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Preface

We are drawn to the study of difference sets because this topic “be-

longs both to group theory and to combinatorics and . . . uses tools

from these areas as well as from geometry, number theory, and rep-

resentation theory” (quoting from the opening of Chapter 1). Each

of us has supervised undergraduate research on difference sets. Our

original goal in writing this book was to collect in one place the ma-

terial beyond a one-semester abstract algebra course required to pre-

pare our students for these research projects. However, the links to

many parts of mathematics led to our current, broader aim: not only

to serve prospective undergraduate researchers but also to provide

a rich text for a senior seminar or capstone course in mathematics.

With this expanded goal in mind, we highlight these mathematical

interconnections.

We never intended our book to be a comprehensive survey of

difference sets. However, we hope it will encourage students to explore

the literature on difference sets and give them a solid foundation so

they can do so successfully.

We assume student readers have taken an abstract algebra course.1

We show them concrete examples of some algebraic ideas they studied

there, and we apply and extend these concrete instances in a variety

1Appendix A includes the background we need from prior courses, and specific
results are cited using the notation A.x.
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xii Preface

of settings. Some of our exposition, especially in earlier chapters, is

very thorough, with reasoning fully explained. The proofs of some

theorems are explicitly left for the exercises, and some of these ex-

ercises offer the student considerable guidance. For other theorems

we may give rather terse proofs, more like what a student would en-

counter in a journal article. Normally we expect the reader to fill in

any omitted arguments, so we don’t write “see the exercises” for each

instance. In a few cases we quote theorems without proof, but always

with a reference, and often with a comment on the accessibility of the

proof given in the cited source.

Almost every section of the book ends with exercises. Some ex-

ercises aim to check the reader’s understanding of a definition or a

proof. Some ask for proofs (with or without guidance). Some are

puzzles to be solved. Some invite the student to explore ideas and

examples, sometimes with the aid of a computer (and so indicated).

All of these kinds of exercises vary from straightforward to challeng-

ing. Appendix C includes hints for exercises marked H© and solutions

to selected exercises marked S©.2 Every chapter except the first and

the last ends with a brief Coda3 highlighting the main ideas and em-

phasizing mathematical connections.

Examples and exercises are numbered consecutively within chap-

ters with, for example, Exercise 5 within a chapter and Exercise 7.5

for a reference to Exercise 5 in Chapter 7 made in a different chapter.

Theorems are also numbered consecutively within chapters and are

always referred to with both a chapter label and a theorem label, as,

for example, Theorem 7.5 both within and outside of Chapter 7.

After the Introduction, Chapters 2–4 comprise the core of the

book. We then see two kinds of selective paths through the rest.

One would focus on representation theory and its applications. It

would include Section 7.1 on intersection numbers, the constructions

of difference sets in Chapters 8–9, Chapters 10–12, and Section 13.4.

Another path would focus on the existence question for difference

sets. It would include Chapters 5–9. Even if Chapters 10–12 are not

2Complete solutions are available electronically for instructors; please send email
to textbooks@ams.org for more information. Some helpful computer programs are
available at http://www.ams.org/publications/authors/books/stml-67.

3We borrow the term “coda” in this context from Jennifer Quinn.
                

                                                                                                               



Preface xiii

covered, Sections 10.4 and 11.4 give a taste of the use of representation

theory and characters in the study of difference sets. The applications

in Sections 13.1–13.3 are suitable for readers following either path.
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Chapter 1

Introduction

Here we introduce some of the topics in this book—briefly, but we

hope invitingly. The ideas will be developed more fully and their

inter-relations more thoroughly examined in the chapters that follow.

This book has two over-arching themes. One is that different

parts of mathematics can and do come together in surprising and

illuminating ways: suggesting questions, providing tools, and gener-

ating examples. The other is the idea of a difference set—a special

subset of a group. It exemplifies the first theme, since it belongs both

to group theory and to combinatorics, and the study of difference sets

uses tools from these areas as well as from geometry, number theory,

and representation theory.

A group is often useful when it acts on a set or a structure. As we

shall explain, a group contains a difference set if and only if it acts in

a particular way on a nice structure called a symmetric design. Thus

finding a difference set is equivalent to finding an interesting group

action. Also, difference sets are of intrinsic interest because they yield

applications in communications and other areas.

So what is a difference set? If a finite group G is written ad-

ditively, a non-empty proper subset D of G is a (v, k, λ)-difference

set if |G| = v, |D| = k and there is an integer λ such that each

non-identity element of G can be expressed in exactly λ ways as a

difference d1 − d2 of elements of D. Equivalently, we require that

1

                                     

                

                                                                                                               



2 1. Introduction

each non-identity group element appears λ times in the multiset

Δ = {d1 − d2 | d1, d2 ∈ D, d1 �= d2}.

(The word “multiset” means that elements may be listed more than

once.)

Example 1. Choose

G1 = Z7 = {0, 1, 2, 3, 4, 5, 6},

the additive group of integers modulo 7, and choose

D1 = {1, 2, 4}.

To check that D1 is a (7, 3, 1)-difference set in G1, it is convenient to

organize our work in a table.

− 1 2 4

1 0 −1 = 6 −3 = 4

2 2− 1 = 1 0 −2 = 5

4 4− 1 = 3 4− 2 = 2 0

Each of 1, 2, 3, 4, 5, 6 appears exactly once in the table, confirming

that D1 is a (7, 3, 1)-difference set. �

We can use the difference set of Example 1 to glimpse one of the

applications of difference sets. We might want to robotically align a

cylindrical nozzle within a circular opening without deforming either

the nozzle or the opening. Example 2 illustrates the general idea. We

say more about this application in Chapter 13.

Example 2. The context here is refueling an airplane. Suppose that

to optimize the refueling, the cylindrical nozzle on the fuel hose has

to be aligned just right within the circular opening of the fuel tank.

Imagine that the tank opening is surrounded by a circular ring divided

into 7 cells numbered 0, 1, 2, . . . , 6. The cells numbered 1, 2 and 4 emit

light and the others do not. A second similarly-patterned ring is on

the nozzle, backed up by a light detector. The cells numbered 1, 2,

4 on the nozzle ring are transparent to light; the others are opaque.

When the two rings are perfectly aligned, the maximum amount of

light is detected. When they are out of alignment by as few as 1 or

2 cells, the amount of light detected is much less. In Figure 1.1, the
                

                                                                                                               



1. Introduction 3

ring in (a) surrounds the opening of the tank, and the ring in (b),

on the nozzle, has been rotated clockwise by 2 cells. The ring in (c)

shows the light reaching the detector on the nozzle. (See Figure 13.1

for a graph of the amount of light detected when the nozzle is in

various positions.) A robot can adjust the nozzle to maximize the

light reaching its detector and thereby position it correctly. �

0

1

2

3

4

5

6

(a) tank opening

0

1

2

3

4

5

6

(b) nozzle shifted by 2

0

1

2

3

4

5

6

(c) light detector

Figure 1.1. Alignment model for Example 2

Now we return to Example 1. Since Z7 is also a ring, we can mul-

tiply as well as add. Notice that the elements of D1 are the nonzero

squares in Z7. As we see later, this example can be generalized. We
                

                                                                                                               



4 1. Introduction

take a partial step toward that generalization, but first we need to do

some counting.

Suppose D is a (v, k, λ)-difference set. There are k(k−1) ordered

pairs (d1, d2), with d1, d2 distinct elements of D, and therefore k(k−
1) differences d1 − d2 in the multiset Δ. However, because D is a

difference set, each of the v − 1 non-identity elements of G appears

exactly λ times among the elements listed in Δ. We have proved the

following theorem.

Theorem 1.1. Assume D is a (v, k, λ)-difference set. Then

k(k − 1) = λ(v − 1).

We use this theorem to help us determine a necessary condition

for the generalization of Example 1.

Theorem 1.2. Let p be an odd prime, and let D be the set of nonzero

squares in Zp. If D is a difference set in the additive group Zp, then

p ≡ 3 (mod 4).

Proof. Assume D is a difference set in Zp. We know v = p, and

we want to determine k = |D|. Since p is prime, the p − 1 nonzero

elements of Zp form a group under multiplication. We denote this

multiplicative group by Z∗
p. Consider the function mapping each ele-

ment of Z∗
p to its square. This is a homomorphism onto D. Because

p is an odd prime, x2 = 1 implies x = ±1, so the kernel of this homo-

morphism has size 2. Therefore, there are exactly (p− 1)/2 nonzero

squares in Zp, and k = (p − 1)/2. Now Theorem 1.1 tells us that

λ = k(k− 1)/(v− 1) = (p− 3)/4. But λ must be an integer, so p ≡ 3

(mod 4). �

The idea of a difference set first appeared in the 1938 paper, “A

Theorem in Finite Projective Geometry and Some Applications to

Number Theory,” by James Singer [62]. Where is the geometry in

our example of a (7, 3, 1)-difference set?

We create a geometry by specifying points and special sets of

points called blocks. The points are the 7 elements of G1, and the

blocks areD1 together with its 6 translates a+D1 = {a+1, a+2, a+4}
                

                                                                                                               



1. Introduction 5

for a ∈ G1, a �= 0. The 7 blocks are:

{1, 2, 4} {2, 3, 5} {3, 4, 6} {4, 5, 0} {5, 6, 1} {6, 0, 2} {0, 1, 3}.
Note that two distinct points appear together in exactly one block

and that two distinct blocks have exactly one point in common. If

we call blocks “lines,” we say informally that two points determine a

line and two lines determine a point; there are no parallel lines. This

example meets the non-degeneracy conditions that there are at least

three points in each block and at least two blocks. Thus we have an

example of a non-Euclidean geometry called a finite projective plane.

0

1 2

3

4

5

6

Figure 1.2. The Fano plane

More generally, a set of v points and v sets of points called blocks

form a symmetric design with parameters (v, k, λ) if every block con-

tains k points, every point belongs to k blocks, two distinct points

occur together in λ blocks, and two distinct blocks intersect in λ

points. Our geometry is thus a symmetric design1 with parameters

(7, 3, 1). This specific geometric structure is often called the Fano

plane; see Figure 1.2 for a picture. In this picture, most blocks are

represented by line segments; the block {2, 3, 5} is represented by a

circle.

Now we show how G1 acts on this structure. Each element of the

group G1 can be regarded as a function taking points to points: the

group element a takes the point b to the point a + b. Indeed, since

1We study designs, including symmetric designs, in Chapter 2.
                

                                                                                                               



6 1. Introduction

distinct points go to distinct points, this function is a permutation of

the points. This function can also be applied to blocks: it takes the

block B = m+D1 to the block a+B = (a+m)+D1. Again, distinct

blocks go to distinct blocks, so it is a permutation of the blocks. If

point x is in block B, then the point a+x is in the block a+B. This

means that the elements of G1 act as automorphisms of the geometry.

These permutations are special. We can see that G1 acts transi-

tively on the set of 7 points: given any two points b and c, there is a

permutation (i.e., an element a of G1) taking b to c, namely a = c−b.

Similarly, G1 acts transitively on the set of 7 blocks: given any two

blocks b + D1 and c + D1, there is a permutation taking b + D1 to

c + D1, namely a = c − b again. Of course the identity a = 0 fixes

every point and every block. But the converse is true too. If a+b = b

then a must be 0; and similarly (but less obviously) for blocks, if

a+B = B then a = 0.

We summarize these properties by saying G1 acts as a regular

group of automorphisms of the geometry we have defined. In fact, as

we prove in Chapter 4, a finite group G contains a (v, k, λ)-difference

set if and only if G acts as a regular group of automorphisms of a

symmetric (v, k, λ) design.

We have used the group and the difference set to construct the

design. How do symmetric designs arise “in nature”? Here is a con-

struction that will take us back to the Fano plane. Choose the field

Z2 = {0, 1}, with arithmetic modulo 2. Let V be the 3-dimensional

vector space (Z2)
3. The vector space V contains exactly 23 vectors

and thus 7 nonzero vectors. Since 1 is the only nonzero scalar, V also

contains exactly 7 one-dimensional subspaces. Call these 1-spaces

points.

Further consequences of the fact that 1 is the only nonzero scalar

are

• distinct nonzero vectors are linearly independent, and

• a two-dimensional subspace of V contains exactly 3 nonzero

vectors.

In particular, notice that for distinct nonzero vectors u,v,w ∈ V ,

{0,u,v,w} is a 2-space if and only if u+ v+w = 0. Call a triple of
                

                                                                                                               



1. Introduction 7

points contained in a single 2-space a block. Each block thus contains

3 points. There are exactly 7 2-spaces of V and therefore exactly 7

blocks. We list them below (writing xyz instead of (x, y, z) for each

vector and omitting curly braces):

100, 010, 110

100, 001, 101

100, 111, 011

010, 001, 011

010, 111, 101

001, 111, 110

011, 110, 101.

Consulting the preceding list we see that two distinct points appear

together in exactly one block, and two distinct blocks intersect in

exactly one point.

Where is the group? Consider the linear transformation T : V →
V with matrix

M =

⎡⎣ 0 1 0

1 0 1

1 0 0

⎤⎦
with respect to the standard basis.2 We write transformations on the

left, so a vector v is written as a column in calculating T (v) = Mv.

The matrix M7 is the identity matrix, so T 7 is the identity function

fixing every vector in V . From linear algebra we know that invertible

linear transformations map 1-spaces to 1-spaces and 2-spaces to 2-

spaces. Thus the elements of the group

G2 = {T, T 2, T 3, T 4, T 5, T 6, T 7 = I}

map points to points and blocks to blocks. Indeed we can check that

G2 acts regularly on the points and on the blocks.

Since we are writing the group operation multiplicatively, we re-

place the difference di − dj by di d
−1
j in the definition of a difference

set. Now we see that the subset

D2 = {T, T 2, T 4}

2Admittedly, this transformation appears to come out of the blue. We motivate
it when we discuss Singer’s work in Chapter 8.

                

                                                                                                               



8 1. Introduction

is a (7, 3, 1)-difference set in G2. (In fact, the obvious group isomor-

phism from G1 to G2 takes D1 to D2.)

In his 1938 paper, Singer constructed symmetric designs slightly

differently, identifying the vector space V with a finite field containing

8 elements. His construction and analysis generalize to finite projec-

tive geometries obtained from higher-dimensional vector spaces over

arbitrary finite fields. Other constructions of difference sets require

even more ideas from finite geometry, and we will explore them in

Chapter 8.

Now we have seen the (7, 3, 1)-difference set twice.3 But how

would we find this difference set if we did not know it was there? Or,

how could we prove a particular group does not contain a difference

set? To glimpse one strategy, we rewrite the group of order 7 one

more time, this time as a subgroup of the multiplicative group C∗ of

nonzero complex numbers,

G3 = {1, ω, ω2, ω3, ω4, ω5, ω6}

for ω = cos(2π/7) + i sin(2π/7). We can add complex numbers, even

though addition is not the group operation in this case. Observe what

happens if we multiply the sum of the elements of the difference set

D3 = {ω, ω2, ω4}

by the sum of the inverses of those three elements in G3:

(ω + ω2 + ω4)(ω6 + ω5 + ω3)

= 1 + ω6 + ω4 + ω + 1 + ω5 + ω3 + ω2 + 1

= (1 + ω + ω2 + ω3 + ω4 + ω5 + ω6) + 2 · 1.

However, 1 + ω + ω2 + ω3 + ω4 + ω5 + ω6 = (1− ω7)/(1− ω) = 0, so

we have

(ω + ω2 + ω4)(ω6 + ω5 + ω3) = 2.

In other words, we have factored 2 in the ring Z[ω] of integer linear

combinations of powers of ω. Notice that 2 = k − λ in this example.

This difference is important enough to get its own name. The quantity

n = k−λ is the order of a (v, k, λ)-difference set or symmetric design.

Looking for factorizations of n in the ring Z[η] (where, in general, η

3Some of the ideas in this introduction appear in [9].
                

                                                                                                               



1. Introduction 9

is an mth root of unity for some m dividing v) is a way to search

for difference sets, or to prove they do not exist. However, Z[η] need

not be a unique factorization domain, so this analysis requires some

algebraic number theory. We develop these ideas in Chapter 12.

The groupG3 is actually the image of G2 under the representation

(i.e., group homomorphism) ρ : G2 → C∗ defined by ρ(T ) = ω, and

D3 is the image of D2. It is the representation ρ that gives us access

to the factorization of n in Z[ω]. To pursue this line of investigation

we need to study some representation theory. We offer a primer on

representations and characters of finite groups in Chapters 10 and 11.

We now embark on our study, beginning first with designs, then

moving on to difference sets. We hope this introduction has given

some idea of the diversity and richness of the mathematical ideas we

will encounter.

                

                                                                                                               



Chapter 2

Designs

In this chapter we introduce designs. Our ultimate goal is to study

symmetric designs and their relationship to difference sets. Along the

way we also introduce more general designs. Concepts of existence

and equivalence that appear here will be mirrored in our study of

difference sets.

Design theory is an area of combinatorics that was originally stud-

ied for its connections to statistics and the design of experiments. This

study has found use in other areas of mathematics including geometry,

coding theory, finite group theory, and difference sets. So the study

of designs is a good place to start our exploration of the connections

among these different algebraic and combinatorial structures.

2.1. Incidence structures

We start with the general notion of an incidence structure.

Definition. An incidence structure is an ordered triple (P,B, I) where
P is a set of points,

B is a set of blocks,

I ⊆ P × B is an incidence relation between P and B.
If (p,B) is in I, we say that p and B are incident.

11

                                     

                

                                                                                                               



12 2. Designs

A block is said to be “repeated” if it and another block are in-

cident with precisely the same set of points. Repeated blocks can

be useful in statistical designs. An incidence structure is known as

simple if it has no repeated blocks. The incidence structures we will

study are simple, so we can regard a block as a subset of points. If the

point p and block B are incident with each other we say that p ∈ B.

With blocks described as subsets of P, we often drop the more formal

notation for an incidence structure and simply write (P,B).
The concept of an incidence structure is so general it may seem

at first not to be useful. However, it can be found in several places.

Example 1. In the Euclidian plane, we may take P to be the set of

points, and B the set of lines. �
Example 2. We wish to run a statistical experiment to compare

varieties of corn in various soils. In the design of the statistical ex-

periment, we take the points to be the varieties of corn and the blocks

to be the subsets of the varieties planted on particular plots. The dif-

ferent plots are more generally called treatments. �
Example 3. Represent a set of three people as P = {a, b, c} and

specify four committees by B =
{
{a}, {a, b}, {a, c}, {a, b, c}

}
. Person

a is in all four committees, person b is in committees 2 and 4, and

person c is in committees 3 and 4. �

In Example 1 the sets of points and blocks are infinite; in Ex-

amples 2 and 3 these sets are finite. Example 1 has the regularity

condition that any two points are incident with exactly one block,

since any two points determine a line. Example 3 has no such reg-

ularity. Even the blocks are of different sizes. In this book we will

study mainly finite incidence structures.

Any finite incidence structure can be represented by an incidence

matrix M where the columns represent points and the rows represent

blocks,1 and

mij =

{
1 if pj ∈ Bi

0 otherwise.

1Note that some authors use the transpose of this matrix. Here we follow the
convention in Lander[43], and Hall and Ryser[29].

                

                                                                                                               



2.1. Incidence structures 13

Example 4. The following is the incidence matrix of the incidence

structure in Example 3, with point set P = {a, b, c} and block set

B =
{
{a}, {a, b}, {a, c}, {a, b, c}

}
:

M =

⎡⎢⎢⎣
1 0 0

1 1 0

1 0 1

1 1 �1

⎤⎥⎥⎦ .

An incidence matrix is not only a compact way to represent an

incidence structure. Sometimes matrix multiplication gives us a tool

for studying the incidence structure. For instance, we can multiply

an incidence matrix by a permutation matrix to reorder the blocks or

the points to check whether two incidence structures are essentially

the same.

Definition. Two simple incidence structures (P,B, I) and (P ′,B′, I ′)

are isomorphic if there is a one-to-one mapping from P onto P ′ that

maps B onto B′.

The mapping must preserve the incidence structure. That is, if

p maps to p′ and B maps to B′, then (p,B) is in I if and only if

(p′, B′) is in I ′. As a consequence of this definition, simple incidence

structures (P,B, I) and (P ′,B′, I ′) are isomorphic if and only if we

can permute the rows and columns of the incidence matrix of one to

get the incidence matrix of the other. That is,

PMQ = M ′

for permutation matrices P and Q. Note that P permutes the rows

(blocks); Q permutes the columns (points).

In the exercises we will also explore what the calculations MTM

and MMT yield, where MT is the transpose of M .

Exercises

1. For the incidence matrix given in Example 4,
                

                                                                                                               



14 2. Designs

(a) find a permutation matrix P that switches blocks (rows) 1

and 3. That is, PM is the matrix M but with rows 1 and 3

switched. S©
(b) find a permutation matrix Q so that MQ is the matrix M

but with points (columns) 2 and 3 switched.

2. For the incidence matrix given in Example 4,

(a) compute MMT . What do the entries of this product repre-

sent?

(b) compute MTM . What do the entries of this product repre-

sent?

3. Construct an incidence matrix for the Fano plane in Chapter 1.

Order the points and blocks so that each row is a circular shift to the

right of the previous row. Compute MMT and MTM and explain

the entries.

2.2. t-Designs

Designs are incidence structures on which some conditions of regu-

larity are imposed. For instance, we might require that all blocks

contain the same number of points, and that any two points be in a

fixed number of blocks. The first type of design we will study is a

t-design.

Definition. Let t be a non-negative integer.2 A t-design is an inci-

dence structure D = (P,B) in which

(i) Each block contains k points, and

(ii) Each subset of t points is completely contained in exactly λ

blocks for some λ ≥ 1.

Since we will often talk about subsets of P of a particular size, we

adopt the term s-set for a set of s points. Thus for a t-design, every

t-set is in λ blocks. As an extreme case, a 0-set is the empty set, so

2Some authors (e.g., [8]) require that t > 0; others (e.g., [70]) require only that
t ≥ 0. We will adopt this latter restriction.

                

                                                                                                               



2.2. t-Designs 15

every incidence structure with constant block size is a 0-design with

λ equal to the number of blocks.

If we let v = |P|, then any t-design with these parameters is

known as a t-(v, k, λ) design.3

Statisticians use 2-designs, called block designs, in designing

experiments. The points (e.g., varieties of corn) are to be compared

under various sets of conditions (blocks). The 2-design allows exactly

λ head-to-head comparisons of any two points. A design is called

complete if the set of blocks contains all the k-sets for some k ≤ v.

An experiment will be more efficient if we can get the information

we need without including all the k-sets. Block designs that do not

include all k-sets as blocks are known as balanced incomplete block

designs (BIBD).

Let us look at a few examples of t-designs. The first two get their

structure from the patterns in complete graphs;4 the next two from

the structure of vector spaces over finite fields.

Example 5. Let P be the set of edges of K6, the complete graph

on six vertices. Define two types of blocks: (i) the three edges of

a triangle, and (ii) the three edges of a complete matching (that is,

three edges no two of which share a vertex). This is a 2-design since

any two edges are in exactly one block. �
Example 6. Let P be the set of edges of K5, and define three types

of blocks: (i) the four edges incident with a single vertex (these edges

form a claw), (ii) the three edges of a triangle together with the one

edge disjoint from these, (iii) the four edges of a 4-cycle. This is a

3-design. �
Example 7. Consider the 4-dimensional vector space over the finite

field Z2, denoted (Z2)
4. Let P be the set of all nonzero vectors, and

let the blocks be sets of three vectors {x,y, z} so that x+ y + z = 0

in the vector space. For instance, { (1, 0, 1, 1), (1, 0, 0, 0), (0, 0, 1, 1) }
is a block since the sum of these vectors (mod 2) is the zero vector.

This is a 2-design. �
3Some authors (e.g., [7]) use the notation Sλ(t, k, v) for a t-design. As a special

case, a Steiner system is a t-design with λ = 1, and is often denoted simply as S(t, k, v).
4The complete graph Km has m vertices and an edge between every pair of

vertices.
                

                                                                                                               



16 2. Designs

Example 8. Again consider the vector space (Z2)
4. This time let P

be the set of all vectors, including the zero vector, and let the blocks

be sets of four vectors {w,x,y, z} with w+ x+ y+ z = 0. This is a

3-design. �

We now look at theorems that give relationships among the pa-

rameters of a t-design. The proofs require counting arguments and

are left as exercises. Our first theorem shows how the parameters can

be used to determine the number of blocks in a t-design.

Theorem 2.1. The number of blocks in a t-(v, k, λ) design is

b = λ

(
v

t

)/(k
t

)
.

The next theorem tells us that every t-design is also an s-design

for any s such that 0 ≤ s ≤ t. Specifically, given any s-set S, this

theorem gives a way to calculate λs, the number of blocks that contain

S.

Theorem 2.2. Let D be a t-(v, k, λ) design, and let S be an s-set of

points with 0 ≤ s ≤ t. Then the number of blocks that contain S is

λs = λ

(
v − s

t− s

)/(k − s

t− s

)
.

We note that if s = t, then λs = λ. At the other extreme, if s = 0

then λ0 is the total number of blocks. And if s = 1, λ1 gives the

number of blocks incident with a given point. This quantity is often

denoted by r (for replications in statistical designs). In summary, the

parameters for a t-(v, k, λ) design are:

v = number of points (varieties, in statistical designs),

b = number of blocks,

k = number of points incident with each block,

r = number of blocks incident with each point (replications),

λ = number of blocks containing any given set of t points.

In Theorem 2.2 if we choose t = 2 and s = 1 we get a relation

between parameters that we will see reflected often in our study of

difference sets:
                

                                                                                                               



2.2. t-Designs 17

Corollary 2.3. If D is a 2-design, then

r(k − 1) = λ(v − 1).

Another fundamental relation exists between the first four pa-

rameters in our list above:

Theorem 2.4. For a t-(v, k, λ) design, vr = bk.

Once we have a t-design, we can construct a new design called

the complement design.

Definition. Given a t-design D = (P,B), the design D with point

set P = P and block set B = {P \ B | B ∈ B} is called the

complement design. Note that the blocks in D are the complements

of the blocks in D.

To prove that this is indeed an s-design, and to find the largest s

for which this is true, we will first need to establish that the number

of blocks in the original t-design disjoint from a fixed s-set, is the

same for any s-set. We use λs to denote this number.5

Of course if the s-set is too large there may be no blocks disjoint

from our s-set. To avoid this trivial case, we will require that s ≤ v−k.

Theorem 2.5. Let D be a t-(v, k, λ) design, and let S be an s-set of

points with 0 ≤ s ≤ t and s ≤ v − k. Then the number of blocks of D
disjoint from S is independent of the choice of s-set and equals

λs = λ

(
v − s

k

)/(v − t

k − t

)
.

Proof. First we argue that the value of λs is independent of our

choice of s-set. By inclusion/exclusion (see A.20)

λs = b−
(
s

1

)
λ1 +

(
s

2

)
λ2 − · · ·+ (−1)s

(
s

s

)
λs

=
s∑

i=0

(−1)i
(
s

i

)
λi.

5Here s is part of the notation and is not an exponent. In this section λs is the
number of blocks containing a fixed s-set, and λs is the number of blocks disjoint from
a fixed s-set.

                

                                                                                                               



18 2. Designs

We could use binomial identities to simplify this sum and get our

result. But since the above calculation shows that λs is the same for

each s-set, it is both easier and more illuminating to proceed using

a simple counting argument. We count the number of ordered pairs

(B,S) with B a block and S an s-set disjoint from B. On the one

hand, we can choose B from b blocks, and then choose an s-set S

disjoint from B in
(
v−k
s

)
ways. On the other hand, we can choose

the s-set first, in
(
v
s

)
ways, and then choose a block disjoint from the

s-set in λs ways. So

λs

(
v

s

)
= b

(
v − k

s

)
.

Substituting b = λ
(
v
t

)
/
(
k
t

)
and simplifying gives our result. �

Now we can use Theorem 2.5 to show that complement designs

are s-designs.

Corollary 2.6. Let D be a t-(v, k, λ) design. Then D, the comple-

ment design, is an s-design for s = min(t, v − k).

A fundamental question in design theory concerns existence: For

which triples (v, k, λ) does a t-design exist? The corollary above says

that every design has a complement design. Therefore, to answer this

question it is enough to find only those designs for which k ≤ v/2,

since any design for which k > v/2 has a complement design with

k < v/2.

Exercises

4. Use the incidence matrix from Exercise 3 to show that the Fano

plane is a 2-design.

5. For Example 5 find the numbers of blocks of each of the two

types. Show that this is a 2-design by verifying that any two points

(i.e., edges of the complete graph) are contained in exactly one block.

Find the parameters of this design and verify that the total number

of blocks agrees with Theorem 2.1. S©
                

                                                                                                               



2.2. t-Designs 19

6. For Example 6 find the numbers of blocks of each of the three

types. What is the total number of blocks? Show that this is a

3-design, and find its parameters.

7. Show that Example 7 is a 2-design, and find its parameters.

8. What is MTM for the 2-design in Example 7? In general, what is

MTM for a 2-design with parameters 2-(v, k, λ)? Write your answer

using scalars times the matrices I (the v × v identity matrix) and J

(the v × v matrix with all 1’s).

9. What is MTM for a 3-design with parameters 3-(10, 4, 1)? In

general, what is MTM for a 3-design with parameters 3-(v, k, λ)?

10. Prove that Examples 5 and 7 are isomorphic by giving a one-to-

one correspondence between the vectors in Example 7 and the edges

of K6 in Example 5 that preserves the blocks.

11. Show that Example 8 is a 3-design, and find its parameters.

12. Show that Example 8 is also a 2-design by showing that any two

points are contained in a fixed number of blocks. Use a combinatorial

argument to find λ2.

13. Prove Theorem 2.1. H©

14. Prove Theorem 2.2. Be careful not to assume that for every s-set

there must be the same fixed number of blocks containing the s-set.

15. Prove Theorem 2.4 by showing that both vr and bk count the

set of ordered pairs (p,B) with p ∈ B.

16. Prove Corollary 2.6 and find the parameters of the complement

of a t-(v, k, λ) design.
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2.3. Affine planes

Geometry—literally speaking—means “earth measure.” Euclidean

geometry with its infinite number of points and its definition of dis-

tance fits our literal interpretation of geometry. However, in this book

we will look at different types of geometries. Most of our geometries

will have finite numbers of points and lines, and we will drop any

notion of a metric. What remains is a highly structured design with

geometric points for its points, and lines or other substructures for its

blocks. The structure is imposed on our geometries by a set of axioms.

We are most interested in finite geometries that can be coordinatized.

In this section we define an affine plane and show that a finite

coordinatized affine plane is a 2-design. In Section 5 we study finite

projective geometries. These geometries provide a rich source for

the symmetric designs we define in Section 4 and for constructing

difference sets.

First we take the approach of synthetic geometry and define an

affine plane as a set of points and lines that obey a set of axioms:

Definition. An affine plane is a non-empty set P of points and a

non-empty set L of subsets of P called lines, so that

A1. Each pair of points is in a unique line.

A2. If � is a line and P is a point not in �, then there is a unique

line �′ that contains P and does not intersect �.

A3. There are at least two points in each line, and at least two

lines in the plane.

We say that lines � and �′ are parallel if either � = �′ or � ∩ �′ = ∅.

A1 is common to many geometries; it is often stated as “two

points determine a line.” A2 is one formulation of the parallel pos-

tulate, and is the key feature that distinguishes the Euclidean plane

from infinite non-Euclidean planes. A3 eliminates trivial cases.

The well-known Euclidean plane is an example of an affine plane.

The next example is the smallest affine plane allowed by our system

of axioms.

                

                                                                                                               



2.3. Affine planes 21

Example 9. Let P be the set of points {A,B,C,D} in Figure 2.1,

and let L be the set of all 2-subsets of P. The line segments connecting

pairs of points represent the lines.

A

B C

D

Figure 2.1. Affine plane with four points

If we label the columns A, B, C, D, then an incidence matrix for

this affine plane is:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

The rows correspond to the six lines in Figure 2.1. �

From this simple set of axioms it is possible to derive many prop-

erties of affine planes. While we will not pursue these results in detail,

we list some of the numeric properties of finite affine planes derivable

simply from these axioms. The parameter n in the theorem is the

order of the affine plane. (See [6], p. 26, for a proof.)

Theorem 2.7. Let (P,L) be a finite affine plane. Then for some

integer n ≥ 2:
                

                                                                                                               



22 2. Designs

(i) Each line has n points.

(ii) Each point is incident with n+ 1 lines.

(iii) There are n2 points.

(iv) There are n(n+ 1) lines.

(v) The lines form n+ 1 classes, each with n mutually parallel

lines.

Often we identify the points of the Euclidean plane with ordered

pairs from R×R, and describe a line as a set of points (x, y) that obey

a linear equation ax + by = c, where a, b, c ∈ R and a and b are not

both 0. In this way we coordinatize the plane. This coordinate system

gives us analytical tools to work with the plane. For instance, we can

judge whether two lines are parallel by comparing their slopes. For

two lines that are not parallel, we can find the point of intersection

by finding the solution common to their two equations.

In a similar way we can coordinatize a finite affine plane.

Example 10. Consider the four-point affine plane, and label the

points using coordinate pairs from Z2 × Z2. The equations that de-

termine the six lines are: x = 0, x = 1, y = 0, y = 1, y = x, and

y = x+ 1 mod 2. See Figure 2.2. �

(0, 0) (1, 0)

(0, 1) (1, 1)

x = 0 →
← y = x+ 1

Figure 2.2. Coordinatized affine plane with four points

In general we start with any field F and use elements from F× F

as coordinates of the points in an affine plane. We take as lines the

solution sets of linear equations ax+ by = c for a, b, c ∈ F with a and
                

                                                                                                               



2.3. Affine planes 23

b not both zero. Notice that for any nonzero u ∈ F, the equations

ax+ by = c and uax+ uby = uc have the same solution set.

We define the slope of a line with equation ax+by = c as follows.

If b = 0, the slope is infinite (and the line is “vertical”). If b �= 0, the

slope ism = −a/b ∈ F. Using algebra, we can verify that distinct lines

with the same slope are parallel. Also suppose (x1, y1) and (x2, y2)

are two points on a line. If x1 = x2, then the line has infinite slope.

If x1 �= x2, we calculate the slope as m = (y2 − y1)/(x2 − x1).

This structure does indeed satisfy the axioms of an affine plane.

We call this the coordinatized affine plane, denoted by AG(2,F). If

F has q elements, we denote this plane by AG(2, q).

Theorem 2.8. Let F be a field. Let P = F × F, and let L be

the collection of lines defined as the solution sets to linear equations

ax + by = c, for a, b, c ∈ F, with a and b not both equal to 0. Then

(P,L) is an affine plane.

Proof. To show that two points determine a line, we consider the

points (x1, y1) and (x2, y2). If x1 = x2, the line determined by these

two points is the set of solutions to the equation x = x1, a vertical

line with infinite slope. If x1 �= x2, then the line determined by the

two points is the set of solutions to the equation y− y1 = m(x− x1).

To show this line is unique, we suppose that (x1, y1) and (x2, y2)

are solutions of both ax+by = c and a′x+b′y = c′. We want to show

there is a nonzero u ∈ F with a′ = ua, b′ = bu, c′ = cu. We leave the

two special cases x1 = x2 and y1 = y2 to the exercises and assume

x1 �= x2 and y1 �= y2, so m = (y2 − y1)/(x2 − x1) �= 0. Subtracting

ax2+ by2 = c from ax1+ by1 = c we get a(x1−x2) = b(y2−y1), from

which it follows that both a and b must be nonzero and a = b(−m).

It follows that c = b(y1−mx1). Similarly, both a′ and b′ are nonzero,

a′ = b′(−m) and c′ = b′(y1 −mx1). Now, choose u = b′/b to see that

a′ = ua, b′ = ub and c′ = uc, so the line is unique.

To prove axiom A2, the parallel postulate, we show that given

a line � and a point P not on �, we can find a line parallel to � and

through P . Let P have coordinates (x1, y1). If � has no slope (that

is, if � is a vertical line), its equation is of the form x = x0 for some

x0 �= x1. Then the line with equation x = x1 contains P and is
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parallel to �. It is clearly unique. Otherwise let � have slope m. Then

the line through P and parallel to � has equation y− y1 = m(x−x1).

We can rearrange this equation as mx−y = mx1−y1, that is a = m,

b = −1 and c = mx1 − y1. We see the ratio a/b = m, agreeing with

the slope of �. If m = 0 the equation is by = c and we easily check

that this line is unique. If m �= 0 we can adapt the proof of uniqueness

above for axiom A1.

Clearly if F is infinite, then the affine plane has infinitely many

points and lines, and so satisfies axiom A3. We leave the finite case

to the exercises. �

The above theorem guarantees the existence of a finite affine plane

of order n for any n a prime power. It is not known whether other

affine planes exist with other orders. It is relatively easy to show

that we cannot construct an affine plane of order 6 using coordinates

Z6 × Z6. However, a proof that no order-6 affine plane exists cannot

assume this coordinatization. It has now been shown that no affine

planes of orders 6 or 10 exist [42]. The next open case is n = 12.

Finally we note the connection between affine planes and t-designs.

Every finite affine plane is a t-design for t = 2 and λ = 1. This simply

reflects the fact that any two points determine a line, and that every

line contains the same number of points. Thus for any q a power of

a prime, the coordinatized affine plane built on the field GF (q) gives

us a 2-(q2, q, 1) design.

Exercises

17. Consider the finite coordinatized plane AG(2, 3).

(a) List the equations ax + by = c corresponding to distinct

solution sets by completing the following table. (The first

row is done as a sample.)

a b c slope points

1 0 0 ∞ (0, 0), (0, 1), (0, 2)

(b) Draw the 3× 3 array of points (x, y) where x, y ∈ Z3. Con-

nect sets of points when they lie together on a line.
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(c) How many lines are there? How many points per line? What

is the order n of this plane? What are the parameters of this

plane as a 2-design? S©
(d) What is MTM? Explain its entries geometrically.

(e) What is MMT ? Explain its entries geometrically.

18. Show that distinct lines of AG(2,F) with the same slope are

parallel. Specifically, suppose a, b, a′, b′ are elements of F and ax +

by = c and a′x+ b′y = c′ are distinct lines with the same slope. Show

that these two lines have no points in common by considering these

two cases.

(a) Suppose b = b′ = 0 (i.e., both lines have infinite slope).

(b) Suppose b �= 0, b′ �= 0, and m = −a/b = −a′/b′.

The next two exercises complete the proof of Theorem 2.8.

19. Consider the coordinatized plane AG(2,F).

(a) Suppose that (x1, y1) and (x2, y2) are solutions of both ax+

by = c and a′x+ b′y = c′, with x1 = x2 and y1 �= y2. Show

that the solution sets of these two linear equations are the

same.

(b) Suppose that (x1, y1) and (x2, y2) are solutions of both ax+

by = c and a′x+ b′y = c′, with x1 �= x2 and y1 = y2. Show

that the solution sets of these two linear equations are the

same.

(c) Suppose � is a line of slope 0 and P = (x1, y1) is not on �

but is on the line with equation by = c. Show that this is

the unique line of slope 0 containing P .

(d) Assume � is a line of slope m �= 0, and P = (x1, y1) is a

point not on �. Show that y− y1 = m(x− x1) is the unique

line through P having slope m.

20. Let F be the finite field GF (q) for q = pm where p is a prime and

m is a positive integer.
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(a) Calculate the numbers of points and lines in AG(2,F).

(b) Calculate the number of points on a line in AG(2,F).

21. For Example 9 compute MTM . Use the result to show that this

is a 2-design, and find its parameters. Now compute MMT . Explain

the diagonal elements. Then explain the 0’s and 1’s in the off-diagonal

positions in terms of the geometry (using ‘points’ and ‘lines’).

22. It is known that there is no finite affine plane of order 6. If

we try to coordinatize a 6× 6 grid using Z6, several things go wrong.

Using the definition of a line as the solution set to a linear equation,

and calling two lines parallel if they have no points in common, show

that there would be at least two lines through the point (1, 3) and

parallel to the line y = 0.

23. Show that the set of points Z12 × Z12, with lines defined as the

solution sets to linear equations, is not an affine plane.

2.4. Symmetric designs

We have seen that for 2-designs, while MTM has a constant value λ

in all the off-diagonal positions, the productMMT may have different

values in its off-diagonal positions. These products show that, while

pairs of points are incident with a constant number of blocks, pairs of

blocks can be incident with different numbers of points. Symmetric

designs place more restrictions on the design to exclude this.

Definition. A symmetric (v, k, λ) design is an incidence structure

(P,B, I) in which 0 < k < v and the following hold:

(i) |P| = v.

(ii) |B| = v.

(iii) Each point is incident with k blocks.

(iv) Each block is incident with k points.

(v) Each pair of points is incident with λ blocks.

(vi) Each pair of blocks is incident with λ points.
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To avoid problems with degenerate cases we require that 0 < k < v.

We will call symmetric designs with λ = 0 or k− 1 trivial symmetric

designs.6 The value n = k − λ is called the order of the symmetric

design.

These axioms are redundant. If a structure obeys axioms (i)–(iv),

then (v) and (vi) are equivalent. (See Exercise 32.)

An immediate consequence of the definition is the following the-

orem.

Theorem 2.9. Let A be a v × v matrix of 0’s and 1’s. Then A is

the incidence matrix of a symmetric (v, k, λ) design if and only if

AAT = ATA = nI + λJ.

Corollary 2.10. The incidence matrix A of a symmetric design is

invertible.

Example 11. Consider a 4× 4 board of squares. The 16 individual

squares form the points of the design. The block Tj is the set of all

squares in the row and the column of square j except the square j

itself. Thus every block contains 6 squares. For instance, if we label

the squares as shown in Figure 2.3, then block T7 consists of squares 3,

5, 6, 8, 11, 15. This construction forms a symmetric (16, 6, 2) design.

�

Example 12. Let p = 11, and let P = Z11. Let D be the set of

all nonzero squares mod 11, and let B be the blocks {D, 1 +D, 2 +

D, · · · , 10 + D}, where addition is mod 11. Then these points and

blocks form a symmetric design. The nonzero squares mod p are

called the quadratic residues mod p. �

In Section 2.2 we saw relations among the parameters for t-

designs. The following theorem shows how the parameters of a sym-

metric design are related.

Theorem 2.11. For a symmetric (v, k, λ) design, (v−1)λ = k(k−1).

6Some authors define symmetric designs as special 2-designs, which would ex-
clude what we call trivial symmetric designs. We retain trivial designs because they
correspond to trivial difference sets.
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 2.3. Design from 4× 4 grid in Example 11; T7 is shaded

As with t-designs, we define the complement of a symmetric de-

sign to have the same point set and to have blocks defined as the

complements of the blocks in the original design.

Theorem 2.12. The complement of a symmetric (v, k, λ) design is

a symmetric design with parameters (v, v − k, v − 2k + λ).

The following theorem generalizes Example 12 and the Fano plane

example.

Theorem 2.13. Let p be a prime such that p ≡ 3 (mod 4), and let

P = {0, 1, . . . , p− 1}. Let D be the set of quadratic residues mod p,

and let B = {i +D | i ∈ P}, where addition is mod p. Then (P,B)
is a symmetric design.

We explore examples of this construction in the exercises, and

prove a more general result in Chapter 4.

A fundamental question is for which triples (v, k, λ) do symmetric

(v, k, λ) designs exist. A partial answer comes from the infinite family

of designs given in Theorem 2.13. We encounter other infinite families

as we study projective geometries. The general existence question

remains open.

There are many tantalizing questions about the triples of pa-

rameters for symmetric designs. According to Lander ([43], p. 44),

“For each λ > 1, only finitely many symmetric (v, k, λ) designs are

known.” Most nontrivial symmetric designs have v ≤ λ2(λ+2). The
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only known exceptions are designs that have parameters (37, 9, 2),

(56, 11, 2), (79, 13, 2), and (71, 15, 3). For each prime power λ, Lan-

der gives a symmetric design that attains the bound v = λ2(λ+ 2).

Exercises

24. Show that Example 11 is a symmetric (16, 6, 2) design. S©

25. Show that Example 12 is a symmetric design and give its param-

eters.

26. Prove Theorem 2.11. Then compare this result with Corol-

lary 2.3.

27. Prove Theorem 2.12: the complement of a symmetric (v, k, λ)

design is a symmetric design. Explain why the parameters of the

complement design are (v, v − k, v − 2k + λ).

28. Using the construction in Theorem 2.13, what is the set D in

Z19? What are the parameters for the symmetric design?

29. Show that the construction in Theorem 2.13 with p = 5 does not

give a symmetric design. What goes wrong?

30. Nontrivial symmetric designs as 2-designs

(a) Which of the six axioms in the definition of a symmetric

design are needed to make the structure a 2-design?

(b) Assume that an incidence structure is a 2-design with equal

numbers of points and blocks. Prove that r, the number of

blocks incident with a particular point, is equal to k.

31. Prove Corollary 2.10 as follows. Parts (b–d) assume a symmetric

design with parameters (v, k, λ) and incidence matrix A.

(a) Let B be a v × v matrix with B = aI + bJ . Show that

detB = (a + vb)av−1 by finding v − 1 linearly independent
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eigenvectors for B with eigenvalue a and one independent

of these with eigenvalue a+ vb.

(b) Show that det(nI + λJ) = k2nv−1 �= 0.

(c) Explain why AAT = nI + λJ .

(d) Prove that A is invertible.

32. Assume an incidence structure obeys axioms (i)–(iv) of a sym-

metric design, and let A be the incidence matrix for this structure.

(a) Show that AJ = JA.

(b) Assume axiom (vi) and deduce axiom (v). H©
(c) Assume axiom (v) and deduce axiom (vi).

2.5. Projective geometry

We return in this section to geometries—this time to projective geom-

etries—to look for examples of symmetric designs. As with the affine

planes of Section 3, we look first at the axiomatic definition of a

projective plane. We then construct a coordinatized projective plane

PG(2, q) starting with a vector space over GF (q). We also study

projective geometries of dimension higher than two.

Definition. A projective plane is a non-empty set P of points and a

non-empty set L of subsets of P called lines, so that

P1. Each pair of points is in a unique line.

P2. Each pair of lines intersects.

P3. Each line contains at least three points; the plane contains

at least two lines.

Note that the parallel postulate from the definition of an affine

plane is replaced by axiom P2 stating that any two lines intersect.

Combining axioms P1 and P2 shows that any two lines intersect in

exactly one point. From the axioms it is also possible to prove that

each point is incident with at least three lines, and that the plane

contains at least two points. An important property that comes from

these axioms is that any true statement that can be derived from these

axioms about points and lines remains true if the words “points” and
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“lines” are interchanged. This is known as the property of duality.

We see this in the next theorem.

As with finite affine planes, the axioms for a projective plane give

us enough information to prove that each line in a finite projective

plane must have the same number of points. We can also prove other

numerical results, as summarized in this theorem. (See [6], p. 4.)

Theorem 2.14. Let (P,L) be a finite projective plane. Then for

some integer n ≥ 2

(i) Each line has n+ 1 points.

(ii) Each point is incident with n+ 1 lines.

(iii) There are n2 + n+ 1 points.

(iv) There are n2 + n+ 1 lines.

The number n is called the order of the projective plane. The

smallest finite projective plane is the order-2 Fano plane, with seven

points and seven lines, each line containing three points. (See Fig-

ure 1.2 on page 5.)

So far we have talked about the synthetic approach. Just as we

did with affine planes, we now restrict our attention to the class of

coordinatized projective planes that are constructed starting with a

vector space—in this case, a 3-dimensional vector space F3. Before

we look at this construction in general, we introduce it using the field

R.

Example 13. Let F = R and let V = R3, the familiar 3-space. The

1-spaces in V are the ordinary lines through the origin, and these will

be our “points”. The 2-spaces are the ordinary planes through the

origin, and these will be our “lines”. Then two 1-spaces (“points”)

span a unique 2-space (“line”). Two 2-spaces (“lines”) meet in a

1-space (“point”). �

Theorem 2.15. Let F be a field and let V be a vector space of di-

mension three over F. Let P be the collection of 1-spaces of V , and

let L be the collection of 2-spaces of V . Then (P,L) is a projective

plane.
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A projective plane constructed in this fashion is denoted PG(2,F).

When F has q elements, we write PG(2, q).

Example 14. The finite projective plane PG(2, 3) is constructed

starting with the vector space V = (Z3)
3. There are 33 − 1 = 26

nonzero vectors, with (x1, x2, x3) and 2(x1, x2, x3) in the same 1-

space (together with the zero vector). So there are 26/2 projective

points. �

We can define coordinates for PG(2,F) and use analytical tech-

niques to study these geometries. Clearly we cannot simply label a

projective point with the components of a single vector in the related

1-space, since that would give several labels for one point. But since

all the nonzero vectors in a 1-space are nonzero multiples of each

other, we do something quite close to this.

On the set of nonzero ordered triples (x, y, z) ∈ F3 \ (0, 0, 0)

we define an equivalence relation (x, y, z) ∼ (x′, y′, z′) if and only

if (x′, y′, z′) = s(x, y, z) for some nonzero scalar s. We use square

brackets for the equivalence class [x, y, z] of all triples equivalent to

(x, y, z), and we use these equivalence classes to label the projective

points.

Any 2-space of V can be described as the solution set of a linear

equation ax+ by + cz = 0 with a, b, and c not all 0. Given this, the

projective line identified with this 2-space can be described as the set

of projective points [x, y, z] so that ax+by+cz = 0. We note that any

vector equivalent to (a, b, c) gives the same projective line. So we use

an equivalence class [a, b, c] to describe a particular projective line.

We thus naturally call PG(2,F) the coordinatized projective plane .

Example 15. Consider the projective plane PG(2, 3). The points

[2, 1, 0] and [1, 0, 1] are different since (2, 1, 0) �∼ (1, 0, 1). Given this,

there must be a projective line through these points. This line must

have coordinates [a, b, c] so that 2a+ b = 0 and a+ c = 0 in Z3. If we

choose a = 1, then b = −2 = 1 and c = −1 = 2. Other choices for a

will give other triples in the equivalence class [1, 1, 2]. �

Projective spaces of higher dimensions. If we increase the di-

mension, there is enough room in projective space for lines that do
                

                                                                                                               



2.5. Projective geometry 33

not intersect. In the definition of a projective space we replace axiom

P2 with one that basically says any two lines in a planar subspace

must intersect.

Definition. A projective space is a non-empty set P of points and a

non-empty set L of subsets of P called lines, so that

P1. Each pair of points is in a unique line. (We write �(A,B)

for the unique line on points A and B.)

P2 ′. (The Pasch Axiom) If A, B, C, and D are distinct points

such that there is a point E in the intersection of lines

�(A,B) and �(C,D), then there is a point F in the inter-

section of lines �(A,C) and �(B,D).

P3 ′. Each line contains at least three points; the projective space

contains at least two lines.

Extending our construction to projective spaces of higher dimen-

sions, we construct PG(d, q) starting with the vector space V = Fd+1

for F the field GF (q). Again, the points of the projective space are the

1-spaces of V ; the lines are the 2-spaces; the planes are the 3-spaces;

and so forth.

In a finite projective space of dimension greater than two, there

are not equal numbers of points and lines, so we cannot find a sym-

metric design using the lines as blocks. However there are equal num-

bers of 1-spaces and d-spaces in V = Fd+1. We call these d-spaces

hyperplanes, and we have the following theorem.

Theorem 2.16. Let F = GF (q) and let V be a (d+ 1)-dimensional

vector space over F for d ≥ 2. Let P be the set of 1-spaces of V , and

let B be the set of hyperplanes. Then (P,B) is a symmetric design

with parameters

v =
qd+1 − 1

q − 1
, k =

qd − 1

q − 1
, λ =

qd−1 − 1

q − 1
.

Proof. We leave for the exercises the verification that v is the number

of 1-spaces in V . Now we count the number of hyperplanes.7 To

7It is true that the 1-spaces and hyperplanes of a finite-dimensional vector space
are in a one-to-one correspondence. (See A.4.) For vector spaces over a finite field, a
direct count of the hyperplanes is interesting.
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begin, we count the number of ways to choose d linearly independent

vectors in V . There are qd+1 − 1 choices for the first nonzero vector.

Then there are qd+1−q choices for a second vector independent of the

first. Similarly there are qd+1 − q2 ways to choose a third vector not

in the span of the first two. Proceeding in this way, the total number

of choices is

(qd+1 − 1)(qd+1 − q)(qd+1 − q2) . . . (qd+1 − qd−1).

But a hyperplane has many bases. The number of bases of a

fixed hyperplane (d-space) is (qd − 1)(qd − q)(qd − q2) . . . (qd − qd−1).

Therefore the number of hyperplanes is

(qd+1 − 1)(qd+1 − q)(qd+1 − q2) . . . (qd+1 − qd−1)

(qd − 1)(qd − q)(qd − q2) . . . (qd − qd−1)
.

Factor a q from all but the first binomial in the numerator for a

leading factor of qd−1. Now factoring qd−1 from the last binomial in

the denominator gives:

qd−1(qd+1 − 1)(qd − 1)(qd − q) . . . (qd − qd−2)

qd−1(qd − 1)(qd − q)(qd − q2) . . . (qd − qd−2)(q − 1)
.

Cancel factors in common to get:

qd+1 − 1

q − 1
.

We leave for the exercises the proof that k is also the number of

1-spaces in a hyperplane.

Next we show that the number r of hyperplanes containing a 1-

space is independent of the particular 1-space. Suppose u,w ∈ V are

two nonzero vectors. We can define an invertible linear transformation

T : V → V with T (u) = w. Then T permutes the hyperplanes of V ,

so H is a hyperplane containing u if and only if T (H) is a hyperplane

of V containing w.

Finally, two hyperplanes meet in λ 1-spaces. �

Exercises

33. Let F = GF (5)

(a) How many nonzero vectors are there in F3?
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(b) Explain how to calculate the number of points and lines in

PG(2, 5).

34. Prove Theorem 2.15. Be sure to verify axiom P3 in the finite

case.

35. What goes wrong with the construction in Theorem 2.15 if we

start with V = Z3?

36. Consider the projective plane PG(2, 5).

(a) Let [0,1,3] and [2,1,1] be two projective points. Find the

coordinates for the line through these points. S©
(b) Let [0,1,3] and [2,1,1] be two projective lines. Find the co-

ordinates for the point in the intersection of these two lines.

(c) Write a general statement about the principal of duality that

you see in parts (a) and (b).

37. Let V = Z4
5, the vector space of dimension 4 over Z5. Find

an equation for the hyperplane (here, a 3-space) containing vectors

(1, 0, 0, 0), (0, 1, 0, 0), and (1, 1, 1, 1).

38. Consider the projective space PG(3, 5).

(a) Find the numbers of points, lines, and planes in this projec-

tive space.

(b) Show that the incidence structure with P the set of projec-

tive points and B the set of projective planes is a symmetric

design. Find its parameters.

39. Complete the proof of Theorem 2.16 as follows:

(a) Show that v is the number of 1-spaces in V .

(b) Show that k is the number of 1-spaces in a hyperplane of V .

(c) Explain why r = k.

(d) Fix two hyperplanes. Show that λ is the number of 1-spaces

in the intersection of the hyperplanes.
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Coda

Design theory is mathematically rich and very useful. It belongs to

combinatorics and is strongly linked to geometry and algebra. Designs

arose in statistics as designs of experiments (and this statistical origin

shows in the standard notation v for the number of points in a design).

A statistics text that highlights designs is [14]; it is very applied but

also imbued with the spirit of abstract designs. Another important

application of designs is to coding theory. See for example [12]. Also

see the section on codes in Chapter 13.

The treatment of designs in this chapter is somewhat more gen-

eral than required for our study of difference sets, but we wanted to

place the designs we need in a wider context. Our main focus is on

symmetric designs because they are intimately connected to difference

sets in finite groups. Chapter 3 introduces groups via automorphisms

of designs, and Chapter 4 makes the explicit link between symmetric

designs and difference sets.

Finite geometries often play a key role in constructions of dif-

ference sets. Here we have treated affine and projective geometries

in two parallel sections (forgive the pun). In each section, we begin

synthetically, with a list of axioms. Adding the assumption of finite-

ness to the axioms determines many parameters of the geometry. We

then narrow our focus to the coordinatized geometries, since these

are most useful to us.

                

                                                                                                               



Chapter 3

Automorphisms of
Designs

In Section 2.1 we defined two incidence structures to be isomorphic

if there is a way to map the points of one to the points of the other

that preserves the blocks. We want to extend the notion of permuting

points and blocks of a design by discussing more formally the group

of automorphisms of a symmetric design. Before we do that, we need

the concept of a group acting on a set.

3.1. Group actions

Many examples of groups arise naturally as sets of functions mapping

a set X to itself. We have groups of invertible linear transformations

V → V for some vector space V ; or symmetries of polygons thought

of as groups of invertible functions R2 → R2; or subgroups of S(X),

the symmetric group consisting of all permutations of a set X. It is

useful to be able to regard an abstract group G as a set of functions

X → X for a suitably chosen set X of “objects.” More formally:

Definition. Let G be a group and X a set. We say that G acts on X

if there is a function F : G×X → X with the following properties.

(i) The identity 1G of G satisfies F (1G, x) = x for all x in X.

(ii) For all g, h ∈ G and x ∈ X, F (gh, x) = F (g, F (h, x)).

37
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You can think of the preceding definition as the bare minimum

of what is required for elements of a group G to act on a set in a way

that respects the structure of G. This minimum actually suffices to

give the following theorem.

Theorem 3.1. Let G be a group acting on a set X via the function

F : G×X → X. For g ∈ G and x ∈ X, write πg(x) = F (g, x). Then

πg is a permutation of X and g �→ πg is a homomorphism from G to

S(X).1

The following three examples show groups acting on sets of ob-

jects. In the second and third, the group acts on itself.

Example 1. Let G be the group of the 24 rotation symmetries of

a cube, and let X be the set of eight vertices. Then each g ∈ G

permutes the set X and the identity of G fixes each vertex. Further,

for any g, h ∈ G, πg(πh(x)) = πgh(x). Alternatively we might let X

be the set of 12 edges and view each g ∈ G as a permutation of these

edges. �

Example 2. Let G be a group. We define a group action on the set

of elements of G by left multiplication. If g∈G, then multiplication

on the left by g permutes the elements of G with πg(h)=gh. �

Example 3. As with Example 2 we define a group action with G

acting upon itself, though in this example the action is conjugation.

Let g ∈ G. Then for all h ∈ G, πg maps h to ghg−1. Notice that the

πg are homomorphisms of G. (This is not true in Example 2.) �

We need some terminology to describe how G acts on X:

Definition. Let G be a group acting on the set X. Define an equiv-

alence relation on X by x ∼ y if y = πg(x) for some g ∈ G. The

equivalence classes are called the orbits of G on X. For x ∈ X the

orbit of x under G, denoted orbG(x), is the equivalence class con-

taining x. The subset stabG(x) = {g ∈ G | πg(x) = x} is called the

stabilizer of x.

1This is called a permutation representation of the group G, and is closely allied
to the linear representations in Chapter 10.
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In Example 1, if we let X be the set of 8 vertices of the cube then

the orbit of any one vertex is all of X. The stabilizer of any vertex

is the set of all 3 rotations of the cube about an axis through that

vertex and the one diagonally opposite. Suppose instead we let X be

the set of
(
8
2

)
= 28 pairs of vertices and choose for x a pair of vertices

connected by an edge of the cube. Then the orbit of x consists of the

12 pairs of vertices determined by the 12 edges. The stabilizer of x

consists of the 2 rotations about an axis through the midpoints of the

edge determined by x and the opposite edge. The numbers in these

examples might lead you to conjecture the following theorem. The

proof depends on the fact that stabG(x) is a subgroup of G.

Theorem 3.2. (Orbit-stabilizer theorem) Assume the finite group G

acts on a set X, and let x ∈ X. Then |G| = |stabG(x)| |orbG(x)|.

When we turn our attention to groups acting on symmetric de-

signs, we need some additional language.

Definition. If there is only one orbit of G on X, we say G acts

transitively on X. Further, G acts regularly on X if G acts transi-

tively on X and the stabilizer stabG(x) = {1G} for all x ∈ X. (When

this happens, if G is finite then |G| = |X|.)

In Example 1, if we let X be the set of vertices of the cube then

G acts transitively on X. But G does not act regularly on X since

there are three rotation symmetries that take any vertex to itself. On

the other hand, if we let X be the set of pairs of vertices, then G does

not act transitively on X. In Example 2 the action of G on itself is

regular.2 In Example 3, if G is nontrivial, the action is not transitive.

(What is the orbit of 1G?)

In the next section we need one more result about orbits of a

group acting on a set, often called Burnside’s Lemma.3 The proof is

found in many abstract algebra texts, for example the one by Gallian

[23].

2This is the left regular representation of G discussed in Chapter 10. It gets its
name from acting “regularly” on the elements of G.

3Lander [43] calls this the Cauchy-Frobenius lemma; other texts call it Burnside’s
Theorem or the Polya-Burnside Lemma.
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Lemma 3.3. (Burnside’s Lemma) Assume the group G acts on a

set X. For g ∈ G, let Fix(g) be the set of elements of X fixed by πg.

Then

Number of orbits of G on X =
1

|G|
∑
g∈G

∣∣Fix(g)∣∣.
Exercises

1. Prove Theorem 3.1.

2. Let G be the dihedral group of order 8, and let G act on itself by

conjugation. Find the G-orbits. S©

3. Let G be a group acting on a set X, and consider the relation on

X defined by x ∼ y if y = πg(x) for some g ∈ G. Prove that this is

an equivalence relation.

4. Prove Theorem 3.2. H©

The next two exercises revisit some theorems you may have seen

in abstract algebra.

5. Cayley’s theorem says that every group G is isomorphic to a sub-

group of S(G). Use Example 2 to prove Cayley’s theorem.

6. Prove the following statements:

(a) A group G is partitioned into its conjugacy classes.

(b) For any a ∈ G, the size of the conjugacy class of a in G is

the index in G of the subgroup CG(a) = {g ∈ G | ga = ag},
the centralizer of a.

3.2. Automorphisms of symmetric designs

We now look specifically at groups acting on the points and simulta-

neously on the blocks of a symmetric design.

Definition. Let D be a symmetric design with point set P and block

set B. An automorphism of D is a permutation of P that preserves
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the set of blocks. Consequently the automorphism also acts as a

permutation of B.

Theorem 3.4. The set of all automorphisms of a symmetric design

is a group under the operation of composition of functions. This is

called the group of automorphisms of the design.

Example 4. An example that is easy to picture is the automorphism

of the Fano plane in Figure 3.1 that rotates the figure 120 degrees

counterclockwise.

0

1 2

3

4

5

6

Figure 3.1. The Fano plane

The permutations on the points and on the blocks are

(0)(146)(235) on points

(�2)(�1 �3 �5)(�0 �4 �6) on blocks

where �1 = 124, �2 = 235, �3 = 346, �4 = 450, �5 = 561, �6 =

602, �0 = 013. �

In our example the cycle structures of the permutation of the

points and the permutation of the blocks are the same. This is no

accident. For any automorphism of a symmetric design, the cycle

structures of the corresponding permutations of the points and blocks

are always the same ([43], p. 78). For our purposes the important

link between these two permutations is Corollary 3.7. This result is

vital to our work on difference sets in Chapters 4, 6, and 8.
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The first theorem below concerns the numbers of fixed points for

the permutations of the points and blocks caused by an automor-

phism.

Theorem 3.5. An automorphism of a symmetric design fixes the

same number of blocks as points.

Proof. Let A be the incidence matrix of the symmetric design. Let

Q be a permutation matrix that permutes the points according to the

automorphism. Then AQ is the incidence matrix for the symmetric

design but with the points permuted. Since an automorphism of a

block design is a permutation of the points of the design that permutes

the blocks, there is a permutation matrix P so that PA = AQ.

Corollary 2.10 tells us that A is invertible. So P = AQA−1, making

P and Q similar. Therefore P and Q have the same trace. Since the

trace of a permutation matrix is the number of objects fixed by that

permutation, we have our result. �

The next theorem and its corollary compare the actions of a group

of automorphisms of a design on the point set and on the block set.

The proof requires Burnside’s Lemma 3.3.

Theorem 3.6. A group of automorphisms of a symmetric design

has as many orbits on points as it does on blocks. In particular, it is

transitive on points if and only if it is transitive on blocks.

Proof. From Theorem 3.5 we know that an automorphism of a sym-

metric design D fixes the same number of points as blocks. In other

words, the value of
∣∣Fix(g)∣∣ is the same for X = P as for X = B.

Now apply Burnside’s Lemma with G the group of automorphisms to

see that the number of orbits of G on P is the same as the number

of orbits of G on B. �

The following corollary pulls together the information in Theo-

rems 3.5 and 3.6 and is the key result referred to above.

Corollary 3.7. Let D be a symmetric design with point set P and

block set B, and let G be a group of automorphisms of D. Then G

acts regularly on P if and only if G acts regularly on B.
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Exercises

7. In Example 4 consider the automorphism of the Fano plane that

reflects our figure about the vertical line of symmetry. Write in cycle

form the resulting permutations on the set of points and the set of

lines. S©

8. What is the full group of automorphisms of the Fano plane? H©

9. Prove Theorem 3.4.

10. Prove Corollary 3.7.

Coda

There are two important ideas in this chapter: the general concept of

a group acting on an arbitrary set, and the specific case of a group

of automorphisms of a symmetric design. An automorphism of a

symmetric design is a permutation of its points and of its blocks that

“preserves its structure.” By saying a mapping preserves the structure

of the design we mean that if a point P belongs to a block B of the

design, then the image of P under the mapping belongs to the image

of B.

The concept of a group G acting on a set X as a set of mappings

X → X is a major theme in group theory. If the set X has additional

structure—whether algebraic or geometric or physical—we may re-

strict attention to group actions that preserve the structure. Thus

group actions can lead to a host of applications by using symmetry

groups to analyze such things as crystals or atoms or networks. Group

actions also supply a unifying thread in proofs of major results about

groups, such as Cayley’s theorem, the Sylow theorems, and the class

equation.

Automorphisms of a symmetric design provide the link to differ-

ence sets. As we prove in Chapter 4, a group acts regularly on the
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points and on the blocks of a symmetric (v, k, λ) design if and only if

the group contains a (v, k, λ)-difference set.

                

                                                                                                               



Chapter 4

Introducing Difference
Sets

As we noted in Chapter 1, many authors trace difference sets to the

1938 paper of Singer ([62]). Although Singer does formulate the defi-

nition of a difference set, his main theorem is about an automorphism

of a design. Singer also frames the theorem’s important consequences

as descriptions of the points and blocks of the design. The systematic

study of difference sets themselves goes back at least to Hall’s work in

the late 1940’s. Ideas from combinatorics, geometry and algebra were

ingredients in all of these early papers. The use of algebraic methods

has grown steadily as the subject has developed.

In this chapter we introduce difference sets and some of the math-

ematical tools used to construct them and to explore their properties.

We begin in Section 1 with the definition and examples. We describe

in Section 2 how a difference set can be used to produce a symmetric

design and thus how it provides a compact description of the design

it yields. An important algebraic tool for the study of difference sets

is the integral group ring, the topic of Section 3. Finally, in Section 4

we define what it means for two difference sets to be equivalent.

45
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4.1. Definition and examples

Throughout, we restrict our attention to finite groups. If G is a cyclic

group of order v, we will usually identify G with Zv = {0, 1, . . . , v−1},
the group of integers under addition modulo v. (Later we use Zm to

denote the ring of integers modulo m, relying on context to make

clear whether Zm refers to the group or the ring.)

Difference sets were first defined in abelian groups in which the

operation is written as addition and the identity is denoted by zero.

A difference set D is a non-empty proper subset of a group G with

the property that every nonzero element in G can be expressed in

exactly the same number of ways as the difference of two elements in

D. Another way to say this is to consider the multiset of differences

Δ = { d1 − d2 | d1, d2 ∈ D, d1 �= d2 }.

Then D is a difference set if every nonzero element of G appears the

same number of times in Δ.

It is usual to use multiplication as a generic group operation, and

to write 1, or sometimes 1G, for the identity. (This is particularly

useful for the study of difference sets because the symbol for addition

is then available for another purpose, as in Section 3.) In the language

of multiplicative groups, subtraction becomes multiplication by the

inverse. So the multiset is

Δ = { d1d−1
2 | d1, d2 ∈ D, d1 �= d2 },

and we write the definition as follows.

Definition. A difference set D in a group G is a non-empty proper

subset1 of G such that any non-identity element of G can be written

in exactly λ ways as d1d
−1
2 where d1 and d2 are in D. We say the

difference set is cyclic or abelian if G is.

We freely apply this definition to groups written additively, and

use the term “difference” when we talk about d1d
−1
2 . However, we

usually use multiplicative notation when speaking generally about

1Some authors include ∅ and G as trivial difference sets. In his definition ([43],
p. 120) Lander requires |D| > λ, which we shall see is equivalent to our restriction.
Notice that λ can be zero in one of our trivial cases, as Example 1 shows.
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difference sets. (By Theorem 4.9, it doesn’t matter, even in non-

abelian groups, whether we define the multiplicative “difference” by

d1d
−1
2 as above or with the inverse on the other side, as d−1

1 d2.)

The following example shows that every finite group with at least

two elements contains certain difference sets.

Example 1. Let G be a finite group and g ∈ G. If G contains at

least two elements, then {g} and G \ {g} are difference sets. These

are called trivial difference sets. �

The next two examples are cyclic difference sets. They are mem-

bers of families of difference sets introduced later in this section.

Example 2. In the (additive) group Z11, D = {1, 3, 4, 5, 9}, the set

of nonzero squares in Z11, is a difference set. �
Example 3. In the (additive) group Z15, D = {0, 1, 2, 4, 5, 8, 10} is

a difference set. �

Just as with designs, important parameters are associated with

difference sets. We use the following letters to denote these parame-

ters:

v = |G |,
k = |D |,
λ = the number of ways a non-identity element of G can

be represented as a difference of two elements in D,

n = k − λ is known as the order of the difference set.

We write that D is a (v, k, λ)-difference set. In the next section we

describe the connection to designs that this notation suggests. Of

course, the difference set parameters are related to each other. Notice

that 0 < k < v together with the relation in the following theorem

implies that λ < k, so the order of a difference set is a positive integer.

Theorem 4.1. Let D ⊂ G be a (v, k, λ)-difference set. Then

k(k − 1) = λ(v − 1). Equivalently, n = k2 − vλ.

The next example is taken from Lander ([43], p. 123), who rightly

describes it as “elegant.” It is a member of a family of difference

sets first studied by Menon in 1962 ([55]). (We study this family of

difference sets in Chapter 9.)
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Example 4. The following elements of the additive group Z6 ⊕ Z6

form a (36, 15, 6)-difference set:

(1,1) (2,2) (3,3) (4,4) (5,5)

(0,1) (0,2) (0,3) (0,4) (0,5)

(1,0) (2,0) (3,0) (4,0) �(5,0).

So far we have looked exclusively at difference sets in abelian

groups. Any finite abelian group is isomorphic to a direct product2

of cyclic groups Zm. Non-abelian groups cannot be characterized as

simply. However, any finite group can be defined by specifying the

elements that generate the group and the fundamental relations the

generators satisfy.

Definition. A group presentation for the group G is a minimal set

S of elements that generate G and a set R of relations that determine

how these elements interact. We write G = 〈S | R 〉.

If G is the cyclic group of order 7, we write G = 〈a | a7 = 1〉. All

other relations among elements of G are consequences of a7 = 1. If G

is the abelian group of order 10, it must be cyclic and can be presented

with one generator: G = 〈a | a10 = 1〉. It may also be presented with

two generators of orders 5 and 2, and with an additional relation that

shows the two generators commute: G = 〈b, c | b5 = c2 = 1, bc = cb〉.

Definition. The dihedral group of order 2m, which we denote3 Dm,

can be presented with two generators: a of order m, and b of order 2.

A third relation shows how the two generators interact

Dm = 〈a, b | am = b2 = 1, ba = a−1b〉.
The third relation is also frequently written bab−1 = a−1. In words,

conjugation by b maps a to its inverse.

You may expect that, after the definition of the dihedral groups,

the next order of business ought to be an example of a difference set in

2We could say sum instead of product. Indeed, we will usually write G1 ⊕ G2

when the group operations are written additively and G1 × G2 when they are written
multiplicatively. Other authors, for example Gallian, write G1 ⊕ G2 for the external
direct sum/product of groups G1 and G2 and H1 ×H2 for the internal direct product
of normal subgroups H1, H2 of some group G.

3Some authors use D2m to denote the dihedral group of order 2m.
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a dihedral group. We have none to offer. Indeed, it is conjectured that

a difference set cannot exist in a dihedral group. However, difference

sets do exist in non-abelian groups, as the next example shows. It

is from Kibler’s very useful catalog of non-cyclic difference sets with

k < 20 [40].

Example 5. Let G = 〈a, b | a7 = b3 = 1, ba = a2b〉. Then the set

D = {1, a, a3, b, a2b2} is a (21, 5, 1)-difference set in G. �

Once we find a difference set, we can find several other related

difference sets. The following theorem gives us some of them.

Theorem 4.2. Let D ⊂ G be a (v, k, λ)-difference set.

(i) For g ∈ G, both gD and Dg are (v, k, λ)-difference sets.

(ii) Let α be an automorphism of G. Then α(D) is a (v, k, λ)-

difference set.

When G is written additively, the difference sets in (i) are written

g + D and D + g, which motivates calling these new difference sets

(in either notation) translates or shifts of D. Sometimes we refer to

the element g as the offset of the translate g +D.

Various infinite families of difference sets are known to exist. The

first family we describe consists of the nonzero squares (quadratic

residues) in Zp when p ≡ 3 (mod 4). In fact, the next theorem shows

that this example can be generalized to nonzero squares in the finite

field GF (q) where q, the number of elements, is a power of a prime.

Its proof requires the fact that the element −1 in the field GF (q) is

a square if and only if q ≡ 1 (mod 4). (See A.17.) The difference sets

in Theorem 4.3 are often called Paley difference sets.

Theorem 4.3. Let q be a power of a prime, q ≡ 3 (mod 4), and

let G be the (additive) group of the finite field GF (q). Let D be the

set of nonzero squares in GF (q). Then D is a difference set with

parameters (q, (q − 1)/2, (q − 3)/4).

Proof. Notice that while we use multiplication to determine the el-

ements of D, the group operation is addition. The set D of nonzero

squares is a subgroup of the multiplicative group GF (q)∗ of nonzero
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elements, and the map a �→ a2 is a group homomorphism fromGF (q)∗

onto D with kernel {+1,−1}. Since q is odd, +1 �= −1. Therefore

|D| = (q − 1)/2. We also note that q ≡ 3 (mod 4) implies −1 is a

non-square, and therefore a ∈ GF (q)∗ is a square if and only if −a is

a non-square.

Now we show D is a difference set. Choose a ∈ GF (q), a �= 0.

First consider the case when a is a square. Observe that for s ∈ D

a = d− d′ with d, d′ ∈ D ⇔ sa = sd− sd′ with sd, sd′ ∈ D.

This tells us that every nonzero square appears exactly the same

number of times in the multiset Δ = {d−d′ | d, d′ ∈ D, d �= d′}. Next

we consider the case when a is a non-square. Note that −a is thus a

square. Note also that

a = d− d′ with d, d′ ∈ D ⇔ −a = d′ − d with d, d′ ∈ D.

This tells us that every non-square appears exactly the same number

of times in Δ as every square does. Finally, we can find the value of

λ by solving k(k− 1) = λ(v− 1) for λ. Since v = q and k = (q− 1)/2,

we obtain λ = (q − 3)/4. �

In the proof we used q ≡ 3 (mod 4) to conclude −1 is a non-

square. Also notice that since λ is an integer, λ = (q − 3)/4 only

makes sense when q ≡ 3 (mod 4).

Two other families of difference sets can be constructed in some

groups Zp using fourth powers (quartic residues). We state the theo-

rems here without proof.4

Theorem 4.4. Let p be a prime of the form p = 4x2+1, where x is

an odd integer, and let G = Zp. Then the set D of all nonzero fourth

powers of elements in G is a difference set.

Theorem 4.5. Let p be a prime of the form p = 4x2+9, where x is

an odd integer, and let G = Zp. Then the set D of all fourth powers

of elements in G including 0 is a difference set.

4Proofs of Theorems 4.4 and 4.5 are given by Lehmer in [44] and depend upon
her lemma which appears in this text as Lemma 9.6. (See [8], p. 357.)
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The last family of difference sets we introduce here is the family

of twin prime difference sets. Twin primes are primes that differ by

2. The smallest example is the pair {3, 5}. The difference set in

Z15
∼= Z3 ⊕ Z5 in Example 3 is the smallest in the family of “twin

prime” difference sets. The following theorem describes a general

procedure for constructing difference sets in G = Zp ⊕ Zp+2 when p

and p+ 2 are primes. A more general version is Theorem 9.4, where

the proof is given.

Theorem 4.6. Let G = Zp ⊕ Zp+2 where p and p + 2 are primes.

Let D be the subset of G consisting of elements (a, b) such that one

of the following statements is true:

b = 0,

a and b are both nonzero squares in their respective fields,

a and b are both non-squares in their respective fields.

Then D is a difference set.

Exercises

1. Verify the following examples in this section, and determine the

parameters for each difference set.

(a) Example 1.

(b) Example 2.

(c) Example 3.

(d) Example 4.

2. Let D = {1, 2, 4} ⊂ Z7, and show that D = {0, 3, 5, 6} is a

difference set in Z7. What are its parameters? (In Section 3 we will

prove that the complement of a difference set is always a difference

set.)

3. This exercise concerns the parameters v, k, λ of a difference set.

(a) Prove Theorem 4.1. S©
(b) Deduce that 0 < k < v implies λ < k.
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(c) Can it happen that a difference set consists of exactly half

the elements of a group? If so, under what circumstances?

(d) Show that if k ≤ v/2 then λ < n. H©

4. Prove Theorem 4.2.

5. In the dihedral groupD8 every element may be written in standard

form aibj where 0 ≤ i ≤ 7 and 0 ≤ j ≤ 1. Write (a3b)(a2) in standard

form.

6. In the group G = 〈a, b | a7 = b3 = 1, ba = a2b〉, each element can

be written in standard form aibj where 0 ≤ i ≤ 6 and 0 ≤ j ≤ 2.

What is the order of G? Write ba5 and (a5b2)−1 in standard form.

7. The following is not a consistent presentation for a group:

〈a, b | a7 = b3 = 1, ba = a3b〉. Explain why.

8. What restrictions on j are necessary for the relations in the pre-

sentation 〈a, b | a7 = b3 = 1, ba = ajb〉 to be consistent? Justify your

answer. H©

9. Similar difference sets in two different groups.

(a) Let G = 〈a, b | a7 = b3 = 1, ab = ba〉 and let

D = {a, a2, a4, b, b2}. Verify that D is a difference set in G.

(b) Let G′ = 〈c, d | c7 = d3 = 1, dc = c2d〉 and let

D′ = {c, c2, c4, d, d2}. Verify that D′ is a difference set in

G′.

10. Verify Example 5.

11. Fill in the details in the proof of Theorem 4.3 as follows.

(a) Verify that D is a subgroup of GF (q)∗.

(b) Verify that the mapping a �→ a2 is a group homomorphism

from GF (q)∗ onto D with kernel {+1,−1}.
(c) Solve k(k − 1) = λ(v − 1) for λ in terms of q.
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12. This exercise introduces computation in the field GF (q) when q is

not a prime. Specifically, we construct a difference set in the additive

group GF (27). We use the multiplication in GF (27) to determine

membership in our difference set. View GF (27) as Z3[x]/〈p(x)〉 where
p(x) = x3 + 2x + 1, a cubic polynomial that is irreducible in Z3[x].

The polynomials ax2 + bx + c in Z3[x] form a complete set of coset

representatives for Z3[x]/〈p(x)〉. Identify an element of GF (27) with

its coset representative.

(a) Show that x in GF (27) has multiplicative order 26 by ex-

pressing x3, x4, . . . as quadratic polynomials in x. Represent

ax2 + bx+ c by the triple (a, b, c).

(b) List the triples corresponding to the nonzero squares in

GF (27). (This is the (27, 13, 6)-difference set promised in

Theorem 4.3.)

13. Use Theorems 4.4 and 4.5 to find difference sets in Z37 and

Z13. In each theorem, what are the parameters of the difference sets

constructed from the fourth powers of elements in Zp in terms of the

prime p?

14. Using Theorem 4.6, construct a twin primes difference set in

Z3 ⊕ Z5. Then using Z3 ⊕ Z5
∼= Z15 with (1, 1) mapped to generator

1, find the corresponding difference set in Z15. Compare your results

to the difference set in Z15 in Example 3. Using this same technique,

construct a difference set in Z35.

15. For all parts of this exercise assume G is an abelian group under

addition. Call a subset S ⊆ G normalized if
∑

s∈S s = 0 in G.

(a) Find a normalized difference set in Z7 that is a translate of

{0, 1, 3}.

(b) Find a normalized difference set in Z11 that is a translate of

{1, 4, 6, 7, 8}.

(c) Find a normalized difference set in Z13 that is a translate of

{3, 4, 6, 12}.
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(d) Let q be a power of a prime, q ≡ 3 (mod 4), q > 3, and

let G = GF (q). Let D be the set of nonzero squares in G.

Show D is normalized.

16. Assume G is an abelian group under addition. Further assume

|G| = v, D ⊂ G, |D| = k and gcd(k, v) = 1. Show that D has a

unique translate that is normalized. Also show that the total number

of (v, k, λ)-difference sets in G is equal to v times the number of

normalized (v, k, λ)-difference sets.

4.2. Difference sets and designs

In Theorem 2.13 we stated that if p ≡ 3 (mod 4) is a prime, and

D is the set of nonzero squares in Zp (which we now know to be a

difference set), then we have a symmetric design whose points are the

elements of Zp and whose blocks are the translates a+D as a varies

through the additive group Zp. The parameters of the design are(
p, (p−1)/2, (p−3)/4

)
, the same as the parameters of the difference

set. These examples are instances of a general phenomenon. We state

it in multiplicative notation where the translates have the form aD.

Definition. Given a difference set D ⊂ G, the development of D,

denoted devD, is the incidence structure whose points are the ele-

ments of G and whose blocks are the (left) translates of the difference

set

B = {aD | a ∈ G}.

Theorem 4.7. Let D ⊂ G be a (v, k, λ)-difference set. Then devD

is a symmetric (v, k, λ) design.

Proof. We refer to the numbering of the properties in the definition

of a symmetric design in Chapter 2, page 26. Clearly the number of

points of devD equals v, and the number of points per block is equal

to |D| = k, so properties (i) and (iv) hold. Because it will be useful in

verifying the other properties for a symmetric design, we next show

that for a, b ∈ G with a �= b, we have |aD ∩ bD| = λ. Fix the distinct

group elements a, b and suppose g ∈ aD ∩ bD. Then g = ad1 = bd2
for d1, d2 in D if and only if a−1b = d1d

−1
2 . Because D is a difference

set and a−1b �= 1, there are exactly λ such choices of d1, d2.
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Since we know λ < k, |aD ∩ bD| = λ tells us that distinct group

elements a and b give distinct blocks aD and bD, so the number of

blocks of devD equals v; this is property (ii). We also know that two

distinct blocks have exactly λ points in common; this is property (vi).

To count the number of blocks on a point, fix g ∈ G and observe that

g ∈ aD if and only if a = gd−1 for some d ∈ D. Since there are k

choices for d ∈ D, there are k choices for a and thus k choices for the

block aD on g; this is axiom (iii). From Exercise 2.32, we know that

the five properties for a symmetric design which we have verified thus

far imply property (v): that two distinct points appear together in

exactly λ blocks. �

The relationship between a difference set D ⊂ G and its develop-

ment is stronger than just the fact that devD is a symmetric design.

The design also bears a special relationship to the group G. If the

group operation is written multiplicatively, we can identify each ele-

ment g ∈ G with the function πg : x �→ gx. Since left multiplication

by g takes blocks to blocks, G is a group of automorphisms of the

design devD. We will see that G acts regularly on the points and the

blocks of devD.

In fact, the relationship goes the other way too. If a group acts

regularly on the points and blocks of a symmetric design, then it

contains a difference set with the parameters of the symmetric de-

sign. Indeed, this is what Singer did in his seminal 1938 paper: he

constructed a cyclic group acting regularly on a particular symmet-

ric design, and used this to construct a difference set. The following

theorem is the formal statement.

Theorem 4.8. Let G be a finite group of order v. Then G acts reg-

ularly on the points and on the blocks of a symmetric (v, k, λ) design

if and only if G contains a (v, k, λ)-difference set.

Proof. First, assume G contains a (v, k, λ)-difference set D. We al-

ready know devD is a symmetric (v, k, λ) design. We write G multi-

plicatively, so for g ∈ G and x a point of devD, πg(x) = gx. We have

observed that G is a group of automorphisms of the design devD.

We claim G acts regularly on the points of devD. By Corollary 3.7 it
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follows that G acts regularly on the blocks of devD. (For details see

Exercise 17.)

Now assume G acts regularly on a symmetric (v, k, λ) design D
with point set P and block set B. Choose a point P0 ∈ P and a block

B0 ∈ B. Because G acts transitively on P, for each P ∈ P there

is g ∈ G with g(P0) = P . Because only the identity fixes a point,

g must be the unique group element mapping P0 to P . Identify

the point P with the group element g. Notice that P0 is identified

with the identity 1G. Similarly, because G acts regularly on blocks,

for each B ∈ B, there is a unique g ∈ G with g(B0) = B. Let

D = {g ∈ G | g(P0) ∈ B0}; in other words, D is the set of group

elements identified with the points in the block B0.

Set up notation with B0 = {P1, . . . , Pk} and D = {d1, . . . , dk}
with Pj = dj(P0). Notice that if B is any block, B = g(B0) =

{g(P1), . . . , g(Pk)} = {gd1(P0), . . . , gdk(P0)} for a unique g ∈ G, and

B is identified with the set of group elements in gD.

Now we showD is a (v, k, λ)-difference set inG. Since B0 contains

k points, D contains k group elements. Choose x ∈ G, x �= 1G,

and write x = h−1g for a fixed choice of g �= h in G. The blocks

g(B0) and h(B0) are distinct and so have exactly λ points in common.

A common point corresponds to a choice of (i, j) with gdi(P0) =

hdj(P0). Because G acts regularly on points, we must have gdi = hdj
and x = h−1g = djd

−1
i . Conversely, writing x = djd

−1
i for di, dj ∈ D

produces a point common to the blocks g(B0) and h(B0) (where, as

before, x = h−1g). Therefore x can be written in exactly λ ways as a

“difference” djd
−1
i for di, dj ∈ D. �

Note that implicit in the proof of Theorem 4.8 is the fact that

the symmetric design D on which G is assumed to act regularly is

equivalent to the constructed design devD, where D is the difference

set defined by means of the chosen point P0 ∈ P and the chosen block

B0 ∈ B.

We have left dangling the assertion that it does not matter in our

definition of a (v, k, λ)-difference set whether we write the differences

of elements of D as d1d
−1
2 or as d−1

1 d2. The following indirect ap-

proach to the proof of this fact is due to Bruck in [10]. A more direct
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approach, due to Bruck in the same paper, is in the exercises for the

next section. (See Exercise 29.)

Theorem 4.9. Let D be a non-empty proper subset of a finite group

G. Let v = |G| and k = |D|, and assume λ is a fixed integer. The

following are equivalent:

(i) If g ∈ G, g �= 1G, there are exactly λ pairs d1, d2 ∈ D with

d1d
−1
2 = g.

(ii) If g ∈ G, g �= 1G, there are exactly λ pairs d1, d2 ∈ D with

d−1
1 d2 = g.

Proof. Assume condition (i) holds, so D is a difference set. By The-

orem 3.7, devD is a symmetric design. In particular, two distinct

points appear together in exactly λ blocks. Let g be a non-identity

element of G, and let h = 1G. Then g and h lie in exactly λ blocks aD.

This means that there exist d1, d2 ∈ D with g = ad2 and h = ad1.

Solving for a we get a = gd−1
2 = hd−1

1 . So g = h−1g = d−1
1 d2. Thus,

every block aD that contains both g and h gives a representation of

g as d−1
1 d2. So there are at least λ representations of g as d−1

1 d2,

and this is true for every non-identity element g. We already know

k(k−1) = λ(v−1), so the k(k−1) differences d−1
1 d2 cannot represent

g more than λ times.

An argument similar to the proof of Theorem 3.7 shows that

condition (ii) guarantees that the incidence structure with blocks Da

for a ∈ G is a symmetric (v, k, λ) design, and this in turn implies

condition (i). �

Exercises

17. Assume that D ⊂ G is a difference set. Identify g ∈ G with

the function πg : G → G, with πg(x) = gx. Complete the proof of

Theorem 4.8 by showing that:

(a) Each πg is an automorphism of the design devD.

(b) G acts regularly on the points of devD.

18. Complete the proof of Theorem 4.9 by showing that condition

(ii) implies condition (i).
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19. Recall Example 2.11, the symmetric (16, 6, 2) design whose points

are the 16 individual squares of a 4× 4 grid and whose blocks consist

of the six points in the row and column of a fixed square, not including

the square itself. Label the points as indicated in Figure 4.1.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 4.1. Design from 4× 4 grid; block T7 is shaded

Let Tj be the block determined by point j; for example, the block

T7 = {3, 5, 6, 8, 11, 15}.

(a) Show that the incidence matrix of this design is given by

A =

⎡⎢⎢⎣
M I I I

I M I I

I I M I

I I I M

⎤⎥⎥⎦
where I is the 4× 4 identity matrix and

M =

⎡⎢⎢⎣
0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

⎤⎥⎥⎦ .
(b) Define permutations α and β of the 16 points by

α = (1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16) and

β = (1 5 9 13)(2 6 10 14)(3 7 11 15)(4 8 12 16).

Explain why α and β are automorphisms of the design.

(c) Show that αβ = βα and G = 〈α, β〉 ∼= Z4 ⊕ Z4.
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(d) Show that G = 〈α, β〉 acts regularly on the points and blocks

of this design.

(e) Choose P0 = 1 and B0 = T1 = {2, 3, 4, 5, 9, 13}. What is the

corresponding set D ⊂ G as in the proof of Theorem 4.8?

S©
(f) Verify that D is a (16, 6, 2)-difference set in G.

4.3. Integral group ring

In this section we introduce an algebraic tool that is particularly

useful for studying finite groups and difference sets. We start with a

finite multiplicative group G. The elements of the integral group ring

ZG are formal sums of integers times group elements. For instance,

if g1, g2 ∈ G, then 2g1 − 5g2 is an element of the integral group ring.

When all the integer coefficients are non-negative we can think of an

element in ZG as a multiset of elements of G. From this point of

view, 3g1 + 4g2 is 3 copies of g1 and 4 copies of g2. The elements of

ZG are called formal sums since the addition of group elements is not

defined within the group; for example, g1+g2 is not a group element.

Addition and multiplication of elements in this ring are similar to

addition and multiplication of polynomials.

Definition. Let G be a finite multiplicative group. The integral

group ring ZG consists of formal sums
∑
g∈G

agg where ag ∈ Z. Addi-

tion and multiplication are defined as follows:∑
g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg)g⎛⎝∑
f∈G

aff

⎞⎠⎛⎝∑
g∈G

bgg

⎞⎠ =
∑
h∈G

⎛⎝∑
fg=h

af bg

⎞⎠h.

The zero element of the ring is the sum
∑

g 0g having all coeffi-

cients equal to zero. Part of what we mean by calling the elements of

ZG “formal sums” is that the only way the sum
∑

g agg can be zero

in ZG is if ag = 0 for each g in G. We write 0g = 0 for the product

of the integer 0 and the group element g, and 1g = g for 1 ∈ Z and

g ∈ G. To distinguish the integer 1 from the group identity in this
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setting, we write 1G for the identity in G.5 It follows that ZG is a

ring with identity 1G. Further, the ring ZG is commutative if and

only if the group G is abelian.

Remark: Replacing Z by any commutative ring R with identity also

gives a ring RG with identity, and RG is commutative if and only if

G is abelian. We use the ring QG in the exercises at the end of this

section. Indeed, Theorem 4.10 below remains true in the group ring

RG provided the characteristic of R is zero ([8], p. 312).

In ZG, if A =
∑

agg and t is an integer, we denote by A(t) the

element
∑

agg
t. In particular, A(−1) is the element

∑
agg

−1. We

may consider any subset S of G as an element of the integral group

ring by identifying S with the formal sum
∑

g∈S g. Using this notation

we can restate the condition that makes D a difference set in G.

Theorem 4.10. Let D be a non-empty proper subset of a group G

with |D| = k and |G| = v. Then D is a (v, k, λ)-difference set if and

only if

DD(−1) = k 1G + λ(G− 1G) = n 1G + λG

holds in the integral group ring ZG.

The following theorem gives us another way to use one differ-

ence set to construct another. It parallels what we saw in Chapter 2,

namely that the complement of a symmetric design is again a sym-

metric design.

Theorem 4.11. Let D be a (v, k, λ)-difference set in G. Then its

complement D = G \D is a difference set in G.

Remark: When the multiplicative group G is a subset of a ring, the

addition of group elements is defined in the ring, and that can be

confusing. For example, consider the group G = {1, ω, ω2, . . . , ω6} ⊂
C for ω = cos(2π/7) + i sin(2π/7). As we saw in Chapter 1, as a

sum of complex numbers 1 + ω + · · ·+ ω6 = 0 in C, but the “formal

sum”
∑

ωj is not the zero element of the ring ZG. To avoid this

5Many authors don’t make this distinction and write m ∈ ZG where we write
m1G.

                

                                                                                                               



4.3. Integral group ring 61

possible confusion, another way to define ZG is as the set of all integer-

valued functions on G. From this point of view, the element
∑

g agg

is replaced by the function F : G → Z with F (g) = ag. Then, for the

example above, 1+ω+ · · ·+ω6 ∈ ZG corresponds to the function F1

with F1(g) = 1 for all g in G, but 0 ∈ ZG corresponds to the function

F2 with F2(g) = 0 for all g in G. The addition of elements of ZG in

this formulation is easy to describe: if F1(g) = ag and F2(g) = bg,

then (F1 + F2)(g) = ag + bg. Multiplication is more complicated to

describe: (F1F2)(h) =
∑

fg=h afbg. Exercise 26 gives some practice

with this alternative definition. Also see the exercises on the Hall

polynomial for yet another representation of the integral group ring

for the special case of an additive group.

For now, we leave our discussion of the integral group ring here.

It will be used heavily in later chapters.

Exercises

20. Let G be a finite group.

(a) Verify that ZG is a ring with identity 1G.

(b) Show that the ring ZG is commutative if and only if the

group G is abelian.

21. We know that the set of nonzero squares {1, 3, 4, 5, 9} in Z11 is an

(11, 5, 2)-difference set. Switch to multiplicative notation and let G be

the abelian cyclic group 〈a | a11 = 1〉, and let D = {a, a3, a4, a5, a9}.
Compute GG(−1) and DD(−1) in ZG by explicitly multiplying out

the sums.

22. Let G = 〈a | a11 = 1〉.

(a) Let S = {1, a, a2, a4, a7}. Compute SS(−1) in ZG.

(b) Let T = {1, a, a2, a5, a7}. Compute TT (−1) in ZG.

(c) Based on your calculations above, which of S and T is a

difference set? Explain.

23. Assume S ⊆ G and s ∈ S.
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(a) Calculating in the integral group ring ZG, find SG, and

GS. S©
(b) What element of ZG corresponds to G \ S?
(c) Let A,B ∈ ZG. Explain why (A+B)(−1) = A(−1) +B(−1).

(d) Explain why G(−1) = G.

24. Prove Theorem 4.10.

25. Use the integral group ring ZG to prove Theorem 4.11 and find

the parameters of the difference set D = G \D.

26. In this exercise you will explore the alternative definition of ZG

as the set of all integer-valued functions on G. From this point of

view, the element
∑

g agg is replaced by the function F : G → Z with

F (g) = ag.

(a) Let G = 〈a, b | a2 = b2 = 1G, ab = ba〉. What is the function

F1 : G → Z associated with the sum 3a− 5b+ ab in ZG?

(b) Continue with G as in part (a). What is the element in

ZG associated with the function F2 for which F2(1G) = 2,

F2(a) = 0, F2(b) = 7, F2(ab) = −4?

(c) What is the sum function F1+F2 onG? What is the product

function F1F2?

(d) Let H = 〈a | a4 = 1H〉. What function F : H → Z is

associated with the formal sum a+ a3 in ZH?

(e) Let K = {1, i,−1,−i} ⊂ C∗. What function F : K → Z is

associated with the formal sum i + (−i) in ZK? What is

the value of the “actual” sum i+ (−i) in C?

The next two exercises involve computations in the more general

ring QG. They are needed for Bruck’s direct proof that it does not

matter in the definition of a difference set whether we write inverses

on the left or on the right. (See Exercise 29.)

27. Show that x, y ∈ Q implies that x1G + yG commutes with all

elements of QG.
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28. Suppose A and B are elements of the group ring QG. Show that

AB = 1G implies BA = 1G. H©

29. This result is from ([10], p. 468). Let D be a non-empty proper

subset of a groupG and assume that the equationDD(−1) = n1G+λG

holds in the integral group ring ZG. Write C = n1G + λG.

(a) Show that there is an element C ′ ∈ QG of the form a1G +

bG satisfying C ′C = CC ′ = 1G; in other words C is an

invertible element of the ring QG.

(b) Show that D is invertible in QG.

(c) Show that D and D(−1) commute. This, along with Theo-

rem 4.10, gives a direct proof that conditions (i) and (ii) in

Theorem 4.9 are equivalent.

The next three exercises introduce the use of polynomials as an

alternative representation of elements of ZG for G an additive group.

This representation leads to an alternative characterization of a dif-

ference set D in G. Hall used this strategy in his work on difference

sets and it can also be found in his influential book Combinatorial

Theory [28]. The polynomial D(x) in Exercise 31 is sometimes called

the Hall polynomial of the difference set D.

30. In G = Z7 = {0, 1, . . . , 6} let D = {1, 2, 4}. Represent the set

S ⊆ G by the polynomial S(x) =
∑

g∈S xg.

(a) Find D(x) and D(x−1), computing exponents mod 7.

(b) What is G(x)?

(c) Compute the product of polynomials D(x)D(x−1), reducing

exponents mod 7.

31. Let G be an additive abelian group, and let

Z[G] =

⎧⎨⎩∑
g∈G

ag x
g | ag ∈ Z

⎫⎬⎭ .

The “indeterminate” x is essentially a place-holder. Addition in Z[G]

is defined by
∑

ag x
g +
∑

bg x
g =
∑

(ag + bg) x
g. Multiplication is
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defined via xfxg = xf+g, where f + g is defined in G, as follows.⎛⎝∑
f∈G

af x
f

⎞⎠⎛⎝∑
g∈G

bg x
g

⎞⎠ =
∑
h∈G

⎛⎝ ∑
f+g=h

af bg

⎞⎠xh.

(a) Let A ⊆ G. Writing the group operation additively, A de-

termines the polynomial A(x) =
∑

g∈A xg in Z[G], corre-

sponding to what we write as A in ZG when we write the

operation multiplicatively. Explain why A(x−1) corresponds

to what we call A(−1) in ZG. Also explain why the k-set D

in G of order v is a (v, k, λ)-difference set in G if and only

if D(x)D(x−1) = n+ λG(x) in Z[G].

(b) Show that if the additive group G is cyclic of order v, say

G = Zv, the polynomial ring Z[G] is isomorphic (as a ring)

to Z[x]/〈xv − 1〉.

32. (Prop 28.1 in [70]) Continuing the notation of the previous exer-

cise, assume v, k, λ are positive integers satisfying k(k−1) = λ(v−1)

and G is abelian of order v. Suppose A(x) =
∑

agx
g satisfies

A(x)A(x−1) = n+ λG(x).

Show that there exists B(x) =
∑

bgx
g with bg ∈ {0, 1} and

B(x)B(x−1) = n+ λG(x). H©

The results of the next three exercises are used later: the first

two for the proof of Theorem 6.2, and all three for the proof of The-

orem 9.5, specifically for the proof of Lemma 9.6.

33. Assume G is an abelian group and p is a prime. For A,B ∈ ZG

say A ≡ B (mod p) if all the integer coefficients of A−B are divisible

by p. Let S ∈ ZG. Show Sp ≡ S(p) (mod p). H©

34. Assume G is an abelian group of order v and p is a prime not

dividing v. Let A ∈ ZG and suppose Am ≡ 0 (mod p) for some

positive integer m. Then A ≡ 0 (mod p). H©
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35. Assume G is abelian and D is a nontrivial (v, k, λ)-difference set

in G (i.e., 1 < k < v − 1). Suppose further that D(−1) = D. Show

that v must be even. H©

4.4. Equivalence

When should we regard two difference sets as “the same”? A reason-

able answer is that two difference sets are equivalent if it is possible to

transform one to the other by repeated applications of Theorem 4.2.

More formally:

Definition. Difference sets D1 and D2 in a group G are equivalent

if for some g ∈ G and for some automorphism α of G, D2 = gα(D1).

(If the group is written additively, this condition is written as D2 =

g + α(D1).)

Note that we use subscripts to distinguish difference sets in this

section. Context should make clear that there is no reference here to

dihedral groups. Kibler [40] lists all of the non-cyclic difference sets

(up to equivalence) for k < 20. When we refer to difference sets on

this list, we use as the subscript the number of the difference set in

the appropriate table from that paper.

Example 6. In the abelian group G = 〈a, b | a4 = b4 = 1〉, Kibler

gives the (16, 6, 2)-difference set D4 = {1, a, a2, b, b3, a3b2}. We can

define an automorphism α of G by setting α(a) = b and α(b) = ab.

Then abα(D4) = {ab, ab2, ab3, a2b2, 1, a3b2} is a difference set in G

equivalent to D4. �

Example 7. Example 5 in Section 1 is another from Kibler, where

G = 〈a, b | a7 = b3 = 1, ba = a2b〉 contains the (21, 5, 1)-difference

set D1 = {1, a, a3, b, a2b2}. Kibler claims that all difference sets in

this group are equivalent to this one. We may check that D′ =

{a, a2, a4, b, b2} is also a difference set in G, so we try to find an

automorphism α of G and an element g ∈ G with D′ = gα(D1).

To figure this out, first observe that a6D′ = {1, a, a3, a6b, a6b2} has

3 elements in common with D1. This suggests we might look for

an automorphism of G that takes D1 to a6D′. We try α defined

by α(a) = a and α(b) = a6b. Since a6b is an element of order 3
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and satisfies (a6b)a = a2(a6b), α is in fact an automorphism. Also

α(a2b2) = a6b2 so α(D1) = a6D′, and this tells us that D′ = aα(D1).

Thus D1 and D′ are indeed equivalent. �

Example 8. Let G = 〈a, b | a8 = b2 = 1, ab = ba〉.
Kibler lists two (16, 6, 2)-difference sets in G:

D1 = {1, a, a2, a4, ab, a6b} and

D2 = {1, a, a2, a5, b, a6b}.

He claims these are not equivalent. How does he know? Suppose

that D1 and D2 are equivalent and that g(α(D1)) = D2 for some

g ∈ G and some automorphism α. We show that this leads to a

contradiction.

Since g(α(D1)) = D2, we know that α(D1) = g−1D2. First we

limit the values of g that are possible. Since 1 ∈ D1, 1 is also in

α(D1). So 1 must be in g−1D2. This means that g must be in D2.

We look at all the shifts of D2 by inverses of elements in D2:

1D2 = {1, a, a2, a5, b, a6b}
a−1D2 = {a7, 1, a, a4, a7b, a5b}
a−2D2 = {a6, a7, 1, a3, a6b, a4b}
a−5D2 = {a3, a4, a5, 1, a3b, ab}
b−1D2 = {b, ab, a2b, a5b, 1, a6}

(a6b)−1D2 = {a2b, a3b, a4b, a7b, a2, 1}.

To limit further the possible values of g, we look at the orders of

the elements in these shifts of D2. Since the orders of the elements in

D1 are {1, 8, 4, 2, 8, 4}, and α preserves the orders of elements, these

are also the orders of α(D1), and therefore must be the orders of the

elements in g−1D2. Note that in the list above, a−1D2 and a−5D2

each have four elements of order 8, so a and a5 are eliminated as

candidates for g. The only remaining possible values for g are 1, a2,

b, and a6b.

Finally we look at the element a4 ∈ D1 and its image under

α. Since a4 has order 2, its image must be a4, b, or a4b. If we let

α(a) = aibj , then α(a4) = a4ib4j . Since b has order 2, b4j = 1. This

forces α(a4) = a4. But now we note that a4 is not in g−1D2 for any
                

                                                                                                               



4.4. Equivalence 67

of the four remaining values for g. So we have a contradiction. We

conclude that D1 and D2 are not equivalent. �

Recall from Chapter 2 that two incidence structures are isomor-

phic if there is a one-to-one, onto correspondence between their point

sets that maps blocks to blocks and preserves incidence. It is reason-

able to wonder whether equivalent difference sets produce isomorphic

designs. Indeed they do.

Theorem 4.12. Assume D and D′ are equivalent difference sets in

the group G. Then the designs devD and devD′ are isomorphic.

There are many cases known of inequivalent difference sets with

the same parameters. Example 8 gives one instance. Here is a preview

of another example. We know from Theorem 4.3 that the nonzero

squares in Z31 form a (31, 15, 7)-difference set. In Chapter 8 we will

study the family of cyclic difference sets discovered by Singer in his

1938 paper. The parameters of these Singer difference sets are

v =
qm+1 − 1

q − 1
, k =

qm − 1

q − 1
, λ =

qm−1 − 1

q − 1
,

where q can be any prime power and m is an integer greater than

1. When q = 2 and m = 4 we get a (31, 15, 7)-difference set in Z31.

We will see in Chapter 9 that the development of Singer’s (31, 15, 7)-

difference set is not isomorphic to the development of the (31, 15, 7)-

difference set of nonzero squares. It then follows from Theorem 4.12

that these difference sets are not equivalent.

Exercises

36. Show that equivalence of difference sets is an equivalence relation.

37. Prove that if D1 and D2 are equivalent difference sets in a group

G, then their complements are equivalent difference sets in G.

38. In this exercise you will find all difference sets in G = Z7 that

are equivalent to D = {1, 2, 4}.

(a) Find all difference sets equivalent to D by a shift.
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(b) How many group automorphisms does G have?

(c) Now find all the subsets of G that are equivalent to the

difference set D = {1, 2, 4}. S©

39. Show that if Zm contains an (m, k, λ)-difference set, then it

contains an (m, k, λ)-difference set D with 0, 1 ∈ D.

40. Let G be the abelian group Z4 ⊕ Z2 ⊕ Z2, G = 〈 a, b, c | a4 =

b2 = c2 = 1〉. For this group Kibler [40] lists two difference sets:

D6 = {1, a, a2, b, c, a3bc} and D7 = {1, a, a2, ab, ac, a3bc}. Show that

these are not equivalent. H©

41. Kibler [40] gives three difference sets in the group

〈 a, b | a4 = b4 = 1, ab = ba 〉. They are

D3 = {1, a, a2, b, ab2, a2b3},
D4 = {1, a, a2, b, b3, a3b2},
D5 = {1, a, b, a2b, ab2, a2b2}.

Which of Kibler’s three examples is equivalent to the difference set in

Z4 ⊕ Z4 of Exercise 19 on page 58? How do you know?

42. Prove that in G = Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 the difference sets

{1, a, b, c, d, abcd} and {a, b, c, d, ab, cd}

are equivalent. (The first is in Kibler’s paper [40]; the second is in

Baumert ([5], p. 10).)

43. Show that up to equivalence there is only one (16, 6, 2)-difference

set in G = Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2. H©

44. Prove Theorem 4.12.

Coda

The fundamental problem in the study of difference sets is the exis-

tence question:
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Given a group, does it contain a difference set?

In particular, can we construct one? Can we prove one cannot exist?

Difference sets bridge group theory and design theory, since a

group contains a difference set if and only if the group acts regularly

on the points and on the blocks of a symmetric design. Groups,

designs and existence are three of our mathematical threads. We

describe briefly how these and others weave through the book.

The definition of a difference set is combinatorial, so it is natural

that counting plays an important role. Counting leads immediately

to the fundamental equation λ(v − 1) = k(k − 1) satisfied by the

parameters of a (v, k, λ)-difference set. This is the first necessary

condition for existence. We will see other necessary conditions in

Chapters 5–7.

Many of the examples of difference sets we have seen thus far

come from number theory: squares, fourth powers, twin primes. We

use methods from algebra, combinatorics and geometry to construct

families of difference sets in Chapters 8 and 9.

We translate the criterion for being a difference set into an equa-

tion in the integral group ring ZG. This group ring equation opens

the door to the use of other algebraic tools to address the existence

question, and we develop these topics in Chapters 10–12.

                

                                                                                                               



Chapter 5

Bruck-Ryser-Chowla
Theorem

The Bruck-Ryser-Chowla Theorem (BRC) is one of the most impor-

tant tools for proving that difference sets with particular parameters

cannot exist. It gives necessary conditions on the parameters (v, k, λ)

for the existence of a symmetric (v, k, λ) design. Since the devel-

opment of a difference set is a symmetric design, this theorem places

restrictions on the parameters of a difference set in a group of order v.

In Section 1 we present the BRC Theorem and look at a number of

applications of the theorem. In Section 2 we look at the details of the

proof. This will lead us through interesting arguments from number

theory and from linear algebra. It will also explain how the existence

of a solution to a diophantine equation could have any bearing on the

existence of a symmetric design.

The Bruck-Ryser-Chowla Theorem gets its name from the work

by Bruck and Ryser [11] and by Chowla and Ryser [13]. In the

first paper the authors prove the theorem in the case λ = 1. The

second paper extends the result to any positive integer λ. Ryser’s

later paper [61] gives a much simplified proof. We look at this proof

in some detail in Section 2.

71
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5.1. The BRC Theorem

The Bruck-Ryser-Chowla Theorem gives necessary conditions for the

existence of a symmetric (v, k, λ) design, and thus necessary condi-

tions for a (v, k, λ)-difference set in a group G. Since this test is

independent of the structure of G, it provides us with a test that is

easily applied.

Theorem 5.1. (Bruck-Ryser-Chowla, 1949, 1950) Assume the ex-

istence of a symmetric (v, k, λ) design.

(i) If v is even, then n = k − λ is a perfect square.

(ii) If v is odd, then the diophantine equation

x2 = ny2 + (−1)(v−1)/2λz2

has a nonzero solution in integers x, y, z.

In the case v is even, both the statement and the proof are

straightforward. (See Exercise 4.) The statement in the case v is

odd may seem unusual. Its proof is based on equivalence of matrices,

and will lead us through some interesting arguments from number

theory and linear algebra. Before we embark on the proof, let us look

at some examples of how this theorem is used to rule out difference

sets with specific parameters. The parameters we consider in these

examples already meet the basic test that k(k − 1) = λ(v − 1).

Example 1. Consider the parameters (22, 7, 2). Since v is even, n

would have to be a perfect square. But n = 7 − 2 = 5, so there

is no symmetric design, and therefore no difference set with these

parameters. �

Example 2. Consider the parameters (49, 16, 5). Could there be a

difference set with these parameters? Since v = 49 is odd, we look at

the diophantine equation x2 = 11y2+5z2. Since (x, y, z) = (4, 1, 1) is

a nonzero solution, BRC cannot rule out the possibility of a difference

set with these parameters. (We will examine these parameters using

multipliers in Chapter 6.) �

In Example 2 it was relatively easy find a nonzero solution for the

diophantine equation. It is more difficult to show that a diophantine
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equation has no solution. We introduce Legendre’s Theorem1 to help

us answer the question of existence of solutions. Here the symbol

sR t means that s is a square modulo |t|.
Theorem 5.2. (Legendre’s Theorem, 1785) Let a and b be nonzero,

square-free2 integers with at least one positive, and let d = gcd(a, b).

Then x2 = ay2 + bz2 has a nonzero integer solution if and only if the

following three conditions are satisfied:

(i) aR b,

(ii) bR a, and

(iii) −(ab/d2)Rd.

Example 3. Consider the parameters (43, 15, 5). If there were a

difference set with these parameters, BRC says that the diophantine

equation x2 = 10y2 − 5z2 must have a nonzero integer solution. We

use Legendre’s Theorem to check. For this equation, a = 10, b = −5,

and d = gcd(a, b) = 5. We find that −ab/d2 = 2 is not a square

mod 5. So this equation does not have a nonzero integer solution.

We conclude that there is no symmetric design, and therefore no

difference set, with parameters (43, 15, 5). �

It is important to pay attention to the hypotheses of Legendre’s

Theorem. This next example shows that failing to do so leads to a

false conclusion.

Example 4. Consider the parameters (343, 19, 1). The equation is

x2 = 18y2 − z2. This does have the solution (3, 1, 3). If we didn’t

happen to notice this, we might try to use Legendre’s Theorem. We

note that −1 ≡ 17 (mod 18) is not a square. This would seem to

indicate that there is no solution. But since 18 is not square-free,

the equation does not meet the hypotheses of the theorem. Try sub-

stituting u = 3y to get the equation x2 = 2u2 − z2. This equation

passes Legendre’s test. Note that it has the integer solution (1, 1, 1).

If we let y = u/3 we get the rational solution (1, 1/3, 1) to the original

equation. We can multiply this by 3 to clear the denominators and

get the integer solution (3, 1, 3). �
1For a proof see [32], Section 17.3.
2A square-free integer is an integer not divisible by the square of any prime.
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The projective planes discussed in Chapter 2 are symmetric de-

signs with parameters (v, k, λ) = (n2+n+1, n+1, 1). The parameter

n is the order of the projective plane. From Theorem 2.15 we know

how to construct the coordinatized projective plane PG(2, q) of or-

der q a power of a prime. In our next two examples we use BRC to

explore the existence question for projective planes of order n not a

power of a prime. Along the way we learn that the converse of BRC

does not hold.

Example 5. If there were a projective plane of order n = 6, it would

be a symmetric design with parameters (v, k, λ) = (43, 7, 1). BRC

says that if there were such a design, then the diophantine equation

x2 = 6y2 − z2 must have a nonzero integer solution. Legendre’s

Theorem states that for there to be a solution, −1 must be a square

modulo 6. Since it is not, the diophantine equation has no nonzero

solution. Therefore there is no projective plane of order 6. �

In the 1980s it was thought that the converse of BRC might be

true; that is, if parameters (v, k, λ) satisfy BRC and also k(k − 1) =

λ(v− 1), then a symmetric design with those parameters exists. (See

Ryser [61] and Lander [43], p. 44.) But in 1989, Lam proved that

there is no projective plane of order 10. (See the expository paper

[42].) The resulting example shows that the converse of BRC is false.

Example 6. If there were a projective plane with order n = 10, it

would be a symmetric design with parameters (n2+n+1, n+1, 1) =

(111, 11, 1). It was a long-standing question whether a projective

plane of order 10 existed. These parameters do pass the BRC test:

v = 111 is odd, and the diophantine equation x2 = 10y2 − z2 has the

nonzero solution (x, y, z) = (1, 1, 3). But since there is no projective

plane of order 10, this example serves to show that passing the BRC

test is not sufficient to guarantee the existence of a symmetric design.

�

Exercises

1. Test whether the following sets of parameters meet the necessary

condition given in the Bruck-Ryser-Chowla Theorem for the existence

of a symmetric design:
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(a) (16, 6, 2).

(b) (67, 12, 2). S©
(c) (71, 15, 3).

(d) (93, 24, 6).

(e) (51, 25, 12).

(f) (25, 9, 3).

2. This exercise is an opportunity for you to put into your own words

two simple but fundamental ideas:

(a) Is it possible to have parameters (v, k, λ) pass the BRC test

and still have no (v, k, λ)-difference set in a group G of order

v? Explain.

(b) Is it possible to have a (v, k, λ)-difference set in a group of

order v if the parameters do not pass BRC? Explain.

3. Explore the use of BRC to eliminate possible projective planes of

orders n not a prime power (6, 10, 12, 14, 15, 18, 20, . . . ).

(a) Which planes are eliminated?

(b) Describe any patterns you see.

4. Prove BRC for the case v is even. H©

5. (Alternative statement of Legendre’s Theorem) The following is

often given as the statement of Legendre’s Theorem. The appeal is

that its symmetry may make it easier to remember. Prove that the

alternative statement implies Theorem 5.2.

Theorem. Let a, b, and c be nonzero, square-free integers

that are pairwise relatively prime and not all of the same

sign. Then ax2 + by2 + cz2 = 0 has a nonzero solution if and

only if the following three conditions are satisfied:

(i) −abR c,

(ii)−acR b, and

(iii)−bcR a.
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6. Computer exercises:

(a) Write a function that accepts two integer values s and t and

tests whether s is a square mod |t|.
(b) Write a computer program that accepts integer values for

v, k, and λ and tests whether these parameters pass the

fundamental identity that k(k− 1) = λ(v− 1) and also pass

BRC.

5.2. Proof of BRC for v odd

The proof of the Bruck-Ryser-Chowla Theorem that we present here

is from Ryser’s paper [61]. It will introduce us to classical results in

both number theory and linear algebra. In the Preliminaries we prove

Lagrange’s theorem that any positive integer can be written as a sum

of four squares. We then turn to linear algebra and define what it

means for two square matrices with rational entries to be equivalent

over the field of rationals. (A ∼= B if there exists an invertible, rational

matrix S so that STAS = B.) We use the four-squares theorem

to show that I4 is equivalent to nI4, and we use linear algebra to

prove basic theorems about equivalence of matrices, including Witt’s

Cancellation Theorem.

With this background we present The Main Argument, showing

that if there exists a symmetric (v, k, λ) design then, starting with its

v×v incidence matrix, ultimately two 2×2 matrices involving param-

eters n and λ are equivalent. From this, we get our nonzero integer

solution to the diophantine equation x2 = ny2 + (−1)(v−1)/2λz2.

While the details of this proof are not needed later in this text, we

include them because the proof illustrates one of our themes: there is

power in combining ideas from different parts of mathematics. For a

first reading of this section you may wish to skim the Main Argument

to get an overview, and then come back to study the Preliminaries.

Preliminaries:

We start with a lemma used in the proof of the four-squares

theorem.
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Lemma 5.3. Let p be an odd prime. Then there are integers m, x

and y so that mp = x2 + y2 + 1 with 1 ≤ m < p.

Proof. Consider the set of values x2 modulo p for 0 ≤ x ≤ (p−1)/2.

We claim that no two of these values are equal. Therefore this set

contains (p + 1)/2 different residues. Now consider a second set of

all values −y2 − 1 modulo p for 0 ≤ y ≤ (p− 1)/2. Again, there are

(p+ 1)/2 different residues. Since there are only p different residues

modulo p, the two sets must share a value. Choose an x and y for

which x2 ≡ −y2 − 1 (mod p). Then x2 + y2 + 1 ≡ 0 (mod p), so

x2 + y2 + 1 = mp for some positive integer m. Further, since 0 ≤
x, y ≤ (p− 1)/2, we have

x2 + y2 + 1 = mp ≤ (p− 1)2

4
+

(p− 1)2

4
+ 1 < p2.

We conclude that mp = x2 + y2 + 1 with 1 ≤ m < p. �

Theorem 5.4. (Lagrange, 1770) Every positive integer can be written

as the sum of four squares of integers.

Proof. If two integers can each be written as sums of four squares,

then so can their product. (See Exercise 8.) So it is enough to prove

the result for every prime.

For the prime p = 2 we have 2 = 12+12+02+02. Now assume p

is an odd prime. By Lemma 5.3 there is an integer m with 1 ≤ m < p

so that mp = x2+y2+1. This specific form shows that we can express

mp as the sum of four squares:

mp = a2 + b2 + c2 + d2, with 1 ≤ m < p. (1)

We choose m to be the smallest integer so that mp is the sum of four

squares, and we show that m = 1.3 Assume that m > 1, and choose

integers A,B,C,D so that a ≡ A, b ≡ B, c ≡ C, d ≡ D (mod m),

and −m/2 < A,B,C,D ≤ m/2. Then A2 + B2 + C2 + D2 ≡
0 (mod m). So there is an integer r ≥ 0 so that

rm = A2 +B2 + C2 +D2. (2)

3Here we phrase the argument as a proof by contradiction. In Exercise 9 we
explore a slightly different constructive argument.
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Also 0 ≤ A2 + B2 + C2 + D2 ≤ 4(m2 )
2 = m2, so 0 ≤ r ≤ m.

We claim that 0 < r < m. If r = 0, then each of A, B, C, D is

0. But this means that m divides each of a, b, c, d, so m2 divides

a2 + b2 + c2 + d2 = mp, and m divides p. Since p is prime and

1 < m < p, this is a contradiction.

At the other extreme, if r = m, then each of A, B, C, D would

equal m/2. This in turn would force each of a, b, c, d to be an odd

multiple of m/2, so that m2 would divide a2 + b2 + c2 + d2. Again,

this is a contradiction.

We now multiply Equations (1) and (2) to get

(mp)(rm) = (a2 + b2 + c2 + d2)(A2 +B2 + C2 +D2). (3)

By Exercise 8 we can write the right-hand side as a sum of four

squares:

rpm2 = (aA+ bB + cC + dD)2 + (aB − bA+ cD − dC)2 (4)

+ (aC − bD − cA+ dB)2 + (aD + bC − cB − dA)2.

Each of the four expressions in parentheses is congruent to 0

modulo m, so each term on the right side of Equation (4) has the form

(ujm)2 for some integer uj . (See Exercise 10.) Dividing both sides of

Equation (4) by m2 leaves rp as a sum of four squares for 0 < r < m.

However, this is a contradiction since m was chosen as the smallest

integer multiple of p expressible as a sum of four squares. Therefore

m = 1 and we can express 1 · p = p as a sum of four squares. �

We now look at our definition of equivalence of matrices and some

basic facts about equivalence. This concept of equivalence comes from

the study of quadratic forms. While we do not use the language of

quadratic forms, many proofs of BRC couch their arguments more

explicitly in this language.

Definition. Let A and B be square matrices of the same size with

entries in the field K. Then A is equivalent over K to B if there exists

an invertible matrix S with entries in K so that STAS = B. We say

that S transforms A into B.
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This is indeed an equivalence relation. We note that if det(B) is

nonzero then S is necessarily invertible.

Since our aim is to prove the existence of an integer solution to

a diophantine equation, from this point in this section we assume

that K = Q and use the notation A ∼= B to mean that A and B

are equivalent over the rational numbers. First we use Lagrange’s

four-squares theorem to prove that I4 ∼= nI4 for n a positive integer.

Theorem 5.5. Let n be a positive integer. Then

diag(n, n, n, n) ∼= diag(1, 1, 1, 1) = I4.

Proof. To prove this we exhibit a matrix S that transforms I4 into

nI4. Using the four-squares theorem we write n as the sum of four

integers squared: n = a2+ b2+ c2+d2. We use these integers to form

the matrix:

S =

⎡⎢⎢⎣
a b c d

b −a −d c

c d −a −b

d −c b −a

⎤⎥⎥⎦ .
Then ST I4S = nI4. Note that S is invertible and that the entries of

S are integers, so certainly they are in Q. �

To continue our proof of BRC, we need these basic facts about

the equivalence of matrices. Proofs of the lemmas are left to the

exercises.

Lemma 5.6. Let A be a v × v matrix, and let B be matrix A but

with row i switched with row j and column i switched with column j,

for some i �= j. Then A ∼= B.

Lemma 5.7. Let A be a v × v matrix, and let c ∈ Q. Let B be the

matrix A but with c× row i added to row j and c× column i added to

column j for some i �= j. Then A ∼= B.

Lemma 5.8. Any symmetric matrix with rational entries is equiva-

lent over the rationals to a diagonal matrix.

Lemma 5.9. Let A, B, and C be square matrices, with A and B the

same size.

If A ∼= B then

[
C 0

0 A

]
∼=
[
C 0

0 B

]
,
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where we write 0 for the zero matrix of the appropriate size.

The following theorem is a partial converse of Lemma 5.9. It is

trickier to prove. Our proof comes from Jones [34].

Theorem 5.10. (Witt’s Cancellation Theorem, 1937) Let A and B

be invertible m×m matrices, and c ∈ Q.

If

[
c 0

0 A

]
∼=
[
c 0

0 B

]
then A ∼= B.

Proof. We assume that the (m+1)×(m+1) matrices are equivalent

and find a rational matrix S that transforms A into B. Since we

assume A and B are invertible, such an S must be invertible.

Given that

[
c 0

0 A

]
∼=
[
c 0

0 B

]
there exists a W =

[
t uT

v M

]
so that

WT

[
c 0

0 A

]
W =

[
t vT

u MT

] [
c 0

0 A

] [
t uT

v M

]
=

[
c 0

0 B

]
.

Multiplying these matrices and equating corresponding blocks gives:

t2c+ vTAv = c,

tcuT + vTAM = 0,

tcu+MTAv = 0,

cuuT +MTAM = B. (5)

Next choose the sign in the expression t ± 1 so that it is not zero,

and let d = 1/(t ± 1). Let matrix S = M − dvuT . We claim that

STAS = B.

First we calculate

STAS =
(
MT − duvT

)
A
(
M − dvuT

)
= MTAM − dMTAvuT − duvTAM + d2uvTAvuT .

Using the equations in (5) above we substitute to get:

STAS = MTAM + cdtuuT + cdtuuT − d2cu(t2 − 1)uT

= MTAM + cd
(
2t− d(t2 − 1)

)
uuT

= MTAM + cuuT

= B.
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Therefore A ∼= B. �

The Main Argument:

We are now ready to present Ryser’s proof [61] of BRC for v odd:

If D is a symmetric (v, k, λ) design with v odd, then the diophantine

equation

x2 = ny2 + (−1)(v−1)/2λz2

has a nonzero solution (x, y, z) in integers.

Proof. Assume that a symmetric (v, k, λ) design exists, and that N

is the v × v incidence matrix for this design. Then NTN = nI + λJ .

By Exercise 12 we can assume that λ > 0. We define the following

(v + 1)× (v + 1) matrices

A =

⎡⎢⎢⎢⎣
1

N
...

1

1 . . . 1 k/λ

⎤⎥⎥⎥⎦
D = diag [1, . . . , 1,−λ] , E = diag[n, . . . , n,−n/λ].

Then ATDA = E. Since D and E are invertible, it follows that

D ∼= E. (See Exercise 17.)

Case 1: Assume that v ≡ 1 (mod 4), so (v − 1)/2 is even. Then re-

peatedly using Theorem 5.5 to replace v−1 of the ns in E with 1s, we

have that E is equivalent to the diagonal matrix diag[1, . . . 1, n,−n/λ].

Since the matrices involved are diagonal and easily seen to be invert-

ible, we can use Witt’s cancellation theorem to cancel the v − 1 1s

that D and this new matrix have in common. We get:[
1 0

0 −λ

]
∼=
[
n 0

0 −n/λ

]
.

Let M =

[
a c

b d

]
be the matrix that transforms the first into the

second. So

MT

[
1 0

0 −λ

]
M =

[
n 0

0 −n/λ

]
.
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Equating the (1,1) entries gives a2 − b2λ = n. Rearranging this equa-

tion to a2 = n + λb2 reveals a nontrivial rational solution to the

diophantine equation with (x, y, z) = (a, 1, b). If necessary, multiply

this triple by an integer to get an integer solution.

Case 2: Assume that v ≡ 3 (mod 4), so (v − 1)/2 is odd. Again we

start with D ∼= E. Using Lemma 5.9 and then Lemma 5.6, we insert

an n into each and shift this n to position (v−1) to get (v+2)×(v+2)

matrices:

diag[1, . . . , 1, n,−λ] ∼= diag[n, . . . , n, n,−n/λ].

Then using Theorem 5.5 we change v + 1 of the ns in the second

matrix to 1s:

diag[1, . . . , 1, n,−λ] ∼= diag[1, . . . , 1, 1,−n/λ].

Finally we use Witt’s cancellation theorem to get:[
n 0

0 −λ

]
∼=
[
1 0

0 −n/λ

]
.

Again the equivalence of these 2× 2 matrices gives us an equality; in

this case a2n− b2λ = 1. Rearranging this equation to 12 = na2 −λb2

shows a rational solution to the diophantine equation with (x, y, z) =

(1, a, b). Clear any denominators to get an integer solution. �

Exercises

7. Verify the claim in the proof of Lemma 5.3 that if 0 ≤ a < b ≤
(p− 1)/2 then a2 �= b2 (mod p).

8. Prove that the product of two sums of four squares is equal to a

sum of four squares by showing that:

(a2 + b2 + c2 + d2)(r2 + s2 + t2 + u2) =

(ar + bs+ ct+ du)2 + (as− br + cu− dt)2 +

(at− bu− cr + ds)2 + (au+ bt− cs− dr)2.

9. In this section we used Lagrange’s theorem simply to establish that

each positive integer can be written as the sum of four squares. So
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a proof by contradiction was satisfactory for our purpose. If instead

we needed to actually express an integer as a sum of four squares, we

would prefer a constructive proof. This exercise provides one. Start

with mp = a2 + b2 + c2 + d2. If m = 1 we are done. If not, use the

algorithm in the proof to calculate r. We now have 1 ≤ r < m, with

rp the sum of four squares. If r = 1, we are done. If not, substitute r

for m and repeat the algorithm. This process is known as “descent.”

(a) Why is this process guaranteed to stop?

(b) Start with p = 11, m = 9 and 99 = 32 + 42 + 52 + 72.

Note that m < p as required by the algorithm. Iterate the

algorithm until it gives p = 11 as a sum of four squares.

10. Show that the expressions in parentheses in Equation (4) are

each congruent to 0 modulo m. Thus dividing the right hand side by

m2 leaves a sum of four squares of integers. S©

11. Prove that the relation of square matrices being equivalent over

a field K is an equivalence relation.

12. Recall that we allow λ = 0 for a trivial symmetric design. Prove

Theorem 5.1 for the case v is odd and λ = 0.

13. Prove Lemma 5.6.

14. Prove Lemma 5.7.

15. Prove Lemma 5.8. H©

16. Prove Lemma 5.9.

17. Confirm that ATDA = E in the proof of BRC.

18. Extending Witt’s Cancellation Theorem. Prove that if A and B

are invertible m×m matrices, and C is a symmetric matrix, all with

entries in a field Q, and

if

[
C 0

0 A

]
∼=
[
C 0

0 B

]
, then A ∼= B H©.
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5.3. Partial converse and extension of BRC

It turns out that a partial converse to BRC is true. While the con-

ditions do not guarantee the existence of a design, they do guarantee

the existence of a matrix with some of the same properties as that

of an incidence matrix of a design, though the entries need not be 0s

and 1s. (See [8], p. 96.)

Theorem 5.11. If parameters (v, k, λ) obey the equation k(k− 1) =

λ(v − 1) and if

(i) for v even, n is a square,

(ii) for v odd, the equation x2 = ny2 + (−1)(v−1)/2λz2 has a

solution in integers x, y, z not all zero,

then there exists a rational matrix A with ATA = nI + λJ .

Work extending BRC has been used to eliminate other triples as

parameters of difference sets. Here we state (without proof) one of

these extensions for cyclic groups and present an example where it

proves useful.

Theorem 5.12. (Hall and Ryser [29]) If there is a nontrivial (v, k, λ)

cyclic difference set for odd v, then for every divisor w of v, the

equation x2 = ny2 + (−1)(w−1)/2wz2 has a solution in integers, not

all 0.

Example 7. The parameters (39, 19, 9) pass the BRC test, but by

the extension given in Theorem 5.12 there is no cyclic difference set

with these parameters. (Since there is a non-abelian group of order

39, this theorem does not rule out a (39, 19, 9)-difference set in that

group.) �

In his survey of cyclic difference sets for k ≤ 50, Hall [27] reported

that 268 sets of parameters passed the initial test that k(k − 1) =

λ(v− 1). Of these, 101 failed the BRC test, leaving 167 possible. By

the time Hall published his paper, difference sets had been found in

46 cases, and other methods had been used to rule out difference sets

in 109 cases; twelve cases remained. Later Baumert [5] reported that

all twelve cases had been settled in the negative. In the following
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chapters we will explore other necessary conditions for the existence

of difference sets.

Exercises

19. Verify that in Example 7 the parameters pass the BRC test, but

fail the test in Theorem 5.12.

Coda

The centuries-long quest for a proof of Fermat’s Last Theorem re-

minds us that proving non-existence is often very hard. The Bruck-

Ryser-Chowla Theorem (BRC) can tell us when a (v, k, λ) design does

not exist and thus when a (v, k, λ)-difference set does not exist.

The proof of BRC uses the incidence matrix N of the design. For

v even, we only need the determinant of NTN . For v odd, the ar-

gument is more intricate. Many proofs explicitly require background

knowledge of quadratic forms. We have chosen a more elementary

approach that uses matrix algebra. Even if you did not follow all

the details of this long argument, you should work to appreciate the

source of this surprising number-theoretic condition required for the

existence of a symmetric design.

                

                                                                                                               



Chapter 6

Multipliers

A multiplier for difference set D ⊆ G is an automorphism of G that

maps D to a translate of D. Hall [26] introduced the concept of

multipliers in cyclic difference sets. Since then multipliers have been

studied and theorems proved for abelian difference sets and, to some

extent, for non-abelian difference sets. For the latter much less is

known. For abelian difference sets, multipliers have proved an impor-

tant tool for showing difference sets in certain groups cannot exist.

Unlike the BRC, multipliers also provide an important tool for find-

ing difference sets when they do exist, and for answering questions of

equivalence of difference sets.

Section 1 introduces multipliers. In Section 2 we look at theorems

that guarantee the existence of numerical multipliers. Section 3 shows

that there must be a difference set that is fixed by a multiplier. This

is a key to the use of multipliers for finding difference sets. In Sections

4 and 5 we look at specific examples of the use of multipliers.

6.1. Definition and examples

We begin with a discussion of certain automorphisms of abelian groups.

Let G be an abelian group of order v written additively, and let t be

a positive integer relatively prime to v. Then φt is an automorphism

87
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of G where

φt : a �→ ta.

We learned in Chapter 4 that if D is a difference set in G, then

its image under any automorphism is also a difference set. What is

interesting is that sometimes φt maps the difference set to itself, or at

least to a shift of itself. For instance, in Z13 the set D = {0, 1, 3, 9} is

a difference set, and φ3(D) = {0, 3, 9, 1} = D. We may think of the

automorphism φt as a permutation of the group elements. It is then

clear that if φt(D) = D, then D must be the union of one or more

orbits1 of φt. It is this fact that we use both to find difference sets in

some abelian groups, and to prove that other groups cannot contain

difference sets with particular parameters.

While the automorphisms φt motivate the term “multiplier,” a

multiplier for a difference set is any automorphism of the group that

maps the difference set to a shift of itself.

In Chapter 4 with the introduction of the integral group ring, we

found it helpful to use multiplication for the general group operation

and to reserve the plus sign for addition within the integral group ring.

So from this point we use multiplication for the group operation unless

a particular group (e.g., Zm) is an additive group. For multiplicative

groups, the automorphism φt is defined:

φt : a �→ at.

As a consequence, in multiplicative notation

φt(D) = D(t) = {dt | d ∈ D}.

Also, a “left shift” of D by the element g is gD.

Definition. Let D be a difference set in G. Then an automorphism α

of G is called a multiplier for D if α maps D to aDb for some elements

a, b ∈ G. If b = 1 so that α(D) = aD, then α is a left multiplier.

Note that if G is abelian, then any multiplier is a left multiplier.

Multipliers of the form φt are most helpful in our study, and are given

a special name.

1By an orbit of φt we mean an orbit of the group 〈φt〉 acting on G.
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Definition. Let G be an abelian group, t an integer relatively prime

to the order of G, and D a difference set in G. Then φt is a numerical

multiplier if for some h ∈ G, φt(D) = hD. It is common practice to

abuse terminology and call the integer t itself a numerical multiplier.

Since any automorphism of a cyclic group is of the form φt for

some t relatively prime to the order of the group, a multiplier for a

cyclic difference set is necessarily a numerical multiplier. Let us look

at some examples of multipliers in abelian groups.

Example 1. Let G = Z13 and let D = {2, 3, 5, 11}. Then φ3 is a

numerical multiplier for D since φ3(D) = 3D = {6, 9, 2, 7}, which is

4 +D. �

It may be instructive to consider this “same” difference set in the

cyclic group of order 13 written multiplicatively.

Example 2. Let G = 〈a | a13 = 1〉 and let D = {a2, a3, a5, a11}.
Then φ3 is a numerical multiplier for D since φ3(D) = D(3) =

{a6, a9, a2, a7} = a4D. �

Example 3. Let p be a prime, p ≡ 3 (mod 4), G = Zp , and D be

the set of quadratic residues mod p. We know from Theorem 4.3 that

D is a difference set in G. Since D is a subgroup of the multiplicative

group Zp
∗, each element of D is a multiplier of D that fixes D. �

Example 4. Let G = 〈 a, b, c, d | a2 = b2 = c2 = d2 = 1〉, an

elementary abelian 2-group, and let D = {1, a, b, c, d, abcd}. Consider
the two automorphisms defined by their action on the generators:

α : a �→ b �→ c �→ d �→ a

β : a �→ abcd, b �→ bcd, c �→ acd, d �→ abd.

Note that α maps D to itself, and β maps D to a shift of D, namely

abcdD. So both automorphisms are (left) multipliers for D, though

neither is a numerical multiplier. �

With the terminology established, we repeat the outline of this

chapter. In Section 2 we introduce the Multiplier Theorems that

guarantee the existence of certain numerical multipliers. In Section
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3 we show that left multipliers act as automorphisms of the design

devD. This leads to theorems that guarantee that certain multipliers

fix a difference set. In Section 4 we apply what we have learned to

construct difference sets in some groups and to show in others that no

nontrivial difference set can exist. Section 5 explores how multipliers

can be used in abelian, non-cyclic groups.

Exercises

1. Show that each of these sets of multipliers for a difference set D

in a group G is a subgroup of the group of all automorphisms of G.

(a) The set of left multipliers.

(b) The set of numerical multipliers.

2. In G = Z21, the set D = {1, 4, 5, 10, 12} is a difference set. Which

of the following are numerical multipliers for D? Explain.

(a) φ2. S©
(b) φ3. S©
(c) φ4.

(d) φ5.

3. Refer to Exercise 4.9 on page 52.

(a) Show that φ2 is a multiplier for D.

(b) Show that D′(2) = D′.

(c) Why is φ2 not a multiplier for D′?

4. Refer to Example 4.

(a) Verify that β(D) = abcdD.

(b) Since multipliers form a group, β2 must also be a multi-

plier for D. Find a group element g so that β2(D) = gD.

(Careful: g is not (abcd)2.)
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6.2. Existence of numerical multipliers

The First Multiplier Theorem guarantees the existence of numerical

multipliers for certain abelian difference sets. We state it here without

proof.2

Theorem 6.1. (First Multiplier Theorem) Let D be an abelian dif-

ference set with parameters (v, k, λ), and let p be a prime that divides

n but does not divide v. If p > λ, then p is a numerical multiplier of

D.

Example 5. In Z21 the set D = {1, 3, 13, 16, 17} is a difference set

with parameters (21, 5, 1). Then p = 2 is a numerical multiplier. �
Example 6. Let G = Z37. The parameters (37, 9, 2) pass the test

that k(k − 1) = λ(v − 1). Theorem 4.4 gives us the difference set of

nonzero fourth powers, and the multiplier theorem guarantees that

t = 7 is a numerical multiplier for this difference set. �

Though the condition that p > λ is used in the proof of the

First Multiplier Theorem, Jungnickel [35] reports that for all known

difference sets this condition is not necessary. This leads to the long-

standing conjecture:

Conjecture: (Multiplier conjecture) Theorem 6.1 holds without the

assumption that p > λ.

Jungnickel further states that since the First Multiplier Theorem

there have been attempts to extend this result to circumvent the

suspect condition. The next theorem is one such extension. It was

proved by Hall [26] for the cyclic case and later proved for all abelian

groups.3

Theorem 6.2. (Second Multiplier Theorem). Let D be an abelian

(v, k, λ)-difference set in G, and let m > λ be a divisor of n which

is co-prime with v. Moreover, let t be an integer co-prime with v

satisfying the following condition: For every prime p dividing m there

exists a non-negative integer f with t ≡ pf (mod v∗), where v∗ denotes

the exponent of G. Then t is a numerical multiplier for D.

2For a proof of Theorem 6.1 see [35], p. 252 in [19].
3For a proof of Theorem 6.2 see [8], pp. 323–326.
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The following corollary makes this theorem easy to apply when

n is a power of a prime.

Corollary 6.3. [35] Let D be an abelian (v, k, λ)-difference set and

assume that n = k − λ is a power of a prime p, with gcd(p, v) = 1.

Then p is a numerical multiplier for D.

Example 7. Theorem 4.6 shows how to construct a difference set

in Z35 with parameters (35, 17, 8) using twin primes. Corollary 6.3

guarantees that p = 3 is a numerical multiplier for the difference set.

In Exercise 15 we will use this multiplier to find whether there are

other inequivalent difference sets in Z35. �

We end this section with a short discussion of the mapping φ−1

that takes a to a−1, and conditions under which this might be a

multiplier for a difference set.

First we note that if G is a non-abelian group, then this mapping

is not a homomorphism and so cannot be a multiplier. At the other

extreme, the least complicated of groups—the cyclic groups—have no

nontrivial difference sets with −1 as a multiplier.4 Even in non-cyclic

abelian groups, difference sets with −1 as a multiplier are quite rare.

On the other hand, Lander ([43], p. 153) tells us that φ−1 “plays

a special role in . . . nonexistence theorems” for difference sets. So

while difference sets with multiplier −1 are rare, it is important to

study the mapping φ−1.

A difference set that admits−1 as a multiplier is called reversible.5

The (36, 15, 6)-difference set in the group Z6 ⊕ Z6 in Example 4.4 on

page 48 is reversible. In Chapter 8 we will study the construction of

McFarland difference sets and will see a reversible (4000, 775, 150)-

difference set.

Here are two interesting facts about difference sets with multiplier

−1. We will look at a proof of the first of these in Exercise 11 in the

next section.

4A very readable proof is in ([5], p. 60) where Baumert writes, “This fact was
known for several years prior to any publication of its proof. This accounts for the
anomaly that it is often referred to in publications which predate the papers [Johnsen
(1964), Brualdi (1965) and Yates (1967)] containing proofs.”

5Some authors reserve the term reversible for a difference set D that is fixed by
multiplier −1.
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Theorem 6.4. ([43], p. 154) Let D be a nontrivial (v, k, λ)-difference

set in an abelian group G. If −1 is a multiplier of D, then v is even.

Theorem 6.5. ([43], p. 158) Let D be a nontrivial (v, k, λ)-difference

set in an abelian group G. If −1 is a multiplier of D, then so is every

integer t relatively prime to v. Moreover, if D happens to be fixed by

the multiplier −1, then D is fixed by every numerical multiplier.

Exercises

5. In Example 5, p = 2 is a multiplier for D. Find the element g so

that 2D = g +D.

6. Let D be the (37, 9, 2)-difference set determined in Exercise 4.13.

We know that 7 is a multiplier for D. Find the element g so that

7D = g +D.

7. Find numerical multipliers other than 1 for these difference sets,

and justify your answers.

(a) D = {1, 5, 11, 24, 25, 27} in Z31. S©

(b) The twin primes difference set in Z15.

(c) The set D of quadratic residues in Z19.

(d) The set D of quadratic residues in Z23.

8. Deduce Corollary 6.3 from Theorem 6.2 by establishing the fol-

lowing:

(a) Suppose α is a multiplier of the abelian difference set D.

Show that α is also a multiplier of the complementary dif-

ference set D.

(b) Explain why the result of (a) tells us that in the proof of

Corollary 6.3 we may assume k ≤ v/2.

(c) Apply Theorem 6.2 with n = m to show that the prime p in

Corollary 6.3 is a numerical multiplier for D. H©
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6.3. Multipliers fix sD

We seek to show that any left multiplier must fix a difference set. For

an automorphism α to qualify as a left multiplier of D it need not fix

D, but it must map D to one of the blocks in the design devD. We

will study this design to find a difference set fixed by α.

Recall that the development of D, devD, is a symmetric design

with P = G and B = {gD | g ∈ G}. Our next theorem states that a

left multiplier of D is an automorphism of devD.

Theorem 6.6. Let G be a group containing a difference set D, and

let α be a left multiplier for D. Then α is an automorphism of devD.

Proof. Since α acts as an automorphism of the group G, it is a

one-to-one mapping of points to points. First we claim that α maps

blocks to blocks. Since α is a multiplier for D, α(D) is a shift of D.

Say α(D) = hD. Now consider a general block of the design: gD.

Then α(gD) = α(g)α(D) = (α(g)h)D, which is a shift of D and so

is a block in devD. It follows that α is a 1-to-1 mapping on the set

of blocks. Therefore α acting on devD is an automorphism of the

design. �

Having established that a left multiplier is an automorphism of

the design devD, we now invoke Theorem 3.5 to prove that every left

multiplier must fix at least one difference set.

Theorem 6.7. Let G be a group containing a difference set D, and

let α be a left multiplier for D. Then α fixes at least one of the blocks

in devD.

Proof. By Theorem 6.6, the left multiplier α acts as an automor-

phism of the design devD. Since α is an automorphism of G, it must

map the identity of G to itself. Therefore, as an automorphism of the

design, α fixes at least one point. Now Theorem 3.5 says that α fixes

equal numbers of points and blocks of the design. Therefore α fixes

at least one block of devD. �

In the special case that G is abelian and gcd(v, k) = 1, McFarland

and Mann [53] proved a stronger result.
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Theorem 6.8. Let G be an abelian group and let D be a (v, k, λ)-

difference set in G. If gcd(v, k) = 1, then there is an element b ∈ G

so that the difference set bD is fixed by every multiplier of D.

Proof. Let D = {d1, d2, . . . , dk}. Note that φk : g �→ gk is an auto-

morphism of G. So there is exactly one b ∈ G so that

bk
( ∏

di∈D

di

)
= 1.

In words, bk is the inverse of the group element that is the product of

the elements in D. For any multiplier α, α(bD) = cD for some c ∈ G.

We will show b = c, and thus the multiplier α fixes the block bD.

1 = α
(
bk
∏
di∈D

di

)
= α
( ∏

di∈D

bdi

)
= α
( ∏

gi ∈ bD

gi

)
=
∏

hi ∈ cD

hi =
∏
di∈D

cdi = ck
∏
di∈D

di.

We conclude that ck is the inverse of the group element that is the

product of the elements in D. Therefore bk = ck, and so b = c. �

The next two theorems cover other cases and are presented here

without proof. If G is an abelian group that contains a difference

set, and v and k are not necessarily relatively prime, the following

theorem by McFarland and Rice [54] guarantees the existence of a

difference set fixed by all numerical multipliers.

Theorem 6.9. [54] If G is an abelian group that contains a difference

set D, then there is a translate of D that is fixed by all of its numerical

multipliers.

The following theorem is not restricted to numerical multipliers,

but does have a condition restricting v. It also does not require that

G be abelian, so may be of interest in the search for non-abelian

difference sets.

Theorem 6.10. ([35], p. 248, credited to Lander.) Let D be a

(v, k, λ)-difference set in G, let M be a group of multipliers of D,

and assume that gcd(|M |, v) = 1. Then there exists a translate of D

that is fixed by every multiplier in M .
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This next example concerns multipliers that are not numerical

multipliers. It serves as a warning for us to carefully read the hy-

potheses of the theorems in this section.

Example 8. Let G = 〈 a, b, c, d | a2 = b2 = c2 = d2 = 1〉 and let

α and β be the multipliers defined in Example 4. In Exercise 9 you

will show that the automorphism group generated by α and β acts

transitively on the non-identity elements of G. This means that no

translate of D can be fixed by both α and β. �

The following theorem gives insight into the interaction of multi-

pliers of a difference set in an abelian group. The proof is quite short

and involves showing that φt and σ commute.

Theorem 6.11. [53] Let G be an abelian group with difference set

D. If φt is a numerical multiplier for D and σ is any multiplier for

D, then σ permutes the blocks in devD that are fixed by φt.

Exercises

9. Refer to Example 8 and prove that the group of multipliers

generated by α and β acts transitively on the non-identity elements

of G.

10. Explain why Example 8 does not provide a counterexample to

Theorems 6.8 and 6.9.

11. Use Exercise 4.35 and Theorem 6.7 to show that if a nontrivial

abelian (v, k, λ)-difference set D has multiplier −1 then v is even.

(This is a result in [52].)

12. Prove Theorem 6.11.

6.4. Using multipliers

The following fact may be obvious at this point. We state it as a

theorem so that it will not be overlooked, and so that we may easily

refer to it.
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Theorem 6.12. Let G be a group and let α be a multiplier of a

difference set D so that α(D) = D. Then D consists of a union of

orbits for α as a permutation of elements of G.

In the following example we use this simple fact to find a differ-

ence set.

Example 9. Let G = Z15. We wish to find a nontrivial difference set

D in G. With v = 15, we discover the only choices for k and λ with

1 < k < v/2 and k(k−1) = λ(v−1) are (v, k, λ) = (15, 7, 3). Assume

such a difference set exists. Since n = 4 = 22 and gcd(2, 15) = 1,

Corollary 6.3 says that 2 is a numerical multiplier for D. Theorem 6.7

allows us to choose D to be a difference set fixed by multiplication by

2. The orbits6 for φ2 acting on G are:

(0) (5, 10)

(1, 2, 4, 8) (3, 6, 12, 9) (7, 14, 13, 11).

Since D must have seven elements and must be the union of some of

these orbits, it must contain 0, 5, 10, and the elements of one of the 4-

cycles. It turns out that D = {0, 5, 10, 1, 2, 4, 8} is indeed a difference

set. (This is the twin primes difference set of Example 4.3.) �

Next we consider an example where parameters pass the BRC

test, but where multipliers show that no difference set exists.

Example 10. We wish to show that there is no (79, 13, 2)-difference

set.7 Since 79 is prime, G must be Z79. These parameters do satisfy

the basic equation and pass the BRC test. Theorem 6.1 tells us that 11

is a numerical multiplier for any difference set with these parameters.

So we seek a difference set that is fixed by φ11.

The orbits for φ11 are (0) and two orbits each of length 39. Since

no orbits can be combined to get a set of size 13, there is no fixed

difference set with these parameters, and therefore no difference set

of size 13 in Z79. �

Finally we look at an example in which we can find all the equiv-

alence classes of difference sets using multipliers.

6Strictly speaking we write the cycle decomposition of φt. The orbits are the
subsets of elements that are in these cycles.

7According to Lander [43] there is a symmetric design with these parameters.
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Example 11. We wish to find all the difference sets, up to equiva-

lence, in the cyclic group Z73. The only parameters with 1 < k < v/2

that satisfy the basic equation are (73, 9, 1). Since 2 is a numerical

multiplier, we seek difference sets fixed by φ2.

The orbits for φ2 are:

(0)

(1, 2, 4, 8, 16, 32, 64, 55, 37) (9, 18, 36, 72, 71, 69, 65, 57, 41)

(5, 10, 20, 40, 7, 14, 28, 56, 39) (17, 34, 68, 63, 53, 33, 66, 59, 45)

(25, 50, 27, 54, 35, 70, 67, 61, 49) (3, 6, 12, 24, 48, 23, 46, 19, 38)

(13, 26, 52, 31, 62, 51, 29, 58, 43) (11, 22, 44, 15, 30, 60, 47, 21, 42)

Any difference set fixed by φ2 must be the elements in one of the orbits

of size 9. The set {1, 2, 4, 8, 16, 32, 64, 55, 37} is the set of nonzero

eighth powers (octic residues), and is a difference set. The other

orbits are images of the first under automorphisms (multiplication

by powers of 5), so all are equivalent difference sets. Since every

difference set must be equivalent to one of these fixed difference sets,

there is only one (73, 9, 1)-difference set up to equivalence. �

Exercises

13. Use multipliers to find a nontrivial difference set in Z11, or to

show that none exists. S©

14. Refer to Example 9. Do any of the other 4-cycles combine with

{0, 5, 10} to form a difference set? If so, are they images of each

other under group automorphisms? Or shifts? Are they equivalent

difference sets?

15. The twin prime difference set in Z35 has parameters (35, 17, 8).

Use multipliers to see if this difference set is the only one in Z35 with

k < v/2 up to equivalence.

16. Use multipliers to find a nontrivial difference set in Z21.

17. Use multipliers to find a nontrivial difference set in Z37. Compare

this with the difference set constructed using Theorem 4.4, page 50.
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18. Prove that Z49 does not contain a nontrivial difference set.

(Note: We still have not ruled out a difference set in Z7 ⊕ Z7.)

19. Prove that, up to equivalence, Z43 has only two difference sets

with 1 < k < v/2, and that these two have parameters (43, 21, 10).

20. Find all the nontrivial difference sets (up to equivalence) in the

cyclic group Z31.

(a) Find all parameters (31, k, λ) with 1 < k < v/2 that satisfy

the basic equation k(k − 1) = λ(v − 1).

(b) Which of these triples pass the BRC test?

(c) For each triple of parameters that passes the BRC test, use

multipliers to determine the number of equivalence classes

of difference sets.

21. Find all the nontrivial difference sets (up to equivalence) in the

cyclic group Z67. (Note that 67 is the number of this volume in the

AMS STML series.)

(a) Find all parameters (67, k, λ) with 1 < k < v/2 that satisfy

the basic equation k(k − 1) = λ(v − 1).

(b) Which of these triples pass the BRC test?

(c) For each triple of parameters that passes the BRC test, use

multipliers to determine the number of equivalence classes

of difference sets.

22. Write a computer program to calculate the orbits for φt in

the cyclic group Zv. Allow the user to enter v and t. Your program

should check that gcd(v, t) = 1 so that φt is an automorphism. For

output, list the sizes of the orbits and list the orbits themselves.

6.5. Multipliers in non-cyclic groups

To better understand multipliers in the context of abelian non-cyclic

difference sets we look at an extended example.
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Example 12. Consider the parameters (99, 49, 24). Since 99 = 9×11,

we will learn in Chapter 9 that the group Z11 ⊕ (Z3 ⊕ Z3) contains

a twin prime powers difference set D. The corollary to the Second

Multiplier Theorem guarantees that 5 is a multiplier for any difference

set in this group. We will first look at the orbits for φ5. For this we

represent group elements as triples (a; b, c), and we multiply by 5

(mod (11, 3, 3)) respectively. For instance

(1; 0, 1) �→ (5; 0, 2) �→ (3; 0, 1) �→ (4; 0, 2) �→ . . . .

This orbit is size 10. In all, we have 1 orbit of size 1, 4 of size 2, 2 of

size 5, and 8 of size 10. (See Figure 6.1. The asterisks are explained

below.)

∗1
(
(0; 0, 0)

)
∗1
(
(0; 0, 1) (0; 0, 2)

)
∗1
(
(0; 1, 0) (0; 2, 0)

)
∗1
(
(0; 1, 1) (0; 2, 2)

)
∗1
(
(0; 1, 2) (0; 2, 1)

)(
(1; 0, 0) (5; 0, 0) (3; 0, 0) (4; 0, 0) (9; 0, 0)

)(
(2; 0, 0) (10; 0, 0) (6; 0, 0) (8; 0, 0) (7; 0, 0)

)
∗2
(
(1; 0, 1) (5; 0, 2) (3; 0, 1) (4; 0, 2) (9; 0, 1) (1; 0, 2) . . .

)(
(1; 1, 0) (5; 2, 0) . . .

)
∗2
(
(1; 1, 1) (5; 2, 2) . . .

)(
(1; 1, 2) (5; 2, 1) . . .

)(
(2; 0, 1) (10; 0, 2) . . .

)
∗3
(
(2; 1, 0) (10; 2, 0) . . .

)(
(2; 1, 1) (10; 2, 2) . . .

)
∗3
(
(2; 1, 2) (10; 2, 1) . . .

)
Figure 6.1. Orbits for Example 12
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Theorem 6.9 says that, since there is a difference set in this group,

there must be a difference set fixed by φ5. If we are lucky, the twin

prime powers difference set D will be fixed. If not, then a shift of this

difference set will be fixed.

All the elements in the orbits of sizes 1 and 2 belong to D since

these elements have Z11 component equal to 0.

To find the other elements we need to find the quadratic residues

in Z11 = GF (11) and in GF (9). The quadratic residues of Z11 are

{1, 5, 3, 4, 9}. To identify the quadratic residues in GF (9) we need to

understand its structure as Z3[x]/〈p(x)〉.
In Z3[x], the polynomial p(x) = x2 + 2x + 2 is irreducible. We

construct the field Z3[x]/〈p(x)〉, and note that the coset represented

by x is a generator of the multiplicative group of nonzero elements.

(See A.18.) In the table below we show the nonzero elements of GF (9)

in their forms as polynomials in x and as ordered pairs from Z3 ⊕Z3:

1 = 1 = (0, 1) x = x = (1, 0)

x2 = x+ 1 = (1, 1) x3 = 2x+ 1 = (2, 1)

x4 = 2 = (0, 2) x5 = 2x = (2, 0)

x6 = 2x+ 2 = (2, 2) x7 = x+ 2 = (1, 2) .

From this construction the quadratic residues are (0,1), (1,1),

(0,2) and (2,2). In the table of orbits, those containing elements with

quadratic residues in both Z11 and Z3⊕Z3 are marked with ∗2. Those
with quadratic non-residues in both are marked with ∗3. We conclude

that the difference set D consists of the elements in the orbits of φ5

that are marked, and D is indeed fixed by φ5.

Note: This works because in both Z11 and GF (9), 5 is a quadratic

residue. (In the second field since 5 ≡ 2 mod 3, we multiply by 2, and

2 = (0, 2) = (x2)2.) So multiplying an element by 5 takes squares to

squares and non-squares to non-squares in both fields. �

Exercises

23. Use multipliers to find a (49, 16, 5)-difference set in Z7 ⊕ Z7 or

to show that none exists. A computer may be useful.
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24. With the aid of a computer, use multipliers to explore possible

difference sets in the abelian, non-cyclic group Z23 ⊕ Z5 ⊕ Z5.

Coda

Multipliers have been central to the study of difference sets from

the beginning. Marshall Hall began the systematic study of differ-

ence sets, and, in particular, he introduced multipliers in 1947. Since

then, multipliers have become an important tool for answering the

existence question for abelian difference sets and for providing infor-

mation about equivalence. In this chapter the emphasis is on using

multipliers for discovery and for proof of non-existence. Hall’s first

two multiplier theorems are stated without proof. This chapter pro-

vides opportunities for the use of the computer as an investigative

tool.

                

                                                                                                               



Chapter 7

Necessary Group
Conditions

Chapters 5 and 6 introduced necessary conditions for the existence of

difference sets with certain parameters and in certain groups. Here

we continue this discussion with three results that depend on the

structure of the group. There are two related topics in Section 1.

The first concerns the distribution of the elements of a difference set

among the cosets of a normal subgroup of G. The second considers

homomorphic images of D in the setting of the integral group ring.

In Section 2 we discuss Turyn’s “exponent bound”. In Section 3 we

describe Dillon’s “dihedral trick” linking the existence of a difference

set in a generalized dihedral group of size 2n to a difference set in an

abelian group of the same size.

7.1. Intersection numbers

Partitioning D. We start with a group G that contains a differ-

ence set D. When G has a normal subgroup N , the cosets mod N

partition the elements of G and correspondingly lead to a partition

of the elements of D. The main result of this section concerns the

possible sizes of these subsets of D. This theorem can be used both

to find difference sets and to rule out the existence of difference sets

in certain groups.

103
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We start by looking at an example found in Kibler’s list of differ-

ence sets.

Example 1. Let G be the elementary abelian 3-group of order 27

generated by a, b, and c, and consider the difference set from Kibler

[40]

D = {1, a, a2, b, ab, b2, c, ac, bc, ac2, a2bc2, b2c2, a2b2c2}.

If we choose the subgroup N = 〈a, b〉, then G = N ∪ Nc ∪ Nc2

and D is partitioned into D = D0 ∪ D1 ∪ D2 where Di = D ∩ Nci.

We find that D0 = {1, a, a2, b, ab, b2}, D1 = {c, ac, bc}, and D2 =

{ac2, a2bc2, b2c2, a2b2c2}. The numbers of elements in these Di are

(respectively) 6, 3, and 4. �

Example 2. Let G be the group Z5⊕Z7 and let D be the (35, 17, 8)-

difference set based on the twin primes 5 and 7. (See Theorem 4.6.)

Let N1 = {(a, 0) | a ∈ Z5} and let N2 = {(0, b) | b ∈ Z7}. These are

normal subgroups in G. Figure 7.1 shows the elements of D and their

membership in the various cosets of these normal subgroups. For

instance, the second column shows that coset (0, 1) + N1 (denoted

by (∗, 1) in the table) contains two elements of D, namely (1, 1) and

(4, 1). �

(∗, 0) (∗, 1) (∗, 2) (∗, 3) (∗, 4) (∗, 5) (∗, 6)
(0, ∗) (0, 0) 1

(1, ∗) (1, 0) (1, 1) (1, 2) (1, 4) 4

(2, ∗) (2, 0) (2, 3) (2, 5) (2, 6) 4

(3, ∗) (3, 0) (3, 3) (3, 5) (3, 6) 4

(4, ∗) (4, 0) (4, 1) (4, 2) (4, 4) 4

5 2 2 2 2 2 2 17

Figure 7.1. Array showing elements of the twin-prime difference set

The sizes of the intersections of a possible difference set D with

the various cosets of a normal subgroup are useful in tackling the

existence question.
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Definition. Let G be a group and N a normal subgroup of index r.

Let {g1, . . . , gr} be a complete set of coset representatives for N in

G. If D is a difference set in G, then the numbers ni = |D ∩ giN | are
the intersection numbers for D with respect to N .

For short we sometimes call these the intersection numbers for D

mod N . In Figure 7.1 the numbers at the ends of the columns are

the intersection numbers mod N1, and those at the ends of the rows

are the intersection numbers mod N2. It is clear that the sum of the

intersection numbers mod N for a (v, k, λ)-difference set must be k.

What is less obvious is that the sum of their squares is predictable.

Theorem 7.1. Let D be a (v, k, λ)-difference set in the group G,

and let N be a normal subgroup of index r in G with |N | = s. Let

{g1, . . . , gr} be a complete set of coset representatives, and denote the

intersection numbers for D with respect to N by ni = |D∩giN |. Then
r∑

i=1

ni = k

r∑
i=1

(ni)
2 = n+ λs.

As illustrations of this theorem, we look again at the examples

above.

Example 3. In the (27, 13, 6)-difference set of Example 1, we have

s = |〈a, b〉| = 9, n = 7, and

62 + 32 + 42 = 61 = 7 + 6 · 9.
In the (35, 17, 8)-difference set of Example 2, when s = 5 we have

n+ λs = 9 + 8 · 5 = 49. We check that
∑

n2
i = 52 + 6 · 22 = 49.

When s = 7 we have n + λs = 9 + 8 · 7 = 65. We check that∑
n2
i = 12 + 4 · 42 = 65. �

Our proof of Theorem 7.1 uses the integral group ring introduced

in Chapter 4. Recall that if D is a (v, k, λ)-difference set in G, then

in the integral group ring ZG we know that DD(−1) = n1G + λG.

Our proof involves summing the coefficients of elements of N on each

side of this equation.
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Proof. The right hand side of the equation DD(−1) = n1G+λG may

be rewritten as n1G + λN + λ(G \N). So the sum of the coefficients

of elements in N is n + λ|N | = n + λs. For the left hand side we

write D = D1 + D2 + · · · + Dr where r is the index of N in G and

Di = D ∩ giN . Then

DD(−1) =
(
D1 +D2 + · · ·+Dr

)(
D1 +D2 + · · ·+Dr

)(−1)

=
∑
i 
=j

DiD
(−1)
j +

∑
i

DiD
(−1)
i .

The terms DiD
(−1)
j have nonzero coefficients for elements in the coset

gi g
−1
j N . These elements are in N if and only if i = j. So in the

expression for DD(−1) the sum of the coefficients of elements in N is

the sum of coefficients in
∑

i DiD
(−1)
i , namely the sum of squares of

the intersection numbers. We conclude that
r∑

i=1

(ni)
2 = n+ λs. �

Next we look at how this theorem can be used to limit the search

for a difference set in a particular group. If we suspect that a group

G might have a (v, k, λ)-difference set, we could check each of the
(
v
k

)
subsets ofG. This is prohibitively time consuming even for quite small

examples. If G contains such a difference set D, we could search for

an equivalent difference set g−1D where g ∈ D. This guarantees that

1G is in g−1D, so we only need to examine k-subsets that include 1G,

cutting the brute force search down to
(
v−1
k−1

)
. In a similar fashion, if

we know a supposed difference set in a group G with normal subgroup

N must have certain intersection numbers, we can limit our search

based on these numbers.

Example 4. Continuing with Example 1, let G = 〈a, b, c | a3 =

b3 = c3 = 1〉 and N = 〈a, b〉. If we have a (27, 13, 6)-difference set

D in G, we can show that the only intersection numbers that obey

Theorem 7.1 are 3, 4, 6 in some order. Further we can specify the

assignment of these numbers to specific cosets by looking at difference

sets equivalent to D. Let D be a difference set with intersection

numbers 3, 4, 6. By multiplying D by an appropriate power of c, we
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can find a difference set equivalent (by a shift) to one with |D∩N | = 6.

Similarly the mapping

a �→ a, b �→ b, c �→ c2

is a homomorphism that keeps the coset N fixed and interchanges the

cosets Nc and Nc2. So using this mapping if necessary, we can find

an equivalent difference set with |D ∩ Nc | = 4 and |D ∩ Nc2| = 3.

Thus, we can limit our search to sets with 6 elements in N , 4 in Nc,

and 3 in Nc2. So we have cut the brute force search from
(
27
13

)
≈ 20

million to
(
9
6

)(
9
4

)(
9
3

)
= 889, 056. Of course this number is also large,

but computers may be able to tackle the smaller search in reasonable

time where the larger one may be intractable. �

Homomorphisms. To take advantage of the integral group ring as

a tool for studying intersection numbers, we start with a group ho-

momorphism ϕ : G → H and extend it to a mapping ϕ̂ : ZG → ZH.

Let N be the kernel of ϕ, so H = G/N . Then this mapping ϕ̂ will

give us a slightly different approach to a proof of Theorem 7.1, and

will be useful in later chapters.

First we must prove that ϕ̂ is a ring homomorphism.

Theorem 7.2. Assume G and H are groups and ϕ : G → H is a

group homomorphism. Define ϕ̂ : ZG → ZH by

ϕ̂

⎛⎝∑
g∈G

agg

⎞⎠ =
∑
g∈G

ag ϕ(g).

Then ϕ̂ is a ring homomorphism.

Let us look at some examples.

Example 5. One case of interest is when G is a group, H = {1G},
and ϕ(g) = 1G for all g ∈ G. So N = G. Then ϕ̂(

∑
agg) =

∑
ag1G

which we identify with the integer
∑

ag ∈ Z. By analogy to evaluat-

ing a polynomial f(x) ∈ Z[x] at x = 1, this is sometimes called the

evaluation map. �

Example 6. Let G = 〈a, b | a7 = b3 = 1, ba = a2b〉, and D =

{1, a, a3, b, a2b2}, a (21, 5, 1)-difference set. We define H = 〈b〉, and
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consider the homomorphism ϕ from G to H defined by ϕ(a) = 1,

ϕ(b) = b. The kernel of ϕ is N = 〈a〉. Then ϕ̂ : ZG → ZH with

ϕ̂(G) = 7H and ϕ̂(D) = 3 ·1H +1 ·b+1 ·b2. Note that the coefficients

in ϕ̂(D) are the intersection numbers of D mod N . �

The following theorem shows the result of applying ϕ̂ to the in-

tegral group ring equation for a difference set. Note that it requires

that the group homomorphism map G onto H.

Theorem 7.3. Assume D is a (v, k, λ)-difference set in G and ϕ :

G → H is an epimorphism of groups. Then the image D̂ = ϕ̂(D)

satisfies the following equation in ZH:

D̂D̂(−1) = n1H + sλH,

where s is the order of N = Kerϕ.

Example 7. This example sets the stage for a slightly different proof

of Theorem 7.1 (see Exercise 11). Suppose the group G contains a

(v, k, λ)-difference set D. Suppose further that G contains a normal

subgroup N and let ϕ : G → G/N = H be the natural homomor-

phism. Assume {g1, . . . , gr} is a complete set of coset representatives

for N in G, and let ni = |D ∩ giN |. Write hi = ϕ(gi). Then

D̂ = ϕ̂(D) =

r∑
i=1

nihi �.

Difference lists. Motivated by Theorem 7.3, we have the following

generalization of a difference set.

Definition. An element E =
∑

h ahh in the integral group ring ZH is

called a difference list overH with parameters (r, k, s, λ) if s and k are

positive integers, λ and the ah are non-negative, |H| = r,
∑

h ah = k,

and EE(−1) = (k − λ)1H + sλH.

Difference lists were introduced in [2]. In that paper, the authors

interpreted E as a multiset of elements from H, with ahh regarded

as ah copies of the element h. In the special case when s = 1 and all

the coefficients ah are 0 or 1, E interpreted as a subset of elements of

H is an (r, k, λ)-difference set.

Write the image of a group G under a group homomorphism as

H � G/N . It is then clear that the image of a difference set D
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in ZG under the corresponding ring homomorphism is a difference

list E =
∑

h ahh in ZH. In this case the multiplicity ah counts the

number of elements of D in the coset mod N that corresponds to h.

In ([8], p. 332) we find the remark that not all difference lists can be

obtained in this way. We also find the following interesting theorem,

due to Hall and Ryser for cyclic groups and Bruck for general groups

([10], p. 469).

Theorem 7.4. Let E be an (r, k, s, λ)-difference list over H, where

r is odd and n = k − λ. Then the equation

x2 = ny2 + (−1)(r−1)/2rz2

has a nontrivial solution in integers x, y, z.

This result is similar to the powerful and useful Bruck-Ryser-

Chowla Theorem for symmetric designs (and thereby for difference

sets).

Example 8. Can a (25, 9, 3)-difference set exist? These parameters

satisfy BRC because x2 = 6y2 + 3z2 has the solution x = 3 and

y = z = 1. It is a consequence of the class equation (A.10) that every

group of order equal to the square of a prime is abelian. Therefore a

group of order 25 has a normal subgroup of order 5. It follows that

if a difference set with these parameters existed, then a (5, 9, 5, 3)-

difference list would also exist. Then by Theorem 7.4 the equation

x2 = 6y2 + 5z2 would have a nontrivial solution. However, by Theo-

rem 5.2, this is impossible. �

Exercises

1. Let D be the difference set in Example 1.

(a) Let N be the normal subgroup 〈a〉. Find the intersection

numbers for D with respect to N , and verify that these

numbers obey Theorem 7.1.

(b) Show that these nine intersection numbers form a subparti-

tion of the intersection numbers with respect to 〈a, b〉.
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2. Consider the non-abelian group G = 〈a, b | a9 = b3 = 1, ba = a4b〉
with (27, 13, 6)-difference set given by Kibler

D = {1, a, a2, a4, a5, a7, b, ab, a2b, a5b, a5b2, a6b2, a8b2}.

(a) Check whether the subgroups 〈a〉 and 〈b〉 are normal sub-

groups.

(b) For any normal subgroups found in part (a), find the corre-

sponding intersection numbers and confirm that they satisfy

the equations in Theorem 7.1. S©

3. In this exercise we return to Example 4 to verify the claim that the

only intersection numbers for a (27, 13, 6)-difference set G satisfying

the equations in Theorem 7.1 are 3, 4, 6. Suppose the intersection

numbers, in some order, are the non-negative integers x, y, z.

(a) Explain why, without loss of generality, we may assume x ≤
y ≤ z ≤ 7.

(b) By examining cases, complete the verification.

4. In the proof of Theorem 7.1, where do we use the fact that N is a

normal subgroup of G?

5. Consider the non-abelian group

G = 〈a, b | a19 = b3 = 1, ba = a7b〉.

(a) Show that N = 〈a〉 is normal in G.

(b) Assume that there is a (57, 8, 1)-difference set D in G, and

find all possible triples of intersection numbers using Theo-

rem 7.1.

(c) Show that we can assume without loss of generality that

n0 ≥ n1, n2, where nj = |D ∩ bjN |.
(d) Show that there is no homomorphism of G that fixes N

and interchanges the cosets bN and b2N . (This means we

cannot swap intersection numbers n1 and n2 without loss of

generality.)
                

                                                                                                               



7.1. Intersection numbers 111

(e) Compare your results above to the two difference sets in G

given in Kibler’s list for this group [40]:

D2 = {1, a, a3, a8, b, a4b, a13b, a18b2},
D3 = {1, a, a3, a8, b, a5b2, a9b2, a18b2}.

6. Let G be a group of order 39. First look back at Example 5.7 to

see what we know so far about the existence of (39, 19, 9)-difference

sets. Use Theorem 7.1 to show that G cannot contain a (39, 19, 9)-

difference set. H©

7. Let G be as in Example 6. Map G onto H = 〈b〉 by ϕ(aibj) = bj .

(a) Verify that ϕ is a group homomorphism.

(b) Calculate ϕ̂((a2 + 3ab− 5a2b)(2a5 − b)).

(c) Calculate ϕ̂(a2 + 3ab− 5a2b)ϕ̂(2a5 − b).

8. Prove Theorem 7.2.

9. Start with the (40, 13, 4)-difference set

D = {1, a, a2, b, a3b, ab2, a3b2, a4b2, ab4, ab5, a2b5, ab6, a4b7}

in the group G = 〈a, b | a5 = b8 = 1, ba = a4b〉.

(a) Explain why N = 〈a〉 is a normal subgroup in G.

(b) Find a complete set of coset representatives of G modulo N .

(c) Let ϕ : G → G/N = H be the natural homomorphism.

Find D̂ = ϕ̂(D).

(d) How do the coefficients of D̂ in ZH compare to the inter-

section numbers for D mod N?

10. Prove Theorem 7.3

11. Using the notation of Example 7, compare the coefficients of 1H
on each side of the ZH equation in Theorem 7.3 to give another proof

of Theorem 7.1
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12. Recall from Section 5.1 that no projective plane of order n = 10

exists. It follows that no symmetric (111, 11, 1) design exists, even

though these parameters satisfy BRC. This fact implies that no dif-

ference set with these parameters exists. Using Theorem 7.4, give a

direct proof that no (111, 11, 1)-difference set exists. H©

13. This exercise concerns the parameters (201, 25, 3).

(a) Show that these parameters satisfy BRC.

(b) Use Theorem 7.4 to show that no (201, 25, 3)-difference set

exists.

7.2. Turyn’s exponent bound

The aspect of the structure of a group G that is the focus of this

section is the exponent1 of a Sylow p-subgroup of G. We also restrict

our attention to abelian groups. The first version of our main theo-

rem further restricts our discussion to difference sets with parameters

(4p2a, 2p2a − pa, p2a − pa) for a prime p. While this may sound nar-

row, these difference sets are in the important “Hadamard family”

with v = 4n. All of these difference sets can be shown to have param-

eters of the form (4u2, 2u2−u, u2−u). We study them in Section 9.3.

The second version of Turyn’s theorem is more general.

Turyn’s paper [69] is important not only for his very useful ex-

ponent bound, but also for his innovative use of tools from character

theory and from algebraic number theory. We give an elementary in-

troduction to some of these methods in Chapters 11 and 12. Here is

the first version of Turyn’s theorem as it is often given in the literature

(for example, in [8], p. 414).

Theorem 7.5. (Turyn’s exponent bound, first version) Let p be a

prime and assume the existence of a difference set with parameters

(4p2a, 2p2a − pa, p2a − pa)

1See A.8 for the definition of the exponent of a group.
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in an abelian group G. Let P be the Sylow p-subgroup of G. Then

one has the following bounds on the exponent of P :

exp(P ) ≤ pa for p odd,

exp(P ) ≤ 4 · 2a for p = 2.

Deducing this theorem from the second version is left as an ex-

ercise, and we give a proof of the second version in Chapter 12. For

now we concentrate on applying Theorem 7.5, as in the following

examples.

Example 9. Consider G = Z16, the cyclic group of order 16. In the

notation of the theorem, |G| = 16 = 4p2a = 4 · 22 with a = 1. Since

exp(P ) = exp(G) = 16, which exceeds the bound of 4 · 21 = 8, there

is no (16, 6, 2)-difference set in Z16. �

Example 10. Consider an abelian group G of order 100 = 4 ·52, and
let P be the Sylow 5-subgroup of G. If G contains a (100, 45, 20)-

difference set, then by the theorem exp(P ) ≤ 5, so P = Z5 ⊕ Z5 is

possible, but P = Z25 is ruled out. �

For a cyclic group G of order 4p2a, if p = 2, then P = G and

exp(P ) = v. Otherwise, the Sylow p-subgroup P has exponent p2a. So

in either case, if G is cyclic, then P has the largest possible exponent.

For a = 0, the parameters in Theorem 7.5 are (4, 1, 0), and the cyclic

group with 4 elements does have a (trivial) difference set with these

parameters. But for a ≥ 1 and for any prime p, Turyn’s exponent

bound rules out difference sets in cyclic groups of order 4p2a for all

a ≥ 1 and all primes p. Together with Dillon’s “dihedral trick,”

discussed in the next section, this rules out difference sets in infinitely

many dihedral groups.

In 1993 Kraemer2 showed that for abelian 2-groups, Turyn’s ex-

ponent bound is not only a necessary but also a sufficient condition

for the existence of a difference set [41].

Theorem 7.6. There exists a (4 ·22a, 2 ·22a−2a, 22a−2a)-difference

set in an abelian group G if and only if exp(G) ≤ 4 · 2a.

2The result is also in Jedwab’s 1991 doctoral thesis ([17], p. 137).
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In the same year, conclusive evidence appeared that non-abelian

difference sets are more exotic. Liebler and Smith constructed a non-

abelian (64, 28, 12)-difference set exceeding Turyn’s exponent bound.

(See [47] in [37].) They wrote, “Dillon has raised the question of

which 2-groups G admit difference sets, and his question has been

settled for all groups of order 64 except [one].” The open case was

G = 〈x, y | x32 = y2 = 1, yxy = x17〉, and Liebler and Smith

were actually trying to prove non-existence when they made their

surprising discovery. Their work was subsequently generalized by

Davis and Smith in [17]. Davis and Smith showed that the difference

set in [47] is a member of an infinite family of difference sets in non-

abelian groups of order 4 · 22a with exponent 4 · 2a+1. We will return

to a discussion of these developments in Section 9.3.

The second, more general version of Turyn’s exponent bound is

given here as stated in ([8], p. 440). We first need the definition of

a term used in its statement. (The motivation for this notion of self-

conjugacy comes from algebraic number theory and is discussed in

Chapter 12.)

Definition. Let p be a prime, and w an integer. Write w = paw′

where w′ is not divisible by p. Then p is self-conjugate modulo w if

there exists a non-negative integer j with pj ≡ −1 (mod w′). An

integer � is self-conjugate modulo w if every prime divisor of � is

self-conjugate modulo w.

Example 11. Choose p = 5. We look at three choices for w. If

w = 85, then w′ = 13 and 52 ≡ −1 (mod 13), so 5 is self-conjugate

modulo 85. If w = 125 then w′ = 1 and 5 ≡ 1 ≡ −1 (mod 1), so 5

is self-conjugate modulo 125. If w = 20 then w′ = 4 and since 5 ≡ 1

(mod 4), no power of 5 can be congruent to −1 mod 4, and 5 is not

self-conjugate modulo 20. Notice too that for any positive integer a,

5a is self-conjugate modulo w whenever 5 is. �

Now we can state the stronger form of Turyn’s exponent bound.

Theorem 7.7. (Turyn’s exponent bound, second version) Assume

the existence of a (v, k, λ)-difference set in an abelian group G. Let p

be a prime divisor of v and denote the Sylow p-subgroup of G by P .

Assume that p2a divides n for some a ≥ 1. Let U be any subgroup of
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G with U ∩ P = {1}. If p is self-conjugate modulo e = exp(G/U),

then

exp(P ) ≤ |U | |P |
pa

.

We remark that one way to apply this version of Turyn’s exponent

bound is to choose U = {1}.

Exercises

14. List the abelian 2-groups that cannot contain a (64, 28, 12)-

difference set.

15. Consider abelian groups of order 324.

(a) Find the exponent bound for the Sylow 3-subgroup given in

Theorem 7.5. S©
(b) Using this, list all abelian groups of order 324 that cannot

contain a (324, 153, 72)-difference set.

16. Consider the parameters (175, 30, 5).

(a) List the possible abelian groups of order 175.

(b) Why does Theorem 7.5 not apply in this case?

(c) Based on Theorem 7.7, which of the groups in (a) cannot

contain a (175, 30, 5)-difference set?

17. Consider the parameters (160, 54, 18).

(a) List the possible abelian groups of order 160.

(b) Why does Theorem 7.5 not apply in this case?

(c) Based on Theorem 7.7, which of the groups in (a) cannot

contain a (160, 54, 18)-difference set?

18. In this exercise you will deduce Theorem 7.5 from Theorem 7.7.

Assume the abelian group G has a (4p2a, 2p2a−pa, p2a−pa)-difference

set for some prime p and positive integer a. Let P be the Sylow p-

subgroup of G.
                

                                                                                                               



116 7. Necessary Group Conditions

(a) Assume p = 2 and choose U = {1}. Explain why 2 is self-

conjugate modulo exp(G/U) and deduce exp(P ) ≤ 4pa from

Theorem 7.7.

(b) Assume p is odd and choose U to be a subgroup of G of

order 2. Explain why p is self-conjugate modulo exp(G/U)

and deduce exp(P ) ≤ pa from Theorem 7.7.

7.3. Dillon’s dihedral trick

Dillon [18] showed that if there is no cyclic difference set in a group

of order 2m, then there is no difference set in the dihedral group of

order 2m. His theorem is actually more general.

Definition. LetH be an abelian group. The group G is a generalized

dihedral extension of H if there is an element g �∈ H such that G =

H + gH in ZG, g2 = 1, and for all h ∈ H, ghg = h−1.

Example 12. Let H = 〈a, b | a6 = b2 = 1, ab = ba〉, and let G =

〈a, b, c | a6 = b2 = c2 = 1, ab = ba, ac = ca−1, bc = cb〉. Then G is a

generalized dihedral extension of H with g = c. �

Theorem 7.8. [18] Let H be an abelian group, and let G be a gen-

eralized dihedral extension of H. If G contains a difference set, then

any abelian group with H as a subgroup of index 2 also contains a

difference set.

The proof of this theorem relies heavily on calculations in the

integral group ring, and is a good demonstration of the usefulness of

ZG.

Proof. Assume G = H + gH. Let D be a difference set in G, and

write D = X +gY for X and Y subsets of H. Since D is a difference

set, DD(−1) = n1G + λG. We substitute the expression for D in

terms of the subsets X and Y to learn more about how these two

subsets interact. In this calculation note that g = g−1. We can freely

commute subsets of the abelian groupH. However, we must be careful
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with g. Specifically Xg = gX(−1) and (gY )(−1) = Y (−1)g = gY , so

(X + gY )(X + gY )(−1)

= (X + gY )(X(−1) + gY )

= XX(−1) + Y Y (−1) + gY X(−1) +XgY

= XX(−1) + Y Y (−1) + 2gY X(−1).

Since this must equal n1G + λG, we equate the summands involving

elements of H, which gives us Equation (1). Equating the summands

involving elements of gH gives Equation (2). Equation (3) is obtained

from (2) via XY (−1) = (Y X(−1))(−1) = (λ/2)H(−1) = (λ/2)H.

Thus

XX(−1) + Y Y (−1) = n1G + λH (1)

Y X(−1) =
λ

2
H (2)

XY (−1) =
λ

2
H. (3)

Now let K be an abelian group with H a subgroup of index 2. We

can write K = H + kH for some element k /∈ H. Note here that k

need not have order 2, though k2 ∈ H, so k2H = H. We claim that

C = X+kY is a difference set in K. Since K is abelian we can freely

commute elements in the calculation below:

CC(−1) = (X + kY )(X + kY )(−1)

= (X + kY )(X(−1) + k−1Y (−1))

= XX(−1) + Y Y (−1) + kY X(−1) + k−1XY (−1).

In this last term we replace k−1 with kk−2 to get:

CC(−1) = XX(−1) + Y Y (−1) + k
(
Y X(−1) + k−2XY (−1)

)
.

Then using Equations (1)–(3) we get:

CC(−1) = n1K + λH + k

(
λ

2
H +

λ

2
H

)
= n1K + λK.
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Thus a difference set in the generalized dihedral group G can be used

to construct a difference set in the abelian group K. �

Exercises

19. Let G1 = 〈a, b, c | a4 = b2 = c2 = 1, bab = a3, ac = ca, bc = cb〉
and let H = 〈a, c〉 ⊂ G1 .

(a) Show that G1 is a generalized dihedral extension of H.

(b) Give generators and relations for an abelian group G2 that

has H as a subgroup of index 2. (There is more than one

way to do this.)

(c) We know from Kibler’s list that D1 = {1, a, a2, b, ac, a2bc}
is a (16, 6, 2)-difference set in G1. Use Dillon’s construction

to produce a (16, 6, 2)-difference set D2 in your group G2.

Verify that D2 is a (16, 6, 2)-difference set in G2.

(d) There are 8 difference sets in abelian groups of order 16 in

Kibler’s catalog [40]. They are listed below. (We omit the

commutativity of generators from the relations.) Which of

these groups is isomorphic to G2? Show that your difference

set D2 is equivalent to one listed below.

No. Difference Set Group

1. 1, x, x2, x4, xy, x6y 〈x, y | x8 = y2 = 1〉
2. 1, x, x2, x5, y, x6y 〈x, y | x8 = y2 = 1〉
3. 1, x, x2, y, xy2, x2y3 〈x, y | x4 = y4 = 1〉
4. 1, x, x2, y, y3, x3y2 〈x, y | x4 = y4 = 1〉
5. 1, x, y, x2y, xy2, x2y2 〈x, y | x4 = y4 = 1〉
6. 1, x, x2, y, z, x3yz 〈x, y, z | x4 = y2 = z2 = 1〉
7. 1, x, x2, xy, xz, x3yz 〈x, y, z | x4 = y2 = z2 = 1〉
8. 1, x, y, z, w, xyzw 〈x, y, z, w | x2 = y2 = z2 = w2 = 1〉

20. Consider groups of order 64.

(a) Show that the dihedral group D32 cannot contain a differ-

ence set with parameters (64, 28, 12).
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(b) Write G1 = 〈a, b | a32 = b2 = 1, ab = ba〉. Give generators

and relations for a non-cyclic subgroup H of index 2 in G1.

(c) Specify generators and relations for a generalized dihedral

extension G2 of H that is not isomorphic to D32.

(d) Show that G2 cannot contain a (64, 28, 12)-difference set.

Coda

In this chapter we continue our focus on the existence question for

difference sets. Here we ask if a group G contains a difference set

D, what does that imply about the structure of G? This emphasis

on group structure is in contrast to the emphasis on the parameters

(v, k, λ) in the two preceding chapters.

In Section 1 we look at the distribution of elements of a difference

set in the cosets of a normal subgroup. A useful strategy is to con-

struct a sieve of smaller and smaller normal subgroups of G, leading

to finer and finer constraints on the possible elements of a difference

set. Sometimes this strategy by itself suffices to prove non-existence.

Sometimes it restricts the possibilities enough to make tractable a

computer search that either produces a difference set or shows that

none can exist. In this way this sieve strategy is similar to the analysis

of unions of orbits of multipliers in Chapter 6.

Section 2 concerns the exponent of the Sylow p-subgroup for a

prime p. Turyn’s exponent bound may prove non-existence, but it

provides no help in constructing a difference set if one is possible.

This section focuses on applying Turyn’s theorem. The proof uses

deep ideas from representation theory and algebraic number theory,

and it is our culminating application of these tools in Chapter 12.

Dillon’s “dihedral trick” in Section 3 links existence of a differ-

ence set in a generalized dihedral extension of an abelian group H

to existence in an abelian extension of H. It can be used either to

prove non-existence or to produce an abelian difference set if the non-

abelian one is known.

Chapters 5–7 contain clear necessary conditions for existence, and

the latter two provide methods to narrow the search for a difference
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set to the point where a computer search may be feasible. In contrast,

the next two chapters give explicit constructions for difference sets.

                

                                                                                                               



Chapter 8

Difference Sets from
Geometry

In Chapter 2 we introduced finite affine and projective geometries.

While we know from Chapter 4 that the existence of a symmetric

(v, k, λ) design is necessary for the existence of a (v, k, λ)-difference

set, we have not yet explicitly used geometry to produce a difference

set. This is the goal of the present chapter. We begin with Singer’s

construction [62] and then describe two more recent constructions

due to Turyn [69] and McFarland [50] respectively. Each of these

three authors uses geometry in a different way. Singer begins with

a projective geometry and produces a cyclic group acting regularly

on the points and blocks of the associated symmetric design, which

in turn leads to a difference set. Turyn describes a set algebraically

but then uses affine geometry to prove that it is a difference set.

McFarland literally uses geometry to construct a difference set.

8.1. Singer difference sets

In this section we look at Singer’s construction of the family of cyclic

difference sets bearing his name. Following the structure of his paper

[62], we look first at the (q2 + q+1, q+1, 1)-difference set associated

with the projective plane PG(2, q), for a prime power q. Toward the

end of his paper (page 384), Singer writes, “The preceding concepts

121
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are susceptible of immediate generalization.” We also look at this gen-

eralization, associating a cyclic (v, k, λ)-difference set with PG(m, q)

for m ≥ 2, with

v =
qm+1 − 1

q − 1
, k =

qm − 1

q − 1
, λ =

qm−1 − 1

q − 1
.

The key to both arguments is the vector space isomorphism between

a space V of dimension m+ 1 over Fq and the finite field GF (qm+1).

We know PG(2, q) gives a symmetric design whose points are the

projective points and whose blocks are the projective lines. Singer’s

first theorem is the following (written in our language, not his).

Theorem 8.1. Let q be a prime power. Then the symmetric design

of PG(2, q) has an automorphism τ of order q2 + q + 1. The cyclic

group G = 〈τ 〉 acts regularly on the points of PG(2, q).

Proof. We know that the multiplicative group of nonzero elements

of a finite field is cyclic. The proof of Singer’s first theorem depends

on the representation of points of PG(2, q) as powers of a generator

of GF (q3)∗. We also know that GF (q3) is a 3-dimensional vector

space over the field Fq; we call it V to emphasize this structure. We

can construct V as Fq[x]/〈p(x)〉 for an irreducible monic polynomial

p(x) ∈ Fq[x] of degree 3. In fact, it is always possible to choose p(x)

so that the coset represented by x is a generator of the multiplicative

group GF (q3)∗. (See A.16 and A.18.)

As we did in Exercise 4.12, we identify the elements of V =

Fq[x]/〈p(x)〉 with their quadratic coset representatives. It then fol-

lows that every element of V can be written as an Fq-linear combi-

nation of x2, x1, x0. Since these three vectors span the 3-dimensional

vector space V, they therefore form a basis.

The multiplicative group F∗
q is the unique subgroup of order q−1

in the cyclic group 〈x〉 of order q3−1, and this subgroup is generated

by xr for r = (q3 − 1)/(q − 1) = q2 + q + 1. The powers of x which

correspond to elements of the ground field Fq are therefore xjr for

j = 0, 1, . . . , q − 2. It follows that xs and xt correspond to linearly

dependent vectors in V if and only if xs−t ∈ Fq; in other words,

they are linearly dependent vectors if and only if the exponents s ≡ t

(mod r). However, we know PG(2, q) has exactly r points, so we
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may take x0, x1, x2, . . . , xr−1 as the vectors generating them. This is

our rationale for denoting the projective point determined by xs by

s ∈ Zr. (We write x1 and x0 instead of x and 1 to keep the link to

this notation clear.)

Next, consider the transformation Tx : V → V defined by multi-

plication by x. Thus Tx(0) = 0 and Tx(x
s) = xs+1. This is in fact a

non-singular linear transformation of V and so determines an auto-

morphism τ of PG(2, q). We see that τ (s) = s+1 for s = 0, . . . , r− 2

and τ (r − 1) = 0. The group G = 〈τ 〉 thus acts transitively on the

r points of PG(2, q). Since |G| also equals r, G acts regularly on the

points by the orbit-stabilizer theorem (Theorem 3.2, p. 39). �

Example 1. Choose q = 4, so r = (q3−1)/(q−1) = q2+ q+1 = 21.

For the ground field we have F4 = {0, 1, ω, ω2} with ω2 + ω + 1 = 0.

To construct GF (64) = F4[x]/〈p(x)〉 we choose p(x) = x3+x2+x+ω.

Since p(x) has no zeroes in F4, it is irreducible in F4[x]. We then have

x3 = x2+x1+ωx0. More generally, the vectors x2, x1, x0 form a basis

for the 3-dimensional vector space V . We still need to check that x

is a generator for GF (64)∗. To do this, we express the other powers

of x as linear combinations of the basis vectors. (Note that x0 = 1 is

actually in the ground field F4.) We show one calculation in detail:

x4 = x3 + x2 + ωx1

= x2 + x1 + ωx0 + x2 + ωx1

= ω2x1 + ωx0.

Similarly, we find that x5 = ω2x2 + ωx1, x6 = x2 + ω2x1 + x0,

x7 = ωx2 + ωx0, . . . . Checking the exponents that are multiples of

21 we find what we expect: x21 = ω, x42 = ω2, and x63 = 1 are

all elements of the base field F4. We can thus choose x0, x1, . . . , x20

as generators of the 21 points of PG(2, 4), and we label the point

represented by xs by s. The points are then denoted 0, 1, . . . , 20.

Since x21 = ωx0 determines the same projective point as x0, we see

that τ (s) = s + 1, with addition modulo 21, defines a regular action

on the 21 points of PG(2, 4). �

Singer’s theorem tells us that the automorphism group G = 〈τ 〉
acts regularly on the points of the symmetric design PG(2, q). By
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Corollary 3.7, G also acts regularly on the blocks. Now Theorem 4.8

implies that G contains a difference set with the same parameters as

the design, namely (q2 + q + 1, q + 1, 1).

We conclude with the generalization of Theorem 8.1 that yields

the cyclic (v, k, λ)-difference set with

v =
qm+1 − 1

q − 1
, k =

qm − 1

q − 1
, λ =

qm−1 − 1

q − 1
.

We know PG(m, q) gives a symmetric design whose points are the

projective points and whose blocks are the projective (m− 1)-spaces.

Theorem 8.2. Let q be a prime power. Then the symmetric design

of PG(m, q) has an automorphism τ of order (qm+1−1)/(q−1). The

cyclic group G = 〈τ 〉 acts regularly on the points of PG(m, q).

The proof is essentially the same as that for Theorem 8.1, and it

is left for the exercises.

Exercises

1. Carry out Singer’s construction of the (7, 3, 1)-difference set by

constructing GF (8) = F2[x]/〈p(x)〉 using the irreducible polynomial

p(x) = x3 + x+ 1.

(a) Find x0, x1, . . . , x6 as linear combinations of x2, x1, x0 with

coefficients in F2 = {0, 1}. S©
(b) Write the matrix of Tx with respect to the ordered basis

(x2, x1, x0) of V . Compare this to the matrix M in Chapter

1. S©
(c) Identifying the point represented by xs with the integer s ∈

Z7, find the line B = {d0, d1, d2} of PG(2, 2) containing

d0 = 0 and d1 = 1.

(d) How does the difference set {d0, d1, d2} compare to the dif-

ference set D1 in Example 1.1?

2. Construct GF (27) as in Exercise 4.12 using p(x) = x3 + 2x + 1.

Repeat the previous exercise for q = 3 (omitting the references to

Chapter 1). In particular, do the following:
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(a) Verify that x13 = 2 and x has order 26 in the multiplicative

group GF (27)∗. Find x0, x1, . . . , x12 as linear combinations

of x2, x1, x0 with coefficients in F3 = {0, 1, 2}.
(b) Find the line B = {d0, d1, d2, d3} of PG(2, 3) containing

d0 = 0 and d1 = 1.

(c) Compare the difference set {d0, d1, d2, d3} to the one con-

structed in Z13 in Exercise 4.13 on page 53.

3. In this exercise you will carry out Singer’s construction of a

(15, 7, 3)-difference set in Z15 using PG(3, 2). Construct GF (16) as

F2[x]/〈p(x)〉 for p(x) = x4 + x3 + 1. Identify powers of x with their

representations ax3+ bx2+ cx1+ dx0 written (a, b, c, d). Let τ be the

automorphism of PG(3, 2) determined by the linear transformation

Tx, and let G = 〈τ 〉.

(a) Verify that p(x) = x4 + x3 + 1 is irreducible over Z2.

(b) Verify the following:

x5 = (1, 0, 1, 1) x10 = (1, 0, 1, 0)

x6 = (1, 1, 1, 1) x11 = (1, 1, 0, 1)

x7 = (0, 1, 1, 1) x12 = (0, 0, 1, 1)

x8 = (1, 1, 1, 0) x13 = (0, 1, 1, 0)

x9 = (0, 1, 0, 1) x14 = (1, 1, 0, 0).

(c) Let P be the point (1-space) spanned by x = (0, 0, 1, 0), and

choose the block (3-space) B spanned by x1, x2, x3. Find

the subset D of G consisting of automorphisms mapping P

to a point in B.

(d) Confirm that D is a (15, 7, 3) difference set in G.

4. Prove Theorem 8.2. Use the notation in the proof of Theorem 8.1.

8.2. Turyn’s construction

In his 1965 paper ([69], p. 336) Turyn gave a construction for dif-

ference sets in the additive group G = GF (q) ⊕ GF (q) where q is a

power of 2. His proof is an appealing tour of some of the geometry of

the affine plane GF (q)×GF (q).
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Theorem 8.3. (Turyn) Let q = 2h for h > 1 and let G = GF (q)⊕
GF (q). Let

D = {(c1 + c2, c1c2) | c1, c2 ∈ GF (q)}.

Then D is a (v, k, λ)-difference set in G with v = 4n and n = (2h−1)2.

From this description, the size of the set D is not immediately

apparent. Clearly the element (c1 + c2, c1c2) is the same when the

choices of c1 and c2 are interchanged. If these were the only repeats,

we would have q elements of D with c1 = c2 and then q(q−1)/2 more

elements of D corresponding to unordered pairs {c1, c2} with c1 �= c2,

for a total of q(q+1)/2. In the next example we determine D for the

special case q = 4.

Example 2. Choose q = 4 and GF (4) = {0, 1, ω, ω2} with ω2 + ω +

1 = 0. In this case q(q+1)/2 = 10. Is this the size of D? We list the

elements of D below to check:

c1 c2 element in D

0 0 (0, 0)

0 1 (1, 0)

0 ω (ω, 0)

0 ω2 (ω2, 0)

1 1 (0, 1)

1 ω (ω2, ω)

1 ω2 (ω, ω2)

ω ω (0, ω2)

ω ω2 (1, 1)

ω2 ω2 (0, ω).

We do find that all 10 choices of c1, c2 give distinct elements of D. �

The proof that this way of determining |D| works in general is

left for the exercises. Turyn himself makes a different argument for

the size of D. We outline his entire proof below.

Proof. To begin, note two useful properties of the field GF (q) when

q is a power of 2, and thus GF (q) has characteristic 2. First, −x = x

for every x ∈ GF (q). Second, x �→ x2 is a field automorphism. (The
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lack of these special properties is the obstruction to directly extending

this argument to odd values of q.)

Recall from Section 2.3 the following properties of the affine plane

GF (q)×GF (q). (These properties hold for any prime power q.) The

plane contains q2 points (x, y). The lines of this affine plane are the

point sets satisfying linear equations. A line of slopem form ∈ GF (q)

has equation y = mx+ b for some b ∈ GF (q). A line of slope denoted

∞ has equation x = c for some c ∈ GF (q). Each line contains q

points. Distinct lines of the same slope are parallel (i.e., pairwise

disjoint). Two lines of different slopes meet at a unique point.

Now we again specialize to the case when q is a power of 2. Select

one line from each parallel class as follows:

�m has equation y = mx+m2 for m ∈ GF (q),

�∞ has equation x = 0.

See Figure 8.1 for an illustration of these lines when q = 4. Observe

that for each μ ∈ GF (q) ∪ {∞}, the points in �μ are contained in D.

Further, each point of D lies on exactly two of the q+1 lines �μ. These

two observations tell us that k = |D| = q(q + 1)/2 = 2h−1(2h + 1).

(Notice that this agrees with the count preceding Example 2.)

0 1 ω ω2

0

1

ω

ω2y = x+ 1 →

← y = ωx+ ω2

Figure 8.1. Lines from Turyn construction, q = 4

We need to show that D is a difference set in G. First observe

that for a non-identity element a ∈ G, a = d1 − d2 for d1, d2 ∈ D if

and only if d1 = a+ d2 ∈ D ∩ (a+D). Therefore, to verify that each
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non-identity element of G appears the same number of times in the

multiset of differences of distinct elements of D, it is sufficient to show

that |D ∩ (a + D)| is independent of the choice of the non-identity

element a ∈ G. To show this independence, we will make use of the

lines in D and calculate |�μ ∩ (a+ �μ)| for each μ.

To make this calculation, it is useful to assign a slope to a point.

We say a point a = (a1, a2) �= (0, 0) has slope m if a1 �= 0 and

a2 = ma1, and we say it has infinite slope if a1 = 0.

We make the following observations:

(i) If a �= (0, 0) has slope μ then a+ �μ = �μ.

(ii) For all a ∈ G, a+ �μ is a line of slope μ, but a+ �μ = �μ for

a �= (0, 0) only if a has slope μ.

(iii) Suppose a �= (0, 0) is a point of slope not equal to μ. Then

�μ and a+ �μ are disjoint.

Choose a ∈ G, a �= (0, 0). Suppose a has slope μ. Choose a slope

γ �= μ. We know a + �γ is a line �′γ �= �γ and therefore not equal to

any of the selected �β . We claim �′γ contains exactly q/2 points of D.

To see why, first observe that �′γ intersects �β for each of the q choices

of β �= γ. Since each point of D lies on two of these lines, we get only

q/2 points of D on �′γ .

We are ready to count the size of D ∩ (a+D). Since a has slope

μ, we get q points in the intersection from a + �μ = �μ ⊂ D. Now

we have q choices for γ �= μ, and each choice of γ gives q/2 points

of D from a + �γ = �′γ . This gives q + q(q/2) points. However, since

each point of D is on two of the lines �β , this double-counts the size

of D ∩ (a+D). Our conclusion is

∣∣∣D ∩ (a+D)
∣∣∣ = (1

2

)(
q +

q2

2

)
=

q2 + 2q

4
= 2h−1(2h−1 + 1).

Since |D ∩ (a+D)| is thus independent of the choice of a, our proof

is complete. �
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Exercises

5. This exercise concerns Turyn’s construction for q = 4, with

GF (4) = {0, 1, ω, ω2} where 1 + ω + ω2 = 0. Refer to Example 2

for a list of the elements of D.

(a) What are the parameters of this difference set?

(b) List the elements of �m for each m ∈ GF (4). Also list the

elements of �∞. S©
(c) Verify that each of these five lines is a subset of D and that

each element of D lies on two of these lines.

6. In general, what are the parameters of the difference set in Theo-

rem 8.3 in terms of h?

7. Assume q is a power of 2. Show that if (c+ d, cd) = (a+ b, ab) for

a, b, c, d ∈ GF (q), then either c = d = a = b or the 2-sets {a, b} and

{c, d} are equal. (This gives another argument for k = q(q + 1)/2 in

Turyn’s construction.)

8. Complete the arguments in the proof of Theorem 8.3 as follows:

(a) Show �μ ⊂ D for each μ ∈ GF (q) ∪ {∞}.
(b) Show each point of D is on exactly two lines �μ.

(c) Verify observation (i).

(d) Verify observation (ii).

(e) Verify observation (iii).

8.3. McFarland difference sets

The first two constructions in this chapter produced difference sets

in very specific types of abelian groups. In contrast, this next con-

struction produces difference sets in groups with much less restric-

tive structure and provides our first family of non-abelian difference

sets. McFarland’s paper “A Family of Difference Sets in Non-cyclic

Groups” [50] is exceptionally readable. We follow it closely and even
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quote from it. In this paper McFarland constructs difference sets with

parameters

v = qs+1

(
qs+1 − 1

q − 1
+ 1

)
, k = qs

(
qs+1 − 1

q − 1

)
, λ = qs

(
qs − 1

q − 1

)
.

McFarland’s construction begins with a vector space V of dimen-

sion s+ 1 over a finite field F = GF (q), where s is a positive integer.

Write

r =
qs+1 − 1

q − 1
.

We know from Theorem 2.16 that r is both the number of 1-spaces in

V and also the number of hyperplanes in V . Let H1, . . . , Hr be the

hyperplanes of V . Let E denote the additive group of V , and regard

each Hj as a subgroup of E. Here is the surprising part: choose for

K any group of order r+1. Let G = E×K. Note that if K is chosen

non-abelian, G will be non-abelian.

Now we define D ⊂ G. Choose r distinct elements k1, . . . , kr in

K. Choose r not necessarily distinct elements e1, . . . , er in E. Write

(Hi + ei, ki) for the coset of Hi × 1K in G with coset representative

(ei, ki). We set D equal to the union of these cosets:

D =

r⋃
i=1

{(h+ ei, ki) |h ∈ Hi}.

Theorem 8.4. (McFarland, [50]) Define the group G, the set D, and

the parameters v, k, λ as above. Then D is a (v, k, λ)-difference set

in G.

Proof. We will show D(−1)D = (k − λ)1G + λG in ZG.1 We begin

with the following observations about multisets in the group E:

(i) The multiset H1 ∪ · · · ∪Hr contains the identity of E (i.e.,

the zero vector of V ) exactly r times, and contains each

non-identity element of E exactly (qs − 1)/(q − 1) times.

(ii) For i = 1, . . . , r, each element of Hi appears qs times in

Hi +Hi = {a+ b | a, b ∈ Hi}.

1We write D(−1) on the left because McFarland does. We know from Theorem 4.9
that it doesn’t matter which side we put the inverse on.
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(iii) If i �= j, then x ∈ E appears qs−1 times in Hi + Hj =

{a+ b | a ∈ Hi, b ∈ Hj}.

Now we change notation and write all of our group operations

multiplicatively, with identities 1E , 1K and 1G in E,K,G respectively,

reserving addition for the integral group ring. In this notation D ∈
ZG can be writtenD =

∑
i Hieiki and the observations (i)–(iii) above

can be rewritten in ZE as follows:

(i) H1 + · · ·+Hr = r 1E +

(
qs − 1

q − 1

)
(E − 1E)

= qs1E +

(
qs − 1

q − 1

)
E.

(ii) HiHi = qs Hi.

(iii) For i �= j, HiHj = qs−1E.

We depart slightly from McFarland’s notation (in order to reserve

k for the size of D) and write K = {k0, k1, . . . , kr}. However when

we sum over i, it is for i = 1, . . . , r. Here is what McFarland writes

to complete the argument:

“D(−1)D =

(∑
i

Hi e
−1
i k−1

i

)⎛⎝∑
j

Hj ejkj

⎞⎠
=
∑
i

H2
i 1K +

∑
i 
=j

HiHj e
−1
i ejk

−1
i kj

= qs
∑
i

Hi 1K + qs−1
∑
i 
=j

(E e−1
i ej)(k

−1
i kj)

= q2s 1E 1K + qs
(
qs − 1

q − 1

)
E 1K

+ qs
(
qs − 1

q − 1

)
E (K − 1K)

= q2s 1G + qs
(
qs − 1

q − 1

)
G.

ThusD is a difference set in the group G = E×K with the parameters

[given above].” �
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McFarland’s paper contains two other interesting results. He

shows that when q is odd, his construction produces at least (qs+1)/2

inequivalent difference sets in the same group. He also shows that for

q = 5 and s = 2 he gets a difference set which has minus one as

a multiplier. He writes, “this is the first (and so far only) example

of a difference set having minus one as a multiplier which is not a

Hadamard difference set.” A Hadamard difference set is one with

v = 4n; we discuss these in Section 9.3. When q = 2, McFarland’s

construction gives a Hadamard difference set. The Turyn construc-

tion in the previous section also gives difference sets in the Hadamard

family.

Exercises

9. Verify the first three observations in the proof of Theorem 8.4 as

follows:

(a) Verify statement (i). S©
(b) Verify statement (ii).

(c) Verify statement (iii).

10. Verify that the ZE versions of the three statements in the pre-

ceding exercise are as claimed.

11. Let K = {k0, k1, . . . kr} and 1 ≤ i, j ≤ r, and verify that∑
i 
=j

k−1
i kj = (r − 1)(K − 1K) H©.

12. Verify the equations quoted on p. 131 from McFarland [50].

13. Carry out McFarland’s construction with q = 2 and s = 2 as

follows:

(a) Choose K abelian and choose k0 = 1K .

(b) Choose K non-abelian and choose k0 = 1K .
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14. Carry out McFarland’s construction with q = 5 and s = 1.

Choose k0 = 1K .

15. Look up Dillon’s generalization of McFarland’s construction [18].

Give a specific example of a group to which Dillon’s construction

applies, but McFarland’s does not.

Coda

The three constructions in this chapter use geometry in different ways

to produce infinite families of difference sets in groups of varying

kinds. Not only do these constructions address the existence question,

but they also exemplify the interweaving of group theory, geometry

(projective, affine and linear) and combinatorics.

In the first construction, Singer identifies a vector space V of di-

mension m + 1 over the finite field GF (q) with the field GF (qm+1).

He uses this identification to construct a cyclic subgroup of order

(qm+1 − 1)/(q − 1) acting regularly on the symmetric design defined

by the points and projective (m − 1)-spaces of the projective space

PG(m, q) coming from V . We see the Singer family of cyclic differ-

ence sets again in the next chapter because when q is a power of 2,

the parameters of the Singer difference set have the special “Paley-

Hadamard” relationship v = 4n− 1. We also see these difference sets

in Chapter 13, where they are used to produce binary sequences with

useful properties.

Turyn’s construction gives a difference set D in the non-cyclic

abelian 2-group GF (q) ⊕ GF (q) for q = 2h and h > 1. Although

Turyn’s description of the elements of D is purely algebraic, his proof

that D is a difference set involves an analysis of the affine plane

GF (q)×GF (q), including careful counting.

For the third construction, McFarland, like Singer, begins with a

vector space V over a finite field. However, McFarland exploits the

vector space structure directly, using the r hyperplanes (subspaces)

of V to construct a difference set in G = E × K, where E is the

additive group of V and K is any group of order r + 1, so G can be
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non-abelian. McFarland’s construction was subsequently generalized

by Dillon in [18]. When q = 2, the McFarland difference sets have

parameters satisfying the special “Hadamard” relationship v = 4n,

so they reappear in the next chapter.

                

                                                                                                               



Chapter 9

Families from
Hadamard Matrices

Some important and intriguing families of symmetric designs and

difference sets are linked to Hadamard matrices. In Section 1 we

introduce Hadamard matrices. In Section 2 we study the family of

(4n−1, 2n−1, n−1)-difference sets associated with Hadamard matri-

ces, including the quadratic residue sets from Chapter 4. In Section 3

we examine (v, k, λ)-difference sets with v = 4n, which are related to

special Hadamard matrices. In addition, we briefly revisit constraints

on abelian difference sets in this second family and some surprising

results in non-abelian groups. In Chapter 13 we see an application of

some difference sets from these families.

9.1. Hadamard matrices

Hadamard matrices are special square matrices with entries ±1. Had-

amard originally studied them while trying to find the maximum ab-

solute value for the determinant of a square matrix with complex

entries hij satisfying |hij | ≤ 1.

Definition. A Hadamard matrix of order m is an m × m matrix

with entries ±1 satisfying

HHT = mIm.

135

                                     

                

                                                                                                               



136 9. Families from Hadamard Matrices

An immediate consequence is that HTH = mIm. The entries

along the diagonal of HHT (and of HTH) are simply sums of m

squares 12 and (−1)2. The zeroes off the diagonal mean that each

pair of rows (and each pair of columns) is orthogonal in Rm (or in

Cm).

Example 1. Here are four small Hadamard matrices:

H1 = [1] H2 =

[
1 1

1 −1

]

H3 =

⎡⎢⎢⎣
1 −1 −1 1

−1 −1 1 1

−1 1 −1 1

1 1 1 1

⎤⎥⎥⎦ H4 =

⎡⎢⎢⎣
1 −1 −1 −1

−1 1 −1 −1

−1 −1 1 −1

−1 −1 −1 �1

⎤⎥⎥⎦ .
If we permute the rows or columns of a Hadamard matrix, or

if we multiply any row or column by −1, we get another Hadamard

matrix. By repeatedly applying these operations to any Hadamard

matrix, we can obtain one whose first row and first column consist

entirely of +1’s.

Definition. Two Hadamard matrices are equivalent if we can obtain

one from the other by a series of operations of permuting rows or

columns or multiplying a row or column by −1. A Hadamard matrix

is normalized if it contains only +1’s in its first row and first column.

If we choose a positive integer m, does a Hadamard matrix of

order m exist? It is relatively easy to prove the following necessary

condition on m.

Theorem 9.1. If H is a Hadamard matrix of order m, then m = 1,

m = 2, or m ≡ 0 (mod 4).

It is also believed that these conditions are sufficient.

Conjecture: If m ≡ 0 (mod 4), then there exists a Hadamard matrix

of order m.

Lander [43] reported in 1983 that this conjecture was known to

be true for m ≤ 264; that is, the first unknown case at that time was
                

                                                                                                               



9.1. Hadamard matrices 137

m = 268. In 1992 VanLint and Wilson [70] reported that the first

unknown case was m = 428.

In trying to prove this conjecture, people have developed tech-

niques for constructing Hadamard matrices. We examine some con-

structions via difference sets in the next two sections, but for now,

we note the following example. In Section 2 we prove that this con-

struction always produces a Hadamard matrix.

Example 2. Our goal is a Hadamard matrix H of order p+ 1 for a

prime p ≡ 3 (mod 4). Let D be the difference set of nonzero squares

mod p, and let A be the incidence matrix for devD. We replace each

zero by −1 to obtain a matrix we call A∗. Label the rows and columns

with 0, 1, · · · p−1. Then our description of A∗ is equivalent to defining

its entries by aij = +1 if j ∈ i+D and −1 otherwise. (Equivalently,

aij = +1 if (j− i) ∈ D and −1 otherwise.) Next we attach a first row

and first column of +1’s to A∗ to produce H. The example below is

for p = 7 and D = {1, 2, 4}:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

1 −1 1 1 −1 1 −1 −1

1 −1 −1 1 1 −1 1 −1

1 −1 −1 −1 1 1 −1 1

1 1 −1 −1 −1 1 1 −1

1 −1 1 −1 −1 −1 1 1

1 1 −1 1 −1 −1 −1 1

1 1 1 −1 1 −1 −1 �− 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

To construct larger Hadamard matrices from smaller ones we de-

fine the following matrix product.

Definition. Suppose A is an m × n matrix and B is r × c. The

Kronecker product of these matrices, denoted A⊗ B, consists of mn

blocks, where the i, j block is aijB:

A⊗B =

⎡⎢⎢⎢⎣
a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
. . .

...

am1B am2B · · · amnB

⎤⎥⎥⎥⎦ .
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Example 3. Let A =

[
1 2

3 4

]
and B =

[
1 0

0 1

]
. Then

A⊗B =

⎡⎢⎢⎣
1 0 2 0

0 1 0 2

3 0 4 0

0 3 0 �4

⎤⎥⎥⎦ .
Theorem 9.2. If H1 and H2 are Hadamard matrices, then H1⊗H2

is a Hadamard matrix.

In the next two sections we study the close connections between

Hadamard matrices and two families of symmetric designs. For the

second family we need to limit ourselves to a particular type of Had-

amard matrix.

Definition. A regular Hadamard matrix is a Hadamard matrix hav-

ing all its row and column sums equal.

Of the matrices in Example 1, only H1 and H4 are regular. Note

that a normalized Hadamard matrix of order greater than 1 is not

regular. Indeed, regularity is not preserved by multiplying a row or a

column by −1, so the notion of equivalence does not apply to regular

Hadamard matrices.

The next two theorems, which are restated as Theorems 9.3 and

9.8 and proved in Sections 2 and 3 respectively, make explicit the link

between symmetric designs with special parameters and Hadamard

matrices.

Theorem. A symmetric (4n − 1, 2n − 1, n − 1) design exists if and

only if a Hadamard matrix of order 4n exists.

Theorem. A symmetric (v, k, λ) design with v = 4n exists if and

only if a regular Hadamard matrix of order 4n exists.

We say difference sets with parameters (4n− 1, 2n− 1, n− 1) are

in the Paley-Hadamard family. We call (v, k, λ)-difference sets with

v = 4n Hadamard difference sets.1

1Some authors use the less confusing name Menon difference sets when v = 4n.
We use the more common, albeit somewhat confusing, name above.
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Exercises

1. Prove that if H is an m×m Hadamard matrix, then HTH = mIm.

2. Show that matrix H3 in Example 1 is equivalent to the normalized

matrix

H5 =

⎡⎢⎢⎣
1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

⎤⎥⎥⎦ .

3. Verify that the 8× 8 matrix in Example 2 is a Hadamard matrix.

4. This exercise, based on [28], yields a proof that if a Hadamard

matrix of order m exists for m > 2, then m is a multiple of 4. (Similar

arguments are used in the proofs of Theorems 9.3 and 9.8.) Suppose

that H is a normalized Hadamard matrix of order m > 2. Assume

further that the second and third rows of H have +1s in the first x

columns. Also assume the second row has +1s in the next y columns,

while the third row has −1s in those y columns, with the reverse in

the next z columns: −1s in the second row, +1s in the third row.

Finally assume both the second and third rows have −1s in the last

w columns. Schematically the second and third rows would look like

this:
x︷ ︸︸ ︷

+ · · ·+
y︷ ︸︸ ︷

+ · · ·+
z︷ ︸︸ ︷

− · · ·−
w︷ ︸︸ ︷

− · · ·−
+ · · ·+︸ ︷︷ ︸

x

− · · ·−︸ ︷︷ ︸
y

+ · · ·+︸ ︷︷ ︸
z

− · · ·−︸ ︷︷ ︸
w

.

(a) Explain why there is no loss of generality in making the

assumptions above.

(b) Explain why x, y, z and w satisfy the following equations:

x+ y + z + w = m,

x+ y − z − w = 0,

x− y + z − w = 0,

x− y − z + w = 0. S©
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(c) Solve the system of equations in (b) to obtain x = y = z =

w = m/4.

5. Examine the properties of the Kronecker product. Is it defined

for any pair of matrices? Is the operation commutative? associative?

Does this operation have an identity? inverses?

6. Verify the following properties of the Kronecker product:

(a) (aA) ⊗ (bB) = ab(A ⊗ B) for any matrices A,B and any

scalars a, b.

(b) (A⊗B)T = AT ⊗BT for any matrices A,B.

(c) The Kronecker product of identity matrices is again an iden-

tity matrix: Im ⊗ In = Imn.

(d) (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) where matrices A and C

are m×m and B and D are n×n. (Use block multiplication

for matrices as follows: if Pij and Qij are n × n matrices

for i, j = 1, . . . ,m and P and Q are nm × nm with blocks

Pij and Qij respectively, then PQ is nm× nm with blocks∑m
j=1 PijQjk.)

7. Let H =

[
1 1

1 −1

]
. Compute H ⊗ H and show that this is a

Hadamard matrix. Now compute H ⊗ (H ⊗H) and show that this is

a Hadamard matrix.

8. Prove Theorem 9.2.

9. If H1 and H2 are regular Hadamard matrices, is H1⊗H2 a regular

Hadamard matrix? If not, give a counter-example. If yes, provide a

proof.

10. Assume that H is a regular Hadamard matrix. Show that the

number of +1s in each row and in each column is a constant.
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11. Recall that the original motivation for defining Hadamard ma-

trices was the search for the maximum absolute value of the determi-

nant of a square matrix whose complex entries are in absolute value

no greater than 1. What is the determinant of a Hadamard matrix

of order m?

12. Trace the progress of the Conjecture on existence of Hadamard

matrices. Find a paper after 1983 that improves on the result reported

by Lander. Find a more recent result than reported in 1992. Try to

find results in refereed journals.

9.2. Paley-Hadamard family: v = 4n− 1

In this section we focus on the Paley-Hadamard family of difference

sets with the parameters (4n− 1, 2n− 1, n− 1). Baumert ([5], p. 90)

notes that these difference sets have been extensively studied for rea-

sons including the following:

• They are relatively abundant. (In this section we see four

families within this larger family: Paley, Singer for suitable

q, twin prime powers, and a family due to Hall.)

• If a nontrivial (v, k, λ)-difference set exists with k < v/2,

then 1 ≤ λ ≤ (v − 3)/4. “Thus planar difference sets and

[Paley-]Hadamard difference sets present the extreme values

of λ.”

• They have led to several digital communications applica-

tions by means of associated “autocorrelation functions”.

(We discuss these in Chapter 13.)

• The existence of such difference sets casts light on the exis-

tence of Hadamard matrices.

We make the link to Hadamard matrices explicit with the follow-

ing theorem.

Theorem 9.3. A symmetric (4n − 1, 2n − 1, n − 1) design exists if

and only if there exists a Hadamard matrix of order 4n.

Proof. First, assume H is a Hadamard matrix of order 4n. Recall

that we can multiply a row or a column by −1 without changing the
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values of HTH or HHT , so we may assume without loss of generality

that our matrix has been normalized and the first column and first

row of H consist entirely of +1s.

Let M be the (4n− 1)× (4n− 1) matrix obtained by deleting the

first row and first column of H. Let A be the matrix obtained from

M by replacing −1 by 0 wherever it occurs. Then A is the incidence

matrix of an incidence structure with +1 in row i and column j if

and only if the ith block contains the jth point. We will show that A

is the incidence matrix of a symmetric (4n− 1, 2n− 1, n− 1) design.

Because the rows of H are orthogonal, the number of +1s in each

row of H after the first must be 2n, so the number of +1s in each

row of M must be 2n− 1. By Exercise 1, the number of +1s in each

column of M is also 2n−1. Thus the structure with incidence matrix

A has k = 2n − 1 points per block and k blocks per point. Further,

because the dot product of two rows of H is 0, the dot product of two

rows of M must be −1.

Now consider two rows of M (chosen arbitrarily). We want to

show that the number of +1s these rows have in common is n − 1.

To do that, we set up notation to count the numbers of columns in

which:

x: both rows have +1,

y: the first row has +1 and the second −1,

z: the first row has −1 and the second +1,

w: both rows have −1.

By permuting columns appropriately, we can assume that schemati-

cally the two rows look like the following. For economy of notation,

we write + and − instead of +1 and −1,

x︷ ︸︸ ︷
+ · · ·+

y︷ ︸︸ ︷
+ · · ·+

z︷ ︸︸ ︷
− · · ·−

w︷ ︸︸ ︷
− · · ·−

+ · · ·+︸ ︷︷ ︸
x

− · · ·−︸ ︷︷ ︸
y

+ · · ·+︸ ︷︷ ︸
z

− · · ·−︸ ︷︷ ︸
w

.
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Using what we know about M , we have the following equations

in the variables x, y, z, w:

x+ y + z + w = 4n− 1,

x+ y = 2n− 1,

x+ z = 2n− 1,

x− y − z + w = −1.

Solving these equations yields y = z = w = n and x = n− 1. In par-

ticular, two distinct blocks have exactly λ = n− 1 points in common.

By the redundancy of the axioms for a symmetric design, it follows

that A is the incidence matrix of a symmetric (4n− 1, 2n− 1, n− 1)

design.

For the converse, assume D is a symmetric (4n− 1, 2n− 1, n− 1)

design and A is its incidence matrix. Let M be the matrix obtained

from A by replacing 0s by −1s. Let H be the 4n×4n matrix obtained

from M by adding an initial row and an initial column of +1s. We

claim H is Hadamard of order 4n. Choose two rows of M and define

x, y, z, w as above. The properties of A imply

x+ y + z + w = 4n− 1,

x = λ = n− 1,

x+ y = k = 2n− 1, so y = n,

x+ z = k = 2n− 1, so z = n.

It follows that w = n, so we have

x = n− 1 and y = z = w = n.

To find HHT we need to calculate the dot product of any two rows of

H. First we calculate the dot product of the two rows of H described

above and for which we have the values:

1 + x− y − z + w = 1 + (n− 1)− n− n+ n = 0.

We also need to find the dot product of one of these rows with the

first row of H consisting entirely of +1s:

1 + x+ y − z − w = 0.
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What about the diagonal entries ofHHT ? The square of each entry in

H is 1, so the dot product of any row of H with itself is 4n. Therefore

we have HHT = 4nI4n, and H is a Hadamard matrix. �

Remark: The existence of a Hadamard matrix of order 4n implies

that a symmetric design with parameters (4n−1, 2n−1, n−1) exists.

It does not imply that a difference set with these parameters neces-

sarily exists. For example, for n = 10 there indeed exists a symmetric

design with parameters (39, 19, 9). However, an analysis of possible

intersection numbers in Exercise 7.6 shows that a (39, 19, 9)-difference

set cannot exist.

The Paley family. We know that for q a prime power and q ≡ 3

(mod 4), the nonzero squares in the finite fieldGF (q) form a difference

set in the additive group of GF (q) with parameters (q, (q−1)/2, (q−
3)/4). We call these difference sets the Paley family. Since n =

k − λ = (q + 1)/4, the parameters of the corresponding symmetric

design are (4n−1, 2n−1, n−1). By Theorem 9.3, each Paley difference

set leads to a Hadamard matrix of order 4n. The origin of these ideas,

in matrix form, goes back to Paley in 1933 [57].2

Several authors have studied subsets of a finite field obtained by

raising nonzero elements to the eth power,3 for e having a value other

than 2. In certain circumstances fourth powers and eighth powers give

difference sets in the additive group of GF (q). See Theorems 4.4 and

4.5 and Example 6.11 for examples with q ≡ 1 (mod 4). Nonzero

squares have also been studied in GF (q) for q ≡ 1 (mod 4). The

result is a weaker version of a difference set called a partial difference

set.

Definition. A subset D of a group G is called a partial difference set

with parameters (v, k, λ, μ) if |G| = v, |D| = k, every non-identity el-

ement of D appears λ times in the multiset Δ of “differences” of

distinct elements of D, and every non-identity element of G \ D ap-

pears μ times in Δ. When λ = μ, D is a difference set.

2The existence of this infinite Paley family is the source of the name Paley-
Hadamard for the larger family of all (4n − 1, 2n − 1, n − 1)-difference sets.

3Difference sets consisting of eth powers of elements of a finite field are sometimes
called cyclotomic or residue difference sets.
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When D is the set of nonzero squares in G = GF (q) for q ≡ 1

(mod 4), we find that D is a partial difference set with parameters

v = q and k = (q − 1)/2, λ = (q − 5)/4, and μ = (q − 1)/4.

The Singer family. We know that the lines and hyperplanes of a

(m + 1)-dimensional vector space over the finite field GF (q) are the

points and blocks of a symmetric (v, k, λ) design where

v =
qm+1 − 1

q − 1
, k =

qm − 1

q − 1
, and λ =

qm−1 − 1

q − 1
.

From Singer’s construction in Chapter 8, we also know that a cyclic

group of order v acts regularly on this design, giving us a difference

set with these parameters. In the special case when q = 2 we have

n = 2m−1 and thus v = 4n− 1, k = 2n− 1 and λ = n− 1.

Note that a Singer difference set gives the same parameters as a

quadratic residue difference set in GF (q′) if and only if q′ = 2m+1−1.

In the cyclic case, q′ is prime, and primes of this form are called

Mersenne primes. It can be shown ([8], p. 362) that for m > 2,

the developments of the Singer and the Paley difference sets are not

isomorphic designs, so the difference sets themselves are not equiva-

lent. Many authors have studied the construction of difference sets

that have the classical Singer parameters but are not equivalent to a

Singer difference set. We do not consider this question in generality,

but we do examine a special case in Exercise 17.4

The twin prime powers family. Whenever q and q + 2 are odd

prime powers, a twin prime powers difference set exists in the additive

group G of the ring R = GF (q) ⊕ GF (q + 2). Note that G is cyclic

if and only if q and q + 2 are primes. We saw a special case of this

construction in Chapter 3. Discovery of this family is credited to

Stanton and Sprott in 1958 ([66]), but Baumert ([5], p. 131) says

these difference sets were also independently discovered by Menon

[55], A. Brauer (1953), Chowla (1945), and “perhaps first” by Gruner

(1939).

Assume q and q + 2 are odd prime powers. Let R be the ring

R = GF (q)⊕GF (q + 2) =
{
(a, b) | a ∈ GF (q), b ∈ GF (q + 2)

}
,

4For a general survey, see [8], Section 17 of Chapter VI.
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with addition and multiplication defined component-wise:

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2)

(a1, b1)(a2, b2) = (a1a2, b1b2).

To keep track of squares and non-squares in a field F, we define

the function χ on F by

χ(a) =

⎧⎨⎩
0 if a = 0

1 if a is a square in F∗

−1 if a is a non-square in F∗

where F∗ is the multiplicative group of nonzero elements of F. The

function χ restricted to F∗ defines a homomorphism from F∗ to the

subgroup {1,−1} of F∗. Thus in a finite field with an odd number

of elements, we see again that exactly half the nonzero elements are

squares.

We can now state the theorem for twin prime powers difference

sets.

Theorem 9.4. Assume q and q + 2 are odd prime powers, and let

G be the additive group of the ring R = GF (q)⊕GF (q + 2). Define

D ⊂ G as follows:

D =
{
(a, b) ∈ G | χ(a)χ(b) = 1

}
∪
{
(a, 0) | a ∈ GF (q)

}
.

Then D is a (4n− 1, 2n− 1, n− 1)-difference set in G.

Proof. Notice that q ≡ 1 (mod 4) if and only if q + 2 ≡ 3 (mod 4).

This tells us two useful things.

• First, v = q(q+2) ≡ 3 (mod 4), so we may write v = 4N−1

for some positive integer N .

• Second, −1 is a square in GF (q) if and only if −1 is a non-

square in GF (q + 2). (See A.17.)

We see that the cardinality of D is

k =

(
q − 1

2

)(
q + 1

2

)
+

(
q − 1

2

)(
q + 1

2

)
+ q =

v − 1

2
= 2N − 1.
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To make the argument that D is a difference set, it is helpful to

define the set M ,

M = {(a, b) ∈ D | b �= 0}.

By the second observation above, (−1,−1) is not in M . It is straight-

forward to check that M is a group under the ring multiplication.

Also notice that MD = D, where by MD we mean the set of all

products mx for m ∈ M and x ∈ D. Now we use M to define an

equivalence relation on G by

(a, b) ∼ (c, d) if there exists m ∈ M with m(a, b) = (c, d).

There are five equivalence classes in G:

S1 = {(a, b) | χ(a)χ(b) = 1},
S2 = {(a, b) | χ(a)χ(b) = −1},
S3 = {(a, 0) | a �= 0},
S4 = {(0, b) | b �= 0},
S5 = {(0, 0)}.

We observe that |S1| = |S2| = (q − 1)(q + 1)/2, |S3| = q − 1, and

|S4| = q + 1. Also notice that D = S1 ∪ S3 ∪ S5.

Let Δ be the multi-set of differences of distinct elements of D.

For a non-identity group element (a, b), we have (a, b) = x1 − x2 for

x1, x2 ∈ D if and only if m(a, b) = mx1 −mx2 for m ∈ M . This tells

us that each non-identity group element in class Sj occurs the same

number of times in Δ, say λj times, for j = 1, . . . , 4. The heart of

the proof is showing λ1 = λ2 = λ3 = λ4; the common value is λ.

First we show λ1 = λ2. Since (−1,−1) /∈ M , (a, b) ∈ S1 if

and only if (−a,−b) ∈ S2. Since (a, b) = x1 − x2 exactly when

(−a,−b) = x2 − x1, we conclude that λ1 = λ2.

Next we determine λ3. First we count differences (a1, b)− (a2, b)

for a1 �= a2 and a1, a2, b nonzero. There are q + 1 choices for b ∈
GF (q+2), b �= 0; (q−1)/2 choices for a1 ∈ GF (q) with χ(a1) = χ(b);

and (q− 3)/2 choices for a2 ∈ GF (q) with χ(a2) = χ(b) and a2 �= a1.

Thus there are (q+1)(q− 1)(q− 3)/4 differences like this. Second we

count differences (a1, 0) − (a2, 0) with a1 �= a2. There are q choices

for a1 and q − 1 choices for a2 �= a1, so there are q(q − 1) differences
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like this. Since there are q − 1 choices for (a, 0) ∈ S3, each appearing

the same number of times in Δ, we have

λ3 =

(
1

q − 1

)[(
(q + 1)(q − 1)(q − 3)

4

)
+ q(q − 1)

]
.

This expression for λ3 can be simplified to give

λ3 =
v − 3

4
= N − 1.

A similar argument shows that λ4 = N − 1 = λ3.

Since the size of the multiset Δ is k(k − 1), we have

k(k − 1) =

4∑
j=1

|Sj |λj .

Using k = (v− 1)/2 and the sizes noted above for the classes Sj gives

k(k − 1) = ((v − 1)/2)((v − 3)/2) =

(q − 1)

(
q + 1

2

)
λ1 + (q − 1)

(
q + 1

2

)
λ2 + (q − 1)λ3 + (q + 1)λ4.

Because λ1 = λ2 and λ3 = λ4 = (v − 3)/4, when we solve for λ1

we find λ1 also equals (v − 3)/4, so we have λ = (v − 3)/4 = N − 1,

completing the verification that D is a (4n−1, 2n−1, n−1)-difference

set in G (with N = n). �

The Hall family. In Chapter 6 we found difference sets by forming

unions of orbits of multipliers. We now consider some work of Mar-

shall Hall, who constructed difference sets in the additive group of a

finite field by using special orbits. The following example introduces

some of Hall’s ideas.

Example 4. Consider the search for a (19, 9, 4)-difference set D in

GF (19). By Theorem 6.1, we know that 5 is a numerical multiplier

for D. We also know that the multiplicative group GF (19)∗ is cyclic,

and it is straightforward to check that ω = 3 is a generator and

ω4 = 5. In this language, we say that ω4 is a multiplier for D; further,

each element of the cyclic group 〈ω4〉 = {1, ω4, ω8, ω12, ω16, ω20 =

ω2, ω6, ω10, ω14} is a multiplier for D. We can also use powers of
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ω (and some notation due to Hall) to write out both orbits of the

multiplier ω4 in GF (19)∗:

C0 = {1, ω4, ω8, ω12, ω16, ω20 = ω2, ω6, ω10, ω14} (orbit of ω0),

C1 = {ω, ω5, ω9, ω13, ω17, ω21 = ω3, ω7, ω11, ω15} (orbit of ω1).

Hall would call these orbits “residues with indices 0, 1 (mod 2).” (In

fact, we see that in this case C0 is the set of squares and C1 is the set

of non-squares in GF (19)∗.) �

Hall used similar ideas in a situation with six orbits, so he refers

to residues (mod 6). Here is what Hall wrote in his 1956 survey of

difference sets ([27], p. 979):

In calculating difference sets of the [Paley-] Hadamard type

with v = 4t− 1, k = 2t− 1, λ = t− 1, it was found that for

v = 31 and v = 43 not only the quadratic residues but also

residues with indices ≡ 0, 1, 3 (mod 6) gave difference sets.

On investigation these turned out to be instances of a general

theorem.

Hall’s proof that his construction gives difference sets is long and

intricate, and while we state the first version of his “general theorem”

(Theorem 9.5), we do not include a proof.5 However, we describe some

of the ideas he used in his proof of this theorem.

We begin with the finite field GF (q), for an odd prime power q.

Let ω be a generator of the cyclic group GF (q)∗. Assume q− 1 = ef ,

with neither e nor f equal to 1.

Definition. The cyclotomic classes of order e are the sets

Ci = {ωes+i | s = 0, . . . , f − 1}, for i = 0, . . . , e− 1.

In other words, C0 = {1, ωe, ω2e, . . . , ω(f−1)e} = 〈ωe〉, and Ci is the

coset ωiC0 in GF (q)∗. We call the elements of C0 the eth power

residues or eth residues. (The elements of Ci are the residues of index
i (mod e) to which Hall was referring in the passage quoted above.)

5For a proof, see Hall’s book [28], pp. 194–195. This may look short, but Hall’s
argument depends on much of the preceding 20 pages. This proof is for q = pa a prime
power, while his first version, in his 1956 paper, was for q = p prime, but that proof
was long too.
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Example 5. Suppose q = 19, so q − 1 = 18 and choose e = 2 and

f = 9. We choose ω = 3 as in Example 4. Then the two cyclotomic

classes of order 2 are the orbits C0 and C1 listed there. �

The next example involves a difference set outside the Paley-

Hadamard family. We include it here as an easily accessible use of

cyclotomic classes.

Example 6. Suppose q = 13, so q − 1 = 12, and choose e = 4 and

f = 3. Assume ω is a generator of the cyclic group GF (13)∗. Then

the cyclotomic classes of order 4 are

C0 = {1, ω4, ω8},
C1 = {ω, ω5, ω9},
C2 = {ω2, ω6, ω10},
C3 = {ω3, ω7, ω11}.

The field GF (13) is isomorphic to Z13. On page 88 we saw Z13

contains the difference set D = {0, 1, 3, 9}. If we choose ω = 2, then

C0 = {1, 3, 9} and D = {0} ∪ C0. �
Example 7. Suppose q = 31 and choose e = 6 and f = 5. Assume ω

is a generator of GF (31)∗. We list the first two of the six cyclotomic

classes of order 6:

C0 = {1, ω6, ω12, ω18, ω24},
C1 = {ω, ω7, ω13, ω19, ω25},

... .

In this case D = C0 ∪ C1 ∪ C3 is a difference set in the additive group

GF (31). (See Exercise 24.) �

The following theorem describes the Hall family of difference sets

in GF (p). Example 7 is a difference set in this family.

Theorem 9.5. (Hall, [28], p. 170) Assume p is a prime with p ≡ 1

(mod 6) and with p = 4x2+27 for some integer x. Choose a generator

ω for the multiplicative group GF (p)∗ so that 3 = ω6s+1 for some

integer s. (This can always be done.6) Now form the cyclotomic

6Hall uses the notation Indω(3) for the exponent t so that ωt = 3. In this notation
the condition is written Indω(3) ≡ 1.
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classes of order 6: C0, C1, . . . , C5. Then

D = C0 ∪ C1 ∪ C3
is a difference set in GF (p).

Notice that the parameters of the Hall difference sets are the same

as the parameters of the Paley difference sets.7

The proof of Hall’s theorem requires the following lemma due to

Emma Lehmer ([44]).

Lemma 9.6. (Lehmer) Let q = ef + 1 be an odd prime power, with

e �= 1, f �= 1. If a union of cyclotomic classes of order e forms a

nontrivial difference set D in the additive group of GF (q), then f is

odd and e is even.

Lehmer goes on to prove a theorem giving conditions under which

either C0 or C0 ∪ {0} is a difference set in GF (q). Her theorem then

implies theorems Theorems 4.4 and 4.5, the special cases when C0 is

the set of fourth powers.

What is the relationship of Hall’s difference sets to Singer differ-

ence sets? The only Mersenne primes of the form 4x2 + 27 are 31,

127 and 131071, and the Singer and Hall difference sets sharing the

same parameters are equivalent only for the case v = 31.

It is conjectured that every cyclic difference set which has pa-

rameters (4n − 1, 2n − 1, n − 1) has parameters of one of the kinds

described above:

v is a prime power and v ≡ 3 (mod 4),

v is a Mersenne prime with v = 2d+1 − 1,

v = q(q + 2) with q and q + 2 odd primes.

The conjecture has been verified for v < 10, 000, with 17 possible

exceptions. This is not to say that every difference set with these

parameters is equivalent to one given by one of the four constructions

7Hall’s paper says the Hall and Paley difference sets are “distinct,” although his
paper does not prove inequivalence. In special cases, for example when p = 31, we can
say more. See Exercise 17.
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above. In fact there are six inequivalent difference sets with v = 127,

and three of them do not arise from the constructions in this section.8

Exercises

13. Assume a nontrivial (v, k, λ)-difference set exists with v odd and

k < v/2. Show that 1 ≤ λ ≤ (v − 3)/4. S©

14. Although the proof of Theorem 9.3 is complete as written, an-

alyze columns to show directly that in the incidence structure with

incidence matrix A, two distinct points appear together in exactly λ

blocks.

15. Show that any two Hadamard matrices of order 12 are equivalent.

(This challenging exercise is a good one to work on collaboratively.)

H©

16. Assume q is an odd prime power and let D be the set of nonzero

squares in GF (q).

(a) Show that D is a (q, (q − 1)/2, λ, μ)-partial difference set

with λ+ μ = (q − 3)/2.

(b) We know that if q ≡ 3 (mod 4), then λ = μ = (q − 3)/4

and we have a difference set. Assume q ≡ 1 (mod 4). Show

|λ− μ| = 1 so {λ, μ} = {(q − 5)/4, (q − 1)/4}.
(c) Assume the following fact from number theory: 2 is a square

in GF (q) if and only if q ≡ ±1 (mod 8). (See [20], p. 58.)

Use this fact to show λ = (q − 5)/4 and μ = (q − 1)/4.

17. (This argument is due to Hall and appears on page 983 in [27].)

Let D be the (31, 15, 7)-difference set of nonzero squares in Z31. Let

D′ be a (31, 15, 7)-difference set coming from Singer’s construction in

the vector space (Z2)
5.

(a) Let B0 = D, B1 = 1 +D and B3 = 3 +D, blocks of devD.

Find B0 ∩B1 ∩B3.

8Our sources are [5], p. 91, and [8], p. 355–356, although neither presents a proof.
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(b) Recall that the blocks of the Singer design devD′ are 4-

dimensional subspaces in the vector space (Z2)
5, and the

points are 1-dimensional subspaces. How many points can

there be in the intersection of three distinct blocks of devD′?

Explain.

(c) Explain why devD and devD′ are not isomorphic designs.

(d) Are D and D′ equivalent difference sets? Explain your an-

swer.

18. Assume q and q+2 are odd prime powers. Show that the additive

group of the ring GF (q) ⊕ GF (q + 2) is cyclic if and only if q and

q + 2 are primes.

19. In Exercise 8.3 you used the Singer construction to find a cyclic

(15, 7, 3)-difference set. Now use the twin primes construction. Are

these difference sets equivalent?

Exercises 20–22 fill in some of the details of the proof of Theo-

rem 9.4 on the twin prime powers family.

20. Show that the set M is a group under multiplication. Also verify

that MD = D.

21. Show that ∼ is an equivalence relation on G and that the equiv-

alence classes are as described.

22. Prove that λ4 = (v − 3)/4.

23. Prove Lehmer’s lemma by establishing the following statements.

(Note that by Exercise 6.11 we know that if a nontrivial abelian

(v, k, λ)-difference set D has multiplier −1 then v is even.)

(a) The translate ωesD = D; that is, the elements of C0 are

multipliers.

(b) If f is even, then −1 ∈ C0.
(c) It follows that f is odd and e is even.
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24. The field GF (31) is isomorphic to the ring Z31. Using multiplica-

tion mod 31, verify that 3 is an element of order 30. In other words,

in Example 7 we can choose ω = 3.

(a) Determine the integers (mod 31) in D = C0 ∪ C1 ∪ C3 and

verify that D is a (31, 15, 7)-difference set in the additive

group Z31.

(b) Compare the cyclotomic classes in (a) with the orbits of the

multiplier 2 from Exercise 6.20.

25. In Hall’s statement of his Theorem 9.5, he requires p ≡ 7 (mod

12). (Indeed, in his proof he shows that if p ≡ 1 (mod 12) then a

Hall difference set cannot exist.) Show that if p ≡ 1 (mod 6) and

p = 4x2 + 27 for some integer x, then p ≡ 7 (mod 12).

26. Exercise 17 tells us that the Paley and Singer difference sets in

Z31 are not equivalent. From Exercise 6.20 we know D = C0 ∪C1 ∪C3
is equivalent to either the Paley or Singer difference set. Which is it?

How do you know?

27. This exercise invites you to use the computer to explore difference

sets in the field GF (43) = Z43. (We previously considered difference

sets in the additive group of this field in Exercise 6.19, but don’t

look back at that for now.) Find the cyclotomic classes of order 6

in GF (43) for a variety of generators of GF (43)∗. For each of your

generators:

• Which cyclotomic class contains 3?

• Which unions of cyclotomic classes form difference sets in

the additive group of this field? Are the difference sets you

obtain of the Hall or Paley type?

Do you see any patterns?

28. This is another invitation to explore using the computer. Choose

a prime p with p − 1 = ef for e = 18 and f > 1 and odd. Find the

cyclotomic classes of order 18. Which unions of cyclotomic classes

give difference sets in GF (p)? Are they of the Hall or Paley type?
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9.3. Hadamard family: v = 4n

In this section we focus on Hadamard difference sets. These are

(v, k, λ)-difference sets satisfying v = 4n for n = k − λ. They have

been and still are much studied. At the end of this section we re-

visit and extend some constraints on these difference sets in abelian

groups, along with some surprising non-abelian results.

We know from the Bruck-Ryser-Chowla Theorem that a symmet-

ric design with v = 4n satisfies n = u2 for some integer u. It turns

out that every parameter of such a design can be written in terms of

u.

Lemma 9.7. If a symmetric (v, k, λ) design exists with v = 4n, then

(v, k, λ) = (4u2, 2u2 − u, u2 − u) for some integer u.

Difference sets with v = 4n are called Hadamard because of the

following theorem. Recall from Section 1 that a Hadamard matrix is

regular if all its row and column sums are equal and, as a consequence,

each row and column has the same number of +1s.

Theorem 9.8. A symmetric (v, k, λ) design with v = 4n exists if and

only if a regular Hadamard matrix of order 4n exists.

Proof. The proof is similar to that of Theorem 9.3, but it is actually

easier. First assume H is a regular Hadamard matrix of order 4n.

Let k be the number of +1s in each row and each column of H.

Create the matrix A from H by replacing each −1 by 0, so A is the

incidence matrix of an incidence structure. Choose two rows of H.

Let x be the number of columns with +1 in both rows and y be the

number of columns with −1 in both rows. We know these two rows

are orthogonal and +1 appears in each row k times. Schematically

we represent the two rows as follows, where we write + and − for the

entries of H:

x︷ ︸︸ ︷
+ · · ·+

k−x︷ ︸︸ ︷
+ · · ·+

4n−k−y︷ ︸︸ ︷
− · · ·−

y︷ ︸︸ ︷
− · · ·−

+ · · ·+︸ ︷︷ ︸
x

− · · ·−︸ ︷︷ ︸
k−x

+ · · ·+︸ ︷︷ ︸
4n−k−y

− · · ·−︸ ︷︷ ︸
y

.
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Since the number of +1s in the second row is k and the dot product

of the rows is 0, we get the following equations:

x+ (4n− k − y) = k,

x− (k − x)− (4n− k − y) + y = 0.

We find x = k − n and y = 3n − k. In other words, two rows of

A share the entry 1 in λ = k − n positions. (A similar analysis of

the columns of H gives the dual conditions.) Thus A is the incidence

matrix of a symmetric (v, k, λ) design with v = 4n.

For the converse, assume we have a symmetric (v, k, λ) design

with v = 4n. Let A be the incidence matrix of the design and let H

be the matrix obtained from A by replacing zeroes by −1s. Choose

two distinct rows of H and count the numbers of columns in which:

x: both rows have +1,

y: the first row has +1 and the second has −1,

z: the first row has −1 and the second has +1, and

w: both rows have −1.

Now the two rows appear as follows:

x︷ ︸︸ ︷
+ · · ·+

y︷ ︸︸ ︷
+ · · ·+

z︷ ︸︸ ︷
− · · ·−

w︷ ︸︸ ︷
− · · ·−

+ · · ·+︸ ︷︷ ︸
x

− · · ·−︸ ︷︷ ︸
y

+ · · ·+︸ ︷︷ ︸
z

− · · ·−︸ ︷︷ ︸
w

.

By Lemma 9.7, there is an integer u for which we have the following

equations:

x+ y + z + w = v = 4u2,

x+ y = k = 2u2 − u,

x+ z = k = 2u2 − u,

x = λ = u2 − u.

From this we find that the dot product of the two rows is x−y−z+w =

0. Also the dot product of a row with itself is v = 4u2, so we have

HHT = vIv. Further, every row sum equals x+y−z−w = −2u, and

similarly for columns. ThereforeH is a regular Hadamard matrix. �
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A much simpler argument, based on calculations in the integral

group ring, shows that a (v, k, λ)-difference set gives rise to a Hada-

mard matrix of order v if and only if v = 4n. However, this is a weaker

result than Theorem 9.8, since the existence of a difference set implies

the existence of a symmetric design with the same parameters, but

the converse does not hold.

Small examples. We look first at isolated examples of Hadamard

difference sets for small values of u. Normally we restrict our attention

to difference sets with k < v/2. However, for Hadamard difference

sets, the choice of the sign of u is equivalent to the choice of a smaller

difference set or its larger complement. In this context, it is usual to

include either or both.

Example 8. For u = 1, the trivial difference set with parameters

(4, 1, 0) exists in both Z4 and Z2×Z2. The complementary difference

set for u = −1 has parameters (4, 3, 2). �

Example 9. For u = 2, Kibler ([40], p. 64) lists 27 inequivalent

(16, 6, 2)-difference sets which occur in twelve of the fourteen non-

isomorphic groups of order 16.9 Here is one discovered by Kibler

in the non-abelian group G = 〈a, b, c | a4 = b2 = c2 = 1, ba =

a−1b, ac = ca, bc = cb〉:

D9 = {1, a, a2, b, ac, a2bc}.

(Note that a and b generate a dihedral group of order 8, and G is

isomorphic to the direct product of this dihedral group and Z2.) �

Example 10. For u = 3, here is an example due to Menon ([55],

p. 742), who writes (using � instead of u):

In attempting to discover difference sets corresponding to var-

ious values of �, the author has come across one corresponding

to � = 3. It was found almost by accident, by a happy choice

of the basic group and a still luckier choice of the elements

forming the difference set.

9The exceptions are the cyclic group and the dihedral group. In Chapter 7 we
see why these exceptions occur.
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Menon chose G = G1×G2 where G1 = G2 = 〈 a, b | a3 = b2 = 1, ba =

a2b 〉, the dihedral group of order 6. He chose D to be the following

set of fifteen elements of G:

(1, 1), (a, a2), (a2, a),

(1, b), (1, ab), (1, a2b),

(b, 1), (ab, 1), (a2b, 1),

(b, ab), (ab, a2b), (a2b, b),

(ab, b), (a2b, ab), (b, a2b).

Then D is a (36, 15, 6)-difference set in G “as may be easily verified,”

Menon writes. �

Recall from Chapter 4 the conjecture that no dihedral group con-

tains a difference set. However, Examples 9 and 10 show that a

difference set can exist in a group that has a dihedral group as a

homomorphic image. As you might suspect, a group with a dihedral

image can contain a difference set only in rather special circumstances.

(In Chapter 11 we use representation theory to explore this existence

question.)

Infinite families. Now we turn to three infinite families of Hada-

mard difference sets, two of which we have already seen.

Example 11. Turyn’s construction from Chapter 8 gives difference

sets in the group G = GF (q)⊕GF (q) for q = 2h. For these v = 22h =

4 · 22h−2, so they are Hadamard difference sets with u = 2h−1. �

Example 12. The McFarland construction of Chapter 8 with q = 2

gives difference sets with v = 22s+2 = 4(2s)2 and u = 2s for any

positive integer s. These difference sets are in groups of the form

G = E ×K, where K need not be abelian. �

Now we consider a new construction, due to Dillon. The following

theorem was proved in his 1974 doctoral dissertation.

Theorem 9.9. (Dillon) Let G be a group of order 4u2. Assume G

contains u subgroups K1, . . . ,Ku, each of order 2u and that Ki∩Kj =

{1G} whenever i �= j. Then the set

D = (K1 ∪ . . . ∪Ku) \ {1G}
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is a difference set in G.

The proof of Theorem 9.9 is a nice exercise working in the integral

group ring ZG. Unfortunately, the range of application of Dillon’s

construction is narrow. It is restricted to certain groups of order 36,

one group of order 64, and any group which is the direct sum of an

even number of copies of Z2. (See [8], p. 367.) However, Kantor

has shown that in this last category there are exponentially many

inequivalent difference sets! (See [35], p. 284, and [38].)

Menon’s construction. In his paper [55], Menon proves a compo-

sition theorem showing how to construct a Hadamard difference set

in G = G1 ×G2 from Hadamard difference sets in the Gj . Although

this is the primary result, Menon actually proves a bit more. He

also shows that if his construction gives a difference set in G from

difference sets in the Gj , then the difference sets in the Gj must be

Hadamard.

Theorem 9.10. (Menon) For j = 1, 2, assume Dj is a (vj , kj , λj)-

difference set in the group Gj. Write Dj for the complement of Dj in

Gj, so Dj is a (vj , vj − kj , λj)-difference set in Gj. Let G = G1 ×G2

and D = (D1 ×D2) ∪ (D1 ×D2). Then D is a difference set in G if

and only if vj = 4nj for j = 1, 2. Furthermore, when D is a difference

set, its parameters satisfy v = 4n for n = 4n1n2.

Proof. Write the group operations multiplicatively, and let 1j be the

identity element of Gj , so 1G = (11, 12). We work in the ring ZG.

We follow the usual convention and write S both for a subset of G

and for the element of ZG written
∑

s∈S s. If S = X × Y ⊆ G with

X ⊆ G1 and Y ⊆ G2, we also write S = (X,Y ) ∈ ZG,

(X,Y ) =
∑

x∈X, y∈Y

(x, y) =

⎛⎝∑
x∈X

x,
∑
y∈Y

y

⎞⎠ .

This notation can be extended in a natural way to multisets X and Y ,

or, equivalently, elements of the ZGj with non-negative coefficients.

Although this notation has to be used with care, the following state-

ments are true for X,Z ⊆ G1 and Y,W ⊆ G2, and for m a positive
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integer:

(X,Y )(Z,W ) = (XZ, YW ), (1)

(X + Z, Y ) = (X,Y ) + (Z, Y ), (2)

(X,Y +W ) = (X,Y ) + (X,W ),

(mX,Y ) = m(X,Y ) = (X,mY ). (3)

Since Dj is a difference set in Gj , we know that for j = 1, 2

DjD
(−1)
j = nj1j + λjGj , (4)

DjD
(−1)

j = nj1j + λjGj ,

DjD
(−1)

j = Dj(Gj −D
(−1)
j ) = nj(Gj − 1j),

DjD
(−1)
j = (Gj −Dj)D

(−1)
j = nj(Gj − 1j).

In the ring ZG we have D = (D1, D2) + (D1, D2), and therefore

D(−1) = (D
(−1)
1 , D

(−1)
2 )+(D

(−1)

1 , D
(−1)

2 ). Multiply out DD(−1) using

equations (1) and (4) to obtain equation (5):

DD(−1) = (5)

(n111 + λ1G1, n212 + λ2G2) + (n1(G1 − 11), n2(G2 − 12)) +

(n1(G1 − 11), n2(G2 − 12)) + (n111 + λ1G1, n212 + λ2G2).

Enumerating terms we see that:

(G1 − 11, G2 − 12) = (G1, G2)− (G1, 12)− (11, G2) + (11, 12). (6)

Multiply out the right side of equation (5) using (2), (3) and (6) and

then reorganize by collecting the terms involving (11, 12), (11, G2),

(G1, 12), and (G1, G2). The result is equation (7):

DD(−1) = (7)

4n1n2(11, 12) + n1(λ2 + λ2 − 2n2)(11, G2) +

n2(λ1 + λ1 − 2n1)(G1, 12) + (2n1n2 + λ1λ2 + λ1λ2)(G1, G2).

For our primary result, we assume the Dj are Hadamard differ-

ence sets, and we want to show that D is a difference set. To do this,

we must show that for appropriate n and λ,

DD(−1) = n(11, 12) + λ(G1, G2).
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Since the Dj are Hadamard, we have vj = 4nj for j = 1, 2. Further,

there are integers uj with nj = u2
j , kj = 2u2

j − uj , λj = u2
j − uj , and

for the complementary cases λj = u2
j + uj , so λj + λj = 2nj . Write

u = 2u1u2; then v = 4u2 and k = 2u2 + u. Substituting these values

into equation (7) gives

DD(−1) = n(11, 12) + λ(G1, G2)

for λ = u2 + u. In other words, D is a Hadamard difference set

in G = G1 × G2 with paramaters (4u2, 2u2 + u, u2 + u). Since the

integers uj can each be positive or negative, u can be positive or

negative. (This observation means there is no change in the result if

one or both of the Dj is replaced by its complement in Gj .)

Conversely, assume D is a difference set in G. This requires the

coefficients of (11, G2) and (G1, 12) in equation (7) to be zero. This

in turn forces λj + λj = 2nj which implies vj = 4nj , and the Dj are

Hadamard difference sets. �

Menon’s construction (in [55], pp. 741–743) gives the following

corollaries.

Corollary 9.11. The following statements are true:

(i) If there exists a difference set with parameters (v0, k0, λ0)

with v0 = 4n0 for n0 = u2
0, then there exists a difference

set with parameters (v, k, λ) and v = 4n for n = u2 with

u = 2u0.

(ii) If there exists a difference set with parameters (v0, k0, λ0)

with v0 = 4n0 for n0 = u2
0, then for r = 1, 2, . . ., there

exists a difference set with parameters (v, k, λ) and v = 4n

for n = u2 with u = 2r−1ur
0.

(iii) There exist difference sets with parameters (v, k, λ) and v =

4n for n = u2 with u = 2r for all positive integers r.

(iv) There exist difference sets with parameters (v, k, λ) and v =

4n for n = u2 with u = 2r3s for all integers r ≥ s− 1 ≥ 0.

Other results. We conclude with a brief look at some other results

about Hadamard difference sets. Turyn’s 1965 paper [69] is of spe-

cial importance because of his innovative use of tools from character
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theory and algebraic number theory. It contains his useful exponent

bound, discussed in Section 7.2. (We give an elementary introduc-

tion to some of these methods in Chapters 11 and 12, culminating

in a proof of Turyn’s exponent bound.) For convenience, we restate

Theorem 7.5, the first version of Turyn’s result.

Theorem (Turyn) Let p be a prime and assume G is an abelian

group of order 4p2a. Let P be a Sylow p-subgroup of G. Assume G

contains a Hadamard difference set. If p = 2, then the exponent of P

is at most 2a+2. If p is odd, then the exponent of P is at most pa.

We suggest revisiting Section 7.2 for the description of the sub-

sequent work showing that Turyn’s bound guarantees the existence

of a Hadamard difference set in abelian 2-groups, as well as of other

researchers’ discoveries of difference sets in non-abelian groups that

exceed Turyn’s exponent bound.

McFarland extended the work of Turyn and of his own teacher

Mann and expanded the use of characters and algebraic number the-

ory in the study of difference sets. In [51], a lengthy tour de force,

McFarland proved the following theorem.

Theorem 9.12. (McFarland) Assume G is an abelian group of order

4p2 for p an odd prime. If G contains a difference set, then p = 3.

Example 13. When p = 5, Turyn’s exponent bound shows that for

any group H of order 4 there is no abelian (100, 45, 20)-difference

set in H ⊕ Z25. McFarland’s theorem shows that there is none in

H ⊕ Z5 ⊕ Z5, so there is no abelian (100, 45, 20)-difference set of any

kind. �

Once again, non-abelian groups really are different. In [65],

Smith constructed a (100, 45, 20)-difference set in a non-abelian group.

We will look at a portion of Smith’s construction in Chapter 11.

The decade of the 1990s was a period of finding (interesting!) non-

abelian complexities where there had been simplicities in the abelian

case. It was also a period of consolidation and generalization. In

particular, Davis and Jedwab [16] found a uniform construction for

difference sets with gcd(v, n) > 1, including the Hadamard family
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along with others. Indeed, they discovered new families of difference

sets in the process.

Exercises

29. Prove Lemma 9.7. Also show that the choice of the sign of u

corresponds to the choice of the parameters for a difference set or for

its complement. S©

30. In this exercise, use difference sets to construct regular Hadamard

matrices.

(a) Write out the regular Hadamard matrices determined by the

difference sets in Example 8.

(b) Write out the first five rows of the Hadamard matrix deter-

mined by the difference set in Example 9, where the points

(elements of G) are in the order:

1, a, a2, a3, b, ab, a2b, a3b, c, ac, a2c, a3c, bc, abc, a2bc, a3bc,

and the first five blocks are D, aD, a2D, a3D, bD.

31. Assume D is a (v, k, λ)-difference set. Let G act on itself by

left multiplication and write πg(x) = gx for x, g ∈ G. Then πg is a

permutation, and we let [g] be the corresponding v×v (permutation)

matrix of πg. We know this G-action is regular; equivalently, πg(x) =

πh(x) for some x ∈ G implies g = h.

(a) Show that ϕ(g) = [g] defines a group homomorphism from

G to the group of invertible v × v matrices over the real

numbers. Also show [g]−1 = [g]T for g ∈ G.

(b) By Theorem 10.11 (p. 192), ϕ gives a ring homomorphism

ϕ̃ from ZG to the ring of all v × v matrices over R by

ϕ̃(
∑

agg) =
∑

agϕ(g). Show that ϕ̃(1G) = Iv and ϕ̃(G) =

Jv, the all 1s matrix.

(c) LetM = ϕ̃(G−D)−ϕ̃(D). ShowMMT = 4nIv+(v−4n)Jv.

(d) Conclude that M is a Hadamard matrix of order 4n if and

only if v = 4n.
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32. Prove Theorem 9.9.

33. Theorem 9.9 can be used to construct (36, 15, 6)-difference sets

in K ×K for K a group of order 6.

(a) Carry out Dillon’s construction for K = 〈a, b | a3 = b2 =

1, bab−1 = a2〉, the dihedral group of order 6.

(b) Is the difference set constructed in (a) equivalent to Menon’s

in Example 10 on page 157? Justify your answer.

(c) Now carry out Dillon’s construction for K = Z6.

34. Fill in the missing details in the proof of Theorem 9.10 as follows.

(a) Verify equations (1), (2) and (3).

(b) Verify the equations in (4).

(c) Verify equation (7).

35. Use Theorem 9.10 and Example 8 to construct at least two more

specific Hadamard difference sets.

36. Prove Corollary 9.11.

Coda

In 1893, Hadamard gave an upper bound on the determinant of a

matrix whose complex entries have absolute value at most 1. When

the matrix entries are integers, the upper bound is attained by what

are now known as Hadamard matrices. Our interest in these matrices

is quite different from Hadamard’s. For us, the key facts are the fol-

lowing theorems, and our interest is in the existence or non-existence

of corresponding difference sets.

• A Hadamard matrix of order 4n exists if and only if a sym-

metric (4n− 1, 2n− 1, n− 1) design exists.

• A regular Hadamard matrix of order 4n exists if and only if

a symmetric (v, k, λ) design exists with v = 4n.
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The Paley-Hadamard family consists of difference sets with pa-

rameters (4n−1, 2n−1, n−1). Section 2 describes four subfamilies of

this larger family, all abelian and all constructed from finite fields: the

Paley family of nonzero squares in GF (q), the Singer family for q = 2,

the twin prime powers family of difference sets in GF (q)⊕GF (q+2),

and the Hall family of unions of special cyclotomic classes in GF (p)

for suitable primes p.

Difference sets in the Hadamard family have parameters with

v = 4n. Section 3 includes both abelian and non-abelian examples.

The McFarland construction (with q = 2) and the Turyn construction

from Chapter 8 produce difference sets in this family. The main

result in this section is Menon’s direct product construction, which

builds new Hadamard difference sets from smaller ones. Although

it is beyond the scope of this book, Davis and Jedwab’s unifying

construction for all difference sets for which gcd(v, n) > 1 ([16]) places

Hadamard difference sets in a larger context.

                

                                                                                                               



Chapter 10

Representation Theory

Representation theory is an essential tool for the study of algebraic

structures, especially groups. We use representations of finite groups

to discover and explore difference sets. Recall that in Section 9.3 we

mentioned Smith’s surprising discovery of a non-abelian (100, 45, 20)-

difference set. He made substantial use of group representations and

characters in his work.

Representation theory has important applications to many areas

of mathematics, and to physics and chemistry as well. Because the

subject is so beautiful and so widely used, we decided against simply

quoting the results we need. Instead, in this chapter and the next

we offer a brief primer on representations of finite groups and their

characters. As in the proof of the Bruck-Ryser-Chowla Theorem,

many of the arguments in these two chapters display the power of

linear algebra.

10.1. Definitions and examples

Recall from abstract algebra that GL(m,K), the set of invertible m×
m matrices with elements from the field K, is a group under matrix

multiplication. This is known as the general linear group. We may

interpret these matrices as invertible linear transformations from Km

to Km, where for A ∈ GL(m,K), each vector x ∈ Km is mapped to

167
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Ax. The identification of the group GL(m,K) of matrices with the

group of invertible linear transformations of an m-dimensional vector

space V over K assumes that we have chosen a basis for V . More

generally, if V is an m-dimensional vector space over K, we define

GL(V ) to be the set of invertible linear transformations from V to

V . This set is a group under composition, and it is isomorphic to

GL(m,K).

Definition. A linear representation of a group G in a vector space

V over a field K is a group homomorphism ρ : G → GL(V ). The

dimension of V is called the degree of the representation. The rep-

resentation is faithful if the homomorphism is one-to-one (i.e., if the

kernel of the representation is {1G}).

Throughout this chapter, G is a finite group, V is a vector space of

positive finite dimension over K, and K is either R or C. Usually

we omit the word “linear” and simply refer to a representation of

G. Once a basis is chosen for V , we can identify the groups GL(V )

and GL(m,K). Therefore, we often think of a representation as a

homomorphism from the group G to the group of matrices GL(m,K).

In the special case m = 1 we identify the matrix [a] and the element

a ∈ K, identifying GL(1,K) and K∗.

Example 1. Let G be the symmetric group S3 and V = R3. We

use the standard basis vectors e1, e2, e3, so GL(V ) ∼= GL(3,R). For

example, the transformation that swaps vectors e1 and e2 and fixes

e3 corresponds to the matrix

M =

⎡⎣ 0 1 0

1 0 0

0 0 1

⎤⎦ .
With this understanding, we define the “natural” representation of

S3, mapping a permutation in S3 to a transformation that permutes

the standard basis vectors according to the given permutation,

ρ : S3 → GL(3,R),where

ρ : π �→ Mπ, the matrix of the transformation ej �→ eπ(j).
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This is indeed a group homomorphism; that is, for all π1, π2 ∈ S3,

ρ(π1π2) = ρ(π1)ρ(π2). It is easiest to show this for the corresponding

linear transformations acting on the standard basis vectors, and then

to extend this linearly to all of R3.

Since these six linear transformations simply permute the basis vec-

tors, the matrices are permutation matrices. The complete mapping

ρ from S3 to GL(3,R) is shown here:

(1) �→

⎡⎣1 0 0

0 1 0

0 0 1

⎤⎦ (123) �→

⎡⎣0 0 1

1 0 0

0 1 0

⎤⎦ (132) �→

⎡⎣0 1 0

0 0 1

1 0 0

⎤⎦

(12) �→

⎡⎣0 1 0

1 0 0

0 0 1

⎤⎦ (23) �→

⎡⎣1 0 0

0 0 1

0 1 0

⎤⎦ (13) �→

⎡⎣0 0 1

0 1 0

1 0 �0

⎤⎦ .
Example 2. Let G = S3 and V = R. Define ρ(π) = 1 if π is an even

permutation and ρ(π) = −1 if π is an odd permutation. The map ρ

is a homomorphism. This representation has degree 1, and it is not

faithful. Although by applying ρ we lose much of the group structure,

we do retain some information about the group. �

Example 3. Let G = 〈a | a4 = 1〉 and V = R2. Define ρ by

ρ(a) =

[
0 −1

1 0

]
.

Then ρ is a homomorphism. This representation is faithful and has

degree 2. Notice that ρ(a) is the matrix of a counter-clockwise rota-

tion of the plane about the origin through 90 degrees. See Figure 10.1.

�

Example 4. Let G be any finite group and let K be any field. Define

ρ(g) = 1 ∈ K for all g ∈ G. This is called the trivial representation of

G. It has degree 1. If G has more than a single element, the trivial

representation is not faithful. �
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e1

e2

Figure 10.1. Rotate plane through 90 degrees, Example 3

Example 5. Let G = 〈a | a4 = 1〉, and let V = R3 with standard

basis e1, e2, e3. Define ρ : G → GL(3,R) by

ρ(a) =

⎡⎣ 0 −1 0

1 0 0

0 0 1

⎤⎦ .
Then ρ is a homomorphism. The transformation given by ρ(a) rotates

3-space around the axis spanned by e3. See Figure 10.2. Let W be

the subspace spanned by e1 and e2. The rotations ρ(aj) all map W

to itself. Notice that the subspace U spanned by e3 is also mapped

to itself by all the ρ(aj), and that U = W⊥. �

The preceding example leads to an important concept.

Definition. An invariant subspace (or stable subspace) of a repre-

sentation ρ of G in V is a subspace of V that is mapped to itself

by all the transformations ρ(g) for g ∈ G. We also use the language

G-invariant subspace when it is clear which representation of G is

under discussion.

For any representation of a group G, the subspaces {0} and V are

always G-invariant. These are called the trivial subspaces. In Exam-

ple 5 both W = span{e1, e2} and U = span{e3} are G-invariant.

In Example 1 where G = S3, each ρ(g) permutes the basis vec-

tors e1, e2, e3, so the 1-dimensional subspace spanned by their sum
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e1 e2

e3

Figure 10.2. Rotate 3-space about the vertical axis 90 de-
grees, Example 5

e1+e2+e3 is also G-invariant. In Example 3, there are no nontrivial

G-invariant subspaces.

Note that it is not required that individual vectors of aG-invariant

subspace are fixed by each ρ(g) for g ∈ G. It is only required that

the subspace as a whole is mapped into itself by each ρ(g), as the

G-invariant subspace W in Example 5 shows. Indeed, none of the

nonzero vectors in W is fixed by all the ρ(g) in that case.

We need one more definition to explain our first main goal.

Definition. An irreducible representation of G in V is a represen-

tation whose only G-invariant subspaces are the trivial subspaces V

and {0}. Otherwise the representation is reducible.

All representations of degree 1 are irreducible because a vector

space of dimension 1 has no nontrivial subspaces. The representations

in Examples 2, 3 and 4 are irreducible, but those in Examples 1 and

5 are reducible. We look more closely at these reducible examples.

In Example 5, every matrix ρ(g) for g ∈ G has the form

ρ(g) =

[
A(g) 0

0 1

]
,

where A(g) describes a rotation of the plane spanned by e1 and e2.

Notice that all the matrices ρ(g) are block diagonal. We can view
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the blocks themselves as providing representations of the group G—

one of degree 2 in W and one of degree 1 in U = W⊥ (the trivial

representation).

As in Example 5, the representation in Example 1 is reducible.

We know that the span of v1 = e1+e2+e3 is an invariant subspace. In

Exercise 2 we see that the plane orthogonal to v1 is also an invariant

subspace. In Figure 10.3 the vectors e1, e2, and e3 are drawn as

edges of a unit cube. The vector v1 lies along the diagonal of the

cube and is shown as a dashed line segment. It is fixed by all the

ρ(g), for g ∈ S3. Let v2 and v3 span the plane orthogonal to v1.

With respect to the new basis {v1,v2,v3} for V , the matrix for each

transformation ρ(g) for g ∈ S3 has the form[
1 0

0 B(g)

]
.

Again all the matrices ρ(g) are block diagonal, and the blocks them-

selves provide representations of the group S3, one of degree 1 and

one of degree 2.

e1e2

e3

Figure 10.3. Rotate 3-space to cyclically permute e1, e2, e3.
Example 1.

In general we seek to decompose complex representations into ir-

reducible representations and to study these building blocks. We find

that any finite group has a finite number of irreducible representa-

tions, and that any of its representations can be decomposed into a
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“sum” of irreducible complex representations. The formal statement

is Maschke’s Theorem.

Before we proceed with our analysis, we expand our library of

examples of group representations.

Example 6. We generalize Example 1. Let G = Sm and let V be

the vector space Km with standard basis {e1, e2, . . . , em}. Then the

natural representation of Sm in V maps the permutation π ∈ Sm to

the representation that permutes the basis vectors according to π;

that is:

ρ : Sm → GL(m,K), where

ρ : π �→ Mπ the matrix of the transformation ej �→ eπ(j).

The map ρ is a group homomorphism. As for the case m = 3, it

is enough to show that this is true for the basis vectors, and then

to extend linearly to all of V . Since the nonzero vector
∑

j ej is

fixed by ρ(π) for all π, this representation is reducible. Since only

the identity permutation fixes all the basis vectors, this is a faithful

representation. The representation has degree m. �

Example 7. Choose G = 〈a | a5 = 1〉 and V = C, so GL(V ) ∼=
GL(1,C) ∼= C∗, the multiplicative group of nonzero complex numbers.

Define a map ρ : G → C∗ by

ρ(a) = e2πi/5.

Since e2πi/5 is of order 5 in C∗, ρ is a group homomorphism. (See A.15

for a review of complex roots of unity.) Since the degree is 1, this is

an irreducible representation of G. Also, ρ is faithful. �

In the next two examples we consider two representations of the

dihedral group D5, one of degree 1 and one of degree 2.

Example 8. Let G = 〈a, b | a5 = b2 = 1, bab−1 = a−1〉. Choose

V = C and define

ρ(a) = 1 and ρ(b) = −1.

This defines a homomorphism from G to C∗. It is irreducible because

it has degree 1; it has kernel 〈a〉, so it is not faithful. �
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Example 9. Let G be as in Example 8. Choose V = C2 and define

ρ(a) =

[
η 0

0 η−1

]
and ρ(b) =

[
0 1

1 0

]
,

where η is a primitive fifth root of unity (i.e., η = (e2πi/5)j for some

j ∈ {1, 2, 3, 4}). This defines a homomorphism from G to GL(2,C).

We show that ρ is irreducible. This time V does have nontrivial

subspaces, so there is something to check. Suppose that v = (x, y)

spans a nontrivial G-invariant subspace for this representation; we

show that this leads to a contradiction. By our assumption ρ(b)(v) =

sv for some s ∈ C. Since ρ(b) is invertible, v �= 0 implies s �= 0. Thus

we have (y, x) = (sx, sy), which tells us that s2 = 1 and y = ±x.

Similarly, ρ(a)(v) = tv for some t ∈ C, and t �= 0. This tells us

that ηx = tx and η−1y = ty. Since we are assuming v �= 0, this

tells us η = t = η−1 and η2 = 1, which is impossible. Therefore ρ is

irreducible. It is also faithful. �

The preceding examples generalize.

Example 10. Every cyclic group has a faithful representation of

degree 1 generalizing that in Example 7. Let G = 〈a | am = 1〉 and

define

ρ(a) = e2πi/m �.

Example 11. Every dihedral group has representations of degree 2,

generalizing those in Example 9. Let

G = 〈a, b | am = b2 = 1, bab−1 = a−1〉,

and let η = (e2πi/m)j for some integer j. Define

ρ(a) =

[
η 0

0 η−1

]
and ρ(b) =

[
0 1

1 0

]
.

If m does not divide 2j then η2 �= 1 and the representation is irre-

ducible. If gcd(j,m) = 1, this representation is faithful. �

We know by Cayley’s Theorem that every finite group G is iso-

morphic to a group of permutations, where we associate g ∈ G with

the function πg : G → G, with πg(x) = gx. We find G ∼= H = {πg |
g ∈ G} ⊂ Sm for m = |G|. We now combine this isomorphism with
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the natural representation of Sm to get the left regular representation

of a group.

Definition. Let G be a finite group of order m. Fix a field K and let

V be a vector space of dimension m over K with basis {eh | h ∈ G}.
We define “the” left regular representation ρreg of G in V by

ρreg(g) : eh �→ egh for g ∈ G.

In the definition above, we do not specify the field. There is

actually a different left regular representation for each field. We limit

our discussion to the left regular representation over the field C, and

often simply call this the regular representation.1

Example 12. Let G = 〈a | a5 = 1〉. Choose V = C5 with the

standard basis e1, ea, ea2 , ea3 , ea4 , so

ρreg(a) =

⎡⎢⎢⎢⎢⎣
0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

⎤⎥⎥⎥⎥⎦ .
Thus, we have identified the group element a with the permutation

aj �→ aj+1 of the elements of G and then associated that permutation

with the matrix of the linear transformation that maps ej to ej+1,

where we interpret the subscripts modulo 5. �

Exercises

1. Let G = D4 = {R0, R90, R180, R270, FH , FV , F1, F2}. The dihedral

group of order 8 is described here as the group of symmetries of a

square. The element Rθ is the counterclockwise rotation about the

center of the square through θ degrees; FH , FV are reflections in

horizontal, vertical lines through the center of the square; F1, F2 are

reflections in the diagonal lines l1, l2 where l1 goes from lower left to

upper right. (To rewrite in our usual notation D4 = 〈a, b | a4 = b2 =

1, bab−1 = a−1〉, we can choose a = R90 and b = FH .)

1The right regular representation is defined in a similar way, but with multipli-
cation on the right by the inverse.
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Let ρ be the representation of G in R2 suggested by the motions of

the square centered at the origin. Using the standard basis vectors,

find matrices for the transformations ρ(g) for all g in G.

2. In Example 1, determine a basis v2,v3 for the plane orthogonal

to the vector v1 = e1 + e2 + e3. Find a matrix A that changes the

standard basis to your new basis v1,v2,v3. Then with respect to

your new basis, determine the six matrices that realize the six linear

transformations in GL(3,R) that are images under ρ of elements in

S3.

3. Assume m ≥ 2 and let G be the symmetric group Sm acting on

V = Cm by the natural representation ρ. Choose the standard basis

e1, . . . , em for V . Define

W =

{∑
j

ajej

∣∣∣∣∣ ∑
j

aj = 0

}
S©.

(a) Show that W is a G-invariant subspace of V .

(b) Give an example of w ∈ W and g ∈ G with ρ(g)(w) �= w.

4. Representations of degree 1 over R and C.

(a) Let G be a finite group of odd order. Show that if ρ : G →
GL(1,R) ∼= R∗ is a representation of degree 1, then ρ must

be the trivial representation.

(b) Give an example of a finite group G of odd order and a

nontrivial representation

ρ : G → GL(1,C) ∼= C∗.

(c) Give an example of a nontrivial representation ρ : G →
GL(1,R) ∼= R∗ for the group G = 〈a | a4 = 1〉. Can you

find a faithful representation?

(d) Let G = 〈a | a4 = 1〉, and give an example of a faithful

representation ρ : G → GL(1,C) ∼= C∗.
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10.2. Equivalent representations

The “natural” representation of Sm is in the vector space of dimen-

sion m. The left regular representation of Sm is in a vector space

of dimension m!, the number of elements in the group Sm. So for

m > 1 these representations are different. Since a group typically

has many representations, we need to specify when we regard two

representations as “the same.”

Definition. Let G be a finite group and let V1 and V2 be vector

spaces over a field K. Two representations ρ1 : G → GL(V1) and

ρ2 : G → GL(V2) are called equivalent if there exists an invertible

(one-to-one, onto) linear transformation τ : V1 → V2 such that

ρ2(g) = τ ρ1(g) τ
−1 for all g ∈ G.

This last condition can be rewritten as ρ2(g)τ = τρ1(g), for all g ∈ G,

although we must require that τ be invertible. Then for every g ∈ G,

the following diagram commutes:

V1

τ

��

ρ1(g)
�� V1

τ

��

V2

ρ2(g)
�� V2

This defines an equivalence relation on the set of representations of

G.

Example 13. Choose G = 〈a | a4 = 1〉 and let V = C2 with standard

basis e1, e2. We consider two different representations ρ1 and ρ2
defined by the following:

ρ1(a) : e1 �→ −e2 ρ2(a) : e1 �→ ie1
e2 �→ e1 e2 �→ −ie2.

These are both faithful representations of G. In fact, they are equiva-

lent. To find the transformation τ that demonstrates the equivalence,

we find the eigenvalues of A, the matrix of ρ1(a) with respect to the
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basis e1, e2,

A =

[
0 1

−1 0

]
.

The eigenvalues are the zeroes of the characteristic polynomial det(A−
xI) = x2 + 1, namely i and −i. If we choose f1 to be an eigenvec-

tor for the eigenvalue i and f2 for −i, then we know f1 and f2 are

independent, so we can define an invertible linear transformation by

τ (fj) = ej for j = 1, 2. You should check that ρ2(a) and τρ1(a)τ
−1

have the same effect on e1 and e2. Convince yourself that it follows

that ρ1 and ρ2 are equivalent. �

Remark: Note that in general a single representation G → GL(V )

in an m-dimensional K-space V could define different (but equiva-

lent) representations G → GL(m,K) if the corresponding matrices

were written with respect to different bases of V . Since we normally

interpret matrices as transformations using the standard basis of V ,

our convention is that we say two representations of a group G in

a space V are equal or equivalent according as the representations

G → GL(V ) are equal or equivalent.

Exercises

5. In Example 13, let B be the matrix of ρ2(a) with respect to the

basis {e1, e2}. Find a matrix C for τ with respect to this basis, and

verify that B = CAC−1.

6. Equivalent representations:

(a) Let ρ1 : G → GL(V ) be any representation of a group G in

a vector space V , and let τ ∈ GL(V ) be a fixed transforma-

tion. Define a function ρ2 : G → GL(V ) by

ρ2(g) = τ ρ1(g) τ
−1

for all g ∈ G. Show that ρ2 is again a representation of G

in V .

(b) Let G be any group and let V be any vector space. Define

a relation ∼ on the set of all representations of G in V by
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ρ1 ∼ ρ2 if and only if there exists a τ ∈ GL(V ) such that for

all g ∈ G, ρ2(g) = τρ1(g)τ
−1. Show that ∼ is an equivalence

relation on the set of all representations of G in V .

7. Let G be the Klein-four group: G = 〈a, b | a2 = b2 = (ab)2 = 1〉,
and let ρreg be the regular representation of G. Write down the matri-

ces for the different ρreg(g) with respect to the basis {e1, ea, eb, eab}.
(Note that the relation ab = ba is a consequence of (ab)2 = 1.) S©

8. Let G = S3 = {(1), (12), (13), (23), (123), (132)}, and let ρreg be

the regular representation of G.

(a) Write down the matrices for ρreg
(
(12)
)
and ρreg

(
(13)
)
with

respect to the basis {eh | h ∈ G}. (Use the same order for

the basis vectors that was used above in listing the elements

of G.)

(b) Find two (linearly independent) vectors that are eigenvec-

tors for both ρreg
(
(12)
)
and ρreg

(
(13)
)
. H©

(c) Use your work from part (b) to find a nontrivial representa-

tion of degree 1 of G (that is, a nontrivial homomorphism

G → C∗). What is the kernel of this homomorphism? Does

this homomorphism look familiar?

10.3. Maschke’s Theorem

Sums of representations. Irreducible representations are the build-

ing blocks for all representations, much as the prime numbers are the

building blocks for all integers ≥ 2. In the case of the integers, we

build by multiplying. In this section we define what we mean by

adding representations. For integers, we know every integer ≥ 2 can

be factored into primes, and this factorization is unique up to the

order of factors. For representations, Maschke’s Theorem guarantees

that an arbitrary representation can be decomposed into a sum of

irreducible representations. In Chapter 11 we see that the irreducible

components are uniquely determined up to equivalence and order of

the summands.
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To begin, we define direct sums of vector spaces. Just as with

groups, we have the concept of external direct sum (adding two vector

spaces that exist independently) and internal direct sum (breaking an

existing vector space into a sum of vector subspaces). We then use the

direct sums of vector spaces to define direct sums of representations.

Definition. Let V1 and V2 be two vector spaces over the field K. The

external direct sum of V1 and V2, denoted by V1⊕V2, is the Cartesian

product of V1 and V2. Let vj ,wj ∈ Vj for j = 1, 2 and c ∈ K. We

then define addition and scalar multiplication on V1 ⊕ V2:

(v1,v2) + (w1,w2) = (v1 +w1, v2 +w2)

c (v1,v2) = (cv1, cv2).

These definitions make V1 ⊕ V2 a vector space over K. We write

01 and 02 for the zero vectors of V1 and V2, so 0 = (01,02) is the

zero vector of vector space V1 ⊕ V2. We can use bases of V1 and V2

to construct a basis for V1 ⊕ V2, as in the following theorem.

Theorem 10.1. Let {e1, e2, . . . , em} be a basis for V1 and let

{f1, f2, . . . , f	} be a basis for V2. Then{
(e1,02), (e2,02), . . . , (em,02), (01, f1), (01, f2), . . . , (01, f	)

}
is a basis for V1 ⊕ V2, where 01 and 02 are the zero vectors of V1 and

V2 respectively.

Note that the subspace V ′
1 = {(v1,02) | v1 ∈ V1} of the exter-

nal direct sum is isomorphic to V1. Similarly, the subspace V ′
2 =

{(01,v2) | v2 ∈ V2} is isomorphic to V2. We often identify V ′
1 with

V1 and V ′
2 with V2. Although V ′

1 ∩ V ′
2 = {0}, this is not in general

true for subspaces V1 and V2 of a vector space V . This accounts for

the second hypothesis in the following theorem.

Theorem 10.2. If a vector space V has two subspaces V1 and V2

such that

(i) Any vector in V can be written as the sum of a vector in V1

and a vector in V2 (in shorthand, V = V1 + V2), and

(ii) V1 ∩ V2 = {0},
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then the transformation V1⊕V2 → V defined by (v1,v2) �→ v1+v2 is

an isomorphism of vector spaces. In other words, the transformation

is one-to-one and onto as well as linear.

In this situation V is called the internal direct sum of V1 and V2,

and we write V ∼= V1⊕V2. The second condition guarantees that each

vector in V is represented uniquely as a sum v1 +v2 with vj ∈ Vj for

j = 1, 2.

Example 14. Let V = Rm with the usual dot product, and assume

W is a subspace of V . We know from linear algebra that

W⊥ = {v ∈ V | v ·w = 0 for all w ∈ W}
is a subspace of V , and V is the internal direct sum of W and W⊥.

�

Now we link sums of vector spaces with sums of representations.

We know how to start with two vector spaces and form a new vector

space, their direct sum. Similarly, we start with two representations

of a group G and form a new representation, their direct sum. Under

certain conditions we can decompose a single vector space into a direct

sum of two subspaces. Similarly, we start with a single representation

and, under suitable conditions, decompose it into a direct sum of

representations.

Definition. Let ρ1 and ρ2 be representations of G in vector spaces

V1 and V2 respectively over K. The direct sum of representations ρ1
and ρ2, denoted ρ1 ⊕ ρ2, is the function from G to GL(V1 ⊕ V2) such

that for any (v1,v2) ∈ V1 ⊕ V2,(
ρ1 ⊕ ρ2

)
(g) : (v1,v2) �→

(
ρ1(g)(v1), ρ2(g)(v2)

)
.

Theorem 10.3. Let ρ1 and ρ2 be representations of the finite group

G in vector spaces V1 and V2 respectively over the field K.

(i) The direct sum ρ1 ⊕ ρ2 is a representation of G in V1 ⊕ V2.

(ii) The representations ρ1 ⊕ ρ2 and ρ2 ⊕ ρ1 are equivalent.

(iii) Assume ei and fj are bases for V1 and V2 respectively, as in

Theorem 10.1. For g ∈ G, assume A(g) and B(g) are the

matrices of ρ1(g) and ρ2(g) respectively with respect to these
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bases. Then the matrix of (ρ1 ⊕ ρ2)(g) with respect to the

basis (ei,02), (01, fj) of V1 ⊕ V2 is[
A(g) 0

0 B(g)

]
,

where the 0s denote zero matrices of the appropriate size.

We are now ready to state the fundamental theorem of group

representations. We state it for representations over the complex

numbers, since that is the version we will prove. It is actually true

over any field of characteristic 0 or of prime characteristic not dividing

the order of G.

Theorem 10.4. (Maschke, 1898) Every representation of a finite

group G in a finite-dimensional vector space V over C can be written

as a direct sum of irreducible representations.

We conclude this subsection with a definition and a theorem that

we use in the proof of Maschke’s Theorem. At one step of our argu-

ment, we need to break a representation into parts. We begin that

decomposition by restricting the domain of the representation. We

can restrict a representation of G in V to a G-invariant subspace W

of V and obtain a representation of G in W . More formally, we have

the following definition.

Definition. Let ρ be a representation of G in the vector space V , and

let W be a G-invariant subspace of V . The restriction ρ|W of ρ is the

mapping from G to transformations of W defined by ρ|W (g)(w) =

ρ(g)(w) for w ∈ W .

Theorem 10.5. For a G-invariant subspace W , the restriction ρ|W
of ρ is a representation of G in W .

In Figure 10.2 the degree 3 representation ρmaps the generator of

the group to a 90-degree rotation of R3 around the z-axis (i.e., around

the line spanned by e3). In this case the plane W = span{e1, e2} is

G-invariant, and the restriction ρ|W is the degree 2 representation of

Example 3.
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Complex inner products. Our discussion of Examples 1 and 5

provides hints that choosing an orthogonal complement is useful for

decomposing a representation. Indeed, this is a crucial ingredient in

our proof of Maschke’s Theorem. Our representations are in complex

vector spaces, so we need to define orthogonality for such spaces. The

first step is to define inner products on complex vector spaces.

We begin by noting that simply adopting the familiar dot product

on Rm for Cm is problematic, since we would then find that it is

possible for a nonzero vector v ∈ Cm to satisfy v ·v = 0. (You should

find such an example, say in C2.) This would be a major impediment

to defining “length” of a vector in a meaningful way. So we need a

different approach.

In the special case of the 1-dimensional complex space C, we

already have a useful geometric interpretation based on identifying

the complex number z = a + bi with the vector (a, b) in R2. In that

identification, the length of z is the positive square root of zz, where

z = a− bi is the complex conjugate of z. Combining this observation

with the connection between length and dot product in Rm suggests

the following definition. To avoid confusion2 with the dot product on

Rm, we write 〈v,w〉 for the inner product of v and w in Cm.

Definition. Consider vectors v,w ∈ Cm, written here as row vectors

v = (x1, . . . , xm),w = (y1, . . . , ym). Then the standard inner product

of v and w is given by

〈v,w〉 =

m∑
j=1

xjyj .

Notice that this definition is equivalent to calculating the dot

product of v and the complex conjugate of w:

〈v,w〉 = v ·w.

2Context should make clear when we are using this notation for the inner product
of two vectors and when we are using it for the subgroup or subspace generated by
elements.
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We enumerate the essential properties of this complex inner prod-

uct by making a formal definition as follows.3

Definition. An inner product 〈 , 〉 on a complex vector space V is a

function from V × V to C, such that for all vectors u,v,w ∈ V and

all scalars c ∈ C:

(1) 〈v,w〉 = 〈w,v〉,
(2) 〈u+ v,w〉 = 〈u,w〉+ 〈v,w〉,
(3) 〈cv,w〉 = c〈v,w〉,
(4) 〈v,v〉 > 0 for all v �= 0.

The standard inner product on Cm in fact has all of these proper-

ties. Note that we have lost part of the bilinearity of the dot product

over R. Instead this inner product is called “sesquilinear.” (Sesqui

means one and one half.4)

From property 1 we know that 〈v,v〉 = 〈v,v〉, so 〈v,v〉 ∈ R. It

is this that allows us to compare 〈v,v〉 with 0 in property 4. As a

consequence of these properties we have the following result.

Theorem 10.6. If 〈 , 〉 is an inner product on the complex vector

space V , and if u,v,w ∈ V and c ∈ C, then

(5) 〈u,v +w〉 = 〈u,v〉+ 〈u,w〉,
(6) 〈v, cw〉 = c 〈v,w〉,
(7) 〈v,v〉 = 0 if and only if v = 0.

For a complex vector space, we can use the inner product to define

the following geometric concepts.

Definition. Assume V is a complex vector space with inner product

〈 , 〉, and v,w ∈ V . The length of v is the positive square root of

〈v,v〉. We say v and w are orthogonal if 〈v,w〉 = 0.

3This is the usual definition in mathematics, with linearity in the first compo-
nent. The convention in physics is linearity in the second component, so (3) becomes
〈v, cw〉 = c〈v,w〉.

4For example, Grinnell College celebrated its sesquicentennial (i.e., its 150-year
anniversary) in 1996, and Mount Holyoke College celebrated its in 1987.
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Since 〈v,v〉 ≥ 0 for all v ∈ V and 〈v,w〉 = 0 if and only if

〈w,v〉 = 0, these are reasonable definitions of length and of orthogo-

nality. Exactly as in the real case, if V is a finite-dimensional complex

vector space with an inner product, we can find an orthonormal basis

for V using the Gram-Schmidt process. (See A.5.)

We can now define the orthogonal complement of a subspace.

Definition. Let V be a complex vector space, W a subspace of V ,

and 〈 , 〉 an inner product on V . Then the orthogonal complement of

W in V with respect to 〈 , 〉 is

W⊥ = {v ∈ V | 〈v,w〉 = 0 for all w ∈ W}.

This language is justified by the following theorem.

Theorem 10.7. If V is a complex vector space with an inner product

and W is a subspace, then W⊥ is a subspace and V = W ⊕W⊥.

Given this geometry on complex vector spaces, we wish to con-

sider linear transformations that “preserve” the geometry, in the fol-

lowing sense.

Definition. Let V be a complex vector space with inner product 〈 , 〉.
A linear transformation S : V → V is called a unitary transformation

with respect to 〈 , 〉 if it preserves the inner product:

〈S(v), S(w)〉 = 〈v,w〉

for all v,w ∈ V .

How do we recognize a matrix that describes a unitary transfor-

mation?

Theorem 10.8. Let V be a complex vector space with an inner prod-

uct, and suppose v1,v2, . . . ,vm is an orthonormal basis for V . Let

S : V → V be a linear transformation, and let A be the matrix of

S with respect to this basis. Then S is a unitary transformation if

and only if AA
T

= A
T
A = Im (where A

T
denotes the conjugate

transpose of A). Such a matrix is called a unitary matrix.
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Continuing the notation of the preceding theorem, we can always

regard V as a real vector space by restricting scalars to R. If the

entries of A are all real, then we can regard S as a linear transfor-

mation of this real space. In that case S preserves the real inner

product on the real space V if and only if A is an orthogonal matrix:

AAT = ATA = Im. Thus our definitions of an inner product on a

complex space and of transformations preserving the inner product

are natural generalizations of those for real vector spaces.

The reward for our introduction of this complex geometry is the

following theorem.

Theorem 10.9. Let ρ be a representation of the group G in a com-

plex space V with an inner product. Assume that ρ(g) is a unitary

transformation for each g ∈ G. Let W be a G-invariant subspace of

V . Then W⊥ is also G-invariant.

The proof of Maschke’s Theorem. We introduced the complex

inner product to help us prove Maschke’s Theorem. However, as

Theorem 10.9 suggests, the inner product will only be helpful if the

transformations ρ(g) for a representation ρ of G in V are actually uni-

tary. Remarkably enough, given a finite group G and a representation

ρ of G in a complex vector space V with an inner product, it is possi-

ble to define a new inner product on V for which each transformation

ρ(g) is indeed a unitary transformation.

Theorem 10.10. Let 〈 , 〉 be an inner product on the finite dimen-

sional complex vector space V and let ρ : G → GL(V ) be a represen-

tation of the finite group G. Then the new function � ,� defined

by

� v,w � =
1

|G|
∑
g∈G

〈
ρ(g)(v), ρ(g)(w)

〉
is an inner product on V . Further, for every g in G, ρ(g) is a unitary

transformation with respect to this new inner product.

Proof. The properties required for � ,� to be an inner product

follow directly from 〈 , 〉 being an inner product and from ρ(g) being
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a linear transformation. As a sample, here we prove property 3:

� cv,w � =
1

|G|
∑
g∈G

〈
ρ(g)(cv), ρ(g)(w)

〉
=

1

|G|
∑
g∈G

〈
cρ(g)(v), ρ(g)(w)

〉
=

1

|G|
∑
g∈G

c
〈
ρ(g)(v), ρ(g)(w)

〉
=

c

|G|
∑
g∈G

〈
ρ(g)(v), ρ(g)(w)

〉
= c � v,w � .

We must also show that each linear transformation ρ(g) is a uni-

tary transformation. Thus we must show that for any g ∈ G,

� v,w �=� ρ(g)(v), ρ(g)(w) �:

� v,w � =
1

|G|
∑
h∈G

〈
ρ(h)(v), ρ(h)(w)

〉
, and

� ρ(g)(v), ρ(g)(w) � =
1

|G|
∑
h∈G

〈
ρ(h)(ρ(g)(v)), ρ(h)(ρ(g)(w))

〉
=

1

|G|
∑
h∈G

〈
ρ(hg)(v), ρ(hg)(w)

〉
=

1

|G|
∑
h′∈G

〈
ρ(h′)(v), ρ(h′)(w)

〉
.

In the last line we substitute h′ = hg. Since h′ runs over all the

elements in G as h does, this last sum is equal to � v,w �. �

Remark: We can think of this new inner product as an average over

G of the old one. In this approach to representation theory, we will

use this trick of taking averages (or sums) over G in many situations.

(The proof of Theorem 10.12 is another example.) It thus becomes a

valuable strategy, not just a trick.
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In Example 1 we used the standard basis {e1, e2, e3}. In the

complex version, this is an orthonormal basis with respect to the

standard inner product on C3. Each Mπ is a unitary matrix, so

each transformation ρ(π) is unitary. The plane orthogonal to the

vector e1 + e2 + e3 is thus an invariant subspace for all six linear

transformations. (Compare Exercise 3.)

We are now ready to prove Theorem 10.4, which we restate for

reference.

Theorem (Maschke): Every representation of a finite group G in a

finite-dimensional vector space V over C can be written as a direct

sum of irreducible representations.

Proof. Let ρ be a representation of G in V over C. We proceed by

induction on the dimension m of V . If m = 1, then ρ is irreducible.

Now letm > 1 and assume that the theorem is true for representations

of degree less than m.

If ρ is irreducible, we are done. If not, there is a nontrivial sub-

space W of V that is invariant for ρ(g) for all g ∈ G. We use The-

orem 10.10 to define an inner product on V so that each transfor-

mation ρ(g) is unitary. Define W⊥ to be the orthogonal complement

of W with respect to this new inner product. By Theorems 10.9

and 10.7, we know that W⊥ is also a G-invariant subspace and that

V = W ⊕W⊥.

Next we define ρ1 to be ρ restricted toW and ρ2 to be ρ restricted

to W⊥. Then ρ is equal to the direct sum ρ1 ⊕ ρ2. Both W and W⊥

have dimension smaller than m, so by our induction hypothesis,

ρ1 = ρ11 ⊕ · · · ⊕ ρ1s and ρ2 = ρ21 ⊕ · · · ⊕ ρ2t

for irreducible representations ρij of G. Therefore ρ is the direct sum

of the ρij . Figure 10.4 illustrates the decomposition of the matrix

ρ(g) (where we omit the argument g). �

Maschke’s Theorem guarantees the decomposition of an arbitrary

complex representation into its irreducible constituents. However,

finding those irreducibles is not always easy. In the next chapter we

introduce the theory of group characters to aid this work.
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ρ1

ρ2

(a) Partial de-
composition

ρ11

ρ12

ρ1s

ρ21

ρ2t

(b) Complete
decomposition

Figure 10.4. Decomposition into irreducible representations

Exercises

9. Let ρ be a representation of G in V , and let W be a G-invariant

subspace of V . Show that the restriction ρ|W is a representation of

G in W .

10. Prove Theorem 10.1.

11. Prove Theorem 10.2.

12. Prove Theorem 10.3.

(a) Prove part (i). S©
(b) Prove part (ii).

(c) Prove part (iii).

13. Prove Theorem 10.6.

14. Prove Theorem 10.8. H©

15. Prove Theorem 10.9.
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16. Complete the proof of Theorem 10.10.

17. Let G be the group 〈a | a2 = 1〉 and let V = C2.

(a) Show that there exists a representation ρ of G in V = C2

for which the matrix of ρ(a) with respect to the standard

basis is

[
−1 0

2 1

]
.

(b) Using the standard inner product on C2 as the “original” in-

ner product 〈 , 〉 on V , let � , � be the “new” inner product

on V defined in Theorem 10.10. Find explicit formulas for

� (x1, x2), (y1, y2)� and � (x1, x2), (x1, x2)�. (Note that

the vectors here are really column vectors.)

(c) Find an orthonormal basis of V with respect to � , �.

(d) Find the matrix of ρ(a) with respect to your basis from part

(c). (It should be a unitary matrix!)

(e) Find two 1-dimensional invariant subspaces of V = C2 (un-

der ρ), and show that they are orthogonal complements of

each other with respect to � , �.

18. Prove Theorem 10.7 by proceeding as follows:

(a) Show that W ∩W⊥ = {0}.
(b) Show that every vector in V can be written as the sum of a

vector in W and a vector in W⊥.

19. Let G be any finite group, and let ρreg : G → GL(V ) be the

regular representation over C. This means that vector space V has

basis {eh | h ∈ G}.

(a) Show that the vector v =
∑

h∈G eh is an eigenvector for

ρreg(g) for each g ∈ G. (Hence v spans an invariant sub-

space of V under ρreg.)

(b) Suppose that G1 is a subgroup of G of index 2. Show that

the vector

w =
∑
h∈G1

eh −
∑

h∈G\G1

eh
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is an eigenvector for each of the ρreg(g), for g ∈ G. H©
(c) Explain why the results of Exercise 8 are really examples of

parts (a) and (b) of this exercise.

20. Let G be the symmetric group Sm and let ρ be the natural

representation of G in V = Cm. Let e1, . . . , em be the standard basis

of V and let U be the 1-space spanned by e1 + · · ·+ em.

(a) Show that the subspace W =
{∑

j ajej

∣∣∣ ∑j aj = 0
}

is

equal to U⊥ with respect to the standard inner product.

(b) Compare this to your answers to Exercises 2 and 3.

21. Let G = 〈a, b | a2 = b2 = (ab)2 = 1〉 be the “Klein four-group”

(as in Exercise 7), and let ρreg be the regular representation of G in

V = C4. Write ρreg as a direct sum of irreducible representations.

H©

10.4. Representations and difference sets

We apply representation theory to the study of difference sets by

extending a group representation ρ : G → GL(m,C) to a ring homo-

morphism ρ̃ from the integral group ring ZG to the ring M(m,C) of

m×m matrices with entries in C. The following example illustrates

the idea. In the example, the degree of the representation is 1, and

we identify M(1,C) with C.

Example 15. Let G = 〈a, b | a4 = b4 = 1, ab = ba〉. The set

D = {a2, b, ab, a2b, b2, ab3} is a (16, 6, 2)-difference set in G. Define

a representation ρ of G by ρ(a) = 1 and ρ(b) = i, so the kernel of

ρ is N = 〈a〉. Let nj = |D ∩ bjN | for j = 0, . . . , 3. Notice that the

intersection numbers for D modulo N are (n0, . . . , n3) = (1, 3, 1, 1).

Consider the following sums:∑
g∈D

ρ(g) = 1(1) + 3(i) + 1(i2) + 1(i3) = 2i = z,

∑
g∈D

ρ(g−1) = 1(1) + 3(i3) + 1(i2) + 1(i) = −2i = u.

We find that u = z̄ and zz̄ = 4 = n. �
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Factoring 4 in this way is an instance of a general pattern. The

key to the generalization is the following definition.

Definition. Let G be a group and ρ : G → GL(m,C) a representa-

tion of G. Define ρ̃ : ZG → M(m,C) by

ρ̃

⎛⎝∑
g∈G

agg

⎞⎠ =
∑
g∈G

ag ρ(g).

Theorem 10.11. If ρ : G → GL(m,C) is a representation of the

group G, then the mapping ρ̃ : ZG → M(m,C) is a ring homomor-

phism.

When we apply ρ̃ to the integral group ring equation DD(−1) =

n1G + λG we get

ρ̃(D)ρ̃(D(−1)) = nIm + λρ̃(G). (8)

Returning to our example,

ρ̃(D) = 1(1) + 3(i) + 1(i2) + 1(i3) = 2i = z,

ρ̃(D(−1)) = 1(1) + 3(i3) + 1(i2) + 1(i) = −2i = z̄, and

ρ̃(G) = 4(1) + 4(i) + 4(−1) + 4(−i) = 0.

Equation 8 therefore implies zz̄ = 4, as we had previously observed.

Three aspects of this example generalize. First, the intersection

numbers for D modulo the kernel of ρ can be seen as coefficients in

ρ̃(D), so knowing the possible values of ρ̃(D) constrains the possible

values of these intersection numbers. Second, we have the following

theorem.

Theorem 10.12. Let ρ : G → GL(m,C) be a nontrivial irreducible

representation of the finite group G. Then

ρ̃(G) =
∑
g∈G

ρ(g) = 0m.

By Theorem 10.12, whenever a group G contains a (v, k, λ)-

difference set D, and ρ is any nontrivial irreducible representation

of G of degree m, we have

ρ̃(D)ρ̃(D(−1)) = nIm. (9)
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Equation 9 restricts the possible values of ρ̃(D), and we use it often.

We also know that we can define an inner product on Cm for

which ρ(g) is a unitary matrix for every g ∈ G. In particular, this

tells us that ρ(d−1) = ρ(d)
T
for each d ∈ D. Therefore if M = ρ̃(D)

then M
T
= ρ̃(D(−1)), and we have

MM
T
= nIm.

We have proved the following theorem—our third generalization.

Theorem 10.13. Let G be a group and D a (v, k, λ)-difference set in

G. Let ρ : G → GL(m,C) be a nontrivial irreducible representation of

G and ρ̃ the corresponding ring homomorphism from ZG to the ring

M(m,C). Write M = ρ̃(D). Then ρ̃(D(−1)) = M
T

and MM
T

=

nIm.

In the special case m = 1, the image of D under ρ̃ is a complex

number z, and we have zz = n. In Chapter 12, we use both this

special case and also the matrix equation, along with some algebraic

number theory, either to search for difference sets or to rule out their

existence. In Section 11.4, we obtain useful preliminary results.

Another useful fact for the study of difference sets is that every

element g ∈ G is determined by its image under the regular represen-

tation ρreg. This is because

ρreg(g) : e1G �→ eg.

More generally, we have the following theorem, which we apply in

Section 11.4.

Theorem 10.14. Let G be a finite group and ρreg the regular repre-

sentation of G. Suppose A, B ∈ ZG with ρ̃reg(A) = ρ̃reg(B). Then

A = B.

Exercises

22. This exercise produces a proof of Theorem 10.11 that takes ad-

vantage of our work on the integral group ring in Section 7.1. As-

sume ρ : G → GL(m,C) is a representation of the group G, and let

H = ρ(G) ⊂ GL(m,C).
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(a) Define a function Φ : ZH → M(m,C) taking the formal sum∑
h ahh to the corresponding actual sum of scalar multiples

of matrices. Show that Φ is a ring homomorphism.

(b) Recall from Section 7.1 that we used the homomorphism

ρ : G → H to define a ring homomorphism ρ̂ : ZG → ZH

by ρ̂(
∑

g agg) =
∑

g ag ρ(g). Show that Φ ◦ ρ̂ = ρ̃.

23. Prove Theorem 10.12.

24. Prove Theorem 10.14.

25. Let G = 〈a, b | a4 = b4 = 1, ab = ba〉, and suppose G contains

a (16, 6, 2)-difference set D (not assumed to be the difference set in

Example 15). Define the homomorphism ρ : G → C∗ by ρ(a) = 1

and ρ(b) = i. Let z = ρ̃(D) and u = ρ̃(D(−1)). Both z and u are in

Z[i] = {a+ bi | a, b ∈ Z}, the ring of Gaussian integers.

(a) Explain why u = z̄ and zz̄ = 4. Use what you know about

arithmetic in Z[i] to explain why zz̄ = 4 implies z = ±2 or

±2i.

(b) Let N = 〈a〉, and suppose nj = |D∩ bjN |. Explain why the

fact that z must equal either ±2 or ±2i implies that either

n0 = n2 or n1 = n3.

(c) Show that, in some order, the four intersection numbers

mod N must be either 1, 1, 1, 3 or 2, 2, 2, 0. Also, explain

why, without loss of generality, we may assume n0 is the

different value among the four.

(d) Look at the difference sets in this group on Kibler’s list:

D3 = {1, a, a2, b, ab2, a2b3},
D4 = {1, a, a2, b, b3, a3b2},
D5 = {1, a, b, a2b, ab2, a2b2}.

What are the intersection numbers mod N for each of these

difference sets?
                

                                                                                                               



10.4. Representations and difference sets 195

Coda

Just as the primes are the (multiplicative) building blocks for the in-

tegers, irreducible representations are the (additive) building blocks

for representations of finite groups. Maschke’s Theorem is our key

result. It says that every representation is expressible as a sum of

irreducible representations. The proof of Maschke’s Theorem is com-

plicated. Running through many of the arguments is the potent idea

of averaging (more generally, summing) over a group.

We work over the complex numbers. The powerful facts that

the field C is algebraically closed and has characteristic 0 give us

an efficient route to the proof of Maschke’s Theorem—one exploiting

the nice properties of inner products in complex vector spaces and of

unitary transformations of those spaces.

This chapter concludes by linking representation theory to the

existence question for difference sets. Extending a representation

ρ : G → GL(m,C) to a ring homomorphism ϕ̃ : ZG → M(m,C)

translates the existence question to one in algebraic number theory.

A more general version of Maschke’s Theorem applies over arbi-

trary fields with characteristic 0 or p relatively prime to the order of

the group. The proof of this version of the theorem uses projections

onto subspaces. A source for the proof of this stronger theorem is

Curtis and Reiner’s classic monograph [15], Section 10.8.

It takes us well beyond the scope of our work, but a theory of

representations of infinite groups does exist—part of what is called

“harmonic analysis.” Representations of infinite “Lie groups” are im-

portant in physics. Under suitable hypotheses, satisfied by Lie groups,

finite sums over the group can be replaced by integrals. There is also

a “modular theory” of representations of finite groups over fields of

characteristic p dividing the group order. Modular representation

theory played an important role in early work on the classification of

the finite simple groups.

                

                                                                                                               



Chapter 11

Group Characters

In this chapter we shift our attention from a complex representation

ρ of G and the transformations ρ(g) to a new function χρ : G → C,

called the character of ρ, given by the trace: χρ(g) = Tr(ρ(g)) for

g ∈ G. It might seem that starting with a group representation and

computing its character throws away much of the information about

that representation. On the contrary, we find that the character “de-

termines the representation;” that is, two representations having the

same character must be equivalent. Moreover, properties of charac-

ters enable us to determine whether a representation is irreducible

and to find its irreducible components when it is not.

After definitions, examples and some preliminary results in Sec-

tion 1, we state in Section 2 what we call the Fundamental Theorem

of Character Theory and look at some important consequences. The

proof of the Fundamental Theorem is in Section 3. We return to

difference sets and group rings in Section 4, where we consider exam-

ples drawn from Smith’s paper [65] and also theorems culminating in

characterizations of difference sets using representations. In Section

5 we take a brief look at character tables. Throughout, our vector

spaces are over C and our groups are finite.

197
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11.1. Definitions and examples

Let T be a linear transformation of a vector space V , and let M be

the matrix for T with respect to a fixed basis for V . Recall from

linear algebra that the trace of T is Tr(M). (See A.1.)

Definition. Let G be a finite group and let ρ : G → GL(V ) be

a representation of G in a finite-dimensional complex vector space.

The character χρ of ρ is the function χρ : G → C defined by χρ(g) =

Tr
(
ρ(g)
)
for all g ∈ G. The degree of χρ is the degree of ρ, namely the

dimension of the vector space V . If ρ is irreducible, then χρ is called

an irreducible character. If ρ is the trivial representation (mapping

each group element to 1), then χρ is the trivial character.

When the degree of χρ is 1, then χρ = ρ (identifying a 1 × 1

matrix [a] and its trace a), and χρ is a homomorphism from G to

the multiplicative group C∗. However, for degrees greater than 1,

characters are not homomorphisms. Since for any representation ρ of

degree m, ρ(1G) = Im, we have that χρ(1G) gives the degree of χρ.

Example 1. Let ρ be the natural representation of G = S3 given

in Example 10.1 (but work over the complex numbers). Since ρ(g)

is a permutation matrix for each g ∈ G, its trace χρ(g) counts the

elements that are fixed by the permutation. So we have

χρ

(
1G
)

= 3,

χρ

(
(12)
)

= 1,

χρ

(
(13)
)

= 1,

χρ

(
(23)
)

= 1,

χρ

(
(123)
)

= 0,

χρ

(
(132)
)

= 0.

In this case, the values of the character are integers. �

Example 2. Recall the representation of the group G = 〈a | a5 = 1〉
with ρ(a) = e2πi/5. Since the representation is degree 1 the character

coincides with the representation. In this case the character is a

homomorphism, and the values it takes are fifth roots of unity. �
                

                                                                                                               



11.1. Definitions and examples 199

Example 3. Recall the representation ρ of the dihedral group

G = 〈a, b | a5 = b2 = 1, bab−1 = a−1〉 in Example 10.9:

ρ(a) =

[
η 0

0 η−1

]
and ρ(b) =

[
0 1

1 0

]
,

where η = e2πi/5. Call its character χ. Convince yourself that

χ(ajb) = 0 for j = 0, 1, . . . , 4. What about the values of χ on the

rotations aj? We have χ(aj) = ηj + η−j , a sum of roots of unity.

Since the inverse of a root of unity is its complex conjugate, we see

that χ(aj) is a real number. Of course χ(1G) = 2, but the other

values χ(aj) are not integers. Still,∑
g∈G

χ(g) = (1 + 1) + (η + η4) + (η2 + η3) + (η3 + η2) + (η4 + η)

= 0,

since 1+ η+ · · ·+ η4 = (η5 − 1)/(η− 1) = 0. We encounter other nice

character sums later. �

Example 4. Let G be any group, and let ρreg be the regular repre-

sentation of G in the complex vector space V . If G has m elements,

then V has dimension m, and with respect to the basis {eh | h ∈ G},
each ρreg(g) is an m × m permutation matrix. The trace of a per-

mutation matrix is the number of fixed points, so χreg(1G) = m, and

χreg(g) = 0 for all g �= 1G. �

Recall that Maschke’s Theorem tells us that every representation

is a sum of irreducible representations. The next theorem describes

the character of a sum of representations.

Theorem 11.1. Let χ1 and χ2 be characters of G associated with

representations ρ1 and ρ2 respectively. Define the function χ1 + χ2 :

G → C by (χ1 + χ2)(g) = χ1(g) + χ2(g) for g ∈ G. Then χ1 + χ2 is

the character of G associated with the representation ρ1 ⊕ ρ2.

Along with Maschke’s Theorem, Theorem 11.1 tells us that every

character is a sum of irreducible characters. We combine this decom-

position with the Fundamental Theorem of Character Theory (in the

next section) to obtain powerful results.
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In the examples that we have seen thus far, χ(g) is equal to a

sum of roots of unity for g ∈ G. The following lemma helps us show

that this is true in general. This fact enables us to prove that for any

representation ρ of a finite group G over C, the value of χρ(g
−1) is

the complex conjugate of χρ(g).

Lemma 11.2. If G is a finite group of order m, and if ρ : G →
GL(V ) is a representation, then for any transformation ρ(g), if λ is

an eigenvalue, then λ is an mth root of unity. In particular, |λ| = 1

so 1/λ = λ.

Proof. Let λ be an eigenvalue for ρ(g) with eigenvector v. So

ρ(g)(v) = λv. Since gm = 1G, we know that ρ(gm) = ρ(1G) = I,

the identity map. Therefore, ρ(gm)(v) = ρ(g)m(v) = λmv = v. We

conclude that λm = 1, and |λ| = 1. �

Theorem 11.3. If G is a finite group, g ∈ G, and ρ is a representa-

tion of G over C, then

χρ(g
−1) = χρ(g).

Proof. Fix a basis for V , and let ρ(g) = A with respect to this

basis. Since ρ is a group homomorphism, ρ(g−1) = A−1. Let λj be

the eigenvalues for matrix A, counting algebraic multiplicities. From

linear algebra we know that χρ(g) = Tr(A) =
∑

λj . (See A.2.)

The eigenvalues of A−1 are the inverses of the λjs. So χρ(g
−1) =

Tr(A−1) =
∑

1/λj . By Lemma 11.2, 1/λj = λj for each j, so

χρ(g
−1) = Tr(A−1) =

∑ 1

λj
=
∑

λj =
∑

λj

= Tr(A) = χρ(g).

�

Note that the previous theorem makes no assumption that the

matrix for ρ(g) is unitary.
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Exercises

1. Let G = 〈a | a2 = 1〉 and let ρ be the representation of G given by

ρ(a) =

[
0 1

1 0

]
.

Let χρ be the character of ρ. What is the value of χρ(a)? Write this

value as a sum of eigenvalues of ρ(a).

2. Let G = S4 and let ρ be the natural representation of G of degree

4, and let χρ be its character. List the elements g ∈ G for which:

(a) χρ(g) = 0.

(b) χρ(g) = 1.

(c) χρ(g) = 2. S©
(d) χρ(g) = 3.

(e) χρ(g) = 4.

3. Let G = D4 = {R0, R90, R180, R270, FH , FV , F1, F2}, the dihedral

group of order 8 described as the group of symmetries of a square,

and let ρ be the corresponding representation of degree 2. (See Ex-

ercise 10.1, page 175.) Find χρ(g) for each g ∈ G.

4. Prove Theorem 11.1.

11.2. The Fundamental Theorem

We study group characters to investigate the irreducible representa-

tions of a group. As often happens in mathematics, we will learn

more about characters if we step back and study a more general set

of functions that includes the characters. The Fundamental Theorem

of Character Theory describes the relationship of the characters to

this larger set. We state it after introducing the necessary ideas.

Since homomorphisms map conjugate group elements to conju-

gates, and representations are homomorphisms, representations take

conjugate group elements to similar matrices. Since similar matrices
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have equal traces, group characters are functions that are constant

on conjugacy classes.

Definition. A function α from the group G to the complex numbers

is called a class function if it is constant on each conjugacy class of

G; that is, if g, h ∈ G are conjugate, then α(g) = α(h).

Characters of representations are thus class functions. The set V of

all class functions on a group G has algebraic structure. If α and β

are class functions on G, define their sum by (α+β)(g) = α(g)+β(g)

for g ∈ G. For a complex scalar c, define (cα)(g) = c α(g). With

these definitions, we have the following theorem.

Theorem 11.4. The set V of class functions on a finite group G is a

complex vector space with dimension equal to the number of conjugacy

classes in G.

Proof. We claim that V is indeed a vector space. To show that its

dimension equals the number of conjugacy classes, we provide a basis

for V . Let αj : G → C be the function that takes the value 1 on

elements of the jth conjugacy class, and 0 elsewhere. The functions

αj are independent, since if
∑

cjαj = 0, then, in particular, for

each j the sum has value zero on g in the jth conjugacy class. This

forces cj = 0. Further, these functions span the vector space of class

functions: if β ∈ V has value cj on the jth conjugacy class, then

β =
∑

j cjαj . �

Next we define an inner product on V . We refer to the inner

product space V as the space of class functions on G.

Definition. Let α, β be class functions from G to C. We define the

inner product of two class functions

〈α, β〉 =
1

|G|
∑
g∈G

α(g) β(g).

This really is an inner product on the complex space V . Notice

that if |G| = m and if you think of a class function α as an m-tuple of

complex numbers whose components are the values α(g) as g ranges
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over the elements ofG, then this inner product resembles the standard

inner product on Cm.

The main result in this chapter, which we call the Fundamental

Theorem of Character Theory1, is that the set of irreducible charac-

ters of G is an orthonormal basis for the space V of class functions

on G.

Theorem 11.5. (Fundamental Theorem of Character Theory) Let G

be a finite group and let V be the space of class functions on G.

(i) Let χ1 and χ2 be the characters of two inequivalent irre-

ducible representations of G. Then 〈χ1, χ2〉 = 0.

(ii) If χ is an irreducible character of G, then 〈χ, χ〉 = 1.

(iii) The irreducible characters span V.

In this section we examine some important consequences of this

theorem. We postpone the proof to Section 3.

Our first result leads to the addition of a uniqueness statement

to the decomposition into irreducibles guaranteed by Maschke’s The-

orem in Chapter 10.

Theorem 11.6. Let G be a finite group, and let ρ be a representation

of G with character χρ. Let ϕ be an irreducible representation of G

with character χϕ. Then the number of irreducible components of ρ

equivalent to ϕ is equal to 〈χρ, χϕ〉.

Proof. We decompose ρ into its irreducible summands. By Theo-

rem 10.3, we may rearrange the summands, grouping them by equiv-

alence, and write the following:

ρ ∼
t⊕

s=1

⎛⎝ms⊕
j=1

ρsj

⎞⎠ .

We choose notation so that for fixed s, the ρsj are all equivalent, but

for r �= s, ρsj is not equivalent to ρri . It follows that

χρ =

t∑
s=1

msχs,

1In this language, we follow Isaacs ([33], p, 217).
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where χs is the character of each ρsj . We now calculate the inner

product

〈χρ, χϕ〉 =

〈∑
s

msχs, χϕ

〉
=
∑
s

ms 〈χs, χϕ〉.

By the Fundamental Theorem, we know that 〈χs, χϕ〉 = 1 if and only

if the ρsj are equivalent to ϕ. Therefore, 〈χρ, χϕ〉 = ms, the number

of irreducible components of ρ equivalent to ϕ. �

Now we can state and prove the augmented version of Maschke’s

Theorem.

Theorem 11.7. Every representation of a finite group in a finite-

dimensional complex vector space can be written as a direct sum of

irreducible representations, and the decomposition is unique up to or-

der and equivalence.

Proof. We need only establish the uniqueness claim. To do so, we

use the notation introduced in the proof of Theorem 11.6. Suppose

the representation ρ can be written in two ways as a sum of irreducible

representations,

ρ ∼
t⊕

s=1

⎛⎝ms⊕
j=1

ρsj

⎞⎠ ∼
z⊕

r=1

⎛⎝ nr⊕
j=1

ϕrj

⎞⎠ ,

where we have grouped the irreducible representations according to

equivalence. We then have the corresponding sums for the character

χρ of ρ:

χρ =

t∑
s=1

msχs =

z∑
r=1

nrψr,

where χs is the character of the ρsj , ψr is the character of the ϕrj ,

and the multiplicities ms and nr are positive.

By Theorem 11.6, we have 〈ψr, χρ〉 = nr > 0, so there is an s

with ρsj ∼ ψrj , and ms = nr. Proceeding in this way, we verify

that all of the ϕri occur, up to equivalence, among the ρsj , and all

of the ρsj occur, up to equivalence, among the φri . Thus the two

decompositions of ρ are the same up to order and equivalence. �                
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The preceding theorem gives us a key result: characters really do

tell us all we need to know about representations, in the following

sense.

Theorem 11.8. Let ϕ and ψ be representations of the finite group

G, and let χϕ and χψ be the corresponding characters. Then ϕ and

ψ are equivalent if and only if χϕ = χψ.

Now that we know that every character can be written uniquely as

a sum of irreducible characters, we have a useful test for irreducibility.

Theorem 11.9. Let χ be a character of a finite group. Then χ is

irreducible if and only if 〈χ, χ〉 = 1.

Since the regular representation comes from the complete multi-

plication table for a group, we might expect it to hold all the infor-

mation for the representations of the group. Indeed it does, as the

following theorem shows.

Theorem 11.10. Every irreducible representation of a finite group

G is a component of the left regular representation.

Proof. Using the notation of Theorem 11.7, the regular representa-

tion ρreg is equivalent to a sum of irreducible representations that

are themselves grouped by equivalence. Since traces are additive, we

have a corresponding sum for the character χreg,

χreg =
t∑

j=0

mjχj .

We prove the theorem by contradiction. Suppose the irreducible rep-

resentation ρs does not occur in ρreg, so χs does not occur in χreg

and ms = 0. Then we have

〈χs, χreg〉 =
t∑

j=0

〈χs,mjχj〉

=

t∑
j=0

mj 〈χs, χj〉

= ms = 0.
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Recall that χreg(g) = 0 for g �= 1G, and χreg(1G) = |G|. Using the

definition of the inner product to calculate 〈χs, χreg〉 = 0 thus gives

1

|G|(χs(1G)|G|) = χs(1G) = 0.

This implies that the degree of the irreducible representation ρs is 0,

which is impossible. �

The next theorem relates the degrees of the irreducible represen-

tations to the size of the group and identifies them as the multiplicities

of the irreducible components of the regular representation.

Theorem 11.11. Let {ρj | j = 0, . . . , t} be the irreducible represen-

tations of the finite group G, and let dj be the degree of ρj. Then

t∑
j=0

d2j = |G|,

and dj is the multiplicity of ρj in the decomposition of the regular

representation.

Proof. From Theorem 11.10 we know that each irreducible repre-

sentation ρj appears in the decomposition of ρreg. Therefore ρreg =

m0 ρ0⊕· · ·⊕mt ρt for some positive integers m0, . . . ,mt, and χreg =

m0 χ0 + m1 χ1 + · · · + mt χt. Since the irreducible characters form

an orthonormal set, we can find the coefficient mj by calculating the

inner product. As in the proof of the preceding theorem, we find

that 〈χj , χreg〉 = mj . On the other hand, again as in the proof of

Theorem 11.10, since χreg(1G) = |G| and χreg(g) = 0 for g �= 1G,

〈χj , χreg〉 = χj(1G) = dj . So dj = mj .

Finally we calculate 〈χreg, χreg〉 two different ways. On the one

hand, 〈χreg, χreg〉 = (1/|G|)|G|2 = |G|. On the other hand, if we

write χreg as the weighted sum of the irreducible characters, then

〈χreg, χreg〉 =
∑
j

∑
	

mjm	 〈χj , χ	〉 =
∑
j

m2
j =
∑
j

d2j .

So
∑

j d
2
j = |G|. �

A useful consequence of Theorem 11.11 is the following charac-

terization of an abelian group.
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Theorem 11.12. Let G be a finite group. Then G is abelian if and

only if all of its irreducible characters have degree 1.

Exercises

5. Prove Theorem 11.8.

6. Prove Theorem 11.9.

7. Prove Theorem 11.12.

8. Recall the representation ρ of degree 2 of the dihedral group Dm =

〈a, b | am = b2 = 1, bab−1 = a−1〉 in Example 10.11, page 174. Select

j so that η2 �= 1, and use the inner product of characters to verify

that ρ is irreducible.

9. Let ρ be a representation of the group G and let χρ be the corre-

sponding character.

(a) Show that if χρ : G → C∗ is a homomorphism, then the

degree of ρ must be 1.

(b) Can χρ be a homomorphism from G to the additive group

of C?

10. Characters of G = S3.

(a) How many conjugacy classes does G have?

(b) Let ρ be the natural representation of G = S3 in C3. Cal-

culate 〈χρ, χρ〉. S©
(c) Let χ0 be the trivial character on G. Calculate 〈χρ, χ0〉.
(d) Let χ1 be the character of the representation of G that maps

even permutations to 1 and odd permutations to −1. Cal-

culate 〈χρ, χ1〉.
(e) Look back at Exercise 10.2. Let v2 = e1 − e2 and v3 =

e1 − e3. Verify that span{v2,v3} = span{e1 + e2 + e3}⊥,
and let ρ2 be the representation of G in this 2-dimensional

space. Write out the matrices ρ2(π) for π ∈ G and use them
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to calculate the values of the corresponding character χ2.

Calculate 〈χ2, χ2〉. Also calculate 〈χρ, χ2〉.
(f) What do you conclude about the decomposition of ρ as a

sum of irreducible representations?

11. Repeat Exercise 10 forG = S4, modifying part (e) as appropriate.

12. The conjugacy classes of D4 were determined in Exercise 3.2. In

this exercise you will find the conjugacy classes of the other dihedral

groups Dm, where Dm = 〈a, b | am = b2 = 1, bab−1 = a−1〉. Recall

that the size of the conjugacy class containing an element x ∈ G is

the index of its centralizer, [G : CG(x)]. (See Exercise 3.6.)

(a) Find the conjugacy classes of D5.

(b) Find the conjugacy classes of Dm for m = 2j + 1.

(c) Find the conjugacy classes of Dm for m = 2j.

13. Let G be a finite group.

(a) Let V = C and suppose that ρ : G → GL(V ) and σ : G →
GL(V ) are degree 1 representations of G. Show that we can

create another degree 1 representation τ : G → GL(V ) by

defining τ (g) = ρ(g)σ(g) for all g ∈ G (where we multiply

complex numbers as usual).

(b) How is the character of τ related to the characters of ρ and

σ?

(c) Suppose that ρ : G → GL(Cd) is any representation of G,

with character χρ, and that χ′ is a character of degree 1 of

G. Show that the product χρχ
′ is a character of G.

(d) Explain why, in general, the construction from part (a) does

not work if ρ and σ are both representations of G of degree

d > 1.

Remark: It turns out that the product of any two characters of G

is again a character. To prove this requires a construction called the

“tensor product.”
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14. Let G be a finite abelian group, and let G∗ be the set of irre-

ducible characters of G. Recall that by Theorem 11.12, all irreducible

characters ofG have degree 1. As this exercise will show, G∗ is a group

called the character group of G.

(a) Explain why G and G∗ have the same cardinality.

(b) As in Exercise 13a, define a binary operation on G∗ by

(χψ)(g) = χ(g)ψ(g). Show that G∗ is a group under this

operation. H©
(c) Assume G = 〈a〉 is cyclic of order r, and let ω be a primitive

rth root of unity. Show that G∗ = 〈α〉, where α(a) = ω, and

G � G∗ via g = aj �→ χg = αj .

(d) Assume G = 〈a, b | ar = bs = 1, ab = ba〉. Let ω, η be primi-

tive rth and sth roots of unity respectively and define homo-

morphisms α and β mapping G → C∗ by α(a) = ω, α(b) =

1, β(a) = 1, and β(b) = η. Show that G∗ = 〈α, β |αr =

βs = 1, αβ = βα〉 and G � G∗ via g = ajb	 �→ χg = αjβ	.

Note that in this correspondence gh �→ χgh = χgχh and

g−1 �→ χg−1 = (χg)
−1. This observation will be used in

Chapter 13.

(e) Explain, informally, why G � G∗ for any abelian group G,

and why there is a natural way to identify elements ofG with

elements of G∗. (This isomorphism is not canonical, since it

depends on a choice of generators for G and of corresponding

primitive roots of unity.)

11.3. Proof of the Fundamental Theorem

In this section we prove the Fundamental Theorem of Character The-

ory.

Theorem 11.5 Let G be a finite group and let V be the space of

class functions on G.

(i) Let χ1 and χ2 be characters of two inequivalent irreducible

representations of G. Then 〈χ1, χ2〉 = 0.

(ii) If χ is an irreducible character of G then 〈χ, χ〉 = 1.
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(iii) The irreducible characters span V .

Our argument makes heavy use of the following concept.

Definition. Given representations ρ1 : G → GL(V1) and ρ2 : G →
GL(V2) of G in vector spaces over the same field, a linear trans-

formation τ : V1 → V2 is called an intertwining transformation (or

intertwining operator) from ρ1 to ρ2 (in that order) if ρ2(g)τ = τρ1(g)

for all g ∈ G. In other words, for all g ∈ G, the following diagram

commutes:

V1

τ

��

ρ1(g)
�� V1

τ

��

V2

ρ2(g)
�� V2

Note that if τ is an invertible intertwining transformation, then ρ1
and ρ2 are equivalent.

Proof of orthogonality. Our first goal is to prove part (i) of The-

orem 11.5, showing that if ρ1 and ρ2 are inequivalent irreducible rep-

resentations with characters χ1 and χ2 respectively, then

〈χ1, χ2〉 =
1

|G|
∑
g∈G

χ1(g)χ2(g) =
1

|G|
∑
g∈G

χ1(g)χ2(g
−1) = 0.

This part of Theorem 11.5 has a complicated proof, so we outline the

steps that bring us to our goal.

(1) We prove Schur’s Lemma, which tells us that the intertwin-

ing transformations between two irreducible representations

are very restricted: (i) if the irreducible representations are

not equivalent, the intertwining transformation is zero; (ii)

if they are equivalent, it is a scalar times the identity trans-

formation. [Theorem 11.13]

(2) Given representations in spaces V1 and V2 respectively and

a linear transformation σ : V1 → V2, we show how to build

a transformation that intertwines the representations.

[Theorem 11.14]
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(3) This is the key tool. For any linear transformation σ : V1 →
V2, by using the first part of Schur’s Lemma and the con-

struction in step 2 of an intertwining operator based on σ,

we show that if ρ1 and ρ2 are inequivalent irreducible rep-

resentations, then∑
g∈G

ρ2(g
−1)σρ1(g) = 0.

[Theorem 11.15]

(4) We convert to matrix notation, writing ρ1(g) = A(g) =

(ast(g)) and ρ2(g
−1) = B(g−1) = (bst(g

−1)). By making

simple choices for the matrix corresponding to σ we show

that for any s, t, j, k,∑
g∈G

bsj(g
−1)akt(g) = 0.

Specifically, when j = s and k = t, we have∑
g∈G

bss(g
−1)att(g) = 0.

[Lemma 11.16]

(5) From this last equation, it is a short step to 〈χ1, χ2〉 = 0.

[Theorem 11.5(i)]

Now, off we go!

Step 1:

Theorem 11.13. (Schur’s Lemma) Let ρ1, ρ2 be irreducible repre-

sentations of a finite group G in vector spaces V1, V2 over C.

(i) If ρ1 and ρ2 are not equivalent, then the only intertwining

transformation from ρ1 to ρ2 is τ = 0. (This much is true

over any field.)

(ii) If ρ1 = ρ2, then the only intertwining transformations (that

is, the only linear transformations τ : V1 → V1 that commute

with all the ρ1(g)) are scalar multiples of the identity.

Proof. Part (i): Assume ρ1 and ρ2 are inequivalent, irreducible rep-

resentations of G and ρ2(g)τ = τρ1(g) for all g ∈ G. We note that
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Ker(τ ) ⊆ V1 must be an invariant subspace for ρ1. Since ρ1 is irre-

ducible, Ker(τ ) must be either {0} or all of V1. A similar argument

shows that Im(τ ) must be either {0} or all of V2. Putting these re-

sults together, if Ker(τ ) is {0}, then τ is an invertible transformation

from V1 to V2, and ρ1 and ρ2 are equivalent. This contradicts our

hypothesis, so Ker(τ ) = V1, and τ = 0.

Part (ii): Suppose that τρ1(g) = ρ1(g)τ for all g ∈ G. Since we

are working over C, τ must have at least one eigenvalue λ. We will

show that τ = λI. There is a nonzero eigenvector v ∈ V such that

τv = λv. So (τ − λI)v = 0. Consider the transformation τ − λI.

Since ρ1 is irreducible and Ker(τ−λI) is a nonzero invariant subspace

for ρ1, Ker(τ − λI) = V . Thus τ − λI = 0, and τ = λI. �

Step 2: We show how to construct intertwining transformations so

that we can use Schur’s Lemma. The property we want for an in-

tertwining transformation τ from ρ1 to ρ2 is that ρ2(g)τ = τρ1(g)

for all g ∈ G. This would mean that τ = ρ2(g
−1)τρ1(g). Certainly

ρ2(g
−1)τρ1(g) is a linear transformation from V1 to V2. We also note

that the sum of linear transformations is again a linear transforma-

tion. So we are again prompted to sum over all elements in G, our

trick elevated to strategy.

Theorem 11.14. If G is a finite group and if ρ1 : G → GL(V1) and

ρ2 : G → GL(V2) are representations of G over K, then for any linear

transformation σ : V1 → V2,

τ =
∑
g∈G

ρ2(g
−1) σ ρ1(g)

is an intertwining transformation from ρ1 to ρ2.

Proof. We show that for all h ∈ G, ρ2(h)τ = τρ1(h):

ρ2(h)τ = ρ2(h)
(∑

g∈G

ρ2(g
−1)σρ1(g)

)
=
∑
g∈G

ρ2(h)ρ2(g
−1)σρ1(g)

=
∑
g∈G

ρ2(hg
−1)σρ1(g), and
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τρ1(h) =
(∑

g∈G

ρ2(g
−1)σρ1(g)

)
ρ1(h)

=
∑
g∈G

ρ2(g
−1)σρ1(g)ρ1(h)

=
∑
g∈G

ρ2(g
−1)σρ1(gh).

If we now substitute g1 = gh into this second expression, so that

g−1 = hg−1
1 , we see that the two expressions are equal. �

Step 3: We note that in Step 2 we constructed τ from any linear

transformation σ from V1 to V2. Also, recall from Schur’s Lemma

that if ρ1 and ρ2 are inequivalent irreducible representations of G on

V1 and V2, then any intertwining transformation from ρ1 to ρ2 must

be the zero transformation. Putting these two facts together, we have

the following theorem.

Theorem 11.15. Let ρ1 and ρ2 be inequivalent irreducible represen-

tations of G in complex vector spaces V1 and V2, respectively. Then

for any linear transformation σ : V1 → V2∑
g∈G

ρ2(g
−1)σρ1(g) = 0.

Step 4: The preceding theorem is our key to proving that the inner

product of any two inequivalent irreducible characters is zero. We

translate it into matrix notation in the next technical lemma. (We

call it a technical lemma because its proof is an intricate calculation

but uses no new ideas.)

Lemma 11.16. Let ρ1 and ρ2 be inequivalent irreducible represen-

tations of G in complex vector spaces V1 and V2, respectively. We fix

a basis for V1 and for V2. With respect to these bases, ρ1(g) is the

m × m matrix A(g) and ρ2(g
−1) is the n × n matrix B(g−1). Then

for any 0 ≤ s, j ≤ n and 0 ≤ k, t ≤ m,∑
s,t

bsj(g
−1)akt(g) = 0.
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Proof. Theorem 11.15 tells us that for any linear transformation

σ : V1 → V2, ∑
g∈G

ρ2(g
−1) σ ρ1(g) = 0.

In terms of the fixed bases, this equation of transformations becomes

an equation of matrices:∑
g∈G

B(g−1)S A(g) = 0,

where S is any n×m matrix. We write

A(g) =

⎡⎢⎣a11(g) a12(g) · · · a1m(g)
...

...
...

am1(g) am2(g) · · · amm(g)

⎤⎥⎦

B(g−1) =

⎡⎢⎣b11(g
−1) b12(g

−1) · · · b1n(g
−1)

...
...

...

bn1(g
−1) bn2(g

−1) · · · bnn(g
−1)

⎤⎥⎦ .
To pick off the entries that we wish to relate, we choose the matrix

S = Sjk to be the matrix of all 0s except for a single 1 in the jkth

entry. We let

C(g) = B(g−1)Sjk A(g).

Then

cst(g) =
(
row s of B(g−1)

)
·
(
column t of SjkA(g)

)

=
[
bs1(g

−1), . . . , bsn(g
−1)
]
·

⎡⎢⎢⎢⎢⎢⎢⎣

0
...

akt(g)
...

0

⎤⎥⎥⎥⎥⎥⎥⎦ ← jth entry

= bsj(g
−1)akt(g).

Finally, summing over all g ∈ G we get our result:∑
g∈G

cst(g) =
∑
g∈G

bsj(g
−1)akt(g) = 0. �
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We actually use this result in the restricted case that s = j, and

t = k:

∑
g∈G

bss(g
−1)att(g) = 0.

Note that this sum involves only the diagonal elements of the matrices

A(g) and B(g−1). These are the elements that appear in the traces

of these matrices.

Step 5: We are now ready to show that inequivalent irreducible char-

acters are orthogonal.

Fundamental Theorem, part (i). Let G be a finite group, and V
be the space of class functions on G. Let χ1 and χ2 be characters of

inequivalent irreducible representations for G. Then 〈χ1, χ2〉 = 0.

Proof. Using the notation in the proof of Lemma 11.16, with A(g)

and B(g−1) the matrices for transformations ρ1(g) and ρ2(g
−1), then

χ1(g) = Tr
(
A(g)
)

=

m∑
t=1

att(g),

χ2(g
−1) = Tr

(
B(g−1)

)
=

n∑
s=1

bss(g
−1).

Using these expressions for χ1(g) and χ2(g
−1), we calculate the inner

product of χ1 and χ2:
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〈χ1, χ2〉 =
1

|G|
∑
g∈G

χ1(g)χ2(g)

=
1

|G|
∑
g∈G

χ1(g)χ2(g
−1)

=
1

|G|
∑
g∈G

(∑
t

att(g)
)(∑

s

bss(g
−1)
)

=
1

|G|
∑
g∈G

(∑
s,t

att(g) bss(g
−1)
)

=
1

|G|
∑
s,t

(∑
g∈G

att(g) bss(g
−1)
)

=
1

|G|
∑
s,t

0

= 0.

We conclude that characters of inequivalent irreducible representa-

tions are orthogonal. �

Proof of normality. Our next goal is to prove Theorem 11.5(ii) by

showing that if χ is an irreducible character, then 〈χ, χ〉 = 1. We do

this by traversing the same steps as in the proof of part (i), but using

the second part of Schur’s Lemma.

Fundamental Theorem, part (ii). If χ is an irreducible character

of a finite group G, then 〈χ, χ〉 = 1.

Proof. As in the proof of Lemma 11.16, we assume χ is the character

of a representation ρ of G and consider the transformation

τ =
∑
g∈G

ρ(g−1) σjk ρ(g),

where σjk is represented by the matrix with all zeroes except for a

one in the jkth entry. By Theorem 11.14, this is an intertwining

transformation from ρ to itself. So by part (ii) of Schur’s Lemma,

τ = λIm, where m is the degree of ρ.
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To get a value for λ we take the trace of τ . On the one hand,

Tr(τ ) = Tr(λIm) = mλ; on the other hand, the trace is the sum

over g ∈ G of the traces of ρ(g−1) σjk ρ(g). Since each of these is a

conjugate of σjk, the trace of the sum is simply |G| times the trace of

σjk. If j �= k, then the trace is zero, and Tr(τ ) = 0 (so λ = 0). If j = k

then Tr(σjj) = 1. Therefore Tr(τ ) = mλ = |G|, and λ = |G| /m.

In the calculation of τ we again use matrices A(g) to represent

ρ(g) and Sjk to represent σjk. The matrix calculation from the proof

of Lemma 11.16 shows us that the stth entry of A(g−1)SjkA(g) is

asj(g
−1)akt(g). Summing over g ∈ G we get the matrix for τ , whose

diagonal entries are λ and whose other entries are 0. Therefore:∑
g∈G

asj(g
−1) akt(g) =

{
|G| /m if s = t and j = k

0 otherwise.

We use these facts to calculate 〈χ, χ〉:

〈χ, χ〉 =
1

|G|
∑
g∈G

χ(g)χ(g)

=
1

|G|
∑
g∈G

χ(g)χ(g−1)

=
1

|G|
∑
g∈G

( m∑
t=1

att(g)
)( m∑

s=1

ass(g
−1)
)

=
1

|G|
∑
s,t

∑
g∈G

att(g) ass(g
−1).

The sum over g ∈ G equals |G|/m only when s = t, and is 0 otherwise.

Over all the combinations of the outer sum, s = t exactly m times.

So the inner product is:

〈χ, χ〉 =
1

|G| m
|G|
m

= 1. �

Proof of spanning. Finally, we prove Theorem 11.5(iii) by showing

that the irreducible characters span V , so their number is exactly the

number of conjugacy classes. For our proof, we need the following

result.
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Theorem 11.17. Let ρ be a representation of G over C, and let α

be a class function for G. Then

τ =
∑
g∈G

α(g)ρ(g)

is an intertwining transformation from ρ to itself.

Proof. As in the proof of Theorem 11.14, we can show that ρ(h)τ =

τρ(h) for all h ∈ G. �

Fundamental Theorem, part (iii). Let G be a finite group and V
the space of class functions on G. Then the irreducible characters of

G span V .

Proof. Let W be the subspace of V spanned by the irreducible char-

acters. Recall from Theorem 10.7 that V = W ⊕ W⊥. Our plan is

to show that W = V by showing W⊥ = {0}. We do this by prov-

ing that any class function α that is orthogonal to all the irreducible

characters must be the zero function.

Let α be a class function that is orthogonal to all the irreducible

characters of G, and let ρj be an irreducible representation of G.

Since α is a class function, α : g �→ α(g) is also a class function. By

Theorem 11.17 we know that
∑

α(g)ρj(g) is an intertwining trans-

formation from ρj to itself. So by part (ii) of Schur’s Lemma,∑
g∈G

α(g)ρj(g) = λI for some λ.

Next take the trace of both sides. On the one hand, Tr(λI) is λ times

the degree of ρj ; on the other hand,

Tr

(∑
g∈G

α(g)ρj(g)

)
=
∑
g∈G

α(g)Tr(ρj(g))

=
∑
g∈G

α(g)χρj
(g)

= |G|
〈
χρj

, α
〉

= 0.
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We conclude that λ = 0. Consequently, for any irreducible repre-

sentation ρj ,
∑

α(g)ρj(g) is the zero transformation. Since we can

write any representation as the sum of irreducible representations, we

have for every representation ρ that∑
g∈G

α(g)ρ(g) = 0.

In particular, this is true for the left regular representation ρreg. We

then apply this, the zero transformation, to the basis vector e1G to

get: (∑
g∈G

α(g)ρreg(g)

)
(e1G) =

∑
g∈G

α(g) ρreg(g)(e1G)

=
∑
g∈G

α(g) eg = 0.

This linear combination of the basis vectors eg can be 0 only if all

scalars α(g) are 0. So α(g) = 0 for all g ∈ G. We conclude that

W⊥ = {0}, so the irreducible characters span all of V . �

Exercises

15. Details in the proof of Schur’s Lemma

(a) Assume ρ1 and ρ2 are inequivalent irreducible representa-

tions of G and ρ2(g)τ = τρ1(g) for all g ∈ G. Show that

Ker(τ ) is an invariant subspace for ρ1 and Im(τ ) is an in-

variant subspace for ρ2. S©
(b) Assume ρ1 is irreducible and ρ1(g)τ = τρ1(g) for all g ∈ G.

Show Ker(τ − λI) is an invariant subspace for ρ1.

16. Use Schur’s Lemma (not Theorems 11.11 or 11.12) to prove that

if G is a finite abelian group then all of its irreducible characters have

degree 1.
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11.4. Characters and difference sets

We begin this section on the use of characters to study difference

sets with a discussion of some of the initial steps in Smith’s construc-

tion [65] of his surprising non-abelian (100, 45, 20)-difference set. We

then turn to a sequence of theorems about characters of finite abelian

groups yielding a characterization of an abelian difference set, Theo-

rem 11.21. We already know from Theorem 10.13 that if χ is a non-

trivial character of an abelian (v, k, λ)-difference setD, then z = χ̃(D)

satisfies zz = n for n = k−λ. This necessary condition can be used to

narrow the search for a difference set. Theorem 11.21 guarantees that

a subset of G of size k surviving this search process for all nontrivial

characters ofG really is a difference set. Davis and Jedwab turned this

result into a general strategy for constructing difference sets, leading

to a uniform construction for difference sets with gcd(v, n) > 1 and

the discovery of new families of difference sets along the way ([16]).

Theorem 11.22 extends this characterization to non-abelian groups.

Smith’s construction

Smith [65] constructed his (100, 45, 20)-difference set in the group

G = 〈a, b, c | a5 = b5 = c4 = 1, ab = ba, cac−1 = a2, cbc−1 = b2〉.

The subgroups 〈a〉, 〈b〉 and 〈a, b〉 are normal subgroups of G. (In

fact, G′ = 〈a, b〉 is the commutator subgroup of G. It is also the Sylow

5-subgroup of G.) In the following two examples, we describe some

of Smith’s use of group representations in his successful search for a

(100, 45, 20)-difference set in G.

Example 5. We begin with four irreducible representations of G of

degree 1. For j = 0, 1, 2, 3, define

χj(a) = 1, χj(b) = 1, χj(c) = ij .

We can use inner products to verify that these four irreducible char-

acters are inequivalent. It is easiest to calculate the inner products

we need by working with the right cosets of G′ = 〈a, b〉 in G. Notice

that
g ∈ G′c ⇔ g−1 ∈ G′c3 and

g ∈ G′c2 ⇔ g−1 ∈ G′c2.
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For example, we calculate

〈χ2, χ1〉 =
1

100

[
25(1)(1)+25(−1)( i )+25(1)(−1)+25(−1)(−i)

]
= 0.

We suppose D is a (100, 45, 20)-difference set in G. For D in the

integral group ring, zj = χ̃j(D) is in the ring of Gaussian integers

Z[i], and χ̃j(D
(−1)) = zj . In fact, z2 is actually an integer. Now

by Theorem 10.13 (page 193) we have zjzj = 25 for j = 1, 2, 3. We

know that a Gaussian integer z = x+ iy satisfies zz = 25 if and only

if x2 + y2 = 25. Therefore z2 = ±5 and z3 = z1 ∈ {±5, ±5i, ±3 ±
4i, ±4±3i}. If we write uj = |D∩G′cj |, then our work thus far tells us

that these intersection numbers must satisfy the following equations:

u0 + u1 + u2 + u3 = 45,

u0 + u1i− u2 − u3i = z1,

u0 − u1 + u2 − u3 = �z2.

From the equations in Example 5, Smith finds that there are two

possibilities for the unordered set {u0, u1, u2, u3}:

{15, 10, 10, 10} or {14, 12, 11, 8}.

In fact, up to translation of D or applying a group automorphism

of G/G′, Smith concludes that there are three possibilities for the

ordered quadruple (u0, u1, u2, u3):

(15, 10, 10, 10), (14, 12, 11, 8) or (14, 8, 11, 12).

(This is Lemma 1 of his paper [65].)

Example 6. We continue with Smith’s paper [65], using the notation

of the previous example. The subgroup G′ = 〈a, b〉 has exactly six

subgroups of order 5; Smith labels them Hj = 〈ajb〉 for j = 0, 1, 2, 3, 4

and H∞ = 〈a〉. Much of Smith’s analysis is based on the structure

and representations of the factor groups G/Hj
∼= F , where

F = 〈α, γ | α5 = γ4 = 1F , γαγ
−1 = α2〉.
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To begin, Smith defines the representation ψ′ : F → GL(4,C) by

ψ′(α) =

⎡⎢⎢⎣
η 0 0 0

0 η2 0 0

0 0 η4 0

0 0 0 η3

⎤⎥⎥⎦ ψ′(γ) =

⎡⎢⎢⎣
0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

⎤⎥⎥⎦ ,
where η = e2πi/5. Let χ′ be the character of ψ′. Then for j = 1, 2, 3, 4,

χ′(αj) = −1, and χ′(αjγ	) = 0 for all j and for � = 1, 2, 3. It follows

that 〈χ′, χ′〉 = (1/20)[1(4)(4) + 4(−1)(−1)] = 1, so χ′ (and ψ′) are

irreducible.

Next Smith defines a representation ψ of F by

ψ(α) =

⎡⎢⎢⎢⎢⎣
0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

⎤⎥⎥⎥⎥⎦ ψ(γ) =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0 0 0 0 1

0 0 1 0 0

⎤⎥⎥⎥⎥⎦ .
This is actually the permutation representation of F on the 5 left

cosets of H = 〈γ〉. Let χ be the character of ψ. To find values of

χ we need to count fixed points (i.e., fixed cosets) under the various

elements of F . Since γH = H and γαjH = α2jH �= αjH for j =

1, 2, 3, 4, we have χ(γ) = 1. Likewise χ(γ2) = χ(γ3) = 1. Similarly

(αiγ)(αjH) = α2j+iH = αjH if and only if j + i ≡ 0 mod 5, which

implies χ(αiγ) = 1. We also find χ(αiγj) = 1 for j = 2, 3. Finally, for

j �= 0, αj acts as a 5-cycle on the cosets and so has no fixed points.

Therefore χ(αj) = 0 for j = 1, 2, 3, 4. Putting all this information

together, we have

〈χ, χ0〉 =
1

20

[
1(5)(1) + 4(0)(1) + 15(1)(1)

]
= 1,

〈χ, χ′〉 =
1

20

[
1(5)(4) + 4(0)(−1) + 15(1)(0)

]
= 1.

This tells us that the irreducible components of ψ are ψ′ and the

trivial representation. �

We leave Smith’s analysis here for now, but very briefly summa-

rize the rest. Each representation φ of the factor group G/Hj
∼= F

defines a representation ρ of G by ρ(g) = φ(Hjg). Proceeding as in
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Example 6, Smith finds all six of the irreducible representations of G

of degree 4 (like ψ′) and constructs an integer-valued representation

(like ψ) for each. Specifically, for each j he determines a represen-

tation ωj : G → GL(5,C) producing matrices with integer entries.

He then defines the matrix M = ω̃j(D) − 9J , where J is the 5 × 5

all 1s matrix. Determining M will determine ω̃j(D) and bring him

closer to finding D. He finds that up to permutations of rows and

columns, there are just four possibilities for M . (This is Lemma 2 in

[65].) There is still a long way to go to determine D, and to traverse

the rest of the distance, Smith employs some very interesting geomet-

ric arguments along with more representation theory. Finally, when

the possibilities for D are restricted enough to make it tractable, a

computer search (with the help of mathematicians at the National

Security Agency) produces several (100, 45, 20)-difference sets in G.

Characterizing difference sets. We now return to difference sets

in arbitrary finite groups. Suppose D is a (v, k, λ)-difference set in

G. We already know that a representation ϕ of G gives a ring ho-

momorphism ϕ̃ of ZG. Let M = ϕ̃(D). Theorem 10.13 tells us that

a necessary condition for the existence of a difference set D is that

MM
T
= nI. We now work toward a companion sufficient condition.

Theorems 11.21 and 11.22 (one for an abelian group and one for an

arbitrary group) require that this necessary condition holds for every

irreducible representation ϕ of G. In other words, these theorems

assure that any possible difference set D that survives the necessary

condition for every irreducible ϕ really is a difference set. However,

we cannot apply these theorems without knowing the full set of irre-

ducible representations of a group. The following example illustrates

some of what is involved in finding all the irreducible representations

of a given group. For a bit more, see Section 5.

Example 7. To illustrate, we find the full set of irreducible represen-

tations of G = D4 = 〈a, b | a4 = b2 = 1, bab = a3〉. By Exercise 3.2,

we know G has 5 conjugacy classes and therefore 5 irreducible repre-

sentations. By Theorem 11.11, we know that the sum of the squares

of the degrees of these representations must equal |G| = 8. From

this we conclude that there must be four irreducible representations

of degree 1 and one of degree 2. Indeed, we saw in Example 10.11
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(page 174) the degree-2 representation:

a �→
[

i 0

0 −i

]
b �→
[

0 1

1 0

]
.

We also know the trivial representation is one of the degree 1 rep-

resentations. We must find three more. To do this, notice that the

non-identity elements of G/〈a2〉 all have order 2, so we may define the

following three representations, each of which has 〈a2〉 in its kernel:

χ1 :

{
a �→ +1

b �→ −1
χ2 :

{
a �→ −1

b �→ +1
χ3 :

{
a �→ −1

b �→ −1.

�

To reach Theorem 11.21, we begin with a result that translates

Theorem 10.12 into the language of characters.

Theorem 11.18. Let G be a finite group and ρ an irreducible repre-

sentation of G of degree m with corresponding character χ. We write

χ0 for the trivial character. Then

∑
g∈G

χ(g) =

⎧⎪⎪⎨⎪⎪⎩
|G| if χ = χ0

0 if χ �= χ0.

In the abelian case, a useful companion result to the preceding

theorem is Theorem 11.19. These two theorems are often referred

to as orthogonality relations, although we do not actually need the

Fundamental Theorem to prove them.

Theorem 11.19. Let G be a finite abelian group and let G∗ be the

set of all irreducible characters of G. Then the following equations

hold:

∑
χ∈G∗

χ(g) =

⎧⎪⎪⎨⎪⎪⎩
|G| if g = 1

0 if g �= 1.

Using these orthogonality relations for abelian groups, we can

show that the coefficients of A =
∑

agg ∈ CG are determined by the

images of A under the irreducible characters in G∗.
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Theorem 11.20. (Inversion formula) Let G be a finite abelian group

and A =
∑

agg an element of the group ring CG. Then

ah =
1

|G|
∑
χ∈G∗

χ̃(A)χ(h−1) for h ∈ G.

The inversion formula now gives us the promised characteriza-

tion of an abelian difference set. The implication in one direction is

familiar; it is the converse that is new and perhaps surprising.

Theorem 11.21. Let G be an abelian group of order v, and let G∗

be the set of irreducible characters of G. Write χ0 for the trivial

character in G∗. Let D be a subset of G of cardinality k, and assume

λ = k(k − 1)/(v − 1) is an integer. Then D is a (v, k, λ)-difference

set in G if and only if for all irreducible characters χ

χ̃(D)χ̃(D) =

⎧⎨⎩
n if χ �= χ0

k2 if χ = χ0.

What about non-abelian difference sets? Liebler [45] general-

ized the inversion formula for non-abelian groups. His generalization

depends on aspects of the structure of CG beyond those we have

discussed. Nonetheless, his largely expository and somewhat philo-

sophical article “Constructive Representation Theoretic Methods and

nonAbelian Difference Sets” [46] is well worth a look. However, the

following theorem, also due to Liebler and appearing in [17], is ac-

cessible to us.

Theorem 11.22. (Liebler) Let D be a subset of size k in a group

G of order v, with k(k − 1) = λ(v − 1) for some integer λ. Assume

ϕ1, . . . , ϕt are the nontrivial irreducible representations of G, with

mj = deg ϕj. If

ϕ̃j(D)ϕ̃j(D
(−1)) = nImj

for j = 1, . . . , t, then D is a (v, k, λ)-difference set in G.

Proof. Write ρreg for the regular representation of G. Recall The-

orem 10.14, which tells us that if A and B are in ZG and satisfy

ρ̃reg(A) = ρ̃reg(B), then A = B. Let A = DD(−1) and B = n1G+λG.

We will show that ρ̃reg(A) = ρ̃reg(B).
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We know that ρreg decomposes as a sum of irreducible repre-

sentations. In fact, we know (Theorem 11.11) that every irreducible

representation of G appears in ρreg with multiplicity equal to its de-

gree. Together with the hypotheses of the theorem, this tell us that

ρ̃reg(A) is block diagonal, with the block nImj
appearing mj times,

after a (1, 1) entry equal to k2 corresponding to the trivial represen-

tation. Thus,

ρ̃reg(A) =

[
k2 0

0 nIv−1

]
.

On the other hand, ρ̃reg(B) = nIv+M , where M consists entirely

of zeroes except for λv in the (1, 1) entry. Since Theorem 4.1 tells us

n + λv = k2, we have ρ̃reg(A) = ρ̃reg(B), so A = B. Therefore D

satisfies the difference set equation in ZG and is thus a difference

set. �

Exercises

17. Refer to Example 5:

(a) Explain the calculation of 〈χ2, χ1〉.
(b) Calculate 〈χ1, χ1〉.
(c) Why is 〈a, b〉 the commutator subgroup for G?

18. Refer to Example 6:

(a) Explain how to define a representation of a group G given

a representation of a factor group G/N .

(b) Explain why χ(γ2) = χ(γ3) = 1.

(c) Explain why χ(αiγj) = 1 for j = 2, 3 and i = 1, . . . , 4.

19. In this exercise you will find all the irreducible representations of

a group G in two special cases. In each case, explain how you know

that you have them all.

(a) Find all the irreducible representations of G = 〈a | a12 = 1〉.
(b) Find all the irreducible representations of the dihedral group

G = 〈a, b | a6 = b2 = 1, bab = a−1〉.
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20. Choose G = 〈b | b4 = 1〉, so G∗ = {χ0, χ1, χ2, χ3}, where χj(b) =

ij .

(a) Calculate the sums in Theorem 11.18.

(b) Calculate the sums in Theorem 11.19.

(c) Let A = 3 + 7ib − πb2 + (2 − 5i)b3 and use the inversion

formula (Theorem 11.20) to recover the coefficient of b.

21. Let G = 〈b | b7 = 1〉, and let ω = e2πi/7 be a primitive seventh

root of unity. Define χj by χj(b) = ωj so G∗ = {χ0, χ1, . . . , χ6}.

(a) Let D = {b, b2, b4} and verify that D satisfies the criterion

in Theorem 11.21.

(b) Let D′ = {b, b2, b3}. What goes wrong in checking the cri-

terion in Theorem 11.21?

22. Prove Theorem 11.19. H©

23. Prove Theorem 11.20.

24. Prove Theorem 11.21

25. Let G be a finite group and let ρ : G → GL(V ) be an arbitrary

representation of G in V over C with character χρ. Assume that∑
g∈G

χρ(g) �= 0.

(a) Let χ0 be the trivial character and calculate the inner prod-

uct 〈χρ, χ0〉.

(b) Show there exists a nonzero vector v such that ρ(g)(v) = v

for all g ∈ G. H©

26. In [8] on pages 320–321 is a proof of Theorem 6.9 that uses, in

part, the theorems in this section. (It also uses quite a bit of group

theory.) Try to read it!
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11.5. Character tables

In this brief section, we introduce the idea of a character table, a

useful way to tabulate information about the irreducible characters

of a finite group G. A character table is a square array with rows

indexed by the irreducible characters and columns indexed by the

conjugacy classes of G. The orders of the rows and the columns are

somewhat arbitrary, although the trivial character and the class of

the group identity are listed first.

Example 8. We write out the character table for G = S3.

We know from abstract algebra that the conjugacy classes of Sm

consist of permutations with the same disjoint cycle structure, so

there are 3 conjugacy classes in G. We write [π] for the class contain-

ing π. Thus the classes are [(1)] = {(1)}, [(123)] = {(123), (132)},
and [(12)] = {(12), (13), (23)}. The three irreducible representations

of S3 were determined in Exercise 10. From these we get the character

table:

[(1)] [(123)] [(12)]

χ0 1 1 1

χ1 1 1 −1

χ2 2 −1 �0

There are important facts about the structure of a finite group

that are revealed in its character table. The exercises explore some

of them. For example, we can determine from its character table

whether a group is simple or not, and we can find its center. However,

the character table of a finite group G does not determine G up to

isomorphism. For example, the two non-abelian groups of order 8

(the dihedral group D4 and the quaternion group) have the same

character table.

Exercises

27. Let G = 〈a | a4 = 1〉.

(a) Find the character table of G.
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(b) Let ρreg be the (left) regular representation of G, and

let e1, ea, ea2 , ea3 be the corresponding basis vectors of C4.

Write ρreg as a sum of irreducible representations of G.

28. Find the character table of the dihedral group D4. (The con-

jugacy classes of D4 were determined in Exercise 12, page 208. A

representation of degree 2 for the dihedral group is described in Ex-

ample 10.11.) S©

29. Orthogonality relations for character tables.

Assume G is a finite group with irreducible characters χ0, . . . , χt,

conjugacy classes C0, . . . , Ct and class representatives gs ∈ Cs. Recall

that |Cs| = [G : CG(gs)]. (See Exercise 3.6.) We use the “Kronecker

delta” δrs, where δrs = 0 if r �= s and δrr = 1.

(a) Row orthogonality: Show that

t∑
j=0

χr(gj)χs(gj)

|CG(gj)|
= δrs.

(b) Column orthogonality: Show that

t∑
j=0

χj(gr)χj(gs) = δrs|CG(gr)| H©.

30. This is a companion to Exercise 28. In it you will find the

character table for the quaternion group Q = 〈a, b | a4 = 1, a2 =

b2, bab−1 = a−1〉, the other non-abelian group of order 8. (If you

know the quaternion group as {±1,±i,±j,±k}, choose a = i and

b = j.) You will see that the character tables for Q and D4 are the

same.

(a) Find the conjugacy classes of Q.

(b) Explain why you know Q has four linear irreducible char-

acters χ0, χ1, χ2, χ3 and also an irreducible character ψ of

degree 2, and find the linear characters of Q.

(c) From (b) write four rows of the character table of Q for the

linear irreducible characters. The fifth row corresponds to
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the irreducible character ψ of degree 2. As described below,

there are two ways to determine the values of ψ. Do it both

ways.

(i) Using x, y, z, w for the unknown values of ψ, write out

the character table for Q. Now use the column orthog-

onality relations to find the values of x, y, z, w.

(ii) Find an irreducible representation of Q of degree 2 and

determine the values of its character ψ directly.

31. Finding the center of a group from its character table.

Use the notation from Exercise 29. Show

Z(G) =

{
g ∈ G

∣∣∣∣∣
t∑

j=0

χj(g)χj(g) = |G|
}
.

32. Finding normal subgroups from a character table.

(a) Suppose N is a normal subgroup of a finite group G. Define

a representation of G of degree [G :N ] that has kernel N .

H©

(b) Suppose ρ1 is an irreducible components of a representation

ρ of G. Show that the kernel of ρ is a subset of the kernel

of ρ1.

(c) Assume ρ : G → GL(m,C) is a representation of G and χ

is the character of ρ. Show that |χ(g)| = χ(1G) if and only

if ρ(g) = μIm for some root of unity μ. H©

(d) Let ρ be a representation of G. Show that Ker(ρ) = {g ∈
G |χ(g) = χ(1)}.

(e) Explain how you can tell by looking at a character table for

a finite group whether it has any nontrivial proper normal

subgroups.
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Coda

Although we only scratch the surface of the theory of characters of a

finite group G, we see that the irreducible characters encode detailed

information about the structure of G and about its representations.

The class functions on G form a complex inner product space of di-

mension equal to the number of conjugacy classes in G. The Fun-

damental Theorem of Character Theory states that the irreducible

characters form an orthonormal basis for this space. Consequently

the character of a representation identifies it up to equivalence and

tells us whether it is irreducible. Another consequence is that G is

abelian if and only if all of its irreducible characters have degree 1.

Detailed examples drawn from [65] illustrate the use of these

ideas in the search for a difference set. The key result in this chap-

ter for tackling the existence question for abelian difference sets is

Theorem 11.21. From Chapter 10 we know that if χ is a nontriv-

ial irreducible character of an abelian (v, k, λ)-difference set D, then

z = χ̃(D) satisfies zz = n for n = k − λ. Theorem 11.21 guarantees

that a subset of G of size k that survives a search using this neces-

sary condition for every nontrivial irreducible character of G really

is a difference set. Theorem 11.22 extends this characterization to

non-abelian groups.

The origin of the theory of characters of a finite group goes back

to the German mathematician G. Frobenius, in particular to his 1896

paper Über die Gruppencharactere, of which he wrote2, “I shall de-

velop the concept [of character for arbitrary finite groups] here in the

belief that through its introduction, group theory will be substantially

enriched.” Frobenius’ belief was correct, and tools from character the-

ory belong in every group theorist’s kit. Character tables for certain

groups also play important roles in chemistry. (Physicists are more

likely to be interested in infinite groups, especially the Lie groups

mentioned in the Coda to Chapter 10.)

2From www.history.mcs.st-andrews.ac.uk/Biographies/Frobenius.html.
                

                                                                                                               



Chapter 12

Using Algebraic
Number Theory

In this chapter we will combine tools from representation theory and

algebraic number theory to investigate the existence of a difference

set with particular parameters in a specific group.

Section 1 addresses the question you may be asking: why do we

need all this machinery? In Section 2 we provide definitions and

state without proof the facts we need from algebraic number theory

to do our work. In Section 3 we examine instances of the use of these

tools either to find a (v, k, λ)-difference set in a particular group or

to disprove its existence. In Section 4 we use these methods to prove

the second version of Turyn’s exponent bound, our Theorem 7.7.

12.1. Why algebraic number theory?

The theory of multipliers is a major tool for the study of abelian

difference sets. However, the hypotheses of the first and second mul-

tiplier theorems fail when n = k − λ is a factor of v, as happens for

the Hadamard family. For this family, Turyn’s exponent bound is

valuable, and its proof illustrates the power of the use of algebraic

number theory and characters.

233
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Representations and algebraic number theory serve us in more

general ways too. A common strategy is to suppose that a (v, k, λ)-

difference set D exists in the group G, and apply representations of

G to the integral group ring equation DD(−1) = n1G + λG. Let ρ :

G → GL(d,C) be a representation. If ρ is nontrivial and irreducible,

we know by Theorem 10.13 that M = ρ̃(D) implies MM
T
= nId.

An important special case is when the degree of ρ is 1, and we

know the complex number z = ρ̃(D) satisfies zz = n. Further, z

is a special kind of complex number: it is a sum of mth roots of

unity, where m is the exponent of G. The coefficients of the |G|/|N |
summands of z are the intersection numbers for D modulo N = Kerρ.

Our use of algebraic number theory will constrain these coefficients.

We use the resulting information to determine possible intersection

numbers for D, either to narrow the search for D or to prove such a

difference set cannot exist.

We will return later to the general case, but for now we study

representations of degree 1. We illustrate with the following example.

Example 1. Recall Example 10.5 (page 220), which was drawn from

Smith’s construction of a (100, 45, 20)-difference set in a non-abelian

group G. With v = 100 and n = 25, this is a member of the

Hadamard family. We used the normal subgroup G′ for whichG/G′ ∼=
Z4 to define a representation ρ of degree 1 with

z = ρ̃(D) = u0 + u1(i) + u2(i
2) + u3(i

3)

in Z[i], the ring of Gaussian integers, where the uj are the intersection

numbers |D ∩ G′cj |. We understand the Gaussian integers well. In

particular, we know how to go from zz = 25 to possible values for

z, because we know how to factor 25 into a product of irreducible

elements of the ring Z[i],

25 = (1 + 2i)2(1− 2i)2,

and we know this factorization is unique up to unit factors. These

facts enabled Smith to show that there were only three possibilities

for the ordered list (u0, u1, u2, u3). �

In general, we find ourselves dealing with the equation zz = n

in a ring Z[η], where η is a primitive mth root of unity for values of
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m other than 4. These more general rings (sometimes called rings of

cyclotomic integers) are not always unique factorization domains.

Remark: Mathematicians trying to prove Fermat’s Last Theorem in

the first half of the nineteenth century fell into the trap of assuming

unique factorization was guaranteed in these rings. In 1844, Kummer

proved that when m = 23, Z[η] is not a unique factorization domain.

It is now known that there are only finitely many values of m for

which unique factorization holds.1 However, Kummer did more than

identify a problem. He began the solution: replacing products of ring

elements by products of ideals. In fact, this is the origin of the notion

of an ideal of a ring. Fortunately, using ideals in this way restores

unique factorization.

12.2. Definitions and basic facts

Here we collect the information we need, omitting proofs but giving

references at the end of the section. Some of the results in this section

are major theorems and some are not, but for our purposes, we label

all of them theorems.

Throughout this chapter we work in the complex numbers. Fix a

positive integer m and assume η is a primitive mth root of unity, for

example η = e2πi/m. (Refer to A.15.)

Definition. Let η be a primitive mth root of unity. The smallest

subfield of the complex numbers containing Q and η is denoted Q(η).

It is called the mth cyclotomic field. It contains as a subring

Z[η] =

{
m−1∑
j=0

ajη
j
∣∣∣ aj ∈ Z

}
,

which is the set of cyclotomic integers in Q(η).2

1The values of m, excluding m ≡ 2 (mod 4), for which η an mth root of unity
makes Z[η] a unique factorization domain are 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17,
19, 20, 21, 24, 25, 27, 28, 32, 33, 35, 36, 40, 44, 45, 48, 60, 84. There is no loss in
excluding m ≡ 2 (mod 4) because in that case adjoining an (m/2)th root of unity to
Q gives the same field as adjoining an mth root of unity. A reference is [49].

2It is an important theorem that Z[η] is exactly the set of elements of Q(η) that
are zeroes of monic polynomials with integer coefficients.
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We often deal with equations of the form
∑

ajη
j = 0 where the

aj are ordinary integers, 0 ≤ j ≤ m − 1. A special case is 1 + η +

η2 + · · · + ηm−1 = (ηm − 1)/(η − 1) = 0. Here all the coefficients of

powers of η are equal. The following result is a partial converse. It

shows that when m is a power of a prime, then for a sum of powers

of η to equal 0, certain powers of η must have equal coefficients. We

use this result often.

Theorem 12.1. Let η be a primitive psth root of unity for a prime

p. Suppose
∑

ajη
j = 0 for some aj ∈ Q. Then aj = a	 whenever

j ≡ � modulo ps−1.

Example 2. Let η be a primitive 9th root of unity. Notice that makes

ω = η3 a primitive cube root of unity, and we know 1 + ω + ω2 = 0.

For any a, b, c ∈ Q, it follows that a(1 + ω + ω2) + bη(1 + ω + ω2) +

cη2(1 + ω + ω2) = 0, so

a+ bη + cη2 + aη3 + bη4 + cη5 + aη6 + bη7 + cη8 = 0.

The force of the preceding theorem is that this is the only way a sum

of powers of η can equal zero. Thus the coefficients of 1, η3, and

η6 must be equal. Similarly the coefficients of η, η4, and η7 must

be equal, and the coefficients of η2, η5, and η8 must be equal. We

illustrate this in Figure 12.1 using the lengths of rays to indicate the

coefficients of the terms. �

1

ω

ω2

(a) 3rd roots of unity

aη3

bη
cη2

(b) 9th roots of unity

Figure 12.1. Roots sum to 0, as in Example 2.
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Next we recall some facts about rings and ideals from abstract

algebra. A proper ideal A of a commutative ring R is called prime if

it has the property that a, b ∈ R with ab ∈ A implies either a ∈ A or

b ∈ A. If A and B are ideals of R, then

AB =

{
t∑

j=1

ajbj

∣∣∣ aj ∈ A, bj ∈ B, t a positive integer

}
is also an ideal of R. If R is a commutative ring with 1, and if a ∈ R,

then the set aR = {ar | r ∈ R} is an ideal of R containing a. Such

an ideal is called the principal ideal generated by a. The product of

principal ideals is again principal: (aR)(bR) = abR.

If σ is a ring automorphism of R, then the image of any ideal

under σ is again an ideal. Further, a ring automorphism takes prod-

ucts of ideals to products of ideals, and it takes prime ideals to prime

ideals and principal ideals to principal ideals. We are particularly

interested in the ring automorphism σ(z) = z of C. Specifically, if

R is a subring of the complex numbers fixed under complex conju-

gation and if aR is a principal ideal of R, then (aR) = aR. Note

that since η = η−1 = ηm−1, the ring R = Z[η] is fixed under complex

conjugation.

Since C has no zero divisors and R is a subset of C, it follows that

R has no zero divisors. We are interested in cases when aR = bR for

a, b ∈ R. Since R has no zero divisors, a = br and b = as imply

rs = 1, so a = br where r is a unit in R. Further, if |a| = |b|, then
|r| = 1. The next theorem tells us that complex numbers of length 1

in R = Z[η] have a special form.

Theorem 12.2. Let η be a primitive mth root of unity. If r ∈ Z[η]

and rr = 1, then r = ±η	 for some integer �.

The major result we exploit in this chapter is the following.

Theorem 12.3. Let η is a primitive mth root of unity and R = Z[η].

Then every ideal in R can be written uniquely as a product of prime

ideals.

The next theorem tells us about the factorization of the ideal pR

into prime ideals, when p ∈ Z is a prime. Recall that for a positive
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integer m, the Euler phi function φ(m) is the number of positive

integers less than m and relatively prime to m.

Theorem 12.4. Let η be a primitive mth root of unity and let R =

Z[η]. Let p be a prime integer.

(i) Assume p does not divide m. Let f be the order of p modulo

m; that is, f is the least positive integer such that pf ≡ 1

(mod m). Then in R, pR = P1 · · ·Pg where the Pj are

distinct prime ideals and g = φ(m)/f .

(ii) Let m = p. Then (1− η)R is a prime ideal in R, and

pR = ((1− η)R)p−1.

(iii) Assume P is a prime ideal occurring in the factorization of

pR. If p is odd, then P occurs with exponent greater than

1 if and only if p|m. If p = 2, then P occurs with exponent

greater than 1 if and only if 4|m.

Recall that when we apply a linear character to the equation

DD(−1) = n1G+λG we get the equation zz = n. In our first example

we illustrate the use of our theorems from number theory to determine

possible values for the complex number z.

Example 3. Let η = e2πi/5 and R = Z[η]. Suppose z ∈ R and

zz = 36. We show z = ±6η	 for some �. Let u = z/6. Since |z| = 6,

it follows that |u| = 1. The tricky part is to show that u ∈ R.

First, note that 2 and 3 each have order 4 modulo 5, and φ(5) = 4.

So by Theorem 12.4(i) we know 2R and 3R are prime ideals. By the

multiplication of principal ideals we have

(zR)(zR) = 36R = (2R)2(3R)2.

Since 2R = 2R and 3R = 3R, Theorem 12.3 implies zR = zR =

(2R)(3R) = 6R. Now we know z = 6r for r ∈ R. Since |z| = 6, we

have |r| = 1. By Theorem 12.2, r = εη	 for some ε = ±1 and some

integer �. So z = ±6η	. �

This next example illustrates how we use these number theory

facts to find intersection numbers for difference sets.

Example 4. Let η = e2πi/5 and assume v0, . . . , v4 are non-negative

integers that satisfy
∑

vj = 24 and
∑

vjη
j = 6εη	 for some ε = ±1
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and some �. Applying Theorem 12.1, we have that v	 − 6ε = vj
for j �= �, and the set {vj} = {c + 6ε, c, . . . , c} for some c. Thus∑

vj = 5c + 6ε = 24. This can only be true if ε = −1 and c = 6, so

the numbers vj are determined up to order: {0, 6, 6, 6, 6}. �

Theorem 12.4(ii) shows us the prime factorization of the ideal pR

in the case that prime p = m. Here we look at a specific example.

Example 5. Let η be a primitive cube root of unity and R = Z[η]. By

Theorem 12.4(ii), 3R = ((1−η)R)2. This says 3R = (1−η)2R. This is

confirmed when we calculate (1−η)2 = 1−2η+η2 = 1+η+η2−3η =

3(−η). �

We need one more result for our proof of Turyn’s exponent bound

in Section 4. Notice in particular that it explains the reason for the

terminology when we say one integer is self-conjugate modulo another

in the definition in Section 7.2, page 114.

Theorem 12.5. Let η be a primitive mth root of unity and let R =

Z[η]. Let p ∈ Z be a prime that is self-conjugate modulo m. Let P be

a prime ideal occurring in the prime factorization of pR. Then P is

fixed under complex conjugation; that is, P = P .

References. A good general reference for this material is [32]. There

are also useful summaries (with references) in Chapter VI, Section 15

of [8] and in Section 1.2 of [59]. For more specific references, see the

following list.

• The proof of Theorem 12.1 can be found in [31], where it

appears as Lemma 3.2. The case of Theorem 12.1 when

m = p is prime is due to McFarland in [51].

• For the proof of Theorem 12.2, see Corollary 15.9 in [8].

• For the proof of Theorem 12.3, see, for example, Theorem 2

on page 180 of [32].

• For the proof of the first part of Theorem 12.4, see [32],

Theorem 2 on page 196. For proofs of the second and third

parts see Propositions 13.27 and 13.28 on page 197.

• For the proof of Theorem 12.5 see [8], p. 438.
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Exercises

1. Let η = e2πi/7 and let R = Z[η]. Suppose z ∈ R with zz = 9, and

show that z = ±3η	 for some integer �.

2. Let η = e2πi/5 and assume that {vj} is a set of five non-negative

integers satisfying
∑

vj = 24 and
∑

vjη
j = 4εη	 for some integer �

and ε = ±1. Find the set of values {vj}, using the theorems of this

section to justify your work. S©

3. Let η = e2πi/7 and assume that {vj} is a set of seven non-negative

integers satisfying
∑

vj = 11 and
∑

vjη
j = 3εη	 for some integer �

and ε = ±1. Show that this leads to a contradiction.

4. Let η = e2πi/7, and let R = Z[η]. Theorem 12.4(ii) says that

the ideal 7R can be factored into prime ideals as 7R = ((1 − η)R)6.

Confirm this by calculating (1− η)6.

12.3. Seeking difference sets

Now we use the techniques of the previous section to address the

existence question for difference sets. Some of these examples could

be analyzed by other means (e.g., multipliers), but we concentrate

here on illustrating the use of tools from representation theory and

algebraic number theory.

Example 6. Let G be an abelian group of order 25. We show that

G cannot contain a (25, 9, 3)-difference set. We know that either G is

cyclic or is isomorphic to Z5 ⊕ Z5, so G contains a normal subgroup

N of order 5. Then G/N must be cyclic of order 5, say G/N = 〈aN〉.
Let η = e2πi/5, and consider the character χ of G with kernel N that

maps a to η.

Suppose D is a (25, 9, 3)-difference set in G, and let vj = |D ∩
ajN | be the intersection numbers for D in the cosets of N . Then

z = χ̃(D) =
∑

j vjη
j ∈ R = Z[η]. In Example 3 we found that

both 2R and 3R are prime ideals in R. We know zz = n = 6,

so (zR)(zR) = (2R)(3R). However, since 2R = 2R �= 3R = 3R,
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(zR)(zR) = (2R)(3R) is impossible. Therefore no such difference set

can exist. �
Example 7. Let G be a group of size 78 that contains a normal

subgroup N of size 6. We show that G does not contain a nontrivial

difference set.

Suppose D is a nontrivial difference set in G. We may assume

that k < v/2, so its parameters must be (78, 22, 6). The factor group

G/N is cyclic of order 13, say G/N = 〈aN〉. Let vj = |D ∩ ajN |
be the intersection numbers. Let η = e2πi/13 and R = Z[η], and

consider the linear character χ with kernel N that maps a to η. Let

z = χ̃(D) =
∑

vjη
j . Applying χ̃ to DD(−1) = n1G + λG yields

zz = n = 16.

Since 2 has order 12 mod 13 and φ(13) = 12, Theorem 12.4(i)

tells us that 2R is a prime ideal in R. We have (zR)(zR) = (2R)4,

so it must be that zR = 4R and z = 4εη	 for some integer � and

some choice of ε = ±1. Now Theorem 12.1 tells us that {vj} =

{c+4ε, c, . . . , c} for some integer c. So
∑

vj = 22 = 13c+4ε. Solving,

we get ε = −1 and c = 2. This would give an intersection number

equal to c+ 4ε = 2− 4 < 0, which is impossible. �
Example 8. This example may seem too elementary (and familiar),

but it sets us up for a more interesting one. Let G = 〈a | a7 = 1〉,
and suppose D is a (7, 3, 1)-difference set in G. Let η = e2πi/7 and

R = Z[η]. Since the order of 2 modulo 7 is 3 while φ(7) = 6, the ideal

2R factors as a product of two prime ideals in R. We observed in

Chapter 1 that if α = η+η2+η4, then αα = 2. Since α �= ±ηjα for any

j, αR and αR are distinct ideals. This tells us that 2R = (αR)(αR)

is the desired factorization as a product of two (prime) ideals.

Define a character of G by χ(a) = η and let z = χ̃(D). Then

zz = 2, so (zR)(zR) = (αR)(αR) and we have two cases: either

zR = αR or zR = αR. In the first case, z = εη	(η + η2 + η4) for

some � and some ε = ±1. Translating D by a suitable power of a

we can assume � = 0 and z = ε(η + η2 + η4). Since the coefficients

of z are non-negative, ε = 1 and we must have D = {a, a2, a4}, our
old friend from Chapter 1. Similarly, if zR = αR, up to translation

we get D = {a3, a5, a6}, also a difference set (and equivalent to the

previous one via the automorphism a �→ a−1). �
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Example 9. In Exercise 6.16 we used multipliers to find a difference

set in Z21. We revisit this case to illustrate the use of other methods.

In particular, we use the number theory from Example 8 to look for

a (21, 5, 1)-difference set D in G = 〈a, b | a7 = b3 = 1, ab = ba〉.
First choose N1 = 〈a〉 and let us = |D ∩ bsN1|. By Theorem 7.1,

u0 + u1 + u2 = 5 and u2
0 + u2

1 + u2
2 = 4+ 1 · 7 = 11. We find that the

only possibility is {us} = {3, 1, 1}. By translating D by a suitable

power of b if necessary, we can assume |D ∩N1| = 3.

Next choose N2 = 〈b〉 and let vj = |D ∩ ajN2|. Let η = e2πi/7

and let R = Z[η]. From Example 8 we know 2R = (αR)(αR) as a

product of prime ideals in R for α = η + η2 + η4. Now let χ be the

character of G with kernel N2 taking a to η. Then z = χ̃(D) satisfies

(zR)(zR) = (αR)2(αR)2. We see there are three cases:

(a) zR = (αR)(αR) = 2R and z = 2εη	 for some � and some

ε = ±1.

(b) zR = α2R = (η + η2 + 2η3 + η4 + 2η5 + 2η6)R.

(c) zR = α2R.

Case a. We have
∑

vjη
j = 2εη	. Translating by a power of a if

necessary, we may assume � = 0 (without changing theN1 intersection

numbers). We find that {vj} = {c+2ε, c, . . . , c} for some c, so
∑

vj =

7c+2ε = 5. The only solution is ε = −1 and c = 1, but then v0 = 1−2,

which is impossible. Therefore this case cannot occur.

Case b. This time we have
∑

vjη
j = εη	(η+η2+2η3+η4+2η5+2η6).

As before, we may assume � = 0. Now we have

(v0, v1, . . . , v6) = (c, c+ ε, c+ ε, c+ 2ε, c+ ε, c+ 2ε, c+ 2ε),

so
∑

vj = 7c+ 9ε = 5. This has a solution: ε = −1 and c = 2, giving

(v0, . . . , v6) = (2, 1, 1, 0, 1, 0, 0). This is consistent with
∑

v2j = 4+1·3.

We consider the grid in Figure 12.2, where the column totals are

theN2 intersection numbers and the row totals are theN1 intersection

numbers. Since bsN1 ∩ ajN2 = {ajbs}, each empty cell can be filled

only with 0 or 1. Looking at the first row, we see there are four

possibilities for where the fourth 0 can go. If the first row of the

table is (1, 1, 1, 0, 0, 0, 0) then D contains {1, a, a2}, and a equals a
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N2 aN2 a2N2 a3N2 a4N2 a5N2 a6N2

N1 0 0 0 3

bN1 0 0 0 1

b2N1 0 0 0 1

2 1 1 0 1 0 0 5

Figure 12.2. Intersection numbers for possible cyclic
(21,5,1)-difference set.

“difference” of elements of D in at least two ways. So this cannot

lead to a difference set.

Next we try the first row (0, 1, 1, 0, 1, 0, 0). This time the only

way to complete the table consistent with the intersection numbers

gives D = {a, a2, a4, b, b2}. Making a “difference” table, we see this

is a difference set.

We leave the rest of Case (b) and also Case (c) as an exercise. �

In the next example we consider a group representation of degree

2. We see this basic idea again in Example 11 and in Exercises 8–10.

Example 10. Let G be the group of order 78 defined by

G = 〈a, b, c | a13 = b2 = c3 = 1, bab−1 = a−1, ac = ca, bc = cb〉
∼= D13 × Z3,

and suppose G contains a non-trivial difference set. Then it would

contain a difference set D with parameters (78, 22, 6). We show that

this leads to a contradiction.

First note that N1 = 〈a, c〉 is a normal subgroup of G of order 39.

Suppose u0 and u1 are the intersection numbers forN1, so u0+u1 = 22

and u2
0 + u2

1 = 16 + 6 · 39 = 250. Just by trying possibilities, we see

that we must have {u0, u1} = {9, 13}.
Now choose η = e2πi/13 and let R = Z[η]. As in Example 10.11

(page 174), we can define an irreducible representation ρ with kernel

N2 = 〈c〉 by

ρ(a) =

[
η 0

0 η−1

]
and ρ(b) =

[
0 1

1 0

]
.
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Let vjs = |D ∩ ajbsN2|. Then

M = ρ̃(D) =

[
α β

β α

]
,

for α =
∑

j vj0η
j and β =

∑
j vj1η

j . By Theorem 10.13, we know

MM
T

= 16I2, so αα + ββ = 16 and αβ = 0. There are thus two

cases: β = 0 and αα = 16, or α = 0 and ββ = 16. In the first case,

because 2R is a prime ideal in R, we have α = 4εη	 for some � and

ε = ±1. By Theorem 12.1 it follows that {vj0} = {d + 4ε, d, . . . , d}
for some constant d. Thus

∑
j vj0 = 13d+ 4ε.

Note that ajN2 ⊆ N1 for each j, so
∑

j vj0 = u0, which is 9 or

13. There is no solution to 13d + 4ε = 13. If 13d + 4ε = 9, the

only solution is ε = −1 and d = 1. However, that would give an

intersection number of d + 4ε = −3 < 0, which is impossible. A

similar argument leads to a contradiction in the case α = 0. �

Example 11. In 1993 a new symmetric (160, 54, 18) design was

found. Prompted by this discovery, in the summer of 1994 a group

of undergraduates searched for difference sets with these parameters

[1]. One of the students’ results was that no (160, 54, 18)-difference

set exists in a group G with a normal subgroup N ′ of size 4 for which

G/N ′ ∼= D10×Z2. The argument is intricate, but we sketch part of it

here. If we choose η = e2πi/5 (and let R = Z[η]), then −η has order

10 and G has an irreducible representation ρ with kernel N = N ′×Z2

and with

a �→
[

ζ 0

0 ζ−1

]
and b �→

[
0 1

1 0

]
,

where ζ = (−η)m for some m. As usual, we suppose D is such a

difference set and let vjs = |D ∩ ajbsN |. Then we find

ρ̃(D) =

[
α β

β α

]
,

where α =
∑

vj0ζ
j and β =

∑
vj1ζ

j . As in Example 10, we have

αα+ββ = 36 and αβ = 0. In this case 2R and 3R are prime ideals in

R, so 36R = (2R)2(3R)2 as a product of prime ideals. Suppose first

that β = 0, so (αR)(αR) = (2R)2(3R)2. The only possibility is that

αR = 6R and α = 6εη	 for some ε = ±1 and some �. If ζ = η2, then
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α = α1 where

α1 = (v00 + v50) + (v10 + v60)η + (v20 + v70)η
2

+ (v30 + v80)η
3 + (v40 + v90)η

4.

On the other hand, if we choose ζ = −η, then α = α2 where

α2 = (v00 − v50) + (v60 − v10)η + (v20 − v70)η
2

+ (v80 − v30)η
3 + (v40 − v90)η

4.

Similar equations in Z[η] hold for β in the two cases, giving β = β1

and β = β2. Without loss of generality, we can assume
∑

vj0 = 24

and
∑

vj1 = 30. By a careful examination of cases, and up to equiva-

lence, the students showed there were just two possibilities for the or-

dered list of 20 intersection numbers. The rest of the analysis involved

calculating intersection numbers for normal subgroups containing N

and their relationship to unions of cosets mod N and also intersection

numbers for cosets mod N ′ to show that no difference set can exist.

(There is also a slicker proof using Dillon’s dihedral trick along with

a theorem of Lander.) �

Exercises

5. Fill in the details in Example 9 as follows:

(a) Explain why in case (a) we may assume � = 0.

(b) Complete case (b).

(c) Analyze case (c).

6. Let G be a group of order 154 that contains a normal subgroup

N of order 14. Show that G cannot contain a (154, 18, 2)-difference

set. S©

7. Fill in the details in Example 10 as follows:

(a) Verify that {u0, u1} = {9, 13}.
(b) Explain why α =

∑
vj0η

j and β =
∑

vj1η
j .

(c) Carry out the calculations for the case when α = 0.
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The next two exercises are based on [56]. Note that Walker was

an undergraduate when she did the work in this paper.

8. Let G ∼= D11 × Z3. Show that G cannot contain a (66, 26, 10)-

difference set by assuming D is such a difference set and obtaining a

contradiction as follows:

(a) Explain why G has a normal subgroup of index 2 and find

the intersection numbers for D modulo this subgroup.

(b) Use an irreducible representation of G of degree 2 (as in Ex-

ample 10) to analyze the intersection numbers for D modulo

the normal subgroup of order 3. Show that this leads to a

contradiction.

9. The goal of this exercise is to prove the following theorem from

[56].

Theorem Let p and q be odd primes with q < p, and let G ∼= Dp×Zq.

Then the existence of a nontrivial (v, k, λ)-difference set in G implies

the existence of positive integers t and r such that r < p and t < q

and satisfying k = pt+ qr, λ = 2rt, and n = (pt− qr)2. Furthermore,

if the order modulo p of each prime divisor of n is equal to p−1, then

qr > pt, t+
√
n ≤ q, and t = (k −

√
n)/(2p).

Let G = 〈a, b, c | ap = b2 = cq = 1, bab−1 = a−1, ac = ca, bc =

cb〉 where p and q are odd primes with q < p, and assume G contains

a (v, k, λ)-difference set with k < v/2 = pq.

(a) Let N1 = 〈a, c〉, a normal subgroup of G of index 2, and

let w0, w1 be the intersection numbers modulo N1. Show

2w0w1 = λpq and explain why this implies each of p and q

must divide exactly one of w0 or w1. Further, without loss

of generality, we may assume p|w1 and q|w0.

(b) Write w0 = qr and w1 = pt. Show that r < p and t < q,

and that k = pt+ qr, λ = 2rt, and n = (pt− qr)2.

Now assume the order mod p of each prime divisor of n is p− 1. Let

η = e2πi/p and R = Z[η]. Use the irreducible representation of G of
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degree 2 with kernel N2 = 〈c〉:

a �→
[
η 0

0 η−1

]
and b �→

[
0 1

1 0

]
and c �→

[
1 0

0 1

]
and write the intersection numbers vjs = |D ∩ ajbsN2|. As in Exam-

ple 10,

ρ̃(D) =

[
α β

β α

]
,

for α =
∑

j vj0η
j and β =

∑
j vj1η

j , elements in R.

(c) Show that α = 0 leads to a contradiction.

(d) Assume that β = 0 and show that vj1 = t for all j. Also

in this case explain why α = εη	
√
n for some � and some

ε = ±1, and therefore p−1 of the vj0 equal some constant d,

and the other is d+ε
√
n. Conclude that qr = pd+ε|pt−qr|.

(e) Show that pt > qr leads to a contradiction. H©
(f) Show that pt < qr implies t = (k −

√
n)/2p (which must be

an integer) and t+
√
n ≤ q.

10. Use the Moore-Walker theorem given in Exercise 9 to rule out

a (370, 82, 18)-difference set in G ∼= D37 × Z5. (By the way, if η

is a primitive 37th root of unity, then R = Z[η] is not a unique

factorization domain, so it really matters that our methods depend

on the unique factorization of ideals, not of ring elements.)

12.4. Proving Turyn’s exponent bound

In this section we prove the second version of Turyn’s exponent bound,

a nice illustration of the use of some of the methods of this chapter.

Indeed, the innovative arguments in Turyn’s paper [69] pointed the

way to the increased use of these tools for the study of difference sets.

We begin with two lemmas. The first—usually called “Ma’s

lemma”—was proved by Ma in his 1985 thesis in Hong Kong. In

[8] (p. 412) the authors call it “one of the most useful tools in the

non-existence theory of difference sets,” and a proof is given of a
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more general result.3 The use of the second lemma explains why

self-conjugacy appears in the hypothesis of Turyn’s theorem.

Recall that we write X ≡ 0 (mod q) for X ∈ ZG if every coeffi-

cient of X is divisible by q ∈ Z. Similarly, for x =
∑

ajη
j ∈ Z[η], we

write x ≡ 0 (mod q) if aj ≡ 0 (mod q) for each j.

Lemma 12.6. (Ma) Let G be a finite abelian group with a cyclic

Sylow p-subgroup P , and let Q be the unique subgroup of P of order

p. Suppose Y ∈ ZG satisfies χ̃(Y ) ≡ 0 (mod pa) for every nontrivial

character χ of G. Then there exist X1, X2 ∈ ZG with Y = paX1 +

QX2. Further, if the coefficients of Y are non-negative, X1 and X2

can be chosen with non-negative coefficients.

Lemma 12.7. Let η be a primitive mth root of unity and let R = Z[η].

Let p ∈ Z be a prime with p self-conjugate modulo m. Suppose further

that z ∈ R satisfies zz = n ∈ Z and p2a|n for some a ≥ 1. Then z ≡ 0

(mod pa).

Proof. The proof depends on the prime factorizations of the ideals

zR and pR. Suppose zR = Q1 · · ·Qs and pR = P1 · · ·Pt where the

Qi and Pj are prime ideals. Since p is self-conjugate modulo m, we

know Pj = Pj for each j. By hypothesis, we may write n = p2aq for

some integer q. Then we have (zR)(zR) = nR = (pR)2a(qR) and

(Q1 · · ·Qs)(Q1 · · ·Qs) = (P1)
a · · · (Pt)

a(P 1)
a · · · (P t)

a(qR)

= (P1)
2a · · · (Pt)

2a(qR).

From this we see that for each prime ideal Pj , all 2a factors must

appear among Q1, . . . , Qs, Q1, . . . , Qs. Further, because Pj is self-

conjugate, it must appear the same number of times among theQi and

among the Qi. It follows that P
a
1 , . . . , P

a
t all occur among Q1, . . . , Qs.

This means zR = (paR)A for some ideal A, and z = par for some

r ∈ R. From this it follows that z ≡ 0 (mod pa). �

Now we are ready to prove Turyn’s Theorem 7.7, which we restate

here for convenience.

3The authors note that a similar result was previously obtained by Lander (using
different language). It appears as Proposition 4.29 in [43].
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Theorem (Turyn’s exponent bound, second version) Assume the ex-

istence of a (v, k, λ)-difference set D in an abelian group G. Let p

be a prime divisor of v and denote the Sylow p-subgroup of G by P .

Assume that p2a divides n for some a ≥ 1. Let U be any subgroup of

G with U ∩ P = {1G}. If p is self-conjugate modulo e = exp(G/U),

then

exp(P ) ≤ |U | |P |
pa

.

Proof. By the structure theorem for finite abelian groups, the p-

group P is isomorphic to a direct sum of cyclic p-groups, P � C1 ⊕
· · · ⊕ Ct, with |Ci| = pai . Without loss of generality, we can assume

a1 ≥ · · · ≥ at. Then the exponent of P is pa1 . Further, P contains a

subgroup W with W � C2 ⊕ · · ·Ct, and P/W � C1 is cyclic of order

pa1 . It follows that |W | = |P |/ exp(P ).

Choose a subgroup U of G with U ∩ P = {1G}, and let K be

the subgroup of G generated by U and W , so |K| = |U ||W |. Let

H = G/K, so H has a cyclic Sylow p-subgroup of order pa1 . (It is

isomorphic to C1.)

Let ϕ : G → H be the natural map and let E = ϕ̂(D) ∈ ZH. By

Theorem 7.3, we know that in ZH

EE(−1) = n1H + λ|K|H.

Let χ be a nontrivial irreducible character of H and let z = χ̃(E).

We know z ∈ Z[η] for η a primitive mth root of unity, where m is the

exponent of H. By Theorem 10.13 we also know zz = n ≡ 0 (mod

p2a).

In order to apply Lemma 12.7, we need to know that p is self-

conjugate modulo the exponent of H = G/K. By hypothesis we

know p is self-conjugate modulo the exponent of G/U . Recall that

this means there is some non-negative integer j with pj ≡ −1 (mod

w′), where exp(G/U) = w′pb for w′ relatively prime to p.

How do the exponents of G/U and G/W compare? To aid in our

explanation, we refer to group elements whose orders are relatively

prime to p as p′-elements. Since K = 〈U,W 〉 with U ∩ P = {1G}
and W ⊂ P , the p′-elements of G/K have the same orders as the

p′-elements of G/U . It follows that exp(G/K) = w′pc for the same
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choice of w′ relatively prime to p. Thus p is also self-conjugate modulo

the exponent of G/K, and we can conclude that z ≡ 0 (mod pa).

Now we are ready to apply Ma’s lemma to the abelian group

H and to E ∈ ZH. Since χ̃(E) ≡ 0 (mod pa) for every nontrivial

character χ of H, we can find X1, X2 ∈ ZH with E = paX1 +QX2,

where Q is the unique subgroup of order p in the Sylow p-subgroup

of H. Since the coefficients of E are non-negative, we may assume

those of X1 and X2 are as well.

Next we show that X1 cannot be zero. If X1 = 0, we would have

E = QX2. Let ψ be a character of H and let τ be the restriction of

ψ to Q. We can choose ψ so that τ is nontrivial on Q. Then ψ̃(Q) =

τ̃(Q) = 0. This implies z = ψ̃(E) = 0, contradicting zz = n �= 0.

Therefore X1 �= 0.

SinceX1 is nonzero andX1 andX2 have non-negative coefficients,

E = paX1 + QX2 has at least one coefficient greater than or equal

to pa. However, the coefficients of E are the intersection numbers for

the difference set D with respect to the subgroup K. Therefore no

coefficient of E can exceed |K| = |U ||W | so

pa ≤ |U ||W | = |U | |P |
exp(P )

.

Rearranging the inequality gives us

exp(P ) ≤ |U | |P |
pa

. �

Coda

If D is a (v, k, λ)-difference set in G and χ is a nontrivial linear char-

acter of G, then the complex number z = χ̃(D) satisfies zz = n. We

want to use the factorization of n to recover z. Since z is in Z[η] for

a suitable primitive root of unity η, we face the problem of factoring

n into primes in Z[η]. However, in general R = Z[η] is not a unique

factorization domain, so the full list of possibilities for z is difficult to

determine. To overcome this obstacle, we translate our problem into

factoring the ideal nR into prime ideals in R, where the factorization

is unique.
                

                                                                                                               



12.4. Proving Turyn’s exponent bound 251

Our treatment of algebraic number theory is quite cursory, and

we make heavy use of [32] as a reference for the theorems we quote

without proof. Although this is a graduate text, it is very clearly

written, and much of it is accessible after a course in abstract algebra

that includes rings and fields. It is a good resource for the reader who

wants more depth. We also recommend the undergraduate text [67].

It has nice historical motivation and helpful examples.

We have only tasted the application of tools from algebraic num-

ber theory to the study of difference sets. For the reader who would

like to see more, we recommend McFarland’s paper [51]. The first

two sections (introduction and abelian characters) lay out the tools

from character theory and algebraic number theory that he uses to

get his main result. The third section (character sums) contains a se-

quence of lemmas whose proofs clearly illustrate the use of the tools

and deepen one’s understanding.

                

                                                                                                               



Chapter 13

Applications

While difference sets are mathematically rich, they also have many ap-

plications to real-world problems. Indeed, the North Atlantic Treaty

Organization sponsored an Advanced Study Institute on difference

sets and sequences that brought together students and experts from

electrical engineering, computer science and mathematics from many

of the NATO countries to pursue some of them (see [60]). In this

chapter we briefly describe a few of these applications and offer some

suggestions for further reading. We are not experts in these engi-

neering and science contexts, but we try to give the flavor of how

difference sets are used for optical alignment, interpreting signals in

the presence of noise, imaging astronomical events, constructing error-

correcting codes, and facilitating processes in quantum informatics.

The first three of these applications exploit the relationship between

cyclic difference sets and binary sequences with good autocorrelation

properties. The mathematical roles of the difference sets in the last

two are quite different.

13.1. Binary sequences

A binary sequence of period v is a v-tuple a = (a0, a1, . . . , av−1) with

the aj either all chosen from {−1,+1} or all chosen from {0, 1}.1

1The use of the word period is because a may be extended to an infinite periodic
sequence by repeating the finite sequence.
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For our first new application, imagine a source of signals, where

each signal is binary sequence of period v with entries ±1. Assume

that these signals are transmitted over a channel corrupted by noise.

The sender can transmit any one of N signals. When one is received,

the receiver has to decide which of the N was sent. The receiver

can do this by calculating the correlation between the received signal

and ideal models of each of the possible transmitted signals and then

choosing the one with the highest value of this correlation.2

Definition. Let a = (a0, a1, . . . , av−1) and b = (b0, b1, . . . , bv−1)

be two binary sequences of period v with either all of the aj , bj in

{−1,+1} or all in {0, 1}. Then the correlation C(a,b) is defined by

C(a,b) =
1

v

v−1∑
j=0

ajbj .

For aj , bj in {−1,+1}, we have C(a,b) = (A−D)/(A+D), where

A is the number of positions in which a and b agree and D is the

number of positions in which they disagree. In this case we observe

the following nice analogies to the statistician’s correlation defined

for vectors in Rv:

• For all a,b, we have −1 ≤ C(a,b) ≤ 1.

• If a = b, then C(a,b) = 1.

• If a and b disagree in every position, then C(a,b) = −1.

• If v is even and a and b agree in exactly half their positions,

then C(a,b) = 0.

One way to define a binary sequence a is by specifying a differ-

ence set D ⊂ Zv = {0, 1, . . . , v − 1} and choosing aj = +1 if and

only if j is in D. Then we can choose for the source signals a =

(a0, . . . , av−1) and the v − 1 cyclic shifts of a: (at, at+1, . . . , at+v−1)

for t = 1, . . . , v − 1, where the subscripts are interpreted modulo v.

Since the v translates of D (the blocks of the associated design devD)

are all distinct, the cyclic shifts of a indeed give v distinct sequences.

Difference sets give useful binary sequences for another reason too. To

2There is a theorem that states that if the noise is normally distributed, then this
decision rule is optimal in some sense. It is a 1961 result of Fano—not the Fano of the
Fano plane.
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explain why, we introduce language and notation for the correlation

between a sequence and its translate.

Definition. Let a be a binary sequence of period v. The periodic

autocorrelation function of a, Ca(t) is given by

Ca(t) =
1

v

v−1∑
j=0

ajaj+t ,

for t = 0, . . . , v − 1. The values of Ca(t) for t �= 0 are called the

off-peak correlations.

Example 1. Choose a = (−1, 1, 1,−1, 1,−1,−1). Then Ca(0) =

(1/7)(a · a) = (1/7)(7) = 1 and Ca(1) = (1/7)(−1) = −1/7. �

Example 2. Recall the alignment problem in Example 1.2. It implic-

itly involves the 0,1 version of the sequence in the preceding example,

a = (0, 1, 1, 0, 1, 0, 0). When the light-emitting pattern surrounding

the opening to the fuel tank and the light-transmitting pattern on

the nozzle are perfectly aligned, the amount of light detected is essen-

tially the value of the peak autocorrelation Ca(0). When the patterns

are shifted out of alignment by 6 or fewer cells (in either direction),

the amount of light detected is the off-peak autocorrelation Ca(t) for

t �= 0. (Look again at Figure 1.1 on page 3.) See Figure 13.1. �
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Figure 13.1. Light detected, Example 2

Return now to the communication example with which this sec-

tion began. Shifted binary sequences are particularly useful as signal

sources when the off-peak correlations are all equal and are as small
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as possible in absolute value. The special usefulness of cyclic differ-

ence sets in this setting is a consequence of the following theorem (see

Jungnickel and Pott, [36], p. 264). The proof is a nice review of some

ideas in Section 4.2.

Theorem 13.1. Choose integers v ≥ 2 and k with 0 < k < v. Let

a be a binary sequence with period v, entries aj in {−1,+1}, and

having exactly k entries equal to +1. Suppose further that there are

two numbers b and c with Ca(0) = b and Ca(t) = c for 0 < t < v.

Let D = {j ∈ Zv | aj = +1}. Then D is a (v, k, λ)-difference set in

Zv, b = 1 and c = (v − 4n)/v for n = k − λ. Moreover, every cyclic

difference set arises in this way.

Theorem 13.1 also holds for 0, 1 sequences, but in that case the

values of b and c are different.

For ±1 binary sequences, the off-peak correlations are all equal

to 0 when we use a Hadamard difference set with v = 4n. However,

no cyclic Hadamard difference sets are known for v > 4, and it is

conjectured that none exist. The next smallest off-peak value in ab-

solute value occurs for the Paley-Hadamard family with v = 4n− 1,

and then the off-peak correlation is equal to −1/v. Cyclic difference

sets in this family are abundant.

Binary sequences obtained from cyclic difference sets have some

other nice properties too. Sequences coming from nonzero squares in

Zp for p ≡ 3 (mod 4) have (v−1)/2 entries equal to +1 and (v+1)/2

entries equal to −1. This nearly equal balance of +1s and −1s makes

them similar to random sequences (like a sequence of v coin tosses,

with +1 for heads and −1 for tails). Another desirable property for a

“pseudo-random” sequence is that knowing a subsequence gives little

information about the entire sequence. In particular, if v = 2m − 1,

it is desirable if the 2m − 1 consecutive subsequences of length m are

all distinct.

Example 3. Consider the difference set {1, 2, 4} ⊂ Z7. It yields the

sequence (− + + − + − −) of Example 1, where we write + and −
instead of +1 and −1. The 7 subsequences of length 3 are:

−++, ++−, +−+, −+−, +− −, − − −, − −+ .

These triples are all distinct. �
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Further reading

This section relies heavily on Golomb’s “Signals with good correlation

properties,” in [25].3 This paper has an extensive bibliography. You

may also want to look at the paper [48] by MacWilliams and Sloane.

They define pseudo-random sequences (also called pseudo-noise se-

quences) as binary sequences a = (a0, . . . , av−1) of length v = 2m − 1

with special properties, including the one they say is “most impor-

tant”: periodic autocorrelation function values equal to 1 at t = 0 and

with off-peak value −1/v. (Although they use 1, 0 sequences, they de-

fine the autocorrelation function for the corresponding sequence with

jth entry (−1)aj ; in other words, they convert to a ±1 sequence

for autocorrelation computations.) Some of the other properties on

their defining list also seem to hold for more general cyclic Paley-

Hadamard difference sets. The applications they mention are “range-

finding, scrambling, fault detection, modulation, synchronizing, etc.”,

and they give many references.

13.2. Imaging with coded masks

Astronomers study high-energy radiation such as X-rays and gamma

rays with instruments mounted on satellites, to avoid blocking of the

radiation by the earth’s atmosphere. According to NASA’s Goddard

Space Flight Center, gamma ray bursts are the most powerful explo-

sions our Universe has experienced since the Big Bang. They occur

very briefly but almost daily. So far, scientists don’t know what causes

them and what they mean. Are they evidence of the birth of a black

hole? The product of the collision of two neutron stars? The space

observatory SWIFT, developed by NASA along with an international

consortium, was launched in 2004 to study gamma ray bursts with a

precision never available before. Among the instruments on the or-

biting SWIFT spacecraft was one using a “coded mask”. (See [64].)

Astronomers cannot rely on ordinary lenses to focus high energy

radiation and produce images of distant objects. Instead, they use

3Golomb was awarded the 2012 National Medal of Honor in recognition of
his contributions to mathematics and engineering, particularly in interplanetary
communication.
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a process similar to the way medical images are obtained from X-

rays, where the patient is positioned between a source of radiation

and a detector sensitive to the radiation. Parts of the body that

absorb X-rays cast shadows on the detector, and radiologists interpret

this shadow image to draw inferences about the patient’s body. For

astronomical investigations, the idea is to put a “mask” that absorbs

the radiation between the source and the detector. Then a computer

uses the information on the detector to reconstruct an image of the

source.

The simplest mask has a single hole, like a pin-hole camera. The

result is an inverted image of the source. The smaller the hole is,

the sharper the resulting image will be. However, if the hole is very

small, only a few high energy rays would pass through. Even worse,

the number of rays from the distant source that pass through the

hole would be small compared to the background “noise” produced

by cosmic rays. In the language of science and engineering, the signal

to noise ratio (SNR) is too low. Therefore a mask with a single hole

is not workable.

The obvious solution is to use a mask with multiple holes, but

now we have another problem. Each hole produces its own image,

so we have multiple overlapping images projected onto the detector.

The task is to position the holes in the mask—to code them—so that

it is possible to recover a single clear image of the source from these

multiple images on the detector. Since noise is a factor, the computer

algorithm to reconstruct the location and intensity of each source

in the field of view is in part statistical. Figure 13.2 schematically

illustrates what is involved in the use of a coded mask instrument for

a single source of high energy radiation.

So, what is a good coded mask? One important consideration is

that we want the shadow cast by the mask to be a poor match to any

shifted version of itself. This sounds familiar. We want the coded

mask to have a pattern of holes that has low correlation with shifted

versions of itself. As in Section 1, we can use a cyclic difference set.

But how do we change from a sequence of holes in a line to a

rectangular array of holes and still retain the desired autocorrelation
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(a) (b) (c) (d) (e)

−→ −→ =⇒ =⇒

Figure 13.2. Schematic for imaging using a coded mask: (a)
source image, (b) mask (dots represent holes), (c) detector,
(d) computer to reconstruct source image, (e) reconstructed
source image

property? One method is to use a twin primes difference set in Zp ⊕
Zp+2. We illustrate with the next example for p = 3.

Example 4. Arrange the elements of Z3⊕Z5 in a rectangular array,

with the rows indexed by elements of Z3 and the columns indexed

by elements of Z5. (See Figure 13.3, where the elements not in the

difference set are shaded.) Notice that cyclically shifting the array

horizontally by one cell is the same as adding (1, 0) to each element,

and shifting vertically by one is the same as adding (0, 1). Thus we

retain the desirable autocorrelation property. �

0, 0

1, 1

2, 2

0, 3

1, 4

2, 0

0, 1

1, 2

2, 3

0, 4

1, 0

2, 1

0, 2

1, 3

2, 4

Figure 13.3. The rectangular array for the (15, 7, 3)-difference set

Of course, the coded mask for p = 3 is much too small to be use-

ful. Figure 13.4 shows a somewhat more realistic coded mask based
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on the twin primes difference set with p = 41. In the mid 1990s,

an Italian institute for space research in collaboration with the Rus-

sian Academy of Sciences developed a high-energy coded aperture

telescope based on a twin primes difference set with p = 71 for an

international high-energy astrophysics observatory—still in the plan-

ning stages—to be launched into space with a Soyuz rocket.

Figure 13.4. Mask for X-rays, based on twin primes (41,43)

The satellite INTEGRAL was launched in 2003 by a consortium

of many nations. One of its missions was to carry out a 9-year survey

of our galaxy, which it completed in December 2012. INTEGRAL was

equipped with multiple imaging instruments that use coded masks,

notably a gamma-ray imaging telescope called IBIS with a rectangular

mask.

Further reading

The Skinner article [63] is useful and has some nice illustrations. An-

other, more up to date, general resource is the Goddard Space Cen-

ter website “Coded Aperture Imaging in High Energy Astronomy”

at website (1) listed on the following page. See especially the link

“Coded aperture imaging: a short review.” The link “A selection

of coded aperture instruments” gives a list of actual coded aperture

instruments.

A reference for the SWIFT project is website (2). You can read

about the Italian/Russian project using the twin prime difference set
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with p = 71 on the website of the SRON Netherlands Institute for

Space Research on website (3). Some spectacular images obtained by

the INTEGRAL’s 9-year galactic survey can be found at website (4).

An extensive bibliography for papers on coded aperature imaging is

available at website (5).

Websites:

(1) astrophysics.gsfc.nasa.gov/cai/

(2) heasarc.gsfc.nasa.gov/docs/swift/swiftsc.html

(3) www.sron.nl/~jeanz/cai/coded_mart.html

(4) hea.iki.rssi.ru/integral/nine-years-galactic-

survey/index.php

(5) www.sron.nl/~jeanz/cai/coded_bibl_short.html

13.3. Error correcting codes

You may have encountered error correcting codes in your study of

linear algebra or abstract algebra. A linear error correcting code is

a subspace C of a v-dimensional vector space V over a finite field

F. Typically, the field is F = GF (2), so the vectors in V are strings

of length v consisting of the “bits” 0 and 1. The vectors in C are

the code words. If the dimension of C is k, we regard each codeword

as having k bits of information. We can think of the embedding of

C � Fk in V � Fv as “smearing out” the information bits to protect

them. More specifically, the v − k additional bits when we regard a

codeword as an element of V are the redundancy added to the original

information. If the redundancy is added cleverly, the receiver of the

information can detect and correct some number of errors.

For a vector v in V , the weight of v is the number of nonzero

entries in v. If the minimum weight of a nonzero vector in C is d, then

the code can correct �(d − 1)/2 errors. The amount of information

that can be encoded depends on the dimension k of C. The code

parameters v, k and d are thus key.

There are many deep connections between coding theory and de-

sign theory, with theoretical and practical links in both directions,
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but here we focus on the connection between linear codes and designs

arising from abelian difference sets.

The easiest way to associate a linear code with a design D is via

the incidence matrix of D. Since the entries of the incidence matrix

A make sense in any field, we may choose any field F and then define

the code as the F-space spanned by the rows of A. In general, it is

difficult to determine the minimum weight of such codes, but it is

possible to determine their dimension.

An important family of codes is associated in this way with the

Paley difference sets in GF (q) for q a prime, q ≡ 3 (mod 4). If we

choose a field F = GF (p) for which p is a quadratic residue in GF (q),

then the difference set determines a design whose corresponding code

is called a quadratic-residue code. These codes have dimension (q ±
1)/2 and are related to an important family of codes called Reed-

Muller codes. (See Assmus and Key [4], Sections 2.10 and 7.8.) For

example, we have the following theorem.

Theorem 13.2. (MacWilliams and Mann, 1968). The code gen-

erated by the Paley difference set in GF (q) for q ≡ 3 (mod 4) has

dimension (q + 1)/2 if the characteristic of F is a prime divisor of

(q + 1)/4.

Example 5. Choose the (7, 3, 1)-difference set in GF (7) and choose

F = GF (2). Then the characteristic of F is 2, which is a divisor

of (7 + 1)/4, so the corresponding code has dimension 4. It turns

out that it is the smallest Hamming code, which is known to have

minimum distance 3 and so corrects a single error. �

In [43] Lander discusses codes defined by an abelian (v, k, λ)-

difference set D ⊂ G somewhat differently. He identifies the elements

of the group ring FG with the vectors in V = (F)v. He defines the

code C as the ideal of the ring FG generated by the element D =∑
d∈D d ∈ FG. His definition is actually equivalent to the definition

of the code as the row space of the incidence matrix of devD, but his

approach leads to the use of somewhat different algebraic tools.
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Further reading

For more on difference sets and codes, see the books by Pott ([59])

and Lander ([43]). For more on designs and codes, see the volumes by

Beth, Jungnickel and Lenz ([8]) or E.F. Assmus and J.D. Key ([4]).

Another useful reference on designs and codes that is aimed more at

undergraduates is P.J. Cameron and J.H. vanLint ([12]).

13.4. Quantum information and MUBs

In this section we use a generalization of a difference set to construct

mutually unbiased bases (MUBs for short). What are MUBs?

Definition. Let CN be an inner product space with the standard

inner product, and let {uj | j = 1, . . . , N} and {vj | j = 1, . . . , N}
be two orthonormal bases of this space. These bases are said to be

mutually unbiased if there is a constant c such that for all j, k =

1, . . . , N ,

|〈uj ,vk〉|2 = c.

Example 6. Here are three MUBs forN = 2, where e1 and e2 denote

the standard basis for C2.

M1 = {e1, e2}
M2 = {(e1 − e2)/

√
2, (e1 + e2)/

√
2}

M3 = {(e1 − i e2)/
√
2, (e1 + i e2)/

√
2 �}.

It is a theorem that at most N+1 MUBs can exist for CN . When

N is a power of a prime, N + 1 MUBs do exist. Thus N + 1 = 3 is

the maximum number of MUBs possible for C2. It is known that 3

MUBs exist for C6, but it is unknown whether more than 3 exist.

MUBs are rich in mathematical connections, but here we very

briefly describe their link to quantum mechanics. Mathematically,

states of a quantum system are identified with unit vectors in a com-

plex inner product space. For example, in quantum computation, the

analog of a classical “bit” is a “qubit”, a 2-state quantum system with

states given by unit vectors in C2. A larger system might consist of

m qubits. The states of this bigger system are represented by unit

vectors in C2m .
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More generally, we might have a system with states corresponding

to unit vectors in CN for some N . A measurement of the system is

represented by an operator A with the property that an orthonormal

basis for CN can be chosen from among its eigenvectors. Then A =∑
av Pv, where v ranges over this basis of eigenvectors and Pv is

the projection onto the subspace spanned by v. We call this basis of

eigenvectors the measurement basis. If we carry out this measurement

for a system in a state represented by an arbitrary unit vector w,

then the result of our measurement is equal to the eigenvalue av with

probability |〈w,v〉|2.

Example 7. Suppose we want to measure a polarized photon; its

state corresponds to a unit vector w in C2. We make a measurement

with a vertically polarized filter. The measurement is represented by

A = 0Pe1
+ 1Pe2

, so the measurement basis is the standard basis of

C2. If the photon is itself polarized vertically, its state is w = e2,

and the measurement gives the result 1 with probability equal to 1.

On the other hand, if the photon is polarized horizontally, its state is

w = e1, and the measurement gives the result 0 with probability equal

to 1. Results are more interesting if the photon is polarized neither

vertically nor horizontally. For example, suppose its state is w =

(1/
√
2)e1+(1/

√
2)e2. In this case, the result of the measurement can

vary; with probability 1/2 it gives the result 0, and with probability

1/2 it gives the result 1. �

We say two measurements are mutually unbiased if their measure-

ment bases are MUBs. In this case, the result of doing one measure-

ment gives no information about the result of the other measurement.

Under certain circumstances, a set of N + 1 mutually unbiased mea-

surements provides the optimal determination of an unknown state.4

MUBs are used in quantum-informatics applications, including

“dense coding, teleportation, entanglement swapping, covariant clon-

ing, and state tomography,” quoting from [21]. Applications are nu-

merous whenever maximal sets of MUBs are available, in particular

when the physical system is composed of many qubits (N = 2m), the

building blocks of devices for quantum information processing.

4Most of this description is drawn from [71].
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Now we define the generalization of a difference set that we need

for the construction of MUBs.

Definition. Let G be a group and U a normal subgroup of G. Then

the nonempty proper subset D ⊂ G is a relative difference set (with

respect to U) if the multiset of differences of distinct elements of

D represents every element of G \ U exactly λ times and represents

elements of U zero times. Equivalently,

DD(−1) = |D|1G + λ(G− U)

in the integral group ring ZG. Let k = |D|, u = |U |, and s = |G/U |,
so |G| = su. Then D is an (s, u, k, λ)-relative difference set. It is a

semi-regular relative difference set if s = k.

Counting differences of distinct elements of an (s, u, k, λ)-relative

difference set D gives us k(k − 1) = λ(su − u). In the case of a

semi-regular relative difference set, this says k = λu.

Example 8. Let G = 〈x, y |x4 = y4 = 1, xy = yx〉, and let U =

〈x2, y2〉. Then D = {1, y, x, x3y3} is a semi-regular (4, 4, 4, 1)-relative

difference set with respect to U . �

The main result of this section is the following theorem of Godsil

and Roy.

Theorem 13.3. The existence of a semi-regular (k, u, k, λ)-relative

difference set in an abelian group G implies the existence of a set of

u+ 1 mutually unbiased bases of Ck.

Notice that in the special case when λ = 1, this theorem guaran-

tees the existence of a maximal number of MUBs: k + 1 MUBs for

Ck.

The proof of this theorem is accessible to a reader of this book.

Here is a sketch. Let D = {d1, . . . , dk} be the semi-regular relative

difference set of the theorem. Let G∗ be the group of complex-valued

characters of G, and for each χ ∈ G∗, define a vector

(χ(d1), . . . , χ(dk)) ∈ Ck.

It can be shown that we can arrange these |G| = ku vectors in u

sets of k vectors each, and these sets give u MUBs for Ck. These u
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bases turn out to be unbiased with respect to the standard basis also,

producing a total of u+ 1 MUBs.

The proof requires the following observations about the group G∗

from Exercise 11.14. The groups G and G∗ are isomorphic, and we

can use this isomorphism to label the elements of G∗ by elements of

G. Using this labeling, in the group G∗ we have (χa)
−1 = χa−1 and

χaχb = χab for a, b ∈ G.

Now we can link the relative difference set to the inner product

in Ck. Let xa,xb ∈ Ck be determined by χa, χb ∈ G∗. Then we

calculate:

〈xa,xb〉 =
∑
d∈D

χa(d)χb(d)

=
∑
d∈D

χa(d)(χb(d))
−1

=
∑
d∈D

χa(d)χb−1(d)

=
∑
d∈D

χab−1(d) = χab−1(D).

Thus |〈xa,xb〉|2 is constant for all a �= b.

Further reading

The main source for the mathematics in this section is Godsil and

Roy’s paper [24].5 It also contains a theorem linking the existence of

“equiangular lines” to the existence of a difference set, and the proof

of this theorem is a nice application of the methods included in this

book.

For further reading on the mathematics of MUBs, see [39]. For

more on relative difference sets see [8], pages 369 and following. For a

mathematical introduction to error correction in quantum computing,

see [58].

5It is also available at arXiv.org. (In the seach box enter: godsil roy.)
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Background

Linear Algebra

A.1. Let M ∈ M(m,C). The trace of M , denoted Tr(M), is the

sum of the diagonal elements of M . Also, Tr(PMP−1) = Tr(M) for

any P ∈ GL(m,C). If V = Cm and T is a linear transformation of

V with matrix M with respect to some basis of V , then by definition

Tr(T ) is equal to Tr(M), and this is well-defined.

A.2. If M is a square matrix over C, then Tr(M) is the sum of the

eigenvalues of M .

Proof. Look at the coefficient of the λn−1 term of the characteristic

polynomial. On the one hand, the characteristic polynomial factors

completely into linear terms with λi the (not necessarily distinct)

eigenvalues for A

p(λ) = (λ1 − λ)(λ2 − λ) · · · (λn − λ)

and the coefficient of λn−1 is (−1)n−1(λ1 + λ2 + · · ·+ λn).

On the other hand, when we calculate the characteristic polyno-

mial from the determinant of M − λI, the only terms with degree

n− 1 come from the product of the diagonal elements:

p(λ) = (m11 − λ)(m22 − λ) · · · (mnn − λ) + lower degree terms
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and the coefficient of λn−1 is (−1)n−1(m11+m22+ · · ·+mnn). Equat-

ing these coefficients gives us our result. �

A.3. Let V be a vector space of dimension d over the field F. A

hyperplane is a subspace of dimension d − 1. The span of any two

hyperplanes is all of V . The intersection of any two hyperplanes is a

subspace of dimension d− 2. ([3], p. 103)

A.4. Let V be an d-dimensional vector space over a field F. There is

a 1-1 correspondence between the subspaces of V of dimension d− 1

and the subspaces of V of dimension 1. When F is a finite field, this

can be proved by counting, as in the proof given of Theorem 2.16.

If there is a non-degenerate inner product on V , this can be proved

by considering the correspondence between a subspace W and the

subspaceW⊥ of vectors orthogonal toW . The most general argument

avoids either of these special cases, using instead the dual space V ∗

of linear functionals on V and the notion of the annihilator of either

a subspace of V or of V ∗. ([30], Section 17)

A.5. Let V be a finite dimensional vector space over R with the

standard dot product. Then V has an orthonormal basis, and this

basis can be obtained from an arbitrary basis by the Gram Schmidt

process. ([22], p. 342)

Groups

Note: All groups referred to here are finite.

A.6. Let G be a cyclic group. For every divisor of the order of G,

there is a unique subgroup of that order. ([23], p. 78)

A.7. Structure Theorem: Every abelian group is the direct prod-

uct of cyclic groups of prime-power order. Moreover, the number of

terms in the product and the orders of the cyclic groups are uniquely

determined by the group. ([23], p. 217)
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A.8. The exponent of a finite group G, denoted exp(G), is the least

common multiple of the orders of the elements of G.

A.9. The centralizer of element a in a group G is the set of elements

of G that commute with a,

CG(a) = {g ∈ G | ag = ga}.

A.10. Let G be a group and write Cl(a) for the conjugacy class of

a ∈ G,

Cl(a) = {gag−1 | g ∈ G}.

Then

|G| =
∑

|Cl(a)| =
∑

[G : CG(a)],

where the sum contains one term for each conjugacy class of G. ([23],

p. 402)

A.11. If G is a group of order p2 for p a prime, then G is abelian.

([23], p. 403)

A.12. Let G be a group. The commutator subgroup of G is the

group generated by all elements of the form xyx−1y−1 for x, y ∈ G.

Such elements are called commutators.

A.13. Let G be a finite group of order m and let p be a prime that

divides m. If pj |m and pj+1 does not divide m, then any subgroup of

G of order pj is a Sylow p-subgroup of G.

A.14. The Sylow theorems. ([23], pp. 405–407)

(1) Let G be a finite group and let p be a prime. If pj divides

|G|, then G has at least one subgroup of order pj .

(2) If H is a subgroup of a finite group G and |H| is a power of

a prime p, then H is contained in some Sylow p-subgroup of

G.
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(3) The number of Sylow p-subgroups of G is congruent to 1

mod p and divides |G|. Further, any two Sylow p-subgroups

of G are conjugate.

Fields

A.15. Let z ∈ C. If zm = 1 for some integer m, then z is an

mth root of unity. If z has multiplicative order m, we say z is a

primitive mth root of unity . If z is an mth root of unity then |z| = 1,

and z = e(iθ)k for some k = 0, . . . ,m − 1, where θ = 2π/m and

eiθ = cos(θ) + i sin(θ). ([23], p. 46)

Note that z = z−1 in this case. If z is an mth root of unity for

m > 1, then 1 + z + z2 + · · ·+ zm−1 = (zm − 1)/(z − 1) = 0.

A.16. The group of nonzero elements of a finite field F is a group

under multiplication. This group is known as the group of units of F

and is denoted F∗. If F is finite, the group F∗ is cyclic. ([23], p. 383)

A.17. Let q be an odd prime power and let GF (q) be the finite field

of order q. Then −1 is a square in GF (q) if and only if q ≡ 1 (mod 4).

(There is a group-theoretic proof using the fact that −1 is a square

if and only if the multiplicative group GF (q)∗ contains an element of

order 4.) ([20], p. 54)

A.18. Let q be a power of a prime, and let Fq = GF (q). To

construct a field of order qm, we begin with the ring of polynomials

in x over Fq, find a polynomial p(x) of degree m that is irreducible

in this ring, and form the quotient field of the ring modulo the ideal

generated by p(x):

GF (qm) = Fq[x]/〈p(x)〉.

Further it is possible to select p(x) so that the element x+ < p(x) >

generates the group of units of GF (qm). For a specific example see

Exercise 4.12. ([23], p. 383, Corollary 2)
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A.19. Let F be a finite field of order q and let r be a divisor of q.

Then {a ∈ F | ar = a} is the unique subfield of F of order r. ([33],

p. 327)

Miscellaneous

A.20. The principle of inclusion/exclusion: Let U be a finite set

and let A and B be subsets of U . Then
| U \ (A ∪B)| = | U| − |A| − |B|+ |A ∩B|.

More generally, let U be a finite set and let {Aj} be a collection of m

subsets of U . Let St be the sum of sizes of the intersections of t of

the Aj , taken over all t-sets of the Aj . Then∣∣U \
⋃
j

Aj

∣∣ = | U| − S1 + S2 − · · · (−1)mSm.

Further, if for each t the size of the intersection of any t of the subsets

Aj is the same, say st, then

St = st

(
m

t

)
.

So ∣∣U \
⋃
j

Aj

∣∣ = | U| − s1

(
m

1

)
+ s2

(
m

2

)
− · · · (−1)msm

(
m

m

)
.

([68], p. 323)

A.21. Let x, y ∈ Z and p a prime integer. Then (x + y)p ≡ xp +

yp mod p. The proof depends on the binomial theorem and the fact

that for 1 ≤ k ≤ p− 1, the numerator of(
p

k

)
=

p!

k!(p− k)!

is divisible by p, while the denominator is not.
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Notation

Misc.

Z integers

R real numbers

Q rational numbers

C complex numbers

G \D set subtraction, p. 15

∅ empty set, p. 20

S complement of set S

|S| cardinality of set S

Matrices and Linear Transformations

I identity matrix

Im m×m identity matrix

J square matrix of all 1s, p. 19

AT transpose of matrix A, p. 13

A⊗B Kronecker product, p. 137

GL(m,K) invertible m×m matrices over field K, p. 155

GL(V ) invertible linear transformations on V , p. 168

span{v1, . . . , vt} vector space spanned by vectors, p. 170

M(m,C) m×m matrices with entries in C, p. 192

Ker(τ ) Kernel of τ

Im(τ ) Image of τ
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Groups, Rings, Fields

Zm group of integers mod m (sometimes ring)

Fp, Zp field of p elements, p a prime

K field

F field, usually finite

GF (q) field of order q (Galois field), p. 24

K∗ multiplicative group of nonzero elements of K

πg(x) group action of g on x, p. 38

orbG(x) orbit of x under G, p. 38

stabG(x) stabilizer in G of x, p. 38

Fix(g) set of elements of X fixed by g, p. 40

CG(a) centralizer in G of a; {g ∈ G | ga = ag}, p. 40
Dm dihedral group of order 2m, p. 48

G⊕H direct sum of groups, {(a, b) | a ∈ G, b ∈ H}, p. 48
G×H direct product of groups, p. 48

〈g〉 group generated by g

〈S | R 〉 group presentation; S is set of generators,

R is set of relations, p. 48

ZG integral group ring, p. 59

Elements are of the form
∑

g∈G agg, ag ∈ Z

S(t)
∑

s∈S st in integral group ring, p. 60

ϕ̂ ring homomorphism ZG → ZH

induced by ϕ : G → H, p. 107

exp(G) exponent of group G, p. 113

Sm symmetric group on set X = {1, 2, . . . ,m}, p. 168
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Designs

D design, (often symmetric design), p. 26

P set of points in a design, p. 26

B set of blocks in a design, p. 26

I incidence relation, p. 9

v number of points in a symmetric design, p. 16

b number of blocks, p. 16

k number of points per block, p. 16

r number of blocks per point, p. 16

λ number of elements two blocks have in common, p. 16

n k − λ, order of a symmetric design, p. 26

t-(v, k, λ) parameters for a t-design, p. 14

(v, k, λ) parameters for a symmetric design, p. 26

D complement design, p. 17

s-set set containing s points, p. 14

λs number of blocks containing an s-set, p. 16

λs number of blocks disjoint from an s-set, p. 17

Difference sets

D difference set, p. 46

D complement difference set, p. 60

v order of group, p. 47

k number of elements in a difference set, p. 47

λ number of ways a non-identity element is

represented as a difference, p. 47

n k − λ, order of a difference set, p. 47

(v, k, λ) parameters for difference set, p. 47

Δ multiset of non-identity differences, p. 46

devD development of a difference set, p. 54

D(−1)
∑

d∈D d−1 in integral group ring, p. 60

φt numerical multiplier, p. 89
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Geometry

P set of points

L set of lines

� line

�(A,B) line through points A and B

AG(m,F) coordinatized affine m-space over F, p. 23

AG(m, q) coordinatized affine m-space over GF (q), p. 23

PG(m,F) coordinatized projective m-space over F, p. 31

PG(m, q) coordinatized projective m-space over GF (q), p. 31

Number Theory

p usually a prime integer

q usually a prime power(
k
t

)
binomial coefficient, p. 16

ordpn highest power of p that divides n

gcd(a, b) the greatest common divisor of a and b, p. 54

gcd(a, b) = 1 a and b are relatively prime, p. 54

aR b a is a square mod |b| (Legendre), p. 73
χ(a) quadratic character, p. 146

Z[i] Gaussian integers, p. 194

Z[ω] cyclotomic integers, p. 236

Representations and Characters

V1 ⊕ V2 direct sum of vector spaces, p. 180

ρ1 ⊕ ρ2 direct sum of representations, p. 181

ρ group representation, p. 168

ρ̃ ring homomorphism Z → M(m,C)

induced by ρ : G → GL(m,C), p. 192

ρreg (left) regular representation, p. 175

〈 , 〉 complex inner product, p. 183

� , � constructed inner product, p. 186

χ group character, p. 198

χreg regular character, p. 199

V vector space of complex-valued class functions, p. 202

                

                                                                                                               



Appendix C

Hints and Solutions to
Selected Exercises

Chapter 2. Designs

2.1(a). The permutation matrix is: P =

⎡⎢⎢⎣
0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

⎤⎥⎥⎦. S©

2.5. Blocks with the three edges of a triangle can be counted by

choosing 3 of the 6 vertices, for a total of
(
6
3

)
= 20. Blocks with

the three edges of a perfect matching can be found by choosing pairs

of points for the first, second, and third edges, and then dividing

by 3! since the order of the edges does not count. The number of

these blocks is
(
6
2

)(
4
2

)(
2
2

)
/3! = 15. This is a 2-design with parameters:

2-(15, 3, 1); b = 20 + 15 = 35; r = 7. Using Theorem 2.1: b =

λ
(
v
t

)
/
(
k
t

)
= 1 ·
(
15
2

)
/
(
3
2

)
= 35. S©

2.13. Find two ways to count the number of ordered pairs (B, T ) with

B a block and T a t-set with T ⊆ B. H©

2.17(c) There are 12 lines and 3 points per line. The order n = 3. The

parameters as a 2-design are 2-(9, 3, 1), with r = 4 and b = 12. S©
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2.24. We explain the value of λ. Consider any two blocks Ti and Tj . If

squares i and j are in the same row but different columns, the blocks

intersect in the two squares in this row that are not squares i and j.

A similar argument holds for two blocks whose defining squares are

in the same column. Otherwise squares i and j are in different rows

and different columns. Thus they are at diagonally opposite points of

a rectangle, and blocks Ti and Tj intersect at the other two corners

of this rectangle. So λ = 2. S©

2.32(b). Show that A commutes with AT . H©

2.36(a). The line through points [0,1,3] and [2,1,1] is [1,2,1]. S©

Chapter 3. Automorphisms

3.2. Write G = 〈a, b | a4 = b2 = 1, ba = a3b〉. Then the G-orbits are:

{1}, {a, a3}, {a2}, {b, a2b}, {ab, a3b}. S©

3.4. Set up a correspondence between left cosets of Gx in G and

elements of orbG(x). H©

3.7. The permutation of points is (0)(2)(6)(35)(14). The permutation

of lines is (�1)(�2)(�6)(�3�5)(�0�4). Notice that their cycle structures

are the same. S©

3.8. An automorphism does not have to preserve our drawing of the

Fano plane. It must simply be a permutation of points that preserves

the set of blocks. Consider the group of 3×3 invertible matrices with

entries in Z2 acting on (Z2)
3. H©

Chapter 4. Difference Sets

4.3(a). The proof that λ(v − 1) = k(k − 1) is in Chapter 1. Solving

λ(v − 1) = k(k − 1) for λv gives λv = k2 − (k − λ) = k2 − n. S©

4.3(d). For the case k < v/2, show n < (v/2)(k − 2λ) and use

n > 0. H©

4.8. ba = ajb ⇔ bab−1 = aj ; that is, conjugation by b takes a to

aj . H©

4.19(e). D = {g ∈ G | g(1) ∈ B0} = {α, α2, α3, β, β2, β3}. S©
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4.23(a). Since g �→ sg and g �→ gs are permutations of G, we have

sG = G = Gs, and therefore SG =
∑

s sG = |S|G =
∑

s Gs =

GS. S©

4.28. QG is a vector space over Q. H©

4.32. Use the ring homomorphism of Z[x] taking
∑

g agx
g to
∑

ag.

H©

4.33. Use induction on the number of nonzero coefficients of S. See

A.21 for (x+ y)p (mod p). H©

4.34. Choose q = pe > m and consider Aq. H©

4.35. Suppose v is odd and get a contradiction. H©

4.38(c). The automorphisms ϕa for a = 1, 2, 4 fix D, and for a =

3, 5, 6, ϕa(D) = {3, 5, 6}. The seven translates of {3, 5, 6} are distinct

from the seven translates of D, so there are a total of 14 difference

sets equivalent to D. S©

4.40. Imitate the strategy in Example 8. H©

4.43. Without loss of generality, assume the difference set contains 0.

Show that it must contain a set of generators of G. H©

Chapter 5. BRC

5.1(b). x2 = 10y2 − 2z2 has no solution since −2 ≡ 8 (mod 10) is not

a square. S©
5.4. Look at the determinant of the incidence matrix. See Exer-

cise 2.31. H©

5.10. Since A ≡ a, there is an integer t1 so that A = a + t1m.

Similarly we write B = b + t2m, C = c + t3m, D = d + t4m. Then

aA+bB+cC+dD = a(a+t1m)+b(b+t2m)+c(c+t3m)+d(d+t4m).

If we let t = at1 + bt2 + ct3 + dt4 then the expression above equals

a2 + b2 + c2 + d2 + tm = m(p+ t). The other cases are similar. S©

5.15. Use Lemmas 5.6 and 5.7. H©

5.18. Use Lemma 5.8 and Witt’s theorem. H©
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Chapter 6. Multipliers

6.2(a). φ2 is a multiplier since it is an automorphism and

2D = 19 +D. S©
6.2(b). φ3 is not an automorphism, so it is not a multiplier. S©

6.7(a). D has parameters (31, 6, 1) with n = 5, so t = 5 is a multiplier.

S©

6.8(c) Use Exercise 4.3(d). H©

6.13. The parameters must be (11, 5, 2), with multiplier t = 3. The

orbits for φ3 are: (0) (1, 3, 9, 5, 4) (2, 6, 7, 10, 8). The elements in

the first 5-cycle form the difference set of Theorem 4.3. The second

is the image of the first under φ2, so it is equivalent. S©

Chapter 7. Necessary Conditions

7.2(b). Using N = 〈a〉 we find the intersection numbers 6, 4, 3 with

respect to G = N ∪ bN ∪ b2N . They sum to k = 13 and their squares

sum to n+ λs = 61. S©

7.6. Use the Sylow theorems to show that G must contain a normal

subgroup of order 13. H©

7.12. Use the Sylow theorems to show that a group of order 111 has

a normal subgroup of order 37. H©

7.15(a). Since p = 3 and a = 2, the exponent bound is 9. S©

Chapter 8. Geometry

8.1(a). x0 = 1, x1 = x, x2, x3 = x + 1, x4 = x2 + x, x5 =

x2 + x+ 1, x6 = x2 + 1. S©
8.1(b). Tx(x

2) = x + 1 = (0, 1, 1), Tx(x) = x2 = (1, 0, 0), Tx(x
0) =

x = (0, 1, 0), so the matrix of Tx is M . S©
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8.5(b).

slope equation points

0 y = 0 (0, 0), (1, 0), (ω, 0), (ω2, 0)

1 y = x+ 1 (0, 1), (1, 0), (ω, ω2), (ω2, ω)

ω y = ωx+ ω2 (0, ω2), (1, 1), (ω, 0), (ω2, ω)

ω2 y = ω2x+ ω (0, ω), (1, 1), (ω, ω2), (ω2, 0)

∞ x = 0 (0, 0), (0, 1), (0, ω), S©(0, ω2)

8.9(a). Since the zero vector belongs to every hyperplane it appears

r times in the multiset. We know from Section 2.5 that every 1-space

of V appears in (qs − 1)/(q − 1) hyperplanes. Each nonzero vector

spans a unique 1-space, so each nonzero vector appears (qs−1)/(q−1)

times in the multiset. S©

8.11.
∑

1≤i,j≤r

k−1
i kj = (K − k−1

0 )(K − k0). H©

Chapter 9. Hadamard Difference Sets

9.4(b)

row 2 · row 2 = m implies x+ y + z + w = m,

row 2 · row 1 = 0 implies x+ y − z − w = 0,

row 3 · row 1 = 0 implies x− y + z − w = 0,

row 2 · row 3 = 0 implies x− y − z + w = 0. S©

9.13. We know λ(v−1) = k(k−1), so k ≤ (v−1)/2 implies λ(v−1) ≤
((v − 1)/2)((v − 3)/2). Since we assume a nontrivial difference set,

we may divide both sides by v − 1 to get λ ≤ (v − 3)/4. S©

9.15. As in the proof of Theorem 9.3, a normalized Hadamard matrix

H of order 12 defines the incidence matrix A of a symmetric (11, 5, 2)

design. Show that by suitable row and column permutations, A can

be transformed to a fixed matrix. A very useful fact is that there are

exactly 10 ways to choose two items out of five. H©

9.29. We have v = 4n = 4u2 and λ = k − n. The relation λ(v − 1) =

k(k − 1) can be written in terms of u and k as (4u2 − 1)(k − u2) =
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k(k − 1). This can be rearranged into the quadratic k2 − k(4u2) +

u2(4u2 − 1) = 0. Using the quadratic formula and simplifying we get

k =
4u2 ±

√
4u2

2
= 2u2 ± u.

Solving for λ we get λ = k − u2 = u2 ± u. If k = 2u2 + u then

v − k = 4u2 − (2u2 + u) = 2u2 − u. Also if λ = u2 + u, then

v − 2k + λ = 4u2 − 2(2u2 + u) + u2 + u = u2 − u. Thus the choice of

sign in the expressions for k and λ gives the parameters for a difference

set or its complement. S©

Chapter 10. Representations

10.3.

(a) For each g ∈ G, the transformation ρ(g) takes
∑

ajej to
∑

ajeg(j).

The set of coefficients a1, . . . , am is unchanged, so their sum is un-

changed. S©
(b) Let w = e1 − e2, and let g = (12). Then ρ(g)(w) = −w. S©

10.7. We give the matrix for ρreg(a):

ρreg(a) =

⎡⎢⎢⎣
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0 S©

⎤⎥⎥⎦ .
10.8(b). You can find one, at least, by inspection. To find the other

one, look for eigenvectors of ρreg
(
(12)
)
, say, for the eigenvalue −1.

H©

10.12 (a). We show the proof of part (i) of Theorem 10.3. First we

show ρ1 ⊕ ρ2 is a linear transformation:

(ρ1 ⊕ ρ2)(g)(a(v1,v2) + b(w1,w2))

= (ρ1 ⊕ ρ2)(g)(av1 + bw1, av2 + bw2)

= (ρ1(g)(av1 + bw1), ρ2(g)(av2 + bw2))

= (aρ1(g)(v1) + bρ1(g)(w1), aρ2(g)(v2) + bρ2(g)(w2))

= a(ρ1(g)(v1), ρ2(g)(v2)) + b(ρ1(g)(w1, ρ2(g)(w2))

= a(ρ1 ⊕ ρ2)(v1,v2) + b(ρ1 ⊕ ρ2)(w1,w2).
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To show ρ1 ⊕ ρ2 is a homomorphism, let (v1,v2) ∈ V1 ⊕ V2. Then

(ρ1 ⊕ ρ2)(gh)(v1,v2)

= (ρ1(gh)(v1), ρ2(gh)(v2))

= (ρ1(g)(ρ1(h)(v1)), ρ2(g)(ρ2(h)(v2))

= (ρ1 ⊕ ρ2)(g)(ρ1(h)(v1), ρ2(h)(v2))

= ((ρ1 ⊕ ρ2)(g) ◦ (ρ1 ⊕ ρ2)(h))(v1,v2).

This shows (ρ1 ⊕ ρ2)(gh) = (ρ1 ⊕ ρ2)(g) ◦ (ρ1 ⊕ ρ2)(h). S©

10.14. If v and w are column vectors, then v ·w = vTw. H©

10.19(b). Consider the cases g ∈ G1 and g ∈ G \G1 separately. H©

10.21. Use Exercise 19(b) to find three eigenvectors. H©

Chapter 11. Characters

11.2(c). χρ(g) = 2 for elements of cycle type (12); there are 6 of

these. S©

11.10(b). For the natural representation, χρ((1)) = 3, χρ((12)) = 1

and χρ((123)) = 0, so 〈χρ, χρ〉 = 1
6 (3

2 + 3 · 12 + 2 · 0) = 2. S©

11.14(b) The inverse of χ ∈ G∗ is the character g �→ χ(g−1). H©

11.15(a). We use only the assumption that ρ2(g)τ = τρ2(g). Let

v ∈ Ker(τ ). We want to show that w = ρ1(g)(v) ∈ Ker(τ ). We have

τ (w) = τ (ρ1(g)(v)) = ρ2(g)(τ (v)) = ρ2(g)(0) = 0, where we write

0 for the zero vector. Now let v ∈ Im(τ ), say v = τ (w) for some

w. We want to show ρ2(g)(v) ∈ Im(τ ). We find that ρ2(g)(v) =

ρ2(g)(τ (w)) = τ (ρ2(g)(w)) ∈ Im(τ ). S©

11.22. If g �= 1, choose η ∈ G∗ with η(g) �= 1, and consider

η(g)
∑
χ∈G∗

χ(g) H©.

11.25(b). Interpret the sum as an inner product of characters. From

this, what can you say about ρ as a direct sum of irreducible repre-

sentations? H©
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11.28. We know G = D4 = 〈a, b | a4 = b2 = 1, bab = a−1〉 has five

conjugacy classes, and we label the columns with them. Since G/〈a2〉
is abelian of order 4, we know the 4 linear characters of this factor

group become 4 linear characters of G, and we label them χ0, χ1, χ2

and χ3. By summing squares of degrees, we know the remaining

irreducible ρ is of degree 2 and we know from Example 10.11 that it

maps

a �→
[

i 0

0 −i

]
b �→
[

0 1

1 0

]
.

This gives us the following character table:

[1] [a2] [a] [b] [ab]

χ0 1 1 1 1 1

χ1 1 1 1 −1 −1

χ2 1 1 −1 1 −1

χ3 1 1 −1 −1 1

χρ 2 −2 0 0 S©0

11.29(b). One approach is via the set of class functions αs, s =

0, . . . , t, where αs(g) = 1 if g ∈ Cs and αs(g) = 0 otherwise. Write αs

as a sum of irreducible characters. H©

11.32(a). Let G act on its left cosets modulo N by left multiplication.

11.32(c). Use the fact that for complex numbers zj , |z1 + · · ·+ zm| ≤
|z1| + · · · + |zm|, and equality holds if and only if there is a fixed

real number θ with zj = rje
iθ for rj ≥ 0 and j = 1, . . . ,m. This fact

about complex numbers will seem natural if you think of the standard

visual representation of adding complex numbers as adding vectors

in the plane. H©

Chapter 12. Algebraic Number Theory

12.2. Using Theorem 12.1 we know that {vj} = {c + 4ε, c, c, c, c}.
Then

∑
vj = 5c + 4ε = 24, so 5c = 24 − 4ε. This requires ε = +1,

and c = 4. That is, {vj} = {8, 4, 4, 4, 4}. S©

12.6. Suppose D is a (154, 18, 2)-difference set in a group G that

has a normal subgroup N of order 14, so G/N = 〈aN〉 is cyclic of

order 11. Let χ be the character of G with kernel N that maps a to
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η = e2πi/11. The order of 2 modulo 11 is 10, so 2R is a prime ideal

in R = Z[η]. Let vj = |D ∩ ajN |. Then z = χ̃(D) =
∑

vjη
j and

(zR)(zR) = (2R)4 implies z = 4εη	 for some � and some ε = ±1.

It follows that {vj} = {c + 4ε, c, . . . , c}, and
∑

vj = 11c + 4ε = 18.

The only solution is ε = −1 and c = 2, which would give a negative

intersection number, and thus is a contradiction. S©

12.9(e) Use Exercise 4.3(d). H©
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t-design, 14

difference list, 108

difference set, 46

complement, 60

cyclotomic, 144

development, 54

equivalent, 65
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Hadamard, 112, 138, 155
Hall family, 148, 150
McFarland, 129
Menon, 138, 159

normalized, 53
offset, 49
order, 47
Paley, 49, 144

Paley-Hadamard, 138, 141
parameters, 47
partial, 144
relative, 265

residue, 144
reversible, 92
semi-regular relative, 265
shift, 49

Singer, 121, 145
translate, 49
trivial, 47
twin prime powers, 51, 145

dihedral group, 48
Dillon’s dihedral trick, 116
diophantine equation, 72

elementary abelian 2-group, 89
Euler phi function, 238
evaluation map, 107

exponent bound, 112, 162, 247
exponent of a group, 269

Fano plane, 5, 41

Fermat’s Last Theorem, 235
field

construction, 270
cyclotomic, 235

four squares theorem, 77

Gaussian integers, 194

generalized dihedral extension, 116
Gram-Schmidt, 185
group

dihedral, 48

quaternion, 228
group action, 37

regular, 39, 55
transitive, 39

group of units, 270
group presentation, 48
group ring, 60

integral, 59

Hadamard matrix, 135, 141

equivalent, 136
normalized, 136

order, 135

regular, 138, 155

Hall polynomial, 63

hyperplane, 33, 268

ideal

prime, 237

principal, 237
unique factorization, 237

incidence matrix, 12

incidence structure, 11

isomorphic, 13

simple, 12

inclusion-exclusion, 271
inner product

class functions, 202

complex, 184

standard, 183

integral group ring, 59

intersection numbers, 105
intertwining transformation, 210

invariant subspace, 170

inversion formula, 225

Klein-four group, 179, 191

Kronecker delta, 229

Kronecker product, 137

Lagrange’s Theorem, 77

Legendre’s Theorem, 73

Lehmer’s Lemma, 151

Maschke’s Theorem, 182, 188

matrix

equivalent, 78

trace, 42
unitary, 185

McFarland difference sets, 129

Menon construction, 159

Mersenne primes, 145

multiplier, 88
left, 88

numerical, 89

orbit, 97
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Multiplier conjecture, 91

Multiplier Theorem

First, 91

Second, 91

multiset, 2, 46

octic residues, 98

orbit, 38

orbit-stabilizer theorem, 39

order

affine plane, 21

cyclotomic classes, 149

difference set, 47

Hadamard matrix, 135

projective plane, 31

symmetric design, 27

orthogonal complement, 185

parallel, 20

partial difference set, 144

projective plane, 30

coordinatized, 32

duality, 31

order, 31

projective space, 33

coordinatized, 33

quadratic residues, 27, 28, 49

quartic residues, 50

representation

degree, 168

direct sum, 181

equivalent, 177, 205, 210

faithful, 168

irreducible, 171

left regular, 175

linear, 168

natural, 168, 173

reducible, 171

regular, 175, 205

restriction, 182

right regular, 175

trivial, 169

residues

eth power, 149

root of unity, 270

primitive, 270

Schur’s Lemma, 211
self-conjugate, 114
set

s-set, 14
square-free integer, 73
stabilizer, 38
Steiner system, 15
structure theorem, 268
subspace

G-invariant, 170
invariant, 170
stable, 170
trivial, 170

Sylow p-subgroup, 269
Sylow theorems, 269
symmetric design, 26

complement, 28
order, 27
parameters, 26
trivial, 27

t-design, 14
trace, 42, 267
transformation

intertwining, 210
unitary, 185

Turyn’s construction, 125
twin primes, 51, 53, 92, 145

unique factorization domain, 235
unitary matrix, 185
unitary transformation, 185

vector
length, 184
orthogonal, 184

vector space
direct sum, 180, 181

Witt’s Cancellation Theorem, 80
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( 4,1,0 ), 157

( 7,3,1 ), 41, 54, 67, 124

( 7,4,2 ), 51

( 11,5,2 ), 54, 61, 98

design, 27

Paley, 47

( 13,4,1 ), 53, 54, 88, 89, 124

( 15,7,3 ), 47, 93, 97, 98, 125

TPP, 53

( 16,6,2 ), 75, 157

abelian (2,2,2,2), 68, 89, 96

abelian (4,2,2), 68

abelian (4,4), 58, 65, 68, 194

abelian (8,2), 66

design, 27, 29

non-abelian, 118

( 19,9,4 ), 29, 93, 148

( 21,5,1 ), 52

abelian, 90, 91, 93, 98

non-abelian, 49, 65

( 22,7,2 ), 72

( 23,11,5 ), 93

( 25,9,3 ), 75, 109, 240

( 31,15,7 ), 152, 154

Paley, 67

Singer, 67

( 31,6,1 ), 93

( 31, k, λ ), 99

( 35,17,8 ), 98

TPP, 53

TPP+, 92

( 36,15,6 ), 158

abelian (6,6), 48

( 37,9,2 ), 29, 53, 91, 93, 98

( 39,19,9 ), 84, 111, 144

( 40,13,4), 111

( 43, 7,1 ), 74

( 43,15,5 ), 73

( 43,21,10 ), 99

( 49,16,5 ), 72

( 49,k,λ ), 99

( 51,25,12 ), 75

( 56,11,2 ), 29

( 57,8,1), 110

( 64,28,12 ), 115

( 66,26,10 ), 246

( 67,12,2 ), 75

( 67, k, λ ), 99

( 71,15,3 ), 29, 75

( 73,9,1 ), 98

( 79,13,2 ), 29, 97

( 93,24,6 ), 75

( 99,49,24 ), 100

(100,45,20 ), 162, 234

(111,11,1 ), 74, 112

(154,18,2 ), 245

(160,54,18 ), 115

(175,30,5 ), 115

(201,25,3 ), 112

(324,153,72 ), 115

297
                

                                                                                                               



298 Index of Parameters

(343,19,1), 73
(575,k,λ ), 102

                

                                                                                                               



For additional information
and updates on this book, visit

www.ams.org/bookpages/stml-67

AMS on the Web
www.ams.orgSTML/67

Difference sets belong both to group theory and 
to combinatorics. Studying them requires tools 
from geometry, number theory, and representa-
tion theory. This book lays a foundation for these 
topics, including a primer on representations and 
characters of fi nite groups. It makes the research 
literature on difference sets accessible to students 
who have studied linear algebra and abstract algebra, and it prepares them to do 
their own research.

This text is suitable for an undergraduate capstone course, since it illuminates the 
many links among topics that the students have already studied. To this end, almost 
every chapter ends with a coda highlighting the main ideas and emphasizing 
mathematical connections. This book can also be used for self-study by anyone 
interested in these connections and concrete examples.

An abundance of exercises, varying from straightforward to challenging, invites 
the reader to solve puzzles, construct proofs, and investigate problems—by hand 
or on a computer.  Hints and solutions are provided for selected exercises, and 
there is an extensive bibliography. The last chapter introduces a number of applica-
tions to real-world problems and offers suggestions for further reading.

Both authors are experienced teachers who have successfully supervised under-
graduate research on difference sets.
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