
TH
E

 P
R

IN
C

IP
LE

S
 O

F O
B

JE
C

T-O
R

IE
N

TE
D

 JA
V

A
S

C
R

IP
T

TH
E

 P
R

IN
C

IP
LE

S
 O

F O
B

JE
C

T-O
R

IE
N

TE
D

 JA
V

A
S

C
R

IP
T

Z
A

K
A

S

N I C H O L A S C . Z A K A S

J A V A S C R I P TJ A V A S C R I P T
O B J E C T - O R I E N T E DO B J E C T - O R I E N T E D

T H E P R I N C I P L E S O FT H E P R I N C I P L E S O F

SHELVE IN:
PROGRAM

M
ING/JAVASCRIPT

$24.95 ($25.95 CDN)

If you’ve used a more traditional object-oriented
language, such as C++ or Java, JavaScript probably
doesn’t seem object-oriented at all. It has no concept
of classes, and you don’t even need to define any

JavaScript is an incredibly powerful and expressive

In The Principles of Object-Oriented JavaScript,

object-oriented nature, revealing the language’s
Nicholas C. Zakas thoroughly explores JavaScript’s

unique implementation of inheritance and other key
characteristics. You’ll learn:

values
• The difference between primitive and reference

• What makes JavaScript functions so unique

• The various ways to create objects

objects in order to write code. But don’t be fooled —

object-oriented language that puts many design
decisions right into your hands.

• How to work with and understand prototypes

The Principles of Object-Oriented JavaScript will leave

• Inheritance patterns for types and objects

even experienced developers with a deeper understand-
ing of JavaScript. Unlock the secrets behind how objects
work in JavaScript so you can write clearer, more
flexible, and more efficient code.

in JavaScript best practices. He honed his experience

A B O U T T H E A U T H O R

Nicholas C. Zakas is a software engineer at Box and
is known for writing on and speaking about the latest

during his five years at Yahoo!, where he was principal
frontend engineer for the Yahoo! home page. He is the
author of several books, including Maintainable JavaScript
and Professional JavaScript for Web Developers.

• How to define your own constructors

J A V A S C R I P TJ A V A S C R I P T
C O N T R O L O FC O N T R O L O F

T A K ET A K E

O B J E C T SO B J E C T S

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™

Foreword by Cody Lindley,

Best-selling Author and

Principal Frontend Architect

at TandemSeven

SFI-00

The PrinciPles of
objecT-orienTed javascriPT

T h e P r i n c i P l e s o f

o b j e c T - o r i e n T e d
j a v a s c r i P T

San Francisco

by Nicho las C . Zakas

The PrinciPles of objecT-orienTed javascriPT. Copyright © 2014 by Nicholas C. Zakas.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

Printed in USA
Fifth printing

19 18 17 16 15 5 6 7 8 9 10

ISBN-10: 1-59327-540-4
ISBN-13: 978-1-59327-540-2

Publisher: William Pollock
Production Editor: Serena Yang
Cover Illustration: Charlie Wylie
Interior Design: Octopod Studios
Developmental Editor: Jennifer Griffith-Delgado
Technical Reviewer: Angus Croll
Copyeditor: Rachel Monaghan
Compositor: Serena Yang
Proofreader: Elaine Merrill
Indexer: Nancy Guenther

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 415.863.9900; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Zakas, Nicholas C.
 The principles of object-oriented JavaScript / by Nicholas C. Zakas.
 pages cm
 Includes index.
 ISBN-13: 978-1-59327-540-2 (paperback)
 ISBN-10: 1-59327-540-4 (paperback)
 1. JavaScript (Computer program language) 2. Object-oriented programming languages. I. Title.
 QA76.73.J39Z357 2014
 005.1'17--dc23
 2013048973

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to
the benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the infor-
mation contained in it.

about the author
Nicholas C. Zakas is a software engineer at Box and is known for writing
on and speaking about the latest in JavaScript best practices. He honed
his experience during his five years at Yahoo!, where he was principal
front end engineer for the Yahoo! home page. He is the author of sev-
eral books, including Maintainable JavaScript (O’Reilly Media, 2012)
and Professional JavaScript for Web Developers (Wrox, 2012).

about the Technical reviewer
Originally from the UK, Angus Croll is now part of Twitter’s web frame-
work team in San Francisco and is the co-author and principal main-
tainer of Twitter’s open source Flight framework. He’s obsessed with
JavaScript and literature in equal measure and is a passionate advocate
for the greater involvement of artists and creative thinkers in software
development. Angus is a frequent speaker at conferences worldwide and
is currently working on two books for No Starch Press. He can be reached
on Twitter at @angustweets.

https://twitter.com/angustweets?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor

b r i e f c o n T e n T s

Foreword by Cody Lindley . xiii

Acknowledgments . xv

Introduction .xvii

Chapter 1: Primitive and Reference Types . 1

Chapter 2: Functions . 17

Chapter 3: Understanding Objects . 31

Chapter 4: Constructors and Prototypes . 49

Chapter 5: Inheritance . 65

Chapter 6: Object Patterns . 79

Index . 93

c o n T e n T s i n d e T a i l

foreword by cody lindley xiii

acknowledgmenTs xv

inTroducTion xvii
Who This Book Is For .xviii
Overview . xix
Help and Support . xix

1
PrimiTive and reference TyPes 1
What Are Types? . 2
Primitive Types . 3

Identifying Primitive Types . 4
Primitive Methods . 6

Reference Types . 6
Creating Objects . 6
Dereferencing Objects . 7
Adding or Removing Properties . 8

Instantiating Built-in Types . 8
Literal Forms . 9
Object and Array Literals . 9
Function Literals . 10
Regular Expression Literals . 11

Property Access . 11
Identifying Reference Types . 12
Identifying Arrays . 13
Primitive Wrapper Types . 14
Summary . 16

2
funcTions 17
Declarations vs . Expressions . 18
Functions as Values . 19
Parameters . 21
Overloading . 23

x Contents in Detail

Object Methods . 24
The this Object . 25
Changing this . 26

Summary . 29

3
undersTanding objecTs 31
Defining Properties . 32
Detecting Properties . 33
Removing Properties . 35
Enumeration . 36
Types of Properties . 37
Property Attributes . 38

Common Attributes . 39
Data Property Attributes . 40
Accessor Property Attributes . 41
Defining Multiple Properties . 43
Retrieving Property Attributes . 44

Preventing Object Modification . 45
Preventing Extensions . 45
Sealing Objects . 45
Freezing Objects . 47

Summary . 48

4
consTrucTors and ProToTyPes 49
Constructors . 49
Prototypes . 53

The [[Prototype]] Property . 54
Using Prototypes with Constructors . 57
Changing Prototypes . 60
Built-in Object Prototypes . 62

Summary . 63

5
inheriTance 65
Prototype Chaining and Object .prototype . 65

Methods Inherited from Object .prototype . 66
Modifying Object .prototype . 68

Object Inheritance . 69
Constructor Inheritance . 72

Contents in Detail xi

Constructor Stealing . 75
Accessing Supertype Methods . 77
Summary . 78

6
objecT PaTTerns 79
Private and Privileged Members . 80

The Module Pattern . 80
Private Members for Constructors . 82

Mixins . 84
Scope-Safe Constructors . 90
Summary . 92

index 93

f o r e w o r d

The name Nicholas Zakas is synonymous with
JavaScript development itself. I could ramble on
for pages with his professional accolades, but I am
not going to do that. Nicholas is well-known as a
highly skilled JavaScript developer and author, and
he needs no introduction. However, I would like to
offer some personal thoughts before praising the
contents of this book.

My relationship with Nicholas comes from years of studying his books,
reading his blog posts, watching him speak, and monitoring his Twitter
updates as a JavaScript pupil. We first met in person when I asked him
to speak at a jQuery conference several years ago. He treated the jQuery
community to a high-quality talk, and since then, we have spoken publicly
and privately over the Internet. In that time, I have come to admire him
as more than just a leader and developer in the JavaScript community.
His words are always gracious and thoughtful, his demeanor always kind.

xiv Foreword

His intent as a developer, speaker, and author is always to help, to edu-
cate, and to improve. When he speaks, you should listen, not just because
he is a JavaScript expert, but because his character rises above his profes-
sional status.

This book’s title and introduction make Nicholas’s intentions clear:
he has written it to help class-minded (that is, C++ or Java) programmers
transition to a language without classes. In the book, he explains how
encapsulation, aggregation, inheritance, and polymorphism can be
accomplished when writing JavaScript. This is the ideal text to bring a
knowledgeable programmer into the fold of object-oriented JavaScript
development. If you are reading this book as a developer from another
language, you are about to be treated to a concise and skillfully worded
JavaScript book.

However, this book also stands to serve programmers coming
from within the JavaScript fold. Many JavaScript developers have only
an ECMAScript 3 (ES3) understanding of objects, and they are in need
of a proper introduction to ECMAScript 5 (ES5) object features. This
book can serve as that introduction, bridging a knowledge gap between
ES3 objects and ES5 objects.

Now, you might be thinking, “Big deal. Several books have included
chapters or notes on the additions to JavaScript found in ES5.” Well, that
is true. However, I believe this to be the only book written to date that
focuses on the nature of objects by giving ES5 objects first-class citizen-
ship in the entire narrative. This book brings a cohesive introduction to
not only ES5 objects, but also the bits of ES3 that you need to grok while
learning many of the new additions found in ES5.

As an author myself, I strongly believe this is the one book, given its
focus on object-oriented principles and ES5 object updates, that needed
to be written as we await ES6 updates to scripting environments.

Cody Lindley (www.codylindley.com)
Author of JavaScript Enlightenment, DOM Enlightenment,

and jQuery Enlightenment
Boise, Idaho
December 16, 2013

a c k n o w l e d g m e n T s

I’d like to thank Kate Matsudaira for convincing me that self-publishing
an ebook was the best way to get this information out. Without her advice,
I’d probably still be trying to figure out what I should do with the infor-
mation contained in this book.

Thanks to Rob Friesel for once again providing excellent feedback on
an early copy of this book, and Cody Lindley for his suggestions. Additional
thanks to Angus Croll for his technical review of the finished version—
his nitpicking made this book much better.

Thanks as well to Bill Pollock, whom I met at a conference and who
started the ball rolling on publishing this book.

i n T r o d u c T i o n

Most developers associate object-oriented
pro gramming with languages that are typi-
cally taught in school, like C++ and Java,

which base object-oriented programming
around classes. Before you can do anything in

these languages, you need to create a class, even if
you’re just writing a simple command-line program.
Common design patterns in the industry reinforce class-based concepts
as well. But JavaScript doesn’t use classes, and this is part of the reason
people get confused when they try learning it after C++ or Java.

Object-oriented languages have several characteristics:

Encapsulation Data can be grouped together with functionality
that operates on that data. This, quite simply, is the definition of
an object.

xviii Introduction

Aggregation One object can reference another object.

Inheritance A newly created object has the same characteristics
as another object without explicitly duplicating its functionality.

Polymorphism One interface may be implemented by multiple
objects.

JavaScript has all these characteristics, though because the language
has no concept of classes, some aren’t implemented in quite the way you
might expect. At first glance, a JavaScript program might even look like
a procedural program you would write in C. If you can write a function
and pass it some variables, you have a working script that seemingly has
no objects. A closer look at the language, however, reveals the existence
of objects through the use of dot notation.

Many object-oriented languages use dot notation to access properties
and methods on objects, and JavaScript is syntactically the same. But in
JavaScript, you never need to write a class definition, import a package,
or include a header file. You just start coding with the data types that you
want, and you can group those together in any number of ways. You could
certainly write JavaScript in a procedural way, but its true power emerges
when you take advantage of its object-oriented nature. That’s what this
book is about.

Make no mistake: A lot of the concepts you may have learned in
more traditional object-oriented programming languages don’t neces-
sarily apply to JavaScript. While that often confuses beginners, as you
read, you’ll quickly find that JavaScript’s weakly typed nature allows
you to write less code to accomplish the same tasks as other languages.
You can just start coding without planning the classes that you need
ahead of time. Need an object with specific fields? Just create an ad hoc
object wherever you want. Did you forget to add a method to that object?
No problem—just add it later.

Inside these pages, you’ll learn the unique way that JavaScript
approaches object-oriented programming. Leave behind the notions
of classes and class-based inheritance and learn about prototype-based
inheritance and constructor functions that behave similarly. You’ll learn
how to create objects, define your own types, use inheritance, and other-
wise manipulate objects to get the most out of them. In short, you’ll learn
everything you need to know to understand and write JavaScript profes-
sionally. Enjoy!

who This book is for
This book is intended as a guide for those who already understand object-
oriented programming but want to know exactly how the concept works in
JavaScript. Familiarity with Java, C#, or object-oriented programming in

Introduction xix

other languages is a strong indicator that this book is for you. In particu-
lar, this book is aimed at three groups of readers:

•	 Developers who are familiar with object-oriented programming con-
cepts and want to apply them to JavaScript

•	 Web application and Node.js developers trying to structure their code
more effectively

•	 Novice JavaScript developers trying to gain a deeper understanding
of the language

This book is not for beginners who have never written JavaScript. You
will need a good understanding of how to write and execute JavaScript
code to follow along.

overview
Chapter 1: Primitive and Reference Types introduces the two different
value types in JavaScript: primitive and reference. You’ll learn what distin-
guishes them from each other and how understanding their differences
is important to an overall understanding of JavaScript.

Chapter 2: Functions explains the ins and outs of functions in
JavaScript. First-class functions are what makes JavaScript such an inter-
esting language.

Chapter 3: Understanding Objects details the makeup of objects in
JavaScript. JavaScript objects behave differently than objects in other lan-
guages, so a deep understanding of how objects work is vital to mastering
the language.

Chapter 4: Constructors and Prototypes expands on the previous
discussion of functions by looking more specifically at constructors. All
constructors are functions, but they are used a little bit differently. This
chapter explores the differences while also talking about creating your
own custom types.

Chapter 5: Inheritance explains how inheritance is accomplished
in JavaScript. Though there are no classes in JavaScript, that doesn’t
mean inheritance isn’t possible. In this chapter, you’ll learn about proto-
typal inheritance and how it differs from class-based inheritance.

Chapter 6: Object Patterns walks through common object pat-
terns. There are many different ways to build and compose objects in
JavaScript, and this chapter introduces you to the most popular patterns
for doing so.

help and support
If you have questions, comments, or other feedback about this book,
please visit the mailing list at http://groups.google.com/group/zakasbooks.

http://groups.google.com/group/zakasbooks

1
P r i m i T i v e a n d

r e f e r e n c e T y P e s

Most developers learn object- oriented
 programming by working with class-

based languages such as Java or C#. When
these developers start learning Java Script, they

get dis oriented because Java Script has no formal sup-
port for classes. Instead of defining classes from the
beginning, with JavaScript you can just write code
and create data structures as you need them. Because it lacks classes,
JavaScript also lacks class groupings such as packages. Whereas in
languages like Java, package and class names define both the types
of objects you use and the layout of files and folders in your project,
programming in JavaScript is like starting with a blank slate: You can

2 Chapter 1

organize things any way you want. Some developers choose to mimic
structures from other languages, while others take advantage of Java-
Script’s flexibility to come up with something completely new. To the
uninitiated, this freedom of choice can be overwhelming, but once you
get used to it, you’ll find JavaScript to be an incredibly flexible language
that can adapt to your preferences quite easily.

To ease the transition from traditional object-oriented languages,
Java Script makes objects the central part of the language. Almost all data
in JavaScript is either an object or accessed through objects. In fact, even
functions (which languages traditionally make you jump through hoops
to get references to) are represented as objects in Java Script, which makes
them first-class functions.

Working with and understanding objects is key to understanding Java-
Script as a whole. You can create objects at any time and add or remove
properties from them whenever you want. In addition, Java Script objects
are extremely flexible and have capabilities that create unique and inter-
esting patterns that are simply not possible in other languages.

This chapter focuses on how to identify and work with the two pri-
mary JavaScript data types: primitive types and reference types. Though
both are accessed through objects, they behave in different ways that are
important to understand.

what are Types?
Although JavaScript has no concept of classes, it still uses two kinds of
types: primitive and reference. Primitive types are stored as simple data
types. Reference types are stored as objects, which are really just references
to locations in memory.

The tricky thing is that JavaScript lets you treat primitive types like
reference types in order to make the language more consistent for the
developer.

While other programming languages distinguish between primitive
and reference types by storing primitives on the stack and references in
the heap, JavaScript does away with this concept completely: It tracks
variables for a particular scope with a variable object. Primitive values are
stored directly on the variable object, while reference values are placed as
a pointer in the variable object, which serves as a reference to a location
in memory where the object is stored. However, as you’ll see later in this
chapter, primitive values and reference values behave quite differently
although they may initially seem the same.

Of course, there are other differences between primitive and refer-
ence types.

Primitive and Reference Types 3

Primitive Types
Primitive types represent simple pieces of data that are stored as is, such
as true and 25. There are five primitive types in JavaScript:

Boolean true or false

Number Any integer or floating-point numeric value

String A character or sequence of characters delimited
by either single or double quotes (JavaScript has no
separate character type)

Null A primitive type that has only one value, null

Undefined A primitive type that has only one value, undefined
(undefined is the value assigned to a variable that is not
initialized)

The first three types (Boolean, number, and string) behave in similar
ways, while the last two (null and undefined) work a bit differently, as will
be discussed throughout this chapter. All primitive types have literal rep-
resentations of their values. Literals represent values that aren’t stored in a
variable, such as a hardcoded name or price. Here are some examples of
each type using its literal form:

// strings
var name = "Nicholas";
var selection = "a";

// numbers
var count = 25;
var cost = 1.51;

// boolean
var found = true;

// null
var object = null;

// undefined
var flag = undefined;
var ref; // assigned undefined automatically

In JavaScript, as in many other languages, a variable holding a
primitive directly contains the primitive value (rather than a pointer to
an object). When you assign a primitive value to a variable, the value is
copied into that variable. This means that if you set one variable equal
to another, each variable gets its own copy of the data. For example:

var color1 = "red";
var color2 = color1;

4 Chapter 1

Here, color1 is assigned the value
of "red". The variable color2 is then
assigned the value color1, which stores
"red" in color2. Even though color1 and
color2 contain the same value, they are
completely separate from each other,
and you can change the value in color1
without affecting color2 and vice versa.
That’s because there are two different
storage locations, one for each variable.
Figure 1-1 illustrates the variable object
for this snippet of code.

Because each variable containing a primitive value uses its own
 storage space, changes to one variable are not reflected on the other.
For example:

var color1 = "red";
var color2 = color1;

console.log(color1); // "red"
console.log(color2); // "red"

color1 = "blue";

console.log(color1); // "blue"
console.log(color2); // "red"

In this code, color1 is changed to "blue" and color2 retains its original
value of "red".

Identifying Primitive Types
The best way to identify primitive types is with the typeof operator,
which works on any variable and returns a string indicating the type of
data. The typeof operator works well with strings, numbers, Booleans, and
undefined. The following shows the output when using typeof on different
primitive values:

console.log(typeof "Nicholas"); // "string"
console.log(typeof 10); // "number"
console.log(typeof 5.1); // "number"
console.log(typeof true); // "boolean"
console.log(typeof undefined); // "undefined"

Figure 1-1: Variable object

Variable Object

color1 "red"

color2 "red"

Primitive and Reference Types 5

As you might expect, typeof returns "string" when the value is a string;
"number" when the value is a number (regardless of integer or floating-
point values); "boolean" when the value is a Boolean; and "undefined" when
the value is undefined.

The tricky part involves null.
You wouldn’t be the first developer to be confused by the result

of this line of code:

console.log(typeof null); // "object"

When you run typeof null, the result is "object". But why an object
when the type is null? (In fact, this has been acknowledged as an error by
TC39, the committee that designs and maintains JavaScript. You could
reason that null is an empty object pointer, making "object" a logical
return value, but that’s still confusing.)

The best way to determine if a value is null is to compare it against
null directly, like this:

console.log(value === null); // true or false

comPa r ing w i T hou T coe rcion

Notice that this code uses the triple equals operator (===) instead of the double
equals operator . The reason is that triple equals does the comparison without
coercing the variable to another type . To understand why this is important,
consider the following:

console.log("5" == 5); // true
console.log("5" === 5); // false

console.log(undefined == null); // true
console.log(undefined === null); // false

When you use the double equals, the string "5" and the number 5
are considered equal because the double equals converts the string into a
number before it makes the comparison . The triple equals operator doesn’t
consider these values equal because they are two different types . Likewise,
when you compare undefined and null, the double equals says that they are
equivalent, while the triple equals says they are not . When you’re trying to
identify null, use triple equals so that you can correctly identify the type .

6 Chapter 1

Primitive Methods
Despite the fact that they’re primitive types, strings, numbers, and
Booleans actually have methods. (The null and undefined types have
no methods.) Strings, in particular, have numerous methods to help
you work with them. For example:

var name = "Nicholas";
var lowercaseName = name.toLowerCase(); // convert to lowercase
var firstLetter = name.charAt(0); // get first character
var middleOfName = name.substring(2, 5); // get characters 2-4

var count = 10;
var fixedCount = count.toFixed(2); // convert to "10.00"
var hexCount = count.toString(16); // convert to "a"

var flag = true;
var stringFlag = flag.toString(); // convert to "true"

n o T e Despite the fact that they have methods, primitive values themselves are not objects.
JavaScript makes them look like objects to provide a consistent experience in the
language, as you’ll see later in this chapter.

reference Types
Reference types represent objects in JavaScript and are the closest things
to classes that you will find in the language. Reference values are instances
of reference types and are synonymous with objects (the rest of this chap-
ter refers to reference values simply as objects). An object is an unordered
list of properties consisting of a name (always a string) and a value. When
the value of a property is a function, it is called a method. Functions them-
selves are actually reference values in JavaScript, so there’s little differ-
ence between a property that contains an array and one that contains a
function except that a function can be executed.

Of course, you must create objects before you can begin work ing
with them.

Creating Objects
It sometimes helps to think of JavaScript
objects as nothing more than hash tables,
as shown in Figure 1-2.

There are a couple of ways to create,
or instantiate, objects. The first is to use
the new operator with a constructor. (A con-
structor is simply a function that uses new
to create an object—any function can be

Object

name value

name value

Figure 1-2: Structure of an object

Primitive and Reference Types 7

a constructor.) By convention, constructors in JavaScript begin with a
capital letter to distinguish them from nonconstructor functions. For
example, this code instantiates a generic object and stores a reference
to it in object:

var object = new Object();

Reference types do not store the object directly into the variable to
which it is assigned, so the object variable in this example doesn’t actually
contain the object instance. Instead, it holds a pointer (or reference) to
the location in memory where the object exists. This is the primary dif-
ference between objects and primitive values, as the primitive is stored
directly in the variable.

When you assign an object to a variable, you’re actually assigning a
pointer. That means if you assign one variable to another, each variable
gets a copy of the pointer, and both still reference the same object in
memory. For example:

var object1 = new Object();
var object2 = object1;

This code first creates an object (with new) and stores a reference in
object1. Next, object2 is assigned the value of object1. There is still only
the one instance of the object that was created on the first line, but both
variables now point to that object, as illustrated in Figure 1-3.

Variable Object

object1

object2

Object

Memory

Figure 1-3: Two variables pointing to one object

Dereferencing Objects
JavaScript is a garbage-collected language, so you don’t really need to
worry about memory allocations when you use reference types. However,
it’s best to dereference objects that you no longer need so that the garbage
collector can free up that memory. The best way to do this is to set the
object variable to null.

8 Chapter 1

var object1 = new Object();

// do something

object1 = null; // dereference

Here, object1 is created and used before finally being set to null.
When there are no more references to an object in memory, the gar-
bage collector can use that memory for something else. (Dereferencing
objects is especially important in very large applications that use millions
of objects.)

Adding or Removing Properties
Another interesting aspect of objects in JavaScript is that you can add and
remove properties at any time. For example:

var object1 = new Object();
var object2 = object1;

object1.myCustomProperty = "Awesome!";
console.log(object2.myCustomProperty); // "Awesome!"

Here, myCustomProperty is added to object1 with a value of "Awesome!".
That property is also accessible on object2 because both object1 and
object2 point to the same object.

n o T e This example demonstrates one particularly unique aspect of JavaScript: You can
modify objects whenever you want, even if you didn’t define them in the first place.
And there are ways to prevent such modifications, as you’ll learn later in this book.

In addition to generic object reference types, JavaScript has several
other built-in types that are at your disposal.

instantiating built-in Types
You’ve seen how to create and interact with generic objects created with
new Object(). The Object type is just one of a handful of built-in reference
types that JavaScript provides. The other built-in types are more special-
ized in their intended usage and can be instantiated at any time.

The built-in types are:

Array An ordered list of numerically indexed values
Date A date and time

Primitive and Reference Types 9

Error A runtime error (there are also several more specific
error subtypes)

Function A function
Object A generic object
RegExp A regular expression

You can instantiate each built-in reference type using new, as
shown here:

var items = new Array();
var now = new Date();
var error = new Error("Something bad happened.");
var func = new Function("console.log('Hi');");
var object = new Object();
var re = new RegExp("\\d+");

Literal Forms
Several built-in reference types have literal forms. A literal is syntax that
allows you to define a reference value without explicitly creating an object,
using the new operator and the object’s constructor. (Earlier in this chap-
ter, you saw examples of primitive literals including string lit erals, numeric
literals, Boolean literals, the null literal, and the undefined literal.)

Object and Array Literals
To create an object with object literal syntax, you can define the properties
of a new object inside braces. Properties are made up of an identifier or
string, a colon, and a value, with multiple properties separated by commas.
For example:

var book = {
 name: "The Principles of Object-Oriented JavaScript",
 year: 2014
};

You can also use string literals as property names, which is use-
ful when you want a property name to have spaces or other special
characters:

var book = {
 "name": "The Principles of Object-Oriented JavaScript",
 "year": 2014
};

10 Chapter 1

This example is equivalent to the previous one despite the syntactic
differences. Both examples are also logically equivalent to the following:

var book = new Object();
book.name = "The Principles of Object-Oriented JavaScript";
book.year = 2014;

The outcome of each of the previous three examples is the same:
an object with two properties. The choice of pattern is up to you because
the functionality is ultimately the same.

n o T e Using an object literal doesn’t actually call new Object(). Instead, the JavaScript
engine follows the same steps it does when using new Object() without actually
calling the constructor. This is true for all reference literals.

You can define an array literal in a similar way by enclosing any num-
ber of comma-separated values inside square brackets. For example:

var colors = ["red", "blue", "green"];
console.log(colors[0]); // "red"

This code is equivalent to the following:

var colors = new Array("red", "blue", "green")
console.log(colors[0]); // "red"

Function Literals
You almost always define functions using their literal form. In fact, using
the Function constructor is typically discouraged given the challenges of
maintaining, reading, and debugging a string of code rather than actual
code, so you’ll rarely see it in code.

Creating functions is much easier and less error prone when you use
the literal form. For example:

function reflect(value) {
 return value;
}

// is the same as

var reflect = new Function("value", "return value;");

This code defines the reflect() function, which returns any value
passed to it. Even in the case of this simple function, the literal form is
easier to write and understand than the constructor form. Further, there

Primitive and Reference Types 11

is no good way to debug functions that are created in the constructor
form: These functions aren’t recognized by JavaScript debuggers and
therefore act as a black box in your application.

Regular Expression Literals
JavaScript also has regular expression literals that allow you to define regu-
lar expressions without using the RegExp constructor. Regular expression
literals look very similar to regular expressions in Perl: The pattern is con-
tained between two slashes, and any additional options are single charac-
ters following the second slash. For example:

var numbers = /\d+/g;

// is the same as

var numbers = new RegExp("\\d+", "g");

The literal form of regular expressions in JavaScript is a bit easier
to deal with than the constructor form because you don’t need to worry
about escaping characters within strings. When using the RegExp con-
structor, you pass the pattern in as a string, so you have to escape any
backslashes. (That’s why \d is used in the literal and \\d is used in the
constructor.) Regular expression literals are preferred over the construc-
tor form in Java Script except when the regular expression is being con-
structed dynamically from one or more strings.

That said, with the exception of Function, there really isn’t any right
or wrong way to instantiate built-in types. Many developers prefer literals,
while some prefer constructors. Choose whichever method you find more
comfortable to use.

Property access
Properties are name/value pairs that are stored on an object. Dot nota-
tion is the most common way to access properties in JavaScript (as in
many object-oriented languages), but you can also access properties on
JavaScript objects by using bracket notation with a string.

For example, you could write this code, which uses dot notation:

var array = [];
array.push(12345);

With bracket notation, the name of the method is now included in a
string enclosed by square brackets, as in this example:

var array = [];
array["push"](12345);

12 Chapter 1

This syntax is very useful when you want to dynamically decide which
property to access. For example, here bracket notation allows you to use a
variable instead of the string literal to specify the property to access.

var array = [];
var method = "push";
array[method](12345);

In this listing, the variable method has a value of "push", so push() is
called on the array. This capability is quite useful, as you’ll see through-
out this book. The point to remember is that, other than syntax, the
only difference—performance or otherwise—between dot notation and
bracket notation is that bracket notation allows you to use special char-
acters in property names. Developers tend to find dot notation easier
to read, so you’ll see it used more frequently than bracket notation.

identifying reference Types
A function is the easiest reference type to identify because when you use
the typeof operator on a function, the operator should return "function":

function reflect(value) {
 return value;
}

console.log(typeof reflect); // "function"

Other reference types are trickier to identify because, for all reference
types other than functions, typeof returns "object". That’s not very help-
ful when you’re dealing with a lot of different types. To identify reference
types more easily, you can use JavaScript’s instanceof operator.

The instanceof operator takes an object and a constructor as param-
eters. When the value is an instance of the type that the constructor speci-
fies, instanceof returns true; otherwise, it returns false, as you can see here:

var items = [];
var object = {};

function reflect(value) {
 return value;
}

console.log(items instanceof Array); // true
console.log(object instanceof Object); // true
console.log(reflect instanceof Function); // true

Primitive and Reference Types 13

In this example, several values are tested using instanceof and a con-
structor. Each reference type is correctly identified by using instanceof
and the constructor that represents its true type (even though the con-
structor wasn’t used in creating the variable).

The instanceof operator can identify inherited types. That means
every object is actually an instance of Object because every reference type
inherits from Object.

To demonstrate, the following listing examines the three references
previously created with instanceof:

var items = [];
var object = {};

function reflect(value) {
 return value;
}

console.log(items instanceof Array); // true
console.log(items instanceof Object); // true
console.log(object instanceof Object); // true
console.log(object instanceof Array); // false
console.log(reflect instanceof Function); // true
console.log(reflect instanceof Object); // true

Each reference type is correctly identified as an instance of Object,
from which all reference types inherit.

identifying arrays
Although instanceof can identify arrays, there is one exception that affects
web developers: JavaScript values can be passed back and forth between
frames in the same web page. This becomes a problem only when you try
to identify the type of a reference value, because each web page has its
own global context—its own version of Object, Array, and all other built-
in types. As a result, when you pass an array from one frame to another,
instanceof doesn’t work because the array is actually an instance of Array
from a different frame.

To solve this problem, ECMAScript 5 introduced Array.isArray(),
which definitively identifies the value as an instance of Array regardless
of the value’s origin. This method should return true when it receives
a value that is a native array from any context. If your environment is
ECMAScript 5 compliant, Array.isArray() is the best way to identify arrays:

var items = [];

console.log(Array.isArray(items)); // true

14 Chapter 1

The Array.isArray() method is supported in most environments,
both in browsers and in Node.js. This method isn’t supported in Internet
Explorer 8 and earlier.

Primitive wrapper Types
Perhaps one of the most confusing parts of JavaScript is the concept of
primitive wrapper types. There are three primitive wrapper types (String,
Number, and Boolean). These special reference types exist to make working
with primitive values as easy as working with objects. (It would be very
confusing if you had to use a different syntax or switch to a procedural
style just to get a substring of text.)

The primitive wrapper types are reference types that are automati-
cally created behind the scenes whenever strings, num bers, or Booleans
are read. For example, in the first line of this listing, a primitive string
value is assigned to name. The second line treats name like an object and
calls charAt(0) using dot notation.

var name = "Nicholas";
var firstChar = name.charAt(0);
console.log(firstChar); // "N"

This is what happens behind the scenes:

// what the JavaScript engine does
var name = "Nicholas";
var temp = new String(name);
var firstChar = temp.charAt(0);
temp = null;
console.log(firstChar); // "N"

Because the second line uses a string (a primitive) like an object,
the JavaScript engine creates an instance of String so that charAt(0) will
work. The String object exists only for one statement before it’s destroyed
(a process called autoboxing). To test this out, try adding a property to a
string as if it were a regular object:

var name = "Nicholas";
name.last = "Zakas";

console.log(name.last); // undefined

This code attempts to add the property last to the string name. The
code itself is just fine except that the property disappears. What happened?
When working with regular objects, you can add properties at any time
and they stay until you manually remove them. With primitive wrapper
types, properties seem to disappear because the object on which the
property was assigned is destroyed immediately afterward.

Primitive and Reference Types 15

Here’s what’s actually happening in the JavaScript engine:

// what the JavaScript engine does
var name = "Nicholas";
var temp = new String(name);
temp.last = "Zakas";
temp = null; // temporary object destroyed

var temp = new String(name);
console.log(temp.last); // undefined
temp = null;

Instead of assigning a new property to a string, the code actually
 creates a new property on a temporary object that is then destroyed.
When you try to access that property later, a different object is temporar-
ily created and the new property doesn’t exist there. Although reference
values are created automatically for primitive values, when instanceof
checks for these types of values the result is false:

var name = "Nicholas";
var count = 10;
var found = false;

console.log(name instanceof String); // false
console.log(count instanceof Number); // false
console.log(found instanceof Boolean); // false

The instanceof operator returns false because a temporary object is
created only when a value is read. Because instanceof doesn’t actually read
anything, no temporary objects are created, and it tells us the values aren’t
instances of primitive wrapper types. You can create primitive wrapper
types manually, but there are certain side effects:

var name = new String("Nicholas");
var count = new Number(10);
var found = new Boolean(false);

console.log(typeof name); // "object"
console.log(typeof count); // "object"
console.log(typeof found); // "object"

As you can see, creating an instance of the primitive wrapper type
just creates another object, which means that typeof can’t identify the type
of data you intend to store.

In addition, you can’t use String, Number, and Boolean objects as you
would primitive values. For example, the following code uses a Boolean
object. The Boolean object is false, yet console.log("Found") still executes
because an object is always considered true inside a conditional statement.
It doesn’t matter that the object represents false; it’s an object, so it evalu-
ates to true.

16 Chapter 1

var found = new Boolean(false);

if (found) {
 console.log("Found"); // this executes
}

Manually instantiating primitive wrappers can also be confusing in
other ways, so unless you find a special case where it makes sense to do
so, you should avoid it. Most of the time, using primitive wrapper objects
instead of primitives only leads to errors.

summary
While JavaScript doesn’t have classes, it does have types. Each variable
or piece of data is associated with a specific primitive or reference type.
The five primitive types (strings, numbers, Booleans, null, and undefined)
represent simple values stored directly in the variable object for a given
context. You can use typeof to identify primitive types with the exception
of null, which must be compared directly against the special value null.

Reference types are the closest thing to classes in JavaScript, and
objects are instances of reference types. You can create new objects
using the new operator or a reference literal. You access properties and
methods primarily using dot notation, but you can also use bracket nota-
tion. Functions are objects in JavaScript, and you can identify them with
the typeof operator. You should use instanceof with a constructor to iden-
tify objects of any other reference type.

To make primitives seem more like references, JavaScript has three
primitive wrapper types: String, Number, and Boolean. JavaScript creates
these objects behind the scenes so that you can treat primitives like
regular objects, but the temporary objects are destroyed as soon as the
statement using them is complete. Although you can create your own
instances of primitive wrappers, it’s best not to do that because it can
be confusing.

2
f u n c T i o n s

As discussed in Chapter 1, functions are
actually objects in JavaScript. The defining

characteristic of a function—what distin-
guishes it from any other object—is the pres-

ence of an internal property named [[Call]]. Inter nal
properties are not accessible via code but rather
define the behavior of code as it executes. ECMAScript defines multiple
internal properties for objects in JavaScript, and these internal properties
are indicated by double-square-bracket notation.

The [[Call]] property is unique to functions and indicates that the
object can be executed. Because only functions have this property, the
typeof operator is defined by ECMAScript to return "function" for any
object with a [[Call]] property. That led to some confusion in the past,
because some browsers also included a [[Call]] property for regular

18 Chapter 2

expressions, which were thus incorrectly identified as functions. All
browsers now behave the same, so typeof no longer identifies regular
expressions as functions.

This chapter discusses the various ways that functions are defined
and executed in JavaScript. Because functions are objects, they behave
differently than functions in other languages, and this behavior is central
to a good understanding of JavaScript.

declarations vs. expressions
There are actually two literal forms of functions. The first is a function
declaration, which begins with the function keyword and includes the name
of the function immediately following it. The contents of the function are
enclosed in braces, as shown in this declaration:

function add(num1, num2) {
 return num1 + num2;
}

The second form is a function expression, which doesn’t require a name
after function. These functions are considered anonymous because the
function object itself has no name. Instead, function expressions are typi-
cally referenced via a variable or property, as in this expression:

var add = function(num1, num2) {
 return num1 + num2;
};

This code actually assigns a function value to the variable add. The
function expression is almost identical to the function declaration except
for the missing name and the semicolon at the end. Assignment expres-
sions typically end with a semicolon, just as if you were assigning any
other value.

Although these two forms are quite similar, they differ in a very impor-
tant way. Function declarations are hoisted to the top of the context (either
the function in which the declaration occurs or the global scope) when the
code is executed. That means you can actually define a function after it is
used in code without generating an error. For example:

var result = add(5, 5);

function add(num1, num2) {
 return num1 + num2;
}

Functions 19

This code might look like it will cause an error, but it works just fine.
That’s because the JavaScript engine hoists the function declaration to
the top and actually executes the code as if it were written like this:

// how the JavaScript engine interprets the code
function add(num1, num2) {
 return num1 + num2;
}

var result = add(5, 5);

Function hoisting happens only for function declarations because
the function name is known ahead of time. Function expressions, on the
other hand, cannot be hoisted because the functions can be referenced
only through a variable. So this code causes an error:

// error!
var result = add(5, 5);

var add = function(num1, num2) {
 return num1 + num2;
};

As long as you always define functions before using them, you can use
either function declarations or function expressions.

functions as values
Because JavaScript has first-class functions, you can use them just as
you do any other objects. You can assign them to variables, add them
to objects, pass them to other functions as arguments, and return them
from functions. Basically, you can use a function anywhere you would
use any other reference value. This makes JavaScript functions incredibly
powerful. Consider the following example:

u function sayHi() {
 console.log("Hi!");
}

sayHi(); // outputs "Hi!"

v var sayHi2 = sayHi;

sayHi2(); // outputs "Hi!"

20 Chapter 2

In this code, there is a function declaration for sayHi u. A variable
named sayHi2 is then created and assigned the value of sayHi v. Both sayHi
and sayHi2 are now pointing to the same function, and that means either
can be executed, with the same result. To understand why this happens,
take a look at the same code rewritten to use the Function constructor:

var sayHi = new Function("console.log(\"Hi!\");");

sayHi(); // outputs "Hi!"

var sayHi2 = sayHi;

sayHi2(); // outputs "Hi!"

The Function constructor makes it more explicit that sayHi can be
passed around just like any other object. When you keep in mind that
functions are objects, a lot of the behavior starts to make sense.

For instance, you can pass a function into another function as an
argument. The sort() method on JavaScript arrays accepts a comparison
function as an optional parameter. The comparison function is called
whenever two values in the array must be compared. If the first value is
smaller than the second, the comparison function must return a nega-
tive number. If the first value is larger than the second, the function
must return a positive number. If the two values are equal, the function
should return zero.

By default, sort() converts every item in an array to a string and then
performs a comparison. That means you can’t accurately sort an array
of numbers without specifying a comparison function. For example, you
need to include a comparison function to accurately sort an array of num-
bers, such as:

var numbers = [1, 5, 8, 4, 7, 10, 2, 6];
u numbers.sort(function(first, second) {

 return first - second;
});

console.log(numbers); // "[1, 2, 4, 5, 6, 7, 8, 10]"

v numbers.sort();
console.log(numbers); // "[1, 10, 2, 4, 5, 6, 7, 8]"

In this example, the comparison function u that is passed into sort()
is actually a function expression. Note that there is no name for the func-
tion; it exists only as a reference that is passed into another function
(making it an anonymous function). Subtracting the two values returns
the correct result from the comparison function.

Functions 21

Compare that to the second call to sort() v, which does not use a
comparison function. The order of the array is different than expected,
as 1 is followed by 10. This is because the default comparison converts all
values to strings before comparing them.

Parameters
Another unique aspect of JavaScript functions is that you can pass any
number of parameters to any function without causing an error. That’s
because function parameters are actually stored as an array-like structure
called arguments. Just like a regular Java Script array, arguments can grow
to contain any number of values. The values are referenced via numeric
indices, and there is a length property to determine how many values are
present.

The arguments object is automatically available inside any function. This
means named parameters in a function exist mostly for convenience and
don’t actually limit the number of arguments that a function can accept.

n o T e The arguments object is not an instance of Array and therefore doesn’t have the
same methods as an array; Array.isArray(arguments) always returns false.

On the other hand, JavaScript doesn’t ignore the named parameters
of a function either. The number of arguments a function expects is stored
on the function’s length property. Remember, a function is actually just an
object, so it can have properties. The length property indicates the func-
tion’s arity, or the number of parameters it expects. Knowing the function’s
arity is important in JavaScript because functions won’t throw an error if
you pass in too many or too few parameters.

Here’s a simple example using arguments and function arity; note that
the number of arguments passed to the function has no effect on the
reported arity:

function reflect(value) {
 return value;
}

console.log(reflect("Hi!")); // "Hi!"
console.log(reflect("Hi!", 25)); // "Hi!"
console.log(reflect.length); // 1

reflect = function() {
 return arguments[0];
};

console.log(reflect("Hi!")); // "Hi!"
console.log(reflect("Hi!", 25)); // "Hi!"
console.log(reflect.length); // 0

22 Chapter 2

This example first defines the reflect() function using a single named
parameter, but there is no error when a second parameter is passed into
the function. Also, the length property is 1 because there is a single named
parameter. The reflect() function is then redefined with no named param-
eters; it returns arguments[0], which is the first argument that is passed in.
This new version of the function works exactly the same as the previous
version, but its length is 0.

The first implementation of reflect() is much easier to understand
because it uses a named argument (as you would in other languages).
The version that uses the arguments object can be confusing because there
are no named arguments, and you must read the body of the function to
determine if arguments are used. That is why many developers prefer to
avoid using arguments unless necessary.

Sometimes, however, using arguments is actually more effective than
naming parameters. For instance, suppose you want to create a function
that accepts any number of parameters and returns their sum. You can’t
use named parameters because you don’t know how many you will need,
so in this case, using arguments is the best option.

function sum() {

 var result = 0,
 i = 0,
 len = arguments.length;

 while (i < len) {
 result += arguments[i];
 i++;
 }

 return result;
}

console.log(sum(1, 2)); // 3
console.log(sum(3, 4, 5, 6)); // 18
console.log(sum(50)); // 50
console.log(sum()); // 0

The sum() function accepts any number of parameters and adds them
together by iterating over the values in arguments with a while loop. This is
exactly the same as if you had to add together an array of numbers. The
function even works when no parameters are passed in, because result is
initialized with a value of 0.

Functions 23

overloading
Most object-oriented languages support function overloading, which is the
ability of a single function to have multiple signatures. A function signature
is made up of the function name plus the number and type of parameters
the function expects. Thus, a single function can have one signature that
accepts a single string argument and another that accepts two numeric
arguments. The language determines which version of a function to call
based on the arguments that are passed in.

As mentioned previously, JavaScript functions can accept any number
of parameters, and the types of parameters a function takes aren’t speci-
fied at all. That means JavaScript functions don’t actually have signatures.
A lack of function signatures also means a lack of function overloading.
Look at what happens when you try to declare two functions with the
same name:

function sayMessage(message) {
 console.log(message);
}

function sayMessage() {
 console.log("Default message");
}

sayMessage("Hello!"); // outputs "Default message"

If this were another language, the output of sayMessage("Hello!") would
likely be "Hello!". In JavaScript, however, when you define multiple func-
tions with the same name, the one that appears last in your code wins.
The earlier function declarations are completely removed, and the last
is the one that is used. Once again, it helps to think about this situation
using objects:

var sayMessage = new Function("message", "console.log(message);");

sayMessage = new Function("console.log(\"Default message\");");

sayMessage("Hello!"); // outputs "Default message"

Looking at the code this way makes it clear why the previous code
didn’t work. A function object is being assigned to sayMessage twice in a
row, so it makes sense that the first function object would be lost.

24 Chapter 2

The fact that functions don’t have signatures in JavaScript doesn’t
mean you can’t mimic function overloading. You can retrieve the number
of parameters that were passed in by using the arguments object, and you
can use that information to determine what to do. For example:

function sayMessage(message) {

 if (arguments.length === 0) {
 message = "Default message";
 }

 console.log(message);
}

sayMessage("Hello!"); // outputs "Hello!"

In this example, the sayMessage() function behaves differently based
on the number of parameters that were passed in. If no parameters
are passed in (arguments.length === 0), then a default message is used.
Otherwise, the first parameter is used as the message. This is a little more
involved than function overloading in other languages, but the end result
is the same. If you really want to check for different data types, you can
use typeof and instanceof.

n o T e In practice, checking the named parameter against undefined is more common than
relying on arguments.length.

object methods
As mentioned in Chapter 1, you can add and remove properties from
objects at any time. When a property value is actually a function, the
property is considered a method. You can add a method to an object in
the same way that you would add a property. For example, in the follow-
ing code, the person variable is assigned an object literal with a name prop-
erty and a method called sayName.

var person = {
 name: "Nicholas",
 sayName: function() {
 console.log(person.name);
 }
};

person.sayName(); // outputs "Nicholas"

Note that the syntax for a data property and a method is exactly
the same—an identifier followed by a colon and the value. In the case
of sayName, the value just happens to be a function. You can then call
the method directly from the object as in person.sayName("Nicholas").

Functions 25

The this Object
You may have noticed something strange in the previous example. The
 sayName() method references person.name directly, which creates tight cou-
pling between the method and the object. This is problematic for a num-
ber of reasons. First, if you change the variable name, you also need to
remember to change the reference to that name in the method. Second,
this sort of tight coupling makes it difficult to use the same function for
different objects. Fortunately, JavaScript has a way around this issue.

Every scope in JavaScript has a this object that represents the call-
ing object for the function. In the global scope, this represents the
global object (window in web browsers). When a function is called while
attached to an object, the value of this is equal to that object by default.
So, instead of directly referencing an object inside a method, you can ref-
erence this instead. For example, you can rewrite the code from the pre-
vious example to use this:

var person = {
 name: "Nicholas",
 sayName: function() {
 console.log(this.name);
 }
};

person.sayName(); // outputs "Nicholas"

This code works the same as the earlier version, but this time, sayName()
references this instead of person. That means you can easily change the
name of the variable or even reuse the function on different objects.

function sayNameForAll() {
 console.log(this.name);
}

var person1 = {
 name: "Nicholas",
 sayName: sayNameForAll
};

var person2 = {
 name: "Greg",
 sayName: sayNameForAll
};

var name = "Michael";

person1.sayName(); // outputs "Nicholas"
person2.sayName(); // outputs "Greg"

sayNameForAll(); // outputs "Michael"

26 Chapter 2

In this example, a function called sayNameForAll is defined first. Then,
two object literals are created that assign sayName to be equal to the
 sayNameForAll function. Functions are just reference values, so you can
assign them as property values on any number of objects. When sayName()
is called on person1, it outputs "Nicholas"; when called on person2, it out-
puts "Greg". That’s because this is set when the function is called, so
this.name is accurate.

The last part of this example defines a global variable called name.
When sayNameForAll() is called directly, it outputs "Michael" because the
global variable is considered a property of the global object.

Changing this
The ability to use and manipulate the this value of functions is key to
good object-oriented programming in JavaScript. Func tions can be used
in many different contexts, and they need to be able to work in each situa-
tion. Even though this is typically assigned automatically, you can change
its value to achieve different goals. There are three function methods that
allow you to change the value of this. (Remember that functions are
objects, and objects can have methods, so functions can, too.)

The call() Method

The first function method for manipulating this is call(), which executes
the function with a particular this value and with specific parameters.
The first parameter of call() is the value to which this should be equal
when the function is executed. All subsequent parameters are the param-
eters that should be passed into the function. For example, suppose you
update sayNameForAll() to take a parameter:

function sayNameForAll(label) {
 console.log(label + ":" + this.name);
}

var person1 = {
 name: "Nicholas"
};

var person2 = {
 name: "Greg"
};

var name = "Michael";

sayNameForAll.call(this, "global"); // outputs "global:Michael"
sayNameForAll.call(person1, "person1"); // outputs "person1:Nicholas"
sayNameForAll.call(person2, "person2"); // outputs "person2:Greg"

Functions 27

In this example, sayNameForAll() accepts one parameter that is used
as a label to the output value. The function is then called three times.
Notice that there are no parentheses after the function name because it
is accessed as an object rather than as code to execute. The first function
call uses the global this and passes in the parameter "global" to output
"global:Michael". The same function is called two more times, once each
for person1 and person2. Because the call() method is being used, you
don’t need to add the function directly onto each object—you explicitly
specify the value of this instead of letting the JavaScript engine do it
automatically.

The apply() Method

The second function method you can use to manipulate this is apply(). The
apply() method works exactly the same as call() except that it accepts only
two parameters: the value for this and an array or array-like object of
parameters to pass to the function (that means you can use an arguments
object as the second parameter). So, instead of individually naming each
parameter using call(), you can easily pass arrays to apply() as the second
argument. Otherwise, call() and apply() behave identically. This example
shows the apply() method in action:

function sayNameForAll(label) {
 console.log(label + ":" + this.name);
}

var person1 = {
 name: "Nicholas"
};

var person2 = {
 name: "Greg"
};

var name = "Michael";

sayNameForAll.apply(this, ["global"]); // outputs "global:Michael"
sayNameForAll.apply(person1, ["person1"]); // outputs "person1:Nicholas"
sayNameForAll.apply(person2, ["person2"]); // outputs "person2:Greg"

This code takes the previous example and replaces call() with
apply(); the result is exactly the same. The method you use typically
depends on the type of data you have. If you already have an array of
data, use apply(); if you just have individual variables, use call().

28 Chapter 2

The bind() Method

The third function method for changing this is bind(). This method was
added in ECMAScript 5, and it behaves quite differently than the other
two. The first argument to bind() is the this value for the new function.
All other arguments represent named parameters that should be perma-
nently set in the new function. You can still pass in any parameters that
aren’t permanently set later.

The following code shows two examples that use bind(). You create
the sayNameForPerson1() function by binding the this value to person1, while
sayNameForPerson2() binds this to person2 and binds the first parameter as
"person2".

function sayNameForAll(label) {
 console.log(label + ":" + this.name);
}

var person1 = {
 name: "Nicholas"
};

var person2 = {
 name: "Greg"
};

// create a function just for person1
u var sayNameForPerson1 = sayNameForAll.bind(person1);

sayNameForPerson1("person1"); // outputs "person1:Nicholas"

// create a function just for person2
v var sayNameForPerson2 = sayNameForAll.bind(person2, "person2");

sayNameForPerson2(); // outputs "person2:Greg"

// attaching a method to an object doesn't change 'this'
w person2.sayName = sayNameForPerson1;

person2.sayName("person2"); // outputs "person2:Nicholas"

No parameters are bound for sayNameForPerson1() u, so you still need
to pass in the label for the output. The function sayNameForPerson2() not
only binds this to person2 but also binds the first parameter as "person2" v.
That means you can call sayNameForPerson2() without passing in any addi-
tional arguments. The last part of this example adds sayNameForPerson1()
onto person2 with the name sayName w. The function is bound, so the value
of this doesn’t change even though sayNameForPerson1 is now a function on
person2. The method still outputs the value of person1.name.

Functions 29

summary
JavaScript functions are unique in that they are also objects, meaning
they can be accessed, copied, overwritten, and generally treated just
like any other object value. The biggest difference between a JavaScript
function and other objects is a special internal property, [[Call]], which
contains the execution instructions for the function. The typeof opera-
tor looks for this internal property on an object, and if it finds it, returns
"function".

There are two function literal forms: declarations and expres-
sions. Function declarations contain the function name to the right of
the function keyword and are hoisted to the top of the context in which
they are defined. Function expressions are used where other values can
also be used, such as assignment expressions, function parameters, or
the return value of another function.

Because functions are objects, there is a Function constructor. You
can create new functions with the Function constructor, but this isn’t gen-
erally recommended because it can make your code harder to understand
and debugging much more difficult. That said, you will likely run into its
usage from time to time in situations where the true form of the function
isn’t known until runtime.

You need a good grasp of functions to understand how object-
oriented programming works in JavaScript. Because Java Script has no
 concept of a class, functions and other objects are all you have to work
with to achieve aggregation and inheritance.

3
u n d e r s T a n d i n g o b j e c T s

Even though there are a number of built-
in reference types in JavaScript, you will

most likely create your own objects fairly
frequently. As you do so, keep in mind that

objects in JavaScript are dynamic, meaning that
they can change at any point during code execution.
Whereas class-based languages lock down objects
based on a class definition, JavaScript objects have
no such restrictions.

A large part of JavaScript programming is managing those objects,
which is why understanding how objects work is key to understanding
JavaScript as a whole. This is discussed in more detail later in this chapter.

32 Chapter 3

defining Properties
Recall from Chapter 1 that there are two basic ways to create your own
objects: using the Object constructor and using an object literal. For
example:

var person1 = {
 name: "Nicholas"
};

var person2 = new Object();
person2.name = "Nicholas";

u person1.age = "Redacted";
person2.age = "Redacted";

v person1.name = "Greg";
person2.name = "Michael";

Both person1 and person2 are objects with a name property. Later in the
example, both objects are assigned an age property u. You could do this
immediately after the definition of the object or much later. Objects you
create are always wide open for modification unless you specify otherwise
(more on that in “Preventing Object Modification” on page 45). The
last part of this example changes the value of name on each object v;
property values can be changed at any time as well.

When a property is first added to an object, JavaScript uses an inter-
nal method called [[Put]] on the object. The [[Put]] method creates a
spot in the object to store the property. You can compare this to adding
a key to a hash table for the first time. This operation specifies not just
the initial value, but also some attributes of the property. So, in the pre-
vious example, when the name and age properties are first defined on each
object, the [[Put]] method is invoked for each.

The result of calling [[Put]] is the creation of an own property on
the object. An own property simply indicates that the specific instance
of the object owns that property. The property is stored directly on the
instance, and all operations on the property must be performed through
that object.

n o T e Own properties are distinct from prototype properties, which are discussed in
Chapter 4.

When a new value is assigned to an existing property, a separate oper-
ation called [[Set]] takes place. This operation replaces the current value
of the property with the new one. In the previous example, setting name

Understanding Objects 33

to a second value results in a call to [[Set]]. See Figure 3-1 for a step-by-
step view of what happened to person1 behind the scenes as its name and age
properties were changed.

person1

name "Nicholas"

[[Put]] name

person1

name "Nicholas"

age "Redacted"

person1

name "Greg"

age "Redacted"

[[Put]] age [[Set]] name

Figure 3-1: Adding and changing properties of an object

In the first part of the diagram, an object literal is used to create the
person1 object. This performs an implicit [[Put]] for the name property.
Assigning a value to person1.age performs a [[Put]] for the age property.
However, setting person1.name to a new value ("Greg") performs a [[Set]]
operation on the name property, overwriting the existing property value.

detecting Properties
Because properties can be added at any time, it’s sometimes necessary to
check whether a property exists in the object. New JavaScript developers
often incorrectly use patterns like the following to detect whether a prop-
erty exists:

// unreliable
if (person1.age) {
 // do something with age
}

The problem with this pattern is how JavaScript’s type coercion affects
the outcome. The if condition evaluates to true if the value is truthy (an
object, a nonempty string, a nonzero number, or true) and evaluates to
false if the value is falsy (null, undefined, 0, false, NaN, or an empty string).
Because an object property can contain one of these falsy values, the
example code can yield false negatives. For instance, if person1.age is 0,
then the if condition will not be met even though the property exists.
A more reliable way to test for the existence of a property is with the in
operator.

34 Chapter 3

The in operator looks for a property with a given name in a specific
object and returns true if it finds it. In effect, the in operator checks to see
if the given key exists in the hash table. For example, here’s what happens
when in is used to check for some properties in the person1 object:

console.log("name" in person1); // true
console.log("age" in person1); // true
console.log("title" in person1); // false

Keep in mind that methods are just properties that reference func-
tions, so you can check for the existence of a method in the same way.
The following adds a new function, sayName(), to person1 and uses in to
confirm the function’s presence.

var person1 = {
 name: "Nicholas",
 sayName: function() {
 console.log(this.name);
 }
};

console.log("sayName" in person1); // true

In most cases, the in operator is the best way to determine whether
the property exists in an object. It has the added benefit of not evaluat-
ing the value of the property, which can be important if such an evalua-
tion is likely to cause a performance issue or an error.

In some cases, however, you might want to check for the existence of
a property only if it is an own property. The in operator checks for both
own properties and prototype properties, so you’ll need to take a different
approach. Enter the hasOwnProperty() method, which is present on all objects
and returns true only if the given property exists and is an own property.
For example, the following code compares the results of using in versus
 hasOwnProperty() on different properties in person1:

var person1 = {
 name: "Nicholas",
 sayName: function() {
 console.log(this.name);
 }
};

console.log("name" in person1); // true
console.log(person1.hasOwnProperty("name")); // true

console.log("toString" in person1); // true
u console.log(person1.hasOwnProperty("toString")); // false

Understanding Objects 35

In this example, name is an own property of person1, so both the in
operator and hasOwnProperty() return true. The toString() method, how-
ever, is a prototype property that is present on all objects. The in opera-
tor returns true for toString(), but hasOwnProperty() returns false u. This
is an important distinction that is discussed further in Chapter 4.

removing Properties
Just as properties can be added to objects at any time, they can also be
removed. Simply setting a property to null doesn’t actually remove the
property completely from the object, though. Such an operation calls
[[Set]] with a value of null, which, as you saw earlier in the chapter, only
replaces the value of the property. You need to use the delete operator to
completely remove a property from an object.

The delete operator works on a single object property and calls an
internal operation named [[Delete]]. You can think of this operation as
removing a key/value pair from a hash table. When the delete operator is
successful, it returns true. (Some properties can’t be removed, and this is
discussed in more detail later in the chapter.) For example, the following
listing shows the delete operator at work:

var person1 = {
 name: "Nicholas"
};

console.log("name" in person1); // true

delete person1.name; // true - not output
console.log("name" in person1); // false

u console.log(person1.name); // undefined

In this example, the name property is deleted from person1. The
in operator returns false after the operation is complete. Also, note
that attempting to access a property that doesn’t exist will just return
 undefined u. Figure 3-2 shows how delete affects an object.

person1

name "Nicholas"

delete person1.name;

person1

Figure 3-2: When you delete the name property, it completely
disappears from person1.

36 Chapter 3

enumeration
By default, all properties that you add to an object are enumerable, which
means that you can iterate over them using a for-in loop. Enumerable
properties have their internal [[Enumerable]] attributes set to true. The
for-in loop enumerates all enumerable properties on an object, assigning
the property name to a variable. For example, the following loop out-
puts the property names and values of an object:

var property;

for (property in object) {
 console.log("Name: " + property);
 console.log("Value: " + object[property]);
}

Each time through the for-in loop, the property variable is filled with
the next enumerable property on the object until all such properties have
been used. At that point, the loop is finished and code execution contin-
ues. This example uses bracket notation to retrieve the value of the object
property and output it to the console, which is one of the primary use
cases for bracket notation in JavaScript.

If you just need a list of an object’s properties to use later in your pro-
gram, ECMAScript 5 introduced the Object.keys() method to retrieve an
array of enumerable property names, as shown here:

u var properties = Object.keys(object);

// if you want to mimic for-in behavior
var i, len;

for (i=0, len=properties.length; i < len; i++){
 console.log("Name: " + properties[i]);
 console.log("Value: " + object[properties[i]]);
}

This example uses Object.keys() to retrieve the enumerable properties
from an object u. A for loop is then used to iterate over the properties
and output the name and value. Typically, you would use Object.keys() in
situations where you want to operate on an array of property names and
for-in when you don’t need an array.

n o T e There is a difference between the enumerable properties returned in a for-in loop
and the ones returned by Object.keys(). The for-in loop also enumerates prototype
properties, while Object.keys() returns only own (instance) properties. The differ-
ences between prototype and own properties are discussed in Chapter 4.

Understanding Objects 37

Keep in mind that not all properties are enumerable. In fact, most
of the native methods on objects have their [[Enumerable]] attribute set
to false. You can check whether a property is enumerable by using the
 propertyIsEnumerable() method, which is present on every object:

var person1 = {
 name: "Nicholas"
};

console.log("name" in person1); // true
u console.log(person1.propertyIsEnumerable("name")); // true

var properties = Object.keys(person1);

console.log("length" in properties); // true
v console.log(properties.propertyIsEnumerable("length")); // false

Here, the property name is enumerable, as it is a custom property
defined on person1 u. The length property for the properties array, on
the other hand, is not enumerable v because it’s a built-in property on
Array.prototype. You’ll find that many native properties are not enumer-
able by default.

Types of Properties
There are two different types of properties: data properties and accessor
properties. Data properties contain a value, like the name property from ear-
lier examples in this chapter. The default behavior of the [[Put]] method
is to create a data property, and every example up to this point in the
chapter has used data properties. Accessor properties don’t contain a value
but instead define a function to call when the property is read (called
a getter), and a function to call when the property is written to (called a
setter). Accessor properties only require either a getter or a setter, though
they can have both.

There is a special syntax to define an accessor property using an
object literal:

var person1 = {
u _name: "Nicholas",

v get name() {
 console.log("Reading name");
 return this._name;
 },

38 Chapter 3

w set name(value) {
 console.log("Setting name to %s", value);
 this._name = value;
 }
};

console.log(person1.name); // "Reading name" then "Nicholas"

person1.name = "Greg";
console.log(person1.name); // "Setting name to Greg" then "Greg"

This example defines an accessor property called name. There is a data
property called _name that contains the actual value for the property u.
(The leading underscore is a common convention to indicate that the
property is considered to be private, though in reality it is still public.)
The syntax used to define the getter v and setter w for name looks a lot
like a function but without the function keyword. The special keywords get
and set are used before the accessor property name, followed by paren-
theses and a function body. Getters are expected to return a value, while
setters receive the value being assigned to the property as an argument.

Even though this example uses _name to store the property data, you
could just as easily store the data in a variable or even in another object.
This example simply adds logging to the behavior of the property; there’s
usually no reason to use accessor properties if you are only storing the
data in another property—just use the property itself. Accessor properties
are most useful when you want the assignment of a value to trigger some
sort of behavior, or when reading a value requires the calculation of the
desired return value.

n o T e You don’t need to define both a getter and a setter; you can choose one or both.
If you define only a getter, then the property becomes read-only, and attempts to
write to it will fail silently in nonstrict mode and throw an error in strict mode.
If you define only a setter, then the property becomes write-only, and attempts to
read the value will fail silently in both strict and nonstrict modes.

Property attributes
Prior to ECMAScript 5, there was no way to specify whether a property
should be enumerable. In fact, there was no way to access the internal
attributes of a property at all. ECMAScript 5 changed this by introduc-
ing several ways of interacting with property attributes directly, as well
as introducing new attributes to support additional functionality. It’s
now possible to create properties that behave the same way as built-
in JavaScript prop erties. This section covers in detail the attributes of
both data and accessor properties, starting with the ones they have in
common.

Understanding Objects 39

Common Attributes
There are two property attributes shared between data and accessor
properties. One is [[Enumerable]], which determines whether you can
 iterate over the property. The other is [[Configurable]], which determines
whether the property can be changed. You can remove a configurable
property using delete and can change its attributes at any time. (This also
means configurable properties can be changed from data to accessor
properties and vice versa.) By default, all properties you declare on an
object are both enumerable and configurable.

If you want to change property attributes, you can use the Object
.defineProperty() method. This method accepts three arguments: the
object that owns the property, the property name, and a property descrip-
tor object containing the attributes to set. The descriptor has properties
with the same name as the internal attributes but without the square
brackets. So you use enumerable to set [[Enumerable]], and configurable
to set [[Configurable]]. For example, suppose you want to make an object
property nonenumerable and nonconfigurable:

var person1 = {
u name: "Nicholas"

};

Object.defineProperty(person1, "name", {
v enumerable: false

});

console.log("name" in person1); // true
w console.log(person1.propertyIsEnumerable("name")); // false

var properties = Object.keys(person1);
console.log(properties.length); // 0

Object.defineProperty(person1, "name", {
x configurable: false

});

// try to delete the Property
delete person1.name;

y console.log("name" in person1); // true
console.log(person1.name); // "Nicholas"

z Object.defineProperty(person1, "name", { // error!!!
 configurable: true
});

The name property is defined as usual u, but it’s then modified to set
its [[Enumerable]] attribute to false v. The propertyIsEnumerable() method
now returns false w because it references the new value of [[Enumerable]].

40 Chapter 3

After that, name is changed to be nonconfigurable x. From now on,
attempts to delete name fail because the property can’t be changed, so
name is still present on person1 y. Calling Object.defineProperty() on name
again would also result in no further changes to the property. Effectively,
name is locked down as a property on person1.

The last piece of the code tries to redefine name to be configurable
once again z. However, this throws an error because you can’t make a
nonconfigurable property configurable again. Attempting to change a
data property into an accessor property or vice versa should also throw
an error in this case.

n o T e When JavaScript is running in strict mode, attempting to delete a nonconfigurable
property results in an error. In nonstrict mode, the operation silently fails.

Data Property Attributes
Data properties possess two additional attributes that accessors do not.
The first is [[Value]], which holds the property value. This attribute is
filled in automatically when you create a property on an object. All prop-
erty values are stored in [[Value]], even if the value is a function.

The second attribute is [[Writable]], which is a Boolean value indicat-
ing whether the property can be written to. By default, all properties are
writable unless you specify otherwise.

With these two additional attributes, you can fully define a data prop-
erty using Object.defineProperty() even if the property doesn’t already exist.
Consider this code:

var person1 = {
 name: "Nicholas"
};

You’ve seen this snippet throughout this chapter; it adds the name
property to person1 and sets its value. You can achieve the same result
using the following (more verbose) code:

var person1 = {};

Object.defineProperty(person1, "name", {
 value: "Nicholas",
 enumerable: true,
 configurable: true,
 writable: true
});

Understanding Objects 41

When Object.defineProperty() is called, it first checks to see if the
property exists. If the property doesn’t exist, a new one is added with
the attributes specified in the descriptor. In this case, name isn’t already
a property of person1, so it is created.

When you are defining a new property with Object.defineProperty(),
it’s important to specify all of the attributes because Boolean attributes
automatically default to false other wise. For example, the following code
creates a name property that is nonenumerable, nonconfigurable, and
nonwritable because it doesn’t explicitly make any of those attributes
true in the call to Object.defineProperty().

var person1 = {};

Object.defineProperty(person1, "name", {
 value: "Nicholas"
});

console.log("name" in person1); // true
console.log(person1.propertyIsEnumerable("name")); // false

delete person1.name;
console.log("name" in person1); // true

person1.name = "Greg";
console.log(person1.name); // "Nicholas"

In this code, you can’t do anything with the name property except
read the value; every other operation is locked down. If you’re changing
an existing property, keep in mind that only the attributes you specify will
change.

n o T e Nonwritable properties throw an error in strict mode when you try to change the
value. In nonstrict mode, the operation silently fails.

Accessor Property Attributes
Accessor properties also have two additional attributes. Because there
is no value stored for accessor properties, there is no need for [[Value]]
or [[Writable]]. Instead, accessors have [[Get]] and [[Set]], which contain
the getter and setter functions, respectively. As with the object literal form
of getters and setters, you need only define one of these attributes to
 create the property.

n o T e If you try to create a property with both data and accessor attributes, you will get
an error.

42 Chapter 3

The advantage of using accessor property attributes instead of object
literal notation to define accessor properties is that you can also define
those properties on existing objects. If you want to use object literal nota-
tion, you have to define accessor properties when you create the object.

As with data properties, you can also specify whether accessor proper-
ties are configurable or enumerable. Consider this example from earlier:

var person1 = {
 _name: "Nicholas",

 get name() {
 console.log("Reading name");
 return this._name;
 },

 set name(value) {
 console.log("Setting name to %s", value);
 this._name = value;
 }
};

This code can also be written as follows:

var person1 = {
 _name: "Nicholas"
};

Object.defineProperty(person1, "name", {
 get: function() {
 console.log("Reading name");
 return this._name;
 },
 set: function(value) {
 console.log("Setting name to %s", value);
 this._name = value;
 },
 enumerable: true,
 configurable: true
});

Notice that the get and set keys on the object passed in to Object
.defineProperty() are data properties that contain a function. You can’t
use object literal accessor format here.

Setting the other attributes ([[Enumerable]] and [[Configurable]]) allows
you to change how the accessor property works. For example, you can
 create a nonconfigurable, nonenumerable, nonwritable property like this:

var person1 = {
 _name: "Nicholas"
};

Understanding Objects 43

Object.defineProperty(person1, "name", {
 get: function() {
 console.log("Reading name");

u return this._name;
 }
});

console.log("name" in person1); // true
console.log(person1.propertyIsEnumerable("name")); // false
delete person1.name;
console.log("name" in person1); // true

person1.name = "Greg";
console.log(person1.name); // "Nicholas"

In this code, the name property is an accessor property with only a
 getter u. There is no setter or any other attributes to explicitly set to true,
so the value can be read but not changed.

n o T e As with accessor properties defined via object literal notation, an accessor property
without a setter throws an error in strict mode when you try to change the value. In
nonstrict mode, the operation silently fails. Attempting to read an accessor property
that has only a setter defined always returns undefined.

Defining Multiple Properties
It’s also possible to define multiple properties on an object simultaneously
if you use Object.defineProperties() instead of Object.defineProperty(). This
method accepts two arguments: the object to work on and an object con-
taining all of the property information. The keys of that second argument
are property names, and the values are descriptor objects defining the
attributes for those properties. For example, the following code defines
two properties:

var person1 = {};

Object.defineProperties(person1, {

u // data property to store data
 _name: {
 value: "Nicholas",
 enumerable: true,
 configurable: true,
 writable: true
 },

44 Chapter 3

v // accessor property
 name: {
 get: function() {
 console.log("Reading name");
 return this._name;
 },
 set: function(value) {
 console.log("Setting name to %s", value);
 this._name = value;
 },
 enumerable: true,
 configurable: true
 }
});

This example defines _name as a data property to contain informa-
tion u and name as an accessor property v. You can define any number
of properties using Object. defineProperties(); you can even change existing
properties and create new ones at the same time. The effect is the same
as calling Object. defineProperty() multiple times.

Retrieving Property Attributes
If you need to fetch property attributes, you can do so in Java Script by
using Object.getOwnPropertyDescriptor(). As the name suggests, this method
works only on own properties. This method accepts two arguments: the
object to work on and the property name to retrieve. If the property exists,
you should receive a descriptor object with four properties: configurable,
enumerable, and the two others appropriate for the type of property. Even
if you didn’t specifically set an attribute, you will still receive an object
containing the appropriate value for that attribute. For example, this
code creates a property and checks its attributes:

var person1 = {
 name: "Nicholas"
};

var descriptor = Object.getOwnPropertyDescriptor(person1, "name");

console.log(descriptor.enumerable); // true
console.log(descriptor.configurable); // true
console.log(descriptor.writable); // true
console.log(descriptor.value); // "Nicholas"

Here, a property called name is defined as part of an object literal. The
call to Object.getOwnPropertyDescriptor() returns an object with enumerable,
configurable, writable, and value, even though these weren’t explicitly
defined via Object.defineProperty().

Understanding Objects 45

Preventing object modification
Objects, just like properties, have internal attributes that govern their
behavior. One of these attributes is [[Extensible]], which is a Boolean
value indicating if the object itself can be modified. All objects you
create are extensible by default, meaning new properties can be added to
the object at any time. You’ve seen this several times in this chapter. By
setting [[Extensible]] to false, you can prevent new properties from being
added to an object. There are three different ways to accomplish this.

Preventing Extensions
One way to create a nonextensible object is with Object.preventExtensions().
This method accepts a single argument, which is the object you want to
make nonextensible. Once you use this method on an object, you’ll never
be able to add any new properties to it again. You can check the value of
[[Extensible]] by using Object.isExtensible(). The following code shows
examples of both methods at work.

var person1 = {
 name: "Nicholas"
};

u console.log(Object.isExtensible(person1)); // true

v Object.preventExtensions(person1);
console.log(Object.isExtensible(person1)); // false

w person1.sayName = function() {
 console.log(this.name);
};

console.log("sayName" in person1); // false

After creating person1, this example checks the object’s [[Extensible]]
attribute u before making it unchangeable v. Now that person1 is non-
extensible, the sayName() method w is never added to it.

n o T e Attempting to add a property to a nonextensible object will throw an error in strict
mode. In nonstrict mode, the operation fails silently. You should always use strict
mode with nonextensible objects so that you are aware when a nonextensible object
is being used incorrectly.

Sealing Objects
The second way to create a nonextensible object is to seal the object. A
sealed object is nonextensible, and all of its properties are nonconfigu-
rable. That means not only can you not add new properties to the object,

46 Chapter 3

but you also can’t remove properties or change their type (from data to
accessor or vice versa). If an object is sealed, you can only read from and
write to its properties.

You can use the Object.seal() method on an object to seal it. When
that happens, the [[Extensible]] attribute is set to false, and all proper-
ties have their [[Configurable]] attribute set to false. You can check to see
whether an object is sealed using Object.isSealed() as follows:

var person1 = {
 name: "Nicholas"
};

console.log(Object.isExtensible(person1)); // true
console.log(Object.isSealed(person1)); // false

u Object.seal(person1);
v console.log(Object.isExtensible(person1)); // false

console.log(Object.isSealed(person1)); // true

w person1.sayName = function() {
 console.log(this.name);
};

console.log("sayName" in person1); // false

x person1.name = "Greg";
console.log(person1.name); // "Greg"

y delete person1.name;
console.log("name" in person1); // true
console.log(person1.name); // "Greg"

var descriptor = Object.getOwnPropertyDescriptor(person1, "name");
console.log(descriptor.configurable); // false

This code seals person1 u so you can’t add or remove properties.
Since all sealed objects are nonextensible, Object.isExtensible() returns
false v when used on person1, and the attempt to add a method called
sayName() w fails silently. Also, though person1.name is successfully changed
to a new value x, the attempt to delete it y fails.

If you’re familiar with Java or C++, sealed objects should also be
familiar. When you create a new object instance based on a class in
one of those languages, you can’t add any new properties to that object.
However, if a property contains an object, you can modify that object.
In effect, sealed objects are JavaScript’s way of giving you the same mea-
sure of control without using classes.

n o T e Be sure to use strict mode with sealed objects so you’ll get an error when someone
tries to use the object incorrectly.

Understanding Objects 47

Freezing Objects
The last way to create a nonextensible object is to freeze it. If an object is
frozen, you can’t add or remove properties, you can’t change properties’
types, and you can’t write to any data properties. In essence, a frozen object
is a sealed object where data properties are also read-only. Frozen objects
can’t become unfrozen, so they remain in the state they were in when
they became frozen. You can freeze an object by using Object.freeze() and
determine if an object is frozen by using Object.isFrozen(). For example:

var person1 = {
 name: "Nicholas"
};

console.log(Object.isExtensible(person1)); // true
console.log(Object.isSealed(person1)); // false
console.log(Object.isFrozen(person1)); // false

u Object.freeze(person1);
v console.log(Object.isExtensible(person1)); // false
w console.log(Object.isSealed(person1)); // true

console.log(Object.isFrozen(person1)); // true

person1.sayName = function() {
 console.log(this.name);
};

console.log("sayName" in person1); // false

x person1.name = "Greg";
console.log(person1.name); // "Nicholas"

delete person1.name;
console.log("name" in person1); // true
console.log(person1.name); // "Nicholas"

var descriptor = Object.getOwnPropertyDescriptor(person1, "name");
console.log(descriptor.configurable); // false
console.log(descriptor.writable); // false

In this example, person1 is frozen u. Frozen objects are also consid-
ered nonextensible and sealed, so Object.isExtensible() returns false v
and Object.isSealed() returns true w. The name property can’t be changed,
so even though it is assigned to "Greg", the operation fails x, and sub-
sequent checks of name will still return "Nicholas".

n o T e Frozen objects are simply snapshots of an object at a particular point in time. They
are of limited use and should be used rarely. As with all non extensible objects, you
should use strict mode with frozen objects.

48 Chapter 3

summary
It helps to think of JavaScript objects as hash maps where properties are
just key/value pairs. You access object properties using either dot notation
or bracket notation with a string identifier. You can add a property at any
time by assigning a value to it, and you can remove a property at any time
with the delete operator. You can always check whether a property exists
by using the in operator on a property name and object. If the property
in question is an own property, you could also use hasOwnProperty(), which
exists on every object. All object properties are enumerable by default,
which means that they will appear in a for-in loop or be retrieved by
Object.keys().

There are two types of properties: data properties and accessor
 properties. Data properties are placeholders for values, and you can
read from and write to them. When a data property holds a function
value, the property is considered a method of the object. Unlike data
properties, accessor properties don’t store values on their own; they use
a combination of getters and setters to perform specific actions. You can
create both data properties and accessor properties directly using object
literal notation.

All properties have several associated attributes. These attributes
define how the properties work. Both data and accessor properties
have [[Enumerable]] and [[Configurable]] attributes. Data properties
also have [[Writable]] and [[Value]] attributes, while accessor proper-
ties have [[Get]] and [[Set]] attributes. By default, [[Enumerable]] and
[[Configurable]] are set to true for all properties, and [[Writable]] is set
to true for data properties. You can change these attributes by using
Object. defineProperty() or Object.defineProperties(). It’s also possible to
retrieve these attributes by using Object.getOwnPropertyDescriptor().

When you want to lock down an object’s properties in some way,
there are three different ways to do so. If you use Object.preventExtensions(),
objects will no longer allow properties to be added. You could also create a
sealed object with the Object.seal() method, which makes that object non-
extensible and makes its properties nonconfigurable. The Object.freeze()
method creates a frozen object, which is a sealed object with nonwritable
data properties. Be careful with nonextensible objects, and always use strict
mode so that attempts to access the objects incorrectly will throw an error.

4
c o n s T r u c T o r s a n d

P r o T o T y P e s

You might be able to get pretty far in
JavaScript without understanding con-

structors and prototypes, but you won’t truly
appreciate the language without a good grasp

of them. Because JavaScript lacks classes, it turns to
constructors and proto types to bring a similar order
to objects. But just because some of the patterns resemble classes doesn’t
mean they behave the same way. In this chapter, you’ll explore constructors
and prototypes in detail to see how JavaScript uses them to create objects.

constructors
A constructor is simply a function that is used with new to create an object.
Up to this point, you’ve seen several of the built-in JavaScript construc-
tors, such as Object, Array, and Function. The advantage of constructors is

50 Chapter 4

that objects created with the same constructor contain the same proper-
ties and methods. If you want to create multiple similar objects, you can
create your own constructors and therefore your own reference types.

Because a constructor is just a function, you define it in the same way.
The only difference is that constructor names should begin with a capital
letter, to distinguish them from other functions. For example, look at the
following empty Person function:

function Person() {
 // intentionally empty
}

This function is a constructor, but there is absolutely no syntactic dif-
ference between this and any other function. The clue that Person is a con-
structor is in the name—the first letter is capitalized.

After the constructor is defined, you can start creating instances, like
the following two Person objects:

var person1 = new Person();
var person2 = new Person();

When you have no parameters to pass into your constructor, you can
even omit the parentheses:

var person1 = new Person;
var person2 = new Person;

Even though the Person constructor doesn’t explicitly return anything,
both person1 and person2 are considered instances of the new Person type.
The new operator automatically creates an object of the given type and
returns it. That also means you can use the instanceof operator to deduce
an object’s type. The following code shows instanceof in action with the
newly created objects:

console.log(person1 instanceof Person); // true
console.log(person2 instanceof Person); // true

Because person1 and person2 were created with the Person constructor,
instanceof returns true when it checks whether these objects are instances
of the Person type.

You can also check the type of an instance using the constructor prop-
erty. Every object instance is automatically created with a constructor prop-
erty that contains a reference to the constructor function that created it.
For generic objects (those created via an object literal or the Object con-
structor), constructor is set to Object; for objects created with a custom

Constructors and Prototypes 51

constructor, constructor points back to that constructor function instead.
For example, Person is the constructor property for person1 and person2:

console.log(person1.constructor === Person); // true
console.log(person2.constructor === Person); // true

The console.log function outputs true in both cases, because both
objects were created with the Person constructor.

Even though this relationship exists between an instance and its
constructor, you are still advised to use instanceof to check the type of an
instance. This is because the constructor property can be overwritten and
therefore may not be completely accurate.

Of course, an empty constructor function isn’t very useful. The whole
point of a constructor is to make it easy to create more objects with the
same properties and methods. To do that, simply add any properties you
want to this inside of the constructor, as in the following example:

function Person(name) {
u this.name = name;
v this.sayName = function() {

 console.log(this.name);
 };
}

This version of the Person constructor accepts a single named param-
eter, name, and assigns it to the name property of the this object u. The con-
structor also adds a sayName() method to the object v. The this object is
automatically created by new when you call the constructor, and it is an
instance of the constructor’s type. (In this case, this is an instance of
Person.) There’s no need to return a value from the function because the
new operator produces the return value.

Now you can use the Person constructor to create objects with an ini-
tialized name property:

var person1 = new Person("Nicholas");
var person2 = new Person("Greg");

console.log(person1.name); // "Nicholas"
console.log(person2.name); // "Greg"

person1.sayName(); // outputs "Nicholas"
person2.sayName(); // outputs "Greg"

Each object has its own name property, so sayName() should return dif-
ferent values depending on the object on which you use it.

52 Chapter 4

n o T e You can also explicitly call return inside of a constructor. If the returned value
is an object, it will be returned instead of the newly created object instance. If the
returned value is a primitive, the newly created object is used and the returned
value is ignored.

Constructors allow you to initialize an instance of a type in a
 consistent way, performing all of the property setup that is necessary
before the object can be used. For example, you could also use Object
. defineProperty() inside of a constructor to help initialize the instance:

function Person(name) {

 Object.defineProperty(this, "name", {
 get: function() {
 return name;
 },
 set: function(newName) {
 name = newName;
 },
 enumerable: true,
 configurable: true
 });

 this.sayName = function() {
 console.log(this.name);
 };
}

In this version of the Person constructor, the name property is an
 accessor property that uses the name parameter for storing the actual
name. This is possible because named parameters act like local variables.

Make sure to always call constructors with new; otherwise, you risk
changing the global object instead of the newly created object. Consider
what happens in the following code:

var person1 = Person("Nicholas"); // note: missing "new"

console.log(person1 instanceof Person); // false
console.log(typeof person1); // "undefined"
console.log(name); // "Nicholas"

When Person is called as a function without new, the value of this
inside of the constructor is equal to the global this object. The variable
person1 doesn’t contain a value because the Person constructor relies on
new to supply a return value. Without new, Person is just a function without
a return statement. The assignment to this.name actually creates a global

Constructors and Prototypes 53

variable called name, which is where the name passed to Person is stored.
Chapter 6 describes a solution to both this problem and more complex
object composition patterns.

n o T e An error occurs if you call the Person constructor in strict mode without using new.
This is because strict mode doesn’t assign this to the global object. Instead, this
remains undefined, and an error occurs whenever you attempt to create a property
on undefined.

Constructors allow you to configure object instances with the same
properties, but constructors alone don’t eliminate code redundancy.
In the example code thus far, each instance has had its own sayName()
method even though sayName() doesn’t change. That means if you have
100 instances of an object, then there are 100 copies of a function that
do the exact same thing, just with different data.

It would be much more efficient if all of the instances shared one
method, and then that method could use this.name to retrieve the appro-
priate data. This is where prototypes come in.

Prototypes
You can think of a prototype as a recipe for an object. Almost every func-
tion (with the exception of some built-in functions) has a prototype prop-
erty that is used during the creation of new instances. That prototype is
shared among all of the object instances, and those instances can access
properties of the prototype. For example, the hasOwnProperty() method is
defined on the generic Object prototype, but it can be accessed from any
object as if it were an own property, as shown in this example:

var book = {
 title: "The Principles of Object-Oriented JavaScript"
};

console.log("title" in book); // true
console.log(book.hasOwnProperty("title")); // true
console.log("hasOwnProperty" in book); // true
console.log(book.hasOwnProperty("hasOwnProperty")); // false
console.log(Object.prototype.hasOwnProperty("hasOwnProperty")); // true

Even though there is no definition for hasOwnProperty() on book, that
method can still be accessed as book.hasOwnProperty() because the defi-
nition does exist on Object.prototype. Remember that the in operator
returns true for both prototype properties and own properties.

54 Chapter 4

The [[Prototype]] Property
An instance keeps track of its prototype through an internal property
called [[Prototype]]. This property is a pointer back to the prototype
object that the instance is using. When you create a new object using
new, the constructor’s prototype property is assigned to the [[Prototype]]
property of that new object. Figure 4-1 shows how the [[Prototype]] prop-
erty lets multiple instances of an object type refer to the same prototype,
which can reduce code duplication.

Person.prototype

sayName (function)

person1

[[Prototype]]

name "Nicholas"

person2

[[Prototype]]

name "Greg"

Figure 4-1: The [[Prototype]] properties for person1 and person2 point to the
same prototype.

ide n T if y ing a ProToT y Pe ProPe r T y

You can determine whether a property is on the prototype by using a func-
tion such as:

function hasPrototypeProperty(object, name) {
 return name in object && !object.hasOwnProperty(name);
}

console.log(hasPrototypeProperty(book, "title")); // false
console.log(hasPrototypeProperty(book, "hasOwnProperty")); // true

If the property is in an object but hasOwnProperty() returns false, then
the property is on the prototype .

Constructors and Prototypes 55

You can read the value of the [[Prototype]] property by using the
Object. getPrototypeOf() method on an object. For example, the following
code checks the [[Prototype]] of a generic, empty object.

u var object = {};
var prototype = Object.getPrototypeOf(object);

console.log(prototype === Object.prototype); // true

For any generic object like this one u, [[Prototype]] is always a refer-
ence to Object.prototype.

n o T e Some JavaScript engines also support a property called __proto__ on all objects.
This property allows you to both read from and write to the [[Prototype]] property.
Firefox, Safari, Chrome, and Node.js all support this property, and __proto__ is on
the path for standardization in ECMAScript 6.

You can also test to see if one object is a prototype for another by
using the isPrototypeOf() method, which is included on all objects:

var object = {};

console.log(Object.prototype.isPrototypeOf(object)); // true

Because object is just a generic object, its prototype should be Object
.prototype, meaning isPrototypeOf() should return true.

When a property is read on an object, the JavaScript engine first
looks for an own property with that name. If the engine finds a correctly
named own property, it returns that value. If no own property with that
name exists on the target object, JavaScript searches the [[Prototype]]
object instead. If a prototype property with that name exists, the value
of that property is returned. If the search concludes without finding a
property with the correct name, undefined is returned.

Consider the following, in which an object is first created without any
own properties:

var object = {};

u console.log(object.toString()); // "[object Object]"

object.toString = function() {
 return "[object Custom]";
};

v console.log(object.toString()); // "[object Custom]"

// delete own property
delete object.toString;

56 Chapter 4

w console.log(object.toString()); // "[object Object]"

// no effect - delete only works on own properties
delete object.toString;
console.log(object.toString()); // "[object Object]"

In this example, the toString() method comes from the proto type and
returns "[object Object]" u by default. If you then define an own property
called toString(), that own property is used whenever toString() is called
on the object again v. The own property shadows the prototype property,
so the prototype property of the same name is no longer used. The proto-
type property is used again only if the own property is deleted from the
object w. (Keep in mind that you can’t delete a prototype property from
an instance because the delete operator acts only on own prop erties.)
Figure 4-2 shows what is happening in this example.

This example also highlights an important concept: You cannot
assign a value to a prototype property from an instance. As you can see
in the middle section of Figure 4-2, assigning a value to toString creates a
new own property on the instance, leaving the property on the prototype
untouched.

Object.prototype

toString (function)

object

[[Prototype]]

object

[[Prototype]]

toString (function)

Object.prototype

toString (function)

object

[[Prototype]]

Object.prototype

toString (function)

var object = {};

object.toString = function() {
 return "[object Custom]";
};

delete object.toString;

Figure 4-2: An object with no own properties (top) has only the methods of its prototype. Adding a
toString() property to the object (middle) replaces the prototype property until you delete it (bottom).

Constructors and Prototypes 57

Using Prototypes with Constructors
The shared nature of prototypes makes them ideal for defining methods
once for all objects of a given type. Because methods tend to do the same
thing for all instances, there’s no reason each instance needs its own set
of methods.

It’s much more efficient to put the methods on the prototype and
then use this to access the current instance. For example, consider the
following new Person constructor:

function Person(name) {
 this.name = name;
}

u Person.prototype.sayName = function() {
 console.log(this.name);
};

var person1 = new Person("Nicholas");
var person2 = new Person("Greg");

console.log(person1.name); // "Nicholas"
console.log(person2.name); // "Greg"

person1.sayName(); // outputs "Nicholas"
person2.sayName(); // outputs "Greg"

In this version of the Person constructor, sayName() is defined on the
prototype u instead of in the constructor. The object instances work
exactly the same as the example from earlier in this chapter, even though
sayName() is now a prototype property instead of an own property. Because
person1 and person2 are each base references for their calls to sayName(), the
this value is assigned to person1 and person2, respectively.

You can also store other types of data on the prototype, but be care-
ful when using reference values. Because these values are shared across
instances, you might not expect one instance to be able to change values
that another instance will access. This example shows what can happen
when you don’t watch where your reference values are pointing:

function Person(name) {
 this.name = name;
}

Person.prototype.sayName = function() {
 console.log(this.name);
};

58 Chapter 4

u Person.prototype.favorites = [];

var person1 = new Person("Nicholas");
var person2 = new Person("Greg");

person1.favorites.push("pizza");
person2.favorites.push("quinoa");

console.log(person1.favorites); // "pizza,quinoa"
console.log(person2.favorites); // "pizza,quinoa"

The favorites property u is defined on the prototype, which means
person1.favorites and person2.favorites point to the same array. Any values
you add to either person’s favorites will be elements in that array on the
prototype. That may not be the behavior that you actually want, so it’s
important to be very careful about what you define on the prototype.

Even though you can add properties to the prototype one by one,
many developers use a more succinct pattern that involves replacing the
prototype with an object literal:

function Person(name) {
 this.name = name;
}

Person.prototype = {
u sayName: function() {

 console.log(this.name);
 },

v toString: function() {
 return "[Person " + this.name + "]";
 }
};

This code defines two methods on the prototype, sayName() u and
toString() v. This pattern has become quite popular because it eliminates
the need to type Person.prototype multiple times. There is, however, one
side effect to be aware of:

var person1 = new Person("Nicholas");

console.log(person1 instanceof Person); // true
console.log(person1.constructor === Person); // false

u console.log(person1.constructor === Object); // true

Constructors and Prototypes 59

Using the object literal notation to overwrite the prototype changed
the constructor property so that it now points to Object u instead of Person.
This happened because the constructor property exists on the prototype,
not on the object instance. When a function is created, its prototype prop-
erty is created with a constructor property equal to the function. This
pattern completely overwrites the prototype object, which means that
constructor will come from the newly created (generic) object that was
assigned to Person.prototype. To avoid this, restore the constructor prop-
erty to a proper value when overwriting the prototype:

function Person(name) {
 this.name = name;
}

Person.prototype = {
u constructor: Person,

 sayName: function() {
 console.log(this.name);
 },

 toString: function() {
 return "[Person " + this.name + "]";
 }
};

var person1 = new Person("Nicholas");
var person2 = new Person("Greg");

console.log(person1 instanceof Person); // true
console.log(person1.constructor === Person); // true
console.log(person1.constructor === Object); // false

console.log(person2 instanceof Person); // true
console.log(person2.constructor === Person); // true
console.log(person2.constructor === Object); // false

In this example, the constructor property is specifically assigned
on the prototype u. It’s good practice to make this the first property on
the prototype so you don’t forget to include it.

Perhaps the most interesting aspect of the relationships among
 constructors, prototypes, and instances is that there is no direct link
between the instance and the constructor. There is, however, a direct
link between the instance and the prototype and between the prototype
and the constructor. Figure 4-3 illustrates this relationship.

60 Chapter 4

Person

prototype

Person.prototype

constructor

sayName (function)

toString (function)

person1

[[Prototype]]

"Nicholas"

person2

[[Prototype]]

"Greg"

name

name

Figure 4-3: An instance and its constructor are linked via the prototype.

This nature of this relationship means that any disruption between
the instance and the prototype will also create a disruption between the
instance and the constructor.

Changing Prototypes
Because all instances of a particular type reference a shared prototype,
you can augment all of those objects together at any time. Remem ber, the
[[Prototype]] property just contains a pointer to the prototype, and any
changes to the prototype are immediately available on any instance refer-
encing it. That means you can literally add new members to a prototype
at any point and have those changes reflected on existing instances, as in
this example:

function Person(name) {
 this.name = name;
}

Person.prototype = {
 constructor: Person,

u sayName: function() {
 console.log(this.name);
 },

v toString: function() {
 return "[Person " + this.name + "]";
 }
};

Constructors and Prototypes 61

w var person1 = new Person("Nicholas");
var person2 = new Person("Greg");

console.log("sayHi" in person1); // false
console.log("sayHi" in person2); // false

// add a new method
x Person.prototype.sayHi = function() {

 console.log("Hi");
};

y person1.sayHi(); // outputs "Hi"
person2.sayHi(); // outputs "Hi"

In this code, the Person type starts out with only two methods,
 sayName() u and toString() v. Two instances of Person are created w,
and then the sayHi() x method is added to the prototype. After that
point, both instances can now access sayHi() y. The search for a named
property happens each time that property is accessed, so the experience
is seamless.

The ability to modify the prototype at any time has some interesting
repercussions for sealed and frozen objects. When you use Object.seal()
or Object.freeze() on an object, you are acting solely on the object instance
and the own properties. You can’t add new own properties or change
existing own properties on frozen objects, but you can certainly still add
properties on the prototype and continue extending those objects, as
demonstrated in the following listing.

var person1 = new Person("Nicholas");
var person2 = new Person("Greg");

u Object.freeze(person1);

v Person.prototype.sayHi = function() {
 console.log("Hi");
};

person1.sayHi(); // outputs "Hi"
person2.sayHi(); // outputs "Hi"

In this example, there are two instances of Person. The first (person1)
is frozen u, while the second is a normal object. When you add sayHi() to
the prototype v, both person1 and person2 attain a new method, seemingly
contradicting person1’s frozen status. The [[Prototype]] property is con-
sidered an own property of the instance, and while the property itself is
frozen, the value (an object) is not.

62 Chapter 4

n o T e In practice, you probably won’t use prototypes this way very often when developing
in JavaScript. However, it’s important to understand the relationships that exist
between objects and their prototype, and strange examples like this help to illumi-
nate the concepts.

Built-in Object Prototypes
At this point, you might wonder if prototypes also allow you to modify
the built-in objects that come standard in the JavaScript engine. The
answer is yes. All built-in objects have constructors, and therefore, they
have proto types that you can change. For instance, adding a new method
for use on all arrays is as simple as modifying Array.prototype.

Array.prototype.sum = function() {
 return this.reduce(function(previous, current) {
 return previous + current;
 });
};

var numbers = [1, 2, 3, 4, 5, 6];
var result = numbers.sum();

console.log(result); // 21

This example creates a method called sum() on Array.prototype that
simply adds up all of the items in the array and returns the result. The
numbers array automatically has access to that method through the proto-
type. Inside of sum(), this refers to numbers, which is an instance of Array, so
the method is free to use other array methods such as reduce().

You may recall that strings, numbers, and Booleans all have built-in
primitive wrapper types that are used to access primitive values as if they
were objects. If you modify the primitive wrapper type prototype as in
this example, you can actually add more functionality to those primitive
values:

String.prototype.capitalize = function() {
 return this.charAt(0).toUpperCase() + this.substring(1);
};

var message = "hello world!";
console.log(message.capitalize()); // "Hello world!"

This code creates a new method called capitalize() for strings. The
String type is the primitive wrapper for strings, and modifying its proto-
type means that all strings automatically get those changes.

Constructors and Prototypes 63

n o T e While it may be fun and interesting to modify built-in objects to experiment with
functionality, it’s not a good idea to do so in a production environment. Developers
expect built-in objects to behave a certain way and have certain methods. Deliberately
altering built-in objects violates those expectations and makes other developers
unsure how the objects should work.

summary
Constructors are just normal functions that are called with the new oper-
ator. You can define your own constructors anytime you want to create
multiple objects with the same properties. You can identify objects created
from constructors using instanceof or by accessing their constructor prop-
erty directly.

Every function has a prototype property that defines any properties
shared by objects created with a particular constructor. Shared methods
and primitive value properties are typically defined on prototypes, while
all other properties are defined within the constructor. The constructor
property is actually defined on the prototype because it is shared among
object instances.

The prototype of an object is stored internally in the [[Prototype]]
property. This property is a reference, not a copy. If you change the
proto type at any point in time, those changes will occur on all instances
because of the way JavaScript looks up properties. When you try to access
a property on an object, that object is searched for any own property with
the name you specify. If an own property is not found, the prototype is
searched. This searching mechanism means the prototype can continue
to change, and object instances referencing that prototype will reflect
those changes immediately.

Built-in objects also have prototypes that can be modified. While it’s
not recommended to do this in production, it can be helpful for experi-
mentation and proofs of concept for new functionality.

5
i n h e r i T a n c e

Learning how to create objects is the first
step to understanding object-oriented pro-

gramming. The second step is to understand
 inheritance. In traditional object-oriented lan-

guages, classes inherit properties from other classes.
In JavaScript, however, inheritance can occur between objects with no
classlike structure defining the rela tionship. The mechanism for this
inheritance is one with which you are already familiar: prototypes.

Prototype chaining and object.prototype
JavaScript’s built-in approach for inheritance is called prototype chaining,
or prototypal inheritance. As you learned in Chapter 4, prototype properties
are automatically available on object instances, which is a form of inheri-
tance. The object instances inherit properties from the prototype. Because

66 Chapter 5

the prototype is also an object, it has its own prototype and inherits proper-
ties from that. This is the prototype chain: An object inherits from its proto-
type, while that prototype in turn inherits from its prototype, and so on.

All objects, including those you define yourself, automatically inherit
from Object unless you specify otherwise (discussed later in this chapter).
More specifically, all objects inherit from Object.prototype. Any object
defined via an object literal has its [[Prototype]] set to Object.prototype,
meaning that it inherits properties from Object.prototype, just like book in
this example:

var book = {
 title: "The Principles of Object-Oriented JavaScript"
};

var prototype = Object.getPrototypeOf(book);

console.log(prototype === Object.prototype); // true

Here, book has a prototype equal to Object.prototype. No additional
code was necessary to make this happen, as this is the default behavior
when new objects are created. This rela tionship means that book auto-
matically receives methods from Object.prototype.

Methods Inherited from Object.prototype
Several of the methods used in the past couple of chapters are actu-
ally defined on Object.prototype and are therefore inherited by all other
objects. Those methods are:

hasOwnProperty() Determines whether an own property with the
given name exists

propertyIsEnumerable() Determines whether an own property is
enumerable

isPrototypeOf() Determines whether the object is the prototype of
another

valueOf() Returns the value representation of the object

toString() Returns a string representation of the object

These five methods appear on all objects through inheritance. The
last two are important when you need to make objects work consistently
in JavaScript, and sometimes you might want to define them yourself.

Inheritance 67

valueOf()

The valueOf() method gets called whenever an operator is used on an
object. By default, valueOf() simply returns the object instance. The
primitive wrapper types override valueOf() so that it returns a string for
String, a Boolean for Boolean, and a number for Number. Likewise, the Date
object’s valueOf() method returns the epoch time in milliseconds (just as
Date.prototype.getTime() does). This is what allows you to write code that
compares dates such as:

var now = new Date();
var earlier = new Date(2010, 1, 1);

u console.log(now > earlier); // true

In this example, now is a Date representing the current time, and
 earlier is a fixed date in the past. When the greater-than operator (>)
is used u, the valueOf() method is called on both objects before the com-
parison is performed. You can even subtract one date from another and
get the difference in epoch time because of valueOf().

You can always define your own valueOf() method if your objects are
intended to be used with operators. If you do define a valueOf() method,
keep in mind that you’re not changing how the operator works, only what
value is used with the operator’s default behavior.

toString()

The toString() method is called as a fallback whenever valueOf() returns a
reference value instead of a primitive value. It is also implicitly called on
primitive values whenever JavaScript is expecting a string. For example,
when a string is used as one operand for the plus operator, the other
operand is automatically converted to a string. If the other operand is a
primitive value, it is converted into a string representation (for example,
true becomes "true"), but if it is a reference value, then valueOf() is called.
If valueOf() returns a reference value, toString() is called and the returned
value is used. For example:

var book = {
 title: "The Principles of Object-Oriented JavaScript"
};

var message = "Book = " + book;
console.log(message); // "Book = [object Object]"

68 Chapter 5

This code constructs the string by combining "Book = " with book. Since
book is an object, its toString() method is called. That method is inherited
from Object.prototype and returns the default value of "[object Object]" in
most JavaScript engines. If you are happy with that value, there’s no need
to change your object’s toString() method. Sometimes, however, it’s use-
ful to define your own toString() method so that string conversions return
a value that gives more information. Suppose, for example, that you want
the previous script to log the book’s title:

var book = {
 title: "The Principles of Object-Oriented JavaScript",
 toString: function() {
 return "[Book " + this.title + "]"
 }
};

var message = "Book = " + book;

// "Book = [Book The Principles of Object-Oriented JavaScript]"
u console.log(message);

This code defines a custom toString() method for book that returns a
more useful value u than the inherited version. You don’t usually need
to worry about defining a custom toString() method, but it’s good to know
that it’s possible to do so if necessary.

Modifying Object.prototype
All objects inherit from Object.prototype by default, so changes to Object
.prototype affect all objects. That’s a very dangerous situation. You were
advised in Chapter 4 not to modify built-in object prototypes, and that
advice goes double for Object.prototype. Take a look at what can happen:

Object.prototype.add = function(value) {
 return this + value;
};

var book = {
 title: "The Principles of Object-Oriented JavaScript"
};

console.log(book.add(5)); // "[object Object]5"
console.log("title".add("end")); // "titleend"

// in a web browser
console.log(document.add(true)); // "[object HTMLDocument]true"
console.log(window.add(5)); // "[object Window]true"

Inheritance 69

Adding Object.prototype.add() causes all objects to have an add()
method, whether or not it actually makes sense. This problem has been
an issue not just for developers but also for the committee that works on
the JavaScript language: It has had to put new methods in different loca-
tions because adding methods to Object.prototype can have unforeseen
consequences.

Another aspect of this problem involves adding enumerable proper-
ties to Object.prototype. In the previous example, Object.prototype.add()
is an enumerable property, which means it will show up when you use a
for-in loop, such as:

var empty = {};

for (var property in empty) {
 console.log(property);
}

Here, an empty object will still output "add" as a property because it
exists on the prototype and is enumerable. Given how often the for-in
construct is used in JavaScript, modifying Object.prototype with enumer-
able properties has the potential to affect a lot of code. For this reason,
Douglas Crockford recommends using hasOwnProperty() in for-in loops all
the time,* such as:

var empty = {};

for (var property in empty) {
 if (empty.hasOwnProperty(property)) {
 console.log(property);
 }
}

While this approach is effective against possible unwanted prototype
properties, it also limits the use of for-in to only own properties, which
may or may not be want you want. Your best bet for the most flexibility is
to not modify Object.prototype.

object inheritance
The simplest type of inheritance is between objects. All you have to do is
specify what object should be the new object’s [[Prototype]]. Object liter-
als have Object.prototype set as their [[Prototype]] implicitly, but you can
also explicitly specify [[Prototype]] with the Object.create() method.

* See Douglas Crockford’s “Code Conventions for the JavaScript Programming Language”
(http://javascript.crockford.com/code.html).

70 Chapter 5

The Object.create() method accepts two arguments. The first argu-
ment is the object to use for [[Prototype]] in the new object. The optional
second argument is an object of property descriptors in the same format
used by Object.defineProperties() (see Chapter 3). Consider the following:

var book = {
 title: "The Principles of Object-Oriented JavaScript"
};

// is the same as

var book = Object.create(Object.prototype, {
 title: {
 configurable: true,
 enumerable: true,
 value: "The Principles of Object-Oriented JavaScript",
 writable: true
 }
 });

The two declarations in this code are effectively the same. The first
declaration uses an object literal to define an object with a single prop-
erty called title. That object automatically inherits from Object.prototype,
and the property is set to be configurable, enumerable, and writable by
default. The second declaration takes the same steps but does so explic-
itly using Object.create(). The resulting book object from each declaration
behaves the exact same way. But you’ll probably never write code that
inherits from Object.prototype directly, because you get that by default.
Inheriting from other objects is much more interesting:

var person1 = {
 name: "Nicholas",
 sayName: function() {
 console.log(this.name);
 }
};

var person2 = Object.create(person1, {
 name: {
 configurable: true,
 enumerable: true,
 value: "Greg",
 writable: true
 }
});

person1.sayName(); // outputs "Nicholas"
person2.sayName(); // outputs "Greg"

Inheritance 71

console.log(person1.hasOwnProperty("sayName")); // true
console.log(person1.isPrototypeOf(person2)); // true
console.log(person2.hasOwnProperty("sayName")); // false

This code creates an object, person1, with a name property and a sayName()
method. The person2 object inherits from person1, so it inherits both name and
sayName(). However, person2 is defined via Object.create(), which also defines
an own name property for person2. This own property shadows the prototype
property of the same name and is used in its place. So, person1.sayName() out-
puts "Nicholas", while person2.sayName() outputs "Greg". Keep in mind that
sayName() still exists only on person1 and is being inherited by person2.

The inheritance chain in this example is longer for person2 than it is for
person1. The person2 object inherits from the person1 object, and the person1
object inherits from Object.prototype. See Figure 5-1.

Object.prototype

[[Prototype]]

person2

[[Prototype]]

"Greg"

person1

[[Prototype]]

name "Nicholas"

sayName (function)

name

propertyisEnumerable (function)

hasOwnProperty (function)

null

isPrototypeOf (function)

toString (function)

valueOf (function)

Figure 5-1: The prototype chain for person2 includes person1 and Object.prototype.

When a property is accessed on an object, the JavaScript engine goes
through a search process. If the property is found on the instance (that is,
if it’s an own property), that property value is used. If the property is not
found on the instance, the search continues on [[Prototype]]. If the property
is still not found, the search continues to that object’s [[Prototype]], and
so on until the end of the chain is reached. That chain usually ends with
Object.prototype, whose [[Prototype]] is set to null.

72 Chapter 5

You can also create objects with a null [[Prototype]] via Object.create(),
such as:

var nakedObject = Object.create(null);

console.log("toString" in nakedObject); // false
console.log("valueOf" in nakedObject); // false

The nakedObject in this example is an object with no prototype chain.
That means built-in methods such as toString() and valueOf() aren’t pres-
ent on the object. In effect, this object is a completely blank slate with no
predefined properties, which makes it perfect for creating a lookup hash
without potential naming collisions with inherited property names. There
aren’t many other uses for an object like this, and you can’t use it as if it
were inheriting from Object.prototype. For example, any time you use an
operator on nakedObject, you’ll just get an error along the lines of “Cannot
convert object to primitive value.” Still, it’s an interesting quirk of the
JavaScript language that you can create a prototype-less object.

constructor inheritance
Object inheritance in JavaScript is also the basis of constructor inheri-
tance. Recall from Chapter 4 that almost every function has a prototype
property that can be modified or replaced. That prototype property is
automatically assigned to be a new generic object that inherits from
Object.prototype and has a single own property called constructor. In
effect, the JavaScript engine does the following for you:

// you write this
function YourConstructor() {
 // initialization
}

// JavaScript engine does this for you behind the scenes
YourConstructor.prototype = Object.create(Object.prototype, {
 constructor: {
 configurable: true,
 enumerable: true,
 value: YourConstructor
 writable: true
 }
 });

So without doing anything extra, this code sets the con structor’s
prototype property to an object that inherits from Object.prototype,
which means any instances of YourConstructor also inherit from Object
.prototype. YourConstructor is a subtype of Object, and Object is a supertype
of YourConstructor.

Inheritance 73

Because the prototype property is writable, you can change the proto-
type chain by overwriting it. Consider the following example:

u function Rectangle(length, width) {
 this.length = length;
 this.width = width;
}

Rectangle.prototype.getArea = function() {
 return this.length * this.width;
};

Rectangle.prototype.toString = function() {
 return "[Rectangle " + this.length + "x" + this.width + "]";
};

// inherits from Rectangle
v function Square(size) {

 this.length = size;
 this.width = size;
}

Square.prototype = new Rectangle();
Square.prototype.constructor = Square;

Square.prototype.toString = function() {
 return "[Square " + this.length + "x" + this.width + "]";
};

var rect = new Rectangle(5, 10);
var square = new Square(6);

console.log(rect.getArea()); // 50
console.log(square.getArea()); // 36

console.log(rect.toString()); // "[Rectangle 5x10]"
console.log(square.toString()); // "[Square 6x6]"

console.log(rect instanceof Rectangle); // true
console.log(rect instanceof Object); // true

console.log(square instanceof Square); // true
console.log(square instanceof Rectangle); // true
console.log(square instanceof Object); // true

In this code, there are two constructors: Rectangle u and Square v. The
Square constructor has its prototype property overwritten with an instance
of Rectangle. No arguments are passed into Rectangle at this point because
they don’t need to be used, and if they were, all instances of Square would
share the same dimensions. To change the prototype chain this way, you
always need to make sure that the constructor won’t throw an error if the

74 Chapter 5

arguments aren’t supplied (many constructors contain initialization logic
that may require the arguments) and that the constructor isn’t altering
any sort of global state, such as keeping track of how many instances have
been created. The constructor property is restored on Square.prototype
after the original value is overwritten.

After that, rect is created as an instance of Rectangle, and square is
created as an instance of Square. Both objects have the getArea() method
because it is inherited from Rectangle.prototype. The square variable is
considered an instance of Square as well as Rectangle and Object because
instanceof uses the prototype chain to determine the object type. See
Figure 5-2.

toString (function)

Rectangle.prototype

[[Prototype]]

(function)getArea

toString (function)

Object.prototype

[[Prototype]]

square

[[Prototype]]

6

Square.prototype

[[Prototype]]

length

propertyisEnumerable (function)

hasOwnProperty (function)

null

isPrototypeOf (function)

toString (function)

valueOf (function)

width 6

rect

[[Prototype]]

5length

width 10

Square.prototype doesn’t actually need to be overwritten with a Rectangle
object, though; the Rectangle constructor isn’t doing anything that is neces-
sary for Square. In fact, the only relevant part is that Square.prototype needs
to somehow link to Rectangle.prototype in order for inheritance to happen.
That means you can simplify this example by using Object.create() once
again.

Figure 5-2: The prototype chains for square and rect show that both inherit from Rectangle.prototype
and Object.prototype, but only square inherits from Square.prototype.

Inheritance 75

// inherits from Rectangle
function Square(size) {
 this.length = size;
 this.width = size;
}

Square.prototype = Object.create(Rectangle.prototype, {
 constructor: {
 configurable: true,
 enumerable: true,
 value: Square,
 writable: true
 }
 });

Square.prototype.toString = function() {
 return "[Square " + this.length + "x" + this.width + "]";
};

In this version of the code, Square.prototype is overwritten with a
new object that inherits from Rectangle.prototype, and the Rectangle
constructor is never called. That means you don’t need to worry about
causing an error by calling the constructor without arguments anymore.
Otherwise, this code behaves exactly the same as the previous code. The
prototype chain remains intact, so all instances of Square inherit from
Rectangle.prototype and the constructor is restored in the same step.

n o T e Always make sure that you overwrite the prototype before adding properties to it,
or you will lose the added methods when the overwrite happens.

constructor stealing
Because inheritance is accomplished through prototype chains in
JavaScript, you don’t need to call an object’s supertype constructor. If
you do want to call the supertype constructor from the subtype construc-
tor, then you need to take advantage of how JavaScript functions work.

In Chapter 2, you learned about the call() and apply() methods,
which allow functions to be called with a different this value. That’s
exactly how constructor stealing works. You simply call the supertype con-
structor from the subtype constructor using either call() or apply() to
pass in the newly created object. In effect, you’re stealing the supertype
constructor for your own object, as in this example:

function Rectangle(length, width) {
 this.length = length;
 this.width = width;
}

76 Chapter 5

Rectangle.prototype.getArea = function() {
 return this.length * this.width;
};

Rectangle.prototype.toString = function() {
 return "[Rectangle " + this.length + "x" + this.width + "]";
};

// inherits from Rectangle
u function Square(size) {

 Rectangle.call(this, size, size);

 // optional: add new properties or override existing ones here
}

Square.prototype = Object.create(Rectangle.prototype, {
 constructor: {
 configurable: true,
 enumerable: true,
 value: Square,
 writable: true
 }
 });

Square.prototype.toString = function() {
 return "[Square " + this.length + "x" + this.width + "]";
};

var square = new Square(6);

console.log(square.length); // 6
console.log(square.width); // 6
console.log(square.getArea()); // 36

The u Square constructor calls the Rectangle constructor and passes in
this as well as size two times (once for length and once for width). Doing
so creates the length and width properties on the new object and makes
each equal to size. This is the way to avoid redefining properties from a
constructor from which you want to inherit. You can add new properties
or override existing ones after applying the super type constructor.

This two-step process is useful when you need to accomplish inheri-
tance between custom types. You’ll always need to modify a constructor’s
prototype, and you may also need to call the supertype constructor from
within the subtype constructor. Generally, you’ll modify the prototype
for method inheritance and use constructor stealing for properties. This
approach is typically referred to as pseudoclassical inheritance because it
mimics classical inheritance from class-based languages.

Inheritance 77

accessing supertype methods
In the previous example, the Square type has its own toString() method
that shadows toString() on the prototype. It is fairly common to override
supertype methods with new functionality in the subtype, but what if
you still want to access the supertype method? In other languages, you
might be able to say super.toString(), but JavaScript doesn’t have anything
similar. Instead, you can directly access the method on the supertype’s
prototype and use either call() or apply() to execute the method on the
subtype object. For example:

function Rectangle(length, width) {
 this.length = length;
 this.width = width;
}

Rectangle.prototype.getArea = function() {
 return this.length * this.width;
};

Rectangle.prototype.toString = function() {
 return "[Rectangle " + this.length + "x" + this.height + "]";
};

// inherits from Rectangle
function Square(size) {
 Rectangle.call(this, size, size);
}

Square.prototype = Object.create(Rectangle.prototype, {
 constructor: {
 configurable: true,
 enumerable: true,
 value: Square,
 writable: true
 }
 });

// call the supertype method
u Square.prototype.toString = function() {

 var text = Rectangle.prototype.toString.call(this);
 return text.replace("Rectangle", "Square");
};

In this version of the code, u Square.prototype.toString() calls
Rectangle.prototype.toString() by using call(). The method just needs
to replace "Rectangle" with "Square" before returning the resulting text.
This approach may seem a bit verbose for such a simple operation, but
it is the only way to access a supertype’s method.

78 Chapter 5

summary
JavaScript supports inheritance through prototype chaining. A prototype
chain is created between objects when the [[Prototype]] of one object is
set equal to another. All generic objects automatically inherit from Object
.prototype. If you want to create an object that inherits from something
else, you can use Object.create() to specify the value of [[Prototype]] for a
new object.

You accomplish inheritance between custom types by creating a
proto type chain on the constructor. By setting the constructor’s prototype
property to another value, you create inheritance between instances of
the custom type and the prototype of that other value. All instances of
that constructor share the same proto type, so they all inherit from the
same object. This technique works very well for inheriting methods from
other objects, but you cannot inherit own properties using prototypes.

To inherit own properties correctly, you can use constructor stealing,
which is simply calling a constructor function using call() or apply() so
that any initialization is done on the subtype object. Combining construc-
tor stealing and prototype chaining is the most common way to achieve
inheritance between custom types in JavaScript. This combination is
frequently called pseudo classical inheritance because of its similarity
to inheritance in class-based languages.

You can access methods on a supertype by directly accessing the
supertype’s prototype. In doing so, you must use call() or apply() to exe-
cute the supertype method on the subtype object.

6
o b j e c T P a T T e r n s

JavaScript has many patterns for creating
objects, and there’s usually more than one

way to accomplish the same thing. You can
define your own custom types or your own

generic objects whenever you want. You can use
inheritance to share behavior between objects, or
you can employ other techniques, such as mixins. You can also take
advantage of advanced JavaScript features to prevent an object’s struc-
ture from being modified. The patterns discussed in this chapter give
you powerful ways of managing and creating objects, all based on your
use cases.

80 Chapter 6

Private and Privileged members
All object properties in JavaScript are public, and there’s no explicit way
to indicate that a property shouldn’t be accessed from outside a particu-
lar object. At some point, however, you might not want data to be public.
For example, when an object uses a value to determine some sort of state,
modifying that data without the object’s knowledge throws the state man-
agement process into chaos. One way to avoid this is by using naming
conventions. For example, it’s quite common to prefix properties with an
underscore (such as this._name) when they are not intended to be public.
However, there are ways of hiding data that don’t rely on convention and
are therefore more “bulletproof” in preventing the modification of pri-
vate information.

The Module Pattern
The module pattern is an object-creation pattern designed to create single-
ton objects with private data. The basic approach is to use an immediately
invoked function expression (IIFE) that returns an object. An IIFE is a func-
tion expression that is defined and then called immediately to produce a
result. That function expression can contain any number of local variables
that aren’t accessible from outside that function. Because the returned
object is defined within that function, the object’s methods have access
to the data. (All objects defined within the IIFE have access to the same
local variables.) Methods that access private data in this way are called
privileged methods. Here’s the basic format for the module pattern:

var yourObject = (function() {

 // private data variables

 return {
 // public methods and properties
 };

u }());

In this pattern, an anonymous function is created and exe cuted
immediately. (Note the extra parentheses at the end of the function u.
You can execute anonymous functions immediately using this syntax.)
That means the function exists for just a moment, is executed, and then
is destroyed. IIFEs are a very popular pattern in JavaScript, partially for
their use in the module pattern.

Object Patterns 81

The module pattern allows you to use regular variables as de facto
object properties that aren’t exposed publicly. You accomplish this by
creating closure functions as object methods. Closures are simply func-
tions that access data outside their own scope. For example, whenever you
access a global object in a function, such as window in a web browser, that
function is accessing a variable outside its own scope. The difference with
the module function is that the variables are declared within the IIFE,
and a function that is also declared inside the IIFE accesses those vari-
ables. For example:

var person = (function() {

u var age = 25;

 return {
 name: "Nicholas",

v getAge: function() {
 return age;
 },

w growOlder: function() {
 age++;
 }
 };

}());

console.log(person.name); // "Nicholas"
console.log(person.getAge()); // 25

person.age = 100;
console.log(person.getAge()); // 25

person.growOlder();
console.log(person.getAge()); // 26

This code creates the person object using the module pattern. The age
variable u acts like a private property for the object. It can’t be accessed
directly from outside the object, but it can be used by the object methods.
There are two privileged methods on the object: getAge() v, which reads
the value of the age variable, and growOlder() w, which increments age.
Both of these methods can access the variable age directly because it is
defined in the outer function in which they are defined.

82 Chapter 6

There is a variation of the module pattern called the revealing module
pattern, which arranges all variables and methods at the top of the IIFE
and simply assigns them to the returned object. You can write the previ-
ous example using the revealing module pattern as follows:

var person = (function() {

 var age = 25;

 function getAge() {
 return age;
 }

 function growOlder() {
 age++;
 }

 return {
 name: "Nicholas",

u getAge: getAge,
 growOlder: growOlder
 };

}());

In the revealing module pattern, age, getAge(), and growOlder() are
all defined as local to the IIFE. The getAge() and growOlder() functions
are then assigned to the returned object u, effectively “revealing” them
outside the IIFE. This code is essentially the same as the earlier example
using the traditional module pattern; however, some prefer this pattern
because it keeps all variable and function declarations together.

Private Members for Constructors
The module pattern is great for defining individual objects that have pri-
vate properties, but what about custom types that also require their own
private properties? You can use a pattern that’s similar to the module
pattern inside the constructor to create instance-specific private data.
For example:

function Person(name) {

 // define a variable only accessible inside of the Person constructor
 var age = 25;

 this.name = name;

u this.getAge = function() {
 return age;
 };

Object Patterns 83

v this.growOlder = function() {
 age++;
 };
}

var person = new Person("Nicholas");

console.log(person.name); // "Nicholas"
console.log(person.getAge()); // 25

person.age = 100;
console.log(person.getAge()); // 25

person.growOlder();
console.log(person.getAge()); // 26

In this code, the Person constructor has a local variable, age. That vari-
able is used as part of the getAge() u and growOlder() v methods. When
you create an instance of Person, that instance receives its own age vari-
able, getAge() method, and growOlder() method. In many ways, this is simi-
lar to the module pattern, where the constructor creates a local scope and
returns the this object. As discussed in Chapter 4, placing methods on an
object instance is less efficient than doing so on the prototype, but this is
the only approach possible when you want private, instance-specific data.

If you want private data to be shared across all instances (as if it were
on the prototype), you can use a hybrid approach that looks like the mod-
ule pattern but uses a constructor:

var Person = (function() {

 // everyone shares the same age
u var age = 25;

v function InnerPerson(name) {
 this.name = name;
 }

 InnerPerson.prototype.getAge = function() {
 return age;
 };

 InnerPerson.prototype.growOlder = function() {
 age++;
 };

 return InnerPerson;

}());

84 Chapter 6

var person1 = new Person("Nicholas");
var person2 = new Person("Greg");

console.log(person1.name); // "Nicholas"
console.log(person1.getAge()); // 25

console.log(person2.name); // "Greg"
console.log(person2.getAge()); // 25

person1.growOlder();
console.log(person1.getAge()); // 26
console.log(person2.getAge()); // 26

In this code, the InnerPerson constructor v is defined inside an IIFE.
The variable age u is defined outside the constructor but is used for
two prototype methods. The InnerPerson constructor is then returned
and becomes the Person constructor in the global scope. All instances of
Person end up sharing the age variable, so changing the value with one
instance automatically affects the other instance.

mixins
Although pseudoclassical inheritance and prototypal inheritance are
used frequently in JavaScript, there is also a type of pseudo inheritance
accomplished through mixins. Mixins occur when one object acquires the
properties of another without modify ing the prototype chain. The first
object (a receiver) actually receives the properties of the second object (the
supplier) by copying those properties directly. Traditionally, you create
mixins using a function such as this:

function mixin(receiver, supplier) {
 for (var property in supplier) {
 if (supplier.hasOwnProperty(property)) {
 receiver[property] = supplier[property]
 }
 }

 return receiver;
}

The mixin() function accepts two arguments: the receiver and the sup-
plier. The goal of the function is to copy all enumerable properties from
the supplier onto the receiver. You accomplish this using a for-in loop
that iterates over the properties in supplier and then assigns the value

Object Patterns 85

of that property to a property of the same name on receiver. Keep in
mind that this is a shallow copy, so if a property contains an object, then
both the supplier and the receiver will be pointing to the same object.
This pattern is used frequently for adding new behaviors to JavaScript
objects that already exist on other objects.

For example, you can add event support to an object through a mixin
rather than inheritance. First, suppose you’ve already defined a custom
type for using events:

function EventTarget(){
}

EventTarget.prototype = {

 constructor: EventTarget,

u addListener: function(type, listener){

 // create an array if it doesn't exist
 if (!this.hasOwnProperty("_listeners")) {
 this._listeners = [];
 }

 if (typeof this._listeners[type] == "undefined"){
 this._listeners[type] = [];
 }

 this._listeners[type].push(listener);
 },

v fire: function(event){

 if (!event.target){
 event.target = this;
 }

 if (!event.type){ // falsy
 throw new Error("Event object missing 'type' property.");
 }

 if (this._listeners && this._listeners[event.type] instanceof Array){
 var listeners = this._listeners[event.type];
 for (var i=0, len=listeners.length; i < len; i++){
 listeners[i].call(this, event);
 }
 }
 },

86 Chapter 6

w removeListener: function(type, listener){
 if (this._listeners && this._listeners[type] instanceof Array){
 var listeners = this._listeners[type];
 for (var i=0, len=listeners.length; i < len; i++){
 if (listeners[i] === listener){
 listeners.splice(i, 1);
 break;
 }
 }
 }
 }
};

The EventTarget type provides basic event handling for any object.
You can add u and remove w listeners as well as fire events v directly
on the object. The event listeners are stored on a _listeners property that
is created only when addListener() is called for the first time (this makes it
easier to mix in). You can use instances of EventTarget like this:

var target = new EventTarget();
target.addListener("message", function(event) {
 console.log("Message is " + event.data);
})

target.fire({
 type: "message",
 data: "Hello world!"
});

Support for events is useful for objects in JavaScript. If you want to
have a different type of object that also supports events, you have a few
options. First, you can create a new instance of EventTarget and then add
on the properties that you want:

var person = new EventTarget();
person.name = "Nicholas";
person.sayName = function() {
 console.log(this.name);
 this.fire({ type: "namesaid", name: this.name });
};

In this code, a new variable called person is created as an instance of
EventTarget, and then the person-related properties are added. Unfor tu-
nately, this means that person is actually an instance of EventTarget instead
of Object or a custom type. You also incur the overhead of needing to add
a bunch of new properties by hand. It would be better to have a more
organized way of doing this.

Object Patterns 87

A second way to solve this problem is to use pseudoclassical
inheritance:

function Person(name) {
 this.name = name;
}

u Person.prototype = Object.create(EventTarget.prototype);
Person.prototype.constructor = Person;

Person.prototype.sayName = function() {
 console.log(this.name);
 this.fire({ type: "namesaid", name: this.name });
};

var person = new Person("Nicholas");

console.log(person instanceof Person); // true
console.log(person instanceof EventTarget); // true

In this case, there is a new Person type that inherits from EventTarget u.
You can add any further methods you need to Person’s prototype after-
ward. However, this isn’t as succinct as it could be, and you could argue
that the relationship doesn’t make sense: A person is a type of event tar-
get? By using a mixin instead, you can reduce the amount of code neces-
sary to assign those new properties to the prototype:

function Person(name) {
 this.name = name;
}

u mixin(Person.prototype, EventTarget.prototype());
mixin(Person.prototype, {
 constructor: Person,

 sayName: function() {
 console.log(this.name);
 this.fire({ type: "namesaid", name: this.name });
 }
});

var person = new Person("Nicholas");

console.log(person instanceof Person); // true
console.log(person instanceof EventTarget); // false

Here, Person.prototype is mixed in with EventTarget.prototype u to get
the event behavior. Then, Person. prototype is mixed in with constructor
and sayName() to complete the composition of the prototype. Instances of
Person are not instances of EventTarget in this example because there is no
inheritance.

88 Chapter 6

Of course, you might decide that while you do want to use an object’s
properties, you don’t want a constructor of pseudo classical inheritance at
all. In that case, you can use a mixin directly when you create your new
object:

var person = mixin(new EventTarget(), {

 name: "Nicholas",

 sayName: function() {
 console.log(this.name);
 this.fire({ type: "namesaid", name: this.name });
 }

});

In this example, a new instance of EventTarget is mixed in with some
new properties to create the person object without affecting person’s proto-
type chain.

One thing to keep in mind about using mixins in this way is that
accessor properties on the supplier become data properties on the receiver,
which means you can overwrite them if you’re not careful. That’s because
the receiver properties are being created by assignment rather than by
Object.defineProperty(), meaning the current value of the supplier prop-
erty is read and then assigned to a property of the same name on the
receiver. For example:

var person = mixin(new EventTarget(), {

u get name() {
 return "Nicholas"
 },

 sayName: function() {
 console.log(this.name);
 this.fire({ type: "namesaid", name: this.name });
 }

});

console.log(person.name); // "Nicholas"

v person.name = "Greg";
console.log(person.name); // "Greg"

Object Patterns 89

In this code, name is defined as an accessor property with only a
 getter u. That means assigning a value to the property should have no
effect. However, because the accessor property becomes a data property
on the person object, it’s possible to overwrite name with a new value v.
During the call to mixin(), the value of name is read from the supplier and
assigned to the property called name on the receiver. At no point during
this process is a new accessor defined, making the name property on the
receiver a data property.

If you want accessor properties to be copied over as accessor proper-
ties, you need a different mixin() function, such as:

function mixin(receiver, supplier) {
u Object.keys(supplier).forEach(function(property) {

 var descriptor = Object.getOwnPropertyDescriptor(supplier, property);
v Object.defineProperty(receiver, property, descriptor);

 });

 return receiver;
}

var person = mixin(new EventTarget(), {

 get name() {
 return "Nicholas"
 },

 sayName: function() {
 console.log(this.name);
 this.fire({ type: "namesaid", name: this.name });
 }

});

console.log(person.name); // "Nicholas"

person.name = "Greg";
console.log(person.name); // "Nicholas"

This version of mixin() uses Object.keys() u to get an array of all enu-
merable own properties on supplier. The forEach() method is used to iter-
ate over those properties. The property descriptor for each property on
supplier is retrieved and then added to receiver via Object. defineProperty()
v. This ensures that all of the relevant property information is trans-
ferred to receiver, not just the value. That means the person object has an
accessor property called name, so it cannot be overwritten.

90 Chapter 6

Of course, this version of mixin() works only in ECMAScript 5
JavaScript engines. If your code needs to work for older engines, you
should combine the two mixin() approaches into a single function:

function mixin(receiver, supplier) {

u if (Object.getOwnPropertyDescriptor) {

 Object.keys(supplier).forEach(function(property) {
 var descriptor = Object.getOwnPropertyDescriptor(supplier, property);
 Object.defineProperty(receiver, property, descriptor);
 });

 } else {

v for (var property in supplier) {
 if (supplier.hasOwnProperty(property)) {
 receiver[property] = supplier[property]
 }
 }
 }

 return receiver;
}

Here, mixin() checks whether Object.getOwnPropertyDescriptor() u exists
to determine whether the JavaScript engine supports ECMA Script 5. If so,
it goes on to use the ECMAScript 5 version. Otherwise, the ECMA Script 3
version is used v. This function is safe to use in both modern and legacy
JavaScript engines, as they will apply the most appropriate mixin strategy.

n o T e Keep in mind that Object.keys() returns only enumerable properties. If you want
to also copy over nonenumerable properties, use Object.getOwnPropertyNames()
instead.

scope-safe constructors
Because all constructors are just functions, you can call them without
using the new operator and therefore affect the value of this. Doing so
can yield unexpected results, as this ends up coerced to the global object
in nonstrict mode, or the constructor throws an error in strict mode. In
Chap ter 4, you encountered this example:

function Person(name) {
 this.name = name;
}

Object Patterns 91

Person.prototype.sayName = function() {
 console.log(this.name);
};

u var person1 = Person("Nicholas"); // note: missing "new"

console.log(person1 instanceof Person); // false
console.log(typeof person1); // "undefined"
console.log(name); // "Nicholas"

In this case, name is created as a global variable because the Person con-
structor is called without new u. Keep in mind that this code is running
in nonstrict mode, as leaving out new would throw an error in strict mode.
The fact that the constructor begins with a capital letter usually indicates
that it should be preceded by new, but what if you want to allow this use
case and have the function work without new? Many built-in constructors,
such as Array and RegExp, also work without new because they are written
to be scope safe. A scope-safe constructor can be called with or without new
and returns the same type of object in either case.

When new is called with a function, the newly created object repre-
sented by this is already an instance of the custom type represented by
the constructor. So you can use instanceof to determine whether new was
used in the function call:

function Person(name) {
 if (this instanceof Person) {
 // called with "new"
 } else {
 // called without "new"
 }
}

Using a pattern like this lets you control what a function does based
on whether it’s called with new or without. You may want to treat each cir-
cumstance differently, but you’ll often want the function to behave the
same way (frequently, to protect against accidental omission of new). A
scope-safe version of Person looks like this:

function Person(name) {
 if (this instanceof Person) {
 this.name = name;
 } else {
 return new Person(name);
 }
}

92 Chapter 6

For this constructor, the name property is assigned as always when
new is used. If new isn’t used, the constructor is called recursively via new
to create a proper instance of the object. In this way, the following are
equivalent:

var person1 = new Person("Nicholas");
var person2 = Person("Nicholas");

console.log(person1 instanceof Person); // true
console.log(person2 instanceof Person); // true

Creating new objects without using the new operator is becoming more
common as an effort to curb errors caused by omitting new. JavaScript itself
has several reference types with scope-safe constructors, such as Object,
Array, RegExp, and Error.

summary
There are many different ways to create and compose objects in Java-
Script. While JavaScript does not include the formal concept of private
properties, you can create data or functions that are accessible only from
within an object. For singleton objects, you can use the module pattern
to hide data from the outside world. You can use an immediately invoked
function expression (IIFE) to define local variables and functions that
are accessible only by the newly created object. Privileged methods are
methods on the object that have access to private data. You can also
 create constructors that have private data by either defining variables in
the constructor function or by using an IIFE to create private data that
is shared among all instances.

Mixins are a powerful way to add functionality to objects while avoid-
ing inheritance. A mixin copies properties from one object to another
so that the receiving object gains functionality without inheriting from
the supplying object. Unlike inheritance, mixins do not allow you to iden-
tify where the capabilities came from after the object is created. For this
reason, mixins are best used with data properties or small pieces of func-
tionality. Inheritance is still preferable when you want to obtain more
functionality and know where that functionality came from.

Scope-safe constructors are constructors that you can call with or
without new to create a new object instance. This pattern takes advantage
of the fact that this is an instance of the custom type as soon as the con-
structor begins to execute, which lets you alter the constructor’s behavior
depending on whether or not you used the new operator.

i n d e x

Symbols
{ } (braces)

for function contents, 18
and object properties, 9

== (double equals operator), 5
=== (triple equals operator), 5
[] (square brackets)

for array literals, 10
for property access, 11–12

[[]] (double-square-bracket
notation), 17

_ (underscore), in property name
prefix, 38, 80

A
accessor properties, 37–38

attributes, 41–43
creating, 42–43

adding properties, 8
anonymous functions, 20, 80
apply() method, 27, 75
arguments, functions as, 20
arguments object, 21
arity, 21
Array built-in type, 8
Array.isArray() method, 13–14
array literals, 9–10
Array.prototype, modifying, 62
arrays

identifying, 13–14
passing to apply(), 27

assignment expressions, 18
attributes of properties, 38–44

accessor properties, 41–43
data properties, 40–41

autoboxing, 14

B
bind() method, 28
Boolean object, 3, 15–16
Boolean primitive wrapper type, 14–15
braces ({ })

for function contents, 18
and object properties, 9

bracket notation, for property
access, 11–12

built-in object prototypes, 62–63
built-in types, instantiating, 8–11

C
call() method, 26–27, 75
[[Call]] property, 17
capitalization, of constructor names, 50
capitalize() method, for strings, 62
charAt() method, 6
classes, JavaScript lack of support for, 1
closure functions, 81
comparison functions, 20
comparison without coercion, 5
[[Configurable]] attribute, 39, 42

for sealed object, 46
console.log function, 51
constructor property, 50–51

changing by object literal
notation, 59

constructors, 6–7, 49–53
inheritance, 72–75
Object.defineProperty() method

inside, 52
private members for, 82–84
prototype use with, 57–60
purpose of, 51
scope-safe, 90–92

94 Index

constructors (continued)
stealing, 75–76
subtype, 72, 75–76
supertype, 72, 75–76

create() method, 70
creating

accessor properties, 42–43
objects, 6–7
properties, on temporary objects, 15

Crockford, Douglas, 69

D
data

sharing private, 83–84
storing on prototype, 57
types. See primitive types;

reference types; types
data properties, 37

attributes, 40–41
from mixins, 88–89

Date built-in type, 8
Date object, valueOf() method, 67
declarations, vs. expressions, 18–19
defineProperties() method, 43–44
defineProperty() method, 39–41, 52
[[Delete]] operation, for object

property, 35
delete operator, 35, 48
dereferencing, objects, 7–8
detecting properties, 33–35
dot notation, for property access, 11
double equals operator (==), 5
double-square-bracket

notation ([[]]), 17

E
enumerable properties

adding to Object.prototype, 69
copying between supplier and

receiver, 84
[[Enumerable]] property attribute, 39, 42
enumeration, 36–37
equals operators, double (==) and

triple (===), 5
Error built-in type, 9
errors

from constructors in strict mode, 53
for primitive wrapper objects, 16

event support, adding to objects, 85–87
expressions, vs. declarations, 18–19

[[Extensible]] attribute, 45–47
extensions for objects, preventing, 45

F
falsy values, 33
first-class functions, 2
flexibility of JavaScript, 2
for-in loops, 36, 69, 84
frames of web pages, passing values

between, 13
freeze() method, 47, 61
freezing objects, 47
frozen objects, prototype

modification and, 61
Function constructor, 9, 10, 20
function keyword, 18
function literals, 10–11
functions, 2, 17–29

declarations vs. expressions, 18–19
hoisting, 18–19
overloading, 23–24
parameters, 21–22
as values, 19–21

G
garbage-collection language,

JavaScript as, 7
[[Get]] attribute, 41
getOwnPropertyDescriptor() method, 44
getPrototypeOf() method, 55
getter functions, 37–38
global object, this to represent, 25

H
hash maps, JavaScript objects as, 48
hasOwnProperty() method, 34–35, 53,

66, 69
hoisting functions, 18–19

I
if condition, 33
immediately invoked function

expression (IIFE), 80
inheritance, 65–78

constructor, 72–75
methods from Object.prototype,

66–68
between objects, 69–72
prototype chaining, 65–69
pseudoclassical, 76, 87

Index 95

in operator, 53
testing for property instance

with, 33–34
instanceof operator, 12–13

temporary objects and, 15
instances. See also objects

checking type of, 50–51
prototype link to constructor, 60
of reference types, 6

instantiating
built-in types, 8–11
objects, 6
primitive wrappers, 16

internal property, of functions, 17
isArray() method, 13–14
isExtensible() method, 45, 46
isFrozen() method, 47
isPrototypeOf() method, 55, 66
isSealed() method, 46

K
keys() method, 36, 89–90
key/value pairs, 48

L
length property, of functions, 21–22
literals, 3, 9

array, 10
function, 10–11
object, 9–10
regular expression, 11

M
memory location, pointer to, 7
methods, 6, 24–28

adding to arrays, 62
primitive, 6
privileged, 80
prototypes for defining, 57–60
for supertypes, accessing, 77

mixins, 84–90
data properties from, 88–89

module patterns, 80–82

N
names

for constructors,
capitalization of, 50

multiple functions with same, 23
for properties, 80

new operator, 6, 90–92
constructors and, 49, 50, 52
instantiating reference types with, 9
this object created with, 51

null value, 3
determining if a value is, 5
setting object variable to, 7–8
setting property to, 35
typeof operator and, 5

Number primitive wrapper type, 14–15
number type, 3

O
Object built-in type, 9
Object constructor, 32
Object.create() method, 70
Object.defineProperties() method, 43–44
Object.defineProperty() method,

39–41, 52
Object.freeze() method, 47, 61
Object.getOwnPropertyDescriptor()

method, 44
Object.getPrototypeOf() method, 55
Object.isExtensible() method, 45, 46
Object.isFrozen() method, 47
Object.isSealed() method, 46
Object.keys() method, 36, 89–90
object literals, 9–10
object patterns, 79–92

private and privileged
members, 80–84

Object.preventExtensions() method, 45
Object.prototype.isPrototypeOf() method,

55, 66
Object.prototype prototype

methods inherited from, 66–68
modifying, 68–69

objects, 2, 6, 31–48
creating, 6–7
dereferencing, 7–8
freezing, 47
inheritance, 69–72
methods, 24–28
modification, preventing, 45–47
properties, defining, 32–33
property inheritance from

prototype, 65–69
reference types as, 2
sealing, 45–46

Object.seal() method, 45–46, 61
overloading functions, 23–24

96 Index

own properties
determining existence of, 66
determining whether

enumerable, 66
in operator to check for, 34
for objects, 32
vs. prototype properties, 55–56

P
parameters, 21–22
person object, module pattern for

creating, 81
pointer to memory location, 7
preventExtensions() method, 45
preventing object modifications, 45–47
primitive methods, 6
primitive types, 2, 3–6
primitive wrapper types, 14–16
private data, sharing, 83–84
private members, 80–84

for constructors, 82–84
privileged members, 80–84
properties, 6, 11–12, 80

adding or removing, 8
copying enumerable, between

receiver and supplier, 84–86
creating on temporary objects, 15
defining, 32–33
defining multiple, 43–44
detecting, 33–35
enumerable, adding to

Object.prototype, 69
enumeration, 36–37
identifying on prototype, 54
removing, 35
string literals for names, 9
types, 37–38

property attributes, 38–44
changing, 39–40
retrieving, 44

propertyIsEnumerable() method, 37, 39, 66
proto property, 55
prototype chaining, 65–69, 71, 74

object without, 72
overwriting, 73

prototype properties
identifying, 54
vs. own properties, 55–56

prototype property, of functions, 53, 72
[[Prototype]] property, 54–56, 60–61

prototypes, 53–63
built-in object, 62–63
changing, 60–62
identifying properties, 54
overwriting, 59
property inheritance from, 65–69
use with constructors, 57–60

pseudoclassical inheritance, 76, 87
pseudoinheritance, mixins for, 84
[[Put]] method, 32–33

for data properties, 37

R
read-only property, 38
receiver, copying enumerable

properties between
supplier and, 84–86

Rectangle constructor, 73–75
reference types, 2, 6–8

identifying, 12–13
reference values, storing on prototype,

57–58
RegExp built-in type, 9
RegExp constructor, 11
regular expression literals, 11
removing properties, 8, 35
retrieving property attributes, 44
revealing module pattern, 82

S
scope-safe constructors, 90–92
sealed objects, prototype modification

and, 61
sealing objects, 45–46
seal() method, 45–46, 61
[[Set]] attribute, 32–33, 41
setter functions, 37–38
sharing private data, 83–84
signatures, function with multiple, 23
sort() method, 20
square brackets ([])

for array literals, 10
for property access, 11–12

Square constructor, 73–75
stealing constructors, 75–76
strict mode

for nonextensible objects, 45
for sealed objects, 46

string literals, as property names, 9
String primitive wrapper type, 14–15

Index 97

strings
capitalize() method, 62
conversion of values to,

for comparison, 21
methods, 6

string type, 3
substring() method, 6
subtype constructors, 72, 75–76
sum() function, 21
supertype

constructors, 72, 75–76
methods, accessing, 77

supplier, copying enumerable
properties between
receiver and, 84–86

T
temporary objects, creating

properties on, 15
this object, 25–26

changing value of, 26–28
to create length and width

properties, 76
creating with new, 51

toFixed() method, 6
toLowerCase() method, 6
toString() method, 6, 35, 66, 67–68
triple equals operator (===), 5
truthy values, 33
typeof operator, 4–5, 12
types, 2. See also primitive types;

reference types
checking for different, 24
checking instance for, 50–51
instantiating built-in, 8–11

U
undefined type, 3
underscore (_), in property name

prefix, 38, 80

V
[[Value]] attribute, 40
valueOf() method, 66, 67
values

functions as, 19–21
passing, between web page

frames, 13
variable object, 2
variables, for primitive types, 3–4

W
web pages, passing values between

frames, 13
wrapper types, primitive, 14–16
[[Writable]] attribute, 40
write-only properties, 38

More no-nonsense books from no starch press

Updates
Visit http://nostarch.com/oojs/ for updates, errata, and other information.

phone:
800.420.7240 or

415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

eloqUent Javascript,
2nd edition
a Modern introduction to programming
by marijn haverbeke

december 2014, 472 pp., $39.95
isbn 978-1-59327-584-6

Javascript for Kids
a playful introduction to programming
by nick morgan

december 2014, 336 pp., $34.95
isbn 978-1-59327-408-5
full color

rUby Under a Microscope
an illustrated Guide to ruby internals
by pat shaughnessy

november 2013, 360 pp., $39.95
isbn 978-1-59327-527-3

python for Kids
a playful introduction to programming
by jason r. briggs

december 2012, 344 pp., $34.95
isbn 978-1-59327-407-8
full color

the Modern Web
Multi-device Web development with
htMl5, css3, and Javascript
by peter gasston

april 2013, 264 pp., $34.95
isbn 978-1-59327-487-0

the booK of css3,
2nd edition
a developer’s Guide to the
future of Web design
by peter gasston

november 2014, 304 pp., $34.95
isbn 978-1-59327-580-8

TH
E

 P
R

IN
C

IP
LE

S
 O

F O
B

JE
C

T-O
R

IE
N

TE
D

 JA
V

A
S

C
R

IP
T

TH
E

 P
R

IN
C

IP
LE

S
 O

F O
B

JE
C

T-O
R

IE
N

TE
D

 JA
V

A
S

C
R

IP
T

Z
A

K
A

S

N I C H O L A S C . Z A K A S

J A V A S C R I P TJ A V A S C R I P T
O B J E C T - O R I E N T E DO B J E C T - O R I E N T E D

T H E P R I N C I P L E S O FT H E P R I N C I P L E S O F

SHELVE IN:
PROGRAM

M
ING/JAVASCRIPT

$24.95 ($25.95 CDN)

If you’ve used a more traditional object-oriented
language, such as C++ or Java, JavaScript probably
doesn’t seem object-oriented at all. It has no concept
of classes, and you don’t even need to define any

JavaScript is an incredibly powerful and expressive

In The Principles of Object-Oriented JavaScript,

object-oriented nature, revealing the language’s
Nicholas C. Zakas thoroughly explores JavaScript’s

unique implementation of inheritance and other key
characteristics. You’ll learn:

values
• The difference between primitive and reference

• What makes JavaScript functions so unique

• The various ways to create objects

objects in order to write code. But don’t be fooled —

object-oriented language that puts many design
decisions right into your hands.

• How to work with and understand prototypes

The Principles of Object-Oriented JavaScript will leave

• Inheritance patterns for types and objects

even experienced developers with a deeper understand-
ing of JavaScript. Unlock the secrets behind how objects
work in JavaScript so you can write clearer, more
flexible, and more efficient code.

in JavaScript best practices. He honed his experience

A B O U T T H E A U T H O R

Nicholas C. Zakas is a software engineer at Box and
is known for writing on and speaking about the latest

during his five years at Yahoo!, where he was principal
frontend engineer for the Yahoo! home page. He is the
author of several books, including Maintainable JavaScript
and Professional JavaScript for Web Developers.

• How to define your own constructors

J A V A S C R I P TJ A V A S C R I P T
C O N T R O L O FC O N T R O L O F

T A K ET A K E

O B J E C T SO B J E C T S

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™

Foreword by Cody Lindley,

Best-selling Author and

Principal Frontend Architect

at TandemSeven

SFI-00

	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Foreword by Cody Lindley
	Acknowledgments
	Introduction
	Who This Book Is For
	Overview
	Help and Support

	Chapter 1: Primitive and Reference Types
	What Are Types?
	Primitive Types
	Identifying Primitive Types
	Primitive Methods

	Reference Types
	Creating Objects
	Dereferencing Objects
	Adding or Removing Properties

	Instantiating Built-In Types
	Literal Forms
	Object and Array Literals
	Function Literals
	Regular Expression Literals

	Property Access
	Identifying Reference Types
	Identifying Arrays
	Primitive Wrapper Types
	Summary

	Chapter 2: Functions
	Declarations vs. Expressions
	Functions as Values
	Parameters
	Overloading
	Object Methods
	The this Object
	Changing this

	Summary

	Chapter 3: Understanding Objects
	Defining Properties
	Detecting Properties
	Removing Properties
	Enumeration
	Types of Properties
	Property Attributes
	Common Attributes
	Data Property Attributes
	Accessor Property Attributes
	Defining Multiple Properties
	Retrieving Property Attributes

	Preventing Object Modification
	Preventing Extensions
	Sealing Objects
	Freezing Objects

	Summary

	Chapter 4: Constructors and Prototypes
	Constructors
	Prototypes
	The [[Prototype]] Property
	Using Prototypes with Constructors
	Changing Prototypes
	Built-in Object Prototypes

	Summary

	Chapter 5: Inheritance
	Prototype Chaining and Object.prototype
	Methods Inherited from Object.prototype
	Modifying Object.prototype

	Object Inheritance
	Constructor Inheritance
	Constructor Stealing
	Accessing Supertype Methods
	Summary

	Chapter 6: Object Patterns
	Private and Privileged Members
	Module Pattern
	Private Members for Constructors

	Mixins
	Scope-Safe Constructors
	Summary

	Index
	Updates

