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Preface

Quandles and their kin (kei, racks, biquandles and biracks) are al¬
gebraic structures whose axioms encode the movements of knots in
space in the same way that groups encode symmetry and orthogonal
transformations encode rigid motion. Quandle theory thus brings to¬
gether aspects of topology, abstract algebra and combinatorics in a
way that is easily accessible using pictures and diagrams.

The term “quandle" was coined by David Joyce in his PhD disser¬
tation, written in 1980 and published in 1982 [Joy82]. Previous work
had been done as far back as 1942 by Mituhisa Takasaki [Tak42 , who
used the term “kei" for what Joyce would later call “involutory quan¬
dles". In the 1950s Conway and Wraith [CW] informally discussed
a similar structure they called “wracks” from the phrase “wrack and
ruin". At the same time Joyce was writing about quandles, Sergey
V. Matveev [Mat82] was writing behind the iron curtain about the
same algebraic structure, using the more descriptive term “distributive
groupoids". Louis Kauffman [Kau91] used the term “crystals” for a
form of the quandle structure. In the mid 1980s a generalized form of
the quandle idea was independently discovered by Brieskorn Bri88|,
who chose the descriptive term “automorphic sets".

In 1992 Roger Fenn and Colin Rourke FR92] wrote a seminal
work reintroducing the quandle idea and a generalization; they chose
to use the Conway/Wraith term “wracks” while dropping the “w”

Vll
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to obtain the term “racks”, canceling the “w” along with the writhe
independence. In subsequent work [FRS95] they suggested a fur¬
ther generalization known as “biracks" with a special case known as
“biquandles” . Biquandles were explored in detail in 2002 by Louis
Kauffman and David Radford |KR03], with later work by others
[CES04.FRS95. NV06].

Fenn, Rourke and Sanderson introduced in [FRS95] a cohomol¬
ogy theory for racks and quandles, analogous to group homology. This
ultimately led to the current popularity of quandles. since it allowed
Scott Carter, Daniel Jelsovsky. Seiichi Kamada, Laurel Langford and
Masahico Saito in !C.IK+03 to define an enhancement of the quan-
dle counting invariant using quandle cocycles, leading to new results
about knotted surfaces and more. It was this and subsequent work
that led the present authors to study quandles, and ultimately led to
this book.

If one restricts oneself to the most important quandle axiom.
namely self-distributivity, then one can trace this back to 1880 in the
work of Pierce [Pei80 where one can read the following comments:
“These are other cases of the distributive principle ....These formulae,
which have hitherto escaped notice, are not without interest." Another
early work fully devoted to self-distributivity appeared in 1929 by
Burstin and Mayer [BM29 dealing with distributive quasigroups:
binary algebraic structures in which both right multiplication and
left multiplication are bijections, and with the extra property that
the operation is left and right distributive on itself (called also Latin
quandles).

As quandle theorists, we have found quandle theory not only
intrinsically interesting but also very approachable for undergraduates
due to its unique mix of geometric pictures and abstract algebra.
This book is intended to serve as a text for a one-semester course on
quandle theory which might be an upper division math elective or as
preparation for a senior thesis in knot theory.

This book assumes that the reader is comfortable with linear alge¬
bra and basic set theory but does not assume any previous knowledge
of abstract algebra, knot theory or topology. The reader should be
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familiar with sets, unions, intersections, Cartesian products, func¬
tions between sets, injectivc/surjective/bijective maps as well as vec¬
tor spaces over fields, linear transformations between vector spaces,
and matrix algebra in general. Readers should also be familiar with
the integers Z, rationals Q, reals R and complex numbers C.

The book is organized as follows.
Chapter 1 introduces the basics of knot theory; advanced readers

may opt to skip directly to Chapter 2. Chapter 2 introduces impor¬
tant ideas from abstract algebra which are needed for the rest of the
book, including introductions to groups, modules, and cohomology
assuming only a linear algebra background. Chapter 3 gives a sys¬
tematic development of the algebraic structures (quandles and kei)
arising from oriented and unoriented knots and links, including both
theory and practical computations. Chapter 4 looks at important
connections between quandles and groups and introduces the basics
of algebraic topology, including the fundamental group and the geo¬
metric meaning of the fundamental quandle of a knot. In Chapter 5
we look at generalizations of the quandle idea, including racks, bikei,
biquandles and biracks. Chapter 6 introduces enhancements of repre¬
sentational knot and link invariants defined from quandles and their
generalizations. In Chapter 7 we conclude with applications to gen¬
eralizations of knots including tangles, knotted surfaces in R4, and
virtual knots.

The authors wish to thank our many students, colleagues and
friends without whom this book would not have been possible.
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Chapter 1

Knots and Links

1. Knots and Links

A knot is a simple closed curve, where “simple” means the curve
does not intersect itself and “closed" means there are no loose ends.
We usually think of knots in three-dimensional space since simple
closed curves in the line and plane are pretty boring and, perhaps
surprisingly, simple closed curves in 4 or more dimensions are also
boring, as we will see.

Two knots KQ and K\ have the same knot type if we can move KQ
around in space in a continuous way. i.e. without cutting or tearing
the knot (or the space in which the knot lives!) to match up KQ with
I\\. Formally, KQ is ambient isotopic to K\ if there is a continuous
map H : R3 x [0, 1] -» R3 such that H(KQ,0) = Ko, H{KQÿ 1) = K\
and H(x, t) is injective (one-to-one) for every t €[0,1]. Such a map is
called an ambient isotopy; if you think of t as a time variable, then H
is a movie showing how to continuously deform KQ onto A'i. If there
exists an ambient isotopy H taking KQ to K\ we write H : KQ K

To specify a knot K we could make a physical model by tying
the knot in a rope or cord; a nice trick suggested by Colin Adams in
[Ada04] is to use an extension cord, so you can join the ends together
by plugging the plug into the outlet end.

1
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To specify knots in a more print-friendly format, we could give
a parametric function f(t) = (x(t), y(t), z(t)) where 0 < t < 1 and
/(()) = /(1). This approach is required in order to study geometric
knot theory, where the exact positioning of K in space is important.
In topological knot theory. however, we only care about the position
up to ambient isotopy; thus, a simpler solution is to draw pictures or
knot diagrams. Formally, a knot diagram is a projection or shadow
of a knot on a plane where we indicate which strand passes over
and which passes under at apparent crossing points by drawing the
understrand broken.

A knot is tame if it has a diagram with a finite number of crossing
points; knots in which every projection has infinitely many crossing
points are called wild knots. We will only deal with tame knots in
this book.

Links, Tangles and Braids (oh my!) There are many kinds of
objects related to knots. A link consists of several knots possibly
linked together; each individual simple closed curve is a component
of the link. A knot is a link with only one component.

A tangle is a portion of a knot or link with fixed endpoints we can
think of as inputs and outputs. If there are n inputs and m outputs,
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we have an (n, ra)-tangle.

iw
r

A braid is a tangle which has no maxima and no minima in the
vertical direction, i.e., a tangle whose strands do not turn around.
Note that in any braid, the number of inputs must equal the number
of outputs, unlike more general tangles.

y
/

sj

For any braid /3 there is a knot or link 0 called the closure of
the braid, obtained by joining the top strands to the bottom strands.
The converse is also true every knot or link can be put into braid
form, a fact known as Alexander's Theorem.

J /

/3 =0 =

r

The obverse of a knot K is the mirror image of AT, denoted K.
A knot may or may not be equivalent to its obverse the trefoil knot
comes in distinct left- and right-handed varieties, for instance. Knots
which are different from their obverses arc called chiral, while knots



Knots and Links4

which are ambient isotopic to their obverses are called amphichiral.

Oriented Knots. For each strand in a knot, link, tangle or braid,
we can make a choice of orientation or preferred direction of travel.
Knots described by a parametrization have an implied orientation
in the direction of increasing t value; braids also have an implied
orientation of all strands oriented in the same direction (up or down
depending on the author’s choice of convention). For generic oriented
knots, links and tangles, we specify the orientation of each strand
with an arrow.

S

\

Reversing the orientation of an oriented knot K yields a possibly
different oriented knot called the inverse or reverse of K , denoted— A . For two oriented knots KQ and K\ to be equivalent, we need an
ambient isotopy H : KQ K\ which respects the orientation of K\.
For example, the trefoil knot K below is equivalent to its inverse —K
as illustrated:

r
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Framed Knots. Like a choice of orientation, a framing of a knot is
a choice of extra structure we can give to a knot which then must be
preserved by an ambient isotopy for two framed knots to be equiva¬
lent. Start by inflating the knot K like an inner tube, so we have a
knotted solid torus N with K as its core. This solid torus is called
a regular neighborhood of the knot. A circle on the torus which goes
around the torus with the knot is called a longitude, while a circle
going around a disk slice of the solid torus with the knot at its center
is called a meridian.

longitude

i

i

meridian

A framing curve F is a simple closed curve on the surface of the torus
which projects down onto the original knot K in an injective (one-
to-one) way, i.e., a longitude of the torus. While F goes around the
torus with K exactly once in the longitudinal direction, it can wrap
around the meridianal direction of the torus any integer number of
times.

7
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Let K be a knot and F a framing curve. A framed isotopy of
( AO. Fy ) to (h\.F\ ) is an ambient isotopy which carries KQ to K\
and carries FQ to F\. For a given knot A\ with framing curve F, the
number of times F wraps meridianally around K (with counterclock¬
wise wraps counted with a positive sign and clockwise twists counted
with a minus sign) is called the framing number of the framed knot
(K, F). For a fixed knot K , two framed knots (A\ F{)) and (A\ F\ )
are framed isotopic only if the framing numbers are equal.

We can think of a framed knot as a 2-component link with the
knot and its framing curve forming two sides of a ribbon.

Then, framed isotopy can be understood as movement of the ribbon
through space. Similarly a framed link of n components can be un¬
derstood as an ordinary link of 2n components where the components
come in parallel pairs forming the two sides of n ribbons, with each of
the original n components having its own framing curve and framing
number. Similarly, in a framed braid or framed tangle, each strand
has its own framing curve and framing number.

We can think of framed isotopy as a mathematical model for
knotted ropes or tori, where ambient isotopy is the
model for knotted 1-dimensional curves.



Knots and Links i

Connected Sums. Knots and links have an operation known as
connected sum where two knots are joined into a single knot by cutting
the knots and joining the loose ends to form a single knot. We write
KQ#K\ for the connected sum of KQ and K\.

#

A connected sum AO#A
tying AO in a piece of string, then tying K\ before joining the ends.

A knot K is prime if the only way to decompose A as a connected
sum of two knots is as A'#0i where ()i is the unknotted circle or
unknot ; that is, I\ is prime if K does not break down as a connected
sum of two nontrivial knots. For any knot, to decide whether the knot
is prime, we can look at all the ways of intersecting the knot with a
circle which meets the knot at exactly two points; this divides the knot
into a connected sum of the portion outside the circle (completed by
the arc along the circle) and the portion inside the circle (completed
with the arc along the circle). If the knot is prime, then every such
division will have one side unknotted.

can also be understood as the result of first1

V
s/

\/
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\ III
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* /
✓

✓\
N

not primeprime

Below is a table of all prime knots with up to eight crossings.
Knots are named according to their crossing number with a subscript
indicating their position on the table.
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Exercises. 1. Take a piece of rope or an extension cord, tie a knot
very loosely, and join the ends together. Lay the knot on a flat surface
and draw a knot diagram representing the knot. Now, move the knot
around to a new position - don't be afraid to add a few twists, just
keep the ends joined. Now, draw a diagram of your knot in its new
configuration. Repeat a few times; then repeat with a new knot.

2. Draw all possible knot or link diagrams with exactly two crossings.

3. Draw all possible knot or link diagrams with exactly three cross¬
ings.

4. Is it possible, given what you currently know, that the two dia¬
grams below represent the same knot or link?

5. Is it possible, given what you currently know, that the two dia¬
grams below represent the same knot or link?

r\ O\

Q
KJ

2. Combinatorial Knot Theory

The basic question in knot theory is how to tell when two knot di¬
agrams represent the same knot. This is really two questions: (1)
given a knot diagram, what are all possible diagrams which represent
the same knot type and (2) how can we prove two diagrams represent
different knots. The second question we leave to the next section.
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The first question was answered in the 1920s by by Kurt Rei-
demeister. A local move on a knot diagram involves replacing one
portion of the diagram inside a small disk with something else, while
the rest of the diagram outside the disk remains unchanged. A planar
isotopy is a local move which replaces a strand without crossings with
another strand without crossings with the same endpoints.

In 1926, Kurt Reidemeister and independently, in 1927, J. W.
Alexander and G. B. Briggs proved that two tame knot diagrams, A'o
and Ki, are ambient isotopic if and only if one can be changed into
the other by a finite sequence of planar isotopies and moves of the
following three types:

j
I II

rÿj

\
\

III
rsj

\
If you look closely, you will find that some other similar moves

arc implied by the listed moves. For example, move III says you
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can move a strand over a crossing where the crossing is the same
type (left-over-right) as the other two crossings. We can derive an
additional type III move which says you can pass a strand over the
other kind of crossing using the given III move and a II move:

jvy <c( IIIII 11 :>
/S'

The Reidemeister moves let us translate the topological relation¬
ship of ambient isotopy into a combinatorial equivalence relation.
That is, we started thinking of knots as geometric objects, simple
closed curves in space, but we now have a new way to think of knots:
as equivalence classes of knot diagrams under the equivalence relation
generated by planar isotopy moves and the Reidemeister moves.

Thus, to prove that two knot diagrams, Ko and K\, represent the
same knot type, we can identify an explicit sequence of Reidemeister
moves taking Ko to K\. For example, the knot below is secretly the
unknot, i.e., an unknotted circle. To prove it, we give a sequence of
Reidemeister moves taking it to a circle without crossings.

IIiIII XD ' 'j

In practice it is often easier to redraw knots using the principle
that any portion of a strand with only overcrossings may be replaced
with another strand with the same endpoints and all new overcross¬
ings, with the resulting breaks healing. Note that any such “overpass
move” can always be broken down into a sequence of Reidemeister
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moves and planar isotopies.

Combinatorial Oriented Knots. Introducing an orientation on
our knot diagrams gives us two kinds of crossings, which we identify
as “positive" and “negative” depending on whether the understrand is
directed right-to-left or left-to-right when viewed from the overstrand.

1 - 1

We will denote the sign of a crossing C as 6(C) = ±1.
Including orientations means we now have more Reidemeister

moves than we did before. Instead of two type I moves, we now
have four; one type II becomes four - two direct moves where the
strands are oriented in the same direction, and reverse moves where
the strands are oriented in opposite directions, and there arc eight
oriented type III moves.

In practice, many of the moves are implied by the other moves.
Indeed, it is an interesting exercise to find a minimal generating set of
moves, i.e., a subset containing as few moves as possible from which
all of the other oriented moves can be recovered.

The sum of all the crossing signs is a quantity known as the
writhe of the diagram; writhe is a property of diagrams, not of knots,
since starting with a given knot diagram we can adjust the writhe
to whatever we want using type I moves. For links, each component
has its own writhe determined by counting only crossings where the
component crosses itself; multi-component crossings do not contribute
to the component writhes.
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Note that for any single-component crossing both possible choices
of orientation determine the same sign for each crossing since switch¬
ing the orientation of a component reverses the directions of both
strands in the crossing. In particular, writhe is well defined even for
unoriented diagrams, and kinks have well-defined signs regardless of
orientation choice.

-hi -hi -1 -1

Combinatorial Framed Knots. Given a knot diagram K , there
is an easy standard way to choose a framing curve - simply “push
off” a copy of K, i.e., draw a framing curve parallel to K. This
is traditionally called the blackboard framing since it is the easiest
framing to draw on a blackboard. More precisely, let F be the knot
traced by a normal vector to the knot K. If F is endowed with
an orientation parallel to that of A', then the framing number of K
is the sum of the crossing signs at crossings where F crosses over
K. Conversely, if we assign an integer j to a knot A', then we can
construct a normal vector to K and a knot F such that j is the
framing number. The blackboard framing is then the natural framing
with framing number equal to the writhe of K. In particular, every
knot or link diagram can be considered as a framed knot or link by
using the blackboard framing.

Geometrically, the framing number of a framing curve F is the
number of times F wraps around the solid torus with K as its core.
The framing number of a blackboard-framed knot is equal to its
writhe. A little thought reveals that Reidemeister II and III moves do
not change the writhe of a diagram, while Reidemeister 1 moves do.
Thus, to preserve the blackboard framing, we must modify the type
I move to preserve writhe. In particular, to cancel the -hi to writhe
from adding a positive kink, we must also add a negative kink. Kinks
of both signs come in two versions, clockwise and counterclockwise,
also known as kinks of winding number —1 and +1, respectively.
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As observed in [FR92], it turns out that if both the winding
numbers and crossing signs of the kinks are opposite, we can cancel
the kinks using only II and III moves (the following illustration is the
simplest “Whitney trick” [Whi44]):

rsj

In the case of kinks with equal winding number and opposite
writhe, we need an explicit move. These are the blackboard framed
type I moves:

i/
fl fl

\
These moves are equivalent to the alternate framed type I moves:

i \
n' iV\i

Exercises. 1. Using Reidemeister moves, show that the diagrams
below represent the same link. This link is known as the Whitehead
link.
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2. Using Reidemeister moves, determine whether the knot K below
is equivalent to the trefoil or the Figure 8.

Trefoil K Figure 8

3. Let p, q. r be three integers. A (p,q, r)-pretzel link is a knot or link
of the form

/ÿ\

QP r

where the boxes are replaced with stacks of p,q and r oriented cross¬
ings respectively (a negative value means use negative crossings also
note that the orientation of the crossings in the boxes may not extend
to the whole link!) For example, the (2.1, —3) pretzel link is

How many components are possible in a pretzel link? What conditions
on p, q and r ensure that we have a knot? A 2-component link?

4. Show that the figure eight knot 4i is ambient isotopic to its mirror
image by changing the diagram on the left to the one on the right
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using Reidemeister moves.

5. Using framed Reidemeister moves, show that the knot below is
framed isotopic to the unknot with writhe —2.

\

6. A link is called Brunnian if it is nontrivial, but deleting any com¬
ponent makes the remaining link trivial. Given that the Borromean
rings

form a nontrivial link, show that the link is Brunnian.

7. Show that the fl and fl' moves are equivalent in the presence of
the type 11 and 111 moves by deriving the fl' move using only type fl,
II, and III moves and then deriving the fl move using only type fl',
II, and III moves.

3. Knot and Link Invariants

Changing K into K' with Reidemeister moves proves that the two
diagrams represent the same knot or link. What if we cannot see
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a way to change K into Kf7 Our inability to change K into K'
with Reidcmeister moves does not say that K and K' are different;
it might be that there is a way, but it’s very complicated, perhaps
involving hundreds of moves and requiring introducing and remov¬
ing many crossings. In order to prove that two diagrams represent
different knots, we must be more clever.

A knot invariant is a function / : K —¥ X from the set of all knot
diagrams to a set X such that for each Reidemeister move, we have

f(Kx) = f(K2)

where K\ is the knot diagram before the move and K2 is the same
diagram after the move. If / is a knot invariant, then any two dia¬
grams related by Reidemeister moves must give the same value when
we evaluate /.

Knot theory might be described as the search for and the study of
knot invariants. Many knot and link invariants have been discovered
and studied, mostly in the 20th and 21st centuries. For the remain¬
der of this section we will explore a few well-known knot and link
invariants.

Geometric Invariants. One way to define a knot or link invariant
is to identify some geometric or topological quantity determined by
a knot or link diagram and take the minimum over all diagrams of
K . Many examples of this style of invariant have been defined and
studied, from basic to more esoteric:

• Crossing Number - The minimal number of crossings in any
diagram of K.

• Braid Index - The smallest number of strands of any braid
whose closure is a diagram of K.

• Bridge Number The smallest number of maxima in any
diagram of I\ .

• Stick Number The smallest number of straight line seg¬
ments needed to form K in R3.

• Rope Length The minimal length of a rope of radius 1
needed to tic K.
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• Genus The minimal number of holes in a surface whose
edge is K .

• Unknotting Number The minimal number of crossing
changes needed to unknot K.

These invariants are easy to define but generally hard to compute.
From a particular diagram of K we can compute an upper bound on
the actual value of the invariant for K, but finding a diagram of K
which realizes the minimal value is not always easy to do.

A knot or link invariant / is computable if the actual value of
f(K) can be determined, not just bounded, using any diagram of
K. We will now see three examples of computable knot and link
invariants.

Linking Number. Perhaps the easiest example of a computable link
invariant is the linking number. Let L = L\ U Z>2 be an oriented link
with two components. Let M be the set of crossings in L with one
strand from each component. Then the linking number of L is the
sum of the crossing signs of the crossings in A4 divided by 2 since this
sum is always even:

Ik(L) =
( ' 6A1

We can verify that the linking number is a link invariant by check¬
ing that the contributions match before and after each move. In a type
I move, the crossing being introduced or removed is single-component,
so it contributes 0 to the linking number, which matches the contri¬
bution from the straight strand.

In a type 11 move, there are two possibilities: either both cross¬
ings are multicomponent or both are not. As before, if both crossings
are single-component, the contribution of zero matches the zero con¬
tribution of the two uncrossed strands. In the multicomponent case.
there is always one positive crossing and one negative crossing, so the
contribution is -|-1 — 1 = 0.



Knot and Link Invariants 19

-hi

+0

- 1

Verifying that /{LB) = /{LA) for type 111 moves is left to the
reader as an exercise; see problem 1.

The fact that the linking number is a link invariant lets us distin¬
guish some links from others. For example, the Hopf link below has
linking number 1 while the Whitehead link has linking number 0.

-hi

4-1 -1

4-1 - 1-hi

lk= 1 lk = 0

The Jones Polynomial. In 1984 knot theory was rcinvigoratcd by
the discovery by Vaughan Jones Jon85] of a powerful knot and link
invariant now known as the Jones polynomial. The simplest way
to define the Jones polynomial is a recursive definition due to Louis
Kauffman using the Kauffman bracket skein relation. There are sev¬
eral versions of this invariant related by variable substitution; the

V f

version well use is from BN02].
Let K be a knot or link diagram. The skein relation can be

understood as a way of interpreting a crossing as a linear combination
of smoothings:

- <1
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Recursively applying this relation to each crossing lets us replace a
knot or link diagram with n crossings with a sum of polynomials in q
times diagrams without crossings. We need a rule for evaluating the
bracket of a diagram without crossings. Thus, for a disjoint union of
n copies of the diagram of the unknot with no crossings, we define

AA
1

i * 1
A
I I = (« + ff-1)B_1.iti VJ• ••

In particular, we can erase a closed curve without crossings at the
cost of multiplying by (q T q 1 ).

The bracket function is unchanged by Reidemeister III moves:

The reader is encouraged to verify that both
J uandn c

are equal to

U \J u ~q3+ +-q n n r\{ n

However, Reidemeister l and 11 moves do change the value of (A'),
but in a predictable way. More precisely, removing a positive crossing
multiplies ( K ) by q~l and removing a negative crossing multiplies (K)
by —q2:

(A) = (A>(q+ q 1 -q)

and

o h’ n ■(l-q(q+ q *))
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Likewise, a crossing-removing type II move multiplies (K ) by a
factor of (— q2)q-1 _= -<?•

\\ /( + <72A ~q o -q
\

(i -q{q + q l) + q2) q

/
i-q
\

Thus, to cancel the effects of type I and II moves, we need to
multiply by ( — 1)nqP~2n where p is the number of positive crossings
and n is the number of negative crossings. The Jones polynomial of
a link L is

J(L) = (-1)nqP-2n(L).
Example 1. Let us compute the Jones polynomial of the Hopf link:

n\ÿ n )}-qI)

q + q 1 -q-q+ q2{q+ q 1) = </-1

If we orient the components so that both crossings are positive, we
then have <y2(<y-1 +</**) = q T q ': if we reverse the orientation of one
component while fixing the other, we have two negative crossings and
the Jones polynomial becomes q~4(q~l +<A) = q~l + q~r> - Thus, the
two possible oriented Hopf links have different Jones polynomials and
cannot be ambient isotopic to each other.

It turns out that the Jones polynomial of the mirror image of a
knot or link K can be obtained from the Jones polynomial of K by
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replacing q with ql. The Jones polynomial is a very powerful invari¬
ant, but it is not a complete invariant - there are known examples of
pairs of different knots which have the same Jones polynomial, such
as the knots below:

V
\

Indeed, one of the more famous unsolved (as of this writing) prob¬
lems in knot theory is whether the Jones polynomial detects the un¬
knot: that is, is there a nontrivial knot K with Jones polynomial
J ( K ) = 1? For links with multiple components, the answer is yes,
there are nontrivial links with trivial Jones polynomial. For knots,
though, the problem is currently unsolved. Direct computations have
shown that no nontrivial knot with fewer than 16 crossings has trivial
Jones polynomial.

The Jones polynomial is a powerful knot invariant, but compu¬
tationally it is very intense. The recursive algorithm described above
is an exponential time algorithm, meaning each additional crossing
doubles the number of computations needed to compute J(K).

Tricoloring. For our final example of a computable knot invariant,
we will define Fox tricoloring, introduced by Ralph Fox in the 1950s.
A tricoloring of a knot or link diagram is a choice of color for each
arc in the diagram from a set of three colors we'll use solid, dotted
and dashed, but you can use whatever colors you like. A tricoloring
is valid if at every crossing we either have all three colors the same
or all three colors different. A valid tricoloring is nontrivial if it uses
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all three colors.

\
\

\ Q/ /

To use tricoloring as a knot invariant, we notice that if we start
with a valid tricoloring of a diagram K before doing a Reidemeister
move, there is a unique valid tricoloring of the diagram after the move
which agrees with the original coloring outside the move area. For
example, all strands in a type I move must be the same color. There
arc two cases for type II moves: both strands the same color before
crossing and two different colors before crossing:

\
\\ \

)\iII IIiv //
/ /Vs/

For the type III moves, there arc various cases which the reader is en¬
couraged to check. Moreover, if a tricolored diagram is monochrome
before a move, the corresponding diagram after the move is also mono¬
chrome. Hence, the existence of a nontrivial tricoloring of a knot or
link diagram is an invariant of knots and links. For example, the
only valid tricolorings of an unknotted diagram are monochrome col¬
orings, while the trefoil has a nontrivial tricoloring; thus there can be
no sequence of Reidemeister moves taking the trefoil to the unknot.

/ \t /\ //
\ / ,\
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Exercises. 1. Verify that Reiclemeister III moves do not change link¬
ing number. (Hint: Choose one oriented type III move and consider
all cases depending on which strands are from the same component).

2. A link is split if it is possible to separate the components so that one
component lies entirely on one side of a line and the other component
lies entirely on the other side of the line. Prove that the (4,2)-torus
Jink below is not split.

3. Prove that the framing number of a blackboard framed oriented
knot is the linking number of the framed knot considered as a 2-
component link.

4. Compute the Jones polynomial of the (4, 2)-torus link below.

5. Use the Jones polynomial to prove that the right-handed and left-
handed trefoils below are not equivalent.
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(j. For each of the tricolored tangle diagrams below, find the unique
corresponding tricolored tangle diagram after doing a type III move:

✓
✓•*.

✓*•.

■x
%\ \\ \ *V

7. Show that there is no nontrivial tricoloring of the figure 8 knot
below.

8. How many valid tricolorings of the trefoil knot are possible? How
many are nontrivial?



http://dx.doi.Org/10.1090/stml/074/02

Chapter 2

Algebraic Structures

1. Operation Tables and Isomorphisms

In order to get good at telling knots apart, we need to develop some
of the ideas of Algebra. Not high school algebra, like factoring and
quadratic formulas; rather, we’re talking about abstract algebra. also
sometimes called modern algebra.. Abstract algebra is all about alge¬
braic structures, i.c., sets with one or more operations and the prop¬
erties they satisfy.

Definition 1. Let X be a set. An opemtion on X is a rule for
combining two elements of X to get another element of X. That
is, an operation on A" is a function from the set of ordered pairs of
elements of X to X.

In particular, if * is an operation on A”, then X must be closed
under *, meaning if x, y G Ar 1 then x * y G A. For example, addition
is an operation on the set of natural numbers N = {0, 1, 2, ...}, but
subtraction is not since 2 — 3 N.

Example 2. Many examples of operations on sets of numbers are
familiar:

• The integers Z = {... , —2, —1,0,1,2,...}

The symbol is mathematical shorthand for “in”, so x.y € X means x and
y are elements of the set A'.

27
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• The rational numbers Q = {| | a, 6 €Z, b 0},
• The real numbers R = {n.d\d,2 . . . , n €Z, 0 < dk < 9} and

• The complex numbers C = { a + ib | a, b G R, i2 = —1}

have operations of addition, subtraction, multiplication and division
(by everything except 0).

Example 3. Recall from linear algebra that a vector space V over a
field F has an operation of vector' addition in which u.v G V combine
to form u + v G V. Similarly, R3 has an operation called cross product
in which u, v G R3 combine to form u x iJ G R3.

These operations satisfy a variety of familiar properties (and some
perhaps not so familiar), such as:

• Commutativity: a + b = b + u, ab = ba,

• Associativity: (a 4- 6) + c = a + (ft + c), a(/>c) = (a/))c,
• Distributivity: (a -f b)e = ac 4- be, a(6 -f c) = ab 4- ac,

• Anti-commutativity: x x y = —if x .f,

• Jacobi Identity: x x {if x z) + y x (z x x) + z x (x x y) = 0,

and more.
Let us consider a very easy toy example of an algebraic structure:

let X be a set and define an operation * on X which simply ignores
the second variable and returns the first variable, i.e., x * y = x. If X
is a finite set, we can express any operation with an operation table ,
that is, a square whose entry in row j and column k is j * k. Then
the operation above for a set of four elements X = {1,2, 3.4} is

12 3 4
1 1111

2 2 2 2
3 3 3 3
4 4 4 4

2
3
4

This operation satisfies some of the above listed properties: for ex¬
ample, it is associative since

(x*y)*z = x*y = x = x*y = x*(y*z).
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However, it is not commutative:

x*y = xÿy = y*x.

Now, suppose that instead of X = {1.2. 3, 4}, we have Y
{a.b,c,d} and operation table

abed
a a a aa

b b b b b
c c c c c
d d d d d

At first glance, it might seem like we have a new algebraic struc¬
ture, but the new one is really just the old one with the names of
the elements in A" changed. More precisely, we have a one-to-one
correspondence (also known as a bijection, i.e., a function which is
both one-to-one and onto) / : X — > Y given by /(1) = a, /(2) = b.

/(3) = c and /(4) = d, and this correspondence preserves the alge¬
braic structure in the sense that f(x * x') = f(x) * f(x').

If A" and Y are algebraic structures and f : X — > Y is a function
which preserves all of the operations, i.e., f(x*x x> ) = f(x) *v f(x')
for each of the operations * \- of X and corresponding operations *y of
y, then / is called a homomorphism. A bijective homomorpliism / :
A — > y, that is, a homomorphism / with an inverse homomorphism

: Y — > X, is called an isomorphism. An isomorphism / : X — > X
from X to itself is called an automorphism. If t here is an isomorphism
from A to Y , we say that A and Y are isomorphic.

-l/

The exponential function ex is a homomorphism (in-Exarnple 4.
deed, an isomorphism) from the set of all real numbers with the oper¬
ation of addition to the set of positive real numbers with the operation
of multiplication, since

x-\-y = exey.e

The inverse isomorphism is the natural logarithm function In : (M+, •)
— > (R, -f), which satisfies

In(xy) = In x + lay.
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Example 5. Consider the sets X = {1.2, 3, 4} and Y = {a. with
operations given by the operation tables

12 3 4*x
a b12 3 4

2 14 3
3 4 12
4 3 2 1

1 *Y
and a b2 a

b b a3
4

Then we can check that the function / : A' — » Y defined by /(1) = a,
/(2) = a, /(3) = b. /(4) = b defines a homomorphism by checking
that f(x*x x') = /(x) *vT /(xr) for each pair (x, x') E X x X. Al¬
ternatively, we could observe that replacing each x with /(x) in the
operation table of *x results in a table which collapses onto that of
*y:

a a b b12 3 4*x
a ba a b b

a a b b
b b a a

12 3 4
2 14 3
3 4 12
4 3 2 1

1 a
a b
b a

2 - »a a
b b3
b b b a4 a

Example 6. The algebraic structure of a vector space V is deter¬
mined by the operations of scalar multiplication and vector addition.
Thus, a homomorphism of vector spaces is a function / : V -+ W
which preserves the operations, i.e., a function / such that

f(cru) = c\f(u) and f(u + v) = f(u) + f(v).

That is, a linear transformation is a vector space homomorphism.

A bijection a : X — ¥ X is called a permutation on X. We can
represent a permutation o with a two-row matrix where the top row
is the original ordering of the subscripts 1,2, ...,?? and below each
number k is a(k); then the permutation a on the set {1,2, 3, 4,5}
defined by <r(l) = 3, cr(2) = 4,cr(3) = l,cr(4) = 5 and <r(5) = 2 is
expressed by the matrix

1 2 3 4 5
3 4 15 2
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Alternatively, if X = (1, 2, 3, ... , n}, we can just list the bottom row
vector since the top will be understood to be the standard ordering.
Then for instance, we can conveniently express a above as [3, 4, 1. 5, 2].

Now consider our algebraic structure A" in Example 5. Suppose
we have another operation table with the same set of elements, like

2 4 3 1*
2 13 4 2

3 12 4
4 2 13
2 4 3 1

4
3
1

This is secretly really the same operation table, we just have the rows
and columns listed in a different order. We can think of the operation
table as a square matrix (not including the row and column labels):
then given a permutation a : X — » A, we can obtain a permutation
matrix Pa from the identity matrix

’ ei "1 0 ... 0 "

0 1 ... 0
1=

. en _
by reordering the rows of / according to t he permutation rr, to get

ecr(l)
e<r{2)

00... 1

Pa =

- -
where e* is the Arth standard basis vector, i.e., the ordered /i-tuple
with a 1 in the fcth position and Os elsewhere. Then left multiplication
by Pa reorders the rows of a matrix by a and right multiplication by

= Pj reorders the columns of our matrix. In the operation
table above, we have <r(l) = 2,<r(2) = 4, <r(3) = 3 and <r(4) = 1, so
the permutation rr is [2, 4, 3,1]. Then we have

’ e2

-lPa

'0100“
0 0 0 1
0 0 10
1 0 0 0

£4Pa = £3
. <T .
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and
' 0 0 0 1 '

10 0 0
0 0 1 0
0 1 0 0

-l _
K

Then we can unscramble our scrambled operation table matrix M by
multiplying on the right by Pa and on the left by P~l:

' 0 0 0 1 '

1 0 0 0
0 0 10
0 10 0

r 1 3 4 2 1 r o i o o i
3 2 41 0 10 0

0 0P~lMPa 4 2 31 1 0
2 4 3 1 10 0 0

r o 0 0 1'
0 0 0
0 1 0
1 0 0

r 2 3 11 4
4 3 2 11

0 3 24 1
2 3 40 1

r i 2 3 4 "

1 4 3
4 1 2
3 2 1

2
3
4

Given any finite set X = {xi, . . . , xn}, we can define an operation
on X with an n x n matrix M with entries in {1,2,..., n}. Then any
permutation cr gives us an isomorphic algebraic structure on X with
operation table matrix Mf given bv

M' = P-1<T(M)Pff
where a(A/) is the matrix obtained from M by replacing each entry
77ijj with cr(ij).

Example 7. Let X = {1,2,3, 4} and define an operation * on X by
the operation table

12 3 4*
1 112 2

2 2 11
3 3 4 4
4 4 3 3

2
3
4
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as above. Then the permutation a — [1, 3, 4, 2] gives us an isomorphic
algebraic structure on X with operation matrix

" 1 0 0 0 “

0 0 0 1
0 10 0
0 0 10

"113 3“
3 3 11

r i o o o i
o o 1 oP~1a(M)P, 4 4 2 2 0 0 0 1

2 2 4 4 0 1 0 0
“ 1 0 0 0 “

0 0 0 1
0 10 0
0 0 10

r I 3 13 1
3 13 1
4 2 4 2

4 2 42

r 1 3 1 3 1
2 4 42
3 1 3 1
4 2 4 2

Thus, the algebraic structures on X = {1,2,3,4} given by the oper¬
ation tables

12 3 412 3 4* *
13 13
2 4 2 4
3 13 1
4 2 4 2

112 2
2 2 11
3 3 4 4
4 4 3 3

11
and2 2

3 3
4 4

are isomorphic.

An isomorphism <r such that the new operation matrix A/' =
P~1CT(M)P(T is just the original matrix M is an automorphism. For
any algebraic structure, the set of automorphisms, denoted Aut(X),
is an invariant: if X is isomorphic to V . then there is a one-to-one
correspondence between elements of Aut(X) and elements of Aut(T).
In fact, the set of automorphisms itself has an algebraic structure
known as a group, which we will sec more about shortly.
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Example 8. Consider the set X = {1.2. 3. 4} with operation table

12 3 4*
12 3 4
2 3 4 1
3 4 12
4 12 3

1
2
3
4

and the permutation o — [1,4, 3, 2] defined by <r(l) =
4, <7(3) = 3 and <r(4) = 2. Then we have

1,<T(2) =

r i 3 2 '

3 2 1
r i 0 0 0 '

0 0 1
0 1 0
1 0 0

' 1 0 0 0 '

0 0 0 1
0 0 10
0 10 0

4
4 0P-la(M)Pa 2 43 1 0
2 1 4 3 0

' 1 0 0 0 "

0 0 0 1
0 0 10
0 10 0

r I 4 132
4 2 31

4 23 1
2 3 4 1

r I 4 i32
2 3 4 1
3 24 1

2 34 1

which is the original operation table.
phism.

Thus, this (7 is an automor-

Some algebraic structures have more than one operation; for in¬
stance. the integers have both addition and multiplication (and others
like subtraction which arc really just addition of negatives). For these
structures, an automorphism must fix not just one but all of the op¬
eration tables which define the structure.

Example 9. Consider the set A" = {1.2, 3, 4} with operations

12 3 4 12 3 4* o

12 3 4
2 3 4 1
3 4 12
4 12 3

1 1111
12 3 4
13 13
14 3 2

1
and 22

3 3
4 4
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and the permutation o — [1,4, 3, 2]. We have already seen that <r is
an automorphism for *; what about o? Well,

" 1 0 0 0 “

0 0 0 1
0 0 1 0
0 1 0 0

r i 1 1 " 1 0 0 0 '

0 0 0 1
0 0 1 0
0 1 0 0

1 1
4 3 21P~la{M)Pa

1 3 1 3
2 3 41

" 1 0 0 0 "

0 0 0 1
0 0 10
0 1 0 0

r i 1 1i i
42 31

1 3 1 3
14 3 2

r 1 1 1 11
1 4 3 2
1 3 1 3

41 2 3

which is not the original operation table.
automorphism for the full algebraic structure defined by * and o.

Thus, this a is not an

For nonfinite algebraic structures (or really, even for finite but
large ones) the operation table approach is not as useful since the
table needs infinitely many rows and columns. In this situation, we
can instead rely on algebraic formulas to describe isomorphisms. For
example, the function / : Z — > Z defined by f (x) = —x is an auto¬
morphism of the addition operation since

f(x + y) = -(x + y) = -x + -y = fix) + f(y)

and / 1 (:r) = f(x); however, / is not an automorphism of the mul-
tiplication operation since f(xy) = — xy but f(x)f(y) = (—x)(—y) =
xy -xy.

Example 10. An automorphism of a vector space V is an invertible
linear transformation / : V — > V. Given a choice of basis for V\ each
such automorphism is represented by a matrix with nonzero determi¬
nant. The set of automorphisms of V is known as the general linear
group GL(V ), or if V is the set Fn of ordered n-tuples of elements of
a field F, we generally write GLn(F).
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Exercises. 1. Find the operation tables for all 16 operations on the
set X = {1,2}.

2. Determine whether the permutation a = [2,3, lj is an automor¬
phism of the algebraic structure defined by the operation

1 2 3*
1 1 3 1

2 2 2
3 1 3

2
3

3. Find all automorphisms of the algebraic structure on X = {1,2,3}
given by

1 2 3*
1 1 1 1

2 2 2
3 3 3

2
3

4. Find all automorphisms of the algebraic structure on X = {1,2,3}
given by

1 2 3*
1 1 2 2

2 1 1
3 3 3

2
3

5. Let A" be the set of permutations of length three, i.e., bijective
maps <7 : {1, 2. 3} — > {1, 2, 3}. Define an operation * on A" by function
composition, so for instance, if / = [2,3,1] and g = [2,1,3], then
gf = [2,1,3] * [2,3,1] = [1,3,2]. Find the operation table for this
algebraic structure.

6. Find an algebraic structure on a set of three elements that has the
identity function as its only automorphism.

2. Quotient Sets and Equivalence Relations

A relation on A is a way of comparing pairs of
elements of X. More formally, recall that the Cartesian product of A"
Let A" be a set.
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with itself is the set

X x X = {(,x,x') I x,x' e x}

of ordered pairs of elements of X. Then a relation on X is a function
R : X x X —> {True, False) which compares pairs of elements of X.
We often write xRy in place of the phrase uR(x, y) = True' .

Example 11. Any subset S C X xX of the Cartesian product defines
a relation by saying xRy iff (xy y) € S. The complement X x X\S
defines a relation /?. Thus, if X = {1,2,3}, the Cartesian product
X x X is

X x X = {(1, 1), (1,2), (1,3),
(2,1), (2,2), (2,3),
(3,1), (3,2), (3,3)}.

The subset A = {(1,1), (2, 2), (3,3)}, called the diagonal of X x
X , corresponds to the relation The subset {(1, 2), (1,3), (2,3)}
corresponds to the relation

Definition 2. A relation R on X is an equivalence relation if it
satisfies:

(i) For all x £ A\ we have xRx (R is reflective).
(ii) For all x. y £ X , xRy implies yRx (R is symmetric).

(iii) For all x,y,z € A", xRy and yRz implies xRz (R is transi¬
tive).

We often use the symbol ~ for equivalence relations in place of R.

Example 12. A formal fraction is a pair of two integers n (for “nu¬
merator") and d 0 (for “denominator’’), written as

n
d‘

Then we have an equivalence relation on the set of formal fractions
defined by

V ni n2

d\ do
if n\do — nod\. Let us verify that this defines an equivalence relation:

(i) For any formal fraction we have nd — nd. so ~
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• ~Sf, then

ni d‘2 = /?2d i implies r?2ÿi = 711ÿ2

(ii) For any two formal fractions d i

and ~ 3J--
(iii) If ~ and ~ then we have niflfe — U2d\ and

/12ÿ3 = 713 Then consider n\ds; we have

dÿUids = d\Tlod'S — di773ÿ2

and hence = c/2 (7ÿ3 1); then

- nzdi) = 0,

and since r/2 7ÿ 0, it follows that 771d$ — d\ 773 and hence
ILL
d\

Example 13. Let X = Z be the set of integers and say n ~ m if and
only if 77 — 777 is even. Then ~ is an equivalence relation since

(i) n — n = 0 is even,
(ii) 77? — n = —(77 — 777) so 777 — 77 is even iff 77 — rn is, and

(iii) 77 — 77? even and rn — p even imply

da *

77 — p = n — rn + m — p

is a sum of even numbers, which is even.

Definition 3. Let X be a set and let ~ be an equivalence relation
on X. For each x €X, the set

[»] = {y e x I y ~ x}

of all elements of X equivalent to x is called the equivalence class of x.
It turns out (see Exercise 2) the equivalence classes do not intersect.
i.e.,

[x] n [.(/] ± 0 <=> [x] = [y].
The division of X into equivalence classes forms a partition of X. i.e.,
a separation of A" into disjoint (nonoverlapping) subsets whose union
• vis A .
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Example 14. Let X = Z and consider the equivalence relation ~ in
Example 13 above. The class

[0] = {() + 2n

includes all integers equivalent to 0, i.c., all integers which differ from
0 by an even number - that is, all even integers. The class

n 6 Z} = {(), i2, . . .}

[1] = {1 + 2n n 6 Z} ={il, zt3, zb5...}
includes all integers which differ from 1 by an even integer; these are
all of the odd integers. Note that [0] fl [1] =0 and [0] U [1] = Z. In
particular, as a set X/ can be identified with any set which contains
exactly one representative of each equivalence class.

The set of equivalence classes of A' with equivalence relation ~
is called a quotient set written X/ÿ. Thus in our previous example
we have Z/ÿ = {[0], [1 ] }. The quotient set may be pictured as the
result of “collapsing" or “crushing" the equivalence classes [x] into
single points. Each element of an equivalence class is a representative
of its class. Sometimes the equivalence classes have a natural choice
for canonical representative, i.e., a notion of “best" representative for
each class.

Example 15. The set of equivalence classes of formal fractions under
the equivalence relation in Example 12 is the set of rational numbers
Q; each fraction represents a ratio, differing from other members of
its equivalence class by a cancelable factor in the numerator and de¬
nominator. For instance, we have

1 2 -3
• •42 -6

Each equivalence class of formal fractions under the equivalence rela¬
tion in Example 12 lias a unique canonical representative, namely t he
fraction written in least terms f where the greatest common divisor
of a and b is 1.

For general sets A' and equivalence relations ~ there may not
always be a natural choice of canonical representative. Indeed, in
general, it can be quite hard to determine in practice or even provably
impossible to determine whether two elements of a set arc equivalent.
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Example 16. For a geometric example, let two points in R2 be equiv¬
alent if the points arc the same distance from the origin. Then the
equivalence classes are circles centered at the origin, and the quotient
set M2/ÿ is the set of circles centered at the origin. We can choose
canonical representatives to be points on the positive part of the pr¬

axis, so the quotient set can be understood as the set of nonnegative
real numbers [0, oo).

y
x

X ~ y

Equivalence relations determine partitions, and the converse is
also true: every partition of a set X defines an equivalence relation
by setting x y if and only if x and y are in the same subset of the
chosen partition.

Example 17. There are eight partitions of the set {1,2, 3, 4} into
two disjoint subsets, as listed below:

A AD D
0 {1,2,3, 4} {4} {1,2,3}

{1} {2,3,4} {1,2} {3,4}
{2} {1,3,4} {1,3} {2,4}
{3} {1,2,4} {1,4} {2,3}

Thus, there are eight equivalence relations on {1,2, 3, 4} which have
two equivalence classes.

Similarly, if we have a set X and we would like to make certainv 7

equations
X1 — 2/1 7 x2 — V2, • •

true, then we can ask for the the equivalence relation generated by
these equations, that is, the smallest equivalence relation classes sat¬
isfying the given equations. The idea here is that some equations
which arc not explicitly listed may nonetheless be implied by the
listed equations, and these must be taken into account.

xn — Vn•
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Example 18. Let X = [a. 5, c.d,e, /, g}. Then the equivalence re¬
lation generated by a ~ c, d ~ a and f ~ g includes an additional
relation c ~ d and has quotient set

x/~ = {[«.c, </], [b\. [e], [/,</]}.

As we have seen, the rational number system is really a quotient
set. The same is true for some other number systems as well.

Example 19. The real numbers 1R can be understood as equivalence
classes of Cauchy sequences of rational numbers, i.e. sequences an
where the terms get closer together as n — > oc, under the equiva¬
lence relation given by an ~ bn if lim
expansion for a real number is a Cauchy sequence:

(an — bn) = 0. A decimaln—too

{ «i d i d’271.d1d.2d3 • • • -i,n+ÿ,n+ I5+10
For nonterminating decimals there is a canonical representative for
each class given by the decimal expansion, but real numbers repre¬
sented by terminating decimals have two decimal expansions, e.g.,
1 .000 • • • = 0.999 ... or 0.5000 • • • = 0.4999 ... It might seem strange
at first to realize that some numbers have more than one decimal
expansion, but really these are just two of infinitely many equivalent
Cauchy sequences converging to the same limit.

Example 20. The complex numbers

C = {a + ib | a, b 6 M, i2 = — 1}
are equivalence classes of polynomials in i with real number coeffi¬
cients

«0 T o,\i T (i2i~ T * • * T Q>n'in
where the equivalence relation is generated by i2 = — 1. That is.
complex arithmetic is polynomial arithmetic with the extra rule that
we can replace each 22 with the equivalent expression —1.

Congruences and Modular Arithmetic. Suppose X is a set with
an operation * : A' x X —> X. e.g., the integers Z with addition. An
equivalence relation on X is called a congruence with respect to * if
it is compatible with * in the sense that

x ~ xf and y ~ y' => x * y ~ x' * y
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If ~ is a congruence with respect to *. then * defines an operation on
the set of equivalence classes by setting

[x] * [.</] = [x * y}.

Example 21. Let X = Z, the set of integers. One very important
example of an equivalence relation is equivalence modulo n where
n £ Z is a fixed integer. Say that two integers x and y are equivalent
modulo n, denoted x ~n y or x = y (n). if x — y — nz for some integer
2. That is, two integers are equivalent mod n if they differ by a
multiple of n. Let's verify that this definition gives us an equivalence
relation:

(i) For any x £ Z we have

x — x = 0 = On x x.

(ii) For any x. y £ Z, suppose x ~n y. Then x — y — nz, and

y — x = —(x — y) = —nz = n(—z) => y ~
(iii) For any x,y,z £ Z suppose x ~n y and y 2. Then

x — y = nu and y — z — nv and we have

x — z = x — y + y — z = nu + nv = n(u -f v) => x ~n

n X.

The equivalence relation ~n on Z is a congruence with respect
to addition since if x ~n x' and y ~7l y' we have x' = x + nz and
yf = y + nw, then

x' -f y — (x -f nz) + (y 4* nw) = (x 4- y) 4- n(z 4- w)

and x' T yf ~ x 4- y. Thus, the set of equivalence classes has a well-
defined addition; this structure is known as the integers modulo n,
denoted Z/nZ or just Zn.

Indeed, Z„. is a very important structure and will be used fre¬
quently throughout t his book. It turns out (see exercise 5) that is
a congruence with respect to multiplication as well, so Zn has many
of the useful features of Z and even Q. Modular arithmetic may seem
strange at first, but we use it all the time to tell time; clock arithmetic
is mod 12 (or mod 24 in some cases). Indeed, mod n arithmetic is
just clock arithmetic with n hours instead of 12.
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When doing arithmetic in a quotient set. you are free to choose
any representative for each equivalence class. Thus, in Z5, we have

[176] + [-422] = [1] + [-2] = [1] + [3] = [4].
It is common in algebraic structures defined by congruences to drop
the square brackets and just write “x” for the equivalence class of x.
using the rule that elements can be replaced by equivalent elements
at any point. Thus, as long as we know we are working in Z5, the
above equation can be written more simply as

176-422 = 1 +3 = 4.

The integers mod n form an algebraic structure with two oper¬
ations, addition and multiplication. For example, here we have the
addition and multiplication tables for Z5:

0 12 3 40 12 3 4+ x
0 12 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 12 3

00 0 0 0 0 0
0 12 3 4
0 2 4 1 3
0 3 1
0 4 3 2 1

1 1
2 2
3 4 23
4 4

It can be useful to consider vectors where the different compo¬
nents have different rules of arithmetic.

Definition 4. Suppose we have two number systems .4 and B, e.g.,
.4 = Zn and B = Zm or .4 = Z and B = Zn. The direct sum A & B
is the set of ordered pairs

A G B — {(x, y) | x €.4, y G B}

where we use .4 arithmetic rules for the first component and B arith¬
metic rules for the second component.

Example 22. In Z3 0 Z2, we have

(2,1) + (1,1) = (3,2) = (0,0).

Example 23. We can form direct sums with any number of com¬
ponents. For instance, the set of ordered triples with integer first
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component, second components in Z4 and third in Z(, is the direct
sum

z © z4 0 z6.
The infinite part Z is called the free part while the finite part Z4 0Zn
is called the torsion part. Then, for instance, in Z0Z4 0Zg we have

2(3, 3,3) - (6,2,0).

Quotient Vector Spaces. Another important example we will need
is the idea of a quotient vector space. Let V be a vector space with
field of scalars IF, and let S C V be a subspace of V . If {61, ..., bn}
is a spanning set for V, that is, if V is the set of linear combinations
of b . . , bn with F coefficients, then we will write11 •

V — F[6i, . . . . bn).

Then the relation ~ on V defined by x ~ y iff x — jj 6 S is
an equivalence relation (sec problem 9), and indeed a congruence
with respect to both vector addition and scalar multiplication. The
equivalence classes are affine subspaces

[x] = x 0 S,

i.e., copies of S shifted away from the origin by a vector .r, and we
have

[x] + [y\=x + S + y + S = x + y + S=[x + y\
and

\[x] = Xx + A S = Xx + S = [A.rj.
The set of equivalence classes V / ~ is itself a vector space called the
quotient vector space V modulo S, denoted V/S.

If {61, ... , 6*., 6fc+i, • • • , bn} is a basis for V with {61, ... , &*} a
basis for 5, then {&fc+i+S, . . . , 6n -|-5} is a basis for V/S. It is common
to drop the S and identify V/S with the span of {6a*+
particular, we have

.. , bn }. I111? •

Theorem 1. Let V be a vector space and S C V a subspace. Then

dim(5) 0 dim(V75) = dim(V).
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There is a natural choice of canonical representative for elements
of the quotient space, given by the elements of S4- * the subspace of V
of vectors w which have dot product 0 with all elements of S. Recall
that given a spanning set {si, . . . , s*} for S. we can find a basis for
V/S by writing the vectors 8\, ..., as row vectors in a matrix
and row-reducing to reduced echelon form. The resulting basis for
the null space of the matrix gives us a basis for the quotient space.

Example 24. Let V = R4 and S = R[(l, 2, 0, 1), (2, 2, —1,1)]. Then
we have

12-13
2 4-11

Interpreting this as the coefficient matrix for a homogeneous system
of linear equations, we have basis {(—2, 1, 0, 0) + S. (2, 0, —5,1) 4- S}
for V/S.

12 0-2
0 0 1 5 ‘

Geometrically, we can think of the vector space V
copies of S parametrized by elements of V/S: then the quotient space
V/S is the result of collapsing the copies of the subspace S down to
single points:

as a stack of

V/S

V S

Universal Algebra. Another example of quotient sets we will find
very useful is in universal algebra. In a universal algebraic object
(sometimes just called a “universal algebra"), we have a set of letters
we call generators and a set of symbols usually including operator
symbols like •, + or others as well as parentheses. These letters and
symbols are then put together to form well-formed words: usually the
rules for what constitutes as well-formed word are fairly obvious, like
(a* b) * c is a well-formed word where ((a * ( is not, but to be clear
the rules are generally spelled out explicitly. Think of the genera¬
tors as basis vectors and well-formed words as linear combinations of
the basis vectors. We then have a set of equations setting one word
equivalent to another, (perhaps confusingly) called relations; these
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equivalences then generate an equivalence relation on the set of well-
formed words, and the universal algebraic object is a quotient set, i.e.,
the set of equivalence classes of well-formed words under the equiv¬
alence relation generated by the given relation. Such a description
of an algebraic structure is called a presentation by generators and
relations.

Example 25. We can describe the natural numbers

N = {0,1,2,3,...}

via a presentation with generator 1 and operation +, with well-formed
words defined by the rules that,

• 1 6 W and

• if UK w' 6 W , then (w + w') 6W.

Then the presentation with relations

• (w 4- wf) + w" ~ w -f (wf + w" ),

• w -f w' ~ w' + w and

for all well-formed words w describes N as a quotient set of W. We
recognize 0 as the empty word and any word with n copies of 1 as a,

representative of the natural number n.

Example 26. Adding a relation n x 1 ~ 0 where n x 1 is an ab¬
breviation for a word with n copies of 1 in Example 25 gives us a
presentation of Zn.

Wc will use presentations of algebraic structures by generators
and relations later on when we look at groups and again when wc
study quandles and their various related objects.

Exercises. 1. Find all partitions on the set {1,2,3}.

2. Let ~ be an equivalence relation on a set X. Show that the
equivalence classes are disjoint.

3. Let A" = {a, 6,c, d, e, /, h, i, j}. Find the equivalence relation gen¬
erated by a = c, f = c, d = b, c = d, i = j and h = i.
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4. Let f \ X —¥ Y be a surjective (onto) function. Say that x ~ x' iff
f(x) = f(x'). Show that ~ is an equivalence relation. What are the

equivalence classes? What is Xj ~?

5. Show that ~n is a congruence with respect to multiplication of
integers.

6. Let P be the set of polynomial functions with Z2 coefficients and
let ~ be the congruence on P generated by x2 = 1 -f x. Identify the
elements of Pj

7. Construct the operation tables for + and x for Z3, Z4 and Z5.
8. Let ~ be the congruence on R2 generated by (x, y) ~ (x+n,y+n)
for n €Z. Identify the quotient set R2/
9. Show that the relation ~ on a vector space V defined by x ~ y iff
x — y G S for a subspace S C V is an equivalence relation.

10. Let 5 = R[(2,1,1, —1,1,0), (1,0, 2, —2,0,0), (1,1, — 1,1,1,0)] C
R°. Find a basis for R6/5.

3. Modules

Recall from linear algebra that a vector space V has operations of
vector' addition + :V x V — V, i.e.,

?7, v € V => u + v € V

and scalar multiplication
Q 6 F, v E V => av 6 V.

In linear algebra the scalars come from a field,, i.e., a set F with
operations of addition and multiplication which are both

(i) Associative:
(a + 0) +7

(«/3)7
« + (/3 + 7),
«(/37)-

( ii ) Cammutative:

O' /3 — H- cv,
a/3 = (3a.
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(iii) Multiplication distributes over addition:

(a + /?b
a(# + 7)

«7 +
a(3 -f <*7.

(iv) F contains additive and multiplicative identities 0, 1 €F such
that

0 + Q = Q and la = a.

(v) With additive and multiplicative inverses —a,a
element a

-l for every

—a + a: = 0 and a 1a = 1

with the exception that the additive identity 0 docs not have
a multiplicative inverse.

Examples of fields include Q. R.C and Zp for p prime (and many
more). There are many sets which are almost but not quite fields,
in the sense that they have addition and multiplication operations
which satisfy some but not all of the conditions (i)-(v) above. For
example, Z is a set with associative and commutative addition and
multiplication satisfying the distributive laws with identities 0, 1 and
additive inverses for every element, but no multiplicative inverses for
any elements except 1 and —1. For instance, the integer 2 has no
multiplicative inverse in the set of integers it is true that r, is a mul¬
tiplicative inverse for 2, but - is not an integer to get multiplicative
inverses for every nonzero integer, we have to go beyond the set of
integers, and thus the set of integers is not a field.

An “almost field" which satisfies the conditions (i)-(v) above ex¬
cept the multiplicative inverses requirement is called a ring; techni¬
cally, this is just one type of ring, a commutative ring with identity,
but we will not encounter other types of rings in this book. We can
still do linear algebra with scalars from Z and other rings provided the
basic properties of scalar multiplication are satisfied. More precisely:

An R-module is a set M with anDefinition 5. Let R be a ring.
associative commutative vector addition operation with inverses and
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an identity vector 0 E M and a scalar multiplication satisfying

(a + 0)v
a(v + u)

(afi)v

av + 0v*
av -f a u<
a(0v), and

\v v,

for all u.v E M and a,0 E R.

An R-module is essentially a vector space in which the scalars
come from R: that is, we have vector addition and scalar multiplica¬
tion operations as usual, it's just that there are now some scalars we
can’t divide bv. In particular, a field is a particular kind of ring, and
linear algebra is a special case of module theory.

Let, M and N be 7?-modules. A function f : M — N is a linear
transformation if for all a E /? and u, v E M we have

f(au) = af(u) and f(u + r) = f(u) -f f(v).

Some functions are linear transformations and some are not.
A set of vectors B = {?i,...,6m} is a basis for a module M

if every element of M can be written in a unique way as a linear
combination of the vectors in B. If R is a field, this is equivalent
to B being a linearly independent spanning set, but for modules the
situation can be more complicated. A module is called free if it lias a
basis. If B = {b\ , . . . . frm} is basis for a module M, then every vector
u E M can be written in a unique way as

U = Qi&i + Q-2&2 4-----k otmbm.
We call the ordered m-tuple (01,02, ...,am) the coordinate m-tuple
for u in the B basis and write

Uft (o!, O2 , . . . , dm ) •

We write M = R[bi, . . . , bn\ if B is a basis for M.— # — ♦If B = {/>1,..., bm\ is a basis for Af and C = {ci, . . . , cn} is a
basis for A7, then if / : M — > N is a linear transformation and u E M,
we have

f(u)c = /(o H-----h om6m)
otif(bi)c + ----h otmf(bm)c •
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The n x m matrix A whose columns are f(bi)c, - • . . f(b,n)c satisfies
f(u)c — AUB where A UB is the matrix product of A times the col¬
umn vector UB- In particular, choosing bases for M and Ar determines
a matrix for each linear transformation f : M — > N.

A subset S of an /ÿ-module is a submodule (or a subspace if R is
a field) if S is closed under vector addition and scalar multiplication,
i.e., if for all u, v € S and a £ R we have

u + v €S and au €S.

In linear algebra, many problems can be solved by row-reduction
of matrices to reduced echelon form, i.e., every row has a leading 1.
the leading 1 in each row is to the right of the leading 1 in the row
above, and each leading 1 is the only nonzero entry in its column.
During row-reduction, we sometimes divide a row by a leading entry
to get a leading 1, often resulting in a matrix full of fractions. We
may even find ourselves doing extra row operations to try to avoid the
dreaded fractions. Module theory is a bit like that since the entries
in the matrix are required to stay in the specified ring of scalars, we
may not be able to divide to get a leading 1 in every row. Indeed,
for Z-modules, no fractions of any sort are allowed, and hence it is
not always possible to get leading Is; sometimes we have to settle for
leading 2s or 7s. For example, the matrix

2 0 1
0 4 -1
0 0 0

is fully row-reduced over Z.
How moves on a matrix reflect changes to the output basis of

the matrix; similarly, if we do column moves on a matrix, we change
the input basis. We can often simplify a matrix further using column
moves in addition to row moves, keeping in mind that the new matrix
represents the original linear transformation with respect to new input
and output bases. For example, the above matrix column-reduces over
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Z to
2 0 1
0 4 -1
0 0 0

1 0 1 1 0 0
1 4 -1 1 4 -2
0 0 0 0 0 0

1 0 0
0 2 0
0 0 0

1 0 0
0 4 -2
0 0 0

1 0 0
0 2 -2
0 0 0

c\j

A matrix is in Smith normal form if its only nonzero entries are on
the diagonal and each nonzero diagonal entry divides the next. Not
every ring allows a Smith normal form, but every matrix with integer
entries has a Smith normal form.

Recall that there are two important submodules associated with
a linear transformation / : M — » N:

• The kernel of /, also called the null spare or solution space,
is the set of all vectors in M which / maps to zero:

Ker(/) = {x e M | /(£) = 0}.

• The image of f, denoted Im(/) or f(M), is the set of all
elements of N that get hit by /, i.e.,

x G. A1}.

The image is spanned by the columns of the matrix of / and
thus is sometimes called the column space of /.

For matrices with entries in a field, we can find bases for the image
and kernel of a linear transformation by row-reducing the matrix to
reduced echelon form; then the columns containing leading Is form a
basis for the image and the kernel has a basis vector for every column
without a leading 1.

Example 27. The matrix

Im(/) = {f(x) € N

10 10 3
01-101
0 0 0 1 0

.4 =

representing the linear transformation / : Q5 — > Q'* defined by

f(xi,X2,Xz, X4,X5) = (xi +X3 + 3X5, “ #3 + X5,X4)
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has image given by

01 0
≥ Q3.Q o l 0

0 0 1

The kernel is isomorphic to Q2, which we can see by setting x% = a
and x*j = /3; then

xx + a + 3/3 = 0
X2 -a + /3 = 0

= a =$ÿ x3 =
x4 = 0
x5 = /3

so every kernel element has the form

-a - 3/3,
x2 = a - /3,
.Xl

a,
£4 = 0,
#5 = /3,

(-a - 3/3, a — /3, a, 0,/3) = a(— 1,1,1, 0, 0) + /3(-3, -1,0, 0, 1).

These are linearly independent since setting

( — a — 3/3, & — /3, OLy 0, /3) =0

implies that o and /3 are zero, so the kernel is

Q[(-i,1,1,0,0), (-3,-1,0, 0, 1)] St Q2.

If our matrix has entries in a ring, then finding a basis for the
image and kernel may not be possible since they may not be free
modules. However, we can still identify the image and kernel up
to isomorphism from the Smith normal form of the matrix for Z-
modules. The image is still the span of the column vectors, while the
kernel is the direct sum of Za for diagonal entries a where we interpret
Zi = {0} and Z(> = Z.

Example 28. The matrix over Z with Smith normal from
" 1 0 0 0 "

0 2 0 0
0 0 6 0_ 0 0 0 0 _

has solution space given by Z2 0 Z« 0 Z as we can see by assigning
free variables a = xx, 0 = x2* 7 = #3 and S = x4; then the system
of homogeneous equations says la = 0, so a contributes a zero direct
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summand; 2/3 = 0 so /3 is a Z2 variable, 67 = 0 so 7 is a Zÿ variable
and 0(5 = 0 so S has no constraints, i.e., <5 contributes a Z summand.

Exercises. 1. Prove that if R is a ring, then the set Mn(R) of square
n x n matrices is also a ring.

2. Prove that if R is a ring, then the set R[x] of polynomials with
coefficient in R is also a ring. Try the same question for R[x, y] the
set of polynomials with two variables x and y.

3. Using row operations, find bases for the image and kernel of the
matrix over Q:

112 11
3 -1-12 1
0 1 10 -1

4. Using row and column operations, find the Smith normal form for
the matrix

'21 101
11-121
0 1 2 10

5. Prove that if R is a ring, then the Cartesian product Rn\ where n
is a natural number, is an 7?-module.

6. A nonzero element u in a ring R is called a proper zero divisor if
there exists a nonzero element x in R such that xu = 0. Show that a
proper zero divisor cannot be multiplicatively invertible in R.

7. Prove that the set {6,14,21} generates Z but no subset of it
generates Z. Hint: gcd(6, 14,21) = 1.

4. Groups

We start by asking the question, “given an object, how many sym¬
metries does it have?” For example, a circle has more symmetries
than a triangle. An equilateral triangle has more symmetries than an
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isosceles triangle. The following figures show the symmetries of three
triangles in the plane R2 and a regular tetrahedron in the 3-space R3.

i
I
l
T

No Symmetry Two Symmetries

I
iao* •

-— H— -
Six Symmetric*

Twenty -four Symmetries

(Regular tetrahedron in R3)(Equilateral triangle in R2)

The notion of symmetry was at the origin of the notion of a group.
The famous German mathematician Christian Felix Klein (25 April
1849 22 June 1925) was instrumental in the development of the the¬
ory of groups. His 1872 Erlangen Program. classifying geometries by
their underlying symmetry groups, was a hugely influential synthesis
of much of the mathematics of the day. The notion of a group is
a central idea in modern mathematics such as Galois theory. The
French mathematician Galois associated a group to a given equation
such as

anxn + an-ixn 1 H-----b a\x + a0 = 0

in such a way that the properties of the group allow answering the
question of whether the solutions can be derived from the coefficients

an only bv addition, subtraction, multiplication, division and
extraction of roots (this is called solvable by radicals). Groups also
appear in the study of combinatorics, crystallography, physics, etc.

• i

Now we state the formal definition of a group.

Definition 6. A group is a set (G, *) with a binary operation (a, b) K>
a * b such that the following three axioms hold:

(i) For all a, 6, c £ G, (a * b) * c = a * (b * c), (associative
property).
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(ii) There exists an element e £ G such that for all a £ G,
e*a = a*e = a, (existence of an identity element).

(iii) For all a £ G. there exists an element denoted a~l such
that a * a~l = e = a~l * a (existence of inverses).

Many familiar sets have a group structure:

Example 29. The set of integers Z is a group with addition as the
operation. The set of integers modulo n, Zn is also a group with
addition.

The set of Injections (called also permutations) S\Example 30.
from a set X to itself with composition as the operation is a group.
When the set A" has n elements, this group is denoted by Sn. We can
specify a permutation <r : {1,2,...,n} — > {1,2,..., n} conveniently
in two ways:

%/

• As we have seen, by giving a vector specifying the list

a = [<T(1), <T(2), .. . , a{n)\

of* the images of the elements of a in order, e.g.,

& = [T 3, 2]

represents the permutation on {1,2,3} fixing 1 and switch¬
ing 2 with 3, or

• Using cycle notation, where we write an element followed
by its image with parentheses closing cycles, e.g., the per¬
mutation with image vector [2. 3, 1,5,4] has cycle notation
(123)(45). Note that fixed points are usually left out of cycle
notation, so the identity is the empty cycle ().

Example 31. The set of rotations in t he plane around a fixed point
is a group with composition.

Example 32. The set of n by n matrices with real coefficients is a
group with addition.



Algebraic Structures56

Example 33.

C B

A

Let ABC be an equilateral triangle in the plane (AB = BC = CA).
Let G be the group of all symmetries of this triangle. Any symmetry
permutes the three vertices A, B and C. Geometrically, G is made
of reflections [A,C, B\,[C, B, A] and [£?, A,C] about each vertex, the
rotation of 120 degree angle \B,C. A], the rotation of 240 degree angle
[C, A, B] and the rotation of 360 degree angle which corresponds to
the identity [A, B,C]. In cycle notation these are

{(BC),(AC), (AB),(ABC),(ACB), ()}.

This group is usually denoted by D% and called the dihedral grvup of
order six. More generally, the group of symmetries of a regular n-gon
is the dihedral group of order 2n. denoted Dn.

A group (G, *) is called abelian if x* y = y * x for all x and y in
G. That is, an abelian group has commutative group operation. For
example the set Z of integers with addition is an abelian group, while
the group of symmetries of an equilateral triangle is not abelian.

Example 34. A commutative ring with identity is an abelian group
under addition, and the ring without zero is an abelian group under
multiplication. Indeed, this is the easiest way to remember the com¬
mutative ring with identity axioms: a commutative ring with identity
is a set with two abelian group structures (with the exception that
0 has no multiplicative inverse) with one operation distributing over
the other.

In a group, the identity element is always unique since if both e
and er arc identities, we have e = ee' = e'. Similarly, each element of
a group has a unique inverse.
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Definition 7. Given two groups ((7. *) and (/v, o). a group homo¬
morphism is a function f : G K that satisfies

f(x*y) = f(x) o /(y) for all x, y €G.

Example 35. For a positive integer n, define / : Z -4 Zn by for all 77i

in Z, /(m) = [m] (class of m modulo n). Then / is a homomorphism
that is onto but not one-to-one.

If / : (G, *) -4 (A', o) is a group homomorphism, then /(e<?) = e*'
and f(x~l) = /(x)_1, for all x in G.

A group homomorphism that is bijective is called a group iso¬
morphism.

Definition 8. Given a group homomorphism f : (G, *) -4 (A', o):

(i) The kernel of f is the set of all elements g of G such that
f(g) = ex- It is denoted by Ker(/).

(ii) The image of / is the set of all elements f(g) where g €G.
This is a subset of K and it is denoted by Im(/).

Subgroups, Normal Subgroups and Quotients of Groups. A
subset H of a group G is called a subgroup of (G. *) if ( H . *) is a
group with respect to the operation of G. This means that H is
closed under the operation * and under taking inverses, so g, h € H
implies g * h € Ii and g~lJi~l € H.

Example 36. (Z, +) is a subgroup of (Q,+).

Example 37. The symmetry group of the square is a subgroup of
the symmetric group £4.

If (/7,*) is a subgroup of (G, *), then the identity element in H
is the same as the identity element in G. Also, the inverse of any
element h in H is the same as the inverse of h in G. Now we have
the following characterization of subgroups.

Theorem 2. Let (G,*) be a group and II be a subset of G. Then
(H,*) is subgroup of (G,*) if and only if

(i) H is nonempty set, (H I/))

(ii) H is closed under the operation *, and
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(in) For all a £ II . a 1 £ II (II is closed under the operation
inverse).

Example 38. The set 3Z = {3n, z? £ Z} is a subgroup of (Z, -f ).

Example 39. Consider an equilateral triangle and let r be the rota¬
tion of 120-degrees around the center of gravity of the triangle. Then
the set {e, r, r2 = r o r} is a subgroup of .
Definition 9. A subgroup N of a group G is called a normal sub¬
group if for any g £ G and any h £ N , ghg~ 1 £ N . In other words.
N is closed under conjugation by all elements g of G.

This definition means, in other words, that for all g in G and all
h in N , there exists hf in N such that gh = h'g.

If G is an abelian group, then any subgroup of G is
= /*).

Example 41. From Example 33 we conclude that the set of rotations
{e,r, r2 = r o r}, is a normal subgroup of S3. Furthermore, if y is a
reflection about a vertex of the equilateral triangle then we have, for
example, yry
the element ryr

Theorem 3. If f : (G.*) — > ( A\ o) is group homomorphism, then
Im(/) is a subgroup of K , and Ker(/) is a normal subgroup of G.

Example 40.
normal since conjugation is trivial (ghg-1

-1 — r-i . But the subgroup {e, y} is not normal since
is neither the identity nor the reflection y.-1

If N is a normal subgroup of G, then the set of equivalence classes
G/N (where x ~ y <=> y = nx for some n £ N) has a group
structure given by [x][y] := [xy]. It is called the quotient group G by
N and denoted G/N . We leave this as an exercise. In this context
equivalence classes are also called cosets and [x] is denoted sometimes
by Nx.

V

We will see shortly in the next theorem that quotient groups are
essentially the same as homomorphic images. For example, the group
Z3 is constructed in an easy way from the group of integers. The set
of all multiples of 3, denoted 3Z, form a normal subgroup of Z since
the later is abelian. The elements of Z3 arc the coscts of the subgroup
3Z.
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Theorem 4. If N is a normal subgroup of a group G, then the natural
map f : G — » G/N defined by f(x) = [x] is a surjective homomor¬
phism and the kernel of f is N.

Direct Product of Groups. Let G and H be two groups. Then
the Cartesian product G x H becomes a group with respect to the
operation

(x.a) x (y,b) = (xy,ab)

for all x, y €G and a, b 6 H. The group G x H with this operation is
called the direct product of G and H . For example, the cyclic group
Z15 is isomorphic to the direct product of the the cyclic groups Z3
and Z5.

If G and H are abelian groups with operation written as addition,
then the direct product G x H is the same as the direct sum G © H .

Finite Abelian Groups. Recall that a group G is called abelian if
the group operation is commutative, that is ah = ba for all a, b £ G.
Usually the operation in an abelian group is denoted by the sign +,
the identity element is denoted by 0 and the inverse of an element
x is denoted — x. We then adopt the notation (G, +) for an abelian
group. We define Ox to be 0. For any x 6 G and a positive integer n
we define nx to be the sum of n copies of x, i.e.,

nx = x + x 4-----b x .

Then (— n)x is defined by (— n)x — n(— x). Now we state the following
theorem which describes all finite abelian groups (up to isomorphism)
in a standard way.

Theorem 5. Every finite Abelian group is a direct product of cyclic
groups of prime-power order. Furthermore, the number of terms in
the product and the orders of the cyclic groups are uniquely determined
by the finite abelian group.

This theorem states that if G is a finite abelian group then G is
isomorphic to

Z «1 X Z ”2 x • • • X Z n/Vl "2 Pi
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where the pj's are not necessarily distinct primes. The prime powers
P'\ ' » P‘i 2

'ÿ • • • iV{1 are completely and uniquely determined by the group
G.

Let p be a prime number and k a positive integer.Example 42.
Any abelian group of order pk is isomorphic to a direct product ZP"i x
Zpn2 x • • • x Zpni where the n,’s are positive integers and k = rt\ +
r?2 H-----1- n/ (this is called a partition of A:). For example any abelian
group of order 4 is either isomorphic to Z4 or to Z2 x Z2.

Finitely Generated Abelian Groups. Every abelian group can
be understood as a Z-modulc, with nx meaning add x to itself n
times. It is then natural to think about abelian groups in terms of
bases. An Abelian group G is called finitely generated if there exist
finitely many elements <71, . . . , gn of G such that any element x of G
can be written as

— k\gi H----+ kngnx

n. The set {471, . . . , gn} is called awhere ki are integers for i = 1, ..
system of generators of G and is denoted by (<71, ... , gn ) .

• 1

Example 43. We have the following example and nonexample of
finitely generated abelian groups:

• The groups (Z, -f) and (Z/M -f ) are finitely generated abelian
groups (for example 1 and [1] arc respectively systems of
generators for these groups).

• The group (Q, +) of rational numbers with addition is not
a finitely generated abelian group. We leave this as an ex¬
ercise.

A system of generators (g1. . . . , gn) of an abelian group G is called
free if for all Aq, . . . , kn £ Z the relation

H— + kngn — 0

implies Aq = * • • = kn = 0. This gives us the fact that any element x
of G is written uniquely as

x = kigi + ----b kngn.
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In this case the system is called a basis of the free abelian group G
(this is similar to the case of vector spaces over fields). Any two bases
of a free abelian group have the the same number of elements called
the rank of the group.

Example 44. The set of two by two matrices over the integers with
addition is a free abelian group of rank 4. This is because any matrix

can be written uniquely as
c a

1 0 0 1 0 0 0 0+ b + d+ ca 1 0 0 10 0 0 0

Presentations of Groups by Generators and Relations. Some¬
times it is convenient to define a group with certain prescribed prop¬
erties. Simply stated, we start with a set of elements that we want
to generate the group, and a set of equations (called relations) that
the generators have to satisfy. Let us start with a concrete example:
consider Aj, the group of symmetries of a regular pentagon. Let R
be the rotation of angle , and S the reflection around a line passing
through a vertex of the pentagon and the midpoint of its opposite
side. Recall that R and S generate the group D§. Notice that R and
S are related by the equation

i?5 = S2 = (RS)2 = 1.(1)

There are obviously other equations between R and S\ such as SR =
R4S and RS R = S, but they can be derived from those given in
equation (1). In fact, any relation between R and S can be obtained
from those given in equation (1). Then, the group D§ is generated
by a pair of elements x and y subject to the relations

X5 = y2 = (xy)2 = 1.

It is then natural to ask if this description of the group A-> applies
to some other group as well. The answer is NO! This means that
any group generated by two elements a and v such that ur> = v2 =
(ttw)2 = 1 is isomorphic to the group AD- We traditionally write

A; = {x, y | x5 = y2 = (xy)2 = 1).
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As another example, the cyclic group of order n can be presented
by one generator denoted x and the relation xn = 1. One may think
of x as the rotation of angle Since composition of rotations cor¬
responds to adding their angles, we see that the rotation of the angle

composed 77-times gives the identity transformation.
In fact, this cyclic group is the same as the integers mod n con¬

sidered as an abelian group under addition. We can then write

Z„= { X I x" = 1).

t he advantages of defining groups this way include that it is a
very compact notation (much smaller than giving the operation table,
for instance) and also because many groups in algebraic topology arise
naturally this way. For example we will see that the fundamental
group of the trefoil knot 3i is given by the presentation

(a, b | aba = bah).

Another presentation of this group is

{x, y\x* = y2).
We will leave this as an exercise to check that the two presentations
give the same group. We think of isomorphic groups as being the
same.

In order to give the general definition of a group in term of gen¬
erators and relations, we need some notation. For any set A" =
form a new set denoted A"

xr<} of distinct elements (called symbols in this context), we
= {2;ÿ 1 , . . . , x~x} (again at this level

these elements are just symbols). We define the set W(X) as the
collection of all formal finite strings of the form aia2...um> where
aj is in the union A' U Ar_1. The set W(X) is called the set of
words on A". We allow the string with no elements to be in lF(Ar ),
call it the empty word and denote it symbolically by 1. There is a
natural “multiplication’' in W(X) which is juxtaposition of words;
that is, the multiplication of a\a2.*.(it and b\b2...bm is the word
a1*22 . . . aib\62 . . . bm. It is clear that this binary operation is associa¬
tive and its identity is the empty word. Be aware that at this level
the word xx~l is not the empty word, and this is because we arc
interpreting the elements purely as symbols with no meaning yet. So

• ?
-1
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far we have everything (associativity and identity) to make a group
except the notion of inverse. Recall from linear algebra that if A and
B are two invertible matrices, then the inverse of AB is B 1.4 1 (a
fact sometimes known as the “shoe-sock theorem’1, since taking off
socks and shoes must be done in the opposite order from which they
were put on). We expect the inverse of the word xy to be y~xx~ 1 , but
again xyy~lx~l is not the empty word, as we explained earlier that
elements are thought of as just symbols with no meaning. To remedy
this problem we need to define an equivalence relation on W(X).

Let X be a finite set of symbols and W(X) be the
set of words on A. Given any pair of elements w and wf in VT(A ), we
Definition 10.

say that w ~ w' if and only if w' can be obtained by a finite sequence
of insertions or deletions of words of the form x-l -l , where xx or xx
is in X.

Example 45. Consider the set A" = {x, y, z.a}. Then the word
xyz is equivalent to xyuu~Az, the word xzyy 1 yyuxz is equivalent
to xzyyuxz , and xyzz~ 1 y~lx~ 1 is equivalent to the empty word 1.
However, the word uxzx~ 1 is not equivalent to uz.

The relation defined in the previous definition is an equivalence
relation.

Definition 11. Let A" be a finite set of symbols and W(X) be the
set of words on X. For any word w in W(X), let [w] denote the
equivalence class of w. The set of all equivalence classes of elements
of W(X) is a group under the binary operation [w] • \w'} = ww'].
This group is called the free group on A'.

It turns out that every group is a homomorphic image of a free
group. The proof can be found in some of the classical text books on
group theory’.

Now we have the foundation of defining a group by generators and
relations. Before we give the precise definition, we revisit the example
of Dy, the symmetry group of a regular pentagon we discussed earlier
in the motivation.

Let F be the free group on the set A" = {x, y}Example 46.
and let N be the smallest normal subgroup of F containing the set
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(x5.//2, (xy)2}. We claim that the quotient group F/N is isomorphic
to D5. To see this, consider the group homomorphism h : F —¥ D$
such that h(x) = R and h(y) = S. Notice that h is a surjective ho¬
momorphism whose kernel contains N . We leave it as an exercise to
check that in fact the kernel of h is exactly N.

Definition 12. Let G be a group generated by some set of sym¬
bols A" = {aq, . . . , xrn} and let F( X) be the free group on X. Let
W = be a subset of F(X) and N be the smallest nor¬
mal subgroup of F(X) containing W. We then say that the group
G is given by generators aq, . . . , xm and relations r\ = 1, . . . , r/ = 1
if there is an isomorphism from F/N to G which sends the class [xj]
modulo N to xj. We write G = (x\ , . .

Example 47. The set of integers as a group can be given by the
presentation Z = (x) with only one generator and no relations. The
cyclic group Zn can be given by the presentation (x : xn = 1) and
the dihedral group Dn (the group of symmetry of a regular n-gon)
can be given by Dn = (x, y \ xn = y2 = (xy)2 — 1).

r\ = • • • = n = 1).xm• ?

Exercises. 1. Make the operation tables for Z4 and Z2 x Z2 and
show that these groups are not isomorphic.

2. Does the binary operation x * y = XyJ1 -h y2 + y\J1 + x2 define a
group structure on the real line R?

3. Let N be a normal subgroup of G. Prove that the following relation
on G is an equivalence relation.

Vx, y € G, x ~ y < for some n € N.> y = 71x,

Define the binary operation on the quotient set G/N by [x][y] = [xy].
First check that this operation is well defined, and then prove that
G/N with this operation is a group.

4. Prove that the group (Q, T) of rational numbers with addition
is not a finitely generated abelian group. Hint: Assume that the
following n rational numbers • • *, generate all rationals and find
a contradiction.
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5. Let m and n be two positive integers. Find all group homo-
morphisms from (Zm,+) to (Zn,+), and all group automorphisms of
(ÿmi +)•

6. Prove that the set of transpositions switching 1 with i where
2 < i < a generates of the symmetric group Sn.

7. Use the figure of a regular tetrahedron, mentioned in the beginning
of this section, to compute the group G of its symmetries. Conclude
that G is isomorphic to the group S4 of permutations of four letters.
Prove that the set of rotations H form a subgroup of G . The group
H viewed as a subgroup of S4 is called the alternating group and
denoted A4.
8. Let n be an integer greater than or equal to 2 and m be a positive
odd integer. Prove that the only group homomorphism from Sn to
Zm is the zero map (sending any element to zero).

9. Let n be a nonnegative integer. Prove that the linear groups
GLn(R) and GLn( C) cannot be isomorphic. (Hint: you may use the
facts that the center's, i.e., sets of elements which commute with all
other elements, of GLn( R) and GLn(C) are, respectively, the multi¬
plicative groups R — {()} and C — {0}).

10. Let G be a finite subgroup of the group of affine Injections, that
is, Injections of the form f(x) = Ax + y for an invertible matrix ,4. of
a real vector space V .

(i) Prove that there exists a point that is invariant by all ele¬
ments of G.

(ii) Determine all finite subgroups of the group of nonzero com¬
plex numbers (C — {()}, x) with multiplication.

(iii) First, recall that a similarity is a plane transformation that
preserve the ratio of the distances. It is well known that a
plane transformation is a similarity if and only if it multiplies
the distances by a positive real number k (called the ratio of
the similarity). If k = 1, the similarity is called an isometry.

Determine all finite subgroups of the group of plane similarities which
preserve orientation.
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5. Cohomology

Cohomology has been called one of the most important contributions
to mathematics made during the 20th century. It is a way of translat¬
ing geometric or topological questions into algebraic questions, and
shows up in many places in modern mathematics. We will not need
to develop cohomology theory in great depth (which is fortunate as
it would take another full book to do it justice) but will content our¬
selves with a brief introduction using linear algebra.

Cohomology has its origins in geometry. A cell decomposition of
a subset A' C divides X into cells of various dimensions; each cell
has a boundary consisting of cells of lower dimensions.

C3

C
c

By thinking of the boundary of a cell as a linear combination of cells
one dimension down, we can describe the overall set A" with a set of
vector spaces generated by various cells related to each other by linear
transformations encoding the boundary maps. The key observation
is that the boundary of a boundary is empty; in terms of linear maps.
this means that the composition of two boundary transformations
must be the zero map.

Cohomology also appears when we generalize the fundamental
theorem of calculus to higher dimensions using differential forms,
which provide an elegant way of unifying Green’s and Stokes' theo¬
rems. Simply stated, a 0-form on a region in the xy plane is a scalar-
valued function /(x, y). an expression of the type /(x, y)dx+g{x, y)dy
is a 1-form and an expression of the form F(x, y)dx dy is a 2-form.
That is, a A-form is a product of k differentials with scalar function
coefficients. The is a differential operator with the property that
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d(duj) is always zero, a fact which gives as cohomology the theory
known as de Rham cohomology. See the exercises for more.

Let F be a field and let C°, C1, C2, . . .Cn ,... be F-vector spaces.
For each k = 1, 2, ... let dk : CA 1 — > Ck be a linear transformation
represented by a matrix Aÿ. If for all k = 1,2,... the matrix product
Ak+iAk is the zero matrix, i.e., if the composite maps dk+l o dk are
all equal to the zero map so we have dk+l (dk(v)) = 0 for all v €CA_l,
then the sequence of vector spaces and linear transformations

dn+1 -i c2 Z- c1 *dd3dn -i <r c°cn < cn i

is called a cochain complex. Note that we have written the maps going
from right to left so the order of the maps agrees with the usual con¬
vention for matrix multiplication. In particular, the cochain complex
condition says that the column space of Ak is always a subspace of
the null space or kernel of Ak+i. In terms of linear transformations,
this says Im(dA:) C Ker(dk+l).

Vectors in Ck arc called k-cochains and the linear transformations
dk arc called coboundary maps or differentials. The column space of
.4*. is usually denoted Dk and vectors in Dk are called k -coboundaries:
the null space of Ak+i is denoted Zk and its elements are called k-
cocycles. Thus, in a cochain complex we always have Bk C Zk . The
quotient vector space

Hk = Zk/Bk = Ker(dk+1)/Im(dk )

is called the k-th cohomology space of the chain complex.
Note that if the indices are going down rather than up with ap¬

plication of d, we have a chain complex with homology spaces rather
than cohomology. For example, if the coboundary maps are expressed
as matrices, taking the transpose of each map reverses the direction
and switches from cohomology to homology. We will primarily need
cohomology in this book.

Many cochain complexes are effectively finite, in that there is a
largest n beyond which all the cochain spaces are the zero vector
space 0 = {()} and all the differentials arc the zero map 0(F) = 0.
Indeed, unspecified spaces and maps will be assumed to be zero. We
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will usually write such a cochain complex as a finite sequence:

c1 c°.dn n— 1cn
In particular, since C~x and d° : C~l C° are not listed, we have
Im(d°) = 0 and B° = 0; then we have H{) = Z{}/0 = Z{); similarly,
Cn+1 = 0 and r/n+1 : Cn — 0 is the zero map, so Zn = ker(rfn+1) =
Cn and we have Hn = Cn/Bn.
Example 48. For a first example, suppose we have a cochain complex
in which all of the differentials dk are the zero map. Then for every
fc, we have Zk = Ck and Bk = 0, so Hk = Zk / Bk = Ck / 0 = Ck .

Example 49. Suppose we have a sequence of vector spaces and
linear maps

C

— C2 C1 <r— C°
such that Im(dk) = ker(dA + 1 ). Tlien we have Zk = Bk for all k and
Hk = Zk/Zk = 0 for all k. Such a sequence is called exact. Indeed,
cohomology can be understood as measuring the failure of a sequence
to be exact.

du -lCn < Cn • • • *

Example 50. For a nontrivial example of cohomology, consider the
sequence

0 0
1 1 1 -1 1

-1 1 -1
1 1

2 2 1 1
0 Q2 4

Here we have C° = 0, C1 = (Q2, C2 = Q3, C3 = Q2, C4 = Q2 and
C ' = 0. We have cf' = d[ =0 and dl.d3 and d2 are multiplication by

0 0 "

1 1 .
1 1 _

We clearly have d5od4 = 0 and (Pod1 = 0; let us check that d4od3 = 0
and d13 o d2 = 0:

Q2 0.Q3 Q2-

1 -1 1
-1 1 -1

1 1
9 —A4 = , and Ao =2 2

1 1 1 -1 1
-1 1 -1

1-1 -1+ 1
-2 + 2

1-1
2 - 2 -2 + 22 2

0 0 0
0 0 0
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and

0 01 -1 1
-1 1 -1

0-1+1 0-1+1
0+1-1 0+1-1

0 0
0 0

1 1
1 1

hcncc we have a cochain complex. Let us now compute the cocyclcs
and coboundaries. Starting with cocvcles, we can immediately ob¬
serve that Z4 = kcr(d5) = C4 = Q2 and Z° = ker(d1) = 0. To find
Z3. Z2 and Z1 we find the null spaces of the matrices by row-reduction
to reduced echelon form:

1 1 1 1
2 2 0 0

so Z3 = Q[(— 1, 1)] I

1 -1 1
-1 1 -1

1 -1 1
0 0 0

rsj

so Z2 = Q[(l,1.0), (0,1, 1)] ≥ Q2, and

1 10 0
0 01 1

1 1 0 0

and Z1 = Q[(— 1.1)] = Q1. For the boundaries, we need to find
the image of each linear transformation, or in terms of matrices, the
column spaces of the matrices. The zero map has image Im(0) =
{0}, so Bh = Bx = {0}. As we can see from the echelon forms
of the matrices, each of the differential maps d4,d3 and cP has one-
dimensional column space B4 = B3 = B2 = Ql. Finally, to identify
Hk up to isomorphism, we can use the fact that

dim(Hk) = dim{Zk/Bk) = dim(Zfc) - dim(B*).
Thus, we have:

Zk Bk Hkk
Q2 Q Q
Q1 Q 0
Q2 Q Q
Q1 0 Q

4
3
2
1
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Example 51.
defines a cochain complex; we need dk ‘ 1 dk to equal zero for every k.
Consider the sequence

Not every sequence of vector spaces and linear maps

l 2 2 l
0 1 -1 0

0 Q2 <
Here we have CA = C° = 0 and C3 = C2 — Cl = Q2, and we have

d2 o d1 = 0 and dA o d3 = 0. However, d3 o d2 0 since

2 1
-1 0

This means that Im(d2) £ Ker(cC), and we cannot talk about coho¬
mology in this situation.

J <Q2 A- 0.J Q2 L
4

1 2 0 1 0 0
0 00 1 -1 0

Now if we replace the field of rational numbers Q by the ring
of integers Z we can get similar examples to the previous ones with
modules in place of vector spaces.

Example 52. Consider the sequence

5 5 ] 9 oJ Z2 0.o+ÿ-z

Here we have C° = 0, Cl = Z2, C2 = Z and C3 = 0. We have
d2(:r, y) — 5x + 5y which says

Ker(d2)
Im(d2)

Then H1 = Z and H2 = Z/5Z Z5.

-

{(x, — x) | J G Z} = Z and
(5x T 5y | x. y G Z} = 5Z.

Example 53. Let us see one more nontrivial example of cohomology.
Consider the sequence

1 2
1 4 i? A- o.

Here we have C° = 0. C1 = Z2, C2 = Z2, C3 = Z and C4 = 0.

We have <l] = 0, dr is left multiplication by A =
and d4 = 0. We have d} o d~ = 0. (pod3 = 0 and d3 o d4 = 0, so
we have a cochain complex. Let us now determine the cocvcles and

oAzAz2 -

1 2
, d3 = 0

1 4
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coboundaries. Starting with cocycles, we can immediately observe
that Z3 = Z, Z2 = Z2, and to find Z1 we need to find the null space
of the matrix .4 by row and column reduction, keeping in mind that
we are working over Z. Then we have

' 1 2
1 4

which is in Smith normal form. Then the kernel Z1 is isomorphic to
Zi 0 Z2 = Z2. Turning to coboundaries, we have Bl = 0, B2 = Z2
and BA = 0, so we have cohomology groups Hl = Zl/Bl = Z2,
H2 = Z2/Z2 = 0, and H3 = Z/0 = Z.

1 2 1 0
0 20 2

Exercises. 1. Compute the cohomology spaces of the cochain com¬
plex

1 1
-1 -1
-1 1

1 1 0
-1 -1 0

0 4-ÿ- R2 R2 0.34

2. Compute the cohomology spaces of the cochain complex
‘ 1 2 11
-1 -1 1

1 0 2

fill
2 1
1 0

0 Q3 J Q3 Q3 L <Q>2 0.4

3. Consider the sequence of vector spaces and maps
b 1 1

1 -1
a

-1 -1 J Q2 A- 0.

What values of a and b will make this a cochain complex?

4. Consider a sequence

0 Q2 L Q24 4

0 4-ÿ- Q2 4- Q2 4ÿ- 0

What cohomology spaces H 1 and H 2 are possible? Give an example
of a matrix / realizing each case.

5. Let C° be the set of 3-times differentiable functions on
differential 1-form is an expression of the form f(x)dxj where j = 1.2
or 3 and x €M3. We define a product A on 1-forms (called the wedge
product) satisfying the rules that

R3. A
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• f A {gdxj) = fgdxj ,
• fdxj A ( gdxk + hdxi) = fdxj A gdxk -f fdxj A hdxj ,

• A is anticommutative, i.c.,

dxj A dxfc = — d.r; Adx j,

and

• A is square-free, i.e.,

dx j A dxj = 0.

Let

C1 {/dri 4- i/d.r-2 + ftdar3},
{ / dx! A d.r2 -f tfdxi A d.r3 -f hdx2 A d.7'3}
{ / dx 1 A d.7‘2 A dx3}.

Then define a map d : CA — > CA’+1 by

C2
C3

Of Of Ofd(fu>) = dx1 + dx2 T dx A a;.39X30X2
Show that d is a differential. (This d is called exterior differentiation,
and the resulting cohomology spaces are called de Rharn cohomol-
ogy.)

dx1
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Chapter 3

Quandles

1. Kci

A very natural question is how we can generalize the tricoloring idea
from Chapter 1 to get stronger invariants with more colors. It turns
out that hidden in the simplicity of the tricoloring rules is a new kind
of algebra, a powerful algebraic structure which ultimately gives us a
complete invariant of knots. Let us start at the beginning.

Let, X be a set. An operation D> which takes two elements x. y € X
and gives us back an element xt>y G A is a Kci operation if it satisfies
the following three axioms:

(i) For all x G X, x D> x = x.

(ii) For all x, y G A", (x > y) > y = x.
(iii) For all x. y, z € X, (x>y)>z = (x > z) t> (y t> z).

These axioms are quite unlike the usual rules obeyed by more
familiar operations like addition and multiplication. Let's unravel
them one by one.

The first kei axiom says x>x = x for every x G X. The property is
known as idempotency in standard mathematical jargon; for example.
a matrix A is idempotent if A2 = A, e.g. a projection map onto a

73
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coordinate axis. If > were like addition, this axiom would mean that
every element acted like 0.

The second axiom says (x > y) > y = x for all x, y 6 X. This says
that if we triangle x with y twice, we get x back. Thus, where the
first kei axiom says elements act trivially on themselves, the second
axiom says that elements act on other elements by involutions, i.e.
the function (3y : X — > X defined by fiy(x) = x\>y is its own inverse.
If addition were involutory, addition and subtraction would be the
same.

The third kei axiom is perhaps the strangest of all. The require¬
ment that (x > y) t> z = (x> z)t> (y> z) says that the n> operation is
self-distributive, i.e. o distributes over c> on the right the same way
that multiplication distributes over addition. In particular, the kei
operation is in general nonassociative, i.e.,

(x >y)> z x> (y > z).

Thus, it is very important to keep track of the order of the elements
as well as the parentheses when doing kei computation.

Where do these bizarre axioms come from, and what is their con¬
nection to knots and links? You might have noticed that there are
three axioms, one making a statement about a single element, one
making a statement about two elements, and one making a state¬
ment about three elements. You might also recall that there arc
three Rcidemeister moves, one involving a single strand, one involv¬
ing two strands, and one involving three strands. If you noticed both
of these things, you probably suspect that the similarities are not a
coincidence. If so, you’re correct!

The idea is that each “color” or element of X corresponds to an
arc in a diagram and the x > y operation corresponds to one arc x
passing under another arc y to become x > y. Notice that unlike in
addition or multiplication, the two operands here are playing different
roles- when x crosses under y, y is unchanged but x>y is a new arc; y
is doing something to x. not the other way around. The kei operation
can be understood as an action of the set X on itself. Thus, we don’t
expect t> to be commutative, and in general it’s not.
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Kei axiom (i) follows from the type I Reidemeister move:

x x

x X > X

Kei axiom (ii) follows from the type II Reidemeister move:

yy\ x

x > y

f(x >y)>y Vy X

Kei axiom (iii) follows from the type 111 Reidemeister move:
*T V ) z x I y i 2

x > y

z fy>z\ l

\r t> 2

A(x I> y)> z (:r o z) > (y > z)z I y >

The term “kei“ was chosen by Mituhisa Takasaki [Tak42 .
Example 54. Perhaps the simplest nontrivial example of a kei op¬
eration is known as a Takasaki kei, also sometimes called a cyclic kei
or dihedral quandle. Let X — Z or 7Ln and define

x > y = 2 y — x.

To see that this > is a kei operation, we just need to verify that all
three kei axioms are satisfied:

(i)
X D> X = 2x — X = X /
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(ii)

(x > y) > y = 2 y - (x > y) = 2y - (2y - x) = 2y - 2y + x = x

(iii)

/

(;r > */) > 2 = 2z — (x> y) = 22 — (2y — #) = 2z — 2y -f x

while

( x > z) > (y > 2) 2(2/ > 2) — (x > 2;) = 2(22 — y) — (2z — x )
4z — 2 y — 2z H- x = 2z — 2y + x.

Note that this example can be generalized by replacing Z or Zn by
any abelian group A.

Example 55. Let V be an F-vector space and ( , ) : V x V — > F a
symmetric bilinear form, i.e.,

• (u -h v, te) = ( u. tc) -h te),
• (QU, V) = a(u,v), and

• (?i. v) = (tf, 5}.

/

Let X be the subset of V consisting of vectors u such that (u,u) 0.
Then the operation - - 2(u,v)

_
u t> V = — — -r- ?; — M(M,M)

defines a kei structure on X. Geometrically, u > v is the result of
V •

reflecting u across v.

— *v

U > V

This type of kei is called a Coxeter kei.

Example 56. A related example is a symmetric space, a geometric
space in which every point has an involutory point symmetry. For
example, consider the 2-sphere

S2 = {x €R3 I II = !}•—ÿIx\
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Connecting any two points on S2 is a geodesic or path of least dis¬
tance. given by an arc of the great circle containing those two points;
this geodesic is unique unless the two points are antipodes x and — x.
in which ease there are infinitely many geodesics connecting x and
— x. Then for any two points x and y on S2, define x> y as the result
of finding the geodesic connecting x to y and then going from x to y
and then past y along the geodesic by the same distance.

x > yx V

If we think of the geodesic as the “straight line" connecting x to y.
then x t> y is the point on the other side of y the same distance from
y as x. In terms of unit vectors, we have

x > y = 2(x • y)y — x.

To understand a kei operation, it is helpful to look at the op¬
eration table. To find x > y in the operation table, look in the row
labeled with x and the column labeled with y\ since kei operations
are generally noncommutative, this is usually a different element than
the entry in row y column x, so it is important to pay attention to
the order.
Example 57. For example, if we take A' = Z4 with x > y = 2y — x\

we get the operation table

0 12 3>
0 2 0 2
3 13 1
2 0 2 0
13 13

0
1
9

3

For computational purposes, we can represent a kei operation on
a set A" = {.iq ,....xn} with n elements with an n x n matrix M\
which encodes the operation table by dropping the “xrs:
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Example 58. Dropping the xs from the operation table yields the
following matrix:

> x\ X2 Xs 1 3 2
3 2 1
2 1 3

Xi X\ x3 x2 = Mx.
X'l X;i X2 Xi

X‘2 Xi X3X3

This matrix notation allows ns to compute colorings with a kci
for which we may not have nice algebraic formulas.

The Fundamental Kei of a Knot. For every knot, link, or tangle
K there is an associated kei (i.e., a set A" with a kei operation >)
called the fundamental kei of the knot, JC(K), which we can define
from a diagram of K via universal algebra.

To start, let A" = {xi,.. xn} be a set. The elements of A" will
be called generators. The set WJC(K) of kei words in A" is defined
recursively by the rules that

• •

(i) x £ A" implies x £ Wfc(X) and
(ii) x, y £ WJCX implies x>y £ Wtc{X).

Thus, a kei word in Ar is a finitely long string of elements of X and
the symbol o and parentheses which makes sense as a kei product.
For example, if A' = {x, y, z}, then WJC{X) includes such expressions
as

x>y, z > ((x > x) > y), ((x > y) > (y > x)) > z,

etc.

The free kei on X is then the set of of equivalence classes of kei
words in X modulo the equivalence relation generated by

(x>y)>y (x > y) > z ~ (x > z) > (y > z)X D> X ~ X, ~ X

for all x, y, z £ Wic(X).
} be a set with one element for each

arc in a diagram of a knot, link or tangle K. Each crossing in our
diagram K gives us an equation, called a crossing relation, of the

Now, let X = {xi,.. • 9 Xn
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form xl> y = z.
x

z = x \> y

The fundamental kei of the knot K is then the set of equivalence
classes of elements of the free kei on X modulo the equivalence relation
generated by the crossing relations. We usually express this with a
kei presentation listing the elements of X1 known as generators and
the crossing relations. For example, the trefoil knot has fundamental
kei presentation:

V

yz

x

K{K) = (x,y,z \ x>y = z,y> z = x, z> x = y).

Note that, in general, most elements of the fundamental kei of
a knot K do not correspond to arcs in any given diagram of K. It
is also important to notice that different diagrams of I\ will give us
different-looking presentations of IC(K). Do not be fooled; these dif¬
ferent presentations nevertheless describe the same set of equivalence
classes. We can change one presentation into another by a sequence
of Tietze moves:

(i) Add or delete a generator x and a relation of the form x — W
where W is a word not involving x.

(ii) Add or delete a relation which is a consequence of the other
relations and the kei axioms.

For example, in the presentation

JC(K) = (x, y,z | x>y = z,y>z = x,z>x = y)
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we could interpret the relation xt>y = z as saying that z is an abbre¬
viation for x > y: we can thus replace every instance of 2 with x t> y
and obtain a simpler presentation

/C(A') = (x, y | y>(x>y) y)-x.(x o y) i> x

Indeed, each Reidemeister move determines a Tietze move (or a set
of Tietze moves) on the fundamental kei. Unfortunately, the converse
is not true in general; most Tietze moves cannot be interpreted as
Reidemeister moves on diagrams.

The generators in a kei presentation can be understood as analo¬
gous to basis vectors in a vector space every vector can be expressed
as a linear combination of the basis vectors, and every element of a kei
can be expressed as a “kei combination” of the generators. The kei
axiom relations and crossing relations make the situation more closely
analogous to quotient vector spaces, in that elements are equivalence
classes.

Indeed, we can represent the fundamental kei of a knot with a
presentation matrix, a kind of partially-filled-in operation table with
a row and column for each generator. When we have a relation xi>y —
z, we put a 2 in row x column y; otherwise, the entries arc blank,
represented by 0. Then the presentation

IC(K) = (x, y, z | x t> y = z, y > z = x, z > x = y)

can be expressed with the table (or corresponding matrix with x =
x\,y = x2,z = £3)

> x y z ' 0 3 0 '

0 0 1
2 0 0

0 z 0
0 0 x
y 0 0

x
y
z

Note that in this case we can fill in the zeroes using the kei axioms:
since (x > y) > y = £, we also have z o y = (2? 0 y) o y = x, x > z =
(y> z)> z = y and y D> x = (z> x)> x = y, and we also have xi>x = x,
y t> y = y and z t> z = z. Each of these new relations is a consequence
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of the kei axioms and the relations from K. Then we have
> y *X

1 3 2
3 2 1
2 1 3

x x z y
y z y x
z y x z

In particular, this shows that the fundamental kei of the trefoil is none
other than the 3-element Takasaki kei, also known as the dihedral
quandle of three elements or the Fox tricoloring quandle.

Not all knots have finite fundamental kei, but the set of knots
with finite fundamental kei is infinite. See [Win84] for more.

Homomorphisms and Colorings. Let X and Y be keis. A kei
homomorphism is a function / : X — » Y satisfying

f(x > y) = f(x) > f(y)

for all x , y € X. Notice that the t> in x > y is the kei operation in
X, while the > in f(x) > f(y) is the kei operation in Y. Thus, a kei
homomorphism is a function between keis which preserves or respects
the kei structure. Kei homomorphisms are analogous to linear trans¬
formations, which are functions between vector spaces which preserve
the vector space structure.

Example 59. For example, let X = Z with x > y = 2y — x. Then
/ : X —> A, defined by f(x) = lx where / G Z, is a kei homomorphism
since

f(x > y) = /(2x - y) = l( 2x - y) = 2(lx) - ly = f{x) > f(y).
Similarly, f(x) = x T / is a homomorphism:

f{x > y) = 2 y -x + l = 2(y + 1) - (x + /) = f(x) > f(y).
However, f(x) = x2 is not a kei homomorphism:

f(x > y) = (2y - x)2 = 4y2 - 4xy + x2
while

fix) > f(y) = 2y2
Definition 13. Let (Ar, >) be a kei. A subset S C X is a subkei of X
if (5, t>) is itself a kei. In particular, to be a subkei, S must be closed
under \>: if .r, y 6 5, then we need x t> y G S.

2— X .
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Note that since the kei axioms are satisfied in X: they are auto¬
matically satisfied in S, so closure under t> is necessary and sufficient
for S C X to be a subkei.

If / : X — Y is a kei homomorphism, then the subset

Im(/) = {y 6 Y y = f(x) for some x G A'}

is a subkei, called the image subkei of /. To see that Im(/) is closed
under >, note that if y.y' G Im(/) then there exist x, x' G A" such
that y = f(x) and y' = f(x'); then

V > yf = f(x) > f(x') = f(x > x')
and we have y t> y' G Im(/).

Now, let K be a knot, link or tangle, (A\>) be a kei and con¬
sider a map / : JC(K) — > X. Since JC(K) is generated by arcs in
a diagram of A’, if we choose an image f(xk) for every arc Xk, then
the homomorphism condition determines the function / for the entire
fundamental kei; that is. once we know what f(xk) and f(xj) are, we
simply define f(xk t> xj) to Ije f(xk) > f(xj) and so forth. The only
potential problem arises at the crossings - if the fundamental kei has
a relation x>y = z, then we must be careful to choose f(x), f(y) and

so that f(x) > f(y) equals f(z). Provided our choice of images
f(xk) respect the crossing relations at every crossing, then we have a
homomorphism / : fC(K) — > X .

Tricolorings of a diagram K are actually homomorphisms from
the fundamental kei /C(A') to the Takasaki kei Z3. Thus, Takasaki
keis give us a generalization of tricoloring say a valid n-coloring of
a knot diagram is a homomorphism from fC(K) to the Takasaki kei

Then as with tricoloring, any n-colored diagram before a move
corresponds to a unique n-colored diagram after the move. We might
say a diagram is n-colorable if it has a coloring which used all n colors;
in terms of homomorphisms. such a coloring is a surjective or onto
function.

m

Ijn-

Example 60. Let us illustrate how Fox tricolorability is about the ex¬
istence of surjective colorings by the Takasaki kei Z3. Afore precisely,
a Fox tricoloring of the knot 819 gives a nontrivial kei homomorphism
from the fundamental quandle of 819 to the kei Z3 with operation
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x D> y = 2 y — x.

f fa a

/ Ii
✓ I/e e I\

h h IV.

9 "9 /\
\

/\0 —d dc - c
\

/b v
2

A surjective coloring may not he obviously surjective in
that it may not use every color in every diagram of K if
n >3. To determine whether a coloring is surjective, we
must check whether Im(/) equals X or is a proper subkei.

The image subkei of / is the smallest subkei of X which contains
f(xk) for all generators For example, the figure 8 knot diagram
below depicts a surjective coloring by the Takasaki kei Z5, even though
only four colors actually appear in the diagram. Notice that the fourth
color appears when we change the diagram by a type 11 move.

1 1

0 0 1
224

c2 3

The Counting Invariant. The existence or nonexistence of a sur¬
jective n-coloring is a computable invariant, but a rather coarse one in
that it only has two possible values, “colorable” or “not colorable”.
We would like to find a stronger, more sensitive invariant of knots
and links that can be computed using kei colorings. One solution is
to count the number of colorings of any diagram of K by a kei X ;
since the fundamental kei fC(K) does not depend on our choice of
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diagram of A\ the set of all kei homomorphisms

Hom(/C(A ), X) = {/ : K{K) -> A' | f(x > y) = f(x) > f(y)}

is an invariant of the knot K. In particular, for any choice of diagram
of K. there is one coloring for each homomorphism: on the one hand,
a homomorphism / assigns only one image f (x) to each generator x:
on the other hand, the fact that / is a homomorphism says that if
we know the images of the generators f(x\ ), .. . , f(xn ) then we know
the images of every element of the fundamental kei, c.g.

f(x1 > (x2 >x4)) = f(xi) > (/(x2) >/(x4)),

etc.

Moreover, if X is a finite set, then there are only finitely many
possible colorings of a given diagram of K - if K has n crossings
and thus n arcs and if X has m elements, then there arc at most
mn possible kei colorings of K by X. Thus, to compute the number
of colorings by brute force, we can simply list all assignments of kei
elements to each arc of K and check which ones satisfy all of the
crossing conditions.

Thus, the cardinality of the set Hom(/C(A'),X) is a computable
link invariant known as the kei counting invariant.

Example 61. Let us compute the kei count ing invariant for the Hopf
link with respect to the four element Takasaki kei Z4. The crossing
relations R\ and Rz are x > y = x and y\>x = y. Then we have

0 1 2 3>
0 2 0 2
3 13 1
2 0 2 0
13 13

0x V 1
2
3
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f(x) f(y) /?!? R2?f(x) f(y) i?i? RoJ
0 / / /0 2 0 /

20 1 1
2 / / 2 2 / /0
3 2 30

1 0 3 0
/ /1 1 / / 3 1

1 2 3 2
/ /3 / /1 3 3

Thus, we have jHom(/C(/\ ), Z.\)\ = 8.

Example 62. The kei counting invariant for two unlinked circles is
|Hom(/C(iv ). Z4)| = 16 since there are no crossing relations and hence
no conditions imposed on /(.r) and /(?/).

An improved method for computing a kei counting invariant is
to first reduce the presentation of fC(K) to make the table as small
as possible. Computing the colorings of the figure eight knot 4\ by
Z4 with the presentation corning directly from the diagram requires
a table with 44 = 256 lines, with four crossing relations to check at
each line; reducing beforehand gives us a two-generator presentation
with two relations, resulting in a table with only 42 = 16 lines and
only two (admittedly longer) relations to check on each line.

x

w
zy

(x, y , z, w \ x>y = z,y>w = 2, y o x = w, xi> z = w)
(x,y,z \ x>y = z,y> (y> x) = z,x> z = y> x)
(x, y\y> (y >x) = x> y, x > (x > y) = y> x)

IC(I<)
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Let i?i be the equation f(y) > (f(y) > f(x)) = f(x) > f(y) and R2 the
equation f(x) > (f(x) t> f(y)) = f(y) > f(x). Then we have the table

f(x) f(y) /?!? /?2? f(x) f(y) ill? i?2?
0 0// 2 0

21 10
/ /0 2 9 2

0 3 2 3
3 01 0

1 1 / / 3 1
2 31 2
3 3 3 / /1

Exercises. 1. Show that if > is a kci operation which is associative,
i.c. if > also satisfies

(x > y) > z = x > (y > z ),
then the operation is trivial, i.e. x > y = x for all x.

2. Compute the operation tables for the Takasaki kei operations on
Z.5, and TL’j,

3. Find a presentation for the fundamental kei of t he knot below with
as few generators as possible.

4. Prove that the Hopf link below has fundamental kei isomorphic to
the trivial kei of two elements.
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5. Show that every valid tricoloring determines a unique valid homo¬
morphism from /C ( K ) to the Takasaki kei Z3.

G. Compute the kei counting invariant for the knot in problem 3 with
respect to the Takasaki keis Z3 and Z4. For each coloring, identify
the image subkei.

7. Verify that the Coxeter kei definition in example 55 satisfies the
kei axioms.

8. From the diagram of 819 in example 60, find a presentation of
fundamental quandle using generators a, b, c, d, e, /. g and h and eight
relations at the crossings. Show that the map (p : /C(819) — > Z3 with
(<>(n) = 4>(d) = <p(e) = ti(h) = 0, 4>(c) = <p{g) = 1 and = &(f) = 2
is a kei homomorphism by checking that the relations at crossings
still hold after mapping by 0.

2. Quandles

In the last section we introduced kei, an algebraic structure whose
laws or axioms encode the Reidcmcistcr moves for unoriented knots.
i.c.. for simple closed curves in R3. As we recall from multivariable
calculus, one common way to describe a curve in R3 is by giving a
parametrization P(t) = z(t)) where we can think of t as a
time variable. In particular, a parametrized curve comes with a choice
of direction or orientation corresponding to the forward direction of
time. Let us think about how including a choice of orientation for
our knots can change the algebraic structure.

As we have seen, there are two types of oriented crossing, usually
called positive (4-1) and negative (—1). Thus, instead of one “crossing
under’’ operation, we have two crossing under operations; we can
temporarily set x i>+ y to be the result of x crossing under y at a
positive crossing and x c>_ y to be the result of x crossing under y at
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a negative crossing.
./*yx y

y yX&+XJ x>-y

The second Reidemeister move then says that >+ and >_ are
inverse operations, like addition and subtraction or multiplication and
division.

x i y yX

x>+ y ~y

((a? >+ y) >- y y yX

More precisely, we have

(x>+ y)>- y = x = (x >_ y) >+ y.

-1We usually drop the T and write x>y for x>_(_ y and write x>
for x >_ y.

y

xyX y

-iy x> y X > yy

We can also think about this from an algebraic point of view.
The second kei axiom says

(x t> y) o y =
For each fixed element y in X. let us define a function 0y : X — > X by
setting 0y(x) = xi>y. Then the second kei axiom says j3y(0y(x)) = x.
That is, the function fiy is its own inverse function, 0y 1 = 0y. A

x.
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function which is its own inverse (like flipping a light switch, or like
f(x) = x 4- 2 in Z4) is called an involution.

A function need not be an involution to be invertible; for instance,
the function f(x) = x + 2 has inverse function / '(x) = i-2 /
/(.r), and similarly the function f(x) = y/x — 3 has inverse function
f~l(x) = x2+3 /(a:). Thus, in generalizing from unoriented knots
to oriented, we are replacing the involutions 8y with merely invertible
functions (3y with (3y p~l.

It would seem natural to call the new structure oriented kei, but
for historical reasons the standard name is quandle. Thus, we can
state our new definition:

Definition 14. A quandle is a set A with a binary operation > :
X x X — > X satisfying:

(i) For all x E A", x > x = x.

(ii) For all y E A”, the map ,3y : A" —> X defined by fiy(x) = x> y
is invertible.

(iii) For all x, ;y, z E A, (x t> y)> z = (x > z) > ( y > z).

-1 .y for ft,, l{x).We write x >

With this definition, we can see that kei are a type of quandle,
namely quandles for which the maps (3y are involutions. For this
reason, kei are often called involutory quandles.

As with kei, we can understand the quandle axioms in terms of
knot diagrams:

v y yX X

X X

x>yV

1 y f(x \> y)t>X y yXX > X
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y> z

z fy>*\ \xs> z

\(x > y)>z (x > z) > (y > z)z f y>z

Example 63. Any set A' with the operation x>y = x for all x, y 6 A"
is a quandle, called a trivial quandle. We will use the notation Tn to
denote a trivial quandle with n elements.

Example 64. Let IF be a field, e.g. Q, R, C or Zp for p prime. Recall
that the set of invertible n x n matrices with entries in F is denoted
GLn(F). Then we can check that GLn{F) is a quandle with quandle
operation

A> B = B-'AB.

For instance, we can easily check that

A\> A — A~lAA = A

so the first quandle axioms is satisfied. To verify the second quandle
axiom, we need to show that we can solve the equation A\> D = C
for A. In this case, we have

At>B = B~lAB < > B(A> B)B~l = A> B(A> B) = AB <

so we have A>~1 B = BAB~[. Verification of axiom (iii) is exer¬
cise 8. The operation A\> B = B 1 A B is called conjugation, and
a quandle in which the quandle operation is conjugation is called a
conjugation quandle. Note that when multiplication is commutative,
the conjugation operation is trivial.

Example 65. More generally, let G be any group.
quandle under the operation of conjugation, i.e.

Then G is a

-lx>y = y xy.
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Example 66. Let n he an integer > 3 and consider a regular plane
n-gon Tn, say with center M and vertices iq, . . . , vn as depicted.

Vo
v\

*?i I /1/ ■>'2va
M\ t M

I
I I Vi4H I

V3V4
Vf>

Pentagon Hexagon I n

Let l be the line segment which goes from v\ through M and con¬
tinues until it hits r?i again. Recall that this regular n-gon has 2n
symmetries which form a group called the dihedral group. To describe
these symmetries, let u be the rotation of Vn about M through an
angle of — and v be a reflection (flip) about the line /. Then un and

. Inv2 -l _ -iare the identity symmetry, and we have vuv = vuv = u
fact, using these rules, any element of the group of symmetry of r„
can be written as u'v*, where 0 < i < n — 1 and 0 < j < 1. In other
words, there are n rotations (u\ 0 < i < n 1) corresponding to
j = 0, and n flips (ulv, 0 < i < n — 1) corresponding to j = 1. The
conjugation xt> y = yxy 1 on the set of reflections of Tn is given by

(uav) > (uhv) = ubvuav(ubv)
By considering the one to one correspondence uav a between the
set of reflections of F„and Zn we can transfer the quandle operation
from the set of reflections of Tn to Zn by defining a > h = 2b — a
(mod n) for a, h € Zn (integers modulo n). The set Zn with this
quandle structure called the dihedral quandle, denoted by Rn.

= ubu avu h — u2h av.-l

Example 67. For any vector space V and an invertible linear trans¬
formation t : V V of V , define a quandle structure on V by

u > v = t(u — v)+ v.

Such a quandle is called an Alexander quandle; we will look at Alexan¬
der quandles in more detail in the next section.
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Quandle Colorings. As with kei. given a finite quandle X we have
a counting invariant v defined by counting the number of quandle
colorings of our oriented knot or link diagram. For much of the re¬
mainder of this book, we will study the quandle counting invariant
and certain invariants known as enhancements.

Example 68. As with the fundamental kei of a knot, there is a
fundamental quandle. sometimes called the knot quandle, associated
to an oriented knot or link given by a presentation with generators
corresponding to arcs and quandle relations at crossings. We will
study the fundamental quandle, also called the knot quandle in more
detail in Chapter 4.

a function (j> : (Xu>\) — > (Xo,>2) is a quandleAs with kei,
hornomorphism i f

(p(a Oi b) = <j)(a) >2
for all n, b 6 X\. Axiom (iii) of the quandle definition states that for
each u E A , the map jib : A" — > X defined by /3*,(a) = a>b is a quandle
homomorphism. As expected, a subquandle of a quandle is a subset
closed under >, and every quandle homomorphism has an image sub¬
quandle contained in t he codomain quandle. Quandle colorings of a
knot K by a quandle X are really quandle homomorphisms from the
fundamental quandle of K to A".

Example 69. Consider the knot 819 from example 60 and the Alexan¬
der quandle A" = A j/(t — 3), i.e. Z7 with quandle operation

x t> y = 3x -f 5y.

X has the operation table

0 1 2 3 4 5 6>
0 5 3 1 6 4 2
3 1 6 4 2 0 5
6 4 2 0 5 3 1
2 0 5 3 1 6 4
5 3 1 6 4 2 0
1 6 4 2 0 5 3
4 2 0 5 3 1 6

0
1
2
3
4
5
6
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Since this quandle operation is a linear function, we can compute the
set of all quandle colorings of 819 by X using row-reduction over Z7.
Specifically, if we give 819 the pictured orientation

/a

£

h

d c
b

then the system of linear equations determined by the crossing rela¬
tions has the coefficient matrix

36000050
03605000
0 5 3 6 0 0 0 0
00036005
0050 3 600

0 0 0 0 3 6 0
0 5 0 0 0 0 3 6
6 0 0 0 5 0 0 3

5

After row-reduction over Z7, we find there is a 2-dimensional space of
quandle homomorphisms Horn( 0(819), A”) (see exercises), and hence
the counting invariant is

|Hom(Q(819),A')| = 72 = 49.

Automorphism Groups. Let Aut(X) denote the group of all au¬
tomorphisms of X. The subgroup of Aut(X), generated by the per¬
mutations /3X, is called the inner automorphism group of X and
is denoted by Inn(X). Quandle axiom (iii) implies that the map
fi : X —> Inn(X), sending u to fiu satisfies the equation

PzPy = PyozPz
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for all y,z G X, which can be rewritten as

= fty[>z •

Thus, if the group Inn(A) is considered as a quandle with conjugation
then the map (3 becomes a quandle homomorphism.

The subgroup of Aut(A) generated by j3x(3yl for all x, y G X is
called the transvection group of X , denoted by Transv(X). It turns
out that the transvection group is a normal subgroup of the inner
automorphism group and that the inner automorphism group is a
normal subgroup of the automorphism group of X since f/3xf
fif{x) for all x G X and for all / G Aut(A). The quotient group
Inn(Ar)/Transv(A) is a cyclic group since any two generators 13X and
0y are equivalent modulo Transv(A).

The orbit of an element x in X , denoted by Orb(x), is the subset
of elements y in X such that there exists some element / G Inn(A)
that maps x to y. That is, the orbit of x G X is the set of elements one
can get to from x by quandle operations. For example, the dihedral
quandle /?4 has two orbits: orb(O) = orb(2) = {0,2} and orb(l) =
orb(3) = {1.3}. In the operation table of a quandle, the orbit of an
element Xk includes all the elements in the row of together with
all the elements in the rows of those elements, etc.

Quandles can have various extra properties; we list some of the
more common types.

• A quandle X is connected if it has a single orbit. That is,
X is connected if for all x,y in A, there exists an element /
in Inn(A) that maps x to y.

• A quandle is Latin if for each a G X , the map Xa : X — > X
defined by Xa(b) = at>b is a Injection. That is, X is Latin if
the multiplication table of the quandle is a Latin square, i.e.
a square with no repeated elements in any row or column.

• A quandle A" is medial if for all a.6, c.d G A" we have

-lPzPyPz

-1 _

(a t> b) > (c> d) = (a > c) > ( b > d).

It turns out that a quandle is medial if and only if its
transvection group is abelian; thus, medial quandles arc also
called abelian. For example, Alexander quandles are medial.
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• A quandle is faithful if the mapping a t— > da is an injection
from X to Inn(X). That is, a quandle is faithful if no two
elements have the same fix map, or equivalently, if no two
columns in the quandle operation table are the same.

• A quandle A" is called simple if the only surjective quan¬
dle homomorphisms / : X — > Y have trivial images or are
bijective.

Exercises. 1. Let (A, >) be a quandle and recall that the inverse
map of fiy is the map x H> x >~ly. Prove that (A", >_1) is a quandle
(called the dual quandle of (A\ >)).

2. Using the quandle axioms, prove that the quandle operation o
and the inverse quandle operation >_1 are mutually right-distributive;
that is,

( x > 1 y) > z

(x t> y) D>— 1 2

( x t> z) > 1 (y > z) and
(x t>_1 z) i> (y >_1 z).

3. Find all quandle structures with three elements: first, note that
any such quandle has a 3 x 3 operation matrix with diagonal entries
1,2,3 by quandle axiom (i) and columns which are permutations by
quandle axiom (ii). Which of the ways of completing such a table
satisfy the self-distributive property?

4. Of the quandles you identified in problem 3, which are isomorphic
to which?

5. Using operation tables like in problems 3 and 4, identify all four-
element Latin quandles up to isomorphism.

6. Prove that a quandle can be decomposed as a disjoint union of its
orbits and that each orbit set forms a subquandle.

7. Using row-rednetion over Z7, find a basis for the space of quandle
homomorphisms in example 69.

8. Verify that conjugation in a group is self-distributive.
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3. Alexander Quandles and the Alexander
Polynomial

For most of the 20th century, the quest for knot invariants seemed
to come back to one of the first strong knot invariants to be discov¬
ered, the Alexander polynomial A(A'). It turns out that perhaps the
simplest way to understand the Alexander polynomial is in terms of
a type of quandles known as Alexander* quandles. These quandles
are modules over A = Zÿ1], the set of Laurent polynomials in one
variable with integer coefficients. This set A is not a field, but it does
include negative powers of t; in fact, the only division we can do in A
is division by (plus or minus) powers of t. We will denote by An the
ring Zn[t±l] of Laurent polynomials with Zn coefficients.

Definition 15. Let A be a module over A = Zÿ1]. Then A is a
quandle under the operation

x>y = tx+(l- t)y

known as an Alexander quandle.

To verify that we actually have a quandle, we must check that
the quandle axioms are satisfied. So, suppose A is a A-module and
define x > y as above. Then for the first axiom, we have

x t> x = tx + (1 — t)x = (t -hi — t)x = x

1 y. Letas required. For the second axiom, we need to identify x t>
us write x — z\> y and solve for z:

tz + (1 -t)y,X

tz;x-(l- t)y

t~lx — (t
x+(l-rl)y

Z,
-1 i)?7

-1 — ♦z ,t

so we have f c> 1 y = t lx+ (1 — t l)y.
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Finally, let us check self-distributivity:

(x>y)>z = t(x> y) + (1- t)z
= t(ta+{i-t)jn + (i-t)z
= t2x H- t(l - £)y + (1 — t)z ,

while

(x > 2) > (y > z) = t(x>z) + (1- t)(y>z)
= t(tf + (1 - t)z) + (1- (1 - t)f)
= t2.f+f(l - [f(l - f) + (1 - f)2]ÿ
= t2x -f *(1- t)y + [f - *2 + 1- 2t + t2]f
= t2x + £(1 - t)y + (1 - t)z

as required.

Example 70. Any vector space V becomes an Alexander quandle
when we select an invertible linear transformation t : V V and
define

x> y — tx + (/ — t)y
= R2 andwhere I is the identity matrix. For example, consider V

1 2choose t = . Then t is invertible with
1 3

3 -2
-1 1

0 -2
-1 -2 ’

~i and I — t =t

then we have quandle operation

1 2
1 3

0 -2
-1 -2

y\ yi+>
#2 •*‘2;*/2 y/2

-2I/2— 2/i - 2y>
xi + 2x2
xi + 3x2

.Ti + 2x2 - /72
«1 + 3ÿ2 - yi - 2y2

+

Example 71. The integers mod n, Zn, form an Alexander quandle
with the choice of any invertible element t € Zn, i.e., any t whose
greatest common divisor with n is 1. Then we have Alexander quandle
operation

x>y = tx + (l — t)y.
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For example, in Z3 we can choose Z = 1or t = 2; then we get Alexan¬
der quandles with operations as listed:

x > y = 2:r 4- 2y
> 0 1 2

x C> y = x
>012

0 2 1
2 1 0
1 0 2

0 0 0
1 1 1
2 2 2

00
1 1
2 2

We can get more examples of finite Alexander quandles by taking
quotients of An = Zn[t±l] by monic Laurent polynomials P 6 An, i.e,
polynomials with top degree term ZA‘+I for some integer k. In fact, we
can without loss of generality assume P is a genuine polynomial by
multiplying P by tn to get a polynomial with nonzero constant term.
Then as a set, our finite quandle consists of Zn-linear combinations
of 1, Z, Z2, ... , tk where deg(P) = k + 1 with the rule that tk+l gets
replaced by tk’+l — P in our computations.

Example 72. In the Alexander quandle A = A3/(2 + Z + /2), we have
2 4- 1 4- 12 = 0 which implies t2 = —2 — t = 1-1-2/ (since we have Z3
coefficients). Then the elements of A are {0,1, 2, /,1 -h /, 2 -b /, 2/,1 +
2/, 2 -|- 2/}. Then for instance we have

(1-f/) >2/ Z(lT/) + (1-/)(2Z)
Z 4- Z2 T 2/ - 2Z2
3Z - Z2
2Z2
2(1+2/)
2 + 4Z
2 + Z.

Example 73. In the Alexander quandle A = A2/(l + Z2), we have
1 + 12 = 0 which implies Z2 = — 1 = 1 (since we have Z2 coefficients).
Then the elements of A are {(), 1,Z,1+ /}, and we have, for instance,
(1 + Z)2 = 1 + 2Z + Z2 = 1 + 0 + Z2 = 1 + Z2 = 1 + 1 = 0 and
Z(1 + Z) = Z2 + Z = 1 + Z. We can then find the complete operation
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table of A:

t 1 4~ t10>
0 1 + t 1 -f t 00

1 11t t
1 1tt t

0 1 + t14-t 14-t 0

The Alexander Module. What if we apply the Alexander quan-
dle idea to the fundamental quandle of a knot or link? Specifically,
suppose we take an oriented knot diagram and label each of the arcs

At each crossing, we get a quandle relation Xi\>Xj = x.7 \ , X 2, • • • , Xn •

let us interpret this as an Alexander quandle relation, so we have equa¬
tion tx{ 4- (1 — t)xj = Xk or tx{ 4- (1 — t)xj — xÿ = 0. Thus, we have
a homogeneous system of linear equations, which we can express as
a matrix equation Ax = 0. In particular, the matrix A has a row for
each crossing with entries f, 1 —t, or —1 for the arcs involved in the
crossing and 0 otherwise.

x
x : t
y:l-t
z : -1

zy

As we saw in Chapter 2, such an equation has several associated
vector spaces; if A has m rows and n columns, then A represents a
linear transformation / : An —¥ Am; the solution space to the system
Ax = 0 is called the kernel of /, and we can form the the quotient
module An/Ker(/). In this case, the quotient module of the free A-
module generated by the arcs of K modulo the kernel of A is called
the Alexander module of K: it can be understood as the fundamental
quandle of the knot K interpreted as an Alexander quandle. The
matrix A is known as a presentation matrix for the Alexander module.
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Example 74. The trefoil knot below has Alexander module with
listed presentation matrix.

2

1 -t -1 t
t 1 -t -1
1 t 1 -t

A =x
y

The first really powerful knot invariant, discovered back in the
1920s by Alexander, was the Alexander polynomial. Like the Jones
polynomial, it is actually a Laurent polynomial, meaning it can have
negative as well as positive powers of its variable t. though it turns
out we can always “normalize * it to get a genuine polynomial.

Here's how it works: a subset S of A is called an ideal if it satisfies
the properties:

• If x, y £ S then x + y £ S.
• If A £ A and x £ S, then Xx £ S.

Ideals are very similar to subspaces in linear algebra: both are subsets
which are closed under addition and a kind of multiplication, but
where a subspace must be closed under scalar multiplication, an ideal
must be closed under multiplication by everything in A. A generating
set for an ideal S is a set G C S such that everything in S can be
written as sums of multiples of elements of G, analogous to a basis but
with multiplication in A instead of scalar multiplication. An ideal is
called principal if it has a generating set consisting of a single element.
In particular, if x = yz where y is invertible, then the principal ideals
generated by x and 2 are the same since every multiple Az of 2 is
a multiple (A y~l)x of x. On the other hand, if two elements x and
z generate the same principal ideal, then x = yz for some invertible
element y of A.

Now, consider an n x n matrix with entries in A. For any non-
negative integer fc, let h- be the ideal with generating set given by
all of the (n — k) minors of A, i.e. the determinants of the matrices
obtained from A by eliminating k rows and columns. Ik is called
the kth elementary ideal of A. Next, let Pk be the smallest principal
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ideal containing Ik since A itself is the principal ideal generated by
1, there is always a Pk for every Ik - and let A*, be a generator for
Pk. Indeed, it turns out that the greatest common divisor of a set of
generators for h is always a generator for Pk. Then if our matrix is
a presentation matrix A for the Alexander module of a knot K, Aÿ
is the kth Alexander polynomial of K.

Alexander proved that every knot has Ao = 0 since the matrix
A always ends up being singular, and that the first elementary ideal
1 1 of a presentation matrix A for t he Alexander module of a knot is
always principal. Then in particular, we can compute the Alexander
polynomial of a knot by writing down the matrix A and taking any
(n — 1) minor. Since A& is only defined up multiplication by ±£n,
to get a canonical value for the invariant we can multiply by an ap¬
propriate ±tn to get a positive constant term. For instance, if we
get

-r2 + 1+ t

we can multiply through by (— t2) to get normalized polynomial

i -e -e.
Example 75. Let us compute the Alexander polynomial of the figure
eight knot 4j. First, we need a presentation matrix for the Alexan¬
der module, which we can obtain by labeling the arcs in a diagram
of 4i and interpreting the crossing relations as Alexander quandle
operations:

-1 t 1 -t 0
1 - 1 0 -1 t
-1 1-t 0 t
0 t -11-t

xi

A =X‘2
2T4

*r.3
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Next, we can choose any row and column to eliminate, then take the
determinant. For example, suppose we eliminate row 1 and column 3:

01-t t
1-1 t

t 1- t(i-0-i i -t t
t i-t.

+ o
0

-1 1-t
0 t

= (l-*)[(l-<)2-*2] + *(-<)
= (l-t)[l-2*+ i2-*2]-*2
= (1-*)[1 - 2/,] - t2
= 1- t - 2t + 2t2 - t2
= 1-3t + t2

+t

and in this case, we don’t need to normalize since we already have a
positive constant term. Alternatively, we could instead eliminate row
2 and column 4:

-1 t 1-t
-11 -t 0
0 t -1

1- 1 0
t -1

-1 0
0 -1

- 1

-1 1-t+(i-o 0

= -(-(i-0)-*(i) + (i -t)(-t)
= 1-t-t-t + t2

— 1 — 3t H-

t

or row 3 and column 1:

t 1- t 0
0-1 t
t -1 1-t

-1 t
-1 1-t + 0 + 1

-1 0
-1 t= t

= t(-l(l-t)-(-t)) + t((l-t)t)

= t(-l +2t2) + t2 - t3
= — t + 3t2 — t3.
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Now this last one looks different from the first two, but it doesn’t
have a positive constant term (its constant term is zero): thus, we
can normalize it by multiplying by — t 1 to get

-r'i-t + 312 - 13) = l - 3t + 12.

Colorings by Alexander Quandles. One advantage we have when
coloring knots with finite Alexander quandles instead of quandles de¬
fined by operation tables is that we can use linear algebra to compute
the set of quandle colorings of a knot or link. Specifically, the Alexan¬
der quandle presentation matrix A can be understood as the system
of linear equations specifying colorings of K\ if X is a finite Alexander
quandle, we can row-reduce the matrix A over X to find the solution
space Hom(Q(A'), A").

Example 76. Let X be the Alexander quandle Aÿ/(t — 3); let us find
the set of X-colorings of the figure eight knot 4i by Ar. We could do
this by making a table of possible colorings and checking which satisfy
all of the crossing equations, but since X has an Alexander quandle
structure we can instead use linear algebra. In X = Arj/(t — 3) we
have t = 3, 1 — t — 1—3 = —2 = 3 and —1=4. We can then
replace the £, 1 — t and —1 values in the presentation matrix for the
Alexander module of 4\:

0 1 ' 4 3 3 0 "

3 0 4 3
4 3 0 3
0 3 4 3

t 1 - t
0 -1

-1
1 -t t

-1 1 - 1 0 t
0 t -1 1- t

We can then row-reduce this matrix over Z5, i.c., using Z5 arithmetic
rules, to find the space of solutions, i.e., the set of A'-colorings of K.

" 4 3 3 0 "

3 0 4 3
4 3 0 3
0 3 4 3

" 1 3 4 2 "

3 0 4 3
4 3 0 3
0 3 4 3

" 1 3 4 2 “

0 12 2
4 3 0 3
0 3 4 3

" 1 3 4 2 '

0 12 2
0 14 0
0 3 4 3

" 1 3 4 2 '

0 12 2
0 0 2 3
0 3 4 3

' 1 3 4 2 '

0 12 2
0 0 2 3
0 0 3 2

r\j
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' 1 3 4 2 '

0 12 2
0 0 2 3
0 0 0 0

' 1 3 4 2 '

0 12 2
0 0 1 4
0 0 0 0

' 1 3 4 2 '

0 1 0 4
0 0 14
0 0 0 0

'13 0 1'
0 1 0 4
0 0 1 4
0 0 0 0

' 1 0 0 4 '

0 1 0 4
0 0 1 4
0 0 0 0

Thus, the kernel has dimension 1 and thus is isomorphic to Z5; hence
there are 5 colorings of 4i by X . Since we already know there are five
constant colorings (where every arc gets the same color), these are all
of the quandle colorings of 4i by A".

Exercises. 1. Complete the operation table for the Alexander quan¬
dle A =\s/(2 -F t + t2) from Example 72.

2. Find the operation table for the Alexander quandle A = Ao/(l T-
t + 13).

3. Compute the Alexander polynomial of the (4, 2) torus link below.

4. Compute the Alexander polynomial of the knot 5*2 below, then do
it again with a different choice of row and column eliminated.
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5. Find the set of quandle colorings of 0i by the Alexander quandle
Aa/(t — 2) using row-reduction in Z3.
6. Find the set of quandle colorings of the (4, 2)-torus link

by the Alexander quandle A±/(t — 3) using row-reduction in Z4. Keep
in mind that since 2 is not invertible in Z4, you can only multiply rows
by 1 and 3, not 2.

V
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Chapter 4

Quandles and Groups

1. Fundamental Group

In this section we will introduce the notion of the fundamental group
of a subset of Wl. But first let's back up a little bit to the history of
this mathematical notion. In 1895, the famous French mathematician
Jules Henri Poincare (29 April 1854-17 July 1912) associated to each
topological space a group called the fundamental group of the space.
More generally, Poincare’s research in geometry led to the abstract
topological definition of homotopy and homology. This was the begin¬
ning of a new field of mathematics called algebraic topology. Poincare
was responsible for formulating the Poincare conjecture, which was
one of the most famous unsolved problems in mathematics until it
was solved in 2002 2003 by Grigori Perelman.

The concept of homotopy allows us to define a useful equivalence
of functions in general and paths in particular. It corresponds to
a continuous deformation of one function to another. The precise
statement is given by the following:

Definition 16. Let X be a subset of IRri and let x, y £ X. A path in
X from x to y is a continuous map 7 from the interval [0. 1] to X such
that 7(0) = x and 7(1) = y. Two paths 70 and 71 with endpoints
fixed (7o(0) = 7i(0) = x and 7u(l) = 71(1) = y), arc said to be
path homotopic if there is a continuous map H : [0, 1] x [0, 1] — > X

107
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satisfying

7o(«), 0 < s < 1
7i(s), 0 < « < 1

0 < t < 1,
0 < t < 1.

II(s.0)
H(SA)
H( 0, t) x,

V

We usually write 70 — 71 to denote that 70 and 71 are path homotopic.

The map II can he thought of as a map from the interval [0, 1]
to the space of paths on A" via the map t 77 where 71 : [0, 1] — » A'
is given by 7/(s) = H(s,t). One can think of the variable t as a
time parameter and the set {7*}o</<i as a family of paths that moves
continuously with t. To better understand the intuitive pictorial idea,
imagine that the two curves 70 and 71 are made of rubber bands.
Intuitively 70 is said to be defonned into 71 if by stretching and pulling
the rubber band 70 can be continuously moved in the space A till
it coincides with the rubber band 71. The rule is that during the
movement the rubber band must never be broken. The picture

71

V
II

t

s X X

7o

gives the illustration of all this showing some intermediate paths be¬
tween the initial path 70 and the terminal path 71.

Example 77. For n > 2, and for all y £ Rw, any two paths 70
and 71 from x to y are homotopic via the linear homotopy, II(s,t) =
(1 — £)7Q(S) -f £71(5), where 0 < s, t < 1 .
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The notion of path homotopy gives an equivalence relation on
the set of paths in X from x to y (see exercise 1 below). The equiva¬
lence classes modulo this equivalence relation arc called the homotopy
classes of paths from x to y. The homotopy class of a path 7 is de¬
noted [7]. Then by definition [70] = [71 is equivalent to 70 — 71.

Composition or product of paths. Let a;, y, z € A" and let a be
a path from x to y and /3 be a path from y to z. Since a(l) = /3(0),
we can define the composite path a/3 bv

a(2$)
/3(2s-1), \ < s < 1.

From this product, we sec that if we have four paths 71,72,73
and 74 with 71(1) = 73(0), 72(1) = 74(0) and such that 71 ~ 72 and
73 ~ 74 then 7173 7274. This allows us to define a product on the
set of equivalence classes of paths. Precisely, we define [a] /3] = [a/3].
One can then easily check the following property of associativity, that

0 < .s < A2’(cv/J)(s) =

IS,

([»][/?])[7] = M([/3][7])-
For any x € A", let cx be the constant path at x, that is, the

path given by cx(t) = x for t £ [0, 1]. One can easily see that if 7
is a path from x to y then [7] [cy] = [7] and [cx\ [7] = [7]. Given a
path 7, we can consider the path 7 given by 7(£) = 7(1 — t) (the path
going in the opposite direction). It is easy to see that [7][7] = [cx]
and [7][7] = [cy).

Now if we specialize a bit into the notion of paths we obtain the
notion of loops:

Definition 17. Let A" be a subset of Rnand let x be a fixed element
of A. A loop based at x in X is a path with initial point and endpoint
x. The set of loops based at x is denoted 7Ti(A,x).

It is then clear that TT\ ( A\ X) with the operation of multiplication
of homotopy classes is a group since multiplication is associative, the
identity element is the constant map x and the inverse of the homo¬
topy class of a loop 7 is the homotopy class of the inverse loop 7-1,
i.c. 7 with the opposite direction.
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Definition 18. The group 7TI(.Y, X) of loops based at x, with the
operation of multiplication of homotopy classes, is called the funda¬
mental group of the space A" based at x.

Remark 1. If in a subset A" C Kn, every two points and x\ can
be connected by a path, then the space A" is called path connected.
In this case, the two groups 717(X, XQ) and 7Ti(X, #i) are isomorphic.

It turns out that an ambient isotopy taking a knot K to another
knot K' induces an isomorphism of the fundamental group of the knot-
complement R3\ A', called the knot group of A\ onto the fundamental
group of R3 \ K’ . In particular, two knots with different knot groups
cannot be equivalent.

Exercises. 1. Prove that path homotopy is an equivalence relation
on the set of paths of a subset A" of Rn.

2. Let
[0. 1] — > R be the direct path sending t to tx. Prove that 7 and a are
homotopic.

3. Compute the fundamental group of the plane R2.

4. Compute the fundamental group of the unknot, that is the circle

S' = {(x,y) e R2;

a path in R with 7(0) = 0 and 7(1) = x 0. Let a :!

x2 + y2 = 1}.

5. Given three paths
73(0). Prove that (71 72) 73 7i (72 73)*

72 and 73 with 71O) = 72(0) and 72(1) =7i,

6. Prove that the product of homotopy classes of paths is associative,
i.e. that

WDM = [«]([/«
for paths a, /3, 7.

2. Braid Groups

In this section, we look at important relations between braids and
links. It is the study of knots which motivated the study of braids.
As we mentioned before in Chapter 1, an //-braid is a tangle with n
inputs and n outputs which has no maxima and no minima in the
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vertical direction. More precisely, if we think of the strings as coining
down from a top horizontal plane to a bottom horizontal plane then
each horizontal plane in between intersects the braid at exactly n
points as shown in the picture:

\ V
\

\ V

We consider braids with downward orientation. We can always ar¬
range the strands in such a way that no two crossings of the braid
occur at the same height. Two braids arc called isotopic if one can
be obtained from the other by a continuous deformation with the re¬
quirement that the top and the bottom endpoints of the braid are
kept fixed and such that at any time an intersection with a horizontal
plane is made exactly of n points. More formally, two braids do and di
are isotopic if there exists a continous map H : do x [0, 1] R2 x |0, 1]
such that for all t € [0, 1], the continuous map Ht : do K2 x [0, 1]
sending x 6 do to H(x,t) is an embedding whose image is a braid
on n strings, where H0 is the identity map from do to itself and

The map H and the family of maps {//*(do)}o<t<i
are called an isotopy of do into di- The following are two isotopic
4-braids.

Hi(do) = A-

V
\

\rsj

\ i
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Product of Braids. Lot do and di be two braids on n strings. The
product do di is the braid obtained by stacking do over di:

\ 00

0X

If do and do are isotopic n-braids and di and di are also isotopic n-
braids, then the product do di Is isotopic to do di as n-braids. This
makes the notion of the product of braids a well-defined operation.

♦ * i 1
i i + l i i+ ln n

♦ • ♦

II

• • • • • •• • •

It is clear from the definition that t he identity braid (the braid with
vertical strings and no crossings) is the neutral element of this prod¬
uct. We know from Reidemeister move II that composing a posi¬
tive crossing and a negative crossing gives the identity braid on two
strings. This is the basic principle of constructing the inverse of a
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given braid. Given a braid /3, we slice it by finitely many planes in
such a way that between every two consecutive planes we have exactly
one crossing. We then construct the inverse of the braid by putting
crossings with opposite signs starting from the bottom crossing and
going up. as can be seen from the following picture.

v
\

0

00~' = 1

identity
braid0~'

(0~'0 - 1

identity
braid 0

The braid group we just described using geometric braids can be
characterized algebraically in the following sense. The braid group on
n strands, denoted Bn, is the group generated bv (n — 1) generators,
rri . rr<2, . . . , <Jn _ i subject to the braid relations:

if |i-j|>2,(i) Vi, j where 1 < i,j < n— 1, <7i<?j =
(ii) Vi where 1 < i < n — 1,

and(TjCTi

With n strings, the braid rr?; represents the braid with only one
positive crossing between the ?*th and (i + l)th string (all the other
strings go vertically down). Its inverse is the braid 1 with only a
negative crossing between the ith and (i + l)th string as can be seen
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from the following picture:

i i + 1 ni i + 1 77

*f‘=(Ji = • ♦ •

The braid relations (i) and (ii) can be seen respectively from the
following diagrammatic pictures:

3 j + 1 n3 j + 1 n i i+1i i + 1

VV
• • • • • ♦• • • ♦

and

2+1 2 + 2 2+1 2 + 2n n/ iv
\ • • •• • •• • •

\

In particular, in terms of universal algebra we can define the n
string braid group with the group presentation

Gi+1 &i-\-1 ? \
for |i - j\ > 2 / 'Bn = <Jl , . • • , (Trl—l

<7 j (T j (TjCTj
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This description of braids by generators and relations makes the
study of braids very convenient. For example, the braids So and Si

V
\

0o

) A

can be written as So = (J\(T2ÿIÿ2~1 and Si = Thus their
product is the braid /3o Si = 020*102”1020102

_1 which is equivalent
to the braid 0‘i0*20i20‘2_1*

In the figure

\
0

00~' = 1

identity
braid) 0~'

0~'0=1
identity
braid

\
0

the braid S is given by

S = aiG2(t102 1
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and its inverse is

0 1 = (J2&1 1&2
as can be seen from the simple verification

-l

-i -l -i _ -i _ -l00 (7\&2(J\(J2 2&1 Oo 0\

1

(where 1 is the identity braid) and

0~l 0 = (T\(T2O\02X
].

This description of braids by generators and relations is very prac¬
tical in computing the set of colorings of a given braid or knot. It is
easy to see from the definition that the braid group B\ is the trivial
group. Any braid on two strands is isotopic to a braid with m cross¬
ings. This integer m characterizes the given braid. Thus the group
B2 is isomorphic to the cyclic group Z. Algebraically said, the group
B‘i is generated by a single element (T\ and no relations, thus it is iso¬
morphic to Z. The group B% is the group generated by two elements
ai and G2 with only the relation G\G2G\ = G2G\G2. We will sec that
this is the fundamental group of the trefoil knot complement.

Mapping each <7, of the braid group Bn to the transposition
Tj = [1, 2, . . . , i — 1, i + 1, i, 2 -f 2, . . . , n] switching i and i + 1 in the
symmetric group Sn on n letters gives a natural surjective group ho¬
momorphism from the braid group Bn to the symmetric group Sn.
This is because the analogous braid relations (i) and (ii) are satisfied
by the transpositions:

Since every permutation is a product of transpositions, we have an
onto group homomorphism Bn — > Sn sending crg- to Tj.

We want to turn a link into a braid, and vice-versa. One direction
is easier than the other. We obtain a link from a braid b by connecting

A

the lower ends of the braid with the upper ends, denoted b. The
closure of a braid is usually taken to be oriented. Recall that all the
strands of the braids arc oriented from top to bottom.
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Note that isotopic braids generate isotopic links, and that non¬
isotopic braids may generate an isotopic link; see for example the
following figure,

31 2321

\ and

in which the braids /?o = <J\<J2 and 0\ = have the same closure
that is the unknot. We leave it as an exercise to check that and
/3i cannot be isotopic.

Because the closures of two braids with a different number of
strands can give the same knot, we need the following definition.
The braid index of a knot K , denoted braidind(/v ), is the minimum
number of strings needed to express K as a closed braid.

Closing a braid b with n strings gives a collection of closed, simple
curves in RA (i.e. that do not intersect each other), so the closure is a

A

link. Obviously, the closure b can have no more than n components,
because each point A, on the top plane connects with a unique point
Bj on the bottom plane (at most n disconnected curves in b ). It,

A

follows that the closure b of any braid b € Bn is a link with at most
n components.

Given a link L, does there exist a braid b such that the closure of
b is equivalent to LI

In 1923 J. W. Alexander answered this question in the positive, as
can be seen in the theorem below. There is an algorithm to construct
the braid from the link, but it is quite long and difficult, even for links
with few crossings.

Theorem 6 (Alexander's Theorem). For any link, L, there exists an
integer n > 0 and a bmid b € Bn such that L is equivalent to b.
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Example 78. The braid index of the right-handed trefoil knot is
2. The closure of the braid 0 = cr\ is the right-handed trefoil. The
left-handed trefoil is the closure of CF{' .
Example 79. The braid index of the figure eight knot is 3.
closure of the braid 0 = a\a.-, <j\on is the figure eight knot.

The

The braid index of the knot 6i (see knot table inExample 80.
Chapter 1) is 4. The closure of the braid 0 — afa2(J\X is
the knot 6i.

In a 1935 paper, A.A. Markov gave a proof of Markov’s Theorem
below.

Definition 19. Two braids are Markov equivalent if their closure
gives the same oriented knot.

This requires two moves called, respectively, conjugation and sta¬
bilization:

-l(1) b ~A/ aMi
(2) b ~A/ h(Tn or b btrn_1.

In this last relation we use the natural inclusion of the braid group
Dn into the braid group Bn+\ by adding a vertical string to the right
of a braid b as can be seen from the following figure.

7i n T 11 1n

b b

i i r-[
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The conjugation move is given by the figure

i i 4- 1

\

b

7r
The stabilization move is seen in the following figure:

1 n n — 1n

b b

r i
Thus b is considered as an element of Dn while bcrn and bcrTl 1 are
considered as elements of Bn+\.
Theorem 7 (Markov’s Theorem). The closures of braids b and b' are
isotopic links if and, only if b' can be obtained from b by a sequence of
Markov moves (conjugation and stabilization).

Find another explicit example (than the one given
above) of nonisotopic braids that generate isotopic links.

2. Check that the element (ÿiÿ2ÿi)2 of the braid group B3 commutes
with (Ji and with o2 and thus lies in the center Z(B:i) of B:i.

Exercises. 1.

3. Prove that the relation between braids, /?o ~ 3\ if and only if j3o
and are isotopic, is an equivalence relation.

4. Prove that the two braids 0o = (J\cr2 and 0\ — (T2(J I cannot be
isotopic (Hint: use the natural mapping of the braid group B:i to the
symmetric group S3).
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5. A braid is called pure if for every k the kth strand on top ends at
the kth position on the bottom; that is, a braid is pure if it induces the
identity permutation in Sn. Prove that pure braids form a subgroup
of Bn.

3. Knot Groups

Let us think about a knot in R3. The space R3 is infinitely large, ex¬
tending forever in three mutually perpendicular directions. In topol¬
ogy, however, size is a relative thing; for instance, an open interval
like (0, 1) is topologically the same as every other open interval, in¬
cluding infinite intervals like (— DC,CXD). For simplicity, we prefer to
stick to sets which are finite in size, specifically those which have a
property known as compactness 1 .

It turns out that by adding a single point to Rn, usually called
“the point at infinity” , we get a compact space which is topologically
the same as the set of all unit vectors in IRn+I , known as the n-sphere:

Sn = {f€R"+1 | ||£|| = 1}.
It is easier to see the correspondence in the n = 2 case since we can
visualize both R2 and §2. The correspondence is called stereographic
projection, and here's how it works: think of R2 as the x-y plane in
R2 and think of S2 as the unit sphere in R3, i.e., centered at the the
origin and with radius 1.

N
--4ÿ0

VJ>: /(/>)
i
\
\

Let us call the north pole of the sphere, i.e., the point (0,0,1), N.
Then given a point p on the sphere other than the north pole N, draw
the line between N and p; this line intersects the plane in a unique
point f(p). Conversely, given any point on the plane, the line joining

1 Formally, a set is compact if every time we can cover the set with open sets,
it turns out that we only need a finite number of these open sets; for sets in Rn,
compactness is equivalent to being closed and bounded.
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it and Ar intersects 52 in a unique point. This correspondence maps
the unit disk to the southern hemisphere, the origin to the south
pole, and maps the northern hemisphere to the outside of the unit
disk. In fact, we can think of the outside of the unit disc as another
disc whose center is the point at infinity, corresponding to our north
pole N. Thus, we can think of the sphere S2 as the result of gluing
two discs together along their boundary circles.

In a similar way, we can think of S3 as a finite size version of
R3 obtained by gluing together two solid balls along their boundary
spheres, one inside and the other outside; the center of the outside
ball is the north pole of S3, the “point at infinity" we add to R3.
Locally, S3 looks exactly like K3, but if you go far enough in the
same direction you eventually come back to where you started.

Now, suppose we have a knot K inside of S3. The knot comple¬
ment of K is the result of removing K from S'3; we might picture this
as the result of drilling a A'-shaped open tunnel out of S3. We can
even draw a knot complement using the trick of dividing S3 into two
balls to be glued together:

Of course, different choices of position for the dividing sphere will
give us different pictures of the same knot complement. The dividing
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sphere is known as a Heegaard splitting. an essential tool in the study
of 3-manifolds, sets of points which locally look like M3. Note that the
boundary of the knot complement is the knotted torus in the shape
of K.

The knot group of a knot I\ c S3 is the fundamental group of the
knot complement £3 \ K. Let us start with the case of the unknot.
Choose a basepoint * not on the knot. Then any loop based at *
either links the knot or does not. A loop which does not link the knot
can be shrunk down to the basepoint in S3 \ K and thus is trivial.
A loop which links K wraps around K an integer number of times;
in fact, the number of times the loop wraps around K is exactly the
linking number of the loop with K . (Negative linking number means
wrapping around K backwards). It turns out that any two loops
linking the unknot with the same linking number are homotopic, so
the fundamental group of S3\K can be identified with the integers
Z.

More generally, a loop in S3\ K is nontrivial in 7Ti(S3 \ K) if it
links K. In particular, n\ (S3 \/\,*) is generated by loops which link
each arc in a diagram of K exactly once. We usually indicate these
on a diagram with a little arrow passing under the arc, which we can
think of as the base of a triangular loop from a base point above the
knot diagram.

What is the relationship of these generators at a crossing? First ,

notice that if we have two triangular loops x and y which share a side
forming the end of the first loop and the start of the second loop.
then the product xy is homotopic to the loop given by the outside
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triangle, with homotopy given by following the first two-thirds of x.
then just waiting at the midpoint for the last third of x and first third
of y. then finishing y.

* *

is homotopic to

x y xy

The four triangular loops around the crossing form the sides of
a pyramid. In particular, the product of the loops yz is homotopic
to the loop which goes diagonally across the pyramid (via the dashed
line in the figure), which is homotopic to the product xy as shown.

*

x y

v z

Thus, given a knot diagram, we can get a presentation for the
fundamental group of the knot complement by drawing a little arrow
for each arc and getting a relat ion of the form xy = yz or equivalently

= y~lxy at each crossing. This is called the Wirtinger presentation
for the knot group.

\x / x y

/ Z = y~1xy\y /x /
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Example 81. The trefoil knot K below has knot group with presen¬
tation 7Ti(S3 \K) = (x , y, z xz , x = y lzy , z = x-l,yx).y = z

Z

X

V

Knot groups are always infinite; given any generator x of a knot
group, the powers xn for n E Z are all distinct elements of the group.
The only knot with an abelian knot group is the unknot; all the others
have noncommuting generators.

Exercises. 1. Show that the following are two presentations of the
same group (can you recognize which knot relates to this group):

(a, b | aba = bah)
and

x2 = V3)-(x, y

2. Recall that the braid group on three strands has the presenta¬
tion Z?3 = (<7i,<72 | cr\(j2(J\ = CTOCTIÿ). Use the natural mapping from
the braid group Bs to the symmetric group S3 to deduce that the
fundamental group of the trefoil is nonabelian. Furthermore deduce
that t he trefoil is not equivalent to the unknot.

3. Compute a presentation of the fundamental group of the figure
eight knot. Map it by a group homomorphism to a symmetric group
to deduce that the figure eight knot not equivalent to the unknot.

4. Draw a diagram of the connected sum of two left-handed trefoils
(called Granny knot) and then find a presentation of its fundamental
group.

5. Draw a diagram of the connected sum of a trefoil and its mirror
image (called square knot) and then find a presentation of its funda¬
mental group.

6. Show that there is 110 knot with knot group isomorphic to Z2.
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4. Knot Quandles

Let K be a knot in S3 and choose a basepoint * G 53 \ A. The knot
complement S3 \ A” has boundary consisting of a knotted torus in the
shape of K. We have already seen a combinatorial definition of the
fundamental quandle Q(A') of A in terms of generators corresponding
to arcs in the knot diagram with relations of the form x > y = z at
crossings. The fundamental quandle has a geometric interpretation
as well, quite similar to the knot group but subtly different.

Elements of the fundamental quandle of a knot are homotopy
classes not of loops but of paths from the basepoint to the boundary
of the knot complement left by drilling out the A-shaped tunnel, with
some restrictions:

• The initial point of the path must stay fixed at the basepoint
during the homotopy.

• The terminal point must stay on the boundary torus but
can wander during the homotopy.

For every point p on the boundary of 53 \ K there is a circle on
the boundary, unique up to isotopy, which links the original knot with
linking number 1, which we call the meridian at p. denoted mp. If
p is the terminal point of a representative of the class of y, we will
write mv for mp.

V

mp
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The quandle operation xi>y in the fundamental quandle of a knot
is then given by first going along y, then going backward along the
meridian at y and continuing backwards along y to the basepoint , then
following x. We can see the homotopy by simply visualizing dragging
the terminal point of x along the the boundary to the terminal point
of x > y.

x

y

\
x>y

x>y = ymy 1 y 'J:

In his PhD dissertation [Joy82 in 1980, David Joyce proved
that the fundamental quandle of a knot is a complete invariant up to
reflection; that is, if K and Kf have isomorphic fundamental quandles,
then K is ambient isotopic to either K' or the reverse of the mirror
image of K' . In a sense, this means that quandles really are knots
translated into algebra; all other knot invariants should in principle
be derivable from the fundamental quandle.

Alexander Quandles of Knots. Recall that the Alexander quan¬
dle A(K) of a knot is the fundamental quandle interpreted as an
Alexander quandle. There is a geometric way to understand this as
well, involving the infinite cyclic cover of the knot complement.

A Seifert surface for a knot K is an orientable surface (i.e., a
surface with a well-defined top side and bottom side) with the knot
K as its boundary. Note that not every surface with K as boundary
is a Seifert surface; for example, the middle picture below shows a
Mobius band with trefoil boundary, which is not a Seifert surface as
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it has only one side.

MO0
Every knot has a Seifert surface - in fact, many; Seifert gave an
algorithm showing how to construct a Seifert surface from a knot
diagram. The fact that a Seifert surface has two sides means that if
we cut the knot complement along the Seifert surface, the result will
have two copies of the surface as its boundary, one from the top and
one from the bottom. We can then place two copies of the cut-open
knot complement with the top surface from one copy matching the
bottom surface from the next copy and glue the surfaces together. If
we repeat this with an infinite chain of copies of the knot complement
indexed by positive and negative powers of f, the result is the infinite
cyclic cover of S'*3 \ A .

1t t

QQQ
Locally, it looks just like a knot complement, but the Seifert surface
acts like a kind of portal into the next copy; it’s a bit like the “looking
into infinity” resulting from two mirrors facing each other, except that
each “mirror" leads to the next copy of the knot complement.

x
y

x > y
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Elements of the Alexander quandle of a knot can be understood
as Z-linear combinations of homotopy classes of paths in the infinite
cyclic cover from copies of the basepoint to the boundary torus with
multiplication by t shifting a path into the next copy. In particular.
we can visualize the Alexander quandle with a Seifert surface span¬
ning a crossing acting like a portal into the next copy of the knot
complement. Then the homotopy taking x>y to ym~ly~lx has x >y
and y on one side of the portal, m~ 1 takes us through the portal into
the next copy, and we have t times —y and x; thus, we obtain

x > y = y - ty+tx = tx+ {\ — t)y.

Exercises. 1. Compute a presentation of the fundamental quandle
of the figure eight knot.

2. Draw a diagram to show that a path x from the basepoint to the
boundary torus is homotopic to the path x > x at a type I move.

3. Draw a picture to show the homotopy between x and (x>y) > 1 y
at a type II move.

4. Find an example of a Seifert surface for the figure eight knot.

5. Prove that the knot quandle of the Hopf link is the trivial quandle
of two elements.

5. Augmented Quandles

We have seen before that quandles and groups are closely related. In
Chapter 3 we considered two interesting groups coming from a given
quandle: the group Aut(X) of all automorphisms (self-homomor-
phisms that arc bijectivc) of a quandle X and the group Inn(X)
generated by right multiplications fix where x € X. We have the
map Q : X Inn(A") that sends x to 0XJ where &x(y) = y Ox; this
map is a quandle homomorphism from X to the conjugation quandle
of the inner automorphism group. For any x G X the map j3x satisfies
the equation

Px(y > z) = px{y) t> px{z)
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which is another way of stating the third quandle axiom. In fact, we
can think of the structure of a quandle as a kind of module with the
elements of the automorphism group playing the role of scalars, an
idea known as augmented quandles. To see how this works, we will
need the concept of a group action.

Actions of Groups. Recall that if A" is a set, then S\ denotes the
set of permutations (bijections) of the set A". This is a group with
composition of permutations. If A" = (1, 2, . . . , n}, then we denote
Sx by Sn.

Let G be a group and A" be a set. A (left) action of G on A" is
a group homomorphism (p from G to S\• The mapping G x A" — > A"
sending (#, x) to d)(g)(x) (denoted gx) must then satisfy two axioms:

(i) cx = x, for all x in X (where c is the identity element in the
group G), and

(ii) g(hx) = (gh)x for all x in A" and all elements g and h in G.

Note that (p(g~1) = (o(y))-1, Vg E G, that is, the inverse of
the map x i— gx is the map x i-> g~lx. We also say that X is a
G-set. For example, the group Sn acts on the set (1,2... . , ??} with
the group homomorphism Q being the identity. Let GLn( F) be the
group of invertible n by n matrices with coefficients in F, then GLn(F)
acts on the space F77 by matrix multiplication. Notice that any group
G acts on itself by the map G x G — > G sending (g,h) to gh. For
each a E G, the map 7rrt : G —> G sending x to axa~x is called an
inner automorphism of G. The set of all inner automorphisms of
G is denoted by Inn(G). It is a normal subgroup of Aut(G), and
more precisely, for every a E G. /> E Aut(G) we have the suspiciously
familiar equation

-i(>Ka f>

Augmented Quandles. Now let X be a quandle. The action of the
group Inn(A') on X can be generalized to define an action of a group
G on a quandle X as a map G x X X sending (g. x) to gx such
that

(i) for all g, h E G and for all x E A", g(hx) = ( gh)x and
(ii) for all g E G and for all x, y E A", g(x t> y) = (gx) > (gy)-
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For any quandle homomorphism / from A" to itself, we have
(fPx)(y) = f(y >x) = f(y) > f(x) = Pf(r)(f(;y)).

This means that = fPxf1- This identity and the relation
fix(x) = x give rise to the notion of an augmented quandle by chang¬
ing the group Inn(X) to a general group G, which we call the aug¬
mentation group.

An augmented quandle consists of a pair (A', G)
where X is a quandle, G is a group acting on X and an augmentation
map e: X —> G such that

(i) for all x in A”, = x and
(ii) for all g in G and x in X, e(gx) = ge{x)g~l .

Definition 20.

For a quandle X , there are two typical examplesExample 82.
of augmented quandles, one with G = Aut(X) and the other with
G = Inn(x), where the augmentation map e in both cases is the map
13 mentioned above that sends x to 0X and the action is the natural
one.

Example 83. For a knot K in S:\ let Ar = Q{K) be the fundamental
quandle of the knot and G = 7r\(S'\K) be the fundamental group of
the knot complement S*\A\ The action of 7Ti(5'j\A ) on X = Q(K) is
by first going around a loop representing the element of G, then going
down the path represented by the element of Q(K). For x £ A =
Q(K ), e(x) is the homotopy class of the loop at the base point * which
traverses the arc, then the boundary of the disc counterclockwise, then
the arc again back to the base point *. This gives an example of an
augmented quandle: the knot quandle is an augmented quandle with
augmentation group given by the knot group.

Before we give another example let us introduce another group
associated to a quandle, the enveloping group Gx of a quandle A", also
called the associated group. This is the group obtained by interpreting
the quandle operation as a conjugation. It is given by the group
presentation

Gx = (x G A' | (x > y)y lx ' y)
with all elements of X as generators. For a quandle (Ar, [>) let
F( X) be the free group on the set X and consider the quotient
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group F(X)/N of F( X) by the normal subgroup N generated by
(x > y)y
by Gx- We have an onto map e : X Gx sending x to [x]. The
enveloping group has a nice property (usually called the universal
property ) that for any group G and any given quandle homomor¬
phism (p : (X, i>) — >• (G, *). where g*ti = hgh~ 1 for all g,h G G, there
exists a unique group homomorphism • Gx G such that y\f = (p.

y where x and y belong to A”. This group is denotedx

Any quandle can be thought of as an augmentedExample 84.
quandle where the augmentation is the map e : X — > Gx-

Orbits, Stabilizers and Invariant Subspaces. The action of a
group G on a set X gives an equivalence relation on X: x ~ y if
and only if there exists an element g in G such that gx = y. The
equivalence class [x] of an element x in X is called the orbit of x under
the action of G (denoted by Gx), and the quotient set X/ is called
the space of orbits. For example, the orbits of the action of G on itself
by inner automorphisms are by definition the conjugacy classes of the
group G (two elements x and y are in the same conjugacy class if there
exists an element g in G such that g~lxg = y). Another example is,
if H is a subgroup (not necessarily normal) of a group G, then the
orbits of the action of // on G ((/?, g) i-> hg,\/h G H and g G G) are
the classes of G modulo H . For x G X , the set Gx = [g £ G, gx = x}
is a subgroup of G, called the stabilizer of x under the action of G.
It is the pre-image of x under the surjective map G — > Gx sending
g to gx. Since gx = hx is equivalent to g' ]h 6 Gx which is also
equivalent to [g] = [h] in the quotient space G/Gx, we then have a
natural Injection G/Gx —> Gx sending \g] to gx. First one sees that
y G G,jx is equivalent to g ]yg G Gx. This will make the mapping

— > Gx sending [#] to gx well defined since [g] = [gf\ means
gf = gh for some h G H and then g'x = ( gh)x = g(hx) = gx because
h G Gr. This map is surjective by construction and gx = g'x is
equivalent to g~lg' G Gx, making it an injective mapping. We say
that x is invariant under the action if for all g in G, we have gx = x.
i.e. if the orbit of x is the singleton {J*} or Gx = G. If G is finite,
then the cardinality of the orbit Gx is the quotient of the cardinality
of G by the cardinality of the stabilizer Gx. If in addition, X is a

G/Gx
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finite set, then the cardinality of X is given by the formula (called
class formula)

id1*1 = E Id- 1x£A

where .4 is a subset of X containing one representative from each
class.

Example 85. As an application, we prove that the cardinality of Sn
is 7?! = 2 x 3 x 4 x • * • x n (n factorial). The group Sn acts on the set
{l,...,ra}; let us denote \Sn\ = tn. There is only one orbit for this
action and the stabilizer of an element can be identified with S
Then tn = n tn-\ and thus tn = n!.

?i— I •

Recall that if G is a group and H is a subgroup of G (not neces¬
sarily a normal subgroup) and we define a relation on G by x ~ y if
and only if y~lx G //, (meaning x = yz for some z G //), then it is
straightforward to sec that this relation is an equivalence relation and
the equivalence class of g is [g] = gH = {gh, h € H}. The classes
form a partition of G and we denote bv G/H the set of equivalence
classes. Now if G is finite, then |G/H = because the number
of elements of each class equals \H\. As a consequence, we have the
Lagrange theorem stating:

Theorem 8. If G is a finite group and H is a subgroup of G. then
\H\ divides |G|.

Universal Quandles. Let A be a quandle and G = Aut(A ) its au¬
tomorphism group. For any o G Aut(G), there is a quandle structure
on the group G given by

g> h = h<f>(h 1 g)

which we might call a universal quandle. Note that if G is abelian,
then this quandle is an Alexander quandle with t = (f>. For this
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reason, we might think of this quandle structure on G as a “non-
abelian Alexander quandle*. We verify the validity of two of the
three quandle axioms below; the last one is left as an exercise.

(i) Consider g €G. We have

1g)
g<t>( 1)

9 9

.9(1)
9,

h is given by ho l(h 1g), then we have-l(ii) 9>

h<j)(h 1g)t> 1 h
h<p~1(h~lh<f>(h~1g))
h<j> l(d)(h *</))
hh~lg

( g>h)> 1 h

fj

and (g > 1 h) t> h = g is similar.

In his original 1982 paper introducing quandles [Joy82j, David
Joyce gave us the following construction which shows that every quan¬
dle is isomorphic to this type of quandle (or a slight generalization),
hence the adjective “universal ".

Let A" be a quandle with automorphism group G = Aut(A) and
let p € X. As we have seen, the right multiplication map : X —> X
with (3p((j) =</>/) is an automorphism of X . i.e., 3V €G. Moreover,
conjugation in G by fip is an automorphism of G. Then G has quandle
operation

x>y = y(3py 1 x3p 1.
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Define a map e : G — » X ( e for “evaluation”) by e(g) = g(p). Then e
is a homomorphism of quandles:

e(x o y) = (x>y)(p)
= y(0p(y '(xiPp'tp)))))
= j/(ÿp(y_1(x(p>_1p))))
= y(PP(y~l (x(p))))
= y(y~1(x(p) ) > p)
= y(y~1{x{p)))t>y{p)
= x(p) > y(p)
= e(x)>e{y).

Now if X is homogeneous, i.e., if for every p,p' E X there is an
automorphism 0 : X — X such that <p(p) = pf, then e is surjective
since every p' E X is 0(p) for some 0 E G.

Next, let H be the stabilizer of p, i.e., the subgroup H of G such
that the action of elements of H fix p:

H = {0eG\d>(p) = P}.

Then G is a union of cosets of // , <pH = {0// : h E H\. Moreover,
this set of cosets G/H has quandle structure defined by

xll > y II = y8vy lx&~ 1 II

and since h(p) = p for all h E //, e induces a surjective quandle
homomorphism e : G/H —> X by

e(4>H) = <p(H{p)) = d>{p).

Finally, e is injective since if e(xH) = e(yH) then we have

y~1(x(H(p))) = H(p) <==> y~1(x(p))=p,
so y lx E //, and we have yH = y(y 1 xH) = xH. Hence, we have
the following theorem:

Theorem 9 (Joyce, 1982). If X is a homogeneous quandle with au¬
tomorphism group G and H is the stabilizer of an element p E X ,
then X ≥ Aut{G)/H.

x(H (p)) = y(H(p))
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If X is not homogeneous, then a similar construction yields a
similar result, with the difference that we need to choose multiple ps.
See Joy82] for more.

Compute the inner group hm(Rs) of the dihedral
quandle /?3 and then write all the details for the augmented quandle
(i?3,Inn(i?3)).

Exercises. 1.

2. Write all the details to show that

(X = Q(31),G = 7T1(53\31))
is an augmented quandle, where Q stands for the fundamental quan¬
dle and 7ri for the fundamental group.

3. Given a quandle operation table, explain how to identify the inner
automorphism group.

4. Let G = S3 be the group of permutations of 3 letters. Make the
operation table for the quandle structure on G with xt> y = y<j>(y~lx)
with <j>(x) given by conjugation by the transposition [2. 1.3].

5. Recall that /?3 = {1,2,3} with quandle operation matrix
‘ 1 3 2 "

3 2 1_ 2 1 3 _
is the dihedral quandle of 3 elements. Show that i?3 is homogeneous
with automorphism group G = S3. Then letting 0 = [2,1,3] as in
problem 4. find the stabilizer H of the element p = 1 and the operation
table of Gf II.

6. Let G be a group acting on a set X. Prove that the following
relation on X is an equivalence relation: x ~ y if and only if there
exists an element y in G such that gx = y.

6. Quandles and Quasigroups

In this section, we will discuss the relation between quandles and
some algebraic structures called quasigroups. More precisely, we will
explain the relation between left and right distributive quasigroups
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and the following types of quandles: Alexander, Latin and medial
quandles. Two connections between quasigroups and quandles were
established in [Smi92].

Self-distributivity appeared in 1929 in the work of Burst,in and
Mayer [BM29], where they studied quasigroups which are left and
right distributive, i.e., satisfying

x o (y o z) = (x o y) o (x o z)

and
(x o y) o z = (xo z) o (y o z)

respectively. They proved that there are no distributive quasigroups
of orders 2 or 6, observed that the group of automorphisms is transi¬
tive, and showed that such a quasigroup is idempotent.

Definition 21 ([Bru58]).
(1) A quasigroup is a set Q, with a binary operation o, such

that for all u £ Q, the right “multiplication” fiu and left
“multiplication” Au, by u, are both permutations.

(2) If the operation o has an identity element e in Q then the
quasigroup is called a loop and is denoted (Q.o,e).

What does the definition of a quasigroup mean? The requirement
that right and left multiplications are permutations means that the
operation table for a quasigroup has no repeated elements in any row
or column. Such an table is known as a Latin square. Moreover.
in a quasigroup, we can “divide” from the right and from the left.
In other words, the equation x o y = z has a solution in x, that is
x = and the same equation xo y — z has a solution in 7/, that
is y — \x'(z). Sometimes we refer to this respectively as “division
from the right” and “division from the left."

Before giving examples, we mention the following charming story
about the word “loop". Here we quote from the article |PflOO| of
Hala Orlik Pflugfelder,

It was at this point that the terminology of quasi¬
group theory underwent a historic change. It be¬
came apparent that it was necessary to distinguish
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between two classes of quasigroups: those with
and those without an identity element. A new
name was needed to designate the system with
identity. This occurred around 1942, among peo¬
ple of Albert's circle in Chicago, who coined the
word ‘'loop1' after the Chicago Loop. For Chicago
locals, the term “Loop” designated the main busi¬
ness area and the elevated train that literally made

V

a loop around this part, of the city. It was a brilliant
choice in several senses. First, the word “loop''
rhymes with “group ' . Second, it expresses a sense
of closure. And third, it is short and simple, so
that it could be easily adopted in other languages.
Today, it is used in many languages, with slight
variations: for example, DIE LOOP in German
(first used by Pickert) and LUPA in Russian. The
French are, of course, an original and nonconform¬
ing people, so in French it is LA BOUCLE.

We also note that “loops" in this sense should not be confused with
the loops which form the elements of the fundamental group!

Example 86. Every group C is a loop since the equation xy = z
always has a solution for x , that is x = zy~l , and also has a solution
for y, that is y = x lz.
Example 87. The set Z of integers with operation xoy = x — y is a
quasigroup. Notice that this operation doesn’t give a group structure
on Z since subtraction is nonassociative.

Example 88. The vector space Rn with operation
1
2(* +V)xoy =

is a quasigroup.

xoij

x

y
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Example 89. The following operation table is a Latin square and
thus makes (Z(j. *) a quasigroup.

0 1 2 3 4 5*
3 1 4 5 2 0
0 4 3 2 5 1
1 5 0 4 3 2
4 3 2 1 0 5

2 10 4 3
2 0 5 3 1 4

0
1
2
3
4 5
5

One can see easily that this quasigroup is neither commutative nor
associative and has no identity, thus it is not a group.

Example 90.

v x > Kx

The kei in Example 56 can be generalized to any sphere

Sn = {xeP' | ||x|| = 1};

with the operation
So y = 2(x ■ y)y - x,

the sphere Sn is a quasigroup.

Definition 22. A subset S of a quasigroup (Q,o) is called a sub¬
quasigroup of Q if S itself is a quasigroup with respect to the operation
o.

In other words, a sub-quasigroup S is a subset of Q which is
closed under multiplication and division.

Example 91. The vector space Qri is sub-quasigroup of the quasi¬
group given in Example 88.
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Definition 23. Let (Q,*) and (Q',o) he two quasigroups. The set
Q x Q' with the operation (r, y) • (x'.y') := (x * x',yoy') is called
the direct product of the quasigroups Q and Q analgous to the direct
sum.

We leave it as an exercise to check that this operation gives a
quasigroup structure on the Cartesian product of two quasigroups.

Definition 24. A map / : Q — Q* from a quasigroup (Q.*) to a
quasigroup {Q\ o) is called a homomorphism if for all .r. y 6 Q, we
have

f(x* y) = f(x)o f(y).

In quasigroup theory, the notion of homomorphism is often too
strong, so it can be replaced by a notion of “homotopy" (do not con¬
fuse this notion of homotopy with the notion of homotopy of paths).

Definition 25. Let, f,g,h : Q Q' be three maps from a quasigroup
(Q. *) to a quasigroup (Q\o). The triple (/.#. h) is called a homotopy
if for all x, y €Q we have

f(x)og(y) = h(x*y).

When /, y and h are all bijections then t he triple (/, g,h) is called an
isotopy.

This definition tells us that if we start with a quasigroup (Qr,o)
and three bijections /.g.h from Q to Q' , then we can define a quasi-
group structure on Q by

x*y = h l{f(x)og(y)),Vx,y €Q.
To see this, we check that left multiplication in Q is a Injection. The
equation x * y = x * z implies that f(x) o g(y) = f(x) o g(z) since
h~l is injective. Now because (Q\ o) is a quasigroup and g is an
injection we have y = z. This shows that left multiplication by any
x is an injective mapping. Again since (Q\ o) is a quasigroup, then
for a fixed x £ Q and for any y € Q, there exists u € Qf such that
f(x) o u = h(y). Since g is a Injection there exists v £ Q such that
u = g(v) thus x * v = y and this shows the surjectivity of the left
multiplication by x. It is similar to prove that right multiplication by
any element is a bijection. This shows that isotopies are commonly
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used to create quasigroups. We recover the definition of quasigroup
homomorphism by setting / = g = h in the previous definition.

Example 92. Consider (Q',o) to be (Z4,-}-). Let / be the Injection
that permutes 0 with 1 and 2 with 3. Let g be the cycle permuta¬
tion (0213) and h the cycle permutation (032) that fixes 1. We then
obtain, using the previous definition, the quasigroup (Z4,*) given by
the following operation table:

0 12 3*
0 2 3 1
3 0 1 2
13 2 0
2 1 0 3

0
1
2
3

Notice that the quasigroup (Z4,*) is neither commutative nor asso¬
ciative and has no identity, even though (Z4.-I-) is a group.

Example 93. A two element set {0,1} has exactly two quasigroup
structures,

0 1 0 1o o
and0 0 1 0 1 0

1 1 0 1 0 1

which are isotopic. Thus, up to isotopy, there is only one quasigroup
of order 2 which is the group Z2. Similarly, the only quasigroup of
order 3 up to isotopy is the group Z3, and the only two quasigroups
of order 4 are the Klein group Z2 x Z2 and the cyclic group Z4.

Quasigroups differ from groups in the sense that they satisfy iden¬
tities which usually conflict with associativity as can be seen from the
previous examples. Distributive quasigroups have transitive groups
of automorphisms (that is, for any two nonidentity elements x and y:
there is an automorphism o such that cr(x) = y) but the only group
with this property is the trivial group. In [Ste57 it is shown that
there arc no right-distributive quasigroups whose order is twice an
odd number, since in a right-distributive quasigroup we have

-1Pyoz = PzPyPz
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and the mapping x 0x is injective. In particular, a right-distributive
quasigroup is a Latin quandle, so it follows that no quandlc with
2(2fc + 1) elements can be Latin.

Definition 26 ([Bru58]). Let (M,o) be a set with a binary opera¬
tion. M is called a Moufang loop if it is a loop such that the binary
operation satisfies the identity

(x o y) o (z o x) = x o (( y o z) o x).(2)

The following are some other equivalent forms of the Moufang
identity (2):

x o (y o (x o z)) = ((x o y) o x) o z,
z o (x o (y o J:)) = ((2 o x) o y) o x,
(x o y) o (z o x) = (x o (y o z)) o x ,

(3)
(4)
(5)

As the name suggests, the Moufang identity is named for Ruth
Moufang who discovered it in some geometrical investigations in 1935
(see for example [Mou33]). Like quandles, Moufang loops differ from
groups in that they are generally not associative. The Moufang identi¬
ties may be viewed as relaxed forms of associativity. We will see that

V V

the smallest nonassociative Moufang loop has order 12 and comes
from the smallest nonabelian group.

Example 94. Any group is an associative loop and thus a Moufang
loop. This follows directly from the definition.

Our next example uses the algebra of quaternions, invented by the
Irish mathematician William Rowan Hamilton in 1843. It is similar to
the algebra of complex numbers except that it is associative but not
commutative. Precisely, any quaternion can be written uniquely in
the form q = a-\-bi+cj+dk , where a.b,c,d 6 R. Thus the quaternions
form a 4-dimensional vector space over the reals. The basis elements

and k satisfy the following multiplication properties: i2
k2 = ijk = — 1. Thus multiplying any two elements q = a+bi+cj+dk
and q’ = af T b'i + c'j 4* d'k gives

(aa' — bbf — ccr — dd!) + (ah' -f ba -f cd! — de!)i
-f-(ac/ -f ea' -f db' — bd')j -f (ad' 4 da 4 be' — cbf)k.

•9

m
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Now to construct one of the simplest nonassociative loops of order
8, we need to modify slightly the multiplication of each basis element
2, j, k with itself. We will have the following.

Example 95. The set {1,-1, i, — 2, j, — j, k. —k} with the the modi¬
fied multiplication i2
gives an example of a quasigroup. More precisely, it is a nonassocia¬
tive loop of order 8 as can be seen from its operation table

• •
2 — 2

;2 = k2 = 1 and all other products unchanged= J

k -k1 -1o J -J
k —k1 -1

-1 1
1 2 —l J -J

j -k k
• •

-J J
• •

J -J
• •
2 — 2

— 1 — 2 * -J
k —k1 -12 2 —2

-fc A:2 -1
J ~j -k

1—2 —2
A; 1 -1

-1 1
-2 2 1-1

2 -2-1 1

J
k —k

• •
-J

• ■

J -J

—2 2— J“J
A* A* -k

-k -k k

This example can be generalized to give examples of nonassocia¬
tive Moufang loops.

Example 96. Let G be a group denoted multiplicatively and con¬
sider the set G x {0,1} with multiplication given by (p, 0)(/i, 0) =
(gh,0), (5,0)(ft,1)= (hg,1), (g, l)(fc,0)=(gh-1,0), and (g. l)(h,1) =
(h~lg,0). This set is denoted M(G, 2). In 1974 Qrin Chein Che74]
proved that A/(G, 2) is a nonassociative Moufang loop if and only if
G is nonabelian group. Thus the smallest nonassociative Moufang
loop is M(Di, 2) with order 12, where is the symmetry group of
an equilateral triangle.

Theorem 10 (Moufang’s Theorem). Let a, b,e be three elements in a
commutative Moufang loop M for which the following 'relation holds:

(a o b) o c = a o ( b o c).
Then the subloop generated by {a, fe, c} is associative and hence is an
abelian group.

Let (A', o) be a right-distributive quasigroup. Then

(x o x)O X = (x o x)o(x o x).
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This implies that each element is idempotent and (A\o) is then a
Latin quandle. Fix a E X and define an operation, denoted T, on X
by

x + y = 0a 1 (x) o Aa l(y).
Then a + y = y and y + a = ?/, and (A, +,a) is a loop. Therefore any

right-distributive quasigroup satisfying one of the Moufang identities
(3), (4), (5) and (2) is a Moufang loop. Notice that

0a(x)+ Aa(y) =xo y.

The Moufang loop is commutative if and only if
(u o v) o (w o z) = (u o w) o (v o z).(6)

A set (A\o) with a binary operation that satisfies equation (6) is
said to be medial (Belousov Bel60]) or abelian (Joyce Joy82]). The
Bruck-Toyoda theorem gives the following characterization of medial
quasigroups: Given an Abelian group M. two commuting automor¬
phisms / and g of M and a fixed element a of M , define an operation
o on M by

xoy = f(x)+ g(y)+ a.
This quasigroup is called an affine quasigroup. It is easy to check
that (4/, o) is a medial quasigroup; the Bruck-Toyoda theorem states
that every medial quasigroup is of this form. That is, every medial
quasigroup is isomorphic to a quasigroup defined from an abelian
group in this way. Belousov gave the connection between distributive
quasigroups and Moufang loops in the following way:

Theorem 11 (|Bel60j). If (X,o) is a distributive quasigroup, then
for all a E X , (A\ T, a) is a commutative Moufang loop.

Latin quandles are right distributive quasigroups and left dis¬
tributive Latin quandles are distributive quasigroups. Belousov’s the¬
orem tells us that if (A\o) is a left-distributive Latin quandle then
(A\ -h) is a commutative Moufang loop. The Bruck-Slaby theorem
tells us that (A\o) is affine over a commutative Moufang loop, and
thus medial. The smallest Latin quandle that is not left distributive
is of order 15. It was found by David Stanovsky (see [Sta04 , p. 29)
using an automatic model builder SEM for all quasigroups satisfying
left distributivity, but not mediality.
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Example 97. In the survey paper Gal88, p. 950 , Galkin defines a
type of quandle, later generalized in [CEH 13 . Let .4 be an abelian
group, also regarded naturally as a Z-module. Let // : Z3 -> Z,
r : Z3 — » A be functions (not necessarily hornomoprhisms) satisfying
//(0) = 2, //(1) = /i(2) = — 1, and r(0) = 0. Define a binary operation
> on Z3 x .4 by

(x,a) > ( y, b) = (2 y - x, -a + //( x - y)b + T(X - y))
for x, y € Z3 and a, b G .4. Then this operation > defines a quandle
structure on Z3 x .4 called a Galkin quandle. One can see that for
any abelian group .4 and ci,c2 €.4, G(A, ci,c2) and G(A, 0,c2 — ci)
are isomorphic.

Each Galkin quandle G(A,c) is connected, i.e. every element can
be expressed as a quandle word starting with any other element, but
not Latin unless A has odd order, and G(.4,c) is nonmedial unless
3.4 = 0.

We conclude with the following properties relating distributivity
and mediality to quandles. Alexander quandles are left-distributive
and medial. It is easy to check that for a finite Alexander quandle
(M.t) with t €Aut(M), the following are equivalent:

(1) (A/, t) is connected,
(2) (1 — t) is an automorphism of J\/, and
(3) (A/, t) is Latin.

It was also proved by Toyoda [Toy41 that a Latin quandle is Alexan¬
der if and only if it is medial. As noted by Galkin, G(Z5,0) and
G(Z5. 1) are the smallest nonmedial Latin quandles and hence the
smallest non-Alexander Latin quandles.

We note that medial quandles are left-distributive (by idempo-
tency). It is proved in [CEH+13] that any left-distributive connected
quandle is Latin. This implies, by Toyoda’s theorem, that every me¬
dial connected quandle is Alexander and Latin. The smallest Latin
quandles that are not left-distributive are the Galkin quandles of or¬
der 15. It is known that the smallest left-distributive Latin quandle
that is not Alexander is of order 81. as proven by V. D. Belousov
[BelGO].
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Exercises. 1. Prove that all Alexander quandles are medial.

Let (X, >) be a set with binary operation that is medial. Let2.
x. y £ X and m and n be positive integers. Define xr' inductively by
xn v i := xn > .r. Prove that (x>y)n = xn t> yn\ (xn)m = (xm)" and
thus x := {xn)m is well defined.nm

3. Let (A", >) be a set with binary operation satisfying (x>y) >y = x
and x t> (x > y) = y then prove that the operation > is commutative
{x>y = y>x).

4. Let / : Q — > Q' be a quasigroup homomorphism. Prove that for
all x, y £ Q we have the following two identities:

07<l)(/(*)) = /(ÿx(*))

x7(1B)(/(*)) = /(v*(*))•
and

5. Let (Q.*,e) and (Q',0, e') be two loops and f : Q Q' be a
quasigroup homomorphism. Prove that f(e) = e'.

6. Let (Q.*) and (Q\ o) be two quasigroups. Prove that componen¬
twise multiplication and division give a quasigroup structure on the
Cartesian product Q x Q' of two quasigroups.

7. Let / : Q — > Q' be a function between two quasigroups Q and
Q'. Prove that / is a quasigroup homomorphism if and only if its
graph F = {(x, y) £ Q x Q'; f(x) = y) is a sub-quasigroup of the
quasigroup product Q x Q'.
8. Prove that the isotopy relation is an equivalence relation on the
set of quasigroups.

9. Consider the set Z3 of integers mod 3 with the binary operation
xoy = 2x + 2 y. Prove that (Z3,-b), (Z3,— ) and (Z3.0) are isotopic
quasigroups.

10. Consider the set R of real numbers with the binary operation
xoy = |(x+y). Prove that (R, -f ) and (R, o) are isotopic quasigroups.
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Chapter 5

Generalizations of
Quandles

1. Racks

Recall that a framed knot is a knot with a framing curve on the the
torus neighborhood of the knot which maps one-to-one onto the knot
if we contract the torus down to its core. Alternatively, if we think of
the torus neighborhood of the knot as a stack of discs with t he points
of the knot as centers of the discs, then the framing curve runs along
the boundary of the torus and intersects each disc exactly once. Then
two knots are framed isotopic if there is an ambient isotopy of one
knot onto the other which takes the framing curve of the first knot
to the framing curve of the second knot.

We can think of framed knots combinatorially as the result of
changing the Reidemeister moves to replace the usual type I move
with the framed type I move:

147
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fl fl
r>

The framed Rcidcmcistcr move as we have drawn it above comes in
the two pictured forms; in fact, there are two more equivalent versions
which we can obtain from the pictured moves by pushing a kink all
the way around the knot to the other side, a procedure which only
requires type II and III moves:

ii n n

l\
As we saw back in Chapter 1, in the presence of type II and III moves,
these framed type I moves arc equivalent to the alternative framed
type I moves below:

What is the result of “quandlizing” the framed Reidemeister
moves, i.e., replacing the quandle axioms coming from the usual ori¬
ented Rcidcmcistcr moves with the framed ones? Well, the second
and third moves are the same, so those axioms arc also the same.
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The first quandle axiom, that x>x = x for all x. Ls no longer required
once we switch to framed isotopy. In fact, it turns out that the framed
type I move imposes no conditions on the algebraic structure at all.

x xX

ITfl
x > 1 XX \> X

XX

Thus, we have a new definition:

Definition 27. A rack is a set A" with two binary operations t>, >-1 :
X x A" — > X satisfying

• (x t> y) D>_1 y = x = ( x >_1 y) > y and

• (x > y) > z = (x > z) > (y > z).
Note that in some places in the literature, e.g. [FR92], x>y is written
as xy.

We can think of racks as “almost-quandles” where some elements
are not idempotent. The idempotency in a quandle comes from the
Reidemeister type I move: specifically, we can think of the quandle
axiom x>x = x the requirement that passing through a kink does
not change the label.

In framed isotopy on the other hand, going through a kink is
a bijective map 7r : X — > X defined by 7r(x) = x t> x with inverse
7r~1(x) = x o-1 x known as the kink map. The alternate form of the
framed isotopy moves show that the crossing sign at a kink determines
whether the map is n or 7r-1 regardless of winding number.

xX XX

l
7T 1(.T) 7r 1(x)7r(x) 7r(a;)
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x xX X

flfl 1(x)n{x) 7T

j x = 7r(7T 1 (x))7r 1(n(x)) = :r J

Consider a finite rack A". Even if 7T(X) x, if we go through
enough kinks we eventually run out of new labels. For any x 6 A".
the rank of x is the smallest positive integer n such that 7Tn(x) = x.
The least common multiple of all such n for all elements of A' is
known as the rack characteristic or rack rank of X, Equivalently, we
can define N as the minimal integer n > 1 such that 7rn : X —> X is
the identity map.

Example 98.
quandle as a rack in which every element is idempotent, or as a rack
in which the kink map is the identity, or as a rack of characteristic
N = 1.

Every quandle is a rack. In fact, we could define a

Example 99. Let A" be a set and a : X — > X a Injection. Then X
is a rack with operations

x > y = <7(.T) and x > 1 y = a 1(x)

since we have

(x t> y) i> z = rr2(x) = (x t> z) t> ( y t> z).

We call this a constant action rack since the action of y on x in xi> y
does not vary with y but is constant as a function of y. In particular,
the kink map TT is just a.

Let A = Z[t±1,s]/(s2 — s(1 — t)) be the quotientExample 100.
of the set of polynomials with invertible variable t and noninvertible_

••
variable s where we set s~ = s(l — t). Then any A-module A' is a rack
(known as a (t, s)-rack) with rack operation

x t> y = tx -f sy.
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We can easily verify that the rack axioms are satisfied: first, we have

xt>y

x > if — sy
y — sy)

tx -f sy.,

tx,
f,

so we have x> 1 y = t l(x — sy). Then for self-distributivity, we have

(x > y) > z = t(tx 4- sy) 4- sz — t2x 4- tsy 4- sz
while

t(tx -f sz) 4- s(ty 4- sz)
t2x 4- tsy 4- (ts 4- s2)z

= t2x 4- tsy 4- (ts 4- s(l — t))z
= t2x 4- tsy 4- sz

as required. Since 7v(x) = x>x = tx-\-sx = (t+s)x, X has finite char¬
acteristic N if and only if (t+ s)N = 1 for some N > 1. For example,
the (t,s)~rack Ar' of ordered n-tuples of A has infinite characteristic.

(x > z) t> (y > z)

Example 101. Consider X = Zn. We can make A" a (t, s)-rack
by choosing values of t and s in Z„ such that t and n have greatest
common divisor 1 and such that s2 = s(l — t). For example, in
Z,i, we could set t = 3 and s = 2; then 3 is invertible in Z4 with

= 3 (since 3(3) =9 = 1), and we have s2 = 22 = 4 = 0 and
s(l — t) = 2(1 — 3) = 2(— 2) = —4 = 0. This (/, s)-rack has operation
table

-13

0 12 3>
0 0 2 0 2

3 13 1
2 0 2 0
13 13

1
2
3

Rack Counting Invariant. As with quandles, each framed oriented
knot K has a fundamental rack 7Z(K) which we can define topologi¬
cally or combinatorially. Let’s consider the topological version first.

Recall that a framed knot can be understood as a pair consisting
of a knot K and a framing curve F on the solid torus with K as the
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Then as with the fundamental quandle, elements of the fun¬
damental rack are homotopy classes of paths starting at a basepoint
but this time ending at the framing curve, with the restriction that
during the homotopy the starting point has to stay fixed at the base-
point and the endpoint Inis to stay on the framing curve. The rack
operation is the same as in the quandle case:

core.

x

\
\ y /

\
\

WyS> l
X>y\

\
\

\

x>y = ymy xy

Using the blackboard framing, we can sec why the quandle axiom
x t> x = x works in the quandle case but fails in the rack case: the
homotopy taking x>x to x requires the terminal point to go around a
meridian of the boundary torus of the knot complement, which takes
it off the blackboard framing curve.

x X
/

//
( x > xV
V \

Let L be a link with c components. Each component has its own
writhe or framing independent of the writhes of the other components.
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Thus, a link with c components K\ , . . . , Kc has a framing vector w =
(wi, . . . , wc ) specifying the framing of each component. The set of all
such framing vectors forms an integral lattice, that is. a copy of the
set of all points in W with integer coordinates, and for each writhe
vector w there is distinct framed version of L which we denote by L$.

e
(-l.i) (U)(0.1)

(1.0)(-1.0) (0,0)

(1,-1)(0,-1)(-1,-1)

These framed links are all different in general, with different funda¬
mental racks. Indeed, we can often distinguish links L$ and Lay with
different framing vectors w w' with rack counting invariants.
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Example 102. The Ilopf link with framing w = (0. 0) has no valid
rack labelings by the rack X = {1,2} with operation table

1 2>
yX2 2

1 1
1
2

since for ;r = 1 we need y = yt> l but 1> 1 =2 and 2 > 1 = 1, and the
situation is the same for x = 2. However, if we change the framing
vector to ic' = (1,1), then there are four X-labelings of L.

2 1 22

ee 111 2

11
2 1

ee 22 21

Now suppose our labeling rack X has finite characteristic N.
Then if we have a rack labeling of a link L and we change the framing
by doing an N -phone cord move

xx

7T*V(x) = X7T2(X)7r(x)X
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we get a unique valid X-labeling of the new framed link. In particular.
if X is a rack of characteristic N and L and Lf are framed links which
are arc related by framed Reiriemeistcr and AT-phone cord moves, then
|Hom(7£(L), X)\ = \Ham{1l{L9),X)\.

Framed links with different framings which are equivalent
by JV-phone cord moves are still different framed links,
even though they have the same number of labelings with
respect to racks whose characteristic is a multiple of N.

Consider the integral lattice of framings of a link L and the num¬
bers of Aÿ-colorings by a rack X with characteristic N. Since any
framings of L differing by iV-phone cord moves have the same num¬
ber of labelings by A, the infinite lattice is tiled by copies of a tile
with N labelings on a side. Further, the infinite integral lattice of
framings of L is an invariant of the unframed link L. In fact, if we
reduce the framing vectors mod Ar, we get a canonical tile of fram¬
ing vectors w corresponding to elements of (Zn)r. Thus, if we add
up the numbers of colorings of framings of L over one complete
tile, we get an invariant of L which we call the integral rack counting
invariant

$|-(L)= Y, |Hom(ft(L*),X)|.

Example 103.
so a tile of framing vectors is {(0,0), (1,0), (0, 1), (1,1)}. As we have
seen, the Hopf link has 4 X-labelings in framing (1,1) and no A'-
labelings in framing (0,0); the reader can verify that there are no A -
labelings in framings (1,0) and (0, 1). Then the integral rack counting
invariant for the Hopf link is

The rack in Example 102 has characteristic N = 2.

4>|(L) = |Hom(7£(L,jj), X)| = 0 + 0 + 0 + 4 = 4.
we(zNy-

Finally, we note that since a quandle is a rack of rank N = 1,
if X is a quandle then the integral lattice of framings is tiled with a
tile 1 element on a side, i.e., every framing has the same number of
labelings. In particular, the new definition of 4> y(L) when we think
of a quandle X as rack coincides with our previous definition.
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Exercises. 1. Identify all rack structures on a set with two elements.

2. Find two nonquandle racks with three elements and prove that
your answers are not isomorphic.

3. Using the rack axioms, prove that x > (x > 1 x) = x > * x.-l

-l4. Let A' be an involutory rack, i.e. a rack in which >
that X has rack characteristic N — 1 or N = 2.

= >. Prove

5. Find the characteristic of the rack with operation matrix

1 1 1
2 3 3
3 2 2

6. Compute the rack counting invariant for the figure eight knot with
respect to the rack in problem 5.

7. Compute the rack labelings for the blackboard framing of the knot
5i as depicted in the knot table in Chapter 1 by the (£. s)-rack Z4
with t = 3 and s = 3 using row-reduction.

2. Bikei

So far, all of the algebraic structures we have defined using the Reide-
meister moves have used the assumption that each label corresponds
to an arc in a knot diagram, i.e. a portion of the diagram running
from one undercrossing point to the next. This is partly motivated
by topology; after all, the fundamental quandle and group generators
correspond to arcs in diagrams.

However, there’s no reason we have to limit ourselves this way;
in mathematics we can feel free to consider any ideas we can dream
up and pursue their logical consequences. For example, instead of
dividing a knot diagram only at undercrossings, we can divide it at
both under- and over-crossings. Specifically, a semiarc is a portion
of a knot or link diagram between two crossing points; if we imagine
flattening the knot onto paper, semiarcs are the portions of the knot
between the points where the flattened knot crosses itself.
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Let us start with the case of unoriented knots and links, like we
did before. Now instead of one operation at a crossing, we have two:

x y*x

V x*y

The Reidemeister I move says we need equal self-actions, x*x —
x*x:

x x
x*x

x*xx

The Reidemeister 11 move says that the over- and under-crossing
operations do not depend on which way the crossing is rotated: sup¬
pose we label the semiarcs on a rotated crossing as pictured.

ax

vV

Then in move II we have a = y±x and v = x*y.

x u X u

y v =x*y

X y±x
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In particular, rotating the crossing reveals that, much like the case of
kei. the bikei operations arc involutions:

x y*x

y x*y
x*yy*x (x*y)±y = xy

(y*x)*x = yX
x±y y*x

Moreover, we must have x*(y*x) = x±y, y*x = y*(x*y). (xÿy)ÿy =
x. and (y*x)*x = y. Finally, the Reidemeister III move gives us three
conditions, each of which looks a little like the Moufang loop identity:

(z*y)*(x*y) x\ (z*x)*(y*x)y*x y*x

x*yX z*x
(y*x)*(z*x)

V

X (y*z )*(r*s)z*y
x*z

(x*y)*(ziy) z (x*z)*(y*z)y*zy*z

Thus, we need the exchange laws
( z*y)*(x*y)
(y*x)*(z*x)
(x*:y)*(z*y)

(z*x)*(y*x),
(y*z)*(x*z),
(x*z)*(y*z).

A bikei is a set X with two binary operations *, * :
X x X — » X such that for all x, y. z €X, we have
Definition 28.

(i)
x*x = x*x
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(ii)
x*(y*x)
x*(y*x)
{x*y)*y
(x*y)*y

(ii.i),
(ii.ii).
(ii.iii),
(ii-iv),

x*y

x*y
x

andx

(in)
(x*z)*(y*z)
(x*z)*(y*z)
(x*z)*(y±z)

(x*y)*(z*y)
(x*y)*(z*y)
(x±y)*(z*y)

(iii.i),
(iii.ii),
(ill.111).

Example 104. Every kei is a bikei with operations x*y — xi>y and
x*y = x.

Example 105. The bikei axioms are symmetric with respect to
interchanging the operations * and *. Then if X is a bikei, there is a
dual bikei A"' with operations *' defined by

x*'y = x*y and x*'y = x*y.

This duality can be visualized geometrically as the result of looking
at the knot diagram from the other side of the paper.

Example 106. Let A' be a set and cr \ X —> X any involution.
Then A" is a bikei with operations x*y = rr(x) = x*y. To see this, we
simply verify that the definition satisfies the axioms:

(i)
x*x = cr(x) = :r*;r,

(H)
x*(y*x)
x*(y*x)
{x*;y)*y
(x*y)*y

CT(X) x*y,

x*y,rr(x)
cr2(x)
(T-{x)

X

andx
(iii)

a\x)
CT2{X)
a\x)

as required. We call this a constant action bikei.

(x*y)*(z*y)
(x*y)*(z*y)
(x*y)*{z*y)

(x*z)*(y*z)
(x*z)*(y*z)
{x*z)*(y*z)
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As with kei and quandles, there are finite and infinite bikei. For
a finite bikei X, we can specify the bikei operations with operation
tables. Since now we have two operations, it is often convenient to
combine the two operation tables into a single block matrix. Thus, if
we have a set X = {xi , .7*2, . . . , xn} with bikei operations Xi*Xj
and X{*Xj = xÿ, we can specify the operation tables with a block
matrix [ U | L ] where Ujj = k and Ljj = h.

Example 107. t he block matrix

= xk

2 2
1 1

2 2
1 1

defines operations *, * on the set X = {xi, x2} where we have xi*x\ =
x2, x2*xi = 1, etc. To verify that these operations satisfy the bikei
axioms, we must check all possible substitutions of x\ and x2 for
x. y, z in the axioms. Let us content ourselves for the moment with
verifying the exchange laws for x = Xi,y = x2, z = x\:

(xi*x2)*(xi*x2)
(xi*x2)*(xi*x2)
(Xi*X2)*(xi*X2)

(Xi*Xi)*(x2*Xi),
(xi±X\)*(x2*Xi ) ,
(Xi*Xi)*(x2*Xi).

X2*X2 = Xi = X2*Xi
x2*x2 = Xi = X2*Xi
X‘2*X‘2 = Xi = X2*Xi

Let L be an unoriented link with diagram D. We can define the
fundamental bikei of L, BK(L), in a combinatorial way using universal
algebra. First, choose a set of unique labels, say S = {xi,...,xn},
for the semiarcs of L. Next, the set of bikei words in S is the set of
finite strings of the symbols (,),*,* and the labels in S which make
sense as operator expressions - X3*((x2*xi)*x2) is a bikei word, while
(((x2x2)* is not. More precisely, we can define the set W(S) of bikei
words in S recursively by the rules that

• x 6 S => x E W and

• x, y €W => x*y. x*y €W.

Then the fundamental bikei. of L, BK(L), is the set of equivalence
classes of W (S) under the equivalence relation determined by the
crossing relations and the bikei axiom relations; for example, we have
x*x ~ x*x for any x £ W (5), etc. As with quandles, we can spec¬
ify the fundamental bikei of a knot or link with a presentation by
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generators and relations; for example, the trefoil knot below has fun¬
damental bikei presentation

x5 X\
*2 .7*4

XG

*3

B(I\) = <xi, x2, x3, x4, x5, xG X5*X-2 = X4, X2*X5 = Xi,

X3*X5 = X2, X5*X3 = XG,

xG*x3 = Xi, X3*XG = x4).
Then for example the bikei word (x(j*x2)*(x3*X5) is equivalent to xG
since we have

(X6*X2)*(X3*X5) ~ (X(j*X2)*X2 ~ X6.

A subset S of a bikei Ar is a subbikei if whenever x, y € S we have
x*y € S and x*y €5. We can think of a subbikei as a smaller bikei
embedded inside of X.

Let X and Y be bikei with operations * *x and *y, respec¬
tively. Then a map / : X Y is a bikei homomorphism if for all
x. x' €A we have

f{x*xxr) = f(x)*yf(x') and f(x*xx') = f(x)*y/(x').

The set of all bikei homomorphisms / : A" — V is written Hom(X,Y ).

The Counting Invariant. Just like with kei and quandles, given a
finite bikei we can define an invariant of unoriented knots by counting
valid bikei colorings of knot or link diagrams. The number of such
colorings is a link invariant by construction, since we set up the bikei
axioms so that for each valid bikei coloring of a diagram before a
Reidemeister move there is exactly one valid coloring of the diagram
after the move. That is, we have

Theorem 12. Let L be an unoriented link diagram. A" be a finite
bikei, and \(L) be the number of assignments of elements of X to
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semiarcs in L such that at each crossing the labels satisfy the condition

x y*x

V x*y

Then (L) is a link invariant

As with quandles, we can think of a coloring of L by X as a
homomorphism / : BJC(L) — > X from the fundamental bikei of L to
X. Thus, we might write T y (L) as \Hom(BIC(L), X)\.
Example 108. Let X — Z4 and define x*y — 3x and x*y — x + 2y.
One can show (see exercise 6) that X is a bikei under these operations.
Then the Hopf link L has bikei presentation

wx
(x,V, Z,W Iy Z x*y = z, y*x = w,

y*x = w, x*y = z)

Then to compute the set of bikei labelings, we have a homogeneous
system of linear equations over Z4 with coefficient matrix

‘ 1 2 3 0 "

0 3 0 3
2 1 0 3
3 0 3 0

Then after row-reduction over Z4 we have
'10 10'

0 10 1
0 0 2 2
0 0 0 0

Setting x:i = a €Z4 and = /?, we have 2a + 2/3 = 2(a + (3) = 0 so
a + 0 €{0, 2}; if we let 7 € Z2, then a + 3 = 27 and /3 = 3a + 27.
Thus, we have solution set x\ = 3a, X2 = a + 27 for a 6 Z4 and
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0 € Z2 and the set of colorings is isomorphic to Z4 0 Z2. Hence we
rjp

have counting invariant value 4>£(L) = 8.

Exercises. 1. Find all bikei structures on the set X = {a-1,ÿ2}-

2. Write a computer program in your favorite programming language
to test whether a pair of square matrices define bikei operations.

3. Suppose V is an F-vector space. Set

x*y

x*y

ax -F 3y and
r + Sy.h

What conditions on a, /3,7, S €F are necessary and sufficient for *. *
to be bikei operations on V?

4. Let X — Z3. What values a.b,c, d £ Z3 make X a bikei with
operations x*y = ax 4- by and x*y = cx -f- dyl

5. Prove that every link L of c components has bikei counting invari¬
ant 4> Y(L) = 2' with respect to the bikei with operation matrix

2 2 2 2
1 1 1 1

6. Verify that the operations in example 108 satisfy the bikei axioms.

3. Biracks and Biquandles

What happens when we take the bikei style of coloring semiarcs rather
than arcs and apply it in the oriented and framed oriented cases?
Historically, the framed oriented case of semiarc-coloring algebraic
structures was considered in 1994 [FRS95 before bikeis. Let’s see
how it works.

Let us start by naming the various operations. At a positively
oriented crossing there are eight possible operations on neighboring
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semiarcs on each other as pictured

y>xx y

y x>y y<x x

X y x&y yAx

yvx xvy y X

together with eight more operations at negatively oriented crossings.
By considering the requirements of Reidemeister equivalence, we can
reduce this list of sixteen operations substantially.

First, we want to make sure our new algebraic structure can be
used for counting invariants, which means we must ensure that for
every coloring of a diagram before a move, there must be a unique
corresponding coloring after the move. In particular, in both the
oriented and framed cases, the Reidemeister I, II and framed I moves
require the coloring operations to satisfy the adjacent pairs rule: the
colors on any two sides of a crossing must determine the colors on the
other two sides. For example, the move

y>x rX\X

'N/

y — y y
x>y

requires that for each pair (x, y) £ A" x A\ there must be a unique
pair (y>x. x\>y) if we are to have a unique coloring after the move,
and there is a move for each pair of operations. In particular, we can
think in terms of maps of pairs: the map H : X x X — > Aÿ x X defined
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by H(x,y) = (y>x,xt>y) must be injective. Indeed, the type II move
requires that H is bijective, with inverse given by the corresponding
map of pairs at the negative crossing. This implies that we don’t have
independent operations at positive and negative crossings; rather,
the operations at negative crossings are the pairwise inverses of the
operations at the positive crossings. Thus, we really have only eight
operations:

x>yy xy<x

y>xx y

xyjy yyvx X

y x&yx IJAX

and switching the sign of the crossing just switches the position of
the colors.

Moreover, these eight operations are not all independent; indeed,
the adjacent pairs rule implies that the operations are right-invertible
with the vertical operations expressible as right inverses of the hori¬
zontal operations.

x<y !) = O/S-Ovl(x>y)Ay = x y>x

(y>x)yx = y x = (x<y)Ai/y<x

t> 1, A = <-1In particular, we have A = >~l
Finally, the operations < and < can be interpreted as the components
of the inverse of the of pairs H(x,y) = {y>x, x >y): thus, we have

and v = <, v =
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two independent operations t>. > : X x X — X which are right-
invertible and satisfy the additional requirement that the map of pairs
H (x, y) = (y>x,x>y) is invertible.

The framed Reiderneister I moves require an invertible kink map
7r : X — y X with the conditions that 7r(x>x) = xt>x and 7r(x)>x =
x>7r(x).

X X

~(j;)

X

x>x X

n(x)>xX

Jÿ7r(j*)
X

x>x = 7r(.7t>.r) 7T(x)

Finally, as in the bikei case, vve have exchange laws between the
operations > and >:

(#>2) >(y>z)1
(x>z)>(y>z),
(x Fz)>(y>2).

Thus, we can formally state our definition:

(x>y) >(z >y)
(x>y) >(z>y)
(x\>y) >(z>y)

A birack is a set X with right-invertible operations
>, > : X x X — > X and a bijection TZ : X X satisfying for all
x ,y,z €X,

Definition 29,

(i) TT(X>X) = and 7r(x) >X = X>TT(X).
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(ii) The map of pairs Il(x.y) = {y>x,x>y) is invertible.
(iii) The exchange laws:

( X>y)>(z>y)
(x>y)>(2>i/)

{x>z) >(«>2),

(X>Z ) >(l/>2).

As in the rack case, if X is a finite set, there is an integer N such
that 7rA : A' — » X is the identity map; the smallest such positive N
is the characteristic of X. A birack of characteristic N = 1 is called
a biquandle.

Example 109. Every quandle, kei, or rack is a birack with opera¬
tions x>y = x and x>y = x > y.

A bikei is a birack with x oy = x*y and x>y = x*y.Example 110.

We illustrate the relationship between these algebraic structures
with the following Venn diagram from [AN12 :

racks

involutory
racksquandles

kei

biquandles involutory
bikei

biracks



Generalizations of Quandles168

Example 111. Let X be a set and cr, r : X —tX bijections which
commute, i.c., such that <T(T(£)) = T(<J(X)). Then X is a birack with
operations x>y = <r(x) and x>y = T(X) and TT(X) = r_1(cr(x)). A
birack of this type is called a constant action birack. Let us verify the
axioms:

(i) We have

7r(x>x) = Tÿ1((T(T(X)) = T~1ra(x) = a(x) = x>x

and

7r(x)>x = T(T = <J{X) = x>n(x).
(ii) The map H(x,y) = (r(?/), <r(x)) has inverse map

H~l(x,y) = (a~l(y),T~'(x)), and

(Hi)

(a->y)>(z>;</) = a(T(X)) = r(a(x))
(x>y)5(z>y) =

a2(x) = (x>z)t(y>z),
= (x>z)>(y>z),
= (x>z)>(y>z ).T2(X)

As with bikei, we can represent a birack structure on a finite set
X = {#1, £2, • • •,sn} with a pair of operation tables for > and >
encoded as matrices U and L such that Uij = k where xÿ = x* >xj
and Ljj = h where xjr — X{ >xj. Then for example the constant action
birack structure on A" = {XI,£2>£3>#4} with operations given by the
permutations a = [2,3,4, 1] and r = [4, 1,2,3] has operation matrix

4 4 4 4 '

1111
2 2 2 2 *

3 3 3 3 .

This birack has kink map 7r = [3, 1,4, 2] and characteristic N = 2
since 7r2 = Id.

" 2 2 2 2
3 3 3 3
4 4 4 4
1111

Maps of Pairs. An alternative way to state the definition of a birack
is in terms of maps of pairs. In much of the literature in which the
properties of biracks were worked out, this was the notation used.
Precisely, given a set X, let A(x) = (x,x). Then we say that an



Biracks and Biquandles 169

invertible map of pairs B : X X X —> X x X given by B(x. y) =
(Bi(x, y), B'2(x, y)) is a birack map if it satisfies the conditions:

(i) There is a unique invertible map H : X x X X x X
satisfying H(x , i?i(x, 2/)) = (?/. Bÿix, y)) for all x. ?/ E X.

is a bijection where ( HA)j1(ii) The map n(x) = (HA)2(HA) l
is the jth component of {HA).

(iii) B satisfies the set-theoretic Yang-Baxter equation

(B x /)(/ x B)(B x /) = (/ x £)(£ x /)(/ x £)

where I : X — > X is the identity map I(x) = x.

The components of B(x. y) are often written (yx, xy). In our notation,
the map B{x, y) is given by (yvx, xvy).

(t, $, r)-Biracks. An interesting example of a birack or biquandle
structure is the (t, s, r)-birack. Let A = Z r±1)/(s2 — $( 1 — tr))
be the quotient of the set of polynomials with integer coefficients in a
variable .s and two invertible variables t and r modulo the condition
that s2 equals (1 — tr)s. Then the operations xt>y = tx T sr~ly and
y&x = r~ly define a birack structure on any A-module A.

-lx r y

tx T sr yy

The kink map of a (#, s, r)-birack is given bv n(x) = (tr + $)x.

x
rx

rx trx T sx
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If s is invertible, then s2 = (1 — tr)s says s = 1 — tr so we have
7r(x) = (tr 4- s)x = (tr -1-1 — tr)x = x and our birack is a biquandle,
called an Alexander biquandle.

We have seen special cases of (t, s, r)-biracks already:

• A (£, s, r)-birack with r = 1 is a (t,s)-rack;

• A (t.s, r)-birack with 7' = 1 and s = 1 — £ is an Alexander
quandle

Let A" = Zn. We can give X the structure of a (£, s, r)-birack
by choosing elements ty s,r in 7Ln such that t and r are invertible in
Zn (this happens if t and r are coprime to n, that is, if t and r have
greatest common divisor 1 with n) and such that 6*2 = s( 1 — tr). If s
is also invertible, then we have an Alexander biquandle.

Example 112. For instance, take X — Z3 with t = 1, s = 2 and
= 2. Then gcd(l,3) = 1, gcd(2, 3) = 1, and s2 = 22 = 4 = 1

while 5(1 — tr) = 2(1 — 1(2)) = 2(— 1) = —2 = 1 so the operations
x>y = x -H 2iy and = 2r define a (t,s, r)-birack structure on Z3.
The operation tables are given by

>012

v

0 1 2>
0 0 2 1

1 0 2
2 1 0

0 0 0 0
2 2 2
1 1 1

and
1 1
2 2

This birack has kink map TT(X) = (tr + s)x — (1(2) 4- 2)x = Ax =
so TT(X) = x and A~ is an Alexander biquandle.

x,

Now consider X = Z4 and set t = 3, s = 3 andExample 113.
r = 3. Then gcd(3, 4) = 1 and s2 = 22 =4 = 0 while s(l — tr) =
2(1— 3(3)) = 2(—8) = 0 so the operations x>y = 3x-b2// and x>y = 3x
define a (t,s, r)-birack structure on Z4. This birack has kink map
7r(x) = (tr 4- s)x = (3(3) 4- 2)x = 3x; then 7r2(x) = 3(3x) = 9x = x,
so X is a birack of characteristic N = 2.

Counting Invariants. As with racks, each framing of a knot or link
can have potentially different numbers of colorings by a birack X , but
if X has characteristic N then iV-phone cord equivalent framings of
the same knot or link will have the same number of A"-colorings, which
can be interepreted as birack homomorphisms from the fundamental
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birack of L. B'R{L), to X. Thus, we can define the basic birack count¬
ing invariant 4> y (Lÿ) of a link L of c components with framing vec¬
tor w to be the number of birack homomorphisms lhnn(BR(Lÿ). X)\
from the fundamnetal birack of to A\ and then the integral birack
counting invariant of the unframed link L is the sum of these basic-
count ing invariants over a complete tile of framings mod N:

$Zx(L)= Y, |Hom(Sfc(L*),X)|.
tr€(Zjv)c

If N = 1 and A" is a biquandle, then a tile of framings is a single
framing and the integral counting invariant is the same as the basic
counting invariant .

Example 114. Consider the Hopf link L and the constant action
birack defined by the operation matrix

112 2
2 2 1 1

[2, 1], we can thinkNoticing that xt>y = x and x>y = a(x) where a
of colorings by X as colorings in which the colors stay the same when
going under a crossing and switch from 1 to 2 or 2 to 1 when going
over a crossing. Then 7r(l) = 2 and 7t(2) = 1, so TT2 = Id and X
has characteristic N = 2. Then to compute <I> y(L), we need to look
at colorings of framings of L in (Z2)2 = {(0, 0), (0, 1), (1, 0), (1, 1)}.
There are no valid colorings of L with writhe vectors (0,0), (0, 1) or
(1,0), but there are four with writhe vector (1,1):

2 1 22

111 2

112 1 21 12
PNÿ

2 21
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Thus we have <J>y (L) = 0 + 0 + 0 T 4 = 4.

Compute the integral birack counting invariant for
the knot 6i with blackboard framing as shown in the knot table in
Chapter 1 with respect to the (t , s,7*)-birack Z3 with t — 1, s = 2, r =

Exercises. 1.

2.

2. Show that the (t , .s, r)-birack operations satisfy the exchange laws.

3. Compute the counting invariant of the trefoil knot with respect to
the Alexander biquandle Z3 with t = 2 and r = 1 using row-reduction
over Z3.
4. Find the characteristic of the (t,s, r)-birack X = Zg with t = 1,
5 = 4 and 7' — 5.

5. Compute the counting invariant of the figure eight knot with re¬
spect to the (£, s, 7*)-birack X = Z4 with t = 1, .s = 2 and 7* = 3.
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Chapter 6

Enhancements

1. Basic Enhancements

An enhancement of a counting invariant is another stronger invariant
from which we can recover the counting invariant. Many of the knot
invariants defined and studied using quanclles and related algebraic
structures can be understood as enhancements of a counting invariant.

Let X be a finite quandle. Recall that the quandle counting
invariant $ÿ(L) of a link L counts colorings of the arcs in L with
elements of Ar, which we can also understand as quandle homomor-
phisms / : Q(L) — > X from the fundamental quandle of L to X. In
fact, it's not just the numbern of quandle colorings of a diagram of L
which is invariant under Reidemeister moves; it’s the set of homo-
morphisms Ilorn(Q(L), X).

While a homomorphism / : Q(L) — > A' can be repre¬
sented as, for instance, a vector specifying an element
of A" for each arc in a diagram of L, such a represen¬
tation depends on the diagram we have chosen for L.
Thus, we should more properly think of a homomorphism
/ : Q(L) — > X as an equivalence class of colorings of di¬
agrams of L.

Now, suppose we have an invariant (p not just of links L but of A -
colored links; that is, something we can compute from an Aÿ-colored

173
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link L such that </> is the same before and after doing Reidemeister
moves to L with the corresponding .Y-colorings. Then instead of just
adding up the number of colorings, we can collect the (p values for
each coloring. Since we might have repeated 0 values, we need to
make a multiset or set with multiplicities, where each element has an
associated multiplicity (or equivalently, we just allow repeated ele¬
ments in our set, like {1, 1,1,2,3, 3, }). The total number of <p values
then tells us the number of colorings, so we can recover the counting
invariant; however, different links may have different combinations of
(p values which we can use to tell links apart even if they have the
same counting invariant value.

Image Enhancement. Consider the set of kei colorings of the trefoil
knot 3i by the three-element kei with the operation table below.

1 2 3>
1 1 3 2

3 2 1
2 1 3

2
3

2 31 1 32
21 3

3 11 23 1
2 32

2 22 3 31
113
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Looking at the colorings, we notice that three of the colorings are
different from the other six. In terms of tricolorings, three of these are
trivial tricolorings and six are nontrivial. As we have seen, a nontrivial
tricoloring is really a surjective kei homomorphism. Thus what is
distinguishing these kei colorings of the trefoil is the cardinality of
the image subkei: three have one-element images while six have three-
element images. In particular, the image subkei

Im(/) = {x e X x = f(a) for some a £ /C(L)}

of a kei homomorphism / : JC(L) — » X is an invariant of Ar-colorings
of L, and hence so is its cardinality |Im(/)|. Then we have a new
invariant enhancing the counting invariant consisting of the multiset
of cardinalities of image subkeis over the set of kei colorings of L.
which we call the image enhancement multiset of L with respect to
X :

Im.M(L) ={|Im(/)| | / €Hom(JC(/,),X)}.(»x

If the elements of our multiset M are numbers, we can encode
the multiset conveniently as a polynomial (or as an infinite scries if
M is countably infinite) by making the multiplicities into coefficients
and the elements into exponents of a dummy variable if, resulting in
a function of u known as a generating function. For example, the
multiset

M = {0,0, 1,1, 1,2, 3, 3, 4}
has generating function

2 T 3u -f- u~ T 2xi * T .

The image enhancement idea works for all of the types of knots
and links (unoriented, oriented, framed) and all of the types of ap¬
propriate coloring objects (kei, quandle, group, rack, bikei, biquandle
or birack). Thus, given a kei X we can define the image enhancement
polynomial

E u|im(/)|.
feHom(K(L)yX)
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Example 115.
element Takasaki kei X = Z3 with x\>y = 2x+2y with image subkeis
as depicted.

The trefoil knot 3i has nine colorings by the 3-

2 31 3
21 3

{3}{2}{1}

3 3 11 2 1
2 32

{1,2.3} {T2,3}{1.2,3}

2 22 3 31
113

{1.2,3} {1.2,3}{1.2,3}

Then the image enhancement multiset invariant is

$X’A/(3I) = {1,1,1,3,3,3,3,3,3}
and the image enhancement polynomial is 3>yn(3i) = 3u + 6n3.
Writhe Enhancement. In the definition of the rack and birack
counting invariants, we sum the numbers of colorings of a diagram of
L over a tile of framing vectors whose side length is the rack or birack
characteristic N . One easy way to enhance this invariant is to keep
track of which colorings come from which framing.

Suppose we have a rack or birack of characteristic N. We can
form a multiset enhancement of the rack or birack counting invariant
by making a multiset of ordered pairs of the number of colorings in
each framing together with the framing vector, i.c.,

STAWM = {(|Hom(BTC(Ltf),X)|fi3) I we(ZN)c}.n



Basic Enhancements 177

Alternatively, we can get a multivariable polynomial by defin¬
ing dummy variables q\ , . .. , qc and converting framing vectors w =
(u’l, ....wc) into monomials q[l 1 . . . q'°c , which we denote by qir . Then
the writhe enhancement polynomial is

*%(L)= Y, |Hom(5fc(L*),X)|g*
w€(Zj\ )c

Let, X be the nontrivial two-element rack, i.e., theExample 116.
constant action rack X = {1,2} defined by the Injection <r(l) = 2 and
<r(2) = 1. Then as we have seen, the Hopf link L has 4 A-colorings
with writhe vector w = (1,1) and no colorings with writhe vectors
w G {(0,0), (0, 1), (1,0)}. Thus, we have

(L) = + {)44 + U<Ii4 + A(l\4 = 4qi q-2-

On the other hand, the unlink of two components V has 4 colorings
with writhe vector w = (0, 0) and no colorings with writhe vector
ic G {(0,1), (1,0), (1,1)}, so the unlink has invariant

(C) = 4(44 + 0g?«2 + °Q\4 + 0q\q}2 = 4.

In particular, the Hopf link and the two-component unlink have the
same rack counting invariant value T;(L) = Tf:(Lr) = 4 but arc
distinguished by their writhe enhancements.

Homomorphism Enhancements. Another basic way to enhance a
counting invariant is to select a surjective homomorphism g : X — » Y
and use it to divide the set of X colorings of L into disjoint subsets. As
with the image enhancement, we will use the case of kei for simplicity,
but the same idea works with quandles, racks, bikei, biquandles and
biracks as well.

Let A" and Y be finite kei and suppose that g : X — > Y is a surjec¬
tive kei homomorphism. Then if L is a link and / G Hom(/C(L), A") is
an A-coloring of L, then gf : JC(L ) — Y defined by gf(x) = g(f(x))
is a Y -coloring of L.

We can define an equivalence relation ~ on Hom(/C(L), X) by
setting f ~ f if gf = gf:

• ilf — yf 80 ~ is reflexive,

• g f = gf' implies gf' = gf so ~ is symmetric, and
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• gf = gf' and gf' = gf" implies gf = gf", so ~ is transitive.

Then the homomorphism enhancement of the kei counting invariant
with respect to g : X — > Y is the partition of the set of X-colorings
by the equivalence relation ~ into the set of equivalence classes

*?(L)= {[/] 1/ € Hom(IC(L),X),gf ~ gf}.

We can also formulate a polynomial version of the homomorphism
enhancement:

£ ul{/€Hom(/C(L),X)| fg=h}\%(L) =
h€Hom(fC(L),Y)

We can think of this enhancement as an enhancement of the count¬
ing invariant with respect to A' (grouping together X-colorings which
project to the same or with respect to Y (for each Y-
coloring, the number of X-colorings it lifts to is an invariant of Y -
colorcd isotopy) since we can recover both <fry(L) as the sum of coeffi¬
cients and <I> y (L) as the sum of the products of each term's exponent
times its coefficient.

Example 117. Consider the kei X and Y with operation tables

1 2 3>x a b>Y1 1 2
2 2 1
3 3 3

1 and a a a2 b b b3

Then the map / : X —¥ Y defined by /(1) = /(2) = a and /(3) = b is
a kei homomorphism. The Hopf link L and unlink of two components
U‘2 both have 4>y (L) = 4>y (To) = 4 colorings by Y as depicted.

bb aa

bbaa
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a b a b

bba a

However, these colorings lift to different numbers of colorings by X.
and we have

®g{L) = 2u° + u1 + u[ <l>n(U2) = ul 4- 2u2 + u4.

1

1
1

2

2

1

2
3

2 3

bb aa

bbaa
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1

1

1

2

2 13

1 1 3

2 2 33

2 2 3 3

a 6 a fc

6ba a

Exercises. 1. Compute the image enhancement polynomial for the
figure eight knot with respect to the quandle with operation matrix

" 1 3 4 2 “

4 2 13
2 4 3 1
3 12 4

2. Compute the writhe enhancement polynomial for the Hopf link
with respect to the (£, s)-rack Z4 with t = 1 and s = 2.
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3. Compute the writhe enhancement polynomial for the Hopf link
with respect to the (L s, r)-birack Z4 with t = 1, s = 2 and r = 3.

4. Let X and Y be the quandles defined by the operation matrices
’ 1 4 4 1"

2 2 2 2
3 3 3 3
4 114

a aX = Y = b b ‘

Show that the map / : X — > Y defined by /(1) = /(4) = a and
/(2) = /(3) = b is a quandle homomorphism and compute the homo¬
morphism enhancement for the Hopf link.

5. Compute the homomorphism enhancement for the trefoil with
respect to the homomorphism / : Z3 0Z3 — > Z3 given by /(x, y) = x
where the quandle structures are given by

(x, y) o (u, v) = (2u — x, 2?; — y) and x > u = 2u — x.

2. Structure Enhancements

Many of the examples we have seen of kei, quandles and their gener¬
alizations are not just kei or quandles but have additional algebraic
structure. Alexander quandles are also A-modules; conjugation quan¬
dles are also groups; symplectic quandles are also vector spaces. In
many cases we can exploit this extra structure to enhance the count¬
ing invariant.

Recall that to enhance a counting invariant, we can find an invari¬
ant (j) of X-colorcd diagrams; then the multiset of 0-valucs gives us a
potentially stronger invariant from which we can recover the counting
invariant as the multiset’s cardinality. As we have seen, we frequently
find it useful to convert the multiset into a polynomial by taking a
generating function, i.e., a polynomial in a variable u with elements
as powers and multiplicities as coefficients.

Symplectic Quandle Enhancement. Let X be a symplectic quan¬
dle, i.e.. a vector space V with an antisymmetric bilinear form (, ) :
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V x V —> F, which is a quandle under the operations

xt>y
-l -

x+ {x,y)y,
x- (x,y)y.

Now suppose we have an A-coloring of a knot or link L. Each of
the elements of X is a vector, so we can consider the subspace of
X spanned by the elements coloring the arcs in X. We must be
careful here: to get a subspacc which is invariant under A'-colorcd
Reidemeister moves, we must take the subspace spanned by the full
image subquandle of A" generated by the arc colors, not just the
space spanned by the arc colors themselves. Then we can use the
dimension of the subspace of X spanned by the image of / for each
quandle homomorphism / : Q(L) — » X as our multiset elements to
obtain the symplectic quandle enhancement multiset

<t>SrPM(L) = (dim(Im(/)) | / €Hom(Q(L), A)}

X > //

and the symplectic quandle enhancement polynomial

wdim(Im(/))(L) = E
/€Hom(Q(L),X)

If A" is a finite vector space, we can alternatively use <£(/) = |lm(/)|
in place of dim(Im(/)).

Let X = (Z2)2 = {(0,0), (1,0), (0,1), (1,1)}, theExample 118.
four element vector space over Z2, and let

0 1 V\((xi,x2),(yi,y2)) - [ xi ] = xiy2 + x2yi.x2 1 0 in
Then X is a symplectic quandle with operation

(a-1,ÿ2) + ( x\y2 +x2yi)(y1,y2)
(xj + xxyim + X2V\, x2 + x\y2 + x22/12/2)*

(®i , > (2/1 , 2/2)

X has the operation table
(0.0) (0,1) (1,0) (1,1)>
(0.0) (0,0) (0,0) (0,0)
(0,1) (0,1) (1,1) (1,0)
(1,0) (1.1) (1,0) (0,1)
(1,1) (1,0) (0,1) (1,1)

(0, 0)
(0,1)
(1,0)
(1,1)
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Then for instance the trefoil knot 3i has 10 X-colorings as depicted

(0,0) (0,1) (0,1) (1,0) (1,0) (1,1) (1,1) (i,o) (1,1)(0,0)

(0,1)(1>1)(1.0)

(1,1) (1,0) (0,1) (1,1) (0,1) (1,0) (1,1) (0,1) (1,0) (0,1)

(0,0) (0,1)

(1,1)(0,1) (1,0) (1.1)(1,0)

The multiset version of the invariant is then

$|ymp.A/(3i) = {dim(Z2[(0>0)],dim(Z2[(0, l)]),dim(Z2[(l. ())]),
dim(Z2[(l, 1)]),6 x dim(Z2[(0,1), (1,0), (1, 1)])}

= {0,1, 1,1. 2. 2, 2, 2, 2, 2}

or in polynomial form,

$xmp(3i) = u° + 3m1 + 6u2 = 1 + 3« + 6a2.

Module Enhancements. Several types of knot-coloring structures
also have a module structure over a ring R, e.g. Alexander quandles
and biquandles, (t, .s)-racks and (t, .s, r)-biracks, etc. For each of these,
we can enhance the counting invariant by setting (p(f) equal to the
cardinality of the submodule spanned by Im(/) if X is finite or by
setting (p(f) equal to the rank of the /?-submodule spanned by Im(/)
if A" is infinite, obtaining invariants

Mod,A/(L) = {|i?[Im(/)]| | / € Hom(Q(L), X)}
u|rt[Im(/)]|E<ÿ!od(L)

/eHom(Q(L),A')

Example 119. Let A" be the Alexander quandlc A-j/fl + t2) from
Example 73. Then A" can be identified with the set {(), 1 + 1}
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where t2 = 1, and X has the operation table

1 t 1 -f t0t>
0 l + t l + t 00

1 1 1t t
11 tt t

l+t 0 0 l+tl + t

Then the Hopf link L has eight quandle colorings by X as depicted:

1 +t0l+t0

l+t 1 +t00

11 t t

t1 t1

Closing the sets of arc colors under the quandle operation, we have

{{0}, {1}, {t}, {1 + t},2 x {().1 + t},2 x {l,t}}.

Then to get the submodules spanned by each of these sets, recall that
a submodule is closed under addition and scalar multiplication. Then
the Aj-submodulcs spanned by the image subquandles arc

{{()}, {o. i, t, i + 1}, {o. M, i + 1}, {o, l + 1},
2 x {0,1 +t},2 x {0.1, t, l+t}}

for submodule enhancement invariants
<frMod,Af (L) {1,2,2,2,4.4,4 4}

u + Sir + 4uÿ.<ÿIod(L)

Group Enhancements. For our last structure enhancements, recall
that a group G is a quandle under conjugation x D> y = y~lxy and a
kei under the core operation x D> y = yx~ly. We can use the group
structure to enhance the counting invariant in several ways.
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First, if A" is a conjugation quandle or core quandle, for each X-
coloring we can take & to be the cardinality of the subgroup of X
generated by the image subquandle. Let’s see how it works with an
example:

Example 120. Let X = {.iq, x?, 2*3, aq, X5, XG} be the conjugation
quandle of the group ZI3 of symmetries of an equilateral triangle.
Then X has group and quandle operation tables

1 2 3 4 5 6 1 2 3 4 5 6t>
12 3 4
2 1 4 3 6 5
3 5 6 2 4 1
4 6 5 1 3 2
5 3 2 6 1 4
6 4 1 5 2 3

15 6 111111
2 2 5 5 4 4
3 6 3 6 6 3
4 5 2 4 2 5
5 4 4 2 5 2
6 3 6 3 3 6

l
2 2

and3 3
4 4
5 5
6 6

The trefoil knot 3j has 12 colorings by X as depicted:

5 421

221 2
4 521

4543

54 43
2 23 4

2265

55 6 4
5 45 6

Then each of the monochromatic colorings has a singleton image sub¬
quandle, while the other six have image subquandle {2.4,5} isomor¬
phic to the three-element Takasaki kci. Recall that the subgroup
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generated by a subset of a group is the closure of the set under mul¬
tiplication and inverses; then we have the following subgroups:

{{1}, {1,2}, {1,4}, {1,5}, 2 x {1,3,6}, 6 x {1,2, 3, 4, 5, 6}}

so the multiset invariant is

(3l) = {1) 2. 2, 2, 3, 3, 6, 6, 6, 6, 6, 6}

with polynomial version

*xbg(3i) = 11 3u2 + 2u3 4- 6u°.

Another enhancement involving groups uses the observation that
in the operation table of a quandle (or kei, rack, bikei, biquandie or
birack), the columns are always permutations. Recall that the set
of permutations of n things forms a group of n\ elements called the
symmetric group on n letters, denoted Sn . Then instead of associ¬
ating the subgroup of X generated by Im(/), we can associate the
subgroup of Sn generated by the columns of the operation table(s) of
X corresponding to the elements of lm(/). We call these groups the
column groups of the subquandles lm(/), denoted CQ(\m(f)).

Note that for kei, quandles, and racks the permutations repre¬
sented by the columns in the operation tables arc inner automor¬
phisms, so for these structures the column group is a subgroup of
the inner automorphism group; for bikei, biquandie and biracks, the
column group elements are generally not automorphisms.

Example 121. Let us continue Example 120 and find the column
group enhancement. Each of the singleton image subquandles deter¬
mines a cyclic subgroup, i.e., a subgroup consisting of powers of a
single permutation <r. Such a subgroup is isomorphic to Zn where
n is the smallest integer greater than zero such that crn = 1. For
example, #2 has column permutation [1,2,6, 5,4, 3], and the compo¬
sition of a with itself is a2 = [1, 2, 3, 4, 5, 6], the identity permutation.
Thus, the column group of the image subquandle {#2} is a copy of Z2.
The image subquandle {2,4,5} has column group generated by the
permutations [1, 2, 6, 5, 4, 3], [1, 5, 6, 4. 2, 3], [1,4, 6, 2, 5, 3] which turns
out to be isomorphic to S3 itself. We end up with column groups as
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listed:
Im(/) Cg(lm(f))
{1} Zt = {0}
{2} Z‘2
{3} Z3
{4} Z*2
{5} Z2
{6} Z3
{2,4 5} 5a

Then we have column group enhancements

{1,2. 2, 2, 3, 3, 6, 6, 6. 6, 6, 6} and
(3i ) = u + 3u2 + 2u3 + 6u° .

Exercises. 1. Find the symplectic quandlc enhancement polynomial
for the knot 61 with respect to the symplectic quandlc in Example
118.

2. Find the module enhancement polynomial for the (4, 2)-torus link

with respect to the Alexander quandle Z4 with t = 3.

3. Find the module enhancement polynomial for the Hopf link with
respect to the (/, .s, r)-birack Z4 with t = 1, s = 2 and r = 3.

Find the subgroup enhancement for the figure eight knot with
respect to the conjugation quandlc of the dihedral group D4 (the
symmetry group of a square).

4.
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5. Find the column group enhancement polynomial for the Ilopf link
with coloring kci with operation matrix

"1112'
2 2 2 1
3 3 3 3
4 4 4 4

3. Quandle Polynomials

One of the differences between quandles and groups is that unlike
groups, quandles have no identity element; instead, each element acts
as its own identity element. Another way to say this is t hat in a group,
there is a single element which acts trivially on everything else, while
in a quandle the trivial action is distributed throughout the quandle.
The quandle polynomial is a way of quantifying this distribution of
trivial action as a two-variable polynomial.

Let A" be a finite quandle. For each element x € X, let r(x) be
the number of elements of A" which act trivially on x. i.e. the set

r(x) = |{;y € X \ x>y = .T}|

and let c(x) be the set of elements of A" on which x acts trivially, i.e.

c(a-) = \{y e X | y>x

In terms of the quandle’s operation table, r(x) counts the number of
.rs in row x and c(x) counts how many entries in the column of x
equal their row number.

Example 122. Consider the quandle A" with operation table

y}\-

12 3 4>
till
3 2 2 3
2 3 3 2
4 4 4 4

1
2
3
4

Then r(l) = 4 and r(2) = 2 since row 1 has four Is and row 2 has
only two 2s. Similarly, c(l) = 2 and c(2) = 4 since column 1 has only
two entries equal to their row numbers (namely, rows 1 and 4) but
column 2 has all four entries equal to their row numbers.
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For every element x € X, we have a pair (i'(x),c(x)) of integers.
We can express this data conveniently as a polynomial in two variables
which we call the quandle polynomial of X :

p(X) = tr{x)sc{x\

Example 123. The quandle A" with operation table

12 3 4>
1111
3 2 2 3
2 3 3 2
4 4 4 4

1
2
3
4

has the following i'(x) and c(x) values:

r{x) c(.7;)x
241

2 2 4
3 2 4
4 4 2

and thus quandle polynomial

p(X) = t4s2 + t2s4 + t2s4 + fV = 2t4s2 + 2t2s4.

Now, suppose S C X is a subquandle of X. Then as a stand¬
alone quandle, S has its own quandle polynomial p(S), but we can
also form the subquandle polynomial of S as a subquandle of A" by
summing the contributions of the elements of S to p(X):

p(ScX)= Yÿ ir{x)sc{x)
xes

where c(x) and r(x) are computed from the operation table of A".
These subquandle polynomials carry information not just about the
isomorphism type of S but also about how S is embedded in A", quite
appropriate since knot theory is all about how certain objects are
embedded inside other objects.
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Example 124. The quandle X with operation table

12 3 4>
1 112 2

2 2 11
3 3 3 3
4 4 4 4

2
3
4

has the following r(x) and c(x) values:

r(x) c{x)X

2 41
2 2 4
3 4 2

4 24

Then the subquandles Si = {1,2} and *$2 — {3,4} are both trivial
quandles on two elements and thus both have quandle polynomial
p(S\) = p(S2) = 2t2s2, but their subquandle polynomials are dif¬
ferent, reflecting the fact that they are embedded in A" in different
ways:

p{S , C X) = 2fV ± p(S2 c X) = 2t4s2.

We can use subquandle polynomials to get a multiset-valued en¬
hancement of the quandle counting invariant (or indeed, a further
enhancement of the image enhancement invariant) by collecting for
each / G Hom(Q(L),A") the subquandle polynomial of the image
subquandle. That is, the subquandle polynomial enhancement is the
multiset

&x(L) = C X) | / e Horn(Q(L),X)}.

Example 125. Consider the Hopf link L and the kei X = { T 2, 3, 4}
with the operation table in Example 124. There are eight X-colorings
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of L as depicted.

1 21 2

21 1 2
{i} {1,2}{1,2} {2}

4 43 3

4343
{3} {4}{3.4}{3,4}

Then we have subquandle polynomial enhancement

{p({1} C A),p({2} C A), p({3} C A'), p({4} C A),
2xp({l,2}c A), 2 x p({3,4} C A)}

[t2s4, t2s4, t4s2, t4s2, 2 x 2t2s4, 2 x 2tV}
{2 x t2*4, 2 x t4s2, 2 x 2t2s4, 2 x 2tV}.

&x(L)

Exercises. 1. Prove that if CJ : X — F is a quandle isomorphism.
then p( X) = p(Y).

Prove that a Latin quandle of n elements always has quandle
polynomial p( X) = nts.
2.

3. Compute the subquandle polynomial enhancement invariant for
the figure eight knot with respect to the Alexander quandle A" =
A2/(l +t + t2).

4. Prove that there is no quandle with quandle polynomial 3t2s2.

5. Define an enhancement of the rack counting invariant using subrack
polynomials and compute an example.
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4. Quandle Cocycle Enhancements

Let ( A\ >) be a finite quandle. We would like to define an enhance¬
ment of the quandle counting invariant \ by defining a function
<p : X x X — * Z where each crossing contributes an amount zh0(x, y)
depending on its quandle coloring as shown:

x y

/\ xV
- d>{x,y)+ <t>(x. y)

This labeling rule has the advantage that the contributions from the
two crossings at a type II move cancel out. like in the linking number
case:

x
+ 4>(x, y)

y

-o(x,y)
x S'

We can then ask what kind of function o gives us an invariant total
sum called a Boltzmann weight under the other Reidemeister moves.
For the type 111 move, we have

x yx

x>y z

y rs*j

z
X > z

yozzz
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and thus we need

4>(x, y) + <p(y, z) 4- o(x > y, z) = <£(x, z) + <£(y, 2) + d)(x > z, y> z)

or, simplifying,

<p(x, y) + <?(* t> y, 2) = 2) + >2,yl> z).

The type I move says we need <ÿ(x, x) = 0 for all x.

\x + <p(x,x)
X

What kinds of functions <£, if any, satisfy these conditions and
how can we find them? It turns out, such a function 0 is precisely a
cocycle in a cohomology space H2 associated to the quandle X.

Quandle Cohomology. Let (X, t>) he a finite quandle. For each
integer n > 1, consider Z[Xn], the Z-module with basis given by
ordered n-tuples of elements of X. Then Z[Xn] has elements of the
form ]£a(:ri,...,jcn).

Despite looking like familiar vectors, we cannot do the
usual operations within components on these vectors
these are formal linear combinations, not vectors in Zn.
For example, if X = {0,1,2} is the dihedral quandle
on three elements, then we can add 3(1,2) -f 2(1.2) in
Cf2(A") to get 5(1,2), but this not equal to (5,10) since
our quandle X does not have a 5 or 10. Similarly, we
cannot add (1,1) + (1,0) to get (2,1) since we are not
working in 1? or even Z3 ® Z3.

Now in order to ensure that the Reidemeister I condition is sat is¬
fied, we want <p(x, x) = 0 for all x € X. For each n > 2, the submod¬
ule of Z[Xn] generated by basis vectors of the form (xi,X2, ... ,xn)
where some xÿ = arfc+i is called the degenerate submodule, denoted
Cj?(X). Then we define Cn(X) to be the quotient module Cn(X) =
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Z [Xn]/C.j?{X). In practice, we can simply set vectors with repeated
neighboring entries equal to the zero vector.

Next, let Cn = {0 : Cn —> Z} be the set of linear transformations
from Cn to Z. For example, if A' = {1,2,3}, then C2{X) has basis

{6i = (1»2), 62 = U,3), 63 = (2,1),
64 = (2,3), 65 = (3,1), 60 = (3,2)}

so a typical element of Cb ( A" ) is a formal linear combination of these,
e.g.,

v = 3(1, 3) -2(2,1) + (2,3),
which we can write as a column vector

0
3

-2«— tv = 1
0
0

In particular, if we t hink of the elements of C2(X) as column vectors,
then the elements of C2 can be identified with row vectors of the
same size, with function evaluation given by matrix multiplication.
That is, we evaluate the function defined by a row vector at a column
vector by taking the dot product. Row vectors considered as linear
transformations of column vectors are sornstirnes called dual vectors
or covectors; we can think of cohomology as homology of covectors.

Consider the dihedral quandle on three elements A.
65 = (3. 2)} and is isomorphic

to 21' . We can identify Cb(A") with the set of 6x1 column vectors
with entries in Z. Then C2{X) is the set of linear maps from Cb(A')
to Z; each such linear map can be expressed as the matrix product
of a 1 x 6 row vector with our 6x1 input vector. For instance, the
linear transformation

f(aibx + exobo T 0.363 4- 0:464 T 0565 + otebÿ) = 3oi — 203 + 05

can be identified with the row vector

Example 126.
Then C2(Ar) has basis {61 =(1,2),.. • , ,

/ = [ 3 0 -2 0 0 1 ] €C2(X).
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Then evaluating / on

3
0
2v = 3(1, 2) + 2(2,1) - (3, 1) + (3, 2) = 0

-1
1

yields

3
0
2[ 3 0 -2 0 0 1]m 0

-1
1

3(3) + 0(0) + 2( — 2) + 0(0) + 0(-l) + 1(1)
9 — 4+l = 6.

We can also think of Cn(X) in terms of characteristic functions.
Let A’ be a quandle and A be an abelian group (for simplicity assume
that .4 is a finite cyclic group Zn or the infinite cyclic group Z). The
set of functions from Z[Xn] to .4 is generated by the characteristic
functions denoted \x where x £ Xn. This function is defined by

1 x = y,
0 x ± y,

Xxiy) =

on basis elements x. y\ that is, Xx{v) = 1 if x = y and Xx(v) = 0 if
x 7ÿ y . The advantage of these functions is that we can write any
function / from Xn to .4 uniquely as / = \rXx-

To make this a cochain complex, we need differentials dn : C
Cn. Let's start bv explaining how the differential maps arc defined
in low dimensions arid then give the general formula. The second

ri— 1
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differential d2 : C1 — > C2 can he thought of as the result of pre¬
composing f : C1 — > Z with the boundary of the 2-dimensional ‘"pre¬
ferred square” in the following figure

x V

y x > y

given by

(x,y) = (x) - (x > y).

That is, for any / : Ci(A') — > Z, we have d2f = fd-2 : C-i — > Z, so
that

d2f (ÿ2a{x,y)ÿ = :(/(x) - f(x>y))

The third differential is given by precomposition with

d3(x, y, z) = (x, z') (x D> y, z) - (x, y) + (x\> z,y > z).

This formula comes from the boundary of a cube as can be seen from
the following figure. The front faces of the cube on the left side of
the figure give (x< y), (y, z) and (a; C> y, z) while the back faces on the
right side of the figure give (x, z ), (y, z) and (# > z,y O z). The faces
of the cube are oriented in such a way that a face and its opposite
have opposite orientations, giving us a consistent orientation of the
cube. Then the face (x. y) is opposite to (a: t> z, y \> z), the face (y, z)
is opposite to itself and the face (x > y, z) is opposite to (x, z). Since
the pair (y, z) cancels as it appears once with positive sign and once
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with negative sign we obtain the formula.

i/
/ i*i/

y yzXX
xi>y

(*y)
zz y

y>zy--i Zzz
/x>z

(x> y) > z/

y>z y\>z(x:> z)> (y> z)
= (x>y)>z

The fourth differential is given by precomposition with

d4(xi,X‘2,X3,X4) = (xUX3,X4)- (xX t> X2,XÿX4) - (xX,X2,X4)
T(Xi > Xsÿ X2 > X3, X4) + (XuX2,X3) — (X\ C> #4, X2 > X4, X3 > X4).

The cochain complex for quandle cohomology is

— C2 C1 f ”#n + l dn -C°,C" « • • • 4

where Cn can be thought of as tlie A-module with basis elements
(*ÿ1 j X2 1 • •

maps from Cn to Z. and the differential dn : C
position with the boundary map dn given by

xn), with Xi € A\ Xi 7ÿ Xi+1, C is the space of linear
n— 1

n
• j

— > Cn is precoin-

n

) = [(xi,... xn)djl {d l : 3 2? • • • ? xn 1 Xi — 1 • X |_j_1. . . • ?

i=2

x«)l( J 1 — 1 ) • ■ * 1
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for n > 2 and dn = 0 for n < 1. In particular, for an element of
Cn thought of as a column vector, there is a corresponding function
/ €Cn obtained by transposing the column vector to get a row vector.
The matrix of the differential du 1 is then given by the transpose of
the matrix of dn.

More formally, we have

Definition 30. Let (X.>) be a quandle and A be an abelian group.
A function / : X — A that satisfies the condition

f{x) - f(x > y) 0

for all x,y in X is a quandle 1-cocycle.

Example 127. If the quandle X is trivial (x > y = xÿx.y £ A").
then from definition 30 we see that any function / from X to A is a
1-cocycle.

Definition 31. A function 4> : X x X — > A such that for all x, y and
z in A, the conditions

<p{x, x)
<j>(x,y) + 4>(xt>y,z)

0 and
<p(x , z) -h 4>{x i> z, y > z)

arc satisfied is a 2-cocycle of the quandle A" with coefficients in A.

Example 128. It is straightforward to see that the function

(t>{x, y) = g(x) - g(x>y)

for any function g from X to A, satisfies the conditions of Definition
31. This function (f> is called a trivial 2-cocycle (or coboundary).

Example 129. Consider the dihedral quandle R3. We will show in
this example that every 2-cocycle <1> : X x X — > Z with coefficients in
Z is a coboundary. First we write

A 'VaM/)
x.ye FI*

By substituting this expression of $ in the equation (31), we obtain
A(xtJr) = 0 for all xEl?3, and

<t> = x.y)-
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Now we write 7?,j = {(), 1. 2} with x>y = 2y—x (mod 3). and substitute
the values 0, 1, 2 for all possibilities of the variables x, y , 2. We obtain
after simplification the following equations

= \l,l) = -ÿ(2.2)
-V.1) + -*(2.1)
•*(1,0) + -*(2.0)
\o.2) + -*(1.2)

-*(0,2) + — -*(2.0)

0.
0,
0.
0.

0.

Again by substitution we can write the function / in the following
form.

■*(0,1)[X(0,1) - X(2.1) + X(0.2) - X(1.2)]
+<*(1,0)[X(1,0) - X(2,<>) + X(0,2) - X(l,2)]

-*(o.i)ÿ(Xo) + A(it0)ÿ>(xi)?

/

making it a coboundary. This proves that every 2-cocycle is a cobound¬
ary in the cohomology of R3.

We can also get Boltzmann weights using 3-cocycles by consider¬
ing region colorings, where in addition to each arc in the knot diagram
getting a quandle element, each region between crossings also has an
element of A" assigned according to the condition

x

C \> xC
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Then self-distributivity in X implies that the region coloring is well
defined.

x
C>x

(Ci> x) > y

C>y x>yy

Definition 32. A function ip : I x I x I 4 A such that for all
x. y, z,w € X we have

%l>{x,x,y) = 0,
ip(x, y, y) = 0,

tp{x, y, z)+ tp(x, z,w)
+ip(x > z,y> z,w)

and
> y, z,w) + ip{x, y , w)

+ip(a: > w, y >w,z> w)

is a quandle 3-cocycle.

This definition can be understood in terms of the Reidcmcister
move III and region colorings. Given a region coloring of a knot,
we can associate a row vector of three elements x. y) to each
crossing:

v

00

I>yy

-ip(C,x,y)+ÿ(C,x, y)
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Then the three-cocycle condition conies from the third Reidemeister
move:

V w zy w
x>y

E y>z E Z > U'
X > z III

y > w

X > w

Quandle Cocycle Enhancements. In [CJK+03], Scott Carter,
Daniel Jelsovsky, Seiichi Kamada, Laurel Langford and Masahico
Saito defined an enhancement of the quandle counting invariant using
quandle cocycles which led to new results about knotted surfaces in
4-space; in particular, certain knotted spheres in 4-space are distinct
from their rcvcrscd-oricntation versions.

Let K be a knot, X a finite quandle, .4 an abelian group, and
<p : X x X —> A a 2-cocycle. Then the quandle 2-cocycle enhancement
also called the State-Sum invariant, of the knot K is the sum over
all quandle colorings of K by X of expressions of the form ±ÿ(*>!/)

where the Boltzmann weight y) is the sum of all the crossing
weights,

E UE ±<t>(x,y)*\{K) =
f€Hom(Q(K),X)

In the literature, it is common to write the abelian group .4 multi-
plicatively, e.g. writing un instead of nu for n € Z; this amounts
to skipping the multiset step and going directly to the polynomial
version of the invariant. With this style of notation, we have

= En *ÿ(t)
c

where the product is taken over all crossings of the given diagram, the
sum is over all possible colorings and e(r) is the sign of the crossing
T.
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Similarly, if 0 is a 3-cocycle, then we have 3-cocycle enhancement
±<f>(x,y,z)W = E

feRC(K.X)

or written multiplicatively,

<S>%(K) = E JJ <i>(x,y,z)e(T]
fenc(K,x) T

where RC(L.X) is the set of region colorings of K by X.
shown in [CJK+03] that these are knot invariants. We now consider
some examples.

It was

Example 130 ([CJK 03 ). In this example we compute the quan-
dle cocycle invariant of the torus link T(4,2). As can be seen from the
following figure the torus link T(4,2) colors by the dihedral quandle
R[ = {0,1,2,3} where i > j = 2 j — i (mod 4). In fact, there are 16
possible colorings of T(4, 2) by R4 since each pair (a, b) of elements
of 7?4 determines a coloring as can be seen below.

ba

."A "N.

/ \
/ b 2b — a Nv

3b — 2a \

f
\1 ‘2b -a

I I
V. /3b - 2a 4b — 3aJ

\ \S\

— 3a = a 5b — 4a = b

Let .4 be the group of integers denoted multiplicatively as

Z = {. . . , a-2, a-1, u\a, a2, .
Let ip be the 2-cocycle of R4 with coefficient in the integers Z given
by

ut if (a, b) = (0, 1) or (a, b) = (0, 3),
otherwise.

To compute the quandle cocycle invariant, we need to compute the
contribution to it from all the 16 colorings, and then add all those

${a, b)
1.
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results. From the figure each pair (a, b) in /?4 x R4 contributes

6)ÿ(6, 2b — a)ip(2b — a, 36 — 2a)ÿ(36 — 2a, a).

This implies that the eight pairs (a, 6) with a + b being odd, each
contribute u. All other pairs each contribute 1 so that the cocycle
invariant for this link is

$£(T(4,2))= 8 + 8u.

Example 131 ([CJK 03j). Let .Y be the Alexander quandle X =
{0,1, £, l+£}of polynomials in t with Z-2 coefficients in which whenever
we have t2 we replace it by t+1, usually denoted by A*2/(t2 + t+l). In
this example we compute the colorings of the trefoil knot 3i, the knot
85 and the torus knot T(5, 2) by this quandle X. We then compute
the quandle cocycle invariant for each of them using the following two
cocycle with coefficients in the two elements group A — Z2 = {l,u}
where u~ = 1 (again we are using multiplicative notation for A). Let
ip be the 2-cocycle of X with coefficients in the integers A = Z2 given
by

ti, if (a, 6) e {(0, 1), (1,0), (1 + 1, 0), (0, 1 + 1)
(1, 1 + 1). (1 + t, 1)}

otherwise.
=

1,

Consider the trefoil knot 3i. To compute the quandle cocycle
enhancement, we need to compute the contribution to it from all the
16 colorings, and then add all those results. From the figure

b

\ \
/ \

ta + (1 — t)b \/ b \I Ita + (1 — t)b
/6+(l -t)(to + (l -t.)b)

= a\ /\ /\

t(ta + (1 — t)b) + (1 — /)« = b
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each pair (a, b) in X contributes

'ÿ(a,b)ip(b,ta + (1 — t)b)ip(ta + (1 — t)b,a).

Each pair of the form (a,a) contributes 1 to the invariant while all
other pairs each contribute u making the State-Sum equal 4 -f 12u.
A similar computation gives the same result for all of the following
knots: 4i,72, 73, 81,84,811 and 813.

Now consider the knot 85. We use the braid form of this knot,
that is 85 is the closure of the three strand braid <TI3<72-1<7I3<72-1.
From the following figure

,'f'X \
\
\t/ / \/ //

I
I a

dI bI II 1l /1 1\ /
y\\ /\ /s. a c

d = tb + (1 — t)c

we see that a triple input (</,/>, c) on the top colors the knot if and
only if b = c. Thus the coloring triples are all of the form (a, b. b).
Those with a = 6, each contribute 1 to the State-Sum while those
with a b each contribute

[•0(a,6)ÿ(6,ta + (1 — t)b)rjj(ta + (1 — t)b.a)ip(b. 6)]2 = u2 = 1.

Thus the State-Sum invariant of the knot 85 is equal to 16. A sim¬
ilar computation gives the same result for all of the following knots:
810*815,819,820, an(l 821-
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Finally, consider the torus knot T( 5, 2). From the following figure
we see that the only colorings of the torus knot T( 5, 2) by the quandle
X are the trivial colorings given by pairs of the form (a, a).

ha

\/ b ta + (1 — t)!)ÿ/ \/ \I ta + (!-/)/> a I
I I

i,\ a /\ /\ 7a + (1 -7)6b
\ /\ y\

ta -I- (1 — t)b a

Each coloring contributes 1 since a) = 1. Thus the State-Sum
invariant of the torus knot 7 (5. 2) is equal to 4.

Exercises. 1. Find all region colorings of the trefoil knot 3i by the
dihedral quandle /?;*.

2. Let A" be the Alexander quandle Z4 with 7 = 3. Compute
03(1,2,1).

3. Find the matrix for the differential d2 for the trivial quandle on
three elements.

4. Prove that d3d2 = 0 for the trivial quandle T2.
5. Let A' be the Alexander quandle Z4 with 7 = 3. Show that
the function <f)(x,y) = (.r — y)A is a 2-cocvcle and that x{)(x,y,z) =
(x — y)4{y — z)4 is a 3-cocycle. These are examples of Mochizvki
cocycles [MocO3. MocO5] .

6. Compute the State-Sum invariants and for the Hopf link
with the respect to A", 0 and '0 from problem 5.
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Chapter 7

Generalized Knots and
Links

1. Colorings of Tangles and Embeddings

In this section we will consider (2, 2)-tangles, define their colorings
and their quandle cocycle invariants. We then give a criterion for
when a (2, 2)-tangle embeds in a knot or link. As a consequence we
use the cocycle invariant in terms of multisets to prove that some
tangles cannot be embedded in certain knots in the table in Chapter
1.

A (2, 2 ) -tangle is a portion of a knot or link with two fixed inputs
and two fixed outputs. Sec the following figures called, respectively,
tangle 62 and tangle The list of all prime (2, 2)-tanglcs with up
to seven crossings can be found in [KSS03]

y vX X
X

uz
Vz

w
/

VV XXX
w

207
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For this section’s applications, we will need the multiset versions
of the quandle 2-cocycle and 3-cocycle enhancements from the last
chapter. Recall that a multiset is a set in which we allow repeated
entries. For example, {a,a,a, 6, b} represents a multiset (5, m) where
S = {a.6}, rn(a) = 3 and rn(b) = 2. This is also denoted by {3 x
a, 2 x b}.

We briefly recall the definition of the cocycle invariant. Let / be a
coloring of a knot diagram K by a finite quandle X. The Boltzmann
weight B(f , r) = B9(f , r) at a crossing r of K is then defined by
B(f,r) = f (r)<p(j;r, yT), where the pair (xr , yT) consists of the source
colors at r and e(r) is the sign (±1) of the crossing r as before. Then
the 2-cocycle invariant <!>( (K) in multiset form can be expressed by

$*XM(K) = f<EHom(Q(K),X)\.
where Hom(Q(/\),X) is the set of X -colorings of K.

Let / be a coloring of arcs and regions of a given diagram K.
Specifically, for a coloring /, there is a coloring of regions that extends
/ as depicted.

x
C > x

(C> x) \> y

c
{Ct> y)\>(x !>;(/)

Coy x t> yy

Suppose that two regions R\ and Bo are separated by an arc colored
by y, and the normal vector of the arc, obtained by rotating the
direction vector counterclockwise 90 degrees, points from R\ to Ro.
If R\ is colored by C, then Ro receives the color C o y. Let (C, x,y)
(called the ordered triple of colors at a crossing r ) be the colors near
a crossing r such that C is the color of the region (called the source
region) from which both normal vectors of the over- and under-arc
point, x is the color of the under-arc (called the source under-arc)
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from which the normal vector of the over-arc points, and y is the
color of the over-arc as depicted above.

Let X/J : X x X x X — > A be a quandle 3-cocycle, which we recall
can be regarded as a function satisfying

ip(x, z, w) - x/>(x, y,w) + X/, z) - ip(x > y, 2, xy)
+'ip(x > z, y t> 2, w) — ip(x o xy, xy > xy, 2: > w) — 0,

and xp{x,x,y) = 0 = ip(x,y,y),Vx, y € A'. We define a new Boltz¬
mann weight at the crossings in a region colored diagram by

Vx, y, 2, xy € A\

B(f,r) = e(r)0(C,x,y).

The 3-cocycle invariant is defined in a similar way to the 2-cocycle
invariant as the multiset

| / G RCT{T,X)

where RC(T,X) denotes the set of colorings of the regions of K by
X.

As we have seen, if the quandle X is finite, the invariant as a
multiset can also be expressed as a polynomial: if a given multiset of
group elements is {mi x yi, . . . , m? x <y/}, then we use the polynomial
notation m\U91 H-----b mtu9£ where u is a formal symbol. For example,
the multiset value of the invariant for a trefoil with the Alexander
quandle X = A2/fy2 + t + 1) with the same coefficient group A = X
and a certain 2-cocycle is {4 x (0), 12 x (t + 1)}, and is denoted by
4 -b I2u{t+1\ where we use the convention xz° = 1 and exponential
rules apply.

For computing the invariants, one needs an explicit formula for
cocycles. Polynomial cocycles were used first in [Moc03], and inves¬
tigated closely including higher dimensional cocycles in AS09].

We will use quandle cocycle invariants as obstructions to embed¬
ding tangles in knots. We must first define cocycle invariants for
tangles.

Definition 33. Let T be a tangle and X be a quandle. A boundary-
monochromatic coloring is a coloring of the arcs in a diagram of T to
X satisfying the same quandle coloring condition as for knot diagrams
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at each crossing, such that the (four) boundary points of the tangle
diagram receive the same element of X. Region colorings of a tangle
diagram are defined in a similar manner to the knot case.

Note that a tangle has a fundamental quandle analogous to that
of a knot, with generators for each arc and quandle relations at the
crossings. As with knots, the set of quandle colorings of T by a finite
quandle A" can be understood as the set of quandle homomorphisms
Horn(Q(T),X) from the fundamental quandle of T to A", and the set
of boundary-monochromatic colorings is a subset of this.

Denote by Colr(T) and Colx(T) the set of boundary-
monochromatic colorings of T with the boundary color x € A and
the set of all boundary-monochromatic colorings, respectively. Let

I / €Colx(T) \.<i>(T,x) =

Then the cocycle invariant for a tangle T is equal to

K(T) = U w*)-

The invariants for region colorings are defined in a similar manner,
by taking the sum over all colorings of regions as well as colorings of
diagrams.

It can be proved in a way similar to the case of a knot that the
number of colorings |Colx(T)| does not depend on the choice of a
diagram of T. If a diagram D\ of T has a coloring Ci, and a diagram
Do is obtained from D\ by a Reidemeister move, then there is a unique
coloring C2 of D2 induced from C\, such that the colors stay the same
except where the move is performed. Given two diagrams D\ and Do
of a tangle T, there is one-to-one correspondence between the set of
colorings of D\ and the set of colorings of Do and the cocycle invariant
is well defined.

The following example collects tangles in the tangle table [KSS03]
that have nontrivial boundary monochromatic colorings by some
Alexander quandles. Specifically, variables .r*. i = 1,2,
signed to the arcs of tangle diagrams. Coloring conditions of the
form Tk = txi + (1 — t)xj arc imposed at crossings, giving rise to a

are as-
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system of linear equations with coefficients in A that is solved to find
which Alexander quandles give nontrivial colorings of the tangles.

Example 132. The following tangle 7i3 is colored nontrivially by
the dihedral quandle R$.

yX
X

z
V

u

w XX

To see this, one writes the equations at all seven crossings,

2z — x = u,2x 2u — v = w, 2w — u = x,-y= z
2 y-v = x,

A straightforward substitution gives, for example, the equation 5(u —
y) = 0 giving a nontrivial coloring of tangle 713 by R$.

2v — z = x, 2x — y = w.

The following tangle 63 with orientations NW in,Examj)le 133.
SW out is colored nontrivially by the Alexander quandle AP/(t2
t + 1), where p is prime. Here NW and SW stand for northwest and
southwest.

V xX

z IV

X XV

We explain briefly how the computation of colorings works for
the tangle 63 with orientations NW in. SW in. We color it by an
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Alexander quandle and let x be the color of the boundary arcs. Let
y. z\ v and w be the colors of the arcs as depicted in the figure above.
From the crossings adjacent to the NW, SW. SE, NE endpoints, re¬
spectively, we obtain the relations:

r tz-h (1- t)x = y,
tx -h (1 — t)v — z,
tx + (1 — t)v = w,

< tw + (1 — t)x = y.
From the remaining two crossings, we have the following equations:

tv + (1 — t)z = £,
tv -F (1 — t)w = x.

These equations imply that 2: = w. A substitution gives the equation
(t2 — t + l)(v — z) = 0. and it follows that the quandle Ap/ (t2 — t -h 1)
colors the tangle T(Gÿ) nontrivially.

Now we give the following theorem which gives us the conditions
for a tangle to embed in a link.
Theorem 13. Let T be a tangle and. X a quandle. Suppose T embeds
in a link L. Then we have the inclusion Cm TÿL).

This theorem allows us to tell when a tangle does not embed in some
knots and this is when the tangle cocycle invariant is not a sub-
multiset of the cocycle invariant of the knot.

Example 134. The tangle 1X6*2) with the orientation of the NW arc
inward and the SW arc outward does not embed in the knots in the
table up to 8 crossings except, possibly, for 8ig.

Example 135. The knots in the table up to 8 crossings in which the
tangle TX63) embeds are exactly 810 and 8-20, Here, the orientation of
the tangle is such that the NW endpoint is oriented inward and the
SW endpoint is oriented outward.

Exercises. 1. For the tangles 62, 63, 713? 717 and 7\$ (see KSS03 ),
find the dihedral quandles which color them nontrivially.

2. Find the Alexander quandles which color nontrivially the following
tangles 6*2, 63, 7i3, 7 17 and Tig with orientation NW inward and SW
inward.
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3. Redo the previous exercise by considering different orientations for
NW and SW.

4. Given that

• the knot ?4 and the tangle 62 are both colorable nontrivially
by the Alexander quandle X = Az/(t2 — t + 1).

• A' has 3-cocycle y) z) = (x — y)(y — z):i, and

• the quandle 3-cocycle invariant of the knot 74 with respect
to ip is 243 + 486uÿ+1).

Compute the quandle 3-cocycle invariant of the tangle 62 and de¬
duce the fact that the tangle 63 with orientation NW inward and SW
outward docs not embed in the knot 74.

2. Surface Knots

We have seen how simple closed curves can be knotted in three-
dimensional space R3 and its compact version S3. What about higher
dimensions? It turns out that any two simple closed curves in R4 are
ambient isotopic. We can see why this is so by thinking about knot
diagrams.

First, recall that we can conceptualize R3 as a stack of copies of
R2 (called planes) indexed by a third variable:

/z
//2 = 1

7 TfX

/A = -1

/z
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Similarly, we ran think of R4 as a stack of copies of R3 (called hyper¬
planes) indexed by a fourth variable:

2

/// y/ yyx77
w = w = 0 w = 1 w = 2

If we have a curve in a plane in R3 and we move part of it upward in
the 2 direction, the part, which moves up disappears from the original
plane, even though it is still one connected continuous curve in R3:

7t

Now, if we have a knot in R4 with a crossing, we can move the
overcrossing strand upward in the w direction, resulting the move
portion disappearing from our original hyperplane. It hasn’t vanished,
though; the knot is still one connected continuous curve in R4. We
can then move the undcrcrossing strand to a higher in the
original hyperplane, and finally move the original overstrand back
into its original position in the original hyperplane. The result is a
classing change.

It turns out that crossing changes are unknotting moves if you
are allowed to change crossings, you can unknot any knot. Thus,
simple closed curves in R4 are all unknotted.

The problem is not that there are no knots in four dimensions;
the problem is that for one-dimensional curves in four-dimensional
space, the codimension, i.e., the difference between the dimension of
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the ambient space in which the knot lives and the dimension of the
knot itself, is too low. It turns out that for nontrivial knotting, we
want the codimension to be 2. Thus, we have knotted 1-dimensional
curves in a 3-dimensional ambient space, and we can have knotted
2-dimensional surfaces in a 4-dimensional ambient space.

Surface knot theory is a more complex topic than the theory
of knotted curves for several reasons above and beyond our obvious
inability to physically manipulate knotted surfaces. Unlike the R3
case in which there is only one kind of object to knot (namely, simple
closed curves), there are infinitely many distinct types of surfaces
spheres, tori, tori with two holes, Klein bottles and more.

How can we possibly understand knotted surfaces in IR1? Even
though knotted curves need three dimensions of ambient space, they
almost fit in two dimensions - in fact, we can put every knot in the
plane with just a little bit of the z direction for crossings. Similarly,
surfaces need four dimensions for (tame) knotting, but we can fit a
knotted surface almost entirely in a single hyperplane with just a bit
of thickness in the w direction for crossings.

Where a knot diagram consists of arcs which meet at crossings
with the undercrossing strand drawn broken to indicate crossing un¬
der in an invisible third dimension, a knotted surface diagram has
sheets which meet along crossing curves, and we draw the under¬
crossing sheet broken to indicate crossing under in the invisible fourth
dimension.

/i
•w/ /

Indeed, there are surfaces which do not fit in three dimensions but
require a fourth dimension, such as the real projective plane RP2 and
the Klein bottle. The real projective plane can be defined formally as
the quotient set of R3 \ 0 under the equivalence relation x ~ ax for
a 7ÿ 0. that is, the set of lines through the origin in R3. To identify the
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quotient space, we can restrict our attention to only the unit sphere,
since every line through the origin goes through the sphere. In fact,
each such line goes through the sphere in exactly two opposite points
(called antipodes), so we can restrict to just the northern hemisphere
- and we can now see why this quotient set is a surface.

However, along the equator we still have two points in each equiv¬
alence class. Thus, we can think of RP2 as the result of taking the
northern hemisphere (which is topologically a, disk) and gluing the
points along the equator to their antipodes. This is hard to visualize,
because at some point we experience a “brain breaking” sensation in¬
dicating that the thing we re trying to visualize doesn’t fit in the kind
of three-dimensional space we can visualize. We can see it perhaps
a little better by imagining removing a disk from the interior of the
large disk and just gluing along the boundary; then we get a Mobius
band :

+ — >

Thus, RP2 can be understood as the result of gluing a disc onto a
Mobius band along their boundary circles, like two sides of a zipper,
to form a seamless surface with no boundarv.

The real projective plane is sometimes called a cross-cap, because
it can be understood as the result of “capping off” a knotted surface
portion called a cusp:

I
/

“'sf
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The Klein bottle can be understood as the result of removing discs
from two projective planes and gluing the resulting Mobius bands to¬
gether (or. just gluing two Mobius bands together along their bound¬
aries). More often, we describe the Klein bottle as a quotient space of
a rectangle: if we start with a rectangle and glue the top edge to the
bottom edge and the left side to the right side like in the old video
game Asteroids, the result is a torus:

~r

On the other hand, if we repeat the procedure but reverse the direc¬
tion of the circle at the last step, we get a Klein bottle.

Knotted surfaces arise in many different ways. Given any knotted
circle K in K3, we can spin the knot K about an axis in Rl, letting K
sweep out a knotted surface analogous to the surfaces of revolution
we see in single-variable calculus:

>

\\ y
L

. •-

V

V._,.

As a variation on spinning, we can twist-spin knots, where K rotates
one or more times about another axis as it spins around the primary
axis of revolution.
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Every Reidemeister move sequence on knotted curves in R3 can
be understood as a knotted surface, where we think of time as the w
direction. In particular, slicing a knotted surface with a hyperplane
yields a knotted curve; if we think of R 1 as a stack of R3s, then each
slice is a frame of a movie. Indeed, we can represent knotted surfaces
with movie diagrams, sequences of knot diagrams representing slices
of a surface knot at different 2 values. For example, the Reidemeister
I move corresponds to a cusp:

\ V
In addition to cusps and intersecting sheets, knotted surfaces can

also contain triple points, points where three sheets all come together
at a single point, with one sheet on top in the z direction, one in the
middle and one on the bottom.

1

SB
• J

Just as there arc Reidemeister moves for knotted curves in R3.
there are moves 011 knotted surface diagrams called Roseman moves
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with the property that two knotted surface diagrams represent ambi¬
ent isotopic surfaces in E1 if and only if the diagrams are related by
Roseman moves.

Quandles and Surface Knots. As with knotted curves in R3, we
can use quandle-based invariants to distinguish knotted surfaces; since
the Roseman moves can be expressed as Reidemeister moves on movie
diagrams, quandle colorings are preserved by Roseman moves. We
will look briefly at kei and quandle colorings; bikei, biquandle, rack
and birack based invariants and their enhancements exist and are
topics of ongoing research.

Suppose we have a finite kei X. We can color a knotted surface S
by assigning an element of X to each sheet in a diagram of S. Then
when a sheet labeled x crosses under a sheet labeled y, the result is
a sheet labeled x> y.

Ay
x \> yx

For the coloring to make sense at a triple point, we need the third
kei axiom:

x X > z
I

„/rty'/ury y>z

• J

x t> y (x>y)> z = (x > z) o ( y > z)

One can then verify that given a kei labeling of a knotted surface
diagram before a move, there is a unique kei labeling of the diagram
after the move, and hence counting invariants are defined for knotted
surface diagrams.
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Example 136. We can use the 3-element Takaski koi to distinguish
the spun trefoil from the trefoil spun with a third of a twist:

7"--X. ---V
This knotted surface diagram has one single sheet, so it can only have
monochromatic colorings, where the original spun trefoil has the same
set of nine colorings as the trefoil.

Exercises. 1. Draw a knotted surface diagram for the spun figure
eight knot.

2. Let S3 = {(.r, y, z, f), x2 + y2 + z2 -j- 12 = 1} be the 3-sphere in M1.
In order to get some understanding of this sphere, let’s look at some
cross-sections of it. Draw and describe series of the cross-sections for
the following values oft: t = — 1,— 1,0, and t = 1.
How floes the cross-section change as t goes from —1 to zero? How
does the cross-section change as t goes from zero to 1?

i

3. Draw the knotted surface corresponding to the Reidemeister II
move.

4. Draw the result of spinning the Hopf link with a 1/2 twist.

5. Let K be the result of spinning a 5i knot with a 1/5 twist. Use
a quandle coloring argument to show that this knotted surface is
distinct from the nontwisted spun 5],

3. Virtual Knots

Knot theory is a very visual form of mathematics in that a lot of
the information involved is in the form of pictures and visual dia¬
grams. This is a great advantage for many of us since it makes knot
theory easier to understand than some other less visualizable areas
of mathematics, and indeed there arc many computations we can do
and theorems we can prove in knot theory entirely through pictures.
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Suppose we want to write computer code to do computations of
knot invariants so we don't have to check thousands of potential label¬
ings for validity by hand. To do this, we need some more computer-
friendly ways of representing knots in place of our usual pictures. One
wav to do this is with Gauss codes.•

Suppose we have an oriented knot K. We start by selecting a
basepoint on one of the semiarcs of K and numbering the crossings,
noting for each crossing whether it is a positive or negative crossing.

To make the signed Gauss code for K , we start at the basepoint
and travel around K following the given orientation; each time we
go through a crossing, we want to write down the crossing number
and sign together with whether we are passing over or under. For
example, in the figure eight knot below, we have signed Gauss code
Ul+02+U3~04~U2+01+U<±-03~ .

1

2+

4 3~

Choosing a different basepoint results in a cyclic permutation of the
Gauss code, moving part of the code from the end to the beginning,
e.g.,

uI +o2+u:r04-u2+o1+u4-u:r
t

U3-U 1 +()2+US~OA~U2+()1+U4-
t

Gauss codes are useful since as strings of text rather than pic¬
tures, they are well-suited for use in computer code as well as in
text-only forms of communication. Given a signed Gauss code, we
can reconstruct the knot diagram up to isotopy on 52 by drawing
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and connecting the crossings as instructed by the Gauss code:

I t
i+ + i+ 2+i 3“21

ItIt
2+| 2+1 3“1+- 4’3“1 4'

1
2+1 3" 2+ 3"+1+ 4” 1 4~

2+1 3“ 4~ 2+ 1 3♦1 4“

Notice that at the last step, we made a choice to put the last semiarc
on the top of the diagram; we could instead have gone around the
bottom of the diagram, which is equivalent to dragging the strand
around the back of the sphere (if we think of our knot as drawn on
the sphere).

Reidemeister moves change Gauss codes, but they do so in con¬
trolled ways. It is perhaps easiest to see how this works by looking at
Gauss diagrams: in a Gauss diagram, we write a Gauss code coun¬
terclockwise around a circle. Each crossing appears twice along the
circle; we connect the over and under label for each crossing with an
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arrow pointing “in the direction of gravity", i.e., toward the under-
crossing. We then label each arrow with the crossing sign.

U3" 02+
f/l+04’

+

03”U 2+ +
U4”or+

The Reidemeister moves change Gauss diagrams by inserting or
deleting signed arrows in certain ways and by sliding signed arrow
heads and tails past each other in certain ways:

llI

+

\++
+fl + III

+++

Since we can think of a knot as an equivalence class of knot dia¬
grams under the equivalence relation generated by the Reidemeister
moves, we can now think of knots as equivalence classes of signed
Gauss codes or Gauss diagrams under the equivalence relation gener¬
ated by the Gauss codc/diagram Reidemeister moves (note that we
have only depicted a subset of the moves above; for example, there
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are type III moves with two positive and one negative crossing, etc.)
together with the cyclic permutation equivalence mentioned above.

However, there is a slight problem with this idea: consider the
Gauss code U1 02 01 U 2 r . As a Gauss code, it certainly has an
equivalence class in the quotient set of Gauss codes modulo Reide-
meister equivalence. What happens when we try to draw this knot?

>
211~

->
+ 2*12+t+1

We need to join the ends but we can’t because they are in different
regions of the plane. It is tempting to say "let’s just put in another
crossing*’, but notice that the Gauss code is supposed to already in¬
clude all the crossings.

How can we connect the ends to make a knot when they are in
separate regions of the plane? One idea will be familiar to fans of
science fiction: the knot should go through a wormhole. That is, we
can connect the regions of the plane with a bridge that avoids the
rest of the knot. The net effect is that instead of drawing our knot
diagram on the plane, we draw it on a torus. Then it turns out we
can complete the diagram without needing extra crossings [KKOO .

\

\

1+ 2“
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Another idea, introduced in [Kau99], is to go ahead and include
a new crossing, but since the new crossing isn’t in the Gauss code,
make it a new type of crossing called a virtual crossing.

a 3 -e
We can think of the virtual crossing as the result of squashing the
torus on which the diagram really lives into the plane.

Since the virtual crossings do not appear in the Gauss codes, any
arc which has only virtual crossings can be replaced with any other
arc with same endpoints and only virtual crossings along its interior.
This is known as the detour move:

OO—

O-G— 0-0— "

Inside the box can be any tangle, including both classical and virtual
crossings. The detour move breaks down into four new Rcidemeister
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moves depending on what we put in the box.

vllvl 'N.I

vlll

Thus, we can define a virtual knot as either:

• an equivalence class of Gauss codes/diagrams under the
equivalence relation generated by the Gauss code Reidemeis-
ter moves and cyclic permutations, or

• an equivalence class of virtual knot diagrams under the equiv¬
alence relation generated by the classical and virtual Reide-
meister moves I, II, III, vl. vll. vlll and v.

Invariants of Virtual Knots. Many invariants of classical knots
extend to invariants of virtual knots by virtue of being defined locally
from information at crossings rather than globally involving all of
the ambient space. For example, quandle colorings work just as well
for knots on surfaces as for knots on the plane; we simply ignore
the virtual crossings when determining the colorings. The same is
true for coloring by kei, racks, bikei, biquandles and biracks for the
appropriate types of virtual knots. Note that for framed virtual knots
we replace the classical type I move with the framed type I move, but
still keep the usual virtual vl move.
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Example 137.
X\ X\i

x2 Xi

The virtual trefoil knot is the only nontrivial virtual knot with only
two classical crossings; it is the one we saw above drawn on the torus.
Let us prove that it is nontrivial using biquandle labelings. Consider
the biquandle X defined by the operation matrix

2 2 2
3 3 3
1 1 1

2 1 3
1 3 2
3 2 1

The unknot has three labelings by A' (namely, the circle with labels
“1”, “2' and “3" ), but the virtual trefoil has no valid A-labeling: once
we choose labels for x\ and x2, these determine labels for X3 = x2 >x\
and X4 = x\ >x2? and we will have a valid labeling only if X4 = >x2
and X\ = x2>x$. We can then check all nine possibilities:

x.\ x2 X3 = x2>xi X4 = x\ >;r2 X4 = #3 >x2? X\ = a:2>X3?
2ÿ3
1 = 1
3ÿ2
1/3
3/1
2 = 2
3 = 3
2/1
1/2

1 1
1 2
1 3
2 1
2 2
2 3
3 1
3 2
3 3

22 1 = 1
1/2
1/3
2/1
2 = 2
2ÿ3
3/1
3ÿ2
3 = 3

3 1
1 3
2 1

33
21

2 3
23

1 1

Since any sequence of virtual moves taking the unknot to the vir¬
tual t refoil would preserve the three biquandle colorings of the un¬
knot. there cannot be any such sequence and the virtual trefoil is not
equivalent to the unknot.

Virtual knots and knots on surfaces. What could be the meaning
of a knot diagram on a surface? As we have previously observed,
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even though knots require three dimensions, they’re really almost
two-dimensional, requiring only a little bit of thickness for crossings.
Thus, instead of thinking of knots as living in R'\ we can think of
knots as living in R2 x [— e, e], a thickened plane.

I
+ //

/

A knot drawn on a surface corresponds to a simple closed curve in
a thickened version of the surface. For example, a thickened sphere is
like the peel of an orange, while a thickened torus is like the frosting
on a donut. Classical Reidemeister moves on a virtual knot corre¬
spond to isotopy of the knot within thickened surface. Virtual Reide-
meister moves can correspond to movement of the thickened surface
pre-squashing into the plane:

/O

But the virtual moves can also involve changes to the supporting sur¬
face on which the knot diagram is drawn, namely adding or removing
the “wormholes” (technically known as handles) that allow strands
with virtual crossings to avoid other strands. Formally, the process is
called stabilization if a handle is added and destabilization if a handle
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is removed.

stabilization

destabilization

Then some virtual Reidemeister moves can involve adding or remov¬
ing handles in addition to moving the handles around before squash¬
ing into the plane to make the virtual knot diagram.

Thus, a virtual knot can be understood geometrically as a simple
closed curve in a thickened surface up to ambient isotopy and stabi¬
lization of the surface.

Twisted Virtual Knots. A virtual knot can be understood as an
equivalence class of knot diagrams drawn on surfaces which can be
obtained from the sphere by stabilization moves (adding handles)
with ordinary or classical knot theory being the special case of knots
drawn on the sphere S2. What about knot diagrams drawn on other
types of surfaces like projective planes or Klein bottles?

One of the great triumphs in the early history of topology was the
classification of compact surfaces, which says that compact surfaces
are classified by two numbers, the genus and the cross-cap number.
The genus of a surface is the number of handles it has. while the
cross-cap number is the number of projective planes or Mobius bands
we can cut out from the surface.
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We have already seen that removing a disc from a projective plane
yields a Mobius band. What happens to a torus when we remove a
disc? The result is two crossed bands:

✓

i i
i i
i i
i J

The classification theorem for compact surfaces says that every
compact surface can be identified topologically with a surface ob¬
tained from a disk by attaching g pairs of crossed bands and c Mobius
bands (where g is the genus and c is the cross-cap number), then glu¬
ing a disk along the outside boundary circle.

We have already seen that virtual crossings represent genus in
the underlying surface:

When our knot goes through a Mobius band, we mark this with a
“twist bar” .
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If a surface has cross-cap number c > 0, then the surface is not
orientable. An orientation on a surface is a consistent choice of normal
vector, or equivalently a consistent choice of top side vs. bottom side.
A Mobius band is famously one-sided and thus has no top or bottom
side; if we try to choose a consistent normal vector (more precisely, a
nonvanishing continuous normal vector field), we find that sliding the
normal vector along the center line of the Mobius band reverses the
normal vector. Indeed, any closed path on a surface that reverses the
normal vector is called an orientation reversing path, and a surface is
orientable only if it has no orientation reversing paths.

Then a twisted virtual knot is simple closed curve in a thickened
compact surface which may or may not be orientable; an arc with a
twist bar is an orientation reversing path [Bou08].

Twisted virtual knot theory is a natural extension of abstract knot.
theory, in which we think of a knot as a collection of crossings to be
connected by bands. For example, the virtual trefoil can be built from
two crossings with gluing information specified along the edges of the
squares containing the crossings.

4

13

2
I2

T
14

3

The result is a surface with boundary consisting of circles which we
can then close by gluing on disks. Two abstract knots are equivalent
if they are related by Reidemeister moves on the resulting surface.

A little thought then shows how the twist bars should interact
with classical and virtual crossings. In addition to the classical and
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virtual Reidemeister moves, we have the twisted Reidemeister moves.

tvtiltl

The first move says that two twists on an arc cancel (since a band
with two half-twists is orientable), the second move says we can move
a twist past a pair of crossed bands, and the last one says if we have
a crossing with all four bands twisted, we can flip it over to replace
the twists with two flat crossed bands:

//ÿX \Or \ / \!\>r tv I
\ !( t--»\/ \I

/
/

Virtual Knot Table. We conclude this section with a (small) table
of virtual knots with two or three classical crossings. While there are
only eight knots here, note that the corresponding table for classical
knot includes only the trefoil. There are 108 distinct virtual knots
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with 4 classical crossings; see [BN] for more.

\/

Exercises. 1. Prove that if a virtual knot has only virtual crossings,
it is unknotted.

2. A virtual quandle is an algebraic structure with a quandle oper¬
ation at classical crossings and new operations at virtual crossings.
Suppose we divide our virtual knot at classical undercrossings and
virtual crossings and define a map v : A" — > X as pictured:

v(y)X

v(x)y

Then prove that the new algebraic structure respects the virtual iso
topy moves iff v is a quandle automorphism [KM05].

3. The virtual Alexander polynomial of a virtual knot is the deter¬
minant of the presentation matrix of the virtual knot’s fundamental
Alexander biquandle, obtained analogously to the presentation ma¬
trix for the Alexander module but with the following labelings at
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crossings:

-l-l Urx x

\ /tx+ (r l—t)y tx + (r~i-t)y yy

Compute the virtual Alexander polynomial for each of the virtual
knots with 3 or fewer classical crossings [KR03 .
4. There are some moves that, seem like they could he legitimate
moves, but in fact are not allowed because they change the Gauss
code of the diagram. These are called forbidden moves:

vc )Fi F-2

( (
Show that the virtual trefoil can be unknotted if you're allowed to
use both forbidden moves in addition to the classical and virtual Rei-
demeister moves.

5. Show that the virtual trefoil has trivial fundamental quandle.

6. The knot

is called the Kishino knot. Show that it has trivial fundamental quan¬
dle, but is distinguished from the unknot by the counting invariant
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with coloring biquandle

"3214
14 3 2
4 12 3
2 3 4 1

3 14 2"
2 4 13
13 2 4
4 2 3 1

7. Define a notion of twisted kei by including an operation x T(x)
at twist bars. Show that there is only one twisted kei structure on
the set {1.2} of two elements.

8. The knot

is called the one foil. Use your answer from problem 7 to prove that
the onefoil is not equivalent to the unknot.
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From prehistory to the present, knots have ]
been used for purposes both artistic and
practical. The modern science of Knot
Theory has ramifications for biochem¬
istry and mathematical physics and
is a rich source of research projects for
undergraduate and graduate students and
professionals alike. Quandles are essentially
knots translated into algebra.
This book provides an accessible introduction to quandle theory for readers
with a background in linear algebra. Important concepts from topology and
abstract algebra motivated by quandle theory are introduced along the way.
With elementary self-contained treatments of topics such as group theory,
cohomology, knotted surfaces and more, this book is perfect for a transition
course, an upper-division mathematics elective, preparation for research in knot
theory, and any reader interested in knots.
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