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Pereyra, Maŕıa Cristina.
Harmonic analysis : from Fourier to wavelets / Maŕıa Cristina Pereyra, Lesley
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Preface

Over two hundred years ago, Jean Baptiste Joseph Fourier began to
work on the theory of heat and how it flows. His book Théorie An-
alytique de la Chaleur (The Analytic Theory of Heat) was published
in 1822. In that work, he began the development of one of the most
influential bodies of mathematical ideas, encompassing Fourier theory
and the field now known as harmonic analysis that has grown from it.
Since that time, the subject has been exceptionally significant both in
its theoretical implications and in its enormous range of applicability
throughout mathematics, science, and engineering.

On the theoretical side, the theory of Fourier series was a driv-
ing force in the development of mathematical analysis, the study of
functions of a real variable. For instance, notions of convergence were
created in order to deal with the subtleties of Fourier series. One
could also argue that set theory, including the construction of the
real numbers and the ideas of cardinality and countability, was de-
veloped because of Fourier theory. On the applied side, all the signal
processing done today relies on Fourier theory. Everything from the
technology of mobile phones to the way images are stored and trans-
mitted over the Internet depends on the theory of Fourier series. Most
recently the field of wavelets has arisen, uniting its roots in harmonic
analysis with theoretical and applied developments in fields such as
medical imaging and seismology.

xvii

                

                                                                                                               



xviii Preface

In this book, we hope to convey the remarkable beauty and appli-
cability of the ideas that have grown from Fourier theory. We present
for an advanced undergraduate and beginning graduate student au-
dience the basics of harmonic analysis, from Fourier’s heat equation,
and the decomposition of functions into sums of cosines and sines
(frequency analysis), to dyadic harmonic analysis, and the decompo-
sition of functions into a Haar basis (time localization). In between
these two different ways of decomposing functions there is a whole
world of time/frequency analysis (wavelets). We touch on aspects of
that world, concentrating on the Fourier and Haar cases.

The book is organized as follows. In the first five chapters we lay
out the classical theory of Fourier series. In Chapter 1 we introduce
Fourier series for periodic functions and discuss physical motivations.
In Chapter 2 we present a review of different modes of convergence
and appropriate classes of functions. In Chapter 3 we discuss point-
wise convergence for Fourier series and the interplay with differentia-
bility. In Chapter 4 we introduce approximations of the identity, the
Dirichlet, Fejér, and Poisson kernels, and summability methods for
Fourier series. Finally in Chapter 5 we discuss inner-product vector
spaces and the completeness of the trigonometric basis in L2(T).

In Chapter 6, we examine discrete Fourier and Haar analysis on
finite-dimensional spaces. We present the Discrete Fourier Transform
and its celebrated cousin the Fast Fourier Transform, an algorithm
discovered by Gauss in the early 1800s and rediscovered by Cooley
and Tukey in the 1960s. We compare them with the Discrete Haar
Transform and the Fast Haar Transform algorithm.

In Chapters 7 and 8 we discuss the Fourier transform on the line.
In Chapter 7 we introduce the time–frequency dictionary, convolu-
tions, and approximations of the identity in what we call paradise
(the Schwartz class). In Chapter 8, we go beyond paradise and dis-
cuss the Fourier transform for tempered distributions, construct a
time–frequency dictionary in that setting, and discuss the delta dis-
tribution as well as the principal value distribution. We survey the
mapping properties of the Fourier transform acting on Lp spaces, as
well as a few canonical applications of the Fourier transform including
the Shannon sampling theorem.

                

                                                                                                               



Preface xix

In Chapters 9, 10, and 11 we discuss wavelet bases, with empha-
sis on the Haar basis. In Chapter 9, we survey the windowed Fourier
transform, the Gabor transforms, and the wavelet transform. We de-
velop in detail the Haar basis, the geometry of dyadic intervals, and
take some initial steps into the world of dyadic harmonic analysis.
In Chapter 10, we discuss the general framework of multiresolution
analysis for constructing other wavelets. We describe some canoni-
cal applications to image processing and compression and denoising,
illustrated in a case study of the wavelet-based FBI fingerprint stan-
dard. We state and prove Mallat’s Theorem and explain how to search
for suitable multiresolution analyses. In Chapter 11, we discuss al-
gorithms and connections to filter banks. We revisit the algorithm
for the Haar basis and the multiresolution analysis that they induce.
We describe the cascade algorithm and how to implement the wavelet
transform given multiresolution analysis, using filter banks to obtain
the Fast Wavelet Transform. We describe some properties and de-
sign features of known wavelets, as well as the basics of image/signal
denoising and compression.

To finish our journey, in Chapter 12 we present the Hilbert trans-
form, the most important operator in harmonic analysis after the
Fourier transform. We describe the Hilbert transform in three ways:
as a Fourier multiplier, as a singular integral, and as an average of
Haar shift operators. We discuss how the Hilbert transform acts
on the function spaces Lp, as well as some tools for understanding
the Lp spaces. In particular we discuss the Riesz–Thorin Interpola-
tion Theorem and as an application derive some of the most useful
inequalities in analysis. Finally we explain the connections of the
Hilbert transform with complex analysis and with Fourier analysis.

Each chapter ends with ideas for projects in harmonic analysis
that students can work on rather independently, using the material
in our book as a springboard. We have found that such projects help
students to become deeply engaged in the subject matter, in part by
giving them the opportunity to take ownership of a particular topic.
We believe the projects will be useful both for individual students
using our book for independent study and for students using the book
in a formal course.

                

                                                                                                               



xx Preface

The prerequisites for our book are advanced calculus and linear
algebra. Some knowledge of real analysis would be helpful but is not
required. We introduce concepts from Hilbert spaces, Banach spaces,
and the theory of distributions as needed. Chapter 2 is an inter-
lude about analysis on intervals. In the Appendix we review vector,
normed, and inner-product spaces, as well as some key concepts from
analysis on the real line.

We view the book as an introduction to serious analysis and com-
putational harmonic analysis through the lens of Fourier and wavelet
analysis.

Examples, exercises, and figures appear throughout the text. The
notation A := B and B =: A both mean that A is defined to be the
quantity B. We use the symbol � to mark the end of a proof and the
symbol ♦ to mark the end of an example, exercise, aside, remark, or
definition.

Suggestions for instructors

The first author used drafts of our book twice as the text for a one-
semester course on Fourier analysis and wavelets at the University
of New Mexico, aimed at upper-level undergraduate and graduate
students. She covered most of the material in Chapters 1 and 3–11
and used a selection of the student projects, omitting Chapter 12 for
lack of time. The concepts and ideas in Chapter 2 were discussed as
the need arose while lecturing on the other chapters, and students
were encouraged to revisit that chapter as needed.

One can design other one-semester courses based on this book.
The instructor could make such a course more theoretical (following
the Lp stream, excluding Chapters 6, 10, and 11) or more computa-
tional (excluding the Lp stream and Chapter 12 and including Chap-
ter 6 and parts of Chapters 10 and 11). In both situations Chapter 2
is a resource, not meant as lecture material. For a course exclusively
on Fourier analysis, Chapters 1–8 have more than enough material.
For an audience already familiar with Fourier series, one could start
in Chapter 6 with a brief review and then do the Discrete Fourier and
Haar Transforms, for which only linear algebra is needed, and move
on to Fourier integrals, Haar analysis, and wavelets. Finally, one

                

                                                                                                               



Suggestions for instructors xxi

could treat the Hilbert transform or instead supplement the course
with more applications, perhaps inspired by the projects. We believe
that the emphasis on the Haar basis and on dyadic harmonic analysis
make the book distinctive, and we would include that material.

The twenty-four projects vary in difficulty and sophistication. We
have written them to be flexible and open-ended, and we encourage
instructors to modify them and to create their own. Some of our
projects are structured sequentially, with each part building on earlier
parts, while in other projects the individual parts are independent.
Some projects are simple in form but quite ambitious, asking students
to absorb and report on recent research papers. Our projects are
suitable for individuals or teams of students.

It works well to ask students both to give an oral presentation
on the project and to write a report and/or a literature survey. The
intended audience is another student at the same stage of studies but
without knowledge of the specific project content. In this way, stu-
dents develop skills in various types of mathematical communication,
and students with differing strengths get a chance to shine. Instruc-
tors can reserve the last two or three weeks of lectures for student
talks if there are few enough students to make this practicable. We
find this to be a worthwhile use of time.

It is fruitful to set up some project milestones throughout the
course in the form of a series of target dates for such tasks as preparing
outlines of the oral presentation and of the report, drafting summaries
of the first few items in a literature survey, rehearsing a presentation,
completing a draft of a report, and so on. Early planning and com-
munication here will save much stress later. In the second week of
classes, we like to have an initial ten-minute conversation with each
student, discussing a few preliminary sentences they have written on
their early ideas for the content and structure of the project they
plan to do. Such a meeting enables timely intervention if the pro-
posed scope of the project is not realistic, for instance. A little later
in the semester, students will benefit from a brief discussion with the
instructor on the content of their projects and their next steps, once
they have sunk their teeth into the ideas.

                

                                                                                                               



xxii Preface

Students may find it helpful to use the mathematical typesetting
package LATEX for their reports and software such as Beamer to create
slides for their oral presentations. Working on a project provides good
motivation for learning such professional tools. Here is a natural
opportunity for instructors to give formal or informal training in the
use of such tools and in mathematical writing and speaking. We
recommend Higham’s book [Hig] and the references it contains as
an excellent place to start. Instructors contemplating the task of
designing and planning semester-long student projects will find much
food for thought in Bean’s book [Bea].
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Chapter 1

Fourier series: Some
motivation

In this book we discuss three types of Fourier analysis1: first, Fourier
series, in which the input is a periodic function on R and the output
is a two-sided series where the summation is over n ∈ Z (Chapters 1–
5); second, finite Fourier analysis, where the input is a vector of
length N with complex entries and the output is another vector in CN

(Chapter 6); and third, the Fourier transform, where the input is a
function on R and the output is another function on R (Chapters 7–
8). For the Fourier transform we treat separately the case of the
extremely well-behaved Schwartz functions and that of the less well-
behaved distributions. We build on this foundation to discuss the
windowed Fourier transform, Gabor transforms, the Haar transform
and other wavelet transforms, the Hilbert transform, and applications
(Chapters 9–12).

In this first chapter we take our initial steps into the theory of
Fourier series. We present a simple example in signal processing and
compression (Section 1.1). We lay down the basic questions regard-
ing expansions in trigonometric series, and compare to expansions in

1Named after French mathematician and physicist Jean Baptiste Joseph Fourier
(1768–1830). For a sketch of Fourier’s fascinating life, including his contributions to
Egyptology, see [Kör, Chapters 92 and 93].

1

                                     

                

                                                                                                               



2 1. Fourier series: Some motivation

Taylor series (Section 1.2). We introduce and motivate the mathemat-
ical definition of Fourier coefficients and series and discuss periodic
functions (Section 1.3). We describe the physical problem of heat dif-
fusion in a one-dimensional bar, which led Fourier to assert that “all
periodic functions” could be expanded in a series of sines and cosines
(Section 1.4).

1.1. An example: Amanda calls her mother

The central idea of Fourier analysis is to break a function into a
combination of simpler functions. (See the two examples shown on the
cover.) We think of these simpler functions as building blocks. We will
be interested in reconstructing the original function from the building
blocks. Here is a colorful analogy: a prism or raindrop can break a ray
of (white) light into all colors of the rainbow. The analogy is quite apt:
the different colors correspond to different wavelengths/frequencies of
light. We can reconstruct the white light from the composition of
all the different wavelengths. We will see that our simpler functions
can correspond to pure frequencies. We will consider sine and cosine
functions of various frequencies as our first example of these building
blocks. When played aloud, a given sine or cosine function produces
a pure tone or note or harmonic at a single frequency. The term
harmonic analysis evokes this idea of separation of a sound, or in our
terms a function, into pure tones.

Expressing a function as a combination of building blocks is also
called decomposing the function. In Chapters 9 and 10 we will study
so-called time–frequency decompositions, in which each building block
encodes information about time as well as about frequency, very much
as musical notation does. We begin with an example.

Example 1.1 (Toy Model of Voice Signal). Suppose Amanda is in
Baltimore and she calls her mother in Vancouver saying, “Hi Mom,
it’s Amanda, and I can’t wait to tell you what happened today.”
What happens to the sound? As Amanda speaks, she creates waves
of pressure in the air, which travel toward the phone receiver. The
sound has duration, about five seconds in this example, and intensity
or loudness, which varies over time. It also has many other qualities

                

                                                                                                               



1.1. An example: Amanda calls her mother 3

that make it sound like speech rather than music, say. The sound
of Amanda’s voice becomes a signal, which travels along the phone
wire or via satellite, and at the other end is converted back into a
recognizable voice.

Let’s try our idea of breaking Amanda’s voice signal into simpler
building blocks. Suppose the signal looks like the function f(t) plotted
in the top half of Figure 1.1.
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y = 3 sin t and y = 0.5 sin 16t
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0.5 sin 16t

Figure 1.1. Toy voice signal f(t) (upper plot) and the build-
ing blocks of the toy voice signal (lower plot). See also the
upper figure on the cover.

In Figure 1.1 the horizontal axis represents time t in seconds, and
the vertical axis represents the intensity of the sound, so that when
y = f(t) is near zero, the sound is soft, and when y = f(t) is large
(positive or negative), the sound is loud.

In this particular signal, there are two sorts of wiggling going on;
see the lower half of Figure 1.1. We recognize the large, slow wiggle
as a multiple of sin t. The smaller wiggle is oscillating much faster;

                

                                                                                                               



4 1. Fourier series: Some motivation

counting the oscillations, we recognize it as a multiple of sin 16t. Here
sin t and sin 16t are our first examples of building blocks. They are
functions of frequency 1 and 16, respectively. In other words, they
complete 1 and 16 full oscillations, respectively, as t runs through
2π units of time.

Next we need to know how much of each building block is present
in our signal. The maximum amplitudes of the large and small wiggles
are 3 and 0.5, respectively, giving us the terms 3 sin t and 0.5 sin 16t.
We add these together to build the original signal:

f(t) = 3 sin t+ 0.5 sin 16t.

We have written our signal f(t) as a sum of constant multiples of
the two building blocks. The right-hand side is our first example
of a Fourier decomposition; it is the Fourier decomposition of our
signal f(t).

Let’s get back to the phone company. When Amanda calls her
mother, the signal goes from her phone to Vancouver. How will the
signal be encoded? For instance, the phone company could take a
collection of, say, 100 equally spaced times, record the strength of the
signal at each time, and send the resulting 200 numbers to Vancouver,
where they know how to put them back together. (By the way, can
you find a more efficient way of encoding the timing information?)
But for our signal, we can use just four numbers and achieve an even
more accurate result. We simply send the frequencies 1 and 16 and the
corresponding strengths, or amplitudes, 3 and 0.5. Once you know the
code, namely that the numbers represent sine wave frequencies and
amplitudes, these four numbers are all you need to know to rebuild
our signal exactly.

Note that for a typical, more complicated, signal one would need
more than just two sine functions as building blocks. Some signals
would require infinitely many sine functions, and some would require
cosine functions instead or as well. The collection

{sin(nt) : n ∈ N} ∪ {cos(nt) : n ∈ N ∪ {0}}

of all the sine and cosine functions whose frequencies are positive inte-
gers, together with the constant function with value 1, is an example
of a basis. We will return to the idea of a basis later; informally, it

                

                                                                                                               



1.1. An example: Amanda calls her mother 5

means a given collection of building blocks that is able to express ev-
ery function in some given class. Fourier series use sines and cosines;
other types of functions can be used as building blocks, notably in
the wavelet series we will see later (Chapters 9 and 10).

Now let’s be more ambitious. Are we willing to sacrifice a bit
of the quality of Amanda’s signal in order to send it more cheaply?
Maybe. For instance, in our signal the strongest component is the
big wiggle. What if we send only the single frequency 1 and its cor-
responding amplitude 3? In Vancouver, only the big wiggle will be
reconstructed, and the small fast wiggle will be lost from our signal.
But Amanda’s mother knows the sound of Amanda’s voice, and the
imperfectly reconstructed signal may still be recognizable. This is our
first example of compression of a signal.

To sum up: We analyzed our signal f(t), determining which build-
ing blocks were present and with what strength. We compressed the
signal, discarding some of the frequencies and their amplitudes. We
transmitted the remaining frequencies and amplitudes. (At this stage
we could also have stored the signal.) At the other end they recon-
structed the compressed signal.

Again, in practice one wants the reconstructed signal to be simi-
lar to the original signal. There are many interesting questions about
which and how many building blocks can be thrown away while re-
taining a recognizable signal. This topic is part of the subject of
signal processing in electrical engineering.

In the interests of realism, Figure 1.2 shows a plot of an actual
voice signal. Its complicated oscillations would require many more
sine and cosine building blocks than we needed for our toy signal. ♦

In another analogy, we can think of the decomposition as a recipe.
The building blocks, distinguished by their frequencies, correspond to
the different ingredients in your recipe. You also need to know how
much sugar, flour, and so on you have to add to the mix to get your
cake f ; that information is encoded in the amplitudes or coefficients.

The function f in Example 1.1 is especially simple. The intu-
ition that sines and cosines were sufficient to describe many different
functions was gained from the experience of the pioneers of Fourier
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Figure 1.2. Plot of a voice saying, “Hi Mom, it’s Amanda,
and I can’t wait to tell you what happened today.” The hor-
izontal axis represents time, in seconds. The vertical axis
represents the amplitude (volume) of the signal. The units
of amplitude are decibels, but here we have normalized the
amplitude by dividing by its maximum value. Thus the nor-
malized amplitude shown is dimensionless and has maximum
value one.

analysis with physical problems (for instance heat diffusion and the
vibrating string) in the early eighteenth century; see Section 1.4. This
intuition leads to the idea of expressing a periodic function f(θ) as
an infinite linear combination of sines and cosines, also known as a
trigonometric series:

(1.1) f(θ) ∼
∞∑

n=0

[bn sin(nθ) + cn cos(nθ)] .

We use the symbol ∼ to indicate that the right-hand side is the
trigonometric series associated with f . We don’t use the symbol =
here since in some cases the left- and right-hand sides of (1.1) are
not equal, as discussed below. We have used θ instead of t for the
independent variable here, and sometimes we will use x instead.

                

                                                                                                               



1.2. The main questions 7

We can rewrite the right-hand side of (1.1) as a linear combination
of exponential functions. To do so, we use Euler’s Formula2: eiθ =

cos θ + i sin θ, and the corresponding formulas for sine and cosine in
terms of exponentials, applied to nθ for each n,

cos θ = (eiθ + e−iθ)/2, sin θ = (eiθ − e−iθ)/(2i).

We will use the following version throughout:

(1.2) f(θ) ∼
∞∑

n=−∞
ane

inθ.

The right-hand side is called the Fourier series of f . We also say
that f can be expanded in a Fourier series. The coefficient an is
called the nth Fourier coefficient of f and is often denoted by f̂ (n)

to emphasize the dependence on the function f . In general an, bn,
and cn are complex numbers. The coefficients {an} are determined
by the coefficients {bn} and {cn} in the sine/cosine expansion.

Exercise 1.2. Write an in terms of bn and cn. ♦

1.2. The main questions

Our brief sketch immediately suggests several questions:

How can we find the Fourier coefficients an from the correspond-
ing function f?

Given the sequence {an}n∈Z, how can we reconstruct f?

In what sense does the Fourier series converge? Pointwise? Uni-
formly? Or in some other sense? If it does converge in some
sense, how fast does it converge?

When the Fourier series does converge, is its limit equal to the
original function f?

2This formula is named after the Swiss mathematician Leonhard Euler (pro-
nounced “oiler”) (1707–1783). We assume the reader is familiar with basic complex
number operations and notation. For example if v = a + ib, w = c + id, then
v + w = (a + c) + i(b + d) and vw = (ac − bd) + i(bc + ad). The algebra is done
as it would be for real numbers, with the extra fact that the imaginary unit i has the
property that i2 = −1. The absolute value of a complex number v = a+ib is defined to
be |v| =

√
a2 + b2. See [Tao06b, Section 15.6] for a quick review of complex numbers.

                

                                                                                                               



8 1. Fourier series: Some motivation

Which functions can we express with a trigonometric series
∞∑

n=−∞
ane

inθ ?

For example, must f be continuous? Or Riemann integrable?

What other building blocks could we use instead of sines and
cosines, or equivalently exponentials?

We develop answers to these questions in the following pages,
but before doing that, let us compare to the more familiar problem
of power series expansions. An infinitely differentiable function f can
be expanded into a Taylor series3 centered at x = 0:

(1.3)
∞∑

n=0

cn x
n.

The numbers cn are called the Taylor coefficients and are given by

cn = f (n)(0)/n!.

When evaluated at x = 0, this Taylor series always converges to
f(0) = c0. (For simplicity we have used the series centered at x = 0;
a slight variation familiar from calculus texts gives a Taylor series
centered at a general point x0.)

In the eighteenth century mathematicians discovered that the tra-
ditional functions of calculus (sinx, cosx, ln(1+x),

√
1 + x, ex, etc.)

can be expanded in Taylor series and that for these examples the
Taylor series converges to the value f(x) of the function for each x

in an open interval containing x = 0 and sometimes at the endpoints
of this interval as well. They were very good at manipulating Taylor
series and calculating with them. That led them to believe that the
same would be true for all functions, which at the time meant for
the infinitely differentiable functions. That dream was shattered by
Cauchy’s4 discovery in 1821 of a counterexample.

3Named after the English mathematician Brook Taylor (1685–1731). Sometimes
the Taylor series centered at x = 0 is called the Maclaurin series, named after the
Scottish mathematician Colin Maclaurin (1698–1746).

4The French mathematician Augustin-Louis Cauchy (1789–1857).

                

                                                                                                               



1.2. The main questions 9

Example 1.3 (Cauchy’s Counterexample). Consider the function

f(x) =

{
e−1/x2

, if x �= 0;

0, if x = 0.

This function is infinitely differentiable at every x, and f (n)(0) = 0 for
all n ≥ 0. Thus its Taylor series is identically equal to zero. Therefore
the Taylor series will converge to f(x) only for x = 0. ♦

Exercise 1.4. Verify that Cauchy’s function is infinitely differen-
tiable. Concentrate on what happens at x = 0. ♦

The Taylor polynomial PN of order N of a function f that can
be differentiated at least N times is given by the formula

(1.4) PN (f, 0)(x) = f(0) + f ′(0) x+
f ′′(0)

2!
x2 + · · ·+ f (N)(0)

N !
xN .

Exercise 1.5. Verify that if f is a polynomial of order less than or
equal to N , then f coincides with its Taylor polynomial of order N . ♦

Definition 1.6. A trigonometric5 polynomial of degree M is a func-
tion of the form

f(θ) =

M∑
n=−M

ane
inθ,

where an ∈ C for −M ≤ n ≤M , n ∈ N. ♦

Exercise 1.7. Verify that if f is a trigonometric polynomial, then
its coefficients {an}n∈Z are given by an = 1

2π

´ π

−π
f(θ)e−inθ dθ. ♦

In both the Fourier and Taylor series, the problem is how well
and in what sense we can approximate a given function by using its
Taylor polynomials (very specific polynomials) or by using its partial
Fourier sums (very specific trigonometric polynomials).

5This particular trigonometric polynomial is 2π-periodic; see Section 1.3.1.
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1.3. Fourier series and Fourier coefficients

We begin to answer our questions. The Fourier coefficients f̂(n) = an
are calculated using the formula suggested by Exercise 1.7:

(1.5) f̂(n) = an :=
1

2π

ˆ π

−π

f(θ)e−inθ dθ.

Aside 1.8. The notation := indicates that we are defining the term
on the left of the :=, in this case an. Occasionally we may need to
use =: instead, when we are defining a quantity on the right. ♦

One way to explain the appearance of formula (1.5) is to assume
that the function f is equal to a trigonometric series,

f(θ) =
∞∑

n=−∞
ane

inθ,

and then to proceed formally6, operating on both sides of the equa-
tion. Multiply both sides by an exponential function, and then inte-
grate, taking the liberty of interchanging the sum and the integral:

1

2π

ˆ π

−π

f(θ)e−ikθ dθ =
1

2π

ˆ π

−π

∞∑
n=−∞

ane
inθe−ikθ dθ

=
∞∑

n=−∞
an

1

2π

ˆ π

−π

einθe−ikθ dθ = ak.

The last equality holds because

(1.6)
1

2π

ˆ π

−π

einθe−ikθ dθ =
1

2π

ˆ π

−π

ei(n−k)θ dθ = δn,k,

where the Kronecker7 delta δn,k is defined by

(1.7) δn,k =

{
1, if k = n;
0, if k �= n.

6Here the term formally means that we work through a computation “following
our noses”, without stopping to justify every step. In this example we don’t worry
about whether the integrals or series converge, or whether it is valid to exchange the
order of the sum and the integral. A rigorous justification of our computation could
start from the observation that it is valid to exchange the sum and the integral if the
Fourier series converges uniformly to f (see Chapters 2 and 4 for some definitions).
Formal computations are often extremely helpful in building intuition.

7Named after Leopold Kronecker, German mathematician and logician (1823–
1891).

                

                                                                                                               



1.3. Fourier series and Fourier coefficients 11

We explore the geometric meaning of equation (1.6) in Chapter 5.
In language we will meet there, the equation says that the exponen-
tial functions {einθ}n∈N form an orthonormal set with respect to an
appropriately normalized inner product.

Aside 1.9. The usual rules of calculus apply to complex-valued func-
tions. For example, if u and v are the real and imaginary parts of the
function f : [a, b] → C, that is, f = u + iv where u and v are real-
valued, then f ′ := u′+iv′. Likewise, for integration,

´
f =

´
u+i

´
v.

Here we are assuming that the functions u and v are differentiable in
the first case and integrable in the second. ♦

Notice that in formula (1.5), a necessary condition on f for the co-
efficients to exist is that the complex-valued function f(θ)e−inθ should
be an integrable8 function on [−π, π). In fact, if |f | is integrable, then
so is f(θ)e−inθ and since

∣∣´ g
∣∣ ≤ ´

|g|,

|an| =

∣∣∣∣ 12π
ˆ π

−π

f(θ)e−inθ dθ

∣∣∣∣ ≤ 1

2π

ˆ π

−π

|f(θ)e−inθ| dθ

=
1

2π

ˆ π

−π

|f(θ)| dθ <∞ (since |e−inθ| = 1).

Aside 1.10. It can be verified that the absolute value of the integral
of an integrable complex-valued function is less than or equal to the
integral of the absolute value of the function, the so-called Triangle
Inequality for integrals, not to be confused with the Triangle Inequal-
ity for complex numbers: |a+ b| ≤ |a|+ |b|, or the Triangle Inequality
for integrable functions:

´
|f+g| ≤

´
|f |+

´
|g|. They are all animals

in the same family. ♦

Next we explore in what sense the Fourier series (1.2) approxi-
mates the original function f . We begin with some examples.

Exercise 1.11. Find the Fourier series for the trigonometric polyno-
mial f(θ) = 3e−2iθ − e−iθ + 1 + eiθ − πe4iθ + (1/2)e7iθ. ♦

8A function g(θ) is said to be integrable on [−π, π) if
´ π
−π

g(θ) dθ is well-defined;
in particular the value of the integral is a finite number. In harmonic analysis the
notion of integral used is the Lebesgue integral. We expect the reader to be familiar
with Riemann integrable functions, meaning that the function g is bounded and the
integral exists in the sense of Riemann. Riemann integrable functions are Lebesgue
integrable. In Chapter 2 we will briefly review the Riemann integral. See [Tao06a,
Chapters 11] and [Tao06b, Chapters 19].

                

                                                                                                               



12 1. Fourier series: Some motivation

Example 1.12 (Ramp Function). Consider the Fourier coefficients
and the Fourier series for the function

f(θ) = θ for −π ≤ θ < π.

The nth Fourier coefficient is given by

f̂ (n) = an :=
1

2π

ˆ π

−π

f(θ)e−inθ dθ =
1

2π

ˆ π

−π

θe−inθ dθ.

It follows that

f̂ (n) =

{
(−1)n+1/(in), if n �= 0;

0, if n = 0.

Thus the Fourier series of f(θ) = θ is given by

f(θ) ∼
∑

{n∈Z:n�=0}

(−1)n+1

in
einθ = 2

∞∑
n=1

(−1)n+1

n
sin (nθ).

Note that both f and its Fourier series are odd functions. It turns
out that the function and the series coincide for all θ ∈ (−π, π).
Surprisingly, at the endpoints θ = ±π the series converges to zero
(since sin (nπ) = 0 for all n ∈ N) and not to the values f(±π) = ±π.
Figure 3.1 offers a clue: zero is the midpoint of the jump in height
from +π to −π of the periodic extension of f(θ). ♦

Exercise 1.13. Use integration by parts to complete the calculation
of f̂(n) in Example 1.12. ♦

1.3.1. 2π-Periodic functions. We are considering functions

f : [−π, π)→ C

that are complex-valued and that are defined on a bounded half-open
interval in the real line. We extend these functions periodically to the
whole of R. For example, Figure 1.3 shows part of the graph of the
periodic extension to R of the real-valued function f(θ) = θ defined on
[−π, π) in Example 1.12. This periodic extension is called the periodic
ramp function or sawtooth function, since its graph resembles the
teeth of a saw.

                

                                                                                                               



1.3. Fourier series and Fourier coefficients 13

Exercise 1.14. Use Matlab to reproduce the plot of the sawtooth
function in Figure 1.3. Then modify your Matlab code to create
a plot over the interval [−3π, 3π) for the periodic extension of the
function defined by f(θ) = θ2 for θ ∈ [−π, π). ♦

−10 −5 0 5 10
−5

0

5

θ

f(
θ)

Figure 1.3. Graph of the sawtooth function or periodic ramp
function given by extending f(θ) = θ periodically from the
interval [−π, π) to [−3π, 3π).

Definition 1.15. In mathematical language, a complex-valued func-
tion f defined on R is 2π-periodic if

f(x+ 2π) = f(x) for all x ∈ R. ♦

The building blocks we’re using are 2π-periodic functions: sin(nθ),
cos(nθ), e−inθ. Finite linear combinations of 2π-periodic functions are
2π-periodic.

Let T denote the unit circle:

(1.8) T := {z ∈ C : |z| = 1} = {z = eiθ : −π ≤ θ < π}.

We can identify a 2π-periodic function f on R with a function
g : T → C defined on the unit circle T as follows. Given z ∈ T,
there is a unique θ ∈ [−π, π) such that z = eiθ. Define g(z) := f(θ).
For all n ∈ Z it is also true that z = ei(θ+2nπ). The 2π-periodicity
of f permits us to use all these angles in the definition of g without
ambiguity: g(z) = f(θ + 2nπ) = f(θ).

Note that if g is to be continuous on the unit circle T, we will need
f(−π) = f(π), and this implies continuity of f on R, and similarly for

                

                                                                                                               



14 1. Fourier series: Some motivation

differentiability. When we say f : T → C and f ∈ Ck(T), we mean
that the function f is differentiable k times and that f , f ′, . . . , f (k) are
all continuous functions on T. In words, f is a k times continuously
differentiable function from the unit circle into the complex plane. In
particular f (�)(−π) = f (�)(π) for all 0 ≤ � ≤ k, where f (l) denotes
the �th derivative of f .

If f is a 2π-periodic and integrable function, then the integral of
f over each interval of length 2π takes the same value. For example,

ˆ π

−π

f(θ) dθ =

ˆ 2π

0

f(θ) dθ =

ˆ 5π
2

π
2

f(θ) dθ = · · · .

Exercise 1.16. Verify that if f is 2π-periodic and integrable, then´ a+2π

a
f(θ) dθ =

´ π

−π
f(θ) dθ, for all a ∈ R. ♦

If f is a 2π-periodic trigonometric polynomial of degree M , in
other words a function of the form f(θ) =

∑M
k=−M ake

ikθ, then the
Fourier series of f coincides with f itself (Exercises 1.7 and 1.18).

1.3.2. 2π- and L-periodic Fourier series and coefficients. Up
to now, we have mostly considered functions defined on the inter-
val [−π, π) and their 2π-periodic extensions. Later we will also use
functions defined on the unit interval [0, 1), or a symmetric version
of it [−1/2, 1/2), and their 1-periodic extensions. More generally, we
can consider functions defined on a general interval [a, b) of length
L = b− a and extended periodically to R with period L.

An L-periodic function f defined on R is a function such that
f(x) = f(x+ L) for all x ∈ R. We can define the Fourier coefficients
and the Fourier series for an L-periodic function f . The formulas
come out slightly differently to account for the rescaling:

L-Fourier coefficients f̂ L(n) =
1

L

ˆ b

a

f(θ)e−2πinθ/Ldθ,

L-Fourier series
∞∑

n=−∞
f̂ L(n)e2πinθ/L.

                

                                                                                                               



1.4. History and motivation 15

In the earlier case [a, b) = [−π, π), we had 2π/L = 1. Note
that the building blocks are now the L-periodic exponential functions
e2πinθ/L, while the L-periodic trigonometric polynomials are finite
linear combinations of these building blocks.

Exercise 1.17. Verify that for each n ∈ Z, the function e2πinθ/L is
L-periodic. ♦

In Chapters 7, 9, and 12, we will consider 1-periodic functions.
Their Fourier coefficients and series will read

f̂(n) =

ˆ 1

0

f(x)e−2πinx dx,

∞∑
n=−∞

f̂(n)e2πinx.

Why is it important to consider functions defined on a general
interval [a, b)? A key distinction in Fourier analysis is between func-
tions f that are defined on a bounded interval [a, b), or equivalently
periodic functions on R, and functions f that are defined on R but
that are not periodic. For nonperiodic functions on R, it turns out
that the natural “Fourier quantity” is not a Fourier series but another
function, known as the Fourier transform of f . One way to develop
and understand the Fourier transform is to consider Fourier series on
symmetric intervals [−L/2, L/2) of length L and then let L→∞; see
Section 7.1.

Exercise 1.18. Let f be an L-periodic trigonometric polynomial of
degree M , that is, f(θ) =

∑M
n=−M ane

2πinθ/L. Verify that f coincides
with its L-Fourier series. ♦

1.4. History, and motivation from the physical
world

It was this pliability which was embodied in Fourier’s intuition, com-
monly but falsely called a theorem, according to which the trigonometric
series “can express any function whatever between definite values of the
variable.” This familiar statement of Fourier’s “theorem,” taken from
Thompson and Tait’s “Natural Philosophy,” is much too broad a one, but
even with the limitations which must to-day be imposed upon the con-
clusion, its importance can still be most fittingly described as follows in
their own words: The theorem “is not only one of the most beautiful
results of modern analysis, but may be said to furnish an indispensable
instrument in the treatment of nearly recondite question [sic] in mod-

                

                                                                                                               



16 1. Fourier series: Some motivation

ern physics. To mention only sonorous vibrations, the propagation of
electric signals along a telegraph wire, and the conduction of heat by
the earth’s crust, as subjects in their generality intractable without it,
is to give but a feeble idea of its importance.”

Edward B. Van Vleck
Address to the American Association
for the Advancement of Science, 1913.
Quoted in [Bre, p. 12].

For the last 200 years, Fourier analysis has been of immense prac-
tical importance, both for theoretical mathematics (especially in the
subfield now called harmonic analysis, but also in number theory and
elsewhere) and in understanding, modeling, predicting, and control-
ling the behavior of physical systems. Older applications in mathe-
matics, physics, and engineering include the way that heat diffuses
in a solid object and the wave motion undergone by a string or a
two-dimensional surface such as a drumhead. Recent applications in-
clude telecommunications (radio, wireless phones) and more generally
data storage and transmission (the JPEG format for images on the
Internet).

The mathematicians involved in the discovery, development, and
applications of trigonometric expansions include, in the eighteenth,
nineteenth, and early twentieth centuries: Brook Taylor (1685–1731),
Daniel Bernoulli (1700–1782), Jean Le Rond d’Alembert (1717–1783),
Leonhard Euler (1707–1783) (especially for the vibrating string),
Joseph Louis Lagrange (1736–1813), Jean Baptiste Joseph Fourier
(1768–1830), Johann Peter Gustave Lejeune Dirichlet (1805–1859),
and Charles De La Vallée Poussin (1866–1962), among others. See the
books by Ivor Grattan-Guinness [Grat, Chapter 1] and by Thomas
Körner [Kör] for more on historical development.

We describe briefly some of the physical models that these mathe-
maticians tried to understand and whose solutions led them to believe
that generic functions should be expandable in trigonometric series.

Temperature distribution in a one-dimensional bar. Our task
is to find the temperature u(x, t) in a bar of length π, where x ∈ [0, π]

represents the position of a point on the bar and t ∈ [0,∞) represents
time. See Figure 1.4. We assume that the initial temperature (when
t = 0) is given by a known function f(x) = u(x, 0) and that at
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�
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Figure 1.4. Sketch of a one-dimensional bar.

both endpoints of the bar the temperature is held at zero, giving
the boundary conditions u(0, t) = u(π, t) = 0. There are many other
plausible boundary conditions. (For example, in Table 1.1 we consider
a bar with insulated ends, so that ux(0, t) = ux(π, t) = 0.)

The physical principle governing the diffusion of heat is expressed
by the heat equation:

(1.9) (∂/∂t) u = (∂2/∂x2) u, or ut = uxx.

We want u(x, t) to be a solution of the linear partial differential
equation (1.9), with initial and boundary conditions

(1.10) u(x, 0) = f(x), u(0, t) = u(π, t) = 0.

We refer to equation (1.9) together with the initial conditions and
boundary conditions (1.10) as an initial value problem.

As Fourier did in his Théorie Analytique de la Chaleur, we assume
(or, more accurately, guess) that there will be a separable solution,
meaning a solution that is the product of a function of x and a function
of t: u(x, t) = α(x)β(t). Then

(∂/∂t) u(x, t) = α(x)β′(t), (∂2/∂x2) u(x, t) = α′′(x)β(t).

By equation (1.9), we conclude that α(x)β′(t) = α′′(x)β(t). Then

(1.11) β′(t)/β(t) = α′′(x)/α(x).

Because the left side of equation (1.11) depends only on t and the right
side depends only on x, both sides of the equation must be equal to a
constant. Call the constant k. We can decouple equation (1.11) into

                

                                                                                                               



18 1. Fourier series: Some motivation

a system of two linear ordinary differential equations, whose solutions
we know:{

β′(t) = kβ(t) −→ β(t) = C1e
kt,

α′′(x) = kα(x) −→ α(x) = C2 sin(
√
−k x) + C3 cos(

√
−k x).

The boundary conditions tell us which choices to make:

α(0) = 0 −→ α(x) = C2 sin(
√
−k x),

α(π) = 0 −→
√
−k = n ∈ N, and thus k = −n2, with n ∈ N.

We have found the following separable solutions of the initial
value problem. For each n ∈ N, there is a solution of the form

un(x, t) = Ce−n2t sin(nx).

Aside 1.19. A note on notation: Here we are using the standard
convention from analysis, where C denotes a constant that depends
on constants from earlier in the argument. In this case C depends
on C1 and C2. An extra complication in this example is that C1, C2,
and therefore C may all depend on the natural number n; it would
be more illuminating to write Cn in un(x, t) = Cne

−n2t sin(nx). ♦

Finite linear combinations of these solutions are also solutions of
equation (1.9), since ∂/∂t and ∂2/∂x2 are linear. We would like to
say that infinite linear combinations

u(x, t) =
∞∑

n=1

bne
−n2t sin(nx)

are also solutions. To satisfy the initial condition u(x, 0) = f(x) at
time t = 0, we would have

f(x) = u(x, 0) =

∞∑
n=1

bn sin(nx).

So as long as we can write the initial temperature distribution f

as a superposition of sine functions, we will have a solution to the
equation. Here is where Fourier suggested that all functions have
expansions into sine and cosine series. However, it was a long time
before this statement was fully explored. See Section 3.3 for some
highlights in the history of this quest.

                

                                                                                                               



1.5. Project: Other physical models 19

1.5. Project: Other physical models

Note: For each project, we ask our students both to give a presen-
tation in class and to write a report. For brevity, in the subsequent
projects we omit mention of these expectations.

In Table 1.1 we present several physical models schematically.
In each case, one can do a heuristic analysis similar to that done
in Section 1.4 for the heat equation in a one-dimensional bar. The
initial conditions given for some models in the table specify the value
of u at time t = 0, that is, u(x, 0) = f(x). The boundary conditions
specify the value of u at the ends or edges of the physical region in
that model.

(a) Find solutions to one of the physical models from Table 1.1 fol-
lowing the approach used in Section 1.4.

(b) Search for some information about the physical model that you
chose to study. When were the equations discovered? Who discov-
ered them? What do the equation and its solutions mean in physical
terms? Write a short essay to accompany the mathematics you are
doing in part (a). Here are some references to get you started: [Bre],
[Grat], [SS03, Chapter 1], and [Kör].
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Chapter 2

Interlude: Analysis
concepts

This chapter is a compendium of background material.We omit the
proofs, instead giving pointers to where they may be found in the
literature.

We describe some useful classes of functions, sets of measure zero
(Section 2.1), and various ways (known as modes of convergence)
in which a sequence of functions can approximate another function
(Section 2.2). We then describe situations in which we are allowed
to interchange limiting operations (Section 2.3). Finally, we state
several density results that appear in different guises throughout the
book (Section 2.4). A leitmotif or recurrent theme in analysis, in
particular in harmonic analysis, is that often it is easier to prove
results for a class of simpler functions that are dense in a larger class
and then to use limiting processes to pass from the approximating
simpler functions to the more complicated limiting function.

This chapter should be read once to get a glimpse of the variety
of function spaces and modes of convergence that can be considered.
It should be revisited as necessary while the reader gets acquainted
with the theory of Fourier series and integrals and with the other
types of time–frequency decompositions described in this book.

21

                                     

                

                                                                                                               



22 2. Interlude: Analysis concepts

2.1. Nested classes of functions on bounded
intervals

Here we introduce some classes of functions on a bounded interval I
(the interval can be open, closed, or neither) and on the unit circle T.
In Chapters 7 and 8 we introduce analogous function classes on R,
and we go beyond functions and introduce distributions (generalized
functions) in Section 8.2.

2.1.1. Riemann integrable functions. We review the concept of
the Riemann integral1, following the exposition in the book by Ter-
ence Tao2 [Tao06a, Chapter 11].

The development of the Riemann integral is in terms of approxi-
mation by step functions. We begin with some definitions.

Definition 2.1. Given a bounded interval I, a partition P of I is a
finite collection of disjoint intervals {Jk}nk=1 such that I =

⋃n
k=1 Jk.

The intervals Jk are contained in I and are necessarily bounded. ♦

Definition 2.2. The characteristic function χJ (x) of an interval J
is defined to be the function that takes the value one if x lies in J

and zero otherwise:

χJ (x) =

{
1, if x ∈ J ;
0, if x /∈ J .

♦

The building blocks in Riemann integration theory are finite lin-
ear combinations of characteristic functions of disjoint intervals, called
step functions.

Definition 2.3. A function h defined on I is a step function if there
is a partition P of the interval I and there are real numbers {aJ}J∈P

such that
h(x) =

∑
J∈P

aJχJ(x),

where χJ(x) is the characteristic function of the interval J . ♦
1Named after the German mathematician Georg Friedrich Bernhard Riemann

(1826–1866).
2Terence Tao (born 1975) is an Australian mathematician. He was awarded the

Fields Medal in 2006.

                

                                                                                                               



2.1. Nested classes of functions on bounded intervals 23

For step functions there is a natural definition of the integral. Let
us first consider an example.

Example 2.4. The function

h(x) = 2χ[−5,−2)(x)− 3χ[−1,1)(x) + 7χ[6,7)(x)

is a step function defined on the interval [−5, 7). The associated par-
tition is the collection of disjoint intervals [−5,−2), [−2,−1), [−1, 1),
[1, 6), and [6, 7). See Figure 2.1. If we ask the reader to compute the
integral of this function over the interval [−5, 7), he or she will add
(with appropriate signs) the areas of the rectangles in the picture to
get (2 × 3) + (−3 × 2) + (7 × 1) = 7. The function h coincides with
the step function

2χ[−5,−3])(x) + 2χ(−3,−2)(x)− 3χ[−1,1)(x) + 7χ[6,7)(x),

defined on the interval [−5, 7), with associated partition the inter-
vals [−5,−3], (−3,−2), [−2,−1), [−1, 1), [1, 6), and [6, 7). The areas
under the rectangles defined by this partition also add up to 7. ♦

−6 −4 −2 0 2 4 6 8
−4

−2

0

2

4

6

8

x

h(
x)

Figure 2.1. Graph of the step function in Example 2.4:
h(x) = 2χ[−5,−2)(x)− 3χ[−1,1)(x) + 7χ[6,7)(x).

Generalizing, we define the integral of a step function h associated
to the partition P over the interval I by

(2.1)
ˆ
I

h(x) dx :=
∑
J∈P

aJ |J |,

                

                                                                                                               



24 2. Interlude: Analysis concepts

where |J | denotes the length of the interval J . A given step function
can be associated to more than one partition, but this definition of
the integral is independent of the partition chosen.

The integral of the characteristic function of a subinterval J of I
is its length |J |.

Exercise 2.5. Given interval J ⊂ I, show that
´
I
χJ (x) dx = |J |. ♦

Definition 2.6. A function f is bounded on I if there is a constant
M > 0 such that |f(x)| ≤ M for all x ∈ I. If so, we say that f is
bounded by M . ♦

Exercise 2.7. Check that step functions are always bounded. ♦

Definition 2.8. A function f : I → R is Riemann integrable if f is
bounded on I and the following condition holds:

sup
h1≤f

ˆ
I

h1(x) dx = inf
h2≥f

ˆ
I

h2(x) dx <∞,

where the supremum and infimum are taken over step functions h1

and h2 such that h1(x) ≤ f(x) ≤ h2(x) for all x ∈ I. We denote the
common value by

ˆ
I

f(x) dx,

ˆ b

a

f(x) dx, or simply
ˆ
I

f,

where a and b (a ≤ b) are the endpoints of the interval I. We denote
the class of Riemann integrable functions on I by R(I). ♦

Exercise 2.9. Show that step functions are Riemann integrable. ♦

Riemann integrability is a property preserved under linear trans-
formations, taking maximums and minimums, absolute values, and
products. It also preserves order, meaning that if f and g are Rie-
mann integrable functions over I and if f < g, then

´
I
f <

´
I
g.

Lastly, the Triangle Inequality∣∣∣ ˆ
I

f
∣∣∣ ≤ ˆ

I

|f |

holds for Riemann integrable functions. See [Tao06a, Section 11.4].
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Figure 2.2. This figure illustrates the definition of the Rie-
mann integral. We see the approximation of a function f
from below by a step function h1 and from above by a step
function h2, at a coarse scale (upper plot) and at a finer
scale (lower plot). The upper and lower plots use differ-
ent partitions of the interval [0, 8]. The shaded areas rep-
resent the integral of h2 − h1. We have used the function
f(x) = 4 + x(x− 1.5)(x− 4)2(x− 9) exp(−x/2.5)/12.

Exercise 2.10 (The Riemann Integral Is Linear). Given two step
functions h1 and h2 defined on I, verify that for c, d ∈ R, the lin-
ear combination ch1 + dh2 is again a step function. Also check that´
I

(
ch1(x) + dh2(x)

)
dx = c

´
I
h1(x) dx + d

´
I
h2(x) dx. Use Defini-

tion 2.8 to show that this linearity property holds for all Riemann
integrable functions (not just the step functions). Hint: The par-
titions P1 and P2 associated to the step functions h1 and h2 might
be different. Try to find a partition that works for both (a common
refinement). ♦

                

                                                                                                               



26 2. Interlude: Analysis concepts

Exercise 2.11 (Riemann Integrability Is Preserved by Products).
Show that if f , g : I → R are Riemann integrable, then their product
fg is Riemann integrable. ♦

One can deduce the following useful proposition from Defini-
tion 2.8.

Proposition 2.12. A bounded function f is Riemann integrable over
an interval I if and only if for each ε > 0 there are step functions
h1 and h2 defined on I such that h1(x) ≤ f(x) ≤ h2(x) for all x ∈ I

and such that the integral of their difference is bounded by ε. More
precisely,

0 ≤
ˆ
I

(
h2(x)− h1(x)

)
dx < ε.

In particular, if f is Riemann integrable, then there exists a step
function h such that ˆ

I

|f(x)− h(x)| dx < ε.

See Figure 2.2, in which the shaded area represents the integral
of the difference of the two step functions. Notice how taking a finer
partition allows us to use step functions that approximate f more
closely, thereby reducing the shaded area.

Aside 2.13. Readers familiar with the definition of the Riemann in-
tegral via Riemann sums may like to observe that the integral of a
step function that is below (respectively above) a given function f

is always below a corresponding lower (respectively above a corre-
sponding upper) Riemann sum3 for f . ♦

Our first observation is that if f is Riemann integrable on [−π, π),
then the zeroth Fourier coefficient of f is well-defined:

a0 = f̂ (0) =
1

2π

ˆ π

−π

f(θ) dθ.

3A Riemann sum associated to a bounded function f : I → R and to a given parti-
tion P of the interval I is a real number R(f, P ) defined by R(f, P ) =

∑
J∈P f(xJ ) |J|,

where xJ is a point in J for each J ∈ P . The upper (resp. lower) Riemann sum
U(f, P ) (resp. L(f, P )) associated to f and P is obtained similarly replacing f(xJ ) by
supx∈J f(x) (resp. infx∈J f(x)). Note that since f is bounded, both the infimum and
supremum over J exist.

                

                                                                                                               



2.1. Nested classes of functions on bounded intervals 27

We say that a complex-valued function f : I → C is Riemann
integrable if its real and imaginary parts are Riemann integrable. If f
is Riemann integrable, then the complex-valued functions f(θ)e−inθ

are Riemann integrable for each n ∈ Z, and all the Fourier coefficients
an = f̂ (n), n �= 0, are also well-defined.

Here are some examples of familiar functions that are Riemann
integrable and for which we can define Fourier coefficients. See Theo-
rem 2.33 for a complete characterization of Riemann integrable func-
tions.

Example 2.14. A uniformly continuous functions on an interval is
Riemann integrable. In particular a continuous function on a closed
interval is Riemann integrable; see [Tao06a, Section 11.5]. A mono-
tone4 bounded function on an interval is also Riemann integrable;
see [Tao06a, Section 11.6]. ♦

Aside 2.15. We are assuming the reader is familiar with the notions
of continuity and uniform continuity. ♦

Exercise 2.16. Verify that if f : [−π, π)→ C is Riemann integrable,
then the function g : [−π, π) → C defined by g(θ) = f(θ)e−inθ is
Riemann integrable. ♦

Here is an example of a function that is not Riemann integrable.

Example 2.17 (Dirichlet’s Example5). The function

f(x) =

{
1, if x ∈ [a, b] ∩Q;

0, if x ∈ [a, b] \Q

is bounded (by one), but it is not Riemann integrable on [0, 1]. It is
also discontinuous everywhere. ♦

Exercise 2.18. Show that the Dirichlet function is not Riemann
integrable. ♦

4A function f : I → R is monotone if it is either increasing on the whole of I or
decreasing on the whole of I; that is, either for all x, y ∈ I, x ≤ y, we have f(x) ≤ f(y)
or for all x, y ∈ I, x ≤ y, we have f(x) ≥ f(y).

5Named after the German mathematician Johann Peter Gustav Lejeune Dirichlet
(1805–1859).
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2.1.2. Lebesgue integrable functions and Lp spaces. There are
other more general notions of integral; see for example the book by
Robert G. Bartle [Bar01]. One such notion is that of the Lebesgue6

integral. The Lebesgue integral is studied in depth in courses on
measure theory. In this section we simply aim to give some ideas
about what the Lebesgue integral is and what the Lp spaces are, and
we skim over the many subtleties of measure theory7.

Every Riemann integrable function on a bounded interval I is also
Lebesgue integrable on I, and the values of its Riemann and Lebes-
gue integrals are the same. The Dirichlet function in Example 2.17
is Lebesgue integrable but not Riemann integrable, with Lebesgue
integral equal to zero; see Remark 2.38. In practice, when you see an
integral, it will usually suffice to think of Riemann integrals even if
sometimes we really mean Lebesgue integrals.

In parallel to the definition of the Riemann integral just pre-
sented, we sketch the definition of the Lebesgue integral over the
bounded interval I. We use as scaffolding the so-called simple func-
tions instead of step functions.

Simple functions are finite linear combinations of characteristic
functions of disjoint measurable sets. The characteristic8 function
of a set A ⊂ R is defined to be

(2.2) χA(x) =

{
1, if x ∈ A;

0, otherwise.

In particular, intervals are measurable sets, and we can assign to
them a measure, namely their length. However there are sets that are
nonmeasurable, and we need to exclude such sets. Once we assign a
measure to each measurable set, we can define the Lebesgue integral
of the characteristic function of a measurable set to be the measure
of the set. The Lebesgue integral of a simple function is then defined

6Named after the French mathematician Henri Léon Lebesgue (1875–1941).
7For a brief introduction see [Tao06b, Chapters 18 and 19]. For more in-depth

presentations at a level intermediate between advanced undergraduate and graduate
students see [SS05] or [Bar66]. Graduate textbooks include the books by Gerald
B. Folland [Fol] and by Halsey L. Royden [Roy].

8In statistics and probability the characteristic function of a set A is called the in-
dicator function of the set and is denoted IA. The term characteristic function refers
to the Fourier transform of a probability density (so-called because it characterizes
the probability distribution).

                

                                                                                                               



2.1. Nested classes of functions on bounded intervals 29

to be the corresponding finite linear combination of the measures
of the underlying sets, exactly as in (2.1), except that now the sets
J are disjoint measurable subsets of the measurable set I, and the
length |J | is replaced by the measure m(J) of the set J . One can
then define Lebesgue integrability of a function f : I → R in analogy
to Definition 2.8, replacing the boundedness condition by requiring
the function to be measurable on I and replacing step functions by
simple functions. A function f : I → R is measurable if the pre-image
under f of each measurable subset of R is a measurable subset of I. It
all boils down to understanding measurable sets and their measures.

In this book we do not define measurable sets or their measure
except for sets of measure zero in R (which we discuss in Section 2.1.4)
and countable unions of disjoint intervals (whose measure is given,
quite naturally, by the sum of the lengths of the intervals).

A measurable function is said to belong to L1(I) if
ˆ
I

|f(x)| dx <∞,

where the integral is in the sense of Lebesgue. In fact, there is a
continuum of Lebesgue spaces, the Lp spaces. The space Lp(I) is
defined for each real number p such that 1 ≤ p <∞ as the collection
of measurable functions f on I, such that |f |p ∈ L1(I). For p =∞ we
define L∞(I) as the collection of measurable functions f on I, such
that f is “essentially bounded”.

All the functions involved are assumed to be measurable. Let us
denote by M(I) the collection of measurable functions defined on I.
In Definition 2.34 we state precisely what essentially bounded means.
For now, just think of L∞ functions as bounded functions on I. Let
us denote by B(I) the space of bounded measurable functions on I.
There are essentially bounded functions that are not bounded, so
B(I) � L∞(I).

These spaces are normed spaces9 (after defining properly what it
means for a function to be zero in Lp; see Remark 2.38) with the Lp

9See the Appendix for the definition of a normed space.
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norm defined by

(2.3) ‖f‖Lp(I) :=
( ˆ

I

|f(x)|p dx
)1/p

, 1 ≤ p <∞,

(2.4) ‖f‖L∞(I) := ess sup
x∈I

|f(x)|, ‖f‖B(I) := sup
x∈I
|f(x)|.

In Definition 2.35 we state precisely what essential supremum of f

means.

The Lp spaces are complete normed spaces. Such spaces are so
common and important that they have a special name, Banach10

spaces. Furthermore the Lebesgue spaces Lp(I) are the completion
of R(I) in the Lp norm. This fact is so important that we state it
(without proof) as a theorem, for future reference.

Theorem 2.19. For each p with 1 ≤ p ≤ ∞, the space Lp(I) is the
completion of the Riemann integrable functions R(I) in the Lp norm.
In particular, every Cauchy sequence11 in Lp(I) converges in the Lp

sense to a function in Lp(I), and the set R(I) is dense12 in Lp(I).

Aside 2.20. The reader may be familiar with the construction of
the real numbers R as the completion of the rational numbers Q in
the Euclidean metric d(x, y) := |x − y|. One can think of R(I) as
playing the role of Q and Lp(I) as playing the role of R. There is a
procedure that allows the completion of any metric space, mirroring
the procedure used in the construction of the real numbers. See for
example [Tao06b, Exercise 12.4.8]. ♦

Among the Lp spaces, both L1 and L∞ play special roles. The
space of square-integrable functions

L2(I) :=

{
f : I → C such that

ˆ
I

|f(x)|2 dx <∞
}

10Named after the Polish mathematician Stefan Banach (1892–1945). See the
Appendix for the definition of a complete normed space. One learns about Banach
spaces in a course on functional analysis. Graduate textbooks include [Fol] and [Sch].

11Named after the same Cauchy as the counterexample in Example 1.3. The idea
of a Cauchy sequence is that the terms must get arbitrarily close to each other as
n → ∞. In our setting, the sequence {fn} ⊂ Lp(I) is a Cauchy sequence in Lp(I) if
for each ε > 0 there is an N > 0 such that for all n, m > N , ‖fn − fm‖Lp(I) < ε.
Every convergent sequence is Cauchy, but the converse does not hold unless the space
is complete.

12Meaning that we can approximate functions in Lp(I) with Riemann integrable
functions in the Lp norm. More precisely, given f ∈ Lp(I), ε > 0, there is g ∈ R(I)
such that ‖f − g‖Lp(I) ≤ ε. See Section 2.4.
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is also very important. The term square-integrable emphasizes that
the integral of the square of (the absolute value of) f ∈ L2(I) is finite.
Functions in L2(I) are also said to have finite energy.

The L2 norm is induced by the inner product

(2.5) 〈f, g〉L2(I) :=

ˆ
I

f(x)g(x) dx,

meaning that ‖f‖L2(I) =
√
〈f, f〉L2(I).

The space L2(I) of square-integrable functions over I is a complete
inner-product vector space (a Hilbert13 space), and so it has geometric
properties very similar to those of n-dimensional Euclidean space Rn.
In particular the notion of orthogonality is very important14.

In Chapter 5 we will be especially interested in the Hilbert space
L2(T) of square-integrable functions on T, with the L2 norm

‖f‖L2(T) :=

(
1

2π

ˆ π

−π

|f(θ)|2 dθ
)1/2

induced by the inner product

〈f, g〉 := 1

2π

ˆ π

−π

f(θ)g(θ) dθ.

The factor 1/(2π) is just a normalization constant that forces the
trigonometric functions en(θ) := einθ to have norm one in L2(T).

Exercise 2.21. Verify that 〈en, em〉 = δn,m. In particular, the norm
of en is one: ‖en‖L2(T) = 1. In the language of Chapter 5, the trigono-
metric system is an orthonormal system. ♦

2.1.3. Ladder of function spaces on T. We have been concerned
with function spaces defined by integrability properties. Earlier we
encountered function spaces defined by differentiability properties.
It turns out that for functions defined on a given closed bounded
interval, these function spaces are nicely nested. The inclusions are
summarized in Figure 2.3 on page 33.

13Named after the German mathematician David Hilbert (1862–1943).
14See the Appendix for a more detailed description of inner-product vector spaces

and Hilbert spaces. Another reference is [SS05, Chapters 4 and 5].
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Continuous functions on a closed bounded interval I = [a, b] are
Riemann integrable and hence Lebesgue integrable. The collection
of continuous functions on I = [a, b] is denoted by C([a, b]). Next,
Ck([a, b]) denotes the collection of k times continuously differentiable
functions on [a, b], in other words, functions whose kth derivatives
exist and are continuous. For convenience we sometimes use the ex-
pression “f is Ck” to mean “f ∈ Ck”. Finally, C∞([a, b]) denotes the
collection of functions on [a, b] that are differentiable infinitely many
times. (At the endpoints a and b, we mean continuous or differentiable
from the right and from the left, respectively.) Notice that there exist
functions that are differentiable but not continuously differentiable.

Exercise 2.22. Verify that the function defined by f(x) = x2 sin(1/x)

for x �= 0, f(0) = 0, is differentiable everywhere but its derivative is
not continuous at x = 0. ♦

Recall that in Section 1.3.2 we discussed periodic functions on
the unit circle T = [−π, π), as well as functions that are continuously
differentiable on T. In that context we meant that f : T → C is
Ck if f is k times continuously differentiable on T and if, when f is
extended periodically, f (j)(−π) = f (j)(π) for all 0 ≤ j ≤ k. This
boundary condition implies that when we restrict f to the closed
interval [−π, π], it is Ck, in particular it is bounded and Riemann
integrable on [−π, π). Define Lp(T) to be Lp([−π, π)).

For complex-valued functions defined on T, or on any closed
bounded interval I = [a, b], all these spaces are nicely nested. There
is a ladder of function spaces in T, running from the small space
C∞(T) of smooth functions up to the large space L1(T) of Lebes-
gue integrable functions and beyond to the even larger space M of
measurable functions. This is the top 3/4 of the ladder in Figure 2.3.

Earlier we encountered a different family of function spaces on T,
namely the collections of 2π-periodic trigonometric polynomials of
degree at most N , for N ∈ N. We denote these spaces by PN (T).
More precisely, PN (T) :=

{∑
|n|≤N ane

inθ : an ∈ C, |n| ≤ N
}

.

These spaces are clearly nested and increasing as N increases,
and they are certainly subsets of C∞(T). Thus we can extend the
ladder to one starting at P0(T) (the constant functions) and climbing
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M(T)

L1(T)

Lp1(T)

L2(T)

Lp2(T)

L∞(T)

B(T)

R(T)

C(T)

C1(T)

C2(T)
...

Ck(T)
...

C∞(T)
...

PN2
(T)

PN1
(T)

...

P0(T)

Measurable functions on T

Lebesgue integrable:
´
T
|f(x)| dx <∞

´
T
|f(x)|p1 dx <∞ , 1 < p1 < 2

square integrable:
´
T
|f(x)|2 dx <∞

´
T
|f(x)|p2 dx <∞ , 2 < p1 <∞

essentially bounded: ess supx∈T |f(x)| <∞

bounded/measurable: |f(x)| ≤M for all x ∈ T

Riemann integrable

continuous

differentiable

continuously differentiable:
f ′ exists and is continuous

twice continuously differentiable:
f , f ′ exist and are continuous

k times continuously differentiable:
f , f ′, . . . , f (k) exist and are continuous

infinitely differentiable:
f , f ′, f ′′, . . . exist and are continuous

trigonometric polynomials of degree N2 > N1

trigonometric polynomials of degree N1 > 0

constant functions
Figure 2.3. Ladder of nested classes of functions f : T → C.
See Remark 2.23.
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all the way to C∞(T), by including the nested spaces of trigonometric
polynomials. See the lowest part of the ladder in Figure 2.3.

Remark 2.23. In Figure 2.3, p1 and p2 are real numbers such that
1 < p1 < 2 < p2 < ∞, and N1 and N2 are natural numbers such
that N1 ≤ N2. The blank box appears because there is no commonly
used symbol for the class of differentiable functions. Notice that as
we move down the ladder into the smaller function classes, the func-
tions become better behaved. For instance, the Lp spaces on T are
nested and decreasing as the real number p increases from 1 to ∞
(Exercise 2.27). ♦

Three warnings are in order. First, when the underlying space
is changed from the circle T to another space X, the Lp spaces need
not be nested: for real numbers p, q with 1 ≤ p ≤ q ≤ ∞, Lp(X)

need not contain Lq(X). For example, the Lp spaces on the real
line R are not nested. (By contrast, the Ck classes are always nested:
Ck(X) ⊃ Ck+1(X) for all spaces X in which differentiability is defined
and for all k ∈ N.) Second, continuous functions on R are not always
bounded. Furthermore, unbounded continuous functions on R are not
integrable in any plausible sense. Similarly, continuous functions on
an open or half-open bounded interval I are not necessarily bounded.
Unbounded continuous functions on I are not Riemann integrable,
and possibly not in L1(I). However, if I = [a, b] is a closed, bounded
interval, then the ladder in Figure 2.3, with T replaced by I, holds
true. Third, there are important function classes that do not fall into
the nested chain of classes shown here.

The step functions defined in Section 2.1.1 are Riemann inte-
grable, although most of them have discontinuities. Our ladder has a
branch:

{step functions on I} ⊂ R(I).

The simple functions mentioned in Section 2.1.2 are bounded
functions that are not necessarily Riemann integrable. However, they
are Lebesgue integrable, and in fact simple functions are in Lp(I) for
each p such that 1 ≤ p ≤ ∞. Our ladder has a second branch:

{simple functions on I} ⊂ B(I).
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Exercise 2.24. Compute the Lp norm of a step function defined on
an interval I. Compute the Lp norm of a simple function defined on
an interval I. Use the notation m(A) for the measure of a measurable
set A ⊂ I. ♦

We will encounter other classes of functions on T, [a, b], or R,
such as functions that are piecewise continuous or piecewise smooth,
monotone functions, functions of bounded variation, Lipschitz15 func-
tions, and Hölder continuous16 functions. We define what we mean
as they appear in the text. As you encounter these spaces, you are
encouraged to try to fit them into the ladder of spaces in Figure 2.3,
which will start to look more like a tree with branches and leaves.

The following example and exercises justify some of the inclusions
in the ladder of function spaces. Operate with the Lebesgue integrals
as you would with Riemann integrals. Try to specify which properties
of the integral you are using.

Example 2.25. Let I be a bounded interval. If f : I → C is bounded
by M > 0 and f ∈ Lp(I), then for all q such that p ≤ q <∞,ˆ

I

|f(x)|q dx ≤Mq−p

ˆ
I

|f(x)|p dx <∞,

and so in this situation the Lq norm is controlled by the Lp norm,
and f ∈ Lq(I). In the language of norms, the preceding inequality
can be written as ‖f‖qLq(I) ≤ ‖f‖

q−p
L∞(I) ‖f‖

p
Lp(I), since ‖f‖L∞(I) is the

infimum of the numbers M that bound f . ♦

The following estimate, called Hölder’s Inequality, is an indis-
pensable tool in the study of Lp spaces.

Lemma 2.26 (Hölder’s Inequality). Suppose I is a bounded interval,
1 ≤ s ≤ ∞, 1/s+ 1/t = 1, f ∈ Ls(I), and g ∈ Lt(I). Then the
product fg is integrable, and furthermore

(2.6)
∣∣∣∣ˆ

I

f(x)g(x) dx

∣∣∣∣ ≤ ‖f‖Ls(I)‖g‖Lt(I).

15Named after the German mathematician Rudolf Otto Sigismund Lipschitz
(1832–1903).

16Named after the German mathematician Otto Ludwig Hölder (1859–1937).

                

                                                                                                               



36 2. Interlude: Analysis concepts

Hölder’s Inequality reappears in later chapters, and it is discussed
and proved, together with other very important inequalities, at the
end of the book. The special case when s = t = 2 is the Cauchy–
Schwarz17 Inequality. Inequalities are a fundamental part of analysis,
and we will see them over and over again throughout the book.

Exercise 2.27. Let I be a bounded interval. Show that if 1 ≤ p ≤
q < ∞ and h ∈ Lq(I), then h ∈ Lp(I). Moreover, show that if h ∈
Lq(I), then ‖h‖Lp(I) ≤ |I|

1
p−

1
q ‖h‖Lq(I). Thus for those exponents,

Lq(I) ⊂ Lp(I). Hint: Apply Hölder’s Inequality on I, with s =

q/p > 1, f = |h|p, g = 1, and h ∈ Lq(I). ♦

2.1.4. Sets of measure zero. For many purposes we often need
only that a function has a given property except on a particular set
of points, provided such exceptional set is small. We introduce the ap-
propriate notion of smallness, given by the concept of a set of measure
zero.

Definition 2.28. A set E ⊂ R has measure zero if, for each ε > 0,
there are open intervals Ij such that E is covered by the collection
{Ij}j∈N of intervals and the total length of the intervals is less than ε:

(i) E ⊂
∞⋃
j=1

Ij and (ii)
∞∑
j=1

|Ij | < ε.

We say that a given property holds almost everywhere if the set of
points where the property does not hold has measure zero. We use
the abbreviation a.e. for almost everywhere18. ♦

In particular, every countable set has measure zero. There are
uncountable sets that have measure zero. The most famous example
is the Cantor19 set, discussed briefly in Example 2.30.

17This inequality is named after the French mathematician Augustin-Louis
Cauchy (1789–1857) and the German mathematician Hermann Amandus Schwarz
(1843–1921). The Cauchy–Schwarz inequality was discovered independently twenty-
five years earlier by the Ukranian mathematician Viktor Yakovlevich Bunyakovsky
(1804–1889), and it is also known as the Cauchy–Bunyakovsky–Schwarz inequality.

18In probability theory the abbreviation a.s. for almost surely is used instead;
in French p.p. for presque partout; in Spanish c.s. for casi siempre, etc., etc.

19Named after the German mathematician Georg Ferdinand Ludwig Philipp Can-
tor (1845–1918).
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Exercise 2.29. Show that finite subsets of R have measure zero.
Show that countable subsets of R have measure zero. In particular
show that the set Q of rational numbers has measure zero. ♦

Example 2.30 (The Cantor Set). The Cantor set C is obtained from
the closed interval [0, 1] by a sequence of successive deletions of open
intervals called the middle thirds, as follows. Remove the middle-third
interval (1/3, 2/3) of [0, 1]. We are left with two closed intervals:
[0, 1/3] and [2/3, 1]. Remove the two middle-third intervals of the
remaining closed intervals. We are left with four closed intervals. This
process can be continued indefinitely, so that the set A of all points
removed from the closed interval [0, 1] is the union of a collection of
disjoint open intervals. Thus A ⊂ [0, 1] is an open set. The Cantor
set C is defined to be the set of points that remains after A is deleted:
C := [0, 1] \A. The Cantor set C is an uncountable set. However, C
has measure zero, because its complement A has measure one20. ♦

Exercise 2.31. Show that the Cantor set C is closed. Use Defini-
tion 2.28 to show that C has measure zero. Alternatively, show that
the measure of its complement is 1. Show that C is uncountable. ♦

Aside 2.32. We assume the reader is familiar with the basic notions
of point set topology on R, such as the concepts of open and closed
sets in R. To review these ideas, see [Tao06b, Chapter 12]. ♦

Here is an important characterization of Riemann-integrable func-
tions; it appeared in Lebesgue’s doctoral dissertation. A proof can be
found in Stephen Abbott’s book [Abb, Section 7.6].

Theorem 2.33 (Lebesgue’s Theorem, 1901). A bounded function
f : I → C on a closed bounded interval I = [a, b] is Riemann integrable
if and only if f is continuous almost everywhere.

We can now define what the terms essentially bounded and es-
sential supremum mean.

20Recall that a natural way of defining the length or measure of a subset A of R

which is a countable union of disjoint intervals {Ij} is to declare the measure of A to
be the sum of the lengths of the intervals Ij . Also the following property holds: if A
is a measurable set in X, then its complement X\A is also measurable. Furthermore,
m(X\A) = m(X) − m(A).
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Definition 2.34. A function f : T→ C is essentially bounded if it is
bounded except on a set of measure zero. More precisely, there exists
a constant M > 0 such that |f(x)| ≤M a.e. in I. ♦

Definition 2.35. Let f : I → C be an essentially bounded function.
The essential supremum ess supx∈I |f(x)| of f is the smallest constant
M such that |f(x)| ≤ M a.e. on the interval I. In other words,
ess supx∈I |f(x)| := inf{M ≥ 0 : |f(x)| ≤M a.e. in I}. ♦

Exercise 2.36. Verify that if f is bounded on I, then f is essentially
bounded. In other words, the space B(I) of bounded functions on I

is a subset of L∞(I). Show that it is a proper subset. Furthermore,
verify that if f is bounded, then ess supx∈I |f(x)| = supx∈I |f(x)|. ♦

Exercise 2.37. Verify that Exercise 2.27 holds true when q =∞. ♦

Remark 2.38. For the purposes of Lebesgue integration theory, func-
tions that are equal almost everywhere are regarded as being the
same. To be really precise, one should talk about equivalence classes
of Lp integrable functions: f is equivalent to g if and only if f = g a.e.
In that case

´
I
|f − g|p = 0, and if f ∈ Lp(I), then so is g. We say

f = g in Lp(I) if f = g a.e. In that case,
´
I
|f |p =

´
I
|g|p. In par-

ticular the Dirichlet function g in Example 2.17 is equal a.e. to the
zero function, which is in Lp([0, 1]). Hence the Dirichlet function g

is in Lp([0, 1]), its integral in the Lebesgue sense vanishes, and its Lp

norm is zero for all 1 ≤ p ≤ ∞. ♦

2.2. Modes of convergence

Given a bounded interval I and functions gn, g : I → C, what does it
mean to say that gn → g? In this section we discuss six different ways
in which the functions gn could approximate g: pointwise; almost
everywhere; uniformly; uniformly outside a set of measure zero; in the
sense of convergence in the mean (convergence in L1); in the sense of
mean-square convergence (convergence in L2). The first four of these
modes of convergence are defined in terms of the behavior of the
functions gn and g at individual points x. Therefore in these modes,
the interval I can be replaced by any subset X of the real numbers.
The last three of these modes are defined in terms of integrals of
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powers of the difference |gn − g|. In these cases I can be replaced by
any set X of real numbers for which the integral over the set is defined.
Some of these modes of convergence are stronger than others, uniform
convergence being the strongest. Figure 2.4 on page 42 illustrates the
interrelations between five of these modes of convergence.

In Chapter 3, we will be concerned with pointwise and uniform
convergence of Fourier series, and in Chapter 5 we will be concerned
with mean-square convergence of Fourier series. At the end of the
book, we come full circle and show that convergence in Lp(T) of
Fourier series is a consequence of the boundedness in Lp(T) of the
periodic Hilbert transform.

See [Bar66, pp. 68–72] for yet more modes of convergence, such
as convergence in measure and almost uniform convergence (not to
be confused with uniform convergence outside a set of measure zero).

We begin with the four modes of convergence that are defined in
terms of individual points x. In what follows X is a subset of the real
numbers.

Definition 2.39. A sequence of functions gn : X → C converges
pointwise to g : X → C if for each x ∈ X, limn→∞ gn(x) = g(x).
Equivalently, gn converges pointwise to g if for each ε > 0 and for
each x ∈ X there is an N = N(ε, x) > 0 such that for all n > N ,

|gn(x)− g(x)| < ε. ♦

Almost-everywhere convergence is a little weaker than pointwise
convergence.

Definition 2.40. A sequence of functions gn : X → C converges
almost everywhere, or pointwise a.e., to g : X → C if it converges
pointwise to g except on a set of measure zero: limn→∞ gn(x) = g(x)

a.e. in X. Equivalently, gn converges a.e. to g if there exists a set E

of measure zero, E ⊂ X, such that for each x ∈ X \ E and for each
ε > 0 there is an N = N(ε, x) > 0 such that for all n > N ,

|gn(x)− g(x)| < ε. ♦

Uniform convergence is stronger than pointwise convergence. In-
formally, given a fixed ε, for uniform convergence the same N must
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work for all x, while for pointwise convergence we may use different
numbers N for different points x.

Definition 2.41. A sequence of bounded functions gn : X → C
converges uniformly to g : X → C if given ε > 0 there is an N =

N(ε) > 0 such that for all n > N ,

|gn(x)− g(x)| < ε for all x ∈ X. ♦

Here is a slightly weaker version of uniform convergence.

Definition 2.42. A sequence of L∞ functions gn : X → C converges
uniformly outside a set of measure zero, or in L∞, to g : X → C if

lim
n→∞

‖gn − g‖L∞(X) = 0.

In this case, we write gn → g in L∞(X). ♦
Remark 2.43. If the functions gn and g are continuous and bounded
on X ⊂ R, then ‖gn − g‖L∞(X) = supx∈X |gn(x) − g(x)|, and in
this case convergence in L∞(X) and uniform convergence coincide.
This is why the L∞ norm for continuous functions is often called the
uniform norm. The metric space of continuous functions over a closed
bounded interval with the metric induced by the uniform norm is a
complete metric space (a Banach space); see [Tao06b, Section 4.4].
In particular, if the functions gn in Definition 2.41 are continuous and
converge uniformly, then the limiting function is itself continuous; see
Theorem 2.59. ♦

We move to those modes of convergence that are defined via in-
tegrals. The two most important are convergence in L1 and in L2.
The integral used in these definitions is the Lebesgue integral, and by
integrable we mean Lebesgue integrable. Here we restrict to integrals
on bounded intervals I.

Definition 2.44. A sequence of integrable functions gn : I → C
converges in the mean, or in L1(I), to g : I → C if for each ε > 0

there is a number N > 0 such that for all n > Nˆ
I

|gn(x)− g(x)| dx < ε.

Equivalently, gn converges in L1 to g if limn→∞ ‖gn − g‖L1(I) = 0.
We write gn → g in L1(I). ♦

                

                                                                                                               



2.2. Modes of convergence 41

Definition 2.45. A sequence of square-integrable functions gn : I →
C converges in mean-square, or in L2(I), to g : I → C if for each
ε > 0 there is an N > 0 such that for all n > N ,ˆ

I

|gn(x)− g(x)|2 dx < ε.

Equivalently, gn converges in L2(I) to g if limn→∞ ‖gn − g‖L2(I) = 0.
We write gn → g in L2(I). ♦

Convergence in L1(I) and convergence in L2(I) are particular
cases of convergence in Lp(I), defined replacing L2(I) by Lp(I) in
Definition 2.45.

We have already noted that the Lp spaces are complete normed
spaces, also known as Banach spaces. Therefore in Definitions 2.44
and 2.45 the limit functions must be in L1(I) and L2(I), respectively.

Exercise 2.46. Verify that uniform convergence on a bounded inter-
val I implies the other modes of convergence on I. ♦

Exercise 2.47. Show that for 1 ≤ q < p ≤ ∞ convergence in Lp(I)

implies convergence in Lq(I). Hint: Use Hölder’s Inequality (in-
equality (2.6)). ♦

The following examples show that in Figure 2.4 the implications
go only in the directions indicated. In these examples we work on the
unit interval [0, 1].

Example 2.48 (Pointwise But Not Uniform). The sequence of func-
tions defined by fn(x) = xn for x ∈ [0, 1] converges pointwise to the
function f defined by f(x) = 0 for 0 ≤ x < 1 and f(1) = 1, but
it does not converge uniformly to f , nor to any other function. See
Figure 2.5. ♦

Example 2.49 (Pointwise But Not in the Mean). The sequence of
functions gn : [0, 1] → R defined by gn(x) = n if 0 < x < 1/n and
gn(x) = 0 otherwise, converges pointwise everywhere to g(x) = 0,
but it does not converge in the mean or in L2, nor does it converge
uniformly. See Figure 2.6. ♦
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Uniform convergence:
|gn(x)− g(x)| → 0

uniformly in x.
For each ε > 0 there is an N

that works for all x ∈ T.

Pointwise convergence:
|gn(x)− g(x)| → 0

for all x ∈ T.
For each ε > 0 and each x ∈ T
there is an N = N(x, ε)

that works.

L2 (mean-square)
convergence:´

T
|gn(x)− g(x)|2 dx

→ 0.

Pointwise a.e. convergence:
|gn(x)− g(x)| → 0

for almost all x ∈ T.
For each ε > 0 and a.e. x ∈ T
there is an N = N(x, ε)

that works.

L1 (mean)
convergence:´

T
|gn(x)− g(x)| dx

→ 0.

��� ���

=⇒ =⇒

Figure 2.4. Relations between five of the six modes of con-
vergence discussed in Section 2.2, for functions gn, g : T → C,
showing which modes imply which other modes. All potential
implications between these five modes other than those shown
here are false.

Example 2.50 (In the Mean But Not Pointwise). Given a positive
integer n, let m, k be the unique nonnegative integers such that n =
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Figure 2.5. The functions fn(x) = xn converge pointwise,
but not uniformly, on [0, 1]. Their limit is the function f(x)
that takes the value 0 for x ∈ [0, 1) and 1 at x = 1. Graphs of
fn are shown for n = 1, 2, 10, and 100.
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Figure 2.6. The functions gn defined in Example 2.49 con-
verge pointwise on (0, 1], but not in the mean, in L2, or uni-
formly. Their limit is the function g(x) that takes the value 0
for x ∈ (0, 1]; g is undefined at x = 0. Graphs of gn are shown
for n = 1, 2, 5, and 10.

2k+m and 0 ≤ m < 2k. The sequence of functions hn(x) : [0, 1)→ R
defined by hn(x) = 1 if m/2k ≤ x < (m+ 1)/2k and hn(x) = 0

otherwise, converges in the mean to the zero function, but it does not
converge pointwise at any point x ∈ [0, 1). This sequence of functions
is sometimes called the walking functions. See Figure 2.7. ♦

Despite these examples, there is a connection between pointwise
almost everywhere convergence and convergence in Lp. For p such
that 1 ≤ p < ∞, if fn, f ∈ Lp(I) and if fn → f in Lp, then there
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Figure 2.7. The first three walking functions of Exam-
ple 2.50. The functions hn(x) converge in mean but do not
converge pointwise at any x in [0, 1).

is a subsequence {fnk
}k∈N that converges to f pointwise a.e. on I.

See [SS05, Corollary 2.2].

Exercise 2.51. Verify that the sequences described in Examples 2.48,
2.49, and 2.50 have the convergence properties claimed there. Adapt
the sequences in the examples to have the same convergence proper-
ties on the interval [a, b). ♦

Exercise 2.52. Where would uniform convergence outside a set of
measure zero and Lp convergence for a given p with 1 ≤ p ≤ ∞ fit
in Figure 2.4? Prove the implications that involve these two modes.
Devise examples to show that other potential implications involving
these two modes do not hold. ♦
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2.3. Interchanging limit operations

When can you interchange the order of two integral signs? Uniform
convergence on closed bounded intervals is a very strong form of con-
vergence, which allows interchanges with other limiting operations
such as integration and differentiation. We list here without proof
several results from advanced calculus that will be used throughout
the book. Some involve uniform convergence as one of the limit op-
erations; others involve other limit operations such as interchanging
two integrals.

Theorem 2.53 (Interchange of Limits and Integrals). If {fn}n∈N is
a sequence of integrable functions that converges uniformly to f in
[a, b], then f is integrable on [a, b] and

lim
n→∞

ˆ b

a

fn =

ˆ b

a

lim
n→∞

fn =

ˆ b

a

f.

That is, the limit of the integrals of a uniformly convergent se-
quence of functions on [a, b] is the integral of the limit function on [a, b].

Notice that the functions in Example 2.49 do not converge uni-
formly, and they provide an example where this interchange fails. In
fact,

´ 1

0
gn = 1 for all n and

´ 1

0
g = 0, so

lim
n→∞

ˆ 1

0

gn = 1 �= 0 =

ˆ 1

0

lim
n→∞

gn =

ˆ 1

0

g.

Likewise, we can interchange infinite summation and integration
provided the convergence of the partial sums is uniform.

Exercise 2.54. Given a closed bounded interval I and integrable
functions gn : I → C, n ∈ N, suppose the partial sums

∑N
n=0 gn(x)

converge uniformly on I as N →∞. Show that

ˆ
I

∞∑
n=0

gn(x) dx =

∞∑
n=0

ˆ
I

gn(x) dx. ♦
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It is therefore important to know when partial sums converge uni-
formly to their series. The Weierstrass M -Test 21 is a useful technique
for establishing uniform convergence of partial sums of functions.

Theorem 2.55 (Weierstrass M -Test). Let {fn}∞n=1 be a sequence of
bounded real-valued functions on a subset X of the real numbers. As-
sume there is a sequence of positive real numbers such that |fn(x)| ≤
an for all x ∈ X and

∑∞
n=1 an < ∞. Then the series

∑∞
n=1 fn con-

verges uniformly to a real-valued function on X.

Under certain conditions, involving uniform convergence of a se-
quence of functions and their derivatives, one can exchange differen-
tiation and the limit.

Theorem 2.56 (Interchange of Limits and Derivatives). Let fn :

[a, b]→ C be a sequence of C1 functions converging uniformly on [a, b]

to the function f . Assume that the derivatives (fn)
′ also converge

uniformly on [a, b] to some function g. Then f is C1, and f ′ = g,
that is,

lim
n→∞

(fn)
′ =

(
lim
n→∞

fn

)′
.

In other words, we can interchange limits and differentiation pro-
vided the convergence of the functions and the derivatives is uniform.

Exercise 2.57. Show by exhibiting counterexamples that each hy-
pothesis in Theorem 2.56 is necessary. ♦

Exercise 2.58. What hypotheses on a series
∑∞

n=0 gn(x) are nec-
essary so that it is legal to interchange sum and differentiation? In
other words, when is

(∑∞
n=0 gn(x)

)′
=
∑∞

n=0(gn)
′(x)? ♦

Here is another useful result in the same vein, already mentioned
in Remark 2.43.

Theorem 2.59. The uniform limit of continuous functions on a sub-
set X of the real numbers is continuous on X.

21Named after the German mathematician Karl Theodor Wilhelm Weierstrass
(1815–1897).
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Theorem 2.59 ensures that if gn → g uniformly and the functions
gn are continuous, then for all x0 ∈ X we can interchange the limit
as x approaches x0 with the limit as n tends to infinity:

(2.7) lim
x→x0

lim
n→∞

gn(x0) = lim
n→∞

lim
x→x0

gn(x).

Showing more steps will make the above statement clearer. First, we
see that limx→x0

limn→∞ gn(x) = limx→x0
g(x) = g(x0), because gn

converges uniformly to g and g is continuous at x0. Second, we see
that g(x0) = limn→∞ gn(x0) = limn→∞ limx→x0

gn(x), because gn
converges uniformly to g and for all n ∈ N, gn is continuous at x0.

Example 2.48 shows a sequence of continuous functions on [0, 1]

that converge pointwise to a function that is discontinuous (at x = 1).
Thus the convergence cannot be uniform.

There is a partial converse, called Dini’s Theorem22, to Theo-
rem 2.59. It says that the pointwise limit of a decreasing sequence of
functions is also their uniform limit.

Theorem 2.60 (Dini’s Theorem). Suppose that f , fn : I → R are
continuous functions. Assume that (i) fn converges pointwise to f as
n→∞ and (ii) fn is a decreasing sequence, namely fn(x) ≥ fn+1(x)

for all x ∈ I. Then fn converges uniformly to f .

Exercise 2.61. Prove Dini’s Theorem, and show that hypothesis (ii)
is essential. A continuous version of Example 2.49, where the steps
are replaced by tents, might help. ♦

In Weierstrass’s M -Test, Theorem 2.55, if the functions {fn}∞n=1

being summed up are continuous, then the series
∑∞

n=1 fn(x) is a
continuous function.

Interchanging integrals is another instance of these interchange-
of-limit operations. The theorems that allow for such interchange go
by the name Fubini’s Theorems23. Here is one such theorem, valid
for continuous functions.

22Named after the Italian mathematician Ulisse Dini (1845–1918).
23Named after the Italian mathematician Guido Fubini (1879–1943).
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Theorem 2.62 (Fubini’s Theorem). Let I and J be closed intervals,
and let F : I × J → C be a continuous function. Assume

¨
I×J

|F (x, y)| dA <∞,

where dA denotes the differential of area. Then

ˆ
I

ˆ
J

F (x, y) dx dy =

ˆ
J

ˆ
I

F (x, y) dy dx =

¨
I×J

F (x, y) dA.

Usually Fubini’s Theorem refers to an L1-version of Theorem 2.62
that is stated and proved in every measure theory book. You can find
a two-dimensional version in [Tao06b, Section 19.5].

Interchanging limit operations is a delicate maneuver that can-
not always be accomplished; sometimes it is invalid. We illustrate
throughout the book settings where this interchange is allowed, such
as the ones just described involving uniform convergence, and settings
where it is illegal.

Unlike the Riemann integral, Lebesgue theory allows for the in-
terchange of a pointwise limit and an integral. There are several
landmark theorems that one learns in a course on measure theory.
We state one such result.

Theorem 2.63 (Lebesgue Dominated Convergence Theorem). Con-
sider a sequence of measurable functions fn defined on the interval I,
converging pointwise a.e. to a function f . Suppose there exists a
dominating function g ∈ L1(I), meaning that |fn(x)| ≤ g(x) a.e. for
all n > 0. Then

lim
n→∞

ˆ
I

fn(x) dx =

ˆ
I

f(x) dx.

Exercise 2.64. Verify that the functions in Example 2.49 cannot be
dominated by an integrable function g. ♦

Remark 2.65. The Lebesgue Dominated Convergence Theorem holds
on R (see the Appendix). ♦
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2.4. Density

Having different ways to measure convergence of functions to other
functions provides ways of deciding when we can approximate func-
tions in a given class by functions in another class. In particular we
can decide when a subset is dense in a larger set of functions.

Definition 2.66. Given a normed space X of functions defined on a
bounded interval I, with norm denoted by ‖·‖X , we say that a subset
A ⊂ X is dense in X if given any f ∈ X there exists a sequence of
functions fn ∈ A such that limn→∞ ‖fn − f‖X = 0. Equivalently, A
is dense in X if given any f ∈ X and any ε > 0 there exists a function
h ∈ A such that

‖h− f‖X < ε. ♦

One can deduce from the definition of the Riemann integrable
functions on a bounded interval I that the step functions (see Defini-
tion 2.3) are dense in R(I) with respect to the L1 norm; see Propo-
sition 2.12. We state this result as a theorem, for future reference.

Theorem 2.67. Given a Riemann integrable function on a bounded
interval I, f ∈ R(I), and given ε > 0, there exists a step function h

such that
‖h− f‖L1(I) < ε.

Remark 2.68. We can choose the step functions that approximate
a given Riemann integrable function to lie entirely below the function
or entirely above it. ♦

In Chapter 4 we will learn that trigonometric polynomials can
approximate uniformly periodic continuous functions on T. This im-
portant result is Weierstrass’s Theorem (Theorem 3.4). In Chapter 9
we will learn that on closed bounded intervals, continuous functions
can be approximated uniformly by step functions and that they can
also be approximated in the L2 norm (or Lp norm) by step functions.

It is perhaps more surprising that continuous functions can ap-
proximate step functions pointwise almost everywhere and in the L2

norm (or Lp norm). We prove this result in Chapter 4, when we intro-
duce the concepts of convolution and approximations of the identity.
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Figure 2.8. Graph of a continuous function that approxi-
mates a step function, both pointwise a.e. and in Lp norm.

The result seems more plausible if you draw a picture of a step func-
tion and then remove the discontinuities by putting in suitable steep
line segments; see Figure 2.8.

Assuming these results, proved in later chapters, we can estab-
lish the density of the continuous functions in the class of Riemann
integrable functions, as well as in the Lp spaces.

Theorem 2.69. The continuous functions on a closed bounded in-
terval I are dense in R(I) with respect to the Lp norm.

Proof. Start with f ∈ R(I). There is a step function h that is ε-
close in the Lp norm to f , that is, ‖f − h‖Lp(I) < ε. There is also
a continuous function g ∈ C(I) that is ε-close in the Lp norm to the
step function h, that is, ‖h− g‖Lp(I) < ε. By the Triangle Inequality,
the continuous function g is 2ε-close in the Lp norm to our initial
function f : ‖f − g‖Lp(I) ≤ ‖f − h‖Lp(I) + ‖h− g‖Lp(I) ≤ 2ε. Hence
continuous functions can get arbitrarily close in the Lp norm to any
Riemann integrable function. �

Remark 2.70. We will use a precise version of this result for p = 1

in Chapter 4 (see Lemma 4.10), where we require the approximating
continuous functions to be uniformly bounded by the same bound that
controls the Riemann integrable function. Here is the idea. Given
real-valued f ∈ R(I) and ε > 0, there exists a real-valued continuous
function g on I (by Theorem 2.69) such that ‖g − f‖L1(I) < ε. Let
f be bounded by M > 0, that is, |f(x)| ≤ M for all x ∈ I. If g
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is bounded by M , there is nothing to be done. If g is not bounded
by M , consider the new function defined on I by g0(x) = g(x) if
|g(x)| ≤ M , g(x) = M if g(x) > M , and g(x) = −M if g(x) < −M .
One can show that g0 is continuous, g0(x) ≤M for all x ∈ I, and g0
is closer to f than g is. In particular the L1 norm of the difference is
at most ε and possibly even smaller. ♦

Exercise 2.71. Show that the function g0 defined in Remark 2.70
satisfies the properties claimed there. ♦

Exercise 2.72. Let X be a normed space of functions over a bounded
interval I. Suppose A is a dense subset of X and A ⊂ B ⊂ X. Then
B is a dense subset of X (all with respect to the norm of the ambient
space X). ♦

Exercise 2.73 (Density Is a Transitive Property). Let X be a normed
space of functions over a bounded interval I. Suppose A is a dense
subset of B and B is a dense subset of X. Then A is a dense subset
of X (all with respect to the norm of the ambient space X). ♦

Notice that the notion of density is strongly dependent on the
norm or metric of the ambient space. For example, when considering
nested Lp spaces on a closed bounded interval, C(I) ⊂ L2(I) ⊂ L1(I).
Suppose we knew that the continuous functions are dense in L2(I)

(with respect to the L2 norm) and that the square-integrable functions
are dense in L1(I) (with respect to the L1 norm). Even so, we could
not use transitivity to conclude that the continuous functions are
dense in L1(I). We need to know more about the relation between
the L1 and the L2 norms. In fact, to complete the argument, it suffices
to know that ‖f‖L1(I) ≤ C‖f‖L2(I) (see Exercise 2.27), because that
would imply that if the continuous functions are dense in L2(I) (with
respect to the L2 norm), then they are also dense with respect to the
L1 norm, and now we can use the transitivity. Such a norm inequality
is stronger than the statement that L2(I) ⊂ L1(I). It says that the
identity map, or embedding, E : L2(I) → L1(I), defined by Ef = f

for f ∈ L2(I), is a continuous map, or a continuous embedding.

Exercise 2.74. Use Exercise 2.27 to show that the embedding E :

Lq(I) → Lp(I), Ef = f , is a continuous embedding. That is, show
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that given ε > 0, there exists a δ > 0 such that ‖Ef − Eg‖Lp(I) < ε

if ‖f − g‖Lq(I) < δ. ♦

We do not prove the following statements about various subsets of
functions being dense in Lp(I), since they rely on Lebesgue integration
theory. However, we use these results in subsequent chapters, for
example to show that the trigonometric system is a basis for L2(T).

We know that Lp(I) is the completion of R(I) with respect to the
Lp norm. In particular, the Riemann integrable functions are dense
in Lp(I) with respect to the Lp norm. With this fact in mind, we
see that any set of functions that is dense in R(I) with respect to
the Lp norm is also dense in Lp(I) with respect to the Lp norm, by
transitivity. For future reference we state here the specific density of
the continuous functions in Lp(I).

Theorem 2.75. The continuous functions on a closed bounded in-
terval I are dense in Lp(I), for all p with 1 ≤ p ≤ ∞.

Exercise 2.76. Given f ∈ Lp(I), 1 ≤ p < ∞, ε > 0, and assuming
all the theorems and statements in this section, show that there exists
a step function h on I such that ‖h(x)− f(x)‖Lp(I) < ε. ♦

2.5. Project: Monsters, Take I

In this project we explore some unusual functions. Here we quote
T. Körner [Kör, Chapter 12], who in turn cites Hermite and Poincaré:

Weierstrass’s nowhere differentiable continuous function was the first
in a series of examples of functions exhibiting hitherto unexpected behavior.
[. . . ] Many mathematicians held up their hands in (more or less) genuine
horror at “this dreadful plague of continuous nowhere differentiable func-
tions” (Hermite), with which nothing mathematical could be done. [. . . ]

Poincaré wrote that in the preceding half century
“we have seen a rabble of functions arise whose only job, it seems, is to

look as little as possible like decent and useful functions. No more continu-
ity, or perhaps continuity but no derivatives. Moreover, from the point of
view of logic, it is these strange functions which are the most general; whilst
those one meets unsearched for and which follow simple laws are seen just
as very special cases to be given their own tiny corner. Yesterday, if a new
function was invented it was to serve some practical end, today they are
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specially invented only to show up the arguments of our fathers, and they
will never have any other use.”

(Collected Works, Vol. 11, p. 130)

(a) Read about and write an explanation of the construction of a
function that is continuous everywhere but nowhere differentiable.
Weierstrass showed that the function

∑∞
n=0 bn cos(anπx) where a is

an odd integer, b lies strictly between 0 and 1, and ab is strictly larger
than 1+3π/2 has these properties. Bressoud works through the proof
for Weierstrass’s example in [Bre, Chapter 6]. Körner shows in [Kör,
Chapter 11] that the same properties hold for

∑∞
n=0

1
n! sin

(
(n!)2x

)
,

another version of Weierstrass’s example. See [SS03, Section 4.3].

(b) The following quote from [JMR, p. 3] indicates that Fourier and
wavelet analysis can be used to analyze such functions: “Holschnei-
der and Tchamitchian have shown that wavelet analysis is more sensi-
tive and efficient than Fourier analysis for studying the differentiability
of the Riemann function at a given point.” What did Holschneider and
Tchamitchian mean? What is the Riemann function? Here are some
possible references to start you off: [HT], [Jaf95], [Jaf97], [JMR,
Chapter 10], [KL, Section 4, p. 382]. You will be better equipped for
this search after Chapters 3–10.

(c) Consider the following statement: Hermite and Poincaré were
wrong, in the sense that there are examples of nowhere differentiable
functions that turn up in real life, including the world of mathematical
art: fractals, Brownian motion24, and the kth derivative of a k times
differentiable Daubechies25 wavelets (see Chapter 9–11). Write an
essay supporting this statement, choose one of these examples, and
investigate its definition, history, and properties.

24Named after the Scottish botanist and paleobotanist Robert Brown (1773–
1858).

25Belgian-born American mathematician and physicist Ingrid Daubechies (born
1954).

                

                                                                                                               



Chapter 3

Pointwise convergence of
Fourier series

In this chapter we study pointwise and uniform convergence of Four-
ier series for smooth functions (Section 3.1). We also discuss the
connection between the decay of the Fourier coefficients and smooth-
ness (Section 3.2). We end with a historical account of convergence
theorems (Section 3.3).

We assume that the reader is familiar with the notions of point-
wise and uniform convergence. In Chapter 2 we reviewed these con-
cepts, as well as several other modes of convergence that arise natu-
rally in harmonic analysis.

3.1. Pointwise convergence: Why do we care?

For the sawtooth function in Example 1.12, the Fourier expansion
converges pointwise to f(θ) = θ everywhere except at the odd multi-
ples of π, where it converges to zero (the halfway height in the vertical
jump). For the toy model of a voice signal in Example 1.1, we were
able to reconstruct the signal perfectly using only four numbers (two
frequencies and their corresponding amplitudes) because the signal
was very simple. In practice, complicated signals such as real voice

55

                                     

                

                                                                                                               



56 3. Pointwise convergence of Fourier series

signals transmitted through phone lines require many more ampli-
tude coefficients and frequencies for accurate reconstruction, some-
times thousands or millions. Should we use all of these coefficients
in reconstructing our function? Or could we perhaps get a reason-
able approximation to our original signal using only a subset of the
coefficients? If so, which ones should we keep? One simple approach
is to truncate at specific frequencies −N and N and to use only the
coefficients corresponding to frequencies such that |n| ≤ N . Instead
of the full Fourier series, we obtain the N th partial Fourier sum SNf

of f , given by

(3.1) SNf(θ) =
∑

|n|≤N

ane
inθ =

∑
|n|≤N

f̂ (n)einθ,

which is a trigonometric polynomial of degree N .

Is SNf like f? In general, we need to know whether SNf looks
like f as N →∞ and then judge which N will be appropriate for trun-
cation so that the reconstruction is accurate enough for the purposes
of the application at hand.

For the sawtooth function f in Example 1.12, the partial Fourier
sums are

SNf(x) =
∑

|n|≤N

(−1)n+1

in
einθ = 2

N∑
n=1

(−1)n+1

n
sin (nθ).

In Figure 3.1 we plot f together with SNf , for N = 2, 5, and 20.

Exercise 3.1. Create a Matlab script to reproduce Figure 3.1. Ex-
periment with other values of N . Describe what you see. Near the
jump discontinuity you will see an overshoot that remains large as N
increases. This is the Gibbs phenomenon1. Repeat the exercise for
the square wave function that arises as the periodic extension of the

1Named after the American mathematician and perhaps primarily physical
chemist Josiah Willard Gibbs (1839–1903), who reported it in a letter to Nature in
1899 (see [Gib1899]), correcting his earlier letter in which he had overlooked the phe-
nomenon (see [Gib1898]). Unbeknownst to Gibbs, the English mathematician Henry
Wilbraham (1825–1883) had discovered the same phenomenon fifty years earlier (see
[Wil]). The Gibbs phenomenon has to do with how poorly a Fourier series converges
near a jump discontinuity of the function f . More precisely, for each N there is a neigh-
borhood of the discontinuity, decreasing in size as N increases, on which the partial
sums SNf always overshoot the left- and right-hand limits of f by about 9%.
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Figure 3.1. Graphs of the sawtooth function f and its partial
Fourier sums SNf , for N = 2, 5, and 20, extended periodically
from [−π, π) to R. Compare with Figure 3.2.

following step function g(θ):

g(θ) =

{
1, if θ ∈ [0, π);
−1, if θ ∈ [−π, 0).

The project in Section 3.4 outlines a more detailed investigation of
the Gibbs phenomenon. ♦

Exercise 3.2. Compute the partial Fourier sums for the trigonomet-
ric polynomial in Exercise 1.11. ♦

Here is an encouraging sign that pointwise approximation by par-
tial Fourier sums may work well for many functions. As the example
in Exercise 3.2 suggests, if f is a 2π-periodic trigonometric polynomial
of degree M , in other words, a function of the form

f(θ) =
∑

|k|≤M

ake
ikθ,
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then for N ≥M , its partial Fourier sums SNf(x) coincide with f(x).
Therefore SNf converges pointwise to f , for all θ and for all trigono-
metric polynomials f . A fortiori, the convergence is uniform on T,
since SMf = SM+1f = · · · = f .

The partial Fourier sums SNf converge uniformly to f for
all trigonometric polynomials f .

Exercise 3.3. Show that the Taylor polynomials PN (f, 0) converge
uniformly for all polynomials f . See formula (1.4). ♦

Approximating with partial Fourier sums presents some prob-
lems. For example, there are continuous functions for which one
does not get pointwise convergence of the partial Fourier sums every-
where, as du Bois-Reymond2 showed. One of the deepest theorems
in twentieth-century analysis, due to Lennart Carleson3, says that
one does, however, get almost everywhere convergence for square-
integrable functions on T and in particular for continuous functions;
see Section 3.3 for more details and Chapter 2 for definitions.

One can obtain better results in approximating a function f if one
combines the Fourier coefficients in ways different from the partial
sums SNf . For example, averaging over the partial Fourier sums pro-
vides a smoother truncation method in terms of the Cesàro4 means,

(3.2) σNf(θ) =
(
S0f(θ) + S1f(θ) + · · ·+ SN−1f(θ)

)
/N,

that we will study more carefully in Section 4.4. In particular, we will
prove Fejér’s5 Theorem (Theorem 4.32):

The Cesàro means σNf converge uniformly to f for con-
tinuous functions f on T.

Therefore the following uniqueness principle holds:

If f ∈ C(T) and f̂ (n) = 0 for all n, then f = 0.

2The German mathematician Paul David Gustav du Bois-Reymond (1831–1889).
3Carleson was born in Stockholm, Sweden, in 1928. He was awarded the Abel

Prize in 2006 “for his profound and seminal contributions to harmonic analysis and the
theory of smooth dynamical systems”.

4Named after the Italian mathematician Ernesto Cesàro (1859–1906).
5Named after the Hungarian mathematician Lipót Fejér (1880–1959).
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Just observe that if f̂ (n) = 0 for all n, then σNf = 0 for all N > 0,
but the Cesàro means σNf converge uniformly to f . Therefore f

must be identically equal to zero.

The Cesàro means are themselves trigonometric polynomials, so
we can deduce from this result a theorem named after the German
mathematician Karl Theodor Wilhelm Weierstrass (1815–1897).

Theorem 3.4 (Weierstrass’s Approximation Theorem for Trigono-
metric Polynomials). Every continuous function on T can be ap-
proximated uniformly by trigonometric polynomials. Equivalently, the
trigonometric functions are dense in the continuous functions on T
with respect to the uniform norm.

Aside 3.5. There is a version of Weierstrass’s Theorem for continu-
ous functions on closed and bounded intervals and plain polynomials.
Namely, continuous functions on [a, b] can be approximated uniformly
by polynomials. Equivalently, the polynomials are dense in C([a, b])

with respect to the uniform norm. See [Tao06b, Section 14.8, Theo-
rem 14.8.3]. Both versions are special cases of a more general result,
the Stone6–Weierstrass Theorem, which can be found in more ad-
vanced textbooks such as [Fol, Chapter 4, Section 7]. ♦

To sum up, continuous periodic functions on the circle can be
uniformly approximated by trigonometric polynomials, but if we insist
on approximating a continuous periodic function f by the particular
trigonometric polynomials given by its partial Fourier sums SNf , then
even pointwise convergence can fail. However, it turns out that if we
assume that f is smoother, we will get both pointwise and uniform
convergence.

3.2. Smoothness vs. convergence

In this section we present a first convergence result for functions that
have at least two continuous derivatives. In the proof we obtain
some decay of the Fourier coefficients which can be generalized to
the case when the functions are k times differentiable. We then ex-
plore whether decay of the Fourier coefficients implies smoothness,

6Named after the American mathematician Marshall Harvey Stone (1903–1989).
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and we study the rate of convergence of the partial Fourier sums for
smooth functions.

3.2.1. A first convergence result. Let us consider a function f ∈
C2(T), so f is 2π-periodic and twice continuously differentiable on
the unit circle T. We show that the numbers SNf(θ) do converge and
that they converge to f(θ), for each θ ∈ T. In the following theorem
we show that the partial sums converge uniformly to the Fourier series
Sf ; afterwards we argue that the limit must be f .

Theorem 3.6. Let f ∈ C2(T). Then for each θ ∈ T the limit of the
partial sums

lim
N→∞

SNf(θ) =
∞∑

n=−∞
f̂ (n)einθ =: Sf(θ)

exists. Moreover, the convergence to the limit is uniform on T.

Proof. The partial Fourier sums of f are given by

SNf(θ) =
∑

|n|≤N

f̂ (n)einθ.

Fix θ, and notice that the Fourier series of f evaluated at θ is a power
series in the complex variable z = eiθ:

∞∑
n=−∞

f̂ (n)einθ =
∞∑

n=−∞
f̂ (n)

(
eiθ
)n

.

It suffices to show that this numerical series is absolutely convergent,
or in other words that the series of its absolute values is convergent,
that is

∞∑
n=−∞

|f̂ (n)einθ| =
∞∑

n=−∞
|f̂ (n)| <∞,

because then the Fourier series itself must converge, and the conver-
gence is uniform, by the Weierstrass M -Test (Theorem 2.55).
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We can find new expressions for the Fourier coefficients f̂ (n), for
n �= 0, by integrating by parts with u = f(θ), v = −e−inθ/(in):

f̂ (n) =
1

2π

ˆ π

−π

f(θ)e−inθ dθ

=
1

2π

[
− 1

in
f(θ)e−inθ

]π
−π

− 1

2π

ˆ π

−π

− 1

in
f ′(θ)e−inθ dθ

=
1

in

1

2π

ˆ π

−π

f ′(θ)e−inθ dθ =
1

in
f̂ ′(n).

Using the same argument for f ′, we conclude that f̂ (n) = −f̂ ′′(n)/n2.

The integration by parts is permissible since f is assumed to
have two continuous derivatives. The boundary terms vanish because
of the continuity and 2π-periodicity of f , f ′, and the trigonometric
functions (hence of their product). We conclude that for n �= 0,

(3.3) f̂ ′(n) = inf̂ (n), f̂ ′′(n) = −n2f̂ (n).

We can now make a direct estimate of the coefficients, for n �= 0,

|f̂ (n)| =
1

n2
|f̂ ′′(n)| = 1

n2

∣∣∣∣ 12π
ˆ π

−π

f ′′(θ)e−inθ dθ

∣∣∣∣
≤ 1

n2

(
1

2π

ˆ π

−π

|f ′′(θ)| dθ
)
,

since |e−inθ| = 1. But f ′′ is continuous on the closed interval [−π, π].
So it is bounded by a finite constant C > 0, and therefore its average
over any bounded interval is also bounded by the same constant:
1
2π

´ π

−π
|f ′′(θ)| dθ ≤ C. We conclude that there exists C > 0 such

that
|f̂ (n)| ≤ C/n2 for all n �= 0.

The comparison test then implies that
∑

n∈Z
|f̂ (n)| converges, and

the Weierstrass M -Test (Theorem 2.55) implies that the Fourier se-
ries

∑
n∈Z

f̂ (n)einx converges uniformly and hence pointwise if f is
twice continuously differentiable. �

In fact, we have shown more.

Theorem 3.7. Suppose f is an integrable function on T such that∑∞
n=−∞ |f̂ (n)| < ∞. Then the partial Fourier sums SNf converge
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uniformly to the Fourier series Sf . Moreover, Sf will be a periodic
and continuous function on T.

Aside 3.8. The equations (3.3) are instances of a time–frequency dic-
tionary that we summarize in Table 4.1. Specifically, derivatives of
f are transformed into multiplication of f̂ by polynomials. As a con-
sequence, linear differential equations are transformed into algebraic
equations. ♦

We can restate concisely Theorem 3.6 as follows.
If f ∈ C2(T), then its Fourier series converges uniformly on T.

Remark 3.9. We have not yet established whether the Fourier series
evaluated at θ converges to f(θ). ♦

If f ∈ C2(T), it is true that f is the pointwise limit of its Fourier
series, though it takes more work to prove this result directly. It
is a consequence of the following elementary lemma about complex
numbers.

Lemma 3.10. Suppose that the sequence of complex numbers {an}n≥1

converges. Then the sequence of its averages also converges, and their
limits coincide; that is,

lim
n→∞

(
a1 + a2 + · · ·+ an

)
/n = lim

n→∞
an.

Exercise 3.11. Prove Lemma 3.10. Give an example to show that
if the sequence of averages converges, that does not imply that the
original sequence converges. ♦

In Section 4.4 we show that for continuous functions f on T, the
Cesàro means σNf(θ) (see (3.2)), which are averages of the partial
Fourier sums, do converge uniformly to f(θ) as N →∞; this is Fejer’s
Theorem (Theorem 4.32). Lemma 3.10 shows that since for f ∈ C2(T)
the partial Fourier sums converge (Theorem 3.6), then the Cesàro
sums also converge, and to the same limit. It follows that if f ∈
C2(T), then the partial sums SNf(θ) of the Fourier series for f do
converge pointwise to f(θ), for each θ ∈ T. Summing up, we have
established the following theorem (modulo Fejér’s Theorem).

Theorem 3.12. If f ∈ C2(T), then the sequence of partial Fourier
sums, SNf , converges uniformly to f on T.
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On the other hand, while the partial Fourier sums converge uni-
formly for C1 functions, the argument we just gave does not suf-
fice to guarantee pointwise, let alone uniform, convergence, since we
can no longer argue by comparison, as we just did, to obtain abso-
lute convergence. In this case, the estimate via integration by parts
on the absolute value of the coefficients is insufficient; all we get is
|an| ≤ C/n, and the corresponding series does not converge. A more
delicate argument is required just to check convergence of the se-
quence of partial sums {SNf(θ)}N∈N for f ∈ C1(T). But once the
convergence of the series is guaranteed, then the same result about
convergence of Cesàro sums for continuous functions applies, and the
limit has no other choice than to coincide with f(θ). The following
result is proved in [Stri00a, Chapter 12, Theorem 12.2.2].

Theorem 3.13. If f ∈ C1(T), then its Fourier series converges uni-
formly on T to f .

3.2.2. Smoothness vs. rate of decay of Fourier coefficients.
In Section 3.2.1, we integrated twice by parts and obtained formu-
lae (3.3) for the Fourier coefficients of the first and second derivatives
of a C2 function. If the function is Ck, then we can iterate the pro-
cedure k times, obtaining a formula for the Fourier coefficients of the
kth derivative of f in terms of the Fourier coefficients of f . Namely,
for n �= 0,

(3.4) f̂ (k)(n) = (in)kf̂ (n).

(Check!) Furthermore, we obtain an estimate about the rate of decay
of the Fourier coefficients of f if the function is k times continuously
differentiable on T: for n �= 0,

|f̂ (n)| ≤ C/nk.

Here we have used once more the fact that f (k) is bounded on the
closed interval [−π, π]; hence its Fourier coefficients are bounded:
|f̂ (k)(n)| ≤ C, where C = C(k) is a constant independent of n but
dependent on k. What we have just shown is the following.

Theorem 3.14. If f ∈ Ck(T), then its Fourier coefficients f̂ (n)

decay at least like n−k.
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If the Fourier coefficients of an integrable function decay like n−k,
is it true that f is Ck? No. It is not even true that f is Ck−1. Consider
the following example when k = 1.

Example 3.15. Recall that the characteristic function of the interval
[0, 1] on T is defined to be 1 for all θ ∈ [0, 1] and zero on T \ [0, 1],
and it is denoted χ[0,1]. Its Fourier coefficients are given by

χ̂[0,1](n) =
1

2π

ˆ π

−π

χ[0,1](θ)e
−inθ dθ =

1

2π

ˆ 1

0

e−inθ dθ =
1− e−in

2πin
.

Clearly |χ̂[0,1](n)| ≤ (πn)−1, so the Fourier coefficients decay like n−1.
However, the characteristic function is not continuous. ♦

One can construct similar examples where the Fourier coefficients
decay like n−k, k ≥ 2, and the function is not in Ck−1(T). However, it
follows from Corollary 3.17 that such a function must be in Ck−2(T)
for k ≥ 2.

Theorem 3.16. Let f : T→ C be 2π-periodic and integrable, � ≥ 0.
If

∑
n∈Z
|f̂ (n)| |n|� <∞, then f is C�.

Furthermore the partial Fourier sums converge uniformly to f ,
and the derivatives up to order � of the partial Fourier sums converge
uniformly to the corresponding derivatives of f .

Corollary 3.17. If |f̂ (n)| ≤ C|n|−k for k ≥ 2 and n �= 0, then f is
C�, where � = k− 2 if k is an integer and � = [k]− 1 otherwise. Here
[k] denotes the integer part of k, in other words, the largest integer
less than or equal to k.

Exercise 3.18. Deduce Corollary 3.17 from Theorem 3.16. ♦

We sketch the proof of Theorem 3.16.

Proof of Theorem 3.16. For � = 0, this is Theorem 3.7 since the
hypothesis simplifies to

∑∞
n=−∞ |f̂ (n)| < ∞, which implies the uni-

form convergence of the partial Fourier sums SNf to some periodic
and continuous function Sf . Féjer’s Theorem (Theorem 4.32) shows
that the averages of the partial Fourier sums, namely the Cesàro
means σNf , see (3.2), converge uniformly to f ∈ C(T). Finally Ex-
ercise 3.11 implies that Sf = f , and hence the partial Fourier sums
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converge uniformly to f . For the case � = 1, see Exercise 3.19. The
general case follows by induction on �. �

Exercise 3.19. Suppose that f : T → C is a continuous function
such that

∑
n∈Z
|f̂ (n)| |n| converges. Show that SNf → f uniformly

and that (SNf)′ → h uniformly for some function h. Show that f is
C1 and that h = f ′. Hint: Theorem 2.56 may be useful.

Now prove Theorem 3.16 by induction. ♦

In this section we learned that the Fourier coefficients of smooth
functions go to zero as |n| → ∞. We also found the following idea.

The smoother the function, the faster the rate of decay of
its Fourier coefficients.

What if f is merely continuous? Is it still true that the Fourier
coefficients decay to zero? The answer is yes.

Lemma 3.20 (Riemann–Lebesgue Lemma for Continuous Functions).
Let f ∈ C(T). Then lim|n|→∞ f̂(n) = 0.

Proof. Observe that because eπi = −1, we can write the nth Fourier
coefficient of f ∈ C(T) in a slightly different form, namely

f̂ (n) =
1

2π

ˆ π

−π

f(θ)e−inθ dθ = − 1

2π

ˆ π

−π

f(θ)e−inθeπi dθ

= − 1

2π

ˆ π

−π

f(θ)e−in(θ−π/n) dθ

= − 1

2π

ˆ π−π
n

−π−π
n

f (α+ π/n) e−inα dα,

where we have made the change of variable α = θ − π/n. But since
the integrand is 2π-periodic and we are integrating over an interval
of length 2π, we can shift the integral back to T without altering its
value and conclude that

f̂ (n) = − 1

2π

ˆ π

−π

f (θ + π/n) e−inθ dθ.

Averaging the original integral representation of f̂ (n) with this
new representation gives yet another integral representation, which
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involves a difference of values of f and for which we can use the
hypothesis that f is continuous. More precisely,

f̂ (n) =
1

4π

ˆ π

−π

[f(θ)− f (θ + π/n)] e−inθ dθ.

We get an estimate for |f̂ (n)| by the Triangle Inequality for integrals,

|f̂ (n)| ≤ 1

4π

ˆ π

−π

|f(θ)− f (θ + π/n)| dθ.

We can now take the limit as |n| → ∞, and since f is uniformly contin-
uous on [−π, π], the sequence gn(θ) := |f(θ)− f (θ + π/n)| converges
uniformly to zero. Therefore we can interchange the limit and the
integral (see Theorem 2.53), obtaining

0 ≤ lim
|n|→∞

|f̂ (n)| ≤ 1

4π

ˆ π

−π

lim
|n|→∞

|f(θ)− f (θ + π/n)| dθ = 0,

as required. �

Exercise 3.21. Show that if f is continuous and 2π-periodic, then it
is uniformly continuous on [−π, π]. Moreover, the functions gn(θ) :=

|f(θ)− f (θ + π/n)| converge uniformly to zero. ♦

We will see other versions of the Riemann–Lebesgue Lemma in
subsequent chapters.

Exercise 3.22. (Decay of Fourier Coefficients of Lipschitz Func-
tions). A function f : T → C is called Lipschitz if there is a con-
stant k such that |f(θ1)− f(θ2)| ≤ k|θ1 − θ2| for all θ1, θ2 ∈ T. Show
that if f is Lipschitz, then

|f̂ (n)| ≤ C

n

for some constant C independent of n ∈ Z. ♦

3.2.3. Differentiability vs. rate of convergence. Now that we
know something about the rate of decay of the Fourier coefficients of
smooth functions, let us say something about the rate of convergence
of their Fourier sums.

The smoother f is, the faster is the rate of convergence of
the partial Fourier sums to f .
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Theorem 3.23. If f ∈ Ck(T) for k ≥ 2, then there exists a constant
C > 0 independent of θ such that

(3.5) |SNf(θ)− f(θ)| ≤ C/Nk−1.

If f ∈ C1(T), then there exists a constant C > 0 independent of
θ such that

(3.6) |SNf(θ)− f(θ)| ≤ C/
√
N.

These results automatically provide uniform convergence of the
partial Fourier sums for Ck functions, k ≥ 1. See [Stri00a, Theorem
12.2.2] for the proofs of this theorem.

If a function satisfies inequality (3.5) for k ≥ 2, it does not nec-
essarily mean that f is Ck−1. Therefore f is not necessarily Ck, as
is shown in Example 3.24 for k = 2. It is not difficult to adapt that
example to the case k > 2.

Example 3.24 (Plucked String). The graph of the function f : T→
R given by f(θ) = π/2− |θ| is shown in Figure 3.2. This function is
continuous but not differentiable at θ ∈ {nπ : n ∈ Z}, and therefore
it is not C2 (or even C1). Its Fourier coefficients are given by

f̂ (n) =

{
0, if n is even;
2/(πn2), if n is odd.

In particular
∑

n∈Z
|f̂ (n)| < ∞, and so by Theorem 3.16, SNf → f

uniformly on T. Furthermore, the following estimates hold:

(3.7) |SNf(θ)− f(θ)| ≤ 2π−1

N − 1
, |SNf(0)− f(0)| ≥ 2π−1

N + 2
.

The second estimate implies that the rate of convergence cannot be
improved uniformly in θ. ♦

Exercise 3.25. Compute the Fourier coefficients of the plucked string
function in Example 3.24. Rewrite the Fourier series as a purely cosine
series expansion. Also show that the inequalities (3.7) hold. Hint:
1/n−1/(n+ 1) = 1/

(
n(n+ 1)

)
≤ 1/n2 ≤ 1/

(
n(n− 1)

)
= 1/(n− 1)−

1/n. The left- and right-hand sides in the string of inequalities, when
added up, form telescoping series. This observation allows you to
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Figure 3.2. Graphs of the plucked string function f(θ) =
π/2−|θ| from Example 3.24 and its partial Fourier sums SNf
for N = 1, 3, and 9, extended periodically from (−π, π) to R.
Compare the convergence of SNf with that shown for the
ramp function in Figure 3.1.

obtain the following bounds: 1/N ≤
∑

n≥N 1/n2 ≤ 1/(N − 1). If this
hint is not enough, see [Kör, Example 10.1, p. 35]. ♦

Exercise 3.26. Show that if f is an integrable even function, then
f̂(n) = f̂(−n) for all n ∈ Z. This means that the corresponding
Fourier series is a purely cosine series expansion. ♦

3.3. A suite of convergence theorems

Here we state, without proofs and in chronological order, the main
results concerning pointwise convergence of the Fourier series for con-
tinuous functions and for Lebesgue integrable functions. The Fourier
series converges to f(θ) for functions f that are slightly more than just
continuous at θ but not necessarily differentiable there. In this suite
of theorems we illustrate how delicate the process of mathematical
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thinking can be, with a number of intermediate results and puzzling
examples, which slowly help bring to light the right concepts and the
most complete and satisfactory results.

This is a good time to revisit Chapter 2. In this section we use
ideas introduced there, such as sets of measure zero, almost every-
where convergence, Lebesgue integrable functions and convergence
in Lp.

Theorem 3.27 (Dirichlet, 1829). Suppose that f : T → C is con-
tinuous except possibly at finitely many points at which the one-sided
limits f(θ+) and f(θ−) exist, and that its derivative f ′ is continuous
and bounded except at such points. Then for all θ ∈ T,

(3.8) lim
N→∞

SNf(θ) =
[
f(θ+) + f(θ−)

]
/2,

where f(θ+) is the limit when α approaches θ from the right and
f(θ−) is the limit when α approaches θ from the left. In particular,
SNf(θ)→ f(θ) as N →∞ at all points θ ∈ T where f is continuous.

Thinking wishfully, we might dream that the partial Fourier sums
for a continuous function would converge everywhere. That dream is
shattered by the following result.

Theorem 3.28 (Du Bois-Reymond, 1873). There is a continuous
function f : T→ C such that lim supN→∞ |SNf(0)| =∞.

Here the partial sums of the Fourier series of a continuous function
fail to converge at the point x = 0. The modern proof of this result
uses the Uniform Boundedness Principle, which we will encounter in
Section 9.4.5. For a constructive proof see the project in Section 3.5.

A reproduction of Dirichlet’s paper can be found in [KL, Chap-
ter 4], as well as a comparison with the following result due to Jordan7.

Theorem 3.29 (Jordan, 1881). If f is a function of bounded varia-
tion8 on T, then the Fourier series of f converges to [f(θ+)+f(θ−)]/2

7Camille Jordan, French mathematician (1838–1922).
8That is, the total variation on T of f is bounded. The total variation of f is

defined to be V (f) = supP

∑N
n=1 |f(θn)−f(θn−1)|, where the supremum is taken over

all partitions P : θ0 = −π < θ1 < · · · < θN−1 < θN = π of T. Step functions are
functions of bounded variation, as are monotone functions, and you can compute their
variation exactly.
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at every point θ ∈ T and in particular to f(θ) at every point of conti-
nuity. The convergence is uniform on closed intervals of continuity.

The class of functions that have bounded variation in I is denoted
by BV (I). Bounded variation implies Riemann integrability, that
is, BV (I) ⊂ R(I). The conditions in Theorem 3.27 imply bounded
variation, and so Dirichlet’s Theorem follows from Jordan’s Theorem.
A proof of Dirichlet’s Theorem can be found in [Kör, Chapter 16, p.
59]. A similar proof works for Jordan’s Theorem. The following
result, Dini’s Criterion, can be used to deduce Dirichlet’s Theorem,
at least at points of continuity.

Theorem 3.30 (Dini, 1878). Let f be a 2π-periodic function. Sup-
pose there is δ > 0 such that

´
|t|<δ

∣∣f(θ + t)− f(θ)
∣∣/|t| dt < ∞ for

some θ. Then limN→∞ SNf(θ) = f(θ). (In particular f must be
continuous at θ.)

A 2π-periodic function f satisfies a uniform Lipschitz or Hölder
condition of order α, for 0 < α ≤ 1, if there exists C > 0 such that
|f(θ+ t)−f(θ)| ≤ C|t|α for all t and θ. The class of 2π-periodic func-
tions that satisfy a uniform Lipschitz condition of order α is denoted
by Cα(T). For all 0 < α ≤ β ≤ 1 we have C(T) ⊂ Cα(T) ⊂ Cβ(T). If
f ∈ Cα(T) for 0 < α ≤ 1, then it satisfies Dini’s condition uniformly
at all θ ∈ T, and hence the partial Fourier sums converge pointwise to
f . If α > 1/2 and f ∈ Cα(T), the convergence of the partial Fourier
sums is absolute [SS03, Chapter 3, Exercises 15 and 16]. A proof of
Dini’s result can be found in [Graf08, Theorem 3.3.6, p. 189].

These criteria depend only on the values of f in an arbitrarily
small neighborhood of θ. This is a general and surprising fact known
as the Riemann Localization Principle, which was part of a Memoir
presented by Riemann in 1854 but published only after his death in
1867. See [KL, Chapter 5, Sections 1 and 4].

Theorem 3.31 (Riemann Localization Principle). Let f and g be in-
tegrable functions whose Fourier series converge. If f and g agree on
an open interval, then the Fourier series of their difference f −g con-
verges uniformly to zero on compact subsets of the interval. In other
words, for an integrable function f , the convergence of the Fourier
series to f(θ) depends only on the values of f in a neighborhood of θ.
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At the beginning of the twentieth century, pointwise convergence
everywhere of the Fourier series was ruled out for periodic and con-
tinuous functions. However, positive results could be obtained by
slightly improving the continuity. In this chapter we proved such a
result for smooth (C2) functions, and we have just stated a much
refined result where the improvement over continuity is encoded in
Dini’s condition. Can one have a theorem guaranteeing pointwise
convergence everywhere for a larger class than the class of Dini con-
tinuous functions? Where can we draw the line?

In 1913, the Russian mathematician Nikolai Nikolaevich Luzin
(1883–1950) conjectured the following: Every square-integrable func-
tion, and thus in particular every continuous function, equals the sum
of its Fourier series almost everywhere.

Ten years later Andrey Nikolaevich Kolmogorov (1903–1987), an-
other famous Russian mathematician, found a Lebesgue integrable
function whose partial Fourier sums diverge almost everywhere. Three
years later he constructed an even more startling example [Kol].

Theorem 3.32 (Kolmogorov, 1926). There is a Lebesgue integrable
function f : T → C such that lim supN→∞ |SNf(θ)| = ∞ for all
θ ∈ T.

Recall that the minimal requirement on f so that we can compute
its Fourier coefficients is that f is Lebesgue integrable

(
f ∈ L1(T)

)
.

Kolmogorov’s result tells us that we can cook up a Lebesgue integrable
function whose partial Fourier sums SNf diverge at every point θ! His
function is Lebesgue integrable, but it is not continuous; in fact it is
essentially unbounded on every interval.

After Kolmogorov’s example, experts believed that it was only a
matter of time before the same sort of example could be constructed
for a continuous function. It came as a big surprise when, half a
century later, Carleson proved Luzin’s conjecture, which implies that
the partial Fourier sums of every continuous function converge at
almost every point θ.

Theorem 3.33 (Carleson, 1966). Suppose f : T→ C is square inte-
grable. Then SNf(θ) → f(θ) as N → ∞, except possibly on a set of
measure zero.
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In particular, Carleson’s conclusion holds if f is continuous on T,
or more generally if f is Riemann integrable on T. Carleson’s Theo-
rem implies that Kolmogorov’s example cannot be a square-integrable
function. In particular it cannot be Riemann integrable. Du Bois-
Reymond’s example does not contradict Carleson’s Theorem. Al-
though the function is square integrable (since it is continuous), the
partial Fourier series are allowed to diverge on a set of measure zero
(which can be large, as we mentioned in Section 2.1.4).

The next question is whether, given a set of measure zero in T,
one can construct a continuous function whose Fourier series diverges
exactly on the given set. The next theorem answers this question.

Theorem 3.34 (Kahane9, Katznelson10, 1966). If E ⊂ T is a set
of measure zero, then there is a continuous function f : T → C such
that lim supN→∞ |SNf(θ)| =∞ for all θ ∈ E.

The proof of Theorem 3.34 can be found in Katznelson’s book An
introduction to harmonic analysis [Kat, Chapter II, Section 3]. The
same chapter includes a construction of a Kolmogorov-type example.

A year later the following nontrivial extension of Carleson’s The-
orem was proved by the American mathematician Richard Hunt.

Theorem 3.35 (Hunt11). Carleson’s Theorem holds for all f ∈ Lp(T)
and for all p > 1.

It took almost forty years for the Carleson–Hunt Theorem to
make its way into graduate textbooks in full detail. There are now
several more accessible accounts of this famous theorem, for instance
in [Graf08] and in [Ari].

Now we see where to draw the line between those functions for
which the partial Fourier series converge pointwise to f(x) for all x
and the ones for which they do not. For example, f ∈ Ck(T) is
enough, but f being continuous is not. However, for continuous func-
tions we have convergence almost everywhere, and for each set of
measure zero there is a continuous function whose partial Fourier

9Jean-Pierre Kahane, French mathematician (born 1926).
10Yitzhak Katznelson, Israeli mathematician (born 1934).
11Richard Allen Hunt, American mathematician (1937–2009).
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series diverges on that set. As Körner writes [Kör, p. 75],

“The problem of pointwise convergence is thus settled. There are
few questions which have managed to occupy even a small part of
humanity for 150 years. And of those questions, very few indeed
have been answered with as complete and satisfactory an answer as
Carleson has given to this one.”

3.4. Project: The Gibbs phenomenon

We have seen that if a function f is just a little better than continuous,
for instance (Theorem 3.13) if f is in the space C1(T), then the Fourier
series of f converges uniformly to f on T. What if f is not continuous
but instead has a jump discontinuity at some point x0? We saw in
Exercise 3.1 for the sawtooth (or periodic ramp) function and for the
step function that a blip, or overshoot, is visible in the graph of the
partial sum SN (f)(θ) on either side of the discontinuity and that
while the width of these blips decreases as n → ∞, the height does
not. The existence of these blips is known as the Gibbs phenomenon.
In this project we explore the Gibbs phenomenon for Fourier series.

(a) Use Matlab to calculate the values of and to plot several partial
Fourier sums SNf for a function f with a jump discontinuity. For
instance, try the square wave function

g(x) :=

{
1, if 0 ≤ x < π;
−1, if −π ≤ x < 0.

(Extend this function periodically and the name will explain itself.)
Concentrate on the blips near zero (you should see other blips near ±π
as well). Animate your plots to create a movie showing what happens
as N increases. Estimate the height of the blip. Is this height related
to the size or location of the jump? If so, how? What happens to the
x-location and the width of the blips as N increases?

(b) Prove analytically that the height of the blip for the square wave
function in part (a) does not tend to zero as N →∞. One approach
is as follows. Calculate the Fourier coefficients ĝ (n) and the partial
Fourier sums of g. Get a closed formula (no sums involved) for the de-
rivative of the partial Fourier sums derivative [S2N−1(g)]

′. Hint: The
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following trigonometric identity may help:
∑N

n=1 cos
(
(2n− 1)x

)
=

sin (2Nx)/(2 sinx). Use calculus to find the critical points of S2N−1(g)

(points where the derivative is equal to zero), and check that the point
xN = π/(2N) is actually a local maximum. Verify that

S2N−1(g)(xN ) ∼ (2/π)

ˆ π

0

(
sin u/u

)
du =: (2/π) Si(π).

Look up and use Taylor series, or use Matlab, to calculate the nu-
merical value of the integral Si(π). Interpret your results to explain
the blips.

(c) Extend the results of part (b) to the case of a more general func-
tion with a jump discontinuity.

(d) Explore the literature related to the Gibbs phenomenon, and
write a report, with references, summarizing the results of your litera-
ture search. Here are some references to get you started: Körner [Kör,
Chapters 8 and 17] and Prestini [Pre] give overviews of the history,
while more detail is in Gibbs’s two letters to Nature [Gib1898],
[Gib1899], and Michelson’s letter to the same journal [Mic], and
in the papers by Wilbraham [Wil], Bôcher [Bôc], and Michelson and
Stratton [MS].

(e) Can the graphs of the partial Fourier sums of g converge in any
reasonable sense to the graph of g? Can we say something about the
arclengths of the graphs ΓN of SNg? Here the graph of Snf is given
by ΓN = {(x, SNf(x)) : x ∈ [−π, π)}. See the short article [Stri00b].

(f) Do wavelets show Gibbs’s phenomenon? This question will make
more sense once you get acquainted with Chapters 9–11.

3.5. Project: Monsters, Take II

As in the project in Section 2.5, we explore several unusual functions.

(a) Read an account or two of how to construct a function that is con-
tinuous everywhere but whose Fourier series diverges at some point.
(See Theorem 3.28.) Write an explanation of the construction. Your
intended audience is another student at the same stage of studies
as you are now. The original construction by du Bois-Reymond is
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explained in [Kör, Chapter 18, Theorem 18.1]; see also [SS03, Chap-
ter 3, Section 2.2]. You can also search for the original paper (in
German).

(b) Repeat part (a) but for Kolmogorov’s example of an integrable
function whose Fourier series diverges almost everywhere. You can go
further with Kolmogorov’s example of an integrable function whose
Fourier series diverges everywhere. Start your search with the original
paper [Kol], or with [Zyg59, Chapter VIII].

                

                                                                                                               



Chapter 4

Summability methods

Pointwise convergence of partial Fourier sums for continuous func-
tions was ruled out by the du Bois-Reymond example. However, in an
attempt to obtain a convergence result for all continuous functions,
mathematicians devised various averaging or summability methods.
These methods require only knowledge of the Fourier coefficients in
order to recover a continuous function as the sum of an appropri-
ate trigonometric series. Along the way, a number of very important
approximation techniques in analysis were developed, in particular
convolutions (Section 4.2) and approximations of the identity, also
known as good kernels (Section 4.3). We discuss these techniques in
detail in the context of 2π-periodic functions. Convolution of a con-
tinuous function with an approximation of the identity approximates
uniformly the function and also in the Lp norm (Section 4.6).

We describe several kernels that arise naturally in the theory of
Fourier series. The Fejér and Poisson1 kernels (Sections 4.4 and 4.5)
are good kernels that generate approximations of the identity; the
Dirichlet kernel2 (Section 4.1) is equally important but not good in
this sense. As we will see, the fact that the Dirichlet kernel is not a
good kernel accounts for the difficulties in achieving pointwise con-
vergence for continuous functions.

1Named after the French mathematician Siméon-Denis Poisson (1781–1840).
2Named after the same Dirichlet as is the function in Example 2.17.

77
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4.1. Partial Fourier sums and the Dirichlet
kernel

We compute an integral representation for SNf , the N th partial Four-
ier sum of a suitable function f . Note that in this calculation we
may interchange the summation and the integral, since there are only
finitely many terms in the sum. The notation DN and ∗ will be
explained below. Recall that the N th partial Fourier sum of an inte-
grable function f : T→ C is given by

SNf(θ) =
∑

|n|≤N

f̂(n)einθ, f̂(n) :=
1

2π

ˆ π

−π

f(y)e−inydy.

Inserting the formula for f̂(n) into the right-hand side and using the
linearity of the integral and the properties of the exponential, we
obtain a formula for SNf as an integral involving f(y), and we are
led to define the 2π-periodic function DN : T→ C,

SNf(θ) =
∑

|n|≤N

(
1

2π

ˆ π

−π

f(y)e−inydy

)
einθ

=
1

2π

ˆ π

−π

f(y)
∑

|n|≤N

ein(θ−y) dy

=
1

2π

ˆ π

−π

f(y)DN (θ − y) dy.

In the last line of our calculation we used the idea of convolving
two functions. If f , g : T→ C are integrable, their convolution is the
new integrable3 function f ∗ g : T→ C given by

(f ∗ g)(θ) := 1

2π

ˆ π

−π

f(y)g(θ − y) dy.

With this notation we have shown that given an integrable func-
tion f : T→ C, then for all N ∈ N and θ ∈ T,

(4.1) SNf(θ) = (DN ∗ f)(θ).

3Riemann integrable functions on bounded intervals are closed under translations,
reflections, and products. We will see in Section 4.2 that R(T) is closed under convo-
lutions. On the other hand, the set of Lebesgue integrable functions on T is not closed
under products; however, it is closed under convolutions.
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Definition 4.1. The Dirichlet kernel DN is defined by

DN (θ) :=
∑

|n|≤N

einθ. ♦

Notice that DN does not depend on f . Also, DN is a trigono-
metric polynomial of degree N , with coefficients equal to 1 for −N ≤
n ≤ N and 0 for all other values of n.

The Dirichlet kernel and convolution are essential in what follows.
We discuss their properties, beginning with the Dirichlet kernel.

Aside 4.2. In this chapter we use the term integrable without spec-
ifying whether we mean Riemann integrable or Lebesgue integrable.
Most results do hold for both types of integrability. Some results we
have stated and proved specifically for integrable and bounded func-
tions. If the functions are Riemann integrable, then they are bounded
by definition, but this is not true for Lebesgue integrable functions.
Nevertheless the results hold for Lebesgue integrable functions, but
with different proofs than the ones presented. ♦

4.1.1. Formulas for the Dirichlet kernel. We begin with a for-
mula for the Dirichlet kernel in terms of cosines. Using the formula
2 cosx = eix + e−ix, we see that

DN (θ) = e−iNθ + · · ·+ e−iθ + e0 + eiθ + · · ·+ eiNθ

= 1 + 2
∑

1≤n≤N

cos(nθ).(4.2)

In particular, the Dirichlet kernel DN is real-valued and even.

Next, we obtain a formula for DN as a quotient of two sines:

DN (θ) =
∑

|n|≤N

einθ = e−iNθ
∑

0≤n≤2N

(eiθ)n.

Evaluating this partial geometric sum, we find that for θ �= 0,

DN (θ) = e−iNθ (eiθ)2N+1 − 1

eiθ − 1
=

ei(2N+1)θ/2 − e−i(2N+1)θ/2

eiθ/2 − e−iθ/2
.

Here we have used the typical analysis trick of multiplying and divid-
ing by the same quantity, in this case e−iθ/2. Now we use the formula

                

                                                                                                               



80 4. Summability methods

2i sin θ = eiθ − e−iθ to conclude that

(4.3) DN (θ) = sin
[
(2N + 1)θ/2

]
/sin (θ/2) .

The quotient of sines has a removable singularity at θ = 0. We fill
in the appropriate value DN (0) = 2N + 1 and use it without further
comment. The kernel DN has no other singularities on [−π, π], and
in fact DN is C∞ on the unit circle T.

−8 −6 −4 −2 0 2 4 6 8

0

5

10

θ

D
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(θ
)

 

 

D
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3
(θ)

D
8
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Figure 4.1. Graphs of Dirichlet kernels DN (θ) for N = 1, 3,
and 8, extended periodically from [−π, π) to R.

In Figure 4.1 we see that as sin [(2N + 1)θ/2] varies between 1

and −1, the oscillations of DN are bounded above and below by
±1/ sin (θ/2). Also, DN takes on both positive and negative values,
DN is even, and DN achieves its maximum value of 2N +1 at θ = 0.

4.1.2. Properties of the Dirichlet kernel. We list the basic prop-
erties of the Dirichlet kernel.

Theorem 4.3. The Dirichlet kernel has the following properties.

(i) (f ∗DN )(θ) = SNf(θ), for θ ∈ T and integrable f : T→ C.

(ii) DN is an even function of θ.

(iii) DN has mean value 1 for all N : 1
2π

´ π

−π
DN (θ) dθ = 1.

(iv) However, the integral of the absolute value of DN depends on N ,
and in fact 1

2π

´ π

−π
|DN (θ)| dθ ≈ logN.

We are using the notation AN ≈ BN (to be read AN is comparable
to BN ) if there exist constants c, C > 0 such that cBN ≤ AN ≤ CBN

for all N .
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It may seem surprising that the averages of DN can be uniformly
bounded while the averages of |DN | grow like logN ; see Figure 4.2.
This growth is possible because of the increasing oscillation of DN

with N , which allows the total area between the graph of DN and
the θ-axis to grow without bound as N → ∞, while cancellation of
the positive and negative parts of this area keeps the integral of DN

constant.

0 5 10 15
0

0.5

1

1.5

2

2.5

N

I
N

Figure 4.2. The mean value IN = 1/(2π)
´ π
−π |DN (θ)| dθ,

over the interval [−π, π), of the absolute value of the Dirichlet
kernel DN , for 0 ≤ N ≤ 15. Note the logarithmic growth.

Exercise 4.4. Show that DN (θ) does not converge to zero at any
point. ♦

Proof of Theorem 4.3. We have already established properties (i)
and (ii). For property (iii), note that
ˆ π

−π

DN (θ) dθ =

ˆ π

−π

[ ∑
|n|≤N

einθ
]
dθ =

∑
|n|≤N

[ˆ π

−π

einθ dθ

]
= 2π,

since the integral of einθ over [−π, π) is zero for n �= 0, and 2π for
n = 0. Verifying property (iv) is left to the reader; see Exercise 4.5.
See also Figure 4.2 for numerical evidence. �

Exercise 4.5. Justify Theorem 4.3(iv) analytically. It may be useful
to remember that

∑N
n=1(1/n) ≈

´ N

1
(1/x) dx = logN. ♦
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4.2. Convolution

Convolution can be thought of as a way to create new functions from
old ones, alongside the familiar methods of addition, multiplication,
and composition of functions. We recall the definition.

Definition 4.6. Given two integrable, 2π-periodic functions f , g :

T → C, their convolution on T is the new function f ∗ g : T → C
given by

(4.4) (f ∗ g)(θ) = 1

2π

ˆ π

−π

f(y)g(θ − y) dy. ♦

When convolving two functions, we integrate over the dummy
variable y, leaving a function of θ. The point θ− y will not always lie
in [−π, π), but since the integrand is 2π-periodic (g(θ) = g(θ + 2πk)

for all integers k), we still know the values of the integrand everywhere
on R. Pictorially, we compute f ∗g at a point θ by reflecting the graph
of g(y) in the vertical axis and translating it to the left by θ units
to obtain g(θ − y), multiplying by f(y), then finding the area under
the graph of the resulting product f(y)g(θ − y) over y ∈ [−π, π) and
dividing by the normalizing constant 2π.

Notice that if the periodic function g is integrable on T, then
so is the new periodic function h(y) := g(θ − y). Also, the product
of two Riemann integrable periodic functions on T is also periodic
and integrable (Section 2.1.1). This last statement is not always true
for Lebesgue integrable functions. Nevertheless the convolution of
two functions f , g ∈ L1(T) is always a function in L1(T), and the
following inequality4 holds (see Exercise 4.13):

(4.5) ‖f ∗ g‖L1(T) ≤ ‖f‖L1(T)‖g‖L1(T).

The convolution of two integrable functions is always integrable,
and so we can calculate its Fourier coefficients.

Example 4.7 (Convolving with a Characteristic Function). We com-
pute a convolution in the special case where one of the convolution
factors is the characteristic function χ[a,b](θ) of a closed interval [a, b]
in T. Recall that the characteristic function is defined by χ[a,b](θ) = 1

4This is an instance of Young’s inequality; see Chapters 7 and 12.
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if θ ∈ [a, b] and χ[a,b](θ) = 0 otherwise. Using the observation that
a ≤ θ − y ≤ b if and only if θ − b ≤ y ≤ θ − a, we see that

(f ∗ χ[a,b])(θ) =
1

2π

ˆ π

−π

f(y)χ[a,b](θ − y) dy

=
1

2π

ˆ θ−a

θ−b

f(y) dy =
b− a

2π

1

b− a

ˆ θ−a

θ−b

f(y) dy.

So the convolution of f with χ[a,b], evaluated at θ, turns out to be
(b− a)/(2π) times the average value of f on the reflected and trans-
lated interval [θ − b, θ − a]. ♦

Exercise 4.8 (Convolving Again and Again). Let f = χ[0,1]. Com-
pute f ∗ f and f ∗ f ∗ f by hand. Use Matlab to compute and plot
the functions f , f ∗ f , and f ∗ f ∗ f over a suitable interval. Notice
how the smoothness improves as we take more convolutions. ♦

This exercise gives an example of the so-called smoothing proper-
ties of convolution. See also Section 4.2.2.

4.2.1. Properties of convolution. We summarize the main prop-
erties of convolution.

Theorem 4.9. Let f , g, h : T → C be 2π-periodic integrable func-
tions, and let c ∈ C be a constant. Then

(i) f ∗ g = g ∗ f (commutative);

(ii) f ∗ (g + h) = (f ∗ g) + (f ∗ h) (distributive);

(iii) (cf) ∗ g = c(f ∗ g) = f ∗ (cg) (homogeneous);

(iv) (f ∗ g) ∗ h = f ∗ (g ∗ h) (associative);

(v) f̂ ∗ g (n) = f̂ (n) ĝ (n) (Fourier process converts convolution
to multiplication).

The first four properties are obtained by manipulating the in-
tegrals (change of variables, interchanging integrals, etc.). The last
property requires some work. The idea is first to prove these proper-
ties for continuous functions and then to extend to integrable func-
tions by approximating them with continuous functions. This is an
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example of the usefulness of approximating functions by nicer func-
tions5. We will use the following approximation lemmas.

Lemma 4.10. Suppose f : T → C is an integrable and bounded
function. Let B > 0 be such that |f(θ)| ≤ B for all θ ∈ T. Then there
is a sequence {fk}∞k=1 of continuous functions fk : T→ C such that

(i) supθ∈T |fk(θ)| ≤ B for all k ∈ N and

(ii)
´ π

−π
|f(θ)− fk(θ)| dθ → 0 as k →∞.

Part (i) of the lemma says that the fk are also bounded by B,
and part (ii) says, in language we have already met in Chapter 2, that
the fk converge to f in L1(T). If f ∈ R(T), then it is bounded, and
the lemma says that the continuous functions on T are dense in the
set of Riemann integrable functions on T. See Theorem 2.69, and in
particular Remark 2.70.

Lemma 4.11. Given f, g : T → C bounded and integrable functions
(bounded by B), let {fk, gk}∞k=1 be sequences of continuous functions
(bounded by B) approximating f and g, respectively, in the L1 norm,
as in Lemma 4.10. Then fk ∗ gk converges uniformly to f ∗ g.

These two lemmas work for functions that are assumed to be Rie-
mann integrable (hence bounded) or for bounded Lebesgue integrable
functions. We will prove Lemma 4.11 after we prove Theorem 4.9.

Proof of Theorem 4.9. Property (i), rewritten slightly, says that

(4.6) (f∗g)(θ) := 1

2π

ˆ π

−π

f(y)g(θ−y) dy =
1

2π

ˆ π

−π

f(θ−y)g(y) dy,

so that “the θ − y can go with g or with f ”. Equation (4.6) follows
from the change of variables y′ = θ − y and the 2π-periodicity of the
integrand.

Properties (ii) and (iii) show that convolution is linear in the
second variable. By the commutativity property (i), it follows that
convolution is linear in the first variable as well. Hence convolution

5Approximation by nice or simpler functions, such as continuous functions,
trigonometric polynomials, or step functions, is a recurrent theme in analysis and
in this book. We encountered this theme in Chapter 2 and we will encounter it again
in the context of mean-square convergence of Fourier series, Fourier integrals, Weier-
strass’s Theorem, and orthogonal bases, in particular the Haar and wavelet bases.
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is a bilinear operation. Properties (ii) and (iii) are consequences of
the linearity of the integral. Property (iv), associativity, is left as an
exercise for the reader.

We prove property (v), that the nth Fourier coefficient of the
convolution f∗g is the product of the nth coefficients of f and of g. For
continuous f and g, we may interchange the order of integration by
Fubini’s Theorem (Theorem 2.62) for continuous functions, obtaining

f̂ ∗ g (n) =
1

2π

ˆ π

−π

(f ∗ g)(θ) e−inθ dθ

=
1

2π

ˆ π

−π

[
1

2π

ˆ π

−π

f(y)g(θ − y) dy

]
e−inθ dθ

=
1

2π

ˆ π

−π

f(y)

[
1

2π

ˆ π

−π

g(θ − y)e−inθ dθ

]
dy.

We now multiply the integrand by 1 = e−inyeiny, distribute it appro-
priately, and change variables to make the Fourier transform of g in
the integral with respect to θ appear:

f̂ ∗ g (n) =
1

2π

ˆ π

−π

f(y) e−iny

[
1

2π

ˆ π

−π

g(θ − y)e−in(θ−y) dθ

]
dy

=
1

2π

ˆ π

−π

f(y) e−iny

[
1

2π

ˆ π

−π

g(θ′)e−in(θ′) dθ′
]
dy

=
1

2π

ˆ π

−π

f(y) e−iny ĝ (n) dy = f̂ (n) ĝ (n).

We have established property (v) for continuous functions. Now
suppose f and g are integrable and bounded. Take sequences {fk}k∈N

and {gk}k∈N of continuous functions such that fk → f , gk → g, as in
the Approximation Lemma (Lemma 4.10).

First, f̂k (n)→ f̂ (n) for each n ∈ Z, since by Lemma 4.10(ii)

|f̂k (n)− f̂ (n)| ≤ 1

2π

ˆ π

−π

|fk(θ)− f(θ)| dθ → 0

as k →∞. Similarly ĝk (n)→ ĝ (n) for each n ∈ Z.

Second, by property (v) for continuous functions, for each n ∈ Z
and k ∈ N,

f̂k ∗ gk (n) = f̂k (n) ĝk (n).
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Third, we show that f̂k ∗ gk (n) → f̂ ∗ g (n) as k → ∞ for each
n ∈ Z. In fact,

lim
k→∞

f̂k ∗ gk (n) = lim
k→∞

1

2π

ˆ π

−π

(fk ∗ gk)(θ) e−inθ dθ

=
1

2π

ˆ π

−π

lim
k→∞

(fk ∗ gk)(θ) e−inθ dθ

=
1

2π

ˆ π

−π

[
(f ∗ g)(θ) e−inθ

]
dθ = f̂ ∗ g (n).

Here we can move the limit inside the integral since, by Lemma 4.11,
the integrands converge uniformly on T (see Theorem 2.53). Hence

f̂ ∗ g (n) = lim
k→∞

f̂k ∗ gk (n) = lim
k→∞

f̂k (n) ĝk (n)

=
(
lim
k→∞

f̂k (n)
) (

lim
k→∞

ĝk (n)
)
= f̂ (n) ĝ (n).

For Lebesgue integrable functions, the L1 version of Fubini’s The-
orem is needed to carry out the calculation we did for continuous
functions. Then we do not need to use the approximation argument
explicitly, because it is used implicitly in the proof of Fubini’s Theo-
rem for L1 functions. �

Exercise 4.12 (Convolution Is Associative). Prove property (iv) of
Theorem 4.9. ♦

Proof of Lemma 4.11. We show that fk ∗ gk → f ∗ g uniformly on
T. We can estimate their pointwise difference. First, by the Triangle
Inequality for integrals,

|(fk ∗ gk)(θ)− (f ∗ g)(θ)| ≤ 1

2π

ˆ π

−π

|fk(y)gk(θ−y)−f(y)g(θ−y)| dy.

Second, adding and subtracting fk(y)g(θ − y) to the integrand,

|(fk ∗ gk)(θ)− (f ∗ g)(θ)| ≤ 1

2π

ˆ π

−π

|fk(y)| |gk(θ − y)− g(θ − y)| dy

+
1

2π

ˆ π

−π

|fk(y)− f(y)| |g(θ − y)| dy.

                

                                                                                                               



4.2. Convolution 87

The inequality is a consequence of the Triangle Inequality6 for com-
plex numbers and the additivity7 of the integral.

Third, recall that fk, gk and f , g are all periodic functions bounded by
B > 0 on T. We conclude that the difference |(fk ∗ gk)(θ)− (f ∗ g)(θ)|
is bounded by B

2π

( ´ π

−π
|gk(θ−y)−g(θ−y)| dy+

´ π

−π
|fk(y)−f(y)| dy

)
.

This quantity is independent of θ because of the periodicity of g

and gk, more precisely,
´ π

−π
|gk(θ − y) − g(θ − y)| dy =

´ π

−π
|gk(y) −

g(y)| dy. Finally, by hypothesis,
´ π

−π
|fk−f | → 0 and

´ π

−π
|gk−g| → 0

as k → ∞ by Lemma 4.10. Hence, |(fk ∗ gk)(θ)− (f ∗ g)(θ)| → 0 as
k →∞, and the convergence is uniform. �

Exercise 4.13. Use property (v) of Theorem 4.9, with n = 0, to
prove inequality (4.5). ♦

4.2.2. Convolution is a smoothing operation. Convolution is a
so-called smoothing operation. We will see that the smoothness of the
convolution is the combined smoothness of the convolved functions
(see Exercise 4.16). (This is how in theory you would like marriages
to be: the relationship combines the smoothness of each partner to
produce an even smoother couple.)

The following result is a precursor of that principle. We start with
two functions, at least one of which is continuous; then their convolu-
tion preserves continuity. It is not apparent that there has been any
improvement in the smoothness of the convolution compared to the
smoothness of the convolved functions. However an approximation
argument allows us to start with a pair of integrable and bounded
functions that are not necessarily continuous, and their convolution
will be continuous.

Lemma 4.14. If f , g ∈ C(T), then f ∗g ∈ C(T). In fact, if f ∈ C(T)
and g is integrable, then f ∗ g ∈ C(T).

Proof. Let f ∈ C(T), and let g be integrable on T. First, f is
uniformly continuous (as it is continuous on a closed and bounded
interval). That is, given ε > 0, there exists δ > 0 such that if |h| < δ,

6Namely, for a, b ∈ C, |a + b| ≤ |a| + |b|.
7Additivity means that if f , g ∈ L1(T), then

´ π
−π

(f + g) =
´ π
−π

f +
´ π
−π

g.
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then |f(α + h) − f(α)| < ε for all α ∈ T and by periodicity for all
α ∈ R.

Second, by the linearity of the integral,

(f ∗ g)(θ+ h)− (f ∗ g)(θ) = 1

2π

ˆ π

−π

(
f(θ+ h− y)− f(θ− y)

)
g(y) dy.

Third, using the Triangle Inequality for integrals8 and the uni-
form continuity of f , we conclude that |(f ∗ g)(θ + h)− (f ∗ g)(θ)| is
bounded above for all |h| < δ by

1

2π

ˆ π

−π

∣∣f(θ+h−y)−f(θ−y)
∣∣|g(y)| dy ≤ ε

2π

ˆ π

−π

|g(y)| = ε

2π
‖g‖L1(T).

Therefore the convolution of a continuous function and an inte-
grable function is continuous. In particular the convolution of two
continuous functions is continuous. �

Aside 4.15. Let f and g be integrable and bounded functions, and
let fk and gk be continuous and bounded functions approximating f

and g as in Lemma 4.10. Then fk ∗gk is continuous (by Lemma 4.14),
and f∗g is the uniform limit of continuous functions (by Lemma 4.11).
We conclude by Theorem 2.59 that f ∗ g is continuous. ♦

We have shown (see Aside 4.15) that the convolution of two inte-
grable and bounded functions on T is continuous. This is an example
of how convolution improves smoothness. Even more is true: if the
convolved functions are smooth, then the convolution absorbs the
smoothness from each of them, as the following exercise illustrates.

Exercise 4.16 (Convolution Improves Smoothness). Suppose f , g :

T → C, f ∈ Ck(T), g ∈ Cm(T). Show that f ∗ g ∈ Ck+m(T).
Furthermore the following formula holds: (f ∗ g)(k+m) = f (k) ∗ g(m).

Hint: Check first for k = 1, m = 0; then by induction on k check for
all k ≥ 0 and m = 0. Now use commutativity of the convolution to
verify the statement for k = 0 and any m ≥ 0. Finally put all these
facts together to get the desired conclusion. (It suffices to assume that
the functions f (k) and g(m) are bounded and integrable to conclude
that f ∗ g ∈ Ck+m(T).) ♦

8That is, the fact that |
´
T
f | ≤

´
T
|f |.
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Another instance of how convolution keeps the best features from
each function is the content of the following exercise.

Exercise 4.17 (Convolution with a Trigonometric Polynomial Yields
a Trigonometric Polynomial). Show that if f is integrable and P ∈
PN , then f ∗ P ∈ PN . ♦

Property (v) in Theorem 4.9 is another instance of the time–
frequency dictionary. Earlier, with equations (3.3) and (3.4), we
showed that differentiation is transformed into polynomial multiplica-
tion. Here we show that convolution is transformed into the ordinary
product. In the next exercise we have yet another instance of this
interplay: translations are transformed into modulations.

Exercise 4.18 (Translation Corresponds to Modulation). Prove that
if f is 2π-periodic and integrable on T and the translation operator τh
is defined by τhf(θ) := f(θ−h) for h ∈ R, then τhf is also 2π-periodic
and integrable on T. Moreover, τ̂hf(n) = e−inhf̂(n). So translation
of f by the amount h has the effect of multiplying the nth Fourier
coefficient of f by einh, for n ∈ Z. ♦

We summarize the time–frequency dictionary for Fourier coeffi-
cients of periodic functions in Table 4.1. Note that f is treated as a
2π-periodic function on R.

Table 4.1. The time–frequency dictionary for Fourier series.

Time/Space θ ∈ T Frequency n ∈ Z

derivative polynomial

f ′(θ) f̂ ′(n) = inf̂(n)

circular convolution product

(f ∗ g)(θ) f̂ ∗ g(n) = f̂(n)ĝ(n)

translation/shift modulation

τhf(θ) = f(θ − h) τ̂hf(n) = e−ihnf̂(n)
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We will study other versions of convolution. For convolution of
vectors in Cn, see Chapter 6, and for convolution of integrable func-
tions defined on the whole real line and not necessarily periodic, see
Section 7.5. In these contexts there is a Fourier theory and the same
phenomenon occurs: the Fourier transform converts convolution to
multiplication.

4.3. Good kernels, or approximations of the
identity

Roughly speaking, a family of good kernels is a sequence of functions
whose mass is concentrating near the origin (very much like a delta
function9). A precise definition is given below.

Definition 4.19. A family {Kn}∞n=1 of real-valued integrable func-
tions on the circle, Kn : T → R, is a family of good kernels if it
satisfies these three properties:

(a) For all n ∈ N, 1
2π

´ π

−π
Kn(θ) dθ = 1.

(b) There exists M > 0 so that
´ π

−π
|Kn(θ)| dθ ≤M for all n ∈ N.

(c) For each δ > 0,
´
δ≤|θ|≤π

|Kn(θ)| dθ→ 0 as n→∞. ♦

For brevity, we may simply say that Kn is a good kernel, without
explicitly mentioning the family {Kn}∞n=1 of kernels.

A family of good kernels is often called an approximation of the
identity. After Theorem 4.23 below, we explain why.

Condition (a) says that the Kn all have mean value 1. Condi-
tion (b) says that the integrals of the absolute value |Kn| are uni-
formly bounded. Condition (c) says that for each fixed positive δ, the
total (unsigned) area between the graph of Kn and the θ-axis, more
than distance δ from the origin, tends to zero. A less precise way to
say this is that as n → ∞, most of the mass of Kn concentrates as
near to θ = 0 as we please.

Aside 4.20. Some authors use a more restrictive definition of ap-
proximations of the identity, replacing conditions (b) and (c) by

9The so-called delta function is not a function at all, but rather an example of
the kind of generalized function known as a distribution. We define it in Section 8.4.
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(b′) Kn is positive: Kn(θ) ≥ 0 for all θ ∈ T, for all n ∈ N.

(c′) For each δ > 0, Kn(θ)→ 0 uniformly on δ ≤ |θ| ≤ π. ♦

Exercise 4.21. Show that a family of kernels satisfying (a), (b′),
and (c′) is a family of good kernels according to our definition. Show
that conditions (a) and (b′) imply condition (b) and that condition
(c′) implies condition (c). ♦

A canonical way to generate a good family of kernels from one
function and its dilations is described in the following exercise.

Exercise 4.22. Suppose K is a continuous function on R that is zero
for all |θ| ≥ π. Assume

´ π

−π
|K(θ)| dθ = 2π. Let Kn(θ) := nK(nθ) for

−π ≤ θ ≤ π. Verify that {Kn}n≥1 is a family of good kernels in T. ♦

Why is a family of kernels satisfying conditions (a), (b), and (c)
called good? In the context of Fourier series, it is because such a family
allows us to recover the values of a continuous function f : T → C
from its Fourier coefficients. This mysterious statement will become
clear in Section 4.4. In the present Fourier-free context, the kernels
are called good because they provide a constructive way of producing
approximating functions that are smoother than the limit function.

Theorem 4.23. Let {Kn(θ)}∞n=1 be a family of good kernels, and let
f : T→ C be integrable and bounded. Then

lim
n→∞

(f ∗Kn)(θ) = f(θ)

at all points of continuity of f . Furthermore, if f is continuous on
the whole circle T, then f ∗Kn → f uniformly on T.

This result explains the use of the term approximation of the
identity for a family of good kernels Kn, for it says that the con-
volutions of these kernels Kn with f converge, as n → ∞, to the
function f again. Moreover, a priori, f ∗Kn is at the very least con-
tinuous. If we can locate a kernel that is k times differentiable, then
f ∗ Kn will be at least Ck; see Exercise 4.16. The second part of
Theorem 4.23 will say that we can approximate uniformly continu-
ous functions by k times continuously differentiable functions. If we
could find a kernel that is a trigonometric polynomial, then f ∗ Kn
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will be itself a trigonometric polynomial; see Exercise 4.17. The sec-
ond part of Theorem 4.23 will say that we can approximate uniformly
continuous functions by trigonometric polynomials, and Weierstrass’s
Theorem 3.4 will be proved.

Aside 4.24. Before proving Theorem 4.23, let us indulge in a flight
of fancy. Suppose for a moment that the Dirichlet kernel DN were a
good kernel. (The subscript change from n in Kn to N in DN is just
to echo the notation in our earlier discussion of the Dirichlet kernel.)
Then Theorem 4.23 would imply that the Fourier partial sums SNf of
a continuous function f on T would converge pointwise and uniformly
to f . We know that this dream cannot be real, since SNf(0) �→ f(0)

for du Bois-Reymond’s function, which is continuous on T. However,
we will see below that we can salvage something from what we learn
about good kernels. In particular, we can recover f(θ) at points of
continuity θ of f , using a modification of the Fourier partial sums.
(The only information we need is the Fourier coefficients.) This is
Fejér’s Theorem about Cesàro means, discussed in Section 4.4 below,
and already mentioned in Chapter 3. ♦

Exercise 4.25 (The Dirichlet Kernel Is a Bad Kernel). Determine
which of the properties of a good kernel fail for the Dirichlet ker-
nel DN . ♦

In preparation, let us continue our study of good kernels. We
begin with the question “Why should f ∗ Kn(θ) converge to f(θ)

anyway?” As n increases, the mass of Kn(y) becomes concentrated
near y = 0, and so the mass of Kn(θ− y) becomes concentrated near
y = θ. So the integral in f ∗Kn(θ) only “sees” the part of f near y = θ.
See Figure 4.3. Here is a model example in which this averaging is
exact.

Example 4.26 (A Good Kernel Made Up of Characteristic Func-
tions). Consider the kernels

Kn(θ) = nχ[−π/n,π/n](θ), n ∈ N.

These rectangular kernels Kn are pictured in Figure 4.4, for several
values of n. It is straightforward to check that these functions Kn are
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Figure 4.3. Convolution of a function f with a good ker-
nel. The convolution f ∗ Kn(θ) at θ = 1.5 is given by the
integral representing the area under the dotted curve
f(y)Kn(1.5− θ). The values of f(y) for y near 1.5 contribute
most to this integral. We have used the function f(y) = y+2,
the Fejér kernel Kn(y) = F2(y), and the point θ = 1.5.

a family of good kernels. Further, for a fixed θ ∈ T,

(f ∗Kn)(θ) =
1

2π

ˆ π

−π

f(y)nχ[−π/n,π/n](θ − y) dy

=
n

2π

ˆ θ+(π/n)

θ−(π/n)

f(y) dy,

which is the integral average value of f on [θ − π/n, θ + π/n], as for
convolution with the characteristic function in Example 4.7. We ex-
pect this average value over a tiny interval centered at θ to converge
to the value f(θ) as n→∞. This is certainly true if f is continuous
at θ, by an application of the Fundamental Theorem of Calculus. In
fact, if f is continuous, let F (θ) :=

´ θ

−π
f(y) dy. Then F ′(θ) = f(θ),

and by the Fundamental Theorem of Calculus,

n

2π

ˆ θ+(π/n)

θ−(π/n)

f(y) dy =
n

2π

[
F
(
θ + (π/n)

)
− F

(
θ − (π/n)

)]
.

It is not hard to see that the limit as n → ∞ of the right-hand side
is exactly F ′(θ) = f(θ). ♦

Exercise 4.27. Show that if f is continuous at a point x, then the
integral averages over intervals that are shrinking to the point x must
converge to f(x). Do not use the Fundamental Theorem of Calculus.
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Figure 4.4. Graphs of rectangular kernels Kn(θ), for n = 2,
4, and 8, extended periodically from [−π, π) to R.

Instead use the observation that the integral average must be trapped
between the minimum and maximum values of f on the interval and
then use continuity to conclude that as the interval shrinks to x, the
maximum and minimum values converge to f(x). ♦

We are now ready to return to the approximation property en-
joyed by good kernels.

Proof of Theorem 4.23. First f : T → C is assumed to be inte-
grable and bounded. Let B be a bound for f on T. Suppose f is
continuous at some point θ ∈ T. Fix ε > 0. Choose δ such that

(4.7) |f(θ − y)− f(θ)| < ε whenever |y| < δ.

Now we can write an integral for the pointwise difference between
Kn ∗ f and f :

(Kn ∗ f)(θ)− f(θ) =
1

2π

ˆ π

−π

Kn(y)f(θ − y) dy − f(θ)

=
1

2π

ˆ π

−π

Kn(y)f(θ − y) dy − f(θ)
1

2π

ˆ π

−π

Kn(y) dy

=
1

2π

ˆ π

−π

Kn(y) [f(θ − y)− f(θ)] dy.

In the second line we were able to multiply f(θ) by 1
2π

´ π

−π
Kn(y) dy

(another typical analysis trick), since this quantity is 1 by condi-
tion (a) on good kernels. We can control the absolute value of the
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integral by the integral of the absolute values:

|(Kn ∗ f)(θ)− f(θ)| ≤ 1

2π

ˆ π

−π

|Kn(y)| |f(θ − y)− f(θ)| dy.

Yet another common technique in analysis is to estimate an integral
(that is, to find an upper bound for the absolute value of the integral)
by splitting the domain of integration into two regions, typically one
region where some quantity is small and one where it is large, and
controlling the two resulting integrals by different methods. We use
this technique now, splitting the domain T into the regions where
|y| ≤ δ and δ ≤ |y| ≤ π, so that

´ π

−π
· · · =

´
|y|≤δ

· · ·+
´
δ≤|y|≤π

· · · .
For y ≤ δ we have |f(θ − y)− f(θ)| < ε, and so

1

2π

ˆ
|y|≤δ

|Kn(y)||f(θ − y)− f(θ)| dy

≤ ε

2π

ˆ
|y|≤δ

|Kn(y)| dy ≤
ε

2π

ˆ π

−π

|Kn(y)| dy ≤
εM

2π
.

We have used condition (b) on good kernels in the last inequality.

Condition (c) on good kernels implies that for our δ, as n→ ∞,´
δ≤|y|≤π

|Kn(y)| dy → 0. So there is some N such that for all n ≥ N ,´
δ≤|y|≤π

|Kn(y)| dy ≤ ε. Also, |f(θ − y) − f(θ)| ≤ 2B. So we can
estimate the integral over δ ≤ |y| ≤ π and for n ≥ N by

1

2π

ˆ
δ≤|y|≤π

|Kn(y)| |f(θ − y)− f(θ)| dy ≤ 2Bε

2π
.

Putting together the contributions from both pieces, we conclude that
for n ≥ N we have

(4.8) |(Kn ∗ f)(θ)− f(θ)| ≤ (M + 2B) ε/(2π).

This proves the first part of the theorem.

Now suppose that f is continuous on T. Then it is uniformly
continuous. This means that for fixed ε > 0 there is some δ > 0 such
that inequality (4.7) holds for all θ ∈ T and |y| < δ. We can repeat
verbatim the previous argument and conclude that the estimate (4.8)
holds for all θ ∈ T; in other words, Kn ∗ f → f uniformly. �

Exercise 4.28. Check that if F is continuously differentiable at θ

and h > 0, then limh→0

[
F (θ + h)− F (θ − h)

]
/2h = F ′(θ). ♦
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For an arbitrary integrable function f , the limit as n goes to
infinity of the convolution with the good kernel Kn discussed in Ex-
ample 4.26 does pick out the value of f at all points θ where f is
continuous. The L1 version of this averaging limiting result is called
the Lebesgue Differentiation Theorem.

Theorem 4.29 (Lebesgue Differentiation Theorem). If f ∈ L1(T),
then limh→0

1
2h

´ θ+h

θ−h
f(y) dy = f(θ) for a.e. θ ∈ T.

Proofs of this result require a thorough understanding of measure
theory. For example, see [SS05, Chapter 3, Section 1.2].

4.4. Fejér kernels and Cesàro means

Returning to an earlier question, can we recover the values of an inte-
grable function f from knowledge of its Fourier coefficients? Perhaps
just at points where f is continuous?

Du Bois-Reymond’s example shows that even if f is continuous
on the whole circle T, we cannot hope to recover f by taking the
limit as n →∞ of the traditional partial sums SNf . However, Fejér
discovered that we can always recover a continuous function f from
its Fourier coefficients if we use a different method of summation,
which had been developed by Cesàro. If f is just integrable, the
method recovers f at all points where f is continuous.

Fejér’s method boils down to using Cesàro partial sums σNf cor-
responding to convolution with a particular family of good kernels,
now called the Fejér kernels. The Cesàro partial sums, also known as
Cesàro means, are defined by

σNf(θ) :=
[
S0f(θ) + S1f(θ) + · · ·+ SN−1f(θ)

]
/N

=
1

N

∑
0≤n≤N−1

Snf(θ) =
1

N

∑
0≤n≤N−1

∑
|k|≤n

f̂ (k) eikθ .

Thus σNf is the average of the first N partial Fourier sums Snf , and
it is a 2π-periodic trigonometric polynomial (see also Exercise 4.17).
Interchanging the order of summation and counting the number of ap-
pearances of each Fourier summand f̂(k)eikθ gives a representation
of σNf as a weighted average of the Fourier coefficients of f corre-
sponding to frequencies |k| ≤ N , where the coefficients corresponding
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to smaller frequencies are weighted most heavily. More precisely,

σNf(θ) =
∑

|k|≤N−1

[
(N − |k|)/N

]
f̂(k)eikθ.

The Fejér kernel FN (θ) is defined to be the arithmetic average of
the first N Dirichlet kernels:

(4.9) FN (θ) :=
[
D0(θ) +D1(θ) + · · ·+DN−1(θ)

]
/N.

By the same calculations performed above we conclude that the
Fejér kernel can be written as a weighted average of the trigono-
metric functions corresponding to frequencies |k| ≤ N , where the
coefficients corresponding to smaller frequencies are weighted most
heavily. Specifically, FN (θ) =

∑
|n|≤N

[
(N − |n|)/N

]
einθ. What is

not so obvious is that there is a closed formula for the Fejér kernel,

(4.10) FN (θ) = (1/N)
[
sin(Nθ/2)/sin(θ/2)

]2
.

Exercise 4.30. Verify formula (4.10). ♦

Compare with formula (4.3) for the Dirichlet kernel in terms of
sines. Notice that, unlike the Dirichlet kernel, the Fejér kernel is
nonnegative. See Figure 4.5.
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Figure 4.5. Graphs of Fejér kernels FN (θ) for N = 1, 3,
and 5, extended periodically from [−π, π) to R.

Exercise 4.31 (The Fejér Kernel Is a Good Kernel). Show that the
Fejér kernel FN is a good kernel and that σNf = FN ∗ f . ♦
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By Theorem 4.23 on good kernels, it follows that the Cesàro sums
of f converge to f at points of continuity.

Theorem 4.32 (Fejér, 1900). Assume f ∈ L1(R) and that it is
bounded. Then the following statements hold.

(i) At all points of continuity of f there is pointwise convergence of
the Cesàro sums. In other words, if f is continuous at θ, then

f(θ) = lim
N→∞

(f ∗ FN )(θ) = lim
N→∞

σNf(θ).

(ii) If f is continuous on T, then σNf → f uniformly on T.

Thus we can indeed recover a continuous function f from knowl-
edge of its Fourier coefficients.

Let us reiterate that the Cesàro sums give a way to approximate
continuous functions on T uniformly by trigonometric polynomials.
That is Weierstrass’s Theorem 3.4, which we stated in Section 3.1 as
an appetizer.

Fejér’s Theorem gives a proof of the uniqueness of Fourier coef-
ficients for continuous and periodic functions (the uniqueness princi-
ple): If f ∈ C(T) and all its Fourier coefficients vanish, then f = 0.

Exercise 4.33 (The Fourier Coefficients Are Unique). Prove the
uniqueness principle for continuous functions on the circle. Show that
the uniqueness principle implies that if f , g ∈ C(T) and f̂(n) = ĝ(n)

for all n ∈ Z, then f = g. ♦

A similar argument shows that if f is Riemann integrable and all
its Fourier coefficients are zero, then at all points of continuity of f ,
f(θ) = limN→∞ σNf(θ) = 0. Lebesgue’s Theorem (Theorem 2.33)
says that f is Riemann integrable if and only if f is continuous almost
everywhere, so the conclusion can be strengthened to f = 0 a.e.

With the machinery of the Lebesgue integral one can prove the
same result for Lebesgue-integrable functions.

Theorem 4.34 (Uniqueness Principle). If f ∈ L1(T) and f̂ (n) = 0

for all n, then f = 0 a.e.
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4.5. Poisson kernels and Abel means

The Poisson kernel is another good kernel. Convolution of a function
f with the Poisson kernel yields a new quantity known as the Abel
mean10, analogous to the way in which convolution with the Fejér
kernel yields the Cesàro mean. Some differences are that the Poisson
kernel is indexed by a continuous rather than a discrete parameter
and that each Abel mean involves all the Fourier coefficients rather
than just those for |n| ≤ N . See [SS03, Sections 5.3 and 5.4] for
a fuller discussion, including the notion of Abel summability of the
Fourier series to f at points of continuity of the integrable function f ,
and an application to solving the heat equation on the unit disk.

Definition 4.35. The Poisson kernel Pr(θ) is defined by

Pr(θ) :=
∑
n∈Z

r|n|einθ =
1− r2

1− 2r cos θ + r2
for r ∈ [0, 1). ♦

Notice that the Poisson kernel is indexed by all real numbers
r between 0 and 1, not by the discrete positive integers N as in the
Dirichlet and Fejér kernels. (See Figure 4.6.) We are now interested in
the behavior as r increases towards 1, instead of N →∞. The Poisson
kernel is positive for r ∈ [0, 1). The series for Pr(θ) is absolutely
convergent and uniformly convergent.
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Figure 4.6. Graphs of Poisson kernels Pr(θ) for r = 1/2, 2/3,
and 4/5, extended periodically from [−π, π) to R.

10Named after the Norwegian mathematician Niels Henrik Abel (1802–1829).
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Exercise 4.36. Show that the two formulas in our definition of the
Poisson kernel are actually equal. ♦

Exercise 4.37 (The Poisson Kernel Is a Good Kernel). Show that
the Poisson kernel Pr(θ) is a good kernel. (Modify the definition of
good kernel to take into account the change in index from n ∈ N to
r ∈ [0, 1).) ♦

Definition 4.38. Suppose f has Fourier series
∑

n∈Z
f̂ (n) einθ. For

r ∈ [0, 1), the rth Abel mean of f is defined by

Arf(θ) :=
∑
n∈Z

r|n|f̂ (n) einθ. ♦

Thus the Abel mean is formed from f by multiplying the Fourier
coefficients f̂ (n) by the corresponding factor r|n|.

The Abel mean arises from the Poisson kernel by convolution,
just as the Cesàro mean arises from the Fejér kernel by convolution.

Exercise 4.39. Show that for integrable functions f : T→ C,

(4.11) Arf(θ) = (Pr ∗ f)(θ). ♦

It follows from Theorem 4.23, modified for the continuous index
r ∈ [0, 1), that if f : T→ C is Riemann integrable and f is continuous
at θ ∈ T, then

f(θ) = lim
r→1−

(f ∗ Pr)(θ) = lim
r→1−

Arf(θ).

Thus we can recover the values of f (at points of continuity of f)
from the Abel means of f , just as we can from the Cesàro means. If
f is continuous, then the convergence is uniform.

Exercise 4.40. Write a Matlab script to plot the Dirichlet ker-
nels DN , the rectangular kernels Kn, the Féjer kernels FN , or the
Poisson kernels Pr. Hint for the Poisson kernels: Replace the
continuous parameter r by the discrete parameter rn = 1− 1/n. ♦

See the project in Section 4.8 for more on summability methods.
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4.6. Excursion into Lp(T)

We will be concerned with other modes of convergence for the con-
volution of a family of good kernels and a function. Examples are
convergence in L2(T) and also in Lp(T).

Theorem 4.41. If f ∈ C(T) and {Kn}n≥1 is a family of good ker-
nels, then limn→∞ ‖f ∗Kn − f‖Lp(T) = 0 for 1 ≤ p <∞.

Exercise 4.42. Prove Theorem 4.41. Hint: You can control the
Lp norm with the L∞ norm on T. Recall the relations between dif-
ferent modes of convergence illustrated in Figure 2.4. ♦

In particular, this theorem implies the convergence in Lp(T) of
the Cesàro means σNf and the Abel means Arf for continuous func-
tions f ∈ C(T). We state explicitly the mean-square convergence for
continuous functions and the Cesàro means.

Theorem 4.43. If f ∈ C(T), then limN→∞ ‖σNf − f‖L2(T) = 0. In
other words, the Cesàro means σNf converge to f in the L2 sense.

In the next chapter we are interested in proving the mean-square
convergence of the partial Fourier sums of f . We will prove that
‖SNf − f‖L2(T) → 0, and Theorem 4.43 will play a rôle. We will first
better understand the geometry of L2(T) and of SNf . In particular
we will see that SNf is the best approximation to f in the L2 norm
in the space PN (T) of trigonometric polynomials of degree N .

In Section 3.2 we proved the Riemann–Lebesgue Lemma for con-
tinuous functions; see Lemma 3.20. We can use an approximation
argument to prove the lemma for integrable functions.

Lemma 4.44 (Riemann–Lebesgue Lemma for Integrable Functions).
If f ∈ L1(T), then f̂ (n)→ 0 as |n| → ∞.

Proof. The result holds for f ∈ C(T) by Lemma 3.20. Given f ∈
L1(T), there is a sequence of continuous functions {fk}k∈N such that
‖fk − f‖L1(T) → 0 as k → ∞; see Theorem 2.75. In particular their
Fourier coefficients are close: for each fixed n,

(4.12) |f̂ (n)− f̂k(n)| ≤
1

2π
‖fk − f‖L1(T) → 0 as k →∞.
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Now we estimate the size of the Fourier coefficients of f , knowing that
for the continuous functions fk, f̂k(n) → 0 as |n| → ∞. Fix ε > 0.
There is some K > 0 such that ‖fk − f‖L1(T) < πε for all k > K.
Hence, by inequality (4.12), |f̂ (n) − f̂k(n)| < ε/2, for all n > 0 and
all k > K. Fix k > K. There is an N > 0 such that for all |n| > N

and for the particular k > K, |f̂k(n)| < ε/2. Finally, by the Triangle
Inequality for real numbers, we see that for all |n| > N ,

|f̂ (n)| ≤ |f̂ (n)− f̂k(n)|+ |f̂k(n)| < ε/2 + ε/2 = ε.

Since our argument is valid for all positive ε, we have shown that
lim|n|→∞ |f̂ (n)| = 0 for all f ∈ L1(T), proving the lemma. �

4.7. Project: Weyl’s Equidistribution Theorem

This project is based on Körner’s account [Kör, Chapter 3]. For
other accounts see [Pin, Section 1.4.4], [SS03, Section 4.2], and [DM,
Section 1.7.6]. Let 〈γ〉 denote the fractional part of a real number γ,
so that 0 ≤ 〈γ〉 < 1 and γ − 〈γ〉 is an integer.

Given a real number γ, is there any pattern in the fractional parts
〈γ〉, 〈2γ〉, 〈3γ〉, . . . , 〈nγ〉 of the positive integer multiples of γ?

Weyl’s Equidistribution Theorem11 states that if γ is irrational,
then for large n the fractional parts of its first n integer multiples are
more or less uniformly scattered over the interval [0, 1]. Specifically,
these integer multiples are equidistributed in [0, 1], in the sense that
the proportion of the first n fractional parts {〈γ〉, 〈2γ〉, . . . , 〈nγ〉} that
fall within any given subinterval [a, b] of [0, 1] approaches, as n→∞,
the proportion b−a = (b−a)/(1−0) of [0, 1] that is occupied by [a, b].
Mathematically, Weyl’s Equidistribution Theorem says that if γ is
irrational, then for every a, b such that 0 ≤ a ≤ b ≤ 1, the proportion
card({r : 1 ≤ r ≤ n, a ≤ 〈rγ〉 ≤ b})/n→ b−a as n→∞. By card(A)

we mean the cardinality of the set A. For a finite set A, card(A) is
just the number of elements in A. We have also used the notation
card(A) = #A.

11Named after the German mathematician Hermann Klaus Hugo Weyl (1885–
1955).
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Perhaps surprisingly, Weyl’s result can be proved using one of
the fundamental ideas of Fourier analysis that we have learned in
this chapter: every periodic continuous function can be uniformly
approximated by trigonometric polynomials.

(a) Work through the proof of Weyl’s Equidistribution Theorem given
in [Kör, Chapter 3]. Focus on the use of continuous functions close
to the characteristic function of [2πa, 2πb] to approximate the cardi-
nality of the set mentioned above, and the use of the density of the
trigonometric polynomials in the continuous functions on T.

(b) Choose several irrational and rational numbers, such as
√
2, π,

22/7, the golden ratio φ = (1 +
√
5)/2, and so on. For each of your

numbers, use Matlab to create a labeled histogram showing the
fractional parts of the first 2,000 integer multiples, divided into ten
or more bins within [0, 1].

(c) Explain why the fractional parts of the integer multiples of a
rational number are not equidistributed in [0, 1]. It follows that the
real numbers γ such that {〈rγ〉} is equidistributed in [0, 1] are exactly
the irrational numbers.

(d) The situation for integer powers is less clear-cut than that for in-
teger multiples and indeed is not yet fully understood. Work through
the short proof in [Kör, Chapter 3] showing that 〈φr〉, the fractional
parts of the integer powers of the golden ratio φ = (1+

√
5)/2, are not

equidistributed in [0, 1]. (The proof makes use of the connection be-
tween the golden ratio and the Fibonacci numbers.) Thus for at least
one irrational number, the sequence {〈γr〉} is not equidistributed. It
is known that for almost all real numbers γ > 1, the sequence {〈γr〉}
of fractional parts of the integer powers of γ is equidistributed. Use
Matlab to create histograms, like those in part (b), for integer pow-
ers of some rational and irrational numbers, looking for both equidis-
tributed and nonequidistributed sequences. Can you formulate and
prove any results suggested by your experiments?

(e) The concepts of being dense in [0, 1] and being equidistributed
in [0, 1] are different. Does either imply the other? Can you find a
sequence (not necessarily of fractional parts of integer multiples of a
given number) that has one property but not the other?
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4.8. Project: Averaging and summability
methods

In the first part of this project we explore how the two averaging
methods known as Cesàro means and Abel means do not damage,
but can in fact improve, the convergence properties of sequences. In
Sections 4.4 and 4.5 we used the Cesàro and Abel means in the special
case where the sequence {bn}∞n=0 consists of the partial Fourier sums
of a given function f : T → C. For a captivating account of the
history surrounding the use of summability methods for Fourier series,
see [KL].

Let {bn}∞n=1 be a sequence of real numbers. The Cesàro means σn

of the sequence {bn}∞n=1, also known as arithmetic means or just av-
erages, are defined by σn := (b1 + b2 + · · ·+ bn)/n.

For 0 ≤ r < 1, the Abel means Ar of the sequence {bn}∞n=0 are
defined by Ar := (1− r)

∑∞
n=0 r

nbn.

(a) Suppose that the sequence {bn}∞n=1 converges to the number b,
in other words, limn→∞ bn = b. Show that the sequence {σn}∞n=1 of
Cesàro means converges and that its limit is also b. First experiment
with some examples, such as bn = 1, bn = n, and bn = 1/n. Can
you find an example of a sequence {bn}∞n=1 such that the sequence
{σn}∞n=1 of averages converges but the original sequence diverges?

(b) Given an arbitrary fraction p/q in the unit interval, can you find
a sequence of ones and zeros such that the Cesàro means converge
to p/q? Notice that such a sequence must have infinitely many ones
and infinitely many zeros. What about any real number α in the unit
interval, not necessarily a fraction?

(c) Suppose that the sequence {bn}∞n=0 converges to the number b.
Show that as r → 1− the Abel means Ar also approach b. Can you
find an example of a sequence {bn}∞n=0 so that the limit exists but the
sequence does not converge? Is there a sequence whose Abel means
do not have a limit? Notice that we can think of the Abel mean as
the double limit limr→1− limN→∞(1− r)

∑N
n=0 r

nbn. What happens
if you interchange the limits?

(d) In order to work with Abel means of sequences, it is useful to
note the identity (1− r)

∑∞
n=0 r

nsn =
∑∞

n=0 r
nbn, valid for 0 ≤ r < 1
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and for sn =
∑n

k=0 bk, n ∈ N. This identity allows us to go back
and forth between a sequence {bn}∞n=0 and its partial sums {sn}∞n=0.
Prove the identity.

(e) What happens to the sequences of ones and zeros constructed in
part (b) when you compute the limit in (c)? Is this a coincidence?

(f) Can you find a sequence {bn}∞n=0 such that the sequence of av-
erages diverges, but the limit in (c) exists? Comparing our summa-
bility methods using the information gathered so far, which one is
stronger, Cesàro means or Abel means? Hint: Consider the sequence
{(−1)n(n+1)}∞n=0. See [SS03, Section 5.3]. For more on summability
methods and matrices, see [Pin, Section 1.4.2].

                

                                                                                                               



Chapter 5

Mean-square convergence
of Fourier series

This chapter has two main themes: the convergence in the L2 sense
of the partial Fourier sums SNf to f (Section 5.1) and the complete-
ness of the trigonometric functions in L2(T) (Section 5.3). They are
intimately related, as a review of the geometry of L2(T) shows (Sec-
tion 5.2). We begin by setting the scene.

In the previous chapter, we discussed pointwise and uniform con-
vergence of the partial Fourier sums SNf to the function f . We found
that continuity of f is not sufficient to ensure pointwise convergence
of SNf . We need something more, such as f having two continuous
derivatives, or the use of Cesàro sums instead of SNf ; either of these
conditions guarantees uniform convergence.

In this chapter we discuss mean-square convergence, also known
as convergence in L2(T). Suppose f is continuous, or just in L2(T).
We will see that the N th partial Fourier sum SNf is the trigonomet-
ric polynomial of degree at most N which is closest to f in the L2

norm, in the sense that SNf is the orthogonal projection of f onto
the subspace of L2(T) consisting of trigonometric polynomials of de-
gree N . The energy or L2 norm of f can be recovered from the Fourier

107

                                     

                

                                                                                                               



108 5. Mean-square convergence of Fourier series

coefficients {f̂ (n)}n∈Z alone, via the invaluable Parseval’s Identity1,
which is an infinite-dimensional analogue of the Pythagorean Theo-
rem2. What is behind all these results can be summarized in one very
important sentence: The trigonometric functions {einθ}n∈Z form an
orthonormal basis for L2(T).

It is immediate that the trigonometric functions are orthonormal
on T (see formula (1.6)). What is really noteworthy here is that the
family of trigonometric functions is complete, in the sense that they
span L2(T): every square-integrable function on T can be written
as a (possibly infinite) linear combination of the functions einθ. We
discuss equivalent conditions for the completeness of an orthonormal
system of functions in L2(T) (Section 5.4).

5.1. Basic Fourier theorems in L2(T)

In Section 2.1 we introduced the space L2(T) of square-integrable
functions on T as the space of functions f : T→ C such thatˆ π

−π

|f(θ)|2 dθ <∞.

Recall that the L2 norm, or energy, of a function f ∈ L2(T),
denoted by ‖f‖L2(T), is the nonnegative, finite quantity defined by

‖f‖L2(T) :=

(
1

2π

ˆ π

−π

|f(θ)|2 dθ
)1/2

.

Before we describe in more detail the geometric structure of the
space L2(T), let us look ahead to the main results concerning Fourier
series and L2(T).

The Fourier coefficients for f ∈ L2(T) are well-defined (since
square-integrable functions on T are integrable), as are its partial
Fourier sums

SNf(θ) =
∑

|n|≤N

f̂ (n)e2πinθ.

1Named after the French mathematician Marc-Antoine Parseval de Chênes (1755–
1836).

2Named after the Greek philosopher Pythagoras of Samos (c. 570–c. 495 BC).
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Theorem 5.1 (Mean-square Convergence Theorem). If f ∈ L2(T),
then its partial Fourier sums SNf converge to f in the L2 sense:ˆ π

−π

|SNf(θ)− f(θ)|2 dθ → 0 as N →∞.

Restating Theorem 5.1 in terms of norms, if f ∈ L2(T), then

‖SNf − f‖L2(T) → 0 as N →∞.

We can recover the square of the energy, or norm, of an L2(T)
function f by adding the squares of the absolute values of its Fourier
coefficients, as Parseval’s Identity shows.

Theorem 5.2 (Parseval’s Identity). If f ∈ L2(T), then

‖f‖2L2(T) =
∑
n∈Z

|f̂ (n)|2.

We prove Theorems 5.1 and 5.2 later in this chapter. Parseval’s
Identity immediately gives us an insight into the behavior of Fourier
coefficients of square-integrable functions. Since the series on the
right-hand side of Parseval’s Identity converges, the coefficients must
vanish as |n| → ∞, as described in the following corollary.

Corollary 5.3 (Riemann–Lebesgue Lemma). If f ∈ L2(T), then

f̂ (n)→ 0 as |n| → ∞.

The space of square-summable sequences, denoted by �2(Z) and
pronounced “little ell-two of the integers”, is defined by

(5.1) �2(Z) :=
{
{an}n∈Z : an ∈ C and

∑
n∈Z

|an|2 <∞
}
.

The space �2(Z) is a normed space, with norm given by

‖{an}n∈Z‖�2(Z) :=
(∑

n∈Z

|an|2
)1/2

.

In the language of norms, we can restate Parseval’s Identity as

(5.2) ‖f‖L2(T) = ‖{f̂ (n)}n∈Z‖�2(Z).
In other words, the Fourier mapping F : L2(T)→ �2(Z), which asso-
ciates to each function f ∈ L2(T) the sequence of its Fourier coeffi-
cients F(f) = {f̂ (n)}n∈Z, preserves norms: F is an isometry.
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In the Appendix you will find the definitions of normed spaces and
complete inner-product vector spaces, also known as Hilbert spaces. It
turns out that L2(T) and �2(Z) are Hilbert spaces3. The Fourier
mapping also preserves the inner products.

5.2. Geometry of the Hilbert space L2(T)

The space L2(T) of square-integrable functions on T is a vector space
with the usual addition and scalar multiplication for functions. The
L2 norm is induced by an inner product defined for f , g ∈ L2(T) by

〈f, g〉 := 1

2π

ˆ π

−π

f(θ)g(θ) dθ,

in the sense that ‖f‖L2(T) = 〈f, f〉1/2.
Some inner-product vector spaces satisfy another property that

has to do with convergence of Cauchy sequences of vectors. Namely,
they are complete inner-product vector spaces, also known as Hilbert
spaces. In particular, L2(T) is a Hilbert space. However, the space
R(T) of Riemann integrable functions on T, with the L2 inner prod-
uct, is not a Hilbert space.

Definition 5.4. A sequence of functions fn ∈ L2(T) is a Cauchy se-
quence if for every ε > 0 there is an N > 0 such that ‖fn−fm‖L2(T) <

ε for all n, m > N . ♦

We say that a sequence of functions {fn}n≥0 converges to f in
the mean-square sense, or the L2 sense, if

‖fn − f‖L2(T) → 0 as n→∞.

It is well known that if a sequence converges to a limit, then as
n → ∞ the functions in the sequence form a Cauchy sequence: they
get closer to each other. It is a remarkable fact that for L2(T), the
converse is also true.

3Here is one of the few places where we really need the Lebesgue integral: for
L2(T) to be a Hilbert space. If we use the Riemann integral instead, then we still get
an inner-product vector space, but it is not complete. There are Cauchy sequences of
Riemann square-integrable functions that converge to functions that are not Riemann
square integrable. Luckily, they are always Lebesgue square integrable. See Section 5.2.

                

                                                                                                               



5.2. Geometry of the Hilbert space L2(T) 111

Theorem 5.5. The space L2(T) is a Hilbert space, that is, a com-
plete inner-product vector space. In other words, every Cauchy se-
quence in L2(T), with respect to the norm induced by the inner prod-
uct, converges to a function in L2(T).

For a proof, see for example [SS05]. Here we use the word com-
plete with a different meaning than in Definition 5.19, where we con-
sider complete systems of orthonormal functions. It will be clear from
the context whether we mean a complete space or a complete system
{fn}n≥0 of functions.

Theorem 5.6. The space L2(T) of Lebesgue square-integrable func-
tions on T consists of the collection R(T) of all Riemann integrable
functions on T, together with all the functions that arise as limits
of Cauchy sequences in R(T) with respect to the L2 norm. In other
words, L2(T) is the completion of R(T) with respect to the L2 metric.

In particular the Riemann integrable functions on T are dense
in L2(T), as is every dense subset of R(T) with respect to the L2

metric. For example step functions, polynomials, and continuous
functions on T are all dense in L2(T). (Now is a good time to re-
visit Section 2.4.)

Example 5.7. The space �2(Z) of square-summable sequences with
inner product 〈{an}n∈Z, {bn}n∈Z〉�2(Z) :=

∑
n∈Z

anbn is a Hilbert
space. ♦
Exercise 5.8. Prove that �2(Z) is complete. Hint: First generate
a candidate for the limit, by observing that if a sequence {AN}N∈Z

of sequences AN = {aNn }n∈Z is a Cauchy sequence in �2(Z), then for
each fixed n ∈ Z, the numerical sequence {aNn }N≥1 is Cauchy and
hence convergent. Let A = {an}n∈Z, where an = limN→∞ aNn . Show
that A ∈ �2(Z). Finally show that limN→∞ ‖AN − A‖�2(Z) = 0. ♦

5.2.1. Three key results involving orthogonality. The impor-
tant concept of orthogonality lets us generalize the familiar idea of
two perpendicular vectors in the plane to infinite-dimensional inner-
product spaces.

We define orthogonality here in the spaces L2(T) and �2(Z). See
the Appendix for the definitions in a general inner-product vector

                

                                                                                                               



112 5. Mean-square convergence of Fourier series

space. The statements and proofs we give here do generalize to that
context without much extra effort. It may take a little while to get
used to thinking of functions as vectors, however.

Definition 5.9. Two functions f , g ∈ L2(T) are orthogonal, written
f ⊥ g, if their inner product is zero: 〈f, g〉 = 0. A collection of
functions A ⊂ L2(T) is orthogonal if f ⊥ g for all f , g ∈ A with
f �= g. Two subsets A, B of L2(T) are orthogonal, written A ⊥ B, if
f ⊥ g for all f ∈ A and all g ∈ B. ♦

The trigonometric functions {en(θ) := einθ}n∈Z are orthonormal
in L2(T). Orthonormal means that they are an orthogonal set and
each element in the set has L2 norm equal to one (the vectors have
been normalized). Checking orthonormality of the trigonometric sys-
tem is equivalent to verifying that

(5.3) 〈ek, em〉 = δk,m for k, m ∈ Z,

where δk,m is the Kronecker delta (equation (1.7)).

The Pythagorean Theorem, the Cauchy–Schwarz Inequality, and
the Triangle Inequality hold in every inner-product vector space over C.
We state them explicitly for the case of L2(T).

Theorem 5.10 (Pythagorean Theorem). If f , g ∈ L2(T) are orthog-
onal, then

‖f + g‖2L2(T) = ‖f‖2L2(T) + ‖g‖2L2(T).

Theorem 5.11 (Cauchy–Schwarz Inequality). For all f , g ∈ L2(T),

|〈f, g〉| ≤ ‖f‖L2(T)‖g‖L2(T).

Theorem 5.12 (Triangle Inequality). For all f , g ∈ L2(T),

‖f + g‖L2(T) ≤ ‖f‖L2(T) + ‖g‖L2(T).

Exercise 5.13. Show that ‖f‖L2(T) :=
√
〈f, f〉 is a norm on L2(T)

(see the definition of norm in the Appendix). Prove Theorems 5.10,
5.11, and 5.12. ♦

Exercise 5.14. Deduce from the Cauchy–Schwarz Inequality that if
f and g are in L2(T), then |〈f, g〉| <∞. ♦
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An important consequence of the Cauchy–Schwarz Inequality is
that we can interchange limits in the L2 norm and inner products
(or in language that we will meet later in the book, that the inner
product is continuous in L2(T)).

Proposition 5.15. Fix g ∈ L2(T). If a sequence {fn}n∈N of L2

functions converges to f in the L2 sense, then

lim
n→∞

〈g, fn〉 = 〈g, lim
n→∞

fn〉 = 〈g, f〉.

Proof. Suppose g, fn ∈ L2(T) and ‖fn − f‖L2(T) → 0 as n → ∞.
Since L2(T) is complete, it follows that f ∈ L2(T). By the Cauchy–
Schwarz Inequality,

|〈g, fn − f〉| ≤ ‖g‖L2(T)‖fn − f‖L2(T).

We conclude that lim
n→∞

〈g, fn − f〉 = 0, and since the inner product is
linear in the second variable, the result follows. �

It follows that we can also interchange the inner product with a
convergent infinite sum in L2(T).

Exercise 5.16. Fix g ∈ L2(T). Suppose that f, hk ∈ L2(T) for k ∈ Z,
and that f =

∑∞
k=1 hk in the L2 sense. Show that

∑∞
k=1〈g, hk〉 =

〈g,
∑∞

k=1 hk〉. Hint: Set fn =
∑n

k=1 hk in Proposition 5.15. ♦

Exercise 5.17. Let {en}n∈Z be the set of trigonometric functions.
Suppose that {an}n∈Z, {bn}n∈Z are sequences of complex numbers,
f =

∑
n∈Z

anen, and g =
∑

n∈Z
bnen, where the equalities are in the

L2 sense. Show that 〈f, g〉 =
∑

n∈Z
anbn. In particular, show that

‖f‖2L2(T) =
∑

n∈Z
|an|2. ♦

Exercise 5.18. Suppose {fλ}λ∈Λ is an orthogonal family of nonzero
functions in L2(T), with an arbitrary index set Λ. Show that the
fλ are linearly independent ; in other words, for each finite subset
of indices {λ1, . . . , λn} ⊂ Λ, a1fλ1

+ · · · + anfλn
= 0 if and only if

a1 = · · · = an = 0. ♦
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5.2.2. Orthonormal bases. Orthogonality implies linear indepen-
dence (see Exercise 5.18). If our geometric intuition is right, an or-
thogonal set is in some sense the most linearly independent set possi-
ble. In a finite-dimensional vector space of dimension N , if we find N

linearly independent vectors, then we have found a basis of the space.
Similarly, in an N -dimensional inner-product vector space, if we find
N orthonormal vectors, then we have found an orthonormal basis.

The trigonometric functions {en(θ) := einθ}n∈Z are an orthonor-
mal set for L2(T). Since they are an infinite linearly independent set,
the space L2(T) is infinite-dimensional. This fact alone is not yet
enough to guarantee that there are no other functions in the space
L2(T) orthogonal to the functions {en(θ)}n∈Z, or in other words that
the system of trigonometric functions is complete. It turns out that
the completeness of the set of trigonometric functions in L2(T) is
equivalent to the mean-square convergence of partial Fourier sums
(Theorem 5.1) and also to Parseval’s Identity (Theorem 5.2).

Definition 5.19. Let {fn}n∈N be an orthonormal family in L2(T).
We say that the family {fn}n∈N is complete, or that {fn}n∈N is a com-
plete orthonormal system in L2(T), or that the functions {fn}n∈N

form an orthonormal basis, if each function f ∈ L2(T) can be ex-
panded into a series of the basis elements that is convergent in the
L2 norm. That is, there is a sequence {an}n∈N of complex numbers
such that

lim
N→∞

∥∥∥f − N∑
n=1

an fn

∥∥∥
L2(T)

= 0.

Equivalently, f =
∑∞

n=1 anfn in the L2 sense. ♦

The coefficients are uniquely determined by pairing the function f

with the basis functions.

Lemma 5.20 (Uniqueness of the Coefficients). If {fn}n∈N is an or-
thonormal basis in L2(T) and if f ∈ L2(T), then there are complex
numbers {an}n∈N such that f =

∑∞
n=1 anfn, and the coefficients must

be an = 〈f, fn〉 for all n ∈ N.

Proof. Take the expansion of f in the basis elements. Pair it with
fk, use Exercise 5.16 to interchange the inner product and the sum,

                

                                                                                                               



5.3. Completeness of the trigonometric system 115

and use the orthonormality of the system to get

〈f, fk〉 = 〈
∞∑

n=1

anfn, fk〉 =
∞∑

n=1

an〈fn, fk〉 = ak.

This proves the lemma. �

For the trigonometric system, more is true: not only is the system
complete, but also the coefficients must be the Fourier coefficients. We
state this result as a theorem, which will take us some time to prove.

Theorem 5.21. The trigonometric system is a complete orthonormal
system in L2(T). Hence if f ∈ L2(T), then

f(θ) =
∑
n∈Z

f̂(n)einθ,

where the equality is in the L2 sense.

It follows from Theorem 5.21 and Exercise 5.17 that the Fourier
map F : L2(T) → �2(Z), given by F(f) = {f̂(n)}n∈Z, not only pre-
serves norms (Parseval’s Identity) but also preserves inner products.

5.3. Completeness of the trigonometric system

The trigonometric functions {en(θ) := einθ}n∈Z are an orthonormal
system in L2(T). Our goal is to prove Theorem 5.21, which says that
the system is complete. We will prove that it is equivalent to showing
that we have mean-square convergence of the partial Fourier sums
SNf to f , that is, Theorem 5.1:

‖f − SNf‖L2(T) → 0 as N →∞, for f ∈ L2(T).

More precisely, the Fourier coefficients of f ∈ L2(T) are given
by the inner product of f against the corresponding trigonometric
function,

f̂ (n) =
1

2π

ˆ π

−π

f(θ)einθ dθ = 〈f, en〉.

Hence the partial Fourier sums are given by

SNf =
∑

|n|≤N

f̂ (n) en =
∑

|n|≤N

〈f, en〉 en.
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Now by Definition 5.19 and Lemma 5.20, to verify completeness of the
trigonometric system, it suffices to check the mean-square convergence
of the partial Fourier sums:

lim
N→∞

∥∥∥f − ∑
|n|≤N

〈f, en〉 en
∥∥∥
L2(T)

= lim
N→∞

‖f − SNf‖L2(T) = 0.

To prove Theorem 5.21 and hence Theorem 5.1, we first show
that SNf is the trigonometric polynomial of degree N that best ap-
proximates f in the L2 norm. In other words, SNf is the orthogonal
projection of f onto the subspace of trigonometric polynomials of de-
gree less than or equal to N . Next we show that the partial Fourier
sums converge to f in L2(T) for continuous functions f . Finally, an
approximation argument allows us to conclude the same for square-
integrable functions.

5.3.1. SNf is the closest N th-trigonometric polynomial to f .
The first observation is that (f − SNf) is orthogonal to the sub-
space PN (T) generated by {en}|n|≤N . That subspace is exactly the
subspace of trigonometric polynomials of degree less than or equal
to N , in other words, functions of the form

∑
|n|≤N cnen, for complex

numbers cn.

Lemma 5.22. Given f ∈ L2(T), (f − SNf) is orthogonal to all
trigonometric polynomials of degree less than or equal to N .

Proof. It suffices to show that (f−SNf) is orthogonal to
∑

|n|≤N cnen
for all choices of complex numbers {cn}|n|≤N .

First note that ej is orthogonal to (f −SNf) for each j such that
|j| ≤ N . We deduce this by checking that the inner product vanishes:

〈f − SNf, ej〉 = 〈f −
∑

|n|≤N

f̂ (n)en, ej〉

= 〈f, ej〉 −
∑

|n|≤N

f̂ (n)〈en, ej〉 = 〈f, ej〉 − f̂ (j) = 0,

using the linearity of the inner product and the orthonormality of the
trigonometric system.

Now plug in any linear combination
∑

|j|≤N cjej instead of ej ,
and use the fact that the inner product is conjugate linear in the
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second variable, and what we just showed, to get

〈f − SNf,
∑

|j|≤N

cjej〉 =
∑

|j|≤N

cj 〈f − SNf, ej〉 = 0.

Thus (f−SNf) ⊥
∑

|j|≤N cjej for every such linear combination. �

Since the partial sum SNf =
∑

|n|≤N f̂ (n)en is a trigonometric
polynomial of degree N , by Lemma 5.22 it is orthogonal to (f−SNf).
By the Pythagorean Theorem 5.10,

‖f‖2L2(T) = ‖f − SNf‖2L2(T) + ‖SNf‖2L2(T).

Lemma 5.23. If f ∈ L2(T), then

‖f‖2L2(T) = ‖f − SNf‖2L2(T) +
∑

|n|≤N

|f̂ (n)|2.

Proof. All we need to check is that ‖SNf‖2L2(T) =
∑

|n|≤N |f̂ (n)|2.
First, by a direct calculation,

‖SNf‖2L2(T) =
∥∥∥ ∑

|n|≤N

f̂(n)en

∥∥∥2
L2(T)

=
〈 ∑

|n|≤N

f̂(n)en,
∑

|j|≤N

f̂(j)ej

〉
.

Second, by linearity in the first variable and conjugate linearity in
the second variable of the inner product and by the orthonormality
of the trigonometric functions,

‖SNf‖2L2(T) =
∑

|n|≤N

∑
|j|≤N

f̂ (n)f̂ (j)〈en, ej〉

=
∑

|n|≤N

f̂ (n)f̂ (n) =
∑

|n|≤N

|f̂ (n)|2,

as required. Notice that this is exactly the Pythagorean theorem for
2N + 1 orthogonal summands. �

Bessel’s inequality4 for trigonometric functions follows immediately.

Lemma 5.24 (Bessel’s Inequality). For all f ∈ L2(T),

(5.4)
∑
n∈Z

|f̂ (n)|2 ≤ ‖f‖2L2(T).

4Named after the German mathematician Friedrich Wilhelm Bessel (1784–1846).
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Equality (Parseval’s Identity!) holds exactly when the orthonor-
mal system is complete, which we have yet to prove.

The partial Fourier sum SNf is the orthogonal projection of f

onto the subspace PN (T) of trigonometric polynomials of degree less
than or equal to N . In particular, among all trigonometric polynomi-
als of degree less than or equal to N , the N th partial Fourier sum SNf

is the one that best approximates f in the L2 norm. Here are the
precise statement and proof of this assertion.

Lemma 5.25 (Best Approximation Lemma). Take f ∈ L2(T). Then
for each N ≥ 0 and for all trigonometric polynomials P ∈ PN (T),

‖f − SNf‖L2(T) ≤ ‖f − P‖L2(T).

Equality holds if and only if P = SNf .

Proof. Let P ∈ PN (T). Then there exist complex numbers cn,
|n| ≤ N , such that P =

∑
|n|≤N cnen. Then

f − P = f −
∑

|n|≤N

cnen − SNf + SNf

=
(
f − SNf

)
+
( ∑

|n|≤N

(
f̂ (n)− cn

)
en

)
.

The terms in parentheses on the right-hand side are orthogonal to
each other by Lemma 5.22. Hence, by the Pythagorean Theorem,

‖f − P‖2L2(T) = ‖f − SNf‖2L2(T) +
∥∥∥ ∑

|n|≤N

(
f̂ (n)− cn

)
en

∥∥∥2
L2(T)

.

Therefore ‖f −P‖2L2(T) ≥ ‖f −SNf‖L2(T). Equality holds if and only
if the second summand on the right-hand side is equal to zero, but
by the argument in the proof of Lemma 5.23,∥∥∥ ∑

|n|≤N

(
f̂ (n)− cn

)
en

∥∥∥2
L2(T)

=
∑

|n|≤N

∣∣f̂ (n)− cn
∣∣2.

The right-hand side is equal to zero if and only if f̂ (n) = cn for all
|n| ≤ N . That is, P = SNf as required for the equality to hold. The
lemma is proved. �
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Aside 5.26. Every lemma in this subsection has a counterpart for
any orthonormal system X = {ψn}n∈N in L2(T), where the subspace
PN (T) of trigonometric polynomials of degree less than or equal to
N is replaced by the subspace generated by the first N functions in
the system, WN = {f ∈ L2(T) : f =

∑N
n=1 anψn, an ∈ C}.

In fact all the lemmas in Subsection 5.3.1 are valid for any com-
plete inner-product space, any orthonormal system in the space, and
any closed subspace spanned by a finite or countable subset of the
given orthonormal system. In the case of a subspace spanned by a
countable but not finite subset, one has to prove and use the ana-
logues in this setting of Proposition 5.15 and its consequences (Ex-
ercises 5.16 and 5.17) to justify the interchange of infinite sums and
the inner product. ♦

Exercise 5.27. Let X be an orthonormal system in L2(T), not neces-
sarily the trigonometric system. State and prove the analogues for X
of Lemma 5.22, Lemma 5.23, Bessel’s Inequality (Lemma 5.24), and
the Best Approximation Lemma (Lemma 5.25). ♦

5.3.2. Mean-square convergence for continuous functions. It
is natural to prove Theorem 5.1 first for nice functions, in our case
continuous functions, known to be dense in L2(T), and then for gen-
eral square-integrable functions via an approximation argument.

Proof of Theorem 5.1 for continuous functions. We are ready
to prove that for continuous functions g,

‖g − SNg‖L2(T) → 0 as N →∞.

Fix ε > 0. By Fejér’s Theorem, the Cesàro sums σNg converge
uniformly to g on T. So there is a trigonometric polynomial of degree
M , say, namely P (θ) = σMg(θ), such that |g(θ) − P (θ)| < ε for all
θ ∈ T. Therefore the L2 norm of the difference is bounded by ε as
well:

‖g − P‖2L2(T) =
1

2π

ˆ π

−π

|g(θ)− P (θ)|2 dθ < ε2.

Notice that if M ≤ N , then P ∈ PN (T). We can now use the
Best Approximation Lemma (Lemma 5.25) to conclude that

‖g − SNg‖L2(T) ≤ ‖g − P‖L2(T) < ε for all N ≥M .
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Thus, limN→∞ ‖g − SNg‖L2(T) = 0, for continuous functions g. �

5.3.3. Mean-square convergence for L2 functions. We can now
prove mean-square convergence for arbitrary functions f ∈ L2(T) and
verify the completeness of the trigonometric system in L2(T).

Proof of Theorem 5.1. We now know that for g ∈ C(T)

lim
N→∞

‖g − SNg‖L2(T) = 0.

The continuous functions on T are dense in L2(T); see Theo-
rem 2.75. This means that given a function f ∈ L2(T) and given
ε > 0, there exists a continuous function g on T such that

‖f − g‖L2(T) ≤ ε.

Since g is continuous, we can find a trigonometric polynomial P (for
example P = SMg for M large enough) such that

‖g − P‖L2(T) ≤ ε.

Therefore, by the Triangle Inequality,

‖f − P‖L2(T) ≤ ‖f − g‖L2(T) + ‖g − P‖L2(T) ≤ 2ε.

Let M be the degree of P . By Lemma 5.25, for all N ≥M we have

‖f − SNf‖L2(T) ≤ ‖f − P‖L2(T) ≤ 2ε.

Lo and behold, limN→∞ ‖f − SNf‖L2(T) = 0, for all f ∈ L2(T). �

Notice that it suffices to know that there is a trigonometric poly-
nomial ε-close in the L2 norm to g. For example P = σNg for N large
enough would also work. For this argument we do not really need to
know that SNg → g in L2(T) for continuous functions g, because we
have the Best Approximation Lemma at our disposal.

There are settings other than L2(T), for example Lp(T) for 1 ≤
p < 2 or 2 < p < ∞, where there is no inner-product structure and
no Best Approximation Lemma. It is still true that

(5.5) lim
N→∞

‖Snf − f‖Lp(T) = 0.

However a different proof is required. A similar argument to the
one presented in Section 5.3.2 shows that equation (5.5) holds for
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continuous functions g. Given f ∈ Lp(T), take g ∈ C(T) that is ε-
close to f in the Lp norm. Then estimate the Lp norm of (f − SNf)

by adding and subtracting both g and SNg and using the Triangle
Inequality for the Lp norm:

‖f−SNf‖Lp(T) ≤ ‖f−g‖Lp(T)+‖g−SNg‖Lp(T)+‖SNg−SNf‖Lp(T).

The first term on the right-hand side is less than ε, while the second
can be made less than ε for N large enough by Exercise 5.28. The only
concern is the third term. However, the mapping that takes f to its
N th partial Fourier sum SNf is linear, meaning that SN (af + bh) =

aSNf + bSNh. Moreover, these mappings are uniformly bounded or
continuous on Lp(T), meaning that there is a constant C > 0 such
that for all f ∈ Lp(T) and all N > 0,

(5.6) ‖SNf‖Lp(T) ≤ C‖f‖Lp(T).

We can now control the third term:

‖SNg − SNf‖Lp(T) = ‖SN (g − f)‖Lp(T) ≤ C‖f − g‖Lp(T) ≤ Cε.

Altogether, we have shown that for N large enough we can make
‖f − SNf‖Lp(T) arbitrarily small, so we are done.

This argument is valid as long as the mappings SN are uniformly
bounded on Lp(T). For p = 2, this boundedness follows from Bessel’s
Inequality; see Exercise 5.30. For p �= 2, we will prove in Chapter 12
that it follows from the boundedness on Lp(T) of the periodic Hilbert
transform.

Exercise 5.28. Show that limN→∞ ‖Sng − g‖Lp(T) = 0 for continu-
ous functions g ∈ C(T). ♦

Exercise 5.29. Show that SN (f + h) = SNf + SNh for integrable
functions f , h ∈ L1(T). ♦

Exercise 5.30. Show that ‖SNf‖L2(T) ≤ ‖f‖L2(T) for all f ∈ L2(T)
and for all N > 0 and that there is some f ∈ L2(T) for which equality
holds. We say that SN is a bounded operator with constant 1. ♦
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5.3.4. Parseval’s Identity. Given the completeness of the trigono-
metric system, we can now prove Parseval’s Identity (Theorem 5.2):
for f ∈ L2(T), the square of the L2 norm of f is the sum of the
squares of the absolute values of its Fourier coefficients.

Proof of Parseval’s Identity. By Lemma 5.23, for each N ∈ N,

(5.7) ‖f‖2L2(T) = ‖f − SNf‖2L2(T) +
∑

|n|≤N

|f̂ (n)|2.

Thus the series on the right-hand side converges because all terms are
nonnegative and the sum is bounded above by ‖f‖2L2(T). Furthermore,∑

n∈Z

|f̂ (n)|2 ≤ ‖f‖2L2(T).

We have just shown that if f ∈ L2(T), then ‖f − SNf‖L2(T) → 0

as N →∞. In fact,

‖f‖2L2(T) = lim
N→∞

∑
|n|≤N

|f̂ (n)|2 =:
∑
n∈Z

|f̂ (n)|2. �

5.4. Equivalent conditions for completeness

How can we tell whether a given orthonormal family X in L2(T) is
actually an orthonormal basis? One criterion for completeness is that
the only function in L2(T) that is orthogonal to all the functions in
X is the zero function. Another is that Plancherel’s Identity5, which
is an infinite-dimensional Pythagorean Theorem, must hold. These
ideas are summarized in Theorem 5.31, which holds for all complete
inner-product vector spaces V over C, not just for L2(T); see the
Appendix. We will prove Theorem 5.31 for the particular case when
X is the trigonometric system. Showing that the same proof extends
to any orthonormal system in L2(T) is left as an exercise.

Theorem 5.31. Let X = {ψn}n∈N be an orthonormal family in
L2(T). Then the following are equivalent:

(i) (Completeness) X is a complete system, thus an orthonormal
basis of L2(T).

(ii) (X⊥ = 0) If f ∈ L2(T) and f ⊥ X, then f = 0 in L2(T).

5Named after the Swiss mathematician Michel Plancherel (1885–1967).
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(iii) (Plancherel’s Identity) For all f ∈ L2(T),

‖f‖2L2(T) =

∞∑
n=1

|〈f, ψn〉|2.

Note that Parseval’s Identity, namely ‖f‖2L2(T) =
∑

n∈Z
|f̂ (n)|2

for all f ∈ L2(T), is the special case of Plancherel’s Identity when X

is the trigonometric system {en(θ) := einθ}n∈Z.

Proof of Theorem 5.31 for the trigonometric system. For the
case when X is the trigonometric system, we showed in Section 5.3.4
that completeness implies Parseval’s Identity, in other words that (i)
⇒ (iii). Here, however, we establish the circle of implications (i) ⇒
(ii) ⇒ (iii) ⇒ (i).

We show that (i) ⇒ (ii) for the particular case of X being the
trigonometric system. If f ∈ L2(T) were orthogonal to all trigono-
metric functions, then necessarily f̂ (n) = 〈f, en〉 = 0 for all n ∈ Z.
In that case the partial Fourier sums SNf would be identically equal
to zero for all N ≥ 0. The completeness of the trigonometric system
now implies that

‖f‖L2(T) = lim
N→∞

‖f − SNf‖L2(T) = 0.

Therefore f = 0. In other words, the completeness of the trigono-
metric system implies that the only L2 function orthogonal to all
trigonometric functions is the zero function.

We show that in the case of the trigonometric system, (ii)⇒ (iii).
We proceed by the contrapositive. (Notice that we are not assuming
the trigonometric system to be complete, only orthonormal.) Assume
Parseval’s Identity does not hold for some function g ∈ L2(T). Then
the following inequality (the strict case of Bessel’s Inequality) holds:∑

n∈Z

|〈g, en〉|2 < ‖g‖2L2(T) <∞.

Define a function h :=
∑

n∈Z
〈g, en〉en. Then h ∈ L2(T), 〈h, ek〉 =

〈g, ek〉 by the continuity of the inner product (see Exercise 5.16), and
‖h‖2L2(T) =

∑
n∈Z
|〈g, en〉|2, by Exercise 5.17. Let f := g − h. First,

f �= 0 in the L2 sense; otherwise Parseval’s Identity would hold for g.
Second, f is orthogonal to en for all n ∈ Z, as we see by a calculation:
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〈f, en〉 = 〈g − h, en〉 = 〈g, en〉 − 〈h, en〉 = 0. If Parseval’s Identity
does not hold, then there is a nonzero function f orthogonal to all
trigonometric functions.

To close the loop, we show that (iii)⇒ (i) for the particular case of
X being the trigonometric system. We have shown that equation (5.7)
holds for all N > 0, and so we can take the limit as N →∞ on both
sides to get

‖f‖2L2(T) = lim
N→∞

‖f − SNf‖2L2(T) +
∑
n∈Z

|f̂ (n)|2.

Now use Parseval’s Identity to cancel the left-hand side and the right-
most summand. We conclude that for all f ∈ L2(T),

lim
N→∞

‖f − SNf‖L2(T) = 0.

Thus X is a complete system, as required. �

Exercise 5.32. Prove Theorem 5.31 for an arbitrary orthonormal
system X in L2(T). ♦

5.4.1. Orthogonal projection onto a closed subspace. We know
from Lemma 5.25 that SNf is the best approximation to f in the sub-
space of trigonometric polynomials of degree N in the L2 norm.

More is true. We first recall that a subspace W of L2(T) is called
closed if every convergent sequence in W converges to a point in W .

Theorem 5.33 (Orthogonal Projection). Given any closed subspace
W of the complete inner-product vector space L2(T) and given f ∈
L2(T), there exists a unique function PWf ∈ W that minimizes the
distance in L2(T) to W. That is,

‖f − g‖L2(T) ≥ ‖f − PWf‖L2(T) for all g ∈ W.

Furthermore, the vector f − PWf is orthogonal to PWf .

If B = {gn}n∈N is an orthonormal basis of W, then

PWf =
∑
n∈N

〈f, gn〉gn.

We proved Theorem 5.33 for the special case of subspaces PN (T)
of trigonometric polynomials of degree at most N . These subspaces
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Figure 5.1. Orthogonal projection of a vector x onto a closed
subspace W of a complete inner-product vector space V .
Here V is represented by three-dimensional space, and W is
represented by a plane. The orthogonal projection of x onto W
is represented by the vector PWx. The distance from x to W
is the length ‖x− PWx‖ of the difference vector x− PWx.

are finite dimensional (of dimension 2N + 1) and therefore automat-
ically closed.

Theorem 5.33 says that we can draw pictures in L2(T) as we do in
Euclidean space of a vector and its orthogonal projection onto a closed
subspace (represented by a plane), and that the difference of these two
vectors minimizes the distance to the subspace. See Figure 5.1.

We will use this orthogonal projection theorem for the Hilbert
space L2(R) instead of L2(T), both in Section 9.4 when we discuss
the Haar basis on R and in Chapters 10 and 11 when we talk about
wavelets and multiresolution analyses.

Exercise 5.34. Prove Theorem 5.33 for a closed subspace W of
L2(T), assuming that W has an orthonormal basis BW = {gn}n∈N.
Then the elements ofW can be characterized as (infinite) linear com-
binations of the basis elements gn, with coefficients in �2(N), so that
W = {f ∈ L2(T) : f =

∑
n∈N

angn,
∑

n∈N
|an|2 <∞}. ♦

                

                                                                                                               



126 5. Mean-square convergence of Fourier series

5.5. Project: The isoperimetric problem

A classical problem known as the isoperimetric problem, dating back
to the ancient Greeks, is to find among all planar figures with fixed
perimeter the one with the largest area. It is not hard to believe that
the figure should be a circle. Steiner6 found a geometric proof in 1841.
In 1902, Hurwitz7 published a short proof using Fourier series. An
elegant direct proof that compares a smooth simple closed curve with
an appropriate circle was given by Schmidt8, in 1938. It uses only the
arclength formula, the expression for the area of a plane region from
Green’s Theorem9 and the Cauchy–Schwarz Inequality.

(a) Work through Steiner’s geometric argument; see for example [Kör,
Chapter 35].

(b) Work through Hurwitz’s Fourier series argument. A delightful
account can be found in [Kör, Chapter 36]. See also [KL, p. 151].

(c) Find a readable source for Schmidt’s argument, and work through
the proof.

(d) To further your knowledge on the isoperimetric problem and its
applications to hydrodynamics, “in particular to problems concerning
shapes of electrified droplets of perfectly conducting fluid”, see [BK].

There is plenty of material online about the isoperimetric prob-
lem. See for instance the article [Treib] by Andrejs Treibergs, in-
spired by Treibergs’ talk My Favorite Proofs of the Isoperimetric In-
equality given in the Undergraduate Colloquium at the University of
Utah on November 20, 2001. Jennifer Wiegert’s article [Wieg] on the
history of the isoperimetric problem was one of the winning articles in
the 2006 competition for the best history-of-mathematics article by
a student, sponsored by the History of Mathematics SIGMAA of the
Mathematical Association of America (MAA). Viktor Blåsjö’s article
[Blå] on the same topic won the MAA’s Lester R. Ford award for
expository excellence. See also [SS03, Section 4.1].

6Swiss mathematician Jacob Steiner (1796–1863).
7German mathematician Adolf Hurwitz (1859–1919).
8German mathematician Erhard Schmidt (1876–1959).
9Named after British mathematical physicist George Green (1793–1841).

                

                                                                                                               



Chapter 6

A tour of discrete Fourier
and Haar analysis

In this chapter we capitalize on the knowledge acquired while study-
ing Fourier series to develop the simpler Fourier theory in a finite-
dimensional setting.

In this context, the discrete trigonometric basis for CN is a certain
set of N orthonormal vectors, which necessarily form an orthonormal
basis (Section 6.1). The Discrete Fourier Transform is the linear
transformation that, for each vector v in CN , gives us the coefficients
of v in the trigonometric basis (Section 6.3). Many of the features of
the Fourier series theory are still present, but without the nuisances
and challenges of being in an infinite-dimensional setting (L2(T)),
where one has to deal with integration and infinite sums. The tools
required in the finite-dimensional setting are the tools of linear algebra
which we review (Section 6.2). For practical purposes, this finite
theory is what is needed, since computers deal with finite vectors.
The Discrete Fourier Transform (DFT) of a given vector v in CN is
calculated by applying a certain invertible N×N matrix to v, and the
Discrete Inverse Fourier Transform by applying the inverse matrix to
the transformed vector (Section 6.3).
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128 6. Tour of discrete Fourier and Haar analysis

For an applied mathematician, an algorithm is only as good as
how efficiently it can be executed. Reducing the number of oper-
ations required to perform an algorithm can drastically reduce the
length of time required for execution, thus increasing efficiency. This
is especially important for numerical applications where an increase
in efficiency can make an algorithm practical. Surprisingly, one can
perform each of the matrix multiplications in the DFT and its inverse
in order N log2 N operations, as opposed to the expected N2 opera-
tions, by using the Fast Fourier Transform, or FFT (Section 6.4).

In this chapter we introduce another orthonormal basis, the dis-
crete Haar basis for Cn, in preparation for later chapters where the
Haar bases for L2(R) and for L2([0, 1]) appear (Section 6.5). We high-
light the similarities of the discrete trigonometric basis and the dis-
crete Haar basis, and their differences, and discuss the Discrete Haar
Transform (Section 6.6). There is also a Fast Haar Transform (FHT),
of order N operations (Section 6.7). The Fast Haar Transform is a
precursor of the Fast Wavelet Transform (FWT), studied in more
depth in later chapters.

6.1. Fourier series vs. discrete Fourier basis

We recapitulate what we have learned about Fourier series and present
the discrete Fourier basis in CN .

6.1.1. Fourier series: A summary. We begin by summarizing
the ingredients of the theory of Fourier series, as we have developed
it in Chapters 1–5.

(a) To each integrable function f : T → C we associate a sequence
{f̂ (n)}n∈Z of complex numbers. These numbers are known as the
Fourier coefficients of f and are given by the formula

f̂ (n) :=
1

2π

ˆ π

−π

f(θ)e−inθ dθ for n ∈ Z.

(b) The building blocks of the Fourier series are the trigonometric
functions en : T→ C given by en(θ) := einθ, where n ∈ Z and θ ∈ T.
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They are called trigonometric rather than exponential to empha-
size the connection with cosines and sines given by Euler’s famous
formula einθ = cosnθ + i sinnθ.

Thus the nth Fourier coefficient of f can be written in terms of
the usual complex L2 inner product as

f̂ (n) =
1

2π

ˆ ∞

−∞
f(θ)en(θ) dθ =: 〈f, en〉.

(c) The Fourier series associated to f is the doubly infinite series
(a series summed from −∞ to ∞) formed by summing the products
of the nth Fourier coefficients f̂ (n) with the nth trigonometric func-
tion einθ:

f(θ) ∼
∞∑

n=−∞
f̂ (n)einθ =

∞∑
n=−∞

〈f, en〉 en(θ).

We use ∼ rather than = in this formula in order to emphasize that
for a given point θ, the Fourier series may not sum to the value f(θ),
and indeed it may not converge at all.

(d) The set {einθ}n∈Z of trigonometric functions forms an orthonor-
mal basis for the vector space L2(T) of square-integrable functions
on T. Here orthonormal means with respect to the L2(T) inner prod-
uct. In particular this means that f equals its Fourier series in L2(T),
or equivalently that the partial Fourier sums SNf converge in L2(T)
to f , where SNf(θ) =

∑
|n|≤N f̂(n)einθ,

lim
N→∞

‖f − SNf‖L2(T) = 0.

Also, the energy, or norm, of an L2(T) function coincides with the
�2(Z) norm of its Fourier coefficients; that is, Parseval’s Identity holds:

‖f‖2L2(T) =

∞∑
n=−∞

|f̂(n)|2.

Furthermore, the partial Fourier sum SNf is the orthogonal projec-
tion onto the closed subspace PN (T) of trigonometric polynomials of
degree less than or equal to N . In particular SNf is the best approx-
imation in L2(T) to f by a polynomial in PN (T).
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6.1.2. The discrete Fourier basis. We present the analogues in
the discrete setting of the four ingredients of Fourier analysis listed
above. Fix a positive integer N , and let ω := e2πi/N . Recall that
ZN := {0, 1, . . . , N − 1}. As usual, the superscript t indicates the
transpose, so for example v = [z0, . . . , zN−1]

t is a column vector.

(a) To each vector v = [z0, . . . , zN−1]
t ∈ CN we associate a second

vector v̂ = [a0, . . . , aN−1]
t ∈ CN . The vector v̂ is known as the

Discrete Fourier Transform of v. The entries of the Discrete Fourier
Transform are given by the formula

an = v̂(n) :=
1√
N

N−1∑
k=0

zkω
−kn for n ∈ ZN .

(b) The building blocks of the Discrete Fourier Transform are the N

discrete trigonometric functions en : ZN → C given by

en(k) :=
1√
N

ωkn, k ∈ ZN ,

for n ∈ {0, 1, . . . , N − 1}. Thus the nth Fourier coefficient of v can be
written in terms of the CN inner product as

an = v̂ (n) =
N−1∑
k=0

zken(k) =: 〈v, en〉.

(c) The original vector v can be exactly determined from its Discrete
Fourier Transform. The kth entry of v is given, for k ∈ ZN , by

v(k) := zk =
1√
N

N−1∑
n=0

v̂ (n)ωkn =

N−1∑
n=0

〈v, en〉en(k).

(d) The set {e0, . . . , eN−1} forms an orthonormal basis for the vector
space CN with respect to the standard inner product, or dot product,
in CN , and the Pythagorean theorem holds:

‖v‖2�2(ZN ) = ‖v‖2Cn =
N−1∑
n=0

|v̂ (n)|2.

In this sense the norm of a vector v in CN is the same as the norm
of its Discrete Fourier Transform v̂.
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Here we have referred to the Hilbert space CN with the stan-
dard inner product as the space �2

(
ZN

)
, to emphasize the similar-

ities with the Hilbert space L2(T). The notation �2
(
ZN

)
means

that we are viewing CN as an inner-product vector space whose
elements are complex-valued functions defined on the discrete set
ZN = {0, 1, . . . , N − 1}, with the standard Euclidean inner product.

Note that as the dimension changes, the number ω and the vectors
en also change. We should really label them with the dimension N ,
for example ω = ωN = e2πi/N , eNn (k) = (1/

√
N)ωnk

N . However, for
brevity we will omit the dependence on N and simply write ω, en and
expect the reader to be aware of the underlying dimension.

We give two examples showing the Fourier orthonormal bases
obtained for C5 and C8 using the scheme described above.

Example 6.1 (Fourier Orthonormal Basis for C5). Let N = 5, so
that ω = e2πi/5. We have the pairwise orthogonal vectors given by

f0 =

⎡⎢⎢⎢⎢⎣
1

1

1

1

1

⎤⎥⎥⎥⎥⎦ , f1 =

⎡⎢⎢⎢⎢⎣
1

ω

ω2

ω3

ω4

⎤⎥⎥⎥⎥⎦ , f2 =

⎡⎢⎢⎢⎢⎣
1

ω2

ω4

ω

ω3

⎤⎥⎥⎥⎥⎦ , f3 =

⎡⎢⎢⎢⎢⎣
1

ω3

ω

ω4

ω2

⎤⎥⎥⎥⎥⎦ , f4 =

⎡⎢⎢⎢⎢⎣
1

ω4

ω3

ω2

ω

⎤⎥⎥⎥⎥⎦ .

Notice the interesting arrangement of the powers of ω in each vec-
tor fl. Dividing by the length

√
5 of each fl, we obtain an orthonormal

basis for C5, namely e0 = (1/
√
5)f0, e1 = (1/

√
5)f1, e2 = (1/

√
5)f2,

e3 = (1/
√
5)f3, e4 = (1/

√
5)f4. ♦

Example 6.2 (Fourier Orthonormal Basis for C8). Let N = 8, so
that ω = e2πi/8 = eπi/4 = (1 + i)/

√
2 . We have pairwise orthogonal

vectors f0, f1, . . . , f7 given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

1

1

1

1

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

ω

ω2

ω3

ω4

ω5

ω6

ω7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

ω2

ω4

ω6

1

ω2

ω4

ω6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

ω3

ω6

ω

ω4

ω7

ω2

ω5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

ω4

1

ω4

1

ω4

1

ω4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

ω5

ω2

ω7

ω4

ω

ω6

ω3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

ω6

ω4

ω2

1

ω6

ω4

ω2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

ω7

ω6

ω5

ω4

ω3

ω2

ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Notice the patterns that arise because N is not prime. Dividing by
the length

√
8 of each fl, we obtain an orthonormal basis for C8,

namely e0 = (1/
√
8)f0, e1 = (1/

√
8)f1, . . . , e7 = (1/

√
8)f7. ♦

Exercise 6.3. Verify that the set {e0, e1, . . . , eN−1} is an orthonor-
mal set in CN . Hint: The numbers wk = e2πik/N , for k = 0, 1, . . . ,
N − 1, are the N th-roots of unity, in other words, the solutions of the
equation zN = 1. Simple algebra shows that zN −1 = (z−1)(zN−1+

· · ·+ z+1). Hence if k �= 0, then wN−1
k +wN−2

k + · · ·+wk +1 = 0. ♦

We make four remarks. First, the discrete setting has a certain
symmetry in that both the original signal and the transformed signal
are of the same form: vectors in CN . In the Fourier series setting, the
original signal is a square-integrable function f : T → C, while the
transformed signal is a doubly infinite sequence {f̂ (n)}n∈Z ∈ �2(Z).
In Chapters 7 and 8 we will develop Fourier theory in yet another
setting, that of the Fourier transform. There the original signal and
the transformed signal can again be of the same form. For instance,
they can both be functions in the Schwartz class S(R), or they can
both be functions in L2(R). We will also discuss generalizations of
the Fourier transform to much larger classes of input signals, such as
functions in Lp(R), and, more generally, tempered distributions.

Second, our signal vectors v = [z0, . . . , zN−1]
t ∈ CN in the dis-

crete setting can be thought of as functions v : ZN → C, in the sense
that for each number n ∈ ZN := {0, 1, . . . , N − 1}, the function v

picks out a complex number v(n) = zn. So

v = [v(0), v(1), . . . , v(N − 1)]t.

This formulation of the input signal is closer to the way we presented
the Fourier series setting. With this notation the Discrete Fourier
Transform reads

(6.1) v̂(m) =
1√
N

N−1∑
n=0

v(n)e−2πinm/N .

Third, in the discrete setting there are no difficulties with con-
vergence of series, since all the sums are finite. Thus the subtleties
discussed in Chapters 3, 4, and 5 are absent from the setting of the
finite Fourier transform.
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Fourth, in the discrete setting the identity known as Parseval’s
Identity or Plancherel’s Identity holds:

N−1∑
n=0

|v(n)|2 =

N−1∑
n=0

|v̂(n)|2.

This identity is exactly the Pythagorean Theorem for vectors with
N entries. Rewritten in a form closer to the way we saw it in the
Fourier series setting, Parseval’s Identity reads

‖v‖�2(ZN ) = ‖v̂‖�2(ZN ).

Here the norm, known as the �2 norm, is the Euclidean norm induced
by the complex inner product. Explicitly, it is given by the square
root of the sum of the squares of the absolute values of the entries of
the vector v, and thus by the square root of the inner product of v
with its complex conjugate.

Exercise 6.4. Prove Parseval’s Identity in the discrete setting. ♦

As in the Fourier series setting, Parseval’s Identity says that the
energy of the transformed signal is the same as that of the original
signal. In the Fourier series setting, the energy means the L2 norm of
a function or the �2 norm of a doubly infinite series. In the discrete
setting, the energy means the �2 norm of a vector. Parseval’s Identity
also holds in the Fourier transform setting. For example when the
original and transformed signals, f and f̂ , are both functions in L2(R),
the energy is represented by the L2 norm, and

‖f‖L2(R) = ‖f̂ ‖L2(R).

Aside 6.5. Some authors use the orthogonal basis {f0, . . . , fN−1} of
CN defined by fl =

√
N el, instead of the orthonormal basis {el}l∈ZN

.
Then a factor of 1/N appears in the definition of the coefficients and
also in Parseval’s Identity (but not in the reconstruction formula).
To mirror the Fourier series theory, one could work with the vectors
{f0, f1, . . . , fN−1} and consider them to be normalized, by defining
the following inner product for vectors v, w ∈ CN :

(6.2) 〈v, w〉nor :=
1

N

N−1∑
n=0

v(n)w(n).
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We made an analogous convention in L2(T) when we included the
factor 1/(2π) in the definition of the inner product. In our formulation
of the discrete theory we prefer to use the standard inner product, or
dot product, on CN , not the normalized one. Reader beware: it is
wise to check which normalization a given author is using. ♦

Exercise 6.6. Show that formula (6.2) defines an inner product
in CN . Consider the vectors {f0, f1, . . . , fN−1}. Show that they are
orthonormal with respect to the normalized inner product in CN . ♦

Exercise 6.7. Define the normalized discrete Fourier coefficients of
v ∈ CN to be v̂ nor(n) = 〈v, fn〉nor. Use the theory of orthonormal
bases to justify the reconstruction formula v =

∑N−1
n=0 v̂ nor(n)fn. Ver-

ify that Parseval’s Identity holds in this setting:
N−1∑
n=0

|v̂ nor(n)|2 = ‖v̂ nor‖2�2(ZN ) = ‖v‖2nor =
1

N

N−1∑
n=0

|v(n)|2. ♦

6.2. Short digression on dual bases in CN

Before discussing the Discrete Fourier Transform in more detail, let
us review some fundamental linear algebra facts about bases.

Definition 6.8. A basis for CN is a set of N vectors {v1, v2, . . . , vN}
such that each vector v ∈ CN can be written as a unique linear
combination of the elements of the basis: there are complex numbers
a1, a2, . . . , aN , uniquely determined by the vector v, such that

(6.3) v = a1v1 + a2v2 + · · ·+ aNvN . ♦

Aside 6.9. In this section we are counting N vectors, columns, or
entries starting from 1 up to N . In other sections we are counting
starting from 0 up to N − 1, because it offers a notational advantage
when dealing with trigonometric and Haar vectors. ♦

Let B denote the N×N matrix whose jth column is the vector vj .
We write

B =

⎡⎣ | |
v1 · · · vN
| |

⎤⎦ ,
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where the vertical line segments are a reminder that the vj are vec-
tors, not scalars. With this notation, we have the following matrix
representation of equation (6.3):

v = Ba, where a = [a1, a2, . . . , aN ]t.

As usual, the superscript t indicates the transpose, so here a is a
column vector.

Theorem 6.10. The following statements are equivalent.

(1) A set of N vectors {v1, v2, . . . , vN} is a basis for CN .

(2) The vectors {v1, v2, . . . , vN} are linearly independent. That is,
if 0 = a1v1 + a2v2 + · · ·+ aNvN , then a1 = · · · = aN = 0.

(3) The N×N matrix B whose columns are the vectors vj is invert-
ible (also called nonsingular). Therefore we can find the coeffi-
cients a1, a2, . . . , aN of a vector v with respect to the vectors
{v1, v2, . . . , vN} by applying the inverse matrix B−1 to v:

a = B−1v.

Exercise 6.11. Prove the equivalences in Theorem 6.10. ♦

Given N linearly independent vectors {v1, v2, . . . , vN} in CN , in
other words, a basis for CN , let B be the invertible matrix with
columns vj , and denote by wi the complex conjugate of the ith row
vector of its inverse B−1. Thus

B−1 =

⎡⎢⎣— w1 —
...

— wN —

⎤⎥⎦ .

The horizontal line segments emphasize that the wj are vectors, not
scalars. With this notation, we see by carrying out the matrix multi-
plication that

B−1v =

⎡⎢⎣— w1 —
...

— wN —

⎤⎥⎦
⎡⎢⎣ v(1)

...
v(N)

⎤⎥⎦ =

⎡⎢⎣ 〈v, w1〉
...

〈v, wN 〉

⎤⎥⎦ ,

where v = [v(1), . . . , v(N)]t. We choose to put the complex conjugate
on the rows of B−1, so that when applied to a vector v, we get the
inner products of v with the vectors wi with no complex conjugate.
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Exercise 6.12. Verify that the ith entry of the vector B−1v is the
(complex!) inner product between the vector v and the vector wi. ♦

The coefficients of v in the basis {v1, v2, . . . , vN} are exactly the
entries of the vector B−1v. Therefore, not only are they uniquely
determined, but we have an algorithm to find them:

aj = 〈v, wj〉,
where the conjugates of the vectors wj are the rows of B−1. Thus
there is a set of uniquely determined dual vectors {w1, w2, . . . , wN}
forming a dual basis to the basis {v1, v2, . . . , vN}, so that to compute
the coefficients of a given vector v in the original basis, all we need
to do is compute the inner products of v with the dual vectors.

Exercise 6.13 (Orthonormality Property of the Dual Basis). Show
that every basis {v1, v2, . . . , vN} of CN , together with its dual basis
{w1, w2, . . . , wN}, satisfies the following orthonormality condition:

(6.4) 〈vk, wj〉 = δk,j .

Furthermore show that v =
∑N

j=1〈v, wj〉vj =
∑N

j=1〈v, vj〉wj . ♦

Exercise 6.14 (Uniqueness of the Dual Basis). Given a basis of CN ,
{v1, v2, . . . , vN}, suppose there are vectors {w1, w2, . . . , wN} with the
orthonormality property (6.4). Show that the vectors {w1, w2, . . . , wN}
are the dual basis for {v1, v2, . . . , vN}. ♦

We will encounter dual bases in an infinite-dimensional context
when we discuss biorthogonal wavelets (Chapter 10).

In particular, if the basis {v1, v2, . . . , vN} is orthonormal, then
the dual vectors coincide with the original basis vectors. In other
words, an orthonormal basis is its own dual basis. Equivalently, on
the matrix side, if the basis is orthonormal, then B−1 = Bt.

Definition 6.15. An N ×N matrix whose columns are orthonormal
vectors in CN is called a unitary matrix. ♦

Unitary matrices are always invertible. The inverse of a unitary
matrix U is equal to the conjugate of the transpose of U ; that is,

U−1 = U t.
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Exercise 6.16. Let U be a unitary matrix. Show that U preserves
the inner product in CN and the �2(ZN ) norm. In particular U is an
isometry : (i) 〈Uv, Uw〉 = 〈v, w〉 and (ii) ‖Uv‖�2(ZN ) = ‖v‖�2(ZN ). ♦

6.3. The Discrete Fourier Transform and its
inverse

It is not hard to see that the transformation that maps the vector
v ∈ CN to the vector v̂ ∈ CN is linear. We call this transformation
the Discrete Fourier Transform, or the Fourier transform on �2

(
ZN

)
.

Definition 6.17. The Fourier matrix FN is the matrix with entries

FN (m,n) = e2πimn/N for m, n ∈ {0, 1, . . . , N − 1}.
We emphasize that the rows and columns of FN are labeled from 0 to
N−1 and not from 1 to N . We call the columns of FN the orthogonal
Fourier vectors, and we denote them by f0, f1, . . . , fN−1. ♦

The Fourier matrix is symmetric, meaning that it coincides with
its transpose: F t

N = FN .

Example 6.18 (Fourier Matrix for C8). Here is the Fourier ma-
trix FN in the case when N = 8, where ω = e2πi/8 and ω8 = 1:

F8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. ♦

The finite Fourier transform is completely determined by the
N ×N complex-valued matrix (1/

√
N)FN . Specifically, the Discrete

Fourier Transform v̂ of a vector v is given by

(6.5) v̂ = (1/
√
N)FN v.

The matrix (1/
√
N)FN is unitary, because its columns are or-

thonormal vectors. Therefore its inverse is its complex conjugate,
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(1/
√
N)FN

)−1
= (1/

√
N)FN . Thus the Discrete Inverse Fourier

Transform can be written as

(6.6) v =
1√
N

FN v̂.

In this finite-dimensional context, we are making an orthogonal
change of basis in CN , from the standard basis to the Fourier basis.

Exercise 6.19. Show that (1/N)FN FN = (1/N)FN FN = IN , where
IN denotes the N ×N identity matrix. ♦

Exercise 6.20. Show that if v, w ∈ CN , then 〈v̂, ŵ〉 = 〈v, w〉. ♦

Aside 6.21. When describing the efficiency of an algorithm (matrix
multiplication in this chapter) by counting the number of significant
operations in terms of some parameter (in this case the dimensions
of the matrix), some operations count more than others. Because
they take up an insignificant amount of computer time, the following
operations are not counted: multiplication by 1 or 0, additions, and
swapping positions (permutations). Only multiplication by a complex
number that is neither 0 nor 1 counts as an operation. In particular
multiplication by −1 counts as one operation. ♦

Both FN and FN are full matrices, in the sense that all their
entries are nonzero. So applying one of them to a vector to com-
pute the Discrete Fourier Transform, or the Discrete Inverse Fourier
Transform, requires N2 multiplications if the vector has no zero en-
tries. They have an operation count of the order of N2 operations.
However, one can dramatically improve on this operation count by ex-
ploiting the hidden structure of the Fourier matrix, as we now show.

6.4. The Fast Fourier Transform (FFT)

In the 1960s, Cooley and Tukey1 discovered such an algorithm. Their
famous Fast Fourier Transform (FFT) algorithm, explained in this
section, makes use of an ingenious recursive factorization of matrices
to reduce the number of multiplications required from order N2 to
order N log2 N , where N is the length of the signal vector. This

1American applied mathematician James Cooley (born in 1926) and statistician
John Wilder Tukey (1915–2000).
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improvement revolutionized the field of digital signal processing. One
measure of the influence of the FFT algorithm is that over the period
1945–1988, Cooley and Tukey’s paper [CT] was the sixth most-cited
paper in the Science Citation Index in the areas of mathematics,
statistics, and computer science [Hig, p. 217].

It is interesting to note that in the early 1800s, Gauss2 had found
an algorithm similar to the FFT for computing the coefficients in
finite Fourier series. At the time, both matrices and digital signal
processing were completely unforeseen.

Mathematically, the Fast Fourier Transform is based on a fac-
torization of the Fourier matrix into a product of sparse matrices,
meaning matrices with many zero entries. We illustrate this principle
in dimension N = 4 first.

Exercise 6.22. The conjugate F4 of the 4× 4 Fourier matrix F4 can
be written as the product of three sparse matrices, as follows:

(6.7) F4 =

⎡⎢⎢⎣
1 0 1 0

0 1 0 −i
1 0 −1 0

0 1 0 i

⎤⎥⎥⎦
⎡⎢⎢⎣
1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤⎥⎥⎦ .

Use matrix multiplication to check formula (6.7). Can you spot two
copies of F2 on the right-hand side? ♦

The process of the Fast Fourier Transform is easiest to explain,
and to implement, when N = 2j . (If N is not a power of two, one can
simply add an appropriate number of zeros to the end of the signal
vector to make N into a power of two, a step known as zero-padding.)
It begins with a factorization that reduces FN to two copies of FN/2.
This reduction is applied to the smaller and smaller matrices FN/2�

for a total of j = log2 N steps, until the original matrix is written as
a product of 2 log2 N sparse matrices, half of which can be collapsed
into a single permutation matrix. The total number of multiplications
required to apply the Fourier transform to a vector is reduced from
order N2, for the original form of the matrix FN , to the much smaller
order N log2 N , for the factorized version of FN .

2German mathematician Johann Carl Friedrich Gauss (1777–1855).
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To understand how this reduction works at the level of individual
entries of the transformed vector, we rearrange formula (6.1) for the
Discrete Fourier Transform to express v̂(m) as a linear combination
of two sums Am and Bm that have the same structure as the sum
in v̂(m), so we can do this process recursively, first by definition,
v̂(m) = 1√

N

∑N−1
n=0 v(n)e

−2πimn
N . Now separate the sum into the even

and odd terms,

v̂(m) =

N
2 −1∑
n=0

v(2n)√
N

e
−2πimn

N/2 + e
−2πim

N

N
2 −1∑
n=0

v(2n+ 1)√
N

e
−2πimn

N/2

=: Am + e
−πim
N/2 Bm .(6.8)

The key is to note that v̂(m+N/2) can be written as another linear
combination of the same two sums, namely

v̂

(
m+

N

2

)
=

N
2 −1∑
n=0

v(2n)√
N

e
−2πimn

N/2 − e
−2πim

N

N
2 −1∑
n=0

v(2n+ 1)√
N

e
−2πimn

N/2

= Am − e
−πim
N/2 Bm ,(6.9)

where we have used the fact that e
−2πiN/2

N = e−πi = −1.
By clever ordering of operations we can reuse Am and Bm, reduc-

ing the total number of operations required. We use the language of
matrices to describe more precisely what we mean by “clever order-
ing”. We have factored the conjugate Fourier matrix FN , for N even,
into a product of three N ×N block matrices,

(6.10) FN = DN
1 BN

1 SN
1 ,

where the matrices on the right side of equation (6.10) are

DN
1 =

[
IN/2 DN/2

IN/2 −DN/2

]
, BN

1 =

[
FN/2 0N/2

0N/2 FN/2

]
, SN

1 =

[
EvenN/2

OddN/2

]
.

Here IM denotes the M×M identity matrix, FM is the M×M Fourier
matrix, 0M denotes the M ×M zero matrix, EvenM and OddM are
the M × 2M matrices that select in order the even and odd entries,
respectively, of the vector (v(0), v(1), . . . , v(2M − 1))t, and DM is a
diagonal M ×M matrix to be described below.
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Exercise 6.23. Compare equation (6.10) with the factorization of
F4 given in Exercise 6.22. In particular, in equation (6.7) identify the
matrices I2, D2, F2, Even2, and Odd2. ♦

We now describe the diagonal M ×M matrix DM for general M .
The matrix DM has diagonal entries e−mπi/M for m = 0, 1, . . . ,
M − 1. For example, here are D2 and D4:

D2 =

[
e0 0

0 e−πi/2

]
=

[
1 0

0 −i

]
,

D4 =

⎡⎢⎢⎣
e0 0 0 0

0 e−πi/4 0 0

0 0 e−2πi/4 0

0 0 0 e−3πi/4

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 0 0 0

0 1−i√
2

0 0

0 0 −i 0

0 0 0 −1−i√
2

⎤⎥⎥⎥⎦ .

The appearance in D2 of the fourth root of unity, in D4 of the
eighth root of unity, and so on, illuminates how the Fourier ma-
trix FN can contain the N th root of unity, while FN/2 contains only
the (N/2)th root, and the other matrices in the recursion equation
contain only real numbers.

The 2M × 2M matrix S2M
1 selects the even-numbered entries

(starting with the zeroth entry) of a given 2M -vector and moves them
to the top half of the vector, preserving their order, and it moves the
odd-numbered entries of the 2M -vector to the bottom half of the
vector, preserving their order. This is a permutation matrix. Here is
the 8×8 matrix S8

1 acting on a vector v = [v(0), v(1), . . . , v(7)] in C8:

S8
1v =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v(0)

v(1)

v(2)

v(3)

v(4)

v(5)

v(6)

v(7)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v(0)

v(2)

v(4)

v(6)

v(1)

v(3)

v(5)

v(7)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Exercise 6.24. Convince yourself that equations (6.8) and (6.9)
translate into the matrix decomposition (6.10). ♦
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Turning to the number of operations required in the Fast Fourier
Transform, we see that the matrix DN

1 in the decomposition (6.10)
requires only N multiplications. The matrix BN

1 ostensibly requires
2(N/2)2 = N2/2 multiplications, but it has the conjugate Fourier
matrix FN/2 in the diagonal, and if 4 divides N , we can use the
recursion equation (6.10) again to replace each of the two (N/2) ×
(N/2) matrix FN/2 that are sitting in the diagonal of BN

1 by products
of three sparser matrices, FN/2 = D

N/2
1 B

N/2
1 S

N/2
1 . Notice that the

matrix B
N/2
1 is a block diagonal matrix with two copies of matrix

FN/4 on its diagonal. If N = 2j , we can apply the recursion equation
to the (N/4)× (N/4) matrix FN/4 and keep on reducing in the same
way until we cannot subdivide any further, when we reach the 2 × 2

matrix F2, after j − 1 ∼ log2 N steps.

Exercise 6.25. What three matrices result from applying the recur-
sion equation (6.10) to F2? ♦

Exercise 6.26. Verify that for FN , after two recursive steps the ma-
trix BN

1 is decomposed as the product of three N×N block matrices:
BN

1 = DN
2 BN

2 SN
2 , defined as follows:

DN
2 =

[
D

N/2
1

D
N/2
1

]
=

⎡⎢⎢⎣
IN/4 DN/4

IN/4 −DN/4

IN/4 DN/4

IN/4 −DN/4

⎤⎥⎥⎦ ,

BN
2 =

[
B

N/2
1

B
N/2
1

]
=

⎡⎢⎢⎣
FN/4

FN/4

FN/4

FN/4

⎤⎥⎥⎦ ,

SN
2 =

[
S
N/2
1

S
N/2
1

]
.

Here, blank spaces represent zero submatrices of appropriate sizes. ♦

Assuming that N = 2�K, K > 1, so that we can iterate � times,
at stage � of this recurrence we will obtain a decomposition of FN as
the product of 2�+ 1 matrices:

FN = DN
1 DN

2 · · ·DN
� BN

� SN
� · · ·SN

2 SN
1 ,
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where the N ×N matrices are defined recursively by

DN
� =

⎡⎢⎢⎣
D

N/2�−1

1

. . .

D
N/2�−1

1

⎤⎥⎥⎦ ,

and similarly for BN
� and SN

� , for which we will place 2�−1 copies of
the matrices B

N/2�−1

1 or S
N/2�−1

1 on the diagonal.

Exercise 6.27. Write down the decomposition of the conjugate Four-
ier matrix F8 into a product of five matrices, by using equation (6.10)
twice. Check your answer by matrix multiplication. How many mul-
tiplication operations are required to multiply a vector by the ma-
trix F8? How many are required to multiply a vector by the five
matrices in your factorization? (Count only multiplications by ma-
trix entries that are neither one nor zero.) ♦

Note that the N/2�−1×N/2�−1 matrix D
N/2�−1

1 is the 2×2 block
matrix with N/2� × N/2� diagonal blocks described earlier. More
precisely,

D
N/2�−1

1 =

[
IN/2� DN/2�

IN/2� −DN/2�

]
.

Multiplying by the matrix D
N/2�−1

1 requires only N/2�−1 multiplica-
tions, and thus, for each � ≥ 1 multiplying by the matrix DN

� requires
only N = 2�−1N/2�−1 significant multiplications.

After two iterations, the first two matrices in the decomposition
of FN require only N multiplications each. If N = 2j , then one can
do this j − 1 = log2 N − 1 times, until the block size is 2 × 2. After
j − 1 steps, the matrix FN will be decomposed into the product of
j − 1 matrices, each requiring only N multiplications, for a total of
N(log2 N − 1) multiplications, followed by the product of BN

j−1, and
the j − 1 scrambling or permutation matrices, namely the Odd/Even
matrices. The matrix BN

j−1 has 2j−1 copies of F2 on its diagonal and
requires N multiplications, and so do each of the j − 1 permutation
matrices, bringing the total number of multiplications to no more
than 2N logN operations.
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How can one guess the decomposition (6.7)? The following exer-
cise attempts to give you an explanation.

Exercise 6.28. Write explicitly the output of F4 times the column
vector v = [v(0), v(1), v(2), v(3)]t. In the output you will see linear
combinations (complex) of the sums and differences of the numbers
v(0), v(1) and of the numbers v(2), v(3). Observe that those sums
and differences are the outputs of the 2×2 identity matrix I2 and the
2×2 matrix F2 times the column vectors [v(0), v(1)]t and [v(2), v(3)]t,
respectively. You should now be in a position to discover the decom-
position (6.7) on your own. See Section 6.7 where a similar analysis
is carried out to discover the Fast Haar Transform. ♦

6.4.1. Scrambling matrices: A numerical miracle. When the
j − 1 scrambling matrices, SN

� , for � = 1, 2, . . . , j − 1, are applied
in the right order, they become a very simple operation which costs
essentially nothing in terms of operation counts. A miracle is observed
when describing the numbers a ∈ N, 0 ≤ a ≤ N − 1, in binary
notation: “the successive application of the Odd/Even matrices will
simply put in place n the mth entry, where m is found by reversing the
digits in the binary decomposition of n”. See [Stra88, pp. 192–193].
In computer science this step is called bit reversal.

Let us see the miracle in action when N = 8 = 23. Denote the
successive scrambling matrices by

S8
1 :=

[
Even4

Odd4

]
, S8

2 =

[
S4
1 04

04 S4
1

]
.

We start with the numbers 0, 1, . . . , 7 in binary notation and
apply the matrix S8

1 , followed by the matrix S8
2 :⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

000

001

010

011

100

101

110

111

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
S8
1→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

000

010

100

110

001

011

101

111

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
S8
2→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

000

100

010

110

001

101

011

111

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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We see that the binary numbers in the right-hand column are
obtained from the binary numbers in the left-hand column by reading
the binary digits in reverse order.

Exercise 6.29. Can you justify the miracle for all N = 2j? Try
an argument by induction.The jth miracle matrix Mj is the product
of j − 1 scrambling N × N matrices, Mj = SN

j−1S
N
j−2 . . . S

N
1 . The

scrambling matrix SN
� for � < j is a block diagonal matrix with 2�−1

copies of the N/2�−1 ×N/2�−1 matrix S
N/2�−1

1 on the diagonal. ♦

Even without a miracle, the scrambling N ×N matrices SN
� are

very sparse. Only N entries of SN
� are nonzero, and in fact the nonzero

entries are all ones. Applying each of the scrambling matrices requires
only N operations, and applying j−1 such matrices (N = 2j) requires
at most N(log2 N − 1) operations. This means that the operation
count for the Fourier matrix using this decomposition is no more than
2N(log2 N) operations. So even without the miracle, the algorithm
is still of order N log2 N .

6.4.2. Fast convolution. Given two vectors v, w ∈ CN , define their
discrete circular convolution by

v ∗ w(n) := 1√
N

N−1∑
k=0

v(k)w(n− k), n = 0, 1, . . . , N − 1.

If n < k, then −N ≤ n− k < 0. Define w(n− k) := w(N − (n− k)),
or, equivalently, think of w as being extended periodically over Z so
that w(n) = w(N + n) for all n ∈ Z. In matrix notation, the linear
transformation Tw that maps the vector v into the vector v ∗ w is
given by the circulant matrix⎡⎢⎢⎢⎢⎢⎣

w(0) w(N − 1) w(N − 2) . . . w(1)

w(1) w(0) w(N − 1) . . . w(2)

w(2) w(1) w(0) . . . w(3)
...

...
...

...
w(N − 1) w(N − 2) w(N − 3) . . . w(0)

⎤⎥⎥⎥⎥⎥⎦ .

(The term circulant indicates that down each diagonal, the entries are
constant.) A priori, multiplying a vector by this full matrix requires
N2 operations.
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Exercise 6.30 (Fast Convolution of Vectors). (a) Show that

v̂ ∗ w(m) = v̂(m) ŵ(m).

(b) Describe a fast algorithm to compute the convolution of two vec-
tors in order N log2 N operations. ♦

Convolution with a fixed vector w is a linear transformation given
by a circulant matrix, as described in the paragraph preceding Ex-
ercise 6.30. These are also the only translation-invariant or shift-
invariant linear transformations, meaning that if we first shift a vector
and then convolve, the output is the same as first convolving and then
shifting. More precisely, denote by Sk the linear transformation that
shifts a vector v ∈ CN by k units, that is, Skv(n) := v(n− k). Here
we are viewing the vector as extended periodically so that v(n − k)

is defined for all integers. Then SkTw = TwSk, where, as before, Tw

denotes the linear transformation given by convolution with the vec-
tor w, Twv = v ∗w. As the underlying dimension N changes, so does
the shift transformation Sk, but for brevity we write Sk and not SN

k .

Exercise 6.31. Write down the 8 × 8 shift matrix S3 in C8. Verify
that S3 = (S1)

3. Now describe the N ×N shift matrix Sk in CN for
any k ∈ Z. Show that Sk = (S1)

k. ♦

Exercise 6.32. Show that SkTw = TwSk. Conversely, show that if a
linear transformation T is shift invariant, meaning that SkT = TSk

for all k ∈ Z, then there is a vector w ∈ CN such that Tv = v ∗ w. ♦

The book by Frazier [Fra] takes a linear algebra approach and
discusses these ideas and much more in the first three chapters, be-
fore moving on to infinite-dimensional space. Strang and Nguyen’s
book [SN] also has a linear algebra perspective.

6.5. The discrete Haar basis

In this section we discuss the discrete Haar basis3. Unlike the discrete
Fourier basis, the Haar basis is localized, a concept that we now
describe.

3Named after the German mathematician Alfréd Haar (1885–1933).
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By localized we mean that the vector is zero except for a few
entries. All entries of the discrete trigonometric vectors are nonzero,
and in fact each entry has the same absolute value 1/

√
N . Thus

the discrete trigonometric vectors are certainly not localized. In par-
ticular, since the Fourier coefficients of a vector v are given by the
inner product v against a trigonometric vector ej , all entries of v are
involved in the computation.

An example of a basis which is as localized as possible is the
standard basis in CN . The standard basis vectors have all but one
entry equal to zero; the nonzero entry is 1. Denote by sj the vector
in the standard basis whose jth entry is 1, for j = 0, 1, . . . , N − 1:

s0 = [1, 0, . . . , 0]t, s1 = [0, 1, 0, . . . , 0]t, . . . , sN−1 = [0, . . . , 0, 1]t.

The standard basis changes with the dimension (we should tag
the vectors sj = sNj ), but as with the Fourier basis, we will omit the
reference to the underlying dimension and hope the reader does not
get confused.

Exercise 6.33. Show that the Discrete Fourier Transform in CN of
the Fourier basis vector ej is given by the standard basis vector sj ,
that is, êj = sj , for 0 ≤ j ≤ N − 1. Start with the case N = 4. ♦

Although the Fourier basis is not localized at all, its Fourier trans-
form is as localized as possible. We say the Fourier basis is localized
in frequency, but not in space or time.

Exercise 6.34. Verify that the Discrete Fourier Transform of the
standard basis vector sj is the complex conjugate of the Fourier basis
vector ej , that is, ŝj = ej . ♦

Although the standard basis is as localized as possible, its Fourier
transform is not localized at all. We say the standard basis is localized
in space or time but not in frequency.

Exercise 6.35. Let {v0, v1, . . . , vN−1} be an orthonormal basis for CN .
Show that the Discrete Fourier Transforms {v̂0, v̂1, . . . , v̂N−1} form an
orthonormal basis for CN . Exercise 6.20 may be helpful. ♦
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These examples are incarnations of a general principle, the Un-
certainty Principle, that we discuss in more depth in subsequent chap-
ters. The Uncertainty Principle says that it is impossible for a vector
to be simultaneously localized in space and frequency.

The discrete Haar basis is an intermediate basis between the dis-
crete Fourier basis and the standard basis, in terms of its space and
frequency localization. We begin with the example of the discrete
Haar basis for C8, where N = 23 = 8.

Exercise 6.36. Define the vectors h̃n for n = 0, 1, . . . , 7 by

h̃0 := [1, 1, 1, 1, 1, 1, 1, 1]t,

h̃1 := [−1,−1,−1,−1, 1, 1, 1, 1]t,
h̃2 := [−1,−1, 1, 1, 0, 0, 0, 0]t,
h̃3 := [0, 0, 0, 0,−1,−1, 1, 1]t,
h̃4 := [−1, 1, 0, 0, 0, 0, 0, 0]t,
h̃5 := [0, 0,−1, 1, 0, 0, 0, 0]t,
h̃6 := [0, 0, 0, 0,−1, 1, 0, 0]t,
h̃7 := [0, 0, 0, 0, 0, 0,−1, 1]t.

Notice the h̃2, . . . , h̃7 can be seen as compressed and translated ver-
sions of h̃1. (See also Exercise 6.44.) Show that the vectors
{h̃0, h̃1, . . . , h̃7} are orthogonal vectors in C8. Show that the (nor-
malized) vectors

(6.11) h0 =
h̃0√
8
, h1 =

h̃1√
8
, h2 =

h̃2√
4
, h3 =

h̃3√
4
,

h4 =
h̃4√
2
, h5 =

h̃5√
2
, h6 =

h̃6√
2
, h7 =

h̃7√
2

are orthonormal. They form the discrete Haar basis for C8. ♦
Exercise 6.37. Compute the Discrete Fourier Transform ĥn of each
of the vectors in the Haar basis for C8, displayed in the formu-
las (6.11). Either analytically or using Matlab, sketch the graphs
of each hn and ĥn. Notice that the more localized hn is, the less
localized ĥn is. In other words, the more localized in space hn is, the
less localized it is in frequency. Compare the shapes of the vectors hn

for n ≥ 1. ♦
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When N = 2j , j ∈ N, the N Haar vectors are defined according to
the analogous pattern. The first nonnormalized vector h̃0 is a string
of ones; the second vector h̃1 has the first half of its entries equal
to −1 and the second half equal to 1; the third vector h̃2 has the first
quarter of its entries equal to −1, the second quarter 1, and the rest
of the entries zero; and so on. The last nonnormalized vector h̃N−1

starts with N − 2 zeros, and its last two entries are −1 and 1.

Exercise 6.38. Write down the discrete Haar basis for CN = C2j

for some j ≥ 4. ♦

Notice that half of the vectors are very localized, having all en-
tries zero except for two consecutive nonzero entries. These are the
2j−1 vectors {h̃2j−1 , h̃2j−1+1, . . . , h̃2j−1}. The 2j−2 vectors {h̃2j−2 ,
h̃2j−2+1, . . . , h̃2j−1−1} have all entries zero except for four consecu-
tive nonzero entries. The 2j−k vectors {h̃2j−k , h̃2j−k+1, . . . , h̃2j−k+1−1}
have all entries zero except for 2k consecutive nonzero entries. The
vectors {h̃2, h̃3} have half of the entries zero. Finally h̃0 and h̃1 have
all entries nonzero. Furthermore the nonzero entries for h̃1 consist of
a string of consecutive −1’s followed by the same number of 1’s and
for h̃0 is just a string of 1’s.

We now give a precise definition of the nonnormalized N th Haar
basis. We repeat: we should really label each of the N vectors with
an N to indicate the dimension of CN . However, to make the notation
less cluttered, we will not bother to do so.

Given N = 2j and n with 1 ≤ n < N , there are unique k,m ∈ N
with 0 ≤ k < j and 0 ≤ m < 2k such that n = 2k +m. Note that for
each k this describes 2k ≤ n < 2k+1.

Definition 6.39. For 1 ≤ n ≤ N−1, define the nonnormalized Haar
vectors h̃n in CN , with N = 2j , in terms of the unique numbers k

and m, 0 ≤ k < j, 0 ≤ m < 2k, determined by n so that n = 2k +m:

h̃n(l) =

⎧⎨⎩
−1, if mN2−k ≤ l < (m+ 1

2 )N2−k;
1, if (m+ 1

2 )N2−k ≤ l < (m+ 1)N2−k;
0, otherwise.

For n = 0, we define h̃0(l) = 1 for all 0 ≤ l ≤ N − 1. ♦
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Exercise 6.40. Verify that when N = 8 the formula above for h̃n(l)

gives the same vectors as in Exercise 6.36. ♦

Notice that h̃n(l) is nonzero if and only if m2j−k ≤ l < (m +

1)2j−k. In fact those 2j−k = N/2k entries are ±1.

Definition 6.41. The (normalized) Haar vectors are defined by

hn = 2k/2N−1/2h̃n, 0 ≤ n = 2k +m ≤ N − 1, 0 ≤ m < 2k. ♦

Exercise 6.42. Show that the vectors {hn}N−1
n=0 are orthonormal. It

follows that N Haar vectors are linearly independent. Hence they
form an orthonormal basis for CN . ♦

The parameters k, m, uniquely determined by n so that n =

2k + m are scaling and translation parameters, respectively. The
scaling parameter k, 0 ≤ k < j, tells us that we will decompose
the set {0, 1, 2, . . . , 2j − 1} into 2k disjoint subsets of 2j−k = N2−k

consecutive numbers. The translation parameter m, 0 ≤ m < 2k, in-
dicates which subinterval of length N2−k we are considering, namely
the interval [mN2−k, (m+ 1)N2−k).

Remark 6.43. It would make sense to index the nth Haar vector
with the pair (k,m), and we will do so when we study the Haar basis
and some wavelet bases on L2(R). These are orthonormal bases,
{ψk,m}k,m∈Z, indexed by two integer parameters (k,m). The Haar
and wavelet bases have the unusual feature that they are found by
dilating and translating one function ψ, known as the wavelet (or
sometimes the mother wavelet). More precisely,

ψk,m(x) := 2k/2ψ(2kx−m).

The functions ψk,m retain the shape of the wavelet ψ. If ψ is concen-
trated around zero on the interval [−1, 1], then the function ψk,m is
now localized around the point m2−k and concentrated on the interval
[(m−1)2−k, (m+1)2−k] of length 2×2−k. As k →∞, the resolution
increases (that is, the localization improves), while as k → −∞, the
localization gets worse. ♦

Exercise 6.44. Show that

hk,m(l) = 2k/2h0,0(2
kl −mN).
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Here N = 2j and n = 2k +m, for 0 ≤ k < j, 0 ≤ m < 2k. We write
hk,m := hn. It is understood that h0,0(z) = h1(z) = 0 whenever z is
not in {0, 1, . . . , N − 1}. We are padding the signal with zeros to the
right and left of h0,0, not extending it periodically. ♦

6.6. The Discrete Haar Transform

The Discrete Haar Transform is the linear transformation that ap-
plied to a vector v ∈ CN , N = 2j , gives the coefficients of v in the
orthonormal Haar basis. The Inverse Discrete Haar Transform is the
linear transformation that reconstructs the vector v from its Haar
coefficients {cn}N−1

n=1 . Notice that

v = c0h0 + c1h1 + · · ·+ cN−1hN−1.

In matrix notation the Inverse Discrete Haar Transform is given by

v = HN c, where c = [c0, c1, . . . , cN−1]
t,

and the Haar matrix HN is the N × N matrix whose columns are
the Haar vectors hj . Both the vectors and the columns are numbered
starting at j = 0 and ending at j = N − 1. That is,

HN =

⎡⎣ | |
h0 . . . hN−1

| |

⎤⎦ .

The Haar matrix HN is a unitary matrix (it has orthonormal columns);
hence its inverse is its conjugate transpose. The Haar matrix HN is
also a real matrix (the entries are the real numbers 0,±2(k−j)/2);
hence H−1

N = Ht
N . We can recover the coefficients c ∈ CN of the

vector v ∈ CN by applying the transpose of HN to the vector v.
Therefore the Discrete Haar Transform is given by

c = Ht
N v.

Notice that either from the above matrix formula or from the fact that
the Haar basis is an orthonormal basis, the jth coefficient is calculated
by taking the inner product of v with the jth Haar vector:

cj = 〈v, hj〉.
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Example 6.45. Here is the matrix Ht
8:

Ht
8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

−1√
8

−1√
8

−1√
8

−1√
8

1√
8

1√
8

1√
8

1√
8

−1√
4

−1√
4

1√
4

1√
4

0 0 0 0

0 0 0 0 −1√
4

−1√
4

1√
4

1√
4

−1√
2

1√
2

0 0 0 0 0 0

0 0 −1√
2

1√
2

0 0 0 0

0 0 0 0 −1√
2

1√
2

0 0

0 0 0 0 0 0 −1√
2

1√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. ♦

The Haar matrix Ht
8 is sparse; it has many zero entries. Counting

the nonzero entries, we note that the first and second rows are both
full. The third and fourth rows are half-full, so they make one full row
together. The fifth, sixth, seventh, and eighth rows together make one
full row of nonzero entries. Adding, we get 2+ 1+ 1 = 4 full rows in
Ht

8 where N = 8 = 23. In Ht
16 we get the equivalent of four full rows

from the first 8 rows as in Ht
8 and the nineth to sixteenth would make

up one more, i.e., 2+1+1+1 = 5 full rows in Ht
16 where N = 16 = 24.

The general formula is: if N = 2j , we get j + 1 full columns, each of
length N . So the total number of nonzero entries is N(j + 1) where
j = log2 N . Hence, multiplying a vector of length N by HN takes
N(1 + log2 N) multiplications. This implies that the Discrete Haar
Transform can be performed in order N log2 N operations.

Here is an argument for seeking localized basis vectors: The brute
force operation count for the Haar basis is of the same order as the
FFT, because of the sparseness of the Haar matrix. Can this count be
improved by using some smart algorithm as we did for the Discrete
Fourier Transform? Yes, the operation count can be brought down
to order N operations. We call such an algorithm the Fast Haar
Transform, and it is the first example of the Fast Wavelet Transform.

6.7. The Fast Haar Transform

We illustrate with some examples how one can apply the Discrete
Haar Transform more efficiently. We choose here to argue, as we did
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for the FFT, in terms of matrix decomposition. We will revisit this
algorithm when we discuss the multiresolution analysis for wavelets.

First consider N = 2. Let us explicitly compute the action of the
matrix Ht

2 on a vector v = [v(0), v(1)]t ∈ C2:

Ht
2v =

1√
2

[
1 1

−1 1

] [
v(0)

v(1)

]
=

[
v(1)+v(0)√

2
v(1)−v(0)√

2

]
.

Notice that the output consists of scaled averages and differences
of v(0) and v(1). In terms of multiplications, we only need two mul-
tiplications, namely 1√

2
v(0) and 1√

2
v(1); then we add these two num-

bers and subtract them. For operation counts, what is costly is the
multiplications. Applying Ht

2 requires only 3 multiplications.

Now consider the case N = 4. Let us explicitly compute the
action of the matrix Ht

4 on a vector v = [v(0), v(1), v(2), v(3)]t ∈ C4:

Ht
4v =

⎡⎢⎢⎢⎣
1√
4

1√
4

1√
4

1√
4

−1√
4

−1√
4

1√
4

1√
4

−1√
2

1√
2

0 0

0 0 −1√
2

1√
2

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
v(0)

v(1)

v(2)

v(3)

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
v(3)+v(2)+v(1)+v(0)√

4(
v(3)+v(2)

)
−
(
v(1)+v(0)

)
√
4

v(1)−v(0)√
2

v(3)−v(2)√
2

⎤⎥⎥⎥⎥⎥⎦ .

Denote the scaled averages of pairs of consecutive entries by a1m
and their differences by d1m:

a10 :=
v(1) + v(0)√

2
, d10 :=

v(1)− v(0)√
2

.

a11 :=
v(3) + v(2)√

2
, d11 :=

v(3)− v(2)√
2

.

Notice that they are the outputs of the 2× 2 matrix Ht
2 applied

to the vectors [v(0), v(1)]t, [v(2), v(3)]t ∈ C2. With this notation, the
output of the matrix Ht

4v is the vector

Ht
4v =

[
a1
1+a1

0√
2

a1
1−a1

0√
2

d10 d11

]t
.

The first two entries are the output of the matrix Ht
2 applied to the

average vector a1 = [a10, a
1
1]. The last two entries are the output of

the 2×2 identity matrix applied to the difference vector d1 = [d10, d
1
1].
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Aside 6.46. The superscript 1 is at this stage unnecessary. However
we are computing averages and differences of the averages. We could
and will define a vector a2 ∈ C4 by a2m = v(m) for 0 ≤ m ≤ 3 (here 2

corresponds to the power j where N = 2j , in our case, N = 4). With
this convention the vector a1 ∈ C2 is found averaging consecutive
entries of a2, and the vector d1 ∈ C2 is found taking differences.
We can introduce a0 = a00 :=

a1
1+a1

0√
2

, d0 = d00 :=
a1
1−a1

0√
2

. With this
notation we have

Ht
4v =

[
a0 d0 d1

]t
.

Notice that the vectors d0 and a0 have dimension 1 = 20 and d1

has dimension 2 = 21, so the output has dimension 4 = 22. See
Aside 6.49. ♦

It is now clear that we can decompose Ht
4 as the product of two

4× 4 matrices:

(6.12) Ht
4 =

⎡⎢⎢⎢⎣
1√
2

0 1√
2

0
−1√
2

0 1√
2

0

0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎦
[
Ht

2 02
02 Ht

2

]
.

Notice that the first matrix can be decomposed as the product of
a block diagonal matrix (with Ht

2 and the 2× 2 identity matrix I2 in
the diagonal) with a permutation matrix. In other words,⎡⎢⎢⎢⎣

1√
2

0 1√
2

0
−1√
2

0 1√
2

0

0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎦ =

[
Ht

2 02
02 I2

]⎡⎢⎢⎣
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤⎥⎥⎦ .

The second matrix in equation (6.12) requires 2 × 2 multiplica-
tions, since it involves applying Ht

2 twice. The first matrix requires
only 3 multiplications, since it involves applying Ht

2 once and then
the 2×2 identity matrix which involves no multiplications. The total
multiplication count for Ht

4 is thus 2× 3 + 3 = 9 = 3(4− 1).
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Exercise 6.47. Show that Ht
8 can be decomposed as the product of

three 8× 8 matrices as follows:

Ht
8 =

[
Ht

2

I6

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
Ht

4

Ht
4

]
.

Here I6 is the 6×6 identity. Blank spaces denote zero matrices of the
appropriate dimensions (in this case 2× 6, 6× 2, and 4× 4). Notice
that the last matrix on the right-hand side requires 2 × 9 = 18 mul-
tiplications, since it involves applying Ht

4 twice. The first matrix on
the right-hand side requires only 3 multiplications, since it involves
applying Ht

2 once and then the 6×6 identity matrix I6 which involves
no multiplications. The middle matrix is a permutation matrix, de-
noted by P8. It involves no multiplications. The total multiplication
count for Ht

8 is thus 2× 9 + 3 = 21 = 3(8− 1). ♦

We can see a pattern emerging. The matrix Ht
N for N = 2j can

be decomposed as the product of three N × N matrices. The first
and the last are block diagonal matrices while the middle matrix is a
permutation matrix:

(6.13) Ht
N =

[
Ht

2

IN−2

]
PN

[
Ht

N/2

Ht
N/2

]
.

Here IN−2 is the (N − 2) × (N − 2) identity, blank spaces denote
zero matrices of the appropriate dimensions (in this case 2× (N − 2),
(N−2)×2, and N/2×N/2), and PN is an N×N permutation matrix
given by a permutation of the columns of IN .

Denote by kN the number of products required to compute mul-
tiplication by the matrix Ht

N . The last matrix in the decomposi-
tion (6.13) requires 2 × kN/2 multiplications, since it involves apply-
ing Ht

N/2 twice, and kN/2 is the number of multiplications required
to compute multiplication by Ht

N/2. The first matrix requires only
3 multiplications, since it involves applying Ht

2 once and then the
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(N − 2)× (N − 2) identity matrix which involves no multiplications.
The permutation matrix costs nothing in terms of multiplications.
The total multiplication count for Ht

N obeys the recursive equation

kN = 2× kN/2 + 3,

with initial value for the recurrence given by k2 = 3.

Exercise 6.48. Show by induction that if the above decomposition
holds for each N = 2j , then the number of multiplications required
to apply Ht

N is 3(N − 1). That is, kN = 3(N − 1). ♦

Aside 6.49. We return to the averages and differences, but now in
dimension N = 2j . Starting with the vector aj := v ∈ CN , we
create two vectors aj−1 and dj−1, each of dimension N/2 = 2j−1, by
taking averages and differences of pairs of consecutive entries. We
now take the vector aj−1 ∈ CN/2 and create two vectors of dimension
N/4 = 2j−2 by the same procedure. We repeat the process until we
reach dimension 1 = 20. The process can be repeated j times and
can be represented by the following tree, or herringbone, algorithm:

v := aj → aj−1 → aj−2 → · · · → a1 → a0

↘ ↘ ↘ ↘ ↘
dj−1 dj−2 · · · d1 d0 .

With this notation it can be seen that

Ht
Nv =

[
a0 d0 d1 . . . dj−1

]t
.

Notice that the vectors aj−k and dj−k have dimension 2j−k = N2−k,
so the vector

[
a0 d0 d1 . . . dj−1

]
has the correct dimension

1 + 1 + 2 + 22 + · · ·+ 2j−1 = 2j = N.

We will encounter averages and differences again when discussing
wavelets in later chapters. ♦

Exercise 6.50. Give a precise description of the permutation matrix
PN in the decomposition of Ht

N . ♦
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6.8. Project: Two discrete Hilbert transforms

In this project we introduce the finite discrete Hilbert transform and
the sequential discrete Hilbert transform. These are discrete ana-
logues of the continuous and periodic Hilbert transforms that will be
studied in detail in Chapter 12. We define them on the space side and
ask the reader to discover the corresponding definitions on the Four-
ier side. (We will do the opposite when we define the (continuous)
Hilbert transform and its periodic analogue in Chapter 12.) These
operators are convolution operators. In the finite case we mean the
circular convolution introduced in Section 6.4.2, and in the sequential
case we mean convolution of two sequences as defined below (see also
Definition 11.13).

For vectors x = (x−N , . . . , x−1, x0, x1, . . . , xN ) in R2N+1, the fi-
nite Hilbert transform HN is defined by

(HNx)(i) :=
∑

|j|≤N,j �=i

xj

i− j
for |i| ≤ N .

The infinite-dimensional analogue, known as the sequential (or
discrete) Hilbert transform Hd, can be identified with the doubly
infinite matrix defined by

Hd = {hm,n}m,n∈Z, hmn :=

⎧⎨⎩
1

m− n
, if m �= n;

0, if m = n.

Its action on a doubly infinite sequence x = {xn}n∈Z is given by

(Hdx)(i) :=
∑

j∈Z,j �=i

xj

i− j
for i ∈ Z.

(a) Find some applications of the finite and sequential Hilbert trans-
forms in the literature.

(b) Show that the finite Hilbert transform HN is bounded on
�2(Z2N+1), with bounds independent of the dimension N , mean-
ing that there is a constant C > 0 independent of N such that
‖HNx‖�2(Z2N+1) ≤ C‖x‖�2(Z2N+1) for all vectors x ∈ �2(Z2N+1).

On the other hand, show that the �1(Z2N+1) norms of HN grow
with the dimension, and find the rate of growth. Do some numerical
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experiments to validate your findings. Repeat the experiments for
the �2 norm. What can you conclude?

(c) Show that HNx is given by circular convolution on C2N+1 with
some vector KN ∈ C2N+1. See Section 6.4.2. Calculate the Discrete
Fourier Transform of the vector KN in C2N+1. By hand or using
Matlab, plot the max-norm of the vector KN as a function of N .
What do you observe?

(d) We now turn to the sequential Hilbert transform. We want to
show that Hd : �2(Z) → �2(Z). Item (b) suggests that if we can
view Hd as the limit of HN as N →∞, then Hd must be a bounded
operator in �2(Z), meaning that there is a constant C > 0 such that
‖Hdx‖�2(Z) ≤ C‖x‖�2(Z) for all vectors x ∈ �2(Z). Try to make this
idea more precise. See [Graf08].

(e) We can view L2(T) as the frequency domain and �2(Z) as time
or space. Taking advantage of the isometry we already know exists
between these two spaces via the Fourier transform, we can define the
Fourier transform of a square-summable sequence {xj}j∈Z to be the
periodic function in L2(T) given by

x̂ (θ) :=
∑
j∈Z

xje
−ijθ.

Show that Plancherel’s Identity holds: ‖x‖�2(Z) = ‖x̂‖L2(T). Check
that the convolution of two sequences in �2(Z) is well-defined by

x ∗ y(i) =
∑
j∈Z

x(j)y(i− j).

Show also that x ∗ y ∈ �2(Z) and that the Fourier transform of the
convolution is the product of the Fourier transforms of the sequences
x and y. That is, (x ∗ y)∧(θ) = x̂(θ) ŷ(θ).

(f) Show that the sequential Hilbert transform Hd is given by con-
volution with the �2 sequence k(m) = hm0 defined at the start of this
project. Find the Fourier transform k̂ (θ) of the sequence {k(m)}m∈Z,
and check that it is a bounded periodic function. Use Plancherel’s
Identity to show that Hd is bounded on �2(Z). Compare the dou-
bly infinite sequence Hdx with the periodic function −i sgn(θ)χ̂(θ),
for θ ∈ T.
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6.9. Project: Fourier analysis on finite groups

The goal of this project is to develop Fourier analysis on finite abelian
groups G. We assume the reader has some familiarity with algebra
concepts such as finite abelian group. If not, gaining that familiarity
becomes part of the project. To achieve our goal, we must construct
an appropriate Hilbert space of square-integrable functions defined on
the group G. We need to develop the ideas of integration, inner prod-
uct, and orthonormal bases. In particular we need some functions,
the characters of G, to play the rôle of the trigonometric functions.

(a) Find a definition of a finite abelian group G and some examples
of such groups. Make sure you are comfortable with the notion of
the order of the group G, denoted by #G. Consider multiplicative
groups. See [DM, Chapter 4].

(b) Let L2(G) = {f : G → C}. This is a finite-dimensional vector
space over C. For each a ∈ G define a function δa : G → C by
δa(x) = 0 for all x �= a and δa(a) = 1. The finite collection of
functions {δa}a∈G is a basis for L2(G). Show that if f ∈ L2(G), then
f(x) =

∑
a∈G f(a)δa(x), for all x ∈ G.

Check that the functions {δa}a∈G are linearly independent. Con-
clude that the dimension of L2(G) is equal to the order of the group G.

(c) For f ∈ L2(G) and U ⊂ G, define the integral over U of f to
be

´
U
f :=

∑
a∈U f(a). Calculate

´
U
δa. Verify that the integral so

defined is linear and that if U1 and U2 are disjoint subsets of G, then´
U1∪U2

f =
´
U1

f +
´
U2

f .

(d) Define a mapping 〈·, ·〉 : L2(G) × L2(G) → C with the “integral
formula”, 〈f, g〉 :=

´
G
f g =

∑
a∈G f(a) g(a). Verify that this mapping

defines an inner product in L2(G). The induced norm is then given by

‖f‖L2(G) =
√∑

a∈G f(a) f(a). Since L2(G) is finite dimensional, it
is a complete inner-product vector space, and hence a Hilbert space.
Verify that the set {δa}a∈G is an orthonormal basis for L2(G).

(e) We now develop the theory of characters. Characters play a
rôle in representation theory analogous to the rôle of trigonometric
functions in classical Fourier analysis. A character of G is a group
homomorphism χ : G→ C; thus for all a, b ∈ G, χ(ab) = χ(a)χ(b).
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The set of characters is denoted Ĝ, and one can introduce a group
structure by defining (χ1χ2)(a) = χ1(a)χ2(a) for χ1, χ2 ∈ Ĝ. Verify
that this group operation is associative, that the identity element is
χ0, where χ0(a) = 1 for all a ∈ G, and that the inverse of a character χ
is given by χ−1(a) = χ(a−1). We also have conjugation on Ĝ, given
by χ(a) = χ(a). Check that χ = χ−1. Verify that if G is a finite
abelian group of order n, if χ, χ1, χ2 ∈ Ĝ and if a, b ∈ G, then∑

a∈G χ1(a)χ2(a) = 0 if χ1 �= χ2 and is equal to n if χ1 = χ2,∑
χ∈Ĝ χ(a)χ(b) = 0 if a �= b and is equal to n if a = b.

(f) Define the dual space of L2(G) to be L2(Ĝ). The Fourier trans-
form of f ∈ L2(G) is the function f̂ ∈ L2(Ĝ) defined pointwise, via
inner product with the character, f̂(χ) = 〈f, χ〉 =

∑
a∈G f(a)χ(a).

Verify that the Fourier transform is a linear operator from L2(G)

into L2(Ĝ). Let G be a finite abelian group of order n, i.e., #G = n.
Verify the following Fourier Inversion Formula and Plancherel’s Iden-
tity in this context: if f ∈ L2(G), then f = 1

n

∑
χ∈Ĝ f̂(χ)χ and

‖f‖L2(G) =
1
n‖f̂‖L2(Ĝ).

(g) Define the translation by a ∈ G of the function f ∈ L2(G) by
τaf(x) = f(xa−1) (we are considering a multiplicative group). Show
that for all χ ∈ Ĝ, τ̂af(χ) = χ(a)f̂(χ).

Can you define an appropriate notion of the convolution f ∗ g ∈
L2(G) of f , g ∈ L2(G)? Verify that your convolution is commutative
and that f̂ ∗ g = f̂ ĝ.

                

                                                                                                               



Chapter 7

The Fourier transform in
paradise

The key idea of harmonic analysis is to express a function or signal
as a superposition of simpler functions that are well understood. We
briefly summarize the two versions of this idea that we have already
seen: the Fourier series, which expresses a periodic function in terms
of trigonometric functions (Chapters 1–5), and the Discrete Fourier
Transform (DFT), which expresses a vector in terms of the trigono-
metric vectors (Chapter 6). Then we embark on our study of the
third type of Fourier analysis, namely the Fourier transform, which
expresses a nonperiodic function as an integral of trigonometric func-
tions (Chapters 7 and 8).

We will see that the Fourier integral formulas work for smooth
functions all of whose derivatives decay faster than any polynomial
increases; these functions form the Schwartz class1 (Sections 7.2 and
7.3). In the Schwartz class the Fourier theory is perfect: we are in
paradise (Sections 7.4 and 7.6). We will encounter convolution and
approximations of the identity in paradise (Section 7.5), and to close
the chapter, we will see that convolution of a Schwartz function with
a suitable approximation of the identity converges in Lp (Section 7.7).
We will see in Chapter 8 that there is also life beyond paradise, in

1Named after the French mathematician Laurent Schwartz (1915–2002). He was
awarded the Fields Medal in 1950 for his work in distribution theory.
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the sense that we have a very nice Fourier theory for larger classes of
functions, such as L2(R) and even the class of generalized functions,
or tempered distributions.

7.1. From Fourier series to Fourier integrals

As we have seen, traditional Fourier series express a periodic function
as a sum of pure harmonics (sines and cosines):

(7.1) f(x) =
∑
n∈Z

f̂ (n)e2πinx.

In this chapter we use functions of period 1 instead of 2π. For aes-
thetic reasons we prefer to place the factor 2π in the exponent, where
it will also be in the case of the Fourier transform on R.

In the early 1800s, mathematics was revolutionized by Fourier’s
assertion that “every periodic function” could be expanded in such a
series, where the coefficients (amplitudes) for each frequency n are
calculated from f via the formula

(7.2) f̂ (n) :=

ˆ 1

0

f(x)e−2πinx dx for n ∈ Z.

It took almost 150 years to resolve exactly what this assertion meant.
In a remarkable paper [Car] that appeared in 1966, Lennart Carleson
showed that for square-integrable functions on [0, 1] the Fourier par-
tial sums converge pointwise a.e. As a consequence the same holds
for continuous functions (this fact was unknown until then).

We discussed these facts in Chapters 1–5. Among other things,
in Chapter 5 we established the following fact.

The exponential functions {e2πinx}n∈Z form an orthonor-
mal basis for L2([0, 1]).

It follows immediately that equation (7.1) for the inverse Fourier
transform holds in the L2 sense when f ∈ L2([0, 1]).

We also discussed, in Chapter 6, the Discrete Fourier Transform
on the finite-dimensional vector space CN . There the trigonometric
vectors {el}N−1

l=0 , with kth entry given by el(k) = (1/
√
N) e2πikl/N ,

form an orthonormal basis for CN . Therefore the Discrete Inverse
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Fourier Transform is given by

v(k) =
1√
N

N−1∑
l=0

v̂(l) e2πikl/N ,

and the lth Fourier coefficient is given by the inner product in CN of
the vector v ∈ CN and the vector el:

v̂(l) = 〈v, el〉 =
1√
N

N−1∑
k=0

v(k) e−2πikl/N .

In the nonperiodic setting, the Fourier transform f̂ of an inte-
grable function f : R→ R is defined by

(7.3) f̂ (ξ) =

ˆ
R

f(x)e−2πiξx dx.

The inverse Fourier transform (g)∨ of an integrable function g : R→
R is defined by

(7.4) (g)∨(x) =

ˆ
R

g(ξ)e2πiξx dξ.

Note that f̂ is pronounced “f hat” and (g)∨ is pronounced “g check”
or “g inverse hat”. These formulas make sense for integrable functions.
There is much to be said about for which integrable functions, and in
what sense, the following Fourier Inversion Formula holds:

(7.5) f(x) =

ˆ
R

f̂ (ξ)e2πiξx dξ,

or more concisely (f̂ )∨ = f .

Heuristically, we could arrive at the integral formulas (7.3) and
(7.5) by calculating the Fourier series on larger and larger intervals,
until we cover the whole line, so to speak. See Section 1.3.2. For
nice enough functions the L-Fourier series converges uniformly to the
function f on [−L/2, L/2):

(7.6) f(x) =
∑
n∈Z

aL(n)e
2πinx/L for all x ∈ [−L/2, L/2),

where the L-Fourier coefficients are given by the formula

aL(n) :=
1

L

ˆ L/2

−L/2

f(y)e−2πiny/L dy.
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Let ξn = n/L, so that Δξ := ξn+1 − ξn = 1/L. Then we can
rewrite the Fourier series in equation (7.6) as

∑
n∈Z

FL(ξn)Δξ, where
FL(ξ) := e2πiξx

´ L/2

−L/2
f(y)e−2πiξy dy.

This expression returns f(x) for x ∈ [−L/2, L/2) and resembles
a Riemann sum for the improper integral

´∞
−∞ FL(ξ) dξ, except that

the parameter L appears in the function to be integrated, as well as in
the partition of the real line in steps of length 1/L. Now pretend that
the function f is zero outside the interval [−M,M ], for some M > 0

(that is, the function f has compact support). For L sufficiently large
that M < L/2, the function FL is now a function independent of L:

FL(ξ) = e2πiξx
ˆ ∞

−∞
f(y)e−2πiξy dy = e2πiξx f̂ (ξ),

where f̂ (ξ) is the Fourier transform of the function f defined on R.
Heuristically we would expect as L→∞ that the sum

∑
n∈Z

FL(ξn)Δξ

should go to
´∞
−∞ e2πiξx f̂ (ξ) dξ and that this integral returns the

value of f(x) for all x ∈ R.

It could be argued that to recover a nonperiodic function on R
we need all frequencies and that the following integrals play the same
rôle that equations (7.1) and (7.2) play in the Fourier series theory:

(7.7) f(x) =

ˆ
R

f̂ (ξ)e2πiξx dξ and f̂ (ξ) :=

ˆ
R

f(x)e−2πiξx dx.

To make this argument rigorous, we should specify what “nice” means
and stablish some type of convergence that entitles us to perform all
these manipulations. We will not pursue this line of argument here,
other than to motivate the appearance of the integral formulas.

7.2. The Schwartz class

It turns out that formulas (7.7) hold when f belongs to the Schwartz
space S(R), also known as the Schwartz class. First, C∞(R) denotes
the space of infinitely differentiable functions f : R → C. Next, the
Schwartz space S(R) consists of those functions f ∈ C∞(R) such that
f and all its derivatives f ′, f ′′, . . . , f (�), . . . decrease faster than any
polynomial increases. Rephrasing, we obtain the following definition.
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Definition 7.1. The Schwartz space S(R) is the collection of C∞

functions f such that they and their derivatives are rapidly decreasing,
meaning that

(7.8) lim
|x|→∞

|x|k|f (�)(x)| = 0 for all integers k, � ≥ 0. ♦

This limiting property is equivalent to the statement that the
products |x|k|f (�)(x)| are bounded functions for all k and �.

Exercise 7.2. Let f ∈ C∞(R). Show that (7.8) holds if and only if

(7.9) sup
x∈R

|x|k|f (�)(x)| <∞ for all integers k, � ≥ 0. ♦

The Schwartz space is a vector space over the complex numbers.
We invite you to check that it is closed under the operations of multi-
plication by Schwartz functions, multiplication by polynomials, mul-
tiplication by trigonometric functions, and differentiation. Note that
neither polynomials nor trigonometric functions are Schwartz func-
tions; they are infinitely differentiable but do not decay at infinity.

Exercise 7.3 (S(R) Is Closed under Multiplication and Differentia-
tion). Show that if f , g ∈ S(R), then the products fg, xkf(x) for all
k ≥ 0, and e−2πixξf(x) for all ξ ∈ R belong to S(R). Show also that
the derivatives f (�) belong to S(R), for all � ≥ 0. ♦

Our first examples of Schwartz functions are the compactly sup-
ported functions in C∞(R).

Definition 7.4. A function f defined on R is compactly supported if
there is a closed interval [a, b] ⊂ R such that f(x) = 0 for all x /∈ [a, b].
We say that such a function f has compact support and informally
that f lives on the interval [a, b]. ♦

Example 7.5 (Compactly Supported C∞(R) Functions Are Schwartz ).
If f ∈ C∞(R) is compactly supported, then a fortiori f and all its
derivatives are rapidly decreasing, and so f ∈ S(R). ♦

Compactly supported C∞ functions are examples of Schwartz
functions, but can we find a compactly supported C∞ function that
is not identically equal to zero? Yes, we can.
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Example 7.6 (A Bump Function). Here is an example of a compactly
supported Schwartz function that is supported on the interval [a, b]
and nonzero on the interval (a, b):

B(x) =

{
e−1/(x−a)e−1/(b−x), if a < x < b;
0, otherwise.

♦

Exercise 7.7. Show that the bump function in Example 7.6 is in the
Schwartz class. Notice that it suffices to check that B(x) is C∞ at
x = a and at x = b. ♦

Here is an example of a function that is in the Schwartz class but
is not compactly supported.

Example 7.8 (The Gaussian Function2). The canonical example of
a function in S(R) is the Gaussian function G(x), defined by

G(x) := e−πx2

. ♦

We define the integral over R of a Schwartz function f to be
the limit of the integrals of f over larger and larger intervals (notice
that those integrals can be defined either in the Riemann or in the
Lebesgue sense, with the same result):

(7.10)
ˆ
R

f(x) dx := lim
T→∞

ˆ T

−T

f(x) dx.

Exercise 7.9. Show that the limit of
´ T

−T
f(x) dx as T →∞ is finite,

for functions f ∈ S(R). ♦

Definition 7.10. The Fourier transform f̂ : R → C of a Schwartz
function f for ξ ∈ R is defined as follows:

(7.11) f̂ (ξ) :=

ˆ
R

f(x)e−2πiξx dx = lim
T→∞

ˆ T

−T

f(x)e−2πiξx dx. ♦

Notice that the integrand is in S(R) (see Exercise 7.3).

2Named after the German mathematician Johann Carl Friedrich Gauss (1777–
1855).

                

                                                                                                               



7.3. The time–frequency dictionary for S(R) 167

The Gaussian function plays a very important rôle in Fourier
analysis, probability theory, and physics. It has the unusual property
of being equal to its own Fourier transform:

Ĝ(ξ) = e−πξ2 = G(ξ).

One can prove this fact using the observation that both the Gaussian
and its Fourier transform satisfy the ordinary differential equation
f ′(x) = −2πxf(x), with initial condition f(0) = 1. Therefore, by
uniqueness of the solution, they must be the same function.

Exercise 7.11 (The Gaussian Is Its Own Fourier Transform). Con-
vince yourself that the Gaussian belongs to S(R). Find the Fourier
transform of the Gaussian either by filling in the details in the previ-
ous paragraph or by directly evaluating the integral in formula (7.11),
for instance using contour integration. ♦

Definition 7.12. The convolution f ∗ g of two functions f , g ∈ S(R)
is the function defined by

(7.12) f ∗ g(x) :=
ˆ
R

f(x− y)g(y) dy. ♦

One can verify that if f ∈ S(R), then for each x ∈ R the new
function (̃τxf)(y) := f(x− y) is in S(R). By Exercise 7.3 the integral
in the definition of convolution is well-defined for each x ∈ R and for
f , g ∈ S(R).

Convolution is a very important operation in harmonic analysis.
In the context of Fourier series, we saw how to convolve two periodic
functions on T. In Chapter 6 we touched on circular convolution for
vectors. In Section 7.8 we say more about convolutions on R. In
Chapter 8 we discuss convolution of a Schwartz function with a dis-
tribution, and in Chapter 12 we discuss convolution of an Lp function
with an Lq function.

7.3. The time–frequency dictionary for S(R)

The Fourier transform interacts very nicely with a number of oper-
ations. In particular, differentiation is transformed into polynomial

                

                                                                                                               



168 7. The Fourier transform in paradise

multiplication and vice versa, which sheds light on the immense suc-
cess of Fourier transform techniques in the study of differential equa-
tions. Also, convolutions are transformed into products and vice versa,
which underlies the success of Fourier transform techniques in signal
processing, since convolution, or filtering, is one of the most important
signal-processing tools. In this section we present a time–frequency
dictionary that lists all these useful interactions.

The Fourier transform is a linear transformation, meaning that
the Fourier transform of a linear combination of Schwartz functions
f and g is equal to the same linear combination of the Fourier trans-
forms of f and g: (af + b g)∧ = af̂ + b ĝ for all a, b ∈ C.

The Fourier transform also interacts very nicely with translations,
modulations, and dilations. In Table 7.1 we list ten of these extremely
useful fundamental properties of the Fourier transform.

We refer to the list in Table 7.1 as the time–frequency dictionary.
Here the word time is used because the variable x in f(x) often stands
for time, for instance when f(x) represents a voice signal taking place
over some interval of time, as in Example 1.1. Similarly, the word
frequency refers to the variable ξ in f̂ (ξ). Operations on the function
f(x) are often said to be happening in the time domain or on the
time side, while operations on the Fourier transform f̂ (ξ) are said to
be in the frequency domain or on the frequency side, or simply on the
Fourier side.

As in a dictionary used for converting between two languages,
an entry in the right-hand column of the time–frequency dictionary
gives the equivalent on the frequency side of the corresponding entry
expressed on the time side in the left-hand column.

For example, the expressions e2πihxf(x) and f̂ (ξ − h) convey in
two different ways the same idea, that of shifting by the amount h all
the frequencies present in the signal f(x). To give some terminology,
modulation of a function f(x) means multiplying the function by a
term of the form e2πihx for some real number h, as shown in the
term e2πihxf(x) on the left-hand side of property (c) in Table 7.1.
We denote such a multiplication by Mhf(x). As usual, horizontal
translation of a function means adding a constant, say −h, to its
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Table 7.1. The time–frequency dictionary in S(R).

Time Frequency

linear properties linear properties
(a)

af + bg af̂ + bĝ

translation modulation
(b)

τhf(x) := f(x− h) τ̂hf (ξ) = M−hf̂ (ξ)

modulation translation
(c)

Mhf(x) := e2πihxf(x) M̂hf(ξ) = τhf̂ (ξ)

dilation inverse dilation
(d)

Dsf(x) := sf(sx) D̂sf(ξ) = sDs−1 f̂(ξ)

reflection reflection
(e)

f̃(x) := f(−x) ̂̃
f (ξ) =

˜̂
f (ξ)

conjugation conjugate reflection
(f)

f(x) := f(x) f̂(ξ) = f̂ (−ξ) = (f∨)(ξ)

derivative multiply by polynomial
(g)

f ′(x) f̂ ′(ξ) = 2πiξf̂ (ξ)

multiply by polynomial derivative
(h) −2πixf(x) [−2πixf(x)]∧(ξ) = d

dξ f̂ (ξ)

convolution product
(i)

f ∗ g(x) :=
´
f(x− y)g(y) dy f̂ ∗ g(ξ) = f̂ (ξ)ĝ (ξ)

product convolution
(j)

f(x)g(x) f̂g(ξ) = f̂ ∗ ĝ (ξ)

argument, as shown in the term f(x − h) on the left-hand side of
property (b). We denote such a translation by τhf(x).

Thus, row (c) in the table should be read as saying that the
Fourier transform of e2πihxf(x) is equal to f̂ (ξ− h). In other words,
modulation by h on the time side is transformed into translation by h

on the frequency side.
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Notice that if f , g ∈ S(R), then all the functions in the time col-
umn of the table belong to the Schwartz class as well. In other words,
the Schwartz class is closed not only under products, multiplication
by polynomials and trigonometric functions (modulations), differen-
tiation, and convolution, but also under simpler operations such as
linear operations, translations, dilations, and conjugations.

Property (a) says that the Fourier transform is linear. Proper-
ties (b)–(e), known as symmetry properties or group invariance prop-
erties, explain how the Fourier transform interacts with the symme-
tries (translation, dilation, reflection) of the domain of the function f

and of f̂ . For us this domain is either T, ZN = Z/NZ, or R; all three
are groups. Properties (f)–(j) explain how the Fourier transform in-
teracts with conjugation and differentiation of functions f and with
multiplication of functions f by polynomials, as well as with products
and convolution of functions f with other Schwartz functions.

We leave it as an exercise to prove most of the properties listed
in the time–frequency dictionary. We have already proved most of
these properties for periodic functions and their Fourier coefficients,
and the proofs in the present setting are almost identical.

Exercise 7.13. Verify properties (a)–(g) in Table 7.1. ♦

Convolution in S(R) as well as properties (i) and (j) will be dis-
cussed in Section 7.5.

Let us prove property (h), which gives the connection between
taking a derivative on the Fourier side and multiplying f by an appro-
priate polynomial on the time side. Namely, multiplying a function f

by the polynomial −2πix yields a function whose Fourier transform
is the derivative with respect to ξ of the Fourier transform f̂ of f .
Property (h) does not have an immediate analogue in the Fourier
series setting, and for this reason we sketch its proof here.

Proof of property (h). Differentiating (formally) under the inte-
gral sign leads us immediately to the correct formula. It takes some
effort to justify the interchange of the derivative and the integral. We
present the details because they illustrate a standard way of thinking
in analysis that we will use repeatedly. One could skip ahead and
return to this proof later.
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We will check that f̂ is differentiable (as a bonus we get continuity
of f̂) and that its derivative coincides with the Fourier transform of
−2πixf(x), both in one stroke. By the definition of the derivative,
we must show that

(7.13) lim
h→0

[
f̂ (ξ + h)− f̂ (ξ)

]
/h = [−2πixf(x)]∧(ξ).

By definition of the Fourier transform,[
f̂ (ξ + h)− f̂ (ξ)

]
/h− [−2πixf(x)]∧(ξ)

=

ˆ
R

f(x)e−2πixξ
[e−2πixh − 1

h
+ 2πix

]
dx.(7.14)

It suffices to check that for each ε > 0 we can make the absolute value
of the integral on the right-hand side of equation (7.14) smaller than
a constant multiple of ε, provided h is small enough, say for |h| < h0.
We bound separately the contributions for large x and for small x.
For each N > 0, the right-hand side of equation (7.14) is bounded
above by the sum of the integrals (A) and (B) defined here:

(A) :=

ˆ
|x|≤N

|f(x)|
∣∣∣e−2πixh − 1

h
+ 2πix

∣∣∣ dx,
(B) := 2π

ˆ
|x|>N

|x| |f(x)|
∣∣∣e−2πixh − 1

2πxh
+ i

∣∣∣ dx.
Since f ∈ S(R), we have that f is bounded by some M > 0. Moreover,
for |x| ≤ N , there is some h0 such that for all |h| < h0,

(7.15)
∣∣(e−2πixh − 1

)
/h+ 2πix

∣∣ ≤ ε/2N.

Therefore (A) ≤Mε. We leave the proof of (7.15) to Exercise 7.14.

Since f ∈ S(R), f is rapidly decreasing. In particular there is
some C > 0 such that |x|3|f(x)| ≤ C for all |x| > 1, and so

|xf(x)| ≤ Cx−2 for all |x| > 1.

Since
´
|x|>1

x−2 dx < ∞, the tails of this integral must be going
to zero, meaning that limN→∞

´
|x|>N

x−2 dx = 0. Therefore, given
ε > 0, there is an N > 0 such thatˆ

|x|>N

|xf(x)| dx ≤
ˆ
|x|>N

C

x2
dx ≤ ε.
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Also, for all real θ, |eiθ − 1| ≤ |θ|, and so
∣∣(e−iθ − 1)/θ + i

∣∣ ≤ 2.
All these facts together imply that (B) ≤ 4πε. Hence for each ε > 0

there exists h0 > 0 such that for all |h| < h0,∣∣∣[f̂ (ξ + h)− f̂ (ξ)
]
/h− [−2πixf(x)]∧(ξ)

∣∣∣ ≤ (M + 4π)ε.

Therefore equation (7.13) holds, by definition of the limit. Hence
(d/dξ)f̂ (ξ) = [−2πixf(x)]∧(ξ), which proves property (h). �

Exercise 7.14. Prove inequality (7.15). You could consider the con-
tinuous function g(x, y) := (∂/∂y)e−2πixy = −2πixe−2πixy, which is
necessarily uniformly continuous on any compact set in R2, in partic-
ular on a closed rectangle RN := [−N,N ]× [−1, 1]. ♦

To prove property (h), we used only the decay properties of f .
First, to estimate term (A), we used the boundedness of f to show
that

´
|x|≤N

|f(x)| dx < 2NM . Second, to estimate term (B), we used
the fact that

´
|x||f(x)| dx <∞ to ensure that the tail of the integral

(for |x| > N) can be made small enough. Note that the integrability
of |x| |f(x)| is the minimum necessary to ensure that we can calculate
the Fourier transform of −2πixf(x).

Exercise 7.15. Show that if
´
R
(1 + |x|)k|f(x)| dx <∞, then f̂ is k

times differentiable. Moreover, in that case

(7.16) (dk/dξk)f̂ (ξ) = [(−2πix)kf(x)]∧(ξ).

Hint: Do the case k = 1 first. Then use induction on k. For k = 1,
assume that

´
R
(1 + |x|)|f(x)| dx <∞. Hence both

´
R
|f(x)| dx <∞

and
´
R
|x||f(x)| dx <∞. Then follow the proof of property (h). ♦

7.4. The Schwartz class and the Fourier
transform

In this section we show that the Fourier transform of a Schwartz
function f is also a Schwartz function (Theorem 7.18). We must check
that f̂ is infinitely differentiable and that f̂ and all its derivatives are
rapidly decaying.
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First, Exercise 7.15 above shows that f ∈ S(R) implies that
f̂ ∈ C∞(R) and gives a formula for the kth derivative of f̂ . Sec-
ond, we prove a version of the Riemann–Lebesgue Lemma in S(R)
(Lemma 7.16), showing that the Fourier transform f̂ of a Schwartz
function f tends to zero as |ξ| → ∞. This result must hold if f̂ is to
be in the Schwartz class S(R). Third, we show that the Fourier trans-
form f̂ of a Schwartz function f is rapidly decreasing (Lemma 7.17).
With these ingredients in hand we prove Theorem 7.18.

Lemma 7.16 (Riemann–Lebesgue Lemma). If f ∈ S(R), then

lim
|ξ|→∞

f̂ (ξ) = 0.

Proof. Using a symmetrization trick that we saw when proving the
Riemann–Lebesgue Lemma for periodic functions, we find that

f̂ (ξ) =

ˆ ∞

−∞
f(x)e−2πiξx dx = −

ˆ ∞

−∞
f(x)e−2πiξxeπi dx

= −
ˆ ∞

−∞
f(x)e−2πiξ

(
x−1/(2ξ)

)
dx

= −
ˆ ∞

−∞
f
(
y +

1

2ξ

)
e−2πiξy dy.

The last equality uses the change of variable y = x−1/(2ξ). It follows,
by averaging the two integral expressions for f̂(ξ), that

f̂ (ξ) =
1

2

ˆ ∞

−∞

[
f(x)− f

(
x+

1

2ξ

)]
e−2πiξx dx.

Hence using the Triangle Inequality for integrals and the fact that
|e−2πiξx| = 1,

|f̂ (ξ)| ≤ 1

2

ˆ ∞

−∞

∣∣∣f(x)− f
(
x+

1

2ξ

)∣∣∣ dx.
Since f ∈ S(R), there exists M > 0 such that |f(y)| ≤ M/y2 for all
y ∈ R; in particular it holds for y = x and y = x+1/(2ξ). Given ε > 0,
there is some N > 0 so that

´
|x|>N

[
1/x2+1/

(
x+1/(2ξ)

)2]
dx ≤ ε/M ,

for |ξ| > 1 (check!). Therefore we conclude thatˆ
|x|>N

∣∣∣f(x)− f
(
x+

1

2ξ

)∣∣∣ dx ≤ ε.
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For the integral over |x| ≤ N , let gξ(x) := f(x)− f (x+ 1/(2ξ)).
The functions gξ converge uniformly to zero as |ξ| → ∞ on |x| ≤ N ,
because f is uniformly continuous on [−N − 1, N + 1]. We can make
gξ(x) as small as we wish for all |x| ≤ N , provided ξ is large enough.
More precisely, given ε > 0 there exists K > 0 such that for all
|ξ| > K and for all |x| ≤ N , |gξ(x)| < ε/(4N). Therefore

|f̂ (ξ)| ≤ ε

2
+

ˆ
|x|≤N

|gξ(x)| dx ≤
ε

2
+ 2N

ε

4N
= ε.

We conclude that given ε > 0, there exists K > 0 such that for
all |ξ| > K, |f̂ (ξ)| ≤ ε. That is, lim|ξ|→∞ |f̂ (ξ)| = 0, as required. �

In fact this argument works, essentially unchanged, for func-
tions f that are only assumed to be continuous and integrable. In-
tegrability takes care of the integral for |x| > N , while continuity
controls the integral for |x| ≤ N . A density argument shows that if
f ∈ L1(R), then lim|ξ|→∞ f̂(ξ) = 0. Furthermore, if f ∈ L1(R), then
f̂ is continuous; see Lemma 8.51.

The final ingredient needed to prove that the Fourier transform
takes S(R) to itself (Theorem 7.18) is that the Fourier transforms of
Schwartz functions decrease rapidly.

Lemma 7.17. If f ∈ S(R), then f̂ is rapidly decreasing.

Proof. To prove the lemma, we must check that for f ∈ S(R),

(7.17) lim
ξ→∞

|ξ|n|f̂ (ξ)| = 0 for all integers n ≥ 0.

We already know that f̂ is C∞. The Riemann–Lebesgue Lemma
(Lemma 7.16) shows that f̂ vanishes at infinity. We must show that
as |ξ| → ∞, f̂ vanishes faster than the reciprocals of all polynomials.
By property (g) in Table 7.1, f̂ ′(ξ) = 2πiξf̂ (ξ). Iterating, we get

(7.18) f̂ (n)(ξ) = (2πiξ)nf̂ (ξ) for f ∈ S(R), n ≥ 0.

Since f ∈ S(R), f (n) is also a Schwartz function. Applying the
Riemann–Lebesgue Lemma to f (n), we conclude that for all n ≥ 0,
lim|ξ|→∞ f̂ (n)(ξ) = 0. Therefore lim|ξ|→∞(2πiξ)nf̂ (ξ) = 0. Hence f̂

is rapidly decreasing, as required. �
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With these results in hand, we can now prove that the Schwartz
class is closed under the Fourier transform.

Theorem 7.18. If f ∈ S(R), then f̂ ∈ S(R).

Proof. Suppose f ∈ S(R). We have shown that f̂ ∈ C∞(R) and

(d�/dξ�)f̂ (ξ) = [(−2πix)�f(x)]∧(ξ).

In other words, the � th derivative of f̂ is the Fourier transform of the
Schwartz function g�(x) = (−2πix)�f(x). It remains to show that f̂

and all its derivatives are rapidly decreasing. Applying Lemma 7.17
to each g� ∈ S(R), we find that (d�/dξ�)f̂ = ĝ� is rapidly decreasing
for each � ≥ 0. We conclude that f̂ ∈ S(R), as required. �

Equations (7.18) illustrate an important principle in Fourier anal-
ysis already discussed for Fourier series in Chapter 3. Smoothness of
a function is correlated with the fast decay of its Fourier transform at
infinity. In other words, the more times a function f can be differen-
tiated, the faster its Fourier transform f̂(ξ) goes to zero as ξ → ±∞.
We will see this principle more clearly in Chapter 8 when considering
functions that have less decay at ±∞ than the Schwartz functions do.

7.5. Convolution and approximations of the
identity

The convolution f ∗ g of two functions f , g ∈ S(R) is defined by

(7.19) f ∗ g(x) :=
ˆ
R

f(x− y)g(y) dy.

This integral is well-defined for each x ∈ R and for f , g ∈ S(R). By
change of variables, f ∗ g = g ∗ f : convolution is commutative.

The new function f ∗ g defined by the integral in equation (7.19)
is rapidly decreasing, because of the smoothness and fast decay of the
functions f and g. It turns out that the derivatives of f ∗g are rapidly
decreasing as well, and so the convolution of two Schwartz functions
is again a Schwartz function. The key observation is that

d

dx

(
f ∗ g

)
(x) =

df

dx
∗ g(x) = f ∗ dg

dx
(x) for f , g ∈ S(R).
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The first identity holds because in this setting, we are entitled to in-
terchange differentiation and integration. To see this, break the inte-
gral into two pieces, one where the variable of integration is bounded
(|y| ≤ M), the other where it is not (|y| > M). On the bounded
part, use Theorem 2.53 to exchange the limit and the integral. On
the unbounded part, use the decay of the function to show that the
integral goes to zero as M → ∞. This is exactly the argument we
used to prove property (h) from the time–frequency dictionary.

The second identity holds because convolution is commutative; it
can also be proved by integration by parts.

Exercise 7.19 (The Schwartz Space Is Closed under Convolution).
Verify that if f , g ∈ S(R), then f ∗ g ∈ S(R). ♦

Convolution is a smoothing operation. The output keeps the best
of each input. This heuristic is not completely evident in the case of
convolution of Schwartz functions, because we are already in paradise.
One can convolve much less regular functions (for example a function
that is merely integrable, or even a generalized function or distribu-
tion) with a smooth function; then the smoothness will be inherited
by the convolution. In fact when convolving Schwartz functions with
distributions (as we do in Chapter 8), we will see that the resulting
distribution can be identified with a C∞ function.

Convolutions correspond to translation-invariant bounded linear
transformations and to Fourier multipliers. These, and their general-
izations, have been and are the object of intense study. We discussed
the discrete analogue of this statement in Section 6.4.2.

Exercise 7.20. Verify properties (i) and (j) in Table 7.1: if f , g ∈
S(R), then f̂ ∗ g (ξ) = f̂ (ξ)ĝ (ξ) and f̂g (ξ) = f̂ ∗ ĝ (ξ). ♦

Convolution can be viewed as a binary operation on the Schwartz
class S(R). However, the Schwartz class with convolution does not
form a group, since there is no identity element in S(R). This is
simple to verify once we have established property (i) from the time–
frequency dictionary. Suppose there were some ϕ ∈ S(R) such that
f ∗ ϕ = f for all f ∈ S(R). Taking the Fourier transform on both
sides, we find that f̂ (ξ) ϕ̂ (ξ) = f̂(ξ). In particular we can set f(x)
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equal to G(x) = e−πx2

, the Gaussian, which is equal to its own Four-
ier transform and never vanishes. Hence we can cancel G from the
identity G(ξ) ϕ̂ (ξ) = G(ξ) and conclude that ϕ̂ ≡ 1. But we have just
shown that if ϕ ∈ S(R), then ϕ̂ ∈ S(R). Therefore ϕ̂ must decrease
rapidly, but the function identically equal to one does not decrease
at all. We have reached a contradiction. There cannot be an identity
in S(R) for the convolution operation.

There are two ways to address this lack of an identity element.
The first is to introduce the delta function, defined in Section 8.4.
The delta function can be thought of as a point mass since, roughly
speaking, it takes the value zero except at a single point. The delta
function is not a Schwartz function and in fact is not a true function at
all but is instead a generalized kind of function called a distribution.
It acts as an identity under convolution (see Exercise 8.32; one must
extend the definition of convolution appropriately).

The second substitute for an identity element in S(R) under con-
volution builds on the first. The idea is to use a parametrized se-
quence, or family, of related functions, that tends to the delta dis-
tribution as the parameter approaches some limiting value. Such
families are called approximations of the identity. We have already
seen them in the context of Fourier series; see Section 4.3 and espe-
cially Definition 4.19. The functions in the family may actually be
Schwartz functions, or they may be less smooth.

Definition 7.21. An approximation of the identity in R is a family
{Kt}t∈Λ of integrable real-valued functions on R, where Λ is an index
set, together with a point t0 that is an accumulation point3 of Λ, with
the following three properties.

(i) The functions Kt have mean value one:
´
R
Kt(x) dx = 1.

(ii) The functions Kt are uniformly integrable in t: there is a con-
stant C > 0 such that

´
R
|Kt(x)| dx ≤ C for all t ∈ Λ.

(iii) The mass4 of Kt becomes increasingly concentrated at x = 0 as
t→ t0: limt→t0

´
|x|>δ

|Kt(x)| dx = 0 for each δ > 0. ♦

3That is, we can find points t ∈ Λ, with t �= t0, that are arbitrarily close to t0.
4The mass is the integral of the absolute value of Kt.
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The examples below illustrate what the accumulation point t0
should be. Sometimes t0 = 0 < t and then t→ 0+. Or one can have
t0 = ∞ and then t → ∞, or t0 = 1 and then t → 1. In the periodic
case the kernels were indexed by N ∈ N (Fejér kernel) or by r in (0, 1)

(Poisson kernel), and we considered N →∞ and r → 1−, respectively.
In the periodic case we deduced the concentration of mass at zero from
the uniform convergence of the sequence Kn(x)→ 0 for δ ≤ |x| ≤ π.
However on the real line, uniform convergence to zero of the sequence
Kt(x) → 0 for |x| ≥ δ is not sufficient to obtain property (iii), since
the mass can be thinly spreading out to infinity.

Notice that in the definition there is no explicit mention of the
delta function. Nevertheless the three properties in the definition do
imply that as t → t0, Kt(x) converges in some sense to the delta
function, that is, to the identity under convolution; see Exercise 8.33.
This fact is the origin of the term approximation of the identity. An-
other aspect of the same idea, in a language we have already met, is
the property f ∗Kt → f as t→ t0. See Theorem 7.24.

Exercise 7.22 (Generating an Approximation of the Identity from a
Kernel). An easy way to produce an approximation of the identity is
to start with a nonnegative function (or kernel) K(x) ≥ 0 with mean
value one,

´
R
K(x) dx = 1, and to define the family of dilations

(7.20) Kt(x) := t−1K(t−1x) for all t > 0.

Show that {Kt}t>0 is an approximation of the identity, with t0 = 0. ♦

Example 7.23 (Gaussian Kernels Form an Approximation of the
Identity). Gaussians are good kernels, and by scaling them we obtain
an approximation of the identity. Given G(x) = e−πx2

, define the
Gauss kernels Gt(x) by

Gt(x) := t−1e−π(t−1x)2 , for t > 0.

Since e−πx2

> 0 and
´
R
e−πx2

dx = 1, this family is an approximation
of the identity with t0 = 0. As t decreases to 0, the graphs of Gt(x)

look more and more like the delta function; see Figure 7.1. ♦
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Figure 7.1. Graphs of Gauss kernels Gt(x) for t = 1, 3, and 7.5.

Another facet of the approximation-of-the-identity idea is that by
convolving against an approximation of the identity, one can approx-
imate a function very well. One instance of this heuristic is given in
the next theorem, whose analogue on T we proved as Theorem 4.23.

Theorem 7.24. Let {Kt}t∈Λ be an approximation of the identity as
t → t0. Suppose Kt and f belong to S(R). Then the convolutions
f ∗Kt converge uniformly to f as t→ t0.

See also Theorem 7.35 and its proof, for convergence in L1.

Exercise 7.25. Prove Theorem 7.24. Show that Theorem 7.24 re-
mains true even if f is only assumed to be continuous and integrable,
so that the convolution is still well-defined. ♦

Note that because of the smoothing effect of convolution, the ap-
proximating functions f ∗Kt may be much smoother than the original
function f . One can use this idea to show that the uniform limit of
differentiable functions need not be differentiable.

7.6. The Fourier Inversion Formula and
Plancherel

In this subsection we present several fundamental ingredients of the
theory of Fourier transforms: the multiplication formula, the Fourier
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Inversion Formula, Plancherel’s Identity, and the polarization iden-
tity. Then we use all these tools in an application to linear differential
equations.

It follows as a consequence of differentiation being transformed
into polynomial multiplication, and vice versa, that the Fourier trans-
form maps S(R) into itself. See Theorem 7.18.

We turn to the multiplication formula, relating the inner products
of two Schwartz functions with each other’s Fourier transforms.

Exercise 7.26 (The Multiplication Formula). Verify that

(7.21)
ˆ
R

f(s) ĝ (s) ds =

ˆ
R

f̂ (s) g(s) ds for f , g ∈ S(R).

Hint: Use Fubini’s Theorem (see the Appendix) to interchange the
integrals in an appropriate double integral. ♦

It is interesting to note that there is no analogue of the multipli-
cation formula in the Fourier series setting. The Fourier coefficients
of a periodic function are not a function but a sequence of numbers,
and so the pairing of, say, f and the Fourier coefficients of g (the ana-
logue of the pairing of f and ĝ in equation (7.21)) would not make
sense. However it makes sense in the discrete case, where both the
input and the output of the Discrete Fourier Transform are vectors
in CN .

Exercise 7.27. State and prove a multiplication formula, analogous
to formula (7.21), that is valid in CN . ♦

Several of the preceding facts can be woven together to prove the
important Fourier Inversion Formula in S(R).

Theorem 7.28 (Fourier Inversion Formula in S(R)). If f ∈ S(R),
then for all x ∈ R,

(7.22) f(x) =

ˆ
R

f̂ (ξ)e2πiξx dξ = (f̂ )∨(x).

Notice the symmetry between the definition in formula (7.11) of
the Fourier transform f̂ (ξ) of the function f(x) and the formula (7.22)
for f(x) in terms of its Fourier transform f̂ (ξ). Formally the only
differences are the exchange of the symbols x and ξ and the exchange
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of the negative or positive signs in the exponent. Whatever conditions
are required on f so that formula (7.11) makes sense must also be
required on f̂ so that formula (7.22) makes sense. This symmetry is
automatic in the Schwartz space, which is why the Fourier theory on
S(R) is so beautiful and self-contained.

Proof of Theorem 7.28. Fix x ∈ R. The idea is to apply the mul-
tiplication formula (7.21) to functions f and g, where f is an arbitrary
Schwartz function and g is the specific Schwartz function

g(s) := e2πisxe−π|ts|2 ∈ S(R), for t > 0.

Compute directly or use properties (c) and (d) of the time–frequency
dictionary in Section 7.3 to show that

(7.23) ĝ (s) = t−1e−π|t−1(x−s)|2 = Gt(x− s).

This expression is a translate of the approximation of the identity
generated by the Gaussian. Therefore

f(x) = lim
t→0

ˆ
R

f(s)Gt(x− s) ds = lim
t→0

ˆ
R

f̂ (s)e2πisxe−π|ts|2 ds

=

ˆ
R

f̂ (s)e2πisx lim
t→0

e−π|ts|2 ds =

ˆ
R

f̂ (s)e2πisx ds.

The first equality holds because f ∗ Gt(x) → f(x) uniformly in x as
t→ 0, by Exercise 7.25. The second equality holds by equation (7.21).
The third equality follows from the Lebesgue Dominated Convergence
Theorem, which applies since |f̂ (s)e2πisxe−π|ts|2 | ≤ |f̂ (s)|, where f̂ ∈
S(R) by Theorem 7.18, and so |f̂ | ∈ L1(R). (See Theorem A.59 for a
statement of the Lebesgue Dominated Convergence Theorem, in the
case of integrands indexed by n ∈ N rather than by t > 0 as here.)
The fourth inequality holds since limt→0 e

−π|ts|2 = 1 for each s ∈ R.

Lo and behold, f(x) = (f̂ )∨(x), which is the inversion formula
we were seeking. �
Exercise 7.29. Use the time–frequency dictionary to check the iden-
tity (7.23) used in the proof of the Fourier Inversion Formula. ♦
Exercise 7.30. Justify the interchange of limit and integral to show
that

lim
t→0

ˆ
R

f̂ (s)e2πisxe−π|ts|2 ds =

ˆ
R

f̂ (s)e2πisx lim
t→0

e−π|ts|2 ds,
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for f ∈ S(R), without using Lebesgue Dominated Convergence (The-
orem A.59). Hint: Break the integral into two pieces: where |s| ≤M

and where |s| > M . For the bounded piece use uniform convergence
of the integrands to interchange the limit and the integral. For the un-
bounded piece use the decay properties of f̂ to show that the integral
can be made small for M large enough. ♦

The inversion formula guarantees that the Fourier transform is
in fact a bijection from the Schwartz space S(R) onto itself. More is
true: the Fourier transform is an energy-preserving map, also called a
unitary transformation, on S(R). This is the content of Plancherel’s
Identity. First we must define our notion of the size of a function.
We can equip S(R) with an inner product

〈f, g〉 :=
ˆ
R

f(x)g(x) dx for all f , g ∈ S(R)

with associated L2 norm given by ‖f‖22 = 〈f, f〉. Thus the L2 norm is
defined by ‖f‖2 :=

(´
R
|f(x)|2 dx

)1/2. For Schwartz functions f and
g, the integral defining the inner product yields a well-defined finite
complex number.

Plancherel’s Identity says that each Schwartz function f and its
Fourier transform f̂ have the same size; in other words, the Fourier
transform preserves the L2 norm.

Theorem 7.31 (Plancherel’s Identity). If f ∈ S(R), then

‖f‖2 = ‖f̂ ‖2.

Proof. We use the time–frequency dictionary, the multiplication for-
mula and the Fourier Inversion Formula to give a proof of Plancherel’s
Identity. Set ĝ = f in the multiplication formula (7.21). Then, by
the analogue g = (f)∨ = f̂ of property (f) for the inverse Fourier
transform, we obtainˆ

|f |2 =

ˆ
f f =

ˆ
f ĝ =

ˆ
f̂ g =

ˆ
f̂ f̂ =

ˆ
|f̂ |2. �

We end this section with two useful results. The first is the po-
larization identity, which says that the inner product of two Schwartz
functions is equal to the inner product of their Fourier transforms.
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The second is an application to differential equations that relies cru-
cially on Theorem 7.18.

Exercise 7.32 (Polarization Identity). Prove the polarization iden-
tity for real-valued functions f and g in S(R). Namely,

(7.24) 〈f, g〉 = 〈f̂ , ĝ 〉.

Hint: Use Plancherel’s Identity for f + g and f − g and then add. ♦

Example 7.33 (An Application to Solving Differential Equations).
Let us find a function f on R that satisfies the (driven, linear, constant-
coefficient) differential equation

f (3)(x) + 3f ′′(x)− 2f ′(x)− 6f(x) = e−πx2

.

Taking the Fourier transform on both sides of the equation and using
the time–frequency dictionary, we obtain

(7.25) f̂ (ξ)
[
(2πiξ)3 + 3(2πiξ)2 − 2(2πiξ)− 6

]
= e−πξ2 .

Let P (t) = t3 + 3t2 − 2t − 6 = (t + 3)(t2 − 2). Then the polynomial
inside the brackets in equation (7.25) is Q(ξ) := P (2πiξ). Solving for
f̂ (ξ) and using the Fourier Inversion Formula in S(R), we obtain

f̂ (ξ) = e−πξ2/Q(ξ) and so f(x) =
(
e−πξ2/Q(ξ)

)∨
(x).

(Fortunately f̂(ξ) does lie in S(R), since the denominator Q(ξ) has
no real zeros; check!) We have expressed the solution f(x) as the
inverse Fourier transform of a known function depending only on the
driving term and the coefficients. ♦

In general, let P (x) =
∑n

k=0 akx
k be a polynomial of degree n

with constant complex coefficients ak. If Q(ξ) = P (2πiξ) has no real
zeros and u ∈ S(R), then the linear differential equation

P (D)f =
∑

0≤k≤n

akD
kf = u

has solution f =
(
û(ξ)/Q(ξ)

)∨.

Note that since Q(ξ) has no real zeros, the function û(ξ)/Q(ξ) is
in the Schwartz class. Therefore we may compute its inverse Fourier
transform and, by Theorem 7.18, the result is a function in S(R).
Often

(
û(ξ)/Q(ξ)

)∨ can be computed explicitly.
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7.7. Lp norms on S(R)

In this subsection we define the Lp norm ‖f‖p of a Schwartz func-
tion f for 1 ≤ p ≤ ∞. The heart of the subsection is the proof of
Theorem 7.35, showing that for Schwartz functions f , the convolution
of f with a suitable approximation to the identity converges to f in
the Lp sense for each real number p such that 1 ≤ p <∞.

We equip the Schwartz space S(R) with a family of norms, called
the Lp norms, indexed by the real numbers p such that 1 ≤ p < ∞
and by p = ∞. For f ∈ S(R) let ‖f‖p :=

(´
R
|f(x)|p dx

)1/p, for
1 ≤ p <∞, and ‖f‖∞ := sup|x|∈R |f(x)|, for p =∞.

Exercise 7.34 (Schwartz Functions Have Finite Lp Norm). Verify
that if f ∈ S(R), then ‖f‖p <∞ for each p with 1 ≤ p ≤ ∞. ♦

The Schwartz space S(R) with the Lp norm is a normed space.
In particular, the Triangle Inequality holds:

‖f + g‖p ≤ ‖f‖p + ‖g‖p,

for all f , g ∈ S(R) and all p with 1 ≤ p ≤ ∞. This Triangle Inequality
for the Lp norm is also known as Minkowski’s Inequality5. We prove
it in Chapter 12 (Lemma 12.48).

When ‖f‖p <∞, we say that f belongs to Lp(R), or f ∈ Lp(R).
Thus for each p with 1 ≤ p ≤ ∞, the function space Lp(R) con-
sists of those functions f : R → R whose Lp norms are finite. To
make this precise, we have to appeal to Lebesgue integration on R,
as we did when defining Lp(T) in Chapter 2. Exercise 7.34 shows
that S(R) ⊂ Lp(R). A shortcut, which we have already used when
talking about Lp(T), would be to define Lp(R) as the completion of
S(R) with respect to the Lp norm. The two definitions are equivalent.
The second has the advantage that it immediately implies that the
Schwartz class is dense in Lp(R) with respect to the Lp norm.

Given an approximation of the identity {Kt}t∈Λ in S(R) and
a function f ∈ S(R), their convolutions Kt ∗ f converge to f not
only uniformly but also in the Lp norm. We state and prove this
approximation result in the case p = 1.

5Named after the German mathematician Hermann Minkowski (1864–1909).
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Theorem 7.35. Let the family {Kt}t∈Λ be an approximation of the
identity in S(R) as t→ t0. If f ∈ S(R), then

lim
t→0
‖Kt ∗ f − f‖1 = 0.

Proof. Define the translation operator τy by τyf(x) := f(x− y), for
y ∈ R. The following pointwise inequality holds:

|Kt ∗ f(x)− f(x)| =

∣∣∣∣ˆ
R

f(x− y)Kt(y) dy − f(x)

∣∣∣∣
=

∣∣∣∣ˆ
R

[τyf(x)− f(x)]Kt(y) dy

∣∣∣∣
≤

ˆ
R

|τyf(x)− f(x)| |Kt(y)| dy.(7.26)

In the second equality we used property (i) of the kernels Kt, namely
that they have integral equal to one, so that f(x) =

´
f(x)Kt(y) dy.

The inequality holds because the absolute value of an integral is
smaller than the integral of the absolute value (the Triangle Inequality
for integrals). It can be justified by noticing that the integrals can be
approximated by Riemann sums (finite sums), for which the ordinary
Triangle Inequality for absolute values can be applied. Now inte-
grate the pointwise inequality just derived and apply Fubini’s Theo-
rem (Theorem A.58) to interchange the order of integration:

‖Kt ∗ f − f‖1 ≤
ˆ
R

ˆ
R

|τyf(x)− f(x)| |Kt(y)| dy dx

=

ˆ
R

‖τyf − f‖1|Kt(y)| dy.(7.27)

We estimate separately the contributions to the right-hand side
of inequality (7.27) for large and small y.

First, the integral of the absolute values of Kt away from zero can
be made arbitrarily small for t close to t0; this is property (iii) of the
approximation of the identity. More precisely, given f ∈ S(R), ε > 0,
and δ > 0, we can choose h small enough so that for all |t− t0| < h,

ˆ
|y|>δ

|Kt(y)| dy ≤ ε/4‖f‖1.
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Second, we can make ‖τyf − f‖1 small provided y is small as
follows. Since f ∈ S(R), we know that f is continuous and f ∈ L1(R).
For continuous functions in L1(R),

(7.28) lim
y→0
‖τyf − f‖1 = 0.

In other words, translation is a continuous operation at zero in L1,
at least for continuous functions f . See Exercise 7.37. A density
argument shows that the statement is actually true for all functions in
L1(R), not just for those that are continuous. Hence, given f ∈ S(R)
and ε > 0, there exists δ > 0 (depending on f) such that

(7.29) ‖τyf − f‖1 ≤ ε/2C for all |y| < δ.

For |y| < δ we apply estimate (7.29), with C the constant that
uniformly controls the L1 norms of Kt, that is,

´
|Kt(y)|dy ≤ C for

all t ∈ Λ. Altogether, we have

‖Kt ∗ f − f‖1 ≤
ˆ
|y|<δ

|Kt(y)|‖τyf − f‖1 dy

+

ˆ
|y|≥δ

|Kt(y)|‖τyf − f‖1 dy

≤ ε

2C

ˆ
|y|<δ

|Kt(y)| dy + 2‖f‖1
ˆ
|y|≥δ

|Kt(y)| dy

≤ ε/2 + 2‖f‖1ε/4‖f‖1 = ε.

In the last inequality we have used properties (ii) and (iii) of the
approximation of the identity. Theorem 7.35 is proved. �

The proof above can be modified for the case p = ∞, as stated
in Theorem 7.24, and for 1 < p < ∞. A key step is to use an inte-
gral version of the Triangle Inequality, known as Minkowski’s Integral
Inequality, to prove the Lp version of inequality (7.27). Minkowski’s
Integral Inequality essentially says that the norm of the integral is less
than or equal to the integral of the norms. See p. 357 for a precise
statement and some applications.

Exercise 7.36. Show that if f ∈ S(R) and y ∈ R, then τyf ∈ S(R)
and the Lp norm is preserved: ‖f‖p = ‖τyf‖p, for all 1 ≤ p <∞. ♦
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Exercise 7.37. Show that we can interchange the limit and integral:
limy→0

´
R
|f(x− y)− f(x)|p dx =

´
R
limy→0 |f(x− y)− f(x)|p dx = 0,

for f ∈ S(R). ♦

Exercises 7.36 and 7.37 for p = 1 show that equation (7.28) is valid.

Exercise 7.38. State and prove an Lp version of Theorem 7.35. ♦

We have not used the fact that K ∈ S(R), except to feel com-
fortable when writing down the integrals. We did use the defining
properties of an approximation of an identity. As for f , all that is
really required is that f is Lp integrable.

7.8. Project: A bowl of kernels

When we studied summability methods in Sections 4.4 and 4.5, we
used the Cesàro and Abel means to improve the convergence of Four-
ier series, by convolving with the Fejér and Poisson kernels on the
circle T. Those kernels happened to be approximations of the iden-
tity on T. The analogous Fejér and Poisson kernels on the real line R
can be used to improve the convergence of the Fourier integral. In
this project we define the Fejér kernel, the Poisson kernel, the heat
kernel, the Dirichlet kernel, and the conjugate Poisson kernel on R,
and we ask the reader to explore some of their properties.

The Fejér kernel on R:

(7.30) FR(x) := R
[(

sin(πRx)
)
/πRx

]2 for R > 0.

The Poisson kernel on R:

(7.31) Py(x) := y/π(x2 + y2) for y > 0.

The heat kernel on R (a modified Gaussian):

(7.32) Ht(x) := (1/
√
4πt) e−|x|2/4t for t > 0.

The Dirichlet kernel on R:

(7.33) DR(x) :=

ˆ R

−R

e2πixξ dξ =
sin(2πRx)

πx
for R > 0.
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The conjugate Poisson kernel on R:

(7.34) Qy(x) := x/π(x2 + y2) for y > 0.

Of these kernels, only the heat kernel is a Schwartz function. The
Fejér and Poisson kernels are functions of moderate decrease (Chap-
ter 8). For such functions we can reproduce essentially all the proofs
above concerning approximations of the identity. Since the Dirich-
let kernels are not uniformly integrable, the family {DR}R>0 does
not generate an approximation of the identity. However, the integral
averages of the Dirichlet kernels are the Fejèr kernels, which are an
approximation of the identity. Investigate the history behind these
kernels. See also Chapter 8 for the much larger class of tempered
distributions, which includes all the kernels above.

(a) Show that the Poisson kernel is a solution of Laplace’s equation,
ΔP := (∂2/∂x2)P +(∂2/∂y2)P = 0, for (x, y) in the upper half-plane
(x ∈ R, y > 0). You can start your search in [SS03, Section 5.2.2].

(b) Show that the heat kernel is a solution of the heat equation on the
line: (∂/∂t)H = (∂2/∂x2)H. You may benefit from reading [Kör,
Chapters 54–58] and [SS03, Section 5.2.1].

(c) Show that the Fejér kernels {FR}R>0, the Poisson kernels {Py}y>0,
the Gaussian kernels {Gδ}δ>0, and the heat kernels {Ht}t>0 generate
approximations of the identity on R, R → ∞, y → 0, as δ → 0 and
t→ 0, respectively. The well-known identities

´
R
(1− cosx)/x2 dx =

π and
´
R
1/(1 + x2) dx = π may be helpful.

(d) Let SRf denote the partial Fourier integral of f , defined by
SRf(x) :=

´ R

−R
f̂ (ξ)e2πixξ dξ. Show that SRf = DR ∗ f and that

FR(x) =
1
R

´ R

0
Dt(x) dt.

(e) Show that the conjugate Poisson kernels are square integrable
but not integrable: Qy /∈ L1(R), but Qy ∈ L2(R). Also show that
the conjugate Poisson kernel satisfies Laplace’s equation ΔQ = 0.
Finally, show that Py(x) + iQy(x) = 1/(πiz), where z = x+ iy. The
function 1/(πiz) is analytic on the upper half-plane; it is known as the
Cauchy kernel. Thus the Poisson kernel and the conjugate Poisson
kernel are the real and imaginary parts, respectively, of the Cauchy
kernel 1/(πiz).

                

                                                                                                               



Chapter 8

Beyond paradise

The Fourier transform and most of its properties are valid in a more
general setting than the class S(R) of Schwartz functions. Both the
differentiability and the rapid decrease of the Schwartz functions can
be relaxed. In this chapter we extend the Fourier transform first to
the class of continuous functions of moderate decrease, which contains
S(R) (Section 8.1), and then to the still larger class S ′(R) of tempered
distributions, which contains the Lp(R) functions for all real p with
1 ≤ p ≤ ∞, the delta distribution, the Borel measures, and more
(Section 8.2).

Strictly speaking, the tempered distributions are not functions
at all, as the example of the delta distribution shows (Section 8.4).
However, the distributions still have a Fourier theory, meaning that
we can extend to them the fundamental operations discussed in the
previous chapter, such as translation, dilation, the Fourier transform,
and convolution with Schwartz functions (Section 8.3).

We present three beautiful and simple consequences of Four-
ier theory: the Poisson summation formula, the Whittaker–Shannon
sampling formula, and the Heisenberg uncertainty principle, with im-
portant applications in number theory, signal processing, and quan-
tum mechanics (Section 8.5). To finish, we return to tempered distri-
butions and the interplay of the Fourier transform with the Lebesgue
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spaces Lp(R) (Section 8.6). In the project in Section 8.7 we exam-
ine the principal value distribution 1/x, a tempered distribution of
a different form: neither a function nor a delta distribution nor a
measure. Its significance for us is that it is the heart of the Hilbert
transform (Chapter 12).

8.1. Continuous functions of moderate decrease

We extend the Fourier transform from the Schwartz class S(R) to the
class of continuous functions of moderate decrease.

Definition 8.1. A function f is said to be a continuous function of
moderate decrease if f is continuous and if there are constants A and
ε > 0 such that

(8.1) |f(x)| ≤ A/(1 + |x|1+ε) for all x ∈ R. ♦

The 1 in the denominator means that |f | cannot be too big for x
near 0, while the |x|1+ε in the denominator means that |f | decreases
like |x|−(1+ε) as x→ ±∞. The continuity will allow us to define the
integral over R of such functions without needing Lebesgue integra-
tion theory. The growth condition (8.1) ensures that such an f is
bounded and is both integrable and square integrable.

Exercise 8.2. Show that all Schwartz functions are continuous func-
tions of moderate decrease. ♦

Example 8.3 (Continuous Functions of Moderate Decrease Need Not
Be Schwartz ). There are functions such as

1/(1 + x2n) for n ≥ 1 and e−a|x| for a > 0

that are continuous functions of moderate decrease, although they are
not in S(R). The first of these functions is smooth with slow decay;
the second is nonsmooth with rapid decay. ♦

Exercise 8.4. Neither the Poisson kernel (7.31) nor the Fejér ker-
nel (7.30) belong to S(R). On the other hand, show that for each
R > 0 and each y > 0, the Fejér kernel FR and the Poisson kernel Py

are continuous functions of moderate decrease with ε = 1. Show also
that the conjugate Poisson kernel Qy is not a continuous function of
moderate decrease (see the project in Section 7.8). ♦
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Exercise 8.5. Verify that the class of continuous functions of mod-
erate decrease is closed under multiplication by bounded continuous
functions. ♦

We summarize the integrability and boundedness properties of
continuous functions of moderate decrease. Define the improper in-
tegral over R of a continuous function f of moderate decrease as the
limit as N → ∞ of the Riemann integrals of f over the compact
intervals [−N,N ]:

(8.2)
ˆ ∞

−∞
f(x) dx := lim

N→∞

ˆ N

−N

f(x) dx <∞.

By Exercise 8.5, if f is a continuous function of moderate de-
crease, then so too is e−2πixξf(x), and the integral over x ∈ R of this
product is well-defined and finite for each real number ξ. Thus the
Fourier transform for continuous functions of moderate decrease is
well-defined by the formula

f̂(ξ) :=

ˆ ∞

−∞
f(x)e−2πixξ dx.

Exercise 8.6. Show that the Fourier transform of the Fejér kernel
FR is (1− |ξ|/R) if |ξ| ≤ R and zero otherwise. Show that the Four-
ier transform of the Poisson kernel Py is e−2π|ξ|y (see the project in
Section 7.8). ♦

Exercise 8.7. Show that the convolution of two continuous functions
f and g of moderate decrease is also a continuous function of moderate
decrease. Show that f̂ ∗ g = f̂ ĝ. ♦

Exercise 8.8. Show that if f is a continuous function of moderate
decrease and φ ∈ S(R), then their convolution f ∗ φ ∈ S(R). ♦

Let f be a continuous function of moderate decrease. Then f

is bounded, since |f(x)| ≤ A for all x ∈ R. Hence f belongs to
the space L∞(R) of essentially bounded functions (see Section A.3.1),
and ‖f‖∞ = supx∈R |f(x)|. Also, f is locally integrable on R, written
f ∈ L1

loc(R), meaning that for each compact interval [a, b] the integral´ b

a
|f(x)| dx is finite. Finally, f lies in L1(R)∩L2(R), since the decay
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condition (8.1) guarantees that f is both integrable (f ∈ L1(R)) and
square integrable (f ∈ L2(R)). Furthermore,

‖f‖22 =

ˆ ∞

−∞
|f(x)|2 dx ≤

(
sup
x∈R

|f(x)|
) ˆ ∞

−∞
|f(x)| dx = ‖f‖∞‖f‖1.

Exercise 8.9 (Continuous Functions of Moderate Decrease Are in
Lp(R)). Check that continuous functions of moderate decrease are in
L1(R) and indeed in every space Lp(R). In other words, check that´∞
−∞ |f(x)|

p dx <∞, for 1 ≤ p <∞. ♦

The Fourier transform is well defined for continuous functions
of moderate decrease. The Approximation of the Identity Theorem
(Theorem 7.35) can be generalized to continuous functions of moder-
ate decrease. In other words, if f and the good kernels Kδ are con-
tinuous functions of moderate decrease, then the convolutions f ∗Kδ

converge uniformly to f , and they converge in Lp to f for 1 ≤ p <∞.
Therefore, the inversion formula and Plancherel’s Identity hold if f

and f̂ are both continuous functions of moderate decrease. See [SS03,
Sections 5.1.1 and 5.1.7] for more details.

In fact, in the proofs given in Chapter 7 we did not use the full
power of the Schwartz class. What is really needed there is the fast
decay (integrability) of the function, to ensure that integrals outside
a large interval (|x| > M) can be made arbitrarily small for M suf-
ficiently large. Inside the compact interval |x| ≤ M , one can use
uniform convergence to interchange the limit and the integral and
take advantage of the integrand being small to guarantee that the in-
tegral over the compact interval is arbitrarily small. These arguments
still apply if we assume the functions involved are continuous func-
tions of moderate decrease instead of Schwartz functions. Similarly,
the inversion formula holds when f and f̂ are both in L1(R). The
proof uses Lebesgue integration theory together with theorems for
interchanging limits and integrals, such as the Lebesgue Dominated
Convergence Theorem A.59; see for example [SS05, Section 2.4].

Exercise 8.10. Verify that the Approximation of the Identity Theo-
rem (Theorem 7.35) holds when the functions and kernels convolved
are continuous functions of moderate decrease. ♦

                

                                                                                                               



8.2. Tempered distributions 193

Exercise 8.11. Verify that the inversion formula (7.22) and Planche-
rel’s Identity (Theorem 7.31) hold when f and f̂ are both continuous
functions of moderate decrease. ♦

In the project in Section 7.8 we saw that the partial Fourier inte-
grals SRf(x) :=

´ R

−R
f̂ (ξ)e2πiξx dξ are given by convolution with the

Dirichlet kernel DR on R, that the Fejér kernel on R can be written
as an integral mean of Dirichlet kernels,

FR(x) =
1

R

ˆ R

0

Dt(x) dt,

and that the Fejér kernels define an approximation of the identity
on R as R → ∞. Therefore the integral Cesàro means of a function
f of moderate decrease converge to f as R→∞; in other words,

(8.3) σRf(x) :=
1

R

ˆ R

0

Stf(x) dt = FR ∗ f(x)→ f(x).

The convergence is both uniform and in Lp.

Notice the parallel with the results obtained for Fourier series
when we discussed summability methods.

In Chapter 12, we prove that the partial Fourier sums SNf of f
converge in Lp(T) to f as N →∞, this time as a consequence of the
boundedness of the periodic Hilbert transform in Lp(T). The same is
true in R.

8.2. Tempered distributions

We begin with some definitions. A linear functional on S(R) is a
linear mapping from S(R) to the complex numbers C. We explain
below the idea of continuity for linear functionals.

Definition 8.12. A tempered distribution T is a continuous linear
functional from the space S(R) of Schwartz functions to the complex
numbers:

T : S(R)→ C.

The space of tempered distributions is denoted by S ′(R). Further,
two tempered distributions T and U are said to coincide in the sense
of distributions if T (φ) = U(φ) for all φ ∈ S(R). A sequence of
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tempered distributions {Tn}n∈N is said to converge in the sense of
distributions to T ∈ S ′(R) if for all φ ∈ S(R),

lim
n→∞

Tn(φ) = T (φ). ♦

The notation S ′(R) is chosen to match the standard notation V ′

for the collection of all continuous linear functionals T : V → C on
a so-called topological vector space V . This collection V ′ is called
the dual of V . The space of tempered distributions is the dual of the
space of Schwartz functions.

To say that a functional T is linear means that for all a, b ∈ C
and all φ, ψ ∈ S(R),

T (aφ+ bψ) = aT (φ) + bT (ψ).

If T is linear, then T (0) = 0.

Continuity requires a bit more explanation. If φ ∈ S(R), then for
each k, � ∈ N the quantities

(8.4) ρk,�(φ) := sup
x∈R

|x|k|φ(�)(x)|

are finite (Exercise 7.2). These quantities are seminorms, meaning
that they are positive (although not necessarily positive definite, so
ρk,�(φ) = 0 does not imply φ = 0), they are homogeneous (ρk,�(λφ) =
|λ|ρk,�(φ)), and they satisfy the Triangle Inequality. These seminorms
enable us to define a notion of convergence in S(R).

Definition 8.13. A sequence {φn}n∈N converges to φ in S(R) if and
only if limn→∞ ρk,�(φn − φ) = 0 for all k, � ∈ N. ♦

Now we can define continuity for tempered distributions.

Definition 8.14. A linear functional T on S(R) is continuous if
whenever a sequence {φn}n∈N in S(R) converges in S(R) to some
φ ∈ S(R), the sequence {T (φn)}n∈N of complex numbers converges
to T (φ) in C. ♦

Exercise 8.15 (It Suffices to Check Continuity at Zero). Show that
for a linear functional it is enough to check convergence when φ = 0:
a linear functional T on S(R) is continuous if and only if T (φn)→ 0

in C whenever φn → 0 in S(R). ♦
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Exercise 8.16. Show that if φn → φ in S(R), then φ
(�)
n → φ(�)

uniformly for all � ∈ N. ♦

We show below that the delta distribution is continuous. Other
examples are left as exercises for the reader.

The canonical example of a tempered distribution is the func-
tional Tf given by integration against a reasonable function f :

(8.5) Tf (φ) :=

ˆ
R

f(x)φ(x) dx for all φ ∈ S(R).

In this case we say for short that the distribution T is a function f .

How reasonable must the function f be? For the integral to be
well-defined for all φ ∈ S(R), f cannot grow too fast at infinity. For
example, exponential growth could overwhelm the decay of a Schwartz
function φ as x→ ±∞. However, polynomials or continuous functions
that increase no faster than a polynomial are reasonable. Schwartz
functions f are as reasonable as they could possibly be since they are
rapidly decreasing, and continuous functions of moderate decrease are
also reasonable.

Example 8.17 (Bounded Continuous Functions Induce Tempered
Distributions). If f is bounded and continuous, then the formula (8.5)
for Tf defines a continuous linear functional on S(R). So Tf defines
a tempered distribution: Tf ∈ S ′(R).

In particular Tf is a tempered distribution if f ∈ S(R) or if f is
a continuous function of moderate decrease.

First, for f bounded and continuous and for φ ∈ S(R), the prod-
uct fφ is integrable; hence Tf (φ) is a well-defined number. Linearity
of the functional Tf follows from the linearity of the integral. To
show that Tf is continuous, suppose φn → 0 in S(R). Then in par-
ticular limn→∞ ρ2,0(φn) = 0; that is, there is some N0 such that for
all n > N0, we have |x|2|φn(x)| ≤ 1. By choosing M > 0 sufficiently
large we can guarantee that for all n > N0,ˆ

|x|>M

|φn(x)| dx ≤
ˆ
|x|>M

x−2 dx < ε/2.

On the compact interval [−M,M ] the functions φn converge uni-
formly to zero (because limn→∞ ρ0,0(φn) = 0), and by Theorem 2.53
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we can interchange the limit and the integral:

lim
n→∞

ˆ
|x|≤M

|φn(x)| dx =

ˆ
|x|≤M

lim
n→∞

|φn(x)| dx = 0.

Therefore, given ε > 0, there is some N1 > 0 so that for all n > N1,ˆ
|x|≤M

|φn(x)| dx < ε/2.

Thus for n > N := max {N0, N1} we have
´
R
|φn(x)| dx ≤ ε.

Finally, Tf is continuous, since for n > N ,

|Tf (φn)| ≤
ˆ
R

|f(x)||φn(x)| dx

≤ sup
x∈R

|f(x)|
ˆ
R

|φn(x)| dx ≤ sup
x∈R

|f(x)| ε,

and therefore limn→∞ Tf (φn) = 0. ♦

For example, the distribution T1 induced by the bounded function
f ≡ 1 is a well-defined tempered distribution.

Exercise 8.18 (Polynomials Induce Tempered Distributions). Show
that the linear functional defined by integration against the polyno-
mial f(x) = a0 + a1x+ · · ·+ akx

k is a tempered distribution. ♦

Example 8.17 tells us that we can view S(R) as sitting inside
S ′(R), via the one-to-one mapping ε : S(R)→ S ′(R) given by

ε(f) := Tf for f ∈ S(R).

The mapping ε is continuous, in the sense that if fn, f ∈ S(R)
and fn → f in S(R), then Tfn(φ) → Tf (φ) in C for all φ ∈ S(R), so
that Tfn converges to Tf in the sense of distributions. Such continu-
ous and one-to-one mappings are sometimes called embeddings, as in
Section 2.4.

Exercise 8.19. Show that the mapping ε : S(R) → S ′(R) given by
ε(f) := Tf for f ∈ S(R) is one-to-one. ♦

Exercise 8.20. Prove that if fn, f ∈ S(R) and fn → f in S(R), then
Tfn(φ)→ Tf (φ) in C for all φ ∈ S(R). ♦
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Like bounded functions, unbounded functions that have some in-
tegrability properties can also induce tempered distributions via in-
tegration, as we show in Section 8.6 for Lp functions. Some tempered
distributions are not induced by any function, however, such as the
delta distribution (Section 8.4) and the principal value distribution
1/x (the project in Section 8.7).

In Example 8.17 we used the fact that if φn → 0 in S(R), then
‖φn‖L1 → 0. By a similar argument, the Lp norms also go to zero.

Exercise 8.21. Verify that if φn ∈ S(R) and φn → 0 in S(R), then
for all real p with 1 ≤ p ≤ ∞, ‖φn‖pp :=

´
R
|φn(x)|p dx→ 0. ♦

The continuous linear functionals that act on the space of com-
pactly supported C∞ functions are called distributions (unfortunately,
this term is easy to confuse with the tempered distributions φ ∈
S ′(R)). We denote by D(R) the space of compactly supported C∞

functions. Then D(R) ⊂ S(R). The space of distributions is the dual
D′(R) of D(R). Tempered distributions are distributions, so these
two spaces are nested: S ′(R) ⊂ D′(R). Although we sometimes write
distributions for short, in this book we always mean tempered dis-
tributions. The book by Robert Strichartz [Stri94] is a delightful
introduction to distribution theory, including many applications, at
a level comparable to that of this book.

8.3. The time–frequency dictionary for S ′(R)

In this section we show how to extend from functions to distributions
the fundamental operations discussed so far: translation, dilation,
differentiation, the Fourier and inverse Fourier transforms, multipli-
cation by Schwartz functions and by polynomials, and convolution by
Schwartz functions. We assume without proof that these extensions
of the fundamental operations, and the Fourier transform, are nicely
behaved with respect to the notion of continuity in S ′(R).

The key idea is that since tempered distributions are defined by
the way they act on the space of Schwartz functions, it makes sense
to define an operation on a tempered distribution by pushing the
operation across to act on the Schwartz function.

                

                                                                                                               



198 8. Beyond paradise

We illustrate with the example of differentiation. When T is of
the form Tf for some f ∈ S(R), we want its derivative T ′

f to be given
by the tempered distribution corresponding to the derivative f ′ of f .
Integration by parts gives

(8.6) Tf ′(φ) =

ˆ
R

f ′(x)φ(x) dx = −
ˆ
R

f(x)φ′(x) dx = −Tf (φ
′).

Thus we can define the new distribution T ′
f , representing the deriva-

tive of Tf , by setting

T ′
f (φ) = Tf ′(φ) = −Tf (φ

′).

In this sense, we have pushed the differentiation across to the Schwartz
function φ. We emphasize, though, that T ′

f (φ) is the negative of
Tf (φ

′); the derivative did not simply migrate unchanged to φ.

Next, for a general distribution T , we use the formula that we
were led to in the special case T = Tf . Namely, we omit the middle
of the string of equalities (8.6) and define the derivative of T by

T ′(φ) := −T (φ′).

Given a tempered distribution T : S(R) → C, we use this same
idea of pushing the operator across to create nine new tempered dis-
tributions defined by their action on functions φ ∈ S(R), as shown in
Table 8.1. The new functionals defined in Table 8.1 are linear, and
it can be shown that they are also continuous. So we have indeed
defined new tempered distributions, starting from a given tempered
distribution T .

The function g in the multiplication in item (f) could be a func-
tion in the Schwartz class, a bounded function such as the trigono-
metric functions eξ(x) = e2πixξ, or an unbounded function that does
not increase too fast, such as a polynomial. Multiplication by the
trigonometric function eξ is denoted by MξT :=MeξT and is called
modulation.

Exercise 8.22. Verify that if T ∈ S ′(R), then the nine linear func-
tionals defined in Table 8.1 are in S ′(R). Notice that verifying con-
tinuity reduces to verifying that for example, in the case of (a), if
φn → φ in S(R), then τ−hφn → τ−hφ in S(R), etc. ♦
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Table 8.1. New tempered distributions from old. Here φ ∈
S(R), T ∈ S′(R), h ∈ R, s > 0, g is a function such that
gφ ∈ S(R), and ψ ∈ S(R). FT means Fourier transform.

Operation on S(R) Operation on S ′(R)

translation translate τhT of T
(a)

τhφ(x) = φ(x− h) τhT (φ) := T (τ−hφ)

dilation dilation DsT of T
(b)

Dsφ(x) = sφ(sx) DsT (φ) := T (sDs−1φ)

derivative derivative T ′ of T
(c)

φ′(x) = (d/dx)φ(x) T ′(φ) := −T (φ′)

Fourier transform Fourier transform T̂ of T
(d)

φ̂(ξ) =
´∞
−∞ φ(x)e−ixξdx T̂ (φ) := T (φ̂)

inverse FT inverse FT T∨ of T
(e)

φ∨(ξ) =
´∞
−∞ φ(x)eixξdx T∨(φ) := T (φ∨)

product with g product MgT of T and g
(f) Mgφ(x) = g(x)φ(x) MgT (φ) := T (Mgφ)

reflection reflection T̃ of T
(g)

φ̃(x) = φ(−x) T̃ (φ) := T (φ̃)

conjugate conjugate T of T
(h)

φ(x) = φ(x) T (φ) := T (φ)

convolution convolution ψ ∗ T of T , ψ
(i)

ψ ∗ φ(x) =
´∞
−∞ ψ(x− y)φ(y)dy ψ ∗ T (φ) := T (ψ̃ ∗ φ)

The mapping f �→ Tf interacts as one would expect with the
operations of translation of f , dilation of f , and so on. For example,
the translate τhTf of Tf is the same as the tempered distribution Tτhf

induced by the translate τhf of f : τhTf = Tτhf .

Note that in lines (d)–(h) of Table 8.1, the operation migrates
unchanged from T to φ, while in each of lines (a)–(c) and (i) the op-
eration suffers some change on the way. For example, for the Fourier
transform T̂ (φ) := T (φ̂), while for the translation τhT (φ) := T (τ−hφ).
The interested reader may like to investigate further; the key point
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is that the operations in (d)–(h) are what is called selfadjoint, while
those in the other lines are not.

Example 8.23 and Exercise 8.24 offer some practice in working
with the definition of tempered distributions, as we work out the
details of this interaction for each of the nine new distributions.

Example 8.23 (The Mapping f �→ Tf Respects Convolution). We
verify that for Schwartz functions f and ψ, the convolution of ψ with
the tempered distribution Tf is the same as the tempered distribution
induced by the convolution of ψ with f :

ψ ∗ Tf = Tψ∗f for all f ∈ S(R), ψ ∈ S(R).

For f , ψ, and φ ∈ S(R),

Tψ∗f (φ) =

ˆ
R

φ(y)(ψ ∗ f)(y) dy

=

ˆ
R

φ(y)

(ˆ
R

f(x)ψ(y − x) dx

)
dy

=

ˆ
R

f(x)

(ˆ
R

ψ̃ (x− y)φ(y) dy

)
dx

=

ˆ
R

f(x)(ψ̃ ∗ φ)(x) dx = Tf (ψ̃ ∗ φ) = (ψ ∗ Tf )(φ),

where in the third equality we interchanged the order of integration
and replaced ψ(y − x) by ψ̃ (x− y). ♦

Notice that the above calculation leads us to the correct defini-
tion of ψ ∗ T (φ) = T (ψ̃ ∗ φ). It turns out that the object obtained
by convolution of ψ ∈ S(R) with T ∈ S ′(R) can be identified with an
infinitely differentiable function that grows slower than some polyno-
mial. Specifically, f(y) = T (τyψ̃ ) [Graf08, pp. 116–117].

Exercise 8.24 (The Mapping f �→ Tf Respects the Fundamental
Operations). Show that for all f ∈ S(R), h ∈ R, s > 0, and g ∈
C∞(R) such that gf ∈ S(R) for all f ∈ S(R), we have

τh(Tf ) = Tτhf , Ds(Tf ) = TDsf , T̂f = Tf̂ , (Tf )
∨ = T(f)∨ ,

T̃f = Tf̃ , Tf = Tf , and (MgTf ) = TMgf . ♦
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Table 8.2. The time–frequency dictionary in S′(R). Here T ,
U ∈ S′(R), a, b, h ∈ R, s > 0, x, ξ ∈ R, and φ, ψ ∈ S(R).

Time Frequency

linear properties linear properties
(a)

aT + bU aT̂ + bÛ

translation modulation
(b)

τhT (φ) := T (τ−hφ) τ̂hT = M−hT̂

modulation by eh(x) = e2πihx translation
(c)

MhT (φ) := T (Mhφ) M̂hT = τhT̂

dilation inverse dilation
(d)

DsT (φ) := T (sDs−1φ) D̂sT = sDs−1 T̂

reflection reflection
(e)

T̃ (φ) := T (φ̃)
̂̃
T = − ˜̂T

conjugate conjugate reflection
(f)

T (φ) := T (φ) T̂ = [T ]∨

derivative multiply by polynomial
(g)

T ′(φ) := −T (φ′) T̂ ′ = [2πiξ]T̂ =M2πiξT̂

multiply by polynomial derivative
(h) M−2πixT (φ) := T (−2πixφ(x)) [M−2πixT ]

∧ = (T̂ )′

convolution product
(i)

ψ ∗ T (φ) := T (ψ̃ ∗ φ) ψ̂ ∗ T =Mψ̂T̂ = ψ̂ T̂

Definitions (d) and (e) in Table 8.1 show that the Fourier trans-
form can be extended to be a bijection on S ′(R), because it is a bi-
jection on S(R). To see this, observe that for all φ ∈ S(R), [T̂ ]∨(φ) =
T ([φ̂]∨) = T (φ). Thus [T̂ ]∨ = T . Similarly [̂T ]∨ = T .

We can now build a time–frequency dictionary for S ′(R), dis-
played in Table 8.2, that is in one-to-one correspondence with the
time–frequency dictionary we built for S(R) (Table 7.1).
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In the time column, we recall the definitions of the basic opera-
tions with tempered distributions; in the frequency column, we recall
how they interact with the Fourier transform.

Example 8.25. As an example of how to derive the time–frequency
dictionary encoded in Table 8.2, we derive (i), the multiplication for-
mula for the convolution. For ψ, φ ∈ S(R), apply the definition of the
Fourier transform of a distribution and the definition of convolution
with a distribution to obtain

(8.7) ψ̂ ∗ T (φ) = (ψ ∗ T )(ψ̂) = T (ψ̃ ∗ φ̂).

Let us look more closely at the argument on the right-hand side of
equation (8.7). We see that it is the Fourier transform of ψ̂φ:

ψ̃ ∗ φ̂(ξ) =

ˆ
R

ψ̃(s)φ̂(ξ − s) ds

=

ˆ
R

ψ̃(s)

(ˆ
R

φ(x)e−2πix(ξ−s) dx

)
ds

=

ˆ
R

(ˆ
R

ψ(−s)e−2πix(−s) ds

)
φ(x)e−2πixξ dx

=

ˆ
R

ψ̂(x)φ(x)e−2πixξ dx =
̂̂
ψφ (ξ).

Now we can continue, using again the definition of the Fourier trans-
form of a distribution and the definition of multiplication of a distri-
bution by the function ψ̂. We see that for all ψ ∈ S(R),

ψ̂ ∗ T (φ) = T (
̂̂
ψφ) = T̂ (ψ̂φ) =Mψ̂T̂ (φ).

This is exactly the multiplication formula we were seeking:

ψ̂ ∗ T =Mψ̂T̂ = ψ̂ T̂ . ♦

Exercise 8.26. Derive the formulas in the frequency column of Ta-
ble 8.2. It will be useful to consult Table 7.1, the corresponding
time–frequency dictionary for the Schwartz class. ♦

8.4. The delta distribution

There are objects in S ′(R) other than functions. The delta distribu-
tion is the canonical example of a tempered distribution that is not
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a function. Informally, the delta distribution takes the value infinity
at x = 0 and zero everywhere else. Rigorously, the delta distribu-
tion is the Fourier transform of the tempered distribution induced by
the function that is identically equal to one. Computationally, the
delta distribution has a very simple effect on Schwartz functions: it
evaluates them at the point 0, as we now show.

By Example 8.17, the bounded function f(x) ≡ 1 induces a tem-
pered distribution T1 via integration against the function 1:

T1(φ) :=

ˆ
R

φ(x) dx for φ ∈ S(R).

The Fourier transform of T1 is the new tempered distribution T̂1 given
by

T̂1(φ) := T1(φ̂ ) =

ˆ
R

φ̂ (ξ) dξ =

ˆ
R

φ̂ (ξ)e2πiξ0 dξ = (φ̂ )∨(0) = φ(0)

for φ ∈ S(R). The last equality holds by the Fourier Inversion For-
mula for Schwartz functions (Theorem 7.28).

Definition 8.27. The delta distribution δ : S(R)→ C is defined by

δ(φ) := T̂1(φ ) = φ(0) for φ ∈ S(R). ♦

We verify that δ is a tempered distribution. It is linear, since
(aφ1+bφ2)(0) = aφ1(0)+bφ2(0). To check continuity, suppose φn → 0

in S(R). Then in particular ρ0,0(φn) = supx∈R |φn(x)| → 0. Since
|φn(0)| ≤ ρ0,0(φn), we have δ(φn) = φn(0)→ 0, as required.

What is the Fourier transform δ̂ of δ? For φ ∈ S(R),

δ̂ (φ) = δ(φ̂ ) = φ̂ (0) =

ˆ
R

φ(x) dx = T1(φ).

Thus the Fourier transform δ̂ is the tempered distribution T1 induced
by the function f(x) ≡ 1. We write δ̂ = T1, or just δ̂ = 1 for short.

Exercise 8.28. Show that the inverse Fourier transform of δ is also
given by T1: (δ)∨(φ) = T1(φ) = δ̂ (φ) for all φ ∈ S(R). ♦

Exercise 8.29. Verify that the Fourier transform of τnδ is the tem-
pered distribution induced by the function en(x) = e−2πinx. ♦
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Why isn’t the delta distribution a true function? For a moment
let us pretend that there is a genuine function δ(x), called the “delta
function”, that induces the delta distribution by integration. Then

(8.8)
ˆ
R

δ(x)φ(x) dx = φ(0) for all φ ∈ S(R).

In particular,
´
R
δ(x)φ(x) dx = 0 for all φ ∈ S(R) such that φ(0) = 0.

So δ(x) must be zero for most x; if for instance δ(x) were positive
on some interval not including the point x = 0, we could build a
Schwartz function supported on that interval whose integral against
δ(x) would not be zero, contradicting equation (8.8). One can use
measure theory to show that in fact δ(x) = 0 for all x except x = 0.

Now, what value can we assign to δ(0) so that integration against
δ(x) will pick out the value of φ at 0? If we assign a finite value to δ(0),
then

´
R
δ(x)φ(x) dx = 0 instead of the φ(0) we want. Therefore δ(0)

cannot be a finite number, and so δ(0) must be infinite. Thus the
delta function is not a true function.

Fortunately, all is not lost: one can interpret δ as a distribution
as we do here, or as a point-mass measure in the language of measure
theory [Fol].

It is interesting that the support of the delta distribution is as
small as it could possibly be without being the empty set, while the
support of its Fourier transform is as large as it could possibly be.
Compare this point with the Uncertainty Principle (Section 8.5.3).

Exercise 8.30 (The Derivatives and the Antiderivative of the Delta
Distribution). Find the derivatives (dk/dxk)δ, k ≥ 1, of the delta
distribution. Check that their Fourier transforms ((dk/dxk)δ)∧ can
be identified with the polynomials (2πix)k. Check that δ coincides,
in the sense of distributions, with the derivative H ′ of the Heaviside
function H defined by H(x) = 0 if x ≤ 0, H(x) = 1 if x > 0. ♦

Remark 8.31. We see that although the delta distribution is not a
function, it can be seen as the derivative of the Heaviside function.
Similarly, it turns out that for each tempered distribution T , no matter
how wild, there is some function f such that T is the derivative of
some order (in the sense of distributions) of f . Another example is
the distribution given by the kth derivative of the delta distribution.
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By Exercise 8.30, (dk/dxk)δ coincides with the (k+1)st derivative of
the Heaviside function. See [Stri94, Section 6.2]. ♦

We now return to the ideas at the start of Section 7.5, where we
lamented that there is no identity element in S(R) and suggested that
the delta distribution, and more generally an approximation to the
identity, could act in that rôle.

Exercise 8.32 (The Delta Distribution Acts as an Identity Under
Convolution). Show that the delta distribution acts as an identity
for the operation of convolution: for all φ ∈ S(R), φ∗δ = φ, meaning
as usual that as distributions, φ ∗ δ = Tφ. ♦

Exercise 8.33 (Approximations of the Identity Converge to the Delta
Distribution). Let {Kt(x)}t∈Λ, with t0 a limit point of Λ, be an ap-
proximation of the identity in R. Prove that as t → t0, the distri-
bution induced by Kt converges in the sense of distributions to the
delta distribution: for all φ ∈ S(R), limt→t0 TKt

(φ) = δ(φ) = φ(0). ♦

For those who have seen some measure theory, we note that every
finite Borel measure μ on R defines a tempered distribution Tμ, via
integration, similarly to the way in which equation (8.5) defines the
tempered distribution induced by a function: Tμ(φ) :=

´
R
φ(x) dμ for

φ ∈ S(R). This formula embeds the finite Borel measures into S ′(R).

8.5. Three applications of the Fourier transform

We present here three of the most classical applications of the Fourier
transform. The formulas and inequalities discussed in the next pages
have remarkable consequences in a range of subjects: from number
theory (the Poisson Summation Formula), to signal processing (the
Whittaker–Shannon Sampling Formula), to quantum mechanics (the
Heisenberg Uncertainty Principle). The proofs are beautiful and el-
egant. For many other applications to physics, partial differential
equations, probability, and more, see the books by Strichartz [Stri94],
Dym and McKean [DM], Körner [Kör], Stein and Shakarchi [SS03],
and Reed and Simon [RS].
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8.5.1. The Poisson Summation Formula. Given a function f on
the line, how can we construct from f a periodic function of period 1?

There are two methods. The first, called periodization, uses a
sum over the integer translates of the function f , and the second uses
a Fourier series whose Fourier coefficients are given by the Fourier
transform of f evaluated at the integers. The Poisson Summation
Formula gives conditions under which these two methods coincide.

The periodization of a function φ on the line is constructed by
summing over its integer translates:

P1φ(x) =
∑
n∈Z

φ(x+ n) = lim
N→∞

∑
|n|≤N

φ(x+ n),

where the series is supposed to converge in the sense of symmetric
partial sums. When φ is in S(R) or is a continuous function of mod-
erate decrease, the sum in the periodization is absolutely convergent.

Exercise 8.34. Verify that for φ ∈ S(R) the function P1φ is periodic
with period 1. ♦

Example 8.35. Let Ht be the heat kernel on the line, defined by
formula (7.32). Its periodization is the periodic heat kernel

P1Ht(x) = (4πt)−1/2
∑
n∈Z

e−(x+n)2/4t. ♦

The second method assigns to a given function φ ∈ S(R) a peri-
odic function of period 1 defined by

P2φ(x) =
∑
n∈Z

φ̂(n)e2πixn.

The series is well-defined and convergent because φ ∈ S(R).

Example 8.36. If f ∈ L1(0, 1) and if it is defined to be zero outside
(0, 1), then both periodizations are well-defined. They coincide with
the periodic extension of f to the whole line. In particular, P1f =

P2f . ♦

The phenomenon shown in this example is not an accident. The
Poisson Summation Formula1 states the idea precisely.

1Named after the same Poisson as the Poisson kernel in Chapter 4.
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Theorem 8.37 (Poisson Summation Formula). If φ ∈ S(R), then

(8.9) P1φ(x) =
∑
n∈Z

φ(x+ n) =
∑
n∈Z

φ̂ (n)e2πinx = P2φ(x).

In particular, setting x = 0,

(8.10)
∑
n∈Z

φ(n) =
∑
n∈Z

φ̂ (n).

Proof. It suffices to check that the right- and left-hand sides of equa-
tion (8.9) have the same Fourier coefficients. The nth Fourier coef-
ficient on the right-hand side is φ̂ (n). Computing the nth Fourier
coefficient for the left-hand side, we get
ˆ 1

0

(∑
m∈Z

φ(x+m)
)
e−2πinx dx =

∑
m∈Z

ˆ 1

0

φ(x+m)e−2πinx dx

=
∑
m∈Z

ˆ m+1

m

φ(y)e−2πiny dy =

ˆ ∞

−∞
φ(y)e−2πiny dy = φ̂ (n).

We may interchange the sum and the integral in the first step since
φ is rapidly decreasing. �

Example 8.38. For the heat kernel Ht, all the conditions in the Pois-
son Summation Formula are satisfied. Furthermore Ĥt(n) = e−4π2tn2

,
and so the periodic heat kernel has a natural Fourier series in terms
of separated solutions of the heat equation:

(4πt)−1/2
∑
n∈Z

e−(x+n)2/4t =
∑
n∈Z

e−4π2tn2

e2πinx. ♦

The above calculation can be justified for continuous functions
of moderate decrease, and so the Poisson Summation Formula also
holds for that larger class of functions.

Exercise 8.39. Check that the Poisson Summation Formula is valid
for continuous functions of moderate decrease. Use this result to show
that the periodizations of the Poisson and Fejér kernels on the line
(the project in Section 7.8) coincide with the 1-periodic Poisson and
Fejér kernels, introduced in Sections 4.4 and 4.5. ♦
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We give an interpretation of the Poisson Summation Formula
in the language of distributions. Recall that τnδ(φ) = φ(n) for all
φ ∈ S(R). The left-hand side of (8.10) can be written as∑

n∈Z

φ(n) =
∑
n∈Z

τnδ(φ).

Similarly, for the right-hand side,
∑

n∈Z
φ̂(n) =

∑
n∈Z

τ̂nδ(φ), where
in the last equality we have used the definition of the Fourier trans-
form for distributions. What the Poisson Summation Formula says is
that the Fourier transform of the distribution

∑
n∈Z

τnδ is the same
distribution, that is, (

∑
n∈Z

τnδ)
∧ =

∑
n∈Z

τnδ.

Exercise 8.40. Verify that
∑

n∈Z
τnδ is a tempered distribution and

that it coincides with its own Fourier transform. ♦

Notice that the distribution above is like an infinite comb with
point-masses at the integers. Its Fourier transform can be calculated
directly, by noticing that τ̂nδ is the distribution induced by the func-
tion e−2πinx (Exercise 8.29), and so the apparently very complicated
distribution

∑
n∈Z

e2πinx is simply the infinite comb
∑

n∈Z
τnδ.

See [Stri94, Section 7.3] for a beautiful application of the Poisson
Summation Formula in two dimensions to crystals and quasicrystals.

8.5.2. The Sampling Formula. The Whittaker–Shannon Sampling
Formula2 states that band-limited functions (functions whose Four-
ier transforms are supported on a compact interval) can be perfectly
reconstructed from appropriate samples. We will need the kernel
function sinc, defined by

sinc(x) := sin(πx)/(πx) for x �= 0; sinc(0) := 1.

Theorem 8.41 (Whittaker–Shannon Sampling Formula). Suppose
f is a continuous function of moderate decrease whose Fourier trans-
form is supported on the interval [−1/2, 1/2]. Then the values f(n)

at the integers completely determine f ; more precisely,

f(x) =
∑
n∈Z

f(n) sinc(x− n).

2Named after British mathematician Edmund Taylor Whittaker (1873–1956) and
American mathematician and electronic engineer Claude Elwood Shannon (1916–2001).
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Proof. The support of f̂ is the interval [−1/2, 1/2]. Consider the
periodization of f̂ to R, as a 1-periodic function. We compute its
Fourier coefficients:

(f̂ )∧(n) =

ˆ 1/2

−1/2

f̂ (x)e−2πinx dx =

ˆ ∞

−∞
f̂ (x)e2πi(−n)x dx = f(−n).

Here f̂ is the Fourier transform in R, and we have used the hat no-
tation to also denote the Fourier coefficients of a 1-periodic func-
tion (g)∧(n). We have also used the fact that f̂ is supported on
[−1/2, 1/2] and, for the last equality, the Fourier Inversion Formula
on R. (The Fourier Inversion Formula does hold for continuous func-
tions f of moderate decrease whose Fourier transforms f̂ are also of
moderate decrease; we omit the proof.)

Therefore f̂ coincides with its Fourier series for ξ ∈ [−1/2, 1/2]:

(8.11) f̂ (ξ) =
∑
n∈Z

f(−n)e2πinξ =
∑
n∈Z

f(n)e−2πinξ.

The Fourier Inversion Formula on R also tells us that we can recover f
by integrating over R its Fourier transform f̂ times e2πiξn. Using the
compact support of f̂ to replace the integral over R by the integral
over [−2π, 2π] and substituting in formula (8.11), we find that

f(x) =

ˆ 1/2

−1/2

f̂ (ξ)e2πiξx dξ =

ˆ 1/2

−1/2

∑
n∈Z

f(n)e−2πinξe2πiξx dξ

=
∑
n∈Z

f(n)

ˆ 1/2

−1/2

e2πi(x−n)ξ dξ =
∑
n∈Z

f(n) sinc(x− n),

as required. The interchange of sum and integral is justified because
of the uniform convergence in ξ of gN (x, ξ); see Exercise 8.42.

The last equality holds because sinc(x) =
´ 1/2

−1/2
e2πixξ dξ. �

Exercise 8.42. Use the Weierstrass M -test to show that for each x

the functions gN (x, ξ) :=
∑

|n|≤N f(n)e2πi(x−n)ξ converge uniformly
in ξ ∈ [−1/2, 1/2] as N →∞, whenever the function f is a continuous
function of moderate decrease. ♦

The support of the Fourier transform need not have length 1. As
long as the Fourier transform is supported on a compact interval, say
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of length L, we can carry out similar calculations. We would use the
Fourier theory for L-periodic functions; see Section 1.3.2.

Exercise 8.43. Suppose that f is a continuous function of moderate
decrease and supp f̂ ⊂ [−L/2, L/2]. Show that

f(x) =
∑
n∈Z

f(n/L) sinc
(
(x− n)/L

)
. ♦

The larger the support of f̂ , the more we have to sample.

This statement is reasonable, for if only those frequencies with
|ξ| < L/2 are present in f , then it is plausible that sampling at the
1/L rate will suffice. Sampling at a lower rate would not suffice.

This formula has many applications in signal processing (see [Sha]).

8.5.3. The Heisenberg Uncertainty Principle. It is impossible
to find a function that is simultaneously well-localized in time and in
frequency. Heisenberg’s Uncertainty Principle3 is an inequality that
expresses this principle. The idea can be carried further: there is
no square-integrable function that is both compactly supported and
band-limited. See [SS03, Section 5.4].

Theorem 8.44 (Heisenberg Uncertainty Principle). Suppose that
ψ ∈ S(R) and that ψ is normalized in L2(R): ‖ψ‖2 = 1. Then(ˆ

R

x2|ψ(x)|2 dx
)(ˆ

R

ξ2|ψ̂ (ξ)|2 dξ
)
≥ 1/(16π2).

Proof. By hypothesis, 1 =
´
R
|ψ(x)|2 dx. We integrate by parts, set-

ting u = |ψ(x)|2 and dv = dx and taking advantage of the fast decay
of ψ to get rid of the boundary terms. Note that

(d/dx)|ψ|2 = (d/dx)
(
ψψ

)
= ψψ′ + ψψ′ = 2Re(ψψ′).

3Named after the German theoretical physicist Werner Heisenberg (1901–1976).
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Also Re z ≤ |z|, and |
´
f | ≤

´
|f |. Hence

1 = 2

ˆ
R

xRe
[
ψ(x)ψ′(x)

]
dx ≤ 2

ˆ
R

|x||ψ(x)||ψ′(x)| dx

≤ 2

(ˆ
R

|xψ(x)|2 dx
)1/2(ˆ

R

|ψ′(x)|2 dx
)1/2

≤ 2

(ˆ
R

|xψ(x)|2 dx
)1/2(

4π2

ˆ
R

ξ2|ψ̂ (ξ)|2 dξ
)1/2

.

We have used the Cauchy–Schwarz Inequality, Plancherel’s Identity,
and property (g) of the time–frequency dictionary. �

The Uncertainty Principle holds for the class of continuous func-
tions of moderate decrease and for the even larger class L2(R) of
square-integrable functions.

Exercise 8.45. Check that equality holds in Heisenberg’s Uncer-
tainty Principle if and only if ψ(x) =

√
2B/π e−Bx2

for some B > 0.
Hint: Equality holds in the Cauchy–Schwarz Inequality if and only
if one of the functions is a multiple of the other. ♦

Exercise 8.46. Check that under the conditions of Theorem 8.44,(´
R
(x− x0)

2|ψ(x)|2 dx
) (´

R
(ξ − ξ0)

2|ψ̂ (ξ)|2 dξ
)
≥ 1/(16π2) for all

x0, ξ0 ∈ R. Hint: Use the time–frequency dictionary for ψx0,ξ0(x) =

e2πixξ0ψ(x+ x0) ∈ S(R) and Heisenberg’s Uncertainty Principle. ♦

Let us use the Heisenberg Uncertainty Principle to show that if a
function f ∈ S(R) is supported on the interval [−a, a], if its Fourier
transform is supported on [−b, b], and if ‖f‖2 = ‖f̂‖2 = 1, then
ab ≥ 1/(4π). It follows that if the support of f is small, then the
support of f̂ has to be large, and vice versa. First,ˆ

R

x2|f(x)|2 dx ≤
ˆ a

−a

x2|f(x)|2 dx ≤ a2‖f‖22 = a2.

Likewise,
´
R
ξ2|f̂(ξ)|2 dξ ≤ b2. Applying the Heisenberg Uncertainty

Principle and taking the square root, we conclude that ab ≥ 1/(4π),
as claimed.

Those are big if ’s. In fact, there is no function that is compactly
supported both in time and in frequency; see Exercise 8.47. One can
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instead consider an approximate support: an interval on which most
but not all of the L2 norm is concentrated. See Remark 8.49.

Exercise 8.47. Suppose f is continuous on R. Show that f and f̂

cannot both be compactly supported unless f ≡ 0. Hint: Suppose
that f is supported on [0, 1/2] and f̂ is compactly supported. Expand
f in a Fourier series on [0, 1], and observe that f must be a trigono-
metric polynomial. But trigonometric polynomials cannot vanish on
an interval. ♦

The trigonometric functions are not in L2(R). However, viewing
them as distributions, we can compute their Fourier transforms.

Exercise 8.48. Check that the Fourier transform of eξ(x) = e2πixξ in
the sense of distributions is the shifted delta distribution τξδ defined
by τξδ(φ) = φ(ξ). ♦

The preceding exercise also illustrates the time–frequency local-
ization principle. In general, if the support of a function is essentially
localized on an interval of length d, then its Fourier transform is es-
sentially localized on an interval of length d−1. Thus the support
in the time–frequency plane is essentially a rectangle of area 1 and
dimensions d× d−1.

Remark 8.49. The Uncertainty Principle has an interpretation in
quantum mechanics, from which the name derives, as an uncertainty
about the position and the momentum associated to a free particle.
One cannot measure precisely both position and momentum. The
better one measurement is, the worse the other will be. Mathemati-
cally, the state of a free particle is described by a function ψ ∈ L2(R)
with ‖ψ‖2 = 1. The probability density that this particle is located
at position x is given by |ψ(x)|2. The probability density that its
momentum is ξ is given by |ψ̂(ξ)|2. The average location u and the
average momentum ω of the particle are given, respectively, by

u =

ˆ
R

x |ψ(x)|2 dx, ω =

ˆ
R

ξ |ψ̂(ξ)|2 dξ.
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The variance, or spread, σ2
x around the average location and the vari-

ance σ2
ξ around the average momentum are given by

σ2
x =

ˆ
R

(x− u)2|ψ(x)|2 dx, σ2
ξ =

ˆ
R

(ξ − ω)2|ψ̂(ξ)|2 dξ.

These numbers measure how far the particle’s actual position or mo-
mentum can be from the average position and momentum. The larger
σx is, the larger the uncertainty about its position is. The larger σξ

is, the larger the uncertainty about its momentum is. The Heisenberg
Principle (or Exercise 8.46) says that σ2

xσ
2
ξ ≥ 1/(16π2); therefore σx

and σξ cannot both be arbitrarily small.

A Heisenberg box, or time–frequency box, for a function ψ with
‖ψ‖2 = 1 is defined to be a rectangle centered at (u, ω), with dimen-
sions σx × σξ ≥ 1/(4π). Although there are no functions that are
simultaneously compactly supported in time and in frequency, there
are functions with bounded Heisenberg boxes, which tell us about the
time–frequency localization of the function on average. ♦

8.6. Lp(R) as distributions

Functions in the Lebesgue spaces Lp(R), for real numbers p with
1 ≤ p < ∞, induce tempered distributions via integration (equa-
tion (8.5)). Recall that the space Lp(R) consists of those functions
such that

´
R
|f(x)|p dx <∞; see Section 7.7 and the Appendix. Here

the integral is in the sense of Lebesgue. Each Lp(R) space is normed,
with norm given by ‖f‖p =

( ´
R
|f(x)|p dx

)1/p
. We summarize in Ta-

ble 8.3 on page 215 the boundedness properties of the Fourier trans-
form on each Lp space and on S(R) and S ′(R).

The Schwartz class is dense in each Lp(R) (see the Appendix). In
other words, Schwartz functions are in Lp(R) and we can approximate
any function f ∈ Lp(R) by functions φn ∈ S(R) such that the Lp

norm of the difference f − φn tends to zero as n tends to infinity:
limn→∞ ‖f − φn‖p = 0.

Functions f ∈ Lp(R) define tempered distributions Tf by inte-
gration. The first thing to worry about is that the integral in equa-
tion (8.5) must be well-defined for all f ∈ Lp(R) and φ ∈ S(R). In fact
the integral

´
R
f(x)φ(x) dx is well-defined (in the sense of Lebesgue) as
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long as f ∈ Lp(R) and φ ∈ Lq(R) for p, q dual or conjugate exponents,
that is, such that 1/p + 1/q = 1 (in particular if ψ ∈ S(R) ⊂ Lq(R)
for all 1 ≤ q ≤ ∞). This is a consequence of the fundamental Hölder
Inequality (proved in Section 12.6). Hölder’s Inequality on the line
says that if f ∈ Lp(R) and g ∈ Lq(R) with 1/p + 1/q = 1, then
fg ∈ L1(R). Furthermore, ‖fg‖1 =

´
R
|f(x)g(x)| dx ≤ ‖f‖p‖g‖q. It

follows that
´
R
f(x)g(x) dx is well-defined and finite.

The linearity of the integral guarantees the linearity of the func-
tional Tf . Hölder’s Inequality can be used to prove the continuity of
the functional Tf , since the Lp norms of a function φ ∈ S(R) can be
controlled by the Schwartz seminorms; see Exercise 8.21.

Exercise 8.50. Show that if f ∈ Lp(R), then the linear functional
Tf defined by integration against f is continuous. ♦

Now that we have identified f ∈ Lp(R) with its tempered distri-
bution Tf , we can consider the Fourier transforms of Lp functions in
the sense of distributions. Can we identify these Fourier transforms
with reasonable functions? We have already looked at the special
cases p = 1, 2, at least for f ∈ S(R).
Case p = 1: If f ∈ S(R) ⊂ L1(R), then ‖f̂ ‖∞ ≤ ‖f‖1, since

|f̂ (ξ)| =
∣∣∣∣ˆ

R

f(x)e−2πixξ dx

∣∣∣∣ ≤ ˆ
R

|f(x)| dx.

Case p = 2: If f ∈ S(R) ⊂ L2(R), then Plancherel’s Identity holds:

‖f̂ ‖2 = ‖f‖2.

It turns out that the Fourier transform is a bijection on the full
space L2(R). Also, using the Riemann–Lebesgue Lemma, the Fourier
transform takes L1 functions into (but not onto) a class of bounded
functions, namely the subset C0(R) (continuous functions vanishing
at infinity) of L∞(R).

Lemma 8.51 (Riemann–Lebesgue Lemma). Suppose f ∈ L1(R).
Then f̂ is continuous and lim|ξ|→∞ f̂(ξ) = 0. That is, the Fourier
transform maps L1(R) into C0(R).

                

                                                                                                               



8.6. Lp(R) as distributions 215

However, the Fourier transform is not a surjective map from
L1(R) to C0(R); there is a function in C0(R) that is not the Fourier
transform of any function in L1(R). See [Kran, Proposition 2.3.15].

Exercise 8.52. Prove the Riemann–Lebesgue Lemma in the special
case when f is a function of moderate decrease. In particular, f̂ is
then bounded. Show also that the inequality ‖f̂ ‖∞ ≤ ‖f‖1 holds for
continuous functions f of moderate decrease. Hint: The proof we
used for f ∈ S(R) goes through for continuous functions of moderate
decrease and also for functions in L1(R), using the theory of Lebesgue
integration. ♦

Table 8.3. Effect of the Fourier transform on Lp spaces.

φ → φ̂

S(R) unitary bijection S(R)

bounded map
L1(R) ‖f̂ ‖∞ ≤ ‖f‖1 C0(R) ⊂ L∞(R)

(Riemann–Lebesgue Lemma)

Lp(R) bounded map
1 < p < 2 ‖f̂ ‖q ≤ Cp‖f‖p Lq(R)

(Hausdorff–Young Inequality) 1/p+ 1/q = 1

isometry
L2(R) ‖f̂ ‖2 = ‖f‖2 L2(R)

(Plancherel’s Identity)

S ′(R) bijection S ′(R)

Warning: The class of continuous functions of moderate decrease is
not closed under the Fourier transform.

Exercise 8.53 (The Hat of the Hat). Let f be the hat function,
defined by f(x) = 1 − |x| for |x| ≤ 1 and f(x) = 0 otherwise. Show
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that f is a continuous function of moderate decrease but that its
Fourier transform f̂ is not. ♦

The Fourier transform is well-defined for f ∈ L1(R), but since
f̂ may not be in L1(R), one has difficulties with the inversion for-
mula. This is why we have chosen to present the theory on S(R).
Since S(R) is dense in L2(R) (see the Appendix), one can extend the
Fourier transform (and Plancherel’s Identity) to L2(R), by continuity.
Does this extension coincide with the Fourier transform defined via
the integral formula for functions f in L1(R) ∩ L2(R)? Yes. It also
coincides with the definition of the Fourier transform in the sense of
distributions.

Notice that on R, L1(R) � L2(R) and L1(R) � L2(R) (Exer-
cise 8.54). Compare with the ladder of nested Lp spaces on the cir-
cle T (Figure 2.3).

For 1 < p < 2, the Fourier transform is a bounded map from
Lp(R) into Lq(R), for p, q dual exponents (1/p + 1/q = 1). This
fact follows from the Hausdorff–Young Inequality, which we prove in
Corollary 12.42. For p > 2, however, the Fourier transform does not
map Lp(R) into any nice functional space. If f ∈ Lp(R) for p > 2,
then its Fourier transform is a tempered distribution, but unless more
information is given about f , we cannot say more. What is so special
about Lp(R) for 1 < p < 2? It turns out that for p in this range we
have Lp(R) ⊂ L1(R) + L2(R), and one can then use the L1(R) and
L2(R) theory. See [Kat, Sections VI.3–VI.4].

Exercise 8.54 (Lp(R) and Lq(R) Are Not Nested). Suppose 1 ≤
p < q ≤ ∞. Find a function in Lq(R) that is not in Lp(R). Find a
function that is in Lp(R) but not in Lq(R). ♦

Exercise 8.55 (Lp(R) Is Contained in L1(R) + L2(R)). Suppose
f ∈ Lp(R) for 1 < p < 2. Let fλ(x) := f(x) if |f(x)| ≤ λ and
fλ(x) := 0 if |f(x)| > λ; define fλ(x) := f(x)− fλ(x). Show that (i)
fλ ∈ L2(R), (ii) fλ ∈ L1(R), and (iii) Lp(R) ⊂ L1(R) + L2(R) for
1 < p < 2. ♦

Even for f in S(R), if we hope for an inequality of the type

(8.12) ‖f̂ ‖q ≤ C‖f‖p for all f ∈ S(R),
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then p and q must be conjugate exponents: 1/p + 1/q = 1 (see Ex-
ample 8.56). Although it is not obvious from the example, such an
inequality can only hold for 1 ≤ p ≤ 2.

Example 8.56. Consider the following one-parameter family of func-
tions in S(R), together with their Fourier transforms:

gt(x) = e−πtx2

, ĝt(ξ) = e−πx2/t/
√
t.

Recall that
´
R
e−πx2

dx = 1, and so
´
R
e−πAx2

dx = 1/
√
A. It follows

that the Lp norm of gt and the Lq norm of ĝt are given by

‖gt‖pp = 1/
√
tp, ‖ĝt‖qq = (

√
t)1−q/

√
q.

(Note that ‖gt‖pp = ‖ĝt‖qq when p = q = 2, as Plancherel’s Identity
ensures.) If inequality (8.12) holds, then we must be able to bound
the ratios ‖ĝt‖q/‖gt‖p independently of t. But the ratio

‖ĝt‖q/‖gt‖p = (
√
t)

1
p+

1
q−1(
√
p)1/p/(

√
q)1/q

is bounded independently of t if and only if the exponent of
√
t is

zero, in other words, when p and q are conjugate exponents. ♦

8.7. Project: Principal value distribution 1/x

In this project we present an example of a distribution that is neither
a function in Lp(R) nor a point-mass (like the delta distribution)
nor a measure. It is the principal value distribution 1/x, the building
block of the Hilbert transform, discussed in more detail in Chapter 12.
Below are some exercises to guide you. Search for additional historical
facts to include in your essay.

(a) (The Principal Value Distribution 1/x) The linear functional H0 :

S(R)→ C is given by

(8.13) H0(φ) = p.v.
ˆ
R

φ(y)

y
dy := lim

ε→0

ˆ
|y|>ε

φ(y)

y
dy.

Prove that the functional H0 is continuous by showing that if φk → 0

in S(R) as k →∞, then the complex numbers H0(φk)→ 0 as k →∞,
as follows. We need to take advantage of some hidden cancellation.
Observe that for each ε > 0,

´
ε≤|y|<1

1
y dy = 0. Now add zero to

equation (8.13) to show that
∣∣∣ ´|y|>ε

φk(y)
y dy

∣∣∣ ≤ 2
(
ρ1,0(φk)+ρ0,1(φk)

)
,
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where ρ1,0 and ρ0,1 are the seminorms introduced in formula (8.4). Fi-
nally verify that the right-hand side can be made arbitrarily small for
k large enough. You have shown that H0 is a tempered distribution,
namely the principal value distribution H0 = p.v. 1/x. Remark 8.31
states that there must be a function f such that H0 is the kth deriv-
ative (in the sense of distributions) of f , for some k. Find f and k.

(b) For each ε > 0, the function x−1χ{|x|>ε}(x) is bounded and
defines a tempered distribution, which we call Hε

0 . Check that the
limit of Hε

0 in the sense of distributions as ε→ 0 is H0, meaning that

lim
ε→0

Hε
0(φ) = H0(φ) for each φ ∈ S(R).

(c) For each x ∈ R define a new tempered distribution by appropri-
ately translating and reflecting H0, as follows.

Definition 8.57 (The Hilbert Transform as a Distribution). Given
x ∈ R, the Hilbert transform Hx(φ) of φ at x, also written Hφ(x), is
a tempered distribution acting on φ ∈ S(R) and defined by

Hx(φ) = Hφ(x) := (τ−xH0)
∼(φ)/π. ♦

Verify that Hφ(x) = 1
π limε→0

´
|x−t|>ε

φ(t)
x−t dt.

8.8. Project: Uncertainty and primes

In this project we ask the reader to research and present a proof of
a discrete uncertainty principle and to understand its applications to
the distribution of prime numbers (to get started, see [SS03, Chap-
ter 8]).

(a) Using the definitions given in the project in Section 6.9, define the
support of a function f ∈ L2(G) to be supp(f) := {x ∈ G : f(x) �= 0}.
Verify the following inequality, which encodes a discrete uncertainty
principle:

#supp(f)×#supp(f̂) ≥ #G = n.

(b) Recently T. Tao proved a refinement of this result: Let G be a
cyclic group of prime order p and take f ∈ L2(G). Then

#supp(f) + #supp(f̂) ≥ p+ 1,
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and this bound is sharp. As an application, Green and Tao prove
that there are arbitrarily long arithmetic progressions of primes. An
arithmetic progression of primes is a set of the form {p, p + d, p +

2d, p+3d, . . . , p+ nd}, where p and d are fixed and each element is a
prime number. At the time of writing, the longest known arithmetic
progression of primes has only twenty-six primes4. This fact makes
their theorem even more remarkable. The Tao–Green Theorem is a
very difficult result. We list references of an expository nature, by
the authors and others: [Gre], [Kra], [Tao05], [Tao06c].

4You can find the longest known arithmetic progressions listed at http://en.
wikipedia.org/wiki/Primes\_in\_arithmetic\_progression.

                

                                                                                                               



Chapter 9

From Fourier to wavelets,
emphasizing Haar

There are many things we would like to record, compress, transmit,
or reconstruct: for instance, audio signals such as music or speech,
video signals such as TV or still photos, and data in the form of words
or numbers. Harmonic analysis provides the theoretical tools to do
all these tasks effectively. Nowadays, in the toolbox of every engineer,
statistician, applied mathematician, or other practitioner interested
in signal or image processing, you will find not only classical Fourier
analysis tools but also modern wavelet analysis tools.

0 2 4 6
5

5

0

0.5

1

1.5

x

ψ
(x

)

Figure 9.1. A Morlet wavelet given by ψ(x) = e−t2/2 cos(5t).
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222 9. From Fourier to wavelets, emphasizing Haar

Now, what is a wavelet? It is a little wave that starts and stops,
such as the Morlet1 wavelet shown in Figure 9.1. It differs from
sines and cosines, which go on forever, and from truncated sines and
cosines, which go on for the whole length of the truncation window.

The key idea of wavelets is to express functions or signals as sums
of these little waves and of their translations and dilations. Wavelets
play the rôle here that sines and cosines do in Fourier analysis. They
can be more efficient, especially if the signal lasts only a finite time or
behaves differently in different time periods. A third type of analysis,
the windowed Fourier transform, unites some features of Fourier anal-
ysis with the localization properties of wavelets. Each of these three
types of analysis has its pros and cons.

In this chapter we survey the windowed Fourier transform and
its generalization known as the Gabor transform (Section 9.2) and
introduce the newest member of the family, the wavelet transform
(Section 9.3). We develop the first and most important example of a
wavelet basis, the Haar basis (Section 9.4). We show that the Haar
system is a complete orthonormal system in L2(R). We question the
plausibility of this statement, and then we prove the statement. To
do so, we introduce dyadic intervals, expectation (averaging) opera-
tors, and difference operators. We compare Fourier and Haar analysis
and touch on some dyadic operators, whose boundedness properties
hold the key to the unconditionality of the Haar basis in Lp(R) (Sec-
tion 9.5).

9.1. Strang’s symphony analogy

Let us begin with the central idea of wavelet theory, through a musical
analogy developed by Gilbert Strang; the quotations in this section
are from his article [Stra94].

Imagine we are listening to an orchestra playing a symphony. It
has a rich, complex, changing sound that involves dynamics, tempi,
pitches, and so on. How do we write it down? How can we notate
this sound experience? Musical notation is one way. Recording on

1Named after French geophysicist Jean Morlet (1931–2007), who coined the term
wavelet to describe the functions he used. In 1981, Morlet and Croatian-French physi-
cist Alex Grossman (born 1930) developed what we now call the wavelet transform.
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CD is another. These two methods do not contain exactly the same
information. We are expressing the symphony in different ways.

We consider three further ways of analyzing a symphony: in terms
of (1) cosine waves (traditional Fourier series); (2) pieces of cosine
waves (windowed Fourier series); and (3) wavelets.

(1) Traditional Fourier analysis “separate[s] the whole symphony into
pure harmonics. Each instrument plays one steady note”, with a spe-
cific loudness; for example the B flat above middle C at a given vol-
ume, or the F sharp below middle C at some other volume. The
signal, meaning the whole symphony, becomes a sum a0 + a1 cos t+

a2 cos 2t+ · · · of cosine waves. To store the signal, we need to record
only the list of amplitudes (a0, a1, a2, . . . ) and corresponding fre-
quencies (0, 1, 2, . . . ).

In practice we cannot retain all these terms, but we may need to
keep many of them to get a high-fidelity reproduction. Also, if the
symphony has been playing forever and continues forever, then we
need a continuum of frequencies (uncountably many musicians), and
instead of a sum we get an integral, namely the Fourier transform.

(2) Windowed Fourier analysis, also known as the short-time Fourier
transform, looks at short segments of the symphony individually. “In
each segment, the signal is separated into cosine waves as before. The
musicians still play one note each, but they change amplitude in each
segment. This is the way most long signals are carved up.” Now we
need to record lists of amplitudes and frequencies for each segment.

“One disadvantage: There are sudden breaks between segments.”
In an audio signal, we might be able to hear these breaks, while in a
visual image, we might see an edge. This kind of artificial disconti-
nuity is called a blocking artifact. An example is shown in the JPEG
fingerprint image in Figure 10.3.

(3) In wavelet analysis, “[i]nstead of cosine waves that go on forever
or get chopped off, the new building blocks are ‘wavelets ’. These are
little waves that start and stop”, like the Morlet wavelet in Figure 9.1.
In the symphony analogy “[t]hey all come from one basic wavelet w(t),
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which gives the sound level of the standard tune at time t.” In prac-
tice, the Daubechies wavelet shown in Figure 9.4 is a typical standard
tune.

We make up the symphony from different versions of this tune,
played with specific amplitudes and starting times and at specific
speeds. The double basses play the standard tune w(t). “The cellos
play the same tune but in half the time, at doubled frequency. Math-
ematically, this speed-up replaces the time variable t by 2t. The first
bass plays b1w(t) and the first cello plays c1w(2t), both starting at
time t = 0. The next bass and cello play b2w(t− 1) and c2w(2t− 1),
with amplitudes b2 and c2. The bass starts when t − 1 = 0, at time
t = 1. The cello starts earlier, when 2t − 1 = 0 and t = 1/2. There
are twice as many cellos as basses, to fill the length of the symphony.
Violas and violins play the same passage but faster and faster and all
overlapping. At every level the frequency is doubled (up one octave)
and there is new richness of detail. ‘Hyperviolins’ are playing at 16
and 32 and 64 times the bass frequency, probably with very small am-
plitudes. Somehow these wavelets add up to a complete symphony.”

It is as if each possible signal (symphony) could be achieved by an
orchestra where each musician plays only the song “Happy Birthday”
but at his or her own speed and start time and with his or her own
volume chosen according to the signal required. To store the signal,
we need to record only the list of amplitudes, in order. At every level
the frequency is doubled, which means that the pitch goes up by an
octave. The rôle played by the cosines and sines in Fourier analysis is
played here by dilates and translates of a single function w(t). Here
we see the fundamental idea of wavelets.

For a delightful introduction to these ideas for a broad audience,
see Barbara Burke Hubbard’s book [Burke].

9.2. The windowed Fourier and Gabor bases

We construct an orthonormal basis on the line by pasting together
copies of the trigonometric basis on intervals (windows) that partition
the line. Generalizing this idea, we obtain the Gabor bases.
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9.2.1. The windowed Fourier transform. The continuous Four-
ier transform gives us a tool for analyzing functions that are defined
on the whole real line R, rather than on the circle T. However, the
trigonometric functions {e2πiξx}ξ∈R no longer form a countable ba-
sis, since there is one for each real number ξ. Also, for each fixed
ξ ∈ R, the function e2πiξx is not in L2(R). The windowed Fourier
transform addresses the problem of finding a basis for L2(R) to fill
the rôle played by the trigonometric basis for L2(T).

How can we obtain an orthonormal basis for L2(R)? A simple
solution is to split the line into unit segments [k, k+1) indexed by k ∈
Z and on each segment use the periodic Fourier basis for that segment.

Theorem 9.1. The functions

gn,k(x) = e2πinxχ[k,k+1)(x) for n, k ∈ Z

form an orthonormal basis for L2(R), where χ[k,k+1) is the charac-
teristic function of the interval [k, k + 1). The corresponding recon-
struction formula holds, with equality in the L2 sense:

f(x) =
∑

n,k∈Z

〈f, gn,k〉gn,k(x).

Exercise 9.2. Prove Theorem 9.1. Hint: Use Lemma A.51. ♦

Definition 9.3. The windowed Fourier transform is the map G that
assigns to each function in L2(R) the sequence of coefficients with
respect to the windowed Fourier basis {gn,k}j,k∈Z defined in Theo-
rem 9.1. More precisely, G : L2(R)→ �2(Z2) is defined by

Gf(n, k) := 〈f, gn,k〉 =
ˆ k+1

k

f(x)e−2πinx dx.

Here our signal f is a function of the continuous variable x ∈ R,
while its windowed Fourier transform Gf is a function of two discrete
(integer) variables, n and k. ♦

We can think of each characteristic function χ[k,k+1)(x) as giving
us a window through which to view the behavior of f on the interval
[k, k + 1). Both the function χ[k,k+1)(x) and the associated interval
[k, k+1) are commonly called windows. These windows all have unit
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length and they are integer translates of the fixed window [0, 1), so
that χ[k,k+1)(x) = χ[0,1)(x− k).

Instead, we could use windows of varying sizes. Given an arbi-
trary partition {ak}k∈Z of R into bounded intervals [ak, ak+1), k ∈ Z,
let Lk = ak+1 − ak, and on each window [ak, ak+1) use the corre-
sponding Lk Fourier basis. Then the functions

(1/
√
Lk)e

−2πinx/Lkχ[ak,ak+1)(x) for n, k ∈ Z

form an orthonormal basis of L2(R). This generalization lets us adapt
the basis to the function to be analyzed. For instance, if the behavior
of f changes a lot in some region of R, we may want to use many
small windows there, while wherever the function does not fluctuate
much, we may use wider windows.

We hope to get a fairly accurate reconstruction of f while re-
taining only a few coefficients. On the wider windows, a few low
frequencies should contain most of the information. On the smaller
windows, retaining a few big coefficients may not be very accurate,
but that may not matter much if the windows are small and few in
number. Alternatively one may have many small windows, on each
of which few coefficients are retained.

One seeks a balance between the chosen partition of R and the
number of significant coefficients to keep per window. This pre-
processing may require extra information about the function and/or
extra computations which may or may not be affordable for a spe-
cific application. On the other hand, by adapting the windows to the
function, we lose the translation structure that arises from having all
the windows the same size.

Exercise 9.4 (The Gibbs Phenomenon for the Windowed Fourier
Transform). Another problem arises from the discontinuity of the
windows at the endpoints: the Gibbs phenomenon (see also the project
in Section 3.4). The hat function is defined to be f(x) := 1 − |x| if
−1 ≤ x < 1 and f(x) := 0 otherwise. Compute the windowed Fourier
transform of the hat function using windows on the intervals [k, k+1),
for k ∈ Z, and plot using Matlab. You should see corners at x = −1,
0, 1. Do the same with windows [2k− 1, 2k+1). Do you see any cor-
ners? How about with windows [k/2, (k + 1)/2)? ♦
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9.2.2. Gabor bases. In numerical calculations, the sharp windows
χ[k,k+1)(x) used in the windowed Fourier transform produce at the
edges the same artifacts that are seen when analyzing periodic func-
tions at discontinuity points (the Gibbs phenomenon, or corners at
the divisions between windows). So smoother windows are desirable.
The sharp windows given by χ[0,1)(x) and its modulated integer trans-
lates e2πinxχ[0,1)(x − k) can be replaced by a smooth window g and
its modulated integer translates.

Definition 9.5. A function g ∈ L2(R) is a Gabor2 function if the
family of its modulated integer translates

(9.1) gn,k(x) = g(x− k)e2πinx for n, k ∈ Z

is an orthonormal basis for L2(R). Such a basis is a Gabor basis. ♦

Example 9.6. The sharp window g(x) = χ[0,1)(x) is a Gabor func-
tion. Figure 9.2 shows the imaginary part of gn,k(x) with the sharp
window g(x) and the parameters n = 6, k = 0. ♦

−0.5 0 0.5 1 1.5
−2

−1

0

1

2

x

Im
 g

6,
0(x

)

Figure 9.2. Graph (solid line) of the imaginary part
Im g6,0(x) = sin(12πx)χ[0,1)(x) of the Gabor function
g6,0(x) = exp{2πi6x}χ[0,1)(x), for the sharp window g =
χ[0,1). Dashed lines show the envelope formed by g and −g.

In 1946, Gabor proposed using systems of this kind in commu-
nication theory [Gab]. More specifically, he proposed using integer

2Named after Dennis Gabor (1900–1979), a Hungarian electrical engineer and
inventor. He is most notable for inventing holography, for which he received the 1971
Nobel Prize in physics.
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translates and modulations of the Gaussian function as a “basis” for
L2(R), though unfortunately the Gaussian is not a Gabor function.

Lemma 9.7. A family {ψn}n∈N of functions is an orthonormal ba-
sis for L2(R) if and only if its Fourier transforms {ψ̂n}n∈N form an
orthonormal basis for L2(R).

Proof. Orthonormality holds on one side if and only if it holds on
the other, because by the polarization formula (equation (7.24)),
〈ψn, ψm〉 = 〈ψ̂n, ψ̂m〉 for all n, m ∈ N. The same is true for com-
pleteness, because f ⊥ ψn if and only if f̂ ⊥ ψ̂n. �

In particular, given a Gabor basis {gn,k}n,k∈Z as in equation (9.1),
the Fourier transforms {ĝn,k}n,k∈Z form an orthonormal basis. Re-
markably, they also form a Gabor basis. We see on closer examination
that the form of the modulated integer translates in equation (9.1)
is exactly what is needed here, since the Fourier transform converts
translation to modulation, and vice versa.

Exercise 9.8. Use the time–frequency dictionary to show that the
Fourier transforms of the Gabor basis elements are

(9.2) ĝn,k(ξ) = ĝ (ξ − n)e−2πikξ = (ĝ )−k,n(ξ). ♦

To sum up, we have proved the following lemma.

Lemma 9.9. A function g ∈ L2(R) generates a Gabor basis, meaning
that {gn,k}n,k∈Z forms an orthonormal basis in L2(R), if and only if
ĝ ∈ L2(R) generates a Gabor basis, meaning that {(ĝ)n,k}n,k∈Z forms
an orthonormal basis in L2(R).

Example 9.10. Since g = χ[0,1) generates a Gabor basis, so does its
Fourier transform

ĝ (ξ) = (χ[0,1))
∧(ξ) = e−iπξ

(
sin (πξ)/πξ

)
= e−iπξ sinc(ξ).

This window ĝ is differentiable, in contrast to g which is not even
continuous. However ĝ is not compactly supported, unlike g. ♦

Can we find a Gabor function that is simultaneously smooth and
compactly supported? The answer is no. The limitations of the
Gabor analysis are explained by the following result.
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Theorem 9.11 (Balian–Low3 Theorem). If g ∈ L2(R) is a Gabor
function, then eitherˆ

R

x2|g(x)|2 dx =∞ or
ˆ
R

ξ2|ĝ (ξ)|2 dξ =

ˆ
R

|g′(x)|2 dx =∞.

Exercise 9.12 (Examples and Nonexamples of Balian–Low). Ver-
ify the Balian–Low Theorem for the two examples discussed so far:
g(x) = e2πinxχ[0,1)(x) and g(x) = e−iπx sinc x. Show also that the
Gaussian G(x) = e−πx2

is not a Gabor function. ♦

A proof of Theorem 9.11 can be found in [Dau92, p. 108, Theo-
rem 4.1.1]. The theorem implies that a Gabor window, or bell, cannot
be simultaneously smooth and compactly supported. Our first exam-
ple, g(x) = χ[0,1)(x), is not even continuous but is perfectly localized
in time, while our second example, g(x) = e−iπx sinc(x), is the oppo-
site. In particular the slow decay of the sinc function reflects the lack
of smoothness of the characteristic function χ[0,1)(x). This phenom-
enon is an incarnation of Heisenberg’s Uncertainty Principle.

Exercise 9.13. Show that the Balian–Low Theorem implies that a
Gabor function cannot be both smooth and compactly supported. ♦

However, if the exponentials are replaced by appropriate cosines
and sines, one can obtain Gabor-type bases with smooth bell func-
tions. These are the so-called local cosine and sine bases, first discov-
ered by Malvar [Malv] and later described by Coifman and Meyer
[CMe]. See the discussion in [HW] and the project in Section 9.6.

Another way to get around the Balian–Low Theorem is to ac-
cept some redundancy and use translations and modulations with
less-than-integer increments, obtaining frames in place of orthogonal
bases. Gabor would have been pleased.

There is a continuous Gabor transform as well, where the param-
eters are now real numbers instead of integers. Let g be a real and
symmetric window with ‖g‖2 = 1. The Gabor transform is given by

Gf(ξ, u) =

ˆ
R

f(x)g(x− u)e−2πiξx dx = 〈f, gξ,u〉,

3Named after French physicist Roger Balian (born 1933) and American theoretical
physicist Francis E. Low (1921–2007).
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where gξ,u(x) := g(x − u)e2πiξx for u, ξ ∈ R. The multiplication by
the translated window localizes the Fourier integral in a neighborhood
of u. The following inversion formula holds for f ∈ L2(R):

f(x) =

ˆ
R2

〈f, gξ,u〉gξ,u(x) dξ du.(9.3)

These formulas are similar in spirit to the Fourier transform and
the inverse Fourier transform integral formulas on R.

Exercise 9.14. Verify the inversion formula (9.3) for f , g ∈ S(R),
where g is a real-valued even function with ‖g‖2 = 1. Hint: Using
the time–frequency dictionary, show that (9.3) is equivalent to f(x) =´ (

gξ,0∗gξ,0∗f
)
(x) dξ and that the Fourier transform of the right-hand

side is f̂ . As usual, ∗ denotes convolution on R. ♦

Gabor bases give partial answers to questions about localization.
One problem is that the sizes of the windows are fixed. Variable
widths applicable to different functions, while staying within a single
basis, are the new ingredient added by wavelet analysis.

9.3. The wavelet transform

The wavelet transform involves translations (as in the Gabor basis)
and scalings (instead of modulations). These translates and dilates
introduce a natural zooming mechanism. The idea is to express a
discrete signal in terms of its average value a1 and successive levels
of detail, d1, d2, . . . . Similarly, in archery, one first sees the entire
target and then resolves the details of the bull’s-eye painted on it.
When using binoculars, one first locates the object (finds its average
position) and then adjusts the focus until the fine details of the object
jump into view. The zooming mechanism is mathematically encoded
in the multiresolution structure of these bases; see Chapter 10.

Definition 9.15. A function ψ ∈ L2(R) is a wavelet if the family

(9.4) ψj,k(x) = 2j/2ψ(2jx− k) for j, k ∈ Z

forms an orthonormal basis of L2(R). If so, the basis is called a
wavelet basis. ♦
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The family of Fourier transforms of a wavelet basis is another
orthonormal basis, but it is not a wavelet basis. It is generated from
one function ψ̂ by scalings and modulations, rather than by scalings
and translations.

Exercise 9.16 (Fourier Transform of a Wavelet). Use the time–
frequency dictionary (Table 7.1) to find ψ̂j,k(ξ), for ψ ∈ L2(R). ♦

The following reconstruction result follows immediately from the
completeness of an orthonormal basis. The hard part is to iden-
tify functions ψ that are wavelets, so that the hypothesis of Proposi-
tion 9.17 holds. We tackle that issue in Chapter 10.

Proposition 9.17. If ψ ∈ L2(R) is a wavelet, then the following
reconstruction formula holds in the L2 sense:

f(x) =
∑
j,k∈Z

〈f, ψj,k〉ψj,k(x) for all f ∈ L2(R).

Definition 9.18. The orthogonal wavelet transform is the map W :

L2(R)→ �2(Z2) that assigns to each function in L2(R) the sequence
of its wavelet coefficients:

Wf(j, k) := 〈f, ψj,k〉 =
ˆ
R

f(x)ψj,k(x) dx. ♦

The earliest known wavelet basis is the Haar basis on L2([0, 1)),
introduced by Alfréd Haar in 1910 [Haa]. For the Haar basis, unlike
the trigonometric basis, the partial sums for continuous functions
converge uniformly.

Example 9.19 (The Haar Wavelet). The Haar wavelet h(x) on the
unit interval is given by

h(x) := −χ[0,1/2)(x) + χ[1/2,1)(x).

See Figure 9.3. The family {hj,k(x) := 2j/2h(2jx − k)}j,k∈Z is an
orthonormal basis for L2(R), as we will see in Section 9.4. ♦

Exercise 9.20. Show that {hj,k}j,k∈Z is an orthonormal set; that is,
verify that 〈hj,k, hj′,k′〉 = 1 if j = j′ and k = k′, and 〈hj,k, hj′,k′〉 =
0 otherwise. First show that the functions hj,k have zero integral:´
hj,k = 0. ♦
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Figure 9.3. The Haar wavelet h(x).

The reader may wonder how an arbitrary function in L2(R),
which need not have zero integral, can be written in terms of the
Haar functions, which all have zero integral. To resolve this puzzle,
see Section 9.4.3 and the project in Section 9.7.

An important part of wavelet theory is the search for smoother
wavelets. The Haar wavelet is discontinuous. It is also perfectly
localized in time and therefore not perfectly localized in frequency.
At the other end of the spectrum, one finds the Shannon wavelet4

which is localized in frequency but not in time.

Example 9.21 (The Shannon Wavelet). Let ψ be given on the Four-
ier side by

ψ̂ (ξ) := e2πiξχ[−1,−1/2)∪[1/2,1)(ξ).

The family {ψj,k}j,k∈Z is an orthonormal basis for L2(R). The func-
tion ψ is the Shannon wavelet, and the corresponding basis is the
Shannon basis. ♦

Exercise 9.22. Show that the Shannon functions {ψj,k}j,k∈Z form
an orthonormal set and each has zero integral. Furthermore, they
are a basis. Hint: Work on the Fourier side using the polariza-
tion formula (7.24). On the Fourier side we are dealing with a win-

4Named after the same Shannon as the sampling theorem in Section 8.5.2.
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dowed Fourier basis, with double-paned windows Fj := [−2j ,−2j−1)∪
[2j−1, 2j) of combined length 2j , for j ∈ Z, that are congruent5 mod-
ulo 2j to the interval [0, 2j). The collection of double-paned windows
Fj forms a partition of R \ {0}. On each double-paned window, the
trigonometric functions 2−j/2e2πikx2

−j

χFj
(x), for k ∈ Z and a fixed j,

form an orthonormal basis of L2(Fj). Now use Lemma A.51. ♦

The Shannon wavelet is perfectly localized in frequency, therefore
not in time. Compact support on the frequency side translates into
smoothness (C∞) of the Shannon wavelet on the time side. Thus
the Shannon wavelet is an example of a C∞ wavelet without com-
pact support. Can one find compactly supported wavelets that are
smooth? Yes. In a fundamental paper on wavelet theory [Dau88],
I. Daubechies constructed compactly supported wavelets with arbi-
trary (but finite) smoothness; they are in Ck. However, it is impossi-
ble to construct wavelets that are both compactly supported and C∞.

We can associate to most wavelets a sequence of numbers, known
as a filter, and a companion scaling function.

A finite impulse response (FIR) filter has only finitely many
nonzero entries. If a wavelet has a finite impulse response filter, then
the wavelet and its scaling function are compactly supported. The
converse is false; see the project in Subsection 10.5.2.

One of Daubechies’ key contributions was her discovery of the
family of wavelets later named after her, each of which has finitely
many nonzero coefficients hk and wavelet and scaling functions ψ and
φ (Figure 9.4) having preselected regularity (meaning smoothness, or
degree of differentiability) and compact support. As noted in [Mey,
Chapter 1], eighty years separated Haar’s work and its natural exten-
sion by Daubechies. It’s amazing! Something as irregular as the
spiky function in Figure 9.4 is a wavelet! No wonder it took so long
to find these continuous, compactly supported wavelets.

5A subset A of R is congruent to an interval I if for each point x ∈ A there exists
a unique integer k such that x+ k|I| is in I and for each point y ∈ I there is a unique
x ∈ A and k ∈ Z so that y = x+k|I|. Here is a nonexample: The set [−1/2, 0)∪[1/2, 1)
is not congruent modulo 1 to the interval [0, 1).
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Figure 9.4. The Daubechies wavelet function ψ, for the db2
wavelet. The shape is reminiscent of the profile of the Sydney
Opera House.

The more derivatives a wavelet has, the longer the filter and the
longer the support of the wavelet. The shorter the filter, the bet-
ter for implementation, so there is a trade-off. Filter bank theory
and the practicability of implementing FIR filters opened the door
to widespread use of wavelets in applications. See Section 10.3.4 and
Chapter 11.

One can develop the theory of wavelets in RN or in CN via linear
algebra, in the same way that we built a finite Fourier theory and
introduced the discrete Haar basis in Chapter 6. See [Fra]. There
is a Fast Haar Transform (FHT) (Section 6.7), and it generalizes
to a Fast Wavelet Transform (FWT) (Chapter 11), which has been
instrumental in the success of wavelets in practice.

As in the Fourier and Gabor cases, there is also a continuous
wavelet transform. It uses continuous translation and scaling param-
eters, u ∈ R and s > 0, and a family of time–frequency atoms that
is obtained from a normalized wavelet ψ ∈ L2(R) with zero average
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(
´
ψ = 0) by shifting by u and rescaling by s. Let

ψs,u(x) =
1√
s
ψ

(
x− u

s

)
, so (ψs,u)

∧(ξ) =
√
s e−2πiuξ ψ̂ (sξ).

The continuous wavelet transform is then defined by

Wf(s, u) = 〈f, ψs,u〉 =
ˆ
R

f(x)ψs,u(x) dx.

If ψ is real-valued and localized near 0 with spread 1, then ψs,u is
localized near u with spread s. The wavelet transform measures the
variation of f near u at scale s (in the discrete case, u = k2−j and
s = 2−j). As the scale s goes to zero (j goes to infinity), the decay of
the wavelet coefficients characterizes the regularity of f near u. Also,
if ψ̂ is localized near 0 with spread 1, then ψ̂s,u is localized near 0
with spread 1/s. That is, the Heisenberg boxes of the wavelets are
rectangles of area 1 and dimensions s× 1/s. (See Section 8.5.3.)

Under very mild assumptions on the wavelet ψ, we obtain a re-
construction formula. Each f ∈ L2(R) can be written as

(9.5) f(x) =
1

Cψ

ˆ ∞

0

ˆ +∞

−∞
Wf(s, u)ψs,u(x)

du ds

s2
,

provided that ψ satisfies Calderón’s admissibility condition [Cal]:

Cψ :=

ˆ ∞

0

|ψ̂ (ξ)|2
ξ

dξ <∞.

This reconstruction formula can be traced back to the famous Calde-
rón reproducing formula6:

(9.6) f(x) =
1

Cψ

ˆ ∞

0

(
ψs,0 ∗ ψ̃s,0 ∗ f

)
(x)

ds

s2
,

where ψ̃(x) = ψ(−x) and ∗ denotes convolution in R.

Exercise 9.23. Show that the Calderón reproducing formula (9.6)
and the reconstruction formula (9.5) are the same. Show that equa-
tion (9.6) holds for f , ψ ∈ S(R) such that Cψ <∞, by checking that
the Fourier transform of the right-hand side coincides with f̂ . ♦

6Named after Argentinian mathematician Alberto Pedro Calderón (1920–1998).
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9.4. Haar analysis

In this section we show that the Haar functions form a complete
orthonormal system. Verifying the orthonormality of the system re-
duces to understanding the geometry of the dyadic intervals. Veri-
fying the completeness of the system reduces to understanding that
the limit in L2(R) of the averaging operators over intervals as the
intervals shrink to a point x ∈ R is the identity operator and that the
limit as the intervals grow to be infinitely long is the zero operator.

We first define the dyadic intervals and describe their geometry.
We define the Haar function associated to an interval and observe
that the family of Haar functions indexed by the dyadic intervals co-
incides with the Haar basis from Example 9.19. We show that the
Haar functions are orthonormal. Next, we introduce the expecta-
tion (or averaging) and difference operators, relate the completeness
of the Haar system to the limiting behavior of the averaging oper-
ators, and prove the required limit results for continuous functions
and compactly supported functions. Finally, an approximation ar-
gument coupled with some uniform bounds gives the desired result:
the completeness of the Haar system. Along the way we mention
the Lebesgue Differentiation Theorem and the Uniform Boundedness
Principle and some of their applications.

9.4.1. The dyadic intervals. Given an interval I = [a, b) in R, the
left half, or left child, of I is the interval Il := [a, (a + b)/2), and
the right half, or right child, of I is the interval Ir := [(a + b)/2, b)

(Figure 9.5). Let |I| denote the length of an interval I.

Given a locally integrable function f , let mIf denote the average
value7 of f over I:

(9.7) mIf :=
1

|I|

ˆ
I

f(x) dx.

Definition 9.24 (Dyadic Intervals). The dyadic intervals are the
half-open intervals of the form

Ij,k = [k2−j , (k + 1)2−j) for integers j, k.

7Other popular notations for mIf are 〈f〉I and fI .
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Let D denote the set of all dyadic intervals in R, and Dj the set of
intervals I ∈ D of length 2−j , also called the jth generation. Then
D =

⋃
j∈Z
Dj . Each Dj forms a partition of the real line. ♦

For instance, [5/8, 3/4) and [−16,−12) are dyadic intervals, while
[3/8, 5/8) is not. If I is a dyadic interval, then its children, grandchil-
dren, parents, grandparents, and so on are also dyadic intervals.

︷ ︸︸ ︷I

︸ ︷︷ ︸ ︸ ︷︷ ︸
Il Ir

Figure 9.5. Parent interval I and its children Il and Ir.

Each dyadic interval I belongs to a unique generation Dj , and the
next generation Dj+1 contains exactly two subintervals of I, namely
Il and Ir. Given two distinct intervals I, J ∈ D, either I and J are
disjoint or one is contained in the other. This nestedness property of
the dyadic intervals is so important that we highlight it as a lemma.

Lemma 9.25 (Dyadic Intervals Are Nested or Disjoint). If I, J ∈ D,
then exactly one of the following holds: I ∩ J = ∅ or I ⊆ J or J � I.
Moreover if J � I, then J is a subset of the left or the right child
of I.

Exercise 9.26. Prove Lemma 9.25. Also show that its conclusion
need not hold for nondyadic intervals. ♦

Given x ∈ R and j ∈ Z, there is a unique interval in Dj that
contains x. We denote this unique interval by Ij(x). Figure 9.8 on
page 244, shows several dyadic intervals Ij(x) for a fixed point x;
they form a dyadic tower containing the point x. The intervals Ij(x)

shrink to the set {x} as j →∞.

9.4.2. The Haar basis. We associate to each dyadic interval I a
step function hI that is supported on I, is constant on each of Il
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and Ir, has zero integral average, and has L2 norm equal to one. The
zero integral average makes the value of hI on the left child be the
negative of the value on the right child. The L2 normalization makes
the absolute value of the function on I be exactly 1/

√
|I|. We make

the convention that the value is negative on Il and thus positive on Ir.
These considerations uniquely determine hI .

Definition 9.27. The Haar function associated to the interval I is
the step function hI defined by

hI(x) := (1/
√
|I|)

(
χIr(x)− χIl(x)

)
. ♦

The Haar wavelet h defined in Example 9.19 coincides with the
Haar function h[0,1) associated to the unit interval [0, 1). The Haar
wavelets hj,k coincide with hIj,k , where Ij,k = [k2−j , (k + 1)2−j).
Figure 9.6 shows the graphs of two Haar functions.
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−√2
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√2

h
[−2,−1.5)

(x)

h
[0,2)
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Figure 9.6. Graphs of the two Haar functions defined
by h[−2,−1.5)(x) =

√
2
[
χ[−1.75,−1.5)(x)− χ[−2,−1.75)(x)

]

and h[0,2)(x) = (1/
√
2)

[
χ[1,2)(x)− χ[0,1)(x)

]
.

Exercise 9.28. Show that

hIj,k(x) = 2j/2h(2jx− k) = hj,k(x), where h = h[0,1). ♦

By the results of Exercises 9.20 and 9.28, the set {hI}I∈D is an
orthonormal set in L2(R). We can also prove directly that the Haar
functions indexed by the dyadic intervals form an orthonormal family,
using the fact that the dyadic intervals are nested or disjoint.
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Lemma 9.29. The family of Haar functions {hI}I∈D indexed by the
dyadic intervals is an orthonormal family.

Proof. Consider I, J ∈ D with I �= J . Either they are disjoint or
one is strictly contained in the other, by Lemma 9.25. If I and J are
disjoint, then clearly 〈hI , hJ〉 = 0, because the supports are disjoint.
If I is strictly contained in J , then hJ is constant on I, and in fact

〈hI , hJ〉 =
ˆ
I

hI(x)hJ(x) dx =
1

|J |1/2
ˆ

hI(x) dx = 0.

The case J � I is similar. This proves the orthogonality of the family.
For the normality, when I = J we have

〈hI , hI〉 = ‖hI‖L2(R) =

ˆ
I

|hI(x)|2 dx =
1

|I|

ˆ
I

dx = 1. �

The Haar system is not only orthonormal but also a complete
orthonormal system and hence a basis for L2(R), as we now show.

Theorem 9.30. The Haar functions {hI}I∈D form an orthonormal
basis for L2(R).

In an N -dimensional space, an orthonormal set of N vectors is
automatically a basis. Thus in Chapter 6 to show that the Haar vec-
tors form a basis for CN , it was enough to show that there are N

orthonormal Haar vectors. In infinite-dimensional space we have to
do more than simply counting an orthonormal set. To prove Theo-
rem 9.30, we must make sure the set is complete. In other words, for
all f ∈ L2(R), the identity

(9.8) f =
∑
I∈D
〈f, hI〉hI

must hold in the L2 sense8. We must show that each L2(R) function f

can be written as a (possibly infinite) sum of Haar functions, weighted
by coefficients given by the inner products of f with hI . (See for
example the lower figure on the cover, where a simple signal is broken
into a weighted sum of Haar functions.)

An alternative proof shows that the only function in L2(R) or-
thogonal to all Haar functions is the zero function (see Theorem A.41).

8Recall that equation (9.8) holds in the L2 sense if ‖f −
∑

I∈D 〈f, hI〉hI‖2 = 0.
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We will show that both arguments boil down to checking some limit
properties of the expectation operators defined in Section 9.4.4.

9.4.3. Devil’s advocate. Before we prove the completeness of the
Haar system, let us play devil’s advocate.

• First, for the function f(x) ≡ 1 we have 〈f, hI〉 =
´
hI = 0 for

all I ∈ D. Thus f is orthogonal to all the Haar functions, so
how can the Haar system be complete? Are we contradicting
Theorem 9.30? No, because f is not in L2(R)!

• Second, how can functions that all have zero integral (the Haar
functions) reconstruct functions that do not have zero integral?9

If the Haar system is complete, then for each f ∈ L2(R), equa-
tion (9.8) holds. Integrating on both sides and interchanging the sum
and the integral, we see that

“
ˆ
R

f(x) dx =

ˆ
R

∑
I∈D
〈f, hI〉hI(x) dx =

∑
I∈D
〈f, hI〉

ˆ
R

hI(x) dx = 0
”
.

The last equality holds because the Haar functions have integral zero.
It seems that all functions in L2(R) must themselves have integral
zero. But that is not true, since for example χ[0,1) belongs to L2(R)
yet has integral one. What’s wrong? Perhaps the Haar system is not
complete after all. Or is there something wrong in our calculation?
The Haar system is complete; it turns out that what is illegal above
is the interchange of sum and integral. See the project in Section 9.7.

9.4.4. The expectation and difference operators, Pj and Qj.
We introduce two important operators10 that will help us to under-
stand the zooming properties of the Haar basis.

9This question was posed by Lindsay Crowl, a student in the 2004 Program for
Women in Mathematics, where we gave the lectures that led to this book. It was a
natural concern and a good example of the dangers of interchanging limit operations!

10An operator is a mapping from a space of functions into another space of func-
tions. The input is a function and so is the output. The Fourier transform is an
example of an operator.
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Definition 9.31. The expectation operators Pj : L2(R) → L2(R),
j ∈ Z, act by taking averages over dyadic intervals at generation j:

Pjf(x) :=
1

|Ij |

ˆ
Ij

f(t) dt,

where Ij = Ij(x) is the unique interval of length 2−j that contains x. ♦

The new function Pjf is a step function that is constant on each
dyadic interval I ∈ Dj in the jth generation. Furthermore the value
of the function Pjf on an interval I ∈ Dj is the integral average of
the function f over the interval I: for each x ∈ I,

(9.9) Pjf(x) ≡ mIf :=
1

|I|

ˆ
I

f(y) dy.

Figure 9.7 (upper plot) shows the graph of a particular function f ,
together with the graphs of Pjf and Pj+1f , for j = −1.
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Figure 9.7. Graphs of f , P−1f , P0f , and Q0f . We have
used the function f(x) = 4 + x(x − 1.5)(x − 4)2(x − 9) ×
e−x/2.5/12.
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Exercise 9.32. Verify that Pjf(x) =
∑

I∈Dj
mIf χI(x). ♦

As j →∞, the length |I| = 2−j of the steps goes to zero, and we
expect Pjf to be a better and better approximation of f . We make
this idea precise in Section 9.4.5 below.

Definition 9.33. The difference operators Qj : L2(R) → L2(R),
j ∈ Z, are given by Qjf(x) := Pj+1f(x)− Pjf(x). ♦

These operators Qj encode the information necessary to go from
the approximation Pjf at resolution j of f to the better approxima-
tion Pj+1f at resolution j+1. Figure 9.7 (lower plot) shows the graph
of Qjf for j = 0.

Notice that when we superimpose the pictures of Pj+1f and Pjf ,
the averages at the coarser scale j seem to be sitting exactly halfway
between the averages at the finer scale j + 1, so that Qjf seems to
be a linear combination of the Haar functions at scale j. Lemma 9.35
makes this fact precise. It is implied by the following useful relation-
ship between integral averages on nested dyadic intervals.

Exercise 9.34. Show that mIf = (mIlf +mIrf)/2. In words, the
integral average over a parent interval is the average of the integral
averages over its children. ♦

Lemma 9.35. For f ∈ L2(R), Qjf(x) =
∑

I∈Dj
〈f, hI〉hI(x).

Proof. By definition of hI and since |I| = 2|Ir| = 2|Il|, we have

〈f, hI〉hI(x) =

√
|I|
2

( 1

|Ir|

ˆ
Ir

f − 1

|Il|

ˆ
Il

f
)
hI(x)

=
√
|I|/2 (mIrf −mIlf)hI(x).

Since hI(x) = 1/
√
|I| for x ∈ Ir and hI(x) = −1/

√
|I| for x ∈ Il, we

conclude that if x ∈ I, then

(9.10) 〈f, hI〉hI(x) =

{
(mIrf −mIlf)/2, if x ∈ Ir;
−(mIrf −mIlf)/2, if x ∈ Il.
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On the other hand, if x ∈ I ∈ Dj , then Pjf(x) = mIf ; if x ∈ Ir,
then Pj+1f(x) = mIrf ; and if x ∈ Il, then Pj+1f(x) = mIlf . Hence

Qjf(x) =

{
mIrf −mIf, if x ∈ Ir;
mIlf −mIf, if x ∈ Il.

The averaging property in Exercise 9.34 implies that

mIrf −mIf = (mIrf −mIlf)/2 = mIf −mIlf.

We conclude that Qjf(x) =
∑

I∈Dj
〈f, hI〉hI(x) for x ∈ I ∈ Dj . �

9.4.5. Completeness of the Haar system. To prove that the
Haar system of functions is complete, we must show that for all
f ∈ L2(R), we have

f(x) =
∑
I∈D
〈f, hI〉hI(x).

By Lemma 9.35, this condition is equivalent to the condition

f(x) = lim
M,N→∞

∑
−M≤j<N

Qjf(x).

A telescoping series argument shows that

PNf(x)− PMf(x) =
∑

M≤j<N

(Pj+1f(x)− Pjf(x))

=
∑

M≤j<N

Qjf(x).(9.11)

Therefore, verifying completeness reduces to checking that

f(x) = lim
N→∞

PNf(x)− lim
M→−∞

PMf(x),

where all the above equalities hold in the L2 sense. It suffices to prove
the following theorem.

Theorem 9.36. For f ∈ L2(R), we have

lim
M→−∞

‖PMf‖2 = 0 and(9.12)

lim
N→∞

‖PNf − f‖2 = 0.(9.13)

Exercise 9.37. Use Theorem 9.36 to show that if f ∈ L2(R) is
orthogonal to all Haar functions, then f must be zero in L2(R). ♦

                

                                                                                                               



244 9. From Fourier to wavelets, emphasizing Haar

Aside 9.38. Before proving Theorem 9.36, we pause to develop the
Lebesgue Differentiation Theorem on R. Here Ij(x) is the unique
dyadic interval in Dj that contains x, as shown in Figure 9.8. Equa-
tion (9.13) says that given x ∈ R, the averages PNf of the function f

over the dyadic intervals {Ij(x)}j∈Z converge to f(x) in the L2 sense
as the intervals shrink: limj→∞

1
|Ij(x)|

´
Ij(x)

f(t) dt = f(x). In fact,
the convergence also holds almost everywhere11 (a.e.).

Theorem 9.39 (Lebesgue Differentiation Theorem on R). Suppose
f is locally integrable: f ∈ L1

loc(R). Let I denote any interval, dyadic
or not, that contains x. Then

lim
x∈I,|I|→0

1

|I|

ˆ
I

f(y) dy = f(x) for a.e. x ∈ R.

For a proof see [SS05, Chapter 3]. In Chapter 4 we stated the
special case with intervals [x− h, x+ h] centered at x, as h→ 0. ♦

Exercise 9.40. Prove the Lebesgue Differentiation Theorem for con-
tinuous functions, and show that for continuous functions the point-
wise convergence holds everywhere. That is, for all x ∈ R and inter-
vals [a, b] containing x, lim[a,b]→{x}

1
b−a

´ b

a
f(t) dt = f(x). ♦

Ij(x)

Ij+1(x)

Ij+2(x)

Ij+3(x)

xk/2j (k + 1)/2j

Figure 9.8. The tower · · · ⊃ Ij(x) ⊃ Ij+1(x) ⊃ Ij+2(x) ⊃
Ij+3(x) ⊃ · · · of nested dyadic intervals containing the
point x, with k/2j ≤ x ≤ (k+1)/2j . Here j and k are integers.

11In other words, the convergence holds except possibly on a set of measure zero.
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Theorem 9.36 is a consequence of the following three lemmas.

Lemma 9.41. The operators Pj are uniformly bounded in L2(R).
Specifically, for each function f ∈ L2(R) and for every integer j,

‖Pjf‖2 ≤ ‖f‖2.

Lemma 9.42. If g is continuous and has compact support on the
interval [−K,K], then Theorem 9.36 holds for g.

Lemma 9.43. The continuous functions with compact support are
dense in L2(R). In other words, given f ∈ L2(R), for any ε > 0 there
exist functions g and h, such that f = g+ h, where g is a continuous
function with compact support on an interval [−K,K] and h ∈ L2(R)
with small L2 norm, ‖h‖2 < ε.

We first deduce the theorem from the lemmas and then after some
comments prove the lemmas.

Proof of Theorem 9.36. By Lemma 9.43, given ε > 0, we can de-
compose f as f = g+h, where g is continuous with compact support
on [−K,K] and h ∈ L2(R) with ‖h‖2 < ε/4. By Lemma 9.42, we can
choose N large enough so that for all j > N ,

‖P−jg‖2 ≤ ε/2.

The expectation operators Pj are linear operators, so Pj(g + h) =

Pjg+Pjh. Now by the Triangle Inequality and Lemma 9.41 we have

‖P−jf‖2 ≤ ‖P−jg‖2 + ‖P−jh‖2 ≤
ε

2
+ ‖h‖2 ≤ ε.

This proves equation (9.12). Similarly, by Lemma 9.42, we can choose
N large enough that for all j > N ,

‖Pjg − g‖2 ≤ ε/2.

Now using the Triangle Inequality (twice) and Lemma 9.41,

‖Pjf − f‖2 ≤ ‖Pjg − g‖2 + ‖Pjh− h‖2 ≤
ε

2
+ 2‖h‖2 ≤ ε.

This proves equation (9.13). �

Exercise 9.44. Show that the operators Pj are linear. ♦
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We have twice used a very important principle from functional
analysis: If a sequence of linear operators is uniformly bounded on a
Banach space and the sequence converges to a bounded operator on
a dense subset of the Banach space, then it converges on the whole
space to the same operator. For us the Banach space is L2(R), the
dense subset is the set of continuous functions with compact support,
the linear operators are Pj , and the uniform bounds are provided by
Lemma 9.41. The operators converge to the zero operator as j → −∞,
and they converge to the identity operator as j →∞.

A related principle is the Uniform Boundedness Principle, or the
Banach–Steinhaus Theorem, from functional analysis. See for exam-
ple [Sch, Chapter III]. This principle gives sufficient conditions for a
family of operators to be uniformly bounded. A beautiful application
of the Uniform Boundedness Principle is to show the existence of a
real-valued continuous periodic function whose Fourier series diverges
at a given point x0. See Aside 9.48.

We now prove the three lemmas that implied Theorem 9.36, which
in turn gave us the completeness of the Haar system.

Proof of Lemma 9.41. We can estimate for x ∈ I ∈ Dj ,

|Pjf(x)|2 =
∣∣∣ 1|I|

ˆ
I

f(t) dt
∣∣∣2 ≤ 1

|I|2
( ˆ

I

12 dt
)( ˆ

I

|f(t)|2 dt
)

=
1

|I|

ˆ
I

|f(t)|2 dt.

The inequality is a consequence of the Cauchy–Schwarz Inequality.

Now integrate over the interval I to obtainˆ
I

|Pjf(x)|2 dx ≤
ˆ
I

|f(t)|2 dt,

and sum over all intervals in Dj (this is a disjoint family that covers
the whole line!):ˆ

R

|Pjf(x)|2 dx =
∑
I∈Dn

ˆ
I

|Pjf(x)|2 dx ≤
∑
I∈Dn

ˆ
I

|f(t)|2 dt

=

ˆ
R

|f(t)|2 dt,

as required. We have used Lemma A.51 twice here. �
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Proof of Lemma 9.42. Suppose that the function g is continuous
and that it is supported on the interval [−K,K]. If j is large enough
that K < 2j and if x ∈ [0, 2j) ∈ D−j , then |P−jg(x)| = 1

2j

´K

0
|g(t)|dt,

and applying the Cauchy–Schwarz Inequality, we get

|P−jg(x)| ≤
1

2j

( ˆ K

0

12 dt
)1/2( ˆ K

0

|g(t)|2 dt
)1/2

≤
√
K

2j
‖g‖2.

The same inequality holds for x < 0. Also, if |x| ≥ 2j , then P−jg(x) =

0, because the interval in Dj that contains x is disjoint with the
support of g. We can now estimate the L2 norm of P−jg:

‖P−jg‖22 =

ˆ 2j

−2j
|P−jg(x)|2 dx ≤

1

22j
K‖g‖22

ˆ 2j

−2j
1 dx = 2−j+1K‖g‖22.

By choosing N large enough, we can make 2−N+1K‖g‖22 < ε2. That
is, given ε > 0, there is an N > 0 such that for all j > N ,

‖P−jg‖2 ≤ ε.

This proves equation (9.12) for continuous functions with compact
support.

We are assuming that g is continuous and that it is supported on
the compact interval [−K,K] ⊂ [−2M , 2M ]. But then g is uniformly
continuous. So given ε > 0, there exists δ > 0 such that

|g(y)− g(x)| < ε/
√
2M+1 whenever |y − x| < δ.

Now choose N > M large enough that 2−j < δ for all j > N . Each
point x is contained in a unique I ∈ Dj , with |I| = 2−j < δ. Therefore
|y − x| ≤ δ for all y ∈ I, and

|Pjg(x)− g(x)| ≤ 1

|I|

ˆ
I

|g(y)− g(x)| dy ≤ ε√
2M+1

.

Squaring and integrating over R, we getˆ
R

|Pjg(x)− g(x)|2 dx =

ˆ
|x|≤2M

|Pjg(x)− g(x)|2 dx

<
ε2

2M+1

ˆ
|x|≤2M

1 dx = ε2.

Notice that if |x| > 2M , then for j > N ≥ M , Pjg(x) is the average
over an interval I ∈ Dj that is completely outside the support of g.
For such x and j, Pjg(x) = 0, and therefore there is zero contribution
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to the integral from |x| > 2M . Lo and behold, we have shown that
given ε > 0, there is an N > 0 such that for all n > N ,

‖Pjg − g‖2 ≤ ε.

This proves equation (9.13) for continuous functions with compact
support. �

Proof of Lemma 9.43. This lemma is an example of an approxima-
tion theorem in L2(R). First, we choose K large enough so that the
tail of f has very small L2 norm, in other words, ‖fχ{x∈R:|x|>K}‖2 ≤
ε/3. Second, we recall that on compact intervals, the continuous
functions are dense in L2([−K,K]); see Theorem 2.75. (For example,
polynomials are dense, and trigonometric polynomials are also dense,
by the Weierstrass Approximation Theorem (Theorem 3.4).) Now
choose g1 continuous on [−K,K] so that ‖(f − g1)χ[−K,K]‖2 ≤ ε/3.
Third, it could happen that g1 is continuous on [−K,K], but when
extended to be zero outside the interval, it is not continuous on the
line. That can be fixed by giving yourself some margin at the end-
points: define g to coincide with g1 on [−K+ δ,K− δ] and to be zero
outside [−K,K], and connect these pieces with straight segments, so
that g is continuous on R. Finally, choose δ small enough so that
‖g1 − g‖2 ≤ ε/3. Now let

h = f − g = fχ{x∈R:|x|>K} + (f − g1)χ[−K,K] + (g1 − g)χ[−K,K].

By the Triangle Inequality,

‖h‖2 ≤ ‖fχ{x∈R:|x|>K}‖2 + ‖(f − g1)χ[−K,K]‖2 + ‖g1 − g‖2 ≤ ε. �

We have shown (Lemma 9.42) that the step functions can approx-
imate continuous functions with compact support in the L2 norm.
Lemma 9.43 shows that we can approximate L2 functions by continu-
ous functions with compact support. Therefore, we can approximate
L2 functions by step functions, in the L2 norm. Furthermore, we can
choose the steps to be dyadic intervals of a fixed generation, for any
prescribed accuracy.

Exercise 9.45 (Approximation by Step Functions). Show that con-
tinuous functions with compact support can be approximated in the
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uniform norm by step functions (with compact support). Further-
more, one can choose the intervals where the approximating function
is constant to be dyadic intervals of a fixed generation for any pre-
scribed accuracy. More precisely, show that given f continuous and
compactly supported on R and ε > 0, there exists N > 0 such that
for all j > N and for all x ∈ R, |Pjf(x)− f(x)| < ε. ♦

Aside 9.46. The Lebesgue Differentiation Theorem (Exercise 9.40)
holds for continuous functions, as a consequence of the Fundamen-
tal Theorem of Calculus. A related function, defined for all x ∈ R
and each locally integrable function f (possibly as ∞), is the Hardy–
Littlewood maximal function12 denoted Mf and defined by

(9.14) Mf(x) = sup
x∈I

1

|I|

ˆ
I

|f(t)| dt.

The supremum in the definition of Mf(x) is taken over all in-
tervals containing x. Notice that the supremum is always defined,
unlike the limit in the Lebesgue Differentiation Theorem as the inter-
vals shrink to the point x; a priori that limit might not exist. The
Lebesgue Differentiation Theorem guarantees both that the limit does
exist and that it equals the value of the function at the point x, for
almost every x. Boundedness and weak boundedness results for the
maximal function (see the project in Section 12.9.2) can be used to
deduce the Lebesgue Differentiation Theorem; see [SS05, Chapter 3,
Section 1].

Maximal functions appear throughout harmonic analysis as con-
trollers for other operators T , in the sense that ‖T‖ ≤ ‖M‖. It is
important to understand their boundedness properties. For example,
all convolution operators with good radial kernels can be bounded
pointwise by a constant multiple of Mf(x).

Exercise 9.47. Let kt ∈ L1(R) be defined for t > 0 by kt(x) :=

t−1K(|y|/t), where K : [0,∞) → [0,∞) is a monotone decreasing
nonnegative function. This is a family of good kernels in R; see Sec-
tion 7.8. Show that the following pointwise estimate holds:

|Kt ∗ f(x)| ≤Mf(x) ‖k1‖1. ♦
12Named after the British mathematicians Godfrey Harold (G. H.) Hardy (1877–

1947) and John Edensor Littlewood (1885–1977).
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As examples of such kernels, consider the heat kernel and the
Poisson kernel on R, introduced in Section 7.8. In these examples,
K(x) = e−|x|2/4/

√
4π for the heat kernel, and K(x) = 1/(1 + |x|2)

for the Poisson kernel. A similar argument to the one that gives the
Lebesgue Differentiation Theorem implies that if kt is the heat kernel
or the Poisson kernel, then limt→0 kt ∗ f(x) = f(x) for almost every
x ∈ R and for every f ∈ L1(R). See [Pin, Sections 3.5.1 and 3.5.2].
We already knew this fact for continuous functions, since in that case
uniform convergence to f was proven in Chapter 7. ♦

Exercise 9.48. We outline an existence proof (but not a construc-
tive proof) that there is a continuous periodic function whose Fourier
series diverges at some point. See the project in Section 2.5 for a
constructive proof.

Theorem 9.49 (Uniform Boundedness Principle). Let W be a family
of bounded linear operators T : X → Y from a Banach space X into
a normed space Y , such that for each x ∈ X, supT∈W ‖Tx‖Y < ∞.
Then the operators are uniformly bounded: there is a constant C > 0

such that for all T ∈W and all x ∈ X, ‖Tx‖Y ≤ C‖x‖X .

Now let X be the Banach space C(T) of all real-valued continuous
functions of period 2π with uniform norm, and let Y = C. For f ∈
C(T), define TN (f) := SNf(0) ∈ C, where SNf is the N th partial
Fourier sum of f . Then SNf = DN ∗ f where DN is the periodic
Dirichlet kernel. Show that if |TNf | ≤ CN‖f‖∞, then necessarily
CN ≥ c‖DN‖L1(T). But as we showed in Chapter 4, ‖DN‖L1(T) ≈
logN . It follows that the operators TN cannot be uniformly bounded,
so there must be some f ∈ C(T) such that supN≥0 |SNf(0)| = ∞.
The partial Fourier sums of this function f diverge at x = 0. ♦

9.5. Haar vs. Fourier

We give two examples to illustrate how the Haar basis can outper-
form the Fourier basis. The first deals with localized data. The second
is related to the unconditionality of the Haar basis in Lp(R) for all
1 < p < ∞, in contrast to the trigonometric basis which is not an
unconditional basis for Lp([0, 1] except when p = 2. We take the op-
portunity to introduce some operators that are important in harmonic
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analysis: the martingale transform, the square function, and Peter-
michl’s shift operator13. We deduce the unconditionality in Lp of the
Haar basis from boundedness properties of these dyadic operators.

9.5.1. Localized data. The first example is a caricature of the
problem: What is the most localized “function” we could consider?
The answer is the delta distribution. If we could find the Fourier series
of a periodic delta distribution, we would see that it has a very slowly
decreasing tail that extends well beyond the highly localized support
of the delta function. However, its Haar transform is very localized;
although the Haar transform still has a tail, the tail decays faster
than that of the Fourier series. We try to make this impressionistic
comment more precise in what follows.

Consider the following approximation of the delta distribution:

fN (x) = 2Nχ[0,2−N ].

Each of these functions has mass 1, and they converge in the sense
of distributions to the delta distribution:

lim
N→∞

TfN (φ) = lim
N→∞

ˆ
fN (x)φ(x) dx = φ(0) = δ(φ),

by the Lebesgue Differentiation Theorem for continuous functions
(Exercise 9.40).

Exercise 9.50. Compute the Fourier transform of fN . Show that if
we view fN as a periodic function on [0, 1), with M th partial Fourier
sum SM (fN )(x) =

∑
|m|≤M f̂N (m) e2πimx, then the following rate of

decay holds: ‖fN − SM (fN )‖L2([0,1)) ∼ 1/
√
M. ♦

We want to compare to the Haar decomposition, working on the
interval [0, 1). We have to be a little careful in view of the next
exercise.

Exercise 9.51. Show that the set {hI}I∈D([0,1]) is not a complete
set in L2([0, 1]). What are we missing? Can you complete the set?
You must show that the set is now complete. ♦

13Named after German mathematician Stefanie Petermichl (born 1971).
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The Haar basis on the interval [0, 1) consists of all the Haar func-
tions indexed on dyadic subtintervals of [0, 1) and the characteristic
function χ[0,1) of the interval [0, 1). The function χ[0,1) is orthonormal
to all the Haar functions selected, so it must be part of an orthonormal
basis.

Exercise 9.52. Compute the Haar coefficients of fN viewed as a
function on [0, 1). Check that the partial Haar sum PM (fN ), defined
by PM (fN ) :=

∑
0≤j<M Qj(fN ) + P0(fN ), decays exponentially in

M : ‖fN − PM (fN )‖L2([0,1)) = 2−M/2. ♦

The exponential decay rate seen in Exercise 9.52 is much better
than the square-root decay in Exercise 9.50. Suppose we want to
approximate FN with an L2 error of magnitude less than 10−5. In
the Fourier case we would need a partial Fourier sum of order M ∼
1010. In the Haar case it suffices to consider M = 10 log2 10 < 40.
However, beware: to move from trigonometric polynomials of degree
M to degree M + 1, we just add two functions e±2πi(M+1), while
to move from generation M to generation M + 1, we need 2M Haar
functions, so this calculation is deceptive.

However, the localization properties of the Haar functions allow
us to worry only about the Haar functions that are supported near
where the action occurs in the function. For example, if the function
is constant on an interval, then the Haar coefficients corresponding
to the Haar functions supported in the interval vanish, because they
have the zero integral property. This is not the case with the trigono-
metric functions, whose support spreads over the whole real line. In
the example discussed, the function fN is supported on the interval
[0, 2−N ) and is constant there. So in fact the number of Haar func-
tions in a given generation whose support intersects the support of fN
and which are not completely inside it is just one. In both the Fourier
and the Haar cases, the parameter M counts the same number of ba-
sis functions contributing to the estimate. Now the difference in the
estimate of the error is dramatic when comparing the rates of conver-
gence. The same phenomenon is observed for compactly supported
wavelets other than the Haar wavelet.

                

                                                                                                               



9.5. Haar vs. Fourier 253

See the project in Section 10.6 for more on linear and nonlinear
approximations. The lesson from this example is that when there
is good localization, the wavelet basis will perform better than the
Fourier basis.

9.5.2. Unconditional bases and dyadic operators. The Haar
basis is an unconditional basis for Lp(R), for 1 < p < ∞. See the
Appendix for the formal definition. Informally, we can approximate
a function in the Lp norm with an infinite linear combination of Haar
functions (basis), and the order of summation doesn’t matter (con-
ditional convergence). Further, the coefficient of hI must be 〈f, hI〉,
and we can recover the Lp norm of the function from knowledge about
the absolute value of these coefficients, that is, using some formula
involving only |〈f, hI〉| for each I. No information about the sign or
argument of 〈f, hI〉 is necessary. In particular, if f ∈ Lp(R) and

f(x) =
∑
I∈D
〈f, hI〉hI(x),

then the new functions defined by

(9.15) Tσf(x) :=
∑
I∈D

σI〈f, hI〉hI(x), where σI = ±1,

are also in Lp(R) and their norms are comparable to that of f . We
will make the statement precise in the next theorem.

Definition 9.53. For a given sequence σ = {σI}I∈D, the operator
Tσ in equation (9.15) is called the martingale transform. ♦

Theorem 9.54. Let σ = {σI}I∈D be a sequence of plus and minus
ones, and let Tσ be its associated martingale transform. There exist
constants c, C > 0 depending only on 1 < p < ∞, such that for all
choices σ of signs and for all f ∈ Lp(R) and for 1 < p <∞,

(9.16) c‖f‖p ≤ ‖Tσf‖p ≤ C‖f‖p.

The first inequality is deduced from the second one with c = 1/C

after noting that Tσ(Tσf) = f . The second we will deduce from
similar inequalities valid for the dyadic square function.

Let us illustrate Theorem 9.54 in the case p = 2. We know
that the Haar functions provide an orthonormal basis in L2(R). In
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particular, Plancherel’s Identity holds:

‖f‖22 =
∑
I∈D
|〈f, hI〉|2.

To compute the L2 norm of the function, we add the squares of the
absolute values of the Haar coefficients. Since each |σI |2 = 1, we have

‖Tσf‖2 = ‖f‖2,
and so inequality (9.16) holds with c = C = 1. Therefore the mar-
tingale transform is an isometry in L2(R). In Lp(R) we do not have
an isometry, but we have the next best thing, which is encoded in
the norm equivalence given by inequalities (9.16). We state another
norm equivalence for yet another operator, the (nonlinear) dyadic
square function Sd. It will imply Theorem 9.54.

Definition 9.55. The dyadic square function Sdf is defined for func-
tions f ∈ L2(R) by

(9.17) Sd(f)(x) =
(∑

I∈D

|〈f, hI〉|2
|I| χI(x)

)1/2

. ♦

It turns out that in the case of the dyadic square function, we
also have a norm equivalence in Lp(R).

Theorem 9.56. There exist positive constants cp and Cp, depending
only on 1 < p <∞, such that for all f ∈ Lp(R)

(9.18) cp‖f‖p ≤ ‖Sd(f)‖p ≤ Cp‖f‖p.

This norm equivalence can be considered as an Lp substitute for
Plancherel’s Identity for Haar functions. Theorem 9.56 tells us that
we can recover the Lp norm of f from the Lp norm of Sd(f). In
the definition of the dyadic square function only the absolute values
of the Haar coefficients of f are used, and so that information is all
that is required to decide whether f is in Lp(R). The case p = 2

is left as an exercise. The case p �= 2 can be found in [Graf08,
Appendix C2] and is based on a beautiful probabilistic result called
Khinchine’s Inequality14 that is worth exploring and understanding.
See the project in Section 9.8.

14Named after Russian mathematician Aleksandr Yakovlevich Khinchine (1894–
1959).

                

                                                                                                               



9.5. Haar vs. Fourier 255

Exercise 9.57 (The Dyadic Square Function Is an Isometry on
L2(R)). Verify that ‖Sd(f)‖2 = ‖f‖2. ♦

Exercise 9.58 (The Dyadic Square Function in Terms of Difference
Operators). Show that

[
Sd(f)(x)

]2
=
∑

j∈Z
|Qjf(x)|2, where Qj is

the difference operator defined in Definition 9.33. Lemma 9.35 will
be useful. ♦

Proof of Theorem 9.54. The definition of the dyadic square func-
tion (9.17) implies that for all choices of signs σ,

Sd(f) = Sd(Tσf).

Theorem 9.56 implies the second inequailty in the norm equivalence
(9.16), because

cp‖Tσf‖p ≤ ‖Sd(Tσf)‖p = ‖Sd(f)‖p ≤ Cp‖f‖p.

Dividing by cp > 0, we conclude that ‖Tσf‖p ≤ C‖f‖p, as desired.
The proof of the lower bound is similar. �

We can argue in a similar fashion to show that the following
dyadic operator is bounded on Lp(R) for all 1 < p <∞.

Definition 9.59. Petermichl’s shift operator is defined for each func-
tion f ∈ L2(R) by

Xf(x) =
∑
I∈D
〈f, hI〉

1√
2

(
hIr(x)− hIl(x)

)
. ♦

The operator X (a letter in the Cyrillic alphabet, pronounced
“sha”) was introduced by Stefanie Petermichl [Pet] in connection with
the Hilbert transform (see Chapter 12).

Exercise 9.60 (Petermichl’s Shift Operator). (i) Let sgn(I, Ĩ) = 1

when I is the right daughter of Ĩ, and sgn(I, Ĩ) = −1 when I is the left
daughter. Show that Xf(x) =

∑
I∈D

(
sgn(I, Ĩ)/

√
2
)
〈f, hĨ〉hI(x).

(ii) Show that ‖Xf‖2 = ‖f‖2.
(iii) Show that there are constants cp, Cp > 0 such that for all

f ∈ Lp(R), cp‖f‖p ≤ ‖Xf‖p ≤ Cp‖f‖p. Hint: Calculate SXf ,
and then argue as we did for the martingale transform in the proof
of Theorem 9.54. ♦
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For general wavelets we also have averaging and difference opera-
tors, Pj and Qj , and a corresponding square function. The same norm
equivalence (9.18) holds in Lp(R). As it turns out, wavelet bases pro-
vide unconditional bases for a whole zoo of function spaces (Sobolev
spaces15, Hölder spaces, etc.). See for example [Dau92, Chapter 9].

The trigonometric system is an orthonormal basis for L2([0, 1]).
However it does not provide an unconditional basis in Lp([0, 1]) for
p �= 2; see [Woj91, II.D.9]. There is a square function that plays the
same rôle that the dyadic square function plays for the Haar basis:

Sf(θ) :=
(∑

j≥0

|Δjf(θ)|2
)1/2

.

Here Δjf is the projection of f onto the subspace of trigonometric
polynomials of degree n where 2j−1 ≤ |n| < 2j for j ≥ 1:

Δjf(θ) :=
∑

2j−1≤|n|<2j

f̂ (j) e2πinx and Δ0f(θ) = f̂(0).

It is true that ‖f‖p is comparable to ‖S(f)‖p in the sense of in-
equality (9.18). We are allowed to change the signs of the Fourier
coefficients of f on the dyadic blocks of frequency. Denoting by Tδf
the function reconstructed with the modified coefficients, that is,

Tδf(θ) :=
∑
j≥0

δjΔjf(θ), δj = ±1,

we have S(Tδf) = S(f), and so their Lp norms are the same and are
both equivalent to ‖f‖p. But there is no guarantee that the same
will be true if we change some but not all signs inside a given dyadic
block! In that case, S(f) does not have to coincide with S(Tδf).

The study of square functions is known as Littlewood–Paley the-
ory16; it is a widely used tool in harmonic analysis. For an introduc-
tion to dyadic harmonic analysis, see the lecture notes by the first
author [Per01]. The books [Duo], [Graf08], [Ste70], and [Tor] all
discuss this important topic.

15Named after Russian mathematician Sergei Lvovich Sobolev (1908–1989).
16Named after British mathematicians John Edensor Littlewood (1885–1977) and

Raymond Edward Alan Christopher Paley (1907–1933).
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9.6. Project: Local cosine and sine bases

Local cosine (or sine) bases are orthonormal bases for L2(R), con-
sisting of functions that are both smooth and compactly supported.
In this sense they could be said to defeat the Balian–Low Theorem
(Theorem 9.11), which implies that the functions in a Gabor basis for
L2(R) cannot be both smooth and compactly supported. Local co-
sine bases were first discovered by Malvar [Malv] and are sometimes
called Malvar–Wilson wavelets17. See [MP, Section 2.3], [CMe],
[HW, Chapter 1], and [JMR, Chapter 6].

(a) Understand the construction of local cosine and sine bases, using
these sources or others.

(b) Why is it useful to have a basis with the properties stated above?
Find some applications in the literature.

(c) Find some software implementations of local cosine bases, and
explore how they work. Or write your own implementation.

(d) Clarify the relationship of local cosine and sine bases with the
Balian–Low Theorem (Theorem 9.11) and Heisenberg’s Uncertainty
Principle (Theorem 8.44).

9.7. Project: Devil’s advocate

Investigate whether the Haar series
∑

I∈D〈χ[0,1), hI〉hI(x) for the
function χ[0,1) converges to χ[0,1) pointwise (yes), uniformly (yes),
in L1(R) (no), or in L2(R) (yes). See also Section 9.4.3.

(a) Show that 〈χ[0,1), hI〉 = −1/
√
2n if I = In := [0, 2n), for n ≥ 1.

Show that for I ∈ D and for I �= In for every n ≥ 1, 〈χ[0,1), hI〉 = 0.
Hence show that for each x ∈ R,

(9.19)
∑
I∈D
〈χ[0,1], hI〉hI(x) =

∞∑
n=1

1

2n
[
χ[0,2n−1)(x)− χ[2n−1,2n)(x)

]
.

17Named after the Brazilian engineer Henrique Malvar (born 1957) and the Amer-
ican physicist Kenneth Wilson (born 1936). Wilson received the 1982 Nobel Prize in
physics.
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(b) Show that the right-hand side of equation (9.19) is equal to
χ[0,1)(x) for each x ∈ R. Consider separately the cases x < 0, 0 ≤
x < 1, and 2k ≤ x < 2k+1 for k ≥ 0. For instance for 2k ≤ x < 2k+1,

∞∑
n=1

1

2n
[
χ[0,2n−1)(x)− χ[2n−1,2n)(x)

]
= − 1

2k
+

∞∑
n=k+1

1

2n
= 0.

(c) The partial Haar sums fN of f are defined to be fN (x) :=∑N
n=1

1
2n

[
χ[0,2n−1)(x) − χ[2n−1,2n)(x)

]
. Show that fN (x) = 1 − 2−N

if x ∈ [0, 1), fN (x) = −2−N if x ∈ [1, 2N ), and fN (x) = 0 other-
wise. Show that

´
R
fN (x) dx = 0 for all N ∈ N. Show that {fN}N∈N

converges uniformly to χ[0,1)(x) on R. Explain why we cannot inter-
change the limit and the integral, despite the uniform convergence
of fN . Indeed, if we interchange them, we will conclude that

lim
N→∞

ˆ
R

fN (x) dx = 0 �= 1 =

ˆ
R

χ[0,1)(x) dx =

ˆ
R

lim
N→∞

fN (x) dx.

Hint: The real line R is not compact.

(d) Show that {fN}N∈N does not converge to χ[0,1) in L1(R). Show
that {fN}N∈N converges to χ[0,1) in L2(R).

(e) The Lebesgue Dominated Convergence Theorem (see Chapter 2
and Theorem A.59) implies that the interchange of limit and inte-
gral would be valid if there were an integrable function g such that
|fN (x)| ≤ g(x) for all N ∈ N. Deduce constructively that there can
be no such dominating function g ∈ L1(R). Hint: Calculate explic-
itly g1(x) = supN≥1 |fN (x)|. Any dominant function g must be larger
than or equal to g1. Verify that g1 is not integrable.

9.8. Project: Khinchine’s Inequality

This project deals with Khinchine’s Inequality, which is the key to
proving the norm equivalence in Lp(R) between the square function
Sf and the function f (Theorem 9.56). First one needs to get ac-
quainted with the Rademacher functions18 and to be comfortable
with the fact that these functions are independent random variables.
You will find enough to get you started in [Graf08, Appendix C]
and [Woj91, Section I.B.8]. See also [Ste70, Appendix] and [Zyg59].

18Named after German mathematician Hans Adolph Rademacher (1892–1969).
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(a) The Rademacher functions {rn(t)}∞n=1 are defined on [0, 1] by
rn(t) = sgn

(
sin(2ntπ)

)
. Show that this definition is equivalent to the

following recursive definition: r1(t) = 1 if 0 ≤ t ≤ 1/2, r1(t) = −1 if
1/2 < t ≤ 1, and given rn(t), then rn+1(t) = 1 on the left half and
−1 on the right half of each interval where rn(t) is constant.

(b) Show that the Rademacher system is an orthonormal system but
not a complete orthonormal system.

(c) Verify that {rn(t)}∞n=1 is a sequence of mutually independent ran-
dom variables on [0, 1], each taking value 1 with probability 1/2 and
value −1 with probability 1/2. The mutual independence amounts to
checking that for all integrable functions fj we have

ˆ 1

0

n∏
j=0

fj(rj(t)) dt =

n∏
j=0

ˆ 1

0

fj(rj(t)) dt.

(d) Prove Khinchine’s Inequality (or find a proof in the literature and
make sure you understand it): for all square summable sequences of
scalars {an}n≥1 and for every p with 0 < p <∞, we have similarity of
the L2 and Lp norms:

∥∥∑
n≥1 anrn

∥∥
Lp([0,1])

∼
∥∥∑

n≥1 anrn
∥∥
L2([0,1])

.

(e) Prove a similar inequality for lacunary sequences of trigono-
metric functions: If {nk}k≥1 is a sequence of natural numbers such
that infk≥1(nk+1/nk) = λ > 1, then for all square summable se-
quences of scalars {ak}k≥1 and for every p with 0 < p <∞, we have∥∥∑

k≥1 ake
inkθ

∥∥
Lp([0,1])

∼
∥∥∑

k≥1 ake
inkθ

∥∥
L2([0,1])

.

                

                                                                                                               



Chapter 10

Zooming properties of
wavelets

The wavelet bases of Chapter 9 have a lot of internal structure. They
decompose the whole function space L2(R) into subspaces, which are
nested. Each signal function f is decomposed into pieces: there is a
piece of f in each subspace. These pieces, or projections, of f give finer
and finer details of f . These ideas lead to the multiresolution analysis
(MRA) formulation of wavelet theory, examined in this chapter.

First, we come to grips with the definition of an orthogonal mul-
tiresolution analysis (MRA) with scaling function ϕ (Section 10.1).
Second, we discuss the two-dimensional wavelets and multiresolution
analysis used in image processing, as well as the use of wavelet de-
compositions in the compression and denoising of images and signals
(Section 10.2). We give a case study: the FBI fingerprint database.
Third, we present Mallat’s Theorem, which shows how to construct a
wavelet from an MRA with scaling function (Section 10.3). We prove
it using Fourier analysis tools from previous chapters. Associated to
the scaling function are some numbers, the low-pass filter coefficients,
which in turn define the dilation equation that the scaling function
must satisfy. These low-pass filter coefficients are all we need to find
the wavelet explicitly. Finally, we show how to identify such magical
low-pass filters and how to solve the dilation equation (Section 10.4).
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10.1. Multiresolution analyses (MRAs)

A multiresolution analysis (MRA) is an abstract, sophisticated way
of formulating the idea of writing functions in terms of dilates and
translates of a wavelet function. Meyer1 and Mallat2 devised this gen-
eral framework, which provides the right setting for the construction
of most wavelets. In this section, we give informal and formal defini-
tions of multiresolution analyses, together with several examples.

10.1.1. MRA: The informal definition. The space L2(R) is writ-
ten in terms of subspaces Vj , Wj , determined by the chosen wavelet.

Approximation spaces: The subspaces Vj are called approximation
spaces, or scaling spaces. They are nested and increasing:

· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · .

The space V0 is called the central space. The jth approximation fj
to f is in Vj . The subspaces Vj and Vj+1 are related by dilation, or
scaling, x �→ 2x, and by translation, x �→ x− k.

Key property: If f(x) is in Vj , then all integer translates f(x− k)

are in Vj and all dilates f(2x) and f(2x− k) are in Vj+1.

Detail spaces: The subspaces Wj are called detail spaces, or wavelet
spaces. The jth level of detail of f is in Wj , and Wj is the difference
between Vj and Vj+1:

Vj ⊕Wj = Vj+1.

Thus, for example, we can write the subspace V3 as

V3 = V2 ⊕W2 = V1 ⊕W1 ⊕W2 = V0 ⊕W0 ⊕W1 ⊕W2.

Here ⊕ indicates a direct sum of orthogonal subspaces: Vj⊕Wj is the
set of all elements vj + wj where vj ∈ Vj , wj ∈Wj , and so vj ⊥ wj .

Before formally defining a multiresolution analysis, we give an
example that has most of the required features.

1French mathematician Yves Meyer (born 1939) was awarded the 2010 Gauss
Medal, given at the International Congress of Mathematicians, ICM 2010, Hyderabad,
India, for outstanding mathematical contributions that have found significant applica-
tions outside of mathematics.

2Stéphane Mallat is a French engineer and mathematician.
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Example 10.1 (The Fourier Series Set-up). This example is almost
a multiresolution analysis in L2(T), except that it does not have the
dilation-by-two feature (Key Property), and we have not described
subspaces . . . , V−2, V−1 within V0. For j ≥ 0, the subspace Vj is
the set of all trigonometric polynomials

∑
|k|≤j ake

2πikt of degree at
most j. The piece of f(t) in Vj is Sjf(t), the jth partial Fourier sum
of f :

Sjf(t) =
∑
|k|≤j

f̂(k)e2πikt ∈ Vj .

Thus Sjf(t) is the orthogonal projection of f onto Vj , since f̂(k) =

〈f, e2πik·〉 and the exponentials {e2πikt}k∈Z form an orthonormal basis
in L2(T). The energy in Sjf(t) is the sum

∑
|k|≤j |f̂(k)|2 over low

frequencies |k| ≤ j. The energy in the difference f(t)− Sjf(t) is the
sum over high frequencies |k| > j, which goes to 0 as j → ∞. The
subspaces Vj fill the space L2(T), in the sense that Sjf → f in L2(T)
(Chapter 5).

Now, what are the wavelet subspaces Wj? The subspaces Wj

contain the new information Δjf(t) = Sj+1f(t) − Sjf(t), where
Sj+1f ∈ Vj+1 and Sjf ∈ Vj . That is, Wj contains the detail in
f at level j. So for individual functions,

Sjf(t) + Δjf(t) = Sj+1f(t),

and for subspaces, Vj⊕Wj = Vj+1. The Fourier detail Δjf(t) is given
explicitly by

Δjf(t) = f̂(j + 1)e2πi(j+1)t + f̂(−j − 1)e−2πi(j+1)t.

Thus the subspace Wj contains the terms of degree exactly j + 1.
These terms are orthogonal to all terms of degree at most j.

The spaces Wj are differences between the consecutive approx-
imation spaces Vj and Vj+1. They contain details at the frequency
scale 2−j . The spaces Vj+1 are sums of the prior detail subspaces Wn,
0 ≤ n ≤ j, and the central approximation subspace V0:

V0 ⊕W0 ⊕W1 ⊕ · · · ⊕Wj = Vj+1.

In terms of functions, we have the telescoping sum

S0f(t) + Δ0f(t) + Δ1f(t) + · · ·+Δjf(t) = Sj+1f(t). ♦
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Can we modify the trigonometric polynomials in Example 10.1 to
satisfy the dilation requirement? Yes. Since t �→ 2t, frequencies must
double as we pass from Vj to Vj+1. Let Vj contain the frequencies up
to 2j . Let Vj+1 contain frequencies up to 2j+1 = 2(2j), etc. Then
Δjf contains all the frequencies between 2j and 2j+1, for j ≥ 0:

Vj � fj(t) = S2jf(t) =
∑

|k|≤2j

cke
2πikt,

Wj � Δjf(t) = S2j+1f(t)− S2jf(t) =
∑

2j<|k|≤2j+1

cke
2πikt.

We obtain a one-sided multiresolution analysis that starts at V0. The
subspaces Vj and Wj have roughly the same dimension. In the field
of harmonic analysis, this set-up is known as the Littlewood–Paley
decomposition of a Fourier series; it breaks the function into octaves
instead of into single terms. (See also Section 9.5.2.)

Remark 10.2. To fit the MRA requirements exactly, we would have
to go to continuous frequency, like this:

fj(x) :=

ˆ
|ξ|≤2j

f̂(ξ) e2πiξx dx, j ∈ Z.

Now not only does j → ∞, with the Vj spaces filling L2(R) as
j → ∞, but also j → −∞, and fj → 0 in L2 as j → −∞. In
terms of subspaces, the intersection of all the Vj subspaces is the
trivial subspace {0}. This set-up leads to the Shannon MRA (Exam-
ple 10.5). ♦

10.1.2. MRA: The formal definition. An orthogonal multireso-
lution analysis (MRA) is a collection of closed subspaces of L2(R)
that satisfy several properties: they are nested; they have trivial in-
tersection; they exhaust the space; the subspaces communicate via a
scaling property; and finally there is a special function, the scaling
function ϕ, whose integer translates form an orthonormal basis for
one of the subspaces. The formal definition is hard to swallow the
first time one encounters it. Concentrate on the two examples briefly
described: the Haar and Shannon multiresolution analyses. Once
you understand the Haar example well, you will feel more comfort-
able with the definition of a multiresolution analysis, which we now
present and discuss without further anesthesia.
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Definition 10.3. An orthogonal multiresolution analysis (often re-
ferred to as an orthogonal MRA) with scaling function ϕ is a collection
of closed subspaces {Vj}j∈Z of L2(R) such that

(1) Vj ⊂ Vj+1 for all j ∈ Z (increasing subspaces);

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . ,

(2)
⋂
j∈Z

Vj = {0} (trivial intersection);

(3)
⋃
j∈Z

Vj is dense in L2(R) (completeness in L2(R));

(4) f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1 (scale invariance ∀j ∈ Z);

(5) ϕ ∈ V0, and its integer translates, {ϕ(x − k)}k∈Z, form an or-
thonormal basis for V0. ♦

There is also a related sequence of wavelet subspaces Wj of L2(R).
It is convenient, but not necessary, to require that Vj ⊥Wj , for all j.
These subspaces are interconnected via Vj+1 = Vj ⊕Wj .

Example 10.4 (The Haar MRA). The characteristic function ϕ(x) =

χ[0,1](x) is the scaling function of the (orthogonal) Haar MRA. The
approximation subspace Vj consists of step functions with steps on
the intervals [k2−j , (k + 1)2−j). Properties (2) and (3) follow from
equations (9.12) and (9.13). (Check the other properties.) See Sec-
tion 11.1 for more detail. ♦

Example 10.5 (The Shannon MRA). We met the Shannon wavelet
in Section 9.3. The scaling function is defined on the Fourier side by

ϕ̂ (ξ) = χ[−1/2,1/2)(ξ).

The approximation subspace Vj consists of the functions f whose
Fourier transforms are supported on the window [−2j−1, 2j−1). The
detail subspace Wj consists of the functions f with Fourier transforms
supported on the double-paned window [−2j ,−2j−1) ∪ [2j−1, 2j). ♦

Exercise 10.6. Check that the subspaces Vj of Example 10.5 do
generate an MRA. Check that the subspace Wj is orthogonal to Vj

and that Vj ⊕Wj = Vj+1. That is, Wj is the orthogonal complement
of Vj in Vj+1. (Hint: Look on the Fourier side.) ♦
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The scaling function ϕ lies in the central space V0, so ϕ ∈ V0 ⊂ V1

since the spaces are nested. Also, the scaled translates
√
2ϕ(2x− k)

of ϕ(2x) form an orthonormal basis for V1 (Exercise 10.8). Since
ϕ ∈ V1, we can write ϕ(x) in terms of this basis with coefficients
{hk}k∈Z, obtaining the equation

(10.1) ϕ(x) =
√
2
∑
k∈Z

hkϕ(2x− k).

This equation is the dilation equation, also known as the scaling
equation. The coefficients hk are the filter coefficients of the wavelet
corresponding to the MRA. In engineering the filter coefficients are
called taps. The dilation equation is a two-scale equation; it expresses
a relationship between a function and dilates of the same function at
a different scale. (Compare with differential equations which relate a
function and its derivatives.)

There are three natural ways to construct or describe an MRA:

(1) by the approximating subspaces Vj ;

(2) by the scaling function ϕ(x);

(3) by the coefficients hk in the dilation equation.

The Haar and Shannon MRAs sit at opposite ends of the time–
frequency spectrum. There are other MRAs in between.

Example 10.7 (Daubechies Wavelets). For each integer N ≥ 1 there
is an orthogonal MRA that generates a compactly and minimally
supported wavelet, such that the length of the support is 2N and
the filters have 2N taps. These Daubechies wavelets are denoted in
Matlab by dbN . Figure 10.1 shows the graphs of the Daubechies
scaling and wavelet functions db2, db4, and db6. The wavelet db1 is
the Haar wavelet. The low-pass filter coefficients corresponding to
db2 are

h0 =
1 +
√
3

4
√
2

, h1 =
3 +
√
3

4
√
2

, h2 =
3−
√
3

4
√
2

, h3 =
1−
√
3

4
√
2

. ♦

A scaling function ϕ for an MRA completely determines the
nested subspaces: the central subspace V0 is determined by prop-
erty (5), and the scaling property (4) allows us to move up and down
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Figure 10.1. Graphs of the Daubechies scaling function ϕ
and wavelet ψ for filter lengths 4, 8, and 12. As the filters get
longer, the functions get smoother. (This figure is adapted
from [MP, Figure 19, p. 50].)

the scale of subspaces. Once such a function ϕ is found, the appro-
priate translates and dilates of ϕ form an orthonormal basis for Vj .
Given the scaling function ϕ, we denote its integer translates and
dyadic dilates with integer subscripts j, k, as we did for the wavelet ψ:

(10.2) ϕj,k(x) := 2j/2ϕ(2jx− k).
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Exercise 10.8. Let ϕ be the scaling function of an orthogonal MRA.
Show that the integer translates {ϕj,k}k∈Z of the jth dilate ϕj,0 form
an orthonormal basis for Vj . ♦

A goal is to identify scaling functions that generate orthogonal
MRAs. Not all functions ϕ work. For instance ϕ must be a solution of
the dilation equation for some set of filter coefficients (Section 10.4.3).
However, even a solution of the dilation equation need not be the scal-
ing function of an orthogonal MRA, as the following example shows.

Example 10.9. The hat function φ(x) = (1 − |x|)χ{|x|≤1}(x) obeys
the following dilation equation (sketch the graphs!):

φ(x) =
1

2
φ(2x− 1) + φ(2x) +

1

2
φ(2x+ 1).

However φ(x) is clearly not orthogonal to φ(2x) or to φ(2x± 1). ♦

Section A.2.4 is good preparation for what follows.

Definition 10.10. Given an L2 function f , let Pjf be the orthogonal
projection of f onto Vj . Since {ϕj,k}k∈Z is an orthonormal basis of
Vj , we have

(10.3) Pjf(x) :=
∑
k∈Z

〈f, ϕj,k〉ϕj,k(x). ♦

The function Pjf is an approximation to the original function at
scale 2−j . More precisely, Pjf is the best approximation to f in the
subspace Vj . See Theorem 5.33, Section 9.4.4, and Theorem A.46.

Exercise 10.11. Show that Pj(Pj+1f) = Pjf for all f ∈ L2(R).
Moreover, Pj(Pnf) = Pjf for all n ≥ j. ♦

The approximation subspaces are nested, and so Pj+1f is a better
approximation to f than Pjf is, or at least equally good. How do we
go from the approximation Pjf to the better approximation Pj+1f?

Definition 10.12. Define the difference operator Qj by

Qjf := Pj+1f − Pjf. ♦

To recover Pj+1f , we add Pjf to the difference Qjf . We do not
seem to have accomplished much, until we realize that Qjf is the
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orthogonal projection of f onto the orthogonal complement Wj of Vj

in Vj+1.

Definition 10.13. Given an orthogonal MRA with approximation
subspaces {Vj}j∈Z, denote by Wj the orthogonal complement of Vj

in Vj+1, meaning the subspace of L2(R) consisting of vectors in Vj+1

which are orthogonal to Vj :

Wj := {h ∈ Vj+1 : 〈h, g〉 = 0, for all g ∈ Vj}.
We call Wj the detail subspace at scale 2−j . ♦

Lemma 10.14. The difference Qjf is the orthogonal projection of
f ∈ L2(R) onto Wj.

Lemma 10.14 is a particular instance of Lemma A.50.

By definition Wj is the orthogonal complement of the closed sub-
space Vj in Vj+1. This means that Vj ⊥ Wj , and if f ∈ Vj+1, there
exist unique g ∈ Vj and h ∈Wj such that f = g + h. In fact g is the
orthogonal projection of f onto Vj , g = Pjf , and h is the orthogonal
projection of f onto Wj , h = Qjf . Thus for each j ∈ Z,

Vj+1 = Vj ⊕Wj .

Exercise 10.15. Show that if j �= k, then Wj ⊥ Wk. Hence show
that we get an orthogonal decomposition of each subspace Vj in terms
of the less accurate approximation space Vn and the detail subspaces
Wk at intermediate resolutions n ≤ k < j:

Vj = Vn ⊕Wn ⊕Wn−1 ⊕ · · · ⊕Wj−2 ⊕Wj−1. ♦

The order of the summands does not matter and no parentheses
are needed, since the direct sum is commutative and associative.

The nested subspaces {Vj}j∈Z define an orthogonal MRA, and
the density condition (3) holds. Therefore the detail subspaces give
an orthogonal decomposition of L2(R):

(10.4) L2(R) =
⊕
j∈Z

Wj .

Here the space on the right is the closure of
⊕

j∈Z
Wj in the L2 norm.

The equality indicates that
⊕

j∈Z
Wj is dense in L2(R) with respect

to the L2 norm.
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Example 10.16. The expectation and difference operators for the
Haar basis (Section 9.4.4) coincide with the orthogonal projections
onto the approximation and detail subspaces in the Haar MRA. ♦

Exercise 10.17. Show that the detail subspace Wj is a dilation of
W0; that is, show that it obeys the same scale-invariance property (4)
of Definition 10.3 that the approximation subspaces Vj satisfy. ♦

We show in Section 10.3 that the scaling function ϕ determines
a wavelet ψ such that {ψ(x− k)}k∈Z is an orthonormal basis for W0.
The detail subspace Wj is a dilation of W0; therefore the function

ψj,k = 2j/2ψ(2jx− k)

is in Wj , and the family {ψj,k}k∈Z forms an orthonormal basis for Wj .
The orthogonal projection Qj onto Wj is then given by

Qjf =
∑
k∈Z

〈f, ψj,k〉ψj,k.

Taking together all the scales indexed by j, the collection of func-
tions {ψj,k}j,k∈Z forms an orthonormal basis for the whole space L2(R).
This important result is Mallat’s Theorem (see [Mall89]). We state
it here and prove it in Section 10.3.

Theorem 10.18 (Mallat’s Theorem). Given an orthogonal MRA
with scaling function ϕ, there is a wavelet ψ ∈ L2(R) such that for
each j ∈ Z, the family {ψj,k}k∈Z is an orthonormal basis for Wj.
Hence the family {ψj,k}j,k∈Z is an orthonormal basis for L2(R).

Example 10.19. The Haar function and the Shannon function are
the wavelet ψ in Mallat’s Theorem (Theorem 10.18) corresponding
to the Haar and Shannon multiresolution analyses, respectively. We
return to the Haar example in Section 11.1. ♦

Exercise 10.20. Given an orthogonal MRA with scaling function ϕ,
show that if {ψ0,k}k∈Z is an orthonormal basis for W0, then {ψj,k}k∈Z

is an orthonormal basis for Wj . Now show that the two-parameter
family {ψj,k}j,k∈Z forms an orthonormal basis for L2(R). ♦

Some wavelets do not come from an MRA, but these are rare. If
the wavelet has compact support, then it does come from an MRA. In-
grid Daubechies found and classified all smooth compactly supported
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wavelets; see [Dau92]. For most applications, compactly supported
wavelets are desirable and sufficient. Finally, the conditions in the
definition of the MRA are not independent. For full accounts of these
matters and more, consult the books by Hernández and Weiss [HW,
Chapter 2] and by Wojtaszczyk [Woj03, Chapter 2].

10.2. Two applications of wavelets, one case
study

In this section we briefly describe two very successful applications of
wavelets. First we introduce the two-dimensional wavelet transform
which is of great importance in dealing with images. Second we de-
scribe in broad strokes the basics of signal compression and denoising.
Finally we bring to life these generic applications with a successful
real life application: the FBI fingerprint database storage, compres-
sion, denoising, and retrieval problem.

10.2.1. Two-dimensional wavelets. 3

There is a standard procedure for constructing bases in two-
dimensional space from given one-dimensional bases, namely the ten-
sor product. In particular, given a wavelet basis {ψj,k}j,k∈Z in L2(R),
the family of tensor products

ψj,k;i,n(x, y) = ψj,k(x)ψi,n(y), j, k, i, n ∈ Z,

is an orthonormal basis in L2(R2). Unfortunately we have lost the
multiresolution structure. Notice that we are mixing up scales in the
above process, since the scaling parameters i, j need not be related.

Exercise 10.21. Show that if {ψn}n∈N is an orthonormal basis for
a closed subspace V ⊂ L2(R), then the functions defined on R2 by

ψm,n(x, y) = ψm(x)ψn(y)

form an orthonormal basis for V ⊗ V . Here V ⊗ V is the closure of
the linear span of the functions {ψm,n}m,n∈N. ♦

3Most of the presentation in Subsection 10.2.1 is adapted from Section 4.3 of the
first author’s book [MP].
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We use this idea at the level of the approximation spaces Vj in
the orthogonal MRA. For each scale j, the family {ϕj,k}k∈Z is an
orthonormal basis of Vj . Let Vj be the closure in L2(R2) of the linear
span of the tensor products ϕj,k,n(x, y) = ϕj,k(x)ϕj,n(y):

Vj = Vj ⊗ Vj :=
{
f(x, y) =

∑
n,k

aj,n,kϕj,k,n(x, y) :
∑
n,k

|aj,n,k|2 <∞
}
.

Notice that we are no longer mixing scales. The spaces Vj form an
MRA in L2(R2), with scaling function

ϕ(x, y) = ϕ(x)ϕ(y).

Hence the integer shifts {ϕ(x − k, y − n) = ϕ0,k,n}k,n∈Z form an
orthonormal basis of V0, consecutive approximation spaces are con-
nected via scaling by two in both variables, and the other conditions
hold.

The orthogonal complement of Vj in Vj+1 is denoted byWj . The
rules of arithmetic are valid for direct sums and tensor products:

Vj+1 = Vj+1 ⊗ Vj+1 = (Vj ⊕Wj)⊗ (Vj ⊕Wj)

= (Vj ⊗ Vj)⊕ [(Vj ⊗Wj)⊕ (Wj ⊗ Vj)⊕ (Wj ⊗Wj)]

= Vj ⊕Wj .

Thus the space Wj can be viewed as the direct sum of three tensor
products, namely

Wj = (Wj ⊗Wj)⊕ (Wj ⊗ Vj)⊕ (Vj ⊗Wj).

Therefore three wavelets are necessary to span the detail spaces:

ψd(x, y) = ψ(x)ψ(y), ψv(x, y) = ψ(x)ϕ(y), ψh(x, y) = ϕ(x)ψ(y),

where d stands for diagonal, v for vertical, and h for horizontal. The
reason for these names is that each of the subspaces somehow favors
details that are oriented in those directions.

Example 10.22 (The Two-Dimensional Haar Basis). The scaling
function is the characteristic function

ϕ(x, y) = χ[0,1]2(x, y) = χ[0,1](x)χ[0,1](y)
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of the unit cube. The following pictures help us to understand the
nature of the two-dimensional Haar wavelets and scaling function:

1 1
1 1

ϕ(x, y)

−1 1
1 −1

ψd(x, y)

1 −1
1 −1

ψh(x, y)

−1 −1
1 1

ψv(x, y) ♦

Exercise 10.23. Describe the Haar MRA in two dimensions. ♦

The same approach works in higher dimensions. There are 2n−1

wavelet functions and one scaling function, where n is the dimension.

Exercise 10.24. Describe a three-dimensional orthogonal MRA. Such
MRAs are useful for video compression. ♦

The construction above has the advantage that the bases are sep-
arable. Implementing the fast two-dimensional wavelet transform can
be done easily, by successively applying the one-dimensional Fast
Wavelet Transform. The disadvantage is that the analysis is very
axis-dependent.

We can think of the approximation and detail images in the sep-
arable wavelet decomposition as follows. Suppose your fine resolution
lives in V2, so your image is the approximation a2. Decompose into
a coarser approximation a1 ∈ V1 using 1/4 of the data and the detail
d1 = dh1 + dd1 + dv1 ∈ W1 which is the sum of the horizontal, diag-
onal, and vertical details, each carrying 1/4 of the initial data, so
that a2 = a1+ d1. Now repeat for a1: decompose into approximation
a0 ∈ V0 and details d0 = dh0 + dd0 + dv0 ∈ W0, so that a1 = a0+ d0 and
a2 = a0 + d0 + d1, and so on. Schematically:

� �a2

a1 dh1

dv1 dd1

a0 dh0

dv0 dd0

dh1

dv1 dd1
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There are nonseparable MRAs, such as the twin dragon. See the
project in Section 10.5.1.

10.2.2. Basics of compression and denoising. One of the main
goals in signal and image processing is to be able to code the informa-
tion with as few data as possible, as we saw in the example of Amanda
and her mother in Chapter 1. Having fewer data points allows faster
transmission and easier storage. In the presence of noise, one also
wants to separate the noise from the signal (de-noise or denoise the
signal), and one would like to have a basis that concentrates the sig-
nal in a few large coefficients and quarantines the noise in very small
coefficients. With or without noise, the steps to follow are:

(1) Transform the data: find coefficients with respect to a given basis.

(2) Threshold the coefficients: keep the large ones and discard the
small ones. Information is lost in this step, so perfect reconstruction
is no longer possible.

(3) Reconstruct with the thresholded coefficients: use only the coeffi-
cients you kept in step (2). Hope that the resulting compressed signal
approximates your original signal well and that in the noisy case you
have successfully denoised the signal.

For instance, in the lower figure on the cover, the small localized
square wave at lower right might represent a brief burst of noise, and
one might discard that while keeping the large square wave at upper
right.

When the basis is a wavelet basis, one simple approach is to
use the projection onto an approximation space as your compressed
signal, discarding all the details after a certain scale j:

Pjf =
∑
k

〈f, ϕj,k〉ϕj,k.

The noise is usually concentrated in the finer scales (higher fre-
quencies!), so this approach does denoise the signal, but at the same
time it removes many of the sharp features of the signal that were
encoded in the finer wavelet coefficients. A more refined thresholding
technique is required. The two most popular thresholding techniques
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are hard thresholding (a keep-or-toss scheme) and soft thresholding
(the coefficients are attenuated following a linear scheme).

How to select the threshold is another issue. In the denoising
case, there are some thresholding selection rules that are justified
by probability theory (essentially the law of large numbers) and are
used widely by statisticians. Thresholding and threshold selection
principles are both encoded in Matlab.

In traditional approximation theory there are two possible meth-
ods, linear approximation and nonlinear approximation.

Linear approximation: Select a priori N elements in the basis and
project onto the subspace generated by those elements, regardless
of the function that is being approximated. It is a linear scheme:
P l
Nf :=

∑N
n=1〈f, ψn〉ψn.

Nonlinear approximation: Choose the basis elements depending on
the function. For example the N basis elements could be chosen so
that the coefficients are the largest in size for the particular function.
This time the chosen basis elements depend on the function being
approximated: P nonl

N f :=
∑N

n=1〈f, ψn,f 〉ψn,f .

The nonlinear approach has proven quite successful. For a lot
more information about state-of-the-art compression and denoising
techniques, see [Mall09, Chapters 10 and 11]. See also the project
in Section 10.6.

10.2.3. Case study: The FBI Fingerprint Image Compres-
sion Standard. The FBI Fingerprint Image Compression Standard
was developed by Tom Hopper of the FBI and Jonathan Bradley
and Chris Brislawn at the Los Alamos National Laboratory. We are
grateful to Chris Brislawn for permission to reproduce images and
other materials from his website [Bri02]. That website has large,
high-resolution versions of the images below and others. See also the
article [Bri95].

When someone is fingerprinted at a police station, say in Albu-
querque, New Mexico, for identification, the prints are sent to the FBI
to look for matching prints. The FBI’s collection of fingerprint cards
was begun in 1924. By 1995, it had about 200 million cards, taking
up an acre of floorspace, and about 30,000–50,000 new cards were
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being created per day. Each card had ten rolled prints, two unrolled
prints, and two prints of all five fingers.

The FBI decided to digitize this enormous database, using 500
dots per inch with 8 bits of greyscale resolution. Then 28 = 256

shades of grey are possible for each pixel, so it takes 8 bpp (bits per
pixel) to store the greyscale information. A fingerprint image like the
one on the left of Figure 10.2 is 768× 768 pixels or 589,824 bytes. At
this rate, each card corresponds to about 10 megabytes of data, so
the whole database was about 2,000 terabytes (= 2× 1012 bytes).

Figure 10.2. A sample fingerprint (left) and a magnified
image of an area near its center (right). Reproduced from
[Bri02], with permission.

Clearly there is a need for data compression; a factor of, say, 20:1
would help. One could try lossless methods that preserve every pixel
perfectly, but in practice, lossless methods get a compression ratio
of at most 2:1 for fingerprints, which is not enough. Another option
for compression was the pre-1995 JPEG (Joint Photographic Experts
Group) standard, using the discrete cosine transform, a version of the
Discrete Fourier Transform.

The image on the right of Figure 10.2 shows a detail from the
fingerprint on the left. Notice the minutiae such as ridge endings and
bifurcations, which form permanently in childhood. From [Bri02]:
“The graininess you see represents the individual pixels in the 500 dpi
scan. The white spots in the middle of the black ridges are sweat
pores, and they’re admissible points of identification in court, as are
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the little black flesh ‘islands’ in the grooves between the ridges. Since
these details are just a couple pixels wide, our compression method
needs to preserve features right at the resolution of the scan, a VERY

tough problem since most lossy algorithms work by throwing out the
smallest (or highest frequency) details in the image.”

Figure 10.3. Pre-1995 JPEG compression (left) and 1995
Wavelet/Scalar Quantization compression (right) of the fin-
gerprint image on the right of Figure 10.2, both at compression
ratio 12.9:1. Reproduced from [Bri02], with permission.

The effect of the pre-1995 JPEG discrete cosine method on the
fingerprint image above, at a compression ratio of 12.9:1 is shown on
the left of Figure 10.3. The fine details have been corrupted. Also,
those with good eyesight and a strong light may be able to see an
artifact consisting of a regular grid of 256 small blocks each measuring
8 pixels by 8 pixels. This blocking artifact is much more visible in
the larger image in [Bri02].

The Los Alamos team developed a Wavelet/Scalar Quantization
(WSQ) compression method, using a specific biorthogonal wavelet
with sixteen nonzero coefficients. (See Example 11.26 and the para-
graphs that follow it.) The effect of this method is shown in the image
on the right of Figure 10.3. The fine details are more visible than on
the left, and there are no blocking artifacts. This WSQ method was
adopted by the FBI in its Fingerprint Image Compression Standard.
Wavelet compression methods also became part of the 2000 JPEG
Standard.
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On the website [Bri02] there is an informative visualization of the
fingerprint discrete wavelet transform decomposition, showing images
of sixty-four different spatial frequency subbands used to reconstruct
a single fingerprint image.

10.3. From MRA to wavelets: Mallat’s Theorem

In this section we show, given an orthogonal MRA with scaling func-
tion ϕ, how to find the corresponding wavelet whose existence is
claimed in Mallat’s Theorem (Theorem 10.18). The presentation is
very much inspired by [Woj03]. The proof is not simple; however
after having worked hard in previous chapters learning about Fourier
series and Fourier transforms, the patient reader will be able to un-
derstand it. The impatient reader may bypass this section and move
on to the next, where the more algorithmic consequences of the proof
we are about to discuss will be emphasized.

The proof may be considered as an extended exercise in the use of
Fourier series and transforms. We will spend a few pages setting up
an appropriate time–frequency dictionary for the MRA that we are
studying. First, we will give a criterion on the Fourier side that will
tell us when the family of integer translates of the scaling function of
the MRA forms an orthonormal family. Second, the scaling invari-
ance paired with the nested properties of the MRA can be encoded in
the important dilation equation which has both time and frequency
incarnations. Along the way an important sequence of numbers will
appear, the filter coefficients, which are the Fourier coefficients of a
periodic function, the low-pass filter. Third, we will present a charac-
terization on the Fourier side of the functions on the detail subspace
W0, in terms of the low-pass filter and the Fourier transform of the
scaling function. This will be the hardest step. We will be able to
write a formula on the Fourier side of a function in W0, which we
can prove is the wavelet we were looking for. Fourth, we revisit Mal-
lat’s algorithm in space and see what it says for our canonical MRA
examples: Haar and Shannon.

10.3.1. Integer translates and the dilation equation. First let
us find necessary and sufficient conditions on the Fourier side that
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guarantee that the integer translates of a square-integrable function
form an orthonormal family.

Lemma 10.25. Take f ∈ L2(R). The family {f0,k = τkf}k∈Z of
integer translates of f is orthonormal if and only if∑

n∈Z

|f̂(ξ + n)|2 = 1 for a.e. ξ ∈ R.

Proof. First note that 〈τkf, τmf〉 = 〈τk−mf, f〉, by a change of vari-
able (recall that τkf(x) := f(x − k)). The orthonormality of the
family of integer translates is equivalent to

〈τkf, f〉 = δk for all k ∈ Z.

Recall that the Fourier transform preserves inner products, the Four-
ier transform of τkf is the modulation of f̂ , and the function e−2πikξ

has period one. Therefore for all k ∈ Z

δk = 〈τ̂kf, f̂〉 =
ˆ
R

e−2πikξ |f̂(ξ)|2 dξ,

and using the additivity of the integral,

δk =
∑
n∈Z

ˆ n+1

n

e−2πikξ|f̂(ξ)|2 dξ =

ˆ 1

0

e−2πikη
∑
n∈Z

|f̂(η + n)|2 dη.

The last equality is obtained by performing on each integral the
change of variable η = ξ − n that maps the interval [n, n + 1) onto
the unit interval [0, 1). This identity says that the periodic function
of period one given by F (η) =

∑
n∈Z
|f̂(η+n)|2 has kth Fourier coef-

ficient equal to the Kronecker delta δk. Therefore it must be equal to
one almost everywhere, which is exactly what we set out to prove. �

We can now establish two important identities that hold for the
scaling function ϕ of an orthogonal MRA.

Theorem 10.26. Let ϕ be the scaling function of an orthogonal
MRA. For almost every ξ ∈ R,

(10.5)
∑
n∈Z

|ϕ̂(ξ + n)|2 = 1.
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There exist coefficients {hk}k∈Z such that
∑

k∈Z
|hk|2 <∞:

(10.6) ϕ(x) =
√
2
∑
k∈Z

hk ϕ(2x− k).

Proof. The integer translates of ϕ form an orthonormal family. By
Lemma 10.25, for almost every ξ ∈ R equality (10.5) holds.

Also, ϕ ∈ V0 ⊂ V1, and the functions ϕ1,k(x) =
√
2ϕ(2x − k),

for k ∈ Z, form an orthonormal basis for V1. Therefore ϕ must be a
(possibly infinite) linear combination of the basis functions:

ϕ(x) =
∑
k∈Z

〈ϕ, ϕ1,k〉ϕ1,k(x) =
√
2
∑
k∈Z

hk ϕ(2x− k)

for hk := 〈ϕ, ϕ1,k〉. Furthermore,
∑

k∈Z
|hk|2 = ‖ϕ‖2L2(R) <∞. �

Definition 10.27. Equation (10.6) is called a dilation equation or
scaling equation. The dilation equation on the Fourier side reads

(10.7) ϕ̂ (ξ) = H(ξ/2) ϕ̂ (ξ/2),

where H(ξ) = (1/
√
2)
∑

k∈Z
hke

−2πikξ is an L2 function of period 1,
called the low-pass filter4. The coefficients {hk}k∈Z are called filter
coefficients. ♦

For convenience we assume that the low-pass filter H is a trigono-
metric polynomial, so that all but finitely many of the coefficients
{hk}k∈Z vanish. There are multiresolution analyses whose low-pass
filters are trigonometric polynomials, for example the Haar MRA;
see (11.2). In fact, for applications, these are the most useful, and
they correspond to MRAs with compactly supported scaling func-
tions; see [Dau92], [Woj03].

Exercise 10.28. Check that the scaling equation on the Fourier side
is given by equation (10.7). ♦

We can now deduce a necessary property that the low-pass fil-
ter H must satisfy. This condition is known in the engineering com-
munity as the quadrature mirror filter (QMF) property, necessary to
achieve exact reconstruction for a pair of filters.

4Some authors prefer the name refinement mask. The term low-pass filter will
become clear in Section 10.3.4.
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Lemma 10.29. Given an orthogonal MRA with scaling function ϕ

and a corresponding low-pass filter H that we assume is a trigono-
metric polynomial, then for every ξ ∈ R,

|H(ξ)|2 + |H(ξ + 1/2)|2 = 1.

Proof. Insert equation (10.7) into equation (10.5), obtaining

1 =
∑
n∈Z

|ϕ̂(ξ + n)|2 =
∑
n∈Z

∣∣H(
(ξ + n)/2

)∣∣2∣∣ϕ̂ ((ξ + n)/2
)∣∣2.

Now separate the sum over the odd and even integers, use the fact
that H has period one to factor it out from the sum, and use equa-
tion (10.5) (twice), which holds for almost every point ξ:

|H(ξ/2)|2
∑
k∈Z

|ϕ̂ (ξ/2 + k)|2 + |H(ξ/2 + 1/2)|2
∑
k∈Z

∣∣ϕ̂ ((ξ + 1)/2 + k
)∣∣2

= |H(ξ/2)|2 + |H(ξ/2 + 1/2)|2 = 1.

Equality holds almost everywhere. Since H is a trigonometric poly-
nomial, H is continuous and so equality must hold everywhere. �

10.3.2. Characterizing functions in the detail subspace W0.
We describe the functions in W0, the orthogonal complement of V0

in V1, where all the subspaces correspond to an orthogonal MRA with
scaling function ϕ and low-pass filter a trigonometric polynomial H.

For any f ∈ V1, the same argument we used for ϕ shows that
there must be a function of period one, mf (ξ) ∈ L2([0, 1)), such that

(10.8) f̂(ξ) = mf (ξ/2) ϕ̂ (ξ/2).

In this notation, the low-pass filter H = mϕ.

Lemma 10.30. A function f ∈W0 if and only if there is a function
v(ξ) of period one such that

f̂(ξ) = eπiξ v(ξ)H(ξ/2 + 1/2) ϕ̂(ξ/2).

Proof. First, f ∈ W0 if and only if f ∈ V1 and f ⊥ V0. The fact
that f ∈ V1 allows us, by observation (10.8), to reduce the problem
to showing that

mf (ξ) = e2πiξ σ(ξ)H(ξ + 1/2),
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where σ(ξ) is some function with period 1/2. Then v(ξ) = σ(ξ/2)

will have period one.

The orthogonality f ⊥ V0 is equivalent to 〈f, ϕ0,k〉 = 0 for all
k ∈ Z. A calculation similar to the one in the proof of Lemma 10.25
shows that

0 = 〈f̂ , ϕ̂0,k〉 =

ˆ
R

f̂(ξ) e2πikξ ϕ̂(ξ) dξ.

Use equations (10.8) and (10.7) to conclude that

0 =

ˆ
R

e2πikξ mf (ξ/2) ϕ̂ (ξ/2)H(ξ/2) ϕ̂ (ξ/2) dξ

=

ˆ
R

e2πikξ mf (ξ/2)H(ξ/2) |ϕ̂ (ξ/2)|2 dξ.

At this point we use the same trick we used in Lemma 10.25:
break the integral over R into the sum of integrals over the inter-
vals [n, n + 1), change variables to the unit interval, and use the
periodicity of the exponential to get

0 =
∑
n∈Z

ˆ n+1

n

e2πikξ mf (ξ/2)H(ξ/2) |ϕ̂ (ξ/2)|2 dξ

=

ˆ 1

0

e2πikξ
∑
n∈Z

mf

(
(ξ + n)/2

)
H
(
(ξ + n)/2

) ∣∣ϕ̂ ((ξ + n)/2
)∣∣2 dξ.

We would also like to take advantage of the periodicity of the
functions mf and H. These are functions of period one, but we are
adding half an integer. If we separate the last sum, as we did in
Lemma 10.29, into the sums over the odd and even integers, we will
win. In fact we obtain that for all k ∈ Z

0 =

ˆ 1

0

e2πikξ
[
mf (ξ/2)H(ξ/2)

∑
m∈Z

|ϕ̂ (ξ/2 +m)|2

+ mf (ξ/2 + 1/2)H(ξ/2 + 1/2)
∑
m∈Z

∣∣ϕ̂ ((ξ + 1)/2 +m
)∣∣2] dξ

=

ˆ 1

0

e2πikξ
[
mf (ξ/2)H(ξ/2) +mf (ξ/2 + 1/2)H(ξ/2 + 1/2)

]
dξ,
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where the last equality is a consequence of applying equation (10.5)
twice. This time the 1-periodic function (see Exercise 10.31)

F (ξ) = mf (ξ/2)H(ξ/2) +mf (ξ/2 + 1/2)H(ξ/2 + 1/2)

has been shown to have Fourier coefficients identically equal to zero.
Hence it must be the zero function almost everywhere:

(10.9) mf (ξ)H(ξ) +mf (ξ + 1/2)H(ξ + 1/2) = 0 a.e.

This equation says that for a point ξ for which it holds, the vector
�v ∈ C2 given by

�v =
(
mf (ξ),mf(ξ + 1/2)

)
must be orthogonal to the vector in �w ∈ C2 given by

�w =
(
H(ξ), H(ξ + 1/2)

)
.

The QMF property of H (see Lemma 10.29) ensures that �w is not
zero; in fact |�w| = 1. The vector space C2 over the complex numbers C
is two-dimensional. Therefore the orthogonal complement of the one-
dimensional subspace generated by the vector �w is one-dimensional.
It suffices to locate one nonzero vector �u ∈ C2 that is orthogonal to
�w to completely characterize all the vectors �v that are orthogonal to
�w. In fact �v = λ�u for λ ∈ C. The vector

�u =
(
−H(ξ + 1/2) , H(ξ)

)
is orthogonal to �w. Therefore �v = λ

(
− H(ξ + 1/2) , H(ξ)

)
, and we

conclude that the 1-periodic function mf must satisfy

mf (ξ) = −λ(ξ)H(ξ + 1/2), mf (ξ + 1/2) = λ(ξ)H(ξ).

Therefore λ(ξ) is a function of period one such that −λ(ξ + 1/2) =

λ(ξ). Equivalently, λ(ξ) = e2πiξσ(ξ), where σ(ξ) has period 1/2 (see
Exercise 10.32). The conclusion is that f ∈W0 if and only if

mf (ξ) = e2πiξ σ(ξ)H(ξ + 1/2),

where σ(ξ) is a function with period 1/2, as required. �

Exercise 10.31. Show that if H and G are periodic functions of
period one, then the new function

F (ξ) = G(ξ/2)H(ξ/2) +G(ξ/2 + 1/2)H(ξ/2 + 1/2)

also has period one. ♦
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Exercise 10.32. Show that λ(ξ) is a function of period one such that
λ(ξ + 1/2) = −λ(ξ) if and only if λ(ξ) = e2πiξσ(ξ) where σ(ξ) has
period 1/2. ♦

10.3.3. Voilà, the wavelet. We are now ready to present the wave-
let ψ associated to the MRA with scaling function ϕ and low-pass
filter H, whose existence is claimed in Mallat’s Theorem (Theorem
10.18), when H is a trigonometric polynomial.

Proof of Mallat’s Theorem. The function ψ we are looking for is
in the detail subspace W0. Therefore, by Lemma 10.30, on the Fourier
side it must satisfy the equation

ψ̂(ξ) = mψ(ξ/2) ϕ̂(ξ/2),

where

(10.10) mψ(ξ) = e2πiξ σ(ξ)H(ξ + 1/2)

and σ(ξ) is a function with period 1/2. Furthermore, because we
want the integer translates of ψ to form an orthonormal system, we
can apply Lemma 10.25 to ψ and deduce a QMF property for the
1-periodic function mψ(ξ). Namely, for almost every ξ ∈ R,

|mψ(ξ)|2 + |mψ(ξ + 1/2)|2 = 1.

Substituting equation (10.10) into this equation implies that for al-
most every ξ ∈ R,

|σ(ξ)|2|H(ξ + 1/2)|2 + |σ(ξ + 1/2)|2|H(ξ)|2 = 1.

But σ(ξ) has period 1/2, and H satisfies the QMF condition. We
conclude that |σ(ξ)| = 1 almost everywhere.

Choose a function of period 1/2 that has absolute value 1, for
example σ(ξ) ≡ 1. Define the wavelet on the Fourier side to be

ψ̂(ξ) := G(ξ/2) ϕ̂(ξ/2),

where G is the 1-periodic function given by

G(ξ) := e2πiξ H(ξ + 1/2).

By Lemma 10.30, ψ ∈W0. Likewise, its integer translates are in W0,
because on the Fourier side

ψ̂0,k(ξ) = e−2πikξ G(ξ/2) ϕ̂(ξ/2),
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and we can now use Lemma 10.30 again with v(ξ) = e−2πikξ a function
of period one. Furthermore G satisfies a QMF property, and so the
family of integer translates of ψ is an orthonormal family in W0.

It remains to show that this family spans W0. By Lemma 10.30,
if f ∈ W0, there is a square-integrable function v(ξ) of period one
such that

f̂(ξ) = v(ξ) eπiξ H(ξ/2 + 1/2) ϕ̂(ξ/2) = v(ξ) ψ̂(ξ).

But v(ξ) =
∑

k∈Z
ake

−2πikξ, where
∑

k∈Z
|ak|2 < ∞. Inserting the

trigonometric expansion of v and using the fact that modulations on
the Fourier side come from translations, we obtain

f̂(ξ) =
∑
k∈Z

ake
−2πikξ ψ̂(ξ) =

∑
k∈Z

akψ̂0,k(ξ).

Taking the inverse Fourier transform, we see that

f(x) =
∑
k∈Z

akψ0,k(x).

That is, f belongs to the span of the integer translates of ψ. The
integer translates of ψ form an orthonormal basis of W0. By scale
invariance, the functions {ψj,k}k∈Z form an orthonormal basis of Wj .
Thus the family {ψj,k}j,k∈Z forms an orthonormal basis of L2(R), as
required. �

Exercise 10.33. Verify that if τkψ is an orthonormal system and
ψ ∈W0, then mψ satisfies the QMF property. ♦

10.3.4. Mallat’s algorithm and examples revisited. Starting
with a multiresolution analysis with scaling function φ, the wavelet ψ
we found is an element of W0 ⊂ V1. Therefore it is also a superposition
of the basis elements {ϕ1,k}k∈Z of V1. So there are unique coefficients
{gk}k∈Z such that

∑
k∈Z
|gk|2 <∞ and

(10.11) ψ(x) =
∑
k∈Z

gkϕ1,k(x).

Definition 10.34. Given an MRA with associated low-pass filter co-
efficients {hk}k∈Z, define the high-pass filter G, a 1-periodic function
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with filter coefficients g = {gk}k∈Z, by

gk = (−1)k−1h1−k, G(ξ) =
1√
2

∑
k∈Z

gke
2πikξ. ♦

With this choice of filter, the function ψ given by equation (10.11)
is Mallat’s wavelet, which we constructed in Section 10.3.3. It suffices
to observe that with this choice, ψ̂(ξ) = G(ξ/2) ϕ̂(ξ/2) with G(ξ) :=

(1/
√
2)
∑

gke
−2πikξ = e2πiξ H(ξ + 1/2). See Exercise 10.36.

Lemma 10.35. The high-pass filter G is itself a quadrature mirror
filter (QMF):

(10.12) |G(ξ)|2 + |G(ξ + 1/2)|2 = 1.

Furthermore,

(10.13) H(ξ)G(ξ) +H(ξ + 1/2)G(ξ + 1/2) = 0.

We leave the proof of the lemma as an exercise for the reader.

The QMF condition for the low-pass filter H in Lemma 10.29
reflects the fact that for each scale j, the scaling functions {ϕj,k}k∈Z

form an orthonormal basis for Vj . Likewise, the QMF condition
(10.12) for the high-pass filter G reflects the fact that for each scale j,
the wavelets {ψj,k}k∈Z form an orthonormal basis for Wj . Further-
more, the orthogonality between Wj and Vj is reflected in condi-
tion (10.13).

The QMF condition for the 1-periodic function H together with
H(0) = 1 (see Lemma 10.40) implies that H(±1/2) = 0, which ex-
plains the name low-pass filter : low frequencies near ξ = 0 are kept,
while high frequencies near ξ = ±1/2 are removed (filtered out).
Condition (10.13), together with the knowledge that H(0) = 1 and
H(±1/2) = 0, implies that G(0) = 0 (equivalently

∑L−1
k=0 gk = 0).

The condition G(0) = 0 together with the QMF condition (10.13)
for G implies that G(±1/2) = 1. This observation explains the name
high-pass filter : high frequencies near ξ = ±1/2 are kept, while low
frequencies near ξ = 0 are removed.

Given a low-pass filter H associated to an MRA, we will al-
ways construct the associated high-pass filter G according to Defi-
nition 10.34.
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Exercise 10.36. Consider a filter H that satisfies a QMF condition.
Define a new filter G(ξ) := e−2πiξ H(ξ + 1/2). Show that G also
satisfies a QMF condition. Check that equation (10.13) holds. Verify
that on the Fourier side ψ̂ (ξ) = G(ξ/2) ϕ̂ (ξ/2) and that for each
m ∈ Z, ψ0,m is orthogonal to ϕ0,k for all k ∈ Z. That is, V0 ⊥W0. A
similar calculation shows that Vj ⊥Wj . ♦

We will see in Section 11.2 that Mallat’s Theorem also provides
a numerical algorithm that can be implemented very successfully,
namely the cascade algorithm, or Fast Wavelet Transform.

Let us revisit the two examples of MRAs that we know.

Example 10.37 (Haar Revisited). The characteristic function of the
unit interval χ[0,1] generates an orthogonal MRA, namely the Haar
MRA. The nonzero low-pass filter coefficients are h0 = h1 = 1/

√
2;

hence the nonzero high-pass coefficients are g0 = −1/
√
2 and g1 =

1/
√
2. Therefore the Haar wavelet is ψ(t) = ϕ(2t − 1) − ϕ(2t). The

low-pass and high-pass filters are

H(ξ) = (1 + e−2πiξ)/2, G(ξ) = (e−2πiξ − 1)/2. ♦

Example 10.38 (Shannon Revisited). The Shannon scaling function
is given on the Fourier side by ϕ̂ (ξ) = χ[−1/2,1/2)(ξ). It generates an
orthogonal MRA. It follows from Exercise 10.28 that

H(ξ) = χ[−1/2,−1/4)∪[1/4,1/2)(ξ).

Hence by Exercise 10.36,

G(ξ) = e2πiξH(ξ + 1/2) = e2πiξχ[−1/4,1/4)(ξ)

(recall that we are viewing H(ξ) and G(ξ) as periodic functions on
the unit interval), and

ψ̂ (ξ) = eπiξχ{1/2<|ξ|≤1}(ξ). ♦

Exercise 10.39. Verify that the Haar and Shannon low-pass and
high-pass filters satisfy corresponding QMF conditions and condi-
tion (10.13). ♦

Are there MRAs defined by other scaling functions ϕ? Yes; we
have for an example the Daubechies family of wavelets. In the next

                

                                                                                                               



288 10. Zooming properties of wavelets

section we give some concrete guidelines on how to hunt for suitable
scaling functions and low-pass filters. In practice, large families of
wavelets are known and are encoded in wavelet software, ready for
use.

10.4. How to find suitable MRAs

Mallat’s Theorem provides a mathematical algorithm for constructing
the wavelet from the given MRA and the scaling function via the filter
coefficients. We represent Mallat’s algorithm schematically as

ϕ

scaling
MRA

→
H

low-pass
filter

→
G

high-pass
filter

→
ψ

Mallat’s
wavelet

In this section we are concerned with the problem of deciding
whether a given trigonometric polynomial H is the low-pass filter of
an orthogonal MRA or whether a given function ϕ is the scaling func-
tion of an orthogonal MRA. First, we highlight necessary conditions
on a periodic function H for it to be the low-pass filter for an orthog-
onal MRA. These conditions are relatively easy to check. Second, we
identify some easy-to-check properties that a candidate for the scaling
function of an orthogonal MRA should have. Third, if a function ϕ

is the scaling function of an MRA, then it will be a solution of the
dilation equation for a given set of filter coefficients. We make a short
digression over the existence and uniqueness of a solution (possibly
a distribution) for a given scaling equation provided the coefficients
add up to

√
2.

10.4.1. Easy-to-check conditions on the low-pass filter. Given
an orthogonal MRA, the scaling function ϕ satisfies the scaling equa-
tion (10.6), for some set of filter coefficients h = {hk}k∈Z:

ϕ(t) =
√
2
∑
k∈Z

hkϕ(2t− k).

The low-pass filter is given by H(ξ) = (1/
√
2)
∑

k∈Z
hke

−2πikξ, a
1-periodic function of the frequency variable ξ, whose Fourier coeffi-
cients are Ĥ (k) = h−k/

√
2. We assume that the low-pass filter has
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finite length L, meaning that the coefficients hk are zero unless k = 0,
1, . . . , L− 1. Thus H is a trigonometric polynomial:

H(ξ) = (1/
√
2)

L−1∑
k=0

hke
−2πikξ.

Such filters are called by the engineers Finite Impulse Response (FIR)
filters. For applications it is a most desirable property, since FIR
filters have compactly supported scaling functions and wavelets. See
also Aside 10.50 and the project in Subsection 10.5.2.

We observed in (10.7) that on the Fourier side the scaling equation
becomes

ϕ̂ (ξ) = H(ξ/2) ϕ̂ (ξ/2) for all ξ ∈ R.

Now plug in ξ/2 for ξ:

ϕ̂ (ξ/2) = H(ξ/4) ϕ̂ (ξ/4).

Repeating J times, we get

(10.14) ϕ̂ (ξ) =
(∏J

j=0H(ξ/2j)
)
ϕ̂ (ξ/2J).

If ϕ̂ is continuous5 at ξ = 0, ϕ̂ (0) �= 0, then ϕ̂ (ξ/2J)→ ϕ̂ (0). In this
case, we can let J →∞ in (10.14) and the infinite product converges
to ϕ̂ (ξ)/ϕ̂ (0):

(10.15) ϕ̂ (ξ)/ϕ̂ (0) =
∏∞

j=0H(ξ/2j).

We sum up in the following lemma.

Lemma 10.40. If H is the low-pass filter of an MRA with scaling
function ϕ such that ϕ̂ is continuous at ξ = 0 and ϕ̂ (0) = 1, then:

(i) H(0) = 1, or equivalently
∑L−1

k=0 hk =
√
2.

(ii) The following quadrature mirror filter (QMF) condition holds:

|H(ξ)|2 + |H(ξ + 1/2)|2 = 1.

(iii) The infinite product
∏∞

j=0H
(
ξ/2j

)
converges for each ξ to ϕ(ξ).

5This is a reasonable assumption; if ϕ ∈ L1(R), then its Fourier transform is
continuous everywhere and decays to zero at ±∞ (Riemann–Lebesgue Lemma).
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Proof. We observed in (10.7) that on the Fourier side the scaling
equation becomes ϕ̂ (ξ) = H(ξ/2) ϕ̂ (ξ/2). Setting ξ = 0, we conclude
that H(0) = 1, or equivalently

∑L−1
k=0 hk =

√
2.

In Lemma 10.29 we showed that the orthonormality of the inte-
ger shifts of the scaling function implies the QMF condition for H.
The convergence of the infinite product was justified in the preceding
paragraphs. �
Exercise 10.41. Check that the Daubechies db2 filter defined in
Example 10.7 is a QMF and that h0 + h1 + h2 + h3 =

√
2. ♦

Exercise 10.42. Let H(ξ) = (1 + e−2πiξ)/2 be the low-pass filter.
(See Example 10.37 for the Haar scaling function ϕ(x) = χ[0,1)(x).)
Compute the infinite product

∏∞
j=1 H(ξ/2j) directly for this example,

and compare it with ϕ̂ (ξ). ♦

10.4.2. Easy-to-check conditions on scaling functions ϕ. We
list here two useful properties of scaling functions of orthogonal MRAs,
assuming that the scaling function ϕ is not only in L2(R) but also
in L1(R). This latter condition implies, by the Riemann–Lebesgue
Lemma, that ϕ̂ is continuous. In particular ϕ̂ is continuous at ξ = 0,
which is all we will use in the proof of part (i) of Lemma 10.43.
The orthonormality of the set {ϕ0,k}k∈Z and the continuity of ϕ̂

at ξ = 0 imply that |ϕ̂ (0)| = 1, and one usually normalizes to
ϕ̂ (0) =

´
ϕ(t) dt = 1. This normalization happens to be useful

in numerical implementations of the wavelet transform. These are
easy-to-check conditions on potential scaling functions ϕ that we now
summarize.

Lemma 10.43. Consider an orthogonal MRA with scaling func-
tion ϕ. Suppose ϕ ∈ L2(R) ∩ L1(R). Then

(i) |ϕ̂(0)| = 1, and |ϕ̂(k)| = 0 for all k ∈ Z with k �= 0, and

(ii)
∑

k∈Z
ϕ(x+ k) = 1, for a.e. x ∈ R.

Proof. Let g ∈ L2(R) be a nonzero function whose Fourier transform
is supported on the interval [−1/2, 1/2]. Let us calculate the L2 norm
of the orthogonal projection onto Vj of this function g, namely Pjg.
Since ϕ is a scaling function for an MRA, by the density property (3)
in Definition 10.3 we have limj→∞ ‖Pjg‖L2(R) = ‖g‖L2(R).
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The functions {ϕj,k}k∈Z form an orthonormal basis of Vj , and
the Fourier transform preserves inner products. Therefore

‖Pjg‖L2(R) =
∑
k∈Z

|〈g, ϕj,k〉|2 =
∑
k∈Z

|〈ĝ, ϕ̂j,k〉|2.

Using the time–frequency dictionary, one can verify that

(10.16) ϕ̂j,k(ξ) = 2−j/22−2πik2−jξϕ̂(2−jξ).

Substituting this expression into each inner product in the sum and
using the hypothesis on the support of ĝ, we find that for j ≥ 0,

〈ĝ, ϕ̂j,k〉 =
ˆ 2j−1

−2j−1

ĝ (ξ) 2−j/222πik2
−jξϕ̂(2−jξ) dξ.

The functions {Ej
k(ξ) := 2−j/22−2πik2−jξ}k∈Z form the trigonometric

basis corresponding to the interval [−2j−1, 2j−1) of length 2j . The
integral on the left-hand side is therefore the inner product of the
function G(ξ) := ĝ (ξ) ϕ̂(2−jξ) with the elements of this orthonormal
basis. In all, we conclude that

‖Pjg‖2L2(R) =
∑
k∈Z

|〈G, Ej
k〉|2 = ‖G‖2L2([−2j−1,2j−1)).

Replacing G by its expression in terms of ĝ and ϕ̂ and remembering
that the support of ĝ is [−1/2, 1/2], we obtain

‖Pjg‖2L2(R) =

ˆ 2j−1

−2j−1

|ĝ (ξ) ϕ̂(2−jξ)|2 dξ =

ˆ 1/2

−1/2

|ĝ (ξ)|2|ϕ̂(2−jξ)|2 dξ.

Now take the limit as j → ∞. The left-hand side converges to
‖g‖2L2(R), and the right-hand side converges to

ˆ 1/2

−1/2

|ĝ (ξ)|2|ϕ̂(0)|2 dξ = ‖ĝ‖2L2(R)|ϕ̂(0)|2,

because ϕ̂ is continuous at ξ = 0, and the interchange of limit and
integral is legal by the Lebesgue Dominated Convergence Theorem
(Theorem A.59). The two limits must coincide; therefore

‖g‖2L2(R) = ‖ĝ‖2L2(R)|ϕ̂(0)|2.

By Plancherel’s Identity, ‖g‖L2(R) = ‖ĝ‖L2(R), and we conclude that
ϕ̂(0) = 1.
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The scaling function ϕ satisfies the identity (10.5) for all ξ ∈ R,
because ϕ ∈ L1(R) ∩ L2(R). Evaluating the identity at ξ = 0, we see
that ∑

k∈Z

|ϕ̂(k)|2 = 1.

We have just proved that ϕ̂(0) = 1. Then necessarily ϕ̂(k) = 0 for all
k �= 0. This ends the proof of part (i).

Part (ii) is a direct application of the Poisson Summation Formula
(Theorem 8.37) to ϕ, in light of the knowledge we have just acquired
about the values of ϕ̂(k). �

Exercise 10.44. Verify that the Fourier transform of ϕj,k is given
by formula (10.16). ♦

10.4.3. Solution of the dilation equation. Given an orthogo-
nal MRA, the bridge between the filter coefficients and the scaling
function ϕ is the dilation equation (10.6), for some finite set of filter
coefficients h = {hk}L−1

k=0 : ϕ(x) =
√
2
∑L−1

k=0 hkϕ(2x− k).

It is easy to check that this equation is satisfied for the Haar filter
coefficients h0 = h1 = 1/

√
2 (all other coefficients vanish) and the

Haar scaling function ϕ(x) = χ[0,1)(x). It is, however, very surprising
that there are any other solutions at all. We show that for each finite
set of filter coefficients that sum to

√
2, there is a unique solution of

the scaling equation. The filter coefficients for the hat function in
Example 10.9 satisfy this condition.

Theorem 10.45. Every dilation equation

ϕ(x) =
√
2
L−1∑
k=0

hk ϕ(2x− k) where
L−1∑
k=0

hk =
√
2

has a solution ϕ(x). The solution is unique and compactly supported.
This solution may be a function or a distribution.

We will give a partial proof only. It relies on two assumptions
and a big theorem (Paley–Wiener). Our theorem is essentially one
proved in Daubechies’ book [Dau92, pp. 174–177]. We outline the
main ideas.
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Assume without proof: (1) If ϕ does exist, it has mean value 1.
That is,

´
ϕ(x) dx = 1. We saw that it was reasonable to assume the

mean is nonzero so as to be able to represent functions of nonzero
mean. Once the mean is nonzero, we may as well normalize it to be
one. (2) If ϕ does exist and has a Fourier transform, then ϕ̂(ξ) is
continuous at ξ = 0.

Proof of Theorem 10.45. We start with a formal (unjustified sym-
bol-pushing) argument which leads to the same infinite product for-
mula for ϕ̂(ξ), the Fourier transform of ϕ(x), that we encountered in
formula (10.15). (There we had an MRA with scaling function ϕ, so
we knew that under assumptions (1) and (2) the product converged
to ϕ(x).) We must show that this formula is well-defined and that we
can take its inverse Fourier transform to get the function ϕ(x). Then
we must show that this ϕ(x) does satisfy the dilation equation (yes,
it does, by taking the Fourier transform).

We begin with ϕ(x) =
√
2
∑L−1

k=0 hkϕ(2x−k), the known dilation
equation. Take the Fourier transform to get

ϕ̂(ξ) =

ˆ ∞

−∞

(
√
2

L−1∑
k=0

hkϕ(2x− k)

)
e−2πiξx dx

=
√
2
L−1∑
k=0

hk

ˆ ∞

−∞
ϕ(2x− k)e−2πiξx dx.

Make the substitution u = 2x− k to get

ϕ̂(ξ) =
√
2

L−1∑
k=0

hk

ˆ ∞

−∞
ϕ(u)e−2πiξu/2e−iξk/2 du

2

=
1√
2

L−1∑
k=0

(
hke

−2πiξk/2

ˆ ∞

−∞
ϕ(u)e−2πiξu/2 du

)
=

1√
2

( L−1∑
k=0

hke
−2πiξk/2

)
ϕ̂(ξ/2) = m0(ξ/2) ϕ̂(ξ/2).

The function m0(ξ) := (1/
√
2)
∑L−1

k=0 hke
−iξk is the low-pass filter

corresponding to the sequence h0, h1, . . . , hL−1. It is a trigonometric
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polynomial. We will later need the result, which holds by hypothesis:

m0(0) =
1√
2

L−1∑
k=0

hke
−i0k =

1√
2

L−1∑
k=0

hk =
1√
2
(
√
2) = 1.

Summing up, we have that the Fourier transform of a solution to
the dilation equation must satisfy ϕ̂(ξ) = m0(ξ/2) ϕ̂(ξ/2). Now plug
in ξ/2 for ξ: ϕ̂(ξ/2) = m0(ξ/4) ϕ̂(ξ/4). Repeating and using the fact
that ϕ̂(0) =

´
ϕ(x) dx = 1 (see below), we get

ϕ̂(ξ) =
( J∏
j=1

m0(ξ/2
j)
)
ϕ̂(ξ/2j).

Now let J →∞ and conclude that

ϕ̂(ξ) =
( ∞∏
j=1

m0(ξ/2
j)
)
ϕ̂(0) =

∞∏
j=1

m0(ξ/2
j).

We assumed ϕ̂(ξ) continuous at ξ = 0, so ϕ̂(ξ/2J)→ ϕ̂(0) as J →∞.
We also assumed

´
ϕ(x) dx = 1. An important fact about the Fourier

transform is that ϕ̂(0) =
´∞
−∞ ϕ(x)e−i0x dx =

´∞
−∞ ϕ(x) dx, which is

the integral of ϕ(x). So we have ϕ̂(0) = 1, as required.

The formula above is our guess for the Fourier transform of ϕ(x):
an infinite product of dilations of the symbol m0(ξ). Does our infinite
product converge? We are asking whether

∞∏
j=1

m0(ξ/2
j) := lim

J→∞

J∏
j=1

m0(ξ/2
j)

exists for fixed ξ. This infinite product is a limit of partial products,
if it exists, just as the sum of an infinite series is the limit of its
partial sums, if it exists. We show that in fact the product converges
absolutely. Just as for sums, this implies that the product converges.

We will need the fact that m0(0) = 1, which we showed earlier.
Also, define C := maxξ |m′

0(ξ)|. This quantity C is finite, since m0(ξ)

is a finite trigonometric polynomial. For each ξ,

|m0(ξ)| = |m0(ξ) + 1−m0(0)| ≤ 1 + |m0(ξ)−m0(0)|
≤ 1 + (max

ξ
|m′

0(ξ)|)|ξ − 0| = 1 + C|ξ| ≤ eC|ξ|,
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where in the second inequality we have used the mean value theo-
rem and in the last inequality we have used the Taylor series for the
exponential function. Therefore

|ϕ̂(ξ)| = |m0(ξ/2)||m0(ξ/4)||m0(ξ/8)| · · · ≤ eC|ξ|/2eC|ξ|/4eC|ξ|/8 · · ·
= exp

(
C|ξ|

[
2−1 + 4−1 + 8−1 + · · ·

])
= exp(C|ξ|) <∞.

For each |ξ|, the absolute value of the infinite product is finite. There-
fore the product converges. (It converges absolutely, and in fact uni-
formly on compact sets.)

Existence: The existence of a distribution ϕ(x) with Fourier trans-
form

∏∞
j=1 m0(ξ/2

j) follows from the Paley–Wiener Theorem. For
more details see [Dau92, p. 176]. One can conclude that the product∏∞

j=1m0(ξ/2
j) is the Fourier transform of some function or distri-

bution ϕ(x), supported on [0, N ] (see Aside 10.49) and satisfying the
dilation equation.

Uniqueness: Take any compactly supported distribution or func-
tion f(x) satisfying the dilation equation and also having a Fourier
transform, with f̂(0) =

´
f(x) dx = 1. Then

f̂(ξ) = m0(ξ/2)f̂(ξ/2) = · · · =
( J∏
j=1

m0(ξ/2
j)
)
f̂
(
ξ/2J

)
.

Take the limit as J →∞ and use the fact that f̂(0) = 1 to get

f̂(ξ) =
∞∏
j=1

m0(ξ/2
j) = ϕ̂(ξ).

Since the Fourier transform is one-to-one, f = ϕ. �

Remark 10.46 (Zeros at ξ = 1/2, Vanishing Moments, Order of
Approximation). In general, the faster |ϕ̂(ξ)| decays to zero as |ξ| →
∞, the better behaved the inverse Fourier transform ϕ(x) is. If the
decay “at∞” of |ϕ̂(ξ)| is fast enough, ϕ(x) will be a function, not just
a distribution. If a certain Condition E in [SN] holds (see p. 310 of
this book), then ϕ(x) is a function and ϕ ∈ L2(R). (If the cascade
algorithm converges in L2, it will have a limit in L2 since L2(R) is
complete.)
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A common requirement on the low-pass filter of a scaling function
ϕ is that H(ξ) has a zero at ξ = 1/2. This condition reads 0 =

H(1/2) = (1/
√
2)
∑L−1

k=0 hke
πik. We conclude that the following sum

rule must hold:

(1/
√
2)
(
h0 − h1 + h2 − . . . (−1)L−1hL−1

)
= 0.

This requirement ensures that ϕ̂ has good decay as |ξ| → ∞. First,
ϕ̂(1) = ϕ̂(2) = ϕ̂(4) = · · · . (Why?)

(1) H(0) = (1/
√
2)
∑L−1

k=0 hk = 1.

(2) H(ξ) is 1-periodic since each e−2πik(ξ+1) = e−2πikξ(e−2πi)k =
e−2πikξ. Therefore, 1 = H(0) = H(1) = H(2) = H(3) = · · · .

(3) Therefore, ϕ̂(1) = H(1) ϕ̂(1) = ϕ̂(2) = H(2) ϕ̂(2) = ϕ̂(4) · · · .

If |ϕ̂(ξ)| → 0 as |ξ| → ∞ (decay at ∞) and ϕ̂(1) = ϕ̂(2) =

ϕ̂(4) = · · · = ϕ̂(2j) = · · · , then we must have all these terms equal
to 0. Recall that ϕ̂(1) = H(1/2) ϕ̂(1/2). So we can make ϕ̂(1) =
0 by requiring H(1/2) = 0. Having a zero at ξ = 1/2 implies that
H(ξ) =

[
(1 + e−iπξ)/2

]
Q(ξ), where Q is a trigonometric polynomial.

Exercise 10.47. Verify that if H has p zeros at the point ξ = 1/2,
that is, H(ξ) =

[
(1 + e−iπξ)/2

]p
Q(ξ), where Q(ξ) is a trigonometric

polynomial, then the following p sum rule holds:
∑L−1

k=0 (−1)kkjhk =

0, for all j = 0, 1, . . . , p − 1. Hint: Take derivatives of H(ξ) and
evaluate them at ξ = 1/2. ♦

The more zeros H has at ξ = 1/2, the faster ϕ̂ will decay as
|ξ| → ∞ and the smoother ϕ will be. Moreover, if H has p zeros at
ξ = 1/2, then the wavelet ψ will have p vanishing moments, that is,ˆ

R

xkψ(x) dx = 0, k = 0, 1, . . . , p.

It is argued in [SN, Theorem 7.4] that the polynomials 1, x, x2, . . . ,
xp belong to the central subspace V0, and consequently W0 would be
orthogonal to them, which would explain the vanishing moments for
ψ ∈W0. However the polynomials are not functions in L2(R), so one
should take this argument with a grain of salt (see [SN, Note on p.
228]). Vanishing moments for the wavelet are a desirable property for
applications. ♦
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Exercise 10.48. Show that if the wavelet ψ has p vanishing moments
and f has p derivatives, then the wavelet coefficients 〈f, ψj,k〉 decay
like 2−jp. Hint: Write f as its pth Taylor polynomial + remainder. ♦
Aside 10.49. Here is the usual criterion for convergence of an in-
finite product. Rewrite the product

∏∞
j=1 bj as

∏∞
j=1(1 + aj). The

individual terms bj must tend to 1, so the terms aj tend to 0. Now,
as shown in [Ahl, p. 192],

∞∏
j=1

(1 + aj) converges ⇔
∞∑
j=1

aj converges.

We have shown that |bj | = |m0(ξ/2
j)| ≤ 1 + C|ξ|/2j = 1 + aj and∑∞

j=1 aj =
∑∞

j=1 C|ξ|/2j = C|ξ| <∞. Therefore the infinite product
also converges. ♦
Aside 10.50. If we know only that ϕ(x) is supported in some finite
interval [a, b], we can use the dilation equation once more to show that
this interval must be [0, L−1]. For suppose the support of ϕ(x) is [a, b].
Dilate by 1/2 and translate by k to get supp(ϕ(2x)) = [a/2, b/2] and
supp(ϕ(2x − k)) = [(a+ k)/2, (b+ k)/2]. Thus the right-hand side
of the dilation equation is supported between a/2 (when k = 0) and
(b+L− 1)/2 (when k = L− 1). So [a, b] = [a/2, (b+L− 1)/2]. Thus
a = 0 and b = L− 1, and ϕ(x) is supported on [0, L− 1].

Exercise 10.51. Show that if the scaling function ϕ of an MRA is
supported on the interval [0, L−1], then Mallat’s wavelet is supported
on the interval [−(L− 2)/2, L/2]. ♦

We have just shown that “FIR ⇒ compact support”. In other
words, if the wavelet has finite impulse response (that is, only finitely
many filter coefficients are nonzero), then the wavelet and scaling
functions are compactly supported. Is the converse true? If the
wavelet and scaling functions are compactly supported, are there only
finitely many taps (coefficients)? Answer: No! An example was
given by V. Strela at the 1999 AMS/MAA Joint Meetings, Wavelets
special session. See the project in Subsection 10.5.2. ♦

10.4.4. Summary. To summarize, if a given filter H is the low-pass
filter of an orthogonal MRA, then H must satisfy both the QMF con-
dition and the normalization condition H(0) = 1. For finite filters H,
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the QMF condition and the normalization condition are sufficient to
guarantee the existence of a solution ϕ to the scaling equation. Then
ϕ can be calculated via the infinite product (10.15). Example 11.23
shows how to produce good approximations for both ϕ and the Mallat
wavelet ψ.

For infinite filters an extra decay assumption is necessary. How-
ever, it is not sufficient to guarantee the orthonormality of the integer
shifts of ϕ. But if for example the inequality inf |ξ|≤1/4 |H(ξ)| > 0 also
holds, then {ϕ0,k} is an orthonormal set in L2(R). For more details,
see for example [Fra, Chapter 5] or [Woj03].

The existence of a solution for the scaling equation can be ex-
pressed in the language of fixed-point theory. Given a low-pass fil-
ter H, define a transformation T by Tϕ(t) :=

√
2
∑

k hkϕ(2t− k). If
T has a fixed point, that is, if there is a ϕ ∈ L2(R) such that Tϕ = ϕ,
then the fixed point is a solution to the dilation equation. This is the
idea behind the cascade algorithm that we describe in Chapter 11.

10.5. Projects: Twin dragon; infinite mask

We invite you to investigate some unusual wavelets.

10.5.1. Project: The twin dragon. We mentioned that there
are nonseparable two-dimensional MRAs, meaning two-dimensional
MRAs that are not tensor products of one-dimensional MRAs (Sec-
tion 10.2.1). In this project we explore an analogue of the Haar basis.
The scaling function is the characteristic function of a certain two-
dimensional set.

(a) The set can be rather complicated, for example a self-similar set
with fractal boundary, such as the so-called twin dragon. Search on
the Internet or elsewhere for an explanation of what they are and why
the characteristic function of a twin dragon is the scaling function of
a two-dimensional MRA. Design a program to generate the set, based
on the ideas of multiresolution.

(b) More recently, simpler sets have been found whose characteristic
functions are the scaling function of a two-dimensional MRA. Write
a report about this approach. A place to start is [KRWW].
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10.5.2. Project: Wavelets with infinite mask. We say a func-
tion ϕ(x) is refinable if it satisfies a dilation equation, that is, if
ϕ(x) =

√
2
∑

k hkϕ(2x−k). The sequence of filter coefficients {hk}k∈Z

is called the mask of the function. Can a compactly supported refin-
able function have an infinite mask?

The answer, “Yes”, was announced in 1999 by Vasily Strela and
was proved as part of a much more general result in joint work with
Gilbert Strang and Ding-Xuan Zhou [SSZ]. Another example ap-
peared in [Zho]. Letting z = e2πiξ be a point on the unit circle,
rewrite the symbol

m0(ξ) = (1/
√
2)

∑
k

hke
−2πikξ

of a filter as m0(z) = (1/
√
2)

∑
k hkz

−k.

With this notation, consider the filter associated with

m0(z) =
1

2
+

1

4
z−1 +

1

8
z−2 +

∞∑
k=0

(−1/2)k+1 3

8
z−(k+3).

(a) Prove that the function ϕ(x) that is supported on [0, 2] (!) takes
the value 2 on [0, 1) and the value 1 on [1, 2] and satisfies the dilation
equation with the (infinite!) mask from the m0(z) above.

(b) Does this filter satisfy the quadrature mirror filter condition?

(c) Is there a corresponding wavelet? If so, find an analytic descrip-
tion or use the cascade algorithm to generate a picture of the wavelet.

10.6. Project: Linear and nonlinear
approximations

In Section 10.2.2 we discussed linear approximation and nonlinear
approximation. The linear approximation error εl[N ], or mean square
error, for the N th Fourier partial sum of f is defined by

εl[N ] := ||f − SNf ||2L2([0,1) =
∑

|n|>N

|f̂ (n)|2.

Now consider the same coefficients, arranged in decreasing order. We
call the resulting sum the nonlinear approximation error εnonl[N ] for
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the N th Fourier partial sum of f :

εnonl[N ] :=
∑

k∈N,|nk|>N,|f̂ (nk)|≥|f̂ (nk+1)|

|f̂ (nk)|2 ≤ εl[N ].

(a) The smoother a function is, the faster its Fourier coefficients
shrink as n → ∞. By Theorem 3.14, if f ∈ Ck(T), then |f̂ (n)| ≤
Cn−k for some constant C. Therefore the Fourier linear approxima-
tion error has a similar rate of decay. Show that for f ∈ Ck(T),

εl[N ] ≤
(
2C2/(2k − 1)

)
N−(2k−1).

In Section 3.2.3 we relate smoothness to the uniform rate of conver-
gence on T of f − SNf . Here you are asked to study the square of
the L2 rate of convergence. More precise estimates, obtained by in-
troducing an L2 translation error, have applications to the absolute
convergence of Fourier series; see [Pin, Section 1.3.3]. A converse
theorem goes by the name of Bernstein’s Theorem6; see [Pin, Sec-
tion 1.5.5].

(b) Consider a function that has a discontinuity, for instance χ[0,2/3)(x)

on (0, 1). Show that the linear approximation error and the nonlinear
approximation error in the Fourier basis are both of order N−1:

εl[N ] ∼ N−1 and εnonl[N ] ∼ N−1.

(c) Replacing the Fourier basis by the Haar basis on [0, 1], write defi-
nitions for εl(N), the linear approximation error in the Haar basis for
the N th Haar partial sum of a function f , and for εnonl(N), the non-
linear approximation error in the Haar basis for the N th Haar partial
sum of f . Be aware that there are 2j Haar functions corresponding
to intervals of length 2−j . For example, the first fifteen Fourier ba-
sis functions correspond to eight different frequencies (in pairs e±iNθ

when N ≥ 1), while the first fifteen Haar basis functions correspond
to only four frequencies. Also, to obtain a basis of L2([0, 1], one has
to include the characteristic function of the interval [0, 1] with the
Haar functions.

(d) Show that for the L2(0, 1) function χ[0,2/3)(x), the linear approx-
imation error in the Haar basis is at least of order N−1: there is a

6Named after Russian mathematician Sergei Natanovich Bernstein (1880–1968).
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constant C such that

εl(N) ≥ CN−1 for all N ∈ N.

(e) The decay of the linear approximation error, in the Fourier or
wavelet basis, for any discontinuous function with n ≥ 1 vanishing
moments can be shown to obey a similar lower bound to that in
part (d). However, for the discontinuous function χ[0,2/3), the nonlin-
ear approximation error in the Haar basis is much smaller than the
linear one. Show that for χ[0,2/3) on (0, 1),

εnonl(N) = C2−N .

(f) For some discontinuous functions, wavelet bases achieve a decay
in the nonlinear approximation error as rapid as the decay in the
linear approximation error for continuous functions. Investigate the
literature to make this statement precise. Start with [Mall09, Theo-
rem 9.12]. There is a wealth of information related to this project in
[Mall09, Chapter 9].

                

                                                                                                               



Chapter 11

Calculating with wavelets

In this chapter we explore how to compute with wavelets.

First, we recall the zooming properties of the Haar basis, how
they are mathematically encoded in the Haar multiresolution analy-
sis, and we describe with a cartoon example the existence of a fast
algorithm to actually compute with the Haar functions (Section 11.1).
Second, we discuss the cascade algorithm to search for a solution of
the scaling equation (Section 11.2). Third, we show how to implement
the wavelet transform via filter banks in a way analogous to what we
did for the Haar functions (Section 11.3). The key to the algorithm is
a sequence of numbers (the filter coefficients) that determine the low-
pass filter, the scaling function, and the wavelet; this is the famous
Fast Wavelet Transform. Fourth, we present informally some com-
peting attributes we would like the wavelets to have and a catalog of
existing selected wavelets listing their properties (Section 11.4). We
end with a number of projects inviting the reader to explore some of
the most intriguing applications of wavelets (Section 11.5).

11.1. The Haar multiresolution analysis

Before considering how to construct wavelets from scaling functions
associated to an orthogonal MRA, we revisit the Haar multiresolution
analysis.
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304 11. Calculating with wavelets

The scaling function ϕ for the Haar MRA is χ[0,1), the charac-
teristic function of the unit interval, ϕ(x) = 1 for 0 ≤ x < 1 and
ϕ(x) = 0 elsewhere. The subspace V0 is the closure in L2(R) of the
linear span of the integer translates of the Haar scaling function ϕ,

V0 := span({ϕ(· − k)}k∈Z).

It consists of piecewise constant functions f with jumps only at the
integers and such that the sequence of coefficients lies in �2(Z), and
therefore the function f lies in L2(R). More precisely,

V0 =
{
f =

∑
k∈Z

akϕ0,k :
∑
k∈Z

|ak|2 <∞
}
.

The functions {ϕ0,k}k∈Z form an orthonormal basis of V0.

Similarly, the subspace

Vj := span({ϕj,k}k∈Z)

is the closed subspace consisting of piecewise constant functions in
L2(R) with jumps only at the integer multiples of 2−j , so that

Vj =
{
f =

∑
k∈Z

akϕj,k :
∑
k∈Z

|ak|2 <∞
}
.

Likewise, the functions {ϕj,k}k∈Z form an orthonormal basis of Vj .

The orthogonal projection Pjf onto Vj is the piecewise constant
function with jumps at the integer multiples of 2−j , whose value on
the interval Ij,k = [k2−j , (k + 1)2−j) is given by the integral average
of f over the interval Ij,k. To go from Pjf to Pj+1f , we add the
difference Qjf (the expectation operators Pj and the difference op-
erators Qj were defined in Section 9.4.4). We showed in Lemma 9.35
that Qjf coincides with

Qjf =
∑
k∈Z

〈f, ψj,k〉ψj,k,

where ψ is the Haar wavelet h, defined by ψ(x) = −1 for 0 ≤ x < 1/2,
ψ(x) = 1 for 1/2 ≤ x < 1, and ψ(x) = 0 elsewhere. Hence Qj is
the orthogonal projection onto Wj , the closure of the linear span of
{ψj,k}k∈Z. The subspace

Wj = span({ψj,k}k∈Z)
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consists of piecewise constant functions in L2(R) with jumps only at
integer multiples of 2−(j+1) and average value zero between integer
multiples of 2−j .

We can view the averages Pjf at resolution j as successive ap-
proximations to the original signal f ∈ L2(R). These approximations
are the orthogonal projections Pjf onto the approximation spaces Vj .
The details, necessary to move from level j to the next level (j + 1),
are encoded in the Haar coefficients at level j, more precisely in the
orthogonal projections Qjf onto the detail subspaces Wj . Starting at
a low resolution level, we can obtain better and better resolution by
adding the details at the subsequent levels. As j →∞, the resolution
is increased. The steps get smaller (length 2−j), and the approxima-
tion converges to f in L2 norm (this is the content of equation (9.13)
in Theorem 9.36) and a.e. (the Lebesgue Differentiation Theorem).
Clearly the subspaces are nested, that is, Vj ⊂ Vj+1, and their inter-
section is the trivial subspace containing only the zero function (this
is equation (9.12) in Theorem 9.36). We have shown that the Haar
scaling function generates an orthogonal MRA.

We give an example of how to decompose a function into its
projections onto the Haar subspaces. Our presentation closely fol-
lows [MP, Section 3.2], but uses a different initial vector.

We select a coarsest scale Vn and a finest scale Vm, n < m. We
truncate the doubly infinite chain of nested approximation subspaces

Vn ⊂ Vn+1 · · · ⊂ Vm−1 ⊂ Vm

and obtain

(11.1) Vm = Vn ⊕Wn ⊕Wn+1 ⊕ · · · ⊕Wm−2 ⊕Wm−1.

In the example we choose n = −3 and m = 0, so the coarser scale
corresponds to intervals of length 23 = 8, and the finest to intervals of
length one. We will go through the decomposition process in the text
using vectors. It is also enlightening to look at the graphical version
in Figure 11.1.

We begin with a vector of 8 = 23 samples of a function, which we
assume to be the average value of the function on eight intervals of
length 1, so that our function is supported on the interval [0, 8]. For
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V−3 W−3

V−2 W−2

V−1 W−1

V0

Figure 11.1. A wavelet decomposition of a subspace: V0 =
V−3⊕W−3⊕W−2⊕W−1. This figure is adapted from Figure 14
of [MP, p. 35], which also graces the cover of that book.

our example, we choose the vector

v0 = [2, 6, 6,−2,−2, 0, 0, 6]

to represent our function in V0. The convention we are using through-
out the example is that the vector v = [a0, a1, a2, a3, a4, a5, a6, a7] ∈
C8 represents the step function f(x) = aj for j ≤ x < j + 1 where
j = 0, 1, . . . , 7 and f(x) = 0 otherwise.

Exercise 11.1. Use the above convention to describe the scaling
functions in V0, V−1, V−2, V−3 supported on [0, 8) and the Haar func-
tions in W−1, W−2, W−3 supported on [0, 8). For example,

ϕ0,3 = [0, 0, 0, 1, 0, 0, 0, 0], ϕ−1,1 = [0, 0, 1/
√
2, 1/
√
2, 0, 0, 0, 0]. ♦

Exercise 11.2. Verify that if f , g are functions in V0 supported on
[0, 8), described according to our convention by the vectors v, w ∈ C8,
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then the L2(R) inner product 〈f, g〉L2(R) coincides with v ·w, the inner
product in C8. ♦

To construct the projection of v0 onto V−1, we average pairs of
values, obtaining

v−1 = [4, 4, 2, 2,−1,−1, 3, 3].

The difference v0 − v−1 = w−1 is in W−1, so we have

w−1 = [−2, 2, 4,−4,−1, 1,−3, 3].

Repeating this process, we obtain the projections of v0 onto V−2,
W−2, V−3, and W−3:

v−2 = [3, 3, 3, 3, 1, 1, 1, 1],

w−2 = [1, 1,−1,−1,−2,−2, 2, 2],
v−3 = [2, 2, 2, 2, 2, 2, 2, 2], and

w−3 = [1, 1, 1, 1,−1,−1,−1,−1].

To compute the coefficients of the expansion (10.3), we must com-
pute the inner product 〈f, ϕj,k〉 for the function (10.2). By the results
of Exercises 11.1 and 11.2 in terms of our vectors, we have for example

〈f, ϕ0,3〉 = 〈[2, 6, 6,−2,−2, 0, 0, 6], [0, 0, 0, 1, 0, 0, 0, 0]〉 = −2

and

〈f, ϕ−1,1〉 = 〈[2, 6, 6,−2,−2, 0, 0, 6], [0, 0,
1√
2
,
1√
2
, 0, 0, 0, 0]〉 = 4√

2
.

The Haar scaling function ϕ satisfies the dilation equation

(11.2) ϕ(t) = ϕ(2t) + ϕ(2t− 1).

Therefore ϕj,k = (ϕj+1,2k + ϕj+1,2k+1)/
√
2, and so

〈f, ϕj,k〉 = (1/
√
2)(〈f, ϕj+1,2k〉+ 〈f, ϕj+1,2k+1〉).

Thus we can also compute

〈f, ϕ−1,1〉 = (1/
√
2) (〈f, ϕ0,2〉+ 〈f, ϕ0,3〉) = 4/

√
2.

Similarly, the Haar wavelet satisfies the two-scale difference equation

(11.3) ψ(t) = ϕ(2t)− ϕ(2t− 1),
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and thus we can recursively compute

〈f, ψj,k〉 = (1/
√
2)(〈f, ϕj+1,2k〉 − 〈f, ϕj+1,2k+1〉).

Exercise 11.3. Verify that the two-scale recurrence equation (11.2)
and the two-scale difference equation (11.3) hold for the Haar scaling
function and the Haar wavelet. ♦

The Haar coefficients 〈f, ψj,k〉 for fixed j are called the differ-
ences, or details, of f at scale j and are denoted dj,k. The coefficients
〈f, ϕj,k〉 for fixed j are called the averages of f at scale j and are de-
noted aj,k. Evaluating the whole set of Haar coefficients dj,k and av-
erages aj,k requires 2(N−1) additions and 2N multiplications, where
N is the number of data points. The discrete wavelet transform can
be performed using a similar cascade algorithm with complexity N ,
the Fast Wavelet Transform (FWT); see Section 11.3. This is the
same algorithm as the Fast Haar Transform we discussed in Chap-
ter 6 in the language of matrices. Let us remark that an arbitrary
change of basis in N -dimensional space requires multiplication by an
N ×N matrix; hence a priori one requires N2 multiplications. The
attentive reader may remember that the Haar matrix had N logN

nonzero entries, which was already as good as the FFT without any
magical algorithm. However we can do even better with a magical
algorithm, the FWT. The FWT is a significant improvement over the
brute force matrix multiplication of an already sparse matrix, and
therefore it has important consequences for applications.

11.2. The cascade algorithm

In this section we describe the cascade algorithm and illustrate how
it can be used to obtain approximations for the scaling function.

Given the filter coefficients h0, . . . , hN such that
∑

k hk =
√
2,

we already have an explicit formula for the scaling function. But
our formula involves an infinite product on the Fourier side, so it is
not ideal for actually computing the scaling function. The cascade
algorithm, below, is an iterative procedure for computing successive
approximations to the scaling function. It arises from iteration of the
dilation equation and is the counterpart of the repeated products on
the Fourier side.
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The dilation equation is ϕ(x) =
√
2
∑

k hkϕ(2x− k).

Here are some examples of filter coefficients.

Example 11.4. The Haar filter coefficients:

h0 =
1√
2
, h1 =

1√
2
.

See Figure 11.2 on the left. ♦
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−0.5

0

0.5
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ϕ
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Figure 11.2. The Haar scaling function (left) and the hat
function (right).

Example 11.5. The hat function filter coefficients:

h0 =
1

2
√
2
, h1 =

1√
2
, h2 =

1

2
√
2
.

The corresponding dilation equation is

ϕ(x) =
1

2
ϕ(2x) + ϕ(2x− 1) +

1

2
ϕ(2x− 2).

See Figure 11.2 on the right. ♦

Example 11.6. The Daubechies 4-tap filter coefficients:

h0 =
1 +
√
3

4
√
2

, h1 =
3 +
√
3

4
√
2

, h2 =
3−
√
3

4
√
2

, h3 =
1−
√
3

4
√
2

. ♦
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Given the filter coefficients hk, we can think of the solution ϕ(x)

as a fixed point of an iterative scheme. A sequence of functions ϕ(i)(x)

is generated by iterating the sum on the right-hand side of the dilation
equation:

(11.4) ϕ(i+1)(x) :=
√
2
∑
k

hkϕ
(i)(2x− k).

If ϕ(i)(x) converges to a limit function ϕ(x), then this ϕ(x) auto-
matically satisfies the dilation equation. That is, ϕ(x) is a fixed point
of the iterative scheme. On the Fourier transform side, the Fourier
transform of equation (11.4) is

ϕ̂(i+1)(ξ) := m0(ξ/2)ϕ̂
(i)(ξ/2).

Remark 11.7. Iterative algorithms do not always converge. What
conditions must we impose on the filter coefficients to guarantee that
the cascade algorithm converges? It turns out that the following
condition, named Condition E (E for eigenvectors) by Gilbert Strang1,
is sufficient (see [SN, pp. 239–240]).

Condition E: All eigenvalues of the transition matrix T = (↓ 2)HHT ,
where Hij =

√
2hi−j , have |λ| < 1, except for a simple eigenvalue at

λ1 = 1.

Here (↓ 2)ϕ[n] = ϕ[2n]; this is downsampling. The cascade algo-
rithm is really an iteration of the filter matrix (↓ 2)H with ijth entry
Hij :=

1
2hi−j . It is an infinite iteration, producing an infinite product.

In practice we might stop at some finite stage. See Section 11.3. ♦

Remark 11.8. Which initial functions (seeds) ϕ(0)(x) will actually
lead to a solution ϕ(x)? (Compare with Newton’s method, say for a
quadratic such as f(z) = z2 + z + 1 = 0. Let L be the perpendicular
bisector of the line segment between the two (complex) roots α± =

(−1/2)± i(
√
3/2) of the quadratic. If the initial seed z0 for Newton’s

method2 lies closer to one root than to the other, then Newton’s
method will converge to that closer root. However, if the seed lies on
the line L of equal distance from the two roots, then Newton’s method

1American mathematician William Gilbert Strang (born 1934).
2Named after the English physicist, mathematician, astronomer, natural philoso-

pher, alchemist, and theologian Sir Isaac Newton (1643–1727).
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does not converge. The case of the cubic is even more interesting: see
[CG, p. 29]). ♦

(1) The cascade normally begins with ϕ(0)(x) = χ[0,1)(x), the box
function (corresponds to an impulse).

(2) Here is an exact condition on ϕ(0)(x) (assuming the filter coef-
ficients satisfy Condition E): If for all t the sum of the integer
translates of ϕ(0) is 1, namely,

∑
k ϕ

(0)(x − k) ≡ 1, then the
cascade algorithm converges.

We give several examples to show how the cascade algorithm
works on various filter coefficients and seed functions.

Example 11.9. Filter coefficients

h0 =
4

3
√
2
, h1 =

2

3
√
2
.

The seed ϕ(0)(x) is the box function. First,
∑

k∈Z
hk =

√
2. Iterating

the filter by plugging ϕ(0)(x) into the right-hand side of the dilation
equation, we get

ϕ(1)(x) = (4/3)ϕ(0)(2x) + (2/3)ϕ(0)(2x− 1).
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Figure 11.3. Three steps of a cascade with a bad filter.
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Note that the area under ϕ(i)(x) is preserved. (We want
´
ϕ =´

ϕ(i) = 1 for all i.) Filter again by plugging in ϕ(1)(x):

ϕ(2)(x) = (4/3)ϕ(1)(2x) + (2/3)ϕ(1)(2x− 1).

Height of 1st quarter box : ( 43 )
2 = 16

9 .

Height of 2nd quarter box : ( 43 )(
2
3 ) =

8
9 .

Height of 3rd quarter box : ( 23 )(
4
3 ) =

8
9 .

Height of 4th quarter box : ( 23 )
2 = 4

9 .

We want the functions ϕ(i) to converge to a limit function. But
x = 0 is a bad point: ϕ(i)(0) = (4/3)i →∞. These ϕ(i) perhaps con-
verge in some weak sense, but not pointwise. See Figure 11.3, which
shows three steps of a cascade with a bad filter. These coefficients hk

don’t satisfy Condition E (check!). ♦

Example 11.10. This is the same as Example 11.9, but on the z-side.
Recall that

m0(z) = (1/
√
2)
∑
k

hkz
−k and m0(ξ) = (1/

√
2)
∑
k

hke
−2πikξ.

(We are using m0 to denote both a function of ξ and a function of
z = e2πiξ.) Hence, if

h0 =
4

3
√
2
, h1 =

2

3
√
2
,

then the symbol is m0(z) = (1/2)
(
(4/3) + (2/3)z−1

)
.

The heights of the boxes are as follows (from Example 11.9):

ϕ(1): 4
3 ,

2
3 ←→ 4

3 + 2
3z

−1 = 2m0(z),
ϕ(2): 16

9 , 8
9 ,

8
9 ,

4
9 ←→

16
9 + 8

9z
−1 + 8

9z
−2 + 4

9z
−3 = 22m0(z

2)m0(z).

It is important to note that we did not square m0(z). Instead,
we multiplied it by m0(z

2). The same pattern gives us m
(3)
0 (z) =

m0(z
4)m0(z

2)m0(z). After i steps, we obtain

m
(i)
0 (z) =

i−1∏
j=0

m0(z
2j).
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This expression is reminiscent of the infinite product we had before:

ϕ̂(ξ) = lim
J→∞

J∏
j=1

m0(ξ/2
j). ♦

Example 11.11. The usual averaging filter:

h0 =
1√
2
, h1 =

1√
2

for the Haar wavelet. As before, ϕ(0)(x) is the box function. Then
with the usual filter step we get

ϕ(1)(x) = (1)ϕ(0)(2x) + (1)ϕ(0)(2x− 1) = ϕ(0)(x).

The algorithm converges immediately, because we started iterating at
a fixed point of the iteration, as Figure 11.4 illustrates.
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)
ϕ
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Figure 11.4. Two steps of a cascade with the Haar filter.

On the z-side: The symbol m0(z) = (1/2) + (1/2)z−1. Notice that
m0 is the Haar low-pass filter H. The next step is

m
(2)
0 (z) = m0(z

2)m0(z) =
(
(1/2) + (1/2)z−2

) (
(1/2) + (1/2)z−1

)
= (1/4) + (1/4)z−1 + (1/4)z−2 + (1/4)z−3.
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The heights of the boxes are 22 times these coefficients, so they
all equal 1. At the ith step we have 2i boxes, each of height 1. So we
end up with the box function again. ♦

Example 11.12. Filter given by

h0 =
1

2
√
2
, h1 =

1√
2
, h2 =

1√
2
.

Beginning with ϕ(0)(x) as the usual box function, we obtain three
half-boxes. Filter:

ϕ(1)(x) = (1/2)ϕ(0)(2x) + ϕ(0)(2x− 1) + (1/2)ϕ(0)(2x− 2).

As we keep filtering, we see (Figure 11.5) that ϕ(i) converges towards
the hat function. Surprise, surprise . . . . ♦

5 0 0.5 1 1.5 2

0

0.5

1

x

ϕ
(i)

(x
)

Figure 11.5. A cascade where half-boxes lead to a hat.

11.3. Filter banks, Fast Wavelet Transform

In this section we give a glimpse of how we would implement the
wavelet transform once an MRA is at our disposal, in a way analo-
gous to the implementation for the Haar functions. A fast algorithm,
similar to the one described for the Haar basis in Section 11.1, can be
implemented using filter banks to provide a Fast Wavelet Transform.
First we need to define convolution of sequences.
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Definition 11.13. Let a = {am}m∈Z and b = {bm}m∈Z be two se-
quences indexed by the integers. Their convolution a ∗ b is the new
sequence whose �th term is given by

a ∗ b(�) =
∑
m∈Z

a�−mbm. ♦

If one of the sequences has only finitely many nonzero terms, the
convolution is a well-defined sequence, since the apparently infinite
sums reduce to finite sums.

We have at our disposal the low-pass filter H of length L, with
nonzero coefficients {hj}L−1

j=0 , corresponding to an orthogonal MRA
with scaling function ϕ.

Definition 11.14. Given a function f ∈ L2(R), the approximation
coefficient aj,k and the detail coefficient dj,k are the inner products
of f with the scaling function ϕj,k and with the wavelet ψj,k, respec-
tively. In other words,

aj,k := 〈f, ϕj,k〉, dj,k := 〈f, ψj,k〉. ♦

We would like to calculate the approximation and detail coef-
ficients efficiently. Later we would like to use them to reconstruct
efficiently the orthogonal projections onto the the approximation sub-
spaces Vj and the detail subspaces Wj .

Theorem 11.15. Suppose we have the approximation coefficients (or
scaled samples) {aJ,k}N−1

k=0 at scale J , where 2J = N , of a function f

defined on the interval [0, 1]. Then the coarser approximation and
detail coefficients aj,k and dj,k for scales 0 ≤ j < J , where k = 0,
1, . . . , 2j − 1, can be calculated in order LN operations. Here L is the
length of the filter, and N is the number of samples, in other words,
the number of coefficients in the finest approximation scale.

Proof. Let aj denote the sequence {aj,k}2
j−1

k=0 and let dj denote the
sequence {dj,k}2

j−1
k=0 . Notice that we want to calculate a total of

2(1+2+22+· · ·+2J−1) ∼ 2J+1 = 2N coefficients. We will check that
calculating each coefficient aj,� and dj,� requires at most L multiplica-
tions when the finer scale approximation coefficients {aj+1,k}2

J+1−1
k=0
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are given. The complexity of the algorithm will therefore be of order
LN as claimed.

In order to see why this is possible, let us consider the simpler
case of calculating a0 and d0 given a1. The scaling equation connects
ϕ0,� to {ϕ1,m}m∈Z:

ϕ0,�(x) = ϕ(x− �) =
∑
k∈Z

hkϕ1,k(x− �)

=
∑
k∈Z

hk

√
2ϕ(2x− (2�+ k))

=
∑
m∈Z

hm−2�ϕ1,m =
∑
m∈Z

h̃2�−mϕ1,m,

where the conjugate flip of hk is h̃k := h−k and in the third line we
made the change of summation index m = 2�+ k (so k = m− 2�).

We can now compute a0,� in terms of a1:

a0,� = 〈f, ϕ0,�〉 =
∑
m∈Z

h̃2�−m〈f, ϕ1,m〉

=
∑
m∈Z

h̃2�−ma1,m = h̃ ∗ a1(2�),

where h̃ = {h̃k}k∈Z is the conjugate flip of the low-pass filter h. The
sequence h̃ has the same length L as the sequence h. Therefore the
convolution above requires only L multiplications.

Similarly, for the detail coefficients d0,�, the two-scale equation
connects ψ0,� to {ϕ1,m}m∈Z. The only difference is that the filter
coefficients are {gk}k∈Z instead of {hk}k∈Z. We obtain

ψ0,�(x) =
∑
m∈Z

g̃2�−mϕ1,m,

and thus d0,� =
∑

m∈Z
g̃2�−ma1,m = g̃ ∗ a1(2�). Here g̃ = {g̃k}k∈Z is

the conjugate flip of the high-pass filter g, which also has length L.

One can verify that for all j ∈ Z, the scaling equation

(11.5) ϕj,� =
∑
m∈Z

hm−2�ϕj+1,m
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and difference equation

(11.6) ψj,� =
∑
m∈Z

gm−2�ϕj+1,m

holds.

As a consequence of these equations, for all j ∈ Z we obtain that

aj,� =
∑
n∈Z

h̃2�−n aj+1,n = h̃ ∗ aj+1(2�),

dj,� =
∑
n∈Z

g̃2�−n aj+1,n = g̃ ∗ aj+1(2�).

We have expressed each detail and approximation coefficient at level j
as a convolution of the approximation coefficients at level j+1 and the
conjugate flips of the filters h and g, respectively. Since these filters
have length L, calculating each approximation and detail coefficient
requires L multiplications. �

Exercise 11.16. Verify the scaling and difference equations (11.5)
and (11.6). ♦

We can compute the approximation and detail coefficients at a
rougher scale (j) by convolving the approximation coefficients at the
finer scale (j + 1) with the low- and high-pass filters h̃ and g̃ and
downsampling by a factor of two, as follows.

Definition 11.17. The downsampling operator takes an N -vector
(or a sequence) and maps it into a vector half as long (or another
sequence) by discarding the odd-numbered entries:

Ds(n) := s(2n).

The downsampling operator is denoted by the symbol ↓ 2. ♦

In electrical engineering terms, we have just described the analysis
phase of a subband filtering scheme. We can represent the analysis
phase (how to calculate coefficients) schematically as

aj+1 →
↗
↘

∗h̃ → ↓ 2 → aj

∗g̃ → ↓ 2 → dj .
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Another useful operation is upsampling, which is the right inverse
of downsampling.

Definition 11.18. The upsampling operator takes an N -vector (or a
sequence) and maps it to a vector twice as long (or another sequence),
by intertwining zeros:

Us(n) =

{
s(n/2), if n is even;
0, if n is odd.

The upsampling operator is denoted by the symbol ↑ 2. ♦

Exercise 11.19. Compute the Fourier transform for the upsampling
and downsampling operators in finite-dimensional space. ♦

Exercise 11.20. Verify that given a vector s ∈ CN , then DUs = s,
but UDs is not always s. For which vectors s is UDs = s? Now
answer the same question for sequences. ♦

Theorem 11.21. The reconstruction of the samples at level j + 1

from the averages and details at the previous level j is also an or-
der L algorithm, where L is the length of the filters. If we wish to
reconstruct, from averages at a coarser level M and all details from
the coarser levels M ≤ j < M + J , all the averages at the finer scales
M < j ≤M + J , the algorithm will be of order LN where N = 2J is
the number of samples which is also the number of total coefficients
given.

Proof. We show how to get from the coarse approximation and detail
coefficients aj and dj to the approximation coefficients at the finer
scale aj+1. The calculation is based on the equation Pj+1f = Pjf +

Qjf , which is equivalent to

(11.7)
∑
m∈Z

aj+1,mϕj+1,m =
∑
�∈Z

aj,�ϕj,� +
∑
�∈Z

dj,�ψj,�.

We have formulas that express ϕj,� and ψj,� in terms of the func-
tions {ϕj+1,m}m∈Z; see Exercise 11.16. Inserting those formulas in
the right-hand side (RHS) of equality (11.7) and collecting all terms

                

                                                                                                               



11.3. Filter banks, Fast Wavelet Transform 319

that are multiples of ϕj+1,m, we get

RHS =
∑
�∈Z

aj,�
∑
m∈Z

hm−2�ϕj+1,m +
∑
�∈Z

dj,�
∑
m∈Z

gm−2�ϕj+1,m

=
∑
m∈Z

[∑
�∈Z

hm−2�aj,� + gm−2�dj,�

]
ϕj+1,m.

This calculation, together with equation (11.7), implies that

aj+1,m =
∑
�∈Z

hm−2�aj,� + gm−2�dj,�.

Rewriting in terms of convolutions and upsamplings, we obtain

(11.8) aj+1,m = h ∗ Uaj(m) + g ∗ Udj(m),

where we first upsample the approximation and detail coefficients to
restore the right dimensions, then convolve with the filters, and finally
add the outcomes. �

Exercise 11.22. Verify equation (11.8). ♦

The synthesis phase (how to reconstruct from the coefficients) of
the subband filtering scheme can be represented schematically as

aj → ↑ 2 → ∗h

dj → ↑ 2 → ∗g

↘
↗ ⊕→ aj+1.

The process of computing the coefficients can be represented by
the following tree, or pyramid scheme or algorithm:

aj → aj−1 → aj−2 → aj−3 · · ·

↘ ↘ ↘
dj−1 dj−2 dj−3 · · · .

                

                                                                                                               



320 11. Calculating with wavelets

The reconstruction of the signal can be represented with another
pyramid scheme as

aj → aj+1 → aj+2 → aj+3 · · ·

↗ ↗ ↗
dj dj+1 dj+2 · · · .

Note that once the low-pass filter H is chosen, everything else—
high-pass filter G, scaling function ϕ, wavelet ψ, and MRA—is com-
pletely determined. In practice one never computes the values of ϕ
and ψ. All the manipulations are performed with the filters g and
h, even if they involve calculating quantities associated to ϕ or ψ,
like moments or derivatives. However, to help our understanding, we
might want to produce pictures of the wavelet and scaling functions
from the filter coefficients.

Example 11.23. (Drawn from Section 3.4.3 in [MP].) The cascade
algorithm can be used to produce very good approximations for both
ψ and ϕ, and this is how one usually obtains pictures of the wavelets
and the scaling functions. For the scaling function ϕ, it suffices to
observe that a1,k = 〈ϕ, ϕ1,k〉 = hk and dj,k = 〈ϕ, ψj,k〉 = 0 for all
j ≥ 1 (the first because of the scaling equation, the second because
V0 ⊂ Vj ⊥ Wj for all j ≥ 1). That is what we need to initialize and
iterate as many times as we wish (say n times) the synthesis phase of
the filter bank:

h→ ↑ 2 → ∗h → · · · → ↑ 2 → ∗h → {〈ϕ, ϕn+1,k〉}.

The output after n iterations is the set of approximation coeffi-
cients at scale j = n + 1. After multiplying by a scaling factor, one
can make precise the statement that

ϕ(k2−j) ∼ 2−j/2〈ϕ, ϕj,k〉.

A graph can now be plotted (at least for real-valued filters). We illus-
trated the power of the cascade algorithm in Section 11.2, although
the perspective there was a bit different from here.

We proceed similarly for the wavelet ψ. This time a1,k = 〈ψ, ϕ1,k〉
= gk and dj,k = 〈ψ, ψj,k〉 = 0 for all j ≥ 1. Now the cascade algorithm
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produces the approximation coefficients at scale j after n = j − 1

iterations:

g → ↑ 2 → ∗h → · · · → ↑ 2 → ∗h → {〈ψ, ϕj,k〉}.

This time
ψ(k2−j) ∼ 2−j/2〈ψ, ϕj,k〉,

and we can plot a reasonable approximation of ψ from these approx-
imated samples. ♦

Exercise 11.24. Use the algorithm described in Example 11.23 to
create pictures of the scaling and the wavelet functions corresponding
to the Daubechies wavelets db2 after four iterations and after ten
iterations. The coefficients for db2 are listed in Example 10.7. ♦

Altogether, we have a perfect reconstruction filter bank :

aj →
↗
↘

∗h̃ → ↓ 2 → aj−1 → ↑ 2 → ∗h

∗g̃ → ↓ 2 → dj−1 → ↑ 2 → ∗g

↘
↗ ⊕→ aj .

Exercise 11.25 (Human Filter Banks). Write the above filter bank
on paper on a long table. Use the filter coefficients from the Daube-
chies db2 wavelets. Assign each convolution with a filter to a different
person. Arrange the humans around the table next to their filters,
and hand out pens. Choose a signal vector and feed it in to the filter
bank. Can you analyse the signal and reconstruct it perfectly? ♦

The filter bank need not always involve the same filters in the
analysis and synthesis phases. When it does, as in our case, we have
an orthogonal filter bank. One can also obtain perfect reconstruction
in more general cases.

Example 11.26 (Biorthogonal Filter Bank). Replace the perfect re-
construction filter bank h̃ by a filter h̃∗, and g̃ by g̃∗. Then we obtain
a biorthogonal filter bank with dual filters h, h∗, g, g∗. (Consider
reviewing Section 6.2 on dual bases in the finite-dimensional setting.)

In the case of a biorthogonal filter bank, there is an associated
biorthogonal MRA with dual scaling functions ϕ, ϕ∗. Under certain
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conditions we can find biorthogonal wavelets ψ, ψ∗ that generate a
biorthogonal wavelet basis {ψj,k} and dual basis {ψ∗

j,k}, so that

f(x) =
∑
j,k

〈f, ψ∗
j,k〉ψj,k =

∑
j,k

〈f, ψj,k〉ψ∗
j,k.

The following substitute for Plancherel’s Identity holds (Riesz basis
property3): For all f ∈ L2(R),∑

j,k

|〈f, ψ∗
j,k〉|2 ≈ ‖f‖22 ≈

∑
j,k

|〈f, ψj,k〉|2,

where A ≈ B means that there exist constants c, C > 0 such that
cA ≤ B ≤ CA. The relative size of the similarity constants c, C

becomes important for numerical calculations; it is related to the
condition number of a matrix.

As in the case of orthogonal filters, one can find necessary and
sufficient conditions on the dual filters to guarantee perfect recon-
struction. Such conditions parallel the work done in Section 10.3.4.
See [MP]. ♦

A general filter bank is a sequence of convolutions and other sim-
ple operations such as upsampling and downsampling. The study of
such banks is an entire subject in engineering called multirate sig-
nal analysis, or subband coding. The term filter is used to denote
a convolution operator because such an operator can cut out various
frequencies if the corresponding Fourier multiplier vanishes (or is very
small) at those frequencies. See Strang and Nguyen’s book [SN].

Filter banks can be implemented quickly because of the Fast Four-
ier Transform. Remember that circular convolution becomes multi-
plication by a diagonal matrix on the Fourier side (needs only N

products, whereas ordinary matrix multiplication requires N2 prod-
ucts), and to go back and forth from the Fourier to the time domain,
we can use the Fast Fourier Transform. So the total number of oper-
ations is of order N log2 N ; see Chapter 6.

The fact that there is a large library of wavelet filter banks has
made wavelets a fundamental tool for practitioners. Ingrid Daubechies

3Named after the Hungarian mathematician Frigyes Riesz (1880–1956).
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is responsible for making a large number of filters available to engi-
neers. She has received many honors and awards in her career. In
particular she received the 2011 AMS Leroy P. Steele Prize for Sem-
inal Contributions to Research for her paper [Dau88]. In her re-
sponse (Notices of the AMS, Vol. 58, No. 4 (April 2011)), she says,
“I would like to thank Communications in Pure and Applied Math-
ematics, where the paper appeared, for accepting those long tables
of coefficients—its impact in engineering would not have been the
same without the tables, at that time a standard feature of papers
on filter reconstruction in signal analysis.” In 1994 Ingrid Daubechies
became the first female full professor of mathematics at Princeton. In
2010 she was elected as the first female President of the International
Mathematical Union.

There are commercial and free software programs dealing with
these applications. The main commercial one is the Matlab Wavelet
Toolbox. Wavelab is a free software program based on Matlab. It was
developed at Stanford. Lastwave is a toolbox with subroutines written
in C, with “a friendly shell and display environment”, according to
Mallat. It was developed at the École Polytechnique. There is much
more on the Internet, and you need only search on wavelets to see the
enormous amount of information, codes, and so on that are available
online.

11.4. A wavelet library

In this section we first describe the most common properties one
would like wavelets to have. Second, we list some popular wavelets
and highlight their properties.

11.4.1. Design features. Most of the applications of wavelets ex-
ploit their ability to approximate functions as efficiently as possible,
that is, with as few coefficients as possible. For different applications
one wishes the wavelets to have various other properties. Some of
them are in competition with each other, so it is up to the user to
decide which ones are most important for his or her problem. The
most popular conditions are orthogonality, compact support, vanish-
ing moments, symmetry, and smoothness. A similar list of competing
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attributes can be found in [MP, Section 3.4.2]. For a more extended
discussion on these issues see [Mall09, Section 7.2.1].

Orthogonality. Orthogonality allows for straightforward calcula-
tion of the coefficients (via inner products with the basis elements).
It guarantees that energy is preserved. Sometimes orthogonality is re-
placed by the weaker condition of biorthogonality. In this case, there
is an auxiliary set of dual functions that is used to compute the coef-
ficients by taking inner products; also the energy is almost preserved.
See Example 11.26.

Compact support. We have stressed that compact support of the
scaling function is important for numerical purposes. In most cases
it corresponds to a finite low-pass filter, which can be implemented
easily. If the low-pass filter is supported on [n,m], then so is ϕ, and
then the wavelet ψ has support of the same length m− n.

With regard to detecting point singularities, it is clear that if
the signal f has a singularity at a point t0 in the support of ψj,n,
then the corresponding coefficient could be large. If ψ has support
of length l, then at each scale j there are l wavelets interacting with
the singularity (that is, whose support contains t0). The shorter the
support, the fewer wavelets will interact with the singularity.

Smoothness. The regularity of the wavelet affects the error intro-
duced by thresholding, or quantizing, the wavelet coefficients. If an
error ε is added to the coefficient 〈f, ψj,k〉, then an error of the form
εψj,k is added to the reconstruction. Smooth errors are often less
visible or audible. Often better quality images are obtained when the
wavelets are smooth. However, the smoother the wavelet, the longer
the support. There is no orthogonal wavelet that is C∞ and that
has exponential decay. Therefore there is no hope of finding an or-
thogonal wavelet that is infinitely differentiable and that has compact
support.

Vanishing moments. A function ψ has p vanishing moments if the
integral of xkψ(x) vanishes for all k = 0, 1, . . . , p− 1. Such a wavelet
ψ is orthogonal to all polynomials of degree p− 1. If the function to
be analyzed is k times differentiable, then it can be approximated well
by a Taylor polynomial of degree k. If k < p, then the wavelets are
orthogonal to that Taylor polynomial, and the coefficients are small.
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If ψ has p vanishing moments, then the polynomials of degree p − 1

are reproduced by the scaling functions.

If an orthogonal wavelet ψ has p vanishing moments, then its sup-
port is of length at least 2p − 1; see [Mall09, Theorem 7.9, p. 294].
(Daubechies wavelets have minimum support length for a given num-
ber of vanishing moments.) So there is a trade-off between the length
of the support and the number of vanishing moments. If the func-
tion has few singularities and is smooth between singularities, then
we might as well take advantage of the vanishing moments. If there
are many singularities, we might prefer to use wavelets with shorter
supports.

Symmetry. It is not possible to construct compactly supported sym-
metric orthogonal wavelets, except for the Haar wavelets. However,
symmetry is often useful for image and signal analysis. Symmetry
can be obtained at the expense of one of the other properties. If we
give up orthogonality, then there are compactly supported, smooth,
and symmetric biorthogonal wavelets. Multiwavelets4 can be con-
structed to be orthogonal, smooth, compactly supported, and sym-
metric. Some wavelets have been designed to be nearly symmetric
(Daubechies symmlets, for example).

11.4.2. A catalog of wavelets. We list the main wavelets and in-
dicate their properties. This list was compiled from the first author’s
book [MP, mostly Sections 3.4.3 and 3.5], where you can also find
references for many other friends, relatives, and mutations of wavelets.

Haar wavelet. We have studied these wavelets in detail. They are
perfectly localized in time, less localized in frequency. They are dis-
continuous and symmetric. They have the shortest possible support
and only one vanishing moment; hence they are not well adapted to
approximating smooth functions.

Shannon wavelet. This wavelet does not have compact support,
but it is infinitely differentiable. It is band-limited, but its Fourier
transform is discontinuous, and hence ψ(t) decays like 1/|t| at infinity.

4Multiwavelets have more than one scaling function and more than one wavelet
function, whose dilates and translates form a basis in the MRA.
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The Fourier transform ψ̂(ξ) of the Shannon wavelet is zero in a neigh-
borhood of ξ = 0, so all its derivatives are zero at ξ = 0, and by the
time–frequency dictionary, ψ has infinitely many vanishing moments.

Meyer wavelet. This wavelet is a symmetric band-limited function
whose Fourier transform is smooth; hence ψ(t) has fast decay at in-
finity. The scaling function is also band-limited. Hence both ψ and
ϕ are infinitely differentiable. The wavelet ψ has an infinite num-
ber of vanishing moments. (This wavelet was found by Strömberg in
1983 and went unnoticed for several years; see [Woj03] and [Mall09,
p. 289].)

Battle–Lemarié spline wavelets5. These wavelets are polynomial
splines of degree m, that is, Cm−1 functions that are piecewise poly-
nomials of degree at most m with nodes on integer multiples of a
number a > 0. The wavelet ψ has m + 1 vanishing moments. They
do not have compact support, but they have exponential decay. They
are m−1 times continuously differentiable. For m odd, ψ is symmetric
around 1/2. For m even, ψ is antisymmetric around 1/2. The linear
spline wavelet is the Franklin wavelet. See [Woj03, Section 3.3] and
[Mall09, p. 291].

Daubechies compactly supported wavelets. They have com-
pact support, which is moreover of the minimum possible length for
any given number of vanishing moments. More precisely, if ψ has
p vanishing moments, then the wavelet ψ is supported on an inter-
val of length 2p − 1. In terms of taps, ψ has 2p taps. For large p,
the functions ϕ and ψ are uniformly Lipschitz-α of order α ∼ 0.2p.
They are asymmetric. When p = 1, we recover the Haar wavelet. See
[Mall09, Section 7.3.2].

Daubechies symmlets. They have p vanishing moments. They
have compact support, of the minimum possible length, namely 2p−1.
They have 2p taps. They are as symmetric as possible. See [Mall09,
p. 294].

Coiflets6. The coiflet ψ has p vanishing moments and the corre-
sponding scaling function ϕ has p − 1 vanishing moments (from the

5Named after the American mathematical physicist Guy Battle and the French
mathematician Pierre-Gilles Lemarié-Rieusset.

6Named after the American mathematician Ronald Raphael Coifman (born 1941).
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second to the pth moment, but not the first since
´
ϕ = 1). The min-

imum possible length of the support of such a ψ is 3p − 1, and the
coiflet has support of length 3p−1. The vanishing moments of ϕ allow
the approximation coefficients of a smooth function f to be close to
the signal samples.

Mexican hat. This wavelet has a closed formula involving second
derivatives of the Gaussian: ψ(t) = C(1 − t2)e−t2/2, where the con-
stant is chosen so that ‖ψ‖2 = 1. It does not come from an MRA,
and it is not orthogonal. It is appropriate for the continuous wavelet
transform. It has exponential decay but not compact support. See
[Mall09, p. 180].

Morlet wavelet. The wavelet is given by the closed formula ψ(t) =

Ce−t2/2 cos (5t). It does not come from an MRA, and it is not or-
thogonal. It is appropriate for the continuous wavelet transform. It
has exponential decay but not compact support.

Spline biorthogonal wavelets. These wavelets are compactly sup-
ported, symmetric, and continuous. There are two positive integer
parameters N , N∗. The parameter N∗ determines the scaling func-
tion ϕ∗, which is a spline of order [N∗/2]. The other scaling function
and both wavelets depend on both parameters. The function ψ∗ is
a compactly supported piecewise polynomial of order N∗ − 1, which
is CN∗−2 at the knots and whose support gets larger as N increases.
The wavelet ψ has support increasing with N and in addition has
vanishing moments. Their regularity can differ notably. The filter
coefficients are dyadic rationals, which makes them very attractive
for numerical purposes. The functions ψ are known explicitly. The
dual filters are very unequal in length, which could be a nuisance
when doing image analysis, for example. See [Mall09, p. 271].

Wavelet packets. To perform the wavelet transform, we iterated
at the level of the low-pass filter (approximation). In principle it is
an arbitrary choice; one could iterate at the high-pass filter level or
any desirable combination. The full dyadic tree gives an overabun-
dance of information. It corresponds to the wavelet packets. Each
finite wavelet packet has the information for reconstruction in many
different bases, including the wavelet basis. There are fast algorithms
to search for the best basis. The Haar packet includes the Haar basis
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and the Walsh basis7. A good source of information on this topic
is [Wic].

The wavelet packet and cosine packet create large libraries of
orthogonal bases, all of which have fast algorithms. The Fourier basis,
the wavelet bases, and Gabor-like bases are examples in this time–
frequency library. All these wavelets are encoded in Matlab. We
encourage the reader to review them and their properties online.

11.5. Project: Wavelets in action

Here are some applications of wavelets to a variety of subjects.
Start your search simply by typing each item into your favorite
search engine. There is also a wealth of information on the Wavelet
Digest website www.wavelet.org and on Amara Graps’s webpage:
http://www.amara.com/current/wavelet.html.

(1) Solving partial differential equations: Galerkin’s method.

(2) Analysis of Brownian motion.

(3) X-ray source detection: pixons and wavelets.

(4) Wavelets in medical imaging: tomography, electrocardiograms,
identifying tumors. There is some background at http://www.
cs.brown.edu/stc/resea/director/research_dp3.html.

(5) Audio applications (or sound fun) such as distinguishing Cre-
mona violins, whale calls, wavelet records, listening for defects,
tonebursts, and wavelets in electroacoustic music can be found
at http://www.amara.com/current/wavesoundfun.html.

(6) Seismography. You could start your search at the Wavelet Seis-
mic Inversion Lab at Colorado School of Mines: http://timna.
mines.edu/~zmeng/waveletlab/waveletlab.html.

(7) Wavelets for artist identification: http://www.pacm.princeton.
edu/~ingrid/VG_swirling_movie/.

(8) What are curvelets and diffusion wavelets? What are their uses?

7Named after the American mathematician Joseph Leonard Walsh (1895–1973).

                

                                                                                                               



Chapter 12

The Hilbert transform

This chapter is about a very important operator in harmonic analysis,
the Hilbert transform1 This operator was introduced by David Hilbert
in 1905 in order to solve a special case of the Riemann–Hilbert prob-
lem2 for holomorphic functions, in complex analysis. The Hilbert
transform is a prototypical example for two general classes of op-
erators: Fourier multipliers and singular integral operators, which
arise in many areas of mathematics, including Fourier analysis, com-
plex analysis, partial differential equations, and stochastic processes.
Nowadays the Hilbert transform has applications in signal processing
and chemistry as well as in mathematics; see the projects in Sec-
tion 12.8 and Section 12.9.

We define the Hilbert transform in three equivalent ways: first
via its action in the frequency domain as a Fourier multiplier (Sec-
tion 12.1), second via its action in the time domain as a singular
integral (Section 12.2), and third via its action in the Haar domain
as an average of Haar shift operators (Section 12.3), taking advan-
tage of its invariance properties. We present the mapping properties
of the Hilbert transform and, in particular, what it does to functions
in Lp(R) (Section 12.4). We revisit boundedness properties in L2 and

1Named after the same Hilbert as Hilbert spaces (Subsection 2.1.2).
2The Riemann–Hilbert problem: Given f defined on R, find holomorphic functions

F+ and F− defined on the upper and lower half-planes, respectively, such that f =
F+ − F−. Then the Hilbert transform is given by Hf = (1/i)(F+ − F−).

329

                                     

                

                                                                                                               



330 12. The Hilbert transform

show how translation and dilation invariance properties imply that
an operator is bounded from Lp into Lq only when p = q.

The upshot is that the Hilbert transform maps Lp(R) onto it-
self when 1 < p < ∞ but not when p = 1 or p = ∞. We briefly
sketch the standard classical proof via the Marcinkiewicz Interpola-
tion Theorem (which we will not state) and the original proof by M.
Riesz via the Riesz–Thorin Interpolation Theorem, and we present
the modern nonstandard argument to deduce the Lp boundedness of
the Hilbert transform from the Lp boundedness of the Haar shift op-
erators, bypassing interpolation theory (Section 12.4). We compare
weak boundedness in L1 with boundedness in L1 for both the Hilbert
transform and the maximal function and present the useful Layer
Cake Formula for the Lp norm of a function in terms of the length of
its level sets Eλ (Section 12.5).

We state the Riesz–Thorin Interpolation Theorem in Section 12.6.
This powerful result leads to short proofs of some of the most beau-
tiful and useful inequalities in analysis (Section 12.6.2). We have
used these inequalities throughout the book: the Hausdorff–Young
Inequality for the Fourier transform, Hölder’s Inequality and a gener-
alization, Young’s Inequality for convolutions, Minkowski’s Inequality
(the Triangle Inequality for Lp), and Minkowski’s Integral Inequality.

We close by outlining the connections of the Hilbert transform
with complex analysis and with Fourier theory (Section 12.7), re-
turning in particular to our book’s theme of Fourier analysis.

Excellent accounts of the Hilbert transform and its generaliza-
tions can be found in [SW71, Chapter 6], [Graf08, Chapter 4], [Sad,
Chapter 6], [Duo, Chapter 3], and [Tor, Chapter V].

12.1. In the frequency domain: A Fourier
multiplier

In this section we describe the Hilbert transform by its action on the
Fourier domain. There the Hilbert transform acts by multiplying the
part of f̂ with positive frequencies (f̂(ξ) for ξ > 0) by −i and the
part of f̂ with negative frequencies (f̂(ξ) for ξ < 0) by i. Then the
new function f̂(ξ)+iĤf(ξ) effectively has no negative frequencies and
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twice as much as f does of the positive frequencies. This property
may have been why Hilbert introduced the transform that now bears
his name, in relation to the Riemann–Hilbert problem.

Definition 12.1. The Hilbert transform H is defined on the Fourier
side by the formula

(12.1) (Hf)∧(ξ) := −i sgn(ξ)f̂ (ξ),

for f in L2(R). Here the signum function sgn is defined by sgn(ξ) := 1

for ξ > 0, sgn(ξ) := −1 for ξ < 0, and sgn(0) := 0. ♦

Exercise 12.2. Show that f̂(ξ) + iĤf(ξ) is equal to 2f̂(ξ) for ξ > 0

and zero for ξ < 0. ♦

Since the Fourier transform is a bijection on L2(R), formula (12.1)
defines an operator on L2(R): the Hilbert transform of f ∈ L2(R)
at ξ is the L2 function whose Fourier transform is −i sgn(ξ) times
the Fourier transform of f at ξ. Further, the Hilbert transform is
an isometry on L2(R): it preserves L2 norms, as we see by using
Plancherel’s Identity twice:

‖Hf‖2 = ‖(Hf)∧‖2 = ‖ − i sgn(·)f̂ (·)‖2 = ‖f̂ ‖2 = ‖f‖2.
Definition 12.1 also implies that H2 = −I, where −I denotes the
negative of the identity operator, since for all ξ �= 0 we have

(H2f)∧(ξ) = −i sgn(ξ)(Hf)∧(ξ) = (−i sgn(ξ))2f̂ (ξ) = −f̂ (ξ).

Exercise 12.3 (F4 Is the Identity Operator). Let F denote the Four-
ier transform: Ff := f̂ . Show that F4 is the identity operator on
those spaces where the Fourier transform is a bijection, namely the
Schwartz class S(R), the Lebesgue space L2(R), and the class S ′(R)
of tempered distributions. ♦

Exercise 12.4 (Commutativity, Take 1 ). Show that the Hilbert
transform commutes with translations and dilations and that it anti-
commutes with reflections, as follows.

(i) Let τh denote the translation operator : τhf(x) := f(x − h) for
h ∈ R. Then τhH = Hτh.

(ii) Let δa denote the dilation operator : δaf(x) := f(ax) for a > 0.
Then δaH = Hδa.
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(iii) Let f̃(x) := f(−x) denote the reflection of f across the origin.
Then H̃f = −H(f̃). ♦

The Hilbert transform is an example of a Fourier multiplier.

Definition 12.5. A Fourier multiplier is an operator T that is de-
fined on the Fourier side, at least for smooth functions f , by multi-
plication of the Fourier transform f̂ of f by a function m:

(12.2) (Tf)∧(ξ) := m(ξ)f̂ (ξ).

The function m(ξ) is called the symbol of the operator. ♦

The symbol mH of the Hilbert transform is the bounded function

mH(ξ) = −i sgn(ξ).

Exercise 12.6. Verify that the partial Fourier integral operator SRf

(see the project in Section 7.8) and the Cesàro means σRf on R
(equation (8.3)) are Fourier multipliers, by finding their symbols. ♦

Exercise 12.7. Is the Fourier transform a Fourier multiplier? ♦

The results of Exercise 12.6 are no accident. Both SR and σR are
convolution operators: Tf = K ∗ f . The time–frequency dictionary
tells us that on the Fourier side (Tf)∧(ξ) = K̂ (ξ) f̂ (ξ). So as long
as the function K is nice enough, the convolution operator will be a
Fourier multiplier with multiplier m(ξ) := K̂(ξ). Exercise 12.4(i) can
be generalized as follows.

Exercise 12.8 (Commutativity, Take 2 ). Let Tm be a Fourier mul-
tiplier with bounded symbol m. Show that Tm commutes with trans-
lations. For the converse, see Remark 12.23. ♦

How can we define the periodic Hilbert transform HP : L2(T)→
L2(T)? Given what we have learned so far, it is natural to define
HP f on the Fourier side by requiring its Fourier coefficients to be ±i
times the Fourier coefficients of f .

Definition 12.9. The periodic Hilbert transform, or conjugate func-
tion, is defined on the Fourier side for all n ∈ Z by

(HP f)
∧(n) = −i sgn(n)f̂ (n). ♦
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This definition corresponds to the second periodization method
introduced in Section 8.5.1 for the Poisson Summation Formula.

Exercise 12.10. For s(t) := sin(2πθ) and c(θ) := cos(2πθ) on [0, 1],
show that HP c(θ) = s(θ) and HP s(θ) = −c(θ). ♦

Exercise 12.11. Show that for f(θ) =
∑

|n|≤N cne
2πinθ, we have

HP f(θ) = −i
∑N

n=1 cne
2πinθ + i

∑−1
n=−N cne

2πinθ. ♦

12.2. In the time domain: A singular integral

We now develop the direct definition of the Hilbert transform in the
time domain, given by formula (12.3) below.

Using the notation we have just introduced and the properties
of the Fourier transform, we see that the Hilbert transform Hf of a
function f in L2(R) is given by

Hf = (Ĥf)∨ = (mH f̂ )∨.

Our experience with the time–frequency dictionary suggests that in
the time domain, at least formally, the Hilbert transform should be
given by convolution with a kernel kH :

Hf = (mH f̂ )∨ = kH ∗ f,

where kH(x) = (mH)∨(x). Here we have used the fact that the
Fourier transform converts convolution into multiplication. The ques-
tion is: what is the inverse Fourier transform of the symbol? For a
bounded symbol such as mH , the inverse Fourier transform can be
calculated in the sense of distributions, and in fact kH turns out to
be a distribution and not a function. This heuristic works in general:
all bounded Fourier multipliers correspond to convolution operators
with distributional kernels [Graf08, Section 2.5].

One can compute the inverse Fourier transform of (Hf)∧ explic-
itly, at least when f is a Schwartz function. It is given formally by
the following principal value integral:

(12.3) Hf(x) := p.v.
1

π

ˆ
f(y)

x− y
dy = lim

ε→0

1

π

ˆ
|x−y|>ε

f(y)

x− y
dy.
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Note that Hf = kH ∗ f(x) is given by convolution with the principal
value distribution kH(x) := p.v. 1/(πx), introduced in the project in
Section 8.7.

We use formula (12.3) as the definition of the Hilbert transform
of functions f in L2(R), not just of Schwartz functions.

Definition 12.12. The Hilbert transform H is defined by

Hf(x) := lim
ε→0

1

π

ˆ
|x−y|>ε

f(y)

x− y
dy for f ∈ L2(R). ♦

We justify this broader definition as follows. Consider the well-
defined and nonsingular kernel

kε,R(y) := (1/πy)χ{y∈R:ε<|y|<R}(y),

which lies in L1(R)∩L2(R) for 0 < ε < R <∞. This function kε,R(y)

is a truncated, or cut-off, version of the kernel kH ; the values of
kH have been set to zero for |y| ≤ ε and for |y| ≥ R. Note that
(Kε,R)

∧(0) = 0, since Kε,R is an odd function. We calculate the
Fourier transform of kε,R for ξ �= 0:

(kε,R)
∧(ξ) =

ˆ
ε<|y|<R

1

πy
e−2πiyξ dy

=

ˆ R

ε

1

πy
e−2πiyξ dy −

ˆ R

ε

1

πy
e2πiyξ dy

= −2i
ˆ R

ε

sin (2πyξ)

πy
dy = −2i

π

ˆ 2πRξ

2πεξ

sin t

t
dt

= −i sgn(ξ)
[
2

π

ˆ 2πR|ξ|

2πε|ξ|

sin t

t
dt

]
.

Notice that for each real ξ �= 0,

2

π

ˆ 2πR|ξ|

2πε|ξ|

sin t

t
dt→ 2

π

ˆ ∞

0

sin t

t
dt = 1

as ε → 0 and R → ∞. Therefore the truncated Hilbert transforms
Hε,R on L2(R), given by the equivalent formulas

Hε,Rf = kε,R ∗ f, (Hε,Rf)
∧(ξ) = (kε,R)

∧(ξ)f̂ (ξ),

can be seen to be uniformly bounded (in R and ε) for all f in L2(R), by
Plancherel’s Identity. Furthermore, in the limit as R→∞ and ε→ 0,
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the symbols (kε,R)
∧(ξ) converge pointwise to the symbol mH(ξ) =

−i sgn(ξ) of the Hilbert transform. Also, for f in L2(R), we have
Hε,Rf → Hf where H is given by Definition 12.12. By the continuity
of the Fourier transform, it follows that

(Hε,Rf)
∧ → mH f̂ , and so (Hf)∧ = mH f̂ .

Thus the two definitions of the Hilbert transform of an L2 function,
via its actions in the frequency domain and in the time domain, agree.

Recall that by definition
´
R
:= limR→∞

´ R

−R
, so the symmetry at

infinity is built into the definition of the improper integral. The sym-
metry around zero in the truncation provides the correct cancellation
necessary to carry out the calculation above.

See Exercise 12.55 for a complex analysis proof of formula (12.3).

Exercise 12.13. Show that the Hilbert transform of the charac-
teristic function of the interval I = [a, b] is given by HχI(x) =

(1/π) log
(
|x− a|/|x− b|

)
. ♦

Figure 12.1 on page 349 shows the graph of HχI for I = [1, 3].

A similar argument applies to the periodic Hilbert transform HP

defined on the Fourier side in Section 12.1. For a periodic, real-valued,
continuously differentiable function f on T we can calculate the peri-
odic Hilbert transform HP f in the time domain via the formula

(12.4) HP f(θ) = p.v.
1

π

ˆ 1

0

f(t) cot
(
π(θ − t)

)
dt.

The singularity on the diagonal θ = t is comparable to that of the
Hilbert transform.

Exercise 12.14. Use the integral formula (12.4) to verify that the
periodic Hilbert transform maps cosines into sines. ♦

The Hilbert transform is the prototypical example of a Calderón–
Zygmund singular integral operator3. These operators are given by
integration against a kernel K(x, y): Tf(x) = p.v.

´
R
K(x, y)f(y) dy.

Near the diagonal y = x, Calderón–Zygmund kernels K(x, y)

grow like the Hilbert kernel kH(x−y), and therefore the integral must

3Named after the same Calderón as the Calderón reproducing formula in Sec-
tion 9.3, and the Polish-born American mathematician Antoni Zygmund (1900–1992).
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be understood in a principal-value sense. The cancellation encoded
for the Hilbert transform in the symmetry of p.v. 1/x is replaced
by an appropriate estimate for a Calderón–Zygmund operator on the
gradient of the kernel, or on differences in the values of the kernel at
certain pairs of points in R2.

Aside 12.15. A one-dimensional standard Calderón–Zygmund kernel
K(x, y) is a function on R2\{(0, 0)} such that |K(x, y)| ≤ C/|x− y|,
and there exists δ > 0 such that |K(x, y)−K(x, z)| ≤ C|y− z|δ/|x−
y|1+δ if |x−y| > 2|y−z| and |K(x, y)−K(w, y)| ≤ C|x−w|δ/|x−y|1+δ

if |x−y| > 2|x−w|. These are excellent references on singular integral
operators: [Duo], [Graf08], [Graf09], [Sad], [Ste70], and [Tor]. ♦
Exercise 12.16. Show that the kernel KH(x, y) := kH(x− y) of the
Hilbert transform is a standard kernel. ♦

12.3. In the Haar domain: An average of Haar
shifts

We first recall the dyadic intervals and the associated Haar basis
and introduce the random dyadic grids. We recall some important
properties of the Haar basis, shared with wavelet bases, such as being
an unconditional system in each Lp space (Section 9.5.2). We then
describe Petermichl’s averaging method and give some intuition for
why it works. This section is based on the survey article [Per12].

12.3.1. Dyadic intervals and random dyadic grids. The stan-
dard dyadic grid D is the collection of intervals in R of the form
[k2−j , (k + 1)2−j), for all integers k, j ∈ Z. They are organized by
generations: D =

⋃
j∈Z
D, where I ∈ D if and only if |I| = 2−j . They

satisfy the trichotomy, or nestedness, property: if I, J ∈ D, then
exactly one of the three conditions I ∩ J = ∅, I ⊆ J , or J ⊂ I holds.
If I ∈ Dj then there is a unique interval Ĩ ∈ Dj−1, the parent of I,
such that I ⊂ Ĩ, and there are two intervals Il, Ir ∈ Dj+1, the left
and right children of I, such that I = Il ∪ Ir. The special point 0
does not lie in the interior of any interval I ∈ D, and if 0 ∈ I, then 0
is the left endpoint of I. See Section 9.4.

A dyadic grid in R is a collection of intervals, organized in genera-
tions, each generation being a partition of R, that have the trichotomy,
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unique-parent, and two-children-per-interval properties. For example,
translates and rescalings of the standard dyadic grid are dyadic grids.
We can obtain more general dyadic grids by abolishing the special
rôle of the point 0, which we do by an ingenious translation of certain
generations.

The following parametrization captures all dyadic grids. Consider
a scaling parameter or dilation parameter r with 1 ≤ r < 2 and
a random parameter β with β = {βi}i∈Z, βi ∈ {0, 1}. Let xj :=∑

i<−j βi2
i. Define

Dβ
j := xj +Dj and Dr,β

j := rDβ
j .

The family of intervals Dr,β :=
⋃

j∈Z
Dr,β

j is a random dyadic grid.

Once we have identified an interval in a dyadic grid, its descen-
dants are completely determined: simply subdivide. However there
are two possible choices for the parent, since the original interval can
be the left or right half of the parent. The parameter β captures all
these possibilities. For the standard dyadic grid, zero is never an inte-
rior point of a dyadic interval, and it is always the left endpoint of the
dyadic intervals it belongs to. If we translate D by a fixed number, it
will simply shift zero by that amount, and the translated point will
still have this singular property. These translated grids correspond,
in our parametrization, to parameters β such that βj is constant for
all sufficiently large j. Those β that do not eventually become con-
stant eliminate the presence of a singular point such as zero in the
standard grid; in fact most grids are of this type (Exercise 12.18).

Exercise 12.17. Show that if 1 ≤ r < 2 and β ∈ {0, 1}Z, then the
collection of random grids indexed by r and β includes every possible
dyadic grid on R. ♦

Exercise 12.18. What is the probability that a sequence β becomes
eventually constant? This question is reminiscent of counting the
rational numbers and the real numbers. ♦

Random dyadic grids were introduced by Nazarov, Treil, and Vol-
berg4 in 1997 in their study of Calderón–Zygmund singular integrals

4Russian mathematicians, active in the US, Fedor Nazarov (born 1967), Sergei
Treil (born 1961), and Alexander Volberg (born 1966).
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on nonhomogeneous spaces [NTV97] and are used by Hytönen5 in his
beautiful 2010 representation theorem for all Calderón–Zygmund op-
erators in terms of averages of Haar shift operators [Hyt08, Hyt12].
This is an active area of research mathematics today.

One advantage of the parametrization above is that there is a
natural probability space (Ω, P ) associated to the parameters r and β,
and averaging here means calculating the expectation Ef =

´
Ω
f dP

in this probability space.

12.3.2. Haar basis revisited. The Haar function hI associated to
an interval I is defined by hI(x) := (1/

√
|I|)

(
χIr(x)−χIl(x)

)
, where

χI(x) = 1 if x ∈ I and zero otherwise. Note that ‖hI‖2 = 1 and´
hI = 0. We showed in Section 9.4 that the family {hI}I∈D is an

orthonormal basis for L2(R).

In 1910, Alfred Haar introduced the Haar basis for L2([0, 1]) and
showed that the Haar expansion of each continuous function con-
verges uniformly [Haa], unlike the expansions in the trigonometric
(Fourier) basis [Duo], [Graf08], [Ste70]. Furthermore, {hI}I∈D is
an unconditional basis for Lp(R).

Definition 12.19. A basis for Lp(R) is called unconditional if changes
in the signs of the coefficients of a function create a new function in
Lp(R) whose Lp norm is bounded by a constant times the Lp norm
of the original function. (See Theorem A.35(iii).) ♦

In terms of the martingale transform Tσ (Section 9.5.2) given by

(12.5) Tσf(x) =
∑
I∈D

σI〈f, hI〉hI , where σI = ±1,

unconditionality of the Haar basis in Lp(R) is equivalent to the mar-
tingale transform being bounded on Lp(R) with norm independent of
the choice of signs: supσ ‖Tσf‖p ≤ Cp‖f‖p. This boundedness is well
known [Graf08], [Ste70]. Burkholder6 found the optimal constant
Cp = p∗ − 1, where p∗ = max{p− 1, 1/(p− 1)} [Burkh].

The trigonometric system {e2πinx}n∈Z does not form an uncon-
ditional basis for Lp([0, 1)), except when p = 2 [Woj91], [Zyg59].

5Finnish mathematician Tuomas Hytönen (born 1980).
6US mathematician Donald L. Burkholder (born 1927), known for his contribu-

tions to probablity theory.
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Historically, the Haar basis is the first example of a wavelet basis,
meaning a basis {ψj,k}j,k∈Z that is given by appropriately translat-
ing and dilating a fixed wavelet function ψ: the basis functions are
ψj,k(x) = 2−j/2ψ(2jx + k). The Haar functions are translates and
dyadic dilates of the fixed function h(x) := χ[0,1/2)(x) − χ[1/2,1)(x).
The unconditionality properties are shared by a large class of wavelet
bases (Section 9.5.2).

12.3.3. Petermichl’s dyadic shift operator. Petermichl’s shift
operator associated to the standard dyadic grid D is denoted by the
Russian letter X, pronounced “sha”, and is defined for f ∈ L2(R) by

Xf(x) :=
∑
I∈D
〈f, hI〉HI(x), where HI = (1/

√
2)(hIr − hIl).

Petermichl’s shift operator is an isometry in L2(R), meaning that it
preserves the L2 norm: ‖Xf‖2 = ‖f‖2 (Section 9.5.2).

Notice that if I ∈ D, then XhI(x) = HI(x). What is XHI?
The periodic Hilbert transform Hp maps sines into negative cosines.
Sketch the graphs of hI and HI , and you will see them as a localized
squared-off sine and negative cosine. Thus the shift operator X may
be a good dyadic model for the Hilbert transform. More evidence
comes from the way X interacts with translations, dilations, and
reflections.

Denote by Xr,β Petermichl’s shift operator associated to the
dyadic grid Dr,β . The individual shift operators Xr,β do not com-
mute with translations and dilations, nor do they anticommute with
reflections. However, the following symmetries for the family of shift
operators {Xr,β}(r,β)∈Ω hold.

(i) Translation (h ∈ R): τh(Xr,βf) = Xr,τ−(h/r)β(τhf).

(ii) Dilation (a > 0): δa(Xr,βf) = Xδa(r, β)(δaf).

(iii) Reflection: (Xr,βf)
∼ = Xr,β̃(f̃), where β̃i := 1− βi.

In item (i) τhβ denotes a new random parameter in {0, 1}Z. In
item (ii) δa(r, β) denotes a new pair (r′, β′) ∈ [1, 2) × {0, 1}Z of di-
lation and random parameters that index the random dyadic grids
and the sha operator. In Exercise 12.20 we ask you to find these new
parameters so that properties (i) and (ii) actually hold.
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Note that the operations of translation, dilation, and reflection
not only pass to the argument f but also affect the translation and/or
dilation parameters (r, β).

Exercise 12.20. Make sense of these invariance properties. For (i),
consider the cases h ≥ 0 and h < 0 in order to define τ−(h/r)β properly
in terms of the binary expansion of h/r when h ≥ 0 and of h∗/r when
h < 0, where h∗ = 2k + h > 0 and 2k−1 ≤ |h| < 2k. For (ii), consider
the cases 2j ≤ ar < 2j+1 for each j ∈ Z and for a > 0 to define
δa(r, β). ♦

The Hilbert transform commutes with translations and dilations
and anticommutes with reflections. Moreover these invariance proper-
ties characterize the Hilbert transform up to a multiplicative constant
(see Exercise 12.24).

The key point in Petermichl’s proof is that although the individ-
ual dyadic shift operators do not have the symmetries that charac-
terize the Hilbert transform, one can show that the average over all
dyadic grids does have these symmetries, yielding the following result.

Theorem 12.21 (Petermichl [Pet], [Hyt08]). The average of the
dilated and translated dyadic shift operators is a nonzero multiple of
the Hilbert transform: there is a constant c �= 0 such that

EXr,β =

ˆ
Ω

Xr,βdP (r, β) = cH.

A similar approach works for the Beurling–Ahlfors transform7

[DV] and the Riesz transforms [PTV]. Sufficiently smooth one-
dimensional Calderón–Zygmund convolution operators are averages
of Haar shift operators of bounded complexity [Vag]. Finally Hytö-
nen’s representation theorem (which builds on the recent work of
many researchers) for all Calderón–Zygmund singular integral opera-
tors as averages of Haar shift operators of arbitrary complexity is the
jewel in the crown [Hyt12]. Here, a shift operator that pushes Haar
coefficients up by m generations and down by n generations is said

7Named after the Swedish mathematician Arne Carl-August Beurling (1905–1986)
and the Finnish mathematician and Fields Medalist Lars Valerian Ahlfors (1907–1996).
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to have complexity (m,n). For example, Petermichl’s X is a Haar
shift operator of complexity (0, 1), while the martingale transform is
a Haar shift operator of complexity (0, 0).

12.4. Boundedness on Lp of the Hilbert
transform

In this section we discuss the boundedness properties of the Hilbert
transform on Lp(R), for 1 < p <∞. We revisit boundedness on L2(R)
for the Hilbert transform and for Fourier multipliers with bounded
symbols. We show how translation and dilation invariance properties
restrict the values of p and q for which the Hilbert transform can
be bounded from Lp(R) into Lq(R) to the case p = q. We state
Riesz’s8 Theorem: the Hilbert transform is bounded on Lp(R) for
all 1 < p < ∞. We sketch three proofs: first, Riesz’s original 1927
proof relying on the Riesz–Thorin Interpolation Theorem9 (stated in
Section 12.6); second, the standard proof relying on the Marcinkiewicz
Interpolation Theorem10 and the Calderón–Zygmund decomposition;
third, the twenty-first-century proof, relying on the representation
of the Hilbert transform as an average of Haar shift operators (see
the project in Section 12.9.4) and Minkowski’s Integral Inequality
(Section 12.6).

12.4.1. Boundedness on L2 revisited. The Hilbert transform is
an isometry on L2(R): ‖Hf‖2 = ‖f‖2. In particular, there is a
positive constant C such that for all f ∈ L2(R),

‖Hf‖2 ≤ C‖f‖2.

In other words, the operator H is bounded on L2(R).

8Named after the Hungarian mathematician Marcel Riesz (1886–1969), younger
brother of mathematician Frigyes Riesz.

9Named after Marcel Riesz and the Swedish mathematician G. Olof Thorin (1912–
2004), who was Riesz’s student.

10Named after Polish mathematician Józef Marcinkiewicz (1910–1940).
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The Fourier multiplier Tm with symbol m ∈ L∞(R) is a bounded
operator on L2(R). Indeed, using Plancherel’s Identity twice,

‖Tmf‖2 = ‖T̂mf‖2 =
( ˆ

R

|m(ξ)f̂ (ξ)|2 dξ
)1/2

≤ ‖m‖∞‖f̂ ‖2 = ‖m‖∞‖f‖2.

The converse is also true: given a Fourier multiplier Tm bounded on
L2(R), its symbol m must be in L∞(R). The proof depends on the
properties of essentially bounded functions; see [Graf08, Section 2.5]
or [Duo, Chapter 3, Section 5]. Furthermore, the operator norm11

from L2(R) into itself of the Fourier multiplier Tm is the L∞ norm
of its symbol m ∈ L∞(R). The corresponding result in the periodic
setting is proved in Lemma 12.58.

Exercise 12.22 (The Norms of an Operator and of Its Symbol).
Verify that if m ∈ L∞(R), then ‖Tm‖L2→L2 = ‖m‖∞. ♦

Remark 12.23. Every bounded linear operator T on L2(R) that
commutes with translations is given by convolution with a tempered
distribution whose Fourier transform is a bounded function. It follows
that such an operator is a Fourier multiplier with bounded multiplier.
(See [SS05, Problem 5, p. 260], [Graf08, Section 2.5].) ♦

Exercise 12.24 (Commutativity, Take 3 ). Let T be a bounded op-
erator on L2(R) that commutes with translations and dilations. Show
that if T commutes with reflections: (Tf)∼ = T (f̃) for all f ∈ L2(R),
then T is a constant multiple of the identity operator: T = cI

for some c ∈ R. Show that if T anticommutes with reflections:
(Tf)∼ = −T (f̃) for all f ∈ L2(R), then T is a constant multiple of
the Hilbert transform: T = cH for some c ∈ R [Ste70, Chapter 2]. ♦

12.4.2. Boundedness from Lp into Lq. Is the Hilbert transform
bounded on Lp(R) for p �= 2? Or more generally, is it bounded from
Lp(R) into Lq(R)? We first define what it means for an operator to
be bounded from Lp(R) into Lq(R).

11If T is a bounded operator in L2(R), its operator norm ‖T‖L2→L2 :=

inf {C > 0 : ‖Tf‖2 ≤ C‖f‖2 for all f ∈ L2(R)}.
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Definition 12.25. For p and q with 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞,
we say that an operator T is bounded from Lp(R) into Lq(R) if the
operator T : Lp(R)→ Lq(R) and if there is a constant C such that

‖Tf‖q ≤ C‖f‖p for all f ∈ Lp(R). ♦
Exercise 12.26 (For Linear Operators Boundedness Is Equivalent
to Continuity at Zero). Let T be a linear operator that maps Lp(R)
into Lq(R). Show that T is a bounded operator if and only if T is
continuous at f ≡ 0. In other words, a linear operator T is bounded
from Lp(R) into Lq(R) if and only if ‖Tfn‖q → 0 for all sequences
{fn}n∈N ⊂ Lp(R) such that ‖fn‖p → 0 as n→∞. ♦

The boundedness properties of the Fourier transform on Lp(R)
are summarized in Table 8.3. In particular, the Fourier transform is
a bounded mapping from Lp(R) into Lq(R), provided that 1 ≤ p ≤ 2

and that p, q are dual exponents: 1/p + 1/q = 1. Furthermore, the
Hausdorff–Young Inequality12 holds for all f ∈ Lp(R):

‖f̂ ‖q ≤ ‖f‖p for 1/p+ 1/q = 1, 1 ≤ p ≤ 2.

In other words, for all such p and q the Lq norm of the Fourier trans-
form of f is bounded by the Lp norm of f . See Corollary 12.42.

What about the boundedness properties of the Hilbert trans-
form? If a dilation invariant linear operator is bounded from Lp(R)
into Lq(R), then q must be equal to p (Exercise 12.27). The Hilbert
transform is a dilation invariant linear operator. Thus it can only be
bounded from Lp(R) into itself and not from Lp(R) into Lq(R) when
p �= q.

Exercise 12.27 (Dilation Invariant Operators from Lp to Lq). For
a > 0 and f in Lp(R), let δaf(x) := f(ax). Show that ‖δaf‖p =

a−1/p‖f‖p. Let T be a dilation invariant linear operator that is
bounded from Lp(R) into Lq(R). Check that for all a > 0, ‖Tf‖q ≤
a1/q−1/pC‖f‖p, where C = ‖T‖Lp(R)→Lq(R). Conclude that p = q. ♦

It is also known that if a translation invariant linear operator T

is bounded from Lp(R) to Lq(R), then p cannot be greater than q.
See Exercise 12.28 and [Duo, Section 6.7, p. 66].

12Named after the German mathematician Felix Hausdorff (1858–1942) and the
English mathematician William Henry Young (1863–1942).
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Exercise 12.28 (Translation Invariant Operators from Lp to Lq).
For f in Lp(R), show that limh→∞ ‖f + τhf‖p = 21/p‖f‖p. Let T be a
translation invariant linear operator that is bounded from Lp into Lq.
Check that ‖Tf+τhTf‖q ≤ C‖f+τhf‖p, where C = ‖T‖Lp→Lq . Let
h → ∞ to obtain ‖Tf‖q ≤ 21/p−1/qC‖f‖p. Conclude that p ≤ q.
Hint: First consider functions f of compact support. ♦

12.4.3. The Riesz Theorem. Since the Hilbert transform is a lin-
ear operator that is both dilation invariant and translation invariant,
it could only be bounded from Lp(R) into Lq(R) if p = q. But is it
bounded on Lp(R)? The answer is yes for 1 < p < ∞ and no for
p = 1 or ∞; see Exercise 12.31.

On the time domain, the Hilbert transform is given by convo-
lution with the distributional kernel kH(x) = p.v. 1/(πx), which is
not an integrable function. If the kernel were an integrable function
k ∈ L1(R), then the convolution operator T given by convolution
against the kernel k,

Tf(x) := k ∗ f(x) =
ˆ
R

k(x− y)f(y) dy,

would automatically be bounded on Lp(R) for all p with 1 ≤ p ≤ ∞,
by Young’s Inequality13: ‖f ∗ k‖p ≤ ‖k‖1‖f‖p. (We prove Young’s
Inequality as Corollary 12.52.) Unfortunately, the Hilbert transform
kernel kH is not integrable for two reasons: the integral of kH on any
interval containing zero is infinite, and the integral of kH near infinity
is also infinite.

Even so, the Hilbert transform is bounded on Lp(R) for all p with
1 < p <∞. (Although it is not bounded on either L1(R) or L∞(R), it
satisfies a weaker boundedness property on each of these two spaces,
as we will see below for p = 1.) We state the precise boundedness
result for 1 < p <∞, and we sketch three proofs: the classical proof,
the original proof, and the modern dyadic proof.

Theorem 12.29 (Riesz’s Theorem, 1927). The Hilbert transform is
a bounded operator on Lp(R) for all p with 1 < p < ∞: for each
such p there is a constant Cp > 0 such that for all f ∈ Lp(R),

‖Hf‖p ≤ Cp‖f‖p.
13Also named after William Henry Young.
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The best constant Cp in Riesz’s Theorem is Cp = tan(π/(2p))

when 1 < p ≤ 2 (found by Pichorides14 in 1972) and Cp = cot(π/(2p))

when 2 < p <∞ (found by Grafakos15 in 2004).

The classical proof. The classical argument uses the facts that the
Hilbert transform is bounded on L2(R) and weakly bounded on L1(R),
followed by an interpolation argument to capture the range 1 < p < 2

and then a duality argument for the range p > 2. �
Interpolation theorems tell us that if a linear operator is bounded

or weakly bounded at each of two endpoints, then it is automatically
bounded at intermediate points. The interpolation result used above
is the Marcinkiewicz Interpolation Theorem, which says that if an
operator is weakly bounded on Lp and on Lq, then it is bounded on
Lr for all r between p and q. This is a powerful convexity result about
bounded or weakly bounded operators on Lp spaces. See for example
the books [Graf08, Chapter 1], [Sad, Chapter 4], [Duo, Chapter 2],
and [Tor, Chapter IV]. We explain in Section 12.5 what it means to
be weakly bounded on L1.

Riesz’s proof. When M. Riesz proved the boundedness on Lp(T) of
the periodic Hilbert transform in 1927, the Marcinkiewicz Interpola-
tion Theorem had not yet appeared, and the the weak boundedness
properties of the periodic Hilbert transform were not yet known. Us-
ing a complex-variables argument, M. Riesz showed that the periodic
Hilbert transform is bounded on Lp(T) for even numbers p = 2k,
k ≥ 1. Then by Riesz–Thorin interpolation (here the endpoint ini-
tial results needed were boundedness on L2k(T) and on L2(k+1)(T)),
which was already known, he obtained boundedness on Lp(T) for p

in the range 2 ≤ p < ∞. Finally, duality takes care of the range
1 < p < 2. See [Pin, Section 3.3.1], [Graf08, Section 4.1.3]. �

The modern dyadic proof. Estimates for H follow from uniform
estimates for Petermichl’s shift operators introduced in Section 9.5.2
and again in Section 12.3.3.

14Cretan mathematician Stylianos Pichorides (1940–1992).
15Greek mathematician Loukas Grafakos (born 1962).
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The case p = 2 follows from orthonormality of the Haar basis.
First rewrite Petermichl’s shift operator as follows (see Exercise 9.60),
where Ĩ is the parent of I in the dyadic grid Dr,β :

Xr,βf =
∑

I∈Dr,β

sgn(I, Ĩ)〈f, hĨ〉hI/
√
2.

Here sgn(I, Ĩ) := −1 if I is the left child of Ĩ and 1 if I is the right
child. We can now use Plancherel’s Identity to compute the L2 norm.
Noticing that each parent has two children, we see that

‖Xr,βf‖22 =
∑

I∈Dr,β

|〈f, hĨ〉|
2/2 = ‖f‖22.

Minkowski’s Integral Inequality (Lemma 12.49) for measures then
shows that ‖EXr,βf‖2 ≤ E‖Xr,βf‖2 ≤ ‖f‖2.

For the case p �= 2, first check that

(12.6) sup
r,β
‖Xr,βf‖p ≤ Cp‖f‖p.

Then use Minkowski’s Integral Inequality for measures (which holds
for all p ≥ 1, not just p = 2) to get ‖EXr,βf‖p ≤ E‖Xr,βf‖p ≤ ‖f‖p.

Inequality (12.6) follows from the boundedness of the dyadic
square function in Lp(R); see Section 9.5.2. �

12.5. Weak boundedness on L1(R)

We introduce the idea of an operator being weakly bounded on L1(R),
using some concepts from measure theory. Bounded operators are
weakly bounded. However some operators, such as the Hilbert trans-
form and the Hardy–Littlewood maximal function, are weakly bounded
but not bounded; we discuss both these examples. We also establish
the Layer Cake Representation for the Lp norm of a function in terms
of the length, or measure, of its level sets.
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12.5.1. Bounded vs. weakly bounded on L1(R). We begin with
the definition of weak boundedness. The notation m(E) stands for
the measure of a set E; it is explained below.

Definition 12.30. An operator T is weakly bounded on L1(R) if there
is a constant C ≥ 1 such that for all f ∈ L1(R),

(12.7) m({x ∈ R : |Tf(x)| > λ}) ≤ C‖f‖1/λ.

In other words, the size of the set where |Tf | is bigger than λ is
inversely proportional to λ, with a constant depending linearly on
the L1 norm of f . We often say T is of weak-type (1, 1). ♦

For f ∈ L1(R) and λ > 0, define the λ level set Eλ(f) of f to
be the set of points x ∈ R where the absolute value |f(x)| is larger
than λ: Eλ(f) := {x ∈ R : |f(x)| > λ} ⊂ R.

If f belongs to L1(R), then the level sets Eλ(f) are measurable
sets. This technical term means that we can assign a length, or mea-
sure, to each such set. The measure can be thought of as a map from
the measurable subsets of R to nonnegative numbers, which is additive
for finite collections of disjoint sets and has other convenient proper-
ties. We choose to use Lebesgue measure, which has the pleasing prop-
erty that the Lebesgue measure m([a, b]) of each interval [a, b] coin-
cides with the ordinary length |b−a| of [a, b]. The symbol m(A) is read
as the measure of the set A. Also, m(A) =

´
A
1 dx =

´
R
χA(x) dx, so

that the Lebesgue measure m(A) of a measurable set A is equal to the
number given by the Lebesgue integral over R of the characteristic
function χA. To delve into the many technical details of the beautiful
subject of measure theory, see [SS05], [Bar66], [Fol], or [Roy].

Returning to boundedness, suppose T is a bounded linear op-
erator from L1(R) to itself: there is a constant C > 0 such that
for all f ∈ L1(R), ‖Tf‖1 :=

´
R
|Tf(x)| dx ≤ C‖f‖1. Then, us-

ing several properties of Lebesgue integration16 and recalling that

16The properties of the integral that we are using are: (i) if f ≥ 0 and A ⊂ B, then´
A

f ≤
´
B

f ; (ii) if g ≤ f on A, then
´
A

g ≤
´
A

f ; (iii) if λ ∈ R, then
´
A

λf = λ
´
A

f ;
(iv)

´
A

1 dx =
´
χA(x) dx. See also the Appendix and Chapter 2 for some comments

on the Lebesgue integral.
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Eλ(Tf) = {x ∈ R : |Tf(x)| > λ} ⊂ R, we find that

‖Tf‖1 =

ˆ
R

|Tf(x)| dx ≥
ˆ
Eλ(Tf)

|Tf(x)| dx ≥
ˆ
Eλ(Tf)

λ dx

= λ

ˆ
Eλ(Tf)

1 dx = λ

ˆ
R

χEλ(Tf)(x) dx = λm(Eλ(Tf)).

Rearranging, we see that inequality (12.7) holds, and so T is weakly
bounded on L1(R).

Thus bounded on L1(R) implies weakly bounded on L1(R). The
converse is false. Although the Hilbert transform is weakly bounded,
it is not bounded on L1(R), as the following example shows.

Exercise 12.31. Show that the function Hχ[0,1] is neither integrable
nor bounded, despite the fact that the characteristic function χ[0,1] is
both. Hint: Use the formula for Hχ[0,1] in Exercise 12.13. ♦

12.5.2. The Hilbert transform is weakly bounded on L1(R).
We can now state precisely the boundedness result on L1(R) that
holds for the Hilbert transform.

Theorem 12.32 (Kolmogorov’s Inequality17, 1927). The Hilbert
transform is weakly bounded on L1(R) but is not bounded on L1(R).

Exercise 12.31 shows that H cannot be bounded on L1(R), nor
on L∞(R). However, H is weakly bounded on L1(R). The proof uses
the Calderón–Zygmund decomposition, which is stated and discussed
in most harmonic analysis books; see for example [Duo].

The Hilbert transform maps bounded functions (f ∈ L∞(R)) into
the larger space BMO(R) of functions of bounded mean oscillation,
which contains certain unbounded functions such as log |x| as well as
all bounded functions. See [Gar, Chapter VI].

Operators in the important class of Calderón–Zygmund singular
integral operators also map L∞(R) to BMO(R) (see the project in
Section 12.9.3). The departure point of the Calderón–Zygmund the-
ory is an a priori L2 estimate; everything else unfolds from there.
Having methods other than Fourier analysis to prove an L2 estimate

17Named after the Russian mathematician Andrey Nikolaevich Kolmogorov
(1903–1987).
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Figure 12.1. Graph of the Hilbert transform Hχ[1,3](x) =

(1/π) log |(x − 1)/(x − 3)| of the characteristic function of
the interval [1, 3], showing the λ-level set Eλ = {x ∈ R :
|Hχ[1,3](x)| ≥ λ} for λ = 0.5.

becomes important in other contexts such as singular integral opera-
tors of nonconvolution type; analysis on curves or on domains other
than Rn; and analysis on weighted L2 spaces (where the underly-
ing measure is not Lebesgue measure). One such method is Cotlar’s
Lemma18 (see the project in Section 12.9.1). Others include Schur’s
Test19 and T (1) theorems. See [Per01, Section 2], [Duo, Chapter 9],
and [Graf09, Chapter 8]. Dyadic methods, as in the modern dyadic
proof of Riesz’s Theorem, have become quite prominent recently.

Exercise 12.33. The Hilbert transform of χ[0,1] is Hχ[0,1](x) =

π−1 log(|x| |x − 1|−1). (See Figure 12.1 for the graph of Hχ[1,3].)
Find C > 0 such that m{x ∈ R : |Hχ[0,1](x)| ≥ λ} ≤ C/λ, for all
λ > 0. This fact alone does not prove that H is weakly bounded
on L1(R), since for that we need the above inequality to hold with a
uniform constant C for all f ∈ L1(R), but it is at least comforting.♦

Exercise 12.34. We investigate the measure of the level sets of the
Hilbert transforms of characteristic functions of more complicated
sets. Let A =

⋃n
j=1[aj , bj ] be a finite disjoint union of finite disjoint

closed intervals, where a1 < b1 < a2 < b2 < · · · < an < bn . The
measure of A is |A| :=

∑n
j=1 |bj − aj |. Show that the measure of the

18Named after Ukranian-born, Argentinian-Venezuelan by adoption, mathemati-
cian Mischa Cotlar (1911–2007).

19Named after the German mathematician Issai Schur (1875–1941).
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level set {x ∈ R : |H(χA)(x)| > λ} is exactly 4|A|/(eπλ − e−πλ) (see
[SW59] and [Zyg71]). ♦

12.5.3. The maximal function is weakly bounded on L1. The
Hardy–Littlewood maximal function Mf of a locally integrable func-
tion f is given by

Mf(x) = sup
x∈I

1

|I|

ˆ
I

|f(t)| dt.

See Aside 9.46. The maximal operator M is bounded on L∞(R) and
is weakly bounded on L1(R) but not bounded on L1(R).

Exercise 12.35. Verify that the maximal operator is bounded on
L∞(R). Specifically, show that |Mf(x)| ≤ ‖f‖∞, for all f ∈ L∞(R)
and each x ∈ R, and hence ‖Mf‖∞ ≤ ‖f‖∞. ♦

Exercise 12.36. Calculate Mχ[0,1] explicitly and verify that it is not
a function in L1(R). ♦

Theorem 12.37 (Hardy–Littlewood Maximal Theorem, 1930). The
maximal operator is weakly bounded on L1(R), meaning that there is
a constant C such that for each f ∈ L1(R) and for each λ > 0,

m({x ∈ R : |Mf(x)| > λ}) ≤ C‖f‖1/λ.

The project in Section 12.9.2 outlines several proofs of Theo-
rem 12.37. We can now prove the boundedness of the Hardy–Little-
wood maximal operator on each Lp space, for 1 < p < ∞, in one
stroke.

Corollary 12.38. The maximal operator M is bounded on Lp(R),
for each p with 1 < p <∞.

Proof. By the Hardy–Littlewood Maximal Theorem (Theorem 12.37),
M is weakly bounded on L1(R). Also, M is bounded on L∞(R) (Ex-
ercise 12.35). The Marcinkiewicz Interpolation Theorem then implies
that M is bounded on Lp(R) for each p with 1 < p <∞. �

We turn to the useful Layer Cake Representation. The measure,
or length, of the level sets introduced in the discussion above gives
information about the size of f , but not about the behavior of f
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near any given point. However, it does give enough information to
compute the Lp norm of f .

Theorem 12.39. For f ∈ Lp(R) and 1 ≤ p <∞ we have

(12.8) ‖f‖pp = p

ˆ ∞

0

λp−1m{x ∈ R : |f(x)| > λ} dλ.

Formula (12.8) is the key to the proof of the Marcinkiewicz In-
terpolation Theorem, since it relates the λ level sets to the Lp norm.
See Exercise 12.40 and [LL, Section 1.13] for more general versions
of the Layer Cake Representation in Theorem 12.39.

Proof of Theorem 12.39. We have

p

ˆ ∞

0

λp−1m{x ∈ R : |f(x)| > λ} dλ =

ˆ ∞

0

ˆ
{x:|f(x)|>λ}

pλp−1 dx dλ

=

ˆ
R

ˆ |f(x)|

0

pλp−1 dλ dx =

ˆ
R

|f(x)|p dx = ‖f‖pp.

We have used Fubini’s Theorem (Theorem A.58) to interchange the
order of integration. See Figure 12.2. �

−5 −4 −3 −2 −1 0 1 2 3 4 5
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2
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x

|f(x)|

x

λ

Figure 12.2. The two-dimensional region of integration
−∞ < x < ∞, 0 ≤ λ ≤ |f(x)| in the upper half-plane,
for Fubini’s Theorem in the proof of Theorem 12.39. Here
Eλ = Eλ(f) := {x ∈ R : |f(x)| > λ}, and we have used
f(x) = x sin(0.72x) exp(−x/20) + 1. The dashed lines are
those one draws in a multivariable calculus class to explain
interchanging the order of integration.
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Exercise 12.40 (Layer Cake Representation). Show that for each
continuously differentiable increasing function φ on [0,∞), we have´
R
φ(|f |) dx =

´∞
0

φ′(λ)df (λ) dλ. Theorem 12.39 corresponds to the
choice φ(λ) = λp. ♦

12.6. Interpolation and a festival of inequalities

In this section we state the very useful Riesz–Thorin Interpolation
Theorem and deduce from it several widely used inequalities from
analysis (Section 12.6.2) that we have encountered throughout the
book. This theorem is the simplest example of an interpolation the-
orem. There are whole books devoted to such theorems. We highly
recommend the book [Sad] by Cora Sadosky20.

12.6.1. The Riesz–Thorin Interpolation Theorem. The Riesz–
Thorin Interpolation Theorem differs from the Marcinkiewicz Inter-
polation Theorem in that it does not deal with operators of weak-type.
However, unlike the Marcinkiewicz Interpolation Theorem, it allows
the use of different Lp spaces as inputs and outputs of the operator.

Theorem 12.41 (Riesz–Thorin Interpolation). Suppose p1, p2, q1,
and q2 lie in [1,∞]. For 0 ≤ t ≤ 1 define p and q by

(12.9) 1/p = t/p1 + (1− t)/p2, 1/q = t/q1 + (1− t)/q2.

Let T be a linear operator from Lp1(R)+Lp2(R) into Lq1(R)+Lq2(R),
such that T is bounded from Lpi(R) into Lqi(R) for i = 1, 2: there
are constants A1 and A2 such that

‖Tf‖q1 ≤ A1‖f‖p1
for all f ∈ Lp1(R) and

‖Tf‖q2 ≤ A2‖f‖p2
for all f ∈ Lp2(R).

Then T is bounded from Lp(R) into Lq(R). Moreover,

‖Tf‖q ≤ At
1A

1−t
2 ‖f‖p for all f ∈ Lp(R).

A little experimentation with specific values of p1, p2, q1, q2, p,
and q will help to build intuition about which combinations satisfy
the hypotheses of the theorem. See Figures 12.3 and 12.4 for a geo-
metric interpretation of the interpolated points (p, q) as those points

20Argentinian mathematician Cora Sadosky (1940–2010). She was President of
the Association for Women in Mathematics (AWM) from 1993 to 1995.
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whose reciprocals (1/p, 1/q) lie in the segment in R2 with endpoints
(1/p1, 1/q1) and (1/p2, 1/q2) in specific applications of the interpola-
tion theorem.

The proof of Theorem 12.41 uses the three-lines theorem for an-
alytic functions; see for example [SW71, Chapter 5], [Pin, Section
3.2.1], or [Graf08, Chapter 1]. It is a beautiful complex analysis
argument worth understanding.

12.6.2. A festival of inequalities. In this section we use Riesz–
Thorin interpolation (Theorem 12.41) to prove several fundamental
inequalities of analysis: the Hausdorff–Young Inequality; a general-
ized Hölder Inequality; a finite-dimensional version of Hölder’s In-
equality; Minkowski’s Inequality and a finite-dimensional analogue;
Minkowski’s Integral Inequality; and Young’s Inequality. The book
by Elliot Lieb21 and Michael Loss22 [LL] is a wonderful resource for
these and many other inequalities in analysis.

12.6.3. The Hausdorff–Young Inequality. Our first inequality
arose in Section 8.6 in connection with the boundedness of the Fourier
transform.

Corollary 12.42 (Hausdorff–Young Inequality). Let 1 ≤ p ≤ 2,
1/p+1/q = 1, f ∈ Lp(R). Then its Fourier transform f̂ ∈ Lq(R) and

(12.10) ‖f̂ ‖q ≤ ‖f‖p.

Proof. We prove the Hausdorff–Young Inequality by interpolating
between the L2 boundedness of the Fourier transform, expressed by
Plancherel’s Identity ‖f̂ ‖2 = ‖f‖2 and the L1–L∞ boundedness of the
Fourier transform: ‖f̂ ‖∞ ≤ ‖f‖1. Thus the hypotheses of the Riesz–
Thorin Interpolation Theorem hold, with exponents p1 = 2, q1 =

2, p2 = 1, q2 =∞ and constants A1 = 1, A2 = 1.

By formulas (12.9) and since 1/p + 1/q = 1 and 1 ≤ p ≤ 2, the
pair (x, y) = (1/p, 1/q) reached by the Interpolation Theorem must
lie on the line x+y = 1, for x ∈ [1/2, 1]. See Figure 12.3. Finally, the
Interpolation Theorem gives us the desired inequality with constant

21American mathematical physicist Elliot H. Lieb (born 1932).
22Swiss mathematician Michael Loss (born 1954).
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Figure 12.3. Interpolation
diagram for the Hausdorff–
Young Inequality. Endpoint
data: p1 = 2, q1 = 2, p2 = 1,
q2 = ∞.
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Figure 12.4. Interpolation
diagram for the generalized
Hölder Inequality. Endpoint
data: p1 = ∞, r1 = q, p2 = q′,
r2 = 1. We have used q = 5,
q′ = 5/4.

At
1A

1−t
2 = 1 for all t ∈ [0, 1]: for the above range of values of p and q,

‖f̂ ‖q ≤ ‖f‖p as claimed. �

The multiplicative constant 1 on the right-hand side of inequal-
ity (12.10) is not optimal. The best possible constant in the Hausdorff–
Young Inequality was found by K. I. Babenko23 in 1961 and, inde-
pendently, by Bill Beckner24 in 1975 to be

√
p1/p/q1/q; see [Bec].

12.6.4. Hölder’s Inequality. Our second inequality is a general-
ized version of the well-known Hölder Inequality25. It estimates the
Lr norm of the product of two functions in terms of the Lp and
Lq norms of the factors, for appropriate r, p, and q.

We used this generalized Hölder Inequality in Section 8.6 when
considering Lp functions as distributions. Also, in the special case q =

q′ = 2, Hölder’s Inequality reduces to the Cauchy–Schwarz Inequality,
which we used in several arguments involving the Haar basis.

Corollary 12.43 (Generalized Hölder Inequality). Suppose f is in
Lp(R) and g is in Lq(R). Then their product fg lies in Lr(R), and

‖fg‖r ≤ ‖f‖p‖g‖q, where 1/r = 1/p+ 1/q.

23Russian mathematician Konstantin Ivanovich Babenko (1919–1987).
24American mathematician William E. Beckner (born 1941).
25Named after the German mathematician Otto Ludwig Hölder (1859–1937).
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Note the change of notation from that used above in the Riesz–
Thorin Interpolation Theorem. Here the endpoint variables are p

and r, while q and q′ are dual exponents: 1/q + 1/q′ = 1.

Proof. Fix q with 1 ≤ q ≤ ∞, and take g ∈ Lq(R). First notice
that if p = ∞, then r = q. If r = ∞, then r = p = q = ∞ and
‖fg‖∞ ≤ ‖f‖∞‖g‖∞. If 1 ≤ r <∞, then

‖fg‖q =
( ˆ

R

|f(x)|q|g(x)|q dx
)1/q

≤
(
‖f‖q∞

ˆ
R

|g(x)|q dx
)1/q

.

So, if p =∞, then ‖fg‖q ≤ ‖f‖∞‖g‖q for all 1 ≤ q ≤ ∞.

The other endpoint estimate is given by Hölder’s Inequality, which
corresponds to the case r = 1, p = q′, where 1/q + 1/q′ = 1:

(12.11) ‖fg‖1 =

ˆ
R

|f(x)g(x)| dx ≤ ‖f‖q′‖g‖q.

We outline a proof of inequality (12.11) in Exercise 12.47.

Apply the Riesz–Thorin Interpolation Theorem with p1 = ∞,
q1 = q, p2 = q′, q2 = 1 and with the linear operator T given by
pointwise multiplication by g as follows: (Tf)(x) = f(x)g(x) for all x.
This time the constants are A1 = A2 = ‖g‖q.

As shown in Figure 12.4, the point (x, y) = (1/p, 1/r) lies on the
line segment of slope 1 through the point (0, 1/q), namely the segment
y = x + 1/q, 0 ≤ x ≤ 1/q′. Therefore 1/r = 1/p + 1/q, and so the
Interpolation Theorem implies the desired inequality

‖fg‖r ≤ At
1A

1−t
2 ‖f‖p = ‖g‖tp‖g‖1−t

p ‖f‖p = ‖f‖p‖g‖q. �

Exercise 12.44. Verify that the constant 1 in the generalized Hölder
Inequality cannot be improved. Hint: Consider r = 1, p = q = 2. ♦

Exercise 12.45. Show that if 1 ≤ p < r < q ≤ ∞ and h ∈ Lp(R) ∩
Lq(R), then h ∈ Lr(R) and ‖h‖r ≤ ‖h‖tp‖h‖1−t

q , where 1/r = t/p +

(1− t)/q. Hint: For q < ∞, apply Hölder’s Inequality (12.11) with
the dual exponents p/(tr) and q/((1 − t)r) to the functions f(x) :=

|h(x)|tr and g(x) := |h(x)|(1−t)r. ♦

Exercise 12.46 (Finite-dimensional Hölder Inequality). Suppose ai,
bi ∈ R for i = 1, . . . , n. Prove that for 1/p+ 1/p′ = 1, the inequality
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∑n
i=1 |aibi| ≤

(∑n
i=1 |ai|p

)1/p(∑n
i=1 |bi|p

′)1/p′

holds. Show that the
special case of n = 2 and p = p′ = 2 is a restatement of the geometric
fact that | cos θ| ≤ 1. Hint: The inequality aλb1−λ ≤ λa + (1 − λ)b

holds (why?) whenever a, b ≥ 0 and 0 < λ < 1. For each j = 1, . . . ,
n, set a = |aj |p/

∑n
i=1 |ai|p, b = |bj |q/

∑n
i=1 |bi|q, and λ = 1/p; then

sum over j. ♦

Exercise 12.47. Pass from finite sums to Riemann sums and, taking
limits, to integrals to obtain Hölder’s Inequality (12.11) for Riemann
integrable functions. Alternatively, follow the proof of the finite-
dimensional Hölder Inequality, except that now for each x ∈ R set
a = |f(x)|p/‖f‖pp, b = |g(x)|q/‖g‖qq, and λ = 1/p, and integrate with
respect to x. ♦

12.6.5. Minkowski’s Inequality. From Hölder’s Inequality we can
deduce the Triangle Inequality in Lp(R) or Lp(T), which is one of the
defining properties of a norm. In this setting the Triangle Inequality
bears the name of Minkowski.

Lemma 12.48 (Minkowski’s Inequality26). If 1 ≤ p ≤ ∞ and f ,
g ∈ Lp(R), then ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof. The result is clear if p = 1, if p = ∞, or if f + g = 0.
Otherwise, we estimate pointwise using the Triangle Inequality for
complex numbers: |f(x) + g(x)|p ≤ (|f(x)|+ |g(x)|) |f(x) + g(x)|p−1.
Now integrate over R to get

‖f +g‖pp ≤
ˆ
R

|f(x)||f(x)+g(x)|p−1 dx+

ˆ
R

|g(x)||f(x)+g(x)|p−1 dx.

Apply Hölder’s Inequality, observing that if 1/p + 1/p′ = 1, then
(p− 1)p′ = p. Thus the integrals are bounded byˆ
R

|h(x)||f(x)+g(x)|p−1dx ≤
(ˆ

R

|h(x)|pdx
) 1

p
( ˆ

R

|f(x)+g(x)|pdx
) 1

p′
,

where h = f in one case and h = g in the other. Altogether we
conclude that

‖f + g‖pp ≤
(
‖f‖p + ‖g‖p

)
‖f + g‖p/p′

p .

26Named after the German mathematician Hermann Minkowski (1864–1909).
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Dividing both sides by the nonzero term ‖f + g‖p/p
′

p , we get exactly
the desired inequality. �

In fact one can have N summands or even a continuum of sum-
mands (an integral!). That is the content of our next inequality, which
we mentioned in Section 7.7.

Lemma 12.49 (Minkowski’s Integral Inequality). Let F (x, y) be a
function of two variables such that for a.e. y ∈ R, assume that the
function Fy(x) := F (x, y) belongs to Lp(R, dx) for some p ≥ 1 and
that the function G(y) = ‖Fy‖Lp(dx) is in L1(R). Then the function
Fx(y) := F (x, y) is in L1(R, dy) for a.e. x ∈ R, and the function
H(x) :=

´
R
F (x, y) dy is in Lp(R, dx). Moreover,∥∥∥ ˆ

R

F (·, y) dy
∥∥∥
Lp(dx)

≤
ˆ
R

‖F (·, y)‖Lp(dx) dy.

This inequality is a standard result in real analysis. We can think
of it as the Triangle Inequality in Lp(R) for integrals instead of sums.

We have used a more general version of Minkowski’s Integral In-
equality in the modern proof of Riesz’s Theorem (Section 12.4.3),
where the Lebesgue integral with respect to the variable y has been
replaced by the integral with respect to a probability measure (the
expectation Eω): ‖EωF (·, ω)‖Lp(dx) ≤ Eω‖F (·, ω)‖Lp(dx), where ω

belongs to the probability measure (Ω, dP ).

In the following exercises we assume p ≥ 1.

Exercise 12.50. Verify that if f1, f2, . . . , fN ∈ Lp(R), then it is
true that ‖f1 + f2 + · · ·+ fN‖p ≤ ‖f1‖p + ‖f2‖p + · · ·+ ‖fN‖p. ♦

Exercise 12.51 (Finite-dimensional Minkowski Inequality). Suppose
ai, bi ∈ R, for i = 1, . . . , n. Follow the proof of Minkowski’s Inequality
(Lemma 12.48), replacing the integrals by finite sums, to prove that(∑n

i=1 |ai + bi|p
)1/p ≤ (∑n

i=1 |ai|p
)1/p

+
(∑n

i=1 |bi|p
)1/p. ♦

12.6.6. Young’s Inequality. Our last inequality relates the Lr

norm of the convolution of an Lp function and an Lq function to
their norms, for appropriate r, p, and q with 1 ≤ p, r, q.
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Corollary 12.52 (Young’s Inequality). Suppose f is in Lp(R) and
g is in Lq(R). Then their convolution f ∗ g lies in Lr(R), and

‖f ∗ g‖r ≤ ‖f‖p‖g‖q, where 1/r + 1 = 1/p+ 1/q.

Proof. Once again, we use interpolation. The endpoint pairs are
r = p, q = 1 and r =∞, q = p′, where 1/p+1/p′ = 1. Fix g ∈ Lp(R).
We leave it as an exercise to show that if f ∈ L1(R), then

(12.12) ‖f ∗ g‖p ≤ ‖g‖p‖f‖1,
and if f ∈ Lp′

(R), then

(12.13) ‖f ∗ g‖∞ ≤ ‖g‖p‖f‖p′ ,

where 1/p+1/p′ = 1. Then the Riesz–Thorin Interpolation Theorem
applied to the linear operator T given by convolution with the fixed
function g ∈ Lp(R), Tf = f ∗ g, implies Young’s Inequality. �

The constant 1 in Young’s Inequality is not optimal. Bill Beckner
found the optimal constant to be ApAqAr where Ap =

√
p1/p/(p′)1/p′ ;

see [Bec].

Exercise 12.53. Sketch the interpolation diagram for the proof of
Young’s Inequality (similar to Figures 12.3 and 12.4). ♦

Exercise 12.54. Prove inequality (12.12), where r = p, q = 1, and
inequality (12.13), where r = ∞, q = p′. The first inequality follows
from Minkowski’s Integral Inequality and the fact that the Lp norm is
invariant under translations. The second is an application of Hölder’s
Inequality and, again, the translation-invariance of the Lp norm. ♦

12.7. Some history to conclude our journey

Why did mathematicians get interested in the Hilbert transform? We
present two classical problems where the Hilbert transform appeared
naturally. First, in complex analysis, the Hilbert transform links the
Poisson kernel and the conjugate Poisson kernel on the upper half-
plane. Second, in Fourier series, the convergence of the partial Fourier
sums SNf to f in Lp(T) for 1 < p <∞ follows from the boundedness
of the periodic Hilbert transform on Lp(T). These ideas bring us full
circle back to where we started this journey: Fourier series.
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In this section we identify the unit circle T with the interval [0, 1),
instead of [−π, π). This section is based on [Per01].

12.7.1. Connection to complex analysis. Consider a real-valued
function f ∈ L2(R). Let F (z) be twice the analytic extension of f to
the upper half-plane R2

+ = {z = x+ iy : y > 0}. Then F (z) is given
explicitly by the well-known Cauchy Integral Formula27:

F (z) =
1

πi

ˆ
R

f(t)

z − t
dt, z ∈ R2

+.

Note the resemblance between this integral and the Hilbert transform.
No principal value is needed in the Cauchy Integral Formula, however,
since the singularity is never achieved: z ∈ R2

+ cannot equal t ∈ R.
Separating the real and imaginary parts of the kernel, we find explicit
formulas for the real and imaginary parts of F (z) = u(z) + iv(z), in
terms of convolutions with the Poisson kernel Py(x) and the conjugate
Poisson kernel Qy(x) of the project in Section 7.8:

u(x+ iy) = f ∗ Py(x), v(x+ iy) = f ∗Qy(x).

The function u is called the harmonic extension of f to the upper
half-plane, while v is called the harmonic conjugate of u.

Exercise 12.55 (The Poisson and Conjugate Poisson Kernels).
Show that the Poisson kernel Py(x) and the conjugate Poisson ker-
nel Qy(x) are given by Py(x) = y/π(x2 + y2), Qy(x) = x/π(x2 + y2).
Calculate the Fourier transform of Qy for each y > 0, and show that
Q̂y(ξ) = −i sgn(ξ) exp(−2π|yξ|). Therefore, as y → 0, Q̂y(ξ) →
−i sgn(ξ). Show that as y → 0, Qy(x) approaches the principal value
distribution p.v. 1/(πx) of Hf , meaning that for all test functions
φ ∈ S(R), limy→0

´
R
Qy(x)φ(x) dx = limε→0

´
|x|>ε

φ(x)
x dx. ♦

The limit as y → 0 of u = Py ∗ f is f , both in the L2 sense and
almost everywhere, because the Poisson kernel is an approximation
of the identity (Section 7.5). On the other hand, as y → 0, v =

Qy ∗ f approaches the Hilbert transform Hf in L2(R). Therefore, by
continuity of the Fourier transform in L2(R), we conclude that

(Hf)∧(ξ) = −i sgn(ξ)f̂ (ξ),

27Named after the same Cauchy as the counterexample in Example 1.3 and as
Cauchy sequences (Subsection 2.1.2).
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f ∈ L2(R) Hf ∈ L2(R)
f + iHf real analytic

y ↓ 0 y ↓ 0

u(z) = Py ∗ f(x) v(z) = Qy ∗ f(x)
z = x+ iy; F = u+ iv complex analytic

R

R2
+

Figure 12.5. The Hilbert transform via the Poisson kernel.
To sum up: the Hilbert transform Hf of f gives the boundary
values (on R) of the harmonic conjugate v(x, y) := Qy ∗ f(x)
of the harmonic extension u(x, y) := Py ∗ f(x) of f(x) to the
upper half-plane.

which agrees with our original definition of Ĥf (Definition 12.1).

The connection between the Hilbert transform and the Poisson
kernel is illustrated in Figure 12.5.

An analogous result holds on the unit disk D = {z ∈ C : |z| ≤ 1}.
By a limiting procedure similar to the one described on the upper half-
plane, one shows that the boundary values of the harmonic conjugate
of the harmonic extension to D of a periodic, real-valued, continuously
differentiable function f on the unit circle T are given by the periodic
Hilbert transform of f ,

(12.14) HP f(θ) = p.v.
1

π

ˆ 1

0

f(t) cot
(
π(θ − t)

)
dt.

Here we are identifying the function f(θ) with f(z), for z = e2πiθ.
This is the periodic analogue of the Hilbert transform on the unit
circle from Section 12.2. The analogy is reinforced since

(12.15) (HP f)
∧(n) = −i sgn(n)f̂ (n).

Exercise 12.56. Show that for HP f defined on the time domain by
equation (12.14), the Fourier coefficients are indeed given by equa-
tion (12.15). Assume f is smooth. ♦
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Exercise 12.57 (Exercise 12.10 Revisited). With the complex analy-
sis picture in mind, write a two-line proof showing that HP c(θ) = s(θ)

and HP s(θ) = −c(θ), for s(θ) = sin(2πθ) and c(θ) = cos(2πθ). ♦

For more on the periodic Hilbert transform and its connections to
the conjugate function and analytic functions on the unit disc, see the
books by Katznelson [Kat, Chapter III], Koosis [Koo, Chapter I.E],
Torchinsky [Tor, Sections III.5, III.6], and Pinsky [Pin, Section 3.3].

12.7.2. Connection to Fourier series. The periodic Hilbert trans-
form HP is an example of a Fourier multiplier Tm on the circle. These
operators are linear transformations on L2(T), defined on the Four-
ier side by multiplication of the Fourier coefficients f̂(n) of a given
f ∈ L2(T), by a complex number m(n) depending on the frequency n:

(12.16) (Tmf)∧(n) = m(n)f̂ (n).

The sequence {m(n)}n∈Z is called the symbol of Tm. For HP , m(n) =

−i sgn(n) (equation (12.15)).

The sequence {m(n)}n∈Z is said to be a bounded sequence, written
{m(n)}n∈Z ∈ �∞(Z), if there is a constant M > 0 such that |m(n)| ≤
M for all n ∈ Z. For a bounded sequence {m(n)}n∈Z, we have

‖Tmf‖2L2(T) =
∑
n∈Z

|(Tmf)∧(n)|2 =
∑
n∈Z

|m(n)f̂ (n)|2

≤ M2
∑
n∈Z

|f̂ (n)|2 = M2‖f‖2L2(T),

where the first and last equalities hold by Parseval’s Identity. Thus
if the sequence {m(n)}n∈Z is in �∞(Z), then the multiplier Tm with
symbol {m(n)}n∈Z is bounded on L2(T). The converse is also true
and easy to prove in the periodic case.

Lemma 12.58. A Fourier multiplier Tm on the circle T with symbol
{m(n)}n∈Z is bounded on L2(T) if and only if the sequence {m(n)}n∈Z

lies in �∞(Z).

Proof. We have just proved the “if” direction. For the “only if”
direction, suppose that Tm is bounded on L2(T). Then there exists a
constant C > 0 such that ‖Tmf‖L2(T) ≤ C‖f‖L2(T) for all f ∈ L2(T).
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In particular this inequality holds for f(θ) = en(θ) = e2πinθ,
n ∈ Z. The exponential functions form an orthonormal basis in L2(T);
each of them has norm 1. Their Fourier coefficients have the simple
form ên(k) = 1 for k = n and 0 otherwise. Therefore, using Parseval’s
Identity twice, for each n ∈ Z we have

|m(n)|2 =
∑
k∈Z

|m(k)ên(k)|2 = ‖Tmen‖2L2(T) ≤ C2‖en‖2L2(T) = C2.

Thus |m(n)| ≤ C for all n ∈ Z, so {m(n)}n∈Z ∈ �∞(Z). �

The operators H and HP share similar boundedness properties.

Theorem 12.59 (Riesz’s Theorem on the Circle). The periodic Hilbert
transform HP is bounded on Lp(T) for 1 < p <∞: there is a constant
Cp > 0 such that for all f ∈ Lp(T),

‖HP f‖Lp(T) ≤ Cp‖f‖Lp(T).

The operation of taking the N th partial Fourier sum of a nice
function f , SNf(θ) =

∑
|n|≤N f̂(n) e2πinθ, is another important ex-

ample of a Fourier multiplier on the unit circle T. Specifically,

(SNf)∧(n) = mN (n)f̂ (n),

where the symbol {mN (n)}n∈Z of SN is the sequence mN (n) = 1 if
|n| ≤ N and mN (n) = 0 if |n| > N .

The next two exercises show how to write SN in terms of mod-
ulations of the periodic Hilbert transform, and they show that these
modulation operators preserve the Lp norm of a function.

Exercise 12.60 (Partial Fourier Sums as Modulations of the Peri-
odic Hilbert Transform). Check that if |n| �= N , then we can write
mN (n) =

(
sgn(n + N) − sgn(n − N)

)
/2. If |n| = N , then we can

write mN (n) = sgn(n+N)− sgn(n−N). (Sketching these step func-
tions will help.) Let MN denote the modulation operator, MNf(θ) :=

f(θ)e2πiθN . Show that i(MNHPM−N )∧(n) = sgn(n+N)f̂ (n) for all
N ∈ Z. (The Fourier transform converts modulations into transla-
tions.) Apply the inverse Fourier transform to deduce that

SNf(θ) = (i/2)
(
MNHPM−Nf(θ)−M−NHPMNf(θ)

)
+(1/2)

(
f̂(N)eiNθ + f̂(−N)e−iNθ

)
. ♦(12.17)
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Exercise 12.61 (Modulation Operator Preserves Lp Norms). Show
that ‖MNf‖Lp(T) = ‖f‖Lp(T), for all N ∈ Z. ♦

We are ready to prove that SNf converges to f in Lp(T).

Theorem 12.62. The N th partial Fourier sums SNf of a function
f ∈ Lp(T) converge to f in the Lp norm as N →∞, for each p with
1 < p <∞. That is, limN→∞ ‖SNf − f‖Lp(T) = 0.

Proof. It follows from formula (12.17) that the partial sums SN are
uniformly (in N) bounded on Lp(T), for each p with 1 < p < ∞.
To see this, take Lp norms on both sides of (12.17) and apply the
Triangle Inequality in Lp(T). Note that the Fourier coefficients of a
function in Lp(T) are uniformly bounded by ‖f‖Lp(T). Therefore the
last two terms in formula (12.17) are uniformly bounded by ‖f‖Lp(T).
Thus we can bound ‖SNf‖Lp(T) by(
‖MNHPM−Nf‖Lp(T) + ‖M−NHPMNf‖Lp(T)

)
/2 + ‖f‖Lp(T).

Next, by the boundedness properties of MN and HP ,

‖SNf‖Lp(T) ≤
(
‖HPM−Nf‖Lp(T) + ‖HPMNf‖Lp(T)

)
/2 + ‖f‖Lp(T)

≤ (Cp/2)
(
‖M−Nf‖Lp(T) + ‖MNf‖Lp(T)

)
+ ‖f‖Lp(T)

= (Cp + 1)‖f‖Lp(T).

The bound (Cp + 1) is independent of N , as claimed.

The trigonometric polynomials are dense in Lp(T), and for each
f(θ) =

∑
|m|≤M ame2πimθ, for N ≥ M we have SNf = f . Thus,

the partial sum operators SN converge to the identity operator on a
dense subset of Lp(T). It follows, as in the proof of Theorem 9.36
(page 243) that limN→∞ ‖SNf − f‖p = 0. �

Thus the convergence in Lp(T) of the partial Fourier sums follows
from the boundedness of the periodic Hilbert transform on Lp(T).

Exercise 12.63. Take f ∈ Lp(R) ⊂ L1(T). Use Hölder’s Inequal-
ity (12.11) to show that |f̂ (n)| ≤ (2π)−1/p‖f‖Lp(T). ♦

Formula (12.17) also implies that the periodic Hilbert transform
cannot be bounded on L1(T), for otherwise the partial Fourier sums
SNf would be uniformly bounded on L1(T), which is false.
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Exercise 12.64. Show that there is no constant C > 0 for which
‖SNf‖L1(T) ≤ C‖f‖L1(T) for all N > 0. It may help to recall that the
Dirichlet kernels DN do not have uniformly bounded L1(T) norms,
since ‖DN‖L1(T) ∼ logN ; see Chapter 4 and Exercise 9.48. ♦
Exercise 12.65. Show that if f ∈ S(R), then the partial Fourier
integrals SRf can be written as 2SRf = MRHM−Rf −M−RHMRf ,
in terms of the Hilbert transform H and the modulations MRf(x) :=

e2πiRxf(x) defined on R. This decomposition is analogous to for-
mula (12.17) for the partial Fourier sums. Use this decomposition,
the boundedness on Lp(R) of the Hilbert transform for 1 < p < ∞,
and the fact that ‖MRf‖p = ‖f‖p to show that SRf converges to f

in the Lp norm. ♦

12.7.3. Looking further afield. In this book we have considered
Fourier analysis and wavelets only in one dimension: on T, R, or
discrete one-dimensional versions of these spaces. There is also a
rich theory in Rn of multiple Fourier series, Fourier transforms, and
wavelet transforms, with many fascinating applications (we briefly
touched on the two-dimensional wavelet transform and its applica-
tions to image processing). The reader may also like to investigate
the Riesz transforms and their connections to partial differential equa-
tions. The Riesz transforms are natural extensions of the Hilbert
transform to higher dimensions.

We encourage the reader to start his or her excursion into multi-
dimensional Fourier theory by reading the accounts in [DM, Sections
2.10 and 2.11], [Kör, Chapter 79 and above], [Pin, Chapters 4 and
5], [Pre, Chapters 6, 7, and 8], and [SS03, Chapter 6]. In these
books you will also find applications of harmonic analysis in many ar-
eas including physics, differential equations, probability, crystallogra-
phy, random walks, Radon transforms, radioastronomy, and number
theory.

We have sampled a few of the many applications of wavelets and
have encouraged the reader to explore more applications through the
projects. There is a lot of potential for wavelets, and there is life
beyond wavelets as well. Nowadays in the analysis of large data sets
(think internet and genome), ideas from harmonic analysis and spec-
tral graph theory are being used in novel ways and new tools are being
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invented (compressed sensing [Can], diffusion geometry [CMa08],
[CMa06]).

In our book we have moved from Fourier series to wavelet series,
from analytic formulas to fast algorithms, from matrices to opera-
tors, from dyadic to continuous, from Fourier transform to Hilbert
transform, from Fourier to Haar, from Haar functions to Daubechies
wavelets. We closed the circle by moving from Hilbert to Fourier. We
ended with the venerable Hilbert transform, reconnecting with our
initial theme of Fourier series. We gave a glimpse of what lies ahead
in the field of harmonic analysis, and we saw that even for the now
familiar Hilbert transform, new and surprising results are still being
discovered, such as its representation in terms of Haar shifts: from
Hilbert to Haar.

We thank the reader for joining us on our journey through har-
monic analysis, and we wish you bon voyage!

12.8. Project: Edge detection and spectroscopy

Here are two practical applications of the Hilbert transform.

(a) One can use the discrete Hilbert transform (see the project in Sec-
tion 6.8) to detect edges in images and to detect discontinuities in sig-
nals. The paper [Eng] describes “three edge detectors that work using
spectral data (i.e. Fourier coefficients) about a function to ‘concen-
trate’ the function about its discontinuities. The first two detectors
are based on the Discrete Hilbert Transform and are minimally inva-
sive; unfortunately they are not very effective. The third method is
both invasive and effective.” The techniques used in all three methods
are elegant and elementary. Read the paper [Eng], and make sense of
these statements. Do some numerical experiments and comparisons
between the three methods, and search further in the literature for
other methods to detect edges, notably wavelet-based ones. See also
the paper [LC].

(b) An Internet search for Hilbert spectroscopy in 2011 led to the
following text in a Wikipedia entry citing the paper [LDPU]: It is
a technique that uses the Hilbert transform to detect signatures of
chemical mixtures by analyzing broad spectrum signals from gigahertz
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to terahertz frequency radio. One suggested use is to quickly analyze
liquids inside airport passenger luggage. Read the paper [LDPU].
Explain the paragraph above, both mathematically and chemically,
to a mathematical audience. Think of some other possible uses of the
technique of Hilbert spectroscopy.

12.9. Projects: Harmonic analysis for
researchers

The four projects gathered in this final section serve as an invitation
to explore some advanced concepts in harmonic analysis, which are
of central importance for researchers. We mentioned these concepts
briefly in the text; if that sparked your curiosity, here is the oppor-
tunity to learn more. Elias Stein’s book [Ste93] is an invaluable
resource for researchers in this field.

12.9.1. Project: Cotlar’s Lemma. In the project in Section 6.8
we defined discrete analogues of the Hilbert transform and used Four-
ier techniques to prove their boundedness. Here we introduce a tech-
nique, known as Cotlar’s Lemma, or the almost orthogonality lemma,
that works in settings where Fourier analysis is not available. We
illustrate the use of this technique for the Hilbert transform and its
discrete analogues.

Cotlar’s Lemma says that if a given operator on a Hilbert space is
a sum of operators that are uniformly bounded and almost orthogonal
in a specific sense, then the original operator is bounded. If the pieces
are actually orthogonal, then this is simply Plancherel’s Identity or
the Pythagorean Theorem. The content of the lemma is that the
sum operator is still bounded even if the orthogonality of the pieces
is significantly weakened.

(a) Find a precise statement and a proof of Cotlar’s Lemma in the
literature. Work through the proof and fill in the details. The proof
given in [Duo, Lemma 9.1] is accessible and uses a beautiful counting
argument. See also [Cot] and [Burr].

(b) Prove a version of the Hausdorff–Young Inequality for convolution
of sequences: given sequences x ∈ �2(Z) and y ∈ �1(Z), then x ∗ y ∈
�2(Z) and ‖x ∗ y‖�2(Z) ≤ ‖y‖�1(Z)‖x‖�2(Z).
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(c) Recall that Hdx(n) = k ∗ x(n) is given by discrete convolution
with the kernel k(n) = (1/n)χ{n∈Z:n�=0}(n), which is in �2(Z) but not
in �1(Z). Although the Hausdorff–Young Inequality does not imply
that Hd is bounded on �2(Z), it does imply that certain truncated
pieces are. Consider Hd

j x(n) := kj ∗ x(n) where, for j ≥ 0, kj is the
truncated Hilbert kernel given by kj(n) = (1/n)χSj

(n), where the
set Sj = {n ∈ Z : 2j ≤ |n| < 2j+1}. Then Hd =

∑
j≥0 H

d
j . Show

that the pieces Hd
j are uniformly bounded in �2(Z). To estimate the

�2 norm of Hd
j , it suffices to estimate the �1 norm of each kj (why?).

Show that the �1 norms of the truncated kernels kj have the following
uniform bound: ‖kj‖�1 ≤ 4 ln 2.

(d) Use Cotlar’s Lemma to show that the discrete Hilbert trans-
form Hd is bounded on �2(Z). It will be useful to know that the
following conditions on the truncated kernels hold for all j ≥ 0 and
m ∈ Z: a cancellation condition

∑
n∈Z

kj(n) = 0 and a smoothness
condition

∑
n∈Z
|kj(m − n) − kj(n)| ≤ C21−j |m|. To estimate the

�2 norm of Hd
i H

d
j , it suffices to estimate the �1 norm of ki ∗kj (why?).

Verify that ‖ki ∗ kj‖�1 ≤ C2−|i−j|.

12.9.2. Project: Maximal functions. The dyadic maximal func-
tion Mdf is defined by Mdf(x) = supI�x,I∈D(1/|I|)

´
I
|f |, where

the supremum is over only dyadic intervals. Compare Mdf with the
Hardy–Littlewood maximal function Mf (see Section 12.5.3).

The dyadic maximal operator Md and the Hardy–Littlewood
maximal operator M are of weak type (1, 1); see Theorem 12.37. The
reader is asked to explore one or more of the proofs of this theorem.

(a) Given a function f ∈ L1(R), you want to estimate the size of the
set {x ∈ R : Mdf(x) > λ}. Consider the maximal dyadic intervals for
which mI |f | > λ; these are exactly the intervals {Ji} given by the Cal-
derón–Zygmund decomposition. (Investigate what this decomposition
is about.) Conclude that {x ∈ R : Mdf(x) > λ} =

⋃
Ji and |Ed

λ| =∑
|Ji| ≤ ‖f‖1/λ. Hence Md is of weak-type (1, 1).

(b) Most proofs are via covering lemmas. See for example [Duo,
Section 2.4], [Pin, Section 3.5], and [SS05, Section 3.1.1]. Another
proof uses a beautiful argument involving the Rising Sun Lemma;
see [Koo, p. 234]. In G. H. Hardy and J. E. Littlewood’s original
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paper, they first consider a discrete case, noting that “the problem
is most easily grasped when stated in the language of cricket, or any
other game in which a player compiles a series of scores of which
an average is recorded.” Their proof uses decreasing rearrangements
and can be found in Zygmund’s book [Zyg59] and in the original
article [HL].

The best weak-type (1, 1) constant for the centered maximal op-
erator was shown to be the largest root of the quadratic equation
12x2− 22x+5 = 0; see [Mel]. For the uncentered Hardy–Littlewood
maximal function, the best constant in Lp was found to be the unique
positive solution of the equation (p − 1)xp − pxp−1 − 1 = 0. See
[Graf08, Exercise 2.1.2]. Other references are [GM], [Ler], and
[Wien].

12.9.3. Project: BMO and John–Nirenberg. The space BMO,
or BMO(R), of functions of Bounded Mean Oscillation (BMO) is
the collection of locally integrable functions b : R → R such that
‖b‖BMO := supI(1/|I|)

´
I
|b(x) −mIb| dx < ∞, where the supremum

is taken over all intervals I (this is a Banach space when considered
modulo the constant functions).

(a) Understand the definition of BMO. Show that bounded func-
tions are in BMO. Show that log |x| is in BMO, but the function
χx>0(x) log |x| is not in BMO, [Graf08, Examples 7.1.3 and 7.1.4].

(b) The John–Nirenberg Inequality28 says that the function log |x|
is, in terms of the measure of its λ-level sets, typical of unbounded
BMO functions. More precisely, given a function b ∈ BMO, an in-
terval I, and a number λ > 0, there exist constants C1, C2 > 0

(independent of b, I, and λ) such that |{x ∈ I : |b(x) − mIb| >
λ}| ≤ C1|I|e−C2λ/‖b‖BMO . Show that if a function b satisfies the
John–Nirenberg Inequality, then b ∈ BMO. Work through a proof
of the John–Nirenberg Inequality (see [Duo], [Per01], or [Graf08]).

28Named after the German mathematician Fritz John (1910–1994) and the
Canadian-born American mathematician Louis Nirenberg (born 1925). Nirenberg is
the first recipient of the Chern Medal Award, given at the opening ceremony of the
International Congress of Mathematicians, ICM 2010, Hyderabad, India, for his role in
the formulation of the modern theory of nonlinear elliptic partial differential equations
and for mentoring numerous students and post-docs in this area.
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(c) One can deduce from the John–Nirenberg Inequality the following
self-improvement result: If b ∈ BMO(R), then for each p > 1 there
exists a constant Cp > 0 such that

(
(1/|I|)

´
I
|b(x)−mIb|p dx

)1/p ≤
Cp‖b‖BMO, for all intervals I. Notice that the reverse inequality is
exactly Hölder’s Inequality. Therefore the left-hand side gives an
alternative definition for the BMO norm. These reverse Hölder In-
equalities can be thought of as self-improvement inequalities. Being a
BMO function in L1(I), we conclude that we are also in Lp(I) for all
p > 1. This result is usually false without the BMO hypothesis; the
reverse is always true. Prove the self-improvement inequality. Use
Theorem 12.39 to write the Lp norm of (b −mIb)χI in terms of its
distribution function, and then use the John–Nirenberg Inequality.

(d) There is a dyadic version BMOd(R) of the space of functions
of bounded mean oscillation, in which the oscillation of the function
over only dyadic intervals (I ∈ D) is controlled. Specifically, a lo-
cally integrable function b : R → R is in BMOd(R) if ‖b‖BMOd

:=

supI∈D(1/|I|)
´
I
|b(x) − mIb|dx < ∞. A process called translation-

averaging connects the two spaces. Given a suitable family of func-
tions in the dyadic BMO space BMOd(R), their translation-averaging
is a new function that lies not only in BMOd(R) but also in the
strictly smaller space BMO(R). The averaging result extends to the
more general setting of multiparameter BMO. While translation-
averaging does not have the analogous improving effect on the related
class of dyadic Ap weight functions, a modified version (geometric-
arithmetic averaging) does. Explore these ideas in the papers [GJ],
[PW], [Treil], [War], and [PWX].

12.9.4. Project: Hilbert as an average of Haar. We have seen
the Hilbert transform on the frequency side as a Fourier multiplier,
and on the time side as a singular integral operator. We discussed in
Section 12.3.3 a striking new representation of the Hilbert transform,
discovered by Stefanie Petermichl [Pet]. She proved that the Hilbert
transform can be expressed as an average of translations and dila-
tions of Haar multiplier operators, giving a new connection between
continuous and dyadic aspects of harmonic analysis. In this project
we want you to think more deeply about this representation.
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(a) Read Petermichl’s paper [Pet] and some of the references below.
See also Sections 12.3 and 12.4. It is important to understand that
the only bounded operators on L2(R) that commute with translations
and dilations and anticommute with reflections are constant multiples
of the Hilbert transform. See [Hyt08], [Lac], and [Vag].

(b) Develop (if possible; if not, explain what obstacles you encoun-
tered) an analogous theory for the discrete Hilbert transforms (both
finite and sequential) defined in the project in Section 6.8.

(c) Compare Petermichl’s representation of the Hilbert transform to
the nonstandard decomposition for Calderón–Zygmund operators in-
troduced in [BCR].

                

                                                                                                               



Appendix

Useful tools

In this Appendix we record the definitions and the main properties of
vector spaces, normed spaces, and inner-product vector spaces (Sec-
tion A.1). We also record definitions, examples, and main properties
of Banach spaces and Hilbert spaces (Section A.2). We specialize to
the Lebesgue spaces on the line Lp(R). We collect basic definitions,
density results, and interchange of limit and integral results valid in
R that we use in the book (Section A.3).

A.1. Vector spaces, norms, inner products

We recall here definitions and properties of vector spaces, normed
spaces, and inner-product spaces. We list some common examples
that we use in the book. We pay particular attention to the geometry
of inner-product vector spaces and state the basic theorems related
to orthogonality: the Cauchy–Schwarz Inequality, the Pythagorean
Theorem, and the Triangle Inequality (Section A.1.1).

Definition A.1. A vector space over C is a set V , together with
operations of addition and scalar multiplication, such that if x, y,
z ∈ V and λ, λ1, λ2 ∈ C, then:

(i) V is closed under addition and scalar multiplication: x+ y ∈ V ,
and λx ∈ V .
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(ii) Addition is commutative and associative: x + y = y + x, and
x+ (y + z) = (x+ y) + z.

(iii) There exists a zero vector 0 ∈ V such that x+0 = 0+x = x for
all x ∈ V .

(iv) Each x ∈ V has an additive inverse −x ∈ V such that x+(−x) =
(−x) + x = 0.

(v) Addition is distributive w.r.t. scalar multiplication: λ(x + y) =

λx+ λy.

(vi) Scalar multiplication is associative: λ1(λ2x) = (λ1λ2)x. ♦

We have already encountered some vector spaces over C.

Example A.2. The set Cn = {(z1, z2, . . . , zn) : zj ∈ C} of n-tuples of
complex numbers, with the usual component-by-component addition
and scalar multiplication. ♦

Example A.3. The collections of functions on T we have been work-
ing with (Section 2.1) with the usual pointwise addition and scalar
multiplication: C(T), Ck(T), C∞(T); the collection R(T) of Riemann
integrable functions on T; the Lebesgue spaces Lp(T), in particular
L1(T), L2(T), and L∞(T); and the collection PN (T) of 2π-periodic
trigonometric polynomials of degree less than or equal to N . See the
ladder of functional spaces in T in Figure 2.3. ♦

Example A.4. The corresponding collections of functions on R dis-
cussed in the book: C(R), Ck(R), C∞(R); the collection Cc(R)
of compactly supported continuous functions; similarly Ck

c (R) and
C∞

c (R); the collection S(R) of Schwartz functions; infinitely often
differentiable and rapidly decaying functions all of whose derivatives
are also rapidly decaying (see Section 7.2); the Lebesgue spaces Lp(R)
(see Section A.3). ♦

Example A.5. The space �2(Z) of sequences defined by equation (5.1)
in Section 5.1, with componentwise addition and scalar multiplication.
See also Example A.14. ♦

It is useful to be able to measure closeness between vectors in a
vector space. One way to do so is via a norm.
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Definition A.6. A norm on a vector space V over C is a function
‖ · ‖ : V → R such that for all x, y ∈ V , α ∈ C:

(i) ‖x‖ ≥ 0 (positive);

(ii) ‖x‖ = 0 if and only if x = 0 (positive definite);

(iii) ‖αx‖ = |α| ‖x‖ (homogeneous);

(iv) it satisfies the Triangle Inequality ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

A vector space that has a norm is called a normed vector space. ♦

Example A.7. The set R with the Euclidean norm. The set C with
norm given by the absolute value function. ♦

Example A.8. The set Rn with norm the �p norm, defined for each

x = (x1, x2, . . . , xn), 1 ≤ p <∞, by ‖x‖p =
(∑n

k=1 |xk|p
)1/p

. ♦

Example A.9. The bounded continuous functions f over an inter-
val I (or R) for which the uniform norm defined to be ‖f‖L∞(I) :=

supx∈I |f(x)| is finite. ♦

Example A.10. The continuous functions over a closed interval I
(or R) for which the Lp norm defined by ‖f‖Lp(I) = (

´
I
|f(x)|p dx)1/p

is finite. ♦

Example A.11. The Lebesgue spaces Lp(I) over interval I (or R)
with the Lp norm. See Chapter 2 and Section A.3 for more on these
examples. ♦

Some vector spaces V come equipped with an extra piece of struc-
ture, called an inner product.

Definition A.12. A (strictly positive-definite) inner product on a
vector space V over C is a function 〈·, ·〉 : V × V → C such that, for
all x, y, z ∈ V , α, β ∈ C,

(i) 〈x, y〉 = 〈y, x〉 (skew-symmetric or Hermitian);

(ii) 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉 (linear in the first variable);

(iii) 〈x, x〉 ≥ 0 (positive-definite);

(iv) 〈x, x〉 = 0 ⇐⇒ x = 0
(
(iii) and (iv) together: strictly

positive-definite
)
.
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A vector space with such an inner product is called an inner-product
vector space. ♦

Items (i) and (ii) imply that the inner product is conjugate-linear
in the second variable, in other words 〈z, αx+βy〉 = α〈z, x〉+β〈y, x〉.

Every inner-product vector space V can be made into a normed
space, since the quantity ‖x‖ := 〈x, x〉1/2 is always a norm on V , as
we ask you to verify in Exercise A.25. This norm is known as the
induced norm on V .

Here are some examples of inner-product vector spaces over C.

Example A.13. V = Cn. The elements of Cn are of the form z =

(z1, z2, . . . , zn), with zj ∈ C. The inner product and its induced norm
are defined for z, w ∈ Cn by 〈z, w〉 := z1w1 + z2w2 + · · ·+ znwn and

‖z‖Cn := 〈z, z〉1/2 = (|z1|2 + |z2|2 + · · ·+ |zn|2)1/2. ♦

Example A.14 (Little �2 of the Integers, over C). V = �2(Z). The
elements of �2(Z) are doubly infinite sequences of complex numbers,
written {an}n∈Z, with an ∈ C and

∑
n∈Z
|an|2 < ∞. The inner

product and its induced norm are defined for x = {an}n∈Z and y =

{bn}n∈Z in �2(Z) by 〈x, y〉 :=
∑∞

n=−∞ anbn and

‖x‖�2(Z) := 〈x, x〉1/2 =
( ∞∑

n=−∞
|an|2

)1/2

. ♦

Example A.15 (Square-Integrable Functions on the Circle). V =

L2(T). The inner product and its induced norm are defined for f, g ∈
L2(T) and T = [−π, π) by 〈f, g〉 := 1

2π

´ π

−π
f(x)g(x) dx and

‖f‖L2(T) := 〈f, f〉1/2 =
( 1

2π

ˆ π

−π

|f(x)|2 dx
)1/2

. ♦

Example A.16 (Square-Integrable Functions on the Line). V =

L2(R). The inner product and its induced norm are defined for
f, g ∈ L2(R) by 〈f, g〉 :=

´
R
f(x)g(x) dx and

‖f‖L2(R) := 〈f, f〉1/2 =
(ˆ

R

|f(x)|2 dx
)1/2

. ♦

The fact that the infinite sums in Example A.14 and the integrals
in Examples A.15 and A.16 yield finite quantities is not automatic. It
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is a direct consequence of the indispensable Cauchy–Schwarz Inequal-
ity, which holds for all inner-product vector spaces and which we state,
together with two other important inequalities, in Section A.1.1.

A.1.1. Orthogonality. Orthogonality is one of the most important
ideas in the context of inner-product vector spaces.

In the two-dimensional case of the vector space V = R2 over R,
the usual inner product has a natural geometric interpretation. Given
two vectors x = (x1, x2), y = (y1, y2) in R2,

〈x, y〉 := x1y1 + x2y2 = ‖x‖ ‖y‖ cos θ,

where θ is the angle between the two vectors. In this setting, two
vectors are said to be perpendicular, or orthogonal, when θ = π/2,
which happens if and only if 〈x, y〉 = 0.

Let V be a vector space over C, with inner product 〈·, ·〉 and
induced norm ‖ · ‖.

Definition A.17. Vectors x, y ∈ V are orthogonal if 〈x, y〉 = 0. We
use the notation x ⊥ y. A set of vectors {xλ}λ∈Λ ⊂ V is orthogonal
if xλ1

⊥ xλ2
for all λ1 �= λ2, λi ∈ Λ. Two subsets X, Y of V are

orthogonal, denoted by X ⊥ Y , if x ⊥ y for all x ∈ X and y ∈ Y . ♦

Definition A.18. A collection of vectors {xn}n∈Z in an inner-product
vector space is orthonormal if 〈xn, xm〉 = 1 if n = m and 〈xn, xm〉 = 0

if n �= m. ♦

Example A.19. Define vectors ek ∈ CN by ek(n) = (1/
√
N) e2πikn/N ,

for k, n ∈ {0, 1, 2, . . . , N−1}. The vectors {ek}N−1
k=0 form an orthonor-

mal family in CN (Chapter 6). ♦

Example A.20. The trigonometric functions {en(θ) := einθ}n∈Z are
orthonormal in L2(T) (see Chapter 5). ♦

Example A.21. The Haar functions are orthonormal in L2(R) (Chap-
ter 9). ♦

The Pythagorean Theorem, the Cauchy–Schwarz Inequality, and
the Triangle Inequality are well known in the two-dimensional case
described above. They hold in every inner-product vector space V .
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Theorem A.22 (Pythagorean Theorem). If x, y ∈ V , x ⊥ y, then

‖x+ y‖2 = ‖x‖2 + ‖y‖2.

Theorem A.23 (Cauchy–Schwarz Inequality). For all x, y in V ,

|〈x, y〉| ≤ ‖x‖‖y‖.

Theorem A.24 (Triangle Inequality). For all x, y ∈ V ,

‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Exercise A.25. Prove Theorems A.22, A.23, and A.24, first for
the model case V = R2 and then for a general inner-product vec-
tor space V over C. Show that ‖x‖ :=

√
〈x, x〉 is a norm in V . ♦

Exercise A.26. Deduce from the Cauchy–Schwarz Inequality that
if f and g are in L2(T), then |〈f, g〉| <∞. Similarly, if x = {an}n∈Z,
y = {bn}n∈Z ∈ �2(Z), then |〈x, y〉| <∞. ♦

Exercise A.27. Suppose that V is an inner-product vector space,
Λ is an arbitrary index set, and {xλ}λ∈Λ is an orthogonal family of
vectors. Show that these vectors are linearly independent ; in other
words, for any finite subset of indices {λ1, . . . , λn} ⊂ Λ such that n is
no larger than the dimension of V (which may be infinite), we have
a1xλ1

+ · · ·+ anxλn
= 0 if and only if a1 = · · · = an = 0. ♦

A.1.2. Orthonormal bases. Orthogonality implies linear indepen-
dence (Exercise A.27), and if our geometric intuition is right, orthog-
onality is in some sense the most linearly independent a set could
be. In Example A.19 we exhibited a collection of N vectors in the
N -dimensional vector space CN . Since these N vectors are linearly
independent, they constitute a basis of CN . Moreover the set {ek}N−1

k=0

is an orthonormal basis of CN . We call it the N -dimensional Fourier
basis (see Chapter 6).

The trigonometric functions {en(θ) := einθ}n∈Z are an orthonor-
mal basis of L2(T) (see Chapter 5), and the Haar functions are an or-
thonormal basis of L2(R) (see Chapter 9). It takes some time to verify
these facts. Having an infinite orthonormal family (hence a linearly
independent family) tells us that the space is infinite-dimensional.
There is no guarantee that there are no other functions in the space
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orthogonal to the given orthonormal family, or in other words that
the orthonormal system is complete.

Definition A.28. Consider an orthonormal family {xn}n∈N in an
inner-product vector space V over C. We say that the family is com-
plete, or that {xn}n∈N is a complete system, or that the vectors in
the family form an orthonormal basis, if given any vector x ∈ V , x
can be expanded into a series of the basis elements which is conver-
gent in the norm induced by the inner product. That is, there exists
a sequence of complex numbers {an}n∈N (the coefficients) such that
limN→∞

∥∥∥x−∑N
n=1 an xn

∥∥∥ = 0. Equivalently, x =
∑∞

n=1 anxn where
equality holds in the norm of V . The coefficients an of x are uniquely
determined. They can be calculated by pairing the vector with the
basis elements: an = 〈x, xn〉. ♦

A.2. Banach spaces and Hilbert spaces

Some, but not all, normed spaces satisfy another property, to do
with convergence of Cauchy sequences of vectors. Namely, they are
complete normed vector spaces, also known as Banach spaces. Com-
plete inner-product vector spaces are known as Hilbert spaces (Sec-
tion A.2.1). In this context we discuss the notion of a (Schauder)
basis and unconditional bases in Banach spaces (Section A.2.2). We
define Hilbert spaces and we give criteria to decide when a given or-
thonormal system is a complete system (Section A.2.3). We discuss
orthogonal complements and orthogonal projections onto close sub-
spaces of a Hilbert space (Section A.2.4).

A.2.1. Banach spaces. In the presence of a norm we can talk about
sequences of vectors converging to another vector.

Definition A.29. Let V be a normed space. The sequence {xn}n∈N

in V converges to x ∈ V if limn→∞ ‖xn − x‖ = 0. ♦

It is well known that if a sequence is converging to a point, then
as n→∞, the vectors in the sequence are getting closer to each other,
in the sense that they form a Cauchy sequence.
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Definition A.30. Let V be a normed space. A sequence {xn}n∈N

∈ V is Cauchy if for every ε > 0 there exists N > 0 such that
‖xn − xm‖ < ε for all n, m > N . ♦

The converse is not always true, except in so-called complete
normed spaces, or Banach spaces. For instance, the Cauchy sequence
1, 1.4, 1.41, 1.414, 1.4142, . . . in the space Q of rational numbers does
not converge to any point in Q, although it does converge to a point
in the larger vector space R. Furthermore, every Cauchy sequence of
real numbers converges to some real number. Q is not complete; R is
complete, and this is a fundamental fact about the real numbers.

Definition A.31. A normed space B is complete if every sequence in
B that is Cauchy with respect to the norm of B converges to a limit
in B. Complete normed spaces are called Banach spaces. ♦
Example A.32. The continuous functions on a closed and bounded
interval, with the uniform norm, form a Banach space. This fact
and its proof are part of an advanced calculus course; for example
see [Tao06b, Theorem 14.4.5]. ♦
Example A.33. The spaces Lp(I) (Chapter 2) are Banach spaces.
So are the spaces Lp(R) (Chapter 7). The proof of these facts belongs
to a more advanced course. However both results are crucial for us,
and we assume them without proof. ♦

A.2.2. Bases, unconditional bases. Given a Banach space X, a
family of vectors {xn}n≥1 is a Schauder basis, or simply a basis, of X
if every vector can be written in a unique fashion as an infinite linear
combination of the elements of the basis, where the convergence is
naturally in the norm of the Banach space.

Definition A.34 (Schauder Basis). Let X be a (real or complex)
Banach space. Then the sequence {xn}n≥1 is a Schauder basis (or
simply a basis) of X if the closed linear span of {xn}n≥1 is X and∑∞

n=1 anxn is zero only if each an is zero. ♦

The second condition in the definition of a Schauder basis, as-
serting a certain kind of independence, clearly depends very much
on the order of the xn, and it is certainly possible for a permuta-
tion of a basis to fail to be a basis. Many naturally occurring bases,
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such as the standard bases in �p when 1 ≤ p < ∞, are bases under
any permutation. Bases with the property that they remain bases
under permutation are called unconditional bases. We state as a the-
orem what amounts to several equivalent definitions of this concept.
The spaces C([0, 1]) and L1(R) do not have unconditional bases. See
[Woj91, Chapter II.D].

Theorem A.35 (Unconditional Basis Equivalent Conditions). Let
X be a (real or complex) Banach space and let {xn}n≥1 be a basis of
X. Then the following are equivalent.

(i) {xπ(n)}n≥1 is a basis of X for every permutation π : N→ N.

(ii) Sums of the form
∑∞

n=1 anxn converge unconditionally whenever
they converge.

(iii) There exists a constant C > 0 such that, for every sequence
of scalars {an}n≥1 and every sequence of scalars {σn}n≥1 of
modulus at most 1, we have the inequality∥∥∥ ∞∑

n=1

σnanxn

∥∥∥
X
≤ C

∥∥∥ ∞∑
n=1

anxn

∥∥∥
X
.

A.2.3. Hilbert spaces. Some Banach spaces have the additional
geometric structure of an inner product, as is the case for L2(T).

Definition A.36. A Hilbert space H is an inner-product vector space
such that H is complete. In other words, every sequence in H that is
Cauchy with respect to the norm induced by the inner product of H
converges to a limit in H. ♦

Here we are using the word complete with a different meaning
than that in Definition A.28, where we consider complete systems of
orthonormal functions. The context indicates whether we are talking
about a complete space or a complete system {fn}n∈N of functions.

Here are some canonical examples of Hilbert spaces.

Example A.37. Cn, a finite-dimensional Hilbert space. ♦

Example A.38. �2(Z), an infinite-dimensional Hilbert space. ♦

Example A.39. L2(T), the Lebesgue square-integrable functions
on T, consisting of the collectionR(T) of all Riemann square-integrable
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functions on T, together with all the functions that arise as limits of
Cauchy sequences in R(T) (similarly to the construction of the real
numbers from the rational numbers). In other words, L2(T) is the
completion of R(T) with respect to the L2 metric. ♦

Example A.40. L2(R), the Lebesgue square-integrable functions
on R. See Section A.3. ♦

A Hilbert space is called separable if it has a basis that is at
most countable. Such a basis can always be orthonormalized. Exam-
ples A.37–A.40 are all separable Hilbert spaces.

How can we tell whether a given countable orthonormal family X

in a separable Hilbert space H is an orthonormal basis for H? One
criterion for completeness of the orthonormal system is that the only
vector orthogonal to all the vectors in H is the zero vector. Another
is that Plancherel’s Identity must hold. These ideas are summarized
in Theorem A.41, which holds for all separable Hilbert spaces. In
Chapter 5 we prove Theorem A.41 for the special case when H =

L2(T) with the trigonometric basis. We leave it as an exercise to
extend the same proofs to the general case.

Theorem A.41. Let H be a separable Hilbert space and let X =

{xn}n∈N be an orthonormal family in H. Then the following are
equivalent:

(i) X is a complete system, hence an orthonormal basis of V .

(ii) If x ∈ H and x ⊥ X, then x = 0.

(iii) (Plancherel’s Identity) For all x ∈ V , ‖x‖2 =
∑∞

n=1 |〈x, xn〉|2.

A.2.4. Orthogonal complements and projections. Given a
closed subspace V of a Hilbert space H, the collection of vectors or-
thogonal to the given subspace forms a new subspace denoted by V ⊥.
We can then decompose the Hilbert space as a direct sum of the closed
subspace and its orthogonal complement.

Definition A.42. Given a Hilbert space H and a closed subspace V

of H, the collection V ⊥ of vectors orthogonal to V is the orthogonal
complement of V in H. ♦
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Lemma A.43. Given a Hilbert space H and a closed subspace V , its
orthogonal complement in H, V ⊥, is a closed subspace, and V ∩V ⊥ =

{0}. Furthermore, (V ⊥)⊥ = V .

One can write H as the orthogonal direct sum of a closed sub-
space V and its orthogonal complement.

Definition A.44. Let V , W be two subspaces of a vector space.
Then their direct sum is denoted by V ⊕ W and is defined to be
V ⊕W = {x+ y : x ∈ V, y ∈W}. ♦

Lemma A.45. Let V , W be closed subspaces of the Hilbert space H.
Then (i) V ⊕W is a closed subspace of H, and (ii) V ⊕ V ⊥ = H.

The proof of Lemma A.45(ii) follows from a best approximation,
or orthogonal projection, theorem, presented next.

Theorem A.46 (Orthogonal Projection). Given any closed subspace
V of a Hilbert space H and given x ∈ H, there exists a unique vector
PV x ∈ V that minimizes the distance in H to V . That is,

‖x− y‖H ≥ ‖x− PV x‖H for all y ∈ V .

Furthermore, the vector x − PV x is orthogonal to PV x. If B =

{xn}n∈N is an orthonormal basis of V , then PV x =
∑

n∈N
〈x, xn〉Hxn,

where 〈·, ·〉H denotes the inner product in H.

One can then use pictures such us Figure 5.1 safely. Note that
x− PV x ∈ V ⊥, so it is now clear that we can decompose any vector
x ∈ H as the (unique) sum of a vector in V and a vector in V ⊥,
namely, x = PV x+ (x− PV x). Therefore H = V ⊕ V ⊥.

Definition A.47. Given any closed subspace V of a Hilbert space H
and given x ∈ H, the orthogonal projection of x onto V is the unique
vector PV x ∈ V whose existence (and uniqueness) is guaranteed by
Theorem A.46. ♦

Example A.48. LetH = L2(T) and V = Pn(T), the closed subspace
of all trigonometric polynomials of degree less than or equal to N .
Given f ∈ L2(T), the N th partial Fourier sum of f ∈ L2(T), denoted
by SNf , is the one that best approximates f in the L2 norm. In other
words, SNf is the orthogonal projection of f onto Pn(T). ♦
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Some useful properties of the orthogonal projections are listed.

Lemma A.49. Given a closed subspace V of a Hilbert space H, let
PV : H → H be the orthogonal projection mapping onto V . Then:

(i) for all x ∈ H, PV x ∈ V ; (ii) if x ∈ V , then PV x = x;

(iii) P 2
V = PV ; (iv) (I − PV ) is the orthogonal projection onto V ⊥.

Given two nested closed subspaces V1 ⊂ V2 of H, the larger sub-
space V2 can be viewed as a Hilbert space on its own. We can find
the orthogonal complement of V1 in V2; call this subspace W1. Then

V2 = V1 ⊕W1.

Lemma A.50. Given two nested closed subspaces V1 ⊂ V2 of H,
denote by P1 and P2 the orthogonal projections onto V1 and V2, re-
spectively. Let W1 be the orthogonal complement of V1 in V2. Then
the difference Q1x := P2x−P1x is the orthogonal projection of x ∈ H
onto W1.

Proof. First observe that both P2x and P1x belong to the subspace
V2, and so does their difference, Q1x ∈ V2. Assume that Q1x is
orthogonal to P1x and that Q1x ∈W1 (the reader should justify these
assertions). To show that Q1x is the orthogonal projection of x onto
W1, we need only to check that x − Q1x is orthogonal to Q1x. But
〈x−Q1x,Q1x〉 = 〈x− P2x+ P1x,Q1x〉 = 〈x− P2x,Q1x〉, where the
last equality holds because P1x ⊥ Q1x. Finally P2x is the orthogonal
projection of x onto V2, so x− P2x is orthogonal to V2, in particular
to Q1x ∈ V2. We conclude that 〈x−Q1x,Q1x〉 = 0. This defines Q1

as the orthogonal projection onto the closed subspace W1. �

A.3. Lp(R), density, interchanging limits on R

In this section we collect some useful facts from analysis on the line
that we have used throughout the book. Here we consider functions
defined on the real line R. The parallel discussion in Chapter 2 treats
functions defined on bounded intervals. We state most results without
proof but indicate where to find complete proofs in the literature.

                

                                                                                                               



A.3. Lp(R), density, interchanging limits on R 383

We present first the Lebesgue spaces Lp(R) which have been a
common thread in Chapters 7–12 (Section A.3.1); next a list of den-
sity results (Section A.3.2); and finally two theorems that give suf-
ficient conditions under which we can interchange limit operations
and integrals: Fubini’s Theorem about interchanging integrals and
the Lebesgue Dominated Convergence Theorem about interchanging
limits and integrals (Section A.3.3).

A.3.1. Lebesgue spaces Lp(R) on the line. For each real num-
ber p with 1 ≤ p < ∞, the Lebesgue space Lp(R) consists of those
functions such that

´
R
|f(x)|p dx <∞ (Section 7.7). Here the integral

is in the sense of Lebesgue. The analogous spaces Lp(T) of functions
on the unit circle are treated in Section 2.1. We now use the ideas of
normed and inner-product vector spaces, Banach spaces, and Hilbert
spaces, recorded in Section A.2

All the Lp(R) spaces are normed, with the Lp norm given by

‖f‖p =
( ˆ

R

|f(x)|p dx
)1/p

.

Each Lp(R) space is also complete, meaning that every Cauchy se-
quence in the space converges and its limit is an element of the space.
Therefore the Lp(R) spaces are Banach spaces.

Let f be a continuous function that lies in Lp(R). Then its Lp

integral coincides with an improper Riemann integral. Further, the
tails of the integral go to zero:

(A.1) lim
N→∞

ˆ
|x|≥N

|f(x)|p dx = 0.

In fact, this decay of the tail holds for all functions in Lp(R), contin-
uous or not.

The space L2(R) of square-integrable functions on the line is a
Hilbert space, with inner product given by

〈f, g〉 =
ˆ
R

f(x)g(x) dx.

For p �= 2, the spaces Lp(R) are not Hilbert spaces.

We say that an identity f = g or a limit limt→t0 ft = f holds in
the Lp sense if ‖f − g‖p = 0 or limt→t0 ‖ft − f‖p = 0. Equality of f
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and g in the Lp sense occurs if and only if f = g except possibly on
a set of measure zero, that is, if f = g a.e.

A set E ⊂ R has measure zero if given ε > 0 there are intervals
{Ij}j∈N in R such that E ⊂

⋃
j∈N

Ij and
∑

j∈N
|Ij | < ε.

A function f is said to be essentially bounded, written f ∈ L∞(R),
if f is bounded by some fixed constant except possibly on a set
of measure zero. The space L∞(R) is a Banach space with norm
given by ‖f‖∞ := ess supx∈R |f(x)|. Here the essential supremum
of |f(x)|, denoted by ess supx∈R |f(x)|, is defined to be the smallest
number M such that |f(x)| ≤ M for all x ∈ R except possibly on a
set of measure zero. When the function f is actually bounded, then
‖f‖∞ = supx∈R |f(x)|.

Functions in Lp(R) are always locally integrable. In symbols we
write Lp(R) ⊂ L1

loc(R). The Lebesgue spaces on the line are not
nested, unlike the Lebesgue spaces on bounded intervals.

Here is a useful result connecting Lebesgue spaces on the line and
on intervals. We used the case p = 2 when introducing the windowed
Fourier transform in Section 9.2.

Lemma A.51. A function f : R → C belongs to Lp(R) if and only
if the functions fn := fχ[n,n+1) ∈ Lp(R) and

∑
n∈Z
‖fn‖pLp(R) < ∞.

Furthermore, ‖f‖pLp(R) =
∑

n∈Z
‖fn‖pLp(R).

Notice that ‖fn‖pLp(R) =
´ n+1

n
|f(x)|p dx. Then Lemma A.51 is

plausible given the additive property of the Lebesgue integral: if I, J
are disjoint intervals, then

´
I∪J

=
´
I
+
´
J
.

The intervals {[n, n+ 1)}n∈Z can be replaced by any partition of
R into countable measurable sets {An}n∈N. More precisely if R =⋃

n∈N
An, where the sets An are mutually disjoint and measurable,

then ‖f‖pLp(R) =
∑∞

n=1

´
An
|f(x)|p dx.

A.3.2. Density. The Schwartz class, introduced in Chapter 7, is
dense in each Lp(R). In other words, we can approximate any func-
tion f ∈ Lp(R) by functions φn ∈ S(R) such that the Lp norm of the
difference f − φn tends to zero as n tends to infinity: limn→∞ ‖f −
φn‖p = 0. Equivalently, given ε > 0, there exists a φ ∈ S(R) such
that ‖f − φ‖p < ε.
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Theorem A.52. The Schwartz functions on R are dense in Lp(R)
with respect to the Lp norm. Furthermore, Lp(R) is the completion
of S(R) in the Lp norm.

In fact more is true: the smaller class of compactly supported in-
finitely differentiable functions (bump functions) is also dense in Lp(R).
Here is a suite of density theorems in R leading to other density results
that we have met in the book.

Theorem A.53. Each continuous functions on R that is in Lp(R)
can be approximated with respect to the Lp norm by C∞ functions on
R that are also in Lp(R).

Proof. Consider a positive kernel in S(R), such as a normalized
Gaussian. Use it to create a family of good kernels Kn(x) = nK(nx)

as n → ∞. Take f ∈ C(R) ∩ Lp(R). By the Hausdorff–Young
Inequality, fn := f ∗ Kn ∈ Lp, and by the approximation-of-the-
identity result, ‖fn − f‖p → 0 as n → ∞. By the smoothing prop-
erty of convolution, fn inherits the smoothness of Kn. Therefore
fn ∈ C∞(R) ∩ Lp(R) (Chapter 7). �

Theorem A.54. The continuous functions on R that are also in
Lp(R) are dense in Lp(R) with respect to the Lp norm.

Proof. The proof follows from Theorem A.53 and Theorem A.52,
using the fact that if A is dense in Lp(R) and A ⊂ B, then B is dense
in Lp(R). In this case A = C∞(R)∩Lp(R) and B = C(R)∩Lp(R) ⊂
Lp(R). �

Theorem A.55. The continuous functions on R with compact sup-
port are dense in C(R) ∩ Lp(R), with respect to the Lp norm. Hence
they are dense in Lp(R).

Proof. All we need to know here about the Lebesgue integral is that
if f ∈ C(R) ∩ Lp(R), then its Lp integral coincides with an improper
Riemann integral, and the tails of the integral go to zero as in equa-
tion (A.1). Then one proceeds as in the proof of Lemma 9.43 on
page 248. In this proof one in fact reduces the problem to the Weier-
strass Approximation Theorem on the compact intervals [−N,N ]. �
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The results in Section 9.4 imply the following facts.

Theorem A.56. The step functions with compact support can uni-
formly approximate continuous functions with compact support. Hence
they can approximate them in the Lp norm as well.

Combining Theorems A.55 and A.56, we conclude the following.

Theorem A.57. The step functions with compact support are dense
in Lp(R).

A.3.3. Interchanging limits on the line. In this section we state
two theorems about interchanging limit operations and integrals that
we have used in this book. This section runs parallel to Section 2.3.
However, some results that hold for bounded intervals cannot be car-
ried over to the line. Notably, uniform convergence on the line is
not sufficient for interchanging a limit and an integral over R, as the
discussion after the project in Section 9.7 shows. Interchanging two
integrals is a special case of these interchange-of-limit operations. The
result that allows for such interchange is called Fubini’s Theorem.

Theorem A.58 (Fubini’s Theorem). Let F : R2 → C be a func-
tion. Suppose F ∈ L1(R2), that is,

˜
R2 |F (x, y)| dA < ∞, where dA

denotes the differential of area, or Lebesgue measure, in R2. Thenˆ
R

ˆ
R

F (x, y) dx dy =

ˆ
R

ˆ
R

F (x, y) dy dx =

¨
R2

F (x, y) dA.

See [SS05, Chapter 2, Section 3] or any book in measure theory
for a proof of Fubini’s Theorem on Rn.

Interchanging limit operations is a delicate maneuver that is not
always justified. We have illustrated throughout this book settings
where this interchange is allowed and settings where it is illegal, such
as the one just described involving uniform convergence.

Unlike the Riemann integral, Lebesgue theory allows for the in-
terchange of a pointwise limit and an integral. There are several
landmark theorems that one learns in a course on measure theory.
We state one such result.

                

                                                                                                               



A.3. Lp(R), density, interchanging limits on R 387

Theorem A.59 (Lebesgue’s Dominated Convergence Theorem). Con-
sider a sequence of measurable functions fn defined on R, converging
pointwise a.e. to a function f . Suppose there exists a dominating
function g ∈ L1(R), meaning that |fn(x)| ≤ g(x) a.e. for all n > 0.
Then

lim
n→∞

ˆ
R

fn(x) dx =

ˆ
R

f(x) dx.

In other words, the limit of the integrals is the integral of the limit.
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in the time domain, 333
sequential, 157

Hölder condition of order α, 70
Hölder’s Inequality, 35–36, 214,

330, 354–355, see also
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Khinchine, 254, 258
Kolmogorov, 348
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John–Nirenberg Inequality, 368
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function, 208
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heat, 187, 206, 250
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standard Calderón–Zygmund,

336
Khinchine’s Inequality, 254, 258
Kolmogorov’s example, 71
Kolmogorov’s Inequality, 348
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Laplace’s equation, 188
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Layer Cake Representation, 351
Layer Cake Theorem, 351
Lebesgue Differentiation Theorem,

96, 244
Lebesgue Dominated Convergence

Theorem, 48
Lebesgue integral, 11, 27–31
Lebesgue measure, 347
Lebesgue space, 213
Lebesgue spaces, 383–384
Lebesgue Theorem, 37, 98
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linear functional, 193

continuity of, 194–195
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linear transformation, 168
Lipschitz function, 66
Littlewood–Paley decomposition,

264
Littlewood–Paley theory, 256
local cosine and sine bases, 229, 256
localized, 147
localized basis, 146
locally integrable, 191
Luzin’s conjecture, 71

Mallat’s Theorem, 270
proof of, 284

Malvar–Wilson wavelet, 257
Marcinkiewicz Interpolation

Theorem, 330, 341, 345
martingale transform, 253, 338
mask of a function, 299
matrix

circulant, 145
diagonal, 141
Fourier, 137
Haar, 151
permutation, 141
sparse, 139
symmetric, 137
unitary, 136–137

maximal operator or function, 350
mean

Abel, 98–100, 103–105
Cesàro, 58, 96–98, 103–105
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mean-square convergence
for L2 functions, 120–121
for continuous functions, 101,

119–120
of Fourier series, 107

measurable function, 29
measurable set, 28, 347
Mexican hat wavelet, 327
Meyer wavelet, 326
Minkowski’s Inequality, 184, 330,

356–357, see also
finite-dimensional M. I.,
Minkowski’s Integral
Inequality

Minkowski’s Integral Inequality,
186, 330, 357

modulation, 89, 168, 362–363
Morlet wavelet, 223, 327
multiplication formula, 180
multirate signal analysis, 322
multiresolution analysis, 262–265

Haar, 303–308

nonlinear approximation error, 299
norm

Lp norms on S(R), 184
definition, 372
semi-, 194
uniform, 40

normed spaces, 110

operator, 121, 240
orthogonal, 31, 111–113, 375
orthogonal complement, 269
orthogonal Fourier vectors, 137
orthogonal multiresolution analysis,

264
orthogonal projection, 116, 118,

124, 268, 381
orthogonal wavelet transform, 231
orthonormal, 112, 114–115, 129,

375
orthonormal basis, 127, 129, 130

for L2(R), 225, 227
uniqueness of coefficients, 114

orthonormal family, 122–124
orthonormal set, 11
orthonormal system, 31
orthonormality of dual basis, 136

Paley–Wiener Theorem, 295
Parseval’s Identity, 109, 129, 133
partial Fourier integral, 188, 193
partial Fourier sum, 77–79, 362–363

convergence of, 61
of an integrable function, 78

partition, 22
periodic Hilbert transform,

332–333, 361–363
periodic ramp function, see

sawtooth function
periodic step function, 56
periodization of a function, 206
permutation matrix, 141
Petermichl’s shift operator, 255,

339–341
Plancherel’s Identity, 122–124, 133,

182, 192, 215
point-mass measure, 204
Poisson kernel, 98–100, 187, 190,

207, 250, 359, 360
is a good kernel, 100

Poisson Summation Formula, 206
polarization identity, 183
polynomial splines, 326
principal value distribution, 190,

217
Pythagorean Theorem, 108, 112,

117, 122, 130

Rademacher function, 258
ramp function, 12
random dyadic grid, 336
rapidly decreasing, 174–175
refinable function, 299
resolution, 150
Riemann integrable functions, 24

completion in the Lp norm, 30
complex-valued, 27
on an interval, 26

Riemann integral, 22
Riemann Localization Principle,

70–71
Riemann upper/lower sum, 26
Riemann–Lebesgue Lemma

for L1 functions, 214
for L2 functions, 109
for continuous functions, 65, 101
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for integrable functions, 101
for Schwartz functions, 173

Riesz basis property, 322
Riesz transform, 364
Riesz’s Theorem, 344, 362
Riesz–Thorin Interpolation

Theorem, 330, 341, 352
roots of unity, 132

sawtooth function, 12–13, 55–56, 73
scaling equation, 266, 292
scaling function, 233
scaling spaces, 262
Schur’s Lemma, 349
Schwartz

class, see Schwartz space
Schwartz function, 189

convolution of, 176
Schwartz space, 164–167, 172–175
selfadjoint, 200
seminorm, 194
separable Hilbert space, 380
separable solution, 17
sequential Hilbert transform, 157
series

doubly infinite, 129
Fourier, 1, 5, 7, 54–55, 107, 128
Taylor, 8
trigonometric, 6

sets of measure zero, 36
Shannon basis, 232
Shannon multiresolution analysis,

265, 287
Shannon wavelet, 232, 325
sharp window, 227
shift-invariant, 146
signum function, 331
simple function, 28, 34
singular integral operator, 329
smooth window, 227
space

Lp, 29
Banach, 30, 40, 378
central, 262
complete, 111
Hilbert, 31, 110, 379
inner-product vector, 110

complete, 110

Lebesgue, 213, 383–384
normed, 29, 30, 110
scaling, 262
Schwartz, 164–167, 172–175

continuity in, 194
convergence in, 194

vector, 371
wavelet, 262

sparse matrix, 139
spline biorthogonal wavelet, 327
square wave function, 73
square-integrable functions, 30
square-summable sequences, 111
standard basis, 147
standard Calderón–Zygmund

kernel, 336
standard dyadic grid, 336
step functions, 22, 23, 34, 49

periodic, 56
Stone–Weierstrass Theorem, 59
subband coding, 322
subspace, closed, 124
Sydney Opera House, 234
symbol of an operator, 332, 361
symmetric matrix, 137
synthesis phase, 319

taps, see filter coefficients
Taylor series, coefficients &

polynomial, 8
tempered distribution, 193–194

canonical example, 195
continuity, 194–195
induced by bounded continuous

functions, 195–196
induced by polynomials, 196

thresholding, hard or soft, 274–275
time domain, 168
time–frequency atoms, 234
time–frequency box, 213
time–frequency decompositions, 2
time–frequency dictionary, 168,

182, 278
for Fourier coefficients, 62, 89
for Fourier series, 89
for Schwartz functions, 167–172

time–frequency plane, 212
transform
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continuous Gabor, 229
continuous wavelet, 234
Discrete Haar, 151
discrete Hilbert, 157, see

transform, sequential Hilbert
Discrete Inverse Fourier, 138
Fast Fourier, 128, 138
Fast Haar, 152, 234
Fast Wavelet, 152, 234
finite Hilbert, 157
Fourier, 163, 166, 214–216

for continuous functions of
moderate decrease, 191

Hilbert, 39, 217, 339–345,
348–350, 358–360

as a Fourier multiplier, 331
in the Haar domain, 336
in the time domain, 333

Inverse Discrete Haar, 151
inverse Fourier, 163
linear, 168
martingale, 253
orthogonal wavelet, 231
periodic Hilbert, 332–333,

361–363
sequential Hilbert, 157

translation, 89, 168
translation-invariant, 146
Triangle Inequality, 112

for integrals, 11, 24, 185
trigonometric functions, 128, 129

completeness of, 114–116
form an orthonormal basis, 108,

114
trigonometric polynomials, 9

a closed subspace, 124
of degree M , 14

trigonometric series, 6
twin dragon, 274, 298
two-scale difference equation, 307

Uncertainty Principle, 148
unconditional basis for Lp(R), 338
Uniform Boundedness Principle,

246, 250
uniform Lipschitz condition, 70
uniformly bounded, 121
uniqueness of dual basis, 136

unit circle, 13
unitary matrix, 136–137
upsampling, 318

vanishing moment, 296, 324
vector space, 371

walking function, 43
Walsh basis, 328
WaveLab, 323
wavelet, 150, 230

basis, 230
Battle–Lemarié spline, 326
Daubechies, 266, 326
Fourier transform of, 231
Haar, 231, 325
Malvar–Wilson, 257
Mexican hat, 327
Meyer, 326
Morlet, 223, 327
multiresolution analysis for, 153
orthogonal transform, 231
packets, 327
reconstruction formula for, 231
Shannon, 232, 325
spaces, 262
spline biorthogonal, 327

Wavelet Toolbox, 323
weakly bounded, 345, 347
Weierstrass M -test, 46
Weierstrass Approximation

Theorem, 59
Weyl’s Equidistribution Theorem,

102–103
Whittaker–Shannon Sampling

Formula, 208
windowed Fourier transform, 225
windows, 225

Young’s Inequality, 330, 357–358
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In the last 200 years, harmonic 
analysis has been one of the 
most infl uential bodies of 
mathematical ideas, having 
been exceptionally signifi cant 
both in its theoretical impli-
cations and in its enormous 

range of applicability throughout mathematics, science, and engineering.

In this book, the authors convey the remarkable beauty and applica-
bility of the ideas that have grown from Fourier theory. They present 
for an advanced undergraduate and beginning graduate student audi-
ence the basics of harmonic analysis, from Fourier’s study of the heat 
equation, and the decomposition of functions into sums of cosines 
and sines (frequency analysis), to dyadic harmonic analysis, and the 
decomposition of functions into a Haar basis (time localization). 
While concentrating on the Fourier and Haar cases, the book touches 
on aspects of the world that lies between these two different ways of 
decomposing functions: time–frequency analysis (wavelets). Both fi nite 
and continuous perspectives are presented, allowing for the introduction 
of discrete Fourier and Haar transforms and fast algorithms, such as the 
Fast Fourier Transform (FFT) and its wavelet analogues.

The approach combines rigorous proof, inviting motivation, and 
numerous applications. Over 250 exercises are included in the text. Each 
chapter ends with ideas for projects in harmonic analysis that students 
can work on independently.
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