, 
prefixing to it an Introduction, and subjoining a Scholium concerning that 
method. And I have joined with it another small tract concerning the curvi- 
linear figures of the second kind, which was also written many years ago, and 
made known to some friends, who have solicited the making it public. 

I. N. 
April I, 1704. 
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ADVERTISEMENT TO SECOND EDITION 

In this Second Edition of these Optics I have omitted the mathematical tracts 
published at the end of the former edition, as not belonging to the subject. And 
at the end of the third book I have added some questions. And to shew that I 
do not take gravity for an essential property of bodies, I have added one ques- 
tion concerning its cause, choosing to propose it by way of a question, because 
I am not yet satisfied about it for want of experiments. 

I. N. 
July 16, 1717. 
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BOOK ONE 

Part I 

My design in this book is not to explain the properties of light by hypotheses, 
but to propose and prove them by reason and experiments: in order to which I 
shall premise the following definitions and axioms. 

DEFINITIONS 

DEFINITION I 
By the rays of light I understand its least "parts, and those as well successive in the 
same lines, as contemporary in several lines. 

For it is manifest that light consists of parts, both successive and contem- 
porary; because in the same place you may stop that which comes one moment, 
and let pass that which comes presently after; and in the same time you may 
stop it in any one place, and let it pass in any other. For that part of light which 
is stopped cannot be the same with that which is let pass. The least light or 
part of light, which may be stopped alone without the rest of the light, or 
propagated alone, or do or suffer any thing alone, which the rest of the light 
doth not or suffers not, I call a ray of light. 

DEFINITION II 
Refrangibility of the rays of light, is their disposition to he refracted or turned out of 
their way in passing out of one transparent body or medium into another. And a 
greater or less refrangibility of rays is their disposition to be turned more or less out 
of their way in like incidences on the same medium. 

Mathematicians usually consider the rays of light to be lines reaching from 
the luminous body to the body illuminated, and the refraction of those rays to 
be the bending or breaking of those lines in their passing out of one medium 
into another. And thus may rays and refractions be considered, if light be 
propagated in an instant. But by an argument taken from the equations of the 
times of the eclipses of Jupiter's satellites, it seems that light is propagated in 
time, spending in its passage from the Sun to us about seven minutes of time: 
and, therefore, I have chosen to define rays and refractions in such general 
terms as may agree to light in both cases. 

DEFINITION III 
Reflexibility of rays is their disposition to be reflected or turned back into the same 
medium from any other medium upon whose surface they fall. And rays are more 
or less reflexible which are turned back more or less easily. 

As if light pass out of a glass into air, and by being inclined more and more to 
the common surface of the glass and air, begins at length to be totally reflected 
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by that surface; those sorts of rays which at like incidences are reflected most 
copiously, or by inclining the rays begin soonest to be totally reflected, are 
most reflexible. 

DEFINITION IV 
The angle of incidence is that angle which the line described by the incident ray 
contains with the perpendicular to the reflecting or refracting surface at the point of 
incidence. 

DEFINITION V 
The angle of reflexion or refraction is the angle which the line described by the 
reflected or refracted ray containeth with the perpendicular to the reflecting or 
refracting surface at the point of incidence. 

DEFINITION VI 
The sines of incidence, reflexion, and refraction are the sines of the angles of 
incidence, reflexion, and refraction. 

DEFINITION VII 
The light whose rays are all alike refrangible I call Simple, Homogeneal and Sim- 
ilar; and that whose rays are some more refrangible than others I call compound, 
heterogeneal and dissimilar. 

The former light I call homogeneal, not because I would affirm it so in all 
respects, but because the rays which agree in refrangibility agree at least in all 
those their other properties which I consider in the following discourse. 

DEFINITION VIII 
The colours of homogeneal lights I call primary, homogeneal and simple; and 
those of heterogeneal lights, heterogeneal and compound. 

For these are always compounded of the colours of homogeneal lights; as will 
appear in the following discourse. 

AXIOMS 

AXIOM I 
The angles of reflexion and refraction lie in one and the same plane with the angle 
of incidence. 

AXIOM II 
The angle of reflexion is equal to the angle of incidence. 

AXIOM III 
If the refracted ray be returned directly back to the point of incidence, it shall be 
refracted into the line before described by the incident ray. 

AXIOM IV 
Refraction out of the rarer medium into the denser is made towards the perpendicu- 
lar; that is, so that the angle of refraction be less than the angle of incidence. 
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AXIOM V 

The sine of incidence is either accurately or very nearly in a given ratio to the sine 
of refraction. 

Whence if that proportion be known in any one inclination of the incident 
ray, 'tis known in all the inclinations, and thereby the refraction in all cases of 
incidence on the same refracting body may be determined. Thus, if the refrac- 
tion be made out of air into water, the sine of incidence of the red light is to the 
sine of its refraction as 4 to 3. If out of air into glass, the sines are as 17 to 11. 
In light of other colours the sines have other proportions: but the difference is 
so little that it need seldom be considered. 

Suppose, therefore, that RS [Fig. 1] represents the surface of stagnating 
water, and that C is the point of incidence in which any ray coming in the air 

from A in the line AC is reflected 
or refracted, and I would know 
whither this ray shall go after re- 
flexion or refraction: I erect upon 
the surface of the water from the 
point of incidence the perpendicu- 
lar CP and produce it downwards 
to Q, and conclude by the first 
Axiom that the ray after reflexion 
and refraction shall be found some- 
where in the plane of the angle of 
incidence ACP produced. I let fall, 
therefore, upon the perpendicular 
CP the sine of incidence AD; and 
if the reflected ray be desired, I 
produce AD to B so that DB be 
equal to AD, and draw CB. For 

this line CB shall be the reflected ray; the angle of reflexion BCP and its sine 
BD being equal to the angle and sine of incidence, as they ought to be by the 
second Axiom. But if the refracted ray be desired, I produce AD to H, so that 
DH may be to AD as the sine of refraction to the sine of incidence, that is (if 
the light be red) as 3 to 4; and about the centre C and in the plane ACP, with 
the radius CA describing a circle ABE, I draw a parallel to the perpendicu- 
lar CPQ, the line HE cutting the circumference in E and joining CE; this line 
CE shall be the line of the refracted ray. For if EF be let fall perpendicularly 
on the line PQ, this line EF shall be the sine of refraction of the ray CE, the 
angle of refraction being ECQ; and this sine EF is equal to DH, and conse- 
quently in proportion to the sine a 
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of incidence AD as 3 to 4. 
In like manner, if there be a prism 

of glass (that is, a glass bounded 
with two equal and parallel trian- 
gular ends, and three plain and 
well polished sides, which meet in 
three parallel lines running from 
the three angles of one end to the 
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three angles of the other end) and if the refraction of the light in passing 
cross this prism be desired: let ACB [Fig. 2] represent a plane cutting this prism 
transversely to its three parallel lines or edges there where the light passeth 
through it, and let DE be the ray incident upon the first side of the prism AC 
where the light goes into the glass; and by putting the proportion of the sine of 
incidence to the sine of refraction as 17 to 11 find EF the first refracted ray. 
Then, taking this ray for the incident ray upon the second side of the glass BC 
where the light goes out, find the next refracted ray FG by putting the propor- 
tion of the sine of incidence to the sine of refraction as 11 to 17. For if the sine 
of incidence out of air into glass be to the sine of refraction as 17 to 11, the sine 
of incidence out of glass into air must on the contrary be to the sine of refrac- 
tion as 11 to 17, by the third Axiom. 

Much after the same manner, if ACBD [Fig. 3] represent a glass spherically 
convex on both sides (usually called a lens, such as is a burning-glass, or 
spectacle-glass, or an object-glass of a telescope) and it be required to know 

how light falling upon it from any lucid point Q shall be refracted, let QM re- 
present a ray falling upon any point M of its first spherical surface ACB, and 
by erecting a perpendicular to the glass at the point M, find the first refracted 
ray MN by the proportion of the sines 17 to 11. Let that ray in going out of the 
glass be incident upon N, and then find the second refracted ray Ng by the 
proportion of the sines 11 to 17. And after the same manner may the refraction 
be found when the lens is convex on one side and plane or concave on the other, 
or concave on both sides. 

Homogeneal rays which flow from several points of any object, and fall perpen- 
dicularly or almost perpendicularly on any reflecting or refracting plane or spheri- 
cal surface, shall afterwards diverge from so many other points, or he parallel to so 
many other lines, or converge to so many other points, either accurately or without 
any sensible error. And the same thing will happen if the rays be reflected or re- 
fracted successively by two or three or more plane or spherical surfaces. 

The point from which rays diverge or to which they converge may be called 
their focus. And the focus of the incident rays being given, that of the reflected 
or refracted ones may be found by finding the refraction of any two rays, as 
above; or more readily thus: 

Case 1. Let ACB [Fig. 4] be a reflecting or refracting plane, and Q the focus 
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of the incident rays, and Q^C a perpendicular to that plane. And if this per- 
pendicular be produced to q, so that qC be equal to QC, the point q shall be the 
focus of the reflected rays; or if qC be taken on the same side of the plane with 
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QC, and in proportion to QC as the sine of incidence to the sine of refraction, 
the point q shall be the focus of the refracted rays. 

Case 2. Let ACB [Fig. 5] be the reflecting surface of any sphere whose centre 
is E. Bisect any radius thereof, (suppose EC) in T, and if in that radius on the 
same side the point T you take the points Q and q, so that TQ, TE, and Tg' be 
continual proportionals, and the point Q be the focus of the incident rays, the 
point q shall be the focus of the reflected ones. 

Case 3. Let ACB [Fig. 6] be the refracting surface of any sphere whose centre 
is E. In any radius thereof EC produced both ways take ET and Q equal to 
one another and severally in such proportion to that radius as the lesser of the 

A 
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Fig. 6 
sines of incidence and refraction hath to the difference of those sines. And then 
if in the same line you find any two points Q and g, so that TQ be to ET as YA 
to tq, taking tq the contrary way from t which TQ lieth from T, and if the point 
Q be the focus of any incident rays, the point q shall be the focus of the refracted 
ones. 

And by the same means the focus of the rays after two or more reflexions or 
refractions may be found. 

Case 4. Let ACBD [Fig. 7] be any refracting lens, spherically convex or 
concave or plane on either side, and let CD be its axis (that is, the line which 

A 

Fig. 7 
cuts both its surfaces perpendicularly, and passes through the centres of the 
spheres), and in this axis produced let F and/be the foci of the refracted rays 
found as above, when the incident rays on both sides the lens are parallel to the 
same axis; and upon the diameter F/ bisected in E, describe a circle. Suppose 
now that any point Q be the focus of any incident rays. Draw QE cutting the 
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said circle in T and t, and therein take tq in such proportion to tE as tE or TE 
hath to TQ. Let tq lie the contrary way from t which TQ doth from T, and q 
shall be the focus of the refracted rays without any sensible error, provided the 
point Q be not so remote from the axis, nor the lens so broad as to make any of 
the rays fall too obliquely on the refracting surfaces. 

And by the like operations may the reflecting or refracting surfaces be found 
when the two foci are given, and thereby a lens be formed, which shall make 
the rays flow towards or from what place you please. 

So then the meaning of this Axiom is that if rays fall upon any plane or 
spherical surface or lens, and before their incidence flow from or towards any 
point Q, they shall, after reflexion or refraction, flow from or towards the point 
q found by the foregoing rules. And if the incident rays flow from or towards 
several points Q, the reflected or refracted rays shall flow from or towards so 
many other points q found by the same rules. Whether the reflected and re- 
fracted rays flow from or towards the point q is easily known by the situation 
of that point. For if that point be on the same side of the reflecting or refracting 
surface or lens with the point Q, and the incident rays flow from the point Q, 
the reflected flow towards the point q and the refracted from it; and if the 
incident rays flow towards Q, the reflected flow from q, and the refracted to- 
wards it. And the contrary happens when q is on the other side of the surface. 

AXIOM VII 
Wherever the rays which come from all the points of any object meet again in so 
many points after they have been made to converge by reflection or refraction, there 
they will make a picture of the object upon any white body on which they fall. 

So if PR [Fig. 3] represent any object without doors, and AB be a lens placed 
at a hole in the window-shut of a dark chamber, whereby the rays that come 
from any point Q of that object are made to converge and meet again in the 
point g; and if a sheet of white paper be held at g for the light there to fall upon 
it, the picture of that object PR will appear upon the paper in its proper shape 
and colours. For as the light which comes from the point Q goes to the point q, 
so the light which comes from other points P and R of the object will go to so 
many other correspondent points p and r (as is manifest by the sixth Axiom); so 
that every point of the object shall illuminate a correspondent point of the 
picture, and thereby make a picture like the object in shape and colour, this 
only excepted, that the picture shall be inverted. And this is the reason of that 
vulgar experiment of casting the species of objects from abroad upon a wall or 
sheet of white paper in a dark room. 

In like manner, when a man views any object PQR, [Fig. 8] the light which 
comes from the several points of the object is so refracted by the transparent 
skins and humours of the eye (that is, by the outward coat EFG, called the 
tunica cornea, and by the crystalline humour AB which is beyond the pupil mk) 
as to converge and meet again in so many points in the bottom of the eye, and 
there to paint the picture of the object upon that skin (called the tunica retina) 
with which the bottom of the eye is covered. For anatomists, when they have 
taken off from the bottom of the eye that outward and most thick coat called 
the dura mater, can then see through the thinner coats the pictures of objects 
lively painted thereon. And these pictures, propagated by motion along the 
fibres of the optic nerves into the brain, are the cause of vision. For accordingly 
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as these pictures are perfect or imperfect, the object is seen perfectly or im- 
perfectly. If the eye be tinged with any colour (as in the disease of the jaundice) 
so as to tinge the pictures in the bottom of the eye with that colour, then all 
objects appear tinged with the same colour. If the humours of the eye by old 
age decay, so as by shrinking to make the cornea and coat of the crystalline 
humour grow flatter than before, the light will not be refracted enough, and for 
want of a sufficient refraction will not converge to the bottom of the eye but to 
some place beyond it, and by consequence paint in the bottom of the eye a 
confused picture, and according to the indistinctness of this picture the object 
will appear confused. This is the reason of the decay of sight in old men, and 
shews why their sight is mended by spectacles. For those convex glasses supply 
the defect of plumpness in the eye, and by increasing the refraction make the 
rays converge sooner, so as to convene distinctly at the bottom of the eye if the 
glass have a due degree of convexity. And the contrary happens in short-sighted 
men whose eyes are too plump. For the refraction being now too great, the rays 
converge and convene in the eyes before they come at the bottom; and there- 
fore the picture made in the bottom and the vision caused thereby mil not be 
distinct, unless the object be brought so near the eye as that the place where the 
converging rays convene may be removed to the bottom, or that the plumpness 
of the eye be taken off and the refractions diminished by a concave-glass of a 
due degree of concavity, or lastly that by age the eye grow flatter till it come to 
a due figure: For short-sighted men see remote objects best in old age, and 
therefore they are accounted to have the most lasting eyes. 

AXIOM VIII 
An object seen by reflexion or refraction appears in that place from whence the rays 
after their last reflexion or refraction diverge in falling on the spectator's eye. 

If the object A [Fig. 9] be seen 
t by reflexion of a looking-glass mn, 

if shall appear, not in its proper place 
A, but behind the glass at a, from 
whence any rays AB, AC, AD, which 
flow from one and the same point of 
the object, do, after their reflexion 
made in the points B, C, D, diverge 
in going from the glass to E, F, G, 
where they are incident on the spec- 
tator's eyes. For these rays do make 

Fig. 9 the same picture in the bottom of 
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the eyes as if they had come from the object really placed at a without the in- 
terposition of the looking-glass; and all vision is made according to the place 
and shape of that picture. 

In like manner, the object D [Fig. 2], seen through a prism, appears not in 
its proper place D, but is thence translated to some other place d situated in 
the last refracted ray FG drawn backward from F to d. 

And so the object Q [Fig. 10] seen through the lens AB, appears at the place 
q from whence the rays diverge in passing from the lens to the eye. Now it is to 
be noted that the image of the ob- 
ject at q is so much bigger or lesser ' 
than the object itself at Q, as the 
distance of the image at q from the 
lens AB is bigger or less than the ^ 
distance of the object at Q from the 
same lens. And if the object be seen .i. 0 

through two or more such convex Fig iq 
or concave glasses, every glass shall 
make a new image, and the object shall appear in the place of the bigness of the 
last image. Which consideration unfolds the theory of microscopes and tele- 
scopes. For that theory consists in almost nothing else than the describing such 
glasses as shall make the last image of any object as distinct and large and 
luminous as it can conveniently be made. 

I have now given in Axioms and their explications the sum of what hath 
hitherto been treated of in Optics. For what hath been generally agreed on I 
content myself to assume under the notion of Principles, in order to what I 
have further to write. And this may suffice for an Introduction to readers of 
quick wit and good understanding not yet versed in Optics; although those 
who are already acquainted with this science, and have handled glasses, will 
more readily apprehend what followeth. 

PROPOSITIONS 

Proposition 1. Theorem 1 
Lights which differ in colour, differ also in degrees of refrangihility. 

The Proof by Experiments 
Experiment 1. I took a black oblong stiff paper terminated by parallel sides, 
and, with a perpendicular right line drawn cross from one side to the other, 
distinguished it into two equal parts. One of these parts I painted with a red 
colour and the other with a blue. The paper was very black, and the colours 
intense and thickly laid on, that the phenomenon might be more conspicuous. 
This paper I viewed through a prism of solid glass, whose two sides through 
which the light passed to the eye were plane and well polished, and contained 
an angle of about sixty degrees; which angle I call the refracting angle of the 
prism. And whilst I viewed it, I held it and the prism before a window in such 
manner that the sides of the paper were parallel to the prism, and both those 
sides and the prism were parallel to the horizon, and the cross line was also 
parallel to it: and that the light which fell from the window upon the paper 
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made an angle with the paper equal to that angle which was made with the 
same paper by the light reflected from it to the eye. Beyond the prism was the 
wall of the chamber under the window covered over with black cloth, and the 
cloth was involved in darkness that no light might be reflected from thence, 
which in passing by the edges of the paper to the eye, might mingle itself with 
the light of the paper, and obscure the phenomenon thereof. These things being 
thus ordered, I found that if the refracting angle of the prism be turned up- 
wards, so that the paper may seem to be lifted upwards by the refraction, its 
blue half will be lifted higher by the refraction than its red half. But if the 
refracting angle of the prism be turned downward, so that the paper may seem 
to be carried lower by the refraction, its blue half will be carried something 
lower thereby than its red half. Wherefore in both cases the light which comes 
from the blue half of the paper through the prism to the eye does in like circum- 
stances suffer a greater refraction than the light which comes from the red half, 
and by consequence is more refrangible. 

Illustration. In the eleventh Figure, MN represents the window, and DE 
the paper terminated with parallel sides DJ and HE, and by the transverse line 

FG distinguished into two halves, 
the one DG of an intensely blue 
colour, the other FE of an intense- 
ly red. And BACca6 represents 
the prism whose refracting planes 
AB6a and ACca meet in the edge 
of the refracting angle Aa. This 
edge Aa, being upward, is parallel 
both to the horizon and to the 
parallel edges of the paper D J and 
HE, and the transverse line FG 
is perpendicular to the plane of 
the window. And de represents 
the image of the paper seen by 
refraction upwards in such man- 
ner that the blue half DG is car- 
ried higher to dg than the red half 
FE is tofe, and therefore suffers a 
greater refraction. If the edge of 
the refracting angle be turned 
downward, the image of the paper 

will be refracted downward; suppose to5e, and the blue half will be refracted 
lower to 67 than the red half is to <pe. 

Exper. 2. About the aforesaid paper, whose two halves were painted over 
with red and blue, and which was stiff like thin pasteboard, I lapped several 
times a slender thread of very black silk, in such manner that the several parts 
of the thread might appear upon the colours like so many black lines drawn 
over them, or like long and slender dark shadows cast upon them. I might have 
drawn black lines with a pen, but the threads were smaller and better defined. 
This paper thus coloured and lined I set against a wall perpendicularly to the 
horizon, so that one of the colours might stand to the right hand, and the other 
to the left. Close before the paper, at the confine of the colours below, I placed 

<f>\\ 
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a candle to illuminate the paper strongly: for the experiment was tried in the 
night. The flame of the candle reached up to the lower edge of the paper, or a 
very little higher. Then at the distance of six feet, and one or two inches from 
the paper upon the floor I erected a glass lens four inches and a quarter broad, 
which might collect the rays coming from the several points of the paper, and 
make them converge towards so many other points at the same distance of six 
feet, and one or two inches on the other side of the lens, and so form the image 
of the coloured paper upon a white paper placed there, after the same manner 
that a lens at a hole in a window casts the images of objects abroad upon a 
sheet of white paper in a dark room. The aforesaid white paper, erected per- 
pendicular to the horizon and to the rays which fell upon it from the lens, I 
moved sometimes towards the lens, sometimes from it, to find the places where 
the images of the blue and red parts of the coloured paper appeared most dis- 
tinct. Those places I easily knew by the images of the black lines which I had 
made by winding the silk about the paper. For the images of those fine and 
slender lines (which by reason of their blackness were like shadows on the 
colours) were confused and scarce visible, unless when the colours on either 
side of each line were terminated most distinctly. Noting, therefore, as dili- 
gently as I could, the places where the images of the red and blue halves of 
the coloured paper appeared most distinct, I found that where the red half of 
the paper appeared distinct, the blue half appeared confused, so that the black 
lines drawn upon it could scarce be seen; and on the contrary, where the blue 
half appeared most distinct, the red half appeared confused, so that the black 
lines upon it were scarce visible. And between the two places where these 
images appeared distinct there was the distance of an inch and a half; the dis- 
tance of the white paper from the lens, when the image of the red half of the 
coloured paper appeared most distinct, being greater by an inch and a half 
than the distance of the same white paper from the lens, when the image of the 
blue half appeared most distinct. In like incidences, therefore, of the blue and 
red upon the lens, the blue was refracted more by the lens than the red, so as to 
converge sooner by an inch and a half, and therefore is more refrangible. 

Illustration. In the twelfth Figure, DE signifies the coloured paper, DG 
the blue half, FE the red half, MN the lens, HJ the white paper in that place 
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where the red half with its black lines appeared distinct, and hj the same paper 
in that place where the blue half appeared distinct. The place hj was nearer to 
the lens MN than the place HJ by an inch and a half. 

Scholium. The same things succeed, notwithstanding that some of the cir- 
cumstances be varied; as in the first experiment when the prism and paper are 
any ways inclined to the horizon, and in both when coloured lines are drawn 
upon very black paper. But in the description of these experiments, I have set 
down such circumstances, by which either the phenomenon might be rendered 
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more conspicuous, or a novice might more easily try them, or by which I did 
try them only. The same thing I have often done in the following experiments; 
concerning all which, this one admonition may suffice: now, from these ex- 
periments it follows not that all the light of the blue is more refrangible than all 
the light of the red; for both lights are mixed of rays differently refrangible, so 
that in the red there are some rays not less refrangible than those of the blue, 
and in the blue there are some rays not more refrangible than those of the red; 
but these rays, in proportion to the whole light, are but few, and serve to 
diminish the event of the experiment, but are not able to destroy it. For, if the 
red and blue colours were more dilute and weak, the distance of the images 
would be less than an inch and a half; and if they were more intense and full, 
that distance would be greater, as will appear hereafter. These experiments 
may suffice for the colours of natural bodies. For in the colours made by the 
refraction of prisms, this Proposition will appear by the experiments which are 
now to follow in the next Proposition. 

Proposition 2. Theorem 2 

The light of the Sun consists of rays differently refrangible. 

The Proof by Experiments 
Exper. 3. In a very dark chamber, at a round hole, about one-third part of an 
inch broad, made in the shut of a window, I placed a glass prism, whereby the 
beam of the Sun's light, which came in at that hole, might be refracted upwards 
toward the opposite wall of the chamber, and there form a coloured image of 
the Sun. The axis of the prism (that is, the line passing through the middle of 
the prism from one end of it to the other end parallel to the edge of the refract- 
ing angle) was in this and the following experiments perpendicular to the inci- 
dent rays. About this axis I turned the prism slowly, and saw the refracted 
light on the wall, or coloured image of the Sun, first to descend, and then to 
ascend. Between the descent and ascent, when the image seemed stationary, I 
stopped the prism, and fixed it in that posture, that it should be moved no 
more. For in that posture the refractions of the light at the two sides of the 
refracting angle, that is, at the entrance of the rays into the prism, and at their 
going out of it, were equal to one another. So also in other experiments, as often 
as I would have the refractions on both sides the prism to be equal to one 
another, I noted the place where the image of the Sun formed by the refracted 
light stood still between its two contrary motions, in the common period of its 
progress and regress; and when the image fell upon that place, I made fast the 
prism. And in this posture, as the most convenient, it is to be understood that 
all the prisms are placed in the following experiments, unless where some other 
posture is described. The prism, therefore, being placed in this posture, I let 
the refracted light fall perpendicularly upon a sheet of white paper at the op- 
posite wall of the chamber, and observed the figure and dimensions of the solar 
image formed on the paper by that light. This image was oblong and not oval, 
but terminated with two rectilinear and parallel sides, and two semicircular 
ends. On its sides it was bounded pretty distinctly, but on its ends very con- 
fusedly and indistinctly, the light there decaying and vanishing by degrees. 
The breadth of this image answered to the Sun's diameter, and was about two 
inches and the eighth part of an inch, including the penumbra. For the image 
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was eighteen feet and a half distant from the prism, and at this distance that 
breadth, if diminished by the diameter of the hole in the window-shut (that is, 
by a quarter of an inch), subtended an angle at the prism of about half a degree, 
which is the Sun's apparent diameter. But the length of the image was about 
ten inches and a quarter, and the length of the rectilinear sides about eight 
inches; and the refracting angle of the prism, whereby so great a length was 
made, was 64 degrees. With a less angle the length of the image was less, the 
breadth remaining the same. If the prism was turned about its axis that way 
which made the rays emerge more obliquely out of the second refracting surface 
of the prism, the image soon became an inch or two longer, or more; and if the 
prism was turned about the contrary way, so as to make the rays fall more 
obliquely on the first refracting surface, the image soon became an inch or two 
shorter. And, therefore, in trying this experiment, I was as curious as I could be 
in placing the prism, by the above-mentioned rule, exactly in such a posture 
that the refractions of the rays at their emergence out of the prism might be 
equal to that at their incidence on it. This prism had some veins running along 
within the glass from one end to the other, which scattered some of the sun's 
light irregularly, but had no sensible effect in increasing the length of the 
coloured spectrum. For I tried the same experiment with other prisms with the 
same success. And particularly with a prism which seemed free from such veins, 
and whose refracting angle was 623/2 degrees, I found the length of the image 

or 10 inches at the distance of 183/2 feeI from the prism, the breadth of the 
hole in the window-shut being one-quarter of an inch, as before. And because it 
is easy to commit a mistake in placing the prism in its due posture, I repeated 
the experiment four or five times, and always found the length of the image that 
which is set down above. With another prism of clearer glass and better polish, 
which seemed free from veins, and whose refracting angle was 633/2 degrees, 
the length of this image at the same distance of 183/2 foot was also about 10 
inches, or 103/8- Beyond these measures for about ^ or ^ of an inch at either 
end of the spectrum the light of the clouds seemed to be a little tinged with red 
and violet, but so very faintly, that I suspected that tincture might either 
wholly, or in great measure, arise from some rays of the spectrum scattered 
irregularly by some inequalities in the substance and polish of the glass, and, 
therefore, I did not include it in these measures. Now, the different magnitude 
of the hole in the window-shut, and different thickness of the prism where the 
rays passed through it, and different inclinations of the prism to the horizon, 
made no sensible changes in the length of the image. Neither did the different 
matter of the prisms make any: for in a vessel made of polished plates of glass 
cemented together in the shape of a prism and filled with water, there is the 
like success of the experiment according to the quantity of the refraction. It is 
further to be observed, that the rays went on in right lines from the prism to 
the image, and, therefore, at their very going out of the prism, had all that 
inclination to one another from which the length of the image proceeded, that 
is, the inclination of more than two degrees and a half. And yet, according to 
the laws of Optics vulgarly received, they could not possibly be so much in- 
clined to one another. For let EG [Fig. 13] represent the window-shut, F the 
hole made therein through which a beam of the Sun's light was transmitted 
into the darkened chamber, and ABC a triangular imaginary plane whereby 
the prism is feigned to be cut transversely through the middle of the light. Or if 
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you please, let ABC represent the prism itself, looking directly towards the 
spectator's eye with its nearer end: and let XY be the Sun, MN the paper upon 
which the solar image or spectrum is cast, and PT the image itself whose sides 
towards v and w are rectilinear and parallel, and ends towards P and T semi- 
circular. YKHP and XLJT are two rays, the first of which comes from the 
lower part of the Sun to the higher part of the image, and is refracted in the 
prism at K and H, and the latter comes from the higher part of the Sun to the 
lower part of the image, and is refracted at L and J. Since the refractions on 
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both sides the prism are equal to one another, that is, the refraction at K equal 
to the refraction at J, and the refraction at L equal to the refraction at H, so 
that the refractions of the incident rays at K and L, taken together, are equal 
to the refractions of the emergent rays at H and J taken together: it follows, 
by adding equal things to equal things, that the refractions at K and H taken 
together are equal to the refractions at J and L taken together, and, therefore, 
the two rays being equally refracted, have the same inclination to one another 
after refraction which they had before; that is, the inclination of half a degree 
answering to the Sun's diameter. For so great was the inclination of the rays to 
one another before refraction. So then, the length of the image PT would by 
the rules of vulgar Optics subtend an angle of half a degree at the prism, and by 
consequence be equal to the breadth vw, and, therefore, the image would be 
round. Thus it would be were the two rays XLJT and YKHP, and all the rest 
which form the image FwTv, alike refrangible. And, therefore, seeing by ex- 
perience it is found that the image is not round, but about five times longer 
than broad, the rays which, going to the upper end P of the image, suffer the 
greatest refraction must be more refrangible than those which go to the lower 
end T, unless the inequality of refraction be casual. 

This image or spectrum PT was coloured, being red at its least refracted end 
T, and violet at its most refracted end P, and yellow, green and blue in the 
intermediate spaces. Which agrees with the first Proposition, that lights which 
differ in colour do also differ in refrangibility. The length of the image in the 
foregoing experiments I measured from the faintest and outmost red at one 
end, to the faintest and outmost blue at the other end, excepting only a little 
penumbra, whose breadth scarce exceeded a quarter of an inch, as was said 
above. 

Exper. 4. In the Sun's beam which was propagated into the room through the 
hole in the window-shut, at the distance of some feet from the hole, I held the 
prism in such a posture, that its axis might be perpendicular to that beam. 
Then I looked through the prism upon the hole, and turning the prism to and 
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fro about its axis to make the image of the hole ascend and descend, when 
between its two contrary motions it seemed stationary, I stopped the prism, 
that the refractions of both sides of the refracting angle might be equal to each 
other, as in the former experiment. In this situation of the prism, viewing 
through it the said hole, I observed the length of its refracted image to be 
many times greater than its breadth, and that the most refracted part thereof 
appeared violet, the least refracted red, the middle parts blue, green and yellow 
in order. The same thing happened when I removed the prism out of the Sun's 
light, and looked through it upon the hole shining by the light of the clouds 
beyond it. And yet, if the refraction were done regularly according to one cer- 
tain proportion of the sines of incidence and refraction, as is vulgarly sup- 
posed, the refracted image ought to have appeared round. 

So then, by these two experiments it appears that in equal incidences there 
is a considerable inequality of refractions. But whence this inequality arises, 
whether it be that some of the incident rays are refracted more, and others 
less, constantly, or by chance, or that one and the same ray is by refraction 
disturbed, shattered, dilated, and as it were split and spread into many diverg- 
ing rays, as Grimaldi supposes, does not yet appear by these experiments, but 
will appear by those that follow. 

Exper. 5. Considering, therefore, that if in the third experiment the image 
of the Sun should be drawn out into an oblong form, either by a dilatation of 
every ray, or by any other casual inequality of the refractions, the same oblong 
image would by a second refraction made sideways be drawn out as much in 
breadth by the like dilatation of the rays, or other casual inequality of the 
refractions sideways, I tried what would be the effects of such a second refrac- 
tion. For this end I ordered all things as in the third experiment, and then 
placed a second prism immediately after the first in a cross position to it, that 
it might again refract the beam of the Sun's light which came to it through the 
first prism. In the first prism this beam was refracted upwards, a'nd in the 
second sideways. And I found that by the refraction of the second prism, the 
breadth of the image was not increased, but its superior part, which in the 
first prism suffered the greater refraction, and appeared violet and blue, did 
again in the second prism suffer a greater refraction than its inferior part, 
which appeared red and yellow, and this without any dilatation of the image 
in breadth. 

Illustration. Let S [Figs. 14,15] represent the Sun, F the hole in the window, 
ABC the first prism, DH the second prism, Y the round image of the Sun made 
by a direct beam of light when the prisms are taken away, PT the oblong 
image of the Sun made by that beam passing through the first prism alone, 
when the second prism is taken away, and pt the image made by the cross 
refractions of both prisms together. Now, if the rays which tend towards the 
several points of the round image Y were dilated and spread by the refraction 
of the first prism, so that they should not any longer go in single lines to single 
points, but that every ray being split, shattered, and changed from a linear ray 
to a superficies of rays diverging from the point of refraction, and lying in the 
plane of the angles of incidence and refraction, they should go in those planes 
to so many lines reaching almost from one end of the image PT to the other, 
and if that image should thence become oblong, those rays and their several 
parts tending towards the several points of the image PT ought to be again 
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dilated and spread sideways by the transverse refraction of the second prism, 
so as to compose a four square image, such as is represented at ttt. For the 
better understanding of which, let the image PT be distinguished into five 
equal parts PQK, KQRL, LRSM, MSVN, NVT. And by the same irregularity 
that the orbicular light Y is by the refraction of the first prism dilated and 
drawn out into a long image PT, the light PQK which takes up a space of the 
same length and breadth with the light Y ought to be by the refraction of the 
second prism dilated and drawn out into the long image ivqkp, and the light 
KQRL into the long image kqrl, and the lights LRSM, MSVN, NVT, into so 
many other long images Irsm, msvn, nvtr] and all these long images would com- 
pose the four square images ttt. Thus it ought to be were every ray dilated by 
refraction, and spread into a triangular superficies of rays diverging from the 
point of refraction. For the second refraction would spread the rays one way 
as much as the first doth another, and so dilate the image in breadth as much 
as the first doth in length. And the same thing ought to happen were some rays 
casually refracted more than others. But the event is othenvise. The image PT 
was not made broader by the refraction of the second prism, but only became 
oblique, as Tis represented at pt, its upper end P being by the refraction trans- 
lated to a greater distance than its lower end T. So then the light which went 
towards the upper end P of the image was (at equal incidences) more refracted 
in the second prism than the light which tended towards the lower end T, 
that is, the blue and violet, than the red and yellow; and therefore was more 
refrangible. The same light was by the refraction of the first prism translated 
farther from the place Y to which it tended before refraction; and, therefore, 
suffered as well in the first prism as in the second a greater refraction than the 
rest of the light, and by consequence was more refrangible than the rest, even 
before its incidence on the first prism. 

Sometimes I placed a third prism after the second, and sometimes also a 
fourth after the third, by all which the image might be often refracted side- 
ways : but the rays which were more refracted than the rest in the first prism 
were also more refracted in all the rest, and that without any dilatation of the 
image sideways: and, therefore, those rays for their constancy of a greater 
refraction are deservedly reputed more refrangible. 

But that the meaning of this experiment may more clearly appear, it is to be 
considered that the rays which are equally refrangible do fall upon a circle 
answering to the Sun's disk. For this was proved in the third experiment. By a 
circle I understand not here a perfect geometrical circle, but any orbicular 
figure whose length is equal to its breadth, and which, as to sense, may seem 
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circular. Let, therefore, AG [Fig. 15] represent the circle which all the most 
refrangible rays propagated from the whole disk of the Sun would illuminate 
and paint upon the opposite wall, if they were alone; EL the circle which all 
the least refrangible rays would in like manner illuminate and paint if they 
were alone; BH, CJ, DK, the circles which so many intermediate sorts of rays 
would successively paint upon the wall, if they were singly propagated from 
the Sun in successive order, the rest being always intercepted; and conceive 
that there are other intermediate circles without number, which innumerable 
other intermediate sorts of rays would successively paint upon the wall if the 
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Sun should successively emit every sort apart. And seeing the Sun emits all 
these sorts at once, they must all together illuminate and paint innumerable 
equal circles, of all which, being according to their degrees of refrangibility 
placed in order in a continual series, that oblong spectrum PT is composed 
which I described in the third experiment. Now, if the Sun's circular image Y 
[Fig. 15] which is made by an unrefracted beam of light was by any dilation of 
the single rays, or by any other irregularity in the refraction of the first prism, 
converted into the oblong spectrum, PT: then ought every circle AG, BH, CJ, 
&c. in that spectrum, by the cross refraction of the second prism again dilating 
or otherwise scattering the rays as before, to be in like manner drawn out and 
transformed into an oblong figure, and thereby the breadth of the image PT 
would be now as much augmented as the length of the image Y was before by 
the refraction of the first prism; and thus by the refractions of both prisms 
together would be formed a four square figure as I described above. 
Wherefore, since the breadth of the spectrum PT is not increased by the re- 
fraction sideways, it is certain that the rays are not split or dilated, or other- 
ways irregularly scattered by that refraction, but that every circle is by a 
regular and uniform refraction translated entire into another place, as the 
circle AG by the greatest refraction into the place ag, the circle BH by a less 
refraction into the place hh, the circle CJ by a refraction still less into the place 
cj, and so of the rest; by which means a new spectrum pt inclined to the former 
PT is in like manner composed of circles lying in a right line; and these circles 
must be of the same bigness with the former, because the breadths of all the 
spectrums Y, PT, and pt at equal distances from the prisms are equal. 

I considered, further, that by the breadth of the hole F through which the 
light enters into the dark chamber, there is a penumbra made in the circuit of 
the spectrum Y, and that penumbra remains in the rectilinear sides of the 
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spectmms PT and pt. I placed, therefore, at that hole a lens or object-glass of 
a telescope which might cast the image of the Sun distinctly on Y without any 
penumbra at all, and found that the penumbra of the rectilinear sides of the 
oblong spectmms PT and pt was also thereby taken away, so that those sides 
appeared as distinctly defined as did the circumference of the first image Y. 
Thus it happens if the glass of the prisms be free from veins, and their sides be 
accurately plane and well polished without those numberless waves or curls 
which usually arise from sand-holes a little smoothed in polishing with putty. 
If the glass be only well polished and free from veins, and the sides not accu- 
rately plane, but a little convex or concave, as it frequently happens; yet may 
the three spectmms Y, PT, and pt want penumbras, but not in equal distances 
from the prisms. Now, from this want of penumbras I knew more certainly 
that every one of the circles was refracted according to some most regular, 
uniform, and constant law. For if there were any irregularity in the refraction, 
the right lines AE and GL, which all the circles in the spectrum PT do touch, 
could not by that refraction be translated into the lines ae and gl as distinct and 
straight as they were before, but there would arise in those translated lines 
some penumbra or crookedness or undulation, or other sensible perturbation 
contrary to what is found by experience. Whatsoever penumbra or perturba- 
tion should be made in the circles by the cross refraction of the second prism, 
all that penumbra or perturbation would be conspicuous in the right lines ae 
and gl which touch those circles. And, therefore, since there is no such penum- 
bra or perturbation in those right lines, there must be none in the circles. Since 
the distance between those tangents or breadth of the spectrum is not increased 
by the refractions, the diameters of the circles are not increased thereby. Since 
those tangents continue to be right lines, every circle which in the first prism 
is more or less refracted is exactly in the same proportion more or less refracted 
in the second. And seeing all these things continue to succeed after the same 
manner when the rays are again in a third prism, and again in a fourth re- 
fracted sideways, it is evident that the rays of one and the same circle, as to 
their degree of refrangibility, continue always uniform and homogeneal to one 
another, and that those of several circles do differ in degree of refrangibility, 
and that in some certain and constant proportion. Which is the thing I was to 
prove. 

There is yet another circumstance or two of this experiment by which it 
becomes still more plain and convincing. Let the second prism DH [Fig. 16] 
be placed not immediately after the first, but at some distance from it; suppose 
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in the mid-way between it and the wall on which the oblong spectrum PT is 
cast, so that the light from the first prism may fall upon it in the form of an 
oblong spectrum ttt parallel to this second prism, and be refracted sideways 
to form the oblong spectrum pt upon the wall. And you will find, as before, 
that this spectrum pt is inclined to that spectrum PT, which the first prism 
forms alone without the second; the blue ends P and p being farther distant 
from one another than the red ones T and t, and by consequence that the rays 
which go to the blue end tt of the image ttt, and which therefore suffer the great- 
est refraction in the first prism, are again in the second prism more refracted 
than the rest. 

The same thing I tried also by letting the Sun's light into a dark room 
through two little round holes F and y [Fig. 17] made in the window, and with 
two parallel prisms ABC and a&y placed at those holes (one at each) refracting 
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those two beams of light to the opposite wall of the chamber, in such manner 
that the two coloured images PT and MN which they there painted were joined 
end to end and lay in one straight line, the red end T of the one touching the 
blue end M of the other. For if these two refracted beams were again by a third 
prism DH placed cross to the two first, refracted sideways, and the spectrums 
thereby translated to some other part of the wall of the chamber, suppose the 
spectrum PT to pt and the spectrum MN to mn, these translated spectrums 
pt and mn would not lie in one straight line with their ends contiguous as 
before, but be broken off from one another and become parallel, the blue end 
m of the image mn being by a greater refraction translated farther from its 
former place MT, than the red end t of the other image pt from the same place 
MT; which puts the Proposition past dispute. And this happens whether the 
third prism DH be placed immediately after the two first, or at a great distance 
from them, so that the light refracted in the two first prisms be either white and 
circular, or coloured and oblong when it falls on the third. 

Exper. 6. In the middle of two thin boards I made round holes a third part 
of an inch in diameter, and in the window-shut a much broader hole being 
made to let into my darkened chamber a large beam of the Sun's light, I placed 
a prism behind the shut in that beam to refract it towards the opposite wall, 
and close behind the prism I fixed one of the boards, in such manner that the 
middle of the refracted light might pass through the hole made in it, and the 
rest be intercepted by the board. Then at the distance of about twelve feet 
from the first board I fixed the other board in such manner that the middle of 
the refracted light which came through the hole in the first board, and fell 
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upon the opposite wall, might pass through the hole in this other board, and 
the rest being intercepted by the board might paint upon it the coloured spec- 
trum of the Sun. And close behind this board I fixed another prism to refract 
the light which came through the hole. Then I returned speedily to the first 
prism, and by turning it slowly to and fro about its axis, I caused the image 
which fell upon the second board to move up and down upon that board, that 
all its parts might successively pass through the hole in that board and fall 
upon the prism behind it. And in the meantime I noted the places on the op- 
posite wall to which that light after its refraction in the second prism did pass; 
and by the difference of the places I found that the light which being most 
refracted in the first prism did go the the blue end of the image, was again 
more refracted in the second prism than the light which went to the red end 
of that image, which proves as well the first Proposition as the second. And 
this happened whether the axis of the two prisms were parallel, or inclined to 
one another, and to the horizon in any given angles. 

Illustration. Let F [Fig. 18] be the wide hole in the window-shut, through 
which the Sun shines upon the first prism ABC, and let the refracted light fall 
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upon the middle of the board DE, and the middle part of that light upon the 
hole G made in the middle part of that board. Let this trajected part of that 
light fall again upon the middle of the second board de, and there paint such 
an oblong coloured image of the Sun as was described in the third experiment. 
By turning the prism ABC slowly to and fro about its axis, this image will be 
made to move up and down the board de, and by this means all its parts from 
one end to the other may be made to pass successively through the hole g 
which is made in the middle of that board. In the meanwhile, another prism 
abc is to be fixed next after that hole g, to refract the trajected light a second 
time. And these things being thus ordered, I marked the places M and N of the 
opposite wall upon which the refracted light fell, and found that whilst the 
two boards and second prism remained unmoved, those places, by turning the 
first prism about its axis, were changed perpetually. For when the lower part 
of the light which fell upon the second board de was cast through the hole g, 
it went to a lower place M on the wall, and when the higher part of that light 
was cast through the same hole g, it went to a higher place N on the wall, and 
when any intermediate part of the light was cast through that hole, it went to 
some place on the wall between M and N. The unchanged position of the holes 
in the boards made the incidence of the rays upon the second prism to be the 
same in all cases. And yet in that common incidence some of the rays were more 
refracted, and others less. And those were more refracted in this prism, which 
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by a greater refraction in the first prism were more turned out of the way, and, 
therefore, for their constancy of being more refracted are deservedly called 
more refrangible. 

Exper. 7. At two holes made near one another in my window-shut I placed 
two prisms, one at each, which might cast upon the opposite wall (after the 
manner of the third experiment) two oblong coloured images of the Sun. And 
at a little distance from the wall I placed a 1 ong slender 
paper with straight and parallel edges, and ordered 
the prisms and paper so that the red colour of one 
image might fall directly upon one half of the paper, 
and the violet colour of the other image upon the p- 
other half of the same paper; so that the paper ap- 
peared of two colours, red and violet, much after the 
manner of the painted paper in the first and second G 
experiments. Then with a black cloth I covered the 
wall behind the paper, that no light might be re- 
flected from it to disturb the experiment, and viewing the paper through a 
third prism held parallel to it, I saw that half of it which was illuminated by 
the violet light to be divided from the other half by a greater refraction, espe- 
cially when I went a good way off from the paper. For when I viewed it too 
near at hand, the two halves of the paper did not appear fully divided from 
one another, but seemed contiguous at one of their angles like the painted 
paper in the first experiment. Which also happened when the paper was too broad. 

Sometimes instead of the paper I used a white thread, and this appeared 
through the prism divided into two parallel threads as is represented in the nine- 
teenth Figure, where DG denotes the thread illuminated with violet light from 
D to E and with red light from F to G, and defg are the parts of the thread seen 
by refraction. If one half of the thread be constantly illuminated with red, and 
the other half be illuminated with all the colours successively (which may be 
done by causing one of the prisms to be turned about its axis whilst the other 
remains unmoved), this other half, in viewing the thread through the prism, 
will appear in a continual right line with the first half when illuminated with 
red, and begin to be a little divided from it when illuminated with orange, and 
remove farther from it when illuminated with yellow, and still farther when 
with green, and farther when with blue, and go yet farther off when illuminated 
with indigo, and farthest when with deep violet. Which plainly shews that the 
lights of several colours are more and more refrangible one than another, in 
this order of their colours: red, orange, yellow, green, blue, indigo, deep violet; 
and so proves as well the first Proposition as the second. 

I caused also the coloured spectrums PT [Fig. 17] and MN made in a dark 
chamber by the refractions of two prisms to lie in a right line end to end, as 
was described above in the fifth experiment, and viewing them through a 
third prism held parallel to their length, they appeared no longer in a right 
line, but became broken from one another, as they are represented at pt and 
mn, the violet end m of the spectrum mn being by a greater refraction trans- 
lated farther from its former place MT than the red end t of the other spectrum pt. 

I further caused those two spectrums PT [Fig. 20] and MN to become co- 
incident in an inverted order of their colours, the red end of each falling on the 
violet end of the other, as they are represented in the oblong figure PTMN; 

/ 
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and then viewing them through a prism DPI held parallel to their length, they 
appeared not co-incident, as when viewed with the naked eye, but in the form 

\ / / )<v>x 
ni"'' 

Fig. 20 
of two distinct spectrums and mn crossing one another in the middle after 
the manner of the letter X. Which shews that the red of the one spectrum and 
violet of the other, which were co-incident at PN and MT, being parted from 
one another by a greater refraction of the violet to p and m than of the red to 
n and t, do differ in degrees of refrangibility. 

I illuminated also a little circular piece of white paper all over with the 
lights of both prisms intermixed, and when it was illuminated with the red of 
one spectrum, and deep violet of the other, so as by the mixture of those 
colours to appear all over purple, I viewed the paper, first at a less distance, 
and then at a greater, through a third prism; and as I went from the paper, the 
refracted image thereof became more and more divided by the unequal refrac- 
tion of the two mixed colours, and at length parted into two distinct images, 
a red one and a violet one, whereof the violet was farthest from the paper, and 
therefore suffered the greatest refraction. And when that prism at the window, 
which cast the violet on the paper, was taken away, the violet image disap- 
peared; but when the other prism was taken away the red vanished; which 
shews that these two images were nothing else than the lights of the two prisms, 
which had been intermixed on the purple paper, but were parted again by their 
unequal refractions made in the third prism, through which the paper was 
viewed. This also was observable, that if one of the prisms at the window 
(suppose that which cast the violet on the paper) was turned about its axis to 
make all the colours, in this order: violet, indigo, blue, green, yellow, orange, 
red, fall successively on the paper from that prism, the violet image changed 
colour accordingly, turning successively to indigo, blue, green, yellow and red, 
and in changing colour came nearer and nearer to the red image made by the 
other prism, until when it was also red both images became fully co-incident. 

I placed also two paper circles very near one another, the one in the red light 
of one prism, and the other in the violet light of the other. The circles were 
each of them an inch in diameter, and behind them the wall was dark, that the 
experiment might not be disturbed by any light coming from thence. These 
circles thus illuminated, I viewed through a prism so held that the refraction 
might be made towards the red circle, and as I went from them they came 
nearer and nearer together, and at length became co-incident; and afterwards 
when I went still farther off, they parted again in a contrary order, the violet 
by a greater refraction being carried beyond the red. 

Exper. 8. In summer, when the Sun's Light uses to be strongest, I placed a 
prism at the hole of the window-shut, as in the third experiment, yet so that 
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its axis might be parallel to the axis of the world, and at the opposite wall in 
the Sun's refracted light, I placed an open book. Then going six feet and two 
inches from the book, I placed there the above-mentioned lens, by which the 
light reflected from the book might be made to converge and meet again at the 
distance of six feet and two inches behind the lens, and there paint the species 
of the book upon a sheet of white paper much after the manner of the second 
experiment. The book and lens being made fast, I noted the place where the 
paper was when the letters of the book, illuminated by the fullest red light of 
the solar image falling upon it, did cast their species on that paper most dis- 
tinctly. And then I stayed till, by the motion of the Sun, and consequent 
motion of his image on the book, all the colours from that red to the middle of 
the blue passed over those letters; and when those letters were illuminated by 
that blue, I noted again the place of the paper when they cast their species 
most distinctly upon it: And I found that this last place of the paper was 
nearer to the lens than its former place by about two inches and a half, or two 
and three quarters. So much sooner, therefore, did the light in the violet end 
of the image by a greater refraction converge and meet, than the light in the 
red end. But in trying this, the chamber was as dark as I could make it. For, 
if these colours be diluted and weakened by the mixture of any adventitious 
light, the distance between the places of the paper will not be so great. This 
distance in the second experiment, where the colours of natural bodies were 
made use of, was but an inch and a half, by reason of the imperfection of those 
colours. Here in the colours of the prism, which are manifestly more full, in- 
tense, and lively than those of natural bodies, the distance is two inches and 
three quarters. And were the colours still more full, I question not but that 
the distance would be considerably greater. For the coloured light of the prism, 
by the interfering of the circles described in the second figure of the fifth ex- 
periment [Fig. 15], and also by the light of the very bright clouds next the 
Sun's body intermixing with these colours, and by the light scattered by the 
inequalities in the polish of the prism, was so very much compounded, that 
the species which those faint and dark colours, the indigo and violet, cast upon 
the paper were not distinct enough to be wed observed. 

Exper. 9. A prism, whose two angles at its base were equal to one another, 
and half right ones, and the third a right one, I placed in a beam of the Sun's 
light let into a dark chamber through a hole in the window-shut, as in the 
third experiment. And turning the prism slowly about its axis, until all the 
light which went through one of its angles, and was refracted by it began to be 
reflected by its base, at which till then it went out of the glass, I observed that 
those rays which had suffered the greatest refraction were sooner reflected than 
the rest. I conceived, therefore, that those rays of the reflected light, which 
were most refrangible, did first of all by a total reflexion become more copious 
in that light than the rest, and that afterwards the rest also, by a total re- 
flexion, became as copious as these. To try this, I made the reflected light pass 
through another prism, and being refracted by it to fall afterwards upon a 
sheet of white paper placed at some distance behind it, and there by that 
refraction to paint the usual colours of the prism. And then causing the first 
prism to be turned about its axis as above, I observed that when those rays, 
which in this prism had suffered the greatest refraction, and appeared of a blue 
and violet colour, began to be totally reflected, the blue and violet light on the 
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paper, which was most refracted in the second prism, received a sensible in- 
crease above that of the red and yellow, which was least refracted; and after- 
wards, when the rest of the light which was green, yellow, and red, began to be 
totally reflected in the first prism, the light of those colours on the paper re- 
ceived as great an increase as the violet and blue had done before. Whence 'tis 
manifest that the beam of light reflected by the base of the prism, being aug- 
mented first by the more refrangible rays, and afterwards by the less refrang- 
ible ones, is compounded of rays differently refrangible. And that all such 
reflected light is of the same nature with the Sun's light before its incidence on 
the base of the prism, no man ever doubted; it being generally allowed that 
light by such reflexions suffers no alteration in its modifications and proper- 
ties. I do not here take notice of any refractions made in the sides of the first 
prism, because the light enters it perpendicularly at the first side, and goes out 
perpendicularly at the second side, and therefore suffers none. So then, the 
Sun's incident light being of the same temper and constitution with his emer- 
gent light, and the last being compounded of rays differently refrangible, the 
first must be in like manner compounded. 

Illustration. In the twenty-first Figure, ABC is the first prism, BCits base, 
B and C its equal angles at the base, each of 45 degrees, A its rectangular 

the rays MH emerge more and more obliquely out of that prism, and at length 
after their most oblique emergence are reflected towards N, and going on to 
p do increase the number of the rays Np. Afterwards, by continuing the motion 
of the first prism, the rays MG are also reflected to N and increase the number 
of the rays N^. And, therefore, the light MN admits into its composition, first 
the more refrangible rays, and then the less refrangible rays, and yet after this 
composition is of the same nature with the Sun's immediate light FM, the re- 
flexion of the specular base BC causing no alteration therein. 

Exper. 10. Two prisms, which were alike in shape, I tied so together that, 
their axis and opposite sides being parallel, they composed a parallelepiped. 
And, the Sun shining into my dark chamber through a little hole in the window- 
shut, I placed that parallelepiped in his beam at some distance from the hole, 
in such a posture that the axes of the prisms might be perpendicular to the 
incident rays, and that those rays, being incident upon the first side of one 
prism, might go on through the two contiguous sides of both prisms, and 

H 
G 

Fig. 21 

vertex, FM a beam of the Sun's 
light let into a dark room through 
a hole F one third part of an inch 
broad, M its incidence on the base 
of the prism, MG a less refracted 
ray, MH a more refracted ray, 
MN the beam of light reflected 
from the base, YXY the second 
prism by which this beam in pass- 
ing through it is refracted, the 
less refracted light of this beam, 
and Np the more refracted part 
thereof. When the first prism ABC 
is turned about its axis according 
to the order of the letters ABC, 
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emerge out of the last side of the second prism. This side, being parallel to the 
first side of the first prism, caused the emerging light to be parallel to the in- 
cident. Then, beyond these two prisms I placed a third, which might refract 
that emergent light, and by that refraction cast the usual colours of the prism 
upon the opposite wall, or upon a sheet of white paper held at a convenient 
distance behind the prism for that refracted light to fall upon it. After this I 
turned the parallelepiped about its axis, and found that when the contiguous 
sides of the two prisms became so oblique to the incident rays that those rays 
began all of them to be reflected, those rays which in the third prism had 
suffered the greatest refraction, and painted the paper with violet and blue, 
were first of all by a total reflexion taken out of the transmitted light, the rest 
remaining and on the paper painting their colours of green, yellow, orange and 
red, as before; and afterwards by continuing the motion of the two prisms, the 
rest of the rays also by a total reflexion vanished in order, according to their 
degrees of refrangibility. The light, therefore, which emerged out of the two 
prisms is compounded of rays differently refrangible, seeing the more refrang- 
ible rays may be taken out of it, while the less refrangible remain. But this 
light being trajected only through the parallel superficies of the two prisms, if 
it suffered any change by the refraction of one superficies it lost that impres- 
sion by the contrary refraction of the other superficies, and so being restored 
to its pristine constitution, became of the same nature and condition as at first 
before its incidence on those prisms; and, therefore, before its incidence was as 
much compounded of rays differently refrangible, as afterwards. 

Illustration. In the twenty-second Figure ABC and BCD are the two 
prisms tied together in the form of a parallelepiped, their sides BC and CB 
being contiguous, and their sides AB 
and CD parallel. And HJK is the 
third prism, by which the Sun's 
light propagated through the hole 
F into the dark chamber, and there 
passing through those sides of the 
prisms AB, BC, CB and CD, is re- 
fracted at 0 to the white paper PT, 
falling there partly upon P by a 
greater refraction, partly upon T 
by a less refraction, and partly up- 
on R and other intermediate places 
by intermediate refractions. By 
turning the parallelepiped ACBD p 
about its axis, according to the order R 
of the letters A, C, D, B, at length T 

when the contiguous planes BC 
and CB become sufficiently oblique Fig. 22 
to the rays FM, which are incident upon them at M, there will vanish totally 
out of the refracted light OPT, first of all the most refracted rays OP (the 
rest OR and OT remaining as before), then the rays OR and other intermedi- 
ate ones, and, lastly, the least refracted rays OT. For wdien the plane BC be- 
comes sufficiently oblique to the rays incident upon it, those rays will begin 
to be totally reflected by it towards N; and first the most refrangible rays will 
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be totally reflected (as was explained in the preceding experiment) and by con- 
sequence must first disappear at P, and afterwards the rest as they are in order 
totally reflected to N, they must disappear in the same order at R and T. So 
then the rays, which at 0 suffer the greatest refraction, may be taken out of 
the light MO whilst the rest of the rays remain in it, and therefore that light 
MO is compounded of rays differently refrangible. And because the planes AB 
and CD are parallel, and, therefore, by equal and contrary refractions destroy 
one another's effects, the incident light FM must be of the same kind and 
nature with the emergent light MO, and therefore doth also consist of rays 
differently refrangible. These two lights FM and MO, before the most refrang- 
ible rays are separated out of the emergent light MO, agree in colour and in all 
other properties so far as my observation reaches, and, therefore, are deserv- 
edly reputed of the same nature and constitution, and by consequence the one 
is compounded as well as the other. But after the most refrangible rays begin 
to be totally reflected, and thereby separated out of the emergent light MO, 
that light changes its colour from white to a dilute and faint yellow, a pretty 
good orange, a very full red successively, and then totally vanishes. For after 
the most refrangible rays, which paint the paper at P with a purple colour, are 
by a total reflexion taken out of the beam of light MO, the rest of the colours 
which appear on the paper at R and T being mixed in the light MO compound 
there a faint yellow, and after the blue and part of the green which appear on 
the paper between P and R are taken away, the rest which appear between R 
and T (that is, the yellow, orange, red and a little green) being mixed in the 
beam MO compound there an orange; and when all the rays are by reflexion 
taken out of the beam MO, except the least refrangible, which at T appear of 
a full red, their colour is the same in that beam MO as afterwards at T, the 
refraction of the prism HJK serving only to separate the differently refrang- 
ible rays, without making any alteration in their colours, as shall be more fully 
proved hereafter. All which confirms as well the first Proposition as the second. 

Scholium. If this experiment and the former be conjoined and made one by 
applying a fourth prism VXY [Fig. 22] to refract the reflected beam MN to- 
wards tp, the conclusion will be clearer. For then the light Np, which in the 
fourth prism is more refracted, will become fuller and stronger when the light 
OP, which in the third prism HJK is more refracted, vanishes at P; and after- 
wards when the less refracted light OT vanishes at T, the less refracted light 
Ni will become increased whilst the more refracted light at p receives no fur- 
ther increase. And as the trajected beam MO in vanishing is always of such a 
colour as ought to result from the mixture of the colours which fall upon the 
paper PT, so is the reflected beam MN always of such a colour as ought to 
result from the mixture of the colours which fall upon the paper pt. For when 
the most refrangible rays are by a total reflexion taken out of the beam MO. 
and leave that beam of an orange colour, the excess of those rays in the re- 
flected light does not only make the violet, indigo and blue at p more full, but 
also makes the beam MN change from the yellowish colour of the Sun's light 
to a pale white inclining to blue, and afterward recover its yellowish colour 
again, so soon as all the rest of the transmitted light MOT is reflected. 

Now, seeing that in all this variety of experiments, whether the trial be 
made in light reflected, and that either from natural bodies, as in the first and 
second experiment, or specular, as in the ninth; or in light refracted, and that 
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either before the unequally refracted rays are by diverging separated from one 
another, and losing their whiteness which they have altogether, appear sev- 
erally of several colours, as in the fifth experiment; or after they are separated 
from one another, and appear coloured as in the sixth, seventh, and eighth 
experiments; or in light trajected through parallel superficies, destroying each 
other's effects, as in the tenth experiment; there are always found rays, which 
at equal incidences on the same medium suffer unequal refractions, and that 
without any splitting or dilating of single rays, or contingence in the inequality 
of the refractions, as is proved in the fifth and sixth experiments. And seeing 
the rays which differ in refrangibility may be parted and sorted from one an- 
other, and that either by refraction as in the third experiment, or by reflexion 
as in the tenth, and then the several sorts apart at equal incidences suffer un- 
equal refractions, and those sorts are more refracted than others after separa- 
tion, which were more refracted before it, as in the sixth and following experi- 
ments, and if the Sun's light be trajected through three or more cross prisms 
successively, those rays which in the first prism are refracted more than others 
are in all the following prisms refracted more than others in the same rate and 
proportion, as appears by the fifth experiment; it's manifest that the Sun's 
light is an heterogeneous mixture of rays, some of which are constantly more 
refrangible than others, as was proposed. 

Proposition 3. Theorem 3 
The Suris light consists of rays differing in reflexibility, and those rays are more 
re flexible than others which are more refrangible. 

This is manifest by the ninth and tenth experiments: for in the ninth ex- 
periment, by turning the prism about its axis until the rays within it, which in 
going out into the air were refracted by its base, became so oblique to that base 
as to begin to be totally reflected thereby; those rays became first of all totally 
reflected, which before at equal incidences with the rest had suffered the great- 
est refraction. And the same thing happens in the reflexion made by the com- 
mon base of the two prisms in the tenth experiment. 

Proposition 4. Problem 1 
To separate from one another the heterogeneous rays of compound light. 

The heterogeneous rays are in some measure separated from one another by 
the refraction of the prism in the third experiment, and in the fifth experiment, 
by taking away the penumbra from the rectilinear sides of the coloured image, 
that separation in those very rectilinear sides or straight edges of the image 
becomes perfect. But in all places between those rectilinear edges, those in- 
numerable circles there described, which are severally illuminated by homoge- 
neal rays, by interfering with one another, and being everywhere commixed, 
do render the light sufficiently compound. But if these circles, whilst their 
centres keep their distances and positions, could be made less in diameter, 
their interfering one with another, and by consequence the mixture of the 
heterogeneous rays would be proportionally diminished. In the twenty-third 
Figure let AG, BH, CJ, DK, EL, FM be the circles which so many sorts of 
rays, flowing from the same disk of the Sun, do in the third experiment illumi- 
nate; of all which and innumerable other intermediate ones lying in a continual 
series between the two rectilinear and parallel edges of the Sun's oblong image 
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PT, that image is composed, as was explained in the fifth experiment. And let 
ag, hh, cj, dk, el, fm be so many less circles lying in a like continual series be- 
tween two parallel right lines af and gm with the same distances between their 
centres, and illuminated by the same sorts of rays, that is, the circle ag with 
the same sort by which the corresponding circle AG was illuminated, and the 

expanded into one another that the three sorts of rays by which those circles 
are illuminated, together with other innumerable sorts of intermediate rays, 
are mixed at QR in the middle of the circle BH. And the like mixture hap- 
pens throughout almost the whole length of the figure PT. But in the figure 
pt composed of the less circles, the three less circles ag, hh, cj, which answer to 
those three greater, do not extend into one another; nor are there anywhere 
mingled so much as any two of the three sorts of rays by which those circles are 
illuminated, and which in the figure PT are all of them intermingled at BH. 

Now, he that shall thus consider it will easily understand that the mixture is 
diminished in the same proportion with the diameters of the circles. If the 
diameters of the circles, whilst their centres remain the same, be made three 
times less than before, the mixture will be also three times less; if ten times less, 
the mixture will be ten times less, and so of other proportions. That is, the 
mixture of the rays in the greater figure PT will be to their mixture in the less 
pt as the latitude of the greater figure is to the latitude of the less. For the 
latitudes of these figures are equal to the diameters of their circles. And hence 
it easily follows that the mixture of the rays in the refracted spectrum pt is to 
the mixture of the rays in the direct and immediate light of the Sun as the 
breadth of that spectrum is to the difference between the length and breadth of 
the same spectrum. 

So, then, if we would diminish the mixture of the rays, we are to diminish the 
diameters of the circles. Now, these would be diminished if the Sun's diameter 
to which they answer could be made less than it is, or (which comes to the same 
purpose) if without doors, at a great distance from the prism towards the sun, 
some opaque body were placed, with a round hole in the middle of it, to inter- 
cept all the Sun's light, excepting so much as coming from the middle of his 
body could pass through that hole to the prism. For so the circles AG, BH, and 
the rest would not any longer answer to the whole disk of the Sun, but only to 
that part of it which could be seen from the prism through that hole, that it is 
to the apparent magnitude of that hole viewed from the prism. But that these 
circles may answer more distinctly to that hole, a lens is to be placed by the 
prism to cast the image of the hole (that is, every one of the circles AG, BH, 
&c.) distinctly upon the paper at PT, after such a manner, as by a lens placed 
at a window, the species of objects abroad are cast distinctly upon a paper 
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Fig. 23 

circle hh with the same sort by 
which the corresponding circle BH 
was illuminated, and the rest of 
the circles cj, dk, el, fm respective- 
ly, with the same sorts of rays by 
which the several corresponding 
circles CJ, DK, EL, FM were illu- 
minated. In the figure PT com- 
posed of the greater circles, three of 
those circles AG, BH, CJ, are so 
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within the room, and the rectilinear sides of the oblong solar image in the fifth 
experiment became distinct without any penumbra. If this be done, it will not 
be necessary to place that hole very far off; no, not beyond the window. And, 
therefore, instead of that hole, I used the hole in the window-shut, as follows: 

Exper. 11. In the Sun's light let into my darkened chamber through a small 
round hole in my window-shut, at about ten or twelve feet from the window, I 
placed a lens, by which the image of the hole might be distinctly cast upon a 
sheet of white paper, placed at the distance of six, eight, ten or twelve feet from 
the lens. For, according to the difference of the lenses, I used various distances, 
which I think not worth the while to describe. Then immediately after the lens 
I placed a prism, by which the trajected light might be refracted either up- 
wards or sideways, and thereby the round image, which the lens alone did cast 
upon the paper might be drawn out into a long one with parallel sides, as in the 
third experiment. This oblong image I let fall upon another paper at about the 
same distance from the prism as before, moving the paper either towards the 
prism or from it, until I found the just distance where the rectilinear sides of 
the image became most distinct. For in this case, the circular images of the 
hole, which compose that image after the same manner that the circles ag, hh, 
cj, &c. do the figure pt [Fig. 23] were terminated most distinctly without any 
penumbra, and therefore extended into one another the least that they could, 
and by consequence the mixture of the heterogeneous rays was now the least of 
all. By this means I used to form an oblong image (such as is pt) [Fig. 23 and 
24] of circular images of the hole (such as are ag, hh, cj, &c.), and by using a 
greater or less hole in the window-shut I made the circular images ag, hh, cj, &c. 
of which it was formed to become greater or less at pleasure, and thereby the 
mixture of the rays in the image pt to be as much, or as little, as I desired. 

Illustration. In the twenty-fourth Figure, F represents the circular hole in 
the window-shut, MN the lens, whereby the image or species of that hole is 

cast distinctly upon a paper at J, ABC the prism, whereby the rays are at their 
emerging out of the lens refracted from J towards another paper at pt, and the 
round image at J is turned into an oblong image pt falling on that other paper. 
This image pt consists of circles placed one after another in a rectilinear order, 
as was sufficiently explained in the fifth experiment; and these circles are equal 
to the circle J, and consequently answer in magnitude to the hole F; and, there- 
fore, by diminishing that hole they may be at pleasure diminished, whilst their 
centres remain in their places. By this means I made the breadth of the image 
pt to be forty times, and sometimes sixty or seventy times, less than its length. 
As, for instance, if the breadth of the hole F be one tenth of an inch, and MF 

F 

c 
Fig. 24 
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the distance of the lens from the hole be 12 feet; and if pB or pM the distance 
of the image pt from the prism or lens be 10 feet, and the refracting angle of the 
prism be 62 degrees, the breadth of the image pt will be one-twelfth of an inch, 
and the length about six inches, and therefore the length to the breadth as 72 
to 1, and by consequence the light of this image 71 times less compound than 
the Sun's direct light. And light thus far simple and homogeneal is sufficient for 
trying all the experiments in this book about simple light. For the composition 
of heterogeneal rays is in this light so little that it is scarce to be discovered and 
perceived by sense, except perhaps in the indigo and violet. For these being 
dark colours do easily suffer a sensible allay by that little scattering light which 
uses to be refracted irregularly by the inequalities of the prism. 

Yet instead of the circular hole F, 'tis better to substitute an oblong hole 
shaped like a long parallelogram with its length parallel to the prism ABC. For 
if this hole be an inch or two long, and but a tenth or twentieth part of an inch 
broad, or narrower, the light of the image pt will be as simple as before, or 
simpler, and the image will become much broader, and therefore more fit to 
have experiments tried in its light than before. 

Instead of this parallelogram hole may be substituted a triangular one of 
equal sides, whose base, for instance, is about the tenth part of an inch, and its 
height an inch or more. For by this means, if the axis of the prism be parallel to 
the perpendicular of the triangle, the image pt [Fig. 25] will now be formed of 
equicrural triangles ag, hh, cj, dk, el, fm, &c. and innumerable other inter- 
mediate ones answering to the triangular hole in shape and bigness, and lying 
one after another in a continual series between two parallel lines af and gm. 

tional to the distances of the places from that obscurer side gm. And having 
a spectrum pt of such a composition, we may try experiments either in its 
stronger and less simple light near the side a}, or in its weaker and simpler light 
near the other side gm, as it shall seem most convenient. 

But in making experiments of this kind the chamber ought to be made as 
dark as can be, lest any foreign light mingle itself with the light of the spectrum 
pt, and render it compound; especially if we would try experiments in the more 
simple light next the side gm of the spectrum; which being fainter, wall have a 
less proportion to the foreign light; and so by the mixture of that light be more 
troubled, and made more compound. The lens also ought to be good, such as 
may serve for optical uses, and the prism ought to have a large angle, suppose 
of 65 or 70 degrees, and to be well wrought, being made of glass free from 
bubbles and veins, with its sides not a little convex or concave, as usually 
happens, but truly plane, and its polish elaborate, as in working optic-glasses, 
and not such as is usually wrought with putty, whereby the edges of the sand- 
holes being worn away, there are left all over the glass a numberless company 

a ^b c d e f 

g h j k I m 

Fig. 25 

These triangles are a little intermin- 
gled at their bases, but not at their 
vertices; and, therefore, the light on 
the brighter side a/ of the image, 
where the bases of the triangles are, 
is a little compounded, but on the 
darker side gm is altogether uncom- 
pounded, and in all places between 
the sides the composition is propor- 
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of very little convex polite risings like waves. The edges also of the prism and 
lens, so far as they may make any irregular refraction, must be covered with a 
black paper glued on. And all the light of the Sun's beam let into the chamber, 
which is useless and unprofitable to the experiment, ought to be intercepted 
with black paper, or other black obstacles. For otherwise the useless light, being 
reflected every way in the chamber, will mix with the oblong spectrum, and 
help to disturb it. In trying these things, so much diligence is not altogether 
necessary, but it will promote the success of the experiments, and by a very 
scrupulous examiner of things deserves to be applied. It's difficult to get glass 
prisms fit for this purpose, and, therefore, I used sometimes prismatic vessels 
made with pieces of broken looking-glasses, and filled with rain water. And to 
increase the refraction, I sometimes impregnated the water strongly with 
saccharum saturni. 

Proposition 5. Theorem 4 
Homogeneal light is refracted regularly without any dilatation splitting or shatter- 
ing of the rays, and the confused vision of objects seen through refracting bodies by 
heterogeneal light arises from the different refrangibility of several sorts of rays. 

The first part of this Proposition has been already sufficiently proved in the 
fifth experiment, and will further appear by the experiments which follow. 

Exper. 12. In the middle of a black paper I made a round hole about a fifth 
or sixth part of an inch in diameter. Upon this paper I caused the spectrum of 
homogeneal light, described in the former Proposition, so to fall that some part 
of the light might pass through the hole of the paper. This transmitted part of 
the light I refracted with a prism placed behind the paper, and letting this 
refracted light fall perpendicularly upon a white paper two or three feet distant 
from the prism, I found that the spectrum formed on the paper by this light 
was not oblong, as when 'tis made (in the third experiment) by refracting the 
Sun's compound light, but was (so far as I could judge by my eye) perfectly 
circular, the length being no greater than the breadth. Which shews that this 
light is refracted regularly without any dilatation of the rays. 

Exper. 13. In the homogeneal light I placed a paper circle of a quarter of an 
inch in diameter, and in the Sun's unrefracted heterogeneal white light I placed 
another paper circle of the same bigness. And going from the papers to the 
distance of some feet, I viewed both circles through a prism. The circle illu- 
minated by the Sun's heterogeneal light appeared very oblong, as in the fourth 
experiment, the length being many times greater than the breadth; but the 
other circle, illuminated with homogeneal light, appeared circular and dis- 
tinctly defined, as when 'tis viewed with the naked eye. Which proves the 
vhole Proposition. 

Exper. 14. In the homogeneal light I placed flies, and such-like minute 
objects, and viewing them through a prism, I saw their parts as distinctly 
defined as if I had viewed them with the naked eye. The same objects placed in 
the Sun's unrefracted heterogeneal light, which was white, I viewed also 
through a prism, and saw them most confusedly defined, so that I could not 
distinguish their smaller parts from one another. I placed also the letters of a 
small print, one while in the homogeneal light, and then in the heterogeneal, 
and viewing them through a prism, they appeared in the latter case so confused 
and indistinct that I could not read them; but, in the former, they appeared so 
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distinct that I could read readily, and thought I saw them as distinct, as when 
I viewed them with my naked eye. In both cases I viewed the same objects 
through the same prism at the same distance from me, and in the same situ- 
ation. There was no difference but in the light by which the objects were illu- 
minated, and which in one case was simple, and in the other compound; and, 
therefore, the distinct vision in the former case, and confused in the latter, 
could arise from nothing else than from that difference of the lights. Which 
proves the whole Proposition. 

And in these three experiments it is further very remarkable that the colour 
of homogeneal light was never changed by the refraction. 

Proposition 6. Theorem 5 
The sine of incidence of every ray considered apart, is to its sine of refraction in a 
given ratio. 

That every ray, considered apart, is constant to itself in some degree of 
refrangibility is sufficiently manifest out of what has been said. Those rays, 
which in the first refraction are at equal incidences most refracted, are also in 
the following refractions at equal incidences most refracted; and so of the least 
refrangible, and the rest which have any mean degree of refrangibility, as is 
manifest by the fifth, sixth, seventh, eighth, and ninth experiments. And those 
which the first time at like incidences are equally refracted, are again at like 
incidences equally and uniformly refracted, and that whether they be refracted 
before they be separated from one another, as in the fifth experiment, or 
whether they be refracted apart, as in the twelfth, thirteenth and fourteenth 
experiments. The refraction, therefore, of every ray apart is regular, and what 
rule that refraction observes we are now to shew. 

The late writers in Optics teach that the sines of incidence are in a given 
proportion to the sines of refraction, as was explained in the fifth Axiom; and 
some by instruments fitted for measuring of refractions, or otherwise experi- 
mentally examining this proportion, do acquaint us that they have found it 
accurate. But whilst they, not understanding the different refrangibility of 
several rays, conceived them all to be refracted according to one and the same 
proportion, 'tis to be presumed that they adapted their measures only to the 
middle of the refracted light; so that from their measures we may conclude 
only that the rays which have a mean degree of refrangibility (that is, those 
which when separated from the rest appear green) are refracted according to a 
given proportion of their sines. And, therefore, we are now to shew that the like 
given proportions obtain in all the rest. That it should be so is very reasonable, 
Nature being ever conformable to herself; but an experimental proof is desired. 
And such a proof will be had if we can shew that the sines of refraction of rays 
differently refrangible are one to another in a given proportion when their sines 
of incidence are equal. For, if the sines of refraction of all the rays are in given 
proportions to the sine of refractions of a ray which has a mean degree of 
refrangibility, and this sine is in a given proportion to the equal sines of in- 
cidence, those other sines of refraction will also be in given proportions to the 
equal sines of incidence. Now, when the sines of incidence are equal, it will 
appear by the following experiment that the sines of refraction are in a given 
proportion to one another. 

Exper. 15. The Sun shining into a dark chamber through a little round hole 
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in the window-shut; let S [Fig. 26] represent his round white image painted on 
the opposite wall by his direct light, PT his oblong coloured image made by 
refracting that light with a prism placed at the window; and pt, or 2p 2t, 3p 3^, 
his oblong coloured image made by refracting again the same light sideways 
with a second prism placed immediately after the first in a cross position to it, 
as was explained in the fifth experiment; that is to say, pt when the refraction 
of the second prism is small, 2p 2t when its refraction is greater, and 3p 3^ when 
it is greatest. For such will be the diversity of the refractions, if the refracting 
angle of the second prism be of various magnitudes; suppose of fifteen or 
twenty degrees to make the image pt, of thirty or forty to make the image 2p 2t, 
and of sixty to make the image 3p 3^. But, for want of solid glass prisms with 
angles of convenient bignesses, there may be vessels made of polished plates of 
glass cemented together in the form of prisms and filled with water. These 
things being thus ordered, I observed that all the solar images or coloured 
spectrums PT, pt, 2p 2t, 3p 3t did very nearly converge to the place S on which 
the direct light of the Sun fell and ^ 2/ ^ T 
painted his white round image 
when the prisms were taken away. 
The axis of the spectrum PT (that 
is, the line drawn through the 
middle of it parallel to its recti- 
linear sides) did, when produced, 
pass exactly through the middle 
of that white round image S. And 
when the refraction of the second 
prism was equal to the refraction 
of the first, the refracting angles 
of them both being about 60 de- 
grees, the axis of the spectrum 3p 
3t made by that refraction, did 
when produced pass also through 
the middle of the same white round 
image S. But when the refraction 
of the second prism was less than 
that of the first, the produced 
axes of the spectrums tp or 2t 2p 
made by that refraction did cut the produced axis of the spectrum TP in the 
points m and n, a little beyond the centre of that white round image S. Whence 
the proportion of the line 3^T to the line 3pP was a little greater than the 
proportion of 2^T or 2pP, and this proportion a little greater than that of ^T to 
pF. Now, when the light of the spectrum PT falls perpendicularly upon the 
wall, those lines 3^T, 3pP, and 2^T, 2pF, and ^T, pP, are the tangents of the 
refractions, and, therefore, by this experiment the proportions of the tangents 
of the refractions are obtained, from whence the proportions of the sines being 
derived, they come out equal, so far as by viewing the spectrums, and using 
some mathematical reasoning, I could estimate. For I did not make an accurate 
computation. So then the proposition holds true in every ray apart, so far as 
appears by experiment. And that it is accurately true may be demonstrated 
upon this supposition: That bodies refract light by acting upon its rays in lines 

v v\ 

Fig. 26 
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perpendicular to their surfaces. But in order to this demonstration, I must dis- 
tinguish the motion of every ray into two motions, the one perpendicular to 
the refracting surface, the other parallel to it, and concerning the perpendicular 
motion lay down the following Proposition: 

If any motion or moving thing whatsoever be incident with any velocity on 
any broad and thin space terminated on both sides by two parallel planes, and 
in its passage through that space be urged perpendicularly towards the farther 
plane by any force which at given distances from the plane is of given quan- 
tities, the perpendicular velocity of that motion or thing, at its emerging out of 
that space, shall be always equal to the square root of the sum of the square of 
the perpendicular velocity of that motion or thing at its incidence on that 
space; and of the square of the perpendicular velocity which that motion or 
thing would have at its emergence, if at its incidence its perpendicular velocity 
was infinitely little. 

And the same proposition holds true of any motion or thing perpendicularly 
retarded in its passage through that space, if instead of the sum of the two 
squares you take their difference. The demonstration mathematicians will 
easily find out, and therefore I shall not trouble the reader with it. 

Suppose now that a ray coming most obliquely in the line MC [Fig. 1] be 
refracted at C by the plane RS into the line CN, and if it be required to find 
the line CE, into which any other ray AC shall be refracted; let MC, AD, be 
the sines of incidence of the two rays, and NG, EF, their sines of refraction, and 
let the equal motions of the incident rays be represented by the equal lines MC 
and AC, and the motion MC being considered as parallel to the refracting 
plane, let the other motion AC be distinguished into two motions AD and DC, 
one of which AD is parallel, and the other DC perpendicular to the refracting 
surface. In like manner, let the motions of the emerging rays be distinguished 

MC AD into two, whereof the perpendicular ones are yttt CG and CF. And if the 
AGr ht 

force of the refracting plane begins to act upon the rays either in that plane or 
at a certain distance from it on the one side, and ends at a certain distance from 
it on the other side, and in all places between those two limits acts upon the 
rays in lines perpendicular to that refracting plane, and the actions upon the 
rays at equal distances from the refracting plane be equal, and at unequal ones 
either equal or unequal according to any rate whatever; that motion of the ray 
which is parallel to the refracting plane, will suffer no alteration by that force; 
and that motion which is perpendicular to it will be altered according to the 
rule of the foregoing proposition. If, therefore, for the perpendicular velocity of 
the emerging ray CN you write CG as above, then the perpendicular 

velocity of any other emerging ray CE which was CF, will be equal to the 
hj t 

square root of CDg+^^ CGg. And by squaring these equals, and adding to 

them the equals ADg and MCg —CD^, and dividing the sums by the equals 

CFg+EFg and CGg+NGg, you mil have equal to Whence AD, 
AOrg ACrg 

the sine of incidence, is to EF the sine of refraction, as MC to NG, that is, in a 
given ratio. And this demonstration being general, without determining what 
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light is, or by what kind of force it is refracted, or assuming any thing further 
than that the refracting body acts upon the rays in lines perpendicular to its 
surface; I take it to be a very convincing argument of the full truth of this 
Proposition. 

So then, if the ratio of the sines of incidence and refraction of any sort of rays 
be found in any one case, 'tis given in all cases; and this may be readily found 
by the method in the following Proposition. 

Proposition 7. Theorem 6 
The perfection of telescopes is impeded by the different refrangibility of the rays of 
light. 

The imperfection of telescopes is vulgarly attributed to the spherical figures 
of the glasses, and, therefore, mathematicians have propounded to figure them 
by the conical sections. To shew that they are mistaken, I have inserted this 
proposition; the truth of which will appear by the measure of the refractions of 
the several sorts of rays; and these measures I thus determine. 

In the third experiment of this first part, where the refracting angle of the 
prism was 62^ degrees, the half of that angle 31 degrees 15 minutes is the 
angle of incidence of the rays at their going out of the glass into the air; and the 
sine of this angle is 5,188, the radius being 10,000. When the axis of this prism 
was parallel to the horizon, and the refraction of the rays at their incidence on 
this prism equal to that at their emergence out of it, I observed with a quadrant 
the angle which the mean refrangible rays, (that is, those which went to the 
middle of the Sun's coloured image) made with the horizon, and by this angle 
and the Sun's altitude observed at the same time, I found the angle which the 
emergent rays contained with the incident to be 44 degrees and 40 minutes and 
the half of this angle added to the angle of incidence 31 degrees 15 minutes 
makes the angle of refraction, which is, therefore, 53 degrees 35 minutes and its 
sine 8,047. These are the sines of incidence and refraction of the mean refrangi- 
ble rays, and their proportion in round numbers is 20 to 31. This glass was of a 
colour inclining to green. The last of the prisms mentioned in the third experi- 
ment was of clear white glass; its refracting angle 633^ degrees; the angle which 
the emergent rays contained, with the incident 45 degrees 50 minutes; the sine 
of half the first angle 5,262; the sine of half the sum of the angles 8,157; and 
their proportion in round numbers 20 to 31, as before. 

From the length of the image, which was about 9^ or 10 inches, subduct its 
breadth, which was 23^ inches, and the remainder 7^ inches would be the 
length of the image were the Sun but a point, and therefore subtends the angle 
which the most and least refrangible rays, when incident on the prism in the 
same lines, do contain with one another after their emergence. Whence this 
angle is 2 degrees 0' 7". For the distance between the image and the prism 
where this angle is made was 183^ feet, and at that distance the chord 7z/i 
inches subtends an angle of 2 degrees 0' 7". Now, half this angle is the angle 
which these emergent rays contain with the emergent mean refrangible rays, 
and a quarter thereof (that is, SO' 2//) may be accounted the angle which they 
would contain with the same emergent mean refrangible rays, were they co- 
incident to them within the glass, and suffered no other refraction than that at 
their emergence. For, if two equal refractions, the one at the incidence of the 
rays on the prism, the other at their emergence, make half the angle 2 degrees 
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(y 1", then one of those refractions will make about a quarter of that angle, and 
this quarter added to and subducted from the angle of refraction of the mean 
refrangible rays, which was 53 degrees 35', gives the angles of refraction of the 
most and least refrangible rays 54 degrees 5' 2,,, and 53 degrees 4' SS'', whose 
sines are 8,099 and 7,995, the common angle of incidence being 31 degrees 15', 
and its sine 5,188; and these sines in the least round numbers are in proportion 
to one another, as 78 and 77 to 50. 

Now, if you subduct the common sine of incidence 50 from the sines of 
refraction 77 and 78, the remainders 27 and 28 shew that in small refractions 
the refraction of the least refrangible rays is to the refraction of the most re- 
frangible ones as 27 to 28 very nearly, and that the difference of the refractions 
of the least refrangible and most refrangible rays is about the 273^>th part of 
the whole refraction of the mean refrangible rays. 

Whence they that are skilled in Optics will easily understand, that the 
breadth of the least circular space into which object-glasses of telescopes can 
collect all sorts of parallel rays, is about the 273^th part of half the aperture of 
the glass, or 55th part of the whole aperture; and that the focus of the most 
refrangible rays is nearer to the object-glass than the focus of the least re- 
frangible ones, by about the 27^th part of the distance between the object- 
glass and the focus of the mean refrangible ones. 

And if rays of all sorts, flowing from any one lucid point in the axis of any 
convex lens, be made by the refraction of the lens to converge to points not too 
remote from the lens, the focus of the most refrangible rays shall be nearer to 
the lens than the focus of the least refrangible ones, by a distance which is to 
the 273^th part of the distance of the focus of the mean refrangible rays from 
the lens, as the distance between that focus and the lucid point, from whence 
the rays flow, is to the distance between that lucid point and the lens very 
nearly. 

Now, to examine whether the difference between the refractions, which the 
most refrangible and the least refrangible rays flowing from the same point 
suffer in the object-glasses of telescopes and suchlike glasses, be so great as is 
here described, I contrived the following experiment: 

Exper. 16. The lens which I used in the second and eighth Experiments, 
being placed six feet and an inch distant from any object, collected the species 
of that object by the mean refrangible rays at the distance of six feet and an 
inch from the lens on the other side. And, therefore, by the foregoing rule, it 
ought to collect the species of that object by the least refrangible rays at the 
distance of six feet and 3% inches from the lens, and by the most refrangible 
ones at the distance of five feet and 103^ inches from it: So that between the 
two places, where these least and most refrangible rays collect the species, 
there may be the distance of about 53^ inches. For by that rule, as six feet and 
an inch (the distance of the lens from the lucid object) is to twelve feet and two 
inches (the distance of the lucid object from the focus of the mean refrangible 
rays) that is, as one is to two; so is the 273^th part of six feet and an inch (the 
distance between the lens and the same focus) to the distance between the 
focus of the most refrangible rays and the focus of the least refrangible ones, 
which is, therefore, 5M inches; that is, very nearly 53^ inches. Now, to know 
whether this measure was true, I repeated the second and eighth experiment 
with coloured light, which was less compounded than that I there made use of. 
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For I now separated the heterogeneous rays from one another by the method I 
described in the eleventh experiment, so as to make a coloured spectrum about 
twelve or fifteen times longer than broad. This spectrum I cast on a printed 
book, and placing the above-mentioned lens at the distance of six feet and an 
inch from this spectrum to collect the species of the illuminated letters at the 
same distance on the other side, I found that the species of the letters illumi- 
nated with blue were nearer to the lens than those illuminated with deep red by 
about three inches, or three and a quarter; but the species of the letters illu- 
minated with indigo and violet appeared so confused and indistinct that I 
could not read them; whereupon, viewing the prism, I found it was full of veins 
running from one end of the glass to the other; so that the refraction could 
not be regular. I took another prism, therefore, which was free from veins, and 
instead of the letters I used two or three parallel black lines a little broader than 
the strokes of the letters, and casting the colours upon these lines in such man- 
ner that the lines ran along the colours from one end of the spectrum to the 
other, I found that the focus where the indigo, or confine of this colour and 
violet, cast the species of the black lines most distinctly, to be about four 
inches, or 43^ nearer to the lens than the focus, where the deepest red cast the 
species of the same black lines most distinctly. The violet was so faint and dark 
that I could not discern the species of the lines distinctly by that colour; and, 
therefore, considering that the prism was made of a dark-coloured glass inclin- 
ing to green, I took another prism of clear white glass; but the spectrum of 
colours which this prism made had long white streams of faint light shooting 
out from both ends of the colours, which made me conclude that something was 
amiss; and viewing the prism, I found two or three little bubbles in the glass, 
which refracted the light irregularly. Wherefore I covered that part of the 
glass with black paper, and letting the light pass through another part of it 
which was free from such bubbles, the spectrum of colours became free from 
those irregular streams of light, and was now such as I desired. But still I found 
the violet so dark and faint that I could scarce see the species of the lines by the 
violet, and not at all by the deepest part of it, which was next the end of the 
spectrum. I suspected, therefore, that this faint and dark colour might be al- 
layed by that scattering light which was refracted, and reflected irregularly, 
partly by some very small bubbles in the glasses, and partly by the inequalities 
of their polish; which light, tho' it was but little, yet it being of a white colour, 
might suffice to affect the sense so strongly as to disturb the phenomena df that 
weak and dark colour, the violet; and, therefore, I tried (as in the 12th, 13th, 
and 14th experiments) whether the light of this colour did not consist of a 
sensible mixture of heterogeneous rays, but found it did not. Nor did the re- 
fractions cause any other sensible colour than violet to emerge out of this light, 
as they would have done out of white light, and by consequence out of this 
violet light had it been sensibly compounded with white light. And, therefore, 
I concluded that the reason why I could not see the species of the lines distinct- 
ly by this colour was only the darkness of this colour and thinness of its light, 
and its distance from the axis of the lens; I divided, therefore, those parallel 
black lines into equal parts, by which I might readily know the distances of the 
colours in the spectrum from one another, and noted the distances of the lens 
from the foci of such colours, as cast the species of the lines distinctly, and then 
considered whether the difference of those distances bear such proportion to 
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53^ inches, the greatest difference of the distances, which the foci of the deepest 
red and violet ought to have from the lens, as the distance of the observed 
colours from one another in the spectrum bear to the greatest distance of the 
deepest red and violet measured in the rectilinear sides of the spectrum, (that 
is, to the length of those sides) or excess of the length of the spectrum above its 
breadth. And my observations were as follows: 

When I observed and compared the deepest sensible red, and the colour in 
the confine of green and blue, which at the rectilinear sides of the spectrum was 
distant from it half the length of those sides, the focus where the confine of 
green and blue cast the species of the lines distinctly on the paper was nearer to 
the lens than the focus, where the red cast those lines distinctly on it by about 
2}/2 or 2% inches. For sometimes the measures were a little greater, sometimes 
a little less, but seldom varied from one another above one-third of an inch. For 
it was very difficult to define the places of the foci, without some little errors. 
Now, if the colours distant half the length of the image (measured at its recti- 
linear sides) give 2^ or 2% difference of the distances of their foci from the 
lens, then the colours distant the whole length ought to give 5 or 53^ inches 
difference of those distances. 

But here it's to be noted that I could not see the red to the full end of the 
spectrum, but only to the centre of the semicircle which bounded that end, or 
a little farther; and, therefore, I compared this red, not with that colour which 
was exactly in the middle of the spectrum, or confine of green and blue, but 
with that which verged a little more to the blue than to the green. And as I 
reckoned the whole length of the colours not to be the whole length of the 
spectrum, but the length of its rectilinear sides, so completing the semicircular 
ends into circles, when either of the observed colours fell within those circles, I 
measured the distance of that colour from the semicircular end of the spectrum, 
and subducting half this distance from the measured distance of the two col- 
ours I took the remainder for their corrected distance; and in these observa- 
tions set down this corrected distance for the difference of the distances of 
their foci from the lens. For, as the length of the rectilinear sides of the spec- 
trum would be the whole length of all the colours, were the circles of which (as 
we shewed) that spectrum consists contracted and reduced to physical points, 
so in that case this corrected distance would be the real distance of the two 
observed colours. 

When, therefore, I further observed the deepest sensible red, and that blue 
whose corrected distance from it was /^2 parts of the length of the rectilinear 
sides of the spectrum, the difference of the distances of their foci from the lens 
was about 334 inches; and as 7 to 12, so is 334 fo 5/4. 

When I observed the deepest sensible red, and that indigo whose corrected 
distance was /42 or % of the length of the rectilinear sides of the spectrum, the 
difference of the distances of their foci from the lens was about 3% inches; and 
as 2 to 3, so is 3% fo 5)4. 

When I observed the deepest sensible red, and that deep indigo whose cor- 
rected distance from one another was or z/i of the length of the rectilinear 
sides of the spectrum, the difference of the distances of their foci from the lens 
was about 4 inches; and as 3 to 4, so is 4 to 534- 

When I observed the deepest sensible red, and that part of the violet next 
the indigo, whose corrected distance from the red was 1^42 or 54 of the length 
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of the rectilinear sides of the spectrum, the difference of the distances of their 
foci from the lens was about 43^ inches; and as 5 to 6, so is 43^ to 5?/$. For 
sometimes, when the lens was advantageously placed, so that its axis respected 
the blue, and all things else were well ordered, and the Sun shone clear, and I 
held my eye very near to the paper on which the lens cast the species of the 
lines, I could see pretty distinctly the species of those lines by that part of the 
violet which was next the indigo; and sometimes I could see them by above 
half the violet. For in making these experiments I had observed that the species 
of those colours only appear distinct which were in or near the axis of the lens; 
so that if the blue or indigo were in the axis, I could see their species distinctly; 
and then the red appeared much less distinct than before. Wherefore I con- 
trived to make the spectrum of colours shorter than before, so that both its 
ends might be nearer to the axis of the lens. And now its length was about 23^ 
inches, and breadth about 3/5 or of an inch. Also, instead of the black lines on 
which the spectrum was cast, I made one black line broader than those, that I 
might see its species more easily; and this line I divided by short cross lines 
into equal parts, for measuring the distances of the observed colours. And now 
I could sometimes see the species of this line with its divisions almost as far as 
the centre of the semicircular violet end of the spectrum, and made these 
farther observations: 

When I observed the deepest sensible red, and that part of the violet, whose 
corrected distance from it was about % parts of the rectilinear sides of the 
spectrum, the difference of the distances of the foci of those colours from the 
lens was one time 4%, another time 4%, another time 4% inches; and as 8 to 9, 
so are 4%, 4%, 4%, to 5)4 respectively. 

When I observed the deepest sensible red, and deepest sensible violet, (the 
corrected distance of which colours, when all things were ordered to the best 
advantage, and the Sun shone very clear, was about ^12 or l5/i& parts of the 
length of the rectilinear sides of the coloured spectrum) I found the difference 
of the distances of their foci from the lens sometimes 4% sometimes 53^, and 
for the most part 5 inches or thereabouts; and as 11 to 12, or 15 to 16, so is five 
inches to 5b/n or inches. 

And by this progression of experiments I satisfied myself that, had the light 
at the very ends of the spectrum been strong enough to make the species of the 
black lines appear plainly on the paper, the focus of the deepest violet would 
have been found nearer to the lens, than the focus of the deepest red, by about 
53^3 inches at least. And this is a further evidence that the sines of incidence and 
refraction of the several sorts of rays hold the same proportion to one 
another in the smallest refractions which they do in the greatest. 

My progress in making this nice and troublesome experiment I have set 
down more at large, that they that shall try it after me may be aware of the 
circumspection requisite to make it succeed well. And if they cannot make it 
succeed so well as I did, they may notwithstanding collect by the proportion 
of the distance of the colours of the spectrum, to the difference of the distances 
of their foci from the lens, what would be the success in the more distant colours 
by a better trial. And yet, if they use a broader lens than I did, and fix it to a 
long strait staff, by means of which it may be readily and truly directed to the 
colour whose focus is desired, I question not but the experiment will succeed 
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better with them than it did with me. For I directed the axis asnearly as I could 
to the middle of the colours, and then the faint ends of the spectrum being re- 
mote from the axis, cast their species less distinctly on the paper than they 
would have done had the axis been successively directed to them. 

Now, by what has been said, it's certain that the rays which differ in re- 
frangibility do not converge to the same focus; but if they flow from a lucid 
point, as far from the lens on one side as their foci are on the other, the focus of 
the most refrangible rays shall be nearer to the lens than that of the least 
refrangible, by above the fourteenth part of the whole distance; and if they 
flow from a lucid point, so very remote from the lens that before their incidence 
they may be accounted parallel, the focus of the most refrangible rays shall be 
nearer to the lens than the focus of the least refrangible by about the 27th or 
28th part of their whole distance from it. And the diameter of the circle in the 
middle space between those two foci which they illuminate, when they fall 
there on any plane, perpendicular to the axis (which circle is the least into 
which they can all be gathered) is about the 55th part of the diameter of the 
aperture of the glass. So that 'tis a wonder that telescopes represent objects so 
distinct as they do. But were all the rays of light equally refrangible, the error 
arising only from the sphericalness of the figures of glasses would be many 
hundred times less. For, if the object-glass of a telescope be plano-convex, and 
the plane side be turned towards the object, and the diameter of the sphere, 
whereof this glass is a segment, be called D, and the semidiameter of the aper- 
ture of the glass be called S, and the sine of incidence out of glass into air be to 
the sine of refraction as I to R; the rays which come parallel to the axis of the 
glass, shall in the place where the image of the object is most distinctly made 
be scattered all over a little circle, whose diameter is cu^' very IqXD quad. 
nearly, as I gather by computing the errors of the rays by the method of in- 
finite series, and rejecting the terms whose quantities are inconsiderable. As for 
instance, if the sine of incidence I be to the sine of refraction R as 20 to 31, and 
if D the diameter of the sphere, to which the convex-side of the glass is ground, 
be 100 feet of 1200 inches, and S the semidiameter of the aperture be two 

inches, the diameter of the little circle, (^that is >8 cub. \ ^ 
\ IqXD quad./ 

31X31x8 
20 X 20X1200X 120(/Or TzJiitoVii)Parts of an inch. But the diameter of the 
little circle, through which these rays are scattered by unequal refrangibility, 
will be about the 55th part of the aperture of the object-glass, which here is 
four inches. And, therefore, the error arising from the spherical figure of the 
glass is to the error arising from the different refrangibility of the Rays as 
7 2.o9oo1ooo to%5; that is, as 1 to 5449; and, therefore, being in comparison so very 
little, deserves not to be considered. 

But you will say, if the errors caused by the different refrangibility be so 
very great, how comes it to pass that objects appear through telescopes so 
distinct as they do? I answer, 'tis because the erring rays are not scattered 
uniformly over all that circular space, but collected infinitely more densely in 
the centre than in any other part of the circle, and in the way from the centre 
to the circumference, grow continually rarer and rarer, so as at the circum- 
ference to become infinitely rare; and by reason of their rarity are not strong 
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enough to be visible unless in the centre and very near it. Let ADE [Fig. 27] 
represent one of those circles described with the centre C, and semidiameter 
AC, and let BFG be a smaller circle concentric to the former, cutting with its 
circumference the diameter AC in B, and bisect AC in 
N; and by my reckoning the density of the light in 
any place B will be to its density in N as AB to BC; 
and the whole light within the lesser circle BFG 
will be to the whole light within the greater AED as 
the excess of the square of AC above the square of 
AB is to the square of AC. As if BC be the fifth part 
of AC, the light will be four times denser in B than 
in N, and the whole light within the less circle will be 
to the whole light within the greater as nine to 
twenty-five. Whence it's evident that the light with- 
in the less circle must strike the sense much more 
strongly than that faint and dilated light round about between it and the 
circumference of the greater. 

But it's further to be noted that the most luminous of the prismatic colours 
are the yellow and orange. These affect the senses more strongly than all the 
rest together, and next to these in strength are the red and green. The blue 
compared with these is a faint and dark colour, and the indigo and violet are 
much darker and fainter, so that these compared with the stronger colours are 
little to be regarded. The images of objects are therefore to be placed, not in 
the focus of the mean refrangible rays, which are in the confine of green and 
blue, but in the focus of those rays which are in the middle of the orange and 
yellow; there where the colour is most luminous and fulgent (that is, in the 
brightest yellow, that yellow which inclines more to orange than to green). And 
by the refraction of these rays (whose sines of incidence and refraction in glass1 

are as 17 and 11) the refraction of glass and crystal for optical uses is to be 
measured. Let us, therefore, place the image of the object in the focus of these 
rays, and all the yellow and orange will fall within a circle whose diameter is 
about the 250th part of the diameter of the aperture of the glass. And if you 
add the brighter half of the red (that half which is next the orange) and the 
brighter half of the green (that half which is next the yellow), about three fifth 
parts of the light of these two colours will fall within the same circle, and two- 
fifth parts will fall without it round about; and that which falls without will be 
spread through almost as much more space as that which falls within, and so in 
the gross be almost three times rarer. Of the other half of the red and green, 
(that is, of the deep dark red and willow green), about one-quarter will fall 
within this circle, and three-quarters without, and that which falls without will 
be spread through about four or five times more space than that which falls 
within; and so in the gross be rarer, and if compared with the whole light within 
it, will be about 25 times rarer than all that taken in the gross; or rather more 
than 30 or 40 times rarer, because the deep red in the end of the spectrum of 
colours made by a prism is very thin and rare, and the willow green is something 
rarer than the orange and yellows The light of these colours, therefore, being so 
very much rarer than that within the circle, will scarce affect the sense, es- 
pecially since the deep red and willow green of this light are much darker 
colours than the rest. And for the same reason the blue and violet being much 
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darker colours than these, and much more rarefied, may be neglected. For the 
dense and bright light of the circle will obscure the rare and weak light of these 
dark colours round about it, and render them almost insensible. The sensible 
image of a lucid point is, therefore, scarce broader than a circle, whose diameter 
is the 250th part of the diameter of the aperture of the object-glass of a good 
telescope, or not much broader, if you except a faint and dark misty light 
round about it, which a spectator will scarce regard. And, therefore, in a 
telescope whose aperture is four inches, and length an hundred feet, it exceeds 
not 2" 45,,^ or 3T And in a telescope whose aperture is two inches, and length 20 
or 30 feet, it may be 5" or 6", and scarce above. And this answers well to 
experience: for some astronomers have found the diameters of the fixed stars, 
in telescopes of between 20 and 60 feet in length, to be about 5" or 6", or 
at most 8 or 10 seconds. But if the eye-glass be tinted faintly with the 
smoke of a lamp or torch, to obscure the light of the star, the fainter 
light in the circumference of the star ceases to be visible, and the star (if 
the glass be sufficiently soiled with smoke) appears something more like a 
mathematical point. And, for the same reason, the enormous part of the light 
in the circumference of every lucid point ought to be less discernible in 
shorter telescopes than in longer, because the shorter transmit less light to 
the eye. 

Now, that the fixed stars, by reason of their immense distance, appear like 
points, unless so far as their light is dilated by refraction, may appear from 
hence; that when the moon passes over them and eclipses them, their light 
vanishes, not gradually like that of the planets, but all at once; and in the end 
of the eclipse it returns into sight all at once, or certainly in less time than the 
second of a minute; the refraction of the moon's atmosphere a little protracting 
the time in which the light of the star first vanishes, and afterwards returns 
into sight. 

Now, if we suppose the sensible image of a lucid point to be even 250 times 
narrower than the aperture of the glass, yet this image would be still much 
greater than if it were only from the spherical figure of the glass. For were it 
not for the different refrangibility of the rays, its breadth in a 100-foot tele- 
scope, whose aperture is 4 inches, would be but parts of an inch, as is 
manifest by the foregoing computation. And, therefore, in this case, the great- 
est errors arising from the spherical figure of the glass would be to the greatest 
sensible errors arising from the different refrangibility of the rays as t^oV.ooo 
to -siro at most; that is, only as 1 to 1200. And this sufficiently shews that 
it is not the spherical figures of glasses, but the different refrangibility of the 
rays, which hinders the perfection of telescopes. 

There is another argument by which it may appear that the different re- 
frangibility of rays is the true cause of the imperfection of telescopes. For the 
errors of the rays, arising from the spherical figures of object-glasses are as 
the cubes of the apertures of the object-glasses; and thence to make tele- 
scopes of various lengths magnify with equal distinctness, the apertures of 
the object-glasses, and the charges or magnifying powers, ought to be as 
the cubes of the square roots of their lengths; which doth not answer to experi- 
ence. But the errors of the rays, arising from the different refrangibility, are 
as the apertures of the object-glasses; and thence to make telescopes of vari- 
ous lengths magnify with equal distinctness, their apertures and charges ought 
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to be as the square roots of their lengths; and this answers to experience, as is 
well known. For instance, a telescope of 64 feet in length, with an aperture of 
2% inches, magnifies about 120 times, with as much distinctness as one of a 
foot in length, with 3^ of an inch aperture, magnifies 15 times. 

Now, were it not for this different refrangibility of rays, telescopes might be 
brought to a greater perfection than we have yet described, by composing the 
object-glass of two glasses with water between them. Let ADFC [Fig. 28] 
represent the object-glass composed of two glasses ABED and BEFC, alike 
convex on the outsides AGD and CHF, and alike concave on the 
insides BME, BNE, with water in the concavity BMEN. Let 
the sine of incidence out of glass into air be as I to R, and out 
of water into air, as K to R, and by consequence out of glass in- 
to water, as I to K: and let the diameter of the sphere to which 
the convex sides AGD and CHF are ground be D, and the di- 
ameter of the sphere to which the concave sides BME and BNE 
are ground be to D as the cube root of KK—KI to the cube 
root of RK—RI: and the refractions on the concave sides of the 
glasses will very much correct the errors of the refractions on 
the convex sides, so far as they arise from the sphericalness of 
the figure. And by this means might telescopes be brought to 
sufficient perfection, were it not for the different refrangibility of 
several sorts of rays. But by reason of this different refrangibility, I do not yet 
see any other means of improving telescopes by refractions alone, than that 
of increasing their lengths, for which end the late contrivance of Huygens 
seems well accommodated. For very long tubes are cumbersome, and scarce 
to be readily managed, and by reason of their length are very apt to bend, 
and shake by bending, so as to cause a continual trembling in the objects, 
whereby it becomes difficult to see them distinctly; whereas by his contri- 
vance the glasses are readily manageable, and the object-glass being fixed up- 
on a strong upright pole becomes more steady. 

Seeing, therefore, the improvement of telescopes of given lengths by re- 
fractions is desperate, I contrived heretofore a perspective by reflexion, using 
instead of an object-glass a concave metal. The diameter of the sphere to which 
the metal was ground concave was about 25 English inches, and by conse- 
quence the length of the instrument about six inches and a quarter. The eye- 
glass was plano-convex, and the diameter of the sphere to which the convex 
side was ground was about i of an inch, or a little less, and by consequence it 
magnified between 30 and 40 times. By another way of measuring I found that 
it magnified about 35 times. The concave metal bore an aperture of an inch and 
a third part; but the aperture was limited, not by an opaque circle covering the 
limb of the metal round about, but by an opaque circle placed between the 
eye-glass and the eye, and perforated in the middle with a little round hole for 
the rays to pass through to the eye. For this circle by being placed here, stopped 
much of the erroneous light which otherwise would have disturbed the vision. 
By comparing it with a pretty good perspective of four feet in length, made 
with a concave eye-glass, I could read at a greater distance with my own 
instrument than with the glass. Yet objects appeared much darker in it than in 
the glass, and that partly because more light was lost by reflexion in the metal, 
than by refraction in the glass, and partly because my instrument was over- 
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charged. Had it magnified but 30 or 25 times, it would have made the object 
appear more brisk and pleasant. Two of these I made about 16 years ago, and 
have one of them still by me, by which I can prove the truth of what I write. 
Yet it is not so good as at the first. For the concave has been divers times 
tarnished and cleared again, by rubbing it with very soft leather. When I made 
these an artist in London undertook to imitate it; but using another way of 
polishing them than I did, he fell much short of what I had attained to, as I 
afterwards understood by discoursing the under-workman he had employed. 
The polish I used was in this manner: I had two round copper plates, each six 
inches in diameter, the one convex, the other concave, ground very true to one 
another. On the convex I ground the object-metal or concave which was to be 
polished, till it had taken the figure of the convex and was ready for a polish. 
Then I pitched over the convex very thinly, by dropping melted pitch upon it, 
and warming it to keep the pitch soft, whilst I ground it with the concave 
copper wetted to make it spread evenly all over the convex. Thus by working 
it well I made it as thin as a groat, and after the convex was cold I ground it 
again to give it as true a figure as I could. Then I took putty which I had made 
very fine by washing it from all its grosser particles, and laying a little of this 
upon the pitch, I ground it upon the pitch with the concave copper, till it had 
done making a noise; and then upon the pitch I ground the object-metal with 
a brisk motion for about two or three minutes of time, leaning hard upon it. 
Then I put fresh putty upon the pitch, and ground it again till it had done 
making a noise, and afterwards ground the object-metal upon it as before. And 
this work I repeated till the metal was polished, grinding it the last time with 
all my strength for a good while together, and frequently breathing upon the 
pitch, to keep it moist without laying on any more fresh putty. The object-metal 
was two inches broad, and about one-third part of an inch thick, to keep it from 
bending. I had two of these metals, and when I had polished them both I tried 
which was best, and ground the other again, to see if I could make it better 
than that which I kept. And thus by many trials I learned the way of polishing, 
till I made those two reflecting perspectives I spake of above. For this art of 
polishing will be better learned by repeated practice than by my description. 
Before I ground the object-metal on the pitch, I always ground the putty on it 
with the concave copper, till it had done making a noise, because if the particles 
of the putty were not by this means made to stick fast in the pitch, they would 
by rolling up and down grate and fret the object-metal and fill it full of little 
holes. 

But because metal is more difficult to polish than glass, and is afterwards 
very apt to be spoiled by tarnishing, and reflects not so much light as glass 
quick-silvered over does, I would propound to use instead of the metal a glass 
ground concave on the foreside, and as much convex on the backside, and 
quick-silvered over on the convex side. The glass must be everywhere of the 
same thickness exactly. Otherwise it will make objects look coloured and in- 
distinct. By such a glass I tried about five or six years ago to make a reflecting 
telescope of four feet in length to magnify about 150 times, and I satisfied 
myself that there wants nothing but a good artist to bring the design to per- 
fection. For the glass being wrought by one of our London artists after such a 
manner as they grind glasses for telescopes, though it seemed as well wrought 
as the object-glasses use to be, yet when it was quick-silvered, the reflexion 
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discovered innumerable inequalities all over the glass. And by reason of these 
inequalities, objects appeared indistinct in this instrument. For the errors of 
reflected rays caused by any inequality of the glass are about six times greater 
than the errors of refracted rays caused by the like inequalities. Yet by this 
experiment I satisfied myself that the reflexion on the concave side of the glass, 
which I feared would disturb the vision, did no sensible prejudice to it, and by 
consequence that nothing is wanting to perfect these telescopes, but good 
workmen who can grind and polish glasses truly spherical. An object-glass of a 
fourteen foot telescope, made by an artificer at London, I once mended con- 
siderably by grinding it on pitch with putty, and leaning very easily on it in the 
grinding, lest the putty should scratch it. Whether this way may not do well 
enough for polishing these reflecting glasses, I have not yet tried. But he that 
shall try either this or any other way of polishing which he may think better, 
may do well to make his glasses ready for polishing by grinding them without 
that violence, wherewith our London workmen press their glasses in grinding. 
For by such violent pressure, glasses are apt to bend a little in the grinding, 
and such bending will certainly spoil their figure. To recommend, therefore, the 
consideration of these reflecting glasses to such artists as are curious in figuring 
glasses, I shall describe this optical instrument 
in the following Proposition. 

Proposition 8. Problem 2 
To shorten telescopes. 

Let ABCD [Fig. 29] represent a glass spheri- 
cally concave on the foreside AB, and as much 
convex on the backside CD, so that it be every- 
where of an equal thickness. Let it not be thicker 
on one side than on the other, lest it make ob- 
jects appear coloured and indistinct, and let it 
be very truly wrought and quick-silvered over 
on the backside, and set in the tube VXYZ 
which must be very black within. Let EFG rep- 
resent a prism of glass or crystal placed near 
the other end of the tube, in the middle of it, 
by means of a handle of brass or iron FGK, to 
the end of which made flat it is cemented. Let 
this prism be rectangular at E, and let the other 
two angles at F and G be accurately equal to 
each other, and by consequence equal to half 
right ones, and let the plane sides FE and GE 
be square, and by consequence the third side FG 
a rectangular parallelogram, whose length is to 
its breadth in a subduplicate proportion of two 
to one. Let it be so placed in the tube that the 
axis of the speculum may pass through the mid- 
dle of the square side EF perpendicularly, and 
by consequence through the middle of the side 
FG at an angle of 45 degrees, and let the side EF 
be turned towards the speculum, and the dis- 
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tance of this prism from the speculum be such that the rays of the light PQ, 
RS, &c. which are incident upon the speculum in lines parallel to the axis there- 
of, may enter the prism at the side EF, and be reflected by the side FG, and 
thence go out of it through the side GE, to the point T, which must be the 
common focus of the speculum ABDC, and of a plano-convex eye-glass Fl, 
through which those rays must pass to the eye. And let the rays at their com- 
ing out of the glass pass through a small round hole, or aperture made in a 
little plate of lead, brass, or silver, wherewith the glass is to be covered, which 
hole must be no bigger than is necessary for light enough to pass through. 
For so it will render the object distinct, the plate in which 'tis made intercept- 
ing all the erroneous part of the light which comes from the verges of the 
speculum AB. Such an instrument well made, if it be six feet long (reckoning 
the length from the speculum to the prism, and thence to the focus T), will 
bear an aperture of six inches at the speculum, and magnify between two and 
three hundred times. But the hole H here limits the aperture with more advan- 
tage than if the aperture was placed at the speculum. If the instrument be made 
longer or shorter, the aperture must be in proportion as the cube of the square- 
square root of the length, and the magnifying as the aperture. But it's con- 
venient that the speculum be an inch or two broader than the aperture at the 
least, and that the glass of the speculum be thick, that it bend not in the 
working. The prism EFG must be no bigger than is necessary, and its back- 
side FG must not be quick-silvered over. For, without quick-silver it will re- 
flect all the light incident on it from the speculum. 

In this instrument the object will be inverted, but may be erected by making 
the square sides FF and EG of the prism EFG not plane but spherically con- 
vex, that the rays may cross as well before they come at it as afterwards be- 
tween it and the eye-glass. If it be desired that the instrument bear a larger 
aperture, that may be also done by composing the speculum of two glasses with 
water between them. 

If the theory of making telescopes could at length be fully brought into 
practice, yet there would be certain bounds beyond which telescopes could not 
perform. For the air through which we look upon the stars is in a perpetual 
tremor; as may be seen by the tremulous motion of shadows cast from high 
towers, and by the twinkling of the fixed stars. But these stars do not twinkle 
when viewed through telescopes which have large apertures. For the rays of 
light, which pass through divers parts of the aperture, tremble each of them 
apart, and by means of their various and sometimes contrary tremors fall at 
one and the same time upon different points in the bottom of the eye, and their 
trembling motions are too quick and confused to be perceived severally. And 
all these illuminated points constitute one broad lucid point, composed of those 
many trembling points confusedly and insensibly mixed with one another by 
very short and swift tremors, and thereby cause the star to appear broader 
than it is and without any trembling of the whole. Long telescopes may cause 
objects to appear brighter and larger than short ones can do, but they cannot 
be so formed as to take away the confusion of the rays which arises from the 
tremors of the atmosphere. The only remedy is a most serene and quiet air, 
such as may perhaps be found on the tops of the highest mountains above the 
grosser clouds. 



424 Optics 

Part II 

Proposition 1. Theorem 1 
The phenomena of colours in refracted or reflected light are not 

CAUSED BY NEW MODIFICATIONS OF THE LIGHT VARIOUSLY IMPRESSED, AC- 
CORDING TO THE VARIOUS TERMINATIONS OF THE LIGHT AND SHADOW. 

The Proof by Experiments 
Experiment 1. For if the Sun shine into a very dark chamber through an oblong 
hole F, [Fig. 1] whose breadth is the sixth or eighth part of an inch, or some- 
thing less; and his beam FH do afterwards pass first through a very large prism 
ABC, distant about 20 feet from the hole, and parallel to it, and then (with its 
white part) through an oblong hole H, whose breadth is about the fortieth or 
sixtieth part of an inch, and which is made in a black opaque body GI, and 
placed at the distance of two or three feet from the prism, in a parallel situation 
both to the prism and to the former hole; and if this white light thus trans- 
mitted through the hole H fall afterwards upon a white paper pt, placed after 
that hole H at the distance of three or four feet from it, and there paint the 

Fig. 1 
usual colours of the prism, (suppose red at t, yellow at s, green at r, blue at q, 
and violet at p) you may with an iron wire, or any such like slender opaque 
body, whose breadth is about the tenth part of an inch, by intercepting the 
rays at k, I, m, n or o, take away any one of the colours at t, s, r, q or p, whilst 
the other colours remain upon the paper as before; or with an obstacle some- 
thing bigger you may take away any two, or three, or four colours together, the 
rest remaining: So that any one of the colours as well as violet may become out- 
most in the confine of the shadow towards p, and any one of them as well as red 
may become outmost in the confine of the shadow towards t, and any one of 
them may also border upon the shadow made within the colours by the obstacle 
R intercepting some intermediate part of the light; and, lastly, any one of 
them by being left alone may border upon the shadow on either hand. All the 
colours have themselves indifferently to any confines of shadow, and therefore 
the differences of these colours from one another do not arise from the different 
confines of shadow, whereby light is variously modified, as has hitherto been 
the opinion of philosophers. In trying these things 'tis to be observed that by 
how much the holes F and H are narrower, and the intervals between them and 
the prism greater, and the chamber darker, by so much the better doth the 
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experiment succeed; provided the light be not so far diminished but that the 
colours at pt be sufficiently visible. To procure a prism of solid glass large 
enough for this experiment will be difficult, and therefore a prismatic vessel 
must be made of polished glass plates cemented together, and filled with salt 
water or clear oil. 

Exper. 2. The Sun's light let into a dark chamber through the round hole F, 
[Fig. 2] half an inch wide, passed first through the prism ABC placed at the 
hole, and then through a lens PT something more than four inches broad, and 
about eight feet distant from the prism, and thence converged to O the focus 
of the lens distant from it about three feet, and there fell upon a white paper 
DE. If that paper was perpendicular to that light incident upon it, as 'tis 

represented in the posture DE, all the colours upon it at 0 appeared white. 
But if the paper being turned about an axis parallel to the prism, became very 
much inclined to the light, as 'tis represented in the positions de and be, the 
same light in the one case appeared yellow and red, in the other blue. Here one 
and the same part of the light in one and the same place, according to the vari- 
ous inclinations of the paper, appeared in one case white, in another yellow or 
red, in a third blue, whilst the confine of light and shadow, and the refractions 
of the prism in all these cases remained the same. 

Exper. 3. Such another experiment may be more easily tried as follows: Let 
a broad beam of the Sun's light coming into a dark chamber through a hole in 
the window-shut be refracted by a large prism ABC, [Fig. 3] whose refracting 
angle C is more than 60 degrees, and so soon as it comes out of the prism, let it 
fall upon the white paper DE glued upon a stiff plane; and this light, when the 
paper is perpendicular to it, as 'tis represented in DE, will appear perfectly 
white upon the paper; but when the paper is very much inclined to it in such a 
manner as to keep always parallel to the axis of the prism, the whiteness of the 

will become the more conspicuous. Here all the middle parts of the broad beam 
of white light which fell upon the paper did, without any confine of shadow to 
modify it, become coloured all over with one uniform colour, the colour being 
always the same in the middle of the paper as at the edges, and this colour 
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whole light upon the paper will, ac- 
cording to the inclination of the 
paper this way or that way, change 
either into yellow and red, as in the 
posture de, or into blue and violet, 
as in the posture be. And if the light 
before it fall upon the paper be 
twice refracted the same way by 
two parallel prisms, these colours 
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changed according to the various obliquity of the reflecting paper, without any 
change in the refractions or shadow, or in the light which fell upon the paper. 
And, therefore, these colours are to be derived from some other cause than the 
new modifications of light by refractions and shadows. 

If it be asked, What then is their cause? I answer, That the paper in the pos- 
ture de, being more oblique to the more refrangible rays than to the less refran- 
gible ones, is more strongly illuminated by the latter than by the former, and, 
therefore, the less refrangible rays are predominant in the reflected light. And 
wherever they are predominant in any light, they tinge it with red or yellow, as 
may in some measure appear by the first Proposition of the first part of this 
book, and will more fully appear hereafter. And the contrary happens in the 
posture of the paper 5e, the more refrangible rays being then predominant 
which always tinge light with blues and violets. 

Exper. 4. The colours of bubbles with which children play are various, and 
change their situation variously, without any respect to any confine or shadow. 
If such a bubble be covered with a concave glass to keep it from being agitated 
by any wind or motion of the air, the colours will slowly and regularly change 
their situation, even whilst the eye and the bubble, and all bodies which emit 
any light, or cast any shadow, remain unmoved. And, therefore, their colours 
arise from some regular cause which depends not on any confine of shadow. 
What this cause is will be shewed in the next book. 

To these experiments may be added the tenth experiment of the first part of 
this first book, where the Sun's light in a dark room being trajected through 
the parallel superficies of two prisms tied together in the form of a parallel- 
epiped, became totally of one uniform yellow or red colour, at its emerging out 
of the prisms. Here, in the production of these colours, the confine of shadow 
can have nothing to do. For the light changes from white to yellow, orange and 
red successively, without any alteration of the confine of shadow. And at both 
edges of the emerging light where the contrary confines of shadow ought to 
produce different effects, the colour is one and the same, whether it be white, 
yellow, orange or red. And in the middle of the emerging light, where there is 
no confine of shadow at all, the colour is the very same as at the edges, the 
whole light at its very first emergence being of one uniform colour, whether 
white, yellow, orange or red, and going on thence perpetually without any 
change of colour, such as the confine of shadow is vulgarly supposed to work in 
refracted light after its emergence. Neither can these colours arise from any 
new modifications of the light by refractions, because they change successively 
from white to yellow, orange and red, while the refractions remain the same, 
and also because the refractions are made contrary ways by parallel superficies 
which destroy one another's effects. They arise not, therefore, from any modi- 
fications of light made by refractions and shadows, but have some other cause. 
What that cause is we shewed above in this tenth experiment, and need not 
here repeat it. 

There is yet another material circumstance of this experiment. For this 
emerging light being by a third prism HIK [Fig. 22 Part I.] refracted towards 
the paper PT, and there painting the usual colours of the prism, red, yellow, 
green, blue, violet: If these colours arose from the refractions of that prism 
modifying the light, they would not be in the light before its incidence on that 
prism. And yet in that experiment we found that when, by turning the two first 



Book I: Part 2 427 

prisms about their common axis all the colours were made to vanish but the 
red, the light, which makes that red being left alone, appeared of the very 
same red colour before its incidence on the third prism. And, in general, we find 
by other experiments that when the rays which differ in refrangibility are 
separated from one another, and any one sort of them is considered apart, the 
colour of the light which they compose cannot be changed by any refraction or 
reflexion whatever, as it ought to be were colours nothing else than modifica- 
tions of light caused by refractions, and reflexions, and shadows. This un- 
changeableness of colour I am now to describe in the following Proposition. 

Proposition 2. Theorem 2 

All homogeneal light has its proper colour answering to its degree of refrangibility f 
and that colour cannot he changed by reflexions and refractions. 

In the experiments of the fourth Proposition of the first part of this first 
book, when I had separated the heterogeneous rays from one another, the 
spectrum pt formed by the separated rays did in the progress from its end p, 
on which the most refrangible rays fell, unto its other end t, on which the least 
refrangible rays fell, appear tinged with this series of colours: violet, indigo, 
blue, green, yellow, orange, red, together with all their intermediate degrees in 
a continual succession perpetually varying. So that there appeared as many 
degrees of colours, as there were sorts of rays differing in refrangibility. 

Exper. 5. Now, that these colours could not be changed by refraction I 
knew by refracting with a prism sometimes one very little part of this light, 
sometimes another very little part, as is described in the twelfth experiment of 
the first part of this book. For by this refraction the colour of the light was 
never changed in the least. If any part of the red light was refracted, it re- 
mained totally of the same red colour as before. No orange, no yellow, no green 
or blue, no other new colour was produced by that refraction. Neither did the 
colour any way change by repeated refractions, but continued always the same 
red entirely as at first. The like constancy and immutability I found also in the 
blue, green, and other colours. So also, if I looked through a prism upon any 
body illuminated with any part of this homogeneal light, as in the fourteenth 
experiment of the first part of this book is described; I could not perceive any 
new colour generated this way. All bodies illuminated with compound light 
appear through prisms confused (as was said above) and tinged with various 
new colours, but those illuminated with homogeneal light appeared through 
prisms neither less distinct, nor otherwise coloured, than when viewed with the 
naked eyes. Their colours were not in the least changed by the refraction of the 
interposed prism. I speak here of a sensible change of colour; for the light which 
I here call homogeneal, being not absolutely homogeneal, there ought to arise 
some little change of colour from its heterogeneity. But, if that heterogeneity 
was so little as it might be made by the said experiments of the fourth Prop- 
osition, that change was not sensible, and therefore in experiments, where 
sense is judge, ought to be accounted none at all. 

Exper. 6. And as these colours were not changeable by refractions, so neither 
were they by reflexions. For all white, grey, red, yellow, green, blue, violet 
bodies, as paper, ashes, red lead, orpiment, indigo bice, gold, silver, copper, 
grass, blue flowers, violets, bubbles of water tinged with various colours, pea- 
cock's feathers, the tincture of lignum nephriticum, and such-like, in red 
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homogeneal light appeared totally red, in blue light totally blue, in green light 
totally green, and so of other colours. In the homogeneal light of any colour 
they all appeared totally of that same colour, with this only difference: that 
some of them reflected that light more strongly, others more faintly. I never 
yet found any body, which by reflecting homogeneal light could sensibly 
change its colour. 

From all which it is manifest that if the Sun's light consisted of but one sort 
of rays, there would be but one colour in the whole world, nor would it be 
possible to produce any new colour by reflexions and refractions, and, by 
consequence, that the variety of colours depends upon the composition of light. 

DEFINITION 
The homogeneal light and rays which appear red, or rather make objects 

appear so, I call rub rifle or red-making; those which make objects appear 
yellow, green, blue, and violet, I call yellow-making, green-making, blue- 
making, violet-making, and so of the rest. And if at any time I speak of light 
and rays as coloured or endued with colours, I would be understood to speak 
not philosophically and properly, but grossly, and accordingly to such con- 
ceptions as vulgar people in seeing all these experiments would be apt to frame. 
For the rays, to speak properly, are not coloured. In them there is nothing else 
than a certain power and disposition to stir up a sensation of this or that colour. 
For as sound in a bell or musical string, or other sounding body, is nothing but 
a trembling motion, and in the air nothing but that motion propagated from 
the object, and in the sensorium 'tis a sense of that motion under the form of 
sound; so colours in the object are nothing but a disposition to reflect this or 
that sort of rays more copiously than the rest; in the rays they are nothing but 
their dispositions to propagate this or that motion into the sensorium, and in 
the sensorium they are sensations of those motions under the forms of colours. 

Proposition 3. Problem 1 
To define the refrangihility of the several sorts of homogeneal light answering to the 
several colours. 

For determining this Problem I made the following experiment. 
Exper. 7. When I had caused the rectilinear sides AF, GM, [Fig. 4] of the 

spectrum of colours made by the prism to be distinctly defined, as in the fifth 
experiment of the first part of this book is described, there were found in it all 
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the homogeneal colours in the same order and situation one among another as 
in the spectrum of simple light, described in the fourth Proposition of that 
part. For the circles of which the spectrum of compound light PT is composed, 
and which in the middle parts of the spectrum interfere, and are intermixed 
with one another, are not intermixed in their outmost parts where they touch 
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those rectilinear sides AF and GM. And, therefore, in those rectilinear sides 
when distinctly defined, there is no new colour generated by refraction. I 
observed, also, that if anywhere between the two outmost circles TMF and 
PGA a right line, as yd, was cross to the spectrum, so as both ends to fall 
perpendicularly upon its rectilinear sides, there appeared one and the same 
colour, and degree of colour from one end of this line to the other. I delineated, 
therefore, in a paper the perimeter of the spectrum FAP GMT, and, in trying 
the third experiment of the first part of this book, I held the paper so that the 
spectrum might fall upon this delineated figure, and agree with it exactly, 
whilst an assistant, wdiose eyes for distinguishing colours were more critical 
than mine, did by right lines a(3, yd, ef, &c. drawn cross the spectrum, note the 
confines of the colours (that is, of the red Ma/3F, of the orange ay dp, of the 
yellow ye^d, of the green erjdt;, of the blue rjLKd, of the indigo uXfjuc, and of the 
violet XGA/x). And this operation being divers times repeated both in the same 
and in several papers, I found that the observations agreed well enough with 
one another, and that the rectilinear sides MG and FA were by the said cross 
lines divided after the manner of a musical chord. Let GM be produced to X, 
that MX may be equal to GM, and conceive GX, XX, tX, 77X, eX, 7X, aX, 
MX, to be in proportion to one another, as the numbers, 1, 
3^, and so to represent the chords of the key, and of a tone, a third minor, a fourth, 
a fifth, a sixth major, a seventh and an eighth above that key. And the inter- 
vals Ma, ay, ye, erj, t/l, tX, and XG, will be the spaces which the several colours 
(red, orange, yellow, green, blue, indigo, violet) take up. 

Now, these intervals or spaces subtending the differences of the refractions 
of the rays going to the limits of those colours (that is, to the Points M, a, 7, e, 
77, t, X, G) may without any sensible error be accounted proportional to the 
differences of the sines of refraction of those rays having one common sine of 
incidence; and, therefore, since the common sine of incidence of the most and 
least refrangible rays out of glass into air was (by a method described above) 
found in proportion to their sines of refraction as 50 to 77 and 78, divide the 
difference between the sines of refraction 77 and 78, as the line GM is divided 
by those intervals, and you will have 77,773^, 77/4 7734, 77^, 77%, 77/4 78, 
the sines of refraction of those rays out of glass into air, their common sine of in- 
cidence being 50. So, then, the sines of the incidences of all the red-making rays 
out of glass into air were to the sines of their refractions not greater than 50 to 
77, nor less than 50 to 7734, but they varied from one another according to all 
intermediate proportions. And the sines of the incidences of the green-making 
rays were to the sines of their refractions in all proportions from that of 50 to 
7734, unto that of 50 to 7734- And by the like limits above-mentioned were the 
refractions of the rays belonging to the rest of the colours defined, the sines of 
the red-making rays extending from 77 to 7734, those of the orange-making 
from 7734 to 77/4 those of the yellow-making from 7734 to 7734, those of the 
green-making from7734 to7734, those of the blue-making from7734 to77 %, those 
of the indigo-making from 67% to 7734, and those of the violet from 77%i to 78. 

These are the laws of the refractions made out of glass into air, and thence, 
by the third Axiom of the first part of this book, the laws of the refractions 
made out of air into glass are easily derived. 

Exper. 8.1 found, moreover, that when light goes out of air through several 
contiguous refracting mediums as through water and glass, and thence goes out 
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again into air, whether the refracting superficies be parallel or inclined to one 
another, that light as often as by contrary refractions 'tis so corrected, that it 
emergeth in lines parallel to those in which it was incident, continues ever after 
to be white. But if the emergent rays be inclined to the incident, the whiteness 
of the emerging light will by degrees in passing on from the place of emergence, 
become tinged in its edges with colours. This I tried by refracting light with 
prisms of glass placed within a prismatic vessel of water. Now, those colours 
argue a diverging and separation of the heterogeneous rays from one another 
by means of their unequal refractions, as in what follows will more fully appear. 
And, on the contrary, the permanent whiteness argues that in like incidences of 
the rays there is no such separation of the emerging rays, and by consequence 
no inequality of their whole refractions. Whence I seem to gather the two 
following theorems: 

1. The excesses of the sines of refraction of several sorts of rays above their 
common sine of incidence when the refractions are made out of divers denser 
mediums immediately into one and the same rarer medium (suppose of air) are 
to one another in a given proportion. 

2. The proportion of the sine of incidence to the sine of refraction of one and 
the same sort of rays out of one medium into another, is composed of the pro- 
portion of the sine of incidence to the sine of refraction out of the first medium 
into any third medium, and of the proportion of the sine of incidence to the 
sine of refraction out of that third medium into the second medium. 

By the first theorem, the refractions of the rays of every sort made out of any 
medium into air are known by having the refraction of the rays of any one sort. 
As, for instance, if the refractions of the rays of every sort out of rain-water 
into air be desired, let the common sine of incidence out of glass into air be 
subducted from the sines of refraction, and the excesses will be 27, 273^, 27%, 
27%, 27%, 27%, 27%, 28. Suppose, now, that the sine of incidence of the least 
refrangible rays be to their sine of refraction out of rain-water into air as 3 to 4, 
and say as 1 the difference of those sines is to 3 the sine of incidence, so is 27 
the least of the excesses above-mentioned to a fourth number 81; and 81 will be 
the common sine of incidence out of rain-water into air, to which sine (if you 
add all the above-mentioned excesses) you will have the desired sines of the 
refractions 108, 108%, 108%, 108%, 108%, 108%, 108%, 109. 

By the latter theorem, the refraction out of one medium into another is 
gathered as often as you have the refractions out of them both into any third 
medium. As if the sine of incidence of any ray out of glass into air be to its sine 
of refraction as 20 to 31, and the sine of incidence of the same ray out of air into 
water be to its sine of refraction as 4 to 3; the sine of incidence of that ray out 
of glass into water will be to its sine of refraction as 20 to 31 and 4 to 3 jointly; 
that is, as the factum of 20 and 4 to the factum of 31 and 3, or as 80 to 93. 

And these theorems being admitted into Optics, there would be scope enough 
of handling that science voluminously after a new manner, not only by teach- 
ing those things which tend to the perfection of vision, but also by determining 
mathematically all kinds of phenomena of colours which could be produced by 
refractions. For to do this, there is nothing else requisite than to find out the 
separations of heterogeneous rays, and their various mixtures and proportions 
in every mixture. By this way of arguing I invented almost all the phenomena 
described in these books, beside some others less necessary to the argument; 
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and by the successes I met with in the trials, I dare promise that to him who 
shall argue truly, and then try all things with good glasses and sufficient cir- 
cumspection, the expected event will not be wanting. But he is first to know 
what colours will arise from any others mixed in any assigned proportion. 

Proposition 4. Theorem 3 
Colours may he produced by composition which shall be like to the colours of 
homogeneal light as to the appearance of colour, but not as to the immutability of 
colour and constitution of light. And those colours by how much they are more 
compounded by so much are they less full and intense, and by too much composition 
they may be diluted and weakened till they cease, and the mixture becomes white or 
grey. There may be also colours produced by composition, which are not fully like 
any of the colours of homogeneal light. 

For a mixture of homogeneal red and yellow compounds an orange, like in 
appearance of colour to that orange which in the series of unmixed prismatic 
colours lies between them; but the light of one orange is homogeneal as to 
refrangibility, and that of the other is heterogeneal, and the colour of the one, 
if viewed through a prism, remains unchanged, that of the other is changed and 
resolved into its component colours, red and yellow. And after the same man- 
ner other neighbouring homogeneal colours may compound new colours, like 
the intermediate homogeneal ones, as yellow and green, the colour between 
them both; and afterwards, if blue be added, there will be made a green the 
middle colour of the three which enter the composition. For the yellow and 
blue on either hand, if they are equal in quantity they draw the intermediate 
green equally towards themselves in composition, and so keep it as it were in 
equilibrium, that it verge not more to the yellow on the one hand, and to the 
blue on the other, but by their mixed actions remain still a middle colour. To 
this mixed green there may be further added some red and violet, and yet the 
green will not presently cease, but only grow less full and vivid, and by in- 
creasing the red and violet, it will grow more and more dilute until, by the 
prevalence of the added colours, it be overcome and turned into whiteness 
or some other colour. So if to the colour of any homogeneal light the Sun's 
white light composed of all sorts of rays be added, that colour will not vanish 
or change its species, but be diluted; and by adding more and more white 
it will be diluted more and more, perpetually. Lastly, if red and violet be 
mingled, there will be generated according to their various proportions vari- 
ous purples, such as are not like in appearance to the colour of any homo- 
geneal light, and of these purples mixed with yellow and blue may be made 
other new colours. 

Proposition 5. Theorem 4 
Whiteness, and all grey colours between white and black, may be compounded of 
colours, and the whiteness of the Sun's light is compounded of all the primary 
colours mixed in a due proportion. 

The Proof by Experiments 
Experiment 9. The Sun shining into a dark chamber through a little round 
hole in the window-shut, and his light being there refracted by a prism to cast 
his coloured image PT [Fig. 5] upon the opposite wall, I held a white paper V to 
that image in such manner that it might be illuminated by the coloured light 
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reflected from thence, and yet not intercept any part of that light in its passage 
from the prism to the spectrum. And I found that when the paper was held 
nearer to any colour than to the rest, it appeared of that colour to which it 
approached nearest; but when it was equally or almost equally distant from all 
the colours, so that it might be equally illuminated by them all, it appeared 
white. And in this last situation of the paper, if some colours were intercepted 
the paper lost its white colour, and appeared of the colour of the rest of the 
light which was not intercepted. So, then, the paper was illuminated with lights 
of various colours (namely, red, yellow, green, blue and violet) and every part 

Fig. 5 

of the light retained its proper colour until it was incident on the paper, and 
became reflected thence to the eye; so that if it had been either alone (the rest 
of the light being intercepted) or if it had abounded most, and been predom- 
inant in the light reflected from the paper, it would have tinged the paper with 
its own colour; and yet, being mixed with the rest of the colours in a due pro- 
portion, it made the paper look white, and therefore by a composition with the 
rest produced that colour. The several parts of the coloured light reflected from 
the spectrum, whilst they are propagated from thence through the air, do 
perpetually retain their proper colours, because wherever they fall upon the 
eyes of any spectator they make the several parts of the spectrum to appear 
under their proper colours. They retain, therefore, their proper colours when 
they fall upon the Paper Y, and so by the confusion and perfect mixture of 
those colours compound the whiteness of the light reflected from thence. 

Exper. 10. Let that spectrum or solar image PT [Fig. 6] fall now upon the 
lens MN above four inches broad, and about six feet distant from the prism 
ABC and so figured that it may cause the coloured light which divergeth from 
the prism to converge and meet again at its focus G, about six or eight feet 
distant from the lens, and there to fall perpendicularly upon a white paper DE. 
And if you move this paper to and fro, you will perceive that near the lens, as 
at de, the whole solar image (suppose at yt) will appear upon it intensely 
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coloured after the manner above-explained; and that by receding from the lens 
those colours will perpetually come towards one another, and, by mixing more 
and more, dilute one another continually until at length the paper come to the 
focus G, where by a perfect mixture they will wholly vanish and be converted 
into whiteness, the whole light appearing now upon the paper like a little white 
circle. And afterwards by receding farther from the lens, the rays which before 
converged will now cross one another in the focus G, and diverge from thence, 
and thereby make the colours to appear again, but yet in a contrary order; 
suppose at 8e, where the red t is now above which before was below, and the 
violet p is below which before was above. 

Let us now stop the paper at the focus G, where the light appears totally 
white and circular, and let us consider its whiteness. I say, that this is composed 
of the converging colours. For if any of those colours be intercepted at the lens, 
the whiteness will cease and degenerate into that colour which ariseth from the 
composition of the other colours which are not intercepted. And then if the 
intercepted colours be let pass and fall upon that compound colour, they mix 
with it, and by their mixture restore the whiteness. So if the violet, blue and 
green be intercepted, the remaining yellow, orange and red will compound upon 
the paper an orange, and then if the intercepted colours be let pass, they will 
fall upon this compounded orange, and together with it decompound a white. 
So also if the red and violet be intercepted, the remaining yellow, green and 
blue will compound a green upon the paper, and then the red and violet being 
let pass will fall upon this green, and together with it decompound a white. 
And that in this composition of white the several rays do not suffer any change 
in their colorific qualities by acting upon one another, but are only mixed, and 
by a mixture of their colours produce white, may further appear by these 
arguments. 

If the paper be placed beyond the focus G, suppose at de, and then the red 
colour at the lens be alternately intercepted, and let pass again, the violet 
colour on the paper will not suffer any change thereby, as it ought to do if the 
several sorts of rays acted upon one another in the focus G, where they cross. 
Neither will the red upon the paper be changed by any alternate stopping, and 
letting pass the violet which crosseth it. 

And if the paper be placed at the focus G, and the white round image at G be 
viewed through the prism HIK, and by the refraction of that prism be trans- 
lated to the place rv, and there appear tinged with various colours (namely, the 
violet at v and red at r, and others between) and then the red colours at the lens 
be often stopped and let pass by turns, the red at r will accordingly disappear, 
and return as often, but the violet at v will not thereby suffer any change. And 
so, by stopping and letting pass alternately the blue at the lens, the blue at v 
will accordingly disappear and return, without any change made in the red at r. 
The red, therefore, depends on one sort of rays, and the blue on another sort, 
which in the focus G, where they are commixed, do not act on one another. And 
there is the same reason of the other colours. 

I considered, further, that when the most refrangible rays Pp, and the least 
refrangible ones T^, are by converging inclined to one another, the paper, if 
held very oblique to those rays in the focus G, might reflect one sort of them 
more copiously than the other sort, and by that means the reflected light would 
be tinged in that focus with the colour of the predominant rays, provided those 
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rays severally retained their colours, or colorific qualities in the composition of 
white made by them in that focus. But if they did not retain them in that 
white, but became all of them severally endued there with a disposition to 
strike the sense with the perception of white, then they could never lose their 
whiteness by such reflexions. I inclined, therefore, the paper to the rays very 
obliquely, as in the second experiment of this second part of the first book, that 
the most refrangible rays might be more copiously reflected than the rest, and 
the whiteness at length changed successively into blue, indigo, and violet. Then 
I inclined it the contrary way, that the least refrangible rays might be more 
copious in the reflected light than the rest, and the whiteness turned succes- 
sively to yellow, orange, and red. 

Lastly, I made an instrument XY in fashion of a comb whose teeth, being in 
number sixteen, were about an inch and a half broad, and the intervals of the 
teeth about two inches wide. Then by interposing successively the teeth of this 
instrument near the lens, I intercepted part of the colours by the interposed 
tooth, whilst the rest of them went on through the interval of the teeth to the 
paper DE, and there painted a round solar image. But the paper I had first 
placed so that the image might appear white as often as the comb was taken 
away; and then the Comb being as was said interposed, the whiteness by rea- 
son of the intercepted part of the colours at the lens did always change into the 
colour compounded of those colours which were not intercepted, and that 
colour was by the motion of the comb perpetually varied so that in the passing 
of every tooth over the lens all these colours (red, yellow, green, blue, and 
purple) did always succeed one another. I caused, therefore, all the teeth to 
pass successively over the lens, and when the motion was slow there appeared 
a perpetual succession of the colours upon the paper; but if I so much acceler- 
ated the motion that the colours by reason of their quick succession could not 
be distinguished from one another, the appearance of the single colours ceased. 
There was no red, no yellow, no green, no blue, nor purple to be seen any longer, 
but from a confusion of them all there arose one uniform white colour. Of the 
light which now by the mixture of all the colours appeared white, there was no 
part really white. One part was red, another yellow, a third green, a fourth 
blue, a fifth purple, and every part retains its proper colour till it strikes the 
sensorium. If the impressions follow one another slowly, so that they may be 
severally perceived, there is made a distinct sensation of all the colours one 
after another in a continual succession. But if the impressions follow one an- 
other so quickly that they cannot be severally perceived, there ariseth out of 
them all one common sensation, which is neither of this colour aldne nor of that 
alone, but hath itself indifferently to them all, and this is a sensation of white- 
ness. By the quickness of the successions, the impressions of the several colours 
are confounded in the sensorium, and out of that confusion ariseth a mixed 
sensation. If a burning coal be nimbly moved round in a circle with gyrations 
continually repeated, the whole circle will apear like fire; the reason of which is 
that the sensation of the coal in the several places of that circle remains im- 
pressed on the sensorium until the coal return again to the same place. And so 
in a quick consecution of the colours the impression of every colour remains in 
the sensorium, until a revolution of all the colours be completed, and that first 
colour return again. The impressions, therefore, of all the successive colours are 
at once in the sensorium, and jointly stir up a sensation of them all; and so it is 
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manifest by this experiment that the commixed impressions of all the colours 
do stir up and beget a sensation of white, that is, that whiteness is compounded 
of all the colours. 

And if the comb be now taken away, that all the colours may at once pass 
from the lens to the paper, and be there intermixed, and together reflected 
thence to the spectator's eyes, their impressions on the sensorium being now 
more subtly and perfectly commixed there, ought much more to stir up a 
sensation of whiteness. 

You may instead of the lens use two prisms HIK and LMN which, by re- 
fracting the coloured light the contrary way to that of the first refraction, may 
make the diverging rays converge and meet again in G, as you see represented 
in the seventh Figure. For where they meet and mix, they will compose a white 
light, as when a lens is used. 

Exper. 11. Let the Sun's coloured image PT [Fig. 8] fall upon the wall of a 
dark chamber, as in the third experiment of the first book, and let the same be 
viewed through a prism abc, held parallel to the prism ABC, by whose refrac- 
tion that image was made, and let it now appear lower than before, suppose in 
the place S over against the red colour T. And if you go near to the image PT, 

the spectrum S will appear oblong and coloured like the image PT; but if you 
recede from it the colours of the spectrum S will be contracted more and more, 
and at length vanish, that spectrum S becoming perfectly round and white; and 
if you recede yet farther, the colours will emerge again, but in a contrary order. 
Now that spectrum S appears white in that case, when the rays of several 
sorts which converge from the several parts of the image PT, to the prism abc, 

K 

S. Fig. 8 
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are so refracted unequally by it that in their passage from the prism to the eye 
they may diverge from one and the same point of the spectrum S, and so fall 
afterwards upon one and the same point in the bottom of the eye, and there be 
mingled. 

And, further, if the comb be here made use of, by whose teeth the colours at 
the image PT may be successively intercepted, the spectrum S, when the comb 
is moved slowly, will be perpetually tinged with successive colours. But when, 
by accelerating the motion of the comb, the succession of the colours is so quick 
that they cannot be severally seen, that spectrum S, by a confused and mixed 
sensation of them all, will appear white. 

Exper. 12. The Sun shining through a large prism ABC [Fig. 9] upon a comb 
XY, placed immediately behind the prism, his light which passed through the 
interstices of the teeth fell upon a white paper DE. The breadths of the teeth 
were equal to their interstices, and seven teeth together with their interstices 
took up an inch in breadth. Now, when the paper was about two or three inches 

distant from the comb, the light which passed through its several interstices 
painted so many ranges of colours, kl, mn, op, qr, &c. which were parallel to one 
another, and contiguous, and without any mixture of white. And these ranges 
of colours, if the comb was moved continually up and down with a reciprocal 
motion, ascended and descended in the paper, and when the motion of the 
comb was so quick that the colours could not be distinguished from one an- 
other, the whole paper by their confusion and mixture in the sensorium ap- 
peared white. 

Let the comb now rest, and let the paper be removed farther from the prism, 
and the several ranges of colours will be dilated and expanded into one another 
more and more, and by mixing their colours will dilute one another, and at 
length, when the distance of the paper from the comb is about a foot, or a little 
more (suppose in the place 2D 2E) they will so far dilute one another as to 
become white. 

With any obstacle, let all the light be now stopped which passes through any 
one interval of the teeth, so that the range of colours which comes from thence 
may be taken away, and you will see the light of the rest of the ranges to be 

Fig. 9 
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expanded into the place of the range taken away, and there to be coloured. Let 
the intercepted range pass on as before, and its colours falling upon the colours 
of the other ranges, and mixing with them, will restore the whiteness. 

Let the paper 2D 2E be now very much inclined to the rays, so that the most 
refrangible rays may be more copiously reflected than the rest, and the white 
colour of the paper through the excess of those rays will be changed into blue 
and violet. Let the paper be as much inclined the contrary way, that the least 
refrangible rays may be now more copiously reflected than the rest, and by 
their excess the whiteness will be changed into yellow and red. The several rays, 
therefore, in that white light do retain their colorific qualities, by which those 
of any sort, whenever they become more copious than the rest, do by their 
excess and predominance cause their proper colour to appear. 

And by the same way of arguing, applied to the third experiment of this 
second part of the first book, it may be concluded that the white colour of all 
refracted light at its very first emergence, where it appears as white as before 
its incidence, is compounded of various colours. 

Exper. 13. In the foregoing experiment the several intervals of the teeth of 
the comb do the office of so many prisms, every interval producing the phe- 
nomenon of one prism. Whence instead of those intervals using several prisms, 
I tried to compound whiteness by mixing their colours, and did it by using only 
three prisms, as also by using only two as follows: Let two prisms ABC and ahc, 
[Fig. 10] whose refracting angles B and b are equal, be so placed parallel to one 
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Fig. 10 
another that the refracting angle B of the one may touch the angle c at the base 
of the other, and their planes CB and ch, at which the rays emerge, may lie in 
directum. Then let the light trajected through them fall upon the paper MN, 
distant about 8 or 12 inches from the prisms. And the colours generated by the 
interior limits B and c of the two prisms will be mingled at PT, and there 
compound white. For if either prism be taken away, the colours made by the 
other will appear in that place PT, and when the prism is restored to its place 
again, so that its colours may there fall upon the colours of the other, the mix- 
ture of them both will restore the whiteness. 

This experiment succeeds also, as I have tried, when the angle h of the lower 
prism is a little greater than the angle B of the upper, and between the interior 
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angles B and c there intercedes some space Be, as is represented in the figure, 
and the refracting planes BC and he are neither in directum nor parallel to one 
another. For there is nothing more requisite to the success of this experiment 
than that the rays of all sorts may be uniformly mixed upon the paper in the 
place PT. If the most refrangible rays coming from the superior prism take up 
all the space from M to P, the rays of the same sort which come from the in- 
ferior prism ought to begin at P, and take up all the rest of the space from 
thence towards N. If the least refrangible rays coming from the superior prism 
take up the space MT, the rays of the same kind which come from the other 
prism ought to begin at T, and take up the remaining space TN. If one sort of 
the rays, which have intermediate degrees of refrangibility and come from the 
superior prism, be extended through the space MQ, and another sort of those 
rays through the space MR, and a third sort of them through the space MS, 
the same sorts of rays coming from the lower prism ought to illuminate the 
remaining spaces QN, RN, SN, respectively. And the same is to be understood 
of all the other sorts of rays. For thus the rays of every sort will be scattered 
uniformly and evenly through the whole space MN, and so, being everywhere 
mixed in the same proportion, they must everywhere produce the same colour. 
And, therefore, since by this mixture they produce white in the exterior spaces 
MP and TN, they must also produce white in the interior space PT. This is the 
reason of the composition by which whiteness was produced in this experiment, 
and by what other way soever I made the like composition, the result was 
whiteness. 

Lastly, if with the teeth of a comb of a due size the coloured lights of the two 
prisms which fall upon the space PT be alternately intercepted, that space PT, 
when the motion of the comb is slow, will always appear coloured, but by 
accelerating the motion of the comb so much that the successive colours cannot 
be distinguished from one another, it will apear white. 

Exper. 14. Hitherto I have produced whiteness by mixing the colours of 
prisms. If, now, the colours of natural bodies are to be mingled, let water a 
little thickened with soap be agitated to raise a froth, and after that froth has 
stood a little there will appear to one that shall view it intently various colours 
everywhere in the surfaces of the several bubbles; but to one that shall go so 
far off that he cannot distinguish the colours from one another, the whole froth 
will grow white with a perfect whiteness. 

Exper. 15. Lastly, in attempting to compound a white, by mixing the 
coloured powders which painters use, I considered that all coloured powders do 
suppress and stop in them a very considerable part of the light by which they 
are illuminated. For they become coloured by reflecting the light of their own 
colours more copiously, and that of all other colours more sparingly, and yet 
they do not reflect the light of their own colours so copiously as white bodies do. 
If red lead, for instance, and a white paper be placed in the red light of the 
coloured spectrum made in a dark chamber by the refraction of a prism, as is 
described in the third experiment of the first part of this book, the paper will 
appear more lucid than the red lead, and therefore reflects the red-making rays 
more copiously than red lead doth. And if they be held in the light of any other 
colour, the light reflected by the paper will exceed the light reflected by the red 
lead in a much greater proportion. And the like happens in powders of other 
colours. And, therefore, by mixing such powders we are not to expect a strong 
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and full white, such as is that of paper, but some dusky obscure one, such as 
might arise from a mixture of light and darkness, or from white and black; that 
is, a grey, or dun, or russet brown, such as are the colours of a man's nail, of a 
mouse, of ashes, of ordinary stones, of mortar, of dust and dirt in highways, 
and the like. And such a dark white I have often produced by mixing coloured 
powders. For thus one part of red lead, and five parts of viride cms composed 
a dun colour like that of a mouse. For these two colours were severally so com- 
pounded of others that in both together were a mixture of all colours; and there 
was less red lead used than viride ceris, because of the fulness of its colour. 
Again, one part of red lead and four parts of blue bice composed a dun colour 
verging a little to purple, and by adding to this a certain mixture of orpiment 
and viride ceris in a due proportion, the mixture lost its purple tincture and 
became perfectly dun. But the experiment succeeded best without minium 
thus: To orpiment I added by little and little a certain full bright purple, which 
painters use, until the orpiment ceased to be yellow, and became of a pale red. 
Then I diluted that red by adding a little viride ceris, and a little more blue 
bice than viride ceris, until it became of such a grey or pale white as verged to 
no one of the colours more than to another. For thus it became of a colour equal 
in whiteness to that of ashes, or of wood newly cut, or of a man's skin. The 
orpiment reflected more light than did any other of the powders, and therefore 
conduced more to the whiteness of the compounded colour than they. To assign 
the proportions accurately may be difficult, by reason of the different goodness 
of powders of the same kind. Accordingly, as the colour of any powder is more 
or less full and luminous, it ought to be used in a less or greater proportion. 

Now, considering that these grey and dun colours may be also produced by 
mixing whites and blacks, and by consequence differ from perfect whites, not 
in species of colours but only in degree of luminousness, it is manifest that there 
is nothing more requisite to make them perfectly white than to increase their 
light sufficiently; and, on the contrary, if by increasing their light they can be 
brought to perfect whiteness, it will thence also follow that they are of the same 
species of colour with the best whites, and differ from them only in the quantity 
of light. And this 1 tried as follows: I took the third of the above-mentioned 
grey mixtures, (that which was compounded of orpiment, purple, bice, and 
viride ceris) and rubbed it thickly upon the floor of my chamber where the Sun 
shone upon it through the opened casement; and by it, in the shadow, I laid a 
piece of white paper of the same bigness. Then, going from them to the distance 
of 12 or 18 feet, so that I could not discern the unevenness of the surface of the 
powder, nor the little shadows let fall from the gritty particles thereof, the 
powder appeared intensely white, so as to transcend even the paper itself in 
whiteness, especially if the paper were a little shaded from the light of the 
clouds, and then the paper compared with the powder appeared of such a grey 
colour as the powder had done before. But by laying the paper where the Sun 
shines through the glass of the window, or by shutting the window that the 
Sun might shine through the glass upon the powder, and by such other fit 
means of increasing or decreasing the lights wherewith the powder and paper 
were illuminated, the light wherewith the powder is illuminated may be made 
stronger in such a due proportion than the light wherewith the paper is illu- 
minated that they shall both appear exactly alike in whiteness. For when I was 
trying this, a friend coming to visit me, I stopped him at the door, and before I 
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told him what the colours were, or what I was doing, I asked him which of the 
two whites was the best, and wherein they differed. And after he had at that 
distance viewed them well, he answered that they were both good whites, and 
that he could not say which was best, nor wherein their colours differed. Now, 
if you consider that this white of the powder in the sunshine was compounded 
of the colours which the component powders (orpiment, purple, bice, and viride 
ceris) have in the same sunshine, you must acknowledge by this experiment, as 
well as by the former, that perfect whiteness may be compounded of colours. 

From what has been said it is also evident that the whiteness of the Sun's 
light is compounded of all the colours wherewith the several sorts of rays where- 
of that light consists, when by their several refrangibilities they are separated 
from one another, do tinge paper or any other white body whereon they fall. 
For those colours (by Prop. II. Part 2.) are unchangeable, and whenever all 
those rays with those their colours are mixed again, they reproduce the same 
white light as before. 

Proposition 6. Problem 2 
In a mixture of primary colours, the quantity and quality of each being given, to 
know the colour of the compound. 

With the centre 0 [Fig. 11] and radius OD describe a circle ADF, and 
distinguish its circumference into seven parts DE, EF, FG, GA, AB, BC, CD, 
proportional to the seven musical tones or intervals of the eight sounds, Sol, la, 
fa, sol, la, mi, fa, sol, contained in an eight; that is, proportional to the number 
Ys, Me, Mo, M> Me, Me, M- Let the first part DE represent a red colour, the 
second EF orange, the third FG yellow, the fourth CA green, the fifth AB 
blue, the sixth BC indigo, and the seventh CD violet. And conceive that these 
are all the colours of uncompounded fight gradually passing into one another, 
as they do when made by prisms; the circumference DEFGABCD, represent- 
ing the whole series of colours from one end of the Sun's coloured image to the 
other, so that from D to E be all degrees of red, at E the mean colour between 
red and orange, from E to F all degrees of orange, at F the mean between 
orange and yellow, from F to G all degrees of yellow, and so on. Let p be the 
centre of gravity of the arch DE, and q, r, s, t, u, x, the centres of gravity of the 

arches EF, FG, GA, AB, BC, and CD, 
respectively, and about those centres of 
gravity let circles proportional to the 
number of rays of each colour in the given 
mixture be described: that is, the circle 
p proportional to the number of the 
red-making rays in the mixture, the circle 
q proportional to the number of the 
orange-making rays in the mixture, and 
so of the rest. Find the common centre 
of gravity of all those circles, p, q, r, s, t, 
u, x. Let that centre be Z; and from the 
centre of the circle ADF, through Z to 
the circumference, drawing the right fine 
OY, the place of the point Y in the cir- 
cumference shall shew the colour aris- 
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ing from the composition of all the colours in the given mixture, and the line 
OZ shall be proportional to the fulness or intenseness of the colour; that is, to 
its distance from whiteness. As if Y fall in the middle between F and G, the 
compounded colour shall be the best yellow; if Y verge from the middle to- 
wards F or G, the compound colour shall accordingly be a yellow, verging to- 
wards orange or green. If Z fall upon the circumference, the colour shall be 
intense and florid in the highest degree; if it fall in the midway between the 
circumference and centre, it shall be but half so intense; that is, it shall be such 
a colour as would be made by diluting the intensest yellow with an equal quan- 
tity of whiteness; and if it fall upon the centre 0, the colour shall have lost all 
its intenseness, and become a white. But it is to be noted that if the point Z fall 
in or near the line OD, the main ingredients being the red and violet, the colour 
compounded shall not be any of the prismatic colours, but a purple, inclining to 
red or violet, accordingly as the point Z lieth on the side of the line DO towards 
E or towards C, and in general the compounded violet is more bright and more 
fiery than the uncompounded. Also, if only two of the primary colours which 
in the circle are opposite to one another be mixed in an equal proportion, 
the point Z shall fall upon the centre 0, and yet the colour compounded of 
those two shall not be perfectly white, but some faint anonymous colour. For 
I could never yet by mixing only two primary colours produce a perfect white. 
Whether it may be compounded of a mixture of three taken at equal dis- 
tances in the circumference I do not know, but of four or five I do not much 
question but it may. But these are curiosities of little or no moment to the un- 
derstanding the phenomena of Nature. For in all whites produced by Nature, 
there uses to be a mixture of all sorts of rays, and by consequence a composi- 
tion of all colours. 

To give an instance of this rule, suppose a colour is compounded of these 
homogeneal colours: of violet one part, of indigo one part, of blue two parts, 
of green three parts, of yellow five parts, of orange six parts, and of red ten 
parts. Proportional to these parts describe the circles x, v, t, s, r, q, p, respec- 
tively, that is, so that if the circle x be one, the circle v may be one, the circle t 
two, the circle s three, and the circles r, q and p, five, six and ten. Then I find Z 
the common centre of gravity of these circles, and through Z drawing the line 
OY, the point Y falls upon the circumference between E and F, something 
nearer to E than to F; and thence I conclude that the colour compounded of 
these ingredients will be an orange, verging a little more to red than to yellow. 
Also I find that OZ is a little less than one half of OY, and thence I conclude 
that this orange hath a little less than half the fulness or intenseness of an 
uncompounded orange; that is to say, that it is such an orange as may be made 
by mixing an homogeneal orange with a good white in the proportion of the 
Line OZ to the Line ZY, this proportion being not of the quantities of mixed 
orange and white powders, but of the quantities of the lights reflected from 
them. 

This rule I conceive accurate enough for practice, though not mathematically 
accurate; and the truth of it may be sufficiently proved to sense by stopping 
any of the colours at the lens in the tenth experiment of this book. For the rest 
of the colours which are not stopped, but pass on to the focus of the lens, will 
there compound either accurately or very nearly such a colour as by this rule 
ought to result from their mixture. 
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Proposition 7. Theorem 5 
All the colours in the universe which are made by light, and depend not on the 
power of imagination, are either the colours of homogeneal lights, or compounded of 
these, and that either accurately or very nearly, according to the rule of the foregoing 
problem. 

For it has been proved (Prop. 1, Part 2) that the changes of colours made by 
refractions do not arise from any new modifications of the rays impressed by 
those refractions, and by the various terminations of light and shadow, as has 
been the constant and general opinion of philosophers. It has also been proved 
that the several colours of the homogeneal rays do constantly answer to their 
degrees of refrangibility (Prop. 1, Part 1 and Prop. 2, Part 2) and that their 
degrees of refrangibility cannot be changed by refractions and reflexions (Prop. 
2, Part 1) and by consequence that those their colours are likewise immutable. 
It has also been proved directly by refracting and reflecting homogeneal lights 
apart, that their colours cannot be changed (Prop. 2, Part 2). It has been 
proved, also, that when the several sorts of rays are mixed, and in crossing pass 
through the same space, they do not act on one another so as to change each 
other's colorific qualities (Exper. 10, Part 2) but by mixing their actions in the 
sensorium beget a sensation differing from what either would do apart (that is, 
a sensation of a mean colour between their proper colours); and particularly 
when by the concourse and mixtures of all sorts of rays a white colour is pro- 
duced, the white is a mixture of all the colours which the rays would have apart 
(Prop. 5, Part 2). The rays in that mixture do not lose or alter their several 
colorific qualities, but by all their various kinds of actions, mixed in the sen- 
sorium, beget a sensation of a middling colour between all their colours, which 
is whiteness. For whiteness is a mean between all colours, having itself in- 
differently to them all, so as with equal facility to be tinged with any of them. 
A red powder mixed with a little blue, or a blue with a little red, doth not 
presently lose its colour, but a white powder mixed with any colour is presently 
tinged with that colour, and is equally capable of being tinged with any colour 
whatever. It has been shewed, also, that as the Sun's light is mixed of all sorts 
of rays, so its whiteness is a mixture of the colours of all sorts of rays; those 
rays having from the beginning their several colorific qualities as well as their 
several refrangibilities, and retaining them perpetually unchanged notwith- 
standing any refractions or reflexions they may at any time suffer, and that 
whenever any sort of the Sun's rays is by any means (as by reflexion in Expers. 
9 and 10, Part 1 or by refraction as happens in all refractions) separated from 
the rest, they then manifest their proper colours. These things have been 
proved, and the sum of all this amounts to the proposition here to be proved. 
For if the Sun's light is mixed of several sorts of rays, each of which have 
originally their several refrangibilities and colorific qualities, and notwithstand- 
ing their refractions and reflexions, and their various separations or mixtures, 
keep those their original properties perpetually the same without alteration; 
then all the colours in the world must be such as constantly ought to arise from 
the original colorific qualities of the rays whereof the lights consist by which 
those colours are seen. And, therefore, if the reason of any colour whatever be 
required, we have nothing else to do than to consider how the rays in the Sun's 
light have by reflexions or refractions, or other causes, been parted from one 
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another, or mixed together; or otherwise to find out what sorts of rays are in 
the light by which that colour is made, and in what proportion; and then, by 
the last problem, to learn the colour which ought to arise by mixing those rays 
(or their colours) in that proportion. I speak here of colours so far as they arise 
from light. For they appear sometimes by other causes, as when by the power 
of phantasy we see colours in a dream, or a madman sees things before him 
which are not there; or when we see fire by striking the eye, or see colours like 
the eye of a peacock's feather by pressing our eyes in either corner whilst we 
look the other way. Where these and such like causes interpose not, the colour 
always answers to the sort or sorts of the rays whereof the light consists, as I 
have constantly found in whatever phenomena of colours I have hitherto been 
able to examine. I shall in the following Propositions give instances of this in 
the phenomena of chiefest note. 

Proposition 8. Problem 3 
By the discovered properties of light, to explain the colours made hy prisms. 

Let ABC [Fig. 12] represent a prism refracting the light of the Sun, which 
comes into a dark chamber through a hole F^) almost as broad as the prism, 
and let MN represent a white paper on which the refracted light is cast, and 
suppose the most refrangible or deepest violet-making rays fall upon the space 
Ptt, the least refrangible or deepest red-making rays upon the space Tr, the 
middle sort between the indigo-making and blue-making rays upon the space 
Qx, the middle sort of the green-making rays upon the space R, the middle sort 
between the yellow-making and orange-making rays upon the space So-, and 

Fig. 12 

other intermediate sorts upon intermediate spaces. For so the spaces upon 
which the several sorts adequately fall will, by reason of the different refrangi- 
bility of those sorts, be one lower than another. Now, if the paper MN be so 
near the prism that the spaces PT and ttt do not interfere with one another, the 
distance between them Ttt will be illuminated by all the sorts of rays in that 
proportion to one another which they have at their very first coming out of the 
prism, and consequently be white. But the spaces PT and ttt on either hand 
will not be illuminated by them all, and, therefore, will appear coloured. And 
particularly at P, where the outmost violet-making rays fall alone, the colour 
must be the deepest violet. At Q where the violet-making and indigo-making 
rays are mixed, it must be a violet inclining much to indigo. At R where the 
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violet-making, indigo-making, blue-making, and one half of the green-making 
rays are mixed, their colours must (by the construction of the second problem) 
compound a middle colour between indigo and blue. At S where all the rays are 
mixed, except the red-making and orange-making, their colours ought by the 
same rule to compound a faint blue, verging more to green than indigo. And in 
the progress from S to T, this blue will grow more and more faint and dilute, 
till at T, where all the colours begin to be mixed, it ends in whiteness. 

So again, on the other side of the white at r, where the least refrangible or 
utmost red-making rays are alone, the colour must be the deepest red. At a the 
mixture of red and orange will compound a red inclining to orange. At p the 
mixture of red, orange, yellow, and one half of the green must compound a 
middle colour between orange and yellow. At x the mixture of all colours but 
violet and indigo will compound a faint yellow, verging more to green than to 
orange. And this yellow will grow more faint and dilute continually in its pro- 
gress from x to tt, where by a mixture of all sorts of rays it will become white. 

These colours ought to appear were the Sun's light perfectly white; but 
because it inclines to yellow, the excess of the yellow-making rays whereby 'tis 
tinged with that colour, being mixed with the faint blue between S and T, will 
draw it to a faint green. And so the colours in order from P to r ought to be 
violet, indigo, blue, very faint green, white, faint yellow, orange, red. Thus it is 
by the computation; and they that please to view the colours made by a prism 
will find it so in Nature. 

These are the colours on both sides the white when the paper is held between the 
prism and the point X where the colours meet, and the interj acent white vanishes. 
For if the paper be held still farther off from the prism, the most refrangible 
and least refrangible rays will be wanting in the middle of the light, and the rest 
of the rays which are found there will by mixture produce a fuller green than 
before. Also, the yellow and blue will now become less compounded, and by 
consequence more intense then before. And this also agrees with experience. 

And if one look through a prism upon a white object encompassed with 
blackness or darkness, the reason of the colours arising on the edges is much 
the same, as will appear to one that shall a little consider it. If a black object be 
encompassed with a white one, the colours which appear through the prism are 
to be derived from the light of the white one, spreading into the regions of the 
black, and therefore they appear in a contrary order to that, when a white 
object is surrounded with black. And the same is to be understood when an 
object is viewed, whose parts are some of them less luminous than others. For, 
in the borders of the more and less luminous parts, colours ought always by the 
same principles to arise from the excess of the light of the more luminous, and 
to be of the same kind as if the darker parts were black, but yet to be more 
faint and dilute. 

What is said of colours made by prisms may be easily applied to colours 
made by the glasses of telescopes or microscopes, or by the humours of the eye. 
For if the object-glass of a telescope be thicker on one side than on the other, or 
if one-half of the glass, or one-half of the pupil of the eye be covered with any 
opaque substance, the object-glass, or that part of it or of the eye which is not 
covered, may be considered as a wedge with crooked sides, and every wedge of 
glass or other pellucid substance has the effect of a prism in refracting the light 
which passes through it. 
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How the colours in the ninth and tenth experiments of the first part arise 

from the different reflexibility of light, is evident by what was there said. But it 
is observable in the ninth experiment that whilst the Sun's direct light is yel- 
low, the excess of the blue-making rays in the reflected beam of light MN 
suffices only to bring that yellow to a pale white inclining to blue, and not to 
tinge it with a manifestly blue colour. To obtain, therefore, a better blue, I 
used instead of the yellow light of the Sun the white light of the clouds, by 
varying a little the experiment, as follows: 

Exper. 16. Let HFG [Fig. 13] represent a prism in the open air, and S the 
eye of the spectator viewing the clouds by their light coming into the prism at 
the plane side FIGK, and reflected in it by its base HEIG, and thence going 
out through its plane side HEFK to the eye. And when the prism and eye are 
conveniently placed, so that the angles of incidence and reflexion at the base 
may be about 40 degrees, the spectator will see a bow MN of a blue colour 
running from one end of the base to the other, with the concave side towards 
him, and the part of the base IMNG beyond this bow will be brighter than the 
other part EMNH on the other side of it. This blue colour MN, being made by 
nothing else than by reflexion of a specular superficies, seems so odd a phenom- 
enon, and so difficult to be explained by the vulgar hypothesis of philosophers, 
that I could not but think it deserved to be taken notice of. Now, for under- 
standing the reason of it, suppose the plane ABC to cut the plane sides and 
base of the prism perpendicularly. From the eye to the line BC, wherein that 

taken in the middle way between p and t, will be the like limit for the meanly 
refrangible rays. And, therefore, all the least refrangible rays which fall upon 
the base beyond t, (that is, between t and B) and can come from thence to the 
eye, will be reflected thither; but on this side t (that is, between t and c) many 
of these rays will be transmitted through the base. And all the most refrangible 
rays which fall upon the base beyond p, (that is, between p and B) and can by 
reflexion come from thence to the eye will be reflected thither, but everywhere 
between p and c many of these rays will get through the base, and be refracted; 
and the same is to be understood of the meanly refrangible rays on either side 
of the point r. Whence it follows that the base of the prism must everywhere 
between t and B, by a total reflexion of all sorts of rays to the eye, look white 
and bright; and everywhere between p and C, by reason of the transmission 

Fig. 13 
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plane cuts the base, draw the lines 
Sp and S6 in the angles Spc 50 de- 
grees j/g, and Ste 49 degrees and 
the point p will be the limit beyond 
which none of the most refrangible 
rays can pass through the base of 
the prism, and be refracted, whose 
incidence is such that they may be 
reflected to the eye; and the point 
t will be the like limit for the least 
refrangible rays (that is, beyond 
which none of them can pass 
through the base) whose incidence 
is such that by reflexion they may 
come to the eye. And the point r, 
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of many rays of every sort, look more pale, obscure, and dark. But at r, and 
in other places between p and t, where all the more refrangible rays are re- 
flected to the eye, and many of the less refrangible are transmitted, the ex- 
cess of the most refrangible in the reflected light will tinge that light with their 
colour, which is violet and blue. And this happens by taking the line C prt B 
anywhere between the ends of the prism HG and El. 

Proposition 9. Problem 4 
By the discovered properties of light, to explain the colours of the rainbow. 

This bow never appears but where it rains in the sunshine, and may be made 
artificially by spouting up water which may break aloft, and scatter into drops, 
and fall down like rain. For the Sun shining upon these drops certainly causes 
the bow to appear to a spectator standing in a due position to the rain and Sun. 
And hence it is now agreed upon, that this bow is made by refraction of the 
Sun's light in drops of falling rain. This was understood by some of the ancients, 
and of late more fully discovered and explained by the famous Antonius de 
Dominis, Archbishop of Spalato in his book De Radiis Visus & Lucis, published 
by his friend Bartolus at Venice, in the year 1611, and written above 20 years 
before. For he teaches there how the interior bow is made in round drops of 
rain by two refractions of the Sun's light, and one reflexion between them, and 
the exterior by two refractions, and two sorts of reflexions between them in 
each drop of water, and proves his ex- 
plications by experiments made with 
a phial full of water, and with globes 
of glass filled with water, and placed 
in the Sun to make the colours of the 
two bows appear in them. The same 
explication Descartes hath pursued 
in his Meteors, and mended that of 
the exterior bow. But whilst they un- 
derstood not the true origin of col- 
ours, it's necessary to pursue it here 
a little farther. For understanding, 
therefore, how the bow is made, let ^ 
a drop of rain, or any other spherical transparent body, be represented by 
the sphere BNFG, [Fig. 14] described with the centre C, and semi-diameter 
CN. And let AN be one of the Sun's rays incident upon it at N, and thence 
refracted to F, where let it either go out of the sphere by refraction towards 
V, or be reflected to G; and at G let it either go out by refraction to R, or be re- 
flected to H; and at H let it go out by refraction towards S, cutting the inci- 
dent ray in Y. Produce AN and RG, till they meet in X, and upon AX and 
NF, let fall the perpendiculars CD and CE, and produce CD till it fall upon the 
circumference at L. Parallel to the incident ray AN draw the diameter BQ, and 
let the sine of incidence out of air into water be to the sine of refraction as I to 
R. Now, if you suppose the point of incidence N to move from the point B 
continually till it come to L, the arch QF will first increase and then decrease, 
and so will the angle AXR which the rays AN and GR contain; and the arch 
QF and angle AXR will be biggest when ND is to CN as VH—RR to VSRR, 
in which case NE will be to ND as 2R to I. Also the angle AYS, which the rays 
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AN and HS contain, will first decrease and then increase and grow least when 
ND is to CN as VII —PR to V8RR, in which case NE will be to ND as 3R 
to I. And so the angle which the next emergent ray (that is, the emergent ray 
after three reflexions) contains with the incident ray AN will come to its limit 
when ND is to CN as VII — RR to VlfiRR, in which case NE will be to ND as 
4R to I. And the angle which the ray next after that emergent (that is, the ray 
emergent after four reflexions) contains with the incident will come to its limit 
when ND is to CN as VII — RR to V24RR, in which case NE will be to ND as 
5R to I; and so on infinitely, the numbers 3, 8, 15, 24, &c. being gathered by 
continual addition of the terms of the arithmetical progression 3, 5, 7, 9, &c. 
The truth of all this mathematicians will easily examine. 

Now, it is to be observed that, as when the sun comes to his tropics, days 
increase and decrease but a very little for a great while together; so when by 
increasing the distance CD, these angles come to their limits, they vary their 
quantity but very little for some time together; and, therefore, a far greater 
number of the rays which fall upon all the points N in the quadrant BL shall 
emerge in the limits of these angles than in any other inclinations. And further 
it is to be observed that the rays which differ in refrangibility will have differ- 
ent limits of their angles of emergence, and by consequence according to their 
different degrees of refrangibility emerge most copiously in different angles, 
and being separated from one another appear each in their proper colours. And 
what those angles are may be easily gathered from the foregoing theorem by 
computation. 

For in the least refrangible rays the sines I and R (as was found above) are 
108 and 81, and thence by computation the greatest angle AXR will be found 
42 degrees and 2 minutes, and the least angle AYS, 50 degrees and 57 minutes. 
And in the most refrangible rays the sines I and R are 109 and 81, and thence 
by computation the greatest angle AXR will be found 40 degrees and 17 
minutes, and the least angle AYS 54 degrees and 7 minutes. 

Suppose, now, that 0 [Fig. 15] is the spectator's eye, and OP a line drawn 
parallel to the Sun's rays; and let POE, POF, POG, POH, be angles of 40 
degrees 17 minutes, 42 degrees 2 minutes, 50 degrees 57 minutes, and 54 degrees 
7 minutes, respectively, and these angles turned about their common side OP, 
shall with their other sides OE, OF, OG, OH, describe the verges of two rain- 
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bows AF, BE, and CHDG. For if E, F, G, H, be drops placed anywhere in the 
conical superficies described by OE, OF, OG, OH, and be illuminated by the 
Sun's rays SE, SF, SG, SH; the angle SEO being equal to the angle POE, or 40 
degrees 17 minutes, shall be the greatest angle in which the most refrangible 
rays can after one reflexion be refracted to the eye; and, therefore, all the drops 
in the line OE shall send the most refrangible rays most copiously to the eye, 
and thereby strike the senses with the deepest violet colour in that region. 
And in like manner the angle SFO being equal to the angle POF, or 42 degrees 
2 minutes, shall be the greatest in which the least refrangible rays after one 
reflexion can emerge out of the drops; and, therefore, those rays shall come 
most copiously to the eye from the drops in the line OF, and strike the senses 
with the deepest red colour in that region. And, by the same argument, the 
rays which have intermediate degrees of refrangibility shall come most co- 
piously from drops between E and F, and strike the senses with the intermediate 
colours in the order which their degrees of refrangibility require; that is, in the 
progress from E to F, or from the inside of the bow to the outside, in this order: 
violet, indigo, blue, green, yellow, orange, red. But the violet, by the mixture of 
the white light of the clouds, will appear faint and incline to purple. 

Again, the angle SGO being equal to the angle POG, or 50° SP, shall be the 
least angle in which the least refrangible rays can after two reflexions emerge 
out of the drops; and, therefore, the least refrangible rays shall come most 
copiously to the eye from the drops in the line OG, and strike the sense with 
the deepest red in that region. And the angle SHO being equal to the angle 
POH, or 54 degrees 7 minutes, shall be the least angle in which the most re- 
frangible rays after two reflexions can emerge out of the drops; and, therefore, 
those rays shall come most copiously to the eye from the drops in the line OH, 
and strike the senses with the deepest violet in that region. And by the same 
argument, the drops in the regions between G and H shall strike the sense with 
the intermediate colours in the order which their degrees of refrangibility re- 
quire; that is, in the progress from G to H, or from the inside of the bow to the 
outside, in this order: red, orange, yellow, green, blue, indigo, violet. And since 
these four lines OE, OF, OG, OH, may be situated anywhere in the above- 
mentioned conical superficies, what is said of the drops and colours in these 
lines is to be understood of the drops and colours everywhere in those superficies. 

Thus shall there be made two bows of colours, an interior and stronger, by 
one reflexion in the drops, and an exterior and fainter by two; for the light be- 
comes fainter by every reflexion. And their colours shall lie in a contrary order 
to one another, the red of both bows bordering upon the space GF, which is 
between the bows. The breadth of the interior bow EOF measured across the 
colours shall be 1 degree 45 minutes, and the breadth of the exterior GOH 
shall be 3 degrees 10 minutes, and the distance between them GOF shall be 
8 degrees 15 minutes, the greatest semi-diameter of the innermost; that is, the 
angle POF being 42 degrees 2 minutes, and the least semi-diameter of the 
outermost POG, being 50 degrees 57 minutes. These are the measures of the 
bows as they would be were the Sun but a point; for by the breadth of his body 
the breadth of the bows will be increased, and their distance decreased by half 
a degree, and so the breadth of the interior iris will be 2 degrees 15 minutes, 
that of the exterior 3 degrees 40 minutes, their distance 8 degrees 25 minutes, 
the greatest semi-diameter of the interior bow 42 degrees 17 minutes, and the 
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least of the exterior 50 degrees 42 minutes. And such are the dimensions of the 
bows in the heavens found to be very nearly, when their colours appear strong 
and perfect. For once, by such means as I then had, I measured the greatest 
semi-diameter of the interior iris about 42 degrees, and the breadth of the red, 
yellow and green in that iris 63 or 64 minutes, besides the outmost faint red 
obscured by the brightness of the clouds, for which we may allow 3 or 4 minutes 
more. The breadth of the blue was about 40 minutes more besides the violet, 
which was so much obscured by the brightness of the clouds that I could not 
measure its breadth. But supposing the breadth of the blue and violet together 
to equal that of the red, yellow and green together, the whole breadth of this 
iris will be about 23^ degrees, as above. The least distance between this iris and 
the exterior iris was about 8 degrees and 30 minutes. The exterior iris was 
broader than the interior, but so faint, especially on the blue side, that I could 
not measure its breadth distinctly. At another time when both bows appeared 
more distinct, I measured the breadth of the interior iris 2 degrees 10 minutes, 
and the breadth of the red, yellow and green in the exterior iris was to the 
breadth of the same colours in the interior as 3 to 2. 

This explication of the rainbow is yet further confirmed by the known ex- 
periment (made by Antonius de Dominis and Descartes) of hanging up any- 
where in the sunshine a glass globe filled with water, and viewing it in such a 
posture that the rays which come from the globe to the eye may contain with 
the Sun's rays an angle of either 42 or 50 degrees. For if the angle be about 42 
or 43 degrees, the spectator (suppose at O) shall see a full red colour in that 
side of the globe opposed to the Sun as 'tis represented at F, and if that angle 
become less (suppose by depressing the globe to E) there will appear other 
colours, yellow, green and blue successive in the same side of the globe. But if 
the angle be made about 50 degrees (suppose by lifting up the globe to G) there 
will appear a red colour in that side of the globe towards the Sun, and if the 
angle be made greater (suppose by lifting up the globe to H) the red will turn 
successively to the other colours, yellow, green and blue. The same thing I have 
tried by letting a globe rest, and raising or depressing the eye, or otherwise 
moving it to make the angle of a just magnitude. 

I have heard it represented that if the light of a candle be refracted by a 
prism to the eye, when the blue colour falls upon the eye the spectator shall see 
red in the prism, and when the red falls upon the eye he shall see blue; and if 
this were certain the colours of the globe and rainbow ought to appear in a 
contrary order to what we find. But the colours of the candle being very faint, 
the mistake seems to arise from the difficulty of discerning what colours fall on 
the eye. For, on the contrary, I have sometimes had occasion to observe, in the 
Sun's light refracted by a prism, that the spectator always sees that colour in 
the prism which falls upon his eye. And the same I have found true also in 
candle-light. For when the prism is moved slowly from the line which is drawn 
directly from the candle to the eye, the red appears first in the prism and then 
the blue; and, therefore, each of them is seen when it falls upon the eye. For the 
red passes over the eye first, and then the blue. 

The light which comes through drops of rain by two refractions without any 
reflexion ought to appear strongest at the distance of about 26 degrees from the 
Sun, and to decay gradually both ways as the distance from him increases and 
decreases. And the same is to be understood of light transmitted through 
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spherical hailstones. And if the hail be a little flatted, as it often is, the light 
transmitted may grow so strong at a little less distance than that of 26 degrees, 
as to form a halo about the Sun or Moon; which halo, as often as the hailstones 
are duly figured, may be coloured, and then it must be red within by the least 
refrangible rays, and blue without by the most refrangible ones, especially if the 
hailstones have opaque globules of snow in their centre to intercept the light 
within the halo (as Huygens has observed) and make the inside thereof more 
distinctly defined than it would otherwise be. For such hailstones, though 
spherical, by terminating the light by the snow, may make a halo red within 
and colourless without, and darker in the red than without, as halos used to be. 
For of those rays which pass close by the snow the rubriform will be least 
refracted, and so come to the eye in the directest lines. 

The light which passes through a drop of rain after two refractions, and 
three or more reflexions, is scarce strong enough to cause a sensible bow; but in 
those cylinders of ice by which Huygens explains the parhelia, it may perhaps 
be sensible. 

Proposition 10. Problem 5 
By the discovered properties of light, to explain the permanent colours of natural 
bodies. 

These colours arise from hence, that some natural bodies reflect some sorts of 
rays, others other sorts more copiously than the rest. Minium reflects the least 
refrangible or red-making rays most copiously, and thence appears red. Violets 
reflect the most refrangible most copiously, and thence have their colour, and 
so of other bodies. Every body reflects the rays of its own colour more copiously 
than the rest, and from their excess and predominance in the reflected light has 
its colour. 

Exper. 17. For if, in the homogeneal lights obtained by the solution of the 
problem proposed in the fourth Proposition of the first part of this book, you 
place bodies of several colours, you will find, as I have done, that every body 
looks most splendid and luminous in the light of its own colour. Cinnabar in 
the homogeneal red light is most resplendent, in the green light it is manifestly 
less resplendent, and in the blue light still less. Indigo in the violet blue light is 
most resplendent, and its splendour is gradually diminished as it is removed 
thence by degrees through the green and yellow light to the red. By a leek the 
green light, and next that the blue and yellow which compound green, are more 
strongly reflected than the other colours red and violet, and so of the rest. But 
to make these experiments the more manifest, such bodies ought to be chosen 
as have the fullest and most vivid colours, and two of those bodies are to be 
compared together. Thus, for instance, if cinnabar and ultra-marine blue, or 
some other full blue be held together in the red homogeneal light, they will both 
appear red, but the cinnabar will appear of a strongly luminous and resplendent 
red, and the ultra-marine blue of a faint obscure and dark red; and if they be 
held together in the blue homogeneal light, they will both appear blue, but the 
ultra-marine will appear of a strongly luminous and resplendent blue, and the 
cinnabar of a faint and dark blue. Which puts it out of dispute that the cinna- 
bar reflects the red light much more copiously than the ultra-marine doth, and 
the ultra-marine reflects the blue light much more copiously than the cinnabar 
doth. The same experiment may be tried successfully with red lead and indigo 
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or with any other two coloured bodies, if due allowance be made for the differ- 
ent strength or weakness of their colour and light. 

And as the reason of the colours of natural bodies is evident by these experi- 
ments, so it is further confirmed and put past dispute by the two first experi- 
ments of the first part, whereby 'twas proved in such bodies that the reflected 
lights which differ in colours do differ also in degrees of refrangibility. For 
thence it's certain that some bodies reflect the more refrangible, others the less 
refrangible rays more copiously. 

And that this is not only a true reason of these colours, but even the only 
reason, may appear further from this consideration that the colour of homo- 
geneal light cannot be changed by the reflexion of natural bodies. 

For if bodies by reflexion cannot in the least change the colour of any one 
sort of rays, they cannot appear coloured by any other means than by reflecting 
those which either are of their own colour, or which by mixture must produce it. 

But in trying experiments of this kind, care must be had that the light be 
sufficiently homogeneal. For if bodies be illuminated by the ordinary prismatic 
colours, they will appear neither of their own daylight colours, nor of the colour 
of the light cast on them, but of some middle colour between both, as I have 
found by experience. Thus, red lead (for instance) illuminated with the ordi- 
nary prismatic green, will not appear either red or green, but orange or yellow, 
or between yellow and green, accordingly as the green light by which 'tis 
illuminated is more or less compounded. For because red lead appears red when 
illuminated with white light, wherein all sorts of rays are equally mixed, and in 
the green light all sorts of rays are not equally mixed, the excess of the yellow- 
making, green-making and blue-making rays in the incident green light will 
cause those rays to abound so much in the reflected light as to draw the colour 
from red towards their colour. And because the red lead reflects the red-making 
rays most copiously in proportion to their number, and next after them the 
orange-making and yellow-making rays, these rays in the reflected light will be 
more in proportion to the light than they were in the incident green light, and 
thereby will draw the reflected light from green towards their colour. And, 
therefore, the red lead will appear neither red nor green, but of a colour be- 
tween both. 

In transparently coloured liquors, 'tis observable that their colour uses to 
vary with their thickness. Thus, for instance, a red liquor in a conical glass, 
held between the light and the eye, looks of a pale and dilute yellow at the 
bottom where 'tis thin, and a little higher where 'tis thicker grows orange, and 
where 'tis still thicker becomes red, and where 'tis thickest the red is deepest 
and darkest. For it is to be conceived that such a liquor stops the indigo- 
making and violet-making rays most easily, the blue-making rays more diffi- 
cultly, the green-making rays still more difficultly, and the red-making most 
difficultly; and that if the thickness of the liquor be only so much as suffices to 
stop a competent number of the violet-making and indigo-making rays, with- 
out diminishing much the number of the rest, the rest must (by Prop. 6, Part 2) 
compound a pale yellow. But if the liquor be so much thicker as to stop also a 
great number of the blue-making rays, and some of the green-making, the rest 
must compound an orange; and where it is so thick as to stop also a great 
number of the green-making and a considerable number of the yellow-making, 
the rest must begin to compound a red, and this red must grow deeper and 
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darker as the yellow-making and orange-making rays are more and more 
stopped by increasing the thickness of the liquor, so that few rays besides the 
red-making can get through. 

Of this kind is an experiment lately related to me by Mr. Halley, who, in 
diving deep into the sea in a diving vessel, found in a clear sunshine day that 
when he was sunk many fathoms deep into the water the upper part of his hand 
on which the Sun shone directly through the water and through a small glass 
window in the vessel appeared of a red colour, like that of a damask rose, and 
the water below and the under part of his hand illuminated by light reflected 
from the water below looked green. For thence it may be gathered, that the 
sea water reflects back the violet and blue-making rays most easily, and lets 
the red-making rays pass most freely and copiously to great depths. For there- 
by the Sun's direct light at all great depths, by reason of the predominating 
red-making rays, must appear red; and the greater the depth is, the fuller and 
intenser must that red be. And at such depths as the violet-making rays scarce 
penetrate unto, the blue-making, green-making, and yellow-making rays, being 
reflected from below more copiously than the red-making ones, must compound 
a green. 

Now, if there be two liquors of full colours, (suppose a red and blue) and 
both of them so thick as suffices to make their colours sufficiently full, though 
either liquor be sufficiently transparent apart, yet will you not be able to see 
through both together. For, if only the red-making rays pass through one 
liquor, and only the blue-making through the other, no rays can pass through 
both. This Mr. Hook tried casually with glass wedges filled with red and blue 
liquors, and was surprised at the unexpected event, the reason of it being then 
unknown; which makes me trust the more to his experiment, though I have not 
tried it myself. But he that would repeat it must take care the liquors be of 
very good and full colours. 

Now, whilst bodies become coloured by reflecting or transmitting this or 
that sort of rays more copiously than the rest, it is to be conceived that they 
stop and stifle in themselves the rays which they do not reflect or transmit. For, 
if gold be foliated and held between your eye and the light, the light looks of a 
greenish-blue, and therefore massy gold lets into its body the blue-making rays 
to be reflected to and fro within it till they be stopped and stifled, whilst it 
reflects the yellow-making outwards, and thereby looks yellow, and much after 
the same manner that leaf gold is yellow by reflected, and blue by transmitted 
light, and massy gold is yellow in all positions of the eye; there are some liquors, 
as the tincture of lignum nephriticum, and some sorts of glass, which transmit 
one sort of light most copiously, and reflect another sort, and thereby look of 
several colours, according to the position of the eye to the light. But, if these 
liquors or glasses were so thick and massy that no light could get through them, 
I question not but they would, like all other opaque bodies, appear of one and 
the same colour in all positions of the eye, though this I cannot yet affirm by 
experience. For all coloured bodies, so far as my observation reaches, may be 
seen through if made sufficiently thin, and, therefore, are in some measure 
transparent, and differ only in degrees of transparency from tinged transparent 
liquors, these liquors as well as those bodies by a sufficient thickness becoming 
opaque. A transparent body which looks of any colour by transmitted light 
may also look of the same colour by reflected light, the light of that colour being 
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reflected by the farther surface of the body, or by the air beyond it. And then 
the reflected colour will be diminished, and perhaps cease, by making the body 
very thick, and pitching it on the backside to diminish the reflexion of its 
farther surface, so that the light reflected from the tinging particles may pre- 
dominate. In such cases, the colour of the reflected light will be apt to vary from 
that of the light transmitted. But whence it is that tinged bodies and liquors 
reflect some sort of rays, and intromit or transmit other sorts, shall be said in 
the next book. In this Proposition I content myself to have put it past dispute 
that bodies have such properties, and thence appear coloured. 

By mixing coloured lights, to compound a beam of light of the same colour and 
nature with a beam of the Suris direct light, and therein to experience the truth of 
the foregoing Propositions. 

Let ABC abc [Fig. 16] represent a prism, by which the Sun's light let into a 
dark chamber through the hole F, may be refracted towards the lens MN, and 
paint upon it at p, q, r, s, and t, the usual colours (violet, blue, green, yellow, 
and red) and let the diverging rays by the refraction of this lens converge again 
towards X, and there, by the mixture of all those their colours, compound a 
white according to what was shewn above. Then let another prism DEC deg, 
parallel to the former, be placed at X, to refract that white light upwards to- 
wards Y. Let the refracting angles of the prisms and their distances from the 
lens be equal so that the rays, which converged from the lens towards X, and 
without refraction, would there have crossed and diverged again, may by the 
refraction of the second prism be reduced into parallelism and diverge no more. 
For then those rays will recompose a beam of white light XY. If the refracting 
angle of either prism be the bigger, that prism must be so much the nearer to 
the lens. You will know when the prisms and the lens are well set together, by 
observing if the beam of light XY, which comes out of the second prism, be 
perfectly white to the very edges of the light, and at all distances from the prism 
continue perfectly and totally white like a beam of the Sun's light. For till this 
happens, the position of the prisms and lens to one another must be corrected; 
and then if by the help of a long beam of wood, as is represented in the Figure, 
or by a tube, or some other such instrument, made for that purpose, they be 
made fast in that situation, you may try all the same experiments in this 
compounded beam of light XY which have been made in the Sun's direct light. 

Proposition 11. Problem 6 
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For this compounded beam of light has the same appearance, and is endowed 
with all the same properties, with a direct beam of the Sun's light, so far as my 
observation reaches. And in trying experiments in this beam you may by stop- 
ping any of the colours, p, g, r, s, and t, at the lens, see how the colours produced 
in the experiments are no other than those which the rays had at the lens before 
they entered the composition of this beam; and, by consequence, that they 
arise not from any new modifications of the light by refractions and reflexions, 
but from the various separations and mixtures of the rays originally endowed 
with their colour-making qualities. 

So, for instance, having with a lens 43^ inches broad, and two prisms on 
either hand 63^ feet distant from the lens, made such a beam of compounded 
light, to examine the reason of the colours made by prisms, I refracted this 
compounded beam of light XY with another prism HIK kh, and thereby cast 
the usual prismatic colours PQRST upon the paper LV placed behind. And 
then, by stopping any of the colours p, g, r, s, t, at the lens, I found that the 
same colour would vanish at the paper. So if the purple p was stopped at the 
lens, the purple P upon the paper would vanish, and the rest of the colours 
would remain unaltered, unless perhaps the blue, so far as some purple latent 
in it at the lens might be separated from it by the following refractions. And so 
by intercepting the green upon the lens, the green R upon the paper would 
vanish, and so of the rest; which plainly shews that as the white beam of light 
XY was compounded of several lights variously coloured at the lens, so the 
colours which afterwards emerge out of it by new refractions are no other than 
those of which its whiteness was compounded. The refraction of the prism 
HIK kh generates the colours PQRST upon the paper, not by changing the 
colorific qualities of the rays, but by separating the rays which had the very 
same colorific qualities before they entered the composition of the refracted 
beam of white light XY. For otherwise the rays which were of one colour at the 
lens might be of another upon the paper, contrary to what we find. 

So again, to examine the reason of the colours of natural bodies, I placed 
such bodies in the beam of light XY, and found that they all appeared there of 
those their own colours which they have in daylight, and that those colours 
depend upon the rays which had the same colours at the lens before they 
entered the composition of that beam. Thus, for instance, cinnabar illuminated 
by this beam appears of the same red colour as in daylight; and if at the lens 
you intercept the green-making and blue-making rays, its redness will become 
more full and lively; but if you there intercept the red-making rays, it will not 
any longer appear red, but become yellow or green, or of some other colour, 
according to the sorts of rays which you do not intercept. So gold in this light 
XY appears of the same yellow colour as in daylight, but by intercepting at the 
lens a due quantity of the yellow-making rays it will appear white like silver 
(as I have tried), which shews that its yellowness arises from the excess of the 
intercepted rays tinging that whiteness with their colour when they are let 
pass. So the infusion of lignum nephriticum (as I have also tried) when held in 
this beam of light XY, looks blue by the reflected part of the light, and red by 
the transmitted part of it, as when 'tis viewed in daylight; but if you intercept 
the blue at the lens the infusion will lose its reflected blue colour, whilst its 
transmitted red remains perfect, and by the loss of some blue-making rays, 
wherewith it was allayed, becomes more intense and full. And, on the con- 
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trary, if the red and orange-making rays be intercepted at the lens, the infusion 
will lose its transmitted red, whilst its blue will remain and become more full 
and perfect. Which shews that the infusion does not tinge the rays with blue 
and red, but only transmits those most copiously which were red-making 
before, and reflects those most copiously which were blue-making before. And 
after the same manner may the reasons of other phenomena be examined, by 
trying them in this artificial beam of light XY. 





BOOK TWO 

Part I 

Ohservations concerning the reflexions, refractions, and 
colours of thin transparent bodies. 

It has been observed by others that transparent substances (as glass, water, 
air, &c.) when made very thin by being blown into bubbles, or otherwise 
formed into plates, do exhibit various colours according to their various thin- 
ness, altho' at a greater thickness they appear very clear and colourless. In the 
former book I forbore to treat of these colours, because they seemed of a more 
difficult consideration, and were not necessary for establishing the properties of 
light there discoursed of. But because they may conduce to further discoveries 
for completing the theory of light, especially as to the constitution of the parts 
of natural bodies, on which their colours or transparency depend, I have here 
set down an account of them. To render this discourse short and distinct, I 
have first described the principal of my Observations, and then considered and 
made use of them. The Observations are these: 

Observation 1. Compressing two prisms hard together that their sides 
(which by chance were a very little convex) might somewhere touch one an- 
other, I found the place in which they touched to become absolutely trans- 
parent, as if they had there been one continued piece of glass. For when the 
light fell so obliquely on the air, which in other places was between them, as to 
be all reflected, it seemed in that place of contact to be wholly transmitted, 
insomuch that when looked upon it appeared like a black or dark spot, by 
reason that little or no sensible light was reflected from thence, as from other 
places; and when looked through it seemed (as it were) a hole in that air which 
was formed into a thin plate, by being compressed between the glasses. And 
through this hole objects that were beyond might be seen distinctly, which 
could not at all be seen through other parts of the glasses where the air was 
interjacent. Although the glasses were a little convex, yet this transparent spot 
was of a considerable breadth, which breadth seemed principally to proceed 
from the yielding inwards of the parts of the glasses, by reason of their mutual 
pressure. For by pressing them very hard together it would become much 
broader than otherwise.     

Obs. 2. When the plate of air, by 
turning the prisms about their common    
axis, became so little inclined to the     
incident rays that some of them began      
to be transmitted, there arose in it //// / / /    \\\\SSk 
many slender arcs of colours which at /// / / / / / \ \ \ \ \\\\ 
first were shaped almost like the con- III | | i I f j I I I 1 III 
choid, as you see them delineated in \\ \ \ \ \ \ \ \ = f i I f /1 ll 
the first Figure. And by continuing the Fig. 1 
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motion of the prisms, these arcs increased and bended more and more about 
the said transparent spot, till they were completed into circles or rings encom- 
passing it, and afterwards continually grew more and more contracted. 

These arcs at their first appearance were of a violet and blue colour, and 
between them were white arcs of circles, which presently by continuing the 
motion of the prisms became a little tinged in their inward limbs with red and 
yellow, and to their outward limbs the blue was adjacent. So that the order of 
these colours from the central dark spot, was at that time white, blue, violet; 
black, red, orange, yellow, white, blue, violet, &c. But the yellow and red were 
much fainter than the blue and violet. 

The motion of the prisms about their axis being continued, these colours 
contracted more and more, shrinking towards the whiteness on either side of it, 
until they totally vanished into it. And then the circles in those parts appeared 
black and white, without any other colours intermixed. But by further moving 
the prisms about, the colours again emerged out of the whiteness, the violet 
and blue at its inward limb, and at its outward limb the red and yellow. So that 
now their order from the central spot was white, yellow, red; black; violet, 
blue, white, yellow, red, &c., contrary to what it was before. 

Obs. 3. When the rings or some parts of them appeared only black and white, 
they were very distinct and well-defined, and the blackness seemed as intense 
as that of the central spot. Also in the borders of the rings, where the colours 
began to emerge out of the whiteness, they were pretty distinct, which made 
them visible to a very great multitude. I have sometimes numbered above 
thirty successions (reckoning every black and white ring for one succession) 
and seen more of them, which by reason of their smallness I could not number. 
But in other positions of the prisms, at which the rings appeared of many 
colours, I could not distinguish above eight or nine of them, and the exterior of 
those were very confused and dilute. 

In these two Observations to see the rings distinct, and without any other 
colour than black and white, I found it necessary to hold my eye at a good 
distance from them. For by approaching nearer, although in the same inclina- 
tion of my eye to the plane of the rings, there emerged a bluish colour out of 
the white, which by dilating itself more and more into the black rendered the 
circles less distinct, and left the white a little tinged with red and yellow. I 
found also by looking through a slit or oblong hole, which was narrower than 
the pupil of my eye, and held close to it parallel to the prisms, I could see the 
circles much distincter and visible to a far greater number than otherwise. 

Obs. 4. To observe more nicely the order of the colours which arose out of 
the white circles as the rays became less and less inclined to the plate of air, I 
took two object-glasses (the one a plano-convex for a fourteen-foot telescope, 
and the other a large double convex for one of about fifty-feet) and upon this, 
laying the other with its plane side downwards, I pressed them slowly together, 
to make the colours successively emerge in the middle of the circles, and then 
slowly lifted the upper glass from the lower to make them successively vanish 
again in the same place. The colour, which by pressing the glasses together, 
emerged last in the middle of the other colours, would upon its first appearance 
look like a circle of a colour almost uniform from the circumference to the 
centre and by compressing the glasses still more, grow continually broader 
until a new colour emerged in its centre, and thereby it became a ring en- 
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compassing that new colour. And by compressing the glasses still more, the 
diameter of this ring would increase, and the breadth of its orbit or perimeter 
decrease until another new colour emerged in the centre of the last. And so on 
until a third, a fourth, a fifth, and other following new colours successively 
emerged there, and became rings encompassing the innermost colour, the last 
of which was the black spot. And, on the contrary, by lifting up the upper glass 
from the lower, the diameter of the rings would decrease, and the breadth of 
their orbit increase, until their colours reached successively to the centre; and 
then, they being of a considerable breadth, I could more easily discern and 
distinguish their species than before. And by this means I observed their 
succession and quantity to be as followeth : 

Next to the pellucid central spot made by the contact of the glasses succeeded 
blue, white, yellow, and red. The blue was so little in quantity that I could not 
discern it in the circles made by the prisms, nor could I well distinguish any 
violet in it, but the yellow and red were pretty copious, and seemed about as 
much in extent as the white, and four or five times more than the blue. The 
next circuit in order of colours immediately encompassing these were violet, 
blue, green, yellow, and red; and these were all of them copious and vivid, 
excepting the green, which was very little in quantity, and seemed much more 
faint and dilute than the other colours. Of the other four, the violet was the 
least in extent, and the blue less than the yellow or red. The third circuit or 
order was purple, blue, green, yellow, and red; in which the purple seemed more 
reddish than the violet in the former circuit, and the green was much more 
conspicuous, being as brisk and copious as any of the other colours, except the 
yellow, but the red began to be a little faded, inclining very much to purple. 
After this succeeded the fourth circuit of green and red. The green was very 
copious and lively, inclining on the one side to blue, and on the other side to 
yellow. But in this fourth circuit there was neither violet, blue, nor yellow, and 
the red was very imperfect and dirty. Also the succeeding colours became more 
and more imperfect and dilute, till after three or four revolutions they ended 
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in perfect whiteness. Their form, when the glasses were most compressed so 
as to make the black spot appear in the centre, is delineated in the second 
figure; where a, b, c, d, e: /, g, h, i, k: I, m, n, o, p: q, r: s, t: v, x: y, z, denote 
the colours reckoned in order from the center: black, blue, white, yellow, red; 
violet, blue, green, yellow, red; purple, blue, green, yellow, red; green, red; 
greenish blue, red; greenish blue, pale red; greenish blue, reddish white. 

Obs. 5. To determine the interval of the glasses, or thickness of the inter- 
jacent air, by which each colour was produced, I measured the diameters of the 
first six rings at the most lucid part of their orbits, and, squaring them, I found 
their squares to be in the arithmetical progression of the odd numbers, 1, 3, 5, 
7,9, 11. And since one of these glasses was plane, and the other spherical, their 
intervals at those rings must be in the same progression. I measured also the 
diameters of the dark or faint rings between the more lucid colours, and found 
their squares to be in the arithmetical progression of the even numbers, 2, 4, 6, 
8, 10, 12. And it being very nice and difficult to take these measures exactly, I 
repeated them divers times at divers parts of the glasses, that by their agree- 
ment I might be confirmed in them. And the same method I used in determin- 
ing some others of the following observations. 

Obs. 6. The diameter of the sixth ring at the most lucid part of its orbit was 
x5o%- parts of an inch, and the diameter of the sphere on which the double convex 
object-glass was ground was about 102 feet, and hence I gathered the thickness 
of the air or aereal interval of the glasses at that ring. But some time after, 
suspecting that in making this observation I had not determined the diameter 
of the sphere with sufficient accurateness, and being uncertain whether the 
plano-convex glass was truly plane, and not something concave or convex on 
that side which I accounted plane; and whether I had not pressed the glasses 
together, as I often did, to make them touch (for by pressing such glasses 
together their parts easily yield inwards, and the rings thereby become sensibly 
broader than they would be, did the glasses keep their figures), I repeated the 
experiment, and found the diameter of the sixth lucid ring about parts of 
an inch. I repeated the experiment also with such an object-glass of another 
telescope as I had at hand. This was a double convex ground on both sides to 
one and the same sphere, and its focus was distant from it 83% inches. And 
thence, if the sines of incidence and refraction of the bright yellow light be 
assumed in proportion as 11 to 17, the diameter of the sphere to which the 
glass was figured will by computation be found 182 inches. This glass I laid 
upon a flat one, so that the black spot appeared in the middle of the rings of 
colours without any other pressure than that of the weight of the glass. And 
now, measuring the diameter of the fifth dark circle as accurately as I could, I 
found it the fifth part of an inch precisely. This measure was taken with the 
points of a pair of compasses on the upper surface on the upper glass, and my 
eye was about eight or nine inches distance from the glass, almost perpen- 
dicularly over it, and the glass was % of an inch thick, and thence it is easy to 
collect that the true diameter of the ring between the glasses was greater than 
its measured diameter above the glasses in the proportion of 80 to 79, or there- 
abouts, and by consequence equal to 1//7q parts of an inch, and its true semi- 
diameter equal to %9 parts. Now, as the diameter of the sphere (182 inches) is 
to the semidiameter of this fifth dark ring (%9 parts of an inch), so is this semi- 
diameter to the thickness of the air at this fifth dark ring; which is, therefore, 
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7 84 parts of an inch; and the fifth part thereof (viz., the 

88 7 3 9^ part of an inch) is the thickness of the air at the first of these dark 
rings. 

The same experiment I repeated with another double convex object-glass 
ground on both sides to one and the same sphere. Its focus was distant from it 
1683d? inches, and, therefore, the diameter of that sphere was 184 inches. This 
glass being laid upon the same plain glass, the diameter of the fifth of the dark 
rings, when the black spot in their centre appeared plainly without pressing the 
glasses, was by the measure of the compasses upon the upper glass Hi parts of 
an inch, and by consequence between the glasses it was eiooo ifQr the upper glass 
was i of an inch thick, and my eye was distant from it 8 inches. And a third 
proportional to half this from the diameter of the sphere is 8 8 

5
8 5o parts of an 

inch. This is, therefore, the thickness of the air at this ring, and a fifth part 
thereof (viz., the 88,8 5oth part of an inch) is the thickness thereof at the first 
of the rings, as above. 

I tried the same thing by laying these object-glasses upon fiat pieces of a 
broken looking-glass, and found the same measures of the rings; which makes 
me rely upon them till they can be determined more accurately by glasses 
ground to larger spheres, though in such glasses greater care must be taken of a 
true plane. 

These dimensions were taken when my eye was placed almost perpendicu- 
larly over the glasses, being about an inch, or an inch and a quarter, distant 
from the incident rays, and eight inches distant from the glass; so that the rays 
were inclined to the glass in an angle of about four degrees. Whence, by the 
following Observation, you will understand that had the rays been perpen- 
dicular to the glasses, the thickness of the air at these rings would have been 
less in the proportion of the radius to the secant of four degrees (that is, of 
10,000 to 10,024). Let the thicknesses found be, therefore, diminished in this 
proportion, and they will become and 89io63> or (to use the nearest round 
number) the 8 9,000^ Part an inch- This is the thickness of the air at the dark- 
est part of the first dark ring made by perpendicular rays; and half this thick- 
ness multiplied by the progression, 1, 3, 5, 7, 9, 11, cfcc. gives the thicknesses of 
the air at the most luminous parts of all the brightest rings, viz., 178300 0, 
17s?000' 1 7 850 0 0> rriTocTo' their arithmetical means 1 7 8

2 0 0 0, 1 78f000, 
1 7 8

6
0 0o, &c. being its thicknesses at the darkest parts of all the dark ones. 

Obs. 7. The rings were least when my eye was placed perpendicularly over 
the glasses in the axis of the rings; and when I viewed them obliquely they 
became bigger, continually swelling as I removed my eye farther from the axis. 
And partly by measuring the diameter of the same circle at several obliquities 
of my eye, partly by other means, as also by making use of the two prisms for 
very great obliquities, I found its diameter, and consequently the thickness of 
the air, at its perimeter in all those obliquities to be very nearly in the pro- 
portions expressed in the following Table: 
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Angle of incidence 
on the air 

Angle of refraction 
into the air 

Diameter 
of the ring 

Thickness 
of the air 

Deg. Min. 
00 00 00 00 10 10 
06 26 10 00 IOMs 10%:, 
12 45 20 00 WH 10% 
18 49 30 00 IOM 11% 
24 30 40 00 11% 13 
29 37 50 00 12% 15% 
33 58 60 00 14 20 
35 47 65 00 15% 23% 
37 19 70 00 16% 28% 
38 33 75 00 19% 37 
39 27 80 00 22% 52% 
40 00 85 00 29 84%2 
40 11 90 00 35 122% 

In the two first columns are expressed the obliquities of the incident and 
emergent rays to the plate of the air; that is, their angles of incidence and 
refraction. In the third column the diameter of any coloured ring at those 
obliquities is expressed in parts, of which ten constitute that diameter when 
the rays are perpendicular. And in the fourth column the thickness of the air at 
the circumference of that ring is expressed in parts, of which also ten constitute 
its thickness when the rays are perpendicular. 

And from these measures I seem to gather this rule: that the thickness of the 
air is proportional to the secant of an angle, whose sine is a certain mean pro- 
portional between the sines of incidence and refraction. And that mean propor- 
tional, so far as by these measures I can determine it, is the first of a hundred 
and six arithmetical mean proportionals between those sines counted from the 
bigger sine; that is, from the sine of refraction when the refraction is made out 
of the glass into the plate of air, or from the sine of incidence when the refrac- 
tion is made out of the plate of air into the glass. 

Obs. 8. The dark spot in the middle of the rings increased also by the ob- 
liquation of the eye, although almost insensibly. But, if instead of the object- 
glasses the prisms were made use of, its increase was more manifest when 
viewed so obliquely that no colours appeared about it. It was least when the 
rays were incident most obliquely on the interjacent air, and as the obliquity 
decreased it increased more and more until the coloured rings appeared, and 
then decreased again, but not so much as it increased before. And hence it is 
evident that the transparency was not only at the absolute contact of the 
glasses, but also where they had some little interval. I have sometimes observed 
the diameter of that spot to be between half and two fifth parts of the diameter 
of the exterior circumference of the red in the first circuit or revolution of 
colours when viewed almost perpendicularly; whereas when viewed obliquely 
it hath wholly vanished and become opaque and white like the other parts of 
the glass; whence it may be collected that the glasses did then scarcely, or not 
at all, touch one another, and that their interval at the perimeter of that spot 
when viewed perpendicularly was about a fifth or sixth part of their interval at 
the circumference of the said red. 

Obs. 9. By looking through the two contiguous object-glasses, I found that 
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the interjacent air exhibited rings of colours, as well by transmitting light as by 
reflecting it. The central spot was now white, and from it the order of the 
colours were yellowish red; black, violet, blue, white, yellow, red; violet, blue, 
green, yellow, red, &c. But these colours were very faint and dilute, unless 
when the light was trajected very obliquely through the glasses; for by that 
means they became pretty vivid. Only the first yellowish red, like the blue in 
the fourth Observation, was so little and faint as scarcely to be discerned. 
Comparing the coloured rings made by reflexion, with these made by trans- 
mission of the light, I found that white was opposite to black, red to blue, 
yellow to violet, and green to a compound of red and violet. That is, those 
parts of the glass were black when looked through, which when looked upon 
appeared white, and on the contrary. And so those which in one case exhibited 
blue, did in the other case exhibit red. And the like of the other colours. The 
manner you have represented in the third Figure, where AB, CD, are the 
surfaces of the glasses contiguous at E, and the black lines between them are 
their distances in arithmetical progression, and the colours written above are 
seen by reflected light, and those below by light transmitted. 

Obs. 10. Wetting the object-glasses a little at their edges, the water crept in 
slowly between them, and the circles thereby became less and the colours more 
faint, insomuch that as the water crept along, one half of them at which it first 
arrived would appear broken off from the other half, and contracted into a less 
room. By measuring them I found the proportions of their diameters to the 
diameters of the like circles made by air to be about seven to eight, and con- 
sequently the intervals of the glasses at like circles, caused by those two me- 
diums (water and air) are as about three to four. Perhaps it may be a general 
rule that, if any other medium more or less dense than water be compressed 
between the glasses, their intervals at the rings caused thereby will be to their 
intervals caused by interjacent air, as the sines are which measure the refraction 
made out of that medium into air. 

Obs. 11. When the water was between the glasses, if I pressed the upper 
glass variously at its edges to make the rings move nimbly from one place to an- 
other, a little white spot would immediately follow the centre of them, which up- 
on creeping in of the ambient water into that place would presently vanish. Its 
appearance was such as interjacent air would have caused, and it exhibited the 
same colours. But it was not air, for where any bubbles of air were in the water 
they would not vanish. The reflexion must have rather been caused by a subtler 
medium which could recede through the glasses at the creeping in of the water. 

Obs. 12. These observations were made in the open air. But farther to ex- 
amine the effects of coloured light falling on the glasses, I darkened the room, 
and viewed them by reflexion of the colours of a prism cast on a sheet of white 
paper, my eye being so placed that I could see the coloured paper by reflexion 
in the glasses, as in a looking-glass. And by this means the rings became dis- 
tincter and visible to a far greater number than in the open air. I have some- 
times seen more than twenty of them, whereas in the open air I could not 
discern above eight or nine. 

Obs. 13. Appointing an assistant to move the prism to and fro about its axis, 
that all the colours might successively fall on that part of the paper which I 
saw by reflexion from that part of the glasses, where the circles appeared, so 
that all the colours might be successively reflected from the circles to my eye, 
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Green 
Red Yellow 

Blue Purple Red 

whilst I held it immovable, I found the circles which the red light made to be 
manifestly bigger than those which were made by the blue and violet. And it 
was very pleasant to see them gradually swell or contract B n 
accordingly as the colour of the light was changed. The paieRedl 
interval of the glasses at any of the rings, when they were Greenish Red 
made by the utmost red light, was to their interval at the 
same ring when made by the utmost violet, greater than Greenish Blue 
as 3 to 2, and less than as 13 to 8. By the most of my 
Observations it was as 14 to 9. And this proportion seemed 
very nearly the same in all obliquities of my eye, unless 
when two prisms were made use of instead of the object- 
glasses. For then at a certain great obliquity of my eye, 
the rings made by the several colours seemed equal, and 
at a greater obliquity those made by the violet would be 
greater than the same rings made by the red, the refrac- 
tion of the prism in this case causing the most refrangible 
rays to fall more obliquely on that plate of the air than 
the least refrangible ones. Thus the experiment succeeded 
in the coloured light, which was sufficiently strong and 
copious to make the rings sensible. And thence it may be 
gathered that, if the most refrangible and least refrangible 
rays had been copious enough to make the rings sensible 
without the mixture of other rays, the proportion which 
here was 14 to 9 would have been a little greater, suppose 
14^ or 143^ to 9. 

Obs. 14. Whilst the prism was turned about its axis 
with a uniform motion, to make all the several colours 
fall successively upon the object-glasses, and thereby to 
make the rings contract and dilate, the contraction or 
dilatation of each ring thus made by the variation of its 
colour was swiftest in the red, and slowest in the violet, 
and in the intermediate colours it had intermediate de- 
grees of celerity. Comparing the quantity of contraction 
and dilatation made by all the degrees of each colour, I 
found that it was greatest in the red, less in the yellow, 
still less in the blue, and least in the violet. And to make 
as just an estimation as I could of the proportions of their 
contractions or dilatations, I observed that the whole 
contraction or dilatation of the diameter of any ring made by all the degrees 
of red was to that of the diameter of the same ring made by all the degrees 
of violet, as about four to three, or five to four, and that when the light was 
of the middle colour, between yellow and green, the diameter of the ring was 
very nearly an arithmetical mean between the greatest diameter of the same 
ring made by the outmost red, and the least diameter thereof made by the 
outmost violet—contrary to what happens in the colours of the oblong spectrum 
made by the refraction of a prism, where the red is most contracted, the violet 
most expanded, and in the midst of all the colours is the confine of green and 
blue. And hence I seem to collect that the thicknesses of the air between the 
glasses there, where the ring is successively made by the limits of the five 
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principal colours (red, yellow, green, blue, violet) in order (that is, by the 
extreme red, by the limit of red and yellow in the middle of the orange, by the 
limit of yellow and green, by the limit of green and blue, by the limit of blue 
and violet in the middle of the indigo, and by the extreme violet) are to one 
another very nearly as the sixth lengths of a chord which sound the notes in a 
sixth maj or, sol, la, mi, fa, sol, la. But it agrees something better with the Obser- 
vation to say that the thicknesses of the air between the glasses there, where the 
rings are successively made by the limits of the seven colours (red, orange, 
yellow, green, blue, indigo, violet in order) are to one another as the cube 
roots of the squares of the eight lengths of a chord, which sound the notes in an 
eighth, sol, la, fa, sol, la, mi, fa, sol; that is, as the cube roots of the squares of the 
numbers, 1, %, %, %, %, %, Me, M- 

Obs. 15. These rings were not of various colours like those made in the open 
air, but appeared all over of that prismatic colour only with which they were 
illuminated. And by projecting the prismatic colours immediately upon the 
glasses, I found that the light which fell on the dark spaces which were between 
the coloured rings was transmitted through the glasses without any variation 

Fig. 4 

of colour. For on a white paper placed behind, it would paint rings of the same 
colour with those which were reflected, and of the bigness of their immediate 
spaces. And from thence the origin of these rings is manifest; namely, that the 
air between the glasses, according to its various thickness, is disposed in some 
places to reflect, and in others to transmit, the light of any one colour (as you 
may see represented in the fourth Figure) and in the same place to reflect that 
of one colour where it transmits that of another. 

Obs. 16. The squares of the diameters of these rings made by any prismatic 
colour were in arithmetical progression, as in the fifth Observation. And the 
diameter of the sixth circle, when made by the citrine yellow, and viewed 
almost perpendicularly, was about t5o%- parts of an inch, or a little less, agree- 
able to the sixth Observation. 

The precedent Observations were made with a rarer thin medium, termin- 
ated by a denser, such as was air or water compressed between two glasses. In 
those that follow are set down the appearances of a denser medium thinned 
within a rarer, such as are plates of Muscovy glass, bubbles of water, and some 
other thin substances terminated on all sides with air. 

Obs. 17. If a bubble be blown with water first made tenacious by dissolving a 
little soap in it, 'tis a common observation that after a while it will appear 
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tinged with a great variety of colours. To defend these bubbles from being 
agitated by the external air (whereby their colours are irregularly moved one 
among another, so that no accurate observation can be made of them), as soon 
as I had blown any of them I covered it with a clear glass, and by that means 
its colours emerged in a very regular order, like so many concentric rings en- 
compassing the top of the bubble. And as the bubble grew thinner by the con- 
tinual subsiding of the water, these rings dilated slowly and overspread the 
whole bubble, descending in order to the bottom of it, where they vanished 
successively. In the meanwhile, after all the colours were emerged at the top, 
there grew in the centre of the rings a small round black spot, like that in the 
first Observation, which continually dilated itself till it became sometimes more 
than 3^ or % of an inch in breadth before the bubble broke. At first I thought 
there had been no light reflected from the water in that place, but, observing 
it more curiously, I saw within it several smaller round spots which appeared 
much blacker and darker than the rest, whereby I knew that there was some 
reflexion at the other places which were not so dark as those spots. And by 
further trial I found that I could see the images of some things (as of a candle 
or the Sun) very faintly reflected, not only from the great black spot, but also 
from the little darker spots which were within it. 

Besides the aforesaid coloured rings there would often appear small spots of 
colours, ascending and descending up and down the sides of the bubble, by 
reason of some inequalities in the subsiding of the water. And sometimes small 
black spots generated at the sides would ascend up to the larger black spot at 
the top of the bubble, and unite with it. 

Obs. 18. Because the colours of these bubbles were more extended and lively 
than those of the air thinned between two glasses, and so more easy to be 
distinguished, I shall here give you a further description of their order, as they 
were observed in viewing them by reflexion of the skies when of a white colour, 
whilst a black substance was placed behind the bubble. And they were these: 
red, blue; red, blue; red, blue; red, green; red, yellow, green, blue, purple; red, 
yellow, green, blue, violet; red, yellow, white, blue, black. 

The three first successions of red and blue were very dilute and dirty, es- 
pecially the first, where the red seemed in a manner to be white. Among these 
there was scarce any other colour sensible besides red and blue, only the blues 
(and principally the second blue) inclined a little to green. 

The fourth red was also dilute and dirty, but not so much as the former three; 
after that succeeded little or no yellow, but a copious green, which at first 
inclined a little to yellow, and then became a pretty brisk and good willow 
green, and afterwards changed to a bluish colour; but there succeeded neither 
blue nor violet. 

The fifth red at first inclined very much to purple, and afterwards became 
more bright and brisk, but yet not very pure. This was succeeded with a very 
bright and intense yellow, which was but little in quantity, and soon changed 
to green; but that green was copious and something more pure, deep and lively, 
than the former green. After that followed an excellent blue of a bright sky 
colour, and then a purple, which was less in quantity than the blue, and much 
inclined to red. 

The sixth red was at first of a very fair and lively scarlet, and soon after of a 
brighter colour, being very pure and brisk, and the best of all the reds. Then 
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after a lively orange followed an intense bright and copious yellow, which was 
also the best of all the yellows, and this changed first to a greenish yellow, and 
then to a greenish blue; but the green between the yellow and the blue was 
very little and dilute, seeming rather a greenish white than a green. The blue 
which succeeded became very good, and of a very bright sky colour, but yet 
something inferior to the former blue; and the violet was intense and deep with 
little or no redness in it, and less in quantity than the blue. 

In the last red appeared a tincture of scarlet next to violet, which soon 
changed to a brighter colour, inclining to an orange; and the yellow which 
followed was at first pretty good and lively, but afterwards it grew more dilute 
until by degrees it ended in perfect whiteness. And this whiteness, if the water 
was very tenacious and well-tempered, would slowly spread and dilate itself 
over the greater part of the bubble; continually growing paler at the top, where 
at length it would crack in many places, and those cracks, as they dilated, 
would appear of a pretty good, but yet obscure and dark, sky colour; the white 
between the blue spots diminishing, until it resembled the threads of an irregu- 
lar network, and soon after vanished, and left all the upper part of the bubble 
of the said dark blue colour. And this colour, after the aforesaid manner, 
dilated itself downwards, until sometimes it hath overspread the whole bubble. 
In the mean while at the top, which was of a darker blue than the bottom, and 
appeared also full of many round blue spots (something darker than the rest) 
there would emerge one or more very black spots, and within those, other spots 
of an intenser blackness, which I mentioned in the former Observation; and 
these continually dilated themselves until the bubble broke. 

If the water was not very tenacious, the black spots would break forth in the 
white, without any sensible intervention of the blue. And sometimes they 
would break forth within the precedent yellow, or red, or perhaps within the 
blue of the second order, before the intermediate colours had time to display 
themselves. 

By this description you may perceive how great an affinity these colours 
have with those of air described in the fourth Observation, although set down 
in a contrary order, by reason that they begin to appear when the bubble is 
thickest, and are most conveniently reckoned from the lowest and thickest 
part of the bubble upwards. 

Obs. 19. Viewing in several oblique positions of my eye the rings of colours 
emerging on the top of the bubble, I found that they were sensibly dilated by 
increasing the obliquity, but yet not so much by far as those made by thinned 
air in the seventh Observation. For there they were dilated so much as, when 
viewed most obliquely, to arrive at a part of the plate more than twelve times 
thicker than that where they appeared when viewed perpendicularly; whereas, 
in this case, the thickness of the water at which they arrived when viewed most 
obliquely was, to that thickness which exhibited them by perpendicular rays, 
something less than as 8 to 5. By the best of my observations it was between 15 
and 153^2 f0 10j an increase about 24 times less than in the other case. 

Sometimes the bubble would become of an uniform thickness all over, except 
at the top of it near the black spot, as I knew, because it would exhibit the 
same appearance of colours in all positions of the eye. And then the colours 
which were seen at its apparent circumference by the obliquest rays would be 
different from those that were seen in other places, by rays less oblique to it. 
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And divers spectators might see the same part of it of differing colours, by 
viewing it at very differing obliquities. Now, observing how much the colours 
at the same places of the bubble, or at divers places of equal thickness, were 
varied by the several obliquities of the rays, by the assistance of the 4th, 14th, 
16th, and 18th Observations, as they are hereafter explained, I collect the 
thickness of the water requisite to exhibit any one and the same colour, at 
several obliquities, to be very nearly in the proportion expressed in this Table. 

Incidence 
on the water 

Refraction 
into the water 

Thickness 
of the water 

Deg. 
00 

Min. 
00 

Deg. 
00 

Min. 
00 10 

15 00 11 11 10% 
30 00 22 1 10% 
45 00 32 2 11% 
60 00 40 30 13 
75 00 46 25 14% 

15% 90 00 48 35 
In the two first columns are expressed the obliquities of the rays to the 

superficies of the water (that is, their angles of incidence and refraction), where 
I suppose that the sines which measure them are in round numbers, as 3 to 4, 
though probably the dissolution of soap in the water may a little alter its 
refractive virtue. In the third column, the thickness of the bubble, at which 
any one colour is exhibited in those several obliquities, is expressed in parts, of 
which ten constitute its thickness when the rays are perpendicular. And the 
rule found by the seventh Observation agrees well with these measures, if duly 
applied; namely, that the thickness of a plate of water requisite to exhibit one 
and the same colour at several obliquities of the eye is proportional to the 
secant of an angle, whose sine is the first of a hundred and six arithmetical 
mean proportionals between the sines of incidence and refraction counted from 
the lesser sine; that is, from the sine of refraction when the refraction is made 
out of air into water, otherwise from the sine of incidence. 

I have sometimes observed that the colours which arise on polished steel by 
heating it, or on bell-metal, and some other metalline substances, when melted 
and poured on the ground, where they may cool in the open air, have, like the 
colours of water-bubbles, been a little changed by viewing them at divers 
obliquities, and particularly that a deep blue, or violet, when viewed very 
obliquely, hath been changed to a deep red. But the changes of these colours 
are not so great and sensible as of those made by water. For the scoria, or 
vitrified part of the metal, which most metals Avhen heated or melted do con- 
tinually protrude and send out to their surface, and which by covering the 
metals in form of a thin glassy skin, causes these colours, is much denser than 
water; and I find that the change made by the obliquation of the eye is least in 
colours of the densest thin substances. 

Obs. 20. As in the ninth Observation, so here, the bubble, by transmitted 
light, appeared of a contrary colour to that which it exhibited by reflexion. 
Thus, when the bubble being looked on by the light of the clouds reflected from 
it, seemed red at its apparent circumference, if the clouds at the same time, or 
immediately after, were viewed through it, the colour at its circumference 
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would be blue. And, on the contrary, when by reflected light it appeared blue, 
it would appear red by transmitted light. 

Obs. 21. By wetting very thin plates of Muscovy glass, whose thinness made 
the like colours appear, the colours became more faint and languid, especially 
by wetting the plates on that side opposite to the eye; but I could not perceive 
any variation of their species. So, then, the thickness of a plate requisite to 
produce any colour depends only on the density of the plate, and not on that of 
the ambient medium. And hence, by the 10th and 16th Observations, may be 
known the thickness which bubbles of water, or plates of Muscovy glass, or 
other substances, have at any colour produced by them. 

Obs. 22. A thin transparent body, which is denser than its ambient medium, 
exhibits more brisk and vivid colours than that which is so much rarer; as I 
have particularly observed in the air and glass. For blowing glass very thin at a 
lamp furnace, those plates encompassed with air did exhibit colours much more 
vivid than those of air made thin between two glasses. 

Obs. 23. Comparing the quantity of light reflected from the several rings, I 
found that it was most copious from the first or inmost, and in the exterior rings 
became gradually less and less. Also the whiteness of the first ring was stronger 
than that reflected from those parts of the thin medium or plate which were with- 
out the rings; as I could manifestly perceive by viewing at a distance the rings 
made by the two object-glasses; or by comparing two bubbles of water blown 
at distant times, in the first of which the whiteness appeared, which succeeded 
all the colours, and, in the other, the whiteness which preceded them all. 

Obs. 24. When the two object-glasses were laid upon one another, so as to 
make the rings of the colours appear, though with my naked eye I could not 
discern above eight or nine of those rings, yet by viewing them through a prism 
I have seen a far greater multitude, insomuch that I could number more than 
forty, besides many others, that were so very small and close together that I 
could not keep my eye steady on them severally so as to number them, but by 
their extent I have sometimes estimated them to be more than a hundred. And 
I believe the experiment may be improved to the discovery of far greater 
numbers. For they seem to be really unlimited, though visible only so far as 
they can be separated by the refraction of the prism, as I shall hereafter explain. 

But it was but one side of these rings (namely, 
that towards which the refraction was made) which 
by that refraction was rendered distinct, and the 
other side became more confused than when viewed 
by the naked eye, insomuch that there I could not 
discern above one or two, and sometimes none of 
those rings, of which I could discern eight or nine 
with my naked eye. And their segments or arcs, 
which on the other side appeared so numerous, for 
the most part exceeded not the third part of a circle, 

p. 5 If the refraction was very great, or the prism very 
distant from the object-glasses, the middle part of 

those arcs became also confused, so as to disappear and constitute an even 
whiteness, whilst on either side their ends, as also the whole arcs farthest from 
the centre, became distincter than before, appearing in the form as you see 
them designed in the fifth Figure. 
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The arcs, where they seemed distinctest, were only white and black succes- 

sively, without any other colours intermixed. But in other places there ap- 
peared colours whose order was inverted by the refraction in such manner that, 
if I first held the prism very near the object-glasses and then gradually re- 
moved it farther off towards my eye, the colours of the 2d, 3d, 4th and following 
rings, shrunk towards the white that emerged between them, until they wholly 
vanished into it at the middle of the arcs, and afterwards emerged again in a 
contrary order. But at the ends of the arcs they retained their order unchanged. 

I have sometimes so laid one object-glass upon the other that, to the naked 
eye, they have all over seemed uniformly white, without the least appearance 
of any of the coloured rings; and yet, by viewing them through a prism, great 
multitudes of those rings have discovered themselves. And in like manner 
plates of Muscovy glass, and bubbles of glass blown at a lamp-furnace, which 
were not so thin as to exhibit any colours to the naked eye, have through the 
prism exhibited a great variety of them ranged irregularly up and down in the 
form of waves. And so bubbles of water, before they began to exhibit their 
colours to the naked eye of a bystander, have appeared through a prism, girded 
about with many parallel and horizontal rings; to produce which effect it was 
necessary to hold the prism parallel, or very nearly parallel, to the horizon, and 
to dispose it so that the rays might be refracted upwards. 

Part II 

Remarks upon the foregoing Observations. 
Having given my Observations of these colours, before I make use of them to 
unfold the causes of the colours of natural bodies it is convenient that, by the 
simplest of them (such as are the 2d, 3d, 4th, 9th, 12th, 18th, 20th, and 24th) 
I first explain the more compounded. And first, to shew how the colours in the 
fourth and eighteenth Observations are produced, let there be taken in any 
right line from the point Y, [Fig. 6] the lengths YA, YB, YC, YD, YE, YF, 
YG, YH, in proportion to one another, as the cube roots of the squares of the 
numbers, 3^, Me, M, M, M, b whereby the lengths of a musical chord 
to sound all the notes in an eighth are represented; that is, in the proportion of 
the numbers 6,300, 6,814, 7,114, 7,631, 8,255, 8,855, 9,243, 10,000. And at the 
points A, B, C, D, E, F, G, H, let perpendiculars Aa, BjS, &c. be erected, by 
whose intervals the extent of the several colours, set underneath against them, 
is to be represented. Then divide the line Aa in such proportion as the numbers 
1, 2, 3, 5, 6, 7, 9, 10, 11, &c. set at the points of division denote. And through 
those divisions from Y draw lines II, 2K, 3L, 5M, 6N, 70, &c. 

Now, if A2 be supposed to represent the thickness of any thin transparent 
body, at which the outmost violet is most copiously reflected in the first ring, 
or series of colours, then by the 13th Observation, HK will represent its thick- 
ness, at which the utmost red is most copiously reflected in the same series. 
Also, by the 5th and 16th Observations, A6 and HN will denote the thicknesses 
at which those extreme colours are most copiously reflected in the second series, 
and A10 and HQ the thicknesses at which they are most copiously reflected in 
the third series, and so on. And the thickness at which any of the intermediate 
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colours are reflected most copiously, will, according to the 14th Observation, 
be defined by the distance of the line AH from the intermediate parts of the 

lines 2K, 6N, 10Q, &c. against 
which the names of those colours 
are written below. 

But farther, to define the latitude 
of these colours in each ring or 
series, let A1 design the least thick- 
ness, and A3 the greatest thickness, 
at which the extreme violet in the 
first series is reflected, and let HI 
and HL design the like limits for 
the extreme red, and let the inter- 
mediate colours be limited by the 
intermediate parts of the lines II 
and 3L, against which the names 
of those colours are written, and so 
on; but yet with this caution: that 
the reflexions be supposed strongest 
at the intermediate spaces, 2K, 6N, 
10Q, dtc. and from thence to de- 
crease gradually towards these 
limits, II, 3L, 5M, 70, &c. on either 
side; where you must not conceive 
them to be precisely limited, but to 
decay indefinitely. And whereas I 
have assigned the same latitude to 
every series, I did it because, al- 
though the colours in the first series 
seem to be a little broader than the 
rest, by reason of a stronger reflexion 
there, yet that inequality is so in- 
sensible as scarcely to be deter- 
mined by observation. 

Now, according to this descrip- 

/? y 

S la 

Fig. 6 
tion, conceiving that the rays originally of several colours are by turns reflected 
at the spaces II, L3, 5M, 07, 9P, Rll, (fee. and transmitted at the spaces AHI1, 
3LM5, 70P9, <fec. it is easy to know what colour must in the open air be exhib- 
ited at any thickness of a transparent thin body. For if a ruler be applied parallel 
to AH, at that distance from it by which the thickness of the body is represented, 
the alternate spaces 1IL3,5M07, (fee. which it crosseth will denote the reflected 
original colours, of which the colour exhibited in the open air is compounded. 
Thus, if the constitution of the green in the third series of colours be desired, 
apply the ruler as you see at 7rpa<p, and by its passing through some of the blue 
at tt and yellow at a, as well as through the green at p, you may conclude that 
the green exhibited at that thickness of the body is principally constituted of 
original green, but not without a mixture of some blue and yellow. 

By this means you may know how the colours from the centre of the rings 
outward ought to succeed in order as they were described in the 4th and 18th 
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Observations. For if you move the ruler gradually from AH through all dis- 
tances, having passed over the first space which denotes little or no reflexion to 
be made by thinnest substances, it will first arrive at 1 the violet, and then very 
quickly at the blue and green, which together with that violet compound blue, 
and then at the yellow and red, by whose further addition that blue is converted 
into whiteness, which whiteness continues during the transit of the edge of the 
ruler from I to 3, and after that by the successive deficience of its component 
colours, turns first to compound yellow, and then to red, and last of all the red 
ceaseth at L. Then begin the colours of the second series, which succeed in 
order during the transit of the edge of the ruler from 5 to 0, and are more lively 
than before, because more expanded and severed. And, for the same reason, 
instead of the former white there intercedes between the blue and yellow a 
mixture of orange, yellow, green, blue and indigo, all which together ought to 
exhibit a dilute and imperfect green. So the colours of the third series all succeed in 
order; first, the violet, which a little interferes with the red of the second order, 
and is thereby inclined to a reddish purple; then the blue and green, which are 
less mixed with other colours, and consequently more lively than before, es- 
pecially the green; then follows the yellow, some of which towards the green 
is distinct and good, but that part of it towards the succeeding red, as also that 
red is mixed with the violet and blue of the fourth series, whereby various 
degrees of red very much inclining to purple are compounded. This violet and 
blue, which should succeed this red, being mixed with, and hidden in it, there 
succeeds a green. And this at first is much inclined to blue, but soon becomes a 
good green, the only unmixed and lively colour in this fourth series. For as it 
verges towards the yellow, it begins to interfere with the colours of the fifth 
series, by whose mixture the succeeding yellow and red are very much diluted 
and made dirty, especially the yellow, which being the weaker colour is scarce 
able to shew itself. After this the several series interfere more and more, and 
their colours become more and more intermixed, till after three or four more 
revolutions (in which the red and blue predominate by turns) all sorts of colours 
are in all places pretty equally blended, and compound an even whiteness. 

And since, by the 15th Observation, the rays endued with one colour are 
transmitted, where those of another colour are reflected, the reason of the 
colours made by the transmitted light in the 9th and 20th Observations is from 
hence evident. 

If not only the order and species of these colours, but also the precise thick- 
ness of the plate, or thin body at which they are exhibited, be desired in parts 
of an inch, that may be also obtained by assistance of the 6th or 16th Observa- 
tions. For according to those Observations the thickness of the thinned air, 
which between two glasses exhibited the most luminous parts of the first six 
rings were 17 8,ooo> 17s.000? 17 s.o00' 17s,000' 17 s.ooo' 178,00o? ParIs of inch. 
Suppose the light reflected most copiously at these thicknesses be the bright 
citrine yellow, or confine of yellow and orange, and these thicknesses will be FX, 
Fju, F^, F^ Fo, Ft. And this being known, it is easy to determine what thick- 
ness of air is represented by G<p, or by any other distance of the ruler from AH. 

But further, since by the 10th Observation the thickness of air was to the 
thickness of water, which between the same glasses exhibited the same colour, 
as 4 to 3, and by the 21st Observation the colours of thin bodies are not varied 
by varying the ambient medium, the thickness of a bubble of water, exhibiting 
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any colour will be % of the thickness of air producing the same colour. And so, 
according to the same 10th and 21st Observations, the thickness of a plate of 

whose refraction of the mean refrangible ray, is measured by the pro- 
portion of the sines 31 to 20, may be fx of the thickness of air producing the 
same colours; and the like of other mediums. I do not affirm that this propor- 
tion of 20 to 31 holds in all the rays; for the sines of other sorts of rays have 
other proportions. But the differences of those proportions are so little that I 
do not here consider them. On these grounds I have composed the following 
Table, wherein the thickness of air, water, and glass, at which each colour is 
most intense and specific, is expressed in parts of an inch divided into ten 
hundred thousand equal parts. 

The thickness of coloured plates and particles 

Their colours of the first order. , 

Very black 
Black 
Beginning of black 
Blue 

Of the second order. 

White 
Yellow 
Orange 
Red 
Violet 
Indigo 
Blue 
Green 
Yellow 
Orange 
Bright red 
Scarlet 
Purple 
Indigo 
Blue 

Of the third order  <| Green 
Yellow 
Red 
Bluish-red 
Bluish-green 
Green 
Y ellowish-green 
Red 

Of the fifth order  f Greenish-blue [Red 

Of the sixth order  {RedeniSh"blUe 

Of the seventh order  [Ruddy white 
Now, if this Table be compared with the 6th scheme, you will there see the 

constitution of each colour, as to its ingredients, or the original colours of which 
it is compounded, and thence be enabled to judge of its intenseness or im- 
perfection; which may suffice in explication of the 4th and 18th Observations, 

Of the fourth order. 

of Air Water Class 
i "2 

1 
2 
2* 
5i 
7i 
8 
9 

3 "8 3 4 
1* 
It 
3* 
5* 
6 
6f 

10 3 1 AO 3 I 1 A 1 7 
1** 
3f 
4* 
5* 
5* 

Hi 8f 7* 
12f 
14 

9f 
10* 

8-2_ 0i i 
9 

15^ 
16y 
17f 

11* 
12* 
13 

9* 
10* 
11* 

18y 
m 

13f 
14f 

HI 
12* 

21 
22t

1o 
23* 
25* 
27* 
29 

15* 
16* 
17** 
18t9O 
20* 
21f 

13** 
14* 
ISA 
161 
17* 
18* 

32 24 20* 
34 25* 22 
35* 26* 22* 
36 27 23* 
40* 30* 26 
46 34* 29* 
52* 39f 34 
58f 44 38 
65 48|- 42 
71 53* 45* 
77 57 f 49* 
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unless it be further desired to delineate the manner how the colours appear 
when the two object-glasses are laid upon one another. To do which, let there 
be described a large arc of a circle, and a straight line which may touch that 
arc, and parallel to that tangent several occult lines, at such distances from it 
as the numbers set against the several colours in the Table denote. For the arc 
and its tangent will represent the superficies of the glasses terminating the 
interjacent air; and the places where the occult lines cut the arc will show at 
what distances from the centre, or point of contact, each colour is reflected. 

There are also other uses of this Table. For by its assistance the thickness of 
the bubble in the 19th Observation was determined by the colours which it 
exhibited. And so the bigness of the parts of natural bodies may be conjectured 
by their colours, as shall be hereafter shewn. Also, if two or more very thin 
plates be laid one upon another, so as to compose one plate equalling them all 
in thickness, the resulting colour may be hereby determined. For instance, Mr. 
Hook observed, as is mentioned in his Micrographia, that a faint yellow plate 
of Muscovy glass laid upon a blue one, constituted a very deep purple. The 
yellow of the first order is a faint one, and the thickness of the plate exhibiting 
it, according to the Table, is 45/5, to which add 9, the thickness exhibiting blue 
of the second order, and the sum will be which is the thickness exhibiting 
the purple of the third order. 

To explain, in the next place, the circumstances of the 2d and 3d Observa- 
tions; that is, how the rings of the colours may (by turning the prisms about 
their common axis the contrary way to that expressed in those observations) 
be converted into white and black rings, and afterwards into rings of colours 
again, the colours of each ring lying now in an inverted order: it must be 
remembered that those rings of colours are dilated by the obliquation of the 
rays to the air which intercedes the glasses, and that according to the Table in 
the 7th Observation their dilatation or increase of their diameter is most mani- 
fest and speedy when they are obliquest. Now, the rays of yellow being more 
refracted by the first superficies of the said air than those of red, are thereby 
made more oblique to the second superficies, at which they are reflected to 
produce the coloured rings, and consequently the yellow circle in each ring will 
be more dilated than the red; and the excess of its dilatation will be so much 
the greater, by how much the greater is the obliquity of the rays, until at last it 
become of equal extent with the red of the same ring. And for the same reason 
the green, blue, and violet will be also so much dilated by the still greater 
obliquity of their rays, as to become all very nearly of equal extent with the 
red; that is, equally distant from the centre of the rings. And then all the 
colours of the same ring must be coincident, and by their mixture exhibit a 
white ring. And these white rings must have black and dark rings between 
them, because they do not spread and interfere with one another, as before. 
And for that reason also they must become distincter, and visible to far greater 
numbers. But yet the violet being obliquest will be something more dilated, in 
proportion to its extent, than the other colours, and so very apt to appear at 
the exterior verges of the white. 

Afterwards, by a greater obliquity of the rays, the violet and blue become 
more sensibly dilated than the red and yellow, and so, being farther removed 
from the centre of the rings, the colours must emerge out of the white in an 
order contrary to that which they had before; the violet and blue at the exterior 
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limbs of each ring, and the red and yellow at the interior. And the violet, by 
reason of the greatest obliquity of its rays, being in proportion most of all ex- 
panded, will soonest appear at the exterior limb of each white ring, and become 
more conspicuous than the rest. And the several series of colours belonging to 
the several rings, will, by their unfolding and spreading, begin again to interfere, 
and thereby render the rings less distinct, and not visible to so great numbers. 

If instead of the prisms the object-glasses be made use of, the rings which 
they exhibit become not white and distinct by the obliquity of the eye, by 
reason that the rays in their passage through that air which intercedes the 
glasses are very nearly parallel to those lines in which they were first incident 
on the glasses, and consequently the rays endued with several colours are not 
inclined one more than another to that air, as it happens in the prisms. 

There is yet another circumstance of these experiments to be considered, and 
that is why the black and white rings which, when viewed at a distance appear 
distinct, should not only become confused by viewing them near at hand, but 
also yield a violet colour at both the edges of every white ring. And the reason 
is that the rays which enter the eye at several parts of the pupil have several 
obliquities to the glasses, and those which are most oblique, if considered apart, 
would represent the rings bigger than those which are the least oblique. Whence 
the breadth of the perimeter of every white ring is expanded outwards by the 
obliquest rays, and inwards by the least oblique. And this expansion is so much 
the greater by how much the greater is the difference of the obliquity; that is, 
by how much the pupil is wider, or the eye nearer to the glasses. And the 
breadth of the violet must be most expanded, because the rays apt to excite a 
sensation of that colour are most oblique to a second or farther superficies of 
the thinned air at which they are reflected, and have also the greatest variation of 
obliquity, which makes that colour soonest emerge out of the edges of the white. 
And as the breadth of every ring is thus augmented, the dark intervals must be 
diminished, until the neighbouring rings become continuous, and are blended, 
the exterior first, and then those nearer the centre; so that they can no longer be 
distinguished apart, but seem to constitute an even and uniform whiteness. 

Among all the Observations there is none accompanied with so odd circum- 
stances as the twenty-fourth. Of those the principal are, that in thin plates, 
which to the naked eye seem of an even and uniform transparent whiteness, 
without any terminations of shadows, the refraction of a prism should make 
rings of colours appear, whereas it usually makes objects appear coloured only 
there where they are terminated with shadows, or have parts unequally lumi- 
nous; and that it should make those rings exceedingly distinct and wTiite, 
although it usually renders objects confused and coloured. The cause of these 
things you will understand by considering that all the rings of colours are really 
in the plate, when viewed with the naked eye, although by reason of the great 
breadth of their circumferences they so much interfere and are blended to- 
gether that they seem to constitute an uniform whiteness. But when the rays 
pass through the prism to the eye, the orbits of the several colours in every ring 
are refracted, some more than others, according to their degrees of refrangi- 
bility; by which means the colours on one side of the ring (that is, in the circum- 
ference on one side of its centre) become more unfolded and dilated, and those 
on the other side more complicated and contracted. And where by a due refrac- 
tion they are so much contracted that the several rings become narrower than 
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to interfere with one another, they must appear distinct, and also white, if 
the constituent colours be so much contracted as to be wholly coincident. But 
on the other side, where the orbit of every ring is made broader by the farther 
unfolding of its colours, it must interfere more with other rings than before, 
and so become less distinct. 

To explain this a little further, suppose the concentric circles AY, and BX, 
[Fig. 7] represent the red and violet of any order, which, together with the 
intermediate colours, constitute any one of these rings. Now, these being 
viewed through a prism, the violet circle BX, will, by a greater refraction, be 
farther translated from its place than the red AY, and so approach nearer to it 
on that side of the circles, towards which the refractions are made. For instance, 
if the red be translated to av, the violet may be translated to hx, so as to ap- 
proach nearer to it at x than before; and if the red be farther translated to av, 
the violet may be so much farther translated to bx as to convene with it at x; 
and if the red be yet farther translated to aT, the violet may be still so much 
farther translated to as to pass beyond it at ij, and convene with it at e and/. 
And this being understood not only of the red and violet, but of all the other 
intermediate colours, and also of every revolution of those colours, you will 
easily perceive how those of the same revolution or order, by their nearness at 

(B X] xv 

Fig. 7 
xv and T^, and their coincidence at xv, e and/, ought to constitute pretty dis- 
tinct arcs of circles, especially at xv, or at e and /; and that they will appear 
severally at xv, and at xv exhibit whiteness by their coincidence, and again 
appear severally at T^, but yet in a contrary order to that which they had 
before, and still retain beyond e and /. But on the other side, at ah, ab, or afi, 
these colours must become much more confused by being dilated and spread so 
as to interfere with those of other orders. And the same confusion will happen 
at between e and /, if the refraction be very great, or the prism very distant 
from the object-glasses; in which case no parts of the rings will be seen, save 
only two little arcs at e and /, whose distance from one another will be aug- 
mented by removing the prism still farther from the object-glasses. And these 
little arcs must be distinctest and whitest at their middle, and at their ends, 
where they begin to grow confused, they must be coloured. And the colours at 
one end of every arc must be in a contrary order to those at the other end, by 
reason that they cross in the intermediate white; namely, their ends, which 
verge towards T^, will be red and yellow on that side next the centre, and blue 
and violet on the other side. But their other ends which verge from T^, will on 
the contrary be blue and violet on that side towards the centre, and on the 
other side red and yellow. 

Now, as all these things follow from the properties of light by a mathematical 
way of reasoning, so the truth of them may be manifested by experiments. For 
in a dark room, by viewing these rings through a prism, by reflexion of the 
several prismatic colours, which an assistant causes to move to and fro upon a 
wall or paper from whence they are reflected, whilst the spectator's eye, the 
prism, and the object-glasses (as in the 13th Observation) are placed steady; 
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the position of the circles made successively by the several colours, will be 
found such, in respect of one another, as I have described in the Figures abxv, 
or abxv, or a/3^T. And by the same method the truth of the explications of 
other Observations may be examined. 

By what hath been said, the like phenomena of water and thin plates of glass 
may be understood. But in small fragments of those plates there is this further 
observable, that where they lie flat upon a table, and are turned about their 
centres whilst they are viewed through a prism, they will in some postures 
exhibit waves of various colours; and some of them exhibit these waves in one 
or two positions only, but the most of them do in all positions exhibit them, and 
make them for the most part appear almost all over the plates. The reason is 
that the superficies of such plates are not even, but have many cavities and 
swellings, which, how shallow soever, do a little vary the thickness of the plate. 
For at the several sides of those cavities, for the reasons newly described, there 
ought to be produced waves in several postures of the prism. Now, though it be 
but some very small and narrower parts of the glass by which these waves for the 
most part are caused, yet they may seem to extend themselves over the whole 
glass, because from the narrowest of those parts there are colours of several 
orders; that is, of several rings, confusedly reflected, which by refraction of the 
prism are unfolded, separated, and, according to their degrees of refraction, 
dispersed to several places, so as to constitute so many several waves, as there 
were divers orders of colours promiscuously reflected from that part of the glass. 

These are the principal phenomena of thin plates or bubbles, whose ex- 
plications depend on the properties of light, which I have heretofore delivered. 
And these you see do necessarily follow from them, and agree with them, even 
to their very least circumstances; and not only so, but do very much tend to 
their proof. Thus, by the 24th Observation it appears that the rays of several 
colours, made as well by thin plates or bubbles as by refractions of a prism, 
have several degrees of refrangibility; whereby those of each order, which at 
the reflexion from the plate or bubble are intermixed with those of other orders, 
are separated from them by refraction, and associated together so as to become 
visible by themselves like arcs of circles. For if the rays were all alike refrangi- 
ble, 'tis impossible that the whiteness, which to the naked sense appears uni- 
form, should by refraction have its parts transposed and ranged into those 
black and white arcs. 

It appears also that the unequal refractions of difform rays proceed not from 
any contingent irregularities; such as are veins, an uneven polish, or for- 
tuitous position of the pores of glass; unequal and casual motions in the air or 
ether, the spreading, breaking, or dividing the same ray into many diverging 
parts; or the like. For, admitting any such irregularities, it would be impossible 
for refractions to render those rings so very distinct and well defined as they do 
in the 24th Observation. It is necessary, therefore, that every ray have its 
proper and constant degree of refrangibility connate with it, according to which 
its refraction is ever justly and regularly performed; and that several rays have 
several of those degrees. 

And what is said of their refrangibility may be also undersood of their 
refiexibility; that is, of their dispositions to be reflected, some at a greater and 
others at a less thickness of thin plates or bubbles; namely, that those disposi- 
tions are also connate with the rays, and immutable; as may appear by the 
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13th, 14th, and 15th Observations, compared with the fourth and eighteenth. 

By the precedent Observations, it appears also that whiteness is a dissimilar 
mixture of all colours, and that light is a mixture of rays endued with all those 
colours. For, considering the multitude of the rings of colours in the 3d, 12th, 
and 24th Observations, it is manifest that although in the 4th and 18th 
Observations there appear no more than eight or nine of those rings, yet there 
are really a far greater number, which so much interfere and mingle with one 
another as, after those eight or nine revolutions, to dilute one another wholly, 
and constitute an even and sensibly uniform whiteness. And, consequently, 
that whiteness must be allowed a mixture of all colours, and the light which 
conveys it to the eye must be a mixture of rays endued with all those colours. 

But further; by the 24th Observation it appears that there is a constant 
relation between colours and refrangibility; the most refrangible rays being 
violet, the least refrangible red, and those of intermediate colours having pro- 
portionably intermediate degrees of refrangibility. And by the 13th, 14th, and 
15th Observations, compared with the 4th or 18th, there appears to be the same 
constant relation between colour and reflexibility; the violet being in like cir- 
cumstances reflected at least thicknesses of any thin plate or bubble, the red at 
greatest thicknesses, and the intermediate colours at intermediate thicknesses. 
Whence it follows that the colorific dispositions of rays are also connate with 
them, and immutable; and, by consequence, that all the productions and ap- 
pearances of colours in the world are derived, not from any physical change 
caused in light by refraction or reflexion, but only from the various mixtures or 
separations of rays, by virtue of their different refrangibility or reflexibility. 
And in this respect the science of colours becomes a speculation as truly math- 
ematical as any other part of Optics. I mean, so far as they depend on the 
nature of light, and are not produced or altered by the power of imagination, or 
by striking or pressing the eye. 

Part III 

Of the permanent colours of natural bodies, and the analogy between them and the 
colours of thin transparent plates. 

I am now come to another part of this design, which is to consider how the 
phenomena of thin transparent plates stand related to those of all other natural 
bodies. Of these bodies I have already told you that they appear of divers 
colours, accordingly as they are disposed to reflect most copiously the rays 
originally endued with those colours. But their constitutions, whereby they 
reflect some rays more copiously than others, remain to be discovered; and 
these I shall endeavour to manifest in the following Propositions. 

Proposition 1 
Those superficies of transparent bodies reflect the greatest quantity of light, which 
have the greatest refracting power; that is, which intercede mediums that differ 
most in their refractive densities. And in the confines of equally refracting mediums 
there is no reflexion. 

The analogy between reflexion and refraction will appear by considering 
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that, when light passeth obliquely out of one medium into another which re- 
fracts from the perpendicular, the greater is the difference of their refractive 
density, the less obliquity of incidence is requisite to cause a total reflexion. 
For as the sines are which measure the refraction, so is the sine of incidence at 
which the total reflexion begins, to the radius of the circle; and, consequently, 
that angle of incidence is least where there is the greatest difference of the 
sines. Thus, in the passing of light out of water into air, where the refraction 
is measured by the ratio of the sines 3 to 4, the total reflexion begins when the 
angle of incidence is about 48 degrees 35 minutes. In passing out of glass into 
air, where the refraction is measured by the ratio of the sines 20 to 31, the total 
reflexion begins when the angle of incidence is 40 degrees 10 minutes; and so in 
passing out of crystal, or more strongly refracting mediums into air, there is 
still a less obliquity requisite to cause a total reflexion. Superficies therefore 
which refract most do soonest reflect all the light which is incident on them, and 
so must be allowed most strongly reflexive. 

But the truth of this Proposition will further appear by observing that, in 
the superficies interceding two transparent mediums (such as are air, water, oil, 
common glass, crystal, metalline glasses, island glasses, white transparent ar- 
senic, diamonds, &c.), the reflexion is stronger or weaker accordingly as the 
superficies hath a greater or less refracting power. For in the confine of air and 
sal-gem 'tis stronger than in the confine of air and water, and still stronger in 
the confine of air and common glass or crystal, and stronger in the confine of 
air and a diamond. If any of these, and such like transparent solids, be im- 
merged in water, its reflexion becomes much weaker than before; and still 
weaker if they be immerged in the more strongly refracting liquors of well- 
rectified oil of vitriol or spirit of turpentine. If water be distinguished into two 
parts by any imaginary surface, the reflexion in the confine of those two parts 
is none at all. In the confine of water and ice 'tis very little; in that of water and 
oil 'tis something greater: in that of water and sal-gem still greater; and in 
that of water and glass, or crystal or other denser substances still greater, 
accordingly as those mediums differ more or less in their refracting powers. 
Hence, in the confine of common glass and crystal, there ought to be a weak 
reflexion, and a stronger reflexion in the confine of common and metalline 
glass; though I have not yet tried this. But in the confine of two glasses of 
equal density there is not any sensible reflexion, as was shewn in the first Ob- 
servation. And the same may be understood of the superficies separating two 
crystals, or two liquors, or any other substances in which no refraction is 
caused. So, then, the reason why uniform pellucid mediums (such as water, 
glass, or crystal) have no sensible reflexion but in their external superficies, 
where they are adjacent to other mediums of a different density, is because all 
their contiguous parts have one and the same degree of density. 

Proposition 2 
The least parts of almost all natural bodies are in some measure transparent: And 
the opacity of those bodies ariseth from the multitude of reflexions caused in their 
internal parts. 

That this is so has been observed by others, and will easily be granted by 
them that have been conversant with microscopes. And it may be also tried 
by applying any substance to a hole through which some light is immitted 
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into a dark room. For how opaque soever that substance may seem in the open 
air, it will by that means appear very manifestly transparent if it be of a suffi- 
cient thinness. Only white metalline bodies must be excepted, which by reason 
of their excessive density seem to reflect almost all the light incident on their 
first superficies; unless by solution in menstruums they be reduced into very 
small particles, and then they become transparent. 

Proposition 3 
Between the parts of opaque and coloured bodies are many spaces, either empty, or 
replenished with mediums of other densities; as water between the tinging corpuscles 
wherewith any liquor is impregnated, air between the aqueous globules that consti- 
tute clouds or mists; and for the most part spaces void of both air and water, but 
yet perhaps not wholly void of all substance, between the parts of hard bodies. 

The truth of this is evinced by the two precedent Propositions. For, by the 
second Proposition, there are many reflexions made by the internal parts of 
bodies, which, by the first Proposition, would not happen if the parts of those 
bodies were continued without any such interstices between them; because 
reflexions are caused only in superficies, which separate mediums of a differing 
density (Prop. 1). 

But further, that this discontinuity of parts is the principal cause of the 
opacity of bodies will appear by considering that opaque substances become 
transparent by filling their pores with any substance of equal or almost equal 
density with their parts. Thus, paper dipped in water or oil, the Oculus mundi 
stone steeped in water, linen cloth oiled or varnished, and many other sub- 
stances soaked in such liquors as will intimately pervade their little pores, 
become by that means more transparent than otherwise; so, on the contrary, 
the most transparent substances may, by evacuating their pores, or separating 
their parts, be rendered sufficiently opaque; as salts or wet paper, or the Oculus 
mundi stone by being dried, horn by being scraped, glass by being reduced to 
powder, or otherwise flawed; turpentine by being stirred about with water till 
they mix imperfectly, and water by being formed into many small bubbles, 
either alone in the form of froth, or by shaking it together with oil of turpen- 
tine, or olive oil, or with some other convenient liquor with which it will not 
perfectly incorporate. And to the increase of the opacity of these bodies, it 
conduces something, that by the 23d Observation the reflexions of very thin 
transparent substances are considerably stronger than those made by the same 
substances of a greater thickness. 

Proposition 4 
The parts of bodies and their interstices must not be less than of some definite big- 
ness, to render them opaque and coloured. 

For the opaquest bodies, if their parts be subtly divided (as metals, by 
being dissolved in acid menstruums, &c.), become perfectly transparent. And 
you may also remember that in the eighth Observation there was no sensible 
reflexion at the superficies of the object-glasses, where they were very near one 
another, though they did not absolutely touch. And in the 17th Observation 
the reflexion of the water-bubble where it became thinnest was almost insensi- 
ble, so as to cause very black spots to appear on the top of the bubble, by the 
want of reflected light. 



Book II: Part 3 481 

On these grounds I perceive it is that water, salt, glass, stones, and such like 
substances are transparent. For, upon divers considerations, they seem to be 
as full of pores or interstices between their parts as other bodies are, but yet 
their parts and interstices to be too small to cause reflexions in their common 
surfaces. 

Proposition 5 
The transparent parts of bodies, according to their several sizes, reflect rays of one 
colour, and transmit those of another, on the same grounds that thin plates or 
bubbles do reflect or transmit those rays. And this I take to be the ground of all 
their colours. 

For if a thinned or plated body, which being of an even thickness appears 
all over of one uniform colour, should be slit into threads, or broken into frag- 
ments, of the same thickness with the plate, I see no reason why every thread 
or fragment should not keep its colour, and by consequence why a heap of 
those threads or fragments should not constitute a mass or powder of the same 
colour, which the plate exhibited before it was broken. And the parts of all 
natural bodies, being like so many fragments of a plate, must on the same 
grounds exhibit the same colours. 

Now, that they do so will appear by the affinity of their properties. The 
finely coloured feathers of some birds, and particularly those of peacocks' tails, 
do, in the very same part of the feather, appear of several colours in several 
positions of the eye, after the very same manner that thin plates were found 
to do in the 7th and 19th Observations; and, therefore, their colours arise from 
the thinness of the transparent parts of the feathers; that is, from the slender- 
ness of the very fine hairs, or capillamenta, which grow out of the sides of the 
grosser lateral branches or fibres of those feathers. And to the same purpose 
it is that the webs of some spiders, by being spun very fine, have appeared 
coloured, as some have observed, and that the coloured fibres of some silks, by 
varying the position of the eye, do vary their colour. Also the colours of silks, 
cloths, and other substances, which water or oil can intimately penetrate, be- 
come more faint and obscure by being immerged in those liquors, and recover 
their vigour again by being dried; much after the manner declared of thin 
bodies in the 10th and 21st Observations. Leaf-gold, some sorts of painted 
glass, the infusion of lignum nephriticum, and some other substances, reflect 
one colour, and transmit another, like thin bodies in the 9th and 20th Observa- 
tions. And some of those coloured powders which painters use may have their 
colours a little changed by being very elaborately and finely ground. Where I 
see not what can be justly pretended for those changes, besides the breaking of 
their parts into less parts by that contrition, after the same manner that the 
colour of a thin plate is changed by varying its thickness. For which reason 
also it is that the coloured flowers of plants and vegetables, by being bruised, 
usually become more transparent than before, or at least in some degree or 
other change their colours. Nor is it much less to my purpose that, by mixing 
divers liquors, very odd and remarkable productions and changes of colours 
may be effected, of which no cause can be more obvious and rational than that 
the saline corpuscles of one liquor do variously act upon or unite with the 
tinging corpuscles of another, so as to make them swell, or shrink (whereby 
not only their bulk but their density also may be changed) or to divide them 
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into smaller corpuscles (whereby a coloured liquor may become transparent), 
or to make many of them associate into one cluster, whereby two transparent 
liquors may compose a coloured one. For we see how apt those saline men- 
struums are to penetrate and dissolve substances to which they are applied, 
and some of them to precipitate what others dissolve. In like manner, if we 
consider the various phenomena of the atmosphere, we may observe that when 
vapours are first raised they hinder not the transparency of the air, being 
divided into parts too small to cause any reflexion in their superficies. But 
when in order to compose drops of rain they begin to coalesce and constitute 
globules of all intermediate sizes, those globules, when they become of con- 
venient size to reflect some colours and transmit others, may constitute clouds 
of various colours, according to their sizes. And I see not what can be rationally 
conceived in so transparent a substance as water for the production of these 
colours, besides the various sizes of its fluid and globular parcels. 

Proposition 6 
The parts of bodies on which their colours depend, are denser than the medium 
which pervades their interstices. 

This will appear by considering that the colour of a body depends not only 
on the rays which are incident perpendicularly on its parts, but on those also 
which are incident at all other angles. And that, according to the 7th Observa- 
tion, a very little variation of obliquity will change the reflected colour, where 
the thin body or small particles is rarer than the ambient medium, insomuch 
that such a small particle will at diversely oblique incidences reflect all sorts 
of colours, in so great a variety that the colour resulting from them all, con- 
fusedly reflected from a heap of such particles, must rather be a white or grey 
than any other colour, or at best it must be but a very imperfect and dirty 
colour. Whereas if the thin body or small particle be much denser than the 
ambient medium, the colours, according to the 19th Observation, are so little 
changed by the variation of obliquity, that the rays which are reflected least 
obliquely may predominate over the rest, so much as to cause a heap of such 
particles to appear very intensely of their colour. 

It conduces also something to the confirmation of this Proposition that, ac- 
cording to the 22d Observation, the colours exhibited by the denser thin body 
within the rarer are more brisk than those exhibited by the rarer within the 
denser. 

Proposition 7 
The bigness of the component parts of natural bodies may be conjectured by their 
colours. 

For since the parts of these bodies (by Prop. 5), do most probably exhibit 
the same colours with a plate of equal thickness, provided they have the same 
refractive density; and since their parts seem for the most part to have much 
the same density with water or glass, as by many circumstances is obvious to 
collect; to determine the sizes of those parts, you need only have recourse to 
the precedent Tables, in which the thickness of water or glass exhibiting any 
colour is expressed. Thus, if it be desired to know the diameter of a corpuscle, 
which being of equal density with glass shall reflect green of the third order, 
the number 1634 shews it to be 1 q.^q parts of an inch. 
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The greatest difficulty is here to know of what order the colour of any body 

is. And for this end we must have recourse to the 4th and 18th Observations; 
from whence may be collected these particulars. 

Scarlets, and other reds, oranges, and yellows, if they be pure and intense, are 
most probably of the second order. Those of the first and third order also may 
be pretty good; only the yellow of the first order is faint, and the orange and 
red of the third order have a great mixture of violet and blue. 

There may be good greens of the fourth order, but the purest are of the third. 
And of this order the green of all vegetables seems to be, partly by reason of the 
intenseness of their colours, and partly because when they wither some of them 
turn to a greenish yellow, and others to a more perfect yellow or orange, or 
perhaps to red, passing first through all the aforesaid intermediate colours. 
Which changes seem to be effected by the exhaling of the moisture which may 
leave the tinging corpuscles more dense, and something augmented by the 
accretion of the oily and earthy part of that moisture. Now the green, without 
doubt, is of the same order with those colours into which it changeth, because 
the changes are gradual, and those colours, though usually not very full, yet 
are often too full and lively to be of the fourth order. 

Blues and purples may be either of the second or third order, but the best 
are of the third. Thus the colour of violets seems to be of that order, because 
their syrup by acid liquors turns red, and by urinous and alkalizate turns 
green. For since it is of the nature of acids to dissolve or attenuate, and of 
alkalies to precipitate or incrassate, if the purple colour of the syrup was of the 
second order an acid liquor, by attenuating its tinging corpuscles, would change 
it to a red of the first order, and an alkali by incrassating them would change it 
to a green of the second order; which red and green, especially the green, seem 
too imperfect to be the colours produced by these changes. But if the said 
purple be supposed of the third order, its change to red of the second, and green 
of the third, may without any inconvenience be allowed. 

If there be found any body of a deeper and less reddish purple than that of 
the violets, its colour most probably is of the second order. But yet there being 
no body commonly known whose colour is constantly more deep than theirs, 
I have made use of their name to denote the deepest and least reddish purples, 
such as manifestly transcend their colour in purity. 

The blue of the first order, though very faint and little, may possibly be the 
colour of some substances; and particularly the azure colour of the skies seems 
to be of this order. For all vapours when they begin to condense and coalesce 
into small parcels become first of that bigness, whereby such an azure must be 
reflected before they can constitute clouds of other colours. And so, this being 
the first colour which vapours begin to reflect, it ought to be the colour of the 
finest and most transparent skies, in which vapours are not arrived to that 
grossness requisite to reflect other colours, as we find it is by experience. 

Whiteness, if most intense and luminous, is that of the first order, if less 
strong and luminous, a mixture of the colours of several orders. Of this last 
kind is the whiteness of froth, paper, linen, and most white substances; of the 
former I reckon that of white metals to be. For whilst the densest of metals, 
gold, if foliated, is transparent, and all metals become transparent if dissolved 
in menstruums or vitrified, the opacity of white metals ariseth not from their 
density alone. They, being less dense than gold, would be more transparent 
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than it, did not some other cause concur with their density to make them 
opaque. And this cause I take to be such a bigness of their particles as fits 
them to reflect the white of the first order. For, if they be of other thicknesses, 
they may reflect other colours, as is manifest by the colours which appear upon 
hot steel in tempering it, and sometimes upon the surface of melted metals in 
the skin or scoria which arises upon them in their cooling. And as the white of 
the first order is the strongest which can be made by plates of transparent 
substances, so it ought to be stronger in the denser substances of metals than 
in the rarer of air, water, and glass. Nor do I see but that metallic substances 
of such a thickness as may fit them to reflect the white of the first order, may, 
by reason of their great density (according to the tenor of the first of these 
Propositions) reflect all the light incident upon them, and so be as opaque and 
splendent as it's possible for any body to be. Gold or copper mixed with less 
than half their weight of silver, or tin, or regulus of antimony, in fusion, or 
amalgamed with a very little mercury, become white; which shews both that 
the particles of white metals have much more superficies, and so are smaller, 
than those of gold and copper, and also that they are so opaque as not to suffer 
the particles of gold or copper to shine through them. Now, it is scarce to be 
doubted but that the colours of gold and copper are of the second and third 
order; and, therefore, the particles of white metals cannot be much bigger than 
is requisite to make them reflect the white of the first order. The volatility of 
mercury argues that they are not much bigger, nor may they be much less, 
lest they lose their opacity, and become either transparent as they do when at- 
tenuated by vitrification, or by solution in menstruums, or black as they do 
when ground smaller, by rubbing silver, or tin, or lead upon other substances 
to draw black lines. The first and only colour which white metals take by 
grinding their particles smaller is black, and therefore their white ought to be 
that which borders upon the black spot in the centre of the rings of colours; 
that is, the white of the first order. But, if you would hence gather the bigness 
of metallic particles, you must allow for their density. For were mercury trans- 
parent, its density is such that the sine of incidence upon it (by my computa- 
tion) would be to the sine of its refraction as 71 to 20, or 7 to 2. And, therefore, 
the thickness of its particles, that they may exhibit the same colours with 
those of bubbles of water, ought to be less than the thickness of the skin of 
those bubbles in the proportion of 2 to 7. Whence it's possible that the particles 
of mercury may be as little as the particles of some transparent and volatile 
fluids, and yet reflect the white of the first order. 

Lastly, for the production of black, the corpuscles must be less than any of 
those which exhibit colours. For at all greater sizes there is too much light 
reflected to constitute this colour. But if they be supposed a little less than is 
requisite to reflect the white and very faint blue of the first order, they will, 
according to the 4th, 8th, 17th and 18th Observations, reflect so very little 
light as to appear intensely black, and yet may perhaps variously refract it to 
and fro within themselves so long, until it happen to be stifled and lost, by 
which means they will appear black in all positions of the eye without any 
transparency. And from hence may be understood why fire, and the more 
subtle dissolver putrefaction, by dividing the particles of substances, turn 
them to black; why small quantities of black substances impart their colour 
very freely and intensely to other substances to which they are applied, the 
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minute particles of these, by reason of their very great number, easily over- 
spreading the gross particles of others; why glass ground very elaborately with 
sand on a copper plate, till it be well polished, makes the sand, together with 
what is worn off from the glass and copper, become very black: why black 
substances do soonest of all others become hot in the Sun's light and burn 
(which effect may proceed partly from the multitude of refractions in a little 
room, and partly from the easy commotion of so very small corpuscles;) and 
why blacks are usually a little inclined to a bluish colour. For that they are so 
may be seen by illuminating white paper by light reflected from black sub- 
stances. For the paper will usually appear of a bluish-white; and the reason is 
that black borders in the obscure blue of the order described in the 18th Obser- 
vation, and, therefore, reflects more rays of that colour than of any other. 

In these descriptions I have been the more particular, because it is not im- 
possible but that miscroscopes may at length be improved to the discovery of 
the particles of bodies on which their colours depend, if they are not already 
in some measure arrived to that degree of perfection. For if those instruments 
are or can be so far improved as with sufficient distinctness to represent objects 
five or six hundred times bigger than at a foot distance they appear to our 
naked eyes, I should hope that we might be able to discover some of the great- 
est of those corpuscles. And by one that would magnify three or four thousand 
times perhaps they might all be discovered, but those which produce blackness. 
In the meanwhile I see nothing material in this discourse that may rationally 
be doubted of, excepting this position: That transparent corpuscles of the same 
thickness and density with a plate do exhibit the same colour. And this I would 
have understood not without some latitude, as well because those corpuscles 
may be of irregular figures, and many rays must be obliquely incident on them, 
and so have a shorter way through them than the length of their diameters, as 
because the straitness of the medium put in on all sides within such corpuscles 
may a little alter its motions or other qualities on which the reflexion depends. 
But yet I cannot much suspect the last, because I have observed of some small 
plates of Muscovy glass, which were of an even thickness, that through a micro- 
scope they have appeared of the same colour at their edges and corners where 
the included medium was terminated, which they appeared of in other places. 
However, it will add much to our satisfaction if those corpuscles can be dis- 
covered with microscopes; which, if we shall at length attain to, I fear it will 
be the utmost improvement of this sense. For it seems impossible to see the 
more secret and noble works of Nature within the corpuscles by reason of 
their transparency. ^ 

Proposition 8 
The cause of reflexion is not the impinging of light on the solid or impervious parts 
of bodies, as is commonly believed. 

This will appear by the following considerations: First, that in the passage 
of light out of glass into air there is a reflexion as strong as in its passage out of 
air into glass, or rather a little stronger, and by many degrees stronger than in 
its passage out of glass into water. And it seems not probable that air should 
have more strongly reflecting parts than water or glass. But if that should 
possibly be supposed, yet it will avail nothing; for the reflexion is as strong or 
stronger when the air is drawn away from the glass (suppose by the air-pump 
invented by Otto Gueriet, and improved and made useful by Mr. Boyle) as 



486 Optics 
when it is adjacent to it. Secondly, if light in its passage out of glass into air 
be incident more obliquely than at an angle of 40 or 41 degrees it is wholly 
reflected, if less obliquely it is in great measure transmitted. Now, it is not to 
be imagined that light at one degree of obliquity should meet with pores 
enough in the air to transmit the greater part of it, and at another degree of 
obliquity should meet with nothing but parts to reflect it wholly, especially 
considering that in its passage out of air into glass, how oblique soever be its 
incidence, it finds pores enough in the glass to transmit a great part of it. If any 
man suppose that it is not reflected by the air, but by the outmost superficial 
parts of the glass, there is still the same difficulty; besides that, such a supposi- 
tion is unintelligible, and will also appear to be false by applying water behind 
some part of the glass instead of air. For so in a convenient obliquity of the 
rays, (suppose of 45 or 46 degrees) at which they are all reflected where the air 
is adjacent to the glass, they shall be in great measure transmitted where the 
water is adjacent to it; which argues that their reflexion or transmission de- 
pends on the constitution of the air and water behind the glass, and not on the 
striking of the rays upon the parts of the glass. Thirdly, if the colours made by 
a prism placed at the entrance of a beam of light into a darkened room be 
successively cast on a second prism placed at a greater distance from the for- 
mer, in such manner that they are all alike incident upon it, the second prism 
may be so inclined to the incident rays that those which are of a blue colour 
shall be all reflected by it, and yet those of a red colour pretty copiously trans- 
mitted. Now, if the reflexion be caused by the parts of air or glass, I would ask 
why at the same obliquity of incidence the blue should wholly impinge on those 
parts, so as to be all reflected, and yet the red find pores enough to be in a great 
measure transmitted. Fourthly, where two glasses touch one another, there is 
no sensible reflexion, as was declared in the first Observation; and yet I see no 
reason why the rays should not impinge on the parts of glass, as much when 
contiguous to other glass as when contiguous to air. Fifthly, when the top of a 
water-bubble (in the 17th Observation) by the continual subsiding and exhal- 
ing of the water grew very thin, there was such a little and almost insensible 
quantity of light reflected from it that it appeared intensely black; whereas 
round about that black spot, where the water was thicker, the reflexion was so 
strong as to make the water seem very white. Nor is it only at the least thick- 
ness of thin plates or bubbles that there is no manifest reflexion, but at many 
other thicknesses continually greater and greater. For in the 15th Observation 
the rays of the same colour were by turns transmitted at one thickness, and 
reflected at another thickness, for an indeterminate number of successions. 
And yet in the superficies of the thinned body, where it is of any one thickness, 
there are as many parts for the rays to impinge on as where it is of any other 
thickness. Sixthly, if reflexion were caused by the parts of reflecting bodies, it 
would be impossible for thin plates or bubbles, at one and the same place, to 
reflect the rays of one colour, and transmit those of another, as they do accord- 
ing to the 13th and 15th Observations. For it is not to be imagined that at one 
place the rays which, for instance, exhibit a blue colour, should have the for- 
tune to dash upon the parts, and those which exhibit a red to hit upon the pores 
of the body; and then at another place, where the body is either a little thicker 
or a little thinner, that on the contrary the blue should hit upon its pores, and 
the red upon its parts. Lastly, were the rays of light reflected by impinging on 
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the solid parts of bodies, their reflexions from polished bodies could not be so 
regular as they are. For in polishing glass with sand, putty, or tripoli, it is not 
to be imagined that those substances can, by grating and fretting the glass, 
bring all its least particles to an accurate polish; so that all their surfaces shall 
be truly plane or truly spherical, and look all the same way, so as together to 
compose one even surface. The smaller the particles of those substances are, 
the smaller will be the scratches by which they continually fret and wear away 
the glass until it be polished; but be they never so small they can wear away 
the glass no otherwise than by grating and scratching it, and breaking the 
protuberances; and, therefore, polish it no otherwise than by bringing its 
roughness to a very fine grain, so that the scratches and frettings of the surface 
become too small to be visible. And, therefore, if light were reflected by impinging 
upon the solid parts of the glass, it would be scattered as much by the most 
polished glass as by the roughest. So, then, it remains a problem how glass 
polished by fretting substances can reflect light so regularly as it does. And this 
problem is scarce otherwise to be solved than by saying that the reflexion of a 
ray is effected, not by a single point of the reflecting body, but by some power 
of the body which is evenly diffused all over its surface, and by which it acts 
upon the ray without immediate contact. For that the parts of bodies do act 
upon light at a distance shall be shewn hereafter. 

Now, if light be reflected, not by impinging on the solid parts of bodies but 
by some other principle, it's probable that as many of its rays as impinge on 
the solid parts of bodies are not reflected but stifled and lost in the bodies. For 
otherwise we must allow two sorts of reflexions. Should all the rays be reflected 
which impinge on the internal parts of clear water or crystal, those substances 
would rather have a cloudy colour than a clear transparency. To make bodies 
look black, it's necessary that many rays be stopped, retained, and lost in them; 
and it seems not probable that any rays can be stopped and stifled in them 
which do not impinge on their parts. 

And hence we may understand that bodies are much more rare and porous 
than is commonly believed. Water is nineteen times lighter, and by consequence 
nineteen times rarer, than gold; and gold is so rare as very readily and wflthout 
the least opposition to transmit the magnetic effluvia, and easily to admit 
quick-silver into its pores, and to let water pass through it. For a concave 
sphere of gold filled with water, and soldered up, has, upon pressing the sphere 
with great force, let the water squeeze through it, and stand all over its outside 
in multitudes of small drops, like dew, without bursting or cracking the body 
of the gold, as I have been informed by an eye-witness. From all wdiich wTe may 
conclude that gold has more pores than solid parts, and by consequence that 
water has above forty times more pores than parts. And he that shall find out 
an hypothesis by which water may be so rare, and yet not be capable of com- 
pression by force, may doubtless by the same hypothesis make gold, and w^ater, 
and all other bodies, as much rarer as he pleases; so that light may find a ready 
passage through transparent substances. 

The magnet acts upon iron through all dense bodies not magnetic nor red 
hot, without any diminution of its virtue; as for instance, through gold, silver, 
lead, glass, water. The gravitating power of the Sun is transmitted through the 
vast bodies of the planets without any diminution, so as to act upon all their 
parts to their very centres with the same force and according to the same laws, 
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as if the part upon which it acts were not surrounded with the body of the 
planet. The rays of light, whether they be very small bodies projected, or only 
motion or force propagated, are moved in right lines; and whenever a ray of 
light is by any obstacle turned out of its rectilinear way, it will never return 
into the same rectilinear way, unless perhaps by very great accident. And yet 
light is transmitted through pellucid solid bodies in right lines to very great 
distances. How bodies can have a sufficient quantity of pores for producing 
these effects is very difficult to conceive, but perhaps not altogether impossible. 
For the colours of bodies arise from the magnitudes of the particles which 
reflect them, as was explained above. Now, if we conceive these particles of 
bodies to be so disposed amongst themselves that the intervals or empty spaces 
between them may be equal in magnitude to them all; and that these particles 
may be composed of other particles much smaller, which have as much empty 
space between them as equals all the magnitudes of these smaller particles; and 
that in like manner these smaller particles are again composed of others much 
smaller, all which together are equal to all the pores or empty spaces between 
them; and so on perpetually till you come to solid particles, such as have no 
pores or empty spaces within them; and if in any gross body there be, for 
instance, three such degrees of particles, the least of which are solid, this body 
will have seven times more pores than solid parts. But if there be four such 
degrees of particles, the least of which are solid, the body will have fifteen times 
more pores than solid parts. If there be five degrees, the body will have one 
and thirty times more pores than solid parts. If six degrees, the body will have 
sixty and three times more pores than solid parts. And so on perpetually. And 
there are other ways of conceiving how bodies may be exceeding porous. But 
what is really their inward frame is not yet known to us. 

Proposition 9 
Bodies reflect and refract light by one and the same power, variously exercised in 
various circumstances. 

This appears by several considerations. First, because when light goes out of 
glass into air, as obliquely as it can possibly do, if its incidence be made still 
more oblique, it becomes totally reflected. For the power of the glass after it 
has refracted the light as obliquely as is possible, if the incidence be still made 
more oblique, becomes too strong to let any of its rays go through, and by 
consequence causes total reflexions. Secondly, because light is alternately re- 
flected and transmitted by thin plates of glass for many successions, accordingly 
as the thickness of the plate increases in an arithmetical progression. For here 
the thickness of the glass determines whether that power by which glass acts 
upon light shall cause it to be reflected, or suffer it to be transmitted. And, 
thirdly, because those surfaces of transparent bodies which have the greatest 
refracting power reflect the greatest quantity of light, as was shewn in the first 
Proposition. ^ 

Proposition 10 
If light he swifter in bodies than in vacuo, in the proportion of the sines which 
measure the refraction of the bodies the forces of the bodies to reflect and refract light 
are very nearly proportional to the densities of the same bodies] excepting that 
unctuous and sulphureous bodies refract more than others of this same density. 

Let AB represent the refracting plane surface of any body, and IC a ray 
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incident very obliquely upon the body in C, so that the angle ACI may be 
infinitely little, and let CR be the refracted ray. From a given point B per- 

pendicular to the refracting surface erect BR meeting 
with the refracting ray CR in R, and if CR represent 
the motion of the refracted ray, and this motion be 
distinguished into two motions CB and BR, whereof 
CB is parallel to the refracting plane, and BR per- 
pendicular to it: CB shall represent the motion of the 
incident ray, and BR the motion generated by the 
refraction, as opticians have of late explained. 

Now, if any body or thing, in moving through any space of a given breadth 
terminated on both sides by two parallel planes, be urged forward in all parts of 
that space by forces tending directly forwards towards the last plane, and, 
before its incidence on the first plane, had no motion towards it, or but an 
infinitely little one; and if the forces in all parts of that space, between the 
planes, be at equal distances from the planes equal to one another, but at 
several distances be bigger or less in any given proportion, the motion gener- 
ated by the forces in the whole passage of the body or thing through that space 
shall be in a subduplicate proportion of the forces, as mathematicians will easily 
understand. And, therefore, if the space of activity of the refracting superficies 
of the body be considered as such a space, the motion of the ray generated by 
the refracting force of the body, during its passage through that space (that is, 
the motion BR) must be in subduplicate proportion of that refracting force. 
I say, therefore, that the square of the line BR, and by consequence the refract- 
ing force of the body, is very nearly as the density of the same body. For this 
will appear by the following Table, wherein the proportion of the sines which 
measure the refractions of several bodies, the square of BR, supposing CB an 
unit, the densities of the bodies estimated by their specific gravities, and their 
refractive power in respect of their densities are set down in several columns. 

The refraction of the air in this Table is determined by that of the atmosphere 
observed by astronomers. For, if light pass through many refracting substances 
or mediums gradually denser and denser, and terminated with parallel surfaces, 
the sum of all the refractions will be equal to the single refraction which it 
would have suffered in passing immediately out of the first medium into the 
last. And this holds true, though the number of the refracting substances be 
increased to infinity, and the distances from one another as much decreased, so 
that the light may be refracted in every point of its passage, and by continual 
refractions bent into a curve-line. And, therefore, the whole refraction of light, 
in passing through the atmosphere from the highest and rarest part thereof 
down to the lowest and densest part, must be equal to the refraction which it 
would suffer in passing at like obliquity out of a vacuum immediately into air 
of equal density with that in the lowest part of the atmosphere. 

Now, although a pseudo-topaz, a selenitis, rock crystal, island crystal, vulgar 
glass (that is, sand melted together) and glass of antimony, which are terres- 
trial stony alkalizate concretes, and air which probably arises from such sub- 
stances by fermentation, be substances very differing from one another in 
density, yet by this Table, they have their refractive powers almost in the same 
proportion to one another as their densities are, excepting that the refraction 
of that strange substance, island crystal, is a little bigger than the rest. And 
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particularly air, which is 3,500 times rarer than the pseudo-topaz, and 4,400 
times rarer than glass of antimony, and 2,000 times rarer than the selenitis, glass 
vulgar, or crystal of the rock, has notwithstanding its rarity the same refractive 

The refracting bodies 

The proportion 
of the sines 

of incidence and 
refraction of 
yellow light 

The square 
of BR, to 
which the 
refracting 

force of the 
body is 

proportionate 

The density 
and specific 
gravity of 
the body 

The 
refractive 
power of 

the body in 
' respect of 

its density 

A pseudo-topazius, being a 
natural, pellucid, brittle, hairy 
stone, of a yellow colour.... 23 to 14 1.699 4.27 3979 
Air  3201 to 3200 0.000625 0.0012 5208 
Glass of antimony  17 to 9 2.568 5.28 4864 
A selenitis  61 to 41 1.213 2.252 5386 
Glass vulgar  31 to 20 1.4025 2.58 5436 
Crystal of the rock  25 to 16 1.445 2.65 5450 
Island crystal   5 to 3 1.778 2.72 6536 
Sal gemmae  17 to 11 1.388 2.143 6477 
Alum  35 to 24 1.1267 1.714 6570 
Borax  22 to 15 1.1511 1.714 6716 
Nitre  32 to 21 1.345 1.9 7079 
Danzig vitriol  303 to 200 1.295 1.715 7551 
Oil of vitriol  10 to 7 1.041 1.7 6124 
Rain water  529 to 396 0.7845 1. 7845 
Gum arabic  31 to 21 1.179 1.375 8574 
Spirit of wine well rectified.. 100 to 73 0.8765 0.866 10121 
Camphor  3 to 2 1.25 0.996 12551 
Olive oil  22 to 15 1.1511 0.913 12607 
Linseed oil  40 to 27 1.1948 0.932 12819 
Spirit of turpentine  25 to 17 1.1626 0.874 13222 
Amber  14 to 9 1.42 1.04 13654 
A diamond  100 to 41 4.949 3.4 14556 

power in respect of its density which those very dense substances have in re- 
spect of theirs, excepting so far as those differ from one another. 

Again, the refraction of camphor, olive oil, linseed oil, spirit of turpentine 
and amber, which are fat sulphureous unctuous bodies, and a diamond, which 
probably is an unctuous substance coagulated, have their refractive powers in 
proportion to one another as their densities without any considerable variation. 
But the refractive powers of these unctuous substances are two or three times 
greater in respect of their densities than the refractive powers of the former 
substances in respect of theirs. 

Water has a refractive power in a middle degree between those two sorts of 
substances, and probably is of a middle nature. For out of it grow all vegetable 
and animal substances, which consist as well of sulphureous fat and inflam- 
mable parts, as of earthy lean and alkalizate ones. 

Salts and vitriols have refractive powers in a middle degree between those of 
earthy substances and water, and accordingly are composed of those two sorts 
of substances. For by distillation and rectification of their spirits a great part of 
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them goes into water, and a great part remains behind in the form of a dry fixed 
earth capable of vitrification. 

Spirit of wine has a refractive power in a middle degree between those of 
water and oily substances, and accordingly seems to be composed of both, 
united by fermentation; the water, by means of some saline spirits with which 
'tis impregnated, dissolving the oil, and volatizing it by the action. For spirit of 
wine is inflammable by means of its oily parts, and being distilled often from 
salt of tartar, grows by every distillation more and more aqueous and phleg- 
matic. And chemists observe that vegetables (as lavender, rue, marjoram, &c.) 
distilled per se, before fermentation yield oils without any burning spirits, but 
after fermentation yield ardent spirits without oils; which shews that their 
oil is by fermentation converted into spirit. They find also that if oils be poured 
in a small quantity upon fermentating vegetables, they distil over after fer- 
mentation in the form of spirits. 

So then, by the foregoing Table, all bodies seem to have their refractive 
powers proportional to their densities (or very nearly); excepting so far as they 
partake more or less of sulphureous oily particles, and thereby have their 
refractive power made greater or less. Whence it seems rational to attribute 
the refractive power of all bodies chiefly, if not wholly, to the sulphureous parts 
with which they abound. For it's probable that all bodies abound more or less 
with sulphurs. And as light congregated by a burning-glass acts most upon 
sulphureous bodies, to turn them into fire and flame, so, since all action is mutu- 
al, sulphurs ought to act most upon light. For that the action between light and 
bodies is mutual may appear from this consideration: that the densest bodies 
which refract and reflect light most strongly grow hottest in the summer Sun, 
by the action of the refracted or reflected light. 

I have hitherto explained the power of bodies to reflect and refract, and 
shewed that thin transparent plates, fibres, and particles do, according to their 
several thicknesses and densities, reflect several sorts of rays, and thereby 
appear of several colours; and by consequence that nothing more is requisite 
for producing all the colours of natural bodies than the several sizes and densi- 
ties of their transparent particles. But whence it is that these plates, fibres, and 
particles do, according to their several thicknesses and densities, reflect several 
sorts of rays, I have not yet explained. To give some insight into this matter, 
and make way for understanding the next part of this book, I shall conclude 
this part with a few more Propositions. Those which preceded respect the 
nature of bodies, these the nature of light; for both must be understood before 
the reason of their actions upon one another can be known. And because the 
last Proposition depended upon the velocity of light, I will begin with a 
Proposition of that kind. 

Proposition 11 
Light is propagated from luminous bodies in time, and spends about seven or eight 
minutes of an hour in passing from the Sun to the Earth. 

This was observed first by Romer, and then by others, by means of the eclipses 
of the satellites of Jupiter. For these eclipses, when the Earth is between the Sun 
and Jupiter, happen about seven or eight minutes sooner than they ought to do 
by the Tables, and when the Earth is beyond the Sun they happen about seven 
or eight minutes later than they ought to do; the reason being that the light of 
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the satellites has farther to go in the latter case than in the former by the di- 
ameter of the Earth's orbit. Some inequalities of time may arise from the eccen- 
tricities of the orbs of the satellites; but those cannot answer in all the satellites, 
and at all times to the position and distance of the Earth from the Sun. The 
mean motions of Jupiter's satellites is also swifter in his descent from his 
aphelium to his perihelium, than in his ascent in the other half of his orb. But 
this inequality has no respect to the position of the Earth, and in the three 
interior satellites is insensible, as I find by computation from the theory of 
their gravity. 

Proposition 12 
Every ray of light in its passage through any refracting surface is put into a certain 
transient constitution or state, which in the progress of the ray returns at equal 
intervals, and disposes the ray at every return to be easily transmitted through the 
next refracting surface, and between the returns to be easily reflected by it. 

This is manifest by the 5th, 9th, 12th, and 15th Observations. For by those 
Observations it appears that one and the same sort of rays at equal angles of 
incidence on any thin transparent plate, is alternately reflected and trans- 
mitted for many successions accordingly as the thickness of the plate increases 
in arithmetical progression of the numbers, 0, 1, 2, 3, 4, 5, 6, 7, 8, &c. so that if 
the first reflexion (that which makes the first or innermost of the rings of 
colours there described) be made at the thickness 1, the rays shall be trans- 
mitted at the thicknesses 0, 2, 4, 6, 8, 10, 12, &c. and thereby make the central 
spot and rings of light, which appear by transmission, and be reflected at the 
thickness 1, 3, 5, 7, 9, 11, &c. and thereby make the rings which appear by 
reflexion. And this alternate reflexion and transmission, as I gather by the 24th 
Observation, continues for above a hundred vicissitudes, and by the Observa- 
tions in the next part of this book, for many thousands, being propagated from 
one surface of a glass plate to the other, though the thickness of the plate be a 
quarter of an inch or above; so that this alternation seems to be propagated 
from every refracting surface to all distances without end or limitation. 

This alternate reflexion and refraction depends on both the surfaces of every 
thin plate, because it depends on their distance. By the 21st Observation, if 
either surface of a thin plate of Muscovy glass be wetted, the colours caused by 
the alternate reflexion and refraction grow faint; and, therefore, it depends on 
them both. 

It is therefore performed at the second surface; for if it were performed at the 
first, before the rays arrive at the second, it would not depend on the second. 

It is also influenced by some action or disposition propagated from the first 
to the second, because otherwise at the second it would not depend on the first. 
And this action or disposition, in its propagation, intermits and returns by 
equal intervals, because in all its progress it inclines the ray at one distance 
from the first surface to be reflected by the second, at another to be transmitted 
by it, and that by equal intervals for innumerable vicissitudes. And because 
the ray is disposed to reflexion at the distances 1, 3, 5, 7, 9, &c. and to trans- 
mission at the distances 0, 2, 4, 6, 8, 10, &c. (for its transmission through the 
first surface is at the distance 0, and it is transmitted through both together, if 
their distance be infinitely little or much less than 1) the disposition to be 
transmitted at the distances 2, 4, 6, 8, 10, &c. is to be accounted a return of the 
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same disposition which the ray first had at the distance 0; that is, at its trans- 
mission through the first refracting surface. All which is the thing I would 
prove. 

What kind of action or disposition this is; whether it consists in a circulating 
or a vibrating motion of the ray, or of the medium, or something else, I do not 
here enquire. Those that are averse from assenting to any new discoveries, but 
such as they can explain by an hypothesis, may for the present suppose that as 
stones by falling upon water put the water into an undulating motion, and all 
bodies by percussion excite vibrations in the air, so the rays of light, by imping- 
ing on any refracting or reflecting surface, excite vibrations in the refracting or 
reflecting medium or substance, and by exciting them agitate the solid parts of 
the refracting or reflecting body, and by agitating them cause the body to grow 
warm or hot; that the vibrations thus excited are propagated in the refracting 
or reflecting medium or substance, much after the manner that vibrations are 
propagated in the air for causing sound, and move faster than the rays so as to 
overtake them; and that when any ray is in that part of the vibration which 
conspires with its motion, it easily breaks through a refracting surface, but 
when it is in the contrary part of the vibration which impedes its motion it is 
easily reflected; and, by consequence, that every ray is successively disposed to 
be easily reflected, or easily transmitted, by every vibration which overtakes it. 
But whether this hypothesis be true or false I do not here consider. I content 
myself with the bare discovery that the rays of light are, by some cause or 
other, alternately disposed to be reflected or refracted for many vicissitudes. 

DEFINITION 
The returns of the disposition of any ray to he reflected I will call its fits of 

easy reflexion, and those of its disposition to he transmitted its fits of easy 
transmisson, and the space it passes between every return and the next return, 
the interval of its fits. 

Proposition 13 
The reason why the surfaces of all thick transparent bodies reflect part of the light 
incident on them, and refract the rest, is that some rays at their incidence are in fits 
of easy reflexion, and others in fits of easy transmission. 

This may be gathered from the 24th Observation, where the light reflected 
by thin plates of air and glass, which to the naked eye appeared evenly white 
all over the plate, did through a prism appear waved with many successions of 
light and darkness made by alternate fits of easy reflexion and easy transmission, 
the prism severing and distinguishing the waves of which the white reflected 
light was composed, as was explained above. 

And hence light is in fits of easy reflexion and easy transmission before its 
incidence on transparent bodies. And probably it is put into such fits at its first 
emission from luminous bodies, and continues in them during all its progress. 
For these fits are of a lasting nature, as will appear by the next part of this book. 

In this Proposition I suppose the transparent bodies to be thick; because if 
the thickness of the body be much less than the interval of the fits of easy 
reflexion and transmission of the rays, the body loseth its reflecting power. For 
if the rays, which at their entering into the body are put into fits of easy trans- 
mission, arrive at the farthest surface of the body before they be out of those 



494 Optics 
fits, they must be transmitted. And this is the reason why bubbles of water lose 
their reflecting power when they grow very thin; and why all opaque bodies, 
when reduced into very small parts, become transparent. 

Proposition 14 
Those surfaces of transparent bodies, which if the ray be in a fit of refraction do 
refract it most strongly, if the ray be in a fit of reflexion do reflect it most easily. 

For we shewed above, in Prop. 8, that the cause of reflexion is not the 
impinging of light on the solid impervious parts of bodies, but some other 
power by which those solid parts act on light at a distance. We shewed also, in 
Prop. 9, that bodies reflect and refract light by one and the same power, 
variously exercised in various circumstances; and in Prop. 1 that the most 
strongly refracting surfaces reflect the most light. All which compared together 
evince and rarify both this and the last Proposition. 

Proposition 15 
In any one and the same sort of rays, emerging in any angle out of any refracting 
surface into one and the same medium, the interval of the following fits of easy 
reflexion and transmission are either accurately or very nearly as the rectangle of the 
secant of the angle of refraction, and of the secant of another angle, whose sine is 
the first of 106 arithmetical mean proportionals, between the sines of incidence and 
refraction, counted from the sine of refraction. 

This is manifest by the 7th and 19th Observations. 

Proposition 16 
In several sorts of rays emerging in equal angles out of any refracting surface into 
the same medium, the intervals of the following fits of easy reflexion and easy trans- 
mission are either accurately, or very nearly, as the cube roots of the squares of the 
lengths of a chord, which found the notes in an eight, sol, la, fa, sol, la, mi, fa, sol, 
with all their intermediate degrees answering to the colours of those rays, according 
to the analogy described in the seventh experiment of the second part of the first book. 

This is manifest by the 13th and 14th Observations. 

Proposition 17 
If rays of any sort pass perpendicularly into several mediums, the intervals of the 
fits of easy reflexion and transmission in any one medium are to those intervals in 
any other, as the sine of incidence to the sine of refraction, when the rays pass out of 
the first of those two mediums into the second. 

This is manifest by the 10th Observation. 

Proposition 18 
If the rays which paint the colour in the confine of yellow and orange pass perpen- 
dicularly out of any medium into air, the intervals of their fits of easy reflexion are 
the 89,o00th part of an inch. And of the same length are the intervals of their fits 
of easy transmission. 

This is manifest by the 6th Observation. 
From these Propositions it is easy to collect the intervals of the fits of easy 

reflexion and easy transmission of any sort of rays refracted in any angle into 
any medium; and thence to know whether the rays shall be reflected or trans- 
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mitted at their subsequent incidence upon any other pellucid medium. Which 
thing, being useful for understanding the next part of this book, was here to be 
set down. And for the same reason I add the two following Propositions. 

Proposition 19 

If any sort of rays falling on the polite surface of any pellucid medium he reflected 
hack, the fits of easy reflexion, which they have at the point of reflexion, shall still 
continue to return; and the returns shall he at distances from the point of reflexion 
in the arithmetical progression of the numbers 2, 4, 6, 8, 10, 12, &c. and between 
these fits the rays shall he in fits of easy transmission. 

For since the fits of easy reflexion and easy transmission are of a returning 
nature, there is no reason why these fits, which continued till the ray arrived at 
the reflecting medium and there inclined the ray to reflexion, should there 
cease. And if the ray at the point of reflexion was in a fit of easy reflexion, the 
progression of the distances of these fits from that point must begin from 0, and 
so be of the numbers 0, 2, 4, 6, 8, &c. And, therefore, the progression of the 
distances of the intermediate fits of easy transmission, reckoned from the same 
point, must be in the progression of the odd numbers 1, 3, 5, 7, 9, <Scc. contrary 
to what happens when the fits are propagated from points of refraction. 

Proposition 20 
The intervals of the fits of easy reflexion and easy transmission, propagated from 

points of reflexion into any medium, are equal to the intervals of the like fits which 
the same rays would have if refracted into the same medium in angles of refraction 
equal to their angles of reflexion. 

For when light is reflected by the second surface of thin plates, it goes out 
afterwards freely at the first surface to make the rings of colours which appear 
by reflexion; and, by the freedom of its egress, makes the colours of these rings 
more vivid and strong than those which appear on the other side of the plates 
by the transmitted light. The reflected rays are, therefore, in fits of easy trans- 
mission at their egress; which would not always happen if the intervals of the 
fits within the plate after reflexion were not equal, both in length and number, 
to their intervals before it. And this confirms also the proportions set down in 
the former Proposition. For if the rays both in going in and out at the first 
surface be in fits of easy transmission, and the intervals and numbers of those 
fits between the first and second surface, before and after reflexion, be equal, 
the distances of the fits of easy transmission from either surface must be in the 
same progression after reflexion as before; that is, from the first surface which 
transmitted them in the progression of the even numbers 0, 2, 4, 6, 8, &c. and 
from the second which reflected them, in that of the odd numbers 1, 3, 5, 7, &c. 
But these two Propositions will become much more evident by the Observa- 
tions in the following part of this book. 
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Part IV 

Observations concerning the reflexions and colours of thick transparent polished 
plates. 
There is no glass or speculum how well soever polished but, besides the light 
which it refracts or reflects regularly, scatters every way irregularly a faint 
light, by means of which the polished surface, when illuminated in a dark room 
by a beam of the Sun's light, may be easily seen in all positions of the eye. 
There are certain phenomena of this scattered light, which when I first ob- 
served them, seemed very strange and surprising to me. My Observations were 
as follows. 

Obs. 1. The Sun shining into my darkened chamber through a hole one-third 
of an inch wide, I let the intromitted beam of light fall perpendicularly upon a 
glass speculum ground concave on one side and convex on the other, to a sphere 
of five feet and eleven inches radius, and quick-silvered over on the convex 
side. And holding a white opaque chart or a quire of paper at the centre of the 
spheres to which the speculum was ground (that is, at the distance of about 
five feet and eleven inches from the speculum, in such manner that the beam 
of light might pass through a little hole made in the middle of the chart to the 
speculum, and thence be reflected back to the same hole) I observed upon the 
chart four or five concentric irises or rings of colours, like rainbows, encompass- 
ing the hole much after the manner that those, which in the fourth and following 
Observations of the first part of this book appeared between the object-glasses, 
encompassed the black spot, but yet larger and fainter than those. These rings 
as they grew larger and larger became diluter and fainter, so that the fifth was 
scarce visible. Yet sometimes, when the Sun shone very clear, there appeared 
faint lineaments of a sixth and seventh. If the distance of the chart from the 
speculum was much greater or much less than that of six feet, the rings became 
dilute and vanished. And if the distance of the speculum from the window was 
much greater than that of six feet, the reflected beam of light would be so broad, 
at the distance of six feet from the speculum where the rings appeared, as to 
obscure one or two of the innermost rings. And, therefore, I usually placed the 
speculum at about six feet from the window, so that its focus might there fall in 
with the centre of its concavity at the rings upon the chart. And this posture is 
always to be understood in the following Observations where no other is 
expressed. 

Obs. 2. The colours of these rainbows succeeded one another from the centre 
outwards, in the same form and order with those which were made in the ninth 
Observation of the first part of this book, by light not reflected but transmitted 
through the two object-glasses. For, first, there was in their common centre a 
white round spot of faint light, something broader than the reflected beam of 
light, which beam sometimes fell upon the middle of the spot, and sometimes 
by a little inclination of the speculum receded from the middle, and left the 
spot white to the centre. 

This white spot was immediately encompassed with a dark grey or russet, 
and that dark grey with the colours of the first iris; which colours on the inside 
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next the dark grey were a little violet and indigo, and next to that a blue, which 
on the outside grew pale, and then succeeded a little greenish yellow, and after 
that a brighter yellow, and then on the outward edge of the iris a red which on 
the outside inclined to purple. 

This iris was immediately encompassed with a second, whose colours were, 
in order from the inside outwards: purple, blue, green, yellow, light red, a red 
mixed with purple. 

Then immediately followed the colours of the third iris, which were in order 
outwards a green inclining to purple, a good green, and a red more bright than 
that of the former iris. 

The fourth and fifth iris seemed of a bluish-green within, and red without, 
but so faintly that it was difficult to discern the colours. 

Obs. 3. Measuring the diameters of these rings upon the chart as accurately 
as I could, I found them also in the same proportion to one another with the 
rings made by light transmitted through the two object-glasses. For the diam- 
eters of the four first of the bright rings measured between the brightest parts 
of their orbits, at the distance of six feet from the speculum, were l1/^, 2^, 

inches, whose squares are in arithmetical progression of the numbers 
1, 2, 3, 4. If the white circular spot in the middle be reckoned amongst the 
rings, and its central light, where it seems to be most luminous, be put equi- 
pollent to an infinitely little ring, the squares of the diameters of the rings will 
be in the progression 0, 1,2, 3, 4, &c. I measured also the diameters of the dark 
circles between these luminous ones, and found their squares in the progression 
of the numbers 3^2, 13^ 23^, 33^, &c. the diameters of the first four, at the 
distance of six feet from the speculum, being 2]/^, 2%, 3/^0 inches. If 
the distance of the chart from the speculum was increased or diminished, the 
diameters of the circles were increased or diminished proportionally. 

Obs. 4. By the analogy between these rings and those described in the Ob- 
servations of the first part of this book, I suspected that there were many more 
of them which spread into one another, and by interfering mixed their colours, 
and diluted one another so that they could not be seen apart. I viewed them, 
therefore, through a prism, as I did those in the 24th Observation of the first 
part of this book. And when the prism was so placed as by refracting the light 
of their mixed colours to separate them, and distinguish the rings from one 
another, as it did those in that Observation, I could then see them distincter 
than before, and easily number eight or nine of them, and sometimes twelve or 
thirteen. And had not their light been so very faint, I question not but that I 
might have seen many more. 

Obs. 5. Placing a prism at the window to refract the intromitted beam of 
light, and cast the oblong spectrum of colours on the speculum, I covered the 
speculum with a black paper which had in the middle of it a hole to let any one 
of the colours pass through to the speculum, whilst the rest were intercepted by 
the paper. And now I found rings of that colour only which fell upon the specu- 
lum. If the speculum was illuminated with red, the rings were totally red with 
dark intervals; if with blue they were totally blue; and so of the other colours. 
And when they were illuminated with any one colour, the squares of their 
diameters, measured between their most luminous parts, were in the arith- 
metical progression of the numbers, 0, 1, 2, 3, 4 and the squares of the diame- 
ters of their dark intervals in the progression of the intermediate numbers 
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34 13^2, 23^, 33^- But if the colour was varied, they varied their magnitude. In 
the red they were largest, in the indigo and violet least, and in the intermediate 
colours (yellow, green, and blue) they were of several intermediate bignesses 
answering to the colour; that is, greater in yellow than in green, and greater in 
green than in blue. And hence I knewT that when the speculum was illuminated 
with white light, the red and yellow on the outside of the rings were produced 
by the least refrangible rays, and the blue and violet by the most refrangible, 
and that the colours of each ring spread into the colours of the neighbouring 
rings on either side, after the manner explained in the first and second parts of 
this book, and by mixing diluted one another so that they could not be dis- 
tinguished, unless near the centre where they were least mixed. For in this 
Observation I could see the rings more distinctly, and to a greater number than 
before, being able in the yellow light to number eight or nine of them, besides a 
faint shadow of a tenth. To satisfy myself how much the colours of the several 
rings spread into one another, I measured the diameters of the second and 
third rings, and found them, when made by the confine of the red and orange, 
to be to the same diameters when made by the confine of blue and indigo, as 9 
to 8, or thereabouts. For it was hard to determine this proportion accurately. 
Also the circles made successively by the red, yellow, and green differed more 
from one another than those made successively by the green, blue and indigo. 
For the circle made by the violet was too dark to be seen. To carry on the 
computation, let us therefore suppose that the differences of the diameters of 
circles made by the outmost red, the confine of red and orange, the confine of 
orange and yellow, the confine of yellow and green, the confine of green and 
blue, the confine of blue and indigo, the confine of indigo and violet, and out- 
most violet, are in proportion as the differences of the lengths of a monochord 
which sound the tones in an eight: sol, la, fa, sol, la, mi, fa, sol; that is, as the 
numbers j/9, Ms. M2, ^2? 2/27, Ms- And if the diameter of the circle made by 
the confine of red and orange be 9A, and that of the circle made by the confine 
of blue and indigo be 8A as above, their difference (9A —8A) will be to the dif- 
ference of the diameters of the circles made by the outmost red, and by the con- 
fine of red and orange, as M8+M2+M2+M7 "to M (that is, as Mr to /4 or 8 to 
3) and to the difference of the circles made by the outmost violet, and by the con- 
fine of blue and indigo, as M84-M2H"M24-M7 to M7+M8 (that is, as M7 to M4, 
or as 16 to 5). And, therefore, these differences will be ^gA and MeA. Add the 
first to 9A and subduct the last from 8A, and you will have the diameters of 
the circles made by the least and most refrangible rays 7MA and 61 ^MA. These 
diameters are, therefore, to one another as 75 to 61M or ^0 to 41, and their 
squares as 2,500 to 1,681; that is, as 3 to 2 very nearly. Which proportion dif- 
fers not much from the proportion of the diameters of the circles made by the 
outmost red and outmost violet, in the 13th Observation of the first part of 
this book. 

Obs. 6. Placing my eye where these rings appeared plainest, I saw the specu- 
lum tinged all over with waves of colours (red, yellow, green, blue) like those 
which in the Observations of the first part of this book appeared between the 
object-glasses, and upon bubbles of water, but much larger. And after the 
manner of those, they were of various magnitudes in various positions of the 
eye, swelling and shrinking as I moved my eye this way and that way. They 
were formed like arcs of concentric circles, as those were; and when my eye was 
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over against the centre of the concavity of the speculum, (that is, 5 feet and 
10 inches distant from the speculum) their common centre was in a right line 
with that centre of concavity, and with the hole in the window. But in other 
postures of my eye their centre had other positions. They appeared by the light 
of the clouds propagated to the speculum through the hole in the window; and 
when the Sun shone through that hole upon the speculum, his light upon it was 
of the colour of the ring whereon it fell, but by its splendor obscured the rings 
made by the light of the clouds, unless when the speculum was removed to a 
great distance from the window so that his light upon it might be broad and 
faint. By varying the position of my eye, and moving it nearer to or farther 
from the direct beam of the Sun's light, the colour of the Sun's reflected light 
constantly varied upon the speculum, as it did upon my eye, the same colour 
always appearing to a bystander upon my eye which to me appeared upon the 
speculum. And thence I knew that the rings of colours upon the chart were 
made by these reflected colours, propagated thither from the speculum in 
several angles, and that their production depended not upon the termination of 
light and shadow. 

Obs. 7. By the analogy of all these phenomena with those of the like rings of 
colours described in the first part of this book, it seemed to me that these 
colours were produced by this thick plate of glass, much after the manner that 
those were produced by very thin plates. For, upon trial, I found that if the 
quick-silver were rubbed off from the backside of the speculum, the glass alone 
would cause the same rings of colours, but much more faint than before; and, 
therefore, the phenomenon depends not upon the quick-silver, unless so far as 
the quick-silver, by increasing the reflexion of the backside of the glass, in- 
creases the light of the rings of colours. I found also that a speculum of metal 
without glass made some years since for optical uses, and very well wrought, 
produced none of those rings; and thence I understood that these rings arise 
not from one specular surface alone, but depend upon the two surfaces of the 
plate of glass whereof the speculum was made, and upon the thickness of the 
glass between them. For as in the 7th and 19th Observations of the first part of 
this book a thin plate of air, water, or glass of an even thickness appeared of one 
colour when the rays were perpendicular to it, of another when they were a 
little oblique, of another when more oblique, of another when still more oblique, 
and so on; so here, in the sixth Observation, the light which emerged out of the 
glass in several obliquities made the glass appear of several colours, and being 
propagated in those obliquities to the chart, there painted rings of those 
colours. And as the reason why a thin plate appeared of several colours in 
several obliquities of the rays was that the rays of one and the same sort are 
reflected by the thin plate at one obliquity and transmitted at another, and 
those of other sorts transmitted where these are reflected, and reflected where 
these are transmitted; so the reason why the thick plate of glass whereof the 
speculum was made did appear of various colours in various obliquities, and 
in those obliquities propagated those colours to the chart, was that the rays of 
one and the same sort did at one obliquity emerge out of the glass, at another 
did not emerge, but were reflected back towards the quick-silver by the hither 
surface of the glass, and accordingly as the obliquity became greater and 
greater, emerged and were reflected alternately for many successions; and that 
in one and the same obliquity the rays of one sort were reflected, and those of 
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another transmitted. This is manifest by the fifth Observation of this part of 
this book. For in that Observation, when the speculum was illuminated by any 
one of the prismatic colours, that light made many rings of the same colour 
upon the chart with dark intervals, and, therefore, at its emergence out of the 
speculum was alternately transmitted and not transmitted from the speculum 
to the chart for many successions, according to the various obliquities of its 
emergence. And when the colour cast on the speculum by the prism was varied, 
the rings became of the colour cast on it, and varied their bigness with their 
colour; and, therefore, the light was now alternately transmitted and not trans- 
mitted from the speculum to the chart at other obliquities than before. It 
seemed to me, therefore, that these rings were of one and the same original with 
those of thin plates, but yet with this difference: that those of thin plates are 
made by the alternate reflexions and transmissions of the rays at the second 
surface of the plate, after one passage through it; but here the rays go twice 
through the plate before they are alternately reflected and transmitted. First, 
they go through it from the first surface to the quick-silver, and then return 
through it from the quick-silver to the first surface, and there are either transmit- 
ted to the chart or reflected back to the quick-silver, accordingly as they are in 
their fits of easy reflexion or transmission when they arrive at that surface. For 
the intervals of the fits of the rays which fall perpendicularly on the speculum, 
and are reflected back in the same perpendicular lines, by reason of the equality of 
these angles and lines, are of the same length and number within the glass after 
reflexion as before, by the 19th Proposition of the third part of this book. And, 
therefore, since all the rays that enter through the first surface are in their fits 
of easy transmission at their entrance, and as many of these as are reflected by 
the second are in their fits of easy reflexion there, all these must be again in 
their fits of easy transmission at their return to the first, and by consequence 
there go out of the glass to the chart, and form upon it the white spot of light in 
the centre of the rings. For the reason holds good in all sorts of rays, and, there- 
fore, all sorts must go out promiscuously to that spot, and by their mixture 
cause it to be white. But the intervals of the fits of those rays which are reflected 
more obliquely than they enter, must be greater after reflexion than before, by 
the 15th and 20th Propositions. And thence it may happen that the rays at 
their return to the first surface may in certain obliquities be in fits of easy 
reflexion, and return back to the quick-silver, and in other intermediate 
obliquities be again in fits of easy transmission, and so go out to the chart, and 
paint on it the rings of colours about the white spot. And because the intervals 
of the fits at equal obliquities are greater and fewer in the less refrangible rays, 
and less and more numerous in the more refrangible, therefore the less re- 
frangible at equal obliquities shall make fewer rings than the more refrangible, 
and the rings made by those shall be larger than the like number of rings made 
by these; that is, the red rings shall be larger than the yellow, the yellow than 
the green, the green than the blue, and the blue than the violet, as they were 
really found to be in the fifth Observation. And, therefore, the first ring of all 
colours encompassing the white spot of light shall be red without any violet 
within, and yellow, and green, and blue in the middle, as it was found in the 
second Observation; and these colours in the second ring, and those that follow, 
shall be more expanded, till they spread into one another, and blend one an- 
other by interfering. 
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These seem to be the reasons of these rings in general; and this put me upon 
observing the thickness of the glass, and considering whether the dimensions 
and proportions of the rings may be truly derived from it by computation. 

Obs. 8. I measured, therefore, the thickness of this concavo-convex plate of 
glass, and found it everywhere one-quarter of an inch precisely. Now, by the 
sixth Observation of the first part of this book, a thin plate of air transmits the 
brightest light of the first ring (that is, the bright yellow) when its thickness is 
the 89,ooofh part of an inch; and by the tenth Observation of the same part, a 
thin piate of glass transmits the same light of the same ring when its thickness 
is less in proportion of the sine of refraction to the sine of incidence (that is, 
when its thickness is the 1,513^000^ or part of an inch, supposing the 
sines are as 11 to 17). And if this thickness be doubled, it transmits the same 
bright light of the second ring; if tripled, it transmits that of the third, and so 
on; the bright yellow light in all these cases being in its fits of transmission. 
And, therefore, if its thickness be multiplied 34,386 times, so as to become 
one-quarter of an inch, it transmits the same bright light of the 34,386th ring. 
Suppose this be the bright yellow light transmitted perpendicularly from the 
reflecting convex side of the glass through the concave side to the white spot in 
the centre of the rings of colours on the chart; and by a rule in the 7th and 19th 
Observations in the first part of this book, and by the 15th and 20th Proposi- 
tions of the third part of this book, if the rays be made oblique to the glass, the 
thickness of the glass requisite to transmit the same bright light of the same 
ring in any obliquity is to this thickness of one-quarter of an inch, as the secant 
of a certain angle to the radius, the sine of which angle is the first of a hundred 
and six arithmetical means between the sines of incidence and refraction, 
counted from the sine of incidence when the refraction is made out of any 
plated body into any medium encompassing it; that is, in this case, out of glass 
into air. Now, if the thickness of the glass be increased by degrees, so as to bear 
to its first thickness (viz., that of a quarter of an inch), the proportions which 
34,386 (the number of fits of the perpendicular rays in going through the glass 
towards the white spot in the centre of the rings) hath to 34,385, 34,384, 34,383, 
and 34,382 (the numbers of the fits of the oblique rays in going through the 
glass towards the first, second, third, and fourth rings of colours); and if the 
first thickness be divided into 100,000,000 equal parts, the increased thicknesses 
will be 100,002,908, 100,005,816, 100,008,725, and 100,011,633, and the angles 
of which these thicknesses are secants will be 26' IS'', 37' 5", 45' 6", and 52' 
26/,, the radius being 100,000,000; and the sines of these angles are 762, 1,079, 
1,321, and 1,525, and the proportional sines of refraction 1,172, 1,659, 2,031, 
and 2,345, the radius being 100,000. For since the sines of incidence out of glass 
into air are to the sines of refraction as 11 to 17, and to the above-mentioned 
secants as 11 to the first of 106 arithmetical means between 11 and 17 (that is, 
as 11 to 11 yrhr), those secants will be to the sines of refraction as 11 t&g to 
17, and by this analogy will give these sines. So, then, if the obliquities of the 
rays to the concave surface of the glass be such that the sines of their refraction 
in passing out of the glass through that surface into the air be 1,172, 1,659, 
2,031, 2,345, the bright light of the 34,386th ring shall emerge at the thicknesses 
of the glass, which are to one-quarter of an inch as 34,386 to 34,385, 34,384, 
34,383, 34,382, respectively. And, therefore, if the thickness in all these cases 
be one-quarter of an inch (as it is in the glass of which the speculum was made) 
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the bright light of the 34,385th ring shall emerge where the sine of refraction is 
1,172, and that of the 34,384th, 34,383rd, and 34,382nd ring where the sine is 
1,659, 2,031, and 2,345, respectively. And in these angles of refraction the light 
of these rings shall be propagated from the speculum to the chart, and there 
paint rings about the white central round spot of light which, we said, was the 
light of the 34,386th ring. And the semidiameters of these rings shall subtend 
the angles of refraction made at the concave surface of the speculum, and by 
consequence their diameters shall be to the distance of the chart from the 
speculum as those sines of refraction doubled are to the radius (that is, as 1,172, 
1,659, 2,031, and 2,345, doubled, are to 100,000). And, therefore, if the distance 
of the chart from the concave surface of the speculum be six feet (as it was in 
the third of these Observations), the diameters of the rings of this bright yellow 
light upon the chart shall be 1.688, 2.389, 2.925, 3.375 inches; for these diam- 
eters are to six feet as the above-mentioned sines doubled are to the radius. 
Now, these diameters of the bright yellow rings, thus found by computation, 
are the very same with those found in the third of these Observations by 
measuring them, viz., with l1^, 2^, 21//j^ and 3^8 inches; and, therefore, 
the theory of deriving these rings from the thickness of the plate of glass of 
which the speculum was made, and from the obliquity of the emerging rays, 
agrees with the Observation. In this computation I have equalled the diameters 
of the bright rings made by light of all colours, to the diameters of the rings 
made by the bright yellow. For this yellow makes the brightest part of the rings 
of all colours. If you desire the diameters of the rings made by the light of any 
other unmixed colour, you may find them readily by putting them to the diam- 
eters of the bright yellow ones in a subduplicate proportion of the intervals of 
the fits of the rays of those colours when equally inclined to the refracting or 
reflecting surface which caused those fits; that is, by putting the diameters of 
the rings made by the rays in the extremities and limits of the seven colours 
(red, orange, yellow, green, blue, indigo, violet) proportional to the cube roots 
of the numbers, 1, %, /iS, Me, which express the lengths of a 
monochord sounding the notes in an eighth. For by this means the diameters of 
the rings of these colours mil be found pretty nearly in the same proportion to 
one another which they ought to have by the fifth of these Observations. 

And thus I satisfied myself that these rings were of the same kind and origi- 
nal with those of thin plates, and by consequence that the fits or alternate 
dispositions of the rays to be reflected and transmitted are propagated to great 
distances from every reflecting and refracting surface. But yet to put the 
matter out of doubt, I added the following Observation. 

Obs. 9. If these rings thus depend on the thickness of the plate of glass, their 
diameters at equal distances from several speculums made of such concavo- 
convex plates of glass as are ground on the same sphere ought to be reciprocally 
in a subduplicate proportion of the thicknesses of the plates of glass. And if 
this proportion be found true by experience it will amount to a demonstration 
that these rings (like those formed in thin plates) do depend on the thickness of 
the glass. I procured, therefore, another concavo-convex plate of glass ground 
on both sides to the same sphere with the former plate. Its thickness was 
parts of an inch; and the diameters of the three first bright rings measured 
between the brightest parts of their orbits at the distance of six feet from the 
glass were 3, 4M, 5}^ inches. Now, the thickness of the other glass being one- 
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quarter of an inch was to the thickness of this glass as }/i to that is, as 31 
to 10, or 310,000,000 to 100,000,000; and the roots of these numbers are 17,607 
and 10,000, and in the proportion of the first of these roots to the second are the 
diameters of the bright rings made in this Observation by the thinner glass, 3, 
4^/6, 53^8, to the diameters of the same rings made in the third of these Observa- 
tions by the thicker glass 2^8, that is, the diameters of the rings 
are reciprocally in a subduplicate proportion of the thicknesses of the plates of 
glass. 

So, then, in plates of glass which are alike concave on one side, and alike 
convex on the other side, and alike quick-silvered on the convex sides, and 
differ in nothing but their thickness, the diameters of the rings are reciprocally 
in a subduplicate proportion of the thicknesses of the plates. And this shews 
sufficiently that the rings depend on both the surfaces of the glass. They depend 
on the convex surface because they are more luminous when that surface is 
quick-silvered over than when it is without quick-silver. They depend also 
upon the concave surface, because without that surface a speculum makes them 
not. They depend on both surfaces, and on the distances between them, because 
their bigness is varied by varying only that distance. And this dependence is of 
the same kind with that which the colours of thin plates have on the distance of 
the surfaces of those plates, because the bigness of the rings, and their pro- 
portion to one another, and the variation of their bigness arising from the 
variation of the thickness of the glass, and the orders of their colours, is such as 
ought to result from the Propositions in the end of the third part of this book, 
derived from the phenomena of the colours of thin plates set down in the first 
part. 

There are yet other phenomena of these rings of colours, but such as follow 
from the same Propositions, and therefore confirm both the truth of those 
Propositions, and the analogy between these rings and the rings of colours 
made by very thin plates. I shall subjoin some of them. 

Obs. 10. When the beam of the Sun's light was reflected back from the specu- 
lum, not directly to the hole in the window but to a place a little distant from 
it, the common centre of that spot, and of all the rings of colours, fell in the 
middle way between the beam of the incident light and the beam of the re- 
flected light, and by consequence in the centre of the spherical concavity of the 
speculum, whenever the chart on which the rings of colours fell was placed at 
that centre. And as the beam of reflected light by inclining the speculum re- 
ceded more and more from the beam of incident light and from the common 
centre of the coloured rings between them, those rings grew bigger and bigger, 
and so also did the white round spot, and new rings of colours emerged succes- 
sively out of their common centre, and the white spot became a white ring 
encompassing them; and the incident and reflected beams of light always fell 
upon the opposite parts of this white ring, illuminating its perimeter like two 
mock Suns in the opposite parts of an iris. So, then, the diameter of this ring, 
measured from the middle of its light on one side to the middle of its light on 
the other side, was always equal to the distance between the middle of the 
incident beam of light, and the middle of the reflected beam measured at the 
chart on which the rings appeared. And the rays which formed this ring were 
reflected by the speculum in angles equal to their angles of incidence, and by 
consequence to their angles of refraction at their entrance into the glass, but 
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yet their angles of reflexion were not in the same planes with their angles of 
incidence. 

Obs. 11. The colours of the new rings were in a contrary order to those of the 
former, and arose after this manner; the white round spot of light in the middle 
of the rings continued white to the centre till the distance of the incident and 
reflected beams at the chart was about parts of an inch, and then it began to 
grow dark in the middle. And when that distance was about l/^e of an inch, 
the white spot was become a ring encompassing a dark round spot which in the 
middle inclined to violet and indigo. And the luminous rings encompassing it 
were grown equal to those dark ones which in the four first Observations en- 
compassed them; that is to say, the white spot was grown a white ring equal to 
the first of those dark rings, and the first of those luminous rings was now 
grown equal to the second of those dark ones, and the second of those luminous 
ones to the third of those dark ones, and so on. For the diameters of the lu- 
minous rings were now 2/^6, 2%, B/^o, inches. 

When the distance between the incident and reflected beams of light became 
a little bigger, there emerged out of the middle of the dark spot after the indigo 
a blue, and then out of that blue a pale green, and soon after a yellow and red. 
And when the colour at the centre was brightest (being between yellow and 
red) the bright rings were grown equal to those rings which in the four first 
Observations next encompassed them; that is to say, the white spot in the 
middle of those rings was now become a white ring equal to the first of those 
bright rings, and the first of those bright ones was now become equal to the 
second of those, and so on. For the diameters of the white ring, and of the other 
luminous rings encompassing it, were now Vyie, 2^, 2u/i2, B^g, &c. or there- 
abouts. 

When the distance of the two beams of light at the chart was a little more 
increased, there emerged out of the middle, in order, after the red: a purple, a 
blue, a green, a yellow, and a red inclining much to purple; and when the colour 
was brightest (being between yellow and red) the former indigo, blue, green, 
yellow, and red were become an iris or ring of colours equal to the first of those 
luminous rings which appeared in the four first Observations, and the white 
ring which was now become the second of the luminous rings was grown equal 
to the second of those, and the first of those which was now become the third 
ring was become equal to the third of those, and so on. For their diameters 
were lu/i6, 2%, 21//i2, B^g inches, the distance of the two beams of light, and 
the diameter of the white ring being 2^ inches. 

When these two beams became more distant there emerged out of the middle 
of the purplish red, first a darker round spot, and then out of the middle of that 
spot a brighter. And now the former colours (purple, blue, green, yellow, and 
purplish red) were become a ring equal to the first of the bright rings mentioned 
in the four first Observations, and the rings about this ring were grown equal to 
the rings about that, respectively; the distance between the two beams of light 
and the diameter of the white ring (which was now become the third ring) being 
about 3 inches. 

The colours of the rings in the middle began now to grow very dilute, and if 
the distance between the two beams was increased half an inch, or an inch 
more, they vanished whilst the white ring, with one or two of the rings next it 
on either side, continued still visible. But if the distance of the two beams of 
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light was still more increased, these also vanished; for the light which coming 
from several parts of the hole in the window fell upon the speculum in several 
angles of incidence, made rings of several bignesses, which diluted and blotted 
out one another, as I knew by intercepting some part of that light. For if I 
intercepted that part which was nearest to the axis of the speculum, the rings 
would be less; if the other part which was remotest from it, they would be 
bigger. 

Obs. 12. When the colours of the prism were cast successively on the specu- 
lum, that ring which in the two last Observations was white, was of the same 
bigness in all the colours, but the rings without it were greater in the green than 
in the blue, and still greater in the yellow, and greatest in the red. And, on the 
contrary, the rings within that white circle were less in the green than in the 
blue, and still less in the yellow, and least in the red. For the angles of reflexion 
of those rays which made this ring, being equal to their angles of incidence, the 
fits of every reflected ray within the glass after reflexion are equal in length and 
number to the fits of the same ray within the glass before its incidence on the 
reflecting surface. And, therefore, since all the rays of all sorts at their entrance 
into the glass were in a fit of transmission, they were also in a fit of transmission 
at their returning to the same surface after reflexion; and by consequence were 
transmitted, and went out to the white ring on the chart. This is the reason 
why that ring was of the same bigness in all the colours, and why in a mixture 
of all it appears white. But in rays which are reflected in other angles, the 
intervals of the fits of the least refrangible being greatest, make the rings of 
their colour in their progress from this white ring, either outwards or inwards, 
increase or decrease by the greatest steps; so that the rings of this colour with- 
out are greatest, and within least. And this is the reason why in the last 
Observation, when the speculum was illuminated with white light, the exterior 
rings made by all colours appeared red without and blue within, and the interior 
blue without and red within. 

These are the phenomena of thick convexo-concave plates of glass, which 
are everywhere of the same thickness. There are yet other phenomena when 
these plates are a little thicker on one side than on the other, and others when 
the plates are more or less concave than convex, or plano-convex, or double- 
convex. For in all these cases the plates make rings of colours, but after various 
manners; all which, so far as I have yet observed, follow from the Propositions 
in the end of the third part of this book, and so conspire to confirm the truth of 
those Propositions. But the phenomena are too various, and the calculations 
whereby they follow from those Propositions too intricate, to be here prose- 
cuted. I content myself with having prosecuted this kind of phenomena so far 
as to discover their cause, and by discovering it to ratify the Propositions in 
the third Part of this book. 

Obs. 13. As light reflected by a lens quick-silvered on the backside makes the 
rings of colours above described, so it ought to make the like rings of colours in 
passing through a drop of water. At the first reflexion of the rays within the 
drop, some colours ought to be transmitted, as in the case of a lens, and others 
to be reflected back to the eye. For instance, if the diameter of a small drop or 
globule of water be about the 500th part of an inch, so that a red-making ray 
in passing through the middle of this globule has 250 fits of easy transmission 
within the globule, and that all the red-making rays which are at a certain dis- 
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tance from this middle ray round about it have 249 fits within the globule, 
and all the like rays at a certain farther distance round about it have 248 
fits, and all those at a certain farther distance 247 fits, and so on; these concen- 
tric circles of rays after their transmission, falling on a white paper, will make 
concentric rings of red upon the paper, supposing the light which passes 
through one single globule strong enough to be sensible. And, in like manner, 
the rays of other colours will make rings of other colours. Suppose, now, that 
in a fair day the Sun shines through a thin cloud of such globules of water or 
hail, and that the globules are all of the same bigness; and the Sun seen through 
this cloud shall appear encompassed with the like concentric rings of colours, 
and the diameter of the first ring of red shall be 7^°, that of the second 1034°, 
that of the third 12° SS'. And accordingly, as the globules of water are big- 
ger or less, the rings shall be less or bigger. This is the theory, and experience 
answers it. For in June, 1692, I saw by reflexion in a vessel of stagnating 
water three halos, crowns, or rings of colours about the Sun, like three little 
rainbows, concentric to his body. The colours of the first or innermost crown 
were blue next the Sun, red without, and white in the middle between the 
blue and red. Those of the second crown were purple and blue within, and 
pale red without, and green in the middle. And those of the third were pale 
blue within, and pale red without; these crowns enclosed one another imme- 
diately, so that their colours proceeded in this continual order from the Sun 
outward; blue, white, red; purple, blue, green, pale yellow and red; pale blue, 
pale red. The diameter of the second crown measured from the middle of the 
yellow and red on one side of the Sun, to the middle of the same colour on the 
other side was 93^ degrees, or thereabouts. The diameters of the first and third 
I had not time to measure, but that of the first seemed to be about five or six 
degrees, and that of the third about twelve. The like crowns appear sometimes 
about the Moon; for in the beginning of the year 1664, February 19th at night, 
I saw two such crowns about her. The diameter of the first or innermost was 
about three degrees, and that of the second about five degrees and a half. Next 
about the Moon was a circle of white, and next about that the inner crown, 
which was of a bluish-green within next the white, and of a yellow and red 
without, and next about these colours were blue and green on the inside of the 
outward crown, and red on the outside of it. At the same time there appeared a 
halo about 22 degrees distant from the centre of the Moon. It was elliptical, 
and its long diameter was perpendicular to the horizon, verging below farthest 
from the Moon. I am told that the Moon has sometimes three or more concen- 
tric crowns of colours encompassing one another next about her body. The 
more equal the globules of water or ice are to one another, the more crowns of 
colours will appear, and the colours will be the more lively. The halo at the 
distance of 223^ degrees from the Moon is of another sort. By its being oval 
and remoter from the Moon below than above, I conclude that it was made 
by refraction in some sort of hail or snow floating in the air in an horizontal 
posture, the refracting angle being about 58 or 60 degrees. 



BOOK THREE 

Part I 

Observations concerning the inflexions of the rays of light, and 
the colours made thereby. 

Grimaldi has informed us that if a beam of the Sun's light be let into a dark 
room through a very small hole, the shadows of things in this light will be 
larger than they ought to be if the rays went on by the bodies in straight lines, 
and that these shadows have three parallel fringes, bands or ranks of coloured 
light adjacent to them. But if the hole be enlarged the fringes grow broad and 
run into one another, so that they cannot be distinguished. These broad shad- 
ows and fringes have been reckoned by some to proceed from the ordinary re- 
fraction of the air, but without due examination of the matter. For the circum- 
stances of the phenomenon, so far as I have observed them, are as follows: 

Obs. 1. I made in a piece of lead a small hole with a pin, whose breadth was 
the 42d part of an inch, for 21 of those pins laid together took up the breadth of 
half an inch. Through this hole I let into my darkened chamber a beam of the 
Sun's light, and found that the shadows of hairs, thread, pins, straws, and such 
like slender substances placed in this beam of light, were considerably broader 
than they ought to be, if the rays of light passed on by these bodies in right 
lines. And particularly a hair of a man's head, whose breadth was but the 280th 
part of an inch, being held in this light, at the distance of about twelve feet 
from the hole, did cast a shadow which at the distance of four inches from the 
hair was the sixtieth part of an inch broad (that is, above four times broader 
than the hair), and at the distance of two feet from the hair was about the eight 
and twentieth part of an inch broad (that is, ten times broader than the hair), 
and at the distance of ten feet was the eighth part of an inch broad (that is, 
35 times broader). 

Nor is it material whether the hair be encompassed with air, or with any 
other pellucid substance. For I wetted a polished plate of glass, and laid the 
hair in the water upon the glass, and then laying another polished plate of glass 
upon it, so that the water might fill up the space between the glasses, I held 
them in the aforesaid beam of light, so that the light might pass through them 
perpendicularly, and the shadow of the hair was at the same distances as big as 
before. The shadows of scratches made in polished plates of glass were also 
much broader than they ought to be, and the veins in polished plates of glass 
did also cast the like broad shadows. And, therefore, the great breadth of these 
shadows proceeds from some other cause than the refraction of the air. 

Let the circle X [Fig. 1] represent the middle of the hair; ADG, BEH, CFI, 
three rays passing by one side of the hair at several distances; KNQ, LOR, 
MPS, three other rays passing by the other side of the hair at the like distances; 
D, E, F, and N, O, P, the places where the rays are bent in their passage by the 
hair; G, H, I, and Q, R, S, the places where the rays fall on a paper GQ; IS the 
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breadth of the shadow of the hair cast on the paper, and TI, YS, two rays pass- 
ing to the points I and S without bending when the hair is taken away. And it's 
manifest that all the light between these two rays TI and VS is bent in passing 
by the hair, and turned aside from the shadow IS, because if any part of this 
light were not bent it would fall on the paper within the shadow, and there 

Fig. 1 

illuminate the paper, contrary to experience. And because when the paper is at 
a great distance from the hair, the shadow is broad, and therefore the rays TI 
and YS are at a great distance from one another, it follows that the hair acts 
upon the rays of light at a good distance in their passing by it. But the action is 
strongest on the rays which pass by at least distances, and grows weaker and 
weaker accordingly as the rays pass by at distances greater and greater, as is 
represented in the scheme. For thence it comes to pass that the shadow of the 
hair is much broader in proportion to the distance of the paper from the hair, 
when the paper is nearer the hair, than when it is at a great distance from it. 

Obs. 2. The shadows of all bodies (metals, stones, glass, wood, horn, ice, &c.) 
in this light were bordered with three parallel fringes or bands of coloured light, 
whereof that which was contiguous to the shadow was broadest and most 
luminous, and that which was remotest from it was narrowest, and so faint, as 
not easily to be visible. It was difficult to distinguish the colours, unless when 
the light fell very obliquely upon a smooth paper, or some other smooth white 
body, so as to make them appear much broader than they would otherwise do. 
And then the colours were plainly visible in this order: the first or innermost 
fringe was violet and deep blue next the shadow, and then light blue, green, 
and yellow in the middle, and red without. The second fringe was almost con- 
tiguous to the first, and the third to the second, and both were blue Avithin, and 
yellow and red without, but their colours were very faint, especially those of 
the third. The colours, therefore, proceeded in this order from the shadow: 
violet, indigo, pale blue, green, yellow, red; blue, yellow, red; pale blue, pale 
yellow and red. The shadows made by scratches and bubbles in polished plates 
of glass were bordered with the like fringes of coloured light. And if plates of 
looking-glass, sloped off near the edges with a diamond-cut, be held in the 
same beam of light, the light which passes through the parallel planes of the 
glass will be bordered with the like fringes of colours where those planes meet 
with the diamond-cut, and by this means there will sometimes appear four or 
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five fringes of colours. Let AB, CD [Fig. 2] represent the parallel planes of a 
looking-glass, and BD the plane of the diamond-cut, making at B a very obtuse 
angle with the plane AB. And let all the light between the rays EN I and FBM 
pass directly through the parallel planes of the glass, and fall upon the paper 

iD 

Fig. 2 

between I and M, and all the light between the rays GO and HD be refracted 
by the oblique plane of the diamond-cut BD, and fall upon the paper between 
K and L; and the light which passes directly through the parallel planes of the 
glass, and falls upon the paper between I and M, will be bordered witn three or 
more fringes at M. 

So, by looking on the Sun through a feather or black ribband held close to 
the eye, several rainbows will appear; the shadows which the fibres or threads 
cast on the tunica retina being bordered with the like fringes of colours. 

Obs. 3. When the hair was twelve feet distant from this hole, and its shadow 
fell obliquely upon a flat white scale of inches and parts of an inch placed half a 
foot beyond it, and also when the shadow fell perpendicularly upon the same 
scale placed nine feet beyond it, I measured the breadth of the shadow and 
fringes as accurately as I could, and found them in parts of an inch as follows: 

At the distance of Half a foot Nine feet 
The breadth of the shadow  i T¥ i 9 
The breadth between the middles of the brightest light of the 

innermost fringes on either side the shadow  its or ¥9 7 5 0 
The breadth between the middles of the brightest light of the 

middlemost fringes on either side the shadow  1 2 3 H TT 
The breadth between the middles of the brightest light of the 

outmost fringes on either side the shadow  TS or dr^ TO 
The distance between the middles of the brightest light of the 

first and second fringes  i 12 0 1 21 
The distance between the middles of the brightest light of the 

second and third fringes  1 TTo 1 3 1 
The breadth of the luminous part (green, white, yellow, and 

red) of the first fringe  1 TTO 1 "3 "2 
The breadth of the darker space between the first and second 

fringes  1 2 4 0 1 4 5 
The breadth of the luminous part of the second fringe  1 2 9 0 JL 5 5 
The breadth of the darker space between the second and third 

fringes  1 3 4 0 1 "63" 
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These measures I took by letting the shadow of the hair, at half a foot dis- 

tance, fall so obliquely on the scale as to appear twelve times broader than 
when it fell perpendicularly on it at the same distance, and setting down in this 
Table the twelfth part of the measures I then took. 

Obs. 4. When the shadow and fringes were cast obliquely upon a smooth 
white body, and that body was removed farther and farther from the hair, the 
first fringe began to appear and look brighter than the rest of the light at the 
distance of less than a quarter of an inch from the hair, and the dark line or 
shadow between that and the second fringe began to appear at a less distance 
from the hair than that of the third part of an inch. The second fringe began to 
appear at a distance from the hair of less than half an inch, and the shadow 
between that and the third fringe at a distance less than an inch, and the third 
fringe at a distance less than three inches. At greater distances they became 
much more sensible, but kept very nearly the same proportion of their breadths 
and intervals which they had at their first appearing. For the distance between 
the middle of the first, and middle of the second fringe, was to the distance 
between the middle of the second and middle of the third fringe as three to two, 
or ten to seven. And the last of these two distances was equal to the breadth of 
the bright light or luminous part of the first fringe. And this breadth was to the 
breadth of the bright light of the second fringe as seven to four, and to the dark 
interval of the first and second fringe as three to two, and to the like dark 
interval between the second and third as two to one. For the breadths of the 
fringes seemed to be in the progression of the numbers 1, and their 
intervals to be in the same progression with them; that is, the fringes and their 
intervals together to be in the continual progression of the numbers 1, VM? 

V/i, VIA, or thereabouts. And these proportions held the same very 
nearly at all distances from the hair; the dark intervals of the fringes being as 
broad in proportion to the breadth of the fringes at their first appearance as 
afterwards at great distances from the hair, though not so dark and distinct. 

Obs. 5. The Sun shining into my darkened chamber through a hole a quarter 
of an inch broad, I placed at the distance of two or three feet from the hole a 
sheet of pasteboard, which was blacked all over on both sides, and in the middle 
of it had a hole about three-quarters of an inch square for the light to pass 
through. And behind the hole I fastened to the pasteboard with pitch the blade 
of a sharp knife, to intercept some part of the light which passed through the 
hole. The planes of the pasteboard and blade of the knife were parallel to one 
another, and perpendicular to the rays. And when they were so placed that 
none of the Sun's light fell on the pasteboard, but all of it passed through the 
hole to the knife, and there part of it fell upon the blade of the knife, and part 
of it passed by its edge, I let this part of the light which passed by, fall on a 
white paper two or three feet beyond the knife, and there saw two streams of 
faint light shoot out both ways from the beam of light into the shadow, like the 
tails of comets. But because the Sun's direct light by its brightness upon the 
paper obscured these faint streams, so that I could scarce see them, I made a 
little hole in the midst of the paper for that light to pass through and fall on a 
black cloth behind it; and then I saw the two streams plainly. They were like 
one another, and pretty nearly equal in length, and breadth, and quantity of 
light.Their light at that end next the Sun's direct light was pretty strong for the 
space of about a quarter of an inch, or half an inch, and in all its progress from 
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that direct light decreased gradually till it became insensible. The whole length 
of either of these streams measured upon the paper at the distance of three feet 
from the knife was about six or eight inches; so that it subtended an angle at 
the edge of the knife of about 10 or 12, or at most 14 degrees. Yet sometimes I 
thought I saw it shoot three or four degrees farther, but with a light so very 
faint that I could scarce perceive it, and suspected it might (in some measure, 
at least) arise from some other cause than the two streams did. For, placing my 
eye in that light beyond the end of that stream which was behind the knife, and 
looking towards the knife, I could see a line of light upon its edge, and that not 
only when my eye was in the line of the streams, but also when it was without 
that line either towards the point of the knife, or towards the handle. This line 
of light appeared contiguous to the edge of the knife, and was narrower than 
the light of the innermost fringe, and narrowest when my eye was farthest from 
the direct light, and therefore seemed to pass between the light of that fringe 
and the edge of the knife, and that which passed nearest the edge to be most 
bent, though not all of it. 

Obs. 6. I placed another knife by this, so that their edges might be parallel, 
and look towards one another, and that the beam of light might fall upon both 
the knives, and some part of it pass between their edges. And when the distance 
of their edges was about the 400th part of an inch, the stream parted in the 
middle, and left a shadow between the two parts. This shadow was so black 
and dark that all the light which passed between the knives seemed to be bent, 
and turned aside to the one hand or to the other. And as the knives still ap- 
proached one another the shadow grew broader, and the streams shorter at 
their inward ends which were next the shadow, until upon the contact of the 
knives the whole light vanished, leaving its place to the shadow. 

And hence I gather that the light which is least bent, and goes to the inward 
ends of the streams, passes by the edges of the knives at the greatest distance; 
and this distance, when the shadow begins to appear between the streams, is 
about the 800th part of an inch. And the light which passes by the edges of the 
knives at distances still less and less is more and more bent, and goes to those 
parts of the streams which are farther and farther from the direct light; because, 
when the knives approach one another till they touch, those parts of the streams 
vanish last which are farthest from the direct light. 

Obs. 7. In the fifth Observation the fringes did not appear, but by reason of 
the breadth of the hole in the window became so broad as to run into one 
another, and, by joining, to make one continued light in the beginning of the 
streams. But in the sixth, as the knives approached one another a little before 
the shadow appeared between the two streams, the fringes began to appear on 
the inner ends of the streams on either side of the direct light; three on one side 
made by the edge of one knife, and three on the other side made by the edge of 
the other knife. They were distinctest when the knives were placed at the 
greatest distance from the hole in the window, and still became more distinct 
by making the hole less, insomuch that I could sometimes see a faint lineament 
of a fourth fringe beyond the three above mentioned. And as the knives con- 
tinually approached one another, the fringes grew distincter and larger, until 
they vanished. The outmost fringe vanished first, and the middlemost next, 
and the innermost last. And after they were all vanished, and the line of light 
which was in the middle between them was grown very broad, enlarging itself 
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on both sides into the streams of light described in the fifth Observation, the 
above-mentioned shadow began to appear in the middle of this line, and divide 
it along the middle into two lines of light, and increased until the whole light 
vanished. This enlargement of the fringes was so great that the rays which go 
to the innermost fringe seemed to be bent above twenty times more when this 
fringe was ready to vanish than when one of the knives was taken away. 

And from this and the former Observation compared, I gather that the light 
of the first fringe passed by the edge of the knife at a distance greater than the 
800th part of an inch, and the light of the second fringe passed by the edge of 
the knife at a greater distance than the light of the first fringe did, and that of 
the third at a greater distance than that of the second, and that of the streams 
of light described in the fifth and sixth Observations passed by the edges of the 
knives at less distances than that of any of the fringes. 

Obs. 8. I caused the edges of two knives to be ground truly straight, and 
pricking their points into a board so that their edges might look towards one 
another, and meeting near their points contain a rectilinear angle, I fastened 
their handles together with pitch to make this angle invariable. The distance of 
the edges of the knives from one another at the distance of four inches from the 
angular point, where the edges of the knives met, was the eighth part of an 
inch; and, therefore, the angle contained by the edges was about 1 degree 54/. 
The knives thus fixed together I placed in a beam of the Sun's light, let into my 
darkened chamber through a hole the 42d part of an inch wide, at the distance 
of 10 or 15 feet from the hole, and let the light which passed between their edges 
fall very obliquely upon a smooth white ruler at the distance of half an inch, 
or an inch from the knives, and there saw the fringes by the two edges of the 
knives run along the edges of the shadows of the knives in lines parallel to 
those edges without growing sensibly broader, till they met in angles equal to 
the angle contained by the edges of the knives, and where they met and joined 
they ended without crossing one another. But if the ruler was held at a much 
greater distance from the knives, the fringes where they were farther from the 
place of their meeting were a little narrower, and became something broader 
and broader as they approached nearer and nearer to one another, and after 
they met they crossed one another, and then became much broader than before. 

Whence I gather that the distances at which the fringes pass by the knives 
are not increased nor altered by the approach of the knives, but the angles in 
which the rays are there bent are much increased by that approach; and that 
the knife which is nearest any ray determines which way the ray shall be bent, 
and the other knife increases the bent. 

Obs. 9. When the rays fell very obliquely upon the ruler at the distance of 
the third part of an inch from the knives, the dark line between the first and 
second fringe of the shadow of one knife, and the dark line between the first 
and second fringe of the shadow of the other knife met with one another, at the 
distance of the fifth part of an inch from the end of the light which passed 
between the knives at the concourse of their edges. And, therefore, the distance 
of the edges of the knives at the meeting of these dark lines was the 160th part 
of an inch. For as four inches to the eighth part of an inch, so is any length of 
the edges of the knives measured from the point of their concourse to the dis- 
tance of the edges of the knives at the end of that length, and so is the fifth part 
of an inch to the 160th part. So, then, the dark lines above mentioned meet in 



Book III: PartI 513 

the middle of the light which passes between the knives where they are distant 
the 160th part of an inch, and the one half of that light passes by the edge of 
one knife at a distance not greater than the 320th part of an inch, and falling 
upon the paper makes the fringes of the shadow of that knife, and the other 
half passes by the edge of the other knife, at a distance not greater than the 
320th part of an inch, and falling upon the paper makes the fringes of the shad- 
ow of the other knife. But if the paper be held at a distance from the knives 
greater than the third part of an inch, the dark lines above mentioned meet at 
a greater distance than the fifth part of an inch from the end of the light which 
passed between the knives at the concourse of their edges; and, therefore, the 
light which falls upon the paper where those dark lines meet passes between the 
knives where the edges are distant above the 160th part of an inch. 

For at another time, when the two knives were distant eight feet and five 
inches from the little hole in the window, made with a small pin as above, the 
light which fell upon the paper where the aforesaid dark lines met, passed 
between the knives, where the distance between their edges was as in the fol- 
lowing Table, when the distance of the paper from the knives was also as 
follows: 

Distances of the paper from Distances between the edges of the knives 
the knives in inches in millesimal parts of an inch 

H 0.012 
H 0.020 

81 0.034 
32 0.057 
96 0.081 

131 0.087 

And hence I gather that the light which makes the fringes upon the paper is 
not the same light at all distances of the paper from the knives, but when the 
paper is held near the knives, the fringes are made by light which passes by the 
edges of the knives at a less distance, and is more bent than when the paper is 
held at a greater distance from the knives. 

Obs. 10. When the fringes of the shadows of the knives fell perpendicularly 
upon a paper at a great distance from the knives, they were in the form of 
hyperbolas, and their dimensions were as follows: Let CA, CB [Fig. 3] represent 
lines drawn upon the paper parallel to the edges of the knives, and between 
which all the light would fall if it passed between the edges of the knives with- 
out inflexion; DE a right line drawn through C making the angles ACD, BCE, 
equal to one another, and terminating all the light which falls upon the paper 
from the point where the edges of the knives meet; eis, fkt, and glv, three hyper- 
bolical lines representing the terminus of the shadow of one of the knives, the 
dark line between the first and second fringes of that shadow, and the dark line 
between the second and third fringes of the same shadow; xip, ykq, and zlr, 
three other hyperbolical lines representing the terminus of the shadow of the 
other knife, the dark line between the first and second fringes of that shadow, 
and the dark line between the second and third fringes of the same shadow. 
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And conceive that these three hyperbolas are like and equal to the former three, 
and cross them in the points i, k, and Z, and that the shadows of the knives are 
terminated and distinguished from the first luminous fringes by the lines eis 
and xip, until the meeting and crossing of the fringes, and then those lines cross 
the fringes in the form of dark lines, terminating the first luminous fringes 

zz.---.~k 

y   x~ 

Fig. 3 

within side, and distinguishing them from another light which begins to appear 
at i, and illuminates all the triangular space zpDEs comprehended by these 
dark lines, and the right line DE. Of these hyperbolas one asymptote is the line 
DE, and their other asymptotes are parallel to the lines CA and CB. Let rv 
represent a line drawn anywhere upon the paper parallel to the asymptote DE, 
and let this line cross the right lines AC in m, and BC in n, and the six dark 
hyperbolical lines in p, q, r; s, t, v; and by measuring the distances ps, qt, rv, and 
thence collecting the lengths of the ordinates up, nq, nr or ms, mt, mv, and doing 
this at several distances of the line rv from the asymptote DE, you may find as 
many points of these hyperbolas as you please, and thereby know that these 
curve lines are hyperbolas differing little from the conical hyperbola. And by 
measuring the lines Ci, Ck, Cl, you may find other points of these curves. 

For instance, when the knives were distant from the hole in the window ten 
feet, and the paper from the knives nine feet, and the angle contained by the 
edges of the knives to which the angle ACB is equal was subtended by a chord 
which was to the radius as 1 to 32, and the distance of the line rv from the 
asymptote DE was half an inch, I measured the lines ps, qt, rv, and found them 
0.35, 0.65, 0.98 inch, respectively; and by adding to their halves the line y^rnn 
(which here was the 128th part of an inch, or 0.0078 inch), the sums up, nq, nr, 
were 0.1828, 0.3328, 0.4978 inch. I measured also the distances of the brightest 
parts of the fringes which run between pq and st, qr and tv, and next beyond r 
and v, and found them 0.5, 0.8, and 1.17 inches. 

Obs. 11. The Sun shining into my darkened room through a small round hole 
made in a plate of lead with a slender pin, as above, I placed at the hole a prism 
to refract the light, and form on the opposite wall the spectrum of colours, 
described in the third experiment of the first book. And then I found that the 
shadows of all bodies held in the coloured light between the prism and the wall 
were bordered with fringes of the colour of that light in which they were held. 
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In the full red light they were totally red without any sensible blue or violet, 
and in the deep blue light they were totally blue without any sensible red or 
yellow; and so in the green light they were totally green, excepting a little 
yellow and blue, which were mixed in the green light of the prism. And compar- 
ing the fringes made in the several coloured lights, I found that those made in 
the red light were largest, those made in the violet were least, and those made 
in the green were of a middle bigness. For the fringes with which the shadow of 
a man's hair were bordered, being measured across the shadow at the distance 
of six inches from the hair, the distance between the middle and most luminous 
part of the first or innermost fringe on one side of the shadow, and that of the 
like fringe on the other side of the shadow, was in the full red light of an 
inch, and in the full violet And the like distance between the middle and 
most luminous parts of the second fringes on either side the shadow was in the 
full red light ^22, and in the violet V27 of an inch. And these distances of the 
fringes held the same proportion at all distances from the hair without any 
sensible variation. 

So, then, the rays which made these fringes in the red light passed by the hair 
at a greater distance than those did which made the like fringes in the violet; 
and, therefore, the hair in causing these fringes acted alike upon the red light 
or least refrangible rays at a greater distance, and upon the violet or most 
refrangible rays at a less distance, and by those actions disposed the red light 
into larger fringes, and the violet into smaller, and the lights of intermediate 
colours into fringes of intermediate bignesses without changing the colour of 
any sort of light. 

When, therefore, the hair in the first and second of these Observations was 
held in the white beam of the Sun's light, and cast a shadow which was bor- 
dered with three fringes of coloured light, those colours arose not from any new 
modifications impressed upon the rays of light by the hair, but only from the 
various inflexions whereby the several sorts of rays were separated from one an- 
other, which before separation, by the mixture of all their colours, composed 
the white beam of the Sun's light, but whenever separated compose lights 
of the several colours which they are originally disposed to exhibit. In this 
11th Observation, where the colours are separated before the light passes 
by the hair, the least refrangible rays, which when separated from the rest 
make red, were inflected at a greater distance from the hair, so as to make 
three red fringes at a greater distance from the middle of the shadow of the 
hair; and the most refrangible rays which when separated make violet, were 
inflected at a less distance from the hair, so as to make three violet fringes at a 
less distance from the middle of the shadow of the hair. And other rays of 
intermediate degrees of refrangibility were inflected at intermediate distances 
from the hair, so as to make fringes of intermediate colours at intermediate 
distances from the middle of the shadow of the hair. And in the second Obser- 
vation, where all the colours are mixed in the white light which passes by the 
hair, these colours are separated by the various inflexions of the rays, and the 
fringes which they make appear all together, and the innermost fringes being 
contiguous make one broad fringe composed of all the colours in due order, the 
violet lying on the inside of the fringe next the shadow, the red on the outside 
farthest from the shadow, and the blue, green, and yellow, in the middle. And, 
in like manner, the middlemost fringes of all the colours lying in order, and 
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being contiguous, make another broad fringe composed of all the colours; and 
the outmost fringes of all the colours lying in order, and being contiguous, 
make a third broad fringe composed of all the colours. These are the three 
fringes of coloured light with which the shadows of all bodies are bordered in 
the second Observation. 

When I made the foregoing Observations, I designed to repeat most of them 
with more care and exactness, and to make some new ones for determining the 
manner how the rays of light are bent in their passage by bodies, for making 
the fringes of colours with the dark lines between them. But I was then inter- 
rupted, and cannot now think of taking these things into further consideration. 
And since I have not finished this part of my design, I shall conclude with 
proposing only some queries, in order to a further search to be made by others. 

Query 1. Do not bodies act upon light at a distance, and by their action bend 
its rays; and is not this action {cceteris paribus) strongest at the least distance? 

Qu. 2. Do not the rays which differ in refrangibility differ also in flexibility; 
and are they not by their different inflexions separated from one another, so as 
after separation to make the colours in the three fringes above described? And 
after what manner are they inflected to make those fringes? 

Qu. 3. Are not the rays of light, in passing by the edges and sides of bodies, 
bent several times backwards and forwards, with a motion like that of an eel? 
And do not the three fringes of coloured light above mentioned arise from three 
such bendings? 

Qu. 4. Do not the rays of light which fall upon bodies, and are reflected or 
refracted, begin to bend before they arrive at the bodies; and are they not re- 
flected, refracted, and inflected, by one and the same principle, acting variously 
in various circumstances? 

Qu. 5. Do not bodies and light act mutually upon one another; that is to say, 
bodies upon light in emitting, reflecting, refracting and inflecting it, and light 
upon bodies for heating them, and putting their parts into a vibrating motion 
wherein heat consists? 

Qu. 6. Do not black bodies conceive heat more easily from light than those of 
other colours do, by reason that the light falling on them is not reflected out- 
wards, but enters the bodies, and is often reflected and refracted within them, 
until it be stifled and lost? 

Qu. 7. Is not the strength and vigor of the action between light and sul- 
phureous bodies observed above, one reason why sulphureous bodies take fire 
more readily, and burn more vehemently than other bodies do? 

Qu. 8. Do not all fixed bodies, when heated beyond a certain degree, emit 
light and shine; and is not this emission performed by the vibrating motions 
of their parts? And do not all bodies which abound with terrestrial parts, and 
especially with sulphureous ones, emit light as often as those parts are suffi- 
ciently agitated; whether that agitation be made by heat, or by friction, or 
percussion, or putrefaction, or by any vital motion, or any other cause? As for 
instance; sea-water in a raging storm; quick-silver agitated in vacuo] the back of 
a cat, or neck of a horse, obliquely struck or rubbed in a dark place; wood, flesh 
and fish while they putrefy; vapours arising from putrefied waters, usually 
called ignes fatui; stacks of moist hay or corn growing hot by fermentation; 
glow-worms and the eyes of some animals by vital motions; the vulgar phos- 
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phorus agitated by the attrition of any body, or by the acid particles of the air; 
amber and some diamonds by striking, pressing or rubbing them; scrapings of 
steel struck off with a flint; iron hammered very nimbly till it become so hot as 
to kindle sulphur thrown upon it; the axletrees of chariots taking fire by the 
rapid rotation of the wheels; and some liquors mixed with one another whose 
particles come together with an impetus, as oil of vitriol distilled from its 
weight of nitre, and then mixed with twice its weight of oil of anniseeds. So also 
a globe of glass about 8 or 10 inches in diameter, being put into a frame where 
it may be swiftly turned round its axis, will in turning shine where it rubs 
against the palm of one's hand applied to it. And if at the same time a piece of 
white paper or white cloth, or the end of one's finger be held at the distance of 
about a quarter of an inch or half an inch from that part of the glass where it is 
most in motion, the electric vapour which is excited by the friction of the glass 
against the hand will (by dashing against the white paper, cloth or finger) be 
put into such an agitation as to emit light, and make the white paper, cloth, or 
finger appear lucid like a glow-worm; and in rushing out of the glass will some- 
times push against the finger so as to be felt. And the same things have been 
found by rubbing a long and large cylinder or glass or amber with a paper held 
in one's hand, and continuing the friction till the glass grew warm. 

Qu. 9. Is not fire a body heated so hot as to emit light copiously? For what 
else is a red hot iron than fire? And what else is a burning coal than red hot 
wood? 

Qu. 10. Is not flame a vapour, fume or exhalation heated red hot; that is, so 
hot as to shine? For bodies do not flame without emitting a copious fume, and 
this fume burns in the flame. The ignis fatuus is a vapour shining without 
heat, and is there not the same difference between this vapour and flame as 
between rotten wood shining without heat and burning coals of fire? In distill- 
ing hot spirits, if the head of the still be taken off, the vapour which ascends out 
of the still will take fire at the flame of a candle, and turn into flame, and the 
flame will run along the vapour from the candle to the still. Some bodies heated 
by motion, or fermentation, if the heat grow intense, fume copiously, and if the 
heat be great enough the fumes will shine and become flame. Metals in fusion 
do not flame for want of a copious fume, except spelter, which fumes copiously, 
and thereby flames. All flaming bodies, as oil, tallow, wax, wood, fossil coals, 
pitch, sulphur, by flaming waste and vanish into burning smoke, which smoke, 
if the flame be put out, is very thick and visible, and sometimes smells strongly, 
but in the flame loses its smell by burning, and according to the nature of the 
smoke the flame is of several colours, as that of sulphur blue, that of copper 
opened with sublimate green, that of tallow yellow, that of camphor white. 
Smoke passing through flame cannot but grow red-hot, and red-hot smoke 
can have no other appearance than that of flame. When gunpowder takes 
fire, it goes away into flaming smoke. For the charcoal and sulphur easily 
take fire, and set fire to the nitre, and the spirit of the nitre being thereby 
rarified into vapour, rushes out with explosion much after the manner that 
the vapour of water rushes out of an seolipile; the sulphur also being volatile 
is converted into vapour, and augments the explosion. And the acid vapour 
of the sulphur (namely, that which distils under a bell into oil of sulphur) 
entering violently into the fixed body of the nitre, sets loose the spirit of the 
nitre, and excites a great fermentation whereby the heat is further aug- 
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mented, and the fixed body of the nitre is also rarified into fume, and the ex- 
plosion is thereby made more vehement and quick. For if salt of tartar be 
mixed with gunpowder, and that mixture be warmed till it takes fire, the 
explosion will be more violent and quick than that of gunpowder alone; which 
cannot proceed from any other cause than the action of the vapour of the gun- 
powder upon the salt of tartar, whereby that salt is rarified. The explosion of 
gunpowder arises, therefore, from the violent action whereby all the mixture, 
being quickly and vehemently heated, is rarified and converted into fume and 
vapour: which vapour, by the violence of that action, becoming so hot as to 
shine, appears in the form of flame. 

Qu. 11. Do not great bodies conserve their heat the longest, their parts 
heating one another, and may not great dense and fixed bodies, when heated 
beyond a certain degree, emit light so copiously, as by the emission and reaction 
of its light, and the reflexions and refractions of its rays within its pores to grow 
still hotter, till it comes to a certain period of heat, such as is that of the Sun? 
And are not the Sun and fixed stars great earths vehemently hot, whose heat is 
conserved by the greatness of the bodies, and the mutual action and reaction 
between them, and the light which they emit, and whose parts are kept from 
fuming away, not only by their fixity, but also by the vast weight and density 
of the atmospheres incumbent upon them; and very strongly compressing them, 
and condensing the vapours and exhalations which arise from them? For if 
water be made warm in any pellucid vessel emptied of air, that water in the 
vacuum will bubble and boil as vehemently as it would in the open air in a 
vessel set upon the fire till it conceives a much greater heat. For the weight of 
the incumbent atmosphere keeps down the vapours, and hinders the water from 
boiling, until it grow much hotter than is requisite to make it boil in vacuo. Also 
a mixture of tin and lead being put upon a red-hot iron in vacuo emits a fume 
and flame, but the same mixture in the open air, by reason of the incumbent 
atmosphere, does not so much as emit any fume which can be perceived by 
sight. In like manner the great weight of the atmosphere which lies upon the 
globe of the Sun may hinder bodies there from rising up and going away from 
the Sun in the form of vapours and fumes, unless by means of a far greater heat 
than that which on the surface of our Earth would very easily turn them into 
vapours and fumes. And the same great weight may condense those vapours 
and exhalations as soon as they shall at any time begin to ascend from the Sun, 
and make them presently fall back again into him, and by that action increase 
his heat much after the manner that in our Earth the air increases the heat of a 
culinary fire. And the same weight may hinder the globe of the Sun from being 
diminished, unless by the emission of light, and a very small quantity of vapours 
and exhalations. 

Qu. 12. Do not the rays of light in falling upon the bottom of the eye excite 
vibrations in the tunica retina? Which vibrations, being propagated along the 
solid fibres of the optic nerves into the brain, cause the sense of seeing? For 
because dense bodies conserve their heat a long time, and the densest bodies 
conserve their heat the longest, the vibrations of their parts are of a lasting 
nature, and therefore may be propagated along solid fibres of uniform dense 
matter to a great distance, for conveying into the brain the impressions made 
upon all the organs of sense. For that motion which can continue long in one 
and the same part of a body, can be propagated a long way from one part to 
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another, supposing the body homogeneal, so that the motion may not be 
reflected, refracted, interrupted or disordered by any unevenness of the body. 

Qu. 13. Do not several sorts of rays make vibrations of several bignesses, 
which according to their bignesses excite sensations of several colours, much 
after the manner that the vibrations of the air, according to their several 
bignesses excite sensations of several sounds? And particularly do not the most 
refrangible rays excite the shortest vibrations for making a sensation of deep 
violet, the least refrangible the largest for making a sensation of deep red, and 
the several intermediate sorts of rays, vibrations of several intermediate big- 
nesses to make sensations of the several intermediate colours? 

Qu. 14. May not the harmony and discord of colours arise from the pro- 
portions of the vibrations propagated through the fibres of the optic nerves into 
the brain, as the harmony and discord of sounds arise from the proportions of 
the vibrations of the air? For some colours, if they be viewed together, are 
agreeable to one another, as those of gold and indigo, and others disagree. 

Qu. 15. Are not the species of objects seen with both eyes united where the 
optic nerves meet before they come into the brain, the fibres on the right side of 
both nerves uniting there, and after union going thence into the brain in the 
nerve which is on the right side of the head, and the fibres on the left side of 
both nerves uniting in the same place, and after union going into the brain in 
the nerve which is on the left side of the head, and these two nerves meeting in 
the brain in such a manner that their fibres make but one entire species or 
picture, half of which on the right side of the sensorium comes from the right 
side of both eyes through the right side of both optic nerves to the place where 
the nerves meet, and from thence on the right side of the head into the brain, 
and the other half on the left side of the sensorium comes in like manner from 
the left side of both eyes? For the optic nerves of such animals as look the same 
way with both eyes (as of men, dogs, sheep, oxen, &c.) meet before they come 
into the brain, but the optic nerves of such animals as do not look the same way 
with both eyes (as of fishes, and of the chameleon) do not meet, if I am rightly 
informed. 

Qu. 16. When a man in the dark presses either corner of his eye with his 
finger, and turns his eye away from his finger, he will see a circle of colours like 
those in the feather of a peacock's tail. If the eye and the finger remain quiet 
these colours vanish in a second minute of time, but if the finger be moved with 
a quavering motion they appear again. Do not these colours arise from such 
motions excited in the bottom of the eye by the pressure and motion of the 
finger as at other times are excited there by light for causing vision? And do not 
the motions once excited continue about a second of time before they cease? 
And when a man by a stroke upon his eye sees a flash of light, are not the like 
motions excited in the retina by the stroke? And when a coal of fire, moved 
nimbly in the circumference of a circle, makes the whole circumference appear 
like a circle of fire, is it not because the motions excited in the bottom of the eye 
by the rays of light are of a lasting nature, and continue till the coal of fire in going 
round returns to its former place? And considering the lastingness of the motions 
excited in the bottom of the eye by light, are they not of a vibrating nature? 

Qu. 17. If a stone be thrown into stagnating water, the waves excited there- 
by continue some time to arise in the place where the stone fell into the water, 
and are propagated from thence in concentric circles upon the surface of the 
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water to great distances. And the vibrations or tremors excited in the air by 
percussion continue a little time to move from the place of percussion in con- 
centric spheres to great distances. And in like manner, when a ray of light 
falls upon the surface of any pellucid body, and is there refracted or reflected, 
may not waves of vibrations, or tremors, be thereby excited in the refracting 
or reflecting medium at the point of incidence, and continue to arise there, and 
to be propagated from thence as long as they continue to arise and be propa- 
gated, when they are excited in the bottom of the eye by the pressure or motion 
of the finger or by the light which comes from the coal of fire in the experi- 
ments above mentioned? And are not these vibrations propagated from the 
point of incidence to great distances? And do they not overtake the rays of 
light, and, by overtaking them successively, do they not put them into the 
fits of easy reflexion and easy transmission described above? For if the rays 
endeavour to recede from the densest part of the vibration, they may be alter- 
nately accelerated and retarded by the vibrations overtaking them. 

Qu. 18. If in two large tall cylindrical vessels of glass inverted, two little 
thermometers be suspended so as not to touch the vessels, and the air be drawn 
out of one of these vessels, and these vessels thus prepared be carried out of a 
cold place into a warm one, the thermometer in vacuo will grow warm as much, 
and almost as soon, as the thermometer which is not in vacuo. And when the 
vessels are carried back into the cold place, the thermometer in vacuo will grow 
cold almost as soon as the other thermometer. Is not the heat of the warm 
room conveyed through the vacuum by the vibrations of a much subtiler 
medium than air, which after the air was drawn out remained in the vacuum? 
And is not this medium the same with that medium by which light is refracted 
and reflected, and by whose vibrations light communicates heat to bodies, and 
is put into fits of easy reflexion and easy transmission? And do not the vibra- 
tions of this medium in hot bodies contribute to the intenseness and duration 
of their heat? And do not hot bodies communicate their heat to contiguous 
cold ones, by the vibrations of this medium propagated from them into the 
cold ones? And is not this medium exceedingly more rare and subtile than the 
air, and exceedingly more elastic and active? And doth it not readily pervade 
all bodies? And is it not (by its elastic force) expanded through all the heavens? 

Qu. 19. Doth not the refraction of light proceed from the different density 
of this sethereal medium in different places, the light receding always from the 
denser parts of the medium? And is not the density thereof greater in free and 
open spaces void of air and other grosser bodies, than within the pores of water, 
glass, crystal, gems, and other compact bodies? For when light passes through 
glass or crystal, and falling very obliquely upon the farther surface thereof is 
totally reflected, the total reflexion ought to proceed rather from the density 
and vigour of the medium without and beyond the glass, than from the rarity 
and weakness thereof. 

Qu. 20. Doth not this sethereal medium in passing out of water, glass, crystal, 
and other compact and dense bodies into empty spaces, grow denser and denser 
by degrees, and by that means refract the rays of light not in a point, but by 
bending them gradually in curved lines? And doth not the gradual condensa- 
tion of this medium extend to some distance from the bodies, and thereby 
cause the inflexions of the rays of light, which pass by the edges of dense bodies, 
at some distance from the bodies? 
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Qu. 21. Is not this medium much rarer within the dense bodies of the Sun, 

stars, planets and comets, than in the empty celestial spaces between them? 
And in passing from them to great distances, doth it not grow denser and 
denser perpetually, and thereby cause the gravity of those great bodies towards 
one another, and of their parts towards the bodies; every body endeavouring 
to go from the denser parts of the medium towards the rarer? For if this me- 
dium be rarer within the Sun's body than at its surface, and rarer there than at 
the hundredth part of an inch from its body, and rarer there than at the fiftieth 
part of an inch from its body, and rarer there than at the orb of Saturn, I see 
no reason why the increase of density should stop anywhere, and not rather be 
continued through all distances from the Sun to Saturn, and beyond. And 
though this increase of density may at great distances be exceeding slow, yet 
if the elastic force of this medium be exceeding great, it may suffice to impel 
bodies from the denser parts of the medium towards the rarer, with all that 
power which we call gravity. And that the elastic force of this medium is ex- 
ceeding great, may be gathered from the swiftness of its vibrations. Sounds 
move about 1,140 English feet in a second minute of time, and in seven or 
eight minutes of time they move about one hundred English miles. Light 
moves from the Sun to us in about seven or eight minutes of time, which dis- 
tance is about 7,000,000 English miles, supposing the horizontal parallax of 
the Sun to be about 12//. And the vibrations or pulses of this medium, that 
they may cause the alternate fits of easy transmission and easy reflexion, must 
be swifter than light, and by consequence above 700,000 times swifter than 
sounds. And, therefore, the elastic force of this medium, in proportion to its 
density, must be above 700,000X700,000 (that is, above 490,000,000,000) 
times greater than the elastic force of the air is in proportion to its density. 
For the velocities of the pulses of elastic mediums are in a subduplicate ratio 
of the elasticities and the rarities of the mediums taken together. 

As attraction is stronger in small magnets than in great ones in proportion 
to their bulk, and gravity is greater in the surfaces of small planets than in 
those of great ones in proportion to their bulk, and small bodies are agitated 
much more by electric attraction than great ones; so the smallness of the rays 
of light may contribute very much to the power of the agent by which they 
are refracted. And so if any one should suppose that aether (like our air) may 
contain particles which endeavour to recede from one another (for I do not 
know what this aether is) and that its particles are exceedingly smaller than 
those of air, or even than those of light: the exceeding smallness of its particles 
may contribute to the greatness of the force by which those particles may 
recede from one another, and thereby make that medium exceedingly more 
rare and elastic than air, and by consequence exceedingly less able to resist the 
motions of projectiles, and exceedingly more able to press upon gross bodies, 
by endeavouring to expand itself. 

Qu. 22. May not planets and comets, and all gross bodies, perform their 
motions more freely, and with less resistance in this aethereal medium than in 
any fluid, which fills all space adequately without leaving any pores, and by 
consequence is much denser than quick-silver or gold? And may not its resist- 
ance be so small, as to be inconsiderable? For instance: if this aether (for so I 
will call it) should be supposed 700,000 times more elastic than our air, and 
above 700,000 times more rare, its resistance would be above 600,000,000 times 
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less than that of water. And so small a resistance would scarce make any 
sensible alteration in the motions of the planets in ten thousand years. If any 
one would ask how a medium can be so rare, let him tell me how the air, in the 
upper parts of the atmosphere, can be above a hundred thousand thousand 
times rarer than gold. Let him also tell me how an electric body can by friction 
emit an exhalation so rare and subtile, and yet so potent, as by its emission to 
cause no sensible diminution of the weight of the electric body, and to be 
expanded through a sphere, whose diameter is above two feet, and yet to be 
able to agitate and carry up leaf copper, or leaf gold, at the distance of above a 
foot from the electric body? And how the effluvia of a magnet can be so rare 
and subtile as to pass through a plate of glass without any resistance or dimi- 
nution of their force, and yet so potent as to turn a magnetic needle beyond the 
glass? 

Qu. 23. Is not vision performed chiefly by the vibrations of this medium, 
excited in the bottom of the eye by the rays of light, and propagated through 
the solid, pellucid and uniform capillamenta of the optic nerves into the place 
of sensation? And is not hearing performed by the vibrations either of this or 
some other medium, excited in the auditory nerves by the tremors of the air, 
and propagated through the solid, pellucid and uniform capillamenta of those 
nerves into the place of sensation? And so of the other senses. 

Qu. 24. Is not animal motion performed by the vibrations of this medium, 
excited in the brain by the power of the will, and propagated from thence 
through the solid, pellucid and uniform capillamenta of the nerves into the 
muscles, for contracting and dilating them? I suppose that the capillamenta of 
the nerves are each of them solid and uniform, that the vibrating motion of 
the sethereal medium may be propagated along them from one end to the other 
uniformly, and without interruption, for obstructions in the nerves create 
palsies. And that they may be sufficiently uniform, I suppose them to be 
pellucid when viewed singly, tho' the reflexions in their cylindrical surfaces 
may make the whole nerve (composed of many capillamenta) appear opaque 
and white. For opacity arises from reflecting surfaces, such as may disturb and 
interrupt the motions of this medium. 

Qu. 25. Are there not other original properties of the rays of light, besides 
those already described? An instance of another original property we have in 
the refraction of island crystal, described first by Erasmus Bartholinus, and 
afterwards more exactly by Huygens, in his book De la Lumiere. This crystal is 
a pellucid, fissile stone, clear as water or crystal of the rock, and without 
colour; enduring a red heat without losing its transparency, and in a very 
strong heat calcining without fusion. Steeped a day or two in water, it loses 
its natural polish. Being rubbed on cloth, it attracts pieces of straws and other 
light things, like amber or glass; and with aqua fortis it makes an ebullition. 
It seems to be a sort of talc, and is found in form of an oblique parallelepiped, 
with six parallelogram sides and eight solid angles. The obtuse angles of the 
parallelograms are each of them 101 degrees and 52 minutes; the acute ones 
78 degrees and 8 minutes. Two of the solid angles opposite to one another, as 
C and E, are compassed each of them with three of these obtuse angles, and 
each of the other six with one obtuse and two acute ones [Fig. 4]. It cleaves 
easily in planes parallel to any of its sides, and not in any other planes. It 
cleaves with a glossy polite surface not perfectly plane, but with some little 
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unevenness. It is easily scratched, and by reason of its softness it takes a polish 
very difficultly. It polishes better upon polished looking-glass than upon metal, 

and perhaps better upon pitch, 
leather or parchment. Afterwards it 
must be rubbed with a little oil or 
white of an egg to fill up its scratches; 
whereby it will become very trans- 
parent and polite. But for several 
experiments it is not necessary to 
polish it. If a piece of this crystalline 
stone be laid upon a book, every 
letter of the book seen through it 
will appear double, by means of a 
double refraction. And if any beam 
of light falls either perpendicularly, 
or in any oblique angle upon any 
surface of this crystal, it becomes 
divided into two beams by means of 
the same double refraction. Which 
beams are of the same colour with 
the incident beam of light, and seem 

equal to one another in the quantity of their light, or very nearly equal. One 
of these refractions is performed by the usual rule of Optics, the sine of in- 
cidence out of air into this crystal being to the sine of refraction as five to 
three. The other refraction, which may be called the unusual refraction, is 
performed by the following rule: 

Let ADBC represent the refracting surface of the crystal, C the biggest 
solid angle at that surface, GEHF the opposite surface, and CK a perpendic- 
ular on that surface. This perpendicular makes with the edge of the crystal 
CF, an angle of 19 degrees S'. Join KF, and in it take KL, so that the angle 
KCL be 6 degrees W. and the angle LCF 12 degrees 23/. And if ST represent 
any beam of light incident at T in any angle upon the refracting surface ADBC, 
let TV be the refracted beam determined by the given portion of the sines 5 to 
3, according to the usual rule of Optics. Draw VX parallel and equal to KL. 
Draw it the same way from V in which L lieth from K; and joining TX, this 
line TX shall be the other refracted beam carried from T to X, by the unusual 
refraction. 

If, therefore, the incident beam ST be perpendicular to the refracting sur- 
face, the two beams TV and TX, into which it shall become divided, shall be 
parallel to the lines CK and CL; one of those beams going through the crystal 
perpendicularly, as it ought to do by the usual laws of Optics, and the other 
TX by an unusual refraction diverging from the perpendicular, and making 
with it an angle VTX of about 6% degrees, as is found by experience. And 
hence, the plane VTX, and such like planes which are parallel to the plane 
CFK, may be called the planes of perpendicular refraction. And the coast to- 
wards which the lines KL and VX are drawn, may be called the coast of un- 
usual refraction. 

In like manner, crystal of the rock has a double refraction; but the difference 
of the two refractions is not so great and manifest as in island crystal. 
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When the beam ST incident on island crystal is divided into two beams TV 

and TX, and these two beams arrive at the farther surface of the glass, the 
beam TV, which was refracted at the first surface after the usual manner, shall 
be again refracted entirely after the usual manner at the second surface; and 
the beam TX, which was refracted after the unusual manner in the first sur- 
face, shall be again refracted entirely after the unusual manner in the second 
surface; so that both these beams shall emerge out of the second surface in lines 
parallel to the first incident beam ST. 

And if two pieces of island crystal be placed one after another, in such man- 
ner that all the surfaces of the latter be parallel to all the corresponding sur- 
faces of the former, the rays which are refracted after the usual manner in the 
first surface of the first crystal, shall be refracted after the usual manner in all 
the following surfaces; and the rays which are refracted after the unusual 
manner in the first surface shall be refracted after the unusual manner in all 
the following surfaces. And the same thing happens, though the surfaces of the 
crystals be any ways inclined to one another, provided that their planes of 
perpendicular refraction be parallel to one another. 

And, therefore, there is an original difference in the rays of light, by means 
of which some rays are in this experiment constantly refracted after the usual 
manner, and others constantly after the unusual manner; for if the difference 
be not original, but arises from new modifications impressed on the rays at 
their first refraction, it would be altered by new modifications in the three 
following refractions; whereas it suffers no alteration, but is constant, and has 
the same effect upon the rays in all the refractions. The unusual refraction is, 
therefore, performed by an original property of the rays. And it remains to be 
enquired whether the rays have not more original properties than are yet 
discovered. 

Qu. 26. Have not the rays of light several sides, endued with several original 
properties? For if the planes of perpendicular refraction of the second crystal 
be at right angles with the planes of perpendicular refraction of the first crys- 
tal, the rays which are refracted after the usual manner in passing through the 
first crystal will be all of them refracted after the unusual manner in passing 
through the second crystal; and the rays which are refracted after the unusual 
manner in passing through the first crystal will be all of them refracted after 
the usual manner in passing through the second crystal. And, therefore, there 
are not two sorts of rays differing in their nature from one another, one of which 
is constantly and in all positions refracted after the usual manner, and the other 
constantly and in all positions after the unusual manner. The difference be- 
tween the two sorts of rays, in the experiment mentioned in the 25th Question, 
was only in the positions of the sides of the rays to the planes of perpendicular 
refraction. For one and the same ray is here refracted, sometimes after the 
usual, and sometimes after the unusual manner, according to the position 
which its sides have to the crystals. If the sides of the ray are posited the same 
way to both crystals, it is refracted after the same manner in them both; but 
if that side of the ray which looks towards the coast of the unusual refraction 
of the first crystal be 90 degrees from that side of the same ray which looks 
toward the coast of the unusual refraction of the second crystal (which may 
be effected by varying the position of the second crystal to the first, and by 
consequence to the rays of light), the ray shall be refracted after several man- 
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ners in the several crystals. There is nothing more required to determine 
whether the rays of light which fall upon the second crystal shall be refracted 
after the usual or after the unusual manner, but to turn about this crystal, so 
that the coast of this crystal's unusual refraction may be on this or on that 
side of the ray. And, therefore, every ray may be considered as having four 
sides or quarters, two of which opposite to one another incline the ray to be 
refracted after the unusual manner, as often as either of them are turned to- 
wards the coast of unusual refraction; and the other two, whenever either of 
them are turned towards the coast of unusual refraction, do not incline it to 
be otherwise refracted than after the usual manner. The two first may, there- 
fore, be called the sides of unusual refraction. And since these dispositions 
were in the rays before their incidence on the second, third, and fourth surfaces 
of the two crystals, and suffered no alteration (so far as appears) by the refrac- 
tion of the rays in their passage through those surfaces, and the rays were 
refracted by the same laws in all the four surfaces, it appears that those 
dispositions were in the rays originally, and suffered no alteration by the first 
refraction, and that by means of those dispositions the rays were refracted 
at their incidence on the first surface of the first crystal, some of them after 
the usual, and some of them after the unusual manner, accordingly as their 
sides of unusual refraction were then turned towards the coast of the unusual 
refraction of that crystal, or sideways from it. 

Every ray of light has, therefore, two opposite sides, originally endued with 
a property on which the unusual refraction depends, and the other two oppo- 
site sides not endued with that property. And it remains to be enquired 
whether there are not more properties of light by which the sides of the rays 
differ, and are distinguished from one another. 

In explaining the difference of the sides of the rays above mentioned, I have 
supposed that the rays fall perpendicularly on the first crystal. But if they fall 
obliquely on it, the success is the same. Those rays which are refracted after 
the usual manner in the first crystal will be refracted after the unusual manner 
in the second crystal, supposing the planes of perpendicular refraction to be 
at right angles with one another, as above; and on the contrary. 

If the planes of the perpendicular refraction of the two crystals be neither 
parallel nor perpendicular to one another, but contain an acute angle, the two 
beams of light which emerge out of the first crystal will be each of them divided 
into two more at their incidence on the second crystal. For in this case the rays 
in each of the two beams will some of them have their sides of unusual refrac- 
tion, and some of them their other sides turned towards the coast of the un- 
usual refraction of the second crystal. 

Qu. 27. Are not all hypotheses erroneous which have hitherto been invented 
for explaining the phenomena of light, by new modifications of the rays? For 
those phenomena depend not upon new modifications, as has been supposed, 
but upon the original and unchangeable properties of the rays. 

Qu. 28. Are not all hypotheses erroneous in which light is supposed to con- 
sist in pression or motion, propagated through a fluid medium? For in all these 
hypotheses the phenomena of light have been hitherto explained by supposing 
that they arise from new modifications of the rays; which is an erroneous sup- 
position. 

If light consisted only in pression propagated without actual motion, it 
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would not be able to agitate and heat the bodies which refract and reflect it. 
If it consisted in motion propagated to all distances in an instant, it would re- 
quire an infinite force every moment, in every shining particle, to generate 
that motion. And if it consisted in pression or motion, propagated either in an 
instant or in time, it would bend into the shadow. For pression or motion can- 
not be propagated in a fluid in right lines, beyond an obstacle which stops part 
of the motion, but will bend and spread every way into the quiescent medium 
which lies beyond the obstacle. Gravity tends downwards, but the pressure of 
water arising from gravity tends every way with equal force, and is propagated 
as readily, and with as much force sideways as downwards, and through 
crooked passages as through straight ones. The waves on the surface of stag- 
nating water, passing by the sides of a broad obstacle which stops part of them, 
bend afterwards and dilate themselves gradually into the quiet water behind 
the obstacle. The waves, pulses or vibrations of the air, wherein sounds con- 
sist, bend manifestly, though not so much as the waves of water. For a bell or 
a cannon may be heard beyond a hill which intercepts the sight of the sounding- 
body, and sounds are propagated as readily through crooked pipes as through 
straight ones. But light is never known to follow crooked passages nor to bend 
into the shadow. For the fixed stars by the interposition of any of the planets 
cease to be seen. And so do the parts of the sun by the interposition of the 
Moon, Mercury or Venus. The rays which pass very near to the edges of any 
body are bent a little by the action of the body, as we shewed above; but this 
bending is not towards but from the shadow, and is performed only in the 
passage of the ray by the body, and at a very small distance from it. So soon 
as the ray is past the body, it goes right on. 

To explain the unusual refraction of island crystal by pression or motion 
propagated, has not hitherto been attempted (to my knowledge) except by 
Huygens, who for that end supposed two several vibrating mediums within 
thst crystal. But when he tried the refractions in two successive pieces of that 
crystal, and found them such as is mentioned above, he confessed himself at 
a loss for explaining them. For pressions or motions, propagated from a shining 
body through an uniform medium, must be on all sides alike; whereas by those 
experiments it appears that the rays of light have different properties in their 
different sides. He suspected that the pulses of aether in passing through the 
first crystal might receive certain new modifications, which might determine 
them to be propagated in this or that medium within the second crystal, ac- 
cording to the position of that crystal. But what modifications those might be 
he could not say, nor think of anything satisfactory in that point. And if he 
had known that the unusual refraction depends not on new modifications, but 
on the original and unchangeable dispositions of the rays, he would have found 
it as difficult to explain how those dispositions, which he supposed to be im- 
pressed on the rays by the first crystal, could be in them before their incidence 
on that crystal, and in general, how all rays emitted by shining bodies can have 
those dispositions in them from the beginning. To me, at least, this seems in- 
explicable, if light be nothing else than pression or motion propagated through 
aether. 

And it is as difficult to explain by these hypotheses how rays can be alter- 
nately in fits of easy reflexion and easy transmission, unless perhaps one might 
suppose that there are in all space two sethereal vibrating mediums, and that 
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the vibrations of one of them constitute light, and the vibrations of the other 
are swifter, and as often as they overtake the vibrations of the first, put them 
into those fits. But how two sethers can be diffused through all space, one of 
which acts upon the other, and by consequence is reacted upon, without re- 
tarding, shattering, dispersing and confounding one another's motions, is in- 
conceivable. And against filling the heavens with fluid mediums, unless they 
be exceeding rare, a great objection arises from the regular and very lasting 
motions of the planets and comets in all manner of courses through the heav- 
ens. For thence it is manifest that the heavens are void of all sensible resistance, 
and by consequence of all sensible matter. 

For the resisting power of fluid mediums arises partly from the attrition of 
the parts of the medium, and partly from the vis inertice of the matter. That 
part of the resistance of a spherical body which arises from the attrition of the 
parts of the medium is very nearly as the diameter, or, at the most, as the 
factum of the diameter, and the velocity of the spherical body together. And 
that part of the resistance which arises from the vis inertice of the matter is as 
the square of that factum. And by this difference the two sorts of resistance 
may be distinguished from one another in any medium; and these being dis- 
tinguished, it will be found that almost all the resistance of bodies of a com- 
petent magnitude moving in air, water, quick-silver, and such like fluids with 
a competent velocity, arises from the vis inertice of the parts of the fluid. 

Now, that part of the resisting power of any medium which arises from the 
tenacity, friction or attrition of the parts of the medium, may be diminished 
by dividing the matter into smaller parts, and making the parts more smooth 
and slippery; but that part of the resistance which arises from the vis inertice 
is proportional to the density of the matter, and cannot be diminished by 
dividing the matter into smaller parts, nor by any other means than by de- 
creasing the density of the medium. And for these reasons the density of fluid 
mediums is very nearly proportional to their resistance. Liquors which differ 
not much in density as water, spirit of wine, spirit of turpentine, hot oil, differ 
not much in resistance. Water is thirteen or fourteen times lighter than quick- 
silver and by consequence thirteen or fourteen times rarer, and its resistance is 
less than that of quick-silver in the same proportion, or thereabouts, as I have 
found by experiments made with pendulums. The open air in which we breathe 
is eight or nine hundred times lighter than water, and by consequence eight 
or nine hundred times rarer, and accordingly its resistance is less than that of 
water in the same proportion, or thereabouts, as I have also found by experi- 
ments made with pendulums. And in thinner air the resistance is still less, and 
at length, by rarefying the air, becomes insensible. For small feathers falling 
in the open air meet with great resistance, but in a tall glass well emptied of 
air, they fall as fast as lead or gold, as I have seen tried several times. Whence 
the resistance seems still to decrease in proportion to the density of the fluid. 
For I do not find by any experiments that bodies moving in quick-silver,water, 
or air meet with any other sensible resistance than what arises from the density 
and tenacity of those sensible fluids, as they would do if the pores of those 
fluids, and all other spaces, were filled with a dense and subtile fluid. Now, if 
the resistance in a vessel well emptied of air was but a hundred times less than 
in the open air, it would be about a million of times less than in quick-silver. 
But it seems to be much less in such a vessel, and still much less in the heavens, 
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at the height of three or four hundred miles from the Earth, or above. For Mr. 
Boyle has shewed that air may be rarified above ten thousand times in vessels 
of glass; and the heavens are much emptier of air than any vacuum we can 
make below. For since the air is compressed by the weight of the incumbent 
atmosphere, and the density of air is proportional to the force compressing it, 
it follows by computation that, at the height of about seven and a half English 
miles from the Earth, the air is four times rarer than at the surface of the 
Earth; and at the height of 15 miles it is sixteen times rarer than that at the 
surface of the Earth; and at the height of 223^, 30, or 38 miles, it is respectively 
64, 256, or 1,024 times rarer, or thereabouts; and at the height of 76, 152, 228 
miles, it is about 1,000,000, 1,000,000,000,000, or 1,000,000,000,000,000,000 
times rarer; and so on. 

Heat promotes fluidity very much by diminishing the tenacity of bodies. It 
makes many bodies fluid which are not fluid in cold, and increases the fluidity 
of tenacious liquids, as of oil, balsam, and honey, and thereby decreases their 
resistance. But it decreases not the resistance of water considerably, as it would 
do if any considerable part of the resistance of water arose from the attrition 
or tenacity of its parts. And, therefore, the resistance of water arises prin- 
cipally and almost entirely from the vis inertice of its matter; and by conse- 
quence, if the heavens were as dense as water, they would not have much less 
resistance than water; if as dense as quick-silver, they would not have much 
less resistance than quick-silver; if absolutely dense, or full of matter without 
any vacuum, let the matter be never so subtile and fluid, they would have a 
greater resistance than quick-silver. A solid globe in such a medium would lose 
above half its motion in moving three times the length of its diameter, and a 
globe not solid (such as are the planets), would be retarded sooner. And, there- 
fore, to make way for the regular and lasting motions of the planets and com- 
ets, it's necessary to empty the heavens of all matter, except perhaps some 
very thin vapours, steams, or effluvia, arising from the atmospheres of the 
Earth, planets, and comets, and from such an exceedingly rare aethereal me- 
dium as we described above. A dense fluid can be of no use for explaining the 
phenomena of Nature, the motions of the planets and comets being better 
explained without it. It serves only to disturb and retard the motions of those 
great bodies, and make the frame of Nature languish; and in the pores of 
bodies it serves only to stop the vibrating motions of their parts, wherein their 
heat and activity consists. And as it is of no use, and hinders the operations of 
Nature, and makes her languish, so there is no evidence for its existence; and, 
therefore, it ought to be rejected. And if it be rejected, the hypotheses that 
light consists in pression or motion, propagated through such a medium, are 
rejected with it. 

And, for rejecting such a medium, we have the authority of those the oldest 
and most celebrated philosophers of Greece and Phoenicia, who made a vac- 
uum, and atoms, and the gravity of atoms, the first principles of their philoso- 
phy; tacitly attributing gravity to some other cause than dense matter. Later 
philosophers banish the consideration of such a cause out of natural philoso- 
phy, feigning hypotheses for explaining all things mechanically, and referring 
other causes to metaphysics; whereas the main business of natural philosophy 
is to argue from phenomena without feigning hypotheses, and to deduce causes 
from effects, till we come to the very first cause, which certainly is not mechan- 
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ical; and not only to unfold the mechanism of the world, but chiefly to resolve 
these and such like questions. What is there in places almost empty of matter, 
and whence is it that the Sun and planets gravitate towards one another, with- 
out dense matter between them? Whence is it that Nature doth nothing in 
vain; and whence arises all that order and beauty which we see in the world? 
To what end are comets, and whence is it that planets move all one and the 
same way in orbs concentric, while comets move all manner of ways in orbs 
very eccentric; and what hinders the fixed stars from falling upon one another? 
How came the bodies of animals to be contrived with so much art, and for 
what ends were their several parts? Was the eye contrived without skill in 
Optics, and the ear without knowledge of sounds? How do the motions of the 
body follow from the will, and whence is the instinct in animals? Is not the 
sensory of animals that place to which the sensitive substance is present, and 
into which the sensible species of things are carried through the nerves and 
brain, that there they may be perceived by their immediate presence to that 
substance? And these things being rightly dispatched, does it not appear from 
phenomena that there is a Being incorporeal, living, intelligent, omnipresent, 
who in infinite space (as it were in his sensory) sees the things themselves 
intimately, and throughly perceives them, and comprehends them wholly by 
their immediate presence to himself? Of which things the images only carried 
through the organs of sense into our little sensoriums are there seen and be- 
held by that which in us perceives and thinks. And though every true step made 
in this philosophy brings us not immediately to the knowledge of the First 
Cause, yet it brings us nearer to it, and on that account is to be highly valued. 

Qu. 29. Are not the rays of light very small bodies emitted from shining 
substances? For such bodies will pass through uniform mediums in right lines 
without bending into the shadow, which is the nature of the rays of light. They 
will also be capable of several properties, and be able to conserve their proper- 
ties unchanged in passing through several mediums, which is another condition 
of the rays of light. Pellucid substances act upon the rays of light at a distance 
in refracting, reflecting, and inflecting them, and the rays mutually agitate the 
parts of those substances at a distance for heating them; and this action and 
reaction at a distance very much resembles an attractive force between bodies. 
If refraction be performed by attraction of the rays, the sines of incidence must 
be to the sines of refraction in a given proportion, as we shewed in our principles 
of philosophy. And this rule is true by experience. The rays of light in going out 
of glass into a vacuum, are bent towards the glass; and if they fall too obliquely 
on the vacuum, they are bent backwards into the glass, and totally reflected; 
and this reflexion cannot be ascribed to the resistance of an absolute vacuum, 
but must be caused by the power of the glass attracting the rays at their going 
out of it into the vacuum, and bringing them back. For if the farther surface of 
the glass be moistened with water or clear oil, or liquid and clear honey, the 
rays which would otherwise be reflected will go into the water, oil, or honey; 
and, therefore, are not reflected before they arrive at the farther surface of the 
glass, and begin to go out of it. If they go out of it into the water, oil, or honey, 
they go on, because the attraction of the glass is almost balanced and rendered 
ineffectual by the contrary attraction of the liquor. But if they go out of it into 
a vacuum which has no attraction to balance that of the glass, the attraction of 
the glass either bends and refracts them, or brings them back and reflects them. 
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And this is still more evident by laying together two prisms of glass, or two 
object-glasses of very long telescopes, the one plane, the other a little convex, 
and so compressing them that they do not fully touch, nor are too far 
asunder. For the light which falls upon the farther surface of the first glass 
where the interval between the glasses is not above the ten hundred thousandth 
part of an inch, will go through that surface, and through the air or vacuum 
between the glasses, and enter into the second glass, as was explained in the 
first, fourth, and eighth Observations of the first part of the second book. But, 
if the second glass be taken away, the light which goes out of the second surface 
of the first glass into the air or vacuum, will not go on forwards, but turns 
back into the first glass, and is reflected; and, therefore, it is drawn back by the 
power of the first glass, there being nothing else to turn it back. Nothing more 
is requisite for producing all the variety of colours, and degrees of refrangibility, 
than that the rays of light be bodies of different sizes, the least of which may 
take violet the weakest and darkest of the colours, and be more easily diverted 
by refracting surfaces from the right course; and the rest, as they are bigger 
and bigger, may make the stronger and more lucid colours (blue, green, yellow, 
and red) and be more and more difficultly diverted. Nothing more is requisite 
for putting the rays of light into fits of easy reflexion and easy transmission, 
than that they be small bodies which by their attractive powers, or some other 
force, stir up vibrations in what they act upon, which vibrations, being swifter 
than the rays, overtake them successively, and agitate them so as by turns to 
increase and decrease their velocities, and thereby put them into those fits. 
And, lastly, the unusual refraction of island crystal looks very much as if it 
were performed by some kind of attractive virtue lodged in certain sides both 
of the rays, and of the particles of the crystal. For were it not for some kind of 
disposition or virtue lodged in some sides of the particles of the crystal, and not 
in their other sides, and which inclines and bends the rays towards the coast of 
unusual refraction, the rays which fall perpendicularly on the crystal would not 
be refracted towards that coast rather than towards any other coast, both at 
their incidence and at their emergence, so as to emerge perpendicularly by a 
contrary situation of the coast of unusual refraction at the second surface; the 
crystal acting upon the rays after they have passed through it, and are emerg- 
ing into the air; or, if you please, into a vacuum. And since the crystal by this 
disposition or virtue does not act upon the rays, unless when one of their sides 
of unusual refraction looks towards that coast, this argues a virtue or disposi- 
tion in those sides of the rays which answers to, and sympathizes with, that 
virtue or disposition of the crystal as the poles of two magnets answer to one 
another. And as magnetism may be intended and remitted, and is found only 
in the magnet and in iron, so this virtue of refracting the perpendicular rays is 
greater in island crystal, less in crystal of the rock, and is not yet found in 
other bodies. I do not say that this virtue is magnetical: it seems to be of an- 
other kind. I only say that whatever it be, it's difficult to conceive how the 
rays of light, unless they be bodies, can have a permanent virtue in two of 
their sides which is not in their other sides, and this without any regard to 
their position to the space or medium through which they pass. 

What I mean in this Question by a vacuum, and by the attractions of the 
rays of light towards glass or crystal, may be understood by what was said in 
the 18th, 19th, and 20th Questions. 
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Qu. 30. Are not gross bodies and light convertible into one another, and may 

not bodies receive much of their activity from the particles of light which enter 
their composition? For all fixed bodies being heated emit light so long as they 
continue sufficiently hot, and light mutually stops in bodies as often as its rays 
strike upon their parts, as we shewed above. I know no body less apt to shine 
than water; and yet water, by frequent distillations, changes into fixed earth, 
as Mr. Boyle has tried, and then this earth being enabled to endure a sufficient 
heat, shines by heat like other bodies. 

The changing of bodies into light, and light into bodies, is very conformable 
. to the course of Nature, which seems delighted with transmutations. Water, 

which is a very fluid, tasteless salt she changes by heat into vapour, which is a 
sort of air, and by cold into ice, which is a hard, pellucid, brittle, fusible stone; 
and this stone returns into water by heat, and vapour returns into water 
by cold. Earth by heat becomes fire, and by cold returns into earth. Dense 
bodies by fermentation rarefy into several sorts of air, and this air by fermenta- 
tion, and sometimes without it, returns into dense bodies. Mercury appears 
sometimes in the form of a fluid metal, sometimes in the form of a hard brittle 
metal, sometimes in the form of a corrosive pellucid salt called sublimate, 
sometimes in the form of a tasteless, pellucid, volatile white earth called 
Mercurius dulcis; or in that of a red opaque volatile earth called Cinnabar; or 
in that of a red or white precipitate, or in that of a fluid salt; and in distillation 
it turns into vapour, and being agitated in vacuo, it shines like fire. And after all 
these changes it returns again into its first form of mercury. Eggs grow from 
insensible magnitudes, and change into animals; tadpoles into frogs; and worms 
into flies. All birds, beasts and fishes, insects, trees, and other vegetables, with 
their several parts, grow out of water and watery tinctures and salts, and by 
putrefaction return again into watery substances. And water standing a few 
days in the open air, yields a tincture, which (like that of malt) by standing 
longer yields a sediment and a spirit, but before putrefaction is fit nourishment 
for animals and vegetables. And among such various and strange transmuta- 
tions, why may not Nature change bodies into light, and light into bodies? 

Qu. 31. Have not the small particles of bodies certain powers, virtues, or forces, 
by which they act at a distance, not only upon the rays of light for reflecting, 
refracting, and inflecting them, but also upon one another for producing a great 
part of the phenomena of Nature? For it's well known that bodies act one upon 
another by the attractions of gravity, magnetism, and electricity; and these 
instances shew the tenor and course of Nature, and make it not improbable but 
that there may be more attractive powers than these. For Nature is very con- 
sonant and conformable to herself. How these attractions may be performed I 
do not here consider. What I call attraction may be performed by impulse, or 
by some other means unknown to me. I use that word here to signify only in 
general any force by which bodies tend towards one another, whatsoever be the 
cause. For we must learn from the phenomena of Nature what bodies attract 
one another, and what are the laws and properties of the attraction, before we 
enquire the cause by which the attraction is performed. The attractions of 
gravity, magnetism, and electricity reach to very sensible distances, and so 
have been observed by vulgar eyes, and there may be others which reach to so 
small distances as hitherto escape observation; and perhaps electrical attrac- 
tion may reach to such small distances, even without being excited by friction. 
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For when salt of tartar runs per deliquium, is not this done by an attraction 

between the particles of the salt of tartar, and the particles of the water which 
float in the air in the form of vapours? And why does not common salt, or salt- 
petre, or vitriol, run per deliquium, but for want of such an attraction? Or why 
does not salt of tartar draw more water out of the air than in a certain propor- 
tion to its quantity, but for want of an attractive force after it is satiated with 
water? And whence is it but from this attractive power that water which alone 
distils with a gentle luke-warm heat, will not distil from salt of tartar without a 
great heat? And is it not from the like attractive power between the particles of 
oil of vitriol and the particles of water, that oil of vitriol draws to it a good 
quantity of water out of the air, and after it is satiated draws no more, and in 
distillation lets go the water very difficultly? And when water and oil of vitriol 
poured successively into the same vessel grow very hot in the mixing, does not 
this heat argue a great motion in the parts of the liquors? And does not this 
motion argue that the parts of the two liquors in mixing coalesce with violence, 
and by consequence rush towards one another with an accelerated motion? 
And when aqua fortis, or spirit of vitriol poured upon filings of iron dissolves 
the filings with a great heat and ebullition, is not this heat and ebullition ef- 
fected by a violent motion of the parts, and does not that motion argue that 
the acid parts of the liquor rush towards the parts of the metal with violence, 
and run forcibly into its pores till they get between its outmost particles, and 
the main mass of the metal, and surrounding those particles loosen them from 
the main mass, and set them at liberty to float off into the water? And when 
the acid particles, which alone would distil with an easy heat, will not separate 
from the particles of the metal without a very violent heat, does not this con- 
firm the attraction between them? 

When spirit of vitriol poured upon common salt or saltpetre makes an ebulli- 
tion with the salt, and unites with it, and in distillation the spirit of the com- 
mon salt or saltpetre comes over much easier than it would do before, and the 
acid part of the spirit of vitriol stays behind, does not this argue that the fixed 
alkali of the salt attracts the acid spirit of the vitriol more strongly than its own 
spirit, and not being able to hold them both, lets go its own? And when oil of 
vitriol is drawn off from its weight of nitre, and from both the ingredients a 
compound spirit of nitre is distilled, and two parts of this spirit are poured on 
one part of oil of cloves or caraway seeds, or of any ponderous oil of vegetable 
or animal substances, or oil of turpentine thickened with a little balsam of sul- 
phur, and the liquors grow so very hot in mixing, as presently to send up a 
burning flame—does not this very great and sudden heat argue that the two 
liquors mix with violence, and that their parts in mixing run towards one an- 
other with an accelerated motion, and clash Avith the greatest force? And is it 
not for the same reason that well-rectified spirit of wine poured on the same 
compound spirit flashes; and that the pulvis fulminans, composed of sulphur, 
nitre, and salt of tartar, goes off with a more sudden and violent explosion than 
gunpowder, the acid spirits of the sulphur and nitre rushing towards one an- 
other, and towards the salt of tartar, with so great a violence as by the shock to 
turn the whole at once into vapour and flame? Where the dissolution is slow, it 
makes a slow ebullition and a gentle heat; and Avhere it is quicker, it makes a 
greater ebullition with more heat; and where it is done at once, the ebullition is 
contracted into a sudden blast or violent explosion, A\dth a heat equal to that of 
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fire and flame. So when a drachm of the above-mentioned compound spirit of 
nitre was poured upon half a drachm of oil of caraway seeds in vacuo, the mix- 
ture immediately made a flash like gunpowder, and burst the exhausted re- 
ceiver, which was a glass six inches wide and eight inches deep. And even the 
gross body of sulphur powdered, and with an equal weight of iron filings and a 
little water made into paste, acts upon the iron, and in five or six hours grows 
too hot to be touched, and emits a flame. And by these experiments compared 
with the great quantity of sulphur with which the Earth abounds, and the 
warmth of the interior parts of the Earth, and hot springs, and burning moun- 
tains, and with damps, mineral coruscations, earthquakes, hot suffocating ex- 
halations, hurricanes, and spouts, we may learn that sulphureous steams abound 
in the bowels of the Earth and ferment with minerals, and sometimes take fire 
with a sudden coruscation and explosion; and, if pent up in subterraneous cav- 
erns, burst the caverns with a great shaking of the Earth, as in springing of a 
mine. And then the vapour generated by the explosion, expiring through the 
pores of the Earth, feels hot and suffocates, and makes tempests and hurri- 
canes, and sometimes causes the land to slide, or the sea to boil, and carries up 
the water thereof in drops, which by their weight fall down again in spouts. 
Also some sulphureous steams, at all times when the Earth is dry, ascending 
into the air, ferment there with nitrous acids, and sometimes taking fire cause 
lightning and thunder, and fiery meteors. For the air abounds with acid va- 
pours fit to promote fermentations, as appears by the rusting of iron and cop- 
per in it, the kindling of fire by blowing, and the beating of the heart by means 
of respiration. Now, the above-mentioned motions are so great and violent as 
to shew that in fermentations the particles of bodies which almost rest are put 
into new motions by a very potent principle, which acts upon them only when 
they approach one another, and causes them to meet and clash with great vi- 
olence, and grow hot with the motion, and dash one another into pieces, and 
vanish into air and vapour and flame. 

When salt of tartar per deliquium, being poured into the solution of any 
metal, precipitates the metal and makes it fall down to the bottom of the liquor 
in the form of mud, does not this argue that the acid particles are attracted 
more strongly by the salt of tartar than by the metal, and by the stronger at- 
traction go from the metal to the salt of tartar? And so when a solution of iron 
in aqua fortis dissolves the lapis calaminaris, and lets go the iron, or a solu- 
tion of copper dissolves iron immersed in it and lets go the copper, or a solution 
of silver dissolves copper and lets go the silver, or a solution of mercury in aqua 
fortis being poured upon iron, copper, tin, or lead, dissolves the metal and lets 
go the mercury—does not this argue that the acid particles of the aqua fortis 
are attracted more strongly by the lapis calaminaris than by iron, and more 
strongly by iron than by copper, and more strongly by copper than by silver, 
and more strongly by iron, copper, tin, and lead, than by mercury? And is it 
not for the same reason that iron requires more aqua fortis to dissolve it than 
copper, and copper more than the other metals; and that, of all metals, iron is 
dissolved most easily, and is most apt to rust; and, next after iron, copper? 

When oil of vitriol is mixed with a little water, or is run per deliquium, and in 
distillation the water ascends difficultly, and brings over with it some part of 
the oil of vitriol in the form of spirit of vitriol, and this spirit (being poured 
upon iron, copper, or salt of tartar) unites with the body and lets go the water 
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—doth not this shew that the acid spirit is attracted by the water, and more at- 
tracted by the fixed body than by the water, and therefore lets go the water to 
close with the fixed body? And is it not for the same reason that the water and 
acid spirits which are mixed together in vinegar, aquafortis, and spirit of salt, 
cohere and rise together in distillation; but if the menstruum be poured on salt 
of tartar, or on lead, or iron, or any fixed body which it can dissolve, the acid by 
a stronger attraction adheres to the body, and lets go the water? And is it not 
also from a mutual attraction that the spirits of soot and sea-salt unite and 
compose the particles of sal-ammoniac, which are less volatile than before, be- 
cause grosser and freer from water; and that the particles of sal-ammoniac in 
sublimation carry up the particles of antimony, which will not sublime alone; 
and that the particles of mercury uniting with the acid particles of spirit of salt 
compose mercury sublimate and with the particles of sulphur, compose cinna- 
bar; and that the particles of spirit of wine and spirit of urine well rectified 
unite and, letting go the water which dissolved them, compose a consistent 
body; and that in subliming cinnabar from salt of tartar, or from quicklime, 
the sulphur by a stronger attraction of the salt or lime lets go the mercury, and 
stays with the fixed body ; and that when mercury sublimate is sublimed from 
antimony, or from regulus of antimony, the spirit of salt lets go the mercury, 
and unites with the antimonial metal which attracts it more strongly, and stays 
with it till the heat be great enough to make them both ascend together, and 
then carries up the metal with it in the form of a very fusible salt called butter 
of antimony, although the spirit of salt alone be almost as volatile as water, 
and the antimony alone as fixed as lead? 

When aquafortis dissolves silver and not gold, and aquaregia dissolves gold 
and not silver, may it not be said that aqua fortis is subtile enough to penetrate 
gold as well as silver, but wants the attractive force to give it entrance; and 
that aqua regia is subtile enough to penetrate silver as well as gold, but wants 
the attractive force to give it entrance? For regia is nothing else than aqua 
fortis mixed with some spirit of salt, or with sal-ammoniac; and even common 
salt dissolved in aqua fortis enables the menstruum to dissolve gold, though 
the salt be a gross body. When, therefore, spirit of salt precipitates silver out of 
aqua fortis, is it not done by attracting and mixing with the aqua fortis, and 
not attracting, or perhaps repelling silver? And when water precipitates anti- 
mony out of the sublimate of antimony and sal-ammoniac, or out of butter of 
antimony, is it not done by its dissolving, mixing with, and weakening the sal- 
armoniac or spirit of salt, and its not attracting, or perhaps repelling, the anti- 
mony? And is it not for want of an attractive virtue between the parts of water 
and oil, of quick-silver and antimony, of lead and iron, that these substances do 
not mix; and by a weak attraction, that quick-silver and copper mix difficultly; 
and from a strong one, that quick-silver and tin, antimony and iron, water and 
salts, mix readily? And, in general, is it not from the same principle that heat 
congregates homogeneal bodies, and separates heterogeneal ones? 

When arsenic with soap gives a regulus, and with mercury sublimate a vola- 
tile fusible salt, like butter of antimony, doth not this shew that arsenic, which 
is a substance totally volatile, is compounded of fixed and volatile parts, strong- 
ly cohering by a mutual attraction, so that the volatile will not ascend without 
carrying up the fixed? And so, when an equal weight of spirit of wine and oil of 
vitriol are digested together, and in distillation yield two fragrant and volatile 
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spirits which will not mix with one another, and a fixed black earth remains be- 
hind—doth not this shew that oil of vitriol is composed of volatile and fixed 
parts strongly united by attraction, so as to ascend together in form of a vola- 
tile, acid, fluid salt, until the spirit of wine attracts and separates the volatile 
parts from the fixed? And, therefore, since oil of sulphur per campanam is of the 
same nature with oil of vitriol, may it not be inferred that sulphur is also a mix- 
ture of volatile and fixed parts so strongly cohering by attraction as to ascend 
together in sublimation? By dissolving flowers of sulphur in oil of turpentine, 
and distilling the solution, it is found that sulphur is composed of an inflamma- 
ble thick oil or fat bitumen, an acid salt, a very fixed earth, and a little metal. 
The three first were found not much unequal to one another, the fourth in so 
small a quantity as scarce to be worth considering. The acid salt, dissolved in 
water, is the same with oil of sulphur per campanam, and abounding much in 
the bowels of the Earth, and particularly in marcasites—unites itself to the 
other ingredients of the marcasite, which are, bitumen, iron, copper, and earth, 
and with them compounds alum, vitriol, and sulphur. With the earth alone it 
compounds alum; with the metal alone, or metal and earth together, it com- 
pounds vitriol; and with the bitumen and earth it compounds sulphur. Whence 
it comes to pass that marcasites abound with those three minerals. And is it 
not from the mutual attraction of the ingredients that they stick together for 
compounding these minerals, and that the bitumen carries up the other ingre- 
dients of the sulphur, which without it would not sublime? And the same ques- 
tion may be put concerning all, or almost all, the gross bodies in Nature. For 
all the parts of animals and vegetables are composed of substances volatile and 
fixed, fluid and solid, as appears by their analysis; and so are salts and minerals, 
so far as chemists have been hitherto able to examine their composition. 

When mercury sublimate is re-sublimed with fresh mercury, and becomes 
mercurius dulcis, which is a white, tasteless earth scarce dissolvable in water, 
and mercurius dulcis re-sublimed with spirit of salt returns into mercury subli- 
mate; and when metals corroded with a little acid turn into rust, which is an 
earth tasteless and indissolvable in water, and this earth imbibed with more 
acid becomes a metallic salt; and when some stones, as spar of lead, dissolved 
in proper menstruums become salts—do not these things shew that salts are 
dry earth and watery acid united by attraction, and that the earth will not be- 
come a salt without so much acid as makes it dissolvable in water? Do not the 
sharp and pungent tastes of acids arise from the strong attraction whereby the 
acid particles rush upon and agitate the particles of the tongue? And when 
metals are dissolved in acid menstruums, and the acids in conjunction with the 
metal act after a different manner, so that the compound has a different taste 
much milder than before, and sometimes a sweet one—is it not because the 
acids adhere to the metallic particles, and thereby lose much of their activity? 
And if the acid be in too small a proportion to make the compound dissolvable 
in water, will it not by adhering strongly to the metal become unactive and lose 
its taste, and the compound be a tasteless earth? For such things as are not dis- 
solvable by the moisture of the tongue, act not upon the taste. 

As gravity makes the sea flow round the denser and weightier parts of the 
globe of the Earth, so the attraction may make the watery acid flow round the 
denser and compacter particles of earth for composing the particles of salt. For 
otherwise the acid would not do the office of a medium between the earth and 
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common water, for making salts dissolvable in the water; nor would salt of tar- 
tar readily draw off the acid from dissolved metals, nor metals the acid from 
mercury. Now, as in the great globe of the Earth and sea, the densest bodies 
by their gravity sink down in water, and always endeavour to go towards the 
centre of the globe; so in particles of salt the densest matter may always en- 
deavour to approach the centre of the particle; so that a particle of salt may be 
compared to a chaos, being dense, hard, dry, and earthy in the centre; and rare, 
soft, moist, and watery in the circumference. And hence it seems to be that 
salts are of a lasting nature, being scarce destroyed unless by drawing away 
their watery parts by violence, or by letting them soak into the pores of the 
central earth by a gentle heat in putrefaction, until the earth be dissolved by 
the water, and separated into smaller particles, which by reason of their small- 
ness make the rotten compound appear of a black colour. Hence also it may be 
that the parts of animals and vegetables preserve their several forms, and as- 
similate their nourishment; the soft and moist nourishment easily changing its 
texture by a gentle heat and motion till it becomes like the dense, hard, dry, 
and durable earth in the centre of each particle. But when the nourishment 
grows unfit to be assimilated, or the central earth grows too feeble to assimilate 
it, the motion ends in confusion, putrefaction, and death. 

If a very small quantity of any salt or vitriol be dissolved in a great quantity 
of water, the particles of the salt or vitriol mil not sink to the bottom, though 
they be heavier in species than the water, but will evenly diffuse themselves 
into all the water, so as to make it as saline at the top as at the bottom. And 
does not this imply that the parts of the salt or vitriol recede from one another, 
and endeavour to expand themselves, and get as far asunder as the quantity of 
water, in which they float, will allow? And does not this endeavour imply that 
they have a repulsive force by which they fly from one another, or, at least, that 
they attract the water more strongly than they do one another? For as all 
things ascend in water which are less attracted than water, by the gravitating 
power of the Earth; so all the particles of salt which float in water, and are less 
attracted than water by any one particle of salt, must recede from that particle, 
and give way to the more attracted water. 

When any saline liquor is evaporated to a cuticle and let cool, the salt con- 
cretes in regular figures; which argues that the particles of the salt, before they 
concreted, floated in the liquor at equal distances in rank and file, and by con- 
sequence that they acted upon one another by some power which at equal dis- 
tances is equal, at unequal distances unequal. For by such a power they will 
range themselves uniformly, and without it they will float irregularly, and come 
together as irregularly. And since the particles of island crystal act all the same 
way upon the rays of light for causing the unusual refraction, may it not be sup- 
posed that, in the formation of this crystal, the particles not only ranged them- 
selves in rank and file for concreting in regular figures, but also by some kind of 
polar virtue turned their homogeneal sides the same way. 

The parts of all homogeneal hard bodies which fully touch one another stick 
together very strongly. And for explaining how this may be, some have in- 
vented hooked atoms, which is begging the question; and others tell us that 
bodies are glued together by rest (that is, by an occult quality, or rather by 
nothing); and others, that they stick together by conspiring motions (that is, 
by relative rest amongst themselves). I had rather infer from their cohesion 
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that their particles attract one another by some force, which in immediate con- 
tact is exceeding strong, at small distances performs the chemical operations 
above mentioned, and reaches not far from the particles with any sensible ef- 
fect. 

All bodies seem to be composed of hard particles, for otherwise fluids would 
not congeal; as water, oils, vinegar, and spirit or oil of vitriol do by freezing; 
mercury by fumes of lead; spirit of nitre and mercury by dissolving the mer- 
cury and evaporating the phlegm; spirit of wine and spirit of urine by de- 
phlegming and mixing them; and spirit of urine and spirit of salt by subliming 
them together to make sal-ammoniac. Even the rays of light seem to be hard 
bodies; for othenvise they would not retain different properties in their differ- 
ent sides. And, therefore, hardness may be reckoned the property of all uncom- 
pounded matter. At least, this seems to be as evident as the universal impene- 
trability of matter. For all bodies, so far as experience reaches, are either hard, 
or may be hardened; and we have no other evidence of universal impenetrabil- 
ity, besides a large experience without an experimental exception. Now, if com- 
pound bodies are so very hard as we find some of them to be, and yet are very 
porous, and consist of parts which are only laid together, the simple particles 
which are void of pores, and were never yet divided, must be much harder. For 
such hard particles, being heaped up together, can scarce touch one another in 
more than a few points, and therefore must be separable by much less force 
than is requisite to break a solid particle whose parts touch in all the space be- 
tween them, without any pores or interstices to weaken their cohesion. And 
how such very hard particles, which are only laid together and touch only in a 
few points, can stick together, and that so firmly as they do, without the assist- 
ance of something which causes them to be attracted or pressed towards one 
another, is very difficult to conceive. 

The same thing I infer also from the cohering of two polished marbles in vac- 
ua, and from the standing of quick-silver in the barometer at the height of 50, 
60 or 70 inches, or above, whenever it is well-purged of air and carefully poured 
in, so that its parts be everywhere contiguous both to one another and to the 
glass. The atmosphere by its weight presses the quick-silver into the glass, to 
the height of 29 or 30 inches. And some other agent raises it higher, not by 
pressing it into the glass, but by making its parts stick to the glass, and to one 
another. For upon any discontinuation of parts, made either by bubbles or by 
shaking the glass, the whole mercury falls down to the height of 29 or 30 inches. 

And of the same kind with these experiments are those that follow: If two 
plane polished plates of glass (suppose two pieces of a polished looking-glass) be 
laid together, so that their sides be parallel and at a very small distance from 
one another, and then their lower edges be dipped into water, the water will 
rise up between them. And the less the distance of the glasses is, the greater will 
be the height to which the water will rise. If the distance be about the hun- 
dredth part of an inch, the water will rise to the height of about an inch; and if 
the distance be greater or less in any proportion, the height mil be reciprocally 
proportional to the distance very nearly. For the attractive force of the glasses 
is the same, whether the distance between them be greater or less; and the 
weight of the water drawn up is the same, if the height of it be reciprocally pro- 
portional to the distance of the glasses. And in like manner, water ascends be- 
tween two marbles polished plane, when their polished sides are parallel, and at 
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a very little distance from one another. And if slender pipes of glass be dipped 
at one end into stagnating water, the water will rise up within the pipe, and the 
height to which it rises will be reciprocally proportional to the diameter of the 
cavity of the pipe, and will equal the height to which it rises between two planes 
of glass, if the semi-diameter of the cavity of the pipe be equal to the distance 
between the planes, or thereabouts. And these experiments succeed after the 
same manner in vacuo as in the open air (as hath been tried before the Royal 
Society) and therefore are not influenced by the weight or pressure of the at- 
mosphere. 

And if a large pipe of glass be filled with sifted ashes well pressed together in 
the glass, and one end of the pipe be dipped into stagnating water, the water 
will rise up slowly in the ashes, so as in the space of a week or fortnight to reach 
up within the glass to the height of 30 or 40 inches above the stagnating water. 
And the water rises up to this height by the action only of those particles of the 
ashes which are upon the surface of the elevated water; the particles which are 
within the water attracting or repelling it as much downwards as upwards. 
And, therefore, the action of the particles is very strong. But the particles of 
the ashes being not so dense and close together as those of glass, their action is 
not so strong as that of glass, which keeps quick-silver suspended to the height 
of 60 or 70 inches, and, therefore, acts with a force which would keep water sus- 
pended to the height of above 60 feet. 

By the same principle, a sponge sucks in water, and the glands in the bodies 
of animals, according to their several natures and dispositions, suck in various 
juices from the blood. 

If two plane polished plates of glass three or four inches broad, and twenty or 
twenty-five long, be laid one of them parallel to the horizon, the other upon the 
first, so as at one of their ends to touch one another, and contain an angle of 
about 10 or 15 minutes, and the same be first moistened on their inward sides 
with a clean cloth dipped into oil of oranges or spirit of turpentine, and a drop 
or two of the oil or spirit be let fall upon the lower glass at the other; so soon as 
the upper glass is laid down upon the lower, so as to touch it at one end as 
above, and to touch the drop at the other end, making with the lower glass an 
angle of about 10 or 15 minutes, the drop will begin to move towards the con- 
course of the glasses, and will continue to move with an accelerated motion till 
it arrives at that concourse of the glasses. For the two glasses attract the drop, 
and make it run that way towards which the attractions incline. And if when 
the drop is in motion you lift up that end of the glasses where they meet, and 
towards which the drop moves, the drop will ascend between the glasses, and 
therefore is attracted. And as you lift up the glasses more and more, the drop 
will ascend slower and slower, and at length rest, being then carried downward 
by its weight, as much as upwards by the attraction. And by this means you 
may know the force by which the drop is attracted at all distances from the 
concourse of the glasses. 

Now, by some experiments of this kind (made by Mr. Hauksbee), it has been 
found that the attraction is almost reciprocally in a duplicate proportion of the 
distance of the middle of the drop from the concourse of the glasses, viz., re- 
ciprocally in a simple proportion, by reason of the spreading of the drop, and 
its touching each glass in a larger surface; and again reciprocally in a simple 
proportion, by reason of the attractions growing stronger within the same quan- 
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tity of attracting surface. The attraction, therefore, within the same quantity 
of attracting surface, is reciprocally as the distance between the glasses. And, 
therefore, where the distance is exceeding small, the attraction must be exceed- 
ing great. By the Table in the second part of the second book, wherein the 
thicknesses of coloured plates of water between two glasses are set down, the 
thickness of the plate where it appears very black is three-eighths of the ten 
hundred thousandth part of an inch. And where the oil of oranges between the 
glasses is of this thickness, the attraction collected by the foregoing rule seems 
to be so strong as, within a circle of an inch in diameter, to suffice to hold up a 
weight equal to that of a cylinder of water of an inch in diameter, and two or 
three furlongs in length. And where it is of a less thickness, the attraction may 
be proportionally greater, and continue to increase, until the thickness do not 
exceed that of a single particle of the oil. There are, therefore, agents in nature 
able to make the particles of bodies stick together by very strong attractions. 
And it is the business of experimental philosophy to find them out. 

Now, the smallest particles of matter may cohere by the strongest attrac- 
tions, and compose bigger particles of weaker virtue; and many of these may 
cohere and compose bigger particles whose virtue is still weaker, and so on for 
divers successions, until the progression end in the biggest particles on which 
the operations in chemistry, and the colours of natural bodies depend, and 
which by cohering compose bodies of a sensible magnitude. If the body is com- 
pact, and bends or yields inward to pression—without any sliding of its parts, 
it is hard and elastic, returning to its figure with a force rising from the mutual 
attraction of its parts. If the parts slide upon one another, the body is malle- 
able or soft. If they slip easily, and are of a fit size to be agitated by heat, and 
the heat is big enough to keep them in agitation, the body is fluid; and if it be 
apt to stick to things, it is humid; and the drops of every fluid affect a round 
figure by the mutual attraction of their parts, as the globe of the Earth and sea 
affects a round figure by the mutual attraction of its parts by gravity. 

Since metals dissolved in acids attract but a small quantity of the acid, their 
attractive force can reach but to a small distance from them. And as in algebra, 
where affirmative quantities vanish and cease, there negative ones begin; so in 
mechanics, where attraction ceases, there a repulsive virtue ought to succeed. 
And that there is such a virtue seems to follow from the reflexions and inflex- 
ions of the rays of light. For the rays are repelled by bodies in both these cases, 
without the immediate contact of the reflecting or inflecting body. It seems 
also to follow from the emission of light, the ray so soon as it is shaken off 
from a shining body by the vibrating motion of the parts of the body, and gets 
beyond the reach of attraction, being driven away with exceeding great veloc- 
ity. For that force which is sufficient to turn it back in reflexion may be suffi- 
cient to emit it. It seems also to follow from the production of air and vapour. 
The particles when they are shaken off from bodies by heat or fermentation, 
so soon as they are beyond the reach of the attraction of the body, receding 
from it, and also from one another with great strength, and keeping at a dis- 
tance, so as sometimes to take up above a million of times more space than they 
did before in the form of a dense body. Which vast contraction and expansion 
seems unintelligible, by feigning the particles of air to be springy and ramous, 
or rolled up like hoops, or by any other means than a repulsive power. The 
particles of fluids which do not cohere too strongly, and are of such a smallness 
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as renders them most susceptible to those agitations which keep liquors in a 
Fluor, are most easily separated and rarefied into vapour, and in the language 
of the chemists they are volatile, rarefying with an easy heat, and condensing 
with cold. But those which are grosser, and so less susceptible of agitation, or 
cohere by a stronger attraction, are not separated without a stronger heat, or 
perhaps not without fermentation. And these last are the bodies which chem- 
ists call fixed, and being rarefied by fermentation become true, permanent air; 
those particles receding from one another with the greatest force, and being 
most difficultly brought together, which upon contact cohere most strongly. 
And because the particles of permanent air are grosser, and arise from denser 
substances than those of vapours, thence it is that true air is more ponderous 
than vapour, and that a moist atmosphere is lighter than a dry one, quantity 
for quantity. From the same repelling power it seems to be that flies walk upon 
the water without wetting their feet; and that the object-glasses of long tele- 
scopes lie upon one another without touching; and that dry powders are diffi- 
cultly made to touch one another so as to stick together, unless by melting 
them, or wetting them with water, which by exhaling may bring them together; 
and that two polished marbles, which by immediate contact stick together, are 
difficultly brought so close together as to stick. 

And thus Nature will be very conformable to herself and very simple, per- 
forming all the great motions of the heavenly bodies by the attraction of grav- 
ity which intercedes those bodies, and almost all the small ones of their parti- 
cles by some other attractive and repelling powers which intercede the particles. 
The vis inertice is a passive principle by which bodies persist in their motion or 
rest, receive motion in proportion to the force impressing it, and resist as much 
as they are resisted. By this principle alone there never could have been any 
motion in the world. Some other principle was necessary for putting bodies 
into motion; and now they are in motion, some other principle is necessary for 
conserving the motion. For from the various composition of two motions, 'tis 
very certain that there is not always the same quantity of motion in the world. 
For if two globes, joined by a slender rod, revolve about their common centre 
of gravity with a uniform motion, while that centre moves on uniformly in a 
right line drawn in the plane of their circular motion, the sum of the motions of 
the two globes, as often as the globes are in the right line described by their 
common centre of gravity, will be bigger than the sum of their motions when 
they are in a line perpendicular to that right line. By this instance it appears 
that motion may be got or lost. But by reason of the tenacity of fluids, and at- 
trition of their parts, and the weakness of elasticity in solids, motion is much 
more apt to be lost than got, and is always upon the decay. For bodies which 
are either absolutely hard, or so soft as to be void of elasticity, will not rebound 
from one another. Impenetrability makes them only stop. If two equal bodies 
meet directly in vacuo, they will by the laws of motion stop where they meet, 
and lose all their motion, and remain in rest, unless they be elastic, and receive 
new motion from their spring. If they have so much elasticity as suffices to 
make them re-bound with a quarter, or half, or three-quarters of the force with 
which they come together, they will lose three-quarters, or half, or a quarter of 
their motion. And this may be tried by letting two equal pendulums fall against 
one another from equal heights. If the pendulums be of lead or soft clay, they 
will lose all or almost all their motions; if of elastic bodies they will lose all but 
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what they recover from their elasticity. If it be said that they can lose no mo- 
tion but what they communicate to other bodies, the consequence is, that in 
vacuo they can lose no motion, but when they meet they must go on and pene- 
trate one another's dimensions. If three equal round vessels be filled (the one 
with water, the other with oil, the third with molten pitch), and the liquors be 
stirred about alike to give them a vortical motion, the pitch by its tenacity will 
lose its motion quickly, the oil being less tenacious will keep it longer, and the 
water being less tenacious will keep it longest, but yet will lose it in a short 
time. Whence it is easy to understand that if many contiguous vortices of mol- 
ten pitch were each of them as large as those which some suppose to revolve 
about the Sun and fixed stars, yet these and all their parts would, by their te- 
nacity and stiffness, communicate their motion to one another till they all rested 
among themselves. Vortices of oil or water, or some fluider matter, might con- 
tinue longer in motion ; but unless the matter were void of all tenacity and 
attrition of parts, and communication of motion (which is not to be sup- 
posed), the motion would constantly decay. Seeing, therefore, the variety of 
motion which we find in the world is always decreasing, there is a necessity 
of conserving and recruiting it by active principles, such as are the cause 
of gravity, by which planets and comets keep their motions in their orbs, 
and bodies acquire great motion in falling; and the cause of fermentation, by 
which the heart and blood of animals are kept in perpetual motion and heat; 
the inward parts of the earth are constantly warmed, and in some places grow 
very hot; bodies burn and shine, mountains take fire, the caverns of the earth 
are blown up, and the Sun continues violently hot and lucid, and warms all 
things by his light. For we meet with very little motion in the world, besides 
what is owing to these active principles. And if it were not for these principles, 
the bodies of the earth, planets, comets, Sun, and all things in them, would 
grow cold and freeze, and become inactive masses; and all putrefaction, gen- 
eration, vegetation and life would cease, and the planets and comets would not 
remain in their orbs. 

All these things being considered, it seems probable to me that God in the 
beginning formed matter in solid, massy, hard, impenetrable, moveable parti- 
cles, of such sizes and figures, and with such other properties, and in such pro- 
portion to space, as most conduced to the end for which he formed them; and 
that these primitive particles being solids, are incomparably harder than any 
porous bodies compounded of them; even so very hard as never to wear or 
break in pieces; no ordinary power being able to divide what God himself made 
one in the first creation. While the particles continue entire, they may compose 
bodies of one and the same nature and texture in all ages; but should they wear 
away, or break in pieces, the nature of things depending on them would be 
changed. Water and earth, composed of old worn particles and fragments of 
particles, would not be of the same nature and texture now, with water and 
earth composed of entire particles in the beginning. And, therefore, that Na- 
ture may be lasting, the changes of corporeal things are to be placed only in the 
various separations and new associations and motions of these permanent par- 
ticles ; compound bodies being apt to break, not in the midst of solid particles, 
but where those particles are laid together, and only touch in a few points. 

It seems to me, further, that these particles have not only a vis inertioz, ac- 
companied with such passive laAvs of motion as naturally result from that force, 
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but also that they are moved by certain active principles, such as is that of 
gravity, and that which causes fermentation, and the cohesion of bodies. These 
principles I consider, not as occult qualities, supposed to result from the spe- 
cific forms of things, but as general laws of nature, by which the things them- 
selves are formed; their truth appearing to us by phenomena, though their 
causes be not yet discovered. For these are manifest qualities, and their causes 
only are occult. And the Aristotelians gave the name of occult qualities, not to 
manifest qualities, but to such qualities only as they supposed to lie hid in 
bodies, and to be the unknown causes of manifest effects. Such as would be the 
causes of gravity, and of magnetic and electric attractions, and of fermenta- 
tions, if we should suppose that these forces or actions arose from qualities un- 
known to us, and incapable of being discovered and made manifest. Such oc- 
cult qualities put a stop to the improvement of natural philosophy, and there- 
fore of late years have been rejected. To tell us that every species of things is 
endowed with an occult specific quality by which it acts and produces manifest 
effects, is to tell us nothing; but to derive two or three general principles of mo- 
tion from phenomena, and afterwards to tell us how the properties and actions of 
all corporeal things follow from those manifest principles, would be a very great 
step in philosophy, though the causes of those principles were not yet discov- 
ered. And, therefore, I scruple not to propose the principles of motion above men- 
tioned, they being of very general extent, and leave their causes to be found out. 

Now, by the help of these principles, all material things seem to have been 
composed of the hard and solid particles above mentioned, variously associ- 
ated in the first creation by the counsel of an intelligent agent. For it became 
Him who created them to set them in order. And if He did so, it's unphilosophi- 
cal to seek for any other origin of the world, or to pretend that it might arise 
out of a chaos by the mere laws of Nature; though, being once formed, it may 
continue by those laws for many ages. For while comets move in very eccentric 
orbs in all manner of positions, blind fate could never make all the planets move 
one and the same way in orbs concentric, some inconsiderable irregularities ex- 
cepted, which may have risen from the mutual actions of comets and planets 
upon one another, and which will be apt to increase, till this system wants a 
reformation. Such a wonderful uniformity in the planetary system must be al- 
lowed the effect of choice. And so must the uniformity in the bodies of animals, 
they having generally a right and a left side shaped alike, and on either side of 
their bodies two legs behind, and either two arms, or two legs, or two wings be- 
fore upon their shoulders, and between their shoulders a neck running down 
into a backbone, and a head upon it; and in the head two ears, two eyes, a nose, 
a mouth, and a tongue, alike situated. Also the first contrivance of those very 
artificial parts of animals, the eyes, ears, brain, muscles, heart, lungs, midriff, 
glands, larynx, hands, wings, swimming bladders, natural spectacles, and other 
organs of sense and motion; and the instinct of brutes and insects can be the 
effect of nothing else than the wisdom and skill of a powerful, ever-living agent, 
who being in all places, is more able by His will to move the bodies within His 
boundless uniform sensorium, and thereby to form and reform the parts of the 
Universe, than we are by our will to move the parts of our own bodies. And yet 
we are not to consider the world as the body of God, or the several parts thereof 
as the parts of God. He is a uniform Being, void of organs, members or parts, 
and they are his creatures subordinate to him, and subservient to His will; and 



Book III: Part 1 543 

He is no more the soul of them than the soul of man is the soul of the species of 
things carried through the organs of sense into the place of its sensation, where 
it perceives them by means of its immediate presence, without the intervention 
of any third thing. The organs of sense are not for enabling the soul to perceive 
the species of things in its sensorium, but only for conveying them thither; and 
God has no need of such organs, He being everywhere present to the things 
themselves. And since space is divisible in infinitum, and matter is not neces- 
sarily in all places, it may be also allowed that God is able to create particles of 
matter of several sizes and figures, and in several proportions to space, and per- 
haps of different densities and forces, and thereby to vary the laws of Nature, 
and make worlds of several sorts in several parts of the Universe. At least, I see 
nothing of contradiction in all this. 

As in mathematics, so in natural philosophy, the investigation of difficult 
things by the method of analysis, ought ever to precede the method of composi- 
tion. This analysis consists in making experiments and observations, and in 
drawing general conclusions from them by induction, and admitting of no ob- 
jections against the conclusions but such as are taken from experiments, or 
other certain truths. For hypotheses are not to be regarded in experimental 
philosophy. And although the arguing from experiments and observations by 
induction be no demonstration of general conclusions, yet it is the best way of 
arguing which the nature of things admits of, and may be looked upon as so 
much the stronger, by how much the induction is more general. And if no ex- 
ception occur from phenomena, the conclusion may be pronounced generally. 
But if at any time afterwards any exception shall occur from experiments, it 
may then begin to be pronounced with such exceptions as occur. By this way of 
analysis we may proceed from compounds to ingredients, and from motions to 
the forces producing them; and, in general, from effects to their causes, and 
from particular causes to more general ones, till the argument end in the most 
general. This is the method of analysis; and the synthesis consists in assuming 
the causes discovered, and established as principles, and by them explaining 
the phenomena proceeding from them, and proving the explanations. 

In the two first books of these Optics, I proceeded by this analysis to dis- 
cover and prove the original differences of the rays of light in respect of refran- 
gibility, reflexibility, and colour, and their alternate fits of easy reflexion and 
easy transmission, and the properties of bodies, both opaque and pellucid, on 
which their reflexions and colours depend. And these discoveries, being proved, 
may be assumed in the method of composition for explaining the phenomena 
arising from them, an instance of which method I gave in the end of the first 
book. In this third book I have only begun the analysis of what remains to be 
discovered about light and its effects upon the frame of Nature, hinting several 
things about it, and leaving the hints to be examined and improved by the fur- 
ther experiments and observations of such as are inquisitive. And if natural 
philosophy in all its parts, by pursuing this method, shall at length be per- 
fected, the bounds of moral philosophy will be also enlarged. For so far as we 
can know by natural philosophy what is the First Cause, what power He has 
over us, and what benefits we recieve from Him, so far our duty towards Him, 
as well as that towards one another, will appear to us by the light of Nature. 
And no doubt, if the worship of false gods had not blinded the heathen, their 
moral philosophy would have gone farther than to the four cardinal virtues; 
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and instead of teaching the transmigration of souls, and to worship the Sun and 
Moon, and dead heroes, they would have taught us to worship our true Author 
and Benefactor, as their ancestors did under the government of Noah and his 
sons before they corrupted themselves. 
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BIOGRAPHICAL NOTE 

Christiaan Huygens, 1629-1695 

The family into which Christiaan Huygens 
was born, April 14, 1629, at The Hague, was 
one of the most eminent in both the political 
and literary development of the Dutch Renais- 
sance. The father of the scientist, Constantijn 
Huygens, Lord of Zuylichem, was secretary of 
state for three successive Princes of Orange; he 
carried out many diplomatic missions, particu- 
larly to England where he was knighted in 
1621. While there he became the friend of 
Donne, whose poetry he began translating 
into Dutch. As one of the leaders of the Am- 
sterdam school, he was the intimate friend of 
Vondel, the Dutch national poet, and was him- 
self Holland's foremost classical poet. 

Sir Constantijn, who was a distinguished 
Latinist, a musician, and a mathematician, 
took upon himself the preliminary instruction 
of his sons. Christiaan, the second son, was 
trained as a boy in languages, drawing, and 
music. At thirteen he began the study of me- 
chanics, which together with mathematics 
soon became his chief interest. But before de- 
voting his entire attention to these subjects he 
was sent to Leyden to study law with Vinnius, 
who later dedicated his famous commentary 
on the Institutes to him. In 1646 Huygens 
transferred to Breda, where his father directed 
the new university, and two years later he took 
his degree in law. In both places he continued 
his pursuit of mathematics, particularly with 
Van Schooten, who included some of Huygens' 
notes in his edition of Descartes' Geometry. 

At seventeen Huygens communicated his 
first mathematical discovery to Mersenne, 
who introduced him to the learned world as 
''the Dutch Archimedes," and soon after, he 
was in correspondence with the leading scien- 
tists of Europe. Descartes, on being shown a 
mathematical paper of Huygens, declared his 
confidence that "he will excel in this science 
wherein I see hardly anyone who knows any- 
thing." Although Descartes frequented Sir 
Constantijn's house, it does not appear that he 
ever met his son. They exchanged letters, Des- 
cartes called Huygens "a son of his own blood," 
and when Huygens was traveling in Denmark 
in 1649 with the Count of Nassau, he regretted 

that time and weather did not permit his 
crossing over to Sweden to visit Descartes, 
who was then living there at the invitation of 
Queen Christina. 

At the age of twenty-one Huygens published 
his first works on mathematics, dealing with 
the quadrature of conic sections, and in 1654, 
he made the closest approximation so far ob- 
tained of the area of the circle. Two years 
later he sent to Van Schooten his work on 
probability, which while recognizing the pri- 
ority of Pascal's and Fermat's treatment, con- 
stituted the first treatise on the subject when 
published in a volume of Van Schooten's math- 
ematical writings. At the same time Huygens 
was working with his elder brother on astron- 
omy. They found a new method of grinding 
and polishing lenses which overcame the de- 
fects of spherical and chromatic aberration and 
enabled them to construct an improved tele- 
scope. Huygens' first observations yielded the 
discovery of the Orion nebula and of a new 
satellite to Saturn as well as a truer descrip- 
tion of the rings about that planet. The need 
for an exact measure of time in observing the 
heavens led Huygens to the invention of the 
pendulum-clock, which was presented to the 
states-general in 1657 and was followed a year 
later by a description of the requisite mecha- 
nism. 

Huygens' reputation now became interna- 
tional. As early as 1655 the University of An- 
gers had distinguished him with an honorary 
degree of doctor of laws. In 1663, on the occa- 
sion of a visit to England, he was elected a 
fellow of the Royal Society. Two years later, 
on the establishment of the French Royal 
Academy of Sciences, Colbert invited him to 
be its first foreign resident, and for the next 
fifteen years Huygens made his home in 
France. He received a handsome pension from 
Louis XIV and lived at Paris in the Biblio- 
theque du Roi. Although Huygens disliked the 
world of rank, wealth, and fashion, he did not 
live the life of a recluse in Paris; he even wrote 
some verses to the celebrated Ninon de Len- 
clos. Yet the greater part of his efforts, despite 
delicate health, were spent in intense scien- 
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tific research. His treatises on ^Dioptrics" and 
the concussion of elastic bodies were hailed 
not only for their discoveries, but also for the 
style in which they were presented, and 
Newton claimed that among modern writers 
he had most closely approximated the style of 
the ancients. His greatest work, the Horolo- 
gium oscillatorium (1673), dealt with the prob- 
lems raised by the pendulum-clock, and con- 
tained original discoveries sufficient for sev- 
eral important treatises. 

Twice during his residence in Paris, Huy- 
gens returned to Holland in the hope that his 
native air would restore his health, and in 
1681, perhaps because of the revocation of the 
Edict of Nantes, he severed his connections 
and left France. Upon his return to Holland, 
Huygens took up again the study of optics, 
physics, and astronomy. He had always been 
interested in useful inventions and, in addition 
to the pendulum-clock, had already improved 
the air pump and the barometer, provided the 
first idea of the micrometer, and introduced 
the use of a spiral band for a watch-spring. In 

Holland he turned again to the construction of 
telescopes. Using lenses of long focal distance 
mounted on poles, he produced what were 
called uaerial telescopes." He also succeeded 
in constructing an almost perfectly achromatic 
eye-piece, still known by his name. His re- 
searches in optics finally led him to publish in 
1690 his Treatise on Light, which had been 
written in French in 1678 while at Paris. In 
response to the need for some means of repre- 
senting the solar system, Huygens constructed 
a "planetary machine" capable of showing the 
motions of the planets. It was apparently also 
at this time that he wrote the imaginative 
work found among his posthumous papers 
called Cosmotheoros, and translated into Eng- 
lish under the title, 11 The celestial worlds dis- 
covered, or conjectures concerning the inhabi- 
tants, plants, and productions of the worlds in 
the planets.^ 

Worn out by his great and varied activity 
and the burden of an enormous correspondence, 
Huygens died at The Hague, June 8, 1695, at 
the age of sixty-six. 
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PREFACE 

I WROTE this treatise during my sojourn in France twelve years ago, and I 
communicated it in the year 1678 to the learned persons who then composed 
the Royal Academy of Science, to the membership of which the King had done 
me the honour of calling me. Several of that body who are still alive will re- 
member having been present when I read it, and above the rest those amongst 
them who applied themselves particularly to the study of mathematics; of 
whom I cannot cite more than the celebrated gentlemen, Cassini, Romer, and 
de la Hire. And, although I have since corrected and changed some parts, the 
copies which I had made of it at that time may serve for proof that I have yet 
added nothing to it save some conjectures touching the formation of Iceland 
crystal, and a novel observation on the refraction of rock crystal. I have de- 
sired to relate these particulars to make known how long I have meditated the 
things which now I publish, and not for the purpose of detracting from the 
merit of those who, without having seen anything that I have written, may be 
found to have treated of like matters: as has, in fact, occurred to two eminent 
geometricians, Messieurs Newton and Leibnitz, with respect to the problem 
of the figure of glasses for collecting rays when one of the surfaces is given. 

One may ask why I have so long delayed to bring this work to the light. 
The reason is that I wrote it rather carelessly in the language in which it 
appears, with the intention of translating it into Latin, so doing in order to 
obtain greater attention to the thing. After which I proposed to myself to give 
it out along with another treatise on dioptrics, in which I explain the effects of 
telescopes and those things which belong more to that science. But the pleasure 
of novelty being past, I have put off from time to time the execution of this 
design, and I know not when I shall ever come to an end of it, being often 
turned aside either by business or by some new study. Considering which I 
have finally judged that it Avas better worth while to publish this writing, 
such as it is, than to let it run the risk, by waiting longer, of remaining lost. 

There will be seen in it demonstrations of those kinds which do not produce 
as great a certitude as those of geometry, and which even differ much there- 
from, since, whereas the geometers prove their propositions by fixed and in- 
contestable principles, here the principles are verified by the conclusions to be 
drawn from them; the nature of these things not alloAving of this being done 
otherwise. It is always possible to attain thereby to a degree of probability 
which very often is scarcely less than complete proof. To wit, when things 
which have been demonstrated by the principles that have been assumed cor- 
respond perfectly to the phenomena Avhich experiment has brought under ob- 
servation; especially when there are a great number of them, and further, prin- 
cipally, when one can imagine and foresee neAv phenomena Avhich ought to 
follow from the hypotheses A\Thich one employs, and Avhen one finds that therein 
the fact corresponds to our prevision. But if all these proofs of probability are 
met with in that which I propose to discuss, as it seems to me they are, this 
ought to be a very strong confirmation of the success of my inquiry; and it 
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must be ill if the facts are not pretty much as I represent them. I would believe 
then that those who love to know the causes of things and who are able to 
admire the marvels of light, will find some satisfaction in these various specu- 
lations regarding it, and in the new explanation of its famous property which 
is the main foundation of the construction of our eyes, and of those great 
inventions which extend so vastly the use of them. I hope also that there will 
be some who, by following these beginnings, will penetrate much further into 
this question than I have been able to do, since the subject must be far from 
being exhausted. This appears from the passages which I have indicated where 
I leave certain difficulties without having resolved them, and still more from 
matters which I have not touched at all, such as luminous bodies of several 
sorts, and all that concerns colours; in which no one until now can boast of 
having succeeded. Finally, there remains much more to be investigated touch- 
ing the nature of light which I do not pretend to have disclosed, and I shall 
owe much in return to him who shall be able to supplement that which is here 
lacking to me in knowledge. 

The Hague, January 8, 1690 



CHAPTER ONE 

On Rays Propagated in Straight Lines 

As happens in all the sciences in which geometry is applied to matter, the 
demonstrations concerning Optics are founded on truths drawn from expe- 
rience. Such are: that the rays of light are propagated in straight lines; that the 
angles of reflexion and of incidence are equal; and that in refraction the ray is 
bent according to the law of sines, now so well-known, and which is no less cer- 
tain than the preceding laws. 

The majority of those who have written touching the various parts of Optics 
have contented themselves with presuming these truths. But some, more in- 
quiring, have desired to investigate the origin and the causes, considering 
these to be in themselves wonderful effects of nature. In which they advanced 
some ingenious things, but not, however, such that the most intelligent folk 
do not wish for better and more satisfactory explanations. Wherefore I here 
desire to propound what I have meditated on the subject, so as to contribute 
as much as I can to the explanation of this department of natural science, 
which, not without reason, is reputed to be one of its most difficult parts. I 
recognize myself to be much indebted to those who were the first to begin 
to dissipate the strange obscurity in which these things were enveloped, and to 
give us hope that they might be explained by intelligible reasoning. But, on the 
other hand, I am astonished also that even here these have often been willing 
to offer, as assured and demonstrative, reasonings which were far from conclu- 
sive. For I do not find that any one has yet given a probable explanation of 
the first and most notable phenomena of light, namely, why it is not propa- 
gated except in straight lines, and how visible rays, coming from an infinitude 
of diverse places, cross one another without hindering one another in any way. 

I shall therefore essay in this book, to give, in accordance with the principles 
accepted in the philosophy of the present day, some clearer and more probable 
reasons, firstly, of these properties of light propagated rectilinearly; secondly, 
of light which is reflected on meeting other bodies. Then I shall explain the 
phenomena of those rays which are said to suffer refraction on passing through 
transparent bodies of different sorts; and in this part I shall also explain the 
effects of the refraction of the air by the different densities of the atmosphere. 

Thereafter, I shall examine the causes of the strange refraction of a certain 
kind of crystal which is brought from Iceland. And, finally, I shall treat of the 
various shapes of transparent and reflecting bodies by which rays are collected 
at a point or are turned aside in various ways. From this it will be seen with 
what facility, following our new theory, we find not only the ellipses, hyperbo- 
las, and other curves which M. Descartes has ingeniously invented for this pur- 
pose ; but also those which the surface of a glass lens ought to possess when its 
other surface is given as spherical or plane, or of any other figure that may be. 

It is inconceivable to doubt that light consists in the motion of some sort of 
matter. For whether one considers its production, one sees that here upon the 
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earth it is chiefly engendered by fire and flame which contain without doubt 
bodies that are in rapid motion, since they dissolve and melt many other bodies, 
even the most solid; or whether one considers its effects, one sees that when light is 
collected, as by concave mirrors, it has the property of burning as a fire does, that 
is to say, it disunites the particles of bodies. This is assuredly the mark of motion, 
at least in the true philosophy, in which one conceives the causes of all natural 
effects in terms of mechanical motions. This, in my opinion, we must necessarily 
do, or else renounce all hopes of ever comprehending anything in physics. 

And as, according to this philosophy, one holds as certain that the sensation 
of sight is excited only by the impression of some movement of a kind of mat- 
ter which acts on the nerves at the back of our eyes, there is here yet one reason 
more for believing that light consists in a movement of the matter which exists 
between us and the luminous body. 

Further, when one considers the extreme speed with which light spreads on 
every side, and how, when it comes from different regions, even from those 
directly opposite, the rays traverse one another without hindrance, one may 
well understand that when we see a luminous object, it cannot be by any trans- 
port of matter coming to us from this object, in the way in which a shot or an 
arrow traverses the air; for assuredly that would too greatly impugn these two 
properties of light, especially the second of them. It is then in some other way 
that light spreads; and that which can lead us to comprehend it is the knowl- 
edge which we have of the spreading of sound in the air. 

We know that by means of the air, which is an invisible and impalpable body, 
sound spreads around the spot where it has been produced by a movement 
which is passed on successively from one part of the air to another; and that 
the spreading of this movement, taking place equally rapidly on all sides, 
ought to form spherical surfaces ever enlarging and which strike our ears. Now 
there is no doubt at all that light also comes from the luminous body to our 
eyes by some movement impressed on the matter which is between the two; 
since, as we have already seen, it cannot be by the transport of a body which 
passes from one to the other. If, in addition, light takes time for its passage— 
which we are now going to examine—it will follow that this movement, im- 
pressed on the intervening matter, is successive; and consequently it spreads, 
as sound does, by spherical surfaces and waves: for I call them waves from 
their resemblance to those which are seen to be formed in water when a stone 
is thrown into it, and which present a successive spreading as circles, though 
these arise from another cause, and are only in a flat surface. 

To see then whether the spreading of light takes time, let us consider first 
whether there are any facts of experience which can convince us to the con- 
trary. As to those which can be made here on the earth, by striking lights at 
great distances, although they prove that light takes no sensible time to pass 
over these distances, one may say with good reason that they are too small, 
and that the only conclusion to be drawn from them is that the passage of light 
is extremely rapid. M. Descartes, who was of opinion that it is instantaneous, 
founded his views, not without reason, upon a better basis of experience, drawn 
from the eclipses of the moon; which, nevertheless, as I shall show, is not at all 
convincing. I will set it forth, in a way a little different from his, in order to 
make the conclusion more comprehensible. 

Let A be the place of the sun, BD a part of the orbit or annual path of the 
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earth: ABC a straight line which I suppose to meet the orbit of the moon, 
which is represented by the circle CD, at C. 

Now if light requires time, for example one hour, to traverse the space which 
is between the earth and the moon, it will follow that the earth having arrived 
at B, the shadow which it casts, or the interruption of the light, will not yet 
have arrived at the point C, but will only arrive there an hour after. It will 
then be one hour after, reckoning from the moment when the earth was at B, 
that the moon, arriving at C, will be obscured: but this obscuration or inter- 
ruption of the light will not reach the earth till after another hour. Let us sup- 
pose that the earth in these two hours will have arrived at E. The earth then, 
being at E, will see the eclipsed moon at C, which it left an hour before, and at 
the same time will see the sun at A. For it being immovable, as I suppose with 
Copernicus, and the light moving always in straight lines, it must always ap- 
pear where it is. But one has always observed, we are told, that the eclipsed 
moon appears at the point of the ecliptic opposite to the sun; and yet here it 
would appear in arrear of that point by an amount equal to the angle GEC, 
the supplement of AEC. This, however, is contrary to experience, since the 
angle GEC would be very sensible, and about 33 degrees. Now according to 
our computation, which is given in the treatise on the causes of the phenom- 
ena of Saturn, the distance BA between the earth and the sun is about twelve 
thousand diameters of the earth, and hence four hundred times greater than 
BC the distance of the moon, which is 30 diameters. Then the angle ECB will 
be nearly four hundred times greater than BAE, which is five minutes; name- 
ly, the path which the earth travels in two hours along its orbit; and thus the 
angle BCE will be nearly 33 degrees; and likewise the angle CEG, which is 
greater by five minutes. 

But it must be noted that the speed of light in this argument has been as- 
sumed such that it takes a time of one hour to make the passage from here to 
the moon. If one supposes that for this it requires only one minute of time, then 
it is manifest that the angle CEG will only be 33 minutes; and if it requires 
only ten seconds of time, the angle will be less than six minutes. And then it 
will not be easy to perceive anything of it in observations of the eclipse; nor, 
consequently, will it be permissible to deduce from it that the movement of 
light is instantaneous. 

It is true that we are here supposing a strange velocity that would be a hun- 
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dred thousand times greater than that of sound. For sound, according to what I 
have observed, travels about 180 toises in the time of one second, or in about 
one beat of the pulse. But this supposition ought not to seem to be an impossi- 
bility; since it is not a question of the transport of a body with so great a 
speed, but of a successive movement which is passed on from some bodies to 
others. I have then made no difficulty, in meditating on these things, in sup- 
posing that the emanation of light is accomplished with time, seeing that in 
this way all its phenomena can be explained, and that in following the contrary 
opinion everything is incomprehensible. For it has always seemed to me that 
even M. Descartes, whose aim has been to treat all the subjects of physics in- 
telligibly, and who assuredly has succeeded in this better than anyone before 
him, has said nothing that is not full of difficulties, or even inconceivable, in 
dealing with light and its properties. 

But that which I employed only as a hypothesis, has recently received great 
seemingness as an established truth by the ingenious proof of Mr. Romer 
which I am going here to relate, expecting him himself to give all that is needed 
for its confirmation. It is founded, as is the preceding argument, upon celestial 
observations, and proves not only that light takes time for its passage, but also 
demonstrates how much time it takes, and that its velocity is even at least six 
times greater than that which I have just stated. 

For this he makes use of the eclipses suffered by the little planets which 
revolve around Jupiter, and which often enter his shadow: and see what is his 
reasoning. Let A be the sun, BCDE the annual 
orbit of the earth, F Jupiter, GN the orbit of the 
nearest of his satellites, for it is this one which is 
more apt for this investigation than any of the 
other three because of the quickness of its revolu- 
tion. Let G be this satellite entering into the 
shadow of Jupiter, H the same satellite emerging 
from the shadow. 

Let it be then supposed, the earth being at B 
some time before the last quadrature, that one 
has seen the said satellite emerge from the shadow; 
it must needs be, if the earth remains at the same 
place, that, after 423^ hours, one would again see 
a similar emergence, because that is the time in 
which it makes the round of its orbit, and when it 
would come again into opposition to the sun. And 
if the earth, for instance, were to remain always 
at B during 30 revolutions of this satellite, one 
would see it again emerge from the shadow after 
30 times 423^ hours. But the earth having been 
carried along during this time to C, increasing 
thus its distance from Jupiter, it follows that if 
light requires time for its passage the illumination 
of the little planet will be perceived later at C 
than it would have been at B, and that there must 
be added to this time of 30 times 423^ hours that which the light has required 
to traverse the space MC, the difference of the spaces CH, BH. Similarly, at 
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the other quadrature when the earth has come to E from D while approach- 
ing toward Jupiter, the immersions of the satellite ought to be observed at E 
earlier than they would have been seen if the earth had remained at D. 

Now in quantities of observations of these eclipses, made during ten con- 
secutive years, these differences have been found to be very considerable, such 
as ten minutes and more; and from them it has been concluded that in order to 
traverse the whole diameter of the annual orbit KL, which is double the dis- 
tance from here to the sun, light requires about 22 minutes of time. 

The movement of Jupiter in his orbit while the earth passed from B to C, 
or from D to E, is included in this calculation; and this makes it evident that 
one cannot attribute the retardation of these illuminations or the anticipation 
of the eclipses, either to any irregularity occurring in the movement of the 
little planet or to its eccentricity. 

If one considers the vast size of the diameter KL, which according to me is 
some 24 thousand diameters of the earth, one will acknowledge the extreme 
velocity of light. For, supposing that KL is no more than 22 thousand of these 
diameters, it appears that being traversed in 22 minutes this makes the speed 
a thousand diameters in one minute, that is 16% diameters in one second or in 
one beat of the pulse, which makes more than 11 hundred times a hundred 
thousand toises; since the diameter of the earth contains 2,865 leagues, reck- 
oned at 25 to the degree, and each league is 2,282 toises, according to the exact 
measurement which Mr. Picard made by order of the King in 1669. But sound, 
as I have said above, only travels 180 toises in the same time of one second: 
hence the velocity of light is more than six hundred thousand times greater 
than that of sound. This, however, is quite another thing from being instan- 
taneous, since there is all the difference between a finite thing and an infinite. 
Now the successive movement of light being confirmed in this way, it follows, 
as I have said, that it spreads by spherical waves, like the movement of sound. 

But if the one resembles the other in this respect, they differ in many other 
things; to wit, in the first production of the movement which causes them; in 
the matter in which the movement spreads; and in the manner in which it is 
propagated. As to that which occurs in the production of sound, one knows 
that it is occasioned by the agitation undergone by an entire body, or by a 
considerable part of one, which shakes all the contiguous air. But the move- 
ment of the light must originate as from each point of the luminous object, 
else we should not be able to perceive all the different parts of that object, as 
will be more evident in that which follows. And I do not believe that this move- 
ment can be better explained than by supposing that all those of the luminous 
bodies which are liquid, such as flames, and apparently the sun and the stars, 
are composed of particles which float in a much more subtle medium which 
agitates them with great rapidity, and makes them strike against the particles 
of the ether which surrounds them, and which are much smaller than they. 
But I hold also that in luminous solids such as charcoal or metal made red-hot 
in the fire, this same movement is caused by the violent agitation of the par- 
ticles of the metal or of the wood; those of them which are on the surface 
striking similarly against the ethereal matter. The agitation, moreover, of the 
particles which engender the light ought to be much more prompt and more 
rapid than is that of the bodies which cause sound, since we do not see that 
the tremors of a body which is giving out a sound are capable of giving rise to 
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light, even as the movement of the hand in the air is not capable of producing 
sound. 

Now if one examines what this matter may be in which the movement com- 
ing from the luminous body is propagated, which I call ethereal matter, one 
will see that it is not the same that serves for the propagation of sound. For 
one finds that the latter is really that which we feel and which we breathe, and 
which being removed from any place still leaves there the other kind of matter 
that serves to convey light. This may be proved by shutting up a sounding 
body in a glass vessel from which the air is withdrawn by the machine which 
Mr. Boyle has given us, and with which he has performed so many beautiful 
experiments. But in doing this of which I speak, care must be taken to place 
the sounding body on cotton or on feathers, in such a way that it cannot com- 
municate its tremors either to the glass vessel which encloses it, or to the ma- 
chine; a precaution which has hitherto been neglected. For then after having 
exhausted all the air one hears no sound from the metal, though it is struck. 

One sees here not only that our air, which does not penetrate through glass, 
is the matter by which sound spreads; but also that it is not the same air but 
another kind of matter in which light spreads; since if the air is removed from 
the vessel the light does not cease to traverse it as before. 

And this last point is demonstrated even more clearly by the celebrated 
experiment of Torricelli, in which the tube of glass from which the quicksilver 
has withdrawn itself, remaining void of air, transmits light just the same as 
when air is in it. For this proves that a matter different from air exists in this 
tube, and that this matter must have penetrated the glass or the quicksilver, 
either one or the other, though they are both impenetrable to the air. And 
when, in the same experiment, one makes the vacuum after putting a little 
water above the quicksilver, one concludes equally that the said matter passes 
through glass or water, or through both. 

As regards the different modes in which I have said the movements of sound 
and of light are communicated, one may sufficiently comprehend how this 
occurs in the case of sound if one considers that the air is of such a nature that 
it can be compressed and reduced to a much smaller space than that which it 
ordinarily occupies. And in proportion as it is compressed the more does it 
exert an effort to regain its volume; for this property along with its penetra- 
bility, which remains notwithstanding its compression, seems to prove that it 
is made up of small bodies which float about and which are agitated very 
rapidly in the ethereal matter composed of much smaller parts. So that the 
cause of the spreading of sound is the effort which these little bodies make in 
collisions with one another, to regain freedom when they are a little more 
squeezed together in the circuit of these waves than elsewhere. 

But the extreme velocity of light, and other properties which it has, cannot 
admit of such a propagation of motion, and I am about to show here the way 
in which I conceive it must occur. For this, it is needful to explain the property 
which hard bodies must possess to transmit movement from one to another. 

When one takes a number of spheres of equal size, made of some very hard 
substance, and arranges them in a straight line, so that they touch one another, 
one finds, on striking with a similar sphere against the first of these spheres, 
that the motion passes as in an instant to the last of them, which separates 
itself from the row, without one's being able to perceive that the others have 
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been stirred. And even that one which was used to strike remains motionless 
with them. Whence one sees that the movement passes with an extreme velocity 
which is the greater, the greater the hardness of the substance of the spheres. 

But it is still certain that this progression of motion is not instantaneous, 
but successive, and therefore must take time. For if the movement, or the 
disposition to movement, if you will have it so, did not pass successively 
through all these spheres, they would all acquire the movement at the same 
time, and hence would all advance together; which does not happen. For the 
last one leaves the whole row and acquires the speed of the one which was 
pushed. Moreover there are experiments which demonstrate that all the bodies 
which we reckon of the hardest kind, such as quenched steel, glass, and agate, 
act as springs and bend somehow, not only when extended as rods but also 
when they are in the form of spheres or of other shapes. That is to say, they 
yield a little in themselves at the place where they are struck, and immediately 
regain their former figure. For I have found that on striking with a ball of glass 
or of agate against a large and quite thick piece of the same substance which 
had a flat surface, slightly soiled with breath or in some other way, there re- 
mained round marks, of smaller or larger size according as the blow had been 
weak or strong. This makes it evident that these substances yield where they 
meet, and spring back: and for this time must be required. 

Now in applying this kind of movement to that which produces light there 
is nothing to hinder us from estimating the particles of the ether to be of a 
substance as nearly approaching to perfect hardness and possessing a springi- 
ness as prompt as we choose. It is not necessary to examine here the causes of 
this hardness, or of that springiness, the consideration of which would lead us 
too far from our subject. I will say, however, in passing that we may conceive 
that the particles of the ether, notwithstanding their smallness, are in turn 
composed of other parts and that their springiness consists in the very rapid 
movement of a subtle matter which penetrates them from every side and con- 
strains their structure to assume such a disposition as to give to this fluid 
matter the most overt and easy passage possible. This accords with the expla- 
nation which M. Descartes gives for the spring, though I do not, like him, 
suppose the pores to be in the form of round hollow canals. And it must not be 
thought that in this there is anything absurd or impossible, it being on the 
contrary quite credible that it is this infinite series of different sizes of cor- 
puscles, having different degrees of velocity, of which Nature makes use to 
produce so many marvellous effects. 

But though we shall ignore the true cause of springiness we still see that there 
are many bodies which possess this property; and thus there is nothing strange 
in supposing that it exists also in little invisible bodies like the particles of the 
ether. Also, if one wishes to seek for any other way in which the movement of 
light is successively communicated, one will find none which agrees better, 
with uniform progression, as seems to be necessary, than the property of spring- 
iness; because if this movement should grow slower in proportion as it is shared 
over a greater quantity of matter, in moving away from the source of the light, 
it could not conserve this great velocity over great distances. But by supposing 
springiness in the ethereal matter, its particles will have the property of equally 
rapid restitution whether they are pushed strongly or feebly; and thus the 
propagation of light will always go on with an equal velocity. 
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And it must be known that, although the particles of the ether are not 

ranged thus in straight lines, as in our row of spheres, but confusedly, so that 
one of them touches several others, this does not hinder them from transmit- 
ting their movement and from spreading it always forward. As to this, it is to 
©be remarked that there is a law of motion serving for this 

propagation, and verifiable by experiment. It is that when 
a sphere, such as A here, touches several other similar 
spheres CCC, if it is struck by another sphere B in such a 
way as to exert an impulse against all the spheres CCC 

.—which touch it, it transmits to them the whole of its move- 
a ) ment, and remains after that motionless like the sphere B. 

I C L>—</c ) w^lou^ supposing that the ethereal particles are of ^ spherical form (for I see indeed no need to suppose them 
I ^ j so) one may well understand that this property of com- 

municating an impulse does not fail to contribute to the 
aforesaid propagation of movement. 

Equality of size seems to be more necessary, because otherwise there ought 
to be some reflexion of movement backwards when it passes from a smaller 
particle to a larger one, according to the Laws of Percussion which I published 
some years ago. 

However, one will see hereafter that we have to suppose such an equality 
not so much as a necessity for the propagation of light as for rendering that 
propagation easier and more powerful; for it is not beyond the limits of prob- 
ability that the particles of the ether have been made equal for a purpose so 
important as that of light, at least in that vast space which is beyond the 
region of atmosphere and which seems to serve only to transmit the light of the 
sun and the stars. 

I have then shown in what manner one may conceive light to spread suc- 
cessively, by spherical waves, and how it is possible that this spreading is 
accomplished with as great a velocity as that which 
experiments and celestial observations demand. 
Whence it may be further remarked that, although 
the particles are supposed to be in continual move- 
ment (for there are many reasons for this), the succes- 
sive propagation of the waves cannot be hindered by 
this; because the propagation consists nowise in the 
transport of those particles but merely in a small 
agitation which they cannot help communicating to 
those surrounding, notwithstanding any movement 
which may act on them causing them to be changing 
positions amongst themselves. 

But we must consider still more particularly the 
origin of these waves, and the manner in which they 
spread. And, first, it follows from what has been said 
on the production of light, that each little region of a 
luminous body, such as the sun, a candle, or a burn- 
ing coal, generates its own waves of which that region is the centre. Thus, in 
the flame of a candle, having distinguished the points A, B, C, concentric circles 
described about each of these points represent the waves which come from 
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them. And one must imagine the same about every point of the surface and of 
the part within the flame. 

But as the percussions at the centres of these waves possess no regular suc- 
cession, it must not be supposed that the waves themselves follow one another 
at equal distances: and if the distances marked in the figure appear to be such, 
it is rather to mark the progression of one and the same wave at equal intervals 
of time than to represent several of them issuing from one and the same centre. 

After all, this prodigious quantity of waves which traverse one another with- 
out confusion and without effacing one another must not be deemed incon- 
ceivable; it being certain that one and the same particle of matter can serve 
for many waves coming from different sides or even from contrary directions, 
not only if it is struck by blows which follow one another closely but even for 
those which act on it at the same instant. It can do so because the spreading of 
the movement is successive. This may be proved by the row of equal spheres 
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of hard matter, spoken of above. If against this row there are pushed from two 
opposite sides at the same time two similar spheres A and D, one will see each 
of them rebound with the same velocity which it had in striking, yet the whole 
row will remain in its place, although the movement has passed along its whole 
length twice over. And if these contrary movements happen to meet one an- 
other at the middle sphere, B, or at some other such as C, that sphere will yield 
and act as a spring at both sides, and so will serve at the same instant to 
transmit these two movements. 

But what may at first appear full strange and even incredible is that the un- 
dulations produced by such small movements and corpuscles should spread to 
such immense distances; as for example, from the sun or from the stars to us. 
For the force of these waves must grow feeble in proportion as they move away 
from their origin, so that the action of each one in particular will without doubt 
become incapable of making itself felt to our sight. But one will cease to be 
astonished by considering how at a great distance from the luminous body an 
infinitude of waves, though they have issued from different points of this body, 
unite together in such a way that they sensibly compose one single wave only, 
which, consequently, ought to have enough force to make itself felt. Thus, this 
infinite number of waves which originate at the same instant from all points 
of a fixed star, big it may be as the sun, make practically only one single wave 
which may well have force enough to produce an impression on our eyes. More- 
over, from each luminous point there may come many thousands of waves in 
the smallest imaginable time, by the frequent percussion of the corpuscles 
which strike the ether at these points: which further contributes to rendering 
their action more sensible. 

There is the further consideration in the emanation of these waves, that 
each particle of matter, in which a wave spreads, ought not to communicate 
its motion only to the next particle which is in the straight line drawn from 
the luminous point, but that it also imparts some of it necessarily to all the 
others which touch it and which oppose themselves to its movement. So it 
arises that around each particle there is made a wave of which that particle 
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is the centre. Thus, if DCF is a wave emanating from the luminous point A, 
which is its centre, the particle B, one of those comprised within the sphere 
DCF, will have made its particular 
or partial wave KCL, which will 
touch the wave DCF at C at the 
same moment that the principal 
wave emanating from the point A 
has arrived at DCF; and it is clear 
that it will be only the region C of 
the wave KCL which will touch 
the wave DCF, to wit, that which 
is in the straight line drawn through 
AB. Similarly the other particles of 
the sphere DCF, such as hh, dd, ^ 
etc., will each make its own wave. 
But each of these waves can be in- 
finitely feeble only as compared 
with the wave DCF, to the composition of which all the others contribute by 
the part of their surface which is most distant from the centre A. 

One sees, in addition, that the wave DCF is determined by the distance 
attained in a certain space of time by the movement which started from the 
point A; there being no movement beyond this wave, though there will be in 
the space which it encloses, namely, in parts of the particular waves, those 
parts which do not touch the sphere DCF. And all this ought not to seem 
fraught with too much minuteness or subtlety, since we shall see in the sequel 
that all the properties of light, and everything pertaining to its reflexion and 
its refraction, can be explained in principle by this means. This is a matter 
which has been quite unknown to those who hitherto have begun to consider 
the waves of light, amongst whom are Mr. Hooke in his Micrographia, and 
Father Pardies, who, in a treatise of which he let me see a portion, and which 
he was unable to complete as he died shortly afterward, had undertaken to 
prove by these waves the effects of reflexion and refraction. But the chief foun- 
dation, which consists in the remark I have just made, was lacking in his dem- 
onstrations; and for the rest he had opinions very different from mine, as may 
be will appear some day if his writing has been preserved. 

To come to the properties of light. We remark first that each portion of a 
wave ought to spread in such a way that its extremities lie always between the 
same straight lines drawn from the luminous point. Thus, the portion BG of 
the wave, having the luminous point A as its centre, will spread into the arc 
CE bounded by the straight lines ABC, AGE. For although the particular 
waves produced by the particles comprised within the space CAE spread also 
outside this space, they yet do not concur at the same instant to compose a 
wave which terminates the movement, as they do precisely at the circumfer- 
ence CE, which is their common tangent. 

And hence one sees the reason why light, at least if its rays are not reflected 
or broken, spreads only by straight lines, so that it illuminates no object ex- 
cept when the path from its source to that object is open along such lines. For 
if, for example, there were an opening BG, limited by opaque bodies BH, GI, 
the wave of light which issues from the point A will always be terminated by 
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the straight lines AC, AE, as has just been shown; the parts of the partial 
waves which spread outside the space ACE being too feeble to produce light 
there. 

Now, however small we make the opening BG, there is always the same 
reason causing the light there to pass between straight lines; since this opening 
is always large enough to contain a great number of particles of the ethereal 
matter, which are of an inconceivable smallness; so that it appears that each 
little portion of the wave necessarily advances following the straight line which 
comes from the luminous point. Thus, then, we may take the rays of light as 
if they were straight lines. 

It appears, moreover, by what has been remarked touching the feebleness 
of the particular waves, that it is not needful that all the particles of the ether 
should be equal amongst themselves, though equality is more apt for the prop- 
agation of the movement. For it is true that inequality will cause a particle, by 
pushing against another larger one, to strive to recoil with a part of its move- 
ment; but it will thereby merely generate backwards towards the luminous 
point some partial waves incapable of causing light, and not a wave com- 
pounded of many as CE was. 

Another property of waves of light, and one of the most marvellous, is that 
when some of them come from different or even from opposing sides, they 
produce their effect across one another without any hindrance. Whence also 
it comes about that a number of spectators may view different objects at the 
same time through the same opening, and that two persons can at the same 
time see one another's eyes. Now, according to the explanation which has been 
given of the action of light, how the waves do not destroy nor interrupt one 
another when they cross one another, these effects which I have just men- 
tioned are easily conceived. But in my judgement they are not at all easy to 
explain according to the views of M. Descartes, who makes light to consist in 
a continuous pressure merely tending to movement. For this pressure not being 
able to act from two opposite sides at the same time against bodies which have 
no inclination to approach one another, it is impossible so to understand what 
I have been saying about two persons mutually seeing one another's eyes, or 
how two torches can illuminate one another. 

CHAPTER TWO 

On Reflexion 

Having explained the effects of waves of light which spread in a homogeneous 
matter, we will examine next that which happens to them on encountering 
other bodies. We will first make evident how the reflexion of light is explained 
by these same waves, and why it preserves equality of angles. 

Let there be a surface AB; plane and polished, of some metal, glass, or other 
body, which at first I will consider as perfectly uniform (reserving to myself to 
deal at the end of this demonstration with the inequalities from which it can- 
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not be exempt), and let a line AC, inclined to AB, represent a portion of a 
wave of light, the centre of which is so distant that this portion AC may be 
considered as a straight line; for I consider all this as in one plane, imagining 
to myself that the plane in 
which this figure is cuts the 
sphere of the wave through 
its centre and intersects the 
plane AB at right angles. This 
explanation will suffice once 
for all. 

The piece C of the wave 
AC, will in a certain space of 
time advance as far as the 
plane AB at B, following the 
straight line CB, which may 
be supposed to come from the 
luminous centre, and which 
in consequence is perpendic- 
ular to AC. Now in this same 
space of time the portion A of 
the same wave, which has^ 
been hindered from communicating its movement beyond the plane AB, or at 
least partly so, ought to have continued its movement in the matter which is 
above this plane, and this along a distance equal to CB, making its own partial 
spherical wave, according to what has been said above. Which wave is here 
represented by the circumference SNR, the centre of which is A, and its semi- 
diameter AN equal to CB. 

If one considers further the other pieces H of the wave AC, it appears that 
they will not only have reached the surface AB by straight lines HK parallel 
to CB, but that in addition they will have generated in the transparent air, 
from the centres K, K, K, particular spherical waves, represented here by cir- 
cumferences the semi-diameters of which are equal to KM, that is to say, to 
the continuations of HK as far as the line BG parallel to AC. But all these cir- 
cumferences have as a common tangent the straight line BN, namely, the same 
which is drawn from B as a tangent to the first of the circles, of which A is the 
centre, and AN the semi-diameter equal to BC, as is easy to see. 

It is then the line BN (comprised between B and the point N where the 
perpendicular from the point A falls) which is, as it were, formed by all these 
circumferences, and which terminates the movement which is made by the 
reflexion of the wave AC; and it is also the place where the movement occurs 
in much greater quantity than anywhere else. Wherefore, according to that 
which has been explained, BN is the propagation of the wave AC at the mo- 
ment when the piece C of it has arrived at B. For there is no other line Avhich 
like BN is a common tangent to all the aforesaid circles, except BG below the 
plane AB; which line BG would be the propagation of the wave if the move- 
ment could have spread in a medium homogeneous with that which is above 
the plane. And if one wishes to see how the wave AC has come successively to 
BN, one has only to draw in the same figure the straight lines KO parallel to 
BN, and the straight lines KL parallel to AC. Thus one will see that the straight 
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wave AC has become broken up into all the OKL parts successively, and that 
it has become straight again at NB. 

Now it is apparent here that the angle of reflexion is made equal to the angle 
of incidence. For the triangles ACB, BNA, being rectangular and having the 
side AB common, and the side CB equal to NA, it follows that the angles 
opposite to these sides will be equal, and therefore also the angles CBA, NAB. 
But as CB, perpendicular to CA, marks the direction of the incident ray, so 
AN, perpendicular to the wave BN, marks the direction of the reflected ray; 
hence these rays are equally inclined to the plane AB. 

But in considering the preceding demonstration, one might aver that it is 
indeed true that BN is the common tangent of the circular waves in the plane 
of this figure, but that these waves, being in truth spherical, have still an in- 
finitude of similar tangents, namely, all the straight lines which are drawn 
from the point B in the surface generated by the straight line BN about the 
axis BA. It remains, therefore, to demonstrate that there is no difficulty herein: 
and by the same argument one will see why the incident ray and the reflected 
ray are always in one and the same plane perpendicular to the reflecting plane. 
I say then that the wave AC, being regarded only as a line, produces no light. 
For a visible ray of light, however narrow it may be, has always some width, 
and consequently it is necessary, in representing the wave whose progression 
constitutes the ray, to put instead of a line AC some plane figure such as the 
circle HC in the following figure, by supposing, as we have done, the luminous 
point to be infinitely distant. Now it is easy to see, following the preceding 
demonstration, that each small piece of this wave HC having arrived at the 
plane AB, and there generating each one its particular wave, these will all 
have, when C arrives at B, a common plane which will touch them, namely, a 
circle BN similar to CH; and this will be intersected at its middle and at right 

angles by the same plane which likewise intersects the circle CH and the ellipse 
AB. 

One sees also that the said spheres of the partial waves cannot have any 
common tangent plane other than the circle BN; so that it will be this plane 
where there will be more reflected movement than anywhere else, and which 
will therefore carry on the light in continuance from the wave CH. 

I have also stated in the preceding demonstration that the movement of the 
piece A of the incident wave is not able to communicate itself beyond the 
plane AB, or at least not wholly. Whence it is to be remarked that though the 
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movement of the ethereal matter might communicate itself partly to that of 
the reflecting body, this could in nothing alter the velocity of progression of 
the waves on which the angle of reflexion depends. For a slight percussion ought 
to generate waves as rapid as strong percussion in the same matter. This comes 
about from the property of bodies which act as springs, of which we have 
spoken above; namely, that whether compressed little or much they recoil in 
equal times. Equally so in every reflexion of the light, against whatever body 
it may be, the angles of reflexion and incidence ought to be equal notwith- 
standing that the body might be of such a nature that it takes away a portion 
of the movement made by the incident light. And experiment shows that in 
fact there is no polished body the reflexion of which does not follow this rule. 

But the thing to be above all remarked in our demonstration is that it does 
not require that the reflecting surface should be considered as a uniform plane, 
as has been supposed by all those who have tried to explain the effects of 
reflexion; but only an evenness such as may be attained by the particles of the 
matter of the reflecting body being set near to one another; which particles 
are larger than those of the ethereal matter, as will appear by what we shall 
say in treating of the transparency and opacity of bodies. For the surface con- 
sisting thus of particles put together, and the ethereal particles being above, 
and smaller, it is evident that one could not demonstrate the equality of the 
angles of incidence and reflexion by similitude to that which happens to a ball 
thrown against a wall, of which writers have always made use. In our way, on 
the other hand, the thing is explained without difficulty. For the smallness of 
the particles of quicksilver, for example, being such that one must conceive 
millions of them, in the smallest visible surface proposed, arranged like a heap 
of grains of sand which has been flattened as much as it is capable of being, 
this surface then becomes for our purpose as even as a polished glass is: and, 
although it always remains rough with respect to the particles of the ether it is 
evident that the centres of all the particular spheres of reflexion, of which we 
have spoken, are almost in one uniform plane, and that thus the common tan- 
gent can fit to them as perfectly as is requisite for the production of light. And 
this alone is requisite, in our method of demonstration, to cause equality of 
the said angles without the remainder of the movement reflected from all parts 
being able to produce any contrary effect. 

CHAPTER THREE 

On Refraction 

In the same way as the effects of reflexion have been explained by waves of 
light reflected at the surface of polished bodies, we will explain transparency 
and the phenomena of refraction by waves which spread within and across 
diaphanous bodies, both solids, such as glass, and liquids, such as water, oils, 
etc. But in order that it may not seem strange to suppose this passage of waves 
in the interior of these bodies, I will first show that one may conceive it pos- 
sible in more than one mode. 
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First, then, if the ethereal matter cannot penetrate transparent bodies at 
all, their own particles would be able to communicate successively the move- 
ment of the waves, the same as do those of the ether, supposing that, like 
those, they are of a nature to act as a spring. And this is easy to conceive as 
regards water and other transparent liquids, they being composed of detached 
particles. But it may seem more difficult as regards glass and other transparent 
and hard bodies, because their solidity does not seem to permit them to receive 
movement except in their whole mass at the same time. This, however, is not 
necessary because this solidity is not such as it appears to us, it being probable 
rather that these bodies are composed of particles merely placed close to one 
another and held together by some pressure from without of some other mat- 
ter, and by the irregularity of their shapes. For primarily their rarity is shown 
by the facility with which there passes through them the matter of the vortices 
of the magnet, and that which causes gravity. Further, one cannot say that 
these bodies are of a texture similar to that of a sponge or of light bread, 
because the heat of the fire makes them flow and thereby changes the situation 
of the particles amongst themselves. It remains then that they are, as has been 
said, assemblages of particles which touch one another without constituting a 
continuous solid. This being so, the movement which these particles receive to 
carry on the waves of light, being merely communicated from some of them to 
others, without their going for that purpose out of their places or without de- 
rangement, it may very well produce its effect without prejudicing in any way 
the apparent solidity of the compound. 

By pressure from without, of which I have spoken, must not be understood 
that of the air, which would not be sufficient, but that of some other more 
subtle matter, a pressure which I chanced upon by experiment long ago, name- 
ly, in the case of water freed from air, which remains suspended in a tube open 
at its lower end, notwithstanding that the air has been removed from the vessel 
in which this tube is enclosed. 

One can then in this way conceive of transparency in a solid without any 
necessity that the ethereal matter which serves for light should pass through 
it, or that it should find pores in which to insinuate itself. But the truth is that 
this matter not only passes through solids, but does so even with great facility; 
of which the experiment of Torricelli, above cited, is already a proof. Because 
on the quicksilver and the water quitting the upper part of the glass tube, it 
appears that it is immediately filled with ethereal matter, since light passes 
across it. But here is another argument which proves this ready penetrability, 
not only in transparent bodies but also in all others. 

When light passes across a hollow sphere of glass, closed on all sides, it is 
certain that it is full of ethereal matter, as much as the spaces outside the 
sphere. And this ethereal matter, as has been shown above, consists of par- 
ticles which just touch one another. If, then, it were enclosed in the sphere in 
such a way that it could not get out through the pores of the glass, it would be 
obliged to follow the movement of the sphere when one changes its place: and 
it would require, consequently, almost the same force to impress a certain 
velocity on this sphere, when placed on a horizontal plane, as if it were full of 
water or perhaps of quicksilver: because every body resists the velocity of the 
motion which one would give to it, in proportion to the quantity of matter 
which it contains, and which is obliged to follow this motion. But, on the con- 
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trary, one finds that the sphere resists the impress of movement only in pro- 
portion to the quantity of matter of the glass of which it is made. Then it must 
be that the ethereal matter which is inside is not shut up, but flows through it 
with very great freedom. We shall demonstrate hereafter that by this process 
the same penetrability may be inferred also as relating to opaque bodies. 

The second mode, then, of explaining transparency, and one which appears 
more probably true, is by saying that the waves of light are carried on in the 
ethereal matter, which continuously occupies the interstices or pores of trans- 
parent bodies. For since it passes through them continuously and freely, it 
follows that they are always full of it. And one may even show that these 
interstices occupy much more space than the coherent particles which consti- 
tute the bodies. For if what we have just said is true: that force is required to 
impress a certain horizontal velocity on bodies in proportion as they contain 
coherent matter; and if the proportion of this force follows the law of weights, 
as is confirmed by experiment, then the quantity of the constituent matter of 
bodies also follows the proportion of their weights. Now we see that water 
weighs only one-fourteenth part as much as an equal portion of quicksilver: 
therefore, the matter of the water does not occupy the fourteenth part of the 
space which its mass obtains. It must even occupy much less of it, since quick- 
silver is less heavy than gold, and the matter of gold is by no means dense, as 
follows from the fact that the matter of the vortices of the magnet and of that 
which is the cause of gravity pass very freely through it. 

But it may be objected here that if water is a body of so great rarity, and if 
its particles occupy so small a portion of the space of its apparent bulk, it is 
very strange how it yet resists compression so strongly without permitting it- 
self to be condensed by any force which one has hitherto essayed to employ, 
preserving even its entire liquidity while subjected to this pressure. 

This is no small difficulty. It may, however, be resolved by saying that the 
very violent and rapid motion of the subtle matter which renders water 
liquid, by agitating the particles of which it is composed, maintains this liq- 
uidity in spite of the pressure which hitherto any one has been minded to 
apply to it. 

The rarity of transparent bodies being then such as we have said, one easily 
conceives that the waves might be carried on in the ethereal matter which 
fills the interstices of the particles. And, moreover, one may believe that the 
progression of these waves ought to be a little slower in the interior of bodies, 
by reason of the small detours which the same particles cause. In which differ- 
ent velocity of light I shall show the cause of refraction to consist. 

Before doing so, I will indicate the third and last mode in which transpar- 
ency may be conceived; which is by supposing that the movement of the waves 
of light is transmitted indifferently both in the particles of the ethereal matter 
which occupy the interstices of bodies, and in the particles which compose 
them, so that the movement passes from one to the other. And it will be seen 
hereafter that this hypothesis serves excellently to explain the double refrac- 
tion of certain transparent bodies. 

Should it be objected that if the particles of the ether are smaller than those 
of transparent bodies (since they pass through their intervals), it would follow 
that they can communicate to them but little of their movement, it may be 
replied that the particles of these bodies are in turn composed of still smaller 
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particles, and so it will be these secondary particles which will receive the 
movement from those of the ether. 

Furthermore, if the particles of transparent bodies have a recoil a little less 
prompt than that of the ethereal particles, which nothing hinders us from sup- 
posing, it will again follow that the progression of the waves of light will be 
slower in the interior of such bodies than it is outside in the ethereal matter. 

All this I have found as most probable for the mode in which the waves of 
light pass across transparent bodies. To which it must further be added in 
what respect these bodies differ from those which are opaque; and the more so 
since it might seem because of the easy penetration of bodies by the ethereal 
matter, of which mention has been made, that there would not be any body 
that was not transparent. For by the same reasoning about the hollow sphere 
which I have employed to prove the smallness of the density of glass and its 
easy penetrability by the ethereal matter, one might also prove that the same 
penetrability obtains for metals and for every other sort of body. For this 
sphere being, for example, of silver, it is certain that it contains some of the 
ethereal matter which serves for light, since this was there as well as in the air 
when the opening of the sphere was closed. Yet, being closed and placed upon 
a horizontal plane, it resists the movement which one wishes to give to it, 
merely according to the quantity of silver of which it is made; so that one must 
conclude, as above, that the ethereal matter which is enclosed does not follow 
the movement of the sphere; and that, therefore, silver, as well as glass, is very 
easily penetrated by this matter. Some of it is therefore present continuously 
and in quantities between the particles of silver and of all other opaque bodies: 
and since it serves for the propagation of light it would seem that these bodies 
ought also to be transparent, which, however, is not the case. 

Whence then, one will say, does their opacity come? Is it because the par- 
ticles which compose them are soft; that is to say, these particles being com- 
posed of others that are smaller, are they capable of changing their figure on 
receiving the pressure of the ethereal particles, the motion of which they there- 
by damp, and so hinder the continuance of the waves of light? That cannot be: 
for if the particles of the metals are soft, how is it that polished silver and mer- 
cury reflect light so strongly? What I find to be most probable herein is to say 
that metallic bodies, which are almost the only really opaque ones, have mixed 
amongst their hard particles some soft ones; so that some serve to cause re- 
flexion and the others to hinder transparency; while, on the other hand, trans- 
parent bodies contain only hard particles which have the faculty of recoil, and 
serve together with those of the ethereal matter for the propagation of the 
waves of light, as has been said. 

Let us pass now to the explanation of the effects of refraction, assuming, as 
we have done, the passage of waves of light through transparent bodies, and 
the diminution of velocity which these same waves suffer in them. 

The chief property of refraction is that a ray of light, such as AB, being in 
the air, and falling obliquely upon the polished surface of a transparent body, 
such as FG, is broken at the point of incidence B in such a way that, with the 
straight line DBE which cuts the surface perpendicularly, it makes an angle 
CBE less than ABD which it made with the same perpendicular when in the 
air. And the measure of these angles is found by describing, about the point B, 
a circle which cuts the radii AB, BC. For the perpendiculars AD, CE, let fall 
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from the points of intersection upon the straight line DE, which are called the 
sines of the angles ABD, CBE, have a certain ratio between themselves; which 

ratio is always the same for all inclinations 
of the incident ray, at least for a given trans- 
parent body. This ratio is, in glass, very 
nearly as 3 to 2; and in water very nearly 
as 4 to 3; and is likewise different in other 
diaphanous bodies. 

Another property, similar to this, is that 
the refractions are reciprocal between the 
rays entering into a transparent body and 
those which are leaving it. That is to say, 
that if the ray AB in entering the transpar- 
ent body is refracted into BC, then likewise 

CB being taken as a ray in the interior of this body will be refracted, on pass- 
ing out, into BA. 

To explain then the reasons of these phenomena according to our principles, 
let AB be the straight line which represents a plane surface bounding the trans- 
parent substances which lie towards C and towards N. When I say plane, that 
does not signify a perfect even- r 
ness, but such as has been un- 
derstood in treating of reflex- 
ion, and for the same reason. 
Let the line AC represent a 
portion of a wave of light, the 
centre of which is supposed so 
distant that this portion may 
be considered as a straight line. 
The piece C, then, of the wave 
AC, will in a certain space of 
time have advanced as far as 
the plane AB following the 
straight line CB, which may be 
imagined as coming from the 
luminous centre, and which 
consequently will cut AC at right angles. Now in the same time the piece 
A would have come to G along the straight line AG, equal and parallel to 
CB; and all the portion of wave AC would be at GB if the matter of the 
transparent body transmitted the movement of the wave as quickly as the 
matter of the ether. But let us suppose that it transmits this movement less 
quickly, by one-third, for instance. Movement will then be spread from the 
point A, in the matter of the transparent body through a distance equal to 
two-thirds of CB, making its own particular spherical wave according to what 
has been said before. This wave is then represented by the circumference SNR, 
the centre of which is A, and its semi-diameter equal to two-thirds of CB. Then 
if one considers in order the other pieces H of the wave AC, it appears that in 
the same time that the piece C reaches B they will not only have arrived at 
the surface AB along the straight lines HK parallel to CB, but that, in addi- 
tion, they will have generated in the diaphanous substance from the centres K, 
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partial waves, represented here by circumferences the semi-diameters of which 
are equal to two-thirds of the lines KM, that is to say, to two-thirds of the 
prolongations of HK down to the straight line BG; for these semi-diameters 
would have been equal to entire lengths of KM if the two transparent sub- 
stances had been of the same penetrability. 

Now all these circumferences have for a common tangent the straight line 
BN; namely, the same line which is drawn as a tangent from the point B to the 
circumference SNR, which we considered first. For it is easy to see that all the 
other circumferences will touch the same BN, from B up to the point of con- 
tact N, which is the same point where AN falls perpendicularly on BN. 

It is then BN, which is formed by small arcs of these circumferences, which 
terminates the movement that the wave AC has communicated within the 
transparent body, and where this movement occurs in much greater amount 
than anywhere else. And for that reason this line, in accordance with what has 
been said more than once, is the propagation of the wave AC at the moment 
when its piece C has reached B. For there is no other line below the plane AB 
which is, like BN, a common tangent to all these partial waves. And if one 
would know how the wave AC has come progressively to BN, it is necessary 
only to draw in the same figure the straight lines KO parallel to BN, and all 
the lines KL parallel to AC. Thus, one will see that the wave CA, from being 
a straight line, has become broken in all the positions LKO successively, and 
that it has again become a straight line at BN. This being evident by what has 
already been demonstrated, there is no need to explain it further. 

Now, in the same figure, if one draws EAF, which cuts the plane AB at right 
angles at the point A, since AD is perpendicular to the wave AC, it will be DA 
which will mark the ray of incident light, and AN which was perpendicular to 
BN, the refracted ray: since the rays are nothing else than the straight lines 
along which the portions of the waves advance. 

Whence it is easy to recognize this chief property of refraction, namely that 
the sine of the angle DAE has always the same ratio to the sine of the angle 
NAF, whatever be the inclination of the ray DA: and that this ratio is the same 
as that of the velocity of the waves in the transparent substance which is to- 
wards AE to their velocity in the transparent substance towards AF. For, 
considering AB as the radius of a circle, the sine of the angle BAC is BC, and 
the sine of the angle ABN is AN. But the angle BAC is equal to DAE, since 
each of them added to CAE makes a right angle. And the angle ABN is equal 
to NAF, since each of them with BAN makes a right angle. Then, also, the 
sine of the angle DAE is to the sine of NAF as BC is to AN. But the ratio of 
BC to AN was the same as that of the velocities of light in the substance which 
is towards AE and in that which is towards AF; therefore, also, the sine of the 
angle DAE will be to the sine of the angle NAF the same as the said velocities 
of light. 

To see, consequently, what the refraction will be when the waves of light 
pass into a substance in which the movement travels more quickly than in that 
from which they emerge (let us again assume the ratio of 3 to 2), it is only 
necessary to repeat all the same construction and demonstration which we 
have just used, merely substituting everywhere ^2 instead of %. And it will be 
found by the same reasoning, in this other figure, that when the piece C of the 
wave AC shall have reached the surface AB at B, all the portions of the wave 
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AC will have advanced as far as BN, so that BC, the perpendicular on AC, is 
to AN, the perpendicular on BN, as 2 to 3. And there will finally be this same 
ratio of 2 to 3 between the sine of the angle EAD and the sine of the angle FAN. 

Hence, one sees the reciprocal relation of the refractions of the ray on enter- 
ing and on leaving one and the same transparent body: namely, that if NA 

falling on the external surface AB is refracted into the direction AD, so the ray 
AD will be refracted on leaving the transparent body into the direction AN. 

One sees also the reason for a noteworthy accident which happens in this 
refraction: which is this, that after a certain obliquity of the incident ray DA, 
it begins to be quite unable to penetrate into the other transparent substance. 
For if the angle DAQ or CBA is such that in the triangle ACB, CB is equal to 
% of AB, or is greater, then AN cannot form one side of the triangle ANB, 
since it becomes equal to or greater than AB: so that the portion of wave BN 
cannot be found anywhere, neither consequently can AN, which ought to be 
perpendicular to it. And thus the incident ray DA does not then pierce the 
surface AB. 

When the ratio of the velocities of the waves is as 2 to 3, as in our example, 
which is that which obtains for glass and air, the angle DAQ must be more than 
48 degrees 11 minutes in order that the ray DA may be able to pass by refrac- 
tion. And when the ratio of the velocities is as 3 to 4, as it is very nearly in 
water and air, this angle DAQ must exceed 41 degrees 24 minutes. And this 
accords perfectly with experiment. 

But it might here be asked: since the meeting of the wave AC against the 
surface AB ought to produce movement in the matter which is on the other 
side, why does no light pass there? To which the reply is easy if one remembers 
what has been said before. For although it generates an infinitude of partial 
waves in the matter which is at the other side of AB, these waves never have 
a common tangent line (either straight or curved) at the same moment; and 
so there is no line terminating the propagation of the wave AC beyond the 
plane AB, nor any place where the movement is gathered together in suffi- 
ciently great quantity to produce light. And one will easily see the truth of 
this, namely, that CB being larger than % of AB, the waves excited beyond the 
plane AB will have no common tangent if about the centres K one then draws 
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circles having radii equal to of the lengths LB to which they correspond. For 
all these circles will be enclosed in one another and will all pass beyond the 
point B. 

Now it is to be remarked that from the moment when the angle DAQ is 
smaller than is requisite to permit the refracted ray DA to pass into the other 
transparent substance, one finds that the interior reflexion which occurs at the 
surface AB is much augmented in brightness, as is easy to realize by experi- 
ment with a triangular prism; and for this our theory can afford this reason. 
When the angle DAQ is still large enough to enable the ray DA to pass, it is 
evident that the light from the portion AC of the wave is collected in a mini- 
mum space when it reaches BN. It appears also that the wave BN becomes so 
much the smaller as the angle CBA or DAQ is made less, until when the latter 
is diminished to the limit indicated a little previously, this wave BN is col- 
lected together always at one point. That is to say, that when the piece C of 
the wave AC has then arrived at B, the wave BN which is the propagation of 
AC is entirely reduced to the same point B. Similarly, when the piece H has 
reached K, the part AH is entirely reduced to the same point K. This makes it 
evident that in proportion as the wave CA comes to meet the surface AB, there 
occurs a great quantity of movement along that surface; which movement 
ought also to spread within the transparent body and ought to have much 
re-enforced the partial waves which produce the interior reflexion against the 
surface AB, according to the laws of reflexion previously explained. 

And because a slight diminution of the angle of incidence DAQ causes the 
wave BN, however great it was, to be reduced to zero, (for this angle being 
49 degrees 11 minutes in the glass, the angle BAN is still 11 degrees 21 minutes, 
and the same angle being reduced by one degree only the angle BAN is reduced 
to zero, and so the wave BN reduced to a point) thence it comes about that 
the interior reflexion from being obscure becomes suddenly bright, so soon as 
the angle of incidence is such that it no longer gives passage to the refraction. 

Now as concerns ordinary external reflexion, that is to say which occurs 
when the angle of incidence DAQ is still large enough to enable the refracted 
ray to penetrate beyond the surface AB, this reflexion should occur against 
the particles of the substance which touches the transparent body on its out- 
side. And it apparently occurs against the particles of the air or others mingled 
with the ethereal particles and larger than they. So, on the other hand, the 
external reflexion of these bodies occurs against the particles which compose 
them, and which are also larger than those of the ethereal matter, since the 
latter flows in their interstices. It is true that there remains here some difficulty 
in those experiments in which this interior reflexion occurs without the par- 
ticles of air being able to contribute to it, as in vessels or tubes from which the 
air has been extracted. 

Experience, moreover, teaches us that these two reflexions are of nearly 
equal force, and that in different transparent bodies they are so much the 
stronger as the refraction of these bodies is the greater. Thus, one sees mani- 
festly that the reflexion of glass is stronger than that of water, and that of 
diamond stronger than that of glass. 

I will finish this theory of refraction by demonstrating a remarkable prop- 
osition which depends on it; namely, that a ray of light in order to go from one 
point to another, when these points are in different media, is refracted in such 
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wise at the plane surface which joins these two media that it employs the least 
possible time: and exactly the same happens in the case of reflexion against a 
plane surface. M. Fermat was the first to propound this property of refraction, 
holding with us, and directly counter to the opinion of M. Descartes, that light 
passes more slowly through glass and water than through air. But he assumed 
besides this a constant ratio of sines, which we have just proved by these dif- 
ferent degrees of velocity alone: or rather, what is equivalent, he assumed not 
only that the velocities were different but that the light took the least time 
possible for its passage, and thence deduced the constant ratio of the sines. 
His demonstration, which may be seen in his printed works, and in the volume 
of letters of M. Descartes, is very long; Avherefore I give here another which is 
simpler and easier. 

Let KF be the plane surface; A the point in the medium which the light 
traverses more easily, as the air; C the point in the other which is more difficult 
to penetrate, as water. And suppose 
that a ray has come from A, by B, to C, 
having been refracted at B according to 
the law demonstrated a little before; 
that is to say that, having drawn PBQ, 
which cuts the plane at right angles, 
let the sine of the angle ABP have to 
the sine of the angle CBQ the same 
ratio as the velocity of light in the me- 
dium where A is to the velocity of light 
in the medium where C is. It is to be 
shown that the time of passage of light 
along AB and BC taken together is the 
shortest that can be. Let us assume 
that it may have come by other lines, 
and, in the first place, along AF, FC, 
so that the point of refraction F maybe farther from B than the point A; and 
let AO be a line perpendicular to AB, and FO parallel to AB; BH perpen- 
dicular to FO, and FG to BC. 

Since then the angle HBF is equal to PBA, and the angle BFG equal to 
QBC, it follows that the sine of the angle HBF will also have the same ratio to 
the sine of BFG, as the velocity of light in the medium A is to its velocity in 
the medium C. But these sines are the straight lines HF, BG, if we take BF as 
the semi-diameter of a circle. Then these lines HF, BG, will bear to one another 
the said ratio of the velocities. And, therefore, the time of the light along HF, 
supposing that the ray had been OF, would be equal to the time along BG in 
the interior of the medium C. But the time along AB is equal to the time along 
OH; therefore, the time along OF is equal to the time along AB, BG. Again 
the time along FC is greater than that along GC; then the time along OFC 
will be longer than that along ABC. But AF is longer than OF, then the time 
along AFC will by just so much more exceed the time along ABC. 

Now let us assume that the ray has come from A to C along AK, KG; the 
point of refraction K being nearer to A than the point B is; and let CN be the 
perpendicular upon BC, KN parallel to BC: BM perpendicular upon KN, and 
KL upon BA. 
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Here BL and KM are the sines of angles BKL, KBM; that is to say, of the 
angles PBA, QBC; and, therefore, they are to one another as the velocity of 
light in the medium A is to the velocity in the medium C. Then the time along 
LB is equal to the time along KM; and since the time along BC is equal to the 
time along MN, the time along LBC will be equal to the time along KMN. 
But the time along AK is longer than that along AL: hence, the time along 
AKN is longer than that along ABC. And KC being longer than KN, the time 
along AKC will exceed, by as much more, the time along ABC. Hence, it ap- 
pears that the time along ABC is the shortest possible; which was to be proven. 

CHAPTER FOUR 

On the Refraction of the Air 

We have shown how the movement which constitutes light spreads by spher- 
ical waves in any homogeneous matter. And it is evident that when the matter 
is not homogeneous, but of such a constitution that the movement is communi- 
cated in it more rapidly toward one side than toward another, these waves 
cannot be spherical: but that they must acquire their figure according to the 
different distances over which the successive movement passes in equal times. 

It is thus that we shall in the first place explain the refractions which occur 
in the air, which extends from here to the clouds and beyond. The effects of 
which refractions are very remarkable; for by them we often see objects which 
the rotundity of the earth ought otherwise to hide; such as islands, and the 
tops of mountains when one is at sea. Because also of them the sun and the 
moon appear as risen before in fact they have, and appear to set later: so that 
at times the moon has been seen eclipsed while the sun appeared still above the 
horizon. And so also the heights of the sun and of the moon, and those of all 
the stars, always appear a little greater than they are in reality, because of 
these same refractions, as astronomers know. But there is one experiment 
which renders this refraction very evident; which is that of fixing a telescope 
on some spot so that it views an object, such as a steeple or a house, at a dis- 
tance of half a league or more. If then you look through it at different hours of 
the day, leaving it always fixed in the same way, you will see that the same 
spots of the object will not always appear at the middle of the aperture of the 
telescope, but that generally in the morning and in the evening, when there 
are more vapours near the earth, these objects seem to rise higher, so that the 
half or more of them will no longer be visible; and so that they seem lower 
toward mid-day when these vapours are dissipated. 

Those who consider refraction to occur only in the surfaces which separate 
transparent bodies of different nature, would find it difficult to give a reason 
for all that I have just related; but according to our theory the thing is quite 
easy. It is known that the air which surrounds us, besides the particles which 
are proper to it and which float in the ethereal matter as has been explained, 
is full also of particles of water which are raised by the action of heat; and it has 
been ascertained further by some very definite experiments that as one mounts 
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up higher the density of air diminishes in proportion. Now, whether the par- 
ticles of water and those of air take part, by means of the particles of ethereal 
matter, in the movement which constitutes light, but have a less prompt recoil 
than these, or whether the encounter and hindrance which these particles of 
air and water offer to the propagation of movement of the ethereal progress 
retard the progression, it follows that both kinds of particles flying amidst the 
ethereal particles must render the air, from a great height down to the earth, 
gradually less easy for the spreading of the waves of light. 

Whence the configuration of the waves ought to become nearly such as this 

figure represents: namely, if A is a light, or the visible point of a steeple, the 
waves which start from it ought to spread more widely upwards and less widely 
downwards, but in other directions more or less as they approximate to these 
two extremes. This being so, it necessarily follows that every line intersecting 
one of these waves at right angles will pass above the point A, always excepting 
the one line which is perpendicular to the horizon. 

Let BC be the wave which brings the light to the spectator who is at B, and 
let BD be the straight line which intersects this wave at right angles. Now 
because the ray or straight line by which we judge the spot where the object 
appears to us is nothing else than the perpendicular to the wave that reaches 
our eye, as will be understood by what was said above, it is manifest that the 
point A will be perceived as being in the line BD, and therefore higher than 
in fact it is. 

Similarly if the earth be AB, and the top of the atmosphere CD, which 
probably is not a well defined spherical surface (since we know that the air 
becomes rare in proportion as one ascends, for above there is so much less of 
it to press down upon it), the waves of light from the sun coming, for instance, 
in such a way that so long as they have not reached the atmosphere CD the 
straight line AE intersects them perpendicularly, they ought, when they enter 
the atmosphere, to advance more quickly in elevated regions than in regions 
nearer to the earth. So that if CA is the wave which brings the light to the 
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spectator at A, its region C will be the farthest advanced; and the straight line 
AF, which intersects this wave at right angles, and which determines the ap- 
parent place of the sun, will pass above the real sun, which will be seen along the 
line AE. And so it may occur that when it ought not to be visible in the absence 
of vapours, because the line AE encounters the rotundity of the earth, it will 
be perceived in the line AF by refraction. But this angle EAF is scarcely ever 
more than half a degree because the attenuation of the vapours alters the 
waves of light but little. Furthermore, these refractions are not altogether con- 
stant in all weathers, particularly at small elevations of 2 or 3 degrees; which 
results from the different quantity of aqueous vapours rising above the earth. 

And this same thing is the cause why at certain times a distant object will 
be hidden behind another less distant one, and yet may at another time be able 
to be seen, although the spot from which it is viewed is always the same. But 
the reason for this effect will be still more evident from what we are going to 
remark touching the curvature of rays. It appears from the things explained 
above that the progression or propagation of a small part of a wave of light is 
properly what one calls a ray. Now these rays, instead of being straight as they 
are in homogeneous media, ought to be curved in an atmosphere of unequal 
penetrability. For they necessarily follow from the object to the eye the line 
which intersects at right angles all the progressions of the waves, as in the first 
figure [p. 576] the line AEB does, as will be shown hereafter; and it is this line 
which determines what interposed bodies would or would not hinder us from 
seeing the object. For although the point of the steeple A appears raised to D, 
it would yet not appear to the eye B if the tower H was between the two, 
because it crosses the curve AEB. But the tower E, which is beneath this 
curve, does not hinder the point A from being seen. Now according as the air 
near the earth exceeds in density that which is higher, the curvature of the 
ray AEB becomes greater: so that at certain times it passes above the summit 
E, which allows the point A to be perceived by the eye at B; and at other times 
it is intercepted by the same tower E which hides A from this same eye. 
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But to demonstrate this curva- 
ture of the rays conformably to 
all our preceding theory, let us 
imagine that AB is a small portion 
of a wave of light coming from the 
side C, which we may consider as 
a straight line. Let us also suppose 
that it is perpendicular to the hor- 
izon, the portion B being nearer 
to the earth than the portion A; m< 
and that, because the vapours are 
less hindering at A than at B, the 
particular wave which comes from 
the point A spreads through a cer- 
tain space AD while the particular 
wave which starts from the point ^ 
B spreads through a shorter space 
BE; AD and BE being parallel to the horizon. Further, supposing the straight 
lines EG, HI, etc., to be drawn from an infinitude of points in the straight 
line AB and to terminate on the line DE (which is straight or may be con- 
sidered as such), let the different penetrabilities at the different heights in 
the air between A and B be represented by all these lines; so that the par- 
ticular wave, originating from the point F, will spread across the space FG, 
and that from the point H across the space HI, while that from the point A 
spreads across the space AD. 

Now if about the centres A, B, one describes the circles DK, EL, which 
represent the spreading of the waves which originate from these two points, 
and if one draws the straight line KL which touches these two circles, it is easy 
to see that this same line will be the common tangent to all the other circles 
drawn about the centresF, H, etc.; and that all the points of contact will fall 
within that part of this line which is comprised between the perpendiculars 
AK, BL. Then it will be the line KL which will terminate the movement of the 
particular waves originating from the points of the wave AB; and this move- 
ment will be stronger between the points KL, than anywhere else at the same 
instant, since an infinitude of circumferences concur to form this straight line; 
and consequently KL will be the propagation of the portion of wave AB, as 
has been said in explaining reflexion and ordinary refraction. Now it appears 
that AK and BL dip down toward the side where the air is less easy to pene- 
trate : for AK being longer than BL, and parallel to it, it follows that the lines 
AB and KL, being prolonged, would meet at the side L. But the angle K is a 
right angle: hence KAB is necessarily acute, and consequently less than DAB. 
If one investigates in the same way the progression of the portion of the wave 
KL, one will find that after a further time it has arrived at MN in such a man- 
ner that the perpendiculars KM, LN dip down even more than do AK, BL. 
And this suffices to show that the ray will continue along the curved line which 
intersects all the waves at right angles, as has been said. 
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CHAPTER FIVE 

On the Strange Refractions of Iceland Crystal 

1. There is brought from Iceland, which is an island in the North Sea, in the 
latitude of 66 degrees, a kind of crystal or transparent stone, very remarkable 
for its figure and other qualities, but above all for its strange refractions. The 
causes of this have seemed to me to be worthy of being carefully investigated, 
the more so because amongst transparent bodies this one alone does not fol- 
low the ordinary rules with respect to rays of light. I have even been under 
some necessity to make this research, because the refractions of this crystal 
seemed to overturn our preceding explanation of regular refraction; which ex- 
planation, on the contrary, they strongly confirm, as will be seen after they 
have been brought under the same principle. In Iceland are found great lumps 
of this crystal, some of which I have seen of 4 or 5 pounds. But it occurs also in 
other countries, for I have had some of the same sort which had been found in 
France near the town of Troyes in Champagne, and some others which came 
from the island of Corsica, though both were less clear and only in little bits, 
scarcely capable of letting any effect of refraction be observed. 

2. The first knowledge which the public has had about it is due to Mr. Eras- 
mus Bartholinus, who has given a description of Iceland crystal and of its 
chief phenomena. But here I shall not desist from giving my own, both for the 
instruction of those who may not have seen his book, and because as respects 
some of these phenomena there is a slight difference between his observations 
and those which I have made: for I have applied myself with great exactitude 
to examine these properties of refraction, in order to be quite sure before under- 
taking to explain the causes of them. 

3. As regards the hardness of this stone and the property which it has of 
being easily split, it must be considered rather as a species of talc than of 
crystal. For an iron spike effects an entrance into it as easily as into any other 
talc or alabaster, to which it is equal in gravity. 

D A 4. The pieces of it which are found have 
the figure of an oblique parallelepiped; 
each of the six faces being a parallelogram; 
and it admits of being split in three direc- 
tions parallel to two of these opposed 
faces. Even in such wise, if you will, that 
all the six faces are equal and similar 
rhombuses. The figure here added repre- 
sents a piece of this crystal. The obtuse 
angles of all the parallelograms, as C, D, 
here, are angles of 101 degrees 52 minutes, 
and consequently the acute angles, such as 

A and B, are of 78 degrees 8 minutes. 
5. Of the solid angles, there are two opposite to one another, such as C and 

E, which are each composed of three equal obtuse plane angles. The other six 
are composed of two acute angles and one obtuse. All that I have just said has 
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been likewise remarked by Mr. Bartholinus in the aforesaid treatise; if we 
differ it is only slightly about the values of the angles. He recounts, moreover, 
some other properties of this crystal; to wit, that when rubbed against cloth 
it attracts straws and other light things as do amber, diamond, glass, and 
Spanish wax. Let a piece be covered with water for a day or more, the surface 
loses its natural polish. When aquafortis is poured on it, it produces ebullition, 
especially, as I have found, if the crystal has been pulverized. I have also found 
by experiment that it may be heated to redness in the fire without being in 
anywise altered or rendered less transparent; but a very violent fire calcines 
it, nevertheless. Its transparency is scarcely less than that of water or of rock 
crystal, and devoid of colour. But rays of light pass through it in another 
fashion and produce those marvellous refractions the causes of which I am 
now going to try to explain; reserving for the end of this treatise the statement 
of my conjectures touching the formation and extraordinary configuration of 
this crystal. 

6. In all other transparent bodies that we know there is but one sole and 
simple refraction; but in this substance there are two different ones. The effect 
is that objects seen through it, especially such as are placed right against it, 
appear double; and that a ray of sunlight, falling on one of its surfaces, parts 
itself into two rays and traverses the crystal thus. 

7. It is again a general law in all other transparent bodies that the ray which 
falls perpendicularly on their surface passes straight on without suffering re- 
fraction, and that an oblique ray is always refracted. But in this crystal the 
perpendicular ray suffers refraction, and there are oblique rays which pass 
through it quite straight. 
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8. But in order to explain these phenomena more particularly, let there be, 
in the first place, a piece ABFE of the same crystal, and let the obtuse angle 
ACB, one of the three which constitute the equilateral solid angle C, be di- 
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vided into two equal parts by the straight line CG, and let it be conceived that 
the crystal is intersected by a plane which passes through this line and through 
the side CF, which plane will necessarily be perpendicular to the surface AB; 
and its section in the crystal will form a parallelogram GCFH. We will call 
this section the principal section of the crystal. 

9. Now, if one covers the surface AB, leaving there only a small aperture at 
the point K, situated in the straight line CG, and if one exposes it to the sun, 
so that his rays face it perpendicularly above, then the ray IK will divide itself 
at the point K into two, one of which will continue to go on straight by KL, and 
the other will separate itself along the straight line KM, which is in the plane 
GCFH, and which makes with KL an angle of about 6 degrees 40 minutes, 
tending from the side of the solid angle C; and on emerging from the other side 
of the crystal it will turn again parallel to IK, along MZ. And as, in this ex- 
traordinary refraction, the point M is seen by the refracted ray MKI, which I 
consider as going to the eye at I, it necessarily follows that the point L, by 
virtue of the same refraction, will be seen by the refracted ray LRI, so that 
LR will be parallel to MK if the distance from the eye KI is supposed very 
great. The point L appears then as being in the straight line IRS; but the same 
point appears also, by ordinary refraction, to be in the straight line IK, hence, 
it is necessarily judged to be double. And, similarly, if L be a small hole in a 
sheet of paper or other substance which is laid against the crystal, it mil appear 
when turned towards daylight as if there were two holes, which will seem the 
wider apart from one another the greater the thickness of the crystal. 

10. Again, if one turns the crystal in such wise that an incident ray NO, of 
sunlight, which I suppose to be in the plane continued from GCFH, makes 
with GC an angle of 73 degrees and 20 minutes, and is consequently nearly 
parallel to the edge CF, which makes with FH an angle of 70 degrees 57 min- 
utes, according to the calculation which I shall put at the end, it will divide 
itself at the point 0 into two rays, one of which mil continue along OP in a 
straight line with NO, and will similarly pass out of the other side of the crystal 
without any refraction; but the other will be refracted and will go along OQ. 
And it must be noted that it is special to the plane through GCF and to those 
which are parallel to it, that all incident rays which are in one of these planes 
continue to be in it after they have entered the crystal and have become dou- 
ble; for it is quite otherwise for rays in all other planes which intersect the 
crystal, as we shall see afterwards. 

11. I recognized at first by these experiments and by some others that of 
the two refractions which the ray suffers in this crystal, there is one which 
follows the ordinary rules; and it is this to which the rays KL and OQ belong. 
This is why I have distinguished this ordinary refraction from the other; and 
having measured it by exact observation, I found that its proportion, con- 
sidered as to the sines of the angles which the incident and refracted rays make 
with the perpendicular, was very precisely that of 5 to 3, as was found also by 
Mr. Bartholinus, and consequently much greater than that of rock crystal, or 
of glass, which is nearly 3 to 2. 

12. The mode of making these observations exactly is as follows. Upon a 
leaf of paper fixed on a thoroughly flat table there is traced a black line AB, 
and two others, CED and KML, which cut it at right angles and are more or 
less distant from one another according as it is desired to examine a ray that is 
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more or less oblique. Then place the crystal upon the intersection E so that 
the line AB concurs with that which bisects the obtuse angle of the lower sur- 
face, or with some line parallel to it. Then by placing the eye directly above the 
line AB it will appear single only; and one will see that the portion viewed 
through the crystal and the portions which appear outside it, meet together 
in a straight line: but the line CD will appear double, and one can distinguish 
the image which is due to regular refraction by the circumstance that when 
one views it with both eyes it seems raised up more than the other, or again by 
the circumstance that, when the crystal is turned around on the paper, this 
image remains stationary, whereas the other image shifts and moves entirely 
around. Afterwards let the eye be placed at I (remaining always in the plane 
perpendicular through AB) so that it views the image which is formed by 
regular refraction of the line CD making a straight line with the remainder 
of that line which is outside the crystal. And then, marking on the surface of 
the crystal the point H where the intersection E appears, this point will be 
directly above E. Then draw back the eye towards 0, keeping always in the 
plane perpendicular through AB, so that the image of the line CD, which is 
formed by ordinary refraction, may appear in a straight line with the line KL 
viewed without refraction; and then mark on the crystal the poin{ N where the 
point of intersection E appears. 

13. Then one will know the length and position of the lines NH, EM, and of 
HE, which is the thickness of the crystal: which lines being traced separately 
upon a plan, and then joining NE and NM which cuts HE at P, the proportion 
of the refraction will be that of EN to NP, because these lines are to one an- 
other as the sines of the angles NPH, NEP, which are equal to those which the 
incident ray ON and its refraction NE make with the perpendicular to the 
surface. This proportion, as I have said, is sufficiently precisely as 5 to 3, and 
is always the same for all inclinations of the incident ray. 

14. The same mode of observation has also served me for examining the 
extraordinary or irregular refraction of this crystal. For, the point H having 
been found and marked, as aforesaid, directly above the point E, I observed 
the appearance of the line C^D, which is made by the extraordinary refraction; 
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and having placed the eye at Q, so that this appearance made a straight line 
with the line KL viewed without refraction, I ascertained the triangles REH, 
RES, and consequently the angles RSH, RES, which the incident and the 
refracted ray make with the perpendicular. 

15. But I found in this refraction that the ratio of FR to RS was not con- 
stant, like the ordinary refraction, but that it varied with the varying obliquity 

believed, since that inclination is only 70 degrees 57 minutes, as was stated 
above. And this is to be noted, in order that no one may search in vain for 
the cause of the singular property of this ray in its parallelism to the edges 
mentioned. 

17. Finally, continuing my observations to discover the nature of this refrac- 
tion, I learned that it obeyed the following remarkable rule. Let the parallelo- 
gram GCFH, made by the principal section of the crystal, as previously de- 
termined, be traced separately. I found then that always, when the inclinations 
of two rays which come from opposite sides, as VK, SK here, are equal, their 
refractions KX and KT meet the bottom line HF in such wise that points X 
and T are equally distant from the point M, where the refraction of the per- 
pendicular ray IK falls; and this occurs also for refractions in other sections of 
this crystal. But before speaking of those, which have also other particular 
properties, we will investigate the causes of the phenomena which I have al- 
ready reported. 

It was after having explained the refraction of ordinary transparent bodies 
by means of the spherical emanations of light, as above, that I resumed my 
examination of the nature of this crystal, wherein I had previously been unable 
to discover anything. 

18. As there were two different refractions, I conceived that there were also 
two different emanations of waves of light, and that one could occur in the 
ethereal matter extending through the body of the crystal. Which matter, 
being present in much larger quantity than is that of the particles which com- 
pose it, was alone capable of causing transparency, according to what has been 
explained heretofore. I attributed to this emanation of waves the regular re- 

of the incident ray. 
16. I found also that when 

QRE made a straight line, that 
is, when the incident ray en- 
tered the crystal without being 
refracted (as I ascertained by 
the circumstance that then the 
point E viewed by the extra- 
ordinary refraction appeared 
in the line CD, as seen without 
refraction) I found, I say, then 
that the angle QRG was 73 de- 
grees 20 minutes, as has been 
already remarked; and so it is 
not the ray parallel to the edge 
of the crystal which crosses it 
in a straight line without being 
refracted, as Mr. Bartholinus 
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fraction which is observed in this stone, by supposing these waves to be ordi- 
narily of spherical form, and having a slower progression within the crystal 
than they have outside it; whence proceeds refraction as I have demonstrated. 

19. As to the other emanation which should produce the irregular refraction, 
I wished to try what elliptical waves, or rather spheroidal waves, would do; 
and these I supposed would spread indifferently both in the ethereal matter 
diffused throughout the crystal and in the particles of which it is composed, 
according to the last mode in which I have explained transparency. It seemed 
to me that the disposition or regular arrangement of these particles could con- 
tribute to form spheroidal waves (nothing more being required for this than 
that the successive movement of light should spread a little more quickly in 
one direction than in the other) and I scarcely doubted that there were in this 
crystal such an arrangement of equal and similar particles, because of its figure 
and of its angles with their determinate and invariable measure. Touching 
which particles, and their form and disposition, I shall, at the end of this 
treatise, propound my conjectures and some experiments which confirm them. 

20. The double emission of waves of light, wdiich I had imagined, became 
more probable to me after I had observed a certain phenomenon in the ordi- 
nary [rock] crystal, which occurs in hexagonal form, and which, because of 
this regularity, seems also to be composed of particles, of definite figure, and 
ranged in order. This was, that this crystal, as well as that from Iceland, has a 
double refraction, though less evident. For having had cut from it some well- 
polished prisms of different sections, I remarked in all, in viewing through them 
the flame of a candle or the lead of window panes, that everything appeared 
double, though with images not very distant from one another. Whence I 
understood the reason why this substance, though so transparent, is useless 
for telescopes, when they have ever so little length. 

21. Now this double refraction, according to my theory hereinbefore estab- 
lished, seemed to demand a double emission of waves of light, both of them 
spherical (for both the refractions are regular) and those of one series a little 
slower only than the others. For thus the phenomenon is quite naturally ex- 
plained, by postulating substances which serve as vehicle for these waves, as 
I have done in the case of Iceland crystal. I had then less trouble after that in 
admitting two emissions of waves in one and the same body. And since it 
might have been objected that in composing these two kinds of crystal of 
equal particles of a certain figure, regularly piled, the interstices which these 
particles leave and which contain the ethereal matter would scarcely suffice 
to transmit the waves of light which I have localized there, I removed this 
difficulty by regarding these particles as being of a very rare texture, or rather 
as composed of other much smaller particles, between which the ethereal mat- 
ter passes quite freely. This, moreover, necessarily follows from that which 
has been already demonstrated touching the small quantity of matter of which 
the bodies are built up. 

22. Supposing, then, these spheroidal waves besides the spherical ones, I 
began to examine whether they could serve to explain the phenomena of the 
irregular refraction, and how by these same phenomena I could determine the 
figure and position of the spheroids: as to which I obtained at last the desired 
success, by proceeding as follows. 

23.1 considered first the effect of waves so formed, as respects the ray which 
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falls perpendicularly on the flat surface of a transparent body in which they 
should spread in this manner. I took AB for the exposed region of the surface. 
And, since a ray perpendicular to a plane, and coming from a very distant 

source of light, is nothing else, ac- 
cording to the precedent theory, than 
the incidence of a portion of the wave 
parallel to that plane, I supposed the 
straight line RC, parallel and equal to 
AB, to be a portion of a wave of light, 
in which an infinitude of points such 
as RH/iC come to meet the surface AB 
at the points AK/rB. Then instead of 
the hemispherical partial waves which 
in a body of ordinary refraction would 

  spread from each of these last points, 
N Q as we have above explained in treating 

of refraction, these must here be hemi-spheroids. The axes (or rather the ma- 
jor diameters) of these I supposed to be oblique to the plane AB, as is AY 
the semi-axis or semi-major diameter of the spheroid SVT, which represents 
the partial wave coming from the point A, after the wave RC has reached 
AB. I say axis or major diameter, because the same ellipse SVT may be con- 
sidered as the section of a spheroid of which the axis is AZ perpendicular to 
AY. But, for the present, without yet deciding one or other, we will consider 
these spheroids only in those sections of them which make ellipses in the plane 
of this figure. Now taking a certain space of time during which the wave SVT 
has spread from A, it would needs be that from all the other points K/rB there 
should proceed, in the same time, waves similar to SVT and similarly situated. 
And the common tangent NQ of all these semi-ellipses would be the propagation 
of the wave RC which fell on AB, and would be the place where this movement 
occurs in much greater amount than anywhere else, being made up of arcs of 
an infinity of ellipses, the centres of which are along the line AB. 

24. Now it appeared that this common tangent NQ was parallel to AB, 
and of the same length, but that it was not directly opposite to it, since it was 
comprised between the lines AN, BQ, which are diameters of ellipses having 
A and B for centres, conjugate with respect to diameters which are not in the 
straight line AB. And in this way I comprehended, a matter which had seemed 
to me very difficult, how a ray perpendicular to a surface could suffer refrac- 
tion on entering a transparent body; seeing that the wave RC, having come 
to the aperture AB, went on forward thence, spreading between the parallel 
lines AN, BQ, yet itself remaining always parallel to AB, so that here the light 
does not spread along lines perpendicular to its waves, as in ordinary refrac- 
tion, but along lines cutting the waves obliquely. 

25. Inquiring subsequently what might be the position and form of these 
spheroids in the crystal, I considered that all the six faces produced precisely 
the same refractions. Taking, then, the parallelepiped AFB, of which the ob- 
tuse solid angle C is contained between the three equal plane angles, and im- 
agining in it the three principal sections, one of which is perpendicular to the 
face DC and passes through the edge CF, another perpendicular to the face 
BF passing through the edge CA, and the third perpendicular to the face AF 
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passing through the edge BC; I knew that the refractions of the incident rays 
belonging to these three planes were all similar. But there could be no position 
of the spheroid which would have the same 
relation to these three sections except that 
in which the axis was also the axis of the 
solid angle C. Consequently I saw that the 
axis of this angle, that is to say, the straight B 

line which traversed the crystal from the 
point C with equal inclination to the edges 
CF, CA, CB was the line which determined 
the position of the axis of all the spheroidal 
waves which one imagined to originate from 
some point, taken within or on the surface of 
the crystal, since all these spheroids ought to be alike, and have their axes 
parallel to one another. 

26. Considering after this the plane of one of these three sections, namely, 
that through GCF, the angle of which is 109 degrees 3 minutes, since the angle 
F was shown above to be 70 degrees 57 minutes; and, imagining a spheroidal 
wave about the centre C, I knew, because I have just explained it, that its 
axis must be in the same plane, the half of which axis I have marked CS in the 
next figure: and seeking by calculation (which will be given with others at the 
end of this discourse) the value of the angle CGS, I found it 45 degrees 20 
minutes. 

27. To know from this the form of this spheroid, that is to say, the pro- 
portion of the semi-diameters CS, CP, of its elliptical section, which are per- 
pendicular to one another, I considered that the point M where the ellipse is 
touched by the straight line FH, parallel to CG, ought to be so situated that 
CM makes with the perpendicular CL an angle of 6 degrees 40 minutes; since, 
this being so, this ellipse satisfies what has been said about the refraction of the 
ray perpendicular to the surface CG, which is inclined to the perpendicular CL 
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by the same angle. This, then, being thus disposed, and taking CM at 100,000 
parts, I found by the calculation which will be given at the end, the semi-major 
diameter CP to be 105,032, and the semi-axis CS to be 93,410, the ratio of 
which numbers is very nearly 9 to 8; so that the spheroid was of the kind which 
resembles a compressed sphere, being generated by the revolution of an ellipse 
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about its smaller diameter. I found also the value of CG the semi-diameter 
parallel to the tangent ML to be 98,779. 

28. Now passing to the investigation of the refractions which obliquely inci- 
dent rays must undergo, according to our hypothesis of spheroidal waves, I 
saw that these refractions depended on the ratio between the velocity of move- 
ment of the light outside the crystal in the ether, and that within the crystal. 
For supposing, for example, this proportion to be such that while the light in 
the crystal forms the spheroid GSP, as I have just said, it forms outside a 
sphere the semi-diameter of which is equal to the line N which will be deter- 
mined hereafter, the following is the way of finding the refraction of the inci- 
dent rays. Let there be such a ray RC falling upon the surface CK. Make CO 
perpendicular to RC, and across the angle KCO adjust OK, equal to N and 
perpendicular to CO; then draw KI, which touches the ellipse GSP, and from 
the point of contact I join IC, which will be the required refraction of the ray 
RC. The demonstration of this is, it will be seen, entirely similar to that of 
which we made use in explaining ordinary refraction. For the refraction of the 
ray RC is nothing else than the progression of the portion C of the wave CO, 
continued in the crystal. Now the portions H of this wave, during the time 
that 0 came to K, will have arrived at the surface CK along the straight lines 
Hx, and will, moreover, have produced in the crystal around the centres x some 
hemi-spheroidal partial waves similar to the hemi-spheroidal GSP*/, and simi- 
larly disposed, and of which the major and minor diameters will bear the same 

proportions to the lines xv (the continuations of the lines Rx up to KB parallel 
to CO) that the diameters of the spheroid GSPgr bear to the line CB, or N. And 
it is quite easy to see that the common tangent of all these spheroids, which 
are here represented by ellipses, will be the straight line IK, which, consequent- 
ly, will be the propagation of the wave CO; and the point I will be that of the 
point C, conformably with that which has been demonstrated in ordinary 
refraction. 
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Now as to finding the point of contact I, it is known that one must find CD 

a third proportional to the lines CK, CG, and draw DI parallel to CM, pre- 
viously determined, which is the conjugate diameter to CG; for then, by draw- 
ing KI it touches the ellipse at I. 

29. Now, as we have found CI the refraction of the ray RC, similarly, one 
will find Ci the refraction of the ray rC, which comes from the opposite side, 
by making Co perpendicular to rC and following out the rest of the construc- 
tion as before. Whence one sees that if the ray rC is inclined equally with RC, 
the line Cd will necessarily be equal to CD, because CA* is equal to CK, and Cg 
to CG. And, in consequence, li will be cut at E into equal parts by the line 
CM, to which DI and di are parallel. And because CM is the conjugate diame- 
ter to CG, it follows that il will be parallel to gG. Therefore, if one prolongs 
the refracted rays CI, Cf, until they meet the tangent ML at T and t, the dis- 
tances MT, M^, will also be equal. And so, by our hypothesis, we explain 
perfectly the phenomenon mentioned above; to wit, that when there are twTo 
rays equally inclined, but coming from opposite sides, as here the rays RC, rc, 
their refractions diverge equally from the line followed by the refraction of the 
ray perpendicular to the surface, by considering these divergences in the direc- 
tion parallel to the surface of the crystal. 

30. To find the length of the line N, in proportion to CP, CS, CG, it must be 
determined by observations of the irregular refraction which occurs in this 
section of the crystal; and I find thus that the ratio of N to GC is just a little 
less than 8 to 5. And having regard to some other observations and phenomena 
of which I shall speak afterwards, I put N at 156,962 parts, of which the semi- 
diameter CG is found to contain 98,779, making this ratio 8 to 5^9- Now this 
proportion, which there is between the line N and CG, may be called the Pro- 
portion of the Refraction; similarly as in glass that of 3 to 2, as will be manifest 
when I shall have explained a short process in the preceding way to find the 
irregular refractions. 

31. Supposing then, in the next figure, as previously, the surface of the crys- 
tal gG, the ellipse GP^, and the line N; and CM the refraction of the perpen- 
dicular ray FC, from which it diverges by 6 degrees 40 minutes. Now let there 
be some other ray RC, the refraction of which must be found. 

About the centre C, writh semi-diameter CG, let the circumference grRG be 
described, cutting the ray RC at R; and let RV be the perpendicular on CG. 
Then as the line N is to CG let CV be to CD, and let DI be drawn parallel to 
CM, cutting the ellipse gMG at I; then joining CI, this will be the required 
refraction of the ray RC. Which is demonstrated thus. 

Let CO be perpendicular to CR, and across the angle OCG let OK be ad- 
justed, equal to N and perpendicular to CO, and let there be drawn the straight 
line KI, which if it is demonstrated to be a tangent to the ellipse at I, it will be 
evident by the things heretofore explained that CI is the refraction of the ray 
RC. Now, since the angle RCO is a right angle, it is easy to see that the right- 
angled triangles RCV, KCO are similar. As then, CK is to KO, so also is RC 
to CV. But KO is equal to N, and RC to CG: then as CK is to N so will CG be 
to CV. But as N is to CG, so, by construction, is CV to CD. Then as CK is to 
CG so is CG to CD. And because DI is parallel to CM, the conjugate diameter 
to CG, it follows that KI touches the ellipse at I; which remained to be shown. 

32. One sees, then, that as there is in the refraction of ordinary media a 
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certain constant proportion between the sines of the angles which the incident 
ray and the refracted ray make with the perpendicular, so here there is such 
a proportion between CV and CD or IE; that is to say, between the sine of the 
angle which the incident ray makes with the perpendicular and the horizontal 
intercept, in the ellipse, between the refraction of this ray and the diameter 
CM. For the ratio of CV to CD is, as has been said, the same as that of N to 
the semi-diameter CG. 

33. I will add here, before passing away, that in comparing together the 
regular and irregular refraction of this crystal, there is this remarkable fact, 
that if ABPS be the spheroid by which light spreads in the crystal in a certain 
space of time (which spreading, as has been said, serves for the irregular re- 
fraction), then the inscribed sphere BYST is the extension in the same space 

of time of the light which serves for the regular 
refraction. 

For we have stated before this that the line N 
being the radius of a spherical wave of light in air, 
while in the crystal it spread through the spheroid 
ABPS, the ratio of N to CS will be 156,962 to 
93,410. But it has also been stated that the pro- 
portion of the regular refraction was 5 to 3; that 
is to say, that N being the radius of a spherical 
wave of light in air, its extension in the crystal 
would, in the same space of time, form a sphere 
the radius of which would be to N as 3 to 5. Now 
156,962 is to 93,410 as 5 to 3 less %. So that 
it is sufficiently nearly, and may be exactly, the 

N 
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sphere BYST, which the light describes for the regular refraction in the crys- 
tal, while it describes the spheroid BPSA for the irregular refraction, and 
while it describes the sphere of radius N in air outside the crystal. 

Although then there are, according to what we have supposed, two different 
propagations of light within the crystal, it appears that it is only in directions 
perpendicular to the axis BS of the spheroid that one of these propagations 
occurs more rapidly than the other; but that they have an equal velocity in 
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the other direction, namely, in that parallel to the same axis BS, which is also 
the axis of the obtuse angle of the crystal. 

34. The proportion of the refraction being what we have just seen, I will now 
show that there necessarily follows thence that notable property of the ray 
which falling obliquely on the surface of the crystal enters it without suffering 
refraction. For supposing the same things as before, and that the ray RC 
makes with the same surface gG the angle RCG of 73 degrees 20 minutes, in- 
clining to the same side as the crystal (of which ray mention has been made 
above); if one investigates, by the process above explained, the refraction CI, 
one will find that it makes exactly a straight line with RC, and that, thus, this 
ray is not deviated at all, conformably with experiment. This is proved as 
follows by calculation. 

CG or CR being, as precedently, 98,779; CM being 100,000; and the angle 
RCV 73 degrees 20 minutes, CV will be 28,330. But because CI is the refrac- 
tion of the ray RC, the proportion of CV to CD is 156,962 to 98,779, namely, 
that of N to CG; then CD is 17,828. 

Now the rectangle gT)C is to the square of DI as the square of CG is to the 
square of CM; hence DI or CE will be 98,353. But as CE is to El, so will CM 
be to MT, which will then be 18,127. And being added to ML, which is 11,609 
(namely the sine of the angle LCM, which is 6 degrees 40 minutes, taking CM 
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100,000 as radius) we get LT 27,936; and this is to LC 99,324 as CV to VR, 
that is to say, as 29,938, the tangent of the complement of the angle RCV, 
which is 73 degrees 20 minutes, is to the radius of the tables. Whence it appears 
that RCIT is a straight line; which was to be proved. 

35. Further, it will be seen that the ray CI, in emerging through the opposite 
surface of the crystal, ought to pass out quite straight, according to the follow- 
ing demonstration, which proves that the reciprocal relation of refraction ob- 
tains in this crystal the same as in other transparent bodies; that is to say, that 
if a ray RC in meeting the surface of the crystal CG is refracted as CI, the 
ray CI emerging through the opposite parallel surface of the crystal which I 
suppose to be IB, will have its refraction IA parallel to the ray RC. 
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Let the same things be supposed as before; that is to say, let CO, perpen- 
dicular to CR, represent a portion of a wave, the continuation of which in the 
crystal is IK, so that the piece C will be continued on along the straight line 
CI, while O comes to K. Now, if one takes a second period of time equal to the 
first, the piece K of the wave IK will, in this second period, have advanced 
along the straight line KB, equal and parallel to CI, because every piece of the 
wave CO, on arriving at the surface CK, ought to go on in the crystal the same 
as the piece C; and in this same time there mil be formed in the air from the 
point I a partial spherical wave having a semi-diameter IA equal to KO, since 
KO has been traversed in an equal time. Similarly, if one considers some other 
point of the wave IK, such as h, it will go along hm, parallel to CI, to meet the 
surface IB, while the point K traverses K^ equal to hm; and while this accom- 
plishes the remainder ZB, there will start from the point m a partial wave the 
semi-diameter of which, mn, will have the same ratio to ZB as IA to KB. 
Whence it is evident that this wave of semi-diameter mn, and the other of 
semi-diameter IA will have the same tangent BA. And similarly for all the 
partial spherical waves which will be formed outside the crystal by the impact 
of all the points of the wave IK against the surface of the ether IB. It is then 
precisely the tangent BA which will be the continuation of the wave IK, out- 
side the crystal, when the piece K has reached B. And in consequence I A, 
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which is perpendicular to BA, will be the refraction of the ray CI on emerging 
from the crystal. Now it is clear that IA is parallel to the incident ray RC, 
since IB is equal to CK, and IA equal to KO, and the angles A and 0 are right 
angles. 

It is seen then that, according to our hypothesis, the reciprocal relation of 
refraction holds good in this crystal as well as in ordinary transparent bodies; 
as is thus in fact found by observation. 

36. I pass now to the consideration of other sections of the crystal, and of 
the refractions there produced, on which, as will be seen, some other very re- 
markable phenomena depend. 

Let ABH be a parallelepiped of crystal, and let the top surface AEHF be a 
perfect rhombus, the obtuse angles of which are equally divided by the straight 
line EF, and the acute angles by the straight line AH perpendicular to FE. 

The section which we have hitherto considered is that which passes through 
the lines EF, EB, and which at the same time cuts the plane AEHF at right 
angles. Refractions in this section have this in common with the refractions in 
ordinary media: that the plane which is drawn through the incident ray and 
which also intersects the surface of the crystal at right angles is that in which 
the refracted ray also is found. But the refractions which appertain to every 
other section of this crystal have this strange property: that the refracted ray 
always quits the plane of the incident ray perpendicular to the surface, and 
turns away towards the side of the slope of the crystal. For which fact we shall 
show the reason, in the first place, for the section through AH; and we shall 
show at the same time how one can determine the refraction, according to our 
hypothesis. Let there be, then, in the plane which passes through AH, and 
which is perpendicular to the plane AFHE, the incident ray RC; it is required 
to find its refraction in the crystal. 
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37. About the centre C, which I suppose to be in the intersection of AH and 
FE, let there be imagined a hemi-spheroid QGqgM, such as the light would 
form in spreading in the crystal, and let its section by the plane AEHF form 
the ellipse QGqg, the major diameter of which Q^, which is in the line AH, will 
necessarily be one of the major diameters of the spheroid; because the axis of 
the spheroid being in the plane through FEE, to which QC is perpendicular, 
it follows that QC is also perpendicular to the axis of the spheroid, and, conse- 
quently, QC^ one of its major diameters. But the minor diameter of this ellipse, 
Gg, will bear to Qq the proportion which has been defined previously, Article 
27, between CG and the major semi-diameter of the spheroid, CP, namely, 
that of 98,779 to 105,032. 

Let the line N be the length of the travel of light in air during the time in 
which, within the crystal, it makes, from the centre C, the spheroid QGg^M. 
Then, having drawn CO perpendicular to the ray CR and situated in the plane 
through CR and AH, let there be adjusted, across the angle ACO, the straight 
line OK equal to N and perpendicular to CO, and let it meet the straight line 
AH at K. Supposing, consequently, that CL is perpendicular to the surface of 
the crystal AEHF, and that CM is the refraction of the ray which falls per- 
pendicularly on this same surface, let there be drawn a plane through the line 
CM and through KCH, making in the spheroid the semi-ellipse QMg, which 
will be given, since the angle MCL is given of value 6 degrees 40 minutes. And 
it is certain, according to what has been explained above, Article 27, that a 
plane which would touch the spheroid at the point M, where I suppose the 
straight line CM to meet the surface, would be parallel to the plane QGg. If, 
then, through the point K one now draws KS parallel to G^, which will be 
parallel also to QX, the tangent to the ellipse QGg at Q; and if one conceives 
a plane passing through KS and touching the spheroid, the point of contact 
will necessarily be in the ellipse QMg, because this plane through KS, as well 
as the plane which touches the spheroid at the point M, are parallel to QX, 
the tangent of the spheroid: for this consequence will be demonstrated at the 
end of this treatise. Let this point of contact be at I, then making KC, QC, 
DC proportionals, draw DI parallel to CM; also join CL I say that CI will be 
the required refraction of the ray RC. This will be manifest if, in considering 
CO, which is perpendicular to the ray RC, as a portion of the wave of light, 
we can demonstrate that the continuation of its piece C will be found in the 
crystal at I, when 0 has arrived at K. 

38. Now as in the chapter on reflexion, in demonstrating that the incident 
and reflected rays are always in the same plane perpendicular to the reflecting 
surface, we considered the breadth of the wave of light, so, similarly, we must 
here consider the breadth of the wave CO in the diameter G^. Taking, then, 
the breadth Cc on the side toward the angle E, let the parallelogram COoc be 
taken as a portion of a wave, and let us complete the parallelograms CKkc, 
CKc, KLTr, OK/ro. In the time, then, that the line Oo arrives at the surface of 
the crystal at K/r, all the points of the wave COoc will have arrived at the 
rectangle Kc along lines parallel to OK; and from the points of their incidences 
there will originate, beyond that, in the crystal partial hemi-spheroids, similar 
to the hemi-spheroid QMg, and similarly disposed. These hemispheroids will 
necessarily all touch the plane of the parallelogram KLTr at the same instant 
that Oo has reached KA*. Which is easy to comprehend, since, of these hemi- 
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spheroids, all those which have their centres along the line CK, touch this 
plane in the line KI (for this is to be shown in the same way as we have demon- 
strated the refraction of the oblique ray in the principal section through EF) 
and all those which have their centres in the line Cc will touch the same plane 
KI in the line K; all these being similar to the hemi-spheroid QMq. Since, then, 
the parallelogram Ki is that which touches all these spheroids, this same paral- 
lelogram will be precisely the continuation of the wave COoc in the crystal, 
when Oo has arrived at KA*, because it forms the termination of the movement 
and because of the quantity of movement which occurs more there than any- 
where else: and thus it appears that the piece C of the wave COoc has its con- 
tinuation at I; that is to say, that the ray RC is refracted as CI. 

From this it is to be noted that the proportion of the refraction for this 
section of the crystal is that of the line N to the semi-diameter CQ; by which 
one will easily find the refractions of all incident rays, in the same way as we 
have shown previously for the case of the section through FE; and the demon- 
stration will be the same. But it appears that the said proportion of the refrac- 
tion is less here than in the section through FEB; for it was there the same as 
the ratio of N to CG, that is to say, as 156,962 to 98,779, very nearly as 8 to 5; 
and here it is the ratio of N to CQ the major semi-diameter of the spheroid, 
that is to say, as 156,962 to 105,032, very nearly as 3 to 2, but just a little less. 
Which still agrees perfectly with what one finds by observation. 

39. For the rest, this diversity of proportion of refraction produces a very 
singular effect in this crystal; which is that when it is placed upon a sheet of 
paper on which there are letters or anything else marked, if one views it from 
above with the two eyes situated in the plane of the section through EF, one 
sees the letters raised up by this irregular refraction more than when one puts 
one's eyes in the plane of section through AH: and the difference of these 
elevations appears by comparison with the other ordinary refraction of the 
crystal, the proportion of which is as 5 to 3, and which always raises the letters 
equally, and higher than the irregular refraction does. For one sees the letters 
and the paper on which they are written, as on two different stages at the same 
time; and in the first position of the eyes, namely, when they are in the plane 
through AH these two stages are four times more distant from one another 
than when the eyes are in the plane through EF. 

We will show that this effect follows from the refractions; and it will enable 
us at the same time to ascertain the apparent place of a point of an object 
placed immediately under the crystal, according to the different situation of 
the eyes. 

40. Let us see first by how much the irregular refraction of the plane through 
AH ought to lift the bottom of the crystal. Let the plane of this figure represent 
separately the section through and CL, in which section there is also the 
ray RC, and let the semi-elliptic plane through Qg and CM be inclined to the 
former, as previously, by an angle of 6 degrees 40 minutes; and in this plane 
CI is then the refraction of the ray RC. 

If now one considers the point I as at the bottom of the crystal, and that it 
is viewed by the rays ICR, Icr, refracted equally at the points Cc, which should 
be equally distant from D, and that these rays meet the two eyes at Rr; it is 
certain that the point I will appear raised to S where the straight lines RC, rc, 
meet; which point S is in DP, perpendicular to Qg. And if upon DP there is 
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JN , drawn the perpendicular IP, 

which will lie at the bottom of 
the crystal, the length SP will 
be the apparent elevation of the 
point I above the bottom. 

Let there be described on Qg a 
semicircle cutting the ray CR at 
B,from which BY is drawn per- 
pendicular to Qq; and let the 
proportion of the refraction for 
this section be, as before, that 
of the line N to the semi-diam- 
eter CQ. 

Then as N is to CQ so is VC 
to CD, as appears by the method 
of finding the refraction which 
we have shown above, Article 
31; but as VC is to CD, so is 

VB to DS. Then as N is to CQ, so is YB to DS. Let ML be perpendicular to 
CL. And because I suppose the eyes Rr to be distant about a foot or so from 
the crystal, and consequently the angle RSr very small, YB may be considered 
as equal to the semi-diameter CQ, and DP as equal to CL; then as N is to CQ 
so is CQ to DS. But N is valued at 156,962 parts, of which CM contains 100,000 
and CQ 105,032. Then DS will have 70,283. But CL is 99,324, being the sine of 
the complement of the angle MCL which is 6 degrees 40 minutes; CM being 
supposed as radius. Then DP, considered as equal to CL, will be to DS as 
99,324 to 70,283. And so the elevation of the point I by the refraction of this 
section is known. 

41. Now let there be represented the other section through EF in the figure 
before the preceding one; and let CMgr be the semi-ellipse, considered in Arti- 
cles 27 and 28, which is made by cutting a spheroidal wave having centre C. 
Let the point I, taken in this ellipse, 
be imagined again at the bottom 
of the crystal; and let it be viewed 
by the refracted rays ICR, Icr, 
which go to the two eyes; CR and 
cr being equally inclined to the 
surface of the crystal Gg'. This being 
so, if one draws ID parallel to CM, 
which I suppose to be the refrac- N 
tion of the perpendicular ray inci- 
dent at the point C, the distances 
DC, Dc, will be equal, as is easy 
to see by that which has been dem- 
onstrated in Article 28. Now it 
is certain that the point I should 
appear at S where the straight lines 
RC, rc meet when prolonged; and 
that this point will fall in the line M 
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DP perpendicular to Ggr. If one draws IP perpendicular to this DP, it will be 
the distance PS which will mark the apparent elevation of the point I. Let 
there be described on Gg a semicircle cutting CR at B, from which let BY be 
drawn perpendicular to G^; and let N to GC be the proportion of the refraction 
in this section, as in Article 28. Since then CI is the refraction of the radius 
BC, and DI is parallel to CM, VC must be to CD as N to GC, according to 
what has been demonstrated in Article 31. But as VC is to CD so is BY to DS. 
Let ML be drawn perpendicular to CL. And because I consider, again, the 
eyes to be distant above the crystal, BY is deemed equal to the semi-diameter 
CG; and hence DS will be a third proportional to the lines N and CG: also DP 
will be deemed equal to CL. Now CG consisting of 98,778 parts, of which CM 
contains 100,000, N is taken as 156,962. Then DS will be 62,163. But CL is 
also determined, and contains 99,324 parts, as has been said in Articles 34 and 
40. Then the ratio of PD to DS will be as 99,324 to 62,163. And thus one knows 
the elevation of the point at the bottom I by the refraction of this section; and 
it appears that this elevation is greater than that by the refraction of the pre- 
ceding section, since the ratio of PD to DS was there as 99,324 to 70,283. 

But by the regular refraction of the crystal, of which we have above said 
that the proportion is 5 to 3, the elevation of the point I, or P, from the bottom, 
will be 2/i of the height DP; as appears by this figure, where 
the point P being viewed by the rays PCR, Per, refracted 
equally at the surface Cc, this point must needs appear to 
be at S, in the perpendicular PD where the lines RC, rc 
meet when prolonged: and one knows that the line PC is to 
CS as 5 to 3, since they are to one another as the sine of the 
angle CSP or DSC is to the sine of the angle SPC. And be- 
cause the ratio of PD to DS is deemed the same as that of 
PC to CS, the two eyes Rr being supposed very far above 
the crystal, the elevation PS will thus be % of PD. 

42. If one takes a straight line AB for the thickness of 
the crystal, its point B being at the bottom, and if one di- 

A vides it at the points C, D, E, according to the pro- 
portions of the elevations found, making AE % of AB, AB to AC as 99,324 
to 70,283, and AB to AD as 99,324 to 62,163, these points will divide AB 
as in this figure. And it will be found that this agrees perfectly with ex- 
periment; that is to say, by placing the eyes above in the plane which 
cuts the crystal according to the shorter diameter of the rhombus, the 
regular refraction will lift up the letters to E; and one will see the bot- 
tom, and the letters over which it is placed, lifted up to D by the irregu- 

'|d lar refraction. But by placing the eyes above in the plane which cuts the 
crystal according to the longer diameter of the rhombus, the regular re- 
fraction will lift the letters to E as before; but the irregular refraction 
will make them, at the same time, appear lifted up only to C; and in such 
a way that the interval CE will be quadruple the interval ED, which 

B one previously saw. 
43. I have only to make the remark here that in both the positions of the 

eyes the images caused by the irregular refraction do not appear directly below 
those which proceed from the regular refraction, but they are separated from 
them by being more distant from the equilateral solid angle of the crystal. 
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That follows, indeed, from all that has been hitherto demonstrated about the 
irregular refraction; and it is particularly shown by these last demonstrations, 
from which one sees that the point I appears by irregular refraction at S in the 
perpendicular line DP, in which line also the image of the point P ought to 
appear by regular refraction, but not the image of the point I, which will be 
almost directly above the same point, and higher than S. 

But as to the apparent elevation of the point I in other positions of the eyes 
above the crystal, besides the two positions which we have just examined, the 
image of that point by the irregular refraction will always appear between the 
two heights of D and C, passing from one to the other as one turns one's self 
around about the immovable crystal, while looking down from above. And all 
this is still found conformable to our hypothesis, as any one can assure himself 
after I shall have shown here the way of finding the irregular refractions which 
appear in all other sections of the crystal, besides the two which we have con- 
sidered. Let us suppose one of the faces of the crystal, in which let there be 
the ellipse HDE, the centre C of which is also the centre of the spheroid HME 
in which the light spreads, and of which the said ellipse is the section. And let 
the incident ray be RC, the refraction of which it is required to find. 

Let there be taken a plane passing through the ray RC and which is per- 
pendicular to the plane of the ellipse HDE, cutting it along the straight line 
BCK; and having in the same 
plane through RC made CO 
perpendicular to CR, let OK be 
adjusted across the angle OCK,    / R 

so as to be perpendicular to 
OC and equal to the line N, 
which I suppose to measure \ A / \ 
the travel of the light in air \ AM \c/ 
during the time that it spreads 
in the crystal through the 
spheroid HDEM. Then in the 
plane of the ellipse HDE let 
KT be drawn, through the 
point K, perpendicular to BCK. 
Now if one conceives a plane 
drawn through the straight line KT and touching the spheroid HME at I, 
the straight line CI will be the refraction of the ray RC, as is easy to deduce 
from that which has been demonstrated in Article 36. 

But it must be shown how one can determine the point of contact I. Let there 
be drawn parallel to the line KT a line HE which touches the ellipse HDE, and 
let this point of contact be at H. And having drawn a straight line along CH 
to meet KT at T, let there be imagined a plane passing through the same CH 
and through CM (which I suppose to be the refraction of the perpendicular 
ray), which makes in the spheroid the elliptical section HME. It is certain that 
the plane which will pass through the straight line KT, and which will touch 
the spheroid, will touch it at a point in the ellipse HME, according to the 
Lemma which will be demonstrated at the end of the chapter. Now this point 
is necessarily the point I which is sought, since the plane drawn through TK 
can touch the spheroid at one point only. And this point I is easy to determine, 
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since it is needful only to draw from the point T, which is in the plane of this 
ellipse, the tangent TI, in the way shown previously. For the ellipse HME is 
given, and its conjugate semi-diameters are CH and CM; because a straight 
line drawn through M, parallel to HE, touches the ellipse HME, as follows 
from the fact that a plane taken through M, and parallel to the plane HDE, 
touches the spheroid at that point M, as is seen from Articles 27 and 23. For 
the rest, the position of this ellipse, with respect to the plane through the ray 
RC and through CK, is also given; from which it will be easy to find the posi- 
tion of CI, the refraction corresponding to the ray RC. 

Now it must be noted that the same ellipse HME serves to find the refrac- 
tions of any other ray which may be in the plane through RC and CK. Because 
every plane, parallel to the straight line HF, or TK, which will touch the 
spheroid, will touch it in this ellipse, according to the Lemma quoted a little 
before. 

I have investigated thus, in minute detail, the properties of the irregular 
refraction of this crystal, in order to see whether each phenomenon that is de- 
duced from our hypothesis accords with that which is observed in fact. And 
this being so, it affords no slight proof of the truth of our suppositions and 
principles. But what I am going to add here confirms them again marvellously. 
It is this: that there are different sections of this crystal, the surfaces of which, 
thereby produced, give rise to refractions precisely such as they ought to be, 
and as I had foreseen them, according to the preceding theory. 

In order to explain what these sections are, let ABKF be the principal sec- 
tion through the axis of the crystal ACK, in which there will also be the axis 
SS of a spheroidal wave of light 
spreading in the crystal from the cen- 
tre C; and the straight line which cuts 
SS through the middle and at right 
angles, namely, PP, will be one of the 
major diameters. 

Now as in the natural section of the 
crystal, made by a plane parallel to 
two opposite faces, which plane is 
here represented by the line GG, the 
refraction of the surfaces which are 
produced by it will be governed by the 
hemi-spheroids GNG, according to what has been explained in the preceding 
theory. Similarly, cutting the crystal through NN, by a plane perpendicular to 
the parallelogram ABKF, the refraction of the surfaces will be governed by the 
hemi-spheroids NGN. And if one cuts it through PP, perpendicularly to the 
said parallelogram, the refraction of the surfaces ought to be governed by the 
hemi-spheroids PSP, and so for others. But I saw that if the plane NN was 
almost perpendicular to the plane GG, making the angle NCG, which is on 
the side A, an angle of 90 degrees 40 minutes, the hemi-spheroids NGN would 
become similar to the hemi-spheroids GNG, since the planes NN and GG were 
equally inclined by an angle of 45 degrees 20 minutes to the axis SS. In con- 
sequence it must needs be, if our theory is true, that the surfaces which the 
section through NN produces should effect the same refractions as the surfaces 
of the section through GG. And not only the surfaces of the section NN but 
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all other sections produced by planes which might be inclined to the axis at an 
angle equal to 45 degrees 20 minutes. So that there are an infinitude of planes 
which ought to produce precisely the same refractions as the natural surfaces 
of the crystal, or as the section parallel to any one of those surfaces which are 
made by cleavage. 

I saw also that by cutting it by a plane taken through PP, and perpendicular 
to the axis SS, the refraction of the surfaces ought to be such that the perpen- 
dicular ray should suffer thereby no deviation; and that for oblique rays there 
would always be an irregular refraction, differing from the regular, and by 
which objects placed beneath the crystal would be less elevated than by that 
other refraction. 

That, similarly, by cutting the crystal by any plane through the axis SS, 
such as the plane of the figure is, the perpendicular ray ought to suffer no 
refraction; and that for oblique rays there were different measures for the ir- 
regular refraction according to the situation of the plane in which the incident 
ray was. 

Now these things were found in fact so; and, after that, I could not doubt 
that a similar success could be met with everywhere. Whence I concluded that 
one might form from this crystal solids similar to those which are its natural 
forms, which should produce, at all their surfaces, the same regular and irregu- 
lar refractions as the natural surfaces, and which, nevertheless, would cleave 
in quite other ways, and not in directions parallel to any of their faces. That 
out of it one would be able to fashion pyramids, having their base square, 
pentagonal, hexagonal, or with as many sides as one desired, all the surfaces 
of which should have the same refractions as the natural surfaces of the crys- 
tal, except the base, which will not refract the perpendicular ray. These sur- 
faces will each make an angle of 45 degrees 20 minutes with the axis of the 
crystal, and the base will be the section perpendicular to the axis. 

That, finally, one could also fashion out of it triangular prisms, or prisms 
with as many sides as one would, of which neither the sides nor the bases 
would refract the perpendicular ray, although they would yet all cause double 
refraction for oblique rays. The cube is included amongst these prisms, the 
bases of which are sections perpendicular to the axis of the crystal, and the 
sides are sections parallel to the same axis. 

From all this it further appears that it is not at all in the disposition of the 
layers of which this crystal seems to be composed, and according to which it 
splits in three different senses, that the cause resides of its irregular refraction; 
and that it would be in vain to wish to seek it there. 

But in order that any one who has some of this stone may be able to find, 
by his own experience, the truth of what I have just advanced, I will state here 
the process of which I have made use to cut it and to polish it. Cutting is easy 
by the slicing wheels of lapidaries, or in the way in which marble is sawn: but 
polishing is very difficult, and by employing the ordinary means one more often 
depolishes the surfaces than makes them lucent. 

After many trials, I have at last found that for this service no plate of metal 
must be used, but a piece of mirror glass made matt and depolished. Upon 
this, with fine sand and water, one smooths the crystal little by little, in the 
same way as spectacle glasses, and polishes it simply by continuing the work, 
but ever reducing the material. I have not, however, been able to give it per- 
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feet clarity and transparency; but the evenness which the surfaces acquire en- 
ables one to observe in them the effects of refraction better than in those made 
by cleaving the stone, which always have some inequality. 

Even when the surface is only moderately smoothed, if one rubs it over with 
a little oil or white of egg, it becomes quite transparent, so that the refraction 
is discerned in it quite distinctly. And this aid is specially necessary when it is 
wished to polish the natural surfaces to remove the inequalities; because one 
cannot render them lucent equally with the surfaces of other sections, which 
take a polish so much the better the less nearly they approximate to these 
natural planes. 

Before finishing the treatise on this crystal, I will add one more marvellous 
phenomenon which I discovered after having written all the foregoing. For 
though I have not been able till now to find its cause, I do not for that reason 
wish to desist from describing it, in order to give opportunity to others to 
investigate it. It seems that it will be necessary to make still further supposi- 
tions besides those which I have made; but these will not, for all that, cease to 
keep their probability after having been confirmed by so many tests. 

The phenomenon is, that by taking two pieces of this crystal and applying 
them one over the other, or rather holding them with a space between the two, 
if all the sides of one are parallel to those of the other, then a ray of light, such 
as AB, is divided into two in the first piece, namely into BD and BC, following 

the two refractions, regular and irregular. On penetrating thence into the other 
piece each ray will pass there without further dividing itself in two; but that 
one which underwent the regular refraction, as here DG, will undergo again 
only a regular refraction at GH; and the other, CE, an irregular refraction at 
EE. And the same thing occurs not only in this disposition, but also in all those 
cases in which the principal section of each of the pieces is situated in one and 
the same plane, without it being needful for the two neighbouring surfaces to 
be parallel. Now it is marvellous why the rays CE and DG, incident from the 
air on the lower crystal, do not divide themselves the same as the first ray AB. 

/ 

F 
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One would say that it must be that the ray DG in passing through the upper 
piece has lost something which is necessary to move the matter which serves 
for the irregular refraction: and that likewise CE has lost that which was 
necessary to move the matter which serves for regular refraction: but there is 
yet another thing Avhich upsets this reasoning. It is that when one disposes the 
two crystals in such a way that the planes which constitute the principal sec- 
tions intersect one another at right angles, whether the neighbouring surfaces 
are parallel or not, then the ray which has come by the regular refraction, as 
DG, undergoes only an irregular refraction in the lower piece; and on the con- 
trary the ray which has come by the irregular refraction, as CE, undergoes only 
a regular refraction. 

But in all the infinite other positions, besides those which I have just stated, 
the rays DG, CE, divide themselves anew each one into two, by refraction in 
the lower crystal, so that from the single ray AB there are four, sometimes of 
equal brightness, sometimes some much less bright than others, according to 
the varying agreement in the positions of the crystals: but they do not appear 
to have all together more light than the single ray AB. 

When one considers here how, while the rays CE, DG remain the same, it 
depends on the position that one gives to the lower piece whether it divides 
them both in two, or whether it does not divide them, and yet how the ray AB 
above is always divided; it seems that one is obliged to conclude that the waves 
of light, after having passed through the first crystal, acquire a certain form or 
disposition in virtue of which, when meeting the texture of the second crystal, 
in certain positions, they can move the two different kinds of matter which 
serve for the two species of refraction; and when meeting the second crystal in 
another position are able to move only one of these kinds of matter. But to 
tell how this occurs, I have hitherto found nothing which satisfies me. 

Leaving, then, to others this research, I pass to what I have to say touching 
the cause of the extraordinary figure of this crystal, and why it cleaves easily 
in three different senses, parallel to any one of its surfaces. 

There are many bodies, vegetable, mineral, and congealed salts, which are 
formed with certain regular angles and figures. Thus, among flowers there are 
many which have their leaves disposed in ordered polygons, to the number of 
3, 4, 5, or 6 sides, but not more. This well deserves to be investigated, both as 
to the polygonal figure, and as to why it does not exceed the number 6. 

Rock crystal grows ordinarily in hexagonal bars, and diamonds are found 
which occur with a square point and polished surfaces. There is a species of 
small flat stones, piled up directly upon one another, which are all of pen- 
tagonal figure with rounded angles, and the sides a little folded inwards. The 
grains of gray salt which are formed from sea water affect the figure, or at least 
the angle, of the cube; and in the congelations of other salts, and in that of 
sugar, there are found other solid angles with perfectly flat faces. Small snow- 
flakes almost always fall in little stars with 6 points, and sometimes in hexa- 
gons with straight sides. And I have often observed, in water which is begin- 
ning to freeze, a kind of flat and thin foliage of ice, the middle ray of which 
throws out branches inclined at an angle of 60 degrees. All these things are 
worthy of being carefully investigated to ascertain how and by what artifice 
Nature there operates. But it is not now my intention to treat fully of this 
matter. It seems that in general the regularity which occurs in these produc- 
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tions comes from the arrangement of the small invisible equal particles of 
which they are composed. And, coming to our Iceland crystal, I say that if 
there were a pyramid such as ABCD, composed of small rounded corpuscles, 
not spherical but flattened spheroids, such as would be made by the rotation 
of the ellipse GH around its lesser diameter EF (of which the ratio to the greater 
diameter is very nearly that of 1 to the square root 
of 8)—I say that then the solid angle of the point 
D would be equal to the obtuse and equilateral 
angle of this crystal. I say, further, that if these 
corpuscles were lightly stuck together, on breaking 
this pyramid it would break along faces parallel to 
those that make its point: and by this means, as it 
is eas}^ to see, it would produce prisms similar to 
those of the same crystal as this other figure repre- 
sents. The reason is that when broken in this fashion 
a whole IsLjer separates easily from its neighbouring 
layer, since each spheroid has to be detached only 
from the three spheroids of the next layer; of which 
three there is but one which touches it on its flat- 
tened surface, and the other two at the edges. And t 

the reason that the surfaces separate sharp and polished is that if any spheroid 
of the neighbouring surface would come out by attaching itself to the sur- 
face which is being separated, it would be needful for it to detach itself from 
six other spheroids which hold it locked, and four of which press it by these flat- 
tened surfaces. Since, then, not only the angles of our crystal but also the 
manner in which it splits agree precisely with what is observed in the assem- 
blage composed of such spheroids, there is great reason to believe that the 
particles are shaped and ranged in the same way. 

There is even probability enough that the prisms of this crystal are pro- 
duced by the breaking up of pyramids, since Mr. Bartholinus relates that he 
occasionally found some pieces of triangularly pyramidal figure. But when a 
mass is composed interiorly only of these little spheroids thus piled up, what- 
ever form it may have exteriorly, it is certain, by the same reasoning which 
I have just explained, that if broken it would produce similar prisms. It re- 
mains to be seen whether there are other reasons which confirm our conjecture, 
and whether there are none which are repugnant to it. 

It may be objected that this crystal, 
being so composed, might be capable 
of cleavage in yet two more fashions; 
one of which would be along planes 
parallel to the base of the pyramid, 
that is to say to the triangle ABC; the 
other would be parallel to a plane the 
trace of which is marked by the lines 
GH, HK, KL. To which I say that both 
the one and the other, though prac- 
ticable, are more difficult than those 
which were parallel to any one of the 
three planes of the pyramid; and that, 
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therefore, when striking on the crystal in order to break it, it ought always 
to split rather along these three planes than along the two others. When one 
has a number of spheroids of the form above described, and ranges them in a 
pyramid, one sees why the two methods of division are more difficult. For in 
the case of that division which would be parallel to the base, each spheroid 
would be obliged to detach itself from three others which it touches upon their 
flattened surfaces, which hold more strongly than the contacts at the edges. 
And besides that, this division will not occur along entire layers, because each 
of the spheroids of a layer is scarcely held at all by the 6 of the same layer that 
surround it, since they only touch it at the edges; so that it adheres readily to 
the neighbouring layer, and the others to it, for the same reason; and this 
causes uneven surfaces. Also one sees by experiment that when grinding down 
the crystal on a rather rough stone, directly on the equilateral solid angle, one 
verily finds much facility in reducing it in this direction, but much difficulty 
afterwards in polishing the surface which has been flattened in this manner. 

As for the other method of division along the plane GHKL, it will be seen 
that each spheroid would have to detach itself from four of the neighbouring 
layer, two of which touch it on the flattened surfaces, and two at the edges. 
So that this division is likewise more difficult than that which is made parallel 
to one of the surfaces of the crystal; where, as we have said, each spheroid is 
detached from only three of the neighbouring layer: of which three there is one 
only which touches it on the flattened surface, and the other two at the edges 
only. 

However, that which has made me know that in the crystal there are layers 
in this last fashion is that in a piece weighing half a pound which I possess, 
one sees that it is split along its length, as is the above-mentioned prism by the 
plane GHKL; as appears by colours of the iris extending throughout this 
whole plane, although the two pieces still hold together. All this proves, then, 
that the composition of the crystal is such as we have stated. To which I again 
add this experiment; that if one passes a knife scraping along any one of the 
natural surfaces, and downwards as it were from the equilateral obtuse angle, 
that is to say, from the apex of the pyramid, one finds it quite hard; but by 
scraping in the opposite sense an incision is easily made. This follows mani- 
festly from the situation of the small spheroids; over which, in the first manner, 
the knife glides; but in the other manner it seizes them from beneath almost as 
if they were the scales of a fish. 

I will not undertake to say anything touching the way in which so many 
corpuscles all equal and similar are generated, nor how they are set in such 
beautiful order; whether they are formed first and then assembled, or whether 
they arrange themselves thus in coming into being and as fast as they are 
produced, which seems to me more probable. To develop truths so recondite 
there would be needed a knowledge of nature much greater than that which 
we have. I will add only that these little spheroids could well contribute to 
form the spheroids of the waves of light, here above supposed, these as well 
as those being similarly situated, and with their axes parallel. 

Calculations which have been supposed in this chapter 
Mr. Bartholinus, in his treatise of this crystal, puts at 101 degrees the obtuse 

angles of the faces, which I have stated to be 101 degrees 52 minutes. He states 
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that he measured these angles 
directly on the crystal, which 
is difficult to do with ultimate 
exactitude, because the edges 
such as CA, CB, in this figure, 
are generally worn, and not 
quite straight. For more cer- 
tainty, therefore, I preferred 
to measure actually the obtuse 
angle by which the faces 
CBDA, CBYF are inclined to 
one another, namely, the angle 
OCN formed by drawing CN perpendicular to FV, and CO perpendicular to 
DA. This angle OCN I found to be 105 degrees; and its supplement CNP to 
be 75 degrees, as it should be. 

To find from this the obtuse angle BCA, I imagined a sphere having its 
centre at C, and on its surface a spherical triangle, formed by the intersection 

of three planes which enclose the solid angle C. In this 
equilateral triangle, which is ABF in this other figure, I 
see that each of the angles should be 105 degrees, namely, 
equal to the angle OCN; and that each of the sides 
should be of as many degrees as the angle ACB, or ACF, 
or BCF. Having then drawn the arc FQ perpendicular to 
the side AB, which it divides equally at Q, the triangle 
FQA has a right angle at Q, the angle A 105 degrees, 
and F half as much, namely 52 degrees 30 minutes; 

whence the hypotenuse AF is found to be 101 degrees 52 minutes. And this 
arc AF is the measure of the angle ACF in the figure of the crystal. 

In the same figure, if the plane CGHF cuts the crystal so that it divides the 
obtuse angles ACB, MHY in the middle, it is stated, in Article 10, that the 
angle CFH is 70 degrees 57 minutes. This again is easily shown in the same 
spherical triangle ABF, in which it appears that the arc FQ is as many degrees 
as the angle GCF in the crystal, the supplement of which is the angle CFH. 
Now the arc FQ is found to be 109 degrees 3 minutes. Then its supplement, 
70 degrees 57 minutes, is the angle CFH. 

It was stated, in Article 26, that the straight line CS, which in the preceding 
figure is CH, being the axis of the crystal, that is to say, being equally inclined 
to the three sides CA, CB, CF, the angle GCH is 45 degrees 20 minutes. This 
is also easily calculated by the same spherical triangle. For by drawing the 
other arc AD which cuts BF equally, and intersects FQ at S, this point will be 
the centre of the triangle. And it is easy to see that the arc SQ is the measure 
of the angle GCH in the figure which represents the crystal. Now in the tri- 
angle QAS, which is right-angled, one knows also the angle A, which is 52 
degrees 30 minutes, and the side AQ 50 degrees 56 minutes; whence the side 
SQ is found to be 45 degrees 20 minutes. 

In Article 27 it was required to show that PMS, being an ellipse the centre 
of which is C, and which touches the straight line MD at M so that the angle 
MCL which CM makes with CL, perpendicular on DM, is 6 degrees 40 min- 
utes, and its semi-minor axis CS making with CG (which is parallel to MD) 
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an angle GCS of 45 degrees 20 minutes,—it was required to show, I say, that, 
CM being 100,000 parts, PC the semi-major diameter of this ellipse is 105,032 
parts, and CS, the semi-minor diameter, 93,410. 

Let CP and CS be prolonged and meet the tangent DM at D and Z; and 
from the point of contact M let MN and MO be drawn as perpendiculars to 

CP and CS. Now because the angles SCP, 
GCL, are right angles, the angle PCL will be 
equal to GCS which was 45 degrees 20 min- 
utes. And deducting the angle LCM, which is 
6 degrees 40 minutes, from LCP, which is 45 
degrees 20 minutes, there remains MCP, 38 
degrees 40 minutes. Considering, then, CM 
as a radius of 100,000 parts, MN, the sine of 
38 degrees 40 minutes, will be 62,479. And in 
the right-angled triangle MND, MN will be 
to ND as the radius of the tables is to the 
tangent of 45 degrees 20 minutes (because 
the angle NMD is equal to DCL, or GCS); 
that is to say, as 100,000 to 101,170: whence 

results ND, 63,210. But NC is 78,079 of the same parts, CM being 100,000, 
because NC is the sine of the complement of the angle MCP, which was 38 
degrees 40 minutes. Then the whole line DC is 141,289; and CP, which is a 
mean proportional between DC and CN, since MD touches the ellipse, will 
be 105,032. 

Similarly, because the angle OMZ is equal to CDZ, or LCZ, which is 44 
degrees 40 minutes, being the complement of GCS, it follows that, as the radius 
of the tables is to the tangent of 44 degrees 40 minutes, so will OM 78,079 be 
to OZ 77,176. But OC is 62,479 of these same parts of which CM is 100,000, 
because it is equal to MN, the sine of the angle MCP, which is 38 degrees 40 
minutes. Then the whole line CZ is 139,655; and CS, which is a mean propor- 
tional between CZ and CO will be 93,410. 

At the same place it was stated that GC was found to be 98,779 parts. To 
prove this, let PE be drawn in the same figure parallel to DM, and meeting 
CM at E. In the right-angled triangle CLD the side CL is 99,324 (CM being 
100,000), because CL is the sine of the complement of the angle LCM, which 
is 6 degrees 40 minutes. And since the angle LCD is 45 degrees 20 minutes, 
being equal to GCS, the side LD is found to be 100,486: whence, deducting 
ML 11,609 there will remain MD 88,877. Now as CD (which was 141,289) is 
to DM 88,877, so will CP 105,032 be to PE 66,070. But as the rectangle MEH 
(or rather the difference of the squares on CM and CE) is to the square on 
MC, so is the square on PE to the square on C^; then also as the difference of 
the squares on DC and CP to the square on CD, so also is the square on PE 
to the square on gC. But DP, CP, and PE are known; hence, also one knows 
GC, which is 98,779. 

Lemma which has been supposed 
If a spheroid is touched by a straight line, and also by two or more planes 

which are parallel to this line, though not parallel to one another, all the points 
of contact of the line, as well as of the planes, will be in one and the same ellipse 
made by a plane which passes through the centre of the spheroid. 
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Let LED be the spheroid touched by the line BM at the point B, and also 

by the planes parallel to this line at the points 0 and A. It is required to dem- 
onstrate that the points B, 0, and A are in one and the same ellipse made in 
the spheroid by a plane which passes through its centre. 

Through the line BM, and through the points 0 and A, let there be drawn 
planes parallel to one another, which, in cutting the spheroid make the ellipses 
LBD, POP, QAQ; which will all be similar 
and similarly disposed, and will have their 
centres K, N, R, in one and the same diam- 
eter of the spheroid, which will also be 
the diameter of the ellipse made by the sec- 
tion of the plane that passes through the 
centre of the spheroid, and which cuts the 
planes of the three said ellipses at right 
angles: for all this is manifest by Proposi- 
tion 15 of the book of Conoids and Spheroids 
of Archimedes. Further, the two latter 
planes, which are drawn through the points h~ 
O and A, will also, by cutting the planes 
which touch the spheroid in these same 
points, generate straight lines, as OH and 
AS, which will, as is easy to see, be parallel 
to BM; and all three, BM, OH, AS, will 
touch the ellipses LBD, POP, QAQ in these points, B, 0, A; since they are in 
the planes of these ellipses, and at the same time in the planes which touch the 
spheroid. If now from these points B, O, A, there are drawn the straight lines 
BK, ON, AR, through the centres of the same ellipses, and if through these 
centres there are drawn also the diameters LD, PP, QQ, parallel to the tan- 
gents BM, OH, AS; these will be conjugate to the aforesaid BK, ON, AR. And 
because the three ellipses are similar and similarly disposed, and have their di- 
ameters LD, PP, QQ parallel, it is certain that their conjugate diameters BK, 
ON, AR, will also be parallel. And the centres K, N, R being, as has been 
stated, in one and the same diameter of the spheroid, these parallels BK, ON, 
AR will necessarily be in one and the same plane, which passes through this 
diameter of the spheroid, and, in consequence, the points R, 0, A are in one 
and the same ellipse made by the intersection of this plane. Which was to be 
proved. And it is manifest that the demonstration would be the same if, 
besides the points 0, A, there had been others in which the spheroid had been 
touched by planes parallel to the straight line BM. 
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CHAPTER SIX 

On the Figures of the Transparent Bodies 

Which serve for refraction and for reflexion 

After having explained how the properties of reflexion and refraction follow 
from what we have supposed concerning the nature of light and of opaque 
bodies and of transparent media, I will here set forth a very easy and natural 
way of deducing, from the same principles, the true figures which serve, either 
by reflexion or by refraction, to collect or disperse the rays of light, as may be 
desired. For though I do not see yet that there are means of making use of 
these figures, so far as relates to refraction, not only because of the difficulty 
of shaping the glasses of telescopes with the requisite exactitude according to 
these figures, but also because there exists in refraction itself a property which 
hinders the perfect concurrence of the rays, as Mr. Newton has very well 
proved by experiment, I will yet not desist from relating the invention, since 
it offers itself, so to speak, of itself, and because it further confirms our theory 
of refraction, by the agreement which here is found between the refracted ray 
and the reflected ray. Besides, it may occur that some one in the future will 
discover in it utilities which at present are not seen. 

To proceed, then, to these figures, let us suppose first that it is desired to 
find a surface CDE which shall reassemble at a point B rays coming from an- 
other point A; and that the summit of the surface shall be the given point D 
in the straight line AB. I say that, whether by reflexion or by refraction, it is 

only necessary to make this surface such that the path of the light from the 
point A to all points of the curved line CDE, and from these to the point of 
concurrence (as here the path along the straight lines AC, CB, along AL, LB, 
and along AD, DB), shall be everywhere traversed in equal times: by which 
principle the finding of these curves becomes very easy. 

So far as relates to the reflecting surface, since the sum of the lines AC, CB 
ought to be equal to that of AD, DB, it appears that DCE ought to be an 
ellipse; and for refraction, the ratio of the velocities of waves of light in the 
media A and B being supposed to be known, for example that of 3 to 2 (which 
is the same, as we have shown, as the ratio of the sines in the refraction), it is 
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only necessary to make DH equal to f L 
of DB; and having after that described 
from the centre A some arc FC, cutting 
DB at F, then describe another from 
centre B with its semi-diameter BX 
equal to % of FH; and the point of in- D 
tersection of the two arcs will be one 
of the points required, through which 
the curve should pass. For this point, 
having been found in this fashion, it is 
easy forthwith to demonstrate that the 
time along AC, CB will be equal to the 
time along AD, DB. 

For, assuming that the line AD represents the time which the light takes to 
traverse this same distance AD in air, it is evident that DH, equal to of DB, 
will represent the time of the light along DB in the medium, because it needs 
here more time in proportion as its speed is slower. Therefore, the whole line 
AH will represent the time along AD, DB. Similarly, the line AC or AF will 
represent the time along AC; and FH, being by construction equal to of CB, 
it will represent the time along CB in the medium; and, in consequence, the 
whole line AH will represent also the time along AC, CB. Whence it appears 
that the time along AC, CB is equal to the time along AD, DB. And, similarly, 
it can be shown, if L and K are other points in the curve CDE, that the times 
along AL, LB, and along AK, KB, are always represented by the line AH, and, 
therefore, equal to the said time along AD, DB. 

In order to show further that the surfaces which these curves will generate 
by revolution will direct all the rays which reach them from the point A in 
such wise that they tend towards B, let there be supposed a point K in the 
curve, farther from D than C is, but such that the straight line AK falls from 
outside upon the curve which serves for the refraction; and from the centre 
B let the arc KS be described, cutting BD at S, and the straight line CB at R; 
and from the centre A describe the arc DN meeting AK at N. 

Since the sums of the times along AK, KB, and along AC, CB are equal, if 
from the former sum one deducts the time along KB, and if from the other one 
deducts the time along RB, there will remain the time along AK as equal to the 
time along the two parts AC, CR. Consequently, in the time that the light has 
come along AK it will also have come along AC and will in addition have 
made, in the medium from the centre C, a partial spherical wave, having a 
semi-diameter equal to CR. And this wave will necessarily touch the circum- 
ference KS at R, since CB cuts this circumference at right angles. Similarly, 
having taken any other point L in the curve, one can show that in the same 
time as the light passes along AL it will also have come along AL and in addi- 
tion will have made a partial wave, from the centre L, which will touch the 
same circumference KS. And so with all other points of the curve CDE. Then, 
at the moment that the light reaches K the arc KRS will be the termination 
of the movement, which has spread from A through DCK. And thus this same 
arc will constitute in the medium the propagation of the wave emanating from 
A; which wave may be represented by the arc DN, or by any other nearer the 
centre A. But all the pieces of the arc KRS are propagated successively along 
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straight lines which are perpendicular to them, that is to say, which tend to 
the centre B (for that can be demonstrated in the same way as we have proved 
above that the pieces of spherical waves are propagated along the straight lines 
coming from their centre), and these progressions of the pieces of the waves 
constitute the rays themselves of light. It appears, then, that all these rays 
tend here towards the point B. 

One might also determine the point C, and all the others, in this curve which 
serves for the refraction, by dividing DA at G in such a way that DG is % of 
DA, and describing from the centre B any arc CX which cuts BD at X, and 
another from the centre A with its semi-diameter AF equal to ^ of GX; or 
rather, having described, as before, the arc CX, it is only necessary to make 
DF equal to/^ of DX, and from the centre A to strike the arc FC; for these two 
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constructions, as may be easily known, come back to the first one which was 
shown before. And it is manifest by the last method that this curve is the same 
that M. Descartes has given in his Geometry, and which he calls the first of his 
Ovals. 

It is only a part of this oval which serves for the refraction, namely, the part 
DK, ending at K, if AK is the tangent. As to the other part, Descartes has 
remarked that it could serve for reflexions, if there were some material of a 
mirror of such a nature that, by its means, the force of the rays (or, as we 
should say, the velocity of the light, which he could not say, since he held that 
the movement of light was instantaneous) could be augmented in the propor- 
tion of 3 to 2. But we have shown that in our way of explaining reflexion, such 
a thing could not arise from the matter of the mirror, and it is entirely im- 
possible. 
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From what has been demonstrated about this oval, it will be easy to find 

the figure which serves to collect to a point incident parallel rays. For by sup- 
posing just the same construction, but the point A infinitely distant, giving 
parallel rays, our oval becomes a true ellipse, the construction of which differs 
in no way from that of the oval, except that FC, which previously was an arc 
of a circle, is here a straight line, perpendicular to DB. For the wave of light 
DN, being likewise represented by a straight line, it will be seen that all the 
points of this wave, travelling as far as the surface KD along lines parallel to 
DB, will advance subsequently towards the point B, and will arrive there at 
the same time. As for the ellipse which served for reflexion, it is evident that 
it will here become a parabola, since its focus A may be regarded as infinitely 
distant from the other, B, which is here the focus of the parabola, towards 
which all the reflexions of rays parallel to AB tend. And the demonstration of 
these effects is just the same as the preceding. 

But that this curved line CDE which serves for refraction is an ellipse, and 
is such that its major diameter is to the distance between its foci as 3 to 2, 
which is the proportion of the refraction, can be easily found by the cal- 
culus of algebra. For, DB, which is given, being called a; its undetermined 
perpendicular DT being called x; and TC y; FB will be a—y, CB will be 
Vxx+aa — 2ay-\-yy. But the nature of the curve is such that % of TC together 
with CB is equal to DB, as was stated in the last construction: then the equa- 
tion will be between %y-\-Vxx+aa — 2ay-\-yy and a; which being reduced, gives 
6/say — yy equal toy$xx; that is to say, that having made DO equal to % of DB, 
the rectangle DFO is equal to % of the square on FC. Whence it is seen that 
DC is an ellipse, of which the axis DO is to the parameter as 9 to 5; and, 
therefore, the square on DO is to the square of the distance between the foci 
as 9 to 9 —5, that is to say 4; and, finally, the line DO will be to this distance 
as 3 to 2. 

Again, if one supposes the point B to be infinitely distant, in lieu of our first 
oval we shall find that CDE is a true hyperbola; which will make those rays 
become parallel which come from the point A. And, in consequence also, those 
which are parallel within the transparent body will be collected outside at the 
point A. Now it must be remarked that CX and KS become straight lines per- 
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pendicular to BA, because they represent arcs of circles the centre of which is 
infinitely distant. And the intersection of the perpendicular CX with the arc 
FC will give the point C, one of those through which the curve ought to pass. 
And this operates so that all the parts of the wave of light DN, coming to meet 
the surface KDE, will advance thence along parallels to KS and will arrive at 
this straight line at the same time; of which the proof is again the same as that 
which served for the first oval. Besides, one finds by a calculation as easy as 
the preceding one, that CDE is here a hyperbola of which the axis DO is % of 
AD, and the parameter equal to AD. Whence, it is easily proved that DO is to 
the distance between the foci as 3 to 2. 

These are the two cases in which conic sections serve for refraction, and are 
the same which are explained, in his Dioptrique, by Descartes, who first found 
out the use of these lines in relation to refraction, as also that of the ovals the 
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first of which we have already set forth. The second oval is that which serves 
for rays that tend to a given point; in which oval, if the apex of the surface 
which receives the rays is D, it will happen that the other apex will be situated 
between B and A, or beyond A, according as the ratio of AD to DB is given of 
greater or lesser value. And in this latter case it is the same as that which 
Descartes calls his third oval. 

Now the finding and construction of this second oval is the same as that of 
the first, and the demonstration of its effect likewise. But it is worthy of remark 
that in one case this oval becomes a perfect circle, namely when the ratio of 
AD to DB is the same as the ratio of the refractions, here as 3 to 2, as I ob- 
served a long time ago. The fourth oval, serving only for impossible reflexions, 
there is no need to set it forth. 

As for the manner in which M. Descartes discovered these lines, since he has 
given no explanation of it, nor anyone else since that I know of, I mil say here, 
in passing, what it seems to me it must have been. Let it be proposed to find 
the surface generated by the revolution of the curve KDE, which, receiving 
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the incident rays coming to it 
from the point A, shall deviate 
them toward the point B. Then 
considering this other curve as 
already known, and that its 
apex D is in the straight line 
AB, let us divide it up into an 
infinitude of small pieces by the 
points G, C, F; and having 
drawn from each of these points, 
straight lines towards A to re- 
present the incident rays, and 
other straight lines towards B, 
let there also be described with 
centre A the arcs GL, CM, FN, 
DO, cutting the rays that come 
from A at L, M, N, 0; and from 
the points K, G, C, F, let there 
be described the arcs KQ, GR, 
CS, FT cutting the rays towards B at Q, R, S, T; and let us suppose that the 
straight line HKZ cuts the curve at K at right angles. 

Then AK being an incident ray, and KB its refraction within the medium, 
it needs must be, according to the law of refraction which was known to M. 
Descartes, that the sine of the angle ZKA should be to the sine of the angle 

XF 

HKB as 3 to 2, supposing that this is the proportion of the refraction of glass; 
or rather, that the sine of the angle KGL should have this same ratio to the 
sine of the angle GKQ, considering KG, GL, KQ as straight lines because of 
their smallness. But these sines are the lines KL and GQ, if GK is taken as the 
radius of the circle. Then LK ought to be to GQ as 3 to 2; and in the same ratio 
MG to CR, NC to FS, OF to DT. Then also the sum of all the antecedents to 
all the consequents would be as 3 to 2. Now, by prolonging the arc DO until 
it meets AK at X, KX is the sum of the antecedents. And by prolonging the 
arc KQ till it meets AD at Y, the sum of the consequents is DY. Then KX 
ought to be to DY as 3 to 2. Whence, it would appear that the curve KDE was 
of such a nature that having drawn from some point which had been assumed, 
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such as K, the straight lines KA, KB, the excess by which AK surpasses AD 
should be to the excess of DB over KB, as 3 to 2. For it can similarly be demon- 
strated, by taking any other point in the curve, such as G, that the excess of 
AG over AD, namely VG, is to the excess of BD over DG, namely DP, in 
this same ratio of 3 to 2. And, following this principle, M. Descartes constructed 

these curves in his Geometry; 
and he easily recognized that 
in the case of parallel rays, 
these curves became hyper- 
bolas and ellipses. 

Let us now return to our 
method and let us see how it 
leads without difficulty to the 
finding of the curves which 
one side of the glass requires 
when the other side is of a 

   ^ given figure; a figure not only 
plane or spherical, or made 
by one of the conic sections 
(which is the restriction with 
which Descartes proposed this 
problem, leaving the solution 
to those who should come 
after him) but generally any 
figure whatever: that is to 
say, one made by the revolu- 
tion of any given curved line 
to which one must merely 
know how to draw straight 
lines as tangents. 

Let the given figure be that 
made by the revolution of 
some curve such as AK about 
the axis AV, and that this 
side of the glass receives rays 
coming from the point L. 
Furthermore, let the thick- 
ness AB of the middle of the 
glass be given, and the point 
F at which one desires the 
rays to be all perfectly re- 
united, whatever be the first 
refraction occurring at the 
surface AK. 

I say that for this the sole 
requirement is that the out- 
line BDK which constitutes 
the other surface shall be 
such that the path of the 
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light from the point L to the surface AK, and from thence to the surface BDK, 
and from thence to the point F, shall be traversed everywhere in equal times, 
and in each case in a time equal to that which the light employs to pass along 
the straight line LF of which the part AB is within the glass. 

Let LG be a ray falling on the arc AK. Its refraction GY will be given by 
means of the tangent which will be drawn at the point G. Now in GY the point 
D must be found such that FD together with of DG and the straight line 
GL, may be equal to FB together with of BA and the straight line AL; 
which, as is clear, make up a given length. Or rather, by deducting from each 
the length of LG, which is also given, it will merely be needful to adjust FD 
up to the straight line YG in such a way that FD together with ^ of DG is 
equal to a given straight line, which is a quite easy plane problem: and the 
point D will be one of those through which the curve BDK ought to pass. And 
similarly, having drawn another ray LM, and found its refraction MO, the 
point N will be found in this line, and so on as many times as one desires. 

To demonstrate the effect of the curve, let there be described about the 
centre L the circular arc AH, cutting LG at H; and about the centre F the 
arc BP; and in AB let AS be taken equal to % of HG; and SE equal to GD. 
Then, considering AH as a wave of light emanating from the point L, it is 
certain that during the time in which its piece H arrives at G the piece A will 
have advanced within the transparent body only along AS; for I suppose, as 
above, the proportion of the refraction to be as 3 to 2. Now we know that the 
piece of wave, which is incident on G, advances thence along the line GD, 
since GY is the refraction of the ray LG. Then during the time that this piece 
of wave has taken from G to D, the other piece which was at S has reached E, 
since GD, SE are equal. But while the latter will advance from E to B, the 
piece of wave which was at D will have spread into the air its partial wave, 
the semi-diameter of which, DC (supposing this wave to cut the line DF at 
C), will be % of EB, since the velocity of light outside the medium is to that 
inside as 3 to 2. Now it is easy to show that this wave will touch the arc BP 
at this point C. For since, by construction, FD+^2 DG+GL are equal to FB 
+/^BA+AL; on deducting the equals LH, LA, there will remain FD-h/^DGd- 
GH equal to FB-h/^BA. And, again, deducting from one side GH, and from 
the other side/^ of AS, which are equal, there will remain FD with/^ EG equal 
to FB with % of BS. But of DG are equal to of ES; then FD is equal to 
FB with % of BE. But DC was equal to of EB; then deducting these equal 
lengths from one side and from the other, there will remain CF equal to FB. 
And thus it appears that the wave, the semi-diameter of which is DC, touches 
the arc BP at the moment when the light coming from the point L has arrived 
at B along the line LB. It can be demonstrated similarly that at this same 
moment the light that has come along any other ray, such as LM, MN, will 
have propagated the movement which is terminated at the arc BP. Whence 
it follows, as has been often said, that the propagation of the wave AH, after 
it has passed through the thickness of the glass, will be the spherical wave BP, 
all the pieces of which ought to advance along straight lines, which are the 
rays of light, to the centre F. Which was to be proved. Similarly, these curved 
lines can be found in all the cases which can be proposed, as will be sufficiently 
shown by one or two examples which I will add. 

Let there be given the surface of the glass AK, made by the revolution about 
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the axis BA of the line AK, which may be straight or curved. Let there be also 
given in the axis the point L and the thickness BA of the glass; and let it be 
required to find the other surface KDB, which receiving rays that are parallel 
to AB will direct them in such wise that after being again refracted at the 
given surface AK they will all be reassembled at the point L. 

From the point L let there be drawn to some point of the given line AK the 
straight line LG, which, being considered as a ray of light, its refraction GD 
will then be found. And this line being then prolonged at one side or the other 
will meet the straight line BL, as here at Y. Let there then be erected on AB 
the perpendicular BC, which will represent a wave of light coming from the 
infinitely distant point F, since we have supposed the rays to be parallel. Then 
all the parts of this wave BC must arrive at the same time at the point L; or 

rather all the parts of a wave emanating 
from the point L must arrive at the 
same time at the straight line BC. And 
for that it is necessary to find in the line 
VGD the point D, such that having 
drawn DC parallel to AB, the sum of CD 
plus of DG, plus GL may be equal to 
z/i of AB plus AL: or rather, on deduct- 
ing from both sides GL, which is given, 
CD plus % of DG must be equal to a 
given length; which is a still easier prob- 
lem than the preceding construction. 
The point D thus found will be one of 
those through which the curve ought to 
pass; and the proof will be the same as 
before. And by this it will be proved that 
the waves which come from the point L, 
after having passed through the glass 
KAKB, will take the form of straight 
lines, as BC; which is the same thing as 
saying that the rays will become para- 
llel. Whence it follows reciprocally that 
parallel rays falling on the surface 

KDB will be reassembled at the point L. 
Again, let there be given the surface AK, of any desired form, generated by 

revolution about the axis AB, and let the thickness of the glass at the middle 
be AB. Also, let the point L be given in the axis behind the glass; and let it be 
supposed that the rays which fall on the surface AK tend to this point, and 
that it is required to find the surface BD, which on their emergence from the 
glass turns them as if they came from the point F in front of the glass. 

Having taken any point G in the line AK, and drawing the straight line 
IGL, its part GI will represent one of the incident rays, the refraction of which, 
GV, will then be found: and it is in this line that we must find the point D, 
one of those through which the curve DG ought to pass. Let us suppose that 
it has been found: and about L as centre let there be described GT, the arc of 
a circle cutting the straight line AB at T, in case the distance LG is greater 
than LA; for otherwise the arc AH must be described about the same centre, 
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cutting the straight line LG at H. 
This arc GT (or AH, in the other 
case) will represent an incident wave 
of light, the rays of which tend to- 
wards L. Similarly, about the centre 
F let there be described the circular 
arc DQ, which will represent a wave 
emanating from the point F. 

Then the wave TG, after having 
passed through the glass, must form 
the wave QD; and for this I observe 
that the time taken by the light along 
GD in the glass must be equal to that 
taken along the three, TA, AB, and 
BQ, of which AB alone is within the 
glass. Or, rather, having taken AS 
equal to % of AT, I observe thatof 
GD ought to be equal to/^of SB, plus 
BQ; and, deducting both of them from 
FD or FQ, that FD less of GD ought 
to be equal to FB less of SB. And 
this last difference is a given length: 
and all that is required is to draw the 
straight line FD from the given point 
F to meet YG so that it may be thus. 
Which is a problem quite similar to 
that which served for the first of these 
constructions, where FD plus of GD 
had do be equal to a given length. 

In the demonstration it is to be observed that, since the arc BC falls within 
the glass, there must be conceived an arc RX, concentric with it and on the 
other side of QD. Then, after it shall have been shown that the piece G of the 
wave GT arrives at D at the same time that the piece T arrives at Q, which 
is easily deduced from the construction, it will be evident as a consequence 
that the partial wave generated at the point D will touch the arc RX at the 
moment when the piece Q shall have come to R, and that thus this arc will at 
the same moment be the termination of the movement that comes from the 
wave TG; whence all the rest may be concluded. 

Having shown the method of finding these curved lines which serve for the 
perfect concurrence of the rays, there remains to be explained a notable thing 
touching the uncoordinated refraction of spherical, plane, and other surfaces: 
an effect which if ignored might cause some doubt concerning what we have 
several times said, that rays of light are straight lines which intersect at right 
angles the waves which travel along them. 

For in the case of rays which, for example, fall parallel upon a spherical sur- 
face AFE, intersecting one another, after refraction, at different points, as the 
figure [P. 617] represents; what can the waves of light be, in this transparent 
body, which are cut at right angles by the converging rays? For they can not be 
spherical. And what will these waves become after the said rays begin to inter- 
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sect one another? It will be seen in 
the solution of this difficulty that 
something very remarkable comes 
to pass herein, and that the waves 
do not cease to persist though they 
do not continue entire, as when 
they cross the glasses designed ac- 
cording to the construction we have 
seen. 

According to what has been 
shown above, the straight line AD, 
which has been drawn at the sum- 
mit of the sphere, at right angles 
to the axis parallel to which the 
rays come, represents the wave of 
light; and in the time taken by its 
piece D to reach the spherical sur- 
face AGE at E, its other parts will 
have met the same surface at F, G, 
H, etc., and will have also formed 
spherical partial waves of which 
these points are the centres. And 
the surface EK which all those 
waves will touch, will be the con- 
tinuation of the wave AD in the 
sphere at the moment when the 

piece D has reached E. Now the line EK is not an arc of a circle, but is a 
curved line formed as the evolute of another curve ENC, which touches all the 
rays HL, GM, FO, etc., that are the refractions of the parallel rays, if we 
imagine laid over the convexity ENC a thread which in unwinding describes 
at its end E the said curve EK. For, supposing that this curve has been thus 
described, we will show that the said waves formed from the centres F, G, H, 
etc., will all touch it. 

It is certain that the curve EK and all the others described by the evolution 
of the curve ENC, with different lengths of thread, will cut all the rays HL, 
GM, FO, etc., at right angles, and in such wise that the parts of them inter- 
cepted between two such curves will all be equal; for this follows from what 
has been demonstrated in our treatise de Motu Pendulorum. Now imagining 
the incident rays as being infinitely near to one another, if we consider two of 
them, as RG, TF, and draw GQ perpendicular to RG, and if we suppose the 
curve FS which intersects GM at P to have been described by evolution from 
the curve NC, beginning at F, as far as which the thread is supposed to extend, 
we may assume the small piece FP as a straight line perpendicular to the ray 
GM, and similarly the arc GF as a straight line. But GM being the refraction 
of the ray RG, and FP being perpendicular to it, QF must be to GP as 3 to 2, 
that is to say in the proportion of the refraction; as was shown above in ex- 
plaining the discovery of Descartes. And the same thing occurs in all the small 
arcs GH, HA, etc., namely that in the quadrilaterals which enclose them the 
side parallel to the axis is to the opposite side as 3 to 2. Then also as 3 to 2 will 
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the sum of the one set be to the sum of the other; that is to say, TF to AS, and 
DE to AK, and BE to SK or DV, supposing V to be the intersection of the 
curve EK and the ray FO. But, making FB perpendicular to DE, the ratio of 
3 to 2 is also that of BE to the semi-diameter of the spherical wave which 
emanated from the point F while the light outside the transparent body 
traversed the space BE. Then it appears that this wave will intersect the 
ray FM at the same point V where it is intersected at right angles by the 
curve EK, and consequently that the wave will touch this curve. In the 
same way it can be proved that the same will apply to all the other waves 
above mentioned, originating at the points G, H, etc.; to wit, that they will 
touch the curve EK at the moment when the piece D of the wave ED shall 
have reached E. 

Now to say what these waves become after the rays have begun to cross 
one another: it is that from thence they fold back and are composed of two 
contiguous parts, one being a curve formed as evolute of the curve ENC in 
one sense, and the other as evolute of the same curve in the opposite sense. 
Thus the wave KE, while advancing toward the meeting place becomes abc, 
whereof the part ah is made by the evolute hC, a portion of the curve ENC, 
while the end C remains attached; and the part he by the evolute of the portion 
6E while the end E remains attached. Consequently the same wave becomes 
def, then ghk, and finally CY, from whence it subsequently spreads without 
any fold, but always along curved lines which are evolutes of the curve ENC, 
increased by some straight line at the end C. 

There is even, in this curve, a part EN which is straight, N being the point 
where the perpendicular from the centre X of the sphere falls upon the refrac- 
tion of the ray DE, which I now suppose to touch the sphere. The folding of 
the waves of light begins from the point N up to the end of the curve C, which 
point is formed by taking AC to CX in the proportion of the refraction, as 
here 3 to 2. 

As many other points as may be desired in the curve NC are found by a 
Theorem which Mr. Barrow has demonstrated in section 12 of his Lectiones 
Opticce, though for another purpose. And it is to be noted that a straight line 
equal in length to this curve can be given. For since it together with the line 
NE is equal to the line CK, which is known, since DE is to AK in the propor- 
tion of the refraction, it appears that by deducting EN from CK the remainder 
will be equal to the curve NC. 

Similarly the waves that are 
folded back in reflexion by a con- 
cave spherical mirror can be 
found. Let ABC be the section, 
through the axis, of a hollow hem- 
isphere, the centre of which is D, 
its axis being DB, parallel to 
which I suppose the rays of light 
to come. All the reflexions of those A 
rays which fall upon the quarter- 
circle AB will touch a curved line 
AFE, of which line the end E is 
at the focus of the hemisphere, 



Chapter VI 619 

that is to say, at the point which divides the semi-diameter BD into two equal 
parts. The points through which this curve ought to pass are found by taking, 
beyond A, some arc AO, and making the arc OP double the length of it; then 
dividing the chord OP at F in such wise that the part FP is three times the 
part FO; for then F is one of the required points. 

And as the parallel rays are merely perpendiculars to the waves which fall 
on the concave surface, which waves are parallel to AD, it will be found that 
as they come successively to encounter the surface AB, they form on reflexion 
folded waves composed of two curves which originate from two opposite evolu- 
tions of the parts of the curve AFE. So, taking AD as an incident wave, when 
the part AG shall have met the surface AI, that is to say when the piece G shall 
have reached I, it will be the curves HF, FI, generated as evolutes of the curves 
FA, FE, both beginning at F, which together constitute the propagation of the 
part AG. And a little afterwards, when the part AK has met the surface AM, 
the piece K having come to M, then the curves LN, NM, will together con- 
stitute the propagation of that part. And thus this folded wave will continue 
to advance until the point N has reached the focus E. The curve AFE can be 
seen in smoke, or in flying dust, when a concave mirror is held opposite the 
sun. And it should be known that it is none other than that curve which is 
described by the point E on the circumference of the circle EB, when that 
circle is made to roll within another whose semi-diameter is ED and whose 
centre is D. So that it is a kind of cycloid, of which, however, the points can 
be found geometrically. 

Its length is exactly equal to ^ of the diameter of the sphere, as can be found 
and demonstrated by means of these waves, nearly in the same way as the 
mensuration of the preceding curve; though it may also be demonstrated in 
other ways, which I omit as outside the subject. The area AOBEFA, comprised 
between the arc of the quarter-circle, the straight line BE, and the curve EFA 
is equal to the fourth part of the quadrant DAB. 
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