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To all of the students I’ve had. Thanks for teaching me. Most of all ,

thanks to my parents, the best teachers I have had.
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Preface

When I first had the chance to teach a second course in real analysis

I did the usual thing; I searched for a textbook that would fit the

course as I envisioned it. I wanted to show my students that real

analysis was more than just ε-δ proofs. I also hoped this course would

provide a bit of a head start to those students heading off to graduate

school. However, I could not find any text that suited the needs of

my target audience, undergraduate students who had seen the basics

of sequences and series up through and including the introduction to

Riemann integration. So I started teaching the course from scratch,

creating my own notes as the course progressed. The feedback from

my students was that, while they liked the course in general, they

missed having a textbook. Based on this feedback, each of the next

couple of times I taught the course, part of the work assigned to the

students was to “write” their book. The students took turns carefully

rewriting their notes which were then collected in a binder in a central

location. The resulting “textbooks” generated in this fashion formed

the skeleton of this book.

The prerequisite for this course is a standard undergraduate first

course in real analysis. Students need to be familiar with basic limit

definitions, and how these definitions are used in sequences and in

defining continuity and differentiation. The properties of a supre-

mum (or least upper bound) and infimum (or greatest lower bound)

vii



viii Preface

are used repeatedly. The definition of compactness via open coverings

is used in this text, but primarily for Rn. I also assume students have

seen sequences and series of functions and understand pointwise and

uniform convergence. Since a major focus of this text is Lebesgue

integration, it is also assumed that students have studied Riemann

integration in their first real analysis course. Chapter 0 briefly cov-

ers Riemann integration with the approach that is later mimicked in

defining the Lebesgue integral, that is, the use of upper and lower

sums. (I do realize there are other approaches to the Riemann in-

tegral. The approach which uses step functions is the one used in

Chapter 4 when the subjects of general measure and integration are

introduced.) However, Chapter 0 exists primarily as a source of re-

view and can be omitted.

One of the standard topics in the first analysis course that I teach

is the completeness of the set of real numbers. The students often see

this first in terms of every nonempty bounded set having a least upper

bound. Later they are introduced to the Cauchy criterion and shown

that in the real number system all Cauchy sequences converge. My

experience has been that this Cauchy criterion is not fully appreciated

by my students. In this second course in real analysis completeness

via Cauchy sequences is a recurring theme; we first revisit the com-

pleteness of R, then L1; and more generally Lp.

I want to keep my course as “real” as possible. Instead of intro-

ducing measure via the Carathéodory definition, I opt to introduce

Lebesgue measure through the more “concrete” definition using outer

measure. In this way, Lebesgue measure is a natural extension of the

concept of length, or area, or volume, depending on dimension.

So, here is my course. I start with a review of Riemann inte-

gration. I tend to keep this review to a minimum since most of the

main theorems have their Lebesgue counterparts later in Chapter 2.

As soon as possible, we move into Chapter 1 which covers Lebesgue

outer measure and Lebesgue measure. It should be noted that Section

1.3 contains the classic construction of a nonmeasurable set which as-

sumes knowledge of countability and familiarity with the Axiom of

Choice. This section is not needed for the later chapters and can

be omitted, although it justifies the difference between measure and
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outer measure and is referenced in Remark 4.1.14. The Lebesgue inte-

gral is defined in Chapter 2. Chapter 3 is where I introduce Lp spaces

and use these as examples of Banach spaces. Later in the chapter L2

is shown to be an example of a Hilbert space. My goal for a one-

semester course is to end somewhere in Chapter 4, usually around

Section 4.3. Sections 4.4 and 4.5 are independent of each other and

at various time I have ended with one or the other.

I have also included an appendix entitled “Ideas for Projects”.

Most of these are topics that I had at one time considered including as

part of my course. Instead, I reserved them for student presentations.

My students typically work on these in pairs. In the past I just

assigned the topic with a pointer to a possible source. However, here

I have included sketches of how one might proceed.

Thanks to the members of the Carleton College mathematics de-

partment for their support. I also owe a large debt to all of the stu-

dents who have been a part of this ongoing project. Without them,

this book would never have been created.

Please direct comments and corrections to:

gnelson@carleton.edu

Enjoy exploring the wide world of real analysis!

Gail S. Nelson

Northfield, Minnesota



Chapter 0

Review of Riemann
Integration

The main goals of this text are to provide introductions to Lebesgue

measure, Lebesgue integration, and general measure theory. It is as-

sumed that the reader has studied Riemann integration. Therefore,

it is possible to omit this chapter altogether and start with Chap-

ter 1. However, our development of the Lebesgue integral follows

very closely the approach used by Darboux. Therefore, we present

this optional chapter for those who would like a brief review of this

approach to the Riemann integral. This chapter is not a complete

treatment of the Riemann integral. For example, it does not in-

clude improper integrals, although we will later include unbounded

functions in our coverage of the Lebesgue integral. However, it does

include the basic development of the Riemann integral that will be

imitated in Chapter 2.

0.1. Basic Definitions

To begin, we will be working with the set of bounded functions on a

closed interval. We will denote this set by B[a, b], that is,

B[a, b] = {f
∣∣ for some M ∈ R, |f(x)| ≤ M for all x ∈ [a, b]} .

1
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2 0. Review of Riemann Integration

In particular, if f ∈ B[a, b], then f(x) is defined for all x ∈ [a, b]. The

constant M can be thought of as an upper bound for |f |, but it is not
unique.

Example 0.1.1. Let f(x) = 1
x . Then f is not in B[0, 1] since f is

not defined for x = 0. However, f ∈ B[1, 2] since |f(x)| ≤ 1 for all

x ∈ [1, 2].

Example 0.1.2. For x ∈ [0, 1], let

f(x) =

{
1
x if x �= 0,

0 if x = 0.

This time f is defined for x = 0, but f is still not in B[0, 1]. Although

one can see this by thinking of the graph of f , we give a more formal

argument here. For every M > 1, 1
M+1

∈ [0, 1] and f( 1
M+1

) =

M + 1 > M . Thus f is not in B[0, 1] because no constant M will

serve as an upper bound for |f |.

Example 0.1.3. Let

f(x) =

{
1 if x ∈ Q,

0 if x /∈ Q.

This function is known as the Dirichlet function and is often denoted

by XQ(x). Because |XQ(x)| ≤ 1 for all x, XQ ∈ B[0, 1].

The Dirichlet function shows that not all functions in B[a, b] are

continuous. On the other hand, if f is continuous on [a, b], then

f ∈ B[a, b] by the Extreme Value Theorem, a result found in most

texts used for a first real analysis course. For example, see Abbott [1].

In order to define the Riemann integral, we start by defining

upper sums and lower sums.

Definition 0.1.4. A partition P of the interval [a, b] is a finite

ordered set

P = {x0, x1, x2, . . . , xn},
where

a = x0 < x1 < x2 < . . . < xn = b .

Let f ∈ B[a, b]. For each subinterval [xi−1, xi] of [a, b], set

mi = inf
x∈[xi−1,xi]

f(x) = inf{f(x) | x ∈ [xi−1, xi]}
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and

Mi = sup
x∈[xi−1,xi]

f(x) = sup{f(x) | x ∈ [xi−1, xi]} .

Definition 0.1.5. Let f ∈ B[a, b].

(i) The lower sum of f with respect to the partition P , written

L(f, P ), is

L(f, P ) =
n∑

i=1

mi(xi − xi−1) .

(ii) The upper sum of f with respect to the partition P , writ-

ten U(f, P ), is

U(f, P ) =

n∑
i=1

Mi(xi − xi−1) .

Proposition 0.1.6. Let f ∈ B[a, b]. For any partition P of [a, b],

m(b− a) ≤ L(f, P ) ≤ U(f, P ) ≤ M(b− a),

where

m = inf
x∈[a,b]

f(x) and M = sup
x∈[a,b]

f(x) .

The proof of this proposition is straightforward and is left to the

reader as an exercise (See Exercise 1).

From Proposition 0.1.6, the set {L(f, P )
∣∣P is a partition of [a, b]}

and the set {U(f, P )
∣∣ P is a partition of [a, b]} are both bounded

sets. This allows us to make the following definitions.

Definition 0.1.7. Let f ∈ B[a, b].

i) The lower integral of f is∫ b

a

f(x) dx = sup
P

L(f, P ) = sup{L(f, P )
∣∣ P is a partition of [a, b]} .

ii) The upper integral of f is∫ b

a

f(x) dx = inf
P

U(f, P ) = inf{U(f, P )
∣∣ P is a partition of [a, b]} .

The lower integral and the upper integral need not be equal. The

Dirichlet function provides us with such an example.
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Example 0.1.8. Consider the Dirichlet function XQ(x) as described

in Example 0.1.3. For any partition P of [0, 1],

L(XQ, P ) = 0 and U(XQ, P ) = 1 .

Therefore, ∫ 1

0

XQ(x) dx = 0 and

∫ 1

0

XQ(x) dx = 1 .

Finally, we define the Riemann integral for those functions where

the lower integral does in fact equal the upper integral.

Definition 0.1.9. Let f ∈ B[a, b]. f is said to be Riemann inte-

grable on [a, b] if ∫ b

a

f(x) dx =

∫ b

a

f(x) dx .

If f is Riemann integrable on [a, b], we define the Riemann integral,

denoted

∫ b

a

f(x) dx, as

∫ b

a

f(x) dx =

∫ b

a

f(x) dx =

∫ b

a

f(x) dx .

This procedure for constructing the Riemann integral is exactly

the same as what we will see for the Lebesgue integral; only what we

will consider to be a partition will be changed.

Example 0.1.10. In Example 0.1.8 we found that∫ 1

0

XQ(x) dx = 0 and

∫ 1

0

XQ(x) dx = 1 .

Consequently, the Dirichlet function is not Riemann integrable on

[0, 1].

Finally, we denote the set of all Riemann integrable functions by

R[a, b]. That is,

R[a, b] = {f ∈ B[a, b]
∣∣ f is Riemann integrable on [a, b]}.

One of the goals of Lebesgue integration is to generalize integration so

that the Dirichlet function will be integrable. We also want to ensure
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that any function that is Riemann integrable remains integrable and

the value of the integral does not change.

0.2. Criteria for Riemann Integrability

These conditions are typically discussed in texts used for a first course

in real analysis. They are presented here to give us a framework on

how to proceed once we encounter Lebesgue integration. More details

can be found in Abbott [1] or Lay [9].

One of our first goals is to show that the lower integral is always

less than or equal to the upper integral. (This may seem obvious

to the reader, but one must always be able to provide a proof of the

obvious. After all, mathematics occasionally has surprises in store for

us!) In order to establish this claim, we will be comparing lower sums

and upper sums. Although we know from Proposition 0.1.6, given a

partition, that the lower sum is always less than or equal to the upper

sum, we have not yet compared the lower sum for one partition with

the upper sum for a possibly different partition. To do this, we need

the notion of a refinement.

Definition 0.2.1. The partition P ∗ of [a, b] is a refinement of the

partition P if each point in P is also in P ∗. P ∗ is a common re-

finement of the partitions P1 and P2 if P ∗ is a refinement of each of

P1 and P2.

Given any two partitions P1 and P2 of [a, b] we can take the points

in P1 ∪P2, put them in increasing order, and form a new partition of

[a, b]. This new partition will then be a common refinement of P1 and

P2. Hence, given any two partitions, there always exists a common

refinement.

Lemma 0.2.2. Let f ∈ B[a, b].

i) If P ∗ is a refinement of the partition P of [a, b], then

L(f, P ) ≤ L(f, P ∗) ≤ U(f, P ∗) ≤ U(f, P ) .

ii) If P1 and P2 are any two partitions of [a, b], then

L(f, P1) ≤ U(f, P2) .
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Proof. Let f ∈ B[a, b]. We will only give a sketch of the argument

and leave some of the details to the reader.

i) The main step for this part is to show the result is true if

P ∗ is just P with one additional point. To this end, let P

be the partition

P = {x0, x1, x2, . . . , xn},

where

a = x0 < x1 < x2 < . . . < xn = b .

Let P ∗ be P with one additional point. That is,

P ∗ = {x0, x1, . . . , xj−1, x
∗, xj, . . . , xn},

where

xj−1 < x∗ < xj .

Most of the terms in L(f, P ∗) also appear in L(f, P ). To

make this comparison precise, set

mi = inf
x∈[xi−1,xi]

f(x) ,

m∗
1 = inf

x∈[xj−1,x∗]
f(x) , and m∗

2 = sup
x∈[x∗,xj ]

f(x) .

Then mj ≤ m∗
1 and mj ≤ m∗

2. Therefore

L(f, P ) =
n∑

i=1

mi(xi − xi−1)

= mj(xj − xj−1) +

n∑
i=1
i�=j

mi(xi − xi−1)

= mj(x
∗ − xj−1) +mj(xj − x∗) +

n∑
i=1
i�=j

mi(xi − xi−1)

≤ m∗
1(x

∗ − xj−1) +m∗
2(xj − x∗) +

n∑
i=1
i�=j

mi(xi − xi−1)

= L(f, P ∗) .

By a similar argument, U(f, P ∗) ≤ U(f, P ).
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The general result follows by induction on the number

of points added to P to get P ∗.

ii) Let P ∗ be a common refinement of both P1 and P2. By part

i),

L(f, P1) ≤ L(f, P ∗) ≤ U(f, P ∗)

and

L(f, P ∗) ≤ U(f, P ∗) ≤ U(f, P2) .

The result then follows. �

This lemma allows us to conclude the following corollary (some-

thing you probably believed to be true all along).

Corollary 0.2.3. Let f ∈ B[a, b]. Then∫ b

a

f(x) dx ≤
∫ b

a

f(x) dx .

Proof. By Lemma 0.2.2, given any two partitions P1 and P2 of [a, b],

L(f, P1) ≤ U(f, P2) .

Hence, U(f, P2) is an upper bound for {L(f, P )
∣∣ P is a partition of

[a, b]}. Therefore,∫ b

a

f(x) dx = sup
P

L(f, P ) ≤ U(f, P2) .

P2 was an arbitrary partition of [a, b]. Thus,

∫ b

a

f(x) dx is a lower

bound for the set {U(f, P )
∣∣ P is a partition of [a, b]}. Consequently,∫ b

a

f(x) dx ≤ inf
P

U(f, P ) =

∫ b

a

f(x) dx,

as claimed. �

Finally, we prove our criteria for Riemann integrability.

Theorem 0.2.4. Let f ∈ B[a, b]. f ∈ R[a, b] if and only if for every

ε > 0 there is a partition P of [a, b] such that

U(f, P )− L(f, P ) < ε .
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(Sooner or later you knew we had to run into that standard anal-

ysis phrase “ε > 0”!)

Proof. Assume first f is Riemann integrable on [a, b]. Thus,∫ b

a

f(x) dx =

∫ b

a

f(x) dx =

∫ b

a

f(x) dx .

Let ε > 0 be given. Since

∫ b

a

f(x) dx = sup
P

L(f, P ), there is a parti-

tion P1 with ∫ b

a

f(x) dx− ε

2
< L(f, P1) ≤

∫ b

a

f(x) dx .

In other words,∫ b

a

f(x) dx− ε

2
< L(f, P1) ≤

∫ b

a

f(x) dx .

Similarly, there is a partition P2 with∫ b

a

f(x) dx ≤ U(f, P2) <

∫ b

a

f(x) dx+
ε

2
.

Let P be a common refinement of P1 and P2. Then by Lemma 0.2.2,

U(f, P )− L(f, P ) ≤ U(f, P2)− L(f, P1)

<

(∫ b

a

f(x) dx+
ε

2

)
−
(∫ b

a

f(x) dx− ε

2

)

= ε .

Next we prove the converse. To show f is Riemann integrable, we

must show that the upper integral and the lower integral are equal.

Let ε > 0. By assumption, there is a partition P of [a, b] such that

U(f, P )− L(f, P ) < ε .

Thus, ∫ b

a

f(x) dx ≤ U(f, P )

< L(f, P ) + ε

≤
∫ b

a

f(x) dx+ ε .
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However, ε is arbitrary, hence,∫ b

a

f(x) dx ≤
∫ b

a

f(x) dx .

By Corollary 0.2.3, we also have the inequality∫ b

a

f(x) dx ≤
∫ b

a

f(x) dx .

Therefore, the two quantities are, in fact, equal. That is, the upper

integral and lower integral are equal and f is Riemann integrable. �

Example 0.2.5. Let

f(x) =

{
2 if x �= 1

2 ,

5 if x = 1
2 .

We will first show f is Riemann integrable. One option is to compute

the lower integral and upper integral by comparing all lower sums

and all upper sums. Instead, we will use Theorem 0.2.4. Let ε > 0

be small. Let Pε be the partition

Pε = {0, 1
2
− ε

7
,
1

2
+

ε

7
, 1} .

Then

L(f, Pε) = 2

(
1

2
− ε

7

)
+ 2

(
2ε

7

)
+ 2

(
1

2
− ε

7

)
= 2

and

U(f, Pε) = 2

(
1

2
− ε

7

)
+ 5

(
2ε

7

)
+ 2

(
1

2
− ε

7

)
= 2 +

6ε

7
.

Since U(f, Pε)− L(f, Pε) =
6ε
7 < ε, f is Riemann integrable.

Now that we know f is Riemann integrable, we can choose to

compute either the upper integral or the lower integral. For this

example, the latter is the easier computation since L(f, P ) = 2 for

any partition P . Therefore∫ b

a

f(x) dx = 2 .

Another standard result concerning Riemann integration is the

following. Notice that this is the first time we assume the function f

is continuous.
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Theorem 0.2.6. Let f be continuous on [a, b]. Then f ∈ R[a, b].

Proof. We will use Theorem 0.2.4. Let ε > 0 be given. Since f

is continuous on the closed and bounded interval [a, b], f must be

uniformly continuous on [a, b]. Thus, there is a δ > 0 so that

|f(x)− f(y)| < ε

b− a
whenever |x− y| < δ .

Let P = {a = x0, x1, x2, . . . , xn = b} be a partition of the interval

[a, b] with |xj − xj−1| < δ for j = 1, 2, . . . , n. It is left to the reader

to verify that for this partition,

U(f, P )− L(f, P ) < ε .

(See Exercise 12.) Therefore, by Theorem 0.2.4, f is Riemann inte-

grable. �

0.3. Properties of the Riemann Integral

The reader should be aware that at this point we have not proved

the Fundamental Theorem of Calculus. In other words, we have no

justification for using “antiderivatives”. Moreover, the Fundamental

Theorem of Calculus only applies to continuous functions. The goal

of the Lebesgue integral is to apply the notion of integration to a

wider range of functions. Hence, we will not cover the Fundamental

Theorem in this text. But to see if you really can handle Riemann

integration from just these basics, you should try proving these next

results based just on the material presented thus far (without the

Fundamental Theorem, of course). The first of these theorems does

appear in the exercises, but the others also follow from careful con-

sideration of upper sums and lower sums.

Theorem 0.3.1. Let f, g ∈ R[a, b] and k ∈ R.

i) f + g is Riemann integrable and∫ b

a

(f + g)(x) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx .

ii) kf is Riemann integrable and∫ b

a

(kf)(x) dx = k

∫ b

a

f(x) dx .
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Theorem 0.3.2. Let f, g ∈ R[a, b]. If f(x) ≤ g(x) for all x ∈ [a, b],

then ∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx .

Theorem 0.3.3. Let f be Riemann integrable on [a, b]. If [c, d] ⊆
[a, b], then f is Riemann integrable on [c, d].

Theorem 0.3.4. Let f be Riemann integrable on [a, b]. If c ∈ [a, b],

then ∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx .

Now we have reached the point where we can prove the Fun-

damental Theorem of Calculus. But our goal is to move towards

Lebesgue integration. The interested reader can find a proof of the

Fundamental Theorem in many introductory analysis texts such as

Abbott [1] and Lay [9].

0.4. Exercises

(1) Prove Proposition 0.1.6.

(2) Let

f(x) =

{
1 if 0 ≤ x ≤ 2,

2 if 2 < x ≤ 3.

a) Show f ∈ R[0, 3].

b) Compute

∫ 3

0

f(x) dx using the definition of the Rie-

mann integral.

(3) Let f, g ∈ R[a, b] with f(x) ≤ g(x) for all x ∈ [a, b]. Prove

that ∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx .

(4) Give an example of a function f with f /∈ R[0, 1] but f2 ∈
R[0, 1].

(5) Assume f ∈ R[a, b].

a) Let c ∈ [a, b]. Suppose g is defined on [a, b] and g(x) =

f(x) for all x �= c. Show g ∈ R[a, b].
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b) Suppose g differs from f at a finite number of points.

Show g ∈ R[a, b].

c) Does this extend to the case where g and f differ at

a countable number of points? Prove or give a coun-

terexample.

(6) Let {fn} be a sequence of functions with fn ∈ R[a, b] for

each n. Suppose the sequence {fn} converges uniformly to

f on [a, b]. Show that f ∈ R[a, b].

(7) Prove or modify and then prove: Let f ∈ B[a, b]. Define

f+(x) =

{
f(x) if f(x) ≥ 0,

0 otherwise.

f−(x) =

{
0 if f(x) ≥ 0,

−f(x) otherwise.

Then f ∈ R[a, b] if and only if both f+ ∈ R[a, b] and f− ∈
R[a, b].

(8) Prove or modify and then prove: Let f ∈ R[a, b] and [c, d] ⊆
[a, b]. Then ∫ d

c

f(x) dx ≤
∫ b

a

f(x) dx .

(9) Prove or give a counterexample: Suppose f ∈ R[a, b] and

there exists k > 0 such that f(x) ≥ k for all x ∈ [a, b]. Then

1/f ∈ R[a, b].

(10) Prove or give a counterexample: Let f ∈ R[a, b] and g ∈
R[a, b]. If h is a function such that f(x) ≤ h(x) ≤ g(x) for

all x ∈ [a, b], then h ∈ R[a, b].

(11) Let {r1, r2, . . . , rn, . . .} be a counting of the rational numbers

in the interval [0, 1]. For each natural number k, define the

function fk by

fk(x) =

{
1 if x ∈ {r1, r2, . . . , rk},
0 otherwise.

a) Find f , the pointwise limit of the sequence {fk}.
b) Show that fk ∈ R[0, 1] for each k.
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c) In general, if {fn} is a sequence of Riemann integrable

functions which converge pointwise to f , is f Riemann

integrable?

(12) Verify that U(f, P ) − L(f, P ) < ε for the partition P de-

scribed in Theorem 0.2.6.

(13) Let f, g ∈ B[a, b]. Show that for any partition P of [a, b],

L(f, P ) + L(g, P ) ≤ L(f + g, P ) and

U(f + g, P ) ≤ L(f, P ) + L(g, P ) .

(14) Prove part i) of Theorem 0.3.1. That is, let f, g ∈ R[a, b].

Prove that f + g ∈ R[a, b] and∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx .

Suggestion: the previous exercise might be helpful.

(15) Prove part ii) of Theorem 0.3.1.



Chapter 1

Lebesgue Measure

There are different ways one can look at the size of a set. For example,

one could look at the set A = {0, 2, 3, 5} and say that A has four

elements. From a set theoretic standpoint, this is looking at the

cardinality of the set A. On the other hand, if one thinks of the

members of A as points on the number line, the set A is miniscule

in comparison to the real line. Think of coloring these four points

blue and the rest of the line purple (or pick your two favorite colors).

How much blue would you see when looking at this colored real line?

Would you see anything other than purple? A single point takes up

no real width on the real line. In fact, if one were asked for the length

of A, the natural answer would probably be zero.

Our goal is to generalize the Riemann integral, which has its

origins in the notions of length and area. We will be taking the

second point of view when looking for the size of a set. Our first task

then is to generalize the notion of area (and length, and volume, etc.).

1.1. Lebesgue Outer Measure

We will start our process by considering a very basic set. In Rn we

define a closed interval to be a closed rectangle I where

I = {x = (x1, x2, . . . , xn) ∈ Rn | ai ≤ xi ≤ bi for i = 1, 2, . . . , n} .

15
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Figure 1.1. Example of a set covered by intervals.

For example,

I = {(x1, x2) ∈ R2 | 1 ≤ x1 ≤ 3,−2 ≤ x2 ≤ 4}

is a closed interval in R2, while

J = {x ∈ R1 | 2 ≤ x ≤ 6}

is a closed interval in R1. Notice that in R1 these closed intervals are,

in fact, our usual closed intervals. The volume of a closed interval

in Rn is

v(I) =

n∏
i=1

(bi − ai) .

Two conventions about closed intervals that will be used through-

out this text are that the constants ai and bi are all finite, and that

ai < bi for all i.

Our strategy will be to cover a set A ⊆ Rn with closed intervals

and add the volumes of these intervals. In order to make sense of this,

we will cover A with a countable (either a finite or a countably infinite)

number of intervals. This should give us an estimate (probably on

the large side, but be careful not to assume this) of the volume of A.

Then we use this to take the best possible estimate of the volume.

More precisely, let S = {Ik} be a countable (finite or countably

infinite) collection of closed intervals in Rn. We say S is a covering

of A by closed intervals if A ⊆
⋃
Ik. Set σ(S) =

∑
v(Ik). If the

series
∑

v(Ik) diverges, set σ(S) = +∞. This idea is illustrated in

Figure 1.1. In general, if S is a covering of A by intervals, we expect

σ(S) to be one of our overestimates of the volume of A. Here we

have used the notation
∑

v(Ik), lacking upper and lower limits in the
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summation, to denote a countable (finite or countably infinite) sum.

That is, this sum is either a finite sum or a countably infinite series.

Notice that we can always create a cover A by a countably infinite

collection of intervals each with volume 1. If so, for such a covering,

call it S, σ(S) = +∞. So the set

{σ(S) | S is a covering of A by closed intervals}
always includes +∞. We can still make sense of the infimum of this

set if we use the convention that s < +∞ for every s ∈ R so that

s ≤ +∞ for all s ∈ R or s = +∞. With this convention in mind,

generalizing our usual definition of the infimum (or greatest lower

bound) makes sense. That is,

α = inf{σ(S) | S is a covering of A by closed intervals}
if and only if α ≤ σ(S) for every such covering S (that is, α is a lower

bound) and β ≤ α for any other lower bound. The difference now

is that this infimum might actually equal +∞. This happens when

σ(S) = +∞ for every covering S of A by closed intervals.

Also, for every S, a covering of A by closed intervals, σ(S) ≥ 0.

This makes 0 a lower bound for the set

{σ(S) | S is a covering of A by closed intervals} .
We finally officially define the Lebesgue outer measure of a set A.

Definition 1.1.1. Let A ⊆ Rn. The Lebesgue outer measure of

A is

m∗(A) = inf{σ(S) | S is a covering of A by closed intervals} .

By definition, m∗(A) is always greater than or equal to 0. Also, it

follows that if S is any covering of A by closed intervals, thenm∗(A) ≤
σ(S) ≤ +∞. In other words, for any set A ⊆ Rn, 0 ≤ m∗(A) ≤ +∞.

Now that we have introduced +∞ as a possible value for the

Lebesgue outer measure of a set, it might be worth pointing out a

few things about the arithmetic of R∪ {+∞}. We can make sense of

addition in that c + (+∞) = (+∞) + c = +∞ for any real number

c. Also, is it consistent if we define (+∞) + (+∞) = +∞. But

we will need to avoid any statements involving +∞ and subtraction.

(Think about what subtraction means: 5− 3 = 2 because 2 + 3 = 5.
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But c + (+∞) = +∞ for any real number c, so how does one find

+∞− (+∞)?)

Remark 1.1.2. An important feature of the definition of Lebesgue

outer measure is that given any set A and any given ε > 0, there is a

covering S of A by closed intervals such that

σ(S) ≤ m∗(A) + ε .

This is easily the case if m∗(A) = +∞. In the case that m∗(A) is

finite, this follows by observing that m∗(A) + ε can no longer be a

lower bound for

{σ(S) | S is a covering of A by closed intervals} .
Moreover, if m∗(A) is finite, we can make the inequality a strict in-

equality. We will be using this property time and time again.

Example 1.1.3. We will compute the Lebesgue outer measure of

A = {3}.
Let ε > 0. Set S = {[3− ε, 3 + ε]}. Thus,

0 ≤ m∗(A) ≤ σ(S) = 2ε .

Since ε was arbitrary, it follows that m∗(A) = 0.

Example 1.1.4. The Lebesgue outer measure of ∅ is 0. To see this,

let ε > 0 be given. Then S = {[−ε, ε]} is a covering of ∅ by closed

intervals. Therefore,

m∗(∅) ≤ σ(S) = 2ε .

Since ε was arbitrary, it follows that m∗(∅) = 0.

Example 1.1.5. Let A = [0, 1]. The Lebesgue outer measure of A

is 1. This should come as no surprise. After all, the length of this

interval is 1. In fact, S = {[0, 1]} is a covering of A by a single closed

interval. Therefore,

m∗(A) ≤ σ(S) = 1 .

However, it is not an easy matter to prove that if S is a random

covering of A by closed intervals, then σ(S) ≥ 1. It is only your

intuition that tells you that if we cover A by closed intervals, then the

sum of the lengths of the intervals must be greater than the length

of A. (Don’t get me wrong—I’m not trying to tell you that your
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intuition is incorrect. I am only pointing out that this has not been

proved. Try writing a rigorous proof. It is not easy.) We will prove

in Proposition 1.1.11 that m∗(A) = 1.

Example 1.1.6. Let E = {(x, 0) ∈ R2
∣∣ 0 ≤ x ≤ 1}. Let ε > 0 be

given. Set

Iε = {(x, y) ∈ R2
∣∣ 0 ≤ x ≤ 1,−ε ≤ y ≤ ε} .

Then S = {Iε} is a covering of E by closed intervals. Therefore,

m∗(E) ≤ σ(S) = v(Iε) = 2ε .

Since ε was arbitrary, m∗(E) = 0.

Compare Example 1.1.5 and Example 1.1.6. We think of both as

line segments of length 1. However, the first of these is a subset of R1

while the second is a subset of R2. It is this difference in dimension

that accounts for the difference in the outer measure of these two

seemingly similar sets. More generally, for constants a1, a2, . . . , an,

b1, b2, . . . , bn, c ∈ R, and fixed k, the set

A = {x ∈ Rn | ai ≤ xi ≤ bi for i = 1, 2, . . . , n for x �= k and xk = c}

has Lebesgue outer measure 0.

Example 1.1.7. We will now compute the Lebesgue outer measure

of what is known as the Cantor set, or the Cantor middle-third set.

Just to make sure we are all thinking of the same set we will start

with a description of the Cantor set.

Set

C0 = [0, 1] .

The next set in our construction is formed by deleting the open middle

third from C0. In other words,

C1 = [0, 1
3 ] ∪ [ 23 , 1] .

C1 consists of two intervals of length 1
3
. C2 is formed by removing

the open middle third from each of these intervals. Hence,

C2 = [0, 1
9 ] ∪ [ 29 ,

1
3 ] ∪ [ 23 ,

7
9 ] ∪ [ 89 , 1] .

Continue with this process. In general, for each positive integer n, Cn

consists of 2n intervals of length 1/3n. Cn+1 is formed from Cn by
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Figure 1.2. The first stages in the construction of the Cantor set.

deleting the open middle third of each of these intervals. The first few

stages in this construction are illustrated in Figure 1.2. The Cantor

set is what is left in the end. More precisely, the Cantor set is C,
where

C =

∞⋂
n=0

Cn .

The Cantor set has many remarkable features. For example, it is a

closed, uncountable set that contains no intervals.

To see that the Cantor set is uncountable, note that every x ∈
[0, 1] has a binary expansion. That is,

x =

∞∑
n=1

bn
2n

= .(2)b1b2b3 . . . , where bn = 0 or 1 .

For example,

1

5
= .(2)001100110011 . . . and

1

2
= .(2)10000000 . . . = .(2)01111111 . . . .

Some numbers, such as 1
2
, have more than one binary expansion.

For the purpose of this example, when given a choice we will always

choose the expansion that does not have a finite number of 1’s. For

example, we would choose 1
2 = .(2)01111 . . ..

Similarly, every x ∈ [0, 1] has a ternary expansion. That is,

x =

∞∑
n=1

an
3n

= .(3)a1a2a3 . . . , where an = 0, 1, or 2 .
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For example,

1

2
= .(3)11111111 . . . ,

1

3
= .(3)10000000 . . . = .(3)0222222 . . . .

Again, given a choice of more than one ternary expansion, we will

choose the one that does not have a finite number of nonzero dig-

its. Moreover, x is in the Cantor set if and only if x has a ternary

expansion where none of the digits are 1.

Finally, we define a function f : [0, 1] → C as follows. For x ∈ [0, 1]

write x in its binary form,

x =

∞∑
n=1

bn
2n

,

choosing the expansion that does not have a finite number of 1’s when

given a choice. Set f(x) to be

f(x) =
∞∑

n=1

2bn
3n

.

Here f(x) will be a ternary expansion where every digit is 0 or 2.

Thus, f(x) will be in the Cantor set. The function f is known as the

Cantor function. The Cantor function is one-to-one, which gives a

one-to-one correspondence between the interval [0, 1] and a subset of

C. Hence, the Cantor set is uncountable.

But we are here to talk about Lebesgue outer measure. To com-

pute the outer measure of the Cantor set, note that for every n, Cn

provides us with a natural covering of C by closed intervals. As noted

above, Cn consists of 2n intervals of length 1
3n . Thus,

m∗(C) ≤ 2n
1

3n
=

(
2

3

)n

.

The only way this can hold for every positive integer n is for m∗(C) =
0.

The Cantor set shows us that it is possible for an uncountable set

to have Lebesgue outer measure 0.
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Our goal is to generalize the notion of volume (or area, depending

on dimension). One of the properties of volume that we want to retain

is that if one set is contained in a second set, then the volume of the

first should be less than or equal to the volume of the second. The

next proposition shows this to be true for Lebesgue outer measure as

well.

Proposition 1.1.8. If A ⊆ B ⊆ Rn, then m∗(A) ≤ m∗(B).

Proof. Let S be a covering of B by closed intervals. It follows that

S is also a covering of A by closed intervals. Thus,

m∗(A) ≤ σ(S),

where S is any covering of B by closed intervals. Hence,

m∗(A) ≤ inf{σ(S) | S is a covering of B by closed intervals} .

Therefore, m∗(A) ≤ m∗(B), as claimed. �

Another feature of volume we wish to retain is that the volume of

the union of two sets is less than or equal to the sum of the volumes

of the two sets. The next proposition asserts this to be true for outer

measure. In addition, the result extends to a countable union of sets.

Proposition 1.1.9. The following additivity properties hold for

Lebesgue outer measure:

(i) For any two sets A and B,

m∗ (A ∪B) ≤ m∗(A) +m∗(B) .

(ii) For any countable collection of sets {An},

m∗
(⋃

An

)
≤
∑

m∗ (An) .

Since we are working with a countable collection of sets, {An}
may be either a finite collection or a countably infinite collection. To

avoid having to make separate cases, we simply write
⋃
An to indicate

that this is either the union of a finite collection of sets or the union

of a countably infinite collection of sets. We use a similar convention

with the summation
∑

. We just need to be sure that any assertions

we make are true in both cases.
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One way to proceed with the proof of (i) is to observe that if S

is any covering of A by closed intervals and T is any covering of B

by closed intervals, then S ∪ T forms a covering of A ∪ B by closed

intervals. It follows that

m∗ (A ∪B) ≤ σ(S ∪ T ) .

On the other hand, we can take the closed intervals in S∪T and look

at those that came from S and those that came from T . It follows

that

m∗ (A ∪B) ≤ σ(S ∪ T ) ≤ σ(S) + σ(T ) ,

keeping in mind that some intervals might appear in both S and T .

We can then take first the infimum over all possible coverings of A

and then the infimum over all possible coverings of B to obtain the

desired result. This argument will generalize to any finite union of

sets by using the principle of mathematical induction. However, in

(ii) we wish to allow a countably infinite union of sets so induction

will no longer apply. Hence, we will demonstrate i) in a manner that

can be generalized to verify ii).

Proof. (i) If eitherm∗(A) or m∗(B) is infinite, then m∗(A∪B)

is also infinite by Proposition 1.1.8. Thus, in this case the

result is true by the convention that +∞ ≤ +∞. So, assume

both m∗(A) and m∗(B) are finite.

Let ε > 0 be given. By Remark 1.1.2 there exists S, a

covering of A by closed intervals, with

m∗(A) ≤ σ(S) < m∗(A) +
ε

2
.

Similarly, there exists T , a covering of B by closed intervals,

with

m∗(B) ≤ σ(T ) < m∗(B) +
ε

2
.

Thus,

m∗ (A ∪B) ≤ σ (S ∪ T ) ≤ σ(S) + σ(T ) ≤ m∗(A) +m∗(B) + ε .

Since ε is arbitrary, it follows that

m∗(A ∪B) ≤ m∗(A) +m∗(B),

as claimed.
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(ii) This is proved in the same spirit as (i). As in the earlier case,

if m∗ (An) is infinite for some n, the result holds. Also,

if
∑

m∗ (An) is +∞, the Lebesgue outer measure of any

set is less than or equal to +∞, so again the result holds.

Therefore, we will assume that all of these quantities are

finite.

Let ε > 0 be given. For each n take Sn to be a covering

of An by closed intervals with

m∗ (An) ≤ σ (Sn) < m∗ (An) +
ε

2n
.

Thus,

m∗
(⋃

An

)
≤ σ

(⋃
Sn

)
≤

∑
σ (Sn)

≤
∑(

m∗ (An) +
ε

2n

)
=

∑
m∗ (An) + ε .

As before, ε is arbitrary. Therefore,

m∗
(⋃

An

)
≤
∑

m∗ (An) ,

as claimed. �

For those who are interested in the fine details, in the last part

of this proof the reason we can only claim σ
(⋃

Sn

)
≤
∑

σ (Sn) is

that for distinct i and j, Si and Sj might contain the same closed

interval. This interval would only be counted once in σ
(⋃

Sn

)
but

would be counted more than once in
∑

σ (Sn).

Corollary 1.1.10. If A ⊆ B ⊆ Rn and m∗(B) is finite, then

m∗(B)−m∗(A) ≤ m∗(B \A) .

Proof. This is Exercise 7. �

One of the drawbacks of Lebesgue outer measures is that even if

sets A and B are disjoint, it is possible (if one assumes the Axiom of

Choice) for m∗(A ∪ B) < m∗(A) + m∗(B). An example of this will
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be discussed later in Example 1.3.6. This is not exactly a desirable

result. The remedy for this is to define Lebesgue measure, but that

is a topic for a later section. In the meantime, we will establish more

properties of Lebesgue outer measure.

Proposition 1.1.11. For any closed interval I ⊆ Rn, m∗(I) = v(I).

As mentioned in Example 1.1.5, at first glance one might not fully

appreciate the reason why we need a proof of Proposition 1.1.11. After

all, S = {I} is a perfectly acceptable covering of I by closed intervals.

This guarantees that m∗(I) ≤ v(I). It is establishing the reverse

inequality that is trickier, that is, we need to show that v(I) ≤ m∗(I).

We can accomplish this by showing that if S is any covering of I by

closed intervals, then v(I) ≤ σ(S). If I is covered by a countable

collection of closed intervals S, it may seem obvious that the volume

of I ought to be less than or equal to σ(S), the sum of the volumes

of the intervals in S; but have you ever proved this? Remember you

must be able to distinguish what you believe ought to be true versus

what has or can be established. Think about writing a careful proof

of this. In fact, proving this in the case that S is a finite collection of

closed intervals is not exactly straightforward. The proof for this in R2

is outlined in Exercise 26 and Exercise 27. The strategies suggested

can also be adapted to higher dimensions. The reason for doing these

exercises is to show that the proof of this “obviously” requires careful

bookkeeping and that doing them is not really necessary in order to

proceed. However, one of the big messages in real analysis is that we

cannot take it for granted that what may work in a finite case will

also work in an infinite case. But in order to keep from getting too

bogged down in the details, we will assume the results of Exercise 26

and Exercise 27. That is, we will proceed by assuming that if I is

covered by a finite collection of closed intervals S, then v(I) ≤ σ(S).

To use this to recover the intuitively clear result for the case when

S is a countably infinite covering of I, we will take advantage of the

compactness of I. Here, then, is a proof of Proposition 1.1.11.

Proof. We need to show that v(I) ≤ m∗(I). Because of the above

discussion, we only need to prove that if S = {Ik} is a countably

infinite covering of I by closed intervals, then v(I) ≤ σ(S). Given
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Ik

Ik*

Figure 1.3. I∗k is an expanded version of Ik.

ε > 0, let I∗k be an expanded version of Ik such that

Ik ⊆ int (I∗k)

and

v (I∗k) ≤ (1 + ε)v (Ik) .

This is illustrated in Figure 1.3. Then {int (I∗k)} is an open cover of I.

That is,

I ⊆
∞⋃
k=1

int (I∗k) .

Since I is compact (I is closed and bounded), I can be covered by a

finite subcover, say

I ⊆
M⋃
k=1

int (I∗k ) ⊆
M⋃
k=1

I∗k .

This means that S′ = {I∗k}
M
k=1 is a covering of I by a finite number of

closed intervals. (It is at this point where we will assume the intuitive

result concerning covering I by a finite number of closed intervals or
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the result of Exercise 27.) Hence,

v(I) ≤
M∑
k=1

v (I∗k)

≤ (1 + ε)

M∑
k=1

v (Ik)

≤ (1 + ε)

∞∑
k=1

v (Ik)

= (1 + ε)σ(S) .

As ε is arbitrary, v(I) ≤ σ(S). Consequently,

v(I) ≤ inf{σ(S) | S is a covering of I by closed intervals} .

Therefore, we obtain the necessary inequality v(I) ≤ m∗(I). �

Example 1.1.12. We can now compute the Lebesgue outer measure

of B = [−1, 2] ∪ {3}. By Proposition 1.1.9,

m∗(B) ≤ m∗([−1, 2]) +m∗({3}) .

By Proposition 1.1.11 and Example 1.1.3,

m∗([−1, 2]) = 2− (−1) = 3 and m∗({3}) = 0 .

Thus,

m∗(B) ≤ 3 .

On the other hand, [−1, 2] ⊆ B. Hence,

3 = m∗([−1, 2]) ≤ m∗(B) .

Consequently, m∗(B) = 3.

The following theorem (note this is a theorem, not just a propo-

sition) states that any set with finite Lebesgue outer measure is con-

tained in some open set with arbitrarily close outer measure. This

may not seem like such a great feature right now. But it tells us that

instead of dealing with our original set, we can use an open set with

almost the same outer measure. The advantage is that we know some

useful properties of open sets.
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Theorem 1.1.13. Let A ⊆ Rn be a set with finite outer measure.

For every ε > 0 there is an open set G such that A ⊆ G and

m∗(G) < m∗(A) + ε.

Proof. Given ε > 0 there is a covering of A by closed intervals

S = {Ik} such that

σ(S) =
∑

v (Ik) < m∗(A) +
ε

2
.

(Here we are using the assumption that m∗(A) is finite to obtain the

strict inequality.) Because S can consist of either a finite collection

of intervals or a countably infinite collection, we are using the con-

vention mentioned after the statement of Proposition 1.1.9 and are

not indicating whether the summation consists of a finite number of

terms or an infinite number of terms.

For each k let I∗k be an expanded version of Ik such that

Ik ⊆ int (I∗k)

and

v (I∗k ) ≤ v (Ik) +
ε

2k+1
.

Set

G =
⋃

int (I∗k) .

By construction G is an open set. Moreover, by Proposition 1.1.9 and

Proposition 1.1.11,

m∗(G) ≤
∑

m∗ (I∗k)

=
∑

v (I∗k)

≤
∑(

v (Ik) +
ε

2k+1

)
≤ σ(S) +

ε

2
< m∗(A) + ε . �

Corollary 1.1.14. Let A ⊆ Rn. For every ε > 0 there is an open set

G such that A ⊆ G and

m∗(G) ≤ m∗(A) + ε.
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Proof. Ifm∗(A) is finite, we can use the open set G from the previous

theorem. In the case that m∗(A) is infinite, use G = Rn. �

One of the more tempting traps at this time is to believe that The-

orem 1.1.13 and Corollary 1.1.14 tell us something about

m∗(G \A). For example, Theorem 1.1.13 does tell us that

m∗(G)−m∗(A) < ε .

Corollary 1.1.10 tells us that

m∗(G)−m∗(A) ≤ m∗(G \A) .

Unfortunately, this last inequality goes in the wrong direction. We

are unable to make any claims about m∗(G \ A). Trust me—in the

future it might be very tempting to make such a claim, but it isn’t

always true.

1.2. Lebesgue Measure

As mentioned before, one of the drawbacks of outer measure is that

it may be possible for m∗(A ∪ B) < m∗(A) + m∗(B), even when A

and B are disjoint sets. This is the idea illustrated by Example 1.3.6.

The way we will avoid this is to place a restriction on which subsets

of Rn we will call measurable.

Definition 1.2.1. A set E ⊆ Rn is Lebesgue measurable if for

every ε > 0 there is an open set G so that E ⊆ G and

m∗(G \ E) < ε .

In this case we define the Lebesgue measure of E, denoted m(E),

to be

m(E) = m∗(E) .

In Chapter 4 we will encounter other measures and outer mea-

sures. Until that point, however, any time we say outer measure and

measure, we are referring to Lebesgue outer measure and Lebesgue

measure, respectively.

Example 1.2.2. We will show that E = {3} is Lebesgue measurable.
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Given ε > 0 let G =
(
3− ε

3
, 3 + ε

3

)
. By Propostion 1.1.8 and by

Proposition 1.1.11,

m∗(G \ E) = m∗ ((3− ε
3 , 3) ∪ (3, 3 + ε

3 ))

≤ m∗ ([3− ε
3 , 3 +

ε
3 ])

=
2ε

3
< ε .

Example 1.2.3. If G is an open set, thenm∗(G\G) = m∗(∅) = 0 < ε

for every ε > 0. Consequently, every open set in Rn is Lebesgue

measurable.

Example 1.2.4. Every set with Lebesgue outer measure 0 is mea-

surable. To verify this, suppose E ⊆ Rn is a set with m∗(E) = 0.

Given ε > 0, by Theorem 1.1.13, there is an open set G containing E

with

m∗(G) < m∗(E) + ε = ε .

By Proposition 1.1.8,

m∗(G \ E) ≤ m∗(G) < ε .

Hence, E is Lebesgue measurable.

Theorem 1.2.5. Let {Ek} be a countable collection of Lebesgue mea-

surable sets. Then

E =
⋃

Ek

is Lebesgue measurable and

m(E) ≤
∑

m (Ek) .

Proof. Let ε > 0 be given. We must show there exists an open set

G containing E =
⋃
Ek such that m∗(G \ E) < ε.

For each k there exists an open set Gk containing Ek such that

m∗ (Gk \ Ek) <
ε

2k
.

Set

G =
⋃

Gk .

It follows that ⋃
Gk \

⋃
Ek ⊆

⋃
(Gk \ Ek) .
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Thus, G is an open set containing E and

m∗ (G \ E) = m∗
(⋃

Gk \
⋃

Ek

)
≤ m∗

(⋃
(Gk \ Ek)

)
≤

∑
m∗ (Gk \ Ek)

<
∑ ε

2k
≤ ε .

The assertion that

m(E) ≤
∑

m (Ek)

follows from the definition of Lebesgue measure and Proposition 1.1.9.

�

We will use this to show that some basic sets, namely intervals,

are Lebesgue measurable.

Example 1.2.6. Let I ⊆ Rn be a closed interval in Rn. Then I

is the union of its interior, which is an open set, and its sides. The

open interior is measurable by Example 1.2.3. The sides are subsets

of hyperplanes, which have Lebesgue outer measure 0. Thus, the

sides have Lebesgue outer measure 0 and are Lebesgue measurable by

Example 1.2.4. Consequently, I is the countable union of measurable

sets. By Theorem 1.2.5, I is Lebesgue measurable. To be a little

more precise about this, we write

I = {x = (x1, x2, . . . , xn) ∈ Rn | ai ≤ xi ≤ bi for i = 1, 2, . . . , n}
= {x ∈ Rn | ai < xi < bi}

∪
n⋃

k=1

{x ∈ I | xk = ak} ∪
n⋃

k=1

{x ∈ I | xk = bk} .

Furthermore, since I is Lebesgue measurable,

m(I) = m∗(I) = v(I)

by Proposition 1.1.11.

We are building towards our goal of showing that Lebesgue mea-

sure has the feature we desire, that is, the measure of the union of

disjoint Lebesgue measurable sets is the sum of the measures. There
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I

J

K

Figure 1.4. I and J are nonoverlapping, while I and K over-
lap, as do J and K.

are situations close to this. What if two sets abut or are adjacent

to each other? To be more precise, we will consider nonoverlapping

intervals.

Definition 1.2.7. Let I and J be two closed intervals in Rn. I and

J are said to be nonoverlapping if I and J have disjoint interiors.

In other words, two closed intervals I and j are nonoverlapping

if I ∩ J is either empty or consists of only points that are on the

boundary of both I and J .

Example 1.2.8. Let

I = {(x, y) | 0 ≤ x ≤ 4, 0 ≤ y ≤ 2} ,
J = {(x, y)

∣∣ 2 ≤ x ≤ 6, 2 ≤ y ≤ 4} ,
K = {(x, y) | 3 ≤ x ≤ 5, 1 ≤ y ≤ 3} .

Then I and J are nonoverlapping. Neither I and K nor J and K are

nonoverlapping.

Lemma 1.2.9. Let {In}Mn=1 be a finite collection of pairwise non-

overlapping closed intervals. Then

m

(
M⋃
n=1

In

)
=

M∑
n=1

v(In) .
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Proof. It follows from Example 1.2.6 and Theorem 1.2.5 that⋃M
n=1 In is measurable and

m

(
M⋃
n=1

In

)
≤

M∑
n=1

v(In) .

We need only establish the reverse inequality.

As in Proposition 1.1.11, if S = {Jl} is a covering of
⋃M

n=1 In by

closed intervals, our intuition tells us that

M∑
n=1

v(In) ≤
∑

v(Jl) = σ(S) .

As before, actually writing a proof of this in just the finite case is

quite involved. But one can carry this out by making appropriate

adjustments to Exercise 26 and Exercise 27.

Therefore, similar to the proof of Proposition 1.1.11, we will as-

sume the desired inequality is true if we cover
⋃M

n=1 In by a finite

collection of closed intervals and use this to proceed in showing that

the inequality remains true if S is a countably infinite collection of

intervals. Let S = {Jl} be a covering of
⋃M

n=1 In by closed intervals.

Let ε > 0. Let J∗
l be an expanded version of Jl such that

Jl ⊆ int (J∗
l )

and

v (J∗
l ) ≤ (1 + ε)v (Jl) .

Then {int (J∗
l )} is an open cover of the compact set

⋃M
n=1 In. Thus,

for some integer N ,

M⋃
k=1

Ik ⊆
N⋃
l=1

int (J∗
l ) ⊆

N⋃
l=1

J∗
l .
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We have now covered
⋃M

n=1 In by a finite collection of closed intervals,

so
M∑
k=1

v (Ik) ≤
N∑
l=1

v (J∗
l )

≤ (1 + ε)

N∑
l=1

v (Jl)

≤ (1 + ε)σ(S) .

Since ε was arbitrary, it follows that

M∑
k=1

v (Ik) ≤ σ(S)

for any covering S of

M⋃
n=1

In by closed intervals. Therefore,

M∑
k=1

v (Ik) ≤ m

(
M⋃
n=1

In

)
,

as required. �

So far we have shown that not only is it the case that the finite

union of nonoverlapping intervals is Lebesgue measurable, we actually

can find the Lebesgue measure of such a set by adding the volumes of

the intervals. We will next show that any nonempty open set is the

countably infinite union of nonoverlapping intervals, and we actually

can find its measure by adding the volumes of the intervals.

Lemma 1.2.10. Every nonempty open set G ⊆ Rn can be written as

the countable union of pairwise nonoverlapping closed intervals.

Proof. Let G ⊆ Rn be an open set. Divide Rn into nonoverlapping

intervals along the hyperplanes xi = k, where k ∈ Z, thus creating

a countable collection of closed intervals. Set aside those closed in-

tervals which are completely contained in G. This is our first layer;

we have set aside a countable number of closed intervals. For the

second step, subdivide each remaining closed interval into subinter-

vals along the hyperplanes xi = k/2, where k ∈ Z. This takes each
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Figure 1.5. Each of the intervals contained in G are retained;
the rest are subdivided.

remaining closed interval and creates 2n nonoverlapping closed subin-

tervals. Once again we have a countable collection of closed intervals.

From these, set aside those closed intervals contained in G, again

a countable number. Next, subdivide each remaining closed inter-

val into subintervals along the hyperplanes xi = k/22, where k ∈ Z.

This takes each remaining closed interval and creates 2n nonoverlap-

ping closed subintervals. Once again we have a countable collection

of closed intervals. From these, set aside those closed intervals con-

tained in G, again a countable number. This is the third step of the

process. (See Figure 1.5.) Repeat this process ad infinitum.

We now have set aside a countable collection of nonoverlapping

closed intervals {Ik} each contained in G. It follows immediately that⋃
Ik ⊆ G .

We will show the reverse inclusion.

Let x ∈ G. Suppose to the contrary x /∈
⋃
Ik. Since G is open,

there is an open ball B centered at x contained in G. Eventually in

our process of subdividing intervals, the closed intervals under con-

sideration will have diameters smaller than the radius of this ball. At

the first such stage, x must be in one of the closed intervals which in

turn will be contained in B. But B is a subset of G, so this closed

interval is now contained in G. Therefore, this interval will now be

placed in our collection {Ik}. But this contradicts the assumption
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that x /∈
⋃
Ik. Hence, x ∈

⋃
Ik, so

G ⊆
⋃

Ik .

Therefore,

G =
⋃

Ik;

that is, G can be written as a countable union of nonoverlapping

closed intervals. �

Note that each of the intervals Ik is closed but G is open. If we

only required a finite union of nonoverlapping closed intervals, this

would mean G is a closed set. The only nonempty subset of Rn that

is both open and closed is Rn itself. But Rn cannot be written as

a finite union of closed intervals because each interval is bounded.

Therefore, it must be the case that the countable union guaranteed

by the previous theorem must be a countably infinite union. We can

go a little further with this and say something about the measure

of the open set G and the volumes of the intervals created by this

lemma.

Corollary 1.2.11. Every open set G ⊆ Rn can be written as a count-

ably infinite union of nonoverlapping closed intervals G =
⋃∞

k=1 Ik
with

m(G) =

∞∑
k=1

v(Ik) .

Proof. By Lemma 1.2.10,

G =

∞⋃
k=1

Ik,

where {Ik} is a countable collection of nonoverlapping closed intervals.

By Proposition 1.1.9 and Proposition 1.1.11,

m(G) ≤
∞∑
k=1

v(Ik) .

Therefore, it suffices to establish the reverse inequality.

By Lemma 1.2.9, for each integer M ∈ N,

M∑
k=1

v(Ik) = m

(
M⋃
k=1

Ik

)
≤ m(G) .



1.2. Lebesgue Measure 37

Taking the limit as M approaches infinity establishes the reverse in-

equality. �

We are accustomed to thinking about the distance between two

points in Rn. That is, if x = (x1, x2, . . . , xn) ∈ Rn and y = (y1, y2, . . . ,

yn) ∈ Rn then the distance between x and y is

d(x, y) =
√
(x1 − y1)2 + (x2 − y2)2 + . . .+ (xn − yn)2 .

We can also define the distance between nonempty subsets of Rn.

Definition 1.2.12. Let E1 and E2 be nonempty subsets of Rn. The

distance between E1 and E2, denoted d (E1, E2), is defined as

d (E1, E2) = inf
{
d(x, y)

∣∣ x ∈ E1, y ∈ E2

}
.

Notice that it is possible for d (E1, E2) = 0 even if E1 and E2 are

disjoint.

Example 1.2.13. Consider the following two subsets of R1, E1 =

[0, 1), and E2=(1, 2]. Then E1 and E2 are disjoint, but d (E1, E2)=0.

It is also possible for d (E1, E2) = 0 even if E1 and E2 are disjoint

closed sets.

Example 1.2.14. Let

E1 = {(x, y) ∈ R2
∣∣ x > 0, y ≥ 1

x
},

E2 = {(x, y) ∈ R2
∣∣ y ≤ 0} .

Then once again E1 and E2 are disjoint, but d (E1, E2) = 0.

Remark 1.2.15. It is a fact that if E1 and E2 are disjoint compact

sets, then d (E1, E2) > 0.

The previous remark is actually a theorem resulting from the

definition of compactness. Although we will not prove it here, the

interested reader may find the proof an interesting exercise. The

reason for stating this remark is that we will use it in Theorem 1.2.17.

We will now show that if there is a positive distance between two

sets, the outer measure of the union is the sum of the outer measures

of the two sets.
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Lemma 1.2.16. If d (E1, E2) > 0, then

m∗(E1 ∪ E2) = m∗(E1) +m∗(E2) .

Proof. If one of m∗(E1) or m
∗(E2) is infinite, then m∗(E1∪E2) will

also be infinite by Proposition 1.1.8, and the result is true. So we will

assume both of these quantities are finite.

By Proposition 1.1.9 we know that

m∗(E1 ∪ E2) ≤ m∗(E1) +m∗(E2) .

Hence, we need to verify the reverse inequality.

Let ε > 0 be given. There is a covering S = {Ik} of E1 ∪ E2 by

closed intervals so that

σ(S) =
∑

v(Ik) < m∗(E1 ∪ E2) + ε .

Take these intervals and subdivide them, if necessary, into nonoverlap-

ping closed subintervals with diameter smaller than 1
2d (E1, E2). Call

this new covering of E1 ∪E2 S∗. By construction, σ(S∗) = σ(S). All

of the intervals in S∗ have diameter less than d (E1, E2), so none will

overlap both E1 and E2. Let

S1 = {Jl ∈ S∗ ∣∣ Jl ∩ E1 �= ∅},
S2 = {Jl ∈ S∗ ∣∣ Jl ∩ E2 �= ∅},
S3 = {Jl ∈ S∗ ∣∣ Jl ∩ (E1 ∪ E2) = ∅} .

In other words, we have taken our new covering of E1 ∪E2 by closed

intervals and sorted the intervals by whether they touch E1, or E2,

or neither. Thus, S1 is a covering of E1 by closed intervals, S2 is a

covering of E2 by closed intervals, and

m∗(E1) +m∗(E2) ≤ σ(S1) + σ(S2)

≤ σ(S1) + σ(S2) + σ(S3)

= σ(S∗)

< m∗(E1 ∪ E2) + ε .

Since ε is arbitrary, we have

m∗(E1) +m∗(E2) ≤ m∗(E1 ∪ E2) .
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Therefore,

m∗(E1 ∪E2) = m∗(E1) +m∗(E2),

as claimed. �

Although our goal is to show that the Lebesgue measure of the

union of disjoint sets is the sum of the measures, we still don’t have

many measurable sets at our disposal. We know that sets with zero

outer measure, open sets, intervals, and finite union of the above

are measurable. What other sets are measurable? Are closed sets

measurable? Given a specific example of a closed set, chances are

that one could use what we already know to show that a specific

set is measurable. However, we will cover all closed sets with the

following theorem.

Theorem 1.2.17. Every closed subset of Rn is Lebesgue measurable.

Proof. Let F ⊆ Rn be a closed set. We will consider two cases.

(i) First assume that F is a bounded set. Hence, F is a compact

set and m∗(F ) is finite. Let ε > 0. By Theorem 1.1.13, there

is an open set G containing F with

m∗(G) < m∗(F ) + ε .

Remember the caution after Corollary 1.1.14. This alone

does not tell us the result we want, that m∗(G \ F ) < ε. It

takes a surprising amount of effort to reach this conclusion.

The set G \ F is an open set. Thus, by Lemma 1.2.10,

G\F can be written as a countable union of nonoverlapping

closed intervals, say

G \ F =
⋃

Ik .

For each positive integerN ,
⋃N

k=1 Ik is a closed and bounded

set, and so is compact. Moreover, F ∩
⋃N

k=1 Ik = ∅. By

Remark 1.2.15,

d

(
F,

N⋃
k=1

Ik

)
> 0 .
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For each positive integer N ,

N∑
k=1

v(Ik) = m∗

(
N⋃

k=1

Ik

)

= m∗

(
F ∪

N⋃
k=1

Ik

)
−m∗(F )

≤ m∗(G)−m∗(F ) < ε .

By taking the limit as N goes to ∞,

∞∑
k=1

v(Ik) ≤ ε .

Therefore,

m∗(G \ F ) = m∗
(⋃

Ik

)

≤
∞∑
k=1

v(Ik) ≤ ε .

Hence, F is measurable.

(ii) Assume F is unbounded. Set

BR = {x ∈ Rn
∣∣ |x| ≤ R} and

FN = F ∩BN .

Thus, for each integer N , FN is a closed and bounded set.

By (i), FN is a measurable set for each integer N . Moreover,

F =
∞⋃

N=1

FN

is a countable union of measurable sets. Therefore, F is

measurable by Theorem 1.2.5. �

In this last proof we tackled the case where F is unbounded by

writing F as the countable union of bounded sets. This is a common

strategy; to deal with an unbounded set we simply write it as the

countable union of bounded sets. We will see this technique used

again.
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Theorem 1.2.18. Let E ⊆ Rn. If E is Lebesgue measurable, then

Ec = {x = (x1, x2, . . . , xn) ∈ Rn
∣∣ x /∈ E}

is measurable.

Proof. Assume E ⊆ Rn is measurable. Then for every positive inte-

ger k there exists an open set Gk containing E such that

m∗ (Gk \ E) <
1

k
.

For every k,

Gc
k ⊆ Ec,

hence

∞⋃
k=1

Gc
k ⊆ Ec .

Let Z = Ec \
⋃∞

k=1 G
c
k so that

Ec = Z ∪
∞⋃
k=1

Gc
k .

For each k, Gc
k is a closed set and hence is measurable by Theo-

rem 1.2.17. It remains to show that Z is measurable.
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We will show that Z has Lebesgue outer measure 0. Then by

Example 1.2.4, Z will be Lebesgue measurable. For each integer k,

Z ⊆ Ec \Gc
k = Gk \ E .

Thus,

m∗(Z) ≤ m∗(Gk \ E) <
1

k

for each positive integer k. It follows that m∗(Z) = 0.

Therefore, Ec may be written as

Ec = Z ∪
∞⋃
k=1

Gc
k,

the union of measurable sets. Thus, Ec is measurable. �

Now we have shown that open sets, closed sets, countable unions

of measurable sets, and complements of measurable sets are measur-

able. One might wonder if the intersection of measurable sets is also

measurable. This is indeed the case. We state the following proposi-

tion and leave the proof to the reader as an exercise.

Proposition 1.2.19. Let {Aj} be a countable collection of Lebesgue

measurable subsets of Rn. Then the set

A =
⋂

Aj

is Lebesgue measurable.

Proof. This is Exercise 11. �

We have now shown that the collection of Lebesgue measurable

sets contains the empty set, is closed under set complement, and is

closed under countable unions. Such a collection of sets is known as

a σ-algebra. We will encounter σ-algebras in Chapter 4. For now, we

make the observation that since all open sets are measurable and the

collection of measurable sets is closed under countable intersections,

a set that is the intersection of a countable collection of open sets

must be measurable. Similarly, all closed sets are measurable. Thus,

a set that is the union of a countable collection of closed sets is also

measurable.
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Definition 1.2.20. A set H is of type Gδ if H is the intersection of

a countable collection of open sets. A set H is of type Fσ if H is the

union of a countable collection of closed sets.

We have already shown that all sets of type Gδ or of type Fσ are

Lebesgue measurable. But to get a better feel for these sets we will

look at some examples.

Example 1.2.21. The half open interval (0, 1] in R1 is of type Gδ

since

(0, 1] =
∞⋂

n=1

(
0, 1 + 1

n

)
.

Example 1.2.22. The set

A = {(x, y) ∈ R2 | 1 ≤ x < 2 and 3 < y ≤ 5}
in R2 is of type Fσ since

A =

∞⋃
n=1

{(x, y) ∈ R2 | 1 ≤ x ≤ 2− 1
n
and 3 + 1

n
≤ y ≤ 5} .

Your next step should be to write down an example of a set and

determine if it is of type Gδ or of type Fσ. Once you do so, you will

discover that there are many examples of sets that are of type Gδ

or of type Fσ. In fact, it is hard to imagine a set that is not one of

these two types. In Chapter 4 we will show (assuming the Axiom of

Choice) that there are indeed sets that are not one of these two types.

Our definition for a set to be Lebesgue measurable required that

the set be contained in an open set where the excess has arbitrarily

small outer measure. One can also require that the set contain a

closed set where the excess has arbitrarily small measure.

Proposition 1.2.23. Let E ⊆ Rn be a set. E is Lebesgue measurable

if and only if for every ε > 0 there is a closed set F with F ⊆ E and

m∗(E \ F ) < ε.

Proof. This is Exercise 15. �

Finally, we arrive at the advantage that Lebesgue measure has

over outer measure. That is, the measure of the union of a countable

collection of disjoint measurable sets is the sum of the measures.
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Theorem 1.2.24. Let {Ek} be a countable collection of pairwise dis-

joint Lebesgue measurable subsets of Rn. Then

m
(⋃

Ek

)
=
∑

m (Ek) .

Proof. First we observe that this result clearly holds if for some

k ∈ N, m(Ek) is infinite. Thus, we may assume that for every k ∈ N,

m(Ek) is finite.

(i) First consider the case where each Ek is a bounded set. By

Proposition 1.1.9 we have the inequality

m
(⋃

Ek

)
≤
∑

m (Ek) .

We need to show the reverse inequality.

Let ε > 0 be given. By Proposition 1.2.23 (proved in

Exercise 15), for each k ∈ N there is a closed set Fk ⊆ Ek

with

m∗(Ek \ Fk) <
ε

2k
.

In this case, m(Ek) = m∗(Ek) is finite for each k. By Corol-

lary 1.1.10,

m∗(Ek)−m∗(Fk) ≤ m∗(Ek \ Fk) <
ε

2k

for each integer k. Since {Ek} is a countable collection

of pairwise disjoint bounded sets, {Fk} is a collection of

pairwise disjoint closed sets. Moreover, since each Ek is

bounded, each Fk is bounded as well. Hence, {Fk} is a

collection of pairwise disjoint compact sets. Consequently,

pairwise there is a positive distance between these sets. By

induction and Lemma 1.2.16, for every positive integer M ,

m

(
M⋃
k=1

Fk

)
=

M∑
k=1

m (Fk) .

Therefore, for every positive integer M ,

M∑
k=1

m (Fk) ≤ m
(⋃

Ek

)
.
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Thus, for every M ,

M∑
k=1

(
m (Ek)−

ε

2k

)
≤ m

(⋃
Ek

)
,

which implies

M∑
k=1

m (Ek) ≤ m
(⋃

Ek

)
+ ε .

Taking the limit as M approaches infinity yields

∑
m (Ek) ≤ m

(⋃
Ek

)
+ ε .

Since ε was arbitrary, we have established the desired in-

equality.

(ii) We now consider the situation where it is not the case that

each Ek is bounded. As in Theorem 1.2.17, we will reduce

this case to our earlier bounded case. Set

Ek,1 = Ek ∩B1

and

Ek,j = Ek ∩
(
Bj \Bj−1

)
for j = 2, 3, . . .. Now {Ek,j} is a countable collection of

pairwise disjoint, bounded, measurable sets. By part (i),

∑
j

m(Ek,j) = m

⎛
⎝⋃

j

Ek,j

⎞
⎠ = m(Ek) .

Also by part (i),

m

⎛
⎝⋃

k,j

Ek,j

⎞
⎠ =

∑
k,j

m (Ek,j) .
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Therefore,

m

(⋃
k

Ek

)
= m

⎛
⎝⋃

k

⋃
j

Ek,j

⎞
⎠

=
∑
k

∑
j

m (Ek,j)

=
∑
k

⎛
⎝∑

j

m (Ek,j)

⎞
⎠

=
∑
k

m (Ek) .

Thus,

m
(⋃

Ek

)
=
∑

m (Ek) ,

as claimed. �

1.3. A Nonmeasurable Set

In this section we will show the existence of a nonmeasurable set in

R1. The proof relies on the Axiom of Choice and can be generalized

to Rn. The only place in later chapters that we will use the material

from this section is in Remark 4.1.14 so this section can be omitted.

On the other hand, to see that we needed to make the seemingly

awkward definition of measurability in order to prove something like

Theorem 1.2.24 is interesting in its own right.

The main tool to show the existance of a nonmeasurable set is

the following lemma.

Lemma 1.3.1. Let E ⊆ R1 be a measurable set. If m(E) > 0,

including infinite measure, then the set of all arithmetic differences

DE = {x− y
∣∣ x, y ∈ E}

contains an interval centered at 0.

The proof of this lemma is somewhat long and fairly technical.

Our real goal is to show the existance of a nonmeasurable set. In

order to keep from getting bogged down in the details of the lemma,

we will defer its proof until later. First, we will illustrate this lemma.
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Example 1.3.2. Let E = {−1} ∪ [2, 3) ∪ (4, 6]. Then m(E) = 3 and

DE = [−7,−5) ∪ [−4, 4] ∪ (5, 7],

which contains an interval centered at 0.

Example 1.3.3. Although the Cantor set C has measure 0, as we

will show, the corresponding set of arithmetic differences is

DC = [−1, 1] .

Since C ⊆ [0, 1], it must be the case that DC ⊆ [−1, 1]. We will show

that the reverse inclusion holds as well.

Let α ∈ [−1, 1]. Then 1
2
(α + 1) ∈ [0, 1] has a ternary expansion,

say
1
2 (α+ 1) = .(3)c1c2c3 . . . , where ci = 0, 1, or 2 .

Set

x = .(3)a1a2a3 . . . ,

y = .(3)b1b2b3 . . . ,

where

ai =

{
0 if ci = 0 or 1,

2 if ci = 2
and bi =

{
0 if ci = 0,

2 if ci = 1 or 2.

Thus, x and y are both in the Cantor set (they each have a ternary

expansion consisting of only 0’s and 2’s). By symmetry, (1−y) is also

in the Cantor set. Also, ai + bi = 2ci for each i. Therefore,

x+ y = 2
(
1
2 (α+ 1)

)
= α+ 1 .

Consequently,

α = x− (1− y) .

We have now shown that α is the difference of two members of the

Cantor set.

Observe that in this case, Lemma 1.3.1 does not apply because

m(C) = 0. Even so, the corresponding set of arithmetic differences

does contain an interval centered at the origin. Take a moment to

think about what this means. At first glance the Cantor set seems

almost sparse. Yet the corresponding set of differences is an interval

of length 2!
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Example 1.3.4. Let A = {2, 6}. The corresponding set of arithmetic

differences is

DA = {−4, 0, 4} .
This set does not contain an interval. However, this does not contra-

dict Lemma 1.3.1 since m(A) = 0.

The theorem that gives us a nonmeasurable set is due to Vitali.

Theorem 1.3.5. There exists a nonmeasurable subset of R1.

Proof. Define the equivalence relation ∼ on R by

x ∼ y if and only if x− y ∈ Q .

This partitions R into equivalence classes. For example, the equiva-

lence class of 3, denoted [3]∼, is

[3]∼ = {x ∈ R
∣∣ x ∼ 3}

= {x ∈ R
∣∣ x− 3 ∈ Q}

= Q,

while

[π]∼ = {x ∈ R
∣∣ x ∼ π}

= {π + q
∣∣ q ∈ Q} .

Two of these equivalence classes are either the same or disjoint. In

fact,

[x]∼ = [y]∼ if and only if x ∼ y,

[x]∼ ∩ [y]∼ = ∅ if and only if x �∼ y .

For example,
[√

2 + 2
3

]
∼ = [

√
2]∼, while [π]∼ ∩

[
π
2

]
∼ = ∅. Moreover,

there are an uncountable number of these equivalence classes.

It is here that we employ the Axiom of Choice. Form a set A

by picking exactly one element from each equivalence class. We will

show that A must be nonmeasurable. To the contrary, assume that

A is measurable. Then either (i) m(A) > 0 or (ii) m(A) = 0.

(i) Assume A is measurable and m(A) > 0. By Lemma 1.3.1,

the set of arithmetic differences DA contains an interval cen-

tered at 0. However, if x and y are in different equivalence
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classes, then x− y /∈ Q. Hence, the only rational number in

DA is 0, contradicting Lemma 1.3.1. Therefore, it cannot

be the case that m(A) > 0.

(ii) Assume A is measurable and m(A) = 0. The set of rational

numbers is countable. So there exists {rk}∞k=1, a counting

of Q. That is, Q = {rk}∞k=1. For each k ∈ N let

Ak = {a+ rk
∣∣ a ∈ A} .

By Exercise 8, m(Ak) = m(A) = 0.

If x ∈ R, then x ∼ a for some a ∈ A. After all, x ∈ [x]∼
and A contains exactly one element from [x]∼. Thus, x =

a+ q for some q ∈ Q. Therefore,

∞⋃
k=1

Ak = R .

On the other hand, if k �= j, then Ak �= Aj , so {Ak} is

a countable collection of pairwise disjoint measurable sets.

Therefore,

m(R) = m

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

m(Ak) = 0,

a contradiction.

Therefore, A must be a nonmeasurable set. �

Now that we have seen how Lemma 1.3.1 is used to show the

existence of a nonmeasurable set, we will turn to its proof.

Proof. Assume E is a measurable subset of R with positive measure.

Our goal is to show that the set of arithmetic differences DE contains

an interval centered at 0. If E is not bounded, for n ∈ N set En =

E ∩ [−n, n]. Then E =
⋃
En and

m(E) ≤
∞∑

n=1

m(En) .

Thus, m(En) > 0 for some n. Also,

DEn
⊆ DE .
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IfDEn
contains an interval centered at 0, thenDE will as well. Hence,

without loss of generality, we may assume that E is bounded, for if

not, we simply work with the En with positive measure.

By Theorem 1.1.13, given any ε > 0 there is an open set G con-

taining E with

m(G) < m(E) + ε .

In particular, this is the case for ε = 1
3
m(E) > 0. That is, there is an

open set G containing E with

m(G) <
4

3
m(E) .

By Lemma 1.2.10, the open set G is the union of countably many

nonoverlapping closed intervals, say

G =

∞⋃
k=1

Ik .

Also, since E ⊆ G,

E =

∞⋃
k=1

(E ∩ Ik) .

Moreover, by Corollary 1.2.11,

m(G) =

∞∑
k=1

m(Ik) .

Next, we claim that for some k, m(Ik) ≤ 4
3m(E ∩ Ik). If, to the

contrary, m(Ik) >
4
3m(E ∩ Ik) for every k, then

4

3
m(E) =

4

3
m

( ∞⋃
k=1

(E ∩ Ik)

)

≤ 4

3

∑
m(E ∩ Ik)

<
∑

m(Ik) = m(G),

contradicting our choice of G.

We now know that m(Ik) ≤ 4
3m(E ∩ Ik) for some k. Denote

I = Ik and E = E ∩ Ik. Thus m(I) ≤ 4
3m(E). Note that DE ⊆ DE

since E ⊆ E. We will show that DE contains an interval centered at

the origin.
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We showed the existence of the interval I with m(I) ≤ 4
3
m(E)

because we know what the intervals look like, whereas we have no

such knowledge about E or E . Let d ∈ R with |d| < 1
2
v(I). Set

I + d = {x+ d
∣∣ x ∈ I},

E + d = {x+ d
∣∣ x ∈ E} .

I + d is merely the interval I shifted by less than half of the length

of I and will overlap I. In fact, by our choice of d, m
(
(I+ d)∪I

)
<

3
2m(I).

We will show (E + d) ∩ E �= ∅ for d ∈ R. To see this, assume the

contrary. By Exercise 8, m(E + d) = m(E) and m(I + d) = m(I). If
(E + d) ∩ E = ∅, then by Theorem 1.2.24,

2m(E) = m(E + d) +m(E)
= m ((E + d) ∪ E)
≤ m ((I + d) ∪ I)

<
3

2
m(I) .

This leads to 4
3m(E) < m(I), a contradiction.

We have established that if d ∈ R with |d| < 1
2v(I), then (E +

d) ∩ E �= ∅. In other words, for some real number x, x ∈ (E + d) ∩ E .
In particular, x ∈ E and

x = y + d

for some y ∈ E . Hence, d = x−y, where both x and y are in E . Thus,
d ∈ DE .

Let δ = 1
2v(I). Whenever |d| < δ, then d ∈ DE . Therefore,

(−δ, δ) ⊆ DE ⊆ DE .

Consequently, DE contains an interval centered at 0. �

Assuming the Axiom of Choice and the existence of a nonmeasur-

able set, we will show that there are disjoint sets where the outer

measure of the union is strictly less than the sum of the outer mea-

sures.
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Example 1.3.6. By Exercise 25, there is a nonmeasurable subset

A of [0, 1]. If m∗(A) = 0, then A would be a measurable set by

Example 1.2.4. Therefore

0 < m∗(A) ≤ 1 .

Let δ = m∗(A). The set of rational numbers in the interval [0, 1] is a

countable set, say Q ∩ [0, 1] = {rk}. Hence {A + rk} is a countable

collection of pairwise disjoint sets with A + rk ⊆ [0, 2] for each k.

Thus, for every N ,

m∗

(
N⋃

k=1

(A+ rk)

)
≤ m∗([0, 2]) = 2 .

If it were the case that the outer measure of this union equalled the

sum of the outer measures, then

Nδ =
N∑

k=1

m∗(A+ rk) = m∗

(
N⋃

k=1

(A+ rk)

)
≤ 2,

a contradiction when N is large.

1.4. Exercises

(1) Let A be a finite set of real numbers. Use the definition of

outer measure to show m∗(A) = 0.

(2) Let A be a countable set of real numbers. Use the definition

of outer measure to show m∗(A) = 0.

(3) Let S and T be coverings of a set A by intervals.

a) Explain why S ∪ T is also a covering of A by intervals.

b) Show that σ(S ∪ T ) ≤ σ(S) + σ(T ).

(4) Show that for c ∈ R and fixed k, the set (known as a hyper-

plane in Rn)

A = {x = (x1, x2, . . . , xk, . . . , xn) ∈ Rn | xk = c}

has Lebesgue outer measure 0.

(5) Suppose A and B are both Lebesgue measurable. Prove that

if both A and B have measure zero, then A∪B is Lebesgue

measurable and m(A ∪B) = 0.

a) Do this directly from Definition 1.2.1.
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b) Give a shorter proof by using Theorem 1.2.5.

(6) Suppose A has Lebesgue measure zero and B ⊆ A. Prove

B is Lebesgue measurable and m(B) = 0.

(7) Prove Corollary 1.1.10. Give an example to show that the

result does not necessarily hold if m∗(B) is not finite.

(8) Let A be a subset of R and c ∈ R. Define A + c to be the

set

A+ c = {x+ c
∣∣ x ∈ A} .

a) Prove m∗(A+ c) = m∗(A).

b) Prove that A+ c is Lebesgue measurable if and only if

A is Lebesgue measurable.

(9) Generalize the previous exercise to Rn.

(10) Let c > 0. For a set A ⊆ R, define cA by

cA = {y ∈ R | y = c x for some x ∈ A} .

Prove that m∗(cA) = cm∗(A). What happens in Rn?

(11) Prove Proposition 1.2.19.

(12) Let Z ⊆ R be a set withm(Z) = 0. Let I = [0, 1]. Show that

Z × I is a measurable subset of R2 with Lebesgue measure

0.

(13) Let Z ⊆ R with m(Z) = 0. Set

E = {x2
∣∣ x ∈ Z} .

a) Suppose Z is bounded, that is, Z ⊆ [−n, n] for some

integer n. Show that E is Lebesgue measurable and

m(E) = 0.

b) What if Z is not bounded? Hint:

Z =
∞⋃

n=1

(Z ∩ [−n, n]) .

(14) Show that if m∗(A) = 0, then for any set B,

m∗(A ∪B) = m∗(B).

(15) Prove Proposition 1.2.23.
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(16) Let E be a measurable subset of Rn. Show that given ε > 0

there is a closed set F and an open set G with F ⊆ E ⊆ G

and m(G \ E) < ε.

(17) A measurable set A ⊆ R is said to have density d at x if the

limit

lim
h→0+

m(A ∩ [x− h, x+ h])

2h

exists and is equal to d. If d = 1, then x is called a point of

density of A, and if d = 0, then x is called a point of disper-

sion of A. Find, with justification, the points of density and

the points of dispersion of A = (−1, 0) ∪ (0, 1) ∪ {2}. What

is the density at other points? Again, justify your answers.

Note: x need not be an element of A.

(18) Let Q1 = Q ∩ [0, 1] = {x ∈ [0, 1] | x is rational}.
a) What is m∗(Q1)? Is Q1 Lebesgue measurable?

b) Let A = {(x, y) ∈ R2
∣∣ x ∈ Q1, 0 ≤ y ≤ 1}. What is

m∗(A)? Is A Lebesgue measurable?

(19) Let {Ek} be a sequence of Lebesgue measurable sets with

E1 ⊇ E2 ⊇ E3 ⊇ . . . .

Define the set E to be

E =
∞⋂
k=1

Ek .

If m(E1) < ∞, show that

m(E) = lim
k→∞

m(Ek) .

Show by example that this need not be the case if we remove

the assumption that m(E1) < ∞.

(20) Let {Ek} be a sequence of Lebesgue measurable sets for

which the series
∑∞

k=1m(Ek) converges. Show that

m

( ∞⋂
n=1

∞⋃
k=n

Ek

)
= 0 .

(21) Use the previous exercise to prove the Borel-Cantelli

Lemma: Let {Ek} be a sequence of Lebesgue measurable
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subsets of R such that
∑∞

k=1m(Ek) converges. Then almost

all x ∈ R belong to at most finitely many of the Ek’s.

(22) Construct a subset of [0, 1] in the same manner as the Cantor

set, except that at the kth stage each open interval removed

has length δ3−k, where δ is a fixed number strictly between

0 and 1. Show that the resulting set is Lebesgue measurable.

Find, with justification, the Lebesgue measure of this “fat”

Cantor set by computing the measure of its complement in

[0, 1].

(23) Construct a 2-dimensional Cantor set in the unit square

[0, 1]× [0, 1] as follows: Subdivide the square into nine con-

gruent subsquares and keep only the four closed corner

squares, removing the cross-shaped region. Repeat this pro-

cess on the four corner squares, etc. Show that the remain-

ing set is C × C, where

C × C = {(x, y) ∈ R2 | x ∈ C and y ∈ C} .

Here C is the usual Cantor set. Find, with justification, the

measure of this 2-dimensional Cantor set.

(24) Let A be a subset of Rn. Show that there is a set H of type

Gδ so that

A ⊆ H and m∗(A) = m∗(H) .

(25) Use a process similar to the proof of Theorem 1.3.5 to show

(assuming the Axiom of Choice) there exists a nonmeasur-

able subset of [0, 1].

(26) Let

I = {(x, y) ∈ R2 | a ≤ x ≤ b, c ≤ y ≤ b}

be a closed interval in R2. Let

a = a0 < a1 < . . . < am = b and

c = c0 < c1 < . . . < cn = d .

For i = 1, 2, . . . ,m and j = 1, 2, . . . , n, define the rectangle

Iij by

Iij = {(x, y) ∈ R2 | ai−1 ≤ x ≤ ai, cj−1 ≤ y ≤ cj} .
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(This can be thought of as subdividing I into subrectangles

along the vertical lines x = a1, x = a2, . . . , x = am−1 and

the horizontal lines y = c1, y = c2, . . . , y = cn−1.) Using the

definition of volume, prove
m∑
i=1

n∑
j=1

v(Iij) = v(I) .

(The ambitious reader can generalize this to higher dimen-

sions.)

(27) Let

I = {(x, y) ∈ R2 | a ≤ x ≤ b, c ≤ y ≤ b}
be a closed interval in R2. Let J1, J2, . . . , Jn be a finite

collection of closed intervals that cover I. That is,

I ⊆
n⋃

k=1

Jk .

By carefully subdividing I and the Jk’s into subrectangles,

use the previous exercise to show that

v(I) ≤
n∑

k=1

v(Jk) .



Chapter 2

Lebesgue Integration

We know that the function f(x) = x + 1 for x ∈ [0, 2] is Riemann

integrable because f is a continuous function. One of the goals of

Lebesgue integration over closed intervals is to extend the notion of

integration to other functions while still including those functions

that are Riemann integrable. For example, the Dirichlet function

from Example 0.1.3,

XQ(x) =

{
1 if x ∈ Q,

0 otherwise,

is a function that is not Riemann integrable on the interval [0, 1], but,

as we shall see, is Lebesgue integrable.

2.1. Measurable Functions

Continuous functions work well with Riemann integration. If a func-

tion is continuous on an interval [a, b], it is Riemann integrable over

that interval. But not all Riemann integrable functions are contin-

uous. However, Riemann integration was created with continuous

functions in mind. For Lebesgue integration, we will work with a

different, larger set of functions.

57
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Definition 2.1.1. Let f be defined on I = [a, b]. We say f is

Lebesgue measurable on I if for every s ∈ R the set

{x ∈ I | f(x) > s}
is a Lebesgue measurable set.

Note: This definition can also be extended to the case where

I = [a,+∞), I = (−∞, b], or I = (−∞,+∞).

Although we will discuss the more general concept of measurable

function in Chapter 4, until that time whenever we say “measurable

function”, we are referring to a Lebesgue measurable function. We

also use the term “measurable” to describe sets as well as functions.

This definition of a measurable function does involve measurable sets,

but a measurable function is not the same thing as a measurable

set. When we describe something as measurable, it should be clear

from the context whether we mean a measurable set or a measurable

function.

Example 2.1.2. Let f(x) = x2 on the interval [−1, 5]. Let s ∈ R.

(i) If s ≥ 25, then {x ∈ I | f(x) > s} = ∅, which is a Lebesgue

measurable set.

(ii) If s < 0, then {x ∈ I | f(x) > s} = [−1, 5], which is a

Lebesgue measurable set.

(iii) If 0 ≤ s < 1, then {x ∈ I | f(x) > s} = [−1,−
√
s)∪ (

√
s, 5],

which is Lebesgue measurable set.

(iv) If 1 ≤ s < 25, then {x ∈ I | f(x) > s} = (
√
s, 5], which is a

Lebesgue measurable set.

Therefore, f is a Lebesgue measurable function on the interval [−1, 5].

Definition 2.1.3. Let A be a set. The characteristic function of

A, denoted XA, is the function defined by

XA(x) =

{
1 if x ∈ A,

0 otherwise.

By Exercise 1, if E is a subset of [a, b], then the characteristic

function XE is a measurable function if and only if E is a measurable

set.
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Lebesgue measurable functions will play an important role in

Lebesgue integration. Before we proceed further, we will show that

our definition of a Lebesgue measurable function is equivalent to sev-

eral other possible definitions.

Theorem 2.1.4. Let f be defined on the interval I. The following

four statements are equivalent:

(i) f is a Lebesgue measurable function.

(ii) For every s ∈ R, the set {x ∈ I | f(x) ≤ s} is a Lebesgue

measurable set.

(iii) For every s ∈ R, the set {x ∈ I | f(x) < s} is a Lebesgue

measurable set.

(iv) For every s ∈ R, the set {x ∈ I | f(x) ≥ s} is a Lebesgue

measurable set.

Proof. We will show that

(i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i).

For every s ∈ R,

{x ∈ I | f(x) ≤ s} = I \ {x ∈ I | f(x) > s} .
Thus, (i) ⇒ (ii) by Corollary 1.1.10.

Also,

{x ∈ I | f(x) < s} =

∞⋃
k=1

{x ∈ I | f(x) ≤ s− 1
k} .

Hence, if (ii) is true, {x ∈ I | f(x) ≤ s − 1
k
} is a measurable set for

every k. Thus, by Theorem 1.2.5, {x ∈ I | f(x) < s} is a measurable

set. Consequently, (ii) ⇒ (iii).

The proof that (iii) ⇒ (iv) is similar to that of (i) ⇒ (ii). Like-

wise, the proof that (iv) ⇒ (i) is similar to the proof of (ii) ⇒ (iii). �

Just like the set of continuous functions, the set of Lebesgue mea-

surable functions is a vector space. Actually, it is more than closed

under addition and scalar multiplication; it is also closed under multi-

plication and division by nonzero measurable functions. We will first

deal with addition and multiplication by constants.



60 2. Lebesgue Integration

Theorem 2.1.5. Suppose f is a Lebesgue measurable function on the

interval I. Let c ∈ R. The following two statements are true:

(i) The function f(x) + c is a Lebesgue measurable function on

I.

(ii) The function cf(x) is a Lebesgue measurable function on I.

Proof. Let c ∈ R. Both of these statements are trivial in the case

that c = 0. Thus, we will assume c �= 0.

To see that f(x) + c is a measurable function, let s ∈ R. Then

{x ∈ I | f(x) + c > s} = {x ∈ I | f(x) > s− c} .

Since f is a measurable function, this must be a measurable set.

Hence, {x ∈ I | f(x) + c > s} is a measurable set so f(x) + c is a

measurable function.

(Note: This last sentence could have been shortened by simply

saying “Hence, {x ∈ I | f(x) + c > s} is measurable so f(x) + c is

measurable.” It would then be left to the reader to understand that

the first use of “measurable” refers to a set, while the second use of

“measurable” refers to a function. This is an example of using the

context to distinguish the meaning of the term “measurable”.)

To show that cf(x) is a measurable function is similar. The only

special consideration is whether c is positive or negative. If c > 0,

then

{x ∈ I | cf(x) > s} = {x ∈ I | f(x) > s
c},

which is a measurable set since f is a measurable function. If c < 0,

then

{x ∈ I | cf(x) > s} = {x ∈ I | f(x) < s
c
} .

In this case, by Theorem 2.1.4 this is a measurable set. Therefore, cf

is a measurable function. �

Part (ii) of the previous theorem shows that the collection of

measurable functions on an interval is closed under scalar multipli-

cation. The proof that this set is also closed under addition is less

straightforward. While it is true that

{x ∈ I | f(x) + g(x) > s} = {x ∈ I | f(x) > s− g(x)},
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this statement does not immediately show that f + g is a measur-

able function. After all, the definition of a measurable function only

guarantees that for every constant α, the set

{x ∈ I | f(x) > α}

is measurable. The number α is some fixed real number, a constant,

and cannot be a function of x. Nonetheless, as asserted earlier the

set of measurable functions is closed under both addition and multi-

plication.

Theorem 2.1.6. Let f and g be Lebesgue measurable functions on

I. The following statements hold:

(i) The function f(x) + g(x) is Lebesgue measurable on I.

(ii) The function f(x) g(x) is Lebesgue measurable on I.

(iii) If g(x) �= 0 for all x ∈ I, the function f(x)
g(x) is Lebesgue

measurable on I.

Proof. To show (i), let s ∈ R. We will use our earlier observation

that

{x ∈ I | f(x) + g(x) > s} = {x ∈ I | f(x) > s− g(x)} .

To avoid the difficulty described above, let Q = {rk} be a counting

of the set of rational numbers. Then for every k,

{x ∈ I | f(x) > rk} and {x ∈ I | g(x) > s− rk}

are measurable sets. Hence,

{x ∈ I | f(x) > rk}
⋂
{x ∈ I | g(x) > s− rk}

= {x ∈ I | f(x) > rk}
⋂
{x ∈ I | rk > s− g(x)}

is a measurable set for every k. Finally,

∞⋃
k=1

(
{x ∈ I | f(x) > rk}

⋂
{x ∈ I | rk > s− g(x)}

)

= {x ∈ I | f(x) > s− g(x)},

so f + g is a measurable function.
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From part (i) and Theorem 2.1.5, f − g is a measurable function.

Also, by Exercise 9 (f + g)2 and (f − g)2 are measurable functions.

Therefore, by Theorem 2.1.5 and Theorem 2.1.6,

fg =
1

4
(f + g)2 − 1

4
(f − g)2

is a Lebesgue measurable function on I. This proves part (ii).

Part (iii) is proved in Exercise 10. �

A type of function that will be useful in the future is a simple

function. In Lebesgue integration such functions are the analogue of

step functions in Riemann integration.

Definition 2.1.7. A simple function is a function ϕ defined on the

interval I of the form

ϕ(x) =

n∑
k=1

akXEk
(x),

where ak are constants and {Ek} are pairwise disjoint measurable

subsets of I.

The proof that a simple function is measurable is left to the reader

in Exercise 15. The Dirichlet function from Example 0.1.3 is an ex-

ample of a simple function.

In Section 2.2 we will define the Lebesgue integral on the set of

bounded measurable functions. But thinking of Riemann integration,

we know that the two functions

f(x) =

{
1 if 0 ≤ x < 1,

2 if 1 ≤ x ≤ 2
and g(x) =

{
1 if 0 ≤ x ≤ 1,

2 if 1 < x ≤ 2

are different functions since f(1) �= g(1). Yet∫ 2

0

f(x) dx =

∫ 2

0

g(x) dx .

This is because the two functions differ only at a single point. In

fact, two Riemann integrable functions will have the same Riemann

integral if they differ at only a finite number of points. How far can

we take this? The answer is, this is as far as we can go, at least
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for Riemann integration. For example, the Dirichlet function from

Example 0.1.3,

XQ(x) =

{
1 if x ∈ Q,

0 otherwise,

is a function that differs from the zero function at only a countable

number of points, yet it is not Riemann integrable.

The story is better when it comes to Lebesgue integration. It

turns out that in Lebesgue integration, when comparing two functions

it is not the number of points where they differ that matters, but the

measure of the set where the two functions differ.

Definition 2.1.8. Let f and g be two functions defined on the in-

terval I.

(i) We say f equals g almost everywhere on I, written

f(x) = g(x) a.e. or f = g a.e.,

if the set {x ∈ I | f(x) �= g(x)} has Lebesgue measure 0.

(ii) We say f is less than or equal to g almost everywhere

on I, written

f(x) ≤ g(x) a.e. or f ≤ g a.e.,

if the set {x ∈ I | f(x) > g(x)} has Lebesgue measure 0.

In a similar fashion we can define f ≥ g a.e., f < g a.e., etc.

For the most part, the results of our propositions and theorems will

be true when two functions are equal almost everywhere. In other

words, most of the time equal almost everywhere is almost always

good enough!

Proposition 2.1.9. Suppose f and g are two functions defined on

the interval I. If f is Lebesgue measurable on I and f = g a.e. on I,

then g is Lebesgue measurable on I.

Proof. Let Z = {x ∈ I | f(x) �= g(x)}. Then Z has measure 0.

Moreover, every subset of Z is a measurable set with measure 0. Given

s ∈ R, in order for g(x) > s, either x /∈ Z (so that g(x) = f(x)) and
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f(x) > s, or x ∈ Z and g(x) > s. Therefore,

{x ∈ I | g(x) > s}
= ({x ∈ I | f(x) > s} \ Z) ∪ {x ∈ Z | g(x) > s},

which is a combination of measurable sets. Therefore, g is a measur-

able function. �

If a sequence of Riemann integrable functions converges uniformly

to a function, then the limit function is Riemann integrable. More-

over, the integral of the limit is the limit of the integrals. However,

it is not always the case that two limit operations, such as integra-

tion and the pointwise limit of a sequence of functions, can be in-

terchanged. When we finally arrive at Lebesgue integration, we will

again be seeking sufficient conditions for the interchange of limit op-

erations. Instead of just considering the pointwise limit of a function,

we will also consider the limit superior and limit inferior, commonly

known as the lim sup and lim inf, respectively.

Definition 2.1.10. Let {fn} be a pointwise bounded sequence of

functions defined on I. That is, {fn(x)} is a bounded sequence of

real numbers for every x ∈ I.

(i) The lim sup of the sequence, written lim sup
n→∞

fn or denoted

by f∗, is defined by

lim sup
n→∞

fn(x) = f∗(x) = lim
n→∞

(sup{fn(x), fn+1(x), fn+2(x), . . .}) .

(ii) The lim inf of the sequence, written lim inf
n→∞

fn or denoted

by f∗, is defined by

lim inf
n→∞

fn(x) = f∗(x) = lim
n→∞

(inf{fn(x), fn+1(x), fn+2(x), . . .}) .

Note that for each x ∈ I and n ∈ N, {fn(x), fn+1(x), fn+2(x), . . .}
is a bounded set of real numbers. Thus, both

Mn(x) = sup{fn(x), fn+1(x), fn+2(x), . . .},
mn(x) = inf{fn(x), fn+1(x), fn+2(x), . . .}

are defined and finite for every x ∈ I. Also, for each x ∈ I, {Mn(x)} is
a bounded decreasing sequence while {mn(x)} is a bounded increas-

ing sequence. Hence, both lim sup
n→∞

fn = lim
n→∞

Mn(x) and lim inf
n→∞

fn =
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lim
n→∞

mn(x) are well defined. Moreover, it easily follows from the

definition that

f∗(x) ≤ f∗(x)

for all x ∈ I.

Remark 2.1.11. Another useful fact is that f∗(x) = f∗(x) if and

only if lim
n→∞

fn(x) exists. To prove this we use standard techniques

from a first real analysis course. If you feel the need for additional

practice with ε-N -type proofs, here is a golden opportunity. We will

have occasion to use this fact but will not prove it here.

Theorem 2.1.12. Let {fn} be a pointwise bounded sequence of Le-

besgue measurable functions on an interval I. Then both f∗ and f∗
are Lebesgue measurable functions on I.

Proof. Let

Mn(x) = sup{fn(x), fn+1(x), fn+2(x), . . .},
mn(x) = inf{fn(x), fn+1(x), fn+2(x), . . .} .

The first step in this proof will be to show that for every n ∈ N, both

Mn(x) and mn(x) are measurable functions.

Fix n ∈ N and let s ∈ R. We will show that {x ∈ I | Mn(x) > s}
is a measurable set. Note that Mn(x) > s if and only if fk(x) > s for

some k ≥ n. Therefore,

{x ∈ I | Mn(x) > s} =
∞⋃

k=n

{x ∈ I | fk(x) > s} ,

a union of measurable sets. Thus, Mn is a measurable function on I.

In a similar fashion we will show that {x ∈ I | mn(x) < s} is a

measurable set and use Theorem 2.1.4. Note that mn(x) < s if and

only if fk(x) < s for some k ≥ n. Therefore,

{x ∈ I | mn(x) < s} =

∞⋃
k=n

{x ∈ I | fk(x) < s} ,

a union of measurable sets. Therefore, mn is a measurable function

on I.
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To complete the proof, we observe that for each x ∈ I, the se-

quence {Mn(x)} is a nonincreasing bounded sequence while the se-

quence {mn(x)} is a nondecreasing bounded sequence. Therefore,

f∗(x) = lim
n→∞

Mn(x) = inf{Mn(x)},

f∗(x) = lim
n→∞

mn(x) = sup{mn(x)}

are measurable functions by the preceding argument. �

Corollary 2.1.13. Let {fn} be a sequence of Lebesgue measurable

functions on I that converges pointwise to f . Then the function f is

Lebesgue measurable on I.

Proof. In this case, f∗ = f∗ = f . Therefore, f is a measurable

function. �

The following corollary is a typical example of where almost ev-

erywhere is good enough.

Corollary 2.1.14. Let {fn} be a sequence of Lebesgue measurable

functions on I. If f is a function defined on I with lim
n→∞

fn(x) = f(x)

a.e., then f is Lebesgue measurable on I.

Of course, you figured out that lim
n→∞

fn(x) = f(x) a.e. means

m
(
{x ∈ I | lim

n→∞
fn(x) �= f(x)}

)
= 0 ,

didn’t you?

Proof. Let

Z = {x ∈ I | lim
n→∞

fn(x) �= f(x)} .
For each n ∈ N, set

gn(x) =

{
fn(x) if x /∈ Z,

0 if x ∈ Z

and define

g(x) =

{
f(x) if x /∈ Z,

0 if x ∈ Z.

By definition, gn = fn a.e., and hence is measurable on I by Corol-

lary 2.1.13. Also, by construction g(x) = lim
n→∞

gn(x) for all x ∈ I and
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so is measurable on I, again by Corollary 2.1.13. But g = f a.e., and

hence f is measurable on I by Proposition 2.1.9. �

2.2. The Lebesgue Integral

As mentioned in the preface, there are several routes one can take

to define the Lebesgue integral. One option is to essentially define

the Lebesgue integral for nonnegative functions as the measure of the

region bounded above by the graph of the function and below by the

x-axis. Another route is to approach the integral via simple functions,

an approach we will use in Chapter 4. We have chosen an approach

that mimics our outline of the Riemann integral. Naturally, in the

end these differing approaches arrive at the same mathematical idea.

We will start by investigating this integral on bounded functions

on a closed interval,

B[a, b] = {f | f is a bounded function on [a, b]} .
The difference between Riemann integration and Lebesgue integration

starts with a more general partition of the interval [a, b] known as a

measurable partition.

Definition 2.2.1. Ameasurable partition of [a, b] is P = {Ej}nj=1,

a finite collection of subsets of [a, b], such that

(i) Ej is a measurable set for each j,

(ii)
n⋃

j=1

Ej = [a, b], and

(iii) m(Ei ∩ Ej) = 0 if i �= j.

Instead of partitioning the interval [a, b] into subintervals, as we

do in Riemann integration, we are partitioning [a, b] into measurable

sets. Condition (iii) is the analog of requiring nonoverlapping inter-

vals.

Example 2.2.2. Let

P = {C, [0, 1], [1, 2]} ,
where C denotes the Cantor set. It is a straightforward exercise to

check that P is a measurable partition of the interval [0, 2].
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Remark 2.2.3. Suppose P = {Ej}nj=1 is a measurable partition of

[a, b]. Let

F1 = E1 and

Fk = Ek \
k−1⋃
i=1

Ei for k = 2, 3, . . . , n .

Then {Fk}nk=1 is a measurable partition of [a, b] consisting of pairwise

disjoint sets. Consequently,
n∑

j=1

m(Fj) = m([a, b]) .

But m(Fj) = m(Ej). Therefore,

n∑
j=1

m(Ej) = m([a, b]) = b− a .

The following definitions parallel those relating to Riemann inte-

gration.

Definition 2.2.4. Let f ∈ B[a, b] and P = {Ej}nj=1 be a measurable

partition of [a, b].

(i) The upper sum U [f, P ] is

U [f, P ] =
n∑

j=1

Mj m(Ej),

where Mj = sup
x∈Ej

f(x).

(ii) The lower sum L[f, P ] is

L[f, P ] =
n∑

j=1

mj m(Ej),

where mj = inf
x∈Ej

f(x).

We are using only a slight change in notation to help distinguish

a lower sum associated with a Riemann-type partition, L(f, P ), and

the one encountered here, L[f, P ]. Generally, it should be clear from

context whether we are in a Riemann setting or a Lebesgue setting.
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In the case that there might be confusion, we are using parentheses

for the former and square brackets for the latter.

Next we turn to the notion of upper integral and lower integral.

The idea is that each upper sum is greater than or equal to the de-

sired result, while the lower integral is less than or equal to the desired

result. So in some sense, we want to find a minimum upper sum or

maximum lower sum, but these don’t necessarily exist. Instead, we

will look at the set of all possible upper sums and take the infimum

(or greatest lower bound) of that set. We will treat the set of all

possible lower sums in a similar fashion by taking the supremum (or

least upper bound). This is what we describe in the next definition.

We use P to denote the collection of all possible measurable parti-

tions, or P = {P | P is a measurable partition of [a, b]}. This means

that writing P ∈ P is another way of saying that P is a measurable

partition of [a, b].

Definition 2.2.5. Let f ∈ B[a, b].

(i) The upper integral, written

∫ b

a

f , is

∫ b

a

f = inf
P∈P

U [f, P ] .

(ii) The lower integral, written

∫ b

a

f , is

∫ b

a

f = sup
P∈P

L[f, P ] .

Here inf
P∈P

U [f, P ] means inf{U [f, P ] | P ∈ P}; similarly

for sup
P∈P

L[f, P ].

(iii) If

∫ b

a

f =

∫ b

a

f , we say f is Lebesgue integrable and write

the Lebesgue integral as∫ b

a

f =

∫ b

a

f =

∫ b

a

f .
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The computation of the upper sum and lower sum for a given

partition is straightforward.

Example 2.2.6. For x ∈ [0, 1], let

XQ =

{
1 if x ∈ Q,

0 otherwise

and P be the partition P = {Q ∩ [0, 1], [0, 1] \ Q}. Then P is a

measurable partition of [0, 1]. Setting E1 = Q ∩ [0, 1] and E2 =

[0, 1] \Q, we have

M1 = sup
x∈E1

XQ(x) = 1 = inf
x∈E1

XQ(x) = m1,

M2 = sup
x∈E2

XQ(x) = 0 = inf
x∈E2

XQ(x) = m2 .

Therefore,

U [XQ, P ] =
2∑

j=1

Mj m(Ej) = 0,

L[XQ, P ] =
2∑

j=1

mj m(Ej) = 0 .

On the other hand, if P ∗ is the partition P ∗ = {[0, 1
2 ], [

1
2 , 1]},

then P ∗ is a measurable partition of [0, 1]. With E1 = [0, 1
2 ] and

E2 = [ 1
2
, 1], we have

M1 = sup
x∈E1

XQ(x) = 1 = sup
x∈E2

XQ(x) = M2,

m1 = inf
x∈E2

XQ(x) = 0 = inf
x∈E2

XQ(x) = m2 .

This time

U [XQ, P ] =

2∑
j=1

Mj m(Ej) = 1,

L[XQ, P ] =

2∑
j=1

mj m(Ej) = 0 .

But to find the Lebesgue integral directly from the definition

is a somewhat long and tedious process. In this example, we only

compared the upper and lower sums for two partitions. We have yet
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to compare the values of all possible upper sums in order to find the

upper integral. Although it follows immediately from the definition

that for every partition P , L[f, P ] ≤ U [f, P ], it is not so immediate

that

∫ b

a

f ≤
∫ b

a

f . We need to be able to compare the lower sum with

respect to one partition with the upper sum with respect to a possibly

different partition.

Definition 2.2.7. Let P = {Ej}nj=1 and P ∗ = {Fk}mk=1 be two mea-

surable partitions of [a, b]. We say P ∗ is a refinement of P if for

every k, there is a j such that Fk ⊆ Ej. If P1, P2, and P ∗ are mea-

surable partitions of [a, b] and P ∗ is a refinement of both P1 and P2,

we say P ∗ is a common refinement of P1 and P2.

Given any two measurable partitions P1 = {Ej}nj=1 and P2 =

{Fk}mk=1, there always exists a common refinement. For example,

P ∗ = {Ej ∩ Fk | Ej ∈ P1 and Fk ∈ P2}
is a common refinement of P1 and P2. We will use this notion of a

common refinement to establish the next lemma.

Lemma 2.2.8. Let f ∈ B[a, b].

(i) For any two measurable partitions P1 and P2 of [a, b],

L[f, P1] ≤ U [f, P2] .

(ii) Consequently, ∫ b

a

f ≤
∫ b

a

f .

Proof. First we will establish (i). Let P ∗ be a common refinement of

P1 and P2. Since P
∗ is a refinement of both P1 and P2, by Exercise 12,

L[f, P1] ≤ L[f, P ∗] and U [f, P ∗] ≤ U [f, P2] .

However, by our earlier observation,

L[f, P ∗] ≤ U [f, P ∗] .

Therefore,

L[f, P1] ≤ U [f, P2],

as claimed.
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Next, let P ′ be a measurable partition of [a, b]. By part (i), then,

sup
P∈P

L[f, P ] ≤ U [f, P ′] .

Hence, ∫ b

a

f ≤ U [f, P ′]

for any measurable partition P ′ of the interval [a, b]. Therefore∫ b

a

f ≤ inf
P∈P

U [f, P ] =

∫ b

a

f,

as claimed. �

We will use this result to find the Lebesgue integral of XQ on the

interval [0, 1].

Example 2.2.9. As in Example 2.2.6 for x ∈ [0, 1], let

XQ =

{
1 if x ∈ Q,

0 otherwise.

In Example 2.2.6 we found a measurable partition P where

L[XQ, P ] = U [XQ, P ] = 0 .

Therefore,

sup
P ′∈P

L[XQ, P
′] ≥ 0 .

On the other hand, by Lemma 2.2.8,

sup
P ′∈P

L[XQ, P
′] ≤ U [XQ, P ] = 0 .

Thus, ∫ 1

0

XQ ≤ 0 .

Combining our two inequalities we see that∫ 1

0

XQ = 0 .

In a similar fashion, ∫ 1

0

XQ = 0 .
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As a result, XQ is Lebesgue integrable on the interval [0, 1] and∫ 1

0

XQ = 0 .

We will now compare Lebesgue integration with Riemann inte-

gration. In particular, we will show that if f is Riemann integrable

on [a, b], then f is Lebesgue integrable on [a, b].

Proposition 2.2.10. Let f ∈ B[a, b]. If f is Riemann integrable on

[a, b], then f is Lebesgue integrable on [a, b].

Proof. For any Riemann partition of [a, b],

PR = {a = x0 < x1 < x2 < . . . < xn = b} ,

we form a corresponding measurable partition of [a, b] by setting

PL = {[x0, x1], [x1, x2], . . . , [xn−1, xn]} .

Note that

U(f, PR) =

n∑
i=1

Mi(xi − xi−1) =

n∑
i=1

Mim([xi−1, xi]) = U [f, PL],

where Mi = sup
x∈[xi−1,xi]

f(x). These partitions describe the partitions

under consideration in Riemann integration. However, for Lebesgue

integration, there are many more measurable partitions to consider.

Thus,

inf
PR

U(f, PR) ≥ inf
P∈P

U [f, P ]

and, consequently, ∫ b

a

f(x) dx ≥
∫ b

a

f .

Here the first integral denotes the upper Riemann integral, while the

second is our upper Lebesgue integral.

It can be shown in a similar fashion that∫ b

a

f(x) dx ≤
∫ b

a

f .
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Combining these inequalities, we see that

∫ b

a

f(x) dx ≤
∫ b

a

f ≤
∫ b

a

f ≤
∫ b

a

f(x) dx .

Hence, if f is Riemann integrable, that is,

∫ b

a

f(x) dx =

∫ b

a

f(x) dx,

it must be the case that

∫ b

a

f =

∫ b

a

f . Therefore, if f is Riemann

integrable on [a, b], then f is Lebesgue integrable on [a, b]. Moreover,

∫ b

a

f =

∫ b

a

f(x) dx,

where the second integral is the Riemann integral. �

The next result echoes Theorem 0.2.4. Although we are now

dealing with Lebesgue integration, the proof is much the same as the

corresponding result for Riemann integration.

Lemma 2.2.11. Let f ∈ B[a, b]. Then f is Lebesgue integrable if

and only if for every ε > 0 there is a measurable partition P such that

U [f, P ]− L[f, P ] < ε .

Proof. Assume first that f is Lebesgue integrable on [a, b]. Let ε > 0

be given. By the definition of the lower integral, there is a measurable

partition P1 of [a, b] such that

∫ b

a

f − ε
2
< L[f, P1] .

Likewise, there is a measurable partition P2 with

∫ b

a

f + ε
2 > U [f, P2] .
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Let P be a common refinement of P1 and P2. Then

U [f, P ]− L[f, P ] ≤ U [f, P2]− L[f, P1]

<

(∫ b

a

f + ε
2

)
−
(∫ b

a

f − ε
2

)

=

(∫ b

a

f −
∫ b

a

f

)
+ ε .

But f is Lebesgue integrable, and hence

∫ b

a

f =

∫ b

a

f . Therefore,

U [f, P ]− L[f, P ] < ε .

Now we will assume that for every ε > 0 there is a measurable

partition P such that U [f, P ]−L[f, P ] < ε and show that

∫ b

a

f =

∫ b

a

f .

Let ε > 0. There is a partition P with

U [f, P ]− L[f, P ] < ε .

So, for this partition

U [f, P ] < L[f, P ] + ε .

Since

∫ b

a

f ≤ U [f, P ] and

∫ b

a

f ≥ L[f, P ] for every measurable parti-

tion P , it follows that ∫ b

a

f ≤
∫ b

a

f + ε .

Since ε was arbitrary, this proves that∫ b

a

f ≤
∫ b

a

f .

By Lemma 2.2.8,

∫ b

a

f ≤
∫ b

a

f , and hence

∫ b

a

f =

∫ b

a

f .

Therefore, f is Lebesgue integrable. �
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We will now show that every bounded measurable function is

integrable. Compare this theorem to Theorem 0.2.6.

Theorem 2.2.12. Let f ∈ B[a, b]. If f is measurable on [a, b], then

f is Lebesgue integrable on [a, b].

Proof. Assume f is a bounded, measurable function on [a, b] and let

ε > 0. Because f is bounded, there is a positive number M so that

|f(x)| < M for all x ∈ [a, b].

We will now form a measurable partition of [a, b] that satisfies the

conditions of Lemma 2.2.11. To do this, let −M = y0 < y1 < y2 <

. . . < yn = M , where y1, y2, . . . , yn are chosen so that yi−yi−1 < ε
b−a

for i = 1, 2, . . . , n. Set

Ei = {x ∈ [a, b] | yi−1 ≤ f(x) < yi} = f−1 ([yi−1, yi))

for i = 1, 2, . . . , n. Since f is measurable and

Ei = {x ∈ [a, b] | yi−1 ≤ f(x) < yi}
= {x ∈ [a, b] | f(x) < yi} \ {x ∈ [a, b] | f(x) < yi−1} ,

Ei is measurable for i = 1, 2, . . . , n. Also,

n⋃
i=1

Ei = [a, b] .

Hence P = {E1, E2, . . . , En} is a measurable partition of [a, b]. More-

over, {E1, E2, . . . , En} is a pairwise disjoint collection of measurable

sets, and hence

n∑
i=1

m(Ei) = m

(
n⋃

i=1

Ei

)
= m([a, b]) = b− a .
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Finally,

U [f, P ]− L[f, P ] ≤
n∑

i=1

yim(Ei)−
n∑

i=1

yi−1m(Ei)

=

n∑
i=1

(yi − yi−1)m(Ei)

<
ε

b− a

n∑
i=1

m(Ei)

=
ε

b− a
(b− a) = ε.

Therefore, by Lemma 2.2.11, f is Lebesgue integrable on [a, b]. �

Notice that in the proof of Theorem 0.2.6 we used continuity to

make the partition fine enough so that the function did not change too

much in each subinterval. On the other hand, in Theorem 2.2.12 we

used measurability to divide the range into small intervals and took

the inverse images of this division to form our partiton of the interval

[a, b]. In this way, Theorem 0.2.6 and Theorem 2.2.12 illustrate the

difference between Riemann integration and Lebesgue integration. If

one thinks of a row of stacks of pennies, not necessarily of the same

height, as analogous to the area under the graph of a function, the

Riemann approach to counting the coins is to move from left to right

counting each stack and keeping a running total until reaching the

end. The Lebesgue approach is to keep a running total vertically,

that is, count how many stacks have a single penny, add to that two

times the number of stacks with two pennies, add to that three times

the number of stacks with three pennies, etc., until all stacks have

been counted.

We know that there are discontinuous functions that are Riemann

integrable. One might wonder if it is possible to find a bounded

function that is Lebesgue integrable but is not a measurable function.

However, unlike Riemann integration, the converse of Theorem 2.2.12

is true.

Theorem 2.2.13. Let f ∈ B[a, b]. If f is Lebesgue integrable on

[a, b], then f is measurable on [a, b].
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Before proving this theorem, we need a lemma.

Lemma 2.2.14. Let f ∈ B[a, b]. Suppose f is measurable with f ≥

0 a.e. in [a, b] and that

∫ b

a

f = 0. Then f = 0 a.e. in [a, b].

Proof. Set

g(x) =

{
f(x) if f(x) ≥ 0,

0 otherwise

so that (g−f) = 0 a.e. on [a, b]. It is easy to show that g ∈ B[a, b]. By

Proposition 2.1.9, g is measurable. By Exercise 14,

∫ b

a

(g − f) = 0.

Thus, Exercise 13 implies∫ b

a

g =

∫ b

a

(g − f) +

∫ b

a

f = 0 .

So g has the properties that g(x) ≥ 0 for all x ∈ [a, b], g = f a.e.

on [a, b], and

∫ b

a

g = 0. Therefore, without loss of generality, we may

assume that f(x) ≥ 0 for all x ∈ [a, b].

By Exercise 8 if the set

E = {x ∈ [a, b] | f(x) > 0}

has positive measure, then for some positive integer n, the set

En = {x ∈ [a, b] | f(x) > 1
n
}

has positive measure. Let P be the partition P = {En, [a, b] \ En}.
Then

L[f, P ] ≥ 1
n
m(En) > 0 .

This contradicts the assumption that

∫ b

a

f = 0. Therefore,

E = {x ∈ [a, b] | f(x) > 0} = {x ∈ [a, b] | f(x) �= 0}

has measure 0. Thus, f = 0 a.e. on [a, b], as claimed. �

We will now prove Theorem 2.2.13.
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Proof. Assume f is Lebesgue integrable on [a, b]. For each k ∈ N

there exists a partition Pk = {Ek
j }nk

j=1 of [a, b] such that

U [f, Pk]− L[f, Pk] <
1

k
.

As observed in Remark 2.2.3, we can always refine a partition to

one that consists of pairwise disjoint sets. Moreover, we can replace

P2 by a common refinement of P1 and P2, replace P3 by a common

refinement of this new P2 and P3, etc. In other words, without loss of

generality, we may assume each partition consists of pairwise disjoint

sets and Pk+1 is a refinement of Pk for each k.

Define a sequence of functions {gk} by

gk(x) =

nk∑
j=1

mk
jXEk

j
(x), where mk

j = inf
x∈Ek

j

f(x) .

By Exercise 15, gk is a measurable function for each k and

∫ b

a

gk =

nk∑
j=1

mk
jm(Ek

j ) = L[f, Pk] .

Also, for each x ∈ [a, b], the sequence {gk(x)} is an increasing se-

quence that is bounded above by f(x), and hence converges. Define

g(x) as g(x) = lim
k→∞

gk(x). Then g is a bounded measurable function

by Corollary 2.1.13. Moreover, for every k, gk(x) ≤ g(x) ≤ f(x) for

all x ∈ [a, b]. Thus,

∫ b

a

gk ≤
∫ b

a

g ≤
∫ b

a

f

so that

L[f, Pk] ≤
∫ b

a

g ≤
∫ b

a

f .

In a similar fashion define the sequence of functions {hk} as

hk(x) =

nk∑
j=1

Mk
j XEk

j
(x), where Mk

j = inf
x∈Ek

j

f(x) .
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This pointwise decreasing sequence of functions will converge to a

measurable function h ≥ f with h. Thus,∫ b

a

f ≤
∫ b

a

h ≤
∫ b

a

hk

so that ∫ b

a

f ≤
∫ b

a

h ≤ U [f, Pk] .

This means that g(x) ≤ f(x) ≤ h(x) for all x ∈ [a, b] and

0 ≤
∫ b

a

(h− g) =

∫ b

a

h−
∫ b

a

g ≤ U [f, Pk]− L[f, Pk] <
1

k

for every positive integer k. Hence,

∫ b

a

(h− g) = 0. Thus, by Lemma

2.2.14, g = h a.e. However, g(x) ≤ f(x) ≤ h(x) for all x ∈ [a, b].

Therefore, f = g a.e. in [a, b]. By Proposition 2.1.9, f is a measurable

function on [a, b]. �

2.3. Properties of the Lebesgue Integral

Up to this point, we have only considered bounded functions. We will

now define the Lebesgue integral for unbounded functions.

Definition 2.3.1. Let f be an unbounded function defined on [a, b].

(i) Suppose f(x) ≥ 0 for all x ∈ [a, b]. For N > 0 define

Nf(x) =

{
f(x) if f(x) ≤ N,

N otherwise.

We say f is Lebesgue integrable on [a, b] if fN is Lebesgue

integrable for all N > 0 and lim
N→+∞

(∫ b

a

Nf

)
is finite. In

this case

∫ b

a

f is defined to be

∫ b

a

f = lim
N→+∞

(∫ b

a

Nf

)
.
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(ii) Suppose f(x) < 0 for some x ∈ [a, b]. Set

f+(x)=

{
f(x) if f(x) ≥ 0,

0 otherwise
and f−(x)=

{
−f(x) if f(x) < 0,

0 otherwise.

We say f is Lebesgue integrable on [a, b] if both f+ and

f− are Lebesgue integrable on [a, b]. In this case we define∫ b

a

f as ∫ b

a

f =

∫ b

a

f+ −
∫ b

a

f− .

The function f+ is called the positive part of f , and f− is known as

the negative part of f . We define the set of Lebesgue integrable

functions on [a, b], denoted L[a, b], by

L[a, b] = {f | f is Lebesgue integrable on [a, b]} .

In other words, for a bounded function, we define the Lebesgue

integral by our earlier definition. For a positive unbounded function

f , we define a capped version of this function, fN . For each N , fN

is now a bounded function and we return to our earlier definition of

Lebesgue integration. For f to be Lebesgue integrable, we need to be

able to “lift the cap” and obtain a finite limit. More generally, for an

unbounded function f we consider the positive part f+ and negative

part f− separately. Both of these must be Lebesgue integrable in

order for f to be considered Lebesgue integrable. Finally, since f =

f+ − f−, it is natural to define the Lebesgue integral of f as∫ b

a

f =

∫ b

a

f+ −
∫ b

a

f− .

Example 2.3.2. Let

f(x) =

{
1
x if x �= 0,

0 if x = 0.

Our goal is to determine if f is in L[0, 1]. For N > 1, on this interval

Nf(x) =

⎧⎨
⎩

N if 0 < x ≤ 1
N ,

1
x if 1

N < x ≤ 1,

0 if x = 0,
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so ∫ 1

0

Nf =

∫ 1
N

0

N +

∫ 1

1
N

1

x
= 1 + ln(N) .

Notice that we were able to evaluate the last two integrals by observ-

ing that the integrands are Riemann integrable functions. Hence,

lim
N→∞

∫ 1

0

Nf = +∞

and f /∈ L[0, 1].

Example 2.3.3. Let

g(x) =

{
1√
x

if x �= 0,

0 if x = 0.

We will determine if g is in L[0, 1]. For N > 1, on this interval

Ng(x) =

⎧⎪⎨
⎪⎩

N if 0 < x ≤ 1
N2 ,

1√
x

if 1
N2 < x ≤ 1,

0 if x = 0,

so ∫ 1

0

Ng =

∫ 1
N2

0

N +

∫ 1

1
N2

1√
x
=

1

N
+

(
2− 2

N

)
.

Again, we now have Riemann integrable functions. Hence,

lim
N→∞

∫ 1

0

Ng = 2 .

Therefore g ∈ L[0, 1] and
∫ 1

0

g = 2.

The previous example also illustrates a difference between Le-

besgue integration and Riemann integration. In the latter,

∫ 1

0

1√
x
dx

is considered as an improper integral and would be evaluated as fol-

lows: ∫ 1

0

1√
x
dx = lim

a→0+

∫ 1

a

1√
x
dx = lim

a→0+

(
2− 2

√
a
)
= 2 .
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Although the answer is the same, the process is different. For Lebesgue

integration the strategy was to truncate the range. For Riemann in-

tegration the improper integral is evaluated by first restricting the

domain.

The following properties are true for L[a, b].

Theorem 2.3.4. Let f ∈ L[a, b]. If a < c < b, then f ∈ L[a, c] and
f ∈ L[c, b], and ∫ b

a

f =

∫ c

a

f +

∫ b

c

f .

Theorem 2.3.5. Let f, g ∈ L[a, b] and c ∈ R.

(i) Then (f + g) ∈ L[a, b] and∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g .

(ii) cf ∈ L[a, b] and ∫ b

a

(cf) = c

∫ b

a

f .

In other words, the two theorems stated above assert that L[a, b]
is a vector space.

Theorem 2.3.6. Let f, g ∈ L[a, b] with f(x) ≤ g(x) for all x ∈ [a, b].

Then ∫ b

a

f ≤
∫ b

a

g .

Although the above results may seem obviously true, the proofs

are not exactly as straightforward as one might expect. This is due

to the fact that we now have to deal with the possibility that the

function or functions involved are unbounded. This adds at least

one extra case in each proof. Although we are omitting the proofs

of these theorems, we will illustrate this added twist by proving the

next theorem.

Theorem 2.3.7. Let f ∈ B[a, b]. Suppose f ∈ L[a, b] and f = g a.e.

on [a, b]. Then g ∈ L[a, b] and∫ b

a

g =

∫ b

a

f .
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Proof. We will show that g− f is in L[a, b] and
∫ b

a

(g − f) = 0. The

result follows by the linearity of the integral.

(i) Assume (g − f) ∈ B[a, b]. Then (g − f) = 0 a.e. on [a, b].

By Exercise 14, ∫ b

a

(g − f) = 0 .

(ii) Assume (g− f) is not bounded on [a, b], but (g − f)(x) ≥ 0

for all x ∈ [a, b]. For each N > 0 we set

N
(g − f)(x) =

{
(g − f)(x) if (g − f)(x) ≤ N,

N otherwise.

For each N , N
(g − f) = 0 a.e. in [a, b]. By part (i),∫ b

a

N(g − f) = 0

for each N . Therefore,∫ b

a

(g − f) = lim
N→∞

∫ b

a

N
(g − f) = 0 .

As a result, (g − f) ∈ L[a, b] and
∫ b

a

(g − f) = 0.

(iii) Assume (g − f) is unbounded on [a, b]. The result follows

by applying the previous parts to (g − f)+ and (g − f)−.

�

Here are more examples of results that seem fairly obvious but

where the proofs require consideration of the cases. The first is actu-

ally a special case of Theorem 2.3.6.

Theorem 2.3.8. Let f ∈ L[a, b]. Suppose f(x) ≥ 0 a.e. on [a, b].

Then ∫ b

a

f ≥ 0 .
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Proof. (i) Assume f ∈ B[a, b]. Consider f+, the positive

part of f . Then f = f+ a.e. on [a, b]. By Theorem 2.3.7,∫ b

a

f+ =

∫ b

a

f , but by Theorem 2.3.6,

∫ b

a

f+ ≥
∫ b

a

0 = 0 .

Therefore

∫ b

a

f ≥ 0.

(ii) Assume f is unbounded on [a, b]. We will consider the pos-

itive and negative parts of f . Since f− = 0 a.e. in [a, b],

Theorem 2.3.7 implies

∫ b

a

f− = 0. Thus, without loss of

generality, we may assume f(x) ≥ 0 for all x ∈ [a, b].

For each N > 0 set

Nf =

{
f(x) if f(x) ≤ N,

N otherwise.

Then Nf ≥ 0 a.e. in [a, b]. By part (i),∫ b

a

Nf ≥ 0

for every N > 0. Therefore,∫ b

a

f = lim
N→∞

∫ b

a

Nf ≥ 0 . �

Theorem 2.3.9. Let f ∈ L[a, b]. If f(x) ≥ 0 a.e. on [a, b] and∫ b

a

f = 0, then f = 0 a.e. on [a, b].

Proof. Without loss of generality, we may assume that f(x) ≥ 0 for

all x ∈ [a, b].

(i) Assume f is bounded. This is covered by Lemma 2.2.14.

(ii) Assume f is unbounded. Then

0 =

∫ b

a

f = lim
N→∞

∫ b

a

Nf .
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By definition,

∫ b

a

Nf increases with N . Also, Nf is always

nonnegative, and hence

∫ b

a

Nf is nonnegative. Therefore,

for each N > 0,

∫ b

a

Nf = 0. By part (i), Nf(x) = 0 a.e. on

[a, b]. Since f(x) ≥ 0 for all x ∈ [a, b], Nf(x) = 0 if and only

if f(x) = 0; therefore, f(x) = 0 a.e. as claimed. �

So far, we have limited ourselves to integrating over closed bound-

ed intervals. We can generalize this to integrating over bounded mea-

surable sets.

Definition 2.3.10. Let E be a measurable subset of [a, b]. We define∫
E

f as ∫
E

f =

∫ b

a

(f XE) .

As one might expect, if we integrate an integrable function over

a small set, the result is small. This is made more precise in the next

lemma.

Lemma 2.3.11. Let f ∈ L[a, b]. Given any ε > 0, there exists a

δ > 0 so that

if m(E) < δ, then

∣∣∣∣
∫
E

f

∣∣∣∣ < ε .

Proof. As usual with L[a, b], we will break the proof down into cases.

(i) Assume f ∈ B[a, b]. Then there is an M > 0 so that

−M ≤ f(x) ≤ M

for all x ∈ [a, b]. Hence, for any measurable set E,

−M XE(x) ≤ f(x)XE(x) ≤ M XE(x)

for all x ∈ [a, b]. Thus,∫ b

a

(−M XE) ≤
∫ b

a

f ≤
∫ b

a

(M XE)
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so that

−M m(E) ≤
∫ b

a

f ≤ M m(E) .

Therefore, ∣∣∣∣
∫
E

f

∣∣∣∣ ≤ M m(E) .

Given ε > 0, choosing δ < ε
M suffices.

(ii) Assume f(x) ≥ 0 for all x ∈ [a, b], but f is unbounded. Let

ε > 0 be given. Since

lim
N→∞

∫ b

a

Nf =

∫ b

a

f ,

there is a K so that if N > K, then

∫ b

a

(f − Nf) =

∣∣∣∣∣
∫ b

a

(f − Nf)

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a

f −
∫ b

a

Nf

∣∣∣∣∣ < ε

2
.

Pick M > K. By part (i) there is a δ > 0 such that if

m(E) < δ, then

∣∣∣∣
∫
E

Mf

∣∣∣∣ <ε

2
. Therefore, if m(E) < δ, then

∣∣∣∣
∫
E

f

∣∣∣∣ =

∣∣∣∣∣
∫ b

a

(f XE)

∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a

(
(f − Mf)XE

)
+

∫ b

a

(MfXE)

∣∣∣∣∣
≤

∫ b

a

(
(f − Mf)XE

)
+

∣∣∣∣∣
∫ b

a

(MfXE)

∣∣∣∣∣
≤

∫ b

a

(f − Mf) +

∣∣∣∣
∫
E

Mf

∣∣∣∣
<

ε

2
+

ε

2
= ε .
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(iii) In the most general case we write f = f+ − f− and observe

that∣∣∣∣
∫
E

f

∣∣∣∣ =

∣∣∣∣∣
∫ b

a

(f XE)

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a

(
(f+ − f−)XE

)∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a

(f+ XE)−
∫ b

a

(f− XE)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ b

a

(f+ XE)

∣∣∣∣∣+
∣∣∣∣∣
∫ b

a

(f− XE)

∣∣∣∣∣
=

∣∣∣∣
∫
E

f+

∣∣∣∣+
∣∣∣∣
∫
E

f−
∣∣∣∣ .

Both f+ and f− are covered by part (ii). �

2.4. The Lebesgue Dominated Convergence
Theorem

Some of the basic questions in real analysis concern interchanging

“limit-type operations”. For example, if one takes a sequence of Rie-

mann integrable functions that converges, will they converge to a

Riemann integrable function? In Riemann integration, uniform con-

vergence was useful. What about in L[a, b]? Do we need uniform

convergence on something else?

There are three main results in this section, the Lebesgue Dom-

inated Convergence Theorem, Fatou’s Lemma, and the Monotone

Covergence Theorem. They all concern sequences of functions in

L[a, b]. They actually are equivalent (not shown in this text), but

we will prove them in the order stated above. To motivate them, let’s

consider some examples.

Example 2.4.1. For x ∈ [0, 1] and positive integer n, let fn(x) = xn.

Then lim
n→∞

fn(x) = f(x),, where

f(x) =

{
0 if 0 ≤ x < 1,

1 if x = 1.

This example shows that the pointwise limit of a sequence of contin-

uous functions need not be continuous.
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Example 2.4.2. Let Q ∩ [0, 1] = {r1, r2, . . .} be a counting of the

rationals in the interval [0, 1]. For x ∈ [0, 1] and n ∈ N define fn by

fn(x) =

{
1 if x = r1, r2, . . . , rn,

0 otherwise.

For each n, fn is Riemann integrable since fn has a finite number of

discontinuities. But lim
n→∞

fn(x) = f(x), where

f(x) =

{
1 if x ∈ Q ∩ [0, 1],

0 otherwise.

Here is an example where the pointwise limit of a sequence of Riemann

integrable functions need not be Riemann integrable. (This is actually

Problem 11 of Chapter 0.)

This leads to the question as to whether or not the pointwise

limit of a sequence of Lebesgue integrable functions will be Lebesgue

integrable. We give one final example before we begin our buildup

to the statement and proof of the Lebesgue Dominated Convergence

Theorem.

Example 2.4.3. Define fn by

fn(x) = nX(0, 1
n ](x) =

{
n if 0 < x ≤ 1

n
,

0 otherwise.

In this case lim
n→∞

fn(x) = 0 for all x ∈ [0, 1]. So here is an example

where the pointwise limit of a sequence of Lebesgue integrable func-

tions is Lebesgue integrable. The odd thing is that

∫ 1

0

fn = 1 for

every n, but

∫ 1

0

0 = 0. In other words, here is an example where

lim
n→∞

∫ b

a

fn �=
∫ b

a

(
lim
n→∞

fn

)
.

What we are seeking are conditions that allow us to interchange

two limit-type operations, namely, integration (Lebesgue integration

in this case) and the limit of a sequence of functions. Our goal is a

theorem that addresses this issue, the Lebesgue Dominated Conver-

gence Theorem. Before the statement and proof of this theorem, we

need two lemmas.
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Lemma 2.4.4. Let f ∈ L[a, b]. Suppose {Ak}∞k=1 is a countable

collection of measurable subsets of [a, b] with

A1 ⊆ A2 ⊆ A3 ⊆ . . .

and
∞⋃
k=1

Ak = [a, b] .

Then

lim
k→∞

∫
Ak

f =

∫ b

a

f .

Note: Intuitively, we want to say that this lemma is asserting

that

lim
k→∞

∫
Ak

f =

∫
limk→∞ Ak

f,

but there is a potential problem with this statement. The left-hand

side of this equation is a sequence of numbers. However, the careful

reader will see that the expression on the right contains what appears

to be the limit of a sequence of sets. Although it may seem tempting

to try to do so, it is extremely difficult to define lim
k→∞

Ak, the limit of

a sequence of sets. So, in our proof we will avoid taking “the limit of

a sequence of sets”.

Proof. Let ε > 0 be given. Our goal is to find N so that if k > N ,

then ∣∣∣∣∣
∫ b

a

f −
∫
Ak

f

∣∣∣∣∣ < ε .

Let Ek = [a, b] \Ak. Then∫ b

a

f −
∫
Ak

f =

∫ b

a

f −
∫ b

a

f XAk

=

∫ b

a

f (1− XAk
)

=

∫ b

a

f XEk

=

∫
Ek

f .
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Also,

E1 ⊇ E2 ⊇ E3 ⊇ . . .

and
∞⋂
k=1

Ek = ∅ .

By Exercise 19 of Chapter 1, lim
k→∞

m(Ek) = 0. (Notice how this is a

limit of a sequence of numbers, not sets.)

Now we will put the pieces together. By Lemma 2.3.11, there is

a δ > 0 so that

∣∣∣∣
∫
E

f

∣∣∣∣ < ε if m(E) < δ. Since lim
k→∞

m(Ek) = 0, there

exists an N such that if k > N , then m(Ek) < δ. So if k > N , then∣∣∣∣∣
∫ b

a

f −
∫
Ak

f

∣∣∣∣∣ =
∣∣∣∣
∫
Ek

f

∣∣∣∣ < ε . �

Not only is this next lemma used in the proof of the Lebesgue

Dominated Convergence Theorem, it is frequently used in other sit-

uations, often without an actual reference. In essence, it says that if

a measurable function is bounded by a Lebesgue integrable function,

it must also be integrable.

Lemma 2.4.5. Let g ∈ L[a, b]. Suppose f is measurable and |f(x)| ≤
g(x) almost everywhere in [a, b]. Then f ∈ L[a, b].

Proof. Without loss of generality, we may assume that |f(x)| ≤ g(x)

for all x ∈ [a, b]. We must show that f+ and f− are Lebesgue inte-

grable. Since |f(x)| ≤ g(x), both 0 ≤ f+(x) ≤ g(x) and 0 ≤ f−(x) ≤
g(x) for all x ∈ [a, b]. Therefore, it suffices to show that if f is mea-

surable on [a, b] and 0 ≤ f(x) ≤ g(x) for all x ∈ [a, b], then f ∈ L[a, b].
Since 0 ≤ f(x) ≤ g(x),

0 ≤ Nf(x) ≤ Ng(x)

for each N . Thus,

0 ≤
∫ b

a

Nf(x) ≤
∫ b

a

Ng(x) ≤
∫ b

a

g
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for every N . But

∫ b

a

Nf(x) increases with N . The above inequalities

show that

∫ b

a

Nf(x) is bounded. Therefore lim
N→∞

∫ b

a

Nf(x) exists and

f ∈ L[a, b]. �

We now come to the Lebesgue Dominated Convergence Theorem,

a frequently cited theorem. Some people refer to this result as the

Dominated Convergence Theorem, while others simply abbreviate it

by LDC. Before continuing with this theorem, the reader is advised

to review a solution to Exercise 6 from Chapter 0.

Theorem 2.4.6 (Lebesgue Dominated Convergence Theorem). Let

{fn} be a sequence of measurable functions on [a, b] such that

lim
n→∞

fn(x) = f(x) a.e.

on [a, b]. Suppose there exists g ∈ L[a, b] with

|fn(x)| ≤ g(x) a.e.

for every n. Then, fn ∈ L[a, b] for every n, f ∈ L[a, b], and

lim
n→∞

∫ b

a

fn =

∫ b

a

f .

Note: The remarkable feature of this theorem is that the exis-

tence of the function g, called a dominating function, guarantees that

it is safe to interchange the integral and the limit, hence the name

Lebesgue Dominated Convergence Theorem.

Proof. Since lim
n→∞

fn(x) = f(x) a.e. and |fn(x)| ≤ g(x) a.e. on [a, b],

|f(x)| ≤ g(x) a.e.

on [a, b]. Hence by Lemma 2.4.5, fn ∈ L[a, b] for every n and f ∈
L[a, b]. It remains to show that

lim
n→∞

∫ b

a

fn =

∫ b

a

f .

Without loss of generality we may assume that lim
n→∞

fn(x) = f(x)

for all x ∈ [a, b]. (Make sure you understand why this is true!) Let
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ε > 0 be given. We must show there exists an N such that if n > N ,

then ∣∣∣∣∣
∫ b

a

fn −
∫ b

a

f

∣∣∣∣∣ < ε .

The strategy is to create subsets of [a, b] where the sequence of

function is almost converging uniformly. To do this, for each positive

integer n set

An =

{
x ∈ [a, b]

∣∣∣ |fk(x)− f(x)| < ε

2(b− a)
for all k ≥ n

}
.

(Can you see the idea of uniform convergence being used here?) By

definition,

A1 ⊆ A2 ⊆ A3 ⊆ . . .

and
∞⋃
k=1

Ak ⊆ [a, b] .

But for each x ∈ [a, b], lim
n→∞

fn(x) = f(x) (pointwise). Therefore, for

each x, there is an N so that whenever k ≥ N , then |fk(x)− f(x)| <
ε

2(b−a) . In other words, for each x ∈ [a, b] there is an N so that

x ∈ AN . Hence,
∞⋃
k=1

Ak = [a, b] .

Also, ∫
An

|fn − f | ≤
∫
An

ε

2(b− a)
= m(An)

ε

2(b− a)
≤ ε

2
.

As in Lemma 2.4.4, set En = [a, b] \An so that

E1 ⊇ E2 ⊇ E3 ⊇ . . .

and
∞⋂

n=1

En = ∅ .

Thus, lim
n→∞

m(En) = 0.

So far, for each n we can control the difference between
∫
fn and∫

f when we are integrating over the specially designed set An. To

control the difference between
∫
fn and

∫
f when we are integrating
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over the rest of the interval [a, b], we will use the dominating function.

By Lemma 2.3.11, there exists a δ > 0 so that

∫
E

g <
ε

4
whenever

m(E) < δ. Since |fn(x)| ≤ g(x) and |f(x)| ≤ g(x), if m(E) < δ, it

will also be the case that∫
E

|fn| <
ε

4
for all n, and

∫
E

|f | < ε

4
.

Since lim
n→∞

m(En) = 0, there exists N so that if n > N , thenm(En) <

δ. Thus, if n > N ,∣∣∣∣∣
∫ b

a

fn −
∫ b

a

f

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a

(fn − f)

∣∣∣∣∣
=

∣∣∣∣
∫
An

(fn − f)

∣∣∣∣+
∣∣∣∣
∫
En

(fn − f)

∣∣∣∣
≤
∫
An

|fn − f |+
∫
En

|fn − f |

≤
∫
An

ε

2(b− a)
+

∫
En

|fn|+
∫
En

|f |

<
ε

2
+

ε

4
+

ε

4
= ε . �

Example 2.4.7. For each positive integer n and x ∈ [0, 2] define

fn(x) to be

fn(x) =

⎧⎨
⎩

0 if 0 ≤ x < 1
n ,√

n if 1
n ≤ x ≤ 2

n ,

0 if 2
n
< x ≤ 2.

It is easy to verify lim
n→∞

fn(x) = 0 for all x ∈ [0, 2]. Let

g(x) =

{ √
2√
x

if x �= 0,

0 if x = 0.

Then g ∈ L[0, 2] and |fn(x)| ≤ g(x) for all x ∈ [0, 2]. Therefore, the

Lebesgue Dominated Convergence Theorem guarantees that

lim
n→∞

∫ 2

0

fn =

∫ 2

0

0 = 0 .

This can also be verfied by directly computing lim
n→∞

∫ 2

0

fn for each n.
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In the above example, we could directly compute

∫ b

a

fn for each n.

This will not be the case in the next two examples.

Example 2.4.8. For each positive integer n and x ∈ [0, 1] define

fn(x) to be

fn(x) =

{
0 if x = 0,(
1− e−

x2

n

)
1√
x

if 0 < x ≤ 1.

This is a case where it is not so easy to compute

∫ b

a

fn for each n, yet

it is easy to compute the pointwise limit of this sequence of functions,

which is the function that is identically 0 on [0, 1]. If we define g by

g(x) =

{
0 if x = 0,
1√
x

if 0 < x ≤ 1.

then g ∈ L[0, 1] and |fn(x)| ≤ g(x) for all x ∈ [0, 1]. Therefore

lim
n→∞

∫ 1

0

fn =

∫ 1

0

0 = 0 .

Without the Lebesgue Dominated Convergence Theorem, it would be

difficult to verify this limit.

In case the reader begins to believe that

∫ b

a

fn will always equal

0, we have the next example.

Example 2.4.9. For each positive integer n and x ∈ [0, 1] define

fn(x) to be

fn(x) =
n sinx

1 + n2
√
x
+ 2ex/n .

The pointwise limit is lim
n→∞

fn(x) = 2. In this case, for x �= 0,

|fn(x)| ≤
n

1 + n2
√
x
+ 2 ≤ 1

n
√
x
+ 2 ≤ 1√

x
+ 2 .

Therefore, we may use the dominating function g where

g(x) =

{
2 if x = 0,
1√
x
+ 2 if 0 < x ≤ 1.
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Since g ∈ L[0, 1],

lim
n→∞

∫ 1

0

fn =

∫ 1

0

2 = 2 .

There are two other important results concerning the interchange

of integration with limits that are corollaries of the Lebesgue Dom-

inated Convergence Theorem. These are known as Fatou’s Lemma

and the Monotone Convergence Theorem. We will start with a pre-

liminary version of Fatou’s Lemma.

Theorem 2.4.10 (Fatou’s Lemma, preliminary version). Let {fn} be

a sequence of nonnegative functions in L[a, b]. Suppose

lim
n→∞

fn(x) = f(x) a.e. in [a, b].

(i) If f ∈ L[a, b], then
∫ b

a

f ≤ lim inf
n→∞

∫ b

a

fn.

(ii) If f /∈ L[a, b], then lim inf
n→∞

∫ b

a

fn = +∞.

Proof. Without loss of generality, we may assume f(x) ≥ 0 for all

x ∈ [a, b]. It follows that for every N ,

lim
n→∞

Nfn(x) =
Nf(x) ≤ N .

(Remember, we might be dealing with unbounded functions here.)

Using g(x) = N as the dominating function in the Lebesgue Domi-

nated Convergence Theorem,

lim
n→∞

∫ b

a

Nfn =

∫ b

a

Nf

for each N .

So far, we have been dealing the the “capped” versions of the

original functions. Now we will work on “raising the caps”. For each

n and N , ∫ b

a

Nfn ≤
∫ b

a

fn ,

and hence

inf
k≥n

∫ b

a

Nfk ≤ inf
k≥n

∫ b

a

fk .



2.4. The Lebesgue Dominated Convergence Theorem 97

Thus,

lim inf
n→∞

∫ b

a

Nfn ≤ lim inf
n→∞

∫ b

a

fn .

Note that this includes the possibility that lim inf
n→∞

∫ b

a

fn = +∞.

However, lim
n→∞

∫ b

a

Nfn = lim inf
n→∞

∫ b

a

Nfn =

∫ b

a

Nf . Therefore we

have ∫ b

a

Nf ≤ lim inf
n→∞

∫ b

a

fn .

If f ∈ L[a, b], ∫ b

a

f = lim
N→∞

∫ b

a

Nf ≤ lim inf
n→∞

∫ b

a

fn,

and we have established (i). On the other hand, if f /∈ L[a, b], then

it must be the case that lim
N→∞

∫ b

a

Nf = +∞. This establishes part

(ii). �

Example 2.4.11. For x ∈ [0, 1] and positive integer n, let

fn(x) =

⎧⎨
⎩

2n2x if 0 ≤ x ≤ 1
2n ,

−2n2
(
x− 1

n

)
if 1

2n
< x ≤ 1

n
,

0 otherwise.

For each n, fn is piecewise linear, connecting the origin with ( 1
2n , n),

which connects to ( 1
n , 0), forming a triangle. In this case, the point-

wise limit of the sequence of functions is the identically 0 function.

On the other hand, for each n,∫ 1

0

fn =
1

2
.

This example demonstrates that the strict inequality can hold in this

preliminary version of Fatou’s Lemma.

What is usually stated as Fatou’s Lemma actually is a corollary

of this preliminary version.

Corollary 2.4.12 (Fatou’s Lemma). Let {fn} be a sequence of non-

negative functions in L[a, b]. Suppose lim inf
n→∞

fn(x)=f(x) a.e. in [a, b].
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(i) If f ∈ L[a, b], then
∫ b

a

f ≤ lim inf
n→∞

∫ b

a

fn.

(ii) If f /∈ L[a, b], then lim inf
n→∞

∫ b

a

fn = +∞.

Proof. For each positive integer n, let gn(x) = inf
k≥n

fk(x). Then gn

is nonnegative and measurable for each n. Also, by Lemma 2.4.5, for

each n, gn ∈ L[a, b] since gn(x) ≤ fn(x). Thus,∫ b

a

gn ≤
∫ b

a

fn

for each n. Consequently,

lim inf
n→∞

∫ b

a

gn ≤ lim inf
n→∞

∫ b

a

fn .

On the other hand, lim
n→∞

gn(x) = lim inf
n→∞

fn(x) = f(x) a.e. There-

fore, by our preliminary version of Fatou’s Lemma, Theorem 2.4.10,

if f ∈ L[a, b], then∫ b

a

f ≤ lim inf
n→∞

∫ b

a

gn ≤ lim inf
n→∞

∫ b

a

fn .

Thus, we have established part (i). If f /∈ L[a, b], then

lim inf
n→∞

∫ b

a

gn = +∞ .

In this case,

lim inf
n→∞

∫ b

a

fn = +∞,

and we have part (ii). �

The next main result stemming from the Lebesgue Dominated

Convergence Theorem is known as the Monotone Convergence Theo-

rem.

Theorem 2.4.13 (Monotone Convergence Theorem). Let {fn} be a

sequence of nonnegative functions in L[a, b]. Suppose {fn(x)} is an

increasing sequence for almost every x∈ [a, b] and lim
n→∞

fn(x)=f(x)

a.e. in [a, b].



2.5. Further Notes on Integration 99

(i) If f ∈ L[a, b], then lim
n→∞

∫ b

a

fn =

∫ b

a

f .

(ii) If f /∈ L[a, b], then lim
n→∞

∫ b

a

fn = +∞.

Proof. For each n, fn(x) ≤ fn+1(x) almost everywhere in [a, b]. Con-

sequently fn ≤ f a.e. in [a, b]. Therefore, if f ∈ L[a, b], we may use |f |
as the dominating function in the Lebesgue Dominated Convergence

Theorem to establish part (i).

To prove part (ii), note that∫ b

a

fn ≤
∫ b

a

fn+1

for all n. Thus,
{∫ b

a
fn

}
is an increasing sequence of numbers. More-

over,

inf
k≥n

∫ b

a

fk =

∫ b

a

fn .

Hence,

lim inf
n→∞

∫ b

a

fn = lim
n→∞

∫ b

a

fn .

Therefore, part (ii) follows from part (ii) of Fatou’s Lemma. �

Although we have chosen to first prove the Lebesgue Dominated

Convergence Theorem and then Fatou’s Lemma and the Monotone

Convergence Theorem, in actuality these three major results are equiv-

alent. There are texts that choose to start with Fatou’s Lemma before

establishing the other results. Still other texts start with the Mono-

tone Convergence Theorem. It is an interesting exercise to verify for

yourself how one of these results can be used to show the other two.

2.5. Further Notes on Integration

We have defined the Lebesgue integral on intervals and measurable

subsets of intervals in R1. Suppose we want to integrate a function of

more than one variable, that is, f : Rn → R1. The process would be

much the same. First, our definition of measurable function remains

much the same.
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Definition 2.5.1. Let f be defined on I, a closed interval in Rn, or

I = Rn. We say f is measurable on I if for every s ∈ R1 the set

{x ∈ I | f(x) > s} is a measurable subset of Rn.

The first step is to define the integral of bounded, measurable

functions. We simply extend the definition of a measurable partition

in the obvious way. The definitions of upper sum and lower sum

then follow naturally. Finally, we reach the definition of the upper

integral and the lower integral, and then the Lebesgue integral for

bounded functions. This actually parallels the manner in which we

define the Riemann integral for functions of several variables. In

order to integrate unbounded functions, we follow the same process

as before. We consider a nonnegative function and put a “cap” on it.

Then we see if there is a finite limit when raising the “cap”. Finally,

for a general measurable function on I, we consider the positive and

negative parts.

However, this is not the procedure used in calculus to evaluate

such integrals. Most often, we turn to what is known as an iterated

integral. The following example illustrates the difference.

Example 2.5.2. Let I = {(x, y) ∈ R2 | 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1}
be the unit square in R2. Subdivide I into four congruent squares.

Let I1 denote the lower left corner square. Take the upper right

corner square and subdivide it into four congruent squares. Let I2
denote the lower left corner square in this subdivision. Next take the

upper right corner square of this subdivision and subdivide it. Label

the resulting lower left corner square as I3. Continue this process.

By construction, m(I1) = 1
4 , m(I2) = 1

16 , m(I3) = 1
64 , and, more

generally, m(In) =
1
4n .

Next, for each n, subdivide In into four congruent squares. Label

these I1n, I
2
n, I

3
n, and I4n, starting with the lower left square and moving

in a counterclockwise fashion. Next, we will define f : R2 → R1 by

f(x, y) =

⎧⎨
⎩

4n if (x, y) ∈ int(I1n) or (x, y) ∈ int(I3n),

−4n if (x, y) ∈ int(I2n) or (x, y) ∈ int(I4n),

0 otherwise.

A straightforward check confirms that f is measurable. We now turn

to the question of Lebesgue integrability.
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Since f is unbounded, we must consider f+ and f− separately.

In this case,

f+(x, y) =

{
4n if (x, y) ∈ int(I1n) or (x, y) ∈ int(I3n),

0 otherwise.

Thus, ∫ ∫
I

f+ = 2 · 4
(
1

2
m(I1)

)
+ 2 · 16

(
1

2
m(I2)

)

+2 · 64
(
1

2
m(I3)

)
+ . . .

=

∞∑
n=1

2 · 4n
(
1

2
m(In)

)

=

∞∑
n=1

1 = +∞ .

(This can be made more precise by actually considering the “capped”

version of f .) Therefore, f /∈ L(I).
On the other hand, for every fixed x ∈ [0, 1], f(x, y) is Lebesgue

integrable as a function of y. Moreover,∫ 1

0

f(x, y) dy = 0 .

Hence, the iterated integral

∫ 1

0

∫ 1

0

f(x, y) dydx exists and

∫ 1

0

∫ 1

0

f(x, y) dydx =

∫ 1

0

0 dx = 0 .

This example shows that the double integral over a rectangle

need not equal the corresponding iterated integral. A theorem that

addresses this is known as Fubini’s Theorem. We will not be cov-

ering this theorem in this text, but it is a possible project; see Project

number 7 in the section Ideas for Projects. This may also be found

in [13].

Another aspect of Lebesgue integration that we have not cov-

ered is integration over unbounded intervals. For example, we define

L[a,+∞) in the following manner.
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(i) If f ≥ 0, then f ∈ L[a,+∞) if and only if

lim
N→∞

∫ N

a

f

exists and is finite.

(ii) More generally, f ∈ L[a,+∞) if and only if both f+ ∈
L[a,+∞) and f− ∈ L[a,+∞).

At first glance, this looks the same as improper Riemann inte-

grals. However, the next example highlights the difference.

Example 2.5.3. Define f on [0,+∞) as the piecewise linear function

connecting the points (0, 0), (1, 1), (2, 0), (3,−1
2), (4, 0), (5,

1
3 ), (6, 0),

(7,− 1
4
), . . .. More explicitly, these points are (n, g(n)), where

g(n) =

{
0 if n = 2, 4, 6, . . . ,

2(−1)
n−1
2

n+1
if n = 1, 3, 5, . . . .

The improper Riemann integral of f is∫ ∞

0

f(x) dx = lim
N→∞

∫ N

0

f(x) dx =

∞∑
n=1

(−1)n+1

n
.

This is the alternating harmonic series, which converges. Therefore,

this improper Riemann integral exists.

On the other hand, to compute the Lebesgue integral we must

first consider f+:∫ ∞

0

f+ = lim
N→∞

∫ N

0

f+ =
∞∑

n=1

1

2n− 1
.

Therefore, f /∈ L[0,+∞).

2.6. Exercises

(1) Let E ⊆ [a, b] and let XE be the characteristic function of

E. Prove that XE(x) is a measurable function if and only if

E is a measurable set.

(2) Suppose f : [a, b] → R is a measurable function.
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a) Show that the inverse image of a closed interval is a

measurable set. Recall: the inverse image of a set C is

f−1(C) = {x ∈ [a, b] | f(x) ∈ C} .

b) Show that the inverse image of an open set in R is a

measurable set.

(3) Let [c, d] ⊆ [a, b]. Show that if f is measurable on [a, b], then

f is measurable on [c, d].

(4) Find an example of a pointwise bounded sequence of mea-

surable functions {fn} on [0, 1] such that each fn(x) is a

bounded function but f∗(x)=lim sup
n→∞

fn(x) is not a bounded

function.

(5) Suppose f : [a, b] → R is a strictly increasing function. Prove

that f is a measurable function.

(6) Let f and g be measurable functions on an interval I.

a) Show that {x ∈ I | f(x) > g(x)} is a measurable set.

b) Define

h(x) = max{f(x), g(x)} =

{
f(x) if f(x) ≥ g(x),

g(x) otherwise.

Show that h(x) is a measurable function.

(7) Show that the function f : [0, 1] → C described in Exam-

ple 1.1.7 is a measurable function.

(8) Suppose f is measurable on I = [a, b] and f(x) ≥ 0 a.e. on

I . Prove that if the set {x ∈ I | f(x) > 0} has positive

measure, then for some positive integer n the set

En = {x ∈ I | f(x) > 1

n
}

has positive measure.

(9) Let f be a measurable function on the interval I. Show that

f2 is measurable on the interval I.

(10) Let f and g be measurable on an interval I. If g(x) �= 0 on

I, show that
f

g
is a measurable function. (In other words,

prove the third part of Theorem 2.1.6.)
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(11) Suppose f and g are bounded functions on [a, b]. Let P be a

measurable partition of [a, b]. State and prove a comparison

between U [f + g, P ] and U [f, P ] +U [g, P ]. Do the same for

lower sums.

(12) Let f be measurable on [a, b] and let P1 and P2 be measur-

able partitions of [a, b]. If P2 is a refinement of P1, show

that

L[f, P1] ≤ L[f, P2] and U [f, P2] ≤ U [f, P1] .

(13) Let f and g be bounded, Lebesgue integrable functions on

[a, b]. Show that f + g is Lebesgue integrable on [a, b] and∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g .

(Exercise 11 might be useful.)

(14) Let h be a bounded function that is zero a.e. in [a, b]. Show

that h is Lebesgue integrable on [a, b] and∫ b

a

h = 0 .

(15) Let ϕ be a simple function defined on [a, b].

a) Show that ϕ is measurable on [a, b].

b) Show that ϕ is Lebesgue integrable on [a, b]. Use the

definition of the Lebesgue integral to compute∫ b

a

ϕ.

(16) Let f ∈ L[a, b]. Show that if g is a bounded measurable

function, then fg ∈ L[a, b].
(17) Prove or give a counterexample: If f, g ∈ L[a, b], then fg ∈

L[a, b].
(18) Let f be a differentiable function on [a, b]. Prove that f ′ is

a measurable function. Hint: consider

lim
n→∞

f(x+ 1
n )− f(x)
1
n

.

(19) Let f ∈ L[a, b] and A and B be measurable subsets of [a, b].
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a) If A ∩B = ∅, show that∫
A∪B

f =

∫
A

f +

∫
B

f .

b) State and prove a result for the case that A ∩B �= ∅.
c) What can you conclude if A = [a, c] and B = [c, b] for

some c ∈ (a, b)?

(20) Let f ∈ L[a, b]. For x ∈ (a, b), define G(x) by

G(x) =

∫ x

a

f .

Prove or give a counterexample: G is continuous on (a, b).

(21) Let f be the function defined on [0, 1] by

f(x) =

{
n(−1)n if 1

n+1 < x ≤ 1
n ,

0 otherwise.

a) Is f a bounded function?

b) Is f ∈ L[0, 1]?

c) Does the improper Riemann integral

∫ 1

0

f(x) dx exist?

(22) Let f ∈ L[a, b] and {Ak} be a countable collection of pair-

wise disjoint measurable subsets of [a, b]. Explain why the

statement ∫
∪kAk

f =
∑
k

∫
Ak

f

involves interchanging limit operations. Then prove it is

true.

(23) Let {fn} be a sequence of funtions in L[a, b]. Suppose that

there exists a function g ∈ L[a, b] with |fn(x)| ≤ g(x) a.e.

for each n. Show that if

lim
n→∞

fn(x) = f(x) a.e.

and h(x) is a bounded measurable function, then

lim
n→∞

∫ b

a

fnh =

∫ b

a

fh .
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(24) Let (fn) be a sequence of functions in L[a, b]. Suppose f ∈
L[a, b] and

lim
n→∞

∫ b

a

|fn − f | = 0 .

If the sequence (fn) converges pointwise almost everywhere

on [a, b] to the function g, show that f = g a.e. on [a, b].

Suggestion: Consider the sequence (|f−fn|) and Fatou’s

Lemma.



Chapter 3

Lp spaces

We have already seen that L[a, b] is a vector space by Theorem 2.3.5.

In more familiar vector spaces, Rn for example, we have additional

features. These include the length of a vector and the dot product

of two vectors. In this chapter we will generalize these ideas and, in

doing so, explore new vector spaces known as Lp-spaces.

3.1. L1[a, b]

Our first task is to define some sort of length function or norm on

L[a, b]. The goal is to mimic the structure of R. That is, we would

like to create a complete metric space. First we describe what is

meant by a norm.

Definition 3.1.1. A norm on a vector space V is a function || · || :
V → R that satisfies the following four properties for all v, w ∈ V

and c ∈ R:

(i) ||v|| ≥ 0.

(ii) ||v|| = 0 if and only if v = 0. Here 0 denotes the zero vector

in V .

(iii) ||c v|| = |c| ||v||.
(iv) ||v + w|| ≤ ||v|| + ||w||.

107
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It doesn’t take long to verify that an example of a norm on a

vector space is the usual absolute value | · | on R. Also, in the vector

space of real numbers, the distance between two numbers x, y ∈ R is

given by |x − y|. In a similar manner, if || · || is a norm on a vector

space V , then ||u− v|| can be viewed as the “distance” between u and

v. By thinking in terms of distance, condition (iv) of a norm is often

called the triangle inequality.

A candidate for a norm on L[a, b] is
∫ b

a

|f |. After all, it certainly

is true that ∫ b

a

|f | ≥ 0

for all f ∈ L[a, b]. Also, ∫ b

a

|c f | = |c|
∫ b

a

|f | .

In addition,∫ b

a

|f + g| ≤
∫ b

a

(|f |+ |g|) =
∫ b

a

|f |+
∫ b

a

|g|

whenever f, g ∈ L[a, b]. However, if

∫ b

a

|f | = 0, we can only conclude

that f = 0 a.e. in [a, b]. That leaves us with a lot of possibilities other

than the identically 0 function. We are really close, though, to having

a norm. To remedy this last problem we will start with the following

proposition.

Proposition 3.1.2. Define ∼ on L[a, b] by

f ∼ g if and only if f = g a.e.

Then ∼ is an equivalence relation on L[a, b]. That is, the following

three conditions hold:

(i) For all f ∈ L[a, b], f ∼ f .

(ii) For all f, g ∈ L[a, b], if f ∼ g, then g ∼ f .

(iii) For all f, g, h ∈ L[a, b], if f ∼ g and g ∼ h, then f ∼ h

Proof. This is proved in Exercise 3. �
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Our remedy is to deal with equivalence classes. We simply group

together all equivalent functions and work with representatives of the

resulting equivalence classes.

Definition 3.1.3. L1[a, b] is defined to be L[a, b] modulo the equiv-

alence relation ∼.

This means that when we refer to a function f ∈ L1[a, b] we are

using f to represent all functions that are equivalent to f . Ordinarily

for two functions f and g to be considered the same function, f(x) =

g(x) for all x ∈ [a, b]. But we consider two functions f and g to

be equal in L1[a, b] if f, g ∈ L[a, b] and f = g a.e. on [a, b]. In other

words, the difference between L[a, b] and L1[a, b] is that “equal almost

everywhere” really is good enough!

Now we can tackle the issue of a norm on this new perspective of

our Lebesgue integrable functions.

Definition 3.1.4. For f ∈ L1[a, b], we define the L1-norm of f ,

written ||f ||1, to be

||f ||1 =

∫ b

a

|f | .

We must justify the terminology L1-norm by verifying that we

do indeed have a norm.

Proposition 3.1.5. || · ||1 is a norm on L1[a, b].

Proof. The only requirement for a norm that needs to be checked is

part (ii) of Definition 3.1.1. If ||f ||1 = 0, then∫ b

a

|f | = 0 ,

as mentioned earlier. By Theorem 2.3.9, f = 0 a.e. in [a, b]. There-

fore, in L1[a, b], f is the zero vector. �

We return to this idea of mimicking the structure of R. The

difference between R, the set of real numbers, and Q, the set of ra-

tional numbers, can be described by the behavior of sequences. It is

possible for a sequence of rational numbers to converge to an irra-

tional number (think of approximations to π or
√
2). On the other
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hand, if a sequence of real numbers converges, it must converge to a

real number. This is described by a result usually covered in a first

analysis course asserting that every Cauchy sequence of real numbers

converges to a real number. We are going to generalize this idea to a

vector space with a norm.

Definition 3.1.6. Let V be a vector space with norm || · ||. V is

said to be complete with respect to || · || if every sequence that is

Cauchy with respect to the norm || · || converges to some vector v ∈ V .

In other words, whenever {vn} is a sequence in V with the property

that given any ε > 0 there is an N such that

||vn − vm|| < ε

whenever m,n > N , (that is, {vn} is Cauchy with respect to || · ||),
then there exists a v ∈ V with

lim
n→∞

||vn − v|| = 0 .

As pointed out earlier, R is complete with respect to the norm | · |,
the familiar absolute value, whereas Q is not complete with respect

to absolute value. Our goal is to show that L1[a, b] is complete with

respect to || · ||1. This is actually part of a more general concept.

Definition 3.1.7. A Banach space is a vector space V equipped

with a norm || · || such that V is complete with respect to the norm

|| · ||.

As stated above, a basic example of a Banach space is R with

norm | · |, the familiar absolute value. Although the proof that R

is complete with respect to this norm is usually covered in a first

analysis course, we will once again prove this fact in order to motivate

the proof that L1[a, b] is a Banach space. The proof we give here is

probably not the proof you might have seen earlier. For this proof

that R is a Banach space, the assumptions we will make are:

(i) every bounded increasing sequence of real numbers must

converge to a real number,

(ii) every bounded sequence has a convergent subsequence, and

(iii) every absolutely convergent infinite series converges.
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Using these assumptions we will now show that R is indeed a Banach

space.

Theorem 3.1.8. R is a Banach space with respect to the norm | · |.

Proof. Let {an} be a sequence in R that is Cauchy with respect to

| · |. Thus, for every ε > 0 there is an N so that

|an − am| < ε whenever n,m > N .

In order to show that this sequence converges, we must first somehow

come up with a reasonable “target”. Our strategy will be to cre-

ate a subsequence of {an}, show that this subsequence converges to

some real number α, and then use this as our target for the original

sequence.

Because {an} is Cauchy with respect to | · |, there is an N1 so

that

|an − am| < 1

2
whenever n,m > N1 .

Pick n1 so that n1 > N1. The first number in our subsequence will

be an1
. Next, there is an N2 so that

|an − am| < 1

4
=

1

22
whenever n,m > N2 .

Pick n2 so that n2 > N2 and n2 > n1. This gives us an2
, the next

term in our sequence, with the added information that |an1
−an2

| < 1
2 .

Next, there is an N3 so that

|an − am| < 1

23
whenever n,m > N3 .

Pick n3 so that n3 > N3 and n3 > n2. Hence, |an2
− an3

| < 1
4
.

More generally, assume an1
, an2

, . . . , ank
have been chosen in this

fashion. There is an Nk+1 so that

|an − am| < 1

2k+1
whenever n,m > Nk+1 .

Pick nk+1 so that nk+1 > Nk+1 and nk+1 > nk. Hence we have

|ank
− ank+1

| < 1
2k
.

We have now created the subsequence {ank
}∞k=1. Our next task

is to show that this sequence converges to some real number α.
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The geometric series

∞∑
k=1

1

2k
converges and

∞∑
k=1

1

2k
= 1 .

Hence, for every M ,

M∑
k=1

|ank
− ank+1

| ≤
M∑
k=1

1

2k
≤ 1 .

Therefore, the partial sums of the series

∞∑
k=1

|ank
− ank+1

| form a

bounded increasing sequence. By the first of our assumptions this se-

quence of partial sums must converge. In other words,

∞∑
k=1

(ank
− ank+1

)

converges absolutely. Now the third assumption asserts that there ex-

ists a real number a so that
∞∑
k=1

(ank
− ank+1

) = a .

Thus,

lim
M→∞

(
M∑
k=1

(ank
− ank+1

)

)
= lim

M→∞
(an1

− anM+1
) = a .

Consequently,

lim
M→∞

anM+1
= an1

− a .

We have now established that our subsequence {ank
}∞k=1 con-

verges to α where α = an1
− a. The fact that our subsequence con-

verges to α does not by itself guarantee that the original sequence

converges to α. (In fact, if you think about it, you probably can

come up with many examples of sequences that do not converge but

have convergent subsequences.) Thus our final task is to return to

the original sequence and show lim
n→∞

|an − α| = 0.

Let ε > 0. Because {an} is Cauchy with respect to | · |, there is

an N so that

|an − am| < ε

2
whenever n,m > N .
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Because {ank
}∞k=1 converges to α there is a K so that

|ank
− α| < ε

2
whenever k > K .

For n > N , choose k so that nk > N and k > K. Therefore, if n > N ,

|an − α| ≤ |an − ank
|+ |ank

− α|
<

ε

2
+

ε

2
= ε .

Therefore, there is a real number α with lim
n→∞

|an − α| = 0. �

As mentioned earlier, this is not the standard method of showing

that R is complete with respect to | · |, the usual norm. However, the

basic structure of the proof is similar to the method we will use to

show that L1[a, b] is a Banach space.

Let’s consider some examples before proceeding. The goal of

these examples is to illustrate the difference between pointwise con-

vergence and convergence in L1[a, b].

Example 3.1.9. For x ∈ [0, 1] let

f(x) =

{
0 if x = 0,
1
x if x �= 0

and let fn(x) = fn(x). (Here fn is the capped version of f .) For each

n, fn ∈ L1[0, 1]. Also, lim
n→∞

fn(x) = f(x) for each x ∈ [0, 1]. However,

f /∈ L1[0, 1].

Hence, the pointwise limit of a sequence of L1 functions is not

necessarily an L1 function.

Example 3.1.10. For x ∈ [0, 1] and positive integer n, let

fn(x) =

⎧⎨
⎩

2n2x if 0 ≤ x ≤ 1
2n ,

−2n2
(
x− 1

n

)
if 1

2n < x ≤ 1
n ,

0 otherwise.

This is the same sequence of functions discussed in Example 2.4.11.

The pointwise limit of this sequence of functions is f = 0, which is

certainly in L1[0, 1]. However,

lim
n→∞

||fn − f ||1 = lim
n→∞

∫ 1

0

|fn − f | = lim
n→∞

∫ 1

0

fn = lim
n→∞

1

2
=

1

2
.
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This example demonstrates that even if the pointwise limit of a

sequence of L1 functions is an L1 function, the sequence of functions

might not converge to this function in L1-norm.

We now turn to the main tool needed to prove that L1[a, b] is a

Banach space. It is the analog of the property of real numbers used

earlier: absolutely convergent series converge.

Theorem 3.1.11 (Beppo Levi). Let {gk} be a sequence of functions

in L1[a, b] such that

∞∑
k=1

||gk||1 converges. Then there exists g ∈ L1[a, b]

such that

(i)

∞∑
k=1

gk(x) converges almost everywhere to g(x) and

(ii)

∞∑
k=1

∫ b

a

gk =

∫ b

a

g.

Proof. As with Theorem 3.1.8, the first step is to describe a “target”.

Set

σn(x) =

n∑
k=1

|gk(x)| .

Since σn is the finite sum of functions in L1[a, b], σn ∈ L1[a, b]. Notice

how for each x ∈ [a, b] we are really considering absolute convergence

of the series

∞∑
k=1

gk(x). And, for each n,

∫ b

a

σn =

∫ b

a

n∑
k=1

|gk| =
n∑

k=1

∫ b

a

|gk| =
n∑

k=1

||gk||1 .

Here, the interchange of integration and summation is not an issue

because this is a finite sum. Pointwise, {σn} is an increasing sequence.

(Here, pointwise means to first pick a random x ∈ [a, b] and then look

at the resulting sequence of numbers {σn(x)}.) So, for each x ∈ [a, b]

either

lim
n→∞

σn(x) is finite or lim
n→∞

σn(x) = +∞ .

Our first task is to show that lim
n→∞

σn(x) is finite almost everywhere.
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To see this, let E = {x ∈ [a, b] | lim
n→∞

σn(x) = +∞}. We wish to

show that m(E) = 0. For N > 0 set

σN (x) =

{
lim

n→∞
σn(x) if lim

n→∞
σn(x) ≤ N,

N otherwise.

Essentially, σN is the capped version of lim
n→∞

σn(x). In fact, for each

fixed N > 0,

lim
n→∞

σN
n (x) = σN (x)

for all x ∈ [a, b]. Consequently, the sequence {σN
n } satisfies the condi-

tions of Theorem 2.4.13, the Monotone Convergence Theorem. There-

fore, ∫ b

a

σN = lim
n→∞

∫ b

a

σN
n

≤ lim
n→∞

∫ b

a

σn

= lim
n→∞

n∑
k=1

||gk||1

=

∞∑
k=1

||gk||1 .

Also,

Nm(E) ≤
∫ b

a

NXE ≤
∫ b

a

σN

for each N > 0. Combining these yields

m(E) ≤ 1

N

∞∑
k=1

||gk||1 .

But this is true for each N > 0. By taking the limit as N goes to

infinity we find that m(E) = 0.

We are getting ready to describe the target function. Set

σ(x) =

{
lim

n→∞
σn(x) if x /∈ E,

0 if x ∈ E.

By definition, lim
n→∞

σn(x) = σ(x) a.e. in [a, b]. We need to show that

the function σ ∈ L1[a, b]. By design, {σn} is a pointwise increasing
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sequence of nonnegative functions which converges almost everywhere

to σ. We again have satisfied the hypotheses of Theorem 2.4.13, the

Monotone Convergence Theorem. If to the contrary σ /∈ L1[a, b],

Theorem 2.4.13 would imply lim
n→∞

∫ b

a

σn = +∞. However,

lim
n→∞

∫ b

a

σn = lim
n→∞

n∑
k=1

||gk||1 =

∞∑
k=1

||gk||1,

which is finite. Therefore σ ∈ L1[a, b].

This means that for almost every x ∈ [a, b],
∞∑
k=1

gk(x) is an abso-

lutely convergent series. Thus, for almost every x ∈ [a, b],
∞∑
k=1

gk(x)

converges. If we let

sn(x) =
n∑

k=1

gk(x) ,

there exists a measurable function g(x) such that lim
n→∞

sn(x) = g(x)

a.e. in [a, b]. Since sn is measurable for every n, g is measurable. Also,

|sn(x)| =

∣∣∣∣∣
n∑

k=1

gk(x)

∣∣∣∣∣
≤

n∑
k=1

|gk(x)|

= σn(x) ≤ σ(x)

for almost every x ∈ [a, b]. Therefore, |g(x)| ≤ σ(x) a.e. in [a, b].

Hence by Lemma 2.4.5, g ∈ L1[a, b].

Finally, by Theorem 2.4.6, the Lebesgue Dominated Convergence

Theorem, using σ(x) as the dominating function,

lim
n→∞

∫ b

a

sn =

∫ b

a

g .
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In other words,

∞∑
k=1

∫ b

a

gk = lim
n→∞

(
n∑

k=1

∫ b

a

gk

)

= lim
n→∞

∫ b

a

(
n∑

k=1

gk

)

= lim
n→∞

∫ b

a

sn =

∫ b

a

g .

�

In the following example we will use this theorem to evaluate∫ 1

0

(
lnx

1− x

)2

dx. Before looking ahead, though, you should first

think about tackling this integral by hand.

Example 3.1.12. For 0 ≤ x < 1,

1

(1− x)2
=

∞∑
k=1

k xk−1 .

Hence, (
lnx

1− x

)2

=
1

(1− x)2
(lnx)2 =

∞∑
k=1

k xk−1(lnx)2

for almost every x ∈ [0, 1]. Setting gk(x) = xk−1(lnx)2 and noting

integration by parts twice yields∫ 1

0

kxk−1(lnx)2 =
2

k2
.

By Theorem 3.1.11,∫ 1

0

(
lnx

1− x

)2

dx =
∞∑
k=1

∫ 1

0

kxk−1(lnx)2 =
∞∑
k=1

2

k2
=

π2

3
.

We now turn to the completeness of L1[a, b] with respect to the

L1-norm.

Theorem 3.1.13. The space L1[a, b] is complete with respect to the

norm || · ||1, the L1-norm.
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Proof. We must show that if {fn} is a sequence functions in L1[a, b]

which is Cauchy with respect to the L1-norm, then there exists a

function f ∈ L1[a, b] such that

lim
n→∞

||fn − f ||1 = 0 .

Let {fn} be a sequence in L1[a, b] that is Cauchy with respect to

the L1-norm. Thus, for every ε > 0 there is an N so that

||fn − fm||1 < ε whenever n,m > N .

As with our proof of the completeness of the real numbers, our strat-

egy will be to create a candidate for a “target” function by judi-

ciously choosing a subsequence of {fn}, show that this subsequence

converges to some function f ∈ L1[a, b], and then show that the orig-

inal sequence converges to f in L1-norm. The following should feel

somewhat familiar by now.

Because {fn} is a Cauchy sequence, there is an N1 so that

||fn − fm||1 <
1

2
whenever n,m > N1 .

Pick n1 so that n1 > N1. Next, there is an N2 so that

||fn − fm||1 <
1

4
=

1

22
whenever n,m > N2 .

Pick n2 so that n2 > N2 and n2 > n1. Hence, ||fn1
−fn2

||1 < 1
2 . Next,

there is an N3 so that

||fn − fm||1 <
1

23
whenever n,m > N3 .

Pick n3 so that n3 > N3 and n3 > n2. Hence, ||fn2
− fn3

||1 < 1
4
.

More generally, assume fn1
, fn2

, . . . , fnk
have been chosen in this

fashion. There is an Nk+1 so that

||fn − fm||1 <
1

2k+1
whenever n,m > Nk+1 .

Pick nk+1 so that nk+1 > Nk+1 and nk+1 > nk. Hence, ||fnk
−

fnk+1
||1 < 1

2k
.

We have now created the subsequence {fnk
}∞k=1. Our next task

is to show that this subsequence converges to some f ∈ L1[a, b]. Also,

keep in mind that there are different ways a sequence of functions can
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converge. Two examples are pointwise and uniformly. But we seek a

particular kind of convergence here. We need

lim
n→∞

||fn − f ||1 = 0 .

However, first things first. We must create our “target”.

The geometric series

∞∑
k=1

1

2k
converges and

∞∑
k=1

1

2k
= 1 .

Hence,
M∑
k=1

||fnk
− fnk+1

||1 ≤
M∑
k=1

1

2k
≤ 1

for every M . Therefore,

∞∑
k=1

||fnk
− fnk+1

||1 converges. By Theo-

rem 3.1.11, using gk = fnk
− fnk+1

, there exists g ∈ L1[a, b] with

∞∑
k=1

fnk
(x)− fnk+1

(x) = g(x) a.e. in [a, b] .

But for almost every x ∈ [a, b],

lim
M→∞

(
M∑
k=1

(
fnk

(x)− fnk+1
(x)
))

= lim
M→∞

(
fn1

(x)− fnM+1
(x)
)
=g(x);

hence,

lim
M→∞

fnM+1
(x) = fn1

(x)− g(x) a.e. in [a, b] .

We have now established that our subsequence {fnk
(x)}∞k=1 con-

verges pointwise to f ∈ L1[a, b], where f(x) = fn1
(x) − g(x). Our

final task is to show lim
n→∞

||fn − f ||1 = 0. For every n,

lim
k→∞

|fn(x)− fnk
(x)| = |fn(x)− f(x)| a.e. in [a, b] .

Remember that fnk
is from our subsequence, whereas fn is from the

original sequence. By Corollary 2.4.12, Fatou’s Lemma, for each fixed

n, ∫ b

a

|fn − f | ≤ lim inf
k→∞

∫ b

a

|fn − fnk
| .
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In other words,

||fn − f ||1 ≤ lim inf
k→∞

||fn − fnk
||1 .

Let ε > 0. Because {fn} is Cauchy with respect to || · ||1, there is

an N so that

||fn − fm||1 <
ε

2
whenever n,m > N .

Hence, for any n > N , lim inf
k→∞

||fn − fnk
||1 ≤ ε

2
< ε. Consequently, if

n > N , then

||fn − f ||1 ≤ lim inf
k→∞

||fn − fnk
||1 < ε .

Therefore,

lim
n→∞

||fn − f ||1 = 0

and L1[a, b] is a Banach space. �

3.2. Lp Spaces

L1[a, b] is not the only Banach space that arises from Lebesgue in-

tegration. In fact, L1[a, b] is just one of a family of Banach spaces

known as Lp spaces.

Definition 3.2.1. For p ≥ 1 we define Lp[a, b] to be

Lp[a, b] = {f
∣∣ f is measurable

and |f |p is Lebesgue integrable on [a, b]} .

(As with L1[a, b], it is assumed we are again really working with

equivalence classes.)

Example 3.2.2. By Exercise 6, f(x) = x− 1
3 ∈ L2[0, 1] but g(x) =

x− 2
3 /∈ L2[0, 1].

In the previous example the careful reader might have observed

that 0 is not necessarily in the domain of the function discussed.

We have actually defined the function almost everywhere. If one is

bothered by this, it is easy to merely define the functions to take on

the value 0 when x = 0 and the results do not change. Here is another

example of where almost everywhere is (almost always) good enough!
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Proposition 3.2.3. Let f, g ∈ Lp[a, b], and c ∈ R.

(i) cf ∈ Lp[a, b].

(ii) f + g ∈ Lp[a, b].

Proof. (i) If f ∈ Lp[a, b], then |f |p is Lebesgue integrable. As a

consequence, |c|p|f |p = |cf |p is Lebesgue integrable. Hence,

cf ∈ Lp[a, b].

(ii) Since both f and g are measurable, f + g must be measur-

able. We will show that |f + g|p is bounded by a Lebesgue

integrable function and apply Lemma 2.4.5. For every x ∈
[a, b],

|f(x) + g(x)|p ≤ (|f(x)|+ |g(x)|)p

≤ (2 max{|f(x)|, |g(x)|})p

= 2p (max{|f(x)|p, |g(x)|p})
≤ 2p (|f(x)|p + |g(x)|p) .

Since 2p (|f(x)|p + |g(x)|p) is Lebesgue integrable, f + g ∈
Lp[a, b]. �

The previous proposition verifies that Lp[a, b] is a vector space.

Our goal is to show that Lp[a, b] is a Banach space. To do this, we

first need to define a norm on Lp[a, b].

Definition 3.2.4. Let f ∈ Lp[a, b]. The Lp-norm of f , written

||f ||p, is

||f ||p =

(∫ b

a

|f |p
) 1

p

.

Although we have called ||f ||p a norm, we need to verify that it

satisfies the definition of a norm. Most of the properties follow quite

easily.

(i) We must show ||f ||p ≥ 0. Since |f(x)|p ≥ 0 for all x ∈ [a, b],(∫ b

a

|f |p
) 1

p

≥ 0 .

Consequently, ||f ||p ≥ 0.
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(ii) Next we will show that ||f ||p = 0 if and only if f = 0 a.e. in

[a, b]:

||f ||p = 0 if and only if

(∫ b

a

|f |p
) 1

p

= 0

if and only if

∫ b

a

|f |p = 0

if and only if |f |p = 0 a.e.

if and only if f = 0 a.e.

(iii) To see that ||cf ||p = |c| ||f ||p,

||cf ||p =

(∫ b

a

|cf |p
) 1

p

=

(∫ b

a

|c|p |f |p
) 1

p

=

(
|c|p

∫ b

a

|f |p
) 1

p

= |c|
(∫ b

a

|f |p
) 1

p

= |c| ||f ||p .

(The reason for the power of “ 1
p” should now be apparent.)

(iv) The final property we need to verify is that ||f + g||p ≤
||f ||p + ||g||p. Unlike the first three, this property isn’t as

easy to verify at this time. We will return to this later.

One of the tools needed to verify this fourth property is known

as Hölder’s Inequality.

Theorem 3.2.5 (Hölder’s Inequality). Let f ∈ Lp[a, b] and g ∈
Lq[a, b], where p > 1 and 1

p + 1
q = 1. Then fg ∈ L1[a, b] and

||fg||1 ≤ ||f ||p||g||q.

Before proving this theorem, let’s examine the condition 1
p
+ 1

q
=

1. This means there is a required connection between p and q. For

example, if p = 3
2 , then q must be equal to 3. On the other hand, if

p = 9, then q = 9
8 . If p = 2, then q = 2. More generally, q = p

p−1 .

Here is a lemma we need to prove Hölder’s Inequality.

Lemma 3.2.6. Let α, β ∈ (0, 1) with α + β = 1. Then for any

nonnegative numbers a and b,

ab ≤ αa
1
α + βb

1
β .
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Figure 3.1. Graph of y = xδ under the first two possibilities.

Proof. Let δ > 0. (We will specify δ later.) Consider the graph of

y = xδ for x ≥ 0. We will look at the three possibilities: b < aδ,

aδ < b, and aδ = b.

(i) Suppose b < aδ. In this case, the horizontal line y = b

intersects the graph of y = xδ to the left of the vertical line

x = a. (See the left example in Figure 3.1.) Thus the area

of the rectangle formed by the axes and the lines y = b and

x = a, which equals ab, is less than

∫ a

0

xδ dx (the area under

the curve y = xδ) plus

∫ b

0

y
1
δ dy (the remaining area inside

the rectangle but above the curve y = xδ, integrating with

respect to y). That is,

ab ≤
∫ a

0

xδ dx+

∫ b

0

y
1
δ dy .

(ii) Suppose aδ < b. This time the horizontal line y = b inter-

sects the graph of y = xδ to the right of the vertical line

x = a. (See the right example in Figure 3.1.) Thus the area

of the rectangle formed by the axes and the lines y = b and

x = a, which equals ab, is less than

∫ b

0

y
1
δ dy (the area of the

region in the first quadrant bounded above by the line y = b

and below by the curve y = xδ, integrating with respect to

y) plus

∫ a

0

xδ dx (the remaining area inside the rectangle
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b

a

Figure 3.2. Graph of y = xδ with aδ = b.

but below the curve y = xδ, integrating with respect to y).

That is, once again

ab ≤
∫ a

0

xδ dx+

∫ b

0

y
1
δ dy .

(iii) Suppose aδ = b as illustrated in Figure 3.2. In this final case,

the two lines x = a and y = b intersect at the point (a, b),

which is on the curve y = xδ. Thus the area of the rectangle

formed by the axes and the lines y = b and x = a, which

equals ab, equals

∫ a

0

xδ dx (the area under the curve y = xδ)

plus

∫ b

0

y
1
δ dy (the remaining area inside the rectangle but

above the curve y = xδ, integrating with respect to y). That

is,

ab =

∫ a

0

xδ dx+

∫ b

0

y
1
δ dy .

In all cases, then,

ab ≤
∫ a

0

xδ dx+

∫ b

0

y
1
δ dy

=
aδ+1

δ + 1
+

b
1
δ+1

1
δ + 1

=

(
1

δ + 1

)
aδ+1 +

(
δ

δ + 1

)
b

δ+1
δ .
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The lemma follows once we choose δ so that 1
δ+1

= α and δ
δ+1

=

β. �

Now we will prove Theorem 3.2.5, Hölder’s Inequality.

Proof. Suppose f ∈ Lp[a, b] and g ∈ Lq[a, b], where 1
p
+ 1

q
= 1. By

Lemma 3.2.6 with α = 1
p and β = 1

q ,

|f(x) g(x)| ≤ 1

p
|f(x)|p + 1

q
|g(x)|q

for every x ∈ [a, b]. By Lemma 2.4.5, fg ∈ L1[a, b] since |f |p and |g|q
are both Lebesgue integrable.

To prove the inequality

||fg||1 ≤ ||f ||p||g||q ,

we will first observe that this is easily true if either ||f ||p = 0 (that

is, f = 0 a.e.) or ||g||q = 0. Therefore, we will assume ||f ||p > 0 and

||g||q > 0.

We will first look at the special case where ||f ||p = ||g||q = 1. As

noted above, Lemma 3.2.6 guarantees that

|f(x) g(x)| ≤ 1

p
|f(x)|p + 1

q
|g(x)|q ;

therefore ∫ b

a

|fg| ≤ 1

p

∫ b

a

|f |p + 1

q

∫ b

a

|g|q .

In other words,

||fg||1 ≤ 1

p
(||f ||p)p +

1

q
(||g||q)q

=
1

p
+

1

q
= 1 = ||f ||p||g||q

(using the assumption that ||f ||p = ||g||q = 1), and we are done in this

case.

The more general case follows by setting

f̃(x) =
f(x)

||f ||p
and g̃(x) =

g(x)

||g||q
.
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Then ||f̃ ||p = 1 and ||g̃||q = 1. Therefore, from our previous special

case, ||f̃ g̃||1 ≤ 1. Hence, ∫ b

a

|fg|
||f ||p||g||q

≤ 1

or ∫ b

a

|fg| ≤ ||f ||p||g||q .

In other words, ||fg||1 ≤ ||f ||p||g||q, as claimed. �

The theorem that actually completes the final requirement for

showing that || · ||p is a norm on Lp[a, b] is the following.

Theorem 3.2.7 (Minkowski’s Inequality). Let p ≥ 1. If f, g ∈
Lp[a, b], then

||f + g||p ≤ ||f ||p + ||g||p .

Proof. We already have this result for the case p = 1, so assume

p > 1. This result is trivially true if |f + g| = 0 a.e. in [a, b]. (Make

sure you understand why this is deemed “trivial”.) Hence, we will

assume |f + g| > 0.

In Proposition 3.2.3 we showed that |f + g|p is Lebesgue inte-

grable. We will look at this further. Let q = p
p−1 (remember, p > 1).

Then 1
p + 1

q = 1. Note that

(||f + g||p)p−1
=

(∫ b

a

|f + g|p
) p−1

p

=

(∫ b

a

(
|f + g|p−1

) p
p−1

) p−1
p

= ||(|f + g|p−1)||q .

Therefore, |f + g|p−1 ∈ Lq[a, b] and ||(|f + g|p−1)||q = (||f + g||p)p−1.

Also,

|f(x) + g(x)|p = |(f(x) + g(x))p|

=
∣∣∣f(x) (f(x) + g(x))

p−1 + g(x) (f(x) + g(x))p−1
∣∣∣

≤ |f(x)| |f(x) + g(x)|p−1 + |g(x)| |f(x) + g(x)|p−1 .
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Thus,

(||f + g||p)p =

∫ b

a

|f + g|p

≤
∫ b

a

|f(x)| |f(x) + g(x)|p−1
+

∫ b

a

|g(x)| |f(x) + g(x)|p−1

≤ ||f ||p||(|f + g|p−1)||q + ||g||p||(|f + g|p−1)||q

using Hölder’s Inequality for the last line. Therefore,

(||f + g||p)p ≤ ||f ||p(||f + g||p)p−1 + ||g||p(||f + g||p)p−1

so that

||f + g||p ≤ ||f ||p + ||g||p . �

Now that we have completed the last step in showing that || · ||p is

a norm on Lp[a, b], we will now verify that Lp[a, b] is a Banach space

for p > 1. The proof is very similar to the proof of Theorem 3.1.13.

Theorem 3.2.8. For p > 1, the space Lp[a, b] is complete with respect

to the norm || · ||p, the Lp-norm.

Proof. Let p > 1 and suppose {fn} is a sequence functions in Lp[a, b]

which is Cauchy with respect to the Lp-norm. We must show there

exists a function f ∈ Lp[a, b] such that

lim
n→∞

||fn − f ||p = 0 .

(Hopefully, you have already guessed that our strategy will be to

create a subsequence of {fn}, show that this subsequence converges to

some function f ∈ Lp[a, b], and then show that the original sequence

converges to f in the Lp-norm. You also should be able to guess how

we will start.)

Because {fn} is a Cauchy sequence, there is an N1 so that

||fn − fm||p <
1

2
whenever n,m > N1 .

Pick n1 so that n1 > N1. Next, there is an N2 so that

||fn − fm||p <
1

22
whenever n,m > N2 .
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Pick n2 so that n2 > N2 and n2 > n1. Hence, ||fn1
−fn2

||p < 1
2
. Next,

there is an N3 so that

||fn − fm||p <
1

23
whenever n,m > N3 .

Pick n3 so that n3 > N3 and n3 > n2. Hence, ||fn2
− fn3

||p < 1
4 .

More generally, assume fn1
, fn2

, . . . , fnk
have been chosen in this

fashion. There is an Nk+1 so that

||fn − fm||p <
1

2k+1
whenever n,m > Nk+1 .

Pick nk+1 so that nk+1 > Nk+1 and nk+1 > nk. Hence, ||fnk
−

fnk+1
||p < 1

2k
.

We now have our subsequence {fnk
}∞k=1. Our next task is to show

that this sequence converges to some function f ∈ Lp[a, b].

Let

gm(x) =

m∑
k=1

∣∣fnk
(x)− fnk+1

(x)
∣∣ .

Then by Minkowski’s Inequality (Theorem 3.2.7),

||gm||p ≤
M∑
k=1

||fnk
− fnk+1

||p ≤
M∑
k=1

1

2k
≤ 1 .

Also, 0 ≤ gm(x) ≤ gm+1(x) for all m. In an argument similar to that

in Theorem 3.1.11, we can show there is a function g(x) with

lim
m→∞

gm(x) = g(x) a.e.

(Note: this is not a short argument. It means essentially proving an

Lp version of Theorem 3.1.11.) Moreover, by the Monotone Conver-

gence Theorem (Theorem 2.4.13) applied to {(gm)p}, gp ∈ L1[a, b]

and

lim
m→∞

∫ b

a

|gm|p =

∫ b

a

|g|p .

Hence, the series

∞∑
k=1

(
fnk

(x)− fnk+1
(x)
)
converges absolutely for

almost every x in [a, b]. That is, there is a function f̃ with

lim
m→∞

m∑
k=1

(
fnk

(x)− fnk+1
(x)
)
= lim

m→∞

(
fn1

(x)− fnm+1
(x)
)
= f̃(x) a.e.
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Moreover, |f̃(x)| ≤ g(x) a.e.; thus |f̃ |p ∈ L1[a, b] by Lemma 2.4.5. In

other words, f̃ ∈ Lp[a, b]. Set

f = fn1
− f̃ .

We now have our target f ∈ Lp[a, b].

Our final task is to show lim
n→∞

||fn − f ||p = 0. For every n,

lim
k→∞

|fn(x)− fnk
(x)|p = |fn(x)− f(x)|p a.e. in [a, b] .

By Corollary 2.4.12, Fatou’s Lemma,∫ b

a

|fn − f |p ≤ lim inf
k→∞

∫ b

a

|fn − fnk
|p

or (∫ b

a

|fn − f |p
) 1

p

≤ lim inf
k→∞

(∫ b

a

|fn − fnk
|p
) 1

p

.

That is,

||fn − f ||p ≤ lim inf
k→∞

||fn − fnk
||p .

Let ε > 0. Because {fn} is Cauchy with respect to || · ||p, there is an

N so that

||fn − fm||p <
ε

2
whenever n,m > N .

Hence, for any n > N , lim inf
k→∞

||fn − fnk
||p ≤ ε

2
< ε. Consequently, if

n > N , then

||fn − f ||p ≤ lim inf
k→∞

||fn − fnk
||p < ε .

Therefore,

lim
n→∞

||fn − f ||p = 0

and Lp[a, b] is a Banach space. �

We have defined Lp[a, b] for p ≥ 1. We will also define the space

L∞[a, b]. We first need a preliminary definition.

Definition 3.2.9. Let f : [a, b] → R be a measurable function.

(i) The essential supremum of f is

ess sup
x∈[a,b]

f = inf{α
∣∣ f(x) ≤ α a.e.} .
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(ii) The essential infimum of f is

ess inf
x∈[a,b]

f = sup{β
∣∣ f(x) ≥ β a.e.} .

Example 3.2.10. For x ∈ [0, 1] let

f(x) =

{
2x if x /∈ Q,

q if x = p
q .

Here we are assuming p
q
is in the lowest terms. In this case,

sup
x∈[0,1]

f = +∞,

while

ess sup
x∈[0,1]

f = 2 .

Example 3.2.11. For x ∈ [0, 1] let

g(x) =

⎧⎨
⎩

1
x

if x /∈ Q,

0 if x = 0,

q if x �= 0 and x = p
q .

Again, we are assuming p
q is in the lowest terms. In this case,

ess sup
x∈[0,1]

g = +∞ .

Definition 3.2.12. The space L∞[a, b] is defined as

L∞[a, b] =

{
f
∣∣ f is measurable and ess sup

x∈[a,b]

|f | is finite
}

.

For f ∈ L∞[a, b] we define ||f ||∞ as

||f ||∞ = ess sup
x∈[a,b]

|f | .

As shown in Exercise 12, the space L∞[a, b] is a vector space.

Furthermore, || · ||∞ is a norm on this space in the next proposition as

long as we work with the same sort of equivalence classes as we did

with Lp[a, b] for 1 ≤ p < +∞.

Proposition 3.2.13. || · ||∞ is a norm on the space L∞[a, b].

Proof. This is Exercise 13. �
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The space L∞[a, b] is also a Banach space. Again this is left to

the reader as an exercise.

3.3. Approximations in Lp[a, b]

Since the set of rational numbers is countable and the set of irrational

numbers is uncountable, we know that there are far more irrationals

than rationals. Yet, we often approximate irrationals by rationals.

For example, π ≈ 3.14 or e ≈ 2.718. We do this because we are more

familiar with the rational numbers. In calculus, the vast majority

of functions one encounters are continuous functions. Hence, we are

more familiar with continuous functions. However, most of the func-

tions in Lp[a, b] are not continuous. In this section we will show that

every Lp function can be approximated by a continuous function. In

other words, we will show that the space of continuous functions is

dense in Lp[a, b]. That is, given f ∈ Lp[a, b] and ε > 0, there is a

continuous function g such that ||f − g||p < ε. We will do this in

stages.

Lemma 3.3.1. Let p ≥ 1 and f ∈ Lp[a, b]. Given ε > 0 there is a

bounded function g such that ||f − g||p < ε.

Proof. If f is bounded, we are done, so we will assume f is un-

bounded. For N > 0 set

gN (x) =

⎧⎨
⎩

f(x) if |f(x)| ≤ N,

N if f(x) > N,

−N if f(x) < −N.

For each N , gN is a bounded function. Moreover, for every x ∈ [a, b],

lim
N→∞

|f(x)− gN (x)|p = 0

and

|f(x)− gN (x)|p ≤
(
|f(x)|+ |gN (x)|

)p ≤ (2|f(x)|)p = 2p|f(x)|p .

By Theorem 2.4.6, the Lebesgue Dominated Convergence Theorem,

using 2p|f(x)|p as the dominating function,

lim
N→∞

∫ b

a

|f − gN |p =

∫ b

a

0 = 0 .
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Therefore,

lim
N→∞

||f − gN ||p = 0 .

Finally, given ε > 0, choose N sufficiently large so that ||f − gN ||p < ε

and set g = gN . �

This lemma shows that we can approximate functions in Lp[a, b]

by bounded functions. Remember our goal in this section is to show

that all functions in Lp[a, b] can be approximated in Lp[a, b] by contin-

uous functions. The next stage in this process is to show that bounded

functions can be approximated in Lp[a, b] by simple functions.

Lemma 3.3.2. Let p ≥ 1 and f ∈ Lp[a, b] be a bounded function.

Then there exists a simple function

φ =

n∑
i=1

aiXAi

such that ||f − φ||p < ε.

Proof. This proof is reminiscent of Theorem 2.2.12. Since f is bound-

ed there exists an M > 0 with −M < f(x) < M for all x ∈ [a, b].

Let

−M = y0 < y1 < y2 < . . . < yn = M

where y1, y2, . . . , yn are chosen so that yi − yi−1 < ε

(b−a)
1
p

for i =

1, 2, . . . , n. Set

Ai = {x ∈ [a, b]
∣∣ yi−1 ≤ f(x) < yi}

and ai = yi−1 for i = 1, 2, . . . , n. Define φ to be

φ =

n∑
i=1

aiXAi
.
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If x ∈ Ai then |f(x) − φ(x)| <
ε

(b− a)
1
p

. Additionally, each

x ∈ [a, b] is in Ai for exactly one i. Therefore,

||f − φ||p =

(∫ b

a

|f − φ|p
) 1

p

≤
(∫ b

a

(
ε

(b− a)
1
p

)p) 1
p

=

(
(b− a)

εp

(b− a)

) 1
p

= ε . �

Thus, every function in Lp[a, b] can be approximated by a simple

function. Our final step will be to show that every simple function

can be approximated in Lp[a, b] by a continuous function. In fact, it

suffices to show that any characteristic function of a measurable set

can by approximated in Lp[a, b] by a continuous function.

Lemma 3.3.3. Let E ⊆ [a, b] be a measurable set. Given ε > 0 and

p ≥ 1 there is a continous function h so that ||XE − h||p < ε.

Proof. Let ε > 0 be given. By the definition of a measurable set,

there is an open set G containing E such thatm(G\E) < εp/2. There

is also a closed set F contained in E such thatm(E\F ) < εp/2. Thus,

F ⊆ E ⊆ G and F ∩Gc = ∅. Also, m(G \ F ) < εp.

Since F and Gc are two disjoint closed sets, we may define the

function

h(x) =
d(x,Gc)

d(x, F ) + d(x,Gc)
.

The denominator is never 0, so this function is always defined. Also,

as functions of x, d(x, F ) and d(x,Gc) are continuous. Consequently,

we have a continuous function with 0 ≤ h(x) ≤ 1 for all x ∈ [a, b].

Now, if x ∈ Gc then h(x) = 0 = XE(x). Similarly, if x ∈ F , then

h(x) = 1 = XE(x). Thus, |XE(x)− h(x)| = 0 if x ∈ F or x ∈ Gc.

In addition, if x ∈ G \F , then XE(x) = 0 or 1 and 0 ≤ h(x) ≤ 1.

As a result, |XE(x)− h(x)| ≤ 1 = X (G \ F ) if x ∈ G \ F . Therefore,

|XE(x)− h(x)|p ≤
(
XG\F (x)

)p
= XG\F (x)



134 3. Lp spaces

and

||XE − h||p =

(∫ b

a

|XE − h|p
) 1

p

≤
(∫ b

a

(XG\F )
p

) 1
p

=

(∫ b

a

XG\F

) 1
p

= (m(G \ F ))
1
p

< (εp)
1
p = ε . �

Corollary 3.3.4. Let p ≥ 1 and φ be a simple function

φ =
n∑

i=1

aiXAi
,

where Ai is a measurable subset of [a, b] for each i. Then for every

ε > 0 there exists a continuous function g such that ||φ− g||p < ε.

Proof. This is Exercise 23. �

Theorem 3.3.5. Let p ≥ 1 and f ∈ Lp[a, b]. For every ε > 0 there

is a continuous function g such that ||f − g||p ≤ ε.

Proof. Let ε > 0 be given. By Lemma 3.3.1, there is a bounded

function gN with ||f − gN ||p < ε
2 . By Lemma 3.3.2, there is a simple

function φ such that ||gN −φ||p < ε
4 . Finally, by Corollary 3.3.4, there

is a continuous function g with ||φ− g||p < ε
4 . Therefore,

||f − g||p ≤ ||f − gN ||p + ||gN − φ||p + ||φ− g||p

<
ε

2
+

ε

4
+

ε

4
= ε . �

3.4. L2[a, b]

L2[a, b] holds a special place among the Lp-spaces. It is the only one

of the Lp-spaces that is a Hilbert space. A Hilbert space, as we shall

see, is a Banach space whose norm comes from an inner product.
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Before we officially make this definition, we need the definition of an

inner product. This is really extending the notion of the dot product

on Rn.

Definition 3.4.1. Let V be a vector space. An inner product on

V is a function 〈·, ·〉 from V × V to R such that for every u, v, w ∈ V

and α, β ∈ R:

(i) 〈αu+ βv, w〉 = α〈u,w〉+ β〈v, w〉,
(ii) 〈v, w〉 = 〈w, v〉,
(iii) 〈v, v〉 ≥ 0, and

(iv) 〈v, v〉 = 0 if and only if v = 
0, where 
0 denotes the zero

vector in V .

V together with an inner product 〈·, ·〉 is called an inner product

space.

We can (and sometimes do) define a complex-valued inner prod-

uct (for example, see [11]), but in this text we will stick with the

real-valued inner product. Notice that by using α = β = 0 in condi-

tion (i), it follows that 〈
0, v〉 = 0 for all v ∈ V .

Example 3.4.2. For 
x, 
y ∈ R3 with 
x=(x1, x2, x3) and 
y=(y1, y2, y3)

we have the usual dot product,


x · 
y = x1y1 + x2y2 + x3y3 .

As expected, R3 with the dot product is an inner product space.

Of course, the above example extends to Rn. We also have en-

countered another inner product space.

Example 3.4.3. For f, g ∈ L2[a, b] define 〈f, g〉 to be

〈f, g〉 =
∫ b

a

fg .

One of the first steps we need to do in order to show that we have cre-

ated an inner product is to verify that we have defined a function from

L2[a, b]× L2[a, b] to R. In other words, if f and g are in L2[a, b], we

need to verify that
∫ b

a
fg is finite. Hölder’s Inequality, Theorem 3.2.5,

with p = q = 2 guarantees that the product fg is in L1[a, b], which is
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precisely what we need. (On the other hand, if p �= 2, we cannot use

Hölder’s inequality to guarantee that
∫ b

a
fg always produces a finite

number.) The four properties of inner products are easily verified.

In Rn we have the relationship between the dot product and mag-

nitude

|v| =
√
v · v .

In an inner product space V we will define the induced norm || · || to
be

||v|| =
√
〈v, v〉 .

At this point, we are using the term “norm”, but we have not yet jus-

tified that, what we call the “induced norm”, satisfies Definition 3.1.1.

But we will.

Example 3.4.4. In L2[a, b] the induced norm is

||f || =
√
〈f, f〉

=

(∫ b

a

f2

) 1
2

= ||f ||2 .

In the case of L2[a, b], the induced norm is our familiar L2-norm.

Now consider showing that, in general, what an induced norm

does is a norm. The first three properties of a norm are easily checked.

It is the fourth property that is less straightforward. A classic result

known as the Cauchy-Schwarz Inequality is needed for this.

Proposition 3.4.5 (Cauchy-Schwarz Inequality). Let V be an inner

product space with inner product 〈·, ·〉. For every v, w ∈ V ,

|〈v, w〉| ≤ ||v|| ||w|| .

Proof. The result is easily true if either v or w is the zero vector.

Hence, we will assume neither v nor w is the zero vector.

By property (iii) of a norm,

〈tv − w, tv − w〉 ≥ 0

for every real number t. Therefore,

t2〈v, v〉 − 2t〈v, w〉+ 〈w,w〉 ≥ 0 .
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Here we have used property (i) of a norm to expand 〈tv−w, tv−w〉.
The expression on the left is quadratic in t. Since the quantity on the

left must always be greater than or equal to zero, the quadratic in t

must have at most one real root. Thinking of the quadratic formula,

the quantity inside the square root cannot be positive. In other words,

4 (〈v, w〉)2 − 4〈v, v〉 〈w,w〉 ≤ 0

or

(〈v, w〉)2 ≤ 〈v, v〉 〈w,w〉 .

Thus

|〈v, w〉| ≤
√

〈v, v〉
√
〈w,w〉 = ||v|| ||w||,

as claimed. �

We will now show that the induced norm on an inner product

space does satisfy the triangle inequality. Notice that this is a state-

ment which applies to any inner product space, not just L2[a, b].

Proposition 3.4.6. Let V be an inner product space with inner prod-

uct 〈·, ·〉 and induced norm || · ||. Then for all v, w ∈ V ,

||v + w|| ≤ ||v||+ ||w|| .

Proof. For every v, w ∈ V , by the definition of the induced norm,

properties of the inner product, and the Cauchy-Schwarz Inequality

(Proposition 3.4.5),

||v + w||2 = 〈v + w, v + w〉
= 〈v, v〉+ 2〈v, w〉+ 〈w,w〉
≤ ||v||2 + 2||v|| ||w|| + ||w||2 .

Therefore,

||v + w||2 ≤ (||v||+ ||w||)2

or

||v + w|| ≤ ||v||+ ||w||,

as claimed. �
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An inner product space is not necessarily a Banach space. The

missing ingredient is completeness. In other words, in an inner prod-

uct space there is no guarantee that Cauchy sequences converge.

When this extra quality occurs, we call the space a Hilbert space.

Definition 3.4.7. A Hilbert space is an inner product space that

is a Banach space with respect to the induced norm.

In other words, in order for a vector space V to be a Hilbert

space, it must have an inner product and it must be complete with

respect to the induced norm.

Example 3.4.8. L2[a, b] is a Hilbert space. The norm induced by

the inner product is the same as the L2-norm, and we have shown

that L2[a, b] is complete with respect to the L2-norm.

Example 3.4.9. Let C[a, b] denote the space of functions that are

continuous on the interval [a, b]. We can define an inner product on

this space in the same fashion as on L2[a, b], that is,

〈f, g〉 =
∫ b

a

fg .

The induced norm is identical to the L2-norm. However, the space

C[a, b] is not the same as L2[a, b]. The function

f(x) =

{
0 if x < 1

2 ,

1 if x ≥ 1
2

is in L2[0, 1] but not in C[0, 1]. By Theorem 3.3.5 we can approxi-

mate f by continuous functions. That is, we can find a sequence of

continuous functions {gn} that converge to f in the L2-norm. But

this means that {gn} must be a Cauchy sequence that does not con-

verge to a continuous function with respect to this induced norm.

Therefore, C[0, 1] with the norm induced by this inner product is not

complete with respect to this norm, and hence is not a Hilbert space.

In general, given a vector space V there might be many choices

for a norm on V . Are all of these norms induced by different inner

products? We know that given an inner product on V , it induces a

norm on V . What about the other way around? To help us make
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that determination, we have the next proposition, known as the par-

allelogram law.

Proposition 3.4.10. Let V be an inner product space with induced

norm ||v|| =
√

〈v, v〉. Then for every v, w ∈ V ,

||v + w||2 + ||v − w||2 = 2||v||2 + 2||w||2 .

Proof. This is Exercise 20. �

The next example illustrates how this proposition can be used to

show that a norm is not induced by some inner product.

Example 3.4.11. Consider L1[0, 1] with the L1-norm. Both f(x) =

1− x and g(x) = x are in L1[0, 1]. Thus

||f + g||1 =

∫ 1

0

1 = 1 ,

||f − g||1 =

∫ 1

0

|1− 2x| = 1

2
,

||f ||1 =

∫ 1

0

|1− x| = 1

2
, and

||g||1 =

∫ 1

0

|x| = 1

2
.

However,

(||f + g||1)2 + (||f − g||1)2 = 1 +
1

4

�= 2
1

4
+ 2

1

4
= 2 (||f ||1)2 + 2 (||g||1)2 .

Therefore, by Proposition 3.4.10, the L1-norm is not induced by an

inner product.

3.5. L2 Theory of Fourier Series

We conclude this chapter with a brief discussion of Fourier series.

This is intended to provide an example where the features of the

Hilbert space L2[−π, π] come into play. What follows is by no means

a complete investigation of Fourier series. Much more information

about Fourier series can be found in other texts such as Brown and
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Churchill [4]. This section is not necessary for later material and may

be omitted.

To get started, we need to define a Fourier series. Suppose f is a

function defined on [−π, π] and

f(x) =
a0
2

+

∞∑
k=1

(ak cos(kx) + bk sin(kx)) .

There are two big assumptions being made here. The first is that the

infinite series converges. The second is that the function f is equal

to such a series. For now we will ignore any possible issues and figure

out what the coefficients a0, a1, b1, a2, b2, . . . ought to be. Assuming

we can interchange integration with summation (which is not always

the case),∫ π

−π

f(x) = πa0 +
∞∑
k=1

(
ak

∫ π

−π

cos(kx) dx+ bk

∫ π

−π

sin(kx) dx

)
= πa0 .

Hence, we expect

a0 =
1

π

∫ π

−π

f(x) .

Continuing, for a fixed positive integer n,∫ π

−π

f(x) cos(nx) =
a0
2

∫ π

−π

cos(nx)

+

∞∑
k=1

(
ak

∫ π

−π

cos(kx) cos(nx) dx+ bk

∫ π

−π

sin(kx) cos(nx) dx

)
= πan .

Here we have used the results of Exercise 25, which is essentially a

calculus exercise. It makes sense to expect

an =
1

π

∫ π

−π

f(x) cos(nx) .

Similarly, continuing with our assumptions,∫ π

−π

f(x) sin(nx) = πbn

so that

bn =
1

π

∫ π

−π

f(x) sin(nx) .
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Throughout this section we will assume f ∈ L2[−π, π]. We know

that L2[−π, π] is a Hilbert space. Using the inner product 〈·, ·〉, our
computations can be expressed as

a0 =
1

2π

∫ π

−π

f(x) =
〈f, 1〉
〈1, 1〉 ,

an =
1

π

∫ π

−π

f(x) cos(nx) =
〈f, cos(nx)〉

〈cos(nx), cos(nx)〉 ,

bn =
1

π

∫ π

−π

f(x) sin(nx) =
〈f, sin(nx)〉

〈sin(nx), sin(nx)〉 .

In other words, underlying our computations is the natural inner

product on L2[−π, π].

For f ∈ L2[−π, π], the a0, a1, b1, a2, b2, . . . defined above are al-

ways finite and are known as the Fourier coefficients for f . We

now define Fourier series for f as

f(x) ∼ a0
2

+

∞∑
k=1

(ak cos(kx) + bk sin(kx)) ,

where

a0 =
1

2π

∫ π

−π

f(x),

an =
1

π

∫ π

−π

f(x) cos(nx),

bn =
1

π

∫ π

−π

f(x) sin(nx) .

We use the symbol ∼ instead of an equal sign because we do not know

if the series converges to f . For that matter, we do not know if the

series converges.

Now let’s move on to the issue of convergence. As usual, let sn(x)

denote the nth partial sum of the Fourier series. That is,

sn(x) =
a0
2

+

n∑
k=1

(ak cos(kx) + bk sin(kx)) .

Our goal is to show that for f in L2[−π, π],

lim
n→∞

||f − sn||2 = 0 .
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In other words, we will show that the Fourier series of an L2-function

converges to that function with respect to the L2-norm.

As a first step, we can claim the following.

Proposition 3.5.1. Let f ∈ L2[−π, π]. For each positive integer n,

||f − sn||22 = ||f ||22 −
(
πa20
2

+ π

n∑
k=1

(a2k + b2k)

)
,

where a0, a1, b1, a2, b2, . . . are the Fourier coefficients defined above

and sn(x) is the nth partial sum of the Fourier series for f .

Proof. This is Exercise 26. �

As a corollary, we can prove what is known as Bessel’s inequality.

Corollary 3.5.2. Let f ∈ L2[−π, π]. Let a0, a1, b1, a2, b2, . . . be the

Fourier coefficients for f . Then

∞∑
k=1

(a2k + b2k) converges and

πa20
2

+ π

∞∑
k=1

(a2k + b2k) ≤ ||f ||22 .

Proof. For each n, by Proposition 3.5.1

πa20
2

+ π

n∑
k=1

(a2k + b2k) ≤ ||f ||22 .

The result follows by taking n to infinity. �

For a positive integer n, a trigonometric polynomial of degree

n is a function Tn of the form

Tn(x) = A0 +

n∑
k=1

(Ak cos(kx) +Bk sin(kx)) ,

where A0, A1, B1, . . . , Bn are real numbers. Given f ∈ L2[−π, π],

the nth partial sum of the Fourier series for f is an example of a

trigonometric polynomial of degree n. This next theorem asserts that

sn is the trigonometric polynomial of degree n that is the closest to

f in the L2-norm.
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Theorem 3.5.3. Let f ∈ L2[−π, π] and let Tn be a trigonometric

polynomial of degree n. Then

||f − Tn||2 ≥ ||f − sn||2,

where a0, a1, b1, . . . , bn are the Fourier coefficients of f and

sn(x) =
a0
2

+

n∑
k=1

(ak cos(kx) + bk sin(kx)) .

Proof. Let Tn be a trigonometric polynomial of degree n, say

Tn(x) = A0 +
n∑

k=1

(Ak cos(kx) +Bk sin(kx)) .

We will show that ||f − Tn||22 − ||f − sn||22 ≥ 0:

||f − Tn||22 =

∫ π

−π

(f(x)− Tn(x))
2

=

∫ π

−π

f2 − 2

∫ π

−π

fTn +

∫ π

−π

(Tn)
2 ,

∫ π

−π

fTn =

∫ π

−π

f

(
A0 +

n∑
k=1

(Ak cos(kx) +Bk sin(kx))

)

= A0

∫ π

−π

f +
n∑

k=1

(
Ak

∫ π

−π

f cos(kx) +Bk

∫ π

−π

f sin(kx)

)

= 2πA0a0 + π

n∑
k=1

(Akak +Bkbk) .

Note that we can switch the integration with the summation because

we have a finite sum. Next, using the results of Exercise 25,

∫ π

−π

(Tn)
2 = 2πA2

0 + π
n∑

k=1

(
A2

k +B2
k

)
.
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Collecting these results and Proposition 3.5.1, we have

||f − Tn||22 − ||f − sn||22

= −2

(
2πA0a0 + π

n∑
k=1

(Akak +Bkbk)

)

+ 2πA2
0 + π

n∑
k=1

(
A2

k +B2
k

)
+

πa20
2

+ π

n∑
k=1

(a2k + b2k)

= 2π(A2
0 − 2A0a0 + a20) + π

n∑
k=1

(
A2

k − 2Akak + a2k
)

+ π
n∑

k=1

(
A2

k − 2Akak + a2k
)

= 2π(A0 − a0)
2 + π

n∑
k=1

(Ak − ak)
2 + π

n∑
k=1

(Bk − bk)
2

≥ 0 . �

We will return to the issue of convergence, but in a special case.

Before doing so, we need to introduce the Dirichlet kernel.

Definition 3.5.4. For positive integer n, the nth Dirichlet kernel

is

Dn(t) =
1

2
+

n∑
k=1

cos(kt) .

The convention is to also define D0(t) =
1
2
.

By definition it is easy to see that every Dn(t) is an even function,

periodic with period 2π, and∫ π

0

Dn(t) dt =
π

2
.

Another kernel we will need is the Fejér kernel.

Definition 3.5.5. For positive integer n, the nth Fejér kernel is

Kn(t) =
1

n

n−1∑
k=0

Dn(t) .
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Again, Kn(t) is periodic with period 2π and

∫ π

0

Kn(t) dt =
π

2
.

Here, now, is our first result concerning convergence.

Theorem 3.5.6. Let f be continuous on [−π, π] with f(−π) = f(π).

For each positive integer n, define σn(x) to be

σn(x) =
1

n

n−1∑
k=0

sn(x),

where sn(x) denotes the nth partial sum of the Fourier series for f .

Then the sequence of functions σn(x) converges uniformly to f(x) on

[−π, π].

Proof. Since f is continuous on [−π, π], f is uniformly continuous

on that interval. By setting f(x+ 2π) = f(x), we may extend f to a

function that is defined for all real numbers and is periodic with period

2π. Thus, without loss of generality, we will assume f is uniformly

continuous on (−∞,∞) and periodic with period 2π.

By Exercise 29 followed by a change of variables,

sn(x) =
1

π

∫ π

−π

f(t)Dn(x− t) dt

=
1

π

∫ x+π

x−π

f(x− u)Dn(u) du .

The interval of integration [x−π, x+π] has length 2π. The integrand

is periodic with period 2π. We can integrate over any interval of
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length 2π and obtain the same result. Thus,

sn(x) =
1

π

∫ π

−π

f(x− u)Dn(u) du

=
1

π

∫ 0

−π

f(x− u)Dn(u) du+
1

π

∫ π

0

f(x− u)Dn(u) du

=
1

π

∫ π

0

f(x+ t)Dn(−t) du+
1

π

∫ π

0

f(x− t)Dn(t) dt

(using another change of variables)

=
1

π

∫ π

0

f(x+ t)Dn(t) du+
1

π

∫ π

0

f(x− t)Dn(t) dt

(Dn(t) is an even function)

=
1

π

∫ π

0

(f(x+ t) + f(x− t)) Dn(t) dt

=
2

π

∫ π

0

(f(x+ t) + f(x− t))

2
Dn(t) dt .

Consequently,

σn(x) =
2

π

∫ π

0

(f(x+ t) + f(x− t))

2
Kn(t) dt .

But ∫ π

0

Kn(t) dt =
π

2
,

and hence

σn(x)− f(x) =
2

π

∫ π

0

(
(f(x+ t) + f(x− t))

2
− f(x)

)
Kn(t) dt .

Our goal is to show that the sequence of functions σn(x) converges

uniformly to f(x) on [−π, π]. Let ε > 0 be given. We will now take

advantage of the uniform continuity of f . There exists a δ > 0 so

that if |u− v| < δ, then |f(u)− f(v)| < ε
2 . Hence,

|σn(x)− f(x)| ≤ 2

π

∫ δ

0

∣∣∣∣ (f(x+ t) + f(x− t))

2
− f(x)

∣∣∣∣ Kn(t) dt

+
2

π

∫ π

δ

∣∣∣∣ (f(x+ t) + f(x− t))

2
− f(x)

∣∣∣∣ Kn(t) dt .
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In the first of these two integrals∣∣∣∣ (f(x+ t) + f(x− t))

2
− f(x)

∣∣∣∣ ≤ ε

2

by uniform continuity and the choice of δ. Thus,

2

π

∫ δ

0

∣∣∣∣ (f(x+ t) + f(x− t))

2
− f(x)

∣∣∣∣ Kn(t) dt

<
2

π

∫ δ

0

ε

2
Kn(t) dt

≤ 2

π

∫ π

0

ε

2
Kn(t) dt ≤ ε

2
.

We now need to deal with the second of the two integrals from above.

Our choice of δ was independent of both x and of n. The function f

is periodic and continuous on [−π, π] and so is bounded, say by M .

Using this and Exercise 28,

2

π

∫ π

δ

∣∣∣∣ (f(x+ t) + f(x− t))

2
− f(x)

∣∣∣∣ Kn(t) dt

≤ 2

π

∫ π

δ

2M Kn(t) dt ≤
2

π

∫ π

δ

2M
sin2(nt/2)

2n sin2(t/2)
dt

≤ 1

n

(
2M

π

∫ π

δ

1

sin2(t/2)
dt

)
.

The last integral is finite because we are integrating on the interval

[δ, π]. To complete the proof, choose N large enough so that if n ≥ N ,

this last quantity is smaller than ε
2
. �

As a corollary we have the following.

Corollary 3.5.7. Let g be continuous on [−π, π] with g(−π) = g(π).

For each positive integer n, define σn(x) to be

σn(x) =
1

n

n−1∑
k=0

sn(x),

where sn(x) denotes the nth partial sum of the Fourier series for g.

Then

lim
n→∞

||σn − g||2 = 0 .
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Proof. Uniform convergence allows us to conclude that

lim
n→∞

||σn − g||22 =

∫ π

−π

lim
n→∞

(
|σn − g|2

)
= 0 . �

We finally turn to the main result of this section.

Theorem 3.5.8. Let f ∈ L2[−π, π]. Let sn(x) equal the nth partial

sum of the Fourier series for f . Then the sequence sn converges to f

with respect to the L2-norm. That is,

lim
n→∞

||sn − f ||2 = 0 .

Proof. Given ε > 0, by Exercise 24 there is a continuous function g

defined on [−π, π] with g(−π) = g(π) and

||f − g||2 <
ε

2
.

By Corollary 3.5.7, there is a positive integer N so that if n ≥ N ,

||σn − g||2 ≤ ε

2
,

where the σn’s correspond to the continuous function g. Let n ≥
N . Note that σn+1 is a trigonometric polynomial of degree n. By

Theorem 3.5.3,

||f − sn||2 ≤ ||f − σn+1||2 ≤ ||f − g||2 + ||g − σn+1||2 <
ε

2
+

ε

2
= ε .

�

In conclusion, we can establish Parseval’s equation.

Corollary 3.5.9. Let f ∈ L2[−π, π]. Let a0, a1, b1, a2, b2, . . . be the

Fourier coefficients for f . Then

πa20
2

+ π

∞∑
k=1

(a2k + b2k) = ||f ||22 .

Proof. For each n, by Proposition 3.5.1,

||f − sn||22 = ||f ||22 −
(
πa20
2

+ π
n∑

k=1

(a2k + b2k)

)
.

The result follows by taking n to infinity and applying Theorem 3.5.8.

�
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It is important to note that we have only shown that the Fourier

series of an L2-function converges with respect to the L2-norm. We

did not make any claims about pointwise convergence of the Fourier

series. There are results concerning this. See, for example Brown and

Churchill [4].

3.6. Exercises

(1) Let C[a, b] be the set of functions that are continuous on

[a, b]. Prove or disprove:

||f ||sup = sup{|f(x)| | x ∈ [a, b]}
is a norm on C[a, b].

(2) Show that C[0, 1] ⊆ L1[0, 1]. Compare ||f ||sup and ||f ||1.
Justify your answer. Generalize this to the interval [a, b].

(3) Prove Proposition 3.1.2.

(4) Determine whether or not each of the following is a Cauchy

sequence in L1[0, 1]:

a) fn(x) = nX( 1
n+1 ,

1
n ](x).

b) fn(x) =
1

x
X[ 1

n+1 ,1]
(x).

c) fn(x) =
1√
x
X[ 1

n+1 ,1]
(x).

(5) Let p > 1. Show that C[0, 1] ⊆ Lp[0, 1]. Compare ||f ||sup and

||f ||p. Justify your answer. Generalize this to the interval

[a, b].

(6) Show that f(x) = x− 1
3 ∈ L2[0, 1] but g(x) = x− 2

3 /∈ L2[0, 1].

(7) Let f(x) = xα on [0, 1]. Show that f ∈ Lp[0, 1] if and only

if α > −1
p
.

(8) Let p > 1. Show that Lp[a, b]⊆L1[a, b]. Show that L1[a, b] �⊆
Lp[a, b].

(9) Let f, g : [a, b] → R be measurable functions. Show that if

f ≤ g a.e., then

ess sup
x∈[a,b]

f ≤ ess sup
x∈[a,b]

g .

(10) Show f ∈ L∞[a, b] if and only if |f | ∈ L∞[a, b].
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(11) Let p ≥ 1. Show that L∞[a, b] ⊆ Lp[a, b].

(12) Let f, g ∈ L∞[a, b] and c ∈ R.

a) Show that cf ∈ L∞[a, b].

b) Show that f + g ∈ L∞[a, b].

(13) Show that || · ||∞ is a norm on the space L∞[a, b].

(14) Let f, g ∈ L2[a, b]. Prove

||f + g||22 + ||f − g||22 = 2||f ||22 + 2||g||22 .

(15) Determine whether or not each of the following is a Cauchy

sequence in L2[0,∞):

a) fn(x) = X[n,n+1](x).

b) fn(x) =
1

x
X[1,n](x).

c) fn(x) =
1

x2
X[1,n](x).

(16) Let 1 ≤ p < ∞ and let {fn} be a sequence of functions in

Lp[a, b]. Suppose there is a function f ∈ Lp[a, b] with

lim
n→∞

||fn − f ||p = 0 .

Prove that {fn} is a Cauchy sequence in Lp[a, b].

(17) Prove that L∞[a, b] is complete with respect to the norm

|| · ||∞.

(18) Let f ∈ L1[a, b] and α > 0. Prove that

m ({x ∈ [a, b] | |f(x)| > α}) ≤ 1

α
||f ||1 .

This is known as Tchebychev’s Inequality.

Hint: Let A = {x ∈ [a, b] | |f(x)| > α} and compare the

quantities∫
A

1,

∫ b

a

XA, and

∫ b

a

|f |
α

.

(19) Here is another form of Tchebychev’s Inequality. Let 1 <

p < ∞, f ∈ Lp[a, b] and α > 0. Prove that

m ({x ∈ [a, b] | |f(x)| > α}) ≤ 1

αp
||f ||pp .

(20) Prove Proposition 3.4.10.
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(21) Let f ∈ L2[a, b]. If ∫ b

a

fg = 0

for every g ∈ C[a, b], show f = 0 a.e. in [a, b].

(22) We denote by �∞ the space of all bounded sequences (an)
∞
n=1.

For example,

(1,−2, 1,−2, 1,−2, . . .) ∈ �∞ .

Define addition and scalar multiplication by

(an)
∞
n=1 + (bn)

∞
n=1 = (an + bn)

∞
n=1 and

c(an)
∞
n=1 = (can)

∞
n=1 .

a) Let ||(an)∞n=1|| = sup
n

|an|. Show that || · || is a norm on

�∞.

b) Show that �∞ is complete with respect to this norm.

In other words, prove �∞ is a Banach space.

(23) Prove Corollary 3.3.4.

(24) Let f ∈ Lp[a, b] for p ≥ 1. Given two real numbers, A and

B, and ε > 0, show that there is a continuous function g

defined on [a, b] with g(a) = A, g(b) = B, and

||f − g||p < ε .

(25) Let k and n be positive integers. Prove each of the following:

a)

∫ π

−π

sin2(nx) dx =

∫ π

−π

cos2(nx) dx = π.

b)

∫ π

−π

sin(kx) cos(nx) dx = 0.

c)

∫ π

−π

sin(kx) sin(nx) dx =

∫ π

−π

cos(mx) cos(nx) dx = 0 if

m �= n.

(26) Prove Proposition 3.5.1.

(27) Let Dn(t) denote the nth Dirichlet kernel. Show that if t is

not a multiple of 2π, then

Dn(t) =
sin(n+ 1

2 )t

2 sin(t/2)
.
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(28) Let Kn(t) denote the nth Fejér kernel. Use the previous

exercise to show that if t is not a multiple of 2π, then

Kn(t) =
sin2(nt/2)

2n sin2(t/2)
.

(29) Let f ∈ L2[−π, π]. Let sn(x) denote the nth partial sum of

the Fourier series for f . Show that

sn(x) =
1

π

∫ π

−π

f(t)Dn(x− t) dt,

where Dn(t) denotes the nth Dirichlet kernel.

(30) Let f(x) = x for x ∈ [−π, π]. Find the Fourier series for f .

Use Parseval’s equation, Corollary 3.5.9, to evaluate

∞∑
k=1

1

k2
.



Chapter 4

General Measure
Theory

Lebesgue measure on Rn is an extension of our notions about length,

area, or volume, depending on the dimension n. Now we are about

to generalize the notion of measure. We should think about what

properties we want in a measure. For each set in a given collection of

sets we want a measure to identify with that set a nonnegative real

number or plus infinity, the idea being that a measure should indicate

something about the size of that set. For example, the measure of the

empty set should be 0. Also, if A ⊆ B it should be the case that the

measure of A is smaller than or equal to the measure of B. Finally,

we want the measure of a countable union of pairwise disjoint sets to

be the sum of the measures of the set. All of these will be addressed

when we define a measure.

4.1. Measure Spaces

When we look to generalize measure, we might want to measure very

general sets, sets other than subsets of Rn (although most of our ex-

amples will be subsets of Rn). An important consideration is what

properties such a collection of sets needs to have for our desired qual-

ities of a measure to make sense. For example, one property we know

about Lebesgue measure is that the intersection of two measurable

153
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sets is also measurable. This is certainly a minimal requirement we

would like to retain. Think about this and the other properties of

the collection of Lebesgue measurable subsets when considering the

following definitions.

Definition 4.1.1. Let X be a nonempty set. A collection of subsets

of X, A, is called an algebra of sets on X if

(i) ∅ ∈ A,

(ii) if A,B ∈ A, then A ∪B ∈ A, and

(iii) if A ∈ A, then Ac = X \A ∈ A.

Property (ii) is often stated as “A is closed under union”. Simi-

larly, property (iii) is often stated as “A is closed under set comple-

ment”. Keep in mind that, in this context, the term “closed” has

nothing to do with a set being open or closed as in an open or closed

interval.

Example 4.1.2. Let X = {a, b, c, d, e}.

(i) Let A1 = {∅, X, {a, c}, {b, d}, {a, b, c, d}, {b, d, e}, {a, c, e},
{e}}.

(ii) Let A2 = {∅, X, {a, c}, {b, d, e}}.
(iii) Let A3 = {∅, X}.
(iv) Let A4 = P(X) = {C

∣∣ C ⊆ X}.

A1, A2, A3, and A4 are each an example of an algebra of sets on X.

We stated that one of the desirable features of a measure is to

have the intersection of two measurable sets be a measurable set.

Although this is not explicitly stated, it does follow from the definition

as demonstrated by the next proposition.

Proposition 4.1.3. Let A be an algebra of sets on X. If A,B ∈ A,

then A ∩B ∈ A.

Proof. By de Morgan’s laws,

A ∩B = (Ac ∪Bc)c .

Therefore, this proposition follows from properties (ii) and (iii) of an

algebra of sets. �



4.1. Measure Spaces 155

Thus, an algebra of sets is also closed under intersection. But this

is not quite enough for our goal with general measures. After all, we

also know that in the case of Lebesgue measure the countable union

of measurable sets is again measurable. By induction an algebra of

sets is closed under finite union. But this does not stretch into closure

under countable unions. We actually need something a little stronger

than just an algebra of sets.

Definition 4.1.4. LetX be a nonempty set. A collection B of subsets

of X is called a σ-algebra of sets on X if

(i) ∅ ∈ B,
(ii) if {An} is a countable collection of sets in B, then

⋃
An ∈ B,

and

(iii) if A ∈ B, then Ac ∈ B.

As with the definition of an algebra of sets, properties (ii) and

(iii) are summarized by saying that B is closed under countable unions

and set complement.

Example 4.1.5. Let X be a set. Let P(X) denote the power set of

X, that is, P(X) = {C | C ⊆ X}.

The preceding example is not really that interesting because we

are simply collecting all possible subsets ofX. Similarly, the σ-algebra

{∅, X} is also somewhat trivial.

Example 4.1.6. Let M be the collection of Lebesgue measurable

subsets of Rn. By Example 1.2.4, ∅ ∈ M. By Theorem 1.2.5, M
is closed under countable unions. Finally, by Theorem 1.2.18, M is

closed under set complement. Therefore, M is a σ-algebra on Rn.

Clearly, every σ-algebra on X is an algebra of sets. Each of the

algebras described in Example 4.1.2 is a σ-algebra. The change in re-

quirement (ii) might appear to be a small one. Is there a difference?

The reason the algebras in Example 4.1.2 turned out to be σ-algebras

is that we were dealing with a finite set. Consequently, every count-

able union is in fact a finite union. This is not always the case when

dealing with infinite sets. In other words, not every algebra of sets is

a σ-algebra.
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Example 4.1.7. Let A = {A ⊆ R
∣∣ A is finite or Ac is finite}. By

Exercise 1, A is an algebra. However, A is not a σ-algebra. For

example, since Q is countable, it is the countable union of finite sets.

However, Q /∈ A. This provides us with an example of an algebra

that is not a σ-algebra.

The added requirement that a σ-algebra is closed under countable

union carries over to countable intersections.

Proposition 4.1.8. Let B be a σ-algebra of sets. If {An} is a count-

able collection of sets in B, then
⋂

An ∈ B.

Proof. This is Exercise 2. �

Given a set X, there may be many different possible σ-algebras

on X. In Example 4.1.2 we saw four different σ-algebras on the set

X = {a, b, c, d, e}. Intuitively, it should be clear what is meant when

we say that A3 is smaller than A4. We will make the following more

precise definition of what is meant by comparing σ-algebras.

Definition 4.1.9. Let B1 and B2 be two σ-algebras on a set X. We

say B1 is contained in B2 if A is in B2 whenever A is in B1.

In Example 4.1.2, A2 is contained in A1. Also, A3 is contained

in every σ-algebra of sets on X, whereas A4 contains every σ-algebra

of sets on X.

Sometimes we have a collection B of subsets of a set X which is

not necessarily a σ-algebra on X. Then we might be in the position

of seeking a σ-algebra on X that includes everything in B in some

sort of minimal fashion.

Definition 4.1.10. Let B be a collection of subsets of X. A is the

σ-algebra generated by B if A is a σ-algebra that contains B and

A is contained in any σ-algebra that contains B.

In other words, A is the σ-algebra generated by B if A is the

smallest σ-algebra that contains B. To see that such an algebra always

exists, first note that given a collection of subsets of X, it is always

true that P(X) is a σ-algebra that contains B. In Exercise 4, it is

established that the intersection of two sigma algebras is a sigma
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algebra. More generally it is the case that the intersection of any

collection of sigma algebras will be a sigma algebra. Therefore, given

a collection B of subsets of X, one finds the sigma algebra generated

by B by taking the intersection of all sigma algebras that contain B.
Hence, there will always exist a σ-algebra generated by B.

Example 4.1.11. Let B = {C ⊆ R
∣∣ C is finite}. Then A, the σ-

algebra generated by B, must contain all finite sets and their comple-

ments. Additionally, A must contain countable unions of finite sets.

In other words, A must contain countable sets as well as their com-

plements. It remains to show that {C ⊆ R
∣∣ C is countable, or Cc is

countable} is a σ-algebra. This is left as an exercise (see Exercise 3).

Therefore, the σ-algebra generated by B is

{C ⊆ R
∣∣ C is countable, or Cc is countable} .

Suppose we start with the collection of open sets in Rn and use

these to generate a σ-algebra. This collection of sets is already closed

under countable unions. But a σ-algebra is also closed under count-

able intersections. We have encountered this before. Recall the defin-

tion of type Gδ from Definition 1.2.20: a set H is of type Gδif H is

the intersection of a countable collection of open sets. In other words,

if we use the collection of open sets to generate a σ-algebra, the re-

sulting σ-algebra must contain all sets of type Gδ. In addition, the

σ-algebra must be closed under set complement and so must contain

all closed sets. As a result, the σ-algebra generated by the collection

of open sets also contains all sets that are of type Fσ. (Again from

Definition 1.2.20 H is of type Fσ if H is the union of a countable

collection of closed sets.) This σ-algebra is an important one known

as the collection of Borel sets.

Definition 4.1.12. The collection of Borel sets is the σ-algebra B

generated by open subsets of Rn.

Before arriving at our destination of general measures, we will

define what is meant by a measurable space.

Definition 4.1.13. A measurable space is a pair (X,B) consisting
of a set X with a σ-algebra B. A subset A of X is called measurable

if A ∈ B.
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Remark 4.1.14. Two examples of measurable spaces that we have

already encountered are (Rn,B) and (Rn,M). Are these two exam-

ples really different? It turns out that although most subsets of Rn

that come to mind are Borel sets, using the Axiom of Choice we can

show there are Lebesgue measurable sets which are not Borel sets. To

do this, recall the Cantor set C discussed in Example 1.1.7 and the

one-to-one function f : [0, 1] → C used to show that the Cantor set

is uncountable. Now, by construction C is a Borel set with Lebesgue

measure 0. Hence, every subset of C is a Lebesgue measurable set

with Lebesgue measure 0. Let A be a nonmeasurable subset of [0, 1]

(such a set exists by Exercise 25 of Chapter 1). Then

f(A) = {f(x) | x ∈ A}

is a subset of C; therefore f(A) must have Lebesgue outer measure 0,

and hence is Lebesgue measurable. On the other hand, if f(A) were a

Borel set, by Exercise 5, A would be a measurable set, a contradiction.

Therefore, f(A) cannot be a Borel set.

Now that we have in mind what is needed to be a measurable

space, we can finally define a measure.

Definition 4.1.15. A measure on a measurable space (X,B) is a

function μ : B → [0,+∞] such that

(i) μ(∅) = 0 and

(ii) for any countable collection {Ej} of pairwise disjoint sets in

B,

μ

⎛
⎝⋃

j

Ej

⎞
⎠ =

∑
j

μ (Ej) .

The triple (X,B, μ) is called a measure space.

Two examples of measure spaces are (Rn,M,m) and (Rn,B,m).

There are many others.

Example 4.1.16. Define μ on P(R), the set of subsets of R, by

μ(A) =

{
1 if π ∈ A,

0 otherwise.
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We will show that (R,P(R), μ) is a measure space. First of all, P(R)

is a σ-algebra on R and hence (R,P(R)) is a measurable space. Fur-

thermore, by definition μ(∅) = 0. Finally, if {Ej} is a countable

collection of pairwise disjoint sets in P(R), then either π ∈ Ei for

exactly one i or π /∈ Ej for all j. In the first case

μ

⎛
⎝⋃

j

Ej

⎞
⎠ = 1 =

∑
j

μ (Ej) ,

and in the latter case

μ

⎛
⎝⋃

j

Ej

⎞
⎠ = 0 =

∑
j

μ (Ej) .

Thus, (R,P(R), μ) is a measure space.

In the beginning of this chapter, we stated that one desirable

property of a measure was that if A ⊆ B, then the measure of B

should be greater than or equal to the measure of A. We will show

that this follows from our definition of measure.

Proposition 4.1.17. Let (X,B, μ) be a measure space. If A,B ∈ B
and A ⊆ B, then

μ(A) ≤ μ(B) .

In addition, if μ(A) is finite, then

μ(B \A) = μ(B)− μ(A) .

Proof. Since B is a σ-algebra, B \A = B ∩Ac ∈ B. By definition of

a measure, μ(B \A) ≥ 0. Also, A and B \A are disjoint. Therefore,

by property (ii) of a measure

μ(A) ≤ μ(A) + μ(B \A)

= μ (A ∪ (B \A)) = μ(B) .

This proves the first part of the proposition. If μ(A) is finite, we may

subtract this quantity from both sides of the last equality to obtain

μ(B \A) = μ(B)− μ(A),

as claimed in the second part of the proposition. �
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Property (ii) of the definition of measure deals with the measure

of a countable union of pairwise disjoint measurable sets. The next

theorem concerns the countable union of sets which are not necessarily

pairwise disjoint.

Theorem 4.1.18. Let (X,B, μ) be a measure space. If {Ej} is a

countable collection of sets in B, then

μ

⎛
⎝⋃

j

Ej

⎞
⎠ ≤

∑
j

μ (Ej) .

Proof. Set G1 = E1. For each j > 1 let

Gj = Ej \
j−1⋃
i=1

Ei .

Then for each j, Gj ∈ B and Gj ⊆ Ej, and hence μ(Gj) ≤ μ(Ej)

by Proposition 4.1.17. But {Gj} is a countable collection of pairwise

disjoint sets in B; therefore,

μ

⎛
⎝⋃

j

Ej

⎞
⎠ = μ

⎛
⎝⋃

j

Gj

⎞
⎠

=
∑
j

μ (Gj)

≤
∑
j

μ (Ej) ,

as claimed. �

Corollary 4.1.19. Let (X,B, μ) be a measure space. If B,C ∈ B
and μ(C) = 0, then μ(B ∪ C) = μ(B).

Proof. The result follows from the inequalities

μ(B) ≤ μ(B ∪ C) ≤ μ(B) + μ(C) = μ(B) . �

Suppose {Aj} is a countably infinite collection of sets in some

measure space with

A1 ⊆ A2 ⊆ A3 ⊆ . . . ⊆ Aj ⊆ . . . .
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We know that A =

∞⋃
j=1

Aj will be a measurable set since it is the

countable union of measurable sets. It seems reasonable to expect

μ(A) = lim
n→∞

μ(An). In other words, what we really would like to say

is that

μ
(
lim
n→∞

An

)
= lim

n→∞
μ (An) .

However, we have no definition of a limit of a sequence of sets.

Nonetheless, our intuition is correct in this case, as we show in the

next lemma.

Lemma 4.1.20. Let (X,B, μ) be a measure space. If {Aj} is a count-

ably infinite collection of sets in B with

A1 ⊆ A2 ⊆ A3 ⊆ . . . ⊆ Aj ⊆ . . . ,

then

μ

⎛
⎝ ∞⋃

j=1

Aj

⎞
⎠ = lim

n→∞
μ (An) .

Proof. If μ(Aj) = ∞ for some j, then it must be the case that

μ

⎛
⎝ ∞⋃

j=1

Aj

⎞
⎠ = ∞ .

On the other hand, Aj ⊆ An for all n ≥ j, and hence by Proposi-

tion 4.1.17 μ(An) = ∞ for all n ≥ j. Therefore, in this case,

μ

⎛
⎝ ∞⋃

j=1

Aj

⎞
⎠ = lim

n→∞
μ (An) = ∞ .

So we will assume that μ(An) is finite for all n:

∞⋃
j=1

Aj = A1 ∪
∞⋃
j=1

(Aj+1 \Aj) .
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Because μ(Aj) is finite for all j, μ (Aj+1 \Aj) = μ (Aj+1)−μ (Aj) by

Proposition 4.1.17. Thus,

μ

⎛
⎝ ∞⋃

j=1

Aj

⎞
⎠ = μ

⎛
⎝A1 ∪

∞⋃
j=1

(Aj+1 \Aj)

⎞
⎠

= μ(A1) +

∞∑
j=1

μ (Aj+1 \Aj)

= μ(A1) +

∞∑
j=1

(μ(Aj+1)− μ(Aj))

= μ(A1) + lim
n→∞

n∑
j=1

(μ(Aj+1)− μ(Aj))

= μ(A1) + lim
n→∞

(μ(An+1)− μ(A1))

= lim
n→∞

μ(An),

as claimed. �

In Remark 4.1.14 we found a subset of the Cantor set that is

not a Borel set (assuming the Axiom of Choice). In other words,

if we consider the measure space (R,B,m), there is a subset of the

Cantor set, a set of Lebesgue measure 0, which is not included in

the measurable space (R,B). Yet if we consider the measure space

(R,M,m), every subset of a set with measure 0 is included in the

measurable space (R,M), as shown in Exercise 6 of Chapter 1. Such

a measure space is known as a complete measure space.

Definition 4.1.21. A measure space (X,B, μ) is a complete mea-

sure space if whenever C ∈ B with μ(C) = 0 and A ⊆ C, then

A ∈ B.

Example 4.1.22. The measure space (R,M,m) is a complete mea-

sure space.

Given a measure space it is always possible to create a complete

measure space that is a natural extension of the given space. In other

words, sets that are considered measurable with the original measure

will be measurable under the extension measure. We prove this in

the following theorem.
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Theorem 4.1.23. Let (X,B, μ) be a measure space. There exists a

complete measure space (X,B0, μ0) such that

(i) B ⊆ B0,

(ii) if B ∈ B, then μ(B) = μ0(B), and

(iii) E ∈ B0 if and only if E = A ∪B, where B ∈ B and A ⊆ C

for some C ∈ B with μ(C) = 0.

Proof. Let

B0 = {E = A ∪B
∣∣ B ∈ B and

A ⊆ C, where C ∈ B and μ(C) = 0}.

For every B ∈ B, B = ∅ ∪B. Hence, B ⊆ B0.

Our first task is to show that (X,B0) is a measurable space. In

other words, we must show that B0 is a σ-algebra. The first require-

ment of a σ-algebra is straightforward as ∅ = ∅ ∪ ∅, ∅ ∈ B, and

μ(∅) = 0.

The second requirement is also straightforward. Assume {Ej} is

a countable collection of sets in B0. Then Ej = Aj∪Bj , where Bj ∈ B
and Aj ⊆ Cj for some Cj ∈ B with μ(Cj) = 0. Thus,

⋃
j

Ej =

⎛
⎝⋃

j

Aj

⎞
⎠ ∪

⎛
⎝⋃

j

Bj

⎞
⎠ .

Since B is a σ-algebra, ⋃
j

Bj ∈ B .

Also, ⋃
j

Aj ⊆
⋃
j

Cj

and

μ

⎛
⎝⋃

j

Cj

⎞
⎠ ≤

∑
j

μ(Cj) = 0 .

Therefore
⋃
Ej ∈ B0.

For the third requirement, we observe that if E ∈ B0, then E =

A ∪ B, where B ∈ B and A ⊆ C for some C ∈ B with μ(C) = 0.
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Consequently,

Ec = (A ∪B)c

= (C \ (A ∪B)) ∪ (Cc ∩ (A ∪B)c)

= (C \ (A ∪B)) ∪ (Cc ∩Ac ∩Bc) .

But A ⊆ C, so Cc ⊆ Ac. Therefore

Ec = (C \ (A ∪B)) ∪ (Cc ∩Bc)

with Cc ∩Bc ∈ B and (C \ (A ∪B)) ⊆ C. Hence Ec ∈ B0.

It seems natural to define μ0 on B0 as follows: if E ∈ B0, then

E = A ∪B, where B ∈ B and A ⊆ C for some C ∈ B with μ(C) = 0.

Set μ0(E) = μ(B). Here is where we run into a potential problem.

Given a set E ∈ B0, it might be possible that this set E is in B0 for

multiple reasons. That is, it is possible for E = A ∪ B = A1 ∪ B1,

where B,B1 ∈ B, A ⊆ C, and A1 ⊆ C1, where μ(C) = μ(C1) = 0. At

this point, it is not yet clear that under these different decompositions

of E, we will come up with the same value for μ0(E). We need to

show that our proposed measure μ0 is well defined.

Suppose E = A ∪ B = A1 ∪ B1, where B,B1 ∈ B, A ⊆ C, and

A1 ⊆ C1, where μ(C) = μ(C1) = 0. Then

B ∪ C ∪ C1 = B ∪A ∪ C ∪ C1 (since A ⊆ C)

= E ∪ C ∪ C1

= B1 ∪A1 ∪ C ∪ C1 = B1 ∪ C ∪ C1,

and hence

μ(B) = μ(B ∪ C ∪ C1) = μ(B1 ∪ C ∪ C1) = μ(B1) .

Therefore, μ0 is well defined.

Finally, we will show that μ0 is a measure. By our definition,

μ0(∅) = μ0(∅ ∪ ∅) = μ(∅) = 0 .

The first requirement of a measure is satisfied.

If {Ej} is a countable collection of pairwise disjoint sets in B0,

then for each j, Ej = Aj ∪ Bj , where Bj ∈ B and Aj ⊆ Cj for some
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Cj ∈ B with μ(Cj) = 0. Therefore,⋃
j

Aj ⊆
⋃
j

Cj

and

μ0

⎛
⎝⋃

j

Ej

⎞
⎠ = μ0

⎛
⎝⋃

j

Aj ∪
⋃
j

Bj

⎞
⎠

= μ

⎛
⎝⋃

j

Bj

⎞
⎠

=
∑
j

μ(Bj)

=
∑
j

μ0(Ej) .

As a result, μ0 is a measure. �

Example 4.1.24. By Exercise 9 the completion of (Rn,B,m) is

(Rn,M,m).

4.2. Measurable Functions

Our next goal is to generalize integration. We will start by assuming

(X,B) is a measurable space. As we did with Lebesgue integration,

we begin by characterizing the type of function we will integrate.

There is one additional consideration we will make at this time.

When defining Lebesgue integration, we started by first considering

bounded functions and then generalized to unbounded functions. In

fact, for purposes of Lebesgue integration, a function need only be

defined as a finite number almost everywhere. Those places where a

function was not finite turned out to be unimportant as long as there

weren’t too many of them. We will now extend our notion of function

to allow a function to take on either the value +∞ or −∞ at those

places we previously said a function was undefined. But we have to

be a little careful. Thinking ahead to the addition of such functions,

we could run into the situation where we need to decide what to do
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with ∞−∞. However, if this only happens on a set of measure 0, it

won’t matter how we define this addition.

In other words, we allow a function to take on the values in R =

R ∪ {−∞,+∞}. When we write f : X → R we mean that f is also

finite almost everywhere. Once we make this convention, it turns out

that the results in this section are very similar to those encountered

in Section 2.1.

Definition 4.2.1. Let (X,B) be a measurable space. A function

f : X → R is measurable with respect to B or measurable if for

every s ∈ R, the set {x ∈ X
∣∣ f(x) > s} is an element of B.

All that is really needed here is a measurable space (X,B) in order

to determine whether or not a function is measurable with respect to

B. However, most of the time, we will also have at our disposal a

measure μ associated with (X,B); in other words, we will have a

measure space (X,B, μ). When this is the case, we will say a function

f : X → R is μ-measurable if for every s ∈ R, the set {x ∈ X
∣∣ f(x) >

s} is in the domain of μ.

Example 4.2.2. Let X = {a, b, c, d, e} and

B = {∅, X, {a, c}, {b, d, e}, {b, d}, {a, c, e}, {e}, {a, b, c, d}} .

(Of course, one should first start by verifying that (X,B) is a mea-

surable space. We are omitting that step here.) Define f : X → R

and g : X → R by

f(a) = 3, f(b) = π, f(c) = 3, f(d) = π, f(e) =
√
2 and

g(a) = 1, g(b) = π, g(c) = 3, g(d) = π, g(e) =
√
2 .

To show that f is measurable is very similar to Example 2.1.2.

We will look at the following cases:

(i) If s ≥ π, then {x ∈ I | f(x) > s} = ∅, which is a set in B.
(ii) If s <

√
2, then {x ∈ I | f(x) > s} = X, which is a set in B.

(iii) If
√
2 ≤ s < 3, then {x ∈ I | f(x) > s} = {e}, which is a set

in B.
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(iv) If 3 ≤ s < π, then {x ∈ I | f(x) > s} = {a, c, e}, which is a

set in B.

Although f and g differ only by the value assigned to a, f is

measurable with respect to B but g is not. In particular,

{x ∈ X
∣∣ g(x) > 1} = {b, c, d, e} /∈ B .

As with Lebesgue measurable functions, there are equivalent def-

initions.

Theorem 4.2.3. Let f : X → R. The following statements are

equivalent:

(i) f is measurable.

(ii) For every s ∈ R, the set {x ∈ X
∣∣ f(x) ≤ s} is a measurable

set.

(iii) For every s ∈ R, the set {x ∈ X
∣∣ f(x) < s} is a measurable

set.

(iv) For every s ∈ R, the set {x ∈ X
∣∣ f(x) ≥ s} is a measurable

set.

Proof. The proof of this theorem is similar to the proof of Theo-

rem 2.1.4. For example, to show that (ii) implies (iii), note that

{x ∈ X
∣∣ f(x) < s} =

∞⋃
k=1

{x ∈ X
∣∣ f(x) ≤ s− 1

k} .

Since {x ∈ I
∣∣ f(x) ≤ s− 1

k} is a measurable set for every k, that is,

{x ∈ I
∣∣ f(x) ≤ s− 1

k} ∈ B, and B is a σ-algebra,

{x ∈ X
∣∣ f(x) < s} =

∞⋃
k=1

{x ∈ X
∣∣ f(x) ≤ s− 1

k
} ∈ B . �

Theorem 4.2.4. Let f : X → R be a measurable function and let

c ∈ R. Then the following two statements are true:

(i) The function f(x) + c is measurable.

(ii) The function cf(x) is measurable.

Proof. The proof is similar to the proof of Theorem 2.1.5. �
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Theorem 4.2.5. Let f, g : X → R be measurable functions. Then

(i) the function f(x) + g(x) is measurable,

(ii) the function f(x) g(x) is measurable, and

(iii) the function f(x)
g(x)

is measurable as long as g �= 0 almost

everywhere.

Proof. The proof is similar to the proof of Theorem 2.1.6. �

Recall that in Definition 2.1.10 we defined f∗ = lim sup
n→∞

fn and

f∗ = lim inf
n→∞

fn. We make similar definitions in this more general

setting. The differences here are that we are in a more general measure

space and are allowing our functions to take on the values ±∞.

Definition 4.2.6. Let {fn} be a sequence of functions defined on X.

(i) The lim sup of the sequence, written lim sup
n→∞

fn or denoted

by f∗, is defined by

lim sup
n→∞

fn(x) = f∗(x) = lim
n→∞

(sup{fn(x), fn+1(x), fn+2(x), . . .}) .

(ii) The lim inf of the sequence, written lim inf
n→∞

fn or denoted

by f∗, is defined by

lim inf
n→∞

fn(x) = f∗(x) = lim
n→∞

(inf{fn(x), fn+1(x), fn+2(x), . . .}) .

Because we are allowing our functions to take on the values ±∞,

f∗ and f∗ can also take on these values. Fortunately, measurability

is preserved as the next theorem demonstrates.

Theorem 4.2.7. Let {fn} be a pointwise bounded sequence of mea-

surable functions. Then both f∗ and f∗ are measurable functions on

I.

Proof. As one might expect, the proof is very similar to that for

Lebesgue measurable functions. Let

Mn(x) = sup{fn(x), fn+1(x), fn+2(x), . . .} and

mn(x) = inf{fn(x), fn+1(x), fn+2(x), . . .} .
The first step in this proof will be to show that for every n ∈ N, both

Mn(x) and mn(x) are measurable functions.
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Fix n ∈ N and let s ∈ R. We will show that {x ∈ X
∣∣Mn(x) > s}

is a measurable set. Note that Mn(x) > s if and only if fk(x) > s for

some k ≥ n. Therefore,

{x ∈ X
∣∣Mn(x) > s} =

∞⋃
k=n

{x ∈ X
∣∣ fk(x) > s} .

Since {x ∈ X
∣∣ fk(x) > s} ∈ B for each k, {x ∈ X

∣∣ Mn(x) > s} ∈ B
by Proposition 4.1.8. Therefore, Mn is a measurable function.

In a similar fashion we will show that {x ∈ X
∣∣ mn(x) < s} is

a measurable set. Note that mn(x) < s if and only if fk(x) < s for

some k ≥ n. Therefore,

{x ∈ X
∣∣ mn(x) < s} =

∞⋃
k=n

{x ∈ X
∣∣ fk(x) < s} .

As with Mn, {x ∈ X
∣∣ mn(x) < s} ∈ B because B is a σ-algebra.

Therefore, mn is a measurable function.

To complete the proof, we observe that for each x ∈ X, the

sequence {Mn(x)} is a nonincreasing sequence while the sequence

{mn(x)} is a nondecreasing sequence. Therefore,

f∗(x) = lim
n→∞

Mn(x) = inf{Mn(x)},

f∗(x) = lim
n→∞

mn(x) = sup{mn(x)} ,

which are measurable by the preceding argument. �

We next wish to generalize the notion of f = g a.e. in this more

abstract setting. The definition is exactly what one might expect.

Definition 4.2.8. Let (X,B, μ) be a measure space. We say f

equals g almost everywhere with respect to μ or μ-almost ev-

erywhere, written

f(x) = g(x) a.e. (μ) or f = g a.e. (μ) ,

if the set {x ∈ X
∣∣ f(x) �= g(x)} has μ-measure 0. That is,

μ
(
{x ∈ X

∣∣ f(x) �= g(x)}
)
= 0 .

Let’s consider the following example.
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Example 4.2.9. Let X = {a, b, c, d, e} and

B = {∅, X, {a, c}, {b, d}, {a, b, c, d}, {b, d, e}, {a, c, e}, {e}} .

Define μ : B → R by

μ(∅)=0 , μ({a, c})=0 , μ({b, d})= 2
3 , μ({e})= 1

3 ,

μ({a, b, c, d})= 2
3 , μ({b, d, e})=1 , μ({a, c, e})= 1

3 , μ(X)=1 .

(Observe that the first line above completely determines μ.) Define

the functions f, g : X → R by

f(a) = 3 , f(b) = π , f(c) = 3 , f(d) = π , f(e) = 5 ,

g(a) = 6 , g(b) = π , g(c) = 2 , g(d) = π , g(e) = 5 .

In this case

μ
(
{x ∈ X

∣∣ f(x) �= g(x)}
)
= μ({a, c}) = 0 .

Therefore, f = g a.e. (μ).

The preceding example brings up a potential problem. Notice

that the function f is μ-measurable. One should really verify this,

but it is a matter of checking a number of cases as in Example 4.2.2.

On the other hand, {x ∈ X
∣∣ g(x) > 5} = {a}. But {a} /∈ B, so g is

not μ-measurable. Thus Propostion 2.1.9 does not directly generalize.

Take a moment to think about why this is so. If you do, you should

come to the conclusion that the real problem is that although the

set {a, c} is a μ-measurable set with μ-measure 0, it has a subset {a}
which is not μ-measurable. Here is where we need a complete measure

space.

Proposition 4.2.10. Let (X,B, μ) be a complete measure space.

Suppose f and g are two functions defined on X. If f is measur-

able and f = g a.e. (μ), then g is measurable.

Proof. The proof of this proposition is exactly the same as the proof

of Proposition 2.1.9. Let Z = {x ∈ X
∣∣ f(x) �= g(x)}. Then μ(Z) = 0.

Since (X,B, μ) is a complete measure space, every subset of Z is

measurable (and has measure 0). Given s ∈ R, in order for g(x) > s

either x /∈ Z (so that g(x) = f(x)) and f(x) > s, or x ∈ Z and
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g(x) > s. Therefore,

{x ∈ I | g(x) > s}
= ({x ∈ I | f(x) > s} \ Z) ∪ {x ∈ Z | g(x) > s},

which is a combination of measurable sets. Notice that we need to

have a complete measure in order to guarantee that the last set is

measurable. Therefore, g is a measurable function. �

Notice how we needed the concept of a complete measure space

for the sets {x ∈ Z
∣∣ g(x) > s} and {x ∈ Z

∣∣ g(x) ≤ s}, which are

subsets of Z, to be measurable.

We now introduce simple functions in this general setting. These

will be of importance when we turn to integration with respect to

different measures.

Definition 4.2.11. A simple function is a function φ : X → R

expressible as

φ(x) =
n∑

i=1

aiXEi
(x)

where ai ∈ R, and the sets Ei are pairwise disjoint measurable sets.

By definition, a simple function is bounded. By Exercise 12 a

function is a simple function if and only if it takes on only a finite

number of values. Nonetheless, every measurable function can be

expressed as the pointwise limit of a sequence of simple functions.

Again, the next results are similar to their Lebesgue counterparts.

Theorem 4.2.12. Let (X,B, μ) be a measure space. Given a nonneg-

ative measurable function f : X → R∪ {+∞} there exists a sequence

of nonnegative simple functions {φn} such that

lim
n→∞

φn(x) = f(x)

for all x ∈ X.

Proof. For each n and 1 ≤ k ≤ 22n − 1 set

En
k =

{
x ∈ X

∣∣ k

2n
≤ f(x) <

k + 1

2n

}
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and set

En
22n = {x ∈ X

∣∣ f(x) ≥ 2n} .

Since f is measurable, each En
k is a measurable set. Define φn by

φn(x) =
22n∑
k=1

k

2n
XEn

k
(x) .

For all x ∈ X and positive integers n,

0 ≤ φn(x) ≤ φn+1(x) ≤ f(x) .

Thus, for each x ∈ X, the sequence {φn(x)} is increasing and, in the

case that f(x) is finite, bounded. To show that lim
n→∞

φn(x) = f(x) we

will consider three distinct cases.

The first possibility is that f(x) = 0. In this case, x /∈ En
k for all n

and k. Thus, φn(x) = 0 for all n. Consequently, lim
n→∞

φn(x)=0=f(x).

The second case is when f(x) = +∞. In this case, x ∈ En
22n for

all n, and hence φn(x) = 2n. Therefore, lim
n→∞

φn(x) = +∞ = f(x).

The third and final case is when 0 < f(x) < +∞. In this case

the bounded, increasing sequence {φn(x)} must converge to some

number, say ρ and φn(x) ≤ ρ ≤ f(x) for all n. If ρ < f(x), then there

is a rational number of the form j
2N with

ρ <
j

2N
< f(x) .

But by construction, φN (x) ≥ j
2N , a contradiction. Therefore ρ =

f(x). �

Corollary 4.2.13. Let (X,B, μ) be a measure space. For any mea-

surable function f , there is a sequence of simple functions {φn} such

that

lim
n→∞

φn(x) = f(x)

for all x ∈ X.

Proof. Apply the previous theorem to the positive and negative parts

of f . �
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4.3. Integration

Throughout this section we will assume that (X,B, μ) denotes a com-

plete measure space. Now we will define integration over a general

measure space. One approach is to follow our development of the

Lebesgue integral by first discussing the integral of bounded func-

tions via measurable partitions, etc. However, we will follow another

approach which is also sometimes used to develop the Lebesgue inte-

gral.

Definition 4.3.1. Let φ : X → R be a nonnegative simple function,

that is,

φ(x) =
n∑

i=1

aiXEi
(x),

where ai ∈ R and Ei ∈ B for each i and the sets Ei are pairwise

disjoint. The integral of φ with respect to the measure μ,

written

∫
φ dμ, is ∫

X

φ dμ =

n∑
i=1

aiμ(Ei) .

The first challenge confronting us when approaching integration

through simple functions is to show that the integral of a simple

function is well defined. To see why this is the case, consider the

following two simple functions:

φ(x) = 2X[0,2](x) + 3X(2,3](x),

ψ(x) = 2X[0,1](x) + 2X(1,2](x) + 3X(2,3](x) .

These both satisfy the definition of a simple function. In fact, these

two functions are equal. We need to establish that in such a situation,

applying Definition 4.3.1 gives the same result. This is Exercise 14.

Now we define the integral of nonnegative functions.

Definition 4.3.2. Let f : X → R∪{+∞} be a nonnegative measur-

able function. The integral of f with respect to the measure μ,

written
∫
f dμ, is∫

X

f dμ = sup

{∫
φ dμ

∣∣ φ is a simple function with 0 ≤ φ ≤ f

}
.
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If this supremum is finite, we say f is integrable with respect to

μ.

In a sense, this definition is analogous to considering the supre-

mum over all possible lower sums. But with Lebesgue integration, we

only considered lower sums when we had a bounded function. In this

case, f does not need to be bounded. As mentioned in the opening of

Section 2.2, we are using another approach to integration, one that

can also be used to define the Lebesgue integral.

Definition 4.3.3. Let f : X → R be a measurable function. We say

f is integrable with respect to μ if both f+ and f− are integrable

with respect to μ. Here f+ and f− are the positive and negative parts

of f respectively. The integral of f with respect to the measure

μ, written

∫
X

f dμ, is

∫
X

f dμ =

∫
X

f+ dμ−
∫
X

f− dμ .

One might wonder why we are once again considering the positive

and negative parts of a function. The answer is the same as before:

to avoid the situation where we might, in essence, be dealing with an

“infinity minus infinity”.

Example 4.3.4. Define μ on P(R), the set of subsets of R, by

μ(A) =

{
1 if π ∈ A,

0 otherwise.

As in Example 4.1.16 (R,P(R), μ) is a measure space. Notice that in

this case all functions f : R → R are μ-measurable. Let f ≥ 0. We

will determine when f is integrable and, if so,

∫
R

f dμ.

Suppose φ(x) is a simple function with 0 ≤ φ(x) ≤ f(x) for all

x ∈ R, say,

φ(x) =

n∑
i=1

aiXEi
(x),
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where ai ≥ 0. Then∫
R

φ dμ =

n∑
i=1

aiμ(Ei)

=

{
ai if for some i, π ∈ Ei,

0 otherwise

= φ(π) .

However, φ(π) ≤ f(π). Therefore,∫
R

φ dμ ≤ f(π) .

By the definition of the integral of f ,

∫
R

f dμ ≤ f(π).

In the case that f(π) is finite, we will establish the reverse in-

equality. All that is needed is the simple function

ψ(x) = f(π)XE(x),

where E = {π}. Again by the definition of the integral,

f(π) =

∫
R

ψ dμ ≤
∫
R

f dμ .

If f(π) = ∞, consider the sequence of simple functions

ψn(x) = nXE(x),

where, again, E = {π} to see that n ≤
∫
R

f dμ for all n. Thus,∫
R

f dμ = ∞.

In both cases,

∫
R

f dμ = f(π).

In the previous example the measure μ had an interesting fea-

ture: no matter which function f was integrated with respect to this

measure, the integral always returned the answer f(π). This is an ex-

ample of what is often called point-mass measure, indicating that all

of its weight is carried at a single point. Of course, it is easy to create

a point-mass measure concentrated at any point of your choosing.
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As with Lebesgue integration, sets of μ-measure 0 do not affect

the integral, as the next proposition demonstrates.

Proposition 4.3.5. Let f and g be two functions that are integrable

with respect to μ. If f(x) = g(x) a.e. (μ), then∫
f dμ =

∫
g dμ .

Proof. We will first prove this in the case where both f and g are

nonnegative. Let Z = {x ∈ X
∣∣ f(x) �= g(x)}. Then μ(Z) = 0. Let φ

be a simple function with 0 ≤ φ ≤ f , say

φ(x) =
n∑

i=1

aiXEi
(x),

where ai ≥ 0. Set

ψ(x) =
n∑

i=1

aiXEi\Z(x) .

Then 0 ≤ ψ ≤ g and∫
ψ dμ =

n∑
i=1

ai μ(Ei \ Z) =

n∑
i=1

ai μ(Ei) =

∫
φ dμ .

Thus, ∫
φ dμ ≤

∫
g dμ .

Taking the supremum over all simple functions 0 ≤ φ ≤ f ,∫
f dμ ≤

∫
g dμ .

The reverse inequality follows in the same manner. Therefore, in this

case, ∫
f dμ =

∫
g dμ .

Finally, the general result follows by considering the positive and

negative parts of f and g. �

Proposition 4.3.6. Let f and g be two functions that are integrable

with respect to μ. If 0 ≤ f(x) ≤ g(x) a.e. (μ), then∫
f dμ ≤

∫
g dμ .
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Proof. This is Exercise 15. �

At this point, one might expect that we would next show that

the space of functions that are integrable with respect to μ is a vector

space. However, we will defer this until proving the general version

of the Lebesgue Dominated Convergence Theorem.

In Chapter 2, our approach was to first prove the Lebesgue Dom-

inated Convergence Theorem, then use it to prove Fatou’s Lemma,

and then followed by the Monotone Convergence Theorem. This time,

however, we will change the order (so that the reader can see another

approach to the “big three” theorems). First we will prove Fatou’s

Lemma, then the Monotone Convergence Theorem, and, finally, the

Lebesgue Dominated Convergence Theorem in this more general set-

ting.

Theorem 4.3.7 (Fatou’s Lemma, preliminary version). Let {fn} be

a sequence of measurable nonnegative functions on the complete mea-

sure space (X,B, μ) with lim
n→∞

fn(x) = f(x) for all x ∈ X. Then∫
f dμ ≤ lim inf

n→∞

∫
fn dμ .

Proof. Suppose φ is a simple function with 0 ≤ φ(x) ≤ f(x) for all

x ∈ X, say

φ(x) =
m∑
i=1

aiXEi
(x),

where ai ≥ 0 and the sets Ei are μ-measurable. Without loss of

generality we may assume ai > 0 for all i. To prove this theorem, we

need to show that ∫
φ dμ ≤ lim inf

n→∞

∫
fn dμ .

i) Suppose

∫
φ dμ = +∞. (This means

∫
f dμ = +∞.) It

must be the case that μ(Ej) = +∞ for some j. We will use

this to show that there is some n with

∫
fk dμ = +∞ for

all k ≥ n, which will in turn make lim inf
n→∞

∫
fn dμ = +∞.
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Set a = aj/2, where j is the integer with μ(Ej) = +∞.

As a result,

Ej ⊆ {x ∈ X
∣∣ φ(x) > a} .

But φ(x) ≤ f(x), and hence

Ej ⊆ A = {x ∈ X
∣∣ f(x) > a} .

Consequently, μ(A) = +∞. Let

An = {x ∈ X
∣∣ fk(x) > a for all k ≥ n} .

By definition

A1 ⊆ A2 ⊆ A3 ⊆ . . . .

Therefore, we have created a nested sequence of sets. By our

hypotheses lim
n→∞

fn(x) = f(x). Thus, if f(x) > a, then there

is some n for which fk(x) > a for all k ≥ n. Consequently,

A ⊆
∞⋃

n=1

An .

By Lemma 4.1.20,

+∞ = μ(A) ≤ μ

( ∞⋃
n=1

An

)
= lim

n→∞
μ(An) .

Set φn(x) = aXAn
(x). By design, φn(x) is a simple function

with φn(x) ≤ fk(x) for all k ≥ n. As a result,

aμ(An) =

∫
φn dμ ≤

∫
fk dμ

for all k ≥ n or

aμ(An) ≤ inf
k≥n

∫
fk dμ .

Finally, taking the limit as n goes to infinity, we have∫
φ dμ = +∞ = lim

n→∞
aμ(An)

≤ lim inf
n→∞

∫
fn dμ .
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ii) Suppose

∫
φ dμ is finite. Then the set

A = {x ∈ X
∣∣ φ(x) > 0} =

m⋃
i=1

Ei

has finite measure. By assumption 0 ≤ φ(x) ≤ f(x) for all

x ∈ X. Let 0 < ε < 1. If x ∈ A, then

0 < (1− ε)φ(x) < φ(x) ≤ f(x) .

(We are using the ε to create a strict inequality.) Using

an argument similar to that in part i), for each x ∈ A,

(1− ε)φ(x) < fk(x) for all sufficiently large k. As before, we

set

An = {x ∈ A
∣∣ (1− ε)φ(x) < fk(x) for all k ≥ n} .

Then

A1 ⊆ A2 ⊆ A3 ⊆ . . .

and

A =
∞⋃

n=1

An .

(In part i) we only used “⊆”. Think about why we have

“=” this time.) By Lemma 4.1.20,

μ(A) = μ

( ∞⋃
n=1

An

)
= lim

n→∞
μ(An) .

Consequently,

lim
n→∞

μ(A \An) = lim
n→∞

(μ(A)− μ(An)) = 0 .

(It is for this last statement that we need the set A to have

finite measure.) Thus, for n sufficiently large, say, for n ≥
N , μ(A \An) < ε.

The function φXAn
is a simple function as is (1−ε)φXAn

.

In fact,

(1− ε)φ(x)XAn
(x) =

m∑
i=1

(1− ε)aiXEi∩An
(x) .

If x /∈ An, (1− ε)φXAn
(x) = 0. If x ∈ An, then

(1− ε)φXAn
(x) = (1− ε)φ(x) < fk(x)
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for all k ≥ n. Therefore, for all x ∈ X and k ≥ n,

0 ≤ (1− ε)φ(x)XAn
(x) ≤ fk(x) .

Let M = max{ai}. Then for n ≥ N (hence, μ(A \An) < ε)

and k ≥ n,∫
fk dμ ≥

∫
(1− ε)φXAn

dμ

=

m∑
i=1

(1− ε)ai μ(Ei ∩ An)

=
m∑
i=1

(1− ε)ai (μ(Ei)− μ(Ei \An))

=

m∑
i=1

(1− ε)ai μ(Ei)−
m∑
i=1

(1− ε)ai μ(Ei \An)

≥ (1− ε)
m∑
i=1

ai μ(Ei)−M(1− ε)

m∑
i=1

μ(Ei \An)

= (1− ε)

∫
φ dμ−M(1− ε)μ(A \An)

≥ (1− ε)

∫
φ dμ−M(1− ε)ε .

(Check this line by line to see where we have used the defi-

nition of the integral of a simple function and properties of

a measure.) Consequently,

lim inf
n→∞

∫
fn dμ ≥ (1− ε)

∫
φ dμ−M(1− ε)ε .

Since ε is arbitrary,

lim inf
n→∞

∫
fn dμ ≥

∫
φ dμ,

as claimed.

Finally, in both cases we have reached the result∫
φ dμ ≤ lim inf

n→∞

∫
fn dμ .
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But we started with an arbitrary simple function φ with 0 ≤ φ(x) ≤
f(x) for all x ∈ X. By the definition of the integral,∫

f dμ ≤ lim inf
n→∞

∫
fn dμ ,

as claimed. �

It took many steps to prove this first result. But as is often

the case, the equivalent results followed with much less effort. For

example, the result traditionally known as Fatou’s Lemma follows as

a corollary. The proof is similar to the proof of Corollary 2.4.12 and

will not be repeated here.

Corollary 4.3.8 (Fatou’s Lemma). Let {fn} be sequence of measur-

able nonnegative functions on the complete measure space (X,B, μ)
and f a nonnegative function with lim

n→∞
fn(x) = f(x) a.e. (μ). Then

∫
f dμ ≤ lim inf

n→∞

∫
fn dμ .

We next turn to the Monotone Convergence Theorem. Our proof

must be different than that of Theorem 2.4.13 because we don’t yet

have the Lebesgue Dominated Convergence Theorem. Despite this,

the proof is relatively straightforward.

Theorem 4.3.9 (Monotone Convergence Theorem). Let {fn} be a

sequence of nonnegative measurable functions with fn(x) ≤
fn+1(x) a.e. (μ) for every n. Suppose lim

n→∞
fn(x) = f(x) a.e. (μ).

Then ∫
f dμ = lim

n→∞

∫
fn dμ .

Proof. By Fatou’s Lemma, Corollary 4.3.8,∫
f dμ ≤ lim inf

n→∞

∫
fn dμ .

By the definitions of lim inf and lim sup,

lim inf
n→∞

∫
fn dμ ≤ lim sup

n→∞

∫
fn dμ .
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Since the sequence {fn(x)} is a nondecreasing sequence for almost

every x ∈ X, fn(x) ≤ f(x) a.e. (μ) for all n. Hence by Proposi-

tion 4.3.6, ∫
fn dμ ≤

∫
f dμ .

Consequently,

lim sup
n→∞

∫
fn dμ ≤

∫
f dμ .

Putting these all together we have∫
f dμ ≤ lim inf

n→∞

∫
fn dμ ≤ lim sup

n→∞

∫
fn dμ ≤

∫
f dμ .

Therefore, ∫
f dμ = lim inf

n→∞

∫
fn dμ = lim sup

n→∞

∫
fn dμ .

As a result, lim
n→∞

∫
fn dμ exists and∫

f dμ = lim
n→∞

∫
fn dμ,

as claimed. �

Before moving on to the Lebesgue Dominated Convergence The-

orem, we will state and prove the first step in showing that the space

of all μ-integrable functions is a vector space.

Proposition 4.3.10. Let f and g be nonnegative measurable func-

tions. For any nonnegative numbers a and b,∫
(a f + b g) dμ = a

∫
f dμ+ b

∫
g dμ .

Proof. Although we will not explicitly show it here, the result is

true if both f and g are simple functions. This is because the linear

combination of simple functions is again a simple function.

Assuming this, we will prove this in the case of more general

nonnegative measurable functions.

By Theorem 4.2.12, there are sequences {φn} and {ψn} of non-

negative simple functions with

lim
n→∞

φn(x) = f(x) and lim
n→∞

ψn(x) = g(x)
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for all x ∈ X. Therefore,

lim
n→∞

(a φn(x) + b ψn(x)) = a f(x) + b g(x)

for all x ∈ X. By construction in the proof of Theorem 4.2.12, for all

n, 0 ≤ φn(x) ≤ f(x) and 0 ≤ ψn(x) ≤ g(x); consequently,

0 ≤ a φn(x) + b ψn(x) ≤ a f(x) + b g(x)

for all x ∈ X. By Theorem 4.3.9,∫
(a f + b g) dμ = lim

n→∞

∫
(a φn + b ψn) dμ

= lim
n→∞

a

∫
φn dμ+ lim

n→∞
b

∫
ψn dμ

= a

∫
f dμ+ b

∫
g dμ,

as claimed. �

As a corollary of this proposition and the Monotone Convergence

Theorem we have the following result.

Corollary 4.3.11. Let {fn} be a sequence of nonnegative measurable

functions. Then ∫ ( ∞∑
n=1

fn

)
dμ =

∞∑
n=1

(∫
fn dμ

)
.

Proof. By Theorem 4.2.7,

∞∑
n=1

fn= lim
N→∞

N∑
n=1

fn is a measurable func-

tion. By Proposition 4.3.10 and the Monotone Convergence Theorem

(Theorem 4.3.9),

∞∑
n=1

(∫
fn dμ

)
= lim

N→∞

N∑
n=1

(∫
fn dμ

)

= lim
N→∞

∫ ( N∑
n=1

fn dμ

)

=

∫ ( ∞∑
n=1

fn dμ

)
.
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Note that we used the Monotone Convergence Theorem to obtain the

last equality. �

We now prove the general form of the Lebesgue Dominated Con-

vergence Theorem.

Theorem 4.3.12 (Lebesgue Dominated Convergence Theorem). Let

{fn} be a sequence of measurable functions such that lim
n→∞

fn(x)=f(x)

a.e. (μ). Suppose there exists a μ-integrable function g with

|fn(x)| ≤ g(x) a.e. (μ)

for every n. Then, fn is μ-integrable for every n, f is μ-integrable,

and

lim
n→∞

∫
fn dμ =

∫
f dμ .

Proof. Since |fn(x)|≤g(x) a.e. (μ) for every n, |f(x)|≤g(x) a.e. (μ).

Hence, by Exercise 17 fn is μ-integrable for every n and f is μ-

integrable.

Applying Fatou’s Lemma (Corollary 4.3.8) to both g − fn and

g + fn we obtain∫
(g − f) dμ ≤ lim inf

n→∞

∫
(g − fn) dμ

and ∫
(g + f) dμ ≤ lim inf

n→∞

∫
(g + fn) dμ .

By Exercise 16,∫
g dμ−

∫
f dμ ≤ lim inf

n→∞

(∫
g dμ−

∫
fn dμ

)

=

∫
g dμ− lim sup

n→∞

∫
fn dμ

and ∫
g dμ+

∫
f dμ ≤ lim inf

n→∞

(∫
g dμ+

∫
fn dμ

)

=

∫
g dμ+ lim inf

n→∞

∫
fn dμ .
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Consequently,

lim sup
n→∞

∫
fn dμ ≤

∫
f dμ

and ∫
f dμ ≤ lim inf

n→∞

∫
fn dμ .

Collecting these inequalities we have∫
f dμ ≤ lim inf

n→∞

∫
fn dμ ≤ lim sup

n→∞

∫
fn dμ ≤

∫
f dμ .

Therefore, lim
n→∞

∫
fn dμ exists and

lim
n→∞

∫
fn dμ =

∫
f dμ . �

4.4. Measures from Outer Measures

How does one construct a measure? In Chapter 1 we constructed

Lebesgue measure from Lebesgue outer measure, which in turn came

from a very basic notion of the length of an interval. However,

Lebesgue outer measure had a defect; it is possible for the outer

measure of the union of two disjoint sets to be strictly greater than

the sum of the outer measures of the two sets. As a result, Lebesgue

measure is not defined for all subsets of Rn. We are going to mimic

this process. Given a set X, suppose we had something similar to

Lebesgue outer measure, that is, some preliminary notion of the size

of subsets of X. What properties should this preliminary measure

have? From this preliminary measure, how does one define a mea-

sure?

Definition 4.4.1. Let X be a set. An outer measure on X is a

function μ∗ : P(X) → [0,+∞] such that

i) μ∗(∅) = 0,

ii) if A ⊆ B, then μ∗(A) ≤ μ∗(B), and

iii) if {Aj} is a countable collection of subsets of X, then

μ∗

⎛
⎝⋃

j

Aj

⎞
⎠ ≤

∑
j

μ∗(Aj) .
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Notice that an outer measure is defined for all subsets of X. Also,

some texts modify condition iii) by requiring the collection {Aj} to

be a countable collection of pairwise disjoint subsets of X. However,

this is in fact equivalent to our condition.

Example 4.4.2. Lebesgue outer measure m∗ is an outer measure on

Rn.

We defined a set E to be Lebesgue measurable if for every ε > 0

there exists an open set G containing E such that m∗(G \ E) <

ε. However, in a more abstract setting we won’t necessarily have a

well-defined notion of “open sets”. Therefore, we will use a different

definition of measurable set.

Definition 4.4.3. Let μ∗ be an outer measure on a set X. A set

E ⊆ X is called μ∗-measurable if for every set A ⊆ X,

μ∗(A) = μ∗(A ∩E) + μ∗(A \ E) .

The condition “μ∗(A) = μ∗(A ∩ E) + μ∗(A \ E) for any A ⊆ X”

is due to Carathéodory and is called the Carathéodory condition.

By the definition of outer measure, it will always be the case that

μ∗(A) ≤ μ∗(A ∩E) + μ∗(A \ E) .

Consequently, when we need to show that a set E is μ∗-measurable,

the goal will often be to show that for any set A,

μ∗(A) ≥ μ∗(A ∩E) + μ∗(A \ E) .

But we are getting ahead of ourselves. Our first task is to show

that we have produced a measurable space and a measure on that

space. The candidate for our σ-algebra is

B = {E ⊆ X
∣∣ E is μ∗-measurable} .

Theorem 4.4.4. (X,B) is a measurable space.

Proof. We must show that B is a σ-algebra.

i) We must show that ∅ ∈ B. By definition, μ∗(∅) = 0. Hence,

for any set A,

μ∗(A ∩ ∅) + μ∗(A \ ∅) = μ∗(∅) + μ∗(A) = μ∗(A)
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or

μ∗(A) = μ∗(A ∩ ∅) + μ∗(A \ ∅) .
Therefore, ∅ ∈ B.

ii) Assume E ∈ B. We must show Ec ∈ B. For any set A

μ∗(A ∩ Ec) + μ∗(A \ Ec) = μ∗(A \ E) + μ∗(A ∩E) = μ∗(A) .

The last equality holds because E is μ∗-measurable. There-

fore, Ec is μ∗-measurable.

iii) We will start by considering the union of just two sets. Sup-

pose E1 and E2 are both in B. Let A be any subset of X.

It suffices to show that

μ∗(A) ≥ μ∗ (A ∩ (E1 ∪ E2)) + (A \ (E1 ∪E2)) .

Since E2 ∈ B

μ∗(A) = μ∗(A ∩E2) + μ∗(A \ E2) .

Since E1 ∈ B

μ∗(A \ E2) = μ∗ ((A \ E2) ∩E1) + μ∗ ((A \ E2) \ E1)

= μ∗ ((A \ E2) ∩E1) + μ∗ (A \ (E1 ∪ E2))

using A\E2 in the definition of measurability. Consequently,

μ∗(A) = μ∗(A ∩ E2) + μ∗ ((A \ E2) ∩ E1) + μ∗ (A \ (E1 ∪ E2)) .

But (A ∩ E2) ∪ ((A \ E2) ∩E1) = A ∩ (E1 ∪E2), so

μ∗(A ∩ E2) + μ∗ ((A \ E2) ∩E1) ≥ μ∗ (A ∩ (E1 ∪ E2)) .

Therefore,

μ∗(A) = μ∗(A ∩E2) + μ∗ ((A \ E2) ∩ E1) + μ∗ (A \ (E1 ∪E2))

≥ μ∗ (A ∩ (E1 ∪E2)) + μ∗ (A \ (E1 ∪ E2))

≥ μ∗(A) .

Hence, the above inequalities must be equalities and

μ∗(A) = μ∗ (A ∩ (E1 ∪ E2)) + μ∗ (A \ (E1 ∪ E2))

so that the union of two μ∗-measurable sets is μ∗-measurable.
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Notice that in addition to showing that the union of two

μ∗-measurable sets is μ∗-measurable, we may also conclude

that if E1 and E2 are disjoint,

μ∗(A) = μ∗(A ∩ E1) + μ∗ (A ∩E2) + μ∗ (A \ (E1 ∪ E2))

since, in this case, (A \ E2) ∩ E1 = A ∩ E1. Further,

by using mathematical induction, we can show that the

union of n μ∗-measurable sets is μ∗-measurable. Moreover,

if E1, E2, . . . , En are pairwise disjoint μ∗-measurable sets,

and A is any subset of X, then

μ∗(A) = μ∗(A ∩ E1) + μ∗(A ∩E2) + . . .

+μ∗(A ∩ En) + μ∗

(
A \

n⋃
i=1

En

)
.

Now we turn our attention to a more general case. Sup-

pose {Ej} is a countably infinite collection of pairwise dis-

joint μ∗-measurable sets. We wish to show that
⋃
j

Ej is

μ∗-measurable. Let A be any subset of X. Set

Gn =

n⋃
j=1

Ej and G =

∞⋃
j=1

Ej .

Then, because we have a union of pairwise disjoint sets and

Gn ⊆ G,

μ∗(A) =

⎛
⎝ n∑

j=1

μ∗(A ∩Ej)

⎞
⎠+ μ∗(A \Gn)

≥

⎛
⎝ n∑

j=1

μ∗(A ∩Ej)

⎞
⎠+ μ∗(A \G) .
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Taking the limit as n goes to infinity,

μ∗(A) ≥

⎛
⎝ ∞∑

j=1

μ∗(A ∩Ej)

⎞
⎠+ μ∗(A \G)

≥ μ∗

⎛
⎝ ∞⋃

j=1

(A ∩Ej)

⎞
⎠+ μ∗(A \G)

= μ∗

⎛
⎝A ∩

∞⋃
j=1

Ej

⎞
⎠+ μ∗(A \G)

= μ∗(A ∩G) + μ∗(A \G)

≥ μ∗(A) .

Once again, the above inequalities must be equalities and

μ∗(A) = μ∗(A ∩G) + μ∗(A \G) .

Thus, G is μ∗-measurable. As an added bonus, we also have

in this case

μ∗(A) =

⎛
⎝ ∞∑

j=1

μ∗(A ∩Ej)

⎞
⎠+ μ∗

⎛
⎝A \

∞⋃
j=1

Ej

⎞
⎠ .

The most general case where {Ej} are not necessarily

pairwise disjoint follows by writing

∞⋃
j=1

Ej = E1 ∪ (E2 \ E1) ∪ (E3 \ (E1 ∪E2)) . . . .

In other words, we have taken the union of a countable col-

lection of μ∗-measurable sets and written it as the union of a

countable collection of pairwise disjoint μ∗-measurable sets.

We have now shown that B is a σ-algebra. Therefore, (X,B) is a

measurable space. �

Now that we have a measurable space, there is a natural function

to use as a measure on this space, namely μ∗. We next show that this

indeed is a measure.
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Theorem 4.4.5. Let μ∗ be an outer measure on X and B be the

collection of all μ∗-measurable sets. Define μ : B → [0,∞] by μ(E) =

μ∗(E). Then (X,B, μ) is a measure space.

Proof. We need to show that μ is a measure. Since B is a σ-algebra

and μ∗ is an outer measure, ∅ ∈ B and

μ(∅) = μ∗(∅) = 0 .

Next, suppose {Ej} is a countable collection of pairwise disjoint

sets in B. In the proof of Theorem 4.4.4, we saw that for any set

A ⊆ X,

μ∗(A) =

⎛
⎝ ∞∑

j=1

μ∗(A ∩Ej)

⎞
⎠+ μ∗

⎛
⎝A \

∞⋃
j=1

Ej

⎞
⎠ .

This must hold if we take A =

∞⋃
j=1

Ej . Hence,

μ∗

⎛
⎝ ∞⋃

j=1

Ej

⎞
⎠ =

⎛
⎝ ∞∑

j=1

μ∗(Ej)

⎞
⎠+ μ∗(∅)

=

⎛
⎝ ∞∑

j=1

μ∗(Ej)

⎞
⎠ .

Therefore,

μ

⎛
⎝ ∞⋃

j=1

Ej

⎞
⎠ =

⎛
⎝ ∞∑

j=1

μ(Ej)

⎞
⎠

and μ is a measure. �

Let us return to Lebesgue outer measure. The next theorem

asserts that the sets we defined as Lebesgue measurable in Chapter

1 are precisely those sets that are measurable under this new way of

generating a measure.

Theorem 4.4.6. Let E ⊆ Rn. E is Lebesgue measurable if and only

if for any A ⊆ Rn,

m∗(A) = m∗(A ∩ E) +m∗(A \ E),
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where m∗ is Lebesgue outer measure.

Proof. Assume first that E is Lebesgue measurable. Let A be a

subset of Rn. It will always be the case that

m∗(A) ≤ m∗(A ∩ E) +m∗(A \ E) .

Our task is to establish equality, or at least, establish the reverse

inequality.

If m∗(A) = +∞, it must be the case that

+∞ = m∗(A) ≤ m∗(A ∩E) +m∗(A \ E) .

Hence,

m∗(A ∩E) +m∗(A \ E) = +∞ = m∗(A),

and we are done.

Now suppose m∗(A) < +∞. By Exercise 24 of Chapter 1, there

is a set H of type Gδ such that A ⊆ H and m∗(A) = m∗(H). H

is Lebesgue measurable, as are the disjoint sets H ∩ E and H \ E.

Therefore,

m∗(A) = m∗(H)

= m(H)

= m(H ∩ E) +m(H \ E)

= m∗(H ∩ E) +m∗(H \ E)

≥ m∗(A ∩ E) +m∗(A \ E) .

Thus, E satisfies the Carathéodory condition.

Now assume that E satisfies the Carathéodory condition. We will

show that E is Lebesgue measurable. First consider the case where

m∗(E) < +∞. Again by Exercise 24 of Chapter 1, there is a set H

of type Gδ such that E ⊆ H and m∗(E) = m∗(H). Since H is of

type Gδ, H must be Lebesgue measurable. Set Z = H \ E. Then

E = H \ Z. If we show that Z is Lebesgue measurable, we are done.

Using H in the Carathéodory condition,

m∗(E) = m∗(H) = m∗(H ∩ E) +m∗(H \E)

= m∗(E) +m∗(Z) .
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Thus, m∗(Z) = 0. But any set with Lebesgue outer measure 0 is

measurable. Consequently, E is measurable.

Finally, we consider the case where m∗(E) = +∞ and E satisfies

the Carathéordory condition. For each positive integer k let Bk =

{x ∈ Rn
∣∣ |x| < k}. Then Bk is Lebesgue measurable (it is an open

set), so by the first part of this proof, Bk satisfies the Carathéodory

condition. The sets satisfying this condition form a σ-algebra by

Theorem 4.4.4, thus E ∩Bk satisfies the Carathéodory condition for

each k. But m∗(E ∩ Bk) is finite. Thus, as shown earlier, E ∩ Bk is

Lebesgue measurable for each k. Finally,

E =
∞⋃
k=1

(E ∩Bk),

so E is the countable union of Lebesgue measurable sets. Therefore,

E is Lebesgue measurable. �

As an example of using an outer measure to construct a measure

we will conclude this section by generating Hausdorff measure. The

first step is to define our outer measure. In fact, we will define a

whole family of outer measures and measures.

We begin by using the following notation. For a set A ⊆ Rn let

δ(A) = sup{|x− y|
∣∣ x, y ∈ A} .

That is, δ(A) is the diameter of the set A. Corresponding to each

pair α ≥ 0 and ε > 0 we will define an outer measure. To form this

outer measure of E ⊆ Rn, we will cover E with a countable collection

of sets with small diameter. More precisely, let α ≥ 0 and ε > 0. The

Hε
α outer measure of E is

Hε
α(E) = inf

{∑
k

(δ(Ak))
α
∣∣ E ⊆

⋃
k

Ak and δ(Ak) < ε

}
.

We leave the details of proving that Hε
α is an outer measure as an

exercise (see Exercise 20). Some authors choose to to take

Hε
α(E) = inf

{∑
k

ωα(δ(Ak))
α
∣∣ E ⊆

⋃
k

Ak and δ(Ak) < ε

}
,



4.4. Measures from Outer Measures 193

where the constant ωα is chosen in order to have Hausdorff measure

coincide with Lebesgue measure.

The proof that Hα is an outer measure is straightforward and

is also left to the reader as an exercise (see Exercise 21). Because

this is an outer measure, we can use the Carathéodory condition (see

Definition 4.4.3) to determine a σ-algebra of measurable sets. In fact,

for every α ≥ 0, we have a different outer measure which generates

a different measure. The next proposition shows a slight connection

between these outer measures.

Notice that if ε1 < ε2, then Hε1
α (E) ≥ Hε2

α (E). Hence, for any

set E ⊆ Rn, lim
ε→0+

Hε
α(E) will either be a nonnegative real number or

+∞.

Definition 4.4.7. The Hausdorff outer measure of dimension

α of a set E, written Hα(E), is

Hα(E) = lim
ε→0+

Hε
α(E) .

Proposition 4.4.8. If 0 ≤ α < β and Hα(E) < +∞ for some

E ⊆ Rn, then Hβ(E) = 0.

Proof. Let ε > 0 be given and suppose {Ak} is a covering of E by

sets with diameter less than ε. Then∑
k

(δ(Ak))
β =

∑
k

(δ(Ak))
β−α(δ(Ak))

α ≤ εβ−α
∑
k

(δ(Ak))
α .

Therefore, for every ε > 0,

0 ≤ Hε
β(E) ≤ εβ−αHε

α(E) .

The result follows by taking the limit as ε approaches 0. �

Notice that when taking the limit as ε approaches 0, it was impor-

tant forHε
α(E) to have a finite limit. We can take another perspective

on our argument. If Hβ(E) happens to be +∞ and 0 ≤ α < β, the

same reasoning shows that Hα(E) = +∞. We have the following

corollary.

Corollary 4.4.9. If 0 ≤ α < β and Hβ(E) = +∞ where E ⊆ Rn,

then Hα(E) = +∞.
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For each α ≥ 0 we have constructed an outer measure Hα. The

sets that satisfy the Carathéodory condition (see Definition 4.4.3) for

the outer measure Hα for all α ≥ 0 are called Hausdorff measurable

sets or simply Hausdorff measurable. Now we will show that most of

the sets we encounter are Hausdorff measurable.

Theorem 4.4.10. Every Borel set in Rn is Hausdorff measurable.

The main step here is to establish the following lemma.

Lemma 4.4.11. Every closed set in Rn is Hausdorff measurable.

Proof. Let α ≥ 0 and let F be a closed set in Rn. By Definition 4.4.3

(the Carathéodory condition) we must show that for any subset A ⊆
Rn,

Hα(A) = Hα(A ∩ F ) +Hα(A \ F ) .

But, in fact, we really need to show that

Hα(A) ≥ Hα(A ∩ F ) +Hα(A \ F )

because the reverse inequality is always true. Moreover, it is easy to

see that this inequality is true if Hα(A) = +∞. So we assume Hα(A)

is finite.

For each n ∈ N set

Bn =

{
x ∈ A \ F | d(x, F ) ≥ 1

n

}
.

By Exercise 22, for each n,

Hα(A ∩ F ) +Hα(Bn) = Hα(A ∩ F ∪Bn) ≤ Hα(A) .

As a sequence of real numbers, {Hα(Bn)} is an increasing sequence.

Also, each Bn ⊆ A \ F ⊆ A so {Hα(Bn)} is a bounded sequence.

Therefore, we know that lim
n→∞

Hα(Bn) exists. However, we don’t

yet know that this limit equals Hα(A \ F ). We can only say that

lim
n→∞

Hα(Bn) ≤ Hα(A \ F ). Our proof will be complete once we es-

tablish the reverse inequality.

For each n, let Cn = Bn+1 \ Bn. If |i − j| > 1, not only are Ci

and Cj disjoint, the distance between them will be positive. Hence,

Hα(Ci ∪ Cj) = Hα(Ci) +Hα(Cj) ,
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again by Exercise 22. In particular, this will be the case if i and j are

both even or both odd. Thus, for any N ,

N∑
j=1

Hα(C2j) = Hα

⎛
⎝ N⋃

j=1

C2j

⎞
⎠ ≤ Hα(A \ F ) and

N∑
j=1

Hα(C2j+1) = Hα

⎛
⎝ N⋃

j=1

C2j+1

⎞
⎠ ≤ Hα(A \ F ) .

Therefore, the series
∞∑
j=1

Hα(Cj) converges (the partial sums are

bounded by 2Hα(A \ F )).

Finally, for each n,

A \ F = Bn ∪
⋃
j≥n

Cj .

Hence,

Hα(A \ F ) ≤ Hα(Bn) +
∑
j≥n

Hα(Cj) .

We obtain the desired inequality by taking the limit as n goes to

infinity in the above inequality and observing that the last term is

simply the “tail” of a convergent series and hence goes to 0 as n goes

to infinity.

In conclusion, every closed set F satisfies the Carathéodory con-

dition and is Hausdoff measureable. �

The remaining details of the proof of Theorem 4.4.10 are left as

an exercise (Exercise 23).

Proposition 4.4.8 guarantees that for a set A, if you have a non-

negative value α where the Hα Hausdorff measure is finite, then for

any β larger than α, the Hβ Hausdorff measure of A will be 0. On

the other hand, the corollary of that proposition states that once one

finds a dimension where the Hausdorff measure is infinite, the Haus-

dorff measure will be infinite for all smaller dimensions. This allows

us to define the Hausdorff dimension of a set A as

inf{α
∣∣ Hα(A) = 0} .
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Equivalently, the Hausdorff dimension of A is

sup{α
∣∣ Hα(A) = +∞} .

Example 4.4.12. In R2, let A be a line segment of length l. A is

a Borel set, and so is Hausdorff measurable. Given ε > 0, we need

roughly l
ε
balls of radius ε to cover A. For each α, a candidate for

Hε
α(A) is l

ε
(ε)α. Consequently, Hε

α(A) = +∞ if α < 1, Hε
α(A) = 0 if

α > 1, and Hε
1(A) = l. The Hausdorff dimension of a line segment in

R2 is 1.

This example demonstrates a remarkable feature of Hausdorff

measure; it does not depend on the dimension of the surrounding

space. A line segment of length l will have Hausdorff dimension 1

and Hausdorff measure (of the same dimension) l whether the line

segment resides in R1, R2, or even Rn. This is not the case with

Lebesgue measure.

4.5. Signed Measures

What if we allowed the measure of a set to be negative? First of all,

why would we want to do this? We might want to think of the measure

of a set as representing the amount of “stuff” in that set, where the

“stuff” might be either positive or negative. For example, think of an

electric charge. We can extend the definition of a measure, in limited

circumstances, and allow some sets to have a negative measure by

defining a signed measure.

Throughout this section (X,B) will denote a measurable space.

Definition 4.5.1. Let (X,B) be a measurable space. We say ν is a

signed measure on (X,B) if ν : B → [−∞,+∞], where

i) ν assumes at most one of the values +∞,−∞,

ii) ν(∅) = 0, and

iii) for any countable collection {Ej} of pairwise disjoint sets in

B,

ν

⎛
⎝⋃

j

Ej

⎞
⎠ =

∑
j

ν (Ej) ,
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where equality is taken to mean that the series on the right

converges absolutely if ν
(⋃

j Ej

)
is finite and diverges oth-

erwise.

Before proceeding take a moment to consider why we impose each

of these conditions. The first condition appears in order to prevent

any chance of ending up with an “infinity minus infinity” situation.

Conditions ii) and iii) are certainly desirable of a measure, signed or

otherwise.

Example 4.5.2. Let f ∈ L[a, b] and B be the set of all Lebesgue

measurable subsets of [a, b]. For any set E ∈ B define ν(E) by

ν(E) =

∫
E

f .

ν is an example of a signed measure on the measurable space ([a, b],B).
Verification that ν is a signed measure is left as an exercise (see Ex-

ercise 26).

Definition 4.5.3. Let ν be a signed measure on the measurable space

(X,B). Then:

i) We say a set A ∈ B is positive with respect to the signed

measure ν if ν(A) ≥ 0 for every measurable E ⊆ A.

ii) We say a set A ∈ B is negative with respect to the signed

measure ν if ν(A) ≤ 0 for every measurable E ⊆ A.

iii) We say a set A ∈ B is null with respect to the signed mea-

sure ν if ν(A) = 0 for every measurable E ⊆ A.

An easy example of all of the above is the empty set. Additionally,

if a set A is both positive and negative with respect to the signed

measure ν, then A is null with respect to ν. However, a set may have

ν-measure 0 but not be null with respect to ν.

Example 4.5.4. As in Example 4.5.2, let f ∈ L[a, b] and B be the

set of all Lebesgue measurable subsets of [a, b] and define ν(E) by

ν(E) =

∫
E

f .

If A is a measurable subset of [a, b] and f(x) ≥ 0 for all x ∈ A, then

A is a positive set.
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Lemma 4.5.5. Let ν be a signed measure on (X,B). Then:

i) Each measurable subset of a positive set is itself positive.

ii) The countable union of positive sets is a positive set.

Proof. Part i) follows directly from the definition of a positive set.

To show ii), assume {Aj} is a countable collection of positive sets

and suppose E is a measurable set with

E ⊆
⋃
j

Aj .

Set E1 = E∩A1. For each j > 1 let Ej = E∩(Aj \Aj−1). Then {Ej}
is a countable collection of pairwise disjoint measurable sets and

E =
⋃

Ej .

Since Aj is positive and Ej ⊆ Aj, ν(Ej) ≥ 0 for each j. Consequently,

ν(E) =
∑
j

ν(Ej) ≥ 0 .

Therefore,
⋃

j Aj is a positive set. �

Similar statements can be made about negative sets and null sets.

If a set has positive measure, it is not necessarily a positive set.

However, every set with finite positive measure contains a subset that

is a positive set.

Lemma 4.5.6. Let ν be a signed measure on (X,B). If E ∈ B with

0 < ν(E) < ∞ ,

then there exists a measurable positive subset A of E with ν(A) > 0.

Proof. If E is itself a positive set, we are done.

If E is not a positive set, there must be some measurable set B ⊂
E with ν(B) < 0. We will first establish that such a set B must have

finite measure. If ν(B) = −∞, then ν(E) = ν(E \ B) + ν(B) would

imply ν(E) = −∞, a contradiction (recall that a signed measure

can only take on one of the values +∞,−∞). Therefore, the signed
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measure of B must be finite. Hence, there is a smallest positive integer

nB,

ν(B) < − 1

nB
< 0 .

We now take a slightly different perspective on this. Consider

the set of all positive integers that corresponded in this manner to

some subset of E. This set contains a smallest integer. Let n1 be the

smallest positive integer such that there exists a measurable subset

E1 ⊂ E with

ν(E1) < − 1

n1
.

Since ν(E) = ν(E \ E1) + ν(E1) and ν(E) is positive and finite,

whereas ν(E1) is negative and finite, it must be the case that ν(E\E1)

is positive and finite.

If the set E \E1 is a positive set, we have found the set claimed.

So, assume E \ E1 is not a positive set. We will repeat the process

again starting with the set E \E1. Consider all subsets of E \E1 with

negative measure. Each of these sets corresponds to some positive

integer in the manner described above. We will choose n2 to be the

smallest positive integer such that there exists a set E2 ⊂ E \E1 with

ν(E2) < − 1

n2
.

Since it is also the case that E2 ⊂ E, n2 would have been under

consideration when we chose n1. Hence, n1 ≤ n2.

If E \ (E1 ∪ E2) is a positive set, we are done. Otherwise, we

repeat the process with E \ (E1 ∪ E2) and continue. In general,

Ek ⊂ E \
⋃k−1

j=1 with

ν(Ek) < − 1

nk
and

n1 ≤ n2 ≤ . . . ≤ nk .

If at any point this process terminates, that is, the set E \
⋃k

j=1 Ej

is a positive set, we are done.

Assume this process continues indefinitely. Set

A = E \
∞⋃
k=1

Ek .
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We will (eventually) show that A is the positive set we seek.

The sets Ek are pairwise disjoint and have negative measure, and

hence

ν

( ∞⋃
k=1

Ek

)
=

∞∑
k=1

ν(Ek) < 0 .

Therefore, the set
⋃∞

k=1 Ek was one of the sets considered at the start

of the process. This means that the set
⋃∞

k=1 Ek must have finite (yet

negative) measure. But

ν

( ∞⋃
k=1

Ek

)
=

∞∑
k=1

ν(Ek)

and ν(Ek) < 0 for each k. Thus, the series

∞∑
k=1

ν(Ek) converges

absolutely. Therefore,

0 <

∞∑
k+1

1

nk
<

∞∑
k+1

−ν(Ek) < ∞ .

In particular,

lim
k→∞

1

nk
= 0 or lim

k→∞
nk = +∞ .

Next,

ν(E) = ν(A) +
∞∑
k=1

ν(Ek)

and the sets Ek all have negative measure. Consequently, ν(A) >

ν(E) > 0. It remains to show that A is a positive set. To this end,

suppose B is a measurable subset of A. Then for every k,

B ⊆ E \
k−1⋃
j=1

Ek .

If B had negative measure, it would have been a candidate in our

process of choosing nk and Ek. Also, B would have corresponded to

some integer nB. Since lim
k→∞

nk = +∞, at some point, B should have
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been chosen, but it wasn’t. Therefore, for each nk, B did not qualify

as a potential corresponding set. In other words,

ν(B) ≥ − 1

nk

for every k. But then ν(B) ≥ 0 and A is a positive set. �

The next proposition asserts that given any signed measure on

a measurable space, the space can be decomposed into two disjoint

sets, one positive and the other negative.

Proposition 4.5.7 (Hahn Decomposition Theorem). Let ν be a signed

measure on (X,B). Then there exists a positive set A and a negative

set B with X = A ∪B and A ∩B = ∅.

Proof. By definition, ν can take on at most one of the values +∞,

−∞. Without loss of generality, assume ν never takes on the value

+∞. Let

λ = sup{ν(E)
∣∣ E ∈ B and E is positive} .

(In the case that ν does assume the value +∞, we would start this

process by considering negative sets.) Since ∅ is a positive set in B,
λ ≥ 0. At this point, it could be the case that λ is +∞. However,

we will show that there is a positive set A with ν(A) = λ. Since ν is

assumed never to take on the value +∞, this will show that λ must

be finite.

By the definition of λ, there exists a sequence {En} of positive

sets with

lim
n→∞

ν(En) = λ .

Let

A =
∞⋃

n=1

En .

By Lemma 4.5.5, A is a positive set. Also, En and A\En are disjoint

sets. Thus,

ν(A) = ν(En) + ν(A \ En)

for each n. Since A is a positive set and A \ En ⊆ A, ν(A \ En) ≥ 0;

hence,

ν(A) ≥ ν(En)
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for each n. Taking the limit as n goes to infinity, ν(A) ≥ λ. However,

by the definition of λ, ν(A) ≤ λ. Therefore, ν(A) = λ and λ is finite.

Let B = X \ A. It remains to show that B is a negative set.

To the contrary, suppose B is not a negative set. Then B contains a

subset E with positive measure. Since ν does not take on the value

+∞, 0 < ν(E) < +∞. By Lemma 4.5.6, E must contain a positive

set Ã with ν(Ã) > 0. Then

ν(Ã) ⊆ E ⊆ X \A .

A∪ Ã is the disjoint union of positive sets. So we now have a positive

set with

ν(A ∪ Ã) = ν(Ã) + ν(A) > ν(A) = λ ,

a contradiction. Therefore, B is a negative set. �

The sets A and B guaranteed by this theorem are known as a

Hahn decomposition of the space X. Unfortunately, this decomposi-

tion is not necessarily unique, as demonstrated by the next example.

Example 4.5.8. As in Example 4.5.2, let f ∈ L[a, b] and B be the

set of all Lebesgue measurable subsets of [a, b], and define ν(E) by

ν(E) =

∫
E

f .

Define A and B by

A = {x ∈ [a, b]
∣∣ f(x) ≥ 0},

B = {x ∈ [a, b]
∣∣ f(x) < 0} .

Then A and B form a Hahn decomposition of [a, b] with respect to

the signed measure ν. However, the sets A′ and B′ defined by

A′ = {x ∈ [a, b]
∣∣ f(x) > 0},

B′ = {x ∈ [a, b]
∣∣ f(x) ≤ 0}

also form a Hahn decomposition of [a, b].

Given a signed measure ν on a measurable space (X,B), we can

use the Hahn decomposition to define the positive and negative parts
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of the measure. For if X = A ∪B is such a decomposition, letting

ν+(E) = ν(E ∩A),

ν−(E) = −ν(E ∩B)

gives us two measures defined on (X,B) with ν(E) = ν+(E)−ν−(E).

There are actually two things to be shown here. First, ν+ and ν− are

measures, and, second, the positive and negative parts of ν are well

defined. These are Exercise 27 and Exercise 28. Armed with this, we

then define the measure |ν| by
|ν|(E) = ν+(E) + ν−(E) .

Definition 4.5.9. Let μ1 and μ2 be two measures (not signed mea-

sures) on the measurable space (X,B). μ1 and μ2 are mutually

singular on (X,B) if there exist disjoint sets A,B ∈ B such that

X = A ∪B with

μ1(A) = μ2(B) = 0 .

In other words, the Hahn decomposition theorem tells us that any

signed measure ν can be decomposed into two measures, the positive

and negative parts of ν, and that these two measures are mutually

singular.

Example 4.5.10. Let C be the Cantor set. Again, the Cantor set

is a Borel set and so is Hausdorff measurable. To find the Hausdorff

dimension of the Cantor set, recall that at the kth stage of construc-

tion, Ck consisted of 2k intervals of length 1
3k
. Hence, a candidate for

H
1
k
α (C) is 2k

3kα . Therefore, to find Hα(C) we will need to take

lim
k→∞

2k

3kα
= lim

k→∞

(
2

3α

)k

.

If 2
3α

< 1, this limit will be 0. If 2
3α > 1, this limit will be +∞. As

predicted by Proposition 4.4.8, there is one dimension that is “just

right” when 2
3α = 1. Therefore, the Hausdorff dimension of the Can-

tor set is α = ln 2
ln 3 .

4.6. Exercises

(1) Let A = {A ⊆ R
∣∣ A is finite or Ac is finite}. Show that A

is an algebra on R.
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(2) Prove Proposition 4.1.8.

(3) Show that {C ⊆ R
∣∣ C is countable or Cc is countable} is a

σ-algebra on R.

(4) Let B1 and B2 be two σ-algebras on a set X. Define B =

B1 ∩ B2 by

A ∈ B if and only if A ∈ B1 and A ∈ B2 .

Show that B is a σ-algebra on X.

(5) Let f : [a, b] → R be a (Lebesgue) measurable function on

[a, b]. Prove that the inverse image of every Borel set is a

(Lebesgue) measurable set.

(6) Let (X,B, μ) be a measure space. Show that if A,B ∈ B
and μ(A�B) = 0, then

μ(A) = μ(B) .

Here A�B = (A \B) ∪ (B \A).

(7) Let (X,B, μ) be a measure space. Suppose Y ∈ B. Let

BY consist of those sets in B that are contained in Y and

μY (E) = μ(E) if E ∈ BY . Show that (Y,BY , μY ) is a

measure space.

(8) Let (X,B, μ) be a measure space. Prove the following: If

{Ei} is a countable collection of sets in B with μ(E1) < ∞
and Ei ⊇ Ei+1 for i = 1, 2, . . ., then

μ

( ∞⋂
i=1

Ei

)
= lim

n→∞
μ(En) .

(9) Prove that the completion of the measure space (Rn,B,m)

is the measure space (Rn,M,m).

(10) Let (X,B) be a measurable space and {μn} a sequence of

measures with the property that for every E ∈ B,

μn(E) ≤ μn+1(E), n = 1, 2, . . . .

Let μ(E) = lim
n→∞

μn(E). Show that (X,B, μ) is a measure

space.

(11) Let (X,B, μ) be a complete measure space. Suppose f is

measurable and f = g a.e. (μ). Show that g is measurable.
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(12) Let f : X → R be a μ-measurable function. Show that f

takes on only a finite number of values if and only if f is

equal to a simple function.

(13) Let (X,B, μ) be a measure space. Suppose φ(x) is a simple

function defined on X, that is,

φ(x) =
n∑

i=1

aiXEi
(x),

where the ai’s are distinct real numbers and the sets Ei are

pairwise disjoint. Show that φ is a μ-measurable function if

and only if each Ei is a μ-measurable set.

(14) Let (X,B, μ) be a complete measure space. Show that if

φ and ψ are two equal nonnegative μ-measurable simple

functions, then ∫
φ dμ =

∫
ψ dμ .

(15) Prove Proposition 4.3.6 without using the linearity of the

integral.

(16) Prove the linearity of the integral. That is, let (X,B, μ) be
a complete measure space. Show that if f and g are both

integrable with respect to the measure μ and a, b ∈ R, then

the function af + bg is integrable with respect to μ and∫
(af + g) dμ = a

∫
f dμ+ b

∫
g dμ .

(17) Let (X,B, μ) be a complete measure space. Suppose f, g are

measurable and |f(x)| ≤ g(x) for all x ∈ X. Show that if g

is integrable with respect to μ, then f is as well.

(18) Let (X,B, μ) be a complete measure space. Let f be in-

tegrable with respect to the measure μ. As with Lebesgue

integration, for A ∈ B we define∫
A

f dμ =

∫
fXA dμ .



206 4. General Measure Theory

Prove: Given ε > 0 there is a δ > 0 such that if A ∈ B and

μ(A) < δ, then ∣∣∣∣
∫
A

f dμ

∣∣∣∣ < ε .

(19) Let (X,B, μ) be a complete measure space. We say the se-

quence of functions {fn} converges in measure to the func-

tion f if for every ε > 0 there is an integer N and a measur-

able set E so that μ(E) < ε, and if x /∈ E, then

|fn(x)− f(x)| < ε for all n ≥ N .

Prove that if {fn} converges in measure to f , then a subse-

quence of {fn} converges to f almost everywhere.

(20) Let α ≥ 0 and ε > 0. Prove that Hε
α is an outer measure on

Rn.

(21) Let α ≥ 0. Prove that Hα is an outer measure on Rn.

(22) Let E1, E2 ⊆ Rn and α ≥ 0. Show that if d(E1, E2) > 0,

then

Hα(E1 ∪E2) = Hα(E1) +Hα(E2) .

(23) Complete the proof of Theorem 4.4.10.

(24) Let μ∗ be an outer measure on Rn with the property that

for any two sets, if d(E1, E2) > 0, then μ∗(E1 ∪ E2) =

μ∗(E1) + μ∗(E2). Show that every closed subset of Rn is

μ∗-measurable.

(25) Let μ∗ be an outer measure on Rn with the property that

for any two sets, if d(E1, E2) > 0, then μ∗(E1 ∪ E2) =

μ∗(E1) + μ∗(E2). Show that every Borel subset of Rn is

μ∗-measurable.

(26) Verify that the measure described in Example 4.5.2 satisfies

the definition of a signed measure.

(27) Let ν be a signed measure on the measurable space (X,B).
Suppose A is positive set and define μ+ to be

μ+(E) = μ(E ∩A) .

Show that μ+ is a measure on (X,B).
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(28) Let ν be a signed measure on the measurable space (X,B).
Suppose A and A′ are positive sets and B and B′ are nega-

tive sets with X = A∪B = A′∪B′ and A∩B = A′∩B′ = ∅.
Show that for every measurable set E,

ν(E ∩ A) = ν(E ∩ A′),

ν(E ∩B) = ν(E ∩B′) .
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These are some of the topics that I have used for final presentations.

In my classes, these presentations are typically around 20 minutes

long and are accompanied by a written report (the time allotted for

presentations does not always permit demonstration of all the details).

Most of the necessary proofs have been outlined here. Further details

about these topics can be found in [1], [10], and [13], as well as other

sources.

(1) Egorov’s Theorem: This theorem shows that if a sequence

of functions {fn} converges pointwise to a function f , then,

in some sense, the convergence is almost uniform.

Theorem. Let (fn) be a sequence of measurable func-

tions on [a, b] that converges pointwise on [a, b] to the func-

tion f . Then for every ε > 0, there is a closed set F ⊆ [a, b]

such that

m([a, b] \ F ) < ε and fn → f uniformly on F .

a) Show that if (fn) is a sequence of measurable functions

on [a, b] that converges pointwise on [a, b] to the func-

tion f , then for every η > 0 and δ > 0 there is a positive

integer N and a measurable subset E of [a, b] such that

|fn − f | < η on E for all n ≥ N and m([a, b] \ E) < δ .

209
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To show this you might look at

En = {x ∈ [a, b] | |fk(x)− f(x)| < η for all k ≥ n} .

What can be said about limn→∞ m(En) and why?

b) Apply the results of the previous steps using δ = ε/2n+1

and η = 1/n to create sets An = [a, b] \ En. What can

be said about

A =

∞⋂
n=1

An ?

c) Does the sequence (fn) converge uniformly to f on A?

Use this to justify the existence of the desired closed

set F .

d) Illustrate the results of Egorov’s Theorem by creating

examples.

(2) Convergence in measure: We have several ways of describing

how a sequence of functions {fn} converges to a function f ,

from pointwise to with respect to a norm. Here is another

type.

Definition. Let (fn) be a sequence of measurable func-

tions on [a, b] and f a measurable function on [a, b]. The

sequence (fn) is said to converge in measure on [a, b] to

f provided that for each η > 0,

lim
n→∞

m({x ∈ [a, b] | |fn(x)− f(x)| > η}) = 0 .

a) Show that if the sequence (fn) of measurable functions

on [a, b] converges pointwise to f on [a, b], then the

sequence converges in measure to f on [a, b]. (This

uses Egorov’s Theorem.)

b) Show that if the sequence (fn) converges in measure

to f on [a, b], then there is a subsequence (fnk
) that

converges pointwise a.e. on [a, b] to f . (This is Riesz’s

Theorem.)

c) Show that the Lebesgue Dominated Convergence The-

orem remains valid if “pointwise” convergence a.e. is

replace by “convergence in measure”.
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(3) Lebesgue’s criterion for Riemann integrability: Lebesgue

showed that a bounded function is Riemann integrable if

and only if the set of discontinuities is a set of measure zero.

Theorem. Let f be a bounded function on the closed

interval [a, b]. Then f is Riemann integrable over [a, b] if

and only if the set of points in [a, b] at which f fails to be

continuous has measure zero.

a) Assume f is Riemann integrable. Show that you can

take a sequence of (Riemann) partitions, each a refine-

ment of the previous, so that the sequence of upper

sums and the sequence of lower sums converge to the

integral of f . Use these partitions to define sequences

of step functions, (ψn) and (ϕn). Where are these func-

tions continuous? Where will they converge to f?

b) To prove the reverse direction, let Pn be partitions

where the lengths of the intervals tend to 0 as n goes to

infinity. The goal is to show that (U(f, Pn)−L(f, Pn))

also goes to 0 as n goes to infinity. (Why will this do the

job?) Construct step functions (ψn) and (ϕn) based on

these partitions. Compare (U(f, Pn)− L(f, Pn)) and∫ b

a

(ψ(x)− ϕ(x)) dx .

If x is never a partition point, and f is continuous at x,

show that (ψn(x)) and (ϕn(x)) converge to f(x). Use

the assumption that f is bounded and one of our con-

vergence of sequences of integrals theorems to complete

the result.

(4) Lebesgue’s theorem concerning the differentiability of mono-

tone functions: Lebesgue proved that a monotone function

must be differentiable almost everywhere.

Theorem. If the function f is monotone on the open

interval (a, b), then it is differentiable almost everywhere on

(a, b).

A self-contained proof of this can be found in [10], Roy-

den and Fitzpatrick, pp. 109-112.

(5) Rapidly Cauchy sequences:
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Definition. Let V be a vector space with norm || · ||. A

sequence (fn) in V is said to be rapidly Cauchy if there is

a convergent series of positive numbers
∑∞

k=1 εk for which

||fk+1 − fk|| ≤ ε2k for all k .

a) Let V be a normed vector space. Show that every

rapidly Cauchy sequence in V is a Cauchy sequence.

Show that every Cauchy sequence in V has a subse-

quence that is rapidly Cauchy.

b) Let p ≥ 1. Suppose (fn) is a rapidly Cauchy sequence

in Lp[a, b] corresponding to the series of positive num-

bers
∑∞

k=1 εk. Set

Ek = {x ∈ [a, b] | |fk+1(x)− fk(x)| ≥ εk} .

Use Tchebychev’s Inequality to show that m(Ek) ≤ εpk.

c) Show that there is a subset Z of [a, b] that has measure

zero such that for each x ∈ [a, b]\Z there is aK = K(x)

with

|fk+1(x)− fk(x)| < εk for all k ≥ K(x) .

Suggestion: use the Borel-Cantelli Lemma.

d) For such an x as described in c), and n ≥ K(x), show

that

|fk+n(x)− fk(x)| <
k+n−1∑
j=k

|fj+1(x)− fj(x)| .

Use this to conclude that for almost every x ∈ [a, b],

(fn(x)) is a Cauchy sequence.

e) Prove:

Theorem. Let p ≥ 1. Prove that every rapidly Cauchy

sequence in Lp[a, b] converges both with respect to the

Lp-norm and pointwise almost everywhere to a function

f ∈ Lp[a, b].

(6) Convex functions and Jensen’s Inequality: If ϕ is a convex

function, this inequality compares integrating the composi-

tion of ϕ and f with evaluating ϕ at the integral of f . This
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uses the following: If f is increasing on (a, b), then f is con-

tinuous on (a, b) with the exception of at most a countable

number of points.

Definition. A function ϕ on (a, b) is said to be convex

if for every pair of points x1, x2 ∈ (a, b) and t ∈ [0, 1],

ϕ(tx1 + (1− t)x2) ≤ tϕ(x1) + (1− t)ϕ(x2) .

Theorem (Jensen’s Inequality). Let ϕ be a convex

function on (−∞,∞), f a Lebesgue integrable function over

[0, 1], and ϕ ◦ f also integrable over [0, 1]. Then

ϕ

(∫ 1

0

f

)
≤
∫ 1

0

ϕ ◦ f .

a) Show that ϕ must be continuous.

b) Show that if a < x1 < x, x2 < b, then

ϕ(x)− ϕ(x1)

x− x1
≤ ϕ(x2)− ϕ(x1)

x2 − x1
≤ ϕ(x)− ϕ(x2)

x− x2
.

c) For a function g, define the right-hand derivation g′(x+)

and the left-hand derivative g(x−). Show that a con-

vex function always has both a right-hand and left-

hand derivative at every point in (a, b). Moreover, if

a < u < v < b, then

ϕ′(u−) ≤ ϕ′(u+) ≤ ϕ(u)− ϕ(v)

u− v
≤ ϕ′(v−) ≤ ϕ′(v+) .

d) Show that if ϕ is convex and α ∈ (a, b), then there is a

real number m so that

m(t− α) + ϕ(α) ≤ ϕ(t)

for all t ∈ (a, b).

e) Let t = f(x) and α =
∫ 1

0
f in the above inequality, and

then integrate.

(7) Fubini’s Theorem: This is a theorem that looks at when

a double integral equals the corresponding iterated integral.

This is related to the example discussed in Section 2.5. Some

notation: Let I1 be a closed interval in Rn and I2 be a closed
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interval in Rm. Then I = I1 × I2 is a closed interval in

Rn+m. Let x ∈ I1 and y ∈ I2. Then (x,y) ∈ I. A function

f defined on I will be written as f(x,y) and its integral over

I will be written as
∫ ∫

I
f(x,y) dxdy.

Theorem (Fubini’s Theorem). Let f ∈ L(I), where

I = I1 × I2. Then

i) for almost every x ∈ I1, as a function of y, f(x,y) is

measurable and integrable on I2,

ii) as a function of x,
∫
I2
f(x,y) dy is measurable and in-

tegrable on I1, and

iii)∫ ∫
I

f(x,y) dxdy =

∫
I1

[∫
I2

f(x,y) dy

]
dx .

To prove Fubini’s Theorem, let F be the set of functions

in L(I) for which Fubini’s Theorem is true.

a) Show that F is a vector space.

b) Let (fk) be a sequence of functions in F . If this se-

quence increases pointwise to a function f ∈ L(I), show
that f ∈ F .

c) Show that if E is a measurable subset of I, then XE ∈
F . Do this in steps. First consider the case where E is

a closed interval. Then show the result for open sets,

sets of type Gδ, sets of measure zero, and finally general

measurable sets.

c) Show that if f ∈ L(I) is a nonnegative function, then

f ∈ F . The idea is to approximate f by simple func-

tions.

d) Complete the proof of Fubini’s Theorem.

(8) Product measures (this assumes material from Section 4.4):

Suppose you are given two measure spaces (X,A, μ) and

(Y,B, ν). How could you use this to create a measure on the

space X × Y ?

a) Let A ∈ A and B ∈ B. What do you expect for the

measure of A × B? (Subsets of X × Y that are of

this form will be called measurable rectangles.) Not all

subsets of X × Y are of this form. How could you find
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the “measure” of a set C ⊆ X×Y ? Have you described

a measure or an outer measure?

b) Let A ∈ A and B ∈ B. Suppose there is a countable

collection of measurable rectangles {Ak×Bk} such that

A×B =
∞⋃
k=1

(Ak ×Bk) .

Show that

μ(A)ν(B) =
∞⋃
k=1

(μ(Ak)ν(Bk)) .

Suggested strategy: Note that if you fix x ∈ A and

consider a possible y ∈ B, the point (x, y) belongs to

exactly one Ak ×Bk. Explain why

B =
⋃

{k|x∈Ak}
Bk and

ν(B) =
∑

{k|x∈Ak}
ν(Bk) .

Multiply this last equality by XA(x) and integrate in

the variable x with respect to the measure μ. (Note

where you are using the assumptions that μ and ν are

measures. Also, carefully justify interchanging integra-

tion and summation.)

c) Use these measurable rectangles to describe an outer

measure, λ∗, on X × Y .

d) The measurable subsets ofX×Y are the λ∗-measurable

sets. We define the product measure μ × ν of one of

these sets as μ×ν(E) = λ∗(E). Show that a measurable

rectangle is a μ-measurable set.

e) Let m1 denote Lebesgue measure in R and m2 denote

Lebesgue measure in R2. Compare m1×m1, the prod-

uct measure on R× R, with m2. How does this gener-

alize?
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(9) The Riesz representation for the dual of Lp: Let p > 1 and
1
p
+ 1

q
= 1. If g ∈ Lq[a, b], then

T (f) =

∫ b

a

fg

is a linear transformation from Lp[a, b] to R (due to Hölder’s

inequality). Does this describe all linear transformations

from Lp[a, b] to R? In other words, if you have a linear

transformation T from Lp[a, b] to R, will there be a g ∈
Lq[a, b] so that in fact

T (f) =

∫ b

a

fg ?

A proof of this in a slightly more general setting can

be found in [10], Royden and Fitzpatrick pp. 155-161, Real

Analysis, Prentice Hall, 4th edition. Adapt the proof to the

case where p > 1 and E = [a, b].
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