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Preface

In the process of writing a mathematics book, an author has to make

a variety of decisions. The central theme of the book must be followed

by deciding on a potential audience to whom the book is directed, and

then a choice of style for presenting the material must be made.

This book began as a collection of additional notes given to stu-

dents participating in the courses taught by the author at Tulane

University. These courses included:

• The calculus sequence. This is the typical two-semester

course on differential and integral calculus. The standard book used

at Tulane is J. Stewart [281]. The author has used M. Spivak [277] for

the Honor section, which is slightly more advanced than the regular

one.

• Discrete mathematics. This course introduces students to

mathematical induction and provides a glimpse of number theory.

This is the first time where the students are exposed to proofs. The

books used in the past include M. Aigner [4] and K. Rosen [256].

• Combinatorics. This is a one-semester course that includes

basic counting techniques, recurrences, combinatorial identities, and

the ideas behind bijective proofs. The author has used a selection

of texts, including T. Andreescu and Z. Feng [17], A. Benjamin and

J. Quinn [46], M. Bona [58], and R. Brualdi [82].

xiii

                

                                                                                                               



xiv Preface

• Number theory. This is also a one-semester course covering

the basics of the subject: primality and factorization, congruences,

diophantine equations, continued fractions, primitive roots, and qua-

dratic reciprocity. The texts used by the author include G. H. Hardy

and E. M. Wright [160], K. Ireland and M. Rosen [178], K. Rosen

[257], and J. H. Silverman [274].

• Real analysis. This is one of the few required courses for a

mathematics major. It introduces the student to the real line and all

of its properties. Sequences and completeness, the study of the real

line, continuity, and compactness form the bulk of the course. The

author has employed O. Hijab [168] and E. Landau [192] to reflect

his opinion that this class should be calculus “well done”.

• Experimental mathematics. This is a course created by the

author. Notwithstanding that it has been taught only three times to

date, it has been received very well by our students. The material

in the course includes an introduction by the author to the symbolic

language Mathematica and to Maple by a second instructor. The

topics have included an introduction to computer proofs in the Wilf-

Zeilberger style, recurrences, symbolic integration, and graph theory.

Beyond using the computer as a number cruncher, the course has em-

ployed symbolic packages to discover new mathematical patterns and

relationships, to create impressive graphics to expose mathematical

structure, and to suggest approaches to formal proofs. The author

has used the texts by J. M. Borwein and D. H. Bailey [69] and the

second volume written jointly with R. Girgensohn [70] as well as the

lecture notes [36] from a course in experimental mathematics given

by the authors at the Joint Mathematics Meetings in San Antonio.

The volume by M. Petkovsek, H. Wilf, and D. Zeilberger [247] has

been used to lecture on automatic proofs. The audience for this class

has consisted of students majoring in mathematics and some others

who wandered into the class because they heard that the topics were

interesting.

The author has always placed a special effort in his lectures to

point out that material covered in a specific class is part of a bigger

picture. This book is a product of notes written for these courses.

                

                                                                                                               



Preface xv

Naturally, most of the topics covered appear in the literature. It is

the point of view that is new.

The present book contains a variety of topics that at first reading

might appear to be disconnected. It is the author’s hope that in

the end it will all fit together. The author finds some results in

elementary mathematics particularly appealing and some material

has been written to supply background towards a specific goal. No

effort has been made to be systematic and there is no claim about

the topics that do not appear here.

The reader will find here examples that include the following:

Evaluation of finite sums . These are used as examples to practice

induction, to provide combinatorial interpretations, and to introduce

the reader to ideas behind automatic proofs. The questions dealing

with the evaluation of
n∑

k=0

(
n

k

)2

=

(
2n

n

)

and the analogous problem for
n∑

k=0

(
n

k

)3

are in the background.

Prime factorization . The fundamental theorem of arithmetic

states that every natural number has a unique decomposition as a

product of primes. There are some beautiful results that describe this

prime factorization for interesting sequences. These are expressed in

terms of the so-called valuation νp(m), the highest power of the prime

p that divides m. Among them is Legendre’s formula for factorials,

usually given as a series

νp(n!) =

∞∑
k=1

⌊
n

pk

⌋
,

but it can also be reinterpreted as

νp(n!) =
n− sp(n)

p− 1
.

Here sp(n) is the sum of digits of n written in base p.

                

                                                                                                               



xvi Preface

The book explores properties of these prime factorizations for

many classical sequences that come from combinatorics. These in-

clude binomial coefficients, which are encountered in the most el-

ementary counting problems; Catalan numbers, which count the

number of ways to place parentheses to group symbols in a sequence

of numbers; the Fibonacci numbers, which count the ways to cover

a board with squares and dominoes; the Stirling numbers, which

count the number of ways to split a set of n elements into k nonempty

parts; and many others. The patterns of the valuations of these se-

quences are sometimes remarkably beautiful and, in many cases, still

need to be explained. Some of these families of numbers are unex-

pectedly related. For instance, computing the residues of the bino-

mial coefficient
(
2p−1
p−1

)
modulo powers of the prime p, the reader will

encounter the harmonic numbers Hn = 1 + 1
2 + · · · + 1

n and the

Bernoulli numbers defined by the expansion of x/(ex − 1).

Elementary functions . The student finds a variety of functions

in the beginning sequence of calculus. This book contains a study

of polynomials, rational functions, exponentials/logarithms, and trig-

onometric functions. The author has made an effort to illustrate

properties of these functions that hopefully the reader will find ap-

pealing. A variety of examples of polynomials appear in the book.

These include Bernoulli polynomials, which provide the evaluation

of well-known examples such as

n∑
k=1

k2 =
n

6
+

n2

2
+

n3

3

and the less well known

n∑
k=1

k8 =
n9

9
+

n8

2
+

2n7

3
− 7n5

15
+

2n3

9
− n

30
.

It is easy to see that the sum of ath powers from 1 to n is a poly-

nomial in n of degree a + 1. The properties of the coefficients are

a different story. These coefficients, the so-called Bernoulli num-

bers, are always rational numbers and their denominators can be

described in relatively simple terms. It is a remarkable fact, one that

                

                                                                                                               



Preface xvii

the author always enjoyed, that the numerators are related to Fer-

mat’s last theorem, now established by A. Wiles, namely that the

equation xn + yn = zn has no solutions in nonzero integers when

n ≥ 3.

Roots of polynomials are encountered by the student in the courses

preparing him or her for the calculus sequence. This book treats the

cases of degree 3 and 4 by expressing the roots by radicals and then

in terms of one trigonometric function. In future courses the student

will most likely learn that, in general, there is no expression by

radicals for the solution of a quintic equation. This celebrated

result of Abel and Galois is one of the jewels of the nineteenth century

and it must be studied. On the other hand, it is possible to express the

roots of any polynomial equation in terms of more advanced functions.

Elliptic functions suffice for degree 5 or 6 and the so-called theta

functions produce solutions for higher degrees. This is a beautiful

subject that also deserves to be studied. From this point of view, the

best way to solve a cubic equation is via trigonometric functions. This

is an overstatement: the student should be aware of both methods.

Rational functions are introduced as coming from generating

functions of sequences that obey linear recurrences with constant

coefficients. The main example is that of the Fibonacci numbers, de-

fined by Fn = Fn−1+Fn−2, with initial conditions F0 = 0 and F1 = 1.

Their generating function is

∞∑
n=0

Fnx
n =

x

1 − x− x2
.

The classical question of how to integrate a rational function is prob-

ably the first time that a student seriously deals with this class. The

method of partial fractions, which provides the solution to this ques-

tion, is discussed in detail. One of the earliest evaluations of an

integral in closed form, the Wallis formula

∫ ∞

0

dx

(x2 + 1)m+1
=

π

22m+1

(
2m

m

)

is established by a variety of methods.
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This book contains two examples of transformations on the class

of rational functions. The first example is

R(x) �→ R(
√
x) −R(−√

x)

2
√
x

and it originated from an attempt by the author to develop a new

method of integration. The map above comes from separating the in-

tegrand R into its even and odd parts. Iterating this transformation

to a function of the type xj/(xm − 1) has unexpected number theo-

retical properties. The second type of transformation comes from the

rational function R(x) =
x2 − 1

2x
, coming from the relation between

cot θ and cot 2θ. Using this rational function as a change of vari-

able, one finds remarkable identities among integrals. These are the

so-called Landen transformations , which produce identities of the

type ∫ ∞

−∞

dx

ax2 + bx + c
=

∫ ∞

−∞

dx

a1x2 + b1x + c1

where

a1 =
2ac

c + a
, b1 =

b(c− a)

c + a
, c1 =

(c + a)2 − b2

2(c + a)
.

It turns out that iterating this procedure gives a sequence (an, bn, cn)

and a number L such that an → L, bn → 0, and cn → L. The

invariance of the integral leads to the identity∫ ∞

−∞

dx

ax2 + bx + c
=

π

L
.

This shows that the integral may be computed numerically by com-

puting the sequence {an}. These types of ideas extend to the com-

putation of the integral of any rational function on R. Details

appear in Chapter 15.

Transcendental functions appearing in the book include some of

elementary type such as exponential, trigonometric, and hyper-

bolic functions. These complete the class of elementary functions

treated in the calculus sequence. The goal is to provide interesting

properties of these functions and to describe connections with combi-

natorics, number theory, and interesting numbers. For instance, the
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reader will see that the expansion of some trigonometric functions

around the origin involves the Bernoulli numbers mentioned in the

context of evaluation of power sums.

The basic constants of analysis, e and π, are discussed in detail.

Their irrationality is established by a systematic method. It is in-

triguing that the irrationality of e+π is still an open problem. Their

continued fractions, which provide optimal approximations by ra-

tional numbers, are established. There are some beautiful integral

evaluations related to this topic. An example is given by

∫ 1

0

x4(1 − x)4

1 + x2
dx =

22

7
− π,

which proves that π �= 22
7 . There is a marked difference in the behav-

ior of these continued fractions. The patterns for e are quite regular,

while those for π remain a mystery. The appearance of e in a combi-

natorial setting is given by the counting of permutations of n objects

that do not fix a single one of them. This is the classical derange-

ment number. Its behavior for large n is related to e. This is totally

unexpected.

The author has chosen two examples of nonelementary transcen-

dental functions to illustrate some of their properties. The first one

is the gamma function Γ(x) (and its logarithmic derivative: the

digamma function ψ(x) = Γ′(x)/Γ(x)) introduced by Euler, and

the second one is the Riemann zeta function ζ(s) coming from

questions dealing with the distribution of prime numbers.

Irrationality questions are considered throughout the book. The

irrationality of some special numbers is presented in detail. These

include
√

2, e, π, and also ζ(2) = π2/6 and ζ(3). This last constant

does not admit a simpler representation. Its irrationality, recently

established by R. Apéry, is discussed in the last chapter. It is unknown

whether it is a rational multiple of π3. The arithmetic properties of

the Euler constant, defined by γ = −Γ′(1), are still unknown. Some

details on this question are described.

Symbolic computations are seen as an essential ingredient of this

book. Mathematica examples are included to illustrate the capabil-
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ities of this language. In an earlier draft of the book there was a

separate chapter describing the methods developed by Sister Celine

and by W. Gosper Jr. and the WZ-theory created by H. Wilf and

D. Zeilberger. The final draft incorporates these techniques into the

flow of the book.

This book started as a collection of notes written for a variety

of courses. The author has tried to give credit to the authors of

the various notes. It is very likely that some of them have been

missed. My apologies to those ignored or misquoted. There are

many books that have been used to obtain the information presented

here. These are the author’s favorite ones, starting with the classic

Modern Analysis by E. T. Whittaker and G. N. Watson [311];

the basic treatment on automatic proofs can be found in the text

by M. Petkovsek, H. Wilf, and D. Zeilberger [247]; and the book by

R. Graham, D. Knuth, and O. Patashnik [145] is a great source for a

class in discrete mathematics. The best introduction to the issues of

symbolic computation is given in the text by M. Kauers and P. Paule

[181]. From there the reader should consult the information provided

on the website

http://www.risc.jku.at/

from RISC (the Research Institute for Symbolic Computation) at the

Johannes Kepler University in Linz, Austria, and

http://carma.newcastle.edu.au

from the Priority Research Centre for Computer-Assisted Research

Mathematics and Its Applications (CARMA) at the University of

Newcastle, Australia. The order in which these two centers were

listed does not imply a preference by the author.

Experimental mathematics is a relatively new name for an old

approach to doing mathematics. It seems optimal to quote the gurus

of the field about their opinions on what experimental mathematics is.

In [143], H. Wilf describes the path from experiment to theory

in mathematics as follows: “... it begins with wondering what a par-
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ticular situation looks like in detail; it continues with some computer

experiments to show the structure of that situation for a selection of

small values of the parameters of the problem; and then comes the

human part: the mathematician gazes at the computer output, at-

tempting to see and to codify some patterns. If this seems fruitful,

then the final step requires the mathematician to prove that the ap-

parent pattern is really there, and it is not a shimmering mirage above

the desert sands.”

D. Zeilberger in [322] and in many of his other articles and opin-

ions proposes to eliminate the human factor in the mathematical ex-

perience. Perhaps eliminate is too strong of a word and minimize is

more pleasant. But Doron does not mince words, so neither does the

author. The reality is that more and more mathematics is becoming

part of the computer experience. The author remembers spending

hours of valuable high school time extrapolating tables of logarithms.

Then came the hand calculator. . . .

J. M. Borwein and D. H. Bailey [69] enumerate the role of com-

puting in mathematics: (i) gaining insight and intuition; (ii) dis-

covering new relationships; (iii) visualizing mathematical principles;

(iv) testing and especially falsifying conjectures; (v) exploring a pos-

sible result to see if it merits formal proof; (vi) suggesting approaches

for formal proof; (vii) computing replacing lengthy hand derivations;

(viii) confirming analytically derived results. A nice collection of ex-

amples illustrating this point of view of mathematics is provided in

[34, 35].

The author has tried to follow this list in the context of under-

graduate material. Aside from that, he has aimed to present ele-

mentary results from a novel point of view, hoping to motivate the

reader to learn more about standard subjects. It is clear that some

statements have shorter proofs than the one presented in the text.

The students have always been in the background of the writing, so

sometimes it is instructive to present a complicated proof: the point

illustrated is that often that is all you can do. This is fine. If you find

a nicer argument later, even better.

Most of the topics are from elementary mathematics with oc-

casional hints on how it connects to more sophisticated subjects. Part
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of the motivation for bringing together a large collection of notes on

diverse topics was to provide the reader with some fun while learning

interesting pieces of mathematics. It was a lot of fun to write the

book. Hopefully the reader will enjoy part of it .

The final version of this book has been improved by many com-

ments received by colleagues, students, and friends. A partial list

is

Tewodros Amdeberhan Tulane University

Valerio De Angelis Xavier University, New Orleans

Erin Beyerstedt Tulane University

Jon Borwein CARMA, University of Newcastle, Australia

Peter Bull Tulane University

Michael Hirschhorn University of New South Wales, Sydney, Australia

Manuel Kauers RISC Institute, Linz, Austria

Karen Kohl Tulane University

Christoph Koutschan RISC Institute, Linz, Austria

Dante Manna Wesleyan University, Virginia

Luis A. Medina Universidad de Puerto Rico, Rio Piedras

Tom Osler Rowan University, New Jersey

Eric Rowland Tulane University

Armin Straub Tulane University

Jonathan Sondow New York City

Xinyu Sun Xavier University, New Orleans

Wadim Zudilin CARMA, University of Newcastle, Australia

The author especially wishes to recognize the contribution of

Allen Stenger Alamogordo, New Mexico,

who provided detailed comments in each chapter of this manuscript.

Special thanks to the staff at the Department of Mathematics at

Tulane University for their help during the time when this book was

being prepared. In particular, many thanks to Augusta (Cammy)

Watts for her help finding every possible paper that had a relation to

the topics covered here.
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This book was completed in the fall of 2011 and the author wishes

to acknowledge the hospitality provided by the Courant Institute of

New York University during this period.

The author was supported in part by NSF Grant #0713836. Fi-

nally, the author wishes to thank the staff of the AMS and especially

Ed Dunne. His periodic emails were part of the motivation to convert

a large collection of notes into the current book.

                

                                                                                                               



Chapter 1

The Number Systems

The goal of this chapter is to introduce the different kinds of num-

bers that will appear throughout the text. We start with an intuitive

treatment of the natural numbers N. This is followed by a descrip-

tion of the integers Z and rational numbers Q. The question of

completion of rational numbers leads to real numbers R and to the

set of p-adic numbers Qp, one set per prime number p. These are

all the completions of Q. The chain of number systems culminates

with complex numbers C. The text by H. Ebbinhaus et al. [120]

gives a description of the number systems presented here, with many

of the historical facts associated to them.

1.1. The natural numbers

This section contains a very intuitive approach to the set of natural

numbers

(1.1.1) N := {1, 2, 3, . . .}

as is encountered in childhood. These are the counting numbers.

The reader will find in the text by Y. Moschovakis [225] a more ax-

iomatic development of this set.

The successor function is one of the fundamental concepts in

the definition of the set N. The successor of n ∈ N is denoted by n+.

1

                                     

                

                                                                                                               



2 1. The Number Systems

Part of the axiomatic development of N is to impose some properties

on this function:

• The map n �→ n+ is one-to-one; that is, if n+
1 = n+

2 , then n1 = n2.

• The number 1 is not the successor of any natural number.

• If M ⊂ N contains 1 and is closed under successor (that is, if n ∈ M ,

then n+ ∈ M), then M = N.

The last property is the familiar principle of mathematical

induction.

Exercise 1.1.1. Prove that N = {1} ∪ {n+ : n ∈ N }.
Note 1.1.2. The fact that the function n �→ n+ is one-to-one and

the previous exercise imply that for every m ∈ N, m �= 1, there is

a unique natural number, denoted by m−, such that m+
− = m. The

number m− is called the predecessor of m.

Note 1.1.3. The usual notation for natural numbers can be given a

more rigorous approach by defining

(1.1.2) 1+ = 2,

and then,

(1.1.3) 2+ = 3,

that is, 3 = (1+)+. The principle of induction states that N consists

of all the images of the number 1 under the successor function.

Note 1.1.4. E. Landau [192] defines the numbers 2, 3, . . . , 9 in terms

of the successor function and then proceeds to prove all elementary

properties of arithmetic in terms of the decimal expansions of nat-

ural numbers. The point of view taken here is less rigorous. The

elementary arithmetical properties of natural numbers are taken for

granted. The operation of addition can be defined using the suc-

cessor function in the following form: fix m ∈ N and define m + n

by

m + 1 = m+ (the successor of m),

m + n = (m + n−)+ for n �= 1.

                

                                                                                                               



1.2. An automatic approach to finite sums 3

Here n− is the predecessor of n. A similar definition of multiplication

is possible. All the elementary properties of addition and multiplica-

tion in N can now be proved.

Exercise 1.1.5. The usual properties of addition and multiplication

of natural numbers can all be established by induction. The reader

is invited to check that a + b = b + a and (ab)n = anbn hold for

a, b, n ∈ N.

Note 1.1.6. An example of the themes developed in this book is the

evaluation of finite sums in terms of a given class of special functions.

The general idea is described with the sums

(1.1.4) Sa(n) :=

n∑
k=1

ka, a ∈ N.

Given a class of functions F, the question is whether one can obtain

the value of Sa(n) in terms of a fixed function fa ∈ F evaluated at

n. For example, the elementary evaluation

(1.1.5) S1(n) =
1

2
n(n + 1)

shows that S1(n) can be expressed in terms of the class of polynomials

with rational coefficients. These elementary facts are described in

Chapter 4.

Exercise 1.1.7. Prove (1.1.5) by induction. Hint for an alterna-

tive proof: Observe that S1(n) satisfies S1(n + 1) = S1(n) + n + 1.

Define

(1.1.6) T1(n) :=
2

n(n + 1)
S1(n) − 1

and check that T1(n+1) = nT1(n)/(n+2). The value T1(1) = 0 gives

the result.

1.2. An automatic approach to finite sums

The question of a closed form for a finite sum is solved in a completely

elementary manner if the sum telescopes. These are sums of the

                

                                                                                                               



4 1. The Number Systems

form

(1.2.1) An =
n∑

k=1

(fk+1 − fk).

Cancellation occurs in An and its value is

(1.2.2) An = fn+1 − f1.

Exercise 1.2.1. Check that the sum

(1.2.3) An =
n∑

k=1

k k!

can be evaluated by telescoping. Hint: Write k = (k + 1) − 1. This

hint is really a trick. See Exercise 1.2.4 for a solution without it.

The question of how to determine if a sum is of this form was

answered by R. W. Gosper Jr. in [140]. The automatic procedure

developed there is illustrated with the evaluation of

(1.2.4) S1(n) :=

n∑
k=1

k =
1

2
n(n + 1).

The transformation of a sum

(1.2.5) Bn =

n∑
k=1

tk

to telescoping form is translated to the existence of a function sk such

that

(1.2.6) sk+1 − sk = tk.

If such a function can be found, then

(1.2.7) Bn = sn+1 − s1.

Gosper treated the class of summands where

(1.2.8) rk :=
tk+1

tk
is a rational function. These summands are said to be of hyper-

geometric type or simply hypergeometric. The algorithm starts

by replacing the unknown sk by the rational function yk defined by

sk = yktk. Then (1.2.6) becomes

(1.2.9) rkyk+1 − yk = 1.

                

                                                                                                               



1.2. An automatic approach to finite sums 5

The next step requires a technical point: a factorization of the rational

function rk in the form

(1.2.10) rk =
ak
bk

ck+1

ck

where ak, bk, ck are polynomial sequences such that ak and bk+h are

relatively prime. The reader will find in the text by M. Petkovsek,

H. Wilf, and D. Zeilberger [247] a proof of the fact that such a fac-

torization always exists. The additional assumptions that the pairs

{ak, ck} and {bk, ck+1} are relatively prime polynomials guarantees

uniqueness of the factorization. Efficient algorithms for finding this

factorization are also described.

The final change of the unknown, given by

(1.2.11) yk =
bk−1

ck
xk,

converts (1.2.9) to

(1.2.12) akxk+1 − bk−1xk = ck.

The remarkable result of Gosper is stated next. The reader will find

a proof in [247].

Theorem 1.2.2. Let ak, bk, ck be as described above. If xk is a ra-

tional function that solves (1.2.12), then xk is a polynomial function.

To complete the algorithm, determine bounds for the polynomial

function xk and solve (1.2.12) by the ansatz with undetermined coef-

ficients and by backwards substitute to obtain sk.

Example 1.2.3. Gosper’s algorithm is illustrated with the sum

(1.2.4). In this case tk = k, so

(1.2.13) rk =
k + 1

k

is already in the required factored form (1.2.10) with ak = bk = 1 and

ck = k. The final equation (1.2.12) takes the form

(1.2.14) xk+1 − xk = k.

This is the same equation as the original one. Gosper’s result now

guarantees that, if (1.2.6) has a solution of hypergeometric type, then

(1.2.14) has a polynomial solution. The reader can check that there

                

                                                                                                               



6 1. The Number Systems

is no solution of degree 1 in k, so xk must be of degree at least 2.

The form xk = ak2 + bk+ c replaced in (1.2.14) provides the solution

xk = 1
2k

2 − 1
2k. Returning to the original problem, it gives

(1.2.15) sk = 1
2k

2 − 1
2k.

Therefore

S1(n) =

n∑
k=1

k

=

n∑
k=1

(sk+1 − sk)

= sn+1 − s1

=
n(n + 1)

2
,

as expected.

Exercise 1.2.4. Use this algorithm to evaluate the sum in Exercise

1.2.1. The hint is no longer required.

Note 1.2.5. Most symbolic languages have implemented Gosper’s

algorithm. The command Sum, employed in Mathematica to deal

with sums of hypergeometric terms, makes use of it. This gives the

evaluation of a large variety of sums. For example, the input

(1.2.16) Sum[k2, k]

(followed by the Expand command to visualize the answer in a better

form) gives the output

(1.2.17)
k

6
− k2

2
+

k3

3
.

Denote the function in (1.2.17) by F (k). Then the reader can verify

that F (k + 1) − F (k) = k2 and it follows that

(1.2.18) S2(n) :=

n∑
k=1

k2 = F (n + 1) − F (1) =
1

6
n(n + 1)(2n + 1).

Exercise 1.2.6. The reader who insists on proving by induction a

formula produced by Gosper’s algorithm can still use it to reduce the

                

                                                                                                               



1.2. An automatic approach to finite sums 7

amount of work required. This idea is illustrated with the evaluation

of S2(n). Let

G2(n) =
n(n + 1)(2n + 1)

6

be the answer obtained from Gosper’s algorithm. Now define

T2(n) =
S2(n)

G2(n)
− 1.

Check that the recurrence S2(n + 1) = S2(n) + (n + 1)2 produces

(1.2.19) T2(n + 1) =
n(2n + 1)

(n + 2)(2n + 3)
T2(n).

Now use T2(1) = 0 to conclude that T2(n) ≡ 0.

Exercise 1.2.7. Prove a formula for S3(n) =
∑n

k=1 k
3 along the lines

indicated in Exercise 1.2.6.

Note 1.2.8. Mathematica contains the knowledge of a very large

class of functions, so the output might surprise the reader. For in-

stance,

(1.2.20) Sum[1/k, k]

produces the output

(1.2.21) PolyGamma[0, k].

The polygamma function is the logarithmic derivative of the gam-

ma function, sometimes called the digamma function. An el-

ementary introduction to these functions is given in Chapter 16.

The Mathematica Sum function gives the indefinite sum and it

usually contains a constant of summation. For instance, the value

PolyGamma[0,3] gives 3
2 − EulerGamma. This constant is defined by

(1.2.22) γ = EulerGamma = lim
n→∞

n∑
k=1

1

k
− lnn.

Exercise 1.2.9. Use Gosper’s algorithm to prove that the digamma

function is not hypergeometric. Hint: Apply the algorithm to the

summand 1/k.

                

                                                                                                               



8 1. The Number Systems

There are simple summands when even Mathematica is unable to

produce an answer. For example, for the nonhypergeometric entry,

Sum[1/(k +
√
k), k]

is returned as

(1.2.23)
∑
k

1√
k + k

without any further simplification. The fact is that there is no closed

form for this sum. On the other hand, Mathematica also fails to

evaluate the sum
n∑

k=0

(1 −
√
k + k)

√
k! = (n + 1)

√
n! .

The reader will find in the book by M. E. Larsen [195] a de-

scription of the variety of methods developed to treat the question of

evaluation of finite sums.

1.3. Elementary counting

A recurrent theme in this book is that certain numbers an are of

interest because they appear as counting sequences. That is, there

is a collection of sets An, indexed by n ∈ N, such that

(1.3.1) an = number of elements in An.

As a first example, consider the number of subsets of

(1.3.2) Xn := {1, 2, . . . , n};

that is,

(1.3.3) An := {Y : Y ⊂ Xn}.

It is certain that the reader knows that an = 2n.

Theorem 1.3.1. The set Xn has 2n subsets; that is, an = 2n.

Proof. Let an be the number of subsets of Xn. The proof consist in

producing a recurrence for an that will be used to prove the result by

induction. Concentrate on the last element n + 1. The an+1 subsets

of Xn+1 are divided into two disjoint classes: those that contain n+1

                

                                                                                                               



1.3. Elementary counting 9

and those that do not. The sets of the second type can be put in a

one-to-one correspondence with the subsets of Xn. Therefore, there

are an sets of this type. On the other hand, any set of the first type

is of the form A∪ {n+ 1}, with A ⊂ Xn. Therefore, an+1 = 2an and

the result follows by induction. �

Note 1.3.2. Given a recurrence, such as an+1 = 2an from which

the first few values suggest a formula for an, it is often convenient

to use the guessed expression to define a new variable. Then the

recurrence for tn is usually simpler than the original one. In the

example considered here, let tn := 2−nan. Then tn satisfies tn+1 = tn.

The initial value t1 = 1 establishes that tn = 1, proving that sn = 2n,

for all n ∈ N.

The second example of counting sequences deals with the concept

of permutations. Start with a collection of objects

(1.3.4) Yn = {y1, y2, . . . , yn}.

In this context, a bijection f : Yn → Yn is called a permutation of

the objects in Yn. Recall that a bijection is a function that is one-to-

one and onto. That is, for each index i in the range 1 ≤ i ≤ n, there

is a unique index j in the same range such that f(yi) = yj . The set of

all permutations of Yn is called the symmetric group on n letters

and it is denoted by Sn. The question considered here is the number

of elements in Sn. Denote this number by bn. A formula for bn will

be obtained from a recursion.

In order to produce this recursion, the multiplicative principle

of combinatorics is employed. The principle states that if the reader is

asked to perform two consecutive experiments such that there are a1
possible outcomes for the first task and for each of these the second

task has a2 possible outcomes, then the two events have a total of

a1 × a2 possible results. The goal is now to reduce a permutation on

n symbols to one with fewer symbols. This is done using a standard

way to represent a permutation via an array, with each column being

of the form {yi, f(yi)}. For example, the array

(1.3.5)

(
y1 y2 y3 y4 y5 y6
y3 y2 y6 y1 y4 y5

)

                

                                                                                                               



10 1. The Number Systems

represent the function f : {y1, . . . , y6} → {y1, . . . , y6} such that

f(y1) = y3, f(y2) = y2, and so on.

The reduction from n symbols to n− 1 is described next. Let f

be a permutation of Yn. Choose an index i in the range 1 ≤ i ≤ n and

assume f(yi) = yj . Drop yi from the domain of f and drop yj from

its range. If f(yi) = yi, that is, if i = j, then the function f can be

restricted to the set {y1, y2, . . . , yi−1, yi+1, . . . , yn} as a permutation.

If i �= j, then relabel the element yi in the range as yj . The function

f restricted to the relabeled set is again a permutation. For example,

suppose that f is given by (1.3.5). Then choose i = 1 and note that

f(y1) = y3. Then the restricted function is obtained by dropping y1
from the domain and y3 from the range and finally relabeling y3 as

y1 in the domain. This yields the modified function

(1.3.6)

(
y2 y1 y4 y5 y6
y2 y6 y1 y4 y5

)
.

There are n ways to choose yi to start the construction and bn−1

ways to permute the new set. The multiplicative principle states that

(1.3.7) bn = n× bn−1.

Clearly b1 = 1. The list of the first few values is {1, 2, 6, 24, 120}.
This data suggests the formula

(1.3.8) bn = n!

where n!, the factorial of n, is the product of the first n natural

numbers. This can be proved by induction using (1.3.7). Proceeding

as in the previous example, define qn by the relation bn = qn × n!.

The recurrence (1.3.7) yields qn = qn−1. The initial value q1 = 1

gives qn = 1 for all n. This proves the next statement.

Theorem 1.3.3. There are n! permutations of a set with n elements.

Note 1.3.4. The values 1, 2, 6, 24, 120 listed above suggest (1.3.8)

provided the reader has seen factorials before. (This is very likely

to be the case.) A problem arises if the data generated produces

a sequence not immediately recognized. For example, suppose the

numbers

(1.3.9) 1, 2, 7, 42, 429, 7436

                

                                                                                                               



1.4. The integers and divisibility 11

appear in a calculation. Guessing the closed form

(1.3.10) An =

n−1∏
j=0

(3j + 1)!

(n + j)!

is now more difficult. Fortunately, there is a great database for se-

quences, created by N. Sloane, that will make suggestions to the

reader. The site

http://oeis.org/

provides the reader with information about sequences. For instance,

entering 1, 2, 6, 24 identifies them as the beginning of the factorial

sequence. The site also provides information about where factorials

appear in the literature. For instance, write the numbers from 1 to

n on a circle. Then n! counts the sum of the products of all n − 2

adjacent numbers; for example,

5! = 1 × 2 × 3 + 2 × 3 × 4 + 3 × 4 × 5 + 4 × 5 × 1 + 5 × 1 × 2.

Sloane’s database is an incredibly valuable tool. The numbers

An count the so-called alternating sign matrices. This sequence

appears as entry A005130 in the OEIS database. The reader will find

some information about them in Chapter 7.

1.4. The integers and divisibility

The notion of order defined in N shows that, given a, b ∈ N with a > b,

the equation x+a = b has no solution in N. The set of integers Z is

defined in terms of these equations: to each pair (a, b) ∈ N × N, the

integer x is defined as the unique solution of x+a = b. It is denoted

by b− a.

Exercise 1.4.1. Convince yourself that Z can be interpreted as pairs

(a, b) ∈ N × N with the identification (a, b) ∼ (c, d) if and only if

a + d = b + c.

Exercise 1.4.2. Prove that N ⊂ Z.

The next definition uses Exercise 1.4.1 to develop a more rigorous

approach to Z.

                

                                                                                                               



12 1. The Number Systems

Definition 1.4.3. The set of integers Z is defined as the set of all

equivalence classes. Let [a, b] be the class of the pair (a, b); for exam-

ple, [2, 3] = −1. The operations on Z are defined by

[a, b] + [c, d] := [a + c, b + d] and [a, b] · [c, d] := [ac + bd, ad + bc].

There are many things to verify. This is due to the fact that the opera-

tion has been defined on a class using a representative. Whenever

this is done, one needs to check that the result of the operation is

independent of the choice of representative.

One of the fundamental topics discussed in this book deals with

divisibility properties of integers.

Definition 1.4.4. Given a, b ∈ N, if there is an integer q such that

a = bq, then it is said that b divides a. The number b is called a

divisor of a.

Definition 1.4.5. A positive integer n > 1 is called prime if its only

divisors are 1 and n; otherwise, it is called composite. The number

1 is declared a unit; it is neither prime nor composite.

Prime numbers are discussed in Section 1.7. An elementary result

is presented next.

Theorem 1.4.6. Every natural number n > 1 has a prime divisor.

Proof. Let n ∈ N and assume the result for every m < n. If n is

prime, then n itself is the desired prime factor. Otherwise, n factors

as n = a · b. Induction shows that a and b have prime divisors and

these divide n. �

1.5. The Euclidean algorithm

Some of the fundamental properties of Z are those related to divisi-

bility questions. Consider the linear equation

(1.5.1) ax + by = c

with integer coefficients a, b, c. The problem of solving the equation

for x, y ∈ Z is used as a motivation for these ideas.

                

                                                                                                               



1.5. The Euclidean algorithm 13

Let P (x, y) = ax + by − c. The rational solutions (x, y) are easy

to obtain. For example, if b �= 0, it follows that y = −a
bx + c

b and

each x ∈ Q produces a unique solution to (1.5.1). This shows that

the set of rational solutions to (1.5.1) can be identified with Q itself.

The situation is simpler if b = 0. In that case, x = c/a is the only

solution, provided a �= 0.

Now consider the same equation, but look for integer solutions.

An interesting phenomenon occurs. This is illustrated with an exam-

ple: the equation

(1.5.2) 2x + 4y = 5

has no integer solutions because the left-hand side is even and the

right-hand side is odd.

Now let’s go back to (1.5.1). Suppose there is an integer d such

that d divides a and b and does not divide c. Then d divides the

left-hand side of (1.5.1) but it does not divide the right-hand side.

This contradiction shows that in this case there are no integral solu-

tions. The largest such d is the greatest common divisor of a and

b, denoted by gcd(a, b).

The complete analysis of equation (1.5.1) requires the Euclidean

algorithm. Start with a basic result on division.

Exercise 1.5.1. Let a, b ∈ Z. Prove the existence of integers q, r

with 0 ≤ r < b such that a = bq + r. Are these numbers unique?

Hint: Fix b and prove the result by induction on a.

Now let r0 = a and r1 = b. Exercise 1.5.1 produces

r0 = r1q1 + r2, 0 ≤ r2 < r1,(1.5.3)

r1 = r2q2 + r3, 0 ≤ r3 < r2,

· · · = · · ·
rn−2 = rn−1qn−1 + rn, 0 ≤ rn < rn−1,

rn−1 = rnqn.

                

                                                                                                               



14 1. The Number Systems

Note that the sequence of remainders r0 > r1 > · · · > rn−1 > rn is

a strictly decreasing sequence of positive integers, so it has to stop

after a finite number of steps. Let n be this number.

Exercise 1.5.2. Prove that rn is the greatest common divisor of a

and b.

Reading the steps of the Euclidean algorithm backwards, it fol-

lows that

(1.5.4) rn = rn−2 − rn−1qn−1

and then replacing

(1.5.5) rn−1 = rn−3 − rn−2qn−2

yields

rn = rn−2 − qn−1 (rn−3 − rn−2qn−2)

= (1 + qn−1qn−2) rn−2 − qn−1rn−3.

Repeating this process shows the existence of u, v ∈ Z such that

rn = au + bv. This is called an integer linear combination of a

and b.

Exercise 1.5.3. Prove that d = gcd(a, b) is the smallest positive

integer that is an integer combination of a and b.

Definition 1.5.4. The integers a, b are called relatively prime if

gcd(a, b) = 1.

Exercise 1.5.5. Let a, b ∈ N and d = gcd(a, b). Prove that

gcd

(
a

d
,
b

d

)
= 1.

That is, a/d and b/d are relatively prime.

The analysis of (1.5.1) is presented next. To solve the equation

(1.5.1), assume that d divides c and, actually dividing the equation

by d, reduce it to

(1.5.6) ax + by = c with gcd(a, b) = 1.

This can be solved using the Euclidean algorithm. First find integers

u, v such that au+ bv = 1. Now multiply by c to get that x = uc and

                

                                                                                                               



1.5. The Euclidean algorithm 15

y = vc solve the equation. The next exercise is useful in determining

the general solution of (1.5.6).

Exercise 1.5.6. Suppose a divides bc and gcd(a, b) = 1. Prove that

a divides c.

Theorem 1.5.7. The equation ax + by = c has no integer solutions

x, y if d = gcd(a, b) does not divide c. In the other case, the general

solution is given by

x = x0 −
b

d
t, y = y0 +

a

d
t,

where (x0, y0) is a particular solution and t ∈ Z.

Exercise 1.5.8. Give all the details.

1.5.1. The length of the Euclidean algorithm. The number of

steps that it takes to compute the greatest common divisor of a > b is

estimated next. The Fibonacci numbers, defined by the recurrence

(1.5.7) Fn = Fn−1 + Fn−2 with F1 = F2 = 1,

make their first appearance. These numbers will be studied in Chap-

ter 3.

Exercise 1.5.9. Let ϕ = (1 +
√

5)/2 be the golden ratio. Prove

that Fn > ϕn−2 for n > 2. The meaning of ϕ and its relation to

Fibonacci numbers will become clear in Chapter 3.

Let qi be the quotients obtained in the division of a by b. Observe

that q1, q2, . . . , qn−1 ≥ 1 and qn ≥ 2. The first step is to prove b ≥
Fn+1. This follows from rn ≥ 1 = F2 and rn−1 ≥ 2rn ≥ 2F2 = F3.

Then

rn−2 ≥ rn−1 + rn ≥ F3 + F2 = F4.

Continuing in this form produces

r2 ≥ r3 + r4 ≥ Fn−1 + Fn−2 = Fn,

and the next step yields b ≥ Fn+1 > ϕn−1. The approximation

log10 ϕ ∼ 0.208 > 1/5 yields log10 b > (n− 1)/5. If 10k−1 ≤ b < 10k,

it follows that n−1 < 5k and therefore n ≤ 5k. This proves a theorem

of G. Lamé.

                

                                                                                                               



16 1. The Number Systems

Theorem 1.5.10. Let a, b ∈ N with a > b. The number of steps in

the Euclidean algorithm is about log10 n/ log10 ϕ. This is at most five

times the number of decimal digits of b.

Note 1.5.11. The average number of steps in the Euclidean algo-

rithm to compute gcd(a, b), with a ≥ b, has been shown to be ap-

proximately twice the number of digits of b.

Exercise 1.5.12. Prove that gcd(Fn, Fn−1) = 1.

Exercise 1.5.13. Count the number of steps required to compute

the greatest common divisor of Fn+2 and Fn+1. Check that this gives

the worst case scenario for Theorem 1.5.10.

1.5.2. The extended Euclidean algorithm. An economical way

to implement the Euclidean algorithm using matrix row operations

is discussed next. As a by-product of the procedure, gcd (a, b) is

written as a linear combination of a and b without additional work.

An example illustrates the general idea.

To compute gcd (144, 610), perform row operations on the aug-

mented matrix of the trivial linear system

(1.5.8)

(
1 0

0 1

)(
x

y

)
=

(
144

610

)

whose solution is

(
x

y

)
=

(
144

610

)
. The first operation is to replace

Row 2 with Row 2 −
⌊
610
144

⌋
Row 1 to produce

(
1 0 144

0 1 610

)
→

R2 − 4R1

(
1 0 144

−4 1 34

)
.

Next, replace Row 1 with Row 1 −
⌊
144
34

⌋
Row 2:

(
1 0 144

−4 1 34

)
→

R1 − 4R2

(
17 −4 8

−4 1 34

)
.
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Continue this way until one of the entries on the right is zero:(
17 −4 8

−4 1 34

)
→

R2 − 4R1

(
17 −4 8

−72 17 2

)

R1 − 4R2

→

(
305 −72 0

−72 17 2

)
.

The nonzero entry on the right gives the greatest common divisor

gcd (144, 610) = 2, and rewriting the corresponding linear system

gives

−72 (144) + 17 (610) = 2.

Observe that the equation corresponding to the zero entry gives

the least common multiple, lcm(144, 601). Indeed,

305 × 144 − 72 × 610 = 0

produces

305 × 144 = 72 × 610 = lcm(144, 610).

Exercise 1.5.14. Prove that the above procedure works. Sketch of

the proof : First convince yourself that one of the entries on the right

will become zero. Then note that the row operations correspond to

left multiplication by a matrix with integer entries and determinant

1. Now prove that if Ax = v, where all entries of A, x, v are integers,

detA = 1, and one of the entries of v is zero, then the other entry of

v is the gcd of the entries of x, and the linear equation corresponding

to the zero entry of v gives the least common multiple of the entries

of x, as illustrated in the example.

1.5.3. The operation on integers. The notion of expansion

with respect to a base is introduced next. This will be used to

describe an effective procedure to perform the basic operations on

integers.

Theorem 1.5.15. Given a, b ∈ N, with b > 1, there exist nonnegative

integers x0, x1, . . . , xn such that

(1.5.9) a = x0 + x1b + x2b
2 + · · · + xnb

n,

with 0 ≤ xi < b and xn �= 0. This is the representation of a in

base b.
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Proof. The proof is by induction on a. The statement is clear for

a = 1. Given a representation (1.5.9), if x0 < b− 1, then

(1.5.10) a + 1 = (x0 + 1) + x1b + x2b
2 + · · · + xnb

n

is the desired representation of a+ 1. In the case x0 = b− 1, let j be

the first index for which xj < b− 1, if there is one. Thus

a = (b−1)+(b−1)b+(b−1)b2 + · · ·+(b−1)bj−1 +xjb
j + · · ·+xnb

n,

and then,

a + 1 = 1 + (b− 1)(1 + b + b2 + · · · + bj−1) + xjb
j + · · · + xnb

n

= bj + xjb
j + · · · + xnb

n

= (1 + xj)b
j + · · · + xnb

n

is the desired representation. The final case is when all xj = b − 1.

Then

a = (b− 1)(1 + b + · · · + bn) = bn+1 − 1

and therefore a + 1 = bn+1. The proof is complete. �

Exercise 1.5.16. Prove that the representation of a in base b given

above is unique.

Exercise 1.5.17. Implicit in the argument above is the familiar for-

mula for the sum of a geometric progression: if b �= 1, then

(1.5.11) 1 + b + b2 + · · · + bn =
bn+1 − 1

b− 1
.

Prove it by induction.

The division algorithm can be used to obtain the representation

of a in base b given in (1.5.9). The construction of the numbers xi is

achieved as follows: if 0 ≤ a < b, then a = x0 is the representation. If

not, divide a by b to obtain a = bq+r, with 0 ≤ r < b. Define x0 = r.

The next term in the sequence {xi} is obtained by dividing q by b. If

0 ≤ q < b, then define x1 = q and terminate. If not, write q = bq1+r1
with 0 ≤ r1 < b. Define x1 = r1 and produce a = b2q1 + bx1 + x0.

This process ends in a finite number of steps.

Exercise 1.5.18. Use the representation of integers in base b to

discuss an efficient algorithm for adding natural numbers. The role
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of carries will appear in the context of binomial coefficients. See

Theorem 2.6.7.

1.6. Modular arithmetic

One of the recurrent themes of the book is that of arithmetical prop-

erties of elementary functions. For instance, given a function defined

by a power series

(1.6.1) f(x) =

∞∑
k=0

akx
k

with integer coefficients ak, divisibility questions of these coefficients

will be explored. The notion of modular arithmetic facilitates this

discussion.

Let n ∈ Z be fixed and define a relation on Z× Z by

(1.6.2) a ∼n b if b− a is divisible by n.

This is an equivalence relation and the integers modulo n, denoted

by Zn, is the space Z× Z where equivalent pairs are identified. The

notation

(1.6.3) a ≡ b mod n

is employed and Zn is represented by

(1.6.4) Zn := {0, 1, 2, . . . , n− 1}.
The arithmetical operations of addition and multiplication are defined

as in Z, now taking into account reduction modulo n. Division is

slightly more complicated as not every element has an inverse in Zn.

This is discussed in the next theorem.

Theorem 1.6.1. Let n ∈ N. Then a ∈ Zn is invertible in Zn if and

only if gcd(a, n) = 1.

Proof. Assume gcd(a, n) = 1. Then there are integers c, d such that

ac+ nd = 1. Therefore ac ≡ 1 mod n and c is the inverse of a in Zn.

On the other hand, if gcd(a, n) = d > 1, then

(1.6.5) a× n

d
=

a

d
× n ≡ 0 mod n.

This shows that a cannot have an inverse in Zn. �
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Note 1.6.2. The collection of invertible elements in Zn is denoted by

Z×
n . The cardinality of this set is given by Euler’s totient function

ϕ(n); that is,

(1.6.6) ϕ(n) = |{a : 1 ≤ a ≤ n and gcd(a, n) = 1}| .
The set Z×

n is closed under multiplication and

(1.6.7) Inv(x) := x−1

maps Z×
n onto itself. If the context is clear, the inverse of x is written

as 1
x . Therefore, in Zn, the expression a

b should be understood as

ab−1.

Exercise 1.6.3. Prove that inversion is one-to-one and onto.

This last exercise has interesting consequences. For example, if

n is a prime, then Z×
n = {1, 2, . . . , n− 1} and adding all its elements

gives

(1.6.8)
n−1∑
j=1

1

j
≡

n−1∑
j=1

j mod n.

The left-hand side is the harmonic number Hn−1 and the right-

hand side sums to n(n−1)/2, an integer multiple of the odd prime n.

The conclusion is that, for n prime, the numerator of the harmonic

number Hn−1 is divisible by n. This is discussed in Section 11.11.

1.7. Prime numbers

The study of prime numbers has interested mathematicians, pro-

fessional and amateur, since the time of Euclid. The subject is rich in

interesting problems that are easy to describe and (sometimes very)

hard to prove. Aside from the textbooks quoted earlier, the reader is

referred to the books by T. Apostol [26], B. Fine and G. Rosenberger

[128], and J. Stopple [282] as sources that the author has enjoyed.

In this section some elementary properties of prime numbers are

reviewed. In order to motivate the kind of questions considered in

future chapters, the notion of valuation is introduced.

Definition 1.7.1. Let p be a prime and let x ∈ Z. The p-adic

valuation of x, in the case x �= 0, is the largest nonnegative integer

                

                                                                                                               



1.7. Prime numbers 21

m such that pm divides x. The valuation of x = 0 is declared to be

+∞. The p-adic valuation of x is denoted by νp(x).

Note 1.7.2. Elementary properties of the valuation νp include the

following:

(1) The statement p divides n is equivalent to νp(n) > 0.

(2) νp(n) satisfies the statement: pνp(n) divides n but pνp(n)+1

does not.

10 20 30 40 50 60
n

1

2

3

4

5
2(n)

Figure 1.7.1. The 2-adic valuation of n.

Note 1.7.3. The description of the function ν2(n) is now given in

terms of a valuation tree. This concept will reappear in later chap-

ters. The construction of the tree consists of a sequence of steps:

(1) The valuation tree begins with a root, placed at the top, that

represents the set N.

(2) For each node that has not been labeled, ask the question: is

the value of the function being considered constant at this node? If

the answer is yes, the node is labeled with this constant value. If the

answer is no, then the node has to be split. In the first case, at the

root, the function ν2(n) is not constant, so the answer is clearly no.

(3) The root is then divided by a splitting parameter. In this

case, this is 2, so the root obtains two vertices descending from it.
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2n

Figure 1.7.2. The 2-adic valuation n (first tree).

0

4n

2n

2

1

Figure 1.7.3. The 2-adic valuation n (second tree).

Each vertex corresponds to a different class modulo 2. Each valuation

tree has its own splitting parameter. At this point this parameter is

determined empirically, one example at the time.

The vertex on the left represents the set {2n − 1 : n ∈ N}.
Therefore, for this vertex, the question above has a positive response,

with ν2(2n−1) = 0. Then the vertex is labeled 0. The same question

is still negative for the second vertex, which represents the set {2n :

n ∈ N}. This vertex is now split again into two new vertices: one
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for {4n − 2 : n ∈ N} and the second one for {4n : n ∈ N}. This is

depicted in Figure 1.7.3. The process is continued and the resulting

tree is called the 2-adic valuation tree of the sequence {n : n ∈ N}.

One of the points of view described in this text is that given

an integer sequence an, its p-adic valuation νp(an) often has hidden

beauty that deserves to be explored.

As an example, Figure 1.7.4 shows the function ν3(n) − ν3(Fn),

comparing the valuations of a Fibonacci number Fn with that of n. A

computation of ν5(Fn) shows that ν5(Fn) = ν5(n). This is established

in Theorem 3.5.9. Figure 1.7.5 depicts the 2-adic valuation of the

Stirling numbers of the second kind S(n, k), for k = 195. Chapter 7

provides a description of this phenomenon. The intrinsic beauty of

the figure remains to be explained.

50 100 150 200
n

1

1

2

3

4

Figure 1.7.4. The function ν3(n)− ν3(Fn).

Arithmetic deals with properties of integers related to divisibility.

The fundamental theorem of arithmetic, established in Theorem

1.7.4, states that any positive integer can be expressed in a unique

way as a product of prime powers. In this section the elementary

parts of the subject are reviewed.
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100 200 300 400 500

1

2

3

4

5

6

n

2 (S(n+195, 195))

Figure 1.7.5. The power of 2 that divides the Stirling num-
ber S(n+ 195, 195).

The set of prime numbers begins with

(1.7.1) P = {2, 3, 5, 7, 11, 13, 17, . . . } ,

and the first natural question that occurs is how to decide if n ∈ N

is a prime number. An efficient answer to thus question turns out

to be surprisingly difficult. The classical sieve of Eratosthenes

determines the primality of numbers by making a list of all numbers

up to n and then crossing out the multiples of all primes up to n. The

primes are the elements of the list that do not get crossed out. This is

inefficient. One of the basic questions of number theory is to develop

an algorithm that decides if n is prime and it takes a number of steps

that is at most a polynomial function of the number of digits of n,

that is, a polynomial in log n. These are called polynomial-time

algorithms. M. Agrawal, N. Kayal, and N. Saxena [3] have very

recently (the paper appeared in 2004) provided such an algorithm

with running time proportional to (logn)15/2. This is a remarkable

result. A very nice description of these issues is given by A. Granville

in [146].
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An even more naive approach to determine the primality of n is

this: divide the number n by every integer k ≤ n. This generates a

sequence of n remainders and if none of them are zero, then n is prime.

First improvement. Instead of dividing by all integers k ≤ n, it

suffices to divide up to k ≤
√
n. This is clear: if n = a · b, then one of

a or b has to be in the range {2, . . . , �
√
n�}.

Second improvement. Consider the list of primes

(1.7.2) p1 = 2, p2 = 3, p3 = 5, . . . .

Then a number n is prime if it is not divisible by any prime pj ≤
√
n.

The drawback of this is that it requires us to have a list of all the

primes up to
√
n.

1.7.1. Prime factorization of integers. The fundamental theo-

rem of arithmetic states that prime numbers are the basic building

blocks of integers.

Theorem 1.7.4. Any nonzero integer n can be written in the form

(1.7.3) n = ±pa1
1 pa2

2 · · · par
r ,

where the pi are distinct primes and ai ∈ N. This representation is

unique up to rearranging of the order.

Proof. The proof of existence is an easy induction argument. Indeed,

assume such a representation exists for every integer strictly less than

n. In the case n is prime, then n is its own representation. If n factors

as a · b, with a, b < n, then collecting the representation of a and b

gives that of n. The question of uniqueness is more delicate. The

standard proof is based on the fact that if a prime p divides a product

a · b, then it must divide one of the factors. This is Exercise 1.5.6.

Under this assumption uniqueness is clear. �

Exercise 1.7.5. Check the details. Hint: Use the Euclidean algo-

rithm described in Section 1.5 to prove that if p divides a · b and does

not divide a, then it must divide b.
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Note 1.7.6. The number ai in (1.7.3) is the pi-adic valuation of n;

that is, ai = νpi
(n).

1.7.2. The infinitude of primes. In this section some proofs of

Euclid’s result that there are infinitely many primes are presented.

Theorem 1.7.7. The set of prime numbers is infinite.

Proof. Suppose P = {p1, p2, . . . , pn} is a complete list of all primes.

Then the number Pn = p1p2 · · · pn + 1 is not divisible by any el-

ement of P because any such divisor would divide the difference

Pn − p1p2 · · · pn = 1. This contradicts Theorem 1.4.6. �

The next result gives a criterion, due to S. P. Mohanty [220],

that will be used to give another proof of Theorem 1.7.7.

Proposition 1.7.8. Assume there is an infinite set of positive inte-

gers A such that gcd(a, b) = 1 if a, b ∈ A and a �= b. Then there are

infinitely many primes.

Proof. The fact that the elements of A are relatively prime shows

that each element of A is divisible by a different prime. This is im-

possible if there are only finitely many prime numbers. �

The next result shows how to produce sequences that satisfy the

hypothesis of Proposition 1.7.8.

Lemma 1.7.9. Let a and m be relatively prime numbers. Define the

sequence An by

A0 = a + m,

An+1 = A2
n −mAn + m.

Then gcd(An, Am) = 1 if n �= m.

Proof. An easy induction argument shows that

(1.7.4) An = aA0A1 · · ·An−1 + m

and thus

(1.7.5) An ≡ a2
n

mod m.
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Moreover (1.7.4) shows that the set {An : n ∈ N} is infinite. Let d be

a common divisor of Ai and Aj . Then, assuming j > i and using

(1.7.6) Aj = aA0A1 · · ·Ai · · ·Aj−1 + m,

it follows that d divides m. Then (1.7.5) implies d also divides a power

of a. It follows that d divides gcd(a,m) = 1, so it must be 1. �

Note 1.7.10. The special case of a = 1 and m = 2 produces the

numbers fn = 22
n

+ 1. These are the Fermat numbers that satisfy

the recurrence

fn+1 = f2
n − 2fn + 2 with f0 = 3.

In this case, the proof is due to G. Polya.

1.7.3. Primes and sums of squares. There are many beautiful

connections between prime numbers and other sequences. The ques-

tion of the representation of primes by a given polynomial in several

variables is such an example. Dirichlet proved that, given a, b ∈ N

with gcd(a, b) = 1, the polynomial fa,b(x) = ax + b attains infinitely

many primes. The reader will find an outline of the proof in the

text by S. J. Miller and R. Takloo-Bighash [218]. The study of this

question for quadratic polynomials is described in the text by D. Cox

[106].

This section discussed the question of representations of primes

as sums of two squares. This can be phrased in terms of solving the

equation

(1.7.7) x2 + y2 = p

for x, y ∈ N. Naturally if (x, y) is a solution, so are (−x, y), (x,−y),

and (−x,−y). Here p denotes a fixed prime.

The case p = 2 is elementary: x = y = 1 are the only solutions.

Now consider the case of an odd prime. A necessary condition for the

existence of a solution is easy to produce.

Lemma 1.7.11. Let p be an odd prime and assume p is a sum of

two squares. Then p is congruent to 1 modulo 4.
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Proof. The squares modulo 4 are 0 and 1. There is no combination

of these values that adds up to 3 modulo 4. �

P. Fermat proved that the converse is true. D. Zagier’s [317]

remarkable proof of this result is presented next. The reader will find

other proofs in the text by J. H. Silverman [274].

Theorem 1.7.12. Every prime p ≡ 1 mod 4 can be written as a sum

of two squares.

Proof. Let p ∈ N be a fixed prime number and consider the set

S := {(x, y, z) ∈ N3 : x2 + 4yz = p}. Define

ψ(x, y, z) =

⎧⎪⎪⎨
⎪⎪⎩

(x + 2z, z, y − x− z) if x < y − z,

(2y − x, y, x− y + z) if y − z < x < 2y,

(x− 2y, x− y + z, y) if x > 2y.

The set S is finite and invariant under the map ψ; that is, ψ(S) ⊂ S.

To check this, let (x, y, z) ∈ S and assume x > 2y. Then

(x− 2y)2 + 4(x− y + z)y = x2 + 4yz = p.

Therefore ψ(x, y, z) ∈ S. The other cases are treated similarly.

Lemma 1.7.13. The map ψ has a fixed point precisely when p =

4m + 1. Morever, if p ≡ 1 mod 4, then ψ has a unique fixed point.

Proof. Let (x, y, z) satisfy ψ(x, y, z) = (x, y, z). If x < y − z, then

the first coordinate yields x + 2z = x and this is impossible. If

y − z < x < 2y, then the last coordinate implies x = y and there

are no other restrictions. The defining equation yields x(x + 4z) = p

and this implies x = y = 1 and z = m is the fixed point. The reader

can now study the other two cases. �

Exercise 1.7.14. Check that the map ψ is an involution, that is,

ψ ◦ ψ is the identity.

Now partition the set S into sets of the form {P, ψ(P )}, with

P ∈ S. Every such set, except the one corresponding to the fixed

point (1, 1,m), has two elements. It follows that S must have an odd

number of elements.
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Exercise 1.7.15. Assume X is a finite set with an odd number of

elements. Prove that any involution λ : X → X must have at least

one fixed point.

Now define λ(x, y, z) = (x, z, y) for (x, y, z) ∈ S. This is an

involution and Exercise 1.7.15 guarantees the existence of a fixed point

for λ. This element of S must be of the form (a, b, b). This implies

a2 + (2b)2 = p. This is the desired representation of p as a sum of

two squares. �

1.8. The rational numbers

The set of integers Z was described as the set of numbers created

in order to solve certain equations, such as x + 2 = 1, that have no

solutions in N. The set Q of rational numbers can be constructed

in a similar manner as solutions of the equation bx = a, with a, b ∈ Z

and b �= 0. The solution of this equation is denoted by a
b .

An alternative definition of Q is given in the next exercise.

Exercise 1.8.1. Let X be the set of pairs (a, b), with a, b ∈ Z and

b �= 0. Define the relation (a, b) ∼ (c, d) by ad = bc. Prove that this

is an equivalence relation and identify Q as the quotient Z × Z/ ∼.

Conclude that

a

b
=

c

d
in Q if and only if ad = bc in Z.

Exercise 1.8.2. Define the addition of rational numbers in the usual

manner:

(1.8.1)
a

b
+

c

d
=

ad + bc

bd
.

Convince yourself that this is well-defined. Naturally it would be

simpler if addition were to be defined by

(1.8.2)
a

b
⊕ c

d
=

a + c

b + d
.

Discuss the difficulties associated with this definition. Nevertheless

(1.8.2) has some interesting mathematics behind it; see Definition

10.2.8.

                

                                                                                                               



30 1. The Number Systems

In the representation x =
a

b
one may assume that the integers a

and b are relatively prime. This is the basic representation of rational

numbers. The exercises provide a sample of others.

Exercise 1.8.3. Check that every nonzero rational number r has a

prime factorization of the form

(1.8.3) r = ±pa1
1 pa2

2 · · · pan
n

where the pi are primes and ai ∈ Z.

The next theorem characterizes rational numbers from the point

of view of their decimal expansions and generalizations to other

bases. The proof of the theorem begins with a preliminary exercise.

Exercise 1.8.4. Let r ∈ Q and b ∈ N be fixed. Prove that r can be

written in the form

(1.8.4) r = ±
∞∑

k=−n

ak
bk

,

where ak ∈ N0 = N ∪ {0} and 0 ≤ ak < b. Hint: Assume r > 0 with

r = u/v and u < v. Divide ub by v to produce ub = s0 + q0v, with

q0 ∈ N and 0 ≤ s0 < v. Then

u

v
=

1

b

[
q0 +

s0
v

]
=

q0
b

+
1

b

s0
v
.

Now write
u

v
=

q0
b

+
1

b2
s0b

v
and divide s0b by v to continue the process.

Note 1.8.5. In order to be completely honest, it has to be stated

that the infinite sum in (1.8.4) has not been defined. An alternative

approach is this: prove that for r ∈ Q there is a sequence of inte-

gers ak, with 0 ≤ ak < b, such that the sum
∑m

k=−n ak/b
k can be

arbitrarily close to r by choosing m large enough.

The main result in this section is stated next.

Theorem 1.8.6. Let b ∈ N and ak ∈ N with 0 ≤ ak < b. Any series

of the form (1.8.4) is a rational number if and only if the sequence

{ak} is eventually periodic. That is, there is an index j such that for

k ≥ j, the sequence {ak} is periodic.
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Proof. Given a series satisfying the stated conditions, subtract the

terms with negative index and those appearing before j, to assume

that

(1.8.5) x =
∞∑
k=0

ak
bk

with ak of period 
. Divide k by 
 to produce k = q
 + j, with

0 ≤ j ≤ 
. Use periodicity to conclude that ak = aj . Then

x =

∞∑
k=0

ak
bk

=
∞∑
q=0

�−1∑
j=0

aj
bq�+j

=

∞∑
q=0

1

bq�
×

�−1∑
j=0

aj
bj

.

Define

(1.8.6) y =
�−1∑
j=0

aj
bj

and sum the geometric series as in Exercise 1.5.17 to obtain

(1.8.7) r =
y b�

b� − 1
.

This shows that r is a rational number. �

Exercise 1.8.7. Prove the converse to complete the proof.

Note 1.8.8. Section 1.9 describes the fact that any real number x

can be represented (in an essentially unique way) in the form

(1.8.8) x =
∞∑

k=−n

ak
bk

where b > 1 is a fixed integer, called the base, and for integers ak,

with 0 ≤ ak ≤ b − 1, called the digits of x in base b. This extends

the usual decimal expansion. From this point of view, it is quite

easy to produce real numbers that are not rational: simply take a

nonperiodic sequence {ak}.
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Note 1.8.9. The number x =

∞∑
k=1

ak, with

(1.8.9) ak =

{
10−n if n = k2,

−10−n otherwise

has recently been shown to be irrational in a paper by J. Villa-Morales

[300]. This is not quite a decimal expansion, since ak < 0 is allowed.

Note 1.8.10. The literature contains a variety of interesting irra-

tional numbers. G. Dresden [113, 114] has given some examples.

Let f : N → N be a function and denote by lnzd(f(n)) the last

nonzero digit of f(n). To each such f associate the real number

x(f) = 0.d1d2d3 . . . dn . . .

with dn = lnzd(f(n)). G. Dresden has shown that x(n!) and x(nn)

are irrational numbers.

1.8.1. The cardinality of Q. The notion of cardinality of a finite

set has a clear intuitive meaning. It should not surprise the reader

that the transition from this level to a more rigorous definition is dif-

ficult. R. Dedekind declared a set M to be infinite if there exists a

function f : M → M that is one-to-one but not onto. The successor

function shows that N is infinite (no surprises here!). It can be shown

that the existence of an infinite set is equivalent to the existence of a

set with a function satisfying the rules of successors given above. The

reader will find more details on these issues in the book by H. Ebbin-

haus et al. [120]. The current text deals with these issues in a very

intuitive manner.

The cardinality of a finite set F is the unique n ∈ N such that

there is a bijective (one-to-one and onto) correspondence ψ : F → An

with a set of the form

(1.8.10) An = {1, 2, 3, . . . , n}.

Using this correspondence, the set F can be written in the form

{x1, x2, x3, . . . , xn}, with ψ(xi) = i.

This principle can be extended to those infinite sets for which one

can establish a correspondence with N.
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Definition 1.8.11. A set C is called countable if there is a function

ψ : C → N that is one-to-one and onto. The set C can now be listed

as

(1.8.11) C = {x1, x2, x3, . . .}

where ψ(xi) = i for i ∈ N. The function ψ counts the elements of C.

Note 1.8.12. Every infinite set X contains a countable subset C.

This subset is produced by taking an element x1 ∈ X and declaring

it to be the first element of C. Then continue this process with the set

X −{x1}. The formalization of this construction requires the axiom

of choice.

The question of counting infinite sets is sometimes nonintuitive.

The next exercises show some examples and they will be used to prove

that the set of rational numbers is countable. It follows that there

is a bijection ψ : N → Q. Thus, there are as many natural numbers

as rational ones. This is a highly nonintuitive result.

Exercise 1.8.13. Prove that the set N × N is countable. Hint:

Consider the function f(a, b) = 2a−1(2b− 1).

Exercise 1.8.14. Prove that a finite union of countable sets is count-

able. The same is true for a countable union of finite sets.

The next exercise provides an interesting way to prove countabil-

ity of a set.

Exercise 1.8.15. Let X be a set and let h : X → N be a function

such that for each n ∈ N the set

(1.8.12) Xn := {x ∈ X : h(x) < n}

is finite. Prove that X is countable. The function h is called a height

for X.

The cardinality of Q is established next.

Theorem 1.8.16. The set Q is countable.
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Proof. Let r = m
n ∈ Q, with gcd(m,n) = 1. Define the height of r

by h(r) = |m| + |n|. Then

Q =

∞⋃
j=1

{r ∈ Q : h(r) = j}.

The function h satisfies the conditions of Exercise 1.8.15. �

Exercise 1.8.17. Prove that Z×Z is countable. Hint: Use Exercise

1.8.13. Conclude that Q is countable by exhibiting a map ψ : Z×Z →
Q.

Exercise 1.8.18. This exercise outlines the proof of countability of

Q based on the diagonal procedure due to G. Cantor. Consider

first the set of positive rationals. Now make an array of the form

1
1

2
1

3
1

4
1

5
1

6
1 · · ·

1
2

2
2

3
2

4
2

5
2

6
2 · · ·

1
3

2
3

3
3

4
3

5
3

6
3 · · ·

1
4

2
4

3
4

4
4

5
4

6
4 · · ·

that contains all positive rational numbers. Arrange them on a single

line by marching along the diagonals as in

1

1
,

2

1
,

1

2
,

3

1
,

2

2
,

1

3
,

4

1
,

3

2
,

2

3
,

1

4
,

5

1
,

4

2
,

3

3
,

2

4
,

1

5
, · · ·

and then delete the repeated values to produce

1

1
,

2

1
,

1

2
,

3

1
,

1

3
,

4

1
,

3

2
,

2

3
,

1

4
,

5

1
,

1

5
, · · · .

This gives a bijection between Q+ and N. Write the list of positive

rationals as {x1, x2, x3, . . .}. Repeat for the negative rationals to pro-

duce a second list {y1, y2, y3, . . .}. Now interlace both lists and add 0

to produce {0, x1, y1, x2, y2, . . .} and the countability of Q.

The next exercise provides a proof that Q is countable due to Y.

Sagher [264]. It employs the unique factorization of an integer into

primes.

Exercise 1.8.19. Let m, n ∈ N be relatively prime. Assume that

m = pa1
1 pa2

2 · · · pak

k and n = qb11 qb22 · · · qbll
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are their respective prime factorizations. Define f(1) = 1 and

f
(m
n

)
= p2a1

1 p2a2
2 · · · p2ak

k q2b1−1
1 · · · q2bl−1

l

for m �= n. Prove that f is one-to-one and onto N.

Note 1.8.20. The article by D. Bradley [75] contains a survey of the

many proofs of countability of Q.

1.8.2. An explicit formula by N. Calkin and H. Wilf. The di-

agonalization process of G. Cantor described in Exercise 1.8.18 pro-

vides a proof of the countability of Q. The difficulty is that, due to the

cancellation of repeated fractions, the location of a specific rational

in the final list is hard to predict.

N. Calkin and H. Wilf [89] gave a new proof of Theorem 1.8.16

by exhibiting an explicit enumeration in one direction; i.e., given an

index n, they produce a formula that gives the nth rational. The

procedure starts with a binary tree with rational numbers assigned

to each vertex. The top vertex is 1
1 . Each vertex with label m

n has

two children: its left child is m
m+n and its right child is m+n

n . Now

make a list by starting at the top vertex and moving down along the

tree reading from left to right:

L =

{
1

1
,

1

2
,

2

1
,

1

3
,

3

2
,

2

3
,

3

1
,

1

4
,

4

3
,

3

5
,

5

2
,

2

5
,

5

3
,

3

4
,

4

1
, · · ·

}
.

Theorem 1.8.21. The list L satisfies the following:

(a) Every element is a rational number in reduced form.

(b) Every reduced positive rational number occurs exactly once

in L.

Therefore, Q+ is countable.

Proof. The rational label of the top vertex is 1/1, in reduced form.

Let m/n be the vertex at the highest level whose label is not reduced.

If m/n is a left child, then its parent is m/(n−m), which would not

be reduced. Similarly, if m/n is a right child, its parent is (m−n)/n,
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not reduced either. This contradicts the highest level assumption on

m/n and establishes part (a).

To prove (b), it is established that if a fraction is missing, then

so is its parent. This can be traced up to 1/1 to obtain a contradic-

tion. Let m/n be a fraction with the smallest denominator that is

missing from the list. In case there are many missing fractions with

denominator n, take m to be the smallest among the corresponding

numerators. If m > n, then (m − n)/n is not in the list, because its

child m/n is missing. But this fraction has denominator n and nu-

merator smaller than m. It follows that (m−n)/n, the parent of m/n,

is also missing. The same works if m < n with its parent m/(n−m).

Therefore every positive rational occurs at least once in the list. The

uniqueness is established by a similar argument applied to the ratio-

nal number of the minimal denominator that has two appearances in

the list. �

Note 1.8.22. A proof of the Calkin-Wilf enumeration principle has

been given by D. Callan. This is presented in Note 1.8.27.

Note 1.8.23. Observe that in the list created above the denominator

of each fraction is the numerator of its successor. Check it. It follows

that the list L can be expressed in the form

(1.8.13) L =

{
f(n)

f(n + 1)
: n ≥ 0

}

for some function f . The rules of formation of the list produce

(1.8.14) f(2n+1) = f(n) and f(2n+2) = f(n)+f(n+1), for n ≥ 0.

The paper by N. Calkin and H. Wilf [89] shows that f(n) counts the

number of ways to write n as a sum of powers of 2, each power being

used at most twice. The authors of [89] called f(n) the number of

hyperbinary representation of n.

Note 1.8.24. Figure 1.8.1 shows the function f for 1 ≤ n ≤ 214.
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Figure 1.8.1. The Calkin-Wilf function.

1.8.3. Approximation of rational numbers. The decimal ex-

pansion of a rational number α was described in Note 1.8.8. This

expansion is the special case of b = 10 of the result in Exercise 1.8.4.

The expansion is now employed to obtain an interesting form of ap-

proximating α ∈ Q. The general procedure is illustrated with an

example. Let

(1.8.15) α =
78539823

25000000
∼ 3.14159292000,

which the reader will recognize as an approximation to π.

The Euclidean algorithm applied to the numbers 78539823 and

25000000 gives

78539823 = 3 × 25000000 + 3539823

25000000 = 7 × 3539823 + 221239

3539823 = 15 × 221239 + 221238

221239 = 1 × 221238 + 1.

This confirms that the fraction α is in reduced form.
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Now write

78539823

25000000
= 3 +

1

25000000

3539823

= 3 +
1

7 +
1

3539823

221238

= 3 +
1

7 +
1

15 +
1

221239

221238

= 3 +
1

7 +
1

15 +
1

1 +
1

221238

.

The fraction 1/221238 is very small, so a good approximation to α is

obtained by dropping it. This yields

α ∼ β = 3 +
1

7 +
1

15 +
1

1

=
355

113
.

What is surprising is that one gets a very good approximation to α

with a rational number that is the quotient of two relatively small

numbers. Indeed,

β =
355

113
∼ 3.14159292035

and ∣∣∣78539823

25000000
− 355

113

∣∣∣ < 10−9.

Exercise 1.8.25. The first two terms in the expansion for α give

α ∼ 22
7 . In Chapter 12 it will be shown that π is not rational, so

π �= 22
7 . Verify this by evaluating the integral∫ 1

0

x4(1 − x)4

1 + x2
dx =

22

7
− π.

This example appears in D. P. Dalzell [108], but the original formula-

tion of this evaluation is not known to the author. Information about

this would be appreciated. The reader will find in S. K. Lucas [205]
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the evaluations∫ 1

0

x5(1 − x)6(197 + 462x2)

530(1 + x2)
dx = π − 333

106

and ∫ 1

0

x8(1 − x)8(25 + 816x2)

3164(1 + x2)
dx =

355

113
− π.

Note 1.8.26. The approximations for α given above are now ex-

plained in terms of continued fractions. The process begins with

the Euclidean algorithm: given two positive integers a, b, generate the

sequence of quotients and remainders as in (1.5.3) starting at r0 = a

and r1 = b and continuing with

r0 = r1q1 + r2, 0 ≤ r2 < r1,

r1 = r2q2 + r3, 0 ≤ r3 < r2,

· · · = · · ·
rn−2 = rn−1qn−1 + rn, 0 ≤ rn < rn−1,

rn−1 = rnqn.

Now write a = bq1 + r2 as

a

b
= q1 +

r2
b

= q1 +
1

b

r2

.

Continue with b = r2q2 + r3 to write

a

b
= q1 +

r2
b

= q1 +
1

b

r2

= q1 +
1

q2 +
1

r2

r3

.

This process finishes in a finite number of steps producing the con-

tinued fraction representation of the rational number a/b. The
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final result has the form

(1.8.16)
a

b
= q1 +

1

q2 +
1

q3 +
1

q4 +
1

· · · +
1

qn

.

More details are given in Subsection 1.9.5.

Note 1.8.27. D. Callan [90] has provided a one-line description of

the Calkin-Wilf enumeration of the rationals given in Theorem 1.8.21.

First observe that every rational number has a unique continued frac-

tion expansion of odd length obtained by replacing the last partial

quotient an by an − 1 if necessary. For example

355

113
= 3 +

1

7 +
1

16

.

Now reverse the order of the sequence of partial quotients, to produce

[16, 7, 3]. Then create a binary number by producing a sequence of

1’s and 0’s with length given by the sequence of partial quotients

described in the previous step. In the example this gives the positive

integer

111111111111111100000001112 = 67107847.

The map that sends 355/113 to 67107847 enumerates the rationals.

1.9. The set of real numbers

The construction of number systems developed up to now has been

an algebraic procedure. The initial set N was enlarged first by adding

all solutions to equations of the form x + a = b, with a, b ∈ N.

This produces the set Z of integers. A small technical point has to be

inforced: the equations x+2 = 5 and x+3 = 6 define the same integer.

The passage from Z to the rational numbers Q is similar: simply add

to the integers all solutions of equations of the form ax = b, with

a, b ∈ Z and a �= 0. As before, the equations ax = b and cx = d

define the same rational number when ad = bc and a �= 0, c �= 0.
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The question that remains is what is the next step in the chain

(1.9.1) N ⊂ Z ⊂ Q.

Are there any natural operations that cannot be performed in Q?

The next subsection illustrates one of them.

1.9.1. The irrationality of a square root. Recall that b ∈ Q+ is

called the square root of a ∈ Q+ if b2 = a. It is now shown that

there are many numbers in Q+ that do not have square roots in Q.

Theorem 1.9.1. Let a ∈ N. Suppose a is not the square of an

integer. Then a does not have a square root in Q+; that is, there is

no rational number r such that r2 = a.

Proof. Suppose that (m/n)2 = a with m, n ∈ N. Write m/n with a

minimal denominator. The number m/n �∈ N, so m/n > 1. Choose

q ∈ N such that q <
m

n
< q + 1. The identity m2 = an2 yields

m(m− qn) = m2 − qmn = an2 − qmn = n(an− qm).

It follows that
m

n
=

an− qm

m− qn

and observe that nq < m < n(q + 1), therefore 0 < m− qn < n. This

contradicts the minimality of n. �

Exercise 1.9.2. Give a second proof of Theorem 1.9.1 using the

unique factorization of integers in terms of primes.

At this point, the natural step to continue the chain (1.9.1) is to

add to Q the solutions to all quadratic equations with coefficients in

Q. A larger class is obtained by adding solutions to all polynomial

equations at once. This produces the set of algebraic numbers.

Theorem 4.4.17 shows that it is a countable set but, in general, it is

very hard to decide if a given number is in it or not. The next section

introduces the set of real numbers and the chain (1.9.1) is extended

one more time.
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1.9.2. The real numbers. The literature contains two possible ap-

proaches to the real numbers R. The first one postulates the exis-

tence of the set of real numbers and provides a list of axioms. Then

it is established that R contains Q and it has the familiar arithmetic,

analytic, and order properties. The reader will find a very clear ex-

position of this point of view in O. Hijab [168] and K. R. Stromberg

[285]. A second approach, the one preferred here, is to introduce the

notion of Cauchy sequence.

Definition 1.9.3. A sequence of rational numbers r := {rn : n ∈ N}
is called a Cauchy sequence if for every ε ∈ Q+ there exists k ∈ N

such that |rn − rm| < ε for all n, m > k. Naturally, the number k

depends on ε.

In some sense, the concept of a Cauchy sequence plays the role of

the algebraic equations that were employed to extend N to Z and then

to Q. As before, there are sequences that need to be identified: two

Cauchy sequences {rn} and {sn} are called equivalent if |rn − sn|
can be made arbitrarily small for large enough n. The intuition is

that these two sequences will converge to the same number.

Definition 1.9.4. A real number r is an equivalence class of Cauchy

sequences of rational numbers.

Exercise 1.9.5. Prove that the series appearing in Exercise 1.8.4 is

a real number for any choice of ak ∈ N. Hint: Consider the sequence

of partial sums.

Exercise 1.9.6. Given a sequence of real numbers xn, define the

concept of convergence of xn to a limit x.

Note 1.9.7. The set R is then provided with an algebraic structure.

The addition and multiplication in R are defined, in an obvious man-

ner, in terms of the defining sequences. The notion of order in R is

introduced in a similar form. The remarkable result is that the real

numbers form a complete set: every Cauchy sequence {xn : n ∈ N}
converges to an element x ∈ R.

Something is lost in the passage from Q to R.

Theorem 1.9.8. The set of real numbers R is not countable.
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This result is due to G. Cantor. The standard proof of this theo-

rem is based on the decimal expansions of real numbers. Details can

be found in the textbooks [168, 285] mentioned before.

Note 1.9.9. From the point of view of cardinality, there are many

more irrational real numbers than rational ones. On the other hand,

to check that a specific real number is irrational could be very difficult.

Some examples are included in the text. Chapter 11 contains a proof

that e is irrational and Chapter 12 does the same for π. On the

other hand, as of the date of writing this text (January 2012), the

irrationality of e + π has not been decided.

Example 1.9.10. The concept of Cauchy sequence is illustrated with

an example. Theorem 1.9.1 has shown that if a ∈ Q+ is not the square

of an integer, then it does not have a rational square root. The fact is

that it has a real square root. The next step is to produce a sequence

of rational numbers xn such that x2
n becomes arbitrarily close to a.

The construction of the sequence {xn : n ∈ N} is obtained by

Newton’s method. Define f(x) = x2 − a. Consider the sequence

defined by

xn+1 = xn − f(xn)

f ′(xn)
,

starting at x0 ∈ Q and x0 > 0. In the specific case considered here

(1.9.2) xn+1 :=
1

2

(
xn +

a

xn

)
.

The goal is to estimate the difference |xn+k − xn|. Observe first that

if xn is such that x2
n = a, then xn+k = xn for all k ∈ N. Assume that

x2
0 > a. Then xn ∈ Q and

xn+1 − xn =
1

2
(xn − xn−1) ×

(
1 − a

xnxn−1

)
.

Induction shows that xn+1 < xn and that xn+1xn > a. Indeed

xn+1xn =
1

2
(x2

n + a) >
1

2
(xnxn−1 + a) > a,

and from the value of xn+1−xn, it follows that xn+1−xn and xn−xn−1

have the same sign. The initial step x1 < x0 is elementary. It follows
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that xn − xn+1 < 1
2 (xn−1 − xn), and xn − xn+1 < 2−n(x0 − x1) is

established. Finally

xn − xn+k = (xn − xn+1) + (xn+1 − xn+2) + · · · + (xn+k−1 − xn+k)

< 2−n−k + 2−n−k−1 + · · · + 2−n−1 < 2−n < 1/n.

Exercise 1.9.11. Show that if x2
0 < a, then x2

1 > a and the previous

argument can be started at x1.

The last inequality 2−n < 1/n is equivalent to n < 2n. This is

easy to establish by induction. A new kind of proof, explained in the

next definition, is requested in Exercise 1.9.13.

Definition 1.9.12. Given two positive integers a and b, a combi-

natorial proof that a = b refers to finding two sets A and B with

|A| = a, |B| = b, and a bijection from A to B. Similarly, to provide a

combinatorial proof of the inequality a ≤ b means to find f : A → B

that is one-to-one. The meaning of a combinatorial proof of a < b is

clear: find a function from A to B that is one-to-one and not onto.

Exercise 1.9.13. Give a combinatorial proof of n < 2n. Hint: A

set with n elements has 2n subsets.

The argument above shows that |xn−xm| can be made arbitrarily

small by choosing n sufficiently large. Therefore the sequence {xn}
defined in (1.9.2) is a Cauchy sequence, so it is a real number. This

number is called the square root of a and is denoted by
√
a.

Exercise 1.9.14. Prove that (
√
a)2 = a. Hint: First read Subsec-

tion 1.9.3.

Thus, the Cauchy sequence {xn} is the answer to the missing

number described in Theorem 1.9.1.

The irrationality of a real number may be detected by the rate

of approximation of rational sequences. A simple criteria is presented

next.
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Theorem 1.9.15. Let δ ∈ R+. Assume there is a sequence of distinct

positive rational numbers rn/sn (written in reduced form) such that

sn

∣∣∣∣δ − rn
sn

∣∣∣∣→ 0,

as n → ∞. Then δ is irrational.

Proof. Assume δ = p/q in reduced form. There is at most one index

n = n0 for which δ = rn/sn. Then, for n > n0, it follows that

sn

∣∣∣∣δ − rn
sn

∣∣∣∣ =
|psn − qrn|

q
≥ 1

q
.

This contradicts the assumption on sn. �

Example 1.9.16. This example uses the previous criteria to provide

a different proof of the irrationality of
√

2. Let δ =
√

2. Construct

the sequence of positive integers by

rn+1 = rn + 2sn and sn+1 = rn + sn,

starting at r0 = s0 = 1. An elementary induction argument gives

rn ≥ sn and

2s2n = r2n + (−1)n.

This yields

1

s2n
=

∣∣∣∣2 − r2n
s2n

∣∣∣∣ =

∣∣∣∣√2 − rn
sn

∣∣∣∣ ·
∣∣∣∣√2 +

rn
sn

∣∣∣∣ .
Therefore

sn

∣∣∣∣√2 − rn
sn

∣∣∣∣ ≤ sn

∣∣∣∣2 − r2n
s2n

∣∣∣∣ ≤ 1

sn
→ 0.

It follows that
√

2 �∈ Q.

1.9.3. Operations with real numbers. The standard arithmeti-

cal operations on real numbers are defined in terms of the Cauchy

sequences defining them. For example, if a = (an) and b = (bn) are

real numbers, then the sequence (an + bn) is a Cauchy sequence of

rational numbers. This is defined to be a + b. Similar expressions

define the product a ·b, reciprocal 1/a for a �= 0, and exponentiation

ab for a ≥ 0.
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Note 1.9.17. The arithmetic questions of real numbers turn out to

be surprisingly difficult. Theorem 1.9.8 states that the set of real

numbers is uncountable, so most real numbers are irrational. It is

a different issue to check that a specific number is not rational. The

fact that
√

2 �∈ Q has been established here. This can be used to

prove the result that there are a, b �∈ Q such that ab ∈ Q. Indeed,

if
√

2
√
2 ∈ Q, then the result holds. If not, the irrational number

a =
√

2
√
2

satisfies a
√
2 = 2 ∈ Q. It is a difficult result that the latter

case is the true one.

1.9.4. Square roots and improvements to convergence. The

values of functions defined in future chapters are obtained by following

an informal approach. Naturally it is possible to proceed in a more

rigorous fashion. This point of view is illustrated with the square root

function f(x) =
√
x.

The starting point is x ∈ R+. This yields a sequence xn ∈ Q+

that defines x. Now fix n ∈ N and produce a sequence ym,n that

defines the square root
√
xn. Then one shows that ym,n yields a

Cauchy sequence that defines
√
x. An alternative to this procedure,

employing power series, will be described in Chapter 2.

Note 1.9.18. Given a sequence {xn} that converges to x ∈ R, the

estimates of the error term εn := xn−x are indicators of the speed of

the convergence. The analysis for the sequence {xn} given in Example

1.9.10 is presented next. Define the error term

εn := xn −
√

2

and consider first the case a = 2. Observe that

1

xn
=

1

εn +
√

2

=

√
2 − εn

2
+

ε2n
2(
√

2 + εn)

from which it follows that

εn+1 =
1

2
× ε2n√

2 + εn
.
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Therefore εn+1 ≤ 1
2εn and by induction εn ≤

(
1
2

)n
ε0. Thus the

sequence exhibits geometric convergence.

The general case can be obtained from the case a = 2 by scaling.

Indeed, define

vn =

√
a√
2
xn

and now the errors εn := vn −√
a satisfy

εn+1 = xn+1 −
√
a

=
1

2

(
(
√
a + εn) +

a√
a + εn

)
−
√
a

=
1

2

(
a√

a + εn
− (

√
a− εn)

)

=
1

2
× ε2n√

a + εn
<

1

2
εn,

and geometric convergence is observed again.

Note 1.9.19. The sequence {xn} converges even faster than the esti-

mate established in the previous note. Indeed, in the last step simply

bound the denominator by
√
a to obtain

εn+1 ≤ 1

2
√
a
ε2n.

This is quadratic convergence and it states that near the limit the

number of correct digits doubles with each step.

The next theorem provides a new sequence converging to
√
a that

was used by X. Gourdon and B. Salvy [141] to compute one million

digits of
√

2 in Maple. It has the advantage that only divisions by 2

are required, but x3
n has to be evaluated. The recurrence (1.9.3) comes

from applying Newton’s method to the function f(x) = 1 − a/x2.

Theorem 1.9.20. The sequence

(1.9.3) xn+1 =
3

2
xn − 1

2a
x3
n

converges to
√
a.

Exercise 1.9.21. Check the details. Show that it suffices to consider

the case a = 1/
√

2. Estimate the error
∣∣xn − 1/

√
2
∣∣ .
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1.9.5. Continued fraction representations of real numbers.

The continued fraction representation of a rational number r = a/b

was described in Subsection 1.8.3. This procedure is now adapted to

produce a similar representation for real numbers.

Start with x ∈ R+ and assume x �∈ N. Define

(1.9.4) x0 = �x�

to be the integer part of x. This is the unique integer m that satisfies

x − 1 < m < x. The remainder is the fractional part of x defined

by

(1.9.5) {x} = x− �x� = x− x0.

The fractional part satisfies 0 < {x} < 1. Now write

x = �x� + {x} = x0 +
1

1

{x}

.

The number y = 1/ {x} satisfies y > 1. The procedure described

above can now be applied to y and iterated to obtain

(1.9.6) x = x0 +
1

x1 +
1

x2 +
1

x3 + · · ·

.

This is the continued fraction representation of x. In order to

save space, this is often written as x = [x0;x1, x2, . . .]. Also, the no-

tation [x0, x1, x2, . . . , xn] is employed for the finite continued fraction

(1.9.7) x0 +
1

x1 +
1

x2 +
1

x3 +
1

· · · +
1

xn

.

This fraction is written as
pn
qn

and the
pn
qn

are called the convergents

of x. The numbers xn are called the partial quotients of x.
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Exercise 1.9.22. This exercise shows the operational rules for con-

vergents. Write [x0, x1, . . . , xn] =
pn
qn

.

(a) Prove that

pk = xkpk−1 + pk−2,

qk = xkqk−1 + qk−2.

(b) Prove that

[x0, x1, . . . , xn−1, xn + 1/b] =
bpn−1 + pn
qn + qn−1b

.

Exercise 1.9.23. Define a sequence by xn+1 := 1 + 1/xn starting

at x0 = 1. Prove that {xn} is a Cauchy sequence. Show that this

provides the representation

(1.9.8)

√
5 + 1

2
= 1 +

1

1 +
1

1 +
1

1 + · · ·

.

This is the continued fraction representation of the golden ratio

ϕ = 1
2 (
√

5 + 1); that is,

(1.9.9) ϕ = [1; 1, 1, 1, 1, 1, 1, . . .].

This number will reappear in Chapter 3 and the book by M. Livio

[202] is dedicated to it.

Exercise 1.9.24. This exercise outlines a proof of the fact that the

golden ratio ϕ is irrational. It appeared in J. Shallit and D. Ross

[270]. Assume ϕ = p/q, with gcd(p, q) = 1. Use the equation for ϕ to

conclude that p(p− q) = q2. Conclude that p = 1. Also p2 = q(p+ q)

implies that q divides p2, so q = 1. It follows that ϕ = 1. This is a

contradiction. Check the details.

Exercise 1.9.25. Z. Yachas [315] has produced a great proof that

ϕ is irrational. The paper is quoted here: “For any pair of positive

integers (p, q) such that ϕ = p/q, where ϕ is the positive root of

ϕ = 1+1/ϕ, there is yet another pair (q, p−q) with the same property,

and whose sum is smaller. Since ϕ �= 2/1, there can’t be such a pair.”

Check the details.
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Definition 1.9.26. A continued fraction

(1.9.10) x = [a1, a2, a3, . . .]

is called periodic if the sequence of integers {ak : k ≥ k0} is periodic,

for some index k0. That is, for some t ∈ N, the identity aj+nt = aj
holds for j ≥ k0 and n ∈ N. The smallest such t is called the period

of the continued fraction.

The analog of Theorem 1.8.6 for continued fractions is stated

below. See the text [160] for a proof.

Theorem 1.9.27. A continued fraction is periodic if and only if x

is the root of a quadratic polynomial with integer coefficients.

Example 1.9.28. The continued fraction of x =
√

2 is

x = [ 1, 2, 2, 2, 2, 2, . . .]

with period 1, and for x =
√

47

x = [ 6, 1, 5, 1, 12, 1, 5, 1, 12, 1, 5, 1, 12, 1, 5, 1, 12, . . .]

with period 4.

Note 1.9.29. The computation of the continued fraction of
√

3 leads

to a nice proof of the irrationality of
√

3. The argument presented

below appears in the text by Y. Hellegouarch [163]. Assume
√

3 =

a1/b1. Then
√

3 = 1 + (
√

3− 1) and the first step in the construction

of the continued fraction of
√

3 is to compute

1√
3 − 1

=

√
3 + 1

2
.

This yields √
3 + 1

2
=

b1
a1 − b1

,

which implies
√

3 = (3b1 − a1)/(a1 − b1). Define

a2 = 3b1 − a1, b2 = a1 − b1.

An easy argument shows that b2 < b1 and a2 < a1. Iteration pro-

duces a sequence {an, bn} with
√

3 = an/bn with numerators and

denominators strictly decreasing. This is a contradiction.
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Note 1.9.30. Let λ(n) be the least integer m such that the continued

fraction of
√
n has period m. In N. Sloane’s database OEIS, entry

A013646 gives the values of λ(n) beginning with

1, 2, 3, 41, 7, 13, 19, 58, 31, 106, 43, 61.

Figure 1.9.1 illustrates this function.

50 100 150 200
n

5000

10 000

15 000

Figure 1.9.1. The function λ(n).

Note 1.9.31. Given x ∈ R, it is possible to construct a rational

number that is arbitrarily close to x. The convergents pn/qn represent

an example of such rational approximations to x. The error term

satisfies ∣∣∣∣x− pn
qn

∣∣∣∣ < 1

2q2n
.

These approximations are optimal, in the following sense: let n > 1

and let p/q �= pn/qn be a rational number with denominator q ≤ qn.

Then ∣∣∣∣x− p

q

∣∣∣∣ >
∣∣∣∣x− pn

qn

∣∣∣∣ .
That is, among all rational numbers with denominators bounded by

qn, the convergents are the best approximation to x.
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Note 1.9.32. In this text the real numbers have been introduced in

different forms:

• Cauchy sequences of rational numbers. This is a

Cauchy sequence {xn}, with xn ∈ Q. This identifies the

sequence {xn} with its limit x ∈ R. An important goal is

to have a constructive algorithm that gives xn in terms of

{x1, . . . , xn−1}.
• An expansion in base b. Given b ∈ N and x ∈ R, the

base b-expansion of x is

x =
∞∑

k=−n

xk

bk
.

For a given x it is desirable to have an algorithm that gives

xk in terms of {x−n, x−n+1, . . . , x0, x1, x2, . . . , xk−1}.
• A continued fraction expansion. Every real number has

a continued fraction of the form

x = x0 +
1

x1 +
1

x2 +
1

x3 + · · ·

,

where x0 ∈ Z and xi ∈ N for i > 0. As in the previous two

representations, it is desirable to have an algorithm that will

determine xk in terms of x.

Each of these forms present distinct aspects of the real numbers.

1.10. Fundamental sequences and completions

The procedure employed above to construct R from Q is employed

very often in analysis. Given a set X and a metric on X, that is, a

function d : X×X → R+ that allows us to state that two elements of

X are close, it is possible to define the notion of Cauchy sequence in X.

Then the completion of X is the set of Cauchy sequences (modulo

some technical points: two sequences that differ by one converging to

0 must be identified).

A different type of metric on Q is described next.
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1.10.1. The p-adic norm on Q. The goal of this part is to state a

theorem of Ostrowski characterizing all (multiplicative) completions

of Q. Let p be a prime. Recall the notion of p-adic valuation defined

in Subsection 1.7.1. Write x ∈ Q in the form

x = pm × b

c

where b, c ∈ Z are not divisible by p. Then m ∈ Z is the p-adic

valuation of x, denoted by νp(x).

Definition 1.10.1. The p-adic norm of x is defined by

(1.10.1) |x|p := p−νp(x) if x �= 0 and |0|p := 0.

Observe that for a, b ∈ N the statement a ≡ b mod pm is equiv-

alent to |a − b|p ≤ p−m. Therefore, a number is small in the p-adic

norm precisely when it is divisible by a large power of p. The reader

will find in the texts by F. Gouvea [142] and M. R. Murty [230] a

wonderful introduction to these ideas.

Exercise 1.10.2. Check that the p-adic norm satisfies

|x|p = 0 ↔ x = 0, |xy|p = |x|p |y|p, and |x + y|p ≤ Max {|x|p, |y|p} .

Observe that this last property is stronger than the triangle in-

equality, |x + y| ≤ |x| + |y|, for the usual absolute value in Q.

Exercise 1.10.3. Prove that {1, p, p2, p3, . . .} is a Cauchy sequence

in the p-adic norm.

Definition 1.10.4. The field of p-adic numbers, denoted by Qp,

is the completion of Q under the p-adic norm.

Norms on fields. A norm on a field F is a function v : F → R+∪{0}
such that

(1) v(x) = 0 if and only if x = 0,

(2) v(x · y) = v(x) · v(y),
(3) v(x + y) ≤ v(x) + v(y).

Exercise 1.10.5. Two norms are said to be equivalent if they have

the same convergent sequences. Prove that if p and q are different

primes, then the p-adic and q-adic norms are not equivalent.
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The last result in this chapter is a theorem of Ostrowski that

characterizes all possible norms on Q. In particular, this result de-

scribes all completions of Q that are compatible with its arithmetic

structure.

Theorem 1.10.6. Every norm on Q is a power of the usual absolute

value or a power of the p-adic norm.

1.11. Complex numbers

The last element of the chain (1.9.1) considered here is the set of

complex numbers C. This will give

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

The field of p-adic numbers does not form part of this chain.

The complex numbers were originally introduced by N. Tartaglia

and G. Cardano in 1545 to address the so-called casus irreducibilis.

This corresponds to a phenomenon that appears in the solution of a

cubic equation: there are some situations in which, even though the

three roots are real numbers, to find an algebraic expression for them

requires an intermediate step that employs complex numbers. The

solution of the cubic equation is described in Section 4.6.

The letter i is commonly employed to denote one of the two so-

lutions of

(1.11.1) x2 + 1 = 0.

Naturally the second one must be −i. The set of complex numbers is

defined by

(1.11.2) C =
{
a + ib : a, b ∈ R and i2 = −1

}
and it is provided with an arithmetic structure in a natural manner:

(a + ib) + (c + id) = (a + c) + i(b + d),

(a + ib) × (c + id) = (ac− bd) + i(ad + bc).

The rule for multiplication simply follows by distributing terms and

employing i2 = −1.

The next theorem states that, in some sense, the complex num-

bers represent the end of the chain of number systems described in
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this chapter. Each step on the chain has been produced from the pre-

vious one by adjoining solutions of polynomial equations, as in the

case from Z to Q, or by adjoining limits of Cauchy sequences, as in

the passage from Q to R or Qp.

Theorem 1.11.1. The complex numbers C are a complete, alge-

braically closed field. That is, every Cauchy sequence of elements

in C converges to an element in C and every polynomial equation

with complex coefficients has all its roots in C.

This is established in Section 4.5.

                

                                                                                                               



Chapter 2

Factorials and Binomial
Coefficients

This chapter discusses the factorial n! and binomial coefficients(
n
k

)
from several points of view. Special emphasis is placed on the

arithmetic properties and is given to the question of extending them

to functions of a real variable.

2.1. The definitions

The sum of the first n natural numbers

(2.1.1) 1 + 2 + 3 + · · · + n =
n(n + 1)

2

was the example used in Chapter 1 to motivate the question of closed-

form evaluation of finite sums by a function in a given class. The

analog of (2.1.1) with products instead of sums is considered next.

Definition 2.1.1. Let n ∈ N. The factorial of n is defined by

(2.1.2) n! = 1 · 2 · 3 · · · (n− 1) · n.

The first few values are 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120. The

value of n! grows very fast, for instance

40! = 815915283247897734345611269596115894272000000000.

57

                                     

                

                                                                                                               



58 2. Factorials and Binomial Coefficients

Factorials can be defined inductively by

1! := 1,(2.1.3)

n! := n× (n− 1)!.

This definition is extended to

(2.1.4) 0! = 1

in order to be consistent with (2.1.3).

Note 2.1.2. The question of the existence of a fixed function f de-

fined over R such that f(n) = n! for n ∈ N is considered. This

function would be the multiplicative analog of 1
2x(x + 1) in (2.1.1).

Euler’s remarkable insight gave us the gamma function, defined by

(2.1.5) Γ(z) =

∫ ∞

0

e−ttz−1 dt.

It turns out that f(x) = Γ(x + 1) extends the factorials for real

parameters and, in some sense, it is the unique reasonable extension.

Special values include the remarkable identity

(2.1.6)

(
1

2

)
! =

√
π

2
.

This is explained in Chapter 16.

Note 2.1.3. The factorials have appeared in Theorem 1.3.3 in a

combinatorial setting: they count the number of permutations of n

objects.

Definition 2.1.4. Let n ∈ N. The binomial coefficients are de-

fined by

(2.1.7)

(
n

k

)
=

n!

k! (n− k)!
,

for 0 ≤ k ≤ n. For n ∈ N, the binomial coefficients are defined as 0 if

k is outside the range 0 ≤ k ≤ n.

Exercise 2.1.5. Show that

(2.1.8)

(
n

k

)
=

1

k!
n(n− 1)(n− 2) · · · (n− k + 1).
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Introduce the Pochhammer symbol

(2.1.9) (x)k = x(x + 1)(x + 2) · · · (x + k − 1)

to write (2.1.8) as

(2.1.10)

(
n

k

)
=

(n− k + 1)k
k!

=
(−1)k(−n)k

k!
.

The value

(2.1.11)

(
n

0

)
= 1

follows directly from Definition 2.1.4. The next result shows that the

binomial coefficients are integers.

Theorem 2.1.6. The binomial coefficients satisfy the recurrence

(2.1.12)

(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

In particular,
(
n
k

)
is a natural number.

Proof. A direct calculation gives(
n− 1

k

)
+

(
n− 1

k − 1

)
=

(n− 1)!

k! (n− 1 − k)!
+

(n− 1)!

(k − 1)! (n− k)!

=
(n− 1)!

k! (n− k)!
(n− k + k)

=
n!

k! (n− k)!
,

as claimed. �

Corollary 2.1.7. Let k ∈ N. Then k! divides the product of any k

consecutive integers.

Proof. The product is n(n−1)(n−2) · · · (n−k+1), that is, n!/(n−k)!.

This is divisible by k! since the quotient is
(
n
k

)
. �

Proposition 2.1.8. The binomial coefficients are symmetric: for

0 ≤ k ≤ n,

(2.1.13)

(
n

k

)
=

(
n

n− k

)
for 0 ≤ k ≤ n.
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Proof. This follows directly from the definition given in (2.1.7). �

2.2. A counting argument

The binomial coefficients are now expressed as the solution to a simple

counting question. A combination of n objects taken k at a time is

a subset of size k of the n objects. Naturally, in a set, the order in

which the elements appear is irrelevant. For example, if n = 4 and

k = 2, the six combinations are

{x1, x2}, {x1, x3}, {x1, x4}, {x2, x3}, {x2, x4}, {x3, x4}.

The fact that 6 =
(
4
2

)
is a special case of the next theorem.

Theorem 2.2.1. The number of combinations of n objects taken k

at a time is
(
n
k

)
.

Proof. There are n choices for the first object, n− 1 for the second

one, until n−k+1 for the kth one. The multiplicative principle gives

a total of

(2.2.1) n(n− 1) · · · (n− k + 1) =
n!

(n− k)!

choices. But each selection of k objects is counted k! ways according

to the number of permutations of these objects. Thus, the number of

ways to pick k objects is

(2.2.2)
1

k!
× n!

(n− k)!
=

(
n

k

)
.

�

Note 2.2.2. This interpretation provides a combinatorial proof that(
n
k

)
is a positive integer and also a second proof of Theorem 2.1.6.

Corollary 2.2.3. The number of subsets of {1, 2, . . . , n} consisting

of k elements is given by
(
n
k

)
.

Proof. Divide the subsets of {1, 2, . . . , n} into two types: those that

contain n and those that do not. Now count the
(
n
k

)
subsets with

k elements. Any set of the first type can be expressed as A ∪ {n}
with A ⊂ {1, 2, . . . , n − 1} and |A| = k − 1. There are

(
n−1
k−1

)
of this
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type. A set of the second type is automatically a subset of {1, 2, . . . ,

n−1}. Therefore there are
(
n−1
k

)
sets of the second type. The addition

principle gives the relation

(2.2.3)

(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

A combinatorial proof of Proposition 2.1.8 is presented next.

Proof. For every choice of k elements from a box with n elements,

there is a corresponding choice of n−k of elements, namely those you

left in the box. �

Exercise 2.2.4. Consider paths on the lattice Z× Z starting at the

origin (0, 0) and ending at (m,n) with steps of the form N : (i, j) �→
(i, j + 1), or E : (i, j) �→ (i + 1, j). Prove that the number of such

paths is
(
m+n
n

)
.

2.3. The generating function of binomial
coefficients

Given a sequence {an}, it is often convenient to introduce the formal

power series

(2.3.1) A(x) =
∞∑

n=0

anx
n.

This is the generating function of the sequence {an}. There are

cases in which this generating function can be given a concrete ana-

lytic expression. For instance, if an ≡ 1, then

(2.3.2) A(x) =

∞∑
n=0

xn =
1

1 − x
.

The classical binomial theorem provides an analytic expression

for the generating function of the binomial coefficients.

Theorem 2.3.1. The generating function of the binomial coefficients

is

(2.3.3)
n∑

k=0

(
n

k

)
xk = (1 + x)n.
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This can be scaled to

(2.3.4)

n∑
k=0

(
n

k

)
an−kbk = (a + b)n.

Proof. Define

(2.3.5) BIn(x) =
n∑

k=0

(
n

k

)
xk.

To produce a recurrence for BIn(x), multiply the recurrence for the

binomial coefficients given in Theorem 2.1.6 by xk and sum from

k = 0 to k = n. Recall that the binomial coefficients
(
n
k

)
vanishes if

k < 0 or k > n. This gives

BIn(x) =
n∑

k=0

(
n

k

)
xk =

n∑
k=0

(
n− 1

k − 1

)
xk +

n∑
k=0

(
n− 1

k

)
xk

=
n∑

k=1

(
n− 1

k − 1

)
xk +

n−1∑
k=0

(
n− 1

k

)
xk

=

n−1∑
k=0

(
n− 1

k

)
xk+1 +

n−1∑
k=0

(
n− 1

k

)
xk

= BIn−1(x) + xBIn−1(x).

It follows that

(2.3.6) BIn(x) = (1 + x)BIn−1(x),

and the result follows by induction. �

Exercise 2.3.2. Use the generating function to prove the symmetry

relation
(
n
k

)
=
(

n
n−k

)
.

2.3.1. A combinatorial proof of the binomial theorem. The

binomial theorem

(2.3.7)
n∑

k=0

(
n

k

)
xk = (1 + x)n

is now given a combinatorial proof. First note that both sides of

(2.3.7) are polynomials of degree n. Hence it is enough to prove that

(2.3.7) holds for n + 1 distinct values of x. This result is a corollary

of Exercise 4.4.4 that bounds the number of zeros of a polynomial by
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its degree. In particular, it is enough to show that it holds for values

of x ∈ N.

Suppose that x is a positive integer, and let A be the set of all

functions f : {1, 2, . . . , n} −→ {1, 2, . . . , x + 1}. Then the cardinality

of A is |A| = (1 + x)
n
. Now count the elements of A in a different

way. For 0 ≤ k ≤ n, let Ak be the set of functions where exactly n−k

elements are mapped to the number x + 1; that is,

(2.3.8) Ak =
{
f ∈ A :

∣∣f−1 (x + 1)
∣∣ = n− k

}
.

Then A =
n⋃

k=0

Ak, and the union is disjoint, so |A| =
n∑

k=0

|Ak| .

To count the elements of Ak, choose a set Y of k elements of {1, 2,
. . . , n} in

(
n
k

)
ways. There are xk functions Y −→ {1, 2, . . . , x}, and

each such function gives an element of Ak, by defining f (i) = x + 1

for i ∈ {1, 2, . . . , n} \ Y . Hence |Ak| =
(
n
k

)
xk, and (2.3.7) is proved.

This argument is typical of many combinatorial proofs of an iden-

tity where one of the sides is given by a finite sum. The strategy is

to find a set whose cardinality is the other side of the identity and

then try to partition the set in such a way that the terms of the sum

are the cardinality of the sets in the partition. This is often done by

finding a combinatorial interpretation for the index in the sum. In

our case the index k is the number of elements that do not map to

x + 1.

2.4. An extension of the binomial theorem to
noninteger exponents

The binomial theorem

(2.4.1) (1 + x)n =
n∑

k=0

(
n

k

)
xk

has two components where n ∈ N plays a role. The goal in this

section is to extend (2.4.1) to n ∈ R. The first appearance of n is as

the upper limit in the sum. This can be avoided by observing that

the sum in (2.4.1) can be extended beyond n because
(
n
k

)
= 0 when

k > n. This is consistent with the combinatorial interpretation of the
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binomial coefficients. The second appearance of n ∈ N is in the term(
n
k

)
. This is extended by using (2.2.1) and writing

(2.4.2)

(
n

k

)
=

n(n− 1)(n− 2) · · · (n− k + 1)

k!
,

and now the right-hand side makes sense for n �∈ N.

The notation is simplified by using the Pochhammer symbol de-

fined in (2.1.9) to rewrite (2.4.1) as

(2.4.3) (1 + x)n =

∞∑
k=0

(n− k + 1)k
k!

xk.

Aside from the convergence issue, the right-hand side is well-defined

for n ∈ R.

The formalization of the above procedure is based on Taylor’s

theorem for the expansion of an analytic function applied to f(x) =

(1 + x)n.

Theorem 2.4.1 (Taylor’s theorem). Let n ≥ 0 and suppose that

f is (n + 1)-times differentiable on (a, b), with f (n+1) continuous on

(a, b). Suppose that f (n+1) is integrable over (a, b), and fix a < c < b.

Then,

(2.4.4) f(x) =
n∑

k=0

f (k)(c)

k!
(x− c)k +

hn+1(x)

(n + 1)!
(x− c)n+1,

where the remainder has the representation

(2.4.5) hn+1(x) = (n + 1)

∫ 1

0

(1 − s)nf (n+1)[c + s(x− c)] ds.

The reader will find a proof of this result in the textbook by

O. Hijab [168]. Assume that for x ∈ I ⊂ R the remainder converges

to 0 as n → ∞. Then

(2.4.6) f(x) =

∞∑
k=0

f (k)(c)

k!
(x− c)k

for x ∈ I.
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Theorem 2.4.2. Let a ∈ R and |x| < 1. Then the binomial theorem

states that

(2.4.7) (1 − x)−a =

∞∑
k=0

(a)k
k!

xk.

Proof. The function f(x) = (1 − x)−a satisfies

f (k)(x) = (a)k(1 − x)−a−k.

The expansion (2.4.7) now follows from Theorem 2.4.1 and the next

exercise. �

Exercise 2.4.3. Prove that in the case f(x) = (1 − x)−a, the error

term hn+1(x) in Theorem 2.4.1 converges to 0.

Exercise 2.4.4. Use Theorem 2.4.2 to obtain an expansion for f(x) =

1/
√

1 − 4x. The answer will provide an analytic expression for the

central binomial coefficients
(
2n
n

)
.

Note 2.4.5. This note contains the approximations to square roots

promised in Subsection 1.9.4. The reader will find the basic properties

of power series in Theorem 11.1.4. In particular it follows that the

series (2.4.7) converges for −1 < x < 1. The special values a = 1
2 and

x = 1
2 yield the expression

(2.4.8)
∞∑
k=0

(
1

2

)
k

1

2k k!
=

√
2.

The sequence of rational numbers

(2.4.9) an =

n∑
k=0

(
1

2

)
k

1

2k k!
=

n∑
k=0

2−3k

(
2k

k

)

converges to
√

2. The reader can check that a10 gives three correct

digits for
√

2.

The continued fraction of
√

2 is given by

(2.4.10)
√

2 = [1, 2, 2, 2, 2, . . .] .

It is interesting to compare this with the (finite) continued fraction

of an. For example,

a10 =
379582629

268435456
= [1, 2, 2, 2, 2, 4, 8, 2, 9, 3, 1, 1, 8, 3, 1, 2, 5, 1, 2] .
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Define bn to be the first entry in the continued fraction of an, after

the first one, that is different than 2. For example, b10 = 6. The

sequence {bn : n ∈ N} begins with

{2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 10, 10} .
The length of the blocks seems to have a more regular pattern. It

starts as

{1, 3, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3} .
The pattern {3, 2} is interrupted by repeating blocks starting at po-

sitions

{3, 6, 36, 53, 70, 85, 98, 113, 126, 139, 152, 165, 178, 191}.
What does this mean?

Exercise 2.4.6. Compile data for other radicals and provide an ex-

planation.

2.5. Congruences for factorials and binomial
coefficients

In this section a variety of congruences satisfied by factorials and

binomial coefficients is considered.

2.5.1. Congruences for factorials. The first result reported here

is due to J. Wilson and it characterizes primes in terms of a congru-

ence. The result was announced by Wilson’s advisor E. Waring in

[305]. The proof of this result employs the next two exercises.

Exercise 2.5.1. Prove that if p is prime and 0 < a < p − 1, then

the congruence ax ≡ b mod p has a unique solution in the interval

0 ≤ x < p. In particular every such a has a unique multiplicative

inverse modulo p. Hint: The greatest common divisor of a and p

is 1.

Exercise 2.5.2. Prove that if p is prime, then 1 and p − 1 are the

only numbers that are their own multiplicative inverses.

Theorem 2.5.3. Let n ∈ N. Then

(2.5.1) (n− 1)! ≡
{
−1 mod n if n is prime,

0 mod n if n is not prime.

                

                                                                                                               



2.5. Congruences for n! and
(
n
k

)
67

Proof. In the product

(2.5.2) (p− 1)! = (p− 1) × (p− 2) × · · · × 2 × 1

pair each integer with its unique inverse. Exercise 2.5.2 shows that

(2.5.3) (p− 1)! ≡ (p− 1) × 1 ≡ −1.

The case of n not prime is left as Exercise 2.5.4. �

Exercise 2.5.4. Check that (n− 1)! ≡ 0 mod n if n is not prime.

Exercise 2.5.5. Discuss this as a method to determine the primality

of n ∈ N. In particular, count the number of operations required to

accomplish this task.

A second proof of Wilson’s theorem, Theorem 2.5.3, is presented

now. It is based on an identity of two polynomials over Zp. This is

established by showing that their values match at more places than

the common degree.

Proposition 2.5.6. Let p be prime. Then

xp−1 − 1 ≡ (x− 1)(x− 2) · · · (x− p + 1) mod p.

Proof. The polynomial

(2.5.4) Tp(x) = xp−1 − 1 − (x− 1)(x− 2) · · · (x− p + 1)

is of degree p − 2 (the coefficient of xp−1 vanishes). Fermat’s little

theorem, established in Subsection 2.5.2, shows that Tp(x) vanishes

at the p− 1 nonzero elements of Zp. Proposition 4.4.1 shows that it

must vanish identically. This gives the identity. �

Proof of Wilson’s theorem. The vanishing of the constant term

in Tp(x) in (2.5.4) gives the result.

The extension of Wilson’s theorem given in the next exercise was

proposed by R. S. Luthar and W. C. Waterhouse in [206].

Exercise 2.5.7. Let p ≥ n be prime. Prove that

(n− 1)! (p− n)! ≡ (−1)n mod p.

Hint: Use (−1)k ≡ p− k for 1 ≤ k ≤ n.
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Note 2.5.8. The coefficients of a polynomial

P (x) = (x− a1)(x− a2) · · · (x− an) =
n∑

j=0

(−1)jsj(a1, a2, . . . , an)xj

are given in terms of the symmetric functions

(2.5.5) sj(a1, a2, . . . , an) =
∑

i1<i2<···<ij

j∏
r=1

air .

For example,

s1(a1, a2, . . . , an) = a1 + a2 + · · · + an,

s2(a1, a2, . . . , an) = a1a2 + a1a3 + · · · + an−1an,

and

sn(a1, a2, . . . , an) = a1a2 · · · an.
Proposition 2.5.6 shows that for p prime and 1 ≤ j ≤ p − 2, the

symmetric functions of {1, 2, . . . , , p− 1} satisfy

(2.5.6) sj(1, 2, . . . , p− 1) ≡ 0 mod p.

2.5.2. Fermat’s little theorem. The binomial theorem provides

a direct proof of a congruence known as Fermat’s little theorem.

The proof begins with an exercise.

Exercise 2.5.9. Let p be a prime and let 1 ≤ k ≤ p− 1. Prove that

p divides
(
p
k

)
. Hint: Use the identity

k

(
p

k

)
= (p− k + 1)

(
p

k − 1

)
, for 1 ≤ k ≤ p.

Corollary 2.5.10. For p prime,

(2.5.7) (a + b)p ≡ ap + bp mod p.

Theorem 2.5.11. Let a ∈ N and let p be a prime. Then ap ≡
a mod p.

Proof. The identity above, with b = 1, yields

(2.5.8) (a + 1)p ≡ ap + 1 mod p.

This proves the result by induction on a, starting at a = 0. �
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Note 2.5.12. Fermat’s little theorem shows that if a ∈ N is not

divisible by p, the number

(2.5.9) qa(p) :=
ap−1 − 1

p

is an integer, called the Fermat quotient of base a. These numbers

are related to Fermat’s last theorem (FLT). This is the (famous)

conjecture by Fermat that the equation xn + yn = zn has only trivial

solutions for n ≥ 3. The trivial solutions are those for which one

of the unknowns vanishes. The solution of this conjecture was given

by A. J. Wiles [312]. The first case of FLT for the prime p is the

statement that xp + yp = zp has no solutions in nonzero integers

x, y, z not multiples of p. Wieferich proved that if the first case of

FLT is false, then q2(p) must be divisible by p. The only known

primes that satisfy this condition are p = 1093 and p = 3511. (The

book by P. Ribenboim [251] contains details.) A nice presentation

of the background required for this topic is given in the book by

Y. Hellegouarch [163].

2.5.3. Congruences for binomial coefficients. The literature

contains a variety of congruences for binomial coefficients. The first

example is a beautiful congruence for general binomial coefficients

due to E. Lucas.

Exercise 2.5.13. Let n, m ∈ N and let p be a prime. Then

(2.5.10)

(
n

m

)
≡
(
�n/p�
�m/p�

)(
n mod p

m mod p

)
mod p.

Lucas’ theorem is stated next.

Theorem 2.5.14. Let p be a prime. Assume a = a0+a1p+· · ·+akp
k

and b = b0 + b1p+ · · ·+ bkp
k are the representation of a, b in base p.

Then (
a

b

)
≡
(
a0
b0

)(
a1
b1

)
· · ·
(
ak
bk

)
mod p.
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Proof. The term
(
a
b

)
is the coefficient of xb in (1 + x)a. Then

(1 + x)a = (1 + x)a0+a1p+···+akp
k

=

k∏
i=0

(1 + x)aip
i

≡
k∏

i=0

(1 + xpi

)ai

=

k∏
i=0

p−1∑
ji=0

(
ai
ji

)
xjip

i

=

p−1∑
j0,j1,··· ,jk=0

[
k∏

i=0

(
ai
ji

)]
xj0+j1p+...+jkp

k

mod p.

The claim now follows from the uniqueness of base p expansions. �

The remainder of the section presents congruences for the central

binomial coefficients
(
2p
p

)
. The main goal is to provide details of

a congruence discovered by J. Wolstenholme [314] for the residue of(
2p
p

)
modulo p3. The discussion begins with some elementary remarks.

It has been established that(
p

k

)
≡ 0 mod p

for 1 ≤ k ≤ p− 1.

Exercise 2.5.15. Check that for p prime and 1 ≤ k ≤ p − 1, the

congruence

(2.5.11)

(
p

k

)
�≡ 0 mod p2

holds. Conclude that, for 1 ≤ k ≤ p− 1,

(2.5.12) νp

(
p

k

)
= 1.

The basic identity

(2.5.13)
n∑

k=0

(
n

k

)2

=

(
2n

n

)
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is now used to establish divisibility properties of the central binomial

coefficient. This identity will be considered in Chapter 5.

Proposition 2.5.16. For p prime, it follows that

(2.5.14)

(
2p

p

)
≡ 2 mod p.

This is extended to mod p2 in Theorem 2.5.18 and to mod p3 in The-

orem 2.5.21.

Proof. The result follows from the identity

(2.5.15)

(
2p

p

)
=

p∑
k=0

(
p

k

)2

≡ 2 mod p.

�

Exercise 2.5.17. Prove that for p prime and 1 ≤ k ≤ p − 2, the

congruence

(2.5.16)

(
p− 2

k − 1

)
≡ (−1)k−1k mod p

holds. This is a problem proposed by P. L. Chessin [100].

The identity

(2.5.17)

(
2p

p

)
= 2

(
2p− 1

p− 1

)
and (2.5.14) show that

(2.5.18)

(
2p− 1

p− 1

)
≡ 1 mod p.

The next theorem, due to C. Babbage, extends this result. In

particular, the proof shows a relation between this question and har-

monic numbers treated in Section 11.11.

Theorem 2.5.18. Let p be an odd prime. Then

(2.5.19)

(
2p− 1

p− 1

)
≡ 1 mod p2.

This implies (
2p

p

)
≡ 2 mod p2.
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Proof. The binomial coefficient is(
2p− 1

p− 1

)
=

(2p− 1)(2p− 2) · · · (p + 1)

(p− 1)!
.

Its numerator, written as

(x + p− 1)(x + p− 2) · · · (x + 2)(x + 1) with x = p,

is expanded in the form

xp−1 + sp−2x
p−2 + · · · + s2x

2 + s1x + s0.

The coefficient s0 is (p − 1)! and s1 is the sum of products of p − 2

terms from {1, 2, . . . , p− 2, p− 1}. This gives

(2.5.20)

(
2p− 1

p− 1

)
=

pp−1 + sp−2p
n−2 + · · · + s2p

2 + s1p

(p− 1)!
+ 1.

The result follows from the congruence s1 ≡ 0 mod p, established in

Proposition 2.5.6. A second proof of this congruence is presented

next. Computing in Zp the integers modulo p, the term s1 is

s1 = (p− 1)!

p−1∑
j=1

1

j
.

The set {1, 2, . . . , p − 1} is the same as {1−1, 2−1, . . . , (p − 1)−1}
modulo p and (p − 1)! ≡ −1 mod p by Wilson’s theorem. It follows

that

s1 ≡ −
p−1∑
j=1

j = −p(p− 1)

2
≡ 0 mod p.

�

Exercise 2.5.19. Give a one-line proof of the theorem using the

identity (2.5.15). Hint: The terms divisible by p are squared.

The proof above shows a divisibility result for the harmonic

number

Hn−1 = 1 +
1

2
+ · · · + 1

n− 1
.

These numbers are considered in Section 11.11.

Corollary 2.5.20. The numerator of the harmonic number Hp−1,

for p prime, is divisible by p.
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The congruence for the central binomial coefficient
(
2p
p

)
was ex-

tended modulo p3 by J. Wolstenholme [314].

Theorem 2.5.21. Let p ≥ 5 be a prime. Then(
2p− 1

p− 1

)
=

1

2

(
2p

p

)
≡ 1 mod p3.

The proof of the theorem will employ some expansions for the

binomial coefficients. These are described first. The notation

(2.5.21) Hi,p−1 =

p−1∑
j=1

1

ji

for the generalized harmonic numbers is employed.

Start with(
n− 1

k

)
=

(n− 1)(n− 2) · · · (n− k)

1 · 2 · · · k

= (−1)k
k∏

j=1

(
1 − n

j

)

= (−1)k

⎡
⎣1 − n

∑
0<i<n

1

i
+ n2

∑
0<i<j<n

1

ij
+ · · · + (−1)knk 1

k!

⎤
⎦ .

In terms of the elementary symmetric functions sj this may also be

expressed as(
n− 1

k

)
= (−1)k

k∑
j=0

(−1)jnjsj

(
1

1
,
1

2
, . . . ,

1

k

)
.

The elementary symmetric functions may be expressed in terms of

power-sum symmetric polynomials

(2.5.22) pj(x1, x2, . . . , xk) =
k∑

i=1

xj
i .

For example, s1 = p1 and 2s2 = p21 − p2. Now assume p is an odd

prime and take n = 2p and k = p− 1 to obtain(
2p− 1

p− 1

)
≡ 1 − 2p

∑
0<i<p

1

i
+ 4p2

∑
0<i<j<p

1

ij
mod p3

= 1 − 2pH1,p−1 + 2p2H2
1,p−1 − 2p2H2,p−1 mod p3.
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Now recall that H1,p−1 is divisible by p (H1,p−1 is the harmonic

number Hp−1). The argument is based on the fact that if the index

i runs over the nonzero residue classes modulo p, so does the inverse

1/i. Therefore, the previous identity contains Babbage’s congruence

(2.5.19). Similarly,

H2,p−1 =

p−1∑
i=1

1

i2
≡

p−1∑
i=1

i2 =
1

6
(p− 1)(2p− 1)p ≡ 0 mod p.

This reduces to

(2.5.23)

(
2p− 1

p− 1

)
≡ 1 − 2pH1,p−1 mod p3.

Wolstenholme’s theorem, Theorem 2.5.21, follows from H1,p−1 ≡
0 mod p2. To establish this congruence, observe that(

2p− 1

p− 1

)
=

(2p− 1)(2p− 2) · · · (p + 1)

(p− 1)(p− 2) · · · 1

=

p−1∏
k=1

(
1 +

p

k

)

≡ 1 + p
∑

0<i<p

1

i
+ p2

∑
0<i<j<p

1

ij
mod p3

= 1 + pH1,p−1 +
1

2
p2H2

1,p−1 −
1

2
p2H2,p−1 mod p3.

This gives

(2.5.24)

(
2p− 1

p− 1

)
≡ 1 + pH1,p−1 mod p3.

Then (2.5.23) and (2.5.24) imply that 3pH1,p−1 is divisible by p3;

thus H1,p−1 is divisible by p2. Wolstenholme’s congruence now comes

from (2.5.23).

Note 2.5.22. (1) Primes for which the congruence in Theorem 2.5.21

holds modulo p4 are called Wolstenholme primes. R. J. McIntosh

and E. L. Roettger report in [212] that p = 16843 and p = 2124679

are the only Wolstenholme primes up to 109. Infinitely many are

conjectured to exist. It is also conjectured that there are no primes

for which the congruence holds modulo p5.

                

                                                                                                               



2.5. Congruences for n! and
(
n
k

)
75

(2) It is conjectured that the converse of Wolstenholme’s theorem,

Theorem 2.5.21, is true. Namely, if
(
2n−1
n−1

)
≡ 1 mod n3, then n is

prime. It has been verified up to n < 109.

(3) R. Tauraso [288] has established the congruence(
2p− 1

p− 1

)
≡ 1 + 2p

p−1∑
i=1

1

i
+

2

3
p3

p−1∑
i=1

1

i3
mod p6.

(4) Wolstenholme’s congruence can be generalized to(
2p− 1

p− 1

)
≡ 1 − 2

3
p3Bp−3 mod p4

where Bp−3 is the Bernoulli number. This shows that p is a Wolsten-

holme prime if and only if p divides the numerator of the Bernoulli

number Bp−3. This divisibility property is related to Fermat’s last

theorem [251]. The reader will find properties of Bernoulli numbers

in Chapter 13.

(5) The following statements are equivalent:

(a) p is a Wolstenholme prime.

(b) p divides the numerator of the Bernoulli number Bp−3.

(c) The congruence

(2.5.25)

�p/4�∑
k=�p/6�+1

1

k3
≡ 0 mod p

holds.

(6) The next example contains information about the central bi-

nomial coefficients. Let p > 2 be a prime and write p = 2q + 1.

Then

(2.5.26)

(
2q

q

)
≡ (−1)q24q mod p3.

This was established by F. Morley [224]. It was improved by L. Car-

litz [91] to

(2.5.27)

(
2q

q

)
≡ (−1)q

(
24q + 1

12p
3Bp−3

)
mod p4.
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(7) I. Gessel [135] presents an extension of a result stated by M.

Bayat [42]. Let m and k be positive integers and define

G(m, k) =
∑
i∈Rm

1

ik
,

where Rm is the set of integers from 1 to m−1 relatively prime to m.

Then, if k is not a multiple of p− 1 for any prime p dividing m, then

G(m, k) ≡ 0 mod m. Also, if k is odd and k + 1 is not a multiple of

p− 1 for any prime p dividing m, then G(m, k) ≡ 0 mod m2.

2.6. The prime factorization of n!

This section describes the prime factorization of factorials. It is clear

that only primes p ≤ n appear in this factorization. For example,

20! = 218 · 38 · 54 · 72 · 11 · 13 · 17 · 19.

The question is to determine the exact exponent of p that divides n!.

Recall that νp(n), defined in Definition 1.7.1, is the exact exponent

of p in the prime factorization of n. The factorization of 20! given

above shows that ν3(20!) = 8 and ν23(20!) = 0. The first result is an

analytic expression for νp(n!).

Theorem 2.6.1. Let n ∈ N and let p be a prime. Then

νp(n!) =
∞∑
k=1

⌊
n

pk

⌋
.

Proof. The product n! = n · (n − 1) · (n − 2) · · · 3 · 2 · 1 has
⌊
n
p

⌋
terms divisible by p. Take a factor of p out of each one them. The

remaining product now has
⌊

n
p2

⌋
terms that are still divisible by p

(those that were originally divisible by p2). This process must end in

a finite number of steps. �

Exercise 2.6.2. The sum (2.6.1) terminates after
⌊
logpn

⌋
steps.

Exercise 2.6.3. Prove that

νp(n) =
∞∑
k=1

(⌊
n

pk

⌋
−
⌊
n− 1

pk

⌋)
.
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Figure 2.6.1. The valuation of n! and the deviation from
linear growth.

Moreover, check that the summand corresponding to the index k is a

periodic function of n with period pk.

Figure 2.6.1 shows the graph of ν2(n!) and the difference n −
ν2(n!). The structure of the function ν2(n!) seen in the figures, in

particular its linear growth, is evident. An explicit expression for the

error term νp(n!) ∼ n/(p−1) was discovered by A. M. Legendre [198].

Theorem 2.6.4. Let n ∈ N, let p be a prime, and let

(2.6.1) n = a0 + a1p + a2p
2 + · · · + arp

r

be the expansion of n in base p. Then

(2.6.2) νp(n!) =
n− sp(n)

p− 1
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where sp(n) := a0 + a1 + · · · + ar is the sum of base-p digits of n. In

particular,

(2.6.3) ν2(n!) = n− s2(n).

Proof. The summands in (2.6.1) are rewritten in terms of the digits

of n as ⌊
n

p

⌋
= a1 + a2p + · · · + arp

r−1,⌊
n

p2

⌋
= a2 + a3p + · · · + arp

r−2,

· · · · · · · · ·⌊
n

pr

⌋
= ar.

Then

νp(n!) = a1 + a2(1 + p) + a3(1 + p+ p2) + · · ·+ ar(1 + p+ · · ·+ pr−1).

Multiplying by 1 − p gives

(1 − p)νp(n!) = a1(1 − p) + a2(1 − p2) + · · · + ar(1 − pr),

which yields the result. �
Exercise 2.6.5. Check that |sp(n)| ≤ C lnn for some constant C.

Conclude that νp(n!) ∼ n/(p− 1) as n → ∞.

Exercise 2.6.6. Discuss the behavior of xn/n! as n → ∞ in the

usual norm and in the p-adic norm defined in (1.10.1). The expres-

sion considered here is the general term of the exponential function

discussed in Chapter 11.

The next result gives a result of Kummer for the p-adic valuation

of binomial coefficient
(
n
m

)
.

Let t = n − m and write n, m, and t in base p as in (2.6.1).

Denote the digits of n by nj and those of m, t by mj , tj , respectively.

Now let εj = 1 if there is a carry in the jth digit when adding m

and t in base p, and let εj = 0 otherwise.

Theorem 2.6.7. The p-adic valuation of
(
n
m

)
is given by

(2.6.4) νp

((
n

m

))
=
∑
j≥0

εj .
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Proof. Observe that n0 = m0+t0−pε0 and nj = mj+tj−pεj+εj−1

for each j ≥ 1. Legendre’s formula states that

νp

((
n

m

))
=

sp(m) + sp(t) − sp(n)

p− 1

=
∑
j≥0

mj + tj − nj

p− 1

=
1

p− 1

⎛
⎝pε0 +

∑
j≥1

(pεj − εj−1)

⎞
⎠

=
∑
j≥0

εj ,

as claimed. �

Exercise 2.6.8. Prove that the power of p that divides
(
n
m

)
is the

number of integers j ≥ 0 for which⌊
n

pj

⌋
>

⌊
m

pj

⌋
+

⌊
n−m

pj

⌋
.

Hint: Study the values of the function

f(x, y, p) =

⌊
x

p

⌋
−
⌊
y

p

⌋
−
⌊
x− y

p

⌋
for y ≤ x.

Exercise 2.6.9. Prove that all entries in the nth row of Pascal’s

triangle are odd if and only if n has the form 2r − 1. Prove that this

is exactly the case where there are no carries.

Exercise 2.6.10. In the notation of Theorem 2.6.4, write n! =

pνp(n!)m with m not divisible by p. Prove that

(2.6.5) m ≡ (−1)νp(n!)ar! · · · a1!a0! mod p.

Use this result to create an algorithm that finds the last nonzero digit

of n!. Use it to find the last nonzero digit of 1000000!.

Note 2.6.11. The p-adic valuation of n has a definite structure that

will become useful in the study of p-adic valuations of more compli-

cated functions. Figure 2.6.2 shows the 3-adic and 5-adic valuations

of n.
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Figure 2.6.2. The 3-adic and 5-adic valuation of n.

2.6.1. Optimal bounds for νp(n!). Optimal bounds for the p-adic

valuation of n! appeared in B. Berndt and S. Bhargava [50, page 593].

This is an expository paper about Ramanujan’s work.

Theorem 2.6.12. Let p be a prime. Then

(2.6.6)
n

p− 1
− ln(n + 1)

ln p
≤ νp(n!) ≤ n− 1

p− 1

and both bounds are achieved for some special choice of n. In partic-

ular,

lim
n→∞

νp(n!)

n
=

1

p− 1
.(2.6.7)
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Proof. If n = pr, then

νp(n!) =

⌊
n

p

⌋
+

⌊
n

p2

⌋
+ · · · +

⌊
n

pr

⌋
= pr−1 + pr−2 + · · · + p + 1

=
pr − 1

p− 1
=

n− 1

p− 1
,

so the upper bound is achieved.

If n = pr+1 − 1, then

νp(n!) =

⌊
n

p

⌋
+

⌊
n

p2

⌋
+ · · · +

⌊
n

pr

⌋
= (pr − 1) + (pr−1 − 1) + · · · + (p− 1)

=
pr+1 − 1

p− 1
− (r + 1)

=
n

p− 1
− ln(n + 1)

ln p
,

so the lower bound is achieved.

The first inequality is easy to establish: write

n = a0 + a1p + a2p
2 + · · · + arp

r with 0 ≤ aj ≤ p− 1

and ar �= 0. Legendre’s formula gives

νp(n!) =
n

p− 1
− 1

p− 1

r∑
j=0

aj .

Therefore νp(n!) ≤ (n − 1)/(p − 1). The second inequality is more

difficult and the proof presented here is due to B. Reznick. Recall the

function sp(n) defined in Theorem 2.6.4. It is required to prove

sp(n) ≤ (p− 1)
ln(n + 1)

ln p
.

Write sp(n) = k(p− 1) + s with 0 ≤ s ≤ p− 2. Then

n ≥ (p− 1)p0 + (p− 1)p + (p− 1)p2 + · · · + (p− 1)pk−1 + spk

= (s + 1)pk − 1,
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and it follows that

(p− 1)
ln(n + 1)

ln p
≥ (p− 1)

ln((s + 1)pk)

ln p

= k(p− 1) + (p− 1)
ln(s + 1)

ln p
.

To complete the proof, it is required to show that

(2.6.8) s ≤ (p− 1)
ln(s + 1)

ln p
.

The inequality (2.6.8) holds for s = 0, and for s ≥ 1 it follows from

the fact that f(x) = x/ ln(x + 1) is an increasing function of x. �

Note 2.6.13. The limit in (2.6.7) follows directly from Legendre’s

formula

(2.6.9) νp(n!) =
n− sp(n)

p− 1

and Exercise 2.6.5.

2.7. The central binomial coefficients

For fixed m ∈ N, the row of binomial coefficients {
(
m
k

)
: 0 ≤ k ≤

m} has m + 1 terms. For m even, there is a central term that has

interesting arithmetical and combinatorial properties. This section

presents some of them.

Definition 2.7.1. The central binomial coefficient is given by

(2.7.1) cn :=

(
2n

n

)
.

Warning: This number should not be confused with the Catalan

number Cn defined in Chaper 6.

Exercise 2.7.2. The central binomial coefficient cn satisfies

(2.7.2) (n + 1)cn+1 = 2(2n + 1)cn.

Prove that

(2.7.3) lim
n→∞

cn+1

cn
= 4

with and without using (2.7.2).
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2.7.1. The generating function of the central binomial coef-

ficients. An explicit formula for the generating function

(2.7.4) C(x) =

∞∑
n=0

cnx
n

is presented here. The proof follows the paper by J. Brown and

V. E. Hoggart [81].

Theorem 2.7.3. The generating function of the central binomial co-

effcients is given by

(2.7.5) C(x) =
∞∑

n=0

cnx
n =

1√
1 − 4x

.

Proof. Differentiate to produce

(2.7.6) C ′(x) =
∑
n=0

ncnx
n−1 =

∞∑
n=0

(n + 1)cn+1x
n

and (2.7.2) gives

C ′(x) =

∞∑
n=0

2(2n + 1)cnx
n

= 2

( ∞∑
n=0

2ncnx
n +

∞∑
n=0

cnx
n

)
.

This gives

(2.7.7)
C ′(x)

C(x)
=

2

1 − 4x
.

Integrating and using C(0) = c0 = 1 yields the result. �

Exercise 2.7.4. Check the identity(
2n

n

)
= (−4)n

(
− 1

2

n

)
and use the binomial theorem, Theorem 2.4.2, to provide a different

proof of Theorem 2.7.3.

Note 2.7.5. The function y = f(x) is called algebraic if there is a

polynomial in two variables such that P (x, f(x)) = 0. The generat-

ing function of the central binomial coefficients (2.7.5) is algebraic.
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Indeed, y = 1/
√

1 − 4x satisfies (1 − 4x)y2 − 1 = 0. The generat-

ing function for the Catalan numbers (6.3.2) and the one for central

trinomial coefficients (2.11.12) are also algebraic. Examples of se-

quences whose generating functions are not algebraic include the har-

monic numbers (11.11.3), the derangement numbers (11.7.8), and the

numbers Bn/n! with Bn the Bernoulli numbers (13.2.1). Theorem

8.3.1 presents a characterization of sequences with rational generat-

ing functions. There seems to be no simple analog for the algebraic

case. Examples of sequences with algebraic generating functions are

the topic of current research: see for instance the papers by A. Bostan

and M. Kauers [73] and M. Bousquet-Melou [74].

2.7.2. Divisibility properties of cn. Some arithmetical properties

of the central binomial coefficients are considered next.

Theorem 2.7.6. The central binomial coefficient cn is always even.

Moreover 1
2cn is odd if and only if n is a power of 2.

Proof. The number cn satisfies

cn =

(
2n

n

)
=

(
2n− 1

n

)
+

(
2n− 1

n− 1

)

and the symmetry of the binomial coefficients yields

(2.7.8) cn = 2

(
2n− 1

n

)
,

showing that cn is even.

Legendre’s series (2.6.1) yields

ν2((2n)!) =
∞∑
k=1

⌊
2n

2k

⌋
= n + ν2(n!);

therefore

ν2(cn) = n− ν2(n!).

Thus 1
2

(
2n
n

)
is odd if and only if

(2.7.9)
∞∑
k=1

⌊ n

2k

⌋
= n− 1.
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The claim is that (2.7.9) implies n must be a power of 2. Three proofs

are presented, with two of them as exercises.

Proof. First obseve that the term n in (2.7.9) can be replaced by its

odd part. Indeed, writing n = 2a · b with a and b positive integers

and b odd, (2.7.9) is equivalent to

2a · b− 1 =

∞∑
k=1

⌊
b

2k−a

⌋

=
∞∑

k=1−a

⌊
b

2k

⌋

=

0∑
k=1−a

⌊
b

2k

⌋
+

∞∑
k=1

⌊
b

2k

⌋

= b(2a − 1) +

∞∑
k=1

⌊
b

2k

⌋
.

Thus,

(2.7.10)

∞∑
k=1

⌊
b

2k

⌋
= b− 1.

This is (2.7.9) with n replaced by its odd part b.

It remains to show that (2.7.10) implies b = 1. Clearly (2.7.10)

holds for b = 1. If b > 1, then there exists a positive integer N such

that 2N < b < 2N+1, and (2.7.10) becomes

(2.7.11)

N∑
k=1

⌊
b

2k

⌋
= b− 1,

but for b ≥ 3 (and odd),

b− 1 =
N∑

k=1

⌊
b

2k

⌋
=

N∑
k=1

⌊
b− 1

2k

⌋
≤ (b− 1)(1 − 2−N ) ≤ b− 2.

This is a contradiction. It follows that b = 1 and thus n is a power of

2. �

The next two exercises outline two alternative proofs.
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Exercise 2.7.7. Check the details of the following argument: observe

that n ≥ ν2(n!), ν2((2
m)!) = 2m−1 + 2m−2 + · · · + 1 = 2m − 1, and if

a is the largest integer such that n = 2a + b, then

ν2(n!) = ν2((2
a)!) + ν2(b!) = 2a − 1 + ν2(b!).

Now for n = 2a,

ν2(cn) = 2a − ν2(2
a!) = 2a − (2a − 1) = 1,

and for n = 2a + b (0 < b < 2a),

ν2(cn) = 2a + b− ν2((2
a + b)!)

= 2a + b− (2a − 1 + ν2(b!))

> b + 1 − b = 1.

This gives the result.

Exercise 2.7.8. The result follows from ν2(cn) = s2(n). This follows

easily from Legendre’s formula (2.6.3).

2.7.3. Primes dividing the central binomial coefficients. The-

orem 2.6.7 gives the expression

νp (cn) =
∑
j≥0

εj

where εj is the carry in the jth digit when adding n to itself. This

formula directly gives the next result.

Theorem 2.7.9. A prime p divides the central binomial coefficient

cn if and only if there is a digit of n in its base p expansion that is at

least p/2.

Corollary 2.7.10. Every prime divides some central binomial coef-

ficient.

Note 2.7.11. The central binomial coefficients are generalized by

(2.7.12) c(n, k) =
kn

n!

n−1∏
m=1

(1 + km).

The numbers c(n, k) are integers and c(n, 2) = cn. The generating

function for c(n, k) is
∞∑

n=0

c(n, k)xn = (1 − k2x)−1/k.
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For p prime, the p-adic valuation of c(n, k) is given by

νp(c(n, k)) = nνp(k) − n− sp(n)

p− 1

if p divides k, with sp(n) the sum of p-digits of n. An expression

for the case when p does not divide k as well as proofs of the state-

ments given here appear in a paper by T. Amdeberhan, V. Moll, and

A. Straub [283].

20 40 60 80
n

1

2

3

4

5

6

Figure 2.7.1. The 3-adic valuation of Vn = un/
(2n
n

)
.

Note 2.7.12. The 3-adic valuations of the sums

un :=

n−1∑
k=0

(
2k

k

)

were discussed by D. Zagier in [284] in response to a problem pro-

posed by N. Strauss and J. Shallit. The result established there is

that

ν3(un) = 2ν3(n) + ν3

(
2n

n

)
.

The existence of such a nice formula is linked to the regularity of

the graph seen in Figure 2.7.1. This figure shows ν3(Vn), where Vn =

un/
(
2n
n

)
. Compare Figure 2.7.2, which shows the corresponding values

for p = 5 and p = 7.
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Figure 2.7.2. The 5- and 7-adic valuations of Vn = un/
(2n
n

)
.

2.8. Bertrand’s postulate

The arithmetic properties of central binomial coefficients were em-

ployed by P. Erdös to provide a proof of Bertrand’s postulate.
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This statement, given in Theorem 2.8.1, was conjectured in 1845 and

proved by Tchebyshev in 1850.

Theorem 2.8.1. Bertrand’s postulate. For any n ∈ N, there is a

prime p such that n < p ≤ 2n.

Naturally the upper bound 2n is only achieved for n = 1. The

proof presented follows the presentation given by D. Galvin [132].

Exercise 2.8.2. Prove the inequality

(2.8.1)

(
2n

n

)
≥ 4n

2n + 1
.

Hint: Think of (1 + 1)2n.

The next step is to analyze the p-adic valuation of
(
2n
n

)
. It is

clear that any prime divisor p of
(
2n
n

)
must satisfy p ≤ 2n. The next

lemma excludes some of this range.

Lemma 2.8.3. If 2n
3 < p ≤ n, then νp

((
2n
n

))
= 0; that is, p does not

divide
(
2n
n

)
.

Proof. For such p,

(2.8.2) νp

((
2n

n

))
= νp((2n)!) − 2νp(p!).

The first term is 2, since only p and 2p divide (2n)!. Similarly, the

second term is 1. This gives the result. �

Now assume that there is no prime p in the interval (n, 2n).

Therefore all prime divisors of
(
2n
n

)
are in

(
2, 2n3

)
. The next statement

bounds the power of p in
(
2n
n

)
.

Lemma 2.8.4. If p divides
(
2n
n

)
, then νp

((
2n
n

))
≤ logp(2n).

Proof. Define r(p) by the inequalities pr(p) ≤ 2n < pr(p)+1. Then

νp

((
2n

n

))
= νp((2n)!) − 2νp(n!)

=

r(p)∑
i=1

(⌊
2n

pi

⌋
− 2

⌊
n

pi

⌋)

≤ r(p),
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because, for a, b ∈ N, the bounds 0 ≤ �2a/b� − 2�a/b� ≤ 1 hold. �

The next result will help to bound
(
2n
n

)
.

Lemma 2.8.5. For n ∈ N and the product running over primes,∏
p≤n

p ≤ 4n.

Proof. The argument is by induction on n. If n is even and n ≥ 4,

then by induction

∏
p≤n

p =
∏

p≤n−1

p ≤ 4n−1 < 4n.

On the other hand, if n is odd, say n = 2m + 1,

∏
p≤n

p =
∏

p≤m+1

p×
2m+1∏
p=m+2

p ≤ 4m+1

(
2m + 1

m

)
,

using the induction hypothesis on the first product and the fact that

every prime between m + 2 and 2m + 1 divides
(
2m+1

m

)
to bound the

second product. To finish the argument, now use the bound

(2.8.3)

(
2m + 1

m

)
≤ 22m.

This is left as an exercise. �

Exercise 2.8.6. Prove the bound (2.8.3). Hint: Use the identity

2m+1∑
i=0

(
2m + 1

i

)
= 22m+1.

Proof of Bertrand’s postulate. Assume that there is no prime p

in the interval n < p ≤ 2n. The central binomial coefficient
(
2n
n

)
has

at most
√

2n prime factors that are smaller than
√

2n. Lemma 2.8.4

shows that each of those prime factors contributes at most 2n to
(
2n
n

)
.
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Also every prime p >
√

2n satisfies νp
((

2n
n

))
≤ 1. This gives(

2n

n

)
≤ (2n)

√
2n

∏
√
2n<p≤2n/3

p

≤ (2n)
√
2n

2n/3∏
p=2

p

≤ (2n)
√
2n42n/3.

Combining this with Exercise 2.8.2 gives

(2.8.4)
4n

2n + 1
≤ (2n)

√
2n42n/3,

which may be written as

(2.8.5) 4n/3 ≤ (2n + 1) (2n)
√
2n.

Exercise 2.8.7. Check that (2.8.5) fails for n ≥ 468. Complete the

proof by checking Bertrand’s postulate for n ≤ 467.

2.9. Some generating functions involving
valuations

This section discusses some generating functions for sequences related

to the 2-adic valuation ν2(n). An interesting relation to the classical

3x + 1 problem is reported.

Example 2.9.1. The generating function of ν2(n) is

(2.9.1)

∞∑
n=1

ν2(n)xn =

∞∑
k=1

x2k

1 − x2k
.

Proof. The right-hand side is

∞∑
k=1

x2k

1 − x2k
=

∞∑
k=1

∞∑
j=1

xj·2k .

To analyze the number of coefficients that produce exponent n ∈ N,

write n = s · 2ν2(n) with s is odd. Then the index j, which yields

j · 2k = n, is written as j = r · 2u with r odd and 1 ≤ u ≤ ν2(n).

Then k is uniquely determined as k = ν2(n) − u and the odd parts
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must match, that is, r = s. Therefore, there are ν2(n) choices. This

establishes the result. �

Example 2.9.2. The generating function of ν2(n!) is

(2.9.2)
∞∑

m=0

ν2(n!)xn =
1

1 − x

∞∑
k=1

x2k

1 − x2k
.

Proof. Use ν2(n) = ν2(n!) − ν2((n− 1)!) and Example 2.9.1. �

Example 2.9.3. The generating function of the numbers

(2.9.3) an := ν2(n(n + 1))

is given by

(2.9.4)

∞∑
n=1

anx
n = (1 + x)

∑
k≥1

x2k−1

1 − x2k
.

Proof. The proof follows directly from Example 2.9.1. �

Note 2.9.4. It has been observed that the numbers an in (2.9.3) also

appear in the so-called 3x + 1 problem. The discussion starts with

a description of this classical problem.

Definition 2.9.5. The map T is defined by

(2.9.5) T (x) =

{
x
2 if x is even,
3x+1

2 if x is odd.

The orbit of n ∈ N under T is the set

(2.9.6) O(n) := {n, T (n), T 2(n), . . .}.

The main conjecture is that every orbit ends in the cycle

1 → 2 → 1. The reader will find an introduction to this problem in a

paper by J. C. Lagarias [189]. Additional information may be found

in the work by M. Chamberland [94] and also in [190]. These papers

contain extensive bibliographies.

Theorem 2.9.6. Let n ∈ N. Then an := ν2(n(n + 1)) is the first

time at which the orbit O(n) changes parity. That is,

n ≡ T (n) ≡ T 2(n) ≡ · · · ≡ T an−1(n) �≡ T an(n) mod 2.
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Proof. Suppose n is odd and write it as n = 2jr − 1, with r odd.

Then

(2.9.7) j = ν2(n + 1) and r =
n + 1

2j

are uniquely defined. Observe that T (n) = T (2jr− 1) = 3 · 2j−1r− 1

and T i(n) = T i(2jr − 1) = 3i · 2j−ir − 1 for i < j. Finally, T j(n) =

T j(2jr − 1) = 3jr − 1. To complete the proof, observe that

j = ν2(n + 1) = ν2(n(n + 1)) = r.

In the case n is even, write n = 2jn0, with n0 odd. Then T i(n) =

2j−in0, for 0 ≤ i < j and T j(n) = n0. The proof is completed by

observing that t = ν2(n) = ν2(n(n + 1)) = m0. �

The theorem is illustrated in the case n = 63. In this case,

T (63) = 95, T 2(63) = 143, T 3(63) = 215, T 4(63) = 323, T 5(63) =

485, and T 6(63) = 728. Thus,

(2.9.8) O(63) = {63, 95, 143, 215, 323, 485, 728, . . .}.

It takes six iterations to produce an even entry. This is consistent

with a63 = ν2((63)2) = 6.

Example 2.9.7. The generating function of s2(n) is

(2.9.9)
∞∑

n=0

s2(n)xn =
1

1 − x

∞∑
k=0

x2k

1 + x2k
.

Proof. Legendre’s identity (2.6.3) yields s2(n)−s2(n−1) = 1−ν2(n).

It follows that
∞∑
n=1

s2(n)xn −
∞∑

n=1

s2(n− 1)xn =

∞∑
n=1

xn −
∞∑
n=1

ν2(n)xn.

Example 2.9.1 shows that the stated formula is equivalent to

x

1 − x
−

∞∑
k=1

x2k

1 − x2k
=

∞∑
k=0

x2k

1 + x2k
,

which can be written as

2x

1 − x
−

∞∑
k=0

x2k

1 − x2k
=

∞∑
k=0

x2k

1 + x2k
.
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Combining the two sums produces the identity

(2.9.10)
∞∑

m=0

x2m

1 − x2m+1 =
x

1 − x
.

In turn, this is equivalent to the fact that every positive integer n is

of the form k · 2i, with k odd. �

2.10. The asymptotics of factorials: Stirling’s
formula

Two of the most basic constants of analysis, e and π, and the factorial

function n! considered in this chapter are related by a remarkable

formula of Stirling:

(2.10.1) n! ∼
√

2πnnne−n as n → ∞.

The reader will find in D. Dominici [112] a description of the variety

of proofs of (2.10.1) occurring in the literature, some of which are

also presented in the book Irresistible Integrals [65].

In this chapter only the existence of the appropriate limit is es-

tablished. The most basic properties of the logarithm function are

employed. The value
√

2π in (2.10.1) for the limit is postponed until

Chapter 12 (see Exercise 12.6.4).

Theorem 2.10.1. The limit

A := lim
n→∞

n!

e−nnn+1/2

exists.

Proof. Adding the inequalities∫ k

k−1

lnx dx < ln k <

∫ k+1

k

lnx dx

from k = 1 to k = n and using the identity

lnn! = ln 1 + ln 2 + · · · + lnn

give ∫ n

0

lnx dx < lnn! <

∫ n+1

1

lnx dx.
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Evaluating the integrals produces

n lnn− n < lnn! < (n + 1) ln(n + 1) − n.

Define

tn = lnn! −
(
n + 1

2

)
lnn + n.

Then

tn − tn+1 =
(
n + 1

2

)
ln

(
n + 1

n

)
− 1.

The series

1

2
ln

(
1 + t

1 − t

)
= t +

1

3
t3 +

1

5
t5 + · · ·

is elementary (this is included as Exercise 11.8.5). It produces

tn − tn+1 =
1

3

1

(2n + 1)2
+

1

5

1

(2n + 1)4
+ · · · ,

which gives

0 < tn−tn+1 <
1

3

(
1

(2n + 1)2
+

1

(2n + 1)4
+ · · ·

)
=

1

12

(
1

n
− 1

n + 1

)
.

The last step involves adding a geometric progression. This proves tn
is decreasing and tn − 1

12n is increasing. It follows that tn converges

to a limit. Taking the exponential of tn gives the result. �

Exercise 2.10.2. Use Stirling’s formula to verify that

lim
n→∞

√
n
(
2n
n

)
22n

=
1√
π
.

Exercise 2.10.3. Establish the result

(2.10.2) lim
n→∞

(n!)1/n = +∞.

This is weaker than Stirling’s formula, but it is much easier to es-

tablish. Hint: If the sequence {an} tends to a limit (including +∞
or −∞), then the average 1

n (a1 + · · · + an) tends to the same limit.

Apply this to an = lnn.
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2.11. The trinomial coefficients

The trinomial coefficient Ti,j,k is defined by the expansion

(2.11.1) (x + y + z)n =
∑
i,j,k

Ti,j,kx
iyjzk.

The term corresponding to those indices summing up to n is said to

have rank n. It is denoted by TCn.

Lemma 2.11.1. The trinomial coefficient of rank n is given by

(2.11.2) TCn =
∑

i+j+k=n

n!

i! j! k!
.

Proof. To count the coefficient of xiyjzk with i+j+k = n, multiply

the n factors in (2.11.1). First choose the i terms from which the

power of x comes. This can be done in
(
n
i

)
ways. From the remaining

n− i factors, choose the positions of the j factors giving the power of

y. This can be achieved in
(
n−i
j

)
. The remaining n− i− j = k terms

give the power of z. The total numbers of choices is

(2.11.3)

(
n

i

)
×
(
n− i

j

)
=

n!

i! j! k!

as claimed. �
Exercise 2.11.2. Extend the previous argument to produce an ex-

pression for the coefficient of xa1
1 xa2

2 · · ·xar
r in the expansion of the

multinomial (x1+x2+ · · ·+xr)
n with fixed sum a1+a2+ · · ·+ar = s.

The special case discussed above corresponds to r = 3 and s = n.

The special case of the expansion

(2.11.4) (1 + x + x2)n =

2n∑
i=0

bi,nx
i

is considered here. The coefficients bi,n are also called the trinomial

coefficients. The reader should be careful with this notation since

it is not standard.

Theorem 2.11.3. The trinomial coefficients bi,n are given by

(2.11.5) bi,n =

n∑
k=0

(
n

k

)(
n− k

i− 2k

)
.
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Proof. It is clear that (1 + x + x2)n is a polynomial of degree 2n.

The binomial theorem gives

((1 + x) + x2)n =
n∑

k=0

(
n

k

)
(1 + x)n−kx2k

=
n∑

k=0

(
n

k

)
x2k

n−k∑
j=0

(
n− k

j

)
xj

=

n∑
k=0

n−k∑
j=0

(
n

k

)(
n− k

j

)
x2k+j .

The exponent of x satisfies the bounds 2k+ j ≤ 2k+n− k = n+ k ≤
2n. To simplify this sum, observe that the upper bound of j can be

extended to n, since the terms with n− k + 1 ≤ j ≤ n vanish. Then

(1 + x + x2)n =
n∑

k=0

n∑
j=0

(
n

k

)(
n− k

j

)
x2k+j .

Let i = 2k + j so that 0 ≤ i ≤ 2n. Then

(1 + x + x2)n =

2n∑
i=0

(
n∑

k=0

(
n

k

)(
n− k

i− 2k

))
xi.

The expression for bi,n follows from here. �

Corollary 2.11.4. The trinomial coefficients bi,n are symmetric;

that is,

(2.11.6) b2n−i,n = bi,n, for 0 ≤ i ≤ 2n.

Proof. The chain of identities
2n∑
i=0

b2n−ix
i =

2n∑
j=0

bjx
2n−j

= x2n
2n∑
j=0

bjx
−j

= x2n(1 + x−1 + x−2)2n

= (1 + x + x2)n

gives the result. �
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Definition 2.11.5. The central trinomial coefficients are defined

by bn := bn,n. This is entry A002426 in OEIS.

The expression for bi,n as a double sum gives the next statement.

Corollary 2.11.6. The central trinomial coefficient bn is given by

(2.11.7) bn =

�n/2�∑
k=0

(
n

k

)(
n− k

n− 2k

)
=

�n/2�∑
k=0

(
n

k

)(
n− k

k

)
.

These are also given by

(2.11.8) bn =

�n/2�∑
k=0

(
n

2k

)(
2k

k

)
.

Proof. The last identity follows from

(2.11.9)

(
n

k

)(
n− k

k

)
=

(
n

2k

)(
2k

k

)
.

�

Exercise 2.11.7. Prove that bn is the number of permutations of n

symbols taken from {−1, 0, 1} with vanishing total sum.

Note 2.11.8. The first few values of the central trinomial coefficients

are

1, 1, 3, 7, 19, 51, 141, 393, 1107.

A search in Sloane’s database finds these numbers in relation to the

recurrence

(2.11.10) an+1 = 3an − Fn(Fn + 1), a0 = 1,

where the Fn are the Fibonacci numbers studied in Chapter 3. The

first nine values of an and bn+1 agree. Is there an explanation for

this coincidence?

Note 2.11.9. The methods developed by H. Wilf and D. Zeilberger

show that bn is not the sum of a fixed number of hypergeometric

terms. See [247, page 160].
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2.11.1. The Hausdorff moment problem. Given a sequence of

numbers μn, the Hausdorff moment problem asks for necessary and

sufficient conditions on the sequence in order that there exists a dis-

tribution function Φ on a fixed interval [a, b] such that

μn =

∫ b

a

xndΦ(x).

The reader may simply think of dΦ(x) as given by the form ϕ(x)dx.

The next exercise presents the solution of the Hausdorff moment

problem for the central trinomial coefficients.

Exercise 2.11.10. Prove that

bn =
1

π

∫ 3

−1

xn dx√
(3 − x)(x + 1)

=
1

π

∫ 1

−1

(2u + 1)n du√
1 − u2

.

Expand the integrand and use Wallis’ formula

(2.11.11)

∫ ∞

0

dx

(x2 + 1)m+1
=

∫ π/2

0

cos2m θ dθ =
π

22m+1

(
2m

m

)
to recover (2.11.8). Chapter 9 is dedicated to formula (2.11.11).

2.11.2. Generating function for central trinomial coefficients.

The generating function for the sequence {bn} is established now. The

proof employs the next exercise. The explicit formula derived here

shows that, as in the case of the central binomial coefficients, the

central trinomial coefficients have an algebraic generating function.

Exercise 2.11.11. Establish the expansion

(2.11.12)
xj

(1 − x)j+1
=

∞∑
m=0

(
m

j

)
xm.

Hint: Define f(x) = xj/(1 − x)j+1. Prove that the function Qn(x)

defined by

Qn(x) = (1 − x)n+1+jxn−j

(
d

dx

)n

f(x)

satisfies the recurrence

Qn+1(x) = −x(x− 1)Q′
n(x) + [(2n + 1)x− (n− j)]Qn(x).

Conclude that Qn(x) is a polynomial in x. Now use it to evaluate the

derivatives of f at x = 0.
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Theorem 2.11.12. The generating function of the central trinomial

coefficients {bn} is given by

CT (x) =
1√

1 − 2x− 3x2
.

Proof. Start with

CT (x) =
∞∑

m=0

bmxm

=

∞∑
k=0

( ∞∑
m=2k

(
m

2k

)
xm

)(
2k

k

)

=
∞∑
k=0

(
2k

k

) ∞∑
m=0

(
m

2k

)
xm.

Exercise 2.11.11 gives

(2.11.13) CT (x) =
∞∑

m=0

(
2k

k

)
x2k

(1 − x)2k+1
.

Now recall the generating function of the central binomial coefficients

A(x) =

∞∑
k=0

(
2k

k

)
xk =

1√
1 − 4x

,

and observe the relation

(2.11.14) CT (x) =
1

1 − x
A

(
x2

(1 − x)2

)
,

which simplifies to give the stated formula. �

2.11.3. A recurrence for the central trinomial coefficients.

A recurrence for the central trinomial coefficients is established next.

Two elementary proofs are given as Exercises 2.11.14 and 2.11.15.

The more complicated proof presented here employs the polynomials

bn(t) defined by the generating function

(2.11.15)

∞∑
n=0

bn(t)xn =
1√

1 − 2xt− 3x2
.

The recurrence comes from the specialization bn = bn(1). These

polynomials can be expressed in terms of the Legendre polynomials

described in Chapter 14.
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Theorem 2.11.13. The central trinomial coefficients bn satisfy

(2.11.16) nbn = (2n− 1)bn−1 + 3(n− 1)bn−2.

Proof. The idea is to employ the generating function for the Le-

gendre polynomials

(2.11.17)

∞∑
n=0

Pn(t)xn =
1√

1 − 2xt + x2
.

The generating function appears in Theorem 14.2.32.

Consider the two-parameter function

(2.11.18) CT (x, t) =
1√

1 − 2xt− 3x2
=

∞∑
n=0

bn(t)xn.

Then CT (x, 1) = CT (x) and bn(1) = bn. In order to convert the

problem to the Legendre polynomial format, write

1 − 2xt− 3x2 = 1 − 2x1t1 + x2
1

with x1 = −i
√

3x and t1 = it/
√

3. Then
∞∑

n=0

bn(t)xn =

∞∑
n=0

Pn(t1)x
n
1 ,

and therefore

bn = (−i
√

3)nPn

(
i√
3

)
.

The recursion for Legendre polynomials, given in Theorem 14.2.16,

is

(2.11.19) nPn(x) = (2n− 1)xPn−1(x) − (n− 1)Pn−2(x)

with P0(x) = 1 and P1(x) = x. The recurrence for bn follows from

(2.11.19). �

Exercise 2.11.14. Give a direct proof of this recurrence by showing

that the generating function of the central trinomial coefficients f(x)

satisfies the differential equation

(3x + 1)f(x) + (3x2 + 2x− 1)f ′(x) = 0.

Exercise 2.11.15. Give an even easier proof of the recurrence for

central trinomial coefficients by using the WZ-machinery (for Wilf-

Zeilberger).
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The next corollary is the analog of (2.7.3).

Corollary 2.11.16. Assume that the limit

L = lim
n→∞

bn+1

bn

exists. Then L = 3.

Proof. The limit gives the reciprocal of the radius of convergence

of the generating function of {bn}. The explicit formula given in

Theorem 2.11.12 gives the result. �

Exercise 2.11.17. Obtain the value of the limit directly from the

recurrence (2.11.16). Warning: In order to be fair to the reader,

the author wishes to state that he has not checked the details of this

exercise.

2.11.4. From the recurrence to the generating function. The

goal is now to produce the generating function (2.11.12) directly from

the recurrence (2.11.16). This is written in shifted form as

(2.11.20) (n + 2)bn+2 = (2n + 3)bn+1 + 3(n + 1)bn.

Multiply (2.11.20) by xn and sum to produce

∞∑
n=0

(n + 2)bn+2x
n =

∞∑
n=0

(2n + 3)bn+1x
n +

∞∑
n=0

3(n + 1)bnx
n.

To simplify these expressions, observe that
∞∑

n=0

(n + 2)bn+2x
n =

∞∑
n=2

nbnx
n−2 =

1

x
(CT ′(x) − b1)

and
∞∑

n=0

(2n+3)bn+1x
n =

∞∑
n=1

(2n+1)bnx
n−1 = 2CT ′(x)+

1

x
(CT (x) − b0)

and finally
∞∑

n=0

3(n + 1)bnx
n = 3xCT ′(x) + 3CT (x).

This produces

CT ′(x) − b1 = 2xCT ′(x) + CT (x) − b0 + 3x2CT ′(x) + 3xCT (x)

                

                                                                                                               



2.11. The trinomial coefficients 103

and using b0 = b1 = 1 yields

CT ′(x)

CT (x)
=

3x + 1

1 − 2x− 3x2
.

Integration and the value CT (0) = 1 give

CT (x) =
1√

1 − 2x− 3x2
.

2.11.5. Primes dividing the central trinomial coefficients.

The statement that every prime divides some central binomial coeffi-

cient given as Corollary 2.7.10 leads naturally to consider the list of

primes that divide some bn. Some of them are in the list

{3, 7, 17, 19, 41, 43, 47, 73, 107, 109, 113, 131, 173, 179, 191, 193, . . .}.

This sequence appears as A113304 in OEIS. The author has been

unable to find any property characterizing these primes.

At least the case of the prime p = 2 is relatively simple.

Exercise 2.11.18. Prove that the central trinomial coefficient is al-

ways odd.

                

                                                                                                               



Chapter 3

The Fibonacci Numbers

3.1. Introduction

The sequence of Fibonacci numbers defined by the recurrence

(3.1.1) Fn = Fn−1 + Fn−2, for n ∈ N, n ≥ 3,

with the initial conditions F1 = 1 and F2 = 1, has appeared in Ex-

ercise 1.5.12 in the context of optimal length for the computation of

greatest common divisor and in Note 2.11.8 in a recurrence matching

the initial terms of the central binomial coefficients.

This sequence has been very well studied. It even has its own

journal: The Fibonacci Quarterly. The many books contain-

ing historical information about the Fibonacci numbers Fn include

V. E. Hoggatt Jr. [174], T. Koshy [186], M. Livio [202], A. S. Posa-

mentier and I. Lehman [249], and N. N. Vorob′ev [301]. This chapter

contains some elementary properties of these numbers.

Note 3.1.1. The recurrence (3.1.1) may be employed to define Fn

for n ≤ 0 in a consistent manner. For example, the value n = 2 in

the recurrence forces the definition F0 = 0. This could be continued

to produce F−1 = 1, F−2 = −1, F−3 = 2 and F−n may be computed

for all n ∈ N.

105
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3.2. What do they count?

The wonderful book by A. Benjamin and J. Quinn [46] begins the

discussion on counting techniques with the following question:

How many sequences of 1’s and 2’s sum to n? Denote the

answer by fn and observe that f4 = 5 since

(3.2.1) 1 + 1 + 1 + 1 = 1 + 1 + 2 = 1 + 2 + 1 = 2 + 1 + 1 = 2 + 2

are all such sequences. To obtain a recurrence for fn, consider the

first term x1: the sequences split into two disjoint cases according to

whether x1 = 1 or x1 = 2. In the former case, x1 is complemented

by the fn−1 sequences adding to n − 1, in the latter by the fn−2

sequences adding to n− 2. The addition principle gives

(3.2.2) fn = fn−1 + fn−2.

It follows that fn satisfies the same recurrence as the Fibonacci num-

bers. The coincidence of the initial values f1 = F2, f2 = F3 and

Exercise 3.2.1 show that fn = Fn+1.

Exercise 3.2.1. Prove that the second-order recurrence

(3.2.3) xn = axn−1 + bxn−2,

with constant coefficients a, b, is completely determined by the ini-

tial values x1 and x2. Find a formula for xn in terms of the data

{a, b, x1, x2}. Hint: Try a solution of the form xn = tn, for some t

to be determined. Two values t± will appear. Then show that any

solution must be a linear combination of tn+ and tn−.

Note 3.2.2. Replacing the number 1 by a square tile and the num-

ber 2 by a domino of length 2, the previous result shows that the

Fibonacci number Fn+1 is the number of ways to tile a board of length

n by tiles and dominos. The book [46] takes the tiling approach to

the subject.

A second combinatorial problem leading to Fibonacci numbers is

presented next.

Example 3.2.3. The number of subsets of [n] := {1, 2, . . . , n} that

do not contain a pair of consecutive integers is given by Fn+2. To

verify this statement, let Gn be the number of subsets satisfying the
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stated condition. For instance G2 = 3 since the only subset of {1, 2}
violating the condition is {1, 2}. The sets A counted by Gn come in

two types: those that contain n and those that do not. If n �∈ A, then

A is a subset of [n − 1]. There are Gn−1 of this type. On the other

hand, if n ∈ A, then n−1 cannot be in A. Therefore A\{n} ⊂ [n−2]

and there are Gn−2 of this other type. The two types are exclusive

and count all the sets. Therefore Gn = Gn−1 + Gn−2. The matching

of the initial conditions G1 = 2 = F3, G2 = 3 = F4 and Exercise 3.2.1

prove that Gn = Fn+2.

Example 3.2.4. Many properties of the Fibonacci numbers may be

established by a combinatorial interpretation. An example illustrat-

ing the main idea is described now. The number fm+n counts the

ways to write m + n as a sequence of 1’s and 2’s that add up to

m + n. Compute the partial sums reading the sequence from left to

right. There are sequences for which m appears as a partial sum and

others for which m−1 is a partial sum, followed by a 2. For example,

if n = 5 and m = 7, the sum 1+2+2+1+1+2+2+1 is of the first

type and 2 + 1 + 1 + 2 + 2 + 1 + 1 + 2 is of the second type. There

are fnfm of the first type and fm−1fn−1 of the second type. Shifting

the indices and using fn = Fn+1 yields the identity

(3.2.4) Fn+m = FnFm+1 + Fn−1Fm.

Exercise 3.2.5. The Cassini identity

(3.2.5) F 2
n+1 − Fn+2Fn = (−1)n

can be established by induction. M. Werman and D. Zeilberger [310]

gave a nice combinatorial proof. Define

An = {(a1, . . . , ar) : r ≥ 0, ai = 1 or 2, and a1 + a2 + · · · + ar = n}.

Then |An| = Fn+1. Define a map ψ : An × An → An−1 × An+1

excluding the vector with ai = 2, for all i. Write the pair u =

(a1, a2, . . . , ar), (b1, . . . , bs) as the string a1, b1, a2, b2, . . .. If the first

1 is ak, delete ak from the first vector and insert it between bk−1 and

bk. If the first 1 is bk, then ak = 2. Exchange ak and bk. Check

that the map ψ is well-defined and that it gives a proof of Cassini’s

identity.
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3.3. The generating function

The sequence of Fibonacci numbers {Fn} has a very simple generating

function. The explicit form of this function makes it a very important

tool in the study of this sequence. In this section, the generating

function

(3.3.1) F (x) :=

∞∑
n=0

Fnx
n

is computed and some applications are presented.

Theorem 3.3.1. The generating function of the Fibonacci numbers

is given by

(3.3.2) F (x) =
x

1 − x− x2
.

Proof. Multiply (3.1.1) by xn to produce

(3.3.3) Fnx
n = x× Fn−1x

n−1 + x2 × Fn−2x
n−2, for n ≥ 2.

Recall that the value F0 = 0 has been defined. Now sum from n = 2

on to produce

(3.3.4)

∞∑
n=2

Fnx
n = x

∞∑
n=2

Fn−1x
n−1 + x2

∞∑
n=2

Fn−2x
n−2.

Shifting the index of summation yields

(3.3.5)

∞∑
n=2

Fnx
n = x

∞∑
n=1

Fnx
n + x2

∞∑
n=0

Fnx
n.

This can be expressed as

(3.3.6) F (x) − F0 − F1x = x (F (x) − F0) + x2F (x),

and using F0 = 0 and F1 = 1 gives the result. �

Note 3.3.2. Section 8.3 shows that the fact that the generating func-

tion for Fibonacci numbers is a rational function is part of a general

phenomenon. It is established that a sequence {an} has a rational

generating function if and only if it satisfies a linear recurrence with

constant coefficients. The sequence of Fibonacci numbers and its

generating function F (x) illustrate this result.
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The generating function (3.3.2) is employed now to obtain an

explicit expression for the Fibonacci numbers. The zeros of the de-

nominator of F (x) = x/(1 − x− x2) are

(3.3.7) ϕ+ =

√
5 − 1

2
and ϕ− = −

√
5 + 1

2
.

The relation ϕ+ · ϕ− = −1 is useful in simplifications. Observe that

ϕ− is the negative of the golden ratio ϕ = (
√

5 + 1)/2 appearing in

Exercise 1.9.23.

To use the method of partial fractions, it is convenient to write

x

1 − x− x2
=

−x

(1 − x/ϕ−)(1 − x/ϕ+)ϕ−ϕ+

=
x

(1 − x/ϕ−)(1 − x/ϕ+)
.

The decomposition

x

(1 − x/ϕ−)(1 − x/ϕ+)
=

A

1 − x/ϕ−
+

B

1 − x/ϕ+

leads to the system of equations

A + B = 0 and A/ϕ+ + B/ϕ− = −1.

The last equation is equivalent to Aϕ− + Bϕ+ = 1. The solution is

(3.3.8) A = −1/
√

5 and B = 1/
√

5.

It follows that
x

1 − x− x2
= − 1√

5

1

1 + xϕ+
+

1√
5

1

1 + xϕ−
.

Expanding the terms 1/(1 + xϕ±) as a geometric series gives the

statement of the next theorem.

Theorem 3.3.3. The Fibonacci numbers Fn are given by

(3.3.9) Fn =
1√
5

(√
5 + 1

2

)n

− (−1)n√
5

(√
5 − 1

2

)n

,

for n ≥ 0. This is called Binet’s formula.

Note 3.3.4. In terms of the roots ϕ±, the previous result is written

as

(3.3.10) Fn =
(−1)n√

5

[
ϕn
− − ϕn

+

]
.
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Corollary 3.3.5. As n → ∞, the Fibonacci numbers satisfy

Fn ∼ 1√
5
ϕn with ϕ =

√
5 + 1

2
.

Exercise 3.3.6. Prove that Fn is the integer closest to 1√
5
ϕn.

Exercise 3.3.7. Evaluate the continued fraction of the quotient of

two consecutive Fibonacci numbers. Describe the relation

lim
n→∞

Fn+1

Fn
= ϕ

from the point of view of continued fractions.

Exercise 3.3.8. Discuss how useful Binet’s formula is for actually

computing the nth Fibonacci number.

Exercise 3.3.9. Prove identity (3.2.4) by using the generating func-

tion of the Fibonacci numbers. Hint: Multiply by xnym and sum

over all n, m ∈ N.

Exercise 3.3.10. Binet’s formula reduces the verification of many

of the relations among Fibonacci numbers to an algebraic problem

involving the roots ϕ±. Use this procedure to check the following

Pythagorean relations:

(1) If an = F2n−1, bn = 2FnFn−1, and cn = F 2
n − F 2

n−1, then

a2n = b2n + c2n.

(2) If an = FnFn+3, bn = 2Fn+1Fn+2, and cn = F2n+3, then

a2n + b2n = c2n.

3.4. A family of related numbers

A companion sequence to {Fn} is obtained by modifying the initial

conditions in the recurrence (3.1.1) that defined the Fibonacci num-

bers.

Definition 3.4.1. The Lucas numbers Ln are defined by the re-

currence

(3.4.1) Ln = Ln−1 + Ln−2

and the initial conditions L1 = 1 and L2 = 3.
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Proceeding as in the proof of Theorem 3.3.3 yields the next result.

Compare this with (3.3.10).

Theorem 3.4.2. The Lucas numbers are given by

(3.4.2) Ln = (−1)n
(
ϕn
+ + ϕn

−
)
.

Exercise 3.4.3. Prove that, for n, m ∈ N,

(3.4.3) 2Fn+m = FnLm + FmLn.

This can be checked by the explicit formulas for Fibonacci and Lucas

numbers. Give a combinatorial proof also. Hint: Tile a board of

length m+n with square tiles or domino tiles. The tilings are divided

into two types according to whether there is a domino covering the

cells m and m + 1.

Exercise 3.4.4. Establish the relation F2n = FnLn.

Exercise 3.4.5. Prove that Ln is the integer closest to ϕn.

Exercise 3.4.6. Define the numbers Vn(a, b) by the recurrence

(3.4.4) Vn(a, b) = Vn−1(a, b) + Vn−2(a, b)

with initial conditions V1(a, b) = a and V2(a, b) = b. This family

includes the Fibonacci numbers, for which a = b = 1, and the Lucas

numbers, for which a = 1 and b = 3. Introduce

(3.4.5) qn(a, b) =
Vn+1(a, b)

Vn(a, b)
,

and let s be the continued fraction of q1(a, b). Prove that the con-

tinued fraction of qn(a, b) has the form [1, 1, . . . , 1, s] where there are

n− 1 1’s at the beginning.

Note 3.4.7. The Lucas numbers play an important role in the quest

for the largest prime numbers known. The Mersenne number is

Mn = 2n − 1. If n = a · b, with a, b > 1, then Ma divides Mn.

Therefore, in order for Mn to be prime, n itself must be prime. For

p prime, if the number Mp is prime, it is called a Mersenne prime.

Unfortunately, not all Mp are prime. The first composite Mp’s are

M11 = 23 · 89, M23 = 47 · 178481, and M29 = 233 · 1103 · 2089.

E. Lucas proposed a criterion for primality of Mp. A rigorous proof

was provided by D. H. Lehmer. A very readable proof of the next
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theorem appears in the paper by J. H. Jaroma [179]. The reader will

also enjoy reading the papers by J. W. Bruce [83] and by M. I. Rosen

[258]. These papers require only a minimal background in algebra.

Theorem 3.4.8. Define the sequence {si} by s0 = 4 and si = s2i−1−2

and let p be prime. Then Mp is prime if and ony if sp−2 ≡ 0 mod Mp.

Example 3.4.9. A direct symbolic calculation with Mathematica

shows that

s27 ≡ 458738443 mod 229 − 1

and

s29 ≡ 0 mod 231 − 1.

Therefore, M29 is not prime and M31 is a prime. The largest known

prime (at the time of this writing: October 2011) is the Mersenne

prime

243112609 − 1;

it has 12978189 digits.

3.5. Some arithmetical properties

Many arithmetic properties of the Fibonacci numbers come directly

from the representation given in Theorem 3.3.3. Some of them are

discussed next.

Exercise 3.5.1. The sequences of Fibonacci numbers and Lucas

numbers satisfy gcd(Fn, Fn+1) = 1 and gcd(Ln, Ln+1) = 1.

Exercise 3.5.2. Prove that Fn ≡ Ln mod 2.

Exercise 3.4.4 shows that Fn divides F2n. This result is general-

ized in the next proposition.

Proposition 3.5.3. For every n, r ∈ N, Fn divides Frn.

Proof. The identity (3.4.3) shows that

(3.5.1) 2Frn = FnL(r−1)n + F(r−1)nLn

and induction on the index r gives that Fn divides 2Frn. In the case

where Fn is odd, it follows that Fn divides Frn. If Fn is even, Exercise
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3.5.2 shows that Ln is also. The term F(r−1)n is divisible by Fn; hence

it is even. It follows from this that L(r−1)n is also even. Now write

(3.5.2) Frn = Fn · 1
2L(r−1)n + F(r−1)n · 1

2Ln

to conclude by induction that Fn divides Frn. �

Theorem 3.5.4. The Fibonacci numbers satisfy

(3.5.3) gcd(Fn, Fm) = Fgcd(n,m).

Proof. Let h = gcd(Fn, Fm) and d = gcd(n,m). There are integers

r, s such that d = rm + sn. Proposition 3.5.3 shows that h divides

Frm and Fsn. Exercise 3.4.3 yields

(3.5.4) FrmLsn + FsnLrm = 2Frm+sn = 2Fd,

and it follows that h divides 2Fd. In the case where h is odd, it follows

that h divides Fd. If h is even, then Fn and Fm are even. Now write

(3.5.4) as

(3.5.5) Fd = Frm · 1
2Lsn + Fsn · 1

2Lrm

to conclude that h divides Fd also in this case. To conclude the proof,

use Proposition 3.5.3 to see that Fd divides Fn and Fm. Therefore

Fd divides gcd(Fn, Fm) = h. �

The previous statement has an unexpected consequence.

Corollary 3.5.5. There are infinitely many primes.

Proof. Assume that p1, p2, . . . , pk is the list of all primes without

including 2. Then every element of the list

(3.5.6) Fp1
, Fp2

, . . . , Fpk

must be divisible by a different prime because gcd(Fpi
, Fpj

) = 1 for

i �= j. The pigeon-hole principle shows that Fpk
is divisible by a single

prime from the previous list. Therefore Fpk
must be of the form 2apb.

But F19 = 13 · 37 is not of this form. This contradiction establishes

the result. �

Divisibilty properties of the Fibonacci numbers are presented

next.
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• A Fibonacci prime is a prime of the form Fn. The indices up to

10000 that produce primes are

3, 4, 5, 7, 11, 13, 17, 23, 29, 43, 47, 83, 131, 137, 359,

431, 449, 509, 569, 571, 2971, 4723, 5387, 9311, 9677.

It has been conjectured that there are infinitely many Fibonacci

primes.

• If p �= 5 is a prime, then p does not divides Fp. On the other

hand, there are many indices n for which n divides Fn. The values of

n ≤ 500 for which this holds are

1, 5, 12, 24, 25, 36, 48, 60, 72, 96, 108, 120, 125, 144, 168,

180, 192, 216, 240, 288, 300, 324, 336, 360, 384, 432, 480.

The data suggests the following statement: if n is odd and n divides

Fn, then n is a power of 5. On the other hand, the only indices

n ≤ 106 for which n2 divides Fn are n = 1 and n = 12 (in both cases

Fn = n2).

50 100 150 200 250 300
n

5

10

15

Figure 3.5.1. Number of prime factors of Fn.

• The graph in Figure 3.5.1 shows the number of prime factors of Fn.

Is is possible to make a conjecture on this function?

• The graphs of the 7-adic valuations of Fn are depicted in Figures

3.5.2 and 3.5.3. The range of n increases in each figure. Observe

that the graph has a similar pattern as the valuation of n shown in
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n

1

2
7
(Fn)

20 40 60 80 100 120
n

1

2

Figure 3.5.2. The 7-adic valuation of Fibonacci numbers.

Figure 1.7.1. In this case, the data begins with a string of six 0’s

(corresponding to the fact that ν7(n) = 0 for 1 ≤ n ≤ 6) followed by

a 1 at position n = 7. This is followed by another string of 0’s and

then a 1 at position 14. The natural tool for describing these patterns

is the generating function

h7(x) :=

∞∑
n=1

ν7(n)xn.

The first few terms of this function are given by

h7(x) = x7 + x14 + x21 + x28 + x35 + x42 + 2x49

+x56 + x63 + x70 + x77 + x84 + x91 + 2x98 + · · · .
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n

1

2

3

500 1000 1500 2000 2500
n

1
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3

Figure 3.5.3. The 7-adic valuation of Fibonacci numbers.

On the other hand, the generating function

f7(x) :=
∞∑

n=1

ν7(Fn)xn
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begins as

f7(x) = x8 + x16 + x24 + x32 + x40 + x48 + 2x56

+x64 + x72 + x80 + x88 + x96 + x104 + 2x112 + · · · .

This has the same behavior as h7(x) but the period is 8 instead of 7.

Definition 3.5.6. The sequence {an} is called of type r if the gen-

erating function a0 + a1x+ a2x
2 + · · · is a formal power series in the

variable y = xr. This is equivalent to saying that if r does not divide

n, then an = 0.

Exercise 3.5.7. Check that, for any prime p, the sequence νp(n) is

of type p.

The table below shows the type of the sequence νp(Fn), denoted

by τp, as a function of the prime p.

p 3 5 7 11 13 17 19 23 29 31 37 41 43 47

τp 4 5 8 10 7 9 18 24 14 30 19 20 44 16

Observe that the data above suggests that τp divides p − 1 or p + 1

unless p = 5. In this last case τ5 = 5. The special role that the prime

p = 5 plays with the Fibonacci sequence is illustrated in Theorem

3.5.9. The proof will employ the next exercise.

Exercise 3.5.8. Establish the identity

(3.5.7) 2n−1Fn =

∞∑
k=0

(
n

2k + 1

)
5k.

Hint: Apply the binomial theorem to

(3.5.8) Fn =
1

2n
√

5

(
(1 +

√
5)n − (1 −

√
5)n

)
.

A second proof may be obtained by computing the generating function

of both sides. Exercise 2.11.11 should be useful. A third proof via

the WZ-method is outlined next. Let A(n, k) =
(

n
2k+1

)
5k. Use the

WZ-method to obtain the companion B(n, k) = −
(

n
2k−1

)
5k and verify

the identity

A(n + 2, k) − 2A(n + 1, k) − 4A(n, k) = B(n, k + 1) −B(n, k).
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Sum this relation over all values of k to produce an+2 − 2an+1 −
4an = 0, where an :=

∑
k∈Z

A(n, k). Now define bn = 2n−1Fn and use

Fn+2 − Fn+1 − Fn = 0 to verfiy that bn satisfies the same recurrence

as an. Finally check that the initial conditions match.

Theorem 3.5.9. The 5-adic valuation of Fibonacci numbers satisfies

ν5(Fn) = ν5(n).

Proof. The identity
(

n
2k+1

)
= n

2k+1

(
n−1
2k

)
shows that

ν5

((
n

2k + 1

)
5k
)

= ν5

(
n

2k + 1

(
n− 1

2k

)
5k
)

= ν5(n) − ν5(2k + 1) + ν5

((
n− 1

2k

)
5k
)

≥ ν5(n) − ν5(2k + 1) + k.

This last term is strictly bigger than ν5(n), unless k = 0. For k = 0,

it becomes ν5(n). The result now follows from Exercise 3.5.8. �

Definition 3.5.10. For a prime p, let αp be the least index n for

which p divides Fn.

Note 3.5.11. Figure 3.5.4 shows the data for primes 2 ≤ p ≤ 7919

(this is the 1000th prime). The horizontal axis is x, where p is the

xth prime; the vertical axis is αp.

Exercise 3.5.12. Prove that αp is well-defined. That is, show that

for each prime p there is some n for which p divides Fn. This prop-

erty actually characterizes Fibonacci numbers among all sequences

satisfying xn = xn−1 + xn−2 with x0 = a and x1 = b. The paper by

U. Alfred [6] contains some details.

Note 3.5.13. T. Lengyel [199] has determined analytic expressions

for the p-adic valuations of Fibonacci numbers. First

ν2(Fn) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if n ≡ 1, 2 mod 3,

1 if n ≡ 3 mod 6,

3 if n ≡ 6 mod 12,

ν2(n) + 4 if n ≡ 0 mod 12.
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Figure 3.5.4. The smallest n for which p divides Fn.

The expression for p �= 2, 5 employs the number αp, defined as the

first positive integer n where Fn ≡ 0 mod p. Its existence is estab-

lished in the next section. Then

νp(Fn) =

{
νp(n) + νp(Fαp

) if n ≡ 0 mod αp,

0 otherwise.

Note 3.5.14. A sequence of integers s(n) is called k-regular if there

exists an integer d ≥ 1 and integers ci,e,j such that for each 0 ≤
i ≤ kd − 1 the subsequence s(kdn + i) can be written as a linear

combination

(3.5.9) s(kdn + i) =
d−1∑
e=0

ke−1∑
j=0

ci,e,js(k
en + j)

of subsequences s(ken + j), where 0 ≤ e ≤ d− 1 and 0 ≤ j ≤ ke − 1.

Therefore, in order to compute s(n), start by determining the residue

class of n modulo kd and then use the equation to write s(n) in terms

of s(n′), with smaller n′.

For example, consider the Thue-Morse sequence t(n) defined

by

(3.5.10) t(n) =

{
0 if s2(n) is even,

1 if s2(n) is odd,
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where s2(n) is the number of 1’s in the binary representation of n.

This sequence starts as

(3.5.11) 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1.

Considering the binary representation of n, it follows that

t(4n + 0) = t(n),(3.5.12)

t(4n + 1) = t(2n + 1),

t(4n + 2) = t(2n + 1),

t(4n + 3) = t(n).

Therefore, t(n) is 2-regular with d = 2. The recurrences (3.5.12),

along with the initial conditions t(0) = 0 and t(1) = 1, uniquely

determines t(n). The Thue-Morse sequence was independently dis-

covered in several contexts. It has the interesting property of being

an infinite sequence on a binary alphabet, which avoids cubes: no

block of 0’s and 1’s occurs three times consecutively.

A recent result of L. Medina and E. Rowland [215] states that

the sequence {νp(Fn) : n ∈ N} is k-regular. The value of k has been

conjectured to be related to the number αp defined in Note 3.5.13.

Z. Shu and J.-Y. Yai [272] have established this result in the context

of p-adic analytic functions.

3.6. Modular properties of Fibonacci numbers

Let r ∈ N be fixed. In this section the properties of the Fibonacci

numbers Fn modulo r are considered. The case r = 2 is easy to de-

termine. The parity of Fn leads to the sequence {1, 1, 0, 1, 1, 0, . . .}.

Theorem 3.6.1. The Fibonacci numbers Fn modulo 2 form a peri-

odic sequence of period 3 and repeating pattern {1, 1, 0}.

Proof. The first three values are indeed congruent to 1, 1, 0 modulo

2. Now assume that this pattern persists for the first 3n numbers.

Then F3n+1 = F3n+F3n−1 ≡ 0+1 = 1 mod 2. The residues of F3n+2

and F3n+3 are obtained by a similar argument. �

The extension of the periodicity is easy to establish.

                

                                                                                                               



3.6. Modular properties of Fibonacci numbers 121

Theorem 3.6.2. Let r ∈ N. The Fibonacci numbers modulo r form

a periodic sequence.

Proof. The total number of possible pairs (Fi mod r, Fi+1 mod r) is

r2. Therefore some ordered pair must occur more than once, so pick

one that repeats and label it n and n + j; that is,

(Fn mod r, Fn+1 mod r) = (Fn+j mod r, Fn+j+1 mod r) .

Then induction on k ≥ 2 and using the recurrence for the Fibonacci

numbers show that Fn+k mod r = Fn+k+j mod r. Therefore the se-

quence Fn mod r is periodic. �

Note 3.6.3. This property actually characterizes Fibonacci numbers

among all sequences satisfying xn = xn−1 + xn−2 with x0 = a and

x1 = b. The paper by U. Alfred [6] contains some details.

Definition 3.6.4. The minimal period of the sequence {Fn mod r}
is denoted by per(r).

Example 3.6.5. The value per(2) = 3 was established already. For

r = 3 the Fibonacci numbers reduced modulo r start as

(3.6.1) {1, 1, 2, 0, 2, 2, 1, 0, 1, 1, . . .}.

The repetition of the pair {1, 1} shows that per(3) = 8.

Exercise 3.6.6. Check that per(4) = 6 and per(5) = 20.

The results described next appeared in the paper by D. D. Wall

[302]. The first one relates the period per(r) to the prime factoriza-

tion of r.

Theorem 3.6.7. Let r = pn1
1 pn2

2 . . . pns
s . Then

(3.6.2) per(r) = lcm {per(pn1
1 ), . . . , per(pns

s )} .

Therefore, the function per is determine by its values at powers of

prime numbers.

Proof. For p prime, the sequence Fn mod pk repeats only after

blocks of length multiples of per(pk). The sequence Fn mod r re-

peats after blocks of length per(r). In particular, the same is true

for Fn mod pni
i . Therefore per(r) is divisible by the period per(pni

i )
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for each i in the range 1 ≤ i ≤ s. It follows that the least common

multiple of these periods must divide per(r). The remainder of the

argument is left as the next exercise �

Exercise 3.6.8. Complete the proof of Theorem 3.6.7.

Note 3.6.9. J. Kramer and V. E. Hoggatt Jr. [188] show that the

period modulo 2n is 3 · 2n−1 and modulo 5n it is 4 · 5n.

The sequence Fn mod r for n ≥ 0 always begins with {0, 1, 1}.
The periodicity shows that Fper(r) ≡ 0 mod r. The next theorem

characterizes the indices that produce Fibonacci numbers divisible

by r.

Theorem 3.6.10. Let r ∈ N. Then there exists d(r) ∈ N such that

if n satisfies Fn ≡ 0 mod r, then n ≡ 0 mod d(r). That is, all indices

n for which Fn is divisible by r are multiples of a fixed number d(r).

Proof. The proof establishes that the set {k ∈ N : Fk ≡ 0 mod

r} is closed under addition and subtraction (provided the result is

positive). This gives the statement of the theorem.

Assume Fi ≡ Fj ≡ 0 mod r. The relation (3.2.4) gives

(3.6.3) Fi+j = Fi+1Fj + FiFj−1

and it follows that Fi+j ≡ 0 mod r. To check the result about differ-

ences, assume i > j and take n = j and m = i − j in (3.2.4). This

yields

(3.6.4) Fi = Fj+1Fi−j + FjFi−j−1.

Conclude that

(3.6.5) Fj+1Fi−j ≡ 0 mod r.

Let p be a prime that divides gcd(Fj+1, r). The condition Fj ≡
0 mod r implies p divides Fj . Therefore p divides gcd(Fj+1, Fj) = 1.

This contradiction shows that Fj+1 is relatively prime to r and (3.6.5)

now gives Fi−j ≡ 0 mod r, as claimed. �

Corollary 3.6.11. Let r ∈ N. Then d(r) divides per(r).

The paper by D. D. Wall [302] cited earlier also contains a proof

of the next result.
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Theorem 3.6.12. Let p be a prime. If per(p) �= per(p2), then

per(pk) = pk−1per(p) for k ≥ 2.

Note 3.6.13. There are no reported values where per(p) = per(p2)

occurs. This question is similar to the one for Fermat quotient de-

scribed in Note 2.5.12.

Exercise 3.6.14. Construct a table with the values per(pk).

3.7. Continued fractions of powers of Fibonacci
quotients

The reader who has solved Exercise 3.3.7 has observed the pattern

F6

F5
=

8

5
= 1 +

1

1 +
1

1 +
1

1 +
1

1

.

The observation described in this section came from a simple com-

puter experiment. What is the structure of the continued fraction of

powers of the quotient Fn+1/Fn? The result is surprising and it shows

one more time the intimate relation between the number 5 and the

Fibonacci numbers.

Exercise 3.7.1. Prove that the continued fraction of the golden ratio

ϕ is ϕ = [1, 1, 1, 1, . . .]. Check that the convergents of ϕ are Fn+1/Fn.

The continued fraction of (Fn+1/Fn)2 has similar features to that

of Fn+1/Fn. For example,(
F16

F15

)2

=[2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] .

An unexpectedly large partial quotient appeared in(
F16

F15

)5

= [11, 11, 10, 2, 269253, 18, 11, 10, 1, 4, 11, 11] ,

but no large partial quotient appears for other powers. The following

table shows the number of digits of the maximum partial quotient

appearing in the continued fraction of (Fn+1/Fn)a, for 1 ≤ n ≤ 5000,

as a function of the exponent a. In the table, this function is denoted
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by ω(a):

a 1 2 3 4 5 6 7 8 9 10

ω(a) 1 1 2 2 2090 4 5 7 7 8

a 11 12 13 14 15 16 17 18 19 20

ω(a) 9 9 9 9 8 10 9 8 8 8

The value of ω(5) becomes 4180 if the range of n is increased to

n ≤ 10000.

The explanation of part of this phenomenon is provided by the

next result. The author wishes to thank J. Shallit for this information.

The actual proof, not presented here, is due to H. Cohn [102].

Theorem 3.7.2. A continued fraction of (F5n+1/F5n)5 is

[11[n−1], 10, 1, 1, α, 1, 17, 11[n−2], 10, 1, 4, 11[n−1]],

where α = (−1)n 1
5 (4F 2

5n − F 2
5n−1 + 4(−1)n+1). In particular, the

largest partial quotient is |α|. Here 11[j] is meant to be a sequence of

11’s of length j. Note that the term α could be negative, so this is not

the canonical continued fraction.

3.8. Fibonacci polynomials

The recurrence defining the Fibonacci numbers is now extended by

the introduction of a parameter x. The new numbers now depend on

x and are defined by

(3.8.1) Fn(x) = xFn−1(x) + Fn−2(x)

with the initial conditions F0(x) = 0 and F1(x) = 1.

It is clear that Fn(x) is a polynomial in x of degree n − 1. It is

called the Fibonacci polynomial. Observe that Fn(1) = Fn, the

Fibonacci number.

An extension of Theorem 3.3.3 is presented next.

Theorem 3.8.1. Let α = (x+
√
x2 + 4)/2 and β = (x−

√
x2 + 4)/2.

Then

Fn(x) =
αn − βn

α− β
.

Proof. Solve the recurrence (3.8.1) as indicated in Exercise 3.2.1. �
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Exercise 3.8.2. Use the recurrence (3.8.1) to establish the formula

(3.8.2) Fn(x) =

�n−1
2 �∑

j=0

(
n− j − 1

j

)
xn−2j−1.

3.8.1. The zeros of Fibonacci polynomials. Given a family of

polynomials, such as {Fn(x) : n ∈ N}, it is very unusual that the

zeros can be computed explicitly. This can be done for the Fibonacci

family. The result is due to V. E. Hoggart Jr. [175]. The argument

employs elementary properties of the hyperbolic functions.

The change of variables x = 2i cosh z gives
√
x2 + 4 = 2i sinh z

and also α = iez, β = ie−z. Therefore,

Fn(x) = in−1 sinhnz

sinh z
.

The computation of the zeros of Fn can be done explicitly. The result

is stated below.

Theorem 3.8.3. The zeros of the Fibonacci polynomial Fn(x) are

given by

xk = 2i cos
πk

n
, for 1 ≤ k ≤ n− 1.

3.8.2. Some integrals containing Fibonacci polynomials. The

explicit expression for the zeros of Fibonacci polynomials provides a

closed-form formula for certain definite integrals. The next exercise

appears in [269] as a problem proposed by H. J. Seiffert and solved

by P. S. Bruckman.

Exercise 3.8.4. Show that for even n ≥ 4∫ ∞

−∞

dx

Fn(x)
=

π

n

(
1 +

1

cosπ/n

)

and for odd n ≥ 3∫ ∞

−∞

x dx

Fn(x)
=

π

n

(
tan

π

2n
+ tan

3π

2n

)
.

On the other hand, the explicit formula (3.8.2) may be used to

evaluate integrals involving Fibonacci polynomials. Two examples

are presented here.
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Example 3.8.5. Consider the integral

(3.8.3) en :=

∫ ∞

0

Fn(x)e−xdx.

Then (3.8.2) yields

(3.8.4) en =

�n−1
2 �∑

j=0

(n− j − 1)!

j!
.

Exercise 3.8.6. Confirm that en is a positive integer.

The p-adic valuations of the sequence en seem to follow some

regular patterns. Here is an experimental observation:

• For the prime p = 2 the data indicates that ν2(en) = 0 if n �≡
0 mod 4 and

ν2(e4n) = ν2(n) +

⎧⎪⎪⎨
⎪⎪⎩

3 if n ≡ 1 mod 2,

5 if n ≡ 2 mod 4,

6 if n ≡ 0 mod 4.

• For the prime p = 3, it seems that ν3(en) = 0 if n �≡ 0 mod 3

and ν3(e3n) = 1 if n �≡ 0 mod 6. The remaining case is given by

ν3(e18n) = ν3(n) + 2.

Exercise 3.8.7. Develop a systematic procedure to find the νp(en)

and prove them. Warning: The author has not tried to do this.

Example 3.8.8. The second family of integrals corresponds to

(3.8.5) gn :=

∫ ∞

0

Fn(x)e−x2

dx.

This also has interesting arithmetic patterns. The first few values are
√
π

2
,

1

2
,

3
√
π

2
,

3

2
,

13
√
π

8
,

9

2
,

77
√
π

16
, 16.

Then (3.8.2) gives

(3.8.6) gn =

⌊
n−1
2

⌋∑
j=0

(
n− j − 1

j

)∫ ∞

0

xn−2j−1e−x2

dx.

The integrals appearing in the sum may be evaluated either by pro-

ducing recurrences for them or by employing the gamma function
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described in Chapter 16. The next exercise outlines the evaluation

by recurrences.

Exercise 3.8.9. Let

(3.8.7) Jn =

∫ ∞

0

xne−x2

dx.

Establish the recurrence

(3.8.8) Jn =
n− 1

2
Jn−2.

Compute the initial conditions J0 =
√
π/2 and J1 = 1/2 and use

them to verify the formulas

(3.8.9)

∫ ∞

0

xne−x2

dx =
1

2

(
n− 1

2

)
! if n is odd

and

(3.8.10)

∫ ∞

0

xne−x2

dx =

√
π

2n+1

n!

(n/2)!
if n is even.

This result is now employed to produce an expression for gn.

Theorem 3.8.10. The integral gn is given according to parity by

g2n =
1

2

n−1∑
k=0

(
n + k

2k + 1

)
k!

and

g2n+1 =

√
π

2

n∑
k=0

(
n + k

2k

)(
2k

k

)
k!

22k
.

Proof. The definition of gn gives

(3.8.11) gn =

⌊
n−1
2

⌋∑
j=0

(
n− j − 1

j

)∫ ∞

0

xn−2j−1e−x2

dx.

The result now follows from Exercise 3.8.9. �

This pattern suggests considering the indices according to their

parity. Define

(3.8.12) g′n =

{
gn/

√
π if n is odd,

gn if n is even.
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Then the modified sequence g′n starts as

(3.8.13)
1

2
,

1

2
,

3

4
,

3

2
,
13

8
,

9

2
,

77

16
, 16,

591

32
,

139

2
, 1 ≤ n ≤ 10.

Exercise 3.8.11. Prove that the denominators of g′n are always a

power of 2; denote this power by 2R(n). Prove R(2n− 1) = n. In the

case of even indices, prove that i ≡ j mod 4 implies R(i) = R(j) and

R(2n) =

{
1 if n �≡ 0 mod 8,

0 if n ≡ 0 mod 8.

Now define

(3.8.14) yn = 2g8n =

4n−1∑
k=0

(
4n + k

2k + 1

)
k!

and produce experimental evidence of

(3.8.15) ν2(yn) =

{
5 if n is odd,

3 + ν2(n) if n is even.

Note 3.8.12. The valuation tree for the sequence ν3(yn) is described

next. The reader will find information about the construction of a

valuation tree in Note 1.7.3. In the present case, the splitting pa-

rameter is 3; that is, at each level, an unlabeled vertex produces 3

descendents.

The beginning of the process is depicted in Figure 3.8.1.

1

3 4 5

0 0 1 1 0 0

0 6

0

1 7

2

2 8

Figure 3.8.1. The 3-adic valuation of the sum yn.
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9

2 2

12

2 2

15

2 2

0 18 3 21 6 24

Figure 3.8.2. The 3-adic valuation of the sum yn (continuation).

The first level corresponds to the three classes modulo 3. There

are no labeled vertices at this level because none of the classes have

constant 3-adic valuation. The second level corresponds to classes

modulo 32 = 9. The splitting parameter for this problem is 3. There

are now six classes that have been labeled, corresponding to classes

that have constant valuation. For instance ν3(y9n+7) = 1.

The three nodes of the second level that remain unlabeled cor-

respond to the modular classes n ≡ 0 mod 9, n ≡ 3 mod 9, and

n ≡ 6 mod 9. The continuation of the valuation tree is shown in

Figure 3.8.2. These trees have to be attached to the left branch of

the tree shown in Figure 3.8.1. Each vertex in these classes is now

split again into three new vertices. These (nine) vertices form the next

level. The process is repeated. For instance, the class n ≡ 3 mod 9

is split into n ≡ 3 mod 27, n ≡ 12 mod 27, and n ≡ 21 mod 27. The

last two have constant 3-adic valuation and they have been labeled.

The first one has to be split again, to produce nine new vertices. It

is temping to state the following:

Conjecture 3.8.13. In each level of the valuation tree for yn, there

are three unlabeled nodes.

3.9. Series involving Fibonacci numbers

The literature contains a variety of series whose general term involves

the Fibonacci numbers. A couple of examples are presented here.

Example 3.9.1. The most elementary examples come from the gen-

erating function (3.3.2). For instance, taking x = 1/k leads to
∞∑

n=0

Fn

kn
=

k

k2 − k − 1
.
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The special case of k = 10 gives the decimal-looking expansion

∞∑
n=0

Fn

10n
=

10

89
.

This is not quite a decimal expansion because Fn > 9 for n ≥ 7.

Exercise 3.9.2. Prove that
∞∑

n=1

nFn

2n
= 10.

Define

Nr =
∞∑

n=1

nrFn

2n
.

Compute the first few values and then prove that ν2(Nr) = 1; that

is, 1
2Nr is an odd number.

Example 3.9.3. The second example may be found in the paper by

I. J. Good [139]. The presentation begins with a couple of exercises.

Exercise 3.9.4. Let Fn, Ln be the Fibonacci and Lucas numbers,

respectively. Prove the identity

L2nF2n−1 − 1 = F2n+1−1.

Hint: Use (3.3.10) and (3.4.2) to reduce the question to a statement

about the roots ϕ±. Then use ϕ+ϕ− = −1.

Exercise 3.9.5. Prove the identity

n∑
j=0

1

F2j
= 3 − F2n−1

F2n
.

A combinatorial proof of this identity has been given by N. Shar [271].

The second series is known as the Millin series:

(3.9.1)
∞∑
j=0

1

F2j
=

7 −
√

5

2
.

It is obtained by letting n → ∞ in Exercise 3.9.5 and using

lim
n→∞

Fn−1

Fn
= ϕ+ =

√
5 − 1

2
.
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This example was generalized by W. E. Greig [149] to

n∑
j=0

1

Fk2j
= gk − Fk2n−1

Fk2n
,

where

gk =

⎧⎪⎪⎨
⎪⎪⎩

1+Fk−1

Fk
if k is even,

1+Fk−1

Fk
+ 2

F2k
if k is odd.

This leads to

(3.9.2)

∞∑
j=0

1

Fk2j
= gk −

√
5 − 1

2
.

Note 3.9.6. Other examples appearing in the literature include

∞∑
k=0

1

1 + F2k+1
=

√
5

2
and

∞∑
k=0

1

3/
√

5 + F2k+1

= 1,

a series involving products of Fibonacci numbers

∞∑
n=1

(−1)n+1

FnFn+1
=

√
5 − 1

2
,

and the remarkable series
∞∑
k=1

(−1)k+1∑k
j=1 F

2
j

=

√
5 − 1

2
.

Many other series involving Fibonacci numbers are evaluated in terms

of the so-called theta functions. For instance
∞∑

n=1

1

F2n+1
=

√
5

4
ϑ2
2(ϕ

−2),

where ϕ = (
√

5 + 1)/2 is the golden ratio and

ϑ2(q) =

∞∑
n=−∞

q(n+1/2)2

is one of Jacobi’s theta functions. Information about these re-

markable functions can be found in the book by J. M. Borwein and

P. B. Borwein [71] that centers around the arithmetic-geometric
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mean, in the book by H. McKean and V. Moll [213], and in the clas-

sic book by E. T. Whittaker and G. N. Watson [311]. The application

to these Fibonacci series is described in Section 3.7 of [71].

Note 3.9.7. The question of the irrationality of these type of series

has also been explored. The reciprocal Fibonacci series
∞∑

n=0

1

Fn

has been shown to be irrational by R. Andre-Jeannin [16]. The reader

will find more information on this topic in [71].

                

                                                                                                               



Chapter 4

Polynomials

4.1. Introduction

Polynomials are among the simplest functions encountered in elemen-

tary courses. This chapter describes some examples that will appear

throughout the book. Special emphasis is placed on properties of

roots of polynomials and combinatorial interpretations of the coeffi-

cients.

Definition 4.1.1. A polynomial is a function of the form

(4.1.1) P (x) =

n∑
k=0

akx
k, with an �= 0.

The numbers ak are called the coefficients of P . The symbol x is

called the variable of the polynomial P . In the case of P �= 0, the

number n ∈ N in (4.1.1) is its degree. The function P ≡ 0 is also

declared a polynomial and its degree is −∞.

In this text, the coefficients of the polynomial P are either con-

sidered as parameters or as elements of one of the number systems

described in Chapter 1. The polynomial is assigned the name of the

system containing its coefficients. For example, a complex polyno-

mial is a polynomial with coefficients in C.

133
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Examples of polynomials include the Fibonacci polynomials that

have appeared in Section 3.8. A sample of some other types are

presented below.

4.2. Examples of polynomials

Bernoulli polynomials: The evaluation of some finite sums.

The value of the sums

(4.2.1) S1(n) := 1 + 2 + · · · + (n− 1) + n =
n(n + 1)

2

and

(4.2.2) S2(n) := 12 + 22 + · · · + (n− 1)2 + n2 =
n(n + 1)(2n + 1)

6

can be easily verified. The reader is surely aware of the story of Carl

F. Gauss who was requested by his teacher to evaluate (4.2.1) for

n = 100, an early example of busy work employed to keep students

quiet. In a short time, the young Carl gives the value 5050, obtained

by reversing the order of the terms, writing the sum as

(4.2.3) S1(n) = n + (n− 1) + (n− 2) + · · · + 2 + 1,

followed by the observation that each vertical addition has the value

n + 1. He concluded that

(4.2.4) 2S1(n) = n(n + 1)

and (4.2.1) follows.

A sequence of polynomials introduced now yields the direct eval-

uation of the sums discussed above. It turns out to be convenient to

change the upper limit of summation and to define

(4.2.5) Sa(n) :=

n−1∑
k=1

ka, for a ∈ N0 and n ∈ N,

for n > 1 and Sa(1) = 0. For example

(4.2.6) S0(n) = n− 1 and S1(n) = 1
2n

2 − 1
2n.

Theorem 4.2.1. For a ∈ N, the function Sa(n) is a polynomial in n

of degree a + 1.
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Proof. The proof is based on a recurrence for Sa(n). The identity

(4.2.7) (k + 1)a+1 − ka+1 =

a∑
j=0

(
a + 1

j

)
kj

is summed from k = 1 to n− 1. This produces

(4.2.8) na+1 − 1 =

a∑
j=0

(
a + 1

j

)
Sj(n),

so that

(4.2.9)

(
a + 1

a

)
Sa(n) = na+1 − 1 −

a−1∑
j=0

(
a + 1

j

)
Sj(n).

To prove the result by induction, observe that the sum on the right-

hand side of (4.2.9) is a polynomial of degree at most a. Therefore

the term na+1 gives the exact degree for Sa. �

Note 4.2.2. The proof above shows that the leading coefficient of

Sa(n) is 1/(a + 1).

Note 4.2.3. The relation (4.2.9) provides a way to compute the

polynomials Sa(n) recursively.

Definition 4.2.4. The Bernoulli polynomial Ba(n) is defined by

Ba(n) = aSa−1(n) + Ba. The Bernoulli number Ba = Ba(0) is

defined by the normalization

(4.2.10)

∫ 1

0

Ba(x) dx = 0.

An alternative definition, based on generating functions, is given in

Chapter 13. For example, for a = 2, the recurrence (4.2.9) gives

(4.2.11) 3S2(n) = n3 − 1 − (n− 1) − 3
2 (n2 − n),

which produces

(4.2.12) S2(n) = 1
3n

3 − 1
2n

2 + 1
6n.

Then

(4.2.13) B3(n) = 3S2(n) + B3 = n3 − 3
2n

2 + 1
2n + B3.
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The normalization (4.2.10) gives B3 = 0 and the Bernoulli polynomial

B3(n) is given by

(4.2.14) B3(n) = n3 − 3
2n

2 + 1
2n.

Exercise 4.2.5. Check that

(4.2.15) B4(n) = n4−2n3+n2− 1
30 and B5(n) = n5− 5

2n
4+ 5

3n
3− 1

6n.

Note 4.2.6. The fact that Sa is a polynomial shows that, for fixed

a ∈ N, the explicit evaluation of Sa(n) is reduced to a finite com-

putation. For example, the sum S4(n) is a polynomial of degree 5

that is determined uniquely from the values

S4(1) = 0, S4(2) = 1, S4(3) = 17,

S4(4) = 98, S4(5) = 354, S4(6) = 979.

Let P (x) be the unique polynomial of degree 5 that matches the data

above. The interpolating polynomial given in the next exercise

shows how to compute P , producing the result

S4(n) =

n−1∑
k=1

k4 =
1

30
(n− 1)n(2n− 1)(3n2 − 3n− 1).

This gives B5(n).

Exercise 4.2.7. Given m points {(x1, y1), (x2, y2), . . . , (xm, ym)},
with xi �= xj for i �= j, prove there is a unique polynomial J of

degree m− 1 such that J(xi) = yi. The explicit formula

(4.2.16) J(x) =

m∑
i=1

yi
∏
j �=i

x− xj

xi − xj

was given by J. L. Lagrange.

Eulerian polynomials: The generating function for kn. The

next example is constructed from the generating function for powers

(4.2.17) Qn(x) =

∞∑
k=1

knxk.

An expression for Qn is now derived from the geometric series

(4.2.18)
∞∑
k=0

xk =
1

1 − x
.
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Differentiation produces

(4.2.19)

∞∑
k=1

kxk−1 =
1

(1 − x)2
.

To recover the exponent xk in (4.2.19), multiply the identity by x.

This is equivalent to applying the Euler operator

(4.2.20) ϑ := x
∂

∂x

to (4.2.18). Therefore,

Q1(x) = ϑ
1

1 − x
=

x

(1 − x)2
.

Iterating this procedure shows that

(4.2.21) Qn(x) = ϑn 1

1 − x
.

The next two examples are

Q2(x) =
x(x + 1)

(1 − x)3
and Q3(x) =

x(x2 + 4x + 1)

(1 − x)4

and this suggests the following definition:

(4.2.22) An(x) = (1 − x)n+1ϑn 1

1 − x
.

The function Qn(x) is then

(4.2.23) Qn(x) =
An(x)

(1 − x)n+1
.

The next theorem shows that An(x) is a polynomial in x, called

the Eulerian polynomial of order n.

Theorem 4.2.8. The function An(x) satisfies

(4.2.24) An(x) = nxAn−1(x) + x(1 − x)A′
n−1(x),

for n ≥ 1, with initial value A0(x) = 1. In particular, An(x) is a

polynomial of degree n with integer coefficients and An(0) = 0 for

n > 0.
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Proof. Observe that

(1 − x)−n−2An+1(x) = ϑn+1 1

1 − x

= ϑ

[
ϑn 1

1 − x

]
= ϑ

[
(1 − x)−n−1An(x)

]
.

The result follows by applying ϑ. �

Note 4.2.9. The Eulerian numbers An,k are defined by

(4.2.25) An(x) = x

n−1∑
k=0

An,kx
k.

The numbers An,k have interesting combinatorial interpretations, sim-

ilar to those of the Stirling numbers described in Chapter 7.

Legendre polynomials: The notion of orthogonality. Given a

collection of polynomials

(4.2.26) C = {r0(x), r1(x), . . . , rn(x)}

such that the degree of ri is i, every polynomial P of degree at most

n can be expressed in a unique form as

(4.2.27) P (x) = C0r0(x) + C1r1(x) + · · · + Cnrn(x).

The coefficients Ci can be obtained by matching terms of the same

degree: the leading order term yields the equation

coefficient of xn in P = Cn × coefficient of xn in rn,

which determines Cn. Repeating this procedure on the modified equa-

tion

P (x) − Cnrn(x) = C0r0(x) + C1r1(x) + · · · + Cn−1rn−1(x)

determines Cn−1. This method gives all the coeffients Ci in (4.2.27).

The calculation of the coefficients Ci can be simplified if the poly-

nomials ri are orthogonal with respect to a weight function

w(x), in the sense that∫ b

a

ri(x)rj(x)w(x) dx = 0 if i �= j.
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The polynomials are called orthonormal if the extra condition

(4.2.28)

∫ b

a

r2i (x)w(x) dx = 1

is imposed. To determine the coefficient Ci, simply multiply (4.2.27)

by riw(x) and integrate from a to b to obtain

(4.2.29) Ci =

∫ b

a

P (x)ri(x)w(x) dx.

Many interesting families of polynomials appear in this form. The

Legendre polynomials Pn(x) are orthogonal on [−1, 1] with weight

function w(x) ≡ 1. The choice of weight w(x) = 1/
√

1 − x2 on the

interval [−1, 1] produces the Chebyshev polynomials. The third

example considered in this book, the Hermite polynomials, are

orthogonal on R, with weight e−x2/2. Details are given in Chapter

14.

4.3. The division algorithm

The division algorithm for integers, given as Exercise 1.5.1, was em-

ployed in Chapter 1 to discuss arithmetical properties of integers. An

extension to the class of polynomials is presented here.

The algorithm is stated for polynomials over those number sys-

tems described in Chapter 1 where every nonzero element has an

inverse (these systems are called fields).

Therefore, the coefficients are assumed to be in Q, R, C, or Zp.

The symbol K will denote one of these sets. The reader should be

aware that some results are not valid if, for instance, these fields

are replaced by Zp, the finite field with p elements. More general

situations are possible. The reader can find them in the textbooks by

M. Artin [31] and by J. Schrek [268].

Definition 4.3.1. The set of polynomials with coefficients in K is

denoted by K[x].

The next result is known as the division algorithm for K[x].

                

                                                                                                               



140 4. Polynomials

Theorem 4.3.2. Let A, B ∈ K[x] with B �= 0. Then there are unique

polynomials in K[x], with R = 0 or deg(R) < deg(B), such that

(4.3.1) A(x) = B(x)Q(x) + R(x).

Proof. The proof is by induction on the degree of A. If deg(A) <

deg(B), take Q = 0 and R = A. Otherwise, let

(4.3.2) A(x) = anx
n + an−1x

n−1 + · · · + a0

and

(4.3.3) B(x) = bmxm + bm−1x
m−1 + · · · + b0

with n ≥ m. Then

A(x) − an
bm

xn−mB(x)

is a polynomial of degree strictly less than deg(A). Induction gives

A(x) − an
bm

xn−mB(x) = Q1(x)B(x) + R1(x)

and

A(x) =

(
an
bm

xn−m + Q1(x)

)
B(x) + R1(x)

has the stated form. This proves the existence of polynomials Q and

R. Uniqueness is left as an exercise to the reader. �

Exercise 4.3.3. Prove that the polynomials Q and R in Theorem

4.3.2 are uniquely determined by A and B.

Corollary 4.3.4. Let A ∈ K[x] and x0 ∈ K. Then

(4.3.4) A(x) = Q(x)(x− x0) + A(x0).

Proof. Apply the division algorithm to A(x) and B(x) = x−x0. The

remainder is either 0 or a polynomial of degree 0, that is, constant.

This constant is obtained by evaluating at x = x0. �

Exercise 4.3.5. Discuss an algorithm to find the greatest common

divisor of two polynomials based on the division algorithm.
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4.4. Roots of polynomials

The evaluation of the polynomial

(4.4.1) A(x) = a0x
n + a1x

n−1 + · · · + an

at x0 ∈ K only requires additions and multiplications. Therefore

A(x0) ∈ K. The numbers that yield value 0, called the roots of A, are

of particular interest. This section describes some of their elementary

properties. The central question of how to express the roots of a

polynomial in terms of its coefficients is postponed until Section 4.6.

There is a large body of knowledge dealing with properties of roots of

polynomials. The author is sure that the reader will enjoy browsing

the book by P. Borwein [72] and the spectacular color figures on

P. Borwein’s website

http://www.cecm.sfu.ca/~pborwein.

The division algorithm gives an upper bound on the number of

roots.

Proposition 4.4.1. The number of roots of a nonzero polynomial

A ∈ K[x] is at most its degree.

Proof. The proof is by induction on the degree of A. If x0 is a root

of A, the factorization

(4.4.2) A(x) = (x− x0)Q(x)

shows that deg(Q) = deg(A) − 1 and the result follows by induction.

�

Note 4.4.2. The example A(x) = x2 + 1 as a polynomial over R

shows that the number of roots could be strictly less than its degree.

Exercise 4.4.3. The result is not true if the coefficients of A are

elements of other number systems. For example, the polynomial

A(x) = x2 − 1 has four roots in Z8. Explain where the proof of

Proposition 4.4.1 breaks down.

Exercise 4.4.4. Let A, B ∈ K[x] and suppose A(xi) = B(xi) for

1 ≤ i ≤ m with m > max(degA, degB). Prove that A = B.
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Note 4.4.5. Theorem 4.2.1 states that

(4.4.3) Sa(n) =
n−1∑
k=1

ka

is a polynomial of degree a + 1. For fixed a ∈ N, the previous ex-

ercise shows that the expression for Sa can be obtained by a finite

computation. For example, to prove the identity

(4.4.4) S1(n) =

n∑
k=1

k =
n(n + 1)

2
,

discussed in Section 1.1, it suffices to verify (4.4.4) for three values,

say n = 1, 2, and 3. The exercise then shows that the identity is valid

for all values of n.

Exercise 4.4.6. Give a proof of

(4.4.5) S2(n) =

n∑
k=1

k2 =
n(n + 1)(2n + 1)

6
,

in the same style. An automatic proof of this identity has been de-

scribed in Note 1.2.5.

Exercise 4.4.7. Let A ∈ K[x], A �= 0, and x0 ∈ K be a root of A.

Prove the existence of a positive integer n such that

(4.4.6) A(x) = (x− x0)
nQ(x)

with Q ∈ K[x] and Q(x0) �= 0. The integer n is called the multiplic-

ity of the root x0. A simple root is one of multiplicity 1.

Exercise 4.4.8. Prove that a polynomial P has all simple roots if

and only if it is relatively prime to its derivative P ′. Conclude that it

is possible to know if a polynomial has a repeated root without being

able to find it.

Exercise 4.4.9. Let {xi : 1 ≤ i ≤ r} be the set of nonzero roots of

A(x) and let ni be the multiplicity of xi. Check that the polynomial

A can be factored as

(4.4.7) A(x) = Cxn0

r∏
i=1

(
1 − x

xi

)ni

with n0 ≥ 0 is the multiplicity of x = 0 as a root of A.
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Exercise 4.4.10. The value z0 ∈ C is called a complex root of A

if A(z0) = 0. Prove that if z0 = u + iv is a complex root of the real

polynomial A, then so is its complex conjugate z̄0 = u − iv. Check

also that their multiplicities agree and

(4.4.8) A(x) = (x2 − 2ux + u2 + v2)nA1(x)

where n is the multiplicity of u + iv and A1(x) is a real polynomial.

In the construction of number systems described in Chapter 1

it would have been possible to include algebraic numbers as an

intermediate step between Q and C. Some of the properties of these

numbers are described next.

Definition 4.4.11. A complex number α is called algebraic if there

is a polynomial A(x), with integer coefficients, such that A(α) = 0.

The set of algebraic numbers is denoted by A.

Example 4.4.12. The golden ratio ϕ = (1 +
√

5)/2 is an algebraic

number. It satisfies the equation x2 − x− 1 = 0.

Note 4.4.13. The fundamental theorem presented in Section 4.5

shows that a polynomial with complex coefficients has all of its roots

in C. Therefore it is reasonable to assume, from the beginning, that

algebraic numbers are inside C.

Definition 4.4.14. Given an algebraic number α, let B be the poly-

nomial of minimal degree with integer coefficients such that B(α) = 0.

This polynomial is determined uniquely by the requirements that its

leading coefficient should be positive and that its coefficients have no

common factor. This is the minimal polynomial of α.

Exercise 4.4.15. Find the minimal polynomial of the golden ratio

ϕ. Hint: Example 4.4.12.

Note 4.4.16. The concept of minimal polynomial can be used to

show that A satisfies some closure properties: given α1, α2 ∈ A, then

α1 + α2 and α1α2 ∈ A. It is actually difficult to prove that a specific

number is not algebraic; such numbers are called transcendental.

Two examples are discussed in later chapters. The fact that e is

transcendental is presented in detail in the proof of Theorem 11.5.7.

The same result holds for π; this is just stated as Theorem 12.13.8. A

                

                                                                                                               



144 4. Polynomials

very nice introduction to transcendence questions is provided in the

book by E. B. Burger and R. Tubbs [86]. On the other hand, from the

point of view of cardinality, it is not hard to show that most complex

numbers are transcendental numbers. The next theorem states this

in more concrete form. The proof parallels that of Theorem 1.8.16.

Theorem 4.4.17. The set of algebraic numbers is countable.

Proof. Define the height of a polynomial with integer coefficients

A(x) = a0x
n + a1x

n−1 + · · · + an−1x + an by

(4.4.9) h(A) = |n| +
n∑

j=0

|aj |.

The height of an algebraic number is defined to be the height of its

minimal polynomial. To complete the proof, use Exercise 1.8.15 and

observe that there are finitely many polynomials of a given height. �

4.5. The fundamental theorem of algebra

The construction of number fields described in Chapter 1 proceeds

by adjoining roots of polynomials to obtain Z from N and Q from

Z. The next step in the chain, namely from Q to R, is analytic in

nature, involving the idea of completion. The last step, from R to C,

is defined by adjoining a single root of the polynomial A(x) = x2+1.

It is a remarkable fact that the complex numbers are complete and

algebraically closed: every polynomial with complex coefficients

has all its roots in C. This result is known as the fundamental

theorem of algebra.

Theorem 4.5.1. Every complex polynomial of degree n > 0 has a

root in C.

The proof presented here is due to F. Terkelsen [290]. The first

step is to show that nonconstant polynomials converge uniformly to

∞ as |x| → ∞.
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Lemma 4.5.2. Let A be a complex polynomial of degree n > 0. Then

there are positive constants c1, c2, R, depending only on the coeffi-

cients of A, such that

(4.5.1) c1|x|n ≤ |A(x)| ≤ c2|x|n

for |x| ≥ R.

Proof. Let A(x) = anx
n + an−1x

n−1 + · · · + a0. To establish an

upper bound, define

(4.5.2) R = max {1, |a0|, |a1|, . . . , |an|} .

Then, for |x| > R, the inequality |x|j ≤ |x|n gives

|A(x)| ≤ |an||x|n + |an−1||x|n−1 + · · · + |an|
≤ |x|n (|an| + |an−1| + · · · + |a0|)
≤ (n + 1)R|x|n

and the bound holds with c2 = (n + 1)R. The lower bound follows

from |A(x) − anx
n| ≤ nR|x|n−1. The details are left to the reader.

Observe that in the proof of the lower bound, the choice of R must

involve the roots of A. �

Exercise 4.5.3. Provide all details in the previous proof.

Exercise 4.5.4. Let n ∈ N and a ∈ C. Prove that the equation

xn = a has n simple roots. For a = 1, the solutions to xn = 1 are

called roots of unity. Hint: Write the complex number in polar

form and study the effect of powers on the radius and the angle.

Note: This exercise is a special case of Theorem 4.5.1 and its result

is actually used in the proof of the general case.

The proof of Theorem 4.5.1 is given next.

Proof. The continuity of |A| shows that |A| attains its minimum on

every closed disk {x ∈ C : |x| ≤ r}. Lemma 4.5.2 shows the existence

of a fixed x0 ∈ C such that |A(x0)| ≤ |A(x)| for all x ∈ C. Replacing

A(x) by A(x+x0), it may be assumed that x0 = 0. Suppose A(0) �= 0

and write

(4.5.3) A(x) = a + bxm + xm+1Q(x)
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where m ∈ N, a = A(0) �= 0, b �= 0, and Q is a complex polynomial.

Now

A(tw) = a + btnwm + (tw)m+1Q(tw)

and Exercise 4.5.4 gives w ∈ C such that wm = −a/b. Then

A(tw) = a(1 − tm) + tm
(
twm+1Q(tw)

)
.

The continuity of Q permits us to choose t ∈ (0, 1) small enough so

that |twm+1Q(tw)| < |a|. Then

|A(tw)| < |a|(1 − tm) + tm|a| = |a| = |A(0)|.

This contradicts the minimality of |A(0)|. �

Corollary 4.5.5. Let A be a complex polynomial of degree n. Then

A has exactly n roots, counted according to multiplicity.

The reader will find more information about the fundamental theo-

rem of algebra and several other proofs in the book by B. Fine and

G. Rosenberger [127].

4.6. The solution of polynomial equations

The problem of finding the roots of a polynomial equation

(4.6.1) Pn(x) = a0x
n + a1x

n−1 + · · · + an

as a function of the coefficients {a0, a1, . . . , an} was one of the main

driving forces behind the development of algebra for many centuries.

This section describes a solution to this problem for polynomials

of low degree following a uniform procedure due to M. J. Hellman

[164, 165]. This treats the polynomials of degree at most 4. More-

over, it also hints at the difficulties encountered when trying to solve

quintic equations.

The presentation starts by describing the solution of a special

important case.

Theorem 4.6.1. Assume Pn has integer coefficients. Then the re-

duced form of any rational root of Pn(x) = 0 has the form x = p/q,

where p is a divisor of an and q is a divisor of a0.
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Proof. The identity Pn(x) = 0 implies

(4.6.2) a0p
n + a1p

n−1q + · · · + an−1pq
n−1 + anq

n = 0.

This shows that q divides a0p
n, so it must divide a0. The same

argument shows that p must divide an. �

Example 4.6.2. The polynomial T (x) = 8x3 − 4x2 − 4x+ 1 will ap-

pear in Example 12.9.9. The previous theorem gives the irreducibility

of T . Indeed, if T were reducible over Q, then it would have a rational

root. These roots are among the numbers {1, 2, 4, 8, −1, −2, −4, −8}
and it is easy to check that none of these values are roots of T .

The general analysis for polynomials of low degree is presented

next.

Quadratic polynomials. These have the form

(4.6.3) P2(x) = a0x
2 + a1x + a2

and the equation P2(x) = 0 may be solved by completing the

square as every school-age child knows:

(4.6.4) P2(x) = a0

((
x +

a1
2a0

)2

− D

4a20

)
,

where

(4.6.5) D := a21 − 4a0a2

is the discriminant of the polynomial P2. The quadratic formula

has appeared.

Theorem 4.6.3. The roots of P2(x) = 0 are given by

(4.6.6) x1 =
−a1 +

√
D

2a0
and x2 =

−a1 −
√
D

2a0
.

Note 4.6.4. Denote the roots of P2(x) = 0 by x1 and x2. Then

a0x
2 + a1x + a2 = a0(x− x1)(x− x2)

yields

x1 + x2 = −a1/a0 and x1x2 = a2/a0.
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This produces

(x1 − x2)
2 = (x1 + x2)

2 − 4x1x2 =
a21
a20

− 4a2
a0

=
D

a20
.

Extracting the square root gives the expressions (4.6.6).

Note 4.6.5. The symmetric functions of the roots x1, x2 are

(4.6.7) e1 = x1 + x2 = −a1/a0 and e2 = x1x2 = a2/a0.

These values admit an elementary geometric interpretation. The ver-

tex of the parabola y = P2(x) is located at

(Vx, Vy) =

(
− a1

2a0
, P2

(
− a1

2a0

))
=

(
− a1

2a0
, − D

4a0

)
,

so that

(4.6.8) Vx =
x1 + x2

2
.

Since Vx is the arithmetic mean of the zeros, it may be worthwhile to

look at the (population) variance. A direct calculation shows that

(4.6.9) σ2 =
D

4a20
= −Vy

a0
,

that is, Vy = −a0σ
2.

Cubic polynomials. The next example considers the solution of the

cubic polynomial

(4.6.10) P3(x) = a0x
3 + a1x

2 + a2x + a3.

The history of this quest, conducted mainly by G. Cardano, N. Fon-

tana (nicknamed Tartaglia), and L. Ferrari is documented in the text-

book by J. P. Tignol [291].

The reduction y = x− a1/3a0 eliminates the quadratic term and

converts P3 into the reduced form

P3(y) = a0y
3 +

3a0a2 − a21
3a0

y +
a1(2a

2
1 − 9a2a0) + 27a20a3

27a20
.

Therefore, the equation P3(x) = 0 is equivalent to

(4.6.11) P ∗
3 (x) := x3 + ax + b = 0

                

                                                                                                               



4.6. The solution of polynomial equations 149

with

(4.6.12) a :=
3a0a2 − a21

3a20
, b :=

2a31 − 9a0a1a2 + 27a20a3
27a30

going back to x as the independent variable.

Exercise 4.6.6. Compute the reduced form of 6x3−13x2+9x−2 = 0.

Let x1, x2, x3 be the roots of P ∗
3 (x) = 0. Comparing the coefficients

in

x3 + ax + b = (x− x1)(x− x2)(x− x3)

yields

x1 + x2 + x3 = 0,(4.6.13)

x1x2 + x2x3 + x3x1 = a,

x1x2x3 = −b.

Adding the three equations, P ∗
3 (xi) = 0, and using (4.6.13) produces

(4.6.14) x3
1 + x3

2 + x3
3 − 3x1x2x3 = 0,

which factors as

(x1 + x2 + x3)(x1 + ωx2 + ω2x3)(x1 + ω2x2 + ωx3) = 0,

where ω3 = 1, ω �= 1. There are three possibilities:

x1 = −(x2 + x3), x1 = −(ωx2 + ω2x3), or x1 = −(ω2x2 + ωx3).

This form suggests the parametrization

(4.6.15) x1 = −(s + t), x2 = −(ωs + ω2t), and x3 = −(ω2s + ωt),

where s and t will be chosen in order to satisfy (4.6.13). The first

equation in (4.6.13) is automatically satisfied and the other two yield

(4.6.16) s3t3 = −a3

27
and s3 + t3 = b.

To find the solutions, let u = s3 and v = t3 to produce a system in

(u, v). Its solution yields

s =

(
b

2
+

√
b2

4
+

a3

27

)1/3

and t =

(
b

2
−
√

b2

4
+

a3

27

)1/3

.

These results are summarized in the next theorem. The expres-

sion for the roots involves the discriminant defined next.
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Definition 4.6.7. The discriminant of the reduced cubic polyno-

mial P3(x) = x3 + ax + b is

(4.6.17) D =
4a3 + 27b2

108
.

The next theorem gives the roots of a cubic equation.

Theorem 4.6.8. The roots of the cubic equation P3(x) = a0x
3 +

a2x + a1x + b can be expressed by radicals in terms of the coeffi-

cients. To obtain the explicit parametrization, compute the reduced

form P ∗
3 (x) = x3 + ax + b with

a :=
3a0a2 − a21

3a20
, b :=

2a31 − 9a0a1a2 + 27a20a3
27a30

.

Let D be the discriminant of the cubic

(4.6.18) D =
4a3 + 27b2

108
,

and introduce the parameters

s =

(
b

2
+

√
D

)1/3

, t =

(
b

2
−
√
D

)1/3

,

and ω = 1
2 (−1 + i

√
3). Then the roots of P ∗

3 (x) = 0 are given by

x1 = −(s + t), x2 = −(ωs + ω2t), and x3 = −(ω2s + ωt).

Note 4.6.9. The expression for the roots of a cubic polynomial given

in Theorem 4.6.8 was motivated by the goal of solving the equation

by radicals. An alternative form of the solution can be obtained

by expressing these roots in terms of a trigonometric function. This

departure from the algebraic setting is simpler and it will be described

in detail in Chapter 12. It is based on the idea of reducing the cubic

to a normal form given by the identity

(4.6.19) sin 3u = −4 sin3 u + 3 sinu.

It turns out that this alternative form of solving a cubic equation gen-

eralizes to polynomial equations of any degree. Note 5.2.8 has details.

Naturally, the trigonometric functions are replaced by a different type

of function.
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Note 4.6.10. The development of complex numbers had as one of its

sources the so-called casus irreducibilis. This refers to the situation

of an irreducible cubic polynomial with integer coefficients and three

distinct real roots. The procedure developed by Cardano to find these

roots involves the computations of square roots of negative numbers.

The reader should follow Cardano’s procedure in the example

(4.6.20) P (x) = x3 − 6x2 + 9x− 1.

A second cubic polynomial will appear naturally as Example 12.9.9.

4.7. Cubic polynomials

The cubic polynomial

(4.7.1) y = P3(x) = a0x
3 + a1x

2 + a2x + a3

has either three simple real roots, a simple real root and a real root of

multiplicity 2, a single real root and a pair of nonreal complex conju-

gate roots, or a single real root of multiplicity 3. This section develops

a criterion for distinguishing these three situations. An application

to a dynamical system is presented in Chapter 15.

The number of parameters in the equation P3(x) = 0 is reduced

by a normalization described next. It is assumed that a3, a0 �= 0.

Reduction 1. The coefficient a0 is 1.

Proof. The leading coefficient a0 �= 0. Dividing P3(x) = 0 by a0
yields the first reduction. �

Reduction 2. The coefficient a3 is 1.

Proof. Introduce the scaling x = λt to transform P3(x) = 0 into

t3 +
a1
λ
t +

a2
λ2

t +
a3
λ3

= 0.

The choice λ = a
1/3
3 gives the desired reduction. �

Definition 4.7.1. The normalization of P3(x) = 0 is given by the

cubic equation

(4.7.2) P (x) = x3 + ax2 + bx + 1 = 0.
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The nature of the roots of the normalized form of a cubic polyno-

mial is described next. These roots are denoted by x1, x2, x3. Then

(4.7.3) x3 + ax2 + bx + 1 = (x− x1)(x− x2)(x− x3).

Lemma 4.7.2. The normalized polynomial has at least one negative

real root.

Proof. The values P (0) = 1 and P (−∞) = −∞ give the result. �

In the factorization (4.7.3), assume that x1 < 0. The identity

x1x2x3 = −1 shows that there are three possible cases for the re-

maining roots.

Case 1. Three real roots x1 ≤ x2 ≤ x3 < 0.

Case 2. Three real roots x1 < 0 < x2 ≤ x3.

Case 3. One real root x1 < 0 and a pair x2 = u + iv, x3 = u− iv of

complex conjugate roots.

Lemma 4.7.3. Assume a2 < 3b. Then Case 3 occurs.

Proof. The derivative P ′(x) = 3x2 + 2ax + b is always positive be-

cause its discriminant is 4(a2− 3b) < 0. Therefore P has a single real

root. �

Lemma 4.7.4. Assume a2 = 3b and a �= 3. Then

(4.7.4) P (x) = (x + a/3)3 + 1
27 (27 − a3).

This corresponds to Case 3.

Proof. The derivative of P is

P ′(x) = 3x2 + 2ax + b

= 3
(
(x + a/3)2 + (3b− a2)/9

)
= 3(x + a/3)2.

Integrate and use the condition P (0) = 1 to obtain the result. �

Lemma 4.7.5. Assume a2 = 3b and a = 3. Then P (x) = (x + 1)3.

This corresponds to Case 1 with three equal roots x1 = x2 = x3 = −1.
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Proof. Start as in the proof of Lemma 4.7.4 to obtain (4.7.4). The

condition a = 3 shows that P (x) = (x + 1)3. �

The last case to consider is a2 > 3b.

Lemma 4.7.6. Assume a2 > 3b. Then the derivative P ′(x) = 3x2 +

2ax + b actually changes sign.

Proof. Assume P ′(x) ≥ 0 for all x ∈ R. The conditions on the

parameters show that P ′(x) has real roots. Therefore P ′ must have

a double root. The only root of P ′′(x) is x = −a/3 and P ′(−a/3) =

−(a2 − 3b)/3 < 0. This is a contradiction. �

The previous lemma shows that the polynomial has a minimum

at

(4.7.5) xmin =
1

3
(−a +

√
a2 − 3b)

and a maximum at

(4.7.6) xmax =
1

3
(−a−

√
a2 − 3b).

The next step is to compute the values of P at these critical

points.

Lemma 4.7.7. The value at the minimum is given by

P (xmin) =
27 + 2a3 − 9ab

27
− 2

27
(a2 − 3b)3/2

and at the maximum, the polynomial attains the value

P (xmax) =
27 + 2a3 − 9ab

27
+

2

27
(a2 − 3b)3/2.

The next step is to characterize roots of multiplicity 2.

Lemma 4.7.8. The polynomial P (x) = x3+ax2+bx+1 has a double

root if and only if

(4.7.7) 4a3 + 4b3 − a2b2 − 18ab + 27 = 0.
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Proof. There are two possible case according to whether the dou-

ble root occurs at the minimum or the maximum. In the first case,

P (xmin) = 0 yields

(4.7.8)
27 + 2a3 − 9ab

27
=

2

27
(a2 − 3b)3/2.

This requires first that 27 + 2a3 − 9ab ≥ 0 and squaring both sides of

(4.7.8) produces (4.7.7). In the second case, P (xmax) = 0 gives

(4.7.9) −27 + 2a3 − 9ab

27
=

2

27
(a2 − 3b)3/2

and now 27 + 2a3 − 9ab ≤ 0 and squaring yields (4.7.7), again. �

Definition 4.7.9. The function

(4.7.10) R(a, b) = 4a3 + 4b3 − a2b2 − 18ab + 27

is called the resolvent of the polynomial P3(x) = x3 + ax2 + bx+ 1.

The next exercise shows the relation between the resolvent defined

above and the discriminant of the cubic polynomial.

Exercise 4.7.10. Let P (x) = x3 + ax2 + bx + 1. Check that the

resolvent R(a, b) is the discriminant of the reduced form of P , given

by

(4.7.11) P∗(x) = x3 + (b− a2/3)x + (1 + 2a3/27 − ab/3),

obtained from P by eliminating the quadratic term.

Exercise 4.7.11. Assume b �= 0 and a2 > 3b. Establish the following

criteria:

Case 1 occurs if and only if xmin < 0 and P (xmin) < 0.

Case 2 occurs if and only if xmin > 0 and P (xmin) < 0.

Case 3 occurs if and only if P (xmin) > 0.

Develop also a similar result for the case b = 0.

The final description of the type of roots for a cubic polynomial

is given in the next theorem.

Theorem 4.7.12. Let

R(a, b) = 4a3 + 4b3 − a2b2 − 18ab + 27
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be the discriminant of the cubic polynomial P3(x) = x3+ax2+bx+1.

Then the cubic equation has

• one real root and a complex conjugate pair if and only if R > 0,

• two distinct real roots if and only if R = 0 and a2 �= 3b,

• three distinct real roots if and only if R < 0,

• three equal roots if and only if R = 0 and a2 = 3b.

The graph of the resolvent curve R(a, b) = 0 is shown in Figure

4.7.1. This curve will reappear in Chapter 15.

10

10

5

5

0
0

-5

-10

-5-10

b

a

Figure 4.7.1. The resolvent curve.

Exercise 4.7.13. Provide a detailed proof of Theorem 4.7.12.

4.8. Quartic polynomials

This section considers the solution of the quartic equation

(4.8.1) P4(x) = a0x
4 + a1x

3 + a2x
2 + a3x + a4 = 0.

The first step is a reduction of the form of P4.

Exercise 4.8.1. Prove that the quartic equation may be reduced to

the form

x4 + ax2 + bx + c = 0.
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Theorem 4.8.2. The roots of P4(x) = 0 can be reduced to the solu-

tion of a cubic equation.

Proof. Start with the reduced form x4 + ax2 + bx + c = 0 and let

x1, x2, x3, x4 be its roots. Then

x4 + ax2 + bx + c = (x− x1)(x− x2)(x− x3)(x− x4)

produces

x1 + x2 + x3 + x4 = 0,(4.8.2)

x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 = a,

x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 = −b,

x1x2x3x4 = c.

Introduce new parameters by

(4.8.3) u = x1 + x2, v = x3 + x4, s = x1x2, t = x3x4

to transform (4.8.2) to

u + v = 0, s + t + uv = a, sv + tu = −b, st = c.

This reduces to

s + t = a + u2,(4.8.4)

u(s− t) = b,

st = c.

Solve for s and t to obtain

(4.8.5) s =
1

2

(
a + u2 +

b

u

)
, t =

1

2

(
a + u2 − b

u

)
.

Replacing in the last equation of (4.8.4) yields

(4.8.6) u6 + 2au4 + (a2 − 4c)u2 − b2 = 0.

This is a cubic equation in u2. The solution is replaced in (4.8.5) to

obtain the value of s. The roots x1 and x2 can now be obtained from

(4.8.3). Finally, employ the relations v = −u and t = c/s to produce

the values of x3 and x4. �

Exercise 4.8.3. Use this procedure to solve the quartic equation

42x4 − 281x3 + 372x2 − 81x− 20 = 0.
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Exercise 4.8.4. The previous approach fails to produce a solution

to the quintic equation

(4.8.7) P5(x) = a0x
5 + a1x

4 + a2x
3 + a3x

2 + a4x + a5 = 0.

Check the details. Start by normalizing P5 by assuming a0 = 1 and

a2 = 0. Let {x1, x2, x3, x4, x5} be the roots of P5. Introduce the

notation

s = x1 + x2 + x3, t = x1x2 + x1x3 + x2x3,

v = x1x2x3, w = x4x5.

Observe that x4 + x5 = s. Establish the relations

−s2 + t + w = a2, −st + sw + v = −a3,

tw − sv = a4, vw = −a5.

Solve for t and v to produce the relation

−s2w2 + a4w − a5s + w3 = a2w
2,

a5s
2 − a4sw + sw3 − a5w = −a3w

2.

Eliminating s or w gives an equation of degree higher than 5.

Note 4.8.5. One of the achievements of mathematics in the nine-

teenth century was to show that it is impossible to express the roots

xi of the general equation (4.8.7) by radicals. That is, there is no fi-

nite combination of radicals of the coefficients ai that gives the roots.

Naturally it is possible that there are other analytic expressions in the

coefficients {ai} that give the roots. The reader will find information

about this problem in the book [213] and in the text by J. Shurman

[273]. The subject is full of beautiful interconnections. Who would

suspect that the solution of a quintic polynomial would be related to

the icosahedron, one of the platonic solids of antiquity?

                

                                                                                                               



Chapter 5

Binomial Sums

5.1. Introduction

This chapter deals with the question of explicit evaluations of finite

sums involving binomial coefficients. The discussion is restricted to

sums of the type

(5.1.1) Mi,j(n) =

n∑
k=0

ki
(
n

k

)j

including the special case

(5.1.2) Lj(n) =

n∑
k=0

(
n

k

)j

.

The proofs are based on recurrences, some combinatorial arguments,

and an introduction to automatic methods.

These examples are part of the class of hypergeometric sums:

(5.1.3) f(n) =

n∑
k=0

F (n, k)

where F (n, k) is a hypergeometric function in both variables, that is,

the ratios

(5.1.4)
F (n + 1, k)

F (n, k)
and

F (n, k + 1)

F (n, k)

159
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are rational functions of n and k. These sums have a long history and

recently they have been placed in a general framework by the work

of H. Wilf and D. Zeilberger and described in the book [247] written

jointly with M. Petkovsek. An introduction to these ideas is given

below.

The examples include the classical evaluations

L1(n) =
n∑

k=0

(
n

k

)
= 2n and L2(n) =

n∑
k=0

(
n

k

)2

=

(
2n

n

)

as well as a discussion of the fact that

(5.1.5) L3(n) =
n∑

k=0

(
n

k

)3

does not have a similar closed-form evaluation. The author has always

been intrigued by this phenomenon.

5.2. Power sums

The sum

(5.2.1) Lj(n) =
n∑

k=0

(
n

k

)j

, for j ∈ N,

named here power sums, are considered next.

5.2.1. The first power. The case j = 1 deals with the elementary

identity

(5.2.2) L1(n) =

n∑
k=0

(
n

k

)
= 2n.

Several proofs are presented.

Proof 1. The binomial theorem

(5.2.3) (a + b)n =

n∑
k=0

(
n

k

)
akbn−k,

with a = b = 1, gives the result.

Proof 2. The argument is of a combinatorial nature. Corollary

2.2.3 states that the number of subsets of [n] := {1, 2, . . . , n} with

k elements is given by
(
n
k

)
. The total number of subsets is 2n. The
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left-hand side of the identity (5.2.2) corresponds to counting subsets

of [n] conditioned on the number of elements.

Proof 3. The next proof is based on recurrences. The main idea is

to first produce a recurrence for the summand
(
n
k

)
and then to sum

over all the values of k to obtain one recurrence for the sum. The

next subsection indicates how to find the recurrence by an automatic

procedure.

The binomial coefficients satisfy

(5.2.4)

(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)

as shown in Theorem 2.1.6. Now sum this recurrence over k. Observe

that the vanishing of the binomial coefficient
(
n
k

)
for k < 0 and k > n

shows that the sum over all k ∈ Z reduces to a finite sum. Indeed,

the result is

(5.2.5)
n∑

k=0

(
n

k

)
=

n−1∑
k=0

(
n− 1

k

)
+

n∑
k=1

(
n− 1

k − 1

)
,

which produces a recurrence for L1 in the form

(5.2.6) L1(n) = 2L1(n− 1).

To verify (5.2.2), it suffices to check that 2n satisfies the same recur-

rence and the same initial condition L1(1) = 2. This is easy.

5.2.2. An automatic derivation of recurrences. The method

of Sister Celine. Sister Mary Celine Fasenmyer proposed a method

to derive recurrences such as (5.2.4). The method has been su-

perceded by more efficient algorithms, but its simplicity makes it an

ideal introduction to the subject of automatic proofs.

Define

(5.2.7) F (n, k) =

(
n

k

)
=

n!

k!(n− k)!

and look for a relation of the form

a(n)F (n, k)+b(n)F (n+1, k)+c(n)F (n, k+1)+d(n)F (n+1, k+1) = 0
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where the unknowns a, b, c, d are functions independent of k. To find

these functions, divide the relation above by F (n, k) to produce

a(n)+ b(n)
F (n + 1, k)

F (n, k)
+ c(n)

F (n, k + 1)

F (n, k)
+ d(n)

F (n + 1, k + 1)

F (n, k)
= 0.

The crucial point of the method is to observe that the quotients ap-

pearing above are rational functions of n and k. For example,

(5.2.8)
F (n + 1, k)

F (n, k)
=

n + 1

n− k + 1
.

It follows that

(5.2.9) a(n) +
n + 1

n− k + 1
b(n) +

n− k

k + 1
c(n) +

n + 1

k + 1
d(n) = 0.

Clearing denominators produces

[c(n)−a(n)] k2 + [na(n) + (n + 1)b(n)−(2n + 1)c(n)−(n + 1)d(n)]k

+
[
(n + 1)a(n) + (n + 1)b(n) + n(n + 1)c(n) + (n + 1)2d(n)

]
= 0.

The vanishing of each of the coefficients in the variable k leads to the

system of equations

⎛
⎝−1 0 1 0

n n + 1 −(2n + 1) −(n + 1)

1 1 n n + 1

⎞
⎠
⎛
⎜⎜⎝
a(n)

b(n)

c(n)

d(n)

⎞
⎟⎟⎠ =

⎛
⎝0

0

0

⎞
⎠ .

The solution is given by

(5.2.10) a(n) = −d(n), b(n) = 0, c(n) = −d(n)

with d(n) arbitrary. Choosing d(n) = 1 gives

(5.2.11) −F (n, k) − F (n, k + 1) + F (n + 1, k + 1) = 0,

that is,

(5.2.12)

(
n + 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
.

This becomes (5.2.4) after replacing {n, k} by {n− 1, k − 1}.

Note 5.2.1. Summing over all values of k gives, as before, the recur-

rence (5.2.6) for the sum L1(n).
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Note 5.2.2. The Mathematica code described next, written by

C. Koutschan, provides a basic implementation of Sister Celine’s al-

gorithm and produces the above recurrences in an automatic manner.

SisterCeline1[f Function, F [n , k ], dn Integer, dk Integer] :=

Module[{i, j, anz, sys, sol, pp, dp, Sn, Sk},
anz = Flatten[Table[f[n + j, k + i], i, 0, dk, j, 0, dn]];

anz = FunctionExpand[anz/f[n, k]];

anz = Together[(PolynomialLCM @@ Denominator[anz])*anz];

sys = PadRight[CoefficientList[#, k] & /@ anz];

sol = Together[NullSpace[Transpose[sys]]];

anz = Flatten[Table[Sn^j*Sk^i, i, 0, dk, j, 0, dn]];

sol = PolynomialRemainder[#.anz, Sk - 1, Sk] & /@ sol;

sol = Thread[Expand[sol*F[n, k]] == 0];

Return[sol /. Sn^j .*F[n, k] -> F[n + j, k]];

];

The command

SisterCeline1[Function[{n, k}, Binomial[n, k]], L1[n, k], 1, 1]

is asking for a relation of the form

a(n)F (n, k)+b(n)F (n+1, k)+c(n)F (n, k+1)+d(n)F (n+1, k+1) = 0

for F (n, k) =
(
n
k

)
, as explained above. The parameters dn and dk

indicate the order of the requested recurrence in the variables n and

k, respectively. The values dn = dk = 1 state that a first-order

recurrence in both variables is being sought. The output is the implied

recurrence for the sum

(5.2.13) L1[n, k] =
∑
k

F (n, k).

This is given as

(5.2.14) {-2L1[n,k] + L1[1+n,k] == 0},

stating that the sum

(5.2.15) L1(n) =
n∑

k=0

(
n

k

)
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satisfies

(5.2.16) −2L1(n) + L1(n + 1) = 0.

This is equivalent to (5.2.6).

5.2.3. The second power. The second sum

(5.2.17) L2(n) =
n∑

k=0

(
n

k

)2

appeared in the proof of Proposition 2.5.16 in the computation of the

remainder of the central binomial coefficients modulo a prime. This

sum has the value

(5.2.18) L2(n) =

n∑
k=0

(
n

k

)2

=

(
2n

n

)
,

and several proofs are presented below.

Proof 1. The right-hand side is the coefficient of xn in the expansion

of (1+x)2n. The computation of this coefficient from (1+x)n×(1+x)n

yields

(5.2.19)

(
2n

n

)
=

n∑
k=0

(
n

k

)(
n

n− k

)
.

The symmetry of the binomial coefficients gives the result.

Proof 2. The sum L2(n) is a special case of the next result, known

as the Vandermonde identity.

Theorem 5.2.3. Let n, m ∈ N. Then for 0 ≤ r ≤ n + m

(5.2.20)

r∑
k=0

(
n

k

)(
m

r − k

)
=

(
n + m

r

)
.

Proof. The first proof is analytic. Simply compare the coefficient of

xr in the identity (1 + x)n+m = (1 + x)n × (1 + x)m. �

Combinatorial proof. Choose r objects from a set of n red balls

and m blue balls. Ignoring the color produces the right-hand side

of (5.2.20). Now take the color into consideration and suppose you
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choose k red balls (with 0 ≤ k ≤ r). Then r − k blue balls are cho-

sen. Each index k represents a different configuration. The addition

principle now gives the left-hand side of (5.2.20). Taking r = n = m

in Theorem 5.2.3 gives (5.2.18).

Proof 3. The third proof is based on a recurrence satisfied by the

squares of the binomial coefficients. It is an elementary application

of Sister Celine’s method. The computations by hand become long

and tedious. The point of the next exercise is that problems of this

type should be done by using a symbolic package.

Exercise 5.2.4. Define F (n, k) =
(
n
k

)2
. Prove that Sister Celine’s

method shows that there is no recurrence of the form

a0,0F (n, k)+a1,0F (n+1, k)+a0,1F (n, k+1)+a1,1F (n+1, k+1) = 0,

where ai,j = ai,j(n). The change in notation for the unknowns is

motivated in order to keep track of the shifts; that is, ai,j is the

coefficient of F (n + i, k + j).

Now look for a recurrence of order 2, that is, a relation of the

form

(5.2.21)

2∑
i=0

2∑
j=0

ai,j(n)F (n + i, k + j) = 0

to prove that
(
n
k

)2
satisfies the recurrence

(5.2.22) n

(
n

k

)2

− (2n− 1)

{(
n− 1

k

)2

+

(
n− 1

k − 1

)2
}

+(n−1)

{(
n− 2

k

)2

− 2

(
n− 2

k − 1

)2

+

(
n− 2

k − 2

)2
}

= 0.

The last step in the derivation of a recurrence is to sum over all

values of k. This yields

(5.2.23) L2(n) =
2(2n− 1)

n
L2(n− 1).

The next exercise shows how to verify the closed form L2(n) =
(
2n
n

)
.
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Exercise 5.2.5. Define X2(n) by the relation L2(n) =
(
2n
n

)
X2(n).

Check that (5.2.23) becomes X2(n) = X2(n−1). The value X2(1) = 1

completes the proof of (5.2.18).

Note 5.2.6. The reader will find still one more proof of the identity

L2(n) =
(
2n
n

)
in the paper by S. Minsker [219]. This one uses basic

complex analysis.

Note 5.2.7. The code described in Note 5.2.2 now provides the re-

currence in automatic form. The command

(5.2.24) SC[Function[{n, k}, Binomial[n, k]2], L2[n,k],1,1 ]

gives

(5.2.25) { },

indicating that there is no recurrence of first order satisfed by the

summands in L2(n). The command

(5.2.26) SC[Function[{n, k}, Binomial[n,k]2], L2[n,k],2,2]

produces a recurrence for
(
n
k

)2
that leads to

(5.2.27) L2(n + 2) =
2(2n + 3)

n + 2
L2(n + 1),

which is equivalent to (5.2.23).

Note 5.2.8. In the case of the sum

L3(n) =

n∑
k=0

(
n

k

)3

,

the code above provides the recurrence

(n + 3)2(3n + 4)L3(n + 3)

= 2(9n3 + 57n2 + 116n + 74)L3(n + 2)

+ (45n3 + 240n2 + 419n + 240)L3(n + 1)

+ 8(3n3 + 13n2 + 17n + 7)L3(n).

The methods developed in A = B (see [247]) show, in automatic

manner, that this recurrence has no solution in the class of hyper-

geometric terms.
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This result about L3(n) is similar, in flavor, to the question of

solving algebraic equations. The basic question is to find a formula for

the roots of a polynomial equation in terms of the coefficients. Adding

the extra condition that the formula must be formed by a finite

number of radicals produces a negative answer for degree 5 or higher.

On the other hand, if one is willing to accept other types of formulas,

then there is one for any degree. This result, due to H. Umemura,

appears as an appendix to the book by D. Mumford [228]. The same

question may be asked about the sums Lj(n). Is there a class of

functions, larger than hypergeometric, that will provide closed-form

expressions for these sums?

Exercise 5.2.9. Explore divisibility properties of L3(n). In partic-

ular prove that L3(n) is always even and ν2(L3(n)) = 1 if and only

if n is a power of 2. This is similar to Theorem 2.7.6 for the sum

L2(n) =
(
2n
n

)
. Is the result valid for Lj(n) for all j ∈ N?

Exercise 5.2.10. Check that the sum L3(n) is never divisible by the

primes in the list L := {3, 11, 17, 19, 43}. Find the next prime in the

list. Is it possible to characterize these prime numbers?

5.3. Moment sums

The second type of sums discussed here is

(5.3.1) Mi,j(n) =

n∑
k=0

ki
(
n

k

)j

.

The special case M0,j(n) corresponds to the power sum Lj(n) dis-

cussed in the previous section.

5.3.1. Moments of the first power sum. The first example is

(5.3.2) Mi,1(n) =

n∑
k=0

ki
(
n

k

)
.

The binomial theorem is now employed to produce a recurrence for

these sums. The case i = 1 is analyzed first.
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Apply the Euler operator ϑ = x d
dx , defined in (4.2.20), to the

expansion of (1 + x)n to obtain

(5.3.3) ϑ(1 + x)n =

n∑
k=0

k

(
n

k

)
xk.

Then

(5.3.4) M1,1(n) = ϑ(1 + x)n evaluated at x = 1,

from which it follows that

(5.3.5)
n∑

k=1

k

(
n

k

)
= n2n−1.

Exercise 5.3.1. Give a combinatorial proof of this identity. Hint:

In a group of n students choose one committee in all possible ways and

in each such committee pick a president. The left-hand side comes

from choosing the committee first; the right-hand side comes from

choosing the president first.

A recurrence for the sums Mi,1 is presented next.

Theorem 5.3.2. The sum Mi,1(n) has the form

Mi,1(n) = n2n−iRi(1, n)

where Ri(x, n) is a polynomial satifying the recurrence

Ri(x, n) = [(n− i)x + 1]Ri−1(x, n) + x(1 + x)
d

dx
Ri−1(x, n)

and initial condition R1(x, n) = 1.

Proof. Applying the operator ϑ yields

(5.3.6) Mi,1(n) = ϑi(1 + x)n evaluated at x = 1.

Start with

(5.3.7) ϑ(1 + x)n = nx(1 + x)n−1

and define Ri(x, n) by the identity

(5.3.8) ϑi(1 + x)n = nx(1 + x)n−iRi(x, n).
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An easy induction argument shows that Ri(x, n) is a polynomial. The

recurrence for Ri also comes from this argument. Observe that

ϑi+1(1 + x)n = ϑ
(
nx(1 + x)n−iRi(x, n)

)
and use the definition of R to obtain the result. �

Note 5.3.3. The first few values of Ri(1, n) are given by

R1(1, n) = 1,

R2(1, n) = n + 1,

R3(1, n) = n(n + 3),

R4(1, n) = (n + 1)(n2 + 5n− 2),

R5(1, n) = n(n3 + 10n2 + 15n− 10).

Exercise 5.3.4. Prove that Ri(1, n) is divisible by n for i odd and

by n + 1 if i is even. Find other properties of Ri(x, n).

5.3.2. Moments of the second power sum. The sums

(5.3.9) Mi,2(n) =
n∑

k=0

ki
(
n

k

)2

are considered next. The first result employs (5.2.22) to produce a

recurrence for a polynomial associated to Mi,2(n).

Theorem 5.3.5. The polynomial

(5.3.10) Yn(x) :=

n∑
k=0

(
n

k

)2

xk

satisfies

(5.3.11) Yn+1(x) =
2n + 1

n + 1
(1 + x)Yn(x) − n

n + 1
(1 − x)2Yn−1(x).

The initial conditions are Y0(x) = 1, Y1(x) = 1 + x.

Proof. This follows directly by multiplying (5.2.22) by xk and sum-

ming over all values of k. The reduction employs reductions of the

form∑
k

(
n− 1

k − 1

)2

xk = x
∑
k

(
n− 1

k − 1

)2

xk−1 = x
∑
k

(
n− 1

k

)2

xk.

�

                

                                                                                                               



170 5. Binomial Sums

Note 5.3.6. The recurrence (5.3.11) will be employed to write Yn in

the form

(5.3.12) Yn(x) = (1 − x)nPn

(
1 + x

1 − x

)
,

where Pn is the Legendre polynomial described in Theorem 14.2.16.

Note 5.3.7. The sum Mi,2(n) is given in terms of the Euler operator

ϑ as

(5.3.13) Mi,2(n) = ϑi Yn(x) evaluated at x = 1.

Note 5.3.8. For fixed i ∈ N, Mathematica is able to evaluate these

sums symbolically. The resulting expressions grow in size and the

author has been unable to predict the hidden pattern. For example,

M10,2(n) =
n322n−10

√
π n!

(
2n− 11

2

)
! × Z(n)

where

Z(n) = n12 + 10n11 − 55n10 − 430n9 + 1419n8 + 4410n7 − 13545n6

− 5910n5 + 28380n4 − 12592n3 − 2256n2 + 2752n− 504.

Some symbolic calculations with the sum Mi,2(n) suggest the follow-

ing pattern: define

qj(n) =

{
n2 if j is even,
1
2n

3 if j is odd

and

Wj(n) :=
(n− 1)! (n− � j

2�)!
(2n− 2� j

2�)! qj(n)

n∑
k=0

kj
(
n

k

)2

.

Then

W1(n) =
1

n3
, W2(n) = 1, W3(n) =

n + 1

n
,

and for j ≥ 4, the expression Wj(n) is a polynomial in n of degree

3� j−2
2 �. The first few examples are

W4(n) = n3 + n2 − 3n− 1,

W5(n) = (n + 1)(n2 + 2n− 5),

W6(n) = n6 + 3n5 − 13n4 − 15n3 + 30n2 + 8n− 2,

W7(n) = (n + 1)(n5 + 5n4 − 15n3 − 35n2 + 70n− 14).
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Exercise 5.3.9. Find a recurrence for the function Wj(n) and prove

that Wj(n) is a polynomial. Discover and establish some of its prop-

erties.

5.4. Recurrences for powers of binomials

The recurrences for the sums

(5.4.1) Lj(n) =
n∑

k=0

(
n

k

)j

for j = 1 and j = 2 are elementary. In this section the case j ≥
3 is described. These sums appeared in two papers by J. Franel

[130, 131]. The interest for these sums was revived when A. van der

Poorten [296] described the proof by R. Apéry [25] that

(5.4.2) ζ(3) :=

∞∑
n=1

1

n3

is an irrational number. Apéry’s proof is based on the fact that

(5.4.3) un =
n∑

k=0

(
n

k

)2(
n + k

k

)2

satisfies the recurrence

(5.4.4) n3un − (34n3 − 51n2 + 27n− 5)un−1 + (n− 1)3un−2 = 0.

The irrationality of ζ(3) is discussed in detail in Section 16.10.

Exercise 5.4.1. Find a hypergeometric representation of the number

un in (5.4.3).

J. Franel showed in [130] that L3(n) satisfies the recurrence

(n + 1)2L3(n + 1) − (7n2 + 7n + 2)L3(n) − 8n2L3(n− 1) = 0

and, in [131], that L4(n) satisfies

(5.4.5) (n + 1)3L4(n + 1) − 2(6n3 + 9n2 + 5n + 1)L4(n)

− (4n + 1)(4n)(4n− 1)L4(n− 1) = 0.

The search for recurrences was continued by M. A. Perlstadt in [246]

who showed that L5(n) satisfies

b0(n)L5(n + 1) + b1(n)L5(n) + b2(n)L5(n− 1) + b3(n)L5(n− 2) = 0,
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with

b0(n) = (n + 1)4(55n2 − 77n + 28),

b1(n) = −1155n6 − 693n5 + 732n4 + 715n3 − 45n2 − 210n− 56,

b2(n) = −19415n6 + 27181n5−7453n4−3289n3 + 956n2 + 276n−96,

b3(n) = 32(n− 1)4(55n2 + 33n + 6).

A similar recurrence for L6(n) was described in [246] and an explana-

tion for this type of recurrences was provided in the paper by T. W.

Cusick [107]. The theory developed in [247] proves the existence of

these recurrences. The Mathematica package HolonomicFunctions,

written by C. Koutschan and accessible from his website, gives these

recurrences in automatic form: the commands

ctS[j−] := CreativeTelescoping[Binomial[n,k]∧j,S[k]-1,{S[n]}],
opS[j−] := ctS[j][[1,1]]

are used to obtain these recurrences. For instance, the input

opS[1]

yields the output

(5.4.6) Sn − 2

with Sn being the shift operator in the variable n. The output must

be interpreted as follows: the sum

(5.4.7) L1(n) :=

n∑
k=0

(
n

k

)

satisfies the recurrence

(5.4.8) L1(n + 1) − 2L1(n) = 0.

This is (5.2.16). The main contribution of the papers by T. W. Cusick

[107], M. A. Perlstadt [246], J. Yuan, Z. Lu, and A. L. Schmidt [316],

and others can now be obtained via this package. For example,

opS[4]

yields the Franel recurrence (5.4.5) as

(2 + n)3S2
n − 2(3 + 2n)(7 + 9n + 3n2)Sn − 4(1 + n)(3 + 4n)(5 + 4n).

Exercise 5.4.2. Experiment with the package HolonomicFunctions.
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5.5. Calkin’s identity

The literature contains many other finite sums involving binomial

coefficients. The question of closed-form evaluations is rather difficult.

This section considers the example

(5.5.1) An,i =

i∑
k=0

(
n

k

)
, for 0 ≤ i ≤ n,

for which there seems to be no elementary expression aside from

An,0 = 1 and An,n = 2n. This is sometimes called an incomplete bi-

nomial sum. The limits of summation are not natural, in the sense

that the summand does not vanish outside the range of summation.

Mathematica gives the evaluation

(5.5.2) An,i = 2n −
(

n

i + 1

)
2F1 [1, 1 + i− n; i + 2;−1] .

The hypergeometric function 2F1 appearing in the answer is de-

fined by the power series

(5.5.3) 2F1(a, b; c;x) =

∞∑
k=0

(a)k (b)k
(c)k k!

xk,

where (a)k is the Pochhammer symbol, already defined in (2.1.9)

by

(5.5.4) (a)k =

{
a(a + 1)(a + 2) · · · (a + k − 1) for k > 0,

1 if k = 0.

Exercise 5.5.1. Prove that the series 2F1 reduces to a finite sum if

a or b is a negative integer. Confirm the identity (5.5.2).

Exercise 5.5.2. Check that 2F1(a, b; c;x) satisfies the differential

equation

x(1 − x)
d2y

dx2
+ [c− (a + b + 1)x]

dy

dx
− ab y(x) = 0.

Note 5.5.3. Two variants of the sum An,i that do have closed-form

expressions are the alternating version

(5.5.5)
i∑

k=0

(−1)k
(
n

k

)
= (−1)i

(
n− 1

i

)
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and the sum obtained by summing by the top index in the binomial

instead of the bottom,

(5.5.6)

i∑
n=0

(
n

k

)
=

(
i + 1

k + 1

)
.

Both can be proved easily by induction using the identity

(5.5.7)

(
n

k

)
+

(
n

k + 1

)
=

(
n + 1

k + 1

)
.

The second sum is useful as another way of summing powers of inte-

gers. For example, from

(5.5.8) n2 = 2

(
n

2

)
+

(
n

1

)
,

it follows that

(5.5.9)
i∑

n=0

n2 = 2

(
i + 1

3

)
+

(
i + 1

2

)
=

1

6
i(i + 1)(2i + 1).

In the computation of the expected value of three independent

Bernoulli random variables, N. Calkin [88] needed an expression for

the sum of A3
n,i. His approach to this question is illustrated first in a

simple example.

Proposition 5.5.4. For n ∈ N,

n∑
i=0

An,i = (n + 2)2n−1.

Proof. The identity

(5.5.10) An,i + An,n−i = 2n +

(
n

i

)
is summed from i = 0 to n. This gives the result. �

Exercise 5.5.5. Establish the identity

n∑
i=0

(
n

i

)
An,i = 22n−1 +

1

2

(
2n

n

)
.

N. Calkin’s result is stated next.
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Theorem 5.5.6. Let n ∈ N. Then

(5.5.11)

n∑
i=0

A3
n,i = n23n−1 + 23n − 3n2n−2

(
2n

n

)
.

The proof is based on the fact that the left-hand side, denoted

by fn, satisfies the linear recurrence

(5.5.12) fn+1 − 8fn = 4 · 23n − 3 · 2n
(

2n

n

)
.

Solving this recurrence gives (5.5.11). The proof begins with some

preliminary results.

Lemma 5.5.7. For n ∈ N,

n∑
i=0

An,i

(
n

i

)2

= 2n−1

(
2n

n

)
+

1

2

n∑
i=0

(
n

i

)3

.

Proof. The symmetry of the binomial coefficients gives

n∑
i=0

An,i

(
n

i

)2

=
n∑

i=0

An,n−i

(
n

i

)2

.

Now compute the average of these two formulas and use (5.5.10) to

produce

n∑
i=0

An,i

(
n

i

)2

=
1

2

n∑
i=0

(
2n +

(
n

i

))(
n

i

)2

= 2n−1
n∑

i=0

(
n

i

)2

+
1

2

n∑
i=0

(
n

i

)3

.

This gives the result. �

Lemma 5.5.8. Let n ∈ N. Then

n∑
i=0

A2
n,i

(
n

i

)
=

1

3
23n + 2n−1

(
2n

n

)
+

1

6

n∑
i=0

(
n

i

)3

.
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Proof. The proof employs Lemma 5.5.7 in the expansion

A3
n,n =

n∑
i=0

(
A3

n,i −A3
n,i−1

)
=

n∑
i=0

[
A3

n,i −
(
An,i −

(
n

i

))3
]

= 3
n∑

i=0

A2
n,i

(
n

i

)
− 3 · 2n−1

(
2n

n

)
− 1

2

n∑
i=0

(
n

i

)3

.

The value An,n = 2n gives the result. �
Lemma 5.5.9. The sum fn satisfies the recurrence (5.5.12).

Proof. Start with

fn+1 =
n+1∑
i=0

(
i∑

k=0

(
n + 1

k

))3

=

(
n+1∑
k=0

(
n + 1

k

))3

+
n∑

i=0

(
i∑

k=0

(
n + 1

k

))3

= 23n+3 +
n∑

i=0

(
i∑

k=0

(
n

k

)
+

(
n

k − 1

))3

= 23n+3 +

n∑
i=0

(
2An,i −

(
n

i

))3

.

Expanding the last term yields

fn+1 = 23n+3+8

n∑
i=0

A3
n,i−12

n∑
i=0

A2
n,i

(
n

i

)
+6

n∑
i=0

An,i

(
n

i

)2

−
n∑

i=0

(
n

i

)3

.

Replacing the values from Lemma 5.5.7 and Lemma 5.5.8 gives the

result. �
Note 5.5.10. Another problem involving sums of cubes of binomial

coefficients was proposed by P. Barrucand [40]. Let

(5.5.13) Yn =
∑

i+j+k=n

n!2

i!2 j!2 k!2

be the sums of squares of trinomial coefficients of rank n, defined in

(2.11.1). The identity stated in [40] is

Yn =
n∑

i=0

(
n

i

)
L3(i),

                

                                                                                                               



5.5. Calkin’s identity 177

with L3(i) the sum of cubes of binomial coefficients, defined in (5.1.5).

One of the solutions to Barrucand’s problem involves the equivalent

formulation
n∑

k=0

(
n

k

) k∑
j=0

(
k

j

)3

=
n∑

k=0

(
n

k

)2(
2k

k

)
.

In turn, this can be expressed in terms of exponential generating

functions as ∞∑
n=0

Yn
xn

n!
= ex

∞∑
n=0

L3(n)
xn

n!
.

Exercise 5.5.11. Verify that the numbers Yn satisfy the recurrence

(n + 1)2Yn+1 = (10n2 + 10n + 3)Yn − 9n2Yn−1.

Examine arithmetic properties of these integers. For instance, Yn

is always divisible by 3. Experimental data suggests that Yn is not

divisble by the primes 2, 7, 13, 37, 61, 73.

Exercise 5.5.12. Find other examples of integers a, b such that

n∑
k=0

(
n

k

) k∑
j=0

(
k

j

)a

=

n∑
k=0

(
n

k

)b(
2k

k

)
.

Note 5.5.13. M. Hirschhorn [169] has provided systematic proofs

of the evaluations of these sums. W. Y. C. Chen and collabora-

tors [97] have developed an automatic procedure, named the Abel-

Zeilberger algorithm. This provides automatic proofs of the iden-

tities
n∑

i=0

An,i = (n + 2)2n−1,

n∑
i=0

A2
n,i = (n + 2)22n−1 − n

2

(
2n

n

)
,

n∑
i=0

A3
n,i = n23n−1 + 23n − 3n2n−2

(
2n

n

)
.

                

                                                                                                               



Chapter 6

Catalan Numbers

6.1. The placing of parentheses

The formation of an algebraic formula requires that symbols are sep-

arated by parentheses to indicate the order of operations. The rules

indicate that, if reading these parentheses from left to right, the num-

ber of left parentheses ( must be at least the number of right paren-

theses ) . In any formula, the number of symbols of each type must

be the same. This leads to a natural counting exercise:

Given 2n symbols, n of type ( and n of type ) , count the

number of ways to arrange them in such a way that, when reading

from left to right, the number of ( ’s is at least the number of ) ’s.

The number of ways to do this is called the Catalan number,

denoted here by Cn. For n = 0, this definition is extended by C0 = 1.

6.2. A recurrence

The definition of Cn given earlier implies that there are 2n symbols

consisting of n open parentheses and n closed ones. Assume that the

closing of the first open parenthesis is such that it contains 2k symbols

in between. Therefore the distribution of symbols has the form

(6.2.1) ( 2k symbols ) followed by 2n− 2k − 2 symbols.

179
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For example

( ( ( ) ) ( ) ) ( ( ) )

has n = 6 and k = 3.

This formulation of the placing of parentheses leads to a recur-

rence for the sequence Cn.

Theorem 6.2.1. The Catalan numbers Cn satisfy the recurrence

(6.2.2) Cn =

n−1∑
k=0

CkCn−1−k

for n ≥ 1.

The recurrence provides the first few values

C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42, C6 = 132.

The next exercise provides a second combinatorial description of

the Catalan numbers. The reader will find a very large number of

these interpretations in the first volume of R. Stanley’s treatise [279]

and in its second edition [280]. The next couple of exercises provide

two of them.

Exercise 6.2.2. Consider paths of length 2n on the lattice Z × Z

starting at the origin (0, 0) and ending on the horizontal axis. The

steps are of the form NE : (i, j) �→ (i + 1, j + 1), or SW : (i, j) �→
(i − 1, j − 1). Prove that Cn counts the number of such paths that

remain above the x-axis. Hint: Replace a left (right) parenthesis by

a NE (SW ) step.

Exercise 6.2.3. Prove that Cn counts the number of binary trees

with n nodes. A binary tree is one where every vertex has no

children, a left child, a right child, or both.

6.3. The generating function

The recurrence (6.2.2) is now employed to obtain an analytic expres-

sion for the generating function

(6.3.1) Ca(x) =

∞∑
n=0

Cnx
n.
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Theorem 6.3.1. The generating function for the Catalan numbers

is given by

(6.3.2) Ca(x) =
1 −

√
1 − 4x

2x
=

2

1 +
√

1 − 4x
.

In particular, y = Ca(x) satisfies xy2−y+1 = 0, so it is an algebraic

function of x.

Proof. Squaring (6.3.2) gives

Ca2(x) =

∞∑
j=0

Cjx
j ×

∞∑
k=0

Ckx
k

=
∑
j,k≥0

CjCkx
j+k.

Now let ν = j+k and sum over all possible values. Then the new index

ν ranges over N0 and, for fixed ν, the index j varies over 0 ≤ j ≤ ν.

Therefore

(6.3.3) Ca2(x) =

∞∑
ν=0

⎛
⎝ ν∑

j=0

CjCν−j

⎞
⎠xν .

The recurrence in Theorem 6.2.1 shows that this can be written as

Ca2(x) =

∞∑
ν=0

Cν+1x
ν

=
1

x
(Ca(x) − 1).

This gives the quadratic equation

(6.3.4) xCa2(x) − Ca(x) + 1 = 0

with solutions

(6.3.5) Ca(x) =
1 ±

√
1 − 4x

2x
.

The value C(0) = C0 = 1 shows that the minus sign is the correct

one. �

An explicit formula. The generating function

(6.3.6) Ca(x) =
∞∑

n=0

Cnx
n =

1 −
√

1 − 4x

2x
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is now employed to obtain an explicit formula for Cn.

Start with the generating function of the central binomial coeffi-

cients (2.7.5)

(6.3.7)

∞∑
n=0

(
2n

n

)
xn =

1√
1 − 4x

and integrate to obtain

(6.3.8)

∞∑
n=0

1

n + 1

(
2n

n

)
xn+1 + α = −1

2

√
1 − 4x,

where α is a constant of integration. Replacing x = 0 gives α = −1/2.

Then

2xCa(x) = 1 −
√

1 − 4x

= 1 + 2

( ∞∑
n=0

1

n + 1

(
2n

n

)
xn+1 − 1

2

)

= 2
∞∑
n=0

1

n + 1

(
2n

n

)
xn+1.

This yields

(6.3.9) Ca(x) =

∞∑
n=0

1

n + 1

(
2n

n

)
xn,

which gives an expression for Cn.

Theorem 6.3.2. The Catalan numbers are given by

(6.3.10) Cn =
1

n + 1

(
2n

n

)
.

This expression for the Catalan numbers can be used to provide

a different proof of the formula for the generating function.

Exercise 6.3.3. It is possible to derive the generating function for

Cn from (6.3.10). Check the details.

Exercise 6.3.4. The Catalan numbers Cn are positive integers be-

cause they count a legal placing of 2n parentheses. This also follows
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from the identity

(6.3.11) Cn =

(
2n

n

)
−
(

2n

n− 1

)
.

Check this formula.

Exercise 6.3.5. Use the explicit formula (6.3.10) for Cn to verify

the recurrence

(6.3.12) (n + 2)Cn+1 = 2(2n + 1)Cn.

Conversely, check that this implies (6.3.10). Use it to check that the

generating function Ca(x) satisfies the differential equation

(6.3.13) x(4x− 1)
dCa

dx
+ (2x− 1)Ca + 1 = 0,

with initial condition C(0) = 1. Solve this equation to find the gen-

erating function (6.3.2).

The first number-theoretical consequence of Catalan numbers is

presented next.

Corollary 6.3.6. Let n ∈ N. Then n + 1 divides
(
2n
n

)
.

Exercise 6.3.7. Give a direct proof.

Exercise 6.3.8. Describe the integers n ∈ N for which (n+1)2 divides(
2n
n

)
. This sequence starts with {5, 14, 27, 41, 44, 65, 76, 90}.

The next corollary is a reformulation of the fact that n+1 divides(
2n
n

)
. Recall that, for a prime p, the function sp(n) is the sum of the

digits of n written in base p.

Corollary 6.3.9. Let n ∈ N and let p be a prime. Then

(6.3.14) sp(n) + sp(n + 1) ≥ sp(2n) + 1.

Proof. The fact that n+ 1 divides
(
2n
n

)
implies that for every prime

p, the valuations must satisfy νp(n + 1) ≤ νp
((

2n
n

))
. The identity

n+1 = (n+1)!/n! and Legendre’s formula (2.6.2) give the result. �

Exercise 6.3.10. Use the binomial theorem to prove the identity

(6.3.15)
(1 − 4x)−1/2 − 1

2x
=

∞∑
n=0

(
2n + 1

n

)
xn.
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The next identity was proposed as a problem by R. Breusch [79]. The

solution presented here is due to M. T. L. Bizley [55].

Proposition 6.3.11. The Catalan numbers Cn satisfy

(6.3.16)
n∑

i=0

(
2n− 2i

n− i

)
Ci =

(
2n + 1

n

)
.

Proof. Observe that
(
2n−2i
n−i

)
is the coefficient of xn−i in the expan-

sion of (1−4x)−1/2. Thus the left-hand side is the coefficient of xn in

the expansion of Ca(x)/
√

1 − 4x, where Ca(x) is the generating func-

tion of the Catalan numbers. The result now follows from Exercise

6.3.10 and the identity

(6.3.17)
Ca(x)√
1 − 4x

=
(1 − 4x)−1/2 − 1

2x
.

�

Among the many identities for Catalan numbers an important

recurrence was established by J. Touchard [292]. The proof presented

here is due to J. Riordan [252].

Theorem 6.3.12. The Catalan numbers Cn satisfy

(6.3.18) Cn+1 =

�n/2�∑
k=0

(
n

2k

)
2n−2kCk.

Proof. Define Hn(x) to be the generating function that enumerates

the parentheses with n factors and k nests. Let cn,k be the coefficient

of xk in Hn(x). The function Hn(x) satisfies the recurrence

Hn(x) = H1(x)Hn−1(x)+ · · ·+Hj(x)Hn−j(x)+ · · ·+Hn−1(x)H1(x),

with initial conditions H1(x) = 1 and H2(x) = x. Introduce the

notation

G(x, y) =
∞∑

n=1

Hn(x)yn.
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The recurrence for Hn produces

∞∑
n=1

Hn(x)yn =
∞∑

n=1

H1(x)Hn−1(x)yn + · · · +
∞∑

n=1

Hj(x)Hn−j(x)yn

+ · · · +
∞∑

n=1

Hn−1(x)H1(x)yn.

Exercise 6.3.13. Check that the previous relation yields

(6.3.19) G(x, y) = y + (x− 1)y2 + G2(x, y).

Conclude that

(6.3.20) G(x, y) =
1

2

[
1 − (1 − 4y − 4(x− 1)y2)1/2

]
.

Prove that this can be written as

(6.3.21) G(x, y) = (y + (x− 1)y2)C(y + (x− 1)y2),

where C is the generating function for the Catalan numbers.

Expanding (6.3.21) gives

(6.3.22) Hn(x) =

∞∑
k=0

(
n− k

k

)
(x− 1)kCn−1−k.

Now differentiate (6.3.20) to obtain

[1 − 2G(x, y)]Gx(x, y) = y2,

[1 − 2G(x, y)]Gy(x, y) = 1 + 2(x− 1)y,

which gives

(6.3.23) [1 + 2(x− 1)y]Gx(x, y) = y2Gy(x, y).

Replace the expansion of G(x, y) to produce

(6.3.24) H ′
n(x) + 2(x− 1)H ′

n−1(x) = (n− 1)Hn−1(x).

This leads to the recurrence

(6.3.25) kcn,k = 2kcn−1,k + (n + 1 − 2k)cn−1,k−1.

Use the initial values

cn,0 = δn,1 =

{
1 if n = 0,

0 otherwise
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and cn,1 = 2n−2 and cn,2 =
(
n−2
2

)
2n−4 to obtain the expression

(6.3.26) cn,k =

(
n− 2

2k − 2

)
2n−2kCk−1.

It follows that

(6.3.27) Hn(x) =
m∑

k=1

(
n− 2

2k − 2

)
2n−2kCk−1x

k,

with m =
⌊
n
2

⌋
. In particular,

(6.3.28) Cn+1 = Hn+2(1) =

m∑
k=1

(
n

2k

)
2n−2kCk,

as claimed. �

6.4. Arithmetical properties

This section discusses arithmetical properties of Catalan numbers Cn.

The first exercise is elementary.

Exercise 6.4.1. Prove that Cn is prime only for C3 = 5. Hint:

Every prime divisor p of Cn satisfies p ≤ 2n.

The next question of interest is to describe the p-adic valuations

of Cn. The next exercise provides a simple argument that determines

the 2-adic valuation of Cn.

Exercise 6.4.2. Show that

(6.4.1) ν2(Cn) = s2(n) − ν2(n + 1),

where s2(n) is the number of ones in the binary expansion of n. Con-

clude that if n is even, then so is Cn and

ν2(C2n) = s2(n).

The discussion for odd indices is more elaborate. The indices for

which ν2(Cn) = 0 are simple to determine.

Theorem 6.4.3. The number Cn is odd if and only if n + 1 is a

power of 2.
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Proof. If n+ 1 = 2r, then n = 1+ 2 + 22 + · · ·+ 2r−1 and s2(n) = r.

The result follows from (6.4.1). To verify the converse, write n+ 1 =

2rm with m odd. Then

(6.4.2) m = 1 + a12 + a22
2 + · · · + at2

t

implies that

(6.4.3) n + 1 = 2rm = 2r + · · · + at · 2r+t

and

(6.4.4) n = 2r − 1 + a1 · 2r+1 + · · · + at · 2r+t.

Therefore

(6.4.5) s2(n) = r + a1 + a2 + · · · + at.

The condition s2(n) = ν2(n + 1) = r implies a1 = a2 = · · · = at = 0.

That is, m = 1 and n + 1 = 2r, as claimed. �

Exercise 6.4.4. For fixed j ∈ N, characterize the indices n for which

ν2(Cn) = j. The table of values of ν2(Cn), for n ≥ 1, begins as

{0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 1, 2, 2, 3, 0, 1}
so, for instance, the list of indices n for which ν2(Cn) = 2 starts as

{6, 10, 12, 13, 18, 20, 21, 24, 25, 27, 34, 36, 37, 40, 41, 43, 48, 49} .
Figure 6.4.1 shows the values of this list up to n ≤ 500000.

100 200 300 400 500 600
n

20000

40000

60000

80000

100000

Figure 6.4.1. Indices where the 2-adic valuation of Cn is 2.
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Proof. The second proof of Theorem 6.4.3 is combinatorial. (The

author wishes to thank B. Sagan for providing the argument.) Assume

that n = 2k − 1 and recall from Exercise 6.2.3 that Cn counts binary

trees with n nodes. Note that the tree Tk which has all of its leaves

at depth k has n = 2k − 1 nodes (the depth of a vertex v being

the number of nodes on the path from the root to v). If T is not

Tk, then there must be some vertex v in T such that the left and

right subtrees of v are not isomorphic. Among all such v, consider

those at the greatest depth, and among those pick the one which is

leftmost. Map T to T ′ where T ′ is obtained by interchanging the left

and right subtrees of v. This map is clearly an involution since the

choice of v makes one choose the same vertex when applying the map

to T ′. All trees except Tk have been paired up. This completes the

argument. �

Note 6.4.5. A partial combinatorial argument of the general result

(6.4.1) appears in the paper by E. Deutsch and B. Sagan [110].

Exercise 6.4.6. This exercise further explores properties of the func-

tion ν2(Cn). The data begins with

ν2(Cn) = {0, 0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 1, 2, 2, 3, 0, 1, 1}.

Now partition the positive integers N into blocks of length 7 defined

by

cn = {ν2(Cj) : 8n ≤ j ≤ 8n + 6},
plus the sequence of indices j ≡ 7 mod 8. Then

c0 = {0, 0, 1, 0, 1, 1, 2}

and

c1 = {1, 1, 2, 1, 2, 2, 3}
have the property that c1 − c0 is a constant sequence (consisting of

all 1’s). This property seems to extend to all n ∈ N. Define

yn := the common term in the sequence cn − c0.

The exercise requests a proof that the sequence {yn : n ∈ N} is given

by 1+ν2(Cn). On the other hand, the sequence of indices j ≡ 7 mod 8

satisfies

(6.4.6) ν2(C8n+7) = ν2(Cn).
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It would be interesting to have an explanation of this phenomenon.

Exercise 6.4.7. Let p be a prime. Define the numbers ak by the

expansion

n + 1 =

r∑
k=0

akp
k.

Prove that

ν2(Cn) = |{ak = 1}| − 1,

and for p > 2

νp(Cn) =
∣∣{ak > 1

2 (p + 1)
}∣∣− 1.

Hint: Use Kummer’s formula in Theorem 2.6.7.

Exercise 6.4.8. This exercise outlines some properties of the 3-adic

valuation of Catalan numbers. Prove first that

ν3(C3n−1) = ν3(C3n) = ν3(C3n+1).

Therefore, ν3(Cn) is determined by the function f(n) := ν3(C3n).

Show that

f(3n) = f(3n + 1) = f(n),

which leaves f(3n + 2) for consideration. The sequence 3n + 2 splits

modulo 9 into 9n + 2, 9n + 5, and 9n + 8. Prove that

f(9n + 2) = f(n) + 1,

f(9n + 5) = f(3n + 2) + 1,

and

f(9n + 8) = f(3n + 2) + 1.

Conclude that every sequence of the form {ν3(C3an+b) : n ∈ N}, with

n ∈ N and 0 ≤ b < 3a, is a linear combination of the sequences ν3(3n)

and ν3(C3n+2). This states that the sequence ν3(Cn) is 3-regular in

the sense of Note 3.5.14. Describe this result in terms of a valuation

tree.
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6.5. An integral expression

The Hausdorff moment problem asks for necessary and sufficient

conditions on the numbers μn in order that there exists a distribution

function Φ on [0, 1] such that

(6.5.1) μn =

∫ 1

0

xndΦ(x)

for all n ∈ N0. The reader can think of Φ in the form ϕ(x) dx. The

first example of the function ϕ appeared in Exercise 2.11.10 in the

case of the central binomial coefficients. The corresponding solution

for the Catalan numbers appeared in the paper by K. A. Penson and

J.-M. Sixdeniers [245]. This example connects Catalan numbers to

Wallis’ formula, one of the earliest integral evaluations.

Theorem 6.5.1. The function

(6.5.2) ϕ(x) =
1

π

√
1 − x

x

satisfies

(6.5.3) Zn :=

∫ 1

0

xnϕ(x) dx =
Cn

22n+1
.

Proof. The change of variables x = cos2 t yields

(6.5.4) Zn =
2

π

∫ π/2

0

cos2n t sin2 t dt.

Introduce the notation

(6.5.5) Wn =

∫ π/2

0

cos2n t dt

to write the previous step as

(6.5.6) Zn =
22n+2

π
(Wn −Wn+1) .

The result now follows from Wallis’ formula:

(6.5.7) Wn =
π

22n+1

(
2n

n

)
.

Chapter 9 is dedicated to the many proofs of (6.5.7) available in the

literature. �

                

                                                                                                               



Chapter 7

The Stirling Numbers
of the Second Kind

7.1. Introduction

This chapter considers the Stirling numbers of the second kind

with special emphasis on their arithmetic properties. The other kind

of Stirling numbers, those of the first kind, are not considered here.

Definition 7.1.1. Let n, k ≥ 1. The Stirling numbers of the

second kind S(n, k) count the ways to divide a set of n objects into

k nonempty subsets.

Note 7.1.2. From the definition it is clear that S(n, k) = 0 if n < k.

The extension

S(0, k) =

{
1 if k = 0,

0 if k > 0

defines S(0, k).

Example 7.1.3. The number S(n, 1) = 1 since the only option is

to place all the objects into the single subset. Similarly, S(n, n) = 1

since then you must place each object in a different subset.

191
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Example 7.1.4. The list

{{1, 2, 3}, {4}}, {{1, 2, 4}, {3}}, {{1, 3, 4}, {2}}, {{2, 3, 4}, {1}},

{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}}
shows that S(4, 2) = 7.

Exercise 7.1.5. Give a combinatorial proof of the value

(7.1.1) S(n, n− 1) =

(
n

2

)
.

Exercise 7.1.6. Prove that

(7.1.2) S(n, 2) = 2n−1 − 1.

7.2. A recurrence

In the partition of {1, 2, . . . , n} into k nonempty subsets, there are

cases in which n appears as a singleton and others in which n is

part of one of the k nonempty subsets with more than one element.

In the first case, the partition is {n} together with a partition of

{1, 2, . . . , n−1} into k−1 nonempty parts. There are S(n−1, k−1)

of them. In the second case, taking n out of the partition yields a

collection of k nonempty subsets partitioning {1, 2, . . . , n−1}. There

are S(n− 1, k) of them. The number n can be placed back into any

of the k parts. This proves the next result.

Theorem 7.2.1. The Stirling numbers of the second kind satisfy the

recurrence

(7.2.1) S(n, k) = S(n− 1, k − 1) + kS(n− 1, k)

for n ≥ 2.

Exercise 7.2.2. The theorem and S(n, 1) = n state that

(7.2.2) S(n, 2) − 2S(n− 1, 2) = S(n− 1, 1) = 1.

Solve this recurrence to confirm the value S(n, 2) = 2n−1−1 stated in

Exercise 7.1.6. Discuss the consistency of the value S(0, k) and this

recurrence.
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Exercise 7.2.3. Let f(x) = 1/(1 + ex). Prove that

(7.2.3) f (n)(x) =

n+1∑
k=1

a(n, k)

(1 + ex)k

where

(7.2.4) a(n, k) = (−1)n+k+1(k − 1)!S(n + 1, k).

Hint: Differentiate (7.2.3) to obtain a recurrence for a(n, k).

Exercise 7.2.4. Use the recurrence (7.2.1) to establish the generat-

ing function

(7.2.5)
∞∑

n=0

S(n, k)xn =
xk

(1 − x)(1 − 2x)(1 − 3x) · · · (1 − kx)

for the Stirling numbers S(n, k).

Exercise 7.2.5. Iterate the recurrence (7.2.1) to obtain the identity

S(n + j, k) =

j∑
i=0

pj,i(k)S(n, k − j + i)

where the pj,i(k) are polynomials in k of degree i that satisfy the

recurrence

pj+1,i(k) = pj,i(k) + (k − j + i− 1)pj,i−1(k)

and have the initial conditions pj,0(k) = 1 and pj,j(k) = kj . Write

the polynomials pj,i in terms of the falling factorials

(k)r = k(k − 1) · · · (k − r + 1),

in the form

pj,i(k) =
i∑

r=0

cj,i(r)(k)r,

and check the recurrence

cj+1,i(r) = cj,i(r) + (r − j + i− 1)cj,i−1(r) + cj,i−1(r).

The next theorem presents a combinatorial proof of a different

type of recurrence satisfied by the Stirling numbers.
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Theorem 7.2.6. The Stirling numbers S(n, k) satisfy the recurrence

(7.2.6) k!S(n, k) = kn −
k−1∑
i=1

k(k − 1) · · · (k − i + 1)S(n, i).

Proof. Suppose there are n balls (numbered 1 to n) and k boxes

(numbered 1 to k). Let t(n, k) be the number of ways to place the

n balls into the k boxes in such a way that no box is empty. Then

t(n, k) = k!S(n, k) and t(n, 1) = 1. Think about this. Assume that

t(n, 1), . . . , t(n, k − 1) is known. There are kn ways to place the n

balls into the k boxes if the requirement that no box should be empty

is dropped. Now, for each i in the range 1 ≤ i ≤ k − 1, there are
(
k
i

)
configurations for which exactly i boxes are empty, and for each such

configuration, there are t(n, k − i) ways to place the n balls into the

other k − i boxes. Then

t(n, k) = kn −
k−1∑
i=1

(
k

i

)
t(n, k − 1).

Multiply by k! to get the stated recurrence. �

Exercise 7.2.7. Use (7.2.6) to confirm the value S(n, 2) = 2n−1 − 1

given as Exercise 7.1.6.

7.3. An explicit formula

This section produces an explicit formula for S(n, k). The proofs

employ the inclusion-exclusion principle . A short explanation is

presented first. Consider a collection of sets {Aj : 1 ≤ j ≤ n} and

denote the cardinality of Aj by |Aj |. If the sets are disjoint, that is,

Ai ∩ Aj = ∅ for i �= j, then

(7.3.1)

∣∣∣∣∣∣
n⋃

j=1

Aj

∣∣∣∣∣∣ =
n∑

j=1

|Aj |.

The proof is clear: every element in the union of the sets belongs to

a unique set Aj . Thus, in (7.3.1), every element is counted exactly

once. The inclusion-exclusion principle, stated below, describes how

to count unions in case the sets have elements in common.
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Theorem 7.3.1. Let {Aj : 1 ≤ j ≤ n} be a collection of sets. Then∣∣∣∣∣∣
n⋃

j=1

Aj

∣∣∣∣∣∣ =
∑
i1

|Ai1 | −
∑
i1<i2

|Ai1 ∩Ai2 | +
∑

i1<i2<i3

|Ai1 ∩ Ai2 ∩ Ai3 |

+ · · · + (−1)n−1|A1 ∩ A2 ∩ · · ·An|,
where the indices ik run over {1, . . . , n}.

Proof. Assume x is an element in the union of the sets Ai. Let k be

the number of sets Ai that contain x. It may be assumed that x is

in the sets A1, A2, . . . , Ak. The element x contributes 1 to the count

on the left. Its contribution to the right is

(7.3.2) k −
(
k

2

)
+

(
k

3

)
− · · · + (−1)k−1

(
k

k

)
=

k∑
j=1

(−1)j−1

(
k

j

)
.

The binomial theorem gives

(7.3.3)

k∑
j=0

(−1)j
(
k

j

)
= (1 − 1)k = 0.

This gives

k∑
j=1

(−1)j−1

(
k

j

)
= −

k∑
j=0

(−1)j
(
k

j

)
+ 1 = 1.

The formula has been established. �

The next theorem produces a closed-form formula for S(n, k).

Theorem 7.3.2. The Stirling numbers of the second kind are given

by

(7.3.4) S(n, k) =
1

k!

k−1∑
j=0

(−1)j
(
k

j

)
(k − j)n.

Proof. The proof is obtained by counting in two different forms the

number of functions from A = {1, 2, . . . , n} onto B = {1, 2, . . . , k}.
The first form involves the Stirling numbers and the second form

employs the inclusion-exclusion principle.

To produce an onto function f , partition the set A into k disjoint

nonempty parts Ci and then define f by f(x) = i for x ∈ Ci. This can
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be done in S(n, k) ways. Each such partition generates k! × S(n, k)

onto functions by permuting the k sets Ci. It is clear that every onto

function must be of this form. It follows that

(7.3.5) |f : A → B that are onto | = k! × S(n, k).

Observe that this statement is also valid for k > n, since both sides

vanish in this case.

The inclusion-exclusion principle is now employed to produce a

second count of the onto functions f : A → B. Let X be the set of

all functions f : A → B. It is clear that |X| = kn. The value of the

image for each element in A has exactly k choices. Now, for each i in

the range 1 ≤ i ≤ k, define

(7.3.6) Xi = {f : A → B : f omits i in its range.}.
Then

|f : A → B that are onto | =

∣∣∣∣∣
k⋂

i=1

(X −Xi)

∣∣∣∣∣
=

∣∣∣∣∣X −
k⋃

i=1

Xi

∣∣∣∣∣
= kn −

∣∣∣∣∣
k⋃

i=1

Xi

∣∣∣∣∣ .
Now, with the notation [n] = {1, 2, . . . , n}, observe that

|Xi| = |{f : [n] → [k − 1]}| = (k − 1)n.

Similarly

|Xi1 ∩Xi2 ∩ · · · ∩Xij | = |{f : [n] → [k − j]}| =

(
k

j

)
(k − j)n.

The inclusion-exclusion principle gives

|f : A → B that are onto | = kn −

⎛
⎝ k∑

j=1

(−1)j−1

(
k

j

)
(k − j)n

⎞
⎠

=
k∑

j=0

(−1)j
(
k

j

)
(k − j)n.

Comparing both computations gives the result. �
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Exercise 7.3.3. Confirm the values

(7.3.7) S(n, 3) =
1

2
(3n−1 − 2n + 1)

and

(7.3.8) S(n, 4) =
1

6
(3 · 2n−1 − 3n + 22n−2 − 1).

Exercise 7.3.4. Use the result of Theorem 7.3.2 to check that the

numbers a(n, k) in Exercise 7.2.3 can be written as

(7.3.9) a(n, k) = (−1)n
k−1∑
j=0

(−1)j
(
k − 1

j

)
(j + 1)n.

7.4. The valuations of Stirling numbers

This section discusses the sequence {ν2(S(n, k)) : n ≥ k} for k fixed.

The cases k = 1, 2 are elementary since S(n, 1) = 1 and S(n, 2) =

2n − 1. Therefore ν2(S(n, k)) = 0 for these values of k.

The next theorem deals with k = 3.

Theorem 7.4.1. The 2-adic valuations of the Stirling numbers of

order 3

(7.4.1) S(n, 3) =
1

2
(3n−1 − 2n + 1), for n ≥ 3,

are given by

(7.4.2) ν2(S(n, 3)) =

{
0 if n is odd,

1 if n is even.

Proof. The explicit formula comes from Exercise 7.3.3. Iterate the

recurrence

(7.4.3) S(n, 3) = S(n− 1, 2) + 3S(n− 1, 3)

to produce

(7.4.4) S(n, 3) = 2n−2 − 1 +
n−3∑
k=1

3k(2n−k−2 − 1), for n ≥ 3.

This shows that if n is odd, then S(n, 3) is odd. Thus ν2(S(n, 3)) = 0.
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To treat the case of n even, iterate (7.4.3) to obtain

(7.4.5) S(n, 3) = 2n−2 + 3 · 2n−3 − 4 + 9S(n− 2, 3).

As an inductive step write S(n− 2, 3) = 2Tn−2 with Tn−2 odd. Then

(7.4.6)
1

2
S(n, 3) = 2n−3 + 3 · 2n−4 − 2 + 9Tn−2

is an odd integer. This completes the induction. �

The case of k = 4 can be decided in a similar manner.

Theorem 7.4.2. The Stirling numbers of order 4

(7.4.7) S(n, 4) =
1

6
(4n−1 − 3n + 3 · 2n−1 − 1)

satisfy

(7.4.8) ν2(S(n, 4)) = 1 − ν2(S(n, 3)) =

{
1 if n is odd,

0 if n is even.

Proof. The expression for S(n, 4) comes from Theorem 7.3.2. The

recurrence (7.2.1) gives

(7.4.9) S(n, 4) = S(n− 1, 3) + 4S(n− 1, 4).

For n even, the value S(n−1, 3) is odd, so that S(n, 4) is odd. There-

fore ν2(S(n, 4)) = 0. For n odd, S(n, 4) is even since S(n − 1, 3) is

even. The relation (7.4.9) is now written as

(7.4.10)
1

2
S(n, 4) =

1

2
S(n− 1, 3) + 2S(n− 1, 4).

The value ν2(S(n− 1, 3)) = 1 shows that the right-hand side is odd,

yielding ν2(S(n, 4)) = 1. �

7.4.1. The valuation of S(n, 5). The first nontrivial case occurs

when k = 5. The sequence of values for ν2(S(n, 5)) is computed by

the formula

(7.4.11) S(n, 5) =
1

24
(5n−1 − 4n + 2 · 3n − 2n+1 + 1), n ≥ 5,

coming from Theorem 7.3.2 or using the recurrence

(7.4.12) S(n, 5) = S(n− 1, 4) + 5S(n− 1, 5).
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The first few values of ν2(S(n, 5)) are given by

ν2(S(n, 5)) = {0, 0, 2, 1, 0, 0, 1, 3, 0, 0, 3, 1, 0, 0, 1, 2},
and the pattern, shown in Figure 7.4.1, is now not easy to predict.

50 100 150 200
n

2

4

6

8

10

Figure 7.4.1. The 2-adic valuation of S(n, 5).

The analysis of the valuation ν2(S(n, 5)) begins with some ele-

mentary observations.

Lemma 7.4.3. The Stirling numbers S(n, 5) satisfy

(7.4.13) ν2(S(4n + 1, 5)) = ν2(S(4n + 2, 5)) = 0.

Proof. The recurrence (7.4.12) yields

S(4n + 1, 5) = S(4n, 4) + 5S(4n− 1, 4) + 52S(4n− 2, 4)

+53S(4n− 3, 4) + 54S(4n− 3, 5)

and the result for ν2(S(4n+1, 5)) follows by induction using the parity

(7.4.14) S(n, 4) ≡
{

1 mod 2 if n ≡ 0 mod 2,

0 mod 2 if n ≡ 1 mod 2.

The case of S(4n + 2, 5) is similar. �

It remains to describe ν2(S(4n, 5)) and ν2(S(4n+3, 5)). The first

few values of ν2(S(4n, 5)), for n ≥ 2, are given by

ν2(S(4n, 5)) = {1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1}.
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The next step in the analysis of ν2(S(n, 5)) is to show that every

other entry in the values of ν2(S(4n, 5)) is 1.

Lemma 7.4.4. The Stirling numbers S(n, 5) satisfy

ν2(S(8n, 5)) = 1 and ν2(S(8n + 4, 5)) ≥ 2

and also

ν2(S(8n + 3, 5)) = 1 and ν2(S(8n + 7, 5)) ≥ 2.

Proof. The identity

24S(8n, 5) = 58n−1 − 48n + 2 · 38n − 28n+1 + 1

is considered modulo 32. Using 58 ≡ 1 and 57 ≡ 13, it follows that

58n−1 ≡ 13. Also, 48n ≡ 0 and 38n ≡ 1. Therefore

58n−1 − 48n + 2 · 38n − 28n+1 + 1 ≡ 16 mod 32.

This gives 24S(8n, 5) = 32t+16 for some t ∈ N leading to 3S(8n, 5) =

2(2t + 1). Therefore ν2S(8n, 5) = 1.

The valuation of S(8n + 4, 5) comes from the relation

24S(8n + 4, 5) = 58n+3 − 48n+4 + 2 · 38n+4 − 28n+5 + 1

modulo 32. Proceeding as before, it follows that 24S(8n + 4, 5) ≡
0 mod 32. Therefore 24S(8n+4, 5) = 32t for some t ∈ N. This yields

ν2(S(8n+ 4, 5)) ≥ 2. The proof of the remaining cases is similar. �

Exercise 7.4.5. Give proofs of Theorems 7.4.1 and 7.4.2 in the style

of the proof of Lemma 7.4.4.

Note 7.4.6. The results described in Lemmas 7.4.3 and 7.4.4 can be

described in terms of a tree similar to the example in Note 1.7.3. The

procedure described here generates the valuation tree associated

to the p-adic valuation of a sequence {xn : n ∈ N}. Each of these

trees has a branching number that depends on the prime p and the

sequence {xn}. The branching number is denoted by b = b(p;xn).

For clarity, in the construction described next, the prime p and the

branching number b will be assumed to be equal to 2.

The construction of the tree begins with a root vertex. This

vertex represents the whole set N and it forms the 0th level of the

tree. Now assume that the kth level has been formed. This level
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represents some of the modular classes modulo 2k. The transition

to the next level is achieved by the following rules: let n0 be the

label of a vertex at the kth level. The label indicates that the vertex

corresponds to the class

an0,k = {n ∈ N : n ≡ n0 mod 2k}.

Then the following question is asked:

Does the valuation {ν2(xn) : n ∈ an0,k} reduce to a single value?

If the answer is yes, the vertex n0 is declared to be a terminal vertex

and the common value of the valuation is attached to n0. If the answer

is no, then the vertex n0 is split into two classes modulo 2k+1, namely,

{n ∈ N : n ≡ n0 mod 2k+1} and {n ∈ N : n ≡ n0 + 2k mod 2k+1}.

The vertices produced by this splitting form the (k + 1)st level.

This process is now applied to the sequence xn = S(n, 5) and the

prime p = 2. The valuation tree starts with a root vertex representing

all N. At this point, the question is whether {ν2(S(n, 5)) : n ∈ N}
is independent of n. The values S(5, 5) = 1 and S(7, 5) = 140 =

22 · 5 · 7 show that ν2(S(5, 5)) = 0 and ν2(S(7, 5)) = 2. Therefore the

valuation ν2(S(n, 5)) depends on n and the answer is no. This leads

to a splitting of the root vertex into two vertices: one labeled 0, which

represents the class a0,1 = {n ∈ N : n ≡ 0 mod 2}, and the second

one, labeled 1, representing the class a1,1 = {n ∈ N : n ≡ 1 mod 2}.
These two classes form the first level. The reader can check that each

of these two classes do not have a constant 2-adic valuation and the

process continues to the next level.

2n 2n

Figure 7.4.2. The first level of the tree for S(n, 5).
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The class a0,1 now splits into

a0,2 = {n ∈ N : n ≡ 0 mod 22} and a2,2 = {n ∈ N : n ≡ 2 mod 22}
and a1,1 splits into

a1,2 = {n ∈ N : n ≡ 1 mod 22} and a3,2 = {n ∈ N : n ≡ 3 mod 22}.
The construction of the first two levels is depicted in Figure 7.4.3.

2n 2n−1

4n 4n+2 4n+1 4n+3

0 0

Figure 7.4.3. The first two levels of the tree for S(n, 5)

2n 2n

4n 4n 4n 4n

8n 8n 8n 8n

0 0

1 1

+

+ + +

+ +

Figure 7.4.4. The first three levels of the tree for S(n, 5).

The vertices marked with 4n+ 1 and 4n+ 2 terminate at level 2.

These correspond to the classes a1,2 and a2,2, respectively. They are

both marked with 0, according to Lemma 7.4.3. The vertices marked

4n and 4n+3, corresponding to the classes a0,2 and a3,2, respectively,

are split to produce the vertices 8n, 8n+4 and 8n+3, 8n+7. These

form the third level. Lemma 7.4.4 states that the vertices labeled
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8n and 8n+3 terminate at this level and 8n+4, 8n+7 split into the

four vertices 16n, 16n+8, 16n+7, 16n+15. These vertices form the

fourth level.

0 0

1 1

2 2

3 3

4 4

5 5

6 6

Figure 7.4.5. The continuation of the tree for S(n, 5).

The main result of T. Amdeberhan, D. Manna, and V. Moll [10]

is stated next.

Theorem 7.4.7. The valuation tree associated to the 2-adic valuation

of S(n, 5) has, at every level starting with the third one, four vertices.

At each level, two of these vertices terminate and the other two split

to form the next level.

Conjecture 7.4.8. The same type of behavior occurs for the tree

associated to S(n, k) for k ≥ 6. The corresponding tree begins as

before, with a double splitting. At some point this process changes

and half of the vertices terminate and the other half split. Eventually

the number of vertices per level remains constant.

Note 7.4.9. For k fixed, the sequence ν2(S(n, k)) offers a wide variety

of profiles. The next sequence of figures offers a sample of them. It is

unknown how to predict the form of the graph in terms of the fixed

index k.
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50 100 150 200
n

2

4

6

8

10

0 1

0 2 1 3

0 4 2 6 1 5 3 7

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

0 0 0 0 1 1 1 1

Figure 7.4.6. The 2-adic valuation of S(n, 20).
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100 200 300 400 500
n

1
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4

5

6

100 200 300 400 500
n
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4

6

8

10

12

Figure 7.4.7. The 2-adic valuation of S(n, 33) and S(n, 48).
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100 200 300 400 500
n

2

4

6

8

100 200 300 400 500
n

5

10

15

20

Figure 7.4.8. The 2-adic valuation of S(n, 99) and S(n, 128).
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100 200 300 400 500
n

2
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100 200 300 400 500
n
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8
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12

14

Figure 7.4.9. The 2-adic valuation of S(n, 194) and S(n, 215).

Note 7.4.10. There are many naturally occuring sequences whose

p-adic valuations are capable of a complete analytic description. The
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case of the ASM-numbers, defined in (1.3.10) by

(7.4.15) An =

n−1∏
j=0

(3j + 1)!

(n + j)!
,

has been described completely. Figure 7.4.10 shows the 2-adic valua-

tion of An.

50 100 150 200 250 300
n

20

40

60

80

Figure 7.4.10. The 2-adic valuation of ASM-numbers.

The sequence An counts a famous class of matrices. An alter-

nating sign matrix is an array of 0, 1, and −1 such that the entries

of each row and column add up to 1 and the nonzero entries of a

given row/column alternate. After a fascinating sequence of events,

D. Zeilberger [321] proved that the numbers of such matrices is given

by (7.4.15). In particular, the numbers An are integers—not an ob-

vious fact.

The story behind this formula and its many combinatorial inter-

pretations are given in D. Bressoud’s book [78].

The first step in the analysis of ν2(An) was to characterize the

indices n for which An is odd. These are the values where the graph

in Figure 7.4.10 achieves its minimum. This sequence of indices starts

as

(7.4.16) 1, 3, 5, 11, 21, 43, 85, 171, 341, 683,
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and by looking into Sloane’s Encyclopedia of Integer Sequences,

we see that they were recognized as the Jacobsthal numbers, with

label A001045. These numbers satisfy the recurrence

Jn = Jn−1 + 2Jn−2, J0 = 1, J1 = 1.

The many interpretations of these numbers include the number of

ways to tile a 3 × (n − 1) rectangle with squares of size 1 or 2 and

also as the numerators in the reduced fraction

(7.4.17)
1

2
− 1

4
+

1

8
− 1

16
+

1

32
− · · · .

The complete description of the p-adic valuation of ASM-numbers

can be found in the paper by E. Beyerstedt, V. Moll, and X. Sun [53]

as well as in the paper by V. Moll and X. Sun [286].

The main result is an expression for νp(An) similar to the content

of Exercise 2.6.3, where the classical series for the valuation νp(n) is

expressed as a series in which each summand is a periodic function of

period pj .

Theorem 7.4.11. Let n ∈ N and let p ≥ 5 be a prime. Define

Perj,p(n) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if 0 ≤ n ≤
⌊
pj+1
3

⌋
,

n−
⌊
pj+1

3

⌋
if
⌊
pj+1
3

⌋
+ 1 ≤ n ≤ pj−1

2 ,⌊
2pj+1

3

⌋
− n if pj+1

2 ≤ n ≤
⌊
2pj+1

3

⌋
,

0 if
⌊
2pj+1

3

⌋
+ 1 ≤ n ≤ pj − 1.

Then

νp(An) =

∞∑
j=1

Perj,p
(
n mod pj

)
.

Each summand in the series is of period pj.

Note 7.4.12. The arithmetical statements about An can be extended

to the sequence

An(q) :=
n−1∏
j=0

(qj + 1)!

(n + j)!
,

for q ∈ N with q ≥ 3. The case of q = 3 corresponds to the ASM-

numbers. An interesting question is to find a combinatorial interpre-

tation of An(q); that is, what do these numbers count?

                

                                                                                                               



Chapter 8

Rational Functions

8.1. Introduction

The first type of elements in the class of elementary functions is

the polynomials, described in Chapter 4. This chapter considers

a second fundamental class of elementary functions: the rational

functions.

Definition 8.1.1. A rational function is the quotient of two poly-

nomials, that is, an expression of the form

(8.1.1) R(x) =
A(x)

B(x)
=

anx
n + an−1x

n−1 + · · · + a1x + a0
bmxm + bm−1xm−1 + · · · + b1x + b0

.

The parameters ai will be called the numerator coefficients of R

and the bi will be called the denominator coefficients of R. The

collection

{an, an−1, . . . , a0; bm, bm−1, . . . , b0}
is the coefficients of R.

In the form above, it may be assumed that the polynomials A

and B are relatively prime; that is, common factors are canceled. As

in the case of polynomials, the coefficients are taken from one of the

number systems described in Chapter 1. This determines the name

of the function. For instance the term a real rational functions

refers to the situation when ai, bj ∈ R.

211
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Now assume that R is a complex rational function. Factoring the

polynomials A and B over C, the function R in (8.1.1) can be written

in the form

(8.1.2) R(x) =
A(x)

B(x)
=

an(x− z1)
n1(x− z2)

n2 · · · (x− zr)
nr

bm(x− w1)m1(x− w2)m2 · · · (x− ws)ms
.

Definition 8.1.2. The numbers zj , where the numerator of R van-

ishes, are called the zeros of R and the integer nj is the multiplicity

of zj . The numbers wj , where the denominator of R vanishes, are

called the poles of R and the numbers mj are the multiplicity of wj .

A simple pole is a pole of mutiplicity 1.

Note 8.1.3. The factorization of the rational function (8.1.2) has

a traditional normalization in the case of real coefficients. In this

situation, the poles wj come in complex conjugate pairs. Moreover,

the multiplicity of wj is the same as that of its conjugate. Then, if

wj = u + iv, the corresponding term is written as

(8.1.3) (x− u− iv)(x− u + iv) = x2 − 2ux + u2 + v2.

There are many interesting classes of rational functions through-

out the literature. Two such examples are described next.

Example 8.1.4. A bilinear transformation is defined by

(8.1.4) T (x) =
ax + b

cx + d
,

with a, b, c, d ∈ C and ad− bc �= 0. This last condition implies that

T is not constant. The function T maps C−{−d/c} to C−{a/c}. It

is natural to extend the definition of T to C∪{∞} via T (−d/c) = ∞
and T (∞) = a/c.

Exercise 8.1.5. Check that the map T above has an inverse that

is also bilinear. Prove that the composition of two of these maps

produces one of the same type. The composition rule is given by

matrix multiplication

(8.1.5)

(
a1 b1
c1 d1

)
×
(
a2 b2
c2 d2

)
=

(
a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

)
.

Therefore the set of all bilinear transformations forms a group, called

the group of Möbius transformations. The reader will find more

information in the book by A. Beardon [44].
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Example 8.1.6. A second class of rational functions comes from

trigonometry. This is the topic of Chapter 12. The addition theorem

for trigonometric functions, given as Theorem 12.5.1, shows that

(8.1.6) cot(x + y) =
cot x cot y − 1

cot x + cot y
.

In particular,

(8.1.7) cot(2x) =
cot2x− 1

2 cot x
.

Iterating this argument produces a sequence of rational functions Rm

defined by

(8.1.8) cot(mx) = Rm(cotx).

For example, (8.1.7) shows that R2(t) =
t2 − 1

2t
. These functions will

play an important role in Chapter 15.

Exercise 8.1.7. Check that the rational functions Rm commute un-

der composition; that is, Rm ◦Rn = Rn ◦Rm. This is a rare event. In

fact, a theorem of S. Lattés [196] shows that the class of commuting

rational functions can be completely characterized: they come from

the addition theorem for elliptic functions. The functions Rm form

a special limiting subclass. See the text by H. P. McKean and V. Moll

[213] for details.

8.2. The method of partial fractions

This section discusses the familiar representation of a rational func-

tion R in terms of simpler components. This is the method of par-

tial fractions. The function is written as

(8.2.1) R(x) =
A(x)

B(x)

and it will be assumed first that the poles of R are simple. The

function is written as

(8.2.2) R(x) =
A(x)

(x− w1)(x− w2) · · · (x− wr)

with wj distinct. The poles of R are treated as parameters.
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Definition 8.2.1. A rational function R is called reduced if it is

written as R(x) = A(x)/B(x) with gcd(A,B) = 1 and deg(A) <

deg(B).

Exercise 8.2.2. The restriction deg(A) < deg(B) may always be

imposed. Otherwise divide A by B to produce

R(x) = P (x) +
A1(x)

B(x)
,

where P is a polynomial and deg(A1) < deg(B) is satisfied. Check

the details.

Theorem 8.2.3. Assume R is a reduced rational function with simple

poles wj. Then there are constants αj such that

(8.2.3) R(x) =
r∑

j=1

αj

x− wj
.

The value of αj is given by

(8.2.4) αj =
A(wj)

B′(wj)
.

Proof. Assume that such a decomposition exists. Then

(8.2.5)
A(x)(x− wj)

B(x)
=
∑
k �=j

αk(x− wj)

x− wk
+ αj .

Let x → wj to obtain the result. The proof of the existence of such a

decomposition is left as the next exercise. �

Exercise 8.2.4. This is an alternative proof of Theorem 8.2.3. Write

B(x) =
∏r

j=1(x − wj) and check that B′(wk) =
∏

j �=k(wk − wj).

Construct the polynomial

F (x) =
r∑

i=1

A(wi)

B′(wi)

∏
j �=i

(x− wj).

Prove that F (x) = A(x). Hint: Verify that F (wk) = A(wk) for

1 ≤ k ≤ r and r = deg(B) > deg(A).

Exercise 8.2.5. Prove the existence of the decomposition. Hint:

Write down a linear system for the unknowns αj and evaluate its
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determinant. An alternative proof is by induction on the number of

poles. Hint: Use the identity

1

(x− w1)(x− w2)
=

1

(w1 − w2)

[
1

x− w1
− 1

x− w2

]
.

The expressions become more elaborate if the rational function

has poles of higher order. The simplest situation is described in the

next exercise.

Exercise 8.2.6. Suppose R(x) has a double pole at x = w1. Combine

the terms corresponding to x = w1 and x = w1 + ε, with ε → 0 to

conclude that R has an expansion of the form

(8.2.6) R(x) =
A(x)

B(x)
=

α

(x− w1)2
+

β

x− w1
+ H(x),

where H(z) does not have a pole at x = w1. Introduce the polynomial

C by the relation B(x) = (x− w1)
2C(x). Prove that

(8.2.7) α =
A(w1)

C(w1)

and

(8.2.8) β =
A′(w1)C(w1) −A(w1)C

′(w1)

C(w1)2
.

Exercise 8.2.7. Let P (x) be a polynomial and let x = a be one of

its roots. Prove that x = a is a root of multiplicity higher than 1 if

and only if x = a is also a root of the derivative P ′(x).

Exercise 8.2.8. The method of partial fractions converts a reduced

rational function R(x) into a sum of simpler terms. Prove that R can

be written in the form

(8.2.9)
A(x)

B(x)
=

n∑
j=1

cj∑
k=1

Aj,k

(x− wj)k
+

m∑
j=1

dj∑
k=1

Bj,kx + Cj,k

(x2 + 2ujx + u2
j + v2j )

k
.

The parameters wj are the real poles of R and cj the corresponding

multiplicities. The complex roots appear in pairs uj ± ivj and have

multiplicity dj .

Note 8.2.9. The Mathematica command Apart gives the partial

fraction decomposition of a rational function.
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Note 8.2.10. The main goal of the method of partial fractions is to

facilitate the integration of a rational function. This is discussed in

Section 8.7. Preliminary details are given here.

In order to analyze the integral of R over [0,∞), separate the

roots with multiplicity dj = 1 and write

Bjx + Cj =
1

2
Bj(2x + 2uj) + Cj − ujBj := Ej(2x + 2uj) + Fj ,

to replace (8.2.9) by

A(x)

B(x)
=

n∑
j=1

Aj,1

x− wj
+

n∑
j=1

cj>1∑
k=2

Aj,k

(x− wj)k

+
m∑

k=1

Ej(2x + 2uj)

x2 + 2ujx + u2
j + v2j

+
m∑
j=1

Fj

x2 + 2ujx + u2
j + u2

j

+

m∑
j=1

dj>1∑
k=2

Ej(2x + 2uj)

(x2 + 2ujx + u2
j + v2j )

k

+
m∑
j=1

dj>1∑
k=2

Fj

(x2 + 2ujx + v2j + v2j )
k
.

Exercise 8.2.11. A very clever method to obtain the partial frac-

tion decomposition of a rational function appeared in the paper by

M. Hirschhorn [170]. This exercise outlines the procedure.

Step 1. Suppose u + v = 1. Prove by induction that

1

uvn
=

1

u
+

1

vn
+

1

vn−1
+ · · · + 1

v
.

Step 2. Use the result of Step 1 and prove by induction that if

u + v = 1, then

1

umvn
=

m−1∑
k=0

(
n−1+k

k

)
um−k

+

n−1∑
j=0

(
m−1+j

j

)
vn−j

.

Step 3. Apply the result of Step 2 to u/c and v/c to produce an

identity under the condition u + v = c. Replace v by −v and impose

the condition u − v = c. Finally let u = x − a and v = x − b to
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obtain

1

(x− a)m (x− b)n
= (−1)n

m−1∑
k=0

(b− a)−n−k
(
n−1+k

k

)
(x− a)m−k

+(−1)m
n−1∑
j=0

(a− b)−m−j
(
m−1+j

j

)
(x− b)n−j

.

Step 4. Use the result recursively to produce the partial fraction

expansion of

R(x) =
1

(x− 1)4(x− 2)3(x− 3)2
.

8.3. Rational generating functions

Rational functions appear as the generating function of some inter-

esting sequences. For example, the Fibonacci numbers Fn considered

in Chapter 3 have a rational generating function:

(8.3.1)

∞∑
n=0

Fnx
n =

x

1 − x− x2
.

This example illustrates a general result. The statement employs the

notion of reduced rational function given in Definition 8.2.1.

Theorem 8.3.1. Let {an} be a sequence of real numbers and let

R(x) =

∞∑
n=0

anx
n

be its generating function. Then an satisfies a linear recurrence with

constant coefficients if and only if R(x) is a reduced rational function.

Proof. Assume the coefficients {an} satisfy the recurrence

(8.3.2) an =

k∑
j=1

tjan−j .
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Multiply this relation by xn and sum from n = k to infinity. This

produces

∞∑
n=k

anx
n =

∞∑
n=k

⎛
⎝ k∑

j=1

tjan−j

⎞
⎠xn

=
k∑

j=1

tjx
j

( ∞∑
n=k

an−jx
n−j

)

= R(x)

k∑
j=1

tjx
j −

k−1∑
j=1

tjx
j

k−j−1∑
n=0

anx
n.

Define t0 = −1 and use

∞∑
n=k

anx
n = R(x) −

k−1∑
n=0

anx
n

to produce

(8.3.3)

⎛
⎝ k∑

j=0

tkx
j

⎞
⎠ R(x) = −

k−1∑
j=0

tjx
j

(
k−j−1∑
n=0

anx
n

)
.

This shows that R(x) is a reduced rational function. Moreover, its

denominator is

(8.3.4) B(x) = t0 + t1x + t2x
2 + · · · + tkx

k

and its degree is at most the order of the recurrence satisfied by

{an}. Observe that the denominator B(x) can be read directly from

the recurrence (8.3.2).

To establish the converse, write R(x) = A(x)/B(x) with B as in

(8.3.4). Assume first that B(0) �= 0 and that the roots wj of B are

                

                                                                                                               



8.4. The operator point of view 219

distinct. The partial fraction decomposition of R can be written as

R(x) =

k∑
j=1

αj

x− wj

= −
k∑

j=1

αj

wj
· 1

1 − x
wj

= −
∞∑

n=0

k∑
j=1

αj

wn+1
j

xn.

Therefore

(8.3.5) R(x) =

∞∑
n=0

anx
n

with

(8.3.6) an = −
k∑

j=1

αj

wn+1
j

.

The root wj satisfies

(8.3.7) B(wj) = t0 + t1wj + t2w
2
j + · · · + tkw

k
j = 0.

This gives

k∑
s=0

tsan−s = −
k∑

s=0

ts

k∑
j=1

αj

wn+1
j

ws
j

= −
k∑

j=1

(
k∑

s=0

tsw
s
j

)
αj

wn+1
j

≡ 0.

This is the recurrence for {an}. �

Exercise 8.3.2. Complete the proof for the case of repeated roots.

Hint: The coefficients are continuous functions of the roots.

8.4. The operator point of view

The following exercise can be carried out in elementary terms: find a

recurrence for the sequence of even Fibonacci numbers {F2n : n ∈ N}.
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The existence of such a recurrence can be solved directly for any

sequence {an} with rational generating function. Indeed, if

(8.4.1) R(x) =

∞∑
n=0

anx
n,

then

(8.4.2)
∞∑

n=0

a2nx
n =

R(
√
x) + R(−

√
x)

2
,

and the reader can check that the right-hand side of (8.4.2) is also a

rational function of x. The result now follows from Theorem 8.3.1.

A simple procedure to actually find the recurrence is outlined

next. The proof of Theorem 8.3.1 shows that the recurrence satisfied

by {an} is

(8.4.3)
k∑

j=0

tjan−j = 0,

and replacing n by n + k, it becomes

(8.4.4)
k∑

j=0

tjan+k−j = 0.

Introduce the operator S acting on sequences by

(8.4.5) S · {an} = {an+1}.

Then (8.4.4) can be written as

(8.4.6)
k∑

j=0

tjS
k−j · {an} = 0,

where the power Sj represents S composed with itself j times.

In order to write this equation in operator form, define

(8.4.7) B1(x) = xkB(x−1)

where B is the denominator of the rational function R. This is given

by

(8.4.8) B(x) = t0 + t1x + t2x
2 + · · · + tkx

k.
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Then (8.4.6) can be written as

(8.4.9) B1(S) · {an} = 0.

This representation is now employed to produce a recurrence for

{a2n}. The task at hand is to produce a polynomial in S2 that an-

nihilates this sequence. The natural idea is to multiply (8.4.9) by

B1(−S) to obtain

(8.4.10) B1(−S) ·B1(S) · {an} = 0.

It turns out that the operator B1(−S) · B1(S) depends only on

S2. This yields the recurrence for {a2n}. The next example illustrates

the argument.

Example 8.4.1. The Fibonacci numbers Fn satisfy Fn+2 = Fn+1 +

Fn. Then B(x) = −x2 + x + 1 and B1(x) = x2 + x− 1. To produce

a polynomial in x2, compute

(8.4.11) B1(x) ·B1(−x) = x4 − 3x2 + 1.

This yields Fn+4 − 3Fn+2 + Fn = 0. Now replace n by 2n to obtain

the desired recurrence for the even Fibonacci numbers Xn = F2n:

(8.4.12) Xn+2 − 3Xn+1 + Xn = 0.

In operator form, this is S2 − 3S + 1 = B1(
√
S) ·B1(−

√
S) .

Exercise 8.4.2. Find a recurrence for {F2n+1 : n ∈ N} and for

{F3n : n ∈ N}.

8.5. A dynamical system

In the process of developing a new procedure for the integration of

rational functions, the author obtained a transformation on the coef-

ficients of the integrand that preserves the value of the integral. The

starting point was the attempt to evaluate the integral

I =

∫ ∞

0

R(x) dx

without computing the poles of R.
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It turns out that the algorithm, explained in Chapter 15, only

works for even rational functions. The decomposition

R(x) =
1

2
(R(x) + R(−x)) +

1

2
(R(x) −R(−x)) ≡ Re(x) + Ro(x)

into the even and odd parts reduces the problem to the integration

of the odd part. The change of variables x �→
√
x yields

(8.5.1)

∫ ∞

0

R(x) dx =

∫ ∞

0

Re(x) dx +
1

2

∫ ∞

0

F(R(x)) dx,

with

(8.5.2) F(R(x)) =
R(

√
x) −R(−

√
x)

2
√
x

.

Compare with (8.4.2).

Exercise 8.5.1. Prove that F(R(x)) is also a rational function.

Exercise 8.5.2. It is totally unclear that this procedure is an effective

method to integrate. Check that (8.5.1) yields∫ ∞

0

dx

x2 + x + 3
=

∫ ∞

0

x2 + 3

x4 + 5x2 + 9
dx− 1

2

∫ ∞

0

dx

x2 + 5x + 9
.

The right-hand side seems more complicated than the original ques-

tion.

In spite of its apparent failure to help in the question of integra-

tion, the map F as a map on the space of rational functions, has many

interesting properties. Some of them are described next. Details

about this map appear in the papers by C. Bennett and E. Mosteig

[47] and by G. Boros, M. Joyce, and V. Moll [59], in the multi-

authored paper by G. Boros et al. [60], and in the work of E. Mosteig

[226].

The definition of F in terms of power series is given next. Let

R(x) = A(x)/B(x) be a rational function with expansion around

x = 0 of the form

(8.5.3) R(x) =
∞∑

k−∞
akx

k.

The notation indicates that, for some N ∈ Z, the coefficients an
vanish for n < N .
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Exercise 8.5.3. Check that F(R) has the expansion

(8.5.4) F(R)(x) =
∞∑

k−∞
a2k+1x

k.

Definition 8.5.4. Let R be a rational function. The orbit of R

under F is the set of iterates

(8.5.5) Orb(R) = {Fj(R) : j ∈ N0}.

Powers of F indicate composition.

Exercise 8.5.5. The orbit of an even function is simply {R, 0}.

8.5.1. Some fixed points of F. The simplest orbits are provided

by functions fixed by F. Then the orbit reduces to a single element.

These functions were classified in [60]. The exercises outline some of

their properties.

Exercise 8.5.6. Let R(x) =

∞∑
k=−N

akx
k. Prove that

F(R)(x) =

∞∑
k=−�(N+1)/2�

a2k+1x
k.

Exercise 8.5.7. Let R be a fixed point of F. Then the order of the

pole at x = 0 is at most 1. Hint: Match the lowest-order terms.

Example 8.5.8. The function R(x) = 1/x is a fixed point. It is also

possible to have a fixed point without poles at x = 0 as the example

R(x) = 1/(1 − x) shows.

Exercise 8.5.9. Let R be a fixed point of F and let m ∈ N be odd.

Then Bm(R(x)) = xm−1R(xm) is also fixed by F.

Exercise 8.5.10. Exercise 8.5.9 applied to R(x) = 1/(x − 1) shows

that, for m odd,

(8.5.6) Rm(x) =
xm−1

xm − 1

is a fixed point of F. Check this directly.
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Note 8.5.11. The description of all the fixed points of F requires

the notion of cyclotomic cosets: given n, r ∈ N with r odd and

0 ≤ n ≤ r − 1, the set

Cr,n = {2sn mod r : s ∈ Z}

is the 2-cyclotomic coset of n mod r. Observe that Cr,n is a finite set.

With λ a fixed primitive rth root of unity, define

fr,n(x) =
∑

m∈Cr,n

λm

1 − λmx
.

The next theorem classifies all the fixed points of F. The details

appear in [60].

Theorem 8.5.12. A rational function is fixed by F if and only if it

is a linear combination of 1/x and the functions fr,n(x) for r odd and

0 ≤ n ≤ r − 1.

8.5.2. A special subclass. The function

(8.5.7) Rj,m(x) =
xj

xm − 1
for m odd and j ∈ Z

has interesting dynamic properties under the transformation F.

Exercise 8.5.13. Prove that

F

(
xj

xm − 1

)
=

xαm(j)

xm − 1
,

where αm(j) = m
⌊
j
2

⌋
− 1

2 (m− 1)(j − 1).

Thus the dynamical properties of the iterates Fk(R) are reduced to

those of αm.

Note 8.5.14. The map αm has interesting dynamical properties. A

summary is presented here. Details appear in [59].

• The only fixed points of αm are j = −1 and j = m− 1.

• The iterates of αm always reach the set {0, 1, 2, . . . ,m − 2} in a

finite number of steps. Moreover this set is invariant under the action

of αm.

                

                                                                                                               



8.6. Sums of four squares 225

• Let r ∈ N and define m = 2r − 1. The orbit of 1/(xm − 1) has

length r. Thus there are orbits of any given length. Compute the

orbit starting at 0 and that starting at 2 to conclude that there are

at least two orbits of length r.

• The integer m is a pseudoprime of base a if am−1 ≡ 1 mod m.

The relation to the problem discussed here is that if αm has a unique

orbit, then m is a pseudoprime of base 2.

• Let m be a prime. Recall that a is a primitive root of m if the

powers aj mod m give all the nonzero residues modulo m. Suppose m

is prime. Then αm has a single orbit if and only if 2 is a primitive root

modulo m. The primes m ≤ 100 for which 2 is a primitive root are

{3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83}. E. Artin [30] conjectured

that this occurs for infinitely many primes. The paper by M. R. Murty

[229] contains information on this conjecture.

• Suppose m is a Sophie Germain prime, that is, a prime of the

form m = 2q+1 with q prime. Then there are at most two orbits. In

the case of two orbits, both have the same length.

• Suppose αm has an orbit of length n and Mn := 2n−1 is a Mersenne

prime. Then m is an odd multiple of Mn.

8.6. Sums of four squares

Sums of squares played an important role in the early history of num-

ber theory. For example, Fermat proved that every prime p ≡ 1 mod 4

can be written as a sum of two squares. The beautiful proof by D.

Zagier has been described in Chapter 1 as Theorem 1.7.12. Lagrange

proved that every positive integer is a sum of four squares and Jacobi

proved an expression for the number of such representations. These

are gems of the past. This section presents a modern style proof of La-

grange’s result. It appeared in the paper by G. E. Andrews, Shalosh

B. Ekhad, and D. Zeilberger [21] and the two human authors have

been in the past on opposite sides on the concept of a proof. See

the paper by D. Zeilberger [320] and the response in the paper by

G. E. Andrews [20]. The reader should be careful with making the

wrong conclusions after reading these two papers. Reading the work

by G. E. Andrews and P. Paule [19] and many other joint papers of
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these two authors should be included in the analysis of the so-called

dispute between traditional methods of proof and the development of

automatic ones.

The proof employs the rational function, defined for n ∈ N, as

(8.6.1) Yn = Yn(q) =
1 + q

1 − q
· 1 + q2

1 − q2
· · · 1 + qn

1 − qn
;

the natural extensions Y0 = 1 and Yn = 0 for n < 0 are adopted. Two

identities are established first.

Lemma 8.6.1. For n ∈ N,

(8.6.2)
n∑

k=−n

4(−q)k

(1 + qk)2
Y 2
n Yn+kYn−k = 1,

and

(8.6.3)
n∑

k=0

2(−qn+1)k

1 + qk
Yk

Yn
=

n∑
k=−n

(−q)k
2

.

Proof. Let F1(n, k; q) be the summand in (8.6.2) and let H1(n; q)

denote the sum of F1(n, k; q) for all k ∈ Z. Observe that F1(n, k; q)

vanishes if k > n or k < −n, so the sum is actually finite. The proof

is based on the construction of a function R1(n, k, q), rational in q,

such that

(8.6.4) G1(n, k; q) := R1(n, k; q)F1(n, k; q)

satisfies the relation

(8.6.5) F1(n + 1, k; q) − F1(n, k; q) = G1(n, k; q) −G1(n, k − 1; q).

This can be done completely automatically using the q-Zeilberger

algorithm developed in the paper by P. Paule and A. Riese [244] and

implemented in C. Koutschan’s package HolonomicFunctions. The

output is

(8.6.6) R1(n, k; q) =
qn−k+1(1 + q2n+2)(1 + qk)2(1 + qn+k+1)

(1 − qn+1)3(1 − qn+k+1)(1 + qn+1)
.

For k > n or k < −n the expression G1(n, k; q) vanishes, since F1

does.

Exercise 8.6.2. Check (8.6.5).
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The last step in the proof is to define

H1(n; q) =
∑
k

F1(n, k; q)

and to sum (8.6.5) over all k ∈ Z to produce

(8.6.7) H1(n + 1; q) = H1(n; q).

The value H1(0; q) = 1 proves the identity (8.6.2). The proof of

(8.6.3) is outlined in the next exercise. �

Exercise 8.6.3. With notation similar to that in the proof, use the

q-Zeilberger algorithm to find the rational function

(8.6.8) R2(n, k; q) =
(−q)n+1(1 + qk)

1 + qn+1
,

which gives the recurrence H2(n+1; q)−H2(n; q) = 2(−q)(n+1)2 and

establishes (8.6.3).

A classical identity of Jacobi is given as the next exercise.

Exercise 8.6.4. Divide (8.6.2) by Y 4
n and let n → ∞ in (8.6.2) and

(8.6.3) to obtain

(8.6.9)

( ∞∑
k=−∞

qk
2

)4

= 1 + 8

∞∑
k=1

qk

(1 + (−q)k)2
.

These preliminary results provide a proof of Jacobi’s theorem.

Define r4(n) as the number of ordered quadruples (x1, x2, x3, x4) ∈ Z4

that satisfy x2
1 + x2

2 + x2
3 + x2

4 = n.

Theorem 8.6.5. The number of ways r4(n) to write a number n as

a sum of four squares is given by 8 times the sum of the divisors of n

that are not multiples of 4. The number 1 is always part of the sum,

so every positive integer is the sum of four squares.

Proof. The coefficient of qn in the expansion of the fourth power on

the left-hand side of (8.6.9) is r4(n). To expand the right-hand side,

use

(8.6.10)
z

(1 + z)2
=

∞∑
j=1

(−1)j+1jzj
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with z = (−q)k to write the right-hand side as

∞∑
k=1

∞∑
j=1

(−1)(k+1)(j+1)jqjk =

∞∑
n=1

qn

⎛
⎝∑

j|n
(−1)(j+1)(n/j+1)j

⎞
⎠ .

The coefficient of j is −1 if both j and n/j are even; otherwise it

is +1. Therefore r4(n) is the sum of the divisors of n that are not

divisible by 4. �

Comments on the proof.

(1) The identity (8.6.2) produces an interesting cancelation of the

singularities on the left-hand side to produce the constant 1. Observe

that

(8.6.11) lim
q→1

(1 − q)nYn(q) := cn =
2n

n!

so Yn(q) ∼ cn/(1 − q)n as q → 1.

(2) The sum on the right-hand side of (8.6.3) is the finite version

of Jacobi’s theta function. The reader will find information about

these functions in the text Elliptic Curves [213].

(3) The proofs of the identities appearing in (8.6.2) and (8.6.3)

can now be obtained in completely automatic form. Naturally it is

possible to completely hide the computer from the proof and to state

the proof in the following terms:

Computer-free proof of Lemma 8.6.1. Define

Yn = Yn(q) =
1 + q

1 − q
· 1 + q2

1 − q2
· · · 1 + qn

1 − qn

for n ∈ N with Y0 = 1 and Yn = 0 for n < 0. Introduce

F1(n, k; q) =
4(−q)k

(1 + qk)2
Y 2
n Yn+kYn−k

and let

T1(n; q) =

n∑
k=−n

F1(n, k; q).

Define G1(n, k; q) by R1(n, k; q)F1(n, k; q) with

R1(n, k; q) =
qn−k+1(1 + q2n+2)(1 + qk)2(1 + qn+k+1)

(1 − qn+1)3(1 − qn+k+1)(1 + qn+1)
.

                

                                                                                                               



8.7. The integration of rational functions 229

Then

F1(n + 1, k; q) − F1(n, k; q) = G1(n, k; q) −G1(n, k − 1; q)

holds. Sum this recurrence for all values of k ∈ Z to obtain

T1(n + 1; q) = T1(n, q).

The initial value T1(0; q) = 1 gives the result.

This is a completely correct but totally dishonest proof .

8.7. The integration of rational functions

The problem of integration of rational functions R(x) = A(x)/B(x)

was considered by J. Bernoulli in the eighteenth century. He com-

pleted Leibniz’s original attempt at a general partial fraction decom-

position of R(x). The main difficulty associated with this procedure

is to obtain a complete factorization of B(x) over R. It is known that

a primitive of a rational function is always elementary: it consists

of a new rational function (its rational part) and the logarithm of a

second rational function (its transcendental part). These logarithms

include complex arguments as in the case of R(x) = 1/(x2 + 1). In

his classic monograph [158], G. H. Hardy states: The solution of the

problem (of definite integration) in the case of a rational function may

therefore be said to be complete; for the difficulty with regard to the

explicit solution of algebraic equations is one not of inadequate knowl-

edge but of proved impossibility. He goes on to add: It appears from

the preceding paragraphs that we can always find the rational part of

the integral, and can find the complete integral if we can find the roots

of B(x) = 0.

In the middle of the nineteenth century two algorithms for com-

puting the rational part of the primitive for R(x) without factoring

B(x) were discovered. The first one was by C. Hermite [166] and

was based on polynomial algebra and the second one was by M. W.

Ostrogradsky [240] and was based on linear algebra. More recently,

E. Horowitz [176] rediscovered the second method and discussed its

complexity. The problem of computing the transcendental part of the

primitive is usually credited to M. Rothstein [260] and B. M. Trager

[293], with a technical refinement given by D. Lazard and R. Rioboo
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[197]. This algorithm has been implemented in the current versions

of the most widely used symbolic integrators. The Risch algorithm

for integrating elementary functions (whenever possible) is based on

generalizations of the Hermite reduction and the Rothstein-Trager al-

gorithm. See the book by M. Bronstein [80] for details. The author

wishes to thank M. Kauers for clarifying some of the historical aspects

of these methods.

The integration of rational functions is the first challenging

problem of elementary analysis. Given

(8.7.1) R(x) :=
anx

n + an−1x
n−1 + · · · + a1x + a0

bmxm + bm−1xm−1 + · · · + b1x + b0

with ai, bi ∈ R and assuming conditions for the convergence of the

integral, the problem is to obtain an analytic expression for

(8.7.2) In,m(a, b; a,b) :=

∫ b

a

R(x) dx.

Here a := {a0, a1, . . . , an} and b := {b0, b1, . . . , bn} are the coeffi-

cients of the integrand.

Normalization. In the case of a finite interval [a, b], the integral in

(8.7.2) may be normalized to the half-line [0, ∞) by the transforma-

tion

(8.7.3) x =
bt + a

1 + t
,

which produces

(8.7.4)

∫ b

a

R(x) dx =

∫ ∞

0

R1(t) dt,

with a new rational integrand

(8.7.5) R1(t) =
b− a

(1 + t)2
R

(
bt + a

1 + t

)
.

If the original interval of integration is (−∞, a], the normalization is

given by t = a− x. The change t = x− b normalizes [b,∞). Finally,

the identity

(8.7.6)

∫ ∞

−∞
R(x) dx =

∫ ∞

0

(R(x) + R(−x)) dx

normalizes the whole real line.
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The normalization reduces the problem of integration of rational

functions to that of

(8.7.7) In,m(a,b) =

∫ ∞

0

R(x) dx.

In the rest of the section it is assumed that the integral in (8.7.7)

converges. This requires that m− n ≥ 2 and that the polynomial

(8.7.8) B(x) := bmxm + bm−1x
m−1 + · · · + b1x + b0

have no zeros on [0,∞).

8.7.1. The method of partial fractions. This section establishes

a well-known elementary result.

Theorem 8.7.1. Let R(x) = A(x)/B(x) be a rational function. As-

sume that the roots of B(x) = 0 are known. Then the integral of R

can be evaluated explicitly in terms of these roots.

The discussion in the previous section shows that it suffices to

consider the half-line [0, ∞). The method of partial fractions converts

the rational function R(x) = A(x)/B(x) into a sum of the form

(8.7.9) R(x) =

r∑
j=1

Aj

(x− zj)nj
+

s∑
j=1

Bjx + Cj

(x2 + 2ujx + u2
j + v2j )

mj
.

The parameters zj are the real roots of B(x) = 0 and the nj are the

corresponding multiplicities. The complex roots appear as uj ± ivj
and they have multiplicity mj . In order to analyze the integral of

R over [0,∞), the roots with multiplicity 1 are separated and R is

written in the form given in Note 8.2.10.

Therefore the explicit integration of R over [0,∞) requires the

analysis of six types of integrals, considered first over the finite inter-

val [0, N ] to avoid a preliminary discussion of convergence.

Type 1.

(8.7.10) I1(N ;w) :=

∫ N

0

dx

x− w
,

with w < 0. This type corresponds to (negative) simple real roots of

the denominator of the integrand. The value of I1 can be computed
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in elementary terms and is given by

(8.7.11) I1(N ;w) = ln(N − w) − ln(−w).

Observe that I1(N ;w) diverges as N → ∞.

Type 2.

(8.7.12) I2(N ;w,m) :=

∫ N

0

dx

(x− w)m
,

with w < 0 and m > 1. This type corresponds to (negative) real roots

with multiplicity m > 1. This can also be evaluated by elementary

means to produce

I2(N ;w,m) =
1

1 −m

(
1

(N − w)m−1
− 1

(−w)m−1

)
.

This integral converges to the finite value

(8.7.13) I2,∞(w,m) = lim
N→∞

I2(N ;w,m) =
1

(m− 1)(−w)m−1
.

Type 3.

(8.7.14) I3(N ;u, v) :=

∫ N

0

(2x + 2u) dx

x2 + 2ux + u2 + v2
,

with u, v ∈ R. This is also elementary and it is given by

(8.7.15) I3(N ;u, v) = ln

(
N2 + 2uN

u2 + v2
+ 1

)
.

Observe that I3(N ;u, v) diverges as N → ∞.

Type 4.

(8.7.16) I4(N ;u, v,m) :=

∫ N

0

(2x + 2u) dx

(x2 + 2ux + u2 + v2)m
,

with u, v ∈ R and m > 1. This integral has the value

I4(N ;u, v,m) = − 1

m− 1

(
1

(N2 + 2uN + u2 + v2)m−1
− 1

(u2 + v2)m−1

)
.

Therefore

I4,∞(u, v,m) = lim
N→∞

I4(N ;u, v,m) =
1

(m− 1)(u2 + v2)m−1
.

                

                                                                                                               



8.7. The integration of rational functions 233

Type 5.

(8.7.17) I5(N ;u, v) :=

∫ N

0

dx

x2 + 2ux + u2 + v2
,

with u, v ∈ R and v > 0. This integral is given by

(8.7.18) I5(N ;u, v) =
1

v

(
tan−1

(
N + u

v

)
− tan−1

(u
v

))
.

As N → ∞, this becomes

I5,∞(u, v) = lim
N→∞

I5(N ;u, v) =
1

v

(π
2
− tan−1

(u
v

))
.

Type 6.

(8.7.19) I6(N ;u, v,m) :=

∫ N

0

dx

(x2 + 2ux + u2 + v2)m
,

with u, v ∈ R and m > 1. The evaluation of this integral as N → ∞
is presented next. To simplify the notation, rewrite the integrand in

(8.7.19).

Theorem 8.7.2. Let n ∈ N and define D = 4(ac− b2)/ac. Assume

a �= 0, b ≥ 0, and cD > 0. Then∫ ∞

0

dx

(ax2 + 2bx + c)n+1

=
2
(
2n
n

)
a(cD)n+1

×

⎧⎨
⎩
√
acD cot−1

(
2b√
acD

)
− b

n∑
j=1

Dj

j
(
2j
j

)
⎫⎬
⎭ .

Proof. Start with the case n = 1:

(8.7.20)

∫ ∞

0

dx

ax2 + 2bx + c
=

1√
ac− b2

cot−1

(
b√

ac− b2

)
.

This is evaluated by completing the square and a simple trigonometric

substitution:∫ ∞

0

dx

ax2 + 2bx + c
=

1

a

∫ ∞

b/a

du

u2 − d/a2

=
1√
−D

∫ ∞

b/
√
−D

dv

v2 + 1
.
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Differentiating (8.7.20) with respect to c produces∫ ∞

0

dx

(ax2 + 2bx + c)n
=

(−1)n−1

(n− 1)!

∂n−1

∂cn−1

[
cot−1(b/

√
ac− b2)√

ac− b2

]
.

Now let h(a, b, c) be the integral in (8.7.20). Observe that

(8.7.21) h(a2, abc, b2) = h(1, b, 1)/ac.

In the formula stated in the theorem, change the parameters sequen-

tially as a �→ a2, c �→ c2, b �→ abc. In the new format, both sides

satisfy the differential-difference equation

(8.7.22) −2nc(1 − b2)fn+1 =
dfn
dc

+
b

ac2n
.

The result is obtained by reversing the transformations of parameters

indicated above. �

Corollary 8.7.3. Using the notation of Theorem 8.7.2, it follows

that

(8.7.23)

∞∑
j=1

Dj

j
(
2j
j

) =

√
acD

b
cot−1

(
2b√
acD

)
.

Note 8.7.4. The case of b = 0 corresponds to Wallis’ formula

discussed in Chapter 9.

Note 8.7.5. The exact value of I6(N ;u, v,m) will not be required.

Its limiting value as N → ∞ is given in Theorem 8.7.2. It states that

(8.7.24) I6,∞(u, v,m) := lim
N→∞

I6(N ;u, v,m)

is given by

I6,∞(u, v,m) =

∫ ∞

0

dx

(x2 + 2ux + u2 + v2)m

=
2
(
2m−2
m−1

)
(2v)2m

×
{

2v tan−1
(v
u

)
− u

m−1∑
k=1

(2v)2k

k
(
2k
k

)
(u2 + v2)k

}
.

Example 8.7.6. The method described here is illustrated with the

evaluation of the integral of the rational function

(8.7.25) R(x) =
(x− 1)2(x + 3)2(x2 + x + 1)

(x + 2)2(x2 + x + 2)(x2 + 4x + 5)2
.
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The discussion starts with the decomposition of R(x) in partial frac-

tions in the form

R(x) =
27

4

1

(x + 2)2
+

117

16

1

x + 2
+

1

144

1 − 45x

x2 + x + 2

−2

3

17x + 53

(x2 + 4x + 5)2
− 7

9

9x + 25

x2 + 4x + 5
.

This can be transformed into the format described in the previous

analysis. The result is

R(x) =
27

4

1

(x + 2)2
+

117

16

1

x + 2
− 5

32

2x + 1

x2 + x + 2
+

47

288

1

x2 + x + 2

−17

3

2x + 4

(x2 + 4x + 5)2
− 38

3

1

(x2 + 4x + 5)2
− 7

2

2x + 4

x2 + 4x + 5

−49

9

1

x2 + 4x + 5
.

Now integrate each term over (0, N) and let N → ∞ in those

pieces that have a finite limit. The eight parts follow.

Part 1. ∫ ∞

0

dx

(x + 2)2
= I2,∞(−2, 2) =

1

2
.

Part 2. ∫ N

0

dx

x + 2
= I1(N,−2) = ln(N + 2) − ln 2.

Part 3.∫ N

0

2x + 1

x2 + x + 2
dx = I3

(
N,

1

2
,

√
7

2

)
= ln(N2 + N + 2) − ln 2.

Part 4.∫ ∞

0

dx

x2 + x + 2
= I5,∞

(
1

2
,

√
7

2

)
=

2√
7

(π
2
− tan−1(1/

√
7)
)
.

Part 5. ∫ ∞

0

2x + 4

(x2 + 4x + 5)2
= I4,∞(2, 1; 2) =

1

5
.
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Part 6.∫ ∞

0

dx

(x2 + 4x + 5)2
= I6,∞(2, 1; 2) = −1

5
+

1

2
tan−1

(
1

2

)
.

Part 7.∫ N

0

2x + 4

x2 + 4x + 5
dx = I3(N ; 2, 1) = ln(N2 + 4N + 5) − ln 5.

Part 8. ∫ ∞

0

dx

x2 + 4x + 5
= I5,∞(2, 1) =

π

2
− tan−1(2).

Combining these values gives∫ ∞

0

R(x) dx

=
191

40
+

(
47

288
√

7
− 49

18

)
π − 19

3
tan−1

(
1

2

)
+

49

9
tan−1 2

− 47

144
√

7
tan−1

(
1√
7

)
− 229

32
ln 2 +

7

2
ln 5

+ lim
N→∞

[
117

16
ln(N + 2) − 5

32
ln(N2 + N + 2) − 7

2
ln(N2 + 4N + 5)

]
.

The reader can check that the limit vanishes and can use the relations

tan−1 2 + tan−1 1

2
=

π

2
and tan−1

√
7 + tan−1 1√

7
=

π

2

to write the final result as∫ ∞

0

R(x) dx =

191

40
− 106

9
tan−1

(
1

2

)
+

47

144
√

7
tan−1

√
7 − 229

32
ln 2 +

7

2
ln 5.

Conclusion. We have an explicit method to evaluate the integral of

a rational function R(x) = A(x)/B(x) provided the factorization of

B is given. The convergence of the integral shows that the divergent

parts, coming from integrals of type 1 and type 3, must be grouped

together to produce the final result.
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8.8. Symbolic integration. The methods of
Hermite and Rothstein-Trager

This section considers algorithms for the evaluation of the integral of

a rational function R(x) = A(x)/B(x) developed by Hermite. Details

and extensions may be found in M. Bronstein’s book [80] and in

S. Boettner’s thesis [57].

It will be assumed that the condition deg A < deg B is satisfied.

This can be achieved by dividing A by B. The method is based on the

square-free factorization of the denominator B(x). The descrip-

tion of the method begins with some preliminaries on polynomials.

The coefficients are taken from a field K such as Q, R, or C. These

fields are examples of fields of characteristic zero. All discussions

of unique factorization presented below need to assume the proviso

except for constant factors.

Note 8.8.1. Given two polynomials A, B, the largest common di-

visor will be denoted by gcd(A,B). This is defined uniquely up to

a scalar multiple. Therefore, the statement gcd(A,B) = 1 is to be

interpreted to mean that the largest common divisor is a polynomial

of degree 0.

Definition 8.8.2. A complex polynomial p ∈ K(x) is called irre-

ducible if every factorization p = p1 · p2 implies p1 or p2 is constant.

Otherwise, the polynomial is called reducible.

Example 8.8.3. The fundamental theorem of algebra implies that

every irreducible polynomial over C is linear.

Theorem 8.8.4. Let p ∈ K[x] be a polynomial. Then p may be writ-

ten as a product of irreducible factors. This decomposition is unique

aside from the order of the factors.

Proof. Proceed by induction on the degree of p. If p is irreducible,

the statement is valid. Otherwise, there are polynomials p1, p2 such

that p = p1p2, with deg p1 and deg p2 less than deg p. This proves

the existence of the decomposition. The uniqueness is left to the

reader to verify. �
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The theorem shows that every polynomial p can be expressed in

the form

(8.8.1) p = pa1
1 pa2

2 · · · par
r ,

with pi irreducible, pi �= pj for i �= j, and ai ∈ N.

Exercise 8.8.5. Let p1, p2 be distinct irreducible polynomials. Prove

that gcd(p1, p2) = 1.

Definition 8.8.6. A polynomial p is called square-free if there is

no polynomial g, with deg g > 0, such that p = g2h.

Exercise 8.8.7. Check that an irreducible polynomial is square-free

but that the converse is not true. Prove also that a finite product of

distinct irreducible polynomials is square-free.

Exercise 8.8.8. Let p ∈ K[x]. Prove that f is square-free if and only

if gcd(p, p′) = 1.

In the decomposition (8.8.1) let

qi =
∏

1≤j≤r

{pj : aj = i}.

Then the qi are square-free polynomials that are relatively prime.

Definition 8.8.9. Let p ∈ K[x]. The square-free decomposition

of p is the representation of the form

(8.8.2) p = q1 · q22 · q33 · · · qmm ,

where the polynomials qi are pairwise relatively prime square-free.

This decomposition is unique.

Algorithm for the computation of the square-free decompo-

sition of a polynomial. The next algorithm provides a method

to compute the polynomials qi in (8.8.2) using only gcd operations.

Assume that p has the representation (8.8.2). Then compute

(8.8.3) E1 := gcd(p, p′)

to obtain E1 = q2 · q23 · · · qm−1
m . Now divide p by E1 to obtain

(8.8.4) E2 =
p

E1
= q1 · q2 · · · qm.
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In the next step, compute

(8.8.5) E3 := gcd(E1, E
′
1)

to obtain E3 = q3 · q24 · · · qm−2
m . Now compute

(8.8.6) E4 =
E1

E3
= q2 · q3 · · · qm.

Then q1 is obtained as E2 divided by E4. The algorithm is now

restarted with the polynomial E1.

Hermite reduction. This method reduces the integral of a rational

function to one with a square-free denominator.

Start with a square-free factorization of the denominator B(x) in

the form

(8.8.7) B =

m∏
i=1

qii .

Let w = q1 · q22 · · · qm−1
m−1 . Then gcd(q′mw, qm) = 1. The Euclidean

algorithm gives polynomials a, b such that

(8.8.8) (1 −m)aq′mw + bqm = A.

Now since (
a

qm−1
m

)′
=

a′qm−1
m − (m− 1)aqm−2

m q′m
q2m−2
m

=
a′

qm−1
m

+
(1 −m)aq′m

qmm
,

it follows that

A

B
=

(1 −m)aq′mw + bqm
qmm w

=
(1 −m)aq′m

qmm
+

b

qm−1
m w

+
a′

qm−1
m

− a′

qm−1
m

=

(
a

qm−1
m

)′
+

b + a′w

qm−1
m w

and this gives

(8.8.9)

∫
A

B
dx =

a

qm−1
m

+

∫
b + a′w

qm−1
m w

dx.
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Thus the integral of A/B has been expressed as a rational function

plus the integral of a new rational function where no factor of the

denominator appears with a power greater than m− 1. Iterating this

procedure gives the next theorem. This is the Hermite reduction

theorem.

Theorem 8.8.10. Let R be a rational function. Then there are ra-

tional functions R1, R2 with the denominator of R2 square-free such

that ∫
R(x) dx = R1(x) +

∫
R2(x) dx.

Example 8.8.11. Consider the integral∫
dx

(x2 + 1)(x + 1)2
.

The square-free decomposition of the denominator consists of q1 =

x2 + 1 and q2 = x + 1. The Euclidean algorithm gives

1 =
1

2
(x2 + 1) +

1 − x

2
(x + 1),

so that a = − 1
2 and b = 1

2 (1 − x). Therefore∫
dx

(x + 1)2(x2 + 1)
= −

1
2

x + 1
+

∫ 1
2 (1 − x)

(x2 + 1)(x + 1)
dx.

The method of Rothstein and Trager. This method evaluates

the integral of a reduced rational function with square-free denomi-

nator. The method was developed by M. Rothstein [259, 260, 261]

and B. M. Trager [293, 294].

The procedure begins with the partial fraction decomposition

R(x) =
A(x)

B(x)
=

n∑
i=1

λi

x− xi

where {x1, x2, . . . , xn} are the roots of B and

λi = lim
x→xi

(x− xi)R(x)

is called the residue of R at xi.

Exercise 8.8.12. Check that λi = A(xi)/B
′(xi). Recall that B′(xi)

�= 0 since B is square-free.
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The previous exercise shows that knowledge of the roots of B

determines the residues. The real question is how to proceed without

knowing the roots. One of the key tools is the resultant of two

polynomials. This is discussed in the next note.

Note 8.8.13. Given two polynomials A(x) = anx
n + · · · + a0 and

B(x) = bmxm + · · · + b0 with roots αi and βj , respectively (1 ≤ i ≤
n, 1 ≤ j ≤ m), the resultant is defined by

Res(A,B) = amn bnm

n∏
i=1

m∏
j=1

(αi − βj) .

Therefore A and B have a common root if and only if Res(A,B) = 0.

The resultant can be computed as the determinant of the Sylves-

ter matrix. This is shown in the case of n = 4 and m = 3 for

simplicity:

Sylv(A,B) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a4 a3 a2 a1 a0 0 0

0 a4 a3 a2 a1 a0 0

0 0 a4 a3 a2 a1 a0
b3 b2 b1 b0 0 0 0

0 b3 b2 b1 b0 0 0

0 0 b3 b2 b1 b0 0

0 0 0 b3 b2 b1 b0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Exercise 8.8.14. Check that up to a scalar, the resolvent of A and

A′ is the discriminant of A introduced in Chapter 4.

The next result rephrases the condition for a rational function to

have a pole with a prescribed residue.

Proposition 8.8.15. Let R = A/B be a rational function with

square-free denominator. Then R has a pole at xi with residue λi

if and only if

B(xi) = 0 and A(xi) − λiB
′(xi) = 0.

Therefore the residues λi are those values λ such that B(x) and

A(x) − λB′(x) have a common root at xi. Note 8.8.13 states that

these roots can be computed in terms of the resultant

(8.8.10) r(λ) = resultantx(B,A− λB′).
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This is a polynomial in λ and its roots give the values of the residues

for R.

Let λ1, . . . , λn be the distinct roots of r(λ) = 0. For each λi, the

expression gcd(B,A− λiB
′) is a polynomial whose roots are exactly

the places where A/B has residue λi. The final expression for the

integral is

(8.8.11)

∫
A(x)

B(x)
dx =

∑
r(λ)=0

λ ln gcd(B,A− λB′).

Exercise 8.8.16. Check that these polynomials do not need to be

factored any further since the factors would belong to logarithms with

a common coefficient.

Example 8.8.17. Example 8.8.11 is now completed using the method

of Rothstein and Trager. The missing integral is

1

2

∫
1 − x

x3 + x2 + x + 1
dx.

The first step is to evaluate the resultant

r(λ) = resultantx(x
3 + x2 + x + 1, 1 − x− λ(3x2 + 2x + 1))

as the determinant of the Sylvester matrix

r(λ) = det

⎡
⎢⎢⎢⎢⎣

1 1 1 1 0

0 1 1 1 1

−3λ −2λ− 1 −λ + 1 0 0

0 −3λ −2λ− 1 −λ + 1 0

0 0 −3λ −2λ− 1 −λ + 1

⎤
⎥⎥⎥⎥⎦

= −16(λ− 1)(λ + 1
2 )2.

Therefore only the residues λ1 = 1 and λ2 = − 1
2 occur. The corre-

sponding polynomials are computed by gcd(B,A− λB′). This gives

gcd(x3 + x2 + x + 1, 1 − x− (3x2 + 2x + 1)) = x + 1

and

gcd(x3 + x2 + x + 1, 1 − x + 1
2 (3x2 + 2x + 1)) = x2 + 1.

It follows that∫
1 − x

x3 + x2 + x + 1
dx = ln(x + 1) − 1

2
ln(x2 + 1).
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The original integral is evaluated as∫
dx

(x + 1)2(x2 + 1)
= −

1
2

x + 1
+

1

2
ln(x + 1) − 1

4
ln(x2 + 1).

Exercise 8.8.18. Use the methods described here to confirm the

evaluation∫
dx

(x2 − 2)(x + 3)2
= − 1

7(x + 3)
+

6

49
ln(x + 3)

+
1

98

(
11√

2
− 6

)
ln(

√
2 − x) − 1

98

(
11√
2

+ 6

)
ln(

√
2 + x).

Is it possible to express the answer without the number
√

2?

Exercise 8.8.19. Check that the integral

In =

∫
dx

(x2 − 2)(x + 3)2(x + 1)n

is of the form

Rn(x) +An ln(
√

2− x) +Bn ln(
√

2 + x) +Cn ln(1 + x) +Dn ln(x+ 3)

where Rn is a rational function and An, Bn, Cn, Dn are numbers of

the form x +
√

2y with x, y ∈ Q. Experiment and predict arithmetic

properties of these coefficients. For example, the length of the period

of the continued fractions of these numbers seems to have interesting

behavior.

                

                                                                                                               



Chapter 9

Wallis’ Formula

9.1. An experimental approach

The integral considered here is

(9.1.1) Wm =

∫ ∞

0

dx

(x2 + 1)m+1
, m ∈ N0.

This is one of the simplest examples for which one can produce a

closed-form evaluation. It is also an example that permits us to il-

lustrate a variety of techniques developed in the evaluation of more

difficult integrals. An equivalent formulation of this integral in terms

of an infinite product is one of the first analytic expressions for π; see

Section 12.6. The exponent is chosen as m+ 1 and not m to produce

a cleaner form of the final answer.

In order to predict a closed-form formula for Wm, a list of values

is produced using Mathematica. The values of Wm for 1 ≤ m ≤ 10

are

{
π

4
,

3π

16
,

5π

32
,

35π

256
,

63π

512
,

231π

2048
,

429π

4096
,

6435π

65536

12155π

131072
,

46189π

524288

}
.

It is clear from this data that Wm is a rational multiple of π.

Further examination of the data shows that the denominator is always
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a power of 2. The list of the corresponding exponents, that is,

(9.1.2) am = −ν2

(
Wm

π

)

(where ν2(x) is the 2-adic valuation of x) is given by

(9.1.3) {2, 4, 5, 8, 9, 11, 12, 16, 17, 19} .

It looks like the exponent am is bounded by 2m. This leads to the

definition

(9.1.4) bm = 22mWm/π.

The values of bm for 1 ≤ m ≤ 10 are given by

(9.1.5) {1, 3, 10, 35, 126, 462, 1716, 6435, 24310, 92378} .

At this point an option to produce a guess for the coefficients bm
is to consult the database produced by Neil Sloane in

http://oeis.org/

that contains an incredible amount of useful information. Inserting

the first four values of the previous list, Sloane’s database returns

(9.1.6) bm =

(
2m− 1

m− 1

)
=

1

2

(
2m

m

)
.

This yields the guess

(9.1.7) Wm =
π

22m+1

(
2m

m

)
.

It is now desirable to prove this statement.

A second approach to guessing the form of bm is to compute
symbolically several values of the sequence bm and to consider their
prime factorization. For instance, the factorization of

b100 = 45274257328051640582702088538742081937252294837706668420660

contains a number of consecutive primes in decreasing order starting

at 200; the factorization looks like

(9.1.8) b100 = 199 × 197 × 193 × 191 × · · · × 5 × 3 × 22.

The presence of the consecutive primes suggests dividing b100 by 200!.

It turns out that 200!/b100 is an integer with prime factorization of
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the form

(9.1.9)
200!

b100
= 972 × 892 × 832 × 792 × · · · × 548 × 396 × 2195.

This form now suggests considering

(9.1.10)
200!

b100 · 100!2
.

Mathematica shows that this number is 2. Naturally this could be a

coincidence. Repeating the procedure shows that

(9.1.11)
(2m)!

bm ·m!2
= 2

for every tested value of m. This is consistent with (9.1.6).

9.2. A proof based on recurrences

The goal of this section is to provide a proof of the formula predicted

in the previous section.

Theorem 9.2.1 (Wallis’ formula). Let m ∈ N0. Then

(9.2.1) Wm =

∫ ∞

0

dx

(x2 + 1)m+1
=

π

22m+1

(
2m

m

)
.

Proof. The first step is to produce a recurrence for Wm. This comes

from the identity

1

(x2 + 1)m+1
=

x2 + 1

(x2 + 1)m+2

=
2x

(x2 + 1)m+2
· x
2

+
1

(x2 + 1)m+2

=
x

2
· d

dx

(
− 1

m + 1

1

(x2 + 1)m+1

)
+

1

(x2 + 1)m+2
.

Integrate to produce

(9.2.2) Wm = − 1

m + 1

∫ ∞

0

x

2
· d

dx

1

(x2 + 1)m+1
dx + Wm+1.

Integrate by parts to obtain

(9.2.3) Wm+1 =
2m + 1

2(m + 1)
Wm.
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This is the desired recurrence. To prove the theorem, it suffices to

check that the right-hand side of (9.2.1) satisfies the same recurrence.

In order to achieve this, define

(9.2.4) Ym =
22m+1

π
(
2m
m

)Wm

and substituting in (9.2.3) yields

(9.2.5) Ym+1 = Ym.

The value Y0 = 1 shows that Ym = 1 as claimed. �

9.3. A proof based on generating functions

The generating function of the central binomial coefficients is given

in Theorem 2.7.3 as

(9.3.1)
∞∑
k=0

(
2k

k

)
uk =

1√
1 − 4u

.

Wallis’ formula is now multiplied by tm and summed from m = 0 to

infinity. This yields

(9.3.2)
∞∑

m=0

∫ ∞

0

tm dx

(x2 + 1)m+1
=

π

2

∞∑
m=0

(
t

4

)m(
2m

m

)
.

The integrand on the left-hand side can be summed as a geometric

progression to produce the elementary integral

(9.3.3)

∫ ∞

0

dx

x2 + 1 − t
=

π

2

1√
1 − t

.

Equation (9.3.3) is used as a starting point to produce a proof of

Wallis’ formula.

Lemma 9.3.1. Let m ∈ N and let

(a)m = a(a + 1)(a + 2) · · · (a + m− 1)

be the Pochhammer symbol. Then(
d

dt

)m

(x− t)−a = (a)m(x− t)−a−m.
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Proof. The induction step is

d

dt

[(
d

dt

)m

(x− t)−a

]
=

d

dt

[
(a)m (x− t)−a−m

]
= (a)m(−1)(x− t)−a−m−1(−a−m)

= (a)m(a + m)(x− t)−a−m−1.

The result follows from (a)m(a + m) = (a)m+1. �

To establish Wallis’ formula, start with (9.3.3) in the form

(9.3.4)

∫ ∞

0

(x2 + 1 − t)−1 dx =
π

2
(1 − t)−1/2

and differentiate m times with respect to t. The statement in the

lemma gives∫ ∞

0

(1)m(x2 + 1 − t)−1−m dx =
π

2
(1/2)m(1 − t)−1/2−m.

Now put t = 0 to obtain∫ ∞

0

dx

(x2 + 1)m+1
=

π

2

(1/2)m
(1)m

.

The result now follows from (1)m = m! and

(9.3.5)

(
1

2

)
m

=
(2m)!

m! 22m
.

Exercise 9.3.2. Check the details.

9.4. A trigonometric version

Wallis’ formula is expressed in trigonometric form by the change of

variables x = tan θ in (9.1.1). This produces

(9.4.1) Wm =

∫ π/2

0

cos2m θ dθ.

To obtain a recurrence for Wm, write

(9.4.2) cos2m θ = (cos θ)2m−2 (1 − sin2 θ)

and integrate to obtain

(9.4.3) Wm = Wm−1 +
1

2m− 1

∫ π/2

0

sin θ
d

dθ
cos2m−1 θ dθ.
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Integrate by parts to produce

(9.4.4) Wm = Wm−1 −
1

2m− 1
Wm.

This is equivalent to (9.2.3).

A second recurrence based on a trigonometric form. The

trigonometric form

(9.4.5) Wm =

∫ π/2

0

cos2m θ dθ

is now employed to produce a new recurrence for Wm.

The double angle formula cos2 θ = 1
2 (1 + cos 2θ) produces

Wm =
1

2m

∫ π/2

0

(1 + cos 2θ)m dθ

=
1

2m+1

∫ π

0

(1 + cosx)m dx

=
1

2m+1

m∑
j=0

(
m

j

)∫ π

0

cosj x dx

where the change of variables x = 2θ was employed to produce the

second line.

Observe that by symmetry

(9.4.6)

∫ π

0

cosj x dx = 0 for j odd

and

(9.4.7)

∫ π

0

cosj x dx = 2

∫ π/2

0

cosj x dx for j even.

Therefore, with j = 2k,

(9.4.8) Wm =
1

2m

�m2 �∑
k=0

(
m

2k

)∫ π/2

0

cos2k x dx,
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which produces the desired recurrence:

Theorem 9.4.1. The integral Wm satisfies the recurrence

(9.4.9) Wm =
1

2m

�m2 �∑
k=0

(
m

2k

)
Wk

for m ≥ 1. This is supplemented by the initial condition W0 = π
2 .

To prove Wallis’ formula, employ the intelligent guess given in

(9.2.1). Inserting the formula for Wm in (9.2.1) into (9.4.9) shows the

equivalence stated in the next proposition.

Proposition 9.4.2. The recurrence (9.4.9) follows from the binomial

sum identity

(9.4.10)

�m2 �∑
k=0

2−2k

(
m

2k

)(
2k

k

)
= 2−m

(
2m

m

)
.

Observe that in the sum in (9.4.10) the index k can be extended

for all k ≥ 0 since those k ≥ �m
2 � give a zero contribution.

Proposition 9.4.3. The binomial sum identity

(9.4.11)
∞∑
k=0

2−2k

(
m

2k

)(
2k

k

)
= 2−m

(
2m

m

)

holds. This implies the recurrence for the integral Wm.

Proof. The proof of (9.4.11) is based on generating functions. It is

now shown that
∞∑

m=0

( ∞∑
k=0

2−2k

(
m

2k

)(
2k

k

))
tm =

∞∑
m=0

2−m

(
2m

m

)
tm.

The right-hand side is simply
∞∑

m=0

(
2m

m

)(
t

2

)m

=
1√

1 − 2t

according to Theorem 2.7.3. The left-hand side is now written as

∞∑
m=0

( ∞∑
k=0

2−2k

(
m

2k

)(
2k

k

))
tm =

∞∑
k=0

2−2k

(
2k

k

)( ∞∑
m=0

(
m

2k

)
tm

)
.
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Now employ the result of Exercise 2.11.11

∞∑
m=0

(
m

j

)
tm =

tj

(1 − t)j+1

to simplify the left-hand side to

∞∑
k=0

2−2k

(
2k

k

)
t2k

(1 − t)2k+1
=

1

1 − t

∞∑
k=0

(
2k

k

)(
t2

4(1 − t)2

)k

=
1

1 − t

1√
1 − t2/(1 − t)2

.

This reduces to 1/
√

1 − 2t and the identity has been established. �

9.5. An automatic proof

The identity (9.4.11) can be established automatically by the methods

developed by H. Wilf and D. Zeilberger. The command

ct(binomial(m, 2i)binomial(2i, i)2−2i, 1, i,m,N),

entered in the WZ-package produces the recurrence

f(m + 1) =
2m + 1

m + 1
f(m)

for the left-hand side of (9.4.11). The proof is finished by checking

that 2−m
(
2m
m

)
satisfies the same recurrence and that the initial data

agree.

Note 9.5.1. Let

c(m) :=
24m+1

2m + 1

(
2m

m

)−2

.

Then Wallis’ inequality is the statement

(9.5.1)
2m

2m + 1
≤ c(m)

π
≤ 1, m ≥ 0.

Wallis’ infinite product is an immediate consequence of this inequality.
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In the paper by P. Paule and V. Pillwein [243] the reader will find

an automatic proof of (9.5.1) and of the improved versions

4m + 1

4m + 2
≤ c(m)

π
≤ 4m + 2

4m + 3
, m ≥ 0,

obtained originally by J. Gurland [155] and also of

32m2 + 32m + 7

4(2m + 1)(4m + 3)
≤ c(m)

π
≤ 16(m + 1)(2m + 1)

32m2 + 56m + 25
, m ≥ 0.

                

                                                                                                               



Chapter 10

Farey Fractions

10.1. Introduction

The previous chapters have described trees that illustrate arithmetical

properties of sequences. In this chapter the set of rational numbers is

given a similar discrete representation. The reader will find additional

material related to the topic of this chapter in the preliminary version

of the book by A. Hatcher [161].

10.2. Farey fractions and the Stern-Brocot tree

The starting point is to associate to Q∩ [0, 1] a collection of sequences

determined by the denominators. The assumption is that every ratio-

nal number x ∈ [0, 1] is written in reduced form; that is, numerator

and denominator are relatively prime. This determines the denomi-

nator of x uniquely.

Definition 10.2.1. The Farey sequence Fn of order n is the

ascending sequence of all rational numbers in [0, 1] whose denominator

is at most n. The elements of Fn are called Farey fractions.

Example 10.2.2. The Farey sequence of order 4 is

F4 =

{
0

1
,
1

4
,
1

3
,
1

2
,
2

3
,
3

4
,
1

1

}
.
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256 10. Farey Fractions

Naturally Fn ⊂ Fn+1 and

(10.2.1) Q ∩ [0, 1] =

∞⋃
n=1

Fn.

Proposition 10.2.3. Let n ∈ N and let

ϕ(n) = |{j ∈ N : 1 ≤ j ≤ n and gcd(j, n) = 1}|

be the Euler totient function. Then

|Fn| = 1 + ϕ(1) + ϕ(2) + · · · + ϕ(n).

Proof. Let j ∈ N and let 1 ≤ j ≤ n. If gcd(j, n) �= 1, then the

fraction j/n reduces to one with smaller denominator. Therefore

j/n is already part of some Fi with i < n. The fractions j/n ∈
Fn appearing for the first time at this level are precisely those with

gcd(j, n) = 1. The extra 1 in the formula accounts for x = 0. �

Exercise 10.2.4. Prove that for n > 1, the cardinality of Fn is an

odd number with 1/2 appearing as the middle term of Fn.

The properties of fractions adjacent in the Farey sequence are

discussed next.

Definition 10.2.5. Two fractions a/b and c/d in a Farey sequence

are said to be adjacent Farey fractions if they occur in consecutive

order in some Farey sequence.

Exercise 10.2.6. Check that 7/10 and 5/7 are adjacent Farey frac-

tions.

Lemma 10.2.7. No two adjacent Farey fractions can have the same

denominator.

Proof. The pair (x− 1)/n and x/n cannot be adjacent since

x− 1

n
<

x− 1

n− 1
<

x

n
.

�
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Definition 10.2.8. Let a/b, c/d be fractions in reduced terms. Their

mediant is defined by

(10.2.2)
a

b
⊕ c

d
=

a + c

b + d
.

Note 10.2.9. The mediant is recognized as the manner in which

scores are tabulated in games: two versions of the same game are

played and a player scores a points from a possible total of b on the

first game c out of d in the next try. The record for both tries is a+ c

out of b + d chances.

It is clear that the mediant is a rational number strictly between

a/b and c/d. Some elementary properties of Farey fractions are de-

scribed next.

Lemma 10.2.10. If ad − bc = 1 and c/d < a/b, then
a

b
⊕ c

d
is

the unique fraction with smallest possible denominator in the interval

(c/d, a/b).

Proof. Suppose that c/d < u/v < a/b and u/v ≤ (a + c) / (b + d).

Then (a + c) / (b + d) − c/d ≥ u/v − c/d, and it follows that v ≥
(b + d) (ud− cv) ≥ b + d. Similarly, if (a + c) / (b + d) ≤ u/v, from

a/b−(a + b) / (c + d) ≥ a/b−u/v it follows that v ≥ (b + d) (av − bu)

≥ b + d. The uniqueness follows from Lemma 10.2.7. �
Lemma 10.2.11. Two reduced fractions a/b, c/d are adjacent Farey

fractions if and only if |ad− bc| = 1.

Proof. If |ad− bc| = 1, Lemma 10.2.10 shows that no fraction be-

tween a/b and c/d has denominator smaller than b + d > max (b, d),

and so a/b, c/d are adjacent Farey fractions of order max (b, d) .

To prove the converse, proceed by induction and assume that

for any adjacent Farey fractions a/b, c/d of order n − 1, the identity

|ad− bc| = 1 holds. Any Farey fraction in Fn that is not already

in Fn−1 must have n as denominator. Denote it by x/n. Find two

adjacent Farey fractions c/d < a/b of order n − 1 such that c/d <

x/n < a/b. Lemma 10.2.7 implies that c/d, x/n and x/n, a/b are

adjacent Farey fractions of order n. Lemma 10.2.10 implies that x =

a+ c, n = b+ d, and so xd− cn = (a + c) d− c (b + d) = ad− bc = 1,

and an− bx = a (b + d) − b (a + c) = ad− bc = 1. �
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Exercise 10.2.12. Explore properties of the differences between two

consecutive Farey fractions. The picture in Figure 10.2.1 gives these

values for F100. The first and last points are not shown in the graph;

they are much larger than the rest.

500 1000 1500 2000 2500 3000
n

0.001

0.002

0.003

0.004

0.005

Diff

Figure 10.2.1. Difference among consecutive Farey fractions.

Finding approximations. An interesting application of Farey se-

quences is to find the rational number that approximates a given

irrational number to within a given tolerance and that has the small-

est possible denominator. That is, given an irrational number α and

a tolerance ε > 0, it is desired to obtain a fraction p/q such that

|α− p/q| < ε and q > 0 is as small as possible.

For example, consider the problem of finding p/q such that

|π − p/q| < 0.001. For this example, observe that in the Farey se-

quence F57 the numbers 179
57 − 3 and 22

7 − 3 are consecutive, that
179
57 < π < 22

7 , and that π − 179
57 ∼ 0.0012 and 22

7 − π ∼ 0.0013.

Therefore no fraction with denominator less than or equal to 57 is

close enough, and the desired fraction will appear in a later Farey

sequence and it will be in the interval
(
179
57 , 227

)
. The next fraction to

appear in this interval is the mediant 179+22
57+7 = 201

64 , and this in fact

has π − 201
64 ∼ 0.00097, so this is the desired fraction.
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Mathematica has a function Rationalize that claims to perform

this operation, but it seems inconsistent. For instance, in the example

discussed here it correctly states

Rationalize[Pi, 0.001] =
201

64
,

but it gives

Rationalize[Pi, 0.1] =
22

7
,

when in fact 16
5 is within the tolerance and has a smaller denominator.

Construction of the Stern-Brocot tree. The next step is to

provide a representation of Q ∩ [0, 1] in terms of a binary tree. The

process starts with the inductive definition of an increasing sequence

of finite subsets of Q ∩ [0, 1].

This sequence starts with

(10.2.3) A−1 = {0/1, 1/1} = {0, 1} .

Observe that the elements of A−1 are adjacent (they form the com-

plete set F1).

Once An has been defined, An+1 is obtained by adding to An all

the mediants of consecutive fractions in An. For example

(10.2.4) A0 = {0/1, (0 + 1) / (1 + 1) , 1/1} = {0, 1/2, 1} .

Exercise 10.2.13. Prove that |An| = 2n+1 + 1 for n ≥ −1.

Exercise 10.2.14. Prove that each pair of consecutive fractions in

An is a pair of adjacent Farey fractions of order at most Fn+3. Here Fn

is the nth Fibonacci number. Prove also that An contains a fraction

with denominator Fn+3.

The set Q ∩ [0, 1] is now partitioned using the sets An. Define

B−1 = A−1 = {0, 1} and for n ≥ 0 let Bn = An\An−1. The sets Bn

are clearly disjoint and |Bn| = 2n for n ≥ 0.

The elements in Bn are interpreted as the children of the elements

of An−1. Two parents a/b and c/d have the mediant (a + c)/(b + d)

as their child. At time n = −1 there are two parents {0/1, 1/1} with

a single child {1/2} at time n = 0. The two children at time n = 1

are {1/3, 2/3} coming from a parent at generation n = −1 and a
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parent at generation n = 0. At time n = 2 there are four children

{1/4, 2/5, 3/5, 3/4}.
The successive generations Bn are depicted by a binary tree by

drawing an edge from a fraction u/v in Bn−1 to a fraction x/y in Bn

precisely when x/y is a child of u/v.

1

2

1

3

2

3

1

4

2

5

3

5

3

4

1

5

2

7

3

8

3

7

4

7

5

8

5

7

4

5

L

L

L

L L

L

L

R

R R

R

R

R R

Figure 10.2.2. The Stern-Brocot tree.

The edge from x/y to u/v is labeled L if x/y < u/v, and R if

x/y > u/v.

Exercise 10.2.15. Verify that

B(4)=

{
1

6
,

2

9
,

3

11
,

3

10
,

4

11
,

5

13
,

5

12
,

4

9
,
5

9
,

7

12
,

8

13
,

7

11
,

7

10
,

8

11
,

7

9
,

5

6

}
.

Compute the descendents of 4/7 in B(4).

Lemma 10.2.16. There is a bijective correspondence between the

fractions in Bn and the finite words of length n over the symbols

L,R (the notation is meant to represent left or right turns), with the

empty word e representing the root of the tree {1/2}. By convention

the infinite words L∞ and R∞ represent 0 and 1, respectively.
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Note 10.2.17. The notation Q(w) is employed for the rational num-

ber corresponding to the finite word w. For example, Q(e) = 1/2 and

Q(RLR) = 5/8.

Definition 10.2.18. If p is a fraction in Bn, denote by p−, p+ the

left and right parents of p, respectively, so that p = p−⊕p+ and p− <

p < p+. For example, if p = 5/14, then p− = 1/3 and p+ = 4/11.

The notation is extended to finite words, so that w− is the word that

satisfies Q (w−) = p− and Q (w+) = p+.

Exercise 10.2.19. Check the following properties:

(1) The word w− is obtained from w by deleting all terminal L’s

(if any) and then deleting one R. Similarly, w+ is obtained from w

by deleting all terminal R’s (if any), then deleting one L.

(2) If p ∈ Bn, precisely one of p−, p+ is in Bn−1.

(3) Each pair (p−, p) , (p−, p+) , (p, p+) is a pair of adjacent Farey

fractions.

(4) Any two fractions a/b, c/d in [0, 1] with |ad− bc| = 1 occur as

a pair of adjacent Farey fractions in some An.

It has been established that Q provides a bijective correspondence

between the rational numbers in (0, 1) and the finite words over the

symbols L and R. The next exercise describes the connection between

a word w and the continued fraction expansion of Q(w).

Exercise 10.2.20. Given a finite word w, define a finite sequence of

positive integers (a1, a2, . . . , ak) as follows. Prepend an extra L at the

beginning of w, and then append to w an extra copy of its last letter.

Let the terms of the sequence (a1, a2, . . . , ak) count the number of

consecutive blocks of L’s or R’s in the modified word. For example,

the word LRLL is modified to LLRLLL, and it gives the sequence

(0, 2, 1, 3), and the word RRLRRR gives the sequence (0, 1, 2, 1, 4).

Prove that (0, a1, a2, . . . , ak) is the continued fraction expansion of

Q(w). Note: The convention employed here is that the continued

fraction of a number in [0, 1] starts with 0.
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10.3. The distribution of denominators

The goal of this section is to describe properties of the denominators

of the rational number Q(w) in terms of those of the word w. The

results presented here appeared in the paper by D. Baney, S. Beslin,

and V. De Angelis [39].

Proposition 10.3.1. The numbers Q(wRn) increase to Q(w+) and

the numbers Q(wLn) decrease to Q(w−).

Proof. Let N(w) denote the denominator of Q(w) and let |w| be the

length of w. Observe that N(w) ≥ |w| + 2 and N(wR) = N(w) +

N(w+). Now, the numbers Q(w) and Q(w+) are adjacent Farey

fractions; therefore

Q(w+) −Q(w) =
1

N(w)N(w+)
.

It follows that

Q(w+) −Q(wRn) =
1

N(w+)(N(w) + nN(w+))

for all n. The result now follows from the inequalities

Q(w−) < Q(wL) < Q(w) < Q(wR) < Q(w+).

�

Exercise 10.3.2. Prove that for any word u of length m, the in-

equalities

Q (wLu) < Q (wLRm) < Q
(
(wL)+

)
= Q (w)

hold. Interpret these inequalities in terms of the effect of making a

left turn in a walk on the Stern-Brocot tree. Hint: Compare the

values of Q(LRLR) and Q(LRLRLw) for an arbitrary word.

The next step is to consider infinite words over {L, R}. The

following notation is employed: if w = x1x2 · · · is such a word, let

wn = x1x2 · · ·xn be the finite word consisting of the initial block of

length n of w.

Exercise 10.3.3. Let w be an arbitrary word over {L, R}. Prove

that Q(wn) is a Cauchy sequence in [0, 1].
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Exercise 10.3.4. Prove that every irrational number in [0, 1] has a

unique representation as an infinite word over {L,R} and that every

rational number has two such representations.

Algorithm for smallest denominator. The Stern-Brocot tree is

now used to describe an algorithm to find the rational number of the

smallest possible denominator N(α, β) between two given numbers

α, β ∈ [0, 1]. First represent both α and β as infinite paths on the

Stern-Brocot tree. If there is more than one choice (that is, if at

least one of α, β is rational), choose a pair of representations that

have the longest possible initial overlap. Then N(α, β) is the last

common ancestor on the paths. This algorithm is illustrated with an

example. Let α = 3/8, β = 5/13. Then α corresponds to LRLRL∞

and LRLLR∞, and β corresponds to LRLRRL∞ and LRLRLR∞.

The maximum overlap occurs for the pairs LRLRL∞, LRLRLR∞,

with initial overlap LRLRL. Therefore

N(3/8, 5/13) = Q(LRLRL) = 8/21.

This procedure is essentially equivalent to the algorithm of Section II

of the paper by S. J. Beslin, D. J. Baney, and V. De Angelis [51].

Note 10.3.5. The same algorithm can be explained from the point

of view of continued fractions. Let [a1, a2, . . .] and [b1, b2, . . .] be the

expansions for α and β. If an expansion is finite, attach ∞ at the

end. For instance, the expansions for 7/19 are [0, 2, 1, 2, 2,∞] and

[0, 2, 1, 2, 1, 1,∞]. Define

d = d(α, β) = min{k : ak �= bk}, m = m(α, β) = min{ad, bd},

and M(α, β) = m +

d−1∑
i=1

ai, so that M(α, β) − 1 is the length of the

overlap of the corresponding paths on the Stern-Brocot tree. Choose

a pair of expansions that maximizes M(α, β). Then N(α, β) is given

by the continued fraction [a1, a2, . . . , ad−1,m + 1]. This procedure is

essentially equivalent to the algorithm of Section III of [51].

As example, 3/8 has expansions [0, 2, 1, 1, 1,∞] and [0, 2, 1, 2,∞],

and 5/13 has expansions [0, 2, 1, 1, 2,∞] and [0, 2, 1, 1, 1, 1,∞]. The

maximum value for M is 6 and occurs for the pairs [0, 2, 1, 1, 1,∞] and
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[0, 2, 1, 1, 1, 1,∞]. Then, as before, N(3/8, 5/13) = [0, 2, 1, 1, 1, 2] =

8/21.

Exercise 10.3.6. Prove that the above algorithm works.

Let T := {(α, β) : 0 < α ≤ 1; 0 ≤ β < α} be the lower part

of the unit square. Assume that the pair (α, β) is chosen randomly

inside T. Given n ∈ N, what is the probability that the denominator

of N(α, β) is n?

Exercise 10.3.7. Let n ≥ 2 and 0 < k < n with gcd (n, k) = 1.

Prove that there are unique integers a, b such that a < n, 0 ≤ b < k,

and ak − bn = 1.

Let w be a finite word over {L,R}. Define the rectangle

R(w) = (Q(w), Q(w+)] × [Q(w−), Q(w)) ⊂ T.

Lemma 10.3.8. If w �= u, then R (w) ∩R (u) = ∅.

Proof. For any word w, Proposition 10.3.1 gives

Q(w−) = lim
n→∞

Q(wLn) = Q(wL∞)

and

Q(wL∞) < Q(wL) < Q(w) < Q(wR) < Q(wR∞) = lim
n→∞

Q(wRn).

The last step is provided by

lim
n→∞

Q(wRn) = Q(w+).

Assume without loss of generality that Q(w) < Q(u). Suppose first

that w is not a subword of u and u is not a subword of w. Then there

are (possibly empty) words v, s, t such that w = vLs, u = vRt, and

it follows that

Q(w+) = Q(vLsR∞) ≤ Q(vLR∞) = Q(v) < Q(u),

so that (Q(w), Q(w+)] ∩ (Q(u), Q(u+)] = ∅.
Suppose now that u is a subword of w. Then w = uLv for some

word v, and

Q(w+) = Q(uLvR∞) ≤ Q(uLR∞) = Q(u),
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and this gives (Q(w), Q(w+)] ∩ (Q(u), Q(u+)] = ∅, as before. The

case where w is a subword of u is similar. �

Lemma 10.3.9. Let α, β ∈ R, with 0 < α ≤ 1, 0 ≤ β < α. Then

there is a finite word w such that (α, β) ∈ R (w), and Q (w) is the

fraction with the lowest possible denominator between α and β.

Proof. Let u, v be words such that Q(u) = α, Q(v) = β. If u is not

a subword of v and v is not a subword of u, let w be the first common

ancestor of u and v. Then u = wRs, v = wLt for some words s, t that

do not end in L∞ or R∞. This shows that Q(w−) < Q(w) < Q(w),

Q(w) < Q(u) < Q(w+) and it follows that (α, β) = (Q(u), Q(v)) ∈
R(w). On the other hand, if v is a subword of u, then v agrees

with u on at most a finite number of symbols. Choose an infinite

word v′ such that Q(v′) = Q(v) and the words v′, u have maximum

possible overlap w. Since Q(u) > Q(v), it must be that u = wRt

and v = wLs for some words t and s. Then Q(w) < Q(wRt) ≤
Q(wR∞) = Q(w+), and Q(w−) = Q(wL∞) ≤ Q(wLs) < Q(w), i.e.,

(α, β) = (Q(u), Q(v)) ∈ R(w). The case that u is a subword of v is

similar, and the last assertion follows from the algorithm described

above. �

Lemmas 10.3.8 and 10.3.9 show that {R(w) : w ∈ Bn, n ≥ 0} is a

partition of the triangle {(α, β) : 0 < α ≤ 1, 0 ≤ β < α}, as shown in

Figure 10.3.1. The rectangles in the partition have been labeled with

the corresponding smallest denominator.

Lemma 10.3.10. There is a bijection θ between the set

(10.3.1) {(n, k) : n ≥ 2, 0 < k < n, gcd(n, k) = 1}

and the set of finite words over {L,R} , given by θ(n, k) = w, where

Q(w) = a/n, Q(w−) = b/k, and a, b are such that ak − bn = 1,

0 < a < n, 0 ≤ b < k < n.

Proof. This comes directly from the proof of Lemma 10.3.7. �

Proposition 10.3.11. Let n ≥ 2, 0 < k < n with gcd (n, k) = 1 be

given, let w = θ (n, k), and let a, b be such that ak − bn = 1, as in

Lemma 10.3.7. Then for any α, β with 0 < α ≤ 1, 0 ≤ β < α, the
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Figure 10.3.1. The rectangles

fraction with smallest possible denominator between α and β is a/n

if and only if (α, β) ∈ R (w).

Proof. Suppose that the fraction with the lowest denominator be-

tween α and β is a/n. If (b − a)/(n − k) < α, then it would follows

that β < a/n < (b − a)/(n − k) < α, a contradiction. Therefore, it

must be that a/n = Q(w) < α ≤ (b− a)/(n− k) = Q(w+), and in a

similar fashion Q(w−) ≤ β < Q(w), i.e., (α, β) ∈ R(w). The converse

is Lemma 10.3.9. �

Theorem 10.3.12. Choose the point (α, β) randomly from the tri-

angle T = {(α, β) : 0 < α ≤ 1, 0 ≤ β < α}, with uniform distribution.

Then the probability that the smallest possible denominator of any
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fraction between α and β is n is given by

4

n3

∑
k<n;

gcd(k,n)=1

1

k
.

Proof. The area of T is 1/2. Proposition 10.3.11 shows that the

probability in question is

2
∑

area of R(w) = 2
∑

(Q(w+) −Q(w))(Q(w) −Q(w−)),

where the sum is over all words w such that Q(w) = a/n for some a

relatively prime to n. Using the bijective correspondence described

after Lemma 10.3.9, it follows that Q(w−) = b/k, where 0 ≤ b < k <

n, ak−bn = 1, and then by definition Q(w+) = (a−b)/(n−k). Then

1

2

∑
area of R(w) =

∑
k<n;

gcd(k,n)=1

(
a− b

n− k
− a

n

)(
a

n
− b

k

)

=
∑
k<n;

gcd(k,n)=1

1

n(n− k)

1

nk

=
1

n3

∑
k<n;

gcd(k,n)=1

(
1

k
+

1

n− k

)

=
2

n3

∑
k<n;

gcd(k,n)=1

1

k
.

This establishes the result. �

The sum over all the probabilities computed above gives the next

identity.

Corollary 10.3.13.

∞∑
n=2

4

n3

∑
k<n;

gcd(k,n)=1

1

k
= 1.

The next exercise was shown to the author by S. Northshield.
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Exercise 10.3.14. Use the formulas
∞∑

n=1

∑
k<n;

gcd(k,n)=1

1

nmk
=

1

ζ(m + 1)

∞∑
n=1

n∑
k=1

1

nmk
,

∞∑
n=1

n∑
k=1

1

n2k
= 2ζ(3) and

∞∑
n=1

n∑
k=1

1

n3k
=

5

4
ζ(4)

to obtain a new derivation of Corollary 10.3.13. Then show that the

expected value of N (α, β) is 4. Here ζ is the Riemann zeta function

described in Chapter 16.

                

                                                                                                               



Chapter 11

The Exponential
Function

11.1. Introduction

This chapter considers the first transcendental function encountered

in analysis. This is the exponential function ex and is also consid-

ered part of the family of elementary functions. The definition is

given in terms of power series and a short review of these is given

first. In the previous chapters the concept of generating function

has been employed. This is simply a formal mechanism to describe

the operation on sequences. In this chapter the question of actual

convergence of the series is discussed. A large part of the chapter is

dedicated to the number e: one of the basic constants of mathematics.

It even has its own book by E. Maor [210].

11.1.1. Functions defined by power series. The concept of power

series is introduced first.

Definition 11.1.1. Let N0 := N ∪ {0} and let {an : n ∈ N0} be a

sequence of real numbers. For x ∈ R define the polynomial

(11.1.1) fn(x) :=
n∑

j=0

ajx
j .

269

                                     

                

                                                                                                               



270 11. The Exponential Function

For each x ∈ R fixed, {fn(x) : n ∈ N0} is a sequence of real numbers.

Let X ⊂ R be the set of x ∈ R for which this sequence converges. The

set X depends on the sequence {an}. For x ∈ X, define the function

(11.1.2) f(x) = lim
n→∞

fn(x).

The function f is called the power series associated to the se-

quence {an}. The polynomials fn(x) are called the partial sums

of f .

Example 11.1.2. Exercise 1.5.17 states the formula for a geometric

progression

(11.1.3) 1 + x + x2 + · · · + xn =
1 − xn+1

1 − x

for x �= 1. The closed-form expression for the partial sum shows that

these sums converge precisely when |x| < 1. This defines the function

(11.1.4) f(x) ≡
∞∑
j=0

xj =
1

1 − x
, for|x| < 1.

Exercise 11.1.3. Prove that the sequence {xn : n ∈ N0} has a

limit precisely when −1 < x ≤ 1. The case of x �= 1 follows from

Bernoulli’s inequality

(11.1.5) (1 + t)n ≥ 1 + nt

valid for n ∈ N0 and t ∈ R with t ≥ −1.

The next theorem summarizes properties of functions defined by

power series.

Theorem 11.1.4. The power series

(11.1.6) f(x) =
∞∑
j=0

ajx
j

satisfies the following:

(1) The set of points X ⊂ R where the series (11.1.6) converges

contains an interval of the form (−R,R). The maximum number R is

called the radius of convergence of f . The extreme cases of R = 0

and R = ∞ are included. The full set of convergence X is the interval
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(−R,R) together with some (= 0, 1, 2) of the endpoints x = −R and

x = R.

(2) The radius of convergence R can be obtained from the coeffi-

cients {aj} by

(11.1.7) R = lim
j→∞

|aj |
|aj+1|

or by

(11.1.8) R = lim
j→∞

|aj |−1/j ,

provided the limits exist.

(3) For x ∈ (−R,R) the function f is differentiable. Moreover

its derivative is obtained by differentiating (11.1.6) term by term to

produce

(11.1.9) f ′(x) =

∞∑
j=1

jajx
j−1.

The radius of convergence of the new series (11.1.9) is also R.

Exercise 11.1.5. Prove that the radius of convergence of the series

for (1 − x)−a given in Theorem 2.4.2 is 1.

The main function of this chapter is defined next.

Definition 11.1.6. The exponential function is defined by the

power series

(11.1.10) exp(x) =
∞∑
j=0

xj

j!
.

Exercise 11.1.7. Check that the radius of convergence is R = ∞.

Therefore exp(x) is defined for all x ∈ R.

Note 11.1.8. The elementary properties of this function will be de-

scribed in this chapter. In particular, the famous number e is intro-

duced as the limit of a sequence. It is then established that

(11.1.11) exp(x) = ex.

The number e is one of the most important constants of analysis. The

historical aspects of this number can be found in [210].
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11.2. Elementary properties of the exponential
function

This section provides a discussion of the exponential function. The

properties are derived directly from the definition (11.1.10).

11.2.1. The addition theorem. The behavior of the exponential

function under addition is established first.

Theorem 11.2.1. The exponential function satisfies the addition

formula

(11.2.1) exp(x + y) = exp(x) · exp(y),

for all x, y ∈ R.

Proof. Multiply the series defining exp(x) and exp(y) to produce

∞∑
j=0

xj

j!
×

∞∑
k=0

yk

k!
=

∞∑
j, k=0

xjyk

j! k!
.

The double sum is changed from indices j, k to j, n where n is the

sum n = j + k. Then n runs over N0 and j satisfies 0 ≤ j ≤ n.

Therefore

exp(x) · exp(y) =

∞∑
n=0

n∑
j=0

xjyn−j

j! (n− j)!

=
∞∑
n=0

(x + y)n

n!
,

by the binomial theorem. The last series is exp(x + y). �

Corollary 11.2.2. For each x ∈ R

(11.2.2) exp(x) · exp(−x) = 1.

In particular exp(x) �= 0.

11.2.2. The differential equation. Most readers’ first encounter

with the exponential function is due to the fact that its derivative is

the same as the function. This property is employed next to establish

additional properties.
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Theorem 11.2.3. The exponential function f(x) = exp(x) is the

unique solution to the (differential) equation

f ′(x) = f(x),(11.2.3)

f(0) = 1.

Proof. The derivative of (11.1.10) is given by

f ′(x) =

∞∑
j=1

j
xj−1

j!
=

∞∑
j=1

xj−1

(j − 1)!
=

∞∑
j=0

xj

j!
= f(x).

The value f(0) = 1 is clear. This shows that f(x) = exp(x) satisfies

the differential equation (11.2.3). To establish uniqueness, let h(x)

be another solution of (11.2.3). Define h1(x) = h(x) exp(−x). Then

(11.2.4) h′
1(x) = h′(x) exp(−x) − h(x) exp(−x) = 0.

This shows that h1(x) is constant. Evaluating at x = 0 gives the

result. �

Exercise 11.2.4. Give a proof of the addition theorem using the

differential equation. Hint: Define h1(x) = exp(x + y)/exp(y).

11.2.3. The exponential function is not rational. The differ-

ential equation satisfied by the exponential function provides an ele-

mentary proof of the next result.

Theorem 11.2.5. The exponential is not a rational function.

Proof. Assume the existence of polynomials A and B, of degrees a

and b, respectively, such that ex = A(x)/B(x). Theorem 11.2.3 yields

A′(x)B(x) −A(x)B′(x) = A(x)B(x).

This gives a contradiction since the left-hand side is a polynomial of

degree at most a+ b− 1 and the right-hand side has degree a+ b. �

Corollary 11.2.6. There is no collection of numbers a0, a1, . . . , aN
of fixed length N + 1 such that

a0
n!

+
a1

(n− 1)!
+ · · · + aN

(n−N)!
= 0,

for all n ∈ N.
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Proof. The existence of such a set would imply a recurrence with con-

stant coefficients for the sequence {1/n!}. Theorem 8.3.1 then implies

that ex is a rational function. This contradicts Theorem 11.2.5. �

11.3. The constant e

This section considers one of the basic constants of mathematics. Its

role is only paralleled by π, described in Chapter 12. The definition

employs the fact that an increasing sequence, bounded from above,

has a limit in R.

Definition 11.3.1. The number e is defined by the limit

(11.3.1) e := lim
n→∞

(1 + 1/n)n.

The proof of the existence of the limit above is based upon the

two sequences

(11.3.2) an = (1 + 1/n)n and bn = (1 + 1/n)n+1.

The discussion employs Bernoulli’s inequality stated in Exercise 11.1.3.

Now

an
bn−1

=

(
n2 − 1

n2

)n

=

(
1 − 1

n2

)n

> 1 − 1

n

shows that {an} is increasing. Indeed, an > bn−1 × n−1
n = an−1.

Similarly {bn} is decreasing, as shown by

bn−1

an
=

(
n2

n2 − 1

)n

=

(
1 +

1

n2 − 1

)n

>

(
1 +

1

n2

)n

> 1 +
1

n
.

This produces bn−1 > an
(
1 + 1

n

)
= bn, as promised. It follows that

2 = a1 < an < bn < b1 = 4. The identity bn = an (1 + 1/n) shows

that

lim
n→∞

an = lim
n→∞

bn.

Note 11.3.2. The proof shows that 2 < e < 4. Moreover, for each

fixed n ∈ N, the bounds

(11.3.3)

(
1 +

1

n

)n

< e <

(
1 +

1

n

)n+1
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are valid. For example, n = 2 gives 9
4 < e < 27

8 . These bounds will

be improved in Exercise 11.3.4.

Exercise 11.3.3. Check that n = 5 yields

(11.3.4)
7776

3125
< e <

46656

15625

and that this guarantees 2 < e < 3.

Exercise 11.3.4. Read the paper by Y. Bicheng and L. Debnath

[54] that establishes the inequality

(11.3.5)
1

2(n + 1)
< 1 − 1

e

(
1 +

1

n

)n

<
3

6n + 5
,

for n ≥ 1. In particular,

(11.3.6) lim
n→∞

n

(
1 − 1

e

(
1 +

1

n

)n)
=

1

2
.

Note 11.3.5. J. Sandor has established in [265, 266] the bounds(
1 +

1

n

)n+a

< e <

(
1 +

1

n

)n+b

.

The values a = 1/ ln 2 − 1 and b = 1/2 are the optimal choice of

parameters.

11.4. The series representation of e

The constant e has been introduced by the limit

(11.4.1) e = lim
n→∞

(
1 +

1

n

)n

.

In this section an alternative representation for e is established. The

notation

(11.4.2) en =

n∑
k=0

1

k!

is employed.

Theorem 11.4.1. The number e is given by

(11.4.3) e =
∞∑
k=0

1

k!
.
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In terms of the exponential function exp(x) this states that e = exp(1).

For n ∈ N, the estimates

(11.4.4) 0 < e− en <
1

nn!

hold.

Proof. To check the identity between e and the series observe that

an :=

(
1 +

1

n

)n

= 1 +

n∑
k=1

n(n− 1) · · · (n− k + 1)

k!nk

= 1 +

n∑
k=1

1

k!

(
1 − 1

n

)(
1 − 2

n

)
· · ·

(
1 − k − 1

n

)

≤ 1 +

n∑
k=1

1

k!
= en ≤ s.

Therefore e ≤ s. The opposite inequality is left as an exercise.

To prove (11.4.4), let s be the series in (11.4.3). Then en ≤ s =

lim
n→∞

en. Moreover

s− en =

∞∑
k=n+1

1

k!
=

1

n!

(
1

n + 1
+

1

(n + 1)(n + 2)
+ · · ·

)

<
1

n!

(
1

n + 1
+

1

(n + 1)2
+ · · ·

)

=
1

nn!
,

and (11.4.4) follows from here.

Exercise 11.4.2. Check the opposite inequality.

�

At this point there are two functions under consideration. The

first one is the exponential function exp(x) defined by the power series

in (11.1.10). The second one is the function ex, whose value simply

corresponds to exponentiation as described in Subsection 1.9.3. The

next theorem states that these two functions are one and the same.
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Theorem 11.4.3. Let x ∈ R. Then exp(x) = ex.

A possible proof of this theorem is based on checking the identity

for x ∈ Q and then extending it by continuity. The exercises give

more details.

Exercise 11.4.4. Prove Theorem 11.4.3 by showing by induction

that exp(n) = en for n ∈ N. Extend it to n ∈ Z in a natural manner

using the addition theorem. The extension to Q employs the identity

(11.4.5) (exp(m/n))
n

= exp(m).

Finally extend it to x ∈ R by approximating x by rational numbers.

Exercise 11.4.5. Introduce the polynomials

(11.4.6) En(x) :=
(
1 +

x

n

)n
and check the relation

(11.4.7) E′
n(x) =

n

n + x
En(x).

Assume there is a function f(x) defined by f(x) = lim
n→∞

En(x). Then,

if the convergence is such that derivatives and limits can be ex-

changed, the limiting function f satisfies f ′(x) = f(x). Conclude

that f(x) = exp(x).

Exercise 11.4.6. Define

(11.4.8) Fn(x) :=
n∑

j=0

xj

j!
.

Prove that F ′
n(x) = Fn−1(x). Establish the inequality Fn(x) ≤ ex for

x ≥ 0. Conclude that ex is an increasing function satisfying

lim
x→∞

ex = ∞.

Define

(11.4.9) Gn(x) = Fn(x)Fn(−x).

Prove that

Gn(x) = 1 +
(−1)n

n!2
Kn(x),

where Kn is a polynomial with positive integer coefficients of degree

n + 2 for n even and n + 1 if n is odd. Explore properties of the

polynomial Kn.
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11.5. Arithmetical properties of e

This section discusses properties of e that have somewhat of an arith-

metic nature. The first result establishes the irrationality of e. This

was shown by J. H. Lambert in 1761 [191]. C. Hermite [167] proved

that e is transcendental, that is, e is not the root of a polynomial

with integer coefficients. The reader will find a proof of this result

in the text by G. H. Hardy et al. [160]. This section also includes a

result of J. Liouville [200] and S. Beatty [45] that neither e nor e2

satisfies a polynomial equation of degree 2.

Theorem 11.5.1. The number e is irrational.

First proof. Assume e ∈ Q and write it as e = m/n, with m, n ∈ N.

The previous section has provided estimates on the partial sums en
in the form

(11.5.1) 0 < e− en <
1

nn!
.

This yields

(11.5.2) 0 < (n− 1)!m− n!en <
1

n
< 1.

This is a contradiction because the middle term is an integer.

A geometric proof. This proof is due to J. Sondow [275]. Exercise

11.3.3 shows that e ∈ I1 := [2, 3]. Divide this interval in two equal

parts and let I2 be the second one, that is, I2 = [ 52 , 3]. The estimate

(11.5.3) e > 1 + 1 +
1

2!
=

5

2
= e2

shows that e ∈ I2. Proceed by induction and divide Ik−1 into k equal

subintervals and let Ik be the second one. Then

(11.5.4) Ik = [ek, ek + 1
k! ]

and e ∈ Ik because e > ek. Then

(11.5.5) e =

∞⋂
k=1

Ik

is the geometric equivalent of the series representation (11.4.3). This

proves that if e is rational, say m
n , then n cannot be of the form k!.
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But every fraction can be written with a factorial as denominator, as

in

(11.5.6)
m

n
=

m · (n− 1)!

n!
.

This contradicts the assumption that e is rational.

A third proof based on continued fractions is presented in Corol-

lary 11.6.9.

11.5.1. Quadratic irrationality of e. Suppose that e satisfies ae2

+ be+ c = 0, with a, b, c ∈ Z and a �= 0. The series representation of

e gives

n!e =

n∑
k=0

n!

k!
+

∞∑
k=n+1

n!

k!
.

The second term is bounded by

(11.5.7)
∞∑

k=n+1

n!

k!
>

n!

(n + 1)!
=

1

n + 1

and

(11.5.8)

∞∑
k=n+1

n!

k!
<

∞∑
j=1

1

(n + 1)j
=

1

n
.

It follows that

(11.5.9)

∞∑
k=n+1

n!

k!
=

1

n + t

with 0 < t < 1. The value of t naturally depends upon n. A similar

argument shows that

(11.5.10)
∞∑

k=n+1

(−1)k
n!

k!
=

(−1)n+1

n + 1 + s
,

with 0 < s < 1, which depends upon n. Multiply the quadratic

equation satisfied by e by n!/e to obtain

(11.5.11) a

(
i +

1

n + t

)
+ bn! + c

(
j +

(−1)n+1

n + 1 + s

)
= 0,

for some integers i, j. This yields

(11.5.12)
a

n + t
+

c

n + 1 + s
= −(ai + bn! + cj).
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The right-hand side is an integer and the left-hand side is arbitrarily

small for large n. It follows that a = −c and t − s = 1. This is

impossible and proves the next theorem, due to J. Liouville.

Theorem 11.5.2. There is no nonzero polynomial P (x) = ax2 +

bx + c, with a, b, c ∈ Z, such that P (e) = 0.

11.5.2. Quadratic irrationality of e2. The next step is to prove

a similar result for e2.

Theorem 11.5.3. There is no nonzero polynomial P (x) = ax4 +

bx2 + c, with a, b, c ∈ Z, such that P (e) = 0.

Proof. Legendre’s theorem, Theorem 2.6.4, shows that the 2-adic

valuation of n! is given by

(11.5.13) ν2(n!) = n− s2(n),

where s2(n) is the sum of the binary digits of n. Now write

(11.5.14)
2n

n!
=

2s2(n)

On
,

with On an odd number. Observe that On is the odd part of n!,

obtained by removing all factors of 2 from n!. Therefore, if n > m,

then Om divides On. Now assume that ae4 + be2 + c = 0 for some

integers a, b, c, where a may be assumed to be positive. The equation

becomes

(11.5.15) ae2 + ce−2 = −b.

The Taylor expansion of the exponential is given by

ex = 1 + x +
x2

2!
+ · · · + xn

n!

(
1 +

x

n + 1
ex θ(x)

)
,

where 0 < θ(x) < 1. For each n ∈ N, define

(11.5.16) βn =
e2θ(2)

n + 1
and γn =

e−2θ(−2)

n + 1
.

Therefore

e2 = 1 + 2 +
22

2!
+ · · · + 2n

n!
(1 + 2βn)

and

e−2 = 1 − 2 +
22

2!
− · · · ± 2n

n!
(1 − 2γn),
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where the + sign appears if n is even and the − sign appears if n is

odd.

The equation (11.5.15) becomes

a

(
1 + 2 +

22

2!
+ · · · + 2n

n!
(1 + 2βn)

)

+ c

(
1 − 2 +

22

2!
− · · · ± 2n

n!
(1 − 2γn)

)
= −b.

Exercise 11.5.4. Prove that

(11.5.17) 2αn+1aβn ∓ 2αn+1cγn = d,

where d is an integer and a > 0.

If c �= 0, choose the integer n so that ∓c > 0. For example, if

c > 0, take n = 2i + 1. This means that in the expansion of e−2, a

minus sign appears at the last term.

Exercise 11.5.5. Prove that the above choices imply αn = 1 and

(11.5.17) becomes

(11.5.18) 4aβn + 4(−c)γn = d.

This is a contradiction. The left-hand side of (11.5.18) is positive and

it lies strictly between 0 and 1 by choice of n = 2i + 1 large enough.

A similar contradiction appears if c < 0, this time choosing n = 2i.

The final case of c = 0 is elementary and it is left to the reader. �

Note 11.5.6. C. Hermite proved that there is no polynomial P with

integer coefficients such that P (e) = 0; that is, e is transcendental.

An outline of the proof may be found as Exercise 4, Section 11.2,

page 353 of the book by J. M. and P. B. Borwein [71]. The proof

presented next appears in the class notes by M. Filaseta [126].

Theorem 11.5.7. The number e is transcendental.

Proof. The proof is divided into a small number of steps.

Step 1. Let f be a polynomial of degree n. Define

I(t) =

∫ t

0

et−uf(u) du.

                

                                                                                                               



282 11. The Exponential Function

Exercise 11.5.8. Prove that

I(t) = et
n∑

j=0

f (j)(0) −
n∑

j=0

f (j)(t).

Hint: Integrate by parts.

Exercise 11.5.9. For a polynomial f(x) = a0 + a1x + · · · + anx
n,

define f∗(x) = |a0| + |a1|x + · · · + |an|xn. Prove that

|I(t)| ≤ |t|f∗(|t|)e|t|.

Step 2. Assume g(x) = b0 + b1x + · · · + brx
r is a polynomial, with

bj ∈ Z and b0 �= 0, such that g(e) = 0. Define

f(x) = xp−1(x− 1)p(x− 2)p · · · (x− r)p

and form the expression

J = b0I(0) + b1I(1) + · · · + brI(r),

where I(t) is computed with the polynomial f . Observe that the

degree of f is n = (r + 1)p− 1. Then

J =

r∑
k=0

bkI(k) =

r∑
k=0

bk

⎛
⎝ek

n∑
j=0

f (j)(0) −
n∑

j=0

f (j)(k)

⎞
⎠

=

⎛
⎝ n∑

j=0

f (j)(0)

⎞
⎠ g(e) −

r∑
k=0

n∑
j=0

bkf
(j)(k)

= −
r∑

k=0

n∑
j=0

bkf
(j)(k).

The polynomial f has a zero of order p − 1 at x = 0; therefore

f (j)(0) = 0 for 0 ≤ j ≤ p− 2. Similarly, f (j)(k) = 0 for 0 ≤ j ≤ p− 1.

This gives

(11.5.19) J = −b0f
(p−1)(0) − b0

n∑
j=p

f (j)(0) +

r∑
k=1

bk

n∑
j=p

f (j)(k).
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Exercise 11.5.10. Check that(
d

dx

)s

xp−1
∣∣∣
x=0

=

{
(p− 1)! if s = p− 1,

0 if s �= p− 1.

Step 3. Assume p > Max{|b0|, r}. Then every term in (11.5.19),

except the first one, is divisible by p!. To verify this claim, first take

j ≥ p and write

(11.5.20) f(x) = xp−1h(x).

Differentiation now gives

f (j)(0) =

j∑
s=0

(
j

s

)(
d

dx

)s

xp−1
∣∣∣
x=0

·
(

d

dx

)j−s

h(x)
∣∣∣
x=0

=

(
j

p− 1

)
· (p− 1)!

(
d

dx

)j−p+1

h(x)
∣∣∣
x=0

,

with the result

f (j)(0) = j(j − 1)(j − 2) · · · (j − p + 2) ·
(

d

dx

)j−p+1

h(x)
∣∣∣
x=0

.

The first term is the product of p− 1 consecutive integers. Corollary

2.1.7 shows that this number is divisible by (p− 1)!. Every derivative

of the second term is a sum where the terms contain at least one

derivative of the factors (x − k)p. Therefore, this term is divisible

by p.

Exercise 11.5.11. Check that, for j ≥ p and 1 ≤ k ≤ r, the number

p! divides f (j)(k).

Finally,

f (p−1)(0) = (−1)rp(p− 1)! · (r!)p

is not divisible by p! because r < p.

Step 4. The number J is divisible by (p − 1)! and J �= 0 since J is

not divisible by p!. Therefore |J | ≥ (p− 1)!. The bounds for J shown

in Exercise 11.5.8 give

(11.5.21) |J | ≤
r∑

k=0

|bk|kf∗(k)ek.
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For 0 ≤ k ≤ r,

f∗(k) = kp−1(k + 1)p(k + 2)p · · · (k + r)p ≤ rp−1(2r)rp ≤ (2r)(r+1)p.

This yields |J | ≤ cap, with a = (2r)r+1 and c constants independent

of p. The inequalities

(11.5.22) (p− 1)! ≤ |J | ≤ cap

are incompatible for large p. The proof is complete. �

11.6. Continued fractions connected to e

Continued fractions were introduced in Chapter 1 in the context of

the Euclidean algorithm. This was extended to real numbers in Sub-

section 1.9.5. In this section a number of continued fractions that

produce expressions related to e are discussed.

Theorem 11.6.1. The continued fraction for e is given by

(11.6.1) e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, . . .].

The proof presented here appears in the text by J. Roberts [255].

Step 1. Introduce the function

fn(x) =

∞∑
j=0

an,jx
2j where an,j =

(n + j)!

j! (2n + 2j)!
.

Exercise 11.6.2. Prove that the series converges for all x ∈ R.

Step 2. The series fn(x) satisfies the recurrence

fn(x) = 2(2n + 1)fn+1(x) = 4x2fn+2(x).

Proof. A direct calculation shows that

an,j − 2(2n + 1)an+1,j =
2(n + j)!

(j − 1)! (2n + 2j + 1)!
.
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Multiply by x2j and sum for j ≥ 1. This yields

∞∑
j=1

an,jx
2j −

∞∑
j=1

2(2n + 1)an+1,jx
2j = 2

∞∑
j=1

(n + j)!x2j

(j − 1)!(2n + 2j + 1)!

= 2x2
∞∑
j=0

(n + j + 1)!x2j

j!(2n + 2j + 3)!

= 4x2
∞∑
j=0

(n + j + 2)!

j!(2n + 2j + 4)!
x2j .

This is the claim.

Step 3. The initial terms for the sequence fn(x) are

f0(x) =
ex + e−x

2
and f1(x) =

1

2x
· e

x − e−x

2
.

Proof. A direct calculation shows that

f0(x) =

∞∑
j=0

x2j

(2j)!
=

ex + e−x

2

and similarly for f1(x).

Step 4. Introduce the quotient

(11.6.2) gn(x) =
fn(x)

fn+1(x)

and write the recurrence in Step 2 in the form

(11.6.3) gn(x) = 4n + 2 +
1

1
4x2 · gn+1(x)

.

Observe that

(11.6.4)
e2x + 1

e2x − 1
=

1

2x
g0(x)

and the recurrence (11.6.3) gives

(11.6.5) g0(x) = 2 +
1

1
4x2 · g1(x)

.

This leads to

(11.6.6)
e2x + 1

e2x − 1
=

1

x
+

1
1
2x · g1(x)

.
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Exercise 11.6.3. Check that iterating the previous procedure gives

the continued fraction

(11.6.7)
e2x + 1

e2x − 1
=

[
1

x
,

3

x
,

5

x
, . . . ,

2n− 1

x
,

2n + 1

x
+

2x

gn+1(x)

]
.

The Seidel-Stern theorem stated next guarantees that the limit

as n → ∞ exists. The reader will find a proof in the book by

L. Lorentzen and H. Waadeland [204].

Theorem 11.6.4. Let a0 ∈ R and aj ∈ R+ for j ≥ 1. The continued

fraction [a0, a1, . . . , an] has a limit as n → ∞ if and only if
∑

n an
diverges.

Theorem 11.6.5. The continued fraction

(11.6.8)
e2x + 1

e2x − 1
=

[
1

x
,

3

x
,

5

x
, . . . ,

2n− 1

x
, . . .

]
holds for all x ∈ R.

Example 11.6.6. The choice x = 1
2 gives

e + 1

e− 1
= [2, 6, 10, 14, . . .] .

This continued fraction, also written as

e + 1

e− 1
= 2 +

1

1 +
6

1 +
10

1 +
14

1 +
18

· · ·

,

was discovered by Euler in 1737.

The last step in the proof of Theorem 11.6.1 is to prove that if

(11.6.9) α = [a0, a1, a2, . . .]

where

(11.6.10) a0 = 2, a3n = a3n+1 = 1, a3n−1 = 2n,

then α = e. This is accomplished by comparing the convergents of α

and those of (e− 1)/(e + 1).
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The next exercise can be checked by induction using the rules for

convergents in Exercise 1.9.22.

Exercise 11.6.7. Let
pn
qn

be the convergents of α and let
un

vn
be the

convergents of
e + 1

e− 1
.

(a) The relations

p3n+1 = 2(2n + 1)p3n−2 + p3n−5 for n ≥ 2,

q3n+1 = 2(2n + 1)q3n−2 + q3n−5 for n ≥ 1

hold.

(b) The convergents of α and
e + 1

e− 1
are related by

2un = p3n+1 + q3n+1,

2vn = p3n+1 − q3n+1.

The next exercise completes the proof of Theorem 11.6.1.

Exercise 11.6.8. Use the relation

(11.6.11)
p3n+1 + q3n+1

p3n+1 − q3n+1
=

un

vn

to conclude that α = e. Hint: First check that α �= 1 and then pass

to the limit in (11.6.11).

Corollary 11.6.9. The number e is irrational.

Proof. Example 11.6.6 shows that the number (e + 1)/(e − 1) is

irrational since the continued fraction appearing there is not finite.

This implies the result. �

Exercise 11.6.10. A very nice proof of the continued fraction for e

was given by H. Cohn [103]. This proof is outlined in a number of

steps. Check the details.

(1) The continued fraction

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . .]

may be written as e = [1, 0, 1, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . .].

Write the terms of the continued fraction as e = [a0, a1, a2, . . .].
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(2) Use the rules in Exercise 1.9.22 to check that the convergents

[a0, a1, . . . , ai] = pi/qi satisfy

p3n = p3n−1 + p3n−2, p3n+1 = 2np3n + p3n−1, p3n+2 = p3n+1 + p3n,

and the same rules holds for qi.

(3) Define the integrals

An =

∫ 1

0

xn(x− 1)n

n!
ex dx,

Bn =

∫ 1

0

xn+1(x− 1)n

n!
ex dx,

Cn =

∫ 1

0

xn(x− 1)n+1

n!
ex dx.

Integrate by parts to check the relations

An = −Bn−1 − Cn−1, Bn = −2nAn + Cn−1, Cn = Bn −An.

(4) Use the relations in (3) to prove that

An = eq3n − p3n, Bn = p3n+1 − eq3n+1, Cn = p3n+2 − eq3n+2.

Conclude that pi/qi → e.

11.7. Derangements: The presence of e in
combinatorics

An interesting appearance of the constant e is in a special counting

problem. Consider a permutation π of the n numbers {1, 2, . . . , n}.
The number i is said to be fixed by π if π(i) = i.

Definition 11.7.1. A permutation π of {1, 2, . . . , n} without any

fixed point is called a derangement. The number of derangements

is denoted by Dn. The first few values are 1, 0, 1, 2, 9, 44.

Note 11.7.2. This notion used to be explained in terms of gentlemen

arriving at a party and placing their hats on a table. At the moment

of departure, each of them takes a hat at random. The derangement

counts the chance of nobody taking the correct hat. These days, hats

are not in fashion, so this interpretation is no longer employed.
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A closed-form formula for Dn is now derived using the inclusion-

exclusion principle described in Theorem 7.3.1. To produce an

expression for the derangement number, for each i in the range 1 ≤
i ≤ n, let

(11.7.1) Ai = {π ∈ Sn : π(i) = i}

be the set of permutations in the symmetric group Sn that fix i. Then

(11.7.2) Dn =

∣∣∣∣∣
n⋂

i=1

Ac
i

∣∣∣∣∣ = n! −
∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ .
The number

(11.7.3) |Ai1 ∩ Ai2 ∩ · · · ∩Aik |

is needed to apply the inclusion-exclusion principle. A permutation

in this set fixes k indices and permutes the remaining n−k. Therefore

|Ai1 ∩ Ai2 ∩ · · · ∩ Aik | = (n− k)!

and it follows that∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ = n× (n− 1)! −
(
n

2

)
× (n− 2)! +

(
n

3

)
× (n− 3)! − · · · .

This provides the expression for the derangement number stated next.

Theorem 11.7.3. The derangement number is given by

(11.7.4) Dn = n! ×
n∑

k=0

(−1)k

k!
.

Passing to the limit as n → ∞ makes the number 1/e appear.

Corollary 11.7.4. As n → ∞, the proportion of permutations of n

elements that do not have a fixed point is given by

(11.7.5) lim
n→∞

Dn

n!
=

1

e
.

The next series of exercises discusses some properties of the de-

rangement numbers Dn.
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Exercise 11.7.5. Establish the recurrence

(11.7.6) Dn = (n− 1) (Dn−1 + Dn−2) .

Hint: Let π be a permutation without fixed points. Assume π(1) = 2

and divide these permutations into two types according to whether

π(2) = 1 or not.

Exercise 11.7.6. Write the recurrence in Exercise 11.7.5 in the form

Dn − nDn−1 = − [Dn−1 − (n− 1)Dn−2] .

Iterate to produce

(11.7.7) Dn = nDn−1 + (−1)n.

Exercise 11.7.7. Use (11.7.7) to produce the generating function

(11.7.8)
∞∑

n=0

Dn

n!
xn =

e−x

1 − x
.

Exercise 11.7.8. Prove that Dn is the nearest integer to n!/e.

Exercise 11.7.9. The recurrence in Exercise 11.7.5 shows that n−1

divides Dn. Define

(11.7.9) D∗
n =

Dn

n− 1
.

Prove that

(11.7.10) D∗
n = n(n− 3)D∗

n−2 + (−1)n−1

and conclude that D∗
n is an odd integer.

Exercise 11.7.10. Let r ∈ N and let D∗
n be as in Exercise 11.7.9.

Prove that the sequence D∗
n mod r is periodic and that its minimal

period is r if r is even and 2r if r is odd. Compare this with the

similar question for Fibonacci numbers described in Section 3.6.

Note 11.7.11. An attempt to study the factorization of D∗
n showed

that this number sometimes is prime. The set of indices n ≤ 5000 for

which this occurs is

{4, 5, 6, 11, 15, 44, 66, 168, 575, 1713}.
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These numbers do not appear in N. Sloane’s database. The prime

numbers appearing in this list grow very rapidly. The number of

digits of the entries in the previous list is given by

{1, 2, 2, 7, 11, 53, 91, 300, 1336, 4794}.

Exercise 11.7.12. This problem comes from Benoit Cloitre’s website

http://www.pi314.net/eng/miroir.php

and it is complemented by Exercise 12.6.5. Define

(11.7.11) un = un−1 +
1

n− 2
un−2

for n ≥ 3 and u1 = 0, u2 = 1. Prove that the generating function

(11.7.12) U(x) =

∞∑
n=1

unx
n

satisfies

(11.7.13) x(x− 1)U ′(x) + (x2 − x + 2)U(x) = 0.

Integrate to produce

(11.7.14) U(x) =
x2e−x

(1 − x)2
.

Verify the identity

(11.7.15) U(x) = x
d

dx

(
e−x

1 − x

)
and use it to produce

(11.7.16) un = n

n∑
j=0

(−1)j

j!
=

Dn

(n− 1)!
.

Conclude that

(11.7.17) lim
n→∞

n

un
= e.

Note 11.7.13. A simple calculation gives the integral representation

(11.7.18) Dn =

∫ ∞

0

(t− 1)ne−t dt.

This note contains a description of the beautiful explanation of this

identity given in the paper by P. M. Kayll [182].
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The description starts with a graph G = (V,E) formed by a

collection of vertices V and a collection of edges E. Each edge e ∈ E

connects two vertices in V . The graph G is called bipartite if the

vertices V are divided into two disjoint sets V = X ∪Y in such a way

that each edge connects a vertex from X to one from Y . A matching

of G is a collection of edges M ⊂ E such that the edges in M do not

share vertices. If every vertex is part of some edge in M , then M is

called a perfect matching.

Exercise 11.7.14. Prove that if G has a perfect matching, then

|X| = |Y |. Conclude that G contains all the vertices of the complete

bipartite graph Kn,n. This is a bipartite graph with vertex set

V = X ∪ Y with every vertex in X connected to every vertex in

Y . The graph G is called a spanning subgraph of Kn,n.

For a graph G, let μG(r) be the number of matchings in G con-

taining exactly r edges. Assume G is the spanning subgraph of Kn,n.

The rook polynomial of G is defined by

(11.7.19) RG(t) =

n∑
r=0

(−1)rμG(r)tn−r.

Exercise 11.7.15. Let G be a graph with n pairwise disjoint vertices.

Prove that μG(r) =
(
n
r

)
. Conclude that RG(t) = (t− 1)n.

For a bipartite graph G, let Ξ(G) denote the number of perfect

matchings of G and let G∼ be the bipartite complement of G:

this is the graph with the same vertices as G and has for edges all the

edges in the complete bipartite graph Kn,n that are not in G. The

next theorem relates these concepts. The reader will find the required

background in the textbook by J. Riordan [253].

Theorem 11.7.16. If H is a spanning subgraph of Kn,n, then

(11.7.20) Ξ(H) =

∫ ∞

0

e−tRH∼(t) dt.

Exercise 11.7.17. Let G be the graph obtained by removing from

Kn,n the edges of a perfect matching. Check that every perfect match-

ing of G corresponds to a derangement of {1, 2, . . . , n}.
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The integral expression (11.7.18) now follows from Theorem

11.7.16 and Exercise 11.7.15. For more examples and a description of

the relations between integrals and other combinatorial objects, the

reader is referred to [182].

11.8. The natural logarithm

The exponential function ex is an increasing function that maps R

to (0,∞). The natural logarithm is defined as its inverse. The

notation lnx is employed. The basic properties are derived from the

inverse function theorem stated next.

Theorem 11.8.1. Let f be continuous on [a, b], differentiable on

(a, b), and suppose f ′(x) �= 0 on (a, b). Let [m,M ] = f([a, b]). Then,

f : [a, b] → [m,M ] is invertible and its inverse g is continuous on

[m,M ], differentiable on (m,M), and g′(y) �= 0 on (m,M). More-

over,

(11.8.1) g′(y) =
1

f ′(g(y))
, m < y < M.

The reader will find in the textbook by O. Hijab [168] a readable

proof.

Exercise 11.8.2. Prove the integral representation

(11.8.2) lnx =

∫ x

1

dt

t
.

Exercise 11.8.3. The functional equation

(11.8.3) ln(xy) = lnx + ln y

for x, y ∈ R+ follows directly from Theorem 11.2.1. Give a direct

proof from the integral representation (11.8.2). Hint: Split the inte-

gral over [1, xy] at x.

Theorem 11.8.4. The power series expansion of y = ln(1 − x) for

|x| < 1 is given by

(11.8.4) ln(1 − x) = −
∞∑
k=1

xk

k
.
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Proof. Integrate the geometric series
1

1 − x
= 1 + x + x2 + · · ·. �

Exercise 11.8.5. Prove the expansion

(11.8.5) ln
1 + x

1 − x
= 2

∞∑
k=0

x2k+1

2k + 1
.

This is valid for |x| < 1.

As in the case of the exponential function, it is relatively simple

to establish that lnx is not a rational function.

Theorem 11.8.6. There is no rational function R(x) such that

R′(x) =
1

x
.

That is, y = lnx is not a rational function.

Proof. Let R(x) = B(x)/A(x) (with gcd(A,B) = 1) and assume

R′(x) = 1/x. This yields

(11.8.6) x(B′(x)A(x) −B(x)A′(x)) = A2(x).

This shows that x = 0 is a root of A. Write A(x) = xrC(x), with

C(0) �= 0 and r > 0. Then (11.8.6) produces

(11.8.7) xB′(x)C(x) −B(x) [rC(x) + xC ′(x)] = xrC2(x).

Let x = 0 to obtain rB(0)C(0) = 0. This is a contradiction. �

11.9. The binary expansion of ln 2

The value x = 1
2 in (11.8.4) yields

(11.9.1) ln 2 =

∞∑
k=1

1

k2k
,

which has been known at least since the time of Euler. For any d ∈ N,

the series (11.8.5) implies

(11.9.2) 2d ln 2 =

d∑
k=1

2d−k

k
+

∞∑
k=d+1

2d−k

k
.
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The next exercise appears in the paper by D. H. Bailey, P. Bor-

wein, and S. Plouffe [37], and it was a precursor of the so-called

BBP-formulas. See Section 12.8 for a similar formula for π.

Exercise 11.9.1. Use the binary expansion of the integer n to pro-

vide an algorithm that evaluates an in an efficient manner. The ex-

ample

(11.9.3) 517 = ((((52)2)2)2) · 5

should provide a hint.

Exercise 11.9.2. Let r mod 1 be the fractional part of the real num-

ber r and let x mod k be the residue of the integer x modulo k. Prove

that

(
2d ln 2

)
mod 1 =

(
d∑

k=1

2d−k

k
mod 1 +

∞∑
k=d+1

2d−k

k
mod 1

)
mod 1.

=

(
d∑

k=1

2d−k mod k

k
mod 1 +

∞∑
k=d+1

2d−k

k
mod 1

)
mod 1.

Discuss how to employ this formula to evaluate the binary digits of

ln 2. The evaluation of 2d−k in the first sum can be done using Exer-

cise 11.9.1.

11.10. The irrationality of ln 2

This section is based on work presented in the book by J. M. and

P. B. Borwein [71] and in the paper by D. Huylebrouck [177].

The main result required in the proof is an estimate on the growth

of the least common multiple of the first n integers. The first theorem

shows that this estimate implies the irrationality of ln 2. The remain-

der of the section presents an elementary proof of this estimate. A

much shorter argument, based on the prime number theorem, is out-

lined at the end of the section.

Theorem 11.10.1. Define

(11.10.1) dn = lcm{1, 2, , . . . , n}.

Then dn ≤ 3n.
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The proof of this theorem is presented at this end of this section.

Theorem 11.10.2. Theorem 11.10.1 implies that ln 2 is irrational.

Proof. Assume that ln 2 =
a

b
with a, b ∈ N. The first part of the

proof consists of finding an integral that produces ln 2. Integrating

the identity

xn

1 + x
=

xn − (−1)n

x + 1
+

(−1)n

x + 1

shows that

(11.10.2)

∫ 1

0

xn dx

1 + x
=

un + vn ln 2

dn

where un, vn ∈ Z.

Define

(11.10.3) fn(x) =
1

n!

(
d

dx

)n

xn(1 − x)n.

Exercise 11.10.3. Prove that fn is a polynomial with integer coef-

ficients.

Let

(11.10.4) In =

∫ 1

0

fn(x)
dx

1 + x
.

Then there are integers u∗
n, v

∗
n such that

(11.10.5) In =
u∗
n + v∗n ln 2

dn
.

Integration by parts shows that

In =

∫ 1

0

[
x(1 − x)

1 + x

]n
dx

1 + x
.

The estimate

(11.10.6)
x(1 − x)

1 + x
≤ 3 − 2

√
2

and Theorem 11.10.1 give

0 < |u∗
n + v∗n ln 2| = Indn ≤ (3 − 2

√
2)ndn ≤ (9 − 6

√
2)n.

                

                                                                                                               



11.10. The irrationality of ln 2 297

The inequality 9 − 6
√

2 < 1 shows that (9 − 6
√

2)n < 1/b for n

sufficiently large. This produces

(11.10.7) 0 < |bu∗
n + av∗n| < 1.

This is a contradiction. �

11.10.1. Bounds on lcm(1, 2, . . . , n). The goal of this subsection

is to present D. Hanson’s proof [157] of Theorem 11.10.1. The proof

is divided into a sequence of steps.

Step 1. The least common multiple is given by

(11.10.8) dn =
∏
p≤n

pαp(n)

where

(11.10.9) αp(n) =

⌊
lnn

ln p

⌋
is the highest power of p below n.

Exercise 11.10.4. Let u ∈ R and m ∈ N. Prove that⌊ u

m

⌋
=

⌊
�u�
m

⌋
.

Step 2. Let x1, x2, . . . , xk be positive integers satisfying

k∑
j=1

1

xj
≤ 1.

If x ∈ R is such that xk > x ≥ 1, then

�x� >
k∑

j=1

⌊
x

xj

⌋
.

Proof. Using Exercise 11.10.4,

k∑
j=1

⌊
x

xj

⌋
=

k−1∑
j=1

⌊
x

xj

⌋
=

k−1∑
j=1

⌊
�x�
xj

⌋

≤
k−1∑
j=1

�x�
xj

≤ �x�
(

1 − 1

xk

)
< �x�

and the result has been established. �
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Exercise 11.10.5. This exercise is related to the sequence discussed

in Lemma 1.7.9. Choose a1 = 2 and an+1 = a1a2 · · · an + 1. Prove

that an+1 = a2n − an + 1 and that, for arbitrary k ∈ N,

k∑
j=1

1

aj
≤ 1.

Therefore {aj} satisfies the conditions of Step 2.

Step 3. The sequence of integers {an} defined in Exercise 11.10.5 is

increasing since

an+1 − an = a2n − 2an + 1 = (an − 1)2 > 0.

Define k = k(n) to be the least integer such that ak+1 > n. Thus

(11.10.10) 2 = a1 < a2 < · · · < ak ≤ n < ak+1 < · · · .

Introduce the notation

(11.10.11) bj =
n

aj

and define

(11.10.12) Ln,k =
n!

�b1�! �b2�! · · · �bk�!

for n ∈ N and k = k(n) as above. Observe that �bj� = 0 if j > k(n).

Thus

(11.10.13) Ln,k =
n!

�b1�! �b2�!�b3�! · · ·
.

Exercise 11.10.6. Prove that, for any n, k ∈ N, the number Ln,k is

an integer. Hint: Use the multinomial expansion given in Exercise

2.11.2.

Lemma 11.10.7. Let p be a prime. Then the p-adic valuation of

Ln,k satisfies

(11.10.14) νp(Ln,k) ≥ �logp n�.

It follows that dn ≤ Ln,k.
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Proof. Legendre’s series (2.6.1) gives

νp(Ln,k) =

�logp n�∑
j=1

(⌊
n

pj

⌋
−
⌊

n

a1pj

⌋
−
⌊

n

a2pj

⌋
− · · · −

⌊
n

akpj

⌋)
.

Take x = n/pj and xi = ai in Step 1 to conclude that every term in

the previous sum is at least 1. This gives the result. �

Note 11.10.8. The rest of the steps prove that Ln,k ≤ 3n.

Step 4. Continue with the notation bi = n/ai. Then

bbii

�bi��bi�
< (ebi)

1−1/ai

holds for n ≥ ai.

Proof. For n = ai the inequality is clear. For n > ai,

bbii

�bi��bi�
≤ bbii

(bi − 1 + 1/ai)
bi−1+1/ai

=

(
1 +

ai − 1

n− ai + 1

)n−ai+1

ai−1 · ai−1

ai

× b
1−1/ai

i

< (ebi)
1−1/ai .

Step 5. Define ci = �bi�. Then

Ln,k =
n!

c1! c2! · · · ck!
.

Then the inequality

Ln,k <
nn

cc11 · · · cckk
holds.

Proof. Let m = m1+ · · ·+mr. The multinomial theorem shows that

(11.10.15) mm = (m1 + · · ·+mr)
m >

m!

m1!m2! · · ·mr!
mm1

1 · · ·mmk

k .

Now recall that k = k(n) is the least integer such that ak+1 > n and

bi = n/ai. Define

(11.10.16) t =
k∑

i=1

�bi� .
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Then k < t ≤ n. Indeed,

(11.10.17) t ≤
k∑

i=1

n

ai
≤ n

k∑
i=1

1

ai
≤ n.

On the other hand, the sum defining t has k positive integers. Thus

t > k. This implies that

Ln,k =
n(n− 1) · · · (t + 1)t!

c1! · · · ck!
<

nn−ttt

c1! · · · ck!
holds because t! < tt.

Exercise 11.10.9. Use (11.10.15) to finish the proof of this step.

Step 6. Continue with the notation ak ≤ n < ak+1. Then, for k ≥ 3,

the inequality k < log2 log2 n + 2 holds.

Proof. The recurrence ak+1 = a2k − ak + 1 implies ak+1 > 22
k−1

+ 1.

This is the result.

Step 7. Let k = k(n) and let t be defined as before. Then the

inequality

Ln,k <
nn(eb1)

1−1/a1 · · · (ebk)1−1/ak

bb11 bb22 · · · bbkk
holds.

Proof. Step 5 has given the inequality

(11.10.18) Ln,k <
nn

cc11 · · · cckk
and Step 4 states that

(11.10.19)
1

ccii
<

1

bbii
(ebi)

1−1/ai .

This gives the stated inequality.

Note 11.10.10. The last part of the proof consists of the study of

the limit

w = lim
k→∞

a
1/a1

1 a
1/a2

2 · · · a1/ak

k

and establishing the bound

Ln,k < ek−3/2nk−3/2wn.
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This will prove the bound Ln,k < 3n. Lemma 11.10.7 will imply

dn < 3n.

Step 8. Observe that the function a
1/a1

1 a
1/a2

2 · · · a1/ak

k is monotoni-

cally increasing as a function of k. Moreover, the recurrence ai+1 =

a2i − ai + 1 gives a2i > ai+1 > (ai − 1)2. Therefore

log a
1/ai+1

i+1

log a
1/ai

i

=
ai log ai+1

ai+1 log ai
<

2ai
ai+1

<
2ai

(ai − 1)2
<

1

2
,

for all i ≥ 3. The value log a
1/a6

6 < 5 × 10−6 gives the bound

∞∑
i=1

log a
1/ai

i =
5∑

i=1

log a
1/ai

i +
∞∑
i=6

log a
1/ai

i < 1.08240 + 10−5.

Step 9. Define w = lim
k→∞

a
1/a1

1 a
1/a2

2 · · · a1/ak

k . Then w < 2.952.

Exercise 11.10.11. Check the numerology.

Step 10. Observe the identities

a1 − 1

a1
+

a2 − 1

a2
+ · · · + ak − 1

ak
= 1 − 1/a1 + · · · + 1 − 1/ak

= k −
k∑

i=1

1

ai

= k − 1 +
1

ak+1 − 1
.

This implies

Ln,k <
(ne)k−1+1/(ak+1+1) wn

a
1−1/a1

1 a
1−1/a2

2 · · · a1−1/ak

k

< ek−3/2nk−3/2wn

since n ≤ a1a2 · · · ak.

Exercise 11.10.12. Check the details.

Exercise 11.10.13. Prove that the inequality Ln,k < ek−3/2nk−3/2wn

implies Ln,k < 3n.
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Lemma 11.10.7 completes the proof of the estimate dn < 3n. This

establishes Theorem 11.10.1 and shows that ln 2 is irrational.

Note 11.10.14. The bound dn < 3n admits a simpler proof, pro-

vided one is willing to admit as known the Prime Number The-

orem. This is one of the biggest achievements of the nineteenth

century. It was conjectured by Legendre and Gauss at the end of the

eighteenth century and proven, independently, by J. Hadamard and

C. de la Vallée Poussin in 1896. The reader will find a nice historical

perspective on this theorem in the survey paper by P. Bateman and

H. Diamond [41] and a description of a clever shortcut by D. Newman

[234] in the paper by D. Zagier [318].

Theorem 11.10.15. Let π(n) be the number of primes up to n. Then

lim
n→∞

π(n)

n/ lnn
= 1.

Observe that

(11.10.20) dn =
∏
p≤n

pαp(n)

where the product runs over all primes p ≤ n and αp(n) is the greatest

integer i such that pi ≤ n. An upper bound for dn is obtained by

replacing pαp(n) by n and since there are π(n) terms in the product,

it follows that

(11.10.21) dn ≤ nπ(n).

The prime number theorem shows that nπ(n) ≤ e(1+ε)n for any ε > 0.

Taking ε = ln 3 − 1 ≥ 1
11 gives the result.

11.11. Harmonic numbers

The current section presents the first class of rational numbers con-

sidered in this text: these are the harmonic numbers. A second

class, the Bernoulli numbers, is presented in Chapter 13.

Definition 11.11.1. The harmonic numbers are defined by

(11.11.1) Hn = 1 +
1

2
+

1

3
+ · · · + 1

n
.
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The notation

(11.11.2) Hn =
Nn

Dn

with gcd(Nn, Dn) = 1 is employed. This is the reduced form of the

rational number Hn.

The generating function. The first tool for the study of harmonic

numbers is their generating function. This is obtained in an elemen-

tary manner.

Lemma 11.11.2. Let {an} be a sequence with generating function

A(x) =
∞∑

n=0

anx
n.

Then the generating function of the partial sums bn = a0+a1+· · ·+an
is

B(x) =
A(x)

1 − x
.

Proof. The expansion of the geometric series, stated in (11.1.2), gives

B(x) =

∞∑
n=0

anx
n ×

∞∑
k=0

xk =
∑
k,n

anx
n+k

and introducing the new index r = n + k, it follows that

B(x) =

∞∑
r=0

(
r∑

k=0

ak

)
xr,

as claimed. �

Theorem 11.11.3. The generating function of the harmonic num-

bers is

(11.11.3)
∞∑

n=0

Hnx
n = − ln(1 − x)

1 − x
.

Proof. The harmonic numbers are the partial sums of the sequence

{1/n}. The result follows from Lemma 11.11.2 and the expansion
∞∑

n=1

xn

n
= − ln(1 − x), obtained by integrating

∞∑
n=0

xn =
1

1 − x
. �
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Exercise 11.11.4. Prove the identity
∞∑

n=0

Hn

2n
= 2 ln 2.

Exercise 11.11.5. Show that there is no sequence of numbers

{ak}Nk=1, with fixed N , such that the recurrence

N∑
k=1

ak
Hn−k

(n− k)!
= 0

is valid for all n ∈ N.

Arithmetical properties of harmonic numbers. The discussion

of arithmetical properties of the harmonic numbers starts by showing

that Hn �∈ N.

Theorem 11.11.6. The harmonic numbers Hn, for n > 1, are not

integers.

Proof. Assume Hn ∈ N and let 2k be the highest power of 2 less

than or equal to n. Then

2k−1Hn−
1

2
= 2k−1

(
1 +

1

2
+ · · · + 1

2k − 1

)
+2k−1

(
1

2k + 1
+ · · · + 1

n

)
is a fraction with odd denominator. This is a contradiction: any

fraction of the form m− 1
2 , with m ∈ N, has even denominator. �

The denominator of Hn is a divisor of the least common multiple

of {1, 2, . . . , n}. This has been denoted by dn in Theorem 11.10.1.

The graph in Figure 11.11.1 shows the function

f(n) :=
1

n
|{1 ≤ k ≤ n : denominator of Hk = dk}| .

The function f(n) measures the proportion of values where there is

no cancellation in adding the terms forming Hn.

Wolstenholme’s theorem. This result is one of the classic theorems

on divisibility properties of the harmonic number Hn. Recall the

notation Hn = Nn/Dn, with gcd(Nn, Dn) = 1.

The first result, due to J. Wolstenholme [314], has already ap-

peared in Theorem 2.5.18 in the discussion of the binomial coefficient
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n

0.2

0.4
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0.8

1.0

f(n)

Figure 11.11.1. Proportion of harmonic numbers with de-
nominator lcm{1, 2, . . . , n}.

(
2p−1
p−1

)
. The theorem states that, for p > 3 prime, the rational num-

ber Hp−1 has a numerator divisible by p2. The first result deals with

divisibility by p.

Theorem 11.11.7. Let p > 3 be a prime. Then p divides Np−1.

Proof. An alternative form of the result is that

(11.11.4) 1 +
1

2
+

1

3
+ · · · + 1

p− 1
≡ 0 mod p.

To check this, let xi ∈ {1, 2, . . . , p− 1} be the inverse of i modulo p,

that is, ixi ≡ 1 mod p. Then

(11.11.5) Np−1 ≡ x1 + x2 + · · · + xp−1 mod p.

The numbers 1 and p−1 are the only ones for which i = xi. Therefore

as sets

{1, 2, . . . , p− 2, p− 1} = {x1 = 1, x2, . . . , xp−2, xp−1 = p− 1}.

It follows that

x1 + x2 + · · · + xp−1 = 1 + 2 + · · · + (p− 1) =
p(p− 1)

2
,

and this is divisible by p. �
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Exercise 11.11.8. Let p be a prime number. Define the numbers si
by the expansion

(x− 1)(x− 2) · · · (x− p + 1) = xp−1 − s1x
p−2 + s2x

p−3 + · · · + sp−1.

Prove that si ≡ 0 mod p for 1 ≤ i ≤ p− 3.

The next result improves Theorem 11.11.7 and deals with divisi-

bility by p2.

Theorem 11.11.9. Let p > 3 be a prime. Then p2 divides Np−1.

Proof. Replace x = p in the factorization given in Exercise 11.11.8

and sp−1 = (p− 1)! to obtain

(11.11.6) pp−2 − s1p
p−3 + · · · + sp−3p− sp−2 = 0.

Therefore p2 divides sp−2. The result follows from the identity

(11.11.7) sp−2 = (p− 1)!Hp−1.

�

Exercise 11.11.10. Check the details.

Modular properties of the numerator of Hn. The results of

the previous section show that, for p prime, the number Np−1, the

numerator of Hp−1, is divisible by p. An interesting phenomenon has

appeared in the study of the distribution of Nj taken modulo a given

integer q.

Consider the sets

Aq = {Nj mod q : j ∈ N} \ {0},
the list of nonzero remainders of numerators of harmonic numbers

modulo q, and

Bq = {j : 1 ≤ j ≤ q such that gcd(j, q) = 1},
the set of numbers relatively prime to the modulus q.

Example 11.11.11. For q = 11, the two sets agree:

A11 = B11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
On the other hand, for q = 15,

A15 = {1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14}
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and

B15 = {1, 2, 4, 7, 8, 11, 13, 14}.

The graph in Figure 11.11.2 shows the sets A83 and A84. This

suggested looking at the values appearing in the Aq.

5000 10000 15000 20000 25000 30000
n

20

40

60

80

H(n)mod 83

5000 10000 15000 20000 25000 30000
n

20

40

60

80

H(n)mod 84

Figure 11.11.2. The distribution of numerators modulo 83
and 84.

Observe the granular structure for q = 83 and the band structure

for q = 84. The reader should be careful with computer experiments

for this problem. For example, for q = 83, the remainder 8 appears

for the first time at position 1277. Therefore, the set Aq should be

computed for sufficiently large size. The experiments seem to indicate

that the following statements are true.

Conjecture 11.11.12. The inclusion Bq ⊂ Aq holds. Moreover,

equality holds if and only if q is either a prime or a power of 2.

                

                                                                                                               



Chapter 12

Trigonometric Functions

12.1. Introduction

The class of elementary functions include, up to now, polynomials,

rational functions, exponentials, and logarithms. This class is now

enlarged by a class of functions that the reader must have found in

introductory courses and those that appear in the study of trigonom-

etry. This chapter begins with a discussion of sine and cosine as

the two most basic functions in this class. The definition requires the

notion of angle and a preliminary discussion of it is given in terms

of the length of the corresponding arc. The definition of angle, given

in terms of the integral for arclength, gives an easy point of entry to

the well-known properties of trigonometric functions.

12.2. The notion of angle

The basic variable of trigonometric functions is an angle. This is

now introduced as the length of a chord on the unit circle.

Let m ∈ R+ and consider the point of intersection of the part of

the line y = mx in the first quadrant and the unit circle x2 + y2 = 1.

309

                                     

                

                                                                                                               



310 12. Trigonometric Functions

A simple calculation shows

x(m) =
1√

1 + m2
and y(m) =

m√
1 + m2

.(12.2.1)

The angle associated to the slope m is defined next.

Definition 12.2.1. Let m ∈ R+. The angle associated to m is

the value

(12.2.2) α(m) =

∫ 1

(1+m2)−1/2

dt√
1 − t2

.

This definition has the value α(0) = 0 included in (12.2.2). The

function α is extended to m ∈ R as an odd function. That is, for

m < 0,

(12.2.3) α(−m) := −α(m).

Exercise 12.2.2. Prove that α is a differentiable function and that

(12.2.4) α′(m) =
1

1 + m2
.

Establish first the continuity of α.

The function α is strictly increasing from α(0) = 0 to its limiting

value

(12.2.5) α(∞) =

∫ 1

0

dt√
1 − t2

,

corresponding to the length of a quarter of circle. This motivates the

next definition.

Definition 12.2.3. The number π is defined by

π = 2

∫ 1

0

dt√
1 − t2

.

Exercise 12.2.4. Use some simple geometric figures to bound the

circle and conclude that

(12.2.6) 2
√

2 < π < 4.

Exercise 12.2.5. Let A(r) and L(r) denote the area and length of

a circle of radius r, respectively. Scale the integrals to check that

A(r) = A(1)r2 and L(r) = L(1)r. Now integrate by parts to show
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that L(1) = 2A(1). This confirms that the π appearing in the formula

for the area of a circle is the same constant in the expression for its

length.

12.3. Sine and cosine

The two basic trigonometric functions are introduced next.

Definition 12.3.1. Let x ∈ [0, π/2]. The sine of the angle x is

defined by

(12.3.1) sin x =
m√

1 + m2

where m ∈ R+ is the unique positive real number such that α(m) = x.

The function cosine of the angle x is defined by

(12.3.2) cosx =
1√

1 + m2
.

Note 12.3.2. Observe that m = α−1(x) and Exercise 12.2.2 shows

that α is a differentiable function. Differentiabilty properties of the

trigonometric functions now follow from the inverse function theorem,

Theorem 11.8.1.

The definition of these functions show that the point of coordi-

nates (u, v) = (cosx, sinx) is on the circle u2 + v2 = 1.

Special values of functions play an important role in their study.

The next exercise establishes some well-known examples.

Exercise 12.3.3. The special value sin 0 = 0 comes directly from

α(0) = 0, and α(∞) = π
2 shows that sin π

2 = 1. Then cos 0 = 1 and

cos π
2 = 0. Prove that α(1) = π/4 yields sin π

4 = 1/
√

2. Conclude

that cos π
4 = 1/

√
2. Hint: You need to check the identity

(12.3.3)

∫ 1

1/
√
2

dt√
1 − t2

=
1

2

∫ 1

0

dt√
1 − t2

.

The change of variables s = t2 shows that the second integral is

symmetric with respect to s = 1/2.
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Note 12.3.4. An interesting question related to special values is,

for which rational multiples of π do the trigonometric functions take

rational values? Everyone knows vaues like sin π
6 = 1

2 and tan π
4 = 1,

and it turns out that these (along with the values producing 0) are

essentially the only choices. The reader will find a proof of this result

in [227].

Exercise 12.3.5. Prove that

(12.3.4)
d

dx
sin x = cosx

and from sin2 x + cos2 x = 1 deduce that

(12.3.5)
d

dx
cosx = − sin x.

Hint: Differentiate the relation sinα(m) = m/
√

1 + m2.

Exercise 12.3.6. Compute a closed form for the derivatives of the

functions sine and cosine. Taylor’s theorem, Theorem 2.4.1, now

yields the power series expansions

sin x =
∞∑
k=0

(−1)k
x2k+1

(2k + 1)!

and

cosx =

∞∑
k=0

(−1)k
x2k

(2k)!
.

Characterization of trigonometric functions by differential

equations. The exponential function f(x) = ex is the only function

satisfying

f ′(x) = f(x),(12.3.6)

f(0) = 1.

This appeared as Theorem 11.2.3. This section presents a similar

characterization for trigonometric functions.
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Theorem 12.3.7. The function f(x) = a cosx+ b sinx is the unique

solution to

f ′′(x) = −f(x),

f(0) = a,

f ′(0) = b.

Proof. For a, b ∈ R define

E(x) = (f(x) − a cosx− b sin x)2 + (f ′(x) + a sinx− b cosx)
2
.

A direct calculation shows that

E′(x) = 2(f ′(x) + a sinx− b cosx) (f ′′(x) + f(x)) = 0.

It follows that E is constant and the form of f(x) has been established.

�

The relation to exponentials: A formula of Euler. The power

series of the exponential

(12.3.7) ex =

∞∑
k=0

xk

k!

is now employed to provide a remarkable relation between the expo-

nential function and the trigonometric functions.

Theorem 12.3.8. Let x ∈ R and let i be the imaginary unit. Then

(12.3.8) eix = cosx + i sin x.

Proof. The expansion (12.3.7) gives

(12.3.9) eix =

∞∑
k=0

ik
xk

k!
.

The result now follows from the expressions

i4k = 1, i4k+1 = i, i4k+2 = −1, i4k+3 = −i

for the integer powers of i and the power series given in Exercise

12.3.6. �

Exercise 12.3.9. Check that eiπ + 1 = 0. This is a relation among

five fundamental constants: 0, 1, i, e, and π.
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The next exercise will be useful in the solution of cubic polynomial

equations presented in Section 12.10.

Exercise 12.3.10. Let c ∈ C. Prove that the equation sin x = c

always has a solution. Hint: Write sin x = (eix − e−ix)/(2i).

12.4. The additional trigonometric functions

In this section the remaining classical trigonometric functions are de-

scribed.

Definition 12.4.1. The tangent of the angle α is defined by

(12.4.1) tanα =
sinα

cosα
.

In addition, the cotangent of α is defined by

(12.4.2) cotα =
cosα

sinα
.

Note that cotα = 1/ tanα. The functions secant and cosecant,

defined by

(12.4.3) secα =
1

cosα
and cscα =

1

sinα
,

complete the traditional list of six trigonometric functions.

Note 12.4.2. Observe that (12.3.1) and (12.3.2) give

(12.4.4) tanα(m) = m.

Conclude that α(m) is the inverse of tanα. This function will be

denoted by arctan x. Exercise 12.2.2 gives

(12.4.5)
d

dx
arctan x =

1

1 + x2
.

Exercise 12.4.3. Verify the identity

arctan x =
∞∑
k=0

(−1)k
x2k+1

2k + 1
.

Use x = 1 to obtain the Leibnitz series for π:

π

4
= 1 − 1

3
+

1

5
− 1

7
+ · · · .

Estimate the error after n terms in the series.
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12.4.1. The tangent numbers. The discussion of the tangent func-

tion begins with its power series expansion.

Theorem 12.4.4. The tangent numbers Tn, defined by the expan-

sion

(12.4.6) tanx =
∞∑

n=0

Tn
xn

n!
,

satisfy T2n = 0 and T2n+1 > 0.

Proof. The value T0 = 0 comes from evaluating

(12.4.7) tan(arctanx) :=
∞∑

n=0

Tn

n!
(arctanx)n = x,

at x = 0. Differentiate with respect to x to obtain

(12.4.8)

∞∑
n=0

Tn+1

n!
(arctanx)n = 1 + x2,

and replace x = 0 to conclude that T1 = 1. Differentiating again

yields

(12.4.9)

∞∑
n=0

Tn+2

n!
(arctanx)n = 2x(1 + x2),

which gives T2 = 0. The general case uses the operator

(12.4.10) D = (1 + x2)
d

dx
.

Then (12.4.9) can be written as

(12.4.11)

∞∑
n=0

Tn+2

n!
(arctanx)n = D(1 + x2).

Exercise 12.4.5. Define the family of polynomials

(12.4.12) Ak(x) = D(k)(1 + x2).

Prove they satisfy the recurrence

(12.4.13) Ak+1(x) = 2x(1 + x2)
d

dx
Ak−1(x) + (1 + x2)2

d2

dx2
Ak−1(x).
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Repeated differentiation yields

(12.4.14)
∞∑

n=0

Tn+k

n!
(arctanx)n = D(k−1)(1 + x2) = Ak−1(x),

and this gives Tn+1 = An(0). The facts that T2n = 0 and T2n+1 > 0

follow by evaluating at x = 0 and using the recurrence (12.4.5) with

the initial values T0 = 0 and T1 = 1. �

Exercise 12.4.6. Prove that the coefficients Tn are rational numbers.

Chapter 13 will express them in terms of Bernoulli numbers B2n.

Exercise 13.3.23 gives the identity

Tn =

{
0 if n is even,

(−1)(n−1)/22n+1(2n+1 − 1) Bn+1

n+1 if n is odd.

12.4.2. A sequence of polynomials. The identity

(12.4.15)
d

dx
tanx = sec2 x = 1 + tan2 x

shows that there exists a polynomial Pn such that

(12.4.16)

(
d

dx

)n

tanx = Pn(tanx).

A second family of polynomials, Qn(x), appears from

(12.4.17)

(
d

dx

)n

secx = Qn(tanx) secx.

The names tangent polynomials and secant polynomials are em-

ployed for Pn(x) and Qn(x), respectively. This section follows the

papers by M. E. Hoffman [172, 173] to describe some properties of

these polynomials.

The discussion begins with an elementary lemma. The proof is

left to the reader.

Lemma 12.4.7. Assume f is a function such that f ′(x) = P (f(x))

for a polynomial P . Then there is a family of polynomials {Pn(x)}
such that f (n)(x) = Pn(f(x)). The polynomials Pn satisfy the recur-

rence Pn+1(u) = P ′
n(u)P (u) and P0(u) = u.
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Introduce the exponential generating function

(12.4.18) F (u, t) =
∞∑

n=0

Pn(u)
tn

n!
.

Lemma 12.4.7 produces a differential equation for F .

Lemma 12.4.8. The function F (u, t) is characterized by

∂F

∂t
= P (u)

∂F

∂u

with initial condition F (u, 0) = u.

The special case of P (u) = u2 + 1 produces the tangent polyno-

mials. As in this case, in the general situation, there is an analog of

the function sec x.

Lemma 12.4.9. Assume f(x) as in Lemma 12.4.7. Define

g(x) = exp

∫
f(x) dx.

Then g′(x) = f(x)g(x) and there is a family of polynomials {Qn(x)}
such that g(n)(x) = Qn(f(x))g(x). These polynomials satisfy the re-

currence

Qn+1(u) = uQn(u) + P (u)Q′
n(u).

The corresponding generating function

(12.4.19) G(u, t) =

∞∑
n=0

Qn(u)
tn

n!

is characterized by

∂G

∂t
= P (u)

∂G

∂u
+ uG(u)

with initial condition G(u, 0) = 1.

The next result gives an explicit formula for F and G.

Theorem 12.4.10. The exponential generating functions in (12.4.18)

and (12.4.19) are given by

F (u, t) = f(f−1(u) + t)

and

G(u, t) =
g(f−1(u) + t)

g(f−1(u))
.
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Proof. Replace the stated forms in the partial differential equations

that characterize F and G. �

Example 12.4.11. In the case f(x) = tanx, the companion function

is g(x) = sec x. Theorem 12.4.10 gives

F (u, t) =
sin t + u cos t

cos t− u sin t
and G(u, t) =

1

cos t− u sin t
.

Exercise 12.4.12. Prove that the functions F (u, t) and G(u, t) are

characterized by the system of equations

∂F

∂t
= P (F ) and

∂G

∂t
= FG,

with the initial conditions F (u, 0) = u and G(u, 0) = 1.

Exercise 12.4.13. Prove that if P (u) = u2+1, then the polynomials

Pn, Qn from Lemmas 12.4.7 and 12.4.8 satisfy the recurrences:

Pn+1(u) =
n∑

i=0

(
n

i

)
Pi(u)Pn−i(u) + δ0,n,

Qn+1(u) =
n∑

i=0

Pi(u)Qn−i(u),

where δ0,n is Kronecker’s delta (1 if n = 0 and 0 otherwise).

The final result from the paper [172] stated here is a relation

that allows the computation of Pn(u), Qn(u) at u = 1 in terms of the

values at u = 0.

Theorem 12.4.14. Assume P (u) = u2 + 1. Then

Pn(u) = 2n
[
Pn

(
u2 − 1

2u

)
+

u2 + 1

2u
Qn

(
u2 − 1

2u

)]
and

Pn+1(u) = (u2 + 1)

n∑
i=0

(
n

i

)
Qi(u)Qn−i(u).

Corollary 12.4.15. The values at u = 0 and u = 1 of the polynomi-

als Pn and Qn in Theorem 12.4.14 satisfy the relations

Pn(1) =

{
2nQn(0) if n is even,

2nPn(0) if n is odd
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and

Qn(1) =
1

2
Pn+1(1) −

n−1∑
i=0

(
n

i

)
Qi(1)Qn−i(1).

Exercise 12.4.16. Prove that the tangent numbers Tn, defined in

(12.4.6), satisfy the recurrence

Tn+1 =
n∑

i=0

(
n

i

)
TiTn−i

with initial condition T1 = 1. In particular, Tn is a positive integer.

Note 12.4.17. The tangent numbers Tn are expressed in terms of

the Bernoulli numbers in Exercise 13.3.23.

Exercise 12.4.18. Examine the arithmetical properties of the tan-

gent numbers. For instance, prove that

ν2(T2n+1) = 2n− ν2(n + 1).

12.4.3. A combinatorial interpretation. The tangent numbers

Tn admit an interpretation in terms of alternating permutations.

This concept is introduced next.

Definition 12.4.19. Let w = w1w2 · · ·wn be a sequence of n distinct

numbers. The sequence is called alternating if w1 > w2 < w3 >

w4 · · · and reverse alternating if w1 < w2 > w3 < w4 · · · .

From now on it is assumed that the numbers {w1, . . . , wn} form

a permutation of {1, 2, . . . , n}.

Exercise 12.4.20. Prove that the number of alternating permuta-

tions is the same as the number of reverse alternating permutations.

Hint: If w is an alternating permutation, define w∗
i = n + 1 − wi.

Let en be the number of alternating permutations. The goal is to

relate en to the tangent numbers. Given 0 ≤ k ≤ n, choose a subset

S ⊂ {1, 2, . . . , n} with k elements. This can be done in
(
n
k

)
ways.

Let S∗ = {1, 2, . . . , n}\S. Choose a reverse alternating permutation

of S in ek ways and an alternating permutation of S∗ in en−k ways.

Now form the word w = ur, n + 1, v, where ur is the word u written

backwards.
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Exercise 12.4.21. Convince yourself that the words w constructed

above contain every alternating and every reverse alternating permu-

tation of n + 1 symbols. Conclude that

(12.4.20) 2en+1 =

n∑
k=0

eken−k.

Define the exponential generating function

(12.4.21) y(x) =

∞∑
k=0

ek
k!

xk.

Exercise 12.4.22. Prove that the result of Exercise 12.4.21 yields

the differential equation

(12.4.22) 2y′(x) = y2 + 1

with the initial condition y(0) = 1. Solve the equation to obtain

(12.4.23) y(x) = tanx + secx.

Conclude that T2n−1 is the number of alternating permutations in

2n− 1 symbols.

Note 12.4.23. For a permutation w of {1, 2, . . . , n} the set

(12.4.24) D(w) = {i : 1 ≤ i ≤ n− 1 and wi > wi+1}

is called the descent set of w and des(w) = |D(w)| is the descent

number of w. The polynomial

(12.4.25) An(w) =
∑
w

x1+des(w) :=
∑
k

An,kx
k

is the Eulerian polynomial defined in (4.2.22). The coefficients

An,k count the number of permutations of n numbers with exactly k

descents. R. Stanley [280] calls this an example of combinatorial

trigonometry.

12.5. The addition theorem

A function f is said to have an addition theorem if f(x+y) can be

expressed in terms of f(x) and f(y). The type of functions required
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to express f(x+y) is used to label the addition theorem. For instance,

the relation

(12.5.1) ex+y = ex · ey

shows that the exponential function satisfies a polynomial addition

theorem. The classical result for trigonometric functions is given next.

Theorem 12.5.1. The trigonometric functions satisfy

sin(x + y) = sin x cos y + cosx sin y

= sin x

√
1 − sin2 y +

√
1 − sin2 x sin y.

Similarly

cos(x + y) = cosx cos y − sin x sin y

= cosx cos y −
√

1 − cos2 x
√

1 − cos2 y.

Proof. Fix y ∈ R. Then f(x) = sin(x + y) satisfies the differential

equation f ′′(x) + f(x) = 0 and has initial conditions f(0) = sin y

and f ′(0) = cos y. Theorem 12.3.7 gives the result. The formula for

cos(x + y) is established in the same manner. �

Exercise 12.5.2. Prove the addition theorem by writing

(12.5.2) sin x =
eix − e−ix

2i
and cosx =

eix + e−ix

2

and using the addition theorem for the exponential function.

Exercise 12.5.3. Use the addition theorem to prove that sin x and

cosx are periodic functions of period 2π.

Corollary 12.5.4. There are polynomials Rm, Sm such that

(12.5.3) cosmx = Rm(cosx)

and

(12.5.4) sinmx =

{
Sm(sinx) if m is odd,

Sm(sinx) cosx if m is even.

The polynomials satisfy the recurrences

(12.5.5) Rm+1(t) = 2tRm(t) −Rm−1(t)

                

                                                                                                               



322 12. Trigonometric Functions

and

(12.5.6) Sm+1(t) =

{
−Sm−1(t) + 2(1 − t2)Sm if m is odd,

−Sm−1(t) + 2Sm if m is even.

The initial values are R0(t) = 1, S0(t) = 0, R1(t) = S1(t) = t.

Proof. The existence of the polynomials and the recurrences follow

directly from the identities

cos((m + 1)x) + cos((m− 1)x) = 2 cosx cosmx,

sin((m + 1)x) + sin((m− 1)x) = 2 cosx sinmx.

�

Exercise 12.5.5. Check that Rm(1) = 1. Evaluate Sm(1).

The polynomials Rm and Sm have integer coefficients. The first

few are

R0(t) = 1, S0(t) = 0,

R1(t) = t, S1(t) = t,

R2(t) = 2t2 − 1, S2(t) = 2t,

R3(t) = 4t3 − 3t, S3(t) = −4t3 + 3t,

R4(t) = 8t4 − 8t + 1, S4(t) = −8t3 + 4t,

R5(t) = 16t5 − 20t3 + 5t, S5(t) = 16t5 − 20t3 + 5t,

R6(t) = 32t6 − 48t4 + 18t2 − 1, S6(t) = 32t5 − 32t3 + 6t.

Note 12.5.6. The polynomials Rn, Sn are the Chebyshev poly-

nomials that will be analyzed in Chapter 14.

Exercise 12.5.7. The addition theorem in now employed to produce

a formula for π due to F. Vieta [298]. The argument starts with

sinx = 2 cos
x

2
sin

x

2
.

Iterate this relation to produce

sin x = 2n sin
x

2n
×

n∏
k=1

cos
x

2k
.
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Now use the relation cos x
2 =

√
1
2 + 1

2 cosx to produce

cos
x

2k
=

√√√√√1

2
+

1

2

√√√√1

2
+

1

2

√
1

2
+ · · · + 1

2

√
1

2
+

1

2
cosx,

with k radicals in the formula. An expression for sin x/(2n sinx/2n)

as a finite product of radicals follows from here. Pass to the limit to

obtain

sin x

x
=

∞∏
k=1

√√√√√1

2
+

1

2

√√√√1

2
+

1

2

√
1

2
+ · · · + 1

2

√
1

2
+

1

2
cosx,

where the kth term contains k nested radicals. The special choice of

x = π/2 gives Vieta’s formula

2

π
=

√
1

2

√
1

2
+

1

2

√
1

2

√√√√1

2
+

1

2

√
1

2
+

1

2

√
1

2
· · · .

Check the error term after multiplying 100 terms in the product.

12.6. Stirling’s formula and π

Chapter 9 was dedicated to the evaluation of Wallis’ formula

Wn =

∫ π/2

0

cos2n θ dθ = 2−2n

(
2n

n

)
π

2
.

In this chapter the integral

(12.6.1) In =

∫ π/2

0

cosn x dx

is evaluated in closed form.

Lemma 12.6.1. The integral In satisfies the recurrence

(12.6.2) In =
n− 1

n
In−2.

                

                                                                                                               



324 12. Trigonometric Functions

Proof. Integrate by parts to obtain

In =

∫ π/2

0

cosn−1 x cosx dx

= (n− 1)

∫ π/2

0

cosn−2 x sin2 x dx.

Now use sin2 x = 1 − cos2 x to obtain the result. �

Exercise 12.6.2. Iterate the recurrence (12.6.2) to obtain

I2n+1 =
22n (n!)2

(2n + 1)!
=

22n

(2n + 1)
(
2n
n

)
and

I2n =
(2n)!

22n+1 (n!)2
π =

1

22n

(
2n

n

)
π

2
,

using the values I0 = π/2 and I1 = 1. The integral I2n is the Wallis

case Wn. Check directly that I2n+1 < I2n < I2n−1 and confirm the

relation
I2n+1

I2n−1
=

2n

2n + 1
→ 1 as n → ∞.

Conclude that I2n/I2n+1 → 1. Now check that

I2n+1

I2n
=

2 · 2 · 4 · 4 · 6 · 6 · · · (2n) · (2n)

1 · 3 · 3 · 5 · 5 · 7 · 7 · · · (2n− 1) · (2n− 1)(2n + 1)
× 2

π

and prove Wallis’ infinite product for π:

(12.6.3)
π

2
=

2

1

2

3

4

3

4

5

6

5

6

7

8

7

8

9

10

9

10

11

12

11

12

13

14

13

14

15

16

15

16

17
· · · .

More examples of infinite products related to constants of analysis

appear in Chapter 16.

Exercise 12.6.3. Confirm that Wallis’ product implies the asymp-

totics

(12.6.4) cn :=

(
2n

n

)
∼ 22n√

πn

as n → ∞.

Theorem 2.10.1 has established the existence of the limit

(12.6.5) A := lim
n→∞

n!

nn+1/2e−n
.
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The asymptotic behavior of the central binomial coefficients (12.6.4)

provides the value of A.

Exercise 12.6.4. Use (12.6.4) to confirm the value A =
√

2π.

This completes the proof of Stirling’s formula

(12.6.6) n! ∼
√

2πnnne−n.

Exercise 12.6.5. This exercise is a companion of Exercise 11.7.12.

Define the sequence

(12.6.7) vn = vn−2 +
1

n− 2
vn−1 for n ≥ 3

with initial conditions v1 = 0 and v2 = 1. Prove that the generating

function V (x) =

∞∑
n=1

vnx
n satisfies x(1−x)(1+x)V ′(x) = (x+2)V (x).

Its solution is given by

V (x) =
x2

(1 − x2)

√
1 + x

1 − x
.

Then check that ∫ x

0

V (t)

t2
dt =

√
1 + x

1 − x
− 1.

Use the generating function for central binomial coefficients, given in

Theorem 2.7.3, to obtain v2n = v2n+1 = ncn/2
2n−1. Use (12.6.4) to

conclude that

(12.6.8) lim
n→∞

2n

v2n
= π.

12.7. The continued fraction of π

The material in Subsection 1.8.3 began with the decimal expansion

of π:

π = 3.14159265358979932385 . . .

and produced, by truncation, rational approximations to π. For in-

stance, the fraction

α =
78539823

25000000
∼ 3.14159292000
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satisfies |π − α| < 2.664 × 10−7. On the other hand, the fraction

β = 355/113 satisfies |π−β| < 2.667×10−7. It gives almost the same

approximation to π but a smaller denominator. Note 1.9.31 explains

the fact that among all fractions with denominator bounded by 113,

the number

β = 3 +
1

7 +
1

15 +
1

1

=
355

113

is the best approximation to π.

Now recall the procedure for the construction of the continued

fraction for x ∈ R. It will be employed to produce the first few con-

vergents of π. (The name convergents is given the rational number

[x0, x1, . . . , xn] =
pn
qn

that approximate x.) The continued fraction of x has the form

(12.7.1) x = x0 +
1

x1 +
1

x2 +
1

x3 +
1

· · ·

,

with x0 ∈ N0 and xi ∈ N. It is clear that x0 = �x�. The bounds in

Exercise 12.2.4 show that x0(π) = 3. To obtain the next integer x1,

observe that

1

x− x0
= x1 +

1

x2 +
1

x3 +
1

x4 +
1

· · ·

,

and, as before, it follows that

(12.7.2) x1 =

⌊
1

x− x0

⌋
.

To obtain the value of x1, it is required to have an accurate expression

for 1/(π − 3).
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Exercise 12.7.1. Let yn = (3n + 1)/n. Check that yn decreases to

its limit 3. The initial value is y1 = 4. Therefore there is a first index

n such that yn < π. Confirm that n = 8 and that this gives the bound

7 ≤ 1

π − 3
< 8.

Conclude that the second partial quotient is x1 = 7. The rational

approximation is [3, 7] = 22/7. The error term is guaranteed to be

|π − 22/7| < 1/(2 · 72) = 1/98 ∼ 0.0102041.

In fact, |π − 22/7| < 0.00127.

An algorithm for computing the continued fraction of x ∈ R is

given in the next exercise.

Exercise 12.7.2. Define the double sequence {an, bn} by

an =
1

(an−1 − bn−1)
, bn = �an�

for n ≥ 1, with initial conditions a0 = x and b0 = �a0�. Prove that

bn is the nth partial quotient of the continued fraction of x, that is,

x = [b0, b1, b2, b3, . . .] = b0 +
1

b1 +
1

b2 +
1

b3 +
1

· · ·

.

Exercise 12.7.3. Define a Mathematica function that constructs the

sequence {an, bn}. Use it to evaluate the first terms of the continued

fraction of π as

[3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, . . .].

Compute the first five convergents as{
3,

22

7
,

333

106
,

355

113
,

103993

33102

}
with corresponding error terms{

0.1415, 0.00126, 8.321 × 10−5, 2.667 × 10−7, 5.778 × 10−10
}
.

Observe the appearance of the convergents in the integrals given in

Exercise 1.8.25.
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The continued fraction in (12.7.1) is called simple. In the case

of π, there are no apparent patterns for the partial quotients. E. W.

Weisstein [309] has the current record for their computation, with

5821569425 partial quotients computed. (The date in [309] is recorded

as September 18, 2011.) There are other types of continued fraction

representations for real numbers closely related to π, where the pat-

terns are predictable. An early example of a formula for π as well as

a recent one are presented next.

12.7.1. The continued fractions of Lord Brouckner and L. J.

Lange. One of the first recorded infinite continued fraction is

4

π
= 1 +

12

2 +
32

2 +
52

2 +
72

2 + · · ·

.

This was given by Lord Brouckner, the first president of the Royal

Society of London, around 1659. The second example appeared in

1999 by L. J. Lange [194]. It states that

π = 3 +
12

6 +
32

6 +
52

6 +
72

6 + · · ·

.

This section is dedicated to these two examples.

Lord Brouckner’s example. The argument presented here is due

to L. Euler. The author wishes to thank T. J. Osler for showing him

the presentation in the paper by T. J. Osler [239]. Start with the

Leibnitz series
π

4
= 1 − 1

3
+

1

5
− 1

7
+ · · ·

given in Exercise 12.4.3. Write it in the form

π

4
= 1 − α1,
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with α1 = 1/3 − 1/5 + 1/7 − 1/9 + · · · . Then

4

π
=

1

1 − α1
= 1 +

1

1 − α1

α1

= 1 +
1

−1 +
1

α1

.

Now write

α1 =
1

3
− α2,

with α2 = 1/5 − 1/7 + 1/9 − 1/11 + · · · . Then

1

α1
=

1

1

3
− α2

= 3 +
9

−3 +
1

α2

.

This gives

4

π
= 1 +

1

2 +
32

−3 +
1

α2

.

Exercise 12.7.4. Complete the proof by an inductive argument.

L. J. Lange’s example. The argument presented here is due to

D. Bowman and it appeared at the end of the paper by L. J. Lange

[194]. The first exercise evaluates a series by appealing to integration.

Exercise 12.7.5. Show that
∞∑
k=1

(−1)k−1

2k(2k + 1)(2k + 2)
=

π − 3

4
.

Hint: Integrate the identity
∞∑
k=0

(−1)kxk =
1

1 + x

from 0 to x and replace x by x2 to produce
∞∑
k=1

(−1)k−1

2k
x2k =

ln(1 + x2)

2
.

Integrate two more times and use∫ x

0

ln(1 + t2) dt = −2x + 2 arctan x + x ln(1 + x2),
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and integrate by parts to produce

∫ x

0

(
−2t + 2 arctan t + t ln(1 + t2)

)
dt

= −3

2
x2 + 2x arctan x− 1

2
ln(1 + x2) +

1

2
x2 ln(1 + x2).

This gives the result.

Alternative hint: Expand the summand of the original series in

partial fractions.

The next exercise verifies the identity of an alternating series and

an infinite continued fraction.

Exercise 12.7.6. Let ak �= 0 be real numbers. Verify the identity

∞∑
k=1

(−1)k−1

ak
=

1

a1 +
a21

a2 − a1 +
a22

a3 − a2 +
a23

a4 − a3 + · · ·

.

The choice of ak = 2k(2k+1)(2k+2) gives Lange’s continued fraction.

Hint: Check that the partial sums and the convergents match.

12.8. The digits of π in base 16

The discovery of a formula that provides a fast computation of the

binary digits of ln 2 described in Section 11.9 led the authors of [37]

to search for a similar expression for π. Their result is given in the

next theorem. It is remarkable that this was not known before. In

particular, how did Euler miss this?

Theorem 12.8.1. The formula

π =
∞∑
k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)

holds.
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Proof. The proof of this formula is based on the evaluation

∫ 1/
√
2

0

xk−1 dx

1 − x8
=

∫ 1/
√
2

0

∞∑
j=0

xk−1+8j dx =
1

2k/2

∞∑
j=0

1

16j(8j + k)
.

Let S be the series in the statement of the theorem. Then

S =

∫ 1/
√
2

0

4
√

2 − 8x3 − 4
√

2x4 − 8x5

1 − x8
dx

=

∫ 1

0

16y − 16

y4 − 2y3 + 4y − 4
dy,

after the change of variables y =
√

2x. The partial fraction decom-

position

16y − 16

y4 − 2y3 + 4y − 4
=

4y

y2 − 2
− 4y − 8

y2 − 2y + 2

gives the result. �

The result of the theorem yields an algorithm for the computation

of the digits of π in base 16. It permits us to evaluate the hexadecimal

digits of π beginning at an arbitrary starting position, without need-

ing to calculate any of the preceding digits. No such algorithm is

known for the decimal digits of π. In the article by D. H. Bailey,

J. Borwein, A. Mattingly, and G. Wightwick [33], the authors discuss

these methods for π2 and other related constants. It has been con-

jectured that there is no BBP-formula (for Bailey-Borwein-Plouffe)

for e. Only time will tell .

12.9. Special values of trigonometric functions

Given a special function, it is always an interesting question to con-

sider values in its domain that produce simpler outputs. In the

trigonometric setting, the question is, what angles θ have the property

for which cos θ is expressible by radicals? This is motivated by the

elementary examples

cos
π

6
=

√
3

2
, cos

π

4
=

√
2

2
, cos

π

3
=

1

2
, and cos

π

2
= 0.
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Less well-known examples include

cos
π

5
=

√
5 + 1

4
and cos

π

10
=

√
5 +

√
5

2
√

2
.

Naturally, this suggests considering the values

(12.9.1) cn,m = cos
πn

m
and sn,m = sin

πn

m
.

Definition 12.9.1. A real number x is expressible by radicals if x

can be obtained by a finite combination of the four basic operations of

R (addition, subtraction, multiplication, and division) and the radical

functions f(x) = x1/n (n ∈ N) applied to integer values.

Example 12.9.2. The numbers

x1 =
√

2 +
√

5 and x2 = 2 +
√

2 +
3

√
2 +

√
3

are expressible by radicals.

Definition 12.9.3. A number a ∈ C is called an algebraic number

if there is a polynomial P (x) with integer coefficients such that x = a

is a root of P (x) = 0. The degree of a is the minimal degree among

all such polynomials.

Exercise 12.9.4. Let α be an algebraic number. Prove that the

polynomial of minimal degree such that P (α) = 0 is unique up to

a constant. This constant may be normalized by assuming that the

coefficients of P are relatively prime. It will be denoted by Irr(x, α)

and it is called the minimal polynomial of α.

Note 12.9.5. It turns out that every real number that is expressible

by radicals is automatically algebraic. This is easy to see in the case

of x1 above. Indeed, write

x1 −
√

2 =
√

5

and square to produce

x2
1 − 3 = 2

√
2x.

Squaring again shows that x1 solves P1(x) = x4 − 14x2 + 9 = 0. On

the other hand, the number x2 in Example 12.9.2 is a root of the
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polynomial

P2(x) = x12 − 24x11 + 252x10 − 1528x9 + 5964x8 − 15936x7

+ 30770x6 − 45720x5 + 54660x4 − 50600x3 + 32424x2

− 13296x + 3217.

This polynomial was found by using the command

MinimalPolynomial[x2]

in Mathematica.

The next result is elementary.

Theorem 12.9.6. For any n, m ∈ N, the values cn,m and sn,m in

(12.9.1) are algebraic numbers.

Proof. The polynomial Rm in Corollary 12.5.4 yields

(12.9.2) Rm(cn,m) = cos(πn) = (−1)n.

This shows that cn,m is algebraic. The proof for sn,m is similar. �
Example 12.9.7. The number c1,5 = cos(π/5) is algebraic because

R5(c1,5) = −1. Define P5(x) = R5(x) + 1. The recurrences (12.5.5)

yield

P5(x) = (x + 1)(x2 − 2x− 1)2.

It follows that c1,5 is a root of the quadratic equation 4x2−2x−1 = 0.

Therefore

cos
π

5
=

√
5 + 1

4
.

Exercise 12.9.8. Verify the value

cos
π

10
=

√
5 +

√
5

2
√

2
.

Example 12.9.9. The same analysis is now described for the number

c1,7 = cos(π/7). Define P7(x) = R7(x) + 1. Then P7(c1,7) = 0,

showing that c1,7 is algebraic. The recurrences (12.5.5) show that

P7(x) = 64x7− 112x5 +56x3− 7x+1 = (x+1)(8x3− 4x2− 4x+1)2.

The fact that cos π
7 �= −1 shows that this number is a root of the

polynomial

(12.9.3) T (x) = 8x3 − 4x2 − 4x + 1.
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Exercise 12.9.10. Give a direct proof of the statement in Example

12.9.9 using
π

7
+

2π

7
= π − 4π

7

and the addition theorem for trigonometric functions.

The irreducibilty of T was established in Example 4.6.2 using the

criteria for rational roots of a polynomial. The next theorem gives

another criteria for the irreducibility of a polynomial. It is then used

to verify again that T is irreducible. This shows that cosπ/7 is an

algebraic number of degree 3.

Theorem 12.9.11 (Eisenstein’s irreducibilty criteria). Let

(12.9.4) A(x) = anx
n + an−1x

n−1 + · · · + a1x + a0

be a polynomial with integer coefficients and gcd(an, an−1, . . . , a0) =

1. Assume there is a prime p such that p divides ai for 0 ≤ i < n, p

does not divide an, and p2 does not divide a0. Then A(x) is irreducible

over Z.

Proof. Assume A factors in the form

A(x) = (brx
r + br−1x

r−1 + · · · + b0)(csx
s + cs−1x

s−1 + · · · + c0)

with bi, cj ∈ Z. Comparing the constant terms gives a0 = b0c0. It

follows that p divides only one of b0 and c0 because p divides a0 and p2

does not. Assume p divides b0. Now suppose p divides b0, b1, . . . , bi−1

and p does not divide bi. Comparing the coefficients of xi gives

ai = bic0 + bi−1c1 + · · ·

and the divisibility assumptions show that p divides bic0. This is

impossible. It follows that p divides all the coefficients bi. This implies

that p divides an. This contradiction shows that A is irreducible. �

The next exercise checks that the polynomial T (x) defined in

(12.9.3) is irreducible. Therefore T (x) = Irr(cosπ/7, x) and cosπ/7

is an algebraic number of degree 3. The discussion for cn,m and sn,m
is postponed until Chapter 14.
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Exercise 12.9.12. Prove that T (x) is irreducible. Hint: Consider

the polynomial

S(x) = (x− 1)3 T

(
1

x− 1

)
.

12.10. The roots of a cubic polynomial

It is natural to expect that an expression for cos(π/7) in radicals

may be obtained by using the formulas for solving cubic equations

described in Chapter 4. The goal of this section is to describe in

detail the computation of the roots of the polynomial

T (x) = 8x3 − 4x2 − 4x + 1

satisfied by cosπ/7 and then suggest an alternative form of the com-

putation of the roots of any cubic.

Exercise 12.10.1. Check that T (x) = 0 has three real roots.

The first step in the computation of the roots of T is to convert

it to its reduced form. Define T1(x) = T (x + 1/6) and check that

T1(x) = 8x3 − 14

3
x +

7

27
.

Dividing by the leading coefficient yields the reduced form

T2(x) = x3 − 7

12
x +

7

216
.

Exercise 12.10.2. Check that the discriminant of the reduced form

is D = −72/(3 · 482). Use Theorem 4.7.12 to confirm that T (x) = 0

has three distinct real roots.

The next step is to compute the functions s(a, b) and t(a, b) given

in Theorem 4.6.8 as

s(a, b) =

(
b

2
+
√
D

)1/3

and t(a, b) =

(
b

2
−
√
D

)1/3

.

For a = −7/12 and b = 7/216, this gives

s

(
− 7

12
,

7

216

)
=

(
7

432
+

7i

48
√

3

)1/3
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and

t

(
− 7

12
,

7

216

)
=

(
7

432
− 7i

48
√

3

)1/3

.

Exercise 12.10.3. Convert the complex numbers above to polar co-

ordinates and check that

s

(
− 7

12
,

7

216

)
=

√
7

6

[
cos

(
tan−1(3

√
3)

3

)
+ i sin

(
tan−1(3

√
3)

3

)]
,

t

(
− 7

12
,

7

216

)
=

√
7

6

[
cos

(
tan−1(3

√
3)

3

)
− i sin

(
tan−1(3

√
3)

3

)]
.

In conclusion. The roots of the polynomial equation T (x) = 0, one

of which is cos(π/7), are given in terms of the angle α = 1
3 tan−1(3

√
3)

by

x1 =
1

6
−

√
7

3
cosα,

x2 =
1

6
+

√
7

6
cosα +

√
7

2
√

3
sinα,

x3 =
1

6
+

√
7

6
cosα−

√
7

2
√

3
sinα.

Computing a numerical approximation to these roots shows that x2

is the root cos(π/7). This gives the remarkably complicated-looking

trigonometric identity

cos
π

7
=

1

6
+

√
7

6
cos

(
tan−1 3

√
3

3

)
+

√
7

2
√

3
sin

(
tan−1 3

√
3

3

)
.

Exercise 12.10.4. Try to check it. Do not spend too much time on

it.

Note 12.10.5. The formula for x2 is not the answer to the question of

expressing cos(π/7) in radicals. The answer is the remarkable theorem

of Gauss which states that the trigonometric function of the angle

π/N can be expressed in terms of square roots if and only if N has the

form N = 2k · f0f1 · · · fn where the fj are distinct Fermat primes.

These are primes of the form 2m + 1 (it is a corollary that m has to
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be a power of 2) and have appeared in Note 1.7.10. There are ony

five known cases:

f0 = 3, f1 = 5, f2 = 17, f3 = 257, f4 = 65537.

In particular, N = 7 is not of this form. Therefore cos(π/7) cannot

be expressed by radicals.

The trigonometric method for solving cubics. This section

considers the solution of the cubic polynomial equation

P3(x) = a0x
3 + a1x

2 + a2x + a3 = 0

by using trigonometric functions. This method differs from that of

Cardano given in Chapter 4. The comments at the end of the section

show that this method generalizes to produce formulas for the solution

of any polynomial equation.

The first step is to normalize the equation. The choice of nor-

malization is motivated by the identity given in the next exercise.

Exercise 12.10.6. Use the addition theorem to prove

(12.10.1) sin 3x = −4 sin3 x + 3 sinx.

Exercise 12.10.7. Prove that every cubic equation P3(x) = 0 can

be converted to the form

(12.10.2) N3(t) = 4t3 − 3t + c = 0

by scaling and square root extraction. Hint: Transform the equation

P3(x) = 0 by the following steps.

• First scale it to the form

P (x) = 4x3 +
4a1
a0

x2 +
4a2
a0

x +
4a3
a0

= 0

and then, to eliminate the term in x2, define

M(x) = P

(
x− a1

3a0

)
.

Check that M(x) has the form M(x) = 4x3 + b2x + b3, with

b2(a0, a1, a2, a3) =
4(3a0a2 − a21)

3a20
,

b3(a0, a1, a2, a3) =
4(2a31 − 9a0a1a2 + 27a20a3)

27a30
.
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• The next step is to let x = λt, with λ =
√
−b2/3, to convert

M(x) = 0 to (12.10.2), with

(12.10.3) c =
3
√

3b3√
−b32

.

Definition 12.10.8. This normalization of P3(x) = 0 to N3(t) = 0

is called the trigonometric form of the cubic.

The solution to the cubic equation N3(t) = 0 is now clear: choose

an angle ϑ1 such that sin(3ϑ1) = c. Observe that, once ϑ1 is chosen,

the values ϑ2 := ϑ1 + 2π
3 and ϑ3 := ϑ2 + 4π

3 also satisfy

(12.10.4) sin(3ϑ2) = sin(3ϑ3) = c.

Exercise 12.10.6 now shows that the roots of N3(t) = 0 are

(12.10.5) t1 = sinϑ1, t2 = sinϑ2, t3 = sinϑ3.

Example 12.10.9. Consider the polynomial P (x) = 8x3 + 72x2 +

210x + 199. The first step in finding its roots is to reduce it to its

trigonometric form. The coefficient of x2 is eliminated by the shift

t = x− 3. Then

(12.10.6) P1(t) := P (t− 3) = 8t3 − 6t + 1.

Then dividing by 2 yields the normalization

(12.10.7) N3(t) = 4t3 − 3t + 1
2 .

To find the roots of N(t), choose an angle ϑ1 so that

(12.10.8) sin(3ϑ1) = 1
2 ,

for instance ϑ1 = π
18 . The associated angles are now ϑ2 = 13π

18 and

ϑ3 = 25π
18 . The roots of the cubic equation 8x3+72x2+210x+199 = 0

are

(12.10.9) x1 = 3 + sin
π

18
, x2 = 3 + sin

13π

18
, x1 = 3 + sin

25π

18
.

Exercise 12.10.10. Sometimes the numbers do not come out so

clean. Check that the trigonometric form of

P3(x) = 154x3 + 31x2 − 36x− 9 = 0

is

N3(t) = 4t3 − 3t2 − 2078315

(17593)3/2
= 0.
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Exercise 12.10.11. Use the trigonometric form of the cubic to show

that the roots of 64x3 − 192x2 − 60x− 1 = 0 are given by

cos3(a)

cos(3a)
,

cos3(2a)

cos a
,

cos3(3a)

cos(2a)
,

with a = 2π/7.

Exercise 12.10.12. This exercise deals with the polynomial

T (x) = 8x3 − 4x2 − 4x + 1

that appeared in the discussion related to cos(π/7). Check that the

trigonometric form of this equation is given by

N(t) = 4t3 − 3t +
1

2
√

7
.

Evaluate the roots in the form

x1 =
1

6
+

√
7

3
sin θ,

x2 =
1

6
+

√
7

3
sin (θ + 2π/3) ,

x3 =
1

6
+

√
7

3
sin (θ + 4π/3) ,

with

θ =
1

3
sin−1

(
1

2
√

7

)
.

Use these roots to obtain a second trigonometric identity:

cos
π

7
=

1

6
+

√
7

3
sin

[
2π

3
+

1

3
sin−1

(
1

2
√

7

)]
.

Compare this with the expression considered in Exercise 12.10.4.

12.11. A special trigonometric integral

The evaluation of integrals in closed form is considered by many re-

searchers an art form. There is no developed algorithm that will

reduce this question to a finite set of rules. The classical examples∫ π/2

0

cos2n x dx =
1

22n

(
2n

n

)
π

2
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and ∫ π/2

0

cos2n+1 x dx =
22n

(2n + 1)
(
2n
n

) ,
given as Exercise 12.6.2, illustrate the evaluation of integrals by pro-

ducing recurrences for them. The reader is referred to the classical

text by J. Edwards [117, 118] for a nice collection of methods for

the evaluation of definite integrals. Many of these evaluations have

been collected in tables of integrals such as those by A. Apelblat

[24], Y. A. Brychkov [84], the classical table by I. S. Gradshteyn

and I. M. Ryzhik [144], and the five-volume compendium by A. P.

Prudnikov, Yu. A. Brychkov, and O. I. Marichev [250]. The current

author has begun a program dedicated to the evaluation of all entries

in [144]. The papers [11, 13, 14, 222] contain some examples involv-

ing trigonometric functions. The reader is now officially invited

to help.

This section describes the evaluation of a sequence of integrals

where the integrand is the power of the function sinx
x .

Example 12.11.1. The first example deals with the evaluation of

(12.11.1)

∫ ∞

0

sinx

x
dx =

π

2
.

The simplest proof (to anyone familiar with the classical text by

J. Edwards [117]) is to introduce a damping factor and to consider

(12.11.2) f(t) =

∫ ∞

0

e−tx sin x

x
dx.

Differentiating yields

(12.11.3) f ′(t) = −
∫ ∞

0

e−tx sinx dx.

Integration by parts (twice) gives

(12.11.4) f ′(t) = − 1

1 + t2
.

Evaluate the constant of integration by letting t → ∞ to obtain

f(t) = π/2 − tan−1 t. The original integral is simply f(0).
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Example 12.11.2. The value of

(12.11.5)

∫ ∞

0

(
sinx

x

)2

dx =
π

2

can be obtain by the same method. Define

(12.11.6) f(t) =

∫ ∞

0

e−tx

(
sinx

x

)2

dx

and observe that

(12.11.7) f ′′(t) =

∫ ∞

0

e−tx2

sin2 x dx.

This integral can be evaluated by writing sin2 x = 1
2 (1 − cos 2x) and

integrating by parts. As an alternative, the Mathematica command

Integrate[Exp(-tx)(Sin[x])
2
,{x,0,Infinity},Assumptions(t>0)]

gives the result

(12.11.8) f ′′(t) =
2

t(t2 + 4)
.

Integrate twice to obtain

(12.11.9) f(t) = − tan−1 t

2
+

1

2
t ln t− 1

4
t ln(t2 + 4) +

π

2
,

where the constant of integration comes from the condition f(t) → 0

as t → ∞. The value of the integral is then computed from f(0).

The general case is given in the next theorem.

Theorem 12.11.3. Define

In =

∫ ∞

0

(
sin x

x

)n

dx.

Then

In =
π

2n(n− 1)!

�n−1
2 �∑

j=0

(−1)j
(
n

j

)
(n− 2j)n−1.

Proof. Introduce the auxiliary function

fn(t) =

∫ ∞

0

e−xt

(
sin x

x

)n

dx.
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Then

Jn = Jn(t) := (−1)n
(

d

dt

)n

fn(t) =

∫ ∞

0

e−xt(sinx)n dx.

To evaluate Jn, integrate by parts to produce

Jn =
n

t

∫ ∞

0

e−xt(sinx)n−1 cosx dx

and one further integration by parts yields the recurrence

Jn =
n

t2
[(n− 1)Jn−2 − nJn] .

Therefore

Jn =
n(n− 1)

n2 + t2
Jn−2.

Iterating this recurrence and using the initial values

J0 =
1

t
and J1 =

1

1 + t2

gives

Jn =
n!

t

n/2∏
j=1

(t2 + (2j)2)−1 if n is even

and

Jn = n!

1
2 (n+1)∏
j=1

(t2 + (2j − 1)2)−1 if n is odd.

Exercise 12.11.4. Prove the identity

fn(t) =
(−1)n

(n− 1)!

∫ ∞

t

(s− t)n−1 Jn(s) ds.

It follows that∫ ∞

0

(
sinx

x

)n

dx = fn(0) = n

∫ ∞

0

sn−2

n/2∏
j=1

(s2 + 4j2)−1 ds

if n is even and

∫ ∞

0

(
sinx

x

)n

dx = n

∫ ∞

0

sn−1

1
2 (n+1)∏
j=1

(s2 + (2j − 1)2)−1 ds

if n is odd.
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The integral (12.11.3) is computed via a partial fraction decom-

position of the integrand. Assume n is even, say n = 2m, and write

t = s2. Now look for an expansion of the form

2mtm−1

(t + 4 · 12)(t + 4 · 22) · · · (t + 4 ·m2)
=

m∑
r=1

Ar

t + 4r2
.

The constants Ar are determined in the next exercise.

Exercise 12.11.5. Compute the value of Ar0 by multiplying the

expansion by (t + 4r20) and letting t → −4r20 . Then simplify the

expression for the integral to complete the proof in the case of n

even.

The case of n odd is treated with the same procedure. The proof

of Theorem 12.11.3 is complete. �

12.12. The infinite product for sin x

This section contains a discussion of the product representations for

trigonometric functions. These appeared in Euler’s treatise [122] in

1748. The reader will find historical information about these topics

in the book by P. Nahim [231], and the paper by W. Walter [303]

has several approaches to this product.

Theorem 12.12.1. The product representations for sinx and cosx

are given by

(12.12.1) sin x = x
∞∏
k=1

(
1 − x2

(πk)2

)

and

(12.12.2) cosx =
∞∏
k=1

(
1 − x2

(π(k − 1
2 ))2

)
.

Proof. The argument given here appears in the paper by K. Venkat-

achaliengar [297]. Start with

In(x) :=

∫ π/2

0

cosxt cosn t dt
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and integrate by parts to obtain n(n − 1)In−2(x) = (n2 − x2)In(x).

Since In(0) > 0, it follows that, for n ≥ 2,

(12.12.3)
In−2(x)

In−2(0)
=

(
1 − x2

n2

)
In(x)

In(0)
.

Using the values I0(0) = π/2 and I1(0) = 1, it follows that

sin
(πx

2

)
=

πx

2

I0(x)

I0(0)
and cos

(πx
2

)
= (1 − x2)

I1(x)

I1(0)
.

Now

|In(0) − In(x)| =

∣∣∣∣∣
∫ π/2

0

(1 − cosxt) cosn t dt

∣∣∣∣∣
≤ 1

2
x2

∫ π/2

0

t2 cosn t dt

≤ 1

2
x2

∫ π/2

0

t cosn−1 t sin t dt

=
1

n
In(0),

where the inequality t ≤ tan t has been employed. Thus

lim
n→∞

In(x)

In(0)
= 1.

Now replace πx/2 by x to produce (12.12.1). �

Exercise 12.12.2. Use the recurrence (12.12.3) to obtain a closed

form for the integral In(x).

Exercise 12.12.3. Use (12.12.1) to derive Wallis’ infinite product

for π:

π = 2
∞∏
k=1

2k

2k − 1
· 2k

2k + 1
.

This has appeared in (12.6.3).

Exercise 12.12.4. This exercise outlines a second proof of the prod-

uct representation for sinx given in (12.12.1).
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(a) Prove the identity

sin(nx) = K(n) sinx×
(n−1)/2∏

r=1

(
1 − sin2 x

sin2(πr/n)

)
,

for n odd. Hint: Locate the zeros of sin(nx).

(b) Let x → 0 to obtain K(n) = n.

(c) Conclude that

sinx = n sin(x/n)
∞∏
r=1

(1 + fr(n, x)) ,(12.12.4)

where

fr(n, x) =

{
0 r > (n− 1)/2,

− sin2(x/n)
sin2(rπ/n)

r ≤ (n− 1)/2.
(12.12.5)

(d) Let n → ∞ to obtain (12.12.1). The representation (12.12.2)

follows from the identity cosx = sin(2x)/2 sinx.

Note 12.12.5. J. Wästlund [306] describes an elementary proof of

this product that is free of integrals.

Note 12.12.6. The convergence of an infinite product can be treated

in parallel to that of infinite series. Given a sequence of positive

numbers {an}, form the partial products

(12.12.6) pn = (1 + a1)(1 + a2) · · · (1 + an)

and if pn converges to a limit p, then write

(12.12.7) p =
∞∏

n=1

(1 + an).

It turns out that pn converges if and only if the series
∑

an converges.

See the textbook by O. Hijab [168] for details and examples.

Exercise 12.12.7. The convergence of the product and the series

above it is proved by establishing elementary bounds. In general,
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there is no exact relation between the series and the product. Check

the nice special case: if an = 1/(4n2 − 1), then

∞∏
n=1

(1 + an) = π ×
∞∑

n=1

an.

Note 12.12.8. The factorization of a polynomial in terms of its roots,

given in Exercise 4.4.9, cannot be extended directly to the case of a

function with infinitely many roots. The construction of a function f

with roots at {a1, a2, . . .} via

(12.12.8) f(x) =

∞∏
k=1

(
1 − x

ak

)

might not be convergent. Weiestrass introduced elementary factors

E0(z) = 1 − z,

Ep(z) = (1 − z) exp
(
z + z2/2 + · · · + zp/p

)
and showed that it is possible to choose indices pk so that the modified

product

P (x) =
∞∏
k=1

Epk

(
z

ak

)

gives an honest function with the desired zeros. The book by R. Greene

and S. Krantz [148] gives complete details.

12.13. The irrationality of π

An elementary proof due to I. Niven [237] of the irrationality of π

is discussed next. The proof is based on the explicit construction

of a family of polynomials whose derivatives take integer values at

two points. The polynomials fn are a scaled version of the Legendre

polynomials described in Chapter 14.

Lemma 12.13.1. Let n ∈ N and a, b ∈ Z. The polynomial

(12.13.1) fn(x) =
1

n!
xn(a− bx)n

has the property that fn and all its derivatives at x = 0 and x = a/b

are integers.
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Proof. The result is established at x = 0. The case of x = a/b

follows by symmetry. Expanding the binomial (a− bx)n gives

f (j)
n (x)=

1

n!

n∑
r=0

(
n

r

)
(−1)ran−rbr(r+n)(r+n−1) · · · (r+n−j+1)xr+n−j.

This gives f
(j)
n (0) = 0 for 0 ≤ j < n and j > 2n. The value f

(n)
n (0) =

an is also an integer. In the range n < j ≤ 2n, the only term that

does not vanish has index r = j − n. This gives

f (j)
n (0) =

j!

n!

(
n

j − n

)
a2n−jbj ,

and this is also an integer. �

Theorem 12.13.2. The number π is irrational.

Proof. Suppose π = a/b, with a, b ∈ N. Form the function

F (x) = f(x) − f (2)(x) + f (4)(x) − · · · + (−1)nf (2n)(x)

and observe that

d

dx
(F ′(x) sinx− F (x) cosx) = (F ′′(x) + F (x)) sinx.

Therefore ∫ π

0

f(x) sinx dx = F (π) + F (0) ∈ N.

This is incompatible with the behavior

0 < f(x) sinx <
πnan

n!
→ 0(12.13.2)

as n → ∞. This contradiction shows that π �∈ Q. �

An extension due to A. E. Parks [241] is presented next.

Theorem 12.13.3. Let c ∈ R+ and let f be a continuous function

on [0, c], positive on (0, c). Suppose the antiderivatives f1, f2, . . . with

f ′
1 = f and f ′

k = fk−1 have the property that fk(0) and fk(c) are

integers. Then c is irrational.

Proof. Let P be the class of polynomials g(x) with real coefficients

such that g(0), g(c), g′(0), g′(c), . . . , g(k)(0), g(k)(c), . . . are all integers.
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Exercise 12.13.4. Integrate by parts to prove that∫ c

0

f(x)g(x) dx ∈ Z.

Assume now that c = a/b ∈ Q. The class P is closed under products

and contains the polynomials a− 2bx and gk(x) = xk(a− bx)k/k!.

The bound

(12.13.3)

∫ c

0

f(x)gk(x) dx ≥ 1

follows from the fact that it is positive and an integer. Now let M be

an upper bound for x(a − bx) and let L be a bound for f on [0, c].

Then ∫ c

0

f(x)gk(x) dx ≤ cL
Mk

k!
(12.13.4)

converges to 0 as n → ∞. This contradicts (12.13.3). �

Exercise 12.13.5. Let r = m/n ∈ Q. Use the function f(x) = nex

to prove that ln r is not rational.

Note 12.13.6. Irrationality properties concerning π and related num-

bers are difficult to establish. It is (still) an open question to decide

whether π+e is irrational. The same is true for πe. The next theorem

shows that one of them must be irrational.

Theorem 12.13.7. One of the numbers π + e or πe is irrational.

Proof. Assume the conclusion is false. Then

(12.13.5) P (x) = (x− e)(x− π) = x2 − (π + e)x + πe

is a quadratic polynomial with rational coefficients and P (e) = 0.

This contradicts Liouville’s theorem, Theorem 11.5.2. �

The next theorem, established by C. L. F. Lindenmann in 1882,

shows that π is a transcendental number. In particular, this shows

that all powers πn are irrational numbers. The reader will find the

details in the notes by M. Filaseta [126] and the paper by I. Niven

[236].

Theorem 12.13.8. The number π is transcendental.
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12.14. Arctangent sums and a dynamical system

The evaluation of arctangent sums of the form

∞∑
k=1

tan−1 h(k)

for a rational function h reappear in the literature from time to time.

For instance the evaluation of
∞∑
k=1

tan−1 2

k2
=

3π

4
(12.14.1)

was proposed by J. Anglesio [22] in 1993. This is a classical problem

that appears in the book by G. Chrystal [101], the paper by J. W.

L. Glaisher [138], and the book by S. L. Loney [203], among other

places. The evaluation of

∞∑
k=1

tan−1 1

k2
= tan−1 tan(π/

√
2) − tanh(π/

√
2)

tan(π/
√

2) + tanh(π/
√

2)

was proposed by R. J. Chapman [96] in 1990. This was solved by

A. Sarkar [267] using a method that involves the zeros of polynomials.

The reader will find details in the survey paper by G. Boros and

V. Moll [66].

This section discusses the evaluation of these sums. Throughout,

tan−1 x will always denote the principal value. The addition formulas

for tan−1 x are employed throughout:

tan−1 x + tan−1 y =

{
tan−1 x+y

1−xy if xy < 1,

tan−1 x+y
1−xy + π sign x if xy > 1

and

tan−1 x + tan−1 1

x
=

π

2
sign x.

Exercise 12.14.1. The addition formula for arctangents has some

peculiar consequences. Here is an instance. Let Fn be the nth Fi-

bonacci number. Check that

tan−1

(
1

F2n

)
= tan−1

(
1

F2n+1

)
+ tan−1

(
1

F2n+2

)
.
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Iterate this relation to obtain

tan−1

(
1

F2n

)
=

∞∑
k=n

tan−1

(
1

F2k+1

)

and
π

4
=

∞∑
k=1

tan−1

(
1

F2k+1

)
.

Compute the error after taking 100 terms in the series.

The method of telescoping. The evaluation of sums in telescoping

form is elementary. Cancellation leads immediately to

(12.14.2)

n∑
k=1

ak+1 − ak = an+1 − a1.

Theorem 12.14.2. Let f be of fixed sign and define h by

(12.14.3) h(x) =
f(x + 1) − f(x)

1 + f(x + 1)f(x)
.

Then

(12.14.4)

n∑
k=1

tan−1 h(k) = tan−1 f(n + 1) − tan−1 f(1).

In particular, if f has a limit at ∞ (including the possibility of f(∞) =

∞), then

(12.14.5)

∞∑
k=1

tan−1 h(k) = tan−1 f(∞) − tan−1 f(1).

Proof. Since

tan−1 h(k) = tan−1 f(k + 1) − tan−1 f(k),

the result follows by telescoping. �

Exercise 12.14.3. Take f(x) = ax+ b, where a and b are such that

f(x) ≥ 0 for x ≥ 1. Use Theorem 12.14.2 to show that the special

case of a = 1, b = 0 gives the sum

∞∑
k=1

tan−1 1

k2 + k + 1
=

π

4
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and a = 2, b = 0 gives

∞∑
k=0

tan−1 2

(2k + 1)2
=

π

2
.

Exercise 12.14.4. Prove that
∞∑
k=1

tan−1 2

k2
=

3π

4
.

This problem was proposed by J. Anglesio [22].

Exercise 12.14.5. Prove that
∞∑
k=1

tan−1 4ak

k4 + a2 + 4
= tan−1 a

2
+ tan−1 a.

Compute the special value a = 1.

A dynamical system. An interesting dynamical system involving

arctangent sums appeared from the addition theorem. In order to

present the problem, define

(12.14.6) xn = tan

n∑
k=1

tan−1 k.

Then x1 = 1 and the addition theorem for arctangent gives

(12.14.7) xn =
xn−1 + n

1 − nxn−1
.

The evolution of the sequence {xn : n ∈ N} is a discrete dynam-

ical system with many interesting questions. The list of the first few

values, starting with x1 = 1, is{
1, −3, 0, 4, − 9

19
,

105

73
, −308

331
,

36

43
,−423

281
,

2387

4511

}
.

The reader should be careful with making predictions. For instance,

the data above suggests that the signs alternate. This is not true:

x16 and x17 are both positive.

The first result about {xn} was established by T. Amdeberhan,

L. Medina, and V. Moll in the paper [12].

Theorem 12.14.6. The only time xn = 0 is for n = 3.
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The proof of this result is based on a study of the 2-adic valuations

described next.

Theorem 12.14.7. Let n > 3 be an integer and let N = �n
4 �. The

2-adic valuation of xn is given by

ν2(xn) =

{
ν2(2N(N + 1)) if n ≡ 0, 3 mod 4,

0 if n ≡ 1, 2 mod 4.

In particular, xn �= 0.

The beginning of the sequence {xn} shows integer entries for 1 ≤
n ≤ 4. Given the form of the recurrence, this is not expected. In

order to analyze this phenomenon, define the sequence of fractional

parts by

yn := {xn} = xn − �xn�.

Figure 12.14.1 shows the sequence {xn} for 1 ≤ n ≤ 50000, and

Figure 12.14.2 shows the fractional parts yn and y2n. Observe the

presence of granular regions combined with some solid curve regions.

This combination persists as n increases.

2000 4000 6000 8000 10 000
n

2

4

6

x (n)

Figure 12.14.1. The sequence xn.

The sequence {yn} has interesting dynamical properties that the

author has been unable to figure out. An example of this is the lack

of intrusion between the curves and the granular region observed in

the figure to the right of Figure 12.14.2.

                

                                                                                                               



12.14. Arctangent sums and a dynamical system 353

2000 4000 6000 8000 10000
n

0.2

0.4

0.6

0.8

1.0
y(n)

2000 4000 6000 8000 10000
2n

0.2

0.4

0.6

0.8

1.0
y(2n)

Figure 12.14.2. The fractional parts of xn and x2n.

2000 4000 6000 8000 10000
k

0.2

0.4

0.6

0.8

1.0
Knill(10000, k)

20000 40000 60000 80000 100000
k

0.2

0.4

0.6

0.8

1.0
Knill (100000, k)

Figure 12.14.3. The dynamics of the Knill map.

Note 12.14.8. O. Knill [185] reports on a similar phenomenon for

the function

fn(k) =
n mod k

k
,

for fixed n ∈ N. The two parts of Figure 12.14.3 show the data for

n = 10000 and n = 100000, respectively. In this case, there is no

reappearance of the granular regions.

The next question has eluded the effort of the author:

Conjecture 12.14.9. The number xn is not an integer for n > 4.

An interesting sequence of integers fn appears connected to {xn}.
The details are given in the next exercise. The author wishes to thank

P. Deift for the recurrence for fn.

Exercise 12.14.10. Check that the recurrence for xn implies

(n + 1)xn − 1 = −2 − 1

n
+

(n + 1)(n + n−1)

1 − nxn−1
.
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Let un = nxn−1 − 1 and define fn recursively by f1 = 1 and fn =

unfn−1. Prove that fn satisfies the recurrence

fn+1 = −2n + 1

n
fn − (n + 1)(n2 + 1)

n
fn−1.

Even though it is not obvious from the recurrence, the numbers fn
are integers. Prove this by establishing the identity

fn = (−1)n+1 Re

n∏
k=0

(1 + ik).

Hint: Look into Sloane’s database.

Note 12.14.11. The trigonometric functions are sometimes called

circular functions as they are defined from the unit circle. These

functions are complemented by the hyperbolic functions defined

in terms of the exponential by

sinh x =
ex − e−x

2
and coshx =

ex + e−x

2
.

As an alternative, these functions can be given a treatment par-

allel to the one described here for trigonometric functions. The defi-

nition is given in terms of the curve

(12.14.8) H := {(u, v) ∈ R2 : u2 − v2 = 1}.
The hyperbolic angle x ∈ R is defined as the angle of the line

joining the origin to the point (u, v) ∈ H. The hyperbolic functions

are defined as

(12.14.9) cosh x = u and sinh x = v.

The basic relation of Euler

(12.14.10) eix = cosx + i sin x

gives a relation between hyperbolic and circular functions:

(12.14.11) cos ix = coshx and sin ix = i sinh x.

It is natural to ask whether there is a third family of functions, now

associated to an ellipse. These are the elliptic functions and their

theory is slightly more complicated. The reader will find information

about them in the book by H. McKean and V. Moll [213].

                

                                                                                                               



Chapter 13

Bernoulli Polynomials

13.1. Introduction

The Bernoulli polynomials Ba(x) were introduced in Definition

4.2.4 by the relation

(13.1.1) Ba(n) = Ba + a

n−1∑
k=1

ka−1,

valid for a, n ∈ N with a > 1. Theorem 4.2.1 shows that Ba(n) is a

polynomial in n of degree a, with constant term Ba = Ba(0). The

value of the constant Ba was defined by the normalization

(13.1.2)

∫ 1

0

Ba(x) dx = 0.

This chapter contains properties of these polynomials. In particular,

an equivalent definition of Ba(n) is provided in Definition 13.2.1.

Example 13.1.1. The evaluation of Ba(n) − Ba may be computed

by a finite evaluation. The case a = 4,

(13.1.3) B4(n) −B4 = 4

n−1∑
k=1

k3,

illustrates the point. The left-hand side is a polynomial of degree 4

in n. Therefore its coefficients may be computed by evaluating the

355
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right-hand side at five points. Let R4(n) denote, temporarily, the

right-hand side of (13.1.3) and compute the table of values

(13.1.4)
n 2 3 4 5 6

R4(n) 4 36 144 400 900
.

The Lagrange interpolating polynomial, given in Exercise 4.2.7, shows

that R4(n) = n2(n − 1)2. Therefore, the Bernoulli polynomial of

degree 4 is

(13.1.5) B4(x) = x4 − 2x3 + x2 − 1

30
.

The next section gives a second motivation for the choice of the

constant Ba.

13.2. The exponential generating function

This section describes a natural choice for Ba in the definition (13.1.1).

Consider the sum
∞∑
a=0

[Ba(n) −Ba]
ta

a!
=

∞∑
a=1

ta

(a− 1)!

n−1∑
k=1

ka−1

= t
n−1∑
k=1

∞∑
a=0

(tk)a

a!

=
tent

et − 1
− t

et − 1
.

Comparing the terms independent of n provides a second definition

for the Bernoulli number Ba.

Definition 13.2.1. The Bernoulli numbers Ba are defined by

(13.2.1)
t

et − 1
=

∞∑
a=0

Ba
ta

a!
.

The Bernoulli polynomials Ba(x) are defined by

(13.2.2)
text

et − 1
=

∞∑
a=0

Ba(x)
ta

a!
.

Note 13.2.2. The computation presented above shows that the iden-

tity (13.1.1) holds if Ba(x) and Ba are given by Definition 13.2.1.
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Exercise 13.2.3. Check the consistency of these definitions. In par-

ticular, show that

(13.2.3)

∫ 1

0

Ba(x) dx = 0

follows from Definition 13.2.1.

Exercise 13.2.4. Prove that Ba(0) = Ba.

Exercise 13.2.5. Use the generating function (13.2.2) to compute

B0(x) = 1,

B1(x) = x− 1
2 ,

B2(x) = x2 − x + 1
6 ,

B3(x) = x3 − 3
2x

2 + 1
2x,

B4(x) = x4 − 2x3 + x2 − 1
30 .

13.3. Elementary properties of Bernoulli
numbers

The discussion of Bernoulli numbers begins with a recurrence.

Proposition 13.3.1. The Bernoulli numbers satisfy

(13.3.1)

a∑
k=1

(
a

k

)
Ba−k = 0,

for a > 1.

Proof. The generating function for Ba can be expressed as

t = (et − 1) ×
∞∑
a=0

Ba
ta

a!

=
∞∑
k=1

tk

k!
×

∞∑
a=0

Ba
ta

a!

=
∑
k,a

Ba

k! a!
ta+k.

                

                                                                                                               



358 13. Bernoulli Polynomials

Now let r = a + k and eliminate the index a to obtain

t =
∞∑
r=1

[
r∑

k=1

Br−k

k! (r − k)!

]
tr.

The result follows by matching equal powers of t. �

Corollary 13.3.2. The Bernoulli numbers Ba are rational numbers.

Proof. The identity (13.3.1), for a > 0, can be written as

(13.3.2) Ba = − 1

a + 1

a−1∑
j=0

(
a + 1

j

)
Bj .

The result follows by induction on a. �

Exercise 13.3.3. Use the recurrence to confirm the first few values

of Ba. The numerators can get very large; for example,

B38 =
2929993913841559

6

and

B40 = −261082718496449122051

13530
.

Clearly this should not be done by hand.

The data suggests that B1 is the only nonzero odd Bernoulli

number and that the sign of B2a alternates. The first fact is easy to

prove.

Proposition 13.3.4. The value B1 = − 1
2 is the only nonzero Ber-

noulli number with an odd index.

Proof. The function

(13.3.3)
t

et − 1
− 1 +

t

2
=

t

2

[
et/2 + e−t/2

et/2 − e−t/2

]
− 1

is an even function. The result follows from the generating function

for Ba. �

Exercise 13.3.5. Make a list of the denominators of the even Ber-

noulli numbers. This is how it starts:

1, 6, 30, 42, 30, 66, 2730, 6, 510, 798, 330, 138, 2730, 6, 870.
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The fact that the denominator of Ba is often 6 will be discussed in

Section 13.6. The first values for which this happens are

(13.3.4) 2, 14, 26, 34, 38, 62, 74, 86, 94, 98.

Figure 13.3.1 shows the density of indices with denominator 6.

200 400 600 800 1000
n

0.06

0.08

0.10

0.12

0.14

Prop(6)

Figure 13.3.1. Proportion of indices with denominator 6.

The next property deals with the structure of the signs of Ba. The

proof presented here appears in the paper by L. Mordell [223].

Theorem 13.3.6. For a > 1, the Bernoulli numbers satisfy

B2a = −
a−1∑
r=0

22r − 1

22a − 1

(
2a

2r

)
B2rB2a−2r.(13.3.5)

Proof. Write

t

et − 1
=

∞∑
a=0

Ba
ta

a!

so that B0 = 1, B1 = −1/2, and B2a+1 = 0 for a > 1. Then

t

et + 1
=

t

et − 1
− 2t

e2t − 1

= −
∞∑
a=0

(2a − 1)Ba
ta

a!
.
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Multiply by t/(et − 1) so the left-hand side becomes t2/(e2t − 1) and

expanding yields

t

2

∞∑
a=0

Ba2
a t

a

a!
= −

( ∞∑
r=0

(2r − 1)Br
tr

r!

)
×
( ∞∑

s=0

Bs
ts

s!

)
.

Now equate the coefficients of t2a to obtain (13.3.5). �

Corollary 13.3.7. The even-indexed Bernoulli numbers B2a alter-

nate in sign; that is, they satisfy (−1)a−1B2a > 0.

Proof. Define ba = (−1)a−1B2a. Then (13.3.5) becomes

(13.3.6) ba =
a−1∑
r=1

22r − 1

22a − 1

(
2a

2r

)
brba−r.

Therefore ba > 0 follows by induction. �

Elementary properties of Bernoulli polynomials. The generat-

ing function for the Bernoulli polynomials (13.2.2) is now employed

to establish some properties of these polynomials.

Exercise 13.3.8. Prove that for a ∈ N, the identity

(13.3.7) Ba(x + 1) = Ba(x) + axa−1

holds.

Note 13.3.9. Identity (13.3.7) and values of Ba(x) for 0 ≤ x ≤ 1

determine Ba(x) for all x ∈ R.

Proposition 13.3.10. The Bernoulli polynomials Ba(x) satisfy

(13.3.8) B′
a(x) = aBa−1(x).

Proof. Differentiate (13.2.2) and use B0(x) = 1, to obtain

(13.3.9)
text

et − 1
=

∞∑
a=1

B′
a(x)

ta−1

a!
.

Then match powers of t in (13.2.2) to obtain the result. �
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Exercise 13.3.11. Prove (13.3.8) by induction on the index a. Hint:

Use the recurrence (4.2.9) to establish the identity

Ba+1(x) = Ba+1 + xa+1 − x−
a−1∑
j=1

(
a+1
j

)
j + 1

[Bj+1(x) −Bj+1]

and then use (13.3.2).

Exercise 13.3.12. Check that Ba(1) = Ba(0) for a ≥ 2. Compare

these values for a = 0 and a = 1.

Exercise 13.3.13. Check the special value

Ba

(
1
2

)
= −(1 − 21−a)Ba, for a ≥ 2.

Exercise 13.3.14. Use the generating function (13.2.2) to prove that

Ba(1 − x) = (−1)aBa(x).

This provides symmetry of Ba(x) about the middle point x = 1
2 .

Exercise 13.3.15. The map

(13.3.10) D(P (x)) = P (x + 1) − P (x)

acts on the space of polynomials. The identity (13.3.7) shows that

the polynomial ga(x) = Ba(x)/a satisfies

(13.3.11) D(ga) = xa−1.

Prove that if

Q(x) =
m∑
r=0

qrx
r,

then

Q+(x) =
m∑
r=0

qr
r + 1

Br+1(x)

is the discrete primitive of Q, that is, D(Q+(x)) = Q(x).

The Bernoulli polynomials can be expressed just using Bernoulli

numbers.

Theorem 13.3.16. The Bernoulli polynomials are given by

Ba(x) =
a∑

j=0

(
a

j

)
Bjx

a−j .
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Proof. The generating function gives
∞∑
a=0

Ba(x)
ta

a!
=

text

et − 1
= ext × t

et − 1

=

[ ∞∑
k=0

1

k!
xktk

]
×

⎡
⎣ ∞∑
j=0

1

j!
Bjt

j

⎤
⎦

=
∑
k,j

Bj

j! k!
tk+jxk

=
∞∑
a=0

⎡
⎣ a∑
j=0

(
a

j

)
Bjx

a−j

⎤
⎦ ta

a!
.

This gives the stated formula. �

Exercise 13.3.17. The starting point of the evaluation of sums of

powers is now written in complete form:

n−1∑
k=1

ka−1 =
1

a

a−1∑
j=0

(
a

j

)
Bjn

a−j , for a > 1.

Check this identity.

The set of Bernoulli polynomials Bn := {Ba(x) : 0 ≤ a ≤ n}
forms a basis for the vector space of polynomials of degree less than

or equal to n. In particular, the polynomial xj (0 ≤ j ≤ n) is a linear

combination of elements in Bn. The next exercise gives the explicit

values of the coefficients.

Exercise 13.3.18. Prove the inversion formula

xn =
1

n + 1

n∑
j=0

(
n + 1

j

)
Bj(x).

Exercise 13.3.19. Prove the addition theorem

Ba(x + y) =

a∑
j=0

(
a

j

)
Bj(x)ya−j .

Exercise 13.3.20. Prove the duplication formula

Ba(2x) = 2a−1
[
Ba(x) + Ba(x + 1

2 )
]
.
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This is similar to the trigonometric identity

cot 2x = cotx + cot(x + 1
2 ).

Exercise 13.3.21. Establish the multiplication formula

Ba(mx) = ma−1
m−1∑
k=0

Ba

(
x +

k

m

)
, for m ∈ N.

Other sequences of numbers defined in terms of Bernoulli

numbers. The expansion of some basic functions is now given in

terms of the Bernoulli numbers. The first result requires some ele-

mentary complex variables.

Example 13.3.22. The expansion of the cotangent function around

x = 0 is

(13.3.12) cot x =

∞∑
n=0

(−1)n
22n

(2n)!
B2nx

2n−1.

To establish this expansion, write

(13.3.13) cot x = i

(
1 +

2

e2ix − 1

)
.

Replacing x by t/2i and using the expansion (13.2.1) gives (13.3.12).

Exercise 13.3.23. The tangent numbers Tn are defined in (12.4.6)

by the expansion

(13.3.14) tanx =

∞∑
n=0

Tn
xn

n!
.

Use the identity

(13.3.15) cotx− 2 cot 2x = tanx

to produce

Tn =

⎧⎪⎪⎨
⎪⎪⎩

0 if n is even,

(−1)(n−1)/22n+1(2n+1 − 1)Bn+1

n+1 if n is odd.

The fact that the tangent numbers are positive, established in The-

orem 12.4.4, gives a new proof of (−1)n−1B2n > 0. This appears in

the paper by L. Carlitz [92].
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Note 13.3.24. The previous exercise provides the expansion

(13.3.16) tanx =

∞∑
n=1

(−1)n−122n

(2n)!
(22n − 1)B2nx

2n−1.

Exercise 13.3.25. Use (13.3.16) to establish

(13.3.17) cosec x =

∞∑
n=0

(−1)n−1 (22n − 2)

(2n)!
B2nx

2n−1.

This explains why calculus courses discuss the Taylor series of sinx

and cosx, but not the other four trigonometric functions.

Note 13.3.26. The series for secant is not in the list of functions

whose coefficients depend on Bernoulli numbers. Define the numbers

En by the expansion

(13.3.18) secx =

∞∑
n=0

En

n!
xn.

The fact that sec x is an even function shows that En = 0 for n odd

and (13.3.18) is written as

secx =

∞∑
n=0

E2n

(2n)!
x2n.

The numbers E∗
n = E2n are called the secant numbers, or also

Euler numbers.

Exercise 13.3.27. Derive a recurrence for the Euler numbers. Prove

from there that the E2n are positive integers.

Exercise 13.3.28. Derive an identity for Bernoulli numbers from

(13.3.19) sin x = tanx× cosx.

What do you get from the corresponding expression for cotangent?

Identities for Bernoulli numbers. The literature contains a large

variety of expressions for Bernoulli numbers. Many of them can be

obtained directly from the generating function (13.2.1). A classical

identity and a couple of recent additions are presented.

                

                                                                                                               



13.3. Elementary properties of Bernoulli numbers 365

Example 13.3.29. The first result is due to L. Euler. It comes from

the elementary observation that the generating function

(13.3.20) b(t) =
t

et − 1

satisfies the differential equation

(13.3.21) b2(t) = (1 − t)b(t) − tb′(t).

This produces

(13.3.22)

n−2∑
i=2

(
n

i

)
BiBn−i = −(n + 1)Bn,

for n ≥ 4.

Example 13.3.30. The second example described here is due to

E. Deeba and D. Rodriguez [109]. It yields an infinite number of

recurrences for the Bernoulli numbers.

Theorem 13.3.31. Let a ∈ N. Then

Ba =
1

n(1 − na)

a−1∑
i=0

Bin
i

(
a

i

) n−1∑
j=0

ja−i, for n ∈ N and n ≥ 2.

Proof. Start with

1 − enx

1 − ex
=

n−1∑
j=0

ejx =
∞∑

m=0

⎛
⎝n−1∑

j=0

jm

⎞
⎠ xm

m!
.

Multiply by x/(1 − enx) to obtain

x

1 − ex
=

1

n

nx

1 − enx
· 1 − enx

1 − ex

=
1

n

( ∞∑
k=0

Bk
nkxk

k!

)⎛⎝ ∞∑
m=0

n−1∑
j=0

jm
xm

m!

⎞
⎠

and multiplying the series yields

x

1 − ex
=

1

n

∞∑
l=0

⎛
⎝ l∑

i=0

Bin
i

i!

1

(l − i)!

n−1∑
j=0

jl−i

⎞
⎠xl

=
1

n

∞∑
l=0

1

l!

⎛
⎝ l∑

i=0

Bin
i

(
l

i

) n−1∑
j=0

jl−i

⎞
⎠xl.
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It follows that

Ba =
1

n

a∑
i=0

Bin
i

(
a

i

) n−1∑
j=0

ja−i.

The result follows by solving for Ba. Observe that this term also

appears on the right-hand side. �

Example 13.3.32. Recent activity surrounding the Bernoulli num-

bers is shown in the paper by G. Rzadkowski [263]. The main result

is

Ba+1 =
(−1)a+1(a + 1)

2a+1 − 1

a+1∑
k=1

1

2k

k−1∑
j=0

(−1)j
(
k − 1

j

)
(j + 1)a.

Example 13.3.33. The final example presents a relation between

the Bernoulli numbers and the harmonic numbers Hn. Introduce the

notation βi = Bi/i. The Miki identity states that

(13.3.23)

n−2∑
i=2

βiβn−i −
n−2∑
i=2

(
n

i

)
βiβn−i = 2Hnβn.

This identity appeared first in the paper by H. Miki [216] and it

has made its place into sophisticated mathematics in the paper by

C. Faber and R. Pandharipande [124] and into the world of physics

in the work of G. V. Dunne [115]. Nice proofs can be found in the

paper by I. Gessel [136] and in the work of I. V. Artamkin [29].

Note 13.3.34. D. Zagier [319] defined the rational numbers

B∗
n :=

n∑
r=0

(
n + r

2r

)
Br

n + r
, n > 0,

and proved that B∗
2n+1 is periodic, with period 6 and repeating values

{ 3
4 , −

1
4 , −

1
4 ,

1
4 ,

1
4 , −

3
4}.

13.4. Integrals involving Bernoulli polynomials

This section contains the evaluation of definite integrals involving the

Bernoulli polynomials. The first few examples are direct consequences

of the identity established in (13.3.8)

(13.4.1) B′
a+1(x) = (a + 1)Ba(x), a ≥ 1.
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Exercise 13.4.1. Use the definition of Bernoulli polynomials from

the generating function to prove that for a ≥ 1

(13.4.2)

∫ 1

0

Ba(x) dx = 0.

Exercise 13.4.2. Prove that

(13.4.3)

∫ r+1

r

Ba(x) dx = ra.

Example 13.4.3. Integrals of Bernoulli polynomials can be used to

generate some identities for Bernoulli numbers. For example,∫ 1

0

xBa(x) dx =
a∑

j=0

(
a

j

)
Bj

∫ 1

0

xa−j+1 dx

=
a∑

j=0

(
a

j

)
Bj

a− j + 2
.

On the other hand, integration by parts gives∫ 1

0

xBa(x) dx =
1

a + 1

∫ 1

0

xB′
a+1(x) dx

=
1

a + 1

[
xBa+1(x)

∣∣∣1
0
−
∫ 1

0

Ba+1(x) dx

]

=
Ba+1

a + 1
.

It follows that

(13.4.4) Ba+1 = (a + 1)

a∑
j=0

1

a− j + 2

(
a

j

)
Bj , for a > 1.

Products of two Bernoulli polynomials. The set of polynomials

(13.4.5) Bn = {B0(x), B1(x), B2(x), . . . , Bn(x)}
forms a basis for the vector space of polynomials of degree at most n.

It follows that there exist numbers such that

(13.4.6) Bp(x)Bq(x) =

p+q∑
j=0

αj(p, q)Bj(x).

The goal of this section is to provide an explicit expression for αj(p, q).
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Exercise 13.4.4. Use the identity

uv

(eu − 1)(ev − 1)
× eu+v − 1

u + v
=

uv

u + v
+

v

u + v

u

eu − 1
+

u

u + v

v

ev − 1
,

to conclude that

Bk(x)Bj(x)

k! j!
= the coefficient of ukvj in[

1 +

∞∑
n=2

uv

n!

(
un−1 + vn−1

u + v

)
Bn

]
×

∞∑
m=0

Bm(x)
(u + v)m

m!
.

This is the end of the exercise.

The next step is to evaluate the coefficient of ukvj in the ex-

pression obtained by expanding the right-hand side of the previous

formula:
∞∑

m=0

Bm(x)
(u + v)m

m!
+

∞∑
n=2

uv

n!
× un−1 + vn−1

u + v
Bn

+

∞∑
n=2

∞∑
m=1

uv

n!m!
× (un−1 + vn−1)(u + v)m−1BnBm(x).

The first term is
∞∑

m=0

Bm(x)

m!

m∑
t=0

(
m

t

)
utvm−t,

and the power ukvj yields

the first term contribution is
1

k!j!
Bk+j(x).

The second term is

∞∑
n=2

uv

n!

un−1 + vn−1

u + v
Bn =

∞∑
n=2

uv

n!
Bn

n−2∑
t=0

(−1)tutvn−2−t

=
∞∑

n=2

1

n!
Bn

n−2∑
t=0

(−1)tut+1vn−1−t.
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To count those that contribute to ukvj , observe that k + j = n. The

power of u must be k; therefore t = k − 1. This gives

the second term contribution is
(−1)k−1

(k + j)!
Bk+j .

Exercise 13.4.5. Check that the third term is
�(k+j−1)/2�∑

r=1

[
j

(
k

2r

)
+ k

(
j

2r

)]
B2r

k + j − 2r
Bk+j−2r(x).

The discussion above is recorded as the next theorem.

Theorem 13.4.6. The product of two Bernoulli polynomials is given

by

Bk(x)Bj(x) =
(−1)k−1k!j!

s!
Bs

+

�(s−1)/2�∑
r=0

[
j

(
k

2r

)
+ k

(
j

2r

)]
B2r

s− 2r
Bs−2r(x),

with s = k + j.

Corollary 13.4.7. Let k, j ≥ 1. Then

(13.4.7)

∫ 1

0

Bk(x)Bj(x) dx = (−1)k−1

(
s

k

)−1

Bs,

with s = k + j.

Exercise 13.4.8. Determine the value of the integral of a product

of three Bernoulli polynomials.

13.5. A relation to Stirling numbers

This section discusses a classical identity relation of Bernoulli to Stir-

ling numbers. The proof presented here is completely elementary and

it appeared in the paper by G. Rzadkowski [262].

Exercise 7.2.3 shows the existence of a family of coefficients a(n, k)

such that

(13.5.1) f (n)(x) =
n+1∑
k=1

a(n, k)

(1 + ex)k
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for f(x) = 1/(1 + ex). The coefficients a(n, k) are given by

(13.5.2) a(n, k) = (−1)n+k(k − 1)!S(n, k).

Now let t = 1/(1 + ex). Then there is a family of polynomials An(t)

such that f (n)(x) = An+1(t).

The proof of the next result follows directly from the definition

of An+1(t).

Lemma 13.5.1. Let f(x) = 1/(1 + ex) and g(z, x) := f(z + x). The

Taylor expansion of g in the variable z is

(13.5.3) g(z, x) =

∞∑
n=0

An+1(t)
zn

n!

where t = 1/(1 + ex).

Now observe that

(13.5.4) g(z, x) =
1

1 + ez+x
=

1

1 + ez · ex =
t

t + (1 − t)ez
.

Integrating the relation

(13.5.5)
t

t + (1 − t)ez
=

∞∑
n=0

An+1(t)
zn

n!

yields

(13.5.6)
1 − ez + zez

(1 − ez)2
=

∞∑
n=0

∫ 1

0

An+1(t)dt
zn

n!
.

Exercise 13.5.2. Use the generating function of the Bernoulli poly-

nomials (13.2.2) to prove

(13.5.7)

∫ 1

0

An(t) dt = −Bn.

The relation between the Bernoulli and Stirling numbers is a re-

statement of (13.5.7).

Proposition 13.5.3. The Bernoulli numbers satisfy

Bn = −
n∑

k=1

a(n− 1, k)

k + 1
=

n∑
k=1

(−1)n+k+1(k − 1)!

k + 1
S(n− 1, k).
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13.6. Arithmetic properties of Bernoulli
numbers

The Bernoulli numbers B2n are rational numbers with sign (−1)n−1.

Let

(13.6.1) (−1)n−1B2n =
N2n

D2n

be the representation with gcd(N2n, D2n) = 1. This section will con-

sider arithmetic properties of N2n and D2n.

The next subsection presents a congruence that is employed later

to establish the von Staudt-Clausen theorem, which yields an exact

expression for D2n, the denominator of the Bernoulli number B2n.

The numerators are discussed next, with particular emphasis on their

relation to Fermat’s last theorem.

A congruence for the sum of powers. The first result deals with

a congruence for the sum Sa(n) defined in (4.2.5) as

(13.6.2) Sa(n) =
n−1∑
k=1

ka, a ∈ N0, n > 1.

The proof employs the relation

(13.6.3) na+1 − 1 =

a∑
j=0

(
a + 1

j

)
Sj(n) for n ≥ 1, a ≥ 0

originally due to B. Pascal [242]. This is of intrinsic interest and it

has already appeared in Theorem 4.2.1. The argument presented here

is due to K. MacMillan and J. Sondow [207]. The reader should look

back at (4.2.8) before reading the next result.

Proposition 13.6.1. Let p be a prime. For a ≥ 1, the congruence

Sa(p) ≡
{
−1 mod p if p− 1 divides a,

0 mod p if p− 1 does not divide a

holds.
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The argument is divided into two cases.

Case 1. Assume first that p − 1 divides a. Then a = (p− 1)t, with

t ∈ N. Then, Fermat’s little theorem (see Subsection 2.5.2) gives

Sa(p) ≡
p−1∑
k=1

(kp−1)t ≡
p−1∑
k=1

1t = p− 1 ≡ −1 mod p

as claimed.

Case 2. If p − 1 does not divide a, assume that p does not divide

Sa(p). Take a to be the smallest positive integer with these properties,

namely a �≡ 0 mod p− 1 and Sa(p) �≡ 0 mod p. Dividing yields

a = (p− 1)d + r with d ≥ 0 and 0 < r < p− 1.

Then Sa(p) ≡ Sr(p) mod p. Indeed,

Sa(p) =

p−1∑
k=1

ka =

p−1∑
k=1

(kp−1)d · kr ≡
p−1∑
k=1

kr = Sr(p) mod p.

Therefore, the value a is in the range 0 < a < p− 1. It follows that

(13.6.4) S0(p) = p, S1(p), S2(p), . . . , Sa−1(p) ≡ 0 mod p.

Now choose n = p + 1 in (13.6.3) to obtain

(13.6.5) (p + 1)a+1 − 1 ≡
a∑

j=0

(
a + 1

j

)
Sj(p + 1) mod p.

Now employ the previous congruences and Sj(p) ≡ Sj(p + 1) mod p

to conclude that

(13.6.6) (a + 1)Sa(p) ≡ 0 mod p.

The range of values of a shows that p does not divide a + 1. Thus

Sa(p) ≡ 0 mod p. This is a contradiction.

The von Staudt-Clausen theorem. The next result determines

those primes dividing the denominator D2n.

Theorem 13.6.2. If n ≥ 1, then the denominator D2n is the product

of all primes p such that p−1 divides 2n. In particular 6 divides D2n.
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Proof. The proof is based on considering the terms in the sums ap-

pearing in Proposition 13.5.3 that are not integers.

Case 1. If k + 1 is composite and k ≥ 6, then k + 1 = a · b with

a, b relatively prime and appearing in (k − 1)! and it follows that

k + 1 divides (k− 1)!. Therefore this term does not contribute to the

denominator of Bn.

Case 2. If k = 3, the coefficient of 1
4 is 2S(n− 1, 3) = 3n−1 − 2n + 1

as in Exercise 7.3.3. For n even, this term is divisible by 4, so k = 3

does not contribute to the denominator of Bn.

Case 3. If k + 1 = p is an odd prime, then the coefficient of 1/p is

a(n−1, p−1) = ±(p−2)!S(n−1, p−1) = ±
p−2∑
j=0

(−1)j
(
p− 2

j

)
(j+1)n−1.

The analysis of this identity employs an auxiliary function.

Lemma 13.6.3. Let gj(x) = ex(1 − ex)j. Then

g
(r)
j (0) =

{
0 if 0 ≤ r < j,

(−1)j j! if r = j.

Proof. The first derivative is

g′(x) = ex(1 − ex)j − je2x(1 − ex)j−1.

This vanishes if j > 1. In order to obtain a nonvanishing value, the

exponent in the term 1 − ex has to drop down to zero. This takes j

steps.

The analysis of Case 3 is subdivided into two parts:

Case 3a. If p− 1 divides n, say n = (p− 1)t, Fermat’s little theorem

gives

(13.6.7) jn−1 = j(p−1)(t−1)+p−2 ≡ jp−2 mod p

and the coefficient of 1/p becomes

(13.6.8) J :=

p−2∑
j=0

(−1)j
(
p− 2

j

)
(j + 1)p−2.
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Lemma 13.6.3 states that J ≡ g(p−2)(0). Wilson’s theorem shows

that J ≡ −1 mod p. It follows that this term contributes to the

denominator.

Case 3b. If p−1 does not divide n, then (j+1)n−1 ≡ (j+1)m mod p

for some m in the range 0 ≤ m ≤ p − 3. Then the coefficient of

1/p is g(m)(0) = 0 and in this case, k does not contribute to the

denominator.

The only missing value is k = 1 and it is seen that this term

contributes to the denominator. The proof is complete. �

Corollary 13.6.4. For n ∈ N and any prime p, the product pB2n

is p-integral, that is, pB2n is a rational number such that p does not

divide its denominator. Moreover,

pB2n ≡
{
−1 mod p if p− 1 divides 2n,

0 mod p otherwise.

Note 13.6.5. The structure of the denominator D2n has now been

established. The curious result appears in B. C. Kellner [183]:

Theorem 13.6.6. Let n ∈ N. Then D2n = 2n if and only if n = 903.

Note 13.6.7. P. Erdős and S. Wagstaff [119] have shown that the

fractional parts {B2n} are dense in the interval (0, 1).

Exercise 13.6.8. Let q be a prime of the form 3n + 1. Prove that

the denominator of B2q is 6. Make a list of the first twenty primes

q that satisfy the hypothesis. Note: Dirichlet proved that there are

infinitely many primes of the form 3n + 1.

Note 13.6.9. T. S. Caley in his master thesis [87] reviews a large

variety of proofs of the von Staudt-Clausen theorem. There are many

interesting results quoted in this thesis. The author wishes to thank

K. Dilcher for pointing out this work. The following result, due to

R. J. McIntosh [211], is particularly beautiful. It relates the Fermat

numbers fn = 22
n

+1 defined in Note 1.7.10 and the tangent numbers

Tn defined in (12.4.6).

Theorem 13.6.10. The Fermat number fn is prime if and only if

fn does not divide the tangent number Tfn−2.

                

                                                                                                               



13.6. Arithmetic properties of Bernoulli numbers 375

The numerators of Bernoulli numbers. These numbers are much

harder to characterize than the denominators and the intrinsic inter-

est in their factorization comes from the next theorem of Kummer.

Definition 13.6.11. A prime p is called regular if p does not divide

the numerators of the Bernoulli numbers B2n with 2 ≤ 2n ≤ p− 3.

Theorem 13.6.12. The equation xp + yp = zp has no solution with

xyz �= 0 if p is a regular prime.

One of the earliest results on the factorization of N2n is the next

theorem due to J. C. Adams [1].

Theorem 13.6.13. Let n ∈ N and let p be a prime such that p − 1

does not divide 2n. If pe divides 2n, then pe divides N2n.

For example, 52 divides N50. Indeed,

N50 = 495057205241079648212477525

= 52 · 417202699 · 47464429777438199

and the prime factorization of N98 is

N98 = 72 · 2857 · 3221 · 1671211 · 9215789693276607167

· 9778263152874996218584617307180549616435599.

These two examples indicate the difficulties in providing a simple

criterion for deciding when a prime divides the numerator N2n. On

the other hand, there is a certain peridiocity related to this divisibility.

This is expressed by the Kummer congruences given in the next

theorem.

Theorem 13.6.14. If n ≥ 1 and p ≥ 5 is a prime such that p − 1

does not divide 2n, then

B2n+(p−1)

2n + (p− 1)
≡ B2n

2n
mod p.

In particular, if p divides some numerator N2n, then it divides every

(p− 1)st numerator after that.
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13.7. The Euler-MacLaurin summation formula

This is a procedure that is employed to compare the integral of a

function with the sum of its values at the integers, that is, the quan-

tities ∫ n

1

f(x) dx and
n∑

i=1

f(i).

The simplest instance of such a comparison occurs when the function

f(x) is assumed to be decreasing and with finite integral on [1,∞).

Then the inequality

n∑
i=2

f(i) ≤
∫ n

1

f(x) dx ≤
n−1∑
i=1

f(i)

can be established by integrating the bounds f(i) ≤ f(x) ≤ f(i − 1)

on the interval [i − 1, i] and then summing over i. Introduce the

notation

bn(f) =
n∑

i=1

f(i) −
∫ n

1

f(x) dx.

The previous argument shows that if f is nonnegative and decreasing,

then

f(n) ≤ bn(f) ≤ f(1),

that is, bn(f) is a bounded sequence. The question considered here is

how to proceed when the function is not necessarily monotone and to

provide estimates for the error term bn(f). The material presented

here is classical. One of the best presentations is given in the paper

by T. Apostol [27].

The comparison between sums and integrals is now extended to

a general class of functions. Start with the identity∫ n

1

f(x) dx =

n∑
k=1

∫ k+1

k

f(x) dx,

which may be written in the form∫ n

1

f(x) dx + f(1) −
n∑

k=1

f(k) =

n−1∑
k=1

∫ k+1

k

[f(x) − f(k + 1)] dx,

to have the integrand vanish at the upper limit of integration. Denote

the integral on the right-hand side by Jk. Now integrate by parts
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using x + Ck as the primitive of the factor 1, with a constant Ck to

be determined. This gives

Jk =

∫ k+1

k

[f(x) − f(k + 1)] · 1 dx

= −(k + Ck)[f(k) − f(k + 1)] −
∫ k+1

k

(x + Ck)f
′(x) dx.

The choice Ck = −k − 1 gives

Jk = f(k) − f(k + 1) −
∫ k+1

k

(x− k − 1)f ′(x) dx.

The identity �x� = k holds in the interval of integration. Therefore

Jk = f(k) − f(k + 1) −
∫ k+1

k

(x− �x� − 1)f ′(x) dx.

This produces∫ n

1

f(x) dx + f(1) =
n∑

k=1

f(k) +

∫ n

1

(x− �x�)f ′(x) dx.

Exercise 13.7.1. Show that the previous identity may be written in

the form∫ n

1

f(x) dx =

n∑
k=1

f(k) +

∫ n

1

f ′(x)P1(x) dx +
1

2
(f(n) + f(1)),

with

P1(x) =

{
x− �x� − 1

2 if x �∈ Z,

0 if x ∈ Z.

Prove that the function P1(x) is periodic and its integral over [0, 1] is

zero. The reader will recognize P1(x) as the periodic extension of

the Bernoulli polynomial B1(x) = x− 1/2.

Exercise 13.7.2. Assume the functions f and f ′ are continuous with

lim
n→∞

f(n) = 0 and lim
n→∞

∫ ∞

n

|f ′(x)| dx = 0.

Establish the identity

n∑
k=1

f(k) =

∫ n

1

f(x) dx + C(f) + Ef (n)
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with

C(f) =
f(1)

2
+

∫ ∞

1

P1(x)f ′(x) dx

and

Ef (n) =
f(n)

2
−
∫ ∞

n

P1(x)f ′(x) dx.

Under these conditions lim
n→∞

Ef (n) = 0 and

lim
n→∞

[
n∑

k=1

f(k) −
∫ n

1

f(x) dx

]
= C(f).

This section concludes with an extension of Exercise 13.7.1. The

proof follows the arguments presented here. The details may be found

in [27].

Theorem 13.7.3 (General form of Euler’s summation for-

mula). For any function f with a continuous derivative of order

2m + 1 on the interval [1, n], the formula

n∑
k=1

f(k) =

∫ n

1

f(x) dx +
1

(2m + 1)!

∫ n

1

P2m+1(x)f (2m+1)(x) dx

+

m∑
r=1

B2r

(2r)!

(
f (2r−1)(n) − f (2r−1)(1)

)
+

f(1) + f(n)

2

holds. The function Pj(x) is the periodic extension of the Bernoulli

polynomial, defined by

Pj(x) = Bj(x− �x�).

Moreover, if the improper integral
∫∞
1

|f (2m+1)(x)| dx converges, then

n∑
k=1

f(k) =

∫ n

1

f(x) dx + C(f) + Ef (n),

where

C(f) =
f(1)

2
−

m∑
r=1

B2r

(2r)!
f (2r−1)(1)

+
1

(2m + 1)!

∫ ∞

1

P2m+1(x)f (2m+1)(x) dx
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and

Ef (n) =
f(n)

2
+

m∑
r=1

B2r

(2r)!
f (2r−1)(n)

− 1

(2m + 1)!

∫ ∞

n

P2m+1(x)f (2m+1)(x) dx.

Exercise 13.7.4. Convince yourself that C(f) is independent of

m.

Example 13.7.5. Let f(x) = 1/x. First take m = 0 in Theorem

13.7.3 to obtain
n∑

k=1

1

k
=

∫ n

1

dx

x
−
∫ n

1

P1(x)

x2
dx +

1 + 1/n

2
.

This can be written as

(13.7.1) Hn = lnn−
∫ n

1

{x} − 1
2

x2
dx +

1

2
+

1

2n
,

where the Hn are the harmonic numbers defined in (11.11.1). The

bound |{x} − 1
2 | ≤

3
2 shows that the integral in (13.7.1) converges as

n → ∞. It follows that

(13.7.2) Hn − lnn =
1

2
−
∫ ∞

1

{x} − 1
2

x2
dx +

∫ ∞

n

{x} − 1
2

x2
dx +

1

2n
.

The terms on the right-hand side that depend on n constitute the

error term

(13.7.3) Ef (n) =

∫ ∞

n

{x} − 1
2

x2
dx +

1

2n
,

and the limiting value on the right-hand side (as n → ∞) is

(13.7.4) C(f) =
1

2
−
∫ ∞

1

{x} − 1
2

x2
dx.

Then (13.7.2) is

(13.7.5) Hn − lnn = C(f) + Ef (n).

Definition 13.7.6. The limit

(13.7.6) γ = lim
n→∞

Hn − lnn

exists and is called the Euler, or Euler-Mascheroni, constant.
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The previous discussion provides the integral representation

(13.7.7) γ =
1

2
−
∫ ∞

1

{x} − 1
2

x2
dx.

Exercise 13.7.7. Prove the bound |Ef (n)| ≤ 2
n .

Example 13.7.8. Let f(x) = 1/x as in the previous example, but

this time take m = 1 in Theorem 13.7.3. This gives

n∑
k=1

1

k
=

∫ n

1

dx

x
+

1

6

∫ n

1

P3(x)×
(
−6

x4

)
dx+

1

12

(
− 1

n2
+ 1

)
+

1

2

(
1 +

1

n

)
.

This may be written as

(13.7.8) Hn = lnn−
∫ n

1

P3(x)

x4
dx +

7

12
+

1

2n
− 1

12n2
.

Exercise 13.7.9. Compute P3(x) and check that |P3(x)| ≤ 3.

Thus, the integral in (13.7.8) converges as n → ∞ and it follows

that

(13.7.9) Hn − lnn = C(f) + Ef (n)

with

(13.7.10) C(f) = −
∫ ∞

1

P3(x)

x4
dx +

7

12

and

(13.7.11) Ef (n) =

∫ ∞

n

P3(x)

x4
dx +

1

2n
− 1

12n2
.

Exercise 13.7.10. Check the second integral representation for Eu-

ler constant

γ =
7

12
− 1

2

∫ ∞

1

{x} − 3{x}2 + 2{x}3
x4

dx.

Estimate the error Ef (n) in (13.7.11). Hint: The numerator of the

integrand is bounded by 1/6
√

3 < 1/10.

Exercise 13.7.11. Give the details for m = 2.
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Note 13.7.12. The form of the error term obtained in the two previ-

ous examples suggests the existence of a sequence of numbers ej such

that

Ef (n) =
e1
n

+
e2
n2

+
e3
n3

+ · · · + er
nr

+

∫ ∞

n

hr(x) dx,

where the number of terms r and the function hr(x) depend upon

the choice of m. The question is, why not just let m → ∞ and obtain

a series approximation of the error term? It turns out that such a

procedure diverges and the expression for the error term makes sense

only for finite and fixed m. This is the subject of asymptotic

expansions. The reader will find a nice introduction to this topic in

N. M. Temme [289].

Example 13.7.13. The next example gives an asymptotic expansion

for factorials that will include Stirling’s formula. This states that

(13.7.12) lim
n→∞

n!

e−nnn+1/2
=

√
2π.

The existence of the limit was established in Theorem 2.10.1 and

its value was obtained in Exercise 12.6.4 as a consequence of Wallis’

infinite product for π given in (12.6.3).

Take f(x) = lnx and m = 0 in Theorem 13.7.3 to obtain
n∑

k=1

ln k =

∫ n

1

lnx dx +

∫ n

1

P1(x)

x
dx +

lnn

2
,

with P1(x) = {x} − 1
2 . This is written as

(13.7.13) lnn! = 1 − n + n lnn +
lnn

2
+

∫ n

1

P1(x)

x
dx.

The analysis of the behavior of the last integral as n → ∞ is not

so elementary. It is not possible to simply bound P1(x) because the

function 1/x has a divergent integral. The result follows from the

next theorem.

Theorem 13.7.14 (Dirichlet’s test for improper integrals). As-

sume f and g are continuous functions with f monotonically decreas-

ing on [a,∞) and with f(x) → 0 as x → ∞. Moreover, assume there

is a constant M such that∣∣∣∣
∫ x

a

g(t) dt

∣∣∣∣ ≤ M
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for all x ≥ a. Then ∫ ∞

a

f(x)g(x) dx < ∞.

The reader will find a proof in the book by K. R. Stromberg [285].

Exercise 13.7.15. Check carefully that Dirichlet’s theorem may be

used to conclude the convergence of the integral of P1(x)/x. Hint:

Approximate P1 by a continuous function.

The identity (13.7.13) is now written as

ln

[
n!

e−nnn+1/2

]
=

(
1 +

∫ ∞

1

P1(x)

x
dx

)
−
∫ ∞

n

P1(x)

x
dx.

It follows from this that the limit (13.7.12) exists, and from its value

the integral evaluation

(13.7.14)

∫ ∞

1

{x} − 1
2

x
dx = ln

√
2π − 1

is obtained. Compare this with the evaluation

(13.7.15)

∫ ∞

1

{x} − 1
2

x2
dx =

1

2
− γ

given in (13.7.7).

Exercise 13.7.16. Derive from Theorem 13.7.3 the identity

ln

[
n!

e−nnn+1/2

]
=

11

12
− 1

2

∫ n

1

{x} − 3{x}2 + 2{x}3
x4

dx +
1

12n
.

Conclude that

ln

[
n!

e−nnn+1/2

]
= ln

√
2π +

1

12n
+

1

2

∫ ∞

n

{x} − 3{x}2 + 2{x}3
x4

dx.

Note 13.7.17. Iterating the process described above gives the ex-

pansion

ln

[
n!

(n/e)n
√

2πn

]
=

1

12n
− 1

360n3
+

1

1260n5
− 1

1680n7
+ · · · ,

and exponentiating yields

(13.7.16) n! ∼ nne−n
√

2πn
∑
k≥0

ak
nk

.
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The coefficients ak are usually called the Stirling coefficients. The

numbers b2k+1 := ak/(2k + 1)!! can be computed recursively from

bk =
1

k + 1

⎛
⎝bk−1 −

k−1∑
j=2

jbjbk−j+1

⎞
⎠ ,

starting with b0 = b1 = 1. G. Nemes [232] has provided the exact

formula

ak =
(2k)!

2kk!

2k∑
i=0

(
k + i− 1/2

i

)(
3k + 1/2

2k − i

)

× 2i
i∑

j=0

(
i

j

)
(−1)j

(2k + i + j)!

j∑
�=0

(−1)�
(
j




)
(j − 
)2k+i+j .

13.8. Bernoulli numbers and solitons

It is a remarkable fact that the Bernoulli numbers continue to ap-

pear in many areas of mathematics. The theory of solitons has not

escaped them. The relation begins with the Korteweg-de Vries

(KdV) equation

(13.8.1) ut − 6uux + uxxx = 0,

which originally appeared in the context of shallow water waves. It

turns out that the KdV equation has an infinite number of conserved

quantities of the form

(13.8.2) In[u] =

∫
Pn(u, ux, uxx, . . . , un) dx

where Pn is a polynomial of u and its x-derivatives up to order n.

One of the many features that makes the KdV equation a special

equation is the existence of solitons. The simplest example is given

by

u(x, t) = −2 sech2(x− 4t).

The reader can easily check that this is a solution of the KdV equation.

Recently D. B. Fairlie and A. P. Veselov [125] and M. P. Grosset and
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A. P. Veselov [154] have shown that the conserved quantities of the

soliton may be expressed in the form

(13.8.3) In−1[−2λsech2x] = (−1)n−1 22n+2

2n + 1
Fn(λ),

where Fn(λ) is the Faulhaber polynomial, defined in terms of the

Bernoulli polynomial by

(13.8.4) B2n+2(x + 1) = (2n + 2)Fn

(
x2 + x

2

)
+ B2n+2.

From this context, the authors of [154] established the identity

B2n =
(−1)n−1

22n+1

∫ ∞

−∞

[(
d

dx

)n−1

sech2x

]2
dx.

This must have been known to Euler, but the present author has not

tried to find it in the literature.

13.9. The Giuga-Agoh conjectured criterion for
primality

The remainder of the sum

(13.9.1) Gn :=
n−1∑
k=1

kn−1

modulo n is easy to determine if n is a prime number. Indeed, Fer-

mat’s little theorem states that kn−1 ≡ 1 mod n and it follows that

(13.9.2) Gn ≡ −1 mod n.

G. Giuga [137] conjectured that the converse is valid.

Conjecture 13.9.1. Suppose Gn ≡ −1 mod n. Then n is prime.

Note 13.9.2. The notation

(13.9.3) Sa(n) =
n−1∑
k=1

ka

was employed in Chapter 4, so that Gn = Sn−1(n) is the reason why

the notation employed in the papers by D. H. Bailey and J. M. Bor-

wein [35] and D. Borwein, J. M. Borwein, and R. Girgensohn [68] is
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not adopted here. The reader should be careful when reading these

papers.

A similar conjectured criterion for primality was developed by

T. Agoh [2].

Conjecture 13.9.3. Let Bn be the Bernoulli number. Then

nBn−1 ≡ −1 mod n if and only if n is prime.

These conjectures are actually equivalent; see the paper by B. C.

Kellner [184] for a detailed proof.

D. Borwein et al. [68] described properties of possible counterex-

amples n to the Giuga-Agoh conjecture. In particular, any such com-

posite number must be a Carmichael number; that is, an−1 ≡
1 mod n for every choice of a that is relatively prime to n. There are

infinitely many Carmichael numbers, as established in the paper by

W. R. Alford, A. Granville, and C. Pomerance [5]. In [68] the authors

introduced the concept of a Giuga number as a composite number

n such that p divides n/p− 1, for all prime divisors of n. Any Giuga

number is square-free. It is possible to describe Giuga numbers in a

style similar to Conjecture 13.9.3.

Theorem 13.9.4. The number n is a Giuga number if and only if

nBϕ(n) ≡ −1 mod n.

The next beautiful characterization was provided by Giuga.

Theorem 13.9.5. Let n ∈ N. Then n is a Giuga number if and only

if ∑
p|n

1

p
−
∏
p|n

1

p

is a positive integer.

For example, n = 30 is a Giuga number:

1

2
+

1

3
+

1

5
− 1

30
= 1.

The following result, due to Giuga, combined the two types of

numbers introduced earlier.
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Theorem 13.9.6. A composite number n satisfies Gn ≡ −1 mod n

if and only if it is both a Carmichael number and a Giuga number.

Any counterexample to the Giuga-Agoh conjecture must be an

odd square-free number with prime factorization n = q1q2 · · · qk such

that

(1) qi �≡ 1 mod qj for all i, j and

(2) 1/q1 + 1/q2 + · · · + 1/qk > 1.

D. H. Bailey and J. M. Borwein [35] report that any counterex-

ample must have at least 17168 digits.

                

                                                                                                               



Chapter 14

A Sample of Classical
Polynomials: Legendre,
Chebyshev, and Hermite

14.1. Introduction

There is a large variety of polynomials that have been studied in

many different contexts. Many have appeared in problems in math-

ematical physics as solutions of differential equations. This chapter

describes three such families. The reader will find a more systematic

approach to these polynomials in the book by G. Andrews, R. Askey,

and R. Roy [18].

14.2. Legendre polynomials

The construction of a polynomial vanishing at two points with pre-

scribed multiplicity is elementary. Indeed, the solution is given by

(x− a)n(x+ b)m. The location of the roots may be moved to −1 and

+1 via a linear change of variables to produce (x− 1)n(x+1)m. This

is a polynomial of degree n + m. The symmetric case, with roots of

the same multiplicity, that is, m = n, becomes (x2−1)n. An interest-

ing family of polynomials is obtained by reducing the degree to n by

387
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succesive differentiations. This leads to the first class of polynomials

studied in this chapter.

Definition 14.2.1. The Legendre polynomial of order n is

(14.2.1) Pn(x) :=
1

2n n!

(
d

dx

)n

(x2 − 1)n.

The expression (14.2.1) is called the Rodrigues formula for the

Legendre polynomials.

The next exercise motivates the factor in the definition of Pn.

Exercise 14.2.2. Check that the polynomial Pn satisfies Pn(1) = 1.

Exercise 14.2.3. Express the polynomials fn(x) defined in (11.10.3)

used to prove the irrationality of π in terms of the Legendre polyno-

mials.

An explicit expression for Pn(x). An elementary manipulation of

(14.2.1) produces an explicit form of the Legendre polynomial.

Theorem 14.2.4. The Legendre polynomial Pn is given by

(14.2.2) Pn(x) =
1

2n

n∑
j=0

(
n

j

)2

(x− 1)j(x + 1)n−j .

Proof. The nth derivative of a product is computed by an expansion

just as the binomial theorem(
d

dx

)n

[(x− 1)n(x + 1)n]

=

n∑
j=0

(
n

j

)(
d

dx

)j

(x− 1)n ×
(

d

dx

)n−j

(x + 1)n.

Now use

(
d

du

)j

un =
n!

(n− j)!
un−j for 0 ≤ j ≤ n to obtain the

result. �

Corollary 14.2.5. The leading coefficient of Pn(x) is 2−n
(
2n
n

)
.
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Proof. Expression (14.2.2) shows that the maximum degree is ob-

tained by multiplying the leading coefficients of (x−1)j and (x+1)n−j.

Therefore, the leading coefficient of Pn is

(14.2.3)
1

2n

n∑
j=0

(
n

j

)2

=
1

2n

(
2n

n

)
.

This last identity is given in (5.2.18). �

Exercise 14.2.6. Give a proof of this corollary directly from the

definition of Pn.

Exercise 14.2.7. Use Theorem 14.2.4 to prove that Pn(1) = 1 and

Pn(−1) = (−1)n.

Exercise 14.2.8. Verify that the Legendre polynomials can be writ-

ten in terms of the hypergeometric function 2F1 in the form

Pn(x) = 2F1

(
−n, n + 1; 1,

1 − x

2

)
.

The function 2F1 is defined in (5.5.3).

The issue of orthogonality. Given a set of linearly independent

vectors {v1, v2, . . . , vm} in Rn, there is an elementary procedure for

obtaining a set of orthogonal vectors {w1, w2, . . . , wm} with the prop-

erty that, for any 1 ≤ r ≤ m, the vectors generated by {v1, v2, . . . , vr}
are the same as those generated by {w1, w2, . . . , wr}. This is the clas-

sical Gram-Schmidt procedure: start with

(14.2.4) w1 = v1,

and continuing with w2 = v2 − α1,2w1, where α1,2 is chosen so that

w2 is perpendicular to w1. The process is repeated by forming

(14.2.5) w3 = v3 − α1,3w1 − α2,3w2

and determining the constants α1,3 and α2,3 using the condition that

w3 is orthogonal to w1 and w2. Observe that at each step in the

process there is the choice of scaling the vector wj .
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The same procedure can be employed in the space of polynomials

by replacing the vector product by

(14.2.6) (f, g) :=

∫ b

a

f(x)g(x)dx

and the length of a vector is now replaced by ‖f‖ := (f, f)1/2.

Exercise 14.2.9. Apply the Gram-Schmidt process to the polynomi-

als
{
xj : j ≥ 0

}
on the interval [−1, 1] to obtain a family of orthogonal

polynomials. The first five can be chosen to be

w0(x) = 1,

w1(x) = x,

w2(x) = 3x2 − 1,

w3(x) = 5x3 − 3x,

w4(x) = 35x4 − 30x2 + 3.

Check that these polynomials agree, up to a multiple, with the Le-

gendre polynomials.

The main result of this section is the orthogonality of the Le-

gendre polynomials. The next exercises will be used in the proof.

Exercise 14.2.10. Prove that Pn(x) is a polynomial of degree n with

the same parity as n, that is, P2n(x) is even and P2n+1(x) is odd.

Exercise 14.2.11. Check that the polynomial

(14.2.7)

(
d

dx

)j

(x2 − 1)n

vanishes at x = ±1 if j < n.

The evaluation presented in the next proposition provides the

value of the norm of the polynomial Pn(x).

Proposition 14.2.12. Let n ∈ N. Then

(14.2.8) In :=

∫ 1

−1

(1 − x2)n dx =
22n+1

(2n + 1)
(
2n
n

) .
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Proof. Integrate by parts to produce the recurrence

(14.2.9) In+1 =
2n + 2

2n + 3
In.

Now define

(14.2.10) Jn =
2n + 1

22n+1

(
2n

n

)
In.

Then (14.2.9) becomes Jn+1 = Jn. The initial value J1 = 1 gives the

result. �

The next theorem shows that the Legendre polynomials are or-

thogonal on the interval [−1, 1].

Theorem 14.2.13. For n, m ∈ N0,

(14.2.11)

∫ 1

−1

Pn(x)Pm(x) dx =

{
0 if n �= m,

2
2n+1 if n = m.

Proof. Let

(14.2.12) cn,m := 2n+mn!m!

∫ 1

−1

Pn(x)Pm(x) dx,

and to compute

cn,m =

∫ 1

−1

(
d

dx

)n

(x2 − 1)n
(

d

dx

)m

(x2 − 1)m dx,

integrate by parts and use Exercise 14.2.11 to check that the boundary

terms vanish. This yields

cn,m = −
∫ 1

−1

(
d

dx

)n−1

(x2 − 1)n
(

d

dx

)m+1

(x2 − 1)m dx.

Iterating this procedure gives

cn,m = (−1)j
∫ 1

−1

(
d

dx

)n−j

(x2 − 1)n
(

d

dx

)m+j

(x2 − 1)m dx.

Consider first the case n �= m and assume n > m. Now choose j = n

to obtain

(14.2.13) cn,m = (−1)n
∫ 1

−1

(x2 − 1)n
(

d

dx

)m+n

(x2 − 1)m dx.

The integrand vanishes identically if n > m + 1 because it is a poly-

nomial of degree 2m. In the case n = m+ 1, the original integrand is
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Pm+1(x)Pm(x) and Exercise 14.2.10 shows that this is an odd func-

tion, proving that its integral vanishes.

In the case n = m, equation (14.2.13) gives

cn,n = (−1)n
∫ 1

−1

(x2 − 1)n
(

d

dx

)2n

(x2 − 1)n dx

= (2n)!

∫ 1

−1

(1 − x2)n dx.

The result now follows from Proposition 14.2.12. �

Recurrences. The general theory of orthogonal polynomials, ex-

pounded in [18], shows that any such sequence satisfies a three-term

relation. The proof presented here appears in [18].

Theorem 14.2.14. Assume {pn} is a collection of polynomials such

that deg pn = n and

(14.2.14) 〈pn, pm〉 :=

∫ b

a

pn(x)pm(x)w(x) dx =

{
hn if n = m,

0 if n �= m

for a weight function w(x). Assume hn �= 0. Then pn satisfies a

three-term recurrence of the form

(14.2.15) pn+1(x) = (Anx + Bn)pn(x) − Cnpn−1(x), for n ≥ 1.

If the highest coefficient of pn(x) is kn, then

(14.2.16) An =
kn+1

kn
and Cn =

An

An−1

hn

hn−1
.

Proof. Choose An so that pn+1(x) − Anxpn(x) is of degree n and

write

(14.2.17) pn+1(x) −Anxpn(x) =

n∑
j=0

bjpj(x).

Match the leading coefficients to get the expression for An. The

orthogonality of the polynomials shows that

(14.2.18)

∫ b

a

pn(x)Q(x)w(x) dx = 0
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for any polynomial Q of degree less than n. Multiply (14.2.17) by

pk(x)w(x) and integrate over [a, b] to conclude that bj = 0 for j < n−1

(simply observe that xpk(x) has degree less than n). Therefore

(14.2.19) pn+1(x) = Anxpn(x) + bn−1pn−1(x) + bnpn(x).

The last identity comes from multiplying (14.2.19) by pn−1(x)w(x)

and integrating. �

Exercise 14.2.15. Confirm the value of Cn. Hint: Use the identity

(14.2.20) xpn−1(x) =
kn−1

kn
pn(x) +

n−1∑
k=0

dkpk(x).

Theorem 14.2.16. The Legendre polynomials Pn(x) satisfies

Pn+1(x) =
(2n + 1)

n + 1
xPn(x) − n

n + 1
Pn−1(x),

for n ≥ 2.

Proof. The previous theorem shows the existence of a recurrence of

the form

(14.2.21) Pn+1(x) = (Anx + Bn)Pn(x) − CnPn−1(x).

The normalization on the leading term gives An = (2n + 1)/(n + 1).

The parity of Pn, discussed in Exercise 14.2.10, shows that Bn = 0.

The value Cn = n/(n+ 1) comes from hn = 2/(2n+ 1). This is given

in Theorem 14.2.13. �

Exercise 14.2.17. Use Theorem 14.2.16 at x = 1 and x = −1 to

check that Pn(1) = 1 and Pn(−1) = (−1)n.

Exercise 14.2.18. Use the recurrence (14.2.16) to obtain the expres-

sion

Pn(x) =
1

2n

�n/2�∑
k=0

(−1)k
(
n

k

)(
2n− 2k

n

)
xn−2k.
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Exercise 14.2.19. The sequence of Legendre polynomials

Ln := {Pj(x) : 0 ≤ r ≤ n}
has the property that deg(Pj) = j. Any such sequence forms a basis

of the space of polynomials of degree at most n. Prove the inversion

formula

(14.2.22) xn =
∑
r

(2r + 1)n!

2(n−r)/2
(
n−r
2

)
!(n + r + 1)!!

Pr(x)

where in the sum r starts at n and decreases by 2 ending at 1 or 0

depending on the parity of n. Compare this with Exercise 13.3.18.

The recurrence in Theorem 14.2.16, with the initial conditions

P0(x) = 1 and P1(x) = x, determines the Legendre polynomials. The

next proposition shows that the orthogonality of these polynomials

follows simply from the recurrence.

Proposition 14.2.20. Define polynomials Wn(x) by

(14.2.23) Wn+1(x) =
(2n + 1)

n + 1
xWn(x) − n

n + 1
Wn−1(x),

with W0(x) = 1 and W1(x) = x. Then the set of polynomials

{Wn(x) : n ∈ N0} forms an orthogonal sequence. In particular, for

n �= m,

(14.2.24) In,m :=

∫ 1

−1

Wn(x)Wm(x) dx = 0.

Proof. The recurrence (14.2.23) gives

(14.2.25) nIn,m=(2n− 1)

∫ 1

−1

xWn−1(x)Wm(x) dx− (n− 1)In−2,m.

Replace n by m in (14.2.23) to obtain

xWm(x) =
m + 1

2m + 1
Wm+1(x) +

m

2m + 1
Wm−1(x),

and then (14.2.25) gives

In,m =
(2n− 1)(m + 1)

n(2m + 1)
In−1,m+1+

(2n− 1)m

(2m + 1)n
In−1,m−1−

n− 1

n
In−2,m,

for n ≥ 2. The orthogonality (14.2.24) follows by induction on n. In

order to check that Wn(x) is the Legendre polynomial, it remains to

verify that the leading coefficient of Wn(x) is 2−n
(
2n
n

)
. This follows
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directly from the recurrence (14.2.23) as only one term on the right

contributes to the calculation of the leading coefficient. �

Legendre’s differential equation. Legendre polynomials also ap-

pear from one of the basic equations of mathematical physics.

Laplace’s equation states that

Δu =

n∑
j=1

∂2u

∂x2
j

= 0.

This equation leads to classical differential equations by considering

special coordinate systems. The spherical coordinates (r, θ, φ) of a

point P = (x, y, z) in R3 are defined in the following form: the radius

r is the distance from P to the origin (0, 0, 0); the azimuthal angle

θ is the angle of the projection of P to the xy-plane measured from

the x-axis, and the polar angle φ is the angle from the positive part

of the z-axis to the point P .

Exercise 14.2.21. Prove the formulas for changing coordinates:

x = r cos θ sinφ,

y = r sin θ sinφ,

z = r cosφ.

Derive formulas for (r, θ, φ) in terms of (x, y, z) by inverting the pre-

vious set.

Exercise 14.2.22. Write down Laplace’s equation in spherical coor-

dinates:

Δu =
1

r2
∂

∂r

(
r2

∂u

∂r

)
+

1

r2 sin2 φ

∂2u

∂θ2
+

1

r2 sinφ

∂

∂φ

(
sinφ

∂u

∂φ

)
.

Now assume that the solution u is independent of the angle θ.

Then Laplace’s equation becomes

(14.2.26)
∂

∂r

(
r2

∂u

∂r

)
+

1

sinφ

∂

∂φ

(
sinφ

∂u

∂φ

)
= 0.

Exercise 14.2.23. Make the change of variables x = cosφ and show

that (14.2.26) becomes

(14.2.27)
∂

∂r

(
r2

∂u

∂r

)
+

∂

∂x

(
(1 − x2)

∂u

∂x

)
.
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Exercise 14.2.24. Now look for a special solution of the form

u(x, r) =

∞∑
n=0

rnYn(x)

for some function Yn(x). Substitute this form of u(x, r) in (14.2.27)

to prove that Yn satisfies the equation

(14.2.28) (1 − x2)Y ′′
n (x) − 2xY ′

n(x) + n(n + 1)Yn(x) = 0.

Now use the recurrence for Legendre polynomials to show that the

polynomials Pn satisfy

P ′
n+1(x) = xP ′

n(x) + (n + 1)Pn(x)

and

P ′
n(x) = xP ′

n+1(x) − (n + 1)Pn+1(x).

Confirm that y = Pn(x) solves Legendre’s differential equation

(14.2.29) (1 − x2)y′′(x) − 2xy′(x) + n(n + 1)y(x) = 0.

By choosing Y0 and Y1, show that Yn(x) = Pn(x) for all n ∈ N.

Integrals involving Legendre polynomials. The orthogonality

relations ∫ 1

−1

Pn(x)Pm(x) dx =

{
0 if n �= m,

2
2n+1 if n = m

provide definite integrals involving Legendre polynomials. The next

example appears in C. C. Grosjean [150] and it relates the Legendre

polynomials and the harmonic numbers Hn = 1 + 1
2 + · · · + 1

n from

Section 11.11. The papers by C. C. Grosjean [150, 151, 152, 153]

really constitute a nice book on the evaluation of integrals.

Theorem 14.2.25. Let n ∈ N. Then

(14.2.30)

∫ 1

−1

1 − Pn(x)

1 − x
dx = 2Hn.

Proof. Introduce the notation

(14.2.31) In :=

∫ 1

−1

1 − Pn(x)

1 − x
dx,
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and observe that

(14.2.32) In+1 − In =

∫ 1

−1

Pn(x) − Pn+1(x)

1 − x
dx.

It is now shown that the integrand in (14.2.32) is a perfect derivative.

To establish this, add the identities in Exercise 14.2.24 to produce

P ′
n+1(x)+P ′

n(x) = x
(
P ′
n(x) + P ′

n+1(x)
)
+(n+1) (Pn(x) − Pn+1(x)) ;

therefore

(14.2.33)
Pn(x) − Pn+1(x)

1 − x
=

1

n + 1

(
P ′
n(x) + P ′

n+1(x)
)
.

Then, integrating (14.2.32) and using Pn(1) = 1 and Pn(−1) = (−1)n

gives

(14.2.34) In+1 − In =
1

n + 1

(
2 − (−1)n − (−1)n+1

)
=

2

n + 1
.

Now sum from 0 to n to obtain the result. �

Exercise 14.2.26. Let n ∈ N and let 0 ≤ m ≤ n− 1. Then

(14.2.35)

∫ 1

−1

1 − Pn(x)

1 − x
Pm(x) dx = 2(Hn −Hm).

Exercise 14.2.27. The value Pn(1) = 1, given in Exercise 14.2.17,

shows that

(14.2.36) P#
n (x) :=

1 − Pn(x)

1 − x

is a polynomial in x of degree n− 1. Prove that

(14.2.37) P#
n (x) =

n−1∑
k=0

(Hn −Hk)(2k + 1)Pk(x).

Definition 14.2.28. The shifted Legendre polynomials are de-

fined by

(14.2.38) P ∗
n(x) = Pn(2x− 1).

The first few examples are given by

(14.2.39) P ∗
0 (x) = 1, P ∗

1 (x) = 2x− 1, P ∗
2 (x) = 6x2 − 6x + 1.

The next result is due to J. L. Blue [56]. It appeared in the

context of finding a family of orthogonal polynomials that was nu-

merically stable for an integration algorithm.
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Theorem 14.2.29. Let n ≥ 1. Then

(14.2.40)

∫ 1

0

P ∗
n(x) ln

1

x
dx =

(−1)n

n(n + 1)
.

Proof. The recurrence (14.2.16) becomes

(n + 1)P ∗
n+1(x) = (2n + 1)(2x− 1)P ∗

n(x) − nP ∗
n−1(x), for n ≥ 2.

Multiply by ln(1/x) and integrate to produce

(n + 1)

∫ 1

0

P ∗
n+1(x) ln

1

x
dx = (2n + 1)

∫ 1

0

(2x− 1)P ∗
n(x) ln

1

x
dx

− n

∫ 1

0

P ∗
n−1(x) ln

1

x
dx.

Introduce the notation

νn =

∫ 1

0

P ∗
n(x) ln

1

x
dx and μn =

∫ 1

0

(2x− 1)P ∗
n(x) ln

1

x
dx,

to write the previous relation as

(14.2.41) (n + 1)νn+1 = (2n + 1)μn − nνn−1.

Exercise 14.2.30. Integrate by parts the integral μn to obtain

μn = −1

2
− n

2
μn +

n

2
νn−1 −

1

2

∫ 1

0

x(x− 2)

[
d

dx
P ∗
n(x)

]
dx.

The last integral in Exercise 14.2.30 is now computed by parts to

obtain∫ 1

0

x(x− 2)

[
d

dx
P ∗
n(x)

]
dx = −2

∫ 1

0

(x− 1)P ∗
n(x) dx = 0

for n ≥ 2, by orthogonality of the Legendre polynomials. It follows

that

(14.2.42) μn =
n

n + 1
νn−1.

Substitute this in (14.2.41) to obtain

(14.2.43) νn+1 =
n(n− 1)

(n + 1)(n + 2)
νn−1.

The result follows by induction starting at ν0 = 1 and ν1 = − 1
2 . �
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Exercise 14.2.31. Prove the identity∫ 1

x

Pn(t) dt =
(1 − x2)

n(n + 1)

d

dx
Pn(x).

The generating function. The next goal is to establish an expres-

sion for the generating function of the Legendre polynomials. This

is the special function u(x, r) given in Exercise 14.2.24. (The radial

variable r has been replaced by t.)

Theorem 14.2.32. The generating function of the Legendre polyno-

mials is given by

(14.2.44)
∞∑

n=0

Pn(x)tn =
1√

1 − 2xt + t2
.

Proof. Denote by L(x, t) the left-hand side of (14.2.44). The recur-

rence (14.2.16) is multiplied by tn to obtain

(14.2.45) (n + 1)Pn(x)tn = (2n + 1)xPn(x)tn − nPn−1(x)tn

and summing over n gives

(14.2.46) (t2 − 2xt + 1)
∂L

∂t
= (x− t)L,

which yields the result after integration. The implied constant of

integration is determined by the condition Pn(1) = 1. �

Exercise 14.2.33. Use the generating function of the Legendre poly-

nomials to verify the identity
∞∑

n=0

(2n + 1)Pn(x)tn =
1 − t2

(1 − 2xt + t2)3/2
.

Relations to binomial sums. Chapter 5 contains a proof that the

sum

(14.2.47) L3(n) =

n∑
k=0

(
n

k

)3

cannot be expressed as a hypergeometric function of n. A relation

between L3(n) and the Legendre polynomials is established now. The

author found the first result as a problem proposed by L. Carlitz and

solved by Chih-Yi Yang.
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Theorem 14.2.34. The sum L3(n) is the coefficient of xn in

Z3(x) = (1 − x2)nPn

(
1 + x

1 − x

)
.

Proof. The expression (14.2.2) is written as

(14.2.48) Pn(x) =
(x + 1)n

2n

n∑
j=0

(
n

j

)2(
x− 1

x + 1

)j

.

Therefore

(14.2.49) (1 − x2)nPn

(
1 + x

1 − x

)
= (1 + x)n

n∑
j=0

(
n

j

)2

xj .

The result is obtained by expanding this last product. �

Exercise 14.2.35. Prove that the coefficient of xn in the polynomial

(14.2.50) Z4(x) = (1 − x)2nP 2
n

(
1 + x

1 − x

)

is

(14.2.51) L4(n) =

n∑
j=0

(
n

j

)4

.

14.3. Chebyshev polynomials

The second family of polynomials considered here came from Chapter

12. Two sequences of polynomials that express the value of sinmx

and cosmx in terms of sin x and cosx were introduced in Corollary

12.5.4. The treatment becomes more unified when only the variable

t = cosx is employed.

Definition 14.3.1. The Chebyshev polynomial of the first kind

Tn is defined by the relation

(14.3.1) cosnx = Tn(cosx).

The Chebyshev polynomial of the second kind Un is

(14.3.2)
sin(n + 1)x

sin x
= Un(cosx).
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Note 14.3.2. Observe the similarity in the definition of Tn to the

rational functions Rn introduced in Example 8.1.6. The polynomials

Tn satisfy the commutation relation Tm ◦ Tn = Tn ◦ Tm for the same

reason as given in Exercise 8.1.7.

Exercise 14.3.3. Verify that Tn satisfies the Chebyshev differen-

tial equation

(14.3.3) (1 − x2)y′′ − xy′ + n2y = 0.

Hint: The function w = cosnx satisfies w′′ + n2w = 0. Now write

this in terms of the variable t = cosx.

Note 14.3.4. The polynomial Tn is exactly Rn in (12.5.3). The

relation between Un and Sn in (12.5.4) is given by

(14.3.4) Um(t) =
1√

1 − t2
Sm+1(

√
1 − t2), for m even

and

(14.3.5) Um(t) =
t√

1 − t2
Sm+1(

√
1 − t2), for m odd.

Exercise 14.3.5. Check the details.

A recurrence. The next exercise gives a recurrence for the functions

Tn and Un. A consequence of it is that Tn and Un are polynomials in

t with integer coefficients.

Exercise 14.3.6. Show that Tn and Un satisfy the same recurrence

(14.3.6) fn(t) − 2tfn−1(t) + fn−2(t) = 0.

The initial conditions are T0(t) = 1 and T1(t) = t for the polynomials

of the first kind and they are U0(t) = 1 and U1(t) = 2t for those of

the second kind. The recurrence (14.3.6) includes both (12.5.5) and

(12.5.6) at once.

The orthogonality property. The next property discussed here

is the orthogonality of the Chebyshev polynomials. This comes from

the elementary identity

(14.3.7)

∫ π

0

cosnx cosmxdx =

⎧⎪⎪⎨
⎪⎪⎩

0 if m �= n,

π if m = n = 0,

π/2 if m = n �= 0
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and the change of variable t = cosx produces

(14.3.8)

∫ 1

−1

Tn(t)Tm(t)√
1 − t2

dt =

⎧⎪⎪⎨
⎪⎪⎩

0 if m �= n,

π if m = n = 0,

π/2 if m = n �= 0.

This is the orthogonality relation for the Chebyshev polynomials.

Exercise 14.3.7. Check that the leading term of Tn is 2n−1. Also

verify the value Tn(1) = 1.

Note 14.3.8. The recurrence (14.3.6) is consistent with the general

recurrence for orthogonal polynomials given in Theorem 14.2.14. In-

deed, using Exercise 14.3.7, this recurrence becomes

Tn+1(x) = (2x + Bn)Tn(x) − Tn−1(x).

The fact that Bn = 0 comes from replacing x = 1 and using Exercise

14.3.7.

Exercise 14.3.9. Use the recurrence (14.3.6) to verify that the gen-

erating function for Chebyshev polynomials is given by

(14.3.9)
∞∑

n=0

Tn(x)tn =
1 − xt

1 − 2xt + t2
.

Exercise 14.3.10. Verify that the Chebyshev polynomials can be

written in terms of the hypergeometric function 2F1, defined in (5.5.3),

in the form

Tn(x) = 2F1

(
−n, n;

1

2
,
1 − x

2

)
.

Polynomial interpolation. The question of polynomial interpola-

tion was addressed in Exercise 4.2.7. Given a collection of n points

{(xi, yi) : 1 ≤ i ≤ n}, with xi ∈ [−1, 1] and xi �= xj for i �= j, there

is a unique polynomial Jn−1 of degree n such that Jn−1(xi) = yi. A

different type of interpolation question, connected to the Chebyshev

polynomials, is described next.

Given a function f defined on [−1, 1] and given n ∈ N, the ques-

tion is how to choose a collection of n points {xi : 1 ≤ i ≤ n} in

order to minimize the error |f(x)− Pn−1(x)|. The following theorem

provides the answer.
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Theorem 14.3.11. Let n ∈ N and let f : [−1, 1] �→ R be a continuous

functions. Let {xi : 1 ≤ i ≤ n} be a collection of n points. Then the

error term

Max {|f(x) − Pn−1(x)| : −1 ≤ x ≤ 1 }
is minimal if xi = cos

(
2i−1
2n π

)
for 1 ≤ i ≤ n. These are the Cheby-

shev nodes. They satisfy Tn(xi) = 0.

The reader will find a complete discussion of this result in the

text by R. L. Burden and D. Faires [85].

14.4. Hermite polynomials

The last class of polynomials described in this text is the Hermite

polynomials. These can be defined by a Rodrigues formula as was

done to introduce the Legendre polynomials or by an orthogonality

process that was employed to present the Chebyshev polynomials. In

order to show the reader that there are many ways to start, these

polynomials are introduced by their exponential generating function.

Definition 14.4.1. The Hermite polynomials Hn(x) are defined by

the identity

(14.4.1) e2xt−t2 =

∞∑
n=0

Hn(x) tn

n!
.

It is unclear from this definition that Hn(x) is a polynomial. This

is verified first.

Proposition 14.4.2. The function Hn(x) is a polynomial in x of

degree n.

Proof. Differentiate the generating function with respect to x to pro-

duce

2te2xt−t2 =

∞∑
n=0

H ′
n(x)tn

n!
.

Then (14.4.1) gives H ′
n(x) = 2nHn−1(x). The result now follows by

induction starting with the value H0(x) = 1, obtained by setting t = 0

in (14.4.1). �
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Corollary 14.4.3. The Hermite polynomials Hn(x) satisfy the re-

currence

(14.4.2) H ′
n(x) = 2nHn−1(x).

Exercise 14.4.4. Check that the leading coefficient of Hn(x) is 2n.

The next step is to produce a recurrence for Hn(x) that does not

involve derivatives.

Theorem 14.4.5. The Hermite polynomials satisfy the three-term

recurrence

Hn+1(x) = 2xHn(x) − 2nHn−1(x).

Proof. Differentiate the generating function with respect to t to pro-

duce

(2x− 2t)e2xt−t2 =

∞∑
n=0

Hn+1(x)tn

n!
.

The result now follows by using (14.4.1) on the left-hand side of the

previous identity. �

Rodrigues’s formula and the orthogonality relation. The next

item is to establish a Rodrigues formula for the Hermite polynomial.

The original definition will appear to be unmotivated, although the

appearance of the Gaussian kernel in the generating function gives a

hint of what is coming up. The orthogonality relations established in

the next section provide a second explanation of why the Gaussian

kernel is employed here.

Define the function

(14.4.3) Yn(x) = ex
2

(
d

dx

)n

e−x2

.

Then

Yn+1(x) = ex
2 d

dx

[
e−x2

Yn(x)
]

produces

Yn+1(x) =
d

dx
Yn(x) − 2xYn(x).

Define the quotient

(14.4.4) qn(x) = (−1)n
Yn(x)

Hn(x)
.
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The computation

(−1)nq′n(x) =
Y ′
n(x)Hn(x) − Yn(x)H ′

n(x)

H2
n(x)

=
(Yn+1(x) + 2xYn(x))Hn(x) − Yn(x) · 2nHn−1(x)

H2
n(x)

=
Yn+1(x)Hn(x) + Yn(x)(2xHn(x) − 2nHn−1(x))

H2
n(x)

=
Yn+1(x)Hn(x) + Yn(x)Hn+1(x)

H2
n(x)

,

leads to

(14.4.5) q′n(x) = (qn(x) − qn+1(x))
Hn+1(x)

Hn(x)
.

Assume, as inductive hypoyhesis, that qn(x) ≡ 1. Then (14.4.5) gives

0 = (1 − qn+1(x))Hn+1(x),

which implies qn+1(x) ≡ 1.

Theorem 14.4.6. The Hermite polynomials have a Rodrigues for-

mula

Hn(x) = (−1)nex
2

(
d

dx

)n

e−x2

.

The previous result gives a direct proof of the orthogonality re-

lations for the Hermite polynomials.

Theorem 14.4.7. The Hermite polynomials satisfy the orthogonality

relations∫ ∞

−∞
e−x2

Hn(x)Hm(x) dx =

{
2nn!

√
π if n = m,

0 if n �= m.

Proof. Theorem 14.4.6 gives

Qn := (−1)n
∫ ∞

−∞
e−x2

Hn(x)Hm(x) dx

=

∫ ∞

−∞

(
d

dx

)n

e−x2 ×Hm(x) dx
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and integration by parts produces

Qn =

(
d

dx

)n−1

e−x2 × d

dx
Hm(x)

∣∣∣∞
−∞

−
∫ ∞

−∞

(
d

dx

)n−1

e−x2 × d

dx
Hm(x) dx.

The boundary terms vanish, leading to

Qn = −
∫ ∞

−∞

(
d

dx

)n−1

e−x2 × d

dx
Hm(x) dx.

Iteration of this procedure shows that

Qn = (−1)j
∫ ∞

−∞

(
d

dx

)n−j

e−x2 ×
(

d

dx

)j

Hm(x) dx.

If n �= m, assume that n > m. Now choose j in the range m < j ≤ n

to see that Qn must be zero because Hm(x) is of degree m.

In the case n = m, the previous relation gives

Qn = (−1)n
∫ ∞

−∞
e−x2 ×

(
d

dx

)n

Hn(x) dx.

Exercise 14.4.4 shows that the polynomial Hn(x) has leading coeffi-

cient 2n. Therefore,

(14.4.6) Qn = (−1)n2nn!

∫ ∞

−∞
e−x2

dx = (−1)n2nn!
√
π.

The proof is complete. �

Note 14.4.8. The last step of the proof employs the value of the

normal integral

(14.4.7)

∫ ∞

−∞
e−x2

dx =
√
π.

The reader will find a variety of proofs of this formula in the book by

G. Boros and V. Moll [65].

Hermite’s differential equation. An immediate consequence of

the recurrences given here for the Hermite polynomials is that they

satisfy the Hermite differential equation

y′′ − 2xy′ + 2ny = 0.
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In order to verify this, differentiate the relation H ′
n = 2nHn−1 to

obtain

(14.4.8) H ′′
n = 2nH ′

n−1 = 4n(n− 1)Hn−2.

Theorem 14.4.5 is now used to write (14.4.8) as

H ′′
n = 2n (2xHn−1 −Hn) = 4nxHn−1 − 2nHn.

The result is obtained by replacing 2nHn−1 by H ′
n in the first term

on the right-hand side.

Exercise 14.4.9. This exercise presents an alternative proof of the

orthogonality relation for Hermite polynomials. For j ∈ N ∪ {0},
define

uj(x) = e−x2/2Hj(x).

Check that uj satisfies u′′
j +(2j+1−x2)uj = 0. Multiply the equation

for j = n by um and the one for j = m by un. Then subtract to

produce

umu′′
n − unu

′′
m = 2(m− n)unum.

Now integrate over R to conclude the result for n �= m.

Exercise 14.4.10. Use the Hermite differential equation to obtain

a recurrence for the coefficients of the polynomial Hn(x). Solve the

recurrence and prove the explicit formula

(14.4.9) Hn(x) =

�n/2�∑
j=0

(−1)jn!

j!(n− 2j)!
(2x)n−2j .

Conclude that Hn(−x) = (−1)nHn(x).

The quantum harmonic oscillator. The Hermite polynomials

appear in relation to the quantum analog of the classical harmonic

oscillator. The starting point is the Schrödinger equation

(14.4.10) ψ′′ +
2m

�2
(E − V (y))ψ = 0.

The special case of V (y) = y2 is considered here.

Exercise 14.4.11. Check that (14.4.10) can be scaled to the form

(14.4.11) ψ′′ − x2ψ = βψ.

Describe β in terms of the original parameters.
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Exercise 14.4.12. Define ψ∗(x) = e−x2/2. Check that

ψ′′
∗ − x2ψ∗ = −ψ∗.

The method of variations of parameters is now employed to

look for a solution of (14.4.11) in the form ψ(x) = ψ∗(x)H(x). This

produces

H ′′ − 2xH ′ + (β − 1)H = 0.

The choice of β = 2n + 1 gives the Hermite differential equation.

Note 14.4.13. A very nice description of the basic properties of

Hermite polynomials can be found in C. T. Aravnis [28].

An appearance of Hermite polynomials in combinatorics.

Consider a set A with an even number of elements, say |A| = 2s, and

a partition of A into k subsets Bi of cardinality |Bi| = ni. A match-

ing is an arrangement of the elements of A into s pairs {aj , ak}. The

matching is called homogeneous if aj , ak are in the same set Bi and

it is called heterogeneous if not. For a matching {A,Bi} let

α(A;Bi) = the number of homogeneous pairs.

The paper by R. Azor, J. Gillis, and J. D. Victor [32] contains a study

of the quantities

E(n1, . . . , nk) = |(A;Bi) : 0 < α(A;Bi) ≡ 0 mod 2|,
Ω(n1, . . . , nk) = |(A;Bi) : α(A;Bi) ≡ 1 mod 2|,
P (n1, . . . , nk) = |(A;Bi) : α(A;Bi) = 0|.

That is, E counts the number of matchings with an even number

of homogeneous pairs, Ω counts those with an odd number, and P

counts those without homogeneous pairs.

Define the integral

I(n1, . . . , nk) =

∫ ∞

−∞
e−x2

k∏
i=1

Hni
(x) dx.

The result of [32] is stated next.
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Theorem 14.4.14. With the notation introduced above,

P (n1, . . . , nk) =
1

2s
√
π
I(n1, . . . , nk)

and

E(n1, . . . , nk) − Ω(n1, . . . , nk) =

√
2

π

∫ ∞

−∞
e−2x2

k∏
i=1

Hni
(x) dx.

Exercise 14.4.15. Let n1, n2, n3 ∈ N with n1+n2+n3 = 2s. Prove

that∫ ∞

−∞
e−x2

Hn1
(x)Hn2

(x)Hn3
(x) dx =

2s
√
π n1!n2!n3!

(s− n1)! (s− n2)! (s− n3)!
.

Compare this with Theorem 14.4.7.

Note 14.4.16. There is a large literature of relations between orthog-

onal polynomials and combinatorics. The reader will find an expres-

sion for derangements in terms of Laguerre polynomials in S. Even

and J. Gillis [123]. More information can be found in the paper by

I. Gessel [134].

                

                                                                                                               



Chapter 15

Landen Transformations

15.1. Introduction

The transformation of variables plays an important role in the theory

of definite integrals. From the beginning, the reader has been exposed

to some common changes of variables, motivated mainly by the fact

that they work. For example, the basic knowledge of trigonometry

presented in Chapter 12 shows that confronted with a problem of the

type

(15.1.1) I(a, b) =

∫ b

a

dt√
1 − t2

,

the change of variables

(15.1.2) t = sinx

leads to a simpler form of the integral.

Naturally, this change of variable, presented in the form

(15.1.3) x = sin−1 t

manifests the new variable of integration as the inverse of a transcen-

dental function.

A different type of map that leaves certain integrals invariant is

defined next.

411

                                     

                

                                                                                                               



412 15. Landen Transformations

Definition 15.1.1. A Landen transformation for an integral

(15.1.4) I =

∫ x1

x0

f(x;p) dx,

which depends on a set of parameters p, is a map Φ, defined on the

parameters of I, such that

(15.1.5)

∫ x1

x0

f(x;p) dx =

∫ Φ(x1)

Φ(x0)

f(x; Φ(p)) dx.

Example 15.1.2. The classical example of a Landen transformation

is given by

(15.1.6) E(a, b) =

(
a + b

2
,
√
ab

)
,

which preserves the elliptic integral

(15.1.7) G(a, b) =

∫ π/2

0

dx√
a2 cos2 x + b2 sin2 x

,

that is,

(15.1.8) G(a, b) = G

(
a + b

2
,
√
ab

)
.

It turns out that the sequence (an, bn) defined inductively by

(15.1.9) (an, bn) = E(an−1, bn−1)

with (a0, b0) = (a, b) has the property that

(15.1.10) lim
n→∞

an = lim
n→∞

bn.

This limit is the arithmetic-geometric mean of a and b, denoted

by AGM(a, b). The invariance of the elliptic integral shows that

(15.1.11) G(a, b) =
π

2AGM(a, b)
.

This may be used to compute the elliptic integral G(a, b) by iteration.

This chapter discusses Landen transformations in the case when

the integrand is a rational function. The idea is to produce an appro-

priate change of variables that leaves the rational integral invariant.

The special example

(15.1.12) x = R2(t) =
t2 − 1

2t
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appearing in Example 8.1.6 leads to the simplest nontrivial class of

Landen transformations.

This chapter contains details of the effect of this map on two

special kinds of integrands. The first one establishes the formula

(15.1.13)

∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1
=

π

2

1

[2(1 + a)]m+1/2
Pm(a),

where Pm(a) is a polynomial in a.

Warning: The symbol Pm has been used to denote other polynomials

in this text, for instance the Legendre polynomials. In this chapter,

this refers only to the polynomial (15.4.16).

Many properties of its coefficients are presented (not proved) in

this chapter. The second example provides a Landen transformation

for the integral

(15.1.14) U6(a, b; c, d, e) =

∫ ∞

0

cx4 + dx2 + e

x6 + ax4 + bx2 + 1
dx,

which leads to an interesting nonlinear transformation.

15.2. An elementary example

The goal of this section is to establish the following result.

Theorem 15.2.1. Let f be a function, with finite integral over R.

Define

(15.2.1) f±(x) = f(x +
√
x2 + 1) ± f(x−

√
x2 + 1)

and

(15.2.2) L(f)(x) = f+(x) +
xf−(x)√
x2 + 1

.

Then

(15.2.3)

∫ ∞

−∞
f(t) dt =

∫ ∞

−∞
L(f)(x) dx.

Proof. The map x = R2(t) has two branches separated by the pole

at t = 0. The inverses are given by

(15.2.4) t = x±
√
x2 + 1.
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Each branch maps a half-line onto R. Therefore it is natural to con-

sider integrals over the whole line. The change of variables (15.2.4)

leads to

I =

∫ ∞

−∞
f(t) dt

=

∫ 0

−∞
f(t) dt +

∫ ∞

0

f(t) dt

=

∫ ∞

−∞
f(x−

√
x2 + 1)

(
1 − x√

x2 + 1

)
dx

+

∫ ∞

−∞
f(x +

√
x2 + 1)

(
1 +

x√
x2 + 1

)
dx.

Now collect terms to obtain the claim. �

Example 15.2.2. Take f(t) = 1/(t2 + 1). Then L(f)(x) = f(x) and

the function f is fixed by L. Now take f(t) = 1/(t2 + 2) to obtain

(15.2.5) L(f)(x) =
6

8x2 + 9
.

The theorem gives the elementary identity

(15.2.6)

∫ ∞

−∞

dx

x2 + 2
=

∫ ∞

−∞

6 dx

8x2 + 9
.

Both sides evaluate to π/
√

2.

Example 15.2.3. The function f(t) =
sin t

t
and the value

(15.2.7)

∫ ∞

−∞

sin t

t
dt = π

obtained in (12.11.1) lead to the nontrivial integral

(15.2.8)

∫ ∞

−∞

cosx sin
√
x2 + 1√

x2 + 1
dx =

π

2
.

The current version of Mathematica (the 8th) is unable to evaluate

this integral.
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15.3. The case of rational integrands

In the special case that the integrand f(x) is a rational function,

Theorem 15.2.1 gives an identity among two rational integrals. This

is the content of the next theorem.

Theorem 15.3.1. Assume f(x) is a rational function. Then L(f(x))

is also rational.

Proof. If f(x) is a rational function, then

f(x +
√
x2 + 1) + f(x−

√
x2 + 1)

and
f(x +

√
x2 + 1) − f(x−

√
x2 + 1)√

x2 + 1

are also rational functions. Indeed, let y =
√
x2 + 1 and assume

f(x) = A(x)/B(x). Then

f(x + y) + f(x− y) =
A(x + y)

B(x + y)
+

A(x− y)

B(x− y)

=
A(x + y)B(x− y) + A(x− y)B(x + y)

B(x + y)B(x− y)
.

The numerator is a polynomial in x and y, invariant under y �→ −y.

Therefore it is a polynomial in y2 = x2 + 1, thus a polynomial in x.

The same argument applies to the denominator. �

Example 15.3.2. Let

(15.3.1) f(x) =
1

4x2 + 12x + 21
.

Then

(15.3.2) L(f(x)) =
50

336x2 + 408x + 481
.

Both integrals may be evaluated in elementary terms to produce the

common value

(15.3.3)

∫ ∞

−∞
f(x) dx =

∫ ∞

−∞
L(f(x)) dx =

π

4
√

3
.
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Note 15.3.3. A Landen transformation of a rational function has

been defined as a map of the function’s coefficients. For instance,

applying L to the function

(15.3.4) f(x) =
1

ax2 + bx + c

yields

(15.3.5) L(f(x)) =
1

a1x2 + b1x + c1

with

(15.3.6) a1 =
2 c a

c + a
, b1 =

b(c− a)

c + a
, c1 =

(c + a)2 − b2

2(c + a)
.

Exercise 15.3.4. Check that the discriminant of the denominator is

preserved, that is, b2 − 4ac = b21 − 4a1c1.

Note 15.3.5. Define

(15.3.7) Φ2(a, b, c) = (a1, b1, c1)

with (a1, b1, c1) given in (15.3.6). Iteration of Φ2 gives a sequence

(an, bn, cn) that preserves the original integral

(15.3.8)

∫ ∞

−∞

dx

anx2 + bnx + cn
=

∫ ∞

−∞

dx

ax2 + bx + c
.

Exercise 15.3.6. Prove that (an, bn, cn) converges to (L, 0, L), for

some L ∈ R, under the assumption b2 − 4ac < 0.

Passing to the limit in (15.3.8) shows that

(15.3.9)

∫ ∞

−∞

dx

ax2 + bx + c
=

π

L
.

In the case a > 0, the limiting value

(15.3.10) L =
1

2

√
4ac− b2

is obtained from (15.3.9) by computing the integral. The case of a < 0

is similar.

The map Φ2 is the rational analog of the classical arithmetic-

geometric mean presented at the beginning of this chapter. A

discussion of this case is presented in Section 15.6.
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Exercise 15.3.7. It is possible for a single integral to admit a variety

of Landen transformations. For instance the quadratic integral

(15.3.11)

∫ ∞

−∞

dx

ax2 + bx + c

is also invariant under the change of parameters

an+1 = an

[
(an+3cn)

2−3b2n
(3an+cn)(an+3cn)−b2n

]
,(15.3.12)

bn+1 = bn

[
3(an−cn)

2−b2n
(3an+cn)(an+3cn)−b2n

]
,

cn+1 = cn

[
(3an+cn)

2−3b2n
(3an+cn)(an+3cn)−b2n

]
,

with a0 = a, b0 = b, and c0 = c. This is described in complete

detail in the paper by D. Manna and V. Moll [208]. Follow the steps

given there to show that iteration of this converges to the stated limit

(L, 0, L).

15.4. The evaluation of a quartic integral

This section contains an application of the transformation L intro-

duced in Theorem 15.2.1 to the evaluation of the definite integral

(15.4.1) N0,4(a;m) =

∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1
.

The first theorem describes the effect of L on the integrand.

Theorem 15.4.1. For m ∈ N, let

(15.4.2) Q(x) =
1

(x4 + 2ax2 + 1)m+1
.

Then

(15.4.3) Q1(y) := L(Q(x)) =
Tm(2y)

2m(1 + a + 2y2)m+1
,

where

(15.4.4) Tm(y) =

m∑
k=0

(
m + k

m− k

)
y2k.
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Proof. Introduce the variable φ = y+
√
y2 + 1. Then y−

√
y2 + 1 =

−φ−1 and 2y = φ− φ−1. Moreover,

Q1(y) =
[
Q(φ) + Q(φ−1)

]
+

φ2 − 1

φ2 + 1

(
Q(φ) −Q(φ−1)

)
=

2

φ2 + 1

[
φ2Q(φ) + Q(φ−1)

]
:= Sm(φ).

Then (15.4.3) is equivalent to

(15.4.5) 2m
(
1 + a + 1

2 (φ− φ−1)2
)m+1

Sm(φ) = Tm(φ− φ−1).

A direct (but lengthy) simplification of the left-hand side of (15.4.5)

shows that this identity is equivalent to proving

(15.4.6)
φ2m+1 + φ−(2m+1)

φ + φ−1
= Tm(φ− φ−1).

Observe that the parameter a has disappeared.

First proof. One simply checks that both sides of (15.4.6) satisfy

the second-order recurrence

(15.4.7) cm+2 − (φ2 + φ−2)cm+1 + cm = 0

and that the values for m = 0 and m = 1 match. This is straight-

forward for the expression on the left-hand side, while the WZ-method

settles the right-hand side. �

Second proof. In the textbook by R. Graham, D. Knuth, and

O. Patashnik [145], one finds the generating function

(15.4.8) Bt(z) =
∑
k≥0

(tk)k−1
zk

k!
,

where (a)k = a(a+1) · · · (a+ k− 1) is the Pochhammer symbol. The

special values

(15.4.9) B−1(z) =
1 +

√
1 + 4z

2
and B2(z) =

1 −
√

1 − 4z

2z

are combined to produce the identity

1√
1 + 4z

(
B−1(z)

n+1 − (−z)n+1B2(−z)n+1
)

=
n∑

k=0

(
n− k

k

)
zk.
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Replace n by 2m and z by (4y2)−1 to produce

1

2
√

1 + y2 (2y)2m
(φ2m+1 + φ−(2m+1)) =

m∑
k=0

(
2m− k

k

)
zk.

The sum on the right-hand side is simplified by the identity

Tm(y) =
m∑

k=0

(
m + k

m− k

)
y2k = y2m

m∑
k=0

(
2m− k

k

)
y−2k.

Thus,

Tm(φ− φ−1) = Tm(2y) = (2y)2m
m∑

k=0

(
2m− k

k

)
zk,

and it follows that

Tm(φ− φ−1) =
1

2
√

1 + y2
(φ2m+1 + φ−(2m+1)),

and the result is obtained from φ + φ−1 = 2
√
y2 + 1.

Evaluation of the integral N0,4(a;m). The identity in Theorem

15.2.1 shows that

(15.4.10)

∫ ∞

0

Q(x) dx =

∫ ∞

0

Q1(y) dy,

and this last integral can be evaluated in elementary form. Indeed,∫ ∞

0

Q1(y) dy =

∫ ∞

0

Tm(2y) dy

2m(1 + 2y2)m+1

=
1

2m

m∑
k=0

(
m + k

m− k

)∫ ∞

0

(2y)2k dy

(1 + a + 2y2)m+1
.

The change of variables y = t
√

1 + a/
√

2 gives∫ ∞

0

Q1(y) dy =
1

[2(1 + a)]m+1/2

m∑
k=0

(
m + k

m− k

)
2k(1+a)k

∫ ∞

0

t2k dt

(1 + t2)m+1
.

Exercise 15.4.2. Prove the Wallis-type identity

(15.4.11)

∫ ∞

0

t2k dt

(1 + t2)m+1
=

π

22m+1

(
2k

k

)(
2m− 2k

m− k

)(
m

k

)−1

.
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The previous exercise now produces∫ ∞

0

Q1(y) dy =
π

22m+1

1

[2(1 + a)]m+1/2

×
m∑

k=0

(
m + k

m− k

)
2k
(

2k

k

)(
2m− 2k

m− k

)(
m

k

)−1

(1 + a)k.

This can be simplified further using

(15.4.12)

(
m + k

m− k

)(
2k

k

)
=

(
m + k

m

)(
m

k

)
, 0 ≤ k ≤ m,

and (15.4.10) to produce∫ ∞

0

Q(y) dy =
π

22m+1

1

[2(1 + a)]m+1/2

m∑
k=0

2k
(
m + k

m

)(
2m− 2k

m− k

)
(1+a)k.

Theorem 15.4.3. The integral N0,4(a;m), defined in (15.4.1), is

given by

(15.4.13) N0,4(a;m) =
π

2

1

[2(1 + a)]m+1/2

m∑
j=0

dj,maj ,

where

(15.4.14) dj,m = 2−2m
m∑

k=j

2k
(

2m− 2k

m− k

)(
m + k

m

)(
k

j

)
.

Note 15.4.4. The literature contains a variety of proofs of the for-

mula given in Theorem 15.4.3. This is written here as

(15.4.15)

N0,4(a;m) =

∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1
=

π

2

Pm(a)

[2(a + 1)]m+1/2

where

(15.4.16) Pm(a) =

m∑
j=0

dj,maj .

This note discusses some of these proofs and highlights the remarkable

properties of the coefficients dj,m.

The first proof. This proof is due to George Boros, a former stu-

dent of the author. The idea is remarkably simple but has profound
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consequences. The change of variables x = tan θ yields

N0,4(a;m) =

∫ π/2

0

(
cos4 θ

sin4 θ + 2a sin2 θ cos2 θ + cos4 θ

)m+1

× dθ

cos2 θ
.

Observe that the denominator of the integrand is a polynomial in

cos 2θ. In terms of the double-angle u = 2θ, the original integral

becomes

N0,4(a;m) = 2−(m+1)

∫ π

0

(
(1 + cosu)2

(1 + a) + (1 − a) cos2 u

)m+1

× du

1 + cosu
.

Expanding the binomial (1 + cosu)2m+1, symmetry implies that∫ π

0

(cosu)j du

[(1 + a) + (1 − a) cos2 u]m+1
= 0,

for j odd. The remanining integrals, those with j even, can be eval-

uated by using the double-angle trick one more time. This leads to

N0,4(a;m) =
m∑
j=0

2−j

(
2m + 1

2j

)∫ π

0

(1 + cos v)j dv

[(3 + a) + (1 − a) cos v]m+1
,

where v = 2u and the symmetry of cosine about v = π has been used

to reduce the integrals from [0, 2π] to [0, π]. The familiar change of

variables z = tan(v/2) produces the form (15.4.15). The expression

obtained for the coefficients dj,m is not very pretty:

dj,m =

j∑
r=0

m−j∑
s=0

m∑
k=j+s

(−1)k−j−s

23k

(
2k

k

)(
2m + 1

2s + 2r

)(
m− s− r

m− k

)

×
(
s + r

r

)(
k − s− r

j − r

)
.

A detour into the world of Ramanujan. The search for a simpler

expression for the coefficients dj,m began with the observation that

they appear to be positive. Indeed, a symbolic calculation shows that

for m = 5, these are

{dj,5 : 0 ≤ j ≤ 5} =

{
4389

256
,

8589

128
,

7161

64
,

777

8
,

693

16
,

63

8

}
.
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The second proof of (15.4.15) begins with the value of the elementary

integral

(15.4.17)

∫ ∞

0

dx

bx4 + 2ax2 + 1
=

π

2
√

2

1√
a +

√
b

and the functions h(c) =
√
a +

√
1 + c and

g(c) =

∫ ∞

0

dx

x4 + 2ax2 + 1 + c
.

Then (15.4.17) gives g′(c) = π
√

2h′(c). In particular,

h′(0) =
1

π
√

2
N0,4(a; 0).

Further differentiation gives the higher-order derivatives of h in terms

of the integrals N0,4. This is expressed as

Theorem 15.4.5. The Taylor expansion of h(c) =
√
a +

√
1 + c is

given by√
a +

√
1 + c =

√
a + 1 +

1

π
√

2

∞∑
k=1

(−1)k−1

k
N0,4(a; k − 1)ck.

The evaluation of the integrals N0,4(a;m) is now finished by using

the Ramanujan master theorem stated below.

Theorem 15.4.6. Suppose F has a Taylor expansion around c = 0

of the form

F (c) =

∞∑
k=0

(−1)k

k!
ϕ(k) ck.

Then, the moments of F , defined by

Mn =

∫ ∞

0

cn−1F (c) dc,

can be computed via Mn = Γ(n)ϕ(−n).

B. Berndt [49], in the first volume of Ramanujan’s Notebooks,

provides a proof of the exact hypothesis for the validity of this the-

orem. Applications to the evaluation of a large variety of definite

integrals are given in the paper by T. Amdeberhan, O. Espinosa,

I. Gonzalez, M. Harrison, V. Moll, and A. Straub [8]. It turns out
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that, in the case considered here, the moments can be evaluated ex-

plicitly, leading to the proof. Details can be found in the paper by

G. Boros and V. Moll [64].

A nice short proof. The following argument was communicated to

the author by M. Hirschhorn [171]. Start with

I =

∫ ∞

0

dx

x4 + 2ax2 + 1
.

Make the substitution x �→ 1/x and add the two forms of the integral

I to obtain

2I =

∫ ∞

0

(x2 + 1) dx

x4 + 2ax2 + 1
.

The second substitution y = x− 1/x gives

2I =

∫ ∞

−∞

dy

y2 + 2a + 2
=

π√
2a + 2

.

Now, for an appropriate value of c (to guarantee convergence),∫ ∞

0

dx

x4 + 2ax2 + c2
=

π

2
√

2
√
a + c

.

Differentiation with respect to c leads to the identity∫ ∞

0

dx

(x4 + 2ax2 + c2)m+1
=

π

23m+3/2 c2m+1 (a + c)m+1/2

×
m∑

k=0

2m−k

(
2k

k

)(
2m− k

m

)
ck(a + c)m−k.

The result now follows by taking c = 1.

Proofs in other styles. There are several other proofs of Theorem

15.4.3 in the literature. The paper by G. Boros and V. Moll [62]

produced a proof based on elementary properties of the hypergeo-

metric function plus an entry from the table by I. S. Gradshteyn and

I. M. Ryzhik [144]. A new proof based on a method for the evaluation

of integrals coming from Feynman diagrams appears in the paper by

T. Amdeberhan, V. Moll, and C. Vignat [15]. An automatic proof

has appeared in the work of C. Koutschan and V. Levandovskyy [187]

and one more based on the study of statistical densities can be found

in the work by C. Berg and C. Vignat [48]. Finally, a nice evaluation

combining classical and automatic methods appears in the paper by
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M. Apagodu [23]. The reader is encouraged to produce his/her

own.

The coefficients dj,m. These numbers have remarkable properties.

A related family of polynomials . Start with

Pm(a) =
2

π
[2(a + 1)]m+

1
2

∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1
,

and compute dj,m as coming from the Taylor expansion at a = 0 of

the right-hand side. This yields

(15.4.18)

dj,m =
1

j!m!2m+j

(
αj(m)

m∏
k=1

(4k − 1) − βj(m)

m∏
k=1

(4k + 1)

)
,

where αj and βj are polynomials in m of degrees j and j − 1, respec-

tively. The explicit expressions

αj(m) =

�j/2�∑
t=0

(
j

2t

) m+t∏
ν=m+1

(4ν − 1)

m∏
ν=m−j+2t+1

(2ν + 1)

t−1∏
ν=1

(4ν + 1)

and

βj(m) =

�(j+1)/2�∑
t=1

(
j

2t− 1

) m+t−1∏
ν=m+1

(4ν+1)

m∏
ν=m−j+2t

(2ν+1)

t−1∏
ν=1

(4ν−1)

are given in the paper by G. Boros, V. Moll, and J. Shallit [67].

Trying to obtain more information about the polynomials αj and

βj directly proved difficult. One uninspired day, the author decided

to compute their roots numerically. It was a pleasant surprise to

discover the following property.

Theorem 15.4.7. For all j ≥ 1, all the roots of αj(m) = 0 lie on

the line Rem = − 1
2 . Similarly, the roots of βj(m) = 0 for j ≥ 2 lie

on the same vertical line.

The proof of this theorem, due to J. Little [201], starts by writing

(15.4.19) Aj(s) := αj((s− 1)/2) and Bj(s) := βj((s− 1)/2)
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and proving that Aj is equal to j! times the coefficient of uj in

f(s, u)g(s, u), where f(s, u) = (1 + 2u)s/2 and g(s, u) is the hyperge-

ometric series

(15.4.20) g(s, u) = 2F1

(
s

2
+

1

4
,
1

4
;
1

2
; 4u2

)
.

A similar expression is obtained for Bj(s). From here it follows that

Aj and Bj each satisfy the three-term recurrence

(15.4.21) xj+1(s) = 2sxj(s) − (s2 − (2j − 1)2)xj−1(s).

Little then establishes a version of Sturm’s theorem about interlacing

zeros to prove the final result.

The location of the zeros of αj(m) now suggests studying the

behavior of this family as j → ∞. In the best of all worlds, one will

obtain an analytic function of m with all the zeros on a vertical line.

Perhaps some number theory will enter and . . . one never knows.

Arithmetical properties. The expression (15.4.18) gives

(15.4.22) m!2m+1 d1,m = (2m + 1)

m∏
k=1

(4k − 1) −
m∏

k=1

(4k + 1),

from which it follows that the right-hand side is an even number. This

led naturally to the problem of determining the 2-adic valuation of

Aj,m := j!m!2m+jdj,m = αj(m)

m∏
k=1

(4k − 1) − βj(m)

m∏
k=1

(4k + 1)

=
j!m!

2m−j

m∑
k=j

2k
(

2m− 2k

m− k

)(
m + k

k

)(
k

j

)
.

The main result of [67] is that ν2(Aj,m) = ν2(m(m+1))+1. This

was extended in the work of T. Amdeberhan, D. Manna, and V. Moll

[9] to the next theorem.

Theorem 15.4.8. The 2-adic valuation of Aj,m satisfies

(15.4.23) ν2(Aj,m) = ν2((m + 1 − j)2j) + j,

where (a)k = a(a + 1) · · · (a + k − 1) is the Pochhammer symbol for

k ≥ 1, with (a)0 = 1.
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The proof is an elementary application of the WZ-method. Define

the numbers

Bj,m :=
Aj,m

2j(m + 1 − j)2j
,

and use the WZ-method to obtain the recurrence

Bj−1,m = (2m+1)Bj,m− (m− j)(m+ j+1)Bj+1,m, 1 ≤ j ≤ m−1.

Since the initial values Bm,m = 1 and Bm−1,m = 2m + 1 are odd, it

follows inductively that Bj,m is an odd integer. The reader will also

find in [9] a WZ-free proof of the theorem.

The combinatorics of the valuations . The sequence of valuations

{ν2(Aj,m) : m ≥ j} increases in complexity with j. Some of the

combinatorial nature of this sequence is described next. The first

feature of this sequence is that it has a block structure, reminiscent

of the simple functions of real analysis.

Definition 15.4.9. Let s ∈ N, s ≥ 2. The sequence {aj : j ∈ N}
has block structure if there is an s ∈ N such that for each t ∈
{0, 1, 2, . . .},
(15.4.24) ast+1 = ast+2 = · · · = as(t+1).

The sequence is called s-simple if s is the largest value for which

(15.4.24) occurs.

Theorem 15.4.10. For each j ≥ 1, the set

X(j) := {ν2(Aj,m) : m ≥ j }
is an s-simple sequence, with s = 21+ν2(j).

Valuation patterns encoded in binary trees . The goal is to

describe precisely the graph of the sequence {ν2(Aj,m) : m ≥ j}.
The reader is referred to the paper by X. Sun and V. Moll [287] for

complete details. In view of the block structure described earlier,

it suffices to consider the sequences {ν2(Cj,m) : m ≥ j}, which are

defined by

Cj,m = Aj,j+(m−1)·21+ν2(j) ,

so that the sequence {Cj,m : m ≥ j} reduces each block of Aj,m to a

single point. The emerging patterns are still very complicated. For

instance, Figure 15.4.1 shows the case of j = 13 and j = 59. The
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remarkable fact is that in spite of the complexity of ν2(Cj,m) there is

an exact formula for it. We now describe how to find it.

20 40 60 80 100
m

37

38

39

40

41

42

ν2(C13, m)

10 20 30 40 50 60 70
m

173

174

175

176

177

178

ν2(C59, m)

Figure 15.4.1. The valuations ν2(C13,m) and ν2(C59,m).

The construction of the decision tree associated to the index

j starts with a root v0 at level k = 0. To this vertex attach the

sequence {ν2(Cj,m) : m ≥ 1} and ask whether ν2(Cj,m)−ν2(m) has a

constant value independent of m. If the answer is yes, then it is said

that v0 is a terminal vertex and we label it with this constant. The

tree is complete. If the answer is negative, split the integers modulo

2 and produce two new vertices, v1, v2, connected to v0 and attach

the classes {ν2(Cj,2m−1) : m ≥ 1} and {ν2(Cj,2m) : m ≥ 1} to these

vertices. Now ask whether ν2(Cj,2m−1) − ν2(m) is independent of m

and the same for ν2(Cj,2m)−ν2(m). Each vertex that yields a positive

answer is considered terminal and the corresponding constant value
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is attached to it. Every vertex with a negative answer produces two

new ones at the next level.

Assume that the vertex v corresponding to the sequence {2k(m−
1)+a : m ≥ 1} produces a negative answer. Then it splits in the next

generation into two vertices corresponding to the sequences {2k+1(m−
1) + a : m ≥ 1} and {2k+1(m− 1) + 2k + a : m ≥ 1}. For instance,

in Figure 15.4.2, the vertex corresponding to {4m : m ≥ 1}, which is

not terminal, splits into {8m : m ≥ 1} and {8m− 4 : m ≥ 1}. These

two edges lead to terminal vertices. Theorem 15.4.11 shows that this

process ends in a finite number of steps.

root

2m

4m

8m 13
14

13

16 16

Figure 15.4.2. The decision tree for j = 5.

Theorem 15.4.11. Let j ∈ N and let T (j) be its decision tree. Define

k∗(j) := �log2 j�. Then (1) T (j) depends only on the odd part of j;

that is, if r ∈ N, then T (j) = T (2rj), up to the labels. (2) The

generations of the tree are labelled starting at 0; that is, the root is

generation 0. Then, for 0 ≤ k ≤ k∗(j), the kth generation of T (j) has

2k vertices. Up to that point, T (j) is a complete binary tree. (3) The

k∗th generation contains 2k
∗+1 − j terminal vertices. The constants

associated with these vertices are given by the following algorithm.

Define j1(j, k, a) := −j + 2(1 + 2k − a) and

γ1(j, k, a) = j + k + 1 + ν2 ((j1 + j − 1)!) + ν2 ((j − j1)!) .

Then, for 1 ≤ a ≤ 2k
∗+1 − j,

ν2
(
Cj,2k(m−1)+a

)
= ν2(m) + γ1(j, k, a).
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Thus, the vertices at the k∗th generation have constants given by

γ1(j, k, a). (4) The remaining terminal vertices of the tree T (j) ap-

pear in the next generation. There are 2(j − 2k
∗(j)) of them. The

constants attached to these vertices are defined as follows: let

j2(j, k, a) := −j+2(1+2k+1−a) and j3(j, k, a) := j2(j, k, a+2k).

Define

γ2(j, k, a) := j + k + 2 + ν2 ((j2 + j − 1)!) + ν2 ((j − j2)!)

and

γ3(j, k, a) := j + k + 2 + ν2 ((j3 + j − 1)!) + ν2 ((j − j3)!) .

Then, for 2k
∗(j)+1 − j + 1 ≤ a ≤ 2k

∗(j),

ν2
(
Cj,2k∗(j)+1(m−1)+a

)
= ν2(m) + γ2(j, k

∗(j), a)

and

ν2
(
Cj,2k∗(j)+1(m−1)+a+2k∗(j)

)
= ν2(m) + γ3(j, k

∗(j), a)

give the constants attached to these remaining terminal vertices.

The theorem is now employed to produce an analytic formula

for ν2(C3,m). The value k∗(3) = 1 shows that the first level contains

21+1−3 = 1 terminal vertex. This corresponds to the sequence 2m−1

and has constant value 7. Thus,

(15.4.25) ν2 (C3,2m−1) = 7.

The next level has 2(3− 21) = 2 terminal vertices. These correspond

to the sequences 4m and 4m − 2, with constant value 9 for both of

them. This tree produces

(15.4.26) ν2 (C3,m) =

⎧⎪⎪⎨
⎪⎪⎩

7 + ν2
(
m+1
2

)
if m ≡ 1 mod 2,

9 + ν2
(
m
4

)
if m ≡ 0 mod 4,

9 + ν2
(
m+2
4

)
if m ≡ 2 mod 4.
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The complexity of the graph for j = 13 is reflected in the analytic

formula for this valuation. The theorem yields

(15.4.27) ν2 (C13,m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

36 + ν2
(
m+7
8

)
if m ≡ 1 mod 8,

37 + ν2
(
m+6
8

)
if m ≡ 2 mod 8,

36 + ν2
(
m+5
8

)
if m ≡ 3 mod 8,

40 + ν2
(
m+12
16

)
if m ≡ 4 mod 16,

38 + ν2
(
m+11
16

)
if m ≡ 5 mod 16,

39 + ν2
(
m+10
16

)
if m ≡ 6 mod 16,

38 + ν2
(
m+9
16

)
if m ≡ 7 mod 16,

40 + ν2
(
m+8
16

)
if m ≡ 8 mod 16,

40 + ν2
(
m+4
16

)
if m ≡ 12 mod 16,

38 + ν2
(
m+3
16

)
if m ≡ 13 mod 16,

39 + ν2
(
m+2
16

)
if m ≡ 14 mod 16,

38 + ν2
(
m+1
16

)
if m ≡ 15 mod 16,

40 + ν2
(
m
16

)
if m ≡ 16 mod 16.

Note. The p-adic valuations of Aj,m for p odd have different behavior

from the case p = 2. Figure 15.4.3 shows the plot of ν17(A1,m) where

linear growth is observed. Experimental data suggest that, for any

odd prime p, one has

(15.4.28) νp(Aj,m) ∼ m

p− 1
.

The error term ν17(A1,m) − m/16 is also shown in the figure. The

structure of the error remains to be explored.

Unimodality and logconcavity . A finite sequence of real numbers

{a0, a1, . . . , am} is said to be unimodal if there exists an index 0 ≤
j ≤ m such that a0 ≤ a1 ≤ · · · ≤ aj and aj ≥ aj+1 ≥ · · · ≥ am.

A polynomial is said to be unimodal if its sequence of coefficients is

unimodal. The sequence {a0, a1, . . . , am} with aj ≥ 0 is said to be

logarithmically concave (or logconcave for short) if aj+1aj−1 ≤
a2j for 1 ≤ j ≤ m − 1. A polynomial is said to be logconcave if

its sequence of coefficients is logconcave. It is easy to see that if a

sequence is logconcave, then it is unimodal. See the book by H. S. Wilf

[313] for an introduction to these ideas.
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m

5
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15

ν17(A1, m)

200 400 600 800 1000 1200 1400
m

0.5

1.0

1.5

error

Figure 15.4.3. The valuation ν17(A1,m) and the error term.

Unimodal polynomials arise often in combinatorics, geometry,

and algebra and have been the subject of considerable research in

recent years. The reader is referred to the papers by F. Brenti [77]

and R. Stanley [278] for surveys of the diverse techniques employed

to prove that specific families of polynomials are unimodal.
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For m ∈ N, the sequence {dj,m : 0 ≤ j ≤ m} is unimodal. This is

a consequence of the following criterion established in the paper by

G. Boros and V. Moll [61].

Theorem 15.4.12. Let ak be a nondecreasing sequence of positive

numbers and let A(x) =
∑m

k=0 akx
k. Then A(x + 1) is unimodal.

This theorem was applied to the polynomial

(15.4.29) A(x) := 2−2m
m∑

k=0

2k
(

2m− 2k

m− k

)(
m + k

m

)
xk

that satisfies Pm(x) = A(x + 1). The criterion was extended in a

project at SIMU (Summer Institute in Mathematics for Undergrad-

uates), an REU program in Puerto Rico. The result was the paper

by J. Alvarez, M. Amadis, G. Boros, D. Karp, V. Moll, and L. Ros-

ales [7] to include the shifts A(x + j) and the paper by Yi Yang and

Yeong-Nan Yeh [304] for arbitrary shifts. The original proof of the

unimodality of Pm(a) can be found in the paper by G. Boros and

V. Moll [63].

The author conjectured in [221] the logconcavity of {dj,m : 0 ≤
j ≤ m}. This turned out to be a more difficult question. Some of our

failed attempts are described next.

(1) A result of F. Brenti [77] states that if A(x) is logconcave,

then so is A(x + 1). Unfortunately this does not apply in this case

since (15.4.29) is not logconcave. Indeed,

24m−2k
(
a2k − ak−1ak+1

)
=

(
2m

m− k

)2(
m + k

m

)2

×
(

1 − k(m− k)(2m− 2k + 1)(m + k + 1)

(k + 1)(m + k)(2m− 2k − 1)(m− k + 1)

)
and this last factor could be negative—for example, for m = 5 and

j = 4. The number of negative terms in this sequence is small, so

perhaps there is a way out of this.

(2) The coefficients dj,m satisfy many recurrences. For example,

dj+1,m =
2m + 1

j + 1
dj,m − (m + j)(m + 1 − j)

j(j + 1)
dj−1,m.
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This can be found by a direct application of the WZ-method. There-

fore, dj,m is logconcave provided

j(2m + 1)dj−1,mdj,m ≤ (m + j)(m + 1 − j)d2j−1,m + j(j + 1)d2j,m.

The author conjectured that the smallest value of the expression

(m + j)(m + 1 − j)d2j−1,m + j(j + 1)d2j,m − j(2m + 1)dj−1,mdj,m

is 22mm(m + 1)
(
2m
m

)2
and it occurs at j = m. This has been es-

tablished by W. Y. C. Chen and E. X. W. Yia [99]. It implies the

logconcavity of {dj,m : 0 ≤ j ≤ m}.
Actually, the author has conjectured that the dj,m satisfy a

stronger version of logconcavity. Given a sequence {aj} of positive

numbers, define a map

L ({aj}) := {bj}

by bj := a2j − aj−1aj+1. Thus {aj} is logconcave if {bj} has positive

coefficients. The nonnegative sequence {aj} is called infinitely log-

concave if any number of applications of L produces a nonnegative

sequence.

Conjecture 15.4.13. For each fixed m ∈ N, the sequence {dj,m :

0 ≤ j ≤ m} is infinitely logconcave.

The logconcavity of {dj,m : 0 ≤ j ≤ m} has recently been estab-

lished by M. Kauers and P. Paule [180] as an applications of their

work on establishing inequalities by automatic means. The starting

point is the triple sum expression for dj,m written as

dj,m =
∑
j,s,k

(−1)k+j−l

23(k+s)

(
2m + 1

2s

)(
m− s

k

)(
2(k + s)

k + s

)(
s

j

)(
k

l − j

)
.

Using the RISC (Research Institute for Symbolic Computation) pack-

age Multisim developed by K. Wegschaider [308], Kauers and Paule

derived the recurrence

2(m + 1)dj,m+1 = 2(j + m)dj−1,m + (2j + 4m + 3)dj,m.
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The positivity of dj,m follows directly from this. To establish the

logconcavity of dj,m, the new recurrence

4j(j + 1)dj+1,m = −2(2j − 4m− 3)(j + m + 1)dj,m

+ 4(j −m− 1)(m + 1)dj,m+1

is derived automatically and the logconcavity of dj,m is reduced to
establishing the inequality

d2j,m ≥
4(m+ 1)

(
4(j −m− 1)(m+ 1)− (2j2 − 4m2 − 7m− 3)dj,m+1dj,m

)
16m3 + 16jm2 + 40m2 + 28jm+ 33m+ 9j + 9

.

This is now accomplished in automatic fashion.

The 2-logconcavity of {dj,m : 0 ≤ j ≤ m} is not achievable by

these methods. At the end of [180], M. Kauers and P. Paule state

that “...we have little hope that a proof of 2-logconcavity could be

completed along these lines, not to mention that a human reader

would have a hard time digesting it.” Actually, 2-logconcavity has

been established by W. Y. C. Chen and E. X. W. Xia in [98].

The general concept of infinite logconcavity has generated some

interest. D. Uminsky and K. Yeats [295] have studied the action of

L on sequences of the form

(15.4.30) {. . . , 0, 0, 1, x0, x1, . . . , xn, . . . , x1, x0, 1, 0, 0, . . .}

and

(15.4.31) {. . . , 0, 0, 1, x0, x1, . . . , xn, xn, . . . , x1, x0, 1, 0, 0, . . .}

and have established the existence of a large unbounded region in the

positive orthant of Rn that consists only of infinitely logconcave se-

quences {x0, . . . , xn}. P. R. McNamara and B. Sagan [214] have con-

sidered sequences satisfying the condition a2k ≥ rak−1ak+1. Clearly

this implies logconcavity if r ≥ 1. Their techniques apply to the rows

of the Pascal triangle. Choosing appropriate r-factors and a computer

verification procedure, they obtain the following.

Theorem 15.4.14. The sequence {
(
n
k

)
: 0 ≤ k ≤ n} is infinitely

logconcave for fixed n ≤ 1450.
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Newton began the study of logconcave sequences by establish-

ing the following result (paraphrased in Section 2.2 of the book by

G. H. Hardy, J. E. Littlewood, and G. Polya [159]).

Theorem 15.4.15. Let {ak} be a finite sequence of positive real num-

bers. Assume all the roots of the polynomial

(15.4.32) P [ak;x] := a0 + a1x + · · · + anx
n

are real. Then the sequence {ak} is logconcave.

P. R. McNamara and B. Sagan [214] and, independently, R. Stan-

ley (personal communication) and S. Fisk [129] have proposed the

next problem. This was settled by P. Brändèn [76]. See [214] for the

complete details on the conjecture.

Theorem 15.4.16. Let {ak} be a finite sequence of positive real

numbers. If P [ak;x] has only real roots, then the same is true for

P [L(ak);x].

The polynomials Pm(a) are the generating function for the se-

quence {dj,m} described here. It is an unfortunate fact that they

do not have real roots, as established by G. Boros and V. Moll [63].

Thus, the previous theorem does not apply to Conjecture 15.4.13. In

spite of this, the asymptotic behavior of these zeros has remarkable

properties. D. Dimitrov [111] has shown that, in the right scale, the

zeros converge to a lemniscate.

The infinite logconcavity of {dj,m} has resisted all our efforts. It

remains to be established.

15.5. An integrand of degree six

The result of Theorem 15.2.1 is now applied to an integral where the

integrand is an even rational function of degree six. The result is

given in the next theorem.

Theorem 15.5.1. Define

I(a,b) =

∫ ∞

0

a4x
4 + a2x

2 + a0
b6x6 + b4x4 + b2x2 + b0

dx.
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Then

I(a,b) = I(a∗,b∗),

where

a∗4 = 32(a4b0 + a0b6),

a∗2 = 8(a2b0 + 3a4b0 + a4b2 + a0b4 + 3a0b6 + a2b6),

a∗0 = 2(a0 + a2 + a4)(b0 + b2 + b4 + b6)

and

b∗6 = 64b0b6,

b∗4 = 16(b0b4 + 6b0b6 + b2b6),

b∗2 = 4(b0b2 + 4b0b4 + b2b4 + 9b0b6 + 4b2b6 + b4b6),

b∗0 = (b0 + b2 + b4 + b6)
2.

The next exercise suggests a scaling that reduces the number of

parameters in the problem.

Exercise 15.5.2. Prove that the integral

(15.5.1) U6(a, b; c, d, e) :=

∫ ∞

0

cx4 + dx2 + e

x6 + ax4 + bx2 + 1
dx

is invariant under the transformation

an+1 =
anbn + 5an + 5bn + 9

(an + bn + 2)4/3
,(15.5.2)

bn+1 =
an + bn + 6

(an + bn + 2)2/3
,

cn+1 =
cn + dn + en

(an + bn + 2)2/3
,

dn+1 =
(bn + 3)cn + 2dn + (an + 3)en

an + bn + 2
,

en+1 =
cn + en

(an + bn + 2)1/3
.

The first two equations in (15.5.2) are independent of the vari-

ables c, d, and e so they define a map

Φ6(a, b) =

(
ab + 5a + 5b + 9

(a + b + 2)4/3
,

a + b + 6

(a + b + 2)2/3

)
(15.5.3)
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that is well-defined on R2 minus the line a + b + 2 = 0. The main

result of M. Chamberland and V. Moll [95] is stated below.

Theorem 15.5.3. The set of points in R2 that converge to the fixed

point (3, 3) of the dynamical system

an+1 =
anbn + 5an + 5bn + 9

(an + bn + 2)4/3
,(15.5.4)

bn+1 =
an + bn + 6

(an + bn + 2)2/3

is the region Λ of the (a, b)-plane for which the integral (15.5.1) con-

verges.

Note 15.5.4. The region Λ is given in terms of the resolvent curve

R defined by

(15.5.5) R(a, b) := 4a3 + 4b3 − 18ab− a2b2 + 27 = 0.

This function appeared in Theorem 4.7.12. The set R(a, b) = 0 is a

real algebraic curve with two connected components R±. The com-

ponent R+ is contained in the first quadrant and contains the point

(3, 3) as a cusp. The second component R− is disjoint from the first

quadrant. The region Λ is defined as the points on the ab-plane that

are above the curve R−.

10

10

5

5

0
0

-5

-10

-5-10

b

a

Figure 15.5.1. The resolvent curve.

                

                                                                                                               



438 15. Landen Transformations

The identity

R(a1, b1) =
(a− b)2R(a, b)

(a + b + 2)4
(15.5.6)

plays an important role in the dynamics of (15.5.4). In particular it

follows from (15.5.6) that the resolvent curve R(a, b) = 0, and the

regions {(a, b) : R(a, b) > 0}, located between the two branches in

Figure 15.5.1, and {(a, b) : R(a, b) < 0} are preserved by Φ6. The

identity (15.5.6) also shows that the diagonal Δ = {(a, b) : a = b} of

R2 is mapped onto the resolvent curve R. This yields the parametriza-

tion

a(t) =
t + 9

24/3(t + 1)1/3
and b(t) =

21/3(t + 3)

(t + 1)2/3

of this curve. This parametrization may be employed to analyze the

behavior on the resolvent curve.

Note 15.5.5. The relation between the resolvent curve and the dis-

criminant of a cubic polynomial is clarified in Exercise 4.7.10.

15.6. The original elliptic case

Among the many beautiful results in the theory of elliptic integrals,

a calculation of Gauss stands among the best: take two positive real

numbers a and b, with a > b, and form a new pair by replacing a with

the arithmetic mean (a + b)/2 and b with the geometric mean
√
ab.

Then iterate:

(15.6.1) an+1 =
an + bn

2
, bn+1 =

√
anbn

starting with a0 = a and b0 = b. K. F. Gauss [133] was interested

in the initial conditions a = 1 and b =
√

2. The iteration generates

a sequence of algebraic numbers which rapidly become impossible to

describe explicitly; for instance,

(15.6.2) a3 =
1

23

(
(1 +

4
√

2)2 + 2
√

2
8
√

2

√
1 +

√
2

)
is a root of the polynomial

G(a) = 16777216a8 − 16777216a7 + 5242880a6 − 10747904a5

+942080a4 − 1896448a3 + 4436a2 − 59840a + 1.
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The numerical behavior is surprising; a6 and b6 agree to 87 digits. It

is simple to check that

(15.6.3) lim
n→∞

an = lim
n→∞

bn.

This common limit is called the arithmetic-geometric mean and

is denoted by AGM(a, b). It is the explicit dependence on the initial

condition that is hard to discover.

Gauss computed some numerical values and observed that

(15.6.4) a11 ∼ b11 ∼ 1.198140235

and then he recognized the reciprocal of this number as a numerical

approximation to the elliptic integral

(15.6.5) I =
2

π

∫ 1

0

dt√
1 − t4

.

It is unclear to the authors how Gauss recognized this number—he

simply knew it. (Stirling’s tables may have been a help; the book

by J. M. Borwein and D. H. Bailey [69] contains a reproduction of

the original notes and comments.) He was particularly interested in

the evaluation of this definite integral as it provides the length of a

lemniscate. In his diary Gauss remarked, “This will surely open up a

whole new field of analysis.” More details can be found in the book

by J. M. Borwein and P. B. Borwein [71] and the paper by D. Cox

[105].

Gauss’ procedure to find an analytic expression for AGM(a, b)

began with the elementary observation

(15.6.6) AGM(a, b) = AGM

(
a + b

2
,
√
ab

)

and the homegeneity condition

(15.6.7) AGM(λa, λb) = λAGM(a, b).

He used (15.6.6) with a = (1+
√
k)2 and b = (1−

√
k)2, with 0 < k < 1,

to produce

AGM(1 + k + 2
√
k, 1 + k − 2

√
k) = AGM(1 + k, 1 − k).
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He then used the homogeneity of AGM to write

AGM(1 + k + 2
√
k, 1 + k − 2

√
k)

= AGM((1 + k)(1 + k∗), (1 + k)(1 − k∗))

= (1 + k)AGM(1 + k∗, 1 − k∗),

with

(15.6.8) k∗ =
2
√
k

1 + k
.

This resulted in the functional equation

(15.6.9) AGM(1 + k, 1 − k) = (1 + k) AGM(1 + k∗, 1 − k∗).

In his analysis of (15.6.9), Gauss substituted the power series

(15.6.10)
1

AGM(1 + k, 1 − k)
=

∞∑
n=0

ank
2n

into (15.6.9) and solved an infinite system of nonlinear equations, to

produce

(15.6.11) an = 2−2n

(
2n

n

)2

.

Then he recognized the series as that of an elliptic integral, to obtain

(15.6.12)
1

AGM(1 + k, 1 − k)
=

2

π

∫ π/2

0

dx√
1 − k2 sin2 x

.

This is a remarkable tour de force.

The function

(15.6.13) K(k) =

∫ π/2

0

dx√
1 − k2 sin2 x

is the elliptic integral of the first kind. It can also be written in

the algebraic form

(15.6.14) K(k) =

∫ 1

0

dt√
(1 − t2)(1 − k2t2)

.

In this notation, (15.6.9) becomes

(15.6.15) K(k∗) = (1 + k)K(k).
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This is the Landen transformation for the complete elliptic in-

tegral. J. Landen [193], the namesake of the transformation, studied

related integrals: for example,

(15.6.16) κ :=

∫ 1

0

dx√
x2(1 − x2)

.

He derived identites such as

(15.6.17) κ = ε
√
ε2 − π, where ε :=

∫ π/2

0

√
2 − sin2 θ dθ ,

proven mainly by suitable changes of variables in the integral for ε.

In the paper by G. N. Watson [307], the reader will find a historical

account of Landen’s work, including the above identities.

The reader will find proofs in a variety of styles in the books by

J. M. Borwein and P. B. Borwein [71] and H. McKean and V. Moll

[213]. In trigonometric form, the Landen transformation states that

(15.6.18) G(a, b) =

∫ π/2

0

dθ√
a2 cos2 θ + b2 sin2 θ

is invariant under the change of parameters

(a, b) �→
(

a+b
2 ,

√
ab
)
.

D. J. Newman [235] presents a very clever proof: the change of vari-

ables x = b tan θ yields

(15.6.19) G(a, b) =
1

2

∫ ∞

−∞

dx√
(a2 + x2)(b2 + x2)

.

Now let x �→ x+
√
x2 + ab to complete the proof. Many of the above

identities can now be searched for and proven on a computer; see the

book by J. M. Borwein and D. H. Bailey [69].

Note 15.6.1. The reader will find a survey of the many aspects of

Landen transformations in the paper by D. Manna and V. Moll [209].

As an intriguing open problem, the question of producing a Landen

transformation for the integral

U+
2 (a, b, c) :=

∫ ∞

0

dx

ax2 + bx + c

remains a challenge.
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Note 15.6.2. The dynamics of the first two equations in (15.5.2)

with initial data below the resolvent curve is quite complicated. Fig-

ure 15.6.1 shows the first 50000 iterates starting at a = −5.0 and

b = −20.4.

Figure 15.6.2 shows 50000 iterates of the dynamics starting at

(−25.0,−2.4) and (11.0,−13.7). These are identical to the naked

eye.

Figure 15.6.3 shows 500000 iterates starting at (11.0,−13.7). This

figure illustrates the following conjecture by the author:

Conjecture 15.6.3. The orbit of any point below the resolvent curve

is dense in the open region below this curve.

10 10
a(n)

10

10

20

b(n)

Figure 15.6.1. The dynamics below the resolvent curve.
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10 10
a(n)

10

10

20

b(n)

10
a(n)

10

10

20

b(n)

Figure 15.6.2. Two more examples of dynamics below the
resolvent curve.
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a(n)

10
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20

b(n)

Figure 15.6.3. Illustration of the density conjecture.

                

                                                                                                               



Chapter 16

Three Special Functions:
Γ, ψ, and ζ

16.1. Introduction

The subject of Special Functions, born with Euler in the eighteenth

century, had a central role in the mathematics of the next century.

Many functions were created to solve specific problems and a partial

unified theory came from analysis in the form of differential equa-

tions and from algebra via the study of group representations.

This last point of view will not be addressed here, but the classical

reference is N. Ja. Vilenkin [299]. It requires more background than

is assumed here, but keep it in mind for future reading. On the other

hand, the Legendre and Chebyshev polynomials discussed in Chapter

14 are solutions of the hypergeometric differential equation

x(1 − x)
d2y

dx2
+ [c− (a + b + 1)x]

dy

dx
− ab y(x) = 0.

The Hermite polynomials require the confluent hypergeometric

equation

x
d2y

dx2
+ (b− x)

dy

dx
− a y(x) = 0.

The reader will find a nice treatment of this point of view in the book

by R. Beals and R. Wong [43].

445
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In order to get a first understanding on how many special func-

tions appear in the literature, the reader is encouraged to browse

the magnificent NIST Handbook of Mathematical Functions,

edited by F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W.

Clark [238].

The goal in this final chapter is very modest. The reader is in-

troduced to three interrelated functions. The first example is the

gamma function Γ(x) and its companion beta function B(x, y),

which extrapolate factorials and binomial coefficients to the complex

plane and yield remarkable formulas such as

(16.1.1)

(
1

2

)
! =

√
π

2
.

The logarithmic derivative of Γ(x), denoted by ψ(x) = Γ′(x)/Γ(x), is

the second function considered here. It is called the digamma func-

tion. Its special value ψ(1) = −γ relates these functions to the Euler

constant. Finally, the Riemann zeta function ζ(s) has profound

connections to the distribution of prime numbers. The special value

ψ′(1) = ζ(2) = π2/6 hints at the relation between these functions.

An introduction to this connection is given here.

16.2. The gamma function

The traditional first course in differential equations usually contains

an introduction to the Laplace transform and its applications. This

is defined by

(16.2.1) L(f(t)) :=

∫ ∞

0

e−stf(t) dt

for values of s ∈ C for which the integral is convergent. The identity

|e−st| = e−t Re s shows that the region of convergence is always a half-

plane of the form {s ∈ C : Re s > s0}, for some s0 ∈ R called the

abscissa of convergence.

This transform is useful due to properties such as

(16.2.2) L(f ′(t)) = sL(f(t)) − f(0),
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which convert differential equations into algebraic ones. One of the

simplest examples is the Laplace transform of the function f(t) = tx.

This is expressed in terms of the gamma function defined next. Most

of the discussion will assume only real values of the variables involved.

The transition to complex arguments is usually painless.

Definition 16.2.1. The gamma function is defined by

(16.2.3) Γ(x) =

∫ ∞

0

e−ttx−1 dt.

The integral is convergent for x > 0. (Actually it converges for Re x >

0, but only real arguments are considered here).

Exercise 16.2.2. Check that L(tx) = Γ(x + 1)/sx+1.

Exercise 16.2.3. Prove that Γ(x) is a continuous function of x ∈ R+.

16.3. Elementary properties of the gamma
function

This section discusses some properties of the gamma function that are

direct consequences of (16.2.3). The starting point is the functional

equation.

Theorem 16.3.1. The gamma function satisfies

(16.3.1) Γ(x + 1) = xΓ(x).

Proof. Integrate by parts. �

This identity has a number of interesting consequences.

Corollary 16.3.2. For n ∈ N,

(16.3.2) n! = Γ(n + 1).

Proof. The sequences fn = n! and gn = Γ(n + 1) satisfy the same

recurrence an+1 = nan and have the same initial value a1 = 1. �
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Note 16.3.3. The previous corollary shows that Γ(x) is an extension

of factorials to positive real arguments x. For instance,(
1

2

)
! = Γ

(
3

2

)
=

∫ ∞

0

e−tt−1/2 dt,

and (
1

3

)
! = Γ

(
4

3

)
=

∫ ∞

0

e−tt1/3 dt.

The question of how to evaluate these integrals in terms of simpler ex-

pressions is quite complicated. For instance, how does one know that

the first integral simplifies to produce (16.1.1) and that the second

one does not simplify at all.

Corollary 16.3.4. The gamma function Γ(x), defined originally for

x > 0, has an extension to R. The only singularities are poles at the

negative integers.

Proof. The functional equation, written as

(16.3.3) Γ(x) =
Γ(x + 1)

x
,

gives the extension for −1 < x < 0. The computation

(16.3.4) lim
x→0

xΓ(x) = lim
x→0

Γ(x + 1) = 1

shows that, near x = 0, the function Γ(x) ∼ 1/x so it has a pole at

x = 0. Iterate this argument to obtain the result. �

Corollary 16.3.5. Let k ∈ N and x ∈ R. Then

(16.3.5) Γ(x + k) = Γ(x)(x)k

where (x)k = x(x + 1) · · · (x + k − 1) is the Pochhammer symbol in-

troduced in (2.1.9).

Proof. Fix x ∈ R. Both sides of (16.3.5) satisfy the recurrence

ak+1 = (x + k)ak and have the same initial value a0 = Γ(x). �
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16.4. Special values of the gamma function

The functional equation has produced the values

(16.4.1) Γ(n) = (n− 1)!

for n ∈ N. The next theorem states an important special value.

Theorem 16.4.1. The gamma function satisfies

(16.4.2) Γ
(
1
2

)
=

√
π.

Proof. The change of variable t = s2 yields

Γ
(
1
2

)
=

∫ ∞

0

e−tt−1/2dt = 2

∫ ∞

0

e−s2 ds.

This is the classical normal integral of basic statistics. Many proofs

of the value

I :=

∫ ∞

0

e−s2 ds =

√
π

2

appear in the book by G. Boros and V. Moll [65]. A simple one is

based on squaring the integral to produce

I2 =

∫ ∞

0

e−x2

dx×
∫ ∞

0

e−s2 ds.

Changing variables in the second integral produces

I2 =

∫ ∞

0

∫ ∞

0

xe−x2(1+y2) dx dy

=
1

2

∫ ∞

0

dx

1 + y2

=
1

2
tan−1 ∞,

which gives the result. �

Exercise 16.4.2. Use (16.3.5) to establish the value

Γ
(
k + 1

2

)
=

(2k)!
√
π

22k k!

for k ∈ N.
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Exercise 16.4.3. Evaluate

Jn =

∫ ∞

0

xne−x2

dx

and give a new solution of Exercise 3.8.9.

16.5. The infinite product for the gamma
function

This section discusses a representation of the gamma function as an

infinite product. The expression

(16.5.1) G∗
n(x) = x

n∏
k=1

(
1 +

x

k

)
gives a polynomial that vanishes at x = 0 and at the negative integers

x = −1, −2, . . . ,−n. The goal is to let n → ∞ to produce a function

that vanishes at all negative integers and also at zero. The issue of

convergence, discussed briefly in Note 12.12.8, shows that it is better

to modify G∗
n and to consider instead

(16.5.2) Gn(x) = x

n∏
k=1

(
1 +

x

k

)
e−x/k.

To simplify the function Gn, write it as

(16.5.3) Gn(x) =
e−xHn

n!

n∏
k=0

(x + k)

where Hn is the harmonic number. The relation (16.3.5) now gives

(16.5.4) Gn(x) =
Γ(x + n + 1)

n! Γ(x)
e−xHn .

The behavior of Hn as n → ∞ is described first. The next propo-

sition is a restatement of Definition 13.7.6.

Proposition 16.5.1. The limit

(16.5.5) γ := lim
n→∞

Hn − lnn

exists. It is called Euler’s constant.

Exercise 16.5.2. Give a direct proof of the existence of the limit by

discussing the behavior of the sequence an = Hn − lnn.
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In order to compute the limit of Gn(x) as n → ∞, it is convenient

to write it as

(16.5.6) Gn(x) =
Γ(x + n + 1)

n! Γ(x)nx
e−x(Hn−lnn).

Exercise 16.5.3. Use Stirling’s formula to check that, for x ∈ N,

(16.5.7) lim
n→∞

Γ(x + n + 1)

n!nx
= 1.

Note 16.5.4. The asymptotic behavior of the gamma function

(16.5.8) Γ(z) ∼
√

2πzz−1/2e−z, as z → ∞ with z > 0,

shows that the limit (16.5.7) is valid for x ∈ R. The proof of (16.5.8)

is obtained by Laplace’s method outlined next. The reader will

find in [217] a very nice introduction to asymptotic methods.

The goal is to describe the behavior of

I(λ) =

∫ b

a

f(t)e−λg(t) dt

as λ → ∞. It is assumed that g has a strict minimum over [a, b]

at c ∈ (a, b) with g′(c) = 0, g′′(c) > 0, and f(c) = 0. The idea is

that the main contribution to the value of I(λ) comes from a small

neighborhood of c. Then

I(λ) = e−λg(c)

∫ b

a

f(t)e−λ(g(t)−g(c)) dt

∼ e−λg(c)f(c)

∫ c+ε

c−ε

e−λ(g(t)−g(c)) dt

∼ e−λg(c)f(c)

∫ c+ε

c−ε

e−λg′′(c)(t−c)2/2 dt

∼ e−λg(c)f(c)

∫ ∞

−∞
e−λg′′(c)(t−c)2/2 dt

= e−λg(c)f(c)

√
2π

λg′′(c)
.

This method gives the stated asymptotic behavior for

(16.5.9) Γ(z) = zz
∫ ∞

0

e−z(t−ln t) dt.
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Exercise 16.5.3 completes the proof of the product representation

for the gamma function.

Theorem 16.5.5. The gamma function satisfies

(16.5.10)
1

Γ(x)
= xeγx

∞∏
k=1

(
1 +

x

k

)
e−x/k.

Note 16.5.6. Observe that in (16.5.10) the function 1/Γ(x) appears

in a factored format as is usually done for polynomials.

The next result establishes a connection between Γ(x) and the

trigonometric functions.

Corollary 16.5.7. For x �∈ N, the reflection formula

(16.5.11) Γ(x)Γ(1 − x) =
π

sin πx

holds.

Proof. The result follows directly from (16.5.10) and the infinite

product for the sine function given in Theorem 12.12.1. �

Exercise 16.5.8. Give an expression for Γ
(
1
3

)
Γ
(
2
3

)
not involving

the gamma function.

Exercise 16.5.9. Use the product for the gamma function to prove

the duplication formula

(16.5.12) Γ(2x) =
1√

π 22x−1
Γ(x)Γ

(
x + 1

2

)
.

Exercise 16.5.10. Use the product representation of the gamma

function to establish the multiplication formula

Γ(x)Γ
(
x + 1

m

)
Γ
(
x + 2

m

)
· · ·Γ

(
x + m−1

m

)
= (2π)

m−1
2 m

1
2−mxΓ(mx).

Exercise 16.5.11. Give an alternative solution of Exercise 16.5.8

using the multiplication rule.

Exercise 16.5.12. The infinite product for the gamma function can

be employed to evaluate some infinite products. This exercise outlines

one of them. Start with the product

P =
∞∏

n=0

(n + a1)(n + a2) · · · (n + ar)

(n + b1)(n + b2) · · · (n + bs)
.
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Prove that the product diverges unless r = s, so there are the same

number of factors top and bottom. Moreover, the coefficients {ai}
and {bj} must satisfy

a1 + a2 + · · · + ar = b1 + b2 + · · · + br.

Hint: Recall the criteria for convergence of an infinite product given

in (12.12.6). Then rewrite P as

P =
a1 · · · ar
b1 · · · br

×
∞∏
n=1

(1 + a1/n)(1 + a2/n) · · · (1 + ar/n)

(1 + b1/n)(1 + b2/n) · · · (1 + br/n)
.

Conclude that

P =
Γ(b1)Γ(b2) · · ·Γ(br)

Γ(a1)Γ(a2) · · ·Γ(ar)
.

The results presented in the next two exercises are due to J. Son-

dow and H. Yi [276].

Exercise 16.5.13. The Wallis-type product

2 =
2

1

4

3

4

5

6

7

10

9

12

11

12

13

14

15

18

17

20

19

20

21

22

23
· · ·

is obtained by writing the right-hand side as

P1 =

∞∏
n=0

(8n + 2)(8n + 4)(8n + 4)(8n + 6)

(8n + 1)(8n + 3)(8n + 5)(8n + 7)
.

Evaluate the product in terms of gamma factors and use the reflection

formula (16.5.11) to obtain the value P1 = 2. The values

(16.5.13) sin
π

8
=

1

2

√
2 −

√
2 and sin

3π

8
=

1

2

√
2 +

√
2

would help in the simplification.

Exercise 16.5.14. Give a proof of the identity√
2 −

√
2 =

2

3

6

5

10

11

14

13

18

19

22

21
· · ·

using an argument similar to Exercise 16.5.13.

Note 16.5.15. E. Catalan [93] obtained the Wallis-type product

π

2
√

2
=

4

3

4

5

8

7

8

9

12

11

12

13
· · ·
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and also a similar product for e:

e =
2

1

(
4

3

)1/2 (
6

5

8

7

)1/4(
10

9

12

11

14

13

16

15

)1/8

· · · ;

N. Pippenger [248] produced

e

2
=

(
2

1

)1/2 (
2

3

4

3

)1/4 (
4

5

6

5

6

7

8

7

)1/8

· · · .

A nice unified treatment of these products is given by J. Sondow and

H. Yi in [276].

Note 16.5.16. The infinite product representation for the gamma

function is now employed to relate it to the Euler constant γ. This is

achieved by taking the logarithms in (16.5.10) to produce

(16.5.14) − ln Γ(x) = lnx + γx +

∞∑
k=1

[
ln
(
1 +

x

k

)
− x

k

]
.

Differentiation now yields

(16.5.15)
Γ′(x)

Γ(x)
= − 1

x
− γ + x

∞∑
k=1

1

k(x + k)
.

Theorem 16.5.17. The Euler constant is γ = −Γ′(1).

Proof. The value x = 1 in (16.5.15) gives

(16.5.16) Γ′(1) = −1 − γ +
∞∑
k=1

1

k(k + 1)
.

The result follows by computing the series by partial fractions. �

The next exercise gives the values of the derivative of Γ at the

positive integers.

Exercise 16.5.18. Establish the value

Γ′(n + 1) = n! (Hn − γ) .

Hint: Use (16.3.5).

Certain special values of Γ′(x) can be expressed in terms of ele-

mentary constants. The next exercise provides one.

                

                                                                                                               



16.6. The beta function 455

Exercise 16.5.19. Use the duplication formula to obtain

Γ′
(

1

2

)
= −

√
π(γ + 2 ln 2).

Note 16.5.20. The number γ is one of the important constants of

mathematics. As in the case of e and π, it also has its own book,

written by J. Havil [162]. The question of the irrationality of γ has

resisted all efforts: it remains an open problem.

The next exercises provide integral representations for γ, or de-

pending on your point of view, they give evaluations of definite inte-

grals in terms of the constant γ.

Exercise 16.5.21. Differentiate (16.2.3) to produce

γ = −
∫ ∞

0

e−t ln t dt.

Use this integral to produce

γ = −
∫ 1

0

ln ln
1

t
dt.

Exercise 16.5.22. Establish the evaluation∫ ∞

0

e−t2 ln t dt = −
√
π

4
(γ + 2 ln 2) .

16.6. The beta function

The beta function defined by

(16.6.1) B(x, y) =

∫ 1

0

tx−1(1 − t)y−1 dt

is an essential companion to the gamma function. The fundamental

relation between these two functions in stated next.

Theorem 16.6.1. The functions beta and gamma are related by the

functional equation

(16.6.2) B(x, y) =
Γ(x) Γ(y)

Γ(x + y)
.
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Proof. The proof employs the result of Exercise 16.2.2

(16.6.3) L
(
tx−1

)
= Γ(x) s−x

and the basic property of the Laplace transform

(16.6.4) L(f ∗ g) = L(f) · L(g)

for the convolution of two functions

(16.6.5) (f ∗ g)(t) =

∫ t

0

f(τ )g(t− τ ) dτ.

Exercise 16.6.2. Prove (16.6.4).

To prove the statement of the theorem, simply observe that

Γ(x)s−x Γ(y)s−y = L

(∫ t

0

τx−1(t− τ )y−1 dτ

)

= L

(
tx+y−1

∫ 1

0

ux−1(1 − u)y−1 du

)
= L

(
tx+y−1 B(x, y)

)
= Γ(x + y)sx+y B(x, y).

The result follows from here. �

Several properties of the beta function are given as exercises.

Exercise 16.6.3. The beta function is symmetric: B(x, y) = B(y, x).

Hint: A simple change of variable in the integral representation for

B does the trick. Of course, the result also follows from (16.6.1).

Exercise 16.6.4. Prove the integral representations

(16.6.6) B(x, y) =

∫ ∞

0

tx−1 dt

(1 + t)x+y
=

∫ 1

0

tx−1 + ty−1

(1 + t)x+y
dt.

Exercise 16.6.5. Prove the relation

(16.6.7)

∫ 1

0

dx√
1 − x4

×
∫ 1

0

x2 dx√
1 − x4

=
π

4
.

This is the lemniscatic identity of L. Euler [121]. The formula is a

special case of an important identity of Legendre among the periods

of an elliptic integral. See H. McKean and V. Moll [213, page 69] for

details.
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Exercise 16.6.6. Prove the trigonometric version of the beta integral

(16.6.8) B(x, y) = 2

∫ π/2

0

cos2x−1 θ sin2y−1 θ dθ.

Exercise 16.6.7. This exercise presents an alternative proof of the

functional equation given in Theorem 16.6.1. Check the evaluation

(16.6.9) Γ(x) = 2

∫ ∞

0

u2x−1e−u2

du

and then compute the product Γ(x)Γ(y) in polar coordinates to obtain

Γ(x)Γ(y) = 4

∫ π/2

0

cos2x−1 θ sin2y−1 θ dθ ×
∫ ∞

0

r2x+2y−1e−r2 dr.

Evaluate both integrals to obtain the result.

Exercise 16.6.8. This exercise reproduces Serret’s proof of the du-

plication formula for the gamma function. Compute

B(x, x) =

∫ 1

0

(
u− u2

)x−1
du

=

∫ 1

0

(
1
4 − ( 12 − u)2

)x−1
du

= 2

∫ 1/2

0

(
1
4 − ( 12 − u)2

)x−1
du.

Change variables u �→ (1 − √
v)/2 to evaluate the last integral as

21−2xB( 12 , x) and complete the argument.

Exercise 16.6.9. Let x ∈ R+. Prove that

B(x, 1
2 ) =

Γ2(x) 22x−1

Γ(2x)
,(16.6.10)

B(x + 1
2 ,

1
2 ) =

π

x 22x−1
· Γ(2x)

Γ2(x)
.(16.6.11)

In the case of x = n ∈ N this can be written as

B(n, 12 ) =
22n

n

(
2n

n

)−1

and B(n + 1
2 ,

1
2 ) =

π

22n

(
2n

n

)
.

Find an expression for B(n,m + 1
2 ) and B(n + 1

2 ,m + 1
2 ).
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16.7. The digamma function

The product representation for the sine function given in (12.12.1) is

sinπx

πx
=

∞∏
k=1

(
1 − x2

k2

)
.

Ignoring issues of convergence, this product produces

ln sinπx− lnπx =
∞∑
k=1

ln

(
1 − x2

k2

)
.

Differentiation and a partial fraction expansion now give

π cotπx− 1

x
=

∞∑
k=1

(
1

x + k
+

1

x− k

)
.

Now observe that the series on the right contains all terms 1/(x+ k)

with k ∈ Z, except k = 0. But, lucky enough, this has appeared on

the left-hand side. This gives

(16.7.1) π cotπx =
∞∑

k=−∞

1

x + k
.

This sum does not converge, so it has to be taken in the principal

value sense; that is,

(16.7.2) π cotπx = lim
n→∞

n∑
k=−n

1

x + k
.

Exercise 16.7.1. Use (16.7.1) to check that cotπx is a periodic func-

tion of x with period 1.

The same procedure applied to the product representation of Γ(x)

gives an expression for the digamma function defined below.

Definition 16.7.2. The logarithmic derivative of the gamma func-

tion, called the digamma function, is defined by

(16.7.3) ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)
.

Note 16.7.3. Formula (16.5.14) gives

(16.7.4) ψ(x) = − 1

x
− γ + x

∞∑
k=1

1

k(x + k)
.
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The next series of exercises contains the main properties of the

digamma function.

Exercise 16.7.4. Prove that

ψ(x + 1) = ψ(x) +
1

x

and

ψ(x) − ψ(1 − x) = −π cotπx.

Exercise 16.7.5. Use the value ψ(1) = −γ to conclude that

ψ(n + 1) = Hn − γ,

where Hn = 1 + 1/2 + · · · + 1/n is the harmonic number.

Exercise 16.7.6. Evaluate ψ(1/2). Use it to establish the identity

ψ
(
n + 1

2

)
= −γ − 2 ln 2 + 2

(
H2n − 1

2Hn

)
.

Exercise 16.7.7. Prove the duplication formula

ψ(2x) =
1

2
(ψ(x) + ψ(x + 1/2)) + ln 2

and the extension

ψ(nx) =
1

n

n−1∑
k=0

ψ (x + k/n) + lnn.

Exercise 16.7.8. Establish the representation

ψ

(
x + 1

2

)
− ψ

(x
2

)
= 2

∞∑
k=0

(−1)k

x + k
.

Note 16.7.9. Gauss gave a remarkable formula for the value of ψ at

every rational number. The formula is stated for numbers in (0, 1).

The values outside the unit interval are obtained using Exercise 16.7.4.

Let p, q ∈ N with p < q. Then

ψ

(
p

q

)
= −γ − ln q − π

2
cot

(
πp

q

)

+
1

2

q−1∑
k=1

cos

(
2πkp

q

)
ln

(
2 − 2 cos

(
2πk

q

))
.

The reader will find a proof in the book by G. Andrews, R. Askey,

and R. Roy [18].
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16.8. The Riemann zeta function

In the computations of special values of the digamma function ψ(x),

the natural next step is to obtain expressions for the derivative ψ′(x).

Differentiation of the series (16.7.4) leads to

(16.8.1) ψ′(x) =
∞∑
k=0

1

(x + k)2
.

In particular,

(16.8.2) ψ′(1) =

∞∑
k=1

1

k2
.

In 1644 Pietro Mengoli asked for a closed-form expression for this sum

and this search became known as the Basel problem. Its solution

withstood the attack of the leading mathematicians of the time. The

solution by the twenty-eight-year-old Leonhard Euler, in the form

(16.8.3)
∞∑

n=1

1

n2
=

π2

6
,

brought him immediate recognition.

Euler established the value of

(16.8.4)

∞∑
n=1

1

n2k

in terms of the Bernoulli numbers and in the next century B. Riemann

introduced his remarkable function

(16.8.5) ζ(s) =

∞∑
n=1

1

ns
.

In this language, Euler’s solution to the Basel problem simply states

the special value

(16.8.6) ζ(2) =
π2

6
.

The function ζ(s) has profound control over the distribution of prime

numbers. This is based on Euler’s representation

(16.8.7) ζ(s) =
∏

p prime

1

1 − p−s
,

                

                                                                                                               



16.9. The values of ζ(2n) 461

this being an analytic form of the fact that every natural number has

a prime factorization.

The series defining ζ(s) converges for Re s > 1 and Euler’s prod-

uct shows that ζ(s) �= 0 in this region. The relation between the

zeros of ζ(s) and the distribution of primes is exemplified by the next

theorem. This is the so-called prime number theorem.

Theorem 16.8.1. The nth prime number is asymptotic to n lnn.

It turns out that this result is equivalent to the fact that ζ(s) �=
0 on the vertical line Re s = 1. Riemann’s work shows that the

distribution of prime numbers is closely connected to his ζ-function

and, in particular, to the location of its zeros. Based on numerical

evidence, Riemann conjectured that all of them have to be on the

vertical line Re s = 1
2 . This is the famous Riemann hypothesis. A

historical approach to ζ(s) may be found in the book by H. Edwards

[116]. A nice description of current research appears in the paper by

J. B. Conrey [104] and a possible alternative approach is in the paper

by A. Granville [147].

16.9. The values of ζ(2n)

Euler’s proof of (16.8.6) is based on comparing the product represen-

tation and the Taylor series for sin x. The product

(16.9.1) sinx = x
∞∏
k=1

(
1 − x2

k2π2

)

is given in (12.12.1). To expand the product, it is necessary to form

products taking one factor from each of the terms 1 − x2/k2π2. The

contribution to the coefficient of x2 comes from taking all terms 1

with one exception. Matching this to the coefficient of x3 in the

Taylor series (recall the extra x factor on the right) gives

(16.9.2) − 1

3!
= −

(
1

12π2
+

1

22π2
+

1

32π2
+ · · ·

)
.

This is (16.8.6).

Exercise 16.9.1. Compute the coefficient of x4 to obtain

ζ(4) = π4/90.
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The values of ζ(2n) are provided next.

Theorem 16.9.2. For any n ∈ N,

(16.9.3) ζ(2n) =
(−1)n−1B2n

2(2n)!
(2π)2n.

Proof. The logarithm of the identity (16.9.1) is

(16.9.4) ln sin x = lnx +

∞∑
k=1

ln

(
1 − x2

k2π2

)

and differentiation produces

(16.9.5) cotx =
1

x
−

∞∑
k=1

2x

k2π2
×
(

1 − x2

k2π2

)−1

.

Now recognize the geometric series

(16.9.6)

(
1 − x2

k2π2

)−1

=

∞∑
r=0

x2r

k2rπ2r

to obtain

cotx =
1

x
− 2x

∞∑
k=1

∞∑
r=1

x2r−2

k2rπ2r

=
1

x
− 2

∞∑
r=1

ζ(2r)

π2r
x2r−1.

Compare coefficients with those from the expansion (13.3.12)

(16.9.7) cotx =

∞∑
n=0

(−1)n
22n

(2n)!
B2nx

2n−1

to obtain the result. �

The formula for ζ(2n) implies the result of Corollary 13.3.7.

Corollary 16.9.3. The Bernoulli numbers satisfy (−1)n−1B2n > 0.

Corollary 16.9.4. For any n ∈ N, the number
ζ(2n)

π2n
is a rational

number. In detail,
ζ(2n)

π2n
=

22n−1 |B2n|
(2n)!

.
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Corollary 16.9.5. The asymptotic behavior of the Bernoulli numbers

is given by

|B2n| ∼
2(2n)!

(2π)2n
.

The next corollary presents a lower bound for the Bernoulli num-

bers that shows the appearance of the interesting constant πe.

Corollary 16.9.6. The Bernoulli numbers satisfy

(16.9.8) |B2n| > 2
( n

πe

)2n
.

Proof. The bound ζ(2n) > 1 gives

|B2n| > 2
(2n)!

(2π)2n
.

The result now follows from the next exercise. �

Exercise 16.9.7. Prove the bound en > nn/n!.

16.10. Apéry’s constant ζ(3)

The last section of this book considers the Apéry constant

(16.10.1) ζ(3) =

∞∑
n=1

1

n3

with particular emphasis on its arithmetic properties. The goal of

this section is to establish Apéry’s theorem that ζ(3) is irrational.

Historical information is provided at the end of the section.

The first proof follows some notes by B. Nica, available on line at

math.arizona.edu/~savitt/teaching/nt/projects/nica.pdf,

that are based on F. Beukers’ proof of the result [52]. The proof

begins with some elementary exercises and a proof that ζ(2) = π2/6

is irrational.

Exercise 16.10.1. Define

(16.10.2) pn(x) =
1

n!

(
d

dx

)n

[xn(1 − x)n] .

Prove that pn(x) is a polynomial with integer coefficients. Express it

in terms of the Legendre polynomials defined in (14.2.1).
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Exercise 16.10.2. Expand the integrand as a geometric series and

verify the identity∫ 1

0

∫ 1

0

xr+a ys+a

1 − xy
dx dy =

∞∑
n=0

1

(n + r + a + 1)(n + s + a + 1)
.

In particular, take r = s and a = 0 to obtain∫ 1

0

∫ 1

0

xr yr

1 − xy
dx dy = ζ(2) −

r∑
j=1

1

j2
= ζ(2) +

Ar

d2r
,

where dr = lcm{1, 2, . . . , r} and Ar ∈ Z. Repeat the argument for

the case r > s and check that the sum has the same structure as in

the case r = s.

Exercise 16.10.3. (a) Use the results of Exercises 16.10.1 and 16.10.2

to confirm that∫ 1

0

∫ 1

0

pn(x)(1 − y)n

1 − xy
dx dy =

an + bnζ(2)

d2n

for an, bn ∈ Z and dn as in Exercise 16.10.2.

(b) Integrate by parts to check the identity

J :=

∫ 1

0

∫ 1

0

pn(x)(1 − y)n

1 − xy
dx dy

=

∫ 1

0

∫ 1

0

(
x(1 − x)y(1 − y)

1 − xy

)n
dx dy

1 − xy

and conclude that an + bnζ(2) > 0.

(c) Let ϕ = (
√

5 − 1)/2 be the golden ratio. Prove that, for

0 ≤ x, y ≤ 1, the inequality

x(1 − x)y(1 − y)

1 − xy
≤ ϕ5 =

5
√

5 − 11

2
<

1

10

holds. Hint: Simply compute the maximum of the function.

Exercise 16.10.4. Let ξ ∈ R and assume there are integers an, bn
and a constant C such that

(16.10.3) 0 < |an + bnξ| < Cαn

for some 0 < α < 1. Then ξ is irrational. Hint: Use Theorem 1.9.15.

These exercises provide an irrationality proof.
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Theorem 16.10.5. The value ζ(2) = π2/6 is irrational.

Proof. The previous exercises give the bound

0 < |an + bnζ(2)| < d2nζ(2)/10n.

The bound dn < 3n was established in Theorem 11.10.1. Now use the

bound |an + bnζ(2)| < 2 · (9/10)
n

and Exercise 16.10.4. �
Note 16.10.6. The previous theorem complements Theorem 12.13.2,

which states that π itself is irrational. The arithmetic character of

π has been described in Theorem 12.13.8, where it is shown that π

is transcendental. As a consequence of this result, all powers of π

are irrational numbers. Therefore, so is ζ(2n), this being a rational

multiple of π2n. The question of the irrationality of the values of

the Riemann zeta function at the odd integers became a natural one.

This has shown itself to be a much harder problem to solve. It was

first with caution and then with admiration that the mathematical

community learned from R. Apéry that ζ(3) is irrational. The first

proof presented below follows the ideas of Theorem 16.10.5. The

second one is due to W. Zudilin and it has appeared in [324].

The methods developed by Apéry and others do not seem to ap-

ply to the other odd zeta values. On the other hand, some progress

on this question has been achieved. K. Ball and T. Rivoal [38, 254]

proved that there are infinitely many values ζ(2n + 1) that are ir-

rational. W. Zudilin [323] proved that one of the four numbers

ζ(5), ζ(7), ζ(9), ζ(11) is irrational. It is conjectured that all of them

are.

Theorem 16.10.7. The Apéry constant ζ(3) is irrational.

The next exercises will be employed in the proof.

Exercise 16.10.8. For 0 ≤ x, y, w ≤ 1, define

f(x, y, w) =
x(1 − x)y(1 − y)w(1 − w)

1 − (1 − xy)w
.

Then f(x, y, w) ≤ (
√

2 − 1)4.

Exercise 16.10.9. Let r, s ∈ N. Define

g(r, s) = −
∫ 1

0

∫ 1

0

xr ys lnxy

1 − xy
dx dy.
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Check that g(r, r) has the form 2ζ(3) + ar/d
3
r, where dr = lcm{1, 2,

. . . , r} and ar ∈ Z. Also, for r > s, the number g(r, s) has the form

ar,s/d
3
r. Hint: Differentiate with respect to a the relation

∫ 1

0

∫ 1

0

xr+a yr+a

1 − xy
dx dy =

∞∑
n=0

1

(n + r + a + 1)2
.

The case r > s is treated by similar methods. Conclude that

∫ 1

0

∫ 1

0

− lnxy

1 − xy
dx dy = 2ζ(3).

Exercise 16.10.10. Let pn be the polynomial defined in Exercise

16.10.1. Prove that

I3 := −
∫ 1

0

∫ 1

0

pn(x) pn(y) lnxy

1 − xy
dx dy =

an + bnζ(3)

d3n

for some an, bn ∈ Z.

Proof of Apéry’s theorem. Start with the expression

− lnxy

1 − xy
=

∫ 1

0

dz

1 − (1 − xy)z

and substitute it into the integral I3 in Exercise 16.10.10 to obtain

|I3| =

∣∣∣∣
∫ 1

0

pn(x)

(∫ 1

0

∫ 1

0

pn(y) dy dz

1 − (1 − xy)z

)
dx

∣∣∣∣
=

∣∣∣∣
∫ 1

0

xn(1 − x)n

n!

(∫ 1

0

∫ 1

0

dn

dxn

(
pn(y) dy dz

1 − (1 − xy)z

))
dx

∣∣∣∣
=

∣∣∣∣
∫ 1

0

xn(1 − x)n

n!

(∫ 1

0

∫ 1

0

(−1)nn!pn(y)ynzn

(1 − (1 − xy)z)n+1
dy dz

)
dx

∣∣∣∣
=

∣∣∣∣
∫ 1

0

pn(y)

(∫ 1

0

∫ 1

0

xn(1 − x)nynzn

(1 − (1 − xy)z)n+1
dx dz

)
dy

∣∣∣∣ .
Now make the change of variables

w =
1 − z

1 − (1 − xy)z
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to obtain

|I3| =
∣∣∣∣
∫ 1

0

pn(y)

(∫ 1

0

∫ 1

0

(1− x)n(1− w)n

1− (1− xy)w
dxdw

)
dy

∣∣∣∣
=

∣∣∣∣
∫ 1

0

yn(1− y)n

n!

(∫ 1

0

∫ 1

0

dn

dyn

(
(1− x)n(1− w)n

1− (1− xy)w

)
dx dw

)
dy

∣∣∣∣
=

∣∣∣∣
∫ 1

0

yn(1− y)n

n!

(∫ 1

0

∫ 1

0

(−1)nn!(1− x)n(1− w)nxnwn

(1− (1− xy)w)n+1
dx dw

)
dy

∣∣∣∣
=

∫ 1

0

∫ 1

0

∫ 1

0

[
x(1− x)y(1− y)w(1− w)

1− (1− xy)w

]n
dx dy dw

1− (1− xy)w
.

This proves that the integral I3 does not vanish. Exercise 16.10.8

gives the bound

|I3| =

∣∣∣∣an + bnζ(3)

d3n

∣∣∣∣ ≤ (
√

2 − 1)4n
∫ 1

0

∫ 1

0

∫ 1

0

dx dy dw

1 − (1 − xy)w

= (
√

2 − 1)4n
∫ 1

0

∫ 1

0

− lnxy

1 − xy
dx dy = 2ζ(3)(

√
2 − 1)4n,

which leads to

0 < |an + bnζ(3)| ≤ 2ζ(3)d3n (
√

2 − 1)4n.

The bounds dn < 3n and 27(
√

2 − 1)4 < 4
5 imply

0 < |an + bnζ(3)| ≤ 2ζ(3)(4/5)n.

The last step employs Exercise 16.10.9. Exercise 16.10.4 shows that

ζ(3) is irrational.

The second proof of Apéry’s theorem presented here appears in

the paper by W. Zudilin [324]. The argument is based on ideas that

started in papers by L. A. Gutnik [156] and Yu. V. Nesterenko [233].

The starting point is the rational function

(16.10.4) Rn(t) =

(
(t− 1)(t− 2) · · · (t− n)

t(t + 1) · · · (t + n)

)2

and the series

(16.10.5) rn := −
∞∑
t=1

R′
n(t).

As before, dn = lcm{1, 2, . . . , n}, with d0 = 1 for completeness.

Lemma 16.10.11. The series rn is of the form unζ(3)−vn for some

un ∈ Z and the rational number vn satisfies d3nvn ∈ Z.
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Proof. Square the partial fraction decomposition

(t− 1)(t− 2) · · · (t− n)

t(t + 1) · · · (t + n)
=

n∑
k=0

(−1)n−k
(
n+k
n

)(
n
k

)
t + k

to obtain

Rn(t) =
n∑

k=0

(
A

(n)
2,k

(t + k)2
+

A
(n)
1,k

t + k

)
,

with

(16.10.6) A2,k =

(
n + k

n

)2 (
n

k

)2

∈ Z and dnA1,k ∈ Z.

Exercise 16.10.12. Check that

(16.10.7)

n∑
k=0

A1,k = 0.

Hint: Let f be a rational function. Evaluate the sum all its residues,

including the pole at infinity. In the special case considered here, the

rational function Rn is of order t−2 as t → ∞; therefore its residue

at infinity vanishes.

This yields

rn =
∞∑
t=1

n∑
k=0

(
2A2,k

(t + k)3
+

A1,k

(t + k)2

)

=
n∑

k=0

∞∑
j=k+1

(
2A2,k

j3
+

A1,k

j2

)

= 2
n∑

k=0

A2,k

⎛
⎝ζ(3) −

k∑
j=1

1

j3

⎞
⎠−

n∑
k=0

k∑
j=1

1

j2
.

This has the desired form with

(16.10.8) un = 2
n∑

k=0

A2,k

and

(16.10.9) vn = 2

n∑
k=0

A2,k

k∑
j=1

1

j3
+

n∑
k=0

A1,k

k∑
j=1

1

j2
.
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Exercise 16.10.13. Check that d3nvn is an integer.

The proof of the lemma is complete. �

The next ingredient in the proof is provided by the magic of the

WZ-method.

Lemma 16.10.14. Define

(16.10.10) sn(t) = −4(2n + 1)(2t2 − t− (2n + 1)2).

Then Sn(t) = sn(t)Rn(t) satisfies

(n + 1)3Rn+1(t) − (2n + 1)(17n2 + 17n + 5)Rn(t) + n3Rn−1(t)

= Sn(t + 1) − Sn(t).

Exercise 16.10.15. Give a proof of Lemma 16.10.14.

The next result is obtained by differentiating the relation of

Lemma 16.10.14 and summing over all t ≥ 1.

Lemma 16.10.16. The quantity rn defined in (16.10.5) satisfies the

recurrence

(n + 1)3rn+1 − (2n + 1)(17n2 + 17n + 5)rn + n3rn = 0.

Proof. Sum over all t and observe that the right-hand side telescopes.

The contributions at t = 1 vanish as the reader will check in the next

exercise. �

Exercise 16.10.17. Check that Rn(t) and Sn(t) have a zero at t = 1

of multiplicity 2. Verify that the order of R′
n(t) and S′

n(t) at t = ∞
guarantees the validity of the argument.

The next step is to consider a second rational function, originally

introduced by K. Ball [38] and T. Rivoal [254], by

R̃n(t) = n!2(2t + n)
(t− 1) · · · (t− n) · (t + n + 1) · · · (t + 2n)

[t(t + 1) · · · (t + n)]4

and the corresponding series

r̃n :=
∞∑
t=1

R̃n(t).

                

                                                                                                               



470 16. Three Special Functions: Γ, ψ, and ζ

The plan is to show that r̃n = rn by showing that it satisfies the

recurrence established for rn with the same initial conditions. Then,

bounds on R̃n(t) will imply the estimates for rn. In turn these will

show that ζ(3) is irrational.

Exercise 16.10.18. Prove the following estimate for the product of

n consecutive integers:

e−n (m + n)m+n−1

mm−1
< m(m + 1) · · · (m + n− 1) < e−n (m + n)m+n

mm
.

Hint: Use the elementary inequalities

1

m
· (m + 1)m

mm−1
=

(
1 +

1

m

)m

< e <

(
1 +

1

m

)m+1

=
1

m
· (m + 1)m+1

mm
.

The result of Exercise 16.10.18 is employed to estimate R̃n(t).

For integer t ≥ 1,

R̃n(t) · (t + n)5

(2t + n)(t + 2n)

= n!2 · (t− 1) · · · (t− n) · (t + n) · · · (t + 2n− 1)

[t(t + 1) · · · (t + n− 1)]4

< (n + 1)2(n+1) · t5t−4(t + 2n)t+2n

(t− n)t−n (t + n)5(t+n)−4
.

It follows that

R̃n(t) · t4(t + n)

(2t + n)(t + 2n)(n + 1)2

< (n + 1)2n · t5t(t + 2n)t+2n

(t− n)t−n (t + n)5(t+n)

=

(
1 +

1

n

)2n

· enf(t/n)

< e2
(
supτ>1e

f(τ)
)n

,

where

(16.10.11) f(τ ) := ln
τ5τ (τ + 2)τ+2

(τ − 1)τ−1 (τ + 1)5(τ+1)
.
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Exercise 16.10.19. Verify that the only critical point of the function

f(τ ) in the region τ > 1 is at

τ0 = −1

2
+

√
5

4
+
√

2.

Confirm that

supτ>1e
f(τ) = f(τ0) = 4 ln(

√
2 − 1).

Hint: Use Mathematica or any symbolic language of your choice.

The bound for R̃n is stated next.

Lemma 16.10.20. The function R̃n(t) satisfies the bound

R̃n(t) · t4(t + n)

(2t + n)(t + 2n)
< e2(n + 1)2(

√
2 − 1)4n.

The next exercise produces bounds for r̃n from those stated in

Lemma 16.10.20

Exercise 16.10.21. Prove the estimate

r̃n < 20(n + 1)4(
√

2 − 1)4n.

Hint: Observe that in the series defining r̃n the first n terms vanish.

Direct application of the bounds for R̃n(t) gives a bound involving

e2(2ζ(5) + 5nζ(4) + 2n3ζ(3)). Check that this term is bounded from

above by 20(n + 1)2.

The final step is to show that r̃n = rn. The proof of the next

lemma comes directly from the WZ-method applied to the rational

function R̃n(t).

Lemma 16.10.22. Define the polynomial

Yn(t) = −t6 − (8n− 1)t5 +(4n2 + 27n + 5)t4 +2n(67n2 + 71n + 15)t3

+ (358n4 + 339n3 + 76n2 − 7n− 3)t2

+ (384n5 + 396n4 + 97n3 − 29n2 − 17n− 2)t

+ n(153n5 + 183n4 + 50n3 − 30n2 − 22n− 4)

and the rational certificate

S̃n(t) =
Yn(t)

(2t + n)(t + 2n− 1)(t + 2n)
R̃n(t).
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Then the identity

(n + 1)R̃n+1(t) − (2n + 1)(17n2 + 17n + 5)R̃n(t) + n3R̃n−1(t)

= S̃n(t + 1) − S̃n(t)

holds.

Exercise 16.10.23. Confirm that r̃n satisfies the same recurrence as

rn. Then check the initial values and conclude that r̃n = rn.

Proof of Apéry’s theorem. Lemma 16.10.11 shows that the term

rn has the form

(16.10.12) rn = unζ(3) − vn,

with un, d
3
nvn ∈ Z. If ζ(3) = p/q ∈ Q, then

(16.10.13) 0 < qrnd
3
n = pund

3
n − qd3nvn

is a positive integer. On the other hand, the bounds on r̃n = rn give

0 < qrnd
3
n < 20q(n+1)433n(

√
2−1)4n = 20q(n+1)4

[
27(

√
2 − 1)4

]n
.

The bound 27(
√

2 − 1)4 < 4/5 shows that the right-hand side con-

verges to 0 as n → ∞. This is gives a contradiction and the proof of

Apéry’s theorem is complete.
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Lamé’s theorem on length of
euclidean algorithm, 16

Legendre’s theorem for
valuations of factorials,

Luthar’s extension of Wilson’s
theorem,

Mohanty’s proof of infinite
primes, 26

Morley’s theorem for central
binomial coefficients,

nature of roots of a cubic
polynomial,

Ostrowski’s theorem on
completions of Q, 54

                

                                                                                                               



Index 503

π is irrational, 347

P. Paule and V. Pillwein
automatic Wallis’ inequalities,
253

periodic decimal sums, 30

periodic continued fractions,
50

prime number theorem,

rational numbers are countable,
33

real numbers are not countable,
42

Rothstein and Trager integration
theorem, 240

Sondow’s proof of irrationality of
e, 278

sums of four squares, 225

sums of two squares, 27

Taylor expansion, 64

Touchard’s theorem for Catalan
numbers, 184

von Staudt-Clausen theorem,
372

Wilson’s theorem for factorials,
67

Wolstenholme’s theorem for
central binomial coefficients,
73

Wolstenholme’s theorem for
harmonic numbers, 305

theta functions, 131

Thue-Morse sequence, 119

transcendental number, 143

trigonometric functions

addition theorem for sine and
cosine, 321

differential equation for sine and
cosine, 312

dynamical system from
arctangent, 351

expansion of tangent and
cotangent, 363

Euler’s formula for complex
exponentials, 313

infinite product for sine and
cosine, 343

special values, 331
tangent, cotangent, secant,

cosecant, 314
Taylor expansion of arctangent,

314
Taylor expansion of sine and

cosine, 312
trigonometric solutions of cubic

equations, 337

trinomial coefficients
central, 96
definition, 86
generating function for central

trinomial coefficients, 100
primes dividing central trinomial

coefficients, 103
recurrence for central trinomial

coefficients, 100

sums of cubes of binomial
coefficients, 176

symmetry, 97

Umemura, H., 167

valuations
ASM numbers, 207
binomial coefficients, 78
definition, 20
factorials, 76
Fibonacci numbers, 114
Stirling numbers, 197
tree structure, 21

Vandermonde identity, 164

Vieta
product formula for π, 323
product formula for sin, 322

Wallis’ formula
automatic proof, 252
elementary recurrence, 247
experimental approach, 245
generating functions, 248
Hausdorff moment problem,

190
second recurrence, 250

                

                                                                                                               



504 Index

trigonometric form, 249, 323

Wallis’ infinite product for π,
324, 344

Wilf, H.
enumeration of rationals, 35

WZ method
2-adic valuations of dl,m, 425,

426
5-adic valuation of Fibonacci,

117
auxiliary function for ζ(3), 471
central trinomial coefficients,

98
Wallis’ formula, 252

Zagier, D. 28, 87, 302

Zeilberger, D. 208

Zudilin, W. 467

                

                                                                                                               



For additional information
and updates on this book, visit

www.ams.org/bookpages/stml-65

AMS on the Web
www.ams.orgSTML/65

New mathematics often comes about by probing 
what is already known. Mathematicians will 
change the parameters in a familiar calculation 
or explore the essential ingredients of a classic 
proof. Almost magically, new ideas emerge from 
this process. This book examines elementary 
functions, such as those encountered in calculus 
courses, from this point of view of experimental 
mathematics. The focus is on exploring the connections between 
these functions and topics in number theory and combinatorics. 
There is also an emphasis throughout the book on how current 
mathematical software can be used to discover and prove inter-
esting properties of these functions.

The book provides a transition between elementary mathematics 
and more advanced topics, trying to make this transition as smooth 
as possible. Many topics occur in the book, but they are all part of 
a bigger picture of mathematics. By delving into a variety of them, 
the reader will develop this broad view. The large collection of 
problems is an essential part of the book. The problems vary from 
routine verifi cations of facts used in the text to the exploration of 
open questions.
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