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Preface

I was 21 years when I wrote this song

I’m 22 now, but I won’t be for long

Time hurries on

And the leaves that are green turn to brown

– Paul Simon, Leaves that Are Green

1968 was a tumultuous year. America was convulsed by the Viet-

nam War, nowhere more than on college campuses. The assassina-

tions of Martin Luther King and of Robert Kennedy tore at the na-

tion’s heart. The Democratic convention in Chicago was marked by

violent riots. America, for many, had become Amerika, the villain.

“Do your own thing” was the admonition that resonated so power-

fully. Resist authority. Nonconformity was the supreme virtue. For

this fledgling mathematician it was a critical juncture. I had left

graduate school without a degree. Would my talents find a focus in

this chaotic world? My mind swirled with mathematical ideas, but I

seemed unable to turn these ideas into a cohesive whole.

Then I met Paul Erdős. Everyone called him Uncle Paul.

While others spoke constantly of it, nonconformity was always

Uncle Paul’s modus operandi. He had no job; he worked constantly.

He had no home; the world was his home. Possessions were a nuisance;

money a bore. Paul lived on a web of trust, traveling ceaselessly

ix
                

                                                                                                               



x Preface

from center to center spreading his mathematical pollen. “Prove and

Conjecture!” was his constant refrain.

Were we, in those halcyon days, students of Uncle Paul. I think

the word inadequate and inaccurate. Better to say that we were dis-

ciples of Paul Erdős. We (and the list is long indeed) had energy and

talent. Paul, through his actions and his theorems and his conjectures

and every fibre of his being, showed us the Temple of Mathematics.

The Pages of The Book were there, we had only to open them. Does

there exist for all sufficiently large n a triangle free graph on n ver-

tices which does not contain an independent set of size
√
n lnn? We

had no doubts—the answer was either yes or no. The answer was in

The Book. Pure thought—our thought—would allow its reading.

I would sit with Uncle Paul and discuss an open problem. Paul

would have a blank pad of paper on his lap. “Suppose,” he would say

in his strong Hungarian accent,1 “we set

p =

√
lnn

n
.”

He would write the formula for p on the blank page and nothing else.

Then his mind sped on, showing how this particular value of p led to

the solution. How, I wondered, did Uncle Paul know which value of

p to take?

The final form of mathematics, the form that students see in

textbooks, was described by Bertrand Russell:

Mathematics, rightly viewed, possesses not only

truth, but supreme beauty—a beauty cold and aus-

tere, like that of sculpture, without appeal to any

part of our weaker nature, without the gorgeous

trappings of painting or music, yet sublimely pure,

and capable of a stern perfection such as only the

greatest art can show. The true spirit of delight,

the exaltation, the sense of being more than Man,

which is the touchstone of the highest excellence, is

to be found in mathematics as surely as in poetry.

1The documentary film “N is a Number” by George Csicsery [Csi93], available
on the web, shows Uncle Paul in action.

                

                                                                                                               



Preface xi

Doing mathematics is anything but austere. As an undergraduate

teacher of mine, Gian-Carlo Rota, put it:

Amathematician’s work is mostly a tangle of guess-

work, analogy, wishful thinking and frustration,

and proof, far from being the core of discovery,

is more often than not a way of making sure that

our minds are not playing tricks.

That said, the “guesswork” can be finely honed. Uncle Paul’s selec-

tion of the right p did not come at random. Brilliance, of course, is

more than helpful. But we mortals can also sometimes succeed.

Paul Erdős lived2 in Asymptopia. Primes less than n, graphs

with v vertices, random walks of t steps—Erdős was fascinated by

the limiting behavior as the variables approached, but never reached,

infinity. Asymptotics is very much an art. In his masterwork, The

Periodic Table, Primo Levi speaks of the personalities of the various

elements. A chemist will feel when atoms want or do not want to

bind. In asymptotics the various functions n lnn, n2, lnn
n ,

√
lnn,

1
n lnn all have distinct personalities. Erdős knew these functions as

personal friends. This author had the great privilege and joy of learn-

ing directly from Paul Erdős. It is my hope that these insights may

be passed on, that the reader may similarly feel which function has

the right temperament for a given task.

My decision to write this work evolved over many years, and

it was my students who opened my eyes. I would teach courses

in discrete mathematics, probability, Ramsey theory, graph theory,

the probabilistic method, number theory, and other areas. I would

carefully give, for example, Erdős’s classic result (Theorem 7.1) on

Ramsey numbers: If (
n

k

)
21−(

k
2) < 1,

then R(k, k) > n. I spent much less time on the asymptotic implica-

tion (7.6), that R(k, k) ≥ (1+ o(1)) k
e
√
2

√
2
k
. My students showed me

2Erdős’s breadth was extraordinary. This refers to only one aspect of his oeuvre.
                

                                                                                                               



xii Preface

that Asymptopia deserved its own emphasis. A facility with asymp-

totic calculations could be taught, could be learned, and was a highly

pragmatic element of their mathematical education.

Laura Florescu began her graduate studies at the Courant Insti-

tute in the fall of 2012. Almost immediately we began our study of

mathematical results, old and new, and began work on open ques-

tions. This pursuit happily continues to this day. Early on, with this

project still in its nascent phase, Laura graciously offered her assis-

tance. We have discussed ideas for the various chapters and sections

together. Some of the ideas, such as giving a proof of the Law of the

Iterated Logarithm, originated entirely from her and all of the ideas

were jointly discussed. She has written early drafts of many sections.

(However, all errors in the final copy, what you are reading now, are

my responsibility.) I hope that this project has been as much a learn-

ing experience for Laura as it has been for me. With her talents and

energy, Laura has a bright future ahead of her. Thank you, Laura.

My editor, Ina Mette, deserves special recognition. We have

known each other for many years and I had always wanted to write

a book under her editorship. Conversations about this current work

took place over a long period of time. Through lunches at Lure in

New York, at Central Kávéház in Budapest, through numerous emails

and phone calls, the outlines of this current work came into focus. Ina

has always been insightful in her suggestions and fully supportive of

my ofttimes ill-defined ruminations. Thank you, Ina.

1968 was special for me personally as well as professionally. It

was the year I married my wife Mary Ann, whom I wish to thank once

again for her assistance, encouragement, and understanding. Without

her, this enterprise would have had little meaning.

Joel Spencer

New York

Fall, 2013

                

                                                                                                               



A Reader’s Guide

I have never let my schooling interfere with my

education.

– Mark Twain

The Student Mathematical Library is aimed at undergraduate

students, but our focus is somewhat broader. We may also envision

a graduate student looking for a pragmatic view of asymptotic cal-

culations. We may also envision a high school student learning new

mathematical relationships. The common denominator is a love of

mathematics. To the largest degree possible, we have strived to make

this work self-contained. The reader should be aware, however, of

certain assumptions.

Calculus. We do assume a knowledge of first year calculus, as

taught in U.S. colleges and, often, high schools. Differentiation and

integration is done without proof. The definite integral∫ ∞

−∞
e−x2/2dx =

√
2π

is assumed; this appears with surprising frequency. We do not use

differential equations, nor partial differential equations, nor algebra,

nor topology. We do not use material from the course frequently called

(in the U.S.) analysis. In particular, all interchanges of limn

∫
fn(x)dx

and
∫
limn fn(x)dx are done from scratch.

xiii
                

                                                                                                               



xiv A Reader’s Guide

Probability. A number of basic distributions are considered in

this work. These include the binomial, the Poisson, and the Gauss-

ian distributions. We have defined these when they appear. Still,

some prior knowledge of the notions of random variable, expectation,

variance, and independence would be helpful to the student.

Graph Theory. We do not assume a knowledge of graph theory.

Still, some prior knowledge of what a graph is, as a set of vertices

and edges, would be helpful. We examine the random graph G(n, p).

Again, a prior familiarity would be helpful but not necessary.

Number Theory. We expect the reader to know what prime

numbers are and to know the unique factorization of positive integers

into primes. Otherwise, our presentation of number theory is self-

contained.

Algorithms. The mathematical analysis of algorithms is a fas-

cinating subject. Here we give some glimpses into the analyses, but

our study of algorithms is self-contained. Certainly, no actual pro-

gramming is needed.

Our final chapter, Really Big Numbers!, is different in flavor. This

author has always been fascinated with big numbers. This chapter

is basically a paper written for the American Mathematical Monthly

three decades ago. Some of the material uses ordinal numbers, like

ωω, which may be new to the reader.

We sometimes skirt a topic, pulling from it only some asymptotic

aspects. This is particularly noticeable in Ramsey theory, one of our

favorite topics.

Certain sections are technically quite complicated and are labelled

as such. They may be skipped without losing the thread of the argu-

ment.

Facility with logarithms is assumed throughout. We use lnx for

natural logarithm and lg x for the logarithm to the base two.

Asymptopia is a beautiful world. Enjoy!

                

                                                                                                               



Chapter 0

An Infinity of Primes

Truth is on a curve whose asymptote our spirit

follows eternally.

– Léo Errera

We begin with one of the greatest theorems in mathematics.

Theorem 0.1. There is an infinite number of primes.

Our proof is not that of Euclid and not better than the proof

of Euclid, but it illustrates the theme of this work: looking at the

mathematical world through an asymptotic lens.

We begin as Euclid did. Assume Theorem 0.1 is false. Let

p1, . . . , pr be a listing of all of the primes. For any nonnegative integer

s, the unique factorization theorem states that there is a unique way

to express

(0.1) s = pα1
1 pα2

2 · pαr
r ,

where α1, α2, . . . , αr are nonnegative integers. We turn this into an

encoding of the nonnegative integers by creating a map Ψ,

(0.2) Ψ(s) = (α1, . . . , αr).

Let n ≥ 2 be arbitrary, though in the application below it shall be

large. The integers s, 1 ≤ s ≤ n, are each mapped by Ψ to a vector

1

                                     

                

                                                                                                               



2 0. An Infinity of Primes

of length r. How many possibilities are there for the values Ψ(s)? We

give an upper bound. For each 1 ≤ i ≤ r the value αi must satisfy

(0.3) pαi
i ≤ s ≤ n.

Thus

(0.4) αi ≤ logpi
n ≤ log2 n.

As αi is a nonnegative integer, there are at most 1+log2 n possibilities

for it. With n ≥ 2, the number of possibilities is at most 2 log2 n.

(These kinds of gross upper bounds will appear quite often, and a

large part of the art of Asymptopia is knowing when to use them

and when not to use them.) Thus the number of possible values of

Ψ(s) = (α1, . . . , αr) is at most 2r(log2 n)
r. The vectors (α1, . . . , αr)

uniquely determine s by equation (0.1). We have n different values

Ψ(s). We deduce that

(0.5) 2r(log2 n)
r ≥ n.

The above is all true for any n ≥ 2. But now we apply an asymptotic

lens and consider (0.5) asymptotically in n. The left-hand side is a

constant times a fixed power of the logarithm function. We know

(more on this in §2.4) that any fixed power of lnn grows slower that

any fixed positive power of n, so slower than n itself. This means

that for n sufficiently large, (0.5) must fail! We have achieved our

reductio ad absurdum, the assumption that the number of primes is

finite must be false, and Theorem 0.1 is true.

Remark. We do not need the full power of the unique factorization

theorem. It suffices to know that every s has some representation

equation (0.1) as the product of primes to powers. Then for each

of the 1 ≤ s ≤ n, select arbitrarily one such representation as Ψ(s).

One still has n distinct Ψ(s) and at most 2r(log2 n)
r possible vectors

(α1, . . . , αr).

We have worked out this argument in some detail. For those

comfortable with asymptotics, especially Definition 2.8 and §2.4, it
would go, informally, something like this: there are n values Ψ(s),

1 ≤ s ≤ n and logarithmically many values for each coordinate αi;

therefore, there are polylog many vectors, but polylog grows more

slowly than linearly.
                

                                                                                                               



0. An Infinity of Primes 3

We now use this same approach to prove a much stronger result:

Theorem 0.2. The summation of the reciprocals of the primes di-

verges.

Proof. Again, assume not. So

(0.6)
∑
p

1

p
= C

for some constant C. (We shall use
∑

p to indicate the sum over

all primes p.) Label the primes p1, p2, . . .. As equation (0.6) is a

convergent sum of positive terms, at some point it reaches C − 1
2 .

That is, there exists r such that

(0.7)
∑
i>r

1

pi
<

1

2
.

Call the primes p1, . . . , pr small and the other primes large. Call an

integer s rare if all of its prime factors are small; otherwise, call s

ordinary. Again consider the s, 1 ≤ s ≤ n. The rare integers have

a factorization (0.1) and so, as with Theorem 0.1, their number is at

most most 2r(log2 n)
r, polylog to the cognoscenti.

What about the ordinary s? For each ordinary s there is some

(perhaps several) large prime p dividing it. For a given prime p, the

number of elements in 1 ≤ s ≤ n divisible by it is �n
p �, which is at

most n
p . Thus, the total number of ordinary s is at most

∑
n
p , where

p now ranges over the large primes. From (0.7), this is less than n
2 .

Of the n values of s, less than n
2 are ordinary, so at least n

2 are rare.

Thus

(0.8) 2r(log2 n)
r ≥ n

2
.

As with (0.5), for n sufficiently large (0.5) must fail! We have achieved

our reductio ad absurdum: the assumption that the sum of the recip-

rocals of the primes is finite must be false, and Theorem 0.2 is true.

Remark. There was no need to cut large and small primes precisely

via (0.7). The same argument works if the sum of the reciprocals of

the large primes is less than one.

                

                                                                                                               



Chapter 1

Stirling’s Formula

The voyage of discovery lies not in seeking new

horizons, but in seeking with new eyes.

– Marcel Proust

Surely the most beautiful asymptotic formula in all of mathemat-

ics is Stirling’s formula:

(1.1) n! ∼ nne−n
√
2πn.

How do the two most important fundamental constants of mathemat-

ics, e and π, find their way into an asymptotic formula for the product

of integers? We give two very different arguments (one will not show

the full formula) that, between them, illustrate a good number of ba-

sic asymptotic methods. The formal language of Asymptopia, such

as o(n) and O(n), is deferred to Chapter 2. Two further arguments

for Stirling’s formula are given in §3.2.3.

1.1. Asymptotic Estimation of an Integral

Consider the integral

(1.2) In =

∫ ∞

0

xne−xdx.

5

                                     

                

                                                                                                               



6 1. Stirling’s Formula

A standard result1 of freshman calculus, done by integration by parts,

is that

(1.3) In = n!

Our problem now is to estimate the integral of (1.2).

• Asymptotically, integrals are often dominated by the largest

value of the function being integrated.

Let us set

(1.4) y = yn(x) = xne−x and z = zn(x) = ln y = n lnx− x.

The graph of y(x) when n = 2 is unclear, but with n = 10 it is looking

somewhat like the bell shaped curve. What is going on?

0 1 2 3 4 5
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

y
n
(x

)

yn (x) for n=2 and x∈[0,5]

yn (x) for n=2

4 6 8 10 12 14 16

x

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

y
n
(x

)

yn (x) for n=10 and x∈[5,15]

yn (x) for n=10

Figure 1. The first plot shows the function yn(x) = xne−x

for n = 2 and x ∈ [0, 5], while the second plot shows the same
function for n = 10 and x ∈ [5, 15].

1We shall assume first-year calculus results throughout this work.
                

                                                                                                               



1.1. Asymptotic Estimation of an Integral 7

Setting z′ = nx−1 − 1 = 0, we find that z(x) (and hence y(x))

has a unique maximum at x = n and that z(x) (and hence y(x)) is

increasing in [0, n] and decreasing in [n,∞).

Let us compare y(n) = nne−n with values of y(x) when x is

“near” n. For example, take x = 1.1n.

(1.5) y(1.1n) = (1.1n)ne−1.1n = y(n)(1.1e−0.1)n.

But 1.1e−0.1 = 0.9953 . . .. While this number is close to 1, it is a

constant less than 1, and so y(1.1n) is exponentially smaller than

y(n). Values near 1.1n will make a negligible contribution to the

integral. Let us move closer and try x = n+ 1. Now

(1.6) y(n+ 1) = (n+ 1)ne−n−1 = y(n)

(
1 +

1

n

)n

e−1.

As (1 + 1
n )

n ∼ e, y(n + 1) ∼ y(n), and so values near x = n + 1 do

contribute substantially to the integral.

Moving from x = n in the positive direction (the negative is

similar), the function y = y(x) decreases. If we move by 1 (to x =

n+1), we do not yet “see” the decrease, while if we move by 0.1n (to

x = 1.1n), the decrease is so strong that the function has effectively

disappeared. (Yes, y(1.1n) is large in an absolute sense, but it is small

relative to y(n).) How do we move out from x = n so that we can

effectively see the decrease in y = y(x)? This is a question of scaling.

• Scaling is the art of asymptotic integration.

Let us look more carefully at z(x) near x = n. Note that an

additive change in z(x) means a multiplicative change in y(x) = ez(x).

We have z′(x) = nx−1 − 1 = 0 at x = n. The second derivative

z′′(x) = −nx−2, so that z′′(n) = −n−1. We can write the first terms

of the Taylor series for z(x) about x = n:

(1.7) z(n+ ε) = z(n)− 1

2n
ε2 + · · · .

This gives us a heuristic explanation for our earlier calculations.

When ε = 1, we have 1
2nε

2 ∼ 0, so z(n + ε) = z(n) + o(1) and thus

y(n + ε) ∼ y(n). When ε = 0.1n, we have the opposite as 1
2nε

2 is

large. The middle ground is given when ε2 is on the order of n or
                

                                                                                                               



8 1. Stirling’s Formula

when ε is on the order of
√
n. We are thus led to the scaling ε = λ

√
n,

or

(1.8) x = n+ λ
√
n.

We formally make this substitution in the integral (1.2). Further,

we take the factor y(n) = nne−n outside the integral so that now the

function has maximum value 1. We have scaled both axes. The scaled

function is

(1.9) gn(λ) =
y(n+ λ

√
n)

y(n)
= (1 + λn−1/2)ne−λ

√
n,

and we find (noting that dx =
√
ndλ)

(1.10) In =

∫ ∞

0

xne−xdx = nne−n
√
n

∫ +∞

−
√
n

gn(λ)dλ.

Note that while we have been guided by asymptotic considerations,

our calculations up to this point have been exact.

Figure 2. gn(λ) in range −2 ≤ λ ≤ +2 for n = 10, 100.

                

                                                                                                               



1.1. Asymptotic Estimation of an Integral 9

The Taylor series with error term gives

(1.11) ln(1 + ε) = ε− 1

2
ε2 +O(ε3)

as ε → 0. Let λ be an arbitrary but fixed real number. Then

λn−1/2 → 0 so that

(1.12)

n ln(1+λn−1/2)−λn1/2 = λn1/2− 1

2
λ2+o(1)−λn1/2 = −1

2
λ2+o(1)

and

(1.13) gn(λ) → e−λ2/2.

That is, when properly scaled, the function y = xne−x looks like the

bell shaped curve in Figure 2.

Now we would like to say

(1.14) lim
n→∞

∫ +∞

−
√
n

gn(λ)dλ =

∫ ∞

−∞
e−λ2/2dλ =

√
2π .

Justification of the interchange of limits in the integration of a

sequence of functions is one of the most basic and most subtle prob-

lems discussed in analysis. Here is a sample theorem: If gn(λ) are

continuous functions on an interval [a, b] and limn→∞ gn(λ) = g(λ)

for all λ ∈ [a, b], then limn→∞
∫ b

a
gn(λ)dλ =

∫ b

a
g(λ)dλ.

In our example the gn(λ) are indeed continuous and limn→∞ gn(λ)

is given by (1.13). But there are three difficulties:

(1) The left-hand side of the integral in (1.14) is −√
n.

(2) The right-hand side of the integral in (1.14) is ∞.

(3) We will not be assuming results from analysis in this book.

A natural approach is to approximate gn(λ) by e−λ2/2. The diffi-

culty is that this approximation is not valid throughout the limits of

integration. For example, with λ =
√
n, gn(λ) = (2/e)n is not close

to e−λ2/2 = e−n/2. Let us re-examine (1.12) with the error term from
                

                                                                                                               



10 1. Stirling’s Formula

the Taylor series (1.11). Thus if λn−1/2 → 0, then

n ln(1 + λn−1/2)− λn1/2 = λn1/2 − 1

2
λ2 +O(λ3n−1/2)− λn1/2

= −1

2
λ2 + o(λ2n−1/2).

(1.15)

We now see that the approximation of gn(λ) by e−λ2/2 is good as

long as λ2n−1/2 → 0, that is, for λ = o(n1/4). With this in mind let

us split the range [−
√
n,∞) into a middle range

MID = [−L(n),+L(n)],

and the two sides

LEFT = [−
√
n,−L(n)]

and

RIGHT = [L(n),∞).

How should we choose L(n)? The middle range should be big enough

that most of the integral lies under it but small enough so that the

approximation with the bell shaped curve remains valid. The first

condition will require that L(n) → ∞ and the second that L(n) =

o(n1/4). This leaves a lot of room and, indeed, any reasonable L(n)

satisfying these criteria would work for our purposes. For definiteness

let us set

(1.16) L(n) = n1/8.

1.1.1. MID. Let us take the most important region, MID, first.

Guided by the notion that gn(λ) and e−λ2/2 will be close, we define

an error2 function

(1.17) En(λ) = gn(λ)/e
−λ2/2

so that we have the exact expression

(1.18) lnEn(λ) = n ln(1 + λn−1/2)− λ
√
n+

λ2

2
.

As λn−1/2 → 0 in MID, we can apply the Taylor series to ln(1 + ε)

with ε = λn−1/2. The first two terms cancel the λ
√
n and λ2/2 terms,

2Error does not mean mistake!
                

                                                                                                               



1.1. Asymptotic Estimation of an Integral 11

which is not so surprising as we designed the error to be close to one.

We employ the Taylor series to two terms with an error term,

(1.19) n ln(1 + λn−1/2) = λ
√
n− λ2

2
+ n

x3

3!
.

Here x lies somewhere between 0 and λn−1/2. As |λn−1/2| ≤ n−3/8,

we can bound

(1.20) |nx
3

3
| ≤ 1

3
n−1/8.

Thus | lnEn(λ)| ≤ 1
3n

−1/8 throughout λ. Critically, this is a uniform

bound, which holds for all λ in MID simultaneously. As ln(En(λ))

is small, En(λ) − 1 will also be small. Think of y = ln(En(λ)), with

y small ey − 1 ∼ y. But to get a rigorous upper bound, let us use a

rougher bound |ey − 1| ≤ 2y, valid when |y| is sufficiently small. For

n large, 1
3n

−1/8 will be small and so

(1.21) |En(λ)− 1| ≤ 2

3
n−1/8

so that

(1.22) |gn(λ)− e−λ2/2| = e−λ2/2|En(λ)− 1| ≤ 2

3
n−1/8e−λ2/2

and ∣∣∣∣
∫
MID

gn(λ)− e−λ2/2dλ

∣∣∣∣ ≤
∫
MID

|pn(λ)− e−λ2/2|dλ

≤ 2

3
n−1/8

∫
MID

e−λ2/2dλ.

(1.23)

The final integral is less than
√
2π, the integral over all λ. The con-

stants are not important, we have bounded the difference in the inte-

grals of gn(λ) and e−λ2/2 over MID by a constant times n−1/8 which

in the limit approaches zero.

1.1.2. LEFT. It remains to show that LEFT and RIGHT give neg-

ligible contributions to
∫
gn(λ)dλ. Note that we do not need asymp-

totic values of
∫
gn(λ)dλ over LEFT or RIGHT, only that they ap-

proach zero. Thus we can employ a rough (but true) upper bound to

gn(λ). The left-hand side is easier. The function gn(λ) is increasing

from −√
n to −L(n) = −n1/8. At −n1/8, gn(λ) ∼ e−λ2/2 ∼ e−n1/4/2.

Since the length of range LEFT is less than
√
n, the integral is at

                

                                                                                                               



12 1. Stirling’s Formula

most
√
ne−n1/4/2. The exponential decay dominates the square root

growth, and this function goes to zero with n. As this was an upper

bound,
∫
LEFT

gn(λ)dλ → 0.

1.1.3. RIGHT. The interval RIGHT is more difficult for two rea-

sons: The interval has infinite length so that bounding a single value

will not be sufficient. More worrisome, the estimate of ln(1 + ε) by

ε− 1
2ε

2 is only valid for ε small. We require upper bounds that work

for the entire range of ε. The following specific bounds ((1.24) and

(1.25) are included for completeness) are often useful:

(1.24) ln(1 + ε) ≤ ε− 1

2
ε2 when − 1 < ε ≤ 0,

(1.25) ln(1 + ε) ≤ ε− 1

4
ε2 when 0 < ε ≤ 1,

(1.26) ln(1 + ε) ≤ 0.7ε when ε > 1.

We break RIGHT = [n1/8,∞) into two parts. We set

NEARRIGHT = [n1/8, n1/2]

and

FARRIGHT = [n1/2,∞),

reflecting the ranges for the bounds (1.25) and (1.26) with ε = λn−1/2.

For NEARRIGHT we employ the argument used for LEFT. The func-

tion gn(λ) is decreasing for λ positive and is ∼ e−n1/4/2 at n1/8. As

NEARRIGHT has length less than
√
n,

∫
gn(λ)dλ over NEARRIGHT

is at most
√
ne−n1/4/2 which goes to zero.

In FARRIGHT, (1.26) gives that

(1.27) n ln(1 + λn−1/2)− λn1/2 ≤ 0.7λ
√
n− λ

√
n ≤ −0.3λ

√
n.

In this interval gn(λ) is thus bounded by the exponentially de-

caying function exp−0.3λ
√
n. Thus

(1.28)

∫ ∞

√
n

gn(λ)dλ <

∫ ∞

√
n

e−0.3λ
√
ndλ =

1

0.3
√
n
e−0.3n,

and this also goes to zero as n → ∞.
                

                                                                                                               



1.2. Approximating Sums by Trapezoids 13

We have shown that the integrals of gn(λ) over LEFT, NEAR-

RIGHT, and FARRIGHT all approach zero and that the integral of

gn(λ) over MID approached
√
2π. Putting it all together, the integral

of gn(λ) over [−
√
n,∞) does indeed approach

√
2π.

Whew! Let us take two general principles from this example:

• Crude upper bounds can be used for negligible terms as long

as they stay negligible.

• Terms that are extremely small often require quite a bit of

work.

1.2. Approximating Sums by Trapezoids

With this method we will not achieve the full Stirling’s formula (1.1)

but only

(1.29) n! ∼ Knne−n
√
n

for some positive constant K. Our approach follows the classic work

[CR96] of Richard Courant. We are pleased to reference the epony-

mous founder of our mathematical home, the Courant Institute.

Our approach is to estimate the logarithm of n! via the formula

(1.30) Sn := ln(n!) =
n∑

k=1

ln(k).

The notion is that Sn should be close to the integral of the function

ln(x) between x = 1 and x = n. We set

(1.31) In :=

∫ n

1

ln(x)dx = [x ln(x)− x]n1 = n ln(n)− n+ 1.

Let Tn be the value for the approximation of the integral In via the

trapezoidal rule using step sizes 1. That is, we estimate
∫ i+1

i
f(x)dx

by 1
2 (f(i) + f(i+ 1)). Summing over 1 ≤ i ≤ n− 1,

(1.32) Tn =
1

2
ln(1) +

n−1∑
k=2

ln(k) +
1

2
ln(n) = Sn − 1

2
ln(n).

Set

(1.33) En = In − Tn
                

                                                                                                               



14 1. Stirling’s Formula

to be the error when approximating the integral of ln(x) by the trape-

zoidal rule. For 1 ≤ k ≤ n−1, let Sk denote the “sliver” of area under

the curve y = ln(x) for k ≤ x ≤ k + 1 but over the straight line be-

tween (k, ln(k)) and (k + 1, ln(k+ 1)). The curve is over the straight

line as the curve is concave. Then

(1.34) En =
n−1∑
k=1

μ(Sk),

where μ denotes the area.

Our goal is to bound the error.

Figure 3. The sliver (shown here with k = 1) lies inside

the triangle whose upper and lower lines have slopes 1
k
, 1

k+1
,

respectively.

Theorem 1.1. En approaches a finite limit c as n → ∞. Equiva-

lently,

(1.35) lim
n→∞

∞∑
k=n

μ(Sk) = 0.

Assuming Theorem 1.1, (1.30)–(1.32) yield

(1.36)

ln(n!) = Tn+
1

2
lnn = In−En+

1

2
lnn = n lnn−n+1−c+o(1)+

1

2
lnn.

                

                                                                                                               



1.2. Approximating Sums by Trapezoids 15

Exponentiating both sides

(1.37) n! ∼ nne−n
√
ne1−c

giving the desired (1.29) with K = e1−c.

Now, how do we show Theorem 1.1? We consider μ(Sk) in

Asymptopia, as k → ∞. Roughly,3 μ(Sk) is the error between the

integral from k to k + 1 of f(x) = lnx and the straight line approxi-

mation of f(x). This error is caused by the second derivative of f(x).

(Had the second derivative been zero, the straight line would have

been the precise function.) Here, the second derivative f
′′
(x) = −x−2

is on the order of k−2, and the interval has length 1, so we feel the

error should be on the order of k−2. As k−2 is decreasing sufficiently

quickly, the infinite sum of μ(Sk) should converge.

Guided by this intuitive approach, we give an explicit upper

bound for μ(Sk). Observe that it need not be a good upper bound.

We still would get convergence of
∑

μ(Sk) even if our upper bound

were, say, ten times the actual value.

Here is one approach that works. Let P = (k, ln k), and let

Q = (k + 1, ln(k + 1)). Let C denote the curve f(x) = lnx in the

interval [k, k + 1]. In the interval [k, k + 1], our function f(x) = lnx

has derivative between 1
k and 1

k+1 . Let U (upper) be the straight line

segment starting at P with slope 1
k , ending at x = k+1. Let L (lower)

be the straight line segment starting at P with slope 1
k+1 , ending at

x = k+ 1. As the derivative of curve C is always between those of U

and L, the curve C is under U and over L. At x = k + 1, L then is

below the curve C, so below the point Q. Thus the straight line PQ

lies above the line L. We can then bound μ(Sk), the area between

C and the straight line PQ, by the area between U and L. But this

latter area is a triangle. Make the base of the triangle the line from

U to L at x = k + 1 to be the distance from U to L at x = k + 1,

which is precisely the difference of the slopes which is 1
k − 1

k+1 . The

3An intuitive feel is very useful, but it must be followed up with a rigorous
argument!

                

                                                                                                               



16 1. Stirling’s Formula

height of the triangle is then 1, from x = k to x = k + 1. We have

thus shown

(1.38) μ(Sk) ≤
1

2

(
1

k
− 1

k + 1

)
.

This value is O(k−2), and so we achieve convergence. Indeed we have

the explicit upper bound

(1.39)

∞∑
k=1

μ(Sk) ≤
∞∑
k=1

1

2

(
1

k
− 1

k + 1

)
=

1

2

as the sum telescopes. This yields (1.29), almost Stirling’s formula.

1.3. Combining Forces to Estimate the Error

Setting c = limn→∞ En, define the tail

(1.40) Fn = c− En =
∞∑

k=n

μ(Sk).

Now (1.36) becomes

(1.41) ln(n!) = n lnn− n+ 1− c+
1

2
lnn+ Fn.

From the proof of Stirling’s formula in Section 1.1, we know that

e1−c =
√
2π. Exponentiating both sides, we may express the result

as

(1.42)
n!

nne−n
√
2πn

= eFn .

That is, eFn gives the error term in the approximation of Stirling’s

formula. Since Fn → 0, eFn = 1 + Fn(1 + o(1)) and so

(1.43)
n!

nne−n
√
2πn

= 1 + Fn(1 + o(1)).

While (1.42) is exact, we do not have a closed form for Fn. Still, we

may find it in Asymptopia.

Consider μ(Sk) more carefully. Parametrizing y = k+x, we have4

(1.44) μ(Sk) =

∫ 1

0

ln(k + y)− [(1− y) ln(k) + y ln(k + 1)]dy

4Moving the region of interest to near zero is often times helpful!
                

                                                                                                               



1.3. Combining Forces to Estimate the Error 17

as the bracketed term is the equation of the straight line PQ above.

From the Taylor series (the asymptotics here are as k → ∞, uniformly

over y ∈ [0, 1]),

(1.45) ln(k + y) = ln k +
1

k
y − y2

2k2
+O(k−3).

As

(1.46) ln(k + 1) = ln k +
1

k
− 1

2k2
+O(k−3),

we find

(1.47) (1− y) ln(k) + y ln(k + 1) = ln k +
1

k
y +

y

2k2
+O(k−3).

Subtracting5

(1.48) μ(Sk) =

∫ 1

0

1

2k2
(y − y2) +O(k−3)dy.

The main part can be integrated precisely, and

(1.49) μ(Sk) =
1

12k2
+O(k−3).

This allows us to estimate Fn:

(1.50) Fn =
∞∑

k=n

μ(Sk) ∼
∫ ∞

n

1

12z2
dx =

1

12n
.

This gives a more precise approximation for n!:

(1.51)
n!

nne−n
√
2πn

=

(
1 +

1 + o(1)

12n

)
.

Indeed, with considerably more care one can show that

(1.52)
1

12n+ 1
≤ Fn ≤ 1

12n
,

which yields the remarkably close6 bounds

(1.53) e1/(12n+1) ≤ n!

nne−n
√
2πn

≤ e1/(12n),

which are valid for all n.

5Caution! Subtracting in Asymptopia is tricky! Often times main terms cancel
and the secondary terms become paramount. Even worse, occasionally the secondary
terms also cancel and it is the tertiary terms that are important.

6Try it for n = 10.
                

                                                                                                               



18 1. Stirling’s Formula

1.4. Estimating the Integral More Accurately

Note. This section gets quite technical and should be considered

optional.

Let us begin again with the precise formula

(1.54) n! = nne−n
√
n

∫ ∞

−
√
n

gn(λ)dλ.

Our goal is to replicate (1.51) by more accurately estimating pn(λ).

Our previous estimate was e−λ2/2. Now, however, we will want the es-

timate to be within an additive o(n−1) term. Our previous definition

of MID will be too broad. Instead we define

(1.55) L(n) = n0.01

and

MID = [−L(n),+L(n)],

LEFT = [−
√
n,−L(n)],

RIGHT = [L(n),
√
n].

The bounds on
∫
pn(λ)dλ are still (this requires checking!) exponen-

tially small, and thus they are not only o(1) but o(n−1). This allows

us to concentrate on
∫
pn(λ)dλ over our new MID . We have En(λ)

and ln(En(λ)) as in (1.17) and (1.18). Now, however, we need a

more accurate Taylor series estimation for ln(1 + ε) with ε = λn−1/2.

A priori, it is unclear just how many terms we will need.

• Experimentation is part of the art of Asymptopia.

After possibly a number of false starts, examine the Taylor series

out to four terms with the error term. From Theorem 2.18

(1.56) ln(1 + ε) = ε− 1

2
ε2 +

1

3
ε3 − 1

4
ε4 +

1

5
x5

with |x| ≤ ε. Applying this to (1.18), the first two terms cancel as

before and

(1.57) ln(En(λ)) =
1

3
λ3n−1/2 − 1

4
λ4n−1 +

1

5
n−3/2x5.

With our MID now narrower, | 15n−3/2x5| ≤ n−1.45 which will be

negligible for our purposes here. With y = lnEn(λ) we want to go
                

                                                                                                               



1.4. Estimating the Integral More Accurately 19

from y to ey − 1. Because we need greater accuracy (and after some

experimentation!), we bound

(1.58) ey − 1 = y +
y2

2
+O(y3).

Thus (1.57) becomes

(1.59) En(λ) = 1 +
1

3
λ3n−1/2 +

1

18
λ6n−1 − 1

4
λ4n−1 +O(n−1.41).

(The O term in (1.59) contains several terms of which the largest is

(λ3n−1/2)3.)

This gives us a good estimate for
∫
gn(λ)dλ over MID :

∫ L(n)

−L(n)

gn(λ)dλ

=

∫ L(n)

−L(n)

e−λ2/2[1 +
1

3
λ3n−1/2 +

1

18
λ6n−1

− 1

4
λ4n−1 +O(n−1.41)].dλ

(1.60)

The contribution of the O(n−1.41) term to the integral is o(n−1). This

is an acceptable error, so we rewrite

∫ L(n)

−L(n)

gn(λ)dλ

= o(n−1)+

∫ L(n)

−L(n)

e−λ2/2[1+
1

3
λ3n−1/2+

1

18
λ6n−1− 1

4
λ4n−1]dλ.

(1.61)

We want to replace the limits of integration to ±∞, but we must

pause for a moment as we require an accuracy of o(n−1).

Let us give some very rough upper bounds on
∫ ∞
L(n)

λ4e−λ2/2dλ, as

the other side and the smaller powers are similar. We bound λ4 ≤ eλ,

certainly true for λ ≥ L(n). Then

(1.62)

∫ ∞

L(n)

λ4e−λ2/2dλ ≤
∫ ∞

L(n)

eλ−
1
2λ

2

dλ = e1/2
∫ ∞

L(n)−1

e−y2/2dy

                

                                                                                                               



20 1. Stirling’s Formula

by substituting y = λ− 1.7 Here we substitute y = L(n)− 1 + z and

bound 1
2y

2 ≥ 1
2 (L(n)− 1)2 + z(L(n)− 1) so that∫ ∞

L(n)−1

e−y2/2dy ≤ e−(L(n)−1)2/2

∫ ∞

0

e−z(L(n)−1)dz

= e−(L(n)−1)2/2)(L(n)−1)−1

.

(1.63)

This is exponentially small in n and, so, certainly o(n−1). (Note

however that it was important to let L(n) increase fast enough. Had

we tried, say, L(n) = ln lnn, the bound would be o(1) and not the

desired o(n−1).)

Returning to (1.61) we now have

∫ L(n)

−L(n)

gn(λ)dλ

= o(n−1) +

∫ ∞

−∞
e−λ2/2[1 +

1

3
λ3n−1/2 +

1

18
λ6n−1 − 1

4
λ4n−1]dλ.

(1.64)

Fortunately
∫ +∞
−∞ λie−λ2/2dλ can be found precisely for each non-

negative integer i by elementary8 calculus. For odd i the integral is

zero and for i = 0, 4, 6 the integrals are
√
2π, 3

√
2π, and 15

√
2π,

respectively, so that

(1.65)

∫ L(n)

−L(n)

pn(λ)dλ = o(n−1) +
√
2π

(
1 +

15

18n
− 3

4n

)
,

which is the promised 1 + 1
12n term.

Remark. We need not stop here. One can take the Taylor series

for ln(1 + ε) out further and redefine MID to be narrower. With a

considerable amount of effort, one can show

(1.66) n! = nne−n
√
2πn[1 +

1

12n
+

1

288n2
+ o(n−2)],

and, indeed, one gets an infinite sequence of such approximations.

7The tail of the normal distribution is more carefully studied in §3.1.
8Elementary does not mean easy! Use integration by parts.
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1.5. An Application to Random Walks

Here we will apply Stirling’s formula to yield a classical result in the

study of random walks.

Let G be an arbitrary graph for which each vertex has at least

one, but only a finite number of neighbors. Let s (source) be some

specified vertex of G. A simple random walk on G begins at s. Each

time unit it moves uniformly from its current position v to one of the

neighbors of v.

The study of random walks was begun by George Pólya around

1920. There is an essential dichotomy. A random walk is called

recurrent if with probability 1 it returns to its beginning, here s.

Otherwise, the random walk is called transient. In this case, while

the walk might return to s, there is a positive probability that it will

never return to s. Let p(t) denote the probability (dependent on G

and s) that the random walk will be at s at time t. Pólya showed

that the dichotomy depended on the decay of p(t). He showed:

Theorem 1.2. If
∑∞

t=1 p(t) is finite, then the random walk is tran-

sient, and if
∑∞

t=1 p(t) is infinite, then the random walk is recurrent.

Proof. Suppose there is a probability α that the random walk ever

returns to s. Once it returns, it is again beginning a random walk.

Hence the probability that it returns at least j times would be αj .

The expected number of times it returns would then be
∑∞

j=1 α
j .

This expected number is also
∑∞

t=1 p(t). If α < 1, then the sum is

finite. If α = 1 the sum is infinite. �

Now let us restrict ourselves to the grid Z
d. The vertices are the

vectors �v = (a1, . . . , ad) ∈ Z
d, and the neighbors of �v are those �w

which agree with �v in all but one coordinate and are one away from

�v in that coordinate. (This is the usual grid for Z
d.) By symmetry,

the start matters little so we consider walks beginning at the origin �0.

In Z
2, for example, from each (a, b) we move randomly either North

(a, b + 1), East (a + 1, b), South (a, b − 1), or West (a − 1, b). We
                

                                                                                                               



22 1. Stirling’s Formula

continue forever, giving a sequence �0 = �w0, �w1, . . ., where �wt denote

the position at time t.

Is the random walk in Z
d recurrent or transient? George Pólya

gave the surprising solution:

Theorem 1.3. The random walk in Zd is recurrent if d = 1 or d = 2

and is transient if d ≥ 3.

From parity considerations one can only return to �0 after an even

number of steps. Thus the nature of the random walk depends on

whether
∑∞

t=1 p(2t) is finite. In Asymptopia we shall find the asymp-

totics of p(2t) (note that p(2t) depends on the dimension d).

In one dimension we want the probability that out of 2t steps

precisely t are +1 (to the right). This has the formula

(1.67) p(2t) = 2−2t

(
2t

t

)
.

Applying Stirling’s formula,

(1.68) p(2t) ∼ 2−2t (2t)
2te−2t

√
2π(2t)

[tte−t
√
2πt]2

∼
√

1

πt
.

As
∑

t−1/2 diverges, the random walk in Z
2 is recurrent.

For dimension two there is a clever way to compute p(2t). Change

the coordinate system9 to basis �v1 = ( 12 ,
1
2 ), �v2 = ( 12 ,−

1
2 ). Now

North, South, East, and West have coordinates (1,−1), (−1,+1),

(1, 1), and (−1,−1), respectively. One returns to the origin at time

2t if and only if each coordinate is zero. The new coordinates are now

independent, and so we find the closed formula

(1.69) p(2t) = [2−2t

(
2t

t

)
]2.

From (1.68) we now find

(1.70) p(2t) ∼ 1

πt
.

As this series diverges, the random walk in Z
2 is recurrent.

9Effectively, tilt your head at a 45 degree angle!
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Remark. While
∑

1
πt diverges, it barely diverges in the sense that

the sum up to t grows only logarithmically. This makes the random

walk in Z
2 a strange beast. For example, it is possible to prove that

the expected time until the first return to the origin is infinite.

In the remainder we assume that the dimension d ≥ 3. (The

methods apply also to the cases d = 1, 2, but there the exact formulae

make things easier.) These cases are all quite similar, and the reader

may concentrate on d = 3. For dimension d ≥ 3, there does not exist

a closed form10 for p(2t). In Asymptopia, however, that is hardly a

stumbling block. In our asymptotics below, d ≥ 3 is arbitrary but

fixed, and t → ∞.

Each step in the random walk is in one of 2d directions, each

equally likely. However, we split the choice of directions into two

parts. First, we decide for each step in which dimension it is moving.

Let Xi denote the number of steps in dimension i. Then Xi has

binomial distribution BIN [2t, 1
d ]. Note, however, that as

∑d
i=1 Xi =

2t, the Xi are not independent!

Theorem 1.4. The probability that all Xi, 1 ≤ i ≤ d, are even is

2−d+1 + o(1).

On an intuitive level, eachXi has probability roughly 1/2 of being

even. However, onceX1, . . . , Xd−1 are even, Xd is automatically even.

We use a result on binomial distributions which is of independent

interest.

Theorem 1.5. Let ε > 0 be arbitrary but fixed. Let p = p(n) with

ε ≤ p ≤ 1 − ε for all n. Let X = Xn have binomial distribution

BIN[n, p(n)]. Then, the probability that Xn is even approaches 1/2.

Proof. The binomial formula gives

(1.71)

(px+(1−p)y)n =
n∑

i=1

(
n

i

)
(px)i((1−p)y)n−i =

n∑
i=1

Pr[X = i]xiyn−i.

10The often used phrase “closed form” does not have a precise definition. We do
not consider an expression involving a summation to be in closed form.

                

                                                                                                               



24 1. Stirling’s Formula

Set x = −1, y = 1. Then

(1.72) (p−(1−p))n =
n∑

i=1

Pr[X = i](−1)i = Pr[X even]−Pr[X odd].

As 1 = Pr[X even] + Pr[X odd],

(1.73) Pr[X even] =
1

2
+

1

2
(1− 2p)n.

With p not close to either 0 or 1, (1 − 2p)n → 0 and Pr[X even] =
1
2 + o(1). �

We could also prove Theorem 1.5 in Asymptopia. Here is the

rough11 idea. The distribution BIN [n, p] takes, with probability 1−
o(1), values i ∼ pn. For such i one computes

(1.74)

Pr[BIN[n, p] = i]

Pr[BIN[n, p] = i+ 1]
=

(
n
i

)
pi(1− p)n−i(

n
i+1

)
pi+1(1− p)n−i−1

=
(i+ 1)(1− p)

(n− i)p
.

For those i ∼ pn this ratio is nearly 1. Supposing i even for conve-

nience, the contribution to Pr[BIN[n, p] = i] to BIN[n, p] being even

is asymptotically the same as the contribution Pr[BIN[n, p] = i + 1]

to BIN[n, p] being odd.

Note, however, that the proof of Theorem 1.5 gives a much

stronger result. The probability that BIN [n, p] is even minus the

probability that BIN [n, p] is odd is exponentially small—something

Asymptopia does not yield. Furthermore, though we do not use it

here, the proof of Theorem 1.5 shows that the result holds even un-

der the much weaker hypothesis that p � n−1 and 1 − p � n−1.

While we aim for proofs from Asymptopia in this work, we should

remain mindful that other techniques can sometimes be even more

powerful!

Proof of Theorem 1.4. Formally we show for 1 ≤ i ≤ d − 1 that

the probability that X1, . . . , Xi is all even is 2−i + o(1). The case

i = 1 is precisely Theorem 1.5 with p = 1
d . By induction suppose the

result for i. Set m = 2t− (X1 + · · ·+Xi). With probability 1− o(1)

all X1, . . . , Xi ∼ 2t
d so that m ∼ 2t(1 − i

d ). Thus, with probability

2−i + o(1) all X1, . . . , Xi are even and m ∼ 2td−i
d . Conditional on

11Try to write it in detail yourself!
                

                                                                                                               



1.5. An Application to Random Walks 25

these values Xi+1 has distribution BIN[m, 1
d−i ]. From Theorem 1.5,

the conditional probability that Xi+1 is even is 1
2 + o(1).

In particular, X1, . . . , Xd−1 are all even with probability 21−d +

o(1). As X1+· · ·+Xd = 2t is even, Xd is then even tautologically. �

Theorem 1.6. Let pd(2t) denote the probability that a random walk

on Z
d beginning at the origin is at the origin at time 2t. Then, for

d ≥ 3 fixed and t → ∞,

(1.75) pd(2t) ∼ 21−d

(√
d

tπ

)d

.

Proof. As above, let Xi denote the number of steps in direction i.

With probability 21−d all Xi are even. From large deviation bounds

given later, in particular Theorem 8.3, there is a K so that with

probability 1− o(t−d/2) all Xi are within K
√
t ln t of t

d . The o(t
−d/2)

term will not affect (1.75). (We actually only need that the Xi are
t
d + o(t).) Condition on the Xi all being even and having values 2si
with 2si ∼ 2t

d . Now in each dimension the probability that the +1 and

−1 steps balance is the probability that a random walk in Z of time

2si ends at the origin which is from (1.68) ∼ (1/siπ)
1/2 ∼ (d/tπ)1/2.

Conditioning on the X1, . . . , Xd the events that each dimension i bal-

ances between +1 and −1 are mutually independent, and so the prob-

ability that they all balance—precisely what we need to return to the

origin—is ∼ ((2d/tπ)1/2)d as claimed. �

We can now easily complete the proof of Polya’s Theorem 1.3.

When d ≥ 3, pd(2t) = O(t−d/2). In these cases d/2 > 1 and so∑∞
t=1 pd(2t) is finite, and Theorem 1.2 gives that the random walk is

transient.

                

                                                                                                               



Chapter 2

Big Oh, Little Oh, and
All That

Although this may seem a paradox, all exact sci-

ence is dominated by the idea of approximation.

– Bertrand Russell

Functions can be complicated. We may encounter creatures such as

(2.1) f(n) = 7n5/2 + 18n2 ln3 n+ 84.

In Asymptopia this is not a problem. We are interested in the behav-

ior of f(n) as n approaches infinity. As such, the leading term (here

7n5/2) dominates. Thus we will write (formal definitions below)

(2.2) f(n) ∼ 7n5/2

and ignore the lower order terms.

In Asymptopia we want our functions to be simple. Here is what

we strive for:

Definition 2.1. A function g(n) is said to be in standard form if it

is the product of terms of the following types:

(1) Constants such as
√
2π, 6, e−2.

(2) Constant powers of n such as n,
√
n, n5/2, n−3.

(3) Constant powers of lnn such as lnn,
√
lnn, 1

lnn .

27

                                     

                

                                                                                                               



28 2. Big Oh, Little Oh, and All That

(4) Exponentials such as 2n, e−n, 2n/2.

(5) ncn for constant c, such as nn.

One need not have all of the types below. One important example

that does is

(2.3) nne−n
√
2πn.

This is the asymptotic formula for n!, called Stirling’s formula, that

we studied in depth in Chapter 1.

2.1. The Language of Asymptotics

In our applications we imagine f(n) as a complicated function and

g(n) in standard form.

Definition 2.2. We write f(n) ∼ g(n) and say f(n) is asymptotic

to g(n) when

(2.4) lim
n→∞

f(n)

g(n)
= 1.

Definition 2.3. We write f(n) = O(g(n)) and say f(n) is big oh of

g(n) when there is a positive constant C such that for all sufficiently

large n

(2.5) f(n) ≤ Cg(n).

Equivalently,

(2.6) lim sup
n→∞

f(n)

g(n)
< ∞.

Definition 2.4. We write f(n) = Ω(g(n)) and say f(n) is omega of

g(n) when there is a positive constant ε such that for all sufficiently

large n,

(2.7) f(n) ≥ εg(n).

Equivalently,

(2.8) lim inf
n→∞

f(n)

g(n)
> 0.

                

                                                                                                               



2.2. . . . and How to Use It 29

Definition 2.5. We write f(n) = Θ(g(n)) and say f(n) is theta of

g(n) when there exist positive constants C, ε so that for n sufficiently

large

(2.9) εg(n) ≤ f(n) ≤ Cg(n).

Equivalently,

(2.10) f(n) = O(g(n)) and f(n) = Ω(g(n)).

Definition 2.6. We write f(n) = o(g(n)) and say f(n) is little oh of

g(n) if

(2.11) lim
n→∞

f(n)

g(n)
= 0.

We shall also sometimes write

(2.12) f(n) � g(n)

and say that f(n) is negligible compared to g(n).

Definition 2.7. We write f(n) = ω(g(n)) and say f(n) is little omega

of g(n) if

(2.13) lim
f(n)

g(n)
= ∞.

We shall also sometimes write

(2.14) f(n) � g(n)

and say that f(n) grows faster than g(n).

Powers of lnn come up frequently in Asymptopia, so much so

that we give them a special name:

Definition 2.8. A function f(n) is said to be polylog if f(n) =

Θ(lnc n) for some positive constant c.

2.2. . . . and How to Use It

Certainly ∼ (Definition 2.2) is the best of all possible worlds. Quite

frequently, however, we are studying a function f(n) and we do not

know a standard form g(n) with f(n) ∼ g(n). In those cases we try

to get upper bounds and lower bounds on f(n) in standard form.

These are represented by O (Definition 2.3) and Ω (Definition 2.4),
                

                                                                                                               



30 2. Big Oh, Little Oh, and All That

respectively. When we find (we are not always successful!) a g(n) with

upper bound f(n) = O(g(n)) and lower bound f(n) = Ω(g(n)), we

deduce f(n) = Θ(g(n)). We can then say that we have found f(n) up

to a constant factor. Sometimes we can sandwich a function between

an upper bound UB(n) and a lower bound LB(n):

Proposition 2.9. Suppose there are functions UB(n) and LB(n)

with LB(n) ≤ f(n) ≤ UB(n). Suppose further than

LB(n) = g(n)(1 + o(1))

and UB(n) = g(n)(1 + o(1)). Then f(n) = g(n)(1 + o(1)).

Except for ∼ our asymptotic language is oblivious to constants.

That is, f(n) = O(g(n)) if and only if f(n) = O(10g(n)) if and

only if f(n) = O( 1
10g(n)). The same holds for Ω,Θ, o, ω. As such,

there is no point in placing constants in g(n). We avoid writing

f(n) = O(10n3/2) and instead write the simpler f(n) = O(n3/2).

This notion that “constants do not matter” may be mysterious at

first but it often makes life simpler, as the following results show.

Theorem 2.10. Let f(n) = f1(n)+f2(n). Suppose f1(n) = O(g(n))

and f2(n) = O(g(n)). Then f(n) = O(g(n)).

Proof. There are constants C1, C2 so that f1(n) ≤ C1g(n) for n

sufficiently large and f2(n) ≤ C2g(n) for n sufficiently large. Thus

f(n) ≤ Cg(n) for n sufficiently large where we set C = C1 + C2.

Proposition 2.11. Theorem 2.10 holds with O replaced by o, Ω, Θ,

or ω. It holds in all these cases when f(n) = f1(n) + · · ·+ fr(n) for

any constant r.

The proofs are similar. Effectively, Theorem 2.10 and Proposition

2.11 allow us to replace the sum of two (or any bounded number)

functions by their maximum. For the lower bounds ω,Ω we have

stronger statements. If f1(n) = Ω(g(n)) and f(n) ≥ f1(n), then

f(n) = Ω(g(n)). If f1(n) = ω(g(n)) and f(n) ≥ f1(n), then f(n) =

ω(g(n)).

It is worth empasizing that O, o,Ω, ω only give bounds in one

direction. Consider, for example, the statement

(2.15) 7n5/2 + 18n2 ln3 n+ 84 = O(n4).
                

                                                                                                               



2.4. The Strange Hierarchy of Asymptopia 31

This is correct! It is also correct to say that you weigh less than

one thousand pounds, just not very edifying. Still, sometimes we

are struggling with a function f(n), and we manage to prove f(n) =

O(n4). It may turn out later that f(n) = Θ(n5/2) but, for the mo-

ment, we have a result.

2.3. Little Oh One

When f(n) = o(1), it means that f(n) → 0 as n → ∞. Of partic-

ular use in Asymptopia is the factor 1 + o(1). This is a term that

approaches one. (Warning: The o(1) term may be negative here. If

h(n) = 1 + o(1), then with arbitrarily small positive ε we must have

1− ε ≤ h(n) ≤ 1 + ε for n sufficiently large.) Thus

(2.16) f(n) = g(n)(1 + o(1)) if and only if f(n) ∼ g(n).

Often times we express f(n) as a main term f1(n) and a minor term

f2(n). The following result allows us to ignore the minor term in

Asymptopia.

Proposition 2.12. Let f(n) = f1(n) + f2(n). Suppose f1(n) ∼ g(n)

and f2(n) = o(g(n)). Then f(n) ∼ g(n).

2.4. Little Fleas and Littler Fleas:
The Strange Hierarchy of Asymptopia

Comparing functions in standard form is not difficult, but the rules

may appear strange at first. There is a natural ordering of the basic

types of functions:

(1) constants,

(2) constant positive powers of lnn,

(3) constant positive powers of n,

(4) exponentials cn, c > 1,

(5) ncn for constant positive c, such as nn.

Each type below grows slower than the following ones. Even stronger,

any positive power, however large, of one type of function grows slower

than any positive power, however small, of a function of one of the

following types. In particular
                

                                                                                                               



32 2. Big Oh, Little Oh, and All That

Theorem 2.13. For all positive K (however large) and ε (however

small),

(2.17) lnK n � nε,

(2.18) nK � (1 + ε)n,

(2.19) Kn � nεn.

The most useful of these is (2.17). The logarithm function grows

to infinity extremely slowly. As an example consider a race between

ln5 n and
√
n. For n moderately small ln5 n is in the lead. But

take n = e1000. Then ln5 n = 1015. This is quite large in absolute

terms but trivial compared to
√
n = e500, which is bigger than a

googol (10100). Similarly, the exponential function grows to infinity

extremely quickly. As an example consider a race between n5 and

(1.1)n. When n is a million, n5 is a mere nonillion, while (1.1)n has

more than 41000 digits.

Proof. First set f(n) = nK , g(n) = (1 + ε)n, and consider (2.18).

We compare growth rates:

(2.20) lim
n→∞

f(n+ 1)/f(n) = lim
n→∞

(1 + n−1)K = 1K = 1.

Fix any c (e.g., c = 1+ ε
2 ) with 1 < c < 1+ ε. There exists n0 so that

for n > n0, f(n+ 1)/f(n) < c. Hence

(2.21)
f(n0 +m)

g(n0 +m)
≤ cmf(n0)

(1 + ε)mg(n0)
→ 0

as m → ∞. For (2.17) we parametrize n = em so that it becomes

mK � (eε)m, which is (2.18) with eε replacing 1 + ε. For (2.19) fix

any c > n and n0 with nε
0 ≥ c. For n ≥ n0, n

εn ≥ cn � Kn. �

Now suppose both g1(n) and g2(n) are in standard form. Which

is bigger in Asymptopia? First compare the terms ncn. The one with

the larger c is bigger. If they have equal c (or, more often, if these

terms do not appear), go on to the exponentials cn. Again, the one

with the larger c is bigger. If it is a tie, go to the powers nc. Again

the one with larger c is bigger. If it is a tie, go to the powers lnc n,

and again the one with the larger c is bigger. If all of these are equal,
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then g1(n) and g2(n) are equal up to a constant factor. In practice,

this is quite easy. Some examples:

(2.22) n ln2 n � n3/2,

(2.23) n22n � 3n,

(2.24) nn/2 � nne−5n.

The last example (2.24) shows that these rules apply even when

the values c in ncn or nc or lnc n are negative. Other examples:

(2.25) n0.9 � n ln−2 n,

(2.26)
2n√
n
� 1.99n.

These also apply to cn when 0 < c < 1. A final example:

(2.27) 0.9n ln3 n � 1.

2.5. Little Oh One in the Exponent

How can we express that f(n) is somewhat near n2 (or any other

constant power) when we do not know that it is very near n2? A

useful terminology is to place a 1 + o(1) factor in the exponent and

to write f(n) = n2(1+o(1)). This means

(1) for any fixed positive ε, if n is sufficiently large, then f(n) >

n2(1−ε);

(2) for any fixed positive ε, if n is sufficiently large, then f(n) <

n2(1+ε).

How accurately do we know f(n)? Not very! It could be that f(n) ∼
n2. But, using our characterization of fleas and little fleas, it could

be that f(n) = n2 lnn or n2 ln5 n or n2 ln−3 n. Why would we use

such a rough formulation? Sometimes we simply do not have a more

accurate view of f(n), and so this describes how well we understand

it. Other times we do not need a more accurate view of f(n) for later

calculations. It is important not to confuse the coarser 1+o(1) in the

exponent with the more accurate 1 + o(1) factor “downstairs” as in

(2.16).
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In the above example we could also have written f(n) = n2+o(1).

The expression 2 + o(1) represents a function approaching two. The

expression 2(1 + o(1)) represents twice a function approaching one.

These are equivalent! Which form one uses is largely a matter of

taste.

As a further example, consider g(n) = 2n(1+o(1)). This means

(1) for any fixed positive ε, if n is sufficiently large, then g(n) >

2n(1−ε);

(2) for any fixed positive ε, if n is sufficiently large, then g(n) <

2n(1+ε).

A flea smaller than exponential will not affect this. If, for example,

g(n) = 2n(1+o(1)), then after multiplication or division of g(n) by n10

this still holds. So, for example,

(2.28)

(
n

n/2

)
= 2n(1+o(1))

is a correct statement, though we can and usually should do better.

2.6. Inverting Functions

Consider a relation such as y = x lnx for x ≥ 1. This is an increasing

function of x and so there is a unique inverse function x = f(y)

for y ≥ 0. There is no compact way to write f(y) precisely. In

Asymptopia (as x, y → ∞) the problem disappears. For x large

ln y = lnx+ ln lnx ∼ lnx. Thus

(2.29) x =
y

lnx
∼ y

ln y
.

The general result is similar.

Theorem 2.14. Let a, c be positive reals, and let b be any real num-

ber, possibly zero, positive or negative. Set f(x) = cxa lnb x defined

for x > 1. For y sufficiently large (dependent on a, b) there is a unique

x with y = f(x). Write x = g(y) for such y. Asymptotically in y

(2.30) x ∼ dy1/a(ln y)−b/a,

where dc1/aa−a/b = 1.
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As the xa term dominates the polylogarithmic term, y = f(x)

is eventually increasing, and so the inverse function exists. To show

(2.30), we calculate f(x), noting that ln y ∼ a lnx.

Often times we are not concerned with precise constants, and the

following simpler form is useful:

Theorem 2.15. If y = Θ(xa lnb x), then x = Θ(y1/a ln−b/a y).

Example. In Chapter 7, R(3, k) is defined as the least n with a

certain property. It is sometimes convenient to reverse variables and

let f(n) be the biggest k with R(3, k) ≤ n. The functions R(3, k) and

f(n) are then inverses. To show (as indeed is the case) that R(3, k) =

Θ(k2 ln−1 k), one can equivalently show f(n) = Θ(
√
n
√
lnn).

2.7. Taylor Series

When f(x) is an appropriately nice function, f(x) is nicely approxi-

mated around x = x0 using Taylor series. Generally speaking, the ap-

proximation becomes better as you use more terms. Let TAY k(x0, ε)

denote the Taylor series approximation to f(x0+ ε), using the Taylor

series around x0 out to the k-th derivative. Specifically,

(2.31) TAYk(x0, ε) = f(x0)+f ′(x0)ε+
f (2)(x0)

2
ε2+ · · ·+ f (k)(x0)

k!
εk,

where f (s) denotes the s-th derivative of f . How close is the approxi-

mation TAY n(x0, ε) to the actual value f(x0+ ε)? The general result

is

Theorem 2.16. Let f(x) be a function whose first k + 1 derivatives

are continuous at x = x0. Then

(2.32) f(x0 + ε) = TAYk(x0, ε) +O(εk+1),

where O is understood as ε → 0.

The most used case is k = 1. Then

(2.33) f(x0 + ε) = f(x0) + f ′(x0)ε+O(ε2).

The special cases ex, ln(1+x), ln(1−x) (all around x0 = 0) come up

frequently. For convenience we give some of these special cases:

(2.34) eε = ε+O(ε2) and eε = ε+
ε2

2
+O(ε3),
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(2.35) ln(1 + ε) = ε+O(ε2) and ln(1 + ε) = ε− ε2

2
+O(ε3).

The function ln(1−x) is particularly nice as all of the derivatives are

negative. We get an inequality

(2.36) ln(1− ε) < −ε− ε2

2
− · · · − εk

k!
,

which is valid for all 0 < ε < 1 and all k ≥ 1. Note, however, that the

function ln(1 + ε) has derivatives of alternate sign. For that reason,

inequalities for ln(1 + ε) that hold for all positive ε are messier.

A second approach gives the error explicitly. We omit the proof,

which may be found in calculus texts.

Theorem 2.17. Let ε > 0 be arbitrary. Let f(x) be a function whose

first k + 1 derivatives are continuous in the region [x0, x0 + ε]. Then

(2.37) f(x0 + ε) = TAYk(x0, ε) +
f (k+1)(z)

(k + 1)!
εk+1

for some x0 ≤ z ≤ x0 + ε. Further, when ε < 0 equation (2.37) still

holds but now the first k+1 derivatives are continuous in [x0 + ε, x0]

and x0 + ε ≤ z ≤ x0.

In applications we often have a uniform bound on the f (k+1)(x).

Theorem 2.18. Let ε > 0 be arbitrary. Let f(x) be a function whose

first k+1 derivatives are continuous in the region [x0, x0+ε]. Suppose

|f (k+1)(z)| ≤ A for all z ∈ [x0, x0 + ε]. Then

(2.38) |f(x0 + ε)− TAYk(x0, ε)| ≤ A
εk+1

(k + 1)!
.

Further, when ε < 0, equation (2.38) still holds, but now we assume

that the first k + 1 derivatives of f(x) are continuous in [x0 + ε, x0]

and that |f (k+1)(z)| ≤ A for all z ∈ [x0 + ε, x0].

                

                                                                                                               



Chapter 3

Integration in
Asymptopia

The search for truth is more precious than its pos-

session.

– Albert Einstein

Finding a definite integral in Asymptopia is quite different from

first year calculus. We look at where the function is largest and ex-

amine the area near that maximum.

When properly scaled, the graph of the function near its maxi-

mum will often look like the bell shaped curve.

When the maximum is on the boundary of the region, often times

the graph will look like the exponential function e−w. There is usually

technical work to ensure that the bulk of the area lies near the max-

imum, in the region we call MID . But the “picture” of the function

in Asymptopia is quite simple and informative.

37

                                     

                

                                                                                                               



38 3. Integration in Asymptopia

3.1. The Gaussian Tail

Here we examine the asymptotics of the tail of the Gaussian distri-

bution

(3.1) GT (a) =

∫ ∞

a

1√
2π

e−x2/2dx

as a → ∞. Set

f(x) = (2π)−1/2e−x2/2

so that we seek
∫ ∞
a

f(x)dx. As f(x) is decreasing its maximum over

[a,∞) is at x = a. Set

z = ln(f(x)) = −x2/2− 1

2
ln(2π).

Then z′(a) = −a so that the Taylor series for z around x = a begins

as

(3.2) z(a+ ε) = z(a)− aε+ · · · .

This leads to the natural scaling ε = 1
aλ.

With this as background (somewhat similarly to §1.1), we try the

substitution

(3.3) x = a+
λ

a

so that

(3.4) GT (a) =
1√
2π

1

a

∫ ∞

λ=0

e−(a+λ
a )2/2dλ.

We take out the factor of e−a2/2 to give

(3.5) GT (a) =
1√
2π

1

a
e−a2/2

∫ ∞

λ=0

e−λe−
λ2

2a2 dλ.

We can now make a good guess (the art of Asymptopia) for the an-

swer. By the “time” the e−λ2/2a2

term becomes substantially smaller

than 1, the e−λ term is so small that it does not matter. If we ignore

the second term, we get
∫ ∞
0

e−λdλ = 1. As the second term always

lies in [0, 1], we quickly get the upper bound

(3.6)

∫ ∞

0

e−λe−
λ2

2a2 dλ ≤
∫ ∞

0

e−λdλ = 1.

                

                                                                                                               



3.1. The Gaussian Tail 39

For the lower bound we split the range into

MID = [0, L(a)]

and

RIGHT = [L(a),∞).

(In this problem there is no LEFT.) We want to select L = L(λ) so

that λ2/2a2 is negligible throughout MID , which forces L = o(a).

But we also want the integral over MID to be almost 1 which forces

L(a) → ∞. For definiteness let us take L(a) =
√
a. Throughout

MID , e−λ2/2a2 ≥ e−1/2a. Thus

(3.7)

∫ √
a

0

e−λe
−λ2

2a2 dλ ≥ e−1/2a

∫ √
a

0

e−λdλ = e−1/2a[1− e−
√
a].

As a → ∞, e−1/2a[1− e−
√
a] → e0[1− 0] = 1. Since here we are only

looking for a lower bound, we can ignore the integral over RIGHT.

(Caution. If the function were sometimes negative, we could not do

this!) We have sandwiched the integral (3.6) between 1 and a function

of a approaching 1, and therefore the limit is 1. Plugging back into

(3.5) gives the desired asymptotics:

(3.8) GT (a) ∼ 1

a

√
1

2π
e−a2/2.

The weight of the Gaussian tail from a to ∞ is nearly all very

close to a. We can make this more precise:

Theorem 3.1. Let N denote the standard Gaussian distribution. Let

a < b approach ∞ with b− a � a−1.

(3.9)
Pr[N ≥ b]

Pr[N ≥ a]
→ 0.

The proof is a simple plug-in to (3.8). The case b = a + 1 leads

to surprising results. Suppose that IQ scores1 are given by a Gauss-

ian distribution with mean 100 and standard deviation 15. Suppose

Frisbee University selects 1000 students randomly from those with

IQ above 145, meaning three standard deviations above the mean.

How many of those students will have IQ above 160, meaning four

standard deviations above the mean? The values a = 3, b = 4 are

1Whether IQ scores have any validity whatsoever is a separate question!
                

                                                                                                               



40 3. Integration in Asymptopia

constants so we can check tables for the Gaussian tail. Pr[N ≥ 3] =

0.001350 · · · , maybe one student in a good sized high school class

would be three standard deviations above the mean. But Pr[N ≥ 4] =

0.00003167 · · · is far smaller. Of these 1000 elite students only 1000 ·
0.00003167/0.001350 or about 23 of them would be in the higher cat-

egory, and probably none of them would be five standard deviations

above the mean.

3.2. High Trigonometric Powers

We examine here the asymptotics of the integral

(3.10) S(n) =

∫ π

0

sinn xdx

as n → ∞. The behavior is remarkably similar to
∫
xne−xdx dis-

cussed in Chapter 1. Set y = sinn x and z = ln y = n ln sin x. At

x = π
2 , sin x is maximized so that y and z are also maximized. We

compute z′(x) = n cot(x) so that z′′(x) = −n csc2(x). At the maxi-

mal point z = π
2 we compute z′(π/2) = 0 and z′′(π/2) = −n. The

Taylor series for z(x) about π/2 begins as

(3.11) z
(π

2
+ ε

)
= −nε2 + · · · .

This leads to the x = π
2 + 1√

n
w. Set

(3.12) f(w) = sinn
(
π

2
+

1√
n
w

)

and

(3.13) g(w) = ln f(w) = n ln sin(
π

2
+

1√
n
w)

so that

(3.14) S(n) =
1√
n

∫
f(w)dw,

where the integral now goes from − 2
π

√
n to + 2

π

√
n.

For w fixed, limn→∞ g(w) = −w2/2 and limn→∞ f(w) = e−w2/2.

(Like xne−x, sinn x, where properly scaled, looks like the bell shaped

curve!)
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We split [0, π] into a middle region

MID = [−L(n),+L(n)],

in which g(w) ∼ −w2/2, and left and right regions

LEFT = [− 2

π

√
n,−L(n)]

and

RIGHT = [L(n),
2

π

√
n]

on which
∫
f(w) will be appropriately negligible. We must select L(n)

large enough so that MID contains most of the integral and small

enough so that g(w) ∼ −w2/2 holds uniformly throughout MID . A

wide range of L(n) will work; let us use L(n) = n.1.

3.2.1. MID. We expand g(w) in a Taylor series about 0. We have

g(0) = n ln sin(π2 ) = 0, g′(0) = nn−1/2 cot(π2 ) = 0, and g
′′
(0) =

− sec2(π2 ) so the series begins −w2/2 as expected. Now we need a

uniform upper bound on the third derivative over MID . We find

(3.15) g(3)(w) = 2n−1/2 cot(θ) csc2(θ)

with θ = π
2 + 1√

n
w. With |w| ≤ L(n), θ is close to π

2 so that g(3)(w)

is close to 2n−1/2. We use the rough upper bound |g(3)(w)| ≤ 3n−1/2

for all |w| ≤ L(n). When w ∈ MID and z lies between 0 and w, then

|g(3)(z)| ≤ 3n−1/2 as well. Theorem 2.18 gives the Taylor series for

g(w) with error bound,

(3.16) |g(w) + w2

2
| ≤ 3n−1/2w

3

6
≤ n−0.2

for all w ∈ MID. Exponentiating, and using the rough bound

|eδ − 1| ≤ 2δ, valid for δ small,

(3.17) e−w2/2(1− 6n−0.2) ≤ f(w) ≤ e−w2/2(1 + 6n−0.2).

We have sandwiched f(w) so that

(3.18)

∫
MID

f(w)dw = O(n−0.2) +

∫
MID

e−w2/2dw.

As L(n) → ∞,

(3.19)

∫
MID

e−w2/2dw =
√
2π + o(1).

                

                                                                                                               



42 3. Integration in Asymptopia

Thus,

(3.20)

∫
MID

f(w)dw =
√
2π + o(1).

3.2.2. RIGHT, LEFT. To show that RIGHT contributes negligi-

bly (by symmetry, LEFT is the same) we can use that f(w) and g(w)

are decreasing functions. At w = L(n), g(w) = −w2/2 +O(n−0.2) ∼
−n.2/2 so that f(w) is exponentially small. The interval RIGHT has

length less than
√
n, the exponential dominates the polynomial and so∫

RIGHT
f(w)dw is exponentially small, and hence o(1). The integral

of (3.14) is therefore
√
2π + o(1) and

(3.21) S(n) =

∫ π

0

sinn xdx ∼
√

2π

n
.

3.2.3. Stirling Redux. S(n) may be calculated precisely using cal-

culus. An ingenious integration by parts yields the recursion

(3.22) S(n) =
n− 1

n
S(n− 2)

with initial conditions S(0) = π, S(1) = 2. For notational simplicity

we set

(3.23) A = 2−2m (2m)!

m!m!
.

When n is even, setting n = 2m

(3.24) S(2m) = π

m∏
i=1

2i− 1

2i
= Aπ.

When n is odd, setting n = 2m+ 1,

(3.25) S(2m+ 1) = 2
m∏
i=1

2i

2i+ 1
=

2

2m+ 1
A−1.

These formulae will yield two new arguments for the constant
√
2π in

Stirling’s formula. We assume (1.29), that n! ∼ Knne−n
√
n for some

constant K. Then

(3.26) A ∼ 2−2mK(2m)2me−2m
√
2m

(Kmme−m
√
m)2

∼
√
2

K
√
m
.
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Applying (3.24) (we could similarly apply (3.25)),

(3.27) S(2m) ∼
√
2π

K
√
m
.

Comparing to the previously found asymptotics (3.21), we may solve

for K, yielding K =
√
2π.

A second argument, modifying slightly the approach [CR96] of

Richard Courant, avoids asymptotic evaluation of S(n). As sinn x is

decreasing in n, S(2m) ≥ S(2m+1) ≥ S(2m+2). The recursion (3.22)

gives limm S(2m+1)/S(m) = 1. As S(2m+1) is sandwiched between

these two terms, limm S(2m)/S(2m + 1) = 1. Thus Aπ ∼ m−1A−1

and A ∼ (mπ)−1/2. We may now solve (3.26) for K, again yielding

K =
√
2π.

3.3. An Easy Integral

Here we examine the asymptotics of

(3.28) F (n) =

∫ 1

0

xndx

as n → ∞. Of course, we know the exact value, but it provides a

good example. Further, Asymptopia gives new insight into what the

function “looks like” on [0, 1].

Set y(x) = xn and z(x) = ln y(x) = n lnx so that y and z are

maximized (over [0, 1]) at the endpoint 1. The Taylor series for z(x)

about x = 1 begins z(1+ε) = nε. This leads us to the parametrization

(3.29) x = 1 +
w

n
.

Set

(3.30) f(w) =
(
1 +

w

n

)n

and

(3.31) g(w) = ln f(w) = n ln(1 +
w

n
).

With this change of variables,

(3.32) F (n) = n−1

∫ 0

−n

f(w)dw.

                

                                                                                                               



44 3. Integration in Asymptopia

With w fixed, limn→∞ g(w) = −w. Now we split into a middle term

MID of the form [−L(n), 0] and a left term LEFT, [−n,−L(n)].

(There is no RIGHT interval here.) We must select L(n) large

enough that MID contains most of the integral and small enough

that g(w) ∼ −w holds uniformly throughout MID . A wide range of

L(n) will work; let us use L(n) = n.1. For w in MID the Taylor series

with error (2.38) gives

(3.33) g(w) = −w − 1

n
(1 +

z

n
)−2w

2

2

for some z, w ≤ z ≤ 0. As z
n is small in MID , (1 + z

n )
−2 ≤ 2 so that

(3.34) |g(w) + w| ≤ w2

n
≤ n−0.8.

Exponentiating and using that |eδ − 1| ≤ 2δ for δ small,

(3.35) |f(w)− e−w| ≤ 2n−0.8.

With the length of MID only L(n) = n0.1,

(3.36)

∫
MID

f(w)dw =

∫
MID

e−wdw +O(n−0.7).

As L(n) → ∞,

(3.37)

∫
MID

e−wdw = o(1) +

∫ ∞

0

e−wdw = 1 + o(1).

To show that LEFT contributes negligibly, we note that f(w), g(w)

are increasing functions of w. At w = −L(n) = −n0.1, inequal-

ity (3.34) gives g(w) = −w + o(1) so that f(w) is an exponentially

small function of n. The interval LEFT has length less than n, so

the exponentially small term dominates the polynomial factor and∫
LEFT

f(w)dw is o(1). Thus the integral of (3.32) has value 1 + o(1)

and F (n) ∼ 1
n , as we knew all along!

3.4. Integrals with logs

Sometimes when the integrand has logarithmic factors there is no

precise integration. In Asymptopia this is not a problem. Consider

an integral involving an lnx factor, where the limits of integration

are from some small value to n. The notion will be that for “most” x

in that region, lnx will be very close to lnn. In Asymptopia the lnx
                

                                                                                                               



3.4. Integrals with logs 45

factor becomes a constant lnn factor which can be taken out of the

integral. A basic example of this is

(3.38) Li(n) :=

∫ n

e

dx

lnx
.

The lower limit x = e is quite arbitrary, but one wants to avoid the

pole at x = 1. The intuitive notion is that one can replace lnx with

lnn giving

(3.39) Li(n) ∼ 1

lnn

∫ n

e

dx ∼ n

lnn
.

As 1
ln x ≥ 1

lnn , we immediately get the lower bound

(3.40) Li(n) ≥ 1

lnn

∫ n

e

dx ∼ n

lnn
.

For the upper bound we split the range [e, n] into LEFT and MID

at some u(n). We need take u(n) large enough that lnx ∼ lnn

throughout MID and yet small enough that the integral over LEFT

will be negligible compared to the proposed answer n
lnn . The first

condition requires u = u(n) = n1−o(1); let us take u(n) = n ln−10 n

for definiteness. Now we take the rough but accurate upper bound
1

ln x ≤ 1 so that

(3.41)

∫
LEFT

dx

lnx
≤

∫
LEFT

dx ≤ u(n),

which is indeed o( n
lnn ). Now throughout MID , ln(x) ≥ ln(u(n)) ≥

lnn− 10 ln lnn ∼ lnn so that

(3.42)

∫
MID

dx

lnx
∼ 1

lnn

∫
MID

dx ∼ n

lnn

so that

(3.43)

L(n) =

∫
LEFT

dx

lnx
+

∫
MID

dx

lnx
= o(

n

lnn
) + (1 + o(1))

n

lnn
∼ n

lnn

as desired.
                

                                                                                                               



46 3. Integration in Asymptopia

Comment. The function Li(n) is a better estimate for π(n), the

number of primes p ≤ n, than the simpler n
log n .

As a further example consider

(3.44) F (n) :=

∫ n

e

s

ln s
ds.

Replacing ln s with the constant lnn leads us to conjecture F (n) ∼
n2

2
1

lnn . As s
ln s ≥ s

lnn , we quickly get the lower bound

(3.45) F (n) ≥ 1

lnn

∫ n

e

s · ds ∼ n2

2 lnn
.

For the lower bound we split the range [e, n] into LEFT and MID

and u(n) = n ln−10 n again works well. In MID , 1
ln s = (1− o(1)) 1

lnn ,

so

(3.46)

∫
MID

s

ln s
ds = (1− o(1))

∫
MID

s

lnn
ds = (1− o(1))

n2

2 lnn
.

As the integrand is always positive, this provides a lower bound for

F (n). We have sandwiched F (n) giving (3.45).

Further, let us consider briefly

(3.47) G(n) :=

∫ n

1

s(ln s)ds.

We use the same split into LEFT and MID as with (3.44), ln s ∼ lnn

in MID , and

(3.48) G(n) ∼ (lnn)

∫
MID

s · ds ∼ n2 ln(n)

2
.

For this problem we did not need Asymptopia: the precise definite

integral is G(n) = n2

2 ln(n)− n2

4 + 1
4 . But even here one may feel that

Asymptopia gives one insight into the integral.

                

                                                                                                               



Chapter 4

From Integrals to Sums

Simplicity is the highest goal, achievable when you

have overcome all difficulties. After one has played

a vast quantity of notes and more notes, it is sim-

plicity that emerges as the crowning reward of art.

– Fryderyk Chopin

The creation of the integral calculus by Newton and Leibnitz in

the 17th century was surely one of the great advances in mathematics.

It was, however, only with the development of the Riemann integral

by Bernhard Riemann in the 19th century that calculus approached

its modern form.

At its heart is the definition of the area under the curve y = f(x)

between x = a and x = b. For any n the interval [a, b] is broken

into n equal pieces by finding a = x0 < x1 < · · · < xn−1 < xn = b.

Values zi ∈ [xi−1, xi], 1 ≤ i ≤ n, are selected. One sets An =∑n
i=1(xi−xi−1)f(zi). Geometrically, An represents the total area of n

rectangles which, for n large, hug the region under the curve y = f(x).

The area under the curve y = f(x) is then defined to be the limit of

this process as n → ∞. (One requires also that the interval lengths

xi−xi−1 approach zero uniformly as n → ∞.) Riemann demonstrated

that this limit would exist (and not depend on the choices of the xi

and the zi) for a wide class of functions. In particular, splitting the

47

                                     

                

                                                                                                               



48 4. From Integrals to Sums

interval into n equal pieces and always taking the right-hand side of

the interval for zi, we would have

(4.1) An =
n∑

i=1

b− a

n
f(a+ i

b− a

n
).

Consider the area under the curve y = x2 between x = 0 and

x = 1. This area was first found by Archimedes, in The Quadrature

of the Parabola , written in the third century B.C. Archimedes used an

ingenious decomposition of the area into triangles. From Riemann’s

vantage point, using the particular choice of xi, zi above, we have

(4.2) An =
1

n

n∑
i=1

(i/n)2 =
1

n3

n∑
i=1

i2.

In this case the precise formula

(4.3)
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6

immediately yields limn→∞ An = 1
6 .

In Asymptopia we turn this story on its head. We have a sum,

and we seek standard form asymptotic values. We know first year

calculus, so we know that
∫ 1

0
x2dx = 1

3 . Thus, we can deduce that

(4.4)

n∑
i=1

i2 ∼ n3

6
.

Frequently, we will be presented with a sum in the form
∑b

i=a f(i).

We would like to say that the precise sum is close to the corresponding

integral
∫ b

a
f(x)dx.

Some caution is needed. Consider
∑n

i=0 2
i, which has the precise

value 2n+1 − 1. The corresponding integral
∫ n

0
2xdx works out to

1
ln 2 [2

n − 1]. The terms −1 may be considered negligible but still the

two values are off by a constant factor. That said, for a wide variety

of sums, the approximation via an integral is quite accurate.

4.1. Approximating Sums by Integrals

Theorem 4.1. Let a < b be integers. Let f(x) be an integrable

function in [a− 1, b+ 1]. Set S =
∑b

i=a f(i).
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(1) If f is an increasing function on [a− 1, b+ 1], then

(4.5)

∫ b

a−1

f(x)dx ≤ S ≤
∫ b+1

a

f(x)dx.

(2) If f is an decreasing function on [a− 1, b+ 1], then

(4.6)

∫ b

a−1

f(x)dx ≥ S ≥
∫ b+1

a

f(x)dx.

Proof. For a ≤ i ≤ b consider the rectangle with base [i − 1, i] and

height f(i). When f is increasing, the region given by these rectangles

lies over the curve y = f(x) from x = a−1 to x = b and therefore has

greater area, giving the first inequality of (4.5). The other inequalities

are similar. �

The following formulation is particularly useful for our applica-

tions.

Theorem 4.2. Let a < b be integers. Let f(x) be an integrable

function in [a− 1, b+ 1]. Set S =
∑b

i=a f(i) and I =
∫ b

a
f(x)dx. Let

M be such that |f(x)| ≤ M for all a − 1 ≤ x ≤ b + 1. Suppose f is

either an increasing function or a decreasing function on [a−1, b+1].

Then

(4.7) |S − I| ≤ M.

Proof. The bounds in the four cases of (4.5) and (4.6) are off from

I by an integral of f(x) over a unit interval. �

In practice one often uses a rough upper bound for M . Some

examples:

(4.8)
n∑

i=1

iα =
nα+1

α+ 1
+O(nα) for any α > 0,

(4.9)

2n∑
i=n

1

i
= ln(2) +O(

1

n
).

Occasionally, the function f(x) will not be defined at x = a− 1.

The simple solution: remove the x = a term! We can use this idea to

bound ln(n!) =
∑n

i=1 ln(i). The function ln(x) is not defined at x = 0,
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but the value ln(1) = 0, so instead we write ln(n!) =
∑n

i=2 ln(i). Now

Theorem 4.1 applies and

(4.10) ln(n!) ≥
∫ n

1

ln(x)dx = n lnn− n+ 1

so that

(4.11) n! ≥ e(n/e)n ≥ (n/e)n.

While this is certainly not as powerful as the approximation via trape-

zoids in §1.2, it is quite handy and holds for all n ≥ 1.

The assumption that f(x) is monotone in Theorem 4.2 is rarely

an obstacle. The result below may be improved, but it suffices for

nearly all applications. When the number r of turning points of f(x)

is bounded, one still finds |S − I| = O(M).

Theorem 4.3. Let a < b be integers. Let f(x) be an integrable

function in [a − 1, b + 1]. Set S =
∑b

i=a f(i) and I =
∫ b

a
f(x)dx.

Let M be such that |f(x)| ≤ M for all a − 1 ≤ x ≤ b + 1. Suppose

[a− 1, b+ 1] can be broken up into at most r intervals such that f(x)

is monotone on each. Then

(4.12) |S − I| ≤ 6rM.

Proof. Let a− 1 = x0 < x1 < · · · < xr = b+ 1 be such that f(x) is

monotone on each [xj−1, xj ]. We split the integers correspondingly,

letting uj , vj denote the first and last integers in [xj−1, xj ]. Set Sj

equal the sum of the f(i) from uj + 1 to vj − 1, and let Ij denote

the integral of f(x) over [uj + 1, vj − 1]. From Theorem 4.2, each

|Sj − Ij | ≤ M . Hence,

(4.13)

∣∣∣∣∣∣
r∑

j=1

Sj −
r∑

j=1

Ij

∣∣∣∣∣∣ ≤ rM.

We have deleted 2r integers so that S is at most 2rM from
∑r

j=1 Sj .

The integrals miss the r− 1 interior ranges [vj − 1, uj+1 +1] and also

cover regions [a − 1, a] and [b, b + 1] not in [a, b]. Thus I is within
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3rM of
∑r

j=1 Ij . Finally,

(4.14) |S−I| ≤

∣∣∣∣∣∣S −
r∑

j=1

Sj

∣∣∣∣∣∣+
∣∣∣∣∣∣

r∑
j=1

Sj −
r∑

j=1

Ij

∣∣∣∣∣∣+
∣∣∣∣∣∣I −

r∑
j=1

Ij

∣∣∣∣∣∣ ≤ 6rM.

�

A typical example of Theorem 4.15 is the evaluation of

(4.15) An =
n∑

i=0

i(n− i)

in Asymptopia. The function f(x) = x(n − x) is differential and so

can have a turning point only when the derivative is zero. Here this

occurs at x = n
2 and frequently it occurs at only a bounded number

r of points. We evaluate

(4.16) In =

∫ n

0

x(n− x)dx = n3

∫ 1

0

y(1− y)dy =
n3

6

and note that f(x) = O(n2) in [−1, n+ 1] so that

(4.17) An =
n3

6
+O(n2).

4.2. The Harmonic Numbers

The n-th harmonic number, denoted by Hn, is given by the sum

(4.18) Hn =

n∑
i=1

1

i
.

4.2.1. Asymptotics. Theorem 4.2 gives the lower bound

(4.19) Hn ≥
∫ n+1

1

dx

x
= ln(n+ 1).

For the upper bound, as x−1 is not defined at x = 0, we remove the

first term

(4.20) Hn − 1 =
n∑

i=2

1

i
≤

∫ n

1

dx

x
= ln(n)

so that

(4.21) lnn < ln(n+ 1) ≤ Hn ≤ ln(n) + 1.
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This gives a useful expression

(4.22) Hn = ln(n) + Θ(1).

4.2.2. Better Asymptotics. Applying trapezoidal approximations,

we can do even better. We follow the arguments of §1.2 almost ver-

batim. We set

(4.23) In =

∫ n

1

dx

x
= lnn.

Let Tn be the value for the approximation of the integral In via the

trapezoidal rule using step sizes 1. That is, we estimate
∫ i+1

i
f(x)dx

by 1
2 (f(i) + f(i+ 1)). Summing over 1 ≤ i ≤ n− 1,

(4.24) Tn =
1

2
· 1 +

n−1∑
k=2

1

k
+

1

2
· 1
n
= Hn − 1

2
− 1

n
.

Set

(4.25) En = Tn − In

to be the error when approximating the integral of x−1 by the trape-

zoidal rule. For 1 ≤ k ≤ n − 1, let Sk denote the “sliver” of area

above the curve y = x−1 for k ≤ x ≤ k + 1 but over the straight line

between (k, 1
k ) and (k + 1, 1

k+1). The straight line is over the curve

as the curve is convex. Then

(4.26) En =
n−1∑
k=1

μ(Sk),

where μ denotes the area.

Our goal is to bound the error.

Theorem 4.4. En approaches a finite limit c as n → ∞. Equiva-

lently,

(4.27) lim
n→∞

∞∑
k=n

μ(Sk) = 0.

Assuming Theorem 4.4, equations (4.23), (4.24), and (4.25) yield

(4.28) Hn = Tn +
1

2
+

1

2n
= lnn+ c+ o(1) +

1

2
.
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For historic reasons we set

(4.29) γ = c+
1

2
,

where γ is called Euler’s constant. It first appeared in a 1734 paper

by Leonhard Euler. Its approximate value is 0.577. γ has been very

well studied; in the pantheon of mathematical constants one could

put it just under π and e in importance. Unlike π and e, surprisingly

little is known about it. For example, it is not (yet!) known whether

or not γ is irrational. Using γ, we get a simple expression for Hn:

(4.30) Hn = lnn+ γ + o(1).

Now, how do we show Theorem 4.4? We consider μ(Sk) in

Asymptopia as k → ∞. Roughly, μ(Sk), the error between the inte-

gral from k to k+1 of f(x) = x−1 and the straight line approximation

of f(x). This error is caused by the second derivative of f(x). (Had

the second derivative been zero, the straight line would have been the

precise function.) Here the second derivative f
′′
(x) = −x−3 is on the

order of k−3 and the interval has length 1, so we feel the error should

be on the order of k−3. As k−3 is decreasing sufficiently quickly, the

infinite sum of μ(Sk) should converge.

We have an exact expression:

(4.31)

μ(Sk) =
1

2

[
1

k
+

1

k + 1

]
−

∫ k+1

k

dx

x
=

1

2

[
1

k
+

1

k + 1

]
− ln

(
1 +

1

k

)
.

Now we take Taylor series ln(1 + k−1) = k−1 − 1
2k

−2 + 1
3k

−3 +

O(k−4) and 1
k+1 = k−1 − k−2 + k−3 + O(k−4). The k−1 and k−2

terms cancel and

(4.32) μ(Sk) =
1

2
k−3 − 1

3
k−3 +O(k−4) =

1

6
k−3 +O(k−4)

so that, as expected, μ(Sk) = O(k−3), and Theorem 4.4 is proven.

Following §1.3, we can estimate the error in (4.30). As
∑∞

k=1 μ(Sk) =

c = γ − 1
2 , we can write En = γ − 1

2 −
∑∞

k=n μ(Sk), giving the

expression

(4.33) Hn = ln(n) + γ +
1

2n
−

∞∑
k=n

μ(Sk).
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From (4.32)

(4.34)

∞∑
k=n

μ(Sk) ∼
∞∑

k=n

1

6
k−3 +O(k−4) =

1

12n2
+O(n−3),

giving the more accurate estimation

(4.35) Hn = ln(n) + γ +
1

2n
− 1

12n2
+O(n−3).

4.2.3. 2n Prisoners. We now present an application of the approx-

imation of the harmonic numbers to an amusing puzzle, the Prisoners

Game.1 The story goes as follows: We have 2n prisoners who have

numbers 1, . . . , 2n. (As a puzzle 2n is often taken as 100. Also the

prisoners have names. We delete these unnecessary aspects here.)

Their numbers 1, . . . , 2n are each written on a sheet of paper in 2n

boxes (one number in each), and then the boxes are placed in random

order on a table in a room. We let σ(j) denote the number placed in

box j. As the boxes were ordered randomly, we may consider σ to be

a random permutation on {1, . . . , n}.
Each prisoner is taken to the box room and may look in at most

n boxes, attempting to find his own number. He must leave the room

as it was found and is not allowed communication with the other

prisoners once the game started. However, the prisoners can, and will,

agree on a strategy before the game begins. The rule is draconian:

If any prisoner fails to find his name, then all of the prisoners are

executed. If all prisoners find their names, then they are all freed.

Each prisoner has probability 1
2 of finding his name. If the prison-

ers work independently, the chance that they find their number would

be a mere 2−n. But we give a strategy for which the probability they

are all freed is more than 30%.

Spoiler Alert : Here Is the Strategy. Prisoner j looks inside box j.

He finds number σ(j). If σ(j) = j, he is finished. Otherwise, he looks

in the box associated to the number he just found, box σ(j). He finds

number σ(σ(j)). If σ(σ(j)) = j, he is finished. Otherwise he looks

in the box associated to the number he just found, box σ(σ(σ(j))).

1We have heard about this puzzle from Peter Winkler’s Seven Puzzles You Think
You Must Not Have Heard Correctly [Win]. The idea originally appears in [GM03].
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Prisoner j continues in this fashion until he either finds his number

or has opened n boxes.

The reason that this strategy works is that each prisoner is fol-

lowing a cycle of the permutation σ of the 2n numbers. Prisoner j

succeeds if σu(j) = j for some 1 ≤ u ≤ n. If the permutation has

no cycles of length greater than n, then each prisoner will find his

number! We will see that the probability that a uniformly random

permutation of the numbers from 1 to 2n does not have a cycle of

length greater than n is about 30%.

Consider a cycle C of length exactly k, and count how many such

cycles can exist in a given permutation. We have
(
2n
k

)
possibilities for

the entries in C, (k − 1)! possibilities for their order, giving (2n)k/k

potential C. Each C is a cycle with probability 1/(2n)k as k values of

σ are determined. The expected number of such C is then 1
k . Let A

denote the expected number of cycles of length greater than n. Then

(4.36) A =

2n∑
k=n+1

1

k
= H2n −Hn.

It is not possible that there is more than one cycle of length

greater than n. Thus A also represents the probability that there is

a cycle of length greater than n. We apply the asymptotics (4.35) to

(4.36) giving

(4.37) A = (ln(2n)− γ + o(1))− (ln(n)− γ + o(1)) = ln(2) + o(1).

The probability 1 − A that all the prisoners are freed then ap-

proaches 1− ln 2 = 0.31182.

                

                                                                                                               



Chapter 5

Asymptotics of
Binomial Coefficients

(
n
k

)

Many persons who have not studied mathematics

confuse it with arithmetic and consider it a dry

and arid science. Actually, however, this science

requires great fantasy.

– Sofia Kovalevskaya

What is a good asymptotic formula for the binomial coefficient(
n
k

)
? The simple answer is: It depends!

When k is fixed, it is easy:

(5.1)

(
n

k

)
∼ nk

k!
for k fixed.

But now suppose k also goes to infinity. There are different answers

depending on the asymptotic relation between n and k. We introduce

the useful notation

(5.2) (n)k = n(n− 1)(n− 2)(n− 3) · · · (n− k + 1)

and read (n)k as “n lower k”.

5.1. k Relatively Small

In this section we restrict ourselves to the cases when k = o(n).

57

                                     

                

                                                                                                               



58 5. Asymptotics of Binomial Coefficients
(
n
k

)
We start by writing

(5.3)

(
n

k

)
= A

nk

k!
,

where we set

(5.4) A = A(n, k) :=
(n)k
nk

=

k−1∏
i=1

(
1− i

n

)
.

As Stirling’s formula gives the asymptotics for k!, an asymptotic

formula for A(n, k) leads directly to an asymptotic formula for
(
n
k

)
.

Clearly A ≤ 1. Our approach to A is via its logarithm

(5.5) lnA =
k−1∑
i=1

ln

(
1− i

n

)
.

The main estimate is that as x → 0, ln(1− x) ∼ x.

Case 1. k = o(
√
n). Then

(5.6)

k−1∑
i=1

ln

(
1− i

n

)
∼

k−1∑
i=1

− i

n
∼ − k2

2n
= o(1).

Thus A ∼ 1. Thus the asymptotic formula (5.1) still holds. With

k → ∞, employing Stirling gives

(5.7)

(
n

k

)
∼ nk

k!
∼

(ne

k

)k

(2πk)−1/2.

Case 2. k ∼ c
√
n with c a fixed positive real. Then the argument

above gives lnA ∼ c2

2 and so

(5.8)

(
n

k

)
∼ e−c2/2n

k

k!
.

For bigger k, let us use the Taylor series expansion ln(1 − x) =

−x+O(x2). Applying this to the formula for lnA, we have ln(1− i
n ) =

− i
n + O( i2

n2 ). Summing over 1 ≤ i < k gives k2

2n from the first term

and the O(k3n−2) for the error term. We see that the error term is

o(1) as long as k = o(n2/3). This gives

Case 3. k = o(n2/3). Then

(5.9)

(
n

k

)
∼ e−k2/2nn

k

k!
.
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As k gets bigger, we use the more precise ln(1−x) = −x− x2

2 +O(x3).

Applying this to the formula for lnA, we have ln(1 − i
n ) = − i

n −
i2

2n2 + O(i3n−3). Summing over 1 ≤ i < k gives k2

2n from the first

term, k3

6n2 for the second term, and O(k4n−3) for the error. As long

as k = o(n3/4) the error term is o(1). This gives

Case 4. k = o(n3/4). Then

(5.10)

(
n

k

)
∼ e−k2/2ne−k3/6n2 nk

k!
.

Indeed, we get an infinite sequence of formulae as we take the expan-

sion of ln(1− x) out to more and more terms. For each integer j ≥ 2

we have a formula for when k = o(n1−(1/j)). In practice, use of even

Case 4 is extremely rare.

Case 5. k = o(n). All 1 ≤ i ≤ k−1 have i
n = o(1) so that ln(1− i

n ) ∼
− i

n and therefore lnA ∼ − k2

2n . Thus

(5.11) A(n, k) = e−
k2

2n (1+o(1))

and

(5.12)

(
n

k

)
∼

(ne

k

)k

(2πk)−1/2e−
k2

2n (1+o(1)).

When k �
√
n lnn, the k−1/2 factor may be absorbed into the o(1)

term in the exponent so we get the simpler expression

(5.13)

(
n

k

)
=

(ne

k

)k

e−
k2

2n (1+o(1)) for
√
n lnn � k � n.

With the 1 + o(1) factor in the exponent, (5.13) is not as accurate

as the previous bounds. It is still a very useful estimate in many

applications.

An often very handy upper bound, applying (4.11), is

(5.14)

(
n

k

)
≤ nk

k!
≤

(ne

k

)k

.

This is true for all n, k, not just asymptotically. When k is linear

in n, there are other estimates (such as (5.31)) which are preferable.

But when k = o(n) and k → ∞, (5.14) is pretty good in the sense

that the k-th root of
(
n
k

)
, applying (5.12), is asymptotic to ne

k . Again,
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(
n
k

)
this is not as strong as a truly asymptotic estimate, but is still very

useful in many applications.

5.2. Some Exercises

Working asymptotically with binomial coefficients takes some prac-

tice. Warning : The solutions immediately follow the problems!

Exercise 5.1. Find an asymptotic formula for

(5.15) f(n) =

n∑
k=1

A(n, k) with A(n, k) =
(n)k
nk

.

Solution. The A(n, k) go from near one to near zero when k =

Θ(
√
n) so we are led to the scaling k = c

√
n of Case 2. In that region

(5.16)

f(n) ∼
∑
k

e−c2/2 ∼
∫ ∞

k=0

e−c2/2dk ∼
∫ ∞

c=0

e−c2/2
√
ndc =

√
n
√
π/2.

Exercise 5.2. Find an asymptotic formula for

(5.17) g(n) =

n∑
k=1

A(n, k)

k
with A(n, k) =

(n)k
nk

.

Solution. One is tempted to scale k = c
√
n as above but that makes

life too complicated. The harmonic series
∑

k−1 does not see the

fine gradations in the Θ(
√
n) range. Rather let us split the sum

into a small, medium, and large range. The medium range should

include k = Θ(
√
n). We have a lot of leeway but, for definiteness,

let
√
n ln−1 n < k <

√
n lnn be the medium range. The small and

large ranges are then k <
√
n ln−1 n and k >

√
n lnn, respectively.

Over the small region A(n, k) ∼ 1, so the summation of A(n, k)k−1

is asymptotic to the summation of k−1, the harmonic series, which

is ∼ ln(
√
n ln−1(n)) ∼ 1

2 lnn. In the large range the A(n, k) = o(1)

and the harmonic series sums over that range to ∼ 1
2 lnn, so the

summation of A(n, k)k−1 is o(lnn). In the middle range A(n, k) has

a complex behavior as described in Case 2. But since A(n, k) ≤ 1,

the summation of A(n, k)k−1 over the middle range is at most the

summation of k−1 over the middle range which is only ∼ 2 ln(lnn),

or o(lnn). Thus g(n) ∼ 1
2 lnn.
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Exercise 5.3. Find an asymptotic formula for

(5.18) g(ε) =

∞∑
k=1

k2(1− ε)k

as ε → 0+.

Solution. The exponential term starts to dip when k = Θ(ε−1) so

we are led to the parametrization k = cε−1 for which (1− ε)k ∼ e−c.

Thus

(5.19) g(ε) ∼
∫ ∞

c=0

c2ε−2e−cε−1dc = ε−3

∫ ∞

c=0

c2e−cdc = 2ε−3.

Remark. The exact formula is

(5.20) g(ε) = 2(1− ε)2ε−3 + (1− ε)ε−2.

Exercise 5.4. Set

(5.21) f(n, p) =

n∑
k=1

k2(n)kp
k+1.

Find a parametrization of p = p(n) so that we can “see” f(n, p) go

from near zero to infinity.

Solution. Let’s first use the upper bound (n)k ≤ nk and parametrize

p = c
n so that f(n, p) ≤ p

∑
k2ck. When c < 1, the summation of

k2ck converges so f(n, p) = O(p) = o(1). What about when c = 1?

We want the reverse inequality. From Case 1 (n)k ∼ nk when (say)

k ≤ n0.49. Thus

(5.22) f

(
n,

1

n

)
≥ (1− o(1))

1

n

∑
k≤n0.49

k2 ∼ 1

n

1

3
(n0.49)3,

and so f(n, 1
n ) → ∞. The change in f(n, p) thus takes place between

c
n and 1

n , where c is an arbitrary (but fixed) real less than one. We

have to look more closely. What if p = p(n) ∼ 1
n but p(n) < 1

n ,

for example, p(n) = 1
n − n−10? To examine these, we parametrize

p = 1−ε
n where ε = ε(n) → 0. We rewrite

(5.23) f(n, p) ∼ n−1
n∑

k=1

k2(np)kA(n, k) = n−1
n∑

k=1

k2(1−ε)kA(n, k).
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(
n
k

)
As A(n, k) ≤ 1, we have the upper bound

(5.24) f(n, p) ≤ (1 + o(1))n−1
∑
k

k2(1− ε)k = (2 + o(1))n−1ε−3,

where we have employed the previous exercise. When ε � n−1/3,

n−1ε−3 → 0 for f(n, p) = o(1).

What about smaller ε? Suppose ε = Kn−1/3 for some constant

K. Then
∑∞

k=1 k
2(1 − ε)k ∼ 2ε−3 = 2K−3n. But further, the bulk

of that sum occurs when k = Θ(ε−1) = Θ(n1/3). In that range the

extra factor A(n, k) is still asymptotically one. Let’s split the sum

for f(n, p) somewhere between Θ(n1/3) and Θ(n1/2), say at n0.4. The

sum for k > n0.4 is negligible as the (1 − ε)k term is exponentially

small. For k ≤ n0.4, the factor A(n, k) ∼ 1, and so the terms are

asymptotically k2(1− ε)k and so their sum is asymptotically 2K−3n.

Thus f(n, p) ∼ 2K−3. So we’ve actually found the fine behavior

of f(n, p): when p = 1
n − Kn−4/3, f(n, p) → 2K−3. The function

2K−3 approaches infinity and zero as K approaches zero and infinity,

respectively. Therefore:

• If p(n) = 1−ε(n)
n and ε(n) � n−4/3, f(n, p) → 0.

• If p(n) = 1−ε(n)
n and ε(n) � n−4/3, f(n, p) → ∞.

• If p(n) = 1−ε(n)
n and ε(n) ∼ Kn−4/3, f(n, p) → 2K−3.

The parametrization p = 1
n −Kn−4/3, K ∈ (0,∞), gives the critical

window when f(n, p) is increasing from “zero to infinity”.

Exercise 5.5. Find an asymptotic formula for

(5.25) h(n, k) =

(
n

k

)
kk−2pk−1(1− p)k(n−k)+(k2)−(k−1)

with k ∼ cn2/3 and p = n−1.

Remark. h(n, k) is the expected number of trees of size k in the

random graph G(n, p).

Solution. This is very delicate! From Case 4 we have

(5.26)

(
n

k

)
∼ e−k2/2ne−c3/6n

k

k!
∼ e−k2/2ne−c3/6 nkek

kk
√
2πk

.
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As

k(n− k) +

(
k

2

)
− (k − 1) = kn− 1

2
k2 +O(k)

and

ln(1− p) = −n−1 +O(n−2),

(5.27) ln[(1− p)k(n−k)+(k2)−(k−1)] = −k +
k2

2n
+ o(1).

Now many of the terms cancel:

h(n, k) ∼ e−k2/2ne−c3/6 nkek

kk
√
2πk

kk−2n1−ke−kek
2/2n

∼ e−c3/6nk−5/2(2π)−1/2

∼ e−c3/6n−2/3c−5/2(2π)−1/2.(5.28)

Exercise 5.6. With h(n, k) as in (5.25) and 0 < a < b constants,

find an asymptotic formula for

(5.29) H(n, a, b) :=
∑

an2/3<k<bn2/3

h(n, k).

Remark. This quantity is the expected number of tree components

of size between an2/3 and bn2/3 in G(n, p).

Solution. We approximate h(n, k) by (5.28). The parametrization

k = cn2/3 turns the sum into the integral

H(n, a, b) ∼
∫
k

e−c3/6n−2/3c−5/2(2π)−1/2dk

=

∫ b

a

e−c3/6c−5/2(2π)−1/2dc.

(5.30)

Note that the answer depends only on a and b, the number of vertices

n has scaled out.

5.3. k Linear in n

Here we assume k ∼ pn where 0 < p < 1. Now we write
(
n
k

)
=

n!
(k!(n−k)!) and apply Stirling’s formula to the three terms. (By the

way, this is not a good idea to try when k = o(n)—the formula for

the (n−k)! gets very messy, and you definitely should use the formulae

of Cases 1–5 when they apply.)
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(
n
k

)
Let us throw the square root terms into the form 2o(n). One finds

that

(5.31)

(
n

k

)
= 2n(H(p)+o(1)) when k ∼ pn,

where H is the entropy function

(5.32) H(p) = −p lg p− (1− p) lg(1− p).

The entropy function is defined for 0 < p < 1, is symmetric about

p = 1
2 , has limp→0+ H(p) = limp→1− H(p) = 0 (indeed, it’s handy

to define H(0) = H(1) = 0), and has a maximum at p = 1
2 where

H(1/2) = 1, as can be seen in Figure 1. We do note that this is not

the full asymptotics since the o(1) is in the exponent multiplied by n.

More accurate formulae are available, but this one is quite handy.

Now suppose p > 1
2 and consider the probability that the binomial

distribution BIN [n, 1
2 ] is at least pn. This is precisely 2−n

∑ (
n
k

)
where the sum is over k ≥ pn. For rougher approximations we may

finesse the summation. The binomial coefficients decrease for k ≥ n
2 .

The sum is therefore at least the largest value and at most (as there

are fewer than n terms) n times the largest value. When we allow a

1+ o(1) in the exponent, a factor of n “downstairs” does not matter.

Figure 1. Entropy function H(p) for p ∈ (0, 1)
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Therefore (5.31) gives the formula for the summation of
(
n
k

)
over all

k ≥ pn. Dividing by 2n

(5.33) Pr[BIN[n,
1

2
] ≥ pn] = 2n(H(p)−1+o(1)).

More accurate formulae are available, but this one is quite handy.

Strangely, we may use (5.33), a result asymptotic in n, to give a

bound for all n.

Theorem 5.7. For any 1 > p > 1
2 and any n ≥ 1,

(5.34) Pr[BIN[n,
1

2
] ≥ pn] ≤ 2n(H(p)−1).

Proof. Assume not. Let a be such that (5.34) fails. We can write

(5.35) Pr[BIN[a,
1

2
] ≥ pa]1/a = 2H(p)−1+ε,

where ε is now a positive constant. Let s ≥ 1, integral, and bound

from below the probability that BIN[as, 12 ≥ p(as)]. Break up the

as coin flips into s blocks of a. If in each block there are at least pa

heads, then there are at least p(as) heads in total. Thus

(5.36)

Pr[BIN[as,
1

2
≥ p(as)] ≥ Pr[BIN[a,

1

2
] ≥ pa]s = 2(as)(H(p)−1+ε).

As s → ∞ and setting n = as, this contradicts the asymptotics of

(5.33). �

5.3.1. Exercise.

Exercise 5.8. In what ranges of k is
(
n
k

)
bigger, smaller, and roughly

the same as 8k?

Solution. When k ∼ pn, we have

(5.37)

(
n

k

)
= 2n(H(p)+o(1)) and 8k = 23n(p+o(1)).

The curves y = H(p) and y = 3p intersect at a unique value p = p0.

Let ε be arbitrarily small but fixed. For k = pn with p < p0 − ε,

H(p) > 3p, and so
(
n
k

)
is much bigger. When p > p0 + ε, H(p) < 3p,

and so 8k is much bigger. The graphs of the two functions will cross

at k0 ∼ p0n.
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(
n
k

)
5.4. At and Near the Middle Binomial

Coefficient

Here we look at the region when k is very close to n
2 . (When n is

odd, look at �n/2� and all the asymptotics will be the same.)

Direct application of Stirling’s formula gives

(5.38)

(
n
n
2

)
∼

√
2

πn
2n.

(Note this means the probability of having precisely half heads with

n flips of a fair coin is ∼
√

2
πn .) Now let us write k = n+i

2 . One then

has

(5.39) B :=

(
n

k

)
/

(
n

n/2

)
=

(n/2)!(n/2)!

k!(n− k)!
=

i/2∏
j=1

n
2 − j + 1

n
2 + j

,

and therefore

(5.40)

lnB =

i/2∑
j=1

ln(
n
2 − j + 1

n
2 + j

) =

i/2∑
j=1

−4j

n
+O(

j2

n2
) = − i2

2n
+O(i3n−2),

and so

(5.41)

(
n

k

)
∼

(
n
n
2

)
e−(i2/2n)

as long as i = o(n2/3). In particular, if you parametrize (good idea!)

(5.42) k =
n+ c

√
n

2
,

then we have the asymptotics

(5.43)

(
n

k

)
∼

(
n
n
2

)
e−(c2/2),

and this will be valid for any constant c and even c = c(n) → ∞ as

long as c(n) = o(n1/6).

One particular case is often handy. If we set (another good idea!)

c = 100
√
lnn, then we have

(5.44)

(
n

k

)
= Θ(2nn−1/2n−5000).
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The binomial coefficients increase to the middle and then decrease,

and there are only O(n) terms, so we get

(5.45)
∑
s≥k

(
n

s

)
= Θ(n2nn−1/2n−5000).

In many applications this makes an excellent cut, as this sum is so

small.

5.4.1. Exercise.

Exercise 5.9. Find the asymptotics of

(5.46) S :=
n∑

s=0

(
n

k

)3

.

Solution. We see that for k = n+100
√
lnn

2 as above,

(5.47)

(
n

k

)3

= O(

(
n
n
2

)3

n−15000)

and so

(5.48)
∑
s≥k

(
n

s

)3

= O(

(
n
n
2

)3

n−14999)

so that all these terms together are negligible compared to the biggest

(the middle) term. By symmetry the same holds for the sum over

s ≤ k− where k− = n − k. So the asymptotics of the sum over all

s is the same as the asymptotics of the sum over the limited range

k− ≤ s ≤ k. In that limited range we use the parametrization (5.42).

Then, from (5.43)

S ∼
(

n

n/2

)3 ∑
k

e−3c2/2 ∼
(

n

n/2

)3 ∫ +∞

c=−∞
e−3c2/2

√
n

2
dc

∼
(

n

n/2

)3√
nπ/6.

(5.49)

Finally, the asymptotics (5.38) for the middle binomial coefficients

give

(5.50) S ∼
(
2n

√
2

πn

)3 √
nπ/6 ∼ 8n ·

√
4/3

πn
.
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(
n
k

)
5.5. The Binomial Distribution

Let n be a positive integer and 0 ≤ p ≤ 1. The binomial distribution

with parameters n, p, denoted BIN [n, p], is often the first distribution

studied in a probability course. It is the number of heads after n

independent flips of a coin, where the probability that the coin comes

up heads is p. It has the precise expression

(5.51) Pr[BIN[n, p] = k] =

(
n

k

)
pk(1− p)n−k for 0 ≤ k ≤ n.

BIN [n, p] is known1 to have expection pn and variance np(1− p). A

basic and very general tail bound is given by Chebyshev’s inequality:

Theorem 5.10. Let X be any distribution with mean μ and variance

σ2. Let λ be a positive real. Then

(5.52) Pr[|X − μ| ≥ λσ] ≤ λ−2.

Proof. This follows immediately from the inequality

�(5.53) σ2 = E[(X − μ)2] ≥ (λσ)2 Pr[|X − μ| ≥ λσ].

In the special case of the binomial distribution

(5.54) Pr[|BIN[n, p] ≥ λ
√
np(1− p)] ≤ λ−2.

In most cases inequality (5.54) is quite weak compared to the

actual probability. Nonetheless it can be quite useful.

5.6. The Binomial Tail

Let Sn denote the number of heads minus the number of tails after

n flips of a fair coin. If there are t heads, there are n − t tails so

Sn = t − (n − t) = n − 2t. Sn is then directly connected to the

binomial distribution by

(5.55) Pr[Sn = a] = Pr[BIN[n,
1

2
] = (n+ a)/2] =

(
n

(n+ a)/2

)
2−n.

1We omit the proofs for these basic results.
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Using the parametrization (5.42),

(5.56) Pr[Sn ≥ c
√
n] =

∑
b≥c

√
n

Pr[BIN[n,
1

2
] = (n+ b)/2].

The Central Limit Theorem (see §8.5) gives the asymptotics of

Pr[Sn ≥ c
√
n] when c is fixed. Using Chernoff bounds, Theorem 8.2

gives an upper bound on Pr[Sn ≥ c
√
n] for any c = c(n). Here we find

the asymptotics for Pr[Sn ≥ c
√
n] when c = c(n) approaches infinity

appropriately slowly. Let N denote the standard normal distribution.

Theorem 5.11. Let c = c(n) → +∞ so that c(n) = o(n1/6). Then

(5.57) Pr[Sn ≥ c(n)
√
n] ∼ Pr[N ≥ c(n)] =

∫ ∞

c(n)

√
1

2π
e−t2/2dt.

From our results (3.8) on the Gaussian tail this is equivalent to

(5.58) Pr[Sn ≥ c(n)
√
n] ∼ 1

c(n)

1√
2π

e−c(n)2/2.

Remark. The application of Chebyshev’s inequality (5.54) with p =
1
2 yields

(5.59) Pr[BIN[n,
1

2
≥ n

2
+ c(n)

√
n] ≤ [2c(n)]−2.

The exponential bound (5.58) is thus far stronger when c(n) is large.

Upper Bound. Set f(k) =
(
n
k

)
2−n. For 0 ≤ k < n set

(5.60) g(k) =
f(k + 1)

f(k)
=

n− k

k + 1
.

For k > n
2 , g(k) < 1 and for all 0 ≤ k < n, the function g(k) is

decreasing. (That is, the binomial distribution BIN[n, 12 ] is a concave

function of k which hits a maximum at k = n
2 and then decreases.)

Set k = 
(n + c(n)
√
n)/2�. As g is decreasing f(k + i) ≤ f(k)g(k)i

for all i ≥ 0. We bound the tail by a geometric series

(5.61)

n∑
l=k

Pr[BIN[n,
1

2
] = l] ≤

∞∑
i=0

f(k)g(k)i =
f(k)

1− g(k)
.

From (5.60) (1−g(k))−1 ∼ √
n/(2c(n)). Combining (5.38) and (5.43)

gives f(k) ∼
√

2/nπ exp[−c(n)2/2] so that that the upper bound

(5.61) asymptotically matches (5.58).
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(
n
k

)
Lower Bound. We bound Pr[Sn ≥ c(n)

√
n] from below by

Pr[c(n)
√
n ≤ Sn ≤ 2c(n)

√
n],

which is
∑U

L f(k) with L = 
(n+ c(n)
√
n)� and U = �(n + 2c

√
n)�.

For L ≤ k ≤ U , parametrizing k = (n + t
√
n)/2, f(k) ∼ h(k) where

h(k) ∼
√
2/nπe−t2/2. We apply Theorem 4.1 to approximate

∑
h(k)

by the integral

U∑
L

h(k) ∼
∫ U

L

h(k)dk

=

√
n

2

∫
c(n)

2c(n)

√
2

nπ
e−t2/2dt

=
1√
2π

Pr[c(n) ≤ N ≤ 2c(n)].

(5.62)

From Theorem 3.1, Pr[N ≥ 2c(n)] � Pr[N ≥ c(n)]. Thus Pr[c(n) ≤
N ≤ 2c(n)] ∼ Pr[N ≥ c(n)] and the lower bound (5.62) also asymp-

totically matches (5.58).

Remark. Another approach to the lower bound is to show that

f(k + i) is well approximated by f(k)g(k)i until the terms become

appropriately negligible.

                

                                                                                                               



Chapter 6

Unicyclic Graphs

Comstock grins and says, “You sound awfully sure

of yourself, Waterhouse! I wonder if you can get

me to feel that same level of confidence.”

Waterhouse frowns at the coffee mug. “Well, it’s

all in the math,” he says. “If the math works, why

then you should be sure of yourself. That’s the

whole point of math.”

– Neal Stephenson, Cryptonomicon

A unicyclic graph on n vertices is a connected graph with pre-

cisely n edges. Such graphs have a clear shape. There is a cycle of

vertices and then trees “sprouting out” from the vertices on the cy-

cle. (Figure 1 near the end of this chapter gives a typical picture.)

We shall let UN(n) denote the number of labeled unicyclic graphs

on n vertices. For convenience, we shall consider the vertices labeled

1, . . . , n.

Our goal in this chapter is to first find an exact formula for U(n)

and then an asymptotic formula. We begin, however, with results on

trees that are most interesting in their own right.

71

                                     

                

                                                                                                               



72 6. Unicyclic Graphs

6.1. Rooted Trees

A rooted tree1 T consists of three parts:

(1) A finite set V of vertices.

(2) A designated vertex r ∈ V which is called the root.

(3) A function π which sends vertices other than the root into

vertices, which may or may not be the root. Formally, π :

V − {r} → V . When π(v) = w, we say that w is the parent

of v and that v is a child (there may be others) of w.

For T to be a rooted tree it must satisfy one of the following:

(1) Beginning at any nonroot v, if one repeatedly applies π, one

eventually reaches the root r.

(2) There are no “cycles” in π. More explicitly, there are no

distinct v0, . . . , vs with π(vi) = vi+1 for 0 ≤ i < s and

π(vs) = v0. This includes the case s = 0, as there is no v0
which is its own parent.

The two properties are equivalent. If there were a cycle v0, . . . , vr,

then beginning at v0 and applying π repeatedly one would only reach

v0, . . . , vr and not the root r. Inversely, suppose that starting at

v = v0 and continually applying π, one never reached the root r.

Define vi+1 = π(vi), a valid function as this would be then defined

for all i. As V is finite, there would be a repetition which means

there would be a first repetition, i < j with vi = vj . In that case

vi, vi+1, . . . , vj−1 would form a cycle.

Definition 6.1. A vertex v of a rooted tree is a leaf if v is not a root

and there is no vertex w with π(w) = v.

We picture the root r at the bottom of T . When π(x) = y, we

draw a directed edge from x to y. Following the paths always leads

us to the bottom node r. The leaves v are nonroots at which the tree

ends.

1There are many equivalent definitions of rooted trees in the literature. The
definition we use is motivated by data structures used in computer science.
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Consider rooted trees on a vertex set V = {1, . . . , n} with root

r = 1. Our first goal is to give a remarkable formula due to Cayley

for the number of these trees.

Theorem 6.2 (Cayley’s Formula for Rooted Trees). The number of

rooted trees on V = {1, . . . , n} with root r = 1 is precisely nn−2.

A tree on V = {1, . . . , n} is a connected graph with no cycles.

Cayley’s formula is more famous as the following:

Theorem 6.3 (Cayley’s Formula for Trees). The number of labeled

trees on V = {1, . . . , n} is precisely nn−2.

There is an easy bijection between rooted trees and trees. Given

the rooted tree, define a tree by “erasing the arrows” and looking at

the graph with edges {x, π(x)}. Conversely, let a tree T be given on

V = {1, . . . , n}, and let r ∈ V be designated. For any v �= r, there

is a unique path from v to r. Let w be the vertex directly after v

in that path. (If the path has length 1, it will be r.) Now define

π(v) = w. Beginning at v and applying π, one then goes through the

path, eventually reaching the root r. Thus T corresponds to a rooted

tree with root r, and so Theorems 6.2 and 6.3 are equivalent. We shall

give a proof of Theorem 6.2. Actually, many proofs are available in

the literature. The proof we give encodes rooted trees by means of

what are called Prüfer sequences. A tree’s Prüfer sequence shall be a

sequence of length n− 1 of vertices v where the final term is the root

r. Vertices v may, and often do, repeat in the sequence.

6.2. Rooted Trees to Prüfer Sequences

We begin with a rooted tree on V = {1, . . . , n} with root r = 1.

The Prüfer sequence is found sequentially. For the first step, find

that leaf w with maximal value. Then π(w) (not w itself !) becomes

the first element of the Prüfer sequence. Now delete w from the tree.

(As w was a leaf, this will not cause trouble with other π(v).) Now

iterate. At each step we find the leaf w on the remaining tree with

maximal value, add π(w) to the Prüfer sequence, and delete w from

the tree. We end after n− 1 steps. After n− 2 steps, only the root r

and some other vertex v remain in the tree. On the final step, that
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v will be the leaf with maximal value (indeed, the only leaf) so that

π(v) = r will be the final element of the Prüfer sequence. Below we

see this algorithm2 in action:

1

2 13

4

5

6

7

812

9 10

113

Sequence: 13

1

2 13

4

5

6

7

8

9 10

113

Sequence: 13, 10

2Efficient implementation of this algorithm is an interesting problem in computer
science.
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1

2 13

4

5

6

7

8

9 10

3

Sequence: 13, 10, 8

1

2 13

4

5

6

7

8

3

9

Sequence: 13, 10, 8, 8
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1

2 13

4

5

6

7

3

8

Sequence: 13, 10, 8, 8, 13

1

2 13

4

5

6

7

3

Sequence: 13, 10, 8, 8, 13, 1
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1

2

4

5

6

3

7

Sequence: 13, 10, 8, 8, 13, 1, 6

1

2

4

5

6

3

Sequence: 13, 10, 8, 8, 13, 1, 6, 2
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1

2

4

5

3

Sequence: 13, 10, 8, 8, 13, 1, 6, 2, 5

1

2

4

5

Sequence: 13, 10, 8, 8, 13, 1, 6, 2, 5, 4

1

2

4

Sequence: 13, 10, 8, 8, 13, 1, 6, 2, 5, 4, 2
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1

2

End Sequence: 13, 10, 8, 8, 13, 1, 6, 2, 5, 4, 2, 1

Now, in order to completely characterize the bijection between

Prüfer sequences and spanning trees, we have to argue why the se-

quence is unique to its tree. The inverse algorithm is given in the

next section.

6.3. Prüfer Sequences to Rooted Trees

We begin with a Prüfer sequence p1, . . . , pn−1, a sequence of length

n− 1 whose values are v ∈ {1, . . . , n} and whose last value pn−1 = 1.

Our goal is to define π(v) ∈ V for all v ∈ V − {1}. We will do this in

n− 1 steps.

Let v be the first element of the Prüfer sequence. Call w ∈ V

available if it is not a root and it does not appear in the Prüfer

sequence. Let w be the largest available vertex. (The Prüfer sequence

has at most n−2 nonroots so some w will be available.) Set π(w) = v.

We delete w from the list of available vertices and delete the first

element from the Prüfer sequence and iterate.

More precisely, on the t-th step, a w ∈ V is available if

(1) w is not a root,

(2) we have not previously set π(w),

(3) w does not appear in the remaining Prüfer sequence

pt, . . . , pn−1.

Precisely t− 1 values π(w) have been set, there is 1, the root, as

the last term, and the remaining Prüfer sequence (remember that the

last term is the root) has at most n− 1− t nonroots, so some w will

be available. Let w be the maximal available vertex. Set π(w) = pt.
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Once π(w) is set, it is no longer available. Thus π(w) will be set

for n− 1 distinct values and therefore for every nonroot w.

We further claim that the π created by this algorithm has no

cycles. On the t-th step pt is not available, so we never set π(w) = w.

Suppose there were a cycle of length s+ 1 ≥ 1, a sequence v0, . . . , vs
with π(vi) = vi+1 for 0 ≤ i < s and π(vs) = v0. In the creation of π

there would be a first w ∈ {v0, . . . , vs} for which π(w) was set. Say

w = vi. At that point π(vi−1) has not yet been set. (When w = v0,

π(vs) has not yet been set.) But once π(w) is set, w is no longer

available. Thus we cannot set π(vi−1) = w at some later step.

In summary, given a Prüfer sequence p1, . . . , pn−1, this algorithm

creates a rooted tree by creating the parent function π.

Below we recreate this algorithm

Prüfer sequence: 13, 10, 8, 8, 13, 1, 6, 2, 5, 4, 2, 1

List of available labels: 12, 11, 9, 7, 3

π(12) = 13

12

13

Prüfer sequence: 10, 8, 8, 13, 1, 6, 2, 5, 4, 2, 1

List of available labels: 11, 9, 7, 3

π(11) = 10

13

1211

10
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Prüfer sequence: 8, 8, 13, 1, 6, 2, 5, 4, 2, 1

List of available labels: 10, 9, 7, 3

π(10) = 8

12

13

10

11

8

Prüfer sequence: 8, 13, 1, 6, 2, 5, 4, 2, 1

List of available labels: 9, 7, 3

π(9) = 8

9 12

13

10

11

8

Prüfer sequence: 13, 1, 6, 2, 5, 4, 2, 1

List of available labels: 3

π(3) = 13

And the process continues in this fashion until we arrive at

1

2 13

4

5

6

7

812

9 10

113
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6.4. Proof of Bijection

We have one algorithm R → P that sends rooted trees to Prüfer

sequences and another P → R that sends Prüfer sequences to rooted

trees. Now we further claim that these algorithms give a bijection

between the Prüfer sequences and the rooted trees. We outline the

argument.

Suppose R → P sends a rooted tree T to a Prüfer sequence

p1, . . . , pn−1. Suppose that in the first step, w is the maximal leaf so

that p1 = π(w). Let v be a leaf of T . Then v cannot appear in the

Prüfer sequence as only parents are placed in the Prüfer sequence.

Inversely, suppose v is not a leaf. In T this v has some child w with

π(w) = v. During the algorithm, all nonleaves are eliminated so at

some step w is eliminated and at that step v = π(w) is added to the

Prüfer sequence. That is, the leaves of T are precisely the nonroots

v which do not appear in the Prüfer sequence. Thus in the first step

of the algorithm P → R, the maximal available vertex is actually the

maximal leaf w of T and the algorithm sets π(w) = p1. The inductive

step is similar, and so algorithm P → R reconstructs the original tree

T .

Similarly, suppose P → R sends Prüfer sequence p1, . . . , pn−1 to

a rooted tree T . In T the parents will be precisely p1, . . . , pn−1, so

the leaves will be precisely those nonroots which do not appear in

the Prüfer sequence. Suppose that in the first step of P → R, we

set π(w) = p1. This is done for that maximal available vertex w, but

this is precisely the maximal leaf w of T . Thus in the first step of

R → P , we do set π(w) = p1. The inductive step is similar, and so

the algorithm R → P reconstructs the original Prüfer sequence.

There are n choices for each of the first n− 2 values of the Prüfer

sequence and one choice (the root) for the final value. Thus there

are precisely nn−2 Prüfer sequences. As we have a bijection between

Prüfer sequences and rooted trees, there are precisely nn−2 rooted

trees, proving Theorem 6.2.
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6.5. Rooted Forests

On an intuitive level a rooted forest is simply a collection of disjoint

rooted trees. Formally, a rooted forest F consists of three parts:

(a) a finite set V of vertices,

(b) a designated nonempty set R ⊂ V . The r ∈ R are called

roots,

(c) a function π which sends vertices other than a root into

vertices, which may or may not be roots. Formally, π :

V − R → V . When π(v) = w, we say that w is the parent

of v and that v is a child (there may be others) of w.

For T to be a rooted forest, it must satisfy one of the following:

(a) Beginning at any nonroot v, if one continually applies π one

eventually reaches the root r.

(b) There are no “cycles” in π. More explicitly, there are no

distinct v0, . . . , vs with π(vi) = vi+1 for 0 ≤ i < s and

π(vs) = v0. This includes the case s = 0, there is no v0
which is its own parent.

As before the two properties are equivalent. The definition of leaf

does not change.

Definition 6.4. A vertex v of a rooted forest is a leaf if v is not a

root and there is no vertex w with π(w) = v.

We will give a powerful extension of Theorem 6.2.

Theorem 6.5 (Cayley’s Formula for Rooted Forests). Let R ⊂ V

with |R| = r, |V | = n. The number of labeled rooted forests on V with

designated roots R is precisely rnn−r−1.

Our argument will extend the notion of Prüfer sequences. Let a

rooted forest F be given with vertices V = {1, . . . , n} and r roots.

6.6. Prüfer Sequences to Rooted Forests

We begin with a Prüfer sequence p1, . . . , pn−r, a sequence of length

n− r whose values are v ∈ {1, . . . , n} and whose last value pn−r ∈ R.
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(Note that V and R are given in advance.) Our goal is to define

π(v) ∈ V for all v ∈ V − {1}. We will do this in n− r steps.

Let v be the first element of the Prüfer sequence. Call w ∈ V

available if it is not a root and it does not appear in the Prüfer

sequence. Let w be the largest available vertex. (The Prüfer sequence

has at most n − r − 1 nonroots so some w will be available.) Set

π(w) = v. We delete w from the list of available vertices, delete the

first element from the Prüfer sequence, and iterate.

More precisely, on the t-th step, a w ∈ V is available if

(1) w is not a root,

(2) we have not previously set π(w),

(3) w does not appear in the remaining Prüfer sequence

pt, . . . , pn−1.

We select the largest available w and set π(w) = pt. We omit the

argument that π will be a rooted forest, which is almost identical to

that of rooted trees. We illustrate the algorithm with V = {1, . . . , 8},
R = {1, 2}, and the Prüfer sequence 385521.

Sequence: 3, 8, 5, 5, 2, 1

List of available labels: 7, 6, 4

π(7) = 3

7

3

Sequence: 8, 5, 5, 2, 1

List of available labels: 6, 4, 3

π(6) = 8

7

3

6

8
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Sequence: 5, 5, 2, 1

List of available labels: 3, 4, 8

π(8) = 5

7

3

6

8

5

Sequence: 5, 2, 1

List of available labels: 3, 4

π(4) = 5

7

3

6

8 4

5

Sequence: 2, 1

List of available labels: 3, 5

π(5) = 2

7

3

6

8 4

5

2
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Sequence: 1

List of available labels: 3

π(3) = 1

End forest:

7

3

6

8 4

5

2

1

6.7. . . . and Back Again

We begin with a rooted forest with V = {1, . . . , n} and R given.

The Prüfer sequence is found sequentially. For the first step, find

that leaf w with maximal value. Then π(w) (not w itself !) becomes

the first element of the Prüfer sequence. Now delete w from the forest.

(As w was a leaf, this will not cause trouble with other π(v).) Now

iterate. At each step we find the leaf w on the remaining tree with

maximal value, add π(w) to the Prüfer sequence, and delete w from

the tree. We end after n− r steps. After n− r− 1 steps only the root

R and some other vertex v remain in the tree. On the final step, that

v will be the only leaf and hence the leaf with maximal value. Thus

π(v), the final element, will be a root.

We illustrate this algorithm with the forest given in the previous

section.
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53

7

21

8 4

6

Prüfer sequence: 3

53

21

8 4

6

Prüfer sequence: 3, 8

53

21

8 4

Prüfer sequence: 3, 8, 5

53

21

4

Prüfer sequence: 3, 8, 5, 5
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53

21

Prüfer sequence: 3, 8, 5, 5, 2

3

21

End Prüfer sequence: 3, 8, 5, 5, 2, 1

Note that we returned to the Prüfer sequence we started with.

Indeed, the two algorithms give a bijection between Prüfer sequences

and rooted forests. Again we omit the details, which mirror the ar-

guments for rooted trees. There are n choices for each of the first

n− r − 1 elements of the Prüfer sequence and r choices for the final

element. Thus there are rnn−r−1 Prüfer sequences. The bijection

thus shows Theorem 6.5.

6.8. An Exact Formula for Unicyclic Graphs

Here we will find the exact formula

(6.1) UN(n) =
n∑

k=3

(n)k
2k

nn−k−1k

for the number of labeled unicyclic graphs on V = {1, . . . , n}. We are

constructing a unicyclic graph in three steps.

First, we choose the length k of the unique cycle in the graph and

we draw it:

The value k can be anywhere in the range 3 ≤ k ≤ n. Thus we

first write
∑n

k=3.
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Second, we label the vertices of the k-cycle with distinct vertices.

For the first vertex we have n choices, for the second n − 1, and so

on, up until the last step when we have n − k + 1 choices giving a

total of (n)k choices (recall the notation in (5.2)). However, there are

2k such sequences that give the same labeled cycle, as the cycle may

start anywhere and may go in either way. (In algebra nomenclature,

the automorphism group of the k-cycle has size 2k.) Thus there is an

overcount by a factor of 2k. This gives the factor (n)k/2k.

11 7

95

Third, create a rooted forest on the V , with R consisting of the

vertices in the k-cycle, as shown in the example below:

5

3

10 12

4

9

1

8

6

7 11

2

This gives the factor knn−k−1 by Theorem 6.5.

We now attach the trees in the rooted forest to their correspond-

ing locations in the cycle and erase the arrows, giving the unicyclic

graph shown in Figure 1.
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5 9

711

3

10 12

4

1

8

6

2

Figure 1. Unicyclic graph on twelve vertices

6.9. Counting Unicyclic Graphs in Asymptopia

While formula (6.1) is precise, it is not very satisfactory in Asymp-

topia. The terms in the sum are each reasonably nice but it is not

clear a priori which terms are the important ones. We begin by taking

a common term out of the sum so that

(6.2) UN(n) =
nn−1

2

n∑
k=3

(n)k
nk

.

This addend is now precisely the ratio A(n, k) studied in Chapter

5 and formulae (5.15) and (5.16) gives that
∑n

k=1A(n, k) ∼
√
n
√
π/2.

In (6.2) the sum only goes from k = 3 to n. However, the values at

k = 1, 2 are both 1 + o(1) and so are o(
√
n). Thus

(6.3)

n∑
k=3

(n)k
nk

∼
√
n
√
π/2.

Plugging back into (6.2) gives an interesting and informative re-

sult:

Theorem 6.6.

(6.4) UN(n) ∼
√

π

8
nn− 1

2 .
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Comment. The ratio of UN(n) to the number nn−2 of trees is

cn3/2 with c =
√
π/8. From a tree we can create a unicyclic graph

by adding any edge. This can be done in
(
n
2

)
− (n− 1) ∼ n2/2 ways.

There are ∼ nn/2 pairs of a tree T and an edge e which together give

a unicyclic graph G. However, there is serious overcounting. Let G

be a unicyclic graph with cycle of length k. For any edge e in the

cycle, G−e = T is a tree and G can be expressed as T +e. Thus such

a G has been counted k times. But the cycle lengths k vary so this

does not tell us what the ratio is. One would hardly guess a priori

that the ratio would be Θ(n3/2).

                

                                                                                                               



Chapter 7

Ramsey Numbers

Working with Paul Erdős was like taking a walk

in the hills. Every time when I thought that we

had achieved our goal and deserved a rest, Paul

pointed to the top of another hill and off we would

go.

– Fan Chung

The Ramsey number R(k, l) is the smallest integer n such that

in any two-coloring of the edges of a complete graph on n vertices Kn

by red and blue, either there is a complete subgraph on k vertices,

all of whose edges are colored red, Kk, or there exists a blue Kl.

The existence of such an n is a consequence of Ramsey’s theorem, a

classic and important result but one that will not concern us here.

Rather, our results concern lower bounds to R(k, l). Unraveling the

definition, R(k, l) > n means that there exists a two-coloring with

neither complete subgraph Kk nor Kl a monochromatic graph.

We will first focus on R(k, k).

7.1. Initial Erdős Argument

In 1947 Paul Erdős in [Erd47] gave a new method to prove the exis-

tence of an object (here, a coloring) with some desired properties. He

considered an appropriately defined random object and showed that

93
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the probability of the random object having the desired properties was

positive. From that he concluded that an object with those proper-

ties must exist. This method is called Erdős Magic (more formally,

The Probabilistic Method ) as it does not actually present the desired

object. His 1947 paper [Erd47] (only three pages long!) dealt with

the Ramsey number R(k, k). Recall R(k, k) > n means that there

exists a coloring of Kn with no monochromatic Kk.

Theorem 7.1. If

(7.1)

(
n

k

)
21−(

k
2) < 1,

then R(k, k) > n.

Proof. Color edges of Kn either red or blue uniformly at random.

Now consider a set M on k vertices of Kn and the probability that all

its edges have the same color, Pr(AM ). Since there are two choices for

it to be monochromatic and 2(
k
2) total choices (two choices for each

edge and
(
k
2

)
of them), then Pr(AM ) = 21−(

k
2). There are

(
n
k

)
possible

choices for M . The probability of the disjunction of the AM is at

most the sum of the Pr(AM ), which is
(
n
k

)
21−(

k
2). By hypothesis this

is less than one. The complement thus has positive probability. The

complement is that the coloring has precisely the desired property,

that there is no monochromatic Kk. By Erdős Magic, such a coloring

must exist. �

We defer the asymptotic consequences of Theorem 7.1 to §7.4.

7.2. Deletion

In a refinement of Erdős Magic we consider a random coloring and

then delete the blemishes.

Theorem 7.2. For any integer m

(7.2) R(k, k) > m−
(
m

k

)
21−(

k
2).

Proof. Color again the edges ofKm with two colors uniformly at ran-

dom. For a setM of k vertices, letXM be the indicator function forM
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being monochromatic. That is, XM = 1 if M is monochromatic, else

XM = 0. Let X =
∑

XM , the sum over all setsM of k vertices. Thus

X is the number of monochromatic sets M . Then E[XM ] = 21−(
k
2),

the probability that M is monochromatic. The expectation of a sum

is the sum of the expectations so E[X] =
(
m
k

)
21−(

k
2). For a discrete

random variable X, there is always a positive probability (another

form of Erdős Magic) that X ≤ E[X]. Thus there is a coloring of Km

with at most
(
m
k

)
21−(

k
2) monochromatic k-sets. Fix such a coloring.

For each monochromatic k-set remove one vertex. (A vertex may

be removed several times; this only helps.) The number of remaining

vertices is at leastm−
(
m
k

)
21−(

k
2). On the remaining set, the blemishes

having been removed, there are no monochromatic k-sets. �

We defer the asymptotic consequences of Theorem 7.2 to §7.4.

7.3. Lovász Local Lemma

The Lovász local lemma in [EL] is a powerful probability result. Let

Aα, α ∈ I, be events. Let G be a graph on the index set I. We

say that a graph G is a dependency graph for the events if, for each

α ∈ I, the event Aα is mutually independent of the events Aβ, β not

adjacent to α.

Theorem 7.3 (Lovász Local Lemma). Let Aα, α ∈ I be events with

dependency graph G. Suppose all P (Aα) ≤ p. Suppose further that

each α ∈ I is adjacent to at most d other β ∈ I in the dependency

graph. Suppose further that 4dp ≤ 1. Then the conjunction of the

complements of the Aα is not empty, that is, Pr[
∧
Aα] > 0.

We do not give the proof of the Lovász local lemma in this work,

as it may be found in many works. Our own book, The Probabilistic

Method (with Noga Alon [AS08]) gives proofs of Theorems 7.1, 7.2,

7.3, 7.4, 7.5, 7.6—and much more! We apply it to give a bound on

R(k, k).

Theorem 7.4. If

(7.3) 4

((
k

2

)(
n

k − 2

))
21−(

k
2) < 1,

then R(k, k) > n.
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Proof. As usual, consider a uniformly random two-coloring of Kn.

As usual, for each set M of k vertices, let AM be the event that

the complete graph on M is monochromatic. As above, Pr(AM ) =

21−(
k
2). We create a dependency graph by letting M,M ′ be adjacent

if they overlap in at least two vertices. When M,M ′ are not adjacent,

they have no common pairs so the events AM , AM ′ are independent.

Moreover, AM will be mutually independent of all AM ′ for which

M,M ′ are not adjacent. Each AM is then adjacent to d′ other AM ′ ,

where d′ is the number of M ′ overlapping M in at least two vertices.

The precise calculation of d′ is awkward and turns out not to have

asymptotic significance. Rather, we find all such M ′ by selecting two

vertices from M and then k−2 other vertices. This will be a multiple

counting when M ′,M overlap in more than two vertices. Still, it

gives the upper bound d′ ≤ d with d =
(
k
2

)(
n

k−2

)
. From Theorem 7.3

the conjunction of the complements of the AM is not empty, which

again means that there exists a coloring ofKn with no monochromatic

Kk. �

We defer the asymptotic consequences of Theorem 7.4 to §7.4.

7.4. Computations for R(k, k)

For Theorems 7.1, 7.2, and 7.4 we want to deduce asymptotic lower

bounds for R(k, k).

First, consider Theorem 7.1. Let n0 denote the maximal n sat-

isfying (7.1). From Chapter 5 we know that the approximation of(
n
k

)
splits into cases, depending on the relationship between n and

k. When k = o(
√
n) or, equivalently, n � k2, (5.7) applies. As this

is not an atypical problem, we first give a quite coarse lower bound

on A(k). Bounding
(
n
k

)
< nk, we see that if nk21−(

k
2) ≤ 1, then n

satisfies (7.1). Taking k-th roots, we may take n = (1+o(1))2(k−1)/2.

We have an exponential lower bound on n and so certainly n � k2.

Applying (5.7), we want n with

(7.4) nk = (1 + o(1))k!2(
k
2)−1.
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Taking k-th roots of (7.4) and noting that from Stirling’s formula

(1.1) k!1/k ∼ k/e,

(7.5) n0 = (1 + o(1))
k

e
2(k−1)/2.

(Caution: We could not estimate
(
k
2

)
by k2/2 since it was in the

exponent.) Hence Erdős’s 1947 paper [Erd47] yields the lower bound

(7.6) R(k, k) ≥ (1 + o(1))
k

e
√
2

√
2
k
.

Now consider Theorem 7.2 and, following (7.2), set

(7.7) f(m) = m−
(
m

k

)
21−(

k
2).

We parametrize m = yn0, with y ≥ 1, and n0 as defined above.

• Solutions to basic problems often lead to good parametriza-

tions for more elaborate problems.

Rather than recalculating from scratch, we compare f(m) with f(n0).

As a function of m the negative term in (7.7) has asymptotically an

mk factor. At y = 1 it is one, so at y ≥ 1 it will be asymptotically

yk. Thus

(7.8) f(yn0) ∼ yn0 − yk.

Now, rather than the more precise (7.5), let us simply use that

(7.9) n0 = (
√
2 + o(1))k.

Consider any fixed positive ε. With y =
√
2 − ε, yk = o(n0), and so

f(y) ∼ y. If y =
√
2 + ε, then yk � yn0 so f(y) is negative. We

optimize at y =
√
2 + o(1). The negative term in f(m) (selecting

y slightly smaller than
√
2) is negligible, and F (yn0) ∼ yn0. Thus

Theorem 7.2 improves Theorem 7.1 by a factor of
√
2:

(7.10) R(k, k) ≥ (1 + o(1))
k

e

√
2
k
.

Now consider Theorem 7.4. With n0 as above, we now parame-

trize n = zn0. Following (7.3), we set

(7.11) g(n) = 4

(
k

2

)(
n

k − 2

)
21−(

k
2).
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Comparing (7.1) and (7.3),

(7.12) 4

(
k

2

)(
n

k − 2

)
∼ 2k4

n2

(
n

k

)
.

Thus at z = 1, g(n) = g(n0) ∼ 2k4n−2
0 . From the rough (7.9), we

write g(n0) = (2 + o(1))−k. As
(
n
k

)
∼ nk/k!, replacing n0 by n0z

gives an extra zk−2 factor. Thus g(n0z) ∼ g(n0)z
k−2. We may take

z = 2− ε for any fixed ε and g(n0z) � 1. Theorem 7.2 therefore gives

an improved Theorem 7.1 by a factor of 2:

(7.13) R(k, k) ≥ (1 + o(1))
k
√
2

e

√
2
k
.

Bound (7.13) is the best known asymptotic lower bound on the

Ramsey number R(k, k). The best known upper bound (which we

do not deal with in this work) is of the form (4 + o(1))k. The gap

between the upper and lower bounds on this most basic of all Ramsey

functions remains a vexing open problem.

7.5. Asymmetrical Ramsey Numbers

A powerful extension of Erdős’s Theorem 7.1 is given by examining

a random coloring, but one in which the probability of red is given

by an appropriate p. As we often do not know which p to choose, we

make p a parameter, later to be optimized.

Theorem 7.5. If there exists p, 0 ≤ p ≤ 1 such that

(7.14)

(
n

k

)
p(

k
2) +

(
n

l

)
(1− p)(

l
2) < 1,

then R(k, l) > n.

Proof. Color edges of Kn either red or blue independently, giving

each edge the color red with proability p. Now consider a set M on k

vertices of Kn and the probability that all its edges are red, Pr(AM ).

Further, consider a set N on l vertices of Kn and the probability that

all its edges are blue, Pr(BN ). Then Pr(AM ) = p(
k
2) and Pr(BN ) =

(1 − p)(
l
2). There are

(
n
k

)
possible choices for M and

(
n
l

)
possible

choices for N . The probability of the disjunction of the AM and BN

is at most the sum of the Pr(AM ), and the Pr(BN ) which is precisely
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the left-hand side of (7.14). By hypothesis this is less than one. The

complement thus has positive probability. The complement is that

the coloring has precisely the desired property, that there is neither

red Kk nor blue Kl. By Erdős Magic, such a coloring must exist. �

For each p ∈ [0, 1], Theorem 7.5 gives a lower bound for R(k, l).

We want to make this lower bound as large as possible. This leads

to a problem in asymptotic calculus. Let F (k, l) denote the maximal

n for which there exists p ∈ [0, 1] with satisfying (7.14). The various

asymptotics of F (k, l) can be quite challenging. As a representative

case, we restrict in this section to l = 2k, looking for a lower bound

for R(k, 2k).

We simplify1 the problem, replacing
(
n
k

)
and

(
n
2k

)
by nk, n2k, re-

spectively,
(
k
2

)
and

(
2k
2

)
by k2/2 and 2k2, respectively, and < 1 by

≤ 1. Now let G(k) denote the maximal n (we will no longer restrict

n to be integral) for which there exists p ∈ [0, 1] with

(7.15) nkpk
2/2 + n2k(1− p)2k

2 ≤ 1.

• In Asymptopia A + B is often well approximated by

max(A,B).

We replace (7.15) by the weaker system of inequalities:

(7.16) nkpk
2/2 ≤ 1 and n2k(1− p)2k

2 ≤ 1.

The first inequality implies n ≤ (p−1/2)k and the second that n ≤
((1 − p)−1)k. These bounds are increasing and decreasing, respec-

tively, in p and so their minimum is maximized when they cross.

This occurs when p−1/2 = (1 − p)−1, so p = (3 −
√
5)/2 and n = φk

where, serendipitously, φ = (1 +
√
5)/2 is the famous Golden Ra-

tio. As (7.16) is a weakening of (7.15), this provides an upper bound

G(k) ≤ φk.

• Upper bounds lead to lower bounds, and vice versa.

With p = (3 −
√
5)/2, the value n0 = φk fails (7.15), but this is

easily fixed. For any fixed positive ε set, n = n0(1− ε). Now nk has

been lowered by a factor (1 − ε)k and n2k by a factor of (1 − ε)2k,

1Part of the art of Asymptopia is finding those simplifications that retain the
essential elements of the problem.
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both of which approach zero as k → ∞. Thus nkpk
2/2 ≤ 1

2 and

n2k(1− p)2k
2/2 ≤ 1

2 , and (7.15) is now satisfied. Thus G(k) ∼ φk.

Returning to R(k, 2k), we seek F (k, 2k), the maximal n for which

there exists p satisfying (with l = 2k) (7.14). The k! and (2k)! factors

in (7.14) make the condition easier to meet than (7.15). Taking n =

φn and p = (3 −
√
5)/2, (7.14) is easily satisfied and so R(k, 2k) ≥

F (k, 2k) ≥ φk. A more careful analysis, including the k!, (2k)! factors,

yields F (k, k) = Θ(kφk), but this we leave to the reader!

7.6. Application to R(3, l)

We combine the deletion method of Theorem 7.2 with the parame-

trization method of Theorem 7.4.

Theorem 7.6. For every positive integer m and p ∈ [0, 1],

(7.17) R(k, l) ≥ m−
(
m

k

)
p(

k
2) +

(
m

l

)
(1− p)(

l
2).

Proof. Color the edges of Km with red and blue, each edge red with

probability p, blue with probability 1 − p, the choice of edge colors

being mutually independent. For each set M of k vertices, let XM

be the indicator function for M being red. Then E[XM ] = p(
k
2) as(

k
2

)
edges need to be red. For each set N of l vertices, let YN be

the indicator function for N being blue. Then E[YN ] = (1− p)(
l
2) as(

l
2

)
edges need to be red. Let X =

∑
XM +

∑
YN , the sum over all

sets M of k vertices and all sets N of l vertices. From linearity of

expectation

(7.18) E[X] =

(
m

k

)
p(

k
2) +

(
m

l

)
(1− p)(

l
2).

For a discrete random variableX there is always a positive probability

(another form of Erdős Magic) that X ≤ E[X]. Fix a coloring of Km

withX ≤ E[X]. For each red k-set and for each blue l-set, remove one

vertex. (A vertex may be removed several times; this only helps.) The

number of remaining vertices is at least m−E[X]. On the remaining

set, the blemishes having been removed, there are no monochromatic

k-sets. �
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The general application of Theorem 7.6 can be quite challenging.

Here we consider the special case k = 3. Thus

(7.19) R(3, l) ≥ m−
(
m

3

)
p3 −

(
m

l

)
(1− p)(

l
2).

If either of the negative terms is m or more, then the right-hand

side will be negative. On the other side, if both negative terms are
m
4 or less, then (7.19) gives R(3, l) ≥ m

2 . Our sense is that these two

sets of conditions are quite similar. We replace (7.19) with the two

conditions

(7.20)

(
m

3

)
p3 ≤ m

4
and

(
m

l

)
(1− p)(

l
2) ≤ m

4
.

We bound 1− p ≤ e−p and
(
m
l

)
≤l. We replace the second condition

by the weaker

(7.21)
(
me−p(l−1)/2

)l

≤ m

4
.

Because the quantity in parenthesis is being taken to a high power

requiring that it is ≤ m
4 , the constraint is similar to requiring that it

is ≤ 1. By setting p = 2.01(lnm)/l, the exponent is bigger than

lnm and so the quantity in parenthesis is ≤ 1, and thus (7.21)

is satisfied. The first condition is basically m2p3

6 ≤ m
4 , which is

satisfied (letting c1, c2, c3 be positive absolute constants below) for

p = c1m
−2/3. We have set two conditions on p, and we now take m

so that they are the same. That is, we set 2.01(lnm)/l = c1m
−2/3

so that l = c2m
2/3(lnm). Inverting the function (Theorem 2.15),

m = c3l
3/2 ln−3/2 l. Thus

(7.22) R(3, l) ≥ m

2
= Ω(l3/2 ln−3/2 l).

Remark. The quest for the asymptotics of R(3, l) has a long history.

In a classic 1935 paper [ES35], Paul Erdős and George Szekeres show

that R(3, l) ≤
(
l+1
2

)
. In 1957 Erdős showed R(3, l) ≥ l1+ε for a

fixed (small) ε. (At this early date Theorem 7.6 was not known.)

Improvements to both the upper and the lower bounds followed over

the decades. Finally, in 1995 in [Kim95] Jeong-Han Kim showed

that R(3, l) = Θ(l2/(ln l). Even today the search continues to find a

constant c so that R(3, l) ∼ cl2/(ln l).

                

                                                                                                               



Chapter 8

Large Deviations

Any new possibility that existence acquires, even

the least likely, transforms everything about exis-

tence.

– Milan Kundera, Slowness

If we flip a fair coin a million times it is very unlikely that we will

get more than six hundred thousand heads. But how unlikely? The

study of large deviations concerns the estimation of such extremely

small probabilities.

8.1. The Chernoff Bound

Let X be any random variable. Our goal is to give an upper estimate

(often called a tail bound) on Pr[X ≥ a] and, similarly, Pr[X ≤ a]. In

Asymptopia our emphasis will be on those cases where these proba-

bilities are very small.

Definition 8.1. The Laplace transform of X is the function f(λ)

defined by

(8.1) f(λ) = E[eλX ].
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104 8. Large Deviations

In particular, if X is a discrete random variable taking on values

a1, . . . , as with probabilities p1, . . . , ps, respectively, then

(8.2) f(λ) =

s∑
i=1

pie
λai .

We shall be particularly interested in cases in which X can be

expressed as a sum X =
∑n

i=1 Xi where the Xi are mutually inde-

pendent random variables. In that case the variables exp[λXi] are

mutually independent. The expectation of a product of mutually in-

dependent random variables is the product of their expectations, so

the Laplace transform of X is the product of the Laplace transforms

of the Xi. That is,

(8.3) E[eλX ] =

n∏
i=1

E[eλXi ].

Often the Xi are quite simple, in which case the Laplace transform

has a nice form.

The Laplace transform and its complex cousin the Fourier trans-

form are centerpieces1 of modern probability theory. In many cases

full knowledge of the Laplace transform will give one full knowledge

of the random variable X. For the Chernoff bounds we use only one

value of the Laplace transform—but it needs to be a good one! For

any positive λ, eλX is a positive random variable. Therefore,

(8.4) Pr[X ≥ a] = Pr[eλX ≥ eλa] ≤ E[eλX ]

eλa
.

The Chernoff bound is (8.4). But the key to the Chernoff bound

is the choice of λ. As each λ gives an upper bound, we want to choose

λ so that the upper bound is minimal. Often times we do not get the

absolute minimum and near minimality works well. For this bound

to be effective, we must be able to evaluate or, more often, find a

reasonable upper bound on f(λ) = E[eλX ].

A small alteration allows us to consider Pr[X ≤ a]:

(8.5) Pr[X ≤ a] = Pr[e−λX ≥ e−λa] ≤ E[e−λX ]

e−λa
for all λ > 0.

1A knowledge of Laplace transforms is not needed in this work.
                

                                                                                                               



8.3. The Gaussian Paradigm I 105

8.2. The Gaussian Tail

LetX be the standard Gaussian distribution, with probability density

function (2π)−1/2e−x2/2. The Laplace transform2

E[eλX ] =

∫ +∞

−∞

√
1

2π
e−x2/2eλxdx

= eλ
2/2

∫ +∞

−∞

√
1

2π
e−y2/2dy = eλ

2/2

(8.6)

so that (8.6) becomes

(8.7) Pr[X ≥ a] ≤ e
λ2

2 −λa.

This is minimized when λ = a, giving

(8.8) Pr[X > a] ≤ e−a2/2.

The precise asymptotics of Pr[X ≥ a] were given by (3.8). For a

large (and here we are interested in large deviations) the bound (8.8)

is quite good.

When Y is a Gaussian with mean μ and variance σ2, the Laplace

transform is E[eλY ] = eλμeλ
2σ2/2. Now reparametrize and consider

Pr[Y ≥ μ+ aσ]:

(8.9) Pr[Y ≥ μ+ aσ] ≤ eλμeλ
2σ2/2e−λ(μ+aσ) = eλ

2σ2/2e−aλσ.

This is minimized when λ = a
σ , giving

(8.10) Pr[Y ≥ μ+ aσ] ≤ e−a2/2.

8.3. The Gaussian Paradigm I

Suppose we are given a random variable X that we think behaves

like a Gaussian with zero mean and standard deviation σ2, and we

want to bound Pr[X ≥ aσ]. We can hope that setting λ = a
σ in the

Chernoff bound (8.4) will yield an upper bound on Pr[X ≥ aσ] which

is close to exp[−a2/2]. Assuming finiteness of all terms,

(8.11) E[eλX ] = E[1 +
∞∑
i=1

λi

i!
Xi] = 1 +

∞∑
i=1

λi

i!
E[Xi].

2by the substitution y = x + λ
                

                                                                                                               



106 8. Large Deviations

This sequence begins 1+ 1
2a

2. If there were no other terms, this would

be bounded from above by exp[a2/2]. Then (8.4) would yield

(8.12) Pr[X ≥ aσ] ≤ ea
2/2/ea

2

= e−a2/2.

Roughly, the study of tail distributions breaks into three regimes:

Small Deviations . In this regime a is a constant. If the Central Limit

Theorem applies, then Pr[X ≥ aσ] is approximately Pr[N ≥ a], where

N is the standard normal distribution. While the methods for large

deviations below also work for small deviations and do give an upper

bound, they do not get this fine a result. The Central Limit Theorem

is at the core of traditional probability courses, but in Asymptopia3

the small deviation cases rarely arise (see §8.5).
Large Deviations (Our main emphasis). In this regime a → ∞, but
a
σ → 0. In many cases, as detailed in §8.7, the Chernoff bounds

give an upper bound on P [X ≥ μ + aσ] that is close to exp[−a2/2].

Critically, λ = a
σ = o(1). The terms in the sum (8.11) for i ≥ 3 have

extra powers of λ, and we can often use that to show that they are

negligible.

Very Large Deviations . In this regime a = Ω(σ). Now λ is a constant

and the later terms of (8.11) are no longer negligible. One can often

still use Chernoff bounds, but the calculation of optimal λ can be

challenging.

The Poisson distribution provides a good example as its Laplace

transform has a relatively simple closed form. Let Pn denote4 the

Poisson distribution with mean n, as given by (12.37). Then

(8.13) E[eλPn ] = e−n
∞∑
i=0

nieλi

i!
= ene

λ−n.

We switch to zero mean by setting Yn = Pn − n so that

(8.14) E[eλYn ] = ene
λ−n−nλ.

Set σn =
√
n so that Var[Yn] = n = σ2

n.

3At least, in this work!
4While Pn is defined for all real positive n, in this section we consider n integral.

                

                                                                                                               



8.4. Heads Minus Tails 107

We wish to bound Pr[Yn ≥ anσn]. Applying the Chernoff bound

(8.4) with λn = an/σn gives

(8.15) Pr[Yn ≥ anσn] ≤ e−nλn−n+neλn
e−a2

n .

Now assume an = o(σn). Then λn → 0. Therefore

(8.16) neλn = n[1 + λn +
1

2
λ2
n + o(λ2

n)] = n+ nλn + (1 + o(1))
a2n
2
,

so that

(8.17) Pr[Yn ≥ anσn] ≤ e(1+o(1))a2
n/2e−a2

n = e−(1+o(1))a2
n/2.

This bound applies in both the large deviation and small deviation

regimes. However, in the small deviation regime one gets a better

bound by application of the Central Limit Theorem. As the bound is

dropping exponentially in the square of an, one can get very small tail

bounds for relatively moderate an. Take, for example, an = 10
√
n.

Now

(8.18) Pr[Yn ≥
√
10n lnn] ≤ e−(1+o(1))50 lnn = n−50(1+o(1)).

Thus, for example, for n sufficiently large, returning to the original

Pn,

(8.19) Pr[Pn ≥ n+
√
10n lnn] ≤ n−49.

8.4. Heads Minus Tails

Let Xi, 1 ≤ i ≤ n, be mutually independent with Pr[Xi = +1] =

Pr[Xi = −1] = 1
2 , and set Sn =

∑n
i=1 Xi. We may think of Sn as the

number of heads minus the number of tails after n flips of a fair coin.

Alternately, we can imagine a particle, initially at the origin, taking

a random walk on Z for time n. Then Sn represents the particle’s

location at time n. As Sn has mean μ = 0 and variance σ2 = n, we

shall parametrize as in §8.3 and bound Pr[Sn ≥ a
√
n].

For each 1 ≤ i ≤ n, the variable eλXi is eλ or e−λ, each with

probability one-half. From the mutual independence, (8.3) gives

(8.20) E[eλSn ] =

n∏
i=1

E[λXi] = coshn λ

                

                                                                                                               



108 8. Large Deviations

with hyperbolic cosine

(8.21) cosh(λ) :=
eλ + e−λ

2
,

and thus

(8.22) Pr[Sn ≥ a
√
n] ≤ coshn(λ)e−aλ

√
n.

When λ is small (not always the case, see below) we will use the upper

bound

(8.23) cosh(λ) ≤ eλ
2/2.

The Taylor series for both sides of (8.23) begin with 1 + 1
2λ

2.

There are no odd powers of λ on either side, and the coefficient of

λ2t, t ≥ 2, is always smaller for cosh(λ). This shows the inequality,

and it also indicates that if λ is small the two sides are pretty close.

Using (8.23), (8.22) becomes

(8.24) Pr[Sn ≥ a
√
n] ≤ enλ

2/2e−aλ
√
n.

Setting λ = a√
n
(as indicated in §8.3) gives

Theorem 8.2.

(8.25) Pr[Sn ≥ a
√
n] ≤ e−a2/2.

As Sn is symmetric,

(8.26) Pr[|Sn| ≥ a
√
n] ≤ 2e−a2/2.

The binomial distribution BIN [n, 1
2 ], counting the number of

heads in n flips of a fair coin, is one of the most basic probability

distributions. Comparing to Sn the count of +1,−1 is replaced by a

count of 1, 0. Equivalently, one divides by two and then adds one-half.

Therefore,

(8.27) BIN[n,
1

2
] =

n

2
+

Sn

2
.

Bound (8.26) then becomes the useful

(8.28) Pr[|BIN[n, 1
2
]− n

2
| ≥ a

√
n] ≤ 2e−2a2

.

While the binomial is arguably more basic than Sn, it is usually math-

ematically more convenient to work with a distribution that has zero

mean.
                

                                                                                                               



8.6. The Binomial Distribution 109

While Theorem 8.2 is always correct, its accuracy wanes as λ

becomes bigger. Here λ = an−1/2. Thus, even for, say, Pr[Sn > n0.9],

we will have λ small. Now consider the “very large deviation” problem

of bounding Pr[Sn ≥ bn], where b ∈ (0, 1) is fixed. Bound (8.22)

becomes

(8.29) Pr[Sn ≥ bn] ≤ (cosh(λ)e−bλ)n.

The n in the exponent does not affect the optimal λ, and we are left

with the calculus problem of finding λ to minimize cosh(λ)e−bλ. The

solution5 is

(8.30) λ = tanh−1(b) =
1

2
[ln(1 + b)− ln(1− b)],

and (cosh(λ)e−bλ)n matches (after some algebraic manipulation) the

correct asymptotics as given by (5.33) in Chapter 5.

8.5. . . . and the Central Limit Theorem

The Central Limit Theorem tells us that n−1/2Sn approaches the

standard limit. That is, for any real a,

(8.31) lim
n→∞

Pr[Sn ≥ a
√
n] =

∫ ∞

a

√
1

2π
e−x2/2dx.

Bounds (8.31) and (8.25) have different strengths. For a fixed and

n → ∞, the Central Limit Theorem (8.31) gives a stronger result.

But when a goes to infinity as a function of n, we cannot use the

Central Limit Theorem at all. The real strength of (8.25) is that it

holds for all n, a, not just asymptotically. Suppose, as does occur,

we want to know when the tail Pr[Sn > a
√
n] becomes smaller than

n−10. Solving exp[−a2/2] = n−10, we set a =
√
20 lnn, and now it

holds.

8.6. The Binomial Distribution

The binomial distribution BIN [n, p] is the number of heads thrown

in n tosses of a coin, where the probability of heads is p for each toss.

5Hyperbolic functions seem to have gone out of fashion. When was the last time,
if at all, that you saw an inverse hyperbolic tangent?

                

                                                                                                               



110 8. Large Deviations

We have an exact formula

(8.32) Pr[BIN [n, p] = i] =

(
n

i

)
pi(1− p)n−i.

In Asymptopia this is too precise. We feel that BIN [n, p] is usually

near pn, and we want to bound the probability that it is some distance

from pn. In this section we let p ∈ (0, 1) be arbitrary but fixed and

consider the asymptotics as n → ∞.

It is convenient to shift to a zero mean. Basically, we count

heads but we subtract p for each coin flip. Technically, define Xi,

1 ≤ i ≤ n by Pr[Xi = 1 − p] = p and Pr[Xi = −p] = 1 − p.

Set X =
∑n

i=1 Xi, where the Xi are assumed mutually independent.

Then X = BIN[n, p] − np. Set μ = E[X] and σ2 = Var[X] so that

μ = 0 and σ = (np(1 − p))1/2. This includes the case p = 1
2 , with

X = 1
2Sn, which was covered in §8.4. Our object now is to bound

Pr[X ≥ aσ] and Pr[X ≤ aσ] by something like exp[−a2/2]. Following

the Gaussian paradigm we will apply the Chernoff bounds (8.4) and

(8.5) with λ = a/σ. We sometimes succeed.

We let f(λ) denote the Laplace transform of Xi so that we have

the precise

(8.33) f(λ) := E[eλXi ] = pe(1−p)λ + (1− p)e−pλ.

In the Taylor series for f(λ), the coefficient of λu/u! is E[Xu
i ].

Xi has mean zero and variance p(1− p) so that

(8.34) f(λ) := 1 + p(1− p)
λ2

2
+ · · · .

We would like to bound f(λ) from above by exp[p(1− p)λ2/2]. This

does not work exactly (though it does for p = 1
2 ) as the coeffi-

cients of λ3 and higher powers are not in the right order. However,

when λ = o(1) we can handle this in Asymptopia. Now f(λ) = 1+

(1 + o(1))p(1− p)λ
2

2 , and therefore

(8.35) f(λ) ≤ exp[(1 + o(1))p(1− p)
λ2

2
]

                

                                                                                                               



8.7. The Gaussian Paradigm II 111

and

E[eλX ] = E[eλXi ]n ≤ exp[(1 + o(1))np(1− p)
λ2

2
]

= exp[(1 + o(1))σ2λ2/2].

(8.36)

Then, (8.4) gives, with λ = a/σ,

Pr[X ≥ aσ] ≤ e(1+o(1))σ2λ2/2e−aλσ

= e(1+o(1)) a2

2 e−a2

= e−(1+o(1))a2/2.
(8.37)

The same argument applies on the other side, and

(8.38) Pr[X ≤ aσ] ≤ e−(1+o(1))a2/2.

As λ = a/σ this works only when a = o(σ) = o(
√
n). In partic-

ular, (8.36) does not apply when aσ = Ω(n), but it does apply if,

for example, aσ = n0.99. Equations (8.36) and (8.38) often work

in reverse when we have a desired upper bound on the tail proba-

bility and want to say that X lies close to its mean. Suppose, for

example, we want Pr[X ≥ aσ] ≤ n−10. Solving exp[−a2/2] = n−10

gives a = (20 lnn)1/2. Let ε > 0 be arbitrary but fixed, and set a =

(1 + ε)(20 lnn)1/2. Then certainly a = o(
√
n) and so (8.36) gives

Pr[X ≥ aσ] ≤ n−10. Note that the power 10 is transformed into a

constant in the calculation of a. Further, the particular value of p is

only reflected in a constant factor in σ. Putting these together yields

a useful result:

Theorem 8.3. For all p ∈ (0, 1) and c > 0, there exists a K so that

(8.39) Pr[|BIN [n, p]− np| ≥ K
√
n lnn] = o(n−c).

Effectively, Theorem 8.3 tells us that the binomial distribution is

quite concentrated about its mean, and moving out a relatively small

distance from the mean, the tail probability becomes extremely small.

8.7. The Gaussian Paradigm II

Continuing §8.3, here we give some general conditions that will imply,

roughly, a Gaussian tail. Suppose that for each n we are given a sum

(8.40) Yn =

n∑
i=1

Xi,n.

                

                                                                                                               



112 8. Large Deviations

Critically, we assume that for each n the variables Xi,n are mutu-

ally independent. Assume for technical convenience that all means

E[Xi,n] = 0, so all E[Yn] = 0. Set σn
i,n = Var[Xi,n] and σ2

n =∑n
i=1 σ

2
i,n so that σ2

n = Var[Yn]. We wish to bound Pr[Yn ≥ anσn].

Assume that limn→∞ an/σn = 0. Set λn = an/σn such that

limn→∞ λn = 0.

Theorem 8.4. With the above assumptions, consider further that

(8.41) E[eλnXi,n ] ≤ e(1+o(1))λ2
nσ

2
i,n/2.

Then

(8.42) Pr[Yn ≥ anσn] ≤ e−(1+o(1))a2
n/2.

In (8.41) the o(1) term must be uniform over all 1 ≤ i ≤ n.

Precisely, for all ε > 0 there exists n0 such that for n ≥ n0 and all

1 ≤ i ≤ n,

(8.43) E[eλnXi,n ] ≤ e(1+ε)λ2
nσ

2
i,n/2.

Proof. Let ε > 0 be arbitrary, let n0 be such that (8.43) is satisfied,

and let n ≥ n0. As the Xi,n are mutually independent, the variables

exp[λnXi,n] are mutually independent. The expectation of a product

of mutually independent random variables is the product of their

expectations. Thus

(8.44) E[eλnYn ] = E[

n∏
i=1

eλnXi,n ] =

n∏
i=1

E[eλnXi,n ].

Applying (8.43) and observing that the exponents add,

(8.45) E[eλnYn ] ≤ e(1+ε)λ2
nσ

2
n/2.

We now apply the Chernoff bound (8.4), and

(8.46) Pr[Yn ≥ anσn] ≤ E[eλnYn ]e−λnanσn ≤ e(1+ε)λ2
nσ

2
n/2e−λnanσn .

As λn = an/σn the σn terms cancel, and

(8.47) Pr[Yn ≥ anσn] ≤ e(1+ε)a2
n/2e−a2

n = e−(1−ε)a2
n/2.

As n → ∞ we can make ε arbitrarily small positive yielding (8.42).

�
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We can give a simple sufficient condition for (8.41) to hold. Let

Z be any random variable with E[Z] = 0 and set σ2 = Var[Z]. From

(8.11)

(8.48) E[eλZ ] = 1 +
λ2σ2

2
+

∞∑
i=3

λiE[Zi]

i!
.

Suppose that |Z| ≤ K always. Then for all i ≥ 3, |Zi| ≤ Ki−2Z2

always so E[Zi] ≤ E[|Zi|] ≤ Ki−2σ2. Thus

(8.49)

∞∑
i=3

λiE[Zi]

i!
≤ Kλ3σ2

∞∑
i=3

λi−3Ki−3

i!
≤ Kλ3σ2eKλ.

When K is fixed and λ → 0, this is o(λ2σ2) and so condition (8.41)

holds.

Theorem 8.5. Let Xi,n, Yn, σi,n, σn be as in Theorem 8.4. Let

an = o(σn). Assume an absolute constant K such that all |Xi,n| ≤ K

always. Then

(8.50) Pr[Yn ≥ anσn] ≤ e−(1+o(1))a2
n/2.

This follows immediately from Theorem 8.4 as (8.49) gives that

the conditions of that theorem hold.

As an example, consider Y = BIN [n, p(n)] − np(n). Y is the

sum of n identically distributed random variables which have value

1−p(n) or −p(n) so certainly have absolute value at most 1. Assume

p(n) ≤ 1
2 . Set σ2 = Var[Y ] = np(n)(1 − p(n)), which is between

np(n)/2 and np(n). Suppose an = o(
√
np(n)). The conditions of

Theorem 8.5 then apply, and Pr[Yn ≥ anσn] is bounded from above

by exp[(1 + o(1))a2n/2].

                

                                                                                                               



Chapter 9

Primes

The weak points of [Alan Turing’s] argument were

essentially the weaknesses of the analytic scientific

method when applied to the discussion of human

beings. Concepts of objective truth that worked so

well for the prime numbers could not so straight-

forwardly be applied by scientists to other people.

– Andrew Hodges, The Enigma

Primes would seem to be the ultimate in precision. A number

317 is either prime or it is not (this one is!), and there is no approxi-

mation to its primality. Nonetheless, Asymptopia is the proper place

to examine primes in the aggregate.

Definition 9.1. For n ≥ 2, π(n) denotes the number of primes p

with 2 ≤ p ≤ n.

Our goal in this chapter is to approach one of the great theorems

of mathematics.

Theorem 9.2 (The Prime Number Theorem).

(9.1) π(n) ∼ n

lnn
.

This result was first conjectured in the early nineteenth century.

(While the conjecture is sometimes attributed to Gauss, the history

115

                                     

                

                                                                                                               



116 9. Primes

is murky.) It was a central problem for that century, finally being

proven independently by Hadamard in [Had96] and Vallée-Poussin

in 1898 in [dlVP96]. Their proofs involved complex variables, and

a long search continued for an elementary proof. This was finally

obtained in 1949 by Selberg in [Sel49] and Erdős in [Erd49]. Still,

a full proof of (9.1) is beyond the limits of this work. We shall come

close to it with the following results:

Theorem 9.3. There exists a positive constant c1 such that

(9.2) (c1 + o(1))
n

lnn
≤ π(n).

That is, π(n) = Ω(n/ lnn).

Theorem 9.4. There exists a positive constant c2 such that

(9.3) π(n) ≤ (c2 + o(1))
n

lnn
.

That is, π(n) = O(n/ lnn).

Together, Theorems 9.3 and 9.4 yield

(9.4) π(n) = Θ
( n

lnn

)
.

With more effort we shall show

Theorem 9.5. If there exists a positive constant c such that

(9.5) π(n) ∼ c
n

lnn
,

then c = 1.

9.1. Fun with Primes

A Break! No asymptotics in this section!

How many factors of the prime 7 are there in 100!? The numbers

7, 14, . . . , 98 all have a factor of 7 so that gives 98
7 = 14 factors. And,

49 and 98 have a second factor of 7 which gives an additional 98
49 = 2

factors. In total there are 16 = 14 + 2 factors of 7.

Definition 9.6. For n ≥ 1 and p prime, vp(n) denotes the number of

factors p in n. Equivalently, vp(n) is that nonnegative integer a such

that pa divides n, but pa+1 does not divide n.
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Theorem 9.7. For any n ≥ 1 and p prime

(9.6) vp(n!) =

∞∑
i=1

� n
pi
�.

Equivalently,

(9.7) vp(n!) =
s∑

i=1

� n
pi
� with s = �logp n�.

When i > �logp n�, n < pi, so the addend in (9.6) is zero, and

thus the seemingly infinite sum is in fact a finite sum. The argument

with p = 7, n = 100 easily generalizes. For any i ≤ s there are �np−i�
numbers 1 ≤ j ≤ n that have (at least) i factors of p. We count each

such i and j once, as then an i with precisely u factors of p will be

counted precisely u times.

We apply Theorem 9.7 to study binomial coefficients . Let n =

a+ b, and set C =
(
n
a

)
= n!

a!b! . Applying (9.7),

(9.8) vp(C) = vp(n!)− vp(a!)− vp(b!) =

s∑
i=1

� n
pi
� − � a

pi
� − � b

pi
�

with s = �logp n� as in (9.7).

Theorem 9.8. With n = a+ b, p prime, and C =
(
n
a

)
,

(9.9) 0 ≤ vp(C) ≤ �logp n�.

Proof. Set α = ap−i, β = bp−i. Then the addend in (9.8) is

(9.10) �α+ β� − �α� − �β�.

This term is zero if the fractional parts of α, β sum to less than one,

and it is one if they sum to one or more. The sum (9.8) consists of

s = �logp n� terms, each one or zero, and so lies between 0 and s. �

Remark. With n = a+ b there are two arguments why a!b! divides

n!. One: The proof of Theorem 9.8 gives that, for all primes p,

vp(n!) ≥ vp(a!) + vp(b!) = vp(a!b!), and thus a!b! divides n!. Two:

The quotient n!
a!b! =

(
n
a

)
counts the a-subsets of n-sets and hence must

be a nonnegative integer. Which proof one prefers is an aesthetic
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question,1 but it is frequently useful to know more than one proof of

a theorem.

There is an amusing way of calculating vp(C) with C =
(
n
a

)
and

a+ b = n, first shown in [E.E52]. Write a, b is base p. Add them (in

base p) so that you will get n in base p.

Theorem 9.9. vp(C) is the number of carries when you add a, b

getting n, all in base p.

For example, let a = 33, b = 25 so n = 58 (written in decimal),

and set p = 7. In base 7, a = 45, b = 34. When we add them2

45

+ 34

----

112

There were two carries, and vp(
(
45
34

)
) = 2.

We indicate the argument. For each 1 ≤ i, we get a carry from

the (i− 1)-st place (counting from the right, starting at 0) to the i-th

place if and only if the fractional parts of ap−i and bp−i add to at

least one, and that occurs if and only if term (9.10) is one.

9.2. Prime Number Theorem—Lower Bound

Let n be even (n odd will be similar). The upper and lower bounds

come from examining the prime factorization of binomial coefficients.

Set r = π(n), let p1, . . . , pr denote the primes up to n, and write

(9.11)

(
n

n/2

)
= pα1

1 pα2
2 · · · pαr

r .

(There might not be a factor of pi. In that case we simply write

αi = 0.) We rewrite the upper bound of Theorem 9.8 as

(9.12) pαi
i ≤ n.

1These authors like the “counts” argument.
2To paraphrase the wonderful songwriter Tom Lehrer, base seven is just like base

ten—if you are missing three fingers!
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Thus

(9.13)

(
n

n/2

)
≤ nr.

Stirling’s formula gives an asymptotic formula for
(

n
n/2

)
, but here we

use only the weaker
(

n
n/2

)
= 2n(1+o(1)). Taking ln of both sides of

(9.13) and dividing gives

(9.14) π(n) = r ≥
ln

(
n

n/2

)
lnn

=
n

lnn
(ln 2)(1 + o(1)).

What if n is odd? In Asymptopia we simply apply (9.14) to the even

n− 1. Thus

(9.15) π(n) ≥ π(n− 1) ≥
ln

(
n−1

(n−1)/2

)
ln(n− 1)

,

which is again n
lnn (ln 2)(1 + o(1)).

9.3. Prime Number Theorem—Upper Bound

Again assume n is even. There are π(n) − π(n/2) primes p with
n
2 < p < n. Each of them appears in

(
n

n/2

)
to the first power. (They

appear once in the numerator as a factor of p and never in the de-

nominator.) Thus, with the product over these primes,

(9.16)
∏

p ≤
(

n

n/2

)
.

We again do not need a more precise estimate, and here we simply

bound
(

n
n/2

)
≤ 2n. Each factor p is a factor of at least n

2 . Thus

(9.17) (
n

2
)π(n)−π(n

2 ) ≤ 2n.

Taking ln of both sides gives

(9.18) π(n)− π(
n

2
) ≤ n

ln(n/2)
(ln 2).

For n = 2k + 1 odd, we apply the same argument to
(
n
k

)
getting an

upper bound on π(n)−π(k+1). We combine the even and odd cases

by writing

(9.19) π(n)− π(
n
2
�) ≤ n

ln(n/2)
(ln 2).
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Turning (9.19) into an upper bound on π(n) is a typical problem

in Asymptopia. Set x0 = n and xi+1 = 
xi

2 �. This sequence decreases
until finally reaching xs = 1. Applying (9.19) to n = x0, . . . , xs−1 and

adding, we get

(9.20) π(n) ≤
s−1∑
i=0

xi

ln(xi/2)
(ln 2).

In the exact world this would be a daunting sum. In Asymptopia we

know that we are aiming for Θ( n
lnn ), so let us stop the sum when xi

gets somewhat lower than that. For definiteness (but there is a lot

of room here) let u be the first index with xu ≤ n ln−2 n. Applying

(9.19) only down to xu−1 and adding, we get

(9.21) π(n)− π(xu) ≤
u−1∑
i=0

xi

ln(xi/2)
(ln 2).

Now we use the trivial bound π(xu) ≤ xu ≤ n ln−2 n. While this is a

“bad” bound for π(xu), it is a negligible value for us and

(9.22) π(n) ≤ o(
n

lnn
) +

u−1∑
i=0

xi

ln(xi/2)
(ln 2).

In the range 0 ≤ i < u, n ≥ xi ≥ n ln−2(n). The smallest ln(xi/2)

would be ln(n) − 2 ln ln(n) − ln(2). But this is ∼ ln(n). Thus all

ln(xi/2) terms are ∼ ln(n) and

(9.23) π(n) ≤ o(
n

lnn
) + (1 + o(1))

u−1∑
i=0

xi

ln(n)
(ln 2).

The xi form a near geometric series that sums to less than 2n, so

(9.24) π(n) ≤ (1 + o(1))n
2 ln 2

lnn
,

giving Theorem 9.4.

9.4. Prime Number Theorem with Constant

Note. This section gets quite technical and should be considered

optional.
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Here we show Theorem 9.5. That is, we assume that there is a

constant c such that π(n) ∼ c(n/(lnn)) and then show that c must

be 1. It is a big if. A priori, from Theorems 9.3 and 9.4 the ratio

of π(n) to n/(lnn) could oscillate between two positive constants,

never approaching a limit. Indeed, despite their similar appearances,

the proof of Theorem 9.5 is a long way from the proof of the Prime

Number Theorem (9.1) itself.

We consider the factorization (9.11) more carefully. Our goal will

be to show that if c �= 1, then the left-hand and right-hand sides

cannot match. We split the primes from 1 to n into intervals. We

shall let K be a large but fixed constant. (More about just how large

later.) For 1 ≤ i < K, let Pi denote the set of primes p with

(9.25)
n

i+ 1
< p ≤ n

i
,

and let SP (small primes) denote the set of primes p with p < n
K .

Let Vi, 1 ≤ i < K denote the contribution of the p ∈ Pi to the

factorization (9.11). That is, Vi is the product of p
αj

j in (9.11), where

pj is restricted to Pi. Similarly, let VSP denote the contribution of

the p ∈ SP to the factorization (9.11). That is, Vi is the product of

p
αj

j in (9.11), where pj is restricted to SP .

We first show that SP makes a relatively small contibution to

(9.11). There are ≤ π(n/K) primes p ∈ SP and each (9.12) con-

tributes at most a factor of n so that VSP ≤ nπ(n/K).

From (9.24) π(n/K) < ((2 ln 2) + o(1))(n/K)/ ln(n/K). With K

fixed, ln(n/K) ∼ ln(n) so that π(n/K) < (ln 2 + o(1))(n/K)/ ln(n).

Thus (9.25),

(9.26) VSP < n(2 ln 2+o(1))(n/K)/ ln(n) = 2(2n/K)(1+o(1)),

so that

(9.27) ln(VSP ) <
2n ln 2

K
(1 + o(1)).

While this is not a small number in absolute terms, it will be

relatively small compared to the total contribution which is 2n(1+o(1)).

For 1 ≤ i < K, we now look at Vi. As all primes considered have

p > n
K and K is fixed, they have p >

√
n. Thus, the sum of Theorem
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9.7 has only one term. Theorem 9.8 with a = n/2 is then simply

(9.28) vp

((
n

n/2

))
= �n/p� − 2�n/2p�.

This is either zero or one, and it is one precisely when �n/p� is odd.

We have designed Pi so that �n/p� = i for p ∈ Pi. When i is even, no

primes p ∈ Pi appear in the factorization (9.11) (or, the same thing,

they appear with exponent zero), and so Vi = 1. (For example, with
n
7 < p ≤ n

6 , n! has six factors of p and (n/2)!2 has twice three factors

of p, and they all cancel.)

Now suppose 1 ≤ i < K is odd. Then Vi is simply the product

of all primes p ∈ Pi. Each such prime p lies between n
K and n,

and so can be considered p = n1+o(1). The number of such primes is

π(n/i)−π(n/(i+1)). In this range ln(n/i) ∼ lnn. Our assumption for

Theorem 9.5 then gives that π(n/i) ∼ c n
i lnn and that π(n/(i+ 1)) ∼

c n
(i+1) lnn . We deduce3 that the number of primes is ∼ c n

lnn (
1
i −

1
i+1 ).

Thus

(9.29) Vi = nc(1+o(1))(n/(lnn))( 1
i −

1
i+1 )

and

(9.30) ln(Vi) ∼ cn(
1

i
− 1

i+ 1
).

From the factorization (9.11) we have

(9.31) ln

((
n

n/2

))
= lnVSP +

∑
ln(Vi).

For convenience, assume K = 2T is even so we can write the odd

i < K as 2j − 1, 1 ≤ j ≤ T . From (2.28) the left-hand side of (9.31)

is asymptotically n ln 2. Thus

(9.32) (1 + o(1))n ln 2 = cn(1 + o(1))
T∑

j=1

(
1

2j − 1
− 1

2j

)
+ lnVSP .

3Caution. Subtraction in Asymptopia is dangerous! It is critical here that i ≤ K
and that K is a fixed constant, so 1

i and 1
i+1 are positive constants. Where, for

example, K = ln lnn, we could not do the subtraction. With i ∼ (ln lnn)/2, for
example, the asymptotics of π(n/i) and π(n/(i + 1) would be the same, and so one
could not deduce the asymptotics of their difference!
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Dividing by n,

(9.33) (1 + o(1))(ln 2) = c(1 + o(1))

2T−1∑
k=1

(−1)k+1

k
+

1

n
lnVSP .

We need4 the fact that

(9.34) ln 2 =
∞∑
k=1

(−1)k+1

i
= 1− 1

2
+

1

3
− 1

4
+ · · · .

We can now see the idea. The ln(VSP ) will be negligible, and

(9.33) becomes ln 2 = c(ln 2). The actual argument consists of elimi-

nating all c �= 1.

Suppose c > 1. Select K = 2T so that c
∑2T−1

k=1
(−1)k+1

k > ln 2.

As lnVSP ≥ 0 the right-hand side of (9.33) would be bigger than the

left-hand side.

Suppose c < 1. Applying the upper bound (9.27), the right-hand

side of (9.33) would be at most c
∑2T−1

k=1
(−1)k+1

k + 2 ln 2
K . As K → ∞,

this sum approaches c ln 2, which is less than ln 2. Thus, we may

select K so that this sum is less than ln 2.5 But now the right-hand

side of (9.33) would be smaller than the left-hand side.

Both assumptions led to a contradiction, and since we assumed

that c existed, it must be that c = 1.

9.5. Telescoping

Suppose we have a reasonable function f(x) and we wish to asymp-

totically evaluate
∑

p≤n f(p). We assume the Prime Number Theo-

rem (9.1), giving the asymptotics of π(s) as s → ∞. On an intu-

itive level, we think of 1 ≤ s ≤ n as being prime with “probability”

π(s)/s ∼ 1/(ln s). Then s, 1 ≤ s ≤ n, would contribute f(s)/(ln s) to

the sum, and
∑

p≤n f(p) would be roughly
∑

s≤n f(s)/(ln s). This is

not a proof: integers are either prime or they are not, yet surprisingly

we can often get this intuitive result. The key is called telescoping.

4Again, from calculus!
5A subtle wrinkle here: while we examine the behavior as K → ∞, we select K

a constant, dependent only on c.
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We write

(9.35)
∑
p≤n

f(p) =

n∑
s=2

f(s)(π(s)− π(s− 1)).

Reversing sums (and noting π(1) = 0),

(9.36)
n∑

s=2

f(s)(π(s)−π(s−1)) = f(n)π(n)+
n−1∑
s=2

π(s)(f(s)−f(s+1)).

While (9.36) is correct, its effectiveness depends on our ability to

asymptotically calculate the sum. An important success is when

f(s) = 1
s , we ask for the asymptotics of

(9.37) F (n) =
∑
p≤n

1

p
.

The first term of (9.36) is then ∼ 1
n

n
lnn = o(1). The sum is

asymptotically
∑

s
ln s

1
s(s+1) ∼

∑
1

s ln s , the sum from s = 2 to n − 1.

From Chapter 4,

(9.38)

n−1∑
s=2

1

s ln s
∼

∫ n

2

dx

x lnx
∼ ln lnn.

That is, F (n) ∼ ln lnn, strengthening Theorem 0.2. For another

example, take f(s) = s so that F (n) =
∑

p≤n p. Then

(9.39) F (n) = nπ(n)−
n−1∑
s=2

π(s) ∼ n2

lnn
−

∫ n−1

2

s

ln s
ds.

This integral was handled in Chapter 3 where it is shown in (3.44) to

be ∼ n2

2 lnn . Thus F (n) ∼ n2

2 lnn .

                

                                                                                                               



Chapter 10

Asymptotic Geometry

Who could ever calculate the path of a molecule?

How do we know that the creations of worlds are

not determined by falling grains of sand?

— Victor Hugo, Les Misérables

The beauty of geometry lies in its precision: the square of the hy-

potenuse is the sum of the squares of the other two sides. Asymptopia

is a universe of approximation, of sometimes quite coarse estimates.

Asymptotic geometry is a meld.

10.1. Small Triangles

Let P,Q,R be independently and uniformly selected in the unit square

[0, 1]2. Let μ(PQR) denote the area of the triangle PQR. For ε > 0

define

(10.1) f(ε) = Pr[μ(PQR) ≤ ε].

A precise formula for f(ε) would be quite challenging. Here we search

for the asymptotics of f(ε) as ε approaches zero. Of course, f(ε) will

approach zero. But at what rate? Is it order of ε, of ε2, of ε ln(ε−1)?

We shall show

125
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Theorem 10.1. The probability that the area of the triangle PQR is

less than ε is approximately ε:

(10.2) f(ε) = Θ(ε).

We will not attempt to get the right constant. This allows us to

be quite cavalier with constant factors.

10.1.1. The Upper Bound. First we select P uniformly. Now we

select Q and consider the distance |PQ|. The probability that the

distance is between r and r + Δr is at most π(r + Δr)2 − πr2, the

area of the annulus around P . (It might be less as some of the annulus

might lie outside the unit square.) Thus the density function for r is

at most 2πr · dr. Further 0 ≤ r ≤
√
2 tautologically.

We now condition on |PQ| = r and ask when can R be so that

μ(PQR) ≤ ε? The altitude from R to PQmust be at most 2ε
r . Extend

the line PQ in both directions and create a band with width 4ε
r , from

2ε
r above the line PQ to 2ε

r below the line PQ. The intersection of

the band with the square can be at most
√
2 long and so its area is

at most 4
√
2ε

r .

P
Q

R

2ε
r

2ε
r

Figure 1. Extending the line PQ and creating bands above
and below it.

This gives an upper bound on the probability. Thus

(10.3) f(ε) ≤
∫ √

2

0

4
√
2ε

r
2πr · dr = 16π

√
2ε.
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10.1.2. The Lower Bound. Let us try to use the ideas of the upper

bound argument, turned around to give a lower bound of the same

order of magnitude. (This does not always work. Indeed, sometimes

when it does not work despite your best efforts, it is an indication

that your upper bound is too coarse.) To avoid edge effects, let us

select P in the disk of radius .01 around the center (.5, .5). This gives

a factor 10−4π, which is not a problem since we are not worrying

about constants. Now select Q in the disk of radius .01 around P .

Another constant factor of 10−4π. As P,Q are both near the center,

the line PQ, when extended to the edges of the square, has length

at least 1. As |PQ| ≤ 0.01, the band has width 4ε/|PQ| ≥ 400ε,

so (as we are dealing with a lower bound) replace it with a band of

width 400ε. Now the area of the intersection of the band with the

square is at least 400ε. (When ε is large, this will not make sense,

as then the band would be largely outside the square; however, as

ε → 0, it is correct.) Thus the probability of R being in the band,

so that μ(PQR) ≤ ε, is at least 400ε. The total lower bound is then

(10−4π)2 · 400ε. The constants are ridiculously small (surely you can

do better!), but it is Ω(ε).

10.1.3. The Heilbronn Triangle Problem. Here is a beautiful

question due to the mathematician Hans Heilbronn that remains sub-

stantially open. Let S = {P1, . . . , Pn} be a set of n vertices in the

unit square. For each three P,Q,R ∈ S, let μ(PQR) denote the

area of triangle PQR, considered zero if P,Q,R are collinear. Let

m(S) denote the minimum such area, that is, the minμ(PQR) over

all P,Q,R ∈ S. Heilbronn asked how large this can be?

That is, defining

(10.4) Δ(n) = min
S

μ(S),

where S ranges over all n-sets, what can one say asymptotically about

Δ(n)?

So far not very much! But let’s combine asymptotic geometry

and Erdős Magic to get a lower bound. That is, we want to “find” n

vertices where all of the triangles have area at least ε, where we make

ε as large as we can.
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For now, let ε be a parameter. We call triangle PQR large if

its area is at least ε. We will pick points Pi at random in the unit

square. Instead of selecting n vertices (which is what we want in

the end), we shall select some m ≥ n vertices at random and set

S+ = {P1, . . . , Pm}. For each small triangle PiPjPk, we shall delete

one of the vertices. There are
(
m
3

)
≤ m3/6 triples P,Q,R ∈ S+, and

each (using the upper bound above) is large with probability at most

16π
√
2ε. Removing one vertex from each large triangle giving a set S.

Tautologically, S has no large triangle. We want S to have at least n

points. We started with m points and removed an expected number

≤ m3(8π
√
2/3)ε vertices. (Some vertices may have been removed

more than once but that is only in our favor.) The expected number

of vertices remaining is then at least f(m), where

(10.5) f(m) = m−m3(8π
√
2/3)ε = m− cm3ε

and c = 8
3π

√
2.

We want |S| ≥ n. This gives an asymptotic calculus problem:

What (as an asymptotic function of n) is the largest ε such that

f(m) ≥ n for some m? Given ε, f(m) hits a minimum when f ′(m) =

1 − 3cm2ε = 0, when m = (3c)−1/2ε−1/2. (There are some technical

issues as m is not necessarily integral. As n is large and m ≥ n, it

is not hard to show that taking the nearest integer to m above has

negligible effect.) At the minimum f(m) = 2m/3, so now f(m) =
2
3 (3c)

−1/2ε−1/2. We want to take n so that f(m) = n. Reversing the

function, we find ε = c1n
−2 with c1 an absolute (though quite small!)

constant. Looking back, we start with m = 3m
2 vertices and select ε

so that there are at most n
2 small triangles. We have shown

Theorem 10.2. The minimum area over the n-sets is at least n−2:

(10.6) Δ(n) ≥ c1n
−2.

How close is this to the actual answer? Using quite sophisti-

cated techniques, mathematicians Miklós Ajtai, János Komlós, and

Endre Szemerédi were able to improve this to Δ(n) ≥ c2n
−2 lnn in

[AKS83]. But the best known upper bound is roughly on the order

n−8/7. So the gap is quite large!
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10.2. The Convex Hull of n Random Points

Let Ω denote the unit disk, centered at the origin, inR2. Let P1,. . . ,Pn

be n vertices selected uniformly and independently from Ω. Consider

the convex hull of those n points. By a vertex on the convex hull, we

refer to it being on the boundary of it, and by a vertex in the convex

hull, we imply that it is in the interior of it. We are now interested

in the following question:

On average, how many vertices will be on that convex hull?

A

B

Figure 2. The convex hull of points in the plane. Point A is
on the convex hull, while point B is in the convex hull.

We let An denote the expected number of vertices on the convex

hull. A moment’s reflection convinces one that the points on the

convex hull are highly likely to be near the border of Ω, and so most

of the n points will not be on the convex hull. It should not be

surprising that An = o(n). But what is the order of An? Is it ln(n)?

n ln−10 n? n1/4? We shall see in this section that

(10.7) An = Θ(n1/3).
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For convenience let us relabel the vertices P, P1, . . . , Pn−1. Let Bn

denote the event that P is a vertex on the convex hull. Equivalently,

Bn is the event that P is not on the convex hull of P1, . . . , Pn−1. As

all vertices have the same probability for being a vertex on the convex

hull

(10.8) An = nPr[Bn].

We first select P . From the symmetry of Ω, the only important aspect

about P is its distance, call it R, from the origin. As P is selected

uniformly, we have Pr[R ≤ r] = r2 for r ∈ [0, 1], and hence R has

density function 2r, r ∈ [0, 1]. Let Bn,r be the event Bn conditional

on P being distance r from the origin. Thus

(10.9) Pr[Bn] =

∫ 1

0

Pr[Bn,r]2rdr.

Still, finding Pr[Bn,r] looks to be (and is!) a fearsome task. We

approach it by giving ground. Let L be that line through P perperdic-

ular to the line from P to the origin. L splits Ω into two parts; let

SP denote the smaller part.

SP

O

Figure 3. Visualizing SP

Call P extremal if none of the P1, . . . , Pn−1 lie in SP , and let Cn,r

be the event that P is extremal. An extremal point will necessarily

lie on the convex hull. Thus Pr[Bn,r] ≥ Pr[Cn,r], and so finding the

asymptotics of Pr[Cn,r] will give us a lower bound on Pr[Bn,r] and

thence An.

• Seemingly intractible calculations can be approached asymp-

totically by giving ground. The art lies in finding the right

way to give ground so that the problem is now tractible and

that not too much ground has been given.
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10.2.1. The Lower Bound. What is Pr[Cn,r]? Let g(r) denote the

area of SP as defined above. As Ω has area π, each Pi has probability

g(r)/π of being in SP . As the Pi are chosen independently,

(10.10) Pr[Cn,r] =

(
1− g(r)

π

)n−1

.

Thus we have the exact formula

(10.11) Pr[Cn] =

∫ 1

0

(
1− g(r)

π

)n−1

2rdr.

Our rough discussion led us to believe that only points near the

boundary would contribute significantly to An. This corresponds to

values of r near one. We reparametrize by setting 1 − r = s and

h(s) = g(1− s) so that

(10.12) Pr[Cn] =

∫ 1

0

(1− h(s)

π
)n−12(1− s)ds.

To find h(s), it is convenient to assume (by symmetry) that P =

(0, s− 1) so that we have the exact formula

(10.13) h(s) =

∫ +
√
2s−s2

−
√
2s−s2

[s+
√

1− x2 − 1]dx.

This integral can be evaluated exactly, but that is not our style.

Rather, we consider the asymptotics of h(s) for s small. Consider

the rectangle bounded by x = ±
√
2s− s2, y = s − 1 and y = −1

crossed by the unit circle. We may then visualize h(s) as that area

of the rectangle above the unit circle. The entire rectangle has area

2s
√
2s− s2 ∼ 2

√
2s3/2. The circle in this tiny region is effectively a

parabola! (See Figure 4.)

That is, 1−
√
1− x2 ∼ 1

2x
2 as s, and hence x, is small. The limits

of integration are ∼ ±
√
2s. The area under the circle is then given

asymptotically by

(10.14) =

∫ +
√
2s−s2

−
√
2s−s2

[1−
√

1− x2]dx ∼
∫ +

√
2s

−
√
2s

1

2
x2dx =

4

3
s3/2.

We therefore have

(10.15) h(s) ∼ Ks3/2 with K = 2
√
2− 4

3
.
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Figure 4. The circle is nearly a parabola for s = 0.1!

At this stage we can find the correct scaling for s. The key term in

(10.12) is (1 − π−1h(s))n−1. This is a decreasing function in h(s).

When h(s) � n−1, the term is asymptotically one, and when h(s) �
n−1, the term is asymptotically zero. The “critical region” is when

h(s) is of the order n−1. Now looking at (10.15), this will occur when

s is of the order n−2/3. We are therefore led to the scaling

(10.16) s = zn−2/3.

(Note that the constants π,K do not affect the choice of scaling,

though they do affect the constants in our answer below.) For z

constant, h(s) ∼ Kz3/2n−1 so that

(10.17) (1− h(s)

π
)n−1 ∼ e−(K/π)z3/2

.

We make the change of variables (10.16) in (10.12), noting that

2(1− s) ∼ 2 when s is small, giving

(10.18) Pr[Cn] ∼ 2n−2/3

∫ ∞

0

e−(K/π)z3/2

dz.

The integral converges and so Pr[Cn] = Θ(n−2/3), and we find the

lower bound

(10.19) An = Ω(n1/3).

Formal Justification of (10.19). As the particular constants do not

concern us, we only need to show Pr[Cn] ≥ (c + o(1))n2/3 for some
                

                                                                                                               



10.2. The Convex Hull of n Random Points 133

(small) positive constant c. Since we only need the lower bound, let’s

restrict the region to 0 ≤ z ≤ 1. We then have the precise lower

bound

(10.20) Pr[Cn] ≥ n−2/3

∫ 1

0

(1− h(zn−2/3)

π
)n−12(1− zn−2/3)dz.

For n large, 2(1− zn−2/3) ≥ 1 (say) for all z ∈ [0, 1] so

(10.21)

Pr[Cn] ≥ n−2/3

∫ 1

0

gn(z)dz with gn(z) = (1− h(zn−2/3)

π
)n−1.

For any fixed z, gn(z) → exp[−(K/π)z3/2] and 0 ≤ gn(z) ≤ 1 tauto-

logically. Hence

(10.22)

∫ 1

0

gn(z)dz →
∫ 1

0

e−(K/π)z3/2dz,

which is a positive constant.

10.2.2. The Upper Bound. (Note: This section gets quite tech-

nical and should be considered optional.)

• Examination of lower bound arguments can provide vital

clues toward upper bound arguments, and vice versa.

Our goal is now to show An = O(n1/3) for which we need Pr[Bn]=

O(n−2/3), where Pr[Bn] is given by (10.9) or, equivalently,

(10.23) Pr[Bn] = n−2/3

∫ n2/3

0

Pr[Bn,1−zn−2/3 ]2(1− zn−2/3)dz,

using the parametrization r = 1− s with s = zn−2/3.

• Chip away at the easy regions using crude bounds.

Suppose P is very close to the boundary. There let us simply

bound Pr[Bn,r] ≤ 1. Effectively, we place all points near the boundary

in the upper bound for the convex hull. Consider, say, the region

0 ≤ z ≤ 100. The contribution to (10.23) of that region is that

bounded by n−2/3
∫ 100

0
2dz = 200z−2/3. As our goal is an overall

bound of O(n−2/3), this is an acceptable amount.

Suppose P is fairly far from the boundary. Let O1, O2, O3 be

three points at distance s
2 with all angles OiPOj being 120 degrees.
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O O1O2

O3

P

Figure 5. Visualizing the upper bound argument

Let D1, D2, D3 be disks with centers O1, O2, O3, respectively, with

radius, say, s
10 . (See Figure 5.)

These disks then lie entirely inside Ω. For any choice of points

Q1 ∈ D1, Q2 ∈ D2, Q3 ∈ D3, P will lie inside the triangle Q1Q2Q3.

Thus for P to not be in the convex hull of P1, . . . , Pn−1, one of the

D1, D2, D3 would have to have none of the P1, . . . , Pn−1. Therefore,

we can bound Pr[Bn,r] from above by 3(1 − s2

100 )
n−1. Suppose s ≥

n−0.49. This bound would then be exp[−Ω(n0.02)], so the contribution

to (10.23) would be o(n−2/3) by a wide margin.

We are left with the “difficult” range 100n−2/3 ≤ s ≤ n−0.49 or,

equivalently, 100 ≤ z ≤ n
2
3−0.49. We know from our lower bound

arguments (especially (10.17)) that SP is very likely to have one of

the Pi. Indeed, it is very likely to have several of the Pi. Our idea is

that if SP contains a Pi to the “left” of P and a Pj to the “right” of

P , then the line segment PiPj will “undercut” P and then P would

be very likely to lie in the convex hull of the P1, . . . , Pn−1. Here is

one argument (out of many) that makes this explicit.

Recall we are asumming P = (0, s − 1) with s = zn−2/3. As

s = o(1), we note
√
2s− s2 ∼

√
2s. Let R1 denote the rectangle with

width 1
5

√
2s, height 1

5s, and center (− 1
2

√
2s, 1

2s − 1). Let R2 denote

the rectangle of the same dimensions with center (+ 1
2

√
2s, 1

2s−1). Let
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Q1 be any point in R1. The line Q1P would then be nearly horizontal

and so, when continued beyond P , would intersect the unit circle at

(x, y) with y very close to −1, certainly y ≤ 0. Similarly, let Q2 be

any point in R2. The line Q2P , when continued beyond P , would

intersect the unit circle at (x, y) with y ≤ 0. Thus if Q3 is any point

with y ≥ 0, the triangle Q1Q2Q3 would contain P . Therefore, the

probability that P is not in the convex hull of P1, . . . , Pn−1 is at

most the probability that either R1 or R2 or the semicircle y ≥ 0

have none of the P1, . . . , Pn−1. R1 has none of these points with

probability (1−Ks3/2)n−1 where K = 1
25

√
2. The same holds for R2.

The semicircle has half the area, so the probability that it contains

none of the Pi is exceptionally small, 21−n, certainly smaller than the

probability R1 contains none of those points. Thus,

(10.24) Pr[Bn,r] ≤ 3(1−Ks3/2)n−1 ≤ 3e−Kz3/2 n−1
n .

Annoyingly, though not atypically, the term n−1
n is not quite one. An

easy way out is to assume n ≥ 2 (we could even assume n ≥ 1010 if

we wished as our object is the asymptotics of An) so that n−1
n ≥ 1

2 .

Set K ′ = K
2 . Then

(10.25) Pr[Bn,r] ≤ 3e−K′z3/2

.

The contribution to (10.23) of this intermediate region is therefore at

most

(10.26) n−2/3

∫ ∞

z=100

3e−K′z3/2

dz = O(n−2/3),

as the integral is finite. The total of the three contributions to (10.23)

is therefore O(n−2/3), and so the expected number of vertices on the

convex hull is O(n1/3).

• Ugly proofs can be cleaned up.

Were all of the above arguments necessary? Not really. The argument

for intermediate points can be applied directly to those points near

the boundary. Indeed, with a bit more care, these arguments can be

applied to points far from the boundary. It is important and proper

to clean up a proof. But the first thing is to get a proof, and the

clearing out of easy cases is often very helpful in that pursuit.

                

                                                                                                               



Chapter 11

Algorithms

If creativity were anything but random, someone

would have figured out the algorithm by now.

– Scott Adams, Dilbert

Asymptopia is a natural setting in which to study the running

times of algorithms. One describes running times of algorithms as

O(n2) or Θ(n) or the ubiquitous O(n lnn). Generally, one has an

algorithm with a parameter n (for example, sorting n objects), and

one wants the time as a function of n. Moreover,1 the interest is

not in a particular n but in the rate of growth of the time as n

grows. Time is an elusive concept; some computers are faster than

others. One instead would like to count steps, but that is elusive as

well. Whether a command such as X ← X + 1 should be counted as

one or two steps is uncertain. Employing the O, o,Θ, . . . language of

Chapter 2 allows one to sweep the constants under the rug.

11.1. Recurrences

Let a, b be positive integers. Let f be a nonnegative function on the

integers. Let c (less important) be a nonnegative integer. We examine

the recurrence

(11.1) T (n) = aT (n/b) + f(n) with initial condition T (1) = c.

1at least on the theoretical side!
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138 11. Algorithms

In applications, T (n) will be the running time of an algorithm. The

algorithm will be recursive, calling itself a times on data with param-

eter n/b. Further there will be other steps taking time f(n). We refer

to f(n) as the overhead. We assume f(n) ≥ 0. To avoid trivialities,

we shall assume that either the initial value c or the overhead func-

tion f(n) is not always zero. To avoid floors and ceilings, we will,

for the moment, restrict n to be a power of b, n = bs. T (n) is then

determined. Increasing the overhead function f(n) can only increase

the time function T (n), but the relationship between the asymptotics

of f(n) and the asymptotics of T (n) is an unexpected one.

A basic, and instructive, case is given by zero overhead. Consider

the recurrence

(11.2) T (n) = aT (n/b) with initial condition T (1) = 1.

Now T (b) = aT (1) = a, T (b2) = aT (b) = a2, and, in general, T (bs) =

as. What is T (n)? With n = bs,

(11.3) as = (blogb a)s = (bs)logb a = nγ ,

where we set

(11.4) γ = logb a.

In some instances γ has a nice value. The recurrence T (n) = 4T (n/2)

with T (1) = 1 has solution T (n) = n2. The recurrence T (n) =

2T (n/2) with T (1) = 1 has solution T (n) = n. In other instances

γ will be a not so nice real number. Note, though, that it will be a

constant, independent of n.

Adding overhead f(n) will increase T (n). We analyze the general

(11.1) by comparing T (n) to the zero overhead solution (11.3). To

that end we parametrize

(11.5) S(n) =
T (n)

nγ
.

Dividing (11.1) by nγ gives

(11.6)
T (n)

nγ
= a

T (n/b)

nγ
+

f(n)

nγ
.
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The left-hand side is simply S(n). This special value of γ has bγ = a

so that

(11.7) S(n/b) =
T (n/b)

(n/b)γ
=

T (n/b)

anγ
,

and hence S(n/b) = aT (n/b)n−γ . In terms of S(n), (11.6) becomes

(11.8) S(n) = S(n/b) + f(n)n−γ with initial condition S(1) = c.

Now we define

(11.9) g(n) = f(n)n−γ

and call g(n) the normalized overhead. When n = bs,

(11.10) S(n) =

b−1∑
i=0

g(nb−i) + c

so that

(11.11) T (n) = nγ

[
s−1∑
i=0

g(nb−i) + c

]
.

With important exceptions, the exact formula (11.11) is difficult to

use because of the difficulty in evaluating the sum. In Asymptopia,

however, sums are often approximated by their largest term. This de-

pends on whether the normalized overhead is increasing or decreasing.

Theorem 11.1. Let T (n) be given by recursion (11.1) with γ and the

normalized overhead g(n) defined by (11.4) and (11.9), respectively.

(1) If
∑∞

j=0 g(b
j) is finite, then S(n) = Θ(1) and T (n) = Θ(nγ).

We call this the low overhead regime. In particular, if there

exists a positive ε > 0 such that g(n) = O(n−ε), then T (n) =

Θ(nγ).

(2) If g(n) = Θ(1), then S(n) = Θ(lnn) and T (n) = Θ(nγ lnn).

We call this the just right overhead regime.

(3) If there exists a positive ε > 0 such that g(n) ≥ (1+ε)g(n/b)

for all sufficiently large n, then T (n) = Θ(f(n)). We call

this the high overhead regime.

Theorem 11.1 is strikingly simple to apply. If we are in the low

overhead regime (for example, f(n) = nγ−κ for some positive κ),
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then the solution, up to constant factor, is the same as if we had no

overhead at all. If we are in the high overhead regime (for example,

f(n) = nγ+κ for some positive κ), then the solution, up to constant

factor, is the overhead. If we are in the just right overhead regime

(for example, f(n) = nγ), the process is more delicate and T (n) has

an extra logarithmic factor above the zero overhead case. There are

examples of f(n) which do not fall into any of these three regimes,

but they are relatively rare. Examples of the high overhead regime

generally lead to algorithms with poor running time and so are rarely

considered. Our examples will come from the low overhead and just

right overhead regimes.

In all three cases the arguments follow quickly from (11.10). In

the low overhead case
∑b−1

i=0 g(nb
−i) ≤

∑∞
j=1 g(b

j) which is finite

so S(n) is bounded. Effectively, g(b) is a positive proportion of the

sum. In the high overhead case
∑s−1

i=0 g(nb−i) is between g(n) and

g(n)(1 + ε)/ε, and so is Θ(g(n)). Effectively, g(n) is a positive pro-

portion of the sum. In the just right overhead case, all g(nb−s) =

Θ(1). There are s = logb n = Θ(lnn) terms (as b is a constant), so∑s−1
i=0 g(nb−i) = Θ(lnn). Effectively, all g(nb−i) contribute to the

sum.

What happens when n is not a power of b? Often times in a

recursive algorithm one splits n into b parts which are all either �n/b�
or 
n/b�. Suppose that in the recursion (11.1), the aT (n/b) addend

was replaced by any value between aT (�n/b�) and aT (�n/b�). For

example, we might have the recursion T (n) = T (�n/2�)+T (
n/2�)+
n. When n = bs, we would get the solution of Theorem 11.1. The

function T (n), by a simple inductive argument, will be nondecreasing.

Thus when bs−1 ≤ n ≤ bs, we bound T (bs−1) ≤ T (n) ≤ T (bs).

In all cases of interest to us, the application of Theorem 11.1 will

give T (n) = Θ(h(n)) for some h(n) = nα lnβ n. As b is a constant,

h(bs−1), h(n), h(bs) all lie within constants of each other. T (n) is then

sandwiched, and T (n) = Θ(h(n)) as well.
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11.2. Multiplying Large Numbers

We are given two large numbers x, y < 2n, so that each has n or fewer

binary2 digits. We wish to find the product z = xy. We assume that

multiplication of single digit numbers each take one step. We also

assume that addition and subtraction of single digit numbers takes

one step. From that, addition and subtraction of two n digit numbers

takes O(n) steps. (There is “carrying” in addition and “borrowing”

in subtraction, but to ease the presentation we will assume that these

operations are free.) We also assume that any multiplication of the

form w2s is free. (Effectively it consists of moving the string w to the

left s places.)

We all learned multiplication at a young age. Each digit in x is

multiplied by each digit in y. This is O(n2) multiplications. Then we

must add n numbers, each with n digits, which give O(n2) additions.

The total number of steps is O(n2).

Surprisingly, there is a faster algorithm! We give Karatsuba’s

algorithm from [KO], which, while not the fastest way3 to multiply

large numbers, well illustrates the use of recurrences. Assume that

n is a power of two. Considering x as a string of length n (possibly

with zeroes on the left), split the string in half, giving values xL, xR

each of n/2 digits. (For example, when x = 11000111, xL = 1100,

xR = 0111.) Similarly, split y into yL, yR. Then

(11.12) x = 2n/2xL + xR and y = 2n/2yL + yR.

Karatsuba’s Algorithm.

(1) Compute xLyL.

(2) Compute xRyR.

(3) (!) Add xL + xR.

(4) (!) Add yL + yR.

(5) (!!) Compute (xL + xR)(yL + yR).

2Other bases are similar.
3The fastest algorithm is known as the fast Fourier transform and takes time

O(n lnn).
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(6) Subtract the first two products giving

(11.13) (xL + xR)(yL + yR)− xLyL − xRyR = xLyR + xRyL.

(7) Multiply by 2n, 2n/2 and add to give

(11.14) z = xy = xLyL2
n + (xLyR + xRyL)2

n/2 + xLxR.

Karatsuba’s algorithm is a recursive algorithm: the computations

of products (other than by powers of two, which are free) are done

recursively. Let T (n) denote the total number of steps. The first

two parts are products of n/2-digit numbers, and so each takes time

T (n/2). The additions in parts (3) and (4) each take O(n). Part (5)

has a technical aspect in that the sums may have n
2 + 1 digits. In

that case (other cases are easier) express xL + xR = 2n/2 + v and

yL + yR = 2n/2 + w. Their product is then 2n + 2n/2(v + w) + vw.

The product vw is done recursively, taking T (n/2) steps. The sums

each take O(n) steps, so the total is T (n/2) + O(n) steps. The two

subtractions in part (6) each take O(n) steps. The two additions in

part (7) each take O(n) steps. All the O(n) terms add to O(n). There

were three (parts (1), (2), and (5)) recursive calls to Karatsuba’s

algorithm, taking 3T (n/2) steps. The recursion is then

(11.15) T (n) = 3T (n/2) +O(n).

The initial value T (1) = 1 does not affect the result. Recursion (11.15)

is in the low overhead regime of Theorem 11.1. Thus

(11.16) T (n) = O(nγ) with γ = log2 3 = 1.5850 · · · .

11.3. Multiplying Large Matrices

We are given two large square matrices A,B, of the same size n by

n. We wish to find the product C = AB. We assume that addition,

multiplication, and subtraction of real numbers each take one step.

We all know how to multiply matrices. Each value of C is deter-

mined by the addition of n numbers, each given by a multiplication.

There are n2 entries and therefore O(n3) steps.

Surprisingly, there is a faster algorithm—the Strassen algorithm

from [Str69]. Assume that n is a power of two. (When 2s−1 < n ≤ 2s,

we can pad A,B with zeroes and this will not affect the asymptotic
                

                                                                                                               



11.3. Multiplying Large Matrices 143

result.) Split each matrix into four equal parts and multiply them

accordingly.

Thus, let

A =

(
A11 A12

A21 A22

)
,

B =

(
B11 B12

B21 B22

)
,

and

C =

(
C11 C12

C21 C22

)
.

Now, of course,

C11 = A11B11 + A12B21,

C12 = A11B12 + A12B22,

C21 = A21B11 + A22B21,

C22 = A21B12 + A22B22.

To speed up computation, we define4 the following:

X1 = (A11 +A22)(B11 +B22),

X2 = (A21 +A22)B11,

X3 = A11(B12 −B22),

X4 = A22(B21 −B11),

X5 = (A11 +A12)B22,

X6 = (A21 −A11)(B11 +B12),

X7 = (A12 −A22)(B21 +B22).

Now we notice that we can compute the matrix C faster:

C11 = X1 +X4 −X5 +X7,

C12 = X3 +X5,

C21 = X2 +X4,

C22 = X1 −X2 +X3 +X6.

The number of operations required for this algorithm is

(11.17) T (n) = 7T (n/2) +O(n2).

4No, it is not at all obvious why these Xi are so defined—except that it works!
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The first term represents the time needed to compute X1, . . . , X7,

which all involve multiplying matrices of size (n/2)× (n/2), and the

second term represents the additions required for each application of

the algorithm.

Recursion (11.17) is in the low overhead regime of Theorem 11.1.

Thus

(11.18) T (n) = O(nlog2 7).

11.4. Merge Sort

Sorting is both immensely practical and mathematically fascinating.

The input is n real numbers x1, . . . , xn. The output is an array of

the same n numbers but in increasing order. We take as the basic

step a comparison, determining which of xi, xj is smaller. Given an

algorithm for sorting n numbers, T (n) will denote the number of

such comparisons made. A cautionary note: this does not always

correspond to the time when the algorithm is implemented.

The heart of the Merge Sort algorithm is a merge algorithm. Here

the input is two arrays y1, . . . , ym and z1, . . . , zm which are already

sorted. That is, we assume y1 ≤ y2 ≤ · · · ≤ ym and z1 ≤ z2 ≤
· · · ≤ zm. The output is an array w1 ≤ w2 ≤ · · · ≤ w2m of these

2m numbers in increasing order. The merge algorithm takes at most

2m− 1 comparisons:

• Compare the smallest elements of the two arrays, y1, z1.

• Make the smallest w1 and remove it from its array.

• Iterate.

We always take the smaller of the smallest elements from the

remaining arrays and add it to the merged array, deleting it from its

own array. When one array becomes empty, the remaining elements

of the other array are added to the merged array. In the worst case

this occurs when y1, . . . , ym−1 and z1, . . . , zm−1 have been placed in

the merged array and then ym, zm are compared. Each comparison

adds one element to the merged array, and the last element is free so

the number of comparisons is at most 2m− 1.
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We define the Merge Sort when n = 2t. The initial case is t = 0,

n = 1, which requires zero comparisons. The input is a sequence

x1, . . . , xn in arbitrary order.

Merge Sort.

(1) Sort x1, . . . , xn/2 giving y1 ≤ · · · ≤ yn/2.

(2) Sort xn/2+1, . . . , xn giving z1 ≤ · · · ≤ zn/2.

(3) Merge y1, . . . , yn/2, z1 ≤ · · · zn/2 giving w1 ≤ · · · ≤ wn.

(4) Output w1 ≤ · · · ≤ wn.

Merge Sort is a recursive algorithm; the sorting in parts one and

two are done recursively. Let T (n) denote the total number of com-

parisons. The first two parts each take T (n/2) comparisons. Part

(3), the merge, takes 2n− 1 comparisons. Thus

(11.19) T (n) = 2T (n/2) + n− 1

with initial value T (1) = 0. Recursion (11.19) is in the just right

overhead regime of Theorem 11.1. Thus

(11.20) T (n) = O(n lnn).

Following the proof of Theorem 11.1 gives a more precise result.

As log2 2 = 1, we set S(n) = T (n)/n so that (11.19) becomes

(11.21) S(n) = S(n/2) + 1− 1

n
with S(1) = 0,

and (with n = 2t)

(11.22) T (n) = nS(n) = n

t∑
j=1

(1− 2−j).

The ones sum to t = lg n. The 2−j sum to 1− 2−t = 1− n−1. Thus

(11.23) T (n) = n lg n− n+ 1.

11.5. The Sorting Game

Paul and Carole5 play a mathematical game with parameters n, q.

Carole selects n distinct real numbers x1, . . . , xn. There are q rounds.

Each round Paul selects i, j and asks if xi < xj . Paul wins if at the

5anagram of Oracle!
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end of the q rounds he knows the order of the x1, . . . , xn. The values

n, q are known to both Paul and Carole. The actual values x1, . . . , xn

are immaterial, only their order is pertinent.

Carole, however, does not actually select the order in advance.

Rather, she plays what is called an adversary strategy. She answers

each question in a way that will best thwart Paul. Now the Sorting

Game is a perfect information game. There are no draws so that with

perfect play (for a given n, q) either Paul or Carole will win always.

Consider first a mathematical variant of the popular game Twenty

Questions. Carole thinks of an integer x from 1 to n. There are q

rounds. Each round Paul asks any Yes/No question about x. Paul

wins if at the end of the q rounds he knows the number x. This game

has a precise solution. If n ≤ 2q, then Paul has a strategy that wins.

Each round he asks a question that splits the remaining possibilities

as evenly as possible. After q rounds, regardless of Carole’s responses,

there can be only one possibility x remaining. If n > 2q, then Carole

has an adversary strategy that wins. At the beginning of each round,

there is a set S of answers x that are still possible. Paul’s question

partitions S into SY , SN , where SY is the set of x ∈ S for which the

answer would be Yes, and SN the set of x ∈ S for which the answer

would be No. If |SY | ≥ |SN | Carole responds Yes, otherwise Carole

responds no. After each round, regardless of Paul’s question, at least

half of the x that were in S are still in S. After q rounds at least 2−q

of the x that were originally in S are still in S. The original S had

size n so the final size has size at least n2−q. With n2−q > 1 the final

S has at least two x and so Carole has won.

The adversary strategy used by Carole in Twenty Questions car-

ries over6 to the Sorting Game. At the beginning of each round, S is

the set of orderings σ so that xσ(1) ≤ · · · ≤ xσ(n) is still viable—that

is, that σ agrees with all previous questions and answers. As with

Twenty Questions, Paul’s question partitions S into SY , SN , where

SY is the set of x ∈ S for which the answer would be Yes, and SN the

set of x ∈ S for which the answer would be No. If |SY | ≥ |SN | Car-
ole responds Yes; otherwise, Carole responds No. After each round,

6Indeed, in any game in which Paul is to determine one of m possibilities via
Yes/No questions, he needs at least 	lgm
 questions. This is frequently referred to as
the information-theoretic lower bound .
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regardless of Paul’s question, at least half of the x that were in S are

still in S. After q rounds at least 2−q of the σ that were originally in

S are still in S. The original S had size n!, so the final size has size

at least n!2−q. With n!2−q > 1, the final S has at least two x, and so

Carole has won.

Let T (n) be the minimal q for which Paul wins the Sorting Game

with parameters n, q. We think of T (n) as the smallest number of

comparisons needed to sort n objects. The adversary Carole is a

personification of worst case. For Paul to win, Carole cannot win and

so it is necessary that n!2−q ≤ 1. Hence,

Theorem 11.2. T (n) ≥ 
lg(n!)�.

In Twenty Questions, Paul could always find a question that

would split S into two equal (or off by one when |S| was odd) parts.
In the Sorting Game, however, Paul’s questions are more restrictive.

For a given set S of σ there might not be a question of the form “Is

xi < xj?” that evenly splits S. Instead, we give a strategy for Paul

that gives an upper bound on T (n).

The strategy, or algorithm if you will, is called Insertion Sort .

The values are y1, . . . , ym−1 and z. Paul knows at the outset that

y1 ≤ y2 ≤ · · · ≤ ym−1. His goal is to order y1, . . . , ym−1 and z.

Equivalently, his goal is to place z into the ordering. The Insertion

algorithm takes 
log2 m� comparisons. Suppose m = 2t. Paul com-

pares z to the median of the y’s. If Carole says z is smaller, then

Paul needs to place z in the ordering of the first (m/2) − 1 values

yi. If Carole says z is bigger, then Paul needs to place z in the or-

dering of the last (m/2) − 1 values yi. Either way, Paul has halved

the possible places for z so that with t comparisons the place for z is

determined. For other m Paul can still employ this median strategy,

choosing either of the two medians when there are an even number

of y’s.

The Insertion Sort begins with y1, . . . , yn in arbitrary order. For

j = 2 to n the Insertion Algorithm is applied to y1, . . . , yj−1 and yj ,

rearranging so that now y1 ≤ · · · ≤ yj .

The j-th step takes 
lg j� steps. Hence

Theorem 11.3. T (n) ≤
∑n

j=2
lg(j)�.
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As 
lg(j)� < lg(j) + 1, we can combine bounds to give

Theorem 11.4. lg(n!) ≤ T (n) ≤ lg(n!) + n− 1.

Or, in the language of Asymptopia, T (n) = lg(n!) +O(n).

Caution: Our definition of step does not always correspond to time

when the algorithm is implemented. Merge Sort can be efficiently

implemented and is an O(n lnn) algorithm for sorting. Insertion Sort,

however, does not have an efficient implementation.

11.6. Quicksort

Quicksort is a popular sorting algorithm, easy to implement and inter-

esting to analyze. Like its cousin Merge Sort, Quicksort is a recursive

algorithm, splitting the objects into two groups. Let S be the set

of objects to be sorted. When S has zero or one elements, there is

nothing to do. Otherwise, an element x ∈ S, called the pivot, is se-

lected. x is compared to all other y ∈ S. These comparisons partition

S − {x} into L, those y < x, and R, those y > x. The two groups

L,R are then sorted recursively. This gives the full ordering of S as

all elements in L are to the left of x which is to the left of all elements

of R.

The efficiency of Quicksort depends on the position of the pivot.

A pivot x near the middle of S is best as then L,R will be around

half the size of S. We select the pivot x randomly from S. Now

Quicksort is a randomized algorithm,7 and we let T (n) denote the

expected number of comparisons to sort n objects.

Let S have n elements, and let a ∈ S. Let Ta denote the expected

number of comparisons during Quicksort on S in which a is not the

pivot. As every comparison consists of one pivot and one nonpivot

element,

(11.24) T (n) =
∑
a∈S

E[Ta].

We give a coarse upper bound for E[Ta]. When a ∈ U and Quicksort

is applied to U , we call the choice x of pivot good if x is in the second

or third quartile. As x ∈ U is chosen uniformly, it is good with

7This variant is sometimes called randomized Quicksort.
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probability roughly one-half. When x is good, both |L| ≤ 3n/4 and

|R| ≤ 3n/4. That is, each good choice of pivot x is either a itself

or |U | goes down to at most 3
4 |U |. The latter can occur at most

log4/3 n = O(lnn) times. As choices are good with probability at

least one-half, the expected number of bad pivots is O(lnn), and so

E[Ta] = O(lnn). From (11.24),

(11.25) T (n) = O(n lnn).

We can be more precise. The initial pivot x on n elements is

compared to all n− 1 other y. When it has the i-th position amongst

the elements, |L| = i− 1 and |R| = n− i, so the expected number of

further comparisons is T (i− 1) + T (n− 1). As x is chosen uniformly,

the value i is uniform in 1 ≤ i ≤ n. Hence, we find the precise

recursion

(11.26) T (n) = n−1+
1

n

n∑
i=1

T (i−1)+T (n− i) = n−1+
2

n

n−1∑
i=1

T (i)

with initial conditions T (0) = T (1) = 0. We rewrite this as

(11.27) nT (n) = n(n− 1) + 2

n−1∑
i=1

T (i).

Replace n by n− 1 to give

(11.28) (n− 1)T (n− 1) = (n− 1)(n− 2) + 2

n−2∑
i=1

T (i).

Subtracting and combining terms gives the simpler recurrence

(11.29) nT (n) = (n+ 1)T (n− 1) + 2(n− 1).

Dividing by n(n+ 1) and setting

(11.30) S(n) =
T (n)

n+ 1
,

the recurrence now becomes

(11.31) S(n) = S(n− 1) +
2(n− 1)

n(n+ 1)
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with initial condition S(0) = T (0)/2 = 0. Decomposing the fraction

into partial fractions,

(11.32) S(n) =

n∑
i=1

2(i− 1)

i(i+ 1)
=

n∑
i=1

(
4

i+ 1
− 2

i

)
.

In terms of the harmonic number Hn defined in (4.18),

(11.33) S(n) = 4(Hn +
1

n+ 1
− 1)− 2Hn = 2Hn +

4

n+ 1
− 4

and

(11.34) T (n) = (n+ 1)S(n) = 2(n+ 1)Hn − 4n.

The asymptotic formula (4.22) then yields

(11.35) T (n) ∼ 2n lnn.

                

                                                                                                               



Chapter 12

Potpourri

Deep in the human consciousness is a pervasive

need for a logical universe that makes sense. But

the real universe is always one step beyond logic.

– Frank Herbert, Dune

12.1. The Law of the Iterated Logarithm

Let Xi = ±1 be independent random variables that take the values 1

and −1, each with probability 1/2 and set, as usual, Sn = X1 + · · ·+
Xn. Here, however, Xi and Sn are defined for all i, n. We have already

studied the distribution of Sn via the Central Limit Theorem (8.31),

Chernoff bounds (Theorem 8.2) and the Binomial Tail (Theorem 5.11

and (5.58). The probability is that, say, Sn ≥ 6
√
n is quite small. But

there are an infinite number of n, so it should not be surprising (and

we shall prove in Theorem 12.4) that with probability one Sn ≥ 6
√
n

for an infinite number of n. In this section we basically ask how

exceptional an Sn are we likely to find. We look for f(n) with two

properties:

(1) For every ε > 0, with probability one Sn ≥ f(n)(1 − ε) for

infinitely many n.

(2) For every ε > 0, with probability one Sn ≤ f(n)(1 + ε) for

all but finitely many n.

151

                                     

                

                                                                                                               



152 12. Potpourri

The Law of the Iterated Logarithm is that the function

(12.1) f(n) =
√
2
√
ln lnn

√
n

has the above properties. Rather than jumping to the answer, we will

take a more leisurely approach, finding partial results using many of

the techniques in Asymptopia.

12.1.1. Two Infinite Results. (Caution: We assume some famil-

iarity with infinite probability spaces in this section.) In the first

result we use that if Pr[E] ≤ ε for all ε > 0, then Pr[E] = 0. In

the second result we use that if En is a countable sequence of events,

each with zero probability, then their disjunciton has zero probability.

The reader unfamiliar with these notions can simply assume Theo-

rems 12.1 and 12.2 and continue to the next section.

Let An be events in a probability space, defined for all positive

integers n. Set pn = Pr[An]. Let INF denote the event that infinitely

many of the An occur. Two results determine Pr[INF] in many (not

all!) cases. The first result is called the Borel–Cantelli lemma.

Theorem 12.1. Suppose
∑∞

n=1 pn = K is finite. Then Pr[INF] = 0.

Proof. Let Bm be the disjunction of the An, n ≥ m. That is, Bm is

the event that some An holds, n ≥ m. For any ε > 0, the convergence

of
∑

n≥1 pn to K implies the existence of an m such that
∑

n<m pn ≥
K − ε so that

∑
n≥m pn ≤ ε. The probability of the disjunct Bm is

at most the sum of the probabilities so Pr[Bm] ≤ ε. But INF ⊂ Bm,

so Pr[INF] ≤ ε. As this holds for all ε > 0, Pr[INF] = 0. �
Theorem 12.2. Suppose

∑∞
n=1 pn is infinite. Suppose further that

the Ai are mutually independent events. Then Pr[INF] = 1.

Proof. For m ≤ M , let Cm,M =
∧M

n=m An. That is, Cm,M is the

event that no An holds, m ≤ n ≤ M . From the mutual independence

of the An, Pr[Cm,N ] =
∏

m≤n≤M (1− pn). Let Cm =
∧

n≥m An, that

no An holds, n ≥ m. Fix m. For every K the divergence of
∑

pn
implies the existence of M so that

∑
m≤n≤K pn ≥ K. As 1−x ≤ e−x

for all 0 ≤ x ≤ 1, for such K

(12.2) Pr[Cm,N ] =

M∏
m=n

(1− pn) ≤
M∏

m=n

e−pn ≤ e−K .
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As Cm ⊂ Cm,N , Pr[Cm] ≤ e−K . As K can be arbitrarily large,

Pr[Cm] = 0. The disjunction of a countable number of events, each

with probability zero, has probability zero so Pr[∨m≥1Cm] = 0. The

complement of this event then has probability one. But the comple-

ment is that for all m ≥ 1 there is some n ≥ m with An, and that is

precisely the event INF. �

12.1.2. A Weak Upper Bound.

Theorem 12.3. Set f(n) = c
√
n
√
lnn with c >

√
2. With probability

one Sn ≤ f(n) for all but finitely many n.

Proof. Let An be the event Sn > f(n). The Chernoff bound (Theo-

rem 8.2) gives that

(12.3) Pr[An] ≤ e−f(n)2/2n = e−(c2/2) lnn = n−c2/2.

With c >
√
2, c2/2 > 1, and so

∑
Pr[An] converges. By Theo-

rem 12.1, the Borel–Cantelli lemma with probability one only a finite

number of An hold. �

While Theorem 12.3 is correct, it is far from the f(n) that we

seek. When n,m are close together, the values Sn, Sm are highly

correlated. To improve this in §12.1.6, we will take a carefully chosen

increasing function g(u) and examine Sn on the values n = g(u). As

there are fewer1 values n the analogue of Theorem 12.3 will work for

a smaller f(n). Then we will need to argue that the values between

g(u − 1) and g(u) are also reasonably small. There is an interesting

tradeoff here: the faster g(u) increases, the fewer values n = g(u)

there are, and the smaller function f(n) we can choose. However, the

further apart g(u− 1), g(u) are, the more difficulty we have with the

values g(u− 1) < n < g(u).

12.1.3. A Weak Lower Bound. Values Sn, Sm are highly corre-

lated when n,m are close together and are quite weakly correlated

when n,m are far apart. Set, for any n < m,

(12.4) Sn,m =
m∑

i=n+1

Xi = Sm − Sn.

1The words “fewer” and “more” must be taken with a grain of salt as there will
always be an infinite number of values n.
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Let g(u) be an increasing integer valued function, and set

(12.5) Wu = Sg(u−1),g(u) = Sg(u) − Sg(u−1).

Wu depends on Xi, i ∈ (g(u − 1), g(u)]. These sets are disjoint over

u and hence, critically, the Wu are mutually independent. We want

information about Sg(u) which differs from Wu by Sg(u−1). By letting

g grow quickly, we can ensure that Sg(u−1) will have a negligible effect.

In this section we set g(0) = 2 and g(u + 1) = g(u)2 so that

g(u) = 22
u

.

Theorem 12.4. Let λ be an arbitrarily large fixed real number. Set

f(n) = λ
√
n. With probability one, Sn ≥ f(n) for infinitely many n.

Proof. For u ≥ 1, let Au be the event that

Wu ≥ (λ+ 1.1)
√
g(u)− g(u− 1).

From the Central Limit Theorem (see §8.5)

Pr[Wu] = Pr[N ≥ (λ+ 1.1)] + o(1),

where N is the standard normal distribution. Taking any p < Pr[N ≥
(λ+ 1.1)], Pr[Wu] ≥ p for all sufficiently large u. Thus

∑
u Pr[Au] is

infinite. The Au, being dependent only on Wu, are mutually indepen-

dent. From Theorem 12.2 with probability one Au holds for infinitely

many u. As g(u) ∼ g(u)− g(u − 1), Au implies Wu ≥ (λ+ 1)
√
g(u)

for u sufficiently large. Tautologically, |Sg(u−1)| ≤ g(u− 1) =
√
g(u).

Thus Wu ≥ (λ+ 1)
√
g(u) implies

(12.6) Sg(u) ≥ (λ+ 1)
√
g(u)−

√
g(u) = λ

√
g(u).

That is, Sn ≥ λ
√
n for infinitely many values n = g(u). �

One can extend Theorem 12.4 to allow λ = λ(n) to grow slowly

to infinity.

Theorem 12.5. Let c <
√
2, and let

(12.7) λ = λ(n) = c
√
ln ln lnn.

Set f(n) = λ(n)
√
n. With probability one Sn ≥ f(n) for infinitely

many n.
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We outline the argument. Let Au be the event

Wu ≥ (λ(n) + 1.1)
√
g(u)− g(u− 1).

As λ(n) → ∞, we cannot use the Central Limit Theorem directly.

Our results on the Binomial Tail, especially Theorem 5.11, give that

(12.8) Pr[Au] = e−(1+o(1))λ(n)2/2 = (ln lnn)−(1+o(1))c2/2.

As n = 22
u

, ln ln(n) ∼ u ln 2. Letting c2/2 = 1 − δ, Pr[Au] =

uδ−1−o(1). Once again
∑

u Pr[Au] is infinite, and the remainder of

the proof is as before.

While Theorem 12.5 is correct, it is far from the f(n) that we

seek. With g(u) = g(u − 1)2 we have assured ourselves that Wu is

quite close to Sg(u). But this has been overkill. Most of the time

Sg(u−1) will be nowhere near −g(u−1). Again we have an interesting

tradeoff in the choice of g(u). The slower g(u) grows, the more values

n = g(u) we have, and so we can get Wu ≥ f(n) infinitely often for

a larger f(n). However, the slower g(u) grows, the more difficulty we

have with the difference between Wu and Sg(u). In §12.1.5 we will

examine a function g(u) that does well in both respects.

12.1.4. A Pretty Good Lower Bound.

Theorem 12.6. Let c <
√
2, and let

(12.9) λ = λ(n) = c
√
ln lnn.

Set f(n) = λ(n)
√
n/2. With probability one |Sn| ≥ f(n) for infinitely

many n.

Proof. Select c1 with c < c1 <
√
2. Let K be a very large integer. K

will be dependent only on c, c1 in ways we shall soon specify. For u ≥
0, set g(u) = Ku. That is, we have replaced the double exponential

growth of g(u) with singly exponential growth. As in (12.5) we set

(12.10) Wu = Sg(u−1),g(u) = Sg(u) − Sg(u−1).

As g(u − 1) = K−1g(u), Wu has distribution Sm with m =

(1 − K−1)g(u). Let Au be the event that Wu ≥ c1
√
n
√
ln lnn with

n = g(u) = Ku. Here
√
n = (1 −K−1)−1/2

√
m. Our results on the

Binomial Tail, Theorem 5.11, now give

(12.11) Pr[Au] = e−(1+o(1))(1−K−1)−1c21(ln lnn)/2.
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As c21/2 < 1, by selecting K sufficiently large c21(1 −K−1)−1/2 < 1,

so that

(12.12) Pr[Au] = (lnn)−1+δ+o(1)

for some positive δ. As n = Ku,

(12.13) Pr[Au] = (u ln(K))−1+δ+o(1).

Regardless of the choice of constant K,
∑

u Pr[Au] is infinite. As

before the Au are mutually independent. As before, from Theorem

12.2 with probability one, Au holds for infintely many u. With n =

g(u) = Ku and Au, we have Sn − Sn/u ≥ c1
√
n
√
ln lnn. For the

moment we lose a factor of two and simply say that either |Sn| or
|Sn/u| is at least half that size. �

12.1.5. A Very Good Lower Bound.

Theorem 12.7. Let c <
√
2, and let

(12.14) λ = λ(n) = c
√
ln lnn.

Set f(n) = λ(n)
√
n. With probability one |Sn| ≥ f(n) for infinitely

many n.

Proof. We gain the further factor of two of Theorem 12.7 by showing

that it is unlikely that Sg(u−1) will substantially affect the large Wu

we have already guaranteed. Continuing the notation of Theorem

12.7, we let Bu be the event that

(12.15) Sg(u−1) ≤ −(c1 − c)
√
n
√
ln lnn

with n = g(u) = Ku so that g(u − 1) = K−1n. (This “gain” of a

K factor is critical as it will turn up in the exponent for the large

deviation!) The Chernoff bound of Theorem 8.2 bounds

(12.16) Pr[Bu] ≤ exp[−K(c1 − c)2(ln lnn)] = (lnn)−a

with a = K(c1 − c2)
2. We select K sufficiently large so that a > 1.

Now, as n = Ku,

(12.17)
∑
u

Pr[Bu] =
∑
u

(u lnK)−a,

which, regardless of K, is finite. From Theorem 12.1 with probability

one, Bu occurs only finitely often.
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When Au occurs and Bu does not occur, setting n = g(u) = Ku,

we have

(12.18) Sg(u) ≥ c1
√
n
√
ln lnn−(c1−c)

√
n
√
ln lnn = c

√
n
√
ln lnn. �

12.1.6. A Very Good Upper Bound. As a preliminary we use a

beautiful and precise result called the Reflection Principle. Consider

a walk of length m. More formally, let Xi = ±1 be independent,

set W0 = 0 and Wi = Wi−1 + Xi for 1 ≤ i ≤ m. Set MAX =

max0≤i≤m Wi, and let u be a positive integer.

Theorem 12.8. With the above notations

(12.19) Pr[MAX ≥ u] = Pr[Wm ≥ u] + Pr[Wm > u].

Proof. The choices of X1, . . . , Xm with MAX ≥ u fall into three

disjoint categories:

(1) Wm = u,

(2) Wm > u,

(3) Wm < u and MAX ≥ u.

Take any choice of X1, . . . , Xm in the second category. As the walk

moves in steps of±1, there will be some (maybe many) s withWs = u.

Let s be the largest integer for which Ws = u. Now reflect the walk

from s on. Formally, define X ′
1, . . . , X

′
m by X ′

i = Xi, 1 ≤ i ≤ s,

and X ′
i = −Xi, s < i ≤ m. The walk X ′

1, . . . , X
′
m is in the third

category. We can reverse this. Take any choice of X ′
1, . . . , X

′
m in the

third category. As the walk moves in steps of ±1, there will be some

(maybe many) s with Ws = u. Let s be the largest integer for which

Ws = u. Now reflect the walk from s on. Formally, define X1, . . . , Xm

by Xi = X ′
i, 1 ≤ i ≤ s, and Xi = −X ′

i, s < i ≤ m. The reflection

gives a bijection between the walks in the second and third categories,

and hence they must have equal cardinalities and (as all choices have

the same probability 2−m) equal probabilities. Thus,

Pr[MAX ≥ u] = Pr[Wm = u] + 2Pr[Wm > u](12.20)

= Pr[Wm > u] + Pr[Wm ≥ u]. �
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The Chernoff bound of Theorem 8.2 then gives

(12.21) Pr[MAX ≥ u] ≤ 2Pr[Wm ≥ u] ≤ 2e−m2/2u.

While this bound can be improved, it will suffice for our purposes.

Theorem 12.9. Let c >
√
2, and let

(12.22) λ = λ(n) = c
√
ln lnn.

Set f(n) = λ(n)
√
n. With probability one |Sn| ≥ f(n) for only finitely

many n.

Proof. Select c1, c2 with c > c2 > c1 >
√
2. As in the upper bound

argument of Theorem 12.7, we shall split the integers into intervals

(g(u−1), g(u)]. Now, however, we shall let α be a real number barely

(as made explicit soon) larger than one, and we set g(u) = �αu�. For
u ≥ 0, let Bu be the event

(12.23) Sn ≥ c1
√
n
√
ln lnn

with n = g(u). The Chernoff bound of Theorem 8.2 bounds

(12.24) Pr[Bu] ≤ exp[−c21(ln lnn)/2] = (lnn)−a

with a = c21/2 > 1. As lnn = u ln(α) + o(1),

(12.25)
∑
u

Pr[Bu] ≤ (1 + o(1))
∑
u

(u ln(α))−a,

which is finite. The Borel–Cantelli lemma (Theorem 12.1) gives that

with probability one, Bu fails for all but finitely many u.

Now we must examine where the walk goes between g(u− 1) and

g(u). Let Cu be the event

(12.26) Sn − Sg(u−1) ≥ (c2 − c1)
√
g(u)

√
ln ln g(u)

for some g(u− 1) ≤ n ≤ g(u).

We have a walk Wn = Sn − Sg(u−1) of length g(u) − g(u − 1) =

(α − 1)g(u) + O(1), where the O(1) refers only to the round-offs of

αu−1, αu. Applying the Reflection Principle in the form (12.18) and

setting m = g(u),

(12.27) Pr[Cu] ≤ 2 exp

[
− (c2 − c1)

2(ln lnm)

2(α− 1)2

]
= 2(lnm)−a
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with a = (c2 − c1)
2(α − 1)−2/2. We select α just barely above one

so that a > 1. Now Pr[Cu] = O((lnm)−a) = O(u−a). With a > 1,∑
Pr[Cu] converges and by the Borel–Cantelli lemma (Theorem 12.1)

with probability one, Cu fails for all but finitely many u.

For all u for which Bu and Cu fail and all g(u− 1) ≤ n ≤ g(u),

(12.28)

Sn ≤ c1
√
m
√
ln lnm+ (c2 − c1)

√
m
√
ln lnm ≤ c2

√
m
√
ln lnm

with m = g(u). Finally, we select α just barely above one so that

c2α
1/2 < c. Then as n ≥ α−1m so that for u sufficiently large

c2
√
m
√
ln lnm ≤ c

√
n
√
ln lnn. As Bu and Cu fail for only finitely

many u, all but finitely many n then have the property that

(12.29) Sn ≤ c
√
n
√
ln lnn,

as desired. �

12.1.7. Reflections. The Law of the Iterated Logarithm is one of

the most celebrated results in mathematics. There is a naturalness to

the question, We know that a random walk tends to be on the order

of
√
n from the origin at time n, but just how much more than that

will it be in exceptional cases? It has a remarkably precise answer,

including the constant
√
2. It has the iterated logarithm, ln lnn,

which mathematicians always find very appealing.

Was it pure serendipity that the upper and lower bounds matched

so well? We think not. At the heart is the estimate of Pr[Sn ≥ α
√
n]

by exp[−α2/2]. When α is increased by a factor 1+ε, it results in the

estimate being changed by a (1+ ε)2 factor in the exponent. Because

of the Borel–Cantelli lemma, one examined whether various sums of

the probabilities are finite and this involves sums of terms of the form

u−β. The value β = 1 is the critical one, the knife-edge between

convergence and divergence, between appearance infinitely often and

appearance only finitely often.

12.2. The Amazing Poisson Distribution

12.2.1. Inclusion-Exclusion.

A Break! No asymptotics in this section!
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Let A1, . . . , An be any events in a finite probability space Ω. Let

S0 = 1, and for 1 ≤ k ≤ n let

(12.30) Sk =
∑

{i1,...,ik}
Pr[Ai1 ∧ Ai2 ∧ · · · ∧Aik ].

That is, Sk is the sum of all the probabilities of the conjunctions of

precisely k of the events. In particular S1 =
∑n

i=1 Pr[Ai] is the sum

of the probabilities of the events. The following result, known as the

Inclusion-Exclusion Principle, is widely used.

Theorem 12.10. With Ai, Sk as above,

(12.31) Pr[
n∧

i=1

Ai] = S0 − S1 + S2 − · · · ± Sn =
n∑

k=0

(−1)kSk.

Proof. Let u ∈ Ω, and suppose there are precisely r events

Aj1 , . . . , Ajr which u satisfies. Then Pr[u] will appear as an addend

precisely
(
r
k

)
times in Sk (that is, for all {i1, . . . , ik} ⊆ {j1, . . . , jr}).

This includes the case k = 0, as S0 = 1 =
∑

u Pr[u]. When k > r,(
r
k

)
= 0, and Pr[u] does not appear. When r = 0 (that is, u satisfies

none of the Ai) Pr[u] appears only in S0 and so with a weight of one

on the right-hand side. When r > 0, it appears with a weight of

(12.32)
n∑

k=0

(−1)k
(
r

k

)
=

r∑
k=0

(−1)k
(
r

k

)
= 0.

Thus the right-hand side is
∑

Pr[u] over those u for which r = 0,

which is precisely the left-hand side. �

The condition that Ω is finite is not necessary. Indeed, any n

events A1, . . . , An have a “Venn diagram” with at most 2n parts and

Ω can effectively be replaced by a set of size at most 2n.

12.2.2. The Bonferroni Inequalities.

Still no asymptotics!

The Inclusion-Exclusion Principle is too precise to be of much

value in Asymptopia. As k gets large, the values Sk often become

difficult to estimate, much less compute exactly. However, one can
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sometimes estimate Sk quite well for fixed k. The Bonferroni inequal-

ities state that the alternating sum for the Inclusion-Exclusion Prin-

ciple alternately overestimates and underestimates the actual value.

More precisely,

Theorem 12.11. With Ai, Sk as in §12.2.1, for t even,

(12.33) Pr[

n∧
i=1

Ai] ≤ S0 − S1 + S2 − · · ·+ St =

t∑
k=0

(−1)kSk,

while for t odd

(12.34) Pr[
n∧

i=1

Ai] ≥ S0 − S1 + S2 − · · · − Sr =
t∑

k=0

(−1)kSk.

Proof. Set

(12.35) ft(r) =

t∑
k=0

(−1)k
(
r

k

)
= 1−

(
r

1

)
+

(
r

2

)
− · · · ±

(
r

t

)
.

We claim that for t even, ft(r) ≥ 0 for all positive r and for t odd

ft(r) ≤ 0 for all positive r. For t = 1, f1(r) = 1− r and this is clear.

We use a double induction, first on t and then on r. Assume the

result for t− 1 and all r. For r ≤ t, ft(r) is the alternating sum and

so is zero. We apply the identity
(
r+1
t

)
=

(
r
t

)
+

(
r

t−1

)
. Hence,

(12.36)

ft(r + 1) =
t∑

k=0

(1)k
(
r

k

)
−

t∑
k=1

(−1)k−1

(
r

k − 1

)
= ft(r)− ft−1(r).

Suppose t is even. By induction, all ft−1(r) ≤ 0. As ft(t) = 0,

ft(r) ≥ 0 for all r > t. Similarly, suppose t is odd. By induction, all

ft−1(r) ≥ 0. As ft(t) = 0, now ft(r) ≤ 0 for all r > t, completing the

claim.

Now we apply the argument used in the proof of Theorem 12.10.

Let u ∈ Ω satisfy precisely r of the Ai. When r = 0, the addend Pr[u]

appears once in both Pr[
∧
Ai] and S0. When r > 0, the addend Pr[u]

appears ft(r) times in the right-hand sum of (12.33) and (12.34). For

t even, this gives a positive contribution and hence (12.33), while for

t negative this gives a negative contribution and hence (12.34). �
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12.2.3. The Poisson Paradigm. The Poisson distribution is one

of the most basic and interesting distributions in probability. Let μ

be an arbitrary positive real. The Poisson distribution of mean μ,

denoted by Pμ, is a distribution over the nonnegative integers given

by the formula

(12.37) Pr[Pμ = i] = e−μμ
i

i!
.

A simple calculation gives that Pμ does indeed have mean μ.

The formal definition masks the character of the Poisson distribution.

Informally, suppose we are given a large number of events, and let

X be the number of those events that occur. Suppose further that

none of the events are very likely but that the expected number of

events occurring is approximately μ, which is in the constant range.

Suppose further that the events are either mutually independent or

nearly mutually independent. The Poisson Paradigm then states2

that X will have distribution roughly Pμ.

A standard example is BIN[n, μ
n ], the number of heads in n coin

flips, where the probability of heads is μ
n . With μ fixed and n → ∞,

(12.38)

lim
n→∞

Pr[BIN[n,
μ

n
] = i] = lim

n→∞

(
n

i

) (μ

n

)i (
1− μ

n

)n−i

= e−μμ
i

i!
.

Theorem 12.12. For each n, let A
(n)
1 , . . . A

(n)
n be n events. For

0 ≤ k ≤ n, let S
(n)
k be given by (12.30). Let μ be a positive constant,

independent of n. Suppose that for each positive k,

(12.39) lim
n→∞

S
(n)
k =

μk

k!
.

Then

(12.40) lim
n→∞

Pr

[
n∧

i=1

A
(n)
i

]
= e−μ.

It is instructive3 to give an incorrect argument. From Theorem

12.10 the desired probability is
∑n

k=0(−1)kS
(n)
k . Each Sk → μk/k!,

so that sum approaches
∑∞

k=0(−1)kμk/k! = e−μ. WRONG! The

2Being a paradigm, the terms are not tightly defined.
3though pedagogically dangerous!
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limit of an infinite sum is not necessarily the sum of the limits. For

example, let fn(i) = 1
n for 1 ≤ i ≤ n and fn(i) = 0 for i > n. For

each i, limn→∞ fn(i) = 0 so that
∑∞

i=1 limn→∞ fn(i) = 0. For each n,∑∞
i=1 fn(i) = n(1/n) = 1 and limn→∞

∑∞
i=1 fn(i) = 1. Two different

answers! Indeed, the Inclusion-Exclusion Principle is not sufficient,

the correct argument below uses the more powerful Bonferroni in-

equalities.

We also note informally why (12.39) occurs in many situations.

Let us restrict to the symmetric case where all Pr[Ai] = p and μ ∼ np.

When the events A1, . . . , An are close to being independent, the k-

fold conjunctions Ai1 ∧ · · · ∧ Aik all have probability near pk. There

are
(
n
k

)
∼ nk/k! addends, so it is natural to expect (but still requires

proof!) that Sk ∼ (nk/k!)pk ∼ μk/k!.

Proof. Let ε > 0 be arbitrarily small but fixed. As μ (important!)

is a constant and e−μ has the infinite sum
∑∞

k=0(−1)kμk/k!, the sum

will eventually stay within ε of its limit. Let t be an even number (for

convenience) such that

(12.41)

∣∣∣∣∣∣
t′∑

k=0

(−1)k
μk

k!
− e−μ

∣∣∣∣∣∣ ≤
ε

2

for t′ = t and t′ = t+1. Now consider the finite number of sequences

S
(n)
0 , . . . , S

(n)
t . For each 0 ≤ k ≤ t, S

(n)
k → μk/k!. This implies there

is an nk so that for n ≥ nk,

(12.42)

∣∣∣∣S(n)
k − μk

k!

∣∣∣∣ ≤ ε

2(t+ 1)
.

Let N be the maximum of n0, . . . , nt. For n ≥ N , (12.42) holds for

all 0 ≤ i ≤ t simultaneously. Alternately adding and subtracting,

(12.43)

∣∣∣∣∣
t∑

k=0

(−1)kS
(n)
k −

t∑
k=0

(−1)k
μk

k!

∣∣∣∣∣ ≤
t∑

k=0

ε

2(t+ 1)
=

ε

2
.

Combining (12.41) and (12.43) gives

(12.44)

∣∣∣∣∣
t∑

k=0

(−1)kS
(n)
k − e−μ

∣∣∣∣∣ ≤ ε.
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As t was even, the Bonferroni inequality (12.33) gives the upper bound

(12.45) Pr[

n∧
i=1

A
(n)
i ] ≤

t∑
k=0

(−1)kS
(n)
k ≤ e−μ + ε

for n sufficiently large. We now apply the same argument, replacing

t by the odd t+ 1, giving the lower bound

(12.46) Pr[
n∧

i=1

A
(n)
i ] ≥

t+1∑
k=0

(−1)kS
(n)
k ≥ e−μ − ε.

The desired probability is, for arbitrarily small ε, eventually sand-

wiched between e−μ−ε and e−μ+ε. Hence it must approach e−μ. �

While Theorem 12.12 only gives the probability that none of the

events hold, it quickly generalizes into the probability that precisely

u of the events hold.

Theorem 12.13. Using the notation of Theorem 12.12, assume

(12.39) and (12.40). Assume further that

(12.47) lim
n→∞

max
i

Pr[A
(n)
i ] = 0.

Let X(n) denote the distribution of the number of A
(n)
1 , . . . , A

(n)
n hold-

ing. Then X(n) approaches the Poisson distribution with mean μ.

That is, for every fixed u,

(12.48) lim
n→∞

Pr[X(n) = u] =
μu

u!
.

Proof. Fix u and consider Pr[X(n)=u]. Let {i1, . . . , iu}⊂{1, . . . , n}.
The probability that no Aj , 1 ≤ j ≤ n, holds is e−μ + o(1) by The-

orem 12.12. The probability that any of Ai1 , . . . , Aiu hold is o(1) by

assumption (12.47). Hence, the probability that no Aj , j �= i1, . . . , iu,

holds is still e−μ + o(1). Now sum, over all {i1, . . . , iu} ⊂ {1, . . . , n}
the probability that Ai1 , . . . , Aiu hold times the probability that no

other Aj holds. The second term is always e−μ+o(1). The sum of the

first terms is S
(n)
u = (μk/k!)+o(1). Hence, the sum is e−μμk/k!+o(1),

as desired. �
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12.3. The Coupon Collector Problem

There are n coupon types, call them 1, . . . , n. For each time unit you

receive a coupon that is randomly chosen from 1 to n. How long will

it be until you receive at least one of each coupon type?

12.3.1. The Expected Value. Let Ti be the number of time units

between the moment you have i − 1 different coupon types and the

moment you have i different coupons types. Then T =
∑n

i=1 Ti is the

total time to receive all the coupon types. Set p = (n − i)/n, which

is the probability that a coupon received is of a new type. Then

Pr[Ti = u] = (1 − p)u−1p as u − 1 times you receive a coupon of a

type already received and then you receive a coupon of a new type.

Ti has what is called the geometric distribution with parameter p. As

a classical result,

(12.49) E[Ti] =
∞∑
u=1

pu(1− p)u−1 =
1

p
.

Here 1
p = n

n−i . Linearity of expectation then gives the exact value

(12.50) E[T ] =
n∑

i=1

E[Ti] =
n∑

i=1

n

n− i
= n

n∑
j=1

1

j
= nHn,

where Hn is the harmonic number discussed in §4.2. The asymptotic

formula (4.30) for Hn then gives

(12.51) E[T ] = n lnn+ nγ + o(n),

where γ = 0.577 · · · is Euler’s constant.

12.3.2. The Fine Behavior. Suppose that m coupons have been

received, each randomly chosen from coupon types 1, . . . , n. Let

p(m,n) denote the probability that every coupon type has been re-

ceived. Clearly, for n fixed, p(m,n) is an increasing function of m

which is 0 for m < n and approaches 1 as m → ∞. In Asymptopia

we search for the asymptotic parametrization of m = m(n) so that

we can “see” p(m,n) going from near one to near zero.

Given n,m, let Ai, 1 ≤ i ≤ n, be the event that no coupon of type

i has been received. Then Pr[Ai] = (1− 1
n )

m. Set μ(m,n) = n(1− 1
n )

m
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so that μ(m,n) is the expected number of coupon types that have not

been received.

We look for a parametrization of m = m(n) for which μ varies

through positive constant values. Let’s approximate (1 − 1
n )

m by

e−m/n. Then μ(m,n) would be approximated by ne−m/n. Setting

m = n lnn would give μ approximately 1. Adding or subtracting a

constant to m/n would multiply ne−m/n by a constant. This leads

us to the parametrization

(12.52) m = m(n) = n lnn+ cn+ o(n).

For c any real constant we then have

(12.53) μ(m,n) ∼ ne−m/n = μ+ o(1)

with μ = e−c.

Wait a minute! While this looks right, we now have to check that

secondary terms are negligible. Let m = m(n) be given by (12.52).

From the Taylor series with error (2.35), ln(1 − 1
n ) = − 1

n − O(n−2).

Thus m ln(1 − 1
n ) = −m

n + o(1) as O(mn−2) = o(1) in this range.

(Note that this would not be accurate if, say, m = n2.) The o(1)

addend becomes a 1 + o(1) factor upon exponentiation and, indeed,

n(1− 1
n )

m ∼ ne−m/n.

Now let k be an arbitrary fixed positive integer, and let Sk be

given by (12.30). For any i1, . . . , ik the probability that none of those

k coupon types is received is (1− k
n )

m. Thus

(12.54) Sk =

(
n

k

) (
1− k

n

)m

.

With m = m(n) given by (12.52) the analysis above4 gives (1− k
n )

m ∼
e−km/n so that

(12.55) Sk ∼ nk

k!
(e−m/n)k ∼ (ne−m/n)k

k!
∼ μk

k!
.

The conditions for Theorem 12.12 are met, so the Poisson para-

digm does hold. We state the result in particularly striking form:

4Critically, k is fixed and n → ∞.
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Theorem 12.14. Let m coupons each be uniformly and indepen-

dently chosen from n coupon types. Let p(m,n) denote the proba-

bility that at least one of every coupon type has been chosen. Let

m = m(n) = lnn
n + c

n + o( 1n ). Then

(12.56) lim
n→∞

p(m,n) = e−e−c

.

12.4. The Threshold of Connectivity

12.4.1. The Erdős–Rényi Random Graph. The random graph

G(n, p) is a probability space over graphs on vertex set V = {1, . . . , n}.
Informally, each unordered pair of vertices {i, j} flips a coin to decide

if i, j are adjacent. The coin comes up heads with probability p. We

require n a positive integer and 0 ≤ p ≤ 1.

For p = 0, G(n, p) has no edges while for p = 1 it has all
(
n
2

)
edges. As p goes from 0 to 1 the random graph evolves from empty to

full. Critically, we consider p as a function of n, p = p(n). For many

natural properties A of graphs, Erdős and Rényi found a parametriza-

tion p = p(n) in [ER59] for which Pr[A] moved from asymptotically

zero to asymptotically one. None was so striking as their results on

connectivity; see Theorem 12.16 below.

For 1 ≤ i ≤ n, let Ai be the event that vertex i is isolated, that

there are no edges {i, j} ∈ G. Let NOI =
∧n

i=1 Ai, the event that

there are no isolated vertices.

Theorem 12.15. Let p = p(n) satisfy

(12.57) p =
lnn

n
+

c

n
+ o(n).

Then5

(12.58) lim
n→∞

Pr[G(n, p(n)) |= NOI] = e−e−c

.

The proof is quite similar to the Coupon Collector result, Theo-

rem 12.14.

5The notation G |= A is read “G models A” and denotes the event that random
structure G has property A.
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Proof. For each i

(12.59) Pr[Ai] = (1− p)n−1 ∼ e−pn ∼ μ

n

with μ = e−c. For {i1, . . . , ik} ⊂ {1, . . . , n},

(12.60) Pr[Ai1 ∧ · · · ∧ Aik ] = (1− p)k(n−1)−K ,

where we set K =
(
k
2

)
. (For each of the i1, . . . , ik, there are n−1 non-

edges, but the K internal edges {ir, is} have been counted twice.) For

k fixed, K is fixed and, as 1 − p ∼ 1, (1 − p)K ∼ 1. Informally, the

dependence between the Air is asymptotically negligible. With Sk as

in (12.30),

(12.61) Sk =

(
n

k

)
(1− p)k(n−1)−K ∼ (n(1− p)n−1)k

k!
∼ μk

k!
,

so that the conditions for the Poisson paradigm, Theorem 12.12, are

met and

�(12.62) lim
n→∞

Pr[

n∧
i=1

Ai] = e−μ = e−e−c

.

Let CON be the event that G is connected.

Theorem 12.16. Let p = p(n) satisfy

(12.63) p =
lnn

n
+

c

n
+ o(n).

Then

(12.64) lim
n→∞

Pr[G(n, p(n)) |= CON] = e−e−c

.

Proof. The properties CON and NOI are similar but not the same.

If G is connected, then it tautologically must have no isolated vertices.

Thus Pr[CON] ≥ Pr[NOI]. However, G may have no isolated vertices

and still not be connected. To show Theorem 12.16 from Theorem

12.15, we will show that this occurs with probability o(1). If G has no

isolated vertices and is not connected, then G must have a component

of some size r, 2 ≤ r ≤ �n
2 �. Let F (n, p, r) denote the expected
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number of such components in G(n, p). F (n, p, r) is an upper bound

on the probability of having any such component. Then

(12.65) Pr[G(n, p) |= NOI]− Pr[G(n, p) |= CON] ≤
�n/2
∑
r=2

F (n, p, r).

Our goal is to show that the right-hand sum above is o(1). The

case r = 2 is special. We choose the two vertices, require them to

be adjacent, and require no adjacencies between them and the other

vertices. Thus

(12.66) F (n, p, 2) =

(
n

2

)
p(1− p)2(n−2).

As
(
n
2

)
∼ n2/2 and (1− p)−2 ∼ 1,

(12.67) F (n, p, 2) ∼ n2p

2
(1− p)2(n−1) ∼ p

2
(n(1− p)n−1)2 ∼ p

2
μ.

As μ = e−c is constant, F (n, p, 2) = O(p) = o(1). For general r

we choose a set S of r vertices, choose (using Cayley’s formula (6.3)) a

tree on S, require all the edges in the tree to be adjacent, and require

no adjacencies between S and its complement. We may have further

adjacencies inside S. Graphs for which S contains more than one tree

are multiply counted, so we obtain an upper bound for F (n, p, r):

(12.68) F (n, p, r) ≤
(
n

r

)
rr−2pr−1(1− p)r(n−r).

We bound
(
n
r

)
≤ (ne/r)r (5.14), rr−2 ≤ rr (for convenience),

1 − p ≤ e−p and write pr−1 = pr/p. Further, as r ≤ n
2 , we bound

n− r ≥ n
2 . This allows us to take out an r-th power,

(12.69) F (n, p, r) ≤ p−1
[
(ne/r)rpe−pn/2

]r
.

Let A = nepe−pn/2 denote the bracketed term. Here nep ∼ lnn

and e−pn/2 = Θ(n−1/2), so A = O(n−1/2 lnn). Thus,

(12.70)

n/2∑
r=3

F (n, p, r) ≤ p−1

n/2∑
r=3

Ar ∼ p−1A3 = o(1).

Hence, Pr[G(n, p) |= CON] and Pr[G(n, p) |= NOI] have the same

asymptotic probability. �
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12.5. Tower and Log Star

The tower function, here denoted T (n), is a fast growing function

defined by initial value T (0) = 1 and recursion T (n+1) = 2T (n). Thus

T (1) = 2, T (2) = 4, T (3) = 24 = 16, T (4) = 216 = 65536, and T (5)

makes a googol (10100) look small.6 The log star function, written

log∗(m), the inverse of the tower function. log∗(m) is that n such

that T (n − 1) < m ≤ T (n). Thus log∗(1000) = 4 and log∗(10100) =

5. Alternatively, begin with m and recursively take the lg stopping

when the result is less than one. (For example, 1000, 9.9 · · · , 3.31 · · · ,
1.72 · · · , 0.78 · · · .) log∗(m) is one less than the number of times lg was

applied. log∗(m) approaches infinity exceptionally slowly. Compare

log∗(m) with lg(lg(m)). Set m = 22
s

so that lg lg(m) = s. Then

log∗(m) = 2 + log∗(s), which grows more slowly. Indeed, log∗(m)

grows more slowly that the r-times iterated logarithm for any constant

r.

12.5.1. Robustness. The tower function was defined by its initial

value and the recursion. Changing these, appropriately viewed, has

only small effect.

Theorem 12.17. Let 1 < α, β. Let a, b > 0. Let A(n) be defined by

initial value A(0) = a and recursion A(n+ 1) = αA(n). Let B(n) be

defined by initial condition B(0) = b and recursion B(n+1) = βB(n).

Then there exist integer constants c1, c2 so that

(12.71) A(n) ≤ B(n+ c1) and B(n) ≤ A(n+ c2)

for all sufficiently large n.

Proof. Assume, by symmetry, that α ≤ β. Select c1 such that a =

A(0) ≤ B(c1). Then A(n) ≤ B(n+ c1) by induction on n.

The other side is not so easy. The natural induction will not work

as A is growing slower than B. Instead, we select K with αK ≥ β.

We then select Y with (αK/β)Y ≥ K. Now suppose x ≥ Ky and

y ≥ Y . Then

(12.72) αx ≥ (αK)y ≥ βy(αK/β)Y ≥ Kβy.

6Chapter 13 gives functions that make the tower function look slow.
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We select n0 so that B(n0) ≥ Y and then select c2 such that

A(n0 + c2) ≥ KB(n0). By induction, applying (12.72), A(n+ c2) ≥
KB(n) for all n ≥ n0. �

Theorem 12.18. Let 1 < α, β. Let a, b > 0. Let A∗(m) denote the

number of times, beginning with m, that one can take the log to the

base α before becoming less than a. Let B∗(m) denote the number of

times, beginning with m, that one can take the log to the base β before

becoming less than b. Then

(12.73) A∗(m) = B∗(m) + Θ(1).

Theorem 12.18 is a reformulation of Theorem 12.17 as A∗ and

B∗ are the inverse functions of A,B, respectively. Taking β = 2,

b = 1, B∗(m) = log∗(m). This indicates the robustness of the log

star function. Changing the base of the log and changing the finishing

point only affects the function by an additive constant.

12.5.2. Long Chains. Let T = Tt be the full binary tree of depth t.

That is, there is a root at level 0. Each node at level i, 0 ≤ i < t, has

two children. There are 2s nodes at level s for 0 ≤ s ≤ t. We select a

random subset S ⊂ T as follows. At each level s we select uniformly

precisely one node and place it in S. A set C ⊂ Tn is called7 a chain

if, given two distinct x, y ∈ C, one of them is a descendant of the

other. Let M = M(S) be the maximal size |C| of a chain C ⊂ S.

Theorem 12.19. E[M ] = log∗ t+Θ(1).

Proof. We shall break the levels into sections. Basically we want

a section from level j to level 2j . The robustness of the log star

function allows us plenty of room to increase or decrease the function

2j so as to increase or decrease the number of nodes of C in each

section without significantly altering the number of sections.

Lower Bound. Set a(1) = 1 and a(i + 1) = 4a(i). Let u be the

maximal integer with a(u) ≤ t. (As this is a lower bound, we may

consider t = a(u).) By section i, 1 ≤ i < u, we mean those nodes at

level s, a(i) < s ≤ a(i + 1). We create C as follows: Put the root in

C and ignore (for simplicity) level one. For 1 ≤ i < u suppose the

7Our thanks to Yuval Peres for calling this problem to our attention.
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elements in C through section i− 1 have been determined. Let w be

that element at lowest level. Consider all the elements of S in section

i. If none of these elements are descendants of w, then do nothing

and go on to section i + 1. If any of these elements are descendants

of w, then select one (arbitrarily!) and add it to C. The section is so

thick that this is very likely to happen.

Set j = a(i) and J = a(i + 1) so that J = 4j . The worst case is

when the element w is at level j. There are 2j nodes at level j. When

a node is selected uniformly at level s, j < s ≤ 4j , it has probability

2−j of being a descendant of w. The elements on different levels are

chosen independently. Hence, the probability that none of the nodes

of S in section i are descendants of w is

(12.74) (1− 2−j)J−j ≤ e−2−jJ+o(1) ∼ e−2j ,

which is extremely small. As
∑

j exp[−2j ] converges the total ex-

pected number of sections in which no vertex is selected is O(1).

Hence, the expected size of C is u − O(1). From Theorem 12.18

u = lg∗(t)−O(1), so that the expected size of C is lg∗(t)−O(1).

Upper Bound. Reset a(1) = 4 and a(i+1) = 2a(i)/2. Let u now be

the minimal integer with a(u) ≥ t. (As this is an upper bound, we

may consider t = a(u).) By section i, 1 ≤ i < u, we now mean those

nodes at level s, a(i) < s ≤ a(i+1). Set j = a(i) and J = a(i+1) so

that J = 2j/2. Let Z = Zi denote the number of pairs v, w ∈ S, both

in section i, with w a descendant of v. When k < l, a random node

at level l has probability 2−k of being a descendant of a given node

at level k. Thus

(12.75) E[Z] =
∑

j<k<l≤J

2−k ≤
∑

j<k≤J

2−k
√
2
k
= O(

√
2
−j

),

which is very small. Let Y denote the number of nodes in the largest

chain in S in section i. Then Z ≥ Y − 1. (Indeed, Z ≥
(
Y
2

)
but this

inequality will suffice.) Therefore, E[Y ] ≤ E[Z]+1. The longest chain

C can have at most five nodes in levels zero through four and 1 + Zi

nodes from section i, giving an upper bound of 5 + u − 1 +
∑

Zi.

As
∑

i E[Zi] converges, the expected value of this upper bound is

u+O(1). From Theorem 12.18 u = lg∗(t) +O(1). �

                

                                                                                                               



Chapter 13

Really Big Numbers!

“Yes, please,” said Milo. “Can you show me the

biggest number there is?”

“I’d be delighted,” [the Mathemagician] replied,

opening one of the closet doors. “We keep it right

here. It took four miners just to dig it out.”

Inside was the biggest

3
Milo had ever seen. It was fully twice as high as

the Mathemagician.

— Norton Juster, The Phantom Tollbooth

“Describe, on a 3×5 card, as large a positive integer as you can.”1

Many mathematicians have at some time played the game above,

either solitaire or in competition. My solutions in the second, sixth

and twelfth grades, respectively, are shown in the first three figures.

| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |

WARP 0

1This chapter is a slightly revised version of [Spe83]. Reprinted with permission
of the Mathematical Association of America.
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1, 000, 000, 000, 000, 000,

000, 000, 000, 000, 000, 000

WARP 1

One Googolplexplexplexplex-

plexplexplexplexplexplex-

plexplexplexplexplexplexplex

WARP 2

The last needs a word of explanation. Since googol is 10100 and

googolplex is 10googol, let us define N -plex as 10N . Actually, by

twelfth grade I could write

one googolplexplexplex. . .

with a googol plexes,

and even some more elaborate variants. These were at best WARP

2.2. The next level is:

Let f1(x) = 2x

and fn+1(x) = f
(x)
n (1)

f9(9)

WARP 3

Here f (x) represents the x-th iterate of f . Iterated doubling is

exponentiation, f2(x) = 2x. Iterated exponentiation (as discussed in

§12.5) is the tower function, f3(x) is 2 to the 2 to the 2 · · · to the

2 with x twos. My WARP 2 solution is approximated f3(21), one

for each plex and five to get to a googol. There is no word for f4.
2

f4(4) = f3(f3(f3(f3(1)))) = f3(f3(4)) = f3(65536) is already WARP

2.1.

Three ideas help us create large numbers. First, we concentrate

on constructing rapidly growing functions. The numbers will then be

the value of the function f(x) for some reasonably small x. Second,

we use iteration to build a larger function from a given one. Third,

we use diagonalization. Having defined the functions fn above, we

define a diagonal function, called fω, by

fω(n) = fn(n).

2Today f4 is sometimes referred to as the WOW function.
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This is called the Ackermann function. (There are several similar

formulations.) The Ackerman function does occasionally appear in

“real” mathematics. For example, van der Wærden proved in 1927 in

[dW27] that to all n there exists W (n) such that if the integers from

1 to W (n) are divided into two classes, then there exists an arithmetic

progression of length n in one of the classes. His proof gave a W (n)

roughly equal to fω(n). (It is possible that far smaller W (n), even of

exponential order, will suffice, and this remains an open problem.3)

Once fω(n) is defined, there is no reason to stop. We define a

new function, let us call it fω+1(n), by fω+1(n) = f
(n)
ω (1). Having

defined fω+1 we may define fω+2, fω+3,. . . . When faced with ellipses,

we resort to diagonalization. We define a new function, called f2ω,

by f2ω(n) = fω+n(n)

f2ω(9)

WARP 3.2

We are defining here a hierarchy of functions in which each func-

tion has an immediate successor and where limit functions are defined

by the diagonalization of an appropriate subsequence. The usual rep-

resentation for ordinal numbers provides a perfect framework in which

to do this. The ordinals α < ωω have a simple representation. Each

such α may be uniquely written

α = a1ω
s1 + a2ω

s2 + · · ·+ arω
sr (ω > s1 > s2 > · · · > sr ≥ 0,

where the ai are positive integers. (We write aωs instead of the more

customary ωsa for convenience of expression.) The limit ordinals are

those α with sr > 0. For those we define a specific “natural” sequence

α(n) of ordinals approaching α by

α(n) = a1ω
s1 + a2ω

s2 + · · ·+ (ar − 1)ωsr + nωsr−1.

For example, if α = 2ω4 + 3ω3, then α(n) = 2ω4 + 2ω3 + nω2.

We define the natural sequence approaching ωω by

ωω(n) = ωn.

3Since original publication of his paper, Saharon Shelah [She88] has shown an
upper bound for W (n) roughly of order f4(n). Whether W (n) is of exponential order
remains a vexing open question.
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Now we define fα(n) for each α ≤ ωω using transfinite induction by

(1) fα+1(n) = f
(n)
α (1),

(2) fα(n) = fα(n)(n) when α is a limit ordinal,

(3) initial value f1(n) = 2n.

fωω (9)

WARP 3.5

Let us emphasize that though we are using the language of infi-

nite ordinals, the functions fα are recursive functions and the values

fα(t) are well defined integers. The infinite ordinals are, in one sense,

merely finite sequences of positive integers being manipulated in par-

ticular ways. A recursive program for computing f
(t)
α (n) could take

the following form.

FUNCTION F (α,N, T )

BEGIN

IF T > 1,

SET X = F (α,N, T − 1)

RETURN F (α,X, 1)

IF T = 1 and α = 1

RETURN 2N

IF T = 1 and LIMITORDINAL(α)

RETURN F (α(N), N, 1)

IF T = 1 and NOT LIMITORDINAL(α)

RETURN F (α− 1, 1, N)

END

The representation of α, the predicate LIMITORDINAL(α), and

the functions α − 1 and α(N) need to be defined explicitly, though

we do not do so here.

We continue the ordinals a half-WARP further. Set

ω1 = w, ω2 = ωω, . . . , ωs+1 = ωωs , . . . ,

and set ε0 equal the limit of the ωs. (We emphasize that ω1 is not the

first uncountable ordinal. All ordinals in this chapter are countable.)

Each ordinal α < ωs+1 is uniquely represented as

α = a1ω
β1 + a2ω

β2 + · · ·+ arω
βr (ωs > β1 > β2 > · · · > βr ≥ 0),
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the ai positive integers. A “typical” ordinal is

7ωω2ω+1

+ 14ω3ωω+8+5ωω

.

Now for limits. We say nωβ is the natural sequence approach-

ing ωβ+1. If β itself is a limit ordinal, then its limit sequence β(n)

has already been defined, and we call ωβ(n) the natural sequence ap-

proaching ωβ . For sums we keep all but the smallest term fixed and

take the limit sequence approaching that smallest term. Thus

7ωω2ω+1

+ 13ω3ωω+8+5ωω

+ ω3ωω+8+4ωω+ωn

is the natural sequence for the ordinal above. Finally, ε0 has the

natural sequence ε0(n) = ωn. Now the hierarchy fα defined above

may be extended to all α < ε0 + ω. We have a big number:

fε0+9(9)

WARP 4

This should win the game against any nonlogician!
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The various functions n ln n , n 2 ,  ln n n  , 

√
ln n ,  1 n ln n  all 

have distinct personalities. Erdős knew these functions as 
personal friends. It is the author’s hope that these insights 
may be passed on, that the reader may similarly feel which 
function has the right temperament for a given task. This 
book is aimed at strong undergraduates, though it is also 
suitable for particularly good high school students or for 
graduates wanting to learn some basic techniques.

Asymptopia is a beautiful world. Enjoy!

“This beautiful book is about how to estimate large quantities — and why. Building on nothing 
more than fi rst-year calculus, it goes all the way into deep asymptotical methods and shows how 
these can be used to solve problems in number theory, combinatorics, probability, and geometry. The 
author is a master of exposition: starting from such a simple fact as the infi nity of primes, he leads 
the reader through small steps, each carefully motivated, to many theorems that were cutting-edge 
when discovered, and teaches the general methods to be learned from these results.”

–László Lovász, Loránd Eötvös University

“This is a lovely little travel guide to a country you might not even have heard about — full of 
wonders, mysteries, small and large discoveries,... and in Joel Spencer you have the perfect travel 
guide!”
 –Günter M. Ziegler, Freie Universität Berlin, coauthor of 

“Proofs from THE BOOK”
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