
STUDENT MATHEMAT ICAL L IBRARY
Volume 70

Primality Testing
for Beginners

Lasse Rempe-Gillen

Rebecca Waldecker

Primality Testing
for Beginners

Primality Testing
for Beginners

Lasse Rempe-Gillen
Rebecca Waldecker

Student mathemat ical l ibrary
Volume 70

American Mathematical Society
Providence, Rhode Island

Editorial Board

Satyan L. Devadoss
Gerald B. Folland (Chair)

John Stillwell
Serge Tabachnikov

The cover illustration is a variant of the Sieve of Eratosthenes (Sec-
tion 1.5), showing the integers from 1 to 2704 colored by the number of
their prime factors, including repeats. The illustration was created us-
ing MATLAB. The back cover shows a phase plot of the Riemann zeta
function (see Appendix A), which appears courtesy of Elias Wegert
(www.visual.wegert.com).

2010 Mathematics Subject Classification. Primary 11-01, 11-02, 11Axx,
11Y11, 11Y16.

For additional information and updates on this book, visit
www.ams.org/bookpages/stml-70

Library of Congress Cataloging-in-Publication Data

Rempe-Gillen, Lasse, 1978– author.
[Primzahltests für Einsteiger. English]
Primality testing for beginners / Lasse Rempe-Gillen, Rebecca Waldecker.

pages cm. — (Student mathematical library ; volume 70)
Translation of: Primzahltests für Einsteiger : Zahlentheorie - Algorithmik -

Kryptographie.
Includes bibliographical references and index.
ISBN 978-0-8218-9883-3 (alk. paper)
1. Number theory. I. Waldecker, Rebecca, 1979– author. II. Title.

QA241.R45813 2014
512.7′2—dc23

2013032423

Copying and reprinting. Individual readers of this publication, and nonprofit
libraries acting for them, are permitted to make fair use of the material, such as to
copy a chapter for use in teaching or research. Permission is granted to quote brief
passages from this publication in reviews, provided the customary acknowledgment of
the source is given.

Republication, systematic copying, or multiple reproduction of any material in this
publication is permitted only under license from the American Mathematical Society.
Requests for such permission should be addressed to the Acquisitions Department,
American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-
2294 USA. Requests can also be made by e-mail to reprint-permission@ams.org.

c© 2014 by the authors.
Printed in the United States of America.

©∞ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.

Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 18 17 16 15 14

For our spouses,

Emma and Lars

Contents

Preface xi

Introduction 1

Part 1. Foundations

Chapter 1. Natural numbers and primes 13

§1.1. The natural numbers 13

§1.2. Divisibility and primes 26

§1.3. Prime factor decomposition 31

§1.4. The Euclidean algorithm 35

§1.5. The Sieve of Eratosthenes 39

§1.6. There are infinitely many primes 41

Further reading 42

Chapter 2. Algorithms and complexity 43

§2.1. Algorithms 43

§2.2. Decidable and undecidable problems 52

§2.3. Complexity of algorithms and the class P 57

§2.4. The class NP 68

vii

viii Contents

§2.5. Randomized algorithms 73

Further reading 81

Chapter 3. Foundations of number theory 83

§3.1. Modular arithmetic 84

§3.2. Fermat’s Little Theorem 94

§3.3. A first primality test 104

§3.4. Polynomials 107

§3.5. Polynomials and modular arithmetic 120

Further reading 127

Chapter 4. Prime numbers and cryptography 129

§4.1. Cryptography 129

§4.2. RSA 132

§4.3. Distribution of primes 136

§4.4. Proof of the weak prime number theorem 139

§4.5. Randomized primality tests 143

Further reading 150

Part 2. The AKS Algorithm

Chapter 5. The starting point: Fermat for polynomials 153

§5.1. A generalization of Fermat’s Theorem 153

§5.2. The idea of the AKS algorithm 159

§5.3. The Agrawal-Biswas test 163

Chapter 6. The theorem of Agrawal, Kayal, and Saxena 169

§6.1. Statement of the theorem 170

§6.2. The idea of the proof 171

§6.3. The number of polynomials in P 173

§6.4. Cyclotomic polynomials 178

Contents ix

Chapter 7. The algorithm 183

§7.1. How quickly does the order of n modulo r grow? 183

§7.2. The algorithm of Agrawal, Kayal, and Saxena 186

§7.3. Further comments 189

Further reading 192

Appendix A. Open questions 193

Further reading 205

Appendix B. Solutions and comments to important exercises 207

Bibliography 233

List of symbols 237

Index 239

Preface

“How on earth can you do research in mathematics?”, we are of-

ten asked. The idea of ongoing research in other sciences is deeply

embedded in the public consciousness, not only in those fields that

may lead to self-driving cars or new life-saving drugs, but also in

the most theoretical areas such as particle physics, where scientists

try to puzzle out the likely nature of matter on the smallest possible

scales. In contrast, even among members of the public who profess

their enjoyment of mathematics there is little awareness that many

mathematical questions remain open and that these are the subject

of intensive investigation.

One of the difficulties in challenging this perception lies in the

highly specialized nature of modern mathematics itself. Even profes-

sional mathematicians are usually unable to fully appreciate research

advances outside their own branches of mathematics. Of course there

are exceptions to this rule, such as Fermat’s Last Theorem, which

was proved by Andrew Wiles in the 1990s and could hardly be sim-

pler to state: “If n > 2, then there are no non-zero integers a, b, and

c such that an + bn = cn.” Yet in this case the proof is particularly

long and difficult, and only a small number of experts worldwide are

able to fully comprehend it.

xi

xii Preface

In the summer of 2002, the computer scientist Manindra Agrawal

and his students Neeraj Kayal and Nitin Saxena achieved a remark-

able feat: they discovered an efficient and deterministic test for the

primality of a natural number. (To learn about the meaning of these

notions, keep reading!) We were fascinated by this result not only be-

cause it answers a long-standing open question, but because the math-

ematics behind it is beautiful and, compared to other modern research

advances, extremely accessible. We decided to use this opportunity

to get young people in touch with actual mathematical research by

offering a course on the subject at a German summer academy for

secondary-school students in 2005. Inspired by the participants and

their enthusiasm, we started to transform the course material into

a book manuscript, the German version of which appeared in 2009.

The book you hold in your hands is an English-language edition of

this text. During the translation process, we have also corrected a

few errors, changed some of the presentation for pedagogical reasons,

and updated the content with new results, where appropriate.

We thank the students from our original summer course for their

motivation and dedication and all those who have since helped us

for their comments and suggestions regarding both the German and

English editions. We also thank you – our reader – for your interest in

this little volume, and we hope that you will enjoy reading the book

as much as we did writing it.

Lasse Rempe-Gillen and Rebecca Waldecker

August 2013

Introduction

Most of us encounter prime numbers for the first time in secondary

school: a number is prime if it has exactly two divisors, namely 1 and

the number itself. We also learn that every natural number can be

written as a product of its prime factors – for example 2013 = 3·11·61
and the numbers 3, 11, and 61 are primes. However, it is rarely em-

phasized in classrooms that this is only the beginning of a long story,

in which mathematicians working in the area of “number theory”

have been discovering the secrets of prime numbers for thousands of

years. Moreover, the story is far from over: many questions remain

unsolved, with no solutions currently in sight. (A few open problems

can be found in Appendix A.)

Also, many people are unaware that they use prime numbers al-

most every day. As recently as in the year 1940, the great English

mathematician G. H. Hardy wrote in his book A Mathematician’s

Apology [Har] that number theory has no conceivable practical ap-

plications but that it deserves to be studied for its beauty alone. How-

ever, advances in information technology during the second half of the

twentieth century led researchers to look for secure methods of elec-

tronic transmission of information. In the process, they proved Hardy

wrong about the applicability of number theory (though not about

its beauty). In 1977, the computer scientists Ronald Rivest, Adi

Shamir, and Leonard Adleman developed a procedure, now known as

1

2 Introduction

the RSA algorithm, that allows the secure transmission of a mes-

sage to which no one but the sender and the receiver should have

access. This is the foundation of all encryption methods commonly

used today, e.g. for online credit card purchases or online banking.

We will study the RSA method more closely in Section 4.2. Its

basic idea is the following surprising principle:

It is (relatively) easy to decide whether or not a

given number is prime. However, it is hard to find

the prime divisors of a given composite (i.e. non-

prime) number.

Considering our knowledge about prime numbers from school,

this is a remarkable claim. For example, we can use an ancient method

known as the Sieve of Eratosthenes (Section 1.5) to test whether a

given number is prime. If it is not, this procedure will also provide

us with a list of its prime divisors.

However, numbers routinely used in encryption algorithms today

may have several hundreds or even thousands of digits. Anyone who

has used the Sieve of Eratosthenes by hand, e.g. to find all prime

numbers less than 200 (see Exercise 1.5.1), will find it easy to believe

that this method cannot be carried out in practice for numbers of that

size – even using the most advanced computer technology. To encour-

age research in this direction, RSA Laboratories (a leading security

company) dared experts and puzzlers worldwide from 1991 to 2007

to break the RSA encryption scheme in the Factoring Challenge.

They published a list of so-called RSA numbers (products of two

different, extremely large primes), daring the public to find the two

prime factors. In some cases, rather large amounts of money were

offered for the solution. Although the challenge was officially closed

in 2007, many factorizations still remain unknown!

So it is difficult to find prime factors. But why should detecting

primality be a simpler problem, as claimed above? The key is to find

properties of prime numbers that do not require excluding the pres-

ence of divisors and can therefore be checked much more efficiently.

Just such a property of prime numbers was already discovered in

1640 by the French lawyer and mathematician Pierre de Fermat. In

Introduction 3

RSA-2048 = 2519590847565789349402718324004839857

14292821262040320277771378360436620207075955

56264018525880784406918290641249515082189298

55914917618450280848912007284499268739280728

77767359714183472702618963750149718246911650

77613379859095700097330459748808428401797429

10064245869181719511874612151517265463228221

68699875491824224336372590851418654620435767

98423387184774447920739934236584823824281198

16381501067481045166037730605620161967625613

38441476038339044149526344321901146575444541

78424020924616515723350778707749817125772467

96292638635637328991215483143816789988504044

53640235273819513786365643912120103971228221

20720357

Until 2007, anyone who found the prime factors of the number
“RSA-2048” would have received a prize of US$200,000. No
factorization is known to the present day.

the 1970s, computer scientists Gary Miller and Michael Rabin refined

this property to obtain a practical primality test. Their test is still

used today when encrypting messages using the RSA method, demon-

strating that mathematical theories developed without aspirations of

real-life applications can turn out to have unexpected and extremely

important practical consequences.

Curiously, the Miller-Rabin method of primality testing is ran-

domized, meaning that it relies on a random choice of certain pa-

rameters. Hence there is a (small) chance that the procedure does not

provide a correct answer after a reasonable amount of time. As one

can ensure that the probability of error is negligible, this element of

chance does not have real disadvantages in practice. However, from a

theoretical perspective it is natural to ask whether randomization is

really necessary: is there an efficient method for primality testing that

is deterministic, i.e. does not require the use of random numbers?

4 Introduction

This problem remained unsolved for decades, until the Indian

computer scientists Agrawal, Kayal, and Saxena proposed an elegant

solution in 2002. Due to its fundamental importance and the ele-

mentary nature of the methods employed, their result received great

attention throughout mathematics. The article was immediately cel-

ebrated as a “Breakthrough for Everyone” [Bo] and appeared in 2004

in the Annals of Mathematics, one of the most prestigious mathemat-

ical journals [AKS].

The objective of this book is to give a complete presentation of

the proof of the theorem of Agrawal, Kayal, and Saxena, without

requiring any prior knowledge beyond general computational skills

and the ability to think logically. As part of this presentation, we

naturally develop the prerequisites from mathematics and computer

science that are needed to understand the proof and to appreciate its

importance. We hope that, at the same time, the reader will catch

a glimpse of the beauty of mathematics and obtain an impression of

how many interesting questions still remain open.

About this book. The book is aimed at interested high school

pupils and teachers, but also at undergraduate students in mathe-

matics and computer science (to whom it should be accessible from

the first year). It can be used as the textbook for a summer school

or a reading course.

It is not our intention to primarily give an introduction to the

theory of numbers or algorithms. There are already many excellent

such books – the reader will find some of them in the references at

the end of the relevant chapters. On the other hand, our book is

not a work of mathematical research; it is written neither by nor

for experts. Research mathematicians and computer scientists might

feel that the original article by Agrawal, Kayal, and Saxena or other

sources (such as the book Primality Testing in Polynomial Time by

Dietzfelbinger [Dtz] that is written for a more advanced audience)

proceed at a more appropriate pace for them.

Instead, we shall focus on one main goal – the treatment of the al-

gorithm of Agrawal, Kayal, and Saxena, henceforth referred to as the

“AKS algorithm” – throughout the whole book. Thus we shall cover

Introduction 5

precisely those concepts that are part of the required background for

this result. At the same time, we gently introduce the reader to the

world of mathematical proof. As far as we know, this approach to a

complete treatment of a recent mathematical breakthrough separates

our text from other books written for the same audience.

The first four chapters are designed mainly to introduce the reader

to number theory and algorithm theory, as far as required for the AKS

algorithm. We also give a brief historical and mathematical survey

of cryptography (the science of encryption). In content and scope,

we stay close to the material that was covered in our course at the

Deutsche SchülerAkademie.

In the second part of the book, we essentially present the content

of the AKS article [AKS], referring to the mathematics learned in the

first part and developing further “ingredients” when necessary. We

take care to both explain the underlying ideas and present the proof

correctly and in detail. Readers with solid background knowledge

can skip the first part of the book and give the AKS algorithm a try

immediately, looking back when necessary.

Numerous exercises and comments are included at the end of

each section to provide further background to the reader. The pur-

pose of the exercises is not only to confirm that the new ideas from

the section have been understood, but they are also meant as a gen-

eral invitation to “learning by doing”. From our experience, this is

the best way to learn mathematics. Also, as a reader, one might ap-

preciate certain ideas – particularly if they seem natural in hindsight

– much more after several hours or even days spent thinking about

a solution! We intentionally did not order the exercises according to

difficulty. Those that require the use of an electronic computer or

calculator are marked with “(P)” and those that will be used later

in the book with “(!)”. At the end of a section, there are usually

further (and possibly more difficult) exercises and comments. These

are meant to invite the reader to learn more about the corresponding

subject but can be omitted at the first reading. Appendix A dis-

cusses open problems regarding prime numbers, while Appendix B

contains solutions or hints to all exercises marked with “(!)”. Com-

plete solutions and our contact details will be provided at the website

6 Introduction

www.ams.org/bookpages/stml70. We appreciate all comments, cor-

rections of mistakes (including typographical errors), and, of course,

all questions or suggestions for improvement.

Proofs. “Proofs” are a central concept in mathematics. They es-

tablish the truth of mathematical statements beyond all doubt. In

a proof, we usually start with the given hypothesis and deduce the

desired conclusion using a number of logical steps. Sometimes we

change perspective and begin with the assumption that the conclu-

sion does not hold, deriving a contradiction to our hypothesis or to

known facts. In school, proofs often receive little attention and can

seem mysterious or difficult to understand, so we shall take care to

explain our arguments very carefully and in detail.

A proof can also be viewed as an explanation, helping the reader

to understand why a claim is true. This is precisely what we aim to

achieve in our book. Assuming no prior knowledge apart from elemen-

tary rules of calculation that are familiar from school, the reader will

learn all necessary prerequisites to understand the work of Agrawal,

Kayal, and Saxena. We attempt to point out the underlying ideas

clearly and to explain the separate logical steps carefully. For this

reason, we sometimes refrain from using the shortest or most elegant

arguments, in the hope that our treatment can provide the reader

with a deeper understanding of the material.

This book will not only familiarize the readers with the principles

of mathematical proof but should also enable them to deduce simple

results themselves. Thus, in later chapters, we sometimes relegate

parts of the arguments to exercises and give generous hints.

Definitions, lemmas, and theorems. In mathematics, it is im-

portant that all terms be clearly defined before they are used, i.e.

that their meanings be rigorously established. Such an introduction

of mathematical notation or of a new concept is called a definition.

Once a mathematical object or a mathematical property has been

defined, we can investigate it and try to prove certain facts about it.

We distinguish between more difficult or more significant results and

those that may be of a more auxiliary nature (e.g. established on the

way to the proof of a more important fact). The former are referred

Introduction 7

to as theorems whereas the latter will be called lemmas. Which of

these two categories a given fact is placed in may, however, depend

on personal taste! Lemmas and theorems are both formulated in the

same manner, beginning with a hypothesis and ending with a con-

clusion that is claimed to follow from the hypothesis. Therefore all

lemmas and theorems require a proof. Results that follow in a simple

manner from a previously proved fact are referred to as corollaries.

To make references easier to find, theorems, lemmas, definitions,

exercises, etc., are labelled consecutively within each section.

If a statement takes the form “A implies B”, then the converse

of this statement is “B implies A”. An implication and its converse

usually have very different meanings; for example, “if 6 divides n,

then 3 divides n” is always true, while its converse, “if 3 divides n,

then 6 divides n”, is false in general. When both the implication “A

implies B” and its converse hold, we also say that A holds if and

only if B does. For example, 6 divides n if and only if n is even and

3 divides n.

Mathematical notation. In school, we encounter the following col-

lections of numbers:

• the natural numbers N = {1, 2, 3, 4, . . . };
• the integers Z = {. . . ,−2,−1, 0, 1, 2, . . . };
• the even integers, i.e. the set {. . . ,−4,−2, 0, 2, 4, . . . };
• the odd integers, i.e. the set {. . . ,−3,−1, 1, 3, 5, . . . };

• the rational numbers Q =

{
p

q
: p, q ∈ Z, q �= 0

}
;

• the real numbers R (i.e., the full number line).

If a and b are numbers from one of these sets, then a ≤ b and a < b

stand for “a is less than or equal to b” and “a is strictly less than b”,

respectively. The notation a ≥ b and a > b is defined analogously.

We explicitly note that zero is not a natural number according

to our definition. (There is no general agreement on this among

mathematicians.) Hence we also define

(∗) N0 := {a ∈ Z : a ≥ 0}.

8 Introduction

Here the symbol := means “is defined as”. It is used to introduce

an abbreviation or a new notation (not to claim the equality of two

previously defined quantities). So we can read (∗) as “N0 denotes the

collection of all non-negative integers”.

Collections as above are called sets in mathematics. That is, a

set is a collection of distinct objects (its elements); two sets are equal

if they have the same elements. The sets we encounter will almost

exclusively consist of numbers, rather than more complicated objects.

As the basic notation of set theory – as usually encountered in school

– will be used routinely throughout the book, let us briefly review it

here. If M is a set, then x ∈ M means “x is an element of the set

M”. When y does not belong to M , we write y /∈ M . A set N is

called a subset of a set M if every element of N is also an element

of M . In this case we write N ⊆ M . For example,

N ⊆ N0 ⊆ Z ⊆ Q ⊆ R.

Note that, by definition, every set is a subset of itself. If N ⊆ M

and N �= M , then N is called a proper subset of M , and we write

N � M . The symbol ∅ denotes the empty set: the (unique) set

that has no elements. The number of elements of a set M is denoted

by #M ; for example #{2, 4, 6, 8, 10} = 5 and #N = ∞. (The symbol

∞ stands, as usual, for “infinity”.) As already encountered in (∗),

{x ∈ M : x has the property . . . }

denotes the set of all elements of M that have the stated property.

We use the standard notation from school for addition, subtrac-

tion, multiplication, and division, as well as for powers. Occasionally

we omit the dot for multiplication, writing (for example) 3x instead

of 3 · x. Elementary rules of calculation, such as the distributive law

a(b+ c) = ab+ ac, are used routinely throughout.

If x1, . . . , xn are real numbers, with n ∈ N, then their sum and

product are abbreviated as follows:

n∑
i=1

xi = x1 + x2 + · · ·+ xn;

n∏
i=1

xi = x1 · x2 · · ·xn.

For example,
n∑

i=1

i = 1 + 2 + · · ·+ n and
n∑

i=1

1
i = 1

1 + 1
2 + · · ·+ 1

n .

Introduction 9

If n is any natural number, then n! denotes the factorial of n,

defined by

n! :=

n∏
i=1

i
(
= 1 · 2 · · · (n− 1) · n

)
.

For example, 1! = 1, 3! = 6, and 5! = 120. We also define 0! := 1.

Recall the following rules for transforming powers: if a, b, x, y are

real numbers with a, b > 0, then

ax · ay = ax+y, (ab)x = ax · bx, and (ax)y = ax·y.

Instead of a(x
y) we write ax

y

. In general, this is not the same as

(ax)y: for example we have 23
2

= 512, but (23)2 = 64. By definition,

raising any number to the power zero yields 1: a0 := 1 for all a ∈ R.

We say that a natural number n is a perfect power of a ∈ N if there

is some b ∈ N such that b ≥ 2 and n = ab. For example, 81 is a

perfect power of 3, since 81 = 34.

The logarithm to base 2 of a real number x > 0 is denoted by

log x, i.e. log x is the (unique) real number � that satisfies 2� = x.

For example, log 2 = 1 and log 8 = 3. Once in a while we also use the

natural logarithm lnx: this is the logarithm to base e, where e is

Euler’s constant. That is, lnx is the number � ∈ R for which e� = x.

If N and M are sets, then “f : N → M” is an abbreviation

for “f is a function from N to M”. This means that f associates

to every element x ∈ N an element of M , usually denoted by f(x).

For example, we can define a function f from N to R by setting

f(n) := log n for all n ∈ N.

If x ∈ R, then |x| denotes the absolute value of x. (So |x| = x

when x ≥ 0 and |x| = −x otherwise.) We also write
x� to denote the

largest integer n with the property that n ≤ x. Similarly, we write

�x for the smallest integer n satisfying n ≥ x. (See Exercise 1.1.11.)

For example,
⌊
3
2

⌋
= 1 and

⌈
3
2

⌉
= 2.

Mathematicians often use Greek letters to refer to certain quan-

tities (for example, angles in elementary geometry). We will utilize

the uppercase letter Π (“Pi”) and the lowercase letters α (“alpha”),

δ (“delta”), ε (“epsilon”), ζ (“zeta”), μ (“mu”), ϕ (“phi”), and, of

course, π (“pi”).

10 Introduction

All other concepts and notations are introduced at the appropri-

ate time (with many examples). They are also listed in the index and

in the list of symbols at the end of the book.

Part 1

Foundations

Chapter 1

Natural numbers
and primes

Throughout this book, we study natural numbers and the problem

of distinguishing between those that are prime and those that are

composite. Hence we begin by recalling and proving some of the

fundamental properties of these numbers.

We will first learn about the principle of mathematical induc-

tion and define divisibility. We prove the key result that every nat-

ural number can be written uniquely as a product of prime numbers

(the “Fundamental Theorem of Arithmetic”) and derive and use the

Euclidean algorithm, which allows us to tell whether two numbers

have a common factor without having to compute their prime factor

decomposition! To round off the chapter, we study the oldest known

primality test – the Sieve of Eratosthenes – and also show that

there are infinitely many different prime numbers.

1.1. The natural numbers

Let us think of the natural numbers quite naively as those quantities

used to count things – whenever we count (finitely many) objects,

their number should be an element of N. We take the view that

counting makes sense only if there actually is something to count:

13

14 1. Natural numbers and primes

the number 0 does not belong to N. Hence the first and smallest

natural number is 1.

From this intuitive point of view, let us discuss some important

properties that distinguish N from other number systems. At first, we

notice many things that cannot be done with natural numbers. They

cannot always be subtracted from one another without leaving the

set of natural numbers (as is possible for integers) nor can we divide

them without restriction (as with fractions). Taking arbitrary square

roots is certainly not possible either, in contrast to the positive real

numbers. But N does have a striking property that has many useful

consequences: the well-ordering principle.

1.1.1. Well-Ordering Principle.

Every non-empty subset of N possesses a smallest element.

We see at once that the well-ordering principle is false for Z, Q,

and R. Indeed, if a is an arbitrary integer, then a−1 is also an integer,

and a−1 is smaller than a. So Z does not contain a smallest element.

(However, the well-ordering principle does hold for subsets of Z that

are bounded from below ; see Exercise 1.1.11. We will frequently use

this fact.)

On the other hand, we can justify the principle for the natural

numbers as follows. If A is a non-empty subset of N, then A contains

some element n0 ∈ A. If n0 is not the smallest element of A, then

there is some other element n1 ∈ A such that n1 < n0. If n1 again is

not the smallest element of A, then there is an even smaller one, and

so on. But there are only n0 − 1 natural numbers that are smaller

than n0, so the procedure must necessarily come to an end. Thus at

some point, we will have found the smallest element of A.

Strictly speaking, this is not a proof, but merely an argument

that the well-ordering principle is plausible. Indeed, we cannot give a

formal proof because we did not define the natural numbers with the

necessary accuracy. Instead, we accept the well-ordering principle

as an axiom, i.e. a proposition whose truth we take to be evident

without proof. (However, see Exercise 1.1.24.)

1.1. The natural numbers 15

The method of infinite descent. The well-ordering principle pro-

vides us with a useful tool for proving statements about all natural

numbers. The idea is best illustrated by an example. (Regarding the

name of the following theorem, see Comment 1.1.21.)

1.1.2. Theorem (Irrationality of
√
2).

Let n be a natural number. Then there is no natural number m with

2m2 = n2.

Proof. We assume, by way of contradiction, that the claim is wrong;

so suppose that there are natural numbers n and m with 2m2 =

n2. To see what this would entail, it might make things simpler to

choose n and m as small as possible, using the well-ordering principle.

Indeed, our assumption means that the set

A := {n ∈ N : there is some m ∈ N such that 2m2 = n2}

is not empty, so it has a smallest element n0. Let us try to find out

some more things about this number n0. By definition, there exists

m0 ∈ N with

(1.1.3) 2m2
0 = n2

0.

Since 1 < 2, we have m2
0 < n2

0, and thus m0 is smaller than n0.

We also see from (1.1.3) that n2
0 is an even number. So n0 must

itself be even, since the square of an odd number is odd (Exercise

1.1.10). In other words, there is a number ñ ∈ N with n0 = 2ñ.

Substituting for n0 in (1.1.3), we see that

2m2
0 = n2

0 = (2ñ)2 = 4ñ2

and therefore m2
0 = 2ñ2. We conclude that m0 also belongs to the

set A. But this is impossible because m0 < n0 and n0 was chosen to

be the smallest element of A! So we have derived a contradiction –

it follows that our original premise was false and that the theorem is

true. �

The principle underlying the preceding proof is called the me-

thod of infinite descent or the method of the smallest coun-

terexample. The idea is to assume that there is a natural number

16 1. Natural numbers and primes

for which the claim (i.e. a statement that we wish to prove for all

n ∈ N) is false. By the well-ordering principle, there exists a “small-

est counterexample”: a smallest natural number that violates our

statement. If, by studying the properties of this number, we can de-

duce that there would have to be an even smaller counterexample,

then we obtain a contradiction. Throughout the book, the reader

will encounter many applications of this valuable proof principle for

the natural numbers.

Mathematical induction. The method of infinite descent is closely

related to another method of proof, called (mathematical) induc-

tion. The following theorem formulates the concept as a general

principle; Example 1.1.5 below illustrates how one applies the proce-

dure to a specific problem.

1.1.4. Theorem (Induction principle).

Suppose that M ⊆ N is a set of natural numbers with the following

properties:

(a) the number 1 is an element of M and

(b) if n is a natural number in M , then the next number n + 1

is also an element of M .

Then it follows that M = N, i.e. every natural number belongs to M .

Proof. We assume that M �= N and deduce a contradiction, using

the method of the smallest counterexample. By our assumption, the

set A := {n ∈ N : n /∈ M}, i.e. the collection of natural numbers

that do not belong to M , is a non-empty subset of N. By the well-

ordering principle, this set has a smallest element n0. Our hypothesis

(a) implies that 1 is not in A, and in particular n0 �= 1. Therefore

m := n0−1 is also a natural number. Since n0 is the smallest element

of A, the number m cannot belong to A and it follows that m ∈ M .

But hypothesis (b) shows that n0 = m + 1 must also be an element

of M , and this is a contradiction. �

We can visualize the principle of mathematical induction by imag-

ining an (infinite) row of dominoes, placed in such a way that each

1.1. The natural numbers 17

domino will, in falling, cause the next one to topple as well. The prin-

ciple of mathematical induction tells us that, if we push over the first

one, every domino will eventually fall. This is certainly supported by

intuition!

In order to prove some property for all natural numbers using

mathematical induction, we show:

• the number 1 has the desired property (basis of the in-

duction) and

• if n has the desired property, then n+1 also does (induction

step).

Then Theorem 1.1.4 tells us that the desired statement does indeed

hold for all natural numbers.

1.1.5. Example. We demonstrate that, for all natural numbers n,

the number n3 − n is a multiple of 3. (That is, there is an integer m

such that n3 − n = 3m.)

Proof. If n = 1, then

n3 − n = 13 − 1 = 1− 1 = 0 = 3 · 0,

so the claim is true in this case. That is the basis of the induction.

Now let us take a look at an arbitrary natural number n for which

the claim is true. Then there is an integer m such that n3 − n = 3m.

This is called the induction hypothesis.

We need to show that the claim is also true for n + 1. That is,

we must check that (n+1)3 − (n+1) is a multiple of 3. To do so, we

expand the power (n+ 1)3 (see also Theorem 1.1.9) and see that

(n+ 1)3 − (n+ 1) = n3 + 3n2 + 3n+ 1− n− 1 = n3 + 3n2 + 3n− n.

Note that n3 − n appears on the right-hand side, and our induction

hypothesis tells us that n3 − n = 3m. So

(n+ 1)3 − (n+ 1) = 3m+ 3n2 + 3n = 3(m+ n2 + n).

Since m + n2 + n is certainly an integer, we have shown that

(n+ 1)3 − (n+ 1) is a multiple of 3, as desired.

18 1. Natural numbers and primes

This completes the induction step, and the claim is proved for all

natural numbers n. �

There are a few variants of the induction principle that will be

used on occasion:

(a) Sometimes it is convenient to pass from n − 1 to n in the

induction step, rather than from n to n+ 1.

(b) Statements that are true for all integers greater than or equal

to some number n0 can also be proved using mathematical

induction. In this case, in the basis of the induction, we

simply check the statement for n = n0 (instead of n = 1);

everything else is exactly as above. In particular, if we would

like to have a formula available for all numbers in N0, rather

than all numbers in N, we start the induction at n = 0.

(c) In some cases, we derive the desired property for n+1 using

not only the induction hypothesis for n, but also for n − 1,

or even for all m ≤ n. That is, the principle of mathematical

induction still applies when the induction hypothesis takes

the stronger form “We suppose that the claim is true for all

smaller numbers”; see Exercise 1.1.25.

Since we deduced the principle of mathematical induction from

the well-ordering principle, every inductive proof can also be for-

mulated as a proof by infinite descent (and vice versa; see Exercise

1.1.24). However, induction yields a direct proof (i.e. one that does

not rely on finding contradictions), which is often more elegant. We

shall decide on a case-by-case basis which method to use, depending

on the specific application and also on personal taste.

Recursive definitions. Using mathematical induction, we can de-

fine certain sequences a1, a2, a3, . . . of numbers without having to

explicitly write down a formula. Indeed, suppose that we specify the

value of the first number a1 and know how to obtain ak+1 from the

numbers a1, . . . , ak. Then there is enough information to determine

ak uniquely for all k ∈ N. This is called a recursive definition.

1.1. The natural numbers 19

For example, we define a sequence a1, a2, ... via

(1.1.6) a1 := 1 and ak+1 :=
1

1 + ak
for all k ≥ 1.

From this information we can compute all numbers in the sequence,

starting with a1:

a1 = 1, a2 =
1

1 + a1
=

1

2
, a3 =

1

1 + a2
=

2

3
,

a4 =
1

1 + a3
=

3

5
, a5 =

1

1 + a4
=

5

8
, a6 =

1

1 + a5
=

8

13
,

and so on. It is often possible to use mathematical induction to prove

statements about a recursively defined sequence of number, even if

we do not know an explicit formula for the k-th element.

The Fibonacci numbers are an important example of a recur-

sively defined sequence. They are given by

(1.1.7) f1 := 1; f2 := 1; fk := fk−1 + fk−2 for all k ≥ 3.

The first few terms are 1, 1, 2, 3, 5, 8, 13,

Finally, we mention the binomial coefficients, from the mathe-

matical field of combinatorics, which play an important role in this

book on a number of occasions. If n, k ∈ N, then the binomial coeffi-

cient
(
n
k

)
is defined to be the number of ways of choosing k out of n

different-colored balls, without repetitions and disregarding the order

in which the balls are picked. (In other words,
(
n
k

)
is the number of

subsets of {1, 2, . . . , n} that contain exactly k elements.) For exam-

ple, in the United Kingdom’s National Lottery there are exactly
(
49
6

)
different possibilities of picking 6 different numbers from the range

1–49. Binomial coefficients satisfy the following recursive formula:(
n

0

)
= 1,

(
0

k

)
= 0, and

(
n+ 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
(1.1.8)

for all n ∈ N0 and all k ∈ N. (See Exercise 1.1.15.) In the following,

we use this as a formal (recursive) definition of binomial coefficients.

Pascal’s triangle (Figure 1.1) is a succinct way of illustrating the

formula (1.1.8) visually.

Binomial coefficients appear, in particular, when multiplying out

powers of a sum of two elements. This is the content of the binomial

theorem.

20 1. Natural numbers and primes

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

...

Figure 1.1. The first rows of Pascal’s triangle. The (n+1)-th
row contains the binomial coefficients

(n
0

)
, . . . ,

(n
n

)
. By (1.1.8),

each entry is obtained by adding the two entries diagonally
above it.

1.1.9. Theorem (Binomial theorem).

Let a and b be arbitrary real numbers and let n ≥ 0 be an integer.

Then

(a+ b)n =
n∑

k=0

(
n

k

)
akbn−k.

Remark. For n = 2, we obtain (a+b)2 = a2+2ab+b2, the well-known

formula for the square of a sum. In Example 1.1.5, multiplying out

(n+ 1)3 = n3 + 3n2 + 3n+ 1 corresponds to the case n = 3.

Proof of the binomial theorem. It is a useful exercise to justify

the claim using the combinatorial definition of binomial coefficients.

(How many times does the term akbn−k appear when multiplying out

(a+ b)n?) Instead, we use the opportunity to practice mathematical

induction with a slightly more complicated example than before.

Let us keep the numbers a and b fixed. First suppose that n = 0;

then (a+ b)n = 1 and
n∑

k=0

(
n

k

)
akbn−k =

(
0

0

)
a0b0 = 1,

so the theorem is true in this case. That is the basis of the induction.

Now we suppose that the claim is true for n and we must show

that it also holds for n+ 1. Using our induction hypothesis and then

1.1. The natural numbers 21

multiplying out, we see that

(a+ b)n+1 = (a+ b) · (a+ b)n

= (a+ b)

n∑
k=0

(
n

k

)
akbn−k

=

n∑
k=0

(
n

k

)
ak+1bn−k +

n∑
k=0

(
n

k

)
akbn+1−k.

Substituting j = k + 1 in the first sum and j = k in the second, we

obtain

(a+ b)n+1 =

n+1∑
j=1

(
n

j − 1

)
ajbn+1−j +

n∑
j=0

(
n

j

)
ajbn+1−j .

(We remind the reader that the Σ-notation for sums is merely an ab-

breviation, so it does not matter what name we give to the summation

variable!)

Now separate the last term of the first sum and the first term of

the second sum; then we can combine the remaining terms of both.

By definition,
(
n
0

)
=
(
n
n

)
= 1, so

(a+ b)n+1 =

(
n

n

)
an+1 +

(
n

0

)
bn+1

+

n∑
j=1

(
n

j − 1

)
ajbn+1−j +

n∑
j=1

(
n

j

)
ajbn+1−j

= an+1 + bn+1 +

n∑
j=1

((
n

j − 1

)
+

(
n

j

))
ajbn+1−j .

Now we can use the recursive formula (1.1.8):

(a+ b)n+1 = an+1 + bn+1 +
n∑

j=1

(
n+ 1

j

)
ajbn+1−j

=

n+1∑
j=0

(
n+ 1

j

)
ajbn+1−j .

This completes the induction step. By mathematical induction, the

binomial theorem holds for all n. �

22 1. Natural numbers and primes

Exercises.

1.1.10. Exercise (!). Recall that a natural number n is called even if
there is a natural number m with n = 2m. The number n is called odd if
there is a natural number m such that n = 2m− 1.

(a) Show that every natural number is either even or odd, but not
both at the same time. (Hint: By the well-ordering principle,
there is a smallest number m satisfying 2m ≥ n.)

(b) Show that the product of two even numbers is even and that the
product of two odd numbers is odd. What can you say about the
product of an odd number and an even number?

1.1.11. Exercise (!). Suppose that M is a non-empty set of integers.
Then M is called bounded from above or bounded from below if
there exists an integer K such that x ≤ K for all x ∈ M or x ≥ K for all
x ∈ M , respectively.

Prove the following: if M is bounded from below, then M contains a
smallest element. Similarly, if M is bounded from above, then M has a
largest element. Are these statements also true for subsets of Q or R?

(Hint: For the first part apply the well-ordering principle to the set of
all numbers of the form 1+x−K, with x ∈ M . For the second part, apply
the first claim to the set {x ∈ Z : −x ∈ M}.)

1.1.12. Exercise (!). Prove by mathematical induction for all n ∈ N:

(a) 2n ≥ 2n.

(b)
n∑

k=1

k =
n(n+ 1)

2
(“Gauss summation”).

(c)

n−1∑
k=0

xk =
1− xn

1− x
for all real numbers x �= 1.

(d) For all real numbers x �= 1,
n−1∑
k=0

(k + 1) · xk =
nxn+1 − (n+ 1)xn + 1

(1− x)2
.

(e)

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
.

(f)

n∑
k=0

(k · k!) = (n+ 1)!− 1.

(g)

n∑
k=1

1

k(k + 1)
=

n

n+ 1
.

1.1. The natural numbers 23

1.1.13. Exercise.

(a) Prove that n5 − n is a multiple of 5 for all n ∈ N.

(b) Is n4 − n a multiple of 4 for all n ∈ N? If not, give a counterex-
ample and explain why the proof from (a) fails here.

1.1.14. Exercise. Suppose that g1, . . . , gn are straight lines in the plane,
no two of which are parallel to each other. (We say that the lines are pair-
wise not parallel.) Furthermore no more than two lines should intersect at
any given point in the plane.

Into how many different pieces do these lines separate the plane? De-
velop an idea, write down a formula, and prove it using mathematical
induction. What changes if some of the lines are allowed to be parallel?

1.1.15. Exercise (!).

(a) Using the intuitive definition of binomial coefficients, prove that
the recursive formula (1.1.8) is true.

(b) Also explain why the equation

(1.1.16)

(
n

k

)
=

n!

k!(n− k)!

holds for all k, n ∈ N0 with k ≤ n.

(c) Deduce (1.1.16) from the recursive formula (1.1.8), using mathe-
matical induction.

1.1.17. Exercise (!). Let n, k, � ∈ N0. Prove the following:

(a)

(
n+ �

k

)
≥

(
n

k

)
.

(b)

(
n+ �

k + �

)
≥

(
n

k

)
.

(c) The “middle” binomial coefficients
(
2n
n

)
grow at least exponen-

tially, i.e. (
2n

n

)
≥ 2n.

(Hint: For the first two parts it is useful to take a look at Pascal’s triangle.
For the third part, use induction together with the recursive formula for
binomial coefficients and the first two parts of the exercise.)

1.1.18. Exercise (!). Let n, k ∈ N0 and write a(n, k) for the number
of ways of choosing up to k (not necessarily different) numbers from 1

24 1. Natural numbers and primes

to n, disregarding the order in which they are picked. (Here we allow
the possibility of not picking any numbers; for example a(n, 0) = 1 and
a(n, 1) = n+ 1 for all n.)

(a) Justify that, for all natural numbers n,m ≥ 1, the number a(n,m)
satisfies the recursive formula

a(n,m) = a(n− 1,m) + a(n,m− 1).

(b) Prove by induction that

a(n,m) =

(
n+m

m

)
.

1.1.19. Exercise. Prove that the rational numbers ak defined by (1.1.6)
satisfy ak = fk/fk+1 for all k, where fk is the k-th Fibonacci number as
defined in (1.1.7).

1.1.20. Exercise. Show that the k-th Fibonacci number is given by

fk =
(1 +

√
5)k − (1−

√
5)k

2k ·
√
5

(for all k ≥ 1).

(Hint: Use version (c) of the induction principle.)

Further Exercises and Comments.

1.1.21. Theorem 1.1.2 is equivalent to the well-known fact that
√
2 is an

irrational number. Indeed, 2m2 = n2 just means that(n

m

)2

= 2.

There also is a geometric interpretation of this statement: there is no square
for which both the sidelength a and the length d of the diagonal are natural
numbers. (Otherwise, Pythagoras’s Theorem implies that 2a2 = d2.)

1.1.22. If n is a natural number, then n+1 is usually called the successor
of n. The following are evident:

(I) 1 is a natural number;

(II) every natural number has exactly one successor;

(III) there is no natural number whose successor is 1, but every natural
number n �= 1 is itself the successor of some other natural number;

(IV) different natural numbers have different successors;

(V) if M is a subset of N that contains 1 and also contains the suc-
cessor of each of its elements, then M = N.

1.1. The natural numbers 25

Here statement (V) is exactly the induction principle proved in Theorem
1.1.4. Properties (I) to (V) are known as the Peano axioms, after the
Italian mathematician Giuseppe Peano.

It turns out that the Peano axioms describe the natural numbers
uniquely, i.e. there is (up to a relabeling of the elements) no other set with
the same properties. For this reason, they can be used to define the natu-
ral numbers; this is the usual way of introducing them in a university-level
mathematics course. We decided to begin with the well-ordering principle
instead, feeling that this would appear more intuitive to readers who have
not encountered either concept before.

1.1.23. Exercise. Note that the Peano axioms do not include any state-
ments about elementary arithmetic; they require only that for every natural
number n the successor n+ 1 is defined.

Show that, using this successor function, the sums n+m, products n·m,
and powers nm for all natural numbers n,m can be defined recursively.

1.1.24. Exercise. Show that the well-ordering principle follows from the
principle of mathematical induction (and hence from the Peano axioms).

1.1.25. Exercise. Prove – using either the well-ordering principle or the
Peano axioms – that an analogue of Theorem 1.1.4 holds for each of the
alternative versions of the induction principle introduced in the text.

1.1.26. The proof principle of infinite descent was first described by Pierre
de Fermat (1601–1665), a French lawyer who intensively studied mathe-
matics in his spare time. He did not publish mathematical texts himself;
we know about his work from the letters he exchanged with other math-
ematicians and from handwritten notes that he made in the margins of
textbooks. Fermat is famous for his claim that, for all natural numbers
n > 2, there are no natural numbers a, b, and c such that an + bn = cn.

Although it is believed today that Fermat did not know of a correct
proof of this statement, it has become known as Fermat’s Last Theorem.
It took 300 years until the problem was finally solved by the English mathe-
matician Andrew Wiles. (His proof appeared in the Annals of Mathematics
in 1995.)

1.1.27. Both Example 1.1.5 and Exercise 1.1.13(a) are special cases of Fer-
mat’s Little Theorem, which we will encounter in Section 3.2.

1.1.28. Exercise. We claim that every natural number can be described
by a sentence containing at most two hundred letters.

26 1. Natural numbers and primes

“Proof”: Assume that the claim is false. Then there exists the smallest
natural number that cannot be described by a sentence containing at most
two hundred letters. This description contains less than two hundred letters
– a contradiction!

However, the claim above is clearly wrong. Indeed, there are only
finitely many sentences containing at most two hundred letters, but infin-
itely many natural numbers Where did we make a mistake?

1.2. Divisibility and primes

Having discussed the natural numbers, we are now ready to discuss

the question of when we can divide one natural number by another,

which naturally leads to the definition of prime numbers. We begin

by formally introducing a few concepts with which the reader is likely

to be familiar.

1.2.1. Definition (Divisors, multiples, and primes).

Let n, k ∈ Z. We call k a divisor of n (and conversely n a multiple

of k) if there exists an integer m such that k ·m = n. In this case, we

say that k divides n, or that n is divisible by k, and write k |n.
A prime is a natural number that is divisible by exactly two

different natural numbers (namely by 1 and itself).

A natural number n > 1 that is not prime is called a composite

number.

For example, 3 | 6 because 3 · 2 = 6. We also have −3 | 6, since
(−3)·(−2) = 6. Every integer is divisible by both 1 and −1. Similarly,

every integer is a divisor of zero. (This is a good reason to leave

zero out of the natural numbers.) If a, b are natural numbers and a

divides b, then we see immediately that a ≤ b. Readers are invited to

convince themselves that this is not true when a and b are allowed to

be negative!

If n ∈ Z, then 1, −1, n, and −n are certainly divisors of n;

they are called the trivial divisors. If there are any other divisors,

then they are called non-trivial divisors. Thus prime numbers only

have trivial divisors. Note that 1 is not prime, since there is only one

1.2. Divisibility and primes 27

natural number that divides it! The next result provides us with some

simple rules for working with divisors.

1.2.2. Theorem (Rules for divisibility).

Let a, b, c ∈ Z. If b and c are divisible by a, then so are b + c, b − c,

and b · c. Every divisor of b divides every multiple of b; that is, if a | b
and b | c, then also a | c.

Proof. Suppose that a divides both b and c. Then, by definition,

there exist integers n and m such that a · n = b and a ·m = c. Hence

b+ c = a · n+ a ·m = a · (n+m),

b− c = a · n− a ·m = a · (n−m),

b · c = (an) · (am) = a · (n · a ·m).

Since n +m, n −m, and n · a ·m are integers, it follows that a is a

divisor of b+ c, of b− c, and of b · c. The final claim follows similarly;

we leave the details to the reader as an exercise. �

1.2.3. Definition (Common divisors and multiples; gcd and lcm).

Let a, b ∈ Z and let k ∈ Z be a number that divides both a and b.

Then k is called a common divisor or a common factor of a and

b. Similarly, a number v ∈ Z that is a multiple of both a and b is

called a common multiple of a and b.

Now suppose that a �= 0 or b �= 0. Then the largest number k ∈ N

that is a common divisor of a and b is referred to as the greatest

common divisor (gcd) of a and b. We write k = gcd(a, b). (The

gcd is sometimes also called the “highest common factor”.)

Correspondingly, if neither a nor b is equal to zero, the small-

est natural number v that is a common multiple of a and b is

called the least common multiple (lcm) of a and b; we write

v = lcm(a, b). For completeness, we also define gcd(0, 0) := 0 and

lcm(a, 0) := lcm(0, a) := 0 for all a ∈ Z.

Two integers a and b are called coprime if gcd(a, b) = 1, i.e. if a

and b do not have any positive common divisors apart from 1.

28 1. Natural numbers and primes

Remarks.

(a) The least common multiple exists by the well-ordering prin-

ciple. Furthermore, for every c �= 0 the set of divisors of c

is bounded from above by the absolute value |c|. Hence the

gcd also always exists (see Exercise 1.1.11).

(b) From school, we know that every common divisor of a and

b also divides gcd(a, b). This is not completely obvious from

the definition and therefore requires a proof, which we shall

give in the next section. A simple method of computing

gcd(a, b) will be introduced in Section 1.4.

Examples.

(a) If n ∈ Z is arbitrary, then gcd(1, n) = 1 and gcd(0, n) = n.

(b) The positive common divisors of 12 and 18 are 1, 2, 3, and

6. Hence gcd(12, 18) = 6.

(c) The numbers 3 and −6 are not coprime as gcd(3,−6) = 3.

In contrast, gcd(5, 12) = gcd(5, 17) = gcd(12, 17) = 1, so the

numbers 5, 12, and 17 are pairwise coprime.

We now turn to the concept of division with remainder. Since

this is central for our book and for number theory in general, we shall

prove formally that division with remainder is always possible. This

is sometimes referred to as the “division algorithm”; however, it

is a theorem, not an algorithm in the sense of our book.

1.2.4. Theorem (Division theorem).

Let a ∈ Z and b ∈ N. Then there exist integers q and r such that

0 ≤ r < b and a = qb+ r.

We say that b divides a with remainder r. The numbers q

and r are uniquely determined by a and b.

Remark. In particular, b divides a with remainder 0 if and only if b is

a divisor of a.

Proof. The idea is simple: we choose q as large as possible while

requiring that the remainder r = a − qb is not negative. Then q

1.2. Divisibility and primes 29

and r have the desired property and are uniquely determined by this

description.

To develop this outline into a formal proof, consider the set Q :=

{q ∈ Z : a− qb ≥ 0}. We have

a− (−|a| · b) = a+ |a| · b ≥ a+ |a| ≥ 0,

so −|a| ∈ Q and in particular Q �= ∅. On the other hand, we have

a − nb < 0 for all n > |a|, so it follows that the set Q is bounded

from above. By Exercise 1.1.11, Q has a largest element q. We set

r := a− qb ≥ 0. By maximality of q, we see that q + 1 /∈ Q whence

r − b = a− qb− b = a− (q + 1)b < 0.

Hence it follows that 0 ≤ r < b and a = qb+ r as claimed.

To prove uniqueness, let us assume that q′, r′ are integers such

that a = q′b + r′ with 0 ≤ r′ < b. We need to show that q′ = q and

r′ = r. By definition of the set Q, we know that q′ ∈ Q. Also, we see

for all n ≥ q′ + 1 that

a− nb ≤ a− (q′ + 1)b = a− q′b− b = r′ − b < 0.

Therefore n /∈ Q. This means that q′ is the largest element of Q,

giving q′ = q. But then we also have r′ = a − q′b = a − qb = r, as

desired. �

Example. The number 5 divides 47 with remainder 2, as 47 = 9 ·5+2

and 0 ≤ 2 < 5. For larger examples, the numbers q and r can be

found with the usual method of long division. For example, to

divide 10 007 by 101:

99

101
)
10007
9090

917
909

8

So 10 007 = 99 · 101 + 8, and 101 divides 10 007 with remainder 8.

In Section 3.1, we will discuss many further properties of division

with remainder. However, the concept will already be important for

developing the Euclidean algorithm in Section 1.4.

30 1. Natural numbers and primes

Exercises.

1.2.5. Exercise. Suppose that n and m are integers and let k ∈ N. Prove
or disprove the following statements!

(a) If k divides m+ n, then it also divides n and m.

(b) If k divides m · n, then k is also a divisor of n and m.

(c) If k is a divisor of m · n, then k divides n or m.

(d) If k divides m but not n, then k does not divide m+ n.

(e) If k divides m, but not n, then k does not divide m · n.
(f) If k divides n and m with remainder 1, then the remainder of

n ·m after division by k is also 1.

(g) If k divides both n and m with remainder 1, then k also divides
n+m with remainder 1.

1.2.6. Exercise (!).

(a) Show that every natural number n > 1 has at least one prime
factor. (This means that there exists a prime number p such
that p |n.)

(b) Show that a composite number n > 1 has at least one non-trivial
divisor k such that k2 ≤ n.

1.2.7. Exercise. Let k ∈ N and a, b ∈ Z. Furthermore, suppose that k
divides the number a with remainder r and the number b with remainder
s. Develop rules for the remainders of a+ b, a− b, and a · b when divided
by k, and then prove the correctness of these rules!

1.2.8. Exercise. Let n ∈ N. Show that exactly one of the numbers n,
n+ 1, and n+ 2 is divisible by 3.

1.2.9. Exercise. Let n ≥ 3 be an odd natural number. Show that exactly
one of the numbers n+ 1 and n− 1 is divisible by 4.

1.2.10. Exercise. Let a, b, c, and d be integers such that a | b and c | d.
Does this imply that ac | bd?

1.2.11. Exercise. Show that, for all integers a and b, the number 2a + b
is divisible by 7 if and only if 100a + b is divisible by 7. Use this fact to
decide whether 100002 is divisible by 7. Can you find and prove similar
“division rules”?

1.2.12. Exercise (!). Let n ∈ N and let p be prime. Prove: if p does not
divide n, then n and p are coprime.

1.3. Prime factor decomposition 31

1.3. Prime factor decomposition

The importance of prime numbers stems from the fact that they are

in some sense the “building blocks” of natural numbers. Indeed, every

natural number n ≥ 2 has a prime factor decomposition1; i.e. it

can be written as a product of prime numbers

(1.3.1) n = p1 · p2 · · · pk.

(These numbers p1, . . . , pk are called the prime factors of n.) Fur-

thermore, the decomposition is unique – apart from the possibility of

reordering the factors in (1.3.1). We now formally prove these facts,

together called the Fundamental Theorem of Arithmetic.

1.3.2. Theorem (Fundamental Theorem of Arithmetic).

Let n ≥ 2 be a natural number. Then n is a product of prime numbers,

and this decomposition into primes is unique up to a reordering of the

factors.

(In particular, the number of distinct primes and their multiplic-

ities in the prime factor decomposition are uniquely determined.)

Proof. We shall prove the theorem using variant (c) of the induction

principle. That is, let n0 ≥ 2 be a natural number, and suppose that

we know that all smaller numbers n ∈ {2, 3, . . . , n0−1} have a unique

prime factor decomposition. For convenient notation, let us denote

this decomposition by Π(n); we must show that n0 also has a unique

prime factor decomposition.

First observe that the claim is true when n0 is prime: in this case

the decomposition consists of a single prime number and is unique

because no other prime divides n0.

Now suppose that n0 is not prime, and let p be the smallest prime

divisor of n0 (see Exercise 1.2.6). Then we can write n0 = p · k for

some k with 2 ≤ k < n0. By the induction hypothesis, k has a unique

1Sometimes it is useful to agree by convention that n = 1 also has a prime
factor decomposition, namely the empty decomposition into no prime factors. This
makes some statements and proofs easier because it is not necessary to treat this case
differently.

32 1. Natural numbers and primes

prime factor decomposition Π(k). In particular, n0 has the prime

factor decomposition

n0 = p ·Π(k),

and this is the unique decomposition (up to reordering) that contains

the number p. Consider any decomposition

n0 = p1 · p2 · · · pm,

where the prime factors are written in non-decreasing order. Recall

that p is the smallest prime divisor of n0, so p1 ≥ p; we must show

that p1 = p.

Let us assume, by contradiction, that p1 > p. Then we divide p1
by p with remainder; hence we let q, r ∈ Z be such that

p1 = q · p+ r

and 0 ≤ r < p. Since p and p1 are distinct prime numbers by assump-

tion, we must have r ≥ 1. Now we can write

(1.3.3) n0 = (q · p+ r) · p2 · · · pm = p · q · �+ r · �,

where we abbreviate � = p2 · · · pm. The number r · � has the prime

factor decomposition

(1.3.4) r · � = Π(r) · p2 · · · pm.

But p divides both n0 and p · q · �, so according to (1.3.3), r · � is

divisible by p. By the induction hypothesis, this means that p must

appear in the prime factor decomposition of r · �. But p is not visible

in (1.3.4)! (Recall that r < p.) This is a contradiction. The induction,

and hence the proof of the theorem, is complete. �

Looking a little more closely at the proof, we notice that it is

uniqueness of the decomposition, rather than existence, that posed

the greatest difficulty. More precisely, we needed to show that a prime

divides the product of several integers only if it divides one of these

integers themselves. As this observation is important in its own right,

we shall record it here for further reference.

1.3. Prime factor decomposition 33

1.3.5. Corollary (Prime divisors of a product).

Let a and b be integers and let p be a prime divisor of the product a ·b.
Then p divides a or b.

More generally, suppose that a, b ∈ Z are both coprime to k ∈ Z.

Then the product a · b is also coprime to k.

Proof. To prove the first claim, we can assume that a and b are both

natural numbers ≥ 2 (since the divisors of a are precisely the divisors

of |a|, and the claim is trivial when one of a and b is zero or one). By

hypothesis let k ∈ N be such that p · k = a · b.
Let us write again Π(n) for the prime factor decomposition of a

natural number n ≥ 2; then a · b has the decompositions

a · b = p ·Π(k) and a · b = Π(a) ·Π(b).

By the Fundamental Theorem of Arithmetic, the two decompositions

agree up to reordering. So pmust occur in Π(a) or in Π(b), as claimed.

The second claim follows from the first. Indeed, suppose that a ·b
is not coprime to k, and let p be a prime divisor of gcd(a · b, k). Then
p divides both k and a · b. By the first part of the corollary, one of a

and b is a multiple of p, and hence not coprime to k. �

More generally, a natural number k divides another number n if

and only if the prime factor decomposition of k is contained in the

prime factor decomposition of n. So, if n and m are natural numbers,

we can find the greatest common divisor and the lowest common

multiple of n and m from their decompositions. For example, n = 90

and m = 315 can be written as n = 2 · 3 · 3 · 5 and m = 3 · 3 · 5 · 7, so

gcd(n,m) = 3 · 3 · 5 = 45 and lcm(n,m) = 2 · 3 · 3 · 5 · 7 = 630.

This representation of gcd and lcm using prime factors will be ex-

tremely helpful for us in several places. For example, it immediately

implies an important property of the gcd:

34 1. Natural numbers and primes

1.3.6. Theorem (Divisors of the gcd).

Let a, b ∈ Z. Then every common divisor of a and b also divides

gcd(a, b).

On the other hand, it is very difficult to find the prime factor

decomposition of a large integer, so computing the gcd and lcm in

this manner is not practical! In the next section, we develop a much

more effective method. (Compare Exercises 1.3.8 and 1.4.5.)

Exercises.

1.3.7. Exercise. Find the prime factor decomposition of the numbers 600,
851, and 1449.

1.3.8. Exercise. Compute gcd(1961, 1591) by finding the prime factor de-
composition of the two numbers.

1.3.9. Exercise (!). Let a, b ∈ Z and d := gcd(a, b). Prove:

(a) a
d
and b

d
are coprime.

(b) If v is a common multiple of a and b, then v is a multiple of
lcm(a, b).

(c) lcm(a, b) · d = |a · b|. In particular, if a and b are coprime, then
lcm(a, b) = |a · b|.

1.3.10. Exercise. Let a, b, and c be integers such that c is a divisor of the
product a · b. Is it true that c divides gcd(a, c) · gcd(b, c)?

Further Exercises and Comments.

1.3.11. The Fundamental Theorem of Arithmetic can be found implicitly
already in Euclid’s Elements. However, the theorem was not explicitly
formulated and proved until 1801, when Gauss did so for the first time in
his Disquisitiones Arithmetica. For a detailed overview over the history of
this theorem we refer the reader to the article [AÖ].

1.3.12. Often the gcd is defined to be a positive common divisor that is
divisible by every other common divisor (and thus is a “biggest” common
factor in that sense). Theorem 1.3.6 is then needed to show that “the” gcd
is unique.

1.4. The Euclidean algorithm 35

1.3.13. Using the results of the next section, we can give an alternative
proof of the Fundamental Theorem of Arithmetic that is perhaps more
elegant, but less direct, than the one we gave here. (See Exercise 1.4.9.)

1.4. The Euclidean algorithm

So how do we find the greatest common divisor of two given integers a

and b? As already mentioned, simply computing all divisors of a and

b, or using their prime factor decompositions, is not workable for very

large numbers. On the other hand, the Euclidean algorithm, which

we shall now describe, can be performed very quickly even when a

and b have thousands of digits. The development of this method will

also give us some important theoretical insights. (Regarding the word

“algorithm” and whether or not it is appropriate in this context, we

refer the reader to Chapter 2.)

The basic idea is to use a and b to come up with new (and po-

tentially smaller) numbers that have the same common divisors:

1.4.1. Lemma (Pairs of numbers with the same common divisors).

Let a, b, and m be arbitrary integers. Then every common divisor of

a and b is also a common divisor of a and c := b +m · a; conversely
each common divisor of a and c is a common divisor of a and b.

In particular, gcd(a, b) = gcd(a, b+m · a).

Proof. If k is a common divisor of a and b, then, by Theorem 1.2.2,

k divides m · a, and hence also c = b+m · a, as claimed.

On the other hand, let k be a common divisor of a and c. We

can apply the fact we just proved to the numbers a, c, and −m.

This shows that k is a common divisor of a and c + (−m) · a =

(b+m · a)−m · a = b, as desired. The final statement of the lemma

follows from the definition of the greatest common divisor. �

How do we use this observation? If a, b ∈ N are natural numbers

with a > b, then we can divide a by b with remainder and hence find

q, r ∈ Z such that a = q · b + r and 0 ≤ r < b. Lemma 1.4.1 tells

us that gcd(a, b) = gcd(b, r) – so we have reduced the problem to

finding the greatest common divisor of another pair of numbers. If

36 1. Natural numbers and primes

r �= 0, then we can do the same thing again and divide b by r with

remainder. Note that, in each step, the remainder becomes strictly

smaller. Thus, at some point, we must obtain zero – and can simply

read off the gcd!

Let us consider an example: what is the greatest common divisor

of 250 and 36? We divide 250 by 36 with remainder:

250 = 6 · 36 + 34;

so gcd(250, 36) = gcd(36, 34). Next we divide 36 by 34:

36 = 1 · 34 + 2.

We are left with the numbers 34 and 32 and since 34 is divisible by

2, we see that gcd(250, 36) = gcd(36, 34) = gcd(34, 2) = 2.

We now formulate this method for general numbers a and b.

Euclidean algorithm

Input: Two numbers a, b ∈ Z.

1. If |a| ≥ |b|, set r0 := |a| and r1 := |b|; otherwise
set r0 := |b| and r1 := |a|.

2. Set j := 1.
3. If rj = 0, then gcd(a, b) = rj−1 and we are fin-
ished.

4. Otherwise divide rj−1 by rj with remainder:

rj−1 = qj · rj + rj+1

with qj , rj+1 ∈ Z and 0 ≤ rj+1 < rj .
5. Replace j by j + 1 and return to Step 3.

Since 0 ≤ rj+1 < rj for all j, there must be some j∗ for which we

obtain rj∗ = 0 and finish in Step 3. So, for every pair of integers a

and b, the method will stop eventually. Let r0, . . . , rj∗ be the numbers

obtained while performing the algorithm. By repeated application of

Lemma 1.4.1, we see that for all j (ranging from 1 to j∗) the common

divisors of rj−1 and rj are exactly the common divisors of a and b.

In particular, we have

gcd(a, b) = gcd(rj∗−1, 0) = rj∗−1,

1.4. The Euclidean algorithm 37

which shows that the algorithm really computes the greatest common

divisor of a and b (as claimed in Step 3).

More generally, the common divisors of a and b are precisely the

divisors of rj∗−1, so, without noticing, we have found an alternative

proof of Theorem 1.3.6!

Another interesting observation is that the Euclidean algorithm

not only yields the number gcd(a, b) but also provides a representation

of this number in terms of a and b. For example, take a look at the

equations that appeared when we applied the Euclidean algorithm for

a = 250 and b = 36. We see that

gcd(a, b) = gcd(250, 36) = 2 = 36− 1 · 34 = 36− 1 · (250− 6 · 36)
= 7 · 36− 250 = (−1) · a+ 7 · b.

We can state this as a general principle.

1.4.2. Theorem (Bézout’s Lemma).

Let a, b ∈ Z. Then there are numbers s, t ∈ Z such that

gcd(a, b) = s · a+ t · b.

Proof. Let r0, . . . , rj∗ be the numbers that appear when the Eu-

clidean algorithm is applied to a and b, as above. We claim: for every

j ∈ {0, . . . , j∗} there are numbers sj , tj ∈ Z such that rj = sj ·a+tj ·b.
As gcd(a, b) = rj∗−1, the proof is complete if we can verify this claim.

Now we proceed by induction. For r0 and r1, i.e. for |a| and |b|,
the claim is obvious. Now let j ≥ 1; we assume that rj can be written

as rj = sj ·a+tj ·b and rj−1 can be written as rj−1 = sj−1 ·a+tj−1 ·b.
(This is simply the induction hypothesis.) We must show that rj+1

also has such a representation. Indeed, we see that

rj+1 = rj−1 − qj · rj = sj−1 · a+ tj−1 · b− qj · sj · a− qj · tj · b
= (sj−1 − qjsj) · a+ (tj−1 − qjtj) · b.

So we can set sj+1 = sj−1− qjsj and tj+1 = tj−1− qjtj , which means

that the induction is complete. �

38 1. Natural numbers and primes

Bézout’s Lemma is extremely useful for proving properties of the

gcd. As an application, we derive a fundamental characterization of

numbers that are coprime to each other.

1.4.3. Corollary.

Two numbers a, b ∈ Z are coprime if and only if there are s, t ∈ Z

such that s · a+ t · b = 1.

Proof. By definition, a and b are coprime if and only if gcd(a, b) = 1.

If gcd(a, b) = 1, then the numbers s and t exist by Bézout’s Lemma.

Conversely, suppose there are numbers s and t with s ·a+t ·b = 1.

Set k := gcd(a, b); we need to show that k = 1. Since k divides a and

also b, we see that k | s · a + t · b and hence k | 1. (Recall Theorem

1.2.2.) But 1 and −1 are the only integer divisors of 1, and k is not

negative by definition. So we must have k = 1, as claimed. �

Exercises.

1.4.4. Exercise. Determine gcd(135, 36) and gcd(851, 1449), using the Eu-
clidean algorithm. For each of these pairs, also determine a representation
of the gcd according to Bézout’s Lemma.

1.4.5. Exercise. Use the Euclidean algorithm to compute gcd(1961, 1591).
Compare this with the solution to Exercise 1.3.8 – which method is easier?

1.4.6. Exercise. Let a and b be integers with gcd(a, b) = 1. Compute
gcd(a2 − b2, a+ b) and gcd(a2 + b2, a+ b).

1.4.7. Exercise (P). Implement the Euclidean algorithm in a common
programming language. Use this program to compute the greatest common
divisor of a = 1726 374 899 084 624 209 and b = 6641 819 896 288 796 729.
(Most languages support numbers of this size directly, but you need to
make sure to use 64-bit integers.) Also write a program that finds the
numbers s and t from Bézout’s Lemma.

Further Exercises and Comments.

1.4.8. The Euclidean algorithm was described by the Greek mathematician
and philosopher Euclid around the end of the fourth century BC in the
seventh book of his Elements (a collection of 13 books). It is very likely
that the algorithm was also known to earlier Greek mathematicians.

1.5. The Sieve of Eratosthenes 39

1.4.9. Exercise. Let a, b, and m be integers. Show, without using the
Fundamental Theorem of Arithmetic, that gcd(am, bm) = gcd(a, b) ·m.

Use this observation to give a different proof of Theorem 1.3.6, and
hence of the Fundamental Theorem of Arithmetic.

(Hint: For the first part, apply the Euclidean algorithm to a and b and
also to am and bm, and compare these two applications.)

1.4.10. Exercise. Prove Bézout’s Lemma without using the Euclidean
algorithm. (Hint: Consider the set M of natural numbers that can be
written as ra + qb with r, q ∈ Z. By the well-ordering principle, M has
a smallest element k. Show that M = {nk : n ∈ N} and conclude that
k = gcd(a, b).)

Note that this proof gives yet another characterization of the gcd!

1.5. The Sieve of Eratosthenes

One of the simplest ways to test a number for primality is the Sieve

of Eratosthenes. Given a number N , this method finds all prime

numbers p ≤ N . The idea is to “sieve out” all composite numbers,

step by step, until only primes are left. To begin, write down a list of

all numbers from 1 to N . Then proceed as follows (see Figure 1.2):

• Since 1 is not prime, delete (cross out) 1 and begin with 2.

• 2 must be prime since the only possible divisors are 1 and

2. Cross out all other multiples of 2, beginning with 4, since

they cannot be prime.

• The number 3 has not been deleted, so it must be prime.

Cross out all other multiples of 3, beginning with 6.

• The next remaining number is 5. Cross out its multiples from

10 onwards and continue with the next prime, until we have

arrived at the number �
√
N (i.e. the smallest number whose

square is at least N). Numbers between
√
N and N that are

not prime must have at least one factor that is at most as

big as
√
N (Exercise 1.2.6) and hence have already been

crossed out. Therefore we can stop; the remaining numbers

are exactly the primes between 1 and N .

40 1. Natural numbers and primes

45

14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40 41 42 43 44

2 3 4 5 6 7 8 9 10 11 12 13

Figure 1.2. Applying the Sieve of Eratosthenes to the num-

bers up to 45, we obtain the primes 2, 3, 5, 7, 11, 13, 17, 19,
23, 29, 31, 37, 41, and 43. (The different shades indicate in
which step of the procedure numbers were removed from the
list.)

This method can easily be implemented on a computer. However,

for numbers with large numbers of digits it cannot be used in prac-

tice because the procedure is inefficient; see Comment 1.5.3. (The

precise meaning of this term is discussed in Section 2.3.)

Exercises.

1.5.1. Exercise. Use the Sieve of Eratosthenes to find all primes p with
p ≤ 200.

Further Exercises and Comments.

1.5.2. Eratosthenes of Cyrene was a librarian at the fabled Library of
Alexandria in the third century BC. He is also known for his (surprisingly
accurate) determination of the earth’s circumference.

1.5.3. To use the Sieve of Eratosthenes for the one-hundred-digit number
N = 10100, we would have to make a list of N numbers. However, N is
considerably larger than current estimates for the number of atoms in the
universe.

Furthermore, we would consider each number from 1 to N at least
once. Let us suppose that we can carry out 1020 such operations in a
second – an optimistic assumption since this exceeds the abilities of current
supercomputers by several orders of magnitude. Then we would still need
1080 seconds to finish using the Sieve of Eratosthenes. By current estimates,
the universe is around 14 billion years old – this is less than 1018 seconds!
For the purposes of cryptography, where numbers with several thousand
digits are routinely used, this number N is not even particularly large

1.6. There are infinitely many primes 41

1.6. There are infinitely many primes

When performing the Sieve of Eratosthenes for a large number N

(as in Exercise 1.5.1), we observe that, in the upper regions of the

table, there are fewer and fewer prime numbers. This suggests a few

questions: are there finitely many or infinitely many primes? How

are they distributed? Are there regions where primes accumulate;

are there gaps? Euclid already studied the first question. We now

present his elegant proof that there are indeed infinitely many prime

numbers.

1.6.1. Theorem.

There are infinitely many prime numbers.

Proof. We give a proof by contradiction; i.e. we assume that the

claim is false. Then there are a number n ∈ N and primes p1, . . . , pn
such that {p1,, pn} is the set of all prime numbers. We consider

the number q := p1 · p2 · · · pn + 1. Then certainly q ≥ 2, so there

exists a prime p dividing q (by Exercise 1.2.6). Our assumption that

{p1,, pn} is the set of all primes forces p ∈ {p1, . . . , pn}. Thus

there is some i ∈ {1, ..., n} such that pi | q. However, the definition

of q implies that q leaves remainder 1 when divided by pi. This is a

contradiction. �

Although the set of primes is infinite, there are arbitrarily long

pieces of the natural numbers where no primes can be found – so-

called prime gaps.

1.6.2. Theorem (Prime gaps).

Let K ∈ N be an arbitrary natural number. Then there exists a prime

gap of length at least K. More precisely, the numbers (K + 1)! + 2,

(K + 1)! + 3, . . . , (K + 1)! +K + 1 are all composite.

Proof. We may suppose that K ≥ 2, as otherwise there is nothing to

prove. Set N := (K+1)!. By definition, N is divisible by all numbers

from 1 to K +1. So by Theorem 1.2.2, N +2 is divisible by 2, N +3

42 1. Natural numbers and primes

is divisible by 3, and in general N+m is divisible by m for all m from

2 to K + 1. Hence the numbers N + 2, N + 3, . . . , N +K + 1 are all

composite. �

When studying the distribution of primes, this is only the be-

ginning: in Chapter 4 and in Appendix A, we will learn much more

about this question, including precise theorems and conjectures. For

example, even among very large numbers we can still find primes that

are close together (see Comment 1.6.5).

Further Exercises and Comments.

1.6.3. Exercise. Show, in the proof of Theorem 1.6.2, that we could use
the product of all primes less than or equal to K instead of (K + 1)! in
order to construct a prime gap of length at least K. (Note that this is quite
similar to the idea of the proof of Theorem 1.6.1.)

1.6.4. Our proof of Theorem 1.6.1 used an argument by contradiction.
However, it is easy to rephrase it and to obtain a direct proof of the state-
ment that, given any finite set of primes, one can always find another prime
number that does not belong to this set.

1.6.5. It is believed that there are also infinitely many twin primes, i.e.
pairs of primes that have distance 2 between them. Examples are 3 and 5,
5 and 7, or 1997 and 1999. Despite intensive research, this conjecture has
still not been proved! We return to this question in Appendix A.

Further reading

An introduction to number theory, along with a discussion of the ba-

sic principles of mathematical proof, can be found in the books An

Introduction to Mathematical Reasoning [Ec] and Numbers, Groups

and Codes [HP]. For a more advanced, and far more detailed, dis-

cussion of the development of number systems, we refer the reader

to Numbers by Ebbinghaus et al. [Eb]. A formal introduction to set

theory and its connection to the development of the natural numbers

can be found in the book Naive Set Theory by Halmos [Hal]. We

treat further results from number theory in Chapter 3 and will give

more references there.

Chapter 2

Algorithms
and complexity

This chapter concerns algorithms: automated methods for solving

problems. We begin by explaining the notion of an algorithm it-

self – in an informal manner that is sufficient for our purposes –

and consider a number of examples. Then we explain the distinc-

tion between decidable and undecidable mathematical problems.

The complexity of an algorithm is a measure of its “practicability”.

We use this notion to distinguish between efficient and intractable

problems and discuss some ideas that can be used to improve the

running time of algorithms. At the end of the chapter, we introduce

randomized algorithms: methods that involve making a random

choice (perhaps at the cost of a potential error in the outcome).

2.1. Algorithms

What is an algorithm? Since its beginnings, mathematics has in-

cluded the search for methods that can be used to solve a given prob-

lem easily and essentially “automatically”. Such procedures are called

algorithms. The methods we learn in primary school to add, sub-

tract, multiply, or divide numbers with many digits are all examples

of algorithms, as are the Sieve of Eratosthenes and the Euclidean algo-

rithm from the preceding chapter. With the development of electronic

43

44 2. Algorithms and complexity

computers in the second half of the twentieth century, the search for

algorithms and a systematic understanding of the underlying mathe-

matics have gained an even greater importance.

But what is an algorithm? We imagine it as a set of instructions

that we only need to follow, like a recipe, in order to solve the given

problem. To explain this idea, let us examine two very different “al-

gorithms”. The first one actually is a recipe and the reader is invited

to give it a try in his or her own kitchen.

Algorithm PANCAKE

Input: An egg, a small cup of flour, a small cup of
milk, a pinch of salt, and a teaspoon of sunflower oil.

1. Mix the egg, flour, and milk in a bowl to make
the pancake batter. Add the salt and mix again.

2. Heat the oil in a frying pan on medium heat until
it sizzles.

3. Pour in the batter and softly shake the pan until
the batter is distributed evenly.

4. Turn the pancake after 2–3 minutes.
5. After two more minutes, the pancake is ready to
be eaten.

Our second “algorithm” tells you how to write a best-selling crime

novel.

Algorithm CRIME-BESTSELLER

1. Invent a likable protagonist with some rough
edges, ideally a private detective or police officer.

2. Also invent an (almost) perfect crime.
3. Design a story arc in which this criminal case is
solved by the protagonist through investigation and
possibly a sequence of lucky coincidences.

4. Write a novel that provides an entertaining and
suspenseful account of this story.

2.1. Algorithms 45

It is immediately noticeable that these two sets of instructions

are quite different from each other. While the first clearly describes

the different steps and their order, the second one leaves many de-

tails open. Our examples may seem exaggerated, but they illustrate

precisely the key property of an algorithm: its execution should not

require us to think or to be creative. A correct performance of the

steps described should always yield the same (correct) result, inde-

pendently of the individual abilities of the person performing it.

We hope that the reader will agree with us that the pancake recipe

qualifies as an algorithm in this sense (as far as a non-mathematical

example possibly can), while the instructions for writing a crime novel

do not even come close to matching our requirements.

Let us try to pinpoint the properties that we look for in an algo-

rithm a little more precisely:

(a) it has a finite description;

(b) it consists only of “elementary” steps; in particular its real-

ization does not require creativity or independent thinking;

(c) it is allowed to use arbitrarily large amounts of resources

(paper, ink, memory, . . .), but this amount must be finite

at any given time;

(d) at any time the next step to be carried out is uniquely deter-

mined by the results of the previous steps of the algorithm

(determinism).

In other words, an algorithm is a procedure that can – in principle – be

implemented on a computer using a common programming language.

Of course we have not given a definition in the formal sense of math-

ematics. With some effort, it is possible to capture the notion of an

algorithm mathematically (see below), but we will content ourselves

with the above informal description and bring it to life with some

examples.

Examples and explanations for the notion of an algorithm.

We begin with a method that is usually taught in primary school: the

addition of two numbers (with possibly many digits) on paper. We

first remind the reader how this is normally done: the two numbers

46 2. Algorithms and complexity

are written down, one above the other, so that the last digits are

aligned. Then these last two digits are added together, with the last

digit of the result being recorded below and the other digit (if there

is one) “carried” over to the next step. Then the next-to-last digits

are added, together with the “carried digit” if applicable, and so on,

until all digits have been dealt with.

We now dissect this method and express it very precisely as an

algorithm. For simplicity we phrase it for numbers that are written

in binary, i.e. expressed in base two, rather than in the commonly

used decimal system. (See Comment 2.1.4.)

Algorithm ADDITION

Input: Two natural numbers m and n, represented
in binary as sequences of 0s and 1s.

1. Write down m above n in such a way that the
two last digits of m and n are vertically aligned, the
same for the next-to-last digits and so on. Draw a
line underneath the two numbers.

2. If m and n have different numbers of digits, sup-
plement the shorter of the two by leading zeros until
both numbers have the same number s of digits.

3. Note down a zero in a separate “carry box” and
set j := 1.

4. Let a be the j-th digit of m and b the j-th digit
of n, counted from the right. Look in the table from
Figure 2.1 that corresponds to the value in the carry
box and read off the value in the a-th column and
b-th row. We call this number k.

5. Write down the last digit of the number k in the j-
th column (from the right) underneath the numbers
m and n.

6. If k is a one-digit number, replace the number in
the carry box by 0, otherwise by 1.

7. If j �= s (i.e. we have not arrived at the left),
replace j by j + 1 and return to Step 4.

8. Otherwise, write down the number in the carry
box as the first digit of our result, ahead of the
other digits we have computed. We are done.

2.1. Algorithms 47

a 0 1

b

0 0 1

1 1 10
(a) Carry 0

a 0 1

b

0 1 10

1 10 11
(b) Carry 1

Figure 2.1. Binary addition tables for the algorithm ADDITION.

The reader is invited to follow these instructions using an example

of his or her choice. For the addition of 3 and 6 the various steps are

shown in Figure 2.2. In the binary system, the number 3 is written as

“11”, and 6 is written as “110”; the result of our algorithm is “1001”,

which is indeed the binary representation of the number 9.

Although our description is somewhat awkward to read, this is

nothing but the usual method of addition on paper. (Coincidentally,

we chose to use binary representations instead of the decimal system

only because this gives addition tables of a more manageable size.)

Our set of instructions satisfies the criteria for an algorithm. Indeed,

its description – consisting of the algorithm together with the addi-

tion tables from Figure 2.1 – is certainly finite. Each step contains

an instruction that can be described with good conscience as being

“elementary” and only uses a finite amount of resources. Finally, the

order of steps and what is done in each step are uniquely determined,

which means that the procedure is deterministic.

Perhaps we wish to add not just two numbers, but a whole list of

these. We could try to formulate the usual written method for doing

this, but there is an easier alternative.

Algorithm ADDITION-MANY

Input: A list of at least one and at most finitely many
natural numbers, each represented in binary.

1. If the list contains only one number, we are done.
2. Otherwise apply the algorithm ADDITION to the
last two numbers on the list, and replace these by
the result of the addition.

3. Continue with Step 1.

48 2. Algorithms and complexity

11

110

0

011

110

0

011

110

1

1

011

110

01

1

011

110

001

1

011

110

1001

Figure 2.2. Addition of 3 and 6 using the algorithm ADDITION.

This illustrates an important property of algorithms: they can

be combined. So when designing new algorithms, we should feel free

to use others that we already know about. That simplifies life enor-

mously – as we have seen in our first example, it can be quite an effort

to decompose even simple methods into their most basic steps.

From now on, we shall allow basic operations on numbers (ad-

dition, multiplication, division) to be considered as elementary op-

erations in our algorithms since there are well-known algorithms for

these procedures (see Exercise 2.1.1). Indeed, these algorithms are im-

plemented in every pocket calculator! Similarly, we frequently reuse

algorithms that have appeared in earlier chapters or exercises.

Let us consider one more example. If we fix a number n ∈ N, then

it is known (see [Lo]) that n · π and n · e are not natural numbers,

independent of the choice of n. So what about the number n · (π+e)?

One approach for finding a natural number n such that n ·(π+e) ∈ N

is to use the following “algorithm”:

Algorithm N*(PI+E)

1. Set n := 1.
2. Compute the number an := n · (π + e).
3. If the computed number an is an integer, we are
done.

4. Otherwise we replace n by n + 1 and return to
Step 2.

At first glance this looks like a legitimate algorithm. But if we

take a closer look, we notice, for example, that nothing has been said

about how to carry out the calculation in Step 2. Of course we could

use a calculator (or, in principle, we could do the calculation by hand

2.1. Algorithms 49

if we are willing to spend a lot of time) to determine the number

an up to any given precision, that is, rounded to a given number of

decimal digits. But even if all of the digits we have computed are

equal to zero, we still do not know for certain that an ∈ N because

it could be that we simply did not compute enough digits. (As an

example, the reader should use a pocket calculator to compute the

number a56602103.) Hence such a calculation is not sufficient to carry

out Step 3 correctly. In view of these considerations we must conclude

that the requirement that the steps in an algorithm be “elementary”

is violated! Therefore N*(PI+E) is not an algorithm.

This example illustrates that we have to be a little bit careful

when writing down algorithms. Nonetheless we hope to have con-

vinced the reader that it should always be possible to recognize whether

a given procedure is an algorithm or not. If, for every given step, it is

clear that it can be carried out automatically and how to do so, then

we are dealing with an algorithm; otherwise we are not. We explic-

itly encourage the reader to verify for every new algorithm presented

in this book that the steps mentioned are either elementary or only

require another algorithm that is already known.

We make a final remark regarding determinism, that is, part (d)

of the conditions named at the beginning of the chapter. Certainly

this requirement seems very sensible at first glance. However, there

can be good reasons to weaken it slightly and to allow the algorithm

to make random choices. We shall discuss the advantages of using

such randomized algorithms in Section 2.5.

Formal definitions of the concept of an algorithm. The search

for algorithms received a new significance at the end of the nine-

teenth and the beginning of the twentieth centuries. The first “real”

computers would only appear in the middle of the twentieth century,

but the mechanization of various processes during the industrial rev-

olution had already sharpened the gaze of mathematicians for the

algorithmic solution of problems.

David Hilbert, one of the leading mathematical thinkers of his

time, proposed an ambitious program at the beginning of the twenti-

eth century. He wished to provide mathematics once and for all with

50 2. Algorithms and complexity

a formal foundation that would not contain any contradiction and in

which every true mathematical statement could be proved. In partic-

ular, Hilbert was looking for a method (i.e. an algorithm) which could

be used to determine the truth of any given mathematical statement.

(This became known as Hilbert’s Entscheidungsproblem1.)

In the 1930s, Hilbert’s questions motivated a number of mathe-

maticians (including Alan Turing and Alonzo Church) to find a math-

ematical definition for the notion of an algorithm. Although the vari-

ous concepts developed for this purpose look very different from each

other at first, it was quickly realized that they are all equivalent.

The same is true of all other definitions of algorithms that have been

proposed since then. In particular, the procedures that can be imple-

mented in one of today’s common computer programming languages

are exactly those that can be described in Turing’s machine model.

For this reason, it is believed that any and all of these definitions re-

ally do capture our intuitive notion of an “algorithm”. This is called

the “Church-Turing thesis” and justifies our decision to use only an

informal definition of algorithms throughout this book.

Exercises.

2.1.1. Exercise. Formulate algorithms for

(a) the multiplication of two natural numbers,

(b) the subtraction of one natural number from another, and

(c) the division of a natural number by another with remainder.

Also formulate an algorithm that determines whether the first of two given
natural numbers is larger than the second.

2.1.2. Exercise. Verify that the “Euclidean algorithm” from Section 1.4
really satisfies our requirements for an algorithm.

Further Exercises and Comments.

2.1.3. The term “algorithm” is derived from the name of the Persian math-
ematician al-Khwarizmi, the author of an important treatise on algebra in
the ninth century AD.

1“Entscheidungsproblem” is German for “decision problem”.

2.1. Algorithms 51

2.1.4. The binary system, which our readers might have encountered in
school, uses only the digits zero and one. (In contrast, the commonly used
decimal system uses the digits from zero to nine.) For example, the
numbers from zero to ten are written as follows in the binary system: 0, 1,
10, 11, 100, 101, 110, 111, 1000, 1001, 1010.

Internally, computers always represent numbers in the binary system.
The reason is that memory cells usually have exactly two states and that,
therefore, each such cell can contain exactly one binary digit (zero or one).

2.1.5. A relatively simple proof that π is not a rational number can be
found in [NZM]. The exercises of [NZM] also contain a proof of the fact
that the Euler constant e is irrational. On the other hand, the question
underlying our “algorithm” N*(PI+E), namely whether π+ e is irrational,
is still open!

An even more difficult task is to distinguish among irrational numbers
between the so-called “algebraic” numbers such as

√
2 and 4

√
3 and tran-

scendental numbers like e and π. For a discussion of these concepts, we
refer to Chapter 2 of [Lo].

2.1.6. Exercise (P). We consider the following simple algorithm:

Algorithm COLLATZ

Input: A natural number n.

1. Write down the number n.
2. If n = 1, we are done.
3. If n is even, replace n by n

2
. Otherwise, replace

n by 3n+ 1.
4. Return to Step 1.

(a) Implement the algorithm in a common programming language.

(b) Perform the algorithm for the numbers 1 to 100. What do you
notice?

It is reasonable to expect that the algorithm COLLATZ always cal-
culates the number 1 at some point and then stops. This is called the
3n + 1-problem or also the Collatz Conjecture (after the mathemati-
cian Lothar Collatz who formulated this problem in 1936). Even though it
has been verified for more than the first 5 000 000 000 000 000 000 natural
numbers using computer experiments, no proof of the Collatz Conjecture
is known!

52 2. Algorithms and complexity

2.2. Decidable and undecidable problems

The purpose of algorithms is to automatically solve problems, so we

should clarify what we mean by a “problem”. Again, we shall content

ourselves with an informal concept: to describe a problem, we specify

a collection of instances or inputs, and for every such instance we

also identify at least one correct output. Often (but not always)

there is only one such output for each given input. In this case, the

problem can be concisely stated as a question, for example as follows:

Problem SUM

Input: Two natural numbers n and m.

Question: What is n+m?

Inputs and outputs are usually represented as strings, i.e. as fi-

nite sequences of letters taken from some given alphabet. To maintain

the informal character of our discussion, we usually refrain from dis-

cussing in detail how the instances should be coded as strings. When

the inputs are natural numbers (which is the case for those problems

we are most interested in), we always assume them to be represented

in the binary or decimal system.

We can now say that an algorithm solves a problem if, for any

possible input, the execution of the algorithm ends after finitely many

steps with a correct output. A simple example is the algorithm AD-

DITION from the previous section, which solves the problem SUM.

A problem that can be solved by an algorithm is called decidable

(or computable); otherwise the problem is undecidable.

We also distinguish decision problems, where the desired out-

put is always either “yes” or “no”, from the more general notion of

search problems. For example, the central problem of this book

is a decision problem:

Problem PRIMES

Input: A natural number n ≥ 2.

Question: Is n prime?

2.2. Decidable and undecidable problems 53

In the next section we will discover – perhaps surprisingly – that

every search problem can be reduced to an equivalent decision prob-

lem. Therefore we can restrict ourselves to the study of decision

problems whenever this simplifies our discussions.

A decision problem has two different types of inputs. For posi-

tive instances, the desired answer is “yes”, while it is “no” for the re-

maining, negative instances. For the problem PRIMES, each prime

number is a positive instance, while the negative instances are pre-

cisely the composite numbers.

For every decision problem there is the so-called dual problem

that is obtained by switching the roles of positive and negative in-

stances. For PRIMES, the dual problem is compositeness:

Problem COMPOSITES

Input: A natural number n ≥ 2.

Question: Is n composite?

It may not seem reasonable to differentiate between a decision

problem and its dual problem: if one of them is decidable, then the

other one is as well – we need only exchange the answers “yes” and

“no”. However, in Sections 2.4 and 2.5 we will encounter concepts in

which positive and negative instances play different roles and where,

hence, this distinction is important!

Finally we remark that problems with only finitely many different

inputs are automatically decidable by an algorithm. Indeed, for such

a problem it is possible to make a finite list that contains a correct

output for each of the finitely many different inputs. Then our algo-

rithm only has to check this list to solve the problem. We emphasize

that the definition of decidability only requires the existence of an

algorithmic solution. To prove that a problem is computable, we do

not necessarily have to write down an explicit algorithm but could

instead argue by contradiction or by distinguishing several cases (see

also Comment 2.2.4).

For example, consider the problem “Is the numberm := 22
61−1−1

prime?”. It is decidable because, if m is prime, then it is solved by

54 2. Algorithms and complexity

the algorithm that always outputs “yes”, and otherwise, it is solved

by the algorithm that always answers “no”. Which one of the two

is right is an entirely different question! That being said, we will

give explicit algorithms for all decidable problems encountered in this

book.

Undecidable problems. As already mentioned, in the early twen-

tieth century Turing and Church undertook formal investigations into

the notion of an algorithm. In the end, these led to the realization

that Hilbert’s dream of a solution of the Entscheidungsproblem can-

not be attained. Indeed, Turing observed that algorithms (which,

after all, have a finite description, e.g. in the form of their source

code when implemented in a given programming language) can again

be used as inputs. He thus considered the following decision problem:

Halting problem

Input: An algorithm A and an input x for A.

Question: Does the algorithm halt on the input x?
I.e. does its execution end after finitely many steps?

2.2.1. Theorem (Undecidability of the halting problem).

There is no algorithm that solves the halting problem.

Proof. Assume, by contradiction, that there is an algorithm HALT

that solves the halting problem. Consider the following algorithm:

Algorithm DIAG

Input: An algorithm B.

1. Execute HALT with A = B and x = B.
2. If the output in Step 1 was “no”, we are done.
3. Otherwise repeat Step 2.

In other words, DIAG will halt on input B if and only if B does

not halt when given its own source code as input. In particular,

2.2. Decidable and undecidable problems 55

algorithm DIAG will halt when given its own source code as input if

and only if it does not halt when given its own source code as input.

That is impossible! �

The undecidability of the halting problem has a number of im-

portant consequences.

• Not every problem can be solved by an algorithm. When

faced with a question whose solution we would like to auto-

mate, we must thus keep in mind that such an automated

procedure might not exist (see Comment 2.2.3); and when

it does, finding it may not be easy at all

• In particular, Hilbert’s Entscheidungsproblem has no solu-

tion: there is no program that can test whether a mathemat-

ical statement is true or false. Indeed, otherwise we could

also use this method to solve the halting problem! Hence a

computer is not a panacea for mathematical problems – it

can require a lot of work and inventiveness to use it success-

fully in mathematical research.

• There is no automatic procedure to test whether a given

program is written correctly, not even to detect whether it

ever enters a never-ending loop and hence does not halt.

There are very short and simple algorithms for which this

is not known; recall Exercise 2.1.6. In other words, pro-

grammers must pay close attention to make sure that the

programs they are writing really do what they are supposed

to do. Source code needs to be written clearly, with many

comments, because an automatic check of a badly written

program is not possible.

Exercises.

2.2.2. Exercise. Which of the following problems are decidable, i.e. can
be solved by an algorithm?

(a) Let n and k be two natural numbers. Is k a divisor of n?

(b) Is the Riemann Hypothesis true? (The Riemann Hypothesis is a
famous open mathematical problem; see Section 4.3.)

56 2. Algorithms and complexity

125

1

311

253

125

1

3

112

7

537

Figure 2.3. Dominos as in the Post Correspondence Problem
(Comment 2.2.3(a)).

(c) Given a computer program, decide whether there is an input that
causes the program to output the number 42.

(d) Let A ⊆ N be a finite set. Is it possible to subdivide A into two
sets X1 and X2 in such a way that the sum of the elements in X1

is the same as the sum of the elements in X2?

(e) Suppose that we have a list of finitely many natural numbers.
Order these numbers according to their size.

Further Exercises and Comments.

2.2.3. There are many problems that are known to be undecidable. Among
them are some that might surprise you! Here are two famous examples.

(a) The Post Correspondence Problem. As input, we are given
a finite set of dominos (see Figure 2.3). On each of these, two
natural numbers have been engraved (in decimal notation): one
on the top half and another (possibly different) number on the
bottom half.

Suppose that we can make arbitrarily many copies of each of
these dominos. Is it possible to place finitely many such pieces
next to each other in such a way that the sequence of digits in the
upper row is the same as the sequence of digits in the lower row?
(In the example from Figure 2.3 this is possible; the sequence of
digits is 12531112537.)

(b) Hilbert’s Tenth Problem. Let P = P (X1, . . . , Xn) be a poly-
nomial in the n variables X1, . . . , Xn and with integer coeffi-
cients. (This means that P is a finite sum in which every term

has the form C ·Xk1
1 · · ·Xkn

n , where C ∈ Z and k1, . . . , kn ∈ N0;
see also Section 2.5.) Does P have an integer root? That is, are
there numbers x1, . . . , xn ∈ Z such that P (x1, . . . , xn) = 0?

2.2.4. As we remarked previously, it might be possible to prove the de-
cidability of a problem without explicitly exhibiting an algorithm. There
are indeed cases where this has happened! One example is the problem
of deciding whether a given graph is “knot-free”. (I.e. is there a way of

2.3. Complexity of algorithms and the class P 57

drawing the graph in three-dimensional space without creating any knots
that can be untangled only with scissors? For background and definitions
from graph theory, we refer the interested reader to the book Graph Theory
[Dst] by Diestel.)

For a long time it was unknown whether this problem is decidable or
not. However, at the beginning of the twenty-first century, the famous
“graph minor theorem” was proved. It implies the existence of an algo-
rithm that decides whether a graph is knot-free or not – even an efficient
algorithm in the sense of the next section. However, no explicit example of
such an algorithm has yet been found!

2.2.5. Exercise. In addition to the solution of his Entscheidungsproblem,
Hilbert desired the introduction of a formal system in which a mathemati-
cal statement is true if and only if it can be proved. Argue informally that
this would imply the computability of the halting problem and is there-
fore impossible. (Hint: The correctness of a mathematical proof, suitably
formalized, can be checked algorithmically.)

Before Turing’s work it had already been proved by Kurt Gödel that
there is no such system. The discovery that there are statements that can be
neither proved nor disproved using the usual mathematical axioms shocked
the mathematical community. This idea and much more is explored in
the book Gödel, Escher, Bach [Ho], which is highly recommended. For
an informal but extensive discussion of Gödel’s incompleteness theorem
mentioned above we refer to the book Gödel’s Theorem: An Incomplete
Guide to Its Use and Abuse [Frz] and to the book Mathematical Logic
[EFT] for a formal treatment of propositional logic.

2.2.6. The method used in the proof of Theorem 2.2.1 is referred to as
diagonalization. It is frequently used in mathematics to derive contra-
dictions in situations where there is some form of self-reference. (In our
case this self-reference comes from the fact that its own source code can
be given as input to an algorithm.) Using this method, one can prove,
for example, that there is no set of all sets and that the real numbers are
uncountable. (This means that it is not possible to write down all real num-
bers as a simple infinite sequence. On the other hand, this is possible for
the integers and even for the rational numbers.) Gödel used diagonalization
to prove the incompleteness theorem mentioned above.

2.3. Complexity of algorithms and the class P

As seen in the last section, it can be difficult or even impossible to

find an algorithm that solves a given mathematical problem. But this

is not the end of our troubles! We also need to consider a method’s

58 2. Algorithms and complexity

efficiency, i.e. whether or not it is possible to perform this procedure

in practice. Indeed, an algorithm whose memory requirements are

larger than the number of atoms on earth or whose execution takes

several billion years would not be very helpful.

Thus we have to concern ourselves with the resources required

by an algorithm. The manner in which these depend on the input

is called the complexity of the algorithm and its study is known

as complexity theory. We shall restrict ourselves to the temporal

aspect of complexity – how long does it take to carry out the given

procedure? – because this tends to be most important, both in theory

and in practice. If A is an algorithm and I is an input for A, then

the running time of A on I is defined as the number of elemen-

tary instructions that are carried out when A is applied to I. The

running time function of the algorithm associates to every n ∈ N

the highest running time of A on an input of length n; this number

is denoted by s(n).

(We remind the reader that the inputs of an algorithm are strings ;

the “length” of an input is the length of this string, i.e. the number

of characters. If the input is a natural number m in binary represen-

tation, its length is exactly
log(m)�+ 1.)

The precise value of the running time depends on what exactly

we mean by an “elementary instruction”. This in turn depends on

the specific machine model used. For theoretical purposes, e.g. in

Turing’s model, only a very small number of elementary instructions

are normally used, while in modern microprocessors a plethora of

operations (e.g. elementary arithmetic for numbers up to a certain

size) is already implemented on the hardware. The only important

thing for us is that such an operation can be completed within a

certain fixed amount of time, usually no more than the tiniest fraction

of a second.

Asymptotic growth rates. We would like to evaluate the efficiency

of an algorithm using its running time function and compare the com-

plexity of different procedures. This may sound easy, as we can imag-

ine computing the running time functions of both algorithms and

decide which of them takes smaller values (on average, everywhere,

2.3. Complexity of algorithms and the class P 59

for large numbers,...). However, keep in mind that the running time

itself depends on the precise definition of an elementary operation.

In view of rapid technological advances of computer technology, our

considerations of efficiency should be independent of this definition.

Furthermore, it is always possible to improve the performance of our

algorithm for some inputs by considering suitable special cases sepa-

rately. (For example, we could include the list of the first 1000, or even

1 000 000, primes in a primality test and hence considerably shorten

the running time when one of these occurs as an input.) Hence a mea-

sure of efficiency that is meaningful beyond the current state of the

art in computer technology ought to have the following properties:

• It should not distinguish between running time functions

that differ at most by a multiplicative constant (since such a

difference could result simply from a change in the machine

model or implementation).

• It should restrict itself to conclusions about the behavior of

the algorithm for “large” inputs.

There is a mathematical concept that satisfies precisely these require-

ments: the notion of the asymptotic growth of a function.

2.3.1. Definition (Asymptotic growth).

Let f, g : N → R be functions. We say that f grows asymptotically at

most as quickly as g for n → ∞, and write f(n) = O(g(n)), if there

is a constant C > 0 such that

|f(n)| ≤ C · |g(n)|
for all sufficiently large n. (This last statement means that there

is some N ∈ N such that the inequality is satisfied for all natural

numbers n ≥ N .)

Examples. We have n = O(n2), n2 = O(n5), but 2n �= O(n2) (see

Exercise 2.3.4).

Remark. It is important to emphasize that the sign “=” in the O-

notation does not indicate an actual equality. It might be more for-

mally correct to consider O(g) as a class of functions and to write

60 2. Algorithms and complexity

f ∈ O(g). However, the above notation is well established and should

not cause any confusion as long as we are careful.

Let us say, then, that a given algorithm has asymptotic running

time at most g(n) if its running time satisfies s(n) = O(g(n)). When

studying the efficiency of algorithms, we discuss only this asymptotic

running time. Hence an algorithm with s(n) = 20000n will be consid-

ered to be more efficient than one that satisfies s(n) = 5n2. (However,

in practice it would be sensible to apply the second algorithm as long

as the input is no longer than 4000 digits!)

Now we would like to separate “efficient” algorithms from those

that really cannot be considered useful, and this separation should be

independent of the current state of technology (see above). Computer

scientists largely agree on the following definition for this purpose.

2.3.2. Definition (Efficient algorithms).

An algorithm is called efficient if its running time function s(n) is

polynomial, i.e. s(n) = O(nk) for some positive number k.

The class of decision problems that are efficiently computable,

i.e. for which an efficient algorithm exists, is denoted by P.

Problems for which there is no efficient algorithm are called in-

tractable. The idea is that advances in technology can have a real

impact on the execution of algorithms of polynomial running time,

whereas this is impossible e.g. for an algorithm whose running time

is exponential in the size of the input.

One might argue that a problem whose solution requires an as-

ymptotic running time of O
(
n1010

10)
should not be considered to be

tractable in practice (compare also Exercise 2.3.13). However, so far,

the above separation has turned out to work rather well, in the sense

that important problems that have been shown to belong to the class

P tend to have algorithms that are indeed practical in real applica-

tions. In addition, we should think of the classification as giving us a

rough division of problems. While important open questions remain

even for this coarse classification (compare Section 2.4), it may not

make sense to look for finer distinctions!

2.3. Complexity of algorithms and the class P 61

Examples. Let us begin by investigating the usual method of adding

two numbers (Algorithm ADDITION). Here, for each digit, the al-

gorithm adds two digits and possibly a carry. This yields the corre-

sponding digit of the sum and the carry for the next digit.

So if our two numbers have k digits, we have to carry out an

addition of at most three one-digit numbers at most k times. We can

safely consider these to be elementary operations. Hence the algo-

rithm ADDITION has asymptotic running time O(k). In particular,

it is efficient according to our definition, which is reassuring.

Naturally, the next algorithm we consider is the long multiplica-

tion of two natural numbers n1 and n2. This consists of two steps:

first, n1 is multiplied once by each digit of n2, and the results are

written one below the other, each shifted one digit from the next.

Then these numbers are added. If n1 and n2 both have k digits,

then, similarly as above, the multiplication of n1 with a single-digit

number has running time O(k). Since we need to do this once for

each of the k digits of n2, we obtain an overall running time of O(k2)

for the first part of our algorithm. The second part, i.e. the addition

of k numbers, also requires a running time of O(k2).

In conclusion, the algorithm “long multiplication” has asymptotic

running time O(k2). Hence this algorithm is also efficient, but not

as efficient as addition. This agrees with our personal experience of

using these methods!

Finally, we take a look at the ancient Sieve of Eratosthenes, which

finds all prime numbers p ≤ n for a given number n and hence decides

whether n is prime itself. This algorithm has the following properties:

(a) Every natural number from 2 to n is either recognized as

prime or crossed out as a (composite) multiple of a prime.

(b) Every natural number from 1 to
√
n is examined at least

once to see whether it has already been crossed out.

(c) For every prime p from 2 to
√
n all proper multiples of p, up

to size n, are computed and crossed out. That is, we carry

out
⌈
n
p

⌉
− 1 additions of p to some other number k ≤ n.

62 2. Algorithms and complexity

(The reader is invited to work out the details more precisely.) From

this analysis, we conclude: the time required to determine all primes ≤
n using the Sieve of Eratosthenes is at least n and at most polynomial

in n.

Does this mean that the algorithm is efficient? If so, we have

found an efficient algorithm for the problem PRIMES already and

achieved the main aim of this book. However, we must remember that

the running time of an efficient algorithm is polynomial in the length of

the input, as a string, and here this means that it should be polynomial

in log n. So we realize that the method is highly inefficient since its

running time is exponential in the length of the input. Anyone who

has tried to run the Sieve for a 4-digit number, and compared this

e.g. to the multiplication of two such numbers, will probably agree

with our conclusion (also recall Comment 1.5.3.)

Divide and conquer. In the game “What’s my line?”, a popular

television program running from the 1950s until the 1990s, the goal

is to determine a guest’s occupation using as few yes-or-no questions

as possible. To be successful, it is clearly advisable to first determine

a broad area of employment rather than asking very specifically from

the beginning.

This simple idea also helps with the development of efficient algo-

rithms. Let us not try to guess an occupation, but rather a number,

say between 1 and 100. (That is not quite as much fun as the origi-

nal game, but easier to study mathematically.) As with “What’s my

line?”, we do not try all 100 numbers, one after the other, but in-

stead reduce the possible choices by half in every step. For example,

we could ask first whether the number is between 1 and 50. If so, we

ask whether it is between 1 and 25, and so on. This way, we require

at most �log(100) = 7 questions to find the answer, instead of up to

100 – a dramatic improvement!

Note that the underlying idea is to get a grip on a problem by

dividing it into several pieces of essentially the same size and then

studying these separately. This principle is known as “divide and

conquer” and is extremely important in the theory of algorithms.

2.3. Complexity of algorithms and the class P 63

We now apply this idea to the problem of computing the power nk of

two natural numbers n and k.

The obvious manner of doing this would be to carry out k − 1

multiplications (i.e. we compute n2 by multiplying n with n, then

multiply the result by n again, and so on). However, we can reduce

the number of necessary multiplications considerably. For example,

if k = 2j is a power of 2, we can write

nk = n2j =

(
. . .

((
n2
)2)2

. . .

)2

︸ ︷︷ ︸
j times

.

In other words, to calculate nk, we need to compute nk/2 = n2j−1

only

once (instead of twice) and then carry out a single multiplication. So

in the end, we require just j = log k multiplications.

The same idea also works when k is not a power of 2. Indeed, let

m =
k/2�; then we can write

nk =

{
nm · nm if k is even,

n · nm · nm if k is odd.

In either case, the number nm appears twice in the formula but needs

to be calculated only once. We thus obtain a recursive algorithm,

meaning that the program may run itself, on a different input, at

some point during the execution. (We invite the reader to think

about how the algorithm could be formulated without recursion.)

Power Algorithm

Input: Numbers n ∈ Z and k ∈ N0.

1. If k = 0, output “1”.
2. If k = 1, output “n”.
3. If k ≥ 2, then write m = �k/2	 and use the power
algorithm to calculate a = nm.

(a) If k is even, output “a2”.
(b) If k is odd, output “n · a2”.

The key observation is that the power is reduced by a factor

of 2 each time that Step 3 is called. It follows that this step is

64 2. Algorithms and complexity

performed exactly
log k� times. Since this step requires at most two

multiplications, we see that in total the power algorithm requires no

more than 2
log k� multiplications.

We emphasize that the power algorithm is not efficient in the

sense of this section, simply because the length of the numbers in-

volved in the multiplications quickly becomes large, and indeed the

length of the output nk will grow exponentially with log k. Nonethe-

less, this method will turn out to be extremely important for the

efficient algorithms that we design in the course of this book.

To conclude this section, we use “divide and conquer” to convert

any search problem S into a corresponding decision problem D. For

simplicity, we assume that the possible outputs for the problem S

are natural numbers. It is not difficult to encode arbitrary strings

using natural numbers – indeed this happens in all computer systems.

(Furthermore, the most interesting problems for us are all of this form

anyway.) We also suppose that for every input I of S, there is exactly

one correct output, which we denote by S(I). Many problems have

this property; otherwise we can study the slightly stronger problem

that asks for the smallest correct output. With these assumptions,

let D be the following decision problem:

Problem D

Input: An instance I of S and a natural number k.

Question: Is S(I) ≤ k?

2.3.3. Lemma (Equivalence of S and D).

Let S and D be as above. Suppose that there is a number d ∈ N with

logmax
I

S(I) = O(nd),

where the maximum is taken over all instances I of length n. Then

there is an efficient algorithm for S if and only if there is such an

algorithm for D.

Remark. The hypothesis of the lemma means that the length of the

desired output for B is at most polynomial in the length of the input.

2.3. Complexity of algorithms and the class P 65

Clearly a search problem which does not have this property cannot

be solved by an efficient algorithm, as otherwise just writing down

S(I) will take too much time, to say nothing of its computation!

(This is precisely the issue that we commented on when discussing

the ineffiency of the power algorithm.)

Proof. If A is an algorithm that solves S efficiently, then we can also

solve D efficiently by first running A with input I and then comparing

the numbers S(I) and k.

For the opposite direction, suppose that A is an efficient algorithm

that solves D. If I is an instance of S, then we know by hypothesis

that S(I) belongs to the range from 1 to 2n
d

. So we can apply the

strategy from the “What’s my number?” game described above, with

each question corresponding to one application of the algorithm A.

For an instance of length n, we apply A at most O(nd) times to find

S(I) and hence have found an efficient algorithm for S! �

Exercises.

2.3.4. Exercise (!). The goal of this exercise is to establish the following
facts, which should be intuitively clear: adding a constant to a function
does not change its order of growth, polynomials of the same degree have
the same order of growth while higher-degree polynomials have a higher
order of growth, exponential functions grow faster than any polynomial,
and the logarithm grows slower than any polynomial.

(a) Let f : N → R be a function that is bounded below by a positive
constant. (That is, there is a number ε > 0 such that f(n) > ε
for all n ∈ N.) Show that f(n) + C = O(f(n)), where C ∈ R is
an arbitrary constant.

(b) Let k,m ∈ N0. Show: x
k = O(xm) if and only if k ≤ m.

(c) Let P be an arbitrary polynomial of degree at most d. Show that
P (n) = O(nd).

(d) Let a > 1 be a real number. Is it true that an = O(2n)?

(e) Let ε > 0 be a real number. Show that logn = O(nε).

(f) Let k ∈ N. Show that nk = O(2n).

(Hint: For (e), use the power rule lognε = ε log(n) and Exercise 1.1.12(a).

Alternatively, derive (e) from (f). For (f), show first that (n + 1)k < 2nk

for all sufficiently large n ∈ N. Deduce from this, using mathematical

66 2. Algorithms and complexity

induction, that there is a constant C ∈ R such that nk ≤ C · 2n for all
sufficiently large numbers n ∈ N.)

2.3.5. Exercise (!).

(a) Check that long division with remainder is an efficient algorithm.

(b) Let m,n ∈ N withm > n. Show that the number of long divisions
that are used in the Euclidean algorithm to find gcd(m,n) is of
magnitude O(logm). (In other words, the algorithm is efficient.)

Hint: Convince yourself that, after any two steps, the larger
of the two numbers under consideration has decreased at least by
half.

2.3.6. Exercise (!). Find efficient algorithms for the following problems:

(a) Given n, k ∈ N, compute the number � k
√
n	 (i.e. the largest nat-

ural number m with mk ≤ n).

(b) Given n ∈ N, is n a perfect power? I.e. are there natural numbers

m and k > 1 such that n = mk?

2.3.7. Exercise. Formulate an equivalent decision problem for each of the
following search problems:

(a) Input: a natural number n. Output: a non-trivial divisor of n, if
such a divisor exists.

(b) Input: a natural number n. Output: the number of divisors of n.

Further Exercises and Comments.

2.3.8. The “big-O notation” that we use to study asymptotic running times
was introduced at the end of the nineteenth century by the number the-
orist Paul Bachmann. It was popularized by the mathematician Edmund
Landau and is today associated mainly with him (“Landau symbols”).

2.3.9. The term “divide and conquer” (divide et impera) is often connected
with Julius Caesar, although its exact origin is unclear. It originally de-
scribes the method of generating distrust and discord among opponents in
order to defeat and rule them more easily.

2.3.10. Exercise. Let f1, f2, . . . be the Fibonacci numbers, as defined in
Section 1.1. The definition suggests the following recursive algorithm for
computing fn:

2.3. Complexity of algorithms and the class P 67

Algorithm FIB

Input: A natural number n.

1. If n = 1 or n = 2, then fn = 1 and we are done.
2. Otherwise first compute fn−1 and then fn−2, us-
ing the algorithm FIB.

3. The desired result is the sum of the two numbers
computed in Step 2.

How many operations does the computation of fn require when using
this algorithm? How can we reduce the number of operations?

2.3.11. Exercise. We study the running time of the Euclidean algorithm
more closely than in Exercise 2.3.5. Let a, b ∈ N and let r0, . . . , rj∗ be the
numbers that occur when the algorithm is run with inputs a and b. Recall
that rj∗ = 0 and rj∗−1 = gcd(a, b). For simplicity, let us assume that a > b.

(a) Let f1, f2, . . . again denote the sequence of Fibonacci numbers.
Prove the following: if k ∈ N with k ≤ j∗, then rj∗−k ≥ fk+1.

(b) Deduce that the Euclidean algorithm carries out at most k − 2
divisions with remainder, where k is the largest natural number
that satisfies fk ≤ a.

(c) Let k ≥ 3. Prove that, when running the Euclidean algorithm
with a = fk and b = fk−1, exactly k− 2 divisions with remainder
are required.

2.3.12. Exercise. As we saw, the usual long multiplication on paper has a
running time of O(n2). However, it is possible to use other multiplication
methods that reduce the running time. A simple example is theKaratsuba
algorithm, which is based on the principle “divide and conquer” and which
we develop in this exercise.

(a) Let a = a1+a2 ·2j and b = b1+ b2 ·2j be natural numbers. Show
that a·b = a1 ·b1+a2 ·b2 ·22j+(a1 ·b1+a2 ·b2−(a1−a2)·(b1−b2))·2j .
(In this formula there are only three (not four) different products
of smaller numbers.)

(b) Use this idea to formulate a recursive algorithm for the multipli-
cation of two numbers a and b of length k (this is the Karatsuba
algorithm). This algorithm should first subdivide both a and b
into their first k/2 digits and their last k/2 digits and then carry
out three multiplications of numbers with k/2 digits.

(c) Show that the asymptotic running time of this algorithm is

68 2. Algorithms and complexity

O(3log k) = O(klog 3). We have log 3 ≈ 1.6; so the Karatsuba
algorithm is (asymptotically) more efficient than long multiplica-
tion. However, in practice there will only be an improvement for
numbers with several hundred digits because the constants in the
Landau notation turn out to be very large.

The time complexity of multiplication can be reduced even further: the
Schönhage-Strassen algorithm has running timeO(k·log(k)·log log(k)).
In practice this algorithm is only used for numbers with tens of thousands
of digits. An algorithm with even smaller asymptotic running time was
presented by Fürer in 2007 [Fü].

2.3.13. Exercise. Let m,n ∈ N0. We define a function (the Ackermann
function) by

A(m,n) :=

⎧⎪⎨
⎪⎩
n+ 1 if m = 0,

A(m− 1, 1) if m > 0 and n = 0,

A(m− 1, A(m,n− 1)) otherwise.

(a) Find explicit formulae for A(m,n) when 0 ≤ m ≤ 3. Then show

A(4, n) = 22
··
·2

︸ ︷︷ ︸
n+3 times

−3.

(b) Let n ∈ N0. The inverse Ackermann function is defined as

α(n) := min{k ∈ N : A(k, k) ≥ n}.
Show that α(n) = O(logn).

(c) In fact the function α(n) grows far slower than logn. For ex-
ample, we have A(4, 4) � A(4, 2) = 265536 − 3. This number
is several orders of magnitude higher than today’s estimates on
the number of atoms in the entire universe. So for practical pur-
poses, we always have α(n) ≤ 4. Is an algorithm with running

time O(nα(n)) more efficient than one with running time O(n5)
according to our definitions? Is such an algorithm considered
efficient at all?

2.4. The class NP

In the previous section, we introduced the class P of efficiently solv-

able problems. Now we briefly discuss the equally important classNP

of efficiently verifiable problems: informally speaking, for these a

solution can be verified in polynomial time. This definition allows

us to discuss one of the central problems of complexity theory and

2.4. The class NP 69

of mathematics in general: the P
?
= NP question. The idea of a

witness that is used in the definition of NP will also be useful when

studying randomized algorithms in the next section.

As motivation, take a look at the problem COMPOSITES. To

show that a number n is a positive instance, we “just” have to pull a

non-trivial divisor k of n out of our hat – then we can easily check,

using long division, that k really does divide n. We call k a witness

for the compositeness of n. Let us make this a bit more precise:

we have a decision problem D (in our example this is the problem

COMPOSITES). In addition, we have a set P of “possible witnesses”

(in our example these are all natural numbers k ≥ 2) and another

decision problem E (the question “Is k a non-trivial divisor of n?”)

with the following properties:

(a) The inputs for E are pairs of the form (I, p), where I is an

instance of D and p ∈ P .

(b) E can be solved efficiently.

(c) I is a positive instance of D if and only if there is at least

one p ∈ P such that (I, p) is a positive instance of E.

(In our example, the final claim says that a number is composite if and

only if it has a non-trivial divisor.) In addition, it is important that

every positive instance I of D has a witness that is “not much bigger”

than I; i.e. there are constants C and m such that the following holds:

(d) If I is a positive instance of B of length n, then there is a

positive instance (I, p) of E such that the length of p is at

most C · nm.

2.4.1. Definition (Class NP).

If D is a decision problem for which there exist a set P and a decision

problem E with the properties (a) to (d), then we say that D is

efficiently verifiable. If (I, p) is a positive instance of E, then we

call p a witness for I. The class of all efficiently verifiable problems

is denoted by NP.

We remark that every problem D that belongs to the class P also

belongs to NP. Indeed, in this case it does not matter which set of

70 2. Algorithms and complexity

witnesses we use, and E is simply the problem “Given (I, p), is I a

positive instance of D?”. Hence we see that P ⊆ NP.

Examples. To illustrate the definition further, let us investigate which

of the following problems belong to the class NP.

(a) We are given a map (e.g. as a finite list of country names,

together with a table that tells us which countries are neigh-

bors). Is it possible to color the countries with the two colors

red and green in such a way that neighboring countries never

have the same color?

(b) The same problem as in (a), but with three colors, e.g. red,

blue, and green.

(c) We are given a map and a number k. Are there at least k

different possibilities to color the map as in (b)?

(d) We are given a list of students, teachers, and subjects. For

each student, we know which subjects he or she wants to

choose and, moreover, we know which subjects each teacher

is capable of teaching. With this information, is it possible

to design a weekly schedule that takes into account all these

constraints?

The first problem is easy to solve. We begin by coloring the first

country on the map green. Then all its neighbors must be colored

red, all their neighbors green, and so on. If we encounter a country

that has already been colored, then there are two possibilities: if it

already has the color that we were going to use for it, then everything

is fine and we continue our algorithm. Otherwise we have seen that

the given map cannot be colored with two colors, and we are done!

Clearly this algorithm only needs to consider each country and

each border once to either obtain the desired coloring or to realize

that this is impossible. Hence the two-coloring problem can be solved

efficiently, so it belongs both to the class P and in particular to NP.

Now we extend the problem to three colors and see that it be-

comes more difficult: we can still try to color the map by assigning

each country a color that is admissible at this step. However, if we run

into a problem, this does not prove that the map cannot be colored at

all. After all, in each of the previous steps we had a choice of colors,

2.4. The class NP 71

and it could be that we simply made a wrong choice somewhere along

the way.

Hence it is not clear whether the problem belongs to P. However,

it definitely belongs to the class NP. A possible witness is simply a

map together with a coloring with three colors. To check whether a

coloring satisfies our conditions, we simply have to go through the list

and verify that neighboring countries never have the same color. This

is an efficient algorithm and therefore the “three-coloring” problem is

efficiently verifiable.

In (c) we are asking for the number of such colorings. Here it

may also seem, at first glance, that there is a simple witness: to show

that there are at least k colorings, surely we only have to give these

k colorings?

But we have fallen into a trap. The issue is the same as when

we studied the Sieve of Eratosthenes in the previous section. An

instance of our original problem consists of a map and the number k,

in binary representation. A list of k different colorings hence requires,

in general, an amount of memory that is exponential in the size of

the input. Hence the problem probably does not belong to NP.

Finally, checking whether a given schedule of lessons is correct is

easy: the last problem belongs to NP.

An interesting property of the class NP is that positive and neg-

ative instances play extremely different roles. Indeed, negative in-

stances of such a problem are characterized by the fact that they

have no witness. Thus, if D belongs to NP, the dual problem might

not belong to NP! As an example we again look at the problem

COMPOSITES, which we know to belong to NP. The dual problem

is PRIMES, i.e. the question whether n is prime. While a witness for

COMPOSITES can be obtained directly from the definition of pri-

mality, we are currently empty-handed when it comes to PRIMES.

On the other hand, the fact that we do not see a witness at first

glance does not prove that it does not exist! After all, it is the goal

of this book to find an efficient algorithm for PRIMES and hence to

prove that PRIMES belongs to the class P and thus also toNP. (The

proof of PRIMES ∈ NP is much easier than that of PRIMES ∈ P

72 2. Algorithms and complexity

and was already found in 1975 by Vaughan Pratt; see for example [P,

Section 10.2].)

There is one issue we have not mentioned: are there problems

that belong to NP but not to P? In other words, is it generally

more difficult to find the solution to a problem than to check such a

solution? We would expect this to be true!

Indeed, many problems in NP are believed to be intractable.

The above-mentioned problems of three-coloring and creating a class

schedule are of this type. But proving that one of these problems

does not belong to P presents great difficulty: there are infinitely

many possible algorithms, and one of these might use a non-obvious

“trick” to find the desired solution. How are we going to exclude

this possibility? So far, nobody has been able to solve this question

(known as the “P
?
= NP problem”). The Clay Mathematics Institute

included it on its list of seven “Millennium Prize Problems” in 2000

and promises a prize of US$1,000,000 for a correct solution.

Exercises.

2.4.2. Exercise. Which of the problems from Exercise 2.2.2 are in the
class NP? Which of the decision problems formulated in Exercise 2.3.7
belong to NP?

Further Exercises and Comments.

2.4.3. The notation NP is an abbreviation for “non-deterministically poly-
nomial”. The justification for this terminology is that such a problem can
be solved efficiently if we first “guess” the correct witness. However, this
step is not deterministic (and not possible in practice; the notion of “non-
deterministic algorithms” is a purely theoretical concept).

2.4.4. A fascinating aspect of the class NP is that it contains some prob-
lems that are “at least as difficult” as all other problems in the class. More
precisely, there are problems – referred to as “NP-complete” – whose ef-
ficient solution would also result in an efficient algorithm for every other
problem in NP. Hundreds, if not thousands, of such problems are known;
the above-mentioned three-colorability and the scheduling problem are of
this type, as is the popular “minesweeper” game. If P �= NP, then none of
these problems can be solved efficiently. On the other hand, the existence
of an efficient algorithm for a single NP-complete problem immediately
implies that P = NP.

2.5. Randomized algorithms 73

2.4.5. P
?
= NP is not the only open question from complexity theory; there

are many other conjectures regarding the relationship between different
complexity classes. For example, it is not known whether problem (c) from
the examples above (regarding the number of three-colorings) really does
not belong to NP.

The “complexity zoo” website, founded by the computer scientist Scott
Aaronson, contains a list of many common (and not so common) complexity
classes. It can currently be found at

https://complexityzoo.uwaterloo.ca/Complexity Zoo.

2.5. Randomized algorithms

Until now we required an algorithm to be deterministic, which

means that, when started with the same input, it will always follow

the same steps and always give the same result.

However, in practice it is often sensible to weaken this condition

and to allow the use of random choices about how to proceed. Such

procedures are called randomized algorithms. Depending on the

form of the algorithm, a random choice can have different effects:

(a) the output of the algorithm is only correct with a certain

probability (Monte Carlo method) or

(b) the algorithm always gives a correct answer, but its running

time can vary (Las Vegas method).

Monte Carlo algorithms. Let P be a polynomial in the n vari-

ables X1, . . . , Xn, with integer coefficients. This means that there are

C1, ..., Ck ∈ Z and d1,1, ..., dn,k ∈ N0 such that

(2.5.1) P =

k∑
i=1

Ci ·Xd1,i

1 ·Xd2,i

2 · · ·Xdn,i
n .

(For example, P = X2 + Y 2 − Z2 is a polynomial in the three

variables X, Y , and Z. Polynomials in one variable are studied in

much more detail in Section 3.4.)

We can substitute given integers x1, . . . , xn ∈ Z into such a poly-

nomial P and denote the result by P (x1, . . . , xn). (For instance, if

P = X2 + Y 2 − Z2, then P (3, 4, 5) = 0.) Let us suppose that, for

74 2. Algorithms and complexity

given values of x1, . . . , xn, we can compute the value P (x1, . . . , xn),

but we do not know the coefficients of P themselves. This may seem

rather far-fetched, but there actually are many situations where such

a polynomial (for example as the determinant of a so-called sym-

bolic matrix) is implicitly given, but an actual computation of the

coefficients is intractable. (A similar problem will motivate the devel-

opment of an efficient deterministic primality test in the second part

of the book.)

We are now interested in the following question: are there values

of x1, . . . , xn such that P (x1, . . . , xn) �= 0? In other words, does P

have any non-zero coefficients?

We can try to substitute many different numbers x1, . . . , xn into

P ; if we find a non-zero value, we have solved the problem. But non-

constant polynomials in several variables can have infinitely many

zeroes – for example this is the case for X2 + Y 2 − Z2. So it could

be that we just keep picking zeros of P , even though the polynomial

is non-zero itself. However, that would be really unlucky, since the

next lemma shows that the number of zeros is very small compared

to the number of values where P is non-zero.

2.5.2. Lemma (Number of zeros).

Let P be as in (2.5.1), let d be the largest exponent dj,i occurring in

P , and let M > 0. If there is some point at which P is non-zero,

then there are at most n · d · Mn−1 zeros (x1, x2, . . . , xn) of P with

the property that xj ∈ {1, . . . ,M} for all j ∈ {1, . . . , n}.

Proof. See Exercise 2.5.5. �

Note that there are, in total, Mn possibilities to pick integers

x1, . . . , xn between 1 and M . So if M > n · d, then there is at least

one choice that does not lead to a zero of P . If we are looking for

a deterministic algorithm, that would not be much help: we would

have to try up to (n · d)n different values to know with certainty that

our polynomial is not constant.

But if we choose the values x1, . . . , xn at random, then we have

a high probability of obtaining a non-zero value, no matter which

2.5. Randomized algorithms 75

polynomial we are looking at. For example, set M := 2 · n · d. Then

the lemma states that the probability of picking a zero (x1, x2, . . . , xn)

(when choosing x1, . . . , xn at random from 1 to M) is bounded from

above by n·d·Mn−1

Mn = n·d
M = 1

2 .

This leads to the following randomized algorithm:

Algorithm POLY-ZERO

Input: A polynomial P as in Lemma 2.5.2.

1. Choose x1, . . . , xn randomly between 1 and M .
2. If P (x1, . . . , xn) �= 0, then answer “yes”.
3. Otherwise answer “probably not”.

This algorithm has the following properties:

(a) The answer “yes” is always right: i.e. if the algorithm an-

swers “yes”, then the input is a positive instance.

(b) For every positive instance, the probability of giving the (cor-

rect) answer “yes” is at least p.

(Here p = 1
2 for the algorithm POLY-ZERO.)

2.5.3. Definition (Monte Carlo algorithm).

If E is a decision problem, then an algorithm A is called a Monte

Carlo algorithm for E if there exists a probability p > 0 such that

A satisfies (a) and (b).

If we apply such an algorithm to an instance I and the output

is “yes”, then we know that the instance is positive. Otherwise, we

do not know with certainty whether I is a negative instance, but by

repeated application of the algorithm to the instance I, we can reduce

the error probability very quickly (see Exercise 2.5.6).

From a practical point of view this means that the existence of an

efficient Monte Carlo algorithm for the solution of a problem is just as

good as the existence of a polynomial-time deterministic algorithm.

The class of all decision problems for which there is an efficient Monte

Carlo algorithm (i.e. one whose running time is polynomial) is denoted

by RP.

76 2. Algorithms and complexity

Las Vegas algorithms. As a further illustration of the advantages

of randomization, we study the popular sorting method Quicksort.

We are given a list of k natural numbers and our goal is to order

these numbers by size. For simplicity, let us assume that no number

appears several times in the list (although this is not necessary for

our methods).

A plausible approach is to begin by finding the smallest number

in the list and placing it in the first position, then to search the

remaining numbers for the next smallest one, and so on. What is the

running time of this method? We have to compare k elements in the

first step, only k−1 in the second, and so on. So overall the algorithm

makes

k + (k − 1) + · · ·+ 2 + 1 =
k(k + 1)

2
= O(k2)

comparisons (here we used Gauss summation; see Exercise 1.1.12(b)).

Hence it is efficient. On the other hand, for very large lists, carrying

out O(k2) operations can take a while (imagine ordering a complete

dictionary or telephone directory alphabetically).

The Quicksort method allows us to reduce the running time fur-

ther. Once more, it is based on the “divide and conquer” idea: we

split the list in two sublists in such a way that every element from the

first list is smaller than every element from the second list. Then we

recursively sort these two lists and obtain, in the end, a completely

sorted list.

Algorithm QUICKSORT

Input: A list L.

1. If L has only one element, then L is already sorted
and we are done.

2. Otherwise, choose some element x from the list.
3. Divide the remaining elements into two lists L1

and L2 such that L1 contains all elements that are
smaller than x and L2 contains all larger ones.

4. Sort L1 and L2 using QUICKSORT. Then output
the (sorted) list consisting of L1, followed first by x
and then by L2.

2.5. Randomized algorithms 77

The running time of this algorithm clearly depends on our choice

of the comparison element x. In the worst case, x itself is the smallest

element of the list L, and in the next step we have to sort a list of

size k − 1, and so on. This means that, in the worst scenario, the

running time of QUICKSORT is just as good (or bad) as that of the

naive algorithm that we discussed above, namely O(k2). In the best

case, however, the two lists L1 and L2 have the same length in every

step. Then the algorithm requires only log k levels of recursion to

reduce each list to a single element. In every such level, each element

of the list is considered at most once, so we have a running time of

O(k · log(k)), a clear improvement.

As in the example of zeros of a polynomial there is no simple

deterministic method to find the element x such that L1 and L2 have

the same length. But if we choose x at random, then we are likely

to find an element that is somewhere in the middle of the list. We

refrain from giving the precise calculation here (instead we refer to the

further reading material at the end of the chapter), but it turns out

that if we pick the element x at random at every step, then on average

QUICKSORT requires only O(k·log k) total comparisons when sorting

a list of length k. Note that, even in the case of an unfortunate random

choice, we always obtain a correctly sorted list; the procedure might

just take longer to complete.

Randomized algorithms of this type, where, in contrast to Monte

Carlo methods, the answer is always correct and where the random-

ization only affects the running time, are called Las Vegas algo-

rithms.

2.5.4. Definition (Las Vegas algorithm).

Suppose that D is a decision problem and that A is a randomized

algorithm. Then we call A an efficient Las Vegas algorithm for

E if

(a) for every input, A gives a correct result as output and

(b) the average running time of the algorithm is polynomial

in the size of the input.

78 2. Algorithms and complexity

(Here by average running time we mean the average of the run-

ning time function s(I) over all possible executions of the algorithm

on the instance I.) The class of all decision problems for which such

an algorithm exists is called ZPP (zero-error probability poly-

nomial time).

From Las Vegas to Monte Carlo and back. The two concepts we

have just encountered are closely related. Indeed, it is not difficult to

modify any efficient Las Vegas algorithm to obtain an efficient Monte

Carlo algorithm A′. To do so, let us denote the expected running time

of A on an instance I by e(I). The algorithm A′ then runs through

the first 2 · e(I) steps of A. If the algorithm finishes its execution in

this time, we output the (necessarily correct) result. Otherwise we

answer “probably not”.

It is a consequence of the Markov inequality from probability

theory (Exercise 2.5.10) that there is a positive probability that A

finishes within the first 2 · e(I) steps.
With this result it follows that A′ is an efficient Monte Carlo

algorithm for D because e(I) grows at most polynomially with the

length of I by condition (b) in the definition of a Las Vegas algorithm.

Now let us suppose that both the problem D and its dual prob-

lem have efficient Monte Carlo algorithms A′
1 and A′

2. Then we can

combine these to obtain an efficient Las Vegas algorithm A as follows:

Algorithm A

Input: An instance I of the decision problem D.

1. Run A′
1 with input I.

2. If A′
1 identifies I as a positive instance in Step 1,

then answer “yes” and we are done.
3. Otherwise run A′

2 with input I.
4. If A′

2 identifies I as a negative instance in Step 3,
then answer “no”. We are finished.

5. Otherwise return to Step 1.

Witnesses and Monte Carlo algorithms. Let D be a decision

problem in the class NP. Recall that for every positive instance of

2.5. Randomized algorithms 79

D there is a witness. To solve the problem, it is hence sufficient to

find such a witness or to exclude the possibility that such a witness

exists. This means that identifying a suitable set of witnesses can be

a first step towards developing a Monte Carlo algorithm. To see why,

suppose that, for every instance I, the probability of finding a witness

for I when picking p at random is larger than some fixed bound. Then

we have found a Monte Carlo algorithm for D: we only need to pick

a possible witness p at random and check whether it is a witness for

I. If I is a negative instance, then this algorithm will always give

the correct answer; otherwise there is a positive probability of finding

a correct witness and again obtaining the correct answer. We have

already seen an example of this idea in the remark after Lemma 2.5.2.

We can try to find a randomized algorithm for the problem COM-

POSITES, which we know to belong to NP, in this manner. A non-

trivial divisor m of n is a witness for the compositeness of n. So our

algorithm would pick a number k between 2 and n − 1 at random

and check (using the division algorithm) whether k divides n or not.

Unfortunately it is extremely unlikely that we will find a factor of n

this way, e.g. when n is the product of two large primes. Indeed, in

this case n has only two non-trivial divisors, and the probability of

finding one of them is 2/(n− 2), which is not bounded by a positive

constant from below. (We could improve the method a little bit by

checking only whether k and n are coprime. But this also does not

lead to a Monte Carlo algorithm; see Exercise 2.5.8.)

So randomization does not help us here. However, in our study of

number theory we shall find other, less obvious witnesses for the com-

positeness of a natural number. In Section 4.5 we will indeed be able

to use these to develop a Monte Carlo algorithm for COMPOSITES

in the manner described above. In the second part of the book, this

idea is taken one step further: we will describe a witness for the com-

positeness of a natural number n and show that the smallest witness

grows at most polynomially in log n. So we can find this witness even

deterministically and thus obtain an efficient deterministic algorithm

for COMPOSITES (and hence also for PRIMES). But before we are

ready for this, we require some further background in number theory,

which will be provided in the next two chapters.

80 2. Algorithms and complexity

Exercises.

2.5.5. Exercise (!). Prove Lemma 2.5.2. (Hint : Inductively use the fact
that a polynomial of degree d in one variable has at most d zeros. See also
Corollary 3.4.5.)

2.5.6. Exercise (!). To work out how many times we must run a Monte
Carlo algorithm to obtain a small probability of error, it is useful to imagine
throwing a coin. Suppose that, for each throw, the probability of throwing
“heads” is p and the probability of throwing “tails” is q = 1− p.

(a) What is the probability of throwing “tails” n times in a row?

(b) In the case q = 1/2, how many throws do we need to ensure that
the probability from part (a) is at most 0.0001%?

(c) We now throw the coin until we get “heads” for the first time.
What is the average required number of throws?

Hint: Use the following consequence of Exercise 1.1.12(d):
for every real number x ∈ R with |x| < 1,

∞∑
k=1

k · xk−1 =
1

(1− x)2
.

(d) Conclude that on average, for a non-constant polynomial P , the
algorithm POLY-ZERO requires at most two executions to find
a non-zero value of P .

Further Exercises and Comments.

2.5.7. In our presentation of randomization we ignored an important ques-
tion: can an algorithm really pick a number at random in practice? I.e.
what importance do randomized algorithms really have for the practical
solution of problems? Here we remark only that randomization really does
get used successfully in everyday applications (e.g. in internet security) and
refer the reader to further literature on algorithm theory; see below.

2.5.8. Exercise. Consider the following randomized algorithm:

Given n ∈ N with n ≥ 2, randomly choose a numberm ∈ {1, . . . , n−1}.
If gcd(n,m) �= 1, output “n is composite”. Otherwise output “n is perhaps
prime”.

(a) Show: if n is the product of two prime numbers p and q, then
there are exactly (p− 1) + (q − 1) numbers between 1 and n− 1
that have a common prime factor with n.

(b) Conclude that the above method is not a Monte Carlo algorithm
for COMPOSITES.

Further reading 81

2.5.9. Exercise (P). Implement the method from Exercise 2.5.8 in a com-
mon programming language. Run it for each of the (composite) numbers
120, 143, 7 327 883, and 1 726 374 899 084 624 209 until either a number is
found that is not coprime to n or until the algorithm has been completed
1 000 000 times.

2.5.10. Exercise. In this exercise we use the standard terminology of prob-
ability theory. Let X be a random variable that takes only positive values.
Furthermore let μ be the expected value of X.

Let a > 1. Prove the Markov inequality: the probability that X is
larger than a · μ is at most 1/a.

2.5.11. Exercise. Let k ∈ N. Show that the definition of the class RP
does not change if we replace (b) by the following: for a positive instance
of length n, the probability of obtaining the correct answer is at least 1/nk.

2.5.12. Exercise. Show that RP ⊆ NP. (Hint: Consider the sequence of
random choices that the Monte Carlo algorithm makes during its execution.
If the instance is positive, then there is such a sequence for which the
eventual output is “yes”.)

In particular we haveP ⊆ ZPP ⊆ RP ⊆ NP. It is not known whether
any of these inclusions are proper.

Further reading

The book Introduction to Algorithms [CLR] provides a comprehen-

sive but gentle introduction to the theory and practice of algorithms.

A more formal development of the foundations of algorithm theory

can be found in the books Elements of the Theory of Computation

[LPa] as well as Introduction to Automata Theory, Languages, and

Computation [HMU]. We would also like to recommend the more

advanced text Computational Complexity by Papadimitriou [P]. This

excellent book describes a plethora of aspects of complexity theory

and contains chapters covering P
?
= NP, randomized algorithms,

cryptography, and much more. For example, our treatement of the

algorithm POLY-ZERO is inspired by the discussion of symbolic de-

terminants in this book. Introductory books of probability theory,

such as [Ro], provide relevant mathematical background for studying

randomized algorithms.

Chapter 3

Foundations of
number theory

In some sense this chapter is the heart of the first part of the book,

as it is here that we encounter the most important ingredients of the

AKS algorithm. We have already learned about division with remain-

der in Section 1.2. To gain further familiarity with the concept, we

now study modular arithmetic, which describes how remainders

behave under addition and multiplication. As we shall see, modular

arithmetic with respect to a prime has particularly nice properties,

which is important for the development of primality tests. An exam-

ple is Fermat’s Little Theorem, which we prove (together with two

generalizations, the Fermat-Euler Theorem and Lagrange’s Theorem)

in Section 3.2. This result allows us to develop our first primality test

in in Section 3.3.

At the end of the chapter, we turn our attention to polynomials.

After introducing common notations and simple rules for calcula-

tions, we explain how to perform modular arithmetic with polyno-

mials. This concept plays a crucial role in the second part of the

book.

83

84 3. Foundations of number theory

3.1. Modular arithmetic

When carrying out modular arithmetic with respect to a natural

number n ≥ 2, we treat numbers that leave the same remainder after

division through n as if they were equal. As an example, consider

calculations that involve the time of day. If it is 10:00 in the morning

and we would like to know what time it will be in seventy-nine hours,

we add 10 and 79 and compute the remainder after division by 24,

which is 17. So the answer is “17:00” (or “5 pm”).

To illustrate the concept further, consider the partition of Z into

odd and even numbers. (Recall that the former are divisible by 2,

while the latter leave remainder 1 when divided by 2.)

The sum of two even numbers is again even, as is the sum of

two odd numbers; on the other hand the sum of an even and an

odd number is always odd. The product of an even number with

any other number is even; the product of two odd numbers is odd

(Exercise 1.1.10).

If we would like to know whether the result of some calculation is

divisible by two or not, this means that we only have to remember in

each step which of the numbers are even, resp. odd. For example, we

can see that 223 · 5− 275 + 332 − 1 is odd without having to compute

this (rather large) number explicitly. (The first number is even and

the remaining three numbers are odd, so we are left with the sum of

one even and three odd numbers, which is always odd.)

We now formulate this idea in general.

3.1.1. Definition (Congruence).

Let n ≥ 2 be a natural number. If a and b are integers that have the

same remainder when divided by n, we write a ≡ b (mod n). In this

case we say: a is congruent to b modulo n.

Example. Two non-negative integers are congruent modulo 10 if and

only if they have the same final digit; for example 13 ≡ 33 (mod 10).

We also have −2 ≡ 38 (mod 10), since both numbers leave remainder

8 when they are divided by 10.

3.1. Modular arithmetic 85

The notion of congruence behaves well under elementary arith-

metic. If, for example, we replace one of the terms in a sum by a

congruent number, then the new result will be congruent to the old

one. More precisely:

3.1.2. Lemma (Rules of modular arithmetic).

Let n ≥ 2 and let a, b, c, and d be arbitrary integers.

(a) If a ≡ b and b ≡ c (mod n), then also a ≡ c (mod n).

(b) The numbers a and b are congruent modulo n if and only if

n divides the difference a− b.

(c) If a ≡ b and c ≡ d (mod n), then a+c ≡ b+d, a−c ≡ b−d,

and a · c ≡ b · d (mod n).

(d) If a ≡ b (mod n), then ak ≡ bk (mod n) for all k ∈ N.

Proof. The first claim follows directly from the definition.

For (b), let ra, rb ∈ N0 denote the remainders of a, resp. b, after

division by n. So there are s, t ∈ Z with a = s ·n+ra and b = t ·n+rb,

and by definition ra and rb are smaller than n.

If a ≡ b (mod n), which means that ra = rb, we see that

a− b = s · n− t · n = (s− t) · n,

and a− b is divisible by n as claimed. If, conversely, a− b is divisible

by n, then ra − rb = a − b + (t − s) · n is also divisible by n. But

−n < ra−rb < n, so it follows that ra−rb = 0. Hence the remainders

ra and rb are equal, as desired.

Now we can use part (b) to prove the remaining claims in the

lemma. Indeed, if a ≡ b and c ≡ d (mod n), then we know that a− b

and c− d are divisible by n. Thus (a− b)+ (c− d) = (a+ c)− (b+ d)

is also divisible by n, and therefore a+ c ≡ b+d (mod n), as claimed.

In the same manner we prove the statement about differences and

products, and readers are invited to prove (d) using mathematical

induction (a nice exercise). �

Example. Lemma 3.1.2 tells us that we can add, subtract, multiply,

and take powers modulo n just as if we were working with regular

86 3. Foundations of number theory

⊕ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9 0

2 2 3 4 5 6 7 8 9 0 1

3 3 4 5 6 7 8 9 0 1 2

4 4 5 6 7 8 9 0 1 2 3

5 5 6 7 8 9 0 1 2 3 4

6 6 7 8 9 0 1 2 3 4 5

7 7 8 9 0 1 2 3 4 5 6

8 8 9 0 1 2 3 4 5 6 7

9 9 0 1 2 3 4 5 6 7 8

� 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 0 2 4 6 8

3 0 3 6 9 2 5 8 1 4 7

4 0 4 8 2 6 0 4 8 2 6

5 0 5 0 5 0 5 0 5 0 5

6 0 6 2 8 4 0 6 2 8 4

7 0 7 4 1 8 5 2 9 6 3

8 0 8 6 4 2 0 8 6 4 2

9 0 9 8 7 6 5 4 3 2 1

Figure 3.1. Addition and multiplication modulo 10.

integers. As an example, we calculate modulo 2:

223 · 5− 275 +332− 1 ≡ 023 · 1− 15 +12− 1 = 0− 1+1− 1 = −1 ≡ 1.

Exercises 3.1.19 and 3.1.20 illustrate that modular arithmetic can

even be used to answer questions that, at first glance, have no con-

nection to “division with remainder” at all.

Every integer a ∈ Z is congruent modulo n to exactly one of

the numbers 0, 1, . . . , n − 1, namely to its remainder after division

by n. When doing modular arithmetic, this means that the result of

every operation can be replaced by its remainder. For this reason, we

sometimes use the notation M mod n for the remainder of M after

division by n. For example, (5 + 7) mod 8 = 4.

We can also think of modular arithmetic as defining a “new”

addition ⊕ and a “new” multiplication � on the set {0, . . . , n− 1} by

a⊕ b := (a+ b) mod n and a� b := a · b mod n. For these operations

we can write down complete addition and multiplication tables, as is

shown in Figure 3.1 for addition and multiplication modulo 10. (See

also Comment 3.1.25.)

So addition, subtraction, and multiplication modulo n work just

according to our intuition. We now look at division, where things

turn out to be rather different. Recall the basic facts about division

in the familiar number systems: in Q and R we can divide by any

number except zero, but 1 and −1 are the only integers by which we

3.1. Modular arithmetic 87

can always divide in Z. (Division by other integers will usually not

yield an integer again.) We now ask the same question about modular

arithmetic: what conditions on n ≥ 2 and a ∈ Z are needed so that

it is possible to divide every number x ∈ Z by a modulo n? That is,

when does the congruence

(3.1.3) y · a ≡ x (mod n)

have a solution y ∈ Z for every x ∈ Z? Or, to rephrase the question

in yet another way, when does the a-th column of the multiplication

table contain all possible remainders 0, 1, . . . , n − 1? If we take a

look at the table for n = 10 (Figure 3.1), we see that this is the case

for the numbers 1, 3, 7, and 9, but not for 0, 2, 4, 5, 6, and 8. This

suggests that a should be coprime to n if we wish to be able to carry

out arbitrary division by a modulo n.

3.1.4. Definition and Theorem (Division modulo n).

Let n ≥ 2 and a ∈ Z. If a and n are coprime, then for every integer

x there is an integer y such that

(3.1.5) y · a ≡ x (mod n).

Furthermore, for every a ∈ Z, the congruence y · a ≡ 1 (mod n)

has a solution y if and only if a and n are coprime. In this case we

say that y is a (multiplicative) inverse of a modulo n.

Proof. First suppose that a and n are coprime. We must show that

there are integers y and m such that y · a+m · n = x. This reminds

us of Bézout’s Lemma (Theorem 1.4.2), which tells us that there are

numbers s, t ∈ Z such that s ·a+t ·n = gcd(a, n) = 1. We set y := s ·x
and m := t ·x, and then we have proved the first claim of the theorem.

The second part is nothing but a restatement of Corollary 1.4.3. �

The proof of Theorem 3.1.4 shows us not only that the desired

number y exists, but also how we can explicitly compute it. Indeed, we

saw that the representation of gcd(a, n) = 1 in terms of a and n from

Bézout’s Lemma can be calculated using the Euclidean algorithm. As

an example, we calculate the inverse of 5 modulo 73. First apply the

88 3. Foundations of number theory

Euclidean algorithm:

73 = 14 · 5 + 3; 5 = 1 · 3 + 2; 3 = 1 · 2 + 1.

Then we substitute backwards as in Section 1.4:

1 = 3− 1 · 2 = 3− 1 · (5− 1 · 3)
= 2 · 3− 1 · 5 = 2 · (73− 14 · 5)− 1 · 5
= 2 · 73− 29 · 5 ≡ 44 · 5 (mod 73).

So we see that 44 is an inverse of 5 modulo 73.

3.1.6. Corollary (Cancellation rule).

Let n ≥ 2 and let a, b, and c be integers such that a ·b ≡ a ·c (mod n).

If a and n are coprime, then b ≡ c (mod n). In particular, the inverse

of a is “unique modulo n”; i.e. all inverses have the same remainder

when divided by n.

Proof. The idea is simple: since a and n are coprime, we can divide

by a on both sides of the given congruence. More formally, we know

by Theorem 3.1.4 that there is an inverse y of a modulo n. Then

“dividing by a modulo n” means multiplying by the inverse y. Doing

this on both sides of the congruence, we conclude that

y · a · b ≡ y · a · c (mod n).

Since y · a ≡ 1 (mod n), it follows that

b = 1 · b ≡ y · a · b ≡ y · a · c ≡ 1 · c = c (mod n),

and we have proved the first claim.

If y and y′ are both inverses of a modulo n, then y ·a ≡ 1 ≡ y′ ·a.
Using the cancellation rule we have just proved, it follows that y ≡ y′

as claimed. �

Examples. We have 45 ≡ 15 (mod 6) because 45−15 = 30 is divisible

by 6. Since 5 and 6 are coprime, we are allowed to cancel 5 from both

sides and get 9 ≡ 3 (mod 6) (which is true). But if we divide by 3

(not coprime to 6) on both sides, we get the numbers 15 and 5, and

these are not congruent modulo 6. Hence the requirement that a and

n are coprime is really essential in Corollary 3.1.6.

3.1. Modular arithmetic 89

It follows from Theorem 3.1.4 that modular arithmetic with re-

spect to a prime is particularly nice. Indeed, a number a is coprime

to p if and only if it is not divisible by p (Exercise 1.2.12), i.e. if

a �≡ 0 (mod p). This means that, modulo p, we can divide by every

number that is not congruent to zero – essentially just as in the ratio-

nal and real numbers. As a result, many properties of these number

systems also hold for modular arithmetic with respect to a prime; we

shall learn about some of these throughout the chapter.

Calculations modulo a composite number n, on the other hand,

are far more uncomfortable: we can only divide and cancel by integers

that are coprime to n, and sums and differences of such numbers will

not again be coprime to n in general. (See Exercise 3.1.13.) In the

following, we will again and again come across important differences

between primes and composite numbers when it comes to modular

arithmetic. These differences will help us to devise methods of dis-

tinguishing between these two types of natural numbers.

To conclude the section, we present the famous Chinese Re-

mainder Theorem. It states that calculations modulo a composite

number n = n1 · n2 can be reduced to calculations modulo n1 and

modulo n2 provided that the two numbers are coprime. Essentially

this tells us that we can understand modular arithmetic with respect

to a composite number n quite well provided that we know how to

factorize n. (This theorem will only be used in Section 4.5 and in

some exercises; it is not required for the AKS algorithm itself.)

3.1.7. Theorem (Chinese Remainder Theorem).

Let n1, n2 ≥ 2 be coprime natural numbers and set n := n1 · n2.

Then two integers are congruent modulo n if and only if they

are congruent modulo n1 and congruent modulo n2. Conversely, for

any two integers a1 and a2, there exists some x ∈ Z simultaneously

satisfying the two congruences x ≡ a1 (mod n1) and x ≡ a2 (mod n2).

Remark. Often the theorem is formulated more generally for products

of arbitrarily many pairwise coprime numbers. This version follows

from ours by induction; see Exercise 3.1.21.

90 3. Foundations of number theory

Proof of the Chinese Remainder Theorem. Let b, c ∈ Z. If b is

congruent to c modulo n, then it follows from the basic properties

of division in Z that also b ≡ c (mod n1) and b ≡ c (mod n2) (for

details, see Exercise 3.1.10).

If conversely b ≡ c (mod n1) and b ≡ c (mod n2), then we de-

duce from Lemma 3.1.2 that b − c is divisible by n1 and n2. This

means that b − c is a common multiple of b and c and hence it

is a multiple of lcm(n1, n2). Now by hpothesis n1 and n2 are co-

prime, so lcm(n1, n2) = n1 · n2 = n (Exercise 1.3.9). Hence we have

b ≡ c (mod n), and the proof of the first claim is complete.

We could deduce the second part of the theorem from the first,

just by counting (Exercise 3.1.18). Instead we give a direct proof,

which also shows us how to find x. Since n1 and n2 are coprime,

Bézout’s Lemma tells us that there are numbers m1 and m2 such

that m1 · n1 +m2 · n2 = 1. Thus we see that m1 · n1 ≡ 1 (mod n2)

and m2 · n2 ≡ 1 (mod n1). If we set x := a2 ·m1 · n1 + a1 ·m2 · n2,

then

x ≡ a1 ·m2 · n2 ≡ a1 · 1 = a1 (mod n1)

and similarly x ≡ a2 (mod n2), as claimed. �

Exercises.

3.1.8. Exercise. Work out complete addition and multiplication tables
modulo 3 and modulo 7.

3.1.9. Exercise. What is the remainder of 9! when dividing by 10, of 10!
when dividing by 11, of 11! when dividing by 12, of 12! when dividing by
13? For a general composite number n, what number is (n− 1)! congruent
to modulo n?

3.1.10. Exercise (!). Let a and b be integers and let m,n ≥ 2 be natural
numbers such that m divides n. Prove the following: if a ≡ b (mod n),
then also a ≡ b (mod m). Does the converse hold?

3.1.11. Exercise. Let n ≥ 2. When is
n−1∑
i=0

i ≡ 0 (mod n)? When is

n−1∑
i=0

i2 ≡ 0 (mod n)? (See Exercise 1.1.12.)

3.1. Modular arithmetic 91

3.1.12. Exercise. Let n ≥ 2 and let a and x be arbitrary integers. Once
more we study the congruence a · y ≡ x (mod n); i.e. we ask under what
conditions x is divisible by a modulo n. By Theorem 3.1.4 this is always
possible if a and n are coprime. Develop a condition on x, n, and a under
which the congruence has solutions even if gcd(a, n) �= 1. In particular,
show that the solution y is unique modulo n if and only if a and n are
coprime.

(Hint: Set d := gcd(a, n) and distinguish two cases, namely whether x
is a multiple of d or not.)

3.1.13. Exercise (!). Let n ≥ 2. Two numbers a, b ∈ Z are called zero
divisors modulo n if a ·b ≡ 0 (mod n), but neither a nor b is congruent to
0 modulo n. For example, 2 is a zero divisor modulo 4 because 2 ·2 = 4 ≡ 0.
Find pairs of zero divisors modulo 6 and modulo 10. Show that there are
no zero divisors modulo 3 or modulo 5. Then prove the following theorem:
there are zero divisors modulo n if and only if n is composite.

3.1.14. Exercise (!). Let a, k, n ∈ N0 with n ≥ 2.

(a) Show that there is an efficient algorithm to compute the remain-

der of ak when dividing by n. Recall that “efficiency” means
that the number of elementary instructions should grow at most
polynomially with logn, log a, and log k. (Hint: Use the power
algorithm from Section 2.3, but in each step carry out a division
with remainder by n.)

(b) Let a and n be coprime. Show that the method of computing
the inverse of a modulo n, as described after Theorem 3.1.4, is
efficient.

3.1.15. Exercise (P). Implement the algorithms from Exercise 3.1.14 in a

common programming language. Use these to compute ak and the inverse
of a for n = 1726 374 887, a = 3, and k = 1726 374 885. (Many pocket
calculators support modular arithmetic. There are also many online calcu-
lators with such functions on the World Wide Web; for example the “Big
Number Calculator” at

http://world.std.com/∼reinhold/BigNumCalc.html

performs modular arithmetic for numbers with arbitrarily many digits.)

3.1.16. Exercise. Find x ∈ Z with x ≡ 1 (mod 5) and x ≡ 3 (mod 13).
Can x be chosen in such a way that also x ≡ 2 (mod 7)?

3.1.17. Exercise. Let n1, n2 ≥ 2 and a1, a2 ∈ Z. The Chinese Remainder
Theorem tells us that the congruences

x ≡ a1 (mod n1) and x ≡ a2 (mod n2)

92 3. Foundations of number theory

have a common solution if n1 and n2 are coprime to each other. When are
there solutions even if n1 and n2 are not coprime?

3.1.18. Exercise. Let n = n1·n2 be as in the Chinese Remainder Theorem.
Then there are exactly n different pairs (r1, r2) of integers such that 0 ≤
r1 < n1 and 0 ≤ r2 < n2.

Use this observation to deduce the second part of the Chinese Re-
mainder Theorem from the first. (Hint: For a number x, let r1(x) be
the remainder of x when dividing by n1, and let r2(x) be the remainder
when dividing by n2. If x and x′ are different modulo n, then the pairs
(r1(x), r2(x)) and (r1(x

′), r2(x
′)) are also different from each other.)

Further Exercises and Comments.

3.1.19. Exercise. Show, by working modulo 5, that the equation

x2 = 5y − 2

does not have integer solutions. (Hint: Consider the possible remainders
of a perfect square modulo 5.)

3.1.20. Exercise. Consider the equation

x2 + 2 = y3,

where x, y ∈ Z. By studying this equation modulo 4, show that every
solution must satisfy x2 ≡ 1 and y3 ≡ −1 (mod 4). (In particular, x and y
must both be odd.)

Such arguments, and much more subtle considerations, are often en-
countered in the theory of Diophantine equations, a beautiful area of
number theory. For more information see, for example, [HW, Section 8].

3.1.21. Exercise. Let t ≥ 2. State and prove a version of the Chinese
Remainder Theorem for numbers n = n1 · n2 · · ·nt, provided that these
factors are pairwise coprime.

3.1.22. A complete set of residues (CSR) modulo n is a set R ⊆ Z
with the property that every integer is congruent to exactly one element
of R modulo n. For example, {0, 1, 2, . . . , n − 1} is a CSR modulo n, but
there are infinitely many others. For example, {3, 6, 9, 12, 15} is a CSR
modulo 5. Every CSR modulo n contains exactly n elements.

A reduced set of residues (RSR) modulo n is a set T of integers
coprime to n such that every integer that is coprime to n is congruent to
exactly one element of T . For example, the set cp(n) of numbers between
1 and n − 1 that are coprime to n is an RSR modulo n, and {7, 35} is an

3.1. Modular arithmetic 93

RSR modulo 6. Any two different RSRs modulo n must have the same
number of elements; in the next section we will see how many exactly.

3.1.23. Exercise. Let n ≥ 2 and a ∈ Z. Also let R = {r1, r2, . . . , rn} be a
CSR modulo n; we study the set aR = {a · r1, a · r2, . . . , a · rn}.

Prove the following: aR is a CSR modulo n if and only if a and n are
coprime. Prove that the same claim also holds for reduced sets of residues.

3.1.24. We have seen that the rational and real numbers have many prop-
erties in common with the integers modulo p. Mathematically it thus makes
sense to combine these concepts in one definition.

Let K be a set on which an addition and a multiplication are defined
(in particular we assume that sums and products of elements in K again
belong to K). Suppose that K contains a zero, i.e. an element 0 ∈ K such
that a+0 = a for all a ∈ K. Similarly, suppose that there is a one, i.e. an
element 1 ∈ K with 1 �= 0 such that a · 1 = a for all a ∈ K. (In particular,
K contains at least two elements.)

We also assume that K\{0} is closed under multiplication, that ad-
dition and multiplication satisfy the usual associative, commutative, and
distributive laws, and that we can subtract any element of K from any
other, as well as divide by any element except zero. (This is slightly in-
formal and we leave it to the reader to think about what these statements
should mean precisely.)

A set K with these properties is called a field. Theorems about real
numbers whose proofs only use the properties stated above are then au-
tomatically true for every field, so that we do not need to prove them
separately each time.

For example, show that:

(a) If K is a field, then the elements 0 and 1 are uniquely determined.

(b) If K is a field, then a · 0 = 0 for all a ∈ K.

(c) A field contains no zero divisors, i.e. if x, y ∈ K are such that
x · y = 0, then x = 0 or y = 0.

3.1.25. At the beginning of the section we said that, in modular arithmetic,
we consider numbers that are congruent to be “the same” in some sense.
Working with congruence classes formalizes this idea in an elegant way.
Let n ≥ 2 and a ∈ Z. The set a of all integers that are congruent to a
modulo n is called the congruence class of a (modulo n):

a := {b ∈ Z : a ≡ b (mod n)} = {a+m · n : m ∈ Z}.

We also say that a is a representative of the congruence class a.

94 3. Foundations of number theory

Now we can define an addition and multiplication on the set of all
congruence classes modulo n by a + b := a+ b and a · b := a · b. From
Lemma 3.1.2, we know that a+ b and a · b really depend only on the classes
a and b and not on the choice of representatives a and b.

In other words, we combine all integers congruent to a to a new “num-
ber” (namely the congruence class a). We think of the set of congruence
classes as a new number system, with very natural notions of addition and
multiplication. This is the conceptually cleanest way to define modular
arithmetic. However, we will not use this somewhat abstract point of view
in the main text of the book.

3.2. Fermat’s Little Theorem

Having considered addition, subtraction, multiplication, and division

modulo a number n, we now turn our attention to taking powers. For

example, the powers of 3 modulo 7 are

30 = 1, 31 = 3, 32 = 9 ≡ 2, 33 = 27 ≡ 6, 34 = (32)2 ≡ 22 = 4,

35 ≡ 5, 36 ≡ 1, 37 ≡ 3, 38 ≡ 6, 39 ≡ 4,

Similarly, we compute the powers of 3 modulo 8 to be

1, 3, 1, 3, 1, . . . (mod 8).

In both examples we arrive at 1 at some point, and the sequence

repeats from then on. This is true more generally and leads us to an

important concept: the order of a number modulo n.

3.2.1. Definition and Lemma (Order modulo n).

Let n ≥ 2 and let a ∈ Z be coprime to n. Then there is a natural

number k such that ak ≡ 1 (mod n). The smallest such number is

called the order of a modulo n and is denoted by ordn(a).

For integers k1, k2 ≥ 0, we have that ak1 ≡ ak2 (mod n) if and

only if k1 and k2 differ by a multiple of ordn(a).

Proof. There are only finitely many possible remainders when divid-

ing by n, namely the numbers 0, 1, . . . , n − 1. Hence there must be

two numbers k1 and k2 such that k2 > k1 and ak1 ≡ ak2 (mod n).

Then

ak1 ≡ ak2 = ak1 · ak2−k1 (mod n).

3.2. Fermat’s Little Theorem 95

n orders modulo n n orders modulo n

2 1 7 1, 3, 6, 3, 6, 2
3 1, 2 8 1, 2, 2, 2
4 1, 2 9 1, 6, 3, 6, 3, 2
5 1, 4, 4, 2 10 1, 4, 4, 2
6 1, 2 11 1, 10, 5, 5, 5, 10, 10, 10, 5, 2

Figure 3.2. The orders of all numbers from 1 to n − 1 that
are coprime to n, for n from 2 to 11.

Since a and n are coprime, we can cancel out ak1 on both sides of

the congruence by Corollary 3.1.6. Thus ak2−k1 ≡ 1 (mod n). In

particular we have proved the first claim, and there is a smallest

natural number k = ordn(a) ≥ 1 with ak ≡ 1.

We now divide k2 − k1 by k with remainder; that is, we write

k2 − k1 = s · k + r with s ∈ Z and 0 ≤ r < k. Then

1 ≡ ak2−k1 = as·k+r =
(
ak
)s · ar ≡ 1s · ar = ar.

This forces r = 0 because otherwise k could not be the smallest

natural number with ak ≡ 1. Hence k2 − k1 = s · k and k2 − k1
is divisible by k as claimed. The converse is left to the reader in

Exercise 3.2.13(a). �

Examples. It follows from our calculations above that ord7(3) = 6

and ord8(3) = 2. If we know the order of a number a modulo n, then

the remainders of even very large powers of a can be computed very

easily using our lemma. For example

39001 = 36·1500+1 = (36)1500 · 31 ≡ 11500 · 3 = 3 (mod 7).

The order of a modulo n can never be larger than n − 1 since

there are at most n − 1 numbers that are pairwise different modulo

n and coprime to n. What else can we say? For each number n from

2 to 11, let us compute the order of every number a from 2 to n− 1

that is coprime to n (Figure 3.2). We notice that, for the primes

n = 2, 3, 5, 7, 11, all orders are divisors of n− 1. The fact that this is

true for every prime number is known as Fermat’s Little Theorem.

96 3. Foundations of number theory

1
1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

1 11 55 165 330 462 462 330 165 55 11 1

Figure 3.3. The first twelve rows of Pascal’s triangle. In the
(n + 1)-th row, we have emphasized (for n ≥ 2) the binomial
coefficients that are divisible by n.

3.2.2. Theorem (Fermat’s Little Theorem).

Let p be prime and let a ∈ Z. Then

(3.2.3) ap ≡ a (mod p).

In particular, if a is not a multiple of p, then ap−1 ≡ 1 (mod p).

Thus ordp(a) is a divisor of p− 1.

We have already encountered the case p = 3 of Theorem 3.2.2 in

Example 1.1.5. There, the idea of the proof was to expand (n + 1)3

in the induction step, obtaining n3 + 3n2 + 3n+ 1. Modulo 3 this is

the same as n3 + 1, and we can apply the induction hypothesis.

So the key fact is that the binomial coefficients that appear in

the expansion are divisible by 3. To prove Fermat’s Little Theorem,

we ask ourselves whether this is true more generally. Taking a look at

the first few rows of Pascal’s triangle (Figure 3.3), we might suspect

that for a prime p every “interior” binomial coefficient(
p

k

)
, where 1 ≤ k ≤ p− 1,

is divisible by p (while this is not true for composite numbers).

3.2. Fermat’s Little Theorem 97

3.2.4. Lemma (Divisors of binomial coefficients).

If p is prime and 1 ≤ k ≤ p− 1, then(
p

k

)
≡ 0 (mod p).

Proof. We use the explicit formula (1.1.16) for binomial coefficients

using factorials from Exercise 1.1.15. We can rewrite this equation as

follows:

(3.2.5) k! (p− k)!

(
p

k

)
= p! .

Now p is a divisor of the right-hand side of (3.2.5) and hence

also divides the left-hand side. Since p is prime and each of the

numbers 1, 2, . . . , k is smaller than p, we know that p does not divide

k!. (Recall Corollary 1.3.5.) For the same reason, p does not divide

(p−k)!. So, again by Corollary 1.3.5, it follows that p must divide the

final term in the product on the right-hand side and therefore p |
(
p
k

)
as claimed. �

Proof of Fermat’s Little Theorem. It suffices to prove the theo-

rem for non-negative numbers a (otherwise we replace a by a non-

negative number congruent to a, for example its remainder when di-

viding by p).

Just as in Example 1.1.5, we now use mathematical induction to

prove that ap ≡ a (mod p) for all a ∈ N0. For a = 0 we know that

ap = 0 = a; this is the basis of the induction.

Now let a ∈ N0 be such that ap ≡ a (mod p). By the binomial

theorem, we have

(a+ 1)p =

p∑
i=0

(
p

i

)
ap−i.

Lemma 3.2.4 tells us that the binomial coefficients
(
p
1

)
, ...,

(
p

p−1

)
are

all divisible by p. So if we reduce the above equation modulo p, then

we are only left with the terms for i = 0 and i = p. By the induction

98 3. Foundations of number theory

hypothesis, we also see that ap ≡ a (mod p), so overall

(a+ 1)p ≡ ap + 1 ≡ a+ 1 (mod p).

This completes the induction step and proves the first part of the

theorem.

If a is not divisible by p, then we can cancel a on both sides

of (3.2.3) by Corollary 3.1.6. We obtain that ap−1 ≡ 1 (mod p) as

claimed. By Lemma 3.2.1, it follows that ordp(a) divides p− 1. �

The theorems of Fermat-Euler and Lagrange. We now discuss

two generalizations of Fermat’s Little Theorem that are needed to

study RSA encryption and certain primality tests later in the book.

However, their knowledge will not be required for the AKS algorithm.

Let us return to the table in Figure 3.2. We notice, for example,

that for n = 9 the orders of the six numbers coprime to n are all

divisors of 6. Similarly, for n = 10 the orders of the four numbers

coprime to n are all divisors of 4. Overall, for every number n in our

table, the possible orders are always divisors of the number of integers

from 1 to n− 1 that are coprime to n. We now introduce a name for

this value:

3.2.6. Definition (Euler’s totient function).

Let n ≥ 2 and let cp(n) denote the set of all numbers from 1 to n− 1

that are coprime to n. We write ϕ(n) for the number of elements of

cp(n). That is, ϕ(n) is the number of integers from 1 to n − 1 that

are coprime to n.

Prime numbers are coprime to every smaller natural number.

Therefore we see that ϕ(2) = 1, ϕ(7) = 6, and, in general, ϕ(p) = p−1

for every prime number p. Otherwise we need to be more careful;

for example cp(4) = {1, 3}, cp(6) = {1, 5}, cp(8) = {1, 3, 5, 7}, and
cp(9) = {1, 2, 4, 5, 7, 8}. Thus ϕ(4) = 2, ϕ(6) = 2, ϕ(8) = 4, and

ϕ(9) = 6. Exercise 3.2.17 describes a general method of computing

ϕ(n) from the prime decomposition of n.

3.2. Fermat’s Little Theorem 99

� 1 3 5 9 11 13

1 1 3 5 9 11 13
9 9 13 3 11 1 5
11 11 5 13 1 9 3

� 1 3 5 9 11 13

1 1 3 5 9 11 13
13 13 11 9 5 3 1

Figure 3.4. Idea for the proof of the Fermat-Euler Theorem.

3.2.7. Theorem (The Fermat-Euler Theorem).

Let n ≥ 2. Then aϕ(n) ≡ 1 (mod n) for every integer a coprime to n.

In particular, ordn(a) divides ϕ(n).

If n = p is prime, then ϕ(n) = p− 1. So if a ∈ Z is not divisible

by p, then the theorem tells us that ap−1 is congruent to 1 modulo p.

Hence the Fermat-Euler Theorem contains Fermat’s Little Theorem

as a special case.

How might we prove the Fermat-Euler Theorem? To develop an

idea, consider the case n = 14 and a = 9. The powers of a modulo n

are given by

1, 9, 11, 1, 9, 11,

Let A denote the set of these powers, i.e. A = {1, 9, 11}, and let us

see what happens when we multiply all numbers in A with the same

element of cp(n) (modulo n); see Figure 3.4. Whichever element we

choose, we always obtain either the three numbers 1, 9, and 11 or the

three numbers 3, 5, and 13.

Let us repeat the experiment for a = 13. Here A = {1, 13}, and
multiplications give us three different classes of elements: 1 and 13,

3 and 11, as well as 5 and 9.

This gives us an idea for a proof of the Fermat-Euler Theorem.

Suppose that, as in our example, the set cp(n) can always be sub-

divided into different subsets that all have the same size. Since A

has exactly ordn(a) elements (Exercise 3.2.13) and the number of ele-

ments of cp(n) is exactly ϕ(n), this would imply that ϕ(n) is divisible

by ordn(a), as claimed! We now work out the details of this idea.

100 3. Foundations of number theory

Proof of the Fermat-Euler Theorem. What follows is perhaps

the most complex proof in the first part of the book; we encour-

age the reader to fix an example, e.g. n = 13 and a = 3, and work

out what each step of the proof means in this case. A simpler and

slightly miraculous alternative proof is given as Exercise 3.2.25. Our

approach has the advantage of generalizing to other situations.

As discussed above, we set

(3.2.8) A := {ak mod n : k ≥ 0}.

(A reminder: M mod n denotes the remainder of M when dividing

by n.) To begin, we make two observations:

(I) If b, c ∈ A, then b · c mod n is also an element of A because

the product of two powers of a is itself a power of a.

(II) For all b ∈ A, the set A contains an inverse of bmodulo n. In-

deed, we know that b and n are coprime, so by Lemma 3.2.1,

there is a number � ≥ 2 such that b� ≡ 1 (mod n). It follows

from (I) that the power c := b�−1 mod n is also an element

of A, and we have c·b ≡ b� ≡ 1 (mod n). Thus c is an inverse

of b modulo n with c ∈ A, as desired.

(In the remainder of the proof we use only the properties (I) and

(II), rather than the definition of A in (3.2.8). Since we were able to

deduce (II) from (I), we are actually proving the theorem at the same

time for all non-empty sets A ⊆ cp(n) that satisfy property (I). This

is Lagrange’s Theorem and is stated below.)

As above we now ask ourselves what happens when multiplying

all elements of A with a fixed number k ∈ cp(n). In other words, we

study the so-called cosets of A:

kA := {kx mod n : x ∈ A}.

Since 1 ∈ A, every element of cp(n) is contained in at least one coset.

We would like to show that the cosets subdivide cp(n) into subsets

that all have the same number of elements. More precisely, we show:

(a) For all k ∈ cp(n), the set kA has exactly #A elements.

(b) If k, l ∈ cp(n) are such that kA and lA have a common

element, then kA = lA.

3.2. Fermat’s Little Theorem 101

By definition, the set kA has at most as many elements as A.

Now let us assume, by contradiction, that kA contains fewer ele-

ments than A. Then there exist two different numbers x, y ∈ A such

that kx ≡ ky (mod n). Since k and n are coprime, the cancellation

rule (Corollary 3.1.6) tells us that x ≡ y modulo n. But this is a

contradiction because x �= y and A contains only elements from 1 to

n− 1. This proves (a).

If the sets kA and lA have a common element, then there are x

and y in A such that

(3.2.9) kx ≡ ly (mod n).

Using (II), we can find an inverse x′ of x modulo n in A. Multiplying

the congruence (3.2.9) by x′ on both sides, we see that

k = k · 1 ≡ k · xx′ = kx · x′ ≡ ly · x′ = l(y · x′) (mod n).

By (I), we see that y · x′ mod n ∈ A, and hence k ∈ lA. It follows,

again using (I), that kz mod n ∈ lA for all z ∈ A. So we have proved

that kA ⊆ lA. Exchanging the roles of k and l in this argument, we

see that also lA ⊆ kA. This proves (b).

Now let m be the number of different sets that can occur as

cosets. That is, there are k1, . . . , km ∈ cp(n) such that kiA �= kjA

for different i and j and furthermore cp(n) = k1A∪ k2A∪ · · · ∪ kmA.

From (b), we also know that no element of cp(n) is contained in more

than one of the sets k1A, . . . , kmA, and hence

ϕ(n) = #cp(n) = #k1A+ · · ·+#kmA.

By (a), it follows that ϕ(n) = m ·#A = m ·ordn(a). The proof of the
theorem is complete. �

As we noted during the proof, we have actually established a more

general fact, which will be useful in the next section:

3.2.10. Theorem (Lagrange’s Theorem).

Let n ≥ 2 be a natural number. Let A ⊆ cp(n) be a non-empty set

such that for any two (not necessarily different) elements k and l of

A, the product k · l mod n also belongs to A.

Then the number #A of elements of A is a divisor of ϕ(n).

102 3. Foundations of number theory

Example. For n = 15, the set A = {1, 4, 11, 14} satisfies the require-

ments of Lagrange’s Theorem (Exercise 3.2.21), and, indeed, #A = 4

divides ϕ(15) = 8.

Exercises.

3.2.11. Exercise. Compute the order of:
(a) 5 modulo 12; (b) 7 modulo 15; (c) 13 modulo 15.

3.2.12. Exercise. Let n ≥ 2 and suppose that a ∈ Z is coprime to n and
that b is inverse to a modulo n. Show that ordn(a) = ordn(b).

3.2.13. Exercise (!). Let n, a ∈ Z, n ≥ 2, and suppose that a is coprime
to n. Also let k be the order of a modulo n.

(a) Prove the following: if b1, b2 ∈ N0 are such that b1 ≡ b2 (mod k),
then ab1 ≡ ab2 (mod n). (Hint: We may suppose that b2 ≥ b1
and write b2 − b1 = s · k with s ≥ 0. Then the proof is similar to
the other parts of Lemma 3.2.1.)

(b) Consider the set A := {aj mod n : j ≥ 0} of the remainders
modulo n of all powers of a. Prove that

A = {1 , a mod n , a2 mod n , . . . , ak−1 mod n}.

(c) Deduce that A contains exactly k = ordn(a) elements.

3.2.14. Exercise. Let p be an odd prime and m a natural number. Prove
the following: if m2 + 1 is divisible by p, then p− 1 is divisible by 4.

3.2.15. Exercise. Let p be an odd prime. Prove the following: if a is a
natural number, then ap − a is a multiple of 2p.

3.2.16. Exercise. Let p be prime. Show that (a+ b)p ≡ ap + bp (mod p)
for all natural numbers a and b.

3.2.17. Exercise (!). Let n,m ∈ N. Prove the following:

(a) If n and m are coprime, then ϕ(n ·m) = ϕ(n) · ϕ(m).

(b) If p is prime and k ∈ N, then ϕ(pk) = (p− 1) · pk−1.

Use these rules to compute ϕ(10), ϕ(50), and ϕ(180). Show also that if
n > 2, then ϕ(n) is even.

3.2.18. Exercise. Let n ≥ 2 be a natural number. Prove that

n =
∑
k|n

ϕ(k),

3.2. Fermat’s Little Theorem 103

where the sum is taken over all natural numbers k that divide n. Here we
use the convention that ϕ(1) := 1. (Hint: Let k be a divisor of n. How
many natural numbers ≤ n are there such that gcd(a, n) = k? Also use the
fact that

∑
k|n ϕ(k) =

∑
k|n ϕ(n/k).)

3.2.19. Exercise. Why is m5 ≡ m (mod 10) for every integer m?

3.2.20. Exercise. Show that m7 − m is a multiple of 42 for all natural
numbers m.

Show more generally that the Fermat-Euler Theorem can be strength-
ened as follows: suppose that r, s ≥ 2 are coprime integers and set n := r ·s.
If a ∈ Z is coprime to n, then

alcm(ϕ(r),ϕ(s)) ≡ 1 (mod n).

(Hint: Use the Chinese Remainder Theorem.)

3.2.21. Exercise. Show that (e.g. by writing down a multiplication table
for A), for n = 15, the set A = {1, 4, 11, 14} satisfies the hypothesis of
Lagrange’s Theorem.

Further Exercises and Comments.

3.2.22. Exercise. Let n = pk, where p is prime and k ≥ 2. Prove that
there exists a number a ∈ cp(n) with ordn(a) = p. Show that this is true
also for every number n that is divisible by p2. (Hint: For the first part,

consider the number a = pk−1 + 1 and use Lemmas 3.2.4 and 3.2.1. For
the second claim use the first part and the Chinese Remainder Theorem.)

3.2.23. Exercise. Figure 3.2 suggests another question: for which numbers
n ≥ 2 is there a coprime number a such that ordn(a) = ϕ(n)? Such a
number is called a primitive root modulo n. Apart from n = 8, all the
numbers in our table have a primitive root. In general, the following are
true:

(a) If n = 2k with k ≥ 3, then there is no primitive root modulo n.

(b) If n = r · s, where r > 2 and s > 2 are coprime, then there is no
primitive root modulo n.

(c) Otherwise (in particular when n is prime), there are primitive
roots modulo n. (See Exercise 6.4.9.)

Prove (a) and (b). (Hint: Show that there are at least four numbers in
cp(n) whose square is congruent to 1 modulo n. Deduce that these numbers
cannot all appear as powers of the same number a. For (b), it is possible
to alternatively use Exercise 3.2.20.)

104 3. Foundations of number theory

3.2.24. Euler introduced the function named after him in 1760. It seems
that the use of the symbol ϕ for this function was first introduced by
Gauss in 1801 and that the word “totient” was coined by Sylvester in
1879. Sometimes the function is instead referred to simply as Euler’s phi
function.

3.2.25. Exercise. Prove the Fermat-Euler Theorem by working through
the following steps:

Let T = {b1, b2, . . . , bϕ(n)} be a reduced set of residues (RSR) modulo
n (as defined in Comment 3.1.22). For example, we can use T = cp(n).
By Exercise 3.1.23, the set aT = {a · b1, a · b2, . . . , a · bϕ(n)} is also an RSR
modulo n. Prove the following:

(a) b1 · b2 · · · bϕ(n) ≡ (a · b1) · (a · b2) · · · (a · bϕ(n)) (mod n).

(b) b1 · b2 · · · bϕ(n) ≡ (aϕ(n)) · (b1 · b2 · · · bϕ(n)) (mod n).

(c) 1 ≡ aϕ(n) (mod n).

3.2.26. There are much more general versions of Lagrange’s Theorem (The-
orem 3.2.10) than the one we stated and proved. Indeed, in the proof we
only need to know that the product of two numbers modulo n again be-
longs to cp(n), that the number 1 is in cp(n), that multiplication modulo
n is associative, and that every element of cp(n) has an inverse modulo n.

A non-empty set on which there is a binary operation with these prop-
erties is called a group. Group theory is a large mathematical field with
many connections to other areas of mathematics and even e.g. to physics
and computer science. A simple example of a group is given by the sym-
metries of an equilateral triangle, with the composition of symmetries as
the binary operation. The set of all possible transformations of a Rubik’s
Cube can also be studied using the methods of group theory. For further
reading we recommend the introductory textbook [KS].

3.3. A first primality test

Theorem 3.2.2 provides us with a property of prime numbers that can

easily be tested. Indeed, if n ≥ 2 is any natural number, then we can

pick a number a that is coprime to n and such that 1 ≤ a < n and

check whether or not the congruence

(3.3.1) an−1 ≡ 1 (mod n)

holds. Such a number a is called a base. We remind the reader that

powers modulo n can be computed efficiently using the “divide and

conquer” principle; see Exercise 3.1.14. If the congruence (3.3.1) does

3.3. A first primality test 105

not hold, then we know by Fermat’s Little Theorem that n must be

composite! Hence we can formulate the following algorithm, which is

called the Fermat test for obvious reasons:

Algorithm FERMAT-TEST

Input: A number n ≥ 2.

1. Choose (e.g. at random) a natural number a from
1 to n− 1.

2. If gcd(a, n) �= 1, then output “n is composite”.
3. Otherwise compute an−1 mod n using the algo-
rithm from Exercise 3.1.14.

4. If the number computed in the previous step is
equal to 1, then output “n may be prime”; other-
wise output “n is composite”.

What is happening here? Clearly there are two cases to consider:

either n is prime or not. If we input a prime number n, then every

smaller number a ≥ 1 is coprime to n, so we pass on to Step 3. Fer-

mat’s Little Theorem guarantees that an−1 ≡ 1 (mod n), so primes

are always correctly identified as such. If the input n is composite,

then the situation is not quite as simple. However, examples suggest

that the Fermat test works well for small numbers, even if we fix a

basis such as a = 2 (Exercise 3.3.4), and that it can quickly recognize

even extremely large composite numbers (Exercise 3.3.6).

So we are faced with the following question: are there numbers

a < n with a �= 1 such that the test does not recognize n to be

composite? I.e. could it happen that a ∈ cp(n) with a > 1 satisfies

an−1 ≡ 1 (mod n) even though n is not prime?

Unfortunately this phenomenon does indeed occur – there are

numbers that “pretend” to be prime. In this case, we call n a pseudo-

prime to base a. For example, every odd composite number n is a

pseudo-prime to base a = n− 1. But there are other examples; one is

1114 = (112)7 = 1217 ≡ 17 = 1 (mod 15), although 15 is not prime.

So if we input n = 15 and happen to pick the basis a = 11, then the

Fermat test does not recognize 15 as a composite number.

We can still hope that at least there are not too many bases with

respect to which a composite number n is a pseudo-prime. That is,

106 3. Foundations of number theory

we ask how large the set

(3.3.2) A := {a ∈ cp(n) : an−1 ≡ 1 (mod n)}

can be. An interesting observation is that A is closed under multipli-

cation modulo n: if a, b ∈ A, then

(a · b)n−1 = an−1 · bn−1 ≡ 1 · 1 = 1 (mod n),

so a · b mod n is again an element of A. This means that A satis-

fies the assumptions of Lagrange’s Theorem that we discussed in the

preceding chapter! We can thus show:

3.3.3. Lemma (Number of elements of A).

Let n be a composite number and define A as in (3.3.2). If A �= cp(n),

then A contains at most ϕ(n)/2 elements.

Proof. By Lagrange’s Theorem, #A divides ϕ(n); that is, there is

k ∈ N such that ϕ(n) = k ·#A. By assumption, we have #A < ϕ(n),

and hence k ≥ 2 and #A = ϕ(n)/k ≤ ϕ(n)/2. �

This is great news: if there is any suitable base a, then the prob-

ability of finding one is at least 1/2. If we could show that, for all

composite numbers n, there exists a base a ∈ cp(n) such that n is not

a pseudo-prime for this base, then this would prove that the Fermat

test is an efficient Monte Carlo algorithm for COMPOSITES.

Unfortunately for us, this is false. The counterexamples are called

Carmichael numbers; the smallest one is 561 = 3 ·11 ·17. It is even
possible to show that there are infinitely many Carmichael numbers,

and our test would mistake all of these for primes. However, we have

nonetheless made significant progress: on the one hand, our test never

mistakes a prime number for a composite, and on the other hand, we

found our first method that can detect even very large composite

numbers (unless they happen to be Carmichael numbers, which are

in fact quite rare). In Section 4.5, we will improve the Fermat test

in such a way that even Carmichael numbers do not cause problems

anymore.

3.4. Polynomials 107

Exercises.

3.3.4. Exercise. Carry out the Fermat test (by hand or with a calcula-
tor) to base a = 2 for the numbers n = 9, 21, 25, 27, 33, 35. Are these
recognized to be composite?

3.3.5. Exercise (P). Implement the Fermat test in a common program-
ming language and apply it to the numbers 1 726 374 899 084 624 209 and
6 641 819 896 288 796 729. Are they recognized to be composite?

3.3.6. Exercise (P). Apply the Fermat test (e.g. to base a = 2) to the
composite number RSA-2048 given in the introduction to this book. (To
do so, use a calculator that can carry out modular arithmetic for numbers
with arbitrarily many digits; see Exercise 3.1.15.)

Further Exercises and Comments.

3.3.7. Exercise. Show that 561 really is a Carmichael number, as claimed.

(Hint: Exercise 3.2.20.)

3.3.8. Exercise. Show that all Carmichael numbers are odd.

3.3.9. Exercise. Show that a Carmichael number cannot contain any
prime factor more than once. Hence if n is a natural number and if p is a
prime such that n is divisible by p2, then n is not a Carmichael number.
(Hint: Exercise 3.2.22.)

3.3.10. Exercise. If p is prime, then there is some number a such that
ordp(a) = p− 1 (Exercise 6.4.9; see also Exercise 3.2.23). Use this fact and
the Chinese Remainder Theorem to show: if q ∈ N with 1 < q < p, then
n := p·q is not a Carmichael number. (See also the proof of Theorem 4.5.4.)

3.3.11. Exercise. Using the preceding two exercises, show that every
Carmichael number must have at least three different prime divisors.

3.4. Polynomials

Polynomials and polynomial long division are often covered in high

school. Since they are of crucial importance for the second part of

our book, we would like to use this section to recall their elementary

properties, collect rules of arithmetic, and gain some more practice, so

that later on the reader will feel comfortable performing calculations

with polynomials. The idea is to treat polynomials just as if they were

108 3. Foundations of number theory

numbers. At the end of the section we shall take this idea further and

develop the concepts of modular arithmetic with respect to a

polynomial (analogously to modular arithmetic for integers) and of

irreducible polynomials (analogs of prime numbers).

3.4.1. Definition.

An (integer/rational) polynomial P is a sum of the form

P = anX
n + an−1X

n−1 + · · ·+ a1X + a0,

where n ∈ N0 and a0, ..., an are (integer/rational) numbers; they are

called the coefficients. The degree of P , denoted by degP , is the

highest exponent d for which the coefficient of Xd is nonzero. This

coefficient is then called the leading coefficient of P , and the poly-

nomial is monic if its leading coefficient is 1.

The zero polynomial, for which all coefficients are equal to zero,

has degree −∞ by definition; it is the only polynomial that does not

have a leading coefficient.

Examples. 3X2−1 is an integer polynomial of degree 2. Its coefficients

are a2 = 3, a1 = 0, and a0 = −1; in particular the leading coefficient

is 3. Polynomials of degree ≤ 0 are called constant polynomials.

For example, −5 is a constant integer polynomial.

In the remainder of the book, we are really only interested in

integer polynomials; if we write simply “polynomial”, we thus always

assume that the coefficients are integers. In this section, and only

here, we sometimes also allow rational coefficients, in particular when

discussing division with remainder (see below). Of course it is also

possible to study polynomials with real or even more general coef-

ficients; see Comment 3.4.23. Arithmetic with polynomials, such as

addition, subtraction, and multiplication, is intuitive and straightfor-

ward, and we refrain from giving an unnecessarily formal treatment.

However, let us make a few clarifying remarks to avoid confusion.

Substitution into polynomials. We can substitute every integer

(or also rational/real number) x into a polynomial and then write

P (x) for the corresponding value. If P = 3X2 − 1, for example, then

3.4. Polynomials 109

we have P (1) = 3 · 12 − 1 = 2. A number x for which P (x) = 0 is

called a zero of the polynomial P .

When writing down a polynomial, the name of the variable does

not really matter. Usually we call it X, but sometimes it is useful to

have other names for variables at our disposal in this case we always

use Y or Z. Then we refer to polynomials in X, resp. in Y or in

Z. For example, Y 3 − 1 is a polynomial in Y and 2Z4 + 3Z is a

polynomial in Z.

Equality of polynomials. By definition, two polynomials are equal

if they have the same coefficients. Note that, when writing down a

polynomial, we usually leave out terms where the coefficient is zero,

as we did in the examples above. For instance, we have

3X2 − 1 = 0 ·X3 + 3 ·X2 + 0 ·X + (−1).

Addition and multiplication. If P and Q are polynomials, then

their sum P + Q is again a polynomial (combining the terms that

correspond to the same power of X). For example, suppose that

P = 2X4 −X2 + 3X and Q = −2X4 +X3 − 5X − 1:

P +Q = (2X4 −X2 + 3X) + (−2X4 +X3 − 5X − 1)

= (2− 2)X4 +X3 −X2 + (3− 5)X − 1 = X3 −X2 − 2X − 1.

We see at once that the degree of P + Q can be at most as large as

the higher of the two degrees of P and Q. In our example, the degree

even decreased, because the two terms involving X4 canceled out.

In the same way, we can compute the product P · Q, which is

again a polynomial. For P = X2 + X − 2 and Q = X3 − 3X this

looks as follows:

P ·Q = (X2 +X − 2) · (X3 − 3X)

= X5 +X4 − 2X3 − 3X3 − 3X2 + 6X

= X5 +X4 − 5X3 − 3X2 + 6X.

The leading coefficient of P ·Q is the product of the leading coefficients

of P and Q. In particular, deg(P ·Q) = degP + degQ.

110 3. Foundations of number theory

In practice, it is often sensible not to multiply out a polynomial

that is given as a product. For example, the form

P = (X + 1)10

is much more practical and easier to understand than the expansion

P =X10 + 10X9 + 45X8 + 120X7 + 210X6

+ 252X5 + 210X4 + 120X3 + 45X2 + 10X + 1

according to the binomial theorem!

We have seen that we can add, subtract, and multiply polynomi-

als. It is natural to ask about division. If P is not the zero polyno-

mial, then we can use polynomial long division to divide a poly-

nomial Q with remainder by P . (This means that we are looking

for T and R such that degR < degQ and Q = T · P + R.) For

completeness, let us explain this method by showing how to divide

Q = 12X2 − 11X − 1 by P = X − 2. The idea is to determine the

coefficients of T one by one, beginning with the leading coefficient.

So we start by looking at the first term on both sides and see that

12X · X will give us 12X2, so the highest term of T is 12X. We

compute 12X · P = 12X2 − 24X and subtract this from the original

polynomial Q: 12X2 − 11X − 1− (12X2 − 24X) = 13X − 1. Now we

do the same for 13X − 1 and see that 13 ·X = 13X. So we note 13

as the second term of the result, multiply again 13 · P = 13X − 26,

and obtain the remainder (13X − 1) − (13X − 26) = 25. This re-

mainder has smaller degree than P , and hence we are done, having

obtained T = 12X + 13 and R = 25. The usual way to write down

the calculations is as follows:(
12X2 − 11X − 1

)
:
(
X − 2

)
= 12X + 13; remainder: 25

− 12X2 + 24X

13X − 1

− 13X + 26

25

.

If, instead, we had divided 12X2 − 11X − 26 by X − 2, we would

have been left with remainder zero; this means that X−2 is a divisor

of 12X2 − 11X − 26:

3.4. Polynomials 111(
12X2 − 11X − 26

)
:
(
X − 2

)
= 12X + 13

− 12X2 + 24X

13X − 26

− 13X + 26

0

We also note that the polynomials T and R in our examples have

integer coefficients because P is monic, and hence in every step the

division by the leading coefficient of P yields an integer. Overall we

have the following theorem:

3.4.2. Theorem (Division with remainder).

Let P and Q be rational polynomials. Then there are rational poly-

nomials T and R such that degR < degP and

Q = T · P +R,

and these are uniquely determined by P and Q. We say: P divides

Q with remainder R. If P and Q are integer polynomials and P is

monic, then T and R also have integer coefficients.

Proof. The theorem follows from the method of polynomial long di-

vision, which works for all polynomials P andQ as stated. Uniqueness

also follows immediately because, in every step, we have only one pos-

sibility for picking the corresponding coefficient of T . Alternatively

we can prove uniqueness directly. Indeed, if Q = T1 · P + R1 and

Q = T2 · P +R2 are two representations of Q as above, then

(T1 − T2) · P + (R1 −R2) = 0.

Since R1 and R2 have smaller degree than P , we must also have

deg(R1 − R2) < degP . But then the first term (T1 − T2) · P in the

sum also necessarily has smaller degree than P . Thus

degP > deg
(
(T1 − T2) · P

)
= deg(T1 − T2) + degP.

This is only possible if deg(T1 − T2) < 0; i.e. T1 − T2 is the zero

polynomial. This means that T1 = T2, which also implies R1 = R2

as claimed. �

112 3. Foundations of number theory

3.4.3. Definition (Divisors of polynomials).

Let P and Q be rational polynomials. If there is a rational polynomial

T such that Q = T · P , then P is called a divisor of Q over Q. If

additionally degP �= 0 and deg T �= 0, then we call P and T non-

trivial divisors of Q over Q.

If P , Q, and T are integer polynomials with Q = T · P , then we

analogously call P and T divisors of Q over Z. If neither P nor T

is equal to 1 or −1, then P and T are called non-trivial divisors of

Q over Z.

Remark. Even for integer polynomials, divisibility over Q can mean

something different than divisibility over Z. For example, 2X + 2 is

a divisor of 3X + 3 over Q because 3X + 3 = 3
2 · (2X + 2). On the

other hand, 2X + 2 is not a divisor of 3X + 3 over Z. Similarly it

is true that every rational polynomial P of degree 1 (that is, P = a

with a ∈ Q \ {0}) divides every polynomial over Q. When dividing

over Z, this is true only for the constant polynomials 1 and −1; this

is the reason for the different definitions of non-trivial divisors.

For us, divisibility over Q is more important since it introduces

us to ideas required in the next section. The connection between both

notions of divisibility is explored in Exercise 3.4.20.

An important application of division with remainder is a result

that the reader may be familiar with from secondary school:

3.4.4. Theorem (Linear factors).

Let P be a rational polynomial and let a ∈ Q. Then a is a zero of P

if and only if the linear factor X − a is a divisor of P over Q.

Proof. If X − a is a divisor of P , then we can write P = Q · (X − a)

for a suitable rational polynomial Q and we see that indeed

P (a) = Q(a) · (a− a) = Q(a) · 0 = 0.

Conversely, let a be a zero of P . We divide P by X − a with

remainder: P = T · (X − a) +R, where degR < deg(X − a) = 1. We

must show that R = 0.

3.4. Polynomials 113

As degR < 1, we already know that R is a constant polynomial,

so P = T · (X − a) + b for some b ∈ Q. We only need to show that

b = 0, and this follows from the fact that a is a zero of P :

0 = P (a) = T (a) · (a− a) + b = T (a) · 0 + b = 0 + b = b. �

Example. Let P := 2X3 +X2− 5X +2. Then −2 is a zero of P since

P (−2) = 2 · (−8)+4−5 · (−2)+2 = −16+4+10+2 = 0, and indeed

P = (2X2 − 3X + 1) · (X + 2), so (X + 2) is a divisor of P .

3.4.5. Corollary (Number of zeros).

A rational polynomial of degree d ≥ 0 has at most d zeros in Q.

Proof. The claim follows from the preceding theorem by induction.

A polynomial of degree 0 is, by definition, a non-zero constant. Hence

it has no zeros, which establishes the basis of the induction.

Now let P be a rational polynomial of degree d ≥ 1. If there are

no zeros, then we are done, so we can assume that P has at least one

zero a ∈ Q. By Theorem 3.4.4 we can write P = (X − a) ·T for some

rational polynomial T of degree d− 1. Then, every zero of P different

from a must also be a zero of T . By the induction hypothesis, T has

at most d − 1 zeros in Q. Consequently, P has at most d zeros, as

claimed. �

Modular arithmetic for polynomials and irreducibility. Let

P , Q, and H be rational polynomials with degH ≥ 1. Similarly to

modular arithmetic in Z, we write

P ≡ Q (mod H)

if both polynomials have the same remainder when divided by H.

Again, we can do elementary arithmetic modulo H as usual, e.g.

(2X2 − 3X + 1) · (X + 2) ≡ (−3X − 1) · (X + 2)

= −3X2 − 7X − 2

≡ −7X + 1 (mod X2 + 1).

114 3. Foundations of number theory

In Z, we saw that arithmetic modulo a prime number has par-

ticularly nice properties, so we now define a property of polynomials

that is analogous to primality.

3.4.6. Definition (Irreducibility).

A non-constant integer polynomial H is called irreducible over Q,

resp. over Z, if it does not have any non-trivial divisors over Q, resp.

over Z.

Examples. Every monic polynomial of degree 1 is irreducible both

over Q and over Z, by definition. The polynomial X2 − 2 is also

irreducible over Q: the only possible non-trivial divisors would be

polynomials of degree 1 and thus would have the form aX − b with

a, b ∈ Q. In particular, b
a would have to be a zero, but X2 − 2 does

not have any rational zeros by Theorem 1.1.2. For the same reason,

X2 − 2 is irreducible over Z. On the other hand, 2X3 +X2 − 5X +2

is not irreducible over Q and also not over Z: we already saw in the

example for Theorem 3.4.4 that it has the non-trivial divisor X + 2.

As a final example we note that 2X+2 is irreducible over Q, but

not over Z: the constant polynomial 2 is a non-trivial divisor over Z,

but a trivial divisor over Q. However, a polynomial that is irreducible

over Z is always also irreducible over Q; see Exercise 3.4.21.

The following theorem tells us that irreducible polynomials re-

ally do behave similarly to prime numbers. (We state and prove it

only over Q, but we will see in Exercise 3.4.21 that a corresponding

statement is true also over Z.)

3.4.7. Theorem (Irreducible divisors of a product).

Let H be a non-constant polynomial that is irreducible over Q. If Q1

and Q2 are rational polynomials such that H is a divisor of Q1 · Q2

over Q, then H must divide one of the factors Q1 and Q2.

Proof. We follow essentially the same idea as in the proof of the

Fundamental Theorem of Arithmetic. Let R1 and R2 be the remain-

ders of Q1 and Q2 when dividing by H, say Q1 = T1 · H + R1 and

3.4. Polynomials 115

Q2 = T2 ·H +R2. Multiplying out and combining terms, we see that

Q1 ·Q2 = H · (T1 · T2 ·H + T1 ·R2 + T2 ·R1) +R1 ·R2.

So R := R1 ·R2 is also divisible by H. We must show that R1 or R2 is

equal to zero; that is, we should show that R is the zero polynomial.

We do this by using the method of the smallest counterexample. If

the claim is false, then we can choose H with the lowest possible

degree; hence we may suppose that the theorem is true for all irre-

ducible polynomials of smaller degree. In addition, we suppose that

the degree of R is as small as possible with our choice of H.

As R is divisible by H, there exists a rational polynomial T such

that R = T · H. We have degR = degR1 + degR2 < 2 · degH, so

it follows that deg T < degH. If T is constant, then R1 and R2 are

non-trivial divisors of H over Q, which is impossible because H is

irreducible. So we know that deg T ≥ 1.

Thus T has some irreducible factor I over Q (see Exercise 3.4.16).

We know that 1 ≤ deg I ≤ deg T < degH. So, by choice of H as a

counterexample of smallest degree, the theorem is true for I. As I

divides the product R = R1 ·R2, we see that I divides one of the two

factors, say R1.

If we now write R1 = R̃1 · I, then H still divides the product

R̃ := R̃1 · R2 over Q but does not divide either of the factors R̃1 or

R2. (This is because their degree is smaller than that of H and they

are non-zero by assumption.) But the degree of R̃1 is strictly smaller

than that of R1, and thus also deg R̃ < degR. This contradicts our

choice of R as having minimal degree, and the proof is complete. �

3.4.8. Corollary (Zero divisors).

Let H be a rational polynomial that is non-constant and irreducible

over Q. Let Q1 and Q2 be rational polynomials. If

Q1 ·Q2 ≡ 0 (mod H),

then Q1 ≡ 0 (mod H) or Q2 ≡ 0 (mod H).

Proof. The reader is invited to verify that this is nothing but a

reformulation of the theorem we have just proved. �

116 3. Foundations of number theory

Polynomial zeros. Let P be a polynomial in Y and let Q be a

polynomial in X. Then we can substitute Q for the variable Y in

P and obtain P (Q), which is a polynomial in X. This is easiest to

understand using an example: if P := Y 2 − 2 and Q := X − 3, then

(3.4.9) P (Q) = (X − 3)2 − 2 = X2 − 6X + 9− 2 = X2 − 6X + 7.

This gets particularly interesting when we are doing modular

arithmetic with respect to a polynomial. Indeed, if H is a non-

constant monic polynomial in X, then it can happen that P (Q) is

divisible by H, and hence congruent to zero. This means that Q is,

in some sense, a “zero” of the polynomial P modulo H.

3.4.10. Definition (Polynomial zeros).

Let H be a non-constant rational polynomial, and let P and Q be

rational polynomials such that

P (Q) ≡ 0 (mod H).

Then Q is called a polynomial zero of P (modulo H).

Example. From (3.4.9) we know that X − 3 is a polynomial zero of

Y 2 − 2 modulo H := X2 − 6X + 7.

We already announced that calculations modulo an irreducible

polynomial are particularly pleasant. We now see an example of this

principle: if H is irreducible over Q, then a polynomial can have at

most as many polynomial zeros as indicated by its degree (where we

consider two polynomial zeros to be the same if they are congruent

modulo H).

3.4.11. Theorem (Number of polynomial zeros).

Let H be a non-constant rational polynomial that is irreducible over

Q, and let P be a rational polynomial of degree d ≥ 0.

Then P has at most d polynomial zeros modulo H that are pair-

wise different modulo H. (This means that there are at most d poly-

nomials Q1, . . . , Qd that are pairwise incongruent modulo H and that

satisfy P (Qj) ≡ 0 (mod H).)

3.4. Polynomials 117

Proof. We use the same idea as in Corollary 3.4.5, where we sepa-

rated out a linear factor using polynomial long division.

We can do the same here if we think of P as a polynomial in Y

whose coefficients are polynomials in X. (A more abstract point of

view is as follows: we can allow any type of coefficients for polynomi-

als, as long as we can add, subtract, and multiply them. Using this

idea, both Theorem 3.4.11 and Corollary 3.4.5 are just special cases

of the same statement; see Exercise 3.4.24.) We show: if

P := AdY
d + Ad−1Y

d−1 + · · ·+A1Y +A0

is a “polynomial” in Y whose coefficients Ai are themselves rational

polynomials in X, then – up to congruence modulo H – there are at

most d polynomials Q such that

P (Q) ≡ 0 (mod H).

The proof is essentially the same as before. If Q has this property,

then we can divide P by the polynomial T := Y −Q with remainder.

So we write P = P̃ · T +R. By choice of Q we have

R(Q) ≡ P (Q) ≡ 0 (mod H).

Since R has degree 1 (as a polynomial in Y), we know that R must

be constant in Y . So R ≡ 0 (mod H) and thus

P ≡ P̃ · (Y −Q) (mod H).

By Corollary 3.4.8, up to congruence modulo H the only polynomial

zeros of P areQ and the polynomial zeros of P̃ . The latter polynomial

has degree at most d− 1, and the claim follows inductively. �

Exercises.

3.4.12. Exercise. Use polynomial long division to compute

(a) (X4 − 1) : (X2 − 1),

(b) (X5 +X4 +X3 +X2 +X + 1) : (X2 +X + 1), and

(c) (2X2 −X) :
(
X − 1

2

)
.

Also divide the polynomial 2X2 + 3X + 5 by 3X with remainder.

3.4.13. Exercise. Let P and Q be polynomials. Show that P and Q are
equal if and only if P (x) = Q(x) for all x ∈ Z.

118 3. Foundations of number theory

3.4.14. Exercise.

(a) Are the following polynomials irreducible?
(i) x2 − 1 (over Z, Q).
(ii) x2 + 1 (over Q).
(iii) 3x4 + 2x2 − 6x+ 1 (over Z, Q).
(iv) x4 + 1 (over Z).

(b) Find polynomials P,Q with integer coefficients such that P ·Q is
divisible by 2X + 2 over Z, but neither P nor Q is divisible by
2X + 2 over Z.

3.4.15. Exercise. Prove that a polynomial of degree 2 is irreducible over
Q if and only if it has no zeros in the rational numbers.

3.4.16. Exercise (!). Let P be a non-constant rational polynomial. Show
that there is a polynomial H with integer coefficients such that H is irre-
ducible over Q and divides P over Q.

3.4.17. Exercise. We saw in (3.4.9) that X − 3 is a polynomial zero of
Y 2 − 2 modulo H := X2 − 6X +7. Find (using, for example, a polynomial
long division as in the proof of Theorem 3.4.11) a second polynomial zero.

3.4.18. Exercise. Find a polynomial Q of degree 2 and a polynomial H
that is reducible (i.e. not irreducible) over Q such that Q has at least three
polynomial zeros modulo H no two of which are congruent modulo H.
Hence Theorem 3.4.11 is no longer true for reducible polynomials.

Further Exercises and Comments.

3.4.19. Exercise. Let p be prime and let P and Q be integer polynomials.
Prove the following: if P ·Q is divisible by p (i.e. all coefficients are divisible
by p), then p divides P or Q. (Hint: Write P = a0 + a1X + · · · + anX

n

and Q = b0 + b1X + · · · + bmXm. If our claim is false, then consider the
smallest numbers k and l such that ak and bl are not divisible by p. What
can you say about the (k + l)-th coefficient of P ·Q?)

This suggests that prime numbers should be considered to be constant
irreducible polynomials over Z. (We previously defined irreducibility only
for non-constant polynomials.) On the other hand, there are no constant
irreducible polynomials over Q, just as 1 is not a prime number.

3.4.20. Exercise. Let H be a non-constant integer polynomial whose co-
efficients do not all have some prime factor in common. Also let Q be an
arbitrary integer polynomial. Prove the following: if H is a divisor of Q
over Q, then H is also a divisor of Q over Z.

3.4. Polynomials 119

(Hint: Write Q = T · H, where T is rational. Let k be the least
common multiple of the denominators of the coefficients of T . Then k · T
is an integer polynomial that is not divisible by any prime divisor of k.
Furthermore, k · Q = (k · T) · H. Now use Exercise 3.4.19 to see that we
must have k = 1.)

3.4.21. Exercise. Show, using the preceding exercises, that a non-constant
polynomial H is irreducible over Z if and only if it is irreducible over Q
and its coefficients do not all have a common prime factor.

Deduce from this, using Theorem 3.4.7: if H is irreducible over Z and
P and Q are integer polynomials such that H is a divisor of P ·Q over Q,
then H is also a divisor of P or of Q over Z.

3.4.22. The integers and polynomials with integer coefficients have many
properties in common:

• The commutative, associative, and distributive laws hold for ad-
dition and multiplication.

• We can subtract any element from any other.

• In both systems there is a “zero” 0 and a “one” 1; i.e. for all
(integers, resp. polynomials) a, we have a+ 0 = a and a · 1 = a.

• There are no zero divisors; i.e. if a · b = 0, then a = 0 or b = 0.

We follow the same idea as in the definition of fields in Comment 3.1.24
and call a system with these properties an integral domain. In particular,
every field is an integral domain but not every integral domain is a field.

3.4.23. We restricted ourselves to studying integer and rational polynomi-
als, but we could in principle allow polynomials whose coefficients belong
to any field or integral domain. Notions such as divisibility, irreducibility,
etc., can likewise be defined in a completely general manner. This point
of view has the advantage that we do not have to prove the same state-
ment several times for different number systems. The following exercises
illustrate this.

3.4.24. Exercise. Convince yourself that the proofs of Theorem 3.4.4 and
Corollary 3.4.5 work for polynomials over any integral domain (see Com-
ment 3.4.22). In other words, if I is an integral domain and P a polynomial
of degree d ≥ 0 with coefficients in I, then P has at most d zeros in I.

3.4.25. Exercise. Corollary 3.4.8 states, with our new terminology, that
working with rational polynomials modulo an irreducible polynomial yields
an integral domain. This means that the (complicated looking) Theo-
rem 3.4.11 actually follows immediately from Exercise 3.4.24!

120 3. Foundations of number theory

Convince yourself that the proof of Theorem 3.4.7 also proves the fol-
lowing statement: let K be a field; we consider the arithmetic of polynomi-
als whose coefficients belong to K. If H is irreducible (over K), then there
are no zero divisors modulo H. That is, if P ·Q ≡ 0 (mod H), then P ≡ 0
or Q ≡ 0 modulo H. (Even more is true: the polynomials over K form a
field modulo H.)

3.5. Polynomials and modular arithmetic

In the preceding section, we studied arithmetic modulo a polyno-

mial. But there is another possibility of combining polynomials and

modular arithmetic! Consider e.g. P := 2X4 + X3 − 3X2 + 5 and

Q := 7X3 + X2 − 4X − 1. If we reduce the coefficients modulo 2,

then P becomes P ≡ 0X4 + 1X3 + 1X2 + 1 = X3 +X2 + 1 (mod 2)

since 2 ≡ 0, 1 ≡ 1, −3 ≡ 1, and 5 ≡ 1 modulo 2. In the same way,

Q ≡ X3 +X2 + 1 modulo 2.

So the polynomials P and Q are congruent modulo 2. This is

precisely the phenomenon that we will study now – we are no longer

interested in the exact coefficients of a polynomial, but only their

remainder after division by a natural number n.

3.5.1. Definition (Congruence of polynomials modulo n).

Let n ≥ 2 be a natural number and let P , Q be integer polyno-

mials. Let d be the larger of the degrees of P and Q; we write

P = adX
d + · · · + a1X + a0 and Q = bdX

d + · · · + b1X + b0 with

a0, . . . , ad, b0, . . . , bd ∈ Z.

The polynomials P and Q are called congruent modulo n if

aj ≡ bj (mod n) for all j ≤ d. In this case we write

P ≡ Q (mod n).

We do not really need any new ideas to discuss this concept be-

cause the considerations from the last section can be carried over in

a simple way. However, it might take a little while to get used to

modular arithmetic with polynomials, so we shall work things out in

little steps. After all, we will need these ideas later to understand the

primality test of Agrawal, Kayal, and Saxena! In the following, we

use the same concepts for polynomials modulo n that we introduced

3.5. Polynomials and modular arithmetic 121

for integer polynomials in the previous section. For example the de-

gree modulo n of a polynomial P is the largest number k such that

the coefficient of Xk is not congruent to zero modulo n. We denote

this degree by degn(P). So deg2(2X
4+X3−3X2+5) = 3. Similarly,

a number x ∈ Z with the property that P (x) ≡ 0 (mod n) is called a

zero of P modulo n. For a prime p, the number of zeros modulo p

is again bounded by the degree of the polynomial (Exercise 3.5.11),

but this is false for composite numbers (Exercise 3.5.18).

Examples. X3+6X−2 is congruent toX3−2X+14 modulo 8 because

1 ≡ 1, 6 ≡ −2, and −2 ≡ 14 (mod 8). Furthermore, 2 is a zero of

X3 + 3X + 1 modulo 3 because 23 + 3 · 2 + 1 = 15 is divisible by 3.

Let us point out a difference between polynomials modulo n and

polynomials over Z or Q. By definition, two polynomials are congru-

ent modulo n if and only if corresponding coefficients are congruent

modulo n. This is not the same as saying that P (x) ≡ Q(x) (mod n)

for all integers x. For example, observe that X2 − X �≡ 0 (mod 2),

but x2 − x ≡ 0 (mod 2) for all x ∈ Z. (See also Exercise 3.5.7.)

Next, we shall discuss division with remainder for polynomials

modulo n. When carrying out polynomial long division, we need to

be able to divide by the leading coefficient of P . By Theorem 3.1.4,

this is possible modulo n if and only if this coefficient is coprime to

n (and, in particular, if the polynomial is monic).

3.5.2. Theorem (Polynomial long division modulo n).

Let n ≥ 2 be a natural number and let Q be a polynomial. Let P be

a non-constant polynomial whose leading coefficient is coprime to n.

Then there are polynomials T and R such that degR < degP and

Q ≡ T · P +R (mod n).

Furthermore, the polynomials T and R are unique modulo n.

Proof. If P is monic, then the theorem follows immediately from the

division theorem for integer polynomials (Theorem 3.4.2). If P is not

monic, then let a be the leading coefficient of P . By hypothesis, we

can divide both Q and P by a modulo n, obtaining polynomials Q̃

and P̃ . Note that P̃ is a monic polynomial, so we can divide Q̃ by P̃

122 3. Foundations of number theory

with remainder. Multiplying the resulting congruence by a on both

sides, we obtain the desired result. (Alternatively, we can carry out

a polynomial long division modulo n directly.) Uniqueness of T and

R modulo n follows just as in Theorem 3.4.2. �

To illustrate the theorem, let us try dividing Q := X4 + 5X + 4

by P := 4X + 1 modulo 5. We proceed just as in the proof we have

just given and begin by transforming P into a monic polynomial. The

inverse of 4 modulo 5 is 4 itself, so we calculate

Q̃ = 4 ·Q = 4X4 + 20X + 16 ≡ 4X4 + 1 (mod 5) and

P̃ = 4 · P = 16X + 4 ≡ X + 4 (mod 5).

Now we divide 4X4 + 1 by X + 4 with remainder:

4X4 + 1 = (X + 4)(4X3 − 16X2 + 64X − 256) + 1025

≡ (X + 4)(4X3 + 4X2 + 4X + 4) (mod 5).

Finally, multiply both sides of this congruence by 4 again; we obtain

X4 + 4 ≡ (4X + 1) · (4X3 + 4X2 + 4X + 4) (mod 5).

In particular, 4X + 1 is a divisor of X4 + 4X + 4 modulo 5.

3.5.3. Definition (Divisors modulo n).

Let P and Q be polynomials and let n ≥ 2 be a natural number.

Then P is called a divisor of Q modulo n if there is a polynomial

T such that Q ≡ T · P (mod n).

We are now ready to introduce a concept that will be central for

the AKS algorithm: modular arithmetic with respect to a number n

and a polynomial H at the same time.

3.5.4. Definition (Congruence modulo n and H).

Let n ≥ 2 and let H be a non-constant polynomial whose leading

coefficient is coprime to n. Then we write

P ≡ Q (mod n,H)

if P and Q have the same remainder when divided by H modulo n.

3.5. Polynomials and modular arithmetic 123

Example. Let n := 3, H := X+1, P := X2+3, and Q := 2X3+X−2.

Dividing P and Q by H with remainder, we obtain P = H ·(X−1)+4

and Q = H · (2X2 − 2X + 3) − 5. The remainders −5 and 4 are

congruent modulo 3, so

X2 + 3 ≡ 2X3 +X − 1 (mod 3, X + 1).

To conclude, we generalize the concepts introduced at the end of

the last section, namely irreducible polynomials and polynomial zeros.

Here we restrict ourselves to calculations modulo a prime number,

which we know to have particularly nice properties.

3.5.5. Definition (Irreducible polynomials modulo p).

Let p be a prime number. Then a polynomial H with degp(H) > 0

is called irreducible modulo p if the following is true:

If P and Q are polynomials with H ≡ P · Q (mod p), then

degp(P) = 0 or degp(Q) = 0.

Example. The polynomial H = X2 +X + 1 is irreducible modulo 2.

Assume otherwise. Then there is a divisor P such that deg2(P) = 1,

and hence either P ≡ X + 1 or P ≡ X (mod 2). But neither of these

two polynomials is a divisor of H modulo 2 – this can be seen by

using polynomial long division or by observing that H has no zeros

modulo 2. So, by contradiction, H is indeed irreducible modulo 2.

On the other hand, H is not irreducible modulo 3 because

H = X2 +X + 1 ≡ X2 + 4X + 4 = (X + 2)2 (mod 3).

Let p be a prime number and letH be a polynomial whose leading

coefficient is not divisible by p. If P and Q are polynomials with

P (Q) ≡ 0 (mod p,H),

then (similarly to Definition 3.4.10) we say that Q is a polynomial

zero of P (modulo p and H).

The following statement, which corresponds to Theorem 3.4.11,

will play an important role in the proof of the theorem of Agrawal,

Kayal, and Saxena.

124 3. Foundations of number theory

3.5.6. Theorem (Number of polynomial zeros mod p and H).

Let p be a prime number and let H be a polynomial that is irreducible

modulo p. Furthermore let P be a polynomial that has degree d ≥ 0

modulo p. Then P has at most d polynomial zeros that are pairwise

not congruent modulo p and H.

Proof. The proof works just as in Theorem 3.4.11. First we show

a statement that corresponds to Theorem 3.4.7: if H divides the

product B · C modulo p, then H also divides one of the polynomials

B and C modulo p. Here the arguments from Theorem 3.4.7 are

applicable almost word for word. (We recall that, by Theorem 3.5.2,

we can divide with remainder modulo p by any polynomial that is

not congruent to the zero polynomial.) For the main statement of

Theorem 3.5.6 we study, as in Theorem 3.4.11, polynomials in Y

whose coefficients are themselves polynomials in X. We see that

(modulo p and H) we can divide out a “linear factor” Y −Q for every

polynomial zero Q and obtain, in the end, a representation of P as

P ≡ P̃ · (Y −Q1) · (Y −Q2) · · · (Y −Qk) (mod p,H),

where P̃ has no polynomial zeros. Now the theorem follows from the

claim at the beginning of the proof. (See also Comment 3.5.19.) �

Exercises.

3.5.7. Exercise. Let n ≥ 2 be a natural number. Show that there is a
polynomial P with P �≡ 0 (mod n) but P (x) ≡ 0 (mod n) for all x ∈ Z.

3.5.8. Exercise.

(a) Prove that X4 +X2 − 2 ≡ 0 (mod 3, X2 +X + 1).

(b) Prove that 2X5 + 3X3 +X2 + 1 ≡ 5X (mod 6, X2 + 1).

(c) Find a polynomial P of degree at most two such that

2X5 + 4X2 +X + 5 ≡ P (mod 7, X3 + 2X2 + 5X + 6).

3.5.9. Exercise (!). Show that polynomial long division modulo a natural
number n is efficient. (I.e. the running time is polynomial in logn and in
the degree of the polynomials under consideration.) Deduce: if n ≥ 2 and
H is a monic polynomial, then there are efficient algorithms to compute

3.5. Polynomials and modular arithmetic 125

sums and products of polynomials modulo n and H, as well as for the
computation of powers of polynomials modulo n and H.

3.5.10. Exercise (P). Implement the algorithms in Exercise 3.5.9. (This
requires the definition of a suitable data type for polynomials.)

3.5.11. Exercise (!). Let n ≥ 2 be a natural number, let a ∈ Z, and let
P be a polynomial. Prove the following:

(a) a is a zero of P modulo n if and only if (X − a) is a divisor of P
modulo n.

(b) If P �≡ 0 (mod n), then P has a decomposition

(3.5.12) P ≡ (X − a1) · · · (X − am) ·Q (mod n).

Here m ≥ 0, the numbers a1, . . . , am range from 0 to n − 1, and
Q is a polynomial that has no zeros modulo n.

(c) If n is prime, then the numbers a1, . . . , am are unique up to re-
ordering. I.e. if

P ≡ (X − b1) · · · (X − bk) ·R (mod n)

is another such decomposition, with b1, . . . , bk ∈ {0, ..., n − 1},
then m = k and the bj agree with the aj up to their ordering.

(d) If n is prime and P �≡ 0 (mod n), then P has at most degn(P)
zeros modulo n (up to congruence).

3.5.13. Exercise.

(a) Is X2 + 1 irreducible modulo 2?

(b) Is 5X2 +X + 1 irreducible over Q? Modulo 7?

3.5.14. Exercise. Show that for every natural number n there is a poly-
nomial that is irreducible over Q, but not irreducible modulo n.

3.5.15. Exercise (!). Let p be a prime and let P be a polynomial with
P �≡ 0 (mod p). Show:

(a) If degp(P) > 0, then there is a monic polynomial H that is irre-
ducible modulo p and divides P modulo p.

(b) There are m ≥ 0, a ∈ Z, and monic irreducible polynomials
H1, . . . , Hm such that

P ≡ a ·H1 · · ·Hm (mod p).

(In other words, P has a decomposition into irreducible factors
modulo p.)

126 3. Foundations of number theory

3.5.16. Exercise. Show that the polynomials H1, . . . ,Hm demonstrated
to exist in Exercise 3.5.15 are unique modulo p up to their order. (Use
the statement at the beginning of Theorem 3.5.6, which is an analog to
Theorem 3.4.7.)

Further Exercises and Comments.

3.5.17. Let H be a monic polynomial. If H is irreducible modulo p, then
H is also irreducible over Z, and hence (by Exercise 3.4.21) over Q. (The
converse is false; see Exercise 3.5.13.)

3.5.18. Exercise. If p is prime, it follows from Exercise 3.5.11 or from
Exercise 3.4.24 that a polynomial of degree d ≥ 0 has at most d zeros
modulo p no two of which are congruent modulo p. In contrast, find a
composite natural number n and a polynomial for which the number of
zeros modulo n is larger than the degree.

3.5.19. Theorem 3.5.6 illustrates the power of the abstract point of view
that we developed in the further comments at the end of the preceding
section. Indeed, this theorem, whose statement looks quite complicated,
follows immediately from Exercises 3.4.25 and 3.4.24. The reason is that
the numbers modulo p form a field, and hence polynomials modulo p and
H form an integral domain by Exercise 3.4.25.

By Exercise 3.4.24, polynomials whose coefficients belong to an integral
domain have at most as many zeros as indicated by their degree. Hence we
have proved the statement of Theorem 3.5.6!

3.5.20. Exercise. Just as it is not always simple to recognize a number
as a prime, it is not so easy to tell whether a polynomial is irreducible
(over Q). In this exercise we study a condition that is often useful, the
Eisenstein irreducibility criterion:

Let P be a polynomial of degree d and let p be a prime such that the
leading coefficient ad of P is coprime to p, all other coefficients are divisible
by p, but such that the constant coefficient of P is not divisible by p2. Then
P is irreducible over Q.

For example, X4 + 2X3 + 24X + 6 satisfies these conditions for p = 2.
Prove this irreducibility criterion along the following steps:

(a) Suppose, by contradiction, that we can write P = Q · R, where
Q and R are integer polynomials neither of which is equal to ±1.
Then Q ·R = P ≡ adX

d (mod p).

(b) Show first that Q and R must both be nonconstant.

Further reading 127

(c) Conclude that Q ≡ bXd1 and R ≡ cXd2 (mod p) for suitable
numbers b, c coprime to p and d1, d2 > 0.

(d) In particular, the constant coefficients of Q and R must be divis-
ible by p. Derive a contradiction from this fact.

(e) So we have proved that P is irreducible over Z. By Exercise 3.4.21,
P is also irreducible over Q.

Further reading

The book Numbers, Groups and Codes [HP] contains an introduc-

tion to modular arithmetic, including the theorems of Fermat, Euler,

and Lagrange. For a more extensive treatment of number theory, we

recommend a real classic: An Introduction to the Theory of Numbers

by Hardy and Wright [HW]. Readers who are interested in the area

of algebraic number theory will find the book Problems in Algebraic

Number Theory [ME] to be a wonderful introduction with many ex-

ercises. For further reading about the ideas of abstract algebra which

we have hinted at in some of the further comments and exercises,

we recommend for example A First Course in Abstract Algebra by

Fraleigh [Frl], which, in particular, covers the arithmetic of polyno-

mials.

Chapter 4

Prime numbers
and cryptography

We begin this chapter with an overview of the history of cryptogra-

phy and of its basic concepts. Then we discuss the most important

example of public-key cryptography: the RSA method. Most of the

remainder of the chapter is concerned with the distribution of prime

numbers; in particular, we give an elementary proof of a weak version

of the celebrated prime number theorem. We conclude the first

part of the book by finally presenting an efficient (but randomized)

method of testing for primality: the Miller-Rabin algorithm.

4.1. Cryptography

Cryptography refers to the development, study, and improvement

of encryption systems – its goal is to find methods for encrypting

messages that are as secure and as easy to handle as possible. Its

counterpart is cryptanalysis, which tries to use encrypted messages

without knowledge of encryption keys to find the method of encryp-

tion and decipher the messages. Thus the history of cryptography,

which goes back more than 2000 years, can be seen as a competi-

tion between cryptographers and cryptanalysts: new, more compli-

cated, and more secure codes are developed, while the methods used

to “crack” them become ever more sophisticated. Already around

129

130 4. Prime numbers and cryptography

1900 BC, an Egyptian inscription in a pharaoh’s grave used unusual

hieroglyphics whose meaning is still unknown today – possibly an

early example of written cryptography. In the early days of secret

communication, messages would often simply be hidden, for example

by scratching them into boards that were then covered in wax. If

encryption was used at all, it was in the simplest possible manner:

by changing the order of letters. In this way, the original message

(called the plaintext) is transformed into the ciphertext, i.e. the

encrypted message. Frequently the skytale is mentioned as the first

known instrument for more elaborate encryption. It is thought that

this wooden rod was used to roll up a thin band of papyrus on which

the message would then be written. After unrolling it, the result

would be an unreadable mess of letters, which could be deciphered

by using another wooden rod of the same diameter. For example, the

Spartan general Pausanias is supposed to have used a skytale in this

manner around 475 BC. However, historians disagree about whether

the skytale was really used for encryption or not; see [Ke].

The transmission of relatively simply encrypted and additionally

hidden messages seems to have been the safest known method of

secret communication for quite some time. Only around 170 BC

was a new method developed: the Polybius square, which involved

transforming letters into numerical symbols.

A very well-known method of encryption is supposed to have

been used by Julius Caesar to send secret messages to his troops and

has become known as the Caesar cipher. This is again a mono-

alphabetic cipher, which means that the letters of the alphabet are

scrambled, and this ciphertext alphabet is then used to encrypt

the entire text. The Caesar cipher simply shifts all letters of the

alphabet three places to the right, which is a rather insecure method

in the long run. Once the principle is understood, it does not really

help to shift by a different number of places (which Caesar is thought

to have done later) – the code is easy to decipher.

Around 1000 AD, Arabic cryptanalysts developed a systematic

method for breaking mono-alphabetic encryption: frequency analy-

sis. The idea is as follows: if we know in which language the plaintext

was written, then we also know which letters or letter combinations

4.1. Cryptography 131

are common (e.g., in English, “e” and “t”, or “th” and “he”) and can

try to find these in the ciphertext. The more encrypted messages we

have intercepted, the better this methods works since the probability

rises that letters will really be distributed similarly as in the com-

plete language. Once a few letters have been identified, the rest can

quickly be deduced from the context. The discovery of this method

exposed the limits of mono-alphabetic ciphers, and around 1500 AD

the first poly-alphabetic ciphers were developed. Here not just

one but several different ciphertext alphabets are used, which are re-

peatedly switched between during encryption. This was a milestone

in the history of cryptography, as the characteristics of the language

could no longer be found in the ciphertext and frequency analysis was

rendered useless. The idea was first formulated by the mathematician

Leon Battista Alberti in the fifteenth century, but it was the French

diplomat Blaise de Vigenère who made the method famous. He used

twenty-six different ciphertext alphabets – shifted by one, two, three,

four, . . . letters to the right.

For a long time this was a very secure, almost unbreakable en-

cryption method, but it had a weak point: the keyword, which was

used to determined which of the twenty-six alphabets are used in

which order. Once tests were developed to find the length of the

keyword (such as the Kasiski test, named for the Prussian officer

Friedrich W. Kasiski, who discovered and exploited this weakness in

1863), frequency analysis could be applied to groups of letters in the

ciphertext.

Digraphic substitution ciphers also attempt to render fre-

quency analysis ineffective, by always treating two letters together

while obeying certain rules. An example is the Playfair cipher, devel-

oped by the English physicist Charles Wheatstone (1802–1875).

A much more complex poly-alphabetic cipher was realized by the

ENIGMA, an encryption machine used by Germany during World

War II that automatically alternated between over 100 000 different

alphabets. It was cracked in 1940 by a team headed by the English

mathematician Alan Turing, who was able to narrow down the col-

lection of possible keys and designed a machine that could test the

remaining possibilities within a short time span.

132 4. Prime numbers and cryptography

All crypto-systems that we have described so far have the disad-

vantage of being symmetric, i.e. the same key is used for sending

and receiving messages. So the encryption can be cracked once the

encryption algorithm and the key are known. This means that the

security of the message depends heavily on the channel that is used

to transmit the key, which makes this an ideal point of attack for

code breakers. The notion of public-key cryptography, developed

in 1975, removes this weakness – another milestone.

The idea is to use two different keys: a “public key”, which is used

for encryption, and a “private key”, which allows the decryption of

an encrypted message. Both keys are generated by the recipient, who

publishes the public key (for example on the Internet) but keeps the

private key secret. Now anyone in the world can encrypt a message

using the public key, but only the owner of the private key will be able

to decrypt it again. This completely circumvents the problem of key

transmission, which had remained unsolved for centuries! The first,

most well-known, and most commonly used procedure of this kind

is the RSA method, named for its inventors Ronald Rivest, Adi

Shamir, and Leonard Adleman, which will be explained thoroughly

in the next section.

For further reading on the history of cryptography, we recommend

The Code Book by Simon Singh [S].

4.2. RSA

At first glance, the principle of public-key cryptography appears dar-

ing: how could it be that we can carry out a calculation but then be

unable to reverse it without additional information?

But we have already encountered mathematical operations that

can be carried out easily, but not reversed efficiently. (These are often

called “one-way functions”.) For example, it is easy to multiply two

large prime numbers together, but to recover the two prime factors

from this product is much harder. Exactly this – the assumption that

the factorization problem cannot be solved efficiently – is the basis of

the RSA system. We can outline the underlying idea as follows.

4.2. RSA 133

Let p and q be two large prime numbers. (Here we really mean

“large”; in practice they will have several hundred digits or more.) We

consider their product n := p · q. There are a number of operations

modulo n that are easy to carry out if we know p and q but otherwise

are very difficult. To see this, we recall the Fermat-Euler Theorem,

which states that aϕ(n) ≡ a (mod n) provided that a ∈ Z and n ≥ 2

are coprime. If we know p and q, then we can compute ϕ(n) easily:

by Exercise 3.2.17, we have

ϕ(n) = ϕ(p) · ϕ(q) = (p− 1) · (q − 1).

On the other hand, it is impossible to find the value of ϕ(n) with-

out also finding p and q (which we believe to be an intractable prob-

lem); see Exercise 4.2.2. If we now pick a number e ∈ {1, . . . , ϕ(n)}
that is coprime to ϕ(n), then:

(a) The power R(M) := Me mod n can be computed easily from

e and n, for every number M that is coprime to n, by using

the power algorithm. (See Exercise 3.1.14.)

(b) To recover the original element M from the power R(M)

using only n and e, on the other hand, seems to be much

more difficult. (See Comment 4.2.4.)

With knowledge of ϕ(n), however, it becomes easy: us-

ing the Euclidean algorithm, we compute an inverse d of e

modulo ϕ(n), i.e. a number d with d · e = 1 + k · ϕ(n) for

some integer k. By the Fermat-Euler Theorem, we see that

R(M)d ≡ (Me)d = Me·d = M1+k·ϕ(n)

= (Mϕ(n))k ·M ≡ 1k ·M = M (mod n).

This means that if we know d and n, we can recover M

from R(M) simply by computing (R(M))d mod n.

So exponentiation modulo n is exactly the kind of operation that

we were looking for: it is easy to compute but can be reversed only

using additional information. The public key consists of the numbers

n and e. Using these, the number R(M), which is our ciphertext, can

be calculated easily. The private key consists of the numbers n and

d; they allow us to recover M from the encrypted message R(M).

134 4. Prime numbers and cryptography

More precisely, we use the following algorithm to generate keys:

Algorithm RSA-KEY

1. Randomly generate two large prime numbers p
and q. Set n := p · q.

2. Compute ϕ(n) = (p− 1) · (q − 1).
3. Randomly choose a number e ∈ {1, . . . , ϕ(n)−1}
that is coprime to ϕ(n).

4. Use the Euclidean algorithm to find the number
d ∈ {1, . . . , ϕ(n)− 1} with e · d ≡ 1 (mod ϕ(n)).

5. The public key consists of the numbers n and e.
6. The private key consists of the numbers n and d.

Using the public and private keys that are generated in this man-

ner, en- and decryption are easy to carry out:

Algorithm RSA-ENCRYPTION

Input: A number M coprime to n.

1. Compute V := Me mod n.
2. V is the ciphertext.

Algorithm RSA-DECRYPTION

Input: A ciphertext V .

1. Compute M := V d mod n.
2. M is the plaintext.

To be able to implement the algorithm RSA-KEY, we still need

to clarify how we can randomly pick two large prime numbers in Step

1. In the next section, we will see that this depends on being able to

efficiently test a number for primality. As already mentioned in the

introduction, this means that RSA encryption relies on the following

principle:

It is easy to test whether a number n has a non-trivial

divisor, but it is hard to find such a divisor!

4.2. RSA 135

Exercises.

4.2.1. Exercise. We will carry out a sample RSA encryption by hand. Of
course this is possible only with very small numbers.

(a) Carry out the algorithm RSA-KEY for p = 13, q = 17, and e = 5
to obtain private and public keys.

(b) Encrypt the number M = 10 using RSA-ENCRYPTION.

(c) Use the algorithm RSA-DECRYPTION to decrypt the ciphertext
obtained in (b). (This is possible by hand, but rather cumber-
some, so it is advisable to use a calculator.)

4.2.2. Exercise. Let n = p ·q be the product of two prime numbers. Show
that the primes p and q are exactly the two solutions of the quadratic
equation

x2 + x(ϕ(n)− n− 1) + n = 0.

(Hint: Begin with the equation ϕ(n) = (p − 1) · (q − 1) and apply the
binomial formula. Then use the fact that q = n/p to obtain a quadratic
equation for p.)

It follows that it is possible to determine the factors p and q once both
n and ϕ(n) are known. In other words, in this case, computing ϕ(n) from
n is just as difficult as factorizing n.

Further Exercises and Comments.

4.2.3. Whitfield Diffie and Martin Hellman developed the principle of
public-key cryptography at Stanford University in California and described
it in a research article from 1976. In the following year, Rivest, Shamir,
and Adleman designed the RSA method at the Massachusetts Institute of
Technology (MIT) in Boston.

4.2.4. The design of the RSA algorithm suggests three obvious ways to try
to systematically break the encryption:

(a) Find the factors p and q by factorizing n.

(b) Compute the number ϕ(n) somehow (without first factorizing n).

(c) Somehow calculate the secret key d directly from the numbers n
and e.

In Exercise 4.2.2, we saw that computing ϕ(n) would also allow fac-
torization of n. Similarly, it is known that determining the secret key d
would also allow us to find the prime factors of n. Hence, if there really
is no efficient method of factorizing n, none of the above methods can be
successful. (Compare [RSA, Section IX] or [CM].)

136 4. Prime numbers and cryptography

4.2.5. To ensure secure communication using the RSA method in practice,
it is necessary to make some further considerations. For example, one
should make sure that the decryption exponent d is not too small when
compared to n, and the plaintext should be encoded in a suitable way
before encryption in order to prevent certain cryptanalytic attacks.

For a short overview of such issues, we refer the reader to the article
[Rob], which was published in the SIAM News to celebrate the Alan Turing
Award for Rivest, Shamir, and Adleman in 2003.

4.2.6. Although factorizing a composite number n is considered to be an
intractable problem, there are nonetheless methods that are considerably
better than simply looking for possible factors of n. For example, such
algorithms (and a lot of computer time!) were used in 1991 to factorize the
100-digit number “RSA-100”, which would be impossible with elementary
methods (recall Comment 1.5.3). The largest such number that has been
factorized to date (in 2005) has 200 digits. The necessary computations
were carried out in parallel on many computers all over the world (and
would have taken around 75 years if only a single machine had been used).
Numbers with “only” up to about 40 to 50 digits, such as the number
1 726 374 899 084 624 209, can be factorized in seconds by one of today’s
standard home computers. The reader is invited to try this, for example
on the website http://www.alpertron.com.ar/ECM.HTM.

4.3. Distribution of primes

So far, we have ignored the question of how exactly the RSA algorithm

can randomly pick two large prime numbers. Without such a method,

it would not even be possible to create the public and private keys.

A first idea might be to pick a sufficiently large number k at

random and then compute the k-th prime number. Since we do not

know any practicable method for computing the k-th prime, this un-

fortunately would not work. Instead, we use the following method to

randomly pick a prime that is less than or equal to some number n:

Algorithm RANDOM-PRIME

Input: A number n ≥ 2.

1. Randomly choose a number k ≤ n.
2. Test whether k is prime.
3. If yes, output k. Otherwise, return to Step 1.

4.3. Distribution of primes 137

Finding methods that can be used to efficiently test for primality

in Step 2 is the main goal of our book. An answer that is absolutely

sufficient for practical purposes will be given in Section 4.5. For now,

we instead devote ourselves to considering how many different num-

bers k we need to test, on average, until we find a prime number. To

answer this, we need to consider how many primes p ≤ n there are at

all. Therefore we define

π(n) := #{p ≤ n : p is prime}

and note:

4.3.1. Lemma.

The average number of repetitions required in algorithm RANDOM-

PRIME is
n

π(n)
.

Proof. In every repetition, the probability w of picking a prime in

Step 1 is exactly

w =
π(n)

n
.

Thus our question can be rephrased as follows: we repeatedly

throw a coin with the property that the probability of throwing

“heads” is w and the probability of throwing “tails” is 1−w. How of-

ten do we have to throw the coin, on average, until we obtain “heads”

for the first time? Exercise 2.5.6 answers this question; as claimed,

the expected number of repetitions is

1

w
=

n

π(n)
. �

So the situation is as follows: if the number of primes up to n is so

large that n/π(n) grows at most polynomially in log n (the size of our

input), everything is fine. Otherwise we really have a problem since

we cannot efficiently generate keys to be used in RSA! The celebrated

prime number theorem, which is over a hundred years old, ensures

that the latter does not happen.

138 4. Prime numbers and cryptography

4.3.2. Theorem (Prime number theorem).

π(n) asymptotically behaves like the function n/ ln(n). More precisely,

if ε > 0 is any (arbitrarily small) real number, then

(1− ε) · n

ln(n)
≤ π(n) ≤ (1 + ε) · n

ln(n)

for all sufficiently large natural numbers n.

Thus, if we are able to efficiently test numbers for primality,

we can use algorithm RANDOM-PRIME to efficiently generate large

prime numbers and use these for the RSA system.

A proof of the prime number theorem is far beyond the scope of

our book, but we shall not require the full strength of the theorem for

our purposes. Therefore we will be content with the following version,

which is proved by elementary means in the next section.

4.3.3. Theorem (Weak version of the prime number theorem).

There is a real number C > 0 such that

π(n) ≥ C · n

log n

for every natural number n ≥ 2.

Finally, we would like to remark that we can use these results

also to answer another remaining question, namely how to efficiently

choose the number e in Step 3 of algorithm RSA-KEY. The details

are treated in Exercise 4.3.4.

Exercises.

4.3.4. Exercise. Let n ≥ 2 be a natural number.

(a) Show that n has at most log(n) different prime divisors.

(b) Deduce, using Theorem 4.3.3, that there is a constant C ′ > 0,
independent of n, such that

ϕ(n) ≥ C ′ · n

logn
.

(c) Show that it is possible to efficiently and randomly choose a num-
ber e < n that is coprime to n. Conclude that Step 3 of RSA-KEY
can be carried out efficiently.

4.4. Proof of the weak prime number theorem 139

Further Exercises and Comments.

4.3.5 (History of the prime number theorem). The prime number theorem
was conjectured, but not proved, by Carl Friedrich Gauss at the age of 15
in 1792. The number theorist Adrien-Marie Legendre independently for-
mulated the same conjecture. Only in 1851 was Chebyshev able to prove
the weak version of the prime number theorem (Theorem 4.3.3), together
with a similar upper bound for π(n) (see [De, Chapter 10]). It took almost
another half century until Hadamard and de la Vallée Poussin, indepen-
dently of each other, found the first complete proof of the prime number
theorem in 1896. A quite short modern proof (which, however, requires
some background from complex analysis) can be found in the article [Za].
The book [J], which does not require much prior knowledge, provides an
extensive discussion of the prime number theorem and its proofs.

4.3.6 (The Riemann Hypothesis). While the prime number theorem gives
us some rough information on how many primes numbers there are, there
are still many open questions about the distribution of primes! Indeed,
already Gauss conjectured that the function

Li(n) :=

∫ n

2

dt

ln t
,

called the integral logarithm, approximates the prime counting function
π(n) even better than the function n/ lnn.

The question is: how good is the approximation of π(n) by Li(n)? In
other words, how large is the error |π(n)−Li(n)|? In 1901, von Koch [vK]
proved that the Riemann Hypothesis is true if and only if this error
term can be estimated as

|π(n)− Li(n)| = O(
√
n lnn).

This is one of the reasons that the Riemann Hypothesis (whose original
statement can be found in Appendix A) is one of the most famous unsolved
problems in mathematics and the subject of ongoing research.

4.4. Proof of the weak prime number theorem

In this section we prove Theorem 4.3.3. The methods used, while

interesting, are not relevant for the remainder of the book. Readers

who are eager to learn about the AKS primality test are therefore

encouraged to skip this section and come back to it later. Our proof

will exploit a close relationship between the prime counting function

140 4. Prime numbers and cryptography

π(n) and the least common multiple

v(n) := lcm(1, 2, 3, . . . , n)

of the numbers 1, 2, 3, . . . , n.

What exactly is this relationship? Well, every prime number

p ≤ n must occur in the prime decomposition of v(n). So if π(n) is

large, then v(n) must become large also. Conversely, the number v(n)

can only become large if there are enough prime numbers that can

appear in its decomposition. The following lemma contains a more

precise statement.

4.4.1. Lemma (Upper and lower bounds for v(n)).√
n
π(n) ≤ v(n) ≤ nπ(n) for all n ∈ N.

Proof. First, we decompose v(n) into its prime factors. Let k ∈ N0,

let e1, ..., ek ∈ N, and let p1, ..., pk be prime numbers such that

v(n) = pe11 · pe22 · · · pekk .

As remarked above, the prime factors of v(n) are exactly the primes

p with p ≤ n. So we have k = π(n).

Furthermore, for all 1 ≤ j ≤ k, the definition of v(n) means that

p
ej
j is the highest power of pj which divides some number m ≤ n. In

particular, we have p
ej
j ≤ n for all n. On the other hand, we also see

that p
ej
j ≥

√
n since p

ej+1
j > n. Overall,

v(n) = pe11 · pe22 · · · pekk ≤ n · n · · ·n = nk = nπ(n) and

v(n) = pe11 · pe22 · · · pekk ≥
√
n ·

√
n · · ·

√
n =

√
n
π(n)

. �

The preceding lemma implies that, instead of proving the weak

prime number theorem, we can just as well establish a corresponding

statement for v(n).

4.4.2. Corollary (Reformulation of the weak prime number theo-

rem).

The weak prime number theorem holds if and only if there is a con-

stant K such that v(n) ≥ 2Kn for all n ≥ 2.

4.4. Proof of the weak prime number theorem 141

Proof. Let n ∈ N with n ≥ 2. If the weak prime number theorem

holds, we have π(n) ≥ Cn/ logn for some C > 0 independent of n.

By Lemma 4.4.1 this means that we also have

v(n) ≥
√
n
π(n)

=
(
2

log n
2

)π(n)
= 2

π(n) log n
2 ≥ 2

Cn
2 ,

so we set K := C/2 and are done.

Conversely, assume there is a constant K with v(n) ≥ 2Kn for all

n. By Lemma 4.4.1, we have π(n) ≥ log v(n)
logn and therefore

π(n) ≥ log v(n)

log n
≥ K

n

log n
. �

So all that remains to be done is to bound v(n) from below. To

do so we will – for the only time in this book – use a method from

calculus to obtain a result on natural numbers (see Comment 4.4.6).

4.4.3. Theorem (Lower bound for v(n)).

v(n) ≥ 2n−2 for all natural numbers n.

Proof. Since we always have v(n) ≥ 1, the claim is true for n = 1

and n = 2. So we may assume that n > 2.

The proof is elementary, but rather clever, so we begin by ex-

plaining the underlying idea. Let us assume that we can find some

integers a1, a2, . . . , an in such a way that the sum

(4.4.4) s :=
a1
1

+
a2
2

+
a3
3

+ · · ·+ an
n

is very small, but positive. Since v(n) is a common multiple of all

numbers from 1 to n, the number s · v(n) would then be a positive

integer. In particular we have s · v(n) ≥ 1, and division by s yields a

lower bound for v(n).

How can we make the sum s very small? Here calculus provides

a handy trick because we can write s as the integral of a polynomial

with integer coefficients. After all,

ak
k

=

∫ 1

0

akX
k−1dX.

142 4. Prime numbers and cryptography

Figure 4.1. The graph of the function P (x) = xm(1 − x)m

for m = 4.

So, if P = a1 + a2X + a3X
2 + · · ·+ anX

n−1 is some arbitrary poly-

nomial of degree at most n − 1 and with integer coefficients, then

we can view P as a polynomial function of real numbers and define

I(P) :=
∫ 1

0
P (x)dx. This is a sum just of the form given in (4.4.4).

If I(P) > 0, then we see, as above,

v(n) ≥ 1

I(P)
.

Our goal now is to find a polynomial P such that the integral

I(P) is as small as possible. Suppose that n is odd, i.e. n = 2m+ 1.

Then we look at

P := Xm(1−X)m.

The graph of P as a function (Figure 4.1) looks like a “squashed”

upside-down parabola. Its maximum is taken at x = 1/2. At this

point, we have

P (1/2) =
1

22m
.

In particular, I(P) ≤ 1/22m, and we have shown that v(n) ≥ 2n−1

for odd n. If n is even, then this implies that v(n) ≥ v(n−1) ≥ 2n−2,

as desired. �

To conclude the proof of the weak prime number theorem, we

just note that n− 2 ≥ n/2 for n ≥ 4, and thus

(4.4.5) v(n) ≥ 2n−2 ≥ 2n/2.

Since v(2) = 2 and v(3) = 6, the inequality (4.4.5) also holds for

n = 2 and n = 3. By Corollary 4.4.2, we have proved the weak prime

number theorem (with C = 1/2). �

4.5. Randomized primality tests 143

Further Exercises and Comments.

4.4.6. Integral calculus, together with differential calculus, is one of
the cornerstones of mathematical analysis. For readers who are not
familiar with its basic principles, we give a short overview for completeness
and refer e.g. to [Br] for further reading.

If f is a continuous function of real numbers (say, a polynomial) and
a < b, then the integral ∫ b

a

f(x)dx

denotes the area enclosed by the graph of the function f and the x-axis.
(Here regions where the function takes negative values are counted as neg-
ative area.) Alternatively, we could say that∫ b

a
f(x)dx

b− a

is the average value of the function f on the interval [a, b]. Our proof
of Theorem 4.4.3 only uses the following simple rules for working with
integrals:

(a) The integral of the sum of two functions is exactly the sum of the
integrals of these functions. (This should be plausible from the
interpretation of the integral as an average.)

(b) If M is an upper bound for the function f , i.e. f(x) ≤ M for all
x ∈ [a, b], then ∫ b

a

f(x)dx ≤ M · (b− a).

Again, this should be clear; if the function is never larger than
M , then the same is true of its average value.

(c) If a ∈ R and k ∈ N0, then

∫ 1

0

axkdx =
a

k + 1
.

4.4.7. The idea of the proof of Theorem 4.3.3 is taken from [N].

4.5. Randomized primality tests

In order to be able to use the RSA encryption method, we still need a

way to test a number for primality efficiently and reliably. So far we

do not know any such algorithms; our best attempt was the Fermat

test in Section 3.3. This randomized test is efficient and often gives

us the right answer. However, due to the existence of Carmichael

numbers, it is not always reliable.

144 4. Prime numbers and cryptography

Before we treat the deterministic primality test of Agrawal, Kayal,

and Saxena in the second part of the book, we now present a method

that completely solves the problem for all practical purposes. This is

the “Miller-Rabin primality test”, an efficient Monte Carlo algorithm

for the problem COMPOSITES. It is an extension of the Fermat test

based on the following property of prime numbers:

4.5.1. Lemma (Roots of unity modulo a prime).

Let p be prime and let x ∈ Z be such that x2 ≡ 1 (mod p). Then

x ≡ 1 (mod p) or x ≡ −1 (mod p).

Proof. The hypothesis implies that x2 ≡ 1 (mod p), and thus

(x+ 1)(x− 1) = x2 − 1 ≡ 0 (mod p).

By Corollary 1.3.5, we thus have x + 1 ≡ 0 or x − 1 ≡ 0. In other

words, x ≡ −1 or x ≡ 1 modulo p. �

What does this have to do with Fermat’s test? For a (randomly

chosen) number a ∈ {1, . . . , p− 1}, this test checks whether

(4.5.2) ap−1 ≡ 1 (mod p)

holds. If p is prime, then this is always true. Since all primes p �= 2

are odd, the number p − 1 is usually even. Hence we can rewrite

(4.5.2) as (
a(p−1)/2

)2

≡ 1 (mod p).

By Lemma 4.5.1, a(p−1)/2 must be congruent to 1 or −1 modulo p.

We develop this idea a little further and write p−1 = d ·2�, where
d is odd. For example, for p = 13 we would have p − 1 = 3 · 22, i.e.
d = 3 and � = 2. Then

ap−1 = ad·2
�

=
(
ad
)2�

=
(
. . .

((
ad
)2)

. . .
)2

.

We see that either the initial number ad is congruent to 1 or one of the

numbers that occur during the repeated squaring has to be congruent

to −1 modulo p. So we have found a new property of prime numbers

that improves on Fermat’s Little Theorem.

4.5. Randomized primality tests 145

4.5.3. Theorem (Theorem of Fermat-Miller).

Let p be an odd prime number. Write p − 1 = d · 2�, where d, � ∈ N

and d is odd. If a ∈ Z is not a multiple of p, then

(a) either ad ≡ 1 (mod p)

(b) or a2
i·d ≡ −1 (mod p) for some i in the range from 0 to

�− 1.

Proof. For brevity, let us set b := ad. By Fermat’s Little Theorem,

we know that b2
� ≡ 1 (mod p). If b ≡ 1, then the first case of the

theorem holds and we are done. Otherwise, let i be the first index

between 0 and �− 1 such that b2
i+1 ≡ 1.

By Lemma 4.5.1, either b2
i ≡ 1 or b2

i ≡ −1. The first case

is impossible by our choice of i as the first index with the stated

property, and it follows that b2
i ≡ −1 as claimed. �

In Exercises 4.5.6 and 4.5.7, the reader is invited to convince

herself that the theorem of Fermat-Miller really is an improvement

over Fermat’s Theorem when it comes to detecting composites. In

particular, we can recognize at least some of the awkward Carmichael

numbers, which cause problems in the Fermat test, as composites.

This is reason enough to formulate a new primality test!

Algorithm MILLER-RABIN

Input: A natural number n > 1.

1. If n is even and n > 2, or if n is a power of some
other natural number, answer “n is composite”.

2. Otherwise write n−1 = d·2� and choose a number
a from 1 to n− 1 at random.

3. If gcd(a, n) > 1, answer “n is composite”.

4. Otherwise compute b := ad mod n.
5. If b = 1, then answer “n is probably prime”.

6. Otherwise compute b, b2, b4, . . . , b2
�−1

(mod n).
7. If none of these numbers are congruent to −1
modulo n, then answer “n is composite”.

8. Otherwise answer “n is probably prime”.

146 4. Prime numbers and cryptography

(Here we excluded the even numbers and perfect powers at the

beginning only for convenience; see Comment 4.5.9.)

By Theorem 4.5.3, this algorithm correctly recognizes all prime

numbers. Furthermore, the running time of every step is polynomial

in log n (Exercise 4.5.8). It remains to clarify how the algorithm be-

haves when n is composite. After the encouraging examples from

the exercises we might hope that composites will be correctly iden-

tified as such for any choice of base a > 1. Unfortunately this is

false: for example, if the algorithm chooses a = 2 for the number

n = 2047 = 23 ·89, the output will incorrectly identify n as “probably

prime”. Similarly as for the Fermat test, we refer to such a number

n as a strong pseudo-prime to base a. So we must deal with the

following question: if n is composite, how many numbers a are there

with respect to which n is a strong pseudo-prime?

For example, we could imagine that some Carmichael number n is

also a strong pseudo-prime to every base a coprime to n. Thankfully

this is not the case!

4.5.4. Theorem (No strong Carmichael numbers).

Let n = q · r, where q, r > 2 are odd and coprime. Then there is a

number a ∈ N that is coprime to n and satisfies a2 ≡ 1, but such

that a �≡ 1 and a �≡ −1 (mod n). In particular, n is not a strong

pseudo-prime to base a.

Proof. By the Chinese Remainder Theorem (Theorem 3.1.7), we can

find a number a that is coprime to n and satisfies a ≡ −1 (mod q)

and a ≡ 1 (mod r). Then a �≡ 1 (mod n), for otherwise we would also

have a ≡ 1 (mod q). For the same reason, a �≡ −1 (mod n). On the

other hand, we know that a2 ≡ 1 (mod q) and a2 ≡ 1 (mod r). By

the Chinese Remainder Theorem, a2 ≡ 1 (mod n), as claimed.

Now write n = d · 2� as in the Miller-Rabin primality test. Then

d = 2m+ 1 for suitable m ≥ 0, and thus

ad =
(
a2
)m · a ≡ a �≡ 1,−1 and a2d =

(
a2
)d ≡ 1 (mod n).

By definition, n is not a strong pseudo-prime to base a. �

4.5. Randomized primality tests 147

Using this observation, we can conclude that, for any given com-

posite number n, there must in fact be many suitable bases a.

4.5.5. Theorem (Error probability in MILLER-RABIN).

Let n be a composite number. Then there are at most (n− 1)/2 bases

a ∈ cp(n) to which n is a strong pseudo-prime.

In other words, with probability at least 50%, the algorithm

MILLER-RABIN correctly identifies n as composite.

Proof. Let W be the set of all numbers a ∈ cp(n) with respect

to which n is a strong pseudo-prime. We would like to argue as in

Lemma 3.3.3, using Lagrange’s Theorem, that W contains no more

than ϕ(n)
2 ≤ n−1

2 elements. But this is not quite possible, since the

product of two numbers a, b ∈ W need not again belong to W . Hence

we need to be a little bit more careful.

First of all, the formulation of our algorithm implies that we may

suppose that n is odd and not a perfect power. This means that n

is of the form n = q · r, where q, r > 2 are coprime. We again write

n− 1 = d · 2� and take a look at the largest index j ≤ l such that

ad·2
j

0 �≡ 1

for some a0 ∈ cp(n). (Such a number j ≥ 0 exists by the preceding

theorem.) We define k := d · 2j and study the set

G := {a ∈ cp(n) : ak ≡ 1 or ak ≡ −1 (mod n)}.

Every number a ∈ W is also an element of G, but in contrast to

W , the set G is closed under multiplication modulo n: if a, b ∈ G,

then a · b mod n is also an element of G. We now need to show

that there is at least one number a ∈ cp(n) that is not an element

of G. We construct such a number, quite similarly to Theorem 4.5.4,

by using a0 and the Chinese Remainder Theorem. First of all, if

ak0 �≡ −1, then a0 /∈ G and we are done. Otherwise, the Chinese

Remainder Theorem ensures that there is some number a < n such

that a ≡ a0 (mod q) and a ≡ 1 (mod r). Then ak ≡ −1 (mod q) and

ak ≡ 1 (mod r), and as in the proof of Theorem 4.5.4, we conclude

that ak �≡ 1,−1 (mod n), and hence a /∈ G.

148 4. Prime numbers and cryptography

Now we complete the proof just as in Lemma 3.3.3. We just

showed that #G < ϕ(n), and Lagrange’s Theorem (Theorem 3.2.10)

tells us that #G divides ϕ(n). SoG contains at most ϕ(n)/2 elements,

and thus

#W ≤ #G ≤ ϕ(n)

2
≤ n− 1

2
. �

We conclude that the algorithmMILLER-RABIN really is a Mon-

te Carlo algorithm for compositeness. What is even better is that it

essentially does not require any additional computations when com-

pared to the Fermat test. After all, the computation of an−1 using “di-

vide and conquer” requires us to compute ad, a2d, . . . anyway. Thus

this algorithm is extremely well suited to practical applications – it is

sufficiently fast to quickly reach a conclusion even for extremely large

numbers. By running the algorithm several times, the error probabil-

ity quickly becomes negligible (e.g. smaller than the probability of a

hardware error).

We have reached the end of the first part of our book. In the

second part, we will be able to contrast the Miller-Rabin algorithm

with a deterministic efficient primality test. We would like to stress

that – at least at this point in time – this new algorithm cannot

hope to compete with the speed of the above method. The result is

therefore mostly of theoretical interest.

Exercises.

4.5.6. Exercise. We recall from Section 3.3 that n = 15 is a pseudo-prime
to base 11. This means that

an−1 = 1114 ≡ 1 mod n.

Compute the remainder of 117 after division by n and conclude that
n is not a strong pseudo-prime to base 11. (So the Miller-Rabin test, with
a = 11, recognizes n = 15 to be a composite number.)

4.5.7. Exercise (P). In this exercise, we show that n = 561, the first
Carmichael number, will be recognized as composite by the Miller-Rabin
algorithm, using the base a = 2. The calculations required can be carried
out by hand with some dedication. However, it saves a lot of time to use a
computer or calculator instead.

(a) Write n− 1 = d · 2� as in Theorem 4.5.3.

4.5. Randomized primality tests 149

(b) Compute the remainder b of 2d after division by n.

(c) Compute b2, b4, and b8 (modulo n).

(d) Conclude, using Theorem 4.5.3, that n is composite.

4.5.8. Exercise (!). For every step in the algorithm MILLER-RABIN,
justify that the running time is at most polynomial in logn.

Further Exercises and Comments.

4.5.9. By Exercises 3.3.8 and 3.3.9, even numbers and perfect powers are
not Carmichael numbers. By Lemma 3.3.3, this implies that Theorem 4.5.5
remains correct if we remove Step 1 from the algorithm MILLER-RABIN.

4.5.10. Exercise. Use Lemma 4.5.1 to prove Wilson’s Theorem: n is
prime if and only if (n−1)!+1 is divisible by n. (Compare Exercise 3.1.9.)

4.5.11. A first version of the algorithm MILLER-RABIN was developed by
Miller in 1976. This version was deterministic, not randomized. However,
Miller was able to prove its correctness only by assuming the so-called
Generalized Riemann Hypothesis, which remains unproven.

4.5.12. Solovay and Strassen designed the first efficient Monte-Carlo algo-
rithm for compositeness in 1977. This algorithm is based on a different
generalization of Fermat’s Theorem, which uses the so-called Legendre
and Jacobi symbols from number theory.

4.5.13. Rabin showed in 1980 how to modify Miller’s method to obtain
the Monte Carlo algorithm we described above. This test is usually more
efficient than the algorithm of Solovay and Strassen.

In his paper, Rabin even showed that it is possible to replace the
probability of 50% in Theorem 4.5.5 by the better bound of 75%. This
requires some more careful analysis.

4.5.14. During the more than twenty years that passed between the devel-
opment of the Miller-Rabin test and the breakthrough of Agrawal, Kayal,
and Saxena, the field saw many other advances. Among the most important
results of this period are:

(a) The development of Monte Carlo algorithms for primality. As
described in Section 2.5, such methods can be combined with
the Miller-Rabin algorithm to obtain Las Vegas algorithms for
primality, which never return an incorrect result.

150 4. Prime numbers and cryptography

However, known methods that prove primality are not fast
enough to keep up with the Miller-Rabin test and therefore are
rarely used in practical applications.

(b) The development of deterministic algorithms for primality, whose
running time, while not polynomial, is subexponential, in contrast
e.g. to the Sieve of Eratosthenes. For example, since 1983 there
have been methods known whose running time is at most

(logn)O(log log logn).

(This is not all that far off from a polynomial-time algorithm.
For example, think about how large (or small) log log logn would
be for prime numbers with several thousand digits, which is the
order of magnitude used in cryptography.)

The mathematical methods and concepts that lead to these results are
much deeper and more difficult than those we have encountered so far and
also than those we will study in the second part of the book.

Further reading

For an introduction to cryptography, we recommend the book [Be]

by Beutelspacher. Many aspects of number theory that are related

to the topics of this chapter are beyond the scope of an introductory

text. For the reader who would like to learn more about algorith-

mic and applied number theory, we recommend Prime Numbers: A

Computational Perspective [CP] by Crandall and Pomerance; a lot

of relevant interesting material can also be found in [HW].

Part 2

The AKS Algorithm

Chapter 5

The starting point:
Fermat for polynomials

We are now ready to begin developing the primality test of Agrawal,

Kayal, and Saxena, using the foundations laid in the first part of

the book. As in the case of the Fermat test and the Miller-Rabin

algorithm, the starting point will be a property of prime numbers,

namely an extension of Fermat’s Theorem for polynomials that we

discuss in the first section of this chapter. In Section 5.2, we develop

a strategy for turning this property into a deterministic and efficient

primality test; we will use this strategy in the following chapters. The

(optional) final section discusses a randomized primality test based

on the same idea as the AKS algorithm.

5.1. A generalization of Fermat’s Theorem

We begin with a generalization of Fermat’s Theorem.

5.1.1. Theorem (Fermat for polynomials).

Let p be a prime number. Then

(5.1.2) (P (X))p ≡ P (Xp) (mod p)

for all polynomials P with integer coefficients.

153

154 5. The starting point: Fermat for polynomials

Examples. For p = 3 and P = X + 1,

(X + 1)3 = X3 + 3X2 + 3X + 1 ≡ X3 + 1 (mod 3).

For p = 5 and P = X − 1, we similarly see that

(X − 1)5 = X5 − 5X4 + 10X3 − 10X2 + 5X − 1 ≡ X5 − 1 (mod 5).

Before we prove Theorem 5.1.1, let us take a closer look at its

statement. If a ∈ Z and P = a is a constant polynomial, then the

claim is that

ap ≡ a (mod p).

So Theorem 5.1.1 really does generalize Fermat’s Theorem. At first

glance, one might think that Fermat’s Theorem also implies our new

result. Indeed, by Fermat we have

(5.1.3) (P (x))p ≡ P (x) ≡ P (xp) (mod p)

for all integers x. But we should remember that congruence of poly-

nomials is defined using congruence of their coefficients, not of their

values! So (5.1.3) is not equivalent to (5.1.2); recall Exercise 3.5.7.

Hence, on the one hand, there certainly is something left to prove.

On the other hand, for polynomials of degree 1, we could actually use

Fermat’s Theorem to prove our claim; see Exercise 5.1.14. (In fact,

that is the only case that we will later need in the AKS algorithm.)

In the proof of Fermat’s Theorem in Section 3.2, we used the

fact that the binomial coefficient
(
p
k

)
is divisible by p for all k ∈

{1, . . . , p} (Lemma 3.2.4). The simple examples that we worked out

above suggest that this will also be helpful for the proof of Theorem

5.1.1 because, after all, the same binomial coefficients appear when

we multiply out (P (X))p.

Proof of Theorem 5.1.1. In principle, we can multiply out the left-

hand side of (5.1.2) and use Lemma 3.2.4 to prove that this agrees

modulo p with the terms on the right-hand side. However, notation

would quickly become confusing, since we have to deal with many

different terms when multiplying out the p-th power of a polynomial

of high degree. We avoid this problem by using induction on the

degree d of the polynomial P .

5.1. A generalization of Fermat’s Theorem 155

If d = 0, then P is constant, and the claim follows from Fermat’s

Theorem. This establishes the basis of the induction.

For the inductive step, we suppose that the theorem holds for all

integer polynomials of degree at most d. We need to prove the claim

for a polynomial P of degree d+1. Let Q be the polynomial obtained

by removing the highest term of P . That is, Q is a polynomial of

degree at most d and there is some a ∈ Z such that

P = aXd+1 +Q.

Now we apply the binomial theorem:

(P (X))p = (aXd+1 +Q(X))p

= (aXd+1)p +

(
p−1∑
k=1

(
p

k

)
(aXd+1)k(Q(X))p−k

)
+ (Q(X))p.

We take a look at the terms in the last expression, one by one. First of

all
(
aXd+1

)p
= ap

(
X(d+1)

)p
= apXp(d+1) = ap

(
Xp

)d+1 ≡ a
(
Xp

)d+1

modulo p, using Fermat’s Theorem. Furthermore, by Lemma 3.2.4 the

binomial coefficients
(
p
k

)
in the sum are all divisible by p, so this sum

is congruent to zero modulo p. Finally, (Q(X))p ≡ Q(Xp) modulo p

by the induction hypothesis. So indeed

(P (X))p ≡ a(Xp)d+1 + 0 +Q(Xp) = P (Xp) (mod p).

This completes the induction and the proof of the theorem. �

We can ask whether, in analogy to the Carmichael numbers from

Section 3.3, there are also some composite numbers that satisfy (5.1.2)

for every polynomial. It turns out that this is not the case. Indeed, if

we try to apply the above proof to a composite number, we see that

everything depends on the divisibility or non-divisibility of
(
n
k

)
by n.

A look at Pascal’s triangle (Figure 3.3) suggests:

5.1.4. Lemma.

Let n ≥ 2 be a natural number and let p be a prime divisor of n. Then(
n
p

)
is not divisible by n.

Proof. See Exercise 5.1.8(a). �

156 5. The starting point: Fermat for polynomials

We immediately deduce:

5.1.5. Theorem (Primality Criterion).

Let n ≥ 2 be a natural number, and let a ∈ N be coprime to n. Then

n is prime if and only if

(5.1.6) (X + a)n ≡ Xn + a (mod n).

Proof. If n is prime, then the claim follows from Theorem 5.1.1. For

the converse, suppose that n is a composite number. Then n has some

prime divisor p < n. By the binomial theorem, the p-th coefficient of

(X + a)n is

an−p

(
n

p

)
.

As a is coprime to n by hypothesis and
(
n
p

)
is not divisible by n

because of Lemma 5.1.4, it follows that this coefficient is not divisible

by n. The p-th coefficient of Xn + a is zero, so we conclude that

(X + a)n �≡ Xn + a (mod n). �

Remark. For simplicity’s sake, we stated and proved the previous the-

orem only for polynomials of degree 1. However, it can be extended

e.g. to polynomials of arbitrary degree whose coefficients are all co-

prime to n; see Exercise 5.1.16. So for many numbers n and polyno-

mials P , the congruence

(5.1.7) (P (X))n ≡ P (Xn) (mod n)

holds if and only if n is prime.

At first, Theorem 5.1.5 seems like an incredibly strong result: we

could test a number n for primality by choosing any number a coprime

to n and checking the congruence (5.1.6)! Unfortunately this is, once

again, impossible in practice. Indeed, we might have to compare up

to n coefficients. So the effort required would be exponential in log n,

and thus of the same order of magnitude as searching directly for a

factor of n or applying the Sieve of Eratosthenes.

Nonetheless it turns out that we can use Theorem 5.1.1 to formu-

late a deterministic and efficient primality test. The idea is to check

5.1. A generalization of Fermat’s Theorem 157

the congruence (5.1.7) modulo a suitable polynomial Q of small de-

gree. Then we can use the power algorithm to efficiently compute the

power (P (X))n, reducing the result modulo Q and n in every step. In

this manner, we can efficiently test (5.1.7) modulo Q (for details, see

Exercise 5.1.10). In Exercise 5.1.9, the reader has the opportunity to

carry out this procedure by hand for a simple example.

So our strategy can be outlined as follows. We select, in some suit-

able manner, a polynomial P with integer coefficients as well as an-

other polynomial Q, both of whose degrees are polynomially bounded

in log n. Then we test whether or not the congruence

(P (X))n ≡ P (Xn) (mod n,Q)

holds. If not, we know because of Theorem 5.1.1 that n is not prime.

Of course it might happen that some such congruences are also sat-

isfied for composite numbers n; see Exercise 5.1.12. But it will turn

out that, if we choose P and Q cleverly, we only need to check a fairly

small number of congruences to detect a composite number. The next

two chapters will show that this strategy really works.

Exercises.

5.1.8. Exercise (!). Let n ≥ 2 be a natural number and let p be a prime
divisor of n. Also let j be the largest exponent for which pj divides n.

(a) Show that (
n

p

)
�≡ 0 (mod pj).

(Hint: As in Lemma 3.2.4, use the formula for binomial coef-
ficients using factorials. Then consider how often the factor p
occurs in each of the terms.)

(b) Also show that

(
n

pj

)
�≡ 0 (mod p).

5.1.9. Exercise. Use the power algorithm to calculate

(X − 1)24 (mod 24, X2 − 1)

by hand, and then check whether

(X − 1)24 ≡ X24 − 1 (mod 24, X2 − 1).

In contrast, try to calculate (X − 1)24 (mod 24) by hand.

158 5. The starting point: Fermat for polynomials

5.1.10. Exercise (!). Let n be a natural number. Let Q and P be poly-
nomials whose coefficients belong to the set {0, 1, . . . , n− 1}. Suppose that
the degree r of Q is larger than the degree of P . Show that there is an
algorithm that determines whether the congruence

(P (X))n = P (Xn) (mod n,Q)

holds and whose running time is polynomial in r and logn.

(If r is chosen in a way that grows at most polynomially with logn,
this means that the running time of this algorithm is also polynomial in
logn.)

5.1.11. Exercise (P). Implement the algorithm from Exercise 5.1.10.

5.1.12. Exercise. Show that

(X + 1)6 ≡ X6 + 1 (mod 6, X + 3).

Further Exercises and Comments.

5.1.13. In the article by Agrawal, Kayal, and Saxena, Theorem 5.1.1 is
stated only for polynomials of degree one because this is sufficient for the
algorithm. In order to appreciate the idea of the algorithm, however, it
is useful to know the complete theorem, which dates back to the early
nineteenth century. Similarly, Theorem 5.1.5 (and its generalization in
Exercise 5.1.16) is helpful to motivate the development of the algorithm
but will not be required in the proof later on.

5.1.14. Exercise. In this problem, we wish to prove Theorem 5.1.1, using
only Fermat’s Little Theorem, in the case where P has degree at most one.
So let P = aX + b with a, b ∈ Z and let p be a prime number.

(a) Use Theorem 3.2.2 to show that (P (X))p and P (Xp) have the
same leading coefficient. Conclude that the polynomial

R := (P (X))p − P (Xp)

has degree at most p− 1.

(b) Show, again using Theorem 3.2.2, that

R(x) ≡ 0 (mod p)

for all x ∈ Z. Thus R has exactly p zeros modulo p.

(c) However, if R is not congruent to zero, then the number of its
zeros modulo p is bounded by deg(R) ≤ p−1 (see Exercise 3.5.18).
So we have shown that R ≡ 0 (mod p), as claimed.

5.1.15. Exercise. Show that in Theorem 5.1.5 it is sufficient to assume
that n does not divide a. (Hint: Use Exercise 5.1.8(b).)

5.2. The idea of the AKS algorithm 159

5.1.16. Exercise. We study an extension of Theorem 5.1.5 to polynomials
of arbitrary degree. Let n be a composite natural number, and let P
be a polynomial for which each coefficient is either zero or coprime to n.
Furthermore we require that P have at least two non-zero coefficients. Show
that this implies that (P (X))n �≡ P (Xn) (mod n).

Idea for the proof: Similarly as in Theorem 5.1.1, choose a ∈ Z such
that P = aXd + Q. Let d ≥ 1 denote the degree of P , let m ≥ 0 be the
degree of Q, and let k be the largest number between 1 and n−1 satisfying(
n
k

)
�≡ 0 (mod n). Show that the (dK+m(n−k))-th coefficient of (P (X))n

is not divisible by n.

5.1.17. Exercise. Find a composite number n and natural numbers a, b
between 1 and n− 1 such that

(aX + b)n ≡ aXn + b (mod n).

This shows that the condition of a and n being coprime in Exercise 5.1.16
cannot be completely removed.

5.2. The idea of the AKS algorithm

In order to develop an efficient primality test based on the vague idea

we formulated in the previous section, we need to study congruences

of the form

(5.2.1) (P (X))n ≡ P (Xn) (mod n,Q),

where P and Q are polynomials and n is a composite number. In the

following we abbreviate R := (P (X))n − P (Xn), so that (5.2.1) can

be rewritten as R ≡ 0 (mod n,Q).

We already saw in Chapter 3 that working modulo the composite

number n is much more inconvenient than modulo a prime number,

and it may seem that we cannot get around this if we are to study

the above congruence. Fortunately, there is a trick to get us out of

trouble: we instead study congruences modulo a prime factor p of n.

Indeed, if we can (efficiently) find P and Q such that

(5.2.2) R �≡ 0 (mod p,Q),

then these also have the property that

R �≡ 0 (mod n,Q).

160 5. The starting point: Fermat for polynomials

This may seem somewhat strange. After all, we do not know the

prime factor p when we wish to test n for primality. (Otherwise we

already know that n is composite.) But that does not change the

mathematical fact that such a prime factor exists, even if we do not

explicitly know it; so we can use p in our analysis (but not in the

formulation of the algorithm).

Nonetheless, our trick raises a question. We have seen before

that, for any composite number n, there are always polynomials P

such that R �≡ 0 (mod n) (with our above notation). Is that still true

if we replace n by a prime number p dividing n? Otherwise, we have

a problem.

If we think back to the proof of Theorem 5.1.5, we quickly see

that there are two different cases to consider. If n has two different

prime divisors p and q, then indeed we have

(X + a)n �≡ Xn + a (mod p)

for every number a coprime to n; see Exercise 5.2.4.

On the other hand, suppose that p is the only prime that divides

n, so that n = pk for some k > 1. Then things look rather different.

Indeed, we know from Theorem 5.1.1 that

(P (X))p
m ≡ P (Xpm

) (mod p)

for all m ≥ 1 (Exercise 5.2.3). In particular,

(P (X))n ≡ P (Xn) (mod p),

and the congruence (5.2.2) cannot detect that n is composite.

Luckily, this does not pose a serious algorithmic obstacle. After

all, we can test efficiently whether an integer is a perfect power (re-

member Exercise 2.3.6) and hence exclude such numbers right at the

start of our algorithm. Then it only remains to consider composite

numbers that have at least two different prime divisors, and for these

our trick has the chance of being successful.

Next, we ask ourselves how we are going to proceed when choosing

the polynomials P and Q. Here are two plausible alternatives:

5.2. The idea of the AKS algorithm 161

(a) We fix some polynomial P as in Theorem 5.1.5 or Exercise

5.1.16, say P = X − 1. Then we test the congruence (5.2.1)

for some small number of different polynomials Q.

(b) We first find some suitable polynomial Q and then test the

congruence (5.2.1) for a small number of different polyno-

mials P .

The procedure in (a) is motivated by the fact that, fixing P , we

know that R is not congruent to zero modulo n (and also modulo p

by Exercise 5.2.4). We would expect that we do not have to test too

many different polynomials Q to find one that is not a divisor of R

modulo p and hence does not satisfy (5.2.2).

In the next section, we indeed develop a simple randomized pri-

mality test on the basis of this idea, the algorithm of Agrawal and

Biswas. Also, after our analysis of the AKS algorithm, we shall see

in hindsight that approach (a) can indeed be used to formulate an

efficient deterministic algorithm; see Exercise 7.2.4.

However, it turns out that approach (b) is easier to analyze math-

ematically. The reason is that studying varying congruences modulo

a fixed polynomial is a lot easier than having to investigate a given

congruence modulo many different polynomials. Therefore we shall

use (b) to develop the AKS algorithm. We can now formulate the

basic structure of the test as follows:

Basic structure of the AKS algorithm

Input: A natural number n > 1.

1. If n is a perfect power, i.e. if n = ab with a < n
and b > 1, then answer “n is composite”.

2. Otherwise choose a “suitable” polynomial Q.
3. Test the congruences

(Pi(X))n ≡ Pi(X
n) (mod n,Q)

for “suitable” polynomials P1, . . . , P�.
4. If one of these congruences is not satisfied, then
answer “n is composite”.

5. Otherwise answer “n is prime”.
(Here � and the degree of Q are allowed to grow at
most polynomially with logn.)

162 5. The starting point: Fermat for polynomials

Of course we still need to clarify a few things before we can turn

this plan into a real algorithm.

(1) Let n be composite, but not a perfect power, and let p be

a prime factor of n. If Q is a suitable polynomial, can we

efficiently find a polynomial P such that

(P (X))n �≡ P (Xn) (mod p,Q),

even without knowing p explicitly?

(2) For every n ∈ N, is there such a “suitable” polynomial Q

whose degree grows at least polynomially with logn and that

can be found efficiently?

The first of these will be made precise and proved in the next

chapter. Part (2) is treated in Chapter 7, completing our discussion

of the AKS algorithm.

Exercises.

5.2.3. Exercise (!). Let p be a prime number and let m ∈ N. Also let P
be a polynomial with integer coefficients. Show, by using induction over m
and applying Theorem 5.1.1, that

(P (X))p
m

≡ P (Xpm) (mod p).

5.2.4. Exercise (!). Let n be a composite number that has at least two
different prime divisors p and q. Show that

(X + a)n �≡ Xn + a (mod p)

for all integers a that are coprime to n. (Hint : Exercise 5.1.8(b).)

Further Exercises and Comments.

5.2.5. Knowing the work of Agrawal, Kayal, and Saxena, it is not hard
to find good arguments for the approach explained in (b). However, when
pursuing mathematical research, and without the benefit of hindsight, it is
much more difficult to decide which approaches are promising. Hence it is
crucial to keep an open mind about trying alternative methods.

Indeed, Agrawal and his students did not start with approach (b) but
rather attempted to make (a) work. Over time, they decided to modify
their strategy, leading to their eventual success.

5.3. The Agrawal-Biswas test 163

5.3. The Agrawal-Biswas test

We now use Theorem 5.1.5 to develop a randomized Monte Carlo

algorithm for the problem COMPOSITES. (We already know one

such algorithm from Section 4.5, namely the Miller-Rabin test.) This

algorithm was presented in 1999 by Manindra Agrawal and his former

PhD advisor, Somenath Biswas (the article was published in 2003

[AB]). Even though this primality test cannot compete with the

Miller-Rabin algorithm in practical terms, it indicates that Theorem

5.1.5 can be used to efficiently test for primality. Historically, it was

the first step that lead to the development of the AKS algorithm.

We emphasize that the results presented here will not be used in the

remaining chapters.

The idea of the algorithm is very simple: we choose an arbitrary

polynomial P as in Theorem 5.1.5 or Exercise 5.1.16; for simplicity,

we will use P = X − 1. Then we (randomly) pick a polynomial Q of

degree q := �log n and check the congruence

(P (X))n − P (Xn) ≡ 0 (mod n,Q).

To show that this gives a Monte Carlo algorithm, we need to

give a lower bound for the probability that, for a composite number

n ∈ N, this congruence is satisfied for a randomly chosen polynomial

Q. As explained in the last section, it is reasonable to study these

congruences modulo a prime divisor p of n rather than modulo n

itself.

So let n ∈ N again be a composite number that is not a prime

power, and let p be a prime divisor of n. Let Q denote the set of

all monic polynomials of degree q := �log n with integer coefficients

between 0 and p− 1. (We fix this notation for the remainder of this

section.) Then we ask how many different polynomials in Q could

divide the polynomial

R := (P (X))n − P (Xn)

modulo p. (We know from Exercise 5.2.4 that R �≡ 0 (mod p).) We

shall use, without proof, the following theorem [LiN, Corollary 3.12]

regarding the number of irreducible polynomials.

164 5. The starting point: Fermat for polynomials

5.3.1. Theorem (Number of irreducible polynomials modulo p).

There are at least pq

q − pq/2 polynomials in Q that are irreducible

modulo p.

Remark. This theorem should be viewed as a generalization of the

prime number theorem. Indeed, the number of polynomials in Q
is exactly N := pq. Thus the theorem states that the number of

irreducible elements in Q grows asymptotically at least as fast as

N/ logN .

5.3.2. Corollary (Number of irreducible polynomials in Q).

If p ≥ 5, then there are at least pq

2q polynomials in Q that are irre-

ducible modulo p.

Proof. By Theorem 5.3.1, the number of polynomials in Q that are

irreducible modulo p is at least pq

q −pq/2. We can rewrite this number

as
pq

q
·
(
1− q

pq/2

)
.

The fraction q/pq/2 becomes very small if p is sufficiently large. More

precisely, we must show that

q

pq/2
<

1

2

when p ≥ 5. But this follows immediately from the fact that

pq/2 > 4q/2 = 2q ≥ 2q.

Here the final inequality is taken from Exercise 1.1.12(a). �

We now know that Q contains quite a lot of irreducible polyno-

mials. However, at most n/q of these could be divisors of R modulo

p. Indeed, since p is prime, R can be decomposed uniquely into fac-

tors that are irreducible modulo p (Exercise 3.5.16). The sum of the

degrees of these factors is exactly the degree of R, and hence at most

n. So the number of irreducible factors of R of degree q is at most

n/q, as claimed. We use this to deduce:

5.3. The Agrawal-Biswas test 165

5.3.3. Lemma (Many polynomials do not divide R).

Let p ≥ 5. Then there are at least pq/4q polynomials in Q that do not

divide R modulo p.

Proof. By Corollary 5.3.2, there are at least pq/2q polynomials in Q
that are irreducible modulo p. At most n/q of these divide R. So the

number of polynomials that we are looking for is at least

pq

2q
− n

q
=

pq − 2n

2q
=

2pq − 4n

4q
.

Hence it remains to show that pq ≥ 4n. To see this, we remember

that q = �log n and n ≥ p > 4; hence

pq ≥ plogn = nlog p > n2 > 4n,

and the proof is complete. �

5.3.4. Corollary (Probability of finding a non-divisor).

Let p ≥ 5 be a prime and let Q be a randomly chosen monic polynomial

of degree q with integer coefficients between 0 and n − 1. Then the

probability that Q does not divide R modulo p is at least

1

4q
.

Proof. Let Q′ denote the set of monic polynomials of degree q with

integer coefficients between 0 and n−1. Then Q′ contains exactly nq

different polynomials. Each of these is picked with the same proba-

bility, so the probability of randomly choosing any given polynomial

is 1/nq.

By Lemma 5.3.3 there are at least pq/4q polynomials in Q that do

not divide R modulo p. Every polynomial in Q is congruent modulo

p to exactly (n/p)q different polynomials from Q′. (We leave it to the

reader to work out why!)

Hence Q′ contains at least (pq/4q) · (n/p)q = nq/4q polynomials

that do not divide R modulo p. So the probability of picking one of

166 5. The starting point: Fermat for polynomials

these is at least
nq

4q
· 1

nq
=

1

4q
,

as claimed. �

Now we are ready to formulate the Agrawal-Biswas test.

Algorithm of Agrawal and Biswas

Input: A natural number n ≥ 2.

1. If n = 2 or n = 3, answer “n is prime”.
2. If n is divisible by 2 or 3, answer “n is composite”.
3. If n is a perfect power, answer “n is composite”.
4. Otherwise choose, randomly, a monic polynomial
Q of degree q = �logn� and with integer coefficients
between 0 and n− 1.

5. Check whether

(X − 1)n ≡ Xn − 1 (mod n,Q).

6. If not, then answer “n is composite”. Otherwise,
answer “n is probably prime”.

The first two steps can clearly be carried out efficiently. If n

passes both, then the smallest prime divisor of n is at least 5 and

Corollary 5.3.4 is applicable to n. The third step – testing whether n

is a perfect power – can also be performed efficiently (Exercise 2.3.6).

For the fourth step, we randomly choose q integers between 0

and n − 1 to be the coefficients of the polynomial Q, with leading

coefficient 1 because Q is monic. As q = �log n, this can be done

efficiently. We already saw in Exercise 5.1.10 that Step 5 can also be

done efficiently. So the algorithm of Agrawal and Biswas is efficient.

If n is composite, then, by Corollary 5.3.4, the probability that

the algorithm answers “n is composite” is at least 1/(4�logn). As

with the random generation of prime numbers, it is important that

this probability is at worst polynomial in 1/ logn. Indeed, if n is com-

posite, we only have to run the algorithm on average 4�log n times

to detect this. (See Exercise 2.5.6.) So if we carry out the algorithm

of Agrawal and Biswas 8�log n times, then the probability that n is

5.3. The Agrawal-Biswas test 167

detected as a composite number is at least 50% (Exercise 2.5.10). So

we have indeed found a Monte Carlo algorithm for compositeness.

Remark. With a little more effort it is possible to show that the prob-

ability of error in the algorithm of Agrawal and Biswas is at most

1/3 (without having to run the algorithm several times), which of

course is a lot better than our bound of 1/4�log n. The details of

this argument can be found in the article [AB].

Chapter 6

The theorem of
Agrawal, Kayal,
and Saxena

We now turn our attention to item (1) from Section 5.2. So let n be

a natural number that is not a power of a prime and let p be a prime

factor of n. We must show that, for a “suitable” polynomial Q, we

can efficiently find a polynomial P such that

(P (X))n �≡ P (Xn) (mod p,Q).

The idea is to show that the set P of polynomials P for which

(P (X))n and P (Xn) are congruent modulo p and Q is in some sense

“not too large” and that, in particular, we can efficiently find a poly-

nomial that violates this congruence. We formulate a precise version

of this statement, the theorem of Agrawal, Kayal, and Saxena.

In particular, we shall fix our choice of the polynomial Q. Section

6.2 discusses the idea underlying the proof, while the main work is

done in Section 6.3. This will give us an estimate on the number of

polynomials of degree 1 that belong to P.

To conclude, Section 6.4 investigates the irreducible factors of

cyclotomic polynomials modulo a prime number p. This is neces-

sary in order to deduce the theorem of Agrawal, Kayal, and Saxena,

as formulated in Section 6.1, from the results of Section 6.3.

169

170 6. The theorem of Agrawal, Kayal, and Saxena

6.1. Statement of the theorem

The goal of this chapter is to prove the following theorem, which tells

us how to find a polynomial that identifies n as composite, provided

that n is not a prime power.

6.1.1. Theorem (Theorem of Agrawal, Kayal, and Saxena).

Let r ∈ cp(n) be a prime number with ordr(n) > 4(log n)2. Also set

Q := Xr − 1. If n is not a power of p, then there are at most r

polynomials of the form P = X + a, with a ∈ {0, . . . , p − 1}, that

satisfy

(6.1.2) (P (X))n ≡ P (Xn) (mod p,Q).

Let us first establish that this theorem, once proven, really gives

us what we are looking for. Indeed, suppose that we can find a number

r satisfying the hypothesis of the theorem such that r grows at most

polynomially in log n. Then we need to check only for at most r

different integers a whether the congruence (6.1.2) is satisfied. If

this congruence always holds, then n is a prime or a prime power;

otherwise n is composite. (We will see in the next chapter that it is

indeed possible to find such a number r.)

Why are we using Q = Xr − 1? One of the reasons is that a

congruence modulo Q and n implies that many other congruences

also hold, as shown in the following lemma. This turns out to be very

useful in the proof of Theorem 6.1.1.

6.1.3. Lemma.

Let r ∈ N and let Q := Xr − 1, m ∈ N, and n ≥ 2. Then

(a) Q(Xm) = Xrm − 1 ≡ 0 (mod Q); and

(b) if P is a polynomial such that P ≡ 0 (mod n,Q), then also

P (Xm) ≡ 0 (mod n,Q).

6.2. The idea of the proof 171

Proof. The first statement simply claims that Xr − 1 is a divisor of

Xrm − 1, which follows from the following calculation:

Xrm − 1 = (Xr − 1)(X(m−1)r +X(m−2)r + · · ·+Xr + 1).

(This expression can be found e.g. by using polynomial long division.)

Now let n and P be given as in (b). The assumption means that

Q is a divisor of P modulo n. Hence there is a polynomial R such that

P ≡ R · Q (mod n). If we substitute Xm for X in this congruence,

then we see that, in particular,

P (Xm) ≡ R(Xm)Q(Xm) (mod n).

So the polynomial Q(Xm) divides P (Xm) modulo n. The first part of

the lemma implies that Q is a divisor of Q(Xm), and hence Q divides

P (Xm) modulo n, as claimed. �

Further Exercises and Comments.

6.1.4. The original article by Agrawal, Kayal, and Saxena proves a slightly
stronger version of Theorem 6.1.1 than the one we stated. In particular,
“at most r” in the statement can be replaced by “at most 2

√
r logn”; see

also Exercise 6.3.9. Furthermore it is not necessary to require that r be
prime; see Comment 6.4.13. We also refer the reader to Section 7.3.

6.2. The idea of the proof

We begin by fixing some notation for the upcoming discussion.

6.2.1. Notation.

For the remainder of this chapter, let n ≥ 2, let p a prime divisor of

n, and fix some number r ∈ N. Define Q := Xr − 1 and let P denote

the set of all integer polynomials P (of any degree) satisfying (6.1.2).

By Theorem 5.1.1, we know that every polynomial P ∈ P satisfies

not only (6.1.2) but also

P (Xp) ≡ (P (X))p (mod p,Q).

Our choice of Q allows us to say much more:

172 6. The theorem of Agrawal, Kayal, and Saxena

6.2.2. Lemma.

Let P be a polynomial, and let m1 and m2 be natural numbers such

that

(P (X))m1 ≡ P (Xm1) and (P (X))m2 ≡ P (Xm2) (mod p,Q).

If we set m := m1 ·m2, then also

(6.2.3) (P (X))m ≡ P (Xm) (mod p,Q).

Proof. We have (P (X))m1 ≡ P (Xm1) modulo p and Q. Using

Lemma 6.1.3, we see that

(P (Xm2))m1 ≡ P (Xm1·m2) (mod p,Q).

Since furthermore (P (X))m2 ≡ P (Xm2), we conclude that

(P (X))m1·m2 = ((P (X))m2)m1 ≡ (P (Xm2))m1 ≡ P (Xm1·m2)

modulo p and Q, as claimed. �

6.2.4. Corollary.

Let P ∈ P. Then (6.2.3) holds for every number m of the form

m = ni · pj, where i, j ≥ 0.

Proof. As remarked above, both p and n satisfy the condition (6.1.2).

The claim follows by repeated application of the preceding lemma. �

Thus, if n is not a power of p, then there are many numbers m

such that (6.2.3) holds for all polynomials in P. This is a strong

condition, and Theorem 6.3.6 below will show that the set P cannot

be too large. Moreover P has the rather nice property that we can

combine elements from P to build new ones.

6.2.5. Lemma.

Let P1, P2 ∈ P. Then also P1 · P2 ∈ P.

6.3. The number of polynomials in P 173

Proof. From the definition of P it follows immediately that

(P1 · P2)(X
n) = P1(X

n) · P2(X
n) ≡ (P1(X))n · (P2(X))n

= ((P1 · P2)(X))n (mod p,Q). �

Therefore, if we check (6.1.2) for a certain number of polynomials,

we have actually proved this congruence for a much larger set. If there

are many polynomials of degree 1 in P, then Lemma 6.2.5 provides

us with the existence of many more elements of P of small degree.

(We make this precise in Theorem 6.3.5.)

As mentioned above, we will also establish an upper bound on the

size of P, provided that n is not a prime power. This upper bound,

together with the observation we have just made, yields a restriction

on the number of degree 1 polynomials that can belong to P, proving

Theorem 6.1.1.

Further Exercises and Comments.

6.2.6. In their article, Agrawal, Kayal, and Saxena use the term “intro-
spective numbers” for those numbers m that satisfy (6.2.3).

6.3. The number of polynomials in P

After all our preliminary deliberations, we are now ready to do the

main work for the proof of Theorem 6.1.1. We begin by adjusting our

point of view a little. In the previous section, we always calculated

modulo Q. But the polynomial Q is not irreducible modulo p (for

example, X − 1 is one of its divisors), and modular arithmetic with

respect to such a polynomial, similarly as with respect to composite

numbers, quickly becomes rather complicated.

But we already know how to get around this: in Section 5.2, we

decided to carry out our analysis modulo p instead of working modulo

n, and the same idea applies here. By Exercise 3.5.15, there is some

irreducible factor H of Q modulo p. (We study the properties of such

H in the following section.) Then

(6.3.1) (P (X))n ≡ P (Xn) (mod p,H)

for every P ∈ P. So we will fix the irreducible factor H from now on

and perform our considerations modulo H.

174 6. The theorem of Agrawal, Kayal, and Saxena

How many polynomials are there in P that are pairwise different

modulo p and H? Let us denote this number by A. The number

is certainly finite: after all, every integer polynomial is congruent

(modulo p and H) to one whose coefficients range between 0 and

p− 1 and whose degree is smaller than that of H. So A ≤ pdeg(H).

As announced in the previous section, we will now deduce both

upper and lower bounds for A. To do so, we need to decide when

two elements of P are congruent to each other modulo p and H.

Thankfully this is not too difficult. The following lemma shows that

two polynomials of sufficiently small degree that are different modulo

p will also not be congruent modulo p and H.

In the lemma and in the remainder of this chapter, we let t denote

the number of polynomials of the form Xni·pj

with i, j ≥ 0 that are

different modulo p and H.

6.3.2. Lemma.

Let P1 and P2 be polynomials in P whose degree is smaller than t. If

P1 ≡ P2 (mod p,H), then also P1 ≡ P2 (mod p).

Example. We consider the case n = 38, p = 19, r = 5. The polynomial

Q = X5 − 1 has the following irreducible factors modulo p:

(6.3.3) X5−1 ≡ (X−1) · (X2+5X+1) · (X2−4X+1) (mod 19).

Indeed, the congruence is easily checked by a simple calculation. The

two factors of degree 2 have no zeros modulo p and therefore have

no factors of degree 1. Thus they are really irreducible. (How to go

about finding the factors in (6.3.3) is another question!)

We set H := X2 + 5X + 1 and determine the number t. First of

all we see that X5 ≡ 1 (mod p,H) because H divides the polynomial

X5 − 1. This implies that Xm1 and Xm2 are congruent modulo p

and H whenever m1 and m2 are congruent modulo 5, and thus t ≤ 5.

Furthermore, modulo p and H,

X0 = 1; Xp = X19 = (X5)3 ·X4 ≡ X4 ≡ 18X + 14;

Xn = X38 = (X5)7 ·X3 ≡ X3 ≡ 5X + 5;

Xp·n = Xp ·Xn ≡ X3 ·X4 ≡ X2 ≡ 14X + 18; Xp2 ≡ X16 ≡ X.

6.3. The number of polynomials in P 175

(In each case we performed a polynomial long division at the end, if

necessary, to obtain a polynomial that has smaller degree than H.)

We see that these five polynomials are pairwise not congruent,

so it follows that t = 5. Now if two polynomials from P are not

congruent modulo p and have degree at most 4, then we know by the

lemma that they are not congruent modulo p and H. This is very

useful – the point is that the number t will, in general, be larger than

the degree of H.

Proof of Lemma 6.3.2. By Corollary 6.2.4 and by hypothesis,

P1(X
m) ≡ (P1(X))m ≡ (P2(X))m ≡ P2(X

m) (mod p,H)

for every number m of the form m = pj ·ni. In other words, for every

such m the polynomial Xm is a polynomial zero of

T := P1(Y)− P2(Y)

modulo p and H (in the sense discussed in Section 3.5). By definition

of t, the polynomial T has at least t different polynomial zeros modulo

p and H. On the other hand, the degree of T is less than t (by our

hypothesis on P1 and P2). Hence Theorem 3.5.6 forces T ≡ 0 (mod p)

as claimed. �

If P contains many polynomials of degree 1, then we can use the

preceding lemma to obtain a good lower bound for the number A. To

do so, we define:

6.3.4. Definition.

In the following, let � denote the number of elements a ∈ N0 with

a ≤ p− 1 for which the polynomial X + a is an element of P.

We shall soon see that � cannot be too large unless n is a prime

power. As preparation for our next results, we remind ourselves:

• H is an irreducible factor of Q modulo p;

• A is the number of elements of P that are pairwise different

modulo p and H;

• t is the number of polynomials of the form Xni·pj

, where

i, j ≥ 0, that are pairwise different modulo p and H.

176 6. The theorem of Agrawal, Kayal, and Saxena

6.3.5. Theorem (Lower bound on A in terms of t and �).

The number A satisfies A ≥
(
t+�−1
t−1

)
.

Proof. We already mentioned the idea in the previous section. Let

k < t and let a1, . . . , ak ∈ {0, . . . , p−1} be such thatX+a1, . . . , X+ak
are elements of P. The product of these is a polynomial of degree

less than t that also belongs to P, by Lemma 6.2.5. Using Exercise

3.5.11, we know that the numbers a1, . . . , ak, up to reordering, are

uniquely determined by the polynomial T .

If k′ < t and b1, . . . , bk′ ∈ {0, . . . , p − 1} are chosen such that

X + b1, . . . , X + bk′ ∈ P, then it follows that either the coefficients ai
and bj agree up to reordering or the product T ′ :=

∏
1≤j≤k′

(X + bj) is

not congruent to T modulo p. In the latter case, we see from Lemma

6.3.2 that T and T ′ are also not congruent modulo p and H.

Thus the only remaining question is: starting from a set of �

different polynomials of degree 1 and taking products, how many

polynomials of degree at most t can we obtain? In other words, given

� balls, how many possibilities are there to pick up to t, not necessarily

different, balls if the order is irrelevant? By Exercise 1.1.18 the answer

is exactly
(
t+�−1
t−1

)
and thus the theorem is proved! �

As promised, we can complement this lower bound by an upper

bound that holds if n is not a power of p.

6.3.6. Theorem.

If n is not a power of p, then A ≤ n2
√
t/2.

Proof. We take a look at numbers of the form m = ni ·pj . If n is not

a power of p, then different choices of i and j will result in a different

number m. If we require that also 0 ≤ i, j ≤

√
t�, then there are

exactly (

√
t�+ 1)2 > t such choices.

By definition of t, we can thus find two numbers of that form, let

us call them m1 and m2, for which

(6.3.7) Xm1 ≡ Xm2 (mod p,H).

6.3. The number of polynomials in P 177

We choose notation such that m1 > m2. Then

m2 < m1 ≤ (np)�
√
t� ≤ n2

√
t

2
.

Here we used that p is a non-trivial divisor of n and hence p ≤ n/2.

For all polynomials P ∈ P, it follows from congruence (6.3.7) and

Corollary 6.2.4 that

(P (X))m1 ≡ P (Xm1) ≡ P (Xm2) ≡ (P (X))m2 (mod p,H).

Therefore every element P ∈ P is a polynomial zero of

R := Y m1 − Y m2

modulo p and H. The polynomial R has degree m1 modulo p; in

particular, R �≡ 0 (mod p). By Theorem 3.5.6, the number of polyno-

mial zeros of R modulo p and H is bounded from above by m1. This

means that

A ≤ m1 ≤ n2
√
t

2
. �

If n is not a power of p, then we can now bound A both from

above and from below. We notice that the lower bound, namely the

binomial coefficient (
t+ �− 1

t− 1

)
,

will grow exponentially in t if � is sufficiently large, whereas the upper

bound is exponential in
√
t · log n. If we can make sure that t is

significantly larger than (logn)2, then the upper bound is smaller

than the lower bound, and we have a contradiction! We work out the

details in the next corollary.

6.3.8. Corollary.

If t > 4(log n)2 and � ≥ t− 1, then n is a power of p.

Proof. By hypothesis and Theorem 6.3.5, we see that

A ≥
(
t+ �− 1

t− 1

)
≥
(
2(t− 1)

t− 1

)
≥ 2t−1 =

2t

2
,

using the inequalities for binomial coefficients from Exercise 1.1.17.

So A grows exponentially in t, as mentioned above.

178 6. The theorem of Agrawal, Kayal, and Saxena

On the other hand, the first hypothesis says that
√
t > 2 log n.

In particular

t =
√
t ·

√
t > 2

√
t log n.

Then

2t

2
>

22
√
t logn

2
=

n2
√
t

2

and thus overall A > n2
√
t/2. By Theorem 6.3.6 this is possible only

when n is a power of p. �

To make use of Corollary 6.3.8, we still need to get a handle on

the mysterious number t, which depends on the irreducible factor H

of Xr − 1. We deal with this in the next section.

Exercises.

6.3.9. Exercise. Show that the hypothesis � ≥ t−1 in Corollary 6.3.8 can
be replaced by the weaker condition � > 2

√
t logn.

Further Exercises and Comments.

6.3.10. Exercise. Can the idea of the proof of Theorem 6.3.6 also give
an upper bound for the number A when n is a prime power? If so, what
is the order of magnitude of this bound, and why does this not lead to a
contradiction when combined with Theorem 6.3.5?

6.3.11. We remark that, throughout this and the previous section, we did
not assume that r is prime. See also Comment 6.4.13.

6.4. Cyclotomic polynomials

Finally, we need to take a closer look at the irreducible factors of the

polynomial Xr − 1 modulo p. This is particularly easy when r is a

prime number, so from now on let us suppose that this is the case.

We write Xr − 1 as

Xr − 1 = (X − 1) · (Xr−1 +Xr−2 + · · ·+X + 1)

(which can be seen directly by multiplying out). The polynomial

(6.4.1) Kr := Xr−1 +Xr−2 + · · ·+X + 1

is called the r-th cyclotomic polynomial.

6.4. Cyclotomic polynomials 179

Kr is an irreducible factor of Xr − 1 over Z (see Exercise 6.4.5).

But we are interested in irreducible factors modulo a prime number

p, and in general Kr is not irreducible modulo p. We thus have to

study the factors of Kr modulo p.

6.4.2. Lemma.

Let p and r be prime numbers with p �= r, and let H be an irreducible

factor (modulo p) of the r-th cyclotomic polynomial Kr. Then

Xr ≡ 1 (mod p,H) and

Xk �≡ 1 (mod p,H)

for all k ∈ {1, . . . , r − 1}.

Proof. We have Xr ≡ 1 (mod Xr − 1) and hence also

Xr ≡ 1 (mod p,H)

because H is a divisor of Xr − 1 modulo p. Now let k ≥ 1 be the

smallest number with

Xk ≡ 1 (mod p,H).

Then k is a divisor of r (Exercise 6.4.4). Since r is prime, we must

have k = r or k = 1.

Assume, by way of contradiction, that k = 1. This means that

X−1 ≡ 0 (mod p,H), and since H is irreducible modulo p, it follows

thatH ≡ X−1 (mod p). SoX−1 is a divisor ofKr modulo p; in other

words, X − 1 ≡ 0 (mod p,Kr). In particular, Kr(1) ≡ 0 (mod p).

But we also know that

Kr(1) = 1 + 1 + · · ·+ 1 = r �≡ 0 (mod p),

which is a contradiction. So k = r as desired. �

6.4.3. Corollary.

Let r and p be prime numbers with r �= p and let H be an irreducible

factor (modulo p) of the r-th cyclotomic polynomial Kr. Also let

n ∈ N be any multiple of p such that gcd(n, r) = 1, and let t be as

defined in Section 6.3. Then ordr(n) ≤ t ≤ r.

180 6. The theorem of Agrawal, Kayal, and Saxena

Proof. We remind ourselves that t denotes the number of polyno-

mials of the form Xm that are different modulo p and H, where m

ranges over all products of powers of n and p.

The order ordr(n) is, by definition, exactly the number of pairwise

different elements of the form m = nj modulo r. If m1 and m2 are

different powers of n modulo r, then also Xm1 �≡ Xm2 (mod p,H) by

Lemma 6.4.2. This proves the first inequality.

By Lemma 6.4.2 there are overall at most r polynomials of the

form Xm that are different modulo p and H, no matter how m is

chosen. This proves the second inequality. �

Proof of Theorem 6.1.1. Let n and p be as before, i.e. p is prime

and n is a multiple of p. Moreover let r be a prime number coprime

to n and satisfying ordr(n) > 4(log n)2. Since r is coprime to n, we

know that r �= p, and hence

4(log n)2 < t ≤ r

by Corollary 6.4.3. As in the previous section, let � denote the number

of integers a ∈ {0, . . . , p−1} for which X+a satisfies (6.1.2). Suppose

that � ≥ r. Then � ≥ t ≥ t− 1, and Corollary 6.3.8 implies that n is

a power of p. This proves the theorem. �

Exercises.

6.4.4. Exercise (!). Let n ≥ 2 and let H be a monic polynomial. (More
generally, we could let H be a polynomial whose leading coefficient is co-
prime to n, so that we can divide by H with remainder.) Suppose that we
are given r ≥ 1 with Xr ≡ 1 (mod n,H). Show that if k is the smallest
natural number satisfying Xk ≡ 1 (mod n,H), then k divides r.

6.4.5. Exercise. Let r be prime and let Kr be as in (6.4.1).

(a) We define a polynomial K ′ by substituting X + 1 for X in Kr;
i.e. K ′ := Kr(X + 1). Prove that

K ′ ≡ Xr−1 (mod r).

Hint: By definition of Kr, we see that X ·K ′ = (X+1)r −1. Use
Theorem 5.1.1 to compute this polynomial modulo r.

(b) Use Eisenstein’s irreducibility criterion (Exercise 3.5.20) to show
that K′ is irreducible over Q and Z.

(c) Conclude that Kr is also irreducible.

6.4. Cyclotomic polynomials 181

Further Exercises and Comments.

6.4.6. The r-th cyclotomic polynomial can be defined for all natural num-
bers r. However, for composite numbers the definition is not given by
(6.4.1). Instead, Kr is defined to be the polynomial that remains when
dividing Xr−1 by the product of all cyclotomic polynomials Km for which
m < r is a divisor of r. In other words, Km is defined inductively by the
equation

(6.4.7) Xr − 1 =
∏

m∈N,m|r

Km.

For example,

X6 − 1 = (X − 1)(X + 1)(X2 +X + 1)(X2 −X + 1)

= K1 ·K2 ·K3 · (X2 −X + 1),

so X2 −X + 1 is the sixth cyclotomic polynomial.

The following exercises and comments are concerned with properties
of cyclotomic polynomials.

6.4.8. Exercise. Compute the cyclotomic polynomial Kr for all r ≤ 10.

6.4.9. Exercise.

(a) Show that Kr has degree ϕ(r). (Hint: Exercise 3.2.18.)

(b) Let p be prime. Show that there is a primitive root modulo p,
i.e. a number a with ordp(a) = p− 1.

(Hint: If ordp(a) < p−1, then a is a root (modulo p) of some
polynomial Kr where r | (p − 1). What is the largest number of
roots this polynomial can possibly have?)

6.4.10. The cyclotomic polynomial Kr is irreducible over Z, even if r is
composite. However, this is more difficult to prove than in the case where
r is prime.

6.4.11. Exercise. This exercise is for readers who are familiar with the
complex numbers; see also Comment A.21. A complex number z is called
an r-th root of unity if zr = 1. So the r-th roots of unity are exactly
the complex roots of the polynomial Xr −1. Furthermore z is a primitive
r-th root of unity if also zm �= 1 for every number m with 1 ≤ m < r.

(a) Where are the roots of unity situated (geometrically) in the com-
plex number plane?

(b) Prove that there are exactly ϕ(r) primitive r-th roots of unity.

(Hint: The r-th roots of unity are precisely the numbers e2πiq/r,
where q ∈ {0, . . . , r − 1}.)

182 6. The theorem of Agrawal, Kayal, and Saxena

(c) Show by induction that the r-th cyclotomic polynomial is given
by

(6.4.12) Kr(X) =
∏

z primitive r-th
root of unity

(X − z).

This equation gives an alternative definition of cyclotomic polynomials.
Indeed, if we define Kr by (6.4.12), then these polynomials automatically
satisfy (6.4.7). It remains to show that all coefficients are integers. (From
the definition we only know that they are complex numbers.) It is not too
difficult to do so by induction and we invite the reader to work out the
details.

6.4.13. Concluding this chapter, we remark that we could also study the
irreducible factors of Kr modulo a prime number p, where we assume that
r and p are coprime. In this setting, Lemma 6.4.2 still holds, but the proof
becomes more difficult.

Recall that this lemma was the only place in the proof of Theorem
6.1.1 at which the primality of r was used. Hence this assumption could
actually be removed from the statement of the theorem.

Chapter 7

The algorithm

Having proved the theorem of Agrawal, Kayal, and Saxena, we can

now formulate the AKS algorithm and prove that it is indeed a de-

terministic and efficient algorithm for the problem PRIMALITY. We

first need to answer the problem of choosing the polynomial Q (i.e.

how to choose the number r from Theorem 6.1.1), which had been

left open so far. This is explained in the first section of this chapter;

after this we develop the final form of the algorithm. We end with a

short discussion of possible improvements and new developments.

7.1. How quickly does the order of n modulo r
grow?

By Theorem 6.1.1, we know that we can detect a composite number

by testing only a small number of congruences – provided that there

is a suitable prime number r that is not too large itself! Recall that

r should satisfy

ordr(n) > 4(log n)2

and that it should grow at most polynomially with logn. Is there

always such a number r? In order to reformulate this question we

introduce some more notation.

183

184 7. The algorithm

7.1.1. Definition.

Let n ≥ 2 and k ∈ N. We use r(n, k) to denote the smallest prime r

such that r |n or ordr(n) > k.

Our question is: how large is r(n, k), depending on n and k? We

give an elementary answer that is quite rough, but sufficient for our

purposes. Interestingly, the search for better bounds quickly leads to

deep theorems and conjectures from number theory; see Section 7.3.

Recall that if ordp(n) = m, then nm ≡ 1 (mod p) and therefore

nm − 1 is a multiple of p. Thus the number

N :=
∏
m≤k

(nm − 1)

is a common multiple of all prime numbers p that satisfy ordp(n) ≤ k.

In particular, N is a common multiple of all primes p < r(n, k).

The smallest common multiple of all these primes is their product

(7.1.2) Π :=
∏

p prime,
p<r(n,k)

p,

so we have Π ≤ N . The number N depends on n and k, and we can

estimate Π from below, for example by using the weak prime number

theorem. In this way, we obtain the desired upper bound for r(n, k).

7.1.3. Theorem (Size of r(n, k)).

The number r(n, k) satisfies

r(n, k) = O
(
k4 · (log n)2

)
.

(I.e. there is a number K such that r(n, k) ≤ K · k4 · (log n)2 for all

n and k.)

Proof. We simplify notation by writing r instead of r(n, k). The

weak prime number theorem (Theorem 4.3.3) tells us that Π grows

at least exponentially in r/ log r. More precisely,

Π ≥ 2π(r−1) ≥ 2
C·(r−1)
log(r−1) > 2

C·(r−1)
log r > 2

C·r
2 log r .

7.1. How quickly does the order of n modulo r grow? 185

(Here Π is the number from (7.1.2), π(r − 1) is, as in Chapter 4,

the number of primes p < r, and C is a suitable constant that is

independent of n, k, and r.)

But we also know that N grows at most exponentially in k2 ·log n,
as we can see from

N =
∏
m≤k

(nm − 1) <
∏
m≤k

nm = n1+···+k = n
k(k−1)

2 < n
k2

2 = 2
k2·log n

2 .

(Here we used the Gauss summation formula from Exercise 1.1.12.)

Comparing these two estimates and remembering that Π ≤ N , we

obtain
r

log r
<

k2 · log n
C

.

Now that we have an estimate for r
log r , we can easily deduce one

for r as well. Indeed, we know that (log(r))2 = O(r). (See Exercise

2.3.4.) So in particular r · (log(r))2 = O(r2) and thus

r = O

(
r2

log(r)2

)
= O(k4 · (log n)2). �

For the application in Theorem 6.1.1, we are interested in the

order of magnitude of r0 := r(n,
4(logn)2�). By Theorem 7.1.3, this

number satisfies

(7.1.4) r(n,
4(logn)2�) = O((logn)10).

Thus r0 grows at most polynomially with log n, as desired. So there

is no problem in finding this number and hence the corresponding

polynomial Q = Xr0 − 1 efficiently, using a simple search. Thus we

have solved point (2) from our strategy in Section 5.2, which was the

final problem remaining in our development of the algorithm.

Exercises.

7.1.5. Exercise. Show that, for every ε > 0, even

r(n, k) = O
(
(k2 · logn)1+ε)

holds in Theorem 7.1.3. Deduce that, in (7.1.4), we could replace (log(n))10

by (log(n))5+ε.

186 7. The algorithm

7.2. The algorithm of Agrawal, Kayal, and
Saxena

Here we close the gaps in the basic structure of the AKS algorithm

from Section 5.2. This establishes the algorithm in its final form:

Algorithm AKS

Input: A natural number n ≥ 2.

1. If n is a perfect power, i.e. n = ab with a < n and
b > 1, then answer “n is composite”.

2. Otherwise do the following for r = 2, 3, 4, . . . :
(a) Test whether r is prime (e.g. by using the

Sieve of Eratosthenes).
(b) If r |n and r < n, answer “n is composite”.
(c) If r ≥ n, answer “n is prime”.
(d) Otherwise compute the order ordr(n).
(e) If r is prime and ordr(n) > 4(logn)2, set

Q := Xr − 1 and continue with Step 3.
3. Test the congruences

(X + a)n ≡ Xn + a (mod n,Q)

for all integers a from 1 to r − 1.
4. If one of these congruences is not satisfied, answer
“n is composite”.

5. Otherwise answer “n is prime”.

7.2.1. Theorem.

Algorithm AKS is deterministic and efficient. If n is a prime number,

then the output of the algorithm is “n is prime”. Otherwise, the

algorithm outputs “n is composite”.

Proof. We have effectively proved the theorem already, but to be

safe we shall explicitly check all claims one by one.

Clearly the algorithm is deterministic. We must check that each

step can be carried out efficiently. For Step 1, the recognition of

perfect powers, we saw in Exercise 2.3.6 that this is the case.

7.2. The algorithm of Agrawal, Kayal, and Saxena 187

Step 2 is repeated until we have found the number

r0 := r(n,
4(logn)2�)
from the previous section. By (7.1.4), we know that r0 grows at most

polynomially in log n; so in particular the number of times this step is

repeated is at most polynomial in log n. The time required to check

whether r is prime is polynomial in r, and testing whether n and r

are coprime requires only an application of the Euclidean algorithm,

which is efficient. The same is true for computing the order ordr(n)

because this requires at most r multiplications modulo r. In total,

the running time of the second step is at most polynomial in log n.

The number of congruences that are tested in Step 3 is at most

r0−1, hence again polynomial in log n. We saw in Exercise 5.1.10 how

each of these congruences can be checked efficiently. (This was one

of the key ideas in coming up with the algorithm.) Thus the running

time of this step is bounded by a polynomial function of log n.

So the algorithm is efficient; we must check correctness. If the

algorithm answers “n is composite”, one of the following happened:

• n was recognized as a perfect power of some number a < n

in the first step.

• In Step 2(b), the algorithm found a prime divisor r of n such

that r < n.

• One of the congruences in the third step is not satisfied.

Then n is composite by Theorem 5.1.1.

So in each of these cases, n is indeed a composite number.

If, on the other hand, there are two cases where the algorithm

answers “n is prime”:

• In Step 2(c), we have r ≥ n. Then we have tested all num-

bers r < n in Step 2 without finding a prime divisor of n

(otherwise the algorithm would have stopped, answering “n

is composite”). Thus n is prime.

• All congruences in Step 3 are satisfied, and by Theorem

6.1.1, n is either a prime or a prime power. In the latter

case, the algorithm would have already stopped in Step 1,

so n must be prime.

188 7. The algorithm

In summary, the algorithm answers “n is prime” if and only if n

is prime. Thus the theorem has been proved, and we have achieved

the goal that we set for ourselves at the beginning of the book. �

Exercises.

7.2.2. Exercise (P). Implement the AKS algorithm. (Naturally this will
require using many operations from earlier programming exercises.)

Further Exercises and Comments.

7.2.3. Using Comment 6.1.4 we could improve the algorithm a little bit.
First of all, we can replace the bound of r − 1 in the third step by the
smaller number 2

√
r logn, which speeds up the execution.

Furthermore, it is not necessary to require the primality of the number
r. Again, this will speed up the execution because we can omit the primal-
ity test on r and because the smallest natural number r with ordr(n) >
4(logn)2 may not be prime.

7.2.4. Exercise. We developed the AKS algorithm on the basis of ap-
proach (b) from Section 5.2. Here we will see that Theorem 6.1.1 can also
be used to obtain a primality test on the basis of approach (a). That is, we
will find an algorithm that tests a fixed congruence modulo several different
polynomials Q. (This observation comes from the article of Agrawal and
Biswas [AB].)

(a) Let n ≥ 2 and let P , Q, and T be polynomials. Show: if Q is a
divisor of P modulo n, then Q(T) is a divisor of P (T) modulo n.

(b) Deduce that if P1, P2, and Q are polynomials and a ∈ Z, then
P1 ≡ P2 (mod n,Q) if and only if

P1(X + a) ≡ P2(X + a) (mod n,Q(X + a)).

(c) Let n ≥ 2 and r ∈ N. Use induction to prove the following for all
� ∈ N: if

(7.2.5) (X − 1)n ≡ Xn − 1 (mod n, (X − a)r − 1)

for all a = 1, . . . , �, then also

(X + a)n ≡ Xn + a (mod n,Xr − 1)

for all a = 1, . . . , �.

This means that, in Step 3 of the AKS algorithm, we could just as well
test the congruence (7.2.5) for all numbers a from 1 to r − 1.

7.3. Further comments 189

7.3. Further comments

As we have already emphasized several times, the goal of our treat-

ment of the AKS algorithm was to give a complete and accessible

proof. In particular, our presentation differs somewhat from that in

the original paper by Agrawal, Kayal, and Saxena, which placed more

emphasis on obtaining a better running time.

We have already mentioned some possibilities for improvement in

exercises and comments at the end of the relevant sections. Others

can be obtained by using the best known algorithms for arithmetic

with polynomials. Information on these can be found in the litera-

ture on efficient algorithms. We now briefly mention some possible

improvements in our estimates for the running time of the algorithm.

The size of r0. If we look at the algorithm carefully, we notice that

it is Step 3 that takes the longest amount of time. How long this is

exactly depends on how large the number r0 is. So we can only hope

for clear improvements in our estimates of the running time if we can

find better upper bounds for the number r0 = r(n,
4(logn)2�), which
was defined as the smallest prime r0 with ordr0(n) > 4(log n)2. Our

original bound in (7.1.4) had the order of magnitude O
(
(log n)10

)
.

By Exercise 7.1.5 this can be improved to O
(
(log n)5+ε

)
, where ε is

an arbitrarily small positive number. If we do not require that r0 be

prime (Comment 7.2.3), then we can improve this bound a little bit

further: in this case we obtain r0 = O((logn)5) (Exercise 7.3.2).

It is possible to strengthen these bounds further, but as already

mentioned in Section 7.1, this leads to some very deep theorems and

questions of number theory whose surface we can only scratch in this

book. (For more details we refer the reader to the original paper as

well as the literature mentioned at the end of the chapter.)

From now on, we fix n and are still looking for a number r for

which ordr(n) is “big”. By the Fermat-Euler Theorem, we know that

ordr(n) is a divisor of ϕ(r). So it would be useful to find numbers for

which ϕ(r) itself has big prime divisors.

The study of prime numbers r for which ϕ(r) = r − 1 has large

prime divisors has a long history: it goes back almost two centuries,

to the work of the French mathematician Sophie Germain. While

190 7. The algorithm

working on Fermat’s Last Theorem, she studied prime numbers p for

which k ·p+1 is also prime, where k is an even number. An important

special case is given by k = 2.

7.3.1. Definition (Sophie Germain prime).

A prime p is called a Sophie Germain prime if 2p+ 1 is also prime.

In analogy to the prime counting function π(m) we can denote by

S(m) the number of Sophie Germain primes p with p ≤ m. In 1922,

the English mathematicians Hardy and Littlewood formulated the

following conjecture: there is a constant C such that S(M) behaves

asymptotically like Cm/(logm)2 as m → ∞.

If this is right, then it follows that the order of magnitude of

our number r0 is at most O((logn)2+ε), where ε > 0 can be chosen

arbitrarily small. (See Exercise 7.3.4.) So our algorithm would find

a suitable number r much faster than our previous bounds suggest.

Unfortunately the conjecture on Sophie Germain primes is still un-

proven – as discussed in Appendix A, it is not even known whether

there are infinitely many such primes!

On the other hand, there is a theorem of Fouvry from 1985 that

studies prime numbers q that, while perhaps not being Sophie Ger-

main primes, at least have the property that q− 1 has a prime factor

that is much larger than
√
q. Using this deep and extremely diffi-

cult result from analytic number theory, one can show at least that

r = O((logn)3), which is still a considerable improvement in our

original bound.

Variants of the AKS algorithm. Soon after Agrawal, Kayal, and

Saxena published their article, a number of people have developed

improvements. Here we only want to mention an algorithm of Lenstra

and Pomerance [LP], which has a better running time than the AKS

algorithm. The basic idea is, essentially, the same as that of Agrawal,

Kayal, and Saxena, but a different polynomial Q is used to test the

congruences. However, here the proof is considerably more difficult,

and we are unable to give further details here.

7.3. Further comments 191

Despite all improvements in running time, there is still no known

deterministic primality test that can remotely hope to compete with

that of Miller and Rabin. Therefore, there is still much room for

exciting new developments!

Exercises.

7.3.2. Exercise. Let r = r′(n, k) be the smallest natural number satisfying
gcd(n, r) �= 1 or ordr(n) > k. Show that r′(n, k) = O(k2 logn).

Hint: Follow the same idea as in Section 7.1, but use Theorem 4.4.3
instead of the weak prime number theorem.

Further Exercises and Comments.

7.3.3. Sophie Germain was an influential French mathematician in the
early nineteenth century. The scope and importance of her work, in par-
ticular on Fermat’s Last Theorem, was long underestimated; see [LaPe].

7.3.4. Exercise.

(a) Let p be a Sophie Germain prime and set r := 2p + 1. Show:
for every natural number n that is not a multiple of r, we have
ordr(n) ≤ 2 or ordr(n) ≥ p.

(b) Show: for every number n ≥ 2 there are at most 2 logn prime
numbers r satisfying ordr(n) ≤ 2.

(c) Assume that the conjecture of Hardy and Littlewood on Sophie
Germain primes, as stated in the preceding section, is correct.

Deduce: if ε > 0 is any positive number and if k ∈ N is
sufficiently large, then there are at least k Sophie Germain primes
p satisfying k < p ≤ k1+ε.

(d) Deduce (still under the assumption that the conjecture is correct)
that for every ε > 0, we have

r(n, k) = O((max(logn, k))1+ε).

(Here max(logn, k) denotes the larger of the two numbers log n
and k.)

7.3.5. If r is prime, let us denote by P (r) the largest prime divisor of r−1.
The theorem of Fouvry from 1985 mentioned above states the following:

There is a constant δ > 2/3 and a constant cδ > 0 such that for every
m ≥ 2 there are at least cδ ·m/ logm prime numbers r satisfying P (r) > rδ.

192 7. The algorithm

This theorem also has a connection to Fermat’s Last Theorem: with
its help, Fouvry was able to show in joint work with Adleman and Heath-
Brown, also in 1985, that the “first case” of Fermat’s Last Theorem is
satisfied at least for infinitely many prime numbers. (Fermat’s Last Theo-
rem was completely proved by Andrew Wiles roughly ten years later.)

7.3.6. The proof of Fouvry’s Theorem, like other results from analytic num-
ber theory, has an interesting property. The constant cδ is “not effective”:
it is proved that this number exists, but there is no δ > 1/2 for which any
explicit choice cδ is known.

The reason for this is that, in the end, the proof relies on distinguishing
two cases. First it is shown that the theorem is correct if the Generalized
Riemann Hypothesis is true. (In this case, it is possible to make explicit
statements about the constant cδ.) On the other hand, it is shown that the
theorem is also correct if this conjecture is wrong, and then the constant
depends on the smallest counterexample! (See [G, Section 5].) This is an
impressive example of the power of indirect mathematical proofs.

Further reading

The article [Bo] contains an interesting summary of the AKS algo-

rithm and its development. The book [Dtz] and the survey article

[G] are also recommended for those who would like to learn more

about the algorithm and related results. Finally, we again mention

the book [CP], which contains an impressive variety of results about

primality tests, factorization methods, and much more. It is highly

recommended to more advanced readers.

Appendix A

Open questions

In this appendix, we will present some more results concerning prime

numbers and discuss some problems that remain unsolved. We shall

not give proofs, and of course our discussion of open questions is not

complete but is rather intended as a starting point for those readers

who are interested in problems related to prime numbers. There will

also be plenty of suggestions for further reading.

The Riemann Hypothesis. The Riemann Hypothesis is undoubt-

edly one of the most famous open problems of modern mathematics.

We have already encountered it in Comment 4.3.6.

A.1. Conjecture (Riemann Hypothesis as phrased by von Koch).

Let π(n) denote the prime number function and let Li(n) =
∫ n

2
dt
ln t

denote the Logarithmic Integral Function. Then∣∣π(n)− Li(n)
∣∣ = O(

√
n lnn).

The usual version of the Riemann Hypothesis is harder to explain

because it concerns the so-called Riemann ζ-function. This func-

tion is defined on the set C of complex numbers (see Comment A.21).

For elements s ∈ R such that s > 1, the value of the ζ-function can

193

194 A. Open questions

be expressed in terms of a series in the following form:

ζ(s) :=

∞∑
n=1

1

ns
.

Euler noticed that

ζ(s) =
∏
p

1

1− p−s

where the product is taken over all prime numbers p. Hence we see

that there is a connection between the ζ-function and the set of prime

numbers. (For a proof of this statement and related results we refer

the reader to [HW] and [J].)

In a ground-breaking article from 1859, Riemann proved that the

ζ-function can be extended to a function that is defined on the entire

complex plane, except at the point 1, where it has a pole (i.e. takes the

value ∞). It is also known that all negative even numbers are zeros

of the ζ-function. In his paper mentioned above, Riemann stated the

following conjecture about all complex zeros of the extended function:

A.2. Conjecture (Riemann Hypothesis).

Suppose that z = x + iy is a zero of the ζ-function and that y �= 0.

Then x = 1
2 .

Geometrically, this would mean that all non-real zeros of the ζ-

function lie on a vertical line (in the complex plane) going through 1
2 ,

called the critical line. It is well known that all non-real zeros must

belong to the critical strip consisting of numbers z = x + iy with

0 < x < 1.

Von Koch proved in 1901 that the original form of the Riemann

Hypothesis is equivalent to Conjecture A.1. The ζ-function also plays

a role in the usual proof of the prime number theorem, Theorem 4.3.2.

In 1900, Hilbert gave a list of 23 deep mathematical problems

that where central to mathematics in his opinion, and the Riemann

Hypothesis was one of these. It is still neither proved nor disproved,

and as one of the “Millennium Prize Problems” of the Clay Institute,

A. Open questions 195

its proof would be rewarded with a million US dollars. (The problem

P
?
= NP from Section 2.4 is also on this list.)

There is a lot of research going on around the Riemann Hypoth-

esis. It is widely believed to be true (sometimes it is used as an

explicit additional assumption in the proof of certain mathemati-

cal results) and computer calculations show that at least the first

10 000 000 000 000 complex, non-real zeros of ζ satisfy the conjecture.

Therefore the discovery of a counterexample would be quite a sur-

prise (but to our knowledge there would be no financial reward in

this case).

We would also like to mention the so-called Generalized Rie-

mann Hypothesis; see also Comment 4.5.11. It says that each

member of a certain class of functions, including the Riemann ζ-

function, satisfies Conjecture A.2.

The Goldbach Conjecture. In 1742 Goldbach wrote, in a letter to

Euler:

It appears at least that every number that is greater

than 2 is a sum of three prime numbers.

We should mention here that Goldbach considered 1 to be a prime

number, contrary to our convention. Hence a modern version of Gold-

bach’s statement would be that all numbers that are at least 6 can be

written as a sum of three prime numbers. Examples are 8 = 3+3+2

and 13 = 5+5+3. When answering Goldbach, Euler mentioned that

this can be rephrased in the following way:

A.3. Conjecture (Goldbach Conjecture).

Every even number n ≥ 4 can be written as a sum of two prime

numbers.

This is the most well-known version of the Goldbach Conjecture;

see also Exercise A.22. In spite of many attempts by professional

mathematicians as well as interested amateurs, and in spite of the

beautiful simplicity of the statement, a proof does not appear to be

even remotely in reach. Some progress on the conjecture was made

by Chen in the 1970s; as far as we know this remains the most recent

196 A. Open questions

significant contribution to this problem in a long time. A simplified

proof of Chen’s result is contained in [Ros].

A.4. Theorem (Chen, 1973).

If n is a sufficiently large even number, then n can be written as

n = p1 + p2 with a prime number p1 and a number p2 that is a

product of at most two primes.

Much more is known as soon as we replace “two” by a larger

even number in Goldbach’s statement. For example, in 1930 it was

proved that all numbers n ≥ 4 can be written as a sum of at most

300 000 prime numbers. In 1995, Ramaré showed that at most six

prime numbers are enough (quite an improvement from 300 000!). As

far as we know, this was the best known result of this type prior to

Helfgott’s work from 2013 (see below).

The following is a famous special case of the conjecture for odd

numbers:

A.5. Conjecture (Weak Goldbach Conjecture).

All natural numbers n > 7 can be written as a sum of three odd prime

numbers.

Already in 1937, Vinogradov was able to prove the following re-

sult:

A.6. Theorem (Vinogradov’s Theorem).

If n ∈ N is a sufficiently large odd natural number, then n can be

written as a sum of three odd primes.

This meant that, in order to establish the Weak Goldbach Con-

jecture, it would, in principle, suffice to check only finitely many num-

bers – but how many? Vinogradov’s original proof does not provide

an actual bound on this number. Although subsequent mathemati-

cians were able to rectify this, until very recently the best known

versions of Vinogradov’s Theorem established the Weak Goldbach

Conjecture for numbers n greater than 101350. This is far larger than

A. Open questions 197

the estimated number of atoms in the universe, so there was no hope

of checking this many numbers computationally.

However, in 2013 the Peruvian mathematician Harald Helfgott

announced a complete proof of the Weak Goldbach Conjecture [He].

More precisely, he was able to improve on Vinogradov’s Theorem

by proving that the conjecture holds for all n ≥ 1029; the remaining

cases can then be ruled out using some (quite sophisticated) numerical

verification of the Goldbach Conjecture and the Riemann Hypothesis

within a certain range of numbers. We note that it had already been

proved in 1997 that the Weak Goldbach Conjecture is true if the

Generalized Riemann Hypothesis holds.

Just as Fermat’s Last Theorem, the Goldbach Conjecture is a

typical example of mathematical problems that are easy to state (as

often is the case in number theory) but turn out to be extremely

difficult. The mathematics that is developed when trying to solve

such a problem often has much greater impact than the result itself,

leading to new methods and concepts and hence advancing all relevant

research areas.

Remark. The Goldbach Conjecture should not be confused with the

statement that all prime number p ≥ 3 can be written as a difference

of two squares. This is true and in fact not difficult to prove (see

Exercise A.23). Another result worth mentioning in this context is

once again due to Fermat: he proved that all prime numbers that are

congruent to 1 modulo 4 can be written in a unique way as a sum of

two squares.

Twin Primes. For all n ∈ N, the pair (n, n + 2) is called a pair of

twin primes if and only if n and n+ 2 are prime. We have already

mentioned such pairs in Comment 1.6.5; some examples are (3, 5),

(5, 7), and (1997, 1999). The largest pair of currently known twin

primes (as of 2013) consists of two numbers with 200 700 digits.

A.7. Conjecture.

There are infinitely many twin primes.

198 A. Open questions

We do not know the origin of this conjecture or who explicitly

stated it for the first time, but in the first edition of [HW] there is

already a stronger version:

A.8. Conjecture.

There are infinitely many triples of prime numbers (n, n + 2, n + 6)

and (n, n+ 4, n+ 6).

(On the other hand, the reader is invited to verify in Exercise A.24

that (3, 5, 7) is the only prime triple of the form (n, n+ 2, n+ 4).)

Just as for the Goldbach Conjecture, Chen was able to prove a

version of the conjecture where the requirement that both numbers

be primes is weakened:

A.9. Theorem (Chen, 1973).

For all even numbers h ∈ N there are infinitely many pairs (p, p+ h)

such that p is prime and p + h is a product of at most two prime

numbers.

Note that the Twin Primes Conjecture concerns the size of prime

gaps, i.e. the distance between one prime number and the next one.

In Theorem 1.6.2, we proved that there are arbitrarily large prime

gaps, and the prime number theorem implies that the average gap

between two primes becomes larger as the numbers increase. With

this terminology, the conjecture claims that, nonetheless, there are

infinitely many gaps of size two. In April 2013, Zhang [Zh] announced

a proof of the following theorem.

A.10. Theorem (Bounded gaps between primes).

There is some H ∈ N such that there are infinitely many prime gaps

of size at most H.

In other words, there are infinitely many pairs (p, q) of primes

such that p < q and q − p ≤ H.

The result was immediately hailed as a major breakthrough and

was accepted for publication in the Annals of Mathematics, one of

A. Open questions 199

the most prestigious mathematical journals, within one month. How

large is the number H? Zhang’s original article gives the rather large

number H = 70 000 000. However, his work prompted an intensive

international online collaboration between mathematicians, coordi-

nated by Terence Tao, to improve the bounds occurring in Zhang’s

work. As of October 2013, they have succeeded in reducing the value

of H to less than 5000. Nonetheless, it appears that new ideas would

be required to obtain H = 2 and hence prove the Twin Primes Con-

jecture.

Finally, let us note that alternative characterizations of twin

primes have been known for a while, for example the following one

due to Clement (see also Exercise A.25):

A.11. Theorem (Clement’s Theorem, 1949).

Let n ∈ N. Then (n, n + 2) is a pair of twin primes if and only if

4((n− 1)! + 1) + n is divisible by n(n+ 2).

As mentioned above, there is only one triple of prime numbers of

the form (n, n+ 2, n+ 4). However, it is easy to find triples of prime

numbers of the form (n, n + 3, n + 6) or quadruples of prime num-

bers of the form (n, n+ 6, n + 12, n + 18), for example (3, 7, 11) and

(5, 11, 17, 23), respectively. Generally speaking, if x, c,N ∈ N, then a

sequence of the form x, x+ c, x+ 2c, . . . , x+Nc is a (finite) arith-

metic progression. The number N of elements in such a sequence

is called the length of the progression.

For a long time, it was an open question whether or not it is

possible to find arithmetic progressions consisting only of prime num-

bers and of arbitrary length. This problem was finally solved by Ben

Green and Terence Tao in 2004; their remarkable article appeared in

the Annals of Mathematics in 2008 [GT].

A.12. Theorem (Green-Tao Theorem).

The set of prime numbers contains finite arithmetic progressions of

arbitrary length.

200 A. Open questions

Dirichlet’s Prime Number Theorem can be viewed as a converse

to the Green-Tao result. Its proof is quite difficult (published in

1837 in the Abhandlungen der Königlichen Preußischen Akademie

der Wissenschaften) and is therefore often omitted in number theory

books such as [HW].

A.13. Theorem (Dirichlet’s Prime Number Theorem).

Let a ∈ N and let n ∈ N be coprime to a. Then the (infinite) arith-

metic progression a, a+n, a+2n, a+3n, . . . contains infinitely many

prime numbers.

Mersenne numbers. For any n ∈ N, the n-th Mersenne number

Mn is defined as

Mn := 2n − 1.

Mersenne numbers naturally appear in the context of so-called per-

fect numbers. A number n ∈ N is called perfect if and only if n

is the sum of all divisors of n that are strictly smaller than n. For

example, 6 and 28 are perfect numbers because 6 = 1 + 2 + 3 and

28 = 1 + 2 + 4 + 7 + 14. Euclid proved the following:

A.14. Theorem (Euclid).

Suppose that n ∈ N is such that 2n − 1 is prime. Then 2n−1(2n − 1)

is a perfect number.

It was long conjectured that the numbers from Theorem A.14 in

fact are the only even perfect numbers. The first known proof is due

to Euler.

A.15. Theorem (Euler).

A number a ∈ N is perfect if and only if there exists some n ∈ N such

that a = 2n−1(2n − 1) and 2n − 1 is prime.

For this reason, Hardy and Wright [HW, Section 16.8] refor to

the even perfect numbers as “Euclid numbers”. (It is not known

whether or not there are any odd perfect numbers.) The results of

Euclid and Euler reveal a connection between perfect numbers and

A. Open questions 201

Mersenne numbers, specifically Mersenne numbers that are prime.

Hence we define

A.16. Definition (Mersenne prime).

A Mersenne prime is a Mersenne number that is prime.

Hence M2 = 22 − 1 = 3 and M3 = 23 − 1 = 7 are Mersenne

primes, but M4 = 24 − 1 = 15 is not. It is an exercise that if n ∈ N is

composite, then Mn is composite too (Exercise A.28). This raises a

number of questions – in fact, the investigation of Mersenne numbers

is a very active research area, which has led to the discovery of many

interesting number-theoretic results. Here we will just discuss the

following questions:

• Is it true that for all primes p the p-th Mersenne number is

prime?

• How many Mersenne primes are there?

The answer to the first question is No, and the first counterexam-

ple is given already by M11 = 2047 = 23·89. So we need an additional

hypothesis, leading to a primality test for Mersenne numbers.

A.17. Theorem (Lucas test).

We define a sequence of natural numbers k0, k1, ... recursively by set-

ting k0 := 4 and ki+1 := k2i − 2 for all i ≥ 0.

Now suppose that n ≥ 3 is prime. Then Mn is a Mersenne prime

if and only if Mn divides kn−2.

This result can be proved within a few pages once a sufficient

number-theoretic background is established. The second question

we asked above is still wide open: it is conjectured but not known

that there are infinitely many Mersenne primes. The search for new

Mersenne primes is being pursued quite vigorously by a distributed

computing project known as the “Great Internet Mersenne Prime

Search”. As of the time of this writing, the largest known Mersenne

prime is M57 885 161, which was discovered in January 2013. (The pre-

vious record holder, M43112609, had been found in 2008.) This is also

202 A. Open questions

the largest known prime number. In 1964–1976, the post office at the

University of Illinois mathematics department even used a cancella-

tion stamp dedicated to the Mersenne prime M11213 (which had just

been discovered there)!

Sophie Germain primes. Sophie Germain primes were already

mentioned in Chapter 7: a prime p ∈ N is called a Sophie Ger-

main prime if 2p+ 1 is prime as well. The numbers 2, 3, 5, and 11

are examples. The largest currently known Sophie Germain prime is

18 543 637 900 515× 2666 667 − 1 and was found in April 2012.

A.18. Conjecture.

There are infinitely many Sophie Germain primes.

No proof of this conjecture is known yet, but occasionally new

Sophie Germain primes are found. These numbers have a connection

to Mersenne primes and to Fermat’s Last Theorem (which Sophie

Germain had been working on). Sophie Germain herself was in fact

more generally interested in prime numbers p that have the property

that, for some even n ∈ N, the number np+ 1 is also prime. Around

1825 she proved that Fermat’s Last Theorem holds for exponents that

are prime with this special property and that satisfy some technical

conditions. For n = 2 these technical conditions turn out to be auto-

matically satisfied, so Fermat’s Last Theorem was known to be true

for all such exponents, which were therefore later named after Sophie

Germain.

If p > 3 is a Sophie Germain prime such that p ≡ 3 (mod 4), it is

a – slightly tricky – exercise to show that the Mersenne number Mp

is composite. Even more is true [HW, Theorem 103]:

A.19. Theorem.

Suppose that p is a prime number, that p > 3, and that p ≡ 3 (mod 4).

Then p is a Sophie Germain prime if and only if the p-th Mersenne

number Mp is divisible by 2p+ 1.

The exception p = 3 is necessary since M3 = 23−1 = 7 = 2 ·3+1.

This means that 2p+1 divides Mp, but this time Mp is not composite.

A. Open questions 203

Fermat numbers. For all n ∈ N the n-th Fermat number is defined

to be Fn := 22
n

+ 1. A Fermat number is called Fermat prime if

and only if it is prime.

Fermat himself conjectured in 1650 that all numbers of the form

22
n

+ 1 are prime. But this quickly turned out to be wrong: for

example, F5 is composite. It remains an open question whether or

not there are infinitely many Fermat primes.

A.20. Conjecture (Eisenstein, 1844).

There are infinitely many Fermat primes.

So far it is known that F0, F1, F2, F3, F4 are prime but that all

larger Fermat numbers up to F32 are composite. It is very difficult

to factorize numbers of this size, which is why full factorizations cur-

rently are known only up to F11. Moreover, F20 and F24 are known to

be composite, but no prime factor has been found so far! We are not

aware of any theoretical results that bring us closer to understanding

how many Fermat primes there might be.

Further Exercises and Comments.

A.21. Complex numbers are written in the form z = x + iy, where i is an
“imaginary unit” satisfying i2 = −1. They can be added, multiplied, and
divided using the usual rules of arithmetic; for example

(1 + i) · (1− i) = 1− i2 = 2 and

1 + i

1− i
=

(1 + i)2

(1 + i)(1− i)
=

1 + 2i+ i2

2
= i.

Indeed, the set of complex numbers, denoted by C, is a field in the sense
of Comment 3.1.24. Just as we imagine the real numbers as forming a
line, we can visualize the complex numbers as filling a plane, where x and
y represent the horizontal, resp. vertical, coordinates.

Although this construction may at first seem counterintuitive and ar-
tificial, it turns out that complex numbers are extremely natural, and their
study can provide deep insight into problems that, at first glance, are firmly
rooted in the world of real numbers. The connection between primes and
the Riemann ζ-function is one example of this.

204 A. Open questions

A.22. Exercise. Prove: all n ∈ N with n ≥ 6 can be written as a sum of
(exactly) three prime numbers if and only if all even numbers n ≥ 4 can
be written as a sum of (exactly) two prime numbers.

A.23. Exercise. Prove that all odd numbers m ≥ 3 can be written as a
difference of two perfect squares. (Hint: Write m = 2k+1 such that k ∈ N.
How is this related to (k + 1)2?)

A.24. Exercise. Prove that (3, 5, 7) is the unique triple of prime numbers
of the form (n, n+ 2, n+ 4). (Hint: Exercise 1.2.8).

Moreover, prove that all pairs of twin primes except (3, 5) can be writ-
ten as n = 6k − 1 and n+ 2 = 6k + 1 with suitable k ∈ N.

A.25. Exercise. Recall Wilson’s Theorem from Exercise 4.5.10: a number
n > 1 is prime if and only if (n − 1)! + 1 ≡ 0 (mod n). Use this result to
prove Clement’s Theorem as follows:

(a) Let n ∈ N. Prove that n+ 2 is prime if and only if

2(n− 1)! + 1 ≡ 0 (mod n+ 2).

(b) Let n ∈ N be such that n and n+ 2 are both prime. Prove that

(A.26) 4
(
(n− 1)! + 1

)
+ n ≡ 0 (mod n(n+ 2)).

(c) Conversely suppose that n > 1 is odd and that (A.26) holds.
Deduce that n and n+ 2 are prime.

(d) Prove that if n is even, then 2 ·
(
2(n− 1)! + 1

)
�≡ 0 (mod n+ 2).

Deduce that (A.26) never holds for odd numbers.

A.27. Open problems such as the ones we discussed here create consid-
erable research activity. Many mathematicians attempt to prove conjec-
tures, to find counterexamples, or to understand special cases of famous
problems. It is not unusual that a researcher presents an argument to the
mathematical community that could possibly prove a conjecture, but then
closer inspection shows that his or her results are flawed. For example, in
2004, R. Arenstorf published a draft article on the Internet that, if correct,
would have led to a proof of Conjecture A.8. Unfortunately, the French
mathematician G. Tenenbaum found an error in this paper that could not
be corrected.

A.28. Exercise. Let k,m, n ∈ N such that 1 < m ≤ k < n and n = mk.
Prove that the Mersenne number Mn is composite. (Hint: For M4 = 15
we can write 24 − 1 = (22 − 1)(22 + 1) = 3 · 5. Think of a similar way to

write 2mk − 1 as a product of two natural numbers distinct from 1.)

Further reading 205

A.29. Sometimes 2n + 1 is called the n-th Fermat number (rather than

22
n

+ 1), but our definition is more common.

A.30. For many of the problems that we mentioned in this appendix, Hardy
and Littlewood gave much more precise statements when they formulated a
number of detailed conjectures that are concerned with the distribution of
prime numbers. For example they give (conjectured) asymptotic formulae
for the number of ways that an even number can be written as a sum of
two primes and for the number of twin primes. These statements are often
based on heuristic arguments. It is because of arguments of this type that
many of the conjectures that we discussed are widely believed to be true.

Further reading

For more details and number-theoretic background, we suggest [HW].

Sections 1 and 2 and Appendix 3 of that book are particularly inter-

esting in the context of this appendix, as is [CP, Chapter 1]. Read-

ers interested in the Riemann Hypothesis may enjoy the article [Co].

The book Uncle Petros and Goldbach’s Conjecture [Do] by Apostolos

Doxiadis is a fascinating non-technical book concerning the Goldbach

Conjecture.

The article [LaPe] is based on new research concerning Sophie

Germain’s mathematical work and gives deep insight into her ideas on

Fermat’s Last Theorem and her contribution to number theory gen-

erally, which it seems has been widely underestimated. It also sheds

some light on the historical context, in particular her correspondence

with Gauss.

Finally we would like to mention a webpage that has become quite

famous, namely “The Prime Pages” (http://primes.utm.edu/). It

gives a lot of up-to-date information about various problems concern-

ing prime numbers, open questions, and, for example, the discovery

of new very large primes.

Appendix B

Solutions and comments
to important exercises

Exercise 1.1.10. (a) Let n ∈ N and M := {m ∈ N : 2m ≥ n}.
Then M is a non-empty subset of N (as we can see because

n ∈ M) and therefore the well-ordering principle yields that

M has a smallest element m0. Hence we have that 2m0 ≥ n,

but 2m < n for all natural numbers m < m0. In particular

2m0 − 2 = 2(m0 − 1) < n, and so we conclude that

2m0 − 2 < n ≤ 2m0.

This means that n equals 2m0 − 1 or 2m0. In the first case

n is odd in the second case n is even.

If n is even, for example n = 2m1 with a suitable number

m1 ∈ N, then n cannot be odd at the same time. Assume

otherwise and let m2 ∈ N be such that n = 2m2 − 1. Then

2m1 = 2m2−1 and in particular m1 < m2. Then m2−m1 ∈
N whereas m2−m1 = 1

2 /∈ N. This is a contradiction. Hence

n is either even or odd.

(b) Suppose that n,m ∈ N are even. Then there are a, b ∈ N

such that n = 2a and m = 2b. This implies that nm =

(2a)(2b) = 2(2ab). As 2ab ∈ N, it follows that nm is even.

207

208 B. Solutions and comments to important exercises

Next suppose that n,m ∈ N are odd. Let a, b ∈ N be

such that n = 2a− 1 and m = 2b− 1. Then we have that

nm = (2a− 1)(2b− 1) = 4ab− 2b− 2a+ 1

= (4ab− 2b− 2a+ 2)− 1 = 2(ab− b− a+ 1)− 1.

As ab− b− a+ 1 ∈ N, we deduce that nm is odd.

Exercise 1.1.11. We need to prove that all non-empty subsets of Z

that are bounded from below (from above) have a smallest (a largest)

element.

Hence suppose that M ⊆ Z is non-empty and that M is bounded

from below. Let K ∈ Z be a lower bound for M ; i.e. for all x ∈ M

we have that K ≤ x. Set

S := {1 + x−K : x ∈ M}.

For all x ∈ M we see that x−K ∈ N0 and hence 1+(x−K) ∈ N.

It follows that S ⊆ N and, since M is non-empty, the set S is also

non-empty. The well-ordering principle yields that S has a smallest

element s0. Let m0 := s0 − 1 + K. Then m0 ∈ M because of the

definition of S. Now we prove that m0 is the smallest element of M :

Assume that m ∈ M is such that m < m0. Then s := 1+m−K ∈
S and s = 1 +m −K < 1 +m0 −K = s0, which is a contradiction.

Thus m0 really is the smallest element of M as stated.

Next suppose thatM ⊆ Z is non-empty and bounded from above.

Let K ∈ Z be an upper bound for M ; i.e. for all x ∈ M we have that

x ≤ K. Then the set M ′ := {−x : x ∈ M} is a non-empty set of

integers that is bounded from below by −K. Therefore M ′ has a

smallest element m′ by the previous paragraph. Now m∗ := −m′ is

the largest element in M .

These statements do not hold for Q and R! The set

M := {x ∈ Q : 0 < x < 1}
is bounded from above by 1 and from below by 0, but this set has

neither a smallest element nor a largest element. (For a formal proof

let x ∈ M . Then 0 < x
2 < x < x+1

2 < 1 and hence x is neither a

smallest element of M nor a largest element.)

B. Solutions and comments to important exercises 209

Exercise 1.1.12. Let x ∈ R be such that x �= 1.

Claim. For all n ∈ N the following hold:

(a) 2n ≥ 2n.

(b)

n∑
k=1

k =
n(n+ 1)

2
.

(c)

n−1∑
k=0

xk =
1− xn

1− x
.

(d)
n−1∑
k=0

(k + 1) · xk =
nxn+1 − (n+ 1)xn + 1

(1− x)2
.

Proof of (a). Basis of the induction: As 21 = 2 ≥ 2 · 1, our
claim is true for n = 1.

Induction hypothesis: Suppose that n ∈ N is such that the claim

holds for n. This means that 2n ≥ 2n.

Induction step: We have that

2n+1 = 2 · 2n ≥ 2 · 2n

using the induction hypothesis. As n ≥ 1, we also know that 2n =

n+ n ≥ n+ 1 and hence

2n+1 ≥ 2 · 2n ≥ 2 · (n+ 1).

This concludes the proof. �

Proof of (b). Basis of the induction: The claim holds for n = 1

because
1∑

k=1

k = 1 =
1(1 + 1)

2
.

Induction hypothesis: Here we go from n − 1 to n because this

simplifies notation. (See (a) in Section 1.1.) Hence suppose that

n ∈ N is such that n ≥ 2 and such that the claim holds for n− 1, i.e.

n−1∑
k=1

k =
(n− 1)n

2
.

210 B. Solutions and comments to important exercises

Induction step: We split the sum in two parts and then apply the

induction hypothesis:

n∑
k=1

k =

n−1∑
k=1

k + n =
(n− 1)n

2
+ n

=
n2 − n

2
+

2n

2
=

n2 − n+ 2n

2
=

n2 + n

2
=

n(n+ 1)

2
. �

Proof of (c). Basis of the induction: If n = 1, then the left-

hand side gives

n−1∑
k=0

xk =
0∑

k=0

xk = x0 = 1

and the right-hand side gives 1−xn

1−x = 1−x1

1−x = 1. These are equal and

hence the claim is true for n = 1.

Induction hypothesis: Suppose that n ∈ N is such that the claim

holds for n. This means that

n−1∑
k=0

xk =
1− xn

1− x
.

Induction step: When calculating the left-hand side of the equation

for n+ 1, we obtain that

n∑
k=0

xk =

n−1∑
k=0

xk + xn =
1− xn

1− x
+ xn,

applying the induction hypothesis. Thus

n∑
k=0

xk =
1− xn

1− x
+ xn =

1− xn + xn(1− x)

1− x

=
1− xn + xn − xn+1

1− x
=

1− xn+1

1− x

as stated, finishing the proof. �

B. Solutions and comments to important exercises 211

Proof of (d). Basis of the induction: We calculate

0∑
k=0

(k + 1) · xk = 1 · x0 = 1 and

1 · x2 − 2 · x1 + 1

(1− x)2
=

x2 − 2x+ 1

x2 − 2x+ 1
= 1,

so the claim holds if n = 1.

Induction hypothesis: Let n ∈ N be such that
n−1∑
k=0

(k + 1) · xk =
nxn+1 − (n+ 1)xn + 1

(1− x)2
.

Induction step: Here we calculate that
n∑

k=0

(k + 1) · xk =

(
n−1∑
k=0

(k + 1) · xk

)
+ (n+ 1) · xn

= nxn+1−(n+1)xn+1
(1−x)2 +(n+1)·xn = nxn+1−(n+1)xn+1+(n+1)xn(1−x)2

(1−x)2

= nxn+1−(n+1)xn+1+(n+1)xn(x2−2x+1)
(1−x)2

= nxn+1−(n+1)xn+1+(n+1)xn+2−(2n+2)xn+1+(n+1)xn

(1−x)2

= (n+1)xn+2−(n+2)xn+1+1
(1−x)2 .

Then the proof is complete.

(The readers who know about differential calculus may alter-

natively take the statement in (c) and then differentiate on both

sides.) �

Remark. The remaining parts of this exercise are proved similarly, but

we do not explain the details because the statements are not relevant

for the content of this book.

Exercise 1.1.15. Suppose that k, n ∈ N0 are such that k ≤ n. Fol-

lowing our intuitive definition, the binomial coefficient
(
n
k

)
counts how

many subsets of size k we find in the set {1, . . . , n}.
Here is a way to make this explicit: we write the numbers 1, . . . , n

in some arbitrary order and then take the first k numbers. There

are n! ways to write 1, . . . , n in arbitrary order. If we write 1, . . . , n

212 B. Solutions and comments to important exercises

in two ways such that the first k numbers are the same (even if in

different order), then the other n− k numbers must coincide as well

(again independent of their ordering). This means that, whenever we

choose k numbers in the set {1, . . . , n}, then this choice corresponds

to exactly k!(n−k)! sequences built from the numbers 1, . . . , n. Hence

the number of possibilities of choosing k numbers from {1, . . . , n} is

exactly n! divided by k!(n− k)!, or in other words,

(B.1)

(
n

k

)
=

n!

k!(n− k)!
.

Now we prove (B.1) by using the recursive definition of binomial

coefficients. Recall that

(
0

0

)
= 1,

(
0

k

)
= 0 (k �= 0), and

(
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)

for all n, k ∈ N0.

Basis of the induction: If n = 0, then
(
0
0

)
= 1 and 0!

0!·0! = 1, so

the claim holds.

Induction hypothesis: Suppose that n ∈ N is such that(
n
k

)
= n!

k!(n−k)! for all k ≤ n.

Induction step: Let k ∈ N0 be such that k ≤ n + 1. If k = 0 or

k = n+ 1, then

(
n+ 1

k

)
= 1 =

(n+ 1)!

0!(n+ 1)!
=

(n+ 1)!

k!(n+ 1− k)!
.

Hence we suppose from now on that 1 ≤ k ≤ n. The induction

hypothesis and the recursive formula yield that

(
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
=

n!

k!(n− k)!
+

n!

(k − 1)!(n− (k − 1))!
.

B. Solutions and comments to important exercises 213

Hence it follows that(
n+ 1

k

)
=

n!

k!(n− k)!
+

n!

(k − 1)!(n− (k − 1))!

=
(n− k + 1) · n! + k · n!

k!(n− k + 1)!

=
n · n!− k · n! + n! + k · n!

k!(n− k + 1)!

=
n · n! + n!

k!(n− k + 1)!
=

(n+ 1)!

k!(n− k + 1)!
,

and the proof is complete.

Exercise 1.1.17. Let n, k, � ∈ N0.

Claim. Then the following hold:

(a)

(
n+ �

k

)
≥
(
n

k

)
;

(b)

(
n+ �

k + �

)
≥
(
n

k

)
;

(c)

(
2n

n

)
≥ 2n.

Sketch of proof. A formal proof of (a) and (b) could for example

use induction over � and the recursive formula that we have for bino-

mial coefficients. But it can be seen that the statements are true by

looking at Pascal’s triangle; each entry is the sum of the two entries

above, and all entries are non-negative.

For (c) we use induction and parts (a) and (b). If n = 0, then

the inequality is correct because
(
0
0

)
= 1 and 20 = 1. This establishes

the induction basis. Now we suppose that the claim holds for some

n ∈ N and we calculate(
2(n+ 1)

n+ 1

)
=

(
2n+ 1

n

)
+

(
2n+ 1

n+ 1

)
≥
(
2n

n

)
+

(
2n

n

)

= 2 ·
(
2n

n

)
≥ 2 · 2n = 2n+1.

In the first line we use the recursive definition and (a) and (b). In

the second line we use the induction hypothesis. �

214 B. Solutions and comments to important exercises

Exercise 1.1.18. Let n,m ∈ N0. Let a(n,m) denote the number of

possibilities for choosing m integers between 1 and n, not necessarily

pairwise distinct, but ordered. We prove that a(n,m) satisfies the

following recursive formula:

a(n,m) = a(n− 1,m) + a(n,m− 1).

To see this, we choose up to m distinct numbers between 1 and

n. If n is one of the chosen numbers, then there is one place less for

the other numbers, so the number of possibilities that this happens

is a(n,m − 1). (Recall that the chosen numbers are not necessarily

distinct, so n could be chosen several times.) If n is not among the

chosen numbers, then we might as well have chosen between 1 and

n− 1, so the number of possibilities for this is a(n− 1,m). As one or

the other case must occur, the number of all possibilities is the sum

of these numbers.

Claim. For all n,m ∈ N0 we have that a(n,m) =

(
n+m

m

)
.

Proof. We argue by induction over n +m. Hence for all � ∈ N0 we

prove that if n,m ∈ N0 satisfy n+m = �, then

a(n,m) =

(
n+m

m

)
.

Basis of the induction: We see that a(0, 0) = 1 =
(
0
0

)
, so the

claim holds if � = 0.

Induction hypothesis: Let � ≥ 1 be such that the claim holds for

�− 1. Hence if m,n ≥ 1 are such that m+ n = �, then

a(n− 1,m) =

(
n+m− 1

m

)
and a(n,m− 1) =

(
n+m− 1

m− 1

)
.

Induction step: Suppose that m,n ∈ N0 are such that � = m+ n.

If m = 0 or n = 0, then a(n,m) = 1 and
(
n+m
m

)
= 1 and hence there

is nothing left to prove.

Otherwise we apply the recursive formula for a(n,m), the induc-

tion hypothesis, and the recursive formula for binomial coefficients.

B. Solutions and comments to important exercises 215

Then

a(n,m) = a(n− 1,m) + a(n,m− 1)

=

(
n+m− 1

m

)
+

(
n+m− 1

m− 1

)
=

(
n+m

m

)
. �

Exercise 1.2.6.

Claim. Let n ∈ N.

(a) If n > 1, then there exists a prime number p dividing n.

(b) If n > 1 is composite, then there exists a non-trivial divisor

k of n such that k2 ≤ n.

Proof of (a). As n > 1, there are two possibilities:

• n is prime or

• n is composite.

In the first case we set p := n. In the second case we consider

T := {k ∈ N : k > 1 and k |n}. This set is non-empty because it

contains n. The well-ordering principle yields a smallest element k0
of T . Suppose that m �= 1 is a number that divides k0. Then m

divides n as well and therefore m ∈ T . The choice of k0 as smallest

element of T forces m = k0. Thus we proved that k0 has exactly two

distinct divisors, namely 1 and k0. This means that k0 is prime and

we set p := k0. �

Proof of (b). Suppose that n > 1 is composite. Then let a, b ∈ N

be such that a, b �= 1 and n = a · b. If a ≤ b, then a2 ≤ a · b = n and

hence a is as claimed. Otherwise b < a and then b is as claimed by

the same argument. �

Exercise 1.2.12. Let n ∈ N and let p be a prime number that does

not divide n. We set d := gcd(p, n). Then d divides p and therefore

d = p or d = 1 because p is prime. In the first case it follows that p

divides n, contrary to our hypothesis. Hence d = 1 as claimed.

Exercise 1.3.9. Let a, b ∈ Z. Set d := gcd(a, b) and k := lcm(a, b).

216 B. Solutions and comments to important exercises

Claim. (a) a
d and b

d are coprime.

(b) If v is a common multiple of a and b, then k | v.
(c) d · k = |a · b|. In particular, if d = 1, then k = |a · b|.

Proof of (a). Let m ∈ N be a common factor of a
d and b

d . Then m ·d
is a common factor of a and b. As d is the greatest common divisor

of a and b, it follows that m · d ≤ d and hence m = 1. Now it follows

that gcd
(
a
d ,

b
d

)
= 1. �

Proof of (b). We divide v by k with remainder, so we write

v = q · k + r

such that q ∈ N0 and 0 ≤ r < k. We write this differently as

r = v − q · k.

Since a is a factor of v and k, it also divides r. Moreover b divides r.

As r is a common multiple of a and b, the definition of k = lcm(a, b)

and the choice of r yield that r /∈ N. Thus r = 0. It follows that

v = q · k and hence k | v as stated. �

Proof of (c). Here we need to show that

d =
|a · b|
k

.

First we observe that |a · b| is a common multiple of a and b, and so

(b) yields that k divides |a ·b|. This means that m := |a·b|
k is a natural

number. Now
a · b
d

= a · b
d
= b · a

d

is a common multiple of a and b. Therefore |a·b|
d ≥ k and we deduce

that d ≤ m.

We want to prove that m is a common factor of a and b. So we

write k = a · b1 with some b1 ∈ Z. Then

m =
a · b
k

=
a · b
a · b1

=
b

b1
,

and this implies that b = m · b1. Thus m divides b.

B. Solutions and comments to important exercises 217

In a similar way we see that m divides a. Consequently m is a

common factor of a and b, m ≥ d, and m ∈ N. Our definition of the

greatest common divisor gives that m = d, as claimed. �

Exercise 2.3.4.

Claim (a). Suppose that f : N → R is a function and that ε > 0

satisfies f(n) > ε for all n ∈ N. Let C ∈ R be a constant.

Then f(n) + C = O(f(n)).

Proof. For all n ∈ N we have that

|f(n)+C| ≤ |f(n)|+ |C| = |f(n)| ·
(
1 +

C

|f(n)|

)
< |f(n)| ·

(
1 +

C

ε

)
.

So if we set K := 1 + C
ε , then |f(n) + C| < K · |f(n)| for all n ∈ N.

Then the concept of the O-notation yields that we are done. �

Claim (b). Let k,m ∈ N0. Then xk = O(xm) if and only if k ≤ m.

Proof. First suppose that k ≤ m. Then xk ≤ xm for all x ∈ N and

hence xk = O(xm).

Conversely suppose that k > m and let C be a constant. If x > C,

then

xk ≥ xm+1 = x · xm > C · xm.

Hence xk �= O(xm). �

Claim (c). If P is an integer polynomial of degree at most d, then

P (n) = O(nd).

Proof. We let a0, . . . , ad ∈ Z be such that P = adX
d+· · ·+a1X+a0.

Then for all n ∈ N we see that

P (n) = adn
d + · · ·+ a1n+ a0 ≤ (ad + · · ·+ a1 + a0) · nd. �

Claim (d). an = O(2n) if and only if a ≤ 2.

Proof. If a ≤ 2, then an ≤ 2n and hence an = O(2n). Now we

suppose that a > 2 and we set b := a
2 . Then

an = (b · 2)n = bn · 2n.

218 B. Solutions and comments to important exercises

Assume that an = O(2n). Then bn ≤ C for some constant C > 0.

But b > 1 and hence n ≤ log b
logC , and this is false if n is large. This

contradiction shows that an �= O(2n) in this case. �

Claim (e). Suppose that ε > 0 is a real number. Then log n = O(nε).

Proof. First we write

log n = log
(
(nε)

1
ε

)
=

log(nε)

ε
.

Then we see that log x < x for all numbers x ∈ R such that x > 0.

This is a consequence, for example, of Exercise 1.1.12(a) where we

proved that 2n ≥ 2n for all n ∈ N. We conclude that n ≥ log n + 1

and thus

log x ≤ log�x ≤ �x − 1 < x.

Now

log n =
log(nε)

ε
<

nε

ε
and therefore log n = O(nε), as stated. �

Claim (f). If k ∈ N, then nk = O(2n).

Proof. Let k ∈ N. First we show that, for all sufficiently large n ∈ N,

the inequality (n + 1)k < 2nk holds. Recall that, by the binomial

theorem, we may write (n+ 1)k as nk + P (n) where

P (n) :=

k−1∑
j=0

(
k

j

)
nj

is an integer polynomial of degree k − 1 in n. With (c) we see that

P (n) ≤ K · nk−1 for some suitable K > 0. Now if n > K, then

(n+ 1)k = nk + P (n) ≤ nk +K · nk−1 < nk + nk = 2nk.

Next we let n0 := �K and C :=
nk
0

2n0
. We claim that

nk ≤ C · 2n

for all n ≥ n0. For n0 itself this follows from the definition of C.

Proceeding by induction we suppose that the claim holds for some n.

Then

(n+ 1)k < 2nk ≤ 2 · C · 2n = C · 2n+1. �

B. Solutions and comments to important exercises 219

Exercise 2.3.5. We sketch an argument that shows the efficiency

of long division with remainder. Let n, k ∈ N and, for simplicity,

suppose that they are represented in the binary system. If n ≤ k,

then we choose n as remainder and we are done. Hence suppose that

n > k. By s we denote the number of digits of n and by t the number

of digits of k. Our aim is to find q, r ∈ N0 such that n = q · k + r

and 0 ≤ r < k. The numbers q and r are found after s − t + 1

steps in the following way: we set r0 = n and rs−t+1 = r, and for

all j ∈ {0, . . . , s − t + 1} we calculate the j-th digit of q and some

remainder rj .

• We calculate k′j := 2s−t+1−j · k by adding s− t+1− j zeros

to the number k.

• If k′j ≥ rj−1, then at the j-th digit q has the entry 1. Then

we set rj := rj−1 − k′j .

• Otherwise the j-th digit of q is 0 and then we set rj := rj−1.

We have to compare at most s − t + 1 digits and then we subtract

numbers with at most s digits. Hence the running time is polynomial

in s.

Remark. By using the method of “divide and conquer”, it is possible

to give an easier but less efficient algorithm. There we search for the

largest number m such that k ·m ≤ n. As m ≤ n this search needs

at most �logm multiplications.

Now we consider the Euclidean algorithm. Applied to two natural

numbers m and n such that m > n, we begin by dividing m by n with

remainder:

m = q1 · n+ r2, q1 ≥ 1, r2 < n.

Then r2 < m
2 ; this follows immediately if n ≤ m

2 because then

r2 < n. Otherwise q1 = 1 and again

r2 = m− n < m− m

2
=

m

2
.

Hence for all numbers rj that appear during the Euclidean algo-

rithm, we have that rj+2 <
rj
2 and in particular

r2k <
m

2k
.

220 B. Solutions and comments to important exercises

Thus the number of divisions that need to be performed until the

remainder is 0 is at most 2·�logm−1 . Hence the order of magnitude

is O(logm) and the algorithm is efficient.

Exercise 2.3.6. Let k, n ∈ N. We want to calculate the number

m0 :=
 k
√
n� efficiently and hence we apply the idea of “divide and

conquer” again. We see that m0 ≤ n and hence we need to check at

most �log n times whether or not a power mk is larger than n. The

previous exercise yields that this can be done efficiently. (We stop

taking powers as soon as we reach a number that is larger than n

and hence our calculations only deal with numbers that have at most

2
log n�+ 2 digits.) Hence the algorithm is efficient.

When it comes to practical applications, the algorithm could be

improved by finding better bounds for m0. Recall that the number t

of digits of n in the binary system is exactly
log n� + 1. Then the

definition of m0 implies that mk
0 ≤ n and (m0 + 1)k > n. It follows

that

logm0 ≤
⌈
t

k

⌉
and log(m0 + 1) >

⌊
t− 1

k

⌋
;

therefore

2

t−1
k � − 1 ≤ m0 ≤ 2� t

k.
Consequently the idea of “divide and conquer” needs to be applied

only to m0.

When checking whether or not, for a natural number n, there

exist m, k ∈ N such that k > 1 and n = mk, for all k ∈ {2, 3, 4, . . . }
we could just calculate the numbers mk :=
 k

√
n�. If it happens that

mk
k = n, then we answer “yes”, and if mk

k > n, then we answer “no”.

We need to check at most logn numbers k; thus the algorithm is

efficient.

Exercise 2.5.5.

Claim. Suppose that P is an integer polynomial in n variables that is

not the zero polynomial. Let d be the highest exponent that appears

for one of the variables and letM > 0. Then P has at most n·d·Mn−1

integer zeros (i.e. zeros with integer coordinates) with coordinates

between 1 and M .

B. Solutions and comments to important exercises 221

Proof. We argue by induction over n. If n = 0, then P has no

variables at all, so it is constant and non-zero. This implies that P

has no zeros at all.

Next we suppose that n ∈ N is such that the claim holds for n.

Let y1, . . . , yn, yn+1 ∈ Z be such that P (y1, . . . , yn, yn+1) �= 0. (This

choice is possible because P is not the zero polynomial.)

Suppose that (x1, x2, . . . , xn, xn+1) is a zero of P with integer

coordinates xj ∈ {1, . . . ,M} for all j ∈ {1, . . . , n+ 1}.
There are two cases:

(a) If P (y1, y2, . . . , yn, xn+1) �= 0, then (x1, . . . , xn) is a zero of a

non-constant polynomial in n variables X1, . . . , Xn, namely

Q(X1, . . . , Xn) := P (X1, . . . , Xn, xn+1).

By our induction hypothesisQ has at most n·d·Mn−1 integer

zeros with coordinates between 1 and M . As xn+1 takes

values between 1 and M as well, we find at most n · d ·Mn

zeros of this kind.

(b) If P (y1, . . . , yn, xn+1) = 0, then xn+1 is a zero of

R(X) := P (y1, . . . , yn, X).

Thus Corollary 3.4.5 implies that there are at most d such

values xn+1. There areM
n possibilities for x1, . . . , xn; hence

we find d ·Mn zeros of this kind.

This case distinction shows that there are at most

n · d ·Mn + d ·Mn = (n+ 1) · d ·Mn

zeros of the required form. �

Exercise 2.5.6. We consider a coin that gives “heads” with proba-

bility p and “tails” with probability q = 1− p.

Claim (a). The probability of no “tails” after throwing n times is qn.

Proof. It is one of the standard arguments in probability theory

that the probability for the occurrence of n independent events is the

product of the individual probabilities. �

222 B. Solutions and comments to important exercises

Claim (b). If q = 1/2, then we need at least 20 throws to ensure that

the probability from (a) is at most 0.0001%.

Proof. By (a), the probability of no “tails” after throwing n times

is 1/2n. If we want to force

1

2n
< 0.000001,

then we need to choose n such that

n =

⌈
log

1

0.000001

⌉
= �log 106 = 20.

This means that after throwing the coin 20 times, we will obtain the

result “heads” at least once with probability 0.999999. �

Claim (c). The average number of throws until we have the event

“heads” for the first time is
1

p
.

Proof. The probability that “heads” appears for the first time after

throwing n times is p · qn−1 because it means that we throw “tails”

n− 1 times first.

Hence the expected value is

∞∑
j=1

j · p · qj−1 = p ·
∞∑
j=0

(j + 1) · qj .

Using Exercise 1.1.12, we calculate this sum as

k−1∑
j=0

(j + 1) · qj = kqk+1 − (k + 1)qk + 1

(1− q)2
.

When k goes to ∞, then the fact that q < 1 yields that the

numerator on the right-hand side tends to 1. Thus

p ·
∞∑
j=0

(j + 1) · qj = p

(1− q)2
=

p

p2
= p,

as stated. �

B. Solutions and comments to important exercises 223

In the algorithm POLY-NULL, the probability of finding a non-

zero is at least 1/2. Hence, on average, we need at most two rep-

etitions of the algorithm to see that a polynomial is not the zero

polynomial.

Exercise 3.1.10.

Claim. Suppose that a, b ∈ Z and that m,n ∈ N are such that m |n
and a ≡ b (mod n). Then a ≡ b (mod m). The converse is false.

Proof. The hypothesis a ≡ b (mod n) means that n divides a − b.

As m divides n, this implies that a − b is divisible by m and thus

a ≡ b (mod m). We give a counterexample for the converse: 2 divides

4 and 8 ≡ 10 (mod 2), but 8 is not congruent to 10 modulo 4. �

Exercise 3.1.13. The numbers 4 and 3 are zero divisors modulo 6

because they are both incongruent to 0 modulo 6, but their product

3 · 4 = 12 is divisible by 6.

Also 2 and 5 are zero divisors modulo 10 because they are in-

congruent to 0 modulo 10, but 2 · 5 = 10 is congruent to 0 modulo

10.

Now let p be a prime number and let x, y ∈ Z be such that

xy ≡ 0 (mod p). Then p divides xy and hence it divides one of x

or y, by Corollary 1.3.5. This means that there are no zero divisors

modulo a prime number.

Claim. Let n ∈ N be such that n ≥ 2. Then there are zero divisors

modulo n if and only if n is composite.

Proof. We proved in the paragraph above that there are no zero

divisors modulo a prime. Hence if there are zero divisors modulo n,

then n is composite. For the converse we suppose that n is composite.

Then choose x, y ∈ N such that n = xy and 1 < x ≤ y < n. Neither

x nor y is divisible by n, but xy = n is, and therefore x and y are

zero divisors modulo n. �

Exercise 3.1.14. Let a, n, k ∈ N be such that n ≥ 2. We may

suppose that a < n; otherwise we divide a by n with remainder. This

224 B. Solutions and comments to important exercises

can be done efficiently. In order to calculate the remainder of ak

modulo n, we argue as in Section 2.3, when we discussed the method

“divide and conquer” for computing powers. But here, all numbers

that occur will be viewed modulo n. This means that at most 2
log k�
multiplications are necessary, and all these numbers are at most of

size n. Hence the algorithm is efficient.

Now we calculate the multiplicative inverse of a modulo n. In

Exercise 2.3.5 we saw that the Euclidean algorithm is efficient and

that, when applied to n and a, it needs at most 2�log n− 1 divisions

with remainder. Substituting backwards to find the numbers from

Bézout’s Lemma takes at most logn steps and all these numbers can

be viewed modulo n. Hence all numbers that appear in the calculation

have at most as many digits as n and the number of calculations is

bounded by a polynomial in log n. Thus the algorithm is efficient.

Remark. The numbers s and t such that s · n + t · a = 1 that are

found by the Euclidean algorithm have size at most n. Thus we do

not really need to reduce the numbers modulo n in each step; but we

will not prove this fact here.

Exercise 3.2.13. Let a, n ∈ Z, n ≥ 2, and suppose that a and n are

coprime. Set k := ordn(a).

Claim. (a) If b1, b2 ∈ N0 are such that b1 ≡ b2 (mod k), then

ab1 ≡ ab2 (mod n).

(b) Let A := {aj mod n : j ≥ 0} be the set of remainders

modulo n of all powers of a. Then

A = {1, amod n, a2 mod n, . . . , ak−1mod n}.

(c) #A = k.

Proof. For (a) we let b1, b2 ∈ N0 be such that b1 ≡ b2 (mod k). We

may suppose that b1 ≤ b2.

By hypothesis k divides b2 − b1 and thus there is some s ∈ N0

such that b2 − b1 = k · s. Now

ab1 = aks+b2 = (ak)s · ab2 ≡ 1s · ab2 = ab2 (mod n)

as stated.

B. Solutions and comments to important exercises 225

This already implies that the set A defined in (b) has at most

k distinct elements and that these elements are precisely those from

(b). What remains to prove (c) is that the powers 1, a, a2, ..., ak−1 are

distinct modulo n. This follows from Lemma 3.2.1. �

Exercise 3.2.17.

Claim. (a) If n,m ∈ N are coprime, then ϕ(nm) = ϕ(n) · ϕ(m).

(b) If p is prime and if k ∈ N, then ϕ(pk) = (p− 1) · pk−1.

Proof of (a). The Chinese Remainder Theorem (Theorem 3.1.7)

says that if a1, a2 ∈ N0 are such that a1 < n and a2 < m, then

there is a unique natural number x between 0 and nm− 1 such that

x ≡ a1 (mod n) and x ≡ a2 (mod m).

If x and nm are coprime, then x is also coprime to n and to m,

i.e. a1 ∈ cp(n) and a2 ∈ cp(m). Conversely if a1 is coprime to n and

a2 is coprime to m, then x is coprime to n and to m. Hence x is

coprime to nm by Corollary 1.3.5.

Hence there are exactly ϕ(n) ·ϕ(m) possibilities for choosing the

numbers a1 and a2 in such a way that x is coprime to nm. �

Proof of (b). Those numbers in {1, ..., pk} that are not coprime to

pk are precisely the multiples of p that are contained in this set, i.e.

the numbers

p, 2p, ..., p2, p2 + p, ..., 2p2, ..., pk−1, pk−1 + p,

The number of these powers of p is pk−1, and all remaining numbers

from 1 to pk − 1 are coprime to pk. Therefore ϕ(pk) = pk − pk−1 =

(p− 1) · pk−1. �

Now we apply the results that we have just proved and we calcu-

late ϕ(10), ϕ(50), and ϕ(180):

ϕ(10) = ϕ(2 · 5) = ϕ(2)ϕ(5) = 1 · 4 = 4;

ϕ(50) = ϕ(2 · 52) = ϕ(2)ϕ(52) = 1 · 4 · 51 = 20;

ϕ(180) = ϕ(22)ϕ(32)ϕ(5) = (1 · 2) · (2 · 3) · 4 = 2 · 6 · 4 = 48.

Claim. If n ∈ N and n > 2, then ϕ(n) is even.

226 B. Solutions and comments to important exercises

Proof. First we suppose that n possesses an odd prime factor p.

Then let k,m ∈ N be such that p � m and n = pk · m. Now we see

that

ϕ(n) = ϕ(pk ·m) = ϕ(pk) · ϕ(m) = (p− 1) · pk−1 · ϕ(m).

Then p− 1 is even because p is odd, and thus ϕ(n) is even.

Next suppose that n does not have any odd prime factors. Then

n is a power of 2, which means that there is some k ∈ N such that

k ≥ 2 and n = 2k. (We recall that n > 2.) It follows that

ϕ(n) = ϕ(2k) = (2− 1) · 2k−1 = 2k−1.

As k ≥ 2, this is again an even number. �

Exercise 3.4.16.

Claim. Suppose that P is a rational polynomial of degree at least 1.

Then there exists an integer polynomial H that is irreducible over Q

and divides P .

Proof. Our arguments resemble those that we used when proving

that all natural numbers of size at least 2 possess a prime factor.

Let k ≥ 1 be minimal with the property that there exists a ratio-

nal polynomial H ′ of degree k that divides P over Q. The coefficients

of H ′ are rational and we let d denote the lowest common multiple

of their denominators. Then H := d ·H ′ is an integer polynomial of

degree k. As H ′ = 1
d ·H, it follows that H divides P over Q.

We claim that H is irreducible over Q. Assume that T is a non-

trivial divisor of H over Q. Then T also divides P and 1 ≤ deg T < k,

so this contradicts our choice of k. �

Exercise 3.5.9. Suppose that n ≥ 2 is a natural number. Moreover

let P and Q be polynomials such that the leading coefficient of P

is coprime to n and, for simplicity, all coefficients of P and Q are

between 0 and n−1. We consider long division with remainder modulo

n, so we are looking for polynomials T and Q such that

Q ≡ T · P +R (mod n).

B. Solutions and comments to important exercises 227

Here is how we proceed:

1. If degQ < degP , then set T = 0 and R = Q.

2. Otherwise we let k := gradQ − gradP and we divide the

leading coefficient of Q modulo n by the leading coefficient

of P . The result is denoted by a. Then the polynomial T

will have degree k and leading coefficient a.

3. For the remaining coefficients of T and for the remaining

polynomial R we calculate Q′ := Q − a · P · Xk and we

reduce all coefficients modulo n. Then we replace Q by Q′

and we go back to Step 1.

We know that division modulo n can be performed efficiently. Step

3 needs at most one multiplication and one subtraction modulo n for

each coefficient of Q. As Q′ has smaller degree than Q modulo n,

Steps 2 and 3 are done at most (degQ− degP) times.

We conclude that this procedure has runtime polynomial in log n,

degP , and degQ. In particular the calculation of sums and products

modulo n and H can be performed efficiently because sums and prod-

ucts of integer polynomials can be done efficiently. Finally, powers

modulo n and H can be calculated as in Exercise 3.1.14. In each step

we need to replace the polynomials that appear by their remainder

when dividing by H and reducing modulo n. This way we avoid large

coefficients and large degrees.

Exercise 3.5.11. Let n ≥ 2, a ∈ Z and let P be a polynomial.

Claim. (a) a is a zero of P modulo n if and only if (X−a) divides

P modulo n.

(b) If P �≡ 0 (mod n), then P can be written as

(B.2) P ≡ (X − a1) · · · (X − am) ·Q (mod n).

Here m ≥ 0, all numbers a1, . . . , am are between 0 and n−1,

and Q is a polynomial that has no zeros modulo n.

(c) If n is prime, then the numbers a1, . . . , am in (b) are unique

up to ordering. This means that if

P ≡ (X − b1) · · · (X − bk) · R (mod n)

228 B. Solutions and comments to important exercises

is a similar presentation of P modulo n, then m = k and the

numbers bj coincide with the numbers aj up to ordering.

(d) If n is prime and P �≡ 0 (mod n), then the number of zeros

of P modulo n is at most degn(P).

Sketch of proof. Part (a) is similar to Theorem 3.4.4. If (X − a)

divides P modulo n, then a is a zero of P modulo n. Conversely

if a is a zero of P modulo n, then we divide P by (X − a) with

remainder. The remainder is a constant polynomial and hence it

must be congruent to the zero polynomial modulo n.

Part (b) follows from (a) by induction over the degree of P . If

P has no zeros modulo n, then m := 0 and Q := P . Otherwise let a

be a zero of P modulo n. Then by (a) we may divide by X − a and

we obtain a polynomial P ′ such that P ≡ (X − a) · P ′ (mod n) and

degP ′ = degP − 1. Then the result follows inductively.

The statement in (c) can be proved with arguments similar to

those for Theorem 1.3.2. We write P as in (B.2) and then we argue

by induction over m. If m = 0, then P ≡ Q (mod n) and hence P has

no zeros modulo n. Therefore P cannot be written in another way.

Otherwise there exists a zero a of P modulo n such that 0 ≤ a < n.

If

P ≡ (X − a1) · · · (X − am) ·Q (mod n) and

P ≡ (X − b1) · · · (X − bk) · R (mod n)

are two ways of writing P modulo n as above, then the fact that there

are no zero divisors modulo n (see Exercise 3.1.13) yields that one of

the numbers aj and one of the numbers bj are congruent to a modulo

n. By rearranging we may suppose that a1 ≡ a ≡ b1 (mod n). Now

the induction hypothesis yields that

P ′ := (X − a2) · · · (X − am) ·Q ≡ (X − b2) · · · (X − bk) ·Q (mod n),

so the proof is complete.

Now (d) follows from (b) and the fact that there are no zero

divisors modulo n (because n is prime). Here the zeros of P modulo

n are exactly the numbers congruent to a1, . . . , am modulo n, and

moreover m ≤ gradP . (Alternatively we could argue as in Corollary

3.4.5 by applying (a) and induction.) �

B. Solutions and comments to important exercises 229

Exercise 3.5.15. Suppose that p is a prime number and that P is a

polynomial such that P �≡ 0 (mod p).

Claim. (a) If degp(P) > 0, then there exists a polynomial H

that is monic and irreducible modulo p and that divides P

modulo p.

(b) There are m ≥ 0, a ∈ Z and some irreducible monic polyno-

mials H1, . . . , Hm such that

P ≡ a ·H1 · · ·Hm (mod p).

Sketch of proof. The proof of (a) is similar to Exercise 3.4.16. Then

(b) follows from (a) by induction over the degree of P . We leave the

details to the reader. �

Exercise 4.5.8. Deciding whether n is even or odd only takes a divi-

sion by 2, so this can be done efficiently. It is even easier if n is given

in binary presentation because then we only need to check whether

the last digit is a 0. We also saw in Exercise 2.3.6 that powers can

be recognized efficiently. Writing the number n− 1 as d · 2l takes at
most
log n� + 1 divisions with remainder. Again this is even easier

in the binary system, but we leave these arguments to the reader.

When checking whether or not a and n are coprime, we apply the

Euclidean algorithm. It is efficient by Exercise 2.3.5. The calculation

of the power ad mod n can also be done efficiently, as we saw in

Exercise 3.1.14. The same holds for the powers b, b2, b4, etc., where

we need to calculate at most l− 1 numbers. As l ≤ log n, this is also

efficient and hence the algorithm in total is efficient.

Exercise 5.1.8. Suppose that n ≥ 2 is a natural number and that p

is a prime factor of n. Let j denote the highest exponent such that

pj divides n.

Claim (a).
(
n
p

)
�≡ 0 (mod pj).

Proof. We have that

p!

(
n

p

)
=

n!

(n− p)!
= (n− p+ 1) · (n− p+ 2) · · ·n.

230 B. Solutions and comments to important exercises

Since the numbers (n − p + 1) up to n − 1 are not divisible by p, it

follows that the right-hand side is divisible by pj , but not by pj+1.

Hence pj+1 does not divide the left-hand side of the equation and this

means that
(
n
p

)
is not divisible by pj . �

Claim (b).
(
n
pj

)
�≡ 0 (mod p).

Proof. We refine the argument from the previous paragraph. Again

we see that

(pj)!

(
n

pj

)
= (n− pj + 1) · (n− pj + 2) · · ·n.

Now we show that the highest power of p that divides the right-hand

side also divides (pj)!. Hence, for all m ∈ N, let ep(m) ∈ N0 denote

the exponent of p in the factorization of m into prime powers. This

means that pep(m) divides m, but pep(m)+1 does not.

Let k ∈ N be such that k ≤ pj . Then

ep(k) = ep(n− pj + k).

(Think about why this is true!) Therefore

ep
(
(pj)!

)
=

pj∑
k=1

ep(k) =

pj∑
k=1

ep(n− pj + k) = ep
(
(n− pj + 1) · · ·n

)
.

Now Corollary 1.3.5 forces

ep

((
n

pj

))
= 0

as claimed. �

Exercise 5.1.10. Here we look for an efficient algorithm that checks

whether or not the congruence

(P (X))n ≡ P (Xn) (mod n,Q)

holds.

Here we have that n ≥ 2 is a natural number and that Q and

P are integer polynomials with coefficients between 0 and n− 1 and

such that d := degP is less than r := degQ. Moreover we suppose

that the leading coefficient of Q is coprime to n.

B. Solutions and comments to important exercises 231

We know from Exercise 3.5.9 that (P (X))n (mod n,Q) can be

calculated efficiently and therefore we can efficiently find the (unique)

integer polynomial that is congruent to (P (X))n modulo n and Q,

that has degree less than r, and that has coefficients between 0 and

n− 1. Now we write

P = adX
d + · · ·+ a1X + a0.

Then

P (Xn) = adX
nd + · · ·+ a1X

n + a0.

Applying Exercise 3.5.9 once more, we calculate Xnd, Xn(d−1), . . . ,

Xn efficiently modulo n and Q. For P (Xn) we only need to add

d + 1 polynomials of degree less than r and then we reduce modulo

n and Q. Again this can be done efficiently. Finally we compare the

coefficients (at most r) modulo n and q and then we know whether

the congruence holds or not.

Exercise 5.2.3.

Claim. Let p be a prime number and let P be an integer polynomial.

Then for all m ∈ N0 we have that

(P (X))p
m ≡ P

(
Xpm)

(mod p).

Proof. Here we use the idea that powering with exponent pm is the

same as powering m times with p. Thus we only need to apply The-

orem 5.1.1 m times and then we are done. More exactly we argue by

induction over m. If m = 0, then the claim holds because

(P (X))p
0

= P (X) = P (Xp0

).

Now we suppose that the claim is true for some m ≥ 0. This

yields that

(P (X))p
m+1

=
((

P (X)
)pm)p

≡
(
P (Xpm

)
)p

(mod p).

Theorem 5.1.1 implies that moreover(
P (Xpm

)
)p ≡ P

(
(Xp)p

m)
= P

(
Xpm+1)

(mod p),

as stated. �

232 B. Solutions and comments to important exercises

Exercise 5.2.4. Suppose that n is a composite number that has two

distinct prime factors p and q. Moreover let a ∈ Z be such that a and

n are coprime.

Claim.

(X + a)n �≡ Xn + a (mod p).

Proof. The proof follows the same idea as in Theorem 5.1.5, but now

with Exercise 5.1.8(b).

Let j denote the largest number such that pj |n. Then pj < n.

The pj-th coefficient of (X + a)n is(
n

pj

)
ap

j

,

and by Exercise 5.1.8(b) this is not congruent to 0 modulo p. �

Exercise 6.4.4. Suppose that n ≥ 2 and that H is a polynomial with

leading coefficient coprime to n.

Claim. Let r ≥ 1 be such that Xr ≡ 1 (mod n,H) and let k denote

the smallest natural number such that Xk ≡ 1 (mod n,H). Then

k | r.

Proof. We argue as in Lemma 3.2.1. First we divide r by k with

remainder:

r = t · k + r0,

with t ∈ Z and 0 ≤ r0 < k. Then

1 ≡ Xr = Xt·k+r0 =
(
Xk

)t ·Xr0 ≡ Xr0 (mod n,H).

Since r0 < k and by choice of k, we obtain that r0 = 0. Thus r = t ·k
which means that k | r, as stated. �

Bibliography

[AB] Agrawal, M. and Biswas, S.: Primality and identity testing via
Chinese remaindering. Journal of the ACM 50 (2003), no. 4, 429–
443.

[AKS] Agrawal, M., Kayal, N., and Saxena, K.: PRIMES is in P. Annals
of Math. 160 (2004), no. 2, 781–793.

[AÖ] Ağargün, A. Göksel and Özkan, E. Mehmet: A historical survey of
the fundamental theorem of arithmetic. Historia Math. 28 (2001),
no. 3, 207–214.

[Be] Beutelspacher, A.: Cryptology. Mathematical Association of
America, 1994.

[Bo] Bornemann, F.: Primes is in P: A breakthrough for “Everyman”.
Notices of the AMS 50 (2003), no. 5, 545–552.

[Br] Bryant, V.: Yet Another Introduction to Analysis, Cambridge Uni-
versity Press, 1990.

[Ch] Chen, J. R.: On the representation of a larger even integer as the
sum of a prime and the product of at most two primes. Sci. Sinica
16 (1973), 157–176.

[Co] Conrey, J. B.: The Riemann Hypothesis. Notices of the AMS 50
(2003), no. 3, 341–353.

[CLR] Cormen, T. H., Leiserson, C. E., and Rivest, R. L.: Introduction
to Algorithms. Third Edition, MIT Press, 2009.

[CM] Coron, J.-S. and May, A.: Deterministic polynomial-time equiva-
lence of computing the RSA secret key and factoring. J. Cryptology
20 (2007), 39–50.

233

234 Bibliography

[CP] Crandall, R. and Pomerance, C.: Prime Numbers: A Computa-
tional Perspective. Springer, 2005.

[De] Derbyshire, J.: Prime Obsession: Bernhard Riemann and the
Greatest Unsolved Problem in Mathematics. Penguin, 2004.

[Dst] Diestel, R.: Graph Theory. Fourth edition, Springer, 2010.

[Dtz] Dietzfelbinger, M.: Primality Testing in Polynomial Time: From
Randomized Algorithms to “PRIMES Is in P”. Springer, 2004.

[Do] Doxiadis, A.K.: Uncle Petros and Goldbach’s Conjecture: A Novel
of Mathematical Obsession. Bloomsbury, 2001.

[EFT] Ebbinghaus, H.-D., Flum, J., and Thomas, W.: Mathematical
Logic. Second edition, Springer, 1994.

[Eb] Ebbinghaus et al.: Numbers. Third printing, Springer, 1996.

[Ec] Eccles, P.: An Introduction to Mathematical Reasoning: Numbers,
Sets and Functions. Cambridge University Press, 1997.

[Frl] Fraleigh, J. B.: A First Course in Abstract Algebra. Seventh edi-
tion, Pearson, 2003.

[Frz] Franzén, T.: Gödel’s Theorem: An Incomplete Guide to Its Use
and Abuse. Peters, 2005.

[Fü] Fürer, M.: Faster Integer Multiplication. Proceedings of the 39th
Annual ACM Symposium on Theory of Computing (2007), 57–66.

[G] Granville, A.: It is easy to determine whether a given integer is
prime. Bull. Amer. Math. Soc. 42 (2005), no. 1, 3–38.

[GT] Green, B. and Tao, T.: The primes contain arbitrarily long arith-
metic progressions.Annals of Math. (2) 167 (2008), no. 2, 481–547.

[Hal] Halmos, P. R.: Naive Set Theory. Van Nostrand, 1960.

[Har] Hardy, G. H.: A Mathematician’s Apology. Cambridge University
Press, 1940.

[HW] Hardy, G. H. and Wright, E. M.: An Introduction to the Theory
of Numbers. Oxford University Press, 2008.

[He] Helfgott, H. A.: Major arcs for Goldbach’s problem, preprint,
arXiv:1305.2897, 2013.

[Ho] Hofstadter, D.: Godel, Escher, Bach: An Eternal Golden Braid.
Penguin Books Ltd., 1980.

[HMU] Hopcroft, J. E., Motwani, R., and Ullman, J. D.: Intro-
duction to Automata Theory, Languages, and Computation.
Pearson/Addison-Wesley, 2007.

[HP] Humphreys, J. F. and Prest, M. Y.: Numbers, Groups and Codes.
Second edition, Cambridge University Press, 2004.

Bibliography 235

[J] Jameson, G. J. O.: The Prime Number Theorem. Cambridge Uni-
versity Press, 2008.

[Ke] Kelly, T.: The myth of the Skytale. CRYPTOLOGICA, Vol. XXII,
no. 3 (1998).

[KS] Kurzweil, H. and Stellmacher, B.: The Theory of Finite Groups.
Springer, 2004.

[LaPe] Laubenbacher, R. and Pengelley, D.: “Voici ce que j’ai trouvé”:
Sophie Germain’s grand plan to solve Fermat’s Last Theorem. His-
toria Mathematica 37, Issue 4, (2010), 641–692.

[LP] Lenstra, H. W. Jr. and Pomerance, C.: Primality testing with
Gaussian periods. Preprint, 2005, revised April 2011.
http://www.math.dartmouth.edu/∼carlp/aks041411.pdf.

[LPa] Lewis, H. R. and Papadimitriou, C. H.: Elements of the Theory of
Computation. Prentice Hall International, 1998.

[LiN] Lidl, R. and Niederreiter, H.: Finite Fields. Addison-Wesley, 1983.

[Lo] Lorenz, F.: Algebra. Volume I: Fields and Galois Theory. Springer,
2006.

[ME] Murty, M. R. and Esmonde, J.: Problems in Algebraic Number
Theory. Springer, 2004.

[N] Nair, M.: On Chebyshev-type inequalities for primes. Amer. Math.
Monthly 89, no. 2 (1982), 126–129.

[NZM] Niven, I., Zuckerman, H. S., and Montgomery, H. L.: An Intro-
duction to the Theory of Numbers. John Wiley & Sons, 1991.

[P] Papadimitriou, C. H.: Computational Complexity. Addison-
Wesley, 1995.

[RSA] Rivest, R., Shamir, A., and Adleman, L.: A method for obtain-
ing digital signatures and public-key cryptosystems. Comm. of the
ACM 21 (1978), no. 2, 120–126.

[Rob] Robinson, S.: Still guarding secrets after years of attacks, RSA
earns accolades for its founders. SIAM News 36, no. 5 (2003).

[Ro] Ross, S.: A First Course in Probability. Eighth edition, Pearson,
2008.

[Ros] Ross, P. M.: On Chen’s theorem that each large even number has
the form p1 + p2 or p1 + p2p3. J. London Math. Soc. 10 (1975),
500–506.

[S] Singh, S.: The Code Book: Science of Secrecy from Ancient Egypt
to Quantum Cryptography. Anchor Books, 2000.

[TZ] Tao, T. and Ziegler, T.: The primes contain arbitrarily long poly-
nomial progressions. Acta Math. 201, no. 2 (2008), 213–305.

236 Bibliography

[vK] von Koch, H.: Ueber die Riemann’sche Primzahlfunction. Math.
Annalen 55, no. 3 (1901), 441–464.

[Za] Zagier, D.: Newman’s short proof of the prime number theorem.
American Math. Monthly 104 (1997), 705-708.

[Zh] Zhang, Y.: Bounded gaps between primes. Annals of Math., to
appear.

List of symbols

∅ (the empty set), page 8

C (the complex numbers), page 203

N (the natural numbers, not including zero), page 7

N0 (the natural numbers, including zero), page 7

Q (the rational numbers), page 7

R (the real numbers), page 7

Z (the integers), page 7

∞ (infinity), page 8

e (Euler’s constant, e = 2,71828 . . .), page 9

π (the area of a circle of radius 1, π = 3.14159 . . .), page 48

#M (number of elements of M), page 8

N ⊆ M (N is a subset of M), page 8

N � M (N is a proper subset of M), page 8

x ∈ M (x is an element of M), page 8

y /∈ M (y is not an element of M), page 8

NP (efficiently verifiable problems), page 69

P (efficiently computable problems), page 60

RP (problems with efficient Monte Carlo solutions), page 75

ZPP (problems with efficient Las Vegas solutions), page 78

f : N → M (f is a function from N to M), page 9

f(n) = O(g(n)) (f grows asymptotically at most as quickly as g), page 59

:= (is defined as), page 8

a ≤ b (a is less than or equal to b), page 7

a < b (a is strictly less than b), page 7

lnx (the natural logarithm of x), page 9

log x (the logarithm of x to base 2), page 9
∏n

i=1 xi (the product x1 · x2 · · · xn), page 8

237

238 List of symbols

∑n
i=1 xi (the sum x1 + x2 + · · · + xn), page 8

�x� (the largest integer n ≤ x), page 9

�x (the smallest integer n ≥ x), page 9

|x| (absolute value of x), page 9

n! (n factorial), page 9

k |n (k divides n), page 26

gcd(a, b) (the greatest common divisor of a and b), page 27

lcm(a, b) (the least common multiple of a and b), page 27

cp(n) (the set of integers from 1 to n−1 that are coprime to n), page 98

ϕ(n) (the number of integers from 1 to n − 1 that are coprime to n),
page 98

π(n) (the number of primes ≤ n), page 137

M mod n (the remainder of M after division by n), page 86

a ≡ b (mod n) (a is congruent to b modulo n), page 84

ordn(a) (the order of a modulo n), page 94

degP (the degree of the polynomial P), page 108

degn(P) (the degree of P modulo n), page 121

P ≡ Q (mod H) (P and Q are congruent modulo H), page 113

P ≡ Q (mod n) (P and Q are congruent modulo n), page 120

P ≡ Q (mod n,H) (P and Q are congruent modulo n and H), page 122

P (the set of all integer polynomials P satisfying (6.1.2)), page 171

r(n, k) (the smallest prime r with r |n or ordr(n) > k), page 184

Index

3n+ 1 problem, 51

Aaronson, Scott, 73

absolute value, 9

Ackermann, Wilhelm

Ackermann function, 68

Adleman, Leonard, 1, 132, 135,
192

age of the universe, 40

Agrawal, Manindra, 163

AKS algorithm, 4, 186

al-Khwarizmi, Abu Abdallah
Muhammad ibn Musa, 50

Alberti, Leon Battista, 131

algorithm, 43, 45

ADDITION, 46, 61

AKS, 4, 186

COLLATZ, 51

CRIME-BESTSELLER, 44

deterministic, 73

efficient, 60

Euclidean, 29, 35, 36, 43, 50, 66

inefficient, 40

Karatsuba, 67

Las Vegas, 77

MILLER-RABIN, 145

Monte Carlo, 75

N*(PI+E), 48

of Agrawal, Kayal, and Saxena,
4, 186

PANCAKE, 44

QUICKSORT, 76

randomized, 73

Schönhage-Strassen, 68

analysis

mathematical, 143

Annals of Mathematics, 4, 25, 199

Arenstorf, Richard F., 204

arithmetic

modular, 84

arithmetic progression, 199

asymptotic growth, 59

asymptotic running time, 60

average running time, 78

axiom, 14

Peano axioms, 25

Bachmann, Paul, 66

base, 104

basis of the induction, 17

best-selling crime novel, 44

Bézout, Étienne

Bézout’s Lemma, 37, 39, 87

binary number system, 46, 51

binomial coefficients, 19

explicit formula, 23

recursive formula, 19

binomial theorem, 19

Biswas, Somenath, 163

bounded from above/below, 22

239

240 Index

Caesar, Julius, 66

Caesar cipher, 130

calculus

integral/differential, 143

Carmichael, Robert D.
Carmichael number, 106, 107,

146
Chebyshev, Pafnuty Lvovich, 139

Chen, Jingrun, 195, 198

Chinese Remainder Theorem, 89

Church, Alonzo, 50, 54

Church-Turing thesis, 50

cipher

digraphic substitution, 131

mono-alphabetic, 130

playfair, 131

poly-alphabetic, 131

RSA, 132

ciphertext, 130

Clement’s Theorem, 199

Clement, Paul A.

Clement’s Theorem, 199

coefficient, 108

leading, 108

Collatz Conjecture, 51
Collatz, Lothar, 51

colorability, 70

combinatorics, 19

common divisor, 27

greatest, 27

common factor, 27

highest, 27

common multiple, 27

least, 27

complete set of residues, 92

complex numbers, 181, 193, 203

complex analysis, 139

complexity theory, 58

composite number, 26

COMPOSITES, 53

conclusion, 6

congruence, 84

modulo a polynomial, 113

of polynomials modulo n, 120
congruence class, 93

congruent, 84

constant polynomial, 108

contradiction

proof by, 15

converse, 7

coprime, 27

corollary, 7

coset, 100

counterexample

smallest, 15

cryptography, 129

public-key, 132

CSR, 92

cyclotomic polynomial, 178

de la Vallée Poussin,
Charles-Jean, 139

de Vigenère, Blaise, 131

decidable problem, 52

decimal number system, 51

decision problem, 52

decomposition

into irreducible factors, 125

into prime factors, 31

defined as, 8

definition, 6

recursive, 18

degree of a polynomial, 108

modulo n, 121

descent

infinite, 15

determinism, 45

deterministic algorithm, 73

diagonalization, 57

differential calculus, 143

Diffie, Whitfield, 135

digraphic substitution ciphers, 131

Diophantine equation, 92

direct proof, 18

Dirichlet, Gustav Lejeune

Dirichlet’s Prime Number
Theorem, 200

Disquisitiones Arithmetica, 34

divide and conquer, 62

division

long, 29

polynomial long division, 110

with remainder, 28

division algorithm, 28

division theorem, 28

division with remainder, 28

Index 241

for polynomials, 111

divisor, 26

common, 27

greatest common, 27

non-trivial, 26

of a polynomial, 110, 112

of a polynomial modulo n, 122

trivial, 26

zero, 119

zero divisor, 91, 93

dual problem, 53

efficiency, 60

efficiently verifiable problem, 69

Eisenstein, Ferdinand, 203

irreducibility criterion, 126

elements of a set, 8

empty set, 8

encryption

RSA, 2

Entscheidungsproblem, 50, 54

Eratosthenes of Cyrene, 40

Sieve of, 39, 43, 61

Euclid, 34, 38, 41, 200

Euclid number, 200

Euclidean algorithm, 29, 35, 36, 43,
50, 66

Euler, Leonhard, 194, 195

Euler’s constant, 9

Fermat-Euler Theorem, 99

phi function, 104

totient function, 98, 104

even integers, 7

even number, 22, 84

factorial, 9

Factoring Challenge, 2

Fermat number, 203

Fermat prime, 203

Fermat test, 105

Fermat, Pierre de, 2, 25

Fermat’s Last Theorem, xi, 25,
189, 191

Fermat’s Little Theorem, 25, 96

Fermat-Euler Theorem, 99

Last Theorem of, 197

theorem of Fermat-Miller, 145

Fibonacci numbers, 19, 66

field, 93
finite arithmetic progression, 199

Fouvry, Étienne, 190, 191

fraction, 7
frequency analysis, 130
function, 9

one-way, 132

Fundamental Theorem of
Arithmetic, 31

Fürer, Martin, 68

Gauss, Carl Friedrich, 104, 139
Disquisitiones Arithmetica, 34

Gauss summation, 22
gcd, 27
Generalized Riemann Hypothesis,

149, 192, 195

Germain, Sophie, 189, 191, 202
Gödel, Kurt, 57

incompleteness theorem, 57
Goldbach, Christian, 195

Goldbach Conjecture, 195
Weak Goldbach Conjecture, 196

Goldberg’s Conjecture, 197
graph, 56

Great Internet Mersenne Prime
Search, 201

greatest common divisor, 27
Green, Ben

Green-Tao Theorem, 199

group, 104

Hadamard, Jacques, 139
halting problem, 54
Hardy, Godfrey Harold, 1, 190,

205

Heath-Brown, David Rodney, 192
Helfgott, Harald, 197
Hellman, Martin, 135
highest common factor, 27

Hilbert’s decision problem, 54
Hilbert, David, 49, 194

Entscheidungsproblem, 50, 54
Tenth Problem, 56

hypothesis, 6

induction
basis of, 17
mathematical, 16

242 Index

variants, 18, 25
induction hypothesis, 17
induction step, 17

inefficient algorithm, 40
infinite descent, 15
input, 52
instance, 52

positive/negative, 53
integer, 7

even, 7
odd, 7

integral, 143
integral calculus, 143
integral domain, 119
integral logarithm, 139

intractable problem, 60
inverse modulo n, 87
irreducible polynomial, 114

Eisenstein criterion, 126

modulo p, 123

Jacobi symbol, 149

Karatsuba, Anatoly Alexeevitch
Karatsuba algorithm, 67

Kasiski, Friedrich W., 131

key
private, 132
public, 132

Lagrange, Joseph-Louis
Lagrange’s Theorem, 101, 104

Landau, Edmund
Landau symbols, 66

Las Vegas algorithm, 77
Las Vegas method, 73
lcm, 27
leading coefficient, 108

least common multiple, 27
Legendre symbol, 149
Legendre, Adrien-Marie, 139
lemma, 7

Bézout’s Lemma, 39, 87
Lenstra, Hendrik W., 190
Library of Alexandria, 40

linear factor, 112, 117, 124
Littlewood, John E., 190, 205
logarithm

base 2, 9

integral, 139

natural, 9

Logarithmic Integral Function, 193

long division, 29

polynomial, 110

Lucas, Édouard

Lucas test, 201

Markov, Andrei Andreyevich

Markov inequality, 78, 81

mathematical analysis, 143

mathematical induction, 16

variants, 18, 25

Mersenne prime

Great Internet Mersenne Prime
Search, 201

Mersenne, Marin

Mersenne number, 200

Mersenne prime, 201

Millennium Prize Problems, 72, 194

Miller, Gary Lee, 3, 149

theorem of Fermat-Miller, 145

Miller-Rabin primality test, 145

modular arithmetic, 84

modulo a polynomial, 113

monic, 108

mono-alphabetic cipher, 130

Monte Carlo algorithm, 75

Monte Carlo method, 73

multiple, 17, 26

common, 27

least common, 27

multiplicative inverse, 87

National Lottery, 19

natural logarithm, 9

natural numbers, 7, 13

negative instance, 53

non-trivial divisor, 26

of a polynomial, 112

NP, 68, 69

NP-complete problem, 72

number

Carmichael, 106, 107

complex, 181, 193, 203

composite, 26

Euclid, 200

even/odd, 22, 84

Index 243

integer, 7

natural, 7, 13

perfect, 200

prime, 1, 26

rational, 7

real, 7

number of atoms in the universe,
40, 68, 197

O-notation, 59, 66

odd integers, 7

odd number, 22, 84

one-way function, 132

order modulo n, 94

output, 52

P, 60

pairwise, 23

pancake, 44

particle physics, xi

Pascal’s triangle, 19, 96

Pausanias, 130

Peano axioms, 25

Peano, Giuseppe, 25

Peano axioms, 25

perfect number, 200

perfect power, 9

plaintext, 130

playfair cipher, 131

poly-alphabetic cipher, 131

Polybius square, 130

polynomial, 108

constant, 108

cyclotomic, 178

in X/Y /Z, 109

in several variables, 56, 73

integer/rational, 108

irreducible, 114

irreducible (modulo p), 123

monic, 108

over a field, 119

reducible, 118

zero, 108

polynomial running time, 60

polynomial zero, 116, 123

Pomerance, Carl, 190

positive instance, 53

Post, Emil

Correspondence Problem, 56

power

perfect, 9

Pratt, Vaughan, 72

prime, 1, 26

Fermat, 203

Mersenne, 201

root of unity modulo a prime,
144

Sophie Germain prime, 190

twin, 42

prime factor, 30

prime factor decomposition, 31

prime gap, 41

prime number theorem, 137

PRIMES, 53

primitive root, 103

primitive root of unity, 181

private key, 132

problem, 52

3n+ 1, 51

class NP, 68, 69

class P, 60

class RP, 75
class ZPP, 78

COMPOSITES, 53

decision, 52

dual, 53

efficiently computable, 60

efficiently verifiable, 69

halting problem, 54

Hilbert’s Entscheidungsproblem,
50, 54

Hilbert’s Tenth Problem, 56

intractable, 60

NP-complete, 72

Post Correspondence Problem,
56

PRIMES, 53

search, 52

SUM, 52

(un)decidable, 52

product notation, 8

proof, 6

by contradiction, 15

direct, 18

pseudo-prime, 105

strong, 146

244 Index

public key, 132
public-key cryptography, 132

Quicksort, 76

Rabin, Michael Oser, 3, 149
Ramaré, Olivier, 196

randomized algorithm, 73
rational numbers, 7
real numbers, 7
recursive definition, 18

reduced set of residues, 92
reducible polynomial, 118
Riemann ζ-function, 193
Riemann Hypothesis, 139, 193

Generalized, 149, 192, 195, 197
Riemann, Bernhard, 193
Rivest, Ronald, 1, 132, 135
root of unity, 181

modulo a prime, 144
primitive, 181

RP, 75

RSA, 2, 132
RSA number, 2
RSR, 92
running time

asymptotic, 60
average, 78
exponential, 60
function, 58

polynomial, 60

Schönhage, Arnold, 68
Schönhage-Strassen algorithm, 68

search problem, 52
set, 8

uncountable, 57
Shamir, Adi, 1, 132, 135

Sieve of Eratosthenes, 39, 43, 61
Skytale, 130
smallest counterexample, 15
Solovay, Robert Martin, 149

Sophie Germain prime, 190, 202
Strassen, Volker, 68, 149
string, 52, 58

strong pseudo-prime, 146
subset, 8
successor, 24
sufficiently large, 59

sum notation, 8
Sylvester, James Joseph, 104

Tao, Terence, 199
Green-Tao Theorem, 199

Tenenbaum, Gérald, 204
theorem, 7
theorem of Agrawal, Kayal, and

Saxena, 169
theorem of Fermat-Miller, 145
totient function, 98
triples of prime numbers, 198
trivial divisor, 26
Turing, Alan, 50, 54, 131

twin primes, 42, 197

uncountable set, 57
undecidable problem, 52
unique modulo n, 88
universe

age, 40
number of atoms, 40, 68, 197

Vigenère square, 131
Vinogradov, Ivan Matveyevich

Vinogradov’s Theorem, 196
von Koch, Helge, 139, 194

Weak Goldbach Conjecture, 196
well-ordering principle, 14
What’s my line?, 62
Wheatstone, Charles, 131
Wiles, Andrew, xi, 25, 192
Wilson’s Theorem, 149, 204
Wilson, John, 149, 204
witness, 69

zero
polynomial, 116, 123

zero divisor, 91, 93, 115, 119
zero of a polynomial, 109
zero polynomial, 108

Zhang, Yitang, 198
ZPP, 78

For additional information
and updates on this book, visit

www.ams.org/bookpages/stml-70

AMS on the Web
www.ams.orgSTML/70

How can you tell whether a number is prime? What if the number
has hundreds or thousands of digits? This question may seem abstract
or irrelevant, but in fact, primality tests are performed every time we
make a secure online transaction. In 2002, Agrawal, Kayal, and Saxena
answered a long-standing open question in this context by presenting
a deterministic test (the AKS algorithm) with polynomial running
time that checks whether a number is prime or not. What is more,
their methods are essentially elementary, providing us with a unique
opportunity to give a complete explanation of a current mathematical
breakthrough to a wide audience.

Rempe-Gillen and Waldecker introduce the aspects of number theory,
algorithm theory, and cryptography that are relevant for the AKS algo-
rithm and explain in detail why and how this test works. This book is
specifi cally designed to make the reader familiar with the background
that is necessary to appreciate the AKS algorithm and begins at a level
that is suitable for secondary school students, teachers, and interested
amateurs. Throughout the book, the reader becomes involved in the
topic by means of numerous exercises.

	Cover
	Title page
	Contents
	Preface
	Introduction
	Part I. Foundations
	Natural numbers and primes
	Algorithms and complexity
	Foundations of number theory
	Prime numbers and cryptography
	Part II. The AKS algorithm
	The starting point: Fermat for polynomials
	The theorem for Agrawal, Kayal, and Saxena
	The algorithm
	Open questions
	Solutions and comments to important exercises
	Bibliography
	List of symbols
	Index
	Back Cover

