
本书版权归Packt Publishing所有

Building Full Stack DeFi
Applications

A practical guide to creating your own decentralized finance
projects on blockchain

Samuel Zhou

Building Full Stack DeFi Applications
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Kaustubh Manglurkar
Publishing Product Manager: Apeksha Shetty
Book Project Manager: Hemangi Lotlikar
Content Development Editor: Manikandan Kurup
Technical Editor: Rahul Limbachiya
Copy Editor: Safis Editing
Proofreader: Safis Editing
Indexer: Subalakshmi Govindhan
Production Designer: Vijay Kamble
Senior DevRel Marketing Executive: Nivedita Singh

First published: March 2024
Production reference: 1080324

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK.

ISBN 978-1-83763-411-8
www.packtpub.com

http://www.packtpub.com

To the moon, not the dream.

– Samuel Zhou

Contributors

About the author
Samuel Zhou is the founder of TiFi, which is a Silicon Valley-based company that builds decentralized
e-commerce platforms on blockchain. He built a DeFi ecosystem that offers crypto saving, lending,
trading, staking, and liquidity management features. Before starting the venture in 2022, Samuel
worked for 15 years as a full stack engineer and software architect for top companies in Silicon Valley.
He started exploring blockchain and Web3 in 2018. He has extensive experience in building smart
contracts and Web3 applications. Samuel has two US patents under his name. He also holds a master’s
degree and a bachelor’s degree in computer science.

I want to thank the people who have been close to me and supported me, especially my wife, Tina, and
my little boy, who smiles, cries, and makes me a happy dad.

To all the people who motivated me to write the book and the team at Packt for their help and support
throughout the process.

About the reviewer
Ankur Daharwal is a seasoned blockchain expert, dedicating more than seven years to pioneering
innovative Web3 solutions. Embarking on his blockchain journey at IBM Blockchain Garage in 2016,
he led transformative global projects in asset management, value exchange, and traceability. Ankur’s
influence extends to leadership roles in prestigious institutions, including the ISO TC307 DLT standards
technical committee and the IIB Council Blockchain Advisory Board, highlighting his commitment to
industry standards. Fueled by a passion for solving real-world challenges and seamlessly integrating
Web3 solutions, his emphasis on trust, transparency, and enhanced user experience is evident in his
contributions to the blockchain domain.

Preface xv

Part 1: Introduction to DeFi Application
Development

1
Introduction to DeFi 3

What is DeFi? 3
Characteristics of DeFi 4
Understanding terminologies 7

Overview of DeFi applications 12
Decentralized exchanges 12
Crypto loans 13
Staking, yield farming, and liquidity mining 14

Architecture of DeFi applications 16
DeFi application frontend 17

DeFi wallet 18
RPC endpoint 19
Interactions between blockchain and oracle 19

Vulnerabilities of DeFi applications 20
Reentrancy 21
Self-destruct operation 22
Gas overflow 22
Random number manipulation 24

Summary 25
Further reading 25

2
Getting Started with DeFi Application Development 27

Technical requirements 27
Creating a DeFi project 28
Installing Node.js 28
Creating a project with create-react-app 30
Installing and configuring Hardhat 32

Writing, compiling,
and deploying a smart
contract in a local environment 34
Writing and compiling a smart contract 35
Bytecode and ABI 36

Table of Contents

Table of Contentsviii

Running a local EVM environment 38
Deploying the smart contract 39

Deploying a smart contract on Testnet 41
Acquiring the RPC endpoint of Testnet 41
Configuring the deployer account 43
Smart contract deployment and verification 46
Adding a deployment script to package.json 49

Testing and debugging
the smart contract 49

Verifying smart contract with
the Hardhat console 49
Writing and running automated
tests for smart contracts 50
Debugging smart contracts with Hardhat 53

Summary 56
Further reading 56

3
Interacting with Smart Contracts and DeFi Wallets in the Frontend 59

Technical requirements 60
Overview of DeFi application
frontend development 60
Running the UI wireframe 60

Deploying smart contract
metadata to the frontend 62
Connecting to a DeFi wallet 64

The architecture of DeFi wallet
connectivity with blockchain 64
Implementing a wallet connection
in the DeFi project 68

Reading data from blockchain 74
Making transactions on blockchain 82
Summary 88

Part 2: Design and Implementation of
a DeFi Application for Trading Cryptos

4
Introduction to Decentralized Exchanges 91

The three main types of DEXs 91
AMMs 92
Order book DEXs 93
DEX aggregators 95

The mathematics of AMMs 96
Relation functions 96
Constant Function Market Maker (CFMM) 96

Liquidity mining and burning 104
Impermanent loss 108

The architecture of AMM 110
Adding liquidity 112
Removing liquidity 115
Swapping 116

Summary 118

Table of Contents ix

5
Building Crypto-Trading Smart Contracts 119

Implementing token
pair smart contracts 120
Creating the skeleton of a token pair 120
Initializing token pairs 121
Storing retrieving token reserves 122
Transferring tokens safely 123
Minting LP tokens 124
Reward distribution for liquidity
providers and DEX owners 127
Minting LP tokens for
the DEX owner’s reward 128
Burning liquidity pool tokens 130
Swapping token 131
skim and sync 134

Implementing pair factory
smart contracts 135

Introducing the smart contract source file 136
Creating token pairs 136
Retrieving addresses for token pairs 140
Verifying the token pair factory 141

Implementing AMM
router smart contracts 144
Liquidity provisioning 145
Liquidity removal 148
Swapping 148

Verifying DEX smart contracts 152
Deploying AMMRouter with a script 152
Verifying smart contracts using
the Hardhat console 153

Summary 160

6
Implementing a Liquidity Management Frontend with Web3 161

Implementing URL routes
for liquidity management 161
Retrieving liquidity information 165
Checking whether the wallet is connected 166
Getting LP tokens owned by
a connected account 167
Getting the pooled token amount
and liquidity share percentage 172
Finishing up the liquidity listing page 175

Implementing the liquidity
provisioning page 176
Overview of the liquidity provisioning page 176
Frontend workflow of liquidity provisioning 179

Loading the token pair information
from the search parameter 181
Selecting tokens and
providing token amounts 182
Checking the allowance and
increasing the allowance 186
Interacting with smart contracts
for adding liquidity 189

Implementing the liquidity
removal page 191
Frontend workflow of liquidity removal 191
Inputting the LP token amount 193
Calculating pooled token amounts 194

Table of Contentsx

Getting the allowance, increasing
the allowance, and removing liquidity 195

Verifying liquidity
management pages 197
Summary 198

7
Implementing a Token-Swapping Frontend with Web3 199

Overview of the token
swapping frontend 200
Frontend workflow of token swapping 201
Preparing for the token swapping page 203

Generating token swapping paths 204
Building the graph for token pairs 204
Finding all paths given a pair of tokens 209
The default token pair 211

Identifying the best path,
price, and price Impact 212

How does the best path change
for different amounts? 212
Why the reserve can be insufficient 215
Calculating the receiving and
spending amounts with code 216
Calculating the price impact 219

Swapping token – after
a wallet is connected 221
Improving user experiences
for token swapping 223
Summary 225

8
Working with Native Tokens 227

Diving into the WETH
smart contract 227
Demystifying the WETH smart contract 228
Verifying a WETH smart contract
with the Hardhat console 230

Refactoring smart contracts to
support native tokens in a DEX 232
The router as the intermediary 233
Function definitions for native
tokens in the router 234
Improving AMMRouter to
support the native token 236

Implementing addLiquidityETH
and removeLiquidityETH 238
Implementing token-swapping
functions to support ETH 240

Implementing the DEX
frontend for the native token 245
Supporting the native token in
the liquidity management pages 247
Supporting the native token on
the token-swapping page 251

Summary 261

Table of Contents xi

Part 3: Building a DeFi Application
for Staking and Yield Farming

9
Building Smart Contracts for Staking and Farming 265

Understanding the architectures
of staking and farming 266
Two types of architectures for staking 266

Calculating the reward
for staking and farming 268
Reward per block, starting block,
and ending block 269
Share, reward per share, and reward debt 270

Implementing the staking
pool smart contract 273
Defining smart contract variables
and implementing
a constructor 273
Updating the parameters for
the staking pool 275

Implementing the deposit and
withdraw functions 278
Implementing the utility functions
of the staking pool 280
Implementing the smart contract
for staking pool management 284

Verifying staking pool
smart contracts 286
Implementing the command to
mine blocks with Hardhat 286
Verifying staking pool smart
contracts in the Hardhat console 287

Summary 292

10
Implementing a Frontend for Staking and Farming 293

Overview of frontend pages
for staking and farming 293
Implementing a staking
pool listing dashboard 295
Retrieve staking pools 296
Use the accordion component
to show the list 298
Hide expired pools 302

Implementing pages for creating
staking pools and supplying rewards 304

Improving the token selection
modal component 304
Implementing a page to create a staking pool 306
Implementing a page for supplying rewards 310

Implementing frontend
components for deposits,
withdrawals, and harvesting 312
Deposit page for staking pools 313
Withdrawal page for staking pools 314
Implementing the harvest function 316

Table of Contentsxii

Implementing the farming frontend 318
Refactoring frontend code for farming 320

Summary 324

Part 4: Building a Crypto Loan App for
Lending and Borrowing

11
An Introduction to Crypto Loans 327

Technical requirements 328
Exploring the characteristics
of a crypto loan 328
Zero waiting time for approval 328
No credit checks 328
No term constraints 329
No requirement for selling out
of crypto holdings 329

Designing crypto loan
smart contracts 330
Crypto loan personas 330
The architecture of a crypto loan
smart contract 331

Understanding interest rate
model and pool configuration 334
The borrowing interest rate
and lending interest rate 334

Demystifying the interest rate model 337
The collateral rate 339
The liquidation bonus rate 341
Implementing the pool configuration
smart contract 343

Implementing an asset pool
share and its deployer 345
Introducing an asset pool share 345
Implementing the asset pool
share smart contract 346
Implementing the asset pool share deployer 348

Exploring a crypto loan system
by example 349
An introduction to Aave 349
An Aave protocol version 2 overview 349
New features in the Aave protocol version 3 354

Summary 355

12
Implementing an Asset Pool Smart Contract for a Crypto Loan 357

Technical requirements 357
Implementing the code
to manage the asset pools 358
Pool status 358

Pool management 359
Pool parameter calculation 362

Managing records in user ledgers 365

Table of Contents xiii

Amount conversion between
shares and asset tokens 366
Retrieving user-lending
and -borrowing information 369
User account healthiness 370

Implementing the functions
for user requests 372
Depositing 373
Withdrawal 374
Borrowing 377

Repaying 379
Liquidation 382
Withdrawing the reserve 385

Deploying and testing
the crypto loan smart contracts 386
Deploying crypto loan smart contracts 386
Configuring asset pools for crypto loans 387
Testing crypto loan smart contracts 388

Summary 393

13
Implementing a Price Oracle for Crypto Loans 395

How price manipulation attacks are
carried out on crypto loan systems 395
Executing a crypto loan exploit 396
An example of attacking crypto loan
systems with price manipulation 397

Building an on-chain price
oracle with cumulative prices 402
Calculating cumulative prices 404
Calculating time-weighted average prices 405
Calculating prices with the moving window 406

Implementing a manipulation-
resistant price oracle smart contract 409

Updating information when the reserve
amount changes in a liquidity pool 410
Information update for the current
period in the price oracle 413
Calculating the token price in the price oracle 416

Deploying, maintaining, and
verifying the price oracle 419
Deploying the PriceOracleV2 smart contract 419
Price oracle maintenance 420
Verifying the manipulation-resistant
price oracle 421

Summary 423

14
Implementing the Crypto Loan Frontend with Web3 425

Technical requirements 425
Implementing the account summary
and asset pool listing page 426
Implementing the UI components in
ListAssetPools.js 427

Retrieving the user summary
information for the crypto loan system 428
Retrieving the information for all asset pools 430

Implementing the pages
for deposit, withdrawal,
borrowing, and repayment 432

Table of Contentsxiv

Implementing the deposit page 433
Implementing the withdrawal page 436
Implementing the borrowing page 440
Implementing the repayment page 443

Best practices for decentralized
crypto loan systems 446

Select blue chip assets 446
Liquidity utilization rate maintenance 446
Monitoring and liquidating
unhealthy accounts 447
Closed asset pools 448
Disabling the use of assets as collateral 448

Summary 449

Index 451

Other Books You May Enjoy 464

Preface

Decentralized Finance (DeFi) is one of the most popular technologies of the Web3 era. It incentivizes
people to come to the world of blockchain for investment and makes blockchain the Internet of Money.
Since Ethereum was born, there have been tremendous Decentralized Applications (DApps) built
on top of various blockchain networks. DeFi applications constitute a giant share of DApps because
of the innovation they bring and their ease of adoption by new users.

There are many resources that introduce the Web3 revolution, including elaborating the concepts
and usage of DeFi applications. However, when interacting with various DeFi applications such as
Decentralized Exchanges (DEXs) or crypto loan systems, users may be curious about the concepts
involved (such as liquidity pools), the mathematics behind the scenes, and how they might build a
profitable DeFi application. This book will reveal the mystery and make you an expert in building
various DeFi applications.

After exploring various DeFi applications on the market, I found that DeFi jargon and applications
usually come from simple mathematics and classic financial principles. If you have an engineering
background, it will be easier for you to dive in and implement DeFi concepts with code once you
understand the underlying principles.

In this book, you will explore some of the most popular DeFi applications. For every DeFi application,
you will start by learning what it is, how it works with the aid of mathematical formulas and architecture
diagrams, and then implement the core – the math and the business logic – and finally, you will see
how we wrap the core with UI code to make it a ready-to-use application.

There are thousands of DeFi projects on the market that offer various applications and continue to
empower blockchain as the Internet of Money. A lot of traditional companies are approaching Web3
and especially applying DeFi to monetize their products and acquire customers. Meanwhile, Web3-
native projects and start-ups are still booming. This book will help you gain practical experience in
building and adopting DeFi and Web3 technologies for your projects and businesses.

Who this book is for
Whether you have DeFi experience or not, you will gain practical skills with experience of building
full stack applications. Even if you have no experience in programming, this book will help you to
understand how various DeFi applications work and how to build these features from a high-level view.

Prefacexvi

There are four main personas that are the target audience of the book:

• Web3 developers who want to advance their knowledge of DeFi and gain hands-on experience
with DeFi applications

• Software engineers who are not familiar with DeFi or Web3 but want to dive into the area and
learn how to build DeFi applications

• DeFi application users and crypto investors who want to learn how DeFi works and use DeFi
products to optimize their return on investment

• Entrepreneurs seeking to introduce DeFi features into their business or wanting to learn how
to monetize DeFi applications

What this book covers
Chapter 1, Introduction to DeFi, explores the main characteristics of DeFi and introduces some of the
popular DeFi applications. It also discusses the general architecture of DeFi applications, uncovers
possible vulnerabilities in DeFi applications, and provides solutions.

Chapter 2, Getting Started with DeFi Application Development, shows how to create a starter DeFi
project with an ERC20 token smart contract using the Solidity programming language that will run
on Ethereum Virtual Machine (EVM). You will learn how to use Hardhat to compile, deploy, and
debug the smart contract.

Chapter 3, Interacting with Smart Contracts and DeFi Wallets in the Frontend, guides you through
building the frontend of DeFi applications with Node.js, React.js, and Material UI. You will also learn
how to write code for interacting with smart contracts and connecting DeFi wallets to your applications
to call smart contract functions.

Chapter 4, Introduction to Decentralized Exchanges, introduces different types of DEX. It dives into
Automated Market Maker (AMM), which is a type of DEX we will build in this book. Meanwhile,
we will explore the mathematics principles and the architecture of AMM.

Chapter 5, Building Crypto-Trading Smart Contracts, explores how to write smart contracts for token
swapping, liquidity pool minting, and liquidity pool burning for a Constant Product Market Maker
(CPMM), which is one of the most popular types of AMM on the market. By reading through the
chapter, you will also learn how to deploy and verify smart contracts.

Chapter 6, Implementing a Liquidity Management Frontend with Web3, guides you through the process
of building a frontend for liquidity management, including adding and removing liquidity. You will
learn how to use ethers.js to interact with the smart contracts implemented in Chapter 5, Building
Crypto-Trading Smart Contracts.

Preface xvii

Chapter 7, Implementing a Token-Swapping Frontend with Web3, explores how to write the code for
the frontend for the user to perform token swapping. Besides that, this chapter also discusses and
implements code to find the swapping path between any pair of tokens in the DEX using a graph and
explores how to calculate the price impact for each swapping.

Chapter 8, Working with Native Tokens, discusses how to deal with the native tokens of a blockchain
network in smart contracts. It also shows you how to support native tokens in the smart contracts.
Meanwhile, this chapter also implements improvements to the frontend code from Chapter 6,
Implementing a Liquidity Management Frontend with Web3 and Chapter 7, Implementing a Token-
Swapping Frontend with Web3 to support native tokens.

Chapter 9, Building Smart Contracts for Staking and Farming, explains the two DeFi features: of staking
and farming by diving into the architecture and reward calculation. It also shows how to implement
and verify smart contracts for staking and farming.

Chapter 10, Implementing a Frontend for Staking and Farming, guides you through the implementation
of the staking pool listing dashboard, the pages for administrators to create staking, pool, and supply
rewards, as well as the pages for users to deposit and withdraw tokens and harvest rewards.

Chapter 11, Introduction to Crypto Loans, introduces the characteristics of a crypto loan system and the
architecture of the crypto loan smart contract we will build in this book. It also discusses the interest
rate model we will use for our crypto loans, the concept of an asset pool, and the token to represent
the shares of the asset pools.

Chapter 12, Implementing an Asset Pool Smart Contract for a Crypto Loan, explores the implementation
of the most important component of a crypto loan system: asset pool smart contracts. By exploring
this smart contract, you will learn how assets are managed and how user ledgers are implemented to
keep track of lending and borrowing records.

Chapter 13, Implementing a Price Oracle for Crypto Loans, introduces and implements a price oracle
smart contract based on the DEX implemented in Chapter 5, Building Crypto-Trading Smart Contracts.
A price oracle is an essential component of a crypto loan system. After implementing the price oracle,
the chapter also shows you how to deploy and run the price oracle for a crypto loan system.

Chapter 14, Implementing the Crypto Loan Frontend with Web3, discusses how to interact with the
smart contracts in a crypto loan system with ethers.js. It guides you through the implementation of a
crypto loan frontend, including the pages for displaying account summaries and asset pool information.
Also, you will learn how to implement the pages for deposit, withdrawal, borrowing, and repayment
by interacting with crypto loan smart contracts.

Prefacexviii

To get the most out of this book
You need to have basic knowledge of programming and building software to read through the code
examples in this book. If you have some experience with Solidity, JavaScript, and/or React.js, you will
have a smoother experience of learning with the book.

Software/hardware covered in the book Operating system requirements

Solidity Windows, macOS, or Linux

Node.js Windows, macOS, or Linux

React.js Windows, macOS, or Linux

Ethers.js Windows, macOS, or Linux

Hardhat Windows, macOS, or Linux

Material UI Windows, macOS, or Linux

The book provides guidance to install and configure the software and tools whenever it is necessary.
For now, it is totally fine if you have no idea what they are, because it won’t impact your understanding
of the DeFi concepts we introduce in this book. But we highly encourage you to refer to the official
documentation or communities for more information on these tools to help you while exploring
the book.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Besides the code, the book also elaborates on several concepts in DeFi. We highly recommend
you read the links in the Further reading sections in some of the chapters to learn the background
and knowledge behind the concepts.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Building-Full-stack-DeFi-Application. If there’s an update
to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface xix

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “First,
let’s create a file called TokenPair.sol in the src/backend/contracts/ folder.”

A block of code is set as follows:

pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "./interfaces/ITokenPair.sol";
contract TokenPair is ITokenPair, ERC20 {

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

<Routes>
 <Route path='/' element={<TokenOperations />} />
 <Route path='/liquidity/*' element={<LiquidityRouter />} />
</Routes>

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “To do that, you can click the icon on
the top-right corner of the MetaMask plugin, go to Settings, click Advanced, click the Clear activity
tab data button, and confirm the operation in the popup dialog.”

Tips or important notes
Appear like this.

Prefacexx

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Building Full Stack DeFi Applications, we’d love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1-837-63411-4
https://packt.link/r/1-837-63411-4

Preface xxi

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837634118

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781837634118

Part 1:
Introduction to DeFi

Application Development

In this first part, you will get an overview of Decentralized Finance (DeFi) and learn the generic
architecture of DeFi applications. Building on the concepts you will learn, you will start building a
DeFi application by creating a starter project. You will learn how to use Hardhat to build, deploy, and
debug smart contracts written with Solidity, test smart contracts with JavaScript, interact with smart
contracts from UI with Ethers.js and React.js, and the DeFi wallet connection with the UI.

This part has the following chapters:

• Chapter 1, Introduction to DeFi

• Chapter 2, Getting Started with DeFi Application Development

• Chapter 3, Interacting with Smart Contracts and DeFi Wallets in the Frontend

1
Introduction to DeFi

Decentralized finance (DeFi) is one of the most popular topics when it comes to the cryptocurrency
world. There are billions of dollars worth of cryptocurrencies running through various DeFi products
every day. More and more cryptocurrency and blockchain projects started to build DeFi applications
to expand the user communities and generate more cryptocurrency incomes.

In this chapter, we’ll introduce DeFi by explaining its main characteristics and terminologies. Then,
we will cover some popular DeFi applications, and demonstrate the architecture of DeFi applications.
Finally, we will discuss the vulnerable design and implementations of DeFi and their solutions. The
topics that will be discussed in this chapter are essential to building DeFi applications and will help
you understand how various DeFi applications work on blockchain.

By reading this chapter, you will do the following:

• Get an overview of DeFi and understand its main concepts

• Learn what people can do with several types of DeFi applications

• Understand the architecture of DeFi applications

• Discover the potential vulnerabilities in DeFi applications and their solutions

What is DeFi?
DeFi is an emerging financial technology based on distributed ledgers to support building financial
applications. To be more specific, DeFi refers to financial applications that are built on blockchain
technologies, typically using smart contracts, which are agreements that are enforced to run automatically
on blockchain. Besides that, a complete DeFi solution may also leverage existing technologies such as
remote procedure call (RPC) and frontend libraries to make it a full stack DeFi application.

In the era of Web3, DeFi is tied with blockchain, and people started using DeFi on the day Bitcoin was
launched in 2009. However, the word DeFi was born almost 10 years later. It was first mentioned in
a Telegram chat between Ethereum developers and entrepreneurs in August 2018. It was referred to
as an open protocol for finance applications running on the Ethereum network at that time. Then, it

Introduction to DeFi4

became a buzzword across the crypto world. Nowadays, we can see many types of DeFi applications
running on various blockchains, including Ethereum, Binance Smart Chain, Polygon, and Solana.
These applications allow people to swap cryptocurrencies, earn interest by deposit, and get crypto
loans. Next, we are going to discuss the characteristics of these DeFi applications.

Characteristics of DeFi

The main characteristics of DeFi differ compared to traditional finance services and applications.
Let’s take a closer look.

Decentralization

The word decentralization is how DeFi got its name. It means that there are no centralized institutes
such as banks or other financial institutions to manage or control transactions. We usually call the
financial services with centralized institutes centralized finance (CeFi). Unlike CeFi, DeFi adopted
blockchain technologies to remove third parties and centralized institutions when making transactions.
The transactions are run on public blockchains such as Ethereum. Usually, these blockchains that
run the DeFi applications have thousands of nodes; they run DeFi smart contracts and leverage
some consensus methods to generate transaction records in blocks. Figure 1.1 shows the differences
between CeFi and DeFi:

Figure 1.1 – CeFi versus DeFi

What is DeFi? 5

Note
As a decentralized system, DeFi applications have no centralized party that has more privileges
than others. However, a DeFi project could be centralized if the DeFi smart contract doesn’t
renounce ownership and/or a group of users has more privileges than others.

Transparency

The DeFi application transactions are visible to everyone through blockchain explorers. Although
people don’t know who owns the address, they can see when a transaction is made, as well as what
events and parameters are emitted for the transaction.

Some DeFi applications have their source code open sourced. This helps people understand how
these smart contracts work. Even for close sourced smart contracts, they can easily be converted into
bytecode to make people understand what the code does. Figure 1.2 shows the bytecode of a smart
contract and its decompiled code on etherscan.io:

Figure 1.2 – Bytecode of a smart contract and bytecode decompilation on Etherscan.io

http://etherscan.io

Introduction to DeFi6

Open

We can access all the programs running on the public blockchain, regardless of where we are and who
deployed the code. This is also true for DeFi. DeFi removes the borders of countries and ensures that
everyone can use the same finance services equally. There are no differences between international
transactions and transactions happening in the same city. DeFi makes our assets accessible globally
and seamlessly. It’s just like what the internet did for information transferring; thus, DeFi is also called
the Internet of Value.

Non-custodial

DeFi enables users to “custody” or control their crypto assets, instead of adopting intermediaries for
securing or managing transactions or assets. Users have total control over the funds and how to use
them by interacting with the DeFi applications. So, DeFi apps are non-custodial because users always
maintain control of their cryptocurrency.

Anonymous

For traditional financial services, users must provide personal information such as their ID and contact
information to access them. Conversely, DeFi applications do not require users to provide personal
information and they can remain anonymous when using the DeFi services. What DeFi users need to
have is a wallet address. This wallet address is a hashed string based on some encryption algorithms.
Other people cannot tell who the owner of a specific wallet is and how many wallets belong to a user
based on the on-chain data.

Note
We will use the term on-chain as a short form to describe data stored or code executed on the
blockchain. Meanwhile, we’ll use the term off-chain to describe the data that’s not stored or
code that’s not executed on the blockchain.

Zero downtime

Usually, a traditional financial service has some of its services open only during business hours.
For example, the stock market is only open for a few hours a day and is closed on weekends and
holidays. On the other hand, DeFi applications are on 24/7, so users can access the service any time
on the blockchain.

What is DeFi? 7

Note
There are some extreme cases where a DeFi application goes down when the underlying
blockchain has insufficient nodes to run, or transaction consensus is controlled by a small
group of nodes that are managed by centralized organizations. For example, Binance shut
down Binance Smart Chain in early October 2022 to prevent potential exploits. In this case,
the blockchain breaks the rule of decentralization.

With that, we’ve looked at the six key characteristics of DeFi. There are several terminologies when
entering the world of DeFi. We will discuss some of these terms in the next section and explain the
remaining in the future chapters of this book.

Understanding terminologies

You may have heard of terms such as ERC-20, liquidity, Oracle, TVL, or APY when you came to
the world of DeFi. Let’s discuss several of these terminologies as we will mention them frequently
throughout our DeFi application development.

ERC-20

ERC-20 defines the standard of fungible tokens on the Ethereum blockchain. Fungible tokens
are cryptocurrencies that people talk about. The smart contracts of fungible tokens implement
cryptocurrencies that are exchangeable. This means the value of a token is the same as another token
of the same cryptocurrency. For example, the value of 1 Bitcoin in Sam’s wallet is the same as 1 Bitcoin
in Alice’s wallet. These characteristics of fungible tokens are different from non-fungible tokens
(NFTs). With the smart contracts of NFTs, one token is different from another token implemented
with the same smart contract. The reason is that each token has a unique ID, so the metadata and
price could be different.

An ERC-20 token follows the standard interface to implement its smart contract to approve, transfer,
and get the balances of the token.

The fungible token standard is especially important for building DeFi applications. It enables token
compatibility across different decentralized applications (DApps) and makes DeFi applications
support transactions with different tokens if the standard is followed by these tokens. For example,
users can swap one type of ERC-20 token with another type of ERC-20 token.

Introduction to DeFi8

Note
ETH (Ethereum) is a type of “coin,” not an ERC-20 token, because it is the native cryptocurrency
of Ethereum, which is its own blockchain. Also, ETH is not an ERC-20 token. Token here
means a type of cryptocurrency that doesn’t run on its own blockchain and operates on existing
blockchain(s). For example, Shiba Inu Token (SHIB) is a token on the existing Ethereum
blockchain and other Ethereum Virtual Machine (EVM)-compatible blockchains, but it
doesn’t run on its own blockchain.

There are other token standards such as BEP-20 (for Binance Smart Chain) or TRC-20 (for
TRON blockchain). These are the fungible token standards of other EVM-compatible blockchains.
The interface definition is the same as ERC-20, but the cost of transactions, performance, and
security are different based on the design of these blockchains.

We will work with ERC-20 tokens in this book to build a real-world DeFi application. To support
non-standard coins or tokens on blockchains, people implemented wrapped tokens that conform to
these standards (such as ERC-20), such as Wrapped ETH (WETH) for Ethereum and Wrapped BNB
(WBNB) for Binance. Wrapped tokens are widely used to support the unified interface so that it can
interact with DeFi smart contracts. We will learn more about wrapped tokens in Part 2, Designing
and Implementing a DeFi Application for Trading Cryptos.

Liquidity

Liquidity may be a new concept for developers who’ve just started to learn about DeFi. However, liquidity
is a fundamental concept for both DeFi and traditional finance services. It describes whether users can
buy and sell an asset through a trading market and how efficiently they can make these transactions.

For example, a cryptocurrency project may have liquidity, which means people can buy and sell the
cryptocurrency somewhere. If it does not have liquidity, there are no reserves for people to find the
price of the cryptocurrency, and users will not be able to buy and sell the cryptocurrency through a
trading market.

A liquidity pool is a place to hold the liquidity for people to trade assets. In the DeFi world, it is a specific
smart contract that holds pairs of cryptocurrencies so that people can buy one type of cryptocurrency
with another type of cryptocurrency or sell one for another. We call these buy or sell activities swaps.

A pair of liquidity pools means that the smart contract should hold two types of tokens so that they
can be swapped from one to another. Both types of tokens should follow the standard of the underlying
blockchain (for example, the ERC-20 tokens for Ethereum). For example, for an ETH/USDT liquidity
pool, the smart contract holds an amount of WETH (the wrapped ETH token that follows the ERC-20
standard) and the same value of USDT.

The ratio of the tokens in the liquidity pool defines the prices of the two types of tokens in the pool.
Imagine that we buy ETH with USDT; we must interact with the ETH/USDT liquidity pool. The
purchase means we get ETH from the liquidity pool and put more USDT into the pool. Now, there
are fewer ETH coins and more USDT in the pool for trading. Hence, the price of ETH will rise.

What is DeFi? 9

The amount of liquidity in a liquidity pool determines the stability of the price when people are swapping
tokens. When the liquidity pool is bigger, the ratio of the pooled tokens is more stable for a transaction
of the same amount. People tend to trade using bigger liquidity pools to trade at a more stable price.

Note
If you want to trade ETH with BTC (Bitcoin) in the case that we already have the ETH/USDT
liquidity pool, the DeFi protocol should have another trading pair (ETH/BTC) as a liquidity
pool so that you can trade ETH with BTC. Alternatively, we may have a BTC/USDT liquidity
pool in the same protocol so that you can trade with the BTC -> USDT -> ETH route. However,
it usually takes a higher gas fee to complete the transaction with a lengthy route.

We will discuss how to implement liquidity pools in Part 2, Designing and Implementing a DeFi
Application for Trading Cryptos.

Oracle

Oracle in the Web3 ecosystem does not mean the brand of the database. It is a technology that allows
smart contracts running on a blockchain to access information outside of the system. This information
could come from off-chain or on-chain data sources. If the oracle depends on an off-chain data source,
the smart contract can access centralized Web2 (the internet ecosystem before Web3) systems, so the
smart contract may undermine the benefits that decentralized blockchains bring to us.

Oracle is a very important technology for DeFi applications. For example, if you want to get a reliable
cryptocurrency price compared to a fiat currency, you must retrieve the price data from oracle network(s).

To access oracle services, DeFi smart contracts need to call third-party libraries that are not components
of the system. For example, if you want to create a lottery application on Ethereum, and because there
is no real random number generator for Ethereum, you may need to call Chainlink’s verifiable random
function (VRF) to get true random numbers for selecting winners.

We can implement applications on blockchain for many things we can do in Web2 with oracle,
including accessing the local weather or the price of a product on Amazon, or even calling any existing
services. All these can be done through a hybrid smart contract, which is a kind of smart contract
that can access off-chain systems. You can refer to https://chain.link/education-hub/
hybrid-smart-contracts to learn more about hybrid smart contracts.

In Part 4, Building Crypto Loans for Lending and Borrowing, you will learn how to use oracle to
implement a DeFi crypto loan application.

Total value locked (T VL)

TVL defines the value of the total assets being deposited in a DeFi protocol. Usually, a DeFi protocol
that holds crypto assets has one or more smart contracts with different features running on the
blockchain. TVL is the sum of crypto assets being held by these smart contracts that belong to the

https://chain.link/education-hub/hybrid-smart-contracts
https://chain.link/education-hub/hybrid-smart-contracts

Introduction to DeFi10

same protocol. Usually, the assets consist of multiple types of cryptocurrencies. DeFi projects convert
the sum of these crypto assets into fiat (for example, US dollars) to represent TVL in public.

For example, if a DeFi project owns three liquidity pools with values of $1,000, $2,000, and $3,000, the
TVL of the DeFi project is $6,000. If the project introduced a staking pool that has $2,000 worth of
assets in it, the TVL of the DeFi project will become $8,000 by adding the $2,000 worth of staking pool.

Note
The word “locked” in the term TVL doesn’t mean withdrawals or asset transfers are not
allowed. The smart contracts may still allow people to swap, add or remove liquidity, and stake
or unstake tokens that impact the amount and value of cryptocurrencies being held by these
smart contracts. The TVL will change accordingly.

Most public DeFi projects provide a public API for people to access TVL. DefiLlama (https://
defillama.com/) is one such platform that uses a public API to collect data from DeFi projects.
Based on the chart shown in Figure 1.3, the total TVL of all the projects they’ve collected was $49.5 billion
in early January 2023. This is 22.3% of the all-time high, which was $213 billion in December 2021:

Figure 1.3 – DefiLlama – the total TVL of DeFi projects

TVL is a significant indicator of a DeFi project. People usually trust DeFi projects that have higher
TVLs. A higher TVL means more capital being held in the platform, and it intends to have a higher
trading volume, which indicates higher yields. Also, a higher TVL means lower risk because the
prices of cryptocurrencies are more stable when people make transactions; it prevents unnecessary
loss caused by fluctuation.

https://defillama.com/
https://defillama.com/

What is DeFi? 11

Annual percentage yield (APY) and annual percentage rate (APR)

APY measures the rate of return when users deposit their cryptocurrencies in DeFi protocols. APY
takes compound interest into account, so it requires users to keep depositing both principal and
interest generated in each cycle for a full year to get the promised yield. However, some DeFi projects
just offer a short-term deposit and an exceedingly high APY to attract users to buy their cryptos.
Sometimes a high APY is a marketing strategy, and most projects only show APY and hide the actual
earning rates users can get.

APR, on the other hand, sums up all the rates from every earning cycle through a year. For example,
if a DeFi project has 12 earning cycles in a year and the earning rate is 1% for each cycle, the APR
will be 12%, which is the sum of 12 1%s.

To calculate the APY, which is the compound yield from APR, we can use the following formula:

 y = (1 + r _ n) n − 1

Where:

• y is the APY

• r is the APR

• n is the number of earning cycles in one year

For example, if a DeFi project offers 12% of APR in earnings and each cycle is one month, which
means there will be 12 cycles in a year, the APY will be as follows:

 (1 + 12% _ 12)
12

 − 1 = 12.68%

If we want to calculate the earning rate for each cycle by giving the APY, the formula is as follows:

 R = n √
_

 y + 1 − 1

Where:

• y is the APY

• R is the earning rate of a single cycle

• n is the number of earning cycles in one year

For example, a promotion activity offers 100% APY for an ETH deposit activity and the deposit term
is 7 days, so the actual rate you can get during those 7 days is as follows:

365/7

 √
_

 100 % + 1 − 1 = 1.34%

Introduction to DeFi12

This means that when you deposit 100 ETH, you will get 1.34 ETH as earnings.

More DeFi terminologies are for specific DeFi features. We will discuss them later in this book.

Overview of DeFi applications
DeFi is one of the vibrant spaces in the Web3 world that people use to manage and grow their crypto
assets. In this section, we will go through the DeFi applications we will build in this book.

Decentralized exchanges

Decentralized exchanges (DEXs) are one of the most popular DeFi applications that people use
because it allows them to buy and sell cryptocurrencies on the blockchain. Different from traditional
exchanges (such as stock exchanges) or centralized exchanges (CEXs), DEX applications are run on
the blockchain in a decentralized manner and people can see the transactions for the smart contracts
of the DEX. There is no intermediary to control the process and hold your funds. And you can get the
result and/or tokens immediately after the transaction is executed by the blockchain.

A CEX for cryptos, on the other hand, is operated by financial service companies; they usually have
crypto assets on blockchains to support on-chain transferring for their customers. However, the
transactions and liquidities are maintained internally within the service institution and may not be
visible outside of CEX.

Centralization is an issue that negatively affects security, trust, and privacy. The main reason is a
lack of transparency and that people in CEXs can leverage the disclosed information (for example,
upcoming promotion activities) to gain profit or even take money directly from customers. The recent
bankruptcy news of FTX reported that they took at least $8 billion of their customers’ money and that
this money may be lost permanently.

Automated market maker (AMM) is a type of DEX that allows cryptocurrencies to be bought and sold
automatically based on the prices calculated from liquidity reserves in DEXs. AMMs are implemented
with smart contracts that hold liquidity as reserves on the blockchain, which allow users to easily trade
on-chain assets. They usually offer rewards to liquidity providers (the people who provide tokens that
become part of liquidity in the DEX) from a small portion of trading volumes. Figure 1.4 shows the
workflow of an AMM:

Overview of DeFi applications 13

Figure 1.4 – Overview of AMM workflows

We will walk you through the process of building a full stack AMM (which is also a DEX) in Part 2,
Designing and Implementing a DeFi Application for Trading Cryptos.

Crypto loans

Loans may be the most useful financial tools in our everyday lives. You can get property loans to
purchase a new house. Meanwhile, you can deposit your money to earn interest, and banks may lend
your saved money to other borrowers in the form of loans. This idea behind the scenes also applies
to crypto loans.

A crypto loan is one of the most important DeFi use cases. The largest crypto loan project, AAVE,
has $6 billion of TVL for their lending pool based on the information from their official website
(https://aave.com/). More Web3 projects adopted crypto loans as their portfolios because of
the high market potential of crypto loans.

Crypto loans have many use cases and can benefit diverse groups of DeFi users:

• For online shopping, people can borrow platform-supported cryptos by providing collateral
cryptocurrencies. For example, some online shopping companies only support Bitcoin or
stablecoins such as USDT. People can provide ETH or BNB as collaterals and borrow Bitcoin
and stablecoins without selling the ETH or BNB they hold.

• For business, a company can raise money by providing crypto assets as collateral. In return,
they can borrow stablecoins or other tokens to grow the business.

https://aave.com/

Introduction to DeFi14

• For cryptocurrency investment, crypto loans can help people reduce the risk of fluctuation
of the crypto market. For example, let’s say you found a highly rewarded program for token
A, but you only have USDT at hand. You can get token A by lending USDT without selling it.
You can still get the original provided USDT back, so long as you pay back token A regardless
of the price fluctuation of token A.

The term collateral has been mentioned several times regarding crypto loans. Collateral is the assets
that a user provides to guarantee that this user will repay the loan when they borrow. For example,
you can obtain property loans from a bank for your house and the bank could be an owner of the
house because the house is the collateral. Collateral can also represent the assets a user deposited to
earn interest.

Figure 1.5 shows the workflow of crypto loans in DeFi:

Figure 1.5 – The workflow for crypto loans

Usually, a crypto loan should support at least four operations: Deposit, Borrow, Repay, and Withdraw.
To prevent loss when the collateral loses its value or the borrowed assets become more valuable, DeFi
projects utilize a borrow limit with loan-to-value (LTV) and a liquidation process by providing the
borrowed assets with a percentage of rewards. We will talk more about these when we implement a
crypto loan application in Part 4, Building Crypto Loans for Lending and Borrowing.

Staking, yield farming, and liquidity mining

Staking, yield farming, and liquidity mining are three DeFi technologies that can generate passive
income and enable cryptocurrency holders to earn more by depositing existing assets on the blockchain.
In general, the relationship between the three DeFi technologies is shown in Figure 1.6:

Overview of DeFi applications 15

Figure 1.6 – The general relationships between staking, yield farming, and liquidity mining

Generally, staking means any action using some mechanism to generate passive earnings by holding
users’ assets in another place (not the user’s wallet). This place could be on a blockchain or a
centralized institute (for example, a CEX). Staking is a broader concept that people can earn from
the three mechanisms:

• Blockchain consensus mechanisms such as proof of stake (PoS) or proof of transfer (PoX).

• Reward distribution. This means that some rewards will be distributed to certain places, such
as staking smart contracts. Then, the rewards will be distributed to users with a fixed or floating
APY when the user unstakes.

• DEX swapping fees. When the user adds liquidities to liquidity pools, a small portion of the
transaction fees from the DEX will be used to reward liquidity pool providers as passive income.
Users can earn it by holding liquidity pool tokens.

Note
In most scenarios, staking means getting rewards by depositing one type of cryptocurrency.
This is what we will build later in Part 3, Building DeFi Staking and Yield Farming.

In DeFi, liquidity mining means that users can get newly mined liquidity pool tokens (LP tokens)
by providing liquidity. These LP tokens represent the share of the user’s contribution to a liquidity
pool. Then, they can earn a portion of swapping fees from DEX as liquidity pool rewards.

Yield farming offers a way to maximize user compensation by providing liquidity. Although liquidity
mining is one of the most popular types of yield farming, yield farming can stimulate yield farmers
(yield farming users) to stake LP tokens by providing extra rewards from reward distributions. This
encourages yield farmers to not remove liquidity from liquidity pools and make liquidity pools more
stable and healthier. For example, yield farmers can get a CAKE token in PancakeSwap yield farming,
so they can get both a liquidity pool reward and a farming reward (the CAKE token).

Note
Liquidity mining is a specific type of yield farming that doesn’t provide extra farming rewards.
The yield is only a liquidity pool reward in this case.

Introduction to DeFi16

Table 1.1 summarizes the different ways of earning from staking, yield farming, and liquidity mining
in DeFi:

Ways of Earning Staking Yield Farming Liquidity Mining

Swapping fee (liquidity pool reward) Yes Yes Yes

Reward distribution Yes Yes No

Blockchain consensus mechanism Yes No No

Table 1.1 – Ways of earning for staking, yield farming, and liquidity mining in DeFi

We will learn how to build a full stack DeFi application with liquidity mining in Part 2, Designing and
Implementing a DeFi Application for Trading Cryptos. We will add staking and yield farming features
to the application in Part 3, Building DeFi Staking and Yield Farming.

There are more interesting DeFi applications that are not covered in this book, such as insurance, stablecoins,
and decentralized autonomous organizations (DAOs). Please refer to https://101blockchains.
com/decentralized-finance-applications/ for more information.

In the next section, we will explore the building blocks of DeFi applications by demonstrating the
DeFi application architecture.

Architecture of DeFi applications
As we mentioned earlier, decentralization is one of the most noteworthy features of DeFi. It also means
using a different architecture when building DeFi applications compared to non-Web3 applications.

When building an application that is either on-premises or on the cloud, we rely on a node or a group
of nodes to run the business logic of the application. These nodes are either managed by business
owners or cloud vendors. This means that we know who is running our services and are responsible
for the healthiness of these nodes.

In the Web3 era, the business logic is run in blockchain. We don’t need to care about which nodes
are running our code because these nodes are self-organized based on the same blockchain protocol
and use some consensus mechanism to secure the transactions. We don’t need to set up a server
or subscribe to cloud services. What we do need to do, however, is deploy smart contracts on the
blockchain and pay the gas fees.

https://101blockchains.com/decentralized-finance-applications/
https://101blockchains.com/decentralized-finance-applications/

Architecture of DeFi applications 17

Figure 1.7 shows the architecture of DeFi applications:

Figure 1.7 – The architecture of DeFi applications

Different from the architecture of traditional financial services, the business logic for DeFi does not
require business-owned nodes to run. The user’s data is stored on blockchains, and the transactions
are run on blockchains. Based on Figure 1.7, let’s look at the different components of DeFi applications.

DeFi application frontend

The DeFi application frontend is the user interface (UI) for accessing DeFi applications, although
users can call smart contracts directly via RPC endpoints. The frontend can be a web page or mobile
user interface. These frontend implementations are provided by DeFi developers for users to interact
with smart contract functions much more easily. The code that accesses the blockchain for these web
pages is usually implemented with the JavaScript or TypeScript programming language.

Introduction to DeFi18

Usually, developers use Web3 frontend libraries such as web3.js or ethers.js for developing
DeFi application web pages (frontend code) more easily. These libraries wrap up the connection,
authentication, and RPC calls to smart contracts.

Note
Some of the libraries also provide support for other programming languages, such as Python
and Java, so that developers can access the blockchain from backend servers. However, a
decentralized system should not rely on the backend server code. The code of a DeFi application
should be run on the client side (for example, a user’s web browser) and the blockchain. This
is the rule we will follow when building DeFi applications in this book.

DeFi wallet

A DeFi wallet identifies a Web3 account that the user owns. DeFi applications can authorize the user
to access the information owned by this user or perform permitted actions on the blockchain.

Compared to traditional applications, the DeFi wallet offers a more convenient process to use applications.
Remember that, with traditional applications, you must register accounts for every application, note
down the password, and worry about whether your personal information is being leaked to attackers.
None of these problems exist when using DeFi wallets.

Creating a Web3 account only requires you to get a DeFi wallet app and follow the wizard when you
open the app for the first time. This process only requires you to back up a seed phrase or private
key and it is not necessary to provide any confidential information. Once you have a DeFi wallet, you
can use the same wallet address to access all DeFi applications if they run on a supported blockchain.

Several DeFi wallet vendors are available, such as MetaMask and Trust Wallet. Most of the vendors
are for software wallets. There are also hardware wallets such as paper (for example, you can write
down the private key or seed phrase and recover it with any DeFi wallet app) or electronic hardware
wallets (for example, Ledger: https://www.ledger.com).

CEX applications also offer wallets so that you can send or receive cryptocurrencies. However, you may
not be allowed to use the wallets to access other DeFi applications or import the wallet into another
DeFi wallet app. The reason is that users do not have access to the private key, so they cannot access
the wallet and the funds in it via other DeFi wallet apps.

https://www.ledger.com

Architecture of DeFi applications 19

Note
Some DeFi wallets require you to back up a 12-word or 24-word seed phrase so that you can
recover the wallet in the future. There are two differences between a seed phrase and a private key:

• One private key maps to one wallet address (account); so, one private key can only be used
for recovering one wallet address. Meanwhile, one set of seed phrases can be mapped to all
addresses and used for recovering all addresses in a DeFi wallet app that belongs to one user.

• One private key can be used to recover a wallet address (account) on any DeFi wallet, whereas
a set of seed phrases generated by one wallet application is not guaranteed to recover the
same set of wallet addresses in a different DeFi wallet application.

RPC endpoint

An RPC endpoint is the entry point for DeFi users and applications to access data and run transactions
on the blockchain. Similar to using REST API calls, users can access the blockchain by sending
requests to the RPC endpoint with a JSON payload to call smart contract functions and get the account
balance in the EVM-based blockchain. https://ethereum.org/en/developers/docs/
apis/json-rpc/ contains more information about JSON-RPC standards and different ways to
call RPC endpoints.

RPC endpoints for Ethereum can be public or private. Public RPC endpoints are shared by others; they
are usually slower and have limitations in terms of throughput compared to private RPC endpoints.

Developers usually use RPC endpoints from different providers for DeFi applications on Ethereum. The
most famous RPC endpoint providers include Infura (https://infura.io/), Ankr (https://
ankr.com/), and Cloudflare (https://cloudflare-eth.com/). At the time of writing
this book, Cloudflare and Ankr provide publicly shared RPC endpoints. While Infura only provides
private RPC endpoints, you can get API keys for free to use the endpoint for your project. This book
suggests using private RPC endpoints for DeFi applications for their reliable connection between the
UI code and blockchain.

You can also refer to https://cointool.app/rpcServer/eth or https://
ethereumnodes.com/ for a list of publicly shared RPC endpoints for Ethereum.

Interactions between blockchain and oracle

As mentioned earlier, oracle is an important technology. Now, let’s discover how a blockchain network
interacts with an oracle network.

An oracle network provides the services that blockchain doesn’t have – for example, to get the price
of a stock, the total revenue of a company in 2022 Q4, or the population of a country. The nodes in
the oracle network may not be decentralized because they are not a part of the blockchain.

https://ethereum.org/en/developers/docs/apis/json-rpc/
https://ethereum.org/en/developers/docs/apis/json-rpc/
https://infura.io/
https://ankr.com/
https://ankr.com/
https://cloudflare-eth.com/
https://cointool.app/rpcServer/eth
https://ethereumnodes.com/
https://ethereumnodes.com/

Introduction to DeFi20

To access the service provided in the oracle network, developers have to implement smart contracts
that call the API provided by oracle. This type of smart contract is called a hybrid smart contract and
it connects the blockchain network and the oracle network. In most cases, developers do not need
to write code to call the API since oracle vendors such as Chainlink already implement some hybrid
smart contracts in popular blockchains. So, you can directly call these smart contracts via Solidity, or
use Web3 libraries to call hybrid smart contract functions directly from the frontend or backend code.

Figure 1.7 shows the basic workflow of accessing an oracle network from the blockchain. It is a two-step
process for each request. The smart contract has to request for the oracle service first. Once the oracle
network completes the request, it will call another section of code in the blockchain (callback) to
fulfill the request.

The reason for leveraging this two-step pattern is that Solidity or Ethereum doesn’t have any synchronization
mechanism to wait for an event in its code. Instead, a smart contract function returns immediately
after a request is sent to the oracle network, at which point an off-chain process will “wait for” the
completion of the request in the oracle network. Finally, the oracle network can call blockchain smart
contract functions again to notify the completion of the request.

Now that we have covered the architecture of DeFi applications, next, we will discuss the possible
vulnerabilities of DeFi applications and some best practices to prevent them from happening.

Vulnerabilities of DeFi applications
DeFi is one of the innovative technologies that introduced new financial activities for people
and potentially changed the existing financial infrastructure. In this section, we will focus on the
vulnerabilities that may occur in DeFi applications, especially the applications we are going to build
in this book since hackers can leverage the vulnerabilities of smart contracts to exploit the crypto
assets from smart contracts and users' wallets. Figure 1.8 shows that the total value hacked for DeFi
has been around $6 billion since mid-2016:

Figure 1.8 – DefiLlama – DeFi loss by month

Vulnerabilities of DeFi applications 21

Fortunately, most of the vulnerabilities have solutions. We will discuss various causes of these
vulnerabilities and best practices to prevent these issues in this section. Some knowledge of the
Solidity programming language will help you understand the code snippets in this section, but it is
not required for you to understand the principles.

Reentrancy

Reentrancy is one of the most destructive security attacks in smart contracts written with Solidity. A
reentrancy attack occurs when a function makes an external call to another untrusted contract. Then,
the untrusted contract makes a recursive call back to the original function in an attempt to drain funds.

For example, an attack smart contract could implement a fallback function that withdraws funds from
a vulnerable smart contract. When the attack smart contract receives the fund, the fallback function
will be called automatically, which makes recursive calls, at which point it will withdraw the fund
again until the fund in the vulnerable smart contract is drained. Figure 1.9 demonstrates the sequence
of actions to perform this attack:

Figure 1.9 – The workflow of a reentrancy attack

To find the relevant code example and learn more about reentrancy attacks, please go to https://
solidity-by-example.org/hacks/re-entrancy/.

To prevent a reentrancy attack, we will use ReentrancyGuard from the OpenZeppelin (https://
www.openzeppelin.com/) library when building DeFi applications later in this book.

https://solidity-by-example.org/hacks/re-entrancy/
https://solidity-by-example.org/hacks/re-entrancy/
https://www.openzeppelin.com/
https://www.openzeppelin.com/

Introduction to DeFi22

Self-destruct operation

In the early days of Ethereum, one of the earliest DAO projects lost $3.6 million worth of ETH due to
a hack. What’s even worse is that the attack continued for days due to the immutability of the smart
contract on the blockchain, so the developer could not add a function to take back the ETH from
smart contracts or destroy the smart contract to prevent hacking. In 2016, Ethereum introduced the
selfdestruct function to serve as an exit door for smart contracts in case of an attack. Here is
an example of how to use the selfdestruct function:

contract SelfdestructExample {
 function killContract(address payable receiver) external {
 selfdestruct(receiver);
 }
}

This code snippet defines a smart contract called SelfdestructExample. A person can call the
killContract function to destroy the smart contract, at which point all the ETH held by the smart
contract will be transferred to receiver when selfdestruct is called.

The behavior of transferring ETH to a specific address could cause a side effect. Hackers can then use
this side effect to forcefully send ETH from a self-destruct smart contract to another smart contract
to make it vulnerable.

The example at https://solidity-by-example.org/hacks/self-destruct/ shows
the act of forcefully transferring ETH to a smart contract to break the rules of the game. There is a
game that only allows players to transfer 1 ETH at a time. The person can win when the balance of
the smart contract is equal to or greater than 7 ETH, and the winner can take all the ETHs. Although
the game smart contract only allows a player to transfer 1 ETH every time, the attacker broke the
rule by forcibly transferring more ETHs to the game smart contract in one transaction with the
selfdestruct function.

The solution is using a storage variable in the smart contract to store the balance instead of using
address(current_contract).balance. This will be the source of truth for the smart contract
to rely on, and the selfdestruct function cannot manipulate the variable.

Gas overflow

All the transactions that need to write data on the blockchain need to pay for gas. For EVM-based
blockchains, the gas is precalculated before the transaction and the gas is consumed while executing
the bytecode of the smart contract. However, the gas estimation can be temporarily or consistently
inaccurate due to the indeterminacy of the Solidity programming language and network traffic. As
developers, we need to pay attention to the code that could cause this gas variation and try to optimize
the code.

https://solidity-by-example.org/hacks/self-destruct/

Vulnerabilities of DeFi applications 23

For example, a gaming smart contract may implement a function to reward winners, like so:

function rewardPlayers() external {
 if (isWinner(msg.sender)) {
 safeTransfer(token, msg.sender, winAmount);
 emit Win(msg.sender, winAmount);
 }
}

If isWinner(msg.sender) determines the winner with some randomness at the time of calling
it, it would cause differences between the gas estimation and gas actual usage. This means that the gas
estimation assumes that the safeTransfer function is not called, so it assigns a small amount of
gas to run the transaction. However, at the time of execution, the caller of the function is selected as
the winner, and the safeTransfer call in the if statement exceeds the gas limit, which causes a
denial-of-service (DoS) attack.

Iterations can also cause gas overflow if the size of the iteration grows over time. Figure 1.10 shows
the relationship between gas usage and the number of iterations:

Figure 1.10 – The relationship between gas usage and the number

of iterations (benchmarked with Solidity v0.8.3)

Based on the data shown in Figure 1.10, gas usage grows exponentially along with the number of
iterations. We need to be careful about arrays of a dynamic size and try to reduce this size when possible.

Introduction to DeFi24

There are many ways to prevent gas overflow. The key thing is optimizing the Solidity code by
following good practices. You can refer to https://dev.to/jamiescript/gas-saving-
techniques-in-solidity-324c for some techniques for optimizing your Solidity code to
save gas usage.

Random number manipulation

Randomness drives people to play against uncertainties. Nowadays, DeFi projects are increasingly
introducing lotteries or other forms of randomness to give bonus rewards to their users and attract
more users to use their DeFi applications. However, there is no ideal way to generate random numbers
within EVM-compatible blockchains. This may cause attackers to manipulate the random number
generation and get the number to steal the assets from the reward pool.

If you want to implement a random number generator with the facilities in EVM, you can use code
similar to the following:

/*
 * Returns a random number.
 * If the caller of the function gets a random number
 * that can be divided by 10000, then the caller will win.
 */
function getRandomNumber() private view returns (uint256) {
 return uint256(keccak256(abi.encodePacked(block.timestamp, msg.
sender)));
}

As you can see, the getRandomNumber function returns a random integer. Inside the function, it
concatenates block.timestamp and msg.sender to generate a long byte array, then hashes the
bytes with the keccak256 algorithm to generate a pseudo-random number. Here, msg.sender is
the caller’s address, and block.timestamp is the timestamp field of a block in its header. Because
the timestamp is set by the miner, a hacker can set the block.timestamp function of the next
block by being a miner to generate a random number that makes them win.

To get a true random number, we can use an oracle service such as Chainlink VRF. It relies on many
nodes being on the network to generate a random number that is secure and almost impossible to
manipulate by hackers. However, this random number retrieval requires a request and a callback to
fulfill the request. The duration between the request and its fulfillment may take dozens of seconds
to more than one minute, and each request may take an amount of LINK tokens plus the gas fee. As
a result, it is better for a smart contract that relies on random numbers such as lottery games to wait
for a certain period to reveal rewards instead of doing that on the spot (for example, reveal a group
of winners daily or weekly).

To learn how to get random numbers with Chainlink oracle, go to https://docs.chain.link/
vrf/v2/subscription/examples/get-a-random-number/.

https://dev.to/jamiescript/gas-saving-techniques-in-solidity-324c
https://dev.to/jamiescript/gas-saving-techniques-in-solidity-324c
https://docs.chain.link/vrf/v2/subscription/examples/get-a-random-number/
https://docs.chain.link/vrf/v2/subscription/examples/get-a-random-number/

Summary 25

There are many more types of vulnerabilities in DeFi. We will discuss this in more detail when we
build DeFi applications later in this book. Now, let’s summarize what we have learned so far.

Summary
In this chapter, we learned about the different characteristics of DeFi and understood that decentralization
is the key difference between DeFi and traditional financial solutions. We also went through the
terminologies that will be mentioned frequently throughout the DeFi application development process.
We learned that ERC-20 is the standard of fungible tokens on the Ethereum blockchain; we will build
DeFi smart contracts that support ERC-20 tokens in this book. We also went through the various
DeFi applications we will implement and briefly introduced the main use cases and how they work
for these applications. This information will help you build a high-level view of DeFi applications.

Then, we explored some technical topics that will help us to build a DeFi application. We learned about
the architecture of DeFi applications and went through various components, such as DeFi wallets,
RPC endpoints, blockchain networks, and Oracle networks, and how they work together. Finally, this
chapter explored a few popular vulnerabilities of DeFi applications and how to solve them.

In the next chapter, we will explore more techniques, tools, and libraries that will help us build DeFi
applications. We will create a project for these applications and start to write code and learn how to
use these tools to debug and test DeFi applications.

Further reading
If you want to learn more about the topics mentioned in this chapter, please refer to the following resources:

• What Is Decentralized Finance (DeFi) and How Does It Work: https://www.investopedia.
com/decentralized-finance-defi-5113835

• What Are ERC-20 Tokens on the Ethereum Network: https://www.investopedia.com/
news/what-erc20-and-what-does-it-mean-ethereum/

• What Is a Blockchain Oracle: https://chain.link/education/blockchain-
oracles

• Where Did FTX’s Missing $8 Billion Go? Crypto Investigators Offer New Clues: https://
time.com/6243086/ftx-where-did-money-go/

• BNB Chain Halts After ‘Potential Exploit’ Drained Estimated $100M in Crypto: https://
www.coindesk.com/business/2022/10/06/binance-linked-bnb-price-
falls-close-to-4-on-hack-rumors/

• PancakeSwap – Yield Farming: https://docs.pancakeswap.finance/products/
yield-farming

https://www.investopedia.com/decentralized-finance-defi-5113835
https://www.investopedia.com/decentralized-finance-defi-5113835
https://www.investopedia.com/news/what-erc20-and-what-does-it-mean-ethereum/
https://www.investopedia.com/news/what-erc20-and-what-does-it-mean-ethereum/
https://chain.link/education/blockchain-oracles
https://chain.link/education/blockchain-oracles
https://time.com/6243086/ftx-where-did-money-go/
https://time.com/6243086/ftx-where-did-money-go/
https://www.coindesk.com/business/2022/10/06/binance-linked-bnb-price-falls-close-to-4-on-hack-rumors/
https://www.coindesk.com/business/2022/10/06/binance-linked-bnb-price-falls-close-to-4-on-hack-rumors/
https://www.coindesk.com/business/2022/10/06/binance-linked-bnb-price-falls-close-to-4-on-hack-rumors/
https://docs.pancakeswap.finance/products/yield-farming
https://docs.pancakeswap.finance/products/yield-farming

Introduction to DeFi26

• 30+ Best Decentralized Finance Applications: https://101blockchains.com/
decentralized-finance-applications/

• JSON-RPC API: https://ethereum.org/en/developers/docs/apis/json-rpc/

• Free RPC endpoints for Ethereum: https://ethereumnodes.com/

• Solidity by Example – Re-Entrancy: https://solidity-by-example.org/hacks/
re-entrancy/

• OpenZeppelin source code – ReentrancyGuard.sol: https://github.com/
OpenZeppelin/openzeppelin-contracts/blob/master/contracts/
utils/ReentrancyGuard.sol

• Solidity by Example – Self Destruct: https://solidity-by-example.org/hacks/
self-destruct/

• Gas Saving Techniques in Solidity: https://dev.to/jamiescript/gas-saving-
techniques-in-solidity-324c

• Chainlink – Get a Random Number: https://docs.chain.link/vrf/v2/
subscription/examples/get-a-random-number/

https://101blockchains.com/decentralized-finance-applications/
https://101blockchains.com/decentralized-finance-applications/
https://ethereum.org/en/developers/docs/apis/json-rpc/
https://ethereumnodes.com/
https://solidity-by-example.org/hacks/re-entrancy/
https://solidity-by-example.org/hacks/re-entrancy/
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol
https://solidity-by-example.org/hacks/self-destruct/
https://solidity-by-example.org/hacks/self-destruct/
https://dev.to/jamiescript/gas-saving-techniques-in-solidity-324c
https://dev.to/jamiescript/gas-saving-techniques-in-solidity-324c
https://docs.chain.link/vrf/v2/subscription/examples/get-a-random-number/
https://docs.chain.link/vrf/v2/subscription/examples/get-a-random-number/

2
Getting Started with DeFi
Application Development

We learned the basic concepts of DeFi and the architecture of DeFi applications in , Introduction
to DeFi. In this chapter, we will start building DeFi applications by creating a project to host the
DeFi applications. In future chapters, we will use this project as a base to build applications such as
cryptocurrency trading, liquidity mining, staking, yield farming, and crypto loans.

Starting from this chapter, you will need to try out several commands, follow the explanations, and
understand the code. Then you will be rewarded by gaining the experience of building full stack
DeFi applications. In this chapter, you will learn how to create a full stack DeFi project with Node.js,
React.js, and Hardhat. We will also guide you through the process of developing, building, deploying,
debugging, and testing smart contracts with these tools.

By reading this chapter, you will learn how to do the following:

• Create a DeFi project from scratch

• Create and compile smart contracts in the project

• Deploy smart contracts to a local EVM, Testnet, and Mainnet

• Verify smart contracts with the Hardhat console

• Develop automated test cases for smart contracts

• Debug smart contracts with the Hardhat library

Technical requirements
In this chapter, we’ll create a new DeFi project using Node.js, JavaScript, and Solidity. To build the
frontend of the project, we will use React.js. Additionally, we’ll utilize the Hardhat library to access
smart contracts for frontend code, verification, and debugging.

Getting Started with DeFi Application Development28

For your convenience, we have set up a GitHub repository at https://github.com/
PacktPublishing/Building-Full-stack-DeFi-Application. You can find all the
code of the DeFi applications built in this book in this repository. When you start reading a chapter
(e.g., Chapter XX), clone the code from the repository’s chapterXX-start branch. If you need
to refer to the completed code after reading the chapter, you can find it in the chapterXX-end
branch. Basic knowledge of JavaScript, React.js, and Solidity will help you understand the provided
code examples. No prior knowledge of Node.js or Hardhat is required, although it can enhance your
comprehension of the material.

Creating a DeFi project
In this section, we will go through the steps of creating a DeFi project. First, we will install Node.js,
and then use the create-react-app package to create the project. After that, we will install and
set up Hardhat for Ethereum smart contract development.

Installing Node.js

Node.js (https://nodejs.org/) is one of the most popular tools to create JavaScript projects.
It also offers package management and runtime environment provisioning. To install Node.js, we can
open the https://nodejs.org/ link in our preferred browser. Figure 2.1 shows the landing page
of Node.js; you can click the green button on the left side to download the latest long-term support
(LTS) version.

Figure 2.1 – Node.js official landing page

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application
https://nodejs.org/
https://nodejs.org/

Creating a DeFi project 29

We recommend you use the latest LTS for the DeFi project in order to get the most stable features of
Node.js. After you’ve downloaded the installation package file (the website will automatically determine
the installation file based on the client-side platform; the file extension is .pkg on macOS and .exe
on Windows). You can double-click the file and follow the wizard of the application’s UI for installation.

After installing Node.js, you can open a terminal and verify whether it is successfully installed or not
using the following command:

$ node -v
v20.11.0

Note
At the time of writing the book, version 20 is the latest Node.js LTS version. If you have
installed Node.js before and want to upgrade Node.js to version 20, you can do this with the
nvm command. Install version 20 with nvm install 20, and use version 20 in the current
terminal session with the nvm use 20 command. Optionally, you can set version 20 as the
default version for future Node.js sessions with the nvm alias default 20 command.

Node.js comes with several commands that help us to manage projects. Here are the three commands
we will use most often:

• npm (short for Node.js package manager): This command helps developers to manage projects
and install packages. For example, developers can run npm run <script_name> to run a
script of a project. The script can build or run the project in a specific environment. The npm
install <options> command can install the required packages and their dependencies.
The required packages are usually downloaded from remote repositories. There is a file called
package.json in the project’s root folder, which defines the project dependencies and the
script commands for what npm run can run.

• npx (short for Node.js package executor): This executes a specified package that is provided
by the first argument. If the package doesn’t exist on your local machine, it will download the
package from the remote package repository and put it in a cache folder, and once the package
is executed, the command will delete the cache folder in the end. In this section, you will see
how we use this command to create a React.js application and run Hardhat commands.

• nvm (short for Node.js version manager): It is used when we want to install another version
of Node.js or manage multiple versions of Node.js in our system.

Getting Started with DeFi Application Development30

The package.json file mentioned previously is the configuration file of the projects created and
managed by Node.js. We will modify this file in this chapter for smart contract deployment. When
you add or delete a package for the project, this file will also be updated automatically to reflect the
package updates.

After installing Node.js, we will start to create a project to host the DeFi applications for this book.

Creating a project with create-react-app

Let’s clone the code from the chapter02-start branch of the GitHub repository (https://
github.com/PacktPublishing/Building-Full-stack-DeFi-Application) and go
to the Building-Full-stack-DeFi-Application directory to get ready to create a project:

$ git clone git@github.com:PacktPublishing/Building-Full-stack-DeFi-
Application.git -b chapter02-start
$ cd Building-Full-stack-DeFi-Application

Because we will use React.js (https://reactjs.org/) as the frontend framework library, we
create a React.js project by executing the create-react-app package. create-react-app
(https://create-react-app.dev) is a Node.js package that generates the source files and
configurations for developers to start building React.js projects. To create a project with create-
react-app, we can run the following npx command in the Building-Full-stack-DeFi-
Application directory:

$ npx create-react-app defi-apps

If the command runs successfully, it will show the following lines at the end of the terminal output:

…
We suggest that you begin by typing:

 cd defi-apps
 npm start

Happy hacking!

The preceding command creates a folder called defi-apps that will host our project in this book. It
also initialized our project with essential React.js libraries. After you follow the previous instructions,
run the following commands:

$ cd defi-apps
$ npm start
...
You can now view defi-apps in the browser.
 http://localhost:3000

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application
https://reactjs.org/
https://create-react-app.dev

Creating a DeFi project 31

You will see the React.js web application run on your localhost at port 3000, as shown in Figure 2.2:

Figure 2.2 – React.js application generated by the create-react-app package

React.js is a popular JavaScript framework for building interactive web application interfaces. Here, we
only used create-react-app to create the basic pages and an initial version of the package.
json file. It helps us to run some basic Node.js commands for building and running the project. We
will come back to this in Chapter 3, Interacting with Smart Contracts and DeFi Wallets in the Frontend,
to learn more about how we build DeFi features with React.js and other Web UI libraries.

Note
In this book, we will run all the commands in the project’s root folder, defi-apps, which
we created in this section. If you are using the GitHub repository for this book, the working
directory is $GIT_ROOT/Building-Full-stack-DeFi-Application/defi-apps,
where $GIT_ROOT is the directory where you run the git clone command.

Getting Started with DeFi Application Development32

Installing and configuring Hardhat

Hardhat (https://hardhat.org/) is a package of tools to create Ethereum development
environments. It helps developers build, debug, and deploy smart contracts on Ethereum Virtual
Machine (EVM) compatible blockchain networks. You will learn how to use Hardhat to create a
local EVM and deploy and debug smart contracts within Hardhat development environments in this
chapter. Right now, let’s see how to install and configure Hardhat in this section.

First, let’s install the Hardhat package for development:

$ npm install --save-dev hardhat

Before we proceed, we need to remove the README.md file generated by create-react-app in
the defi-apps directory, because it may cause conflict when we configure Hardhat:

$ rm README.md

Next, let’s configure Hardhat by running the npx hardhat command. The command will show
the welcome message and ask you several questions. Here is the console output and the responses to
the questions:

$ npx hardhat
…
👷 Welcome to Hardhat v2.12.6 👷

✔ What do you want to do? · Create a JavaScript project
✔ Hardhat project root: · /Users/mymac/git/Building-Full-stack-DeFi-
Application/defi-apps
✔ Do you want to add a .gitignore? (Y/n) · y
✔ Do you want to install this sample project's dependencies with npm
(@nomicfoundation/hardhat-toolbox)? (Y/n) · y
...
✨ Project created ✨

See the README.md file for some example tasks you can run

Give Hardhat a star on Github if 'ou're enjoying it! 💞✨

 https://github.com/NomicFoundation/hardhat

https://hardhat.org/

Creating a DeFi project 33

Let’s explain the responses to the prompts:

• What do you want to do?: Here, we need to select Create a JavaScript
project (use the arrow up or arrow down button on your keyboard) because all the main
code for UI and automated tests are written with JavaScript.

• Hardhat project root: This is the root directory of the current project. Since you are
already in the defi-apps directory when running npx hardhat, we can use the default
setting, which is the current working directory (.).

• Do you want to add a .gitignore? (Y/n): The .gitignore file defines a
list of file and directory name patterns that should not be pushed into a git repository. We
select Y (yes) here.

• Do you want to install this sample project's dependencies with
npm (@nomicfoundation/hardhat-toolbox)? (Y/n): Select Y (yes) here and it will
install essential packages for smart contract development packages such as ethers.js and Chai.

After running npx hardhat, a new Hardhat configuration file, hardhat.config.js, is created
in the project directory. We need to open this file and add the following highlighted lines to define
four paths:

require("@nomicfoundation/hardhat-toolbox");

/** @type import('hardhat/config').HardhatUserConfig */
module.exports = {
 solidity: "0.8.17",
 paths: {
 sources: "./src/backend/contracts",
 artifacts: "./src/backend/artifacts",
 cache: "./src/backend/cache",
 tests: "./src/backend/test"
 },
};

Here are the paths we defined in the preceding hardhat.config.js file:

• The sources directory defines the location of Solidity source files so that Hardhat can search
the .sol files in that folder for building smart contracts

• The artifacts directory defines the generated metadata files such as the application binary
interface (ABI) of smart contracts after the smart contracts are compiled

• The cache directory stores the internal files for Hardhat

• The tests directory defines where the test files are located; we will use Chai and JavaScript
to implement the automated tests

Getting Started with DeFi Application Development34

Note
The paths configurations (sources, artifacts, cache, and tests) have their default
values, which are located in the project’s root directory. However, since we are building a full
stack project and need to divide the sources for the backend and frontend in different directories,
and Hardhat is mainly focused on smart contract development, we put the files required by
Hardhat in the subdirectories of the src/backend folder.

Then, we have to create the folders specified in the paths configuration by running the following
command in the project’s root directory:

$ mkdir -p src/backend/{contracts,artifacts,cache,test}

Because Hardhat also creates a directory for smart contract source files and test files, we need to
remove them since they are not required:

$ rm -rf contracts test

There is another scripts directory in the current directory that contains a file named deploy.js;
this is a JavaScript file that deploys smart contracts onto a blockchain. We will keep it for now and revisit
the file later.

In the next section, we will use Hardhat to create a local EVM environment and create a smart contract,
compile it, and deploy it on the local EVM environment.

Writing, compiling, and deploying a smart contract in a
local environment
In this section, we will start writing a smart contract with Solidity. We will also go through how to
use Hardhat to build the smart contract and run it in a local EVM environment.

Here, you can use your favorite integrated development environment (IDE) to work on the project.
One recommendation is Microsoft Visual Studio Code (https://code.visualstudio.
com/) and you can install Solidity support for Visual Studio Code (https://marketplace.
visualstudio.com/items?itemName=JuanBlanco.solidity) for better experiences in
developing Solidity smart contracts. Visual Studio Code is also a great IDE for JavaScript development
and we can use it for full stack DeFi application development. Once you have gotten your IDE ready,
let’s start writing!

https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=JuanBlanco.solidity
https://marketplace.visualstudio.com/items?itemName=JuanBlanco.solidity

Writing, compiling, and deploying a smart contract in a local environment 35

Writing and compiling a smart contract

Before writing a smart contract, we need to install the OpenZeppelin (https://www.openzeppelin.
com/) package with the following command in the project’s root directory (defi-apps):

$ npm install @openzeppelin/contracts

OpenZeppelin provides libraries and utilities for Solidity smart contract development and saves a lot
of work of writing Solidity code. Now, let’s create a file named SimpleDeFiToken.sol in the
src/backend.contracts directory with the following contents:

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";

contract SimpleDeFiToken is ERC20 {
 constructor() ERC20("Simple DeFi Token", "SDFT") {
 _mint(msg.sender, 1e24);
 }
}

In the preceding code, we create a simple smart contract of an ERC20 token. The first line starts with
a pragma directive, which tells us the version of Solidity we use in the smart contract source file.
The line tells us that the file is only compilable with Solidity version 0.8.x (0.8.7, 0.8.9, 0.8.17, and so
on). The version of Solidity must be specified with the pragma directive in every Solidity source
file because it tells Solidity to reject compilations with unsupported versions that might introduce
incompatible changes. For more information on the pragma directive, please refer to the Solidity
manual at https://docs.soliditylang.org/en/latest/layout-of-source-
files.html#pragma.

When discussing the hardhat.config.js file, the solidity: "0.8.17" line, which was
added by running the npx hardhat command, specifies the version of the Solidity compiler we
use to compile all the Solidity source files in the project. Version 0.8.17 is within the range of Solidity
versions specified by the pragma directive.

In SimpleDeFiToken.sol, we use the import statement and inherit the simple implementation
of the ERC20 token in the OpenZeppelin library. The new token we created is named Simple DeFi
Token with the SDFT symbol. By inheriting the ERC20 implementation, the token uses the default
decimal of 18. The line _mint(msg.sender, 1e24); means the initial supply of 1,000,000
tokens (1,000,000 = 106 = 1024-18) is given to msg.sender.

https://www.openzeppelin.com/
https://www.openzeppelin.com/

Getting Started with DeFi Application Development36

After writing (or copying and pasting the code) the smart contract, you can compile it via Hardhat
and verify there are no syntax errors:

$ npx hardhat compile
Compiled 5 Solidity files successfully

The output shows that the Solidity files are compiled successfully. Please note that there are multiple files
compiled. Because we import Solidity files from OpenZeppelin, the imported files from OpenZeppelin
will also be compiled. The compiled artifacts are located in the src/backend/artifacts directory
as is already specified in the hardhat.config.js file.

Note
Because DeFi applications usually work in an ecosystem of multiple tokens, the simple DeFi
token (SDFT) we created here will be used along with other tokens to demonstrate various
DeFi features in this book.

Once a smart contract is compiled, Hardhat generates the bytecode and ABI for the smart contract.
Next, we will dive into bytecode and ABI.

Bytecode and ABI

If you have followed the preceding steps to compile Solidity code for the SimpleDeFiToken
smart contract, you will find the bytecode and ABI of the smart contract in a JSON file located
at src/backend/artifacts/src/backend/contracts/SimpleDeFiToken.sol/
SimpleDeFiToken.json.

The bytecode is the numeric form of the instruction code and data that are translated from Solidity. The
EVM can read the bytecode deployed on-chain and follow the instructions to run the smart contract.

Decoded bytecode is similar to the instructions of assembly languages. Each instruction step that
is decoded is also called an opcode. If you want to view the decoded bytecode, you can copy the
bytecode of the smart contract and go to https://etherscan.io/opcode-tool, paste the
numeric value, and hit the Submit button; you will see the decoded bytecode as shown in Figure 2.3.

https://etherscan.io/opcode-tool

Writing, compiling, and deploying a smart contract in a local environment 37

Figure 2.3 – The bytecode and decoded bytecode of a smart contract

Note
In order to get the bytecode of SimpleDeFiToken.sol after compilation, you can search
for the bytecode field in the JSON body of SimpleDeFiToken.json. The value is the
content of the bytecode.

Compared to bytecode, the ABI of a smart contract is the interface for applications to interact with
the smart contract deployed on the blockchain. ABI is defined in JSON format as a JSON array. Every
object in the JSON array represents a function, an event, or a variable that can be accessed outside of
the smart contract. It tells applications how to access these smart contract members properly. If the
member is declared private or internal, the member of the smart contract will not be included
in the ABI JSON array.

Getting Started with DeFi Application Development38

For example, the following JSON code in SimpleDeFiToken.json is the ABI of the balanceOf
function of the SimpleDeFiToken contract:

{
 "inputs": [
 {
 "internalType": "address",
 "name": "account",
 "type": "address"
 }
],
 "name": "balanceOf",
 "outputs": [
 {
 "internalType": "uint256",
 "name": "",
 "type": "uint256"
 }
],
 "stateMutability": "view",
 "type": "function"
}

Next, we will show you how to run a local EVM environment for deploying and running smart contracts.

Running a local EVM environment

Before deploying and running DeFi smart contracts, we need a local EVM environment as our
playground. Hardhat has provided the environment for us to try out and debug our smart contacts. To
run a local EVM environment, we can start a new terminal session and simply run the npx hardhat
node command in the project’s root directory, and it will create a local EVM environment:

$ npx hardhat node
Started HTTP and WebSocket JSON-RPC server at http://127.0.0.1:8545/

Accounts
========

WARNING: These accounts, and their private keys, are publicly known.
Any funds sent to them on Mainnet or any other live network WILL BE
LOST.

Account #0: 0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266 (10000 ETH)
Private Key:

Writing, compiling, and deploying a smart contract in a local environment 39

0xac0974bec39a17e36ba4a6b4d238ff944bacb478cbed5efcae784d7bf4f2ff80

Account #1: 0x70997970C51812dc3A010C7d01b50e0d17dc79C8 (10000 ETH)
Private Key:
0x59c6995e998f97a5a0044966f0945389dc9e86dae88c7a8412f4603b6b78690d
...

As you can see from the output, the command will start a local EVM with a JSON-RPC server at
http://127.0.0.1:8545/. It will also create 20 accounts that are ready to use; each account
has 10,000 ETH for us to pay for the gas and perform other operations in a local environment.

Note
When we are running applications with the smart contract deployed, or interacting with the
Hardhat console using the local EVM, we should keep the npx hardhat node command
running. The terminal console of the command will print all blockchain activities as output.

Deploying the smart contract

Before deploying the smart contract in a local environment, we need to create a script for smart contract
deployment. Here, we can use the file created by the npx hardhat command located at scripts/
deploy.js. By editing this file, we will import ethers from hardhat and re-implement the
main function as follows:

const { ethers } = require("hardhat");

async function main() {
 const [deployer] = await ethers.getSigners();
 const tokenContractFactory = await
 ethers.getContractFactory("SimpleDeFiToken");
 const token = await tokenContractFactory.deploy();
 console.log("Simple DeFi Token Contract Address: ",
 token.address);
 console.log("Deployer: ", deployer.address);
 console.log("Deployer ETH balance: ",
 (await deployer.getBalance()).toString());
}

As we highlighted in the preceding code, the script performs three steps for deploying a smart contract.
First, it uses the ethers.getSigners() function to get the deployer account from the EVM (the
deployer in the code is Account #0 when we start the local EVM). Second, Hardhat will create a
contract factory based on the artifact generated. At last, the call of tokenContractFactory.
deploy() deploys the smart contract on the EVM.

Getting Started with DeFi Application Development40

For the full source code of scripts/deploy.js, please refer to https://github.com/
PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter02-
end/defi-apps/scripts/deploy.js.

Note
We use the await operator in deploy.js when calling the three functions: getSigners(),
getContractFactory(), and deploy(), because most of the calls that interact with
EVM-compatible blockchains are asynchronized calls, so we have to wait for the completion
of these calls to get the returned results.

Next, let’s run deploy.js with the following command:

$ npx hardhat run scripts/deploy.js --network localhost
Simple DeFi Token Contract
Address: 0x5FbDB2315678afecb367f032d93F642f64180aa3
Deployer: 0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266
Deployer ETH balance: 9999998977005125000000

The terminal shows the deployed address of the token smart contract and the deployer of the smart
contract. If you check the terminal that has the EVM running, you will see an output similar to Figure 2.4.

Figure 2.4 – Hardhat EVM output when deploying a smart contract

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter02-end/defi-apps/scripts/deploy.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter02-end/defi-apps/scripts/deploy.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter02-end/defi-apps/scripts/deploy.js

Deploying a smart contract on Testnet 41

The EVM terminal shows more information about the deployment transaction, including the contract
name, transaction hash, gas used, and block number.

In this section, we have gone through the process of writing a smart contract, compiling it with
Hardhat, running a local EVM environment, and deploying the smart contract on the local EVM.
You may have noticed that we use the --network localhost option to deploy a smart contract
on a local EVM; we can extend the project’s configuration and support deploying smart contracts on
public blockchain networks by specifying other --network options. In the next section, we will
explore how to deploy the smart contract on Testnet, and we can adopt a similar approach for the
deployment on Mainnet.

Deploying a smart contract on Testnet
During the process of developing Web3 products, before we deploy the smart contracts in Mainnet,
which carries out genuine transactions with real financial value, we need an environment to simulate
the Mainnet with a full set of tools and real-world transaction volumes. However, these tools and real-
world traffic cannot be provided by a local EVM. Luckily, the most popular blockchains, including
Ethereum, have their Testnet available for developers, so they can try out their smart contract in a
simulation environment.

Because the cryptocurrencies in Testnet don’t have real-world value, it is free for developers to test out
their smart contracts without worrying about financial loss. Developers can switch to Mainnet from
Testnet just by changing to another RPC endpoint. Once you have learned how to use Hardhat to
deploy smart contracts on Testnet, you can do the same thing to deploy the smart contracts on Mainnet.

Ethereum has multiple Testnets, such as Sepolia and Goerli. We will use Sepolia (https://
sepolia.dev/) in this book as our Testnet because it is the most stable Testnet project at the time
of writing the book.

Acquiring the RPC endpoint of Testnet

As we mentioned in the Architecture of DeFi applications sectionof Chapter 1, Introduction to DeFi,
there are RPC endpoints for users to connect to blockchain nodes. For the Ethereum Testnet Sepolia,
there are several public RPC endpoints available for use (you can refer to https://www.alchemy.
com/chain-connect/chain/sepolia for a list of available public endpoints for Sepolia).
However, a private endpoint usually provides better quality of services. In this section, we will use
Infura (https://infura.io/) to create an RPC endpoint for our project.

https://sepolia.dev/
https://sepolia.dev/
https://www.alchemy.com/chain-connect/chain/sepolia
https://www.alchemy.com/chain-connect/chain/sepolia

Getting Started with DeFi Application Development42

First, we need to go to https://infura.io/ and register for an account. After registration, you
will receive an email with a link to confirm your registration. Then, the link will direct you to a page
that shows API Keys. Figure 2.5 is a screenshot of the API Keys page.

Figure 2.5 – The API Keys page of Infura

As is shown in Figure 2.5, once you have created an account on Infura, Infura will automatically create
an API key named My First Key for you. After clicking the My First Key link, you will need to check
the box for SEPOLIA under Ethereum (usually, it is the first row, as shown in Figure 2.6).

Figure 2.6 – Enable the Sepolia endpoint for your API key in Infura

Deploying a smart contract on Testnet 43

On the Infura page shown in Figure 2.6, after you have ticked the SEPOLIA checkbox, click on the
SAVE CHANGES button to enable the endpoint for your API key. After that, click the Active Endpoints
tab at the top and you will see the Sepolia endpoint of My First Key. You need to copy the endpoint
URL or save it somewhere for your project.

Now, let’s create a new file called .env in the project’s root folder (the same directory level as hardhat.
config.js). Then, create a variable called API_URL and paste the URL we previously copied into
the double quotes as follows (replace PASTE_YOUR_API_URL_HERE with the copied content):

API_URL="PASTE_YOUR_API_URL_HERE"

We need to make sure that the API URLs and private keys (we will fetch and configure private keys
later) are private information for projects or developers. We need to secure this information by saving
the parameters in the .env file so that the credential information can be kept in a separate place.
When we share the code of our projects in a git repository, we should not check in the file that
contains the credential information.

If you check the .gitignore file in the project’s root folder, you will see it includes multiple files with
the same .env prefix such as .env.test.local. The best practice is creating multiple .env.*
files to support multiple environments. Then, it will make the contents in these .env files only
accessible to local users and prevent the secret information from leakage in remote git repositories.

Configuring the deployer account

In order to interact with Testnet, we also need a deployer’s account (DeFi wallet) to perform all the
operations. In this book, we are going to use the MetaMask plugin (https://metamask.io/)
to create wallets and use the wallets to achieve the purpose.

Note
We highly encourage you to install MetaMask to follow the instructions in this book. If you
haven’t installed it yet, please go to https://metamask.io/ and download the plugin
for your browser (if you are on a PC or laptop) or mobile app. In this book, we are going to use
the MetaMask plugin for Chrome to demonstrate the examples.

https://metamask.io/
https://metamask.io/

Getting Started with DeFi Application Development44

Hardhat requires the private key of the wallet to sign and execute the transactions:

1. We can do this by clicking the three dots in the top-right corner of your wallet account, selecting
Account Details from the drop-down menu, and clicking the Export private key button. Then,
input your password and you will see the private key in red text (the blurred text in Figure 2.7).

Figure 2.7 – Get the private key of your account from MetaMask

2. Next, copy the private key in red and add another line for PRIVATE_KEY in .env right after
the API_KEY declaration, and replace the highlighted PASTE_YOUR_PRIVATE_KEY_HERE
with the copied private key in the following code:

PRIVATE_KEY = "PASTE_YOUR_PRIVATE_KEY_HERE";

Deploying a smart contract on Testnet 45

Note
Please do not share the private key with anyone else because any private key in Testnet is valid on
Mainnet and the private key can be converted to the same wallet address on Mainnet. As clones
of Ethereum Mainnet, all Ethereum Testnets (including local EVM and any EVM-compatible
blockchain networks) use the same algorithm as Mainnet to generate wallet addresses from
private keys. It may cause financial loss if there are assets in the wallet on Mainnet with this
private key and the private key is known by somebody else.

3. To complete the configuration of Testnet by using the variables we defined in the .env file,
let’s add the following highlighted code in hardhat.config.js:

require("@nomicfoundation/hardhat-toolbox");
require('dotenv').config();

const SEPOLIA_API_URL = process.env.API_URL;
const SEPOLIA_PRIVATE_KEY = process.env.API_URL;

module.exports = {
 solidity: "0.8.17",
 paths: {
 sources: "./src/backend/contracts",
 artifacts: "./src/backend/artifacts",
 cache: "./src/backend/cache",
 tests: "./src/backend/test"
 },
 networks: {
 sepolia: {
 url: SEPOLIA_API_URL,
 accounts: [SEPOLIA_PRIVATE_KEY]
 }
 }
};

The preceding code imports the dotenv (https://github.com/motdotla/dotenv)
package and loads the two variables for the API URL and private key from the .env file by accessing
process.env. Then, the code in hardhat.config.js assigns them to SEPOLIA_API_URL
and SEPOLIA_PRIVATE_KEY. The code defines an object called sepolia in its networks
configuration. There are two fields for the sepolia object. The url field defines the JSON-RPC
endpoint to access the Testnet, and accounts defines a list of private keys of the wallet addresses
being used for deploying smart contracts.

https://github.com/motdotla/dotenv

Getting Started with DeFi Application Development46

For the full source code of hardhat.config.js, please refer to https://github.com/
PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter02-
end/defi-apps/hardhat.config.js. We also provided a template of the .env file at https://
github.com/PacktPublishing/Building-Full-stack-DeFi-Application/
blob/main/defi-apps/.env.example for your reference.

Smart contract deployment and verification

Now, the Hardhat configuration is ready for us to deploy the smart contracts. Before running the
deployment, we have to make sure there is enough ETH in your wallet on the Sepolia network. If
not, you can go to any Sepolia faucet website (e.g., https://sepoliafaucet.com/) and get
some ETH on the Sepolia network.

Note
A faucet of a blockchain is a service that provides cryptocurrencies for testing purposes. The
cryptocurrencies acquired from faucets do not have real-world value. Most Testnets have faucet
services, and most of the faucet services are free to get cryptocurrencies for testing, but they
usually have limits to how much crypto can be withdrawn by a user within a certain period.

After you have some ETH to run transactions on the Sepolia network, run the following command:

$ npx hardhat run scripts/deploy.js --network sepolia
Simple DeFi Token Contract
Address: 0x21cb08513b309323FE4D2c719874AEe62724FfdD
Deployer: 0xc0246081FD87Fc0aa29570F7ABafD0A69a2Ca05F
Deployer ETH balance: 2334229546441208044

The npx command specifies the sepolia network we defined in hardhat.config.js, and
the SDFT smart contract has been deployed at the address shown in the output. The deploy.js
output also shows the deployer (the deployer address should be the same as the wallet address from
where you got the private key) and the ETH balance of the deployer.

One thing to mention is that the transaction may take several seconds to complete, so the balance
shown in the output of the command may not be up to date. After a couple of minutes, you can go
to https://sepolia.etherscan.io/ (the blockchain explorer of the Sepolia test network,
which is similar to https://etherscan.io) to check the deployed contract by copying the
contract address and pasting it into the search bar in the top-right corner on the page. The search
result page will be something similar to Figure 2.8, which shows the deployed smart contract with the
token name, deployer, and gas fee spent for the deployment, as well as the transactions of the smart
contract creation.

https://sepoliafaucet.com/
https://etherscan.io

Deploying a smart contract on Testnet 47

Figure 2.8 – The information on the deployed smart contract on Sepolia Testnet

To verify the deployment transaction, you can click the link under Txn Hash on the preceding page.
Then, we can click the Simple DeFi Token (SDFT) link, and it will open a page for the token. You
can verify the following items on the new page as shown in Figure 2.9:

• The token has only one holder, the deployer’s address, which is showing in the terminal when
we deploy the smart contract

• The total supply of the token is 1,000,000; all of them belong to the deployer

Getting Started with DeFi Application Development48

Figure 2.9 – Verify the holders and total supply of Simple DeFi Token on Testnet

Now, we have deployed the first smart contract on Sepolia Testnet with Hardhat. For the deployment
of Mainnet, we can perform similar steps in this section; there are only a few things we need to do to
support Mainnet deployment in our project:

1. Fetch the API endpoint for Mainnet; you can get the Ethereum Mainnet endpoint from the
Infura dashboard as well.

2. Fetch the private key of the wallet address of the deployer.

3. Create a new environment file such as .env.mainnet.prod and put the API endpoint and
private key information there. Don’t forget to add this file to .gitignore.

4. We need to add another network object in the network configuration in the hardhat.
config.js file with the correct values for url and accounts, which is similar to what
we do for the sepolia object. We also need to specify the new .env file path when loading
the private key and API URL from the environment.

Testing and debugging the smart contract 49

Adding a deployment script to package.json

Every time, we have to type a long command to run deploy.js when deploying smart contracts.
Now, let’s make the command simpler by creating a deployment script command in package.json.
So, we add one line in package.json:

"scripts": {
 "start": "react-scripts start",
 "build": "react-scripts build",
 "test": "react-scripts test",
 "eject": "react-scripts eject",
 "deploy": "npx hardhat run scripts/deploy.js --network"
}

Now, we can run npm run deploy localhost to deploy smart contracts to a local EVM or
npm run deploy sepolia for the deployment on Sepolia Testnet.

In the next section, we will go back to using a local EVM to learn how to use the Hardhat console for
smart contract testing and debugging.

Testing and debugging the smart contract
After smart contracts are deployed, we need some approaches to verify whether they work as expected.
Luckily, Hardhat provides several useful tools and libraries for us to verify smart contracts, and they
can also be easily integrated with popular testing libraries such as Chai (https://www.chaijs.
com/).

In this section, we will first learn how to use the Hardhat console to verify smart contracts. Then we
will use the chai testing library and the mocha testing framework to write and run test cases for
the smart contract. Lastly, we will demonstrate how to use the Hardhat console.log function to
debug smart contracts.

Verifying smart contract with the Hardhat console

Before starting the Hardhat console, please make sure the local EVM has been started and the Simple
DeFi Token smart contract has been deployed. If not, please refer to the previous sections:

1. Now, let’s start the Hardhat console and connect the local EVM by running the following command:

$ npx hardhat console --network localhost

2. Then, after the > prompt sign, we can load the smart contract for the token by specifying the
contract class name SimpleDeFiToken and its deployed address:

> const contract = await ethers.getContractAt("SimpleDeFiToken",
"0x5FbDB2315678afecb367f032d93F642f64180aa3")
undefined

Getting Started with DeFi Application Development50

The Hardhat console uses JavaScript to interact with the EVM. So, the JavaScript code we verified
here will help us with automated testing and DeFi frontend development. The preceding code
returns undefined, which means the function call is an asynchronized call and it doesn’t
return anything when the command returns to the console. However, we can check whether
the contract is successfully loaded by checking whether the smart contract address is correct
by typing contract.address and pressing Enter:

> contract.address
'0x5FbDB2315678afecb367f032d93F642f64180aa3'

3. Now, let’s verify whether the name, symbol, and total supply of the token are correct by calling
the functions of the smart contract:

> await contract.name()
'Simple DeFi Token'
> await contract.symbol()
'SDFT'
> await contract.totalSupply()
BigNumber { value: "1000000000000000000000000" }

Remember that we have minted 1,000,000 tokens when deploying the smart contract, but the
number displayed for totalSupply is a much bigger number. This is because the token has
the decimal of 18 so the number is 1018 times 1,000,000.

4. To convert the big number to the real total supply of the token, we can call the ethers.
utils.formatEther function:

> ethers.utils.formatEther(totalSupply)
'1000000.0'

Now, we have gone through some examples by running functions for the EVM to interact with the
Hardhat console. In the next part of this section, we will write and run automated test cases so that
we don’t have to manually type these verification codes every time we want to perform a test.

Note
If you want to exit the Hardhat console, simply run .exit or hit Ctrl + D on your keyboard.

Writing and running automated tests for smart contracts

Now, let’s start writing testing code for the smart contract. Hardhat helped us install the mocha testing
framework (https://mochajs.org/) when we were running npx hardhat in the project.
Right now, we only need to install chai, which is a popular test assertion library for JavaScript.

https://mochajs.org/

Testing and debugging the smart contract 51

To install chai, run the following command in the project directory:

$ npm install chai

In the src/test directory, let’s create a file named SimpleDeFiToken.test.js and put the
following code in the file:

const { expect } = require("chai");
const { ethers } = require("hardhat");
const { toWei, fromWei } = require("./Utils");

describe("SimpleDeFiToken", () => {
 let deployer, addr1, addr2, token;
 beforeEach(async () => {
 [deployer, addr1, addr2] = await ethers.getSigners();
 const tokenContractFactory = await
 ethers.getContractFactory("SimpleDeFiToken");
 token = await tokenContractFactory.deploy();
 });
});

We will create test cases for Simple DeFi Token with the preceding code. The first three lines of the
code import three important libraries we will use and the describe body contains all the declarations
and logic for the test to run. The highlighted code lines define the code that should be run before
each test case. These lines deployed the SimpleDeFiToken smart contract, which are similar to
the code we have written in deploy.js earlier.

Note
We have put all the utility functions for the testing in the src/test/Utils.js file, so we
can use const { toWei, fromWei } = require("./Utils"); like the preceding
code in the JavaScript test cases. For the full source code of src/test/Utils.js, please
refer to https://github.com/PacktPublishing/Building-Full-stack-
DeFi-Application/blob/chapter02-end/defi-apps/src/backend/test/
Utils.js.

Next, let’s write the first test case function after the beforeEach function:

it("Should have correct name, symbol and total supply",
 async () => {
 expect(await token.name())
 .to.equal("Simple DeFi Token");
 expect(await token.symbol())
 .to.equal("SDFT");

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter02-end/defi-apps/src/backend/test/Utils.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter02-end/defi-apps/src/backend/test/Utils.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter02-end/defi-apps/src/backend/test/Utils.js

Getting Started with DeFi Application Development52

 expect(await token.totalSupply())
 .to.equal(toWei(1000000));
});

The preceding function verifies the name, symbol, and total supply of the token; it is similar to what
we did in the Hardhat console. We use the expect function in the chai library to verify whether
the actual output equals the expected output. Now, let’s run npx hardhat test to run the first
test case for a try:

$ npx hardhat test
 SimpleDeFiToken
 ✔ Should have correct name, symbol and total supply (42ms)
 1 passing (2s)

Alright, the output shows that the test passed! We can add another test to verify the token’s transfer
function. Because Simple DeFi Token is inherited from ERC20 of OpenZeppelin, you can find
the implementation of the transfer function implementation at https://github.com/
OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/
ERC20/ERC20.sol.

The code for the test case is as follows:

it("Should transfer token from one to another",
 async () => {
 expect(await token.balanceOf(deployer.address))
 .to.equal(toWei(1000000));
 await token.connect(deployer)
 .transfer(user1.address, toWei(5));
 expect(await token.balanceOf(user1.address))
 .to.equal(toWei(5));
 expect(await token.balanceOf(deployer.address))
 .to.equal(toWei(999995));
});

The preceding test case transferred five tokens from deployer to user1. The test code verifies that
the token balance of deployer is 1,000,000 before transfer and the balance drops to 999,995 after
transfer for deployer and user1 owns five tokens.

There are two things I want to highlight for the preceding code. First, when the smart contract takes
address as the argument of a function, we should use the address field of an account (such as
deployer.address) to access the account’s address. Second, when we need to call a smart contract
function that requires the initiating user, we need to use the connect(…) function to specify who
is calling the function so the smart contract knows who msg.sender is.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol

Testing and debugging the smart contract 53

Sometimes, we also need to test negative cases when the transaction fails. A smart contract usually
reverts the transaction to prevent further gas costs. Chai also has the ability to verify the expected
reversion when calling smart contracts. Here is the code to verify that the transfer amount cannot
exceed the balance:

// Cannot transfer when tranfer amount exceed the balance
await expect(token.connect(user1)
 .transfer(user2.address, toWei(10)))
 .to.be.revertedWith(
 "ERC20: transfer amount exceeds balance");

Here, we expect the transfer will fail if the transferring amount exceeds the balance of user1.
We use to.be.revertedWith to match the revert message defined in ERC20.sol of the
OpenZeppelin library.

For the full source code of the preceding test case, please refer to https://github.com/
PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter02-
end/defi-apps/src/backend/test/SimpleDeFiToken.test.js.

Debugging smart contracts with Hardhat

If you have experience with programming languages such as Java or Python, you may find the smart
contracts written with Solidity are relatively harder to debug, especially for the smart contracts that
have already been deployed, and the deployed code is immutable on a blockchain so it is impossible
to touch the code to print extra information for debugging.

It is very important to create a full set of automated test cases to cover all use cases before deploying
smart contracts for production use. You may also find there are some unforeseen issues in your code
that are in development during the testing process. We will dig into the Hardhat approach to help
you debug smart contracts.

Suppose we are implementing a token transfer function with an automatic burning mechanism:
10% of the transferring amount is burnt and the remaining 90% of the tokens are transferred to the
recipient. Here is the function we initially defined (which contains a bug that we will find out about):

function transferWithAutoBurn(address to, uint256 amount) public {
 require(balanceOf(msg.sender) >= amount, "Not enough tokens");
 uint256 burnAmount = amount / 10;
 _burn(to, burnAmount);
 transfer(to, amount - burnAmount);
}

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter02-end/defi-apps/src/backend/test/SimpleDeFiToken.test.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter02-end/defi-apps/src/backend/test/SimpleDeFiToken.test.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter02-end/defi-apps/src/backend/test/SimpleDeFiToken.test.js

Getting Started with DeFi Application Development54

In the preceding code, we first check whether the sender has enough balance. If yes, then the code
calculates the burning amount, calls the _burn function to burn the amount, and then transfers the
remaining amount to the recipient.

Note
Token burning is a type of transaction that makes a number of tokens unusable for anybody.
There are two approaches to burning. The first approach is transferring the number of tokens to
be burnt into a wallet that nobody knows the private key of yet (for example, the wallet address
0x0). The second approach is safer; it deducts the burning amount from the balance of the
account. The OpenZeppelin ERC20 _burn function called by the transferWithAutoBurn
function uses the second approach.

After that, we create a test case like this:

it("Should burn token automatically when calling
transferWithAutoBurn", async () => {
 await token.connect(deployer).transfer(user1.address, toWei(1));
 await token.connect(user1).transferWithAutoBurn(user2.address,
toWei(1));
});

In this test case, we first transfer one token to user1, then user1 transfers one token to user2 by
calling transferWithAutoBurn. When we run the test case, it fails like this:

$ npx hardhat test
...
 1) SimpleDeFiToken
 Should burn token automatically when calling
transferWithAutoBurn:
 Error: VM Exception while processing transaction: reverted with
reason string 'ERC20: burn amount exceeds balance'
 at SimpleDeFiToken._burn (@openzeppelin/contracts/token/ERC20/
ERC20.sol:291)
 at SimpleDeFiToken.transferWithAutoBurn (src/backend/contracts/
SimpleDeFiToken.sol:25)
 ...

The ERC20: burn amount exceeds balance error needs our attention. It means that the
burning amount exceeds the balance of a user. In order to provide more information, we would like to
print the balance of the user and compare it with the burning amount when we run the smart contract.

Fortunately, Hardhat provides the console.log function for us to use in Solidity code. It works
similarly to JavaScript’s console.log(...), which is usually used when developers want to print
on the browser’s console. The console.log function in Hardhat’s Solidity library also has the same

Testing and debugging the smart contract 55

purpose but it prints logs on the terminal where we run the npx hardhat command. Here, we add the
console.log function in our Solidity code for debugging the transferWithAutoBurn function:

...
import "hardhat/console.sol";
...
function transferWithAutoBurn(address to, uint256 amount) public {
 require(balanceOf(msg.sender) >= amount, "Not enough tokens");
 uint256 burnAmount = amount / 10;
 console.log(
 "Burning %s from %s, balance is %s",
 burnAmount,
 to,
 balanceOf(to)
);
 _burn(to, burnAmount);
 transfer(to, amount - burnAmount);
}

Here, we print the burning amount, the user who is burning the token, and the balance of the burning
account with console.log. Then, let’s run npx hardhat test again and you will see the
printed log:

$ npx hardhat test
Compiled 1 Solidity file successfully

 SimpleDeFiToken
 ✔ Should have correct name, symbol and total supply
 ✔ Should transfer token from one to another (83ms)
Burning 100000000000000000 from
0x3c44cdddb6a900fa2b585dd299e03d12fa4293bc, balance is 0
 1) Should burn token automatically when calling
transferWithAutoBurn
 2 passing (2s)
 1 failing
...

From the printed message, we notice that the balance of the burning account is zero, while it is
going to burn a big amount. We realize there is a bug in the code of transferWithAutoBurn;
we are burning from the recipient’s account, not the sender’s account. So, we can simply change the
line from _burn(to, burnAmount); to _burn(msg.sender, burnAmount); in the
function to fix the bug.

Getting Started with DeFi Application Development56

Based on the Hardhat documents, the console.log function in Solidity code will be translated
into no-op code on a real blockchain network. It will not impact gas usage too much if you keep
console.log in the Solidity code. However, it is ideal to remove the console.log calls before
deploying the smart contracts in a real blockchain network to minimize gas consumption.

Note
You can refer to the file at https://github.com/PacktPublishing/Building-
Full-stack-DeFi-Application/blob/chapter02-end/defi-apps/src/
backend/contracts/SimpleDeFiToken.sol for the source code of the smart contract
with the fix, and https://github.com/PacktPublishing/Building-Full-
stack-DeFi-Application/blob/chapter02-end/defi-apps/src/backend/
test/SimpleDeFiToken.test.js for the full code of the test cases in this chapter.

Summary
In this chapter, we started to build a project to host all the DeFi applications we will build in this book.
We used Node.js, React.js, and Hardhat for creating the project and learned how to use Hardhat to run
a local EVM and build, deploy, and run smart contracts in the EVM environment. We also explored
deploying smart contracts in Testnet, and we can use the same approach to deploy them in Mainnet.
At the end of this chapter, we introduced using the Hardhat console to run and verify smart contract
functions, write automated test cases, and debug smart contracts with the chai testing library in
the Hardhat environment.

In the next chapter, we will start building the frontend pieces of the project and learn how to connect
the smart contract running on a blockchain with JavaScript code that will run in web browsers. We
will also introduce how to connect wallets with JavaScript and make transactions by interacting with
a smart contract.

Further reading
If you want to learn more about the topics we mentioned in this chapter, please refer to the
following resources:

• Node.js documentation: https://nodejs.org/en/docs/

• Create React App: Getting Started: https://create-react-app.dev/docs/getting-
started

• Hardhat’s tutorial for beginners: https://hardhat.org/tutorial

• Ethereum's Solidity language for Visual Studio Code: https://marketplace.
visualstudio.com/items?itemName=JuanBlanco.solidity

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter02-end/defi-apps/src/backend/contracts/SimpleDeFiToken.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter02-end/defi-apps/src/backend/contracts/SimpleDeFiToken.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter02-end/defi-apps/src/backend/contracts/SimpleDeFiToken.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter02-end/defi-apps/src/backend/test/SimpleDeFiToken.test.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter02-end/defi-apps/src/backend/test/SimpleDeFiToken.test.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter02-end/defi-apps/src/backend/test/SimpleDeFiToken.test.js
https://nodejs.org/en/docs/
https://create-react-app.dev/docs/getting-started
https://create-react-app.dev/docs/getting-started
https://hardhat.org/tutorial
https://marketplace.visualstudio.com/items?itemName=JuanBlanco.solidity
https://marketplace.visualstudio.com/items?itemName=JuanBlanco.solidity

Further reading 57

• dotenv GitHub repository and documents: https://github.com/motdotla/dotenv

• Chai: Getting Started Guide: https://www.chaijs.com/guide/

https://github.com/motdotla/dotenv
https://www.chaijs.com/guide/

3
Interacting with Smart

Contracts and DeFi Wallets
in the Frontend

Now, we have been through the process of creating, building, deploying, and testing smart contracts. You
can imagine that the EVM running the smart contracts is the backend of a full stack DeFi application.
In this chapter, we will start building the frontend of the DeFi application with Node.js, React.js,
and Material UI. Also, you will learn how to interact with the smart contracts using frontend code.

DeFi wallets play an important role in user authentication as shown in the Architecture of DeFi
applications section of Chapter 1, Introduction to DeFi. In this chapter, you will learn how to connect
DeFi applications with blockchain through a DeFi wallet and interact with smart contracts.

This chapter contains the following sections:

• Overview of DeFi application frontend development

• Deploying smart contract metadata to the frontend

• Connecting to a DeFi wallet

• Reading data from blockchain

• Making transactions on blockchain

Interacting with Smart Contracts and DeFi Wallets in the Frontend60

Technical requirements
Based on what we covered in Chapter 2, Getting Started with DeFi Application Development, React.
js provides the tools for building the frontend of the application, including the UI framework, state
management, and URL path routing. For this chapter, we will need the following two packages specific
to DeFi application development:

• Ethers.js (https://ethers.org/) is a simple and compact library for interacting with
the EVM-based blockchain and its ecosystem. The main purpose of using this library in this
book is to interact with smart contracts within frontend code.

• web3-react (https://github.com/Uniswap/web3-react) is a simple and powerful
framework for building EVM-based decentralized applications using React. Although it does
have some overlaps with ethers.js, it has its own advantages in managing DeFi wallets by
providing various wallet connectors for React applications.

Note
web3-react is a widely used library for wallet integration used by many projects such as Uniswap,
and it offers various connectors for mainstream wallet vendors. However, web3-react is still
a package that is in the beta version at the time of writing the book. You may consider other
wallet integration frameworks such as Web3Modal (https://web3modal.com/) for
better support and a more stable release.

Besides the libraries for Web3, we also need UI component libraries for building web applications with
React. These libraries provide elegant UI components and make frontend development more efficient.
The blog at https://kinsta.com/blog/react-components-library/ provides a list
of popular React component libraries. In this book, we will use Material UI (https://mui.com/)
as it is one of the most popular ones from the list, so we don’t have to re-invent the UI components
for our application. It will help us build the DeFi project with more attractive UI components.

Overview of DeFi application frontend development
In this chapter, we will start to build the frontend of the DeFi application. When we talk about the
frontend, it involves all aspects of UI, event handling, and EVM blockchain connectivity. We will dive
into more details in this section.

Running the UI wireframe

Because the book focuses mainly on DeFi application development, we have the UI wireframe
ready, along with the required packages, in the chapter03-start branch of the git repository
of this book (https://github.com/PacktPublishing/Building-Full-stack-
DeFi-Application). If you have worked on the code since the last chapter or already cloned

https://ethers.org/
https://github.com/Uniswap/web3-react
https://web3modal.com/
https://kinsta.com/blog/react-components-library/
https://mui.com/
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application

Overview of DeFi application frontend development 61

the repository on your local environment, here are the commands to pull the code of the wireframe
from the project’s directory:

$ git checkout chapter03-start
$ git pull origin chapter03-start

If you are starting from scratch, you can get the code of the chapter03-start branch and
change the directory to Building-Full-stack-DeFi-Application/defi-apps with
the following commands:

$ git clone git@github.com:PacktPublishing/Building-Full-stack-DeFi-
Application.git -b chapter03-start
$ cd Building-Full-stack-DeFi-Application/defi-apps

Next, by running the npm start command in the defi-apps directory, you will see the UI
running on http://localhost:3000/ as shown in Figure 3.1.

Figure 3.1 – The UI wireframe of TOKEN OPERATIONS in DeFi Application

Interacting with Smart Contracts and DeFi Wallets in the Frontend62

The UI components in Figure 3.1 show the functions we are going to implement in this chapter:

• DeFi wallet connection: This allows the DeFi application to access blockchain via connecting
to a wallet such as MetaMask.

• Read data from the deployed Simple DeFi Token smart contract: This is a simple token
smart contract we created in Chapter 2, Getting Started with DeFi Application Development.
In this chapter, we will write code to read the token balance in the currently connected wallet
and the total supply of the token.

• Make transactions based on the Simple DeFi Token smart contract: There are two types of
transactions that are made through the code. One type of transaction is the pure token transfer
as it is implemented in OpenZeppelin’s ERC20 smart contract. Another type of transaction is
the custom transfer, which burns a portion of tokens while transferring: this transaction will
call the transferWithAutoBurn function implemented in SimpleDeFiToken.sol.

As we can see from Figure 3.1, reading data and making transactions with Simple DeFi Token smart
contracts are implemented as features of TOKEN OPERATIONS. It will help beginners get familiar
with writing code to interact with smart contracts. In the next section, we will explore the approach
to make smart contracts accessible to frontend code.

Deploying smart contract metadata to the frontend
Before interacting with smart contracts, we need to make the smart contract metadata accessible to
the frontend. Smart contract metadata is the required information for frontend code to access a smart
contract on the blockchain. To be more specific, it refers to the smart contract ABI and the smart
contract address that is deployed on the blockchain.

The smart contract ABI is a section of code for off-chain components to communicate and interact
with the smart contract code deployed on the blockchain. It defines the interfaces that off-chain
components can use to access the smart contract, including its functions, variables, and events. Usually,
the ABI used by decentralized application frontend code is in the form of JavaScript Object Notation
(JSON). Meanwhile, the DeFi application also requires you to know the smart contract address so the
frontend code can locate the smart contract to interact with.

The example project of this book has its frontend source code residing in the src/frontend folder.
We need a script to add the smart contract ABIs and deployed contract addresses somewhere inside
that folder. It can be accomplished by the npm run deploy command – this command will fetch
the ABIs and the addresses on the EVM once the smart contracts have been deployed.

In the Writing, compiling, and deploying a smart contract in a local environment section of Chapter 2,
Getting Started with DeFi Application Development we introduced the deploy.js script to run
the npm run deploy command. We also have artifacts generated when we compiled the code in
the src/backend/artifacts folder. So, what we need to do is to read the ABI from the artifacts
and the address property of the deployed contract, then put them into the individual files in the src/

Deploying smart contract metadata to the frontend 63

frontend/contracts folder. Let’s write the function called saveContractToFrontend for
this purpose. Here is the content we add in scripts/deploy.js for this function:

const fs = require("fs");
...
function saveContractToFrontend(contract, name) {
 const contractsDir = __dirname +"/../src/frontend/contracts";
 if (!fs.existsSync(contractsDir)) {
 fs.mkdirSync(contractsDir);
 }
 fs.writeFileSync(
 contractsDir + `/${name}-address.json`,
 JSON.stringify({ address: contract.address },
 undefined, 2)
);

 const contractArtifact = artifacts.readArtifactSync(name);
 fs.writeFileSync(
 contractsDir + `/${name}.json`,
 JSON.stringify(contractArtifact, null, 2)
);
}

The preceding code called fs.writeFileSync(...) twice: the first call writes the JSON format
of the contract address to the ${name}-address.json file and the second call writes the ABI
in JSON format into the ${name}.json file, where the value of the name is given by the caller.

Now, we can call the saveContractToFrontend function in the main function of deploy.
js with the following highlighted line:

async function main() {
 …
 console.log("Simple DeFi Token Contract Address: ", token.address);
 console.log("Deployer: ", deployer.address);
 console.log("Deployer ETH balance: ",
 (await deployer.getBalance()).toString());

 saveContractToFrontend(token, 'SimpleDeFiToken');
}

Interacting with Smart Contracts and DeFi Wallets in the Frontend64

After saving the file, you can run the npm run deploy localhost command to execute
the deploy.js script. After the command execution is completed, you will see the two files
(SimpleDeFiToken-address.json and SimpleDeFiToken.json), which are created
in the src/frontend/contracts folder:

$ npm run deploy localhost

> defi-apps@0.1.0 deploy
> npx hardhat run scripts/deploy.js --network "localhost"

Simple DeFi Token Contract Address:
0x9fE46736679d2D9a65F0992F2272dE9f3c7fa6e0
Deployer: 0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266
Deployer ETH balance: 9999996486787422096895
$ ls src/frontend/contracts/
SimpleDeFiToken-address.json SimpleDeFiToken.json

Now, we have the metadata ready for the frontend code, but the frontend code still needs to know
how to connect the blockchain. In the next section, we will discuss the topic of the DeFi wallet and
learn how to connect blockchain with providers and wallet connectors.

Connecting to a DeFi wallet
We usually need a DeFi wallet to access blockchain when we perform transactions, such as transferring
cryptocurrencies, approving an operation, and performing all privileged operations. In Chapter 2,
Getting Started with DeFi Application Development we have gone through how we can use Hardhat
to deploy smart contracts and call smart contract functions using the DeFi wallet. In this section, we
will explore how we can integrate the DeFi wallet with DeFi applications.

The architecture of DeFi wallet connectivity with blockchain

We need to understand a few concepts and DeFi wallet architecture before implementing the wallet
connections. When designing a DeFi application, it requires the multi-layer architecture shown in
Figure 3.2 when an application wants to access blockchain with DeFi wallets.

Connecting to a DeFi wallet 65

Figure 3.2 – The architecture of DeFi wallet connectivity with blockchain

As is shown in Figure 3.2, a DeFi application could support multiple DeFi wallets from multiple
vendors (from A to G in Figure 3.2). Once a wallet is selected by a user, the DeFi application should
use the corresponding connector for the wallet. A connector is a generic component that provides a
set of functions that use instructions from a provider for UI code to perform actions using the wallet.
A provider tells the application how to connect wallets and interact with the blockchain, either using
a JSON-RPC connection (for all EVM-compatible blockchains) or a socket. When a user makes
a transaction using a connector, the connector will initiate a request with an instruction such as
eth_sendTransaction for the provider, then the provider will send the request on a blockchain.

Interacting with Smart Contracts and DeFi Wallets in the Frontend66

There are multiple types of connectors out there. Various DeFi wallet vendors may choose different
connectors or create their own connectors for DeFi applications. The most popular connector is
an injected connector, which has been adopted by more than 10 DeFi wallet vendors including
MetaMask, Trust Wallet, and TokenPocket. The injected connector tells the DeFi application to fetch
the EVM-based blockchain provider from the browser or window because the wallets that adopted
this type of connector inject the EVM information there.

For example, you can type the window.ethereum command in the browser console once you have
installed the MetaMask plugin for this browser. Figure 3.3 shows a sample output of the command. It
can help you to verify the injected information associated with the wallet.

Figure 3.3 – Examining the injected objects from the MetaMask wallet

Figure 3.3 shows that chainId is 0x1, pointed to by the first red arrow. It is the chain ID of Ethereum
Mainnet. The second red arrow shows that the wallet address is assigned to selectedAddress if
you have connected the wallet address to the DeFi application. If you haven’t connected to any wallet
address yet, the selectedAddress object will show null. Different wallet vendors who use the
injected connector may inject different sets of objects or field values into the window.ethereum object.

WalletConnect (https://walletconnect.com/) is another popular connector that is
adopted by many vendors. It is an open source protocol for connecting decentralized applications
(DApps) to mobile wallets with QR codes or using desktop wallets directly. Figure 3.4 shows the UI
of WalletConnect connector.

https://walletconnect.com/

Connecting to a DeFi wallet 67

Figure 3.4 – The UI of WalletConnect

Figure 3.4 shows that, when connecting to blockchain using WalletConnect for DeFi applications,
the users have two options to connect. The first option requires users to scan the QR code from their
smartphone and approve the connectivity from their phone. The second option requires the wallet
application or plugin to be installed on the desktop system or browser so that the user can simply
click the icon to connect.

Later in this section, you will learn how to write code to connect the wallet via both the injected
connector and the WalletConnect connector.

There are other connectors developed by various vendors or communities. For example, Binance Wallet
developed the BSC connector (https://www.npmjs.com/package/@binance-chain/
bsc-connector) as its connector.

Besides connector layers, the provider is an essential layer for DeFi applications to access blockchain
with the wallet. It defines the network protocols to access the blockchain network.

mailto:https://www.npmjs.com/package/@binance-chain/bsc-connector
mailto:https://www.npmjs.com/package/@binance-chain/bsc-connector

Interacting with Smart Contracts and DeFi Wallets in the Frontend68

For EVM-compatible blockchains, Web3Provider (https://docs.ethers.org/v5/api/
providers/other/#Web3Provider) in the ethers.js library is used to access EVM-compatible
blockchains. As mentioned in the official documentation, it is inherited from JsonRpcProvider,
which tells the protocol to connect blockchain via the JSON-RPC protocol.

In the next part of this section, you will learn how to write code to use providers and connectors to
connect EVM-based blockchain with DeFi wallets in DeFi applications.

Implementing a wallet connection in the DeFi project

In this part, we’ll introduce web3-react (https://github.com/Uniswap/web3-react) to
implement the wallet connection in our DeFi project. Based on the architecture diagram in Figure 3.2,
we will implement it from bottom to top.

First, let’s create a folder named Wallet in src/frontend/components, and create a file
named index.js in the newly created folder. The following command line shows the new folder
and files created in the directory:

$ find src/frontend/components/Wallet
src/frontend/components/Wallet
src/frontend/components/Wallet/index.js

Then we’ll use Web3Provider to create a provider instance. Let’s open the src/frontend/
components/Wallet/index.js file and implement the getLibrary function. It will return
a Web3Provider instance that will be used by the DeFi applications:

import { Web3Provider } from '@ethersproject/providers';

export const getLibrary = provider => {
 return new Web3Provider(provider);
}

In the frontend/App.js file, add the following highlighted code to use Web3ReactProvider
from @web3-react/core and the getLibrary function we just implemented:

...
import { Web3ReactProvider } from '@web3-react/core'
import { getLibrary } from './components/Wallet';
function App() {
 return <Web3ReactProvider getLibrary={getLibrary}>
 <ThemeProvider theme={theme}>
 <CssBaseline />
 <BrowserRouter>

https://docs.ethers.org/v5/api/providers/other/#Web3Provider
https://docs.ethers.org/v5/api/providers/other/#Web3Provider
https://github.com/Uniswap/web3-react

Connecting to a DeFi wallet 69

 ...
 </BrowserRouter>
 </ThemeProvider>;
 </Web3ReactProvider>
}

export default App;

Next, let’s create an injected connector instance in src/frontend/components/Wallet/
index.js. We can do this by importing the InjectedConnector object with the following line:

import { InjectedConnector } from "@web3-react/injected-connector";

Then, we can define the injectConnector object with a list of chain IDs that will be supported
by the connector:

export const ETHEREUM_NETWORK_ID = 1;
export const SEPOLIA_NETWORK_ID = 11155111;
export const LOCAL_NETWORK_ID = 31337

export const injectedConnector = new InjectedConnector({
 supportedChainIds: [
 ETHEREUM_NETWORK_ID,
 SEPOLIA_NETWORK_ID,
 LOCAL_NETWORK_ID
]
});

The preceding code created an InjectedConnector object that can be used for connecting
Ethereum (chain ID is 1), the Sepolia test network (chain ID is 11155111), and other EVM-compatible
networks (you can find the full list of EVM-compatible networks at https://chainlist.org/).
These network chain IDs are specified in the supportedChainIds list.

To connect to a local Hardhat EVM, you also need the chain ID for it. You can get the chain ID by
adding the local network to MetaMask.

https://chainlist.org/

Interacting with Smart Contracts and DeFi Wallets in the Frontend70

Figure 3.5 – Add a local Hardhat EVM network to MetaMask

As shown in Figure 3.5, you can go to the Networks drop-down list, click Add network, then in the
pop-up window, input the network name as Hardhat Node. The new RPC URL (the URL can
be found in the console when you run npx hardhat node to start the EVM). MetaMask will
detect Chain ID and Currency symbol automatically. Then, you can add the newly generated chain
ID (for example, 31337) in the preceding code section.

Similar to an injected connecter, you can also create a connector with a WalletConnect connector using
the RPC URL we created on Infura in Chapter 2, Getting Started with DeFi Application Development. In
order to make the URL accessible to the React application, you need to assign the value of API_URL
to a variable with the REACT_APP_ prefix in the .env file like this:

For React use
REACT_APP_API_URL=$API_URL

Note
You can refer to https://github.com/PacktPublishing/Building-Full-
stack-DeFi-Application/blob/chapter03-end/defi-apps/.env.example
for the full version of the .env file.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter03-end/defi-apps/.env.example
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter03-end/defi-apps/.env.example

Connecting to a DeFi wallet 71

Once the API URL is accessible to the React application, we can add the following code in src/
frontend/components/Wallet/index.js to create an object of WalletConnectConnector:

import { WalletConnectConnector } from
 "@web3-react/walletconnect-connector";
import { Buffer } from "buffer";

if (!window.Buffer) {
 window.Buffer = Buffer;
}

export const walletConnectConnector =
 new WalletConnectConnector({
 rpc: { [SEPOLIA_NETWORK_ID]:
 process.env.REACT_APP_API_URL },
 qrcode: true,
 });

In the preceding code section, we defined the rpc object with the network ID and URL in it for the
walletConnectConnector object. Also, we set qrcode to true so the DeFi application will
show the QR code when connecting to a wallet.

Note
We also import the Buffer package and set Buffer to window.Buffer if the field is
undefined. It will prevent the Buffer is not defined error in the browser.

For the full source code of src/frontend/components/Wallet/index.js, which
defines both the injected and WalletConnect connector, please refer to https://github.com/
PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter03-
end/defi-apps/src/frontend/components/Wallet/index.js.

In the last step, we will use the defined connectors in our UI code. Because we have created the
CONNECT WALLET button, which is shown in Figure 3.1, we need to add the connectors in the
source file that implements the button.

Let’s open the src/frontend/components/Layout/index.js file, and import useWeb3React
from web3-react and the objects we have defined:

import { useWeb3React } from "@web3-react/core";
import { injectedConnector, walletConnectConnector }
 from "../Wallet";

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter03-end/defi-apps/src/frontend/components/Wallet/index.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter03-end/defi-apps/src/frontend/components/Wallet/index.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter03-end/defi-apps/src/frontend/components/Wallet/index.js

Interacting with Smart Contracts and DeFi Wallets in the Frontend72

Here, useWeb3React provides the wallet connection states and the functions to activate and
deactivate the connections. Thanks to useWeb3React, we can easily implement the functions to
connect a wallet and disconnect from a wallet. Let’s add the following code in the Layout component
in the src/frontend/components/Layout/index.js file:

const { active, account, activate, deactivate }= useWeb3React();

const connect = async (connector) => {
 try {
 await activate(connector);
 } catch (error) {
 console.error(error);
 }
};

const disconnect = async () => {
 try {
 await deactivate();
 } catch (error) {
 console.error(error);
 }
}

The code uses the activate function to initialize a wallet connection and the deactivate function
to terminate a wallet connection. It also reads the active variable from useWeb3React() to check
whether the connectivity is alive. Meanwhile, the account variable shows the connected account
information. If there is no wallet connected, the value of account will be undefined. Now, we want
to show the connected wallet address on the UI and add selections for various wallet connectors; we
can replace the code for the CONNECT WALLET button with the following code:

{active ?
 <Tooltip title="Click to disconnect from wallet">
 <Button sx={theme.component.primaryButton}
 onClick={disconnect} >
 <AccountBalanceWalletIcon />
 {`${account.substring(0,
 6)}...${account.substring(38)}`}
 </Button>
 </Tooltip> :
 <PopupState variant="popover"
 popupId="popup-select-connector">
 {popupState => <React.Fragment>
 <Tooltip title="Select one type of wallet connectors to start
connecting your wallet">

Connecting to a DeFi wallet 73

 <Button variant="contained"
 {...bindTrigger(popupState)}>
 Wallet Connectors
 </Button>
 </Tooltip>
 <Menu {...bindMenu(popupState)}>
 <MenuItem onClick={() => {
 connect(injectedConnector);
 popupState.close(); }}>Injected</MenuItem>
 <MenuItem onClick={() => {
 connect(walletConnectConnector);
 popupState.close(); }}>Wallet Connect</MenuItem>
 </Menu>
 </React.Fragment>}
 </PopupState>
}

In the preceding code, we use active to check whether the code should show the connected address
or the drop-down menu for connecting to a wallet. We have defined the two menu items here: one calls
connect(injectedConnector) to use the injected connector when the menu item is clicked,
and the other one calls connect(walletConnectConnector) to use the WalletConnect
connector. Once the DeFi application is connected to the wallet, the first four digits and the last four
digits of the wallet address will be shown in the top-right corner (the middle part of the full address
is not shown because of security reasons). When you click the address, the wallet will be disconnected
from the DeFi application.

The preceding code also uses UI components of PopupState (https://www.npmjs.com/
package/material-ui-popup-state); this component can manage the state of pop-up menu
items when the event binding button is clicked. The preceding code also uses other components such
as Tooltip, Menu, and MenuItem of Material UI. You can refer to the documentation at https://
mui.com/material-ui/ for more information on these components.

For the full source code of src/frontend/components/Layout/index.js, please refer
to https://github.com/PacktPublishing/Building-Full-stack-DeFi-
Application/tree/chapter03-end.

Once you have followed the instructions and completed the code, you can test it out by typing npm
start in the project folder, and then you will see the UI that is the same as the screenshot shown
in Figure 3.6.

https://www.npmjs.com/package/material-ui-popup-state
https://www.npmjs.com/package/material-ui-popup-state
https://mui.com/material-ui/
https://mui.com/material-ui/
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/tree/chapter03-end
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/tree/chapter03-end

Interacting with Smart Contracts and DeFi Wallets in the Frontend74

Figure 3.6 – The UI of WALLET CONNECTORS in DeFi Application

If you have installed MetaMask or other wallets using the injected connector, you can click Injected
from the drop-down menu, then MetaMask will pop up. You can switch the network to the local EVM
or any EVM-based network configured in MetaMask. If you select Wallet Connect, a dialog window
that is similar to Figure 3.4 will show up. After the wallet is connected, you can click the address to
disconnect the wallet from the application.

In the next section, we will start using the wallet connection to interact with the Simple DeFi Token
smart contract.

Reading data from blockchain
When you access a blockchain explorer such as https://etherscan.io/, you will get the data
such as the total supply or number of holders of a token. Some of the data can be retrieved directly
from a smart contract by calling its functions. Some of the data such as historical transactions can
be read from blocks. In this section, we will mainly focus on retrieving information by calling the
smart contract function. To be more specific, we will add the total supply and current user balance
on the UI shown in Figure 3.1. For how to read data from blocks, please refer to the ethers.js official
documentation at https://docs.ethers.org/v5/api/providers/provider/ and
check the getBlockWithTransactions function.

The source code we are going to add is located in the src/frontend/features/
TokenOperations/index.js file. This is the main JavaScript file for the TOKEN OPERATIONS
feature we’ll implement in the remaining sections of this chapter.

https://etherscan.io/
https://docs.ethers.org/v5/api/providers/provider/

Reading data from blockchain 75

Before calling the functions in the Simple DeFi Token smart contract, we first import the following
components and functions in src/frontend/features/TokenOperations/index.js:

import { useState, useEffect, useCallback } from''reac'';
import { ethers } from''ether'';
import TokenABI from
 ''../../contracts/SimpleDeFiToken.jso'';
import TokenAddress from
 ''../../contracts/SimpleDeFiToken-address.jso'';
import { useWeb3React } from""@web3-react/cor"";

Please note that we imported ethers to access all the functionalities for accessing the EVM, and
also imported TokenABI and TokenAddress, generated by scripts/deploy.js, which
we created in the Deploying smart contract metadata to the frontend section. The last line of the
preceding code block imported useWeb3React from @web3-react/core, so we can get the
wallet connection state, the connected account address, and the provider once the DeFi application
is connected to the wallet.

Next, let’s define the states and the set state functions for totalSupply and yourBalance:

const [totalSupply, setTotalSupply] = useState(0);
const [yourBalance, setYourBalance] = useState(0);

Then, add the two state variables, totalSupply and yourBalance (the changes to the code are
highlighted in the following code):

<Grid container spacing={2}>
 <Grid item xs={12}>
 <Typography variant''h''>Simple DeFi Token</Typography>
 </Grid>
 <Grid item xs={6}>
 <Typography variant''h''>Total Supply</Typography>
 <Typography>{totalSupply}</Typography>
 </Grid>
 <Grid item xs={6}>
 <Typography variant''h''>Your Balance</Typography>
 <Typography>{yourBalance}</Typography>
 </Grid>
</Grid>

Interacting with Smart Contracts and DeFi Wallets in the Frontend76

The total supply of a token is public information that everyone can access, so the application should
access the total supply without connecting to any wallet. To achieve the connection to blockchain
without a wallet connection, we can create a general JsonRpcProvider with the local RPC URL
in src/frontend/components/Wallet/index.js so we can access the local EVM with
the specified URL:

export const localProvider =
 new ethers.providers.JsonRpcProvider(
 process.env.REACT_APP_LOCAL_RPC_URL);

We also need to define REACT_APP_LOCAL_RPC_URL in the .env file like this:

RPC Endpoint of Local EVM

REACT_APP_LOCAL_RPC_URL""http://127.0.0.1:8545""

Note
Similarly, you can create another provider with the RPC endpoint for Testnet or Mainnet (for
example, the Infura RPC endpoint when you create a project).

Now let’s use localProvider to get the token information from our local EVM. We can achieve that
by adding the following code in src/frontend/features/TokenOperations/index.js:

import { localProvider } from''../../components/Walle'';
...
const getTotalSupply = useCallback(async () => {
 try {
 const contract = new ethers.Contract(
 TokenAddress.address, TokenABI.abi, localProvider);
 const response = await contract.totalSupply();
 setTotalSupply(ethers.utils.formatEther(response));
 } catch (error) {
 console.error''Cannot get total suppl'', error);
 }
}, []);
...

The three lines of code in the try statement are worth more explanation here.

Reading data from blockchain 77

The first line creates a contract object using ethers.Contract with three arguments: the address
of the deployed smart contract (TokenAddress.address), the ABI of the smart contract
(TokenABI.abi), and a provider (localProvider). The third argument of the ethers.
Contract constructor can also be a signer. A signer is required when we access smart contracts
with an account; we will talk about it later in this section.

The second highlighted line calls the totalSupply() function of the smart contract; the definition of
the function is in the Solidity code: https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/token/ERC20/ERC20.sol. Because all calls to
smart contract functions are asynchronized calls, we need the await keyword to get the response
from the call. The response is the return value of the calling function. For example, the total supplying
amount in wei will be returned from await contract.totalSupply() in this case.

Note
Wei is the smallest denomination of ether—the cryptocurrencies used on the Ethereum network.
One ether = 1,000,000,000,000,000,000 wei (1018). The other way to look at it is one wei is one
quintillionth of an ether.

It will be easier for us to understand the concept of wei by comparing it with fiat currencies.
For example, a cent is the indivisible unit of US currency and a US dollar is divisible into 100
units. Whereas, an ether (ETH) can be divided into 1018 units.

The third highlighted line sets the state value of totalSupply by calling the setTotalSupply
function so that the UI can show the value. Because the returned value is in wei, and the values that
are represented by wei are usually very large numbers, we want to convert the returned amount from
wei to ether for user readability. Here, we use the ethers.utils.formatEther(..) function
for the conversion.

After we implement the getTotalSupply function, we can continue to implement the
getYourBalance function. Here, we need to know the address of the connected wallet;
useWeb3React() can help us get this information:

const { active, account, library } = useWeb3React();

useWeb3React() returns the following three variables we will use in our code:

• active: This represents whether there is an active connection to a wallet

• account: The address of connected wallet accounts

• library: The provider library where we can get the provider information and call provider
functions in our code

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol

Interacting with Smart Contracts and DeFi Wallets in the Frontend78

Now, we can use the preceding variables to get the balance of the current account; it will implement the
following getYourBalance function in src/frontend/features/TokenOperations/
index.js:

const getYourBalance = useCallback(async () => {
 if (!active) return;
 try {
 let contract = new ethers.Contract(
 TokenAddress.address,
 TokenABI.abi,
 library.getSigner());
 const response = await contract.balanceOf(account);
 setYourBalance(ethers.utils.formatEther(response));
 } catch (error) {
 console.error('Cannot get your balance', error);
 }
}, [account, library, active]);

Unlike the argument when creating the contract object in the getTotalSupply function, the
preceding code uses library.getSigner() to return a Signer object as the third argument
of the ethers.Contract() constructor.

A signer is an abstract of an EVM-compatible account, which is used to sign the messages and the
transactions that will be sent to the EVM network to execute smart contract functions. To read data
from blockchain that doesn’t modify on-chain data (such as calling the balanceOf function), it
only requires the network connectivity information or the provider to perform the operation without
connecting to a wallet. If the operation requires the modification of on-chain data, the DApp will
also require connecting to a wallet, and ethers.js will sign the transaction data with a private key of
the wallet to perform the operation.

You will learn about using a signer for a connected wallet to transfer tokens to another account in
the next section of this chapter.

We also use the account variable returned from useWeb3React() for the address of the connected
account. It is used as the argument of the balanceOf function of the smart contract so we can get
the balance of the account. We also call ethers.utils.formatEther(response) to format
wei into ether like what we did in the getTotalSupply function.

Now, let’s start the application by running npm start, then the application will run on http://
localhost:3000/ as shown in Figure 3.7.

Reading data from blockchain 79

Figure 3.7 – Screenshot of the running application before connecting the wallet

The screenshot of Figure 3.7 shows Total Supply is 1,000,000, which is the correct initial total supply
we defined in SimpleDeFiToken.sol. Now, the value of Your Balance is 0 because we haven’t
connected to a wallet yet.

You need to keep the local EVM running all the time when you are trying out the code examples in
this book. Otherwise, you may not get the expected results for any of the following reasons:

• The EVM is not running

• The smart contract was not deployed

• The wallet address you connect to the DeFi application is incorrect

If the first and/or second case in the preceding list happens, you can try to restart the local EVM
by running npx hardhat node and then running npm run deploy localhost in the
project’s folder to redeploy the smart contract and generate the metadata in the frontend folder. For
the third case, we need to import the accounts from the local EVM and then connect to the address
from MetaMask using an injected connector.

Because only the deployer of the Simple DeFi Token smart contract has the token, we need to add
the deployer’s wallet into MetaMask in order to show the balance. To locate the deployer address of
the smart contract, you can review the output of a local EVM, and then you will find the following
output when we deploy the smart contract:

$ npx hardhat node
...
eth_sendTransaction
 Contract deployment: SimpleDeFiToken
 Contract address: 0x5fbdb2315678afecb367f032d93f642f64180aa3
 Transaction: 0x18ca18e40063e676e6d332b73f9b72588b42406d
7a35c2f3e87994439b285e6b
 From: 0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266
 Value: 0 ETH
 Gas used: 1500873 of 1500873
 Block #1: 0xdabac72e37330066243e75328edc910c44db85f90
dafbe613e4d5396e15d512d

Interacting with Smart Contracts and DeFi Wallets in the Frontend80

You can find the deployer’s address in the From: address.

Next, let’s scroll up the output of the command to find the private key for this address so we can add
the address to MetaMask. Now, you will see something like this at the beginning of the output of the
npx hardhat node command:

$ npx hardhat node
Started HTTP and WebSocket JSON-RPC server at http://127.0.0.1:8545/

Accounts
========

WARNING: These accounts, and their private keys, are publicly known.
Any funds sent to them on Mainnet or any other live network WILL BE
LOST.

Account #0: 0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266 (10000 ETH)
Private Key:
0xac0974bec39a17e36ba4a6b4d238ff944bacb478cbed5efcae784d7bf4f2ff80

Account #1: 0x70997970C51812dc3A010C7d01b50e0d17dc79C8 (10000 ETH)
Private Key:
0x59c6995e998f97a5a0044966f0945389dc9e86dae88c7a8412f4603b6b78690d
...

Then, we can copy the private key and import the account by clicking the account icon in the top-right
corner of the MetaMask plugin and then paste the private key of the deployer as in Figure 3.8 (you
must pay attention to the warning message shown in the output of the command because it shows the
private keys to the public. Any funds sent to these addresses on Mainnet or any other live network
will be lost).

Reading data from blockchain 81

Figure 3.8 – Import a local EVM account in MetaMask

Note
Please make sure Network Name is Hardhat Node when adding the accounts for the
local EVM.

After adding the deployer’s account, we can see the token balance of the deployer is 1,000,000 on the
page of our project:

Figure 3.9 – Showing the token balance when the account is connected

Interacting with Smart Contracts and DeFi Wallets in the Frontend82

So far, so good! Now, we have read data from blockchain by connecting to a wallet and calling smart
contract functions. In the next section, you will learn how to make transactions that modify data on
a blockchain.

Making transactions on blockchain
In this section, we will explore how to make transactions with the ethers.js and web3-react libraries.
Meanwhile, we will complete the functions of transferring tokens on the TOKEN OPERATIONS page.

In Figure 3.1, we created four text fields that require a user to input the recipient’s address and
transferring amount for the two transfer cases:

• Normal Transfer: This transfers the specified amount of tokens from one address to another
address without any loss, and calls ERC20’s standard transfer function.

• Transfer with Burn: This transfers the specified amount of tokens from the sender’s address,
burns 10% of them, and sends the remaining 90% of the tokens to the recipient’s address. We
will call the custom transferWithAutoBurn function we defined in src/backend/
contracts/SimpleDeFiToken.sol.

Let’s define the following four state variables for the four TextField values in src/frontend/
features/TokenOperations/index.js:

const [addressNormal, setAddressNormal] = useState('');
const [amountNormal, setAmountNormal] = useState(0);
const [addressBurn, setAddressBurn] = useState('');
const [amountBurn, setAmountBurn] = useState(0);

Then, we use the preceding defined state variables as the text content of the TextField components.
Also, we need to call the set state functions when the TextField values are changed so it can update
the variables:

<TextField
 label="Please Enter Recipient's Address"
 value={addressNormal} fullWidth
 onChange={e => setAddressNormal(e.target.value)} />
<TextField
 label="Please Enter Amount to transfer"
 value={amountNormal} fullWidth
 onChange={e => setAmountNormal(e.target.value)} />
<TextField
 label="Please Enter Recipient's Address"
 value={addressBurn} fullWidth
 onChange={e => setAddressBurn(e.target.value)} />
<TextField

Making transactions on blockchain 83

 label="Please Enter Amount to transfer (10% of tokens will be burnt
automatically)"
 value={amountBurn} fullWidth
 onChange={e => setAmountBurn(e.target.value)} />

Now, let’s implement the function for Normal Transfer and Transfer with Burn to make the transaction
on a blockchain; this function will run transactions on a blockchain. To make transactions, we first
need to create a contract object as we did in the getYourBalance function:

const contract = new ethers.Contract(
 TokenAddress.address, TokenABI.abi, library.getSigner());

To execute Normal Transfer, we can initialize the transaction by calling the transfer function of
the smart contract:

const tx = await contract.transfer(addressNormal,
 ethers.utils.parseUnits(amountNormal, 'ether'))

The preceding code line passes two arguments to the transfer function: the first argument is the
recipient’s address and the second is the amount to transfer in the wei unit. Because the amount we
input in TextField is in the ether unit, we need to extend it to wei by calling the ethers.utils.
parseUnits function so that the smart contract can receive the correct value.

Although we use await here, it doesn’t mean the transaction is completed at the time of returning;
it just tells the application that a transaction has been created on blockchain for this request, and
the request has been submitted. It still takes a period of time (usually, a few seconds) to complete
the transaction.

In order to notify the user when the transaction is completed, we need to call await tx.wait();
and alert the user once after the call returns:

import { toast } from 'react-toastify';
...
const tx = await contract.transfer(addressNormal,
 ethers.utils.parseUnits(amountNormal, 'ether'))
toast.info(`Transaction Submitted! TxHash: ${tx.hash}`);
await tx.wait();
toast.info(`Transaction Succeeded! TxHash: ${tx.hash}`);

Here, we use toast.info(...) in the react-toastify (https://www.npmjs.com/
package/react-toastify) library to pop up the alert in the top-right corner of the page when
the transaction is submitted and completed. We provided the transaction hash in the alert message
with tx.hash. In Mainnet or Testnet, you can access the transaction page by copying and pasting
the hash into the blockchain explorer.

https://www.npmjs.com/package/react-toastify
https://www.npmjs.com/package/react-toastify

Interacting with Smart Contracts and DeFi Wallets in the Frontend84

To make the react-toastify alert box show properly, we also need to add ToastContainer
and the style sheet in src/frontend/App.js:

...
import { ToastContainer } from 'react-toastify';
import 'react-toastify/dist/ReactToastify.css';
function App() {
 return <Web3ReactProvider getLibrary={getLibrary}>
 <ThemeProvider theme={theme}>
 <CssBaseline />
 <BrowserRouter>
 <Layout>
 <Routes>
 <Route path='/'
 element={<TokenOperations />} />
 </Routes>
 </Layout>
 <ToastContainer />
 </BrowserRouter>
 </ThemeProvider>;
 </Web3ReactProvider>
}
...

Similar to Normal Transfer, Transfer with Burn takes the same steps; it only needs to call the
transferWithAutoBurn function instead of the transfer function in the smart contract. To
combine the two types of transfers, we can create one function in src/frontend/features/
TokenOperations/index.js:

const handleTransfer = async (autoBurn) => {
 if (!active) {
 toast.error('You have to connect wallet first before transfer!');
 return;
 }
 const type = autoBurn ? 'auto burn' : 'normal';
 const address = autoBurn ? addressBurn : addressNormal;
 const amount = autoBurn ? amountBurn : amountNormal;

 if (!ethers.utils.isAddress(address)) {
 toast.error(`The recipient address for ${type} transfer is
invalid!`);
 return;
 }
 if (isNaN(amount)) {

Making transactions on blockchain 85

 toast.error(`The amount for ${type} transfer is invalid!`);
 return;
 }
 try {
 const contract = new ethers.Contract(
 TokenAddress.address, TokenABI.abi,
 library.getSigner());
 const tx = autoBurn ?
 await contract.transferWithAutoBurn(address,
 ethers.utils.parseUnits(amount, 'ether')) :
 await contract.transfer(address,
 ethers.utils.parseUnits(amount, 'ether'));
 toast.info(
 `Transaction Submitted! TxHash: ${tx.hash}`);
 await tx.wait();
 toast.info(
 `Transaction Succeeded! TxHash: ${tx.hash}`);
 if (autoBurn) {
 setAddressBurn('');
 setAmountBurn(0);
 } else {
 setAddressNormal('');
 setAmountNormal(0);
 }
 getTotalSupply();
 getYourBalance();
 } catch (error) {
 toast.error(`Cannot perform ${type} transfer!`);
 console.error(error);
 }
}

The preceding code implemented the handleTransfer function with the autoBurn argument. If this
argument is true, it will make a transaction by calling contract.transferWithAutoBurn(...).
If the argument is false, it will call the contract.tranfer(...) function. As we discussed
previously, the code waits for the completion of the transaction. Also, it sets the value back to default
(by setting address values to empty string and amount values to 0) when the transaction runs
successfully. If any exception happens, it will be captured in the catch block and an alert box will
be shown on the page.

Interacting with Smart Contracts and DeFi Wallets in the Frontend86

Now, let’s add the code to call the handleTranfer function when the TRANSFER! button and
the TRANSFER WITH BURN! button is clicked:

<Button sx={theme.component.primaryButton} fullWidth
 onClick={() => handleTransfer(false)}>
 Transfer!</Button>
...
<Button sx={theme.component.primaryButton} fullWidth
 onClick={() => handleTransfer(true)}>
 Transfer with Burn!</Button>

Note
For the completed source code of src/frontend/features/TokenOperations/
index.js, please refer to https://github.com/PacktPublishing/Building-
Full-stack-DeFi-Application/blob/chapter03-end/defi-apps/src/
frontend/features/TokenOperations/index.js.

Once we have completed the function of transfers and hooked it up with the buttons, we can check
the web page and make some transactions. You can do this by importing another wallet address from
Hardhat to MetaMask by providing the private key, using this address as the recipient’s address. Then,
transfer 100 simple DeFi tokens from the deployer to the recipient’s address with Normal Transfer.
You will see the Transaction Succeeded message shown in Figure 3.10 if everything goes smoothly.

Figure 3.10 – The message shows the transaction is completed

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter03-end/defi-apps/src/frontend/features/TokenOperations/index.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter03-end/defi-apps/src/frontend/features/TokenOperations/index.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter03-end/defi-apps/src/frontend/features/TokenOperations/index.js

Making transactions on blockchain 87

Now, let’s try to transfer another 100 tokens to the same recipient’s address via Transfer with Burn. After
that, you will notice the total supply is reduced by 10 tokens because 10% of 100 transferred tokens are
burnt based on the token’s smart contract, and the deployer’s balance of this token is reduced by 100.

After performing these two transactions, the deployer’s balance of the token should be reduced by
200, the recipient’s balance should increase by 190, and 10 tokens should be burnt. We can verify that
by switching the account through our application. Figure 3.11 shows the balance of the two accounts
(deployer and recipient) and the total supply:

Figure 3.11 – The balances of the deployer’s account and the recipient’s account after two transactions

At the end of this section, let’s summarize the general steps of making transactions on blockchain
based on the handleTransfer function we have implemented. Here are the steps, including best
practices, for making a transaction with a smart contract:

1. Verify whether the wallet is connected (the account is active).

2. Verify whether the input parameters for calling the smart contract functions are valid.

3. Initialize a contract object using contract = new ethers.Contract(...).

4. Use the await keyword to call the smart contract function with the contract object, and
assign the returned transaction object to a variable.

5. Wait for the completion of the transaction using await tx.wait().

6. Show the transaction progress on the UI with some alerting mechanism; it is also good to show
the transaction hash with the transaction object on the UI so people can track the events of
the transaction.

7. Use the try...catch block to protect the frontend code.

8. Report errors in the catch block when anything goes wrong.

Interacting with Smart Contracts and DeFi Wallets in the Frontend88

Now, we have learned the steps and best practices for making transactions on blockchain. In the
remaining parts of this book, we will follow the principles for frontend development.

Summary
In this chapter, we have built the frontend for reading data and making transactions on the blockchain.
It allows users to interact with the Simple DeFi Token smart contract we created in Chapter 2, Getting
Started with DeFi Application Development. The functions that we implemented included reading the
total supply, getting the token balance of a user, transferring tokens with the standard interface, and
performing transactions with the custom transfer to burn a portion of tokens while transferring. You have
learned how to use popular libraries such as ethers.js and web3-react to implement these functionalities.

Meanwhile, we also introduced the architecture of using DeFi wallets to access the blockchain, dived
into the concept of provider and connector, and understood how various DeFi wallets leverage
connectors to access providers and perform transactions with wallet connections.

In the next chapter, we will introduce the principle and architecture of decentralized exchange
(DEX), which is a type of popular DeFi application running on blockchain. DEX allows people to
trade cryptocurrencies and manage liquidities. By reading the next chapter, you will understand the
mathematics and gain insights into the components that make up DEX, such as factories, routers, and
token pairs. After that, you will get ready to build smart contracts in DEX.

Part 2:
Design and Implementation

of a DeFi Application for
Trading Cryptos

In this part, you will learn how to build a Decentralized Exchange (DEX) – the most popular DeFi
application for trading cryptos – from the ground up. This part will give you an introduction to the
various types of DEXs and dive into a specific type of DEX – the Constant Product Market Maker
(CPMM). You will learn how to build smart contracts for token swapping and providing and removing
liquidity, along with coverage of the interaction between the frontend and the smart contract, and
ways to handle native tokens in smart contracts.

Starting from this part, we will elaborate the mathematics that goes on behind the scenes so you can
understand how DeFi applications work and how you can monetize your DeFi projects.

This part has the following chapters:

• Chapter 4, Introduction to Decentralized Exchanges

• Chapter 5, Building Crypto-Trading Smart Contracts

• Chapter 6, Implementing a Liquidity Management Frontend with Web3

• Chapter 7, Implementing a Token-Swapping Frontend with Web3

• Chapter 8, Working with Native Tokens

4
Introduction to

Decentralized Exchanges

Decentralized Exchanges (DEXs) are one of the most popular applications of DeFi. They enable
people to buy and sell cryptocurrencies on a blockchain. Similar to what we have built in previous
chapters, a DEX as a full stack application consists of smart contracts, which implement its core logic,
and a frontend that users can use to interact with the smart contracts to perform operations.

DEXs are a very big topic and there are lots of concepts you may need to digest before understanding
the code that we’ll implement. We will mainly focus on the introduction and conceptual demonstration
of a DEX and the most popular type: Automated Market Maker (AMM). After reading this chapter,
you should be more confident in writing and understanding the code for the smart contracts of DEXs.

In this chapter, you will learn about the following:

• The three main types of DEXs

• The mathematics of Automated Market Makers (AMMs)

• The architecture of AMM

The three main types of DEXs
A DEX is a peer-to-peer marketplace where people can trade cryptocurrencies without handing over
the management of their funds to an intermediary or custodian. The transactions made while trading
cryptocurrencies are facilitated through the code of smart contracts that are running on a blockchain.

Peer-to-peer (P2P), by its definition, means the architecture of DEX partitions tasks (or workloads)
between peers, which are the nodes participating in the blockchain network. Each node in the system
is equally privileged and equipotent.

Introduction to Decentralized Exchanges92

DEXs have all the characteristics of DeFi applications we discussed in Chapter 1, Introduction to DeFi.
Let’s take non-custodial, for example. The users of DEXs have full control of their own crypto assets.
When trading crypto, the DEX doesn’t hold the user’s cryptocurrencies and the users can get the
tokens they exchange on the spot once the transaction is completed. Meanwhile, every DEX is open
because it is accessible to everyone, with equal services provided, and all the transactions are trackable
on the blockchain (all users can view these transactions via blockchain explorers such as https://
etherscan.io/).

You may have heard of people buying or selling crypto via DEXs. Essentially, buying or selling means
carrying out an exchange on a marketplace. You can imagine using fiat currencies to exchange stock
shares via stock exchanges. Similarly, you can exchange one cryptocurrency for other cryptocurrencies
on DEXs. For example, when you exchange USDT for ETH, you are using USDT to buy ETH, on the
other hand, we can say you are selling USDT for ETH.

Note
Centralized Exchanges (CEXs) provide another way for people to exchange cryptos, but there
are centralized institutions to control the rules of these exchanges and they don’t have all the
characteristics of DeFi applications. Please refer to the discussion in Chapter 1, Introduction
to DeFi in the section headed Overview of DeFi applications.

There are three main types of DEXs: Automated Market Maker (AMM), Order Book DEX, and DEX
aggregator. All of these types of DEXs are built with smart contracts that run on the blockchain. We
will introduce these types of DEXs one by one.

AMMs

AMM is the most widely used type of DEX. In Chapter 1, Introduction to DeFi we learned what AMM
is. Here, we will provide a deep-dive introduction to how it works.

AMM enables automatic price quotes based on the cryptocurrency reserves in liquidity pools. A
liquidity pool in a DEX is a smart contract that holds two or more types of tokens; each type of token
has an amount in the pool that we call the “reserve.” For example, a liquidity pool may have 10,000
USDT and 5 ETH, so the reserve of USDT in the liquidity pool is 10,000, and the reserve of ETH of
the pool is 5, so the price of ETH is 10,000 / 5 = 2,000 USDT.

AMM provides democratized access to liquidity provision and permissionless market creation for
tokens that conform to pre-defined interfaces. When a trade is made, the price of the token in the
liquidity pool is automatically calculated based on the reserves of the cryptocurrencies in the pool.

https://etherscan.io/
https://etherscan.io/

The three main types of DEXs 93

Liquidity pool shares represent the users’ ownership of the liquidity pool asset. The shares are also called
liquidity pool tokens (LP tokens). When adding liquidity, the liquidity provider can get an amount
of LP tokens to represent the user holding a portion of pooled tokens. Similar to people selling stocks
for cash on the stock exchange, the user can redeem the LP tokens for the tokens in the liquidity pool
with the AMM type of DEX. For example, a liquidity pool has 100 BTC and 1600 ETH, and the total
supply of LP tokens for the liquidity pool is 400. If a user holds 40 LP tokens, it means that the user
holds 10% (40/400) of the asset in the liquidity pool. By redeeming the 40 LP tokens, the user can get
10 (100 x 10%) BTC and 160 (1600 x 10%) ETH from the liquidity pool. The process of redeeming
LP tokens is also called liquidity removal.

For an AMM, when a trade is made by a user, usually, a small portion of the transaction volume will
be converted to rewards for liquidity pool providers by keeping the rewards in the liquidity pool.
Because the total supply of LP tokens does not change, each liquidity pool share will represent more
tokens as long as there are trading activities that keep generating reward tokens in the liquidity pool.
Although the amount of liquidity pool shares held by a liquidity pool provider does not change, the
provider can earn tokens as the shares become more valuable.

For a specific case, a liquidity pool that has exactly two types of tokens reserved in the pool is called a
liquidity pair. The liquidity pair mode is the most popular liquidity pool and has been adopted by top
DEXs on markets such as Uniswap (https://uniswap.org/) and PancakeSwap (https://
pancakeswap.finance/). We will learn more about AMMs and implement the AMM type in
this part of the book.

Note
If you are new to AMM applications such as Uniswap, we highly encourage you to learn how
to exchange tokens using Uniswap by following the user guide at https://support.
uniswap.org/hc/en-us/articles/8370549680909-How-to-swap-tokens.

Order book DEXs

As the name suggests, an order book DEX is based on order books. An order book compiles records
of open orders for selling or buying an asset. Order books allow an exchange’s internal system to match
buy and sell orders. Order book exchanges are performed by matching engines that fulfil open orders.
Figure 4.1 shows an example of an order book.

Order book exchanges will match the orders in the order book when people want to buy or sell crypto.
The orders are separated into two sides: bids and asks (buy orders and sell orders, respectively). Bids
are the prices that traders want to buy. Asks are the prices that traders want to sell.

https://uniswap.org/
https://pancakeswap.finance/
https://pancakeswap.finance/
https://support.uniswap.org/hc/en-us/articles/8370549680909-How-to-swap-tokens
https://support.uniswap.org/hc/en-us/articles/8370549680909-How-to-swap-tokens

Introduction to Decentralized Exchanges94

Figure 4.1 – An Example of a Bitcoin order book on Cryptowatch

If you have experience trading stocks, you may know there are limit orders and market orders. Only
limit orders are recorded in the order book. Limit orders allow you to specify the price they fill at.
Market orders and orders with triggering prices (e.g., stop losses) do not sit in the order book. You can
also refer to https://www.investor.gov/introduction-investing/investing-
basics/how-stock-markets-work/types-orders for an introduction to these order types.

As we can see from Figure 4.1, there are three columns for these orders. The columns, from left to
right, are as follows:

• The price a user wants to sell or buy crypto in the order at.

• The quantity of the order – how much crypto the users want to buy or sell at the price.

• The sum of the quantity of the orders from the top of the side to the current position.

https://www.investor.gov/introduction-investing/investing-basics/how-stock-markets-work/types-orders
https://www.investor.gov/introduction-investing/investing-basics/how-stock-markets-work/types-orders

The three main types of DEXs 95

Figure 4.1 also shows the definition of Top of Ask Side and Top of Bid Side in the order book. Top
of Ask Side is the order with the minimum sell (ask) price. Top of Bid Side is the order with the
maximum buy (bid) price. The Bid-Ask Spread (a.k.a. spread) of the order book is Top of Ask Side
minus Top of Bid Side. For the order book shown in Figure 4.1, the spread is 28380.1 USD - 28380.0
USD = 0.1 USD.

You can refer to https://www.investopedia.com/terms/o/order-book.asp for
more general information about order books.

In the real world, a fully on-chain order book DEX is a challenge in implementation and user experience.
It requires all orders in an order book to be stored on-chain, and it may face high latency issues when
matching orders due to the performance of blockchain networks, especially in the case of super-high
trading activities. This issue could cause security threats to the on-chain order book DEXs.

Nowadays, implementing more practical order book DEXs facilitates several off-chain components
to improve the security and performance while transactions happen on-chain. For example, when
the trades occur on-chain, the processes of order matching happen off-chain during the period of
trade settlements. This kind of hybrid order book design has been adopted by several popular order
book DEXs, such as dYdX (https://dydx.exchange/) and Serum (https://docs.
projectserum.com/).

DEX aggregators

A DEX aggregator is a type of DeFi application that aggregates trading information from multiple DEXs.
The trading information could be the reserves in the liquidity pool or order books. DEX aggregators
leverage information from multiple DEXs to get the best price for users to buy or sell crypto.

You can imagine a DEX aggregator is essentially a search engine for DEXs. It allows traders to compare
different DEXs in order to find the best available price for any given crypto they are looking to buy
or sell. It makes it easier and faster for users to execute trades and helps them save time by avoiding
manual price comparisons across multiple DEXs.

By aggregating multiple DEXs, DEX aggregators bring two more benefits to crypto investors:

• Minimize the price impact while trading: The price impact is the price offset when a transaction
is made. It means a crypto investor cannot buy or sell crypto with the current exact price of
a cryptocurrency because of the change of ratios of the crypto assets in the liquidity pool or
the depth of the order book. It means when you buy crypto from a liquidity pool or order
book, you usually pay a higher price than is originally shown, or sell at a lower price. The price
differences are the offsets or the price impact of the trading activity. DEX aggregators usually
compare DEXs for the best price after considering the price impact.

https://www.investopedia.com/terms/o/order-book.asp
https://dydx.exchange/
https://docs.projectserum.com/
https://docs.projectserum.com/

Introduction to Decentralized Exchanges96

• Protect trading from failed transactions: Sometimes a DEX may fail to complete transactions
due to liquidity pool issues, smart contract bugs, or being under attack. DEX aggregators can
facilitate the analysis and detection process so that they can provide a stable and secure exchange
to ensure the success of transactions.

Generally speaking, DEX aggregators are a new type of crypto exchange platform and they may have
hybrid architecture and get off-chain activities involved to get the best performance and user experience.

In this book, we will focus on a discussion about AMM, which is the most popular type of DEX. We
will walk through the process of building a full stack AMM DEX in this book.

The mathematics of AMMs
AMMs are a type of DEX that rely on mathematical formulas to set the price of a token. The trading
process and determination of the price are done automatically without depending on other traders.

As we discussed previously, the concept of liquidity pool plays the most important role for AMMs.
An liquidity pool typically consists of two or more types of crypto assets. Here, we want to introduce
the term relation function of a liquidity pool. We will walk through the concept to understand how
liquidity pools work.

Relation functions

A liquidity pool usually has a formula to define the relations and constraints of assets (there could be
two or more assets in the liquidity pool). Here, we relation functions come into scope.

A relation function of the types of assets in liquidity pools defines how the specific AMM works. A
relation function defines the conditions the reserves of all types of assets in a liquidity pool must
satisfy. The market makers using constant functions are the most popular on the market; this type of
market maker is called a constant function market maker.

Constant Function Market Maker (CFMM)

Constant functions are the most frequently used functions to describe the relations of asset amounts
in liquidity pools. The market makers that use liquidity pools with constant functions are called
Constant Function Market Makers (CFMMs). The constant functions can be represented with the
following formula:

 F (Reserve 1 , Reserve 2 , ... , Reserve n) = K

Here F (Reserve 1 , Reserve 2 , ... , Reserve n) represents the function of variables Reserve 1 , Reserve 2 , ... , Reserve n
. The amounts of the reserved assets (Reserve 1 , Reserve 2 , ... , Reserve n) in the liquidity pools of a CFMM
make a constant value K based on a specific formula. For example, constant sum market makers
(CSMM) require all asset amounts in the liquidity pools to sum to a constant value, where the sum

The mathematics of AMMs 97

is the function. Other popular types of CFMMs are constant product market maker (CPMM) and
constant mean market maker (CMMM). We will discuss all these types of CFMMs later in this section.

Constant Product Market Maker (CPMM)

The CPMM is one of the most popular CFMM-based DEX. It means the product of the reserves of
two or more tokens in a liquidity pool is a constant value:

 ∏
i=1

n

 Reserve i = K

Where Reserve i is the reserve of the i th token, K is a constant value.

A CPMM with two tokens is the most popular case. Given that there are only two tokens (token A
and token B) in a liquidity pool, we have the following:

 Reserve A * Reserve B = K

It means when there are only exchange (or swap) activities with this liquidity pool, the product of
the reserve of token A (Reserve A) and the reserve of token B (Reserve B) is constant. When plotting the
relation of Reserve A and Reserve B in a coordinate system, it will show a hyperbola as in Figure 4.2. We
only show the plotted line in the first quadrant because we assume Reserve A and Reserve B are greater
than 0.

Figure 4.2 – The visualization of CPMM in coordinates

Introduction to Decentralized Exchanges98

From Figure 4.2, we can see the relations of the two reserves’ amounts fall on the red line. When a
user buys or sells a token in the liquidity pool, the liquidity position moves on the line. Suppose a
liquidity pool has token A and token B. The current position of the two reserves is the blue dot shown
in Figure 4.2. If we buy token A from the liquidity pool, we need to pay with token B. It involves the
following token-transferring flows:

• Token A is transferred from the liquidity pool to our wallet

• Token B is transferred from our wallet to the liquidity pool

As a result, the reserve of token A will become less in the liquidity pool, and the reserve of token B
will increase because we swapped out token A by adding token B to the liquidity pool. The position
will move to the green dot, which is the upper-left side of the current position in Figure 4.2.

On the other hand, if we sell token A to get token B, we will add token A to the liquidity pool and
remove token B from the liquidity pool and into our wallet. So, the position of the two reserves will
move to the red dot, which is the lower-right side of the current position, as shown in Figure 4.2.

For the CPMMs that have two tokens in their reserve, the price of a token in a liquidity pool is the
ratio of the reserve of the token and another token. Here, we suppose there are two tokens (token A
and token B) in the liquidity pool. Then, we have the following:

 Price A =
 Reserve B

 _ Reserve A

 Price B =
 Reserve A

 _ Reserve B

Where:

• Price A is the price of token A

• Price B is the price of token B

• Reserve A is the reserve of token A

• Reserve B is the reserve of token B

For example, for a WETH/USDT pool, there are 5 WETH and 10,000 USDT in the liquidity pool. The
price of WETH is the reserve of USDT divided by the reserve of WETH, which is 10,000/5 = 2,000
USDT. And the price of USDT is 5/10,000 = 0.0005 WETH.

The mathematics of AMMs 99

If we come back to Figure 4.2, when the current position moves from the blue dot to the green dot,
Reserve B becomes greater, and Reserve A becomes smaller, so token A will become more valuable in the
liquidity pool and Price A becomes higher based on the preceding formula. When the current position
moves from the blue dot to the red dot, Reserve A becomes greater and Reserve B becomes smaller, so
Price A becomes lower.

Note
A token may have multiple liquidity pools on different AMM DEXs, so the prices between
these DEXs could be different. It is possible for arbitrage trading bots to gain profit by buying
the token at a lower price on one exchange and selling it at a higher price on another exchange.

Based on the preceding discussion, we know that token prices will be impacted if an exchange activity
happens, The reason is that the exchange activity changes the ratio of the reserves of the token in the
liquidity pool. We use the term Price Impact to define the behavior of exchange activity impacting
the price of the tokens in the liquidity pool. The price impact function is defined as follows:

 PI A (x) = K ___________
 (Reserve A + x) 2

 − K _ Reserve A 2

In this formula, PI A (x) is the price impact function for the reserve of token A, and x is the change of
Reserve A in the liquidity pool. This is the function for CPMM liquidity pools that only have two token
assets (you can just replace A with B in the formula to calculate the price change for token B). This
formula gives us a way to calculate how the price will be impacted by the amount of reserve change x
in the transaction. If x is greater than zero, it means the transaction is selling token A. If x is less than
zero, it means the transaction is buying token A. If x is equal to zero, it means there are no changes
to the reserves of the liquidity pool.

Figure 4.3 shows the visualization of the price change based on the reserve change. To better explain
what happens when buying and selling a token, we will first explain the curve line on the left side of
the y axis and then explain the curve line on the right side of the y axis.

Introduction to Decentralized Exchanges100

Figure 4.3 – Visualization of price impact when the token reserve is changed

In Figure 4.3, the line on the left side of the y axis (the second quadrant) means the transaction is
buying token A from the liquidity pool. The price could be sky-high because token A may have a
very small amount left in the liquidity pool and another token in the same liquidity pool could have
a huge amount. The maximum amount traders can buy (in theory only – it is impossible in practice)
is the total amount of token A available in the liquidity pool, so we have the vertical dashed line to
show the maximum buy boundary for x (change in Reserve A), which is − Reserve A . For example, given
a two-token liquidity pool that has Reserve A = Reserve B , if a user bought 90% of the reserve of token
A, the price of token A would be 100 times (PI A (x) = 99 in this case, or 99 times higher) the price
before the transaction.

The mathematics of AMMs 101

On the other hand, the line on the right side of the y axis (in the fourth quadrant) means the case when
the transaction is selling token A within the liquidity pool will cause more reserves for token A in the
liquidity pool, and token A will be less valuable. The price impact will become negative. However, the
price of token A cannot be negative so there is another dashed line to represent the boundary of the
price change (y axis), which is − Price A (negative of token A’s original price) or − K _ Reserve A 2 .

Because CPMM AMM is the most popular type of DEX, and we will implement a full stack application for
this type of DEX, we will come back, later in this chapter, to discuss more characteristics of the CPMM.

Constant sum market maker

A constant sum market maker requires the sum of all token reserves in the liquidity pool to be a
constant number. It means the reserves of the liquidity pool should follow the following formula:

 ∑
i=1

n

 Reserve i = K

To be more specific, a two-token liquidity pool that conforms to CSMM has the following:

 Reserve A + Reserve B = K

The constant sum function for a two-token liquidity pool forms a straight line in Figure 4.4.

Figure 4.4 – Visualization of CSMM in coordinates

Introduction to Decentralized Exchanges102

From Figure 4.4, when we buy a token (such as token A) from the CSMM liquidity pool, the position
will move from the blue dot to the green dot via the straight line. The reserve of token A will decrease.
Meanwhile, the reserve for token B will increase. It is similar to CPMM, but the move is on the
hyperbola for CPMM.

The prices of the tokens in a CSMM liquidity pool are not determined by the reserves of the tokens
in the liquidity pool, so there is no price impact when exchanging tokens with CSMMs. Usually, they
have a price source outside the liquidity pool.

In general, CSMM alone is not an ideal mechanism for DEXs in real-world use cases because any
arbitrageur may drain one of the reserves if the token price of this reserve is higher than another one.
In theory, CSMM is only good for the tokens that have the same price.

 Note
The coin and its wrapped tokens (e.g., ETH and WETH) may follow the CSMM pattern because
the price should be the same for the coin and its wrapped form. The sum of the supplies for
these tokens could stay the same during the wrap and unwrap process. However, the wrap and
unwrap processes work differently from the liquidity pool approach. We will discuss this topic
more in Chapter 8, Work with Native Tokens.

Constant Mean Market Maker (CMMM)

A CMMM is a generalization form of a CPMM, allowing more than two tokens in the liquidity pool
with an extra weight parameter for each token. CMMMs satisfy the following equation for their reserves:

 ∏
i=1

n

 Reserve i
 W i = K

Based on the preceding formula, we assume there are n tokens in the liquidity pool, and the formula
defines the relation of the reserves of the n tokens, where:

• Reserve i is the reserve of the i th token

• W i is the weight of the i th token

If all the weights of the tokens are equal, the CMMM is equivalent to a CPMM. In a general case, the
constant mean ensures that the weighted geometric mean of the token reserves remains constant.

Let’s demonstrate CMMMs with liquidity pools with three tokens. Figure 4.5 shows the two geometric
planes that represent two CMMMs. The blue plane represents the special case that each token has
equal weight, which is a CPMM:

 (Reserve A * Reserve B * Reserve C) 1 _ 3 = K

The mathematics of AMMs 103

And the purple plane represents a general CMMM case:

 (Reserve A 4 * Reserve B
3 * Reserve C 2) 1 _ 9 = K

Figure 4.5 –Visualization of two CMMM functions and their 90-degree rotation around the Z axis

We can see that the formulas of CMMMs generate hyperboloids and the reserve of a token is determined
by the reserves of other tokens in the liquidity pool.

Note
We use 1 _ 3 and 1 _ 9 as the exponential part of the two preceding formulas because we are taking the
weighted geometric mean of the reserves. You can also refer to https://en.wikipedia.
org/wiki/Weighted_geometric_mean for the definition of the weighted geometric mean.

We have discussed some basic types of market makers. There are more complex design models for
building market makers to overcome the drawbacks mentioned for those we have discussed. You can
refer to the page at https://chain.link/education-hub/what-is-an-automated-
market-maker-amm for more information about these types of market makers.

In the remaining parts of this chapter, we will deep dive into more features of CPMMs with two token
reserves, because this is the most popular type of DEX on the market, and we will start to implement
it in the next chapter.

https://en.wikipedia.org/wiki/Weighted_geometric_mean
https://en.wikipedia.org/wiki/Weighted_geometric_mean
https://chain.link/education-hub/what-is-an-automated-market-maker-amm
https://chain.link/education-hub/what-is-an-automated-market-maker-amm

Introduction to Decentralized Exchanges104

Liquidity mining and burning

In most cases, a DEX enables users to provide liquidity in liquidity pools to make the exchange more
stable and reduce the price impact. Meanwhile, it allows liquidity providers to remove liquidity if they
want to take tokens back. When providing liquidity, the liquidity pool takes tokens from the liquidity
provider’s wallet and mints new LP tokens for the liquidity provider, so we call the process of providing
liquidity as liquidity mining. When removing liquidity from a liquidity pool, the liquidity pool takes
the LP tokens from the liquidity provider’s wallet and sends back the tokens from the reserve to the
liquidity provider’s wallet. Meanwhile, the LP tokens taken from the liquidity provider are burned,
so we also call this process liquidity burning.

Note
A DEX usually offers a small portion of the transaction volume (DEX transaction fee) of the
liquidity pool to incentivize liquidity pool providers, so the liquidity pool provider may get more
tokens back when they remove liquidity. We will discuss how to reward liquidity providers in
Chapter 5, Build Crypto-Trading Smart Contracts. When discussing mathematics in the current
chapter, we assume that there are no transaction fees or rewards, and there are only two types
of tokens in a liquidity pool, so that we can simplify the discussion.

Let’s discuss what will happen in the liquidity pool during liquidity mining and burning. We know
that liquidity providers hold liquidity pool shares to claim they own a portion of liquidity pool assets.
For a CPMM liquidity pool that has two tokens, the product of the reserves of the two tokens (token
A and token B) is constant. The number of shares (or LP token) is defined as the square root of the
constant K :

 S = √
_

 K = √

 Reserve A * Reserve B

Where S is the number of shares of the current liquidity pool.

For example, if a WETH/USDT liquidity pool currently has 100 WETH and 10,000 USDT in it, the
current total supply of the LP token is √

_
 100 * 10000 = 1000 (shares).

For liquidity mining, a liquidity provider will add an amount of token A and another amount of token
B. The two amounts must respect the ratio of Reserve A and Reserve B in the current liquidity pool. So,
we have the following:

 r A

 _ r B =
 Reserve A

 _ Reserve B

The mathematics of AMMs 105

Where r A is the newly added reserve for token A and r B is the newly added reserve for token B. The
amount of the newly minted LP tokens is as follows:

 ∆ s = √
_

 r A * r B = r A √
_

 Reserve B

 _ Reserve A =
 r A S
 _ Reserve A

Or:

 ∆ s = √
_

 r A * r B = r B √
_

 Reserve A

 _ Reserve B =
 r B S
 _ Reserve B

Where s is the amount of newly minted LP tokens. Then, the total supply of LP tokens will be S + ∆ s .

Given the preceding WETH/USDT liquidity pool, for example, now that the liquidity pool has 100
WETH and 10,000 USDT, if a user wanted to add 1 WETH to the liquidity pool, the user should also
add another 100 USDT at the same time for liquidity mining. The user would get √

_
 1 * 100 = 10 LP

tokens by providing the liquidity.

Note
We wrote two forms of calculating the newly minted LP tokens ∆ s = r A S _ Reserve A and ∆ s = r B S _ Reserve B
because they are more gas-saving compared to calculating the square root. It would also prevent
excess LP tokens from being minted by taking the minimum value from the two calculated
results. We will discuss more about this topic in Chapter 5, Build Crypto-Trading Smart Contracts.

For liquidity burning, the operation will go in the reverse direction. When a liquidity provider wants
to redeem ∆ s shares of LP tokens to the original pairs of tokens, then they will get token A of the
following amount:

 Amount A = ∆ s √
_

 Reserve A

 _ Reserve B

And they will get token B of the following amount:

 Amount B = ∆ s √
_

 Reserve B

 _ Reserve A

For example, we want to remove five shares from the aforementioned WETH/USDT liquidity pool,
so we can get 5 * √

_
 101 _ 10100 = 0.5 WETH and 5 * √

_
 10100 _ 101 = 50 USDT.

Figure 4.6 shows the visualization of the hyperbolas when adding liquidity and removing liquidity.
Remember that we should respect the ratio of Reserve A and Reserve B , so we introduced a dotted straight
line from the coordinate origin to demonstrate that the movements follow the ratio.

Introduction to Decentralized Exchanges106

Figure 4.6 – Visualization of liquidity mining and burning in coordinates

From Figure 4.6, we learned that the hyperbola moves up and the curve becomes less steep when
adding liquidity. The hyperbola moves down and the curve becomes steeper when removing liquidity.
This shows that the token price will be more stable and the price impact will be less if there are more
liquidities in the liquidity pool. Figure 4.7 shows the different price impacts of different sizes of liquidity
pools when selling the same amount of token A.

The mathematics of AMMs 107

Figure 4.7 – Visualization of price impact of liquidity pools of different sizes

Figure 4.7 shows the positions of the reserve ratios with red, blue, and green dots on red, blue, and
green hyperbola lines respectively. When we sell the same amount of token A r A , the dots of the same
color move from the left side to the right side, and the dotted line connecting the coordinate origin
to the new colored dots forms the new prices of liquidity pools with different sizes. The angle from
the original price to the new dotted line represents the price impacts of the large-size, median-size,
and small-size liquidity pools. We can see that the price impact for the large-size liquidity pool is
smaller and the small-size liquidity pool has a larger price impact. It shows that users tend to use
bigger liquidity pools for trading to prevent loss from the price impact.

Introduction to Decentralized Exchanges108

Impermanent loss

Impermanent loss occurs when the gain of providing liquidity in the liquidity pool is less than just
holding the asset. Impermanent loss is inevitable for CPMM liquidity pool providers when there is
no other reward mechanism to cover the loss.

Impermanent loss happens whenever the price changes in the pool tokens. For example, the price of
a WETH is 100 USDT at the beginning, and you put 1 WETH and 100 USDT in the liquidity pool
and you get √

_
 1 * 100 = 10 shares of LP tokens. Now the price of WETH is more valuable, and it is

110 USDT per WETH (Reserve USDT _ Reserve WETH = 110). If you remove the liquidity from the pool with the shares
(the amount of shares ∆ s = 10), you will get the following:

 Amount WETH = ∆ s √
_

 Reserve WETH

 _ Reserve USDT = 10 * √
_

 1 _ 110 = 0.9535 (WETH)

 Amount USDT = ∆ s √
_

 Reserve USDT

 _ Reserve WETH = 10 * √
_

 110 = 104.88 (USDT)

Now, the total worth of the assets in your hand is 110 * 0.9535+ 1 * 104.88 = 209.76 USDT.

If you hold both WETH and USDT in hand without providing liquidity, you will have a total worth
of 110 * 1+ 1 * 100 = 210 USDT of tokens in your wallet. The impermanent loss is 210 – 209.76 =
0.24 USDT in this case.

On the other hand, if the price of WETH drops to 90 USDT per WETH, we have Reserve USDT _ Reserve WETH = 90 . If you
remove the liquidity from the liquidity pool, you will get the following:

 Amount WETH = ∆ s √
_

 Reserve WETH

 _ Reserve USDT = 10 * √
_

 1 _ 90 = 1.054 (WETH)

 Amount USDT = ∆ s √
_

 Reserve USDT

 _ Reserve WETH = 10 * √
_

 90 = 94.87 (USDT)

Now, the total worth of the asset in your hand is 90 * 1.054+ 1 * 94.87 = 189.73 USDT.

If you hold both WETH and USDT in hand without providing liquidity, you will have a total worth
of 90 * 1+ 1 * 100 = 190 USDT in your wallet. The impermanent loss is 190 - 189.73 = 0.27 USDT
in this case.

From these cases, we learned that impermanent loss happens whenever the price changes for paired
tokens, no matter whether the price of any of the paired tokens rises or drops. If the price returns to
the same value when the liquidity provider adds the liquidity, the loss will disappear. This loss is only
realized when the liquidity provider removes their liquidity and is based on the divergence in price
between liquidity provisioning and removal. We can therefore call impermanent loss divergence
loss as well.

Here, we define the ratio of gaining from liquidity provisioning with the following formula:

 GainRatio = 2 √
_

 PriceRatio _ 1 + PriceRatio − 1

The mathematics of AMMs 109

 GainRatio represents the percentage (rate) gain of liquidity provisioning compared to the token value
if we just hold. PriceRatio is the percentage change in price compared to the time of providing liquidity.

From the formula, we observe that the maximum value of GainRatio is 0 when PriceRatio is 1, which
means there is no loss (and no gain) if the prices of tokens when we remove liquidity is the same as
the prices when the liquidity is provisioned. It also implies GainRatio is always non-positive and its
value range is from -100% (100% of the token value is lost when the token price drops to zero) to 0
(when the price is unchanged).

Figure 4.8 shows a visualization of the preceding function to represent impermanent loss. We can see
that the loss keeps growing when PriceRatio diverges from the point of the price being unchanged.
And the loss is much more severe when the token price drops, compared to when the token price rises.

Figure 4.8 – Visualization of the impermanent loss function (gain ratio cannot be positive)

Introduction to Decentralized Exchanges110

Impermanent loss is inevitable due to the mathematical nature of CPMM. Many CPMM-based DEXs
such as Uniswap and PancakeSwap have introduced reward mechanisms for liquidity providers. For
example, they charge traders a small percentage of the transaction volume and pay it back to liquidity
providers. As a result, liquidity pool shares can become more valuable, along with the accumulated
transaction volume increase. These DEXs also provide liquidity pool farming to allow liquidity providers
to stake LP tokens to gain extra rewards. All these approaches make people willing to provide liquidity,
and they make liquidity pools have more stable token prices, and they are therefore safer to trade.

Now we have ended the mathematic journey of AMMs, in the next section, we will deep dive into
the architecture of the AMM we’ll build in this book. It is also the most popular DEX architecture
currently on the market.

The architecture of AMM
This section will discuss the architecture of AMM, which supports scalable liquidity pools. This means
the number of liquidity pools can grow to support multiple token liquidity pairs. Meanwhile, it allows
people to trade tokens, add liquidities (liquidity mining), and remove liquidities (liquidity burning).
This architecture has been adopted by many DEXs, such as Uniswap and PancakeSwap. We will also
implement all the functions and components of this architecture in Chapter 5, Build Crypto-Trading
Smart Contracts.

The architecture of AMM and its components are depicted in Figure 4.9.

Figure 4.9 – Architecture of Automated Market Maker (AMM) on blockchain

The architecture of AMM 111

Figure 4.9 shows three main components of on-chain AMM. Each component is a smart contract
with a few functions:

• AMM Router: The AMM router is a medium between AMM users and other on-chain components
of the AMM. It implements the interfaces that off-chain components can use. It handles all
requests outside the blockchain by leveraging other on-chain components. For example, for a
request that swaps a token with another token, the AMM router will find the required token
pairs and perform the swap by calling a swap function of those pairs.

• Pair Factory: As a scalable AMM, this architecture adopts the factory design pattern to create
multiple liquidity pools so that people can use the AMM to trade more tokens. A pair factory
is a smart contract to create new liquidity pools or liquidity pairs. For example, we have an
existing pair for token A and token B, but now we want to trade with a new token called token
C, so we can call the add liquidity function of the AMM router, which calls the pair factory to
create a new pair for token A and token C. Once users provide sufficient liquidity for the new
pair, then we can trade with token C on this DEX.

• Token Pair: This is a smart contract that implements all the core operations of an AMM DEX,
including swapping, adding liquidity, and removing liquidity. A token pair also implements
an ERC20 token to represent the LP token or the share of this liquidity. So, a token pair serves
two purposes: holding reserves of the paired tokens and representing the shares of the liquidity
pool. The latter purpose makes token pairs ERC20 tokens.

Note
We assume that all the liquidity pools mentioned in the remainder of this book have two types
of tokens unless otherwise specified. We also call the liquidity pool that has two types of tokens
a token pair.

Introduction to Decentralized Exchanges112

As we saw from Figure 4.9, there are four on-chain calls from the AMM router: Create Pair, Swap,
Mint, and Burn. They represent four activities from the user’s view:

• Create Pair: This creates a liquidity pool for a liquidity pair. It enables the DEX to trade directly
with the token of the pair for another token in the pair.

• Swap: This swaps one token with another token. Assuming there are two tokens in a liquidity
pool, token A and token B, if we swap token B for token A in the liquidity pool, we can say we
are buying token A with token B, or selling token B for token A.

• Mint: This mints liquidity pool tokens (LP tokens) and sends the LP tokens back to the caller.
It happens when a liquidity provider sends two types of tokens that are paired in the liquidity
pool. The router will call the mint function of the token pair and the caller will mint the LP
tokens in order to represent that they have new shares in the liquidity pool by providing liquidity.

• Burn: This burns liquidity pool tokens and sends the paired tokens back to the seller. It happens
when a user wants to remove the liquidity that the user originally provided. However, the
amounts of tokens may differ from what the user originally provided because of changes in
reserves. By burning LP tokens, users may lose a part of the shares or all of the shares in the
liquidity pool. This is subject to impermanent loss, based on our previous discussion.

From this discussion, we understand a token pair is the most important smart contract of the AMM
architecture because every transaction of AMM interacts with it. Also, there will be multiple instances
of smart contracts on-chain to support multiple token liquidity pairs. These instances of token pairs
hold all token assets of users of the DEX.

Next, let’s go through the three main functions of AMM: adding liquidity, removing liquidity, and
swapping. After the discussion, you will have a clearer picture of how the architecture works and
what we’ll build in the next chapter.

Adding liquidity

Adding liquidity is a process wherein a user provides two types of tokens by respecting the ratio of the
reserves and minting the LP tokens to represent the new shares of the liquidity pool. In the architecture,
the AMM router handles the requests from users, does some prechecks, and calls functions in the pair
factory and token pairs to perform the actions. The workflow of the AMM router adding liquidity is
shown in Figure 4.10.

The architecture of AMM 113

Figure 4.10 – The workflow of adding liquidity

Introduction to Decentralized Exchanges114

When adding liquidity, the user should provide the two token addresses (Token A and Token B to represent
two paired tokens) and their amounts (Amount A and Amount B) to add to a liquidity pool. As shown in
Figure 4.10, once the AMM router receives the information, it will look for the address of the token
pair. If the token pair is not found, the AMM router will ask the pair factory to create a new pair. The
pair has no supply and doesn’t hold any tokens at this time. If a token pair already exists, the router
will proceed to the next step.

Note
The sequence of the tokens in a pair is neglected in a token pair, for example, the USDT/ETH
pair and the ETH/USDT pair are identical to an AMM.

If token A is in one pair and token B is in another pair, but there is no pair for token A/token
B, the AMM router will create a new pair for both tokens if somebody adds liquidity for token
A and token B in one request.

Once the token pair exists, the AMM router will check whether the reserves are empty for the token
pair. If the reserves are empty, the router can use Amount A and Amount B specified by the user to create
the initial reserves of the token pair.

If there are already reserves for the tokens, the router will check if Amount B is big enough to respect
the ratio of the existing Reserve A and Reserve B with the given Amount A . If not, the router will set a small
provisioning amount for token A to match the Amount B specified. If the specified amount (Amount A
or Amount B) is insufficient, the transaction will be reverted. Otherwise, the required amounts of token
A and token B are calculated.

For example, if a user provides 10 ETH (Amount A = 10) and 100 USDT (Amount B = 100) for liquidity
provisioning, but the reserve ratio is Reserve A : Reserve B = 1 : 100 , the liquidity pool will adjust the
required ETH amount to 1, send back the remaining 9 ETH to the user’s wallet, and keep the amount
of USDT (100) as the user originally provided for liquidity provisioning.

Once the required provisioning amount for the two types of tokens is calculated, the AMM router
will transfer the tokens from the user to the token pair instance. Then the router will ask the token
pair to mint the LP tokens and transfer the minted LP token to the user.

Note
Some AMMs also support adding pairs with native tokens of the blockchain, for example,
ETH for Ethereum blockchain. People can add liquidity such as ETH/USDT. In this case, the
ETH coins will be converted (wrapped) to the form of ERC20 token (WETH) first and then
transferred to the token pair. We will discuss the topic and add support for blockchain native
tokens to the DeFi project in Chapter 8, Working with Native Tokens.

The architecture of AMM 115

Removing liquidity

Removing liquidity is the process of the user getting the paired tokens back by burning LP tokens.
Generally, the process is similar to adding liquidity and doesn’t need to interact with the pair factory.
Figure 4.11 shows the workflow of removing liquidity.

Figure 4.11 – The workflow of removing liquidity

In the workflow, the LP tokens should be transferred to the token pair first, so that the token pair has
sufficient LP tokens to burn and update the reserves accordingly. Remember that the token pair sends
the LP tokens to the liquidity provider when minting the LP tokens. Since the token pair should not
own any LP tokens, the token pair will use all its LP token balance for burning.

Introduction to Decentralized Exchanges116

Note
It is possible for somebody to send LP tokens to the token pair address by accident. In this
case, the additional LP tokens will be burned in the next liquidity removal operation, and the
liquidity remover will receive more tokens at that time. Just remember it is always unsafe to
transfer a token to a smart contract address unless the smart contract can receive tokens by
design because it is likely you will lose the asset.

Swapping

Swapping is the process of buying tokens or selling tokens with a DEX. In a simple case, the swapping
involves one token pair. This means when buying one token with another token or selling one token
for another token, the two tokens are in the same token pair.

However, a DEX may not have all the combinations of the pairs of tokens, considering that there
are thousands of tokens available on Ethereum. The number of pairs will grow huge and the token
liquidity requirements will explode if the DEX only supports swapping within one token pair. So, the
DEX should provide the flexibility to trade between any two tokens that have a path from one token
pair to another.

For example, an AMM DEX has three pairs: BTC/ETH, ETH/USDT, and USDT/BNB. If a user wants
to buy BNB with BTC, the DEX should buy ETH with the first pair, use the bought ETH to buy USDT
with the second pair, and use the bought USDT to buy BNB with the third pair, then, send the BNB
bought from the third pair to the user. This means we need to specify the path of the tokens and put
the user’s address at the end of the path when performing swapping with a smart contract.

Note
Determining the best path for swapping can be a complex problem. It requires the reserve
information for every possible path and the gas estimation for swapping with these paths. In
Chapter 7, Implementing a Token-Swapping Frontend with Web3, we will introduce a simplified
way to find the best path using graph traversal with the reserve information.

For swapping, there are at least two functions that need to be supported. One allows users to specify
the amount of tokens to spend (Amount in), and the other allows users to specify the amount of tokens
to receive (Amount out). The workflow of the two functions of swapping is shown in Figure 4.12.

The architecture of AMM 117

Figure 4.12 – The workflow of swapping tokens

Introduction to Decentralized Exchanges118

Figure 4.12 shows that a loop is introduced to iterate the path of swapping. In every loop, the tokens
swapped in are transferred to the token pair address in the path, and the token pair will verify the
amount to transfer out and recalculate the reserves based on the balance in the liquidity pool. The
path will be traversed from the first two token addresses to get the token pair and move forward by
one address position till the end of the path.

Summary
This chapter introduced various types of DEXs. As a popular type of DEX, we dived into the AMM
by explaining the mathematical formulas of these AMMs. With the visualization of the mathematical
functions, we understood how they work, their features, and their limitations. Because we’ll build a
full stack AMM with the type of CPMM, we explained its architecture and the three main workflows
of the AMM: adding liquidity, removing liquidity, and swapping.

DEX is one of the most important and popular DeFi applications. It has a complex system that is
worth intensive research. This chapter was mainly a conceptual demonstration to help you understand
the principles of building a real-world DeFi application. Now, you may get excited about using the
knowledge you have gained to build something that runs!

In the next chapter, we will dive into the implementation of these components and write the smart
contracts for the AMM.

5
Building Crypto-

Trading Smart Contracts

In the previous chapters, we dived into Decentralized Exchanges (DEXs) and went through the
processes of how various DEXs handle crypto trading. In this chapter, we will apply this knowledge
in practice by building smart contracts for trading cryptocurrencies.

The smart contracts we will build in this chapter conform to the architecture and workflows we
discussed in the Architecture of AMM section of Chapter 4, Introduction to Decentralized Exchanges.
These smart contracts will make up the on-chain components of a Constant Product Market Maker
(CPMM), which is a type of DEX we discussed in Chapter 4, Introduction to Decentralized Exchanges.
These components include token pairs, pair factories, and AMM routers. An example implementation
of a CPMM is Uniswap v2. You can refer to the whitepaper of Uniswap v2 at https://docs.
uniswap.org/whitepaper.pdf and its implementation at https://github.com/
Uniswap/v2-core.

Because of the complexity of DEX smart contracts, we will explain the concepts and code step by step
throughout this book. In this chapter, we only cover the basic functions of the components and will
add advanced features in future chapters.

By reading this chapter, you will cover the following:

• Implementing token pair smart contracts

• Implementing pair factory smart contracts

• Implementing AMM router smart contracts

• Verifying DEX smart contracts

https://docs.uniswap.org/whitepaper.pdf
https://docs.uniswap.org/whitepaper.pdf
https://github.com/Uniswap/v2-core
https://github.com/Uniswap/v2-core

Building Crypto-Trading Smart Contracts120

Implementing token pair smart contracts
A token pair smart contract is a DEX component used to support operations on each trading pair
and maintain the token reserves. Each instance of a token pair smart contract represents a liquidity
pool for a token pair of the DEX.

We will start implementing the smart contracts for our DEX in this section. Before writing code, we
encourage you to copy the code from the chapter05-start branch of the Git repository of this
book because it contains all the working code we created in previous chapters as well as the smart
contract interfaces that we will use in this chapter.

If you want to continue the work you did in the previous chapter, you can just create a folder at
src/backend/contracts/interfaces and put the following three files into the directory:
IAMMRouter.sol, IPairFactory.sol, and ITokenPair.sol. These three Solidity files
define the thee interfaces with their functions that we will implement in this chapter. We will explain
more details of these functions when implementing their code. In this section, we will deep dive into
the token pair smart contract by implementing the ITokenPair interface.

Note
It is a good practice to define the interfaces of smart contracts first before implementing them.
The first reason for this is that it will help us follow the interface’s parameters and return
value as designed. The second reason is that the interfaces can be reused to build multiple
implementations to make the component pluggable and extensible.

Creating the skeleton of a token pair

Now let’s create the skeleton of the token pair smart contract. The skeleton includes the definitions of
the variables that satisfy the ITokenPair interface defined in ITokenPair.sol.

First, let’s create a file called TokenPair.sol in the src/backend/contracts/ folder, then
copy and paste the following code:

pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "./interfaces/ITokenPair.sol";
contract TokenPair is ITokenPair, ERC20 {
}

TokenPair is a smart contract to represent the liquidity pool tokens (LP tokens). This type of
token is minted and sent to the liquidity providers to represent their shares of the liquidity pool. The
LP tokens also follow the ERC20 standard. Here, we import OpenZeppelin’s ERC20.sol file to
include the code for the ERC20 token. We also import ITokenPair, which is the interface we will
implement for the token pair smart contract.

Implementing token pair smart contracts 121

Let’s discuss the following four functions decorated by the view keyword in the ITokenPair interface:

• factory() returns the address of the pair factory that manufactured the token pair.

• tokenA() returns the address of the first token of the token pair.

• tokenB() returns the address of the second token of the token pair.

• kLast() returns the product of the two token reserves. Because we have totalSupply()
in our ERC20 token implementation to hold the relevant information, this variable is used
only when the DEX needs to send deployers (or the address specified by the deployer) extra
LP tokens as rewards.

Then we define the following four public variables in the TokenPair body so the caller can invoke
the preceding functions with variable names (so that, for example, calling the factory() function
will return the value of the factory variable):

address public factory;
address public tokenA;
address public tokenB;
uint256 public kLast;

Once you have the preceding four variables defined, you can access the value with function calls such
as ITokenPair(pairAddress).factory() with a given pairAddress.

Note
The TokenPair.sol smart contract file is not compilable yet because we haven’t implemented
all the functions in the ITokenPair interface. You can continue to follow all the instructions to
complete the full source code of TokenPair.sol, or refer to the file at https://github.
com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/
chapter05-end/defi-apps/src/backend/contracts/TokenPair.sol for
the completed source file.

Now, we will focus on implementing the functions for token pairs (ITokenPair).

Initializing token pairs

Let’s implement the code to initialize smart contract instances. We need two initialization functions
when the pair factory is creating a token pair. The first function is a constructor of TokenPair.
The second function is the initialize function (which implements the interface function in
ITokenPair.sol) to set the two token addresses (tokenA and tokenB):

constructor() ERC20("DEX Token Pair", "DEX-TP") {
 factory = msg.sender;
}

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/TokenPair.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/TokenPair.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/TokenPair.sol

Building Crypto-Trading Smart Contracts122

function initialize(address _tokenA, address _tokenB)
 external {
 require(msg.sender == factory, "NOT_FACTORY");
 tokenA = _tokenA;
 tokenB = _tokenB;
}

In the constructor, we use the inherited ERC20 constructor to set the name and the symbol of the LP
token. In the initialize function, we need to guarantee the initialize function is called by
the factory (the same smart contract calls the constructor) to prevent invalid callers. The code also
sets the addresses of tokenA and tokenB after the verification.

Note
This pattern of construction and initialization is widely used in Solidity when we want to
create a smart contract at a pre-calculated address with parameters to initialize the instance.
Deploying a smart contract at a pre-calculated address requires Solidity low-level calls and there
is no way to specify the parameters when the constructor is called, so we must use the second
initialize function to initialize the instance with these parameters.

Let’s continue to discuss the TokenPair smart contract by diving into how to store and retrieve
token reserves.

Storing retrieving token reserves

One feature of token pair smart contracts is holding and updating the reserves. It means the smart
contract may have balances of the two tokens of the pair. One option is relying on the balanceOf()
function to get the reserves of the tokens; however, it is extremely unsafe and hackers can easily
manipulate the token prices in the liquidity pool by simply transferring tokens. As a result, it is
necessary to use internal variables as the source of truth for the reserve balances.

Besides the reserves of the two tokens in the token pair, we also need to keep the timestamp recording
the last time the reserves were changed for auditing purposes.

Here, let’s define the variables to store the data about the reserves and implement the getReserves
function to retrieve this data in the TokenPair smart contract:

uint256 private reserveA;
uint256 private reserveB;
uint256 private blockTimestampLast;

function getReserves() public view returns (
 uint256 _reserveA,
 uint256 _reserveB,

Implementing token pair smart contracts 123

 uint256 _blockTimestampLast
) {
 _reserveA = reserveA;
 _reserveB = reserveB;
 _blockTimestampLast = blockTimestampLast;
}

In the preceding code, the reserveA and reserveB variables are the amounts of tokenA and
tokenB held by the liquidity pair, and blockTimestampLast is the timestamp of the reserves’
last change. Following these declarations of the three preceding variables, we implemented the
getReserves function to return the value of the three variables.

Besides getReserves, we need a _setReserves private function in TokenPair, which will
be used for all cases where we need to update the reserves; for example, swapping tokens or minting
and burning LP tokens. You can refer to the code for the _setReserves function at https://
github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/
chapter05-end/defi-apps/src/backend/contracts/TokenPair.sol#L61-L66.

Note
The function names with an underscore character (_) prefix are the private functions in the
TokenPair smart contract.

Next, we will discuss how to safely transfer tokens.

Transferring tokens safely

When DEXs perform actions such as swapping tokens or minting and burning LP tokens, it involves
transferring tokens from one address to another with smart contract functions. However, it is unsafe
to call the default transfer or transferFrom functions in ERC20’s implementation without
a security check because the return value and/or returned data may contain the failure or error
information if the transfer is unsuccessful, and it is necessary to revert the transaction as soon as
possible after we find any errors or unexpected return values.

Next, let’s implement an internal method in TokenPair for safely transferring tokens:

bytes4 private constant SELECTOR = bytes4(keccak256(
 bytes("transfer(address,uint256)")));

function _safeTransfer(address token, address to,
 uint256 value) private {
 (bool success, bytes memory data) = token.call(

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/TokenPair.sol#L61-L66
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/TokenPair.sol#L61-L66
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/TokenPair.sol#L61-L66

Building Crypto-Trading Smart Contracts124

 abi.encodeWithSelector(SELECTOR, to, value));
 require(success && (data.length == 0 || abi
 .decode(data, (bool))), "TRANSFER_FAILED");
}

The preceding code implemented the _safeTransfer function to transfer token to the address
specified by the to parameter, with value holding the amount to be transferred. It uses Solidity's
low-level call to call the actual transfer function. When calling the low-level function, we need to
use the selector by hashing transfer(address,uint256) with the Keccak256 algorithm, then
convert it into a value of bytes4 as the selector. The code uses abi.encodeWithSelector to
encode the selector and its two parameters passed into the function (to and value). Then it invokes
the call function with the encoded value.

Note
Keccak256 is a widely used hash algorithm in Solidity smart contracts. You can go to an online
hash website such as https://emn178.github.io/online-tools/keccak_256.
html to calculate the hashed value. You will get the hex value 0xA9059CBB once you type
transfer(address,uint256) in the input text box of the website.

To learn more about Keccak256, you can refer to the specification of the algorithm at https://
csrc.nist.gov/csrc/media/publications/fips/202/final/documents/
fips_202_draft.pdf.

The reason for using the low-level call function is that this function returns the code and response
data (if there are any errors). If the transfer function runs successfully, the return value of success
will be true. In some cases, there is no returned data, but in other cases, the returned data is decoded
as true (which means success). We use the require function to verify the success of the previous
call and revert the transfer if any issues are detected.

Next, we will discuss the code for minting LP tokens for the TokenPair smart contract.

Minting LP tokens

Minting LP tokens is a means by which liquidity providers can own shares of liquidity pools so they
can redeem the paired tokens back. As shown in Figure 4.10 in the previous chapter, it requires the
AMM router to transfer the amount of tokens from the liquidity provider to a token pair (also called a
liquidity pool) address so they can mint the LP token. In essence, the function for minting LP tokens
does the following three things:

1. Calculate the amounts of LP tokens to be minted.

2. Mint the LP tokens and transfer them to the liquidity provider.

3. Update the reserve amounts to match the current balance.

https://emn178.github.io/online-tools/keccak_256.html
https://emn178.github.io/online-tools/keccak_256.html
https://csrc.nist.gov/csrc/media/publications/fips/202/final/documents/fips_202_draft.pdf
https://csrc.nist.gov/csrc/media/publications/fips/202/final/documents/fips_202_draft.pdf
https://csrc.nist.gov/csrc/media/publications/fips/202/final/documents/fips_202_draft.pdf

Implementing token pair smart contracts 125

Now let’s add the following mint function to the TokenPair smart contract:

function mint(address to) external nonReentrant
 returns (uint256 liquidity) {
 // Step 1: Calculate amounts of LP Tokens to be minted
 (uint256 _reserveA, uint256 _reserveB,) = getReserves();
 uint256 balanceA = IERC20(tokenA).balanceOf(address(this));
 uint256 balanceB = IERC20(tokenB).balanceOf(address(this));
 uint256 amountA = balanceA - _reserveA;
 uint256 amountB = balanceB - _reserveB;
 uint256 _totalSupply = totalSupply();
 if (_totalSupply == 0) {
 liquidity = Math.sqrt(amountA * amountB) -
 MINIMUM_LIQUIDITY;
 _mint(address(0xdEaD), MINIMUM_LIQUIDITY);
 } else {
 liquidity = Math.min(
 (amountA * _totalSupply) / _reserveA,
 (amountB * _totalSupply) / _reserveB
);
 }
 require(liquidity > 0, "INSUFFICIENT_LIQUIDITY_MINTED");

 // Step 2: Mint the LP tokens and send to user
 _mint(to, liquidity);

 // Step 3: Update the reserves
 _setReserves(balanceA, balanceB);
 emit Mint(msg.sender, amountA, amountB);
}

Let’s examine the mint function in the preceding code in more detail.

The first line of the code uses the nonReentrant modifier to prevent reentrancy attacks. You can
check the Vulnerabilities of DeFi applications section of Chapter 1, Introduction to DeFi, to review
our discussion about reentrancy attacks. The nonReentrant modifier we used in the preceding
code comes from the OpenZeppelin library and we need to import the Solidity file before the
smart contract:

import "@openzeppelin/contracts/security/ReentrancyGuard.sol";

Building Crypto-Trading Smart Contracts126

In the implementation code of the mint function, the amount of liquidity is calculated in two scenarios.

The first scenario is when we provide liquidity for the first time. At this time, the total supply of LP
tokens is zero. So we can use the amounts transferred to the token pair as the initial reserves and
use the formula we mentioned in Chapter 4, Introduction to Decentralized Exchanges to calculate the
number of shares:

 S = √
_

 K = √

 Reserve A * Reserve B

In order to prevent the LP tokens from being drained from the token pair address, we need to lock
some amount of LP tokens (specified by MINIMUM_LIQUIDITY) by sending a small amount of
minted tokens to a dead address (address(0xdEaD)). The amount of locked LP tokens is defined
by the MINIMUM_LIQUIDITY constant, specified as 1,000 wei in the TokenPair contract body:

uint256 public constant MINIMUM_LIQUIDITY = 10**3;

Note
If the reserves provided are insufficient for minting the MINIMUM_LIQUIDITY amount of
LP tokens, the whole transaction will be reverted when the calculation of the liquidity variable
results in a negative value.

We also use the 0xdEaD address instead of 0x0 to work around the ERC20: mint to
the zero address error in the the OpenZeppelin library because it doesn’t allow the
ERC20 token to be minted on a zero address.

The second scenario of calculating LP tokens is when the total supply of LP tokens is greater than zero.
In this case, we use the following formula to calculate the LP tokens to be minted:

 s = min (
 r A S
 _ Reserve A ,

 r B S
 _ Reserve B)

Where r A is the amount of token A (amountA in the preceding code) to be added to the token pair,
and r B is the amount of token B (amountB in the preceding code) to be added to the token pair.
Reserve A is the existing reserve of token A, and Reserve B is an existing reserve of token B. S is the
existing total supply of LP tokens.

After the liquidity calculation, the code calls the _mint function in the ERC20 smart contract and
calls the _setReserves function to update the reserve values and the timestamp of the last update
of the reserves.

In the last line of the _mint function is an emit call to record a Mint event on the blockchain. We
should always emit an event if we have made changes to on-chain data in smart contracts to make
transactions traceable and searchable.

Next, let’s discuss how to leverage the minted LP tokens to reward liquidity providers and DEX owners.

Implementing token pair smart contracts 127

Reward distribution for liquidity providers and DEX owners

Almost all DEXs out there have a mechanism to reward liquidity providers to incentivize them to
provide liquidity to overcome the temporary loss. Also, the deployers of DEX smart contracts charge
a portion of fees as their income, which is sometimes referred to as the DEX treasury.

For example, say a DEX charges a 0.2% fee on every transaction. This means 0.2% of the transaction
volume of the DEX is used to reward both liquidity providers and the DEX owner. When a user
swaps one token for another token the transaction will take 0.2% of the input amount for each pair
to calculate the output amount.

As a result, the product of the two reserves of the token pair will keep growing as there are more
and more transactions happening on the pair, because there are always more tokens transferred in
for every transaction than the amount transferred out. As the reserve grows and the number of LP
tokens stays the same, the value of LP tokens will become more and more valuable. This is how we
incentivize people to provide liquidity.

On the other hand, DEX owners or deployers gain nothing from the preceding mechanism because
they may not own any LP tokens. However, a DEX smart contract can mint some LP tokens and send
them to DEX owners when a user provides or removes liquidity.

So, let’s discuss how we can calculate and send LP tokens to reward DEX owners.

Given a liquidity pool, there will be some swapping transactions executed within the liquidity pool.
Before performing these transactions, the original reserve amounts are r A ′ and r B ′ respectively for the
two tokens in the token pair.

Now we have completed several swapping transactions for which we charged transaction fees that will
be stored in the liquidity pool. The reserves of the two tokens are updated to r A and r B respectively.
The number of LP tokens we have earned compared to the LP token supply before these swapping
transactions is calculated as follows:

 s − s ′ = √
_

 r A r B − √
_

 r A ′ r B ′

Next, let R be the reward rate for the DEX owner. For example, R = 0.1 means that 10% of the total
reward goes to the DEX owner, and 90% of the reward goes to the liquidity providers. The number of
shares required to mint for the DEX owner is calculated as follows if the LP token value has not changed:

 S mint old
 = R (√

_
 r A r B − √
_

 r A ′ r B ′) , where : 0 ≤ R ≤ 1

However, the value of the LP token rises compared to the value when the LP token supply was last
changed because the balance of the LP token for each liquidity provider is unchanged. Also, it is too
costly to proportionally distribute the newly minted LP tokens to each liquidity provider if there are a
huge number of liquidity providers. So, we need to update the preceding formula to consider the new

Building Crypto-Trading Smart Contracts128

value of each LP token, given the LP token total supply is unchanged and a portion (1 − R) of liquidity
contributes to the increase in the LP tokens’ value. We have the new value of the LP tokens as follows:

 V new =
 √
_

 r A ′ r B ′ + (1− R) (√
_

 r A r B − √
_

 r A ′ r B ′)
 ______________________ S V old

Where V new is the new value of the LP token after charging transaction fees. V old is the value of the
LP token when the reserve was last changed. S is the existing total supply of LP tokens. Then we can
get the reward for the DEX owner by calculating the amount of LP tokens the smart contract should
mint under the new LP token value:

 S min t new =
 V old S mint old

 _ V new =

 V old R (√
_

 r A r B − √
_

 r A ′ r B ′)
 _______________ V new =

SR (√
_

 r A r B − √
_

 r A ′ r B ′)

 √
_

 r A ′ r B ′ + (1− R) (√
_

 r A r B − √
_

 r A ′ r B ′)
 =

SR (√
_

 r A r B − √
_

 r A ′ r B ′)

R √
_

 r A ′ r B ′ + (1− R) √
_

 r A r B

Now, we will go back to the mint function to add the code to generate the rewards for the DEX owner
using the preceding formula.

Minting LP tokens for the DEX owner’s reward

Now let’s implement the code for minting LP tokens for the DEX owner’s reward. First, let’s add the
following highlighted code to the mint function that we implemented previously:

function mint(address to) external nonReentrant ... {
 ...
 bool hasReward = _mintReward(_reserveA, _reserveB);
 uint256 _totalSupply = totalSupply();
 ...
 _mint(to, liquidity);
 _setReserves(balanceA, balanceB);
 if (hasReward) kLast = reserveA * reserveB;
 emit Mint(msg.sender, amountA, amountB);
}

Here, we defined a hasReward variable to determine whether we need to generate rewards for the
DEX owner. The DEX owners will collect the LP token rewards from all the token pairs of the DEX.
We only need to update the value of kLast when hasReward is true.

_mintReward is an internal function to calculate the reward, mint the LP tokens, and send the
LP tokens as the reward to the address specified by rewardTo. Here is the implementation of the
_mintReward function:

function _mintReward(uint256 _reserveA, uint256 _reserveB)
 private returns (bool hasReward) {
 address rewardTo = IPairFactory(factory).rewardTo();
 hasReward = rewardTo != address(0);
 uint256 _kLast = kLast; // gas savings
 if (hasReward) {
 if (_kLast != 0) {

Implementing token pair smart contracts 129

 uint256 rootK =
 Math.sqrt(_reserveA * _reserveB);
 uint256 rootKLast = Math.sqrt(_kLast);
 if (rootK > rootKLast) {
 uint256 liquidity =
 (totalSupply() * (rootK - rootKLast)) /
 (rootKLast + rootK * 9);
 if (liquidity > 0)
 _mint(rewardTo, liquidity);
 }
 }
 } else if (_kLast != 0) kLast = 0;
}

The _mintReward function returns true if the code needs to mint rewards. The rewardTo
address is read from a pair factory, because the reward receiver address is the same for all the token
pairs created by the factory. Then we compare the rewardTo address with the zero address to see
whether the rewardTo address is set to a valid address. In the next line, uint256 _kLast =
kLast;, we use a local variable instead of directly using the contract global variable in the function
body because the gas usage for accessing the local variable is less than that for the variable from the
contract’s scope.

Note
As a best practice, it is worth considering assigning a contract’s global variable to a function’s
local variable if it will be referred to at least twice in the function. You will see this pattern
multiple times in this book.

The follow-up code checks whether we need to mint LP tokens to the rewardTo address. We must
make sure kLast is non-zero and rootK is greater than rootKLast before minting, because this
means the square root of the product of the two reserves is greater than it was when the LP tokens’
total supply was last changed.

The highlighted line in the code section implements the formula we mentioned to calculate S min t new , which
is the amount of new LP tokens to be minted to the rewardTo address. Let’s match the variables in
the code with the items in the formula. rootK is the value of √

_
 r A r B in the formula, rootKLast is

the value of √
_

 r A ′ r B ′ , and totalSupply() is the value of S . Also, R is 0.1, which means 10% of the
total rewards are sent to the rewardTo address. If we multiply both the numerator and denominator
in the formula by 10, the formula will be depicted in the code implementation.

Note
If the rewardTo address is not set, there will be no new LP tokens minted in this function,
and the liquidity providers will share all the gains.

Building Crypto-Trading Smart Contracts130

We have now dived into the code for minting LP tokens for the reward. Next, you will learn how to
implement LP token burning to redeem back the original tokens.

Burning liquidity pool tokens

Liquidity burning happens when liquidity providers want to get the paired tokens back by redeeming
their LP tokens. It requires the AMM router to transfer the LP tokens from the liquidity provider to the
token pair. After the token pair smart contract receives the LP tokens, it does the following three things:

1. For each of the tokens in the pair, it calculates how many tokens need to be transferred back
to the user.

2. It burns the LP tokens received from the user, then transfers the calculated amounts of tokens
back to the user.

3. It sets the reserves with the remaining token balances.

Similar to the mint function we discussed in previous sections, the token pair also checks whether
the product constant K has increased since the last reserve change, and mints the reward LP token
to the rewardTo address. Based on this discussion, the code for burning LP tokens is implemented
as follows:

function burn(address to) external nonReentrant
 returns (uint256 amountA, uint256 amountB) {
 // Step 1: Calculate token amounts sent back to user
 (uint256 _reserveA, uint256 _reserveB,) = getReserves();
 address _tokenA = tokenA;
 address _tokenB = tokenB;
 uint256 balanceA = IERC20(_tokenA).balanceOf(address(this));
 uint256 balanceB = IERC20(_tokenB).balanceOf(address(this));
 uint256 liquidity = balanceOf(address(this));
 bool hasReward = _mintReward(_reserveA, _reserveB);
 uint256 _totalSupply = totalSupply();
 amountA = (liquidity * balanceA) / _totalSupply;
 amountB = (liquidity * balanceB) / _totalSupply;
 require(amountA > 0 && amountB > 0,
 "INSUFFICIENT_BURNING_LIQUIDITY");

 // Step 2: Burn the LP tokens and send paired tokens
 _burn(address(this), liquidity);
 _safeTransfer(_tokenA, to, amountA);
 _safeTransfer(_tokenB, to, amountB);

 // Step 3: Set the reserves with token balances
 balanceA = IERC20(_tokenA).balanceOf(address(this));

Implementing token pair smart contracts 131

 balanceB = IERC20(_tokenB).balanceOf(address(this));
 _setReserves(balanceA, balanceB);
 if (hasReward) kLast = reserveA * reserveB;
 emit Burn(msg.sender, amountA, amountB, to);
}

The three steps in the burn function are self-explanatory. If a user wants to redeem the original tokens
back, the LP tokens are required to be transferred to the TokenPair contract from the user before
the preceding function is called. The burn function burns the full balance of LP tokens owned by
the smart contract (which is set to the liquidity variable). The highlighted lines in the preceding
code block calculate the amounts of tokens (amountA and amountB) to be sent back to the liquidity
providers using the following formulas from Chapter 4, Introduction to Decentralized Exchanges:

 Amount A = s √
_

 Reserve A

 _ Reserve B =
s * Reserve A

 _ S

 Amount B = s √
_

 Reserve B

 _ Reserve A =
s * Reserve B

 _ S

Note
In our implementation of the burn function, we use the equation without the square root
calculation to save gas.

Next, we will dive into the code for token swapping.

Swapping token

Swapping tokens is a process of transferring some amount of a token into the token pair smart contract,
then from the smart contract transferring out another token to the recipient. Because the AMM
router sends an input amount of the first token before calling the swap function in the token pair, the
remaining work left for the token pair is to verify the input amount and transfer the output amount
of the second token to the recipient. Here are the five steps of the swap function we will implement:

1. In the first step, the code verifies whether the output amounts and recipient address are valid,
and check that the reserves have sufficient tokens for the swap:

// Step 1: Pre-transfer verification
require(amountAOut > 0 || amountBOut > 0,
 "INVALID_OUTPUT_AMOUNT");
(uint256 _reserveA, uint256 _reserveB,) = getReserves();
require(amountAOut < _reserveA && amountBOut < _reserveB,
 "INSUFFICIENT_RESERVE");
address _tokenA = tokenA;
address _tokenB = tokenB;
require(to != _tokenA && to != _tokenB,
 "INVALID_OUTPUT_ADDRESS");

Building Crypto-Trading Smart Contracts132

In the preceding code, amountAOut and amountBOut are the two function parameters
representing the amount of the two tokens to be swapped out. When calling the swap function
from the AMM router, one of amountAOut and amountBOut will be zero. The token with a
zero out amount has had its balance transferred into the smart contract, so we need to transfer
out the equivalent amount for the other token to the address specified by the to parameter.

2. In the second step, the code transfers the tokens from the current token pair contract address
to the recipient:

// Step 2: Perform the transfer
if (amountAOut > 0) safeTransfer(_tokenA, to, amountAOut);
if (amountBOut > 0) safeTransfer(_tokenB, to, amountBOut);

3. In the third step, the code verifies that the input amount (the provisioning is reflected by the
token balance) is sufficient:

// Step 3: Verify if the input amount is sufficient
uint256 balanceA = IERC20(_tokenA).balanceOf(address(this));
uint256 balanceB = IERC20(_tokenB).balanceOf(address(this));
uint256 amountAIn = balanceA > _reserveA - amountAOut
 ? balanceA - (_reserveA - amountAOut) : 0;
uint256 amountBIn = balanceB > _reserveB - amountBOut
 ? balanceB - (_reserveB - amountBOut) : 0;
require(amountAIn > 0 || amountBIn > 0,
 "INSUFFICIENT_INPUT_AMOUNT");

4. In the fourth step, the code verifies that the balance of the token pair is sufficient for the rewards
to be paid after the swap, and updates the reserves with the current token balance in step 5 of
the code. Here is the code for these two steps:

// Step 4: Verify if the balances are sufficient
{
 uint256 balanceAAdjusted = balanceA * 1000 - amountAIn * 2;
 uint256 balanceBAdjusted = balanceB * 1000 - amountBIn * 2;
 require(balanceAAdjusted * balanceBAdjusted >= reserveA
 * reserveB * 1000**2, "INSUFFICIENT_LIQUIDITY");
}
// Step 5: Update the reserves with token balances
setReserves(balanceA, balanceB);
emit Swap(msg.sender, amountAIn, amountBIn, amountAOut,
 amountBOut, to);

For step 4, we need to recalculate the product of the two reserves to take into account the 0.2%
transaction fee for swapping, and confirm that the product is not reduced after factoring in
the rewards for liquidity providers and DEX owners.

Implementing token pair smart contracts 133

The adjusted amount should be balance − 0.2% * amountIn , with 0.2% of the transaction fee
to be kept in the reserves. We multiply the variables by 1,000 to prevent the missing decimals
when multiplying an amount with a float number that is much less than 1. That is how we
implemented the balance check in step 4 of the preceding code.

Another thing we need to pay attention to is that we put the code of balanceAAdjusted and
balanceBAdjusted in curly braces ({...}). This is the local scope for defining and using the
two local variables. The reason for using the local scope is to prevent Stack too deep errors
such as the following:

CompilerError: Stack too deep. Try compiling with `--via-ir` (cli)
or the equivalent `viaIR: true` (standard JSON) while enabling the
optimizer. Otherwise, try removing local variables.
 --> src/backend/contracts/TokenPair.sol:200:53:

In Solidity, if there are too many variables in the scope of a function, the Stack too deep error
will occur. There are two possible causes as shown in Figure 5.1 along with their solutions.

Figure 5.1 – Two causes of the Stack too deep error and their solutions

Building Crypto-Trading Smart Contracts134

We can see Solution 1 for Case 1 is the option we adopted to solve the Stack too deep error.
In Chapter 13, Implementing a Price Oracle for Crypto Loans, you will see the usage of structs in our
smart contract code to prevent this issue.

Next, we will discuss the two remaining functions in the TokenPair smart contract.

skim and sync

We have discussed the main functions of the TokenPair smart contract for swapping tokens,
liquidity mining, and burning. The code will set the reserves with the balance of tokens at the end of
each function. However, there are some cases where the balance and reserves are mismatched due
to the design of the token or after transferring tokens by mistake. If either of these happens, we need
to skim the balances of the tokens in the token pair to match the reserves, or sync reserves to match
the balance. Figure 5.2 shows three cases of mismatch between balances and reserves for token pairs.

Figure 5.2 – A demonstration of skim and sync

Let’s go through the three cases one by one in Figure 5.2.

Case 1 happens when a user accidentally transfers an amount of a token to the TokenPair smart
contract, and then the user wants to get back the token. The user can call the skim function to transfer
the extra balance back to the user:

// Force balances to match reserves
function skim(address to) external nonReentrant {
 address _tokenA = tokenA;
 address _tokenB = tokenB;
 _safeTransfer(_tokenA, to, IERC20(_tokenA)
 .balanceOf(address(this)) - reserveA);
 _safeTransfer(_tokenB, to, IERC20(_tokenB)
 .balanceOf(address(this)) - reserveB);
}

Implementing pair factory smart contracts 135

Case 2 in Figure 5.2 happens when the balance(s) are more than the reserve(s) and the user wants to
sync the reserves with the existing token balances of the token pair. It could happen after an accidental
transfer, or due to balance inflation of a token in the pair (e.g., due to the reflection mechanism). To
resolve this, the user can call the sync function to force the reserves to match the balances:

// Force reserves to match balances
function sync() external nonReentrant {
 _setReserves(IERC20(tokenA).balanceOf(address(this)),
 IERC20(tokenB).balanceOf(address(this)));
}

Note
To prevent token loss, please do not transfer tokens to the token pair smart contract. This is
because another person can call the skim function to transfer tokens to their own wallet.
Equally, somebody could call the sync function and arbitrage by swapping out the tokens
for a cheaper price.

Case 3 in Figure 5.2 is very rare because every change in token balances follows a _setReserves
call to sync the balance with reserves, and there is no other way to transfer the extra tokens out of the
smart contract by comparing reserves. However, it is possible for the smart contract of the token to
reduce the balance of an address with some burning mechanism. In this case, the token will be more
valuable in the token pair. We can call the sync function to reflect the new price if this case happens.

Now we have completed explaining the code of the TokenPair smart contract, you can refer to the
source code at https://github.com/PacktPublishing/Building-Full-stack-
DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/
TokenPair.sol and compile the smart contracts with the npx hardhat compile command.

In the next section, we will discuss how to create token pair instances with a pair factory.

Implementing pair factory smart contracts
The pair factory is a smart contract that creates token pairs. It also helps the AMM router locate the
addresses of deployed token pairs by giving two token addresses. Now, let’s start creating the pair
factory smart contract.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/TokenPair.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/TokenPair.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/TokenPair.sol

Building Crypto-Trading Smart Contracts136

Introducing the smart contract source file

The source file of the pair factory smart contract is located at src/backend/contracts/
PairFactory.sol within the project. The Solidity file implements the PairFactory smart
contract. We will not examine every line of code of the smart contract – if you want, you can refer
to the full source code of the smart contract at https://github.com/PacktPublishing/
Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/
src/backend/contracts/PairFactory.sol.

At the beginning of the PairFactory smart contract implementation, the constructor of the
contract sets the deployer (msg.sender) to rewardTo as the default account to receive the LP
token rewards from all token pairs. Because we use the Ownable contract from OpenZeppelin,
the deployer (msg.sender) is also the owner of the PairFactory smart contract.

The allPairLength function returns the total number of token pairs in this DEX and reads the
length of the array of token pair addresses. By the way, the getPair map is used to store the token
pair addresses. It can return the token pair address by giving two token addresses if the pair exists in the
DEX. If there is no token pair for the given two addresses, the getPair map will return address(0).

The setRewardTo function can update the reward recipient address. The onlyOwner modifier
means only the owner of the smart contract (which is the deployer by default) can set the reward
recipient’s address.

If you compile the PairFactory source code right now, it will show errors saying that two functions
(createPair and INIT_CODE_PAIR_HASH) haven’t been implemented yet. These two functions
are used to create token pairs, which will be discussed in the next section.

Note
Although the IPairFactory interface declares INIT_CODE_PAIR_HASH as a view function
to be implemented, in the implementation code, we just define INIT_CODE_PAIR_HASH
as a public constant variable, because Solidity automatically generates view functions for
public variables.

Creating token pairs

Creating token pairs is a key function of PairFactory. The AMM router calls the createPair
function to deploy and initialize token pairs. The requirement is that the deployed addresses of every
token pair should be pre-calculated so that the router can calculate the token pair address from the
two given token addresses.

You may ask why we should use the pre-calculated address rather than accessing the getPair mapping
we defined in the previous section. This is because calling getPair from another smart contract
requires fetching the on-chain data from PairFactory, which is less efficient than calculating the
address locally.

Implementing pair factory smart contracts 137

Here we will use the Solidity low-level create2 function to deploy the TokenPair smart contract
within the PairFactory code. The create2 function can create a function in a pre-calculated
address without relying on the state of the deployer.

create versus create2
Before create2 was introduced, there was a low-level function in Solidity called create.
The create function is still widely used for accounts deploying smart contracts and relies
on the nonce of the deployer’s address. However, the nonces change for every transaction. We
need deterministic information to generate the address for the smart contract instead of the
external information. You can refer to https://blog.openzeppelin.com/getting-
the-most-out-of-create2/ for more information on this topic.

Figure 5.3 shows how PairFactory uses create2 to deploy the TokenPair smart contract at
a pre-calculated address.

Figure 5.3 – How the create2 function calculates the token pair address for a pair factory

We can see that the create2 function takes four parameters to calculate an address. The first
parameter is the plain byte 0xFF. The second parameter is the caller of the create2 function,
which is the address of PairFactory in our code. The third parameter is the salt, which is a
parameter used to distinguish one token pair from another token pair – here we use the hashed bytes
of concatenated sorted token addresses in PairFactory. The fourth parameter is the creation code
of the TokenPair smart contract.

Once the create2 function is called, the TokenPair smart contract will be deployed. Because
the create2 function is a low-level call for deploying the bytecode on the blockchain, we still need
to call the initialize function of TokenPair to pass in the two token addresses of the pair.

https://blog.openzeppelin.com/getting-the-most-out-of-create2/
https://blog.openzeppelin.com/getting-the-most-out-of-create2/

Building Crypto-Trading Smart Contracts138

Here is the code of the createPair function based on the token pair workflow we discussed previously:

function createPair(address tokenA, address tokenB)
 external returns (address pair) {
 // Step 1: Sort the token
 (address _tokenA, address _tokenB) =
 Helper.sortTokens(tokenA, tokenB);
 require(getPair[_tokenA][_tokenB] == address(0),
 "PAIR_ALREADY_EXISTS");

 // Step 2: Prepare for create2 arguments
 bytes memory bytecode = type(TokenPair).creationCode;
 bytes32 salt = keccak256(
 abi.encodePacked(_tokenA, _tokenB));

 // Step 3: Deploy the token pair on the address
 // calculated with the factory's address, bytecode and
 // salt.
 assembly {
 pair := create2(0, add(bytecode, 32),
 mload(bytecode), salt)
 }

 // Step 4: Initialize the pair with token addresses
 ITokenPair(pair).initialize(_tokenA, _tokenB);

 // Step 5: Store the new token pair address in factory
 getPair[_tokenA][_tokenB] = pair;
 getPair[_tokenB][_tokenA] = pair;
 allPairs.push(pair);
 emit PairCreated(_tokenA, _tokenB, pair, allPairs.length);
}

In the preceding code, the pair address is returned from the highlighted create2 low-level function.
The assignment for the pair variable is enclosed with an inline assembly block marked by assembly
{ … }. The code inside the curly braces is written in the Yul language. The reason for using inline
assembly here is to access the code of another contract and load it into a bytes array with mload.
However, using inline assembly bypasses several security features and checks of Solidity. We should
only use inline assembly whenever necessary and are confident about the security of the code.

Implementing pair factory smart contracts 139

Let’s go back to explain the create2 function; this function takes four arguments:

• The first argument, 0, is the call value passed into create2.

• The second argument, add(bytecode, 32), is the address of the initialization code of
the TokenPair smart contract. When accessing creationCode of a smart contract, the
first 32 bytes (or 256 bits) of data is the length of the initialization code. The actual initialization
code follows that. Then we have to jump forward 32 bytes by calling add(bytecode, 32)
to get the address of the starting byte of the initialization code.

• The third argument, mload(bytecode), returns the first 32 bytes of creationCode,
which is the length of the bytecode.

• The fourth argument is the salt value, which is generated by the Keccak256 hash of the
concatenation of tokenA’s address and tokenB’s address.

• The return value of create2 is the deployed TokenPair address, which is calculated by
the method shown in Figure 5.3.

Note
The return value of the keccak256 function returns data of type bytes32, which is 256
bits; however, the address is 160 bits. The create2 function converts the calculated bytes
into the address data type internally.

In the createPair function, we also use a sortTokens helper function to sort the two token
addresses in numeric order. This prevents the code from creating duplicate pairs for the same pair of token
addresses. The helper function is located at src/backend/contracts/libraries/Helper.
sol and you can refer to its source code via https://github.com/PacktPublishing/
Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/
src/backend/contracts/libraries/Helper.sol.

It is a good practice to put some functions into libraries in some cases. The first case is that there are
functions that need to be shared across multiple components (you will see the sortToken function
is used in multiple places in this book). The second case occurs when a smart contract becomes too
large and reaches the bytecode size limit. One solution here is to move some of the functions into a
library (this needs to be deployed separately) to keep the smart contract’s size compact.

Now we have gone through the code for deploying token pair smart contracts at a predefined address.
Next, let’s discuss how to retrieve the address by giving a pair of token addresses.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/libraries/Helper.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/libraries/Helper.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/libraries/Helper.sol

Building Crypto-Trading Smart Contracts140

Retrieving addresses for token pairs

Now we understand how to create a token pair in PairFactory. Based on the Solidity create2
function diagram shown in Figure 5.3, we can implement a function in Helper.sol for retrieving the
token pair addresses. Based on the information shown in Figure 5.3, the address calculation function
requires the following parameters without relying on the on-chain data:

• The factory address (the caller of create2)

• The addresses of the two token pairs

• The Keccak256 hash of the initialization code of the TokenPair smart contract

Let’s implement the pairFor function in Helper.sol with the following code:

function pairFor(address factory, address tokenA,
 address tokenB, bytes32 initCodeHash)
 internal pure returns (address pair) {
 (address _tokenA, address _tokenB) = sortTokens(tokenA, tokenB);
 pair = address(uint160(uint256(keccak256(
 abi.encodePacked(
 hex"ff",
 factory,
 keccak256(abi.encodePacked(_tokenA, _tokenB)),
 initCodeHash
)
))));
}

Similar to what we did when creating a token pair, the code for the pairFor function sorts the token
addresses, concatenates them, and hashes the result with keccak256 to make it a salt parameter.
Meanwhile, we take the hex ff, the factory address, and the initialization code hash of the TokenPair
smart contract as shown in Figure 5.3, concatenate them and hash with keccak256, then convert
the bytes into the pair address and return.

You may have noticed that all the library functions in Helper.sol are internal, which means the
library is the embedded library. The code of the embedded libraries is combined with other smart
contracts during the deployment, thus they may have to deploy the duplicate code when multiple
smart contracts refer to the same library.

Alternatively, we can set the library function to public or external, which makes the library a linked
library. It requires the specification of the linked library address for smart contract deployment if the
smart contract depends on the library. And the library must be deployed alone, upon which it will
generate a unique address for the linked library.

Implementing pair factory smart contracts 141

Note
The choice between using an embedded library or a linked library is a trade-off between
execution costs and deployment costs. An embedded library costs less in execution because
it simply uses the JUMP statement like a normal function call. By contrast, a linked library
requires access to another on-chain smart contract and the execution cost is much higher
because of the on-chain operations. However, a linked library could cost less for deployment
because there is no duplicate code.

We use the form of embedded library to minimize the gas cost during execution, because there
would be intensive calls to the library functions when the exchange is running.

In order to access the initialization code hash of the TokenPair smart contract, there is an INIT_
CODE_PAIR_HASH() view function that we need to implement. This function returns the type of
bytes32 as the initialization code hash. Let’s add a public variable in the PairFactory smart
contract for INIT_CODE_PAIR_HASH:

bytes32 public constant INIT_CODE_PAIR_HASH = keccak256(
 abi.encodePacked(type(TokenPair).creationCode));

Now we have completed our examination of the code of PairFactory.sol. You can try to compile
the Solidity code of the project by running npx hardhat compile, and it will compile all smart
contracts we have built so far.

Next, let’s verify the token pair factory with the Hardhat console.

Verifying the token pair factory

Now we can verify the PairFactory smart contract with the Hardhat console along with Helper.
sol. For verification purposes, we need to add the following function to the PairFactory smart
contract to wrap up the pairFor function in Helper.sol:

// Only for testing purpose
// (For verifying Helper.pairFor function)
function pairFor(address tokenA, address tokenB) external
 view returns (address pair) {
 pair = Helper.pairFor(address(this), tokenA, tokenB,
 INIT_CODE_PAIR_HASH);
}

Let’s create a smart contract for the second token at the src/backend/contracts/MemeToken.
sol location so that we have two ERC20 tokens to create a token pair for the verification. You can check
the code of the MemeToken smart contract at https://github.com/PacktPublishing/
Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/
src/backend/contracts/MemeToken.sol.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/MemeToken.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/MemeToken.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/MemeToken.sol

Building Crypto-Trading Smart Contracts142

Then we need to deploy the new smart contracts on the EVM. Because multiple smart contracts need
to be deployed and their deployment uses the same set of code, we can refactor the code by moving
the deployment code into a for loop. In the scripts/deploy.js file, let’s modify the main
function as follows:

async function main() {
 const [deployer] = await ethers.getSigners();
 const contractList = [
 // "Contract Name", "Contract Factory Name"
 ["Simple DeFi Token", "SimpleDeFiToken"],
 ["Meme Token", "MemeToken"],
 ["Pair Factory", "PairFactory"],
];
 // Deploying the smart contracts and
 // save contracts to frontend
 for (const [name, factory] of contractList) {
 let contractFactory = await ethers.getContractFactory(factory);
 let contract = await contractFactory.deploy();
 console.log(`${name} Contract Address:`, contract.address);
 saveContractToFrontend(contract, factory);
 }
 ...
}

Now, let’s start the local EVM with the npx hardhat node command and deploy the three smart
contracts with the scripts/deploy.js script by running the npm run deploy localhost
command, then note down the addresses deployed as shown in the console output:

Simple DeFi Token Contract Address:
0x5FbDB2315678afecb367f032d93F642f64180aa3
Meme Token Contract Address:
0xe7f1725E7734CE288F8367e1Bb143E90bb3F0512
Pair Factory Contract Address:
0x9fE46736679d2D9a65F0992F2272dE9f3c7fa6e0

If all the smart contracts are deployed successfully, you will see the deployed address printed in the
terminal as previously.

Now let’s start the Hardhat console with the npx hardhat console --network localhost
command to verify the PairFactory smart contract. Once the console is started, we can create a
smart contract instance for PairFactory with the following command:

> pairFactory = await ethers.getContractAt("PairFactory",
"0x9fE46736679d2D9a65F0992F2272dE9f3c7fa6e0")
undefined

Implementing pair factory smart contracts 143

> pairFactory.address
'0x9fE46736679d2D9a65F0992F2272dE9f3c7fa6e0'

In the preceding code lines, make sure the address with the 0x... prefix is the address of the pair
factory you have just deployed. We can verify there is no token pair yet by calling the pairFactory.
allPairsLength() function:

> await pairFactory.allPairsLength()
BigNumber { value: "0" }

Now let’s create a pair with the two deployed token addresses (0x5FbD... for Simple DeFi Token,
0xe7f1... for MemeToken):

> pairAddress = await pairFactory.
createPair("0x5FbDB2315678afecb367f032d93F642f64180aa3",
"0xe7f1725E7734CE288F8367e1Bb143E90bb3F0512")

Note
When referring to addresses, we will only keep the first four digits of the hex of the address
(e.g., 0x5FbD...) in the text of this book to simplify the discussion. Meanwhile, we still
keep the full text of addresses in console excerpts so that you can copy and paste the original
text to run the verification.

Then we need to wait for the completion of the transaction with tx = await pairAddress.
wait(), and verify that the first event of the emitted events is the PairCreated event with the
expected arguments:

> tx = await pairAddress.wait()
> tx.events[0]
{
 ...
 args: [
 ...
 tokenA: '0x5FbDB2315678afecb367f032d93F642f64180aa3',
 tokenB: '0xe7f1725E7734CE288F8367e1Bb143E90bb3F0512',
 pair: '0x15A4A1bE175853cdc7d56505BdC8123396641C08'
],
 event: 'PairCreated',
 ...
}

Building Crypto-Trading Smart Contracts144

We have ignored the redundant output to focus on the event and args fields of the output object.
The highlighted tokenA and tokenB are the two token addresses we passed into the createPair
function, and pair is the TokenPair address we have just created. We can compare the pair
addresses by accessing the first pair address of the allPairs array in the PairFactory smart
contract instance:

> await pairFactory.allPairs(0)
'0x15A4A1bE175853cdc7d56505BdC8123396641C08'

And now the length of the allPairs array becomes 1 because we have just created one pair:

> await pairFactory.allPairsLength()
BigNumber { value: "1" }

The verification looks good! Let’s move on to create the AMM router smart contract. After that, we
will combine the smart contracts we created in this chapter together and perform the integration
verification with real user scenarios.

Implementing AMM router smart contracts
The AMM router is a smart contract for users and off-chain systems to access the DEX to perform
activities including liquidity provisioning, liquidity removal, and token swapping. The AMM router
accesses the functions in a pair factory and token pairs to perform these operations. In the process
of implementing its code, we will also create several library functions to support the AMM router.

Let’s create the starter code for the AMMRouter smart contract by creating a new Solidity file located
at src/backend/contracts/AMMRouter.sol, and implement the constructor of the smart
contract like this:

address public override factory;
bytes32 private initCodeHash;
constructor(address _factory) {
 factory = _factory;
 initCodeHash = IPairFactory(factory).INIT_CODE_PAIR_HASH();
}

In the starter code of AMMRouter, we initialized the factory’s address and assigned initCodeHash
within the constructor. initCodeHash will be used to calculate the pair addresses as mentioned
in the previous part of this chapter.

Next, let’s deep dive into the liquidity provisioning feature of AMMRouter.

Implementing AMM router smart contracts 145

Liquidity provisioning

The process of liquidity provisioning can be described as transferring tokens to a liquidity pool
and getting LP tokens in return. The code should check whether the liquidity pool (an instance of
TokenPair smart contract) for the pair of tokens exists, and if not, the code will create a new
TokenPair instance and use the input tokens’ amounts as the initial liquidity. Otherwise, we need
to handle the input amounts to prevent the liquidity provisioning from impacting the token prices of
the TokenPair smart contract.

When adding liquidity, a user may give arbitrary amounts for the two tokens in the liquidity pool.
The actual amounts of tokens received by the liquidity pool may not be the user-desired amounts if
we respect the reserve ratio. As a result, we should define the minimum amounts of the two tokens
that the user can accept.

As shown by the interface found in the src/backend/contracts/interfaces/IAMMRouter.
sol source file, amountADesired and amountAMin define the upper limit and lower limit for
the amount range of tokenA, while amountBDesired and amountBMin define the amount
range of tokenB. If the code satisfies one of the following criteria, the addLiquidity function
will proceed with liquidity provisioning:

 amountBMin ≤ amountADesired * reserveB _ reserveA ≤ amountBDesired

 amountAMin ≤ amountBDesired * reserveA _ reserveB ≤ amountADesired

Otherwise, the transaction will be reverted.

Based on the preceding discussion, let’s implement the code for the addLiquidity function in
the AMMRouter contract as follows.

1. For the first step, we need to check whether the pair for the two tokens exists or not, and if it
doesn’t exist, the code will create a new pair:

if (IPairFactory(factory).getPair(tokenA, tokenB) ==
 address(0)) {
 IPairFactory(factory).createPair(tokenA, tokenB);
}

2. The second step will get the reserve of the two tokens from the pair:

address pair = Helper.pairFor(
 factory, tokenA, tokenB, initCodeHash);
(uint256 reserveA, uint256 reserveB) = getReserves(
 pair, tokenA, tokenB);

Building Crypto-Trading Smart Contracts146

The preceding code uses the getReserves function to retrieve the reserves from a given token
pair. The implementation of this function is inside the AMMRouter smart contract – you can check
the following link for the implementation: https://github.com/PacktPublishing/
Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-
apps/src/backend/contracts/AMMRouter.sol#L23-L40.

3. In the third step, the code calculates the actual amounts of the two tokens required for
liquidity provisioning:

if (reserveA == 0 && reserveB == 0) {
 // No liquidity yet
 (amountA, amountB) = (amountADesired, amountBDesired);
} else {
 // Liquidity already exists
 uint256 amountBOptimal = Helper.quote(amountADesired,
 reserveA, reserveB);
 if (amountBOptimal <= amountBDesired) {
 require(amountBOptimal >= amountBMin,
 "INSUFFICIENT_tokenB_AMOUNT");
 (amountA, amountB) =
 (amountADesired, amountBOptimal);
 } else {
 uint256 amountAOptimal = Helper.quote(
 amountBDesired, reserveB, reserveA);
 assert(amountAOptimal <= amountADesired);
 require(amountAOptimal >= amountAMin,
 "INSUFFICIENT_tokenA_AMOUNT");
 (amountA, amountB) = (amountAOptimal, amountBDesired);
 }
}

Here we have two options for calculating the amounts to be transferred to the pair. The first
option uses the desired amount as the initial liquidity. In the second option (for pairs where
the liquidity has already been created), we use the quote function to get the optimal amount
of the other token by giving the desired token amount. This function is implemented in the
Helper library:

// Give an amount of a token and pair reserves,
// returns an equivalent amount of other token.
function quote(uint256 amountA, uint256 reserveA,
 uint256 reserveB) internal pure
 returns (uint256 amountB) {
 require(amountA > 0, "INSUFFICIENT_AMOUNT");

Implementing AMM router smart contracts 147

 require(reserveA > 0 && reserveB > 0,
 "INSUFFICIENT_LIQUIDITY");
 amountB = (amountA * reserveB) / reserveA;
}

Note
We put the quote function in the Helper function because it doesn’t require referring
to other variables from the caller’s contract and is a general function that can be shared by
multiple contracts.

At the end of step 3, the code calculates the actual amounts for the two tokens (amountA and
amountB). Now we can transfer these tokens from the caller (msg.sender) to the token
pair in step 4:

Helper.safeTransferFrom(tokenA, msg.sender, pair, amountA);
Helper.safeTransferFrom(tokenB, msg.sender, pair, amountB);

4. The last step for liquidity provisioning is to mint the LP tokens and send these tokens to the
address specified by the caller:

liquidity = ITokenPair(pair).mint(to);

You may have noticed that we are using a deadline argument in the addLiquidity function
with the ensure modifier. deadline is adopted to ensure the code of addLiquidity is
executed no later than the specified timestamp. It is an important parameter for trading because
it urges a transaction to be completed before a deadline to prevent market fluctuation. As a result,
the required liquidity amounts may move out of the range specified by the caller as time passes.

Here is the implementation of the ensure modifier in the AMMRouter contract:
modifier ensure(uint256 deadline) {
 require(deadline >= block.timestamp, "EXPIRED");
 _;
}

Step 4 of the addLiquidity function uses the safe version of transferFrom to transfer ERC20
tokens from the liquidity provider to the pair address. Similar to the _safeTransferfunction
we implemented previously, the safeTransferFrom function checks the return data by
using the encoded function with a low-level Solidity call. You can find the implementation of
safeTransferFrom at https://github.com/PacktPublishing/Building-
Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/
backend/contracts/libraries/Helper.sol#L81-L96.

Next, let’s dive into the code for liquidity removal.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/libraries/Helper.sol#L81-L96
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/libraries/Helper.sol#L81-L96
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/libraries/Helper.sol#L81-L96

Building Crypto-Trading Smart Contracts148

Liquidity removal

AMMRouter uses the removeLiquidity function to remove liquidity. Let’s walk through the
code to remove liquidity with the following steps.

First, transfer LP tokens to the instance of the TokenPair contract:

address pair = Helper.pairFor(factory, tokenA, tokenB, initCodeHash);
Helper.safeTransferFrom(pair, msg.sender, pair, liquidity);

Next, call the burn function on the TokenPair contract to burn the LP tokens and transfer the
pooled tokens back to the caller:

(uint256 amount0, uint256 amount1) = ITokenPair(pair).burn(to);

At the end of the removeLiquidity function, verify whether the remaining amounts of tokens
in the liquidity pool are sufficient:

(address _tokenA,) = Helper.sortTokens(tokenA, tokenB);
(amountA, amountB) = tokenA == _tokenA ? (amount0, amount1)
 : (amount1, amount0);
require(amountA >= amountAMin, "INSUFFICIENT_A_AMOUNT");
require(amountB >= amountBMin, "INSUFFICIENT_B_AMOUNT");

The preceding code checks that the paired tokens the user received are not less than the minimum
amount specified. This is done to protect losses to the user due to fluctuation in the market.

Next, we will discuss the code for swapping.

Swapping

Swapping is the process of exchanging one token from another token on a DEX. A DEX usually has
multiple pairs, which allows people to exchange any two tokens as long as there is a path of pairs between
the two tokens. This path may involve multiple pairs. The workflow starts from transferring the input
amount of the input token to the first pair of the path, then the pair transfers the output token to the
next pair in the path, and so on until the end of the path. At the end, the output token is transferred
from the last pair to the user. Figure 5.4 shows the flow of swapping tokens with multiple token pairs.

Implementing AMM router smart contracts 149

Figure 5.4 – Using the AMM router to swap tokens along the token path with token pairs

If there are transaction fees for swapping, the fee is charged by every pair on the path. For example,
each token pair charges a 0.2% fee in the DEX we are implementing. A swap operation wants to swap
from token A to token C and it involves two pairs: the A-B pair and B-C pair. The user spends 1,000
dollars’ worth of token A for the transaction, then the A-B pair takes 1000 * 0.2% = 2 dollars’ fee,
and transfers the remaining 998 dollars’ worth of the token to the B-C pair. The fee taken by the B-C
pair is 998 * 0.2% = 1.996 dollars. The total fee is thus 2 + 1.996 = 3.996 dollars.

The price of a token is uncertain at the time of swapping because the reserves of liquidity pools
keep changing over time and there are latencies between submitting the swapping request and the
execution of the swap. We may not know how much we will receive if we specify a payment amount,
or vice versa how much we need to pay. We allow users to specify the minimum amount of tokens
they want to receive, or the maximum amount of tokens they are willing to pay. For this reason,
the DEX requires at least two functions for swapping: swapExactTokensForTokens and
swapTokensForExactTokens.

Now let’s take a look at the code for the swapExactTokensForTokens function when the user
wants to spend an exact amount:

function swapExactTokensForTokens(
 uint256 amountIn, uint256 amountOutMin,
 address[] calldata path, address to, uint256 deadline)
 external ensure(deadline)
 returns (uint256[] memory amounts) {
 // Step 1: Calculate the amounts to be swapped out
 amounts = getAmountsOut(amountIn, path);
 require(amounts[amounts.length - 1] >= amountOutMin,
 "INSUFFICIENT_OUTPUT_AMOUNT");

 // Step 2: Transfer to the first pair in the path
 Helper.safeTransferFrom(path[0], msg.sender,

Building Crypto-Trading Smart Contracts150

 Helper.pairFor(factory, path[0], path[1],
 initCodeHash), amounts[0]);

 // Step 3: Swap through the path for each pair
 _swap(amounts, path, to);
}

In the preceding code, the first step is to calculate the amount of tokens to be swapped out of each
pair on the path. The swap function in TokenPair assumes that the token swapped in has been
transferred to TokenPair itself. The calculation of the amount to be swapped out is done by the
following getAmountsOut function in the AMMRouter smart contract:

function getAmountsOut(uint256 amountIn,
 address[] memory path) internal view
 returns (uint256[] memory amounts) {
 require(path.length >= 2, "INVALID_PATH");
 amounts = new uint256[](path.length);
 amounts[0] = amountIn;
 for (uint256 i; i < path.length - 1; i++) {
 (uint256 reserveIn, uint256 reserveOut,) =
 getReserves(path[i], path[i + 1]);
 amounts[i + 1] = Helper.getAmountOut(amounts[i],
 reserveIn, reserveOut);
 }
}

As mentioned previously, while calculating the output amount, amounts[i + 1], we take
amounts[i] calculated from the last iteration of the swapping path shown in Figure 5.4. Also, we
have to take the 0.2% transaction fees into account. The getAmountOut function in the Helper
library will do this:

function getAmountOut(uint256 amountIn, uint256 reserveIn,
 uint256 reserveOut) internal pure
 returns (uint256 amountOut) {
 /* Code for parameter check is omitted */
 uint256 amountInWithFee = amountIn * 998;
 uint256 numerator = amountInWithFee * reserveOut;
 uint256 denominator = (reserveIn * 1000) + amountInWithFee;
 amountOut = numerator / denominator;
}

Implementing AMM router smart contracts 151

Here we have reduced the input amount by factoring in the 0.2% fee when calculating the output
amount. After supplying the calculated amount from amountInWithFee = amountIn * (1 − 0.2%) , given
the product is unchanged for the CPMM, we have the following:

 (reserveIn + amountInWithFee) * (reserveOut − amountOut) = reserveIn *reserveOut

Therefore, the amount of swapping out for another token is as follows:

 amountOut = reserveOut *amountInWithFee ______________________ reserveIn+ amountInWithFee = reserveOut _______________________ reserveIn+ amountIn * (1 − 0.2%) *amountIn * (1 − 0.2%)

 = reserveOut *amountIn * 998 _______________________ reserveIn *1000 + amountIn *998

We multiply both the numerator and denominator by 1,000 because there is no floating point in
Solidity, so we have to convert floating-point values to integers.

Let’s go back to the swapExactTokensForTokens function after we transfer the input amount
of the given token to the first pair. We will use a loop to perform a swap on each pair. The loop is
implemented in the _swap function of AMMRouter:

function _swap(uint256[] memory amounts,
 address[] memory path, address _to) internal virtual {
 for (uint256 i; i < path.length - 1; i++) {
 (address input, address output) = (path[i], path[i + 1]);
 (address tokenA,) = Helper.sortTokens(input, output);
 uint256 amountOut = amounts[i + 1];
 (uint256 amountAOut, uint256 amountBOut) =
 input == tokenA ? (uint256(0), amountOut)
 : (amountOut, uint256(0));
 address to = i < path.length – 2 ?
 Helper.pairFor(factory, output, path[i + 2],
 initCodeHash) : _to;
 ITokenPair(Helper.pairFor(factory, input, output,
 initCodeHash)).swap(amountAOut, amountBOut, to);
 }
}

The preceding code goes through each TokenPair instance by calling its swap function. When
calling the swap function, one pair of amountAOut and amountBOut is set to zero because the
token balance has already been transferred by the previous pair (except for the first transfer). At the
end of the for loop, the swap function will transfer the output token to the user.

Differently to the swapExactTokensForTokens function, the swapTokensForExactTokens
function specifies the exact receiving amount instead of an exact spending amount. You can check
the code of the function at https://github.com/PacktPublishing/Building-Full-
stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/
contracts/AMMRouter.sol#L231-L253.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/AMMRouter.sol#L231-L253
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/AMMRouter.sol#L231-L253
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/AMMRouter.sol#L231-L253

Building Crypto-Trading Smart Contracts152

In the swapTokensForExactTokens function, we use the amountInMax parameter to prevent
paying too many tokens. We calculate the input amount with the reverse direction of the path array
and compare the calculated amount with amountInMax to make sure the actual spending amount
is within the range. The calculation uses the getAmountsIn function, which is similar to the
getAmountsOut function. However, it traverses from the end of the path to the beginning of the
path so that the code can find the actual spending amount. You can check the code at https://
github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/
chapter05-end/defi-apps/src/backend/contracts/AMMRouter.sol#L64-L84
for the implementation of the getAmountsIn function.

Now we have completed the discussion of the code for AMMRouter. In the next section, we will use
the Hardhat console to verify the DEX functions with the smart contracts created in this chapter.

Verifying DEX smart contracts
Now we have implemented the smart contracts for DEX's fundamental features, here we will call
the public or external functions from AMMRouter to verify these features. The AMMRouter smart
contract provides interfaces for off-chain activities to access the DEX. Other components of the DEX,
such as TokenPair and PairFactory, can also be verified by accessing AMMRouter.

Deploying AMMRouter with a script

Similar to other smart contracts, AMMRouter can also be deployed through scripts/deploy.js.
However, there is one difference in that AMMRouter requires a _factory parameter in its constructor
for the deployment, which needs PairFactory to be deployed before AMMRouter, and uses the
deployed pairFactoryAddress as the argument when calling the deploy function in JavaScript:

await contractFactory.deploy(pairFactoryAddress)

We need to refactor the script in the main function to deploy PairFactory before deploying
AMMRouter. You can check the updated code of the function at https://github.com/
PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-
end/defi-apps/scripts/deploy.js#L10-L36.

Next, let’s restart the local EVM with the npx hardhat node command, then run the preceding
script with the npm run deploy localhost command. You will see the addresses of the
deployed smart contracts as follows:

Simple DeFi Token Contract Address:
0x5FbDB2315678afecb367f032d93F642f64180aa3
Meme Token Contract Address:
0xe7f1725E7734CE288F8367e1Bb143E90bb3F0512
Pair Factory Contract Address:

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/AMMRouter.sol#L64-L84
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/AMMRouter.sol#L64-L84
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/src/backend/contracts/AMMRouter.sol#L64-L84
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/scripts/deploy.js#L10-L36
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/scripts/deploy.js#L10-L36
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter05-end/defi-apps/scripts/deploy.js#L10-L36

Verifying DEX smart contracts 153

0x9fE46736679d2D9a65F0992F2272dE9f3c7fa6e0
AMM Router Contract Address:
0xCf7Ed3AccA5a467e9e704C703E8D87F634fB0Fc9

Please keep in mind that every time we rerun the deployment command, the generated addresses
will be different unless we restart the EVM node, as doing so will start over from the beginning with
the same initial private keys and nonces. We will use the preceding addresses for the verification in
this section.

In the next step, we will use the Hardhat console to verify the three main features of the DEX contracts:
liquidity provisioning, liquidity removal, and swapping. We will also check the reserves and verify the
reward distribution during the process.

Verifying smart contracts using the Hardhat console

To get started, let’s run the npx hardhat console --network localhost command to
start the Hardhat console. Next, let’s perform the following operations step by step. These steps can
be also used by other components for interacting with DEX smart contracts.

Configuring a pair factory

Before testing the functions of AMMRouter, we need set up PairFactory first by setting who will
receive the rewards from the DEX.

First, let’s verify who the owner of the PairFactory is by typing await pairFactory.owner()
after creating the pairFactory instance using the deployed factory address 0x9fE4...:

> pairFactory = await ethers.getContractAt("PairFactory",
"0x9fE46736679d2D9a65F0992F2272dE9f3c7fa6e0")
...
> await pairFactory.owner()
'0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266'

Because the current owner owns all the tokens we have deployed (Simple DeFi Token and Meme
Token), as well as the LP tokens once the owner adds liquidity to these tokens. In order to see the
reward distribution clearly, we need to set the reward receiver to another address. Let’s copy another
address that is different from the owner address in the EVM console (where the npx hardhat
node command runs). Here, we will use the 0x7099... address for the reward receiver, setting
the address by calling the setRewardTo function:

> tx = await pairFactory.
setRewardTo("0x70997970C51812dc3A010C7d01b50e0d17dc79C8")

Building Crypto-Trading Smart Contracts154

For the completion of the transaction initiated by the preceding function call, we will run await
tx.wait() next:

> await tx.wait()

Note
Most of the time, it is also OK to proceed to the next command without running await
tx.wait() in the Hardhat console because the transaction on the local EVM usually finishes
within a second, and the time taken to type the next command is sufficient for the previous
transaction to finish running. However, we recommend checking the transaction’s completion
with the command. It also helps us to understand what the transaction does and allows us to
audit the transaction ID, gas usage, and event(s) emitted.

Now the reward receiver should be set to the new address. We can verify this by running the await
pairFactory.rewardTo() function.

Next, let’s set the token transferring allowance for AMMRouter with the Hardhat console.

Setting allowance for transferring tokens to AMMRouter

Before the user calls AMMRouter functions to add liquidity, we need to allow AMMRouter to transfer
specific amounts of tokens from the liquidity provider’s wallet.

Let’s create the instance of AMMRouter first with its deployed address 0xCf7E... and verify its
factory is correct (which is 0x9fE4... for this book):

> ammRouter = await ethers.getContractAt("AMMRouter",
"0xCf7Ed3AccA5a467e9e704C703E8D87F634fB0Fc9")
...
> await ammRouter.factory()
'0x9fE46736679d2D9a65F0992F2272dE9f3c7fa6e0'

We will now add liquidity for the Simple DeFi Token and Meme Token pair, which are the two ERC20
tokens we have implemented in this book. Before doing that, we need to create the contract instance
of each token and set the allowance for AMMRouter (whose address is 0xCf7E...) to the total
supply of each token:

> simpleDeFiToken = await ethers.getContractAt("SimpleDeFiToken",
"0x5FbDB2315678afecb367f032d93F642f64180aa3");
...
> tx = await simpleDeFiToken.
approve("0xCf7Ed3AccA5a467e9e704C703E8D87F634fB0Fc9",
"1000000000000000000000000")
...

Verifying DEX smart contracts 155

> memeToken = await ethers.getContractAt("MemeToken",
"0xe7f1725E7734CE288F8367e1Bb143E90bb3F0512");
...
> tx = await memeToken.
approve("0xCf7Ed3AccA5a467e9e704C703E8D87F634fB0Fc9",
"1000000000000000000000000000")
...

If you run await tx.wait() after each approve function is called as previously, you will
notice that it returns the Approval event in its events array for each of the tokens. It means the
approve function ran successfully.

When assigning the argument of the BigNumber type in the Hardhat console, we can use either the
string type or numeric type in JavaScript because the Hardhat library will automatically convert the data
type to BigNumber. We are using a string value (e.g., "1000000000000000000000000000")
for the number because it may be too big to be represented as the JavaScript numeric type.

The number 1000000000000000000000000000 is in wei units. Wei is the default unit when
specifying the amount of a cryptocurrency in smart contract function calls. We convert a number to
wei units by multiplying it by 1018 whenever we want to call a smart contract function for an amount.

Note
Although we set the allowance to the total supply for AMMRouter, it is not secure to set an
allowance that is more than the amount required because a buggy smart contract or a scammer
could spend more than the expected amount.

After setting up the allowance for adding liquidity, let’s verify the smart contract by adding liquidity.

Adding liquidity

When adding liquidity for the first time to a liquidity pool, we need to determine the initial ratio
of the two tokens. This ratio represents the price of the two tokens when people uses the exchange.

We have two tokens: Simple DeFi Token (symbol: SDFT, deployed address: 0x5FbD...) and Meme
Token (symbol: MEME, deployed address: 0xe7f1...).

Let’s create an SDFT/MEME pair with the ratio 1:10 by providing 1,000 SDFT and 10,000 MEME
tokens using the ammRouter.addLiquidity function:

> tx = await ammRouter.
addLiquidity("0x5FbDB2315678afecb367f032d93F642f64180aa3",
"0xe7f1725E7734CE288F8367e1Bb143E90bb3F0512",
"1000000000000000000000","10000000000000000000000",0,0,
"0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266"
,parseInt(new Date().getTime() / 1000) + 10)

Building Crypto-Trading Smart Contracts156

Here are the arguments we set for the addLiquidity function:

• The first and second arguments are the smart contract addresses of the two tokens, Simple
DeFi Token (SDFT) and Meme Token (MEME).

• The third argument is the desired amount of the first token to be added as liquidity. The desired
amount is 1,000 SDFT, which is equivalent to 1,000,000,000,000,000,000,000 wei (or 1,000 x
1018 = 1021 wei).

• The fourth argument is the desired amount of the second token to be added as liquidity. The
desired amount is 10,000 MEME, which is equivalent to 10,000,000,000,000,000,000,000 wei
(or 10,000 x 1018 = 1022 wei).

• The fifth and sixth arguments are the minimum acceptable amounts for providing liquidity.
These two arguments will be used when the LP token supply is greater than zero. Since this is
the first time we are providing liquidity, these two arguments are not used, so it is fine to pass
zeros to the function.

• The seventh argument is the address that will receive the minted LP tokens. Here it will mint
the LP tokens to the deployer of the two tokens.

• The eighth argument is the deadline for the function to be executed. We are using a JavaScript
statement, parseInt(new Date().getTime() / 1000) + 10), to make sure
the function will be executed within 10 seconds from the current timestamp. Otherwise, the
function call will be reverted.

If everything runs successfully, running the await tx.wait() command after the preceding
command will return the transaction information along with nine objects in the events array, from
logIndex 0 to logIndex 8.

To verify one pair was created by calling the addLiquidity function, we can call allPairLength()
in the Hardhat console as follow:

> await pairFactory.allPairsLength()
BigNumber { value: "1" }

The address can be read via the index 0 of the allPairs array:

> await pairFactory.allPairs(0)
'0x1474D130B7e0DeCeb7a996A38d9173a2D855ff0A'

If we want to verify the token reserves of the token pair, we can call the getReserves function in
the PairFactory contract:

> await ammRouter.getReserves
("0x5FbDB2315678afecb367f032d93F642f64180aa3",
"0xe7f1725E7734CE288F8367e1Bb143E90bb3F0512")

Verifying DEX smart contracts 157

[
 BigNumber { value: "1000000000000000000000" },
 BigNumber { value: "10000000000000000000000" },
 '0x1474D130B7e0DeCeb7a996A38d9173a2D855ff0A',
 reserveA: BigNumber { value: "1000000000000000000000" },
 reserveB: BigNumber { value: "10000000000000000000000" },
 pair: '0x1474D130B7e0DeCeb7a996A38d9173a2D855ff0A'
]

It shows that the big numbers in the reserves are the same as the values we passed in. The pair address
is also correct.

Note
If you call getReserve with a different order of the two token addresses (i.e., await
ammRouter.getReserves("0xe7f1...","0x5FbD...")), you will get the exact
same pair address by respecting the token address order in the function arguments (reserveA
for the first token and reserveB for the second token). Because the sortTokens function
is called when calculating the pair address and sorting the two token addresses, the same result
is returned.

After liquidity provisioning, we need to make sure the owner of the tokens has the correct amount of
minted LP tokens, and the dead address (0xdEaD) owns 1,000 wei of LP tokens, which will prevent
liquidity overdrafts:

> tokenPair = await ethers.getContractAt
("TokenPair", "0x1474D130B7e0DeCeb7a996A38d9173a2D855ff0A")
...
> await tokenPair.balanceOf
("0x000000000000000000000000000000000000dEaD")
BigNumber { value: "1000" }
> await tokenPair.
balanceOf("0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266")
BigNumber { value: "3162277660168379330998" }

Note
In the last line in the preceding code, the number 3162277660168379330998 comes
from the formula for calculating shares as discussed in Chapter 4, Introduction to Decentralized
Exchanges and then subtracting 1,000 reserved LP tokens:

 √

 1000000000000000000000 * 10000000000000000000000 − 1000 = 3162277660168379330998

Now we have provided the liquidity for a liquidity pool. We will verify the token swapping next.

Building Crypto-Trading Smart Contracts158

Spending exact amounts of a token with swapping

Now let’s spend exactly one SDFT to purchase Meme Token by calling the ammRouter.
swapExactTokensForTokens function:

> tx = await ammRouter.
swapExactTokensForTokens("1000000000000000000",0,
["0x5FbDB2315678afecb367f032d93F642f64180aa3",
"0xe7f1725E7734CE288F8367e1Bb143E90bb3F0512"],
"0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266",
parseInt(new Date().getTime() / 1000) + 10)

The swapExactTokensForTokens function takes the following arguments:

• The first argument is the amount of tokens the user wants to spend for the purchasing of another
token. Because the decimal of the token is 18, then 1 SDFT can be divided into 1018 smallest units.

• The second argument is the minimum amount of tokens the user wants to receive. Let’s set
this argument to zero to make sure it can run successfully. However, we need to calculate the
minimum amount in production based on the formula we mentioned earlier.

• The third argument is the array of the swapping path. Since we are swapping SDFT to MEME,
the argument is the array of the two token addresses.

• The fourth argument is the wallet address to receive the purchased token, now we use the
deployer’s wallet (wallet address is 0xf39F...) to receive the purchased MEME token.

• The fifth argument is the deadline by which to execute the swapping function, which is 10
seconds from the current time.

We can estimate that approximately 10 Meme tokens (MEME) will be purchased using one SDFT
based on the reserve ratio 1:10. You may verify it by using the balanceOf function of the ERC20
token in the Hardhat console. We will not elaborate on how to verify it here.

Now we have verified the swapExactTokensForTokens swapping function for spending the
exact number of tokens. As an optional step, you can verify the swapTokensForExactTokens
function for receiving the exact number of tokens. You will also learn how we use these two functions
for swapping tokens in Chapter 7, Implementing a Token-Swapping Frontend with Web3.

Next, we will verify the reward distribution when adding liquidity.

Verifying reward distribution by adding liquidity

We have explained that some LP tokens will be sent to the reward receiver address when adding and
removing liquidity. We will verify that by adding more liquidity to the same pair.

Verifying DEX smart contracts 159

Before that, we need to verify that the balance of LP tokens of the reward receiver address is 0:

> await tokenPair.balanceOf
("0x70997970C51812dc3A010C7d01b50e0d17dc79C8")
BigNumber { value: "0" }

Now, let’s add the extra liquidity for the two tokens (2,000 SDFT and 20,000 MEME) and verify the
balance of the LP token of the reward receiver:

> tx = await ammRouter.addLiquidity
("0x5FbDB2315678afecb367f032d93F642f64180aa3",
"0xe7f1725E7734CE288F8367e1Bb143E90bb3F0512",
"2000000000000000000000","20000000000000000000000",0,0,
"0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266",
parseInt(new Date().getTime() / 1000) + 10)
...
> await tokenPair.balanceOf
("0x70997970C51812dc3A010C7d01b50e0d17dc79C8")
BigNumber { value: "315912043520622" }

Good! The preceding output shows the reward receiver has an some LP tokens (the BigNumber value
315912043520622), and there are more LP tokens minted to the liquidity provider. At the same
time, we can verify SDFT and MEME are deducted from the liquidity provider by checking balances.

Next, we will verify the AMMRouter function for liquidity removal.

Removing liquidity

The last verif ication step in this chapter is verifying l iquidity removal. If we
have followed the preceding instructions and run the await tokenPair.
balanceOf("0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266") command in
the Hardhat console, the owner (0xf39F...) now owns around 9,480.5 LP tokens.

Let’s first approve the AMMRouter contract so it can transfer 1,000,000 LP tokens from the owner:

> tx = await tokenPair.
approve("0xCf7Ed3AccA5a467e9e704C703E8D87F634fB0Fc9",
"1000000000000000000000000")

Then we remove the liquidity by burning 1,000 LP tokens with the following command:

> tx = await ammRouter.
removeLiquidity("0x5FbDB2315678afecb367f032d93F642f64180aa3",
"0xe7f1725E7734CE288F8367e1Bb143E90bb3F0512",
"1000000000000000000000", 0, 0,
"0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266", parseInt(new Date().
getTime() / 1000) + 10)

Building Crypto-Trading Smart Contracts160

The owner will receive SDFT and more MEME by removing liquidity, and the numbers of tokens
received will approximately respect the ratio of 1:10. You can verify this via the balanceOf function
for ERC20 tokens and compare the balances from before and after running the preceding command.

Also, verify that the liquidity removal sends the rewards to the reward receiver:

> await tokenPair.
balanceOf("0x70997970C51812dc3A010C7d01b50e0d17dc79C8")
BigNumber { value: "1898633222706203" }

And verify that the LP token balance is reduced by 1,000 for the deployer:

> await tokenPair.
balanceOf("0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266")
BigNumber { value: "8480515374614778636931" }

We have completed our work on the verification of smart contracts in this chapter. Congratulations! You
have successfully implemented the on-chain components of a DEX that can provide the basic services.

If you ever need to redeploy the smart contracts for a DEX and verify the smart contracts again, you
can come back and refer to the instructions in this section.

Summary
In this chapter, you learned how to implement smart contracts for crypto trading on DEXs. The
smart contracts implemented in this chapter provides basic features including liquidity provisioning,
liquidity removal, and swapping (buying and selling an ERC20 token with another ERC20 token).
We also walked you through the reward calculation for an AMM-based DEX, and covered how to
implement reward calculation formulas using Solidity code. At the end of this chapter, we used the
Hardhat console to verify the functions we have implemented in this chapter.

There are three main components for a typical DEX using the CPMM mechanisms: token pairs, pair
factories, and AMM routers. AMM routers are a type of smart contract designed to interact with all
off-chain activities.

As mentioned previously, the DEX features implemented in this chapter form a foundation that we
will enrich by adding more features in future chapters. In the next chapter, we will create a UI

**no Style to perform swapping operations by interacting with an AMM router. The UI will allow
users to buy or sell ERC20 tokens.

6
Implementing a Liquidity

Management Frontend
with Web3

Liquidity management is the foundation of liquidity pool-based crypto trading. It is also a common
feature of Decentralized Exchanges (DEXs). It allows crypto holders to provide liquidities for various
token pairs to improve the liquidity pool and strengthen the price stability of trading.

In the previous chapter, we went through smart contracts for a simple DEX that leverages the Constant
Product Market Maker (CPMM) strategy. We learned how to create liquidity pools, add liquidity,
and remove liquidity by interacting with smart contracts that are deployed on the blockchain. In this
chapter, we will build a user interface for liquidity management to integrate smart contract interaction
with Web3 technologies.

By reading this chapter, you will learn the following:

• How to implement URL routes for liquidity management

• How to retrieve liquidity pool information by interacting with smart contracts with ethers.js

• How to integrate with the smart contracts of tokens to enable liquidity management operations

• How to interact with the AMM router to add and remove liquidity through UI code

Implementing URL routes for liquidity management
In this chapter, we will write UI code for liquidity management and interact with smart contracts.
In this section, we will explain the structure of liquidity management pages and explain how to
implement these pages. Before starting to write the UI code, you can start by using the code in the
chatper06-start branch of the GitHub repository of this book or continue the work you did in
Chapter 5, Building Crypto-Trading Smart Contracts.

Implementing a Liquidity Management Frontend with Web3162

In order to distinguish other features of the DeFi application, we will create a new URL route,
/liquidity, for users to access all liquidity management functions. If you run the web application
with the npm start command, you will access the liquidity management feature via http://
localhost:3000/liquidity.

Meanwhile, we will create three sub-routes under /liquidity for the following three functions
of the liquidity management feature:

• Listing liquidity pool tokens (LP tokens) in the wallet: The function will be implemented as
the default page when people access the /liquidity route.

• Adding liquidity for a token pair: The function will be implemented in the page when the user
accesses the /liquidity/add route. The URL accepts the search parameter pair, which
specifies the token pair address in its value. For example, if addressPairAB is the token pair
address of token A and token B, a user can access /liquidity/add?pair=addressPairAB
to access the page to add liquidity for the pair of token A and token B. If the parameter is not
specified, the user can select a pair of tokens on the page to provide liquidity.

• Removing liquidity for a token pair: The function will be implemented in the page with the
route /liquidity/remove. The pair URL parameter is required for removing liquidity
so that the web application knows from which token pair the liquidity will be removed. If the
parameter is not specified, the page should tell the user that no pair has been selected.

Because the liquidity management pages can be accessed through the same root URL, /liquidity,
we can create a specific router file for liquidity management and allow any sub-routes of /liquidity
directed to the specific router file. Let’s add the following highlighted line in src/frontend/App.
js within the Routes tag:

<Routes>
 <Route path='/' element={<TokenOperations />} />
 <Route path=›/liquidity/*› element={<LiquidityRouter />} />
</Routes>

The LiquidityRouter element is defined in src/frontend/features/Liquidity/
LiquidityRouter.js.

So, let’s add the import statement at the beginning of src/frontend/App.js:

import LiquidityRouter from './features/Liquidity/LiquidityRouter';

Implementing URL routes for liquidity management 163

We are planning to accommodate the JavaScript files of liquidity management pages in the src/
frontend/features/Liquidity/ directory. We will now create the directory and the following
JavaScript files within the directory:

• ListLiquidity.js: This defines a component listing all LP tokens after the wallet is
connected. A user can expand each of the items in the list and check the details.

• AddLiquidity.js: This defines a component for the user to add liquidity. The user can
create a liquidity pool for a new token pair if a pair doesn’t exist.

• RemoveLiquidity.js: This defines a component for the user to remove liquidity for a
token pair.

• LiquidityRouter.js: This is the route definition for liquidity management pages.

When creating the preceding JavaScript files, we can add source code in each file with an empty react
function component. For example, we can add the initial code in ListLiquidity.js like this:

const ListLiquidity = () => {
}
export default ListLiquidity;

Similar to the ListLiquidity.js page, we can add the initial code for AddLiquidity.
js, RemoveLiquidity.js, and LiquidityRouter.js just by replacing the highlighted
ListLiquidity with AddLiquidity, RemoveLiquidity, and LiquidityRouter
respectively. The initial code will show empty contents. But it is sufficient for us to start adding more
code using these empty components.

We will now implement the routes for liquidity management pages in LiquidityRouter.js:

import React from "react";
import { Route, Routes } from "react-router-dom";
import ListLiquidity from "./ListLiquidity";
import AddLiquidity from "./AddLiquidity";
import RemoveLiquidity from "./RemoveLiquidity";
import { Grid } from "@mui/material";

const LiquidityRouter = () => {
 return <Grid container
 justifyContent="center" width="90vw">
 <Grid item>
 <Routes>
 <Route path="/" element={<ListLiquidity />} />
 <Route path="/add" element={<AddLiquidity />} />
 <Route path="/remove" element={<RemoveLiquidity />} />
 </Routes>

Implementing a Liquidity Management Frontend with Web3164

 </Grid>
 </Grid>;
}

export default LiquidityRouter;

In the source code of LiquidityRouter.js, we have defined three sub-routes under /liquidity.
The default route, /, will direct to the liquidity listing page, ListLiquidity.js. The /add route
will direct to the liquidity provisioning page, AddLiquidity.js, which allows users to create a
new liquidity pool or add tokens to an existing liquidity pool. The /remove route will direct to the
liquidity removal page, RemoveLiquidity.js, so users can partially or completely remove the
liquidity they own.

Note
The /add and /remove routes also support the pair search parameter. We will use
useSearchParams from the react-router-dom package to support search parameters
in the URL.

We want to show the text LIQUIDITY on the menu bar at the top or from the drawer for mobile
devices. Open the src/frontend/components/Layout/index.js file and add a new
object with title and link fields for the liquidity management feature in the navItems array:

const navItems = [{
 title: 'Token Operations',
 link: '/'
}, {
 title: 'Liquidity',
 link: '/liquidity'
}];

To run the web application, we will use the npm start command. You will see a Liquidity menu
item shown on the page. When you click the Liquidity menu item, the page will be directed to
http://localhost:3000/liquidity, which shows empty content, as shown in Figure 6.1:

Retrieving liquidity information 165

Figure 6.1 – The desktop view (left) and the mobile view (right) of an empty liquidity page

Good! We have successfully set up the routes for liquidity management pages. In the next section,
we will implement ListLiquidity.js to show liquidity pools owned by the connected account.

Retrieving liquidity information
In this section, we will implement the page for listing liquidity. It involves accessing multiple smart
contracts to retrieve liquidity-related information. The liquidity information is tied to a wallet account
so we require the user to connect their account to view the information.

By completing the liquidity listing page, you will see a page like Figure 6.2:

Implementing a Liquidity Management Frontend with Web3166

Figure 6.2 – The implemented page listing liquidity

From the UI in Figure 6.2, a user can view the list of LP tokens and their balances in the accordion
components. The amount of tokens for each token pair will be shown once the user clicks the down-
arrow button on the right side of each accordion component. The amount of tokens represents how
many tokens users can get if they remove the current liquidity. Please note that the amounts could
change from time to time if someone else is using this liquidity pool for swapping.

After each of the accordion components is expanded, the page allows the user to add more liquidity
for this token pair or remove a part or all of the liquidity the user owns. If a token pair is not shown
in the list, it means the user doesn’t own any LP tokens of this pair. The user can click the ADD
LIQUIDITY button at the bottom to add liquidity by selecting a pair of tokens.

The page listing liquidity information requires connecting to a wallet before listing the balances of
LP tokens for the wallet. Let’s start building the page by checking whether the wallet is connected.

Checking whether the wallet is connected

If the wallet is not connected, we should show a message for the user to connect it, like the page
shown in Figure 6.3:

Figure 6.3 – The liquidity listing page when no wallet is connected

Retrieving liquidity information 167

Based on the wallet connection knowledge we learned in Chapter 3, Interacting with Smart Contracts
and DeFi Wallet in the Frontend, let’s write some code in ListLiquidity.js for whether or not
an account is active:

import { useWeb3React } from "@web3-react/core";
import { Grid, Typography } from '@mui/material';

const ListLiquidity = () => {
 const { active, account, library } = useWeb3React();
 return <>
 <Grid container direction="column">
 {active ? <>{// To be implemented later}</> :
 <Typography>Please connect to a wallet to view your liquidity.</
Typography>
 </Grid>
 </>;
}
export default ListLiquidity;

The preceding code implements the message shown in Figure 6.3 when the wallet is not connected.
Like what we did in Chapter 3, Interacting with Smart Contracts and DeFi Wallet in the Frontend, we
will use the useWebReact function from @web3-react/core to retrieve the wallet connection.
Once the wallet is connected, we can load the liquidity information of the connected account.

Getting LP tokens owned by a connected account

As Figure 6.2 shows, the liquidity information consists of a list of LP tokens owned by the connected
account. Remember that we have defined an array of available LP token addresses in the PairFactory
smart contract, so we can access the length of the LP token addresses by calling allPairsLength()
in the contract and iterate through the allPairs array to get the LP token addresses. Then we can
get detailed information including the paired tokens for each of the LP tokens.

To implement the getLiquidity function in src/frontend/features/Liquidity/
ListLiquidity.js, use the React liquidity state variable. This variable stores the LP token
information of the connected account:

const [liquidity, setLiquidity] = useState([]);
const [loading, setLoading] = useState(false);
...
const getLiquidity = useCallback(async () => {
 if (!active) return;
 setLoading(true);
 let tmpLiq = [];
 try {

Implementing a Liquidity Management Frontend with Web3168

 let factory = new ethers.Contract(
 FactoryAddress.address, FactoryABI.abi,
 library.getSigner());
 // Fetch how many pairs are there in the DEX
 const nPairs = await factory.allPairsLength();

 // Iterate through all pairs to get the pair addresses
 // and the pooled tokens
 for (let i = 0; i < nPairs; i++) {
 let pairAddress = await factory.allPairs(i);
 let tokenPair = new ethers.Contract(pairAddress,
 TokenPairABI, library.getSigner());
 let tmpBalance = await tokenPair.balanceOf(account);
 // The decimals of LP Tokens are all 18 for the DEX
 let balance = tmpBalance / 10 ** 18;
 if (balance > 0) {
 let tokenA = await getTokenInfo(
 await tokenPair.tokenA());
 let tokenB = await getTokenInfo(
 await tokenPair.tokenB());
 tmpLiq.push(
 {pairAddress, balance, tokenA, tokenB });
 }
 }
 setLiquidity(tmpLiq);
 } catch (error) {
 toast.error("Cannot get liquidity for current user!");
 }
 setLoading(false);
}, [account, active, library]);

The preceding code section retrieves all the addresses of the LP tokens of the DEX and checks
whether the connected account has a balance for each of the LP tokens. If the balance is greater than
0, it means the account has liquidity for the token pair, so it calls tokenPair.tokenA() and
tokenPair.tokenB() to get the token addresses for both tokens of the token pair. Then it calls
getTokenInfo() to retrieve the name, symbol, and decimals of the token. Here is the implementation
of the getTokenInfo function located in src/frontend/utils/Helper.js:

export const getTokenInfo = async (address) => {
 let name = "Unknown", symbol = "Unknown", decimals = 18;
 try {
 const contract = new ethers.Contract(
 address, ERC20ABI, localProvider);
 name = await contract.name();

Retrieving liquidity information 169

 symbol = await contract.symbol();
 decimals = await contract.decimals();
 } catch (error) {
 console.error(error);
 }
 return { address, name, symbol, decimals };
}

We will not go through all the code in Helper.js. Please refer to https://github.com/
PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-
end/defi-apps/src/frontend/utils/Helper.js for the full source of Helper.js.

After retrieving the token information, the getLiquidity function will save the token information
in tmpLiq, which is an array of an object that contains the following fields:

• pairAddress: The smart contract address of the LP token

• balance: The balance of the LP token for the connected account

• tokenA: The smart contract address, name, symbol, and decimals of the first token of the pair

• tokenB: The smart contract address, name, symbol, and decimals of the second token of the pair

After retrieving all the LP token information in the object array, the code calls setLiqudity to
store the information in the state.

We have referred to several Application Binary Interfaces (ABIs) of smart contracts in the preceding
code sections. The first one is the ABI of PairFactory. The ABI file was generated when we executed
npm run deploy localhost. It generated the ABI and deployed the contract address at src/
frontend/contracts, so we can import these files at the beginning of ListLiquidity.js:

import FactoryABI from '../../contracts/PairFactory.json';
import FactoryAddress from '../../contracts/PairFactory-address.json';

For ListLiquidity.js, let’s add the other dependency for implementing the
getLiquidity function:

import { useState, useEffect, useCallback } from 'react';
import { ethers } from 'ethers';
import { toast } from 'react-toastify';
import { getTokenInfo } from '../../utils/Helper';

We also use the ABI of the TokenPair smart contract to retrieve the information for the pair of
tokens. Because the ABI file is not generated during the deployment, you can get the ABI from the
src/backend/artifacts/src/backend/contracts artifact folder and copy the abi array
into a new file so it can be accessed via the frontend. In this chapter, we have created a file located at
src/frontend/utils/TokenPairABI.js for the ABI. For your convenience, you can get

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/utils/Helper.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/utils/Helper.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/utils/Helper.js

Implementing a Liquidity Management Frontend with Web3170

the content of this file from https://github.com/PacktPublishing/Building-Full-
stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/
utils/TokenPairABI.js and save this file as src/frontend/utils/TokenPairABI.
js in your project. Then we can import the file in ListLiquidity.js:

import { TokenPairABI } from '../../utils/TokenPairABI';

Similarly, we need a generic ABI file for all ERC20 tokens that implements the ERC20 interface so
we can access the information and perform general operations without accessing the ABI of specific
tokens. By using the generic ERC20 token ABI, we can access token information such as token name
and decimal or perform generic operations such as getting the balance or transferring tokens.

In order to access the ABI of the ERC20 token in frontend code, we can create a file located at src/
frontend/utils/ERC20ABI.js. You can refer to the file at https://github.com/
PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-
end/defi-apps/src/frontend/utils/ERC20ABI.js for the source.

After creating this file, let’s import this ABI file in src/frontend/utils/Helper.js so that
the getTokenInfo function can use the ABI to retrieve the information on ERC20 tokens:

import { ERC20ABI } from './ERC20ABI';

In the implementation of the getLiquidity function, we also set the loading state variable
to true before performing the smart contract interaction and set loading back to false once
we have done all the interactions. This is a good practice for building web applications using React
because it can help prevent unpredictable operations during the interaction. We can use a loading
icon to show that the page is working on something and the user needs to wait for a few seconds.
In ListLiquidity.js, we can use the CircularProgress component from MUI for the
loading icon:

import { ..., CircularProgress} from '@mui/material';
const ListLiquidity = () => {
 ...
 return <>
 <Grid container direction="column">
 {active? (loading ? <CircularProgress /> : <>
 {/* If connected wallet has LP tokens,
 show the accordion component(s) for the list
 of LP tokens*/}
 </>) :
 <Typography>Please connect to a wallet to view your liquidity.</
Typography>}
 </Grid>
 </>;
}

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/utils/TokenPairABI.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/utils/TokenPairABI.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/utils/TokenPairABI.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/utils/ERC20ABI.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/utils/ERC20ABI.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/utils/ERC20ABI.js

Retrieving liquidity information 171

Now let’s implement the code for an accordion component(s) for showing the list of LP tokens owned
by the connected wallet (by replacing the commented code in curly braces in the preceding code
section with the following code):

{liquidity.length > 0 ? liquidity.map((item, index) =>
 <Accordion key={`liq-list-${index}`}
 expanded={expanded === item.pairAddress}
 onChange={handleClick(item)}
 sx={{ border: 2, my: 1 }}>
 <AccordionSummary expandIcon={<ExpandMoreIcon />}
 aria-controls="panel1a-content">
 <Grid container direction="column">
 <Grid item>
 {item.tokenA.symbol}/{item.tokenB.symbol}
 </Grid>
 <Grid container justifyContent="space-between"
 alignItems="center" spacing={5}>
 <Grid item>Liquidity Pool Token Balance</Grid>
 <Grid item>{item.balance.toFixed(2)}</Grid>
 </Grid>
 </Grid>
 </AccordionSummary>
 </Accordion>
) : <Typography>No Liquidity Found</Typography>}

The preceding code section uses the expanded state variable to represent which accordion component
is expanded. For simplicity, we require that only one accordion component is expanded at any time.
We can use the contract address of the LP token as the value of expanded. If the value equals the
LP token address, the corresponding accordion component is expanded. To use the expanded state
variable, we define it like this in ListLiquidity.js:

 const [expanded, setExpanded] = useState(false);

In the next line, we use the handleClick function as the onChange event handler of each accordion
component. The preceding code section only has the code for showing the summary information of
each LP token in the AccordionSummary component. When clicking each accordion component,
handleClick will be called and it will load more information about the LP token that is owned by the
connected account. We will discuss how to get detailed information on LP tokens in the next section.

There are other UI component dependencies that need to be imported for the preceding code. Please refer
to the completed code of ListLiquidity.js at https://github.com/PacktPublishing/
Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/
src/frontend/features/Liquidity/ListLiquidity.js for reference.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/features/Liquidity/ListLiquidity.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/features/Liquidity/ListLiquidity.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/features/Liquidity/ListLiquidity.js

Implementing a Liquidity Management Frontend with Web3172

Next, we will discuss how to calculate the pool token amount and liquidity share percentage and
implement the code for showing this information on the UI.

Getting the pooled token amount and liquidity share percentage

In Figure 6.2, the user can view the pooled tokens and the share percentage of each liquidity pool. As
we discussed in the last section, this information is retrieved and calculated in the handleClick
function by clicking the accordion component. Once the code gets the information, the amounts of pool
tokens and liquidity pool share percentage will be shown in the AccordionDetails component
after expanding the accordion component.

Before writing the code to get the preceding information, we need to explain how to calculate the
share of each liquidity pool and the amount of pool tokens. The share percentage of the liquidity pool
is pretty straightforward once we get the total supply of the LP tokens. So, we can use the following
formula to calculate the share percentage held by the current account:

 SharePercentage = 100 * CurrentLPTokenBalance _________________ TotalSupply

For the amounts of the pooled tokens, there is no direct way to get the information. However, we can
get the reserves of the tokens held by the TokenPair smart contract, then we can use the share ratio
to calculate the amount of tokens pooled by holding the amount of LP tokens. Here is the formula to
calculate the pooled token amount:

 PooledAmount token =
 Reserve token * Amount LPToken __________________ TotalSupply LPToken

Based on this formula, we can get a pool token amount, PooledAmount token , if we know the amount of
tokens in the reserve, Reserve token , the specified LP token amount, Amount LPToken , and the total supply
of LP tokens, TotalSupply LPToken .

Based on the preceding discussion, we can implement the handleClick function for retrieving
relevant information and calculating the pooled token amount and liquidity share percentage. After the
calculation, we will store the results in the sharePercent, pooledTokenA, and pooledTokenB
state variables respectively. Here is the implementation of the React states and the handleClick
function (in the source file src/frontend/features/Liquidity/ListLiquidity.js):

const [sharePercent, setSharePercent] = useState(0);
const [pooledTokenA, setPooledTokenA] = useState(0);
const [pooledTokenB, setPooledTokenB] = useState(0);
...
const handleClick = pair => async (event, isExpanded) => {
 setExpanded(isExpanded ? pair.pairAddress : false);
 let lpToken = new ethers.Contract(pair.pairAddress,
 TokenPairABI, localProvider);
 let totalSupply = await lpToken.totalSupply();
 let shareRatio = pair.balance /

Retrieving liquidity information 173

 Number(ethers.utils.formatUnits(totalSupply, 18));
 setSharePercent(100 * shareRatio);

 let [_reserveA, _reserveB,] = await
 lpToken.getReserves();
 setPooledTokenA(Number(ethers.utils.formatUnits(
 _reserveA, pair.tokenA.decimals)) * shareRatio);
 setPooledTokenB(Number(ethers.utils.formatUnits(
 _reserveB, pair.tokenB.decimals)) * shareRatio);
};

The preceding code sections created an instance of a TokenPair smart contract, which is used for
getting the total supply of LP tokens and the reserves of the paired tokens. Once we have retrieved the
preceding information, the code calls setSharePercent to set the sharePercent state variable
and uses setPooledTokenA and setPooledTokenB for setting the pooled token amounts.

When implementing the handleClick function, we introduced the ethers.utils.formatUnits
function to convert the BigNumber value, which represents the amount in the wei unit into the ether
unit. For example, 1 ether of LP tokens is represented by 1,000,000,000,000,000,000 wei because its
number of decimals is 18. So, we have to call the formatUnits function to move the decimal to
the left side by 18 positions using ethers.utils.formatUnits(totalSupply, 18). Pay
attention that the type of the return value of the formatUnits function is a string so we have to
convert it back to a number before performing the calculation.

Note
The second parameter of the ethers.utils.formatUnits function is the number of
decimals for the formation, and it is optional. The default value is 18 if the second parameter
is not given.

If you want to convert ether back to wei, you can use the ethers.utils.parseUint
function. You will see the code for using this function in this book.

After we have set the sharePercent, pooledTokenA, and pooledTokenB state variables,
let’s add the AccordionDetail component in the body of the accordion component with these
state variables:

<AccordionDetails>
 <Grid container justifyContent="space-between"
 alignItems="center">
 <Grid item>
 <Typography>Pooled {item.tokenA.symbol}</Typography>
 </Grid>
 <Grid item>

Implementing a Liquidity Management Frontend with Web3174

 <Typography>{pooledTokenA.toFixed(2)}</Typography>
 </Grid>
 </Grid>
 <Grid container justifyContent="space-between"
 alignItems="center">
 <Grid item>
 <Typography>Pooled {item.tokenB.symbol}</Typography>
 </Grid>
 <Grid item>
 <Typography>{pooledTokenB.toFixed(2)}</Typography>
 </Grid>
 </Grid>
 <Grid container justifyContent="space-between"
 sx={{ mt: 2 }} alignItems="center">
 <Typography>Share of pool</Typography>
 <Typography>{`${sharePercent.toFixed(2)} %`}</Typography>
 </Grid>
 <Grid container justifyContent="center" spacing={2}>
 <Grid item xs={6}>
 <Button sx={theme.component.primaryButton}
 fullWidth onClick={
 () => navigate(`remove?pair=${item.pairAddress}`)
 }>Remove</Button>
 </Grid>
 <Grid item xs={6}>
 <Button sx={theme.component.primaryButton}
 fullWidth onClick={
 () => navigate(`add?pair=${item.pairAddress}`)
 }>Add</Button>
 </Grid>
 </Grid>
</AccordionDetails>

We implemented four grid containers inside the AccordionDetails body. The first and second
grid containers show the pooled tokens within the liquidity pool. The third container shows the LP
token share percentage. We use the toFixed(2) function to keep the last two decimals of these
values shown on the page.

The last grid container includes two buttons. The first one (on the left side) allows the user to navigate
to the remove?pair=${item.pairAddress} path, which shows the liquidity removal page.
The second button (on the right side) will navigate to add?pair=${item.pairAddress}, which
opens a page for liquidity provisioning. The token pair address is specified by the pair URL parameter.

Retrieving liquidity information 175

The navigate function will direct the page to the URL by appending the parameter to the existing
path. The function is returned by calling the useNavigate() function in the react-router-
dom package:

import { useNavigate } from "react-router-dom";
...
const navigate = useNavigate();

Next, we will finish up the liquidity listing page by adding a button to add liquidity.

Finishing up the liquidity listing page

The last item to add to the liquidity listing page is allowing the user to add the liquidity of any pair
if the pair is not listed on the liquidity listing page. The ADD LIQUIDITY button showing at the
bottom serves this purpose. Now let’s add the following code in the ListLiquidity component:

return <>
 ...
 <Divider sx={theme.component.divider} />
 {active && <Grid container spacing={2}>
 <Grid item xs={12}>
 <Button sx={theme.component.primaryButton} fullWidth
 onClick={() => navigate("add")}>
 Add Liquidity</Button>
 </Grid>
 </Grid>}
</>;

The preceding code first defines a divider component to separate the bottom button from the
components we previously implemented. Secondly, the code wraps the button in a grid component.
By clicking the button, the onClick event handler will call navigate("add") to navigate to the
liquidity provisioning page without a URL parameter. It means a user can select any pair of tokens
for liquidity provisioning.

Now, we have completed the liquidity listing page, ListLiquidity.js. For the full source of this
file, please refer to https://github.com/PacktPublishing/Building-Full-stack-
DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/features/
Liquidity/ListLiquidity.js.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/features/Liquidity/ListLiquidity.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/features/Liquidity/ListLiquidity.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/features/Liquidity/ListLiquidity.js

Implementing a Liquidity Management Frontend with Web3176

Note
You can run npm start to verify the liquidity listing page at this time. Before verifying the
page, you can follow the instructions in the Verification for DEX smart contracts section, to
create a liquidity pool with a pair of tokens and call addLiquidity of the AMMRouter
smart contract.

Sometimes you may hit a Nonce too high issue in the browser’s console. This is an error
prompted by MetaMask after the EVM is restarted. What you need to do is to reset the account’s
nonce and erase activity data. To do that, you can click the icon in the top-right corner of the
MetaMask plugin, go to Settings, click Advanced, click the Clear activity tab data button,
and confirm the operation in the pop-up dialog.

Now, we have implemented and explained the code of the liquidity listing page. In the next section,
we will build the AddLiquidity.js page for creating and adding liquidities of the DEX.

Implementing the liquidity provisioning page
In this section, we will implement the liquidity provisioning page, AddLiquidity.js. Before
diving into the code, let’s demonstrate how the page works using several snapshots.

Overview of the liquidity provisioning page

Figure 6.4 shows the page view of accessing the /liquidity/add URL without specifying any
search parameters. This page allows the user to select a token from a list of supported tokens by clicking
the drop-down arrow on the right side of the Input box.

Figure 6.4 – A snapshot of the liquidity provisioning page without specifying URL parameters

Implementing the liquidity provisioning page 177

Once the down-arrow button is clicked, a dialog will show up that allows the user to select one of the
tokens in the list as shown in Figure 6.5.

Figure 6.5 – Snapshot of the token selection dialog for liquidity provisioning

After a pair of tokens is selected, the liquidity provisioning page will show the balance of the tokens
for the connected wallet. If there is already a liquidity pool for the pair of tokens selected, there is
a section on this page to show the price of each token compared to another token in the pool, and
the share of the pool with the input amounts. It also requires the input amounts of the two tokens to
respect the ratio of the reserves of the liquidity pool. This means an input amount will be changed at
the same time when you change another input number to reflect the ratio of the token reserves. The
snapshot for this case is shown in Figure 6.6.

Implementing a Liquidity Management Frontend with Web3178

Figure 6.6 – Snapshot of the liquidity provisioning page when the liquidity pool already exists

The snapshot in Figure 6.6 also applies to the case when specifying the token pair address in its URL
parameter. In this case, the token symbols are automatically filled in the input boxes. Meanwhile,
prices and shares are calculated automatically.

There is a case when a user tries to select the same token for both tokens of a pair, which is not allowed.
The page should present an error message, as in Figure 6.7, in this case.

Figure 6.7 – Snapshot of the error message when selecting the same token for a token pair

Implementing the liquidity provisioning page 179

When implementing the liquidity provisioning page, AddLiquidity.js, we need to take care of
other input validations as well, such as balance and allowance checks. We will address these validations
when we implement the code.

Next, we will walk through the frontend workflow of liquidity provisioning.

Frontend workflow of liquidity provisioning

Before implementing the code of the liquidity provisioning page, we need to understand the frontend
workflow of liquidity provisioning, so that the UI code will cover all the workflows that occur during
liquidity provisioning, by reviewing the steps we performed in the Hardhat console in the Verification
for DEX smart contracts section of Chapter 5, Building Crypto-Trading Smart Contracts. The liquidity
provisioning operation requires the following steps:

1. Select a pair of tokens for liquidity provisioning. These tokens can be selected from the token
selection dialog (which will be implemented later). Or, retrieve the pair of tokens from the
token pair address in the URL parameter.

2. The user provides the amounts of the two tokens to be provisioned. If this is the first time
providing liquidity for this pair, the smart contracts will use the two given amounts. If the
liquidity for this pair already existed, we will need to follow the ratio of the tokens in the reserves.

3. Next, the UI code needs to check whether the connected account allows the AMM router to
transfer the tokens from the accounts to another address because the AMM router will transfer
the account’s tokens to the TokenPair smart contract instance.

4. The last thing to check is whether the connected account has sufficient balances for the input
amounts of tokens. If the account has a sufficient balance, the UI code will proceed to call the
addLiquidity function of the AMMRouter smart contract with the given amounts.

Based on the preceding discussion, Figure 6.8 shows the frontend workflow of liquidity provisioning.

Implementing a Liquidity Management Frontend with Web3180

Figure 6.8 – The frontend workflow of liquidity provisioning

Implementing the liquidity provisioning page 181

Now we will start implementing the code for the liquidity provisioning page, AddLiquidity.js.

Loading the token pair information from the search parameter

In the Implementing URL routes for liquidity management section, we mentioned that the user can
specify the pair address in the URL with the pair search parameter. The AddLiquidity.js page
will read the TokenPair smart contract instance address from the parameter and load the token
information for the liquidity pool. In order to load the search parameter in the React page, let’s import
useSearchParams from react-router-dom:

import { useSearchParams } from 'react-router-dom';

Then, define the searchParam object by calling the useSearchParams function in the
AddLiquidity function component:

const [searchParam,] = useSearchParams();

Next, let’s add the code to load the pair search parameter from the URL in the useEffect function
of the React component. The code will get the pair address when mounting the components:

useEffect(() => {
 const pairAddress = searchParam.get('pair');
 if (active && pairAddress) {
 setTokenInfo(pairAddress);
 }
}, [...]);

The searchParam.get('pair') function returns the value of the pair URL parameter, which
is the address of the LP token (the TokenPair contract instance). If the address is not null or empty,
it will call the setTokenInfo function, which will store the address of the LP token in the states.

The active variable here is assigned by calling useWeb3React(), which we discussed in
Chapter 3, Interacting with Smart Contracts and DeFi Wallets in the Frontend. You can also refer to
the completed code of AddLiquidity.js at https://github.com/PacktPublishing/
Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/
src/frontend/features/Liquidity/AddLiquidity.js for more information.

Now, let’s implement the setTokenInfo function in the AddLiquidity component:

const setTokenInfo = useCallback(async (pairAddress) => {
 if (tokensSelected) {
 return;
 }
 try {
 const tokenPair = new ethers.Contract(pairAddress,

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/features/Liquidity/AddLiquidity.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/features/Liquidity/AddLiquidity.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/features/Liquidity/AddLiquidity.js

Implementing a Liquidity Management Frontend with Web3182

 TokenPairABI, library.getSigner());
 const _tokenA = await getTokenInfo(
 await tokenPair.tokenA());
 const _tokenB = await getTokenInfo(
 await tokenPair.tokenB());
 setTokenA(_tokenA);
 setTokenB(_tokenB);
 setTokenSelected(true);
 } catch (error) {
 toast.error(getErrorMessage(error,
 "Cannot fetch token information for the pair!"),
 { toastId: 'PAIR_0' })
 }
}, [library, tokensSelected]);

Similar to the getLiquidity function in ListLiquidity.js, we use the ABI of the TokenPair
smart contract to access the token addresses of the pair tokens and call the getTokenInfo function
from Helper.js to get the name, symbol, and decimals of the paired tokens. Once we get the token
information, the code stores this information in the state.

We also defined the tokensSelected state variable to prevent the page from continually loading
the token information. This state variable is set by the setTokenSelected function, so we can
just return to the beginning of the setTokenInfo function if the tokens are already selected.

Selecting tokens and providing token amounts

Now that we have got the token information for the token pair, let’s use the two grid containers for
the user to view the selected (or pre-loaded) token and provide the token amounts:

<Grid container spacing="8">
 <Grid item>
 <Typography sx={theme.component.hintText}>
 Input</Typography>
 <Button sx={theme.component.selectButton}
 endIcon={<KeyboardArrowDownIcon />}
 onClick={() => {
 setOpenModal(true); setTokenIndex(0);}}>
 {Object.keys(tokenA).length === 0 ?
 "Select a token" : tokenA.symbol}
 </Button>
 </Grid>
 <Grid item>
 <TextField id="tokenA" label="The amount to supply"
 value={amountA} sx={{ minWidth: 320 }}

Implementing the liquidity provisioning page 183

 onChange={handleChange} />
 <Typography sx={theme.component.hintText}>
 Balance: {balanceA}</Typography>
 </Grid>
</Grid>
<Divider sx={theme.component.divider} >+</Divider>
<Grid container spacing="8">
 <Grid item>
 <Typography sx={theme.component.hintText}>
 Input</Typography>
 <Button sx={theme.component.selectButton}
 endIcon={<KeyboardArrowDownIcon />}
 onClick={() => {
 setOpenModal(true); setTokenIndex(1); }}>
 {Object.keys(tokenB).length === 0 ?
 "Select a token" : tokenB.symbol}
 </Button>
 </Grid>
 <Grid item>
 <TextField id="tokenB" label="The amount to supply"
 value={amountB} sx={{ minWidth: 320 }}
 onChange={handleChange} />
 <Typography sx={theme.component.hintText}>
 Balance: {balanceB}</Typography>
 </Grid>
</Grid>

The preceding code section defines two grid container components. One is for the first token for the
pair and the other one is for the second token. Here, we use a modal dialog box for a user to select
tokens if the tokens selected or loaded are not as desired. So, we call setOpenModal to set the open
state of the modal dialog and setTokenIndex to specify which token is being selected, where 0 is
the index of the first token (token A), and 1 is the index of the second token (token B).

Here is the code to show how we use the TokenSelectModal component in AddLiquidity.js:

<TokenSelectModal open={openModal}
 handleClose={() => setOpenModal(false)}
 selectToken={handleSelectToken}
/>

We will not go through the code of the TokenSelectModal component here. You can refer to the
source code of the component at https://github.com/PacktPublishing/Building-
Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/
components/TokenSelectModal/index.js.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/components/TokenSelectModal/index.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/components/TokenSelectModal/index.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/components/TokenSelectModal/index.js

Implementing a Liquidity Management Frontend with Web3184

The handleSelectToken function in the code is called when the users have completed selecting
a token. This function will receive a token object from its parameter and set the token’s states in
the AddLiquidity component and also set the tokenSelected state to true if both of
the tokens are selected with the setTokenSelected function. Here is the source code of the
handleSelectToken function:

const handleSelectToken = (token) => {
 if (tokenIndex === indexTokenA &&
 token.address !== tokenB.address) {
 setTokenA(token);
 setTokenSelected(Object.keys(tokenB).length > 0);
 } else if (tokenIndex === indexTokenB &&
 token.address !== tokenA.address) {
 setTokenB(token);
 setTokenSelected(Object.keys(tokenA).length > 0);
 } else {
 toast.error("Please select a different token!");
 }
}

The else section of the preceding code prompts the user to select a different token from the list if
the selected token is duplicated.

Figure 6.4 shows a textbox for the user to input a token amount for each selected token. Once the
input value is changed, it will call the handleChange function. This function will update the state
variables for the amount value of the two tokens. Meanwhile, it changes the value of the other input
textbox while the current input value is changed if the token pair already exists. It will help the input
amounts respect the ratio of the tokens in the reserve by reflecting the amount changes immediately
once the other amount is changed. Please refer to the code section at https://github.com/
PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-
end/defi-apps/src/frontend/features/Liquidity/AddLiquidity.js#L129-L158
for the implementation of the handleChange function.

Based on the preceding discussion, we need to get the token reserves once the pair address is known
to the component so that we can use the reserve ratio to guide the input token amounts. Now let’s
implement the getReserves function to serve this purpose:

const getReserves = useCallback(async () => {
 if (!tokensSelected) {
 return;
 }
 try {
 const ammRouter = new ethers.Contract(
 AMMRouterAddress.address, AMMRouterABI.abi,

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/features/Liquidity/AddLiquidity.js#L129-L158
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/features/Liquidity/AddLiquidity.js#L129-L158
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/features/Liquidity/AddLiquidity.js#L129-L158

Implementing the liquidity provisioning page 185

 library.getSigner());
 const [_reserveA, _reserveB, _pairAddress] =
 await ammRouter.getReserves(tokenA.address,
 tokenB.address);
 setPair(_pairAddress);
 setReserveA(ethers.utils.formatUnits(_reserveA,
 tokenA.decimals));
 setReserveB(ethers.utils.formatUnits(_reserveB,
 tokenB.decimals));
 } catch (error) {
 toast.info("Looks you are the first one to provide liquidity for
the pair.", { toastId: 'RESERVE_0' })
 setPair('');
 }
}, [library, tokenA, tokenB, tokensSelected]);

The preceding code section calls the getReserves function of the AMMRouter smart contract to
retrieve the pair address and the reserves of the two tokens. Please note that we have to call setPair
here for the case when the user just selects a new pair of tokens with TokenSelectModal. If the
pair is not found, it will prompt the user by saying that this is the first time providing liquidity for this
pair. The user can give arbitrary amounts for the two tokens when providing liquidity.

As is shown in Figure 6.6, the last thing to show in the token amount input UI is the balances of selected
tokens. We also need the balances of the two tokens to verify whether any of the input amounts exceed
the token balance of the connected account. To get the balances of both tokens showing in the snapshot,
we need to implement the getBalances function within the AddLiquidity component:

const getBalances = useCallback(async () => {
 if (!tokensSelected) {
 return;
 }
 try {
 const _tokenA = new ethers.Contract(tokenA.address, ERC20ABI,
library.getSigner());
 const _balanceA = await _tokenA.balanceOf(account);
 setBalanceA(Number(ethers.utils.formatUnits(
 _balanceA, tokenA.decimals)));
 const _tokenB = new ethers.Contract(tokenB.address,
 ERC20ABI, library.getSigner());
 const _balanceB = await _tokenB.balanceOf(account);
 setBalanceB(Number(ethers.utils.formatUnits(
 _balanceB, tokenB.decimals)));
 } catch (error) {

Implementing a Liquidity Management Frontend with Web3186

 toast.error(getErrorMessage(error, "Cannot get token balances!"),
{ toastId: 'BALANCE_0' });
 }
}, [account, library, tokenA, tokenB, tokensSelected]);

The preceding code shows that the token balances are stored in the balanceA and balanceB
state variables respectively. When the tokens are selected or the liquidity provisioning operation is
completed, the getBalances function will be called. Once the page has the balances, it can verify
whether the input amounts are sufficient in the handleChange function by comparing them with
the user input amounts:

setAvailableBalance(
 tmpVal <= balanceA && _amountB <= balanceB);
...
setAvailableBalance(
 _amountA <= balanceA && tmpVal <= balanceB);

The snapshot in Figure 6.6 shows a section with the title Prices and Shares in the liquidity provisioning
UI. This information is calculated based on the state variables for token reserves and input amounts we
have already mentioned. You can check the full source code of AddLiquidity.js at https://
github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/
chapter06-end/defi-apps/src/frontend/features/Liquidity/AddLiquidity.
js for reference.

Next, let’s discuss the code for checking the allowance and increasing the allowance for
liquidity provisioning.

Checking the allowance and increasing the allowance

Checking the allowance is a routine verification to make sure a smart contract can transfer a number
of tokens out of your wallet. The owner of the wallet should allow the smart contract to spend your
tokens (transfer your tokens to some other addresses) if the user wants the smart contract to proceed
with the operation. This means the allowance for the spending amount by the smart contract increases.
The workflow shown in Figure 6.8 requires the user to allow the AMM router to transfer tokens to the
TokenPair smart contract before liquidity provisioning.

Once the tokens are selected in the AddLiquidity component, we should check the allowance
for token transferring.

First, let’s implement the checkAllowances function with the following code:

const checkAllowances = useCallback(async () => {
 if (!tokensSelected) {
 return;
 }

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/features/Liquidity/AddLiquidity.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/features/Liquidity/AddLiquidity.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/features/Liquidity/AddLiquidity.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/features/Liquidity/AddLiquidity.js

Implementing the liquidity provisioning page 187

 try {
 const _tokenA = new ethers.Contract(
 tokenA.address, ERC20ABI, library.getSigner());
 let _allowA = await _tokenA.allowance(account,
 AMMRouterAddress.address);
 _allowA = Number(ethers.utils.formatUnits(_allowA,
 tokenA.decimals));
 setAllowAmountA(_allowA);
 setAllowA(_allowA >= amountA);
 const _tokenB = new ethers.Contract(tokenB.address,
 ERC20ABI, library.getSigner());
 let _allowB = await _tokenB.allowance(account,
 AMMRouterAddress.address);
 _allowB = Number(ethers.utils.formatUnits(_allowB,
 tokenB.decimals));
 setAllowAmountB(_allowB);
 setAllowB(_allowB >= amountB);
 } catch (error) {
 toast.error(getErrorMessage(error, "Cannot check allowances!"));
 }
}, [account, library, tokenA, tokenB, amountA, amountB,
tokensSelected]);

In the preceding code section, we created smart contract instances for token A and token B with
ERC20ABI, and called the allowance function in the ERC20 interface to get the existing allowance.
Next, let’s refactor the useEffect function of the AddLiquidity component by adding the
checkAllowances() function we just implemented:

useEffect(() => {
 const pairAddress = searchParam.get('pair');
 if (active && pairAddress) {
 setTokenInfo(pairAddress);
 getReserves();
 getBalances();
 checkAllowances();
 } else if (tokensSelected) {
 getReserves();
 getBalances();
 checkAllowances();
 }
}, [active, searchParam, tokensSelected, checkAllowances, getBalances,
getReserves, setTokenInfo]);

Implementing a Liquidity Management Frontend with Web3188

There are two if statement blocks in the useEffect function. The first one, if (active &&
pairAddress) {...}, is executed when the pair address is provided in the URL parameter. The
second one, else if (tokensSelected) {...}, is executed once the user selects the two
tokens from TokenSelectModal.

Now we can add the buttons for increasing allowances of the paired tokens if the allowance for the
AMM router transferring is insufficient:

{tokensSelected &&
 <Grid container sx={{ mt: 2 }} spacing={1}>
 {!allowA && <Grid item xs={12}>
 <Button sx={theme.component.primaryButton} fullwidth
 onClick={() => handleApprove(indexTokenA)}>
 Enable {tokenA.symbol}</Button>
 </Grid>}
 {!allowB && <Grid item xs={12}>
 <Button sx={theme.component.primaryButton} fullwidth
 onClick={() => handleApprove(indexTokenB)}>
 Enable {tokenB.symbol}</Button>
 </Grid>}
 </Grid>
}

The Boolean state values allowA and allowB are set in the handleChange function whenever
the input amounts of both tokens are changed. If either of the allowances is insufficient, either or
both allowA and allowB will be false and the button showing ENABLE <TokenSymbol> will
appear as in Figure 6.9.

Figure 6.9 – The snapshot of buttons for enabling a pair of tokens

Once the user clicks either of the preceding buttons, the handleApprove function will be called.
Here is the implementation of handleApprove:

const handleApprove = async (index) => {
 setLoading(true);
 const [token, amount] = index === indexTokenA ?
 [tokenA, amountA] : [tokenB, amountB];
 try {
 const tokenContract = new ethers.Contract(

Implementing the liquidity provisioning page 189

 token.address, ERC20ABI, library.getSigner());
 const allowAmount = ethers.utils.parseUnits(
 toString(amount), token.decimals);
 const tx = await tokenContract.approve(
 AMMRouterAddress.address, allowAmount);
 await tx.wait();
 toast.info(`${token.symbol} is enabled!`);
 if (index === indexTokenA) {
 setAllowA(true);
 } else {
 setAllowB(true);
 }
 } catch (error) {
 toast.error(getErrorMessage(error, `Cannot enable ${token.symbol}
!`));
 }
 setLoading(false);
}

You should be familiar with the preceding code if you have gone through the Hardhat console verification
of smart contracts in Chapter 5, Building Crypto-Trading Smart Contracts. It first creates an ERC20
token instance and calls the approve function to increase the allowance for transferring this token.

Next, we will implement the code to interact with smart contracts for adding liquidity.

Interacting with smart contracts for adding liquidity

The last part of the liquidity provisioning workflow is interacting with the smart contract for adding
liquidity. It is achieved by calling the addLiquidity function of the AMMRouter smart contract.

We will first add the button for users to click when they want to add liquidity:

<Grid item xs={12}>
 <Button sx={theme.component.primaryButton} fullwidth
 disabled={!allowA || !allowB || !availableBalance ||
 amountA <= 0 || amountB <= 0}
 onClick={handleAddLiquidity}>
 {availableBalance ? (loading ?
 <CircularProgress sx={{ color: 'white' }} /> :
 "Supply") : "Insufficent Balance"}
 </Button>
</Grid>

Implementing a Liquidity Management Frontend with Web3190

The preceding code snippet implements a button showing Supply for a user to supply liquidity for
the liquidity pool. By clicking the button, it will call the handleAddLiquidity function in the
AddLiquidity component. Here, we have added several criteria for disabling the button in the
following situations:

• The allowance for token A or token B is insufficient

• The input amount is greater than the balance

• The input amount is a negative number

The button will also show the CircularProgress component when there are pending transactions
running in the backend.

Here is the JavaScript code of handleAddLiquidity, which calls the addLiquidity function
in the AMMRouter smart contract:

const handleAddLiquidity = async () => {
 setLoading(true);
 try {
 const ammRouter = new ethers.Contract(
 AMMRouterAddress.address, AMMRouterABI.abi,
 library.getSigner());
 const tx = await ammRouter.addLiquidity(
 tokenA.address, tokenB.address,
 ethers.utils.parseUnits(toString(amountA),
 tokenA.decimals),
 ethers.utils.parseUnits(toString(amountB),
 tokenB.decimals), 0, 0, account,
 parseInt(new Date().getTime() / 1000) + 10);
 await tx.wait();
 toast.info(`Liquidity provisioning succeeded! Transaction Hash:
${tx.hash}`);
 setAmountA(0);
 setAmountB(0);
 await getBalances();
 await getReserves();
 } catch (error) {
 toast.error(getErrorMessage(error, "Cannot add liquidity!"));
 }
 setLoading(false);
}

After the successful execution of the liquidity provisioning transaction, we need to reset the input
amounts back to 0 and update the token balances and reserves of the liquidity pool.

Implementing the liquidity removal page 191

Now, we have gone through the source code implementation of the liquidity provisioning page.

In the next section, we will briefly go through the code of the liquidity removal page.

Implementing the liquidity removal page
In this section, we will go through the implementation of the liquidity removal page, RemoveLiquidity.
js. A snapshot of this page is shown in Figure 6.10:

Figure 6.10 – Snapshot of the liquidity removal page

With the liquidity removal page, a user can select the percentage of liquidity or the amount of LP
tokens they want to remove. By removing the liquidity, the user can receive the pooled tokens in
return, meanwhile, the LP tokens are automatically burned.

Next, let’s dive into the frontend workflow of liquidity removal.

Frontend workflow of liquidity removal

Before implementing the UI of liquidity removal, let’s go through the frontend workflow first. When
removing liquidity, the UI page should allow the user to input the amount of LP tokens they want to
remove, then the UI code should check with the LP token smart contract to see whether the AMM router
can transfer the LP token from the user to the TokenPair smart contract so that the TokenPair

Implementing a Liquidity Management Frontend with Web3192

smart contract can burn the token it owns and transfer the pool token back to the user. Next, we should
make sure the input LP token amount doesn’t exceed the balance of the current user. After the check is
done, we can proceed with the liquidity removal by calling the removeLiquidity function of the
AMMRouter smart contract. Figure 6.11 shows the workflow of liquidity removal we just described.

Figure 6.11 – The frontend workflow of liquidity removal

You may find the workflow of liquidity removal shares some similar steps to liquidity provisioning.
It requires the user to provide the amount, check the allowance, increase the allowance, and check
the balance. Unlike liquidity provisioning, which operates on a pair of tokens, liquidity removal does
these operations on LP tokens. So we can refer to the code we implemented in AddLiquidity.
js to implement the RemoveLiquidity component.

Implementing the liquidity removal page 193

Note
When demonstrating the implementation of ongoing components, we will not show all the
code of these components because these components may share similar code to what we have
discussed previously. We will stay more focused on code that is specifically for the feature being
discussed. For the completed source code of this chapter, please feel free to check https://
github.com/PacktPublishing/Building-Full-stack-DeFi-Application/
tree/chapter06-end.

Next, let’s discuss how to implement the components for users to input the LP token amount.

Inputting the LP token amount

As is shown in Figure 6.10, we have two types of React components for the user to provide the liquidity
removal amount: TextField and Slider. The TextField component allows the user to input a
number that represents the amount of LP tokens. The Slider component allows the user to specify a
percentage of LP tokens to be removed by the operation. When the value of one component changes,
the value of another component will be changed accordingly. For Slider, we cannot allow the user
to give a value that is less than 0 or greater than 100. Similarly, for TextField, we will not allow the
user to give a value that exceeds the balance of the LP token owned by the account.

Now let’s implement the code of TextField in the Grid component, along with other explanatory
information showing on the UI for liquidity removal:

<Grid container justifyContent="space-between"
 alignItems="center" columnSpacing={4}>
 <Grid item xs={6}>
 <Typography>Amount</Typography>
 <Typography sx={theme.component.hintText}>
 LP Tokens to Remove / Total
 </Typography>
 </Grid>
 <Grid item xs={6}>
 <TextField value={amount} onChange={handleChange} />
 <Typography sx={theme.component.hintText}>
 Balance: {Number(balance).toFixed(2)}</Typography>
 </Grid>
</Grid>

In the preceding code, handleChange will call the setAmount function to set the amount state
variable. The amount variable will also be reflected in the value of Slider. We also show the balance
of the LP token below TextField for the user’s reference. The balance variable is set by the
getBalance function which you can see here: https://github.com/PacktPublishing/
Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/
src/frontend/features/Liquidity/RemoveLiquidity.js#L45.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/tree/chapter06-end
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/tree/chapter06-end
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/tree/chapter06-end
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/features/Liquidity/RemoveLiquidity.js#L45
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/features/Liquidity/RemoveLiquidity.js#L45
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/features/Liquidity/RemoveLiquidity.js#L45

Implementing a Liquidity Management Frontend with Web3194

The Slider component is implemented inside a Box component, along with shortcut buttons to
specify 25%, 50%, 75%, or 100% of the LP tokens of the user’s balance:

<Box width="100%">
 <Typography>
 Removal Percentage: {amountPercent.toFixed(2)} %
 </Typography>
 <Slider value={amountPercent} onChange={
 (e, value) => setAmount(balance * value / 100)} />
 <Grid container justifyContent="space-between"
 alignItems="center">
 <Button onClick={() =>
 setAmount(balance * 0.25)}>25%</Button>
 <Button onClick={() =>
 setAmount(balance * 0.5)}>50%</Button>
 <Button onClick={() =>
 setAmount(balance * 0.75)}>75%</Button>
 <Button onClick={() =>
 setAmount(balance)}>100%</Button>
 </Grid>
</Box>

The value of Slider is a number range from 0 to 100. This is calculated with the following code:

let amountPercent = 100 * amount / balance;
amountPercent = isNaN(amountPercent) ? 0 : amountPercent

Calculating pooled token amounts

When discussing the code of ListLiquidity.js, we learned that the pool token amount for a
liquidity pool can be calculated with the total supply of the LP tokens, the amount of LP tokens, and
the reserves of the paired tokens of the liquidity pool. Similarly, the RemoveLiquidity.js file
uses the reserveA and reserveB state variables for token reserves, amount for the LP token
amount provided by the user, and totalSupply for the total supply of the LP tokens. Following is
the UI code for showing the pooled token amounts in the grid containers:

<Grid container justifyContent="space-between"
 alignItems="center">
 <Grid item>
 <Typography>Pooled {tokenA.symbol}</Typography>
 </Grid>
 <Grid item>
 <Typography>
 {(reserveA * amount / totalSupply).toFixed(2)}

Implementing the liquidity removal page 195

 </Typography>
 </Grid>
</Grid>
<Grid container justifyContent="space-between"
 alignItems="center">
 <Grid item>
 <Typography>Pooled {tokenB.symbol}</Typography>
 </Grid>
 <Grid item>
 <Typography>
 {(reserveB * amount / totalSupply).toFixed(2)}
 </Typography>
 </Grid>
</Grid>

The highlighted parts of the preceding code use the formula we discussed in the Retrieving liquidity
Information section to calculate the pooled token amounts. It helps the user know the amounts of
the two tokens they will receive if the user redeems the amount of LP tokens by removing liquidity.

Next, we will finish up the discussion on the liquidity removal page by implementing the code for
getting the allowance, increasing the allowance, and removing liquidity.

Getting the allowance, increasing the allowance, and removing
liquidity

We can refer to the code in the AddLiquidity component for getting the allowance and increasing
the allowance. On the liquidity removal page, we can use the ABI of TokenPair for these purposes.
Here is the code for getting the allowance by calling the allowance function of the TokenPair
smart contract:

const tokenPair = new ethers.Contract(pair, TokenPairABI,
 library.getSigner());
const _allowAmount = await tokenPair.allowance(account,
 AMMRouterAddress.address);

We can call the approve function to increase the allowance so that the AMM router can transfer
more tokens from the user’s account to TokenPair:

const tx = await tokenPair.approve(
 AMMRouterAddress.address, _allowAmount);

Implementing a Liquidity Management Frontend with Web3196

Similar to liquidity provisioning, liquidity removal requires the JavaScript code to interact with the
AMMRouter smart contract. The handleRemoveLiquidity function will run when the REMOVE
button is clicked on the liquidity removal page:

const handleRemoveLiquidity = async () => {
 setLoading(true);
 try {
 const ammRouter = new ethers.Contract(
 AMMRouterAddress.address, AMMRouterABI.abi,
 library.getSigner());
 const tx = await ammRouter.removeLiquidity(
 tokenA.address, tokenB.address,
 ethers.utils.parseUnits(toString(amount)),
 0, 0, account,
 parseInt(new Date().getTime() / 1000) + 10);
 await tx.wait();
 toast.info(`Liquidity removal succeeded! Transaction Hash: ${tx.
hash}`);
 setAmount(0);
 await getBalance();
 await getReserves();
 await getTotalSupply();
 } catch (error) {
 toast.error(getErrorMessage(error, "Cannot remove liquidity!"));
 }
 setLoading(false);
}

The preceding code initiates a transaction to remove liquidity by calling the removeLiquidity
function. After the transaction is completed, it will pop up a message saying the liquidity removal
ran successfully.

The preceding code also resets the input amount, updates the LP token balance and token reserves for
the liquidity pool, and updates the LP token total supply after the transaction is done.

For the full source code of RemoveLiquidity.js, please refer to https://github.com/
PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-
end/defi-apps/src/frontend/features/Liquidity/RemoveLiquidity.js.

Now we have discussed the implementation of liquidity management pages, we will verify these pages
in the next section.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/features/Liquidity/RemoveLiquidity.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/features/Liquidity/RemoveLiquidity.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter06-end/defi-apps/src/frontend/features/Liquidity/RemoveLiquidity.js

Verifying liquidity management pages 197

Verifying liquidity management pages
We have completed all the pages for liquidity management. In this section, we will provide some
instructions to verify the functions on these pages. Before the verification, I suggest you complete all
the components mentioned in this chapter by referring to the code at https://github.com/
PacktPublishing/Building-Full-stack-DeFi-Application/tree/chapter06-
end/defi-apps.

This branch introduces another two tokens for the DEX: Foo Token (symbol: FOO) and Bar Token
(symbol: BAR), so that you can create multiple liquidity pools with these tokens.

When you add a new token to the DEX, don’t forget to include its deployment by adding a line in the
contractList array in scripts/deploy.js like this:

const contractList = [
 // "Contract Name", "Contract Factory Name"
 ["Simple DeFi Token", "SimpleDeFiToken"],
 ["Meme Token", "MemeToken"],
 ["Foo Token", "FooToken"],
 ...
];

Also add the deployed address in the SupportedTokens array of src/frontend/utils/
Tokens.js:

import SimpleDeFiToken from '../contracts/SimpleDeFiToken-address.
json';
import MemeToken from '../contracts/MemeToken-address.json';
import FooToken from '../contracts/FooToken-address.json';
...
export const SuppotedTokens = [SimpleDeFiToken.address, MemeToken.
address, FooToken.address, ...];

Once you have completed the preceding tasks, you can start the web application in a fresh environment
for the following four steps:

1. Restart the local EVM using the npx hardhat node command.

2. Deploy smart contracts using the npm run deploy localhost command.

3. Clear the activity and nonce data of MetaMask.

4. Start the React web application using the npm start command.

Now your browser will pop up a window and open the DeFi application at http://localhost:3000/
(port 3000 is the default setting of a React application).

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/tree/chapter06-end/defi-apps
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/tree/chapter06-end/defi-apps
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/tree/chapter06-end/defi-apps

Implementing a Liquidity Management Frontend with Web3198

If you click the LIQUIDITY menu item at the top and connect your deployer account to the local
EVM, there will be no liquidity showing on the liquidity listing page at the beginning. You can click
the ADD LIQUIDITY button on the http://localhost:3000/liquidity page and create
two liquidity pools with arbitrary amounts of tokens – one pool for the SDFT/MEME pair and one
pool for the FOO/BAR pair. Now you should expect to see the two liquidity pools showing on the
liquidity listing page, similar to Figure 6.2.

Now you can try to transfer some tokens to another account that exists on the same EVM and provide
the liquidity with another account.

If you try to remove liquidity by clicking the REMOVE button after expanding the accordion
component, it will direct you to the liquidity removal page, and you can select an amount, enable the
removal, and remove the liquidity.

Whenever you add or remove liquidity, you can feel free to go back to the liquidity listing page to
verify the updated liquidity information. If everything works, congratulations! You have implemented
the simple liquidity management features in a DeFi application.

Summary
In this chapter, we have gone through the process and explained the code for implementing liquidity
management features for a DEX. We learned about the workflows of typical liquidity management
operations such as liquidity information retrieval, liquidity provisioning, and liquidity removal. For each
of these operations, we learned about and discussed the code implementation with Web3 technologies.
We showed you how to use ethers.js to interact with the smart contracts implemented in Chapter 5,
Building Crypto-Trading Smart Contracts to complete these operations. We also demonstrated other
topics such as creating sub-routes in React.js and verification of the liquidity management features
in this chapter.

In the next chapter, we will proceed with the journey of implementing the frontend of the most
important feature of a DEX: swapping. This feature will allow users to swap tokens with other tokens
using the DeFi application in web browsers.

7
Implementing a Token-

Swapping Frontend with Web3

Token swapping is the key feature of liquidity pool-based decentralized exchanges (DEXs). Token
swapping is the operation to exchange one token with another token. It enables people to buy or sell
tokens on DEXs.

In Chapter 5, Building Crypto-Trading Smart Contracts you learned that token swapping is performed
by an AMMRouter smart contract through interaction with smart contracts with the Hardhat console.
Token swapping requires a user to transfer an amount of a token to a liquidity pool (the TokenPair
smart contract) and the smart contract will transfer some other token from the liquidity pool back
to the user. In this chapter, we will learn how to interact with smart contracts using JavaScript and
implement the frontend of the token swapping feature.

Token swapping involves multiple liquidity pools if there are no token pairs for the two tokens for
swapping. This may bring complexity for token swapping. However, we will show you how to get the
paths for swapping and select the best path that maximizes the benefit for the user.

By reading this chapter, you will learn the following pieces of knowledge by walking through the
implementation of a token swapping frontend:

• How to use graph and token pair information to find all swapping paths from one token to
another token

• How to get the best swapping path so that the user can buy tokens at the best price in the DEX

• How to calculate the spending amount, receiving amount, and price impact for every
swapping operation

• How to interact with smart contracts to perform swapping

• How to improve the user experience by adding a button to sell all token balances and switch
the position of spending tokens and receiving tokens

Implementing a Token-Swapping Frontend with Web3200

Overview of the token swapping frontend
Before implementing the code of the token swapping frontend, let’s introduce what we will build and
the workflow of the token swapping frontend.

Similar to the liquidity management page, we will create a React /swap route for users to access the
token swapping page. Figure 7.1 shows the snapshots of the token swapping page at different stages.

Figure 7.1 – The snapshots of the token swapping page at different stages

Overview of the token swapping frontend 201

On the token swapping page, we allow the users to select a pair of tokens and provide the number of
tokens they want to spend or want to receive for the swapping. After the pair of tokens and amounts are
provided, the page will show the price for swapping, the price impact, and the best swapping path for
the swapping operation. This information is calculated dynamically based on the amount for swapping
and the reserves in existing liquidity pools. This page will also show an ENABLE <SYMBOL> button
if the allowances of transferring to the TokenPair smart contract instance are insufficient. If the
balance and allowance are sufficient, a SWAP button will show up, which allows users to perform
the swap. Once the swapping operation has succeeded, the page will show the successful transaction
with the transaction hash.

There are several cases when the swapping operation may fail – for example, a user entered a receiving
amount that is greater than the token amount in liquidity, or there is no path for buying token B with
token A. The UI will show error messages to explain these failure cases.

Next, we will introduce the frontend workflow of token swapping.

Frontend workflow of token swapping

Before implementing the code for token swapping, let’s walk through the frontend workflow of token
swapping. The workflow is shown in Figure 7.2.

Implementing a Token-Swapping Frontend with Web3202

Figure 7.2 – The frontend workflow of token swapping

Overview of the token swapping frontend 203

Token swapping requires the user to select a pair of tokens. Once the pair of tokens is selected, the
frontend code will find all paths from one token to another token. As we discussed in Chapter 5,
Building Crypto-Trading Smart Contracts we have used the following function call for token swapping:

tx = await ammRouter.swapTokensForExactTokens(
 "5000000000000000000", "100000000000000000000",
 [
 "0xe7f1725E7734CE288F8367e1Bb143E90bb3F0512",
 "0x5FbDB2315678afecb367f032d93F642f64180aa3"
],
 "0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266",
 parseInt(new Date().getTime() / 1000) + 10)

The highlighted lines are the array of token addresses that represent the path. The two token addresses
adjacent to each other means there is a liquidity pool for the two tokens in the DEX. If the length of the
array is N (where N ≥ 2), this means N − 1 of the liquidity pools in the DEX are involved in swapping.

Once there are paths available for swapping, the user can provide the amount of tokens they want to
spend or want to receive. If the spending amount is provided, the receiving amount will be automatically
calculated and the best path for swapping is selected. These calculations also happen when the user
provides the receiving amount. Here, the term best path means the swapping path for maximizing the
receiving token amount when the spending token amount is provided or minimizing the spending
token amount when the receiving token amount is provided. The price and the price impact for the
swapping are also calculated at the same time.

The calculation will also access the reserves of every liquidity pool by iterating on the path, so it
will check whether there are sufficient reserves for the tokens to be swapped out. If any token in the
reserve is insufficient, an error message will pop up and the user will need to change the spending
or receiving amount.

These steps and calculations don’t require connecting to a wallet. After a wallet is connected, the
frontend workflow will check the balance of the token for spending, allow users to increase allowance,
and perform swapping.

Preparing for the token swapping page

Before diving into the frontend implementation, let’s create the React route named /swap for the
token swapping page. To do this, let’s create a file located at src/frontend/features/Swap/
index.js as the React component of the token swapping page. At the beginning, we can make it
an empty React function component:

const Swap = () => {
 return <></>;
}
export default Swap;

Implementing a Token-Swapping Frontend with Web3204

Now, open the src/frontend/App.js file and import the preceding component:

import Swap from './features/Swap';

Then, add the following line of code for the /swap React route:

<Route path='/swap' element={<Swap />} />

The last thing for the preparation is adding the following object in navItems within the src/
frontend/components/Layout/index.js file:

{
 title: 'Swap',
 link: '/swap'
}

Now, you can start the web application with the npm start command, and then you will see the
SWAP menu item showing on the navigation bar in your browser.

In the next section, we will start implementing the token swapping page by discussing how to generate
token swap paths.

Generating token swapping paths
In this section, we will dive into the implementation of generating swapping paths. Similar to the
liquidity provisioning page, AddLiquidity.js, which we discussed in Chapter 6, Implementing a
Liquidity Management Frontend with Web3 we use the TokenSelectModal component for token
selection. Once both tokens are selected, we will find all available paths from one token to another
token. By reading this section, you will learn how to write the code to build the graph with the token
pair information of a DEX, and how to find the swapping paths once after the tokens are selected.

Building the graph for token pairs

In order to find all available paths from spending tokens to receiving tokens, we can use the data structure
of a bidirectional graph to represent all the token pairs of the DEX. The addresses of supported tokens
of the DEX are the graph nodes, and all the token pairs (the smart contract instance of TokenPair
that represents the paired tokens) are the graph edges.

Generating token swapping paths 205

Suppose we have four token pairs in the DEX we are implementing (tokens are represented by their
symbols): an SDFT/MEME pair, a MEME/FOO pair, a FOO/BAR pair, and a BAR/SDFT pair. The
graph to represent these pairs is shown in Figure 7.3.

Figure 7.3 – The simple graph for representing four pairs of a DEX

In JavaScript, we will use the Map object to represent the bidirectional graph, where the key is the
address of each token, and the value is an object with two fields: token and neighbors. The token
field is an object with the name, symbol, and decimals of the token. The neighbors field is a set of
token addresses that are the key of other nodes in the graph. Figure 7.4 shows the data structure of
the example we mentioned in the last paragraph.

Implementing a Token-Swapping Frontend with Web3206

Figure 7.4 – The data structure of the graph representing four pairs of a DEX

Based on the preceding discussion, let’s create a file at src/frontend/utils/Graph.js, and
create a helper function for creating the nodes in the bidirectional graph:

export const addNode = (graph, token) => {
 graph.set(token.address, { token, neighbor: new Set() });
}

Note
The token parameter of the preceding function is returned from the getTokenInfo function
in src/frontend/utils/Helper.js, which was explained in the last chapter. We will
fetch all token pairs from PairFactory and call the getTokenInfo function when the
token swapping page is initialized.

Generating token swapping paths 207

Now, we need the following function to connect two nodes in the graph by providing two tokens
(tokenA and tokenB):

export const connectNodes = (graph, tokenA, tokenB) => {
 graph.get(tokenA.address).neighbor.add(tokenB.address);
 graph.get(tokenB.address).neighbor.add(tokenA.address);
}

We will use an array of edges to initialize the graph; each edge is represented by two token objects in
an array, such as [tokenA, tokenB]. Let’s implement the following buildGraphFromEdges
function to initialize the graph with an array of edges:

export const buildGraphFromEdges = edges => edges.reduce(
 (graph, [tokenA, tokenB]) => {
 if (!graph.has(tokenA.address)) {
 addNode(graph, tokenA);
 }
 if (!graph.has(tokenB.address)) {
 addNode(graph, tokenB);
 }
 connectNodes(graph, tokenA, tokenB);
 return graph;
 }, new Map()
);

The preceding code generates a graph using Map of JavaScript. It iterates every edge through the
reduce function. In every iteration, it checks and creates new nodes if necessary, and connects the
two nodes in the graph. Finally, the buildGraphFromEdges function will return a graph similar
to the data structure shown in Figure 7.4.

Whenever the token swapping page component is mounted, we need to initialize the graph with
existing token pairs in the DEX. Meanwhile, the code will read the token information from existing
TokenPair smart contract instances of the DEX and use the information to generate a two-element
array for every pair, which will be an edge of the graph. Here is the code of the initGraph function
in src/frontend/features/Swap/index.js:

const initGraph = useCallback(async () => {
 try {
 let factory = new ethers.Contract(
 FactoryAddress.address, FactoryABI.abi,
 localProvider);
 const nPairs = await factory.allPairsLength();
 const edgeList = [];

 // Iterate through all pairs for the edges of the graph

Implementing a Token-Swapping Frontend with Web3208

 for (let i = 0; i < nPairs; i++) {
 let pairAddress = await factory.allPairs(i);
 let tokenPair = new ethers.Contract(pairAddress,
 TokenPairABI, localProvider);
 let _tokenA = await getTokenInfo(
 await tokenPair.tokenA());
 let _tokenB = await getTokenInfo(
 await tokenPair.tokenB());
 edgeList.push([_tokenA, _tokenB]);
 }

 // Make the graph with edge list
 const _graph = buildGraphFromEdges(edgeList);
 setGraph(_graph);
 } catch (error) {
 toast.error("Cannot initiate data for swapping!")
 }
}, []);

The preceding code declares the edgeList array to store the edges by iterating all instances of
TokenPair and building the full edgeList through edgeList.push([_tokenA, _tokenB])
for every iteration. After all edges are pushed into edgeList, it calls buildGraphFromEdges
to build the graph from edgeList and sets the generated graph as the state variable by calling
setGraph(_graph). For the completed code of graph generation, please refer to the source
code at https://github.com/PacktPublishing/Building-Full-stack-DeFi-
Application/blob/chapter07-end/defi-apps/src/frontend/utils/Graph.js.

Let’s call the initGraph function in useEffect of the Swap page:

useEffect(() => {
 if (!graph) {
 initGraph();
 }
}, [graph, initGraph]);

Here, we only require the code to initialize the graph on mounting the swapping page instead of
refreshing every few seconds because we assume that new token pair creation is not a frequent operation
for a DEX. Meanwhile, we store the graph in the state variable, and the other user interactions on this
page can safely rely on the state.

Next, we will dive into the code for finding all paths for a given pair of tokens based on the graph we
have built.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter07-end/defi-apps/src/frontend/utils/Graph.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter07-end/defi-apps/src/frontend/utils/Graph.js

Generating token swapping paths 209

Finding all paths given a pair of tokens

When a user has selected a pair of tokens, we should find all paths to make the swap within the
frontend code. Based on all the paths, the code will choose one path as the most cost-efficient path.

Now that we have generated the graph for the token pairs of a DEX, we can use backtracking and
the Depth-First Search (DFS) algorithm to traverse the graph and get all paths by giving two nodes
(presenting the spending token and receiving token for the swapping). The algorithm is implemented
by the findAllPaths function with a dfs helper function (in the src/frontend/utils/
Graph.js JavaScript file):

const dfs = (address1, address2, graph, visited, path,
 result) => {
 if (address1 === address2) {
 result.push([...path]);
 return;
 }
 visited.add(address1);
 for (const address of graph.get(address1).neighbor) {
 if (!visited[address] && !path.includes(address)) {
 path.push(address);
 dfs(address, address2, graph, visited, path, result);
 path.pop();
 }
 }
 visited.delete(address1);
}
export const findAllPaths = (address1, address2, graph)
 => {
 const path = [];
 if (!graph.has(address1) || !graph.has(address2)) {
 return path;
 }
 const visited = new Set();
 path.push(address1);
 const result = [];
 dfs(address1, address2, graph, visited, path, result);
 return result;
}

The preceding findAllPaths function accepts three parameters: the starting node of the path,
address1 (the address of the token to be spent), the ending node of the path, address2 (the
address of the token to receive), and the graph’s Map object, graph. It will return an array of paths,
and each path is an array of token addresses. For example, if we call findAllPaths with the graph

Implementing a Token-Swapping Frontend with Web3210

shown in Figure 7.4 with the starting address AddressSDFT and ending address AddressBAR, it will return
an array like this: [[AddressSDFT, AddressBAR], [AddressSDFT, AddressMEME, AddressFOO, AddressBAR]]. The
sub-arrays of the array represent two paths: AddressSDFT => AddressBAR and AddressSDFT => AddressMEME
=> AddressFOO => AddressBAR.

If the length of the returned array is zero, it means there is no path between the two tokens selected,
hence the user cannot perform swapping with the two selected tokens.

We can create a function called selectToken, which will be called when the user selects a token
from the TokenSelectModal component or switches the position of the spending token and
receiving token. When both tokens are selected, the code will call findAllPaths for the given
pair of tokens. Here is the source code of the selectToken function:

const selectToken = (_tokenA, _tokenB) => {
 if (Object.keys(_tokenA).length > 0 &&
 Object.keys(_tokenB).length > 0) {
 const resetToken = () => {
 tokenIndex === indexTokenA ? setTokenA({}) :
 setTokenB({});
 }
 if (_tokenA.address === _tokenB.address) {
 resetToken();
 toast.error('The selected tokens are identical, please select
another token!');
 return;
 }
 // Check if there is a path between token A and token B
 const _paths = findAllPaths(_tokenA.address,
 _tokenB.address, graph);
 if (_paths.length <= 0) {
 resetToken();
 toast.error(`There is no swap path from ${_tokenA.symbol} to
${_tokenB.symbol}!`);
 return;
 }
 setPaths(_paths);
 }
 setTokenA(_tokenA);
 setTokenB(_tokenB);
}

Generating token swapping paths 211

The selectToken function uses the tokenIndex state variable to check which token (spending
token or receiving token) is being selected. When the first token (the token to spend) selection button
is clicked, the following event handler will be called:

onClick={() => {
 setOpenModal(true);
 setTokenIndex(indexTokenA);
}}

Similarly, the onClick handler for the second token will call setTokenIndex(indexTokenB)
when the token expected to receive is selected.

The selectToken function also checks for two unexpected cases with the two highlighted if
statements. The first if statement checks whether or not the identical token is selected. The second
if statement checks for the issue that no path could be found between the two selected tokens. The
user can select another token from TokenSelectModal for both unexpected cases. If any paths
are found, they will be stored in the paths state variable using the setPath function.

Next, we will discuss the code for selecting two tokens as the default token pair for swapping.

The default token pair

For most DEX applications, the token swapping pages provide a default token pair for swapping. In
this book, we will use the two tokens from the first pair we retrieved from the PairFactory smart
contract as the default selected tokens.

Remember that when the initGraph function is executed, it generates an array of edges of the graph.
We can get the two tokens from the first edge if the length of the edgeList array is greater than
0. After selecting the tokens from the first edge, we still need to find all the paths for the token pair.

Here is the code to be added in the initGraph function for setting up the default token pairs:

if (edgeList.length > 0) {
 // Set tokenA and tokenB from the first token pair.
 const [_tokenA, _tokenB] = edgeList[0];
 setTokenA(_tokenA);
 setTokenB(_tokenB);
 setTokensSelected(true);
 const _paths = findAllPaths(_tokenA.address,
 _tokenB.address, _graph);
 setPaths(_paths);
}

Implementing a Token-Swapping Frontend with Web3212

Now we have gone through the code for generating the graph and searching for paths for a given pair.
However, the best deal or the best path from these paths for the swap is not determined yet until the
user provides the spending amount or receiving amount. In the next section, we will discuss how to
find the best path, and how to calculate the price and price impact based on the best path.

Identifying the best path, price, and price Impact
Best path, price, and price impact are three of the most important pieces of information before the
user makes a decision for the transaction. If the price is not good or the price impact is too high, the
user may not proceed with the transaction. The price and price impact are calculated based on the
path the DeFi app selected. So, it is important to select a swapping path to make the deal. Compared
to other paths that can make the swap, the best swapping path can do one of the following:

• Receive more tokens when an amount of spending tokens is specified

• Spend fewer tokens when an amount of receiving tokens is specified

Based on these principles, selecting the best path is determined by the following two types of factors:

• The amounts of tokens in the reserves of the liquidity pools for every token pair along the path

• The spending token amount or the receiving token amount specified by the user

Next, we will discover how to select the path for the best price with the given spending amount, receive
the amount, and calculate the price and price impact for the selected path.

How does the best path change for different amounts?

Since different swapping paths have different reserve sizes, the DEX may choose different swapping
paths for the best deal when the user gives different amounts. Given the graph that has three tokens,
A, B, and C (we will use these letters to represent the three tokens), there are three liquidity pools
with different reserve sizes, as shown in Figure 7.5:

• The A/C pair has 200 A tokens and 1,000 C tokens in the liquidity pool

• The A/B pair has 100 A tokens and 1,000 B tokens in the liquidity pool

• The B/C pair has 100 B tokens and 100 C tokens in the liquidity pool

Identifying the best path, price, and price Impact 213

Figure 7.5 – The graph with three token nodes

If a user wants to buy C by spending A, the user may want to choose the path A => B => C for
swapping with an intuitive impression of the preceding liquidity. This is because you can get 10 C
tokens by selling 1 A token (the ratio of the A/B pair of 1:10, and the ratio of the B/C pair of 1:1, so
you’ll get the exchange ratio between A and C, which roughly equals 1:10). However, if you go with
the path A => C just using the A/C pair, you will only get 5 C tokens by selling 1 A token as the ratio
of A and C for this pair is 1:5.

However, every swapping operation is subject to price impact, and you cannot get as many tokens as
calculated from the original price. Based on the discussion in Chapter 4, Introduction to Decentralized
Exchanges if the liquidity pool is smaller, the price impact is higher. Because the liquidity pool size for
the B/C pair is much smaller than other pairs, the price impact will be huge as the spending amount
grows. And the purchase price for the A => B => C path will surpass the price for A => C at some point.

If we use the functions to represent the relationship between the spending amount and the receiving
amount, the graph of the functions in Figure 7.6 can help us understand how to select the best path
to maximize the benefit for the user.

Implementing a Token-Swapping Frontend with Web3214

Figure 7.6 – The spending-receiving function graphs of two swapping paths

As we can see from Figure 7.6, the best path changes based on the values of the spending amount
(for the A token) and the receiving amount (for the C token). The two lines (the dotted line and the
solid line) represent the relationship of the two amounts under two different swapping paths. The two
lines intersect at the point (10, 47.62) on the coordinate system. We have drawn two auxiliary lines
x = 10 and y = 47.62 based on the intersection point in Figure 7.6. Here are the four cases based on
the given two auxiliary lines:

• When a user wants to spend less than 10 A tokens (when x < 10), the dotted line is above the
solid line so the user can use the path A => B => C to get more C tokens. So, the best path is
A => B => C.

• When a user wants to spend more than 10 A tokens (when x > 10), the solid line is above the
dotted line, which means the user can get more tokens by using the path A=>C, so the best
path is A => C.

• When a user wants to receive less than 47.62 C tokens (when y < 47.62), the dotted line is on
the left side of the solid line, which means the user will pay less by using the path A => B =>
C, so the best path is A => B => C.

• When a user wants to receive more than 47.62 C tokens (when y > 47.62), the solid line is on the
left side, which means the user will pay less by using path A => C, so the best path is A => C.

Identifying the best path, price, and price Impact 215

Next, we will discuss the case when the reserve is insufficient during swapping by using the example.

Why the reserve can be insufficient

Sometimes, you may meet a reserve insufficient error when using DEXs; it usually happens when
a liquidity pool is small. Because there are finite amounts of tokens in the liquidity pool, the price
can go infinitely high if a user wants to drain a token from the liquidity pool. If we zoom out in the
function graph shown in Figure 7.6, we can see the receiving amounts (represented on the y axis) are
approaching the limit values when increasing the spending amounts (the function graph is using the
example of Figure 7.5). Figure 7.7 shows a zoomed-out version of the function graph.

Figure 7.7 – The spending-receiving function graphs with limit values

Figure 7.7 shows that a user cannot get more than 90.91 C tokens by spending A tokens with the path
A => B => C, and cannot get more than 1,000 C tokens with the path A => C. This means that when
the user gives a receiving amount of more than 1,000 C tokens, the DEX will return an insufficient
reserve error.

Note
When discussing the functions of spending-receiving amount relationships, we assume there
are no extra fees charged from the transactions, and the numbers shown on the graph are
rounded to two decimal places if the number cannot be evenly divided.

Implementing a Token-Swapping Frontend with Web3216

Next, we will dive into the code for calculating receiving amounts and spending amounts.

Calculating the receiving and spending amounts with code

Now, let’s write the code for calculating receiving and spending amounts based on the preceding
discussion. First, let’s create a TextField component for the user to provide the spending amount:

<TextField sx={{ mt: 1 }} id="tokenA"
 label="The amount to spend" value={amountA}
 onChange={handleChange}
 onBlur={() => getReceivingAmount()} />

This code requires a handleChange event handler for the onChange event, as well as
a getReceivingAmount function for the onBlur event. This means we will call the
getReceivingAmount function to calculate the receiving amount whenever the TextField
component loses focus. We didn’t calculate the receiving amount in the onChange handler because
the calculation is pretty heavy and involves on-chain calls, so we will do that in the onBlur event
handler to improve UI responsiveness.

Similarly, let’s add the code of another TextField component to provide the receiving amount:

<TextField sx={{ mt: 1 }} id="tokenB"
 label="The amount to receive" value={amountB}
 onChange={handleChange}
 onBlur={() => getSpendingAmount()} />

For the onBlur event handler of the preceding TextField component, we will call another function,
getSpendingAmount, to calculate the spending amount after the receiving amount is provided.

To calculate the spending and receiving amounts, we don’t have to go through all the token pairs along
the swapping path in the UI code. Luckily, we have the getAmountsOut and getAmountsIn
functions implemented in the AMMRouter smart contract. These functions return the receiving
token amount and spending token amount, respectively, when providing the spending amount and
receiving amount. Meanwhile, these two functions take 0.2% of transaction fees into account, and
the numbers returned will be almost accurate.

Note
The returned amount may not be accurate when there are other transactions that could change
the state of the liquidity in the same block, or when there are other committed transactions
after the amounts are retrieved but before submitting the swapping transaction.

Identifying the best path, price, and price Impact 217

When getting the receiving token amount with the getReceivingAmount function, we will
iterate every available path from one selected token to another, and find the path that can give the
maximum amount of the token for the purchase. Here is the code of the getReceivingAmount
function based on our discussion:

const getReceivingAmount = async () => {
 if (amountA <= 0) {
 // Return immediately if spending amount is invalid
 return;
 }
 setLoading(true);
 try {
 const ammRouter = new ethers.Contract(
 AMMRouterAddress.address,
 AMMRouterABI.abi, localProvider);
 let max = Number.MIN_SAFE_INTEGER;
 let _bestPath = null;
 for (const path of paths) {
 const _amount = ethers.utils.parseUnits(
 toString(amountA), tokenA.decimals);
 const amounts = await ammRouter
 .getAmountsOut(_amount, path);
 const _amountB = Number(ethers.utils.formatUnits(
 amounts[amounts.length - 1], tokenB.decimals));
 if (_amountB > max) {
 max = _amountB;
 _bestPath = path;
 }
 }
 setAmountB(max);
 setBestPath(_bestPath);
 // Calculate the purchase price
 const newPrice = amountA / max;
 setPrice(newPrice);
 estimatePriceImpact(ammRouter, _bestPath, newPrice);
 } catch (error) {
 toast.error('Cannot get receiving amount!');
 }
 setLoading(false);
}

The preceding code is self-explanatory. Once we get the maximum receiving amount, max, we can
calculate the price easily with the highlighted lines. Then, the best path and the price will be shown
on the Swap page, as shown in Figure 7.8.

Implementing a Token-Swapping Frontend with Web3218

Figure 7.8 – The calculated best token price and swapping path showing on the Swap page

For the getSpendingAmount function, we can implement it by calling getAmountsIn for every
available path. At the same time, the code should find the minimum spending amount and the path for
that amount because we assume that a user wants to spend as little as possible for a purchase. The code
of the getSpendingAmount function is similar to the getReceivingAmount function; you
can check the source code at https://github.com/PacktPublishing/Building-Full-
stack-DeFi-Application/blob/chapter07-end/defi-apps/src/frontend/
features/Swap/index.js#L200-L228 for reference.

Note
The smart contract getAmountsIn function will return an error if the specified receiving
amount exceeds the limit value (explained in Figure 7.7). The code in the preceding GitHub
link will show an Insufficient reserves! message if this case happens.

Next, we will discuss how to implement the code for calculating the price impact.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter07-end/defi-apps/src/frontend/features/Swap/index.js#L200-L228
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter07-end/defi-apps/src/frontend/features/Swap/index.js#L200-L228
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter07-end/defi-apps/src/frontend/features/Swap/index.js#L200-L228

Identifying the best path, price, and price Impact 219

Calculating the price impact

Price impact is a factor in evaluating how much the transaction can impact the price of the token. In
Chapter 4, Introduction to Decentralized Exchanges we provided a formula to calculate the price impact:

 PI A (x) = K ___________
 (Reserve A + x) 2

 − K _ Reserve A 2

This formula works for calculating the price impact based on the reserve amount changes with a single
liquidity pool. For a DEX in real life, a swapping operation may involve multiple liquidity pools. Also,
DEXs use the price change in percentage to present price impact. For this case, we can compare the
new price with the original token price to calculate the price impact with the following formula, and
the prices are based on the selected tokens:

 PI A =
 NewPrice A

 _ OldPrice A − 1

Please note that when purchasing A tokens, the price of A tokens will increase because the A tokens
in the reserve will reduce, so NewPrice A is always greater than OldPrice A . So the price impact PI A is
always greater than 0.

Since the getReceivingAmount and getSpendingAmount functions we discussed calculate
the new price of the token being purchased, we need to calculate the existing price using the existing
reserved token amounts. This calculation is performed in the estimatePriceImpact function:

const estimatePriceImpact = async (ammRouter, path,
 newPrice) => {
 // Get the old price based on existing reserves.
 let oldPrice = 1;
 for (let i = 0; i < path.length - 1; i++) {
 const [reserveA, reserveB,] = await ammRouter
 .getReserves(path[i], path[i + 1]);
 oldPrice = oldPrice * Number(ethers.utils.formatUnits(
 reserveA, graph.get(path[i]).token.decimals)) /
 Number(ethers.utils.formatUnits(reserveB,
 graph.get(path[i + 1]).token.decimals));
 }
 setPriceImpact(100 * (newPrice / oldPrice - 1));
}

The preceding code iterates through the reserves of all token pairs along the best path to calculate
the existing price of the token and then calculates the price impact in percentage with the formula
given previously.

Implementing a Token-Swapping Frontend with Web3220

Now, we have completed the code for calculating the best swapping path, the price, and the price
impact. Let’s add the following code to show this information on the token swapping page, as in the
snapshot in Figure 7.8:

<Collapse in={price > 0} sx={{ my: 2 }} >
 <Grid container justifyContent="space-between"
 alignItems="center">
 <Grid item>Price</Grid>
 <Grid item>{price.toFixed(2)} {tokenA.symbol} per
 {tokenB.symbol}</Grid>
 </Grid>
 <Grid container justifyContent="space-between"
 alignItems="center">
 <Grid item>Price Impact</Grid>
 <Grid item>{priceImpact.toFixed(2)} %</Grid>
 </Grid>
 <Grid container justifyContent="space-between"
 alignItems="center">
 <Grid item>Path</Grid>
 <Grid item>{printSwapPath(bestPath)}</Grid>
 </Grid>
</Collapse>

The preceding code uses the Collapse component to show this information. The in argument of
this component means that if any of the tokens for swapping are not selected or either of the spending
and receiving amounts are zero, the information will not show up on the page.

To show the best path on the page, we need to convert the array into a human-readable text by inserting
=> between two tokens in the path. This is done by the printSwapPath function:

const printSwapPath = (path) => {
 let result = '';
 if (!path || path.length < 2) {
 return result;
 }
 for (const address of path) {
 result += ` => ${graph.get(address).token.symbol}`;
 }
 return result.substring(4);
}

Now, we have discussed how to get the swap-related information. This information can be retrieved
by leveraging the data from smart contracts without connecting to a wallet. However, we need a

Swapping token – after a wallet is connected 221

connected account to perform the token swapping operation. In the next section, we will explain and
implement the code for checking allowance and swapping tokens.

Swapping token – after a wallet is connected
A user cannot perform token swapping without connecting to a wallet. After connecting to a wallet,
the code needs to do the following checks before actually swapping the tokens:

• Verify that the spending amount does not exceed the token balance in the wallet

• Verify whether the account allows AMMRouter to transfer the spending amount to the liquidity
pool (the instance of the TokenPair smart contract)

For balance verification, we can load the balances of the two tokens, similar to how we did for
AddLiquidity.js, and disable the SWAP button when the balance is less than the spending amount.

For checking the allowance quota for AMMRouter to transfer the user’s token, we can check the
allowed transferring amount by calling the allowance function of the ERC20 token, and compare
the amount with the spending amount. If the allowed amount is less than the spending amount, the
ENABLE button will show up, and the approve function of the ERC20 token smart contract will
be called to increase the allowance amount.

Here, we will discuss more about the code to perform swapping once the user hits the SWAP
button. The onClick handler of the button can either call swapExactTokensForTokens or
swapTokensForExactTokens of AMMRouter. Which function will be called depends on the
amount of the TextField component that was last updated. If the amount of the first TextField
component is updated right before hinting the SWAP button, the swapExactTokensForTokens
function will be called. If the amount of the second TextField component is updated right before
the swapping, the swapTokensForExactTokens function will be called. In order to track
whether the spending amount or receiving amount was the last updated amount, we can call the
setTokenIndex function to set the state variable representing which token was the last updated
token (tokenA is the token the user wants to spend, and tokenB is the token the user wants to
receive) in the onChange handler of the TextField components:

const handleChange = e => {
 let tmpVal = e.target.value ? e.target.value : 0;
 let id = e.target.id;
 if (tmpVal < 0 || isNaN(tmpVal)) {
 tmpVal = id === 'tokenA' ? amountA : amountB;
 } else if (!(typeof tmpVal === 'string' &&
 (tmpVal.endsWith(".") || tmpVal.startsWith(".")))) {
 tmpVal = Number(e.target.value.toString());
 }
 if (id === 'tokenA') {

Implementing a Token-Swapping Frontend with Web3222

 setAmountA(tmpVal);
 setTokenIndex(indexTokenA);
 } else if (id === 'tokenB') {
 setAmountB(tmpVal);
 setTokenIndex(indexTokenB);
 }
}

After the tokenIndex state variable is set, the code can determine which function
(swapExactTokensForTokens or swapTokensForExactTokens) to call to perform the
swapping. The SWAP button will call the handleSwap function with its onClick event handler.
Here is the code to implement the handleSwap function:

const handleSwap = async () => {
 setLoading(true);
 try {
 const ammRouter = new ethers.Contract(
 AMMRouterAddress.address, AMMRouterABI.abi,
 library.getSigner());
 const deadline =
 parseInt(new Date().getTime() / 1000) + 10;
 const tx = await (tokenIndex === indexTokenA ?
 ammRouter.swapExactTokensForTokens(
 ethers.utils.parseUnits(toString(amountA),
 tokenA.decimals),
 ethers.utils.parseUnits(toString(amountB * 0.9),
 tokenB.decimals),
 bestPath, account, deadline) :
 ammRouter.swapTokensForExactTokens(
 ethers.utils.parseUnits(toString(amountB),
 tokenB.decimals),
 ethers.utils.parseUnits(toString(amountA * 1.1),
 tokenA.decimals),
 bestPath, account, deadline
));
 await tx.wait();
 toast.info(`Swap succeeded! Transaction Hash: ${tx.hash}`)
 setAmountA(0);
 setAmountB(0);
 await getBalances();
 await checkAllowance();
 } catch (error) {
 toast.error(getErrorMessage(error, 'Cannot perform swap!'));
 }

Improving user experiences for token swapping 223

 setLoading(false);
}

When calling swapExactTokensForTokens, the second argument is the minimum expected
amount of tokens the user wants to receive. In the ideal case, the user should get the exact amount
of amountB, which is the receiving amount shown on the page. However, if there are pending
transactions in the same block or a parallel task is processing, the receiving amount may not be the
same as the amount showing. So, it is necessary to specify the minimum number of tokens the user
can get, which is 90% of the receiving amount shown on the page.

Similarly, the second argument for calling the swapTokensForExactTokens function is the
maximum number of tokens the user is willing to pay, which is 110% of the spending amount shown
on the page.

Note
Some DEXs will show token amounts for maximum spend or maximum receiving on the
UI. Some other DEXs also allow users to tune the threshold of the price impact so that the
transaction is not forbidden if the price impact exceeds the threshold. We will not discuss how
to implement these features in the frontend in this book.

After the interaction with the AMMRouter smart contract for token swapping runs successfully, the
code will reset the input amounts and update the balances and token transferring allowance in the end.

In the next section, we will implement a few UI components to improve user experiences for
token swapping.

Improving user experiences for token swapping
Usually, a DEX implements several components to improve user experiences. In this section, we will
discuss how to implement the following two components for the purpose:

• The MAX button for the spending amount, which is useful when a user wants to sell all tokens
in the wallet

• The floating action button (FAB) for switching the spending and receiving tokens

Now, let’s implement the MAX button with this line of code:

<Button sx={{ fontSize: 12, padding: '0px' }}
 onClick={() => handleMax()} >Max</Button>

Implementing a Token-Swapping Frontend with Web3224

Once the button is clicked, it will call the handleMax function to set the amount to spend to all of the
balance of the token. The function then calls setTokenIndex(indexTokenA) so that the swap
operation knows the user is setting spending. The function will also call getReceivingAmount
to update the receiving amount at the same time:

const handleMax = () => {
 setAmountA(balanceA);
 setTokenIndex(indexTokenA);
 getReceivingAmount();
}

Next, let’s implement the switching button using the FAB component; the user can use it to switch the two
tokens shown on the Swap page. This is the round button between the two TextField components.

Figure 7.9 – A snapshot to demonstrate how to switch tokens on the Swap page

Figure 7.9 shows the snapshots of the three states for the switch button. There is an arrow-down button
that shows the user is spending SDFT and receiving MEME. Once the mouse is hovering over the
button, the icon changes to the vertical swap icon. When the icon is clicked, the positions of the two
tokens are switched and the balances under both TextField components are also updated for the
switch. Here is the code for the switching button and the event handler implementation:

const [hoverOnSwitch, setHoverOnSwitch] = useState(false);
...
<Grid container justifyContent="center"
 alignItems="center">
 <Fab onClick={() => selectToken(tokenB, tokenA)}

Summary 225

 onMouseEnter={() => setHoverOnSwitch(true)}
 onMouseLeave={() => setHoverOnSwitch(false)}>
 {hoverOnSwitch ? <SwapVertIcon /> :
 <ArrowDownwardIcon />}
 </Fab>
</Grid>

From the preceding code, we use the hoverOnSwitch state variable to control the icon for the
button and implement the onMouseEnter and onMouseLeave event handlers to change the state
for showing SwapVertIcon or ArrowDownwardIcon. When the button is clicked, we just need
to call selectToken(tokenB, tokenA) with the reverse order of tokenA and tokenB so
that the values of tokenA and tokenB are exchanged with each other.

Now, we have gone through the key components and frontend workflows of the token swapping page,
src/frontend/features/Swap/index.js. We only explained the code for the important
features here for token swapping. Some of the features, such as getting balances and setting allowances,
were explained in previous chapters and will not be expanded in this chapter. For the complete
code of this chapter, please refer to the chaper07-end branch of the GitHub repository of this
book at https://github.com/PacktPublishing/Building-Full-stack-DeFi-
Application/tree/chapter07-end.

Summary
In this chapter, we have gone through the frontend workflow and the code of key features of the token
swapping page. You have learned how to generate the graph by accessing the on-chain data with
smart contracts, find the best prices for swapping tokens by iterating the graph, and interact with the
AMMRouter smart contract to perform the token swapping.

We discussed liquidity management and token swapping for the tokens based on the existing blockchain
till now. These tokens are also called non-native tokens and they follow a standard (e.g., ERC20),
which is built on an existing layer 1 blockchain. However, a productionized DEX should support
native tokens as well. The native token is also called a built-in token or native coin of a blockchain. For
example, ETH is the native token of the Ethereum blockchain. To make native tokens such as ETH
work with the DEXs or other DeFi smart contracts, we usually have to convert the native token to a
wrapped token (such as Wrapped ETH or WETH).

In the next chapter, we will discuss how to handle the wrapping and unwrapping of the native token,
and how to improve the liquidity management and token swapping features to support native tokens.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/tree/chapter07-end
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/tree/chapter07-end

8
Working with Native Tokens

Now we have learned and implemented the liquidity management feature and token swapping feature
of a decentralized exchange (DEX). These features only support ERC20 tokens or non-native tokens
currently. However, the native token of Ethereum virtual machine (EVM)-based blockchain is not
supported by these features yet. It means a user cannot swap ETH for other ERC20 tokens, or the
other way around, as the native token ETH is not an ERC20 token.

To make native tokens work properly for the smart contracts designed for standardized tokens (such
as ERC20 or BEP20), native tokens are converted into wrapped tokens. A wrapped token has the same
value as its native token. In this chapter, we will elaborate more on this topic, and you will learn the
following skills:

• Diving into the WETH smart contract

• Refactoring smart contracts to support the native token in a DEX

• Implement the DEX frontend to support the native token

Diving into the WETH smart contract
Wrapped ETH (WETH) is an example of a wrapped native token on Ethereum. The smart contract
of WETH doesn’t only implement the required interfaces of an ERC20 token but also the functions to
wrap and unwrap the native token, ETH. Figure 8.1 shows how a user interacts with a WETH smart
contract to wrap ETH and unwrap WETH.

Working with Native Tokens228

Figure 8.1 – The process of wrapping ETH and unwrapping WETH

As shown in Figure 8.1, a user can deposit ETH to a WETH smart contract, and the user will get the
same amount of WETH with the given amount of ETH. The user can withdraw the original ETH
by redeeming the same amount of WETH. Based on this, we will need to implement the deposit
function to wrap ETH and the withdraw function to unwrap WETH in the WETH smart contract.

Demystifying the WETH smart contract

Now, let’s create a new solidity source file at src/backend/contracts/WETH.sol for the WETH
smart contract, and copy the source code at https://github.com/PacktPublishing/
Building-Full-stack-DeFi-Application/blob/chapter08-end/defi-apps/
src/backend/contracts/WETH.sol into this file. From the source, you may have noticed
that we provide Wrapped ETH (WETH) as the name of the token; WETH is the symbol, and the
token has 18 decimal places. Here, we will explain several functions of the smart contract so that you
can understand the code easily.

Note
The source code of WETH.sol is originally sourced from https://etherscan.io/
token/0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2#code. We have
modified the code in this book to make it compatible with the latest version of Solidity.

Let’s take a look at the source code of the deposit function first:

function deposit() public payable {
 balanceOf[msg.sender] += msg.value;
 emit Deposit(msg.sender, msg.value);
}

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter08-end/defi-apps/src/backend/contracts/WETH.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter08-end/defi-apps/src/backend/contracts/WETH.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter08-end/defi-apps/src/backend/contracts/WETH.sol
https://etherscan.io/token/0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2#code
https://etherscan.io/token/0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2#code

Diving into the WETH smart contract 229

The deposit function converts an amount of ETH to WETH. The balance of WETH that all accounts
own are stored in the balanceOf map, in which the key is the account address, and the value is
the balance of this account. The deposit function takes msg.value as the amount of ETH to be
deposited (or wrapped), so the function doesn’t require any parameters. By providing msg.value,
the amount of ETH is transferred from the account to the WETH smart contract, and the balance of
WETH of this account is increased by msg.value.

Note
In Solidity, msg is an object created for a transaction that is sent to an EVM-based blockchain.
The msg object is global and can be accessed by any function of any smart contract within
this transaction.

To be more specific, msg.value is the amount of native tokens (i.e., coins) sent with this
transaction. For Ethereum, only ETH can be sent this way. If you assign msg.value with an
amount greater than the ETH balance of the account, the transaction will report a gas error.

To convert WETH back to ETH, the WETH smart contract implements the withdraw function,
which performs the process of unwrapping WETH, as shown previously in Figure 8.1:

function withdraw(uint256 wad) public {
 require(balanceOf[msg.sender] >= wad);
 balanceOf[msg.sender] -= wad;
 payable(msg.sender).transfer(wad);
 emit Withdrawal(msg.sender, wad);
}

The withdraw function accepts the wad amount parameter to specify how much WETH the user
wants to convert back to ETH. The wad amount should be no greater than the WETH balance of the
account. The highlighted line in the preceding code uses the transfer function of the payable
address to send the ETH back to the account.

The payable address is an address that can receive ETH (ether). Generally speaking, most wallet
addresses are payable addresses. If a smart contract wants to receive ETH (to become payable), the
smart contract has to implement the receive function. Later in this chapter, we will show an example
of a receive function implemented in a AMMRouter smart contract.

Note
The wad parameter name originates from the DS-Math library (https://github.com/
dapphub/ds-math). A wad is a decimal number with 18 digits of precision. The decimals
of ETH and WETH are also 18 places by design, and the parameter name reminds us that
the user should convert the unit into wei before passing an amount of ETH into the function.

https://github.com/dapphub/ds-math
https://github.com/dapphub/ds-math

Working with Native Tokens230

The last thing we want to explain in WETH.sol is the constructor of the smart contract, which just
calls the deposit function in its body. It means that once msg.value is provided, the amount will
be the initial supply of WETH, and this amount will be owned by msg.sender:

constructor() {
 deposit();
}

Next, let’s discuss how users interact with the WETH smart contract by verifying it with the
Hardhat console.

Verifying a WETH smart contract with the Hardhat console

Once we have finished coding WETH.sol, we can verify the smart contract by calling the functions
to perform several transactions.

Firstly, we need to add the following line in the contractList array of scripts/deploy.js
so that the WETH smart contract will be deployed with other smart contracts:

["Wrapped ETH", "WETH"],

Now, let’s run npx hardhat node to start the local EVM, and run npm run deploy localhost
to deploy all smart contracts to the EVM. The output of the deployment may look like this:

$ npm run deploy localhost

> defi-apps@0.1.0 deploy
> npx hardhat run scripts/deploy.js --network "localhost"

Simple DeFi Token Contract Address:
0x5FbDB2315678afecb367f032d93F642f64180aa3
Meme Token Contract Address:
0xe7f1725E7734CE288F8367e1Bb143E90bb3F0512
Foo Token Contract Address: 0x9fE46736679d2D9a65F0992F2272dE9f3c7fa6e0
Bar Token Contract Address: 0xCf7Ed3AccA5a467e9e704C703E8D87F634fB0Fc9
Wrapped ETH Contract Address:
0xDc64a140Aa3E981100a9becA4E685f962f0cF6C9
Pair Factory Contract Address:
0x5FC8d32690cc91D4c39d9d3abcBD16989F875707
AMM Router Contract Address:
0x0165878A594ca255338adfa4d48449f69242Eb8F
Deployer: 0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266
Deployer ETH balance: 9999991984824160074529

Note the deployed Wrapped ETH Contract Address (highlighted in the preceding output),
since we will use it in the Hardhat console for verification.

Diving into the WETH smart contract 231

Now, let’s start the Hardhat console with the npx hardhat console --network localhost
command, and then create an object for the WETH smart contract with the following command:

> weth = await ethers.getContractAt("WETH",
"0xDc64a140Aa3E981100a9becA4E685f962f0cF6C9");

The preceding command uses the smart contract address we captured in the deployment output. In
order to verify that the object works as expected, let’s check the total supply of WETH, which is zero:

> await weth.totalSupply()
BigNumber { value: "0" }

Since Hardhat EVM will assign 10,000 ETH to every account when EVM starts up, we can verify
the balance of the current account (which is the first account address showing in the Hardhat EVM
console) with the ethers.provider.getBalance(...) function:

> await ethers.provider.
getBalance("0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266");
BigNumber { value: "9999991984824160074529" }

If we call the deposit function of the WETH smart contract, it will convert an amount of ETH into
the same amount of WETH. Let’s try depositing 1 ETH (which is 1,000,000,000,000,000,000 wei):

> tx = await weth.deposit({value: "1000000000000000000"});

Note the preceding command where we define the msg object with {value:
"1000000000000000000"}, which assigned 1,000,000,000,000,000,000 wei to msg.
value. If we run await tx.wait() after this command, it will wait for the completion of the
transaction, and the Deposit event will appear, as shown in Figure 8.2.

Figure 8.2 – A screenshot showing the deposit event

Working with Native Tokens232

After calling the deposit function, the total supply of WETH becomes 1 ETH
(1,000,000,000,000,000,000 wei):

> await weth.totalSupply();
BigNumber { value: "1000000000000000000" }

And the balance of the current account decreases by 1 ETH (plus a small amount of gas):

> await ethers.provider.
getBalance("0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266");
BigNumber { value: "9998991967051136888737" }

The WETH balance of the current account is 1 ETH (1,000,000,000,000,000,000 wei):

> await weth.balanceOf("0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266");
BigNumber { value: "1000000000000000000" }

If we want to convert 0.4 WETH back to ETH, we can call the withdraw function of the WETH
smart contract like this:

tx = await weth.withdraw("400000000000000000");

This time, we passed 400,000,000,000,000,000 wei as the argument of the withdraw function. You
can also use the similar commands previously mentioned to verify the current ETH and WETH
balance of the current account. Meanwhile, the current total supply of WETH should be 0.6 (or
600,000,000,000,000,000 wei).

Now, we have discussed the WETH smart contract and how to wrap ETH and unwrap WETH. The
WETH smart contract is a bridge between ETH and other DeFi smart contracts on Ethereum. Other
EVM-based blockchains also adopt the same idea to make the native tokens compatible with smart
contracts designed for standard tokens (e.g., ERC20 or BEP20 tokens) on the blockchain.

In the next section, we will talk about how to improve the AMMRouter smart contract to make the
DEX support native tokens.

Refactoring smart contracts to support native tokens
in a DEX
As we discussed in previous chapters, the frontend of the DEX interacts with the AMMRouter smart
contract to add liquidity, remove liquidity, and swap tokens. The AMMRouter smart contract transfers
the tokens from the user to one instance of the TokenPair smart contract when adding liquidity and
swapping tokens. It transfers tokens back from one of the TokenPair smart contracts to a user when
removing liquidity and swapping tokens. If a liquidity pool-based DEX wants to deal with ETH or any
native token, these processes need extra steps that involve wrapping or unwrapping the native tokens.

Refactoring smart contracts to support native tokens in a DEX 233

Next, we will discuss how AMMRouter works as the intermediary between the native token and
TokenPair smart contracts.

The router as the intermediary

The router of a DEX plays an important role in performing all the extra steps for handling native
tokens. It means the router will work as the intermediary between the user and liquidity pools for the
conversion between wrapped tokens and unwrapped tokens. In this book, the router is implemented
as the AMMRouter smart contract, and liquidity pools are implemented by the TokenPair
smart contract.

If you remember the process of token swapping or liquidity provisioning, the AMMRouter smart
contract will transfer the token directly from the user’s account to TokenPair, as long as the user
approves the transferring amount. Because of the requirements of the ERC20 standard, the liquidity
pool (the TokenPair smart contract) cannot accept the native token for swapping. The AMMRouter
smart contract has to convert ETH into WETH and let the TokenPair smart contract perform the
operations on WETH, like other ERC20 tokens. The processes of AMMRouter sending ETH and
ERC20 tokens from the user to the liquidity pool are shown in Figure 8.3.

Figure 8.3 – The processes of sending ERC20 token and Native Token (ETH) to liquidity pool

AMMRouter uses the preceding processes of sending tokens when the user provides liquidities or swaps
tokens. Figure 8.3 shows that AMMRouter sits in the middle to handle the transfer. If the incoming
token is ETH, it will wrap the ETH into the same amount of WETH and then transfer the WETH
to the TokenPair smart contract. Compared to ETH, AMMRouter sends ERC20 tokens directly
from the user to TokenPair.

Working with Native Tokens234

Conversely, when AMMRouter sends ETH from TokenPair back to the user, AMMRouter should
unwrap WETH, convert it into ETH, and then send it back to the user. The process is shown at the
bottom of Figure 8.4 (with the comparison of sending the ERC20 token back to the user at the top).
AMMRouter uses these processes to send tokens back to the user when the user removes liquidity
or swaps tokens.

Figure 8.4 – The processes of sending the ERC20 token and the native token (ETH) to the user

Because the liquidity pools (i.e., the instances of the TokenPair smart contract in this book) only
accept ERC20 tokens as liquidity, the user can send or receive the wrapped token or unwrapped token
directly from AMMRouter, as long as the wrapped form is in the liquidity pool. For example, there
is an ETH/BTC pair in the liquidity pool because the pool actually holds WETH and BTC tokens;
other users can either spend ETH or WETH to get BTC from the pool. Also, they can get either ETH
or WETH when removing liquidity from the pool.

AMMRouter requires several new functions to handle the token-swapping operations between native
tokens and ERC20 tokens. Next, we will define these functions.

Function definitions for native tokens in the router

Based on the example of the ETH/BTC pair we discussed previously, users can choose the wrapped or
unwrapped form when interacting with the liquidity pools for native tokens. Since we have implemented
the functions for ERC20 tokens in the previous chapter, users can provide or remove liquidity with
WETH, or swap tokens with WETH. If users want to do these operations with ETH directly, we need
to define another set of functions.

Refactoring smart contracts to support native tokens in a DEX 235

Now, let’s go back to our code project and declare more functions in IAMMRouter, located at src/
backend/contracts/interfaces/IAMMRouter.sol; these new functions will support
ETH for liquidity provisioning, liquidity removal, and token swapping. For liquidity management,
there are two functions that need to be implemented for the native token (ETH):

• addLiquidityETH: This allows the user to add liquidity with a pair of tokens. One of the
tokens must be the native token (ETH), and another token is an ERC20 token. The existing
addLiquidity function only supports ERC20 tokens.

• removeLiquidityETH: This allows users to remove liquidity so that they can get ETH
and another ERC20 token.

For token swapping, we also need extra functions for when people spend ETH and receive ETH. In
the case of spending ETH, we need to implement two functions – the swapExactETHForTokens
function to specify the exact amount of ETH spent, and the swapETHForExactTokens function
to specify the exact amount of ERC20 tokens received when spending ETH.

In the case of a user receiving ETH, we need to implement another two functions – the
swapTokensForExactETH function to specify the exact amount of ETH received, and the
swapExactTokensForETH function to specify the exact amount of ERC20 tokens spent.

From the preceding discussion, we learned that six new functions need to support native tokens for
swapping and liquidity management. The following table (Figure 8.5), summarizes what actions to
take for native tokens in code when implementing the functions.

Function name Actions to take for the native token ETH

Wrap ETH? Unwrap WETH? Check for Refund ETH?

addLiquidityETH Yes No Yes

removeLiquidityETH No Yes No

swapExactETHForTokens Yes No No

swapETHForExactTokens Yes No Yes

swapTokensForExactETH No Yes No

swapExactTokensForETH No Yes No

Figure 8.5: A summary of actions to take for ETH in the six new functions in AMMRouter

Working with Native Tokens236

For the functions that requires wrapping ETH, the user will transfer ETH to the smart contract. To
make the smart contract receive ETH transferred from a caller, we should declare these functions with
the payable keyword. The AMMRouter smart contract also needs the receive callback function
in order to receive ETH from a smart contract, such as WETH. We will discuss the implementation
of these functions in the next section.

As shown in Figure 8.5, there are two required functions (addLiquidityETH and
swapETHForExactTokens) to check whether any extra ETH needs to be refunded to users.
Because the frontend of the DeFi app usually provides more ETH to make sure the liquidity requirement
is met, it is necessary to refund the extras.

We have declared all the preceding functions in the Solidity interface IAMMRouter to make the
implementation of AMMRouter follow the declaration; refer to its source code at https://
github.com/PacktPublishing/Building-Full-stack-DeFi-Application/
blob/chapter08-end/defi-apps/src/backend/contracts/interfaces/
IAMMRouter.sol.

We also created a Solidity interface for WETH, called IWETH, to make the AMMRouter smart
contract not depend on a specific implementation of WETH. The source file of the WETH interface
is located at https://github.com/PacktPublishing/Building-Full-stack-
DeFi-Application/blob/chapter08-end/defi-apps/src/backend/contracts/
interfaces/IWETH.sol.

In the next section, we will deep dive into the new code of the AMMRouter smart contract. The new
code will support the native token for the DEX we implemented in previous chapters.

Improving AMMRouter to support the native token

As we mentioned previously, AMMRouter implements all the functions for the frontend or users
to interact with to complete liquidity management and token swapping. To make the DEX support
native token for these tasks, we only need to add more code to AMMRouter by implementing the
new functions we just declared in IAMMRouter.sol.

First, let’s add a new parameter in the constructor of AMMRouter so that the contract knows the
deployed address of the WETH smart contract; we can add the following highlighted code to src/
backend/contracts/AMMRouter.sol:

address public immutable WETH;
...
constructor(address _factory, address _WETH) {
 factory = _factory;
 WETH = _WETH;
 initCodeHash =
 IPairFactory(factory).INIT_CODE_PAIR_HASH();
}

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter08-end/defi-apps/src/backend/contracts/interfaces/IAMMRouter.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter08-end/defi-apps/src/backend/contracts/interfaces/IAMMRouter.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter08-end/defi-apps/src/backend/contracts/interfaces/IAMMRouter.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter08-end/defi-apps/src/backend/contracts/interfaces/IAMMRouter.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter08-end/defi-apps/src/backend/contracts/interfaces/IWETH.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter08-end/defi-apps/src/backend/contracts/interfaces/IWETH.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter08-end/defi-apps/src/backend/contracts/interfaces/IWETH.sol

Refactoring smart contracts to support native tokens in a DEX 237

Now, we can implement the receive callback function so that AMMRouter can receive ETH from
the WETH smart contract:

// Enable AMMRouter to receive ETH
receive() external payable {
 // only accept ETH via fallback from the WETH contract
 assert(msg.sender == WETH);
}

For the receive callback function, the code only accepts the ETH transferred from WETH; if
AMMRouter receives ETH from other smart contacts, the transaction will be reverted.

Before implementing the code for adding liquidity, let’s refactor the AMMRouter smart contract by
moving the code in the first three steps of addLiquidity function into an internal function called _
addLiquidity, allowing both the addLiquidity function and the addLiquidityETH function to
use it. Here is the code for the implementation of the _addLiquidity and addLiquidity functions:

// Internal Add Liquidity Function
function _addLiquidity(address tokenA, address tokenB,
 uint256 amountADesired, uint256 amountBDesired,
 uint256 amountAMin, uint256 amountBMin) internal
 returns(uint256 amountA, uint256 amountB, address pair) {
 // Step 1: Create a pair if it doesn't exist
 if (IPairFactory(factory).getPair(tokenA, tokenB)
 == address(0)) {
 IPairFactory(factory).createPair(tokenA, tokenB);
 }

 // Step 2: Get Reserves of the pair of tokens
 uint256 reserveA;
 uint256 reserveB;
 (reserveA, reserveB, pair) = getReserves(tokenA, tokenB);

 // Step 3: Calculate the actual amounts for liquidity
 // Original code for step 3 is omitted ...
}

// Add Liquidity (After refactoring)
function addLiquidity(address tokenA, address tokenB,
 uint256 amountADesired, uint256 amountBDesired,
 uint256 amountAMin, uint256 amountBMin, address to,
 uint256 deadline) external ensure(deadline) returns
 (uint256 amountA, uint256 amountB, uint256 liquidity) {
 address pair;

Working with Native Tokens238

 // Step 1, 2, 3 implemented in _addLiquidity
 (amountA, amountB, pair) = _addLiquidity(
 tokenA, tokenB, amountADesired, amountBDesired,
 amountAMin, amountBMin);

 // Step 4: Transfer tokens from user to pair
 Helper.safeTransferFrom(tokenA, msg.sender, pair, amountA);
 Helper.safeTransferFrom(tokenB, msg.sender, pair, amountB);

 // Step 5: Mint and send back LP tokens to user
 liquidity = ITokenPair(pair).mint(to);
}

The addLiquidity function becomes more compact because part of the code is moved to the
_addLiquidity function.

With the preparation code we discussed in this section, we will implement the functions to support
the native token operations of the DEX, starting with the next section.

Implementing addLiquidityETH and removeLiquidityETH

Let’s now implement the addLiquidityETH function. Because the function knows that one of
the tokens is ETH, and msg.value gives its amount, we can save these two parameters within the
addLiquidityETH function as compared to addLiquidity function we implemented in Chapter 5,
Building Crypto-Trading Smart Contracts. Here is the source code of the addLiquidityETH function:

function addLiquidityETH(address token,
 uint256 amountTokenDesired, uint256 amountTokenMin,
 uint256 amountETHMin, address to, uint256 deadline)
 external payable ensure(deadline) returns (
 uint256 amountToken, uint256 amountETH,
 uint256 liquidity) {
 address pair;
 // Step 1, 2, 3 implemented in _addLiquidity
 (amountToken, amountETH, pair) = _addLiquidity(
 token, WETH, amountTokenDesired, msg.value,
 amountTokenMin, amountETHMin);

 // Step 4: Transfer token from user to pair
 Helper.safeTransferFrom(token, msg.sender, pair,
 amountToken);

 // Step 5: ETH is transferred to router, wrap the ETH

Refactoring smart contracts to support native tokens in a DEX 239

 IWETH(WETH).deposit{value: amountETH}();

 // Step 6: Transfer Wrapped ETH from router to pair
 assert(IWETH(WETH).transfer(pair, amountETH));

 // Step 7: Mint and send back LP tokens to user
 liquidity = ITokenPair(pair).mint(to);

 // Step 8: Refund user the ETH if the calculated ETH
 // amount is less than the amount sent to router
 if (msg.value > amountETH)
 Helper.safeTransferETH(msg.sender,
 msg.value - amountETH);
}

As shown in Figure 8.3, AMMRouter wrapped the ETH by calling the deposit function from the
WETH smart contract in step 5, and then the code sends the WETH to the instance of the TokenPair
smart contract (the liquidity pool) in step 6. After the liquidity pool tokens are minted to the liquidity
provider, the code refunds the user with the remaining dust of ETH.

Here, we use the IWETH solidity interface to access the functions of the WETH smart contract. You
need to import this file at the beginning of AMMRouter.sol:

import "./interfaces/IWETH.sol";

To implement the removeLiquidityETH function, we can call the removeLiquidity function
implemented in Chapter 5, Building Crypto-Trading Smart Contracts. However, we should not ask
TokenPair to transfer the tokens from the liquidity pool to the user directly if one of the tokens
is ETH, as the liquidity pool only can transfer out ERC20 tokens. The code will use AMMRouter
as the intermediary to receive the token removed from the liquidity pool, unwrap the WETH
(the ERC20 token) to ETH, and then transfer the ETH back to the user. Here is the code for the
removeLiquidityETH function:

function removeLiquidityETH(address token,
 uint256 liquidity, uint256 amountTokenMin,
 uint256 amountETHMin, address to, uint256 deadline
) public ensure(deadline) returns (
 uint256 amountToken, uint256 amountETH) {
 // Step 1, 2, 3 implemented in removeLiquidity, and
 // router will hold the tokens removed from liquidity
 (amountToken, amountETH) = removeLiquidity(token, WETH,
 liquidity, amountTokenMin, amountETHMin,
 address(this), deadline);

Working with Native Tokens240

 // Step 4: Transfer token from router to the user
 Helper.safeTransfer(token, to, amountToken);

 // Step 5: Unwrap the ETH
 IWETH(WETH).withdraw(amountETH);

 // Step 6: Transfer ETH from router to the user
 Helper.safeTransferETH(to, amountETH);
}

The preceding code first calls removeLiquidity to burn the LP tokens and transfer the tokens
removed from liquidity to address(this), which is the instance of AMMRouter. Then, the
removeLiquidityETH function calls safeTransfer to transfer the ERC20 token to the user, and
withdraw to unwrap the WETH and transfer the ETH to the user by calling safeTransferETH.

Note
The safeTransfer and safeTransferETH functions are two new functions we implemented
in this chapter. These two functions follow the same design principles by checking the return
code from Solidity’s low-level call function. You can check the code of these functions at
https://github.com/PacktPublishing/Building-Full-stack-DeFi-
Application/blob/chapter08-end/defi-apps/src/backend/contracts/
libraries/Helper.sol for reference.

Next, we will dive into the implementation of the swapping function for ETH.

Implementing token-swapping functions to support ETH

Now, we will discuss four new functions to support swapping ERC20 tokens with ETH. These four
functions look similar. We will discuss two functions together simultaneously so that we can compare
the differences. We also encourage you to read the comments in the code to understand the workflow
of each function.

For the first part of this section, let’s take a look at the two functions that swap ETH with other ERC20
tokens. Here is the implementation of the swapExactETHForToken function:

// Swapping for token by specifying spending amount of ETH
function swapExactETHForTokens(uint256 amountOutMin,
 address[] calldata path, address to, uint256 deadline
) external payable ensure(deadline) returns (
 uint256[] memory amounts) {
 require(path[0] == WETH, "INVALID_PATH");

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter08-end/defi-apps/src/backend/contracts/libraries/Helper.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter08-end/defi-apps/src/backend/contracts/libraries/Helper.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter08-end/defi-apps/src/backend/contracts/libraries/Helper.sol

Refactoring smart contracts to support native tokens in a DEX 241

 // Step 1: Calculate the output amounts from the
 // beginning of the path
 amounts = getAmountsOut(msg.value, path);
 require(amounts[amounts.length - 1] >= amountOutMin,
 "INSUFFICIENT_OUTPUT_AMOUNT");

 // Step 2: Wrap the ETH
 IWETH(WETH).deposit{value: amounts[0]}();

 // Step 3: Transfer the wrapped ETH to the first pair
 assert(IWETH(WETH).transfer(Helper.pairFor(factory,
 path[0], path[1], initCodeHash), amounts[0]));

 // Step 4: Swap through the path for each pair with the
 // amounts
 _swap(amounts, path, to);
}

The swapExactETHForToken function requires the caller to specify the exact amount of ETH
as the input cryptocurrency. We will discuss the highlighted code (the call to the getAmountsOut
function) later. The following code is for the swapETHForExactTokens function, which also
requires ETH as the input cryptocurrency, but the exact amount of ETH does not need to be specified:

// Swapping with ETH by specifying the receiving amount of
// token
function swapETHForExactTokens(uint256 amountOut,
 address[] calldata path, address to, uint256 deadline
) external payable ensure(deadline) returns (
 uint256[] memory amounts) {
 require(path[0] == WETH, "INVALID_PATH");

 // Step 1: Calculate the input amounts from the end of
 // the path
 amounts = getAmountsIn(amountOut, path);
 require(amounts[0] <= msg.value, "EXCESSIVE_INPUT_AMOUNT");

 // Step 2: Wrap the ETH
 IWETH(WETH).deposit{value: amounts[0]}();

 // Step 3: Transfer the wrapped ETH to the first pair
 assert(IWETH(WETH).transfer(Helper.pairFor(factory,
 path[0], path[1], initCodeHash), amounts[0]));

 // Step 4: Swap through the path for each pair with the

Working with Native Tokens242

 // amounts
 _swap(amounts, path, to);

 // Step 5: Refund user the ETH if the calculated ETH
 // amount is less than the amount sent to router
 if (msg.value > amounts[0])
 Helper.safeTransferETH(msg.sender, msg.value - amounts[0]);
}

The preceding two functions look similar to each other; they both require the payable keyword
because they allow the user to transfer ETH to the smart contract when calling the function. In order to
get the exact amount of token for spending or receiving, the swapExactETHForTokens function
calls the getAmountsOut function to get the output amount of tokens along the swapping path,
whereas the swapETHForExactTokens function calls the getAmountsIn function to get the
input amount of tokens along the swapping path.

As we summarized in the table (Figure 8.5) in the previous section, the swapETHForExactTokens
function requires an additional step to refund the user the extra ETH, as the given msg.value may
not be the exact ETH amount for the swapping operation.

You may ask, what address should I provide for ETH in path for the second parameter when calling
the preceding two functions? The answer is, the deployed address of the WETH smart contract. The
reason for this is that only WETH is acceptable in the liquidity pool, and the address of the WETH
token will help the code to traverse the token pairs along the path.

Because the pool of the ETH/TOKEN pair is identical to the pool of the WETH/TOKEN pair (where
TOKEN is a symbol that represents any ERC20 token) in the same DEX, a user can either spend ETH
or WETH to purchase TOKEN. If a user wants to spend ETH to make the purchase, they can call the
swapExactETHForTokens or swapETHForExactTokens function. If the user wants to spend
WETH, they can call the swapExactTokensForTokens or swapTokensForExactTokens
functions, which are for ERC20 tokens.

For the second part of this section, let’s implement the two swapTokensForExactETH and
swapExactTokensForETH functions to receive ETH when swapping with ERC20 tokens. Let’s
take a look at the swapTokensForExactETH function first:

// Swapping with token by specifying the receiving amount
// of ETH
function swapTokensForExactETH(uint256 amountOut,
 uint256 amountInMax, address[] calldata path,
 address to, uint256 deadline)
 external ensure(deadline) returns (
 uint256[] memory amounts) {
 require(path[path.length - 1] == WETH, "INVALID_PATH");

Refactoring smart contracts to support native tokens in a DEX 243

 // Step 1: Calculate the input amounts from the end of
 // the path
 amounts = getAmountsIn(amountOut, path);
 require(amounts[0] <= amountInMax, "EXCESSIVE_INPUT_AMOUNT");

 // Step 2: Transfer the token to the first pair of the
 // path
 Helper.safeTransferFrom(path[0], msg.sender,
 Helper.pairFor(factory, path[0], path[1],
 initCodeHash), amounts[0]);

 // Step 3: Swap through the path for each pair with the
 // amounts
 _swap(amounts, path, address(this));

 // Step 4: Unwrap WETH (turn it into ETH)
 IWETH(WETH).withdraw(amounts[amounts.length - 1]);

 // Step 5: Transfer ETH to the user
 Helper.safeTransferETH(to, amounts[amounts.length - 1]);
}

The preceding swapTokensForExactETH function swaps from the amount of the ERC20 token
to the exact amount of ETH. Let’s implement the next function, swapExactTokensForETH,
first before we explain the preceding highlighted code. The swapExactTokensForETH function
doesn’t specify the exact amount of ETH to receive; instead, it allows user to specify the exact amount
of the ERC20 token to spend:

// Swapping for ETH by specifying the spending amount of
// token
function swapExactTokensForETH(uint256 amountIn,
 uint256 amountOutMin, address[] calldata path,
 address to, uint256 deadline
) external ensure(deadline) returns (
 uint256[] memory amounts) {
 require(path[path.length - 1] == WETH, "INVALID_PATH");

 // Step 1: Calculate the output amounts from the
 // beginning of the path
 amounts = getAmountsOut(amountIn, path);
 require(amounts[amounts.length - 1] >= amountOutMin,
 "INSUFFICIENT_OUTPUT_AMOUNT");

 // Step 2: Transfer the token to the first pair of the

Working with Native Tokens244

 // path
 Helper.safeTransferFrom(path[0], msg.sender,
 Helper.pairFor(factory, path[0], path[1],
 initCodeHash), amounts[0]);

 // Step 3: Swap through the path for each pair with the
 // amounts
 _swap(amounts, path, address(this));

 // Step 4: Unwrap WETH (turn it into ETH)
 IWETH(WETH).withdraw(amounts[amounts.length - 1]);

 // Step 5: Transfer ETH to the user
 Helper.safeTransferETH(to,
 amounts[amounts.length - 1]);
}

The main difference between the preceding two swapTokensForExactETH and
swapExactTokensForETH functions is that the first function calls getAmountsIn to get
input amounts for each pair from the end to the beginning of path, as the exact amount of receiving
ETH is known, whereas the second function calls getAmountsOut to get output amounts from
the beginning of path to the end.

Another important thing to note is that when calling the internal _swap function, the destination
where the token is received from the last pair is address(this), rather than the to parameter
of the function. This is explained in Figure 8.4, where the token pair only stores ERC20 tokens in
the reserve. Once the ETH is requested, the WETH should be transferred to AMMRouter first,
and then AMMRouter calls the withdraw function to unwrap the WETH into ETH and calls
safeTransferETH to transfer the ETH to the user.

Now, we have completed the new functions in AMMRouter to support native token ETH. For the full
source of AMMRouter.sol, please refer to the file in the GitHub repository for this book: https://
github.com/PacktPublishing/Building-Full-stack-DeFi-Application/
blob/chapter08-end/defi-apps/src/backend/contracts/AMMRouter.sol.

The last thing to do is update the deployment script for the constructor change of AMMRouter. In
the main function of scripts/deploy.js, we should make sure that the WETH smart contract
is deployed prior to the AMMRouter smart contract, passing the deployed address of WETH to the
constructor when creating the instance of AMMRouter.

For the completed source code of the deployment script for this chapter, refer to the file located
at https://github.com/PacktPublishing/Building-Full-stack-DeFi-
Application/blob/chapter08-end/defi-apps/scripts/deploy.js.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter08-end/defi-apps/src/backend/contracts/AMMRouter.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter08-end/defi-apps/src/backend/contracts/AMMRouter.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter08-end/defi-apps/src/backend/contracts/AMMRouter.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter08-end/defi-apps/scripts/deploy.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter08-end/defi-apps/scripts/deploy.js

Implementing the DEX frontend for the native token 245

Well done! We have completed the smart contract improvements to support the native token of the DEX.

In the next section, we will talk about the implementation of the frontend to support ETH for liquidity
management and token swapping.

Implementing the DEX frontend for the native token
In this section, we will dive into the frontend of the DEX to explore how we support ETH, the native
token of Ethereum, by interacting with the smart contracts we implemented in the last section. The
first question for the frontend implementation is how could we represent ETH as a token object in
the JavaScript code.

Remember that in Chapter 6, Implementing a Liquidity Management Frontend with Web3 we introduced
a new function called getTokeInfo in src/frontend/utils/Helper.js. It returns the
token objects by providing the token addresses. Each token object contains the following four fields –
address, name, symbol, and decimals. However, the native token doesn’t have the deployment
address. Here, we should consider using the deployed WETH address as the native token. We should
make the frontend code, which requires including ETH and WETH as the two initial tokens in the
token list of the token selection modal dialog, ensuring that the liquidity provisioning and token-
swapping pages allow the user to select ETH and WETH from the list.

Let’s open the source code file of the TokenSelectModal component (src/frontend/
components/TokenSelectModal/index.js) and edit the first line of the
getSupportedTokens function to put the two objects for ETH and WETH in the _tokens
array variable:

const getSupportedTokens = useCallback(async () => {
 // The native coin of EVM and its wrapped form
 const _tokens = [{
 address: WETH.address,
 name: 'Ether',
 symbol: 'ETH',
 decimals: 18
 }, {
 address: WETH.address,
 name: 'Wrapped ETH',
 symbol: 'WETH',
 decimals: 18
 }];
 ...
}, []);

Working with Native Tokens246

Note that the name and symbol of the preceding two token objects are different. By leveraging the setup
for ETH and WETH, users can see both ETH and WETH in the list when the TokenSelectModal
component appears, as shown in Figure 8.6.

Figure 8.6 - The TokenSelectModel component with newly added ETH and WETH

You may see token pairs such as ETH/BTC instead of WETH/BTC on other DEXs, although the
underlying liquidity smart contracts own WETH, not ETH. The pair name implies that people can
get both ETH and WETH from the liquidity pool. If we want to show ETH and not WETH on the
token pair, like other DEXs, we can add a return shortcut (highlighted in the following code block)
for ETH in the getTokenInfo function of src/frontend/utils/Helper.js:

export const getTokenInfo = async (address) => {
 let name = "Unknown", symbol = "Unknown", decimals = 18;
 if (address === WETH.address) {
 // Shortcut for Ether
 return { address, name: "Ether", symbol: "ETH",
 decimals: 18 };
 }
 try {
 ...
 } catch (error) {
 console.error(error);
 }
 return { address, name, symbol, decimals };
}

Implementing the DEX frontend for the native token 247

Before implementing the native token support for liquidity management and token swapping features,
we need another helper function, called isETH, to check whether a token object is for ETH or not. If
it returns true, we will call the function specific for ETH (e.g., the addLiquidityETH function)
to access the liquidity pool that holds wrapped ETH. If it returns false, we will call the function
specific for ERC20 (e.g., the addLiquidity function). The isETH function is implemented in
the same Helper.js file:

// Check if a token object is ETH
export const isETH = token => {
 return token.address === WETH.address && token.symbol === 'ETH';
}

By utilizing this preparation work for the native token, we will now add code to the liquidity management
and token-swapping pages.

Supporting the native token in the liquidity management pages

In this section, we will explore how to support the native token (ETH) in the liquidity management pages.

First, let’s take a look at the AddLiquidity.js liquidity provisioning page that we implemented
in Chapter 6, Implementing a Liquidity Management Frontend with Web3. Upon reviewing the code
of this web page source file, we can see that there are three things on the page we need to update to
support ETH:

• Check balance: We may need to access the balance of an account, but the balanceOf function
of the ERC20 token isn’t compatible with ETH. We can use getBalance from the ethers.js
library to get the ETH balance of the account.

• Check allowance: For ERC20 tokens, liquidity provisioning requires us to check whether a
user allows AMMRouter to transfer an amount of a token from their account. This is because
EVM-based blockchain doesn’t allow somebody else to spend ETH of the current account,
and it requires a user to send the ETH proactively. Therefore, the allowance check for ETH is
not required.

• Adding liquidity: The liquidity provisioning page will call the new AddLiquidityETH
function of the AMMRouter smart contract we implemented in the Refactoring smart contracts to
support native tokens in a DEX section. This allows users to provide liquidities with ETH directly.

Based on the preceding bullet points, let’s first improve the code to check the balance first. We can locate
the getBalances function in src/frontend/features/Liquidity/AddLiquidity.
js and refactor the code in the try section with the following content:

if (isETH(tokenA)) {
 const _balanceA = await library.getBalance(account);
 setBalanceA(Number(ethers.utils.formatUnits(_balanceA)));

Working with Native Tokens248

} else {
 // Put original code for Token A here
}
if (isETH(tokenB)) {
 const _balanceB = await library.getBalance(account);
 setBalanceB(Number(ethers.utils.formatUnits(_balanceB)));
} else {
 // Put original code for Token B here
}

The refactoring uses if...else... statements to check whether any of the selected tokens is
ETH. If any of the two selected tokens (tokenA and tokenB) is ETH, the code calls library.
getBalance(account) to get the balance of each token. Otherwise, the function uses the original
code for ERC20 tokens in the else sections.

To check the allowance for the provisioned tokens, we need to skip the operation by setting the React
component state variable (allowA or allowB) to true if any of the two selected tokens is ETH
in the checkAllowances function. Here, we only need to update the code in the try section:

if (isETH(tokenA)) {
 setAllowA(true);
} else {
 // Put original code for Token A here
}
if (isETH(tokenB)) {
 setAllowB(true);
} else {
 // Put original code for Token B here
}

By setting the state variable to true using setAllowA and setAllowB, the user can proceed to
provide the liquidity without checking the allowance for ETH. Also, we need to modify the onChange
event handler of the TextField components when the user types the amount, by adding the
following highlighted code:

const handleChange = (e) => {
 ..
 if (id === 'tokenA') {
 ...
 setAvailableBalance(
 tmpVal <= balanceA && _amountB <= balanceB);
 setAllowA(isETH(tokenA) || allowAmountA >= tmpVal);

Implementing the DEX frontend for the native token 249

 setAllowB(isETH(tokenB) || allowAmountB >= _amountB);
 } else {
 ...
 setAvailableBalance(
 _amountA <= balanceA && tmpVal <= balanceB);
 setAllowA(isETH(tokenA) || allowAmountA >= _amountA);
 setAllowB(isETH(tokenB) || allowAmountB >= tmpVal);
 }
}

The last function for liquidity provisioning that we need to refactor is the code to interact with the
AMMRouter smart contract. Let’s add the isETH conditional check for tokenA and tokenB in
the handleAddLiquidity function to create a transaction:

let tx;
if (isETH(tokenA)) {
 tx = await ammRouter.addLiquidityETH(tokenB.address,
 ethers.utils.parseUnits(toString(amountB),
 tokenB.decimals), 0, 0, account, deadline,
 { value: ethers.utils.parseUnits(toString(amountA)) });
} else if (isETH(tokenB)) {
 tx = await ammRouter.addLiquidityETH(tokenA.address,
 ethers.utils.parseUnits(toString(amountA),
 tokenA.decimals), 0, 0, account, deadline,
 { value: ethers.utils.parseUnits(toString(amountB)) });
} else {
 // The original code to call addLiquidity(...)
 tx = await ammRouter.addLiquidity(tokenA.address,
 tokenB.address, ethers.utils.parseUnits(
 toString(amountA), tokenA.decimals),
 ethers.utils.parseUnits(toString(amountB),
 tokenB.decimals), 0, 0, account, deadline);
}

The preceding code calls addLiquidityETH to add ETH and another ERC20 token to the
liquidity pool when either tokenA or tokenB is ETH. When calling addLiquidityETH, the
code transfers the amount of ETH using msg.value, by defining the msg object as { value:
<some_ETH_amount> }.

Working with Native Tokens250

Similar to the AddLiquidity.js page, we need to refactor the code in src/frontend/
features/Liquidity/RemoveLiquidity.js with the removeLiquidityETH function,
for the user to receive ETH while removing liquidity. Here in the new code, we use isETH for a
conditional check and create a liquidity removal transaction with removeLiquidityETH if the
condition is true:

let tx;
if (isETH(tokenA)) {
 tx = await ammRouter.removeLiquidityETH(tokenB.address,
 ethers.utils.parseUnits(toString(amount)), 0, 0,
 account, deadline);
} else if (isETH(tokenB)) {
 tx = await ammRouter.removeLiquidityETH(tokenA.address,
 ethers.utils.parseUnits(toString(amount)), 0, 0,
 account, deadline);
} else {
 // The original code to call removeLiquidity(...)
 tx = await ammRouter.removeLiquidity(tokenA.address,
 tokenB.address, ethers.utils.parseUnits(
 toString(amount)), 0, 0, account, deadline);
}

Note
Don’t forget to import the isETH function from src/frontend/utils/Helper.js
in AddLiquidity.js and RemoveLiquidity.js.

Now, we have completed the code for the liquidity management pages. You can try to start the web
application with the npm start command, and then you can manage the liquidity pools with the
pages shown in Figure 8.7.

Implementing the DEX frontend for the native token 251

Figure 8.7 – Screenshots of the pages for liquidity provisioning, removal, and listing

In the next section, we will discuss how to integrate the native token for token swapping, and also
implement the ETH wrapping and unwrapping feature on the token-swapping page.

Supporting the native token on the token-swapping page

The token-swapping page is the page where you can buy one token with another token. The native
token (ETH) introduced in this chapter does not only allow a user to swap ETH with regular ERC20
tokens but also allows them to convert between ETH and WETH. When swapping ETH with regular
ERC20 tokens (excluding WETH), the four new functions in AMMRouter are used. When swapping
between ETH and WETH, the code needs to call the deposit or withdraw function from the
WETH smart contract. In this section, we will explore this topic by implementing code for these features.

Refactoring the handleSwap function

If you take a look at the AMMRouter smart contract we have implemented so far, we have implemented
six functions for token swapping. Let’s summarize the conditions to use these six functions in the
following table.

Function implemented
in AMMRouter

Conditions to call

Spend ETH? Receive ETH? Spend
exact amount

Receive
exact amount

swapExactETHForTokens Yes No Yes No

swapETHForExactTokens Yes No No Yes

swapExactTokensForETH No Yes Yes No

Working with Native Tokens252

Function implemented
in AMMRouter

Conditions to call

Spend ETH? Receive ETH? Spend
exact amount

Receive
exact amount

swapTokensForExactETH No Yes No Yes

swapExactTokensForTokens No No Yes No

swapTokensForExactTokens No No No Yes

Figure 8.8 – The conditions to call the six functions for swapping tokens

Using the summarized conditions in the preceding table, let’s refactor the code of the handleSwap
function in src/frontend/features/Swap/index.js to use these functions to create
token-swapping transactions:

let tx;
if (isETH(tokenA)) {
 tx = await (tokenIndex === indexTokenA ?
 ammRouter.swapExactETHForTokens(
 ethers.utils.parseUnits(toString(amountB * 0.9),
 tokenB.decimals), bestPath, account, deadline, {
 value: ethers.utils.parseUnits(toString(amountA),
 tokenA.decimals)}) :
 ammRouter.swapETHForExactTokens(
 ethers.utils.parseUnits(toString(amountB),
 tokenB.decimals), bestPath, account, deadline, {
 value: ethers.utils.parseUnits(
 toString(amountA * 1.1), tokenA.decimals)}));
} else if (isETH(tokenB)) {
 tx = await (tokenIndex === indexTokenA ?
 ammRouter.swapExactTokensForETH(
 ethers.utils.parseUnits(toString(amountA),
 tokenA.decimals), ethers.utils.parseUnits(
 toString(amountB * 0.9), tokenB.decimals),
 bestPath, account, deadline) :
 ammRouter.swapTokensForExactETH(
 ethers.utils.parseUnits(toString(amountB),
 tokenB.decimals), ethers.utils.parseUnits(
 toString(amountA * 1.1), tokenA.decimals),
 bestPath, account, deadline));
} else {
 // Original code to create token swapping transactions
 tx = await (tokenIndex === indexTokenA ?

Implementing the DEX frontend for the native token 253

 ammRouter.swapExactTokensForTokens(
 ethers.utils.parseUnits(toString(amountA),
 tokenA.decimals), ethers.utils.parseUnits(
 toString(amountB * 0.9), tokenB.decimals),
 bestPath, account, deadline) :
 ammRouter.swapTokensForExactTokens(
 ethers.utils.parseUnits(toString(amountB),
 tokenB.decimals), ethers.utils.parseUnits(
 toString(amountA * 1.1), tokenA.decimals),
 bestPath, account, deadline));
}

For the conditional check, the preceding code uses isETH to check whether the spending token or
receiving token for swap is ETH or not, using the tokenIndex state variable to check which side
specified the exact amount. As we mentioned in Chapter 7, Implementing a Token-Swapping Frontend
with Web3 we set the minimum receiving amount as 90% of the amount showing in the second
TextField component on the swapping page, and we set the maximum spending amount as 110% of
the amount showing in the first TextField component. If extra ETH is transferred to AMMRouter
(when calling swapETHForExactTokens), the remaining ETH will be refunded to the user.

Note
For extra ERC20 tokens whose amounts are specified in the function arguments, the AMMRouter
smart contract will just transfer the required amount, rather than transferring all the specified
amount. The smart contract doesn’t require you to refund ERC20 tokens in this case.

Next, we will talk about the three modes of the token-swapping page.

The three modes – swap, wrap, and unwrap

Now, let’s discuss the implementation of wrapping and unwrapping on the token-swapping page.
When a user wants to swap ETH for WETH or WETH for ETH, the frontend code doesn’t require
you to call AMMRouter to do swapping through a path of token addresses; instead, it will call the
deposit function or the withdraw function of the WETH smart contract.

In order to illustrate the different behaviors of swapping, wrapping and unwrapping, let’s define the
three modes with the following three constant variables in src/frontend/features/Swap/
index.js:

const MODE_SWAP = 0;
const MODE_WRAP = 1;
const MODE_UNWRAP = 2;

Working with Native Tokens254

The code will determine the mode when two tokens on the swapping page are selected. If both selected
token objects have the same address and the address is for the deployed WETH smart contract, the
mode will be MODE_WRAP or MODE_UNWRAP; otherwise, it will be MODE_SWAP. Now, we can set the
swap mode by refactoring the selectToken function. Here is the new version of the selectToken
function; the newly added code is highlighted:

const [swapMode, setSwapMode] = useState(MODE_SWAP);

const selectToken = (_tokenA, _tokenB) => {
 if (Object.keys(_tokenA).length > 0 &&
 Object.keys(_tokenB).length > 0) {
 ...
 if (_tokenA.address === _tokenB.address) {
 if (_tokenA.address === WETH.address &&
 _tokenA.symbol !== _tokenB.symbol) {
 if (isETH(_tokenA)) {
 setSwapMode(MODE_WRAP);
 } else {
 setSwapMode(MODE_UNWRAP);
 }
 } else {
 // The original code
 resetToken();
 toast.error('The selected tokens are identical, please select
another token!');
 return;
 }
 } else {
 ...
 setSwapMode(MODE_SWAP);
 setPaths(_paths);
 }
 }
 // Remaining original code of this function is omitted
 ...
}

After the modes are set, we can use these variables to implement the logic of swapping page for
different modes.

Next, we will discuss the refactoring of the code to show price and price impact, since the code is
impacted by introducing the three modes.

Implementing the DEX frontend for the native token 255

Refactoring the UI code to show price and price impact

From the WETH smart contract, we have learned that the amount of WETH a user gets is the same
as the amount of ETH the user has deposited. On the other hand, the amount of ETH a user gets
from unwrapping is the same amount of WETH the user has withdrawn. Because the price of ETH
and WETH are always the same, the exchange rate for ETH and WETH is always at a ratio of 1:1, no
matter the amount of WETH or ETH provided for the wrap or unwrap transaction.

Based on the preceding conclusion, let’s modify the code in the Collapse component of the token-
swapping page with the following highlighted code, the new code will show that the exchange rate
between ETH and WETH is always 1:1:

<Collapse in={price > 0 || swapMode !== MODE_SWAP}
 sx={{ my: 2 }} >
 {swapMode === MODE_SWAP ? <>
 <!-- The original code to show the price, price impact and the
best path -->
 </> : <Typography>
 The exchange rate from {swapMode === MODE_WRAP
 ? "ETH to WETH" : "WETH to ETH"} is always 1:1
 </Typography>}
</Collapse>

The wrapping and unwrapping operations don’t rely on the swapping path we mentioned in Chapter 7,
Implementing a Token-Swapping Frontend with Web3. We can show the spending and receiving amounts
immediately without accessing the reserve data on the chain when exchanging between ETH and
WETH. Let’s refactor the handleChange function so that the amount can be reflected in another
TextField component with the amount state variable, whenever we type in one of TextField
components. The new code added to the function is highlighted in the following code:

const handleChange = (e) => {
 ...
 if (id === 'tokenA') {
 setAmountA(tmpVal);
 if (swapMode !== MODE_SWAP) {
 setAmountB(tmpVal);
 }
 setTokenIndex(indexTokenA);
 } else if (id === 'tokenB') {
 setAmountB(tmpVal);
 if (swapMode !== MODE_SWAP) {
 setAmountA(tmpVal);
 }
 setTokenIndex(indexTokenB);

Working with Native Tokens256

 }
}

By providing the spending or receiving amount, we don’t have to call smart contracts to access on-chain
data. In the onBlur event handler of the two TextField components, the code is unnecessary to
call getReceivingAmount() and getSpendingAmount() when the swapMode is not equal
to MODE_SWAP, as we know that the spending and receiving amounts are the same as each other for
MODE_WRAP and MODE_UNWRAP. Here is the UI code for the updated onBlur handler functions:

<TextField sx={{ mt: 1 }} id="tokenA"
 label="The amount to spend" value={amountA}
 onChange={handleChange}
 onBlur={
 () => swapMode === MODE_SWAP && getReceivingAmount()}
/>
...
<TextField sx={{ mt: 1 }} id="tokenB"
 label="The amount to receive" value={amountB}
 onChange={handleChange}
 onBlur={
 () => swapMode === MODE_SWAP && getSpendingAmount()}
/>

Similarly, the code in the handleMax function needs to skip calling getReceivingAmount
when the MAX button is clicked if the current mode is not MODE_SWAP:

const handleMax = () => {
 setAmountA(balanceA);
 setTokenIndex(indexTokenA);
 if (swapMode === MODE_SWAP) {
 getReceivingAmount(balanceA);
 } else {
 setAmountB(balanceA);
 }
}

With the preceding change, both the spending amount and receiving amounts will be set to the balance
of the spending token once the MAX button is clicked.

Next, we will discuss how to refactor the UI code to check an allowance and get balances.

Implementing the DEX frontend for the native token 257

Refactoring the UI code to check an allowance and get balances

When the spending token for swapping is the native token (ETH), the page should skip checking the
allowance for ETH because ETH doesn’t have the transferFrom function to allow a user to transfer
ETH from another account. In the first line of the checkAllowance function, add isETH(tokenA)
in the condition check to make the function return immediately once the spending token is ETH:

const checkAllowance = useCallback(async () => {
 if (!tokensSelected || isETH(tokenA)) {
 return;
 }
 ...
}

Meanwhile, we need the new condition that shows the Enable <Token> button at the bottom part
of the page:

{allowAmount < amountA
 && swapMode === MODE_SWAP && !isETH(tokenA) ?
 <Button sx={theme.component.primaryButton} fullWidth
 onClick={() => handleApprove()}>
 {loading ? <CircularProgress sx={{ color: 'white' }} />
 : `Enable ${tokenA.symbol}`}
 </Button> : ... }

The preceding code will show the Enable <Token> button when swapMode is MODE_SWAP and
the spending token is not ETH.

The getBalances function of the token-swapping page need to be refactored as well because
when one of the selected tokens is ETH, we need another way to get the balance, as ETH is not
an ERC20 token. This function will get the balances for both of the selected tokens, and the code
inside the try block needs to check whether any of the selected token is ETH and call library.
getBalance(account) to fetch the ETH balance of the account:

const getBalances = useCallback(async () => {
 ...
 try {
 if (isETH(tokenA)) {
 const _balanceA = await library.getBalance(account);
 setBalanceA(
 Number(ethers.utils.formatUnits(_balanceA)));
 } else {
 // Original code for getting balance of token A
 ...
 }

Working with Native Tokens258

 if (isETH(tokenB)) {
 const _balanceB = await library.getBalance(account);
 setBalanceB(
 Number(ethers.utils.formatUnits(_balanceB)));
 } else {
 // Original code for getting balance of token B
 ...
 }
 } catch (error) {
 ...
 }
}, [account, library, tokenA, tokenB, tokensSelected]);

Note that in the preceding code we didn’t use the decimals field of the to call ethers.utils.
formatUnits because this function uses the ETH’s decimal value, 18, as default. You can also use
ethers.utils.formatEther in this case, which has the same effect.

Implementing the function to handle wrapping and unwrapping

The last and most important function to implement is interacting with the WETH smart contract
and performing wrapping and unwrapping. We know from previous discussions in this chapter that
calling the deposit function will wrap ETH in WETH, and the withdraw function will convert
WETH back to ETH.

On the token-swapping page (src/frontend/features/Swap/index.js), let’s implement
the handleWrap function to deal with wrapping and unwrapping:

const handleWrap = async () => {
 setLoading(true);
 try {
 const contract = new ethers.Contract(WETH.address,
 WETHABI.abi, library.getSigner());
 const tx = await (swapMode === MODE_WRAP ?
 contract.deposit({ value:
 ethers.utils.parseUnits(toString(amountA)) }) :
 contract.withdraw(
 ethers.utils.parseUnits(toString(amountA))));
 await tx.wait();
 toast.info(`${swapMode === MODE_WRAP ? "wrap" :
 "unwrap"} succeeded! Transaction Hash: ${tx.hash}`);
 setAmountA(0);
 setAmountB(0);
 await getBalances();
 } catch (error) {

Implementing the DEX frontend for the native token 259

 toast.error(getErrorMessage(error,
 `Cannot perform ${swapMode === MODE_WRAP ? "wrap" :
 "unwrap"} !`));
 console.error(error);
 }
 setLoading(false);
}

After implementing the handleWrap function, we can let the UI code call the function when clicking
the WRAP button or the UNWRAP button. Here, we can use the same Button component of the
existing SWAP button for this purpose; now, the code for the SWAP button we added in Chapter 7,
Implementing a Token-Swapping Frontend with Web3 will be refactored like this:

<Button disabled={amountA <= 0 || amountB <= 0 ||
 balanceA < amountA || loading} fullWidth
 sx={theme.component.primaryButton}
 onClick={() =>
 swapMode === MODE_SWAP ? handleSwap() : handleWrap()}>
 {loading ?
 <CircularProgress sx={{ color: 'white' }} /> :
 (balanceA < amountA ? "Insufficient Balance" :
 (swapMode === MODE_SWAP ? "Swap" :
 (swapMode === MODE_WRAP ? "Wrap" : "Unwrap")))}
</Button>

When wrapping ETH or unwrapping WETH, it is not necessary to reload the graph for swapping, so
we can skip this step when the mode is not MODE_SWAP in useEffect() of this page component:

useEffect(() => {
 if (!graph && swapMode === MODE_SWAP) {
 initGraph();
 }
 if (active) {
 checkAllowance();
 getBalances();
 }
}, [active, checkAllowance, getBalances, graph, initGraph,
 swapMode]);

Now, we have completed the refactoring of the token-swapping page by supporting wrapping and
unwrapping. If you start the web application by running npm start, you can select ETH and
WETH for the two tokens on the token-swapping page and perform wrapping or unwrapping, as
shown in Figure 8.9.

Working with Native Tokens260

Figure 8.9 – A screenshot of the new token-swapping page when ETH and WETH are selected

Now, we have completed the implementation of the UI code to support all native token-related
operations for a DEX. For the completed code used in this chapter, check out the project code in the
chapter08-end branch located at https://github.com/PacktPublishing/Building-
Full-stack-DeFi-Application/tree/chapter08-end.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/tree/chapter08-end
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/tree/chapter08-end

Summary 261

Summary
In this chapter, we explored how to support native tokens in a DEX, refactoring the smart contracts
and UI code to support the native token for liquidity management and token-swapping features. We
learned how to use the WETH smart contract to wrap ETH get WETH, which is the ERC20 form
of ETH, and use the same smart contract to convert WETH back to ETH. We explored the new
functions (addLiquidityETH and removeLiquidityETH) in the AMMRouter smart contract
that are added to support liquidity provisioning with ETH, and we looked at liquidity removal to get
ETH by leveraging WETH liquidity pools. We also added the four swapExactETHForTokens,
swapETHForExactTokens, swapTokensForExactETH, and swapExactTokensForETH
functions in the AMMRouter smart contract to perform swapping with ETH.

The approaches we have learned in the chapter should inspire you to implement native token support
for other types of DeFi applications. When we build other DeFi applications in this book, such as
token staking and crypto-loans, supporting native tokens is a must-have feature.

In the next chapter, we will start discussing token staking and yield farming and learn how they work.
These two features are two popular ways to incentivize people to deposit tokens or liquidity in smart
contracts to earn more.

Part 3:
Building a DeFi Application for

Staking and Yield Farming

In this part, we will discuss the design and implementation of staking and yield farming functionalities.
Staking and yield farming are the two most popular types of DeFi applications for users to generate
passive income. By reading this part, you will learn how to build a smart contract for staking and yield
farming, and how to interact with the smart contract using frontend code.

This part has the following chapters:

• Chapter 9, Building Smart Contracts for Staking and Farming

• Chapter 10, Implementing a Frontend for Staking and Farming

9
Building Smart Contracts

for Staking and Farming

Staking is a type of incentive mechanism for users to gain extra tokens as a reward. As we discussed
in the Overview of DeFi applications section in Chapter 1, Introduction to DeFi staking is a generic
team that covers all mechanisms that can generate passive income, whereas yield farming is a specific
type of staking whose staked tokens are liquidity pool (LP tokens). It encourages liquidity pool
growth and stabilizes the price impact for DEX trading. For some DeFi projects, staking has reduced
its scope, whose staked tokens are non-LP tokens. By leveraging staking and yield farming, a crypto
project can encourage people to buy the token for staking or provide liquidity for it, which will help
reduce the selling pressure of the token.

In this chapter, we will use the term farming to simplify the term yield farming.

Although staking and farming are two different features, they share the same principle: deposit a
standardized token (for example, an ERC-20 token) to a smart contract and get the same or another
standardized token as the reward. It means both staking and farming can use the same set of operations,
and the reward calculation method is the same. In this chapter, we will introduce the principles of
staking and farming and create a staking pool smart contract to support both operations. By reading
this chapter, you will learn about the following:

• The architectures of staking and farming

• The reward calculation of staking and farming

• How to implement a staking pool smart contract

• How to verify staking pool smart contracts

Building Smart Contracts for Staking and Farming266

Understanding the architectures of staking and farming
Both staking and farming require users to deposit an amount of token to get a reward. A user should
provide the staked token when depositing and get back an amount of the staked token (principal),
plus an amount of the reward token (interest), when withdrawing the staked token. There are various
types of designs on the market for staking and farming. In this section, we will demonstrate these
architectures and discuss their characteristics.

Two types of architectures for staking

Generally speaking, a staking or farming smart contract holds amounts of staked tokens and/or
reward tokens and provides the interfaces for users to deposit and withdraw those tokens. Similar
to liquidity pools in DEX, the smart contracts for staking or farming are also called staking pools
or farming pools. The reward tokens can be held in the same smart contract of staked tokens or a
different smart contract. As a result, it populates two types of staking and farming architectures for
building smart contracts.

The first type of architecture (Type I) stores both staked tokens and reward tokens in the same smart
contract. Usually, there is a deployer smart contract to deploy new staking pools with a staking
term such as reward rate, staking period, staked token, or reward token. This architecture offers the
maximum flexibility to support both staking and farming, even if the reward token is the same as the
staked token. Figure 9.1 shows an architecture diagram of this type, which holds both staked tokens
and reward tokens in a specific smart contract. Here, the owner of the platform can create several
staking smart contracts with given pairs of staked tokens and reward tokens:

Figure 9.1 – The architecture for staked and reward tokens are in the same smart contract

Understanding the architectures of staking and farming 267

In Figure 9.1, every user interacts with an individual staking pool smart contract to deposit a staked
token and withdraw it. When the user withdraws the principals, they can get the reward token as well.
In this chapter, we will build the staking and farming smart contract with the Type 1 architecture.

Note
For a given staked token and reward token pair, more than one staking pool smart contract
instance is required for this pair. As an example, you can create a staking pool with a lower interest
rate and create another staking pool with a higher interest rate with the same pair of tokens.

The second type of architecture (Type II) stores reward tokens in a separate smart contract and puts
all the staked tokens into one single smart contract that manages multiple pools. The architecture is
a good choice when the reward tokens for all of these pools are the same type of token, and the token
requires unified governance in the reward pool. For example, PancakeSwap leverages the Syrup pool
to manage CAKE tokens as the rewards for all farming pools. This means that when the staking reward
is generated, the staking pool smart contract mints several reward tokens to a separate reward pool
(or Syrup pool) smart contract. Figure 9.2 shows the architecture diagram for the Type II architecture:

Figure 9.2 – The architecture for using a reward pool for all reward tokens

Building Smart Contracts for Staking and Farming268

Figure 9.2 shows the architecture of using a separated reward pool smart contract for holding all
reward tokens of one kind. In the staking pool smart contract on the left-hand side, there are several
pools within a smart contract. The smart contract maintains the data structure of every staking term,
such as staked token, staking period, or reward allocation ratio for the pool. When implemented
with Solidity, the architecture usually uses struct to store staking terms for the pools. At the time
of reward generation, it will call the mint function of the reward token to generate rewards in the
reward pool smart contract. When a user withdraws the staked token, the reward token is sent from
the reward pool smart contract to the user’s wallet.

In Figure 9.2, you may have noticed that we can mint tokens as a reward, so the service of staking could
last forever, so long as the mint function is not disabled. However, it will increase the total supply of
the token and cause inflation. The staking terms and the reward token supply are highly relevant. If
the token supply is endless, the staking terms can last forever. For the reward tokens that have a fixed
supply without mint functions, we may consider a staking term with a fixed period.

Nowadays, a lot of crypto projects launch tokens without a mint function to prevent inflation. They
can supply reward tokens by transferring the token to the reward pool or the staking smart contracts
that hold the reward tokens instead of minting. Meanwhile, due to the availability of the reward token,
the supply of reward tokens may not be infinite. Thus, staking or farming usually defines staking terms
and how many tokens can be distributed to the reward pool for every time unit. This methodology
can make reward supply predictable, and the owners of staking pools can calculate the parameters in
the staking terms based on the available token amount.

In Solidity, we can use block.timestamp to get the timestamp of the current block. However,
block.timestamp is not an ideal time unit for calculating staking rewards because the timestamp
value is for the block, not for the time when the transaction happens. The miner can package multiple
transactions that happen at different times into one block, so the value of block.timestamp would
be the same for these transactions. Based on these facts, most of the popular staking smart contracts
use the block number (block.number in Solidity) as the time unit to calculate the reward amount.

In the next section, we will discuss how to calculate the reward amount based on the block number
and other parameters. The formula we’ll discuss in the next section applies to both architectures we’ve
discussed in this section.

Calculating the reward for staking and farming
So far, we’ve learned that the block number is the time unit for reward calculation. The more blocks
generated after a user deposits the staked token, the more reward the user can earn, so long as the
staking term hasn’t ended and the deposit amount doesn’t change. In this section, we will dive into
the mathematics of reward calculation. The staking pool smart contract will use the formulas and
parameters that we will discuss in this section.

Calculating the reward for staking and farming 269

Reward per block, starting block, and ending block

When deploying the staking smart contract, the deployer should plan for the staking terms based
on how many reward tokens the deployer can offer. Here, we need to set each staking pool with the
following three parameters:

• Reward per block: The total amount of reward tokens distributed to all users who participate
in the staking

• Starting block: The starting block number of the staking period

• Ending block: The ending block number of the staking period

The maximum required reward token amount can be defined as follows:

 MaxRewardTokenAmount = RewardPerBlock * (EndingBlock − StartingBlock)

For example, the reward per block is 100, the starting block is at block 1,000, and the ending block is
at block 1,500, so the maximum reward token amount is 100 x (1,500 – 1,000) = 50,000.

Here, we call the product of RewardPerBlock * (EndingBlock − StartingBlock) as the maximum required
reward token amount. It means the actual required amount could be less than this amount, which
happens when there is no staked token in the smart contract for one or more blocks between the
starting block and the ending block. Figure 9.3 shows an example for this case:

Figure 9.3 – Example to calculate the actual reward requirement

In the example shown in Figure 9.3, the staking pool has a starting block number of 101 and an ending
block number of 109. This means that the staking period covers eight blocks, as shown in the dotted
box in Figure 9.3. The ending block (109) is not included in the period defined by the blocks. If the
reward per block is 100 tokens, the maximum required reward token amount is 100 x (109 – 101) =
800 tokens. However, there are no staked tokens in the staking pool at blocks 101, 102, and 105. We
need to supply reward tokens for the five remaining blocks. As a result, the actual required reward
token amount is 100 x 5 = 500 tokens.

Building Smart Contracts for Staking and Farming270

Note
Because the reward per block is a fixed number after the staking period has started, the reward
for each block paid to the users doesn’t change, regardless of how many staked tokens are
deposited to the staking pool or how many users engaged in the staking pool. In the preceding
case, if 10 users have staked tokens in one block within the staking period, and those 10 users
share the staking reward of 100 tokens of the block in total.

By using the aforementioned formula to calculate MaxRewardTokenAmount , we can determine
RewardPerBlock for creating staking using available reward token amount:

 RewardPerBlock = AvailableRewardAmount * AvgBlockGenerationTime ____________________________________ StakingTime

Here, we have the following:

• AvgBlockGenerationTime is how long the blockchain takes to generate a new block in average

• StakingTime is the length of the staking period

For example, if you have one million reward tokens, AvgBlockGenerationTime is 12 seconds and
StakingTime is 30 days (or 2,592,000 seconds), so you need to set RewardPerBlock = 1000000 * 12 _ 2592000 ≈ 4.6
tokens for the staking pool smart contract based on the reward token balance.

Note
You can check the block generation rate through block browsers. For example, you can refer to
https://etherscan.io/chart/blocktime for the time chart of block generation
time for Ethereum.

Share, reward per share, and reward debt

Now, let’s switch from the administrator’s point of view to the users’ point of view for the staking pool,
since a staking pool usually has multiple users. If there is only one user for the staking pool, all the
rewards will be paid to the user. If there are multiple users, we need to allocate the reward based on
the share owned by each user. The more share a user owns, the more reward the user can get. This is
the rough formula to calculate the reward to be paid to each user:

 RewardAmount = ShareAmount * RewardPerShare

In the staking pool smart contract, ShareAmount is the amount of staked tokens. To calculate the
accumulated reward amount for a user, we need to sum up RewardAmount based on the share for
each user (ShareAmount) and reward per share (RewardPerShare) for all the blocks generated in the
staking period:

 RewardAmount = ∑
i=start

end

 ShareAmount i * RewardPerShare i

https://etherscan.io/chart/blocktime

Calculating the reward for staking and farming 271

The preceding formula calculates the total reward amount for the staking period defined from the
start block to the end block. The reward per share for a block, RewardPerShare i , is defined as follows:

 RewardPerShare i = RewardPerBlock ______________ TotalShareAmount i

In this case, we have the following formula to define the reward amount for the user:

 RewardAmount = ∑
i=start

end

 ShareAmount i * RewardPerBlock

 ______________________ TotalShareAmount i

Note
 RewardPerBlock cannot be updated during the staking period defined by the start block to an
end block.

In blockchain, it is unnecessary to sum up and update the reward amounts for every block. We can
adopt the lazy calculation to save gas, as this calculation can be done within a transaction called by the
user who deposits or withdraws the staked tokens. This is because the deposit or withdrawal transaction
may change the value of ShareAmount i and TotalShareAmount i . Let’s say that a deposit or withdrawal
transaction happens at block b 1 , and later, another deposit or withdrawal transaction happens at block
b 2 . Here, the reward amount generated between the two blocks for the user will be as follows:

 RewardAmount =
ShareAmount * RewardPerBlock * (b 2 − b 1)

 _____________________________ TotalShareAmount 1,2

Here, TotalShareAmount 1,2 is the total share amount in the staking pool smart contract between b 1 and
b 2 (b 2 is exclusive because the total share amount has been updated since b 2). If another transaction
happens after b 2 – for example, the user withdraws the staked token at block b 3 – the user will get the
reward amount with the following formula:

 RewardAmount =
ShareAmount * RewardPerBlock * (b 2 − b 1)

 _____________________________ TotalShareAmount 1,2
 +

ShareAmount * RewardPerBlock * (b 3 − b 2)
 _____________________________ TotalShareAmount 2,3

Based on this discuss, we can get the following formula of reward amount for multiple transactions:

 RewardAmount m,n = ShareAmount * RewardPerBlock ∑
i=m

n−1

 b i+1 − b i _______________ TotalShareAmount i,i+1

If we define the accumulated reward per share with AccRewardPerShare , to calculate its value from
block m to block n (m < n), we can use the following formula:

 AccRewardPerShare m,n = RewardPerBlock ∑
i=m

n−1

 b i+1 − b i _______________ TotalShareAmount i,i+1

We can use this formula to calculate the reward for any user at the time of paying the reward. Suppose
the user deposits ShareAmount of staked token at block m and withdraws all the amount at block n.
In this case, the user will get the following reward amount:

 RewardAmount = ShareAmount * AccRewardPerShare m,n

Building Smart Contracts for Staking and Farming272

We need to calculate the accumulated reward per share (AccRewardPerShare m,n) in the following instances:

• No earlier than the start block but before the end block

• When the staked token amount is greater than 0

Let’s define the number of the reward starting block as b start and the reward ending block as b end . A
user is depositing S hareAmount of tokens at block m and withdrawing all the tokens at block n, where
start ≤ m < n ≤ end . We can calculate the reward for the user with the following formula:

 RewardAmount = ShareAmount * AccRewardPerShare m,n = ShareAmount * (AccRewardPerShare start,n
− AccRewardPerShare start,m) = ShareAmount * AccRewardPerShare start,n − ShareAmount *
AccRewardPerShare start,m

To simplify the smart contract’s gas utilization, we will not store AccRewardPerShare at every transaction
when its value is changed, so we introduced a variable called RewardDebt for every user whenever a
deposit or withdraw operation is happening for this user so that only the value of AccRewardPerShare
for the most recent block is needed in the smart contract. The reward debt at block m for the user who
holds ShareAmount of the staked token can be calculated with the following formula:

 RewardDebt m = ShareAmount * AccRewardPerShare start,m

Note
RewardDebt is not the real debt a user owes to the smart contract. It represents how much
reward the user will be paid less than another user who staked the tokens for a longer time. For
example, both Tom and Alice deposit Bitcoin in a staking pool and they expect to get USDT
as a reward. Tom deposited 1 Bitcoin 1 year ago, while Alice deposited 1 Bitcoin 2 years ago.
Now, Tom can get 100 USDT as a reward, whereas Alice can get 200 USDT as a reward. Alice
expects to get more of a reward than Tom because she staked the Bitcoin for a longer time,
even though the share amount is the same (both deposited 1 Bitcoin). The reward debt for Tom
is greater than it is for Alice in this case because Tom has more reward tokens that need to be
deducted from the total reward pool.

Now, we can convert the formula to calculate the user’s RewardAmount with RewardDebt in the
smart contract:

 RewardAmount = ShareAmount * AccRewardPerShare start,n − RewardDebt m

Here, AccRewardPerShare start,n is the most recent value of accumulated reward per share when the user
withdraws the amount at block n. Note that block m is the block when ShareAmount was updated
last time.

With that, we have gone through the mathematical formulas for reward calculation and explained the
parameters we will use for the staking pool smart contract. We also know that block numbers play a
very important role in reward calculation. In the next section, we’ll dive into how to implement the
smart contract using the knowledge we’ve learned!

Implementing the staking pool smart contract 273

Implementing the staking pool smart contract
In this section, we will implement the staking pool smart contract for staking ERC-20 tokens; the token
can be an LP token (also known as farming) or something else (also known as staking). So, the smart
contract code that we will explain in this section can be used for both farming and staking purposes.

To be able to follow along, we encourage you to pull the code from the chapter09-start branch
in this book’s GitHub repository at https://github.com/PacktPublishing/Building-
Full-stack-DeFi-Application/.

Defining smart contract variables and implementing
a constructor

We’ll start by creating a file that’s located at src/backend/contracts/StakingPool.sol
for the staking pool smart contract and implement the following code to define the global variables
and the UserInfo struct for the smart contract:

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

contract StakingPool is Ownable, ReentrancyGuard {
 using SafeERC20 for ERC20;

 // Accrued token per share;
 uint256 public accTokenPerShare;

 // The block number when reward starts
 uint256 public rewardStartBlock;

 // The block number when reward ends
 uint256 public rewardEndBlock;

 // The block number of the last update for the pool
 uint256 public lastRewardBlock;

 // Token reward per block
 uint256 public rewardPerBlock;

 // The precision factor

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/

Building Smart Contracts for Staking and Farming274

 uint256 public immutable PRECISION_FACTOR;

 // The reward token
 ERC20 public rewardToken;

 // The staked token
 ERC20 public stakedToken;

 // The total amount of staked token, aka. share amount
 uint256 public stakedTokenSupply;

 // User info for staked tokens and reward debt
 mapping(address => UserInfo) public userInfo;

 struct UserInfo {
 uint256 amount; // How many token staked
 uint256 rewardDebt; // Reward debt
 }
}

The preceding code block is self-explanatory when looking at the comments. When defining the
StakingPool smart contract, we make it inherit from Ownable because there are some privilege
operations (such as updating the values of rewardPerBlock, rewardStartBlock, and
rewardEndBlock) that can only be run by the owner. The StakingPool smart contract is also
inherited from ReentrancyGuard because we will use the nonReentrant modifier to prevent
reentrant access to stakedTokenSupply and accTokenPerShare when the deposit and
withdraw functions are called.

The preceding code uses SafeERC20 from the OpenZeppelin library for the ERC-20 token because
it implements the safeTransfer and safeTransferFrom functions, both of which we will
use in the smart contract.

In the last part of this code, we define the UserInfo struct, which stores the amount of staked tokens
and reward debt for every user. Each wallet address that deposits staked tokens to the smart contract
has an entry in the mapping object. This helps the code access the UserInfo struct efficiently.

Now, let’s implement the constructor of the StakingPool smart contract to initialize these variables:

constructor(ERC20 _stakedToken, ERC20 _rewardToken,
 uint256 _rewardPerBlock, uint256 _rewardStartBlock,
 uint256 _rewardEndBlock) {
 stakedToken = _stakedToken;
 rewardToken = _rewardToken;

Implementing the staking pool smart contract 275

 rewardPerBlock = _rewardPerBlock;
 rewardStartBlock = _rewardStartBlock;
 rewardEndBlock = _rewardEndBlock;

 // Decimals of reward token
 uint256 decimalsRewardToken = rewardToken.decimals();
 require(decimalsRewardToken < 30,
 "Decimals of reward token must be less than 30");
 PRECISION_FACTOR = 10**(30 - decimalsRewardToken);

 // Set the last reward block as the start block
 lastRewardBlock = rewardStartBlock;
}

The constructor initializes the contract variables with the values from the constructor’s parameters.
Then, it calculates PRECISION_FACTOR based on the decimal number of reward tokens for the
precision of floating-point numbers for calculating the reward amount. For example, if the reward
per share is 0.2, which means a user will get 0.2 reward tokens for every staked token, it could be
rounded to 0 because there is no floating number; this is built into Solidity. So, we have to use a big
number defined by PRECISION_FACTOR, which is of the uint256 type, to improve the precision.

If we run with the preceding code for a reward token with a decimal number of 18, the value of
PRECISION_FACTOR will be 1012. The reward per share of 0.2 could be represented as 0.2 x 1012
= 200,000,000,000 with uint256 as its type. Later in this section, you will see (user.amount *
accTokenPerShare) / PRECISION_FACTOR being used to calculate the actual reward by
making PRECISION_FACTOR the denominator.

The last line of the constructor sets lastRewardBlock to the value of rewardStartBlock to
prevent unnecessary pool updates before the staking term has started. We will discuss how to update
the pool parameters in the next part of this section.

Updating the parameters for the staking pool

So far, we have learned that the accumulated token per share of accTokenPerShare will be updated
when the deposit and withdraw functions are called. This is an important variable to calculate
the reward amount for every user. Let’s create a dedicated internal function called _updatePool
to update these variables for every deposit or withdraw transaction:

/*
 * Update accTokenPerShare and lastRewardBlock
 */
function _updatePool() internal {
 if (block.number <= lastRewardBlock) {

Building Smart Contracts for Staking and Farming276

 return;
 }
 if (stakedTokenSupply == 0) {
 lastRewardBlock = block.number;
 return;
 }
 uint256 reward = rewardPerBlock *
 _getMultiplier(lastRewardBlock, block.number);
 accTokenPerShare += (reward * PRECISION_FACTOR) /
 stakedTokenSupply;
 lastRewardBlock = block.number;
}

The preceding code calculates accTokenPerShare based on the formula we mentioned in the
Calculating the reward for staking and farming section. It calculates the total reward token amount
generated from the lastRewardBlock number to the current block number (block.number),
then calculates accTokenPerShare by adding the result of dividing the total reward with the total
number of shares in stakedTokenSupply.

The _getMultiplier function returns the value of b i+1 − b i in the formula. It will be multiplied by
rewardPerBlock to calculate the reward generated for these blocks. When calculating the number
of blocks for a staking period, we also need to consider the starting block (rewardStartBlock)
and the ending block (rewardEndBlock) in the staking term. Figure 9.4 shows three cases for the
_getMultiplier function, which calculates the number of blocks for rewards.

Please note that the restriction of rewardStartBlock ≤ lastRewardBlock ≤ block . number is always
true when we call _getMultiplier based on the code in the constructor and the _updatePool
function. There is no such case for fromBlock or toBlock before rewardStartBlock:

Implementing the staking pool smart contract 277

Figure 9.4 – Three cases of calculating the number of blocks for the reward

Based on the three cases shown in Figure 9.4, let’s implement the _getMultiplier function for
the StakingPool smart contract:

/*
 * Return number of blocks for reward (the multiplier)
 */
function _getMultiplier(uint256 _from, uint256 _to)
 internal view returns (uint256) {
 if (_to <= rewardEndBlock) {
 // case 1:
 return _to - _from;
 } else if (_from >= rewardEndBlock) {
 // case 3:
 return 0;

Building Smart Contracts for Staking and Farming278

 } else {
 // case 2:
 return rewardEndBlock - _from;
 }
}

With the functions implemented in the preceding code, we can continue to implement the deposit
and withdraw functions of the smart contract.

Implementing the deposit and withdraw functions

Users of the StakingPool smart contract can call the deposit function to stake the token and
call the withdraw function to unstake the token and receive the reward token. Before implementing
these two functions, we need to consider the following two cases:

• Depositing staked tokens when the user has already staked an amount of tokens

• Partial withdrawal of staked tokens

For these two cases, we will calculate the current pending rewards to be paid to the user before the
deposit or withdrawal operation. The pending reward calculation will use the total staked amount of
the block before the current block. To calculate the pending rewards with the up-to-date information,
the code will update the values of accTokenPerShare and lastRewardBlock by calling
the _updatePool function. Once this information has been updated, the pending rewards will be
calculated and paid to the user.

In the next step, the remaining staked token amount (user.amount) for the user is updated, so the
user’s rewardDebt will be reset and the reward calculation for this user will start from the current
block. This workflow will use the formula we discussed in Section 9.2 to calculate the rewards to be
paid to the user:

 RewardAmount = ShareAmount * AccRewardPerShare start,n − RewardDebt m

Please note that AccRewardPerShare start,n is a floating number that is calculated with accTokenPerShare/
PRECISION_FACTOR in Solidity.

We must use the following formula to calculate rewardDebt; this will be used in future blocks:

 RewardDebt m = ShareAmount * AccRewardPerShare start,m

Let’s implement the deposit and withdraw functions by implementing the following code in the
StakingPool smart contract:

event Deposit(address indexed user, uint256 amount);
event Withdraw(address indexed user, uint256 amount);
...
/*

Implementing the staking pool smart contract 279

 * Deposit staked token and collect reward tokens (if any)
 */
function deposit(uint256 _amount) external nonReentrant {
 UserInfo storage user = userInfo[msg.sender];
 _updatePool();
 if (user.amount > 0) {
 uint256 pendingReward =
 (user.amount * accTokenPerShare) /
 PRECISION_FACTOR - user.rewardDebt;
 if (pendingReward > 0) {
 rewardToken.safeTransfer(
 address(msg.sender), pendingReward);
 }
 }
 if (_amount > 0) {
 user.amount += _amount;
 stakedTokenSupply += _amount;
 stakedToken.safeTransferFrom(address(msg.sender),
 address(this), _amount);
 }
 user.rewardDebt = (user.amount * accTokenPerShare) /
 PRECISION_FACTOR;
 emit Deposit(msg.sender, _amount);
}

/*
 * Withdraw staked tokens and collect reward tokens
 */
function withdraw(uint256 _amount) external nonReentrant {
 UserInfo storage user = userInfo[msg.sender];
 require(user.amount >= _amount,
 "Insufficient amount to withdraw");
 _updatePool();
 uint256 pendingReward =
 (user.amount * accTokenPerShare) / PRECISION_FACTOR -
 user.rewardDebt;
 if (_amount > 0) {
 user.amount -= _amount;
 stakedTokenSupply -= _amount;
 stakedToken.safeTransfer(
 address(msg.sender), _amount);
 }
 if (pendingReward > 0) {

Building Smart Contracts for Staking and Farming280

 rewardToken.safeTransfer(
 address(msg.sender), pendingReward);
 }
 user.rewardDebt = (user.amount * accTokenPerShare) /
 PRECISION_FACTOR;
 emit Withdraw(msg.sender, _amount);
}

The preceding code follows the workflow we discussed previously. Meanwhile, the user who calls
the deposit or withdraw function is referred to as msg.sender in the code. We can get the
UserInfo struct with the address of msg.sender and update the amount and rewardDebt
values of the struct. When transferring tokens, the code uses the safe version of the transfer
functions from the SafeERC20 smart contract to make sure the deposit or withdraw function
can be reverted immediately on transfer failure.

With that, we have implemented the two major functions of the StakingPool smart contract.
Users can use this smart contract for farming and staking purposes. We will continue to implement
the remaining utility functions of the smart contract in the next part of this section.

Implementing the utility functions of the staking pool

Utility functions enable users to view pending rewards and allow the administrator to configure the
parameters of the staking pool. They provide the observability and manageability of the staking pool.
Let’s discuss these functions.

Viewing the pending reward

From the previous discussion, we know that the reward will be redeemed at the time of calling the
deposit or withdraw function. If a user wants to know the pending reward without calling these
two functions, we need to implement a getPendingReward function, which will be used to show
the pending reward. This information is very helpful to show on the frontend so that the user knows
how much they have earned. Here’s the code for the getPendingReward function:

/*
 * Get the pending reward of a user, this function is
 * called by frontend
 */
function getPendingReward(address _user) external view
 returns (uint256) {
 UserInfo storage user = userInfo[_user];
 if (block.number > lastRewardBlock &&
 stakedTokenSupply != 0) {

Implementing the staking pool smart contract 281

 uint256 reward = rewardPerBlock *
 _getMultiplier(lastRewardBlock, block.number);
 uint256 adjustedTokenPerShare = accTokenPerShare +
 (reward * PRECISION_FACTOR) / stakedTokenSupply;
 return (user.amount * adjustedTokenPerShare) /
 PRECISION_FACTOR - user.rewardDebt;
 } else {
 return (user.amount * accTokenPerShare) /
 PRECISION_FACTOR - user.rewardDebt;
 }
}

In the preceding code, we check whether the current block.number is greater than
lastRewardBlock and if stakedTokenSupply is greater than 0. If the condition is true,
it will recalculate the reward per share via adjustedTokenPerShare for the up-to-date rate of
reward token per share. If not, it will use the existing accTokenPerShare value to calculate the
reward amount.

Functions for configuring staking pool parameters

Once the StakingPool smart contract has been deployed, the code should allow administrators
to change the rewardPerBlock, rewardStartBlock, and rewardEndBlock parameters
of the staking pool. This change could be made before the starting block for the staking term. Here’s
the code for the updateRewardPerBlock function for updating rewardPerBlock:

event UpdateRewardPerBlock(uint256 rewardPerBlock);
...
/*
 * Update reward per block, only callable by owner
 */
function updateRewardPerBlock(uint256 _rewardPerBlock)
 external onlyOwner {
 require(block.number < rewardStartBlock,
 "Pool has started");
 rewardPerBlock = _rewardPerBlock;
 emit UpdateRewardPerBlock(_rewardPerBlock);
}

The preceding code will check whether the pool has started by comparing the current block number
with rewardStartBlock. If it’s not been started yet, it will update rewardPerBlock with the
parameter given. The code will emit the UpdateRewardPerBlock event at the end of the function.

Building Smart Contracts for Staking and Farming282

To update the reward starting block and ending block, let’s create the updateStartAndEndBlocks
function with the following code:

event UpdateStartAndEndBlocks(uint256 startBlock, uint256 endBlock);
...
/*
 * Update the reward start block and reward end block,
 * only callable by owner
 */
function updateStartAndEndBlocks(uint256 _rewardStartBlock,
 uint256 _rewardEndBlock) external onlyOwner {
 require(block.number < rewardStartBlock,
 "Pool has started");
 require(_rewardStartBlock < _rewardEndBlock,
 "New start block must be lower than new end block");
 require(block.number < _rewardStartBlock,
 "New start block must be higher than current block");
 rewardStartBlock = _rewardStartBlock;
 rewardEndBlock = _rewardEndBlock;

 // Set the lastRewardBlock as the new start block
 lastRewardBlock = rewardStartBlock;

 emit UpdateStartAndEndBlocks(
 _rewardStartBlock, _rewardEndBlock);
}

Similar to updateRewardPerBlock, the owner of the deployed smart contract should
call the updateStartAndEndBlocks function before the starting block. Meanwhile, the
updateStartAndEndBlocks function also needs to check whether the given end block comes after
the start block and the given start block comes after the current block. Besides updating the instance’s
rewardStartBlock and rewardEndBlock, the function also updates lastRewardBlock,
as we did in the constructor.

Stop rewards

Once the staking pool has started, the administrator may want to stop the staking process for several reasons
– or example, the staking terms need to be changed or the reward token is insufficient. In these cases,
we can set the reward end block to the current block by calling the following stopRewards function:

event StopRewards(uint256 blockNumber);
...
/*
 * Stop rewards, only callable by owner

Implementing the staking pool smart contract 283

 */
function stopRewards() external onlyOwner {
 rewardEndBlock = block.number;
 emit StopRewards(rewardEndBlock);
}

By calling the stopRewards function, the reward distribution calculation will stop at the current
block, so no reward will need to be paid starting from the current block.

Recover tokens

There could be a case where a user sends the wrong token to the smart contract because the smart contract
address is not a DeFi wallet address, so nobody can recover the token that’s been transferred to the smart
contract address if no helper function is provided. Now, let’s implement the recoverWrongTokens
function, which allows administrators to recover the tokens that are neither staked nor reward tokens:

event RecoverToken(address tokenRecovered, uint256 amount);
...
/*
 * The function allows owner to recover wrong tokens sent
 * to the contract
 */
function recoverWrongTokens(address _tokenAddress,
 uint256 _tokenAmount) external onlyOwner {
 require(_tokenAddress != address(stakedToken),
 "Cannot be staked token");
 require(_tokenAddress != address(rewardToken),
 "Cannot be reward token");
 ERC20(_tokenAddress).safeTransfer(
 address(msg.sender), _tokenAmount);
 emit RecoverToken(_tokenAddress, _tokenAmount);
}

The preceding code can transfer the token back to an administrator if the token is not a staked or
reward token. If somebody transfers an incorrect token to the smart contract, the administrator can
help recover the fund.

Note
We do not allow the administrator (the owner of the smart contract) to transfer the staked tokens
and reward tokens as this may cause a loss of funds for users. Even if somebody transferred
a staked or reward token to the smart contract by mistake, it is still very dangerous for the
administrator to transfer the token out. That is the reason we don’t support reward tokens and
staked tokens in the recoverWrongTokens function.

Building Smart Contracts for Staking and Farming284

With that, we have completed the smart contract for the staking pool. For the full source code of
StakingPool.sol, please refer to the file at https://github.com/PacktPublishing/
Building-Full-stack-DeFi-Application/blob/chapter09-end/defi-apps/
src/backend/contracts/StakingPool.sol.

Implementing the smart contract for staking pool management

To make managing multiple staking pools and farming pools easier, we need a smart contract to create
staking pools and fetch the existing staking pools. In this section, we will implement a smart contract
for staking pool deployment. Meanwhile, we will keep the created staking pools in an array so that
the UI code can access the deployed staking pool addresses from the array.

Let’s create a file at src/backend/contracts/StakingPoolManager.sol for the
StakingPoolManager smart contract and implement the smart contract with the following code:

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "./StakingPool.sol";

// Smart contract to deploy staking pools and
// maintain a list of staking pool
contract StakingPoolManager {
 address[] public stakingPools;
 event CreateStakingPool(address owner,
 address stakingPool);

 /*
 * Deploy a new staking pool
 */
 function createStakingPool(ERC20 _stakedToken,
 ERC20 _rewardToken, uint256 _rewardPerBlock,
 uint256 _rewardStartBlock, uint256 _rewardEndBlock)
 public returns (StakingPool) {
 StakingPool stakingPool = new StakingPool(
 _stakedToken, _rewardToken, _rewardPerBlock,
 _rewardStartBlock, _rewardEndBlock);
 stakingPool.transferOwnership(msg.sender);
 stakingPools.push(address(stakingPool));
 emit CreateStakingPool(msg.sender,
 address(stakingPool));
 return stakingPool;
 }

Implementing the staking pool smart contract 285

 /*
 * Get the address of all staking pools
 */
 function getAllStakingPools() public view returns
 (address[] memory) {
 return stakingPools;
 }
}

There are two main functions in this StakingPoolManager smart contract. The first function,
createStakingPool, calls the constructor of the StakingPool smart contract to create an
instance of a staking pool with the given parameters. After creation, the code sets the ownership to
msg.sender and adds the deployed address to the array named stakingPools. The second
function, getAllStakingPools, returns a list of addresses in the stakingPools array.

Next, let’s add the following highlighted line in the contractList array of scripts/deploy.
js for deploying the StakingPoolManager smart contract:

const contractList = [
 // "Contract Name", "Contract Factory Name"
 …
 " ["Staking Pool Mana"er", "StakingPoolManager"]
];

Now, we can try to start the local EVM with the npx hardhat node command and run npm
run deploy localhost to deploy the staking pool manager alongside other smart contracts. If
everything goes well, you should see Staking Pool Manager Contract Address appear
on the console when you run the deploy command:

$ npm run deploy localhost

> defi-apps@0.1.0 deploy
> npx hardhat run scripts/deploy.js --network "localhost"

Compiled 2 Solidity files successfully
Simple DeFi Token Contract Address:
0x5FbDB2315678afecb367f032d93F642f64180aa3
Meme Token Contract Address:
0xe7f1725E7734CE288F8367e1Bb143E90bb3F0512
Foo Token Contract Address: 0x9fE46736679d2D9a65F0992F2272dE9f3c7fa6e0
Bar Token Contract Address: 0xCf7Ed3AccA5a467e9e704C703E8D87F634fB0Fc9
Wrapped ETH Contract Address:
0xDc64a140Aa3E981100a9becA4E685f962f0cF6C9
Pair Factory Contract Address:
0x5FC8d32690cc91D4c39d9d3abcBD16989F875707

Building Smart Contracts for Staking and Farming286

AMM Router Contract Address:
0x0165878A594ca255338adfa4d48449f69242Eb8F
Staking Pool Manager Contract Address:
0xa513E6E4b8f2a923D98304ec87F64353C4D5C853
Deployer: 0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266
Deployer ETH balance: 9999990799045588260275

Note
We don’t have to deploy the StakingPool smart contract when running deploy.js because
the smart contract of StakingPoolManager has the compiled code for it and users can
call the createStakingPool function to deploy staking pools on demand.

Now that we have implemented all the smart contracts for staking and farming in this chapter, in the
next section, we will discuss how to verify these smart contracts with Hardhat.

Verifying staking pool smart contracts
Now, it is time to verify the smart contracts we have built in this chapter. Staking pool smart contracts
require us to generate new blocks in our development environment to verify the incremental rewards.
Before verifying the staking pool smart contracts, we will introduce a method in Hardhat to simulate
block mining for verifying our contracts.

Implementing the command to mine blocks with Hardhat

Hardhat has a powerful library to support mining blocks. They are very helpful for testing smart
contracts as they simulate the real blockchain environment. For mining blocks on EVM-compatible
blockchains with Hardhat, we can refer to Hardhat’s official documentation at https://hardhat.
org/hardhat-network-helpers/docs/overview.

Now, let’s create a new JavaScript file at scripts/mine.js for users to run for smart contract
verification. To make the script accept an argument as the number of blocks to be mined and make
the script run via the npm run command, we also need to import the task function from the
hardhat/config package. Here’s the code for mine.js:

const { mine } =
 require("@nomicfoundation/hardhat-network-helpers");
const { task } = require("hardhat/config");

task("mine", "Mine a few blocks with given argument")
 .addPositionalParam("blocks")
 .setAction(async (taskArgs) => {
 await mine(parseInt(taskArgs['blocks']));
});

Verifying staking pool smart contracts 287

With the preceding code, we have created a task named mine. This task also accepts a positional
parameter named blocks. The value of this parameter can be accessed via taskArgs['blocks'],
which represents the number of blocks to be mined. When the await mine(...) function is
called, the EVM will automatically mine these blocks. You can verify the block number increment by
calling ethers.provider.getBlockNumber() in JavaScript or the Hardhat console.

To make Hardhat recognize the task from mine.js, we need to add the following line to hardhat.
config.js:

require('./scripts/mine');

We must also add the following highlighted line to the scripts section of package.json:

"scripts": {
 ...
 «mine»: «npx hardhat mine $npm_config_blocks --network»
},

$npm_config_blocks means that the script will accept an argument named blocks from the
npm command line.

Once these changes have been made, we can run the npm run mine --blocks=N localhost
command to mine N blocks on the local EVM. We will use this command in the next part of this section.

Verifying staking pool smart contracts in the Hardhat console

At this point, we have all the tools we need to verify the staking pool smart contracts with Hardhat. For
verification purposes, we will use the Simple DeFi Token (SDFT) as the staked token and the Meme
Token (MEME) as the reward token for the staking pool. These two tokens were deployed together
with StakingPoolManager when we ran the npm run deploy localhost command in
the previous section.

Let’s start the Hardhat console with the npx hardhat console --network localhost
command and create three smart contract objects for the staked token, the reward token, and the
staking pool manager, respectively:

> simpleDeFiToken = await ethers.getContractAt("SimpleDeFiToken",
"0x5FbDB2315678afecb367f032d93F642f64180aa3")
> memeToken = await ethers.getContractAt("MemeToken",
"0xe7f1725E7734CE288F8367e1Bb143E90bb3F0512")
> stakingPoolManager = await ethers.
getContractAt("StakingPoolManager",
"0xa513E6E4b8f2a923D98304ec87F64353C4D5C853")

Building Smart Contracts for Staking and Farming288

Note
You can get the addresses of the deployed smart contracts from the output of the npx hardhat
console --network localhost command.

Next, let’s create a staking pool by calling createStakingPool and fetching the deployed instance
of the new StakingPool smart contract:

> await stakingPoolManager.
createStakingPool("0x5FbDB2315678afecb367f032d93F642f64180aa3",
"0xe7f1725E7734CE288F8367e1Bb143E90bb3F0512", "100000000000000000000",
10, 20);
...
> await stakingPoolManager.getAllStakingPools()
['0x9bd03768a7DCc129555dE410FF8E85528A4F88b5']

When calling the stakingPoolManager.createStakingPool function, we set the staked
token with the address of the SDFT and the reward token with the address of the MEME. We also set
the reward per block to 100 MEME, which is 100,000,000,000,000,000,000 in wei. The starting block
number of the staking pool is 10, while the end block number is 20.

After deploying the new staking pool, we can verify the deployed smart contract by calling the
getAllStakingPools function. This function returns the address of the smart contract in the
list. We can create the staking pool object with this address by using the following command:

> stakingPool = await ethers.getContractAt("StakingPool",
"0x9bd03768a7DCc129555dE410FF8E85528A4F88b5")

Now, we want to deposit 100 SDFT into the staking pool. But before that, we need to approve the
staking pool for transfers by setting its allowance to 100 SDFT:

> await simpleDeFiToken.
approve("0x9bd03768a7DCc129555dE410FF8E85528A4F88b5",
"100000000000000000000")
> await stakingPool.deposit("100000000000000000000")

As shown in the console’s output, when we call the deposit function, it will show the current block
number in JSON format, as shown in Figure 9.5:

Verifying staking pool smart contracts 289

Figure 9.5 – The Hardhat console output for a transaction that shows the block number

If you’re not sure what the current block number is, you can also run the following command in the
Hardhat console:

> await ethers.provider.getBlockNumber()
11

With this, we know that the current block number is 11. This means that the staking period has
started! If you want to mine five blocks for the local EVM, you can open another console and run the
scripts/mine.js script with the following command:

$ npm run mine --blocks=5 localhost

To verify that the scripts/mine.js script works as expected, we can call the getBlockNumber
function again with the following command. The block number should now be 16:

> await ethers.provider.getBlockNumber()
16

At this point, we can verify that the pending reward should be 5 blocks x 100 per block = 500 with
the getPendingReward function:

> await stakingPool.
getPendingReward("0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266")
BigNumber { value: "500000000000000000000" }

Building Smart Contracts for Staking and Farming290

Great! Now, if we check what’s inside the UserInfo struct for the user (with the wallet address given
in the argument), we can use the following command:

> await stakingPool.
userInfo("0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266")
[
 BigNumber { value: "100000000000000000000" },
 BigNumber { value: "0" },
 amount: BigNumber { value: "100000000000000000000" },
 rewardDebt: BigNumber { value: "0" }
]

The preceding code shows that the staked amount is 100 SDFT and that rewardDebt is 0, which
is correct. Let’s transfer an amount of reward tokens to the smart contract so that the smart contract
can pay the earnings for users. Then, we’ll call deposit again to provide another 100 staked tokens:

> await memeToken.
transfer("0x9bd03768a7DCc129555dE410FF8E85528A4F88b5",
"1000000000000000000000")
> await simpleDeFiToken.
approve("0x9bd03768a7DCc129555dE410FF8E85528A4F88b5",
"100000000000000000000");
> await stakingPool.deposit("100000000000000000000")
{
 ...
 blockNumber: 19,
 transactionIndex: 0,
 confirmations: 1,
 from: '0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266',
 gasPrice: BigNumber { value: "94638388" },
 ...
}

By running the preceding commands, we provided 1,000 MEME as a reward, then we approved
another 100 SDFT as the transfer allowance. After, we deposited another 100 SDFT at block 19. We
expect to get (19 – 11) x 100 = 800 MEME transferred to the user’s wallet as the reward when calling
the deposit function. The total supply of MEME is 1,000,000,000, and we already supplied 1,000
MEME for reward, so the MEME balance of the current user should be 1,000,000,000 – 1,000 + 800
= 999,999,800. We can verify this by calling balanceOf of memeToken:

> await memeToken.
balanceOf("0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266")
BigNumber { value: "999999800000000000000000000" }

Verifying staking pool smart contracts 291

Now, we can verify whether amount and rewardDebt are updated correctly in the UserInfo
struct of the user:

> await stakingPool.
userInfo("0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266")
[
 BigNumber { value: "200000000000000000000" },
 BigNumber { value: "1600000000000000000000" },
 amount: BigNumber { value: "200000000000000000000" },
 rewardDebt: BigNumber { value: «1600000000000000000000» }
]

Based on the formula we discussed in the Calculating the reward for staking and farming section, we
have the following:

 RewardDebt m = ShareAmount * AccRewardPerShare start,m = ShareAmount *

RewardPerBlock * (m − start) ________________ TotalShareAmount start,m = 200 * 100 * 19 − 11 _ 100 = 1600 (Meme Token)

This is the same as the result shown in the console output (by converting wei into the token with a
decimal number of 18).

If we withdraw all the staked tokens right now, we can run the following command by providing the
amount of 200 tokens (200,000,000,000,000,000,000 in wei):

> await stakingPool.withdraw("200000000000000000000")
{
 ...
 blockNumber: 20,
 transactionIndex: 0,
 confirmations: 1,
 from: '0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266',
 ...
}

The preceding console output shows that the block number is 20, which is one block from the block
we checked before the transaction. So, we expect to get another 100 MEME. Let’s verify this with the
balanceOf function:

> await memeToken.
balanceOf("0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266")
BigNumber { value: "999999900000000000000000000" }

Building Smart Contracts for Staking and Farming292

Now, the balance of MEME is 999,999,900, which is 100 tokens more than we checked last time. If
we check the balance of the staked token, the balance of the current account should be 1,000,000,
which is the same as the original supply of SFDT because we have withdrawn all staked tokens from
the smart contract:

> await simpleDeFiToken.
balanceOf("0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266")
BigNumber { value: "1000000000000000000000000" }

Congratulations! We have verified the main workflows of the staking pool smart contract. In the next
chapter, we will use the verified functions to interact with the smart contract with UI code and build
a full-stack application for staking and farming.

Summary
This chapter introduced and implemented staking pool smart contracts. The smart contracts we have
implemented can be used for both staking normal tokens (non-LP tokens) and farming (LP tokens).
We also did a deep dive into the mathematical formulas for reward calculation and learned about the
concepts of accumulated reward per share and reward debt for reward calculation. We used these
formulas in our smart contract and implemented the functions of the smart contract. Finally, we
learned how to use Hardhat to simulate block mining and went through the verification process in
the Hardhat console.

In the next chapter, you will learn how to build the staking pages and farming pages for a DeFi
application with JavaScript and React. Because the pages of these two features are similar to each
other and they access the smart contracts similarly, we will deep dive into building the pages for
token staking by going through all the UI components. After, we will copy these components for the
farming pages and go through the differences by comparing them with the staking pages. By the end
of the next chapter, you will have learned how to build a full-stack feature for staking and farming.

10
Implementing a Frontend for

Staking and Farming

As discussed in Chapter 9, Building Smart Contracts for Staking and Farming staking and farming are
two DeFi features that incentivize users to hold cryptos and generate passive income. Although the
two features can share the same set of smart contracts, farming (or yield farming) is a special case
of staking that is for liquidity pool tokens (LP tokens). We have learned the principles and how to
implement smart contracts for staking and farming.

In this chapter, we will complete the two features by implementing the frontend. First, we will implement
the features for staking; the feature will only support common ERC20 tokens (non-LP tokens) as the
staked tokens and reward tokens. Then, we will reuse the majority of the frontend code for farming
(for a farming pool, the staked token is an LP token, and the reward token is a non-LP token). We
will also address the main differences between the two features in the frontend code.

By reading this chapter, you will learn how to implement the following:

• Implementing a staking pool listing dashboard

• Implementing pages for creating staking pools and supplying rewards

• Implementing frontend components for deposits, withdrawals, and harvesting

• Implementing the farming frontend

Overview of frontend pages for staking and farming
At the beginning of this chapter, we will walk through the structure of the frontend code and an
overview of the pages we are building in this section. Because they depend on the smart contracts that
we implemented in Chapter 9, Building Smart Contracts for Staking and Farming we encourage you
to follow the instructions in this chapter based on the completed code of Chapter 9, Building Smart
Contracts for Staking and Farming or you can pull the code from the chapter10-start branch
from the GitHub repository of this book.

Implementing a Frontend for Staking and Farming294

Similar to what we created for liquidity management pages in Chapter 6, Implementing a Liquidity
Management Frontend with Web3, the staking feature includes multiple pages. Each page can be
accessed via one of the URL routes defined in a React router component. Now, we need to create a
folder at src/frontend/features/Stake to accommodate the router component and other
pages for staking. Here are the six JavaScript files in this folder that we will create:

• StakeRouter.js: This is for the React router components for the sub-routes of staking.
You can refer to the source of this file at https://github.com/PacktPublishing/
Building-Full-stack-DeFi-Application/blob/chapter10-end/defi-
apps/src/frontend/features/Stake/StakeRouter.js. We will not dive into
the code for this file because it is similar to what we discussed in Chapter 6, Implementing a
Liquidity Management Frontend with Web3.

• ListStakingPools.js: This is for the staking pool listing dashboard page. This will show
the staking pool information in each accordion component and allow people to expand the
component to perform the actions. Some of the actions are required to navigate to the URLs
of the sub-routes.

• CreateStakingPool.js: This is for the create staking pools page. Once a pool is created,
it will be listed on the staking pool listing dashboard page.

• SupplyStakingReward.js: This is for the page where users supply staking rewards to
any staking pools. A user can use this page to transfer the reward token to the smart contract
instance of a staking pool, even is the staking pool was not created by the user.

• Deposit.js: This is for a page where users deposit the staked tokens for a specified staking pool.

• Withdraw.js: This is for the page where users withdraw the staked tokens for a specified
staking pool.

Important note
The pages for creating staking pools and supplying staking rewards are not open to the public
for most staking platforms. Only the admins of these platforms have the privileged permissions
to perform these smart contract operations. Non-admin users have to interact with the smart
contracts directly if they want to supply reward tokens.

In order to acquire enough reward tokens that will be distributed to users, the admins (the
owner of the staking platform) can ask the reward token holders to supply the reward-to-reward
pool or use the mint function of the reward tokens to add more token supply.

For farming pages, we have the same set of pages (which we will discuss in Section 10.4) that serve
the same set of purposes. Figure 10.1 shows the frontend source file structure for the staking feature
and farming feature that we are going to create in this chapter:

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter10-end/defi-apps/src/frontend/features/Stake/StakeRouter.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter10-end/defi-apps/src/frontend/features/Stake/StakeRouter.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter10-end/defi-apps/src/frontend/features/Stake/StakeRouter.js

Implementing a staking pool listing dashboard 295

Figure 10.1 – The frontend file structure for the staking and farming features in the workspace

For now, you can just create empty JavaScript files, as we highlighted in the screenshot in Figure 10.1.
We will implement these files one by one starting in the next section of this chapter.

Implementing a staking pool listing dashboard
In this section, we will create a staking pool listing dashboard, as shown in Figure 10.2:

Figure 10.2 – The UI for the staking pool listing dashboard

Implementing a Frontend for Staking and Farming296

Figure 10.2 shows a dashboard that lists all the staking pools with the staking terms of each pool. The
accordion component of each staking pool can be expanded for the user to interact with the staking
pool. At the top of the page, there is a check box to hide the expired pools. There is also a button at
the bottom of the page for users to create new staking pools.

Retrieve staking pools

The first process needed to build the staking pool listing dashboard is to retrieve all the staking pools.
We have learned from Chapter 9, Building Smart Contracts for Staking and Farming that there is a
getAllStakingPools function in the StakingPoolManager smart contract. We can use this
function to retrieve all the addresses of the staking pools. We can also access the deployed instances
of the StakingPool smart contract to get the staking terms, staked tokens, and reward tokens.

There is an extra step we need to take to fetch the list of staking pools. For token staking, we only need
to retrieve the staking pools for which the staked tokens are non-LP tokens (common ERC20 tokens).
This requires checking if the staked token is an instance of a TokenPair smart contract (the smart
contract of LP tokens) created via PairFactory. Once we have the list of LP token addresses from
the PairFactory smart contract, we can just let the UI show the staking pools for which the staked
token is not in the LP token address list.

In order to get all LP tokens by accessing PairFactory, let’s implement the getLiquidityPools
function in src/frontend/utils/Helper.js:

import FactoryABI from '../contracts/PairFactory.json';
import FactoryAddress from '../contracts/PairFactory-address.json';
import { TokenPairABI } from './TokenPairABI';
...
export const getLiquidityPools = async () => {
 const pools = new Map();
 try {
 const factory = new ethers.Contract(
 FactoryAddress.address, FactoryABI.abi, localProvider);
 const nPairs = await factory.allPairsLength();
 for (let i = 0; i < nPairs; i++) {
 const address = await factory.allPairs(i);
 const tokenPair = new ethers.Contract(address,
 TokenPairABI, localProvider);
 const tokenA = await getTokenInfo(await tokenPair.tokenA());
 const tokenB = await getTokenInfo(await tokenPair.tokenB());
 pools.set(address, { tokenA, tokenB });
 }
 } catch (error) {
 console.error(error);
 }

Implementing a staking pool listing dashboard 297

 return pools;
}

The code of the getLiquidityPools function mainly comes from the getLiquidity function
of src/frontend/features/Liquidity/ListLiquidity.js (when discussing how
to list all liquidity pools in Chapter 6, Implementing a Liquidity Management Frontend with Web3).
Instead of returning a list of objects for the LP tokens, the getLiquidityPools function returns
a Map object. It helps the caller to efficiently identify if an address is an address of an LP token. It uses
the has function of the Map object to do so. Once we have the Map object returned, we can use it to
check if a staked token is an LP token.

You may have noticed that the value of each key in the Map object is a pair of token objects (tokenA
and tokenB). It will help the frontend easily access the information of pooled tokens when we
implement the farming feature.

Let’s go back to the staking pool listing dashboard page src/frontend/features/Stake/
ListStakingPools.js. Now, we can use the smart contract functions in StakingPoolManager
and StakingPool to construct the state variable for staking pools to be shown on the dashboard.
The state variable is a list of objects that describe the staking terms, such as how many tokens are
staked and how many tokens have been earned for the connected account. Here, we implement the
getStakingPools function to get all staking pools, and here is the code for the main workflow
of the function:

const stakingPoolManager = new ethers.Contract(
ManagerAddress.address, ManagerABI.abi, signer);

// Get all staking pool addresses from staking pool manager
const stakingPools = await stakingPoolManager
 .getAllStakingPools();
const pools = [];
const liquidityPools = await getLiquidityPools();
for (const address of stakingPools) {
 const stakingPool = new ethers.Contract(address,
 StakingPoolABI, signer);
 const stakedTokenAddress = await stakingPool.stakedToken();
 if (liquidityPools.has(stakedTokenAddress)) {
 continue; // Skip farming pools
 }
 // Code to retrieve the following information of
 // the staking pool are omitted ...
 pools.push({address, rewardStartBlock,
 rewardEndBlock, rewardPerBlock, stakedToken,
 rewardToken, stakedAmount, pendingReward,
 stakedTotal});

Implementing a Frontend for Staking and Farming298

}
setStakingPools(pools);

The above code calls the getLiquidityPools function that we previously implemented to get
the map of LP tokens. The map helps us to check if a token is an LP token. If the staked token is an
LP token, liquidityPools.has(stakedTokenAddress) will return true. The code needs
to skip it from the staking pool list because the staked token of a staking pool cannot be an LP token.

In order to show the information on the staking pool listing dashboard, the page uses the
setStakingPools function to set the stakingPools state variable for storing the information
of the staking pools. Each object in the list contains the following fields:

• address: The smart contract instance address of the staking pool

• rewardStartBlock: The starting block number of the staking period

• rewardEndBlock: The ending block number of the staking period

• stakedToken: The object contains the token name, symbol, decimals, and the address for
the staked token of the staking pool

• rewardToken: The object contains the token name, symbol, decimals, and the address for
the reward token of the staking pool

• stakedAmount: The number of tokens staked in the staking pool for the connected account.

• pendingReward: The pending reward to be paid to the connected account

• stakedTotal: The total amount of tokens staked in the staking pool

As we can see from the code, we iterate through every staking pool we obtained from the staking
pool manager, and we can create the object using the above fields by accessing the functions in the
StakingPool smart contract and calling getTokenInfo to get the information on ERC20 tokens.
Once we have retrieved a list of staking pool objects, we are ready to represent these objects to the UI.

Use the accordion component to show the list

Now, let’s use the Accordion component in the Material UI library for listing the staking
pools. Besides showing staking pool information, accordion components can be expanded to show
the buttons so that users can use them to interact with the staking pools.

Implementing a staking pool listing dashboard 299

For the first step, let’s create the starter UI code for each staking pool by iterating through the
stakingPools state variable (in the return statement of the function component of src/
frontend/features/Stake/ListStakingPools.js):

{stakingPools.length > 0 ?
 stakingPools.map((item, index) =>
 <Accordion
 key={`staking-pool-${index}`}
 expanded={expanded === item.address}
 onChange={handleClick(item)}
 sx={{ border: 2, my: 1 }}>
 </Accordion>
) : <Typography>No Staking Pool Found</Typography>}

The preceding code creates an accordion component for every staking pool. If the staking pool list is
empty, it will show a No Staking Pool Found message on the page.

Each accordion component can be expanded when users click the header of the component. Here,
we only allow one accordion component to be expanded at a time, so we use the expanded state
variable to check if the value is equal to the staking pool address. If it is equal (expanded ===
item.address), the accordion component of the staking pool is expanded. Once the header of
the accordion component is clicked, the handleClick event handler function will be called. Here
is the code of the handleClick function:

const [expanded, setExpanded] = useState(false);
...
const handleClick = (item) => async(event, isExpanded) => {
 setExpanded(isExpanded ? item.address : false);
}

For the second step, let’s implement the UI code for the header of each accordion component to
show the staking pool information we retrieved from the getStakingPools function. We use
AccordionSummary as the header of the accordion component with the following code wrapped
in the Accordion component that we implemented in the first step:

<AccordionSummary
 expandIcon={<ExpandMoreIcon />}
 aria-controls="panel1a-content">
 <Grid container spacing={2}>
 <Grid item>Stake: {item.stakedToken.symbol}</Grid>
 <Grid item>Earn: {item.rewardToken.symbol}</Grid>
 <Grid item>
 {item.rewardToken.symbol} Earned:
 {ethers.utils.formatUnits(
 item.pendingReward, item.rewardToken.decimals)}

Implementing a Frontend for Staking and Farming300

 </Grid>
 <Grid item>
 Total Staked: {ethers.utils.formatUnits(
 item.stakedTotal, item.stakedToken.decimals)}
 </Grid>
 <Grid item>
 Reward Per Block: {ethers.utils.formatUnits(
 item.rewardPerBlock, item.rewardToken.decimals)}
 </Grid>
 <Grid item>
 {currentBlock >= item.rewardEndBlock ? "Expired" :
 (currentBlock >= item.rewardStartBlock ?
 `Ends in ${item.rewardEndBlock - currentBlock} block(s)` :
 `Starts in ${item.rewardStartBlock - currentBlock} block(s)`)}
 </Grid>
 </Grid>
</AccordionSummary>

The preceding code is self-explanatory if you look at the screenshot shown in Figure 10.2. One thing
we want to mention is the status of the staking pool shown in the last grid item component. It will
show the text Expired if the current block number is greater or equal to the rewardEndBlock.
Otherwise, it will show the staking pool’s Ends in X block(s) or Starts in Y block(s) on the page by
comparing the current block number with rewardStartBlock. Here, currentBlock is a state
variable that we set in the useEffect function when the wallet is connected. Here is the code of
the useEffect function of the ListStakingPools page component:

const [currentBlock, setCurrentBlock] = useState(0);
...
useEffect(() => {
 if (active) {
 library.getBlockNumber().then(number => setCurrentBlock(number));
 getStakingPools();
 }
}, [active, library, getStakingPools]);

We can see that useEffect will do two things when the wallet is connected; the first thing is it will
call library.getBlockNumber() and set the current block number once the function returns.
The second thing is that it will call the getStakingPools function, which we implemented earlier
to get a list of staking pools.

Implementing a staking pool listing dashboard 301

Now, let’s go back to the UI code for showing the buttons to allow people to interact with staking
pools. This is the last step for the accordion component we will create in this section. In this step, we
will put these buttons in the AccordionDetail component. Once the AccordionSummary
component for the parent Accordion component is clicked, the Accordion component will be
expanded by showing the AccordionDetail component. Here, let’s take a look at the code of the
AccordionDetail component (followed by the AccordionSummary component and wrapped
inside the Accordion component):

<AccordionDetails>
 <Grid container spacing={2}>
 <Grid item md={3} xs={6}>
 <Button
 sx={theme.component.primaryButton}
 fullWidth
 disabled={currentBlock >= item.rewardEndBlock}
 onClick={() =>
 navigate(`deposit?pool=${item.address}`)}>
 Deposit
 </Button>
 </Grid>
 <Grid item md={3} xs={6}>
 <Button
 sx={theme.component.primaryButton}
 fullWidth
 disabled={item.stakedAmount.lte(0)}
 onClick={() =>
 navigate(`withdraw?pool=${item.address}`)}>
 Withdraw
 </Button>
 </Grid>
 <Grid item md={3} xs={6}>
 <Button
 sx={theme.component.primaryButton}
 fullWidth
 disabled={item.pendingReward.lte(0)}
 onClick={() =>
 handleHarvest(item.address)}>
 {loading ? <CircularProgress /> :
 `Harvest ${ethers.utils.formatUnits(
 item.pendingReward, item.rewardToken.decimals)}
 ${item.rewardToken.symbol}`}
 </Button>
 </Grid>

Implementing a Frontend for Staking and Farming302

 <Grid item md={3} xs={6}>
 <Button
 sx={theme.component.primaryButton}
 fullWidth
 onClick={() =>
 navigate(`supply?pool=${item.address}`)}>
 Supply Reward</Button>
 </Grid>
 </Grid>
</AccordionDetails>

The preceding code implemented the following four buttons in the AccordionDetails component:

• Deposit: It allows users to deposit staked tokens by navigating to the page at the URL
http://<endpoint>/stake/deposit, with the staking pool address as the pool
URL parameter.

• Withdraw: It allows users to withdraw the staked tokens and receive rewards (if there are any)
by navigating to the page at URL http://<endpoint>/stake/withdraw, along with
the staking pool address as the pool URL parameter.

• Harvest: It allows users to withdraw the rewards that have been earned so far while it keeps the
principals staked in the pool. It will call the handleHarvest function, which will be discussed
in the Implementing the frontend components for deposit, withdrawal, and harvest section.

• Supply Reward: It allows users (not just the staking pool creators) to supply reward tokens
to the staking pools by navigating to the page at URL http://<endpoint>/stake/
supply, with the staking pool address as the pool URL parameter.

You may have noticed that the above four buttons are disabled for some criteria to prevent users from
performing invalid operations in an impropriated state. For example, we use the currentBlock >=
item.rewardEndBlock condition to prevent users from staking tokens when the staking period
is terminated. We also use the item.stakedAmount.lte(0) condition to disable the Withdraw
button when the user has no tokens staked to the staking pool. Because item.stakedAmount is
an object of type BigNumber in ethers.js, we have to use the lte function of BigNumber
object to check if the amount is less than or equal to 0. Similarly, we use the condition item.
pendingReward.lte(0) to disable the Harvest button when there are no rewards (the pending
reward amount is less than or equal to 0) to harvest.

Hide expired pools

When the number of staking pools grows large, the user may want to hide the expired staking pools
from the staking pool listing dashboard to stay focused on the staking pools that are alive. We can
add a checkbox on the page, as shown in Figure 10.2, so that people can only see the active staking
pools when the checkbox is checked.

Implementing a staking pool listing dashboard 303

Now, let’s add the code for the checkbox by creating a FormControlLabel with Checkbox
control within a FormGroup component:

<FormGroup sx={{ width: "50vw" }}>
 <FormControlLabel
 label="Hide Expired Pools"
 control={<Checkbox checked={hideExpired}
 onChange={handleHideExpired} />} />
</FormGroup>

The preceding code shows that the checked value of the Checkbox component is determined
by the state variable hideExpired. Once FormControlLabel is clicked, the following
handleHideExpired function is called to set the state variable:

const handleHideExpired = (event) => {
 setHideExpired(event.target.checked);
}

If the hideExpired state variable is true, the code needs to apply a filter to the list of all staking
pools to only include the staking pools in the list that are not expired. Let’s add the following highlighted
filter function before the map function when the UI code renders the Accordion component:

{stakingPools.length > 0 ?
 stakingPools.filter(
 p => hideExpired ? p.rewardEndBlock > currentBlock :
 true
).map((item, index) => ... }

The preceding code will only show the staking pools for which rewardEndBlock is greater than
currentBlock when the value hideExpired is true. If hideExpired is false, every
staking pool will be shown up by making the filter function return true for every element.

The last item in the staking pool listing dashboard is the Create Staking Pool button at the bottom
of the page, as shown in Figure 10.2. If you click the button, the browser will show the staking pool
creation page by navigating to the create route:

{active && <Grid container sx={{ mt: 2 }}>
 <Grid item xs={12}>
 <Button sx={theme.component.primaryButton} fullWidth
 onClick={() => navigate("create")}>
 Create Staking Pool
 </Button>
 </Grid>
</Grid>}

Implementing a Frontend for Staking and Farming304

Now, we have implemented the major components of the staking pool listing dashboard
ListStakingPools.js. However, there are no staking pools showing up because we haven’t
created any pools yet. In the next section, we will dive deep into the frontend code for creating staking
pools and supplying staking rewards to the staking pool.

Important note
Sometimes, we cannot represent all the code of the frontend components in this book due
to the length of the code. We encourage you to refer to the code at https://github.
com/PacktPublishing/Building-Full-stack-DeFi-Application/
blob/chapter10-end/defi-apps/src/frontend/features/Stake/
ListStakingPools.js for the staking pool listing dashboard.

In the next section, we will discuss how to implement the pages for creating staking pools and supplying
staking rewards.

Implementing pages for creating staking pools and
supplying rewards
Creating staking pools and supplying rewards are two features of managing staking pools. As a
decentralized application, everyone can create staking pools and supply rewards to any staking pools.
In this section, we will implement the pages for creating staking pools and supplying rewards for the
staking pools.

Improving the token selection modal component

Before implementing the staking pool creation page, we need to improve the token selection modal
component src/frontend/components/TokenSelectModal/index.js because the
staking pool creation page will reuse it to select ERC20 tokens (LP tokens or non-LP tokens).

As we mentioned in Chapter 6, Implementing a Liquidity Management Frontend with Web3 and
Chapter 8, Working with Native Tokens, the TokenSelectModal component allows users to select
from all tokens deployed by the rpm run deploy command and the native token ETH. However,
sometimes, we should support the selection from a customized token list dynamically because the
LP tokens are generated after the initial deployment of a smart contract. Moreover, we want to skip
listing the native token ETH from the list because the StakingPool smart contract only supports
ERC20 tokens.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter10-end/defi-apps/src/frontend/features/Stake/ListStakingPools.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter10-end/defi-apps/src/frontend/features/Stake/ListStakingPools.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter10-end/defi-apps/src/frontend/features/Stake/ListStakingPools.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter10-end/defi-apps/src/frontend/features/Stake/ListStakingPools.js

Implementing pages for creating staking pools and supplying rewards 305

Based on this discussion, let’s add the two erc20Only and customTokens properties to the
property list of the TokenSelectModal component (in the file src/frontend/components/
TokenSelectModal/index.js):

const TokenSelectModal = ({
 open, handleClose, selectToken, erc20Only, customTokens
}) => {
 /* Body of TokenSelectModal */
}

This is where the erc20Only parameter has a value type of bool. We will skip ETH from the token
list if it is true. The parameter customTokens is a list of token objects that represents the tokens
that should show up for selection. Each token object has four fields: address, name, symbol,
and decimals.

Now, let’s modify the code in the getSupportedTokens function to make the two parameters
work for the component (the new code added to the function is highlighted in the following):

const getSupportedTokens = useCallback(async () => {
 if (customTokens && customTokens.length > 0) {
 setTokens(customTokens);
 return;
 }
 // The native coin of EVM and its wrapped form
 const _tokens = [{
 address: WETH.address,
 name: 'Ether',
 symbol: 'ETH',
 decimals: 18
 }, {
 address: WETH.address,
 name: 'Wrapped ETH',
 symbol: 'WETH',
 decimals: 18
 }];
 if (erc20Only) {
 // Remove the first element since ETH is not an ERC20
 // token
 _tokens.shift();
 }
 for (let address of SupportedTokens) {
 _tokens.push(await getTokenInfo(address));
 }
 setTokens(_tokens);
}, [erc20Only, customTokens]);

Implementing a Frontend for Staking and Farming306

Please keep in mind that if a valid list for customTokens is provided, the value of erc20Only
will be ignored. For farming pools, the staked tokens should be LP tokens, and the token list should
be customized. For the staking pool, the staked token can be selected from the default list, except for
the native token ETH, so we need to set erc20Only to true for this case.

For the completed source of the TokenSelectModal component, please refer to the code
at https://github.com/PacktPublishing/Building-Full-stack-DeFi-
Application/blob/chapter10-end/defi-apps/src/frontend/components/
TokenSelectModal/index.js.

Next, we will discuss implementing a page to create a staking pool.

Implementing a page to create a staking pool

Now, let’s implement the staking pool creation page. By using this page, a user can create a staking
pool by interacting with the StakingPoolManager smart contract. Figure 10.3 shows a screenshot
of the staking pool creation page:

Figure 10.3 – Screenshot of the staking pool creation page

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter10-end/defi-apps/src/frontend/components/TokenSelectModal/index.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter10-end/defi-apps/src/frontend/components/TokenSelectModal/index.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter10-end/defi-apps/src/frontend/components/TokenSelectModal/index.js

Implementing pages for creating staking pools and supplying rewards 307

The preceding staking pool creation page requires the user to provide five arguments for the staking
pool: Staked Token, Reward Token, Reward Per Block, Start Block, and End Block. These arguments
map to the five parameters of the createStakingPool function of the StakingPoolManager
smart contract:

/*
 * Deploy a new staking pool
 */
function createStakingPool(
 ERC20 _stakedToken,
 ERC20 _rewardToken,
 uint256 _rewardPerBlock,
 uint256 _rewardStartBlock,
 uint256 _rewardEndBlock
) public returns (StakingPool) {
 ...
}

The page shown in Figure 10.3 also provides the current block number in the Note section to help the
user set the Start Block and End Block values properly. The source file location of the page is src/
frontend/features/Stake/CreateStakingPool.js. The staking pool creation form
with the CREATE button is implemented by using the Grid components of the Material UI
library. There are three topics to explain the code of the form.

The first topic concerns the UI for selecting the staked token and the reward token. We are using a
modal dialog for token selection. The code uses a state variable, openModal, to tell the page whether
or not to show the token selection modal:

const [openModal, setOpenModal] = useState(false);

Meanwhile, we use the tokenIndex state variable to tell whether a staked token or reward token
is being selected:

// 0 = stakedToken, 1 = rewardToken
const [tokenIndex, setTokenIndex] = useState(0);
const [indexStakedToken, indexRewardToken] = [0, 1];

Here is the code for declaring the TokenSelectModal component for token selection on the page:

<TokenSelectModal open={openModal}
 handleClose={() => setOpenModal(false)}
 selectToken={handleSelectToken}
 erc20Only={true}
/>

Implementing a Frontend for Staking and Farming308

The preceding code sets erc20Only to true to tell TokenSelectModal not to show ETH (the
native token) in the token list. Once the token is selected by the user (a token is clicked from the list
in the modal), the handleSelectToken function will be called:

const [stakedToken, setStakedToken] = useState({});
const [rewardToken, setRewardToken] = useState({});
const [tokensSelected, setTokensSelected] = useState(false);
...
const handleSelectToken = token => {
 if (tokenIndex === indexStakedToken) {
 setStakedToken(token);
 setTokensSelected(Object.keys(rewardToken).length > 0);
 } else if (tokenIndex === indexRewardToken) {
 setRewardToken(token);
 setTokensSelected(Object.keys(stakedToken).length > 0);
 } else {
 toast.error(
 "Shouldn't reach here, unsupported token index!");
 }
}

The preceding code sets the two state variables for the staked token and reward token from the token
selection modal. If both tokens are set, the tokensSelected variable will be set to true. If it is
false, the code for the staking pool creation form will show the message Please select both staked
and reward tokens with the following code:

{!tokensSelected &&
 <Typography sx={{ color: 'red' }}>
 Please select both staked and reward tokens.
 </Typography>}

The second topic to discuss regarding the staking pool creation form is the handleChange function,
which is used for setting the state variables for Reward Per Block, Start Block, and End Block. These
variables are numeric values. The handleChange function knows which value to change based on
event.target.id. Here is the implemented code of the handleChange function:

const [rewardPerBlock, setRewardPerBlock] = useState(100);
const [startBlock, setStartBlock] = useState(0);
const [endBlock, setEndBlock] = useState(0);
...
const handleChange = (e) => {
 let tmpVal = e.target.value ? e.target.value : 0;
 let id = e.target.id;
 if (tmpVal < 0 ||

Implementing pages for creating staking pools and supplying rewards 309

 (isNaN(tmpVal) && id !== 'reward_per_block')) {
 tmpVal = e.target.value;
 } else if (!(typeof tmpVal === 'string' &&
 (tmpVal.endsWith(".") || tmpVal.startsWith(".")))) {
 tmpVal = Number(e.target.value.toString());
 }
 if (id === 'reward_per_block') {
 setRewardPerBlock(tmpVal);
 } else if (id === 'start_block') {
 setStartBlock(tmpVal);
 } else if (id === 'end_block') {
 setEndBlock(tmpVal);
 }
}

One thing to mention is that when the value of Start Block is greater or equal to the value of End
Block, an error message should be shown to hint at the invalid case for the user. Here is the code for
showing the error message:

{startBlock >= endBlock &&
 <Typography sx={{ color: 'red' }}>
 Start block number should be less than the end block
 number.</Typography>}

The third and most important topic for the staking pool creation form is calling the handleCreate
function when the user clicks the CREATE button; by calling the handleCreate function, a staking
pool can be created using the information provided by the staking pool creation form. Let’s implement
the handleCreate function with the following code:

const [currentBlock, setCurrentBlock] = useState(0);
const [loading, setLoading] = useState(false);
...
const handleCreate = async () => {
 setLoading(true);
 try {
 const stakingPoolManager = new ethers.Contract(
 ManagerAddress.address, ManagerABI.abi, library.getSigner());
 const tx = await stakingPoolManager.createStakingPool(
 stakedToken.address, rewardToken.address,
 ethers.utils.parseUnits(toString(rewardPerBlock),
 rewardToken.decimals), startBlock, endBlock);
 await tx.wait();
 toast.info(`Staking pool is created successfully!
 Transaction Hash: ${tx.hash}`);

Implementing a Frontend for Staking and Farming310

 setStakedToken({});
 setRewardToken({});
 setRewardPerBlock(100);
 setStartBlock(0);
 setEndBlock(0);
 library.getBlockNumber()
 .then(number => setCurrentBlock(number));
 } catch (error) {
 toast.error("Cannot create staking pool!");
 console.error(error);
 }
 setLoading(false);
}

The preceding code created an object of the StakingPoolManager smart contract and called the
createStakingPool function with the five arguments, the values of which are collected from the form.
After the creation transaction is completed, the states of the variables for the input form are recovered,
and the current block number is refreshed by calling the library.getBlockNumber() function.

Now, we have completed the discussion of implementing the staking pool creation page. Please refer
to the link https://github.com/PacktPublishing/Building-Full-stack-DeFi-
Application/blob/chapter10-end/defi-apps/src/frontend/features/Stake/
CreateStakingPool.js for the complete source of CreateStakingPool.js.

Next, we will dive into the implementation of the page for supplying rewards.

Implementing a page for supplying rewards

Supplying reward tokens to staking pools is a simple operation that allows anybody to transfer the
reward tokens to the instances of StakingPool smart contracts. We can use the transfer
function of ERC20 tokens to perform the operation.

To make the operation of supplying rewards easier for the users, we can create a page, as per Figure 10.4.
As we discussed earlier, once a user expands the accordion component of a staking pool in the staking
pool listing dashboard, the page will navigate to the supply route, with the staking pool address as the
URL parameter. The source file of the page component is located at src/frontend/features/
Stake/SupplyStakingReward.js.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter10-end/defi-apps/src/frontend/features/Stake/CreateStakingPool.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter10-end/defi-apps/src/frontend/features/Stake/CreateStakingPool.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter10-end/defi-apps/src/frontend/features/Stake/CreateStakingPool.js

Implementing pages for creating staking pools and supplying rewards 311

Figure 10.4 – Screenshot of a page for supplying reward tokens

The page for supplying rewards in Figure 10.4 shows the information on the reward token once the
page is loaded. If we require the code to create an object from the StakingPool smart contract
and call its rewardToken function to access the address of the reward token, after this, we can call
the getTokenInfo function from src/frontend/utils/Helper.js to get the symbol
of the function. Here is the code for the getRewardToken function, which loads reward token
information by using the given poolAddress in SupplyStakingReward.js:

const getRewardToken = useCallback(async (poolAddress) => {
 if (stakingPoolAddress.length > 0 &&
 Object.keys(rewardToken).length > 0) {
 return;
 }
 try {
 const stakingPool = new ethers.Contract(poolAddress,
 StakingPoolABI, library.getSigner());
 const _rewardToken = await getTokenInfo(await
 stakingPool.rewardToken());
 setRewardToken(_rewardToken);
 setStakingPoolAddress(poolAddress);
 } catch (error) {
 toast.error(`Cannot get the information of reward token
 with staking pool address ${poolAddress}!`);
 console.error(error);
 }
}, [library, stakingPoolAddress, rewardToken]);

Implementing a Frontend for Staking and Farming312

Once the SUPPLY button is clicked, the handleSupply function is called; the function uses the
ABI of standard ERC20 tokens to transfer the token from the current account to the address of the
StakingPool smart contract:

const handleSupply = async () => {
 setLoading(true);
 try {
 const tokenContract = new ethers.Contract(
 rewardToken.address, ERC20ABI, library.getSigner());
 const tx = await tokenContract.transfer(
 stakingPoolAddress, ethers.utils.parseUnits(
 toString(amount), rewardToken.decimals));
 await tx.wait();
 toast.info(`Successfully transferred reward token to
 staking pool! Transaction Hash: ${tx.hash}`);
 setAmount(0);
 await getBalance();
 } catch (error) {
 toast.error("Cannot supply token to staking pool");
 console.error(error);
 }
 setLoading(false);
}

From Figure 10.4, we know that the page will also get the balance of the reward token, and we need
another state variable to keep track of the input value of the reward token amount. Since we have learned
how to implement these functions in previous chapters, we will not dive deep into the topics here.

For the full source code of SupplyStakingReward.js, please refer to https://github.com/
PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter10-
end/defi-apps/src/frontend/features/Stake/SupplyStakingReward.js.

In the next section, we will implement the remaining frontend components for token staking; these
functions include deposit staked token, withdrawal tokens, and harvest rewards.

Implementing frontend components for deposits,
withdrawals, and harvesting
Deposit, withdrawal, and harvest are the three most important functions of staking pools, and users
can use these three operations to earn crypto. In this section, we will dive into the code of how to
interact with smart contracts and on-chain data to perform these operations. We will not go deep
into the UI code and the JavaScript code that we discussed previously (e.g., how to approve token
transfers with ethers.js).

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter10-end/defi-apps/src/frontend/features/Stake/SupplyStakingReward.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter10-end/defi-apps/src/frontend/features/Stake/SupplyStakingReward.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter10-end/defi-apps/src/frontend/features/Stake/SupplyStakingReward.js

Implementing frontend components for deposits, withdrawals, and harvesting 313

Deposit page for staking pools

The deposit page for staking pools allows a user to deposit staked tokens by calling the deposit
function of the StakingPool smart contract. Figure 10.5 shows a screenshot of the deposit page, the
source file of which is located at src/frontend/features/Stake/Deposit.js in the project.

Figure 10.5 – Screenshot of the staking pool deposit page

Before a user can call the deposit function of a staking pool smart contract, the deposit page should
perform the following preparation operations:

1. Get the address of the StakingPool smart contract from the URL parameter when accessing
the deposit page.

2. Get information on the staked token of the staking pool.

3. Make sure the connected account has a sufficient balance to deposit, which means the input
amount should not be greater than the balance.

4. Make sure the StakingPool smart contract has the allowance to transfer the staked token
from the account to the StakingPool smart contract.

In order to get the address of the StakingPool smart contract from the URL parameter, we can
use the useSearchParams function from the react-router-dom package:

import { useSearchParams } from 'react-router-dom';
const [searchParam,] = useSearchParams();
useEffect(() => {
 const poolAddress = searchParam.get('pool');
 ...
}, [...]);

Once we get the address of the staking pool, we can implement a function called getStakedToken
to retrieve the staked token information of the staking pool, which is similar to the getRewardToken

Implementing a Frontend for Staking and Farming314

function we implemented in the last section. The getStakedToken function first creates an object
from the StakingPool smart contract and then calls the stakedToken function to access the
address of the staked token. After that, the code calls the getTokenInfo function from Helper.
js to get the name, symbol, and decimals of the staked token:

const stakingPool = new ethers.Contract(
 poolAddress, StakingPoolABI, library.getSigner());
const _stakedToken = await getTokenInfo(
 await stakingPool.stakedToken());

Once we obtain the information about the staked token, we can retrieve the token balance via the
getBalance function and check the transfer allowance for the StakingPool smart contract
via the checkAllowance function. If the transfer allowance is less than the input amount, the
APPROVE button shown in Figure 10.5 will be enabled, and the DEPOSIT button will be disabled. It
will only allow the user to increase the allowance by approving the transfer before a user can perform
a successful deposit. When the user clicks the APPROVE button, the handleApprove function
will be called to increase the allowance to the current input amount.

Once the connected account approves the transaction, the user can click the DEPOSIT button to interact
with the StakingPool smart contract by calling the deposit function of the smart contract:

const stakingPool = new ethers.Contract(
 stakingPoolAddress, StakingPoolABI, library.getSigner());
const tx = await stakingPool.deposit(
 ethers.utils.parseUnits(toString(amount),
 stakedToken.decimals));
await tx.wait();

The preceding code is implemented inside the handleDeposit function of the deposit page. For
the full source of the deposit page, please refer to https://github.com/PacktPublishing/
Building-Full-stack-DeFi-Application/blob/chapter10-end/defi-apps/
src/frontend/features/Stake/Deposit.js.

Next, we will implement the withdrawal page for staking pools.

Withdrawal page for staking pools

The withdrawal page for staking pools allows a user to withdraw the staked token by calling the
withdraw function of the StakingPool smart contract; if there are reward tokens generated
within the staking period, the reward token will also be paid to the user. Figure 10.6 shows the withdraw
page for which the source file is located at src/frontend/features/Stake/Withdraw.
js in the project.

Implementing frontend components for deposits, withdrawals, and harvesting 315

Figure 10.6 – Screenshot of the staking pool withdrawal page

Similar to the deposit page, the withdrawal page also requires some preparation steps and verification
before a user can withdraw the staked token. Here are the operations that need to be performed before
a user can withdraw:

1. Get the address of the StakingPool smart contract from the URL parameter when accessing
the withdrawal page.

2. Get the information on the staked token of the staking pool.

3. Get the number of tokens that have been staked in the pool, and make sure the input amount
is not greater than this amount.

We have gone through the first two operations when we discussed the deposit page. For the third
operation, we need to get the number of tokens that have been staked in the pool; this can be
achieved by accessing the userInfo map of the StakingPool smart contract. Let’s implement
the getStakeAmount function for this purpose:

const getStakedAmount = useCallback(async () => {
 if (stakingPoolAddress === '') return;
 try {
 const stakingPool = new ethers.Contract(
 stakingPoolAddress, StakingPoolABI, library.getSigner());
 const userInfo = await stakingPool.userInfo(account);
 setStakedAmount(ethers.utils.formatUnits(
 userInfo.amount, stakedToken.decimals));
 } catch (error) {
 toast.error('Cannot get staked token amount!');
 console.error(error);
 }
}, [account, library, stakedToken, stakingPoolAddress])

Implementing a Frontend for Staking and Farming316

As we mentioned in Chapter 9, Building Smart Contracts for Staking and Farming the struct UserInfo
has a field called amount, which stores the number of staked tokens for the user. Once the code
obtains the object userInfo using the preceding highlighted line, it stores userInfo.amount
(by converting the units from WEI to ETH) in the state variable as the number of staked tokens.

Once the page has carried out the preceding operations, a user can provide Amount to Withdraw
in the text box and click the WITHDRAW button to withdraw the principal (the staked token) and
interest (the reward token) if the user has any. The on-click handler of the WITHDRAW button will
call the handleWithdraw function, and the code in this function will call the withdraw function
of the StakingPool smart contract:

const stakingPool = new ethers.Contract(
 stakingPoolAddress, StakingPoolABI, library.getSigner());
const tx = await stakingPool.withdraw(
 ethers.utils.parseUnits(toString(amount),
 stakedToken.decimals));

Please keep in mind that the withdrawal operation doesn’t require the user to check the allowance
because withdrawal only sends tokens to the account; there are no smart contracts to transfer tokens
from the connected account in the workflow.

For the full source of the withdrawal page, please refer to https://github.com/
PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter10-
end/defi-apps/src/frontend/features/Stake/Withdraw.js.

Next, we will discuss how to implement the frontend component for the harvest function.

Implementing the harvest function

The harvest function allows a user to withdraw the earned reward token instead of withdrawing staked
tokens, so the user can continue to earn tokens with the already staked token. This can be achieved by
calling the deposit function of the staking pool without providing the staked tokens. This operation
doesn’t transfer tokens from the connected account to the smart contract, so it is unnecessary to check
allowances before performing the operation.

As we saw in Figure 10.2, there is a HARVEST button on the staking pool listing dashboard if the user
expands the accordion component. Once there are reward tokens available for harvest, the button will
show the amount and the symbol of the reward token, as per Figure 10.7.

Implementing frontend components for deposits, withdrawals, and harvesting 317

Figure 10.7 – Screenshot of the expanded accordion component

when there are tokens available to harvest

We have previously implemented the code in ListStakingPools.js to show the text on the
button; now, let’s implement the handleHarvest function for the on-click handler of the HARVEST
button by using the following code in ListStakingPools.js:

const handleHarvest = async (address) => {
 setLoading(true);
 try {
 const stakingPool = new ethers.Contract(address,
 StakingPoolABI, library.getSigner());
 const tx = await stakingPool.deposit(0);
 await tx.wait();
 toast.info(`Successfully harvest reward token!
 Transaction hash: ${tx.hash}`);
 library.getBlockNumber().then(
 number => setCurrentBlock(number));
 await getStakingPools();
 } catch (error) {
 toast.error("Cannot harvest token!");
 console.error(error);
 }
 setLoading(false);
}

The preceding code calls the deposit function by passing 0 as the argument. In the code of the
StakingPool smart contract, the safeTransferFrom function will not be called if the amount
passed in is not greater than 0. So, it is safe to call this function without allowance check.

We have now gone through the implementation of all the frontend components of the token staking
feature. In the next section, we will discuss how to implement the farming feature by reusing and
refactoring the components we created for staking.

Implementing a Frontend for Staking and Farming318

Implementing the farming frontend
We have learned that the feature of yield farming is a specific type of staking that is used for LP tokens
only. It can use the same smart contract as the staking tokens.

When implementing the frontend of farming, we can reuse the JavaScript files that we created
previously by copying the files from src/frontend/features/Stake into a new directory:
src/frontend/features/Farm, which accommodates farming frontend source files. Here
are the six JavaScript files we copied for the farming frontend:

• FarmRouter.js: The React router components for the sub-routes of farming. It is copied
from StakeRouter.js. You can refer to the source of this file at https://github.
com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/
chapter10-end/defi-apps/src/frontend/features/Farm/FarmRouter.js.

• ListFarmingPools.js: The farming pool listing dashboard page, which is copied from
ListStakingPools.js. It will show the farming pool information in each accordion
component. Similar to the staking pool listing dashboard, it allows people to expand each
accordion component to perform the actions. Some of the actions are required to navigate to
the URLs of the sub-routes.

• CreateFarmingPool.js: The page is copied from CreateStakingPool.js for users
to create farming pools. Once a pool is created, it will be listed on the farming pool listing
dashboard page.

• SupplyFarmingReward.js: The page is copied from SupplyStakingReward.js
for users to supply farming rewards.

• Deposit.js: The page is copied from src/frontend/features/Stake/Deposit.
js for users to deposit LP tokens (staked token for farming) for a specified farming pool.

• Withdraw.js: The page is copied from src/frontend/features/Stake/Withdraw.
js for users to withdraw the LP tokens for a specified farming pool.

Once you have copied these six files into the src/frontend/features/Farm directory, you can
follow the three steps that follow to make the frontend code run without caring about the frontend
code differences between staking and farming:

1. We need to change the UI component names for farming in the copied source files. For example,
change the component name from CreateStakingPool to CreateFarmingPool.
Moreover, we need to change the UI texts for farming; for example, change the button text
from Create Staking Pool to Create Farming Pool.

Implementing the farming frontend 319

2. Add the route path for farming (and staking if you haven’t done this already) in src/
frontend/App.js:

import StakeRouter from './features/Stake/StakeRouter';
import FarmRouter from './features/Farm/FarmRouter';
...
<Routes>
 <Route path='/' element={<TokenOperations />} />
 <Route path='/liquidity/*'
 element={<LiquidityRouter />} />
 <Route path='/stake/*' element={<StakeRouter />} />
 <Route path='/farm/*' element={<FarmRouter />} />
 <Route path='/swap' element={<Swap />} />
</Routes>

3. Add a menu item for farming (you may add another one for staking) on the navigation bar
in src/frontend/components/Layout/index.js by using the following code:

const navItems = [
 ...
 {
 title: 'Stake',
 link: '/stake'
 }, {
 title: 'Farm',
 link: '/farm'
 }
];

Now, we can try to run the frontend code by running the command npm start; then, you should
be able to navigate to the farming pool dashboard by clicking the FARM menu item on the top of the
page, as shown in Figure 10.8.

Figure 10.8 – Screenshot of the initial state of the farming pool dashboard page

Implementing a Frontend for Staking and Farming320

Important note
Prior to running the frontend code, don’t forget to run npx hardhat node to start the local
EVM and run npm run deploy localhost to deploy smart contract on local EVM.

For now, we have created the UI components for farming by duplicating the components of the staking
feature. However, the business workflow needs to be refactored to support staking LP tokens.

Let’s now discuss the code we will use to refactor for farming.

Refactoring frontend code for farming

In the farming pool listing dashboard, the names, symbols, or icons of the pooled tokens are usually
shown when representing the LP tokens to users. It requires the frontend code not only to get the
address of the LP token from the farming pool but also the information of the paired tokens of the LP
token. Fortunately, we can leverage the getLiquidityPools function we implemented earlier in
this chapter because the returned map contains the information of the paired tokens. In the file src/
frontend/features/Farm/ListFarmingPools.js, let’s rename the getStakingPools
function to getFarmingPools and update the function with the following highlighted code:

const getFarmingPools = useCallback(async () => {
 try {
 /* Original code is omitted */
 for (const address of stakingPools) {
 const stakingPool = new ethers.Contract(address,
 StakingPoolABI, signer);
 const stakedTokenAddress = await stakingPool
 .stakedToken();
 if (!liquidityPools.has(stakedTokenAddress)) {
 // Skip non-farming pools.
 continue;
 }
 /* Original code is omitted */
 const tokenA = liquidityPools
 .get(stakedTokenAddress).tokenA;
 const tokenB = liquidityPools
 .get(stakedTokenAddress).tokenB;
 pools.push({address, rewardStartBlock,
 rewardEndBlock,rewardPerBlock, stakedToken,
 rewardToken, stakedAmount, pendingReward,
 stakedTotal, tokenA, tokenB
 });
 }
 setFarmingPools(pools);

Implementing the farming frontend 321

 } catch (error) {
 /* Original code is omitted */
 }
}, [account, library]);

The preceding code uses the condition !liquidityPools.has(stakedTokenAddress) to
skip all tokens that are not LP tokens in the if statement. It also introduces tokenA and tokenB
into the farming pool object. These two fields are used to keep the information of the two tokens
in the liquidity pool. In the accordion component that shows information on the LP token, we can
easily retrieve the symbols of the paired token so users can tell what the paired tokens of the LP for
the farming term are:

<Grid item>
 Stake: LP Token
 {`${item.tokenA.symbol}-${item.tokenB.symbol}`}
</Grid>

The result of the preceding UI code is highlighted in Figure 10.9; the figure also gives you an overview
of the farming pool dashboard page:

Figure 10.9 – Screenshot of farming pool listing dashboard

Implementing a Frontend for Staking and Farming322

Another thing to refactor is the token selection modal when selecting staked tokens for farming pool
creation. Similar to the farming pool listing dashboard, we also need to provide information on the
paired tokens of every LP in the token selection list. In the source file, src/frontend/features/
Farm/CreateFarmingPool.js, we should use two different TokenSelectModal components:
one is for selecting the reward token, and the other is for selecting the staked token. Meanwhile, the LP
token selection list should be customized to show the information of the paired tokens. The following
code section creates the two token selection modal:

const [openModalStaked, setOpenModalStaked] =
 useState(false);
const [openModalReward, setOpenModalReward] =
 useState(false);
...
<TokenSelectModal open={openModalReward}
 handleClose={() => setOpenModalReward(false)}
 selectToken={handleSelectToken}
 erc20Only={true}
/>
<TokenSelectModal open={openModalStaked}
 handleClose={() => setOpenModalStaked(false)}
 selectToken={handleSelectToken}
 customTokens={Array.from(liquidityPools.entries())
 .map((value, i) => {
 return {
 "address": value[0],
 "name": `LP Token for ${value[1].tokenA.symbol} and
${value[1].tokenB.symbol}`,
 "symbol": `${value[1].tokenA.symbol}-${value[1].tokenB.
symbol}`,
 "decimals": 18
 };
 }
)}
/>

The preceding code uses the symbol values from tokenA and tokenB to make the LP token
selection more informative. Figure 10.9 shows a screenshot of the token selection list with the enriched
content for the LP tokens.

Implementing the farming frontend 323

Figure 10.10 – Screenshot of selecting LP tokens for farming pool creation

Now, we have gone through the main items needed to refactor and support farming. Farming has the
same set of operations as staking, including deposit, withdraw, harvest, and supply reward tokens. These
operations interact with smart contracts in the same way as for staking. You can refer to https://
github.com/PacktPublishing/Building-Full-stack-DeFi-Application/
tree/chapter10-end/defi-apps/src/frontend/features/Farm for the full source
files of the farming feature and try to run the application with your local environment.

Important note
You have to create liquidity pools before testing the farming feature on your local environment.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/tree/chapter10-end/defi-apps/src/frontend/features/Farm
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/tree/chapter10-end/defi-apps/src/frontend/features/Farm
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/tree/chapter10-end/defi-apps/src/frontend/features/Farm

Implementing a Frontend for Staking and Farming324

Summary
This chapter has demonstrated the implementation of the frontend for the staking and farming feature
of the DeFi project. We have learned how to interact with smart contracts to list staking pools and
farming pools. We also dived into the frontend code to deposit staked tokens, withdraw, harvest
rewards, create a staking pool, and supply rewards for staking pools. In the last section, we learned
how to reuse the code of the staking feature to create the farming feature of the DeFi project. By the
end of this chapter, we have completed the full-stack functionalities for staking and farming.

In the next chapter, we will start exploring an important topic of DeFi: the crypto loan. It involves
many components that build up the whole functional system. For example, crypto loans introduce
the interest rate model for lending and borrowing various types of cryptocurrencies. The system also
requires a price oracle to dynamically determine the value of the maximum tokens a user can borrow.
A crypto loan is a complex system that is built with several smart contracts that serve various purposes.
We will break down the topic into multiple chapters in Part 4 of this book.

Part 4:
Building a Crypto Loan App for

Lending and Borrowing

Crypto loan DeFi applications provide the most popular features offered by traditional banks, including
asset deposits, withdrawals, borrowing, and repayment. In this part, you will learn how to build these
features on the blockchain. Meanwhile, we will dive into the building blocks of a crypto loan system,
including asset pools, interest models, and price oracles. By following the instructions in this part, you
will gain hands-on experience in building a full-stack crypto loan application, including the requisite
smart contracts and frontend.

This part has the following chapters:

• Chapter 11, Introduction to Crypto Loans

• Chapter 12, Implementing an Asset Pool Smart Contract for a Crypto Loan

• Chapter 13, Implementing a Price Oracle for Crypto Loans

• Chapter 14, Implementing the Crypto Loan Frontend with Web3

11
An Introduction to

Crypto Loans

Savings and loans are the two most common features of traditional banks for everyday life. Savings
means lending money to banks and paying lenders the saving interest as an incentive method. On
the other hand, people can borrow money from banks after providing collateral so that the borrower
has a sufficient budget to make a purchase. For example, a person can offer a property as collateral to
apply for a loan to purchase a house. Usually, the borrowed assets come from the savings of the lenders.

Generally speaking, while a crypto loan is a financial service that offers savings and loan features,
it can be centralized or decentralized. In this book, a crypto loan is considered a type of DeFi
application based on a decentralized blockchain network by utilizing smart contracts, so we also call
it a decentralized crypto loan. It allows people to earn interest by depositing cryptos and acquire
crypto loans by providing collateral.

In this chapter, we will dive into the crypto loan concept by talking about the architecture, introducing
the concepts, and implementing the smart contracts that will be the cornerstones of the whole crypto
loan system.

In this chapter, you will do the following:

• Explore the characteristics of a crypto loan

• Deep dive into the architecture of a crypto loan smart contract

• Understand the concepts of the interest rate model and how to implement the pool configuration
smart contract

• Implement an asset pool share and pool share deployer

• Exploring crypto loans by example

An Introduction to Crypto Loans328

Technical requirements
There are no financial or investment knowledge requirements to understand the concepts and formulas
that will be explored in this chapter. As long as you have a basic knowledge of mathematics, these
topics will be easily understood. An entry-level programming experience or engineering background
will help you to understand the code we implement in this chapter.

If you have followed the instructions from previous chapters, you can continue with the code we
implemented in Chapter 10, Implementing a Frontend for Staking and Farming. Alternatively, you
can start from the chapter11-start branch of the GitHub repository of this book (https://
github.com/PacktPublishing/Building-Full-stack-DeFi-Application/
tree/chapter11-start) in order to follow the code that we will discuss in this chapter.

Exploring the characteristics of a crypto loan
As we mentioned earlier, a crypto loan combines savings and loans together; this means the users
have to deposit something via a smart contract as collateral before they can borrow assets. A crypto
loan in the DeFi world has some unique characteristics, which are explained in the following sections.

Zero waiting time for approval

Everyone can get a loan immediately after providing the collateral. There is no need to provide other
information or wait for approval before receiving the loan.

The loan qualification and the borrowing limit are determined by the value of collateral and the
loan-to-value (LTV) parameter. LTV is a pre-configured parameter of an asset pool. Meanwhile, the
borrowing limit also depends on the available assets in the asset pools. Here is the formula to calculate
the borrowing limit (V borrow_limit) for a user:

 V borrow_limit = Minimum (LTV * V collaterals , V asset_available)

Here, V collaterals is the value of the collateral that the user provided. V asset_available is the value of available
assets in the asset pool.

So, the borrowing limit for a user is determined automatically once collateral is provided. The smart
contract code of the crypto loan can run the calculation and get the result immediately once the
borrowing transaction is executed, so there is no need for the user to wait for loan approval.

No credit checks

Because DeFi applications run on decentralized systems that are different from the services offered
by centralized financial institutions, everyone can get a loan with the same collateral requirement
without a credit check, no matter what the user’s credit in the real world or the health of the account

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/tree/chapter11-start
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/tree/chapter11-start
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/tree/chapter11-start

Exploring the characteristics of a crypto loan 329

from other DeFi platforms is. The earlier formula for calculating V borrow_limit tells us that the credit is
not a factor to determine the borrowing limit for a user.

No term constraints

This characteristic means that borrowers can hold the loan as long as they want, they can repay the loan
at any time with any amount they want, or they can even just borrow assets without repaying anything.

On the other hand, there are no constraints for lenders who deposit cryptos. The lenders can deposit
any amount of crypto and withdraw it at any time, as long as there are sufficient assets in the asset pool.

Note
It is possible that asset pools are empty for crypto loan protocols; this means that users cannot
withdraw the crypto they have deposited. This is because the size of lending assets is too small
to make the pool sustainable. Usually, crypto loan protocols may offer a high deposit interest
rate to attract people to deposit, or use liquidation to repay the borrowed asset that can refill
the asset pool.

No term constraints also mean that the borrower can use the loan for any purpose. There are no
requirements in the centralized world – for example, a property loan having to be used to purchase
a house.

No requirement for selling out of crypto holdings

A crypto loan is a great way to preserve your crypto holdings while acquiring other crypto assets for
any purpose. It means you can get the collateral back as long as you pay off the loan.

For example, let’s say Tommy holds an amount of ETH in his wallet and he wants to get some stable
coin (such as USDT) to make a purchase in an online store. However, Tommy doesn’t want to sell
ETH for USDT because he thinks ETH will pump up in the future, so he can provide the ETH he
has to hand as collateral and borrow USDT for online shopping. Once Tommy has had USDT for a
few days, he can repay the loan and get back the original deposited ETH (which was for collateral).

As we can see, these characteristics of a crypto loan offer a lot of flexibility and benefits to owning
cryptocurrencies on blockchain. However, a crypto loan with these characteristics needs to be crafted
comprehensively and precisely.

In the next section, we will discuss the architecture of the smart contracts for crypto loans.

An Introduction to Crypto Loans330

Designing crypto loan smart contracts
In the DeFi world, a crypto loan is a comprehensive system that is built on top of several smart
contracts running on a blockchain. Cryptocurrency assets are the most important thing that needs
to be managed by these smart contracts. We have to make the cryptos flow precisely between asset
pools and various personas. Before we dive into the architecture of the crypto loan smart contracts,
let’s first dive into the personas involved in a decentralized crypto loan and discuss how the crypto
assets move between asset pools and these personas.

Crypto loan personas

Introducing the personas of a crypto loan will help us to understand how to interact with a crypto
smart contract from different point of views. It will help us to understand the requirements of a crypto
loan system.

Figure 11.1 describes the personas and their crypto asset flows when interacting with asset pools.

Figure 11.1 – The personas of a crypto loan and the crypto asset flow

Designing crypto loan smart contracts 331

As Figure 11.1 shows, there are four personas:

• Lender: This is the user who deposits crypto assets as a principal and withdraws the principal
and savings interest.

• Borrower: This is the user who borrows crypto assets as a principal and repays the principal
and the loan interest.

• Owner: This is the user who can withdraw asset reserves as income (the reserve is a portion of
loan interest). Usually, the user who can withdraw reserves is assigned by the deployer of the
smart contracts and is a member of the crypto loan project team. Meanwhile, the owner can
create an asset pool for a type of crypto asset and update the pool configuration.

• Liquidator: This is the user who can liquidate the assets to make the crypto loan system
healthier. The crypto loan system is healthier when there are more users whose borrowed
amount is below the borrowing limit. In the liquidation process, the liquidator must supply
the assets borrowed by the account that needs to be liquidated, and then they will receive the
collateral provided by the account. The whole liquidation process is executed in one single
transaction on a blockchain.

Note
In Figure 11.1, we use a half arrow (⇀) instead of a full arrow (→) to show the crypto asset
flow for the liquidator. This is because a full arrow (→) implies that it’s the sole flow within one
blockchain transaction. The half arrow (⇀) signifies that the asset flow isn’t the only one in
the transaction. For instance, in a liquidation transaction, there are two flows, and these are
represented by two half arrows.

In most decentralized crypto loan projects, everyone can be a lender, a borrower, and a liquidator.
But only the privileged users (for example, the deployer of the crypto loan smart contracts) can be the
owners. We will follow these rules to implement crypto loan smart contracts in this book.

Now, let’s demystify the architecture of a crypto loan smart contract.

The architecture of a crypto loan smart contract

As we mentioned previously in this chapter, a crypto loan is a comprehensive DeFi application that
consists of multiple smart contracts, and all users interact with the asset pools to perform all the
operations supported by the crypto loan application. Figure 11.2 shows the architecture diagram of
crypto loan smart contracts:

An Introduction to Crypto Loans332

Figure 11.2 – The architecture diagram of crypto loan smart contracts

In Figure 11.2, there are eight functions provided by the asset pool smart contract to fulfill user
requests. The operations in the gray boxes can only be performed by privileged users (for example, the
deployer of the asset pool smart contract), and the remaining five rounded boxes are open to all users.

The asset pool smart contract is the core component of the whole crypto loan application. It not only
provides the interfaces for users to interact with crypto loan on-chain components but also implements
the business logic of the user workflow. Furthermore, the asset pool smart contract leverages another
four smart contracts to manage the processes in the crypto loan system.

Next, let’s briefly introduce the design of the five smart contracts that are represented by the five
rectangle boxes in Figure 11.2.

The asset pool smart contract

The asset pool smart contract provides interfaces for user requests and fulfills these requests. In order
to implement the business workflows of a crypto loan system, the smart contract manages all the asset
pools and keeps the records per address in the user ledger.

When talking about an asset pool (not an asset pool smart contract), we refer to a pool for only one
specific type of token. Users can lend the token to the pool and borrow it from the pool. For example,
one user can have savings for a token and, meanwhile, can borrow other tokens or even have a loan
for the same token.

As we can see from Figure 11.2, an instance of an asset pool smart contract can have multiple asset
pools for multiple asset tokens (from Token 1 to Token N). When implementing the crypto loan
application in this book, the asset token must be an ERC20 token.

Designing crypto loan smart contracts 333

The user ledger maintains the lending and borrowing records of every asset pool for every user. The
asset pool smart contract can use this information to calculate the loan quota for a borrower, as well
as how much a lender can withdraw from the asset pool smart contract.

The asset pool smart contract also provides the interface for creating and updating configurations of
asset pools. To create an asset pool, the smart contract requires the caller (usually the privileged user)
to pass in an instance of a pool configuration smart contract to initialize the pool; meanwhile, it will
create an ERC20 token to represent the shares of the pool. We will discuss a pool configuration smart
contract in the next section, and a pool share smart contract after that.

A pool configuration smart contract

A pool configuration smart contract is the object that stores the configuration parameters of an asset
pool. The configuration parameters are used to determine the interest rates, the borrowing limit, and
the rewards for liquidators. We will discuss how this information is calculated in the Understanding
the interest rate model and pool configuration section.

An instance of the pool configuration smart contract can be used for one or more asset pools as long
as these pools share the same values of configuration parameters.

An asset pool share smart contract

An asset pool share smart contract is the smart contract of an ERC20 token that represents the
shares of an asset pool owned by a user. By depositing (or lending) the crypto asset to an asset pool,
the user will receive the token that represents the user’s share of the pool. Once the user withdraws
the deposited token, the share token will be returned to the asset pool smart contract.

Every asset pool only has one type of share token to represent shares. As long as the lending interest
is positive, the value of the share token can grow over time.

Share tokens are automatically created when the pool is created, and the asset pool smart contract
will use the asset pool share deployer smart contract to create the share tokens. We will dive deeply
into the asset pool share smart contract and its deployer in the Implementing asset pool share and its
deployer section.

Next, we will talk about price oracle, which is another important smart contract for a crypto loan.

A price oracle smart contract

A price oracle smart contract is used to retrieve the price of a token in the unit of a base token or
a fiat currency. It is very important for crypto loans because the price of the collateral provided by
a user determines how many crypto assets the user can borrow from the asset pools. If the price of
the user's collateral changes, the borrowable asset amounts will also be changed along with the price.

An Introduction to Crypto Loans334

You may want to use the ratio of the reserves in a liquidity pool to calculate the price of a token;
however, this way is extremely dangerous, and hackers can exploit asset pools by manipulating the
reserves of a liquidity pool. The cost of hacking activity is very low when the liquidity size is small
because the token prices of small liquidity pools can be easily manipulated. As a result, price oracle
should be designed carefully with respect to this vulnerability.

With this, we have gone through the introduction of all the components in the crypto loan we will
build. Because there are too many topics to discuss to implement these components in one chapter, we
will break the implementation of the crypto loan smart contracts into three chapters. For this chapter,
we will implement the pool configuration smart contract, the asset pool share smart contract, and the
asset pool share deployer smart contract. In Chapter 12, Implementing an Asset Pool Smart Contract
for a Crypto Loan we will discuss the asset pool smart contract in detail and implement its code. In
Chapter 13, Implementing a Price Oracle for Crypto Loans we will discuss how to implement a robust
decentralized price oracle for crypto loans.

In the next section, we will dive into the crypto loan interest rate model. We will also implement the
smart contract of pool configuration, based on the terminologies in the interest rate model.

Understanding interest rate model and pool configuration
Starting from this section, we will dive into the terminologies in crypto loan; these terms are parameters
in crypto loan smart contracts. We will also introduce and explain the formulas for calculating and using
these parameters. We will also implement the formulas in the code for the crypto loan smart contracts.

At the end of this section, we will implement the smart contract for pool configuration. Now, let’s dive
into the borrowing interest rate and lending interest rate.

The borrowing interest rate and lending interest rate

If you save money or have a loan from a bank, you will find the borrowing interest rate is usually
higher than the lending (saving) interest rate. You may also find this characteristic of the crypto loan
application when the asset pools have sufficient assets. Now, we will explain the relationship between
the borrowing interest rate and lending interest rate, and then you will understand why this happens.

In a crypto loan application scenario, let’s assume that the owner of the application doesn’t take any
crypto assets from it. It means all the interests paid by the borrower will be paid back to the lenders.
Figure 11.3 shows an example of interest rate calculation based on this assumption.

Understanding interest rate model and pool configuration 335

Figure 11.3 – An example of interest rate calculation

In Figure 11.3, there are two users – Lily the lender and Bob the borrower. Suppose, initially, there is
an empty asset pool for a USDT token, and we set the borrowing interest rate at 5%. The following
four steps of the user operations demonstrate how the lending interest rate is calculated with the asset
amount in the asset pool:

1. Lily lends 100 USDT to the USDT asset pool.

2. Bob, the borrower, borrows 80 USDT from the asset pool.

3. One year later, based on the borrowing interest rate, Bob will pay 5%, which is 4 USDT (5%
x 80 USDT) of the interest when he pays back the loan. Then, the USDT asset pool has 104
USDT at the time of Bob’s payback.

4. Now, Lily can withdraw all these assets, including the interest amount of 4 USDT with her
initial 100 USDT principal. As a result, we can calculate the lending interest rate of the lending
period is (interest amount/principal amount) x 100% = (4 USDT/100 USDT) x 100% = 4%.

By going through the preceding example, we can see that the lending interest rate 4% is lower than the
borrowing interest rate of 5%. In theory, all the USDT assets can be borrowed, and then the lending
interest rate could be equal to 5% for this case. Now, let’s define the utilization rate (R utilization) as the
ratio of compound borrowed assets to the total liquidity for an asset pool, so we have:

 R utilization =
 A borrowed_compound _ A liquidity_total

Where A borrowed_compound is the total compound amount of the borrowed token of the asset pool, and
A liquidity_total is the total liquidity token amount of the asset pool. You may have noticed that we use the
term compound amount instead of amount, as we should take into account the interest that the user
has accumulated so far when calculating interest. In the next chapter, you will see how the interest is
compounded every second, and the total liquidity for an asset pool grows with the interest.

An Introduction to Crypto Loans336

 R utilization = 0 means that nobody borrows assets from the asset pool. There is a special case when
A liquidity_total = 0 ; this means there are no assets for users to borrow, and it implies A borrowed_compound = 0 .
We will define R utilization = 0 for this case.

If we assume that all the loan interests are paid as earning interest of lenders, we have:

 A liquidity_total = A borrowed_compound + A liquidity_available

Where A liquidity_available is the available amount of token in the asset pool that can be withdrawn by lenders.

In reality, the deployer or the project team of the crypto loan application takes a portion of loan
interest as income, and the tokens for the income that is reserved in the asset pool are called reserves.
Then, we have:

 A liquidity_total = A borrowed_compound + A liquidity_available − A reserve

Where A reserve is the token amount for reserves of the asset pool. So, we update the formula for
calculating R utilization to:

 R utilization =
 A borrowed_compound _________________________ A borrowed_compound + A liquidity_available − A reserve

This is because the tokens for reserves come from the loan interest, and the compound borrowed
amount A borrowed_compound includes the loan interests and the principal borrowed (A borrowed_principal). So,
we have A borrowed_compound ≥ A reserve (It is equal when there is no user borrow from the asset pool), and
R utilization is within the range:

 0 ≤ R utilization ≤
 A borrowed_compound ___________________ A borrowed_principal + A liquidity_available

Given a borrowing interest rate (R interest_borrow), we can calculate the lending interest rate (R interest_lend)
with the following formula:

 R interest_lend = R utilization * R interest_borrow

From the preceding formulas, we can learn that if A liquidity_available ≥ A reserve , the value of R utilization is less than
or equal to 1, and then R interest_lend ≤ R interest_borrow . If A liquidity_available < A reserve , then we have R utilization > 1 and
R interest_lend > R interest_borrow . This means that as long as the tokens in the asset pool are sufficient to pay the
income of the crypto loan project team, the lending interest rate will not exceed the borrowing interest
rate. Otherwise, the asset pool will owe more and more to lenders, and A liquidity_available will be exhausted.
It would result in the crypto loan owners not being able to withdraw the reserves for their income.

In an extreme case when the available liquidity amount is exhausted (A liquidity_available = 0), everyone,
including the owner of the crypto loan smart contracts, cannot withdraw any token from the asset
pool. There are two ways to solve this issue – liquidating the assets or lending an asset to the pool;
both ways can make the utilization rate drop and improve the asset availability of the asset pool.

Understanding interest rate model and pool configuration 337

For a crypto loan application, one of the best practices is maintaining the utilization rate (R utilization)
below or close to the optimal utilization rate (which is usually from 50% to 90%), with sufficient
available liquidity in the asset pool for withdrawal. Meanwhile, both the lending interest rate and
borrowing interest rate can maintained in a reasonable range.

For a decentralized crypto loan application based on a utilization rate, the lending interest rate is
determined by the borrowing interest rate with the formula R interest_lend = R utilization * R interest_borrow. This is
because this approach can encourage people to lend and punish borrowing when the asset pools are
over-borrowed. If you want to use the lending interest rate to calculate the borrowing interest rate
with another form of the formula, try the following:

 R interest_borrow =
 R interest_lend _ R utilization

The borrowing interest rate will be sky-high if the utilization rate is very small or becomes infinite
when there are no borrowers (R utilization = 0) for the asset pool.

Another question can be raised here – since we can calculate the lending interest rate with the
borrowing interest rate, how can we determine the borrowing interest rate? To answer this question,
we will discuss the interest rate model next.

Demystifying the interest rate model

The interest rate model is generally defined as a method of modeling the variation of interest rates. For
the crypto loan application that we will implement in this book, the interest rate model is a function
that uses the utilization rate to calculate the borrowing interest rate of an asset pool. Each asset pool
may have its own interest rate model function with different parameter values.

For most cases, the interest rate grows along with the utilization rate of an asset pool, as the crypto
loan system encourages borrowing when the utilization rate is low and discourages borrowing when
there are not many assets left in the pool by facilitating a high borrowing interest rate.

In order to encourage crypto loan users to keep the asset pool at an ideal utilization rate, we can
introduce an optimal interest growing rate when the utilization rate is below an optimal utilization
rate, and adopt an excess interest growing rate when the utilization rate is above the optimal utilization
rate. Based on this discussion, we have the following formula to calculate the borrowing interest rate,
based on the utilization rate R utilization (where x is R utilization in the formula for simplification):

 R interest_borrow = f

⎛

 ⎜

⎝
 x

⎞

 ⎟

⎠
 =

⎧

⎪

 ⎨
⎪

⎩

 b + ∆ px _ p (0 ≤ x ≤ p, p > 0)

 b+ ∆ p+ ∆ e (x− p) _ 1− p (p < x ≤ 1)

An Introduction to Crypto Loans338

The preceding formula introduces the following new terms:

• Base borrowing interest rate (b): The borrowing interest rate when there is no borrowed asset
for an asset pool. It also represents the minimum and initial borrowing interest rate of the pool.

• Optimal utilization rate (p): The utilization rate threshold of optimal utilization of the asset
pool. If the utilization rate is less than the optimal utilization rate, the interest rate will change
mildly when the utilization rate changes. If the utilization rate grows beyond the optimal
utilization rate, the interest rate will change sharply.

• Optimal utilization interest rate span (∆ p): The span of the interest rate when the asset pool
utilization rate is less than the optimal utilization rate. For example, given the condition that
the utilization rate is not greater than the optimal utilization rate, the maximum interest rate
is 9% and the minimum interest rate is 1%, so the value of the optimal utilization interest rate
span (∆ p) is 9% - 1% = 8%. It also implies that the base borrowing interest rate is 1% because
the interest rate monotonically rises with that of the utilization rate.

• Excess utilization interest rate span (∆ e): The span of the interest rate when the utilization rate
is greater than the optimal utilization rate until the pool drains out completely (R utilization ≥ 1);
this means the asset pool is drained beyond the optimal level by borrowers. For example, given
the condition that the utilization rate is greater than the optimal utilization rate but less than
100%, the maximum interest rate is 60% and the minimum interest rate is 9%, so the excess
utilization interest rate span is 60% - 9% = 51% for this case.

To understand the function of the interest rate model and the terms introduced in the formula, we
can refer to the function graph in Figure 11.4.

Figure 11.4 – The function graph of the borrowing interest rate model

Understanding interest rate model and pool configuration 339

Figure 11.4 shows a function graph of a two-segment line. The left segment of the line shows the interest
rate change slope when the utilization rate is less than the optimal utilization rate. The right segment
of the line becomes steeper than the left side. It incentivizes borrowers to repay the loan because the
interest rate is very high, and they have to pay more interest if they don’t reduce the loan size. Once
the utilization rate reaches 100% (when A liquidity_available = 0 and A liquidity_total = A borrowed_compound for the asset
pool), the asset pool will reach the exhausted utilization interest rate (R exhausted):

 R exhausted = b+ ∆ p+ ∆ e

The exhausted utilization interest rate is the interest rate when the asset pool utilization rate is 100%.
When the asset pool is exhausted (the utilization rate is greater or equal to 100%), there is no asset for
the user to withdraw or borrow from the asset pool. The borrowing interest rate can go higher than the
exhausted utilization rate. This also means that the lending interest rate is higher than the borrowing
interest rate, which could cause a situation where the asset pool doesn’t have sufficient tokens to pay
earned interests to lenders. The project team of the crypto loan application should keep monitoring
the utilization rate of each asset pool and prevent this situation from happening.

The interest rate model implies that the borrowing interest rate and lending interest rate changes
dynamically based on the utilization rate. Even after the loan is issued, the borrowers have to pay
interest under the rate variation.

The pool configuration smart contract is the first smart contract we will implement for a crypto loan.
The smart contract stores all the four parameters (b , p , ∆ p, and ∆ e) we used in the formula of the
interest rate model. Besides these four parameters, there are two remaining asset pool parameters for
the smart contract. Next, we will dive into one of the parameters – the collateral rate.

The collateral rate

The collateral rate is the rate of the user-provided collateral in the asset pool that can contribute to the
loan quota of the user. If a user lends 10 ETH to a crypto loan system and the collateral rate of the ETH
asset pool is 60%, the maximum asset value that the user can borrow equals the value of 6 ETH (10
ETH x 60% = 6 ETH). If the value of collateral (which is ETH) rises, the borrowable value of the user
also increases. On the other hand, if the value of collateral drops, the borrowable value also decreases.

An Introduction to Crypto Loans340

Figure 11.5 gives another example that demonstrates the concept of the collateral rate.

Figure 11.5 – A collateral rate explanation by example

In the example of Figure 11.5, there are two asset pools in the crypto loan system. One is the USDT
asset pool, and another is the BTC asset pool. Bob lends 1,000 USDT by depositing the USDT into
the USDT asset pool. Since the collateral rate of the USDT asset pool is 80%, he can borrow up to 800
USDT from the USDT pool, or up to 800 USDT worth of BTC (which is 0.032 BTC, given that the
price of BTC is 25,000 USDT at the time of borrowing) from the BTC asset pool. The amount of BTC
tokens that Bob can borrow doesn’t depend on the collateral rate of the BTC asset pool.

In Figure 11.5, we show two options (Option 1 and Option 2) in the diagram. This doesn’t mean that
Bob only has two options; he can borrow assets from both the USDT pool and BTC pool with any
combination of USDT and BTC, as long as the collateral is sufficient. We only show the two options in
the example just to demonstrate how the collateral rate impacts the borrowed amounts from different
asset pools.

Given a crypto loan system that has N asset pools from 1 to N , the maximum borrowable value
(V max_borrow) for a user can be calculated by the following formula:

 V max_borrow = ∑ i=1
n C i A i P i

Understanding interest rate model and pool configuration 341

Where C i is the collateral rate of i th asset pool, A i is the amount of token deposited to the i th asset
pool by the user, and P i is the price of the collateral token in the i th asset pool.

Note
The maximum borrowable value (V max_borrow) describes the total value that the user can borrow
across all the asset pools of a crypto loan application, whereas borrowing limit (V borrow_limit) we
mentioned in the Exploring the characteristics of crypto loan section is based on the provided
collateral in a specific asset pool.

In order to maintain the crypto loan system in a healthy state, we may not allow a user to withdraw
the tokens from the system if they have already borrowed some assets. This is because it will decrease
the value A i in the preceding formula, and the value of V max_borrow will drop. As a result, it could make
the user’s borrowed asset value to surpass V max_borrow of the user.

Based on the formula, the price of the collateral token P i can also impact the maximum borrowable
value for a user. If the price drops, it can make a user’s borrowed value greater than the maximum
borrowable value. It could make asset pools unhealthy and drain out the asset pools by depreciating
the assets. There is no proactive way to resolve the issue using the crypto loan system. However, we
can introduce liquidation to improve the healthiness of the system.

We will dive into the process of liquidation in Chapter 12, Implementing an Asset Pool Smart Contract for
a Crypto Loan. Next, we will introduce the last parameter before implementing the pool configuration
smart contract, which is for attracting users to engage in the liquidation process by offering them an
incentive bonus.

The liquidation bonus rate

The liquidation bonus rate is the rate of the collateral token to be paid back to liquidators. The rate
is compared to the value of supplied assets. If the rate is greater than 1, it means the value of the
received collateral is more than the assets supplied by the liquidator, and it will incentivize everyone
to liquidate unhealthy assets. The term unhealthy assets refers to the assets borrowed by users whose
total borrowed value exceeds their maximum borrowable value.

An Introduction to Crypto Loans342

Figure 11.6 shows an example to help you to understand the liquidation bonus rate:

Figure 11.6 – A liquidation bonus rate explanation by example

In Figure 11.6, the crypto loan system has two asset pools – the USDT asset pool and BTC asset pool.
Initially, Bob saw a user whose collateral value is insufficient (the value of the borrowed token is
greater than the maximum borrowable amount); this is because the user uses BTC as collateral (the
user may also have collateral in USDT), and the price of BTC dropped significantly during this period.

Now, Bob can liquidate the assets by supplying 1,000 USDT to the USDT asset pool. He has an option
to receive 1,100 USDT because the liquidation bonus rate of the USDT pool is 1.1. Another option
for him is to receive 0.048 BTC, which has a higher bonus because the liquidation bonus rate for
BTC pool is 1.2.

Like the example when we demonstrated the collateral rate in Figure 11.5, Bob has more options to
liquidate the assets. First, he can supply 600 USDT to get 660 USDT, and then supply the remaining
400 USDT to get 0.0192 BTC (400 x 1.2 / 25,000 = 0.0192). Any combinations of collateral is acceptable
when Bob liquidates the asset of 1,000 USDT, as long as the borrower has sufficient collateral.

Now, we have demonstrated all the parameters for the pool configuration smart contract:

• The base borrowing interest rate

• The optimal utilization rate

• The optimal utilization rate span

Understanding interest rate model and pool configuration 343

• The excess utilization interest rate span

• The collateral rate

• The liquidation bonus rate

Next, we will discuss how to implement the pool configuration smart contract.

Implementing the pool configuration smart contract

Now, let’s create a file at src/backend/contracts/PoolConfiguration.sol for the source
code of the pool configuration smart contract. Then, we will implement the PoolConfiguration
smart contract with the following code:

contract PoolConfiguration {
 uint256 public baseBorrowRate;
 uint256 public optimalSpan;
 uint256 public excessSpan;
 uint256 public optimalUtilizationRate;
 uint256 public collateralRate;
 uint256 public liquidationBonusRate;

 constructor(uint256 _baseBorrowRate,
 uint256 _optimalSpan,
 uint256 _exceessSpan,
 uint256 _optimalUtilizationRate,
 uint256 _collateralRate,
 uint256 _liquidationBonusRate) {
 require(_optimalUtilizationRate < 1e18,
 ""INVALID_OPTIMAL_UTILIZIATION_RAT"");
 baseBorrowRate = _baseBorrowRate;
 optimalSpan = _optimalSpan;
 excessSpan = _exceessSpan;
 optimalUtilizationRate = _optimalUtilizationRate;
 collateralRate = _collateralRate;
 liquidationBonusRate = _liquidationBonusRate;
 }
}

The preceding code defines the six parameters as the configuration for an asset pool and the constructor
to initialize these parameters.

An Introduction to Crypto Loans344

You may have noticed that we are using the uint256 Solidity type to store the values of these
parameters, even though the values of these parameters are floating point values. This is because Solidity
doesn’t have the data type to directly represent floating point values. Therefore, we have to use integers
to represent these values and use a base number, 10 18 , to multiply the real value to get the uint256
value for storage within the smart contract. For example, given the base borrowing interest rate of
1%, we will assign 10,000,000,000,000,000 (which equals to 1% x 1018) to the _baseBorrowRate
variable when calling the constructor.

In the constructor, the smart contract also requires that the optimal utilization rate
(_optimalUtilizationRate) is less than 100%, which is represented as 1e18 of the uint256
type value in the code.

Besides these parameters, we also need a helper function, getUtilizationRate, in the
PoolConfiguration smart contract to calculate the utilization rate (R utilization); here is the code
for the function:

function getUtilizationRate(uint256 _totalBorrows,
 uint256 _totalLiquidity) public pure returns (uint256) {
 return _totalLiquidity == 0 ? 0 :
 (_totalBorrows * 1e18) / _totalLiquidity;
}

The preceding code uses the total compound borrowed token (_totalBorrows) and the total available
liquidity token amount (_totalLiquidity) to calculate the utilization rate of an asset pool. As
we mentioned earlier, the result of the rate is multiplied by 1018 (1e18 in the code) before it returns.

The last function we will implement in the PoolConfiguration smart contract is to calculate
the borrowing interest rate (R interest_borrow) with the formula we explained earlier in this section. Here
is the code for the function:

function calculateBorrowInterestRate(uint256 _totalBorrows,
 _totalLiquidity) public view returns (uint256) {
 uint256 utilizationRate = getUtilizationRate(
 _totalBorrows, _totalLiquidity);
 if (utilizationRate > optimalUtilizationRate) {
 return baseBorrowRate + optimalSpan + (excessSpan *
 (utilizationRate - optimalUtilizationRate)) /
 (1e18–- optimalUtilizationRate);
 } else {
 return baseBorrowRate + (utilizationRate *
 optimalSpan) / optimalUtilizationRate;
 }
}

Implementing an asset pool share and its deployer 345

The preceding code first calls getUtilizationRate to get the utilization rate, and then it calculates
the existing borrowing rate under two conditions. If utilizationRate is greater than the optimal
utilization rate, the interest rate will grow with the excessive rate, with the excessSpan/(1e18
– optimalUtilizationRate) slope. Otherwise, the interest rate will grow with the optimal
rate, with the optimalSpan/optimalUtilizationRate slope.

With this, we have explored the code of the PoolConfiguration smart contract and explained all
the parameters in the smart contract. For the complete code of the smart contract, refer to https://
github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/
chapter11-end/defi-apps/src/backend/contracts/PoolConfiguration.sol.

In the next section, we will dive into the concept of an asset pool share, which represents the position
of lenders for every asset pool.

Implementing an asset pool share and its deployer
When a lender deposits assets into an asset pool, the lender owns shares of the pool to represent the
lender’s ownership of a portion of tokens in it. In this book, we will use the term asset pool share to
represent the lender’s ownership.

Next, let’s introduce an asset pool share.

Introducing an asset pool share

Similar to the liquidity pool token we discussed in Chapter 5, Building Crypto-Trading Smart Contracts
an asset pool share is also an ERC20 token. One share represents an amount of an asset token. After
a period of time, the interest will be cumulated by the asset token amount for each share. So, a user
can receive an amount of shares on a deposit, and after a period of time, the user can get more asset
tokens when they redeem the same amount of shares on withdrawal. Figure 11.7 shows how a crypto
loan uses the asset pool share in deposit and withdraw operations:

Figure 11.7 – A demonstration of using the asset pool share in deposit and withdraw operations

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter11-end/defi-apps/src/backend/contracts/PoolConfiguration.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter11-end/defi-apps/src/backend/contracts/PoolConfiguration.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter11-end/defi-apps/src/backend/contracts/PoolConfiguration.sol

An Introduction to Crypto Loans346

In Figure 11.7, we can see that the asset pool will mint the asset pool share and send it back to the
lender when the lender deposits the asset token. Here, asset token is the token in the asset pool that
is deposited by lenders for borrowers to borrow. One asset pool only has one type of asset token.

When the lender withdraws the asset token from the pool, the asset pool will burn the asset pool
share first and then send back the asset token to the lender, based on the value of shares that have
just burned. The value of each asset pool share (V share) can be calculated with the following formula:

 V share =
 A liquidity_total _ S total

Where A liquidity_total is the total liquidity (as we discussed in the Understanding interest rate model and
pool configuration section) and S total is the total amount or total supply of the asset pool shares.

For example, Lily lent 100 USDT six months ago, and the value of the asset pool share is 1 USDT/
share at the time of lending, so Lily got 100 shares at the time of lending. Now, the value of the share
is 1.1 USDT/share, and Lily can withdraw 110 USDT (1.1 USDT/share x 100 shares) by redeeming
the 100 shares. This means Lily got the extra 10 USDT as the interest she earned.

In Chapter 12, Implementing an Asset Pool Smart Contract for a Crypto Loan we will discuss more
about the asset pool share in the crypto loan processes. Next, let’s implement the smart contract for
the asset pool share.

Implementing the asset pool share smart contract

The asset pool share smart contract we will discuss in this section is highly tied to the asset pool smart
contract we will implement in Chapter 12, Implementing an Asset Pool Smart Contract for a Crypto
Loan. When implementing the asset pool share smart contract, we need to store the following two
pieces of information in the contract:

• The underlying asset, which is the asset token of the asset pool

• The instance of the asset pool so that the asset pool share can check whether a user can transfer
the shares to somebody else, ensuring that the user has sufficient shares as collateral

Now, let’s create a Solidity file, located at src/backend/contracts/AssetPoolShare.sol,
and implement the smart contract with the following code:

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "./interfaces/IAssetPool.sol";

contract AssetPoolShare is ERC20, Ownable {
 IAssetPool private assetPool;
 ERC20 public underlyingAsset;

Implementing an asset pool share and its deployer 347

 constructor(string memory _name, string memory _symbol,
 IAssetPool _assetPool, ERC20 _underlyingAsset
) ERC20(_name, _symbol) {
 assetPool = _assetPool;
 underlyingAsset = _underlyingAsset;
 }
}

In the preceding code, we imported ERC20.sol from OpenZeppelin to reuse the implemented
ERC20 functions for the AssetPoolShare smart contract. Also, we imported the IAssetPool.
sol interface so that we can access an instance of the asset pool smart contract (which is assigned
to the assetPool variable). By using the interface, we can write code to call the function before
implementing the asset pool smart contract. Also, we use the underlyingAsset variable to store
the instance of the asset token of the asset pool.

Next, let’s implement the mint and burn functions of the AssetPoolShare smart contract:

function mint(address _account, uint256 _amount) external
 onlyOwner {
 _mint(_account, _amount);
}
function burn(address _account, uint256 _amount) external
 onlyOwner {
 _burn(_account, _amount);
}

We use the onlyOwner decorator here because both the mint and burn functions are privilege
functions, and only the asset pool smart contract can call them. Also, we need to customize the internal
transfer function to make sure that the account of the share owner is healthy:

function _transfer(address _from, address _to,
 uint256 _amount) internal override {
 super._transfer(_from, _to, _amount);
 require(assetPool.isAccountHealthy(_from),
 "TRANSFER_NOT_ALLOWED");
}

The isAccountHealthy function is defined in IAssetPool.sol, which is the interface of the
asset pool smart contract. If the lender's account (specified by _from) is not healthy after transferring
the share token, the transaction will be reverted so that the lender has sufficient collateral to repay
the loan.

An Introduction to Crypto Loans348

Note
If a user doesn’t borrow any asset from the crypto loan system, the health of the user is always
good, no matter whether the user lent an asset or not. We will discuss how to determine the
healthiness of a user in Chapter 12, Implementing an Asset Pool Smart Contract for a Crypto Loan.

With this, we have completed the implementation of the AssetPoolShare smart contract. You can
refer to its full source file at https://github.com/PacktPublishing/Building-Full-
stack-DeFi-Application/blob/chapter11-end/defi-apps/src/backend/
contracts/AssetPoolShare.sol.

Next, we will implement the deployer of the smart contract so that the asset pool smart contract can
deploy and set up the share token properly.

Implementing the asset pool share deployer

In Solidity, we can use the new keyword to create an instance of a smart contract. However, a
deployer can help callers complete the setup after smart contract creation. For the creation of the
AssetPoolShare smart contract, we should also set the owner of the smart contract to the asset
pool so that only the asset pool smart contract can mint and burn the share tokens.

The asset pool share deployer is implemented in the src/backend/contracts/
AssetPoolShareDeployer.sol file; it only implements one function, createAssetPoolShare.
Here is the code for the function:

function createAssetPoolShare(string memory _name,
 string memory _symbol, ERC20 _underlyingAsset) public
 returns (AssetPoolShare) {
 AssetPoolShare shareToken = new AssetPoolShare(_name,
 _symbol, IAssetPool(msg.sender), _underlyingAsset);
 shareToken.transferOwnership(msg.sender);
 return shareToken;
}

The preceding highlighted code shows that the caller of the createAssetPoolShare function
must be an instance of IAssetPool; otherwise, the share token cannot be transferred, due to a lack
of the isAccountHealthy function.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter11-end/defi-apps/src/backend/contracts/AssetPoolShare.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter11-end/defi-apps/src/backend/contracts/AssetPoolShare.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter11-end/defi-apps/src/backend/contracts/AssetPoolShare.sol

Exploring a crypto loan system by example 349

For the full source code for the AssetPoolShareDeployer smart contract, refer to https://
github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/
chapter11-end/defi-apps/src/backend/contracts/AssetPoolShareDeployer.
sol.

In this section, we introduced the asset pool share for a crypto loan and implemented the asset pool
share smart contract and its deployer. In the next section, we will explore one of the most popular
lending protocols on the market to review the concepts we introduced in this chapter.

Exploring a crypto loan system by example
We have discussed many financial terminologies and mathematics in this chapter, and it may be hard
for you to understand all of them. In the last section of this chapter, we will use an example of the
DeFi lending protocol Aave to help you understand the concepts we have explored in this chapter.

An introduction to Aave

Aave (https://aave.com/) is one of the most popular lending protocols that offers crypto
lending and borrowing services. At the time of writing, the protocol has locked over 10 billion US
dollars’ worth of on-chain assets across 8 blockchain networks.

The Aave protocol has two versions that are open to the public – version 2 and version 3. The workflows
and concepts in the Aave protocol version 2 are consistent with the protocol we will build in this book.
However, we will also introduce the new features in the Aave protocol version 3 as an advanced topic,
allowing you to broaden your knowledge of crypto loan systems.

An Aave protocol version 2 overview

You can access the Aave lending protocol by clicking the Launch App button on the Aave landing page
(https://aave.com/). As shown in Figure 11.8, on the Dashboard page, we can select Version
2 and then Ethereum to access the Aave protocol version 2 on the Ethereum network.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter11-end/defi-apps/src/backend/contracts/AssetPoolShareDeployer.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter11-end/defi-apps/src/backend/contracts/AssetPoolShareDeployer.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter11-end/defi-apps/src/backend/contracts/AssetPoolShareDeployer.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter11-end/defi-apps/src/backend/contracts/AssetPoolShareDeployer.sol
https://aave.com/
https://aave.com/

An Introduction to Crypto Loans350

Figure 11.8 – The dashboard of Aave Ethereum Market

There are two panels on the Aave dashboard. The left-side panel, Assets to supply, lists all the assets
that a user can lend to earn interest. The right-side panel, Assets to borrow, lists all assets that a user
can borrow from the asset pools.

For the same type of asset, such as ETH, there could be an APY column on the left-side panel, which
shows the lending interest rate, and an APY column on the right-side panel, which shows the borrowing
interest rate. The borrowing interest rate is variable because the rate could change, based on the asset
pool utilization rate and interest rate model we discussed earlier in this chapter.

Although there are two rows for an asset (e.g., ETH) in Aave (one row in the Assets to supply panel,
and another row in the Assets to borrow panel), there is only one asset pool for the asset. Based on
what we have learned, the lending interest rate is determined by the borrowing interest rate, and the
lending rate is not greater than the borrowing rate.

Exploring a crypto loan system by example 351

Once you click on the row for ETH, on the left-side panel or right-side panel, you will see more
information on the next page about what the interest rate model for the ETH asset pool looks like.
The page has three sections. Figure 11.9 shows the Supply Info section of the Reserve status &
configuration page.

Figure 11.9 – The Supply Info section of the ETH asset pool on Aave

Figure 11.9 shows that the Total supplied amount of ETH is 233.13K, which is the total liquidity
amount we discussed earlier in this chapter. The current APY amount is 0.64%, and the APY history
for the last month is shown in the middle chart of the section.

An Introduction to Crypto Loans352

At the bottom of the section in Figure 11.9, there are three parameters:

• Max LTV is equivalent to the collateral rate we discussed earlier in the chapter, which represents
the maximum borrowing amount a user gains after supplying the collateral of this type of asset.

• Liquidation threshold represents the liquidation that will happen if a user’s borrowed assets
exceed the percentage of value for the asset pool. In the crypto loan system that we will
implement in this book, the value of liquidity threshold is the same as the collateral rate. This
means ifs the user’s borrowed asset exceeds the maximum borrowing amount, liquidation of
the user’s asset could happen.

• Liquidation penalty represents how much the asset owner will lose when liquidation happens
to the asset. In this book, the liquidation penalty is equivalent to the liquidation bonus rate. This
means the penalty will be used as a bonus to incentivize users to liquidate unhealthy assets; it
is a positive mechanism to improve the healthiness of the whole lending protocol.

If you scroll down the Reserve status & configuration page for ETH on Aave, you will see the Borrow
info section, as shown in Figure 11.10.

Figure 11.10 – The Borrow info section of the ETH asset pool on Aave

Exploring a crypto loan system by example 353

From Figure 11.10, we can read that the total borrowed ETH is 76,748.07. It also shows the current
borrowing APY, which is 2.60%, and the historical APY for the last month. The bottom of Figure 11.10
shows the reserve factor for the asset pool. The reserve factor represents the percentage of borrowing
interest collected for the asset pool, which are reserved for Aave as income or to pay for operational
costs. In this book, we will call the reserve factor the reserve rate and we will discuss more about the
reserve rate in the next chapter.

Let’s do some calculations based on the utilization rate formula we discussed earlier in the chapter,
with the numbers shown on the Reserve status & configuration page for the ETH asset pool. The
total supplied amount is 233.13K, as shown in Figure 11.9, and the borrowed ETH is 76748.07. We can
calculate the utilization rate as 76748.07 _ 233130 = 32.92% . Because it shows 2.60% for the borrowing interest
rate, we can get the lending interest rate if we don’t consider the reserve rate, which is 32.92% x 2.60%
= 0.85%. If we consider the reserve rate of 25%, it means 25% of the interest is reserved by Aave, so
the remaining 75% of the interest will be paid to lenders. So, the lending interest rate is 75% x 0.85%
= 0.6375%, which is approximately equal to 0.64%, as shown in Figure 11.9.

In the last section of the Reserve status & configuration page for the ETH asset pool, you will see
the Interest rate model section, with a diagram showing the relationship between the utilization rate
and borrowing interest rate. Figure 11.11 shows the function diagram and the current utilization rate
of the ETH asset pool on Aave.

Figure 11.11 – The Interest rate model section of the ETH asset pool on Aave

In the diagram of Figure 11.11, you can see that the optimal utilization rate is 80%. The borrowing
interest rate will rise significantly once the utilization rate exceeds the number.

Next, we will discuss the new features introduced in the Aave protocol version 3. Although they are
advanced features that we will not implement in this book, it is still good to learn how a mature project
builds a secure and flexible crypto loan system.

An Introduction to Crypto Loans354

New features in the Aave protocol version 3

Starting from the Aave protocol version 3, the Aave platform supports crypto loans for more EVM-based
blockchain networks such as BNB Chain and Arbitrum. Most importantly, the Aave protocol version
3 introduced two more features to improve security and capital utilization efficiency.

Isolation mode

Aave isolation mode provides a secure facility for new or volatile assets. If an asset is set to isolation
mode, the user(s) who provide the asset as the collateral will have an upper limit in USD for the
borrowing asset; the upper limit is a fixed number no matter how much collateral borrowers supply.
Meanwhile, the user cannot supply other assets as collateral for borrowing. Figure 11.12 shows a
screenshot of the Supply Info section of an asset pool for the Aave protocol version 3.

Figure 11.12 – The Supply Info section of an asset pool for the Aave protocol version 3

Summary 355

In Figure 11.12, it shows that the Isolated Debt Ceiling amount is $8.50 million, of which $8.21 million
has been used. As a result, no matter how many collateral assets the users provide, the borrowing quota
for these users is approximately $290,000 (which is $8.50 million minus $8.21 million).

High Efficiency mode (E-mode)

Compared to isolation mode, which introduces restrictions to users who provide high-risk assets as
collateral, High Efficiency mode (E-mode) in the Aave protocol enables users to get high LTV when
they supply stable assets (e.g., USDT) as collateral. When E-mode is enabled, the user can get a very
high collateral rate, which is usually more than 90% when the supplied assets satisfy the criteria.
The user will be restricted to only borrowing stable assets to prevent volatile assets impacting the
healthiness of the asset pools.

Note
For more information on the Aave version 3 features, refer to this link: https://docs.
aave.com/faq/aave-v3-features.

In the next chapter, you will learn about the crypto loan system, which will use the deployer to create
asset pool share tokens when an asset pool is created.

Summary
In this chapter, you learned the characteristics of a decentralized crypto loan. We also went through
the personas involved in a crypto loan system and the architecture of the crypto loan smart contracts.
We also introduced every smart contract we will implement for a crypto loan and how these smart
contracts interact with each other. After that, we explored how interest rates are calculated and dived
into the interest rate model.

We also implemented three smart contracts for a crypto loan, PoolConfiguration,
AssetPoolShare, and AssetPoolShareDeployer, in this chapter. These smart contracts
are the cornerstones of the whole crypto loan system. Finally, we went through one of the most popular
lending protocols, Aave, to aid our understanding of the concepts demonstrated in this chapter.

In the next chapter, we will implement the asset pool smart contract using these cornerstones. The
asset pool smart contract implements all the business logic for user operations and a majority of
mathematic calculation functions for crypto loans.

By reading the next chapter, you will gain hands-on experience in implementing the smart contracts
of a full-featured crypto loan system with Solidity.

https://docs.aave.com/faq/aave-v3-features
https://docs.aave.com/faq/aave-v3-features

12
Implementing an

Asset Pool Smart Contract
for a Crypto Loan

The asset pool smart contract is the most important component of the decentralized crypto loan system
we are building in this book. Based on the architecture we discussed in Chapter 11, An Introduction
to Crypto Loans, the asset pool smart contract builds on top of asset pool shares, pool configuration,
and the price oracle. It maintains the information of all the asset pools for various ERC20 tokens in
the crypto loan system, manages the user ledger for recording the loan-related information (e.g.,
collateral and borrowed assets) for each user, and provides the interfaces for frontend or other off-chain
components to interact with the on-chain crypto loan system.

By reading this chapter, you will learn the following:

• How to implement the code to manage the asset pools for crypto loans

• How to manage the records in user ledgers with smart contract code

• How to implement the functions for users to interact with the crypto loan system

• How to deploy and test the crypto loan smart contracts

Technical requirements
For the convenience of explaining the concepts and features we will implement in this chapter, we have
created the chapter12-start branch in the GitHub repository of this book. In this branch, we
implemented the sketch version of the asset pool smart contract in src/backend/contracts/
AssetPool.sol.

Implementing an Asset Pool Smart Contract for a Crypto Loan358

In AssetPool.sol, we implemented three events for asset pool management: PoolInitialized,
PoolConfigUpdated, and PoolInterestUpdated, and five events for user operations:
Deposit, Withdraw, Borrow, Repay, and Liquidate. We also implemented a sketch version
of the isAccountHealthy function, which we will implement the full code of in the Managing
the records in user ledgers section of this chapter.

Before implementing the fully functional AssetPool smart contract, we highly encourage you to
start coding based on the chapter12-start branch. For the sketch version of the AssetPool
smart contract, please refer to https://github.com/PacktPublishing/Building-Full-
stack-DeFi-Application/blob/chapter12-start/defi-apps/src/backend/
contracts/AssetPool.sol.

Let’s dive into the code of managing asset pools for the crypto loan system.

Implementing the code to manage the asset pools
In Chapter 11, An Introduction to Crypto Loans we learned that the asset pool smart contract maintains
multiple asset pools. In this section, we will explain how the AssetPool smart contract manages
these asset pools.

Pool status

We already know that an asset pool is a pool that holds an ERC20 token. The asset pool also has
a life cycle. For example, the prices of some tokens may become very volatile or some tokens may
be improper to be served as collaterals in a crypto loan. Therefore, we should have an approach to
deactivate the assets for crypto loans. So, there could be several statuses for each asset pool that form
the life cycle of the asset pool.

In the AssetPool smart contract, we will introduce three statuses:

• Inactive: This means that the pool is initialized but inactive for the user to take any actions with
this pool. The inactive status means the owner needs to safely configure the pool or shut down
the pool due to the healthiness of the asset. At this stage, all non-privilege operations (that are
not required to be run by the smart contract owner) such as deposit, withdraw, borrow, repay,
and liquidate are not allowed.

• Active: All non-privileged operations are open to everyone. It means users can deposit, withdraw,
borrow, repay, and liquidate assets of the pool.

• Closed: This means the pool is in clearance or maintenance. Lenders can still withdraw the
deposited token, borrowers can repay the borrowed assets, and liquidators can liquidate the
unhealthy accounts. However, nobody can borrow or deposit assets. If the clearance of a pool
is completed, the owner of the AssetPool smart contract can change the status to inactive.
Or, the owner can reactivate the pool by changing its status to active.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-start/defi-apps/src/backend/contracts/AssetPool.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-start/defi-apps/src/backend/contracts/AssetPool.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-start/defi-apps/src/backend/contracts/AssetPool.sol

Implementing the code to manage the asset pools 359

Please keep in mind that the privilege functions that can only be run by the owner are not restricted
by the pool status. For example, the owner can withdraw their income even if the pool status is closed
or inactive. The owner can also change the configuration, including changing the status of a pool
from any status.

Figure 12.1 shows the three statuses and their transition diagram.

Figure 12.1 – The status transition diagram of an asset pool

Here is the implementation of the pool status with enum in Solidity:

enum PoolStatus {INACTIVE, ACTIVE, CLOSED}

In Solidity, the values of an enum type are assigned to integers that equal the index of the value. The
index starts from 0 by default. For example, if we use ethers.js to check the status of the pool, which
has the INACTIVE status, the returned value will be 0. If the status is CLOSED, the returned value
will be 2.

The status of a pool doesn’t impact other pools in the crypto loan system. For example, if the BTC
asset pool is closed, you can also deposit or borrow funds from the USDT asset pool and the WETH
asset pool if they are active.

Next, we will implement a structure for maintaining all information on asset pools and functions to
manage the asset pools.

Pool management

Pool management involves asset pool initialization, status transition, and configuration updating. Before
talking about pool management, let’s implement a struct in Solidity to maintain all the configurations,
status, and parameters of an asset pool in AssetPool.sol:

struct Pool {
 PoolStatus status;
 AssetPoolShare shareToken;
 PoolConfiguration poolConfig;

Implementing an Asset Pool Smart Contract for a Crypto Loan360

 uint256 totalBorrows;
 uint256 totalBorrowShares;
 uint256 poolReserves;
 uint256 lastUpdateTimestamp;
}

In order to locate the Pool structure for a token, let’s create a mapping from the smart contract
address of the token to the associated Pool structure:

mapping(address => Pool) public pools;

And let’s define an array of tokens so the system knows which tokens have asset pools in the system:

ERC20[] public tokenList;

Next, we will implement the function to initialize an asset pool for a given token with the
PoolConfiguration smart contract. The PoolConfiguration smart contract has already
been implemented in Chapter 11, An Introduction to Crypto Loans. Before implementing the pool
initialization function, we also need to declare an instance of the AssetPoolShareDeployer
smart contract we implemented in Chapter 11, An Introduction to Crypto Loans for creating a new
share token for the new asset pool:

AssetPoolShareDeployer public shareDeployer;

Now let’s dive into the initPool function for pool initialization:

function initPool(ERC20 _token, PoolConfiguration
 _poolConfig) external onlyOwner {
 // 1. Check if a pool exist for the token
 for (uint256 i = 0; i < tokenList.length; i++) {
 require(tokenList[i] != _token, "POOL_EXIST");
 }

 // 2. Create an asset pool share token
 string memory shareSymbol = string(
 abi.encodePacked("Asset ", _token.symbol()));
 string memory shareName = string(abi.encodePacked(
 "Asset ", _token.name()));
 AssetPoolShare shareToken = shareDeployer
 .createAssetPoolShare(shareName, shareSymbol, _token);

 // 3. Initialize the asset pool
 Pool memory pool = Pool(PoolStatus.INACTIVE,
 shareToken, _poolConfig, 0, 0, 0, block.timestamp);

Implementing the code to manage the asset pools 361

 pools[address(_token)] = pool;
 tokenList.push(_token);
 emit PoolInitialized(address(_token),
 address(shareToken), address(_poolConfig));
}

The preceding code is pretty self-explanatory. If the given token has no asset pool yet, the initPool
function creates an asset pool share token and an asset pool structure for the given token. The
name of the asset pool share token is Asset <Token_Original_Name>, and the token symbol is
Asset <Token_Original_Symbol>.

Because there is no fund yet, the initPool function sets zeros for the following three parameters:

• totalBorrows: The amount of tokens that have been borrowed from the pool.

• totalBorrowShares: The amount of shares for the borrowed token. We will dive into more
details of shares for the borrowed token in the Managing the records in user ledgers section of
this chapter.

• poolReserves: The amount of tokens in the pool reserved for the owner’s income.

The lastUpdateTimestamp parameter of the Pool structure is the timestamp of when the balance
of tokens in the asset pool was last changed. When a user deposits, withdraws, borrows, repays, or
liquidates the tokens in the asset pool, or the owner withdraws income from the pool, the AssetPool
smart contract will calculate the compounded borrowing amount of the tokens in the pool. We will
dive into the code for it in the Implementing the functions for user requests section of this chapter.

The poolConfig parameter in the Pool structure is an instance of the PoolConfiguration
smart contract (you can refer to Chapter 11, An Introduction to Crypto Loans specifically the
Understanding the interest rate model and pool configuration section, for the implementation of the
smart contract). The instance includes all the information needed to calculate the borrowing interest
rate for the asset pool. Now, let’s create the following updatePool function for when we want to
update the pool configuration:

function updatePool(ERC20 _token, PoolConfiguration
 _poolConfig) external onlyOwner {
 Pool storage pool = pools[address(_token)];
 require(address(pool.shareToken) != address(0),
 "POOL_DOES_NOT_EXIST");
 pool.poolConfig = _poolConfig;
 emit PoolConfigUpdated(address(_token), address(_poolConfig));
}

Implementing an Asset Pool Smart Contract for a Crypto Loan362

The status parameter in the Pool structure is the pool status we defined previously. We need to
implement the setPoolStatus function for the owner to set the status:

function setPoolStatus(ERC20 _token, PoolStatus _status)
 external onlyOwner {
 Pool storage pool = pools[address(_token)];
 require(address(pool.shareToken) != address(0),
 "POOL_DOES_NOT_EXIST");
 pool.status = _status;
}

The preceding code allows the owner to set the status to anything, no matter the current status of the
pool, because the status transition between any two statuses is valid for the pool. In Figure 12.1, even
though there is no arrow from the Inactive status to the Closed status, the transition is still acceptable.

Note
All the pool management functions (initPool, updatePool, setPoolStatus) we
have discussed in this section are only for the owner to call.

In Chapter 11, An Introduction to Crypto Loans we mentioned several variables for asset pools, such
as available liquidity amount (A liquidity_available) and total liquidity amount (A liquidity_total). Next, we will
implement code for calculating these parameters for asset pools.

Pool parameter calculation

The first parameter to calculate for the asset pools is the liquidity amount available (A liquidity_available).
It is the balance token in the asset pool that can be withdrawn by owners or lenders. Here is the
implementation of the getAvailableLiquidity function for calculating the parameter:

function getAvailableLiquidity(ERC20 _token) public view
 returns (uint256) {
 return _token.balanceOf(address(this));
}

Based on the formula we discussed in Chapter 11, An Introduction to Crypto Loans:

 A liquidity_total = A borrowed_compound + A liquidity_available − A reserve

Let’s implement the getTotalLiquidity function to calculate the total liquidity amount (A liquidity_total):

function getTotalLiquidity(ERC20 _token) public view
 returns (uint256) {
 Pool storage pool = pools[address(_token)];
 return pool.totalBorrows +

Implementing the code to manage the asset pools 363

 getAvailableLiquidity(_token) - pool.poolReserves;
}

Now, let’s implement the getPool function to return all the parameters for an asset pool we have
discussed in this chapter and Chapter 11, An Introduction to Crypto Loans:

function getPool(ERC20 _token) external view returns (
 PoolStatus status, // Pool status
 address shareToken, // Asset pool share token address
 address poolConfig, // Pool configuration address
 // Compounded borrowed amount
 uint256 totalBorrows,
 // Total borrowed shares
 uint256 totalBorrowShares,
 // Total liquidity amount
 uint256 totalLiquidity,
 // Available liquidity amount
 uint256 availableLiquidity,
 // Timestamp of last liquidity update
 uint256 lastUpdateTimestamp,
 // Borrowing interest rate
 uint256 borrowRate,
 // Lending interest rate
 uint256 lendingRate
) {
 Pool storage pool = pools[address(_token)];
 shareToken = address(pool.shareToken);
 poolConfig = address(pool.poolConfig);
 totalBorrows = pool.totalBorrows;
 totalBorrowShares = pool.totalBorrowShares;
 totalLiquidity = getTotalLiquidity(_token);
 availableLiquidity = getAvailableLiquidity(_token);
 lastUpdateTimestamp = pool.lastUpdateTimestamp;
 status = pool.status;
 borrowRate = pool.poolConfig.calculateBorrowInterestRate(
 totalBorrows, totalLiquidity);
 lendingRate = totalLiquidity == 0 ? 0 :
 (borrowRate * totalBorrows * (1e18 - reserveRate)) /
 (totalLiquidity * 1e18);
}

The getPool function is mainly for the frontend to get the information of every asset pool in
the crypto loan system. The function also calculates and returns the borrowing interest rate and
lending interest rate; you can refer to Chapter 11, An Introduction to Crypto Loans specifically the

Implementing an Asset Pool Smart Contract for a Crypto Loan364

Understanding the interest rate model and pool configuration section, for the formulas for calculating
the two parameters. Here, reservedRate is defined with the following line of code, which defines
how much borrowing interest will be reserved for the owner as their income:

// 5% of loan interest are reserved for owner
uint256 public reserveRate = 0.05 * 1e18;

In the previous section, we mentioned that the smart contract calculates the total compounded
borrowing amount of the token for the asset pool when there are changes to liquidity. Because this
is a function that will be called with multiple operation functions, we can implement a modifier
called updatePoolWithInterestAndTimestamp:

modifier updatePoolWithInterestAndTimestamp(ERC20 _token) {
 Pool storage pool = pools[address(_token)];
 uint256 borrowInterestRate = pool.poolConfig.
 calculateBorrowInterestRate(pool.totalBorrows,
 getTotalLiquidity(_token));
 uint256 cumulativeBorrowInterestRate =
 calculateLinearInterestRate(borrowInterestRate,
 pool.lastUpdateTimestamp, block.timestamp);

 // Update total borrow amount, pool reserves and last
 // update timestamp for the pool
 uint256 previousBorrows = pool.totalBorrows;
 pool.totalBorrows = (cumulativeBorrowInterestRate *
 previousBorrows) / 1e18;
 pool.poolReserves +=
 ((pool.totalBorrows - previousBorrows) * reserveRate)
 / 1e18;
 pool.lastUpdateTimestamp = block.timestamp;
 emit PoolInterestUpdated(address(_token),
 cumulativeBorrowInterestRate, pool.totalBorrows);
 _;
}

The preceding modifier accepts the _token parameter to specify the records of the asset pool that
will be updated. The modifier updates the cumulative borrowing interest rate from the last-updated
timestamp to the current-block timestamp. Then, it re-calculates the compounded borrowing amount
(totalBorrows) with the interest rate. It also updates the pool reserve amount (poolReserves)
by adding the new reserve amount from generated borrowing interest. Finally, the code sets the last-
updated timestamp to the current-block timestamp.

Managing records in user ledgers 365

Now, we have gone through the functions for managing asset pools and calculating asset pool
parameters. In the next section, we will dive into the code for managing records in the user ledgers
of a crypto loan system.

Managing records in user ledgers
In the crypto loan system in this book, we use the concept of asset pool share tokens to represent
the user’s position in an asset pool. Once a user deposits a token to an asset pool, the user will receive
the asset pool share token for the token; we call the user who deposits the token a lender. Later on,
the lender can redeem the original token by sending the asset pool share token back to the asset pool
smart contract.

Since we use the pool share token to represent lenders’ positions, how could we represent loan positions
for borrowers? The answer is that we don’t issue any tokens to borrowers, but we record the borrowed
shares in user ledgers to represent the loan for borrowers. As time goes by, although the amount of
borrowed shares doesn’t change, the borrowed shares will become more valuable, so the borrowers
will need to pay more interest to pay off the loans.

In order to store the amount of borrowed shares for each user per asset pool, we can define a struct
called UserPoolData in an AssetPool smart contract. In the struct, the borrowShares
parameter is for the amount of borrowed shares:

struct UserPoolData {
 // Is this pool disabled as collateral?
 bool disableAsCollateral;

 // Amount of borrowed shares of the user for this pool
 uint256 borrowShares;
}

In the UserPoolData struct, disableAsCollateral tells us whether the user can use the
pool as collateral. If disableAsCollateral is set to true, the user’s maximum borrowable
value may become less if the user deposits a token in the pool, because the user cannot use the tokens
in the pool as collateral. The owner of the crypto loan system can set this parameter when the user’s
borrowed asset value is approaching the maximum borrowable value and they want to prevent the
user from draining further tokens from the asset pool.

We can create a mapping for locating the UserPoolData struct for a given user and a given pool
as follows:

// User address => token address => UserPoolData struct
mapping(address => mapping(address => UserPoolData)) public
userPoolData;

Implementing an Asset Pool Smart Contract for a Crypto Loan366

The concept of the borrowed share is different from the asset pool share. The former is recorded for
borrowed assets. The latter is for deposited assets. For a given asset pool, the values of its two types
of shares are usually different.

Next, we will discuss how to convert asset pool shares and borrowed shares to or from exact amounts
of ERC20 tokens.

Amount conversion between shares and asset tokens

The amounts of shares and asset tokens should be carefully calculated when the user interacts with a
smart contract to deposit, withdraw, borrow, and repay tokens. To keep an asset safe in an AssetPool
smart contract, we should choose carefully whether we need to round up or round down the results
for the amount conversion.

For example, say that the value of one borrowed share is two tokens (the ratio is 1:2), the decimal places
of the borrowed share and the asset token are all zeros, and we want to borrow one token from it. We
might have the calculated borrowShares value for the UserPoolData struct equal to 0 (which is
1 / 2 = 0 for integer division in Solidity). This means that the user doesn’t own any assets for the pool,
because the AssetPool smart contract uses borrowed shares as the ground truth of loan amounts.
As a result, a greedy user can keep borrowing from the pool until they drain all assets from the pool.

Although that would be an extreme case, the principle of the smart contract is keeping as many assets
as possible in the pool, so that all users have sufficient assets to withdraw or borrow. Otherwise,
transactions may fail because of the asset pool having a negative balance.

We need the following six functions for amount conversion between shares and asset tokens:

• calculateRoundDownLiquidityShareAmount: This converts the deposited asset
token amount into the rounded-down share amount when depositing tokens, so that the asset
pool can send (mint) fewer shares to lenders in rounding down.

• calculateRoundUpLiquidityShareAmount: This converts the deposited asset token
amount into the rounded-up share amount when withdrawing tokens or liquidating tokens, so
that the asset pool can receive (burn) more shares from lenders or borrowers in rounding up.

• calculateRoundDownBorrowShareAmount: This converts the borrowed asset token
amount into the rounded-down share amount when repaying tokens, so that the asset pool can
deduct fewer borrowed shares than the received token amount in rounding down.

• calculateRoundUpBorrowShareAmount: This converts the borrowed asset token
amount into the rounded-up share amount when borrowing tokens, so that the asset pool can
record more borrowed shares in sending out the asset token.

• calculateRoundDownLiquidityAmount: This converts the deposited share amount
into the rounded-down token amount when withdrawing tokens, so that lenders can receive
fewer tokens when giving an amount of shares.

Managing records in user ledgers 367

• calculateRoundUpBorrowAmount: This converts the borrowed share amount into
the rounded-up token amount when repaying or liquidating tokens, so that borrowers’ repay
amounts and liquidators’ supplied liquidity amounts are sufficient for the asset pool.

The purpose of using the preceding six functions is to keep as many tokens as possible in the asset
pool to prevent their being a negative balance.

In our crypto loan system, liquidities in asset pools are supplied by lenders who deposit the tokens.
So, in the crypto loan system, liquidity shares refers to the share tokens that are received by lenders
after lenders deposit tokens, and liquidity refers to the tokens managed by an asset pool (including
the borrowed tokens).

Based on the following formula, which we discussed in Chapter 11, An Introduction to Crypto Loans
specifically the Implementing an asset pool share and its deployer section, which is for calculating the
value of each liquidity share:

 V share =
 A liquidity_total _ S total

Let’s implement the calculateRoundDownLiquidityShareAmount function:

function calculateRoundDownLiquidityShareAmount(
 ERC20 _token, uint256 _amount) internal view returns
 (uint256) {
 Pool storage pool = pools[address(_token)];
 uint256 totalLiquidity = getTotalLiquidity(_token);
 uint256 totalLiquidityShares = pool.shareToken.totalSupply();
 if (totalLiquidity == 0 || totalLiquidityShares == 0) {
 return _amount;
 }
 return (_amount * totalLiquidityShares) /totalLiquidity;
}

The preceding code divides the token amount (_amount) by the value of one liquidity share
(totalLiquidity / totalLiquidityShares) to get the calculated share amount.

The division in Solidity is round-down division; we also need to implement round-up division in order
to implement round-up functions. The following divCeil function is implemented for that purpose:

function divCeil(uint256 a, uint256 b) internal pure
 returns (uint256) {
 require(b > 0, "DIVIDED_BY_ZERO");
 uint256 c = a / b;
 if (a % b != 0) {
 c = c + 1;

Implementing an Asset Pool Smart Contract for a Crypto Loan368

 }
 return c;
}

Similar to the calculateRoundDownLiquidityShareAmount function we implemented
previously, we can implement the calculateRoundUpLiquidityShareAmount function by
changing the return statement to the following, with divCeil instead of the division symbol (/):

return divCeil(_amount * totalLiquidityShares,
 totalLiquidity);

Converting the borrowed amount to borrowed shares requires two steps. First, we use the total
borrowed amount (pool.totalBorrows) and total borrowed shares amount (pool.
totalBorrowShares) to calculate the borrowed shared value. Second, we divide the provided
token amount by the borrowed share value to calculate the amount of borrowed shares. Here is the
code of the calculateRoundDownBorrowShareAmount function:

function calculateRoundDownBorrowShareAmount(ERC20 _token,
 uint256 _amount) internal view returns (uint256) {
 Pool storage pool = pools[address(_token)];
 if (pool.totalBorrows == 0 ||
 pool.totalBorrowShares == 0) {
 return 0;
 }
 return (_amount * pool.totalBorrowShares) /pool.totalBorrows;
}

The preceding code returns zero (0) when pool.totalBorrows or pool.totalBorrowShares
is zero, instead of returning the token amount, _amount . The reason is that the
calculateRoundDownBorrowShareAmount function is called when repaying assets; if there
is no borrowed amount for the asset pool, the user should pay zero shares instead of the given amount.

Because the six functions for share amount and token amount conversion are pretty similar, we
will not deep dive into all the code for these functions. Please refer to https://github.com/
PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-
end/defi-apps/src/backend/contracts/AssetPool.sol#L360-L453 for
more information.

For a crypto loan system, a user may want to know the amount of tokens they lent or the amount of
tokens they borrowed. Next, we will discuss how to implement the functions need to help users to
retrieve this information.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-end/defi-apps/src/backend/contracts/AssetPool.sol#L360-L453
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-end/defi-apps/src/backend/contracts/AssetPool.sol#L360-L453
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-end/defi-apps/src/backend/contracts/AssetPool.sol#L360-L453

Managing records in user ledgers 369

Retrieving user-lending and -borrowing information

When a user visits a crypto loan web application, they should be able to see the amount of tokens
deposited and the amount of tokens owed to the system, so that the user can easily monitor the assets
in the crypto loan system.

First, let’s implement the getUserCompoundedLiquidityBalance function to get the
compounded deposited balance of a user for an asset pool:

function getUserCompoundedLiquidityBalance(address _user,
 ERC20 _token) public view returns (uint256) {
 Pool storage pool = pools[address(_token)];
 uint256 userLiquidityShares = pool.shareToken.balanceOf(_user);
 return calculateRoundDownLiquidityAmount(_token,
 userLiquidityShares);
}

The preceding code uses the calculateRoundDownLiquidityAmount function to convert the
asset pool share amount into the token amount. The result aligns with the token amount calculated
when withdrawing the asset.

Second, let’s implement the getUserCompoundedBorrowBalance function to get the compounded
borrowed token amount:

function getUserCompoundedBorrowBalance(address _user,
 ERC20 _token) public view returns (uint256) {
 uint256 userBorrowShares =
 userPoolData[_user][address(_token)].borrowShares;
 return calculateRoundUpBorrowAmount(_token, userBorrowShares);
}

The preceding code uses the calculateRoundUpBorrowAmount function to calculate the
compounded borrowed amount; it is consistent with the token amount when repaying the borrowed tokens.

Now let’s implement the getUserPoolData function for the user to get the deposited token amount
and borrowed token amount for every asset pool:

function getUserPoolData(address _user, ERC20 _token)
 public view returns (
 uint256 compoundedLiquidityBalance,
 uint256 compoundedBorrowBalance,
 bool usePoolAsCollateral) {
 compoundedLiquidityBalance =
 getUserCompoundedLiquidityBalance(_user, _token);
 compoundedBorrowBalance =
 getUserCompoundedBorrowBalance(_user, _token);

Implementing an Asset Pool Smart Contract for a Crypto Loan370

 usePoolAsCollateral =
 !userPoolData[_user][address(_token)].disableAsCollateral;
}

The getUserPoolData function returns three variables:

• compoundedLiquidityBalance: The compounded deposited token amount of the user
to the pool.

• compoundedBorrowBalance: The compounded borrowed token amount of the user
from the pool.

• usePoolAsCollateral: This is true if the user can use the asset in the pool as collateral
for loans. If the value is false, the user cannot use the deposited token in the asset pool as
collateral for loans.

Next, let’s discuss user account health and implement functions to check whether an account is healthy.

User account healthiness

In a crypto loan system, user account healthiness is a boolean value: true is healthy, false is
unhealthy. When the healthiness value is true (the account is healthy), the user can perform all the
following four requests: deposit, withdraw, borrow, and repay. If the value is false (the account is
unhealthy), the user cannot increase debts or decrease the lending for collateral, so the borrow and
withdraw requests may be restricted. The user can lend more collateral or repay a loan to improve
the account’s healthiness.

The value of account healthiness is determined by the maximum borrowable value and the borrowed
asset value for the account. If the borrowed asset value is less than or equal to the maximum borrowable
value, the account is healthy (healthiness is true). If the borrowed asset value is greater than the
maximum borrowable value, the account is unhealthy (healthiness is false).

First, let’s implement the getUserInfo function for calculating the maximum borrowable value
and borrowed asset value for an account:

function getUserInfo(address _user) public view returns (
 uint256 totalLiquidityValue,
 uint256 totalCollateralValue,
 uint256 totalBorrowedValue) {
 for (uint256 i = 0; i < tokenList.length; i++) {
 ERC20 _token = tokenList[i];
 Pool storage pool = pools[address(_token)];
 (
 uint256 compoundedLiquidityBalance,
 uint256 compoundedBorrowBalance,
 bool usePoolAsCollateral

Managing records in user ledgers 371

) = getUserPoolData(_user, _token);
 if (compoundedLiquidityBalance != 0 ||
 compoundedBorrowBalance != 0) {
 uint256 collateralRate = pool.poolConfig.collateralRate();
 uint256 tokenPrice = getPriceInWETH(address(_token));
 require(tokenPrice > 0, "INVALID_PRICE");
 uint256 liquidityValue = (tokenPrice *
 compoundedLiquidityBalance) / 1e18;
 totalLiquidityValue += liquidityValue;
 if (collateralRate > 0 && usePoolAsCollateral) {
 totalCollateralValue += ((liquidityValue *
 collateralRate) /1e18);
 }
 totalBorrowedValue += ((tokenPrice *
 compoundedBorrowBalance) / 1e18);
 }
 }
}

The getUserInfo function returns three variables: the deposited assets value
(totalLiquidityValue), the maximum borrowable value (totalCollateralValue),
and the borrowed asset value (totalBorrowedValue). The code of the getUserInfo
function iterates through all the asset pools with the asset token list and sums up the values for the
three variables.

When calculating the values, the code uses the token price in the unit of WETH (the wrapped form
of the native token on the blockchain network). The token prices in WETH are retrieved by the
getPriceInWETH function. This function calls the price oracle function(s) to get the price for the
token and calculate the value of the total amount of the tokens. Price oracle refers to a technology
that provides price data for various assets, including cryptocurrencies, that on-chain code (such as
smart contracts) can access. Chainlink (https://chain.link/) and SupraOracles (https://
supraoracles.com/) are two popular price oracle vendors on the market.

Here is the implementation of the getPriceInWETH function in the AssetPool smart contract,
which is for accessing the price data from a price oracle:

PriceOracle priceOracle;
function getPriceInWETH(address _token) internal view
 returns (uint256) {
 return _token == priceOracle.WETH() ? 1e18
 : priceOracle.getPriceInWETH(_token);
}

https://chain.link/
https://supraoracles.com/
https://supraoracles.com/

Implementing an Asset Pool Smart Contract for a Crypto Loan372

The preceding code checks whether the token is WETH. If the token is WETH, we know that one
WETH is worth one WETH, so the code returns 1e18 (which means 1 – the code in Solidity uses 1e18
instead of 1 for precision purposes). If the token price is worth 1.5 WETH, the getPriceInWETH
function will return 15e17 in Solidity.

Here, we use the getPriceInWETH function in the PriceOracle smart contract to get the
actual price of the token. The PriceOracle smart contract uses the reserves information of the
liquidity pool to calculate the price. The price oracle uses the formula in Chapter 4, Introduction to
Decentralized Exchanges for calculating the token prices:

 Price A =
 Reserve B

 _ Reserve A

You can refer to the code at https://github.com/PacktPublishing/Building-Full-
stack-DeFi-Application/blob/chapter12-end/defi-apps/src/backend/
contracts/PriceOracle.sol for the source code of the PriceOracle smart contract.
Please keep in mind that the token should be paired with WETH to make it work. More importantly,
it is extremely unsafe to use the implementation of a price oracle in the real world because the price
data can be easily manipulated by hackers. In Chapter 13, Implementing a Price Oracle for Crypto Loans
we will discuss how to implement a secure price oracle.

Based on the getUserInfo function, let’s implement the isAccountHealthy function to check
whether the account is healthy with the following code:

function isAccountHealthy(address _user) public view
 override returns (bool) {
 (, uint256 totalCollateralValue,
 uint256 totalBorrowedValue) = getUserInfo(_user);
 return totalBorrowedValue <= totalCollateralValue;
}

In the next section, we will implement functions for processing the workflows of user requests.

Implementing the functions for user requests
In Figure 11.2, there are eight user requests shown in an architecture diagram for crypto loan smart
contracts. These user requests are fulfilled by calling the functions of an asset pool smart contract.
There are two privilege requests that are already implemented in the Implementing the code to manage
the asset pools section of this chapter. The remaining six requests (deposit, withdraw, borrow, repay,
liquidate, and withdraw reserve) require a change of liquidity balances for the asset pools. We will
deep dive into the functions for handling these requests in this section.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-end/defi-apps/src/backend/contracts/PriceOracle.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-end/defi-apps/src/backend/contracts/PriceOracle.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-end/defi-apps/src/backend/contracts/PriceOracle.sol

Implementing the functions for user requests 373

Depositing

A deposit process requires the AssetPool smart contract to transfer tokens from a user to the
smart contract and mint the asset pool share tokens to the user. Figure 12.2 describes the workflow
of the deposit process.

Figure 12.2 – The workflow of the deposit process

Implementing an Asset Pool Smart Contract for a Crypto Loan374

Based on the preceding workflow, we can implement the deposit function with the following code:

function deposit(ERC20 _token, uint256 _amount) external
 nonReentrant updatePoolWithInterestAndTimestamp(_token) {
 require(_amount > 0, "INVALID_DEPOSIT_AMOUNT");
 Pool storage pool = pools[address(_token)];
 require(pool.status == PoolStatus.ACTIVE,
 "INVALID_POOL_STATE");

 // Calculate liquidity share amount
 uint256 shareAmount =
 calculateRoundDownLiquidityShareAmount(_token, _amount);

 // Mint share token to user
 pool.shareToken.mint(msg.sender, shareAmount);

 // Transfer user deposit liquidity to the pool
 _token.safeTransferFrom(msg.sender, address(this), _amount);

 emit Deposit(address(_token), msg.sender, shareAmount, _amount);
}

As we discussed in the Managing the records in user ledgers section of this chapter, we use the
calculateRoundDownLiquidityShareAmount function to calculate the liquidity share
amount to be sent to the lender when depositing tokens. We also use safeTransferFrom from
SafeERC20.sol to check the transferring result and revert the whole transaction if any error
happens during transferring. In the end, the deposit function emits a Deposit event to log the
activity on the blockchain.

Next, we will discuss the withdrawal workflow and implement the code for the withdrawal process.

Withdrawal

In the crypto loan system, withdrawal is the process of redeeming the asset pool share tokens for the
original ERC20 tokens that the lender deposited. While performing the withdrawal, the lender can
receive an extra amount of original ERC20 tokens as interest. The amount of the original tokens the
lender can withdraw is determined by the amount of shares to be redeemed. So, we will implement
a function called withdrawByShare for this purpose. Figure 12.3 shows the workflow of the
withdrawByShare function.

Implementing the functions for user requests 375

Figure 12.3 – The workflow of the withdrawal process

Implementing an Asset Pool Smart Contract for a Crypto Loan376

In the preceding process, if a user specifies a share amount that is greater than the user’s balance, it
will set the number of shares to be redeemed to the user’s share balance. After burning the shares and
transferring the tokens back to the user, the withdrawal process will check the healthiness of the user
account, and revert the whole withdrawal transaction if the user account is unhealthy.

Based on the preceding discussion, let’s implement the withdrawByShare function along with
an internal withdrawInternal helper function:

function withdrawInternal(ERC20 _token, uint256 _share)
 internal {
 Pool storage pool = pools[address(_token)];
 uint256 availableShares =
 pool.shareToken.balanceOf(msg.sender);
 require(pool.status != PoolStatus.INACTIVE,
 "INVALID_POOL_STATE");
 uint256 withdrawShares = _share;
 if (withdrawShares > availableShares) {
 withdrawShares = availableShares;
 }

 // Calculate liquidity amount from shares
 uint256 withdrawAmount =
 calculateRoundDownLiquidityAmount(
 _token, withdrawShares);

 // Burn share token from the user
 pool.shareToken.burn(msg.sender, withdrawShares);

 // Transfer ERC20 tokens to user account
 _token.transfer(msg.sender, withdrawAmount);

 // If account is unhealthy, revert the transaction
 require(isAccountHealthy(msg.sender),
 "ACCOUNT_UNHEALTHY");
 emit Withdraw(address(_token), msg.sender,
 withdrawShares, withdrawAmount);
}

function withdrawByShare(ERC20 _token, uint256 _share)
 external nonReentrant
 updatePoolWithInterestAndTimestamp(_token) {
 withdrawInternal(_token, _share);
}

Implementing the functions for user requests 377

The reason for putting the logic in the withdrawInternal function is that we can reuse the
function for implementing a function so users can withdraw a specific amount of tokens instead of
shares. Here is the implementation of the withdrawByAmount function for this purpose:

function withdrawByAmount(ERC20 _token, uint256 _amount)
 external nonReentrant
 updatePoolWithInterestAndTimestamp(_token) {
 // calculate round up liquidity share
 uint256 withdrawShare =
 calculateRoundUpLiquidityShareAmount(_token, _amount);
 withdrawInternal(_token, withdrawShare);
}

Here, withdrawByAmount calls calculateRoundUpLiquidityShareAmount to convert
the token amount to the share amount. In the withdrawInternal function, its code converts the
share amount back to the token amount.

Note
It could save gas calling the withdrawByAmount function if we implement it by combining
the two conversions into one conversion that converts the token amount to the share amount.
We implemented two conversions instead of one conversion just for code simplicity.

Next, we will dive into the workflow of borrowing assets and implement the borrow function.

Borrowing

When borrowing tokens from asset pools, the borrowing process will convert the amount of borrowed
tokens to the borrowed shares, record the number of shares in the smart contract, and transfer the
borrowed amount from the asset pool to the borrower. Also, the smart contract needs to check the account
healthiness and balance of the asset pool. Figure 12.4 shows the workflow of the borrowing process.

Implementing an Asset Pool Smart Contract for a Crypto Loan378

Figure 12.4 – The workflow of the borrowing process

Implementing the functions for user requests 379

Based on the workflow shown in Figure 12.4, let’s implement the borrow function with the following code:

function borrow(ERC20 _token, uint256 _amount) external
 nonReentrant updatePoolWithInterestAndTimestamp(_token) {
 Pool storage pool = pools[address(_token)];
 require(pool.status == PoolStatus.ACTIVE,
 "INVALID_POOL_STATE");
 require(_amount > 0 &&
 _amount <= getAvailableLiquidity(_token),
 "INVALID_BORROW_AMOUNT");

 // Calculate borrow share amount
 uint256 borrowShare =
 calculateRoundUpBorrowShareAmount(_token, _amount);

 // Update pool state
 pool.totalBorrows += _amount;
 pool.totalBorrowShares += borrowShare;

 // Update user state
 UserPoolData storage userData =
 userPoolData[msg.sender][address(_token)];
 userData.borrowShares += borrowShare;

 // Transfer borrowed token from pool to user
 _token.safeTransfer(msg.sender, _amount);

 // Revert transaction if the account is unhealthy
 require(isAccountHealthy(msg.sender),
 "ACCOUNT_UNHEALTHY");
 emit Borrow(address(_token), msg.sender, borrowShare, _amount);
}

The borrow function uses the Pool struct and UserPoolData struct to record the borrowed
shares and borrowed asset token amount. Because the asset pool share token represents the ownership
of the tokens in the asset pool, it cannot represent the asset owned by the user, so the preceding code
doesn’t involve the code for asset pool share tokens.

Next, we will discuss the process of repaying assets for crypto loans.

Repaying

When repaying assets in the crypto loan system, the ground truth of the amount repaid is determined
by the borrowed share amount in the UserDataPool struct. For a successful repayment process,

Implementing an Asset Pool Smart Contract for a Crypto Loan380

the value of the borrowed share amount(borrowShares) in the struct will be deducted, along with
the successful transfer of the repaid token from the borrower to the asset pool.

Similar to the two functions for withdrawing, withdrawByShare and withdrawByAmount, we
can also implement two functions for repaying: repayByShare and repayByAmount.

Figure 12.5 shows the workflow of the repayment process for the repayByShare function.

Figure 12.5 – The workflow of the repayment process

Implementing the functions for user requests 381

Based on the workflow shown in Figure 12.5, let’s implement the code of the repayByShare function
along with the internal repayInternal helper function:

function repayInternal(ERC20 _token, uint256 _share)
 internal {
 Pool storage pool = pools[address(_token)];
 require(pool.status != PoolStatus.INACTIVE,
 "INVALID_POOL_STATE");
 UserPoolData storage userData =
 userPoolData[msg.sender][address(_token)];
 uint256 paybackShares = _share;
 if (paybackShares > userData.borrowShares) {
 paybackShares = userData.borrowShares;
 }

 // Calculate round up payback token
 uint256 paybackAmount = calculateRoundUpBorrowAmount(
 _token, paybackShares);

 // Update pool state
 pool.totalBorrows -= paybackAmount;
 pool.totalBorrowShares -= paybackShares;

 // Update user state
 userData.borrowShares -= paybackShares;

 // Transfer payback tokens to the pool
 _token.safeTransferFrom(msg.sender, address(this),
 paybackAmount);
 emit Repay(address(_token), msg.sender, paybackShares,
 paybackAmount);
}

// Repay an ERC20 token to the pool by shares
function repayByShare(ERC20 _token, uint256 _share)
 external nonReentrant
 updatePoolWithInterestAndTimestamp(_token) {
 repayInternal(_token, _share);
}

Implementing an Asset Pool Smart Contract for a Crypto Loan382

We also implemented the code of the repayByAmount function in the GitHub repository of this
book. The function allows the user to specify the amount of tokens to repay instead of the share
amount. Please refer to https://github.com/PacktPublishing/Building-Full-
stack-DeFi-Application/blob/chapter12-end/defi-apps/src/backend/
contracts/AssetPool.sol#L709 for the implementation of the function.

Next, we will discuss the liquidating process.

Liquidation

You may have noticed that all the user operations that transfer assets out of asset pools check the
healthiness of the account, and the transactions are reverted if any of the operations make the account
unhealthy. If you consider the crypto loan system as an isolated system that doesn’t rely on external
systems, its operations are completely safe and it is impossible to cause unhealthy account(s). However,
if market fluctuation causes the price of the collateral assets of a user to drop, or the price of the
borrowed assets rises, the account may become unhealthy in these scenarios.

Liquidation is introduced in crypto loan systems to remediate the risk of unhealthy accounts. It allows
liquidators to provide token assets to liquidate the over-borrowed asset, it could help to make the value
of an unhealthy account’s borrowed asset drop below the maximum borrowable value. Figure 12.6
shows the borrower’s (unhealthy account) asset values before liquidation and after liquidation.

Figure 12.6 – Borrower asset values before and after liquidation

In Figure 12.6, the dashed line in each of the graphs helps you to compare the maximum borrowable
value and the borrowed asset value of the borrower. Once a liquidator pays the borrowed assets, the
liquidator gets the collateral asset (the asset deposited by the borrower) of the same value from the
borrower to make sure the liquidator will not be subject to asset loss.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-end/defi-apps/src/backend/contracts/AssetPool.sol#L709
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-end/defi-apps/src/backend/contracts/AssetPool.sol#L709
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-end/defi-apps/src/backend/contracts/AssetPool.sol#L709

Implementing the functions for user requests 383

Now let’s review the process of liquidation in Figure 12.7.

Figure 12.7 – The workflow of the liquidation process

We want to introduce the following four items in the liquidation process shown in Figure 12.7:

• The liquidation asset is the token asset to be liquidated. Usually, it is the borrowed assets that
the liquidator needs to pay for borrowers. Similarly, the liquidation pool is the asset pool of
the liquidation asset.

Implementing an Asset Pool Smart Contract for a Crypto Loan384

• The collateral asset is the token asset that is to be paid back to the liquidator. The value of
the collateral asset to be paid to the liquidator may be higher than the value of the liquidation
asset to incentivize liquidators. By setting liquidationBonusRate in the instance of
PoolConfiguration to a value that is higher than 1.0, the liquidator will receive extra
collateral assets as a bonus. However, the value of liquidationBonusRate should be set
based on the value of collateralRate. If the value of liquidationBonusRate is too
high, the liquidator will drain out the collateral asset.

• The close factor is the portion of the liquidation asset that can be repaid by a liquidator in
one single transaction. The close factor is used to calculate the maximum liquidation share
amount for one liquidation transaction. The value of the close factor is usually less than 1.0. It
will ensure that the liquidation assets will not be fully liquidated if unnecessary.

• The maximum liquidation share amount is the maximum amount of shares that the liquidator
can liquidate.

In the liquidation process, there are two personas, the liquidator, who executes the liquidation process,
and the user, whose assets will be liquidated. Please keep in mind that the user must have borrowed
assets from the system and the health status of the account should be unhealthy in order to get
liquidated. The smart contract will revert the transaction if the user account is healthy.

One liquidation transaction may not be able to make the user’s account healthy, but it can make the
borrowed asset value drop closer to the maximum borrowable asset value. The liquidator can execute
the liquidation process multiple times for one user account until one of the following criteria is met:

• The user’s account is healthy – this is the ideal case

• The user doesn’t have sufficient collateral to repay liquidators – this is a bad scenario for the
crypto loan system, which we should avoid

The code of the liquidate function is very lengthy and we will not post it here in the book. You can
refer to the code at https://github.com/PacktPublishing/Building-Full-stack-
DeFi-Application/blob/chapter12-end/defi-apps/src/backend/contracts/
AssetPool.sol#L748. The code implements the liquidateInternal function for the main
process of liquidation. The liquidate function calls the liquidateInternal function. Because
the byte code for a large function may exceed the 24 KB byte code size limit specified by EIP-170
(https://eips.ethereum.org/EIPS/eip-170), splitting the logic into two functions is
an optimization strategy for Solidity code.

We also want to highlight the code of the calculateCollateralAmount function that is being
used for the liquidation process. It helps to calculate the amount of collateral tokens that need to be paid
to the liquidator based on the given liquidation asset token amount. Here is the code of the function:

function calculateCollateralAmount(ERC20 _token,
 uint256 _liquidateAmount, ERC20 _collateral) internal
 view returns (uint256) {

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-end/defi-apps/src/backend/contracts/AssetPool.sol#L748
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-end/defi-apps/src/backend/contracts/AssetPool.sol#L748
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-end/defi-apps/src/backend/contracts/AssetPool.sol#L748

Implementing the functions for user requests 385

 require(address(priceOracle) != address(0),
 "INVALID_PRICE_ORACLE");
 uint256 tokenUnitPrice = getPriceInWETH(address(_token));
 require(tokenUnitPrice > 0, "INVALID_TOKEN_PRICE");
 uint256 collateralUnitPrice =
 getPriceInWETH(address(_collateral));
 require(collateralUnitPrice > 0,
 "INVALID_COLLATERAL_PRICE");
 uint256 liquidationBonus = pools[address(_token)]
 .poolConfig.liquidationBonusRate();
 return (tokenUnitPrice * _liquidateAmount *
 liquidationBonus) / (collateralUnitPrice * 1e18);
}

The preceding code uses the price oracle to get the token prices for both the liquidation token and the
collateral token, then uses the prices (tokenUnitPrice and collateralUnitPrice), the amount
of liquidation tokens (_liquidateAmount), and the liquidation bonus rate (liquidationBonus)
to calculate the amount of collateral tokens to be paid to the liquidator.

Next, we will discuss the code for the smart contract owner to withdraw the reserved tokens as income.

Withdrawing the reserve

When discussing the code of the updatePoolWithInterestAndTimestamp modifier, we
implement the code to reserve a portion of borrowing interest as the income of the AssetPool
smart contract owner. Now let’s implement the code of the withdrawReserve function for the
owner to withdraw the reserved tokens:

function withdrawReserve(ERC20 _token, uint256 _amount)
 external nonReentrant
 updatePoolWithInterestAndTimestamp(_token) onlyOwner {
 Pool storage pool = pools[address(_token)];
 uint256 poolBalance = _token.balanceOf(address(this));

 // Owner can't withdraw more than pool's balance
 require(_amount <= poolBalance,
 "INSUFFICIENT_POOL_BALANCE");

 // Owner can't withdraw more than pool's reserve
 require(_amount <= pool.poolReserves,
 "INSUFFICIENT_POOL_RESERVES");
 _token.safeTransfer(msg.sender, _amount);
 pool.poolReserves -= _amount;
}

Implementing an Asset Pool Smart Contract for a Crypto Loan386

The preceding code uses the updatePoolWithInterestAndTimestamp modifier to update
the borrowing interest and reserve amount for the asset before withdrawing the reserve. When the
asset pool doesn’t have sufficient balance to withdraw, or the withdrawal amount exceeds the existing
reserve amount (pool.poolReserves), the withdrawal transaction will be reverted.

Now, we have gone through all the user request functions in the AssetPool smart contract. There are
some functions (such as the constructor and the setReserveRate function) in the smart contract
we won’t cover in this book. Please refer to the full source code of the smart contract at https://
github.com/PacktPublishing/Building-Full-stack-DeFi-Application/
blob/chapter12-end/defi-apps/src/backend/contracts/AssetPool.sol.

In the next section, we will discuss how to deploy and test the crypto loan smart contracts.

Deploying and testing the crypto loan smart contracts
Now we have implemented all the smart contracts of a simple version of the crypto loan, we can deploy
the smart contracts and test them to give them a try. By going through the deployment and testing,
you will understand the process of deployment and configuration of crypto loan smart contracts. You
will also learn how to interact with the smart contracts with frontend code.

Deploying crypto loan smart contracts

Deploying crypto loan smart contracts requires us to understand the smart contracts’ dependencies
so that these smart contracts can be deployed in the correct sequence. In the architecture diagram
of Figure 11.2, we can deploy the smart contracts from the bottom layer to the upper layer with the
following sequence:

1. Asset Pool Share Deployer (AssetPoolShareDeployer.sol).

2. Price Oracle (PriceOracle.sol) – this depends on the AMMRouter smart contract and
WETH smart contract.

3. Pool Configuration (PoolConfiguration.sol) – we can deploy multiple instances of
the smart contract for multiple asset pools.

4. Asset Pool Smart Contract (A s s e t P o o l . s o l) – this depends on the
AssetPoolShareDeployer smart contract and the PriceOracle smart contract.

The AssetPoolShare smart contract is not deployed with the preceding steps because the smart
contract will be deployed when the initPool function is called. Because there are several smart
contracts that depend on the smart contracts deployed in the previous steps, we can refactor the main
function of the deployment script at scripts/deploy.js to save the dependent smart contract
instances in specific variables. For each smart contract instance that we need to save in a variable, we

Deploying and testing the crypto loan smart contracts 387

use the switch ... case statements in JavaScript to check the factory name. For example, the
following code saves the AMMRouter smart contract instance in the ammRouter variable:

switch (factory) {
 ...
 case "AMMRouter":
 ammRouter = await contractFactory.deploy(
 pairFactory.address, wethToken.address);
 break;
 ...

We can use the ammRouter instance (we mentioned in the preceding code) to create other smart
contract instances like this:

case "PriceOracle":
 priceOracle = contract = await contractFactory.deploy(
 ammRouter.address, wethToken.address);

We will not dive into every line of code for deploying the smart contracts. You can refer to https://
github.com/PacktPublishing/Building-Full-stack-DeFi-Application/
blob/chapter12-end/defi-apps/scripts/deploy.js#L33-L76 for the refactored
code of the deployment script.

Once we have the smart contracts deployed, let’s discuss how to configure asset pools for crypto loans.

Configuring asset pools for crypto loans

Before the crypto loan system is ready for use, there are two setup tasks:

• Set up the DEX liquidity pools for tokens that will have asset pools in the crypto loan system

• Initialize the asset pools in the crypto loan system and activate the asset pools

In the deployment script, we would like to set up three asset pools for the three ERC20 tokens: FOO,
BAR, and WETH. Let’s first set up the liquidity pools for the preceding three tokens in scripts/
deploy.js with the following code:

for (let token of [wethToken, fooToken, barToken]) {
 // Set allowance of token for AMM Router
 await token.approve(ammRouter.address,
 '1000000000000000000000000000');

 if (token != wethToken) {
 // Create token pair TOKEN/WETH and
 // supply 10 TOKENs and 1 WETH as initial liquidity.
 await ammRouter.addLiquidityETH(token.address,

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-end/defi-apps/scripts/deploy.js#L33-L76
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-end/defi-apps/scripts/deploy.js#L33-L76
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-end/defi-apps/scripts/deploy.js#L33-L76

Implementing an Asset Pool Smart Contract for a Crypto Loan388

 '10000000000000000000', 0, 0, deployer.address,
 parseInt(new Date().getTime() / 1000) + 10000,
 { value: '1000000000000000000' });
 console.log(`Liquidity pool for
 ${await token.symbol()}/WETH created`);
 }
}

Next, let’s call the initPool function and the setPoolStatus function in the AssetPool
smart contract to initialize and activate the three pools for FOO, BAR, and WETH. In the for loop
in the preceding code, let’s add the following code:

// Create asset pools for crypto loan and
await assetPool.initPool(token.address, poolConf.address);

// set them to active (1)
await assetPool.setPoolStatus(token.address, 1);

Now we have set up the asset pools for the crypto loan system and completed the deployment script,
scripts/deploy.js. You can refer to the completed source code at https://github.com/
PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-
end/defi-apps/scripts/deploy.js. Once you have completed the deployment script,
you can run npx hardhat node to start the local EVM and then run npm run deploy
localhost to verify the correctness of the script.

In Chapter 13, Implementing a Price Oracle for Crypto Loans and Chapter 14, Implementing the Crypto
Loan Frontend with Web3 we will improve the price oracle and implement the frontend of the crypto
loan application based on the setup.

Next, we will discuss how to test the smart contracts for the crypto loan system.

Testing crypto loan smart contracts

If we are using the Hardhat console to verify crypto loan smart contracts, there can be many commands
to be typed for each operation in order to interact with the crypto loan smart contracts. It will also
make the testing process hard to repeat. Here, we’ll use automated test cases to test the crypto loan
smart contracts.

In this section, we will mainly focus on testing the four functions of the AssetPool smart contract:
deposit, withdraw, borrow, and repay. We will create four test functions for these four functions.
To get started, let’s create a file at src/backend/test/AssetPool.test.js for testing the
AssetPool smart contract, and then implement the beforeEach function. The beforeEach
function will be called before each test case. It will deploy all the smart contracts and set up asset pools
for testing the AssetPool smart contract. We can borrow the code from scripts/deploy.js
to implement this function.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-end/defi-apps/scripts/deploy.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-end/defi-apps/scripts/deploy.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-end/defi-apps/scripts/deploy.js

Deploying and testing the crypto loan smart contracts 389

One extra step for the beforeEach function is that it wraps 1,000 ETH for user1 and user2 so
that the two users can use the token as collateral for borrowing loans. To convert ETH to WETH in
the test script, we can use the deposit function from the WETH smart contract:

// Wrap 1000 ETH for User1
await wethToken.connect(user1)
 .deposit({ value: toWei(1000) });

Now let’s dive into the code of testing the deposit function of the AssetPool smart contract.

Testing the deposit function

Let’s verify that the deposit function will transfer the token to the AssetPool smart contract, and
the user will get the asset pool share token in return. Because the smart contract will transfer the user
token to itself, the user should set the allowance for the transfer by calling the approve function of
the ERC20 token. Here is the code of the function that tests the deposit function:

it("A user should own asset pool shares after deposit",
 async () => {
 const depositAmount = toWei(1);
 await fooToken.approve(assetPool.address, depositAmount);
 await assetPool.deposit(fooToken.address, depositAmount);
 const poolShare = await
 getAssetPoolShareContract(fooToken.address);
 expect(await poolShare.balanceOf(deployer.address))
 .to.equal(depositAmount);
});

Here, we get the contract instance of AssetPoolShare by calling the
getAssetPoolShareContract function because we have the smart contract deployed
when calling the initPool function in the beforeEach function, so we can just attach the
smart contract instance with the token address from the pools variable in the AssetPool
smart contract:

getAssetPoolShareContract = async (tokenAddress) => {
 const pool = await assetPool.pools(tokenAddress);
 let factory = await
 ethers.getContractFactory("AssetPoolShare");
 return factory.attach(pool.shareToken);
};

There are several things we can verify for the deposit function; for example, a comparison of the
balance changes after the deposit, trying to deposit a token amount that is beyond the user’s balance,
and so on. We encourage you to implement these test cases as exercises, but we will not cover all the
test cases in the book.

Implementing an Asset Pool Smart Contract for a Crypto Loan390

Next, let’s implement the code for testing the borrow function.

Testing the borrow function

When implementing the test code for the borrow function, we will use user1 as the borrower. The
automated test case will perform the following steps:

1. The deployer deposits 100 FOO tokens, which will be borrowed by user1.

2. user1 deposits 10 WETH as collateral. Because the price of FOO tokens is 0.1 ETH, based on
the ratio of tokens in the FOO/WETH liquidity pool, and the collateral rate is 80% (check the
poolConf definition in the beforeEach function), user1 can borrow up to 80 (which is
calculated as 80% * 10 / 0.1) FOO tokens.

3. user1 borrows 50 FOO from the asset pool. The transaction should run successfully.

4. user1 borrows another 40 FOO from the asset pool. The transaction should be reverted.

Based on the preceding steps, we can implement the test function with the following code:

// Deployer deposit 100 FOO
let depositAmount = toWei(100);
await fooToken.approve(assetPool.address, depositAmount);
await assetPool.deposit(fooToken.address, depositAmount);

// User1 deposit 10 WETH
depositAmount = toWei(10);
await wethToken.connect(user1)
 .approve(assetPool.address, depositAmount);
await assetPool.connect(user1)
 .deposit(wethToken.address, depositAmount);

// User1 borrow 50 FOO (worth 5 ETH) expect success
const borrowAmount = toWei(50);
await assetPool.connect(user1)
 .borrow(fooToken.address, borrowAmount);

// Verification code is omitted ...

// Cannot borrow more than max borrowable value
await expect(assetPool.connect(user1)
 .borrow(fooToken.address, toWei(40)))
 .to.be.revertedWith("ACCOUNT_UNHEALTHY");

Deploying and testing the crypto loan smart contracts 391

You may have noticed that there is no need to call the approve function to set the allowance because
the borrow function doesn’t require transferring any tokens from the user. The withdraw function
also doesn’t require checking the allowance. However, the deposit function and the repay function
require checking the allowance.

Next, we will talk about the code for testing the repay function.

Testing the repay function

Here, we will only discuss the test for one case of repaying loans: paying off the loan with interest. In
this case, the borrower should pay more tokens than the borrowed token amount because the amount
adds the borrowing interest to the loan principal. To test this case, we need to make the test case wait
for 5 seconds to generate some interest after borrowing, and verify that the repay amount is greater
than the principal amount:

const delay =
 ms => new Promise(res => setTimeout(res, ms));
...
await delay(5000);
await fooToken.connect(user1).approve(assetPool.address,
 (await fooToken.totalSupply()));
...
const balanceBeforeRepay =
 await fooToken.balanceOf(user1.address);

// Repay successfully!
await assetPool.connect(user1)
 .repayByShare(fooToken.address, borrowAmount);

const balanceAfterRepay =
 await fooToken.balanceOf(user1.address);
const repayInterest = balanceBeforeRepay
 .sub(balanceAfterRepay).sub(borrowAmount).toNumber();

// Verify repay interest is greater than 0
expect(repayInterest).to.greaterThan(0);

In the preceding code, we use the two variables balanceBeforeRepay and balanceAfterRepay
to calculate the repaid loan interest, repayInterest. The test expects that repayInterest is
greater than 0.

Implementing an Asset Pool Smart Contract for a Crypto Loan392

Please keep in mind that when borrowing an asset from an asset pool for the first time, the token amount
equals the borrowed share amount, so we can use the borrowAmount variable as the share amount
when calling the repayByShare function in the preceding code to repay all the borrowed tokens.

Next, we will discuss the test for the withdraw function.

Testing the withdraw function

Similar to the code when testing the repay function, the withdraw function also requires waiting
for a period of time to generate interest. If we expect all lenders to receive the full deposit interest
along with the principal for an asset pool, it requires all borrowers to have paid off the loans for the
asset pool. We can verify whether the lender will receive all the interest after the borrower pays off the
loan by calling the withdraw function. So, we can append the test code for the withdraw function
after the code for testing the repay function. Here is the appended code:

// Deployer withdraw all Foo Token that has been deposited
balanceBeforeWithdraw = await
 fooToken.balanceOf(deployer.address);
await assetPool.withdrawByShare(fooToken.address,
 depositAmount);
const balanceAfterWithdraw = await
 fooToken.balanceOf(deployer.address);
const withdrawInterest = balanceAfterWithdraw.sub(
 balanceBeforeWithdraw).sub(depositAmount).toNumber();

// Verify repay interest is greater than 0
expect(withdrawInterest).to.greaterThan(0);

Similar to the test code for the repay function, the preceding code calculates the deposit interest,
withdrawInterest, and checks whether the interest value is greater than 0.

There are many test cases for the AssetPool smart contract that we didn’t cover in this book. Please
feel free to expand the src/backend/test/AssetPool.test.js file by adding more test
cases. For the full source of AssetPool.test.js, please refer to https://github.com/
PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-
end/defi-apps/src/backend/test/AssetPool.test.js.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-end/defi-apps/src/backend/test/AssetPool.test.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-end/defi-apps/src/backend/test/AssetPool.test.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter12-end/defi-apps/src/backend/test/AssetPool.test.js

Summary 393

Summary
In this chapter, we have deep-dived into the implementation of the AssetPool smart contract.
This is the core and most complex smart contract in the crypto loan system. You have learned how
we manage asset pools and the user ledger with Solidity code and also implemented the functions
for the user to deposit, withdraw, borrow, repay, and liquidate the assets of the crypto loan system.
In the last section of this chapter, we went through the topic of deployment and testing for crypto
loan smart contracts.

As a simple set of smart contracts for a decentralized crypto loan system running on blockchain,
we have already covered all the basic features in Chapter 11, An Introduction to Crypto Loans and
Chapter 12, Implementing an Asset Pool Smart Contract for a Crypto Loan (this chapter). However,
smart contracts still need to be strengthened as a real-world product. In the next chapter, we will
discuss the risk of using a price oracle based on a pair reserve. We will propose a price oracle solution
based on the DEX we implemented in Part 2 of this book.

13
Implementing a Price Oracle

for Crypto Loans

In the previous chapter, you learned that the decentralized crypto loan smart contacts rely heavily
on token prices and that the prices help maintain the balance between liquidity for collaterals and
borrowed assets. Inaccurate price information may lead to the loss of assets, affecting liquidity and
resulting in inadequate funds for borrowing and withdrawal. Even worse, the attackers can drain
all the funds by manipulating the price utilized by the crypto loan system. Building a reliable and
manipulation-resistant price oracle is essential for a crypto loan system.

A price oracle is a source of truth for token prices that can be accessed by smart contracts running
on the blockchain. The price oracle we will build in this chapter supports all the tokens that have the
WETH liquidity pools (e.g., FOO/WETH) in the DEX we built in Part 2 of this book.

By reading this chapter, you will learn the following:

• How price manipulation attacks are carried out on crypto loan systems

• How to use cumulative price data for an on-chain price oracle

• The implementation of a manipulation-resistant price oracle smart contract

• How to deploy, maintain, and verify the price oracle smart contract

How price manipulation attacks are carried out on crypto
loan systems
Price oracle manipulation is a common attack on DeFi protocols. Based on the statistics from Chainalysis
(https://www.chainalysis.com/blog/oracle-manipulation-attacks-rising/),
in 2022, DeFi protocols lost 403.2 million USD in 41 separate price oracle manipulation attacks. Most
of the attacks impacted decentralized crypto loan systems and drained the assets of smart contracts,
which caused a huge loss for investors and users.

https://www.chainalysis.com/blog/oracle-manipulation-attacks-rising/

Implementing a Price Oracle for Crypto Loans396

For decentralized crypto loan systems, oracle manipulation attacks are usually not caused by the defects
of smart contracts themselves. The attacks happen due to the vulnerability of the price oracles that are
being used. Before diving into how to build a reliable price oracle, we need to understand how these
attacks happen. We will see an example by attacking the crypto loan system we built in Chapter 11,
An Introduction to Crypto Loans and Chapter 12, Implementing an Asset Pool Smart Contract for a
Crypto Loan.

Next, let’s discuss the approach that attackers use for crypto loan exploits.

Executing a crypto loan exploit

Crypto loan exploit means that attackers gain profits by draining assets from crypto loan systems. For
decentralized crypto loan systems that are built on top of EVM-based networks, the exploit happens
when somebody takes an excess amount of ERC20 tokens from the asset pool smart contract. The
exploit can be achieved by an attacker carrying out the following four steps:

1. Increase the collateral token price by buying the collateral tokens.

2. Deposit a small portion of collateral tokens back to the asset pool.

3. Borrow other assets (not the collateral asset) from the asset pool. As the collateral value is
pumped up due to collateral token price manipulation, the attacker can borrow many more assets.

4. Sell the remaining collateral tokens to take back part of the assets that are used for
price manipulation.

Now let’s review the code of the getPriceInWETH function from the PriceOracle smart contract
we used for Chapter 12, Implementing an Asset Pool Smart Contract for a Crypto Loan:

function getPriceInWETH(address _token) external view
 returns (uint256) {
 (uint256 reserveToken, uint256 reserveWETH,) =
 IAMMRouter(router).getReserves(_token, WETH);
 if (reserveToken == 0) {
 // No reserve for the token in TOKEN/ETH
 return 0;
 }
 uint256 decimal = ERC20(_token).decimals();
 return (10**decimal * reserveWETH) / reserveToken;
}

The preceding code uses the formula (10**decimal * reserveWETH) / reserveToken to
calculate the price. If a user buys the token (whose smart contract address is specified by _token) from
the liquidity pool, the amount of reserveWETH will increase, and the amount of reserveToken
will drop. The token price will increase. If the user provides the token as collateral in the asset pool,
they can borrow more assets than before the purchase.

How price manipulation attacks are carried out on crypto loan systems 397

If the liquidity pool size is small or the purchase amount is huge, the price of the collateral token
will rise significantly. Attackers will leverage the behavior of the price oracle to drain the asset pool
excessively by borrowing.

In order to gain profit from a crypto loan exploit, there are two requirements for the attack:

• The first requirement is that the attacker should have sufficient funds to manipulate the price of
the liquidity pool. For example, if the collateral rate for an asset pool is 80%, the attacker should
raise the price of the collateral token by 25% (calculated by 100% _ 80% − 100%) at least. Attackers can
gain the funds to manipulate the price from flash loans, one of the popular features of DeFi
that enables the borrower to access a large amount of assets without collateral.

• The second requirement is that the attacker should execute the crypto loan exploit activity fast.
Here, fast means the attack is required to be completed in one of the following two conditions:

 � Combining all the attack steps in one transaction with a smart contract

 � Creating multiple transactions with the designated order and no new transactions that can
impact the state can be inserted in between

The attacking activities are easier to achieve for the first condition by using a hacker smart contract. If
the attacker adopts the second condition, it requires the attacker to put the attacking transactions in the
same block or they can mine multiple blocks in a row (almost impossible) to complete the transactions.

Note
There are several attack cases that happened related to flash loans over the last few years. Based
on the statement from https://hacken.io/discover/flash-loan-attacks/,
“with flash loans, borrowers can receive funds that are immediately returned to the lending
platform at the end of a single transaction block." The biggest flash loan attack at the time of
writing the book happened on Euler Finance in March 2023, which caused a massive loss of
197 million US dollars.

Next, we will dive into an example of attacking crypto loan systems with price manipulation.

An example of attacking crypto loan systems with price
manipulation

Let’s create an example of exploiting crypto loan systems with price manipulation. In this example,
we will create an automated test case in src/backend/test/AssetPool.test.js. The test
case will interact with the crypto loan smart contracts we already built in Chapter 11, An Introduction
to Crypto Loans and Chapter 12, Implementing an Asset Pool Smart Contract for a Crypto Loan, as well
as the DEX smart contracts created in Part 2 of this book.

https://hacken.io/discover/flash-loan-attacks/

Implementing a Price Oracle for Crypto Loans398

In the example, we will create two liquidity pools: one is the FOO/ETH pool and another is the BAR/
ETH pool. For the crypto loan system to be attacked, there are three asset pools for the three types
of tokens: FOO, BAR, and ETH. The attacker will use BAR as collateral to drain out FOO and ETH
from the asset pool smart contract. Once the FOO tokens are borrowed from the asset pool smart
contract, the attacker will swap all the FOO tokens with ETH. The test case to be implemented expects
that the balance of WETH after the exploit is greater than the balance before the exploit. It means the
attacker can gain profit by the exploit.

To implement the automated test case for this example, there are two DEX liquidity pools and three
crypto loan asset pools with the following code in the async function in beforeEach:

for (let token of [wethToken, fooToken, barToken]) {
 // Set allowance of token for AMM Router
 await token.approve(ammRouter.address,
 '1000000000000000000000000000');
 if (token != wethToken) {
 // Create token pair TOKEN/ETH and supply 10 TOKENs
 // and 1 ETH as initial liquidity.
 await ammRouter.addLiquidityETH(token.address,
 '10000000000000000000', 0, 0, deployer.address,
 parseInt(new Date().getTime() / 1000) + 10000,
 { value: '1000000000000000000' });}

 // Create asset pools for crypto loan and
 await assetPool.initPool(token.address,
 poolConf.address);

 // set them to active (1)
 await assetPool.setPoolStatus(token.address, 1);
}

In the preceding code, we added 10 FOO and 1 ETH to the FOO/ETH pool and 10 BAR and 1 ETH
to the BAR/ETH pool. It means the initial price of the collateral token BAR is 0.1 ETH.

Before the attack, let’s deposit 1,000 FOO and 100 WETH to the asset pools for a crypto loan:

let depositAmount = toWei(1000);
await fooToken.approve(assetPool.address, depositAmount);
await assetPool.deposit(fooToken.address, depositAmount);

depositAmount = toWei(100);
await wethToken.approve(assetPool.address, depositAmount);
await assetPool.deposit(wethToken.address, depositAmount);

How price manipulation attacks are carried out on crypto loan systems 399

console.log("BAR price before attack:", fromWei(await
 priceOracle.getPriceInWETH(barToken.address)));

The last line of the preceding code shows the BAR price before the attack. It should show 0.1 (WETH)
when running the test case.

Now let’s start attacking! We assume that user2 is the attacker. The attacker buys BAR tokens with
99 ETH, and because there is only 1 ETH in the BAR/WETH pool, it can pump up the BAR price
by almost 10,000 times! This is because the reserve for WETH grows by 100 times, and the reserve
for BAR drops to 1% of the previous reserve. So, the price of BAR for now is around 0.1 x 100 / 0.01
= 1,000 (WETH). Here is the code for the swapping transaction that manipulates the price. After
swapping, the code also verifies that the price is manipulated:

// Attacker swaps 99 ETH for BAR token
await ammRouter.connect(user2).swapExactETHForTokens(0,
 [wethToken.address, barToken.address], user2.address,
 parseInt(new Date().getTime() / 1000) + 10000,
 { value: toWei(99) });

console.log("BAR price during attack:", fromWei(await
 priceOracle.getPriceInWETH(barToken.address)));

Now, we can provide a small amount of BAR to drain all the assets from the crypto loan asset pools.
We know that there are 200 WETH worth of tokens (100 WETH and 1,000 FOO, which is equivalent
to 100 WETH). Also, we know that the collateral rate is 80% for all the asset pools. The attacker can
provide 200 / 0.8 = 250 WETH worth of BAR tokens as collateral, which is equivalent to 0.25 BAR (250
WETH worth of BAR token collateral = 250 WETH _ 1000 WETH / BAR = 0.25 BAR), where 1000 WETH / BAR is the BAR
token price we calculated in the previous step. In order to prevent the future borrowing transaction
being reverted with an unhealthy account error, the attacker can deposit a 0.26 BAR token, which is
slightly higher than the required amount for safely exploiting:

depositAmount = toWei(0.26);
await barToken.connect(user2)
 .approve(assetPool.address, depositAmount);
await assetPool.connect(user2)
 .deposit(barToken.address, depositAmount);

Now, the attacker drains the assets from the asset pools with the following code:

// Attacker borrows 1000 FOO
await assetPool.connect(user2)
 .borrow(fooToken.address, toWei(1000));
// Attacker borrows 100 ETH
await assetPool.connect(user2)
 .borrow(wethToken.address, toWei(100));

Implementing a Price Oracle for Crypto Loans400

Then, the attacker wants to convert all proceeds to ETH, which is the native token used for the attack:

// Convert WETH to ETH
let wethBalance = await wethToken.balanceOf(user2.address);
await wethToken.connect(user2).withdraw(wethBalance);

// Attacker swaps 1000 FOO for ETH
await fooToken.connect(user2).approve(ammRouter.address,
 toWei(1000));
await ammRouter.connect(user2).swapExactTokensForETH(
 toWei(1000), 0, [fooToken.address, wethToken.address],
 user2.address,
 parseInt(new Date().getTime() / 1000) + 10000);

The next important thing for the attacker is that they must sell the remaining BAR tokens in order to
retrieve the original funds being put into the BAR/WETH pool:

// Attacker swaps remaining BAR for ETH
barBalance = await barToken.balanceOf(user2.address);
await barToken.connect(user2)
 .approve(ammRouter.address, barBalance);
await ammRouter.connect(user2).swapExactTokensForETH(
 barBalance, 0, [barToken.address, wethToken.address],
 user2.address,
 parseInt(new Date().getTime() / 1000) + 10000);

console.log("BAR price after attack:", fromWei(await
 priceOracle.getPriceInWETH(barToken.address)));

The last line of the preceding code prints the price of the BAR token after the attack is completed.

To verify the attacker gains ETH by performing the preceding attacking activity, we need to verify that
the ETH balance after the attack is greater than the ETH balance before the attack:

// Get the balance of ETH of attacker before attack
const ethBalanceBeforeAttack = await
 ethers.provider.getBalance(user2.address);
...
// Get the ETH balance of attacker, expect to make profit
const ethBalanceAfterAttack = await
 ethers.provider.getBalance(user2.address);

How price manipulation attacks are carried out on crypto loan systems 401

expect(ethBalanceAfterAttack).to
 .greaterThan(ethBalanceBeforeAttack);

console.log("Attacker's profit in ETH", fromWei(
 ethBalanceAfterAttack.sub(ethBalanceBeforeAttack)))

The preceding code uses expect(...).to.greaterThan(...) to verify that the attacker
gains profit from price manipulation. Now we can run the test case and expect that the test case will
run successfully:

$ npx hardhat test
...
BAR price before attack: 0.1
BAR price during attack: 998.019999999999998222
BAR price after attack: 0.105828672200149173
Attacker's profit in ETH 100.958018831839597997
 ✔ Attacker can exploit the crypto to gain profit (391ms)
...

From the output of the preceding command, we learned that the attacker gains over 100 ETH by
manipulating the price of BAR. Also, the price of BAR went back to normal (which is 0.1058 WETH,
compared with the price of 0.1 WETH before the attack) after the attack.

Please keep in mind that the process of attacking should be executed in sequence without any interruptions;
the interactions with the BAR/ETH liquidity pool may break the process, which makes it hard for
the attacker to gain from the exploit. As a result, most of the attackers use smart contracts to wrap all
the preceding steps in one single transaction and revert the transaction if it is not profitable. You can
refer to some examples at https://samczsun.com/taking-undercollateralized-
loans-for-fun-and-for-profit/.

For the full code of the example, please refer to https://github.com/PacktPublishing/
Building-Full-stack-DeFi-Application/blob/chapter13-start/defi-apps/
src/backend/test/AssetPool.test.js#L186-L239.

In the next section, we will discuss a solution for building a manipulation-resistant price oracle using
DEX liquidity pools.

https://samczsun.com/taking-undercollateralized-loans-for-fun-and-for-profit/
https://samczsun.com/taking-undercollateralized-loans-for-fun-and-for-profit/
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter13-start/defi-apps/src/backend/test/AssetPool.test.js#L186-L239
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter13-start/defi-apps/src/backend/test/AssetPool.test.js#L186-L239
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter13-start/defi-apps/src/backend/test/AssetPool.test.js#L186-L239

Implementing a Price Oracle for Crypto Loans402

Building an on-chain price oracle with cumulative prices
A price oracle is a technology for providing data for smart contracts to access the prices of various
assets. Usually, the smart contracts that access the price oracle can call a function to fetch the prices
for specific assets. The assets can be cryptocurrencies, fiat currencies, stocks, or futures. Chainlink
(https://chain.link/) is one of the most widely used oracles on the market. Figure 13.1
shows a screenshot of the data feed page (https://data.chain.link/feeds/ethereum/
mainnet/eth-usd), which shows the ETH price in US dollars.

Figure 13.1 – The data feed page for showing the ETH price in USD on Chainlink

The Chainlink price oracle provides manipulation-resistant and robust pricing data for various assets.
The feature of manipulation resistance is implemented by aggregating multiple data sources (AKA
oracle responses) of prices of the single asset. Figure 13.2 shows the oracle responses for the ETH price
in USD, and the aggregated price will be used as the truth of the Chainlink price oracle.

https://chain.link/
https://data.chain.link/feeds/ethereum/mainnet/eth-usd
https://data.chain.link/feeds/ethereum/mainnet/eth-usd

Building an on-chain price oracle with cumulative prices 403

Figure 13.2 – The oracles that are used to generate an aggregated ETH price on Chainlink

In the screenshot in Figure 13.2, we can see that the ETH price is calculated based on at least 21 oracle
responses. If even one oracle is down or manipulated by attackers, the overall result of the ETH price
can still be robust because the majority of the oracle sources are trustworthy and in good condition.

Although Chainlink and other famous oracle vendors such as SupraOracles provide robust and
trustworthy price oracle services, there is one limitation, which is that the price data is unavailable
for new cryptocurrencies or crypto assets with small market capacity. For example, there are tens
of thousands of cryptocurrencies on the market, but there are price oracles for just a few hundred
cryptocurrencies. It may require the issuers of the cryptocurrencies to partner with these oracle
vendors, or be one of the top cryptocurrencies on the market.

Implementing a Price Oracle for Crypto Loans404

The Uniswap v2 whitepaper (https://docs.uniswap.org/whitepaper.pdf) introduced an
approach of implementing an on-chain price oracle with cumulative prices. It doesn’t rely on multiple
oracle sources while keeping the price manipulation resistant. Instead of using the reserve data to
calculate prices at a single time, as we mentioned in the How price manipulation attacks are carried
out on crypto loan systems section of this chapter, the approach uses the cumulative prices over time
to calculate prices for the price oracle. By using cumulative prices, the difficulty of a successful attack
is dramatically increased. It makes the attack based on price manipulation impossible to profit from.

Calculating cumulative prices

The Uniswap v2 whitepaper mentions an approach for calculating the time-weighted average price
(TWAP) for a time range. However, the timestamp that a smart contract can access may not be the
current second when the calculation is requested by the caller; instead, the smart contract can only
access the on-chain timestamp specific for the block of the transaction or block.timestamp in
Solidity code.

The price oracle approach proposed in the Uniswap v2 whitepaper uses the reserve amounts of
liquidity pools for the calculation of cumulative prices. The approach tracks the following two types
of information about a liquidity pool when the reserve amount of the liquidity pool changes:

• The cumulative prices at the block to update reserve amount

• The timestamp of the block

If there is more than one reserve-updating activity occurring for one block, only the first updating
activity is required to set the cumulative price and the timestamp. The other updating activities that
come after that in the same block will not update the cumulative prices and the timestamp. Because
the timestamp of the same block stays the same, the time elapsed is 0. The following formula is used
to calculate the cumulative price:

 CumulativePrice A, t = CumulativePrice A, t−1 + TimeElapsed *
 Reserve B

 _ Reserve A

The value of TimeElapsed is 0 between any transactions in the same block. The value of the cumulative
price stays the same for these transactions (CumulativePrice A, t = CumulativePrice A, t−1), so it is unnecessary
to recalculate the cumulative price in the same block.

In the preceding formula, CumulativePrice A, t is the cumulative price of token A in the current block and
CumulativePrice A, t−1 is token A’s cumulated price calculated in a previous block. Suppose the liquidity
pool has token A and token B as the paired token. Reserve A and Reserve B represent the amount of the
two types of tokens in the liquidity pool respectively.

Figure 13.3 shows an example of how to calculate the cumulative prices across multiple blocks.

https://docs.uniswap.org/whitepaper.pdf

Building an on-chain price oracle with cumulative prices 405

Figure 13.3 – Calculating cumulative prices for token A in blocks

In Figure 13.3, each of the liquidity pools will store block.timestamp and cumulative prices of
the two types of tokens in the liquidity pool smart contract (which is the TokenPair smart contract
we implemented in Chapter 5, Building Crypto-Trading Smart Contracts). The example shown in
Figure 13.3 uses token A to calculate the cumulative prices. At the beginning (in Block 0), the time
elapsed is block.timestamp minus the block timestamp for the last update, and because there
is no update yet, the value of the block timestamp for the last update is the default initial value of the
integer in Solidity, which is 0. So, the time elapsed for Block 0 is block.timestamp – 0 = 100.
Given Reserve B _ Reserve A = 2.0 , the cumulative price of Block 0 is 0 + 100 x 2.0 = 200.

There are two more transactions that update the reserve amounts for the liquidity pool, but there is
no need to update the value of the cumulative price and the timestamp of the last update.

From the example of Figure 13.3, we can observe that the cumulative price keeps growing as there are
updates in future blocks. If there are no reserve updates in a block (Block 2 in the example), the value
of the cumulative price will be unchanged in the smart contract.

Because the main task of a price oracle implementation is to calculate the price of a token, let’s discuss
how to calculate the TWAP for tokens.

Calculating time-weighted average prices

From the example in Figure 13.3, we learned that the liquidity pool will store the current block timestamp
and the cumulative prices of the tokens whenever the reserves are updated. Using the two types of
information, we cannot calculate the price precisely without historical cumulative prices because we
need a range of prices over a timeline up to now, and use the prices in the range to minimize the price
impact by the attacker’s manipulation.

In this section, we will introduce an implementation of a price oracle that sets up a time range (for
example, 60 minutes). The price oracle calculates the TWAP for the two tokens for each liquidity pool.

Implementing a Price Oracle for Crypto Loans406

Note
To learn the formal definition of the TWAP, please refer to https://river.com/learn/
terms/t/time-weighted-average-price-twap/. To be more specific for this
book, the TWAP is the average price of a crypto asset (e.g., a token) over a specified time range.

Suppose the time range starts at block i and ends at block j , where i < j . The token’s TWAP can be
calculated using the following formula:

 TWAP =
 CumulativePrice j − CumulativePrice i _________________________ Timestamp j − Timestamp i

Here, CumulativePrice i and CumulativePrice j are the calculated cumulative prices at block i and block
j . Timestamp i and Timestamp j are the values of block.timestamp for block i and block j .

Let’s take Figure 13.3 as an example. If we want to calculate the price of token A from block 0 to block
3, we can use the same formula:

 TWAP =
 CumulativePrice 3 − CumulativePrice 0 _________________________ Timestamp 3 − Timestamp 0

 = 287 − 200 _ 131 − 100 = 2.81

There is one question – what if we want to calculate the TWAP between block 0 and block 2? We can
see that the value of the cumulative price in block 2 is unchanged in the liquidity pool smart contract
compared to block 1 because there are no reserve updates in block 2 that can trigger recalculating the
cumulative prices and block timestamp. For this case, the price oracle will recalculate the parameters
inside the price oracle’s smart contract. It means when somebody uses the price oracle to fetch the
price of token A at block 2, the cumulative price will be calculated as follows:

 CumulativePrice 2 = CumulativePrice 1 + (Timestamp 2 − Timestamp 1) *
 Reserve B

 _ Reserve A = 224 + (122 − 110)
* 2.4 = 252.8

So, the TWAP of token A from block 0 to block 2 is as follows:

 Price =
 CumulativePrice 2 − CumulativePrice 0 _________________________ Timestamp 2 − Timestamp 0

 = 252.8 − 200 _ 122 − 100 = 2.4

Now we have learned how to calculate the TWAP with the cumulative price and block timestamp.
The TWAP is a starting point for building a more practical price oracle. Next, we will introduce the
price oracle based on the moving window.

Calculating prices with the moving window

The moving window is a powerful tool for indicating the trends and performing technical analysis
for various types of asset markets. For example, in the stock market, the stock analyzer may take the
average price for the last 15 days as the indicator for the market. For this case, the window’s size is
15 days. Similarly, cryptocurrency investors also use this approach. Figure 13.4 shows the BTC-USD
chart with the moving average line for a given time period.

https://river.com/learn/terms/t/time-weighted-average-price-twap/
https://river.com/learn/terms/t/time-weighted-average-price-twap/

Building an on-chain price oracle with cumulative prices 407

Figure 13.4 – Moving average line versus market price of BTC

In Figure 13.4, the gray line is the line for the market prices over time and the black line is for the
moving average with a 15-day moving window. Although the black line may deviate from the market
price, there are much fewer fluctuations than the market price and it moves more smoothly than the
market price. This makes the moving average price more manipulation resistant, thus it is a better
choice for building a price oracle for crypto loans.

There are two types of moving averages:

• Simple moving average (SMA): All prices in the moving window have an equal weight for
price calculation. This is how the moving average line is calculated in Figure 13.4.

• Exponential moving average (EMA): The recent price has more weight than historical prices.
It means the calculated price is closer to the market price at a given time, and it is easier for
the attacker to manipulate the price.

Note
Please refer to https://www.investopedia.com/terms/m/movingaverage.
asp to learn more about the two types of moving averages.

https://www.investopedia.com/terms/m/movingaverage.asp
https://www.investopedia.com/terms/m/movingaverage.asp

Implementing a Price Oracle for Crypto Loans408

To calculate moving averages, we need to define a moving window for a set of consecutive periods,
as shown in Figure 13.5:

Figure 13.5 – Moving window explanation

In Figure 13.5, a square represents a period. One period represents one step to move for the moving
window. The price oracle will store a timestamp and the two cumulative prices for the two tokens in
a liquidity pool for each period. The span of a period is the period size. The rectangle that includes
several periods represents a window. The span of a window is the window size. As time moves on,
the window will move by one period at a time. For example, the window in Figure 13.5 can only jump
square by square.

If we define the term granularity as the number of periods in a window, we have the following:

 WindowSize = Granularity * PeriodSize

Suppose Granularity = 4 and PeriodSize is 5 minutes in the example of Figure 13.5; then, the
WindowSize is 20 minutes.

When building the price oracle with the moving window, a period usually has multiple blocks
generated. The timestamp and the two cumulative prices are set only once per period. If we define
the timestamp for a period as the period timestamp, we can calculate the SMA of the moving window
with the following formula:

 SMA =
 CumulativePrice last − CumulativePrice first ___________________________ Timestamp last − Timestamp first

Here, we have the following:

• CumulativePrice last is the cumulative price of the last period in the window

• CumulativePrice first is the cumulative price of the first period in the window

• Timestamp last is the timestamp of the last period in the window

• Timestamp first is the timestamp of the first period in the window

Implementing a manipulation-resistant price oracle smart contract 409

In order to make the price oracle work properly, we should have a maintenance process running to
update the timestamp and the cumulative prices for the two tokens for every period. Any missing
updates for a period of time will cause an expired period, which means the values for CumulativePrice first
and Timestamp first are out of date for some periods. To prevent it from happening, we should guarantee
the following condition is true when getting the token price:

 Timestamp last − Timestamp first ∈ [WindowSize − 2 * PeriodSize, WindowSize]

Otherwise, the price calculation transaction should be reverted because of missing data for a period
in the window. Figure 13.6 explains why the condition is proposed.

Figure 13.6 – The condition of the first and last timestamps in a moving window

Figure 13.6 also indicates that the timestamp for a period can be generated at any position of the period.
The timestamp could be the starting time or the ending time of the period. So, we give a two-period-
size window to the subtraction result of Timestamp last and Timestamp first .

In this section, we have gone through the terminologies and formulas for building a price oracle with an
SMA strategy. In the next section, we will discuss how to implement the price oracle with the strategy.

Implementing a manipulation-resistant price oracle smart
contract
In this section, we will implement the price oracle with an SMA strategy. Based on the discussion in
the Building an on-chain price oracle with cumulative prices section of this chapter, we can conclude
the following three main functions that need to be implemented in this section:

• When the reserve amounts for a liquidity pool change, the TokenPair smart contract needs
to update the cumulative prices of the tokens and the timestamp of the update. For a given
block, the update for the liquidity pool should be performed only once, as shown in Figure 13.1.

• For each period of the moving window, the price oracle will update the cumulative prices of
the tokens and the timestamp for this period. The update should be performed at least once
for each period.

Implementing a Price Oracle for Crypto Loans410

• The price oracle calculates the token’s SMA price for the current window. This is the function
that is called by users and other smart contracts to fetch the price.

For the first function we mentioned, we will need to refactor the existing TokenPair smart contracts
to set the cumulative prices when reserve amounts change. For another two functions, we will implement
a complete new smart contract called PriceOracleV2 to replace the existing price oracle smart
contract we implemented in Chapter 12, Implementing an Asset Pool Smart Contract for a Crypto Loan.

Now, let’s dive into the first function and update the cumulative prices and timestamp when the
reserve amount changes.

Updating information when the reserve amount changes in
a liquidity pool

As the title of this section explains, the information update is performed in the liquidity pool, which
is represented by the TokenPair smart contract we implemented in Chapter 5, Building Crypto-
Trading Smart Contracts. Based on the discussion for calculating the token price using cumulative
prices, we need to store the following three values for the price oracle:

• price0CumulativeLast: The cumulative price of the first token of the liquidity pool
since the last update

• price1CumulativeLast: The cumulative price of the second token of the liquidity pool
since the last update

• blockTimestampLast: The block timestamp of the last update

Based on the Uniswap v2 whitepaper (https://docs.uniswap.org/whitepaper.pdf),
the TokenPair smart contract introduced the UQ112.112 numbers to represent the token prices
when calculating from the reserve amount. It means the division results (such as Reserve B _ Reserve A) are stored in
UQ112.112 numbers. For each number, the first 112 bits are the integer part of the number, and the
last 112 bits are the fractional part of the number.

Note
You can also check https://en.wikipedia.org/wiki/Q_(number_format) to
learn the generic information of the presentation approach for numbers. Here, the prefix Q
means that the number format supports signed numbers. UQ means that the format supports
unsigned numbers.

https://docs.uniswap.org/whitepaper.pdf
https://en.wikipedia.org/wiki/Q_(number_format)

Implementing a manipulation-resistant price oracle smart contract 411

Before implementing the code, Figure 13.7 shows the summary of Solidity data types for the variables
that we need to update or add to the TokenPair smart contract:

Variable Name Original Data Type New Data Type

reserveA uint256 uint112

reserveB uint256 uint112

blockTimestampLast uint256 uint32

price0CumulativeLast N/A uint256

price1CumulativeLast N/A uint256

Figure 13.7 – Summary of data types of the variables related to the price oracle

For reserveA and reserveB, we only keep the integer part of the number using the uint112
type, because there is no fractional part for reserve amounts. But price0CumulativeLast
and price1CumulativeLast have the fractional part, so the two variables are stored with the
UQ112.112 format. Because each UQ112.112 number only uses 224 bits in total and the cumulative
prices are stored as a uint256 data type, the first 32 bits for these two variables are not being used.

In Figure 13.7, we changed the data type from uint256 to uint32 for blockTimestampLast,
because the value can be stored together with reserveA and reserveB in one single 256-bit slot.
It could save gas usage when the getReserves function (of the TokenPair smart contract) is
called. In the src/backend/contracts/TokenPair.sol source code file, let’s check the
definition of the getReserves function after refactoring for the price oracle:

function getReserves() public view returns (
 uint112 _reserveA,
 uint112 _reserveB,
 uint32 _blockTimestampLast) { ... }

Note
We have updated the function definitions in the ITokenPair.sol Solidity interface file
for the preceding data type updates. Meanwhile, we added two new external functions for
the variables so that the price oracle smart contract can access price0CumulativeLast
and price1CumulativeLast. Please check the code at https://github.com/
PacktPublishing/Building-Full-stack-DeFi-Application/blob/
chapter13-end/defi-apps/src/backend/contracts/interfaces/
ITokenPair.sol for reference.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter13-end/defi-apps/src/backend/contracts/interfaces/ITokenPair.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter13-end/defi-apps/src/backend/contracts/interfaces/ITokenPair.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter13-end/defi-apps/src/backend/contracts/interfaces/ITokenPair.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter13-end/defi-apps/src/backend/contracts/interfaces/ITokenPair.sol

Implementing a Price Oracle for Crypto Loans412

To support the implementation of the price oracle, the most important thing in the TokenPair smart
contract is to calculate the cumulative prices for the two tokens of the pair. The calculation happens
when the reserve amounts are updated. We can rename the _setReserves function _update to
update all of the five variables in Figure 13.7. As a result, here is the code of the refactored function:

function _update(uint256 balance0, uint256 balance1,
 uint112 _reserve0, uint112 _reserve1) private {
 require(balance0 <= type(uint112).max &&
 balance1 <= type(uint112).max, "OVERFLOW");
 uint32 blockTimestamp =
 uint32(block.timestamp % 2**32);
 // overflow is desired, expecting less than
 // 2^32 seconds (~136 years) between 2 updates
 uint32 timeElapsed =
 blockTimestamp - blockTimestampLast;
 if (timeElapsed > 0 &&
 _reserve0 != 0 && _reserve1 != 0) {
 price0CumulativeLast += uint256(UQ112x112
 .encode(_reserve1).uqdiv(_reserve0)) *
 timeElapsed;
 price1CumulativeLast += uint256(UQ112x112
 .encode(_reserve0).uqdiv(_reserve1)) *
 timeElapsed;
 }
 reserveA = uint112(balance0);
 reserveB = uint112(balance1);
 blockTimestampLast = blockTimestamp;
 emit Sync(reserveA, reserveB);
}

The preceding code updates the five highlighted variables of the TokenPair smart contract. As we
explained in the Building an on-chain price oracle with cumulative prices section of this chapter, the
cumulative prices (price0CumulativeLast and price1CumulativeLast) are updated
at most once per block when timeElapsed is greater than 0. The two variables, reserveA and
reserveB, are of the uint112 type. The maximum value of uint112 is around 5.2 x 1033. This
number is big enough for almost all scenarios.

When calculating price0CumulativeLast and price1CumulativeLast, we have introduced
the UQ112x112 library, which includes two functions for UQ112.112 number encoding and division.
The encode function will convert an integer to a UQ112.112 number by shifting left by 112 bits,
and keep the 112 bits on the right side empty with zeros. The uqdiv function divides the encoded
number by the divisor and stores the integer part of the result to the first 112 bits and the fraction
part of the result to the last 112 bits.

Implementing a manipulation-resistant price oracle smart contract 413

In the preceding _update function, the code converts block.timestamp to the uint32 data
type since the maximum time range that a 32-bit unsigned integer can represent is around 4 billion
seconds, which is approximately 136 years. As long as the duration between the two _update
function calls is less than 4 billion seconds, the calculated values of price0CumulativeLast,
price1CumulativeLast, and blockTimestampLast will be valid for the price oracle.

There are other lines of code that need to be updated in TokenPair.sol because of the data type
changes for reserveA, reserveB, and blockTimestampLast. You can refer to https://
github.com/PacktPublishing/Building-Full-stack-DeFi-Application/
commit/e7a19876ff43bf8c863373f353023afacaac2c6d#diff-ee48f0d245e
375e648eff3e984cc14dab91ec7606b754dd8248dd2aeacccbc4e for the full set of
changes of this file.

Next, we will start implementing the smart contract of the manipulation-resistant price oracle.

Information update for the current period in the price oracle

In the Building an on-chain price oracle with cumulative prices section of this chapter, we mentioned
that the price oracle we will implement is based on the moving window with an SMA strategy. The
window consists of multiple periods. When running the price oracle in a real-world project, we
should keep updating the information by filling in the following information for all the periods of
the moving window:

• timestamp: The timestamp when the information for the period is updated

• price0Cumulative: The cumulative price of the first token of this period

• price1Cumulative: The cumulative price of the second token of this period

The activity of updating this information periodically is also called price oracle maintenance. Now,
let’s dive into the code of the new price oracle we will build. The function we will implement in this
section is the update function that will be called for price oracle maintenance.

The new price oracle is implemented with the src/backend/contracts/PriceOracleV2.
sol source file. It implements the smart contract of PriceOracleV2. To maintain the information
for each period, the smart contract defines the Observation struct to store the information for
the information of each period in the moving window:

struct Observation {
 uint256 timestamp;
 uint256 price0Cumulative;
 uint256 price1Cumulative;
}

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/commit/e7a19876ff43bf8c863373f353023afacaac2c6d#diff-ee48f0d245e375e648eff3e984cc14dab91ec7606b754dd8248dd2aeacccbc4e
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/commit/e7a19876ff43bf8c863373f353023afacaac2c6d#diff-ee48f0d245e375e648eff3e984cc14dab91ec7606b754dd8248dd2aeacccbc4e
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/commit/e7a19876ff43bf8c863373f353023afacaac2c6d#diff-ee48f0d245e375e648eff3e984cc14dab91ec7606b754dd8248dd2aeacccbc4e
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/commit/e7a19876ff43bf8c863373f353023afacaac2c6d#diff-ee48f0d245e375e648eff3e984cc14dab91ec7606b754dd8248dd2aeacccbc4e

Implementing a Price Oracle for Crypto Loans414

For each token pair of the DEX, there is an array of Observation structs to represent its moving window.
The length of the Observation array equals the value of granularity of the PriceOracleV2
smart contract, where the value is equal to the window size (windowSize) divided by the period
size (periodSize).

In order to calculate the price with the moving window strategy, we should make sure the values in
all of these observations are up to date. Because we cannot guarantee that the liquidity reserve update
activities happen for every period, we need to implement a currentCummulativePrices
function to calculate the cumulative prices of the current block if the latest reserve update block is
not the current block:

function currentCummulativePrices(address pair) internal
 view returns (uint256 price0Cumulative,
 uint256 price1Cumulative, uint32 blockTimestamp) {
 blockTimestamp = uint32(block.timestamp % (2**32));
 price0Cumulative =
 ITokenPair(pair).price0CumulativeLast();
 price1Cumulative =
 ITokenPair(pair).price1CumulativeLast();

 // If time has elapsed since the last update on the
 // pair, accumulated price values with current reserves
 (
 uint112 reserve0,
 uint112 reserve1,
 uint32 blockTimestampLast
) = ITokenPair(pair).getReserves();
 if (blockTimestampLast != blockTimestamp) {
 // Substraction overflow is desired
 uint32 timeElapsed =
 blockTimestamp - blockTimestampLast;
 price0Cumulative +=
 uint256(UQ112x112.encode(reserve1).uqdiv(reserve0))
 * timeElapsed;
 price1Cumulative +=
 uint256(UQ112x112.encode(reserve0).uqdiv(reserve1))
 * timeElapsed;
 }
}

Implementing a manipulation-resistant price oracle smart contract 415

The currentCummulativePrices function is called whenever the price oracle needs to update the
Observation struct for the current period of the moving window. Here is the code of the update
function that is used to update the Observation struct of every period for a given pair of tokens:

function update(address tokenA, address tokenB) external {
 address pair = IPairFactory(factory)
 .getPair(tokenA, tokenB);

 // Populate the array with empty observations for the
 // pair, only do at the first time
 for (uint256 i = pairObservations[pair].length;
 i < granularity; i++) {
 pairObservations[pair].push();
 }

 // Get the observation for the current period
 uint8 observationIndex =
 observationIndexOf(block.timestamp);
 Observation storage observation =
 pairObservations[pair][observationIndex];

 // Commit updates at most per period
 uint256 timeElapsed =
 block.timestamp - observation.timestamp;
 if (timeElapsed > periodSize) {
 (uint256 price0Cumulative, uint256 price1Cumulative,)
 = currentCummulativePrices(pair);
 observation.timestamp = block.timestamp;
 observation.price0Cumulative = price0Cumulative;
 observation.price1Cumulative = price1Cumulative;
 }
}

The preceding code of the update function first gets the pair address with the given tokens, tokenA
and tokenB, then initializes the array for this pair by pushing the empty Observation struct to
the end of the array until the entire period has its Observation struct initialized. If the array of
Observation structs has already been initialized, the value of pairObservations[pair].
length will be equal to granularity, which is the number of periods in the moving window,
so that the array will not be initialized again.

Because the number of Observation structs in a window is equal to the value of granularity,
the moving window is represented with the rotated array. If the current period is located at the last
Observation struct in the array, the next period will be represented by the Observation struct
at index 0 (the first element of the array).

Implementing a Price Oracle for Crypto Loans416

For a given block timestamp, we can calculate the index of the Observation struct for the period
with the following observationIndexOf function:

function observationIndexOf(uint256 timestamp) public view
 returns (uint8 index) {
 uint256 epochPeriod = timestamp / periodSize;
 return uint8(epochPeriod % granularity);
}

The preceding function is a helper function of the update function we implemented previously. It
first calculates the epochPeriod value by dividing the timestamp by periodSize, then uses the
modulo (%) operator to calculate the remainder as the array index of the period.

Note
The returned index is of the uint8 type, which means the maximum number of periods for
a window should not be greater than 255 (28-1).

Next, we will discuss the implementation of the function to calculate token prices.

Calculating the token price in the price oracle

To calculate the token prices in the price oracle, we will use the following formula, mentioned in the
Building an on-chain price oracle with cumulative prices section of this chapter:

 SMA =
 CumulativePrice last − CumulativePrice first ___________________________ Timestamp last − Timestamp first

This formula is the SMA price of the moving window. Based on the implementation of the
PriceOracleV2 smart contract, the values of CumulativePrice last and Timestamp last come from the
latest observation of the window. The values of CumulativePrice first and Timestamp first come from the first
observation of the window. If the cumulated prices of the latest observation for the current period have
not been generated yet when a user is fetching the SMA price, the currentCummulativePrices
function will be called to calculate their value.

In order to get the values of CumulativePrice first and Timestamp first from the first observation of the
current window, we can first get the index of the observation array with the current block timestamp,
and advance by one position (plus 1) to get the first observation of the window. This is because we
assume that all the observations in the window are set with valid cumulative prices over the whole
cycle of the window. The next observation from the current position in the rotated array is the earliest
(and the first) observation of the moving window. Figure 13.8 demonstrates the relationships between
the current observation and the first observation in a rotated array that represents the moving window.

Implementing a manipulation-resistant price oracle smart contract 417

Figure 13.8 – The observations in a rotated array for a moving window

In Figure 13.8, the arrows represent the updating direction in the array for the moving window. The
question mark in the square of the current observation means that the cumulative prices may not
be available yet. So, the code will need to calculate the prices for the period when a user is fetching
the prices.

Here is the getFirstObservationInWindow function, which calculates the index of the first
observation in the moving window based on the current block timestamp:

function getFirstObservationInWindow(address pair) private
 view returns (Observation storage firstObservation) {
 uint8 observationIndex =
 observationIndexOf(block.timestamp);
 uint8 firstObservationIndex =
 (observationIndex + 1) % granularity;
 firstObservation =
 pairObservations[pair][firstObservationIndex];
}

With the help of the getFirstObservationInWindow function, let’s implement the code for
the getPriceInWETH function, which returns the token price in the unit of WETH:

function getPriceInWETH(address _token) external view
 returns (uint256) {
 address pair =
 IPairFactory(factory).getPair(_token, WETH);
 Observation storage firstObservation =
 getFirstObservationInWindow(pair);
 uint256 timeElapsed =
 block.timestamp - firstObservation.timestamp;
 require(timeElapsed <= windowSize,
 "MISSING_HISTORICAL_OBSERVATION");
 require(timeElapsed >= windowSize - periodSize * 2,
 "UNEXPECTED_TIME_ELAPSED");

Implementing a Price Oracle for Crypto Loans418

 (uint256 price0Cumulative, uint256 price1Cumulative,)
 = currentCummulativePrices(pair);
 uint8 decimals = ERC20(_token).decimals();
 if (_token < WETH) {
 return computeAmountOut(
 firstObservation.price0Cumulative,
 price0Cumulative, timeElapsed, 10**decimals);
 } else {
 return computeAmountOut(
 firstObservation.price1Cumulative,
 price1Cumulative, timeElapsed, 10**decimals);
 }
}

The preceding code first calculates the value of Timestamp last − Timestamp first in the SMA formula and
stores the value in timeElapsed based on the criteria we mentioned in the Building an on-chain
price oracle with cumulative prices section of this chapter:

 Timestamp last − Timestamp first ∈ [WindowSize − 2 * PeriodSize, WindowSize]

The code uses the two highlighted statements in the require function to guarantee the preceding
condition is met.

After that, the code gets the price0Cumulative and price1Cumulative values for the current
period and calculates the SMA price with the computeAmountOut function. The following code
is its implementation:

function computeAmountOut(uint256 priceCumulativeStart,
 uint256 priceCumulativeEnd, uint256 timeElapsed,
 uint256 amountIn) private pure returns (uint256) {
 return (((priceCumulativeEnd - priceCumulativeStart) /
 timeElapsed) * amountIn) >> 112;
}

Based on the preceding code, the computeAmountOut function takes the following items into
account when using the SMA formula to calculate the price:

• The decimal places of the token – it will make sure the price calculated in WETH is at the same
scale for all the tokens.

• The cumulative prices are represented in UQ112.112 format. Because the last 112 bits of the
number are the fractional part, we need to shift the result to the right by 112 bits to only return
the integer part of the result.

Deploying, maintaining, and verifying the price oracle 419

We have now gone through the code for calculating the prices with the SMA formula. In order to make
the PriceOracleV2 smart contract compatible with the crypto loan system we built in Chapter 12,
Implementing an Asset Pool Smart Contract for a Crypto Loan, we implemented the interface with the
following two external functions:

interface IPriceOracle {
 function WETH() external view returns (address);
 function getPriceInWETH(address token) external view
 returns (uint256);
}

We let the smart contract implement this interface:

contract PriceOracleV2 is IPriceOracle {...}

Meanwhile, we will also need to refactor the code of the AssetPool smart contract to use the
interface to access the price oracle smart contract. We will not elaborate on the code to update the
AssetPool smart contract, but you can check https://github.com/PacktPublishing/
Building-Full-stack-DeFi-Application/blob/chapter13-end/defi-apps/
src/backend/contracts/AssetPool.sol for reference.

Now we have completed the implementation of the PriceOracleV2 smart contract. For the full
source code of the smart contract, please refer to https://github.com/PacktPublishing/
Building-Full-stack-DeFi-Application/blob/chapter13-end/defi-apps/
src/backend/contracts/PriceOracleV2.sol.

With proper maintenance activities, the price oracle will be robust and manipulation resistant for
various kinds of DeFi applications. We will discuss the deployment, maintenance, and verification of
the price oracle smart contract in the next section.

Deploying, maintaining, and verifying the price oracle
In this section, we will discuss how to deploy, maintain, and verify the price oracle. You will learn
how to bring the price oracle alive in your project and see the robustness of the price oracle when the
token price is heavily manipulated by attackers.

Deploying the PriceOracleV2 smart contract

Similar to the smart contracts we deployed in previous chapters, we need to follow the constructor
definition for deploying the smart contract. Let’s review the following code of the constructor of the
PriceOracleV2 smart contract before writing the deployment script:

constructor(
 address _factory,
 address _WETH,

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter13-end/defi-apps/src/backend/contracts/AssetPool.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter13-end/defi-apps/src/backend/contracts/AssetPool.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter13-end/defi-apps/src/backend/contracts/AssetPool.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter13-end/defi-apps/src/backend/contracts/PriceOracleV2.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter13-end/defi-apps/src/backend/contracts/PriceOracleV2.sol
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter13-end/defi-apps/src/backend/contracts/PriceOracleV2.sol

Implementing a Price Oracle for Crypto Loans420

 uint256 _windowSize,
 uint8 _granularity // Number of periods in a window
) { ... }

We can replace the code for creating the old price oracle instance in scripts/deploy.js with
the code for the new version of the price oracle:

await contractFactory.deploy(
 pairFactory.address,
 wethToken.address,
 720, // Windows Size
 60 // Granularity
);

In the preceding code, we have set the window size to 720 seconds and the granularity to 60, which
means each period will last for 12 seconds (12 = 720 / 60). We recommend setting the period size
to no less than the time of generating one block in practice. If the period size is less than the block
generation time, it will lead to unnecessary updates and high gas costs.

Next, we will talk about how to maintain the price oracle.

Price oracle maintenance

Price oracle maintenance is a task to keep the cumulative prices up to date for every period in the
moving window. This checkpoint activity stores cumulative prices and timestamps in each observation.
If the checkpoint activity is not performed properly, it will lead to missing price data for a period and
cause failure while calculating the prices for certain price requests. Usually, a project may need to run
a script that calls the update function at least once per period.

In order to maintain the price oracle, we have created the scripts/priceOracleUpdate.
js script for calling the update function periodically. In the following code, the script updates the
prices for two pairs (FOO/WETH and BAR/WETH) every five seconds:

const [, , , oracleAdmin] = await ethers.getSigners();
let oracleFactory = await
 ethers.getContractFactory("PriceOracleV2");
let oracleContract =
 oracleFactory.attach(oracleAddress.address);
while (true) {
 await oracleContract.connect(oracleAdmin)
 .update(wethAddress.address, fooAddress.address);
 await oracleContract.connect(oracleAdmin)
 .update(wethAddress.address, barAddress.address);
 /* The code for printing logs are omitted */
 await delay(5000);
}

Deploying, maintaining, and verifying the price oracle 421

The preceding code connects the oracle administrator account (oracleAdmin) and uses the account
to update the cumulative prices periodically. Please keep in mind that calling the update function costs
gas; you should make sure that there is sufficient ETH in the account to perform the maintenance task.

You can refer to the code at https://github.com/PacktPublishing/Building-
Full-stack-DeFi-Application/blob/chapter13-end/defi-apps/scripts/
priceOracleUpdate.js for the full maintenance script. We also updated package.json so
that you can run the npm run price-oracle-update localhost command to start the
maintenance process for the price oracle on a local EVM.

Note
There are several solutions that implement a price oracle in smart contracts without maintenance
requirements. You can check this link to learn about one of the solutions implemented in
Uniswap v3: https://uniswap.org/whitepaper-v3.pdf.

Next, we will verify that the PriceOracleV2 smart contract is robust under the price
manipulation attack.

Verifying the manipulation-resistant price oracle

To verify that the PriceOracleV2 smart contract is manipulation resistant, we can reuse the
example from the How price manipulation attacks are carried out on crypto loan systems section of
this chapter, which simulates the price manipulation attack. The verification will check whether the
attacker can make a profit or borrow assets by manipulating the price of the BAR token. If the attacker
cannot borrow assets or make a profit, the verification is a success.

The verification steps are implemented as the new test case in src/backend/test/AssetPool.
test.js. You can refer to https://github.com/PacktPublishing/Building-Full-
stack-DeFi-Application/blob/chapter13-end/defi-apps/src/backend/
test/AssetPool.test.js#L282-L343 for the full code of the test case.

Let’s discuss the updates for the test case compared to the test case we implemented in the How price
manipulation attacks are carried out on crypto loan systems section of this chapter.

First, the new test case uses PriceOracleV2 as the price oracle smart contract for crypto loans:

await assetPool.setPriceOracle(priceOracleV2.address);

Second, before the attacking activity, the code calls the update function of the PriceOracleV2
smart contract in a for loop. It will generate cumulative prices for all periods of a full window cycle so
that the price oracle will work properly with the AssetPool smart contract in the crypto loan system.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter13-end/defi-apps/scripts/priceOracleUpdate.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter13-end/defi-apps/scripts/priceOracleUpdate.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter13-end/defi-apps/scripts/priceOracleUpdate.js
https://uniswap.org/whitepaper-v3.pdf
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter13-end/defi-apps/src/backend/test/AssetPool.test.js#L282-L343
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter13-end/defi-apps/src/backend/test/AssetPool.test.js#L282-L343
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter13-end/defi-apps/src/backend/test/AssetPool.test.js#L282-L343

Implementing a Price Oracle for Crypto Loans422

Note
You may notice that the test case doesn’t use delay() or sleep() to move the time window.
This is because the EVM that the test cases are running on generates blocks and advance
timestamps automatically for every transaction that changes the states of the blockchain. It
also tells that the timestamp on the EVM is out of sync with the timestamp of the computer
running the EVM.

Because the attacker wants to borrow ETH and FOO tokens by lifting the price of the BAR token and
depositing BAR as collateral, we need to verify that the activity will fail when borrowing the same
amount of ETH when the attacker uses the amount to manipulate the price:

// Attacker swaps 99 ETH for BAR token
await ammRouter.connect(user2).swapExactETHForTokens(0,
 [wethToken.address, barToken.address], user2.address,
 parseInt(new Date().getTime() / 1000) + 10000,
 { value: toWei(99) });
...
// Attacker deposits all BAR to crypto loan asset pool
depositAmount = barBalance;
await assetPool.connect(user2).deposit(barToken.address,
depositAmount);
// Attacker borrows 99 WETH to cover the cost
await expect(assetPool.connect(user2)
 .borrow(wethToken.address, toWei(99)))
 .to.be.revertedWith("ACCOUNT_UNHEALTHY");

In the last line of the code, we expect the borrow transaction to be reverted with the ACCOUNT_
UNHEALTHY reason code, because the price of BAR read from the price oracle is not as valuable as
the attacker expected. By facilitating the PriceOracleV2 smart contract, the price doesn’t change
as significantly as the reserve ratio of the liquidity pool, because the fluctuation is flattened by the
moving average.

If you want to check how the manipulation impacts the price with PriceOracleV2, we can add
console.log functions to the test case to show the comparison of the BAR prices under the two
versions of the price oracle. Here is the output from running the verification test case:

Price of BAR after manipulation (Oracle v2) 2.162323354693102253
Price of BAR (Oracle v1) 723.469089084237000192
 ✔ Attacker cannot gain profit with the price oracle v2 (26864ms)

From the console output, we can verify that PriceOracleV2 returns the price of 2.16 ETH for the
BAR token, whereas PriceOracle (v1) returns the price of 723.47 ETH, which has a much higher
impact from price manipulation.

Summary 423

Summary
In this chapter, we have explored the potential risks of the price oracle and how price manipulation
drains out the assets from crypto loan systems. Then, we discussed the price oracle approach proposed
in the Uniswap v2 whitepaper. The approach can be used to build a manipulation-resistant oracle
by generating TWAPs. After that, we implemented the PriceOracleV2 smart contract with the
SMA strategy using moving windows. In the end, we discussed how to deploy, maintain, and verify
the PriceOracleV2 smart contract we have built in this chapter.

By facilitating the price oracle that we built in this chapter, the crypto loan will be more secure and
robust from price manipulation. In the next chapter, we will complete the crypto loan application by
implementing the frontend of the system.

14
Implementing the Crypto Loan

Frontend with Web3

After implementing all the smart contracts for the crypto loan system, it is time to build the frontend for
the crypto loan system. This will complete our implementation of all the features and user experiences
of the decentralized application. By implementing the frontend, users will be able view the information
of all asset pools and the asset value positions of the users. The frontend also provides the interfaces
for users to deposit, withdraw, borrow, and repay token assets to perform savings- and loan-related
activities. By completing the crypto loan application, you will gain an understanding of how to build
the main features that a traditional financial institution can offer in the DeFi world.

By reading this chapter, you will achieve the following:

• Learn how to implement a page to display the account summary and a list of all asset pools

• Learn how to implement the pages for depositing, withdrawal, borrowing, and repayment

• Understand the best practices for maintaining a decentralized crypto loan system

Technical requirements
We highly recommend that you have the completed smart contracts we built in the previous chapters.
Alternatively, you can pull the code from the chapter14-start branch of the GitHub repository
of this book before following along with the code explanations of this chapter. You can refer to the
source code of the aforementioned branch at https://github.com/PacktPublishing/
Building-Full-stack-DeFi-Application/tree/chapter14-start.

After reading through the code examples in this chapter, you will find the implemented code in the
chapter14-end branch of the GitHub repository of this book, located at https://github.
com/PacktPublishing/Building-Full-stack-DeFi-Application/tree/
chapter14-end.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/tree/chapter14-start
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/tree/chapter14-start
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/tree/chapter14-end
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/tree/chapter14-end
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/tree/chapter14-end

Implementing the Crypto Loan Frontend with Web3426

Implementing the account summary and asset pool
listing page
In this section, we will implement the account summary and asset pool listing page shown in Figure 14.1.

Figure 14.1 – A snapshot of the account information and asset pool listing page

The page in the preceding screenshot is broken into two sections. Section 1 shows the crypto loan
account information. The section contains the following four items:

• Total Deposit Value is the total value of deposit token assets for the connected account.

• Total Borrowed Value is the total value of borrowed token assets for the connected account.

• Maximum Borrowable Value is the maximum token value that the connected account can borrow.

• Is Account Healthy represents whether or not the connected account is healthy. The account
is healthy (the value is true) if the total borrowed value is not greater than the maximum
borrowable value. Otherwise, the account is not healthy (the value is false).

Section 2 in Figure 14.1 shows a list of information of all the asset pools in the crypto loan system.
The list item for each asset pool has a header that shows the lending Annual Percentage Yield (APY)
and borrowing APY for this token asset. The user can determine the lending return and loan interest
cost based on the APYs.

Implementing the account summary and asset pool listing page 427

Meanwhile, Section 2 shows a list of token assets wherein each item is expandable. When an item in
the list is expanded, it displays four parameters of the given asset pool:

• Total Liquidity: The total compounded lending token amount of the asset pool.

• Available Liquidity: The available token amount of the asset pool. This is also a factor in
determining how much a user can withdraw or borrow from the asset pool.

• Lent Balance: The compounded balance of deposited tokens. This includes both the principal
and the interest of the deposited tokens.

• Borrowed Balance: The compounded balance of borrowed tokens. This includes both the
principal and the interest of the borrowed tokens.

For each list item, there are also four buttons, DEPOSIT, WITHDRAW, BORROW, and REPAY,
with which users can complete actions on the given asset pool. When clicking each of the four buttons,
the browser will navigate to an individual page to perform the given operation. We will discuss how
to implement these pages in the Implementing the pages for deposit, withdrawal, borrowing, and
repayment section.

Next, let’s dive into the implementation of the account summary and asset pool listing page.

Implementing the UI components in ListAssetPools.js

To implement the page for account summary and asset pool listing, let’s create a file located at src/
frontend/features/Loan/ListAssetPools.js. We can define and export an empty
React component called ListAssetPools in this file. Import the useWeb3React function from
the @web3-react/core package and get wallet connectivity information by calling the function:

const { active, account, library } = useWeb3React();

Based on the knowledge we gained from Chapter 3, Interacting with Smart Contracts and DeFi Wallets
in the Frontend, we can use the active Boolean variable in the preceding code to check whether the
wallet is connected, and the account variable for the address of the connected wallet. The library
variable is for getting the wallet signer to interact with the smart contracts deployed on the EVM
blockchain. Once the wallet is connected, the ListAssetPools page will both of the sections
outlined in Figure 14.1. Otherwise, the page should ask the user to connect their wallet.

To implement the UI components of Section 1 in the ListAssetPools.js page, we can use the
Grid component in Material UI to arrange the component layout to show the four items for account
information. The following code implements the UI components for Section 1:

<Grid container spacing={2} sx={{ py: 2 }}>
 <Grid item md={6}>
 Total Deposit Value: {/* TBD */} ETH
 </Grid>

Implementing the Crypto Loan Frontend with Web3428

 <Grid item md={6}>
 Total Borrowed Value: {/* TBD */} ETH
 </Grid>
 <Grid item md={6}>
 Maximum Borrowable Value: {/* TBD */} ETH
 </Grid>
 <Grid item md={6}>
 Is Account Healthy: {/* TBD */}
 </Grid>
</Grid>

Please keep in mind that the variables for showing the account summary information are set to {/*
TBD */} as placeholders for now. You can come back to fill in the values after we have discussed
how to get the user summary information.

For the UI components in Section 2, we will use the Accordion components in Material UI to
display the information for each asset pool in the list. The list item headings are implemented within
the AccordionSummary components, and the expanded contents are implemented within the
AccordionDetails components. Because the Material UI components are beyond the scope of
the book, we will not elaborate on all the UI code here. For the full source code implementing the UI
components, please refer to https://github.com/PacktPublishing/Building-Full-
stack-DeFi-Application/blob/chapter14-end/defi-apps/src/frontend/
features/Loan/ListAssetPools.js#L111-L155.

Next, we will discuss how to get the user summary information by interacting with an AssetPool
smart contract.

Retrieving the user summary information for the crypto loan
system

The screenshot in Figure 14.1 shows the summary information of the connected user account in Section
1, which tells the user the information how much has been deposited and how much has been borrowed.

The AssetPool smart contract provides several interfaces for users to get their account information
related to asset pools. It gives us access to the aforementioned summary information about user accounts
for the whole crypto loan system, and to users’ account information regarding individual asset pools.

Now let’s talk about retrieving the user’s summary information for the whole crypto loan system,
which will be displayed at the top of the ListAssetPools.js page.

Let’s dive into the code of the getUserInfo function, used for retrieving the user summary information:

const getUserInfo = useCallback(async (assetPool) => {
 try {
 const userInfo = await assetPool.getUserInfo(account);

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter14-end/defi-apps/src/frontend/features/Loan/ListAssetPools.js#L111-L155
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter14-end/defi-apps/src/frontend/features/Loan/ListAssetPools.js#L111-L155
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter14-end/defi-apps/src/frontend/features/Loan/ListAssetPools.js#L111-L155

Implementing the account summary and asset pool listing page 429

 const isAccountHealthy =
 await assetPool.isAccountHealthy(account);
 setUserInfo({
 totalDeposit: userInfo.totalLiquidityValue,
 totalBorrow: userInfo.totalBorrowedValue,
 maxBorrowable: userInfo.totalCollateralValue,
 isAccountHealthy,
 });
 } catch (error) {
 toast.error("Cannot fetch user information!");
 }
}, [account]);

In the preceding code, the assetPool variable is the instance that represents the AssetPool smart
contract deployed on the blockchain. The code calls the two highlighted functions of the AssetPool
smart contract to get the user summary information:

• assetPool.getUserInfo(account) returns information for Total Deposit Value
(totalDeposit), Total Borrowed Value (totalBorrow), and Maximum Borrowable
Value (maxBorrowable), all of which will be displayed on the page in Figure 14.1 for the
connected account.

• assetPool.isAccountHealthy(account) returns the healthiness (assigned to the
isAccountHealthy Boolean variable) of the account. The true value means that the
account is healthy, while false means it is unhealthy.

In all the pages for the crypto loan system, we have defined a function (whose name prefix is loadXXX)
to load or reload all the information that has to be shown on the page. This function is called by the
useEffect function of the React page component. For the ListAssetPools.js page, we
have defined a function called loadPoolsAndUserInfo for (re)loading the asset pool and user
information. Here is the implementation of the loadPoolsAndUserInfo function:

const loadPoolsAndUserInfo = useCallback(async () => {
 setLoading(true);
 try {
 const signer = library.getSigner();
 const assetPool = new ethers.Contract(
 AssetPoolAddress.address, AssetPoolABI.abi, signer);
 await getUserInfo(assetPool); // Load user summary
 await getPools(assetPool); // Load asset pools
 } catch (error) {
 toast.error("Failed to load asset pool!");
 }
 setLoading(false);
}, [getPools, getUserInfo, library]);

Implementing the Crypto Loan Frontend with Web3430

The preceding code initialized the assetPool instance for the getUserInfo function to load the
user summary information. This information will be displayed in Section 1 of the page, as shown in
Figure 14.1. The code also calls the getPools function, which loads the information for all asset pools
in the crypto loan application. Next, we will discuss how to retrieve the information for all asset pools.

Retrieving the information for all asset pools

The information for each asset pool in crypto loans consists of two parts. The first part is the generic
information on the asset pool, an example of which is the interest rates for the given token asset. This
information can be retrieved by calling the getPool function of the AssetPool smart contract.

The second part is the user-specific information, an example of which is the compounded amount of
tokens the user has borrowed from the asset pool. This information can be retrieved by calling the
getUserPoolData function of the AssetPool smart contract.

Based on what we’ve just discussed, let’s implement the getPools function in ListAssetPools.
js to get both the generic and the user-specific information for each asset pool, as follows:

const getPools = useCallback(async (assetPool) => {
 try {
 const _pools = [];
 for (const tokenAddress of [WETHAddress.address,
 FooAddress.address, BarAddress.address]) {
 const poolInfo =
 await assetPool.getPool(tokenAddress);
 const userPoolData = await assetPool
 .getUserPoolData(account, tokenAddress);
 _pools.push({
 assetToken: await getTokenInfo(tokenAddress),
 borrowInterest: poolInfo.borrowRate,
 lendingInterest: poolInfo.lendingRate,
 totalLiquidity: poolInfo.totalLiquidity,
 availableLiquidity: poolInfo.availableLiquidity,
 liquidityBalance:
 userPoolData.compoundedLiquidityBalance,
 BorrowBalance:
 userPoolData.compoundedBorrowBalance,
 status: poolInfo.status,
 })
 }
 setPools(_pools);
 } catch (error) {
 toast.error("Cannot fetch pool information!");

Implementing the account summary and asset pool listing page 431

 }
}, [account]);

The preceding code builds a _pool array variable for the asset pool information by iterating the asset
pools for the three tokens: WETH, FOO, and BAR. In each iteration, the code calls the getPool
function from the AssetPool smart contract to store the generic pool information in the poolInfo
variable. The code also calls getUserPoolData from the smart contract to store the user-specific
information in the userPoolData variable. At the end of each iteration, the code adds an object
with the following fields to the _pool array:

• assetToken: The asset token object, which contains the name, symbol, address, and number
of decimal precision points of the token

• borrowInterest: The borrowing APY of the asset pool

• lendingInterest: The lending APY of the asset pool

• totalLiquidity: The total liquidity of the asset pool

• availableLiquidity: The available liquidity of the asset pool

• liquidityBalance: The lent balance of the user for the asset pool

• BorrowBalance: The borrowed balance of the user for the asset pool

• status: The asset pool status

The UI code will use the status field to control the button enablement for the four operations:
Deposit, Withdraw, Borrow, and Repay. Based on the discussion in Chapter 12, Implementing an
Asset Pool Smart Contract for a Crypto Loan the Deposit and Borrow buttons will be disabled when
the pool status is NOT active, while the Withdraw and Repay buttons will be disabled when the pool
status is inactive (user can still withdraw and repay when the status is closed).

Note
You can refer to the Pool status section of Chapter 12, Implementing an Asset Pool Smart Contract
for a Crypto Loan to learn about the three statuses of asset pools.

Once all the information for the asset pools is successfully retrieved, the code of getPools will store
the information in the pools React state variable by calling the setPools function. Similarly, the
user summary information is stored in the userInfo React state variable. After it has been retrieved,
all of this information will be displayed on the ListAssetPools.js page.

For the full source code of ListAssetPools.js, please refer to https://github.com/
PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter14-
end/defi-apps/src/frontend/features/Loan/ListAssetPools.js.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter14-end/defi-apps/src/frontend/features/Loan/ListAssetPools.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter14-end/defi-apps/src/frontend/features/Loan/ListAssetPools.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter14-end/defi-apps/src/frontend/features/Loan/ListAssetPools.js

Implementing the Crypto Loan Frontend with Web3432

In the next section, we will discuss how to implement the pages for deposit, withdrawal, borrowing,
and repayment.

Implementing the pages for deposit, withdrawal,
borrowing, and repayment
Deposit, withdrawal, borrowing, and repayment are the four main features of the crypto loan system.
Our implementation of the frontend for these features involves having an individual page for each of
the features. All of the pages for these features have three major functions that need to be implemented:
loading information, verification, and taking action. After taking action, the deposit is complete), the
UI code of the page should take the user back to the Loading Information stage and perform Verification
on the loaded information.

We will use the following screenshot of the deposit page (Figure 14.2) to explain these three functions.

Figure 14.2 – The three major steps for the page to deposit tokens

Figure 14.2 shows the layout of the pages for the three features we will implement in this section. The
page is structured as an interactive form with three parts:

• The title part: This details what the page does (for example, Make Deposit), and contains a
back arrow button to allow the user to go back to the asset pool listing page.

• The input part: This allows the user to enter an amount of the token to be deposited, withdrawn,
borrowed, or repaid. Here, the page shows the maximum amount the user can deposit, withdraw,
borrow, or repay. The Loading Information function (the loadXXX function we mentioned in
the last section) should calculate the amount for Verification. For the input part, the Loading
Information function should also tell the user which token they should provide or will receive
by taking the action (for example, the deposit page shown in Figure 14.2 tells the user to deposit
FOO tokens).

Implementing the pages for deposit, withdrawal, borrowing, and repayment 433

• The action part: This part provides one or two buttons for the user to take action. The Verification
function will control the enablement of the buttons to prevent the user from taking invalid
actions. For example, if the balance for deposit is insufficient, the verification function will
enable the APPROVE button to approve a higher transferring amount while disabling the
DEPOSIT button to prevent insufficient balance error. The buttons in the action part will call
the function for Taking Action in their onClick event handlers.

As we have been through the UI code for creating labels, text boxes, and buttons in previous chapters,
we will not discuss the code for building the UI of the interactive forms with the preceding three parts.
We will instead focus on how to implement the three functions, Loading Information, Verification,
and Taking Action, for each page in this section.

Next, let’s dive into the implementation of the deposit page.

Implementing the deposit page

The deposit page (src/frontend/features/Loan/Deposit.js) allows a user to deposit
a token from their wallet. Once the user provides the amount of the token to be deposited, the page
will check whether the amount exceeds the balance of the token in the user’s wallet. If the deposit
amount exceeds the user’s balance, the deposit action will fail because of token transfer failure. So,
the UI code of the page should prevent the deposit from proceeding if the input amount exceeds the
balance. After the verification is done, the AssetPool smart contract will transfer the token amount
from the user’s wallet address to the smart contract. For the deposit page, the JavaScript code should
load the following three types of information:

• Information about the asset token, including the address, name, symbol, and the number of
decimal places of the token

• The balance of the token in the user’s wallet

• The amount of the token that is allowed to be transferred from the wallet to the AssetPool
smart contract

As we saw previously, the asset token information is the prerequisite for the other two types of
information. When accessing the deposit page (along with the pages for withdrawal, borrowing, and
repayment), the user should provide the token address in the URL parameter so that the page can
load the token information.

Note
You can also use React Redux (https://react-redux.js.org) to keep the token
information in the state store, but it requires the context in the state store before accessing the
page. If you want to access the page without relying on the context or browser cookies, using
URL parameters could be an ideal option.

https://react-redux.js.org

Implementing the Crypto Loan Frontend with Web3434

Based on our discussion, let’s implement the useEffect function for the deposit page (located
at src/frontend/features/Loan/Deposit.js):

useEffect(() => {
 const tokenAddress = searchParam.get('token');
 if (active && tokenAddress) {
 loadDepositInfo(tokenAddress);
 }
}, [active, loadDepositInfo, searchParam]);

The preceding code calls the loadDepositInfo function once the wallet is connected and the
tokenAddress value is fetched from the token search parameter in the URL. The loadDepositInfo
function loads the three types of information we mentioned previously. Here is the code of the
loadDepositInfo function:

const loadDepositInfo = useCallback(async tokenAddress => {
 setLoading(true);
 try {
 const tokenObject = await getTokenInfo(tokenAddress);
 setToken(tokenObject);
 await getBalance(tokenObject);
 await checkAllowance(tokenObject);
 } catch (error) {
 toast.error("Failed to load information for deposit!");
 }
 setLoading(false);
}, [getBalance, checkAllowance]);

The preceding code calls setLoading(true) to set the loading state variable to true; when the value
is true, the buttons for taking action show the progress icon with the CircularProgress component
of Material UI. This tells the user that an action is in progress. Right before loadDepositInfo
returns, the loading variable will be set to false. It will replace the progress icon with some text
on the buttons to tell the user that the action has been completed.

In the try ... catch section of the loadDepositInfo function, the code calls
getTokenInfo(tokenAddress) to get the token name, the symbol, and the number of decimal
places along with the token address. Then the code fetches the balance of the token in the user’s wallet by
calling getBalance and gets the allowance of transferring token to the AssetPool smart contract
by calling the checkAllowance function. Since we already went through the code of how to get
the token balance and token transfer allowance in Chapter 6, Implementing a Liquidity Management
Frontend with Web3 we will not discuss the code of these two functions here.

Implementing the pages for deposit, withdrawal, borrowing, and repayment 435

Before the frontend code allows the user to make the deposit, the code should verify the input amount.
Here is the UI code to show the APPROVE button in the UI snapshot in Figure 14.2:

<Button disabled={amount <= 0 || allow >= amount}
 ... onClick={handleApprove}>
 {loading ?
 <CircularProgress sx={{ color: 'white' }} /> :
 "Approve"}
</Button>

In the preceding code, the amount variable is the user input amount of the token to be deposited.
The allow variable is the transfer allowance amount. The APPROVE button is disabled when the
amount is not a positive number or the allowance amount is not less than the deposit amount, which
means the token allowance amount is insufficient for the deposit transaction.

Note
The code of the handleApprove function (the onClick event handler of the APPROVE
button) was discussed in Chapter 6, Implementing a Liquidity Management Frontend with Web3.

As shown in Figure 14.2, users can click the DEPOSIT button to deposit the tokens. Here is the code
to implement the DEPOSIT button:

<Button disabled={
 amount <= 0 || allow < amount || amount > balance} ...
 onClick={handleDeposit}>
 {loading ?
 <CircularProgress sx={{ color: 'white' }} /> :
 "Deposit"}
</Button>

The preceding highlighted code shows that the Deposit button will be disabled in any of the following cases:

• The input deposit amount is not a positive number

• The allowance amount is less than the input amount

• The input amount exceeds the token balance of the connected wallet

Implementing the Crypto Loan Frontend with Web3436

By clicking the Deposit button, the frontend code will run the handleDeposit function. This
function is implemented with the following code:

const handleDeposit = async () => {
 setLoading(true);
 try {
 const assetPool = new ethers.Contract(
 AssetPoolAddress.address, AssetPoolABI.abi,
 library.getSigner());
 const tx = await assetPool.deposit(token.address,
 ethers.utils.parseUnits(toString(amount),
 token.decimals));
 await tx.wait();
 toast.info(`Deposit token successfully! Transaction hash: ${tx.
hash}`);
 setAmount(0);
 await checkAllowance(token);
 await getBalance(token);
 } catch (error) {
 toast.error("Cannot deposit token!");
 }
 setLoading(false);
}

The preceding code calls the deposit function of the AssetPool smart contract to deposit the
user-specified amount of tokens to the asset pool. After the deposit transaction is completed, the
code reloads the information on the token allowance and the balance of tokens in the user’s wallet.

We will not discuss all the source code of the deposit page. Please refer to https://github.com/
PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter14-
end/defi-apps/src/frontend/features/Loan/Deposit.js for the full source code
of this page.

Next, let’s discuss how to implement the withdrawal page.

Implementing the withdrawal page

In this section, we will implement the withdrawal page (src/frontend/features/Loan/
Withdraw.js) as shown in Figure 14.3. It allows users to withdraw their deposited tokens from
the asset pool.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter14-end/defi-apps/src/frontend/features/Loan/Deposit.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter14-end/defi-apps/src/frontend/features/Loan/Deposit.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter14-end/defi-apps/src/frontend/features/Loan/Deposit.js

Implementing the pages for deposit, withdrawal, borrowing, and repayment 437

Figure 14.3 – A snapshot of the token withdrawal page

Similar to the deposit page we have implemented already, the withdrawal page also has UI components
contained in three parts: the title part, the input part, and the action part. However, there are two main
differences in the code for loading information on the withdrawal page compared to the deposit page.

The first difference is that the withdrawal operation doesn’t need to check the allowance because the
AssetPool smart contract doesn’t transfer tokens from the connected wallet when withdrawing.

The second difference is that the code for the withdrawal page should determine the withdrawal limit
for the user. The withdrawal limit depends on the following two factors:

• The compounded lending balance of the connected account

• The available liquidity balance of the token in the asset pool

The lowest value of these two factors is the withdrawable balance for the connected account.

Based on what we’ve just discussed, let’s implement the getWithdrawableBalance function to
get the withdrawable balance as displayed in Figure 14.3:

const getWithdrawableBalance =
 useCallback(async tokenObject => {
 try {
 const assetPool = new ethers.Contract(
 AssetPoolAddress.address, AssetPoolABI.abi,
 library.getSigner());
 let _balance = await assetPool
 .getUserCompoundedLiquidityBalance(account,
 tokenObject.address);
 _balance = Number(ethers.utils.formatUnits(_balance,
 tokenObject.decimals));
 const poolInfo = await assetPool

Implementing the Crypto Loan Frontend with Web3438

 .getPool(tokenObject.address);
 let _available = Number(ethers.utils.formatUnits(
 poolInfo.availableLiquidity, tokenObject.decimals));
 setDepositBalance(Math.min(_available, _balance));
 } catch (error) {
 toast.error("Cannot get deposit balance!");
 }
}, [account, library]);

The preceding code firstly calls the getUserCompoundedLiquidityBalance function of
AssetPool to get the compounded lending balance of the connected account, and assigns the value
to _balance. Then it calls the getPool function and assigns the returned value to poolInfo.
The _available variable, which is the available liquidity balance of the asset pool, is assigned via
the availableLiquidity property of poolInfo. Lastly, the code calculates the lowest value
of _balance and _available, then calls the setDepositBalance function to store the state
variable for the withdrawable balance.

Similar to the deposit page, we will need a dedicated loadXXX function for loading information for
the withdrawal page. Let’s implement the loadWithdrawInfo function:

const loadWithdrawInfo = useCallback(
 async tokenAddress => {
 setLoading(true);
 try {
 const tokenObject = await getTokenInfo(tokenAddress);
 setToken(tokenObject);
 await getWithdrawableBalance(tokenObject);
 } catch (error) {
 toast.error("Failed to load information for withdrawal!");
 }
 setLoading(false);
}, [getWithdrawableBalance]);

The preceding code only calls the getWithdrawableBalance function after retrieving
tokenObject. It doesn’t require any check of the allowance for withdrawal transactions.

The Withdraw button is disabled when the given amount exceeds the withdrawable balance and when
the amount is not a positive number. Here is the code for defining the button:

<Button disabled={amount <= 0 || amount > depositBalance}
 ... onClick={handleWithdraw}>
 {loading ?
 <CircularProgress sx={{ color: 'white' }} /> :
 "Withdraw"}
</Button>

Implementing the pages for deposit, withdrawal, borrowing, and repayment 439

When the Withdraw button is clicked, the handleWithdraw event handler will be called. This
function will interact with the AssetPool smart contract to perform token withdrawal. Here is the
implementation of the handleWithdraw function:

const handleWithdraw = async () => {
 try {
 const assetPool = new ethers.Contract(
 AssetPoolAddress.address, AssetPoolABI.abi,
 library.getSigner());
 let tx;
 if (depositBalance <= amount) {
 // Withdraw all shares
 const shareBalance = await getShareBalance(
 assetPool, token.address);
 tx = await assetPool.withdrawByShare(
 token.address, shareBalance);
 } else {
 tx = await assetPool.withdrawByAmount(token.address,
 ethers.utils.parseUnits(toString(amount),
 token.decimals));
 }
 await tx.wait();
 toast.info(`Withdraw token successfully! Transaction hash: ${tx.
hash}`);
 setAmount(0);
 await getWithdrawableBalance(token);
 } catch (error) {
 toast.error("Failed to withdraw!");
 }
};

The preceding code compares the input amount to withdraw (amount) with the withdrawable
balance (depositBalance). If amount is equal to or greater than depositBalance, it will call
withdrawByShare to withdraw the requested tokens by redeeming the user-owned asset pool shares.
The user can hit the MAX button shown in Figure 14.3 and then click the Withdraw button to redeem
and withdraw all shares. If amount is less than depositBalance, the withdrawByAmount
function will be called to withdraw the specified amount of token.

For the first case, when amount is equal to or greater than depositBalance, the code calls the
getShareBalance function to get the balance of asset pool share tokens. Here is the implementation
of the getShareBalance function:

const getShareBalance = async (assetPool, tokenAddress)
 => {

Implementing the Crypto Loan Frontend with Web3440

 try {
 const pool = await assetPool.pools(tokenAddress);
 const shareContract = new ethers.Contract(
 pool.shareToken, ERC20ABI, library.getSigner());
 return await shareContract.balanceOf(account);
 } catch (error) {
 toast.error("Cannot get the balance of share tokens");
 }
 return 0;
};

The preceding code gets the pool struct for the given token address from the AssetPool smart
contract. The struct contains the address of the asset pool share in its shareToken property. Once we
have got the address, we can get the user balance of the asset pool share by using a generic ERC20 ABI.

For the full source code of the withdrawal page, please refer to https://github.com/
PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter14-
end/defi-apps/src/frontend/features/Loan/Withdraw.js.

Next, we will discuss how to implement the borrowing page for the crypto loan system.

Implementing the borrowing page

The borrowing page (src/frontend/features/Loan/Borrow.js) allows users to borrow
tokens from the crypto loan system. It has a dedicated quota for every user. Figure 14.4 shows a
screenshot of the borrowing page.

Figure 14.4 – The token-borrowing page

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter14-end/defi-apps/src/frontend/features/Loan/Withdraw.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter14-end/defi-apps/src/frontend/features/Loan/Withdraw.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter14-end/defi-apps/src/frontend/features/Loan/Withdraw.js

Implementing the pages for deposit, withdrawal, borrowing, and repayment 441

When a user connects their wallet on the borrowing page, the user can provide the amount of tokens
they want to borrow. If the amount does not exceed the user’s borrowing quota, the page allows the
user to borrow the specified amount of tokens upon clicking the Borrow button. Once the Borrow
button is clicked, the borrow function of the AssetPool smart contract will be called to complete
the borrowing operation.

Similar to what we discussed regarding the withdrawal page, the borrowing page also doesn’t need to
check the token transfer allowance from the user’s wallet to the AssetPool smart contract. But we
need to implement the code to calculate the Borrowable Quota value that’s shown on the page when
the page is loading. The user’s borrowable quota for a token is calculated with the following formula:

 BorrowableQuota token = Min (AvailableLiquidity token , Quota token)

Here, AvailableLiquidity token is the available liquidity amount of the asset pool, and Quota token is the
amount of tokens calculated via the remaining collateral value divided by the price of the token. This
is as follows:

 Quota token =
 Value total_collateral − Value borrowed ____________________ Price token

Here, the value of the remaining collateral is calculated by taking the total collateral value of this
user (Value total_collateral) minus the borrowed asset value for this user (Value borrowed). Based on this, let’s
implement the getBorrowableQuota function to calculate the Borrowable Quota value displayed
in Figure 14.4:

const getBorrowableQuota = useCallback(
 async tokenObject => {
 try {
 const assetPool = new ethers.Contract(
 AssetPoolAddress.address, AssetPoolABI.abi,
 library.getSigner());
 const userInfo = await assetPool.getUserInfo(account);
 const tokenPrice = await assetPool
 .getPriceInWETH(tokenObject.address);
 let _quota = Number(userInfo.totalCollateralValue
 .sub(userInfo.totalBorrowedValue).div(tokenPrice));
 const poolInfo = await assetPool
 .getPool(tokenObject.address);
 let _available = Number(ethers.utils.formatUnits(
 poolInfo.availableLiquidity, tokenObject.decimals));
 setQuota(Math.min(_available, _quota));
 } catch (error) {
 toast.error("Cannot get quota for current user!");
 }
}, [account, library]);

Implementing the Crypto Loan Frontend with Web3442

The preceding code first calls the getUserInfo function of the AssetPool smart contract. The
returned information contains the total collateral value of this user (Value total_collateral) and the borrowed
asset value of this user (Value borrowed). The code also calls the getPriceInWETH function to access
the price oracle and fetch the token price in the unit of WETH. Then it uses the formula we mentioned
earlier to calculate Quota token .

Please keep in mind that the values and prices returned from the AssetPool smart contract are of
the BigNumber type from ethers.js (https://docs.ethers.org/v5/api/utils/
bignumber/). So, we use the sub function of BigNumber for subtraction and the div function
for division in calculating Quota token .

In the implementation of the getBorrowableQuota function, the code calls the getPool
function to get the Pool struct from the AssetPool smart contract, then gets the available liquidity
amount for the token by accessing the availableLiquidity parameter of the Pool struct.
Finally, the borrowable quota (BorrowableQuota token) is calculated in the code with the formula we
discussed previously.

As part of the verification process, before the user performs the borrowing action, we should disable
the Borrow button when the input borrowing amount is not a positive number or the amount is greater
than the borrowable quota. For the UI code of the Borrow button, please check the code at https://
github.com/PacktPublishing/Building-Full-stack-DeFi-Application/
blob/chapter14-end/defi-apps/src/frontend/features/Loan/Borrow.
js#L107 for reference.

In order to borrow by interacting with the AssetPool smart contract, the code needs to convert
the borrowing amount to wei, and pass the token address and the borrowing amount. Here is the
implementation of the handleBorrow function called when the Borrow button is clicked:

const handleBorrow = async () => {
 setLoading(true);
 try {
 const assetPool = new ethers.Contract(
 AssetPoolAddress.address, AssetPoolABI.abi,
 library.getSigner());
 const tx = await assetPool.borrow(token.address,
 ethers.utils.parseUnits(toString(amount),
 token.decimals));
 await tx.wait();
 toast.info(`Token borrowed successfully! Transaction hash: ${tx.
hash}`);
 setAmount(0);
 await getBorrowableQuota(token);
 } catch (error) {

https://docs.ethers.org/v5/api/utils/bignumber/
https://docs.ethers.org/v5/api/utils/bignumber/
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter14-end/defi-apps/src/frontend/features/Loan/Borrow.js#L107
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter14-end/defi-apps/src/frontend/features/Loan/Borrow.js#L107
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter14-end/defi-apps/src/frontend/features/Loan/Borrow.js#L107
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter14-end/defi-apps/src/frontend/features/Loan/Borrow.js#L107

Implementing the pages for deposit, withdrawal, borrowing, and repayment 443

 toast.error("Cannot borrow token!");
 }
 setLoading(false);
}

After the borrowing transaction is completed, the preceding code resets the input amount to zero and
reloads the borrowable quota by calling the getBorrowableQuota function.

Next, we will discuss the implementation of the final page we will implement in this chapter: the
token repayment page.

Implementing the repayment page

Users will repay their borrowed tokens via the repayment page (src/frontend/features/
Loan/Repay.js). With this page, the user can repay either a portion of the borrowed tokens or
pay off their entire loan. The following figure shows a screenshot of the repayment page.

Figure 14.5 – A screenshot of the token repayment page

When showing the page, the frontend code should check the allowance of the token to be transferred
from the user’s account to the AssetPool smart contract. Meanwhile, the code should calculate the
Maximum Repayment Amount value displayed in the preceding screenshot. Here, the maximum
repayment amount is NOT the amount of the borrowed token to be paid off. The Maximum Repayment
Amount value is the smaller one of the two following values: the compounded borrowed token amount,
and the balance of the token in the user’s wallet.

Based on these preceding points, let’s implement the getMaxRepayAmount function to calculate
the maximum repayment amount:

const getMaxRepayAmount = useCallback(
 async tokenObject => {
 try {
 const tokenContract = new ethers.Contract(

Implementing the Crypto Loan Frontend with Web3444

 tokenObject.address, ERC20ABI, library.getSigner());
 let _balance = await tokenContract.balanceOf(account);
 _balance = Number(ethers.utils.formatUnits(_balance,
 tokenObject.decimals));
 const assetPool = new ethers.Contract(
 AssetPoolAddress.address, AssetPoolABI.abi,
 library.getSigner());
 const userPoolData = await assetPool.getUserPoolData(
 account, tokenObject.address);
 const _compoundBorrow = Number(ethers.utils
 .formatUnits(userPoolData.compoundedBorrowBalance));
 setPayoffAmount(_compoundBorrow);
 setMaxRepayAmount(Math.min(_compoundBorrow, _balance));
 } catch (error) {
 toast.error("Cannot get maximum repay amount!");
 }
}, [account, library]);

The preceding code gets the user’s balance (_balance) and the compounded borrowed balance of
the token (_compoundBorrow) to calculate the maximum repayment amount for the token. By
calling the setMaxRepayAmount function, the code stores the amount in the state variable to be
displayed on the page.

Meanwhile, the code of the getMaxRepayAmount function also calls the setPayoffAmount
function to store the payoff amount. When the user-specified repayment amount equals or is greater
than the payoff amount (payoffAmount in the code), all of the borrowed shares will be repaid by
the user, thus paying off the loan. Here is the code of the handleRepay function that runs when
the user clicks the Repay button:

const handleRepay = async () => {
 setLoading(true);
 try {
 const assetPool = new ethers.Contract(
 AssetPoolAddress.address, AssetPoolABI.abi,
 library.getSigner());
 let tx;
 if (payoffAmount <= amount) {
 // Pay off the loan
 const borrowedSharesAmount = await
 getBorrowedShareBalance(assetPool, token.address);
 tx = await assetPool.repayByShare(token.address,
 borrowedSharesAmount);

Implementing the pages for deposit, withdrawal, borrowing, and repayment 445

 } else {
 tx = await assetPool.repayByAmount(token.address,
 ethers.utils.parseUnits(toString(amount),
 token.decimals));
 }
 await tx.wait();
 toast.info(`Repay token successfully! Transaction hash: ${tx.
hash}`);
 setAmount(0);
 await getMaxRepayAmount(token);
 await checkAllowance(token);
 } catch (error) {
 toast.error("Cannot repay token!")
 }
 setLoading(false);
}

The preceding code calls the repayByShare function to pay off the loan in full when the specified
repayment amount is not less than payoffAmount. If the user doesn’t want to pay off the loan, the
repayByAmount function will be called.

Now we have completed the main features we need to implement in the repayment page. We already
discussed the other functions, such as checking the allowance, in previous sections. You can also refer
to the full source code of the repayment page at https://github.com/PacktPublishing/
Building-Full-stack-DeFi-Application/blob/chapter14-end/defi-apps/
src/frontend/features/Loan/Repay.js.

Now, since we have built all of the crypto loan frontend pages, let’s try to run them! Before running
the pages with the npm start command, don’t forget to perform the following steps:

1. Start a local EVM with the npx hardhat node command.

2. Deploy the smart contracts and initialize the crypto loan asset pools with the npm run
deploy localhost command.

3. Start the price oracle with the npm run price-oracle-update localhost command,
and wait for one minute for the cumulative price data to be generated for a full moving window.

We have now completed our work on implementing a full stack application for crypto loans. In the
next section, we will discuss the best practices for decentralized crypto loan systems.

https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter14-end/defi-apps/src/frontend/features/Loan/Repay.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter14-end/defi-apps/src/frontend/features/Loan/Repay.js
https://github.com/PacktPublishing/Building-Full-stack-DeFi-Application/blob/chapter14-end/defi-apps/src/frontend/features/Loan/Repay.js

Implementing the Crypto Loan Frontend with Web3446

Best practices for decentralized crypto loan systems
Unlike other maintenance-free DeFi applications (e.g., DEX or staking protocols), running a crypto
loan system requires some effort and cost to maintain. For example, the project owner may need
somebody to liquidate assets when some users’ accounts becomes unhealthy. Also, we need to monitor
the asset pools to ensure that users have access to sufficient tokens to borrow or withdraw. In this
section, we will discuss the best practices to keep a decentralized crypto loan system in good shape.

Select blue chip assets

Blue chip assets in the context of crypto loans are cryptocurrencies that have stable prices, big market
capitalizations, and good long-term reputations. These assets maximize the security of investments
and help stabilize the values of the assets held by the crypto loan system. Therefore, blue chip assets
are the best choice for asset pools.

The stability of blue chip assets means that liquidation is less likely to happen due to price fluctuation.
Because the market capitalizations are large, it is extremely hard for an organization or a hacker to
manipulate the market price.

The long-term reputation of a cryptocurrency is also a factor in whether or not to include it as an
asset in a crypto loan system. Usually, a newly launched token will fluctuate heavily in value for the
first few months. So, we recommend selecting tokens that have completed the initial booming stage
for use in crypto loans.

Note
If you are unsure about which cryptocurrencies could be selected for your crypto loan system, we
recommend picking your crypto loan assets from the top 100 cryptocurrencies on https://
coinmarketcap.com.

Besides the characteristics of the assets, we also need to keep monitoring our asset pools to keep a
crypto loan system in a solid financial position. Next, we will discuss how to keep an ideal liquidity
utilization rate for each asset pools.

Liquidity utilization rate maintenance

When talking about the borrowing interest rate model in Chapter 11, An Introduction to Crypto Loans
we introduced a concept related to asset pools called the optimal utilization rate. If the current liquidity
utilization rate (i.e., the rate between the borrowed amount and total liquidity amount) exceeds the
optimal utilization rate, the borrowing interest rate will rise significantly with the utilization rate. The
high interest rate could be an incentive for the borrowers of this asset as, when the liquidity is close
to being drained, borrowers will be incentivized to repay the loan as soon as possible to avoid paying
high interest rates on their loans.

https://coinmarketcap.com
https://coinmarketcap.com

Best practices for decentralized crypto loan systems 447

A high utilization rate not only costs more for borrowers; there is also a risk to users who deposit
tokens in the asset pool, because a high utilization rate means there is not much liquidity left for
users to withdraw or borrow. As the result, high utilization rates may interrupt the withdrawing and
borrowing functionalities because of insufficient funds in the asset pool.

Based on the preceding points, we recommend the project owner keeps the utilization rates for all
the asset pools below the optimal utilization rate. The utilization rate can be retrieved by calling the
getPool function of the AssetPool smart contract. You can calculate the utilization rate by
dividing the value of totalBorrows by the value of totalLiquidity from the returned struct.
If the utilization rate for any asset pool exceeds the optimal utilization rate (e.g., 90%, which is the
value in the examples we demonstrated in this book), the project owner may need to supply more
cryptocurrencies to the asset pool via deposits.

Next, we will talk about how to monitor and liquidate unhealthy accounts.

Monitoring and liquidating unhealthy accounts

Besides monitoring asset pools’ utilization rates, the project owner of a decentralized crypto loan
system should also monitor account activities regarding borrowing and withdrawing assets. This is
because when these two types of events occur, it can reduce the borrowing quota for the account and
even make the account unhealthy due to fluctuating prices.

The source code of src/backend/contracts/AssetPool.sol emits the Borrow or
Withdraw event for a completed borrowing or withdrawing transaction, respectively. It allows us
to listen to these on-chain events and perform the necessary checks when these events happen. If an
event happens, we can record the transaction initiator’s address on a list and can run another daemon
process to check the healthiness of the addresses in the list periodically.

Note
You can refer to https://docs.ethers.org/v4/api-contract.html#event-
emitter to learn how to monitor on-chain events with ethers.js.

Once unhealthy accounts are detected, we could run a script to call the liquidate function of
the AssetPool smart contract to liquidate the assets of the account. Or, we could provide a list of
unhealthy accounts to the public so that community members could liquidate the assets to improve
the healthiness of the crypto loan system.

Next, we will discuss the use cases for the CLOSED state of asset pools.

https://docs.ethers.org/v4/api-contract.html#event-emitter
https://docs.ethers.org/v4/api-contract.html#event-emitter

Implementing the Crypto Loan Frontend with Web3448

Closed asset pools

When implementing the AssetPool smart contract in Chapter 12, Implementing an Asset Pool
Smart Contract for a Crypto Loan we introduced the CLOSED state for asset pools. This state is used
for clearing out the assets for asset pool maintenance purpose.

For example, the CLOSED state can be used when a token needs to be upgraded to a new smart
contract. The CLOSED state allows people to repay and withdraw their funds from the asset pool for
the old version of the token smart contract, and the system will open a new asset pool for the new
smart contract of the token.

The CLOSED state can also be used when the project wants to remove the asset pool for a token from
the list of supported tokens.

Next, we will discuss situations where we need to disable the use of assets as collateral by a user.

Disabling the use of assets as collateral

In the AssetPool smart contract, there is a disableAsCollateral field in the UserPoolData
struct. When the value is set to true, the user cannot use the deposited tokens as collateral for
borrowing tokens. This can be used when the price of a token is in a downtrend in the market, and the
user deposits a huge amount of the token in the asset pool. In this context, the project owner may want
to set disableAsCollateral to true for this user and this token to prevent potential liquidation.

Another use case for the disableAsCollateral flag is for liquidity providers of the asset pool.
For some users who deposit tokens to an asset pool, the purpose of depositing is only to gain interest
on the tokens provided, not specifically for lending. For example, some people only have a savings
account in a bank, and don’t have a loan account. The disableAsCollateral flag enables the
crypto loan system to open the deposit and withdrawal service only to a specific group of users.

The project owner can call the setUserUseTokenAsCollateral function of the AssetPool
smart contract to set or unset the flag.

In this section, we learned the best practices for running a decentralized crypto loan system. Because
the healthiness of the system depends on users and the market prices of the collateral, the project
owner cannot leave the crypto loan system running without maintenance. The instructions in this
section can help you maintain the system in good shape and provide the best service for your users.

Summary 449

Summary
In this chapter, we focused on the development of the frontend to complete our full stack application
for a decentralized crypto loan system. First, we built the landing page that shows the user account
information and a list of asset pools as the entry point to access the crypto loan operations. Then, we
built the four operational pages for users to interact with crypto loan smart contracts for depositing,
withdrawing, borrowing, and repayment. Finally, we discussed the best practices for maintaining a
decentralized crypto loan system in operation.

We now have completed the implementation of the full stack application for our crypto loan system.
Congratulations on following the demonstrations and code examples in this book on building DeFi
applications! I hope you have enjoyed learning about the concepts involved, and now feel ready to
build DeFi applications after reading, writing, and running the code in this book.

Because DeFi is a rapidly growing technology, there are various types of DeFi applications and
disruptive use cases that have come out in recent years. If you are interested in continuing to learn
about DeFi, we highly recommend you follow some famous projects in this area, read the whitepapers,
and do some research on the open source code. You will be fascinated by the variety of use cases that
decentralized applications can bring to the world.

Index

A
Aave 349

URL 349
Aave protocol version 2

overview 349-353
Aave protocol version 3

features 354, 355
account summary and asset pool listing page

implementing 426, 427
UI components, implementing in

ListAssetPools.js 427, 428
user summary information, retrieving

for asset pools 430, 431
user summary information, retrieving

for crypto loan system 428-430
addLiquidityETH

implementing 238-240
AMM on-chain components

burn 112
create Pair 112
mint 112
swap 112

AMMRouter
allowance, setting to transfer tokens 154, 155
as intermediary between native token and

TokenPair smart contracts 233, 234

deploying, with script 152, 153
improving, to support native token 236-238

AMM router smart contracts
code, for liquidity removal 148
implementing 144
liquidity provisioning 145-147
swapping 148-152

Ankr
reference link 19

annual percentage rate (APR) 11
annual percentage yield (APY) 11
application binary interface (ABI) 33, 169
asset pools

code, implementing to manage 358
configuring, for crypto loans 387, 388

asset pool share 345, 346
deployer 345
deployer, implementing 348, 349
implementing 345
smart contract, implementing 346-348

asset pool share deployer smart contract 333
asset pool share smart contract 333
asset pool share tokens 365
asset pool smart contract 332, 333
Automated Market Maker (AMM) 12, 91-93

architecture 110-112
liquidity, adding 112-114

Index452

liquidity, removing 115
reference link 103
swapping 116-118

Automated Market Maker
(AMM), components

AMM router 111
Pair Factory 111
Token Factory 111

B
backtracking 209
BEP-20 8
Bid-Ask Spread 95
Binance Smart Chain 4, 8
blockchain

data, reading from 74-82
transactions, making on 82-88

blockchain network 20
borrow function

testing 390, 391
borrowing page

implementing 432, 440-443
borrowing process 377-379
BSC connector

reference link 67
bytecode 5

C
Centralized Exchanges (CEXs) 12, 92
centralized finance (CeFi) 4
Chainlink

reference link 371, 402
ChainList

URL 69

chai package 33
installing 51
URL 49

Cloudflare
reference link 19

code
implementing, to manage asset pools 358

collateral 14
collateral rate 339-341
connector 65
Constant Function Market Makers

(CFMMs) 96, 97
Constant Mean Market Maker

(CMMM) 102, 103
Constant Product Market Maker

(CPMM) 97-101, 119, 161
constant sum market makers

(CSMM) 96, 101, 102
create

versus create2 137
create-react-app

DeFi project, creating with 30, 31
CreateStakingPools.js 294
crypto loan 13

characteristics, exploring 328
collateral rate 339-341
interest rate, borrowing 334-337
interest rate, lending 334-337
interest rate model 334
interest rate model, demystifying 337-339
liquidation bonus rate 341-343
pool configuration 334
pool configuration smart contract,

implementing 343-345
use cases 13

crypto loan, by example
Aave 349
Aave protocol version 2, overview 349-353

Index 453

Aave protocol version 3, features 354
exploring 349

crypto loan, characteristics
no credit checks 328
no requirement, for selling out

of crypto holdings 329
no term constraints 329
zero waiting time, for approval 328

crypto loan exploit
executing 396, 397

crypto loan smart contracts
architecture 331, 332
asset pools, configuring 387, 388
borrow function, testing 390, 391
deploying 386, 387
deposit function, testing 389
designing 330
personas 330, 331
repay function, testing 391, 392
testing 386, 388
withdraw function, testing 392

crypto loan smart contracts, architecture
asset pool share smart contract 333
asset pool smart contract 332, 333
pool configuration smart contract 333
price oracle smart contract 333, 334

crypto loans, with price manipulation
attacking, example 397-401

crypto loan system
price manipulation attacks on 395, 396
user summary information,

retrieving 428-430
cumulative prices

calculating 404, 405
on-chain price oracle, building with 402-404

D
data

reading, from blockchain 74-82
decentralization 4, 5
decentralized applications (DApps) 7, 66
decentralized autonomous

organizations (DAOs) 16
decentralized crypto loan 327
decentralized crypto loan

systems, best practices
asset pools, closing 448
blue chip assets, selecting 446
implementing 446
liquidity utilization rate

maintenance 446, 447
unhealthy accounts, monitoring

and liquidating 447
use of assets as collateral, disabling 448

decentralized exchange
(DEX) 12, 91, 92, 119, 161, 199, 227

smart contracts, refactoring to
support native tokens 232

decentralized exchanges (DEXs), types
Automated Market Maker (AMM) 92, 93
DEX Aggregator 95, 96
Order Book DEX 93-95

decentralized finance (DeFi) 3
decentralization 5

decentralized finance (DeFi),
characteristics 4

anonymous 6
decentralization 4
non-custodial 6
open 6
transparency 5
zero downtime 6, 7

Index454

DeFi application frontend development
overview 60

DeFi applications
crypto loan 13, 14
liquidity mining 14-16
overview 12
staking 14-16
yield farming 14-16

DeFi applications architecture 16, 17
blockchain network 19, 20
DeFi application frontend 17, 18
DeFi wallet 18
oracle network 19, 20
RPC endpoint 19

DeFi applications vulnerabilities 20, 21
gas overflow 22-24
random number manipulation 24
reentrancy attack 21
self-destruct operation 22

DefiLlama
reference link 10

DeFi project
creating 28
creating, with create-react-app 30, 31
Hardhat, configuring 32-34
Hardhat, installing 32
Node.js commands 29
Node.js, installing 28, 29
wallet connection, implementing 68-74

DeFi wallet connection 62
DeFi wallet connectivity, with blockchain

architecture 64-68
DeFi wallets 18, 59
denial-of-service (DoS) attack 23
deposit function

testing 389

Deposit.js 294
deposit page

implementing 432-436
deposit page for staking pools 313, 314
deposit process 373, 374
Depth-First Search (DFS) algorithm 209
DEX aggregators

benefits 95
DEX frontend

implementing, for native token 245-247
DEX smart contracts

verifying 152
DEX treasury 127
divergence loss 108
dYdX

reference link 95

E
embedded library 140, 141
ERC20 token 7, 20, 170
Ethereum Blockchain Explorer

reference link 74
Ethereum/ETH 4

token-swapping functions, implementing
to support 240-245

Ethereum network 3
Ethereum virtual machine (EVM) 8, 32, 227
ether.js package 33
Etherscan

reference link 92
Ethers.js 60

URL 60
exhausted utilization interest rate 339
exponential moving average (EMA) 407

Index 455

F
farming 265
Flash Loan Attacks

reference link 397
floating action button (FAB) 223
frontend

smart contract metadata, deploying to 62-64
frontend components for deposits

deposit page for staking pools 313, 314
implementing 312

frontend components for harvesting
harvest function, implementing 316, 317
implementing 312

frontend components for withdrawals
implementing 312
withdrawal page for staking pools 314-316

frontend of farming
code refactor 320-323
implementing 318-320

frontend pages for farming 293, 294
overview 294, 295

frontend pages for staking
overview 293-295

function
implementing, to handle wrapping

and unwrapping 258-260
fungible tokens 7

G
gas overflow 22-24
granularity 408

H
handleSwap function

refactoring 251-253
Hardhat 32

configuring 32-34
installing 32
smart contract, debugging with 53-55
URL 32

Hardhat console
staking pool smart contracts,

verifying in 287-292
used, for verifying WETH smart

contract 230-232
harvest function

implementing 316, 317
High Efficiency mode (E-mode) 355
hybrid smart contract 9, 20

reference link 9
hyperbola 97

I
impermanent loss 108-112
Infura

reference link 19
injected connector 66
inline assembly 138
integrated development

environment (IDE) 34
interest rate model 334

demystifying 337-339
Internet of Value 6
Investor.gov

reference link 94
isolation mode 354, 355

Index456

J
JavaScript Object Notation (JSON) 62

K
Keccak-256 online tool

reference link 124

L
Ledger Wallet

reference link 18
limit orders 94
linked library 140, 141
liquidation 382-385

close factor 384
collateral asset 384
maximum liquidation share amount 384

liquidation asset 383
liquidation bonus rate 341-343
liquidation pool 383
liquidity 8, 367

adding 112-114
removing 115

liquidity burning 104-107
liquidity information

liquidity share percentage,
obtaining 172-175

listing page, finishing 175, 176
pooled token amount, obtaining 172-175
retrieving 165, 166
wallet connection, checking 166, 167

liquidity management
URL routes, implementing 161-165

liquidity management pages
native token, supporting 247-251
verifying 197, 198

liquidity mining 15, 104-107
liquidity pair 93
liquidity pool (LP) 8, 92, 124, 265, 321

information, updating when reserve
amount changes 410-413

liquidity pool rewards 15
liquidity pool tokens (LP tokens) 15, 93, 120

burning 130, 131
minting 124-126
minting, for DEX owner’s reward 128-130
ownership, obtaining by connected

account 167-172
URL routes, implementing 162

liquidity provisioning
AMM router smart contracts 145-147

liquidity provisioning page
allowance, checking and increasing 186-189
frontend workflow 179-182
implementing 176
interacting, with smart contracts

for adding 189-191
overview 176-178
token amounts, providing 182-186
tokens, selecting 182-186

liquidity removal 93
code 148

liquidity removal page
allowance, increasing 195, 196
allowance, obtaining 195, 196
frontend workflow 191-193
implementing 191
LP token amount, inputting 193, 194
pooled token amounts, calculating 194, 195
removing 195, 196

liquidity shares 367
ListAssetPools.js

UI components, implementing 427, 428

Index 457

ListStakingPools.js 294
loan-to-value (LTV) 14, 328

M
maintenance process 409
manipulation-resistant price

oracle smart contract
implementing 409, 410
information, updating for current

period in price oracle 413-416
information, updating when reserve amount

changes in liquidity pool 410-413
token price, calculating in

price oracle 416-419
verifying 421, 422

market makers (MMs) 96
market orders 94
Material UI 59

reference link 73
material-ui-popup-state

reference link 73
mathematics of AMMs 96

Constant Function Market
Maker (CFMM) 96

impermanent loss 108-110
liquidity burning 104-107
liquidity mining 104-107
relation function 96

maximum borrowable value 341
Meme Token (MEME) 287
MetaMask

URL 43
Microsoft Visual Studio Code

URL 34

mocha
URL 50

moving averages
exponential moving average (EMA) 407
reference link 407
simple moving average (SMA) 407

moving window
used, for calculating prices 406-409

N
native token

AMMRouter, improving to support 236-238
DEX frontend, implementing for 245-247
supporting, in liquidity management

pages 247-251
native token, on token-swapping page

function, implementing to handle
wrapping and unwrapping 258-260

handleSwap function, refactoring 251-253
modes 253, 254
supporting 251
UI code, refactoring to check

allowance 257, 258
UI code, refactoring to obtain

balances 257, 258
UI code, refactoring to show price

and price impact 255, 256
native tokens, in router

function definitions 234-236
Node.js 59

installing 28, 29
npm 29
npx 29
nvm 29
URL 28

non-custodial 6
non-fungible tokens (NFTs) 7

Index458

O
off-chain 6
on-chain 6
on-chain price oracle

building, with cumulative prices 402-404
opcode 36

URL 36
open 6
OpenZeppelin 35

URL 35
optimal utilization rate 446
oracle 9
oracle network 19
Order Book

reference link 95
Order Book DEX 93-95

P
pages for staking pools

implementing 304-310
token selection modal component,

improving 304-306
pages for supplying rewards

implementing 304, 310-312
pair factory smart contracts

addresses, retrieving for token pairs 140, 141
implementing 135
source file 136
token pairs, creating 136-139
verifying 141-144

PancakeSwap
reference link 93

peer-to-peer (P2P) 91

period size 408
personas

types 331
Polygon 4
pool configuration smart contract 333

implementing 343-345
pool management 359-362
pool parameter calculation 362-365
pool status 358, 359

active 358
closed 358
inactive 358

Price Impact 99
price manipulation attacks

on crypto loan systems 395, 396
price oracle 395, 371, 402

information, updating for
current period 413-416

token price, calculating 416-419
price oracle maintenance 413, 420, 421
price oracle smart contract 333, 334
PriceOracleV2 smart contract

deploying 419, 420
prices

calculating, with moving window 406-409
Proof of Stake (PoS) 15
Proof of Transfer (PoX) 15
provider 65

reference link 74

Q
Q (number format)

reference link 410

Index 459

R
random number manipulation 24
React.js 31, 59
React router component 294
React-Toastify

reference link 83
records

managing, in user ledgers 365, 366
reentrancy attack 21
relation function 96
Remote Procedure Call (RPC) 3
removeLiquidityETH

implementing 238-240
repay function

testing 391, 392
repayment page

implementing 432, 443-445
repayment process 379-382
reserved tokens

withdrawing 385, 386
reserves 336
RPC endpoint 19

S
safeTransferETH function 240
safeTransfer function 240
script

used, for deploying AMMRouter 152, 153
self-destruct operation 22
Sepolia

URL 41
shares and asset tokens

amount, converting between 366-368
Shiba Inu Token (SHIB) 8
Simple DeFi Token (SDFT) 36, 287

Simple DeFi Token smart contract
data, reading from deployed 62
transactions, making based on 62

simple moving average (SMA) 407
skim 134, 135
smart contract

application binary interface (ABI) 37, 38
automated tests, executing 50-53
automated tests, writing 50-53
bytecode 36
compiling 35
debugging 49, 50
debugging, with Hardhat 53-55
deploying 39-41
refactoring, to support native

tokens in DEX 232
running, on local EVM environment 38, 39
testing 49, 50
writing, on local environment 35

smart contract ABI 62
smart contract address 62
smart contract deployment, on Testnet

deployer account, configuring 43-45
deployment script, adding to

package.json 49
performing 41
RPC endpoint, acquiring 41-43
verification 46-48

smart contract metadata
deploying to frontend 62-64

smart contracts, with Hardhat console
allowance, setting to transfer tokens

to AMMRouter 154, 155
exact amounts of token, spending

with swapping 158
liquidity, adding 155-157

Index460

liquidity, removing 159, 160
pair factory, configuring 153, 154
verified, by adding liquidity 158, 159
verifying 153

Solana 4
Solidity support, for Visual Studio Code

reference link 34
StakeRouter.js 294
staking 265
staking and farming

architectures 266
architectures, types 266-268
reward, calculating 268-272

staking pool listing dashboard
accordion component, using 298-302
expired staking pools, hiding 302-304
implementing 295, 296
retrieving 296-298

staking pool smart contract
command, implementing to mine

blocks with Hardhat 286, 287
constructor, implementing 273-275
deposit and withdraw functions,

implementing 278-280
implementing 273
management, implementing 284-286
parameters, updating 275-278
utility functions, implementing 280-283
variables, defining 273-275
verifying 286
verifying, in Hardhat console 287-292

SupplyStakingReward.js 294
SupraOracles

reference link 371
swapping 116, 118, 148-152
sync 134, 135

T
terminologies 7

ERC-20 7
liquidity 8
oracle 9
total value locked (TVL) 9, 10

time-weighted average price (TWAP) 404
calculating 405, 406
reference link 406

token burning 54
token pairs

addresses, retrieving for 140, 141
creating 136-139

token pair smart contract 120
implementing 120
initializing 121, 122
liquidity pool token, minting 124-126
liquidity pool tokens, burning 130, 131
LP tokens, minting for DEX

owner’s reward 128-130
reward distribution, for DEX

owners 127, 128
reward distribution, for liquidity

providers 127, 128
skeleton, creating 120, 121
skim 134, 135
sync 134, 135
token reserves, retrieving 122, 123
token reserves, storing 122, 123
tokens, swapping 131-134
token, transferring safely 123, 124

tokens, swapping with Uniswap Web app
reference link 93

token swapping frontend
best path, identifying 212-220
overview 200, 201
page, preparing 203, 204

Index 461

price, identifying 212-220
price impact, identifying 212-220
user experiences, improving 223-225
without, connecting to wallet 221-223
workflow 201-203

token-swapping functions
implementing, to support ETH 240-245

token swapping paths
default token pair 211, 212
generating 204
given, to pair of tokens searching 209-211
graph, building for token pairs 204-208

Top of Ask Side 95
Top of Bid Side 95
total value locked (TVL) 9, 10
transactions

making, on blockchain 82-88
transfer function implementation

reference link 52
transparency 5
TRC-20 8
TRON blockchain 8

U
UI code

refactoring, to check allowance 257
refactoring, to obtain balances 257
refactoring, to show price and

price impact 255, 256
UI wireframe

running 60-62
unhealthy assets 341
Uniswap

URL 93
URL routes

implementing, for liquidity
management 161-165

user account healthiness 370-372
user-borrowing information

retrieving 369, 370
user interface (UI) 17, 60
user ledgers

records, managing 365, 366
user-lending information

retrieving 369, 370
user request functions

borrowing 377-379
depositing 373, 374
implementing 372
liquidating 382-385
repaying 379-382
reserved tokens, withdrawing 385, 386
withdrawal 374-377

utilization rate 335

V
Verifiable Random Function (VRF) 9, 24

W
WalletConnect

URL 66
wallet connection

implementing, in DeFi project 68-74
Web3 3
Web3Provider

reference link 68
web3-react 60
weighted geometric mean 102

reference link 103
WETH smart contract 227, 228

demystifying 228-230
verifying, with Hardhat console 230-232

Index462

window size 408
withdrawal page

implementing 432-440
withdrawal page for staking pools 314-316
withdrawal process 374-377
withdraw function

testing 392
Withdraw.js 294
Wrapped BNB (WBNB) 8
Wrapped ETH (WETH) 8, 227

Y
yield farming 15, 265

Z
zero downtime 6, 7

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Zero to Hero in Cryptocurrency Trading

Bogdan Vaida

ISBN: 978-1-83763-128-5

• Master trading psychology and prevent emotions from sabotaging trades

• Manage risks by identifying and tailoring specific risk profiles

• Interpret, assess, and integrate technical indicators in your trading

• Get to grips with trading on a centralized exchange

• Get a deeper understanding of risk and money management

• Gain an edge by identifying trading patterns

• Automate the patterns into a strategy for a bot that operates 24/7

https://packt.link/183763128X

465Other Books You May Enjoy

Getting Started with Forex Trading Using Python

Alex Krishtop

ISBN: 978-1-80461-685-7

• Explore the forex market organization and operations

• Understand the sources of alpha and the concept of algo trading

• Get a grasp on typical risks and ways to mitigate them

• Understand fundamental and technical analysis

• Connect to data sources and check the integrity of market data

• Use API and FIX protocol to send orders

• Translate trading ideas into code

• Run reliable backtesting emulating real-world market conditions

https://packt.link/1804616850

466

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Building Full Stack DeFi Applications, we’d love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the Amazon review page for this
book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1-837-63411-4

467

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837634118

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781837634118

	Cover
	Title Page
	Copyright And Credits
	Contributors
	Table of Contents
	Preface
	Part 1:
Introduction to DeFi Application Development
	Chapter 1: Introduction to DeFi
	What is DeFi?
	Characteristics of DeFi
	Understanding terminologies

	Overview of DeFi applications
	Decentralized exchanges
	Crypto loans
	Staking, yield farming, and liquidity mining

	Architecture of DeFi applications
	DeFi application frontend
	DeFi wallet
	RPC endpoint
	Interactions between blockchain and oracle

	Vulnerabilities of DeFi applications
	Reentrancy
	Self-destruct operation
	Gas overflow
	Random number manipulation

	Summary
	Further reading

	Chapter 2: Getting Started with DeFi Application Development
	Technical requirements
	Creating a DeFi project
	Installing Node.js
	Creating a project with create-react-app
	Installing and configuring Hardhat

	Writing, compiling, and deploying a smart contract in a local environment
	Writing and compiling a smart contract
	Bytecode and ABI
	Running a local EVM environment
	Deploying the smart contract

	Deploying a smart contract on Testnet
	Acquiring the RPC endpoint of Testnet
	Configuring the deployer account
	Smart contract deployment and verification
	Adding a deployment script to package.json

	Testing and debugging the smart contract
	Verifying smart contract with the Hardhat console
	Writing and running automated tests for smart contracts
	Debugging smart contracts with Hardhat

	Summary
	Further reading

	Chapter 3: Interacting with Smart Contracts and DeFi Wallets
in the Frontend
	Technical requirements
	Overview of DeFi application frontend development
	Running the UI wireframe

	Deploying smart contract metadata to the frontend
	Connecting to a DeFi wallet
	The architecture of DeFi wallet connectivity with blockchain
	Implementing a wallet connection in the DeFi project

	Reading data from blockchain
	Making transactions on blockchain
	Summary

	Part 2:
Design and Implementation
of a DeFi Application for Trading Cryptos
	Chapter 4: Introduction to
Decentralized Exchanges
	The three main types of DEXs
	AMMs
	Order book DEXs
	DEX aggregators

	The mathematics of AMMs
	Relation functions
	Constant Function Market Maker (CFMM)
	Liquidity mining and burning
	Impermanent loss

	The architecture of AMM
	Adding liquidity
	Removing liquidity
	Swapping

	Summary

	Chapter 5: Building Crypto-
Trading Smart Contracts
	Implementing token pair smart contracts
	Creating the skeleton of a token pair
	Initializing token pairs
	Storing retrieving token reserves
	Transferring tokens safely
	Minting LP tokens
	Reward distribution for liquidity providers and DEX owners
	Minting LP tokens for the DEX owner’s reward
	Burning liquidity pool tokens
	Swapping token
	skim and sync

	Implementing pair factory smart contracts
	Introducing the smart contract source file
	Creating token pairs
	Retrieving addresses for token pairs
	Verifying the token pair factory

	Implementing AMM router smart contracts
	Liquidity provisioning
	Liquidity removal
	Swapping

	Verifying DEX smart contracts
	Deploying AMMRouter with a script
	Verifying smart contracts using the Hardhat console

	Summary

	Chapter 6: Implementing a Liquidity Management Frontend
with Web3
	Implementing URL routes for liquidity management
	Retrieving liquidity information
	Checking whether the wallet is connected
	Getting LP tokens owned by a connected account
	Getting the pooled token amount and liquidity share percentage
	Finishing up the liquidity listing page

	Implementing the liquidity provisioning page
	Overview of the liquidity provisioning page
	Frontend workflow of liquidity provisioning
	Loading the token pair information from the search parameter
	Selecting tokens and providing token amounts
	Checking the allowance and increasing the allowance
	Interacting with smart contracts for adding liquidity

	Implementing the liquidity removal page
	Frontend workflow of liquidity removal
	Inputting the LP token amount
	Calculating pooled token amounts
	Getting the allowance, increasing the allowance, and removing liquidity

	Verifying liquidity management pages
	Summary

	Chapter 7: Implementing a Token-Swapping Frontend with Web3
	Overview of the token swapping frontend
	Frontend workflow of token swapping
	Preparing for the token swapping page

	Generating token swapping paths
	Building the graph for token pairs
	Finding all paths given a pair of tokens
	The default token pair

	Identifying the best path, price, and price Impact
	How does the best path change for different amounts?
	Why the reserve can be insufficient
	Calculating the receiving and spending amounts with code
	Calculating the price impact

	Swapping token – after a wallet is connected
	Improving user experiences for token swapping
	Summary

	Chapter 8: Working with Native Tokens
	Diving into the WETH smart contract
	Demystifying the WETH smart contract
	Verifying a WETH smart contract with the Hardhat console

	Refactoring smart contracts to support native tokens
in a DEX
	The router as the intermediary
	Function definitions for native tokens in the router
	Improving AMMRouter to support the native token
	Implementing addLiquidityETH and removeLiquidityETH
	Implementing token-swapping functions to support ETH

	Implementing the DEX frontend for the native token
	Supporting the native token in the liquidity management pages
	Supporting the native token on the token-swapping page

	Summary

	Part 3:
Building a DeFi Application for Staking and Yield Farming
	Chapter 9: Building Smart Contracts
for Staking and Farming
	Understanding the architectures of staking and farming
	Two types of architectures for staking

	Calculating the reward for staking and farming
	Reward per block, starting block, and ending block
	Share, reward per share, and reward debt

	Implementing the staking pool smart contract
	Defining smart contract variables and implementing
a constructor
	Updating the parameters for the staking pool
	Implementing the deposit and withdraw functions
	Implementing the utility functions of the staking pool
	Implementing the smart contract for staking pool management

	Verifying staking pool smart contracts
	Implementing the command to mine blocks with Hardhat
	Verifying staking pool smart contracts in the Hardhat console

	Summary

	Chapter 10: Implementing a Frontend for Staking and Farming
	Overview of frontend pages for staking and farming
	Implementing a staking pool listing dashboard
	Retrieve staking pools
	Use the accordion component to show the list
	Hide expired pools

	Implementing pages for creating staking pools and supplying rewards
	Improving the token selection modal component
	Implementing a page to create a staking pool
	Implementing a page for supplying rewards

	Implementing frontend components for deposits, withdrawals, and harvesting
	Deposit page for staking pools
	Withdrawal page for staking pools
	Implementing the harvest function

	Implementing the farming frontend
	Refactoring frontend code for farming

	Summary

	Part 4:
Building a Crypto Loan App for Lending and Borrowing
	Chapter 11: An Introduction to
Crypto Loans
	Technical requirements
	Exploring the characteristics of a crypto loan
	Zero waiting time for approval
	No credit checks
	No term constraints
	No requirement for selling out of crypto holdings

	Designing crypto loan smart contracts
	Crypto loan personas
	The architecture of a crypto loan smart contract

	Understanding interest rate model and pool configuration
	The borrowing interest rate and lending interest rate
	Demystifying the interest rate model
	The collateral rate
	The liquidation bonus rate
	Implementing the pool configuration smart contract

	Implementing an asset pool share and its deployer
	Introducing an asset pool share
	Implementing the asset pool share smart contract
	Implementing the asset pool share deployer

	Exploring a crypto loan system by example
	An introduction to Aave
	An Aave protocol version 2 overview
	New features in the Aave protocol version 3

	Summary

	Chapter 12: Implementing an
Asset Pool Smart Contract
for a Crypto Loan
	Technical requirements
	Implementing the code to manage the asset pools
	Pool status
	Pool management
	Pool parameter calculation

	Managing records in user ledgers
	Amount conversion between shares and asset tokens
	Retrieving user-lending and -borrowing information
	User account healthiness

	Implementing the functions for user requests
	Depositing
	Withdrawal
	Borrowing
	Repaying
	Liquidation
	Withdrawing the reserve

	Deploying and testing the crypto loan smart contracts
	Deploying crypto loan smart contracts
	Configuring asset pools for crypto loans
	Testing crypto loan smart contracts

	Summary

	Chapter 13: Implementing a Price Oracle
for Crypto Loans
	How price manipulation attacks are carried out on crypto loan systems
	Executing a crypto loan exploit
	An example of attacking crypto loan systems with price manipulation

	Building an on-chain price oracle with cumulative prices
	Calculating cumulative prices
	Calculating time-weighted average prices
	Calculating prices with the moving window

	Implementing a manipulation-resistant price oracle smart contract
	Updating information when the reserve amount changes in
a liquidity pool
	Information update for the current period in the price oracle
	Calculating the token price in the price oracle

	Deploying, maintaining, and verifying the price oracle
	Deploying the PriceOracleV2 smart contract
	Price oracle maintenance
	Verifying the manipulation-resistant price oracle

	Summary

	Chapter 14: Implementing the Crypto Loan Frontend with Web3
	Technical requirements
	Implementing the account summary and asset pool
listing page
	Implementing the UI components in ListAssetPools.js
	Retrieving the user summary information for the crypto loan system
	Retrieving the information for all asset pools

	Implementing the pages for deposit, withdrawal, borrowing, and repayment
	Implementing the deposit page
	Implementing the withdrawal page
	Implementing the borrowing page
	Implementing the repayment page

	Best practices for decentralized crypto loan systems
	Select blue chip assets
	Liquidity utilization rate maintenance
	Monitoring and liquidating unhealthy accounts
	Closed asset pools
	Disabling the use of assets as collateral

	Summary

	Index
	Other Books You May Enjoy

