
STUDENT MATHEMAT ICAL L IBRARY
Volume 62

Computability
Theory

Rebecca Weber

Computability
Theory

Computability
Theory

Rebecca Weber

STUDENT MATHEMAT ICAL L IBRARY
Volume 62

American Mathematical Society
Providence, Rhode Island

Editorial Board

Gerald B. Folland
Robin Forman

Brad G. Osgood (Chair)
John Stillwell

2000 Mathematics Subject Classification. Primary 03Dxx;
Secondary 68Qxx.

For additional information and updates on this book, visit
www.ams.org/bookpages/stml-62

Library of Congress Cataloging-in-Publication Data

Weber, Rebecca, 1977–
Computability theory / Rebecca Weber.

p. cm. — (Student mathematical library ; v. 62)
Includes bibliographical references and index.
ISBN 978-0-8218-7392-2 (alk. paper)
1. Recursion theory. 2. Computable functions. I. Title.

QA9.6.W43 2012
511.3′52—dc23

2011050912

Copying and reprinting. Individual readers of this publication, and nonprofit
libraries acting for them, are permitted to make fair use of the material, such as to
copy a chapter for use in teaching or research. Permission is granted to quote brief
passages from this publication in reviews, provided the customary acknowledgment of
the source is given.

Republication, systematic copying, or multiple reproduction of any material in this
publication is permitted only under license from the American Mathematical Society.
Requests for such permission should be addressed to the Acquisitions Department,
American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-
2294 USA. Requests can also be made by e-mail to reprint-permission@ams.org.

c© 2012 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights
except those granted to the United States Government.

Printed in the United States of America.

©∞ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.

Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 17 16 15 14 13 12

Contents

Chapter 1. Introduction 1

§1.1. Approach 1

§1.2. Some History 4

§1.3. Notes on Use of the Text 6

§1.4. Acknowledgements and References 7

Chapter 2. Background 9

§2.1. First-Order Logic 9

§2.2. Sets 15

§2.3. Relations 21

§2.4. Bijection and Isomorphism 29

§2.5. Recursion and Induction 30

§2.6. Some Notes on Proofs and Abstraction 37

Chapter 3. Defining Computability 41

§3.1. Functions, Sets, and Sequences 41

§3.2. Turing Machines 43

§3.3. Partial Recursive Functions 50

§3.4. Coding and Countability 56

§3.5. A Universal Turing Machine 62

v

vi Contents

§3.6. The Church-Turing Thesis 65

§3.7. Other Definitions of Computability 66

Chapter 4. Working with Computable Functions 77

§4.1. The Halting Problem 77

§4.2. The “Three Contradictions” 78

§4.3. Parametrization 79

§4.4. The Recursion Theorem 81

§4.5. Unsolvability 85

Chapter 5. Computing and Enumerating Sets 95

§5.1. Dovetailing 95

§5.2. Computing and Enumerating 96

§5.3. Aside: Enumeration and Incompleteness 102

§5.4. Enumerating Noncomputable Sets 105

Chapter 6. Turing Reduction and Post’s Problem 109

§6.1. Reducibility of Sets 109

§6.2. Finite Injury Priority Arguments 115

§6.3. Notes on Approximation 124

Chapter 7. Two Hierarchies of Sets 127

§7.1. Turing Degrees and Relativization 127

§7.2. The Arithmetical Hierarchy 131

§7.3. Index Sets and Arithmetical Completeness 135

Chapter 8. Further Tools and Results 139

§8.1. The Limit Lemma 139

§8.2. The Arslanov Completeness Criterion 142

§8.3. E Modulo Finite Difference 145

Chapter 9. Areas of Research 149

§9.1. Computably Enumerable Sets and Degrees 149

§9.2. Randomness 155

§9.3. Some Model Theory 169

Contents vii

§9.4. Computable Model Theory 174

§9.5. Reverse Mathematics 177

Appendix A. Mathematical Asides 189

§A.1. The Greek Alphabet 189

§A.2. Summations 190

§A.3. Cantor’s Cardinality Proofs 190

Bibliography 193

Index 199

Chapter 1

Introduction

The bird’s-eye view of computability: what does it mean, how does

it work, where did it come from?

1.1. Approach

If I can program my computer to execute a function, to take any

input and give me the correct output, then that function should cer-

tainly be called computable. That set of functions is not very large,

though; I am not a particularly skilled programmer and my com-

puter is nothing spectacular. I might expand my definition to say if a

wizardly programmer can program the best computer there is to exe-

cute a function, that function is computable. However, programming

languages and environments improve with time, making it easier to

program complicated functions, and computers increase in processing

speed and amount of working memory.

The idea of “computable” as “programmable” provides excellent

intuition, but the precise mathematical definition needs to be an ide-

alized version that does not change with hardware advances. It should

capture all of the functions that may be automated even in theory.

To that end, computability theory removes any restriction on

time and memory except that a successful computation must use only

finitely much of each. When that change is made, the rest of the

1

2 1. Introduction

details are fairly flexible: with sufficient memory, even the simple

language of a programmable calculator is sufficient to implement all

computable functions. An explicit definition is in §3.2.

Most computable functions, by this definition, are completely in-

feasible today, requiring centuries to run and more memory than cur-

rently exists on the planet. Why should we include them? One reason

is that if we require feasibility, we have to draw a line between fea-

sible and infeasible, and it is unclear where we ought to draw that

line. A related reason is that if we do not require feasibility, and

then we prove a function is noncomputable, the result is as strong as

possible: no matter how much computing technology improves, the

function can never be automated. A major historical example of such

a proof is described in the next section, and more are in §4.5, from a

variety of mathematical fields. These unsolvable problems are often

simple statements about basic properties, so intuition may suggest

they should be easy to compute.

A rigorous and general definition of computability also allows

us to pin down concepts that are necessarily noncomputable. One

example is randomness, which will be explored in more depth in §9.2.
If a fair coin is flipped repeatedly, we do not expect to be able to

win a lot of money betting on the outcome of each flip in order.

We may get lucky sometimes, but in the long run whatever betting

strategy we use should be essentially equivalent in success to betting

heads every time: a fifty percent hit rate. That is an intuitive notion

of what it means for the flip outcomes to be random. To turn it

into mathematics we might represent betting strategies as functions,

and say that a sequence of flips is random if no betting strategy is

significantly better than choosing heads every time. However, for any

given sequence of coin flips C, there is a function that bets correctly

on every flip of C. If the class of functions considered to be betting

strategies is unrestricted, no sequences will be random, but intuition

also says most sequences will be random. One restriction we can

choose is to require that the betting function be computable; this ties

into the idea that the computable functions are those to which we

have some kind of “access.” If we could never hope to implement a

function, it is difficult to argue that it allows us to predict coin flips.

1.1. Approach 3

I would like to highlight a bit of the mindset of computability the-

ory here. Computability theorists pay close attention to uniformity.

A nonuniform proof of computability proves some program exists to

compute the function, and typically has some ad hoc component. A

uniform proof explicitly builds such a program. A common example

is showing explicitly that there is a program P that computes f(n)

provided n ≥ N for some fixed, finite N , and considering f com-

putable despite the fact that P may completely fail at finding f(n)

for 0 ≤ n < N (in computability theory, functions are on the natural

numbers; see §3.4 for why that is not as stringent a restriction as

it may seem). P is sufficient because for any given sequence of N

numbers, there is a program Q that assigns those numbers in order

as f(0) through f(N − 1), and uses P to find the output for larger

numbers. The function we want to compute must have some fixed

sequence of outputs for the first N inputs, and hence via the appro-

priate Q it may be computed. It is computable, although we would

need to magically (that is, nonuniformly) know the first N outputs to

have the full program explicitly. Nonuniformity in isolation is not a

problem, but it reduces the possible uses of the result. We will discuss

uniformity from time to time as more examples come up.

Computability theorists more often work in the realm of the non-

computable than the computable, via approximations and partial

computations. Programs that do not always give an output are seen

regularly; on certain inputs such a program may just chug and chug

and never finish. Of course, the program either gives an output or

doesn’t, and in many areas of mathematics we would be able to say

“if the program halts, use the output in this way; if not, do this other

computation.” In fact we could do that in computability theory, but

the question of whether any given program halts is a noncomputable

one (see §4.1). Typically we want to complete our constructions us-

ing as little computational power as we can get away with, because

that allows us to make stronger statements about the computability

or noncomputability of the function we have built.

To succeed in such an environment, the construction must con-

tinue while computations are unfinished, working with incomplete

and possibly incorrect assumptions. Mistakes will be made and need

4 1. Introduction

to be repaired. The standard means of dealing with this situation is a

priority argument (§6.2), which breaks the goals of the construction

into small pieces and orders them. A piece (requirement) that is ear-

lier in the ordering has higher priority and gets to do what appears at

the moment to satisfy its goal even if that is harmful to later require-

ments. When done correctly, each requirement can be met at a finite

stage and cease harming the lower-priority requirements, and each

requirement can recover from the damage it sustains from the finitely

many higher-priority requirements. Satisfaction of requirements cas-

cades irregularly from the beginning of the order down.

1.2. Some History

The more early work in computability theory you read, the more it

seems its founding was an inevitability. There was a push to make

mathematics formal and rigorous, and find mechanical methods to

solve problems and determine truth or falsehood of statements; hence

there was a lot of thought on the nature of mechanical methods and

formality. For more on this early work, I recommend John Hopcroft’s

article “Turing Machines” [41] and two survey papers by Martin Davis

[20,21]. If you wish to go deeper philosophically (and broader math-

ematically), try van Heijenoort [86] and Webb [88].

David Hilbert gave an address in 1900 in which he listed problems

he thought should direct mathematical effort as the new century be-

gan [37]. His tenth problem, paraphrased, was to find a procedure to

determine whether any given multivariable polynomial equation with

integer coefficients (a Diophantine equation) has an integer solution.

Hilbert asked for “a process according to which it can be determined

by a finite number of operations” whether such a solution exists. For

the specific case of single-variable Diophantine equations, mathemati-

cians already had the rational root test; for an equation of the form

anx
n + an−1x

n−1 + · · ·+ a0 = 0, any rational solution must be of the

form ± r
s where r divides a0 and s divides an. One may manually

check each such fraction and determine whether any of them yields

equality.

In 1910, the first volume of Alfred NorthWhitehead and Bertrand

Russell’s Principia Mathematica was published [89]. This ultimately

1.2. Some History 5

three-volume work was an effort to develop all mathematics from a

small common set of axioms, with full rigor at every step. Russell

and Whitehead wanted to remove vagueness and paradox from math-

ematics; every step in their system could be checked mechanically.

It seems this might take all creativity out of mathematics, as all

possible theorems would eventually be produced by the mechanical

application of logical deduction rules to axioms and previously gen-

erated theorems. However, in 1931 Gödel showed it was impossible

for such a system to produce all true mathematical statements [30].

He used the mechanical nature of the system, intended for rigor, and

showed it allowed a system of formula encoding that gave access to

self-reference: he produced a formula P that says “P has no proof.”

If P is true, it is unprovable. If the negation of P is true, P has a

proof, since that is the assertion made by P ’s negation. Therefore,

unless Russell and Whitehead’s system is internally inconsistent, P

must be true, and hence unprovable. We will see a proof of Gödel’s

Incompleteness Theorem via undecidable problems in §5.3.

Principia Mathematica was a grand undertaking and one might

expect it to fail to fulfill all its authors’ hopes. However, Hilbert’s

quest was doomed as well. The proof that there can be no procedure

to determine whether an arbitrary Diophantine equation has integer

roots was not completed until 1973 [61], but in 1936 Church made

the first response suggesting that might be the case [14]. He wrote:

There is a class of problems of elementary number

theory which can be stated in the form that it is

required to find an effectively calculable function f

of n positive integers, such that f(x1, . . . , xn) = 2

is a necessary and sufficient condition for the truth

of a certain proposition of elementary number the-

ory involving x1, . . . , xn as free variables. [footnote:

The selection of the particular positive integer 2 in-

stead of some other is, of course, accidental and non-

essential.]

... The purpose of the present paper is to propose

a definition of effective calculability which is thought

to correspond satisfactorily to the somewhat vague

6 1. Introduction

intuitive notion in terms of which problems of this

class are often stated, and to show, by means of an

example, that not every problem of this class is solv-

able.

Church’s major contribution here is the point that we need some

formal notion of “finite process” to answer Hilbert. He proposes two

options in this paper: the lambda calculus, due to him and Kleene,

and recursive functions, defined originally by Gödel [30] (after a sug-

gestion by Herbrand) and modified by Kleene. Shortly thereafter

Kleene proposed what we now call the partial recursive functions [44].

It was not widely accepted at the time that any of these definitions

was a good characterization of “effectively computable,” however. It

was not until Turing developed his Turing machine [85], which was

accepted as a good characterization, and it was proved that Turing-

computable functions, lambda-computable functions, and partial re-

cursive functions are the same class, that the functional definitions

were accepted. All three of these formalizations of computability are

studied in Chapter 3. The idea that not all problems are solvable

comes up in Chapter 4, along with many of the tools used in such

proofs.

Both Gödel’s Incompleteness Theorem and Church’s unsolvability

result treat the limitations of mechanical, or algorithmic, procedures

in mathematics. As is common in mathematics, these new ideas and

tools took on a life of their own beyond answering Hilbert or finding

the major flaw in Russell and Whitehead’s approach to mathematics.

The new field became known as recursion theory or computability

theory. Chapters 5–8 explore some of the additional topics and fun-

damental results of the area, and Chapter 9 contains a survey of some

areas of current interest to computability theorists.

1.3. Notes on Use of the Text

My intent is that Chapter 2 will be covered on an as-needed basis, and

I have tried to include references to it wherever applicable throughout

the text. However, the vocabulary in §§2.1 and 2.2 is needed through-

out, so they should be read first if unfamiliar. Returning to §1.1 after

reading through Chapter 4 may be helpful as well.

1.4. Acknowledgements and References 7

The core material is in Chapters 3 through 7. In those, without

losing continuity, §§3.7, 4.5, 5.3, 6.2, and 6.3 may be omitted; if §6.2
is omitted, §5.4 may also be.

Chapters 8 and 9 should be covered as interest warrants. There

is no interdependence between sections of these chapters except that

§§9.4 and 9.5 both draw on §9.3, and §9.1 leans lightly on §8.3.

1.4. Acknowledgements and References

These notes owe a great debt to a small library of logic books. For

graduate- and research-level work I regularly refer to Classical Recur-

sion Theory by P. G. Odifreddi [68], Theory of Recursive Functions

and Effective Computability by H. Rogers [75], and Recursively Enu-

merable Sets and Degrees by R. I. Soare [82]. The material in here

owes a great deal to those three texts. More recently, I have enjoyed

A. Nies’ book Computability and Randomness [67]. As you will see,

M. Davis’ The Undecidable [18] was a constant presence on my desk

as well.

In how to present such material to undergraduates, I was influ-

enced by such books as Computability and Logic by Boolos, Burgess,

and Jeffrey [10], Computability by Cutland [17], A Mathematical In-

troduction to Logic by Enderton [25], An Introduction to Formal Lan-

guages and Automata by Linz [57], and A Transition to Advanced

Mathematics by Smith, Eggen, and St. Andre [81].

I have talked to many people about bits and pieces of the book,

getting clarifications and opinions on my exposition, but the lion’s

share of gratitude must go to Denis Hirschfeldt. Many thanks are due

also to the students in the three offerings of Computability Theory I

gave as I was writing this text, first as course notes and then with my

eye to publishing a book. With luck, their questions as they learned

the material and their comments on the text have translated into

improved exposition.

Chapter 2

Background

This chapter covers a collection of topics that are not computability

theory per se, but are needed for it. They are set apart so the rest

of the text reads more smoothly. If you are not familiar with logical

and set notation, read §§2.1 and 2.2 now. The rest should be covered

as needed when they become relevant.

2.1. First-Order Logic

In this section we learn a vocabulary for expressing formulas, logical

sentences. This is useful for brevity (x < y is much shorter than

“x is less than y,” and the savings grow as the statement becomes

more complicated) but also for clarity. Expressing a mathematical

statement symbolically can make it more obvious what needs to be

done with it, and however carefully words are used they may admit

some ambiguity.

We use lowercase Greek letters (mostly ϕ, ψ, and θ) to represent

formulas. The simplest formula is a single symbol (or assertion) which

can be either true or false. There are several ways to modify formulas,

which we’ll step through one at a time.

The conjunction of formulas ϕ and ψ is written “ϕ and ψ,”

“ϕ ∧ ψ,” or “ϕ & ψ.” It is true when both ϕ and ψ are true, and

false otherwise. Logically “and” and “but” are equivalent, and so

9

10 2. Background

are ϕ & ψ and ψ & ϕ, though in natural language there are some

differences in connotation.

The disjunction of ϕ and ψ is written “ϕ or ψ” or “ϕ ∨ ψ.” It

is false when both ϕ and ψ are false, and true otherwise. That is,

ϕ ∨ ψ is true when at least one of ϕ and ψ is true; it is inclusive or.

English tends to use exclusive or, which is true only when exactly one

of the clauses is true, though there are exceptions. One such: “Would

you like sugar or cream in your coffee?” Again, ϕ ∨ ψ and ψ ∨ ϕ are

equivalent.

The negation of ϕ is written “not(ϕ),” “not-ϕ,” “¬ϕ,” or “∼ϕ.”

It is true when ϕ is false and false when ϕ is true. The potential

difference from natural language negation is that ¬ϕ must cover all

cases where ϕ fails to hold, and in natural language the scope of a

negation is sometimes more limited. Note that ¬¬ϕ = ϕ.

How does negation interact with conjunction and disjunction?

ϕ & ψ is false when ϕ, ψ, or both are false, and hence its negation

is (¬ϕ) ∨ (¬ψ). ϕ ∨ ψ is false only when both ϕ and ψ are false, and

so its negation is (¬ϕ)&(¬ψ). We might note in the latter case that

this matches up with English’s “neither...nor” construction. These

two negation rules are called De Morgan’s Laws.

Exercise 2.1.1. Simplify the following formulas.

(i) ϕ & ((¬ϕ) ∨ ψ)

(ii) (ϕ & (¬ψ) & θ) ∨ (ϕ & (¬ψ) & (¬θ))
(iii) ¬((ϕ & ¬ψ) & ϕ)

There are two classes of special formulas to highlight now. A

tautology is always true; the classic example is ϕ∨(¬ϕ) for any formula

ϕ. A contradiction is always false; here the example is ϕ & (¬ϕ). You
will sometimes see the former expression denoted T (or �) and the

latter ⊥.

To say ϕ implies ψ (ϕ → ψ or ϕ ⇒ ψ) means whenever ϕ is true,

so is ψ. We call ϕ the antecedent , or assumption, and ψ the conse-

quent , or conclusion, of the implication. We also say ϕ is sufficient

for ψ (since whenever we have ϕ we have ψ, though we may also have

ψ when ϕ is false), and ψ is necessary for ϕ (since it is impossible to

2.1. First-Order Logic 11

have ϕ without ψ). Clearly ϕ → ψ should be true when both formulas

are true, and it should be false if ϕ is true but ψ is false. It is maybe

not so clear what to do when ϕ is false; this is clarified by rephrasing

implication as disjunction (which is often how it is defined in the first

place). ϕ → ψ means either ψ holds or ϕ fails; i.e., ψ ∨ (¬ϕ). The

truth of that statement lines up with our assertions earlier, and gives

truth values for when ϕ is false – namely, that the implication is true.

Another way to look at this is to say ϕ → ψ is only false when proven

false; i.e., when it has a true antecedent but a false consequent. From

this it is clear that ¬(ϕ → ψ) is ϕ & (¬ψ).
There is an enormous difference between implication in natural

language and implication in logic. Implication in natural language

tends to connote causation, whereas the truth of ϕ → ψ need not

give any connection at all between the meanings of ϕ and ψ. It could

be that ϕ is a contradiction, or that ψ is a tautology. Also, in natural

language we tend to dismiss implications as irrelevant or meaningless

when the antecedent is false, whereas to have a full and consistent

logical theory we cannot throw those cases out.

Example 2.1.2. The following are true implications:

• If fish live in the water, then earthworms live in the soil.

• If rabbits are aquamarine blue, then earthworms live in the

soil.

• If rabbits are aquamarine blue, then birds drive cars.

The negation of the final statement is “Rabbits are aquamarine blue

but birds do not drive cars.”

The statement “If fish live in the water, then birds drive cars” is

an example of a false implication.

Equivalence is two-way implication and indicated by a double-

headed arrow: ϕ ↔ ψ or ϕ ⇔ ψ. It is an abbreviation for (ϕ →
ψ) & (ψ → ϕ), and is true when ϕ and ψ are either both true or

both false. Verbally we might say “ϕ if and only if ψ”, which is often

abbreviated to “ϕ iff ψ”. In terms of just conjunction, disjunction,

and negation, we may write equivalence as (ϕ & ψ)∨ ((¬ϕ) & (¬ψ)).
Its negation is exclusive or, (ϕ ∨ ψ) & ¬(ϕ & ψ).

12 2. Background

Exercise 2.1.3. Negate the following statements.

(i) 56894323 is a prime number.

(ii) If there is no coffee, I drink tea.

(iii) John watches but does not play.

(iv) I will buy the blue shirt or the green one.

Exercise 2.1.4. Write the following statements using standard log-

ical symbols.

(i) ϕ if ψ.

(ii) ϕ only if ψ.

(iii) ϕ unless ψ.

As an aside, let us have a brief introduction to truth tables. These

are nothing more than a way to organize information about logical

statements. The leftmost columns are generally headed by the indi-

vidual propositions, and under those headings occur all possible com-

binations of truth and falsehood. The remaining columns are headed

by more complicated formulas that are built from the propositions,

and the lower rows have T or F depending on the truth or falsehood

of the header formula when the propositions have the true/false val-

ues in the beginning of that row. Truth tables aren’t particularly

relevant to our use for this material, so I’ll leave you with an example

and move on.

ϕ ψ ¬ϕ ¬ψ ϕ & ψ ϕ ∨ ψ ϕ → ψ ϕ ↔ ψ

T T F F T T T T

T F F T F T F F

F T T F F T T F

F F T T F F T T

If we stop here, we have propositional (or sentential) logic. These

formulas usually look something like [A∨(B&C)] → C and their truth

or falsehood depends on the truth or falsehood of the assertions A,

B, and C. We will continue on to predicate logic, which replaces

these assertions with statements such as (x < 0) & (x + 100 > 0),

which will be true or false depending on the value substituted for the

variable x. We will be able to turn those formulas into statements

2.1. First-Order Logic 13

which are true or false inherently via quantifiers. Note that writing

ϕ(x) indicates the variable x appears in the formula ϕ, and does not

technically forbid ϕ containing other variables.

The existential quantification ∃x is read “there exists x.” The

formula ∃xϕ(x) is true if for some value n the unquantified formula

ϕ(n) is true. Universal quantification, on the other hand, is ∀xϕ(x)
(“for all x, ϕ(x) holds”), true when no matter what n we fill in for x,

ϕ(n) is true.

Quantifiers must have a specified set of values to range over, be-

cause the truth value of a formula may be different depending on this

domain of quantification. For example, take the formula

(∀x)(x �= 0 → (∃y)(xy = 1)).

This asserts every nonzero x has a multiplicative inverse. If we are

letting our quantifiers range over the real numbers (denoted R) or the

rational numbers (Q), this statement is true, because the reciprocal

of x is available to play the role of y. However, in the integers (Z) or

natural numbers (N) this is false, because 1/x is only in the domain

when x is ±1.

Introducing quantification opens us up to two kinds of logical

formulas. If all variables are quantified over (bound variables), then

the formula is called a sentence. If there are variables that are not

in the scope of any quantifier (free variables), the formula is called a

predicate. The truth value of a predicate depends on what values are

plugged in for the free variables; a sentence has a truth value, period.

For example, (∀x)(∃y)(x < y) is a sentence, and it is true in all our

usual domains of quantification. The formula x < y is a predicate,

and it will be true or false depending on whether the specific values

plugged in for x and y satisfy the inequality.

Exercise 2.1.5. Write the following statements as formulas, speci-

fying the domain of quantification.

(i) 5 is prime.

(ii) For any number x, the square of x is nonnegative.

(iii) There is a smallest positive integer.

14 2. Background

Exercise 2.1.6. Consider N, Z, Q, and R. Over which domains of

quantification are each of the following statements true?

(i) (∀x)(x ≥ 0)

(ii) (∃x)(5 < x < 6)

(iii) (∀x)((x2 = 2) → (x = 5))

(iv) (∃x)(x2 − 1 = 0)

(v) (∃x)(x2 = 5)

(vi) (∃x)(x3 + 8 = 0)

(vii) (∃x)(x2 − 2 = 0)

When working with multiple quantifiers the order of quantifica-

tion can matter a great deal, as in the following formulas.

ϕ = (∀x)(∃y)(x · x = y)

ψ = (∃y)(∀x)(x · x = y)

ϕ says “every number has a square” and is true in our typical domains.

ψ says “there is a number which is all other numbers’ square” and is

true only if your domain contains only 0 or only 1.

Exercise 2.1.7. Over the real numbers, which of the following state-

ments are true? Over the natural numbers?

(i) (∀x)(∃y)(x+ y = 0)

(ii) (∃y)(∀x)(x+ y = 0)

(iii) (∀x)(∃y)(x ≤ y)

(iv) (∃y)(∀x)(x ≤ y)

(v) (∃x)(∀y)(x < y2)

(vi) (∀y)(∃x)(x < y2)

(vii) (∀x)(∃y)(x �= y → x < y)

(viii) (∃y)(∀x)(x �= y → x < y)

The order of operations when combining quantification with con-

junction or disjunction can also make the difference between truth

and falsehood.

2.2. Sets 15

Exercise 2.1.8. Over the real numbers, which of the following state-

ments are true? Over the natural numbers?

(i) (∀x)(x ≥ 0 ∨ x ≤ 0)

(ii) [(∀x)(x ≥ 0)] ∨ [(∀x)(x ≤ 0)]

(iii) (∃x)(x ≤ 0 & x ≥ 5)

(iv) [(∃x)(x ≤ 0)] & [(∃x)(x ≥ 5)]

How does negation work for quantifiers? If ∃xϕ(x) fails, it means

no matter what value we fill in for x the formula obtained is false;

i.e., ¬(∃xϕ(x)) ↔ ∀x(¬ϕ(x)). Likewise, ¬(∀xϕ(x)) ↔ ∃x(¬ϕ(x)): if

ϕ does not hold for all values of x, there must be an example for

which it fails. If we have multiple quantifiers, the negation walks in

one by one, flipping each quantifier and finally negating the predicate

inside. For example:

¬[(∃x)(∀y)(∀z)(∃w)ϕ(x, y, z, w)] ↔ (∀x)(∃y)(∃z)(∀w)(¬ϕ(x, y, z, w)).

Exercise 2.1.9. Negate the following sentences.

(i) (∀x)(∃y)(∀z)((z < y) → (z < x))

(ii) (∃x)(∀y)(∃z)(xz = y)

(iii) (∀x)(∀y)(∀z)(y = x ∨ z = x ∨ y = z)

[Bonus: over what domains of quantification would this be true?]

A final notational comment: you will sometimes see the sym-

bols ∃∞ and ∀∞. The former means “there exist infinitely many;”

∃∞xϕ(x) is shorthand for ∀y∃x(x > y & ϕ(x)) (no matter how far up

we go, there are still examples of ϕ above us). The latter means “for

all but finitely many;” ∀∞xϕ(x) is shorthand for ∃y∀x((x > y) →
ϕ(x)) (we can get high enough up to bypass all the failed cases of ϕ).

Somewhat common in predicate logic but less so in computability

theory is ∃!x, which means “there exists a unique x.” The sentence

(∃!x)ϕ(x) expands into (∃x)(∀y)(ϕ(x) & (ϕ(y) → (x = y))).

2.2. Sets

A set is a collection of objects. If x is a member, or element, of a

set A, we write x ∈ A, and otherwise x /∈ A. Two sets are equal if

16 2. Background

they have the same elements; if they have no elements in common

they are called disjoint. The set A is a subset of a set B if all of the

elements of A are also elements of B; this is denoted A ⊆ B. If we

know that A is not equal to B, we may write A ⊂ B or (to emphasize

the non-equality) A � B. The collection of all subsets of A is denoted

P(A) and called the power set of A.

We may write a set using an explicit list of its elements, such as

{red, blue, green} or {5, 10, 15, . . .}. When writing down sets, order

does not matter and repetitions do not count, so {1, 2, 3}, {2, 3, 1},
and {1, 1, 2, 2, 3, 3} are all representations of the same set. We may

also use notation that may be familiar to you from calculus:

A = {x : (∃y)(y2 = x)}.

This is the set of all values we can fill in for x that make the logical

predicate (∃y)(y2 = x) true. The syntax of set definitions is often

looser than in logical formulas generally, using commas to mean “and”

and condensing clauses. For example, {(x, y) : x, y2 ∈ Q, x < y}
abbreviates {(x, y) : x ∈ Q & y2 ∈ Q & x < y}.

We are always working within some fixed universe, a set which

contains all of our sets. The domain of quantification is all elements

of the universe, and hence the contents of the set A above will vary

depending on what our universe is. If we are living in the integers it

is the set of perfect squares; if we are living in the real numbers it is

the set of all non-negative numbers.

Given two sets, we may obtain a third from them in several ways.

First there is union: A ∪ B is the set containing all elements that

appear in at least one of A and B. Next intersection: A ∩ B is

the set containing all elements that appear in both A and B. We

can subtract: A − B contains all elements of A that are not also

elements of B. You will often see A \ B for set subtraction, but

we will use ordinary minus because the slanted minus is sometimes

given a different meaning in computability theory. Finally, we can

take their Cartesian product : A×B consists of all ordered pairs that

have their first entry an element of A and their second an element of

B. We may take the product of more than two sets to get ordered

triples, quadruples, quintuples, and in general n-tuples. If we take

2.2. Sets 17

the Cartesian product of n copies of A, we may abbreviate A × A ×
. . . × A as An. A generic ordered n-tuple from An will be written

(x1, x2, . . . , xn), where xi are all elements of A.

Example 2.2.1. Let A = {x, y} and B = {y, z}. Then A ∪ B =

{x, y, z}, A ∩ B = {y}, A − B = {x}, B − A = {z}, A × B =

{(x, y), (x, z), (y, y), (y, z)}, and P(A) = {∅, {x}, {y}, {x, y}}.

The sets we will use especially are ∅ and N. The former is the

empty set, the set with no elements. The latter is the natural num-

bers, the set {0, 1, 2, 3, . . .}. In computability, we often use lowercase

omega, ω, to denote the natural numbers, but in these notes we will be

consistent with N. On occasion we may also refer to Z (the integers),

Q (the rational numbers), or R (the real numbers).

We will assume unless otherwise specified that our universe is N;

i.e., all of our sets are subsets of N. When a universe is fixed we

can define complement. The complement of A, denoted A, is all the

elements of N that are not in A; i.e., A = N − A.

Exercise 2.2.2. Convert the list or description of each of the follow-

ing sets into notation using a logical predicate. Assume the domain

of quantification is N.

(i) {2, 4, 6, 8, 10, . . .}
(ii) {4, 5, 6, 7, 8}
(iii) The set of numbers that are cubes.

(iv) The set of pairs of numbers such that one is twice the other (in

either order).

(v) The intersection of the set of square numbers and the set of

numbers that are divisible by 3.

(vi) [For this and the next two, you’ll need to use ∈ in your logical

predicate.] A ∪ B for sets A and B.

(vii) A ∩B for sets A and B.

(viii) A − B for sets A and B.

Exercise 2.2.3. For each of the following sets, list (a) the elements

of X, and (b) the elements of P(X).

18 2. Background

(i) X = {1, 2}
(ii) X = {1, 2, {1, 2}}
(iii) X = {1, 2, {1, 3}}

Exercise 2.2.4. Work inside the finite universe {1, 2, . . . , 10}. Define

the following sets:

A = {1, 3, 5, 7, 9}
B = {1, 2, 3, 4, 5}
C = {2, 4, 6, 8, 10}
D = {7, 9}
E = {4, 5, 6, 7}

(i) Find all the subset relationships between pairs of the sets above.

(ii) Which pairs, if any, are disjoint?

(iii) Which pairs, if any, are complements?

(iv) Find the following unions and intersections: A∪B, A∪D, B∩D,

B ∩ E.

We can also take unions and intersections of infinitely many sets.

For sets Ai for i ∈ N, these are defined as follows.⋃
i

Ai = {x : (∃i)(x ∈ Ai)}

⋂
i

Ai = {x : (∀i)(x ∈ Ai)}

The i under the union or intersection symbol is also sometimes written

“i ∈ N.”

Exercise 2.2.5. For i ∈ N, let Ai = {0, 1, . . . , i} and let Bi = {0, i}.
What are

⋃
i Ai,

⋃
i Bi,

⋂
i Ai, and

⋂
i Bi?

If two sets are given by descriptions instead of explicit lists, we

must prove one set is a subset of another by taking an arbitrary

element of the first set and showing it is also a member of the second

set. For example, to show the set of people eligible for President of

the United States is a subset of the set of people over 30, we might

say: Consider a person in the first set. That person must meet the

criteria listed in the U.S. Constitution, which includes being at least

2.2. Sets 19

35 years of age. Since 35 is more than 30, the person we chose is a

member of the second set.

We can further show that this containment is proper, by demon-

strating a member of the second set who is not a member of the first

set. For example, a 40-year-old who is not a U.S. citizen.

Exercise 2.2.6. Prove that the set of squares of even numbers, {x :

∃y(x = (2y)2)}, is a proper subset of the set of multiples of 4, {x :

∃y(x = 4y)}.

To prove two sets are equal, there are three options: show the

criteria for membership on each side are the same, manipulate set

operations until the expressions are the same, or show each side is a

subset of the other side.

An extremely basic example of the first option is showing {x :
x
2 ,

x
4 ∈ N} = {x : (∃y)(x = 4y)}. For the second, we have a bunch of

set identities, including a set version of De Morgan’s Laws.

A ∩ B = A ∪B

A ∪ B = A ∩B

We also have distribution laws.

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

To prove identities we have to turn to the first or third option.

Example 2.2.7. Prove that A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

We work by showing each set is a subset of the other. Suppose

first that x ∈ A ∪ (B ∩C). By definition of union, x must be in A or

in B ∩C. If x ∈ A, then x is in both A ∪B and A ∪C, and hence in

their intersection. On the other hand, if x ∈ B ∩C, then x is in both

B and C, and hence again in both A ∪B and A ∪ C.

Now suppose x ∈ (A ∪ B) ∩ (A ∪ C). Then x is in both unions,

A∪B and A∪C. If x ∈ A, then x ∈ A∪ (B∩C). If, however, x /∈ A,

then x must be in both B and C, and therefore in B ∩C. Again, we

obtain x ∈ A ∪ (B ∩ C).

20 2. Background

Notice that in the ⊆ direction we used two cases that could over-

lap, and did not worry whether we were in the overlap or not. In

the ⊇ direction, we could only assert x ∈ B and x ∈ C if we knew

x /∈ A (although it is certainly possible for x to be in all three sets),

so forbidding the first case was part of the second case.

Exercise 2.2.8. Using any of the three options listed above, as long

as it is applicable, do the following.

(i) Prove intersection distributes over union (i.e., for all A, B, C,

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)).

(ii) Prove de Morgan’s Laws.

(iii) Prove that A∪B = (A−B)∪ (B −A)∪ (A∩B) for any sets A

and B.

Our final topic in the realm of sets is cardinality. The cardinality

of a finite set is the number of elements in it. For example, the cardi-

nality of the set of positive integer divisors of 6 is 4: |{1, 2, 3, 6}| = 4.

When we get to infinite sets, cardinality separates them by “how infi-

nite” they are. We’ll get to its genuine definition in §2.3, but it is fine
now and later to think of cardinality as a synonym for size. The way

to tell whether set A is bigger than set B is to look for a one-to-one

function from A into B. If no such function exists, then A is bigger

than B, and we write |B| < |A|. The most important result is that

|A| < |P(A)| for any set A (see §A.3).

If we know there is a one-to-one function from A into B but we

don’t know about the reverse direction, we write |A| ≤ |B|. If we

have injections both ways, |A| = |B|. It is a significant theorem of

set theory that having injections from A to B and from B to A is

equivalent to having a bijection between A and B; the fact that this

requires work is a demonstration of the fact that things get weird when

you work in the infinite world. Another key fact (for set theorists;

not so much for us) is trichotomy : for any two sets A and B, exactly

one of |A| < |B|, |A| > |B|, or |A| = |B| is true.
For us, infinite cardinalities are divided into two categories. A

set is countably infinite if it has the same cardinality as the natural

numbers. The integers and the rational numbers are important ex-

amples of countably infinite sets. The term countable is used by some

2.3. Relations 21

authors to mean “countably infinite,” and by others to mean “finite

or countably infinite,” so you often have to rely on context. We will

mean the latter, but will try to be explicit. To prove that a set is

countably infinite, you must demonstrate it is in bijection with the

natural numbers – that is, that you can count the objects of your set

1, 2, 3, 4, . . . , and not miss any. We’ll come back to this in §3.4; for
now you can look in the appendices to find Cantor’s proofs that the

rationals are countable and the reals are not (§A.3).

The rest of the infinite cardinalities are called uncountable, and

for our purposes that’s as fine-grained as it gets. The fundamental

notions of computability theory live in the world of countable sets,

and the only uncountable ones we get to are those which can be

approximated in the countable world.

2.3. Relations

The following definition is not the most general case, but we’ll start

with it.

Definition 2.3.1. A relation R(x, y) on a set A is a logical predicate

that is true or false of each pair (x, y) ∈ A2, never undefined.

We also think of relations as subsets of A2 consisting of the pairs

for which the relation is true. For example, in the set A = {1, 2, 3},
the relation < consists of {(1, 2), (1, 3), (2, 3)} and the relation ≤ is

the union of < with {(1, 1), (2, 2), (3, 3)}. Note that the order matters:

although 1 < 2, 2 �< 1, so (2, 1) is not in <. The first definition shows

you why these are called relations ; we think of R as being true when

the values filled in for x and y have some relationship to each other.

The set-theoretic definition is generally more useful, however.

More generally, we may define n-ary relations on a set A as log-

ical predicates that are true or false of any n-tuple (ordered set of n

elements) of A, or alternatively as subsets of An. For n = 1, 2, 3 we

refer to these relations as unary, binary, and ternary, respectively.

Exercise 2.3.2. Prove the two definitions of relation are equivalent.

That is, prove that every logical predicate corresponds to a unique

set, and vice-versa.

22 2. Background

Exercise 2.3.3. Let A = {a, b, c, d, e}.

(i) What is the ternary relation R on A defined by (x, y, z) ∈ R ⇔
(xyz is an English word)?

(ii) What is the unary relation on A which is true of elements of A

that are vowels?

(iii) What is the complement of the relation in (ii)? We may describe

it in two ways: as “the negation of the relation in (ii),” and how?

(iv) Define the 5-ary relation R by (v, w, x, y, z) ∈ R ⇔ (v, w, x, y, z

are all distinct elements of A). How many elements does R

contain?

(v) How many unary relations are possible on A? What other collec-

tion associated with A does the collection of all unary relations

correspond to?

Exercise 2.3.4. How many n-ary relations are possible on an m-

element set?

We tend to focus on binary relations, since most of our common,

useful examples are binary: <,≤,=, �=,⊂,⊆. Binary relations may

have certain properties:

• Reflexivity: (∀x)R(x, x)

• Symmetry: (∀x, y)[R(x, y) → R(y, x)]

i.e., (∀x, y)[(R(x, y) & R(y, x)) ∨ (¬R(x, y) & ¬R(y, x))]

• Antisymmetry: (∀x, y)[(R(x, y) & R(y, x)) → x = y]

• Transitivity: (∀x, y, z)[(R(x, y) & R(y, z)) → R(x, z)]

I want to point out that reflexivity is a property of possession:

R must have the reflexive pairs (the pairs (x, x)). Antisymmetry is,

loosely, a property of nonpossession. Symmetry and transitivity, on

the other hand, are closure properties: if R has certain pairs, then

it must also have other pairs. Those conditions may be met either

by adding in the pairs that are consequences of the pairs already

present, or omitting the pairs that are requiring such additions. In

particular, the empty relation is symmetric and transitive, though it

is not reflexive.

2.3. Relations 23

Exercise 2.3.5. Is = reflexive? Symmetric? Antisymmetric? Tran-

sitive? How about �=?

Exercise 2.3.6. For finite relations we may check these properties

by hand. Let A = {1, 2, 3, 4}.

(a) What is the smallest binary relation on A that is reflexive?

(b) Define the following binary relations on A.

R1 = {(2, 3), (3, 4), (4, 2)}

R2 = {(1, 1), (1, 2), (2, 1), (2, 2)}
R3 = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 4), (4, 4)}

For each of those relations, answer the following questions.

(i) Is the relation reflexive? Symmetric? Antisymmetric? Tran-

sitive?

(ii) If the relation is not reflexive, what is the smallest collection

of pairs that needs to be added to make it reflexive?

(iii) If the relation is not symmetric, what is the smallest collec-

tion of pairs that needs to be added to make it symmetric?

(iv) If the relation is not transitive, what is the smallest collec-

tion of pairs that needs to be added to make it transitive?

(v) If the relation is not antisymmetric, what is the smallest

collection of pairs that could be removed to make it anti-

symmetric? Is this answer unique?

Exercise 2.3.7. Let A = {1, 2, 3}. Define binary relations on A with

the following combinations of properties or say why such a relation

cannot exist. Can such a relation be nonempty?

(i) Reflexive and antisymmetric but neither symmetric nor transi-

tive.

(ii) Symmetric but neither reflexive nor transitive.

(iii) Transitive but neither reflexive nor symmetric.

(iv) Symmetric and transitive but not reflexive.

(v) Both symmetric and antisymmetric.

(vi) Neither symmetric nor antisymmetric.

(vii) Reflexive and transitive but not symmetric.

24 2. Background

(viii) Reflexive and symmetric but not transitive.

(ix) Symmetric, antisymmetric, and transitive.

(x) Reflexive, symmetric, and transitive.

(xi) None of reflexive, symmetric, or transitive.

Exercise 2.3.8. Suppose R and S are binary relations on A. For

each of the following properties, if R and S possess the property,

must R ∪ S possess it? R ∩ S?

(i) Reflexivity

(ii) Symmetry

(iii) Antisymmetry

(iv) Transitivity

Exercise 2.3.9. Each of the following relations has a simpler de-

scription than the one given. Find such a description.

(i) R− on P(N) where R−(A,B) ↔ A − B = ∅.
(ii) R(∩) on R where R(∩)(x, y) ↔ (−∞, x) ∩ (y,∞) = ∅.
(iii) R[∩] on R where R[∩](x, y) ↔ (−∞, x] ∩ [y,∞) = ∅.
(iv) R(∪) on R where R(∪)(x, y) ↔ (−∞, x) ∪ (y,∞) = R.

(v) R[∪] on R where R[∪](x, y) ↔ (−∞, x] ∪ [y,∞) = R.

We may visualize a binary relation R on A as a directed graph.

The elements of A are the vertices, or nodes, of the graph, and there

is an arrow (directed edge) from vertex x to vertex y if and only if

R(x, y) holds. The four properties we have just been exploring may

be stated as:

• Reflexivity: every vertex has a loop.

• Symmetry: any pair of vertices is either directly connected

in both directions or not directly connected at all.

• Antisymmetry: any two vertices have at most one edge di-

rectly connecting them.

• Transitivity: if there is a path of edges from one vertex to an-

other (always proceeding in the direction of the edge), there

is an edge directly connecting them, in the same direction

as the path.

2.3. Relations 25

Exercise 2.3.10. Properly speaking, transitivity just gives the graph-

ical interpretation “for any vertices x, y, z, if there is an edge from

x to y and an edge from y to z, there is an edge from x to z.” Prove

that this statement is equivalent to the (a priori more general) one

given for transitivity above.

We will consider two subsets of these properties that define classes

of relations which are of particular importance.

Definition 2.3.11. An equivalence relation is a binary relation that

is reflexive, symmetric, and transitive.

The quintessential equivalence relation is equality, which is the

relation consisting of only the reflexive pairs. What is special about

an equivalence relation? We can take a quotient structure whose

elements are equivalence classes.

Definition 2.3.12. Let R be an equivalence relation on A. The

equivalence class of some x ∈ A is the set [x] = {y ∈ A : R(x, y)}.
Exercise 2.3.13. Let R be an equivalence relation on A and let x, y

be elements of A. Prove that either [x] = [y] or [x] ∩ [y] = ∅.

In short, an equivalence relation puts all the elements of the set

into boxes so that each element is unambiguously assigned to a single

box. All possible pairings from within each box are in the relation,

and no pairings that draw from different boxes are in the relation.

We can consider the boxes themselves as elements, getting a quotient

structure.

Definition 2.3.14. Given a set A and an equivalence relation R on

A, the quotient of A by R, A/R, is the set whose elements are the

equivalence classes of A under R.

Now we can define cardinality more correctly. The cardinality

of a set is the equivalence class it belongs to under the equivalence

relation of bijectivity, so cardinalities are elements of the quotient of

the collection of all sets under that relation.

Exercise 2.3.15. Let A be the set {1, 2, 3, 4, 5}, and let R be the

binary relation on A that consists of the reflexive pairs together with

(1, 2), (2, 1), (3, 4), (3, 5), (4, 3), (4, 5), (5, 3), (5, 4).

26 2. Background

(i) Represent R as a graph.

(ii) How many elements does A/R have?

(iii) Write out the sets [1], [2], and [3].

Exercise 2.3.16. A partition of a set A is a collection of disjoint

subsets of A with union equal to A. Prove that any partition of

A determines an equivalence relation on A, and every equivalence

relation on A determines a partition of A.

Exercise 2.3.17. Let R(m,n) be the relation on Z that holds when

m − n is a multiple of 3.

(i) Prove that R is an equivalence relation.

(ii) What are the equivalence classes of 1, 2, and 3?

(iii) What are the equivalence classes of −1, −2, and −3?

(iv) Prove that Z/R has three elements.

Exercise 2.3.18. Let R(m,n) be the relation on N that holds when

m − n is even.

(i) Prove that R is an equivalence relation.

(ii) What are the equivalence classes of R? Give a concise verbal

description of each.

The two exercises above are examples of modular arithmetic,

which is also sometimes called clock-face arithmetic because its most

widespread use in day-to-day life is telling what time it will be some

hours from now. This is a notion that is used only in N and Z. The

idea of modular arithmetic is that it is only the number’s remainder

upon division by a fixed value that matters. For clock-face arithmetic,

that value is 12; we say we are working modulo 12, or just mod 12,

and the equivalence classes are represented by the numbers 0 through

11 (in mathematics; 1 through 12 in usual life). The fact that if it is

currently 7:00 then in eight hours it will be 3:00 would be written as

the equation 7+ 8 = 3 (mod 12), where ≡ is sometimes used in place

of the equals sign.

Exercise 2.3.19. (i) Exercises 2.3.17 and 2.3.18 consider equiva-

lence relations that give rise to arithmetic mod k for some k.

For each, what is the correct value of k?

2.3. Relations 27

(ii) Describe the equivalence relation on Z that gives rise to arith-

metic mod 12.

(iii) Let m, n, and p be integers. Prove that

n = m (mod 12) =⇒ n+ p = m+ p (mod 12).

This shows that addition of equivalence classes via representa-

tives is well-defined.

Our second important class of relations is partial orders.

Definition 2.3.20. A partial order ≤ on a set A is a binary relation

that is reflexive, antisymmetric, and transitive. A with ≤ is called a

partially ordered set, or poset.

In a poset, given two nonequal elements of A, either one is strictly

greater than the other or they are incomparable. If all pairs of ele-

ments are comparable, the relation is called a total order or linear

order on A.

Example 2.3.21. Let A = {a, b, c, d, e} and define ≤ on A as follows:

• (∀x ∈ A)(x ≤ x)

• a ≤ c, a ≤ d

• b ≤ d, b ≤ e

We could graph this as follows:

c

��
��

��
��

d

��
��
��
��

��
��

��
��

e

��
��
��
��

a b

Technically, there are arrowheads pointing up and each element

has a loop, but for partial orders we often assume that.

In Example 2.3.21, the elements c and d have no upper bound :

no single element that is greater than or equal to both of them. We

might add elements f and g, augmenting the relation to include c ≤ f ,

d ≤ f , d ≤ g, and e ≤ g (making the diagram vertically symmetric),

plus the necessary pairs to obtain transitivity (e.g., a ≤ f ; this is

called taking the transitive closure). Then f is an upper bound for c

28 2. Background

and d, and it is the least upper bound: any element that is greater

than or equal to both c and d is also greater than or equal to f . The

elements f and g are upper bounds for the pair a and b, but not the

least upper bound; that is d. A lower bound for a pair of elements is

defined symmetrically: an element that is less than or equal to both

of the given elements. The greatest lower bound is a lower bound x

such that any other lower bound is less than or equal to x. Note that

even when lower and upper bounds exist, there need not be greatest

lower or least upper bounds. This can happen in two ways: two

incomparable bounds (think of a V, where the lower point is below

both upper points, but the upper points are incomparable), or an

infinite ascending or descending sequence of elements that limits to

an element not in the poset (such as an open interval in the rational

numbers with irrational endpoints).

Example 2.3.22. P(N) ordered by subset inclusion is a partially

ordered set.

It is easy to check the relation ⊆ is reflexive, transitive, and an-

tisymmetric. Not every pair of elements is comparable: for example,

neither {1, 2, 3} nor {4, 5, 6} is a subset of the other. This poset actu-

ally has some very nice properties that not every poset has: it has a

top element (N) and a bottom element (∅), and every pair of elements

has both a least upper bound (here, the union) and a greatest lower

bound (the intersection).

If we were to graph this, it would look like an infinitely-faceted

diamond with points at the top and bottom.

Example 2.3.23. Along the same lines as Example 2.3.22, we can

consider the power set of a finite set, and then we can graph the poset

that results.

Let A = {a, b, c}. Denote the set {a} by a and the set {b, c} by â,

and likewise for the other three elements. The graph is the transitive

closure of the graph shown in Figure 2.1.

Exercise 2.3.24. Prove that every pair of elements in a poset has at

most one greatest lower bound and at most one least upper bound.

Exercise 2.3.25. How many partial orders are possible on a set of

two elements? Three elements?

2.4. Bijection and Isomorphism 29

A

��
��
��
��

��
��

��
��

ĉ

��
��

��
��

b̂

��
��
��
��

��
��

��
��

â

��
��
��
��

a

��
��

��
��

b c

��
��
��
��

∅

Figure 2.1. Subsets of {a, b, c}.

Our final note is to point out relations generalize functions. The

function f : A → A may be written as a binary relation on A consist-

ing of the pairs (x, f(x)). A binary relation R, conversely, represents

a function whenever [(x, y) ∈ R & (x, z) ∈ R] → y = z (the vertical

line rule for functions).1 We can ramp this up even further to multi-

variable functions, functions from An to A, by considering (n+1)-ary

relations. The first n places represent the input and the last one the

output. The advantage to this is consolidation; we can prove many

things about functions by proving them for relations in general.

2.4. Bijection and Isomorphism

As mentioned, a function f : A → B may be thought of as a relation

Gf ⊆ A×B, the Cartesian product of its domain (also denoted dom f)

and codomain, though the property that every element of A appear

in exactly one pair of Gf is not particularly natural to state in terms

of relations. Gf is called the graph of f . Before we proceed recall also

that the range of f , rng f , is {f(x) : x ∈ A} ⊆ B.

When are two sets “the same?” How about two partial orders?

The notion of isomorphism is, loosely, the idea that two mathematical

structures may be essentially the same, even if cosmetically different.

Recall that a function between two sets is injective, or one-to-one, if

1You might object that this does not require every element of A be in the domain
of the function. We will not be concerned by that; see §3.1.2.

30 2. Background

no two domain elements map to the same range element. It is sur-

jective, or onto, if the codomain equals the range. Since no function

can take a single domain element to multiple range elements, and

by definition it must give an image (output) to every domain ele-

ment (well... see §3.1.2), a function that is both one-to-one and onto

uniquely pairs off the elements of the domain and codomain. Such

functions are called bijections. Some authors will refer to a bijection

as a “one-to-one correspondence;” they are also called permutations.

For sets, bijections are everything. It does not matter whether

we use the letters A through Z or the numbers 1 through 26; a set of

the same size is essentially the same set. Two sets (without structure)

are isomorphic if there is a bijection between them. Two sets with

additional structure may be bijective without being isomorphic.

When there are relations (including functions) on the elements,

to say two structures are isomorphic we need a special kind of bijec-

tion: one that preserves the relations. For example, an isomorphism

between two partial orders P and Q is a bijection f : P → Q such

that for all x, y ∈ P , x ≤P y ↔ f(x) ≤Q f(y). As a consequence, any

logical statement about the relation will hold in one structure if and

only if it holds in the other, such as ∀x∃y(x ≤ y). Isomorphism must

be defined separately for each kind of object, but it follows the same

template each time: a bijection that preserves the structure.

Example 2.4.1. Let A = {{1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}} and B =

{∅, {a}, {b}, {a, b}}. A and B are in bijection, or isomorphic as sets.

However, they are not isomorphic as partial orders, under the relation

of subset inclusion. A is a linear order and B a diamond; A satisfies

the statement ∀x ∀y (x ⊆ y ∨ y ⊆ x) and B satisfies its negation,

∃x ∃y (¬(x ⊆ y)&¬(y ⊆ x)).

An isomorphism between a structure and itself is called an auto-

morphism.

2.5. Recursion and Induction

Recursive definitions and proofs by induction are opposite sides of the

same coin. Both have some specific starting point, and then a way to

extend from there via a small set of operations. For induction, you

2.5. Recursion and Induction 31

might be proving some property P is true of all the natural numbers.

To do so, you prove that P is true of 0, and then prove that if P

is true of some n ≥ 0, then P is also true of n + 1. To recursively

define a class of objects C, you give certain simple examples of objects

in C, and then operations that combine or extend elements of C to

give results still in C. They relate more deeply than just appearance,

though. We’ll tackle induction, then recursion, then induction again.

2.5.1. Induction on N. The basic premise of induction is that if

you can start, and once you start you know how to keep going, then

you will get all the way to the end. If I can get on the ladder, and I

know how to get from one rung to the next, I can get to the top of

the ladder.

Definition 2.5.1. The principle of mathematical induction, basic

form, says the following.

If S is a subset of the positive integers containing 1 such that

n ∈ S implies n + 1 ∈ S for all n, then S contains all of the posi-

tive integers. [We may need the beginning to be 0 or another value

depending on context.]

In general you want to use induction to show that some property

holds no matter what integer you feed it, or no matter what size finite

set you are dealing with. The proofs always have a base case, the case

of 1 (or wherever you’re starting). Then they have the inductive step,

the point where you assume the property holds for some unspecified

n and then show it holds for n+ 1.

Example 2.5.2. Prove that for every positive integer n,

1 + 3 + 5 + . . .+ (2n− 1) = n2.

Proof. Base case: For n = 1, the equation is 1 = 12, which is true.

Inductive step: Assume that 1 + 3+ 5+ . . .+ (2n− 1) = n2 for some

n ≥ 1. To show that it holds for n+ 1, add 2(n+ 1)− 1 to each side,

in the simplified form 2n+ 1.

1 + 3 + 5 + . . .+ (2n− 1) + (2n+ 1) = n2 + 2n+ 1 = (n+ 1)2

Since the equation above is that of the theorem, for n+1, by induction

the equation holds for all n. �

32 2. Background

The format of the proof above is typical of inductive proofs of

summation formulas: use the inductive hypothesis to simplify a por-

tion of the next value’s sum.

For the next example we need to know a convex polygon is one

where all the corners point out. If you connect two corners of a convex

polygon with a straight line segment, the segment will lie entirely

within the polygon, cutting it into two smaller convex polygons.

As you get more comfortable with induction, you can write it in a

more natural way, without segmenting off the base case and inductive

step portions of the argument. We’ll do that here. Notice the base

case is not 0 or 1 for this proof.

Example 2.5.3. For n > 2, the sum of angle measures of the interior

angles of a convex polygon of n vertices is (n− 2) · 180◦.

Proof. We work by induction. For n = 3, the polygon in question is

a triangle, and it has interior angles which sum to 180◦ = (3−2)·180◦.
Assume the theorem holds for some n ≥ 3 and consider a convex

polygon with n+ 1 vertices. Let one of the vertices be named x, and

pick a vertex y such that along the perimeter from x in one direction

there is a single vertex between x and y, and in the opposite direction,

(n+1)− 3 = n− 2 vertices. Join x and y by a new edge, dividing the

original polygon into two polygons. The new polygons’ interior angles

together sum to the sum of the original polygon’s interior angles. One

of the new polygons has 3 vertices and the other has n vertices (x, y,

and the n− 2 vertices between them). The triangle has interior angle

sum 180◦, and by the inductive hypothesis the n-gon has interior

angle sum (n − 2) · 180◦. The n + 1-gon therefore has interior angle

sum 180◦ + (n− 2)180◦ = (n+ 1 − 2) · 180◦, as desired. �

Notice also in this example that we used the base case as part of

the inductive step, since one of the two polygons was a triangle. This

is not uncommon.

Exercise 2.5.4. Prove the following statements by induction.

(i) For every positive integer n,

1 + 4 + 7 + . . .+ (3n− 2) =
1

2
n(3n− 1).

2.5. Recursion and Induction 33

(ii) For every positive integer n,

21 + 22 + . . .+ 2n = 2n+1 − 2.

(iii) For every positive integer n,
n3

3
+

n5

5
+

7n

15
is an integer.

(iv) For every positive integer n, 4n − 1 is divisible by 3.

(v) The sequence a0, a1, a2, . . . defined by a0 = 0, an+1 = an+1
2 is

bounded above by 1.

Exercise 2.5.5. Recall that, for a binary operation ∗ on a set A,

associativity is defined as “for any x, y, z, (x∗y)∗z = x∗ (y ∗z).” Use

induction to prove that for any collection of n elements from A put

together with ∗, n ≥ 3, any grouping of the elements that preserves

order will give the same result.

Exercise 2.5.6. A graph consists of vertices and edges. Each edge

has a vertex at each end (they may be the same vertex). Each vertex

has a degree, which is the number of edge endpoints at that vertex

(so if an edge connects two distinct vertices, it contributes 1 to each

of their degrees, and if it is a loop on one vertex, it contributes 2 to

that vertex’s degree). It is possible to prove without induction that

for a graph the sum of the degrees of the vertices is twice the number

of edges. Find a proof of that fact using

(i) induction on the number of vertices;

(ii) induction on the number of edges.

Exercise 2.5.7. The Towers of Hanoi is a puzzle consisting of a

board with three pegs sticking up out of it and a collection of disks

that fit on the pegs, each with a different diameter. The disks are

placed on a single peg in order of size (smallest on top), and the goal

is to move the entire stack to a different peg. A move consists of

removing the top disk from any peg and placing it on another peg; a

disk may never be placed on top of a smaller disk.

Determine how many moves it requires to solve the puzzle when

there are n disks, and prove your answer by induction.

2.5.2. Recursion. To define a class recursively means to define it

via a set of basic objects and a set of rules, called closure operators,

34 2. Background

allowing you to extend the set of basic objects. We give some simple

examples.

Example 2.5.8. The natural numbers may be defined recursively as

follows:

• 0 ∈ N.

• If n ∈ N, then n+ 1 ∈ N.

Example 2.5.9. The well-formed formulas (wffs) in propositional

logic are a recursively defined class.

• Any propositional symbol P , Q, R, etc., is a wff.

• If ϕ and ψ are wffs, so are the following:

(i) (ϕ & ψ)

(ii) (ϕ ∨ ψ)

(iii) (ϕ → ψ)

(iv) (ϕ ↔ ψ)

(v) (¬ϕ)

The important fact, which gives the strength of this method of

definition, is that we may apply the closure operators repeatedly to

get more and more complicated objects.

For example, ((A&B) ∨ ((P&Q) → (¬A))) is a wff, as we can

prove by giving a construction procedure for it. A,B, P , and Q are

all basic wffs. We combine them into (A&B) and (P&Q) by operation

(i), obtain (¬A) from (v), ((P&Q) → (¬A)) from (iii), and finally our

original formula by (ii).

Exercise 2.5.10. (i) Prove that ((A ∨ (B&C)) ↔ C) is a wff.

(ii) Prove that (P → Q(∨ is not a wff.

Exercise 2.5.11. (i) Add a closure operator to the recursive defi-

nition of N to get a recursive definition of Z.

(ii) Add a closure operator to the recursive definition of Z to get a

recursive definition of Q.

Exercise 2.5.12. Give two different recursive definitions of the set

of all positive multiples of 5.

2.5. Recursion and Induction 35

Exercise 2.5.13. Write a recursive definition of the rational func-

tions in x, those functions which can be written as a fraction of two

polynomials of x. Your basic objects should be x and all real numbers.

We may also define functions recursively. For that, we say what

f(0) is (or whatever our basic object is) and then define f(n+ 1) in

terms of f(n). For example, (n + 1)! = (n + 1)n!, with 0! = 1, is

factorial, a recursively defined function you’ve probably seen before.

We could write a recursive definition for addition of natural numbers

as follows.

a(0, 0) = 0

a(m+ 1, n) = a(m,n) + 1

a(m,n+ 1) = a(m,n) + 1

This looks lumpy but is actually used in logic in order to minimize

the number of operations that we take as fundamental: this definition

of addition is all in terms of successor, the plus-one function.

Exercise 2.5.14. Write a recursive definition of p(m,n) = m · n, on
the natural numbers, in terms of addition.

Exercise 2.5.15. Write a recursive definition of f(n) = 2n32n+1, on

the natural numbers.

Definition 3.3.1 gives a recursively defined set of functions in

which one of the closure operators gives a function defined recursively

from functions already in the set.

2.5.3. Induction Again. Induction and recursion have a strong tie

beyond just their resemblance. Proving a property holds of all mem-

bers of a recursively defined class often requires induction. This use

of induction is less codified than the induction on N we saw above.

In fact, the induction in §2.5.1 is simply the induction that goes with

the recursively defined set of natural numbers, as in Example 2.5.8.

To work generally, the base case of the inductive argument must

match the basic objects of the recursive class. The inductive step

comes from the closure operations that build up the rest of the class.

You are showing the set of objects that have a certain property con-

tains the basic objects of the class and is closed under the operations

of the class, and hence must contain the entire class.

36 2. Background

Example 2.5.16. Consider the class of wffs, defined in Example

2.5.9. We may prove by induction that for any wff ϕ, the num-

ber of positions where binary connective symbols occur in ϕ (that

is, &,∨,→, and ↔) is one less than the number of positions where

propositional symbols occur in ϕ.

Proof. For any propositional symbol, the number of propositional

symbols is 1 and the number of binary connectives is 0.

Suppose by induction that p1 = c1 + 1 and p2 = c2 + 1 for p1,

p2 the number of propositional symbols and c1, c2 the number of

binary connectives in the wffs ϕ, ψ, respectively. The number of

propositional symbols in (ϕQφ), for Q any of ∨,&,→, and ↔, is

p1 + p2, and the number of connective symbols is c1 + c2 + 1. By the

inductive hypothesis we see that

p1 + p2 = c1 + 1 + c2 + 1 = (c1 + c2 + 1) + 1,

so the claim holds for (ϕQψ).

Finally, consider (¬ϕ). Here the number of binary connectives

and propositional symbols has not changed, so the claim holds. �

Exercise 2.5.17. The length of a wff is the number of symbols it

contains, including parentheses. Suppose ϕ is a wff not containing

negation (that is, it comes from the class defined as in Example 2.5.9

but without closure operation (v)). Prove by induction that for each

such ϕ, there is some k ≥ 0 such that the length of ϕ is 4k+1 and the

number of positions at which propositional symbols occur is k + 1.

If we are careful, we can perform induction on N to get results

about other recursively defined classes. For wffs, we might induct on

the number of propositional symbols or the number of binary connec-

tives, for instance.

Exercise 2.5.18. Recall from calculus that a function f is continuous

at a if f(a) is defined and equals limx→a f(x). Recall also the limit

laws, which may be summarized for our purposes as

lim
x→a

(f(x)�g(x)) = (lim
x→a

f(x))�(lim
x→a

g(x)), � ∈ {+,−, ·, /},

as long as both limits on the right are defined and if � = / then

limx→a g(x) �= 0. Using those, the basic limits limx→a x = a and

2.6. Some Notes on Proofs and Abstraction 37

limx→a c = c for all constants c, and your recursive definition from

Exercise 2.5.13, prove that every rational function is continuous on

its entire domain.

Exercise 2.5.19. Using the recursive definition of addition from the

previous section (a(0, 0) = 0; a(m+1, n) = a(m,n+1) = a(m,n)+1),

prove that addition is commutative (i.e., for all m and n, a(m,n) =

a(n,m)).

2.6. Some Notes on Proofs and Abstraction

2.6.1. Definitions. Definitions in mathematics are somewhat dif-

ferent from definitions in English. In natural language, the definition

of a word is determined by the usage and may evolve. For example,

“broadcasting” was originally just a way of sowing seed. Someone

used it by analogy to mean spreading messages widely, and then it

was adopted for radio and TV. For present-day speakers of English I

doubt the original meaning is ever the first to come to mind.

In contrast, in mathematics we begin with the definition and

assign a term to it as a shorthand. That term then denotes exactly

the objects that fulfill the terms of the definition. To say something

is “by definition impossible” has a rigorous meaning in mathematics:

if it contradicts any of the properties of the definition, it cannot hold

of an object to which we apply the term.

Mathematical definitions do not have the fluidity of natural lan-

guage definitions. Sometimes mathematical terms are used to mean

more than one thing, but that is a re-use of the term and not an

evolution of the definition. Furthermore, mathematicians dislike that

because it leads to ambiguity (exactly what is meant by this term in

this context?), which defeats the purpose of mathematical terms in

the first place: to serve as shorthand for specific lists of properties.

2.6.2. Proofs. There is no way to learn how to write proofs without

actually writing them, but I hope you will refer back to this section

from time to time. There are also a number of books available about

learning to write proofs and solve mathematical problems that you

can turn to for more thorough advice.

38 2. Background

A proof is an object of convincing. It should be an explicit,

specific, logically sound argument that walks step by step from the

hypotheses to the conclusions. Avoid vagueness and leaps of deduc-

tion, and strip out irrelevant statements. Be careful to state what

you are trying to prove in such a way that it does not appear you are

asserting its truth prior to proving it. More broadly, make sure your

steps are in the right order. Often, a good way to figure out how to

prove something is to work backwards, in steps of “I get this as a con-

clusion if this other property holds; this property holds whenever the

object is of this kind; and oh, everything that meets my hypothesis is

an object of that kind!” However, the final proof should be written

from hypothesis to kind of object to special property to conclusion.

True mathematical proofs are very verbal, bearing little to no re-

semblance to the two-column proofs of high school geometry. A proof

which is just strings of symbols with only a few words is unlikely to

be a good (or even understandable) proof. However, it can also be

clumsy and expand proofs out of readability to avoid symbols alto-

gether. For example, it is important for specificity to assign symbolic

names to (arbitrary) numbers and other objects to which you will

want to refer. Striking the symbol/word balance is a big step on the

way to learning to write good proofs.

Make your proof self-contained except for explicit reference to

definitions or previous results (i.e., don’t assume your reader is so

familiar with the theorems that you may use them without comment;

instead say “by Theorem 2.5, . . .”). Be clear; sentence fragments and

tortured grammar have no place in mathematical proofs. If a sentence

seems strained, try rearranging it, possibly involving the neighboring

sentences. Do not fear to edit: the goal is a readable proof that does

not require too much back-and-forth to understand. There is a place

for words like would, could, should, might, and ought in proofs, but

they should be kept to a minimum. Most of the time the appropriate

words are has, will, does, and is. This is especially important in proofs

by contradiction. Since in such a proof you are assuming something

that is not true, it may feel more natural to use the subjunctive, but

that can make things unclear. You assume some hypothesis; given

that hypothesis other statements are or are not true. Be bold and let

2.6. Some Notes on Proofs and Abstraction 39

the whole contraption go up in flames when it runs into the statement

it contradicts.

Your audience is a person who is familiar with the underlying

definitions used in the statement being proved, but not the statement

itself. For instance, it could be yourself after you learned the defi-

nitions, but before you had begun work on the proof. You do not

have to put every tiny painful step in the write-up, but be careful

about what you assume of the reader’s ability to fill in gaps. Your

goal is to convince the reader of the truth of the statement, and that

requires the reader to understand the proof. Along those lines, it is

often helpful to insert small statements (I call it “foreshadowing” or

“telegraphing”) that let the reader know why you are doing what you

are currently doing, and where you intend to go with it. In particular,

when working by contradiction or induction, it is important to let the

reader know at the beginning. More complicated proofs, the kinds

that take several pages to complete, often benefit from an expository

section at the beginning, that outlines the proof with a focus on the

“why” of each step. A more technical portion that fills in all the

details comes afterward.

You must keep to the definitions and other statements as they are

written. In fact, a good strategy for finding a proof of a statement is

first to unwrap the definitions involved. Be especially wary of men-

tally adding words like only, for all, for every, or for some which are

not actually there. If you are asked to prove an implication it is likely

the converse does not hold, so if you “prove” equivalence you will be

in error. Statements that claim existence of an object satisfying cer-

tain hypotheses may be proved by producing an example, but if you

are asked to prove something holds of all objects of some type, you

cannot do so via a specific example. Instead, give a symbolic name

to an arbitrary object and prove the property holds using only facts

that are true for all objects of the given type. Similarly, the term

without loss of generality, or WLOG, appears from time to time in

proofs to indicate a simplifying but not restrictive assumption. If you

use the term make sure the assumption truly does not restrict the

cases. For example, one may assume without loss of generality that

the coefficient of x in the equation of a plane is nonnegative, since if

40 2. Background

it is negative another equation for the same plane may be obtained

by multiplying through by −1. It is not without loss of generality to

assume the coefficient of x is 1, since the plane defined by y + z = 0,

for example, has no equation with an x-coefficient of 1.

Exercise 2.6.1. Here are some proofs you can try that don’t involve

induction:

(i) ¬(∀m)(∀n)(3m+ 5n = 12) (over N)

(ii) For any integer n, the number n2 + n+ 1 is odd.

(iii) If every even natural number greater than 2 is the sum of two

primes, then every odd natural number greater than 5 is the

sum of three primes.

(iv) For nonempty sets A and B, A × B = B × A if and only if

A = B.

(v)
√
2 is irrational. (Hint: work by contradiction, assuming there

is a fraction of integers in least terms that equals
√
2.)

Chapter 3

Defining Computability

There are many ways we could try to get a handle on the concept

of computability. We could think of all possible computer programs,

or a class of functions defined in a way that feels more algebraic.

Many definitions that seem to come from widely disparate viewpoints

actually define the same collection of functions, which gives us some

claim to calling that collection the computable functions (see §3.6).

3.1. Functions, Sets, and Sequences

We mention three aspects of functions important to computability

before beginning.

3.1.1. Limits. Our functions take only whole-number values. There-

fore, for limn→∞ f(n) to exist, f must eventually be constant. If it

changes values infinitely many times, the limit simply doesn’t exist.

In computability we typically abbreviate our limit notation, as well.

It would be more common to see the limit above written as limn f(n).

3.1.2. Partiality. A function is only fully defined when both the

rule associating domain elements with range elements and the do-

main itself are given. However, in calculus, we abuse this to give

functions as algebraic formulas that calculate a range element from

a domain element, without specifying their domains. By convention,

41

42 3. Defining Computability

the domain is all elements of R on which the function is defined. How-

ever, we treat these functions as though their domain is actually all

of R, and talk about, for example, values at which the function has a

hole or vertical asymptote.

Here we take that mentality and make it official. In computability

we use partial functions on N, functions that take elements of some

subset of N as inputs and produce elements of N as outputs. When

applied to a collection of functions, “partial” means “partial or total,”

though “the partial function f” may generally be read as saying f ’s

domain is a proper subset of N.

Since our functions are only on the nonnegative integers, a straight-

forward function could be partial simply because on some inputs it

gives a negative, fractional, or irrational output, such as division,

subtraction, or square root. However, there is a second possibility

that we will see is more problematic: the computational procedure

implementing the function may go into an infinite loop on certain in-

puts and never stop running. We will argue we must work with this

possibility in §3.3 and with Theorem 3.5.1. Note that a bijection or

isomorphism (§2.4) will still have to be a total function.

If x is in the domain of f , we write f(x)↓ and say the computation

halts, converges, or is defined. We might specify halting when saying

what the output of the function is, f(x) ↓ = y, though there the

↓ is not necessary. When x is not in the domain of f we say the

computation diverges or is undefined and write f(x)↑.
For total functions f and g, we say f = g if (∀x)(f(x) = g(x)).

When f and g may be partial, we require a little more: f = g means

(∀x)[(f(x)↓ ↔ g(x)↓) & (f(x)↓ = y → g(x) = y)].

Some authors write this as f � g to distinguish it from equality for

total functions and to highlight the fact that f and g might be partial.

Finally, when the function intended is clear, f(x) = y may be

written x �→ y.

3.1.3. Ones and Zeros. In computability, as in many fields of

mathematics, we use certain terms and notation interchangeably even

though technically they define different objects, because in some deep

3.2. Turing Machines 43

sense the objects aren’t different at all. They might be referred to as

not just isomorphic structures, but naturally isomorphic. We begin

here with a definition.

Definition 3.1.1. For a set A, the characteristic function of A is the

following total function.

χA(n) =

{
1 n ∈ A

0 n /∈ A

In the literature, χA is often represented simply by A, so, for

instance, we can say ϕe = A to mean ϕe = χA as well as saying

A(n) to mean χA(n), so A(n) = 1 is another way to say n ∈ A.

Additionally, we may conflate the function and set with the binary

sequence made of the outputs of the function in order of input size,

which we will sometimes call the “characteristic sequence” of A.

Example 3.1.2. The sequence 1010101010. . . can represent

(i) The set of even numbers, {0, 2, 4, . . .}.
(ii) The function f(n) = n mod 2, which is the characteristic func-

tion of the set of even numbers.

Exercise 3.1.3. Construct bijections between (i) and (ii), (ii) and

(iii), and (i) and (iii) below, and prove they are bijections.

(i) The set 2N, infinite binary sequences.

(ii) The set of total functions from N to {0, 1}.
(iii) The power set of N.

Exercise 3.1.4. Construct bijections between (i) and (ii), (ii) and

(iii), and (i) and (iii) below, and prove they are bijections.

(i) The set 2<N, finite binary strings.

(ii) The set of finite subsets of N.

(iii) N.

3.2. Turing Machines

Our first rigorous definition of computation is due to Turing [85]. He

thought about what people do when they calculate on paper, and

44 3. Defining Computability

abstracted those actions: reading symbols, writing symbols, holding

some amount of information in their mind, and looking at different

parts of the paper. They apply appropriate rules of calculation based

on the information in their mind, which is influenced by what they

have seen and done so far, and on what they are currently viewing.1

A Turing machine (TM) is an idealized computer which has a

tape it can read from and write on, a head which does that reading

and writing and which moves back and forth along the tape, and an

internal state which may be changed based on what happens during

the computation. It also has a list of computational rules that are

applied based on the current internal state and symbol being read.

There is a finite alphabet of symbols (e.g., capital and lowercase let-

ters, numbers, and punctuation) and a finite list of internal states.

Everything here is discrete: the tape is divided into squares, and the

read/write head rests on an individual square and moves from square

to square. The tape is a sheet of paper, cut apart into lines and at-

tached end to end; the squares each hold one symbol as though the

person is writing neatly in block letters and numbers. We specify

Turing machines via quadruples 〈a, b, c, d〉, sets of instructions that

are decoded as follows:

a is the state the TM is currently in.

b is the symbol the TM’s head is currently reading.

c is an instruction to the head to write or move.

d is the state the TM is in at the end of the instruction’s

execution.

For example, 〈q3, 0, R, q3〉 means “if I am in state q3 and currently

reading a 0, move one square to the right and remain in state q3.”

The instruction 〈q0, 1, 0, q1〉 means “if I am in state q0 and reading a

1, overwrite that 1 with a 0 and change to state q1.” We typically

use only numbers and punctuation for the alphabet, so L and R

may unambiguously represent instructions to move one square to the

1Post [71] independently gave an essentially identical analysis of the computing
process. He gives the same abstraction as Turing’s tape, motion, and writing, but
in place of internal states Post has ordered lists of rules that include instructions to
jump from place to place on the list. However, he omitted details of the mathematical
implementation and hence cannot be co-credited for Turing’s theorems.

3.2. Turing Machines 45

left or right, respectively. The symbol in position c may also be a

blank (∗), indicating the machine should erase whatever symbol it

is reading. Any fixed a, b begin at most one quadruple of a given

Turing machine. It is not necessary that there be any instruction at

all; the computation may halt because of the absence of applicable

instructions.

Any computation that gives an output must use only finitely

many squares of the tape and finitely many steps of computation.

However, since Turing machines represent idealized computers, we

must allow them unlimited time and memory to perform their com-

putations. This is not the same as allowing infinite time or memory.

We simply can’t bound them from the beginning; what if our bound

were just one step short of completion or one square of tape too small?

Therefore, a TM’s tape is infinite, though any given computation uses

only a finite length of it.

Since the symbols and states come from a finite list, the collection

of instructions will always be finite. It does not matter how long the

lists are; generally we stick to the symbols 0, 1, and blank (∗) – or

even just 1 and ∗ – but allow arbitrarily long lists of states, mostly

because this is the mode that lends itself best to writing descriptions

of machines. Note that some authors distinguish legal halting states

from other states, and consider dead-ending in a non-halting state

equivalent to entering an infinite loop. They may also require the

read/write head to end up on a particular end of the tape contents.

This is all to make proofs easier, and it does not reduce the power of

the machines. For us, however, all states are legal halting states and

the read/write head can end up anywhere.

Example 3.2.1. A very simple Turing machine zeroes out the orig-

inal string, so ∗011010∗ becomes ∗000000∗.
We are allowed to set conditions on the form of input our machine

can successfully work on, and the initial set-up of the machine. In

general, we want to make the input as simple as possible and put

the read/write head in a known location. Conditions that make this

machine easier to write are: the input must be one consecutive string,

and the read/write head must begin at the leftmost bit of the input.

We also specify the start state is q0.

46 3. Defining Computability

Our desired computation is

if we see a 0, move right

if we see a 1, overwrite a 0 and move right

halt at the end of the string.

Note that if the machine writes a 0, at the next step it will be

scanning a 0, and so the first line takes care of the last part of the

second. We can accomplish this with two quadruples:

〈q0, 0, R, q0〉 already 0, bypass

〈q0, 1, 0, q0〉 if 1, change to 0.

We don’t need an instruction beginning q0, ∗; the machine will

halt when the read/write head walks off the right end of the input.

Example 3.2.2. We can modify the machine in Example 3.2.1 to

create one that blanks the input tape, taking ∗011010∗ to ∗∗∗∗∗∗∗∗.
Set the same initial conditions as before.

Attempt 1:

〈q0, 0, ∗, q0〉 blank 0s

〈q0, 1, ∗, q0〉 blank 1s

〈q0, ∗, R, q0〉 bypass blanks.

This is a perfectly valid Turing machine, and it does erase all the

1s and 0s, but it does not accomplish our goal: it never halts. Once

the tape is blank, this machine continues walking right forever. This

is where state comes in: we need to keep track of whether the blank

we are viewing is an “in-progress blank” or the blank marking the

end of the input. We need two states: one to indicate the symbol

being viewed has not yet been dealt with, and one to indicate it has.

Real program:

〈q0, 0, ∗, q1〉 blank 0s

〈q0, 1, ∗, q1〉 blank 1s

〈q1, ∗, R, q0〉 bypass blanks, provided we just created them.

This machine will halt when it arrives at a square that is already

blank; there is no q0, ∗ instruction. Exercise 3.2.3 continues this train

of modification.

Exercise 3.2.3. Write a Turing machine to flip the bits of an input

string, so ∗011010∗ becomes ∗100101∗.

3.2. Turing Machines 47

Example 3.2.4. Next we’ll write a Turing machine that adds 1 to an

input in tally notation. For example, ∗1111∗ should become ∗11111∗.
Again, we specify that the input must be in tally notation and

the TM be in state q0 with read/write head at the leftmost 1. Our

desired computation is

move right to first ∗
write 1

halt.

Therefore we write two instructions, letting halting happen be-

cause of an absence of relevant instructions.

〈q0, 1, R, q0〉 move R as long as you see 1

〈q0, ∗, 1, q1〉 when you see ∗, write 1 and change state.

Since we specified what tape content and head position we were

writing a machine for, these are sufficient: we know the only time the

machine will read a blank while in state q0 is the first blank at the

end of x.

Example 3.2.5. Our final example is to add 1 to a number given in

binary notation, which is more complicated than Example 3.2.4.

We can choose to interpret the input with the leftmost digit as the

smallest, specifying that this is the sort of input our TM is designed

to handle. Under that interpretation ∗011001∗ is 38. To get 39 we

need only change that leading 0 to a 1: 〈q0, 0, 1, q1〉.
But what if instead we begin with 39, ∗111001∗? We need the

tape to end reading ∗000101∗. A computation that takes care of both

38 and 39 is

if you see 0, write 1 and stop

if you see 1, write 0 and move right.

Eventually we will pass the 1s and find a 0 to change to 1. We can

add to our previous quadruple to take care of writing 0s and moving.

〈q0, 1, 0, q2〉 reading 1, write 0 and change state

〈q2, 0, R, q0〉 move right and go back to start state.

We have to change state when we write 0 so the machine knows

the 0 it is reading the next time around is the one it just wrote.

48 3. Defining Computability

However, there’s yet a third case we haven’t yet accounted for:

numbers like 31, represented as ∗11111∗. Our current states fall off

the edge of the world – we get to ∗00000∗ and halt because no in-

struction begins with q0, ∗. We want to write a 1 in this case, and we

know the only way we get here is to have just executed the instruction

〈q2, 0, R, q0〉. Therefore we can take care of this third case simply by

adding the quadruple 〈q0, ∗, 1, q1〉.
The full program:

〈q0, 0, 1, q1〉
〈q0, 1, 0, q2〉
〈q2, 0, R, q0〉
〈q0, ∗, 1, q1〉

Exercise 3.2.6. Step through the binary addition program with the

following tapes, where you may assume the read/write head begins at

the leftmost non-blank square. Give the contents of the tape, position

of read/write head, and current state of the machine for each step;

see Exercise 3.2.10 for a suggested way to write that information.

(i) ∗011∗
(ii) ∗101∗
(iii) ∗111∗

Exercise 3.2.7. Determine the function computed by the following

Turing machine (indenting is for clarity only). The machine takes as

input a binary number with least-value digit to the left and read/write

head on the leftmost symbol of the input, and starts in state q0.

〈q0, 0, R, q1〉
〈q0, 1, R, q1〉
〈q1, ∗, L, q2〉

〈q2, 1, 0, q2〉
〈q1, 0, L, q3〉
〈q1, 1, L, q3〉
〈q3, 0, 1, q4〉

〈q4, 1, R, q3〉
〈q3, 1, 0, q5〉

3.2. Turing Machines 49

〈q5, 0, R, q6〉
〈q6, ∗, L, q7〉
〈q7, 0, ∗, q7〉

Exercise 3.2.8. Write a Turing machine to compute the function

f(x) = 4x, where the input is given in

(i) tally notation.

(ii) binary notation.

Exercise 3.2.9. Write a Turing machine to compute the function

f(x) = x mod 3, where the input is given in

(i) tally notation.

(ii) binary notation.

Exercise 3.2.10. This exercise will walk you through writing an in-

verter, a Turing machine that reverses the input string, so ∗0111001∗
becomes ∗1001110∗.

Here is what ought to happen, where the arrow represents the

read/write head’s position.

• Instruction Block A

∗ 0 1 1 ∗ ∗ ∗ ∗
↑

walk right to first blank

back up one square, read and erase symbol

walk right and write symbol

• Instruction Block B

∗ 0 1 ∗ 1 ∗ ∗ ∗
↑

walk left past block of blanks

read and erase symbol

walk right past blanks and symbols

write symbol

Likewise:

∗ 0 ∗ ∗ 1 1 ∗ ∗
↑

50 3. Defining Computability

• Instruction Block C

∗ ∗ ∗ ∗ 1 1 0 ∗
↑

halt.

These three blocks of states, if written correctly, will allow the

machine to deal with arbitrarily long symbol strings. Longer strings

will result in more iterations of B, but A and C occur only once apiece.

Use state to remember which symbol to print and to figure out

which block of symbols you’re currently walking through. A compli-

cation is knowing when to stop: once the last symbol has been erased,

how do you know not to walk leftward forever? Step one extra space

left to see if what you just read was the last symbol and use state to

account for a yes or no answer.

3.3. Partial Recursive Functions

Turing’s definition of computability was far from the only competitor

on the field. We will explore only one other in depth, but survey a

few more in the next section. Before Turing’s paper appeared, there

had been a lot of work on recursive functions and on computable

functions generally; in particular the question of whether they were

the same had been addressed (see §3.3.2). Gödel (see [30], though the

definition was used earlier) proposed a definition of recursive function,

due partially to Herbrand, which was tidied up by Kleene [44] and

retitled the primitive recursive functions.2 Kleene also extended the

definition to the partial recursive functions, Definition 3.3.9 below.

3.3.1. Primitive Recursive Functions. Since the definition of the

primitive recursive functions can be a little opaque at first, we will

state it and then discuss it.

Definition 3.3.1. The class of primitive recursive functions is the

smallest class C of functions such that the following hold:

2The history here is difficult to untangle; Rózsa Péter – who appears to have
coined the term “primitive recursion” in [69] – attributes the form of recursion laid
out in Definition 3.3.1 (v) to Hilbert in [70]. Odifreddi gives the primitive recursive
functions to Dedekind, Skolem, and Gödel (Definition I.1.6 in [68]). Ackermann [1]
frames his function as an answer to a conjecture of Cantor.

3.3. Partial Recursive Functions 51

(i) The successor function S(x) = x+ 1 is in C.
(ii) All constant functions Mn

m(x1, x2, . . . , xn) = m for n,m ∈ N are

in C.
(iii) All projection (or identity) functions Pn

i (x1, x2, . . . , xn) = xi for

n ≥ 1, 1 ≤ i ≤ n, are in C.
(iv) (Composition, or substitution.) If g1, g2, . . . , gm, h are in C, then

f(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))

is in C, where the gi are functions of n variables and h is a

function of m variables.

(v) (Primitive recursion, or just recursion.) If g, h ∈ C and n ≥ 0,

then the function f defined below is in C:
f(x1, . . . , xn, 0) = g(x1, . . . , xn)

f(x1, . . . , xn, y + 1) = h(x1, . . . , xn, y, f(x1, . . . , xn, y))

where g is a function of n variables and h a function of n + 2

variables.

Cast in the terminology of §2.5.2, the first three items in the list

are the basic objects of the class, and the last two items are the closure

operators. Demonstrating that functions are primitive recursive can

be complicated, as one must demonstrate how they are built from the

ingredients above.

Example 3.3.2. The addition function, f(x, y) = x+ y, is primitive

recursive.

We can express addition recursively with f(x, 0) = x and f(x, y+

1) = f(x, y) + 1. The former is almost in proper primitive recursive

form; let f(x, 0) = P 1
1 (x).

The latter needs to be in the form f(x, y + 1) = h(x, y, f(x, y)),

so we want an h that spits out the successor of its third input. With

an application of composition, we get h(x, y, z) = S(P 3
3 (x, y, z)), and

our derivation is complete.

Example 3.3.3. The modified subtraction function

x−. y =

{
x − y if x ≥ y

0 if x < y

52 3. Defining Computability

is primitive recursive. The first analysis is that we may define this

recursively by x −. 0 = x, and x−. (y + 1) = (x −. y) −. 1.

Therefore, we begin with just x −. 1, which is a function of one

variable we will call sub1(x). The recursive step hardly warrants

the name recursive: sub1(0) = 0 = M0
0 , and sub1(y + 1) = y =

P 2
1 (y, sub1(y)).

Now the full generality can be obtained using sub1 in the recur-

sion, from the initial analysis. Letting x −. y = f(x, y) for clarity, we

need f(x, 0) = x = P 1
1 (x) and f(x, y + 1) = sub1(P 3

3 (x, y, f(x, y))).

In the derivations for each of the exercises below you may use any

functions that were earlier proved primitive recursive.

Exercise 3.3.4. Prove that the maximum and minimum functions,

max(x, y) and min(x, y), are primitive recursive.

Exercise 3.3.5. Prove that the multiplication function, g(x, y) =

x · y, is primitive recursive.

Exercise 3.3.6. Prove that the factorial function, n! = n · (n − 1) ·
. . . 2 · 1, is primitive recursive.

Exercise 3.3.7. Prove the exponential function xy is a primitive

recursive function of two variables.

Exercise 3.3.8. Consider a grid of streets, n east-west streets crossed

by m north-south streets to make a rectangular map with nm inter-

sections; each street reaches all the way across or up and down. If

a pedestrian is to walk along streets from the northwest corner of

this rectangle to the southeast corner, walking only east and south

and changing direction only at corners, let r(n,m) be the number of

possible routes. Prove r is primitive recursive.

In fact, the primitive recursive functions form a very large class,

including nearly all functions encountered in usual mathematical work,

and perhaps have claim on the label “computable” by themselves. We

will argue in the following sections that they are insufficient.

3.3.2. The Ackermann Function. The Ackermann function is the

most common example of a (total) computable function that is not

3.3. Partial Recursive Functions 53

primitive recursive; in other words, it is evidence that something needs

to be added to the closure schema of primitive recursive functions in

order to fully capture the notion of computability, even if we require

everything to be total.

To say “the Ackermann function” is actually misleading, as a

number of different functions are given under this title and nearly all

of them are significant simplifications of Ackermann’s original func-

tion, which is the following, defined recursively for non-negative inte-

gers a, b, and n [1].

ϕ(a, b, 0) = a+ b

ϕ(a, 0, n+ 1) = α(a, n)

ϕ(a, b+ 1, n+ 1) = ϕ(a, ϕ(a, b, n+ 1), n)

Here, α(a, n) = n if n ∈ {0, 1} and a otherwise.

Péter [70] simplified the definition to essentially the following

function of only two variables, though her m = 0 case is 2n+ 1.

A(m,n) =

⎧⎨
⎩

n+ 1 if m = 0

A(m− 1, 1) if m > 0 and n = 0

A(m− 1, A(m,n− 1)) if m > 0 and n > 0

She makes it explicit that one question of interest is whether

the uncountably many functions that are not primitive recursive are

computable at all, and, in the event that there are more computable

functions, whether they can specified using some form of recursion.

The Ackermann function is a positive answer to both questions.

The proof this is not primitive recursive is technical, but the idea

is simple. Here is what we get when we plug small integer values in

for m.

A(0, n) = n+ 1

A(1, n) = n+ 2

A(2, n) = 2n+ 3

A(3, n) = 2n+3 − 3

A(4, n) = 22
··
·2

− 3

The stack of 2s in the final equation is n+ 3 entries tall. That value

grows incredibly fast: A(4, 2) is a 19729-digit number. In fact, the

54 3. Defining Computability

Ackermann function grows faster than any primitive recursive func-

tion, meaning for every primitive recursive function θ(n), the follow-

ing holds.

(∃N)(∀m)(m > N ⇒ A(m,m) > θ(m))

The key is found in the stack of 2s in A(4, n). Roughly, each iter-

ation of exponentiation requires an application of primitive recursion.

We can have only a finite number of applications of primitive recur-

sion, fixed in the function definition, in any given primitive recursive

function. However, as n increases, A(4, n) requires more and more

iterations of exponentiation, eventually surpassing any fixed number

of applications of primitive recursion, no matter how large.

3.3.3. Partial Recursive Functions: Unbounded Search. To

increase the computational power of our class of functions we add

an additional closure scheme. This accommodates problems like the

need for increasingly many applications of primitive recursion in the

Ackermann function.

Definition 3.3.9. The class of partial recursive functions is the

smallest class of functions containing (i), (ii), and (iii) from Defi-

nition 3.3.1 of the primitive recursive functions, and closed under (iv)

and (v) from that definition as well as

(vi) (Unbounded search, minimization, or μ-recursion.) If x̄ =

x1, . . . , xn, θ(x̄, y) is a partial recursive function of n + 1

variables, and we define ψ(x̄) to be the least y such that

θ(x̄, y) = 0 and θ(x̄, z) is defined for all z < y, then ψ is a

partial recursive function of n variables.

Note that any primitive recursive function is also partial recur-

sive.

One of the most important features of this closure scheme is that

it introduces partiality; the primitive recursive functions are all total.

A simple (if pointless) example would be to set

θ(x, y) =

{
0 x even

1 x odd

3.3. Partial Recursive Functions 55

so that the ψ(x) obtained by unbounded search is 0 whenever x is

even, and divergent whenever x is odd.

A function using unbounded search can be total, of course, and

of course the Ackermann function requires unbounded search, despite

being total.

Why should partiality be allowed? Unbounded search allows us

to hunt through the natural numbers for conditions that may never

hold, or, if they do, may hold arbitrarily far out along the number

line. The primitive recursive functions require a sort of time limit set

in advance. We can’t include all conditions that hold only of unpre-

dictably large numbers without also including conditions that fail to

hold; this is true even restricting to conditions that may be finitely

computably checked of any individual number. That is, from the

modern perspective, real computers sometimes get caught in infinite

loops. Another reason is that we can’t “get at” just the total func-

tions from the collection of all partial recursive functions. There’s no

way to single them out; this notion is made precise as Theorem 3.5.1.

The name μ-recursion comes from a common notation. The sym-

bol μ, or μ-operator, is read “the least” and is used (from a purely

formula-writing standpoint) in the same way that quantifiers are used.

For example, μx(x > 5) is read “the least x such that x is greater

than five” and returns the value 6. In μ-notation, unbounded search

gives the following function.

ψ(x1, . . . , xn) = μy[θ(x1, . . . , xn, y) = 0 & (∀z < y)θ(x1, . . . , xn, z)↓]

Example 3.3.10. Using unbounded search we can write a function

to return
√
x if x is a square number and diverge otherwise.

We will use the primitive recursive functions +, ·, and integer

subtraction −. (Example 3.3.3) without derivation. We would like the

following.

ψ(x) = μy[(x −. (y · y)) + ((y · y) −. x) = 0]

To properly define the function in brackets requires some nested ap-

plications of composition, even taking the three arithmetic operators

as given.

56 3. Defining Computability

3.4. Coding and Countability

So far we’ve computed only with natural numbers. How could we

define computation on domains outside of N? If the desired domain

is countable, we may be able to encode its members as natural num-

bers. For example, we could code Z into N by using the even natural

numbers to represent nonnegative integers, and the odd to represent

negative integers. Specifically, we can write the following computable

function.

f(k) =

{
2k k ≥ 0

−2k − 1 k < 0

We might also want a subset of N to serve in place of all of the

natural numbers. For example, we might let every natural number

be interpreted as its double. In terms of coding the even numbers E

into N, the function is now g(k) = k/2.

The important property we need to treat natural numbers as

codes of elements from another set S is a bijection between S and

N that is computable with computable inverse. Sets for which such

bijections, or coding functions, exist are called effectively countable.

The image of the element of S under this bijection is its code; the

fact that the function is bijective ensures every natural number codes

some unique element of S. Finally, the effectiveness of the function

gives us its usefulness: any infinite countable set is in bijection with

N, but we can’t use that bijection in a Turing machine unless it is

computable.

Note that unlike countability in general, effective countability is

not guaranteed for subsets of effectively countable sets. One example

is in Theorem 3.5.1; more will appear in Chapter 5.

There are two ways to compute on coded input.

(1) The Turing machine can decode the input, perform the com-

putation, and encode the answer.

(2) The Turing machine can compute on the encoded input di-

rectly, obtaining the encoded output.

3.4. Coding and Countability 57

Exercise 3.4.1. Consider Z encoded into N by f above. Write a

function that takes f(k) as input and outputs f(2k) using approach

2 above. An algebraic expression will suffice.

Coding is often swept under the rug; in research papers one gen-

erally sees at most a comment to the effect of “we assume a coding

of [our objects] as natural numbers is fixed.” It is a vital component

of computability theory, however, as it removes the need for separate

definitions of algorithm for different kinds of objects.

To move into N2, the set of ordered pairs of natural numbers,

there is a standard pairing function indicated by angle brackets.

〈x, y〉 := 1

2
(x2 + 2xy + y2 + 3x+ y)

For longer tuples we iterate, so for example 〈x, y, z〉 := 〈〈x, y〉, z〉.
The pairing function and its iterations show that for every k, Nk is

effectively countable. They also let us treat multivariable functions

in the same way as single-input functions.

The pairing function is often given as a magic formula from on

high, but it’s quite easy to derive. You may be familiar with Cantor’s

proof that the rational numbers are the same size as the natural num-

bers, where he walks diagonally through the grid of integer-coordinate

points in the first quadrant and skips any that have common factors

(if not, see Appendix A.3). We can do essentially that now, though

we won’t skip anything.

Starting with the origin, we take each diagonal and walk down

it from the top (see Figure 3.1). The number of pairs on a given

diagonal is one more than the sum of the entries of each pair. The

number of pairs above a given (x, y) on its own diagonal is x, so if we

want to number pairs from 0, we let (x, y) map to

1 + 2 + . . .+ (x+ y) + x,

where each term except the last corresponds to a diagonal below

(x, y)’s diagonal. This sums to

(x+ y + 1)(x+ y)

2
+ x =

1

2
(x2 + 2xy + y2 + 3x+ y).

58 3. Defining Computability

(0, 3)

���
��

��
��

�

(0, 2)

���
��

��
��

�
(1, 2)

���
��

��
��

�

(0, 1)

���
��

��
��

�
(1, 1)

���
��

��
��

�
(2, 1)

���
��

��
��

�

(0, 0)

��

(1, 0)

������������������

(2, 0)

������������������������������

(3, 0)

Figure 3.1. Order of pair counting for pairing function.

If you are unfamiliar with the formula for the summation of the in-

tegers 1 through n, you can find it in Appendix A.2; it is not needed

beyond this point.

A coding function need not have an explicit formula like the poly-

nomial for the pairing function. The rational numbers, Q, may be

coded similarly to N2, using their fractional representation. Let 0

map to 0, and then map the strictly positive numbers into (N −
{0}) × (N − {0}). Skipping any pairs (x, y) such that x/y is not in

least terms, list pairs in the same order as in the pairing function.

The code of a positive rational is the position in the list of its least-

terms fractional representation, so 1 maps to 1, 1/2 maps to 2, and

2 maps to 3, the positions of (1, 1), (1, 2), and (2, 1), respectively. To

account for negative rational numbers, double all of these codes, and

subtract 1 if the rational is negative; 0 still maps to 0, but 1 maps to

2 (−1 maps to 1) and 1/2 maps to 4 (−1/2 maps to 3).

The important set
⋃

k≥0N
k, finite tuples of any length, is also

effectively countable (note N0 = {∅}). The function

τ :
⋃
k≥0

Nk → N

given by τ (∅) = 0 and

τ (a1, . . . , ak) = 2a1 + 2a1+a2+1 + 2a1+a2+a3+2 + . . .+ 2a1+...+ak+k−1

3.4. Coding and Countability 59

demonstrates the effective countability. A singleton – that is, an ele-

ment of N itself – is mapped to a number with binary representation

using a single 1. An n-tuple maps to a number whose binary repre-

sentation uses exactly n 1s.

Exercise 3.4.2. (i) Find the images under τ of the tuples (0, 0),

(0, 0, 0), (0, 1, 2), and (2, 1, 0).

(ii) What is the purpose of summing subsequences of ai and adding

1, 2, . . . , k−1 in the exponents? What tuples get confused if you

perform only one of those actions?

(iii) Prove that τ is a bijection.

Exercise 3.4.3. Let A and B be effectively countable, infinite sets.

(i) If A and B are disjoint, prove that A∪B is effectively countable.

(ii) If A and B are not necessarily disjoint, prove that A ∪ B is

effectively countable.

(iii) Prove that A ∩ B is effectively countable or finite.

Exercise 3.4.4. (i) Show that if a class A of objects is constructed

recursively using a finite set of basic objects and a finite collec-

tion of computable closure operators (see §2.5), A is effectively

countable.

(ii) Show that even if the sets of basic objects and rules in part (i)

are infinite, as long as they are effectively countable, A is also

effectively countable. §5.1 may be helpful.

Example 3.4.5. This example is vital for the rest of the text. The

set of Turing machines is, in fact, effectively countable; the TMs may

be coded as natural numbers. One way to code them is to first encode

individual quadruples as single numbers, so the machine is represented

by a finite set, and then encode finite subsets of N as single numbers,

as in Exercise 3.1.4. Similarly to the rational numbers, we can encode

a subset of the quadruples and then spread them out to “fit in” the

rest. The symbols that may appear in the middle two slots of a

quadruple are drawn from a fixed finite list, but the indices of the

states that appear first and last may be arbitrarily large. Therefore,

we start by encoding 〈qi, ·, ·, qj〉 as 〈i, j〉 by pairing, and then multiply

those values by a large enough number to fit exactly the possibilities

60 3. Defining Computability

for the middle two slots. That value will depend on what symbols

are allowed; if the symbol set is only ∗ and 1, it will be 8: there are

8 pairs with first element ∗ or 1 and second element ∗, 1, L, or R.

Order the pairs in some fixed way; perhaps all pairs beginning with

∗ precede all pairs beginning with 1 and within those blocks they

are ordered according to the list of second elements above. In that

case, 〈q3, ∗, L, q3〉 maps to 8〈3, 3〉 + 2 and 〈q3, 1, R, q3〉 to 8〈3, 3〉 + 7;

〈q0, ∗, ∗, q1〉 maps to 8〈0, 1〉+ 0.

Conversely, the natural number n will be read as k +
, where

0 ≤
 ≤ 7 and k is a multiple of 8. The quotient k/8 is decoded into

〈i, j〉 and
 is used to find the symbol read and action taken.

It is important to note that these codes will include “junk ma-

chines,” codes that may be interpreted as TMs but which give ma-

chines that don’t do anything. There will also be codes that give

machines that, while different, compute the same function – they are

different implementations of the function. In fact, we can prove the

Padding Lemma, Exercise 3.4.7, after a bit of vocabulary.

Definition 3.4.6. We call the code of a Turing machine its index, and

say when we choose a particular coding that we fix an enumeration of

the Turing machines (or, equivalently, the partial recursive functions).

It is common to use ϕ for partial recursive functions; ϕe is the eth

machine/function in the enumeration, the machine with index e, and

the machine that encodes to e.

Indices are often called Gödel numbers, because Gödel introduced

the notion of coding formulas in order to prove incompleteness [30].

Coding formulas and sequences of formulas (such as proofs) as num-

bers allows the statement “there is no proof of me” to be expressed

as, roughly, “no number codes a proof of the formula coded by this

number,” where the number in question at the end codes the given

formula itself.

Exercise 3.4.7. (The Padding Lemma). Prove that given any index

of a Turing machine M , there is a larger index which codes a machine

that computes the same function as M .

3.4. Coding and Countability 61

We often use the indices simply as tags, to put an ordering on

the functions, but it is often important to remember that the index

is the function, in a very literal way. Given the index, it is primitive

recursive to obtain the entire machine. Conversely, you will also see

indices defined by description of the function of which they code an

implementation. For example, letting e be such that

ϕe(x, y) =

⎧⎨
⎩

x+ y y < 2

xy 2 ≤ y ≤ 4

xy y ≥ 4

is a perfectly good definition of e. In principle, we can write that

function as a Turing machine, compute the machine’s index, and use

that value as e.

In fact, we can define functions in this way as well. An example

of such a definition is “let f(x) index the function with domain {x}.”
Given x, we can create a Turing machine that halts on x alone, and

encode that as an index. That is the value we would like to call

f(x). The missing piece is uniformity : to claim f is a computable

function, the process of creating the Turing machine from x must be

independent of the value of x. That is, while it will create different

machines from different values of x, there is one instruction sheet

we can give to the person writing the machines that covers all the

possibilities. Here, that is straightforward: have, say, x+ 1 states, x

of which count 1s from 0 to x and halt if there are the right number,

the last of which is the “nonhalting” state that is entered when the

1s run out too early or last too long. The value f(x) is the index of

the machine for x.

Exercise 3.4.8. Explicitly give a template for a Turing machine with

domain {x}, with x a natural number. You are not required to have

exactly x+ 1 states.

Another collection of objects commonly indexed is the finite sets,

as in Exercise 3.1.4. The nth finite set, or set corresponding to n in

the bijection, is typically denoted Dn.

The key points of this section for our later work are the following:

(1) Via coding, we can treat any effectively countable set as

though it were N.

62 3. Defining Computability

(2) A single natural number may mean a great variety of ob-

jects; Turing machines are set to interpret their input in a

specific way.

(3) We can fix an enumeration of the Turing machines (equiv-

alently, the partial computable functions); the index of a

particular machine will be that machine in code. It is un-

derstood that the coding is fixed from the start so we are

never trying to decode with the wrong bijection.

3.5. A Universal Turing Machine

From the enumeration of all Turing machines and the pairing function

we can define a universal Turing machine U ; that is, a machine that

will emulate every other machine. Simply set

U(〈e, x〉) = ϕe(x).

U decodes the single number it receives into a pair (e, x), decodes

e into the appropriate set of quadruples, and uses x as input, act-

ing according to the quadruples it decoded. This procedure is com-

putable because decoding the pairing function, decoding Turing ma-

chines from indices, and executing quadruples on a given input are

computable procedures. Turing [85] gives an explicit, full construc-

tion of a universal machine.

Note that of course there are infinitely many universal Turing ma-

chines, as there are for any program via padding, and that a universal

machine exists for any collection of functions that may be indexed.

Although we will use U and analogously defined universal machines

for other indexings in this section, typically we simply refer to the

individual indexed functions, using ϕe(x) instead of U(〈e, x〉).
We are now in the position to demonstrate a very practical reason

to allow partial functions in our definition of computability. Recall

that by total computable function we mean a function from the class

of partial computable functions which happens to be total. The fol-

lowing theorem also gives an example of a subset of the effectively

countable set N that is not itself effectively countable: the indices of

the total computable functions.

3.5. A Universal Turing Machine 63

Theorem 3.5.1. There is no computable indexing of the total com-

putable functions.

Proof. Suppose the contrary and let fe denote the e
th function in an

effective enumeration of all total computable functions. Let u(〈x, y〉)
be a universal machine for the total computable functions; it is itself

computable, and since fx(y) is defined for all x and y, u is also total.

We define a new function as follows.

g(e) = u(〈e, e〉) + 1

It is clear that g is total computable, since it is successor composed

with the total computable function u. Hence g must have an in-

dex; that is, there must be some e′ such that g = fe′ . However,

g(e′) = u(〈e′, e′〉)+ 1 = fe′(e
′)+ 1 �= fe′(e

′), which is a contradiction.

Therefore no such indexing can exist. �

As an aside, those who are familiar with Cantor’s proof that the

real numbers are uncountable will notice a distinct similarity (if not,

see Appendix A.3). This is an example of a diagonal argument, where

you accomplish something with respect to the eth Turing machine

using e. Of course you need not use literally e, as we will see in later

chapters.

We have two choices, then, with regard to the collection of func-

tions we call “computable:” to have them all be total, but fail to have

an indexing of them, or to include partial functions and be able to

enumerate them. We will see many proofs that rely completely on

the existence of an indexing in order to work; this combined with the

justifications in §3.3.3 weigh heavily on the side of allowing partial

functions to be called computable.

We now return to the primitive recursive functions, and a way to

break out of that class other than the Ackermann function.

Theorem 3.5.2. There is a function f such that f(〈n, x〉) computes

the nth primitive recursive function on input x.

Sketch of Proof. We may code the primitive recursive functions by

their derivation from the basic functions through the application of

closure operators. The basic functions and closure operators are given

64 3. Defining Computability

values, which are then combined via pairing in ways that indicate how

closure operators are being applied to basic functions and functions

appearing earlier in the derivation. This may be done computably,

giving an indexing of the primitive recursive functions; call the nth

such function θn. Define f(〈n, x〉) = θn(x); f operates analogously to

U , as described at the beginning of the section. �

Corollary 3.5.3. There is a function that is total recursive but not

primitive recursive.

Proof. From f as in Theorem 3.5.2, define g(n) = f(〈n, n〉)+1. Since

all primitive recursive functions are total and codings are bijective, f

is total, and hence g is total. However, g is not primitive recursive,

because for every n, it differs from the nth primitive recursive function

on input n. �

Notice that this is essentially identical to Theorem 3.5.1, but in

a different setting and hence with a different conclusion.

Corollary 3.5.4. The universal function defined in Theorem 3.5.2

is not primitive recursive.

Proof. The function g from the proof of Corollary 3.5.3 may be writ-

ten rigorously as

g(n) = S(f(〈P 1
1 (n), P

1
1 (n)〉)),

which is a valid primitive recursive derivation, with three applications

of composition, provided all the component functions are primitive

recursive. Since g is not primitive recursive, one of the component

functions must fail to be. As successor, the pairing function, and

projection are all primitive recursive, f must be the weak link. �

Exercise 3.5.5. A function h dominates a function g if there is some

N ∈ N such that h(n) ≥ g(n) for all n ≥ N .

(i) Construct a function h that dominates all the primitive recur-

sive functions {θe}e∈N (it is permitted that different θe require

distinct values of N), and prove that it does. There are at least

three natural ways to define h.

(ii) Is h primitive recursive? Prove or refute.

3.6. The Church-Turing Thesis 65

3.6. The Church-Turing Thesis

It is not obvious, but the class of Turing-computable functions and

the class of partial recursive functions are the same. In fact, there

are a large number of models of computation that give the same class

of functions as TMs and partial recursive functions (see §3.7 for a

sample). It is even possible to introduce nondeterminism into Turing

machines without increasing their power! Because of this, we use

the term partial computable functions to mean those that are partial

recursive or, equivalently, computed by a Turing machine, and total

computable functions to mean the partial computable functions that

happen to be total. If a function is referred to as just computable, it

is total computable.

To show partial recursive functions are Turing computable, one

can explicitly construct machines that compute successor (e.g., Ex-

ample 3.2.4), constants, and projections, and then show the Turing

machines are closed under composition, primitive recursion, and un-

bounded search. Conversely, given a Turing machine, one can create

a partial recursive function that emulates it, in the very strong sense

that it mimics the contents of the TM’s tape at every step of the com-

putation. There is an excellent presentation of this in §8.1 of Boolos,

Burgess, and Jeffrey [10] that we sketch.

The tape contents are viewed in two pieces, the spaces to the left

of the read/write head as a binary number with the least digit right-

most, and the spaces from the read/write head and on to the right as a

binary number with its least digit leftmost (the scanned square). Mo-

tion along the tape and rewriting are now arithmetic: if the read/write

head moves left, the left binary number halves, rounded down, and

the right binary number doubles and possibly adds one, depending

on the contents of the new scanned square. The current status of

the computation is coded as a triple: leftward tape contents, current

state, rightward tape contents. Actions (motion and rewriting) are

assigned numbers, which allows us to code the tuples of the Turing

machine, as in §3.4. Finally, the acceptable halting configuration is

standardized, and a single application of unbounded search finds the

least step t such that the halting condition holds. The output of

66 3. Defining Computability

F (m,x), where m is the code for a Turing machine and x is the in-

tended input, is the tape contents at the time t found by unbounded

search, if such a t exists.

The coincidence of all these classes of functions, defined from very

different points of view, may seem nothing short of miraculous. It is

necessary, though, if each is correctly claiming to rigorously capture

the notion of computable, and the fact that we do get the same class

of functions is strong evidence that they do so. We can never actually

prove we have captured the full, correct notion, because any proof re-

quires formalization – the only equivalences we can prove are between

different formal definitions. In his original paper [85], Turing does a

thought experiment (an expansion of the first paragraph of §3.2) in

which he breaks down the operations a human computer is capable

of and shows a Turing machine can do each of them, but this is not

a proof. However, it is compelling when set alongside the collection

of disparate approaches that reach the same destination, and the fact

that no one has found a disproof. The idea that we have captured

the full and correct notion is called the Church-Turing Thesis: the

computable functions are exactly the Turing-computable functions.

3.7. Other Definitions of Computability

Any programming language with the ability to do arithmetic, use

variables, and execute loops of some kind, as well as get input and

produce output, is as strong as a Turing machine if given unlimited

memory and time to work with. Even a circa 1990 programmable cal-

culator’s constrained BASIC, if hooked up to an inexhaustible power

source and unlimited memory, can compute anything a Turing ma-

chine can. Of course, the closer a programming language is to the

absolute minimum required, the harder it is for humans to use it.

The trade-off is usually that when you get further from the absolute

minimum required, proofs of general properties get more difficult.

3.7.1. Nonstandard Turing Machines. We mentioned in §3.2
that the number of symbols a Turing machine is allowed to use, as

long as it is finite, will not change the power of the machine. This

3.7. Other Definitions of Computability 67

is because even with just 1 and ∗, we can represent any finite col-

lection of symbols on the tape by using different length blocks of 1s,

separated by ∗s.

Exercise 3.7.1. Prove that a two-symbol Turing machine can simu-

late an n-symbol Turing machine, for any n.

Likewise, we said that requiring a machine to halt in particu-

lar states or end with the read/write head at a particular location

(relative to the tape contents) did not reduce the power of the ma-

chines. This may be accomplished in a straightforward manner by

the addition of extra states and instructions.

Our Turing machine, which we will refer to as standard, had a

tape that was infinite in both directions. Drawing on §3.4 you can

show it can make do with half of that.

Exercise 3.7.2. Prove that a Turing machine whose tape is only

infinite to the right (i.e., has a left endpoint) can simulate a standard

Turing machine.

More or less complicated coding, on the tape or in the states,

gives all of the following as well. This is certainly an incomplete

list of the changes we may make to the definition of Turing machine

without changing the class of functions computed.

Exercise 3.7.3. Prove that each of the following augmented Turing

machines can be simulated by a standard Turing machine.

(i) A TM with a “work tape” where the input is given and the

output must be written, with no restrictions in between, as well

as a “memory tape” which can hold any symbols at any time

through the computation, and independent read/write heads for

each of them.

(ii) A TM with a grid of symbol squares instead of a tape, and a

read/write head that can move up or down as well as left or

right.

(iii) A TM whose read/write head can move more than one square

at a time to the right or left.

68 3. Defining Computability

(iv) A TM where the action and state change depend not only on the

square currently being scanned, but on its immediate neighbors

as well.

(v) A TM with multiple read/write heads sharing a single tape.

Finally, we introduce the notion of nondeterminism, which may

seem to introduce noncomputability.

Definition 3.7.4. A nondeterministic Turing machine has an in-

finite tape, a single read/write head that works from a finite list of

symbols, and a finite list of internal states, exactly as a standard Tur-

ing machine. It is specified by a list of quadruples 〈a, b, c, d〉, where
a and d are states, b is a symbol, and c is a symbol or the letter R

or L, with no restriction on the quadruples in the list (note that it

will still be finite, since there are only finitely many options for each

position of the quadruple).

In particular, there may be multiple quadruples that start with

the same state/symbol pair. When the machine gets to such a situa-

tion, it picks one such quadruple at random and continues, meaning

there could be multiple paths to halting. If we want to define func-

tions from this model of computation, we have to demand that every

path that terminates results in the same output. For reasons that

Proposition 5.2.4 will make clear, we often dispense with that and

ask only on which inputs the nondeterministic machine halts at all.

Call those inputs the machine’s domain.3

Claim 3.7.5. If T is a nondeterministic Turing machine, there is a

standard (deterministic) Turing machine T ′ with the same domain.

The idea behind the proof is that every time T ′ comes to a

state/symbol pair that starts multiple quadruples of T , it clones its

computation enough times to accommodate each of the quadruples in

separate branches of its computation. It runs one step of each exist-

ing computation (plus all steps necessary to clone, if required) before

moving on to another step of any of them, and halts whenever one of

its branches halts. If we have required that T define a function, T ′

3In computer science, we might refer to the domain as the language the machine
accepts.

3.7. Other Definitions of Computability 69

can output the same thing T ′ does in this halting branch, since the

output will not depend on which halting branch T ′ finds first.

Exercise 3.7.6. Turn the idea above into a proof of Claim 3.7.5.

3.7.2. The Lambda Calculus. This is an important definition of

computability due to Church and his students Kleene and Rosser.

Those with an interest in computer science may know that the lambda

calculus is the basis of functional programming languages such as

Lisp and Scheme. A good reference for the lambda calculus is the

programming languages book by Peter Kogge [45].

The lambda calculus is based entirely on substitution; a typical

expression is

(λx|E)A,

which means “replace every instance of x in E by A.”

Expressions are built recursively. We have a symbol set that

consists of parentheses, |, λ, and an infinite collection of identifiers,

generally represented by lowercase letters. An expression can be an

identifier, a function, or a pair of expressions side-by-side, where a

function is of the form (λ〈identifier〉|〈expression〉). We will use capital

letters to denote arbitrary lambda expressions. Formally everything

should be thoroughly parenthesized, but understanding that evalua-

tion always happens left to right (i.e., E1E2E3 means (E1E2)E3, and

so on), we may often drop a lot of parentheses. In particular,

(λxy|E)AB = (((λx|(λy|E)))A)B.

Identifiers are essentially variables, but are called identifiers be-

cause their values don’t change over time. We solve problems with

lambda calculus by manipulating the form in which the variables ap-

pear, not their values. An identifier x occurs free in expression E if

(1) E = x, (2) E = (λy|A), y �= x, and x appears free in A, or (3)

E = AB and x appears free in either A or B. Otherwise x occurs

bound (or does not occur). In (λx|E), only free occurrences of x are

candidates for substitution, and no substitution is allowed that con-

verts a free variable to a bound one. If that would be the result of

substitution, we rename the problematic variable instead.

70 3. Defining Computability

Here are the full substitution rules for (λx|E)A → E′. They are

defined recursively, in cases matching those of the recursive definition

of expression. When needed for clarity, the intermediate notation

[A/x]E is used to indicate the substitution (λx|E)A has been made.

(1) If E = y, an identifier, then if y = x, E′ = A. Otherwise

E′ = E.

(2) If E = BC for some expressions B, C, the substitutions are

made within B and C: E′ = (([A/x]B)([A/x]C)).

(3) If E = (λy|C) for some expression C and

(i) y = x, then E′ = E.

(ii) y �= x where y does not occur free in A (i.e., substitu-

tion will not cause a free variable to become bound),

then E′ = (λy|[A/x]C).

(iii) y �= x where y does occur free in A, we apply the

renaming rule: E′ = (λz|[A/x]([z/y]C)), where z is a

symbol that does not occur free in A.

Example 3.7.7. Evaluate

(λxy|yxx)(λz|yz)(λrs|rs).

Remember that formally this is

[(λx|(λy|yxx))(λz|yz)](λrs|rs).

The first instance of substitution should be for x, but this will bind

what is currently a free instance of y, so we apply rule (3.iii) using

identifier symbol a.

(λy|y(λz|az)(λz|az))(λrs|rs)

Next we make a straightforward substitution to get

(λrs|rs)(λz|az)(λz|az),

which becomes (λz|az)(λz|az) and finally a(λz|az).

You can see this can rapidly get quite unfriendly to do by hand,

but it is very congenial for computer programming. There are two

great strengths to functional programming languages: all objects are

of the same type (functions) and hence are handled the same way,

3.7. Other Definitions of Computability 71

and evaluation may often be done in parallel. In particular, if we have

(λx1 . . . xn|E)A1 . . . Am, where m ≤ n, the sequential evaluation

(λxm+1 . . . xn|([Am/xm](. . . ([A2/x2]([A1/x1]E)) . . .)))

is equivalent to the simultaneous evaluation

(λxm+1 . . . xn|[A1/x1, A2/x2, . . . , Am/xm]E)

provided there are no naming conflicts. That is, alongside the restric-

tion of not having any xi+1, . . . , xn free in Ai (which would then bind

a free variable, never allowed), we must know none of the xm+1, . . . xn

appear free in any Ai, i ≤ m.

To start doing arithmetic, we need to be able to represent zero

and the rest of the positive integers, at least implicitly (i.e., via a

successor function). Lambda calculus “integers” are functions that

take two arguments, the first a successor function and the second

zero, and which (if given the correct inputs) return an expression

which “equals” an integer.

0 : (λsz|z) (λsz|z)SZ = [S/s][Z/z]z = Z

1 : (λsz|s(z)) (λsz|s(z))SZ = S(Z)
...

K : (λsz| s(s . . . s︸ ︷︷ ︸(z) . . .)) KSZ = S(S . . . S︸ ︷︷ ︸(Z) . . .)

K times K times

Interpreting Z as zero and S(E) as the successor of whatever integer

is represented by E, these expressions yield the positive integers.

We can define successor as a lambda operator in general, as well

as addition and multiplication. Successor is a function that acts on

an integer K (given as a function) and returns a function that is

designed to act on SZ and give K + 1. Likewise, multiplication and

addition are functions that act on a pair of integers K, L, and return

a function designed to act on SZ to give K ·L or K+L, respectively.

Successor : S(x) = (λxyz|y(xyz))

Addition : (λwzyx|wy(zyx))
Multiplication : (λwzy|w(zy))

To understand these it is best to step through an example.

72 3. Defining Computability

Example 3.7.8. 2 + 3.

In order to avoid variable clashes, where the general definition of

lambda calculus integers above uses s and z, we’ll use s and a in 2

and r and b in 3.

2 + 3 = (λwzyx|wy(zyx))(λsa|s(s(a)))(λrb|r(r(r(b))))

= (λyx|(λsa|s(s(a)))y((λrb|r(r(r(b))))yx))

= (λyx|(λa|y(y(a)))(y(y(y(x)))))

= (λyx|y(y(y(y(y(x)))))) = 5

Exercise 3.7.9. Evaluate S(3).

Exercise 3.7.10. Evaluate 2 · 3.

Similarly we can define lambda expressions that execute “if. . .

then. . . else” operations. In this context those are expressions P such

that PQR returns Q if P is true and R if P is false. Additional

Boolean operations are also useful and are defined as follows.

true : T = (λxy|x) false : F = (λxy|y)
and : (λzw|zwF) or : (λzw|zTw)

not : (λz|zFT)

Exercise 3.7.11. Work out the following operations.

(i) not T , not F

(ii) and TT , and TF , and FT , and FF

(iii) or TT , or TF , or FT , or FF

(iv) or(and TF)(not F)

The missing piece to understand how this can be equivalent to

Turing machines is recursion, in the computer science sense: if A is

a base case for R, then RA is simply evaluated, and if not, then RA

reduces to RB, where B is simpler than A. This is our looping proce-

dure; it requires R calling itself as a subfunction. To make expressions

call themselves we first need to make them duplicate themselves. We

begin with a magic function.

(λx|xx)(λx|xx)

3.7. Other Definitions of Computability 73

Try doing the substitution called for. Next, when R is an expression

wherein x does not occur free, evaluate

(λx|R(xx))(λx|R(xx)).

This is not general, however, and so we remove the hard-coding of R

via another lambda operator. This gives us our second magic func-

tion, the fixed point combinator Y .

Y = (λy|(λx|y(xx))(λx|y(xx)))

When Y is applied to some other expression R, the result is to layer

Rs onto the front.

Y R = R(Y R) = R(R(Y R)) = R(R(R(Y R))) . . .

Finally, consider (Y R)A to get to our original goal. This evaluates

to R(Y R)A; if R is a function of two variables, it can test A and

return the appropriate expression if A passes the test, throwing away

the (Y R) part, and if A fails the test it can use the (Y R) to generate

a new copy of R for the next step of the recursion. We omit any

examples.

3.7.3. Unlimited Register Machines. Shepherdson and Sturgis

defined universal register machines, or URMs [77], and Nigel Cutland

simplified them to use as the main model of computation in his book

Computability [17]. We give his definition here. URMs are easier to

work with than Turing machines if you want to get into the guts of the

model, while still basic enough that the proofs remain manageable.

This should feel like a Turing machine made more human-friendly.

The URM has an unlimited memory in the form of registers Ri,

each of which can hold a natural number denoted ri. The machine

has a program comprised of a finite list of instructions, and based

on those instructions it may alter the contents of its registers. Note

that a given computation will only be able to use finitely many of the

registers, just as a Turing machine uses only finitely many spaces on

its tape, but we cannot cap how many it will need in advance.

There are four kinds of instructions.

(i) Zero instructions: Z(n) tells the URM to change the contents

of Rn to 0.

74 3. Defining Computability

(ii) Successor instructions: S(n) tells the URM to increment (that

is, increase by one) the contents of Rn.

(iii) Transfer instructions: T (m,n) tells the URM to replace the

contents of Rn with the contents of Rm. The contents of Rm

are unchanged.

(iv) Jump instructions: J(m,n, i) tells the URM to compare the

contents of Rn and Rm. If rn = rm, it is to jump to the ith

instruction in its program and proceed from there; if rn �= rm
it continues to the instruction following the jump instruction.

This allows for looping. If there are fewer than i instructions in

the program, the machine halts.

The machine will also halt if it has executed the final instruction

of the program, and that instruction did not jump it back into the pro-

gram. You can see where infinite loops might happen: rn = rm, the

URM hits J(m,n, i) and is bounced backward to the ith instruction,

and nothing between the ith instruction and the instruction J(m,n, i)

either changes the contents of one of Rn or Rm or jumps the machine

out of the loop.

A computation using the URM consists of a program and an

initial configuration, that is, the initial contents of the registers.

Example 3.7.12. Using three registers, we can compute sums. The

initial contents of the registers will be x, y, 0, 0, 0, . . . , where we

would like to compute x+ y. The sum will ultimately be in the first

register and the rest will be zero.

We have only successor to increase our values, so we’ll apply it

to x y-many times. The third register will keep track of how many

times we’ve done it; once its contents equal y we want to stop incre-

menting x, zero the second and third registers, and halt. Since jump

instructions only jump when the registers checked are equal, we have

to be clever in their application.

3.7. Other Definitions of Computability 75

Instruction: Explanation:

1. J(2, 4, 8) if y = 0, nothing to do

2. S(1) increment x

3. S(3) increment counter

4. J(2, 3, 6) jump out of loop if we’re done

5. J(1, 1, 2) otherwise continue incrementing

6. Z(2) zero y register

7. Z(3) zero counter

Exercise 3.7.13. Write out all steps of the computation of 3 + 3

using the program above, including the contents of the registers and

the instruction number to be executed next.

Exercise 3.7.14. Write a URM program to compute products. Note

that x · y is the sum of y copies of x, and iterate the addition instruc-

tions appropriately. Be careful to keep your counters for the inside

and outside loops separate, and zero them whenever necessary.

Chapter 4

Working with
Computable Functions

4.1. The Halting Problem

Is it possible to define a specific function that is not computable?

Yes and no. We can’t write down a finite procedure, because by the

Church-Turing thesis, that leads to a computable function. As Rice’s

Theorem 4.4.8 will show, we can describe functions that are noncom-

putable, and via the indexing of all partial computable functions we

can define a noncomputable function even more specifically.

Recall from §3.1.2 that we use arrows to denote halting behavior:

ϕe(n)↓ means ϕe halts on input n, and ϕe(n)↑ means it does not.

Define the halting function as follows.

f(e) =

{
1 if ϕe(e)↓
0 if ϕe(e)↑

To explore the computability of f , define g.

g(e) =

{
ϕe(e) + 1 if f(e) = 1

1 if f(e) = 0

This is somewhat analogous to removing a discontinuity in cal-

culus via a piecewise definition, such as setting h(1) = 3 in h(x) =

[(x − 1)(x+ 2)]/(x− 1).

77

78 4. Working with Computable Functions

Certainly if ϕe(e)↓, it is computable to find the output value, and

computable to add 1. The use of f avoids attempting to compute

outputs for divergent computations, and hence if f is computable,

then so is g. However, g is not computable, and so the halting function

(or halting problem, the question of determining for which values of e

ϕe(e)↓) is not computable. This is a key example, and we define the

halting set as well.

K = {e : ϕe(e)↓}

Exercise 4.1.1. Prove that g defined above is not computable. It is

similar but not identical to Theorem 3.5.1 and Corollary 3.5.3.

Another function that is noncomputable and not too hard to

define is the busy beaver function. This function has different specific

definitions, but always refers to “the most done” by a halting Turing

machine from a certain class, where “most” might refer to, say, writing

on the tape or steps of computation. We will use the latter. Note

that if you fix a finite collection of states, there are only finitely many

Turing machines with states contained in that collection.

Exercise 4.1.2. Define T (n) as the maximum value of s such that

some Turing machine with states contained in {q0, . . . , qn} halts after

exactly s steps of computation.

(i) Show that T is not computable.

(ii) Show that there is no computable function B such that B(n) ≥
T (n) for all n.

§4.5 has more noncomputable functions related to Turing machine

behavior.

4.2. The “Three Contradictions”

Assume that a collection of functions may be indexed as ψn, n ∈ N.

Define the function g(n) = ψn(n)+1. If {ψn}n∈N is really an indexing,

g is one of the ψ, and g is total, we have a contradiction: for some n′,

we must have g(n′) = g(n′) + 1. As a consequence, one of the three

properties must fail.

4.3. Parametrization 79

(a) {ψn}n∈N is not really an indexing: In the case of ψn listing the

total computable functions, we know g would have to be a total

computable function, so we conclude there is no indexing.

(b) g is not one of the ψ: In the case of ψn listing the primitive

recursive functions, we know we have the indexing and g must be

total, so we conclude it is not primitive recursive.

(c) g is not total: In the case of ψn listing the partial recursive func-

tions, we know we have the indexing and that g must appear in

that indexing, so we conclude that on any offending n′ g must

diverge.

Additionally, in §4.1, we have

(c′) Some auxiliary function being used as though it were com-

putable is not: When we “plug the gaps” in the g of part (c)

with the halting problem f , we still have the indexing, and force

g to be total. If f is computable, g must appear in the indexing,

but then we reach a contradiction as before, so we conclude f is

not computable.

4.3. Parametrization

Parametrization means something different in computability theory

than it does in calculus. Here it means the ability to push input

parameters into the index of a function. This is the first place where

it is important that the indexing of Turing machines be fixed, and

we take major advantage of the fact that the index contains all the

information we need to reconstruct the machine itself.

The simplest form of the s-m-n theorem, which is what we tra-

ditionally call the parametrization theorem, is the following.

Theorem 4.3.1. There is a total computable function s11 such that

for all i, x, and y, ϕi(x, y) = ϕs11(i,x)
(y).

If you accept a loose description, this is very simple to prove: s11
decodes i, fills x into the appropriate spots, and recodes the resulting

algorithm. The key is that although the new algorithm depends on

i and x, it does so uniformly – the method is the same regardless of

the numbers.

80 4. Working with Computable Functions

As discussed after Exercise 3.4.7, a process is uniform in its in-

puts if it is like a choose-your-own-adventure book or a complicated

flowchart: all possible paths from start to finish are already there,

and the particular inputs just tell you which path you’ll take this

time. Uniformity allows for a single function or construction method

or similar process to work for every instance, rather than needing a

new one for each instance.

Exercise 4.3.2. Prove there is a computable function f such that

ϕf(x)(y) = 2ϕx(y) for all y. Hint: think of an appropriate function

ϕi(x, y).

The full version of the theorem allows more than one variable to

be moved, and more than one to remain as input. More uses of both

versions appear in sections to come. Incidentally, the superscript and

subscript on this function bear only cosmetic similarity to those in

the definition of the primitive recursive functions.

Theorem 4.3.3. Given m, n, there is a primitive recursive one-to-

one function smn such that for all i, all n-tuples x̄, and all m-tuples

ȳ,

ϕsmn (i,x̄)(ȳ) = ϕi(x̄, ȳ).

The fact that you can force this function to be one-to-one follows

from the Padding Lemma (Exercise 3.4.7). The proof of Theorem

4.3.3 is the same as for Theorem 4.3.1: each m,n pair has its own

function, so smn is built to interpret i as the code of a function of

m + n inputs. It decodes i, replaces each of the first n inputs with

the appropriate xj , and encodes the resulting function of m inputs.1

While it looks at first as though all this is doing is allowing you

to computably incorporate data into an algorithm, the fact that the

data could itself be a code of an algorithm means this is more than

that; it is composition via indices. In particular, parametrization and

the universal machine give us a way to translate operations on sets

and functions to operations on indices.

1In computer programming, this process of reducing the number of arguments
of a function is called currying, after logician Haskell Curry; when specific inputs are
given to the smn function it is called partial evaluation or partial application.

4.4. The Recursion Theorem 81

For example, suppose we want to find an index for ϕx + ϕy uni-

formly in x and y. We can let f(x, y, z) = ϕx(z) +ϕy(z) by letting it

equal U(〈x, z〉) + U(〈y, z〉), so everything that was either in input or

index is now in input. Then the s-m-n theorem gives us a computable

function s(x, y) such that ϕs(x,y)(z) = f(x, y, z) (f is ϕi some fixed

i; s(x, y) = s12(i, x, y)), so s(x, y) is an index for ϕx + ϕy as a (total

computable) function of x and y.

Exercise 4.3.4. Find an index for the composition ϕx◦ϕy uniformly

in x and y.

4.4. The Recursion Theorem

Kleene’s recursion theorem, though provable in only a few lines, is

probably the most conceptually challenging theorem in fundamental

computability theory. It is extremely useful – vital, in fact – for a

large number of proofs in the field. We will discuss this after meeting

the theorem and some of its corollaries.

Recall that equality for partial functions is the assertion that

when one diverges, so does the other, and when they converge it is to

the same output value.

Theorem 4.4.1 (Recursion or Fixed-Point Theorem). Suppose that

f is a total computable function. Then there is a number n such that

ϕn = ϕf(n). Moreover, n is computable from an index for f .

Proof. This is the “magical” proof of the theorem, which will be

expanded later in the section. By the s-m-n theorem there is a total

computable function s(x) such that for all x and y

ϕf(ϕx(x))(y) = ϕs(x)(y).

Let m be any index such that ϕm computes the function s; note that

s and hence m are computable from an index for f . Rewriting the

statement above yields

ϕf(ϕx(x))(y) = ϕϕm(x)(y).

Then, setting x = m and letting n = ϕm(m) (which is defined because

s is total), we have

ϕf(n)(y) = ϕn(y)

82 4. Working with Computable Functions

as required. �

The recursion theorem gives a fixed point at the index level. It

need not be the case that n = f(n) – in fact generally that will be

false – but n and f(n) are codes for implementations of the same

function.

Corollary 4.4.2. There is some n such that ϕn = ϕn+1.

Corollary 4.4.3. If f is a total computable function, then there are

arbitrarily large numbers n such that ϕf(n) = ϕn.

Corollary 4.4.4. If f(x, y) is any partial computable function, there

is an index e such that ϕe(y) = f(e, y).

Exercise 4.4.5. (i) Prove Corollary 4.4.3. Note that we might

obtain a fixed point via another function suitably related to f .

(ii) Prove Corollary 4.4.4. It requires both the recursion theorem

and the s-m-n theorem.

Exercise 4.4.6. Prove the following applications of Corollary 4.4.4:

(i) (∃n)(ϕn(x) = x+ n)

(ii) (∃n)(ϕn(x) = n)

(iii) (∃n)(domϕn = {n})
(iv) (∃n)(domϕn = rngϕn = {n})
Exercise 4.4.7. Show that there exists some n such that ϕn(x, y) =

xny.

The recursion theorem allows us to prove that a large collection

of functions are noncomputable. The set A ⊆ N is an index set if it

has the property that if x ∈ A and ϕx = ϕy, then y ∈ A.

Theorem 4.4.8 (Rice’s Theorem). Suppose that A is an index set

not equal to ∅ or N. Then χA is not computable.

Proof. We work by contradiction, supposing χA is computable. Set

some a ∈ A and b /∈ A and consider the following function.

f(x) =

{
a χA(x) = 0

b χA(x) = 1

Apply the recursion theorem. �

4.4. The Recursion Theorem 83

Exercise 4.4.9. Complete the proof of Rice’s theorem.

Rice’s theorem is a strong statement about our inability to pluck

out particular partial computable functions. There is no individual

function f for which it is computable to decide whether a given index

gives an implementation of f , and in fact there is no collection of

functions save the empty set and the collection of all functions for

which the indices can be distinguished computably.

The recursion theorem also gives results about enumeration of

Turing machines. In particular, the least index of each function can-

not be listed in order.

Theorem 4.4.10. Suppose that f is a total increasing function such

that

(i) if m �= n, then ϕf(m) �= ϕf(n).

(ii) f(n) is the least index of the function ϕf(n).

Then f is not computable.

Proof. Suppose f satisfies the conditions of the theorem. By (i), f

cannot be the identity, so since it is increasing there is some k such

that for all n ≥ k, f(n) > n. Therefore by (ii), ϕf(n) �= ϕn for every

n ≥ k. However, if f is computable, this violates Corollary 4.4.3. �

We now expand the proof of the recursion theorem. One can view

an index-level fixed point (n such that ϕn = ϕf(n)) as what can be

salvaged from a failed attempt at a literal fixed point (n such that

n = f(n)).

Let δ(e) be the diagonal function ϕe(e). For any partial com-

putable function f , there is some ê such that f ◦ δ = ϕê (infinitely

many such ê, in fact). By definition of δ, δ(ê) and f ◦ δ(ê) must be

equal. However, that gives a literal fixed point for f , and functions

certainly exist that have no literal fixed points. In such a case, δ must

diverge on ê (since the theorem assumes f is total), and we do not

get our fixed point.

However, if we loosen our requirement to index-level fixed points,

we can be a little more subtle, using the s-m-n theorem to define a

84 4. Working with Computable Functions

total function that is “close enough” to δ. Let e be such that

ϕe(i, x) =

{
ϕϕi(i)(x) ϕi(i)↓
↑ otherwise.

We could be more concise and say ϕe(i, x) = ϕϕi(i)(x), with the

understanding that divergence of the index is divergence of the whole

computation. By the s-m-n theorem, this is ϕS1
1(e,i)

(x); let d(i) =

S1
1(e, i) for this e.

Whenever δ(i)↓ (i.e., ϕi(i)↓), d(i) and δ(i) index implementations

of the same function. However, unlike δ, d is total: when δ(i) ↑,
ϕd(i)(x)↑ for all x, but d(i) itself is defined.

Let us repeat our original attempt at a fixed point with d in place

of δ, now letting ê be such that ϕê = f ◦ d. Consider the result of

applying f ◦ d to ê.

ϕf◦d(ê)(x) = ϕϕê(ê)(x) = ϕδ(ê)(x) = ϕd(ê)(x)

The first equality is by choice of ê and the second is by definition of

δ. Notice that since f ◦ d and hence ϕê are total, δ(ê) must converge.

The definition of d gives the final equality. We may abbreviate and

rewrite a bit to see we have shown

ϕf(d(ê))(x) = ϕd(ê)(x),

or in other words, that d(ê) is an index-level fixed point for f .

For the theorem’s “moreover,” note that d was defined indepen-

dently from f , so with an index for f we can find an index for f ◦ d

and hence an index-level fixed point for f .

This is extraordinarily useful in constructions. Many of its uses

can be summed up as building a Turing machine using the index

of the finished machine. The construction will have a line early on

like “We construct a partial computable function ψ and assume by

the recursion theorem that we have an index e for ψ.” This looks

insane, but it is completely valid. The construction, which will be

computable, is the function for which we seek a fixed point (at the

index level). Computability theorists think of a construction as a

program. It might have outside components – the statement of the

theorem could say “For every function f of this type, . . . ” – and the

construction’s if/then statements will give different results depending

4.5. Unsolvability 85

on which particular f was in play, but such variations will be uniform,

as described in §4.3. If we give the construction the input e to be

interpreted as the index of a partial computable function, it can use e

to produce e′, which is an index of the function ψ it is trying to build.

The recursion theorem says the construction will have a fixed point,

some i such that i and i′ both index the same function. Furthermore,

this fixed point will be computable from an index for the construction

itself, which by its uniformity has such a well-defined index. That last

detail allows the claim to having the index of ψ from the beginning.

4.5. Unsolvability

The word solvable is a synonym of computable used in particular

contexts. In general, it is used to describe the ability to compute a

solution to a problem stated not as a function, but as an algebraic

or combinatorial question. Decidable is another synonym used in the

same contexts as solvable.

We have seen an undecidable problem: the halting problem K

in §4.1. In this context the problem would be stated as “is there an

algorithm to decide, for any e, whether the eth Turing machine halts

on input e?”

The celebrity examples are Diophantine equations and the word

problem for groups; the latter will be discussed in §4.5.3. As dis-

cussed in §1.2, in 1900 Hilbert posed a list of problems and goals to

drive mathematical development [37]. The tenth problem on the list

asked for an algorithm to determine whether an arbitrary multivari-

able polynomial equation P = 0, where the coefficients of P are all

integers, has a solution in integers. At the time, the idea there may

not be any such algorithm did not occur. In 1970, after a lot of work

by a number of mathematicians, Matiyasevich proved the problem is

unsolvable [61]. The full proof and story are laid out in a paper by

Davis [19].

The method is to show that every Turing machine may be some-

how “encoded” in a Diophantine equation so that the equation has

an integer solution if and only if the machine halts. The fact that

we cannot always tell whether a Turing machine will halt shows we

86 4. Working with Computable Functions

cannot always tell whether a Diophantine equation has an integer

solution.

The encoding must be uniform, however, to show undecidabil-

ity. We obtain a contradiction to the noncomputability of K only if

the reduction can be expressed as a single procedure; then the com-

position of it and the equation-solving algorithm computes K. We

omit further details but note that this is the main method to show

a problem is undecidable: show you can encode the halting problem

(or another problem previously shown to be undecidable) into it.

I recommend Martin Davis’s entry in the Handbook of Mathe-

matical Logic [8], on which this section draws heavily, for more on

unsolvable combinatorial problems. In §5.3, with more tools and vo-

cabulary, we’ll look at mathematical logic.

4.5.1. Halting Problem Relatives. There are a number of prob-

lems stemming from the behavior of Turing machines during compu-

tation. The most straightforward in terms of undecidability is the

full halting set K0 = {〈x, y〉 : ϕx(y)↓}. It is clear that if we can

compute the characteristic function of K0 we can also compute the

halting problem.

To solve the following exercises, for arbitrary i, produce a Tur-

ing machine that has behavior dependent on whether ϕi(i) halts or

diverges.

Exercise 4.5.1. Show that there is no computable procedure to de-

termine, given e, whether the eth Turing machine halts when started

on a blank tape.

Exercise 4.5.2. Show that there is no computable procedure to de-

termine, given e, whether the eth Turing machine, when started on a

blank tape, prints a 0 at any time during its computation.

4.5.2. Index Sets. Rice’s Theorem 4.4.8 can be viewed as a sum-

mary of a large number of undecidability results. It essentially says

that determining possession of any nontrivial property of the partial

computable functions is unsolvable. Noting that the domain of ϕe

is typically denoted We, among the index sets we might consider are

4.5. Unsolvability 87

the following.

Fin = {e : We is finite}
Inf = N− Fin

Tot = {e : We = N} = {e : ϕe is total}
Rec = {e : χWe

is computable}
All of the sets above are not only noncomputable, but in fact are at a

higher level of the noncomputability hierarchy than the Halting Set.

This notion will be made precise in Chapter 7.

4.5.3. Production Systems. Many undecidability examples are

combinatorial in nature, having to do with one’s ability to take a

string of symbols and transform it into some other string via some

finitary procedures. In production systems these procedures are to

replace certain subsequences of a string with other subsequences. We

use the term alphabet for the set of all symbols used and word for

a string of symbols from the alphabet. If A is an alphabet and w a

word all of whose symbols are in A, we call w a word on A. We may

abbreviate strings of the same symbol using superscripts, and we use

λ to denote the empty string.

Example 4.5.3. The most general of productions allows us to replace

strings anywhere in a given word, in any number of locations at once.

Suppose we’re working with the symbols a and b. We might have

a rule that says “if a occurs at the beginning of a word, ab2 in the

middle somewhere, and ba at the end, replace them with b, b2a, and

a2, respectively.” We’d abbreviate that to

aPab2Qba → bPb2aQa2,

understanding that P and Q are unspecified, possibly empty, strings

of a’s and b’s.

We may apply this production to any word that has the correct

original features. For example, we could do the following.

a3b2a3b2a = a(a)ab2(a3b)ba → b(a)b2a(a3b)a2 = bab2a4ba2

The parentheses are there for clarity, around the strings that are

playing the roles of P and Q. The shortest word this production

applies to is a2b3a, or aλab2λba, which it converts to b3a3.

88 4. Working with Computable Functions

We usually want to restrict the kinds of productions we work with.

For example, a normal production removes a nonempty sequence from

the beginning of a word and adds a nonempty sequence to the end;

e.g., aP → Pb.

Definition 4.5.4. Let g, ĝ be finite nonempty words. A semi-Thue

production is a production of the form

PgQ → P ĝQ.

When it is understood that the production is semi-Thue we may write

simply g → ĝ.

Definition 4.5.5. A semi-Thue system is a (possibly infinite) collec-

tion of semi-Thue productions together with a single nonempty word

a, called the axiom of the system. If a word w may be produced from

a by a finite sequence of applications of productions of the system,

then we call w a theorem of the system.

Our systems all have computable sets of productions and finite

alphabets.

Example 4.5.6. Let the semi-Thue system S be the axiom ab2ab

together with the following productions.

a2 → bab

b → b3

aba → b

b2a → ab

From ab2ab we can get to ab4ab, ab2ab3, or a2b2 via a single pro-

duction application. From a2b2 we can get to bab3 or a2b4. We can

continue that way potentially indefinitely, generating theorems: it

may be that eventually any production applied to any theorem we’ve

already generated produces a theorem we’ve also already generated,

but it is easy to create a semi-Thue system with an infinite list of

theorems.

However, if you are presented with a word, how difficult is it

to tell whether that word is a theorem of S or another semi-Thue

system?

4.5. Unsolvability 89

Exercise 4.5.7. Construct a semi-Thue system with infinitely many

theorems.

Exercise 4.5.8. Suppose you are given a semi-Thue system S and a

word w. If you know w is a theorem of S, describe an algorithm to

find a sequence of production applications that generates w.

Exercise 4.5.9. (i) Write an algorithm to determine whether a

given word w is a theorem of the semi-Thue system S. Exercise

4.5.8 may be helpful.

(ii) With no special assumptions on S, under what conditions will

your algorithm halt?

In fact, given any Turing machineM , we can mimic it with a semi-

Thue system SM . The used portion ofM ’s tape becomes a word, with

an additional symbol indicating M ’s current state inserted just left

of the currently scanned tape square. The productions of SM follow

naturally:

(i) Rewriting: if 〈qi, Sj , Sk, q�〉 is in M , add the production qiSj →
q�Sk to SM .

(ii) Moving: if 〈qi, Sj , R, q�〉 is in M , add the production qiSjSk →
Sjq�Sk to SM for each Sk. Similarly for 〈qi, Sj , L, q�〉.

The axiom of SM is the initial state followed by the initial contents

of the tape, which we will denote m.

The goal is to have a particular word be a theorem of SM if

and only if M halts on the input m. To account for the fact that a

Turing machine’s tape is infinite but production system strings are

finite, we add a special unused symbol (h) to the beginning and end

of each word, and add productions to extend the string on each end as

needed. We also add special state-like symbols q, q′ that are switched

into when we hit a dead end: For every state qi and symbol Sj that

do not begin any quadruple of M , add the production qiSj → qSj .

Once we’re in q we delete symbols to the right: for every symbol

Si, SM contains qSi → q. When we hit the right end, switch into q′:

qh → q′h. Finally, delete symbols to the left: Siq
′ → q′. Ultimately, if

M halts on m, our production system with axiom hq0mh will produce

the theorem hq′h, and not otherwise.

90 4. Working with Computable Functions

We have “proved” the following theorem:

Theorem 4.5.10. It is not possible in general to decide whether a

word is a theorem of a semi-Thue system.

Exercise 4.5.11. How does the mimicry of Turing machines by semi-

Thue systems give us Theorem 4.5.10?

Exercise 4.5.12. Write a proof of Theorem 4.5.10. In particular, fill

in the details of the symbol h, formally verify that the construction

works, and include the explanation of Exercise 4.5.11.

Note that not every individual semi-Thue system has an unsolv-

able word problem. If the alphabet is small and the productions few

and simple, it could be quite easy to algorithmically decide whether

any given word is a theorem. In particular, any semi-Thue sys-

tem with only finitely many theorems is decidable, or for which only

finitely many of the words on the alphabet are not theorems.

Exercise 4.5.13. Construct a semi-Thue system with a decidable

word problem such that infinitely many of the words on its alphabet

are theorems, and infinitely many are non-theorems.

However, there are individual semi-Thue systems with undecid-

able word problems, such as the system built from a universal Turing

machine by the method above.

One of the first proofs of unsolvability of a problem from classical

mathematics was for Thue systems, due to Post [74] and Markov [59]

independently in 1947. A Thue system S is a semi-Thue system closed

under inverse productions: if g → ĝ ∈ S, then ĝ → g ∈ S as well. The

word problem is defined identically to those for semi-Thue systems:

produce a procedure that, given a Thue system S and a word w,

determines whether w is a theorem of S.

Exercise 4.5.14. Prove that undecidability of the word problem for

Thue systems implies undecidability of the word problem for semi-

Thue systems.

The word problem for groups is also closely related. For the rest

of this subsection I assume some algebra, and later topology. Cer-

tain Thue systems correspond to presentations of groups by gener-

ators and relations. The alphabet is almost the generator set, and

4.5. Unsolvability 91

the productions are almost the relations. The generators of a group

may be given as a, b, c with the understanding that inverse elements

a−1, b−1, c−1 and relations aa−1 = λ, a−1a = λ, etc., are also in-

cluded. A Thue system is a group system if the alphabet may be

numbered as a1, a2, . . . , a2n in such a way that a2ia2i−1 → λ and

a2i−1a2i → λ are productions for 1 ≤ i ≤ n. This gives a correspon-

dence between half of the alphabet and the generators of the group,

and the other half of the alphabet and the inverse generators (a Thue

system that is not a group system corresponds to a semigroup). The

fact that the system is Thue, not semi-Thue, gives the rest of the cor-

respondence between relations and productions: the relation ab = ba,

for instance, corresponds to the pair of productions ab → ba, ba → ab.

Groups are arguably the fundamental object of algebra, but it

is easier to see the consequences of this result in algebraic topology.

Every topological space has a group associated with it called the fun-

damental group, and the word problem (with axiom λ) in the setting

of fundamental groups is the problem of determining whether any

given closed loop is contractible to a point. In fact, the problem of

determining whether there exists any word in the group that is not

equivalent to the empty word is unsolvable, which in the context of

topology is the question of whether a given space is simply connected.

Of course, most standard examples of topological spaces have funda-

mental groups with solvable word problems, but the undecidability

result says this basic piece of information is, in generality, impossible

to know.

4.5.4. Post Correspondence. The Post correspondence problem

is included because it is significant for theoretical computer science.

Because of its simplicity, it is used often enough as a stand-in for

the Halting Problem in proving undecidability to be known simply

by the acronym PCP. For a computer science-style treatment see, for

example, §4.7 of Gurari [34]. We will prove its undecidability as in

Davis [8], differently from Post’s original work [73].

Definition 4.5.15. A Post correspondence system consists of an al-

phabet A and a finite set of ordered pairs 〈hi, ki〉, 1 ≤ i ≤ m, of words

on A. A word u on A is called a solution of the system if, for some

92 4. Working with Computable Functions

sequence 1 ≤ i1, i2, . . . , in ≤ m (the ij need not be distinct, and n

may be any value ≥ 1), we have u = hi1hi2 · · ·hin = ki1ki2 · · · kin .

That is, given two lists ofm words, {h1, . . . , hm} and {k1, . . . , km},
we want to determine whether any concatenation of words from the

h list is equal to the concatenation of the corresponding words from

the k list. A solution is such a concatenation.

Example 4.5.16. The word aaabbabaaaba is a solution to the system

{〈a2, a3〉, 〈b, ab〉, 〈aba, ba〉, 〈ab3, b4〉, 〈ab2a, b2〉},

as shown by the two decompositions

aa abba b aa aba

aaa bb ab aaa ba

In fact, the segments aaabbab and aaaba are individually solutions as

well.

Given a semi-Thue system S and a word v, we can construct a

Post correspondence system that has a solution if and only if v is a

theorem of S. Then we can conclude the following.

Theorem 4.5.17. There is no algorithm for determining whether a

given arbitrary Post correspondence system has a solution.

Proof. Let S be a semi-Thue system on alphabet A = {a1, . . . , an}
with axiom u, and let v be a word on A. We construct a Post corre-

spondence system P such that P has a solution if and only if v is a

theorem of S. The alphabet of P is

B = {a1, . . . , an, a′1, . . . , a′n, [,],
,
′},

with 2n+4 symbols. For any word w on A, write w′ for the word on

B obtained from w by replacing each symbol s of w by s′.

Suppose the productions of S are gi → ĝi, 1 ≤ i ≤ k, and assume

these include the n identity productions ai → ai, 1 ≤ i ≤ n. Note this

is without loss of generality as the identity productions do not change

the set of theorems of S. However, we may now assert that v is a

theorem of S if and only if we can write u = u1 → u2 → · · · → um = v

for some odd m.

4.5. Unsolvability 93

Let P consist of the following pairs:

〈[u
, [〉, 〈
,
′〉, 〈
′,
〉, 〈],
′ v]〉
〈ĝj , g′j〉
〈ĝ′j , gj〉

}
for 1 ≤ j ≤ k

Suppose v is a theorem of S, and u = u1 → u2 → · · · → um = v,

where m is odd, is a production sequence demonstrating that. Then

the word

w = [u1
 u
′
2

′ u3
 · · ·
 u′
m−1

′ um]

is a solution of P , with the decompositions

[u1
 u′
2
′ u3
 · · ·]

[u1
 u′
2
′ · · ·
′ um],

where u′
2 corresponds to u1 by the concatenation of three pairs: we

can write u1 = rgjs, u2 = rḡjs for some 1 ≤ j ≤ k. Then u′
2 = r′ĝ′js

′

and the productions r → r, s → s, and gj → ĝj give the ordered pairs

showing the correspondence.

For the converse, we show that any solution is a derivation or

concatenation of derivations of v from u. First notice that any so-

lution must begin with [and end with]; we forced this by adding ′

to the symbols in half of every pair. The symbol at the beginning of

any solution must match, and the only pair for which the first symbol

matches is 〈[u
, [〉. Likewise, the only symbol that ends both elements

of a pair of P is].

Let w be a solution with only one], possibly obtained by trun-

cating a given solution after the first]. Then

w = [u
 · · ·
′ v],

and our decompositions are forced at the ends to be the pairs 〈[u
, [〉,
〈],
′ v]〉. This gives us an initial correspondence.

[u
 · · ·
′ v]

[u
 · · ·
′ v]

Since w is a solution, we must have u corresponding to some r′

and v to some s′, where u → r and s → v. Then the
 and
′

94 4. Working with Computable Functions

must correspond to a
′ and
, respectively. If the
 and
′ do not

correspond to each other, then we have the following.

[u
 r
′ · · ·
 s
′ v]

[u
 r
′ · · ·
 s
′ v]

Iterating this procedure, we see that w shows u → v.

Hence, P has a solution if and only if v is a theorem of S; if

we can always decide whether a Post correspondence problem has a

solution, we have contradicted Theorem 4.5.10. �

As a final note, we point out that this undecidability result is

for arbitrary Post correspondence systems, just as the undecidability

of the previous subsection was for arbitrary semi-Thue systems. We

may get decidability results by restricting the size of the alphabet

or the number of pairs 〈hi, ki〉. If we restrict to alphabets with only

one symbol but any number of pairs, then the Post correspondence

problem is decidable. If we allow two symbols and any number of

pairs, it is undecidable. If we restrict to only one pair or two pairs of

words, the problem is decidable regardless of the number of symbols

[24], and at 7 pairs it is undecidable [62]. Between three and six pairs

inclusive, the question is still open. The bounded Post correspondence

problem, where the alphabet and number of sequences are finite and

the number of pairs making up the solution string is bounded by

a value no larger than the total number of sequences (repeats still

allowed), is decidable but NP-complete [16].

Chapter 5

Computing and
Enumerating Sets

We’ve talked about computability for functions; now we generalize to

sets. First, we address a practical matter.

5.1. Dovetailing

Suppose we have a partial function f : N → N, and we would like

to know what it does. If we knew f were total, we could find f(0),

then f(1), then f(2), and so on. However, since f is partial, at some

point we’re going to get hung up and not find an output. This could

even happen at f(0), and then we would know nothing. In order to

do much of anything with partial functions we need a way to bypass

this problem and obtain the outputs that do exist.

The procedure used is called dovetailing, a term that comes from

carpentry. A dovetailed joint is made by notching the end of each

board so they can interlock (the notches and tabs are trapezoidal,

reminiscent of the tail of a bird seen from above). In computability,

we interleave portions of the computations; that is, we gradually fold

in more steps of more computations. It is directly analogous to the

ordering that gives the pairing function (see Figure 3.1).

95

96 5. Computing and Enumerating Sets

It is easiest to imagine this process in terms of Turing machines,

which clearly have step-by-step procedures. We run one step of the

computation of f(0). If it halts, then we know f(0). Either way, we

run two steps of the computation of f(1), and if necessary, two steps

of the computation of f(0). Step (or stage) n of this procedure is to

run the computations of f(0) through f(n−1) each for n steps, minus

any we’ve already seen halt (though since they only add finitely many

steps, there’s no harm in including them1). Since every computation

that halts must halt in finitely many stages, each element of f ’s do-

main will eventually give its output. Any collection of computations

we can index can be dovetailed.

The state of the computation after s steps of computation is de-

noted with a subscript s: fs(n). We may use our halting and diverging

notation: fs(n)↓ or fs(n)↑. Note that fs(n)↑ does not imply f(n)↑;
it could be that we simply need to run more steps. Likewise, fs(n)↓
does not mean fs−1(n)↑; it means convergence has happened at some

step no later than s.

If we are drawing from an indexed list of functions, the stage

may share the subscript with the index: ϕe,s(n). Sometimes the

stage number is put into brackets at the end of the function notation,

as ϕe(n)[s]; this will be useful when more than just the function is

approximated, as in §6.1. In this case the up or down arrow goes after

everything: ϕe(n)[s]↓.

5.2. Computing and Enumerating

Recall that the characteristic function of a set A (Definition 3.1.1),

denoted χA or simply A, is the function outputting 1 when the input

is a member of A and 0 otherwise. It is total, but not necessarily

computable.

Definition 5.2.1. A set is computable (or recursive) if its character-

istic function is computable.

1Likewise, we could record our stopping point and just run one more step of
each computation plus the first step of an additional computation each time instead of
starting from the beginning, but there is no harm in starting over each time. Remember
that computable does not imply feasible. As another side note, this procedure would
cause f(i) to have its (n − i + 1)st step run at stage n, making the dovetailing truly
diagonal.

5.2. Computing and Enumerating 97

The word effective is often used as a synonym for computable

and recursive, but only in the context of procedures (you might say

a given construction is effective instead of saying it is recursive or

computable; it would be strange to say a set is effective). Note, how-

ever, that in the literature they are not always exactly synonymous!

Exercise 5.2.21 introduces the notion of computably inseparable sets.

While recursively inseparable is an equivalent term, the effectively

inseparable sets are a different collection.

A computable characteristic function is simply a computable pro-

cedure that will answer “is n in A?” for any n, correctly and in finite

time.

Claim 5.2.2. (i) The complement of a computable set is computable.

(ii) Any finite set is computable.

Proof. (i) Simply note χA = 1 − χA, so the functions are both

computable or both noncomputable.

(ii) A finite set may be “hard-coded” into a Turing machine, so the

machine has instructions which essentially say “if the input is

one of these numbers, output 1; else output 0.”

�

Part (ii) is the heart of most nonuniformity. Any finite amount of

information is computable, so we may assume it without violating the

computability of a procedure. However, to make such an assumption

infinitely many times is typically not computable. This is discussed

again at the end of §5.4.

Rice’s Theorem 4.4.8 gives a large number of noncomputable sets:

all nontrivial index sets. Not all noncomputable sets are created

equal, of course, and in particular we pluck out sets that are com-

putably approximable, in the following sense.

Definition 5.2.3. A set is computably enumerable (or recursively

enumerable, abbreviated as c.e. or r.e.) if there is a computable pro-

cedure to list its elements (possibly out of order and with repeats).

That definition is perhaps a little nebulous. Here are some addi-

tional characterizations:

98 5. Computing and Enumerating Sets

Proposition 5.2.4. Given a set A, the following are equivalent.

(i) A is c.e.

(ii) A is the domain of a partial computable function.

(iii) A is the range of a partial computable function.

(iv) A = ∅ or A is the range of a total computable function.

(v) There is a total computable function f(x, s) such that for every

x, f(x, 0) = 0, there is at most one s such that f(x, s + 1) �=
f(x, s), and lims f(x, s) = χA(x).

(vi) There is a computable sequence of finite sets As, s ∈ N, such

that for all s, As ⊆ As+1, and A =
⋃

s As.

Notice that property (iv) is almost effective countability, as in

§3.4, but not quite.

Proof. The proofs that (ii), (iii), and (iv) imply (i) are essentially

all the same. Dovetail all the ϕe(x) computations, and whenever

you see one converge, enumerate the preimage or the image involved

depending on which case you’re in. This is a computable procedure

so the set produced will be computably enumerable.

(i)⇒(ii): Given A c.e., we define the following.

ψ(n) =

{
1 n ∈ A

↑ n /∈ A

We must show this is partial computable. To compute ψ(n), begin

enumerating A, a computable procedure. If n ever shows up, at that

point output 1. Otherwise the computation never converges.

(i)⇒(iii): Again, given A c.e., note that we can think of its ele-

ments as having an order assigned to them by the enumeration: the

first to be enumerated, the second to be enumerated, etc. (This will

in general be different from their order by size.) Define the function

using that:

ϕ(n) = (n+ 1)st element to be enumerated in A.

(We use n + 1 to give 0 an image; this is not important here but

we shall use it in the next part of the proof.) If A is finite, the

5.2. Computing and Enumerating 99

enumeration will cease adding new elements and ϕ will be undefined

from some point on.

(i)⇒(iv): Suppose we have a nonempty c.e. set A. If A is infinite,

the function ϕ from the previous paragraph is total, and A is its

range. If A is finite, it is actually computable, so we may define

ϕ̂(n) =

{
ϕ(n) n < |A|
ϕ(0) n ≥ |A|.

�

Exercise 5.2.5. Prove the equivalence of part (v) with the rest of

Proposition 5.2.4. Advice: prove (i) ⇔ (v) directly, and remember

that in defining f you simply need to give a procedure that takes an

arbitrary pair x, s and computes an answer in finite time.

Exercise 5.2.6. Prove the equivalence of part (vi) with the rest of

Proposition 5.2.4. Again, prove (i) ⇔ (vi) directly, but this is simpler

than Exercise 5.2.5. The sequence As is computable if there is a total

computable function f(s) giving the code of As for every s.

Exercise 5.2.7. Prove that every infinite c.e. set is the range of a one

to one total computable function. This closes the gap in Proposition

5.2.4 (iv) with effective countability. Note that an enumeration of a

set is allowed to list elements multiple times.

Every computable set is computably enumerable, but the reverse

is not true. For example, we’ve seen that the halting set

K = {e : ϕe(e)↓}

is c.e. (it is the domain of the diagonal function δ(e) = ϕe(e)) but

is not computable. What’s the difference? Intuitively speaking, it’s

the waiting. If A is being enumerated and we have not yet seen

5, we do not know if that is because 5 is not an element of A or

because it’s going to be enumerated later. If we knew how long we

had to wait before a number would be enumerated, and if it hadn’t

by then it never would be, then A would actually be computable: To

find χA(n), enumerate A until you have waited the prescribed time.

If n hasn’t shown up in the enumeration by then, it’s not in A, so

output 0. If it has shown up, output 1. In the context of effective

100 5. Computing and Enumerating Sets

countability, to determine whether n is in the set, you can compute

f(0), f(1), f(2), etc., for f the decoding function, but you will only

get an answer if some f(k) actually is equal to n.

Conversely, we can show a c.e. set is computable if we can cap

the wait time.

Exercise 5.2.8. Prove that an infinite set is computable if and only

if it can be computably enumerated in increasing order (that is, it is

the range of a monotone total computable function).

Exercise 5.2.9. Prove that if A is c.e., A is computable if and only

if A is c.e.

As in §5.1, we use subscripts to denote the state of affairs at a

finite stage. In this case the stage-s version of A is the finite set As

from Proposition 5.2.4 (vi). In fact, formally, we computably build

finite sets A0 ⊆ A1 ⊆ A2 ⊆ . . ., and then define A to be
⋃

s As.

It is straightforward to see that there are infinitely many sets

that are not even c.e., much less computable. It is traditional to

denote the domain of ϕe by We (and hence the stage-s approximation

by We,s). The c.e. (including computable) sets are all listed out in

the enumeration W0,W1,W2, . . ., which is a countable collection of

sets. However, the power set of N, which is the set of all sets of

natural numbers, is uncountable. Therefore, in fact, there are not just

infinitely many, but uncountably many sets that are not computably

enumerable. These include all of the index set examples given in §4.5.

Exercise 5.2.10. Use Exercise 5.2.9 and the enumeration of c.e. sets,

{We}e∈N, to give an alternate proof of the noncomputability of K.

Exercise 5.2.11. Prove that if A is computable and B ⊆ A is c.e.,

then B is computable if and only if A − B is c.e. Prove that if A is

only c.e., B ⊆ A c.e., we cannot conclude that B is computable even

if A − B is computable.

Exercise 5.2.12. Show that a function f : N → N is partial com-

putable if and only if its graph G = {〈x, y〉 : f(x) = y} is a com-

putably enumerable set.

5.2. Computing and Enumerating 101

Exercise 5.2.13. Prove the reduction property : given any two c.e.

sets A, B, there are c.e. sets Â ⊆ A, B̂ ⊆ B such that Â ∩ B̂ =

∅ and Â ∪ B̂ = A ∪ B.

Exercise 5.2.14. Prove that the set {〈e, x, s〉 : ϕe,s(x)↓} is com-

putable.

Exercise 5.2.15. Prove that the set {〈e, x〉 : x ∈ We} is c.e.; that is,

prove that the c.e. sets are uniformly enumerable.

Exercise 5.2.16. Prove that the collection {(An, Bn)}n∈N of all pairs

of disjoint c.e. sets is uniformly enumerable.

Suggestion: enumerate triples 〈n, i, x〉, where n gives the pair of

sets, i ∈ {0, 1}, and x is in A if i = 0 and B if i = 1. Alternatively,

show that reduction, as in Exercise 5.2.13, may be done uniformly.

“All pairs of disjoint c.e. sets” means all possible pairings of c.e.

sets such that the sets are disjoint. Note that as with the c.e. sets

individually, the enumeration will contain repeats.

Exercise 5.2.17. Show that any infinite c.e. set contains an infinite

computable subset.

Exercise 5.2.18. Show that any infinite set contains a noncom-

putable subset.

Exercise 5.2.19. Prove that if A and B are both computable (re-

spectively, c.e.), then the following sets are also computable (c.e.).

(i) A ∪B

(ii) A ∩B

(iii) A⊕B := {2n : n ∈ A}∪ {2n+1 : n ∈ B}, the disjoint union or

join.

Exercise 5.2.20. Show that if A⊕B, as defined above, is computable

(respectively, c.e.), then A and B are both computable (c.e.).

Exercise 5.2.21. Two c.e. sets A, B are computably separable if

there is a computable set C that contains A and is disjoint from B.

They are computably inseparable otherwise.

(i) Let A = {x : ϕx(x)↓= 0} and B = {x : ϕx(x)↓= 1}. Show that

A and B are computably inseparable.

102 5. Computing and Enumerating Sets

(ii) Let {(An, Bn)}n∈N be the enumeration of all disjoint pairs of

c.e. sets as in Exercise 5.2.16. Let x ∈ A iff x ∈ Ax and x ∈ B

iff x ∈ Bx, and show that A and B are computably inseparable.

Hint: What if C were one of the Bn?

Exercise 5.2.22. (i) Show that if A is computably enumerable,

the union B =
⋃

e∈A We is computably enumerable.

(ii) If A is computable, is B computable?

(iii) Can you make any claims about C =
⋂

e∈A We given the com-

putability or enumerability of A?

Exercise 5.2.23. (i) Let X be a computable set, and define

A = {n ∈ N : (∃m ∈ N)(〈n,m〉 ∈ X)}.

B = {n ∈ N : (∀m ∈ N)(〈n,m〉 ∈ X)}.
Show that A is c.e. and B is co-c.e. (i.e., B is c.e.).

(ii) Let X and A be as above and assume A is noncomputable.

Prove that for every total computable function f , there is some

n ∈ A such that (∀m)(〈n,m〉 ∈ X ⇒ m > f(n)).

Exercise 5.2.24. Recall from §4.5 that the index set of all total

functions is

Tot = {e : We = N} = {e : ϕe is total}.

Prove that Tot is not computably enumerable.

Hint: Reread Theorem 5.2.4 (iv) and §4.2.

5.3. Aside: Enumeration and Incompleteness

Gödel’s incompleteness theorem [30] is often summarized as “there

are true but unprovable statements.” This is an imprecise formula-

tion, seemingly in conflict with his completeness theorem, which could

be summarized as “a statement is true if and only if it is provable.”

The meaning of “true” in the two statements is different, and in this

section, going light on details, we will elucidate the difference and dis-

cuss these theorems’ relationship to the existence of noncomputable

sets. For more details of incompleteness, I recommend Murawski [65];

5.3. Aside: Enumeration and Incompleteness 103

more details of first-order logic appear in §9.3. This section arguably

belongs in §4.5 but we can do more with it with §5.2 behind us.

A language L is a collection of symbols representing constants,

functions, and relations (the latter two come with a defined arity, or

number of inputs). Formulas in L may use those symbols as well as

variables and the logical symbols we met in §2.1 (e.g., ¬, ∀).
We have two directions to go from here. One is syntactic, where

we discuss logical deductions (proofs) of sentences in L. The other

is semantic, where we define L-structures, each of which is a set of

elements together with interpretations of the constant, function, and

relation symbols of L.
The important fact about deduction for our discussion is that

it is computable to determine whether a sequence of characters is

a formula in L, and whether a sequence of formulas is a legitimate

proof in L. In fact, the proofs are an effectively countable set, so

we can computably enumerate all the formulas that are provable in

L by taking each proof in turn and outputting its conclusion.2 The

soundness theorem says that any formula that appears on this list

must be true under the interpretation of any L-structure.
Call a formula valid if its interpretation in any L-structure is al-

ways true. A priori the set of valid formulas may properly contain the

provable formulas, but Gödel’s completeness theorem says they are

equal. Completeness plus soundness is properly written “a formula is

valid if and only if it is provable.”

For any fixed language including at least equality and another

binary relation symbol, the validity problem (or provability problem)

is undecidable. That is, the set of valid formulas is c.e. but not

computable. We will give the proof of a version of this after some

more definitions.

In any language L we may take a set T of L-sentences as axioms,

premises from which to prove other sentences. An L-structure M is a

model of T if all of the sentences of T are true when interpreted in M.

Completeness still holds: a sentence is true in all models of T if and

only if it is provable from T . A key observation is that it is possible

2Technically, we need to require the language be computable, and not consist of,
say, relations Ri with arity f(i) for a noncomputable function f .

104 5. Computing and Enumerating Sets

to have an L-sentence ϕ such that neither ϕ nor ¬ϕ is provable from

T ; such a sentence is called independent (of T).

One significant set of axioms is Robinson arithmetic, in the lan-

guage (0, S,+, ·,=, <), where 0 is a constant symbol, S a unary func-

tion symbol, + and · binary function symbols, and = and < binary

relation symbols. The axioms, described in §9.3.1, are designed to

make these work as they do in N, with S the successor function.

The standard model of Robinson arithmetic is N , the structure

with universe N and standard interpretations of the language symbols.

However, it is possible to have other models of Robinson arithmetic;

these models will all look like N at first but will have additional

nonstandard elements that are larger than every successor of 0.

Robinson arithmetic has independent sentences. We can prove

this, as Church [15] and Turing [85] did, by showing that the prov-

ability problem is undecidable. The set of provable sentences P is still

c.e., because the axioms of Robinson arithmetic are computable. We

may enumerate the set R of refutable sentences by listing ¬ϕ when-

ever a new ϕ shows up in P . These sets are disjoint, and independent

sentences exist if and only if P and R are not complements, which we

will show by proving that their union is not computable.

For f a partial computable function and any number x, we may

code the statement (∃y)(f(x) = y) (uniformly in f and x) as a state-

ment of Robinson arithmetic, which in fact will still have the shape

(∃y)θf (x, y), where θf is quantifier-free. Now, if f(x) really is defined,

there is some natural number n such that θf (x, n) is true. It can be

shown that every quantifier-free statement is provable or refutable in

Robinson arithmetic, which means θf (x, n) and thus (∃y)θf (x, y) are
provable. Conversely, if (∃y)θf (x, y) is provable, then it is true in all

models; in particular, it is true in N . Hence there is some natural

number n such that θf (x, n) holds and f(x) actually converges.

The discussion above shows that if x ∈ dom f , the sentence

(∃y)θf (x, y) is in P . If x /∈ dom f , it is possible that (∃y)θf (x, y)
is in R or that it is in neither P nor R. Suppose for a contradiction

that we may computably determine whether a logical statement is

in P ∪ R. To compute the halting problem, we simply ask whether

5.4. Enumerating Noncomputable Sets 105

(∃y)θf (x, y) is in P ∪R for x the code of f . If no, we know f(x) is un-

defined. If yes, we enumerate P and R until (∃y)θf (x, y) shows up in

one or the other. Since the halting problem is noncomputable, P ∪R

must be noncomputable. In particular, P ∪ R cannot be all logical

statements, and there must be statements that are neither provable

nor refutable: the axioms are incomplete.

So why is incompleteness phrased as “true but unprovable” sen-

tences? Gödel showed a sentence exists that is not valid but is true

in N . His version was a formalization of ψ = “there is no proof of

ψ.” Since ¬ψ = “there is a proof of ψ,” we get a contradiction if ψ

is false. Therefore ψ must be true, but it is not deducible from the

axioms of Robinson arithmetic. How do we resolve this with Gödel’s

completeness theorem?

The problem is nonstandard models, which we will now thor-

oughly anthropomorphize. A model in which ψ is false (which must

exist, by completeness) believes it has a proof of ψ, but if you ask for

the code of the proof, it will produce a nonstandard number. This is

exactly analogous to claiming a computation halts, but requires ∞+5

steps to do so. In “reality,” a.k.a. the standard model, ψ is true and

a computation either halts in finite time or never halts at all. That

is the sense of “true” in the “true but unprovable” formulation.

This gives results for more than just Robinson arithmetic, how-

ever. Any computable, consistent extension of Robinson arithmetic is

also incomplete, where “extension” means adding more axioms. More

computable machinery cannot help solve an undecidable problem or

erase the capability for self-reference that Gödel used.

5.4. Enumerating Noncomputable Sets

In order for a set A to be noncomputable, its characteristic function

must be nonequal to every total computable function. If we do not

care whether A is computably enumerable, we may decide the in-

equalities in any number of ways. If we would like A to be c.e., it is

best to work diagonally, making A such that χA(e) �= ϕe(e) (though

of course it need not be literally diagonal).

106 5. Computing and Enumerating Sets

A brief description would be “Let χA(e) = 1 if ϕe(e) = 0, and

otherwise let it be 0.” For ease of generalization we’ll expand this out

into an explicit procedure that enumerates A as we learn more about

the ϕe(e) computations.

We can think of this definition as an infinite collection of require-

ments.

Re : χA(e) �= ϕe(e)

We win each individual requirement if either ϕe(e)↑, or ϕe(e)↓ but is

different from χA(e). We must also make sure A is c.e., which is a

single requirement that permeates the construction (a global require-

ment).

To make A c.e., we put elements into it but never take them out,

and we ensure every step of the construction is computable. The

construction itself is the computable procedure that enumerates A.

Meeting each Re will be local ; none of the requirements will inter-

act with any others. We dovetail the computations in question as in

§5.1, so we will eventually see the end of any convergent computation.

If ϕe(e)↓= 0 at stage s we put e into A at that stage. If we never see

that, meaning ϕe(e)↑ or ϕe(e)↓�= 0, we keep e out; that’s the whole

construction.

Exercise 5.4.1. Prove that the procedure above produces a noncom-

putable c.e. set.

A particular kind of noncomputable set that is often used is a

simple set.

Definition 5.4.2. A c.e. set A is simple if A is infinite but contains

no infinite c.e. subsets. A is called immune.

If We is infinite, it must have nonempty intersection with A, but

there still has to be enough outside of A that A is infinite. Note that

sets with an infinite or finite complement are often called coinfinite

or cofinite, respectively.

Exercise 5.4.3. (i) Prove that if A is simple, it is not computable.

(ii) Prove that if A is simple and We is infinite, A ∩ We must be

infinite (not just nonempty).

5.4. Enumerating Noncomputable Sets 107

Exercise 5.4.4. Prove that a coinfinite c.e. set is simple if and only

if it is not contained in any coinfinite computable set.

Exercise 5.4.5. Prove that if A and B are simple, A ∩ B is simple

and A ∪ B is either simple or cofinite.

We now discuss the construction of a simple set. This perhaps

seems technical, but it is the most common way to force a set to be

noncomputable in modern constructions (we often want to construct

sets with certain properties and use construction “modules” to do

so; the simplicity module is the most common for noncomputability,

because it is easier to combine with other modules than the previous

method).

As before, we have an infinite collection of local requirements.

Re : (|We| = ∞) ⇒ (A ∩We �= ∅)
Additionally we have two global requirements.

A is c.e.

|A| = ∞

As before, to make sure A is c.e., we will enumerate it during

the construction and make sure that every step of the construction is

computable.

To meet Re while maintaining the size of A, we look for n > 2e

such that n ∈ We. When we find one, we enumerate n into A. Then

we stop looking for elements of We to put into A (the requirement Re

is satisfied).

Since We may be finite, we have to dovetail the search as in §5.1,
so at stage s we look at We,s for e < s such that We,s ∩ As = ∅.

Why does this work?

• As discussed before, A is c.e. because the construction is

computable, and numbers are only put into A, never taken

out.

• A is infinite because only the k-many requirements R0, . . . ,

Rk−1 are allowed to put numbers below 2k into A for any

k. Each enumerates at most one, leaving at least k of those

numbers in A.

108 5. Computing and Enumerating Sets

• For each We that is infinite, there must be some element

x > 2e in We. Eventually s is big enough that (a) we are

considering We, and (b) such an x is in We,s. At that point

we will put x into A and Re will be satisfied forever after.

One thing to note: we cannot tell whether any given We will be

finite or infinite. Although for a single e, or finitely many, we may

assume we know whether We is finite or infinite, that assumption is

nonuniform, as shown by Rice’s theorem (in particular, the index set

Fin). In fact, even if we know We is finite, we won’t know when its

enumeration finishes without knowing its size. Because of this, we

may act on behalf of some finite sets We unnecessarily. That’s okay,

though, because we set up the 2e safeguard to make sure we never

put so much into A that A becomes finite, and that would be the only

way that extra elements in A could hurt the construction.

More complicated requirement-based constructions are explored

in §6.2.

Chapter 6

Turing Reduction and
Post’s Problem

6.1. Reducibility of Sets

In the last two chapters, we have used the idea of computing the so-

lution to a problem or the outcome of a function via a different prob-

lem or function. Here we make that notion of relative computability

precise. In §4.5, we showed that certain problems are “at least as

noncomputable” as the halting problem by showing that access to

a decision procedure for the given problem would allow us to com-

pute the halting problem or, in other words, by reducing the halting

problem to the given problem. We begin by formalizing the notion of

“access.”

Definition 6.1.1. An oracle Turing machine with oracle A is a Tur-

ing machine that is allowed to ask a finite number of questions of the

form “is n in A?” during the course of a computation.

The restriction to only finitely many questions is so the compu-

tation remains finite. We may think of oracle machines as computers

with CD drives. We pop the CD of A into the drive, and the machine

can look up finitely many bits from the CD during its computation

on input n. Another way to think of it would be a Turing machine

with an additional internal tape that is read-only and pre-printed

109

110 6. Turing Reduction and Post’s Problem

with the characteristic function of A. That perhaps clarifies how we

might define oracle Turing machines formally and code them, as well

as making very concrete the fact that only finitely many questions

may be asked of the oracle.

The number and kind of questions the machine asks may vary

with not only the input value, but also the answers it gets along the

way; i.e., with the oracle. However, once again we must have unifor-

mity: every index must code a function that is well defined regardless

of the oracle. For example, perhaps we would like to define the char-

acteristic function of the set of all numbers that have factorizations

consisting entirely of elements from the halting set K. Although our

function must be defined for any oracle, it is not required that it be

a characteristic function at all if the oracle is not K, much less a

characteristic function of the specified sort. However, it is no more

difficult, and in fact probably easier, to define a function that always

gives the characteristic function of the set of products of elements of

the oracle.

fX(n) =

{
1 n factors into elements of X

0 otherwise

To implement f as an oracle Turing machine, the procedure must

be defined independently of n and X. One way to do so would be the

following.

• Given input n, ask if n ∈ X.

– If so, halt with output 1.

• Test divisibility of n by 2, 3, . . . , n/2.

– If n is divisible by k, ask whether k and n/k are in X.

∗ If so, halt with output 1.

∗ If k ∈ X but n/k /∈ X, test divisibility of n/k by

2, 3, . . . , n/(2k).

· If n/k is divisible by
, ask whether
 and

n/(k
) are in X.
...

• Halt with output 0.

6.1. Reducibility of Sets 111

Going back to §4.5, to show that the word problem for semi-Thue

systems is unsolvable, we produced a computable, uniform procedure

to convert the question “does ϕe(e) halt?” into one of the form “is

W a theorem of S?” The oracle computation here is of the halting

problem with an oracle for the word problem. The oracle Turing

machine makes the conversion, queries the oracle for the answer to

the particular word problem produced, and gives that as the answer

to the original question.

We denote oracles by superscript: MA for a machine, ϕA for

a function. This is where we start needing the “brackets” notation

from §5.1, because we consider the stage-s approximation of both the

oracle and the computation, and sometimes even the input: ϕAs
e,s(ns)

abbreviates to ϕA
e (n)[s]. Finite binary strings may be used as oracles,

treated as initial segments of characteristic sequences (see §3.1.3). If
σ is the oracle, any oracle query about elements ≥ |σ| is unanswered,
and the computation diverges.

Exercise 6.1.2. In the following, let σ range over all finite binary

strings, and let e, s, x, y range over N.

(i) Prove the set {〈σ, e, x, s, y〉 : ϕσ
e,s(x)↓= y} is computable.

(ii) Prove the set {〈σ, e, x, y〉 : ϕσ
e (x)↓= y} is computably enumer-

able.

When working with oracle computations we need to know how

changes in the oracle affect the computation – or really, when we

can be sure that changes won’t affect the computation. Since each

computation asks only finitely many questions of the oracle, we can

associate it with a value called the use of the computation.

Definition 6.1.3. If ϕA
e,s(x)↓, the use of the computation is

u(A; e, x, s) = 1 +max{n : “n ∈ A” asked during computation}.

For halting computations, u(A; e, x) is u(A; e, x, s) for any stage s by

which the computation has halted.

The use of divergent computations may be defined or undefined;

commonly it is defined to 0 for the stage-bounded version and un-

defined for the unbounded version. The 1+ is to make the use line

112 6. Turing Reduction and Post’s Problem

up with the definition of restriction: A � n is A ∩ {0, 1, . . . , n − 1}.
The definition ensures that A � u(A; e, x, s) includes all values about

which A is queried during the computation.

For finite binary strings σ, τ with length |σ| ≤ |τ | and infinite

binary sequence A, σ ⊆ τ and σ ⊂ A mean τ � |σ| = σ = A � |σ|.

Proposition 6.1.4 (Use Principle). (i) ϕA
e (x) = y ⇒ (∃s)(∃n)

(ϕA�n
e,s (x) = y). In fact, for a viable s, any n ≥ u(A; e, x, s) will

work.

(ii) For σ, τ finite binary strings and A an infinite binary sequence,

ϕσ
e,s(x) = y ⇒ (∀t ≥ s)(∀τ ⊇ σ)(ϕτ

e,t(x) = y)

and

ϕσ
e,s(x) = y ⇒ (∀t ≥ s)(∀A ⊃ σ)(ϕA

e,t(x) = y).

As a consequence of (ii), letting u = u(A, e, x), if A � u = B � u,

then u(B, e, x) = u and ϕA
e (x) = ϕB

e (x). In words, if A and B agree

up to the largest element ϕe(x) asks about when computing relative

to A, then in fact on input x there is no difference between computing

relative to A and relative to B because, by uniformity, ϕe is following

the same path in its “ask about 5: if yes, then ask about 10; if no,

then ask about 8” flowchart for computation. If B differs from A

up to the use with oracle A, then both the use and the output with

oracle B could be different.

The use principle is the basis for working with oracle compu-

tations. It tells us that, in constructions, if we want to preserve a

computation ϕA
e (x) while still allowing enumeration into A, we need

only prevent enumeration of numbers ≤ u(A, e, x). Any others will

leave the computation unharmed.

Definition 6.1.5. (i) A set A is Turing reducible to a set B, writ-

ten A ≤T B, if for some e, ϕB
e = χA. We also say A is B-

computable, computable with oracle B, or computable from B.

(ii) A and B are Turing equivalent, A ≡T B, ifA ≤T B andB ≤T A.

(iii) A and B are Turing incomparable, A ⊥T B, if A �≤T B and

B �≤T A.

6.1. Reducibility of Sets 113

This definition may also be made with functions. To match it to

the above, using a function f as an oracle actually means using its

(coded) graph {〈x, y〉 : f(x) = y}. Note that f = ϕA
e means only that

when ϕe is given A as its oracle, it computes f . The function f need

not involve e or A at all.

Definitions for Exercises 6.1.6 and 6.1.13 may be found in §2.3.

Exercise 6.1.6. (i) Prove that ≤T is a preorder on P(N); that is,

it is a reflexive, transitive relation.

(ii) In fact, ≤T is uniformly transitive: prove there is a function k

such that for all i, e, A,B,C, if χC = ϕB
e and χB = ϕA

i , then

χC = ϕA
k(e,i). Work at the same level of (non)rigor as in the

s-m-n theorem (4.3.1).

(iii) Prove that ≡T is an equivalence relation on P(N).

Exercise 6.1.7. Argue that u(A; e, x, s) is an A-computable function

of e, x, and s.

Exercise 6.1.8. Prove A ≡T A.

Exercise 6.1.9. (i) Prove that if A is computable, then A ≤T B

for all sets B.

(ii) Prove that if A is computable and B ≤T A, then B is com-

putable.

Exercise 6.1.10. Prove that if A is c.e. but noncomputable, there is

some non-c.e. B ≤T A.

Exercise 6.1.11. Given sets A and B, prove that B ≤T A if and

only if there exist computable functions f and g such that

x ∈ B ⇔ (∃σ)[σ ∈ Wf(x) & σ ⊂ A]

x /∈ B ⇔ (∃σ)[σ ∈ Wg(x) & σ ⊂ A],

where σ ranges over all finite binary strings, as in the use principle

6.1.4. Technically the code of σ is the element of W , as in Exercise

3.1.4, but you may ignore that detail. The discussion after Exercise

3.4.7 may be useful.

Note that Turing reduction and subset inclusion have no rela-

tionship to each other. Neither implies the other, and they do not

114 6. Turing Reduction and Post’s Problem

associate in a fixed direction: you may have A ≤T B with A ⊆ B,

B ⊆ A, or neither.

Sets that are closely related, as A and A are, are often also Turing

equivalent. The following is another such close relationship.

Definition 6.1.12. The symmetric difference of two sets A and B is

A � B = (A ∩ B) ∪ (A ∩ B).

If |A � B| < ∞ we write A =∗ B and say A and B are equal modulo

finite difference. We let A∗ denote A’s equivalence class modulo finite

difference and write A ⊆∗ B when A ∩B is finite.

Exercise 6.1.13. Prove =∗ is an equivalence relation on P(N).

Exercise 6.1.14. (i) Prove that if A =∗ B, then A ≡T B.

(ii) Prove that A ≡T B does not imply A =∗ B.

On the opposite end of the c.e. sets from the computable sets are

the (Turing) complete sets, those sets that are c.e. and that compute

all other c.e. sets. Recall that the halting set is K = {e : ϕe(e)↓}.

Theorem 6.1.15 (Post [72]). K is Turing complete.

Proof. We argued in §5.2 that K is a c.e. set. Given A, we construct

a computable function f such that x ∈ A ⇔ f(x) ∈ K. Let e be such

that A = We, and define the function ψ(x, y) to equal 0 if ϕe(x)↓,
and diverge otherwise. Since ϕe is partial computable, so is ψ, so it

is ϕi(x, y) for some i. By Theorem 4.3.1, there is a total computable

function s11 such that ϕs11(i,x)
(y) = ϕi(x, y) for all x and y. However,

since i is fixed, we may view s11(i, x) as a (computable) function of

one variable, f(x), which gives the reduction.

x ∈ A ⇒ ϕe(x)↓ ⇒ ∀y(ϕf(x)(y) = 0) ⇒ ϕf(x)(f(x))↓ ⇒ f(x) ∈ K

x /∈ A ⇒ ϕe(x)↑ ⇒ ∀y(ϕf(x)(y)↑) ⇒ ϕf(x)(f(x))↑ ⇒ f(x) /∈ K

�

Exercise 6.1.16. Prove that the weak jump H = {e : We �= ∅} is a

Turing-complete c.e. set. For explanation of the name see Theorem

7.1.17 and the discussion after.

6.2. Finite Injury Priority Arguments 115

Exercise 6.1.17. (i) Prove that the set {〈x, y〉 : y ∈ rngϕx} is a

Turing-complete c.e. set.

(ii) Is the set {x : y0 ∈ rngϕx} for fixed y0 always Turing complete?

Prove that it is or give a y0 for which it is not.

(iii) Is the set {y : y ∈ rngϕx0
} for fixed x0 always Turing complete?

Prove that it is or give an x0 for which it is not.

In §4.5 we explored some noncomputable sets. Many of them are

computably enumerable: the set of theorems of a production system,

the set of solutions to a Post correspondence system, the index set of

machines that print a 0. The only ones that are not c.e. are the index

sets that live at yet a higher level of the computability hierarchy.

In full generality every one of the noncomputable c.e. sets from §4.5
is equivalent to the halting problem, and no one has found a way to

reduce the generality to make the set weaker than the halting problem

without it becoming computable.

This prompted Emil Post to ask the following question [72].

Question 6.1.18 (Post’s Problem). Is there a computably enumer-

able set A such that A is noncomputable and incomplete?

The assumption that A is c.e. tells us ∅ ≤T A ≤T K, and the

question is whether A �≡T ∅ and A �≡T K are possible simultaneously.

The answer is yes, though it took a while to get there. One way to

solve Post’s Problem is by producing incomparable sets, though that

construction is left as Exercise 6.2.3.

Exercise 6.1.19. Prove that if A and B are Turing incomparable

c.e. sets, then neither one can be complete or computable.

We will see a different solution in the next section.

6.2. Finite Injury Priority Arguments

Suppose we have an infinite collection {Re}e∈N of requirements to

meet while constructing a set A. We’ve seen this in the noncom-

putable set constructions of §5.4. However, suppose further that these

requirements may interact with each other, and to each other’s detri-

ment. For an extremely simplified example, suppose R6 wants to put

116 6. Turing Reduction and Post’s Problem

even numbers into A and R8 wants there to be no even numbers in

A. Then if R6 puts 2 into A, R8 will take it back out, and R6 will try

again with 2 or some other even number, and again R8 will take it

back out. We’ll go round and round and neither requirement will end

up satisfied (in fact, in this example, A may not even be well-defined).

In this example the requirements are actually set directly in oppo-

sition. At the other end of the spectrum, we can have requirements

that are completely independent from each other and still have to

worry about injury to a requirement. The reason is that information

is parceled out slowly, stage by stage, since we’re working with enu-

merations rather than full, pre-known characteristic functions. Our

information is at best not known to be correct and complete, and at

worst is actually incomplete, misleading, or outright wrong. There-

fore we will make mistakes acting on it. However, we can’t wait to

act, because what we’re waiting for might never happen, and not act-

ing is almost certainly not correct either. For example, in the simple

set construction, there is no waiting until we determine whether a set

is finite. We can’t ever know if we’ve seen all the elements of the set,

so we have to act as soon as we see a chance (a large-enough num-

ber). The “mistake” we make there is putting additional elements

into the set that we didn’t have to. We eliminate the damage from

that mistake by putting a lower bound on the size of the elements

we can enumerate. In this more complicated construction, we will

make mistakes that actually cause damage, but we will also set up

the construction in such a way that the damage can be survived.

The key to getting the requirements to play nicely together is

priority. We put the requirements into a list and allow each to injure

only requirements further down the list. In our situation above, R6

would be allowed to injure R8, but not vice-versa.

The kind of priority arguments we will look at in this section

are finite-injury priority arguments. That means each requirement

only breaks the ones below it a finite number of times. We show

every requirement can recover from finitely-much injury, and so after

the finite collection of requirements earlier in the list than Re have

finished causing injury, Re can act to satisfy itself and remain satisfied

forever. [The proofs, therefore, are induction arguments.]

6.2. Finite Injury Priority Arguments 117

Let’s work through a different version of the simple set construc-

tion. Recall a c.e. set A is simple if A is infinite but contains no

infinite c.e. subset.

Theorem 6.2.1. There is a simple set.

Proof. We will construct A to be simple via meeting the following

two sets of requirements:

Re : (|We| = ∞) ⇒ (A ∩We �= ∅),

Qe : (∃n > e)(n ∈ A).

The construction will guarantee that A is computably enumerable. It

is clear, as discussed in §5.4, that meeting all Re will guarantee that

A contains no infinite c.e. subsets.

To see that meeting all Qe guarantees that A is infinite, consider

a specific Qe. If it is met, there is some n > e in A. Now consider

Qn. If it is met, there is some n′ > n in A; we may continue in this

way. Thus satisfying all Qe requires infinitely many elements in A.

We first discuss meeting each requirement in isolation. As long

as We,s ∩ As = ∅, Re looks for an element of We,s+1 that it may put

into A. Qe chooses a marker ne > e and prevents its enumeration

into A. As long as Re is allowed to enumerate an element of We into

A and Qe is able to keep its marker out of A, the requirements are

satisfied.

The Q requirements are often called negative because they want

to keep elements out of A, and the R requirements are called positive

because they want to enumerate elements into A. Some Q require-

ments will prevent R requirements from enumerating, and some R

requirements will enumerate against Q requirement wishes. The pri-

ority ordering is as follows.

R0, Q0, R1, Q1, R2, Q2, . . .

Requirements earlier in the list have higher priority (are stronger).

Under priority, each Re requirement may enumerate anything

fromWe intoA except for the elements prohibited byQ0, Q1, . . . , Qe−1.

Thus Re might injure Qe′ for some e′ > e by enumerating its chosen

value ne′ into A. This will cause the negative requirements from that

118 6. Turing Reduction and Post’s Problem

point on to choose new ne values larger than the number Re enumer-

ated into A. We therefore refer to ne,s, the value of the marker ne at

stage s.

One further definition will streamline the construction. We say a

requirement Re requires attention at stage s+ 1 if We,s ∩As = ∅ (so

Re is unsatisfied) and there is some x ∈ We,s+1 such that x �= nk,s

for all k < e. Such an x is called a witness and is a viable element

for satisfying Re at stage s+ 1.

Construction:

Stage 0: A0 = ∅. Each Qe chooses value ne,0 = e+ 1.

Stage s+1: If any Re, e ≤ s, requires attention, choose the least

such e and the least witness x for that e and let As+1 = As ∪ {x}; if
x is nk,s for any k ≥ e, let nk′,s+1 = nk′+1,s for all k′ ≥ k. Note that

this preserves the ordering ne < ne+1 for all e.

If no Re requires attention, let As+1 = As and ne,s+1 = ne,s for

all e. In either case, move on to stage s+ 1.

Verification:

Lemma 1. Each Re acts at most once.

Proof. Once We ∩A �= ∅, Re will never act again. It is clear this will

require at most one enumeration on the part of Re. $
Lemma 2. For each e, ne = lims ne,s exists. That is, the markers

eventually stop shifting to the right. Moreover, for all e, ne /∈ A, so

Qe is met.

Proof. A marker moves only when the current value of it or one of

its predecessor markers is enumerated into A. Therefore, the value of

ne can change only when some Rk for k ≤ e acts. By Lemma 1, each

such requirement acts at most once. Therefore the value of ne will

change at most e + 1 times during the construction, and afterward

will remain fixed. Each ne is in A because enumeration of a marker’s

value into A causes that marker to be moved to a different value. $
Lemma 3. If We is infinite, then We ∩A is nonempty, so Re is met.

Proof. Suppose We is infinite and let s be a stage at which all require-

ments Rk for k < e have stopped acting, which exists by Lemma 1.

This means also, as in the proof of Lemma 2, that all markers nk for

6.2. Finite Injury Priority Arguments 119

k < e have attained their final values. As there are only finitely many

such markers, and all others may be disregarded by Re, at stage s a

finite list of disallowed numbers is fixed. Since We is infinite, it must

contain numbers not on that list, and if Re has not yet been satisfied

by stage s at the next stage at which We contains an element not on

the list, Re will have the opportunity to act and will be satisfied. $
Lemma 2 shows each Qe is satisfied, and Lemma 3 shows that

each Re is satisfied. A is c.e. because the construction is computable

and never removes elements from A. Combined with the discussion

preceding the construction, this completes the proof of the theorem.

�

The point of a priority argument is that we want to accomplish

something infinitary, such as creating nonempty intersection with ev-

ery infinite c.e. set, but we cannot do it all at once. The construction

breaks that infinitary goal into finite pieces and organizes them so

that if, in satisfying one, we might hurt another, we know how and

how much.

In the construction above, we moved markers only if there was

actual injury to a Q requirement, and then each marker was simply

shifted down to the value of the next marker as of the injury. It

would be more common to move markers whenever a higher-priority

requirement enumerated into A, and to move them a great distance.

In this scenario, only Qe for e ≤ s would have defined markers at stage

s. If Re enumerated into A at s, the markers for Qê, e ≤ ê ≤ s, would

all be shifted. Qe’s marker would go to the first number larger than

every number used so far in the construction, and the rest would be

assigned values increasing from there. In a proof as simple as Theorem

6.2.1, it is just as easy to have cases where markers are moved and

cases where they are not, but in more complicated constructions it is

often easier to be able to say “these markers always get moved when

this requirement acts.” In the proof of Theorem 6.2.2 we will take

this more general approach.

In Theorem 6.2.2, however, we will also do something that seems

more specific: we want to make sure two functions are nonequal,

and we will choose a specific input value (ne) on which to ensure the

120 6. Turing Reduction and Post’s Problem

inequality. We could simply look for a difference in the inputs up to e,

or up to the current stage, but looking at a specific place streamlines

the construction and doesn’t make it any more difficult to verify.

Finally, in both theorems, the lemmas are arranged so that we

prove the construction settles down before proving the requirements

are met. This is also common. The typical approach to a priority

argument is first to determine what the requirements are, then how

each would operate in an injury-free environment, and lastly how

injury impacts them and how to control it. The initial lemmas show

that injury is manageable, so that the later lemmas can essentially

discuss requirements as though they were in an injury-free situation.

We now construct a set that gives a positive answer to Post’s

problem, Question 6.1.18.

Theorem 6.2.2. There is a c.e. set A such that A is noncomputable

and incomplete.

We will construct a simple set A together with an auxiliary c.e.

set B that is not computed by A, to show that A is incomplete.

Again, as in the previous constructions, the fact that A and B

are c.e. will be implicit in the construction, by making sure the con-

struction is computable and never removing elements from A or B.

Proof of Theorem 6.2.2. We build A simple and B c.e. such that

B �≤T A. The requirements are the following:

Re : (|We| = ∞) ⇒ (A ∩ We ∩ {x ∈ N : x > 2e} �= ∅),

Qe : ϕ
A
e �= χB.

A and B will be c.e. by construction.

The method for satisfying an Re requirement in isolation is the

same as in our original work on the simple set construction in §5.4.

We win a Qe requirement if ϕA
e is not total, or we can produce a

witness n such that ϕA
e (n) �= χB(n). The incompleteness of informa-

tion we have in this construction is that we can never know whether

a computation diverges, or whether we need to let it chug along for a

few more stages; this part is very much like the first construction of a

noncomputable set in §5.4. Each Qe will again pick a witness ne, as

6.2. Finite Injury Priority Arguments 121

in Theorem 6.2.1, but this time it will keep ne out of B unless it sees

ϕA
e (ne)↓= 0 (meaning ϕA

e and χB agree on ne). In that case, Qe puts

the witness into B. The difference between this and §5.4 is that, with

an oracle, the computation might not “stay halted.” As A changes,

the behavior of ϕA
e may also change. Therefore, Qe tries to preserve

its computation by restricting enumeration into A: it wants to keep

any new elements ≤ u(A, e, ne) out of A (recall Definition 6.1.3 and

Proposition 6.1.4).

The priority ordering is as in Theorem 6.2.1.

R0, Q0, R1, Q1, R2, Q2, . . .

Each Re must obey restraints set by Qk for k < e, but may injure

later Q requirements by enumerating into A below the restraint of

that Q, after Q has enumerated its witness into B. In that case, Q

must choose a later witness and start over.

Again, we make a streamlining definition: Re requires attention

at stage s ifWe,s∩As = ∅ and there is some x ∈ We,s such that x > 2e

and x is also greater than any restraints in place from Qk for k < e.

Qe requires attention at stage s if ne,s is defined, and ϕA
e (ne)[s]↓= 0

but ne,s /∈ Bs.

Construction:

A0 = B0 = ∅.
Stage s: Ask if any Re or Qe with e < s requires attention. If so,

take the highest-priority one that does and act to satisfy it:

• IfQe, put ne,s intoBs+1 and restrainA up to u(As, e, ne,s, s).

• If Re, put the least applicable x into As+1. Cancel the

witnesses (and restraints, if any were set) of requirements

Qk for e ≤ k ≤ s and give them new witnesses nk,s+1,

distinct unused large numbers, increasing in k.

If no requirement needs attention, do nothing.

In either case, let any ne,s+1 that was not specifically defined be

equal to ne,s and set ns,s to be the least number not yet used in the

construction. Restraints hold until they are cancelled by injury.

Verification:

122 6. Turing Reduction and Post’s Problem

Lemma 1. Each Re requirement acts at most once.

Proof. Clear. $
Lemma 2. For every e, ne = lims ne,s is defined.

Proof. As before, this lemma follows entirely from Lemma 1: since

every R requirement acts at most once, the finite collection of them

preceding Qe in the priority list will all be finished acting at some

finite stage. After that stage, whatever witness ne is in place is the

permanent value. $
Lemma 3. Every Qe requirement is met. Moreover, each Qe either

has no restraint from some stage s on or it has a permanent finite

restraint that is unchanged from some stage s on.

Proof. Consider some fixedQe. By Lemma 2, ne eventually reaches its

final value, and by Lemma 1, all higher-priority positive requirements

eventually stop acting. Thus, after some stage, Qe will never be

injured again and will have a single witness ne to worry about. By

induction, assume all higher-priority Qe requirements have stopped

acting. There are two cases:

Case 1: ϕA
e (ne) never converges to 0. That is, it either never

converges or it converges to some value other than 0. In this case, the

correct action is to keep ne out of B, which Qe does by default. Qe

is the only requirement that could put ne into B, since witnesses for

different requirements are always distinct values, so ne will remain

out of B. In this case, Qe never sets a restraint for the permanent

value of ne, and any restraints it set on behalf of earlier witnesses are

cancelled. Qe will never act again.

Case 2: ϕA
e (ne)↓= 0. Suppose the final value of ne is assigned

to Qe at stage s (so we know additionally that by stage s all higher-

priority Re requirements have stopped acting), and that at stage s′ ≥
s all higher-priority Q requirements have stopped acting. Then at

the first stage s′′ ≥ s′ such that ϕA
e (ne)[s

′′] ↓= 0, Qe will be the

highest-priority requirement needing attention and will set restraint

on A up to u(As′′ , e, ne, s
′′) and enumerate ne into B. As the only

positive requirements that might still act are bound to obey that

restraint, it will never be violated and thus the computation ϕA
e (ne)↓=

6.2. Finite Injury Priority Arguments 123

0 is permanent and unequal to χB(ne). Likewise, the restraint set is

permanent and finite, and Qe will never act again. $
Lemma 4. Every Re requirement is met.

Proof. Consider some fixed Re. By Lemma 3, let s be a stage by

which each requirement Qk, k < e, has set its permanent restraint

rk or has had its restraint canceled and never thereafter sets a new

one. By Lemma 1, let s also be large enough that all higher-priority

R requirements that will ever act have already done so. Let r =

max{2e, rk : k < e}; note that this is a finite value. If We is finite,

then Re is met automatically. If We is infinite, then it must contain

a number x > r. If Re is not already satisfied by stage s, then at

the first stage thereafter in which such an x enters We, Re will be

the highest-priority requirement needing attention and will be able

to enumerate x into A, making it permanently satisfied. $
This completes the proof of the theorem. �

Exercise 6.2.3. Construct a different solution to Post’s Problem by

a finite injury priority construction of two Turing incomparable c.e.

sets A and B. Use two versions of requirement Qe from Theorem

6.2.2. This is the approach of the original proof of the c.e. version

of Post’s problem, due independently to Friedberg [27] and Muchnik

[64], though your proof will not look much like theirs.

Exercise 6.2.4. Using a finite injury priority construction, build a

computable linear ordering L isomorphic to the natural numbers N

such that the successor relation of L is not computable. That is,

take N and reorder it by ≤L such that the ordering is total and has

a least element, and so that there is a total computable function f

such that f(x, y) = 1 if and only if x ≤L y, but no total computable

function g such that g(x, y) = 1 if and only if y is the successor of x.

The computability of the ordering will be implicit in the construction:

place s into the ordering at stage s, so you can determine whether

x ≤L y by running the construction until stage max{x, y}. For the

remainder, satisfy the following requirements:

Pe : ϕe total ⇒ (∃x, y)[ϕe(x, y) = 1 but (∃z)(x ≤L z ≤L y)],

Qx : there are only finitely many elements L-below x.

124 6. Turing Reduction and Post’s Problem

6.3. Notes on Approximation

So far, our approximations have all been enumerative processes: sets

gain elements one by one, or functions gradually give results for vari-

ous input values. There are other ways to get information about non-

computable sets; being c.e. is actually quite strong. The weakest con-

dition on a set computable fromK is simply to be computable fromK,

or Δ0
2 (see §7.2.1). For A to be Δ0

2 means there is a computable func-

tion g(x, s) such that for each x, g(x, 0) = 0, lims→∞ g(x, s) = χA(x),

and the number of times g “changes its mind” is finite (compare part

(v) of Theorem 5.2.4).

(∀x) (|{s : g(x, s) �= g(x, s+ 1)}| < ∞)

This is not a definition but a theorem, of course, and you can see its

proof in §8.1. In the context of a finite injury priority argument, we

must be able to cope with injury caused by the removal of elements

we thought were in the set as well as additional elements we hadn’t

counted on. Restraint on the set being constructed is now on both

addition and removal of elements. We also no longer know only one

change will be made; we only know the changes to each element’s

status will be finite, so eventually the approximation will be correct.

Exercise 6.3.1. Using a finite injury priority argument, build a bi-

immune Δ0
2 set A. That is, build A such that A and A both intersect

every infinite c.e. set. Meet the following requirements:

Qe : |We| = ∞ ⇒ (∃n)(n ∈ We ∩ A),

Re : |We| = ∞ ⇒ (∃n)(n ∈ We − A).

Qe puts things in, Re takes them out. Remember, since A is merely

Δ0
2, these “things” can be the same numbers, provided they only

seesaw finitely many times apiece.

In between c.e. and Δ0
2 there are various families of approxima-

bility. For a given computable function f(x), a set is f -c.e. if it has

a Δ0
2 approximation g such that the number of mind changes of g on

x is bounded by f(x). If f is the identity, we call the set id-c.e., and

when f is a constant function, we may say n-c.e. for the appropriate

value of n, where the 1-c.e. sets are simply the c.e. sets. When n is

6.3. Notes on Approximation 125

2 (f(x) = 2 for all x), we furthermore may say d.c.e., where the d

stands for difference.

Exercise 6.3.2. Is there such a thing as a 0-c.e. set? If not, why

not? If so, describe such an object.

Exercise 6.3.3. Prove that A is 2-c.e. if and only if for some e, ê,

A = We − Wê. This is the source of the term d.c.e.

Exercise 6.3.4. Prove that the intersection of two d.c.e. sets is d.c.e.

Exercise 6.3.5. Show that, for each n ≥ 0, the set {e : |We| = n} is

d.c.e.

Exercise 6.3.6. Show that the Cartesian product K × K and join

K ⊕ K are each d.c.e.

An approximation useful in the study of randomness (see §9.2)
is left computable enumerability. In a left-c.e. approximation, it is

always okay to put elements in, but only okay to take x out if you have

put in something smaller than x. This is more natural in the context

of characteristic functions viewed as infinite binary sequences. If you

think of the sequence given by χA as an infinite binary expansion of a

number between 0 and 1, then it is left-c.e. if we can approximate it

so that the numerical value of the approximation is always increasing.

Chapter 7

Two Hierarchies of Sets

7.1. Turing Degrees and Relativization

Recall from Exercise 6.1.6 that Turing equivalence is an equivalence

relation on P(N), the power set of the natural numbers. As in §2.3,
we may define a quotient structure.

Definition 7.1.1. (i) The Turing degrees (or degrees of unsolvabil-

ity) are the quotient of P(N) by Turing equivalence.

(ii) For a set A ⊆ N, the degree of A is the equivalence class of A

under Turing equivalence. This is often denoted deg(A), a, or

∼a on the chalkboard.

The Turing degrees are partially ordered by Turing reducibility,

meaning deg(A) ≤ deg(B) iff A ≤T B. This is well defined (i.e., not

dependent on the choice of degree representative A, B) by definition

of Turing equivalence and the fact that it is an equivalence relation.

Exercise 7.1.2. Prove the following.

(i) The least Turing degree is deg(∅) (also denoted 0,∅); it is the

degree of all computable sets.

(ii) Every pair of degrees deg(A), deg(B) has a least upper bound;

moreover, that l.u.b. is deg(A⊕B) (defined in Exercise 5.2.19).

(iii) For all sets A, deg(A) = deg(A).

127

128 7. Two Hierarchies of Sets

Note that for part (ii) you must show not only that deg(A⊕B) ≥
deg(A), deg(B), but also that any degree ≥ deg(A), deg(B) is also

≥ deg(A⊕ B).

It is not the case that every pair of degrees has a greatest lower

bound. The least upper bound of a pair of sets is often called their

join and the greatest lower bound, should it exist, their meet.

Exercise 7.1.3. Prove that every infinite c.e. set contains subsets of

every Turing degree.

Part (iii) of Exercise 7.1.2 explains the following definition.

Definition 7.1.4. A degree is called c.e. if it contains a c.e. set.

The maximum c.e. degree is deg(K), the degree of the halting

set, which follows from Theorem 6.1.15.

Exercise 7.1.5. The “full halting set,” often called K0, is the set

{〈x, y〉 : ϕx(y)↓}. Prove that for any c.e. degree d there is a com-

putable set A such that A ∩ K0 is in d.

Exercise 7.1.6. Prove that each Turing degree contains only count-

ably many sets.

Corollary 7.1.7. There are uncountably many Turing degrees.

Exercise 7.1.8. Using only material from the book to this point,

prove that there is no maximal Turing degree.

Relativization means fixing some set A and always working with

A as your oracle: working relative to A. Some examples follow.

Theorem 7.1.9 (Relativized s-m-n Theorem). For every m,n ≥ 1

there exists a one-to-one computable function smn of m + 1 variables

so that for all sets A ⊆ N and for all i, n-tuples x̄, and m-tuples ȳ,

ϕA
smn (i,x̄)(ȳ) = ϕA

i (x̄, ȳ).

Two important points: 1) this is a poor example of relativization,

though it is important for using relativization. This is because 2) smn
is not just A-computable, it is computable. Because of the uniformity

of oracle machine definitions, the proof here is essentially the same as

7.1. Turing Degrees and Relativization 129

for the original version; the only difference is, with oracle machines,

the exact enumeration of ϕe is different.

Here’s a better example:

Definition 7.1.10. The set B is computably enumerable in the set

A if, for some e, B = domϕA
e , also written B = WA

e .

Exercise 7.1.11. Prove that the relation “B is c.e. in A” is not

transitive.

Exercise 7.1.12. Prove that B ≤T A if and only if B and B are

both c.e. in A.

Exercise 7.1.13. Prove that B is c.e. in A if and only if B is c.e. in

A.

Exercise 7.1.14. State the relativization of the equivalent definitions

of c.e. in Theorem 5.2.4. These are also equivalent in the relativized

case.

Exercise 7.1.15. State the relativization of Exercises 5.2.11, 5.2.17,

and 5.2.18.

Exercise 7.1.16. State the relativization of the definition of com-

putable inseparability and the examples of computably inseparable

sets from Exercise 5.2.21.

Here’s a very important example of relativization.

Theorem 7.1.17. The set A′ = {e : ϕA
e (e)↓} is c.e. in A but not

A-computable.

Again, by uniformity, the proof is essentially the same as for the

original theorem. This is the halting set relativized to A, otherwise

known as the jump (or Turing jump) of A and read “A-prime” or

“A-jump”. The original halting set is often denoted ∅′ or 0′, and

therefore the Turing degree of the complete sets is denoted ∅′ or 0′

(this is never ambiguous, whereas K could easily be). Iteration of the

jump is indicated by adding additional primes (for small numbers of

iterations only) or using a number in parentheses: A′′ is the second

jump of A, a.k.a. (A′)′, but for the fourth jump we would write A(4)

rather than A′′′′.

130 7. Two Hierarchies of Sets

Exercise 7.1.18. Give an alternate solution to Exercise 7.1.8.

Exercise 7.1.19. Show that the jump is not only c.e. in the original

set, it is uniformly c.e. in that set. That is, show (∃e)(∀A)(A′ = WA
e).

The jump of a set is always strictly Turing-above the original set,

and computes it. Jump never inverts the order of Turing reducibility,

but it may collapse it.

Proposition 7.1.20. (i) If B ≤T A, then B′ ≤T A′.

(ii) There exist sets A,B such that B �T A but B′ ≡T A′.

One example of part (ii) is noncomputable low sets, sets A such

that A′ ≡T ∅′. Such a set is constructed with the aid of Theorem

8.1.1 and is discussed there.

Exercise 7.1.21. Prove part (i) of Proposition 7.1.20.

Exercise 7.1.22. Show that although the jump operator is not one-

to-one on degrees, it is on sets: prove A′ = B′ ⇒ A = B.

Exercise 7.1.23. Recall the join of two sets from Exercise 5.2.19.

Show that for any sets A and B, A′ ⊕ B′ ≤T (A⊕ B)′.

Exercise 7.1.24. While the proof of part (ii) of Proposition 7.1.20

is not yet within our reach, a modification is. The omega jump of A,

A(ω), is the join of all A(n) for n ∈ N: A(ω) = {〈x, n〉 : x ∈ A(n)}.
Show the following.

(i) For all n, A(n) �T A(ω).

(ii) A ≤T B ⇒ A(ω) ≤T B(ω).

(iii) There exist A, B such that A �T B but A(ω) ≡T B(ω).

Exercise 7.1.25. The weak jump relativized to A is HA = {e :

WA
e �= ∅}. In Exercise 6.1.16 you proved that the unrelativized weak

jump is a Turing-complete c.e. set, which means for any A, HA ≥T ∅′.
Prove that if HA ≤T ∅′, A ≤T ∅′ as well. Such A are called semi-low.

This proof will be more similar to Theorem 6.1.15 and Exercise 6.1.16

than to the more recent proofs.

7.2. The Arithmetical Hierarchy 131

7.2. The Arithmetical Hierarchy

The degrees ∅,∅′, . . . ,∅(n), . . . are, in some sense, the “spine” of the

Turing degrees, in part because starting with the least degree and

moving upward by iterating the jump is the most natural and non-

arbitrary way to find a sequence of strictly increasing Turing degrees.

Additionally, however, those degrees line up with the number

of quantifiers we need to write a logical formula. The arithmetical

hierarchy is a way of categorizing sets according to how complicated

the logical predicate representing them has to be.

Definition 7.2.1. (i) A set B is in Σ0 (equivalently, Π0) if it is

computable.

(ii) A set B is in Σ1 if there is a computable relation R(x, y) such

that

x ∈ B ⇐⇒ (∃y)(R(x, y)).

(iii) A set B is in Π1 if there is a computable relation R(x, y) such

that

x ∈ B ⇐⇒ (∀y)(R(x, y)).

(iv) For n ≥ 1, a set B is in Σn if there is a computable relation

R(x, y1, . . . , yn) such that

x ∈ B ⇐⇒ (∃y1)(∀y2)(∃y3) . . . (Qyn)(R(x, y1, . . . , yn)),

where the quantifiers alternate and hence Q = ∃ if n is odd, and

Q = ∀ if n is even.

(v) For n ≥ 1, a set B is in Πn if there is a computable relation

R(x, y1, . . . , yn) such that

x ∈ B ⇐⇒ (∀y1)(∃y2)(∀y3) . . . (Qyn)(R(x, y1, . . . , yn)),

where the quantifiers alternate and hence Q = ∀ if n is odd, and

Q = ∃ if n is even.

(vi) B is in Δn if it is in both Σn and Πn.

(vii) B is arithmetical if, for some n, B is in Σn ∪Πn.

We often say “B is Σ2” instead of “B is in Σ2.” These definitions

relativize to A by allowing the relation to be A-computable instead

132 7. Two Hierarchies of Sets

of just computable, and in that case we tack an A superscript onto

the Greek letter: ΣA
n ,Π

A
n ,Δ

A
n .

I should note here that these are more correctly written as Σ0
n and

the like, with oracles indicated as Σ0,A
n . The superscript 0 indicates

that all the quantifiers have domain N. If we put a 1 in the superscript,

we would be allowing quantifiers that range over sets as well, and

would obtain the analytical hierarchy. That’s outside the scope of

this course, but it is good to note that not every set is arithmetical.1

Exercise 7.2.2. Prove the following.

(i) If B is in Σn or Πn, then B is in Σm and Πm for all m > n.

(ii) B is in Σn if and only if B is in Πn.

(iii) B is c.e. if and only if it is in Σ1.

(iv) B is computable if and only if it is in Δ1 (i.e., Δ0 = Δ1).

(v) The union and intersection of two Σn sets (respectively, Πn, Δn

sets) are Σn (Πn,Δn).

(vi) The complement of any Δn set is Δn.

That this actually is a hierarchy, and not a lot of names for the

same collection of sets, needs to be proven.

Proposition 7.2.3. For any n ≥ 1, there is a Σn set that is not Πn.

Proof. The Σ1 sets are effectively countable by the fact that they

correspond exactly to the c.e. sets, and the Π1 sets as a consequence.

From those enumerations we may create enumerations of the Σn and

Πn sets for any larger n (n = 0 falls apart because the computable

sets are not effectively enumerable; see Example 7.3.2). This gives us

a universal Σn set S, analogous to the universal Turing machine and

itself Σn, such that 〈e, x〉 ∈ S if and only if the eth Σn set contains x.

From S, define P := {x : 〈x, x〉 ∈ S}. P is also Σn, but it is not

Πn. If it were, by part (ii) of Exercise 7.2.2, P would be Σn. However,

1One relatively simple example: a binary relation on N is a well order if it is a
linear order such that every subset of N has a least element under this ordering. N

with the usual ordering is a well order, but Q and even Q∩ [0, 1] are not - even though
the latter has a least element, any open subinterval does not. The property of being a
linear order is arithmetical, but the additional property to be a well order is not: there
is, in essence, no better way to say it than “for every subset S, there is an element of
S less than or equal to all elements of S,” which is a Π1

1 sentence.

7.2. The Arithmetical Hierarchy 133

then P is the êth Σn set for some ê. We have ê ∈ P ⇔ 〈ê, ê〉 ∈ S on

the one hand, but ê ∈ P ⇔ ê /∈ P ⇔ 〈ê, ê〉 /∈ S, a contradiction.

Likewise, the complement P is Πn but not Σn. �

Exercise 7.2.4. Prove that, for any n ≥ 1, there is a Δn+1 set that

is neither Πn nor Σn. Hint: combine P and P as in Proposition 7.2.3

and use parts (i) and (v) of Exercise 7.2.2.

A drawing of the lower levels of the arithmetical hierarchy appears

in Figure 7.1 at the end of the chapter.

You may be wondering why only one of each kind of quantifier is

allowed consecutively in the definitions. We may collapse like quan-

tifiers into a single quantifier. For example, (∃x1)(∃x2)(R(y, x1, x2))

may be rewritten (∃N)[(∃x1 < N)(∃x2 < N)(R(y, x1, x2))], which is

still Σ1 because the part in square brackets is still computable. Since

the xi quantifiers are bounded, the procedure may check each possible

pair of values in turn and be guaranteed to halt. It bears mentioning

in particular that adding an existential quantifier to the beginning of

a Σn formula keeps it Σn, and likewise for universal quantifiers and

Πn formulas.

The strong connection to Turing degree seen in Exercise 7.2.2

continues as we move up the scale of complexity.

Definition 7.2.5. A set A is Σn-complete if it is in Σn and, for every

B ∈ Σn, there is a total computable one-to-one function f such that

x ∈ B ⇔ f(x) ∈ A (we say B is 1-reducible to A). Πn-completeness

is defined analogously.

The function f need not be surjective and in general will not be;

though f allows us to compute A if we know the contents of B, we

can only enumerate subsets of B and B from A and f .

Exercise 7.2.6. Prove X is Σn-complete if and only if X is Πn-

complete.

Note that because smn from Theorem 4.3.1 is 1-1 and computable,

the proof that K is Turing-complete (Theorem 6.1.15) shows it is Σ1-

complete as well. This generalizes to iterations of the halting set.

134 7. Two Hierarchies of Sets

Theorem 7.2.7. For every n > 0, ∅(n) is Σn-complete and ∅(n) is

Πn-complete.

A lot more sets Turing-reduce to ∅′ than 1-reduce to it.

Exercise 7.2.8. Prove that A ≤T ∅′ if and only if A is Δ2.

In fact, the following also hold. Theorem 7.2.7 combined with

the proposition below is known as Post’s theorem.

Proposition 7.2.9. (i) B ∈ Σn+1 ⇐⇒ B is c.e. in some Πn set

⇐⇒ B is c.e. in some Σn set.

(ii) B ∈ Σn+1 ⇐⇒ B is c.e. in ∅(n).
(iii) B ∈ Δn+1 ⇐⇒ B ≤T ∅(n).

This strong tie between enumeration and existential quantifiers

should make sense – after all, you’re waiting for some input to do

what you care about. If it happens, it will happen in finite time (the

relation on the inside is computable), but you don’t know how many

inputs you’ll have to check or how many steps you’ll have to wait,

just that if the relation holds at all, you’ll find an appropriate input

eventually.

Exercise 7.2.10. Compare and contrast sets that are (a) Turing-

complete, (b) Σ1-complete, (c) Π1-complete, and (d) of degree ∅′.

What implications hold among these properties? Which properties

are mutually exclusive? When property (i) implies (j) but they are

not equivalent, is there a straightforward condition P such that (i) is

equivalent to [(j) & P]?

Theorem 7.2.7 and Proposition 7.2.9 both relativize. For Theo-

rem 7.2.7, the relativized version starts with “for every n > 0 and

every set A, A(n) is ΣA
n -complete” (recall that to relativize the arith-

metical hierarchy, we allow the central relation to be A-computable

rather than requiring it to be computable). The others relativize

similarly.

One more exercise, for practice.

7.3. Index Sets and Arithmetical Completeness 135

Exercise 7.2.11. (i) Prove A is Σ2 if and only if there is a total

computable function g(x, s) with codomain {0, 1} such that

x ∈ A ⇔ lim
s

g(x, s) = 1.

(ii) Without appealing to the complement, prove A is Π2 if and only

if there is a total computable function g(x, s) with codomain

{0, 1} such that

x ∈ A ⇔ lim
s

g(x, s) �= 0.

Hint for building g, when A is {x : (∃y)(∀z)R(x, y, z)}, or with

quantifiers reversed: in (i), for each x, think about the smallest y

such that so far it appears (∀z)R(x, y, z); define g(x, s) depending

on whether that has changed at s. For (ii), think about the largest

y such that, for every y′ ≤ y, it appears that (∃z)R(x, y′, z) holds.

Define g based on whether y has changed at s.

7.3. Index Sets and Arithmetical Completeness

We have seen that ∅(n) and ∅(n) are Σn- and Πn-complete, respec-

tively. Index sets give a wealth of additional examples. Most of the

following were listed in §4.5.

Fin = {e : |We| < ∞}
Inf = {e : |We| = ∞}
Tot = {e : ϕe is total}

Con = {e : ϕe is total and constant}
Rec = {e : We is computable}

Fin and Inf are complements, so by proving a completeness result

for one of them, we have proved it for the other. In fact, we will

prove that Fin is Σ2-complete and that Inf, Tot, and Con are Π2-

complete. Rec is Σ3-complete but we will prove only that it is Σ3.

All of the natural subcollections of Turing machines I am aware of

have index sets complete at some level of the arithmetical hierarchy.

This is perhaps unsurprising once you know the work that goes into

producing a set strictly between ∅ and ∅′ in degree.

136 7. Two Hierarchies of Sets

To prove a set is of a given arithmetic complexity, we must give

a defining formula with the required alternation of quantifiers, being

careful to quantify only over numbers, not sets, and give a computable

central relation. In particular, when enumerating sets or running

Turing machines, everything must be stage-bounded.

Example 7.3.1. Fin is Σ2.

Fin = {e : |We| < ∞} = {e : (∃N)(∀n)(∀s) (n > N ⇒ ϕe,s(n)↑)}

This also shows that Inf is Π2.

Example 7.3.2. Rec is Σ3.

Rec can’t be c.e., because if it were, we could diagonalize out of

it. However, we might not guess it is as high up as Σ3 without writing

out a formula.

Rec = {e : We is computable}, so the leading existential quan-

tifier says that there must be an index ê giving We’s characteristic

function. For ϕê to be that function, it must be total and have output

1 on n if n ∈ We and output 0 otherwise. Going from the “not in

We” side is hard, though, because we only have an enumeration, so

we work by making membership in We equivalent to an output of 1,

with the additional condition that ϕê is total with codomain {0, 1}.
For every n, if n appears in We, at some stage we must have

ϕê(n)↓= 1, but not necessarily at the same stage. Likewise halting

with output 1 says n must appear in We eventually, but not at a

specific stage.

Rec = {e : (∃ê)(∀n, s)(∃t)[(ϕê,t(n)↓ ∈ {0, 1} &

(n ∈ We,s ⇒ ϕê,t(n) = 1) & (ϕê,s(n) = 1 ⇒ n ∈ We,t)]}

Exercise 7.3.3. Show that Tot and Con are Π2.

Exercise 7.3.4. Recall A and B are computably separable if there is

some computable set C ⊇ A such that C ∩B = ∅. Show that

Sep = {〈x, y〉 : Wx,Wy are computably separable}

is a Σ3 set.

Exercise 7.3.5. (i) Prove that {〈x, y〉 : Wx = Wy} is Π2.

7.3. Index Sets and Arithmetical Completeness 137

(ii) Recall Definition 6.1.12 of the symmetric difference of two sets.

Prove that {〈x, y〉 : Wx =∗ Wy} is Σ3.

Example 7.3.6. Fin is Σ2-complete, and Con, Tot, and Inf are Π2-

complete.

To show that Fin is Σ2-complete, since we have already shown

it is Σ2, for any given Σ2 set A, we must produce a computable

1-1 function f such that x ∈ A ⇔ f(x) ∈ Fin. For some com-

putable relation R, x ∈ A ⇔ (∃y)(∀z)R(x, y, z), by definition of

being Σ2. It turns out to be more useful to take the complement:

x ∈ A ⇔ (∀y)(∃z)¬R(x, y, z), because we can then “cap off” the

leading universal quantifier at higher and higher points, looking to

see if there is a z for each of the finitely many y. This allows us to

define a partial computable function.

ψ(x,w) =

{
0 (∀y ≤ w)(∃z)¬R(x, y, z)

↑ otherwise

This is partial computable despite the unbounded existential quan-

tifier because we can dovetail the (finitely many) searches for a z to

match each y ≤ w. If each y has such a z we will eventually find it, and

if not, it is simply a divergent unbounded search. As usual, ψ is some

ϕe, we can use s-m-n to push x into the index, e is fixed by A and we

end up with a 1-1 total computable f such that ϕf(x)(w) = ψ(x,w).

To finish the proof we show that f demonstrates the Σ2 completeness

of Fin.

If x ∈ A, all y have a matching z, every w gives a convergent

search, and ϕf(x) is the constant 0 function. If x ∈ A, there is some

y that has no matching z, and ϕf(x) will diverge on all w from the

least such y on. That is,

x ∈ A ⇒ Wf(x) finite ⇒ f(x) ∈ Fin, and

x ∈ A ⇒ (∀w)(ϕf(x)(w) = 0) ⇒ f(x) ∈ Con ⊂ Tot ⊂ Inf = Fin.

Note that this shows Π2 completeness for Con, Tot, and Inf only

in conjunction with the previous proofs that those sets are each Π2.

Exercise 7.3.7. Show that {〈x, y〉 : Wx = Wy} is Π2-complete by

showing Tot 1-reduces to it.

138 7. Two Hierarchies of Sets

∅′′-c.e. (Rec, Sep) Σ3

		
		

		
		

Π3

∅′′-co-c.e.

Δ3

		
		

		
		

computable from ∅′′

∅′-c.e. (Fin) Σ2

		
		

		
		

Π2

∅′-co-c.e. (Inf,Tot,Con)

Δ2

��
��
��
��

��
��

��
��

computable from ∅′

c.e. Σ1

��
��

��
��

Π1

��
��
��
��

co-c.e.

Δ1 = Δ0 = Π0 = Σ0; computable

Figure 7.1. A picture of the arithmetical hierarchy.
Each set is contained in those directly above it and those above
it to which it is connected by lines.

Chapter 8

Further Tools and
Results

Where do we go from here? This chapter gives some ideas and results

in computability theory that continue the work so far; Chapter 9 takes

a little leap to survey some current areas of research.

8.1. The Limit Lemma

Proposition 5.2.4 part (v) gave a characterization of computably enu-

merable sets in terms of computable approximations to their char-

acteristic functions: the approximation had to start at 0 and could

change to 1 at most once per input. We know that not every set

reducible to ∅′ is c.e.; for example, there are noncomputable co-c.e.

sets and sets that are the join of a c.e. set and a co-c.e. set, both

noncomputable, and hence neither c.e. nor co-c.e. themselves. We

may ask whether this can be characterized in terms of value changes

of approximations, and the following theorem shows it can.

Theorem 8.1.1 (Limit Lemma [78]). For any function f , f ≤T B′ if

and only if there is a B-computable function g(x, s) such that f(x) =

lims g(x, s).

In particular, f ≤T ∅′ iff there is a computable function g that

limits to f . Since not all sets reducible to ∅′ are c.e., this is often

139

140 8. Further Tools and Results

the most useful approach. As discussed in §3.1.1, for the limit to

exist, g may change value (for any given x) only finitely many times.

However, the number of changes may be arbitrarily large.

One significant use of this theorem is in the construction of low

sets. Recall that A is low if A′ ≡T ∅′. If A is c.e., it suffices to show

A′ ≤T ∅′, because if ∅ ≤T A, we always have ∅′ ≤T A′.

In the construction of a low set, we work by making sure that

if the computation ϕA
e (e)[s] converges infinitely many times (i.e., for

infinitely many stages s), then it converges. That is, it either eventu-

ally forever diverges or eventually forever converges. This guarantees

the limit of the following function always exists.

g(e, s) =

{
0 if ϕA

e (e)[s]↑
1 if ϕA

e (e)[s]↓

The function g is computable provided the construction is computable

(so thatAs may be obtained from s), and if lims g(x, s) exists, it has to

match χA′(x). Hence by forcing the limit to exist, the Limit Lemma

gives A′ ≤T ∅′.
To prove the theorem we need an auxiliary function.

Definition 8.1.2. Suppose g(x, s) converges to f(x). A modulus (of

convergence) for g is a function m(x) such that for all s ≥ m(x),

g(x, s) = f(x). The least modulus is the function m(x) = (μs)(∀t ≥
s)[g(x, t) = f(x)].

Exercise 8.1.3. Notation is as in Definition 8.1.2.

(i) Prove that the least modulus is computable in any modulus.

(ii) Prove that f is computable from g together with any modulus

m for g.

In general, we cannot turn the reducibility of (ii) around, but for

functions of c.e. degree there will be some modulus computable from

f (and hence the least modulus will also be computable from f).

Theorem 8.1.4 (Modulus Lemma). If B is c.e. and f ≤T B, then

there is a computable function g(x, s) such that lims g(x, s) = f(x)

for all x and a modulus m for g that is computable from B.

8.1. The Limit Lemma 141

Proof. Let B be c.e. and let f = ϕB
e . Define the following functions:

g(x, s) =

{
ϕB
e (x)[s] if ϕB

e (x)[s]↓,
0 otherwise,

m(x) = (μs)(∃z ≤ s)[ϕB�z
e (x)[s]↓ & Bs � z = B � z].

Clearly, g is computable; m is B-computable because the clauses in-

side are B-computable, the quantifier on z is bounded and hence does

not increase complexity, and the unbounded search always halts, by

choice of e. The second clause furthermore gives the desired property,

that m is a modulus, because B is c.e., and hence once the approxi-

mation Bs matches B, it will never change to differ from B. �

Proof of Theorem 8.1.1. (⇒) Suppose f ≤T B′. We know B′ is

c.e. in B, so g(x, s) exists and is B-recursive by the Modulus Lemma

8.1.4 relativized to B.

(⇐) Suppose the B-computable function g(x, s) limits to f(x).

Define the following finite sets.

Bx = {s : (∃t)[s ≤ t & g(x, t) �= g(x, t+ 1)]}

If we let C = {〈s, x〉 : s ∈ Bx} (also denoted ⊕xBx), then C is ΣB
1

and hence c.e. in B; therefore, C ≤T B′. Additionally, given x, it is

computable from C (and hence from B′) to find the least modulus

m(x) = (μs)[s /∈ Bs]. Hence f ≤T m⊕ B ≤T C ⊕ B ≤T B′. �

We can actually distinguish the c.e. degrees from the non-c.e. Δ2

degrees via properties of the modulus.

Corollary 8.1.5. A function f has c.e. degree iff f is the limit of a

computable function g(x, s) that has a modulus m ≤T f .

Exercise 8.1.6. Prove Corollary 8.1.5. For (⇒) apply the Modulus

Lemma; for (⇐) use C from the proof of the Limit Lemma.

Exercise 8.1.7. (i) Relativize the definition of simple set (Defini-

tion 5.4.2) to oracle ∅′.
(ii) What degree-theoretic conclusion can you make about a set A

that meets your definition in (i)?

142 8. Further Tools and Results

(iii) Could a computable procedure construct a set that meets your

definition in (i)? That is, could one computably create a stage-

wise approximation that in the limit gives the correct set? If so,

explain how the requirement would be written and met. If not,

explain why and say what oracle would be required to compute

the construction.

Exercise 8.1.8. Work out the priority construction of a simple low

set, with simplicity requirements Re as usual and lowness require-

ments

Qe : (∃∞s)(ϕAs
e,s(e)↓) ⇒ ϕA

e (e)↓ .

8.2. The Arslanov Completeness Criterion

This is a result that can be viewed as the flip side of the recursion the-

orem. Every total computable function has an index-level fixed point,

so a total function with no index-level fixed point must be noncom-

putable. The result below strengthens that to find a fixed-point-type

characterization of Turing completeness. We need an extension of the

recursion theorem, due to Kleene.

Theorem 8.2.1 (Recursion Theorem with Parameters). If f(x, y) is

a computable function, then there is a computable function h(y) such

that ϕh(y) = ϕf(h(y),y) for all y.

Proof. Define a computable function d as follows.

ϕd(x,y)(z) =

{
ϕϕx(x,y)(z) if ϕx(x, y)↓,
↑ otherwise.

Choose v such that ϕv(x, y) = f(d(x, y), y). Then h(y) = d(v, y) is a

fixed point, since unpacking the definitions of h, d and v (and then

repacking h), we see that

ϕh(y) = ϕd(v,y) = ϕϕv(v,y) = ϕf(d(v,y),y) = ϕf(h(y),y).

�

In fact, we may replace the total function f(x, y) with a partial

function ψ(x, y) and have total computable h such that whenever

ψ(h(y), y) is defined, h(y) is a fixed point. The proof is identical

to the proof of Theorem 8.2.1. Note that the parametrized version

8.2. The Arslanov Completeness Criterion 143

implies the original version; if in the original you wanted a fixed point

for the total computable function g(x), define f(x, y) = g(x).

The kind of fixed point for which avoidance is equivalent to com-

pleteness is a domain-level fixed point, where x and f(x) index the

same c.e. set.

Theorem 8.2.2 (Arslanov Completeness Criterion [5,6]). A c.e. set

A is complete if and only if there is a function f ≤T A such that

Wf(x) �= Wx for all x.

Proof. (⇒) Assume we are given a Turing-complete c.e. set A. In

Exercise 6.1.16 you proved that the weak jump H = {e : We �= ∅} is

also complete, and hence Turing-equivalent to A. Define f by

Wf(x) =

{
∅ x ∈ H,

{0} x /∈ H.

It is clear f ≤T H ≡T A, and that f satisfies the right-hand side of

the theorem.

(⇐) Let A be c.e., and assume f ≤T A is such that (∀x)[Wf(x) �=
Wx]. By the Modulus Lemma 8.1.4, there is a computable function

g(x, s) that limits to f and such that g has a modulus m ≤T f

(and hence m ≤T A). Define the partial function θ(x) = (μs)[x ∈
∅′s]. When x /∈ ∅′, θ(x) diverges; otherwise it gives the stage of x’s

enumeration into ∅′.
We show ∅′ ≤T A by showing that A can compute a function at

least as large as θ, and therefore knows when to stop waiting for x to

enter ∅′. Define the following partial function.

ψ(y, x) =

{
g(y, θ(x)) x ∈ ∅′,
↑ x /∈ ∅′.

By Theorem 8.2.1, let h be a computable function giving a fixed

point for ψ, with the following consequence.

Wh(x) =

{
Wg(h(x),θ(x)) x ∈ ∅′,
∅ x /∈ ∅′.

Note that this is not technically the h from the theorem; there is no

guarantee in Theorem 8.2.1 that h(x) will index the empty function

144 8. Further Tools and Results

when ψ(h(x), x)↑, but we can force that computably by not allowing

ϕh(x) to converge on any input until x enters ∅′.
For the rest, recall that m(x) gives a stage by which g(x, s) has

achieved its final value, f(x). Now if x ∈ ∅′ and θ(x) ≥ m(h(x)),

then g(h(x), θ(x)) = f(h(x)) and Wf(h(x)) = Wh(x), contrary to as-

sumption on f . Therefore, if x ∈ ∅′, we must have θ(x) < m(h(x)),

meaning

x ∈ ∅′ ⇐⇒ x ∈ ∅′m(h(x)).

Since m ≤T A and h is computable, A can determine whether x ∈ ∅′
by enumerating ∅′ through stage m(h(x)), and so ∅′ ≤T A. �

Corollary 8.2.3. Given a c.e. degree a, a < 0′ if and only if for

every function f ∈ a there exists n such that Wn = Wf(n).

The condition of being computably enumerable is necessary –

there is a Δ0
2 degree strictly below ∅′ such that some f reducible to

that degree has the property (∀e)[We �= Wf(e)]. What else can be

said about fixed points? We might look at ∗-fixed points; that is, n

such that Wn =∗ Wf(n) (see Definition 6.1.12). These are also called

almost fixed points. Weaker still are Turing fixed points, n such that

Wn ≡T Wf(n).

As a catalogue:

• Any total function f ≤T ∅′ has an almost fixed point.

• A Σ0
2 set A ≥T ∅′ is Turing-equivalent to ∅′′ if and only if

there is some f ≤T A such that f has no almost fixed points.

• Any total function f ≤T ∅′′ has a Turing fixed point.

In fact, there is a whole hierarchy of fixed-point completeness

criteria. We can define equivalence relations ∼α for α ∈ N as follows:

(i) A ∼0 B if A = B,

(ii) A ∼1 B if A =∗ B,

(iii) A ∼2 B if A ≡T B,

(iv) A ∼n+2 B if A(n) ≡T B(n) for n ∈ N.

Now completeness at higher levels of complexity may be defined

in terms of computing a function that has no ∼α-fixed points.

8.3. E Modulo Finite Difference 145

Theorem 8.2.4 (Generalized Completeness Criterion [5,6,42]). Fix

α ∈ N. Suppose ∅(α) ≤T A and A is c.e. in ∅(α). Then

A ≡T ∅(α+1) ⇐⇒ (∃f ≤T A)(∀x)[Wf(x) �∼α Wx].

Notice this gives us a third hierarchy of sets that matches up

with the Turing degrees and arithmetical hierarchy at iterations of

the halting problem.

Exercise 8.2.5. The set B is productive if there is a partial com-

putable function ψ, called a productive function for B, with the fol-

lowing property.1

(∀x) [Wx ⊆ B ⇒ [ψ(x)↓ & ψ(x) ∈ B − Wx]]

A c.e. set A is creative if its complement is productive. Use Theorem

8.2.2 to show that any creative set A is complete. Hint: Wf(x) =

{ψ(x)} is a good start, but remember the consequent of the productive

function implication may hold even if the antecedent fails.

Exercise 8.2.6. A set A is effectively simple if it is simple (Definition

5.4.2), and furthermore there is a computable function g such that

(∀e)[We ⊆ A ⇒ |We| ≤ g(e)].

Use Theorem 8.2.2 to show that any effectively simple set A is com-

plete. Hint: what if Wf(x) is always a subset of A?

8.3. E Modulo Finite Difference

Recall from 6.1.12 that A =∗ B means that A and B differ only

by finitely many elements, and =∗ is an equivalence relation that

implies Turing equivalence. When A =∗ B, we often treat A and B

as interchangeable, and say we are working modulo finite difference.

The usefulness of working modulo finite difference is that it gives you

wiggle room in constructions – as long as eventually you’re putting

in exactly the elements you want to be, it doesn’t matter if you mess

up a little at the beginning and end up with a set that is not equal

to what you want, but is ∗-equal.

1This definition was inspired by Gödel’s incompleteness theorem, as in §5.3. If
B is the set of sentences true in the standard model of arithmetic and W is the set
of sentences provable from the axioms of arithmetic, we can computably produce a
sentence that is not in W but is in B.

146 8. Further Tools and Results

Nearly all of the properties of sets we care about are closed under

finite difference; that is, if A has the property and B =∗ A, then B has

the property as well. For example, Exercise 6.1.14 showed that each

Turing degree is closed under finite difference. To see that Turing

completeness is closed under finite difference requires a bit of extra

work:

Exercise 8.3.1. Prove that the property of being computably enu-

merable is closed under finite difference.

Simplicity, Definition 5.4.2, is another example.

Exercise 8.3.2. Prove that simplicity is closed under finite differ-

ence.

This is what allows injury arguments to work. In §6.2 we saw con-

structions where requirements were banned from enumerating any-

thing smaller than a certain value. The fact that the properties

we were trying to achieve are closed under finite difference means

a threshold like that, provided it does stop at a finite point, is not a

barrier to succeeding in the construction.

The structure of the c.e. sets modulo finite difference has been the

object of much study. We usually use E to denote the c.e. sets and E∗

to denote the quotient structure E/=∗. The letters N and R are used

to denote the collection of all subsets of N and of the computable sets,

respectively. Unlike when we work with degrees, the lattice-theoretic

operations we’d like to perform are defined everywhere.

Definition 8.3.3. E , R, and N are all lattices, partially ordered sets

where every pair of elements has a least upper bound (join) and a

greatest lower bound (meet). The ordering in each case is subset

inclusion. The join of two sets A and B is A ∨ B := A ∪ B; their

meet is A∧B := A∩B. In each case, these operations distribute over

each other, making all three distributive lattices. Moreover, all three

lattices have least and greatest element (not required to be a lattice):

the least element in each case is ∅ and the greatest is N. A set A is

complemented if there is some B in the lattice such that A∨B is the

greatest element and A ∧ B is the least element; the lattice is called

complemented if all of its elements are. A complemented, distributive

8.3. E Modulo Finite Difference 147

lattice with (distinct) least and greatest element is called a Boolean

algebra.

Exercise 8.3.4. (i) What is the least number of elements a Boolean

algebra may have?

(ii) Show that N and R are Boolean algebras but E is not.

(iii) Characterize the complemented elements of E .

Definition 8.3.5. A property P is definable in a language (a set of

relation, function, and constant symbols) if, using only the symbols in

the language and standard logical symbols, one may write a formula

with one free variable such that an object has property P if and only if

when filled in for the free variable it makes the formula true. Likewise

we may define n-ary relations (properties of tuples of n objects) using

formulas of n free variables.

For example, the least element of a lattice is definable in the lan-

guage L = {≤} (where we interpret ≤ as whatever ordering relation

we’re actually using; here it is ⊆) by the formula ψ(y) = (∀x)[y ≤ x].

ψ(y) holds if and only if y is less than or equal to all elements of the

lattice, which is exactly the definition of least element.

Exercise 8.3.6. Let the language L = {≤} be fixed.

(i) Show that the greatest element is definable in L.

(ii) Show that meet and join are definable (via formulas with three

free variables) in L.

Definition 8.3.7. An automorphism of a lattice L is a bijective func-

tion from L to L that preserves the partial order.

Exercise 8.3.8. (i) Show that automorphisms preserve meets and

joins.

(ii) Show that a permutation of N induces an automorphism of N .

Definition 8.3.9. Given a lattice L, a class X ⊆ L is invariant

(under automorphisms) if, for any x ∈ L and automorphism f of L,
f(x) ∈ X ⇐⇒ x ∈ X. X is an orbit if it is invariant and transitive:

for any x, y ∈ X, there is an automorphism f of L such that f(x) = y.

148 8. Further Tools and Results

Exercise 8.3.10. What sort of structure (relative to automorphisms)

must an invariant class that is not an orbit have?

Definition 8.3.11. A property P of c.e. sets is lattice-theoretic (l.t.)

in E if it is invariant under all automorphisms of E . P is elementary

lattice theoretic (e.l.t.) if there is a formula of one free variable in

the language L = {≤,∨,∧, 0, 1}2 that defines the class of sets with

property P in E , where ≤, 0, 1 are interpreted as ⊆, ∅,N, respectively.

Exercise 8.3.12. Show that a definable property P is preserved by

automorphisms; that is, that e.l.t. implies l.t.

The definition and exercise above still hold when we switch from

E to E∗. Here’s where the additional usefulness of working modulo

finite difference comes in. As mentioned before, we are almost always

worried about properties that are closed under finite difference.

Exercise 8.3.13. Using part (iii) of Exercise 8.3.4, show that the

property of being finite is definable in E .

Exercise 8.3.14. From Exercise 8.3.13, suppose F (X) is a formula

in the language {⊆} that is true of X ∈ E if and only if X is finite.

Prove that the relation X =∗ Y is also definable in {⊆}.

Exercise 8.3.15. Using Exercise 8.3.14, show that any property P

closed under finite differences is e.l.t. in E if and only if it is e.l.t. in

E∗.

To show something is not e.l.t., one would likely show it is not

l.t. by constructing an automorphism under which it is not invariant.

Automorphisms are easier to construct in E∗ than in E , and by the

agreement of definability between those two structures we can get

results about E from E∗. There will be more on this in §9.1.

2Though meet, join, and least and greatest element are definable from the partial
order, we often include them in the language to simplify writing formulas.

Chapter 9

Areas of Research

In this chapter I try to give you a taste of various areas of computabil-

ity theory in which research is currently active. Actually, only §9.1
discusses “pure” computability theory; the others are independent

areas that intersect significantly with computability.

9.1. Computably Enumerable Sets and Degrees

The Turing degrees are a partially ordered set under ≤T , as we know,

and we also know any pair of degrees has a least upper bound and

not every pair of degrees has a greatest lower bound (a meet). What

else can be said about this poset?

Definition 9.1.1. D is the partial ordering of the Turing degrees,

and D(≤ a) is the partial order of degrees less than or equal to a. R
is the partial order of the c.e. Turing degrees (so R ⊂ D).1

Question 9.1.2. Is there a nonidentity automorphism of D? Of R?

It is also still open whether there is a “natural” solution to Post’s

problem. The decidability problems we stated all gave rise to sets that

are complete, and to get something noncomputable and incomplete we

resorted to a finite-injury priority argument. Is there an intermediate

set that arises naturally from, say, a decision problem?

1It is unfortunate that this repeats the notation for the computable sets in §8.3.

149

150 9. Areas of Research

I think of classes of Turing degrees as being picked out by two

kinds of definitions:

• Computability-theoretic definitions are of the form “A degree

d is (name) if it contains a set (with some computability-

theoretic property).”

• Lattice-theoretic definitions are properties defined by predi-

cates that use basic logical symbols (&, ∨, ¬, →, ∃, ∀) plus
the partial order relation. Their format is somewhat less

uniform but could be summed up as “A degree d is (name)

if (it sits above a certain sublattice/it sits below a certain

sublattice/there is another degree with a specified lattice

relationship to it).”

Computability-theoretic definitions include c.e., simple, low and

high degrees. The lattice-theoretic definitions are the kind we saw

in §8.3. The definitions for least element, greatest element, join, and

meet from that section carry over into this setting. They work for any

partial order, since they are defined using only logical symbols and the

ordering, though they may be empty in some partial orders (such as

greatest element in D). Sometimes the two kinds of definition line up:

every c.e. degree except ∅ contains a simple set, so simplicity in R is

equivalent to the lattice-theoretic definition “not the least element.”

To say a property is definable in the lattice means this latter kind of

definition.

For the following lattice-theoretic definition, recall that ∅ and ∅′

are definable in R as least and greatest element, respectively.

Definition 9.1.3. A degree a ∈ R is cuppable if (∃b)(b �= ∅′ & a ∨
b = ∅′). The degree a is cappable if (∃c)(c �= ∅ & a ∧ b = ∅).

Another aspect of lattices that helps distinguish them from each

other is their substructures.

Definition 9.1.4. A poset L is embeddable into another poset M if

there is a one-to-one order-preserving function from L into M .

In Example 2.3.23 we had a lattice with eight elements; call it

L. We can embed the four-element diamond lattice into L in many

different ways, where in some embeddings the least element of the

9.1. Computably Enumerable Sets and Degrees 151

diamond maps to the least element of L, in some the greatest element

of the diamond maps to the greatest element of L, and in some both

happen together.

We have various directions to travel:

• Given a computability-theoretic degree definition, is there

an equivalent lattice-theoretic definition?

• Given a lattice-theoretic definition, does it correspond to

anything in these particular lattices or is it empty? If the

former, is there an equivalent computability-theoretic defi-

nition?

• What lattices embed into D and R? Can we embed preserv-

ing lattice properties such as least and greatest element?

On the second topic, let’s return to cuppable and cappable de-

grees. Both do exist, and in fact they relate to a computability-

theoretic property. First, a definition.

Definition 9.1.5 (Maass [58]). A coinfinite c.e. set A is promptly

simple if there is a computable function p and a computable enumer-

ation of A such that, for every e, if We is infinite, there are s and x

such that x enters We at stage s and x enters A no later than stage

p(s).

As usual, a degree is promptly simple if it contains a promptly

simple set. The following result shows that prompt simplicity is de-

finable in R.

Theorem 9.1.6 (Ambos-Spies, Jockusch, Shore, and Soare [2]). The

promptly simple degrees are exactly the non-cappable degrees.

Remember that a set is low if its Turing jump is equivalent to ∅′.
A c.e. degree is low cuppable if it is cuppable with a low c.e. degree

as its cupping partner.

Theorem 9.1.7 ([2]). The non-cappable degrees are exactly the low

cuppable degrees. Furthermore, every degree either caps or low cups,

though none do both.

152 9. Areas of Research

It is possible for a degree to cap and cup, just not cap and low

cup. It is also, as we will see below, not possible for a degree to cap

and cup via the same partner degree.

A pair of c.e. degrees that are capping partners in R is also called

a minimal pair ; there will be other degrees between each individual

degree and ∅ but nothing that is below both of them and above ∅.
This definition is purely lattice theoretic: we do not have to know

where the poset R comes from to understand it. However, showing

that minimal pairs exist in R – that the lattice-theoretic definition

is not empty – is accomplished via a priority argument, building two

noncomputable c.e. sets in such a way that anything computable from

both of them is simply computable.

To discuss embeddability, we define some simple lattices, all with

least and greatest elements. The diamond lattice is a four-element

lattice with two incomparable intermediate elements. The pentagon,

N5, has two intermediate elements that are comparable and one that

is not. The 1-3-1, M3, has three incomparable intermediate elements.

Finally, S8 is a diamond on top of a 1-3-1.

�
�

�
�
�

�
�

�����

�����

�

�

�

�

�
�

�
�
�

�
�

��
�

�
�
�
�

�
��

�

�

� �

��
����

���

���

���
����

��
�

�

�

N5 M3 S8

An important distinction between these lattices is distributivity.

A lattice is distributive if a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c); i.e., meet

and join distribute over each other. The diamond is distributive, but

neither the pentagon nor the 1-3-1, and hence S8, are distributive. In

fact, the non-distributive lattices are exactly those that contain the

pentagon or the 1-3-1 as a sublattice.

All finite distributive lattices embed into R preserving least el-

ement, as do the pentagon and 1-3-1, but not S8. Where the em-

beddability cutoff lies is open. The lattices listed above also embed

preserving greatest element instead of least element, but it is an open

question as to whether a lattice embeds into R preserving greatest

element if and only if it embeds preserving least element.

9.1. Computably Enumerable Sets and Degrees 153

It is not always possible to embed preserving both least and great-

est element. The Lachlan non-diamond theorem [53] shows this for

the diamond lattice and R. This is what tells us a c.e. degree cannot

cup and cap with the same partner degree, because such a pair would

then form the center of a diamond with least element ∅ and greatest

element ∅′.

For more on embedding, see the survey by Lempp, Lerman, and

Solomon [54].

Recall from §8.3 that we may also discuss the lattice E of c.e. sets

under ⊆. The greatest element is N and the least is ∅. Every pair of

sets has a defined meet and join, given by intersection and union.

From join we have the idea of splitting, producing a pair of disjoint

c.e. sets that union to the given set. Friedberg splitting is a useful

example.

Theorem 9.1.8 (Friedberg Splitting [28]). If B is noncomputable

and c.e. there is a splitting of B into c.e., noncomputable A0, A1

such that if W is c.e. and W − B is non-c.e., then W − Ai is also

non-c.e. for i = 0, 1 (this implies the Ai are noncomputable by setting

W = N).

Note that ifW−B is not c.e.,W must have an infinite intersection

not only with B, but with each of A0 and A1. If W ∩ A0 were

finite, say, then W −A0 =∗ W , and equality modulo finite difference

preserves enumerability (Exercise 8.3.1). Therefore, anything that

takes a big bite out of B does so in such a way that it takes a big

bite out of both of the splitting sets. That’s what makes this theorem

useful; the splitting is very much “down the middle” of B.

Splitting questions in general ask “ifB has a certain computability-

theoretic property, can we split it into two sets that both have that

same property?” or, “Can every c.e. set be split into two sets with a

given property?” For example, consider the following definition.

Definition 9.1.9. A c.e. set B is nowhere simple if, for every c.e. C

such that C −B is infinite, there is some infinite c.e. set W ⊆ C −B.

Theorem 9.1.10 (Shore [79]). Every c.e. set can be split into two

nowhere simple sets.

154 9. Areas of Research

Finally, we may explore the interplay between sets and degrees.

Most work in this area is on E and R. This is a different connection

between computability theory and lattice theory than Theorem 9.1.6,

since the lattice is that of the c.e. sets under inclusion.

The main topic here is degree invariance, which is a correspon-

dence between invariant classes of sets, as in Definition 8.3.9, and

collections of degrees. Given Question 9.1.2, discussing invariance for

degrees via automorphisms of degrees is problematic. Degree invari-

ance in the following sense is a variation that we can work with.

Definition 9.1.11. A collection of c.e. Turing degrees C is invariant

over E if there exists a collection of c.e. sets S such that

(i) for every d ∈ C, there is some W ∈ S such that deg(W) = d.

(ii) for every W ∈ S, deg(W) ∈ C.

(iii) S is invariant under automorphisms of E .

Degree invariance is one way to argue for the naturality of a

collection of degrees, that it is less imposed on the c.e. sets and more

drawn out from them. We include just one example.

Definition 9.1.12. A coinfinite c.e. set W is maximal in E if, for

any c.e. set Z such that W ⊆ Z ⊆ N, either W =∗ Z or Z =∗ N.

Anything between a maximal set and N is either essentially the

maximal set or essentially all of N. Maximal sets put an end to Post’s

program to find a noncomputable set which had such a small comple-

ment, was so close to being all of N without being cofinite and hence

computable, that it would have to be Turing incomplete (see [68],

Chapter III). A maximal set has the smallest possible complement

from a c.e. set point of view, but not all maximal sets are incomplete.

However, all maximal sets are high, and every high degree con-

tains a maximal set, as shown by Martin [60]. Since =∗ is definable in

E , maximality is as well, and so the maximal sets are invariant under

automorphisms of E . Hence the high degrees are invariant.

9.2. Randomness 155

9.2. Randomness

With a fair coin, any one sequence of heads and tails is just as likely

to be obtained as any other sequence of the same length. However,

our intuition is that a sequence of all heads or all tails, presented as

the outcome of an unseen sequence of coin flips, smells fishy. It’s just

too special, too nonrandom. Here we’ll present one way to quantify

that intuitive idea of randomness and briefly explore some of the

consequences and applications.

We will discuss randomness for infinite binary sequences. There

are three main approaches to randomness.

(I) Compression: is there a short description of the sequence?

(II) Betting: can you get unboundedly rich by betting on the bits

of the sequence?

(III) Statistics: does the sequence have any “special” properties?

Intuitively, the answer to each of those should be “no” if the

sequence is to be considered random: a random sequence should be

incompressible, unpredictable, and typical. There are different ways

to turn these approaches into actual mathematical tests. The most

fundamental are the following, in the same order as above.

(I) Kolmogorov complexity: How long an input does a prefix-free

Turing machine need in order to produce the first n bits of the

sequence as output? If it’s always approximately n or more, the

sequence is random. (Prefix-free TMs will be defined shortly.)

(II) Martingales: Take a function that represents the capital you

hold after betting double-or-nothing on successive bits of a se-

quence (so the inputs are finite strings and the outputs are

non-negative real numbers). Take only such functions that are

computably approximable from below. Those are the c.e. mar-

tingales; if every such function has bounded output on inputs

that are initial segments of your sequence, then the sequence

is random.

156 9. Areas of Research

(III) Martin-Löf tests: A computable sequence of c.e. sets {Un} such

that the measure of Un is bounded by 2−n will have intersec-

tion of measure zero; this measure-zero set represents statisti-

cal “specialness.” If your sequence is outside every such mea-

sure zero set, then it is random. (Measure will also be defined

shortly.)

The nice thing about the implementations above is that they coin-

cide [76]: A sequence is random according to Kolmogorov complexity

if and only if it is random according to c.e. martingales if and only if

it is random according to Martin-Löf tests. We call such a sequence

1-random.

The changes made to these approaches to implement randomness

in a different way tend to be restricting or expanding the collection

of Turing machines, betting functions, or tests. We might take away

the requirement that the machine be prefix-free, or we might allow

it a particular oracle. In the opposite direction, we could require our

machines not only to be prefix-free, but to obey some other restric-

tion as well. We could allow our martingales to be more complicated

than “computably approximable” or we could require they actually

be computable. Finally, we could require our test sets have measure

equal to 2−n or simply require their measure limit to zero with no

restriction on the individual sets, and we could play with the com-

plexity of the individual sets and the sequence. The question of the

“correct” cutoff, the one that defines “true randomness,” is partly a

philosophical one; we want a level high enough to avoid nonrandom

behavior (if the cutoff is set too low, we could have a sequence that

is called random but always has at least as many 1s as 0s in any ini-

tial segment, for instance), but otherwise as low as possible, since it

does not seem reasonable to claim a string is compressible when, say,

oracle ∅′′ is required for the compression.

What does one do with this concept?

• Prove random sequences exist.

• Look at computability-theoretic properties of random se-

quences, considering them as sets.

• Compare different definitions of randomness.

9.2. Randomness 157

• Consider relative randomness : if I know this sequence, does

it help me bet on/compress/zero in on this other sequence?

• Look for sequences to which every random sequence is rela-

tively random. Prove noncomputable examples exist.

• Extend the definition to other realms, such as sets of se-

quences.

We will explore only the Kolmogorov complexity approach. Good

references for randomness are the books by Downey and Hirschfeldt

[22], Nies [67], and Li and Vitányi [56]. For historical reading I suggest

Ambos-Spies and Kučera [4], section 1.9 of Li and Vitányi [56], and

Volchan [87].

9.2.1. Notation and Basics. For readability, some earlier defini-

tions are reprinted here, along with new ones.

2N is the collection of all infinite binary sequences and 2<N the

collection of all finite binary strings. If you read computer science

papers, you may see {0, 1}∗ for 2<N. The empty string is denoted λ,

Λ, or 〈〉. 1n is the string of n 1s and likewise for 0, and if σ and τ are

strings, στ and σ
τ both mean their concatenation. The notation

σ ⊆ τ means σ is a (possibly non-proper) initial segment of τ or, in

other words, that there is some string ρ (possibly equal to λ) such

that σρ = τ . Restriction of a string or sequence X to its length-n

initial segment is denoted X � n.
In this field we tend to use n and the binary expansion of n

interchangeably, so we would say the length of n, denoted |n|, is log n
(all of our logarithms have base 2). If we are working with a string

σ, then |σ| is simply the number of bits in σ.

Infinite binary sequences, which we may clearly associate with

sets, are also often referred to as reals, because we may view them

as binary expansions of numbers between 0 and 1. This is not a bi-

jection; any number with a terminating decimal expansion will pair

with two sequences, one ending 1000. . . and one ending 0111. . . . Some

intuition about numbers carries over to randomness; rational num-

bers will correspond to computable and hence nonrandom sequences.

However, π − 3 will also give a computable binary sequence, because

we can compute its decimal expansion to any number of significant

158 9. Areas of Research

digits. It is in the cloud of anonymous transcendental numbers that

the randoms live.

The real number intuition also helps with the topology. An inter-

val is [σ] = {X : σ ⊂ X}, for any finite binary string σ. On the real

line, it is [0.σ00 . . . , 0.σ11 . . .]. The open sets are countable unions

of intervals; any interval (and hence finite union of intervals) is also

closed, as the bracket notation implies. Measure is a way to assign a

numerical value to a set to line up with some intuitive notion of size.

We use the coin-toss probability measure; the measure of an interval

[σ] is μ([σ]) = 2−|σ|. It is the probability of landing inside [σ] if you

produce an infinite binary string by a sequence of coin flips from a

fair coin. Intervals defined by longer strings have smaller measure;

the sum of the measure of the intervals generated by all strings of a

fixed length is 1, the measure of the whole space. The measure of the

union of a pairwise-disjoint collection of intervals is the sum of the

measure of the intervals.

9.2.2. Kolmogorov Complexity. Prefix-free Turing machines were

suggested by Levin [55, 91] and later Chaitin [11] as the best way to

approach the compressibility of strings. We will discuss the rationale

after the definition and some results.

Definition 9.2.1. A Turing machineM is prefix-free if, for every pair

of distinct strings σ, τ ∈ 2<N such that σ ⊂ τ , M halts on at most

one of σ, τ . Such a machine is generally taken to be self-delimiting,

meaning the read/write head has only one-way movement; this does

not restrict the class of functions computed by the machines.

What that means is that no string in the domain of M is a proper

initial segment (or prefix) of any other string. Halting is therefore not

contingent on knowing whether you’ve reached the end of the string:

if you don’t halt with the first n bits of input, either there is more

input to be had or you will never halt.

Fortunately, there is a universal prefix-free machine. It can be

taken to receive 1e0σ and interpret that as “run the eth prefix-free

9.2. Randomness 159

machine on input σ.”2 Call such a machine U . It is prefix-free be-

cause, in order to have σ ⊂ τ , we must have σ = 1e0σ′ and τ = 1e0τ ′

with σ′ ⊂ τ ′, and since machine e is prefix-free, this cannot happen.

We make the following definition.

Definition 9.2.2. The prefix-free Kolmogorov complexity of a string

σ is

K(σ) = min{|τ | : U(τ) = σ}.

Certainly if we hard-code a string into an input we can output

any amount of it with just the constant cost of the program that says

“print out the string that’s listed here.” We may have to do some

additional work to put it into a prefix-free form, but this tells us the

complexity of a string will have an upper bound related to the string’s

length. We say a string is random if we can’t get much below that

upper bound.

Definition 9.2.3. (i) A finite binary string σ is random if K(σ) ≥
|σ|.

(ii) An infinite binary sequence X is 1-random if all of its initial

segments are random, up to a constant. That is, (∃c)(∀n)K(X �
n) ≥ n− c.

Randomness for finite strings is problematic, because it depends

on the enumeration of prefix-free Turing machines used in the defini-

tion of U . Randomness for infinite sequences is well-defined, however,

because all differences in enumeration are swallowed up by the con-

stant term.

9.2.3. The Size of K and Kraft’s Inequality. To decide what it

means to be incompressible, we needed to know something about the

size of K. What upper bound can we assert about it, in terms of the

2Of course this assumes that the prefix-free machines can be enumerated. They
can, by taking the enumeration of all Turing machines and modifying the machines
that turn out to be non-prefix-free (compare Exercise 5.2.16). We work stagewise,
with M being the given machine and P being the one we’re building. At stage s, run
M for s steps on the first s binary strings. If M is not prefix-free, then at some finite
stage s∗ M will halt on a string comparable to one on which M previously halted.
Through stage s∗ − 1 we let P exactly mimic M , and when (if) we see stage s∗, we
define P to diverge on all remaining strings (including the one which witnessed that
M was not prefix-free). If M is prefix-free, P will mimic it exactly.

160 9. Areas of Research

length of σ? The following is part of a larger, more technical theorem,

which I have trimmed in half. The proof uses a technique common in

showing an upper bound on complexity: construct a specific machine

that compresses the string by the desired amount.

Theorem 9.2.4 (Chaitin, [11]). There is a c such that, for every σ

of length n,

K(σ) ≤ n+K(n) + c.

Proof. Consider a prefix-free Turing machine T that computes T (τσ) =

σ for any τ and σ such that the universal prefix-free machine U gives

U(τ) = |σ|. Since T is prefix-free it has an index e in the enumer-

ation of all prefix-free machines, and hence U(1|e|0eτσ) = σ. That

description has length 2|e| + |τ | + |σ| or (if τ is as short as possible)

|σ| + K(|σ|) + 2|e|, where e does not depend on σ, and its length

certainly bounds the size of K(σ). �

This upper bound leads to recursive further bounds:

K(σ) ≤ n+ |n| + ||n|| + |||n||| +

Why do we not use this upper bound in our definition of random-

ness? Because there are no infinite string X and value c such that for

all n, K(X � n) ≥ n+K(n)−c. We could kludge by saying “for infin-

itely many n” instead of for all, but that’s unsatisfying and difficult

to work with. And, of course, the definition we gave for randomness

is the one that lines up with Martin-Löf tests and martingales.

A (very rough) lower bound on K comes from the Kraft Inequal-

ity, a very useful tool in randomness. For a set to be prefix-free, there

must be a lot of binary strings missing. Thus we would expect the

length of these strings to grow rapidly, and they do.

Theorem 9.2.5 (Kraft Inequality, [49]). Let
1,
2, . . . be a finite or

infinite sequence of natural numbers. There is a prefix-free set of

binary strings of length
1,
2, . . . if and only if∑
n

2−�n ≤ 1.

9.2. Randomness 161

Proof. First, suppose we have a prefix-free set of finite binary strings

σi with lengths
i. Consider

μ

(⋃
i

[σi]

)
.

Certainly this is bounded by 1, and since the set is prefix-free, the

intervals are disjoint. Hence the measure of their union is the sum of

their measures, and the inequality holds.

Now suppose we have a set of values
1,
2, . . . such that the in-

equality holds. We are not working effectively, so we may assume the

set is nondecreasing. To find a prefix-free set of binary strings that

have these values as their lengths, we carve up the complete binary

tree, taking the leftmost string of length
i that is incomparable to

the previously-chosen strings. [For example, if our sequence of values

began 3, 4, 7, we would choose 000, 0010, 0011000.] Every binary

string of length
 corresponds to an interval of size exactly 2−�, so

by the inequality there will always be enough measure left to fit the

necessary strings, and by our selection procedure all the remaining

measure will be concentrated on the right and thus usable. �

This tells us thatK(σ) has to grow significantly faster than length

(overall). The set of programs giving the strings σ is the prefix-free

set here, and if those programs have length approximately |σ|, the
sum

∑
n 2

−�n is essentially 2−1 + 2−1 + 2−2 + 2−2 + 2−2 + 2−2 + . . .,

which diverges.

In the proof, we assumed the lengths we were given were in in-

creasing order. In the effectivized version of Theorem 9.2.5 (Theorem

9.2.6, called the Kraft-Chaitin or KC Theorem), we can be given the

required lengths of strings in any order and still create a prefix-free

set with those lengths. In the proof of Theorem 9.2.5, if the string

lengths are given out of order and misbehave enough, our procedure

could take bites of varying sizes out of the tree so that when we get

to length
n, although there is at least 2−�n measure unused in the

tree, it is not all in one piece.

Theorem 9.2.6 (Chaitin [11,12], Levin [55]). Let
1,
2, . . . be a col-

lection of values (in no particular order, possibly with repeats, possibly

162 9. Areas of Research

finite) such that
∑

i 2
−�i ≤ 1. Then from the sequence
i we can ef-

fectively compute a prefix-free set A with members σi of length
i.

Proof. We present the proof in Downey and Hirschfeldt [22]. Assume

that we have selected strings σi, i ≤ n, such that |σi| =
i. By

induction, suppose also that we have a string x[n] = 0.x1x2 . . . xm =

1 −
∑

j≤n 2
−�j , and that for every k ≤ m such that xk = 1, there is

a string τk ∈ 2<N of length k incomparable to all σj such that j ≤ n

and all τj such that j < k and xj = 1.

Note that since x[n] is the measure of the unchosen portion of

2<N, the fact that there are strings of lengths corresponding to the

positions of 1s in x[n] means the remaining measure is concentrated

into intervals of size at least as large as 2−�n+1 for any
n+1 which

would allow satisfaction of the Kraft Inequality. Note also that the τk
are unique and among them they cover the unchosen portion of 2<N.

Now we select a string to correspond to
n+1. If x�n+1
= 1, let

σn+1 = τ�n+1
and let x[n + 1] be x[n] but with x�n+1

= 0; all τk for

k �=
n+1 remain the same. If x�n+1
= 0, find the largest j <
n+1

such that xj = 1. For the leftmost string τ of length
n+1 extending

τj , let σn+1 = τ . Let x[n+1] = x[n]− 2�n+1 . As a result, in x[n+1],

xj = 0, all of the xk for j < k ≤
n+1 are 1, and the remaining places

of x[n+1] are the same as in x[n]. Since τ was chosen to be leftmost

in the cone τj , there will be strings of lengths j + 1, . . . ,
n+1 to be

assigned as τj+1, . . . , τ�n+1
(namely, τj+i = τj0

i−11), as required to

continue the induction. �

One way to think of this is as a way to build prefix-free machines

by enumerating a list of pairs of lengths and strings, with the intention

that the string is described by an input of the specified length.

Theorem 9.2.7 (KC, restated). Suppose we are effectively given

a set of pairs 〈nk, σk〉k∈N such that
∑

k 2
−nk ≤ 1. Then we can

computably build a prefix-free machine M and a collection of strings

(descriptions) τk such that |τk| = nk and M(τk) = σk.

The KC Theorem allows us to implicitly build machines by enu-

merating “axioms” 〈nk, σk〉 and arguing that the set {nk}k∈N satis-

fies the Kraft Inequality. On input τ , the machine enumerates axioms

9.2. Randomness 163

while performing KC until such a time as τ is chosen to be an element

of the prefix-free set, corresponding to some 〈nk, σk〉. At that point

(if it ever comes), the machine halts and outputs σk. This greatly

expands the power of the proof technique used in Theorem 9.2.4.

9.2.4. Berry’s Paradox, Formalized. Berry’s paradox is often

given as “the smallest number that cannot be described in fewer than

thirteen words.” That twelve-word phrase is (apparently) a descrip-

tion of the number, giving a self-contradictory statement. Philosoph-

ically, the resolution is in disallowing that as a description, since the

claimed description references all descriptions (it is impredicative).

If we formalize description in the sense of Kolmogorov complexity,

however, we obtain meaningful results, including a proof of Gödel’s

incompleteness theorem. Durand and Zvonkin [23] give a very clear

explanation of this material.3

First, let the function t(n) be defined as max{m ∈ N : K(m) <

n}. This exists because the number of possible descriptions of length

< n is finite. For all x > t(n), K(x) ≥ n; in particular, this holds

of t(n) + 1. If t is a computable function, however, we need only

n and some constant-size programming to get t(n) + 1, leading to

a contradiction for sufficiently large n: K(t(n) + 1) ≤ K(n) + c1 ≤
log n +K(log n) + c2, where c1 and c2 do not depend on n. In fact,

t(n) grows faster than any computable function.

We may ramp this up to incompleteness by considering the prov-

ability of K(x) ≥ m. We start with an axiomatizable sound theory T ,

which for our purposes here is simply a system for computably enu-

merating provable logical sentences (for details, see §§5.3 and 9.3).

Suppose toward a contradiction that for such a T , (∀m)(∃x)[(K(x) ≥
m) is provable]. This gives an algorithm to find x from m, as fol-

lows: enumerate all theorems of T , and return x as soon as one of

the form K(x) ≥ m is found. But then again, K(x) ≤ K(m) + c1 ≤
logm+K(logm) + c2 gives a contradiction for sufficiently large m.

This gives an entire collection of unprovable statements, namely

K(x) ≥ m for any sufficiently large m. The function t and the prov-

ability discussion formalize Berry’s Paradox in two ways. For t we

3Note that they use plain complexity (§9.2.6) but denote it by K.

164 9. Areas of Research

use “the smallest integer n such that K(n) > m;” this does not give

a description in the sense of Kolmogorov complexity, so there is no

paradox to t existing (it simply can’t be computable, or it would give

a Kolmogorov description). However, we then changed it to “the inte-

ger n corresponding to the first theorem of the form K(n) ≥ m in the

enumeration of theorems.” That description did land us in the realm

of Kolmogorov complexity and hence paradox, with the conclusion

that for some m no such n exists.

Another result of formalizing Berry’s Paradox in the manner of

t above is the following. Recall that a simple set is a c.e. set A such

that A is infinite but contains no infinite c.e. subsets.

Theorem 9.2.8 (Kolmogorov [46,47]). The set of nonrandom num-

bers is simple.

Proof. The set for which we need to prove simplicity is A = {x :

K(x) < |x|}. If we dovetail the computations of a universal prefix-

free Turing machine U , for any nonrandom x, we will eventually see

U output x on an input of length < |x|. At that point we can put x

into A, so A is c.e. We know the set of random numbers is infinite,

so A is infinite.

We now show that every infinite c.e. setWe contains a nonrandom

element. Let i be such that ϕi(〈e, n〉) is the nth element enumerated

into We, xe,n, if |We| ≥ n, and undefined otherwise. Let h(e, n) be the

string that instructs U to emulate ϕi(〈e, n〉); h is a total computable

function. Note that h(e, n) is a description of xe,n.

Set t(n) = maxe≤n h(e, n); t is also total computable. For any

index e, t(n) will take h(e, n) into account on all but finitely many

values of n. We will use t to define a subset of We such that for some

n, h gives a short description of the nth element of the subset. Since

that number is also in We itself, We contains a nonrandom element.

Given We, enumerate a subset Y so that the nth element of Y ,

yn, is greater than t(n). If We is infinite, for any n it will contain

elements larger than t(n). When we see such an element enumerated

we can put it into Y , which will therefore be infinite.

Since Y is c.e., it is Wê for some ê. However, by the choice of

yn > t(n) and the fact that for almost all n, t(n) ≥ h(ê, n), we know

9.2. Randomness 165

there is some n such that xê,n = yn > t(n) ≥ h(ê, n). For that

n, h(ê, n) gives a short description of xê,n, so xê,n is a nonrandom

element of Wê = Y and hence of We. �

This result gives incompleteness for many theories simultane-

ously.

Corollary 9.2.9. There exists a computably enumerable set B with

infinite complement such that for all axiomatizable sound theories T

there are only finitely many n such that n /∈ B is true and provable

in T .

Proof. Let B be the set of nonrandom numbers. Since T is ax-

iomatizable we can enumerate the set D of elements provably in the

complement of B. However, since B is simple, D must be finite. �

Kolmogorov complexity may also be used to prove Gödel’s second

incompleteness theorem (see §9.5), but on that topic I will merely

point you to the paper by Kritchman and Raz [50].

9.2.5. Halting Probability. Just as the halting problem is a fairly

explicit noncomputable set, we may use halting to give a fairly explicit

random number. This number is the halting probability, typically

called (Chaitin’s) Ω.

Before we define Ω, a brief discussion of degree. Every degree

≥ ∅′ contains a random set, and for every degree d there is a degree

d1 ≥ d that contains a random. However, unless d ≥ ∅′, there will

also be some degree d2 ≥ d that does not contain a random.

No computably enumerable set is random. It is clear that any

computable set cannot be random, so we need only consider noncom-

putable and hence infinite c.e. sets. From a betting perspective, this

allows us to wait to place bets until we see a new 1 in the sequence

ahead of where we have thus far placed bets. At that time we can

bet evenly on 0 and 1 for the bits up to that new 1, neither gaining

nor losing money, and then place all of our money on 1. Since we can

thereby double our money infinitely many times, the sequence cannot

be random.

166 9. Areas of Research

However, it is possible for a set of c.e. degree to be random, as

long as that degree is ∅′. It is even possible for the set itself to be

left-c.e., as defined in §6.3.4 Ω is such a random. For U a universal

prefix-free Turing machine, Ω is defined as a real:

Ω =
∑

{2−|σ| : σ ∈ 2<N & U(σ)↓}.

In §6.3, left-c.e. sequences were defined as those possessing an

approximation that increases in value, and here that is built into the

definition: as we see computations halt, we add the measure of the

input string to the current value of Ω.

Since U must halt on some σ, Ω > 0. By the Kraft Inequality

9.2.5, Ω ≤ 1. In fact, U ’s domain is a subset of {1e0τ : e ∈ ω}, and
for e the index of a Turing machine with empty domain U(1e0τ)↑ for

all τ . Therefore Ω < 1.

Claim 9.2.10. Let σ be a binary string of length at most n. From

Ω � n we may effectively determine whether U(σ)↓.

Proof. Observe that Ω � n ≤ Ω < Ω � n + 2−n. We dovetail the

computations of U on all inputs and approximate Ω by Ωs, which

begins as zero.

If U(τ)↓ at stage s, let Ωs = Ωs−1 + 2−|τ |. Eventually we will

see Ωs ≥ Ω � n. If σ is not among the programs for which we have

already seen halting, it will never halt, as it would add at least 2−n

to Ωs, making it larger than Ω. �

Chaitin’s Ω has some philosophical interest as “the number of

Wisdom” (Bennett and Gardner [9]): if you know Ω1:10000 and have

an axiomatizable mathematical theory expressible in 10,000 or fewer

bits, you can find whether its statements are true, false, or indepen-

dent. This includes Goldbach’s Conjecture, the Riemann Hypothesis,

and most other conjectures in mathematics which would be refutable

with finite counterexamples – the programs looking for such coun-

terexamples will or will not halt, and Ω knows their behavior.

However, the function t(n), giving the amount of time needed to

find all halting programs of length less than n from Ω � n, grows

4If you read the literature, be aware that in randomness a left-c.e. real is some-
times referred to as just a c.e. real.

9.2. Randomness 167

faster than all computable functions, so knowing Ω gives no practical

help.

Before leaving Ω we should prove it is random.

Claim 9.2.11. Ω is K-random; that is, (∃c)(∀n) K(Ω � n) ≥ n− c.

Proof. We demonstrate that there is a computable function ϕ such

that K(ϕ(Ω � n)) > n. The difference in K-complexity between σ

and f(σ) for any computable f is only a constant, so this will prove

the claim.

From Claim 9.2.10 it follows that from Ω � n, one may calculate

all programs σ of length at most n on which U halts. There will

be, therefore, some τn that is not yet computed by any such σ, and

therefore such that K(τn) > n. Let ϕ(Ω � n) = τn. �

9.2.6. Why Prefix-Free? We could define the complexity of σ as

the minimum length input that produces σ when given to the stan-

dard universal Turing machine, rather than the universal prefix-free

Turing machine. That is the plain Kolmogorov complexity of σ, de-

noted C(σ).5 However, as a standard for complexity it has some

problems, even at the level of finite strings.

The first undesirable property of C is non-subadditivity: for any

c there are x and y such that C(〈x, y〉) > C(x) + C(y) + c. K, on

the other hand, is subadditive, because with K we can concatenate

descriptions of x and y, and the machine will be able to tell them

apart: the machine can read until it halts, assume that is the end

of x’s description, and then read again until it halts to obtain y’s

description. Some constant-size code to specify that action and how

to encode the x and y that result, and we have 〈x, y〉.
The second undesirable property is nonmonotonicity on prefixes:

the complexity of a substring may be greater than the complexity of

the whole string. For example, a power of 2 has very low complexity,

so that if n = 2k then C(1n) ≤ log log n + c (i.e., a description of

k, which is no more than log k in size, plus some machinery to take

5Historically there has been some variation in randomness notation. The older
the paper, the more likely you are to see K for plain complexity, and either H or KP
for prefix-free complexity. For a time, prefix-free complexity was also unfortunately
referred to as “prefix complexity.”

168 9. Areas of Research

powers and print 1s). However, once k is big enough, there will be

numbers smaller than n that have much higher complexity because

they have no nice concise description in terms of powers of smaller

numbers or similar. For such a number m, C(1m) would be higher

than C(1n) even though 1m is a proper initial segment of 1n.

The underlying problem is that C(σ) contains information about

the length of σ (that is, n) as well as the pattern of bits. For most n,

about log n of the bits of the shortest description of σ will be used to

determine n. What that means is that for simple strings of the same

length n, any distinction between the pattern complexity of the two

strings will be lost to the domination of the complexity of n.

Another way of looking at it is that C allows you to compress a

binary sequence using a ternary alphabet: 0, 1, and “end of string.”

That’s not a fair measure of compressibility, and as stated above,

it leads to some technical as well as philosophical problems. The

main practical argument for K over C, though, is that K gives the

definition that lines up with the characterizations of randomness in

terms of Martin-Löf tests and martingales.

9.2.7. Relative Randomness and K-Triviality. Our final topic

is a way to compare sets to each other, more finely grained than

saying both, one, or neither is random. For example, the bit-flip

of a random sequence is random, but if we are given the original

sequence as an oracle, its bit-flip can be produced by a constant-size

program. Therefore no sequence’s bit-flip is random relative to the

original sequence.

Definition 9.2.12. (i) The prefix-free Kolmogorov complexity of σ

relative to A is KA(σ) = min{|τ | : UA(τ) = σ}.
(ii) A set or sequence B is A-random (or 1-A-random) if

(∃c)(∀n)[KA(B � n) ≥ n − c].

It should be clear that if B is nonrandom, it is also non-A-random

for every A. Adding an oracle can never increase the randomness of

another string; it can only derandomize. That is, if RAND is the set

of all 1-random reals and RANDA is the set of all A-random reals,

then for any A, RANDA ⊆ RAND. The question is then for which A

9.3. Some Model Theory 169

equality holds; certainly for any computable A it does, but are there

others? Hence we have the following definition, a priori perhaps a

duplication of “computable.”

Definition 9.2.13. A set A is low for random if RANDA = RAND.

A low for random set clearly cannot itself be random, because

any sequence derandomizes itself and its infinite subsequences. The

term “low” is by analogy with ordinary computability theory, where

A is low if the halting problem relativized to A is unchanged in de-

gree from the nonrelativized halting problem. As there exist noncom-

putable low sets, Kučera and Terwijn [52] have shown that there exist

noncomputable low for random sets.

A low for random sequence is one that K cannot distinguish from

a computable sequence, with respect to its usefulness as an oracle.

Another way for K to distinguish between sequences is their initial

segment complexity. Hence we have the following definition.

Definition 9.2.14. A realX is K-trivial if the prefix-free complexity

of its length-n initial segments is bounded by the complexity of n; that

is, (∃c)(∀n)(K(X � n) ≤ K(n) + c).

The question is, again, whether there are any noncomputable K-

trivial reals. Certainly all computable reals X are such that K(X �
n) ≤ K(n) + c; the constant term holds the function that generates

the initial segments of X, and then getting an initial segment is as

simple as specifying the length you want.

Theorem 9.2.15 (Zambella [90], after Solovay [83]). There is a non-

computable c.e. set A such that (∃c)(∀n)(K(A � n) ≤ K(n) + c).

The truly remarkable thing is that these are the same class of

reals: a real is low for random if and only if it is K-trivial. The proof

is extremely difficult, involving work by Gács [29], Hirschfeldt, Nies,

and Stephan [38], Kučera [51], and Nies [66].

9.3. Some Model Theory

Both computable model theory (§9.4) and reverse mathematics (§9.5)
involve model theory, another area of mathematical logic. Classes on

170 9. Areas of Research

propositional and predicate logic primarily cover elements of model

theory. This section repeats some definitions from §5.3, though with

more detail and examples.

A language L is a collection of symbols representing constants,

functions, and relations (the latter two come with a defined arity,

or number of inputs). Formulas in L may use those symbols as well

as variables and the logical symbols we met in §2.1 (e.g., ¬, ∀). A

structure for that language (or L-structure) is a collection of elements,

called the universe, along with an interpretation for each relation. For

example, N with the usual equality and ordering is a structure for the

language (=, <); we would denote it (N,=N, <N). There are many

possible structures for any given language, even after you take the

quotient of the collection of structures by the equivalence relation of

isomorphism.

To get to a model, we add axioms, a collection of logical sentences

assumed true (recall sentences are formulas with no free variables, so

that they have a truth value). These sentences may use all of the

standard logical symbols, as well as variables and any symbol from

the language. A set of sentences closed under logical deduction is a

theory.6 By convention, we may specify a theory by the axioms that

generate it, with the understanding that the theory is the closure of

the given set. A structure for the language is a model of the theory

if, when the language is interpreted as the structure specifies and

the domain of quantification is the universe of the structure, all the

sentences in the theory are true. This may greatly restrict the number

of structures we can have; in fact there are theories for which there is

only one model with a countable universe, up to isomorphism (such

theories are called countably categorical).

An isomorphism between L-structures A = (A, cA, fA, RA) and

B = (B, cB, fB, RB) is a bijection F : A → B such that F (cA) = cB,

and for any tuple a of the appropriate arity, if F (ai) = bi and

F (k) =
, then fA(a) = k ⇐⇒ fB(b) =
 and RA(a) ⇐⇒ RB(b).

This definition extends to other languages as expected. When the

6This is standard, but not universal; some texts use theory to refer to any set of
sentences.

9.3. Some Model Theory 171

isomorphism is between a structure and itself, it is called an auto-

morphism.

Let us consider the example L = (0, 1,=, <,+, ·), where 0 and 1

are constant symbols, = and < are binary relations, and + and · are
binary functions. We can create many structures for L; let’s look at

a few that have countable universes.

(i) N, with the usual meanings for all of these symbols;

(ii) Q, with the usual meanings for all of these symbols;

(iii) N, with the usual meanings for everything except = and <; =

interpreted as equality modulo 12 (so 12 = 0), and n < m true

if n (mod 12) < m (mod 12) in the usual ordering (so 12 < 1);

(iv) N, with 0 and 1 interpreted as usual, = interpreted as nonequal-

ity, < interpreted as >, and + and · interpreted as · and expo-

nentiation, respectively.

The point of (iv) is to show that we do not have to abide by the

conventional uses of the symbols. However, it is likely to make most

logicians squirm, because it is standard to make = a special symbol

that may only be interpreted as genuine equality. We will soldier on,

however, and consider some axioms on L.

(I) ¬(0 = 1);

(II) (∀x)(∀y)(x < y + 1 → (x < y ∨ x = y));

(III) (∀x)(¬(x < 0));

(IV) (∀x)(∀y)(∃z)((¬(y = 0) & ¬(x = 0)) → x · z = y).

Axiom I is true in structures (i), (ii), and (iii), but not (iv): 0 and

1 are nonequal, but in (iv) that is exactly the interpreted meaning

of the symbol =. Axiom II is true in structures (i) and (iii). It is

false in (ii), as shown by x = 2 and y = 1.5. Axiom II is also true in

structure (iv), where in conventional terms it says if x > y · 1, then
x > y or x �= y.

Axiom III is clearly true in structures (i) and (iii) and false in (ii)

and (iv) (where in the latter it asserts that no number is positive).

Axiom IV asserts (in structures (i)–(iii)) that any nonzero number is

divisible by any other nonzero number. It is false in structure (i) and

172 9. Areas of Research

true in (ii); it is false in (iii) but it takes maybe a bit more thought to

see it. An example of axiom IV’s failure in structure (iii) is x = 2 and

y = 3: no multiple of x will be odd, but all members of y’s equivalence

class modulo 12 are odd. Axiom IV also fails in structure (iv), where

it says in conventional terms that if x and y are both zero, there is a

power to which one can raise x to get something not equal to y.

We could say structure (i) is a model for the set S of axioms I, II,

and III. If we call the model M, we denote this as M |= S. However,

structure (i) is not a model for the last axiom; call it ϕ: M �|= ϕ.

This sense of truth is referred to as semantic, and semantic truth is

complete: for all sentences ϕ and models M over the same language,

either M |= ϕ or M |= ¬ϕ. The set {ϕ : M |= ϕ} is called the theory

of M, Th(M).

There is a syntactic notion of truth as well, which is membership

in the theory itself, or provability from the axioms that generate it.

In this setting, not every sentence is true or false. If ϕ is provable

from axioms S, we write S & ϕ. If for every L-sentence ϕ, either

S & ϕ or S & ¬ϕ, S (or the theory it generates) is called complete.

When neither ϕ nor ¬ϕ is provable, ϕ is called independent.

The syntactic and semantic sides are connected by the soundness

and completeness theorems. Soundness says that anything provable

from a set of axioms S will be true in all models of S: for all M |= S,
S & ϕ → M |= ϕ. Essentially, this says logic works the same

way in the models as in the syntax, and it means that we may use

a theory and a set of axioms that generate it interchangeably, in

terms of models. The converse implication is Gödel’s completeness

theorem, which is a different sense of completeness than completeness

of a theory. It says that if ϕ is true in every model of S, then S & ϕ.

The closure of a set of axioms under logical deduction is exactly the

truths on which models of the axioms all agree; on every independent

sentence there will be models in disagreement.

A practical consequence of completeness and soundness is that if

you want to show ϕ follows from S, you may give a logical deduction,

and if you want to show S �& ϕ (which is not the same as S & ¬ϕ), you
may construct a model of S in which ϕ is false. These are typically

the easier methods.

9.3. Some Model Theory 173

Thus far we have spoken only of first-order theories, where the do-

main of quantification is always the universe of objects, not anything

more complicated such as sets of objects. In practice we might want

to quantify over both elements and sets of elements, which puts us in

the realm of second-order logic. The discussion above carries over to

second-order logic, but models now consist of a number universe M

and a set universe that is a subset of P(M), as well as interpretations

of all of the language symbols. A prime example is N together with

P(N), but in computability theory we often can restrict the subsets

included and still get a model of our theory. More on this after a

useful example.

9.3.1. Arithmetic. Peano arithmetic and Robinson arithmetic are

important examples of first-order logical theories; the language in each

case is (0, S,+, ·,=, <), where 0 is a constant, S is a unary function,

+ and · are binary functions, and = and < are binary relations. Hájek

and Pudlák [35] includes a thorough discussion of these two theories.

The axioms of Robinson arithmetic, denoted Q, PA−, or P−, are

the axioms of basic arithmetic. They say + and · are associative and

commutative and · distributes over +; S is one-to-one and its range

is the entire universe except 0; + and · interact as expected with 0

and S; = is equality;7 and < is a total order with x < y holding if

and only if there is a nonzero z such that x+ z = y.8

The axioms of Peano arithmetic, or PA, are PA− together with

an infinite collection of induction axioms, referred to collectively as

the induction schema: For each formula ϕ(x) of the language,

[ϕ(0) & (∀n)(ϕ(n) → ϕ(S(n)))] → (∀n)ϕ(n)

is an axiom.

The standard model is N , with universe N and the usual interpre-

tations of all of the symbols; Th(N) is often called true arithmetic.

It is a model of PA. However, we can also have nonstandard models

that are not isomorphic to the standard model. Because < is a total

order with 0 at the bottom, and 0 is also the only element that is

7Typically this goes without saying.
8Notice we don’t actually need < because it is definable from + and 0. Some

authors will omit it from the language and some will include ≤ instead.

174 9. Areas of Research

not successor to anything, every model M begins with 0M and con-

tinues with successors SM(. . . (SM(0M)) . . .). Nonstandard models

have additional elements that are larger than all of the successors

of 0, and they come in blocks isomorphic to the integers. However,

the structure is complicated, because adding or multiplying two non-

standard elements, even from the same block, will propel you into a

higher block. One nonstandard model of PA− may be thought of as

the polynomials with integer coefficients and positive leading coeffi-

cient, together with the zero polynomial. The constant polynomials

are the standard natural numbers, and thereafter each block is given

by the terms of nonzero degree, with the constant term, ranging over

all of Z, giving the particular element of the block. After the standard

numbers you have the x+ a block, the 2x+ a block, and, after some

time, the x2 + x+ a block, etc. The correct interpretation of + and ·
is given simply by the usual arithmetic of polynomials.

There is no computable nonstandard model of PA (Theorem

9.4.2), which shows that the model described above must have a fail-

ure of induction for some formula. Induction in a nonstandard model

is a very strong statement: the antecedent requires only that the for-

mula be true of successors of 0, which is to say standard numbers,

but the conclusion is that the formula holds for every element of the

model, standard or not. Viewed in that way, it is not surprising that

nonstandard models of PA are difficult to construct.

9.4. Computable Model Theory

The area of computable model theory applies our questions of com-

putability or levels of noncomputability to structures of model the-

ory. The source for this section is primarily Ash and Knight’s Com-

putable Structures and the Hyperarithmetical Hierarchy [7]; Volume 1

of the Handbook of Recursive Mathematics [26] and a survey article

by Harizanov [36] are also good references. In this section, all struc-

tures will be countable; in fact, one frequently assumes that every

structure has universe N, and we will follow this convention.

The degree of a countable structure is the least upper bound of the

degrees of the functions and relations of the language as interpreted in

that structure. We can ask many questions, including the following:

9.4. Computable Model Theory 175

• What degrees are possible for models of a theory?

• What degrees are possible for models of a theory within a

particular isomorphism type (equivalence class under iso-

morphism)?

• Given a degree d, can we construct a theory with no models

of degree d?

• What happens if we restrict to computable models and iso-

morphisms? Do we get more or fewer isomorphism types,

for example?

One major example is models of Peano arithmetic. As mentioned

in §9.3, in a nonstandard model the induction axiom of PA is very

strong; it is often restated in the following form.

Proposition 9.4.1 (Overspill). If M |= PA is nonstandard and ϕ(x)

is a formula that holds for all finite elements of M , then ϕ(x) also

holds of some infinite element.

Theorem 9.4.2 (Tennenbaum [84]). If M |= PA is nonstandard, it

is not computable.

Proof. Let X and Y be computably inseparable c.e. sets (see Exer-

cise 5.2.21). There are natural formulas that mean x ∈ Xs, y ∈ Ys,

as well as pn|u (the nth prime divides u). Let ψ(x, u) say

∀y([(∃s ≤ x (y ∈ Xs)) → py|u] & [(∃s ≤ x (y ∈ Ys)) → py � |u]).

For all finite c, M |= ∃uψ(c, u), because the product of all primes

corresponding to elements of Xc is such a u.

By Overspill, Proposition 9.4.1, there is an infinite c′ such that

M |= ∃uψ(c′, u). For d such that M |= ψ(c′, d), let Z = {m ∈ N :

M |= pm|d}. Z is a separator for X and Y , and Z is computable

from M. Since X and Y are computably inseparable, Z and hence

M are noncomputable. �

For the following theorem we need a definition.

Definition 9.4.3. A trivial structure is one in which there is a finite

set of elements a such that any permutation of the universe that fixes

a pointwise is an automorphism.

176 9. Areas of Research

For example, N with unary relations that are all either empty or

the entire universe and only finitely many constants is trivial. Any

permutation of N that preserves the constants will also preserve the

relations, and hence be an automorphism.

Theorem 9.4.4 (Solovay, Marker, Knight [48]). Suppose A is a non-

trivial structure. If A ≤T X, there exists a structure B isomorphic to

A via F such that B ≡T X, and in fact F ⊕ A ≡T X.

The proof uses F to code X into B. For example, suppose A is

a linear order, with universe {a0, a1, . . .}. We create B with universe

{b0, b1, . . .} and let F map {a2n, a2n+1} to {b2n, b2n+1} in some order.

If n ∈ X, b2n+1 is the image of the <A-larger element, and if n /∈ X,

b2n is the image of the <A-larger element. The interpretation <B

is exactly as necessary to make F an isomorphism. B computes X

because n ∈ X ↔ b2n <B b2n+1.

Corollary 9.4.5. Peano arithmetic has standard models in all Turing

degrees.

This follows from the fact that the standard model N is com-

putable and nontrivial. Linear orders are a useful example for a num-

ber of our questions.

Theorem 9.4.6 (Miller [63]). There is a linear order A that has no

computable copy, but such that for all noncomputable X ≤T ∅′, there
is a copy of A computable from X.

Note that whether we can remove X ≤T ∅′ from the hypothesis

is an open question. There exist noncomputable Turing degrees “off

to the side:” not above any noncomputable Δ0
2 degree.

A computably categorical structure is a computable A such that

if B is computable and isomorphic to A, the isomorphism may be

chosen to be computable. Exercise 6.2.4 built a linear order on uni-

verse N such that the successor relation is not computable. However,

the ordering itself is computable, so as a linear order the structure is

computable. In the standard ordering on N, however, the successor

relation is computable, so these are two isomorphic computable or-

derings that cannot be computably isomorphic. The discrete linear

order with one endpoint is not computably categorical.

9.5. Reverse Mathematics 177

Dense linear orders, such as Q, however, are computably categor-

ical. The non-computable construction of an isomorphism between

two DLOs is called a back and forth argument. Start by mapping the

endpoints, if any, appropriately. Then, working between A and B,
select an unmapped element from A and find an unmapped match to

it in B, with the correct inequality relationships to previously-chosen

elements. Then select an unmapped element of B and match it to

an unmapped element of A. Trading off in which ordering you se-

lect your element ensures the map is onto in each direction; using

only unused elements ensures it is one-to-one. Density and lack of

endpoints guarantee finding a match. It is not too difficult to fill in

the details of this construction and to show that it can be done com-

putably whenever the DLOs A and B are computable (nonuniformly

knowing which elements are the endpoints, if needed), proving that

DLOs are computably categorical.

If a structure is not computably categorical, we can ask how many

equivalence classes its computable copies have under computable iso-

morphism. This is called the computable dimension of the structure,

and any finite value may be realized (Goncharov [31,32]). However, in

linear orders, the only computable dimensions possible are infinity or

1 (categoricity), and the latter occurs if and only if the order has only

finitely many successor pairs (Dzgoev-Goncharov [33]). This kind of

analysis of the relationship between the structure of a mathematical

object and its computability-theoretic properties is one of the main

themes in computable model theory and computable mathematics in

general.

9.5. Reverse Mathematics

You have likely noticed that computability and the related areas we’ve

discussed involve a lot of hierarchies: Turing degrees, the arithmetic

hierarchy, computation of kinds of fixed points, relative randomness.

These all classify sets according to some complexity property. The

program of reverse mathematics is also an effort to classify objects

according to complexity, but here the objects are theorems of ordinary

mathematics, and the complexity is the strength of the mathematical

tools that are required to prove them.

178 9. Areas of Research

The very big picture comes from Gödel’s incompleteness theo-

rems. We have explored the first one, which states that any com-

putable, consistent theory fails to prove some statement true in the

standard model. The second one, however, is more relevant here, and

says one such unprovable statement is the assertion of the theory’s

own consistency. This gives rise to something referred to as the Gödel

hierarchy, where a theory T is less than another theory Q if Q includes

the statement of T ’s consistency.

Now, what does this have to do with ordinary mathematics? The

logical axioms we consider, giving rise to these theories T , Q, and so

forth, are about induction, how arithmetic works, what sets we can

assert to exist (comprehension), and other fundamental notions. If

we don’t have all of the tools of standard mathematics, we may not

be able to prove a theorem that we know is true in the “real world.”

The classification achieved by reverse mathematics is finding cutoff

points where theorems go from nonprovable to provable, called their

proof-theoretic strength or consistency strength.

The main reference for reverse mathematics is Steve Simpson’s

book Subsystems of Second-Order Arithmetic [80]; this section is

drawn from that book and notes from lectures by Simpson and Jeff

Hirst. The material on the arithmetic hierarchy in §7.2 will be useful

for this section; also note some of the theorems of ordinary mathemat-

ics mentioned below will require vocabulary from analysis or algebra

that is not defined here.

9.5.1. Second-Order Arithmetic. Wework in the world of second-

order arithmetic, or Z2. This was mentioned in §9.3 but we expand

it here. The language of Z2 is two-sorted ; the variables of Z2 come in

two kinds: number variables intended to range over N and set vari-

ables intended to range over P(N). The constants are 0 and 1, the

functions are + and ·, and the relations are =, <, and ∈, where the

first two are relations on N×N and the third on N× P(N). Conven-

tionally we also use ≤, numerals 2 and up, superscripts to indicate

exponentiation, and shorthand negations like /∈; these are all simply

abbreviations and are definable in the original language. As explained

in §9.3, a model M of Z2 (or a subsystem thereof) will specify not

only the universe M of the number variables, but also the universe S

9.5. Reverse Mathematics 179

for the set variables, where S ⊆ P(M). M and S are called the first

and second order parts of M, respectively.

The axioms of second-order arithmetic are as follows, with uni-

versal quantification as needed to make them sentences:

(1) basic arithmetic:

(a) n+ 1 �= 0, ¬(m < 0)

(b) m < n+1 ↔ (m < n ∨ m = n), m+1 = n+1 → m = n

(c) m+ 0 = m, m · 0 = 0

(d) m+ (n+ 1) = (m+ n) + 1, m · (n+ 1) = (m · n) +m.

(2) induction: (0 ∈ X) & (∀n)(n ∈ X → n + 1 ∈ X)) →
(∀n)(n ∈ X).

(3) comprehension (set existence): (∃X)(∀n)(n ∈ X ↔ ϕ(n))

for each formula ϕ(n) in which X does not occur freely.

The last two axioms together say that for any second-order for-

mula ϕ(n),

(9.1) (ϕ(0) & (∀n)(ϕ(n) → ϕ(n+ 1))) → (∀n)ϕ(n).

We create subsystems of Z2 by restricting comprehension and

induction. Restricting comprehension has the effect of also restricting

induction, because the induction axiom as written works with sets (for

which we must be able to assert existence), so we may or may not

want to treat induction separately.

How do we choose restrictions? For comprehension, we might

limit ϕ to certain levels of complexity, such as being recursive (Δ0
1)

or arithmetical (with only number quantifiers, no set quantifiers; i.e.,

Σ0
n or Π0

n for some n). The former gives us the comprehension ax-

iom for RCA0, and the latter for ACA0, both described below. We

may similarly bound the complexity of the formulas for which the

induction statement (9.1) holds.

9.5.2. Recursive Comprehension. The base system, in which re-

verse mathematics proofs are carried out, is called RCA0, which

stands for recursive comprehension axiom. RCA0 contains all of the

basic arithmetic axioms from Z2, as well as restricted comprehension

and induction. The comprehension axiom of Z2 is limited to Δ0
1 for-

mulas ϕ; intuitively this means that all computable sets exist, though

180 9. Areas of Research

it is slightly more precise than that.9 RCA0 also has Σ0
1 induction,

which is as (9.1) above but where ϕ must be Σ0
1. This is more than

would be obtained by restricting set-based induction (axiom 2 of Z2)

via recursive comprehension, which is done because allowing only Δ0
1-

induction gives a system that is too weak to work with easily.10

Roughly speaking, anything we can do computably can be done in

RCA0. This includes coding finite sequences (such as pairs that might

represent rational numbers) and finite sets as numbers, and coding

functions and real numbers as sets. Within RCA0 we have access to

all total computable functions (i.e., all primitive recursive functions

plus whatever we get from unbounded search when it always halts).

For those who have had algebra, RCA0 can prove that (N,+, ·, 0, 1, <)

is a commutative ordered semiring with cancellation, (Z,+, ·, 0, 1, <)

is an ordered integral domain that is Euclidean, and (Q,+, ·, 0, 1, <) is

an ordered field. For those who haven’t had algebra, that essentially

says RCA0 can prove arithmetic behaves as we expect in each of those

three sets.

RCA0 can prove the intermediate value theorem (once continu-

ous functions have been appropriately coded): if f is continuous and

f(0) < 0 < f(1), then for some 0 < x < 1, f(x) = 0. It can prove

paracompactness: given an open cover {Un : n ∈ N} of a set X, there

is an open cover {Vn : n ∈ N} of X such that for every x ∈ X there is

an open set W containing x such that W ∩ Vn = ∅ for all but finitely

many n. As a final example, RCA0 can prove that every countable

field has an algebraic closure – but not that it has a unique algebraic

closure. More on that momentarily.

The canonical model of RCA0 is called REC. Its universe is N,

and its collection of sets is exactly the computable sets, meaning a

formula that begins ∀X is read “for all computable sets X.” In fact,

REC is the smallest model of RCA0 possible with universe N (we call

it the minimal ω-model).

An aside on models and parameters here: All systems of reverse

math are relative, in the sense that the induction and comprehension

9Formally it is ∀n(ϕ(n) ↔ ψ(n)) → ∃X∀n(n ∈ X ↔ ϕ(n)) for Σ0
1 ϕ and Π0

1 ψ,

which could be read as “demonstrably computable (i.e., Δ0
1) sets exist.”

10Though that system has been studied, under the name RCA∗
0 .

9.5. Reverse Mathematics 181

formulas are allowed to use parameters from the model. It is tempting

to think of every model of RCA0 as simply REC, but that would be a

harmful assumption. We can have noncomputable sets in a model of

RCA0; if we have such a set A the axioms provide comprehension for

sets that are Δ0
1 in A (that is, Δ0,A

1) and induction for Σ0,A
1 formulas.

Moreover, the universe of the model need not be N. Every subsystem

of second-order arithmetic has infinitely many nonstandard models,

and as we have seen, these can act in ways counter to the intuition

we have developed from N.

Theorems pop us out of RCA0 when they have cases that require

a noncomputable set or function. For example, in reality, every field’s

algebraic closure is unique (up to isomorphism), so the fact that RCA0

can’t prove the uniqueness tells us that the isomorphism between two

computable algebraic closures might necessarily be noncomputable.

Another example of something RCA0 cannot prove – which comes

directly from comprehension and REC – is weak König’s lemma. This

says that if you have a subtree of 2<N and there are infinitely many

nodes in the tree, then there must be an infinite path through the

tree (full König’s lemma allows arbitrary finite branching rather than

restricting to the children 0 and 1).11 The proof is quite easy if you

allow yourself noncomputable techniques: start at the root. Since

there are infinitely many nodes above the root, there must be infinitely

many nodes above at least one of the children of the root. Choose

the left child if it has infinitely many nodes above it, and otherwise

choose the right. Repeat, walking upward until you hit a branching

node if you are at a node with only one child. Since each time you

have infinitely many nodes above you, you never have to stop, so you

trace out an infinite path.

Such a tree is computable if the set of its nodes is computable.

There exist computable infinite trees with no computable infinite

paths, so these trees are in REC but none of their infinite paths

are. Hence RCA0 cannot prove they have infinite paths at all. I’ll

note in passing that although the failure of weak König’s lemma in

the specific model REC is sufficient to show it does not follow from

RCA0, the result that not every computable tree has a computable

11Jeff Hirst states this lemma as “big skinny trees are tall.”

182 9. Areas of Research

path relativizes to say that for any set A, there is an A-computable

tree with no A-computable path.

9.5.3. Weak König’s Lemma. WKL0, or weak König’s lemma,

does not fit the same mold as RCA0, ACA0, or Π1
1-CA0 (described

below). In this system comprehension has been restricted, but not

via the syntactic complexity of ϕ in the basic comprehension axiom

scheme. It is more easily stated in the form of the previous section,

that every infinite subtree of 2<N has an infinite path. WKL0 is RCA0

together with that comprehension axiom.12

I want to note here that it is important that the tree be a subset

of 2<N rather than any old tree where every node has at most two

children. If we let the labels of the nodes be unbounded, we get some-

thing equivalent to full König’s lemma, which says that any infinite,

finitely-branching tree (subtree of NN) has a path and is equivalent

to ACA0. In fact, some reverse mathematicians refer to 0-1 trees

rather than binary-branching trees to highlight the distinction. The

difference is one of computability versus enumerability of the children

of a node in a computable tree. If the labels have a bound, we have

only to ask a finite number of membership questions to determine

how many children a node actually has. If not, even knowing there

are at most 2 children, if we have not yet found 2, we must continue

to ask about children with higher and higher labels, a process that

only halts if the node has the full complement of children.

Over RCA0, WKL0 is equivalent to the existence of a unique

algebraic closure for any countable field. It is also equivalent to the

statement that every continuous function on [0, 1] attains a maximum,

every countable commutative ring has a prime ideal, and the Heine-

Borel theorem. Heine-Borel says that every open cover of [0, 1] has a

finite subcover.

There is no canonical model of WKL0. In fact, any model of

WKL0 with universe N contains a proper submodel that is also a

model of WKL0. The intersection of all such models is REC, which as

we saw is not a model of WKL0. There is a deep connection between

12This makes WKL0 another system with more induction than is simply given by
comprehension plus set-based induction; the three stronger systems do not have this
trait. Without the extra induction we call the system WKL∗

0 .

9.5. Reverse Mathematics 183

models of WKL0 and Peano Arithmetic (PA; see §9.3.1). Formally,

a degree d is the degree of a nonstandard model of PA if and only

if there is a model of WKL0 with universe N consisting entirely of

sets computable from d. Informally, “PA-degree” is to WKL0 what

“computable” is to RCA0 and “arithmetical” to ACA0.

The study of computable trees gives us a result called the low

basis theorem [43], which says any computable tree has a path of low

degree (where A is low if A′ ≡ ∅′; noncomputable low sets exist).

This and a little extra computability theory shows that WKL0 has a

model with only low sets.

9.5.4. Arithmetical Comprehension. ACA0 stands for arithmeti-

cal comprehension axiom. As mentioned, we obtain it from Z2 by

restricting the formulas ϕ in the comprehension scheme to those that

may be written using number quantifiers only, no set quantifiers.

There is no middle ground between RCA0 and ACA0 in terms of

capping the complexity of ϕ via the arithmetic hierarchy: if we allow

ϕ to be even Σ0
1, we get the full power of ACA0. The proof is by

relativization: given the existence of a set X, we get the existence of

every set that is Σ0,X
1 , which includes X ′. From there, we get the

existence of all sets that are Σ0,X′

1 , which by Post’s Theorem 7.2.9

are the sets that are Σ0,X
2 . Continuing this process, we bootstrap our

way all the way up the arithmetical hierarchy.

RCA0 can prove that the statement “for all X, the Turing jump

X ′ exists” (suitably coded) is equivalent to ACA0. Other equivalent

statements include: every sequence of points in a compact metric

space has a convergent subsequence; every countable vector space over

a countable scalar field has a basis; and every countable commutative

ring has a maximal ideal.

ACA0, like RCA0, has a minimal model with universe N. It is

ARITH, the collection of all arithmetic sets. These sets are exactly

those definable by formulas with no set quantifiers but arbitrarily

many number quantifiers, or equivalently, sets that are Turing re-

ducible to ∅(n) for some n.

184 9. Areas of Research

9.5.5. Arithmetic Transfinite Recursion and Π1
1 Comprehen-

sion. ATR0, like WKL0, is obtained via a restriction to comprehen-

sion that feels less natural than the other systems. Arithmetic trans-

finite recursion roughly says that starting at any set that exists, we

may iterate the Turing jump on it as many times as we like and those

sets will all exist. This is a very imprecise version, clearly, since it is

not at all apparent this gives more than ACA0; the real thing is quite

technical (“as many times as we like” is a lot).

Π1
1-CA0 stands for Π1

1 comprehension axiom. It is the last of the

“Big Five,” and in the same family as RCA0 and ACA0, where the

comprehension scheme has been restricted by capping the complexity

of the formula ϕ. In this case, ϕ is allowed to have one universal set

quantifier and an unlimited (finite) list of number quantifiers.

One theorem equivalent to ATR0 is the perfect set theorem. A set

X is (topologically) perfect if it has no isolated points; every point

x ∈ X is the limit of some sequence of points {yi : yi ∈ X, i ∈ N, yi �=
x}. A tree is perfect if every node of the tree has more than one

infinite path extending it, which is exactly the previous statement

but specific to the tree topology. The perfect set theorem states that

every uncountable closed set has a nonempty perfect subset, and the

version for trees says every tree with uncountably many paths has a

nonempty perfect subtree. Both are equivalent to ATR0 over RCA0;

note that both are comprehension theorems. Π1
1-CA0 is equivalent

to some related but stronger theorems: (a) every tree is the union

of a perfect subtree and a countable set of paths, and (b) for any

uncountable tree the perfect kernel of the tree exists (that is, the

union of all its perfect subtrees).

Another comprehension theorem equivalent to ATR0 is that, for

any sequence of trees {Ti : i ∈ N} such that each Ti has at most one

path, the set {i : Ti has a path} exists. If you remove the restriction

on number of paths, you have a statement equivalent to Π1
1-CA0.

From ATR0 up, there are no minimal models. ATR0 is similar to

WKL0 in that it has no minimal model but the intersection of all of

its models with universe N is a natural class of sets. In this case it is

HYP, the hyperarithmetic sets, which we will not define.

9.5. Reverse Mathematics 185

9.5.6. A Spiderweb. It is remarkable that so many theorems of

ordinary mathematics fall into five major equivalence classes under

relative provability. However, it would be misleading to close this

section without mentioning that not every theorem has such a clean

relationship to the Big Five. A lot of research has been done that

establishes a cobweb of implications for results that lie between RCA0

and ACA0, and for many researchers this is the most interesting part

of reverse mathematics. If I were willing to drown you in acronyms I

could draw a very large picture with one-way arrows, two-way arrows,

unknown implications, and non-implications, but we’ll look at just a

few examples.

One principle strictly between RCA0 and WKL0 is DNR, which

stands for diagonally non-recursive. DNR says there exists a function

f such that (∀e)(f(e) �= ϕe(e)). It is clear that DNR fails in REC,

since such a function is designed exactly to be unequal to every com-

putable function. It is true in WKL0 because we may construct a

computable tree such that every path through the tree represents a

diagonally non-recursive function: let the levels of the tree represent

values of e, leftward branching at e represent f(e) = 0, and right-

ward branching f(e) = 1. Dovetail the computations of ϕe(e), and

when you see one halt, cease extending the descendants of the nodes

representing f(e) = ϕe(e) for that e. Unless instructed by such a

computation, extend all nodes by both 0 and 1 at each level.

WWKL0, or weak weak König’s lemma, is a system strictly be-

tween DNR and WKL0. The lemma says that if T ⊆ 2<N is a tree

with no infinite path, then

lim
n→∞

|{σ ∈ T : |σ| = n}|
2n

= 0.

This is clearly implied by weak König’s lemma, which says in con-

trapositive that if T has no infinite path it must be finite (so this

fraction does not just approach 0, it is identically 0 from some n on).

A decent amount of measure theory can be carried out in WWKL0,

but I wanted to mention it in particular because it has connections to

randomness as laid out in §9.2. A model M of RCA0 with standard

first-order part is also a model of WWKL0 if and only if, for every X

in M, there is some Y in M that is 1-random relative to X [3].

186 9. Areas of Research

Finally, we will see a proof of reverse mathematical equivalence.

Some very weak reverse mathematical systems are referred to as frag-

ments of (first-order) arithmetic. The book by Hájek and Pudlák

[35] is a good reference for this material. The two we will consider

are bounding (or collection) systems. Bounding for a specific logical

formula ϕ is the following.

Bϕ : (∀u) [((∀x ≤ u)(∃y)ϕ(x, y)) → ((∃v)((∀x ≤ u)(∃y ≤ v)ϕ(x, y)))]

We can make axiom systems by adding bounding for certain kinds

of formulas to RCA0. In particular, we may consider BΣ0
n, which

includes bounding for Σ0
n, and BΠ0

n. Because each of the ϕ pieces

of the statement of Bϕ has an existential quantifier out front, with

only bounded quantifiers in between it and ϕ, syntax shows BΣ0
n+1

is equivalent to BΠ0
n.

BΣ0
2, or BΠ0

1, seems like an incredibly weak system; how could

it be any more than just RCA0? The intuitive explanation is that

while in the standard model everything is finite and works easily, in

a nonstandard model we have to bound y values for infinite u, and

RCA0 can’t do that.

That explanation also sheds some light on the reason RCA0 can’t

prove the pigeonhole principle: If f is a function with finite range

{0, . . . , c}, then there must be an infinite set on which f is constant.

That is, if we have finitely many boxes 0 to c and are putting infinitely

many numbers into the boxes, some box must contain infinitely many

numbers. Call this axiom, together with RCA0, the system PHP.

Theorem 9.5.1 (Hirst [40], see [13] Thm 2.10). Over RCA0, PHP

is equivalent to BΣ0
2 (equivalently, to BΠ0

1).

Proof. Let M be a model of PHP with first-order part M . Let θ

be a Σ0
0 formula; it is allowed to have parameters from the second-

order part of M. Fix u and assume that (∀x ≤ u)(∃y)(∀z)θ(x, y, z);
this is the antecedent of the bounding principle for the Π0

1 formula

(∀z)θ(x, y, z). We define a function F that by the PHP will either

be constant on an infinite set or have an unbounded range; the latter

case will lead to a contradiction. Let F (t) be the least n < t such that

(∀x ≤ u)(∃y < n)(∀z < t)θ(x, y, z) if such an n exists, and F (t) = t

9.5. Reverse Mathematics 187

otherwise. Since θ is Σ0
0 and all quantifiers are bounded, this function

is in M.

If there is an infinite set H such that F (t) =
 for all t ∈ H, then

is a suitable bound for (∀z)θ(x, y, z): (∀x ≤ u)(∃y <
)(∀z)θ(x, y, z).
If there is no such infinite set, PHP says the range of F must be

unbounded, so covering all the z values requires larger y values in-

finitely often. In this case, Δ0
0 comprehension (from RCA0) demon-

strates existence of a sequence {ti : i ∈ M} such that ti < ti+1

and F (ti) < F (ti+1). Let G(i) be the least x < u such that (∀y <

F (ti)−1)(∃z < ti)¬θ(x, y, z). G certainly has a finite range, so by the

PHP there is an infinite set S in M on which G is constant; suppose

G’s output on S is x0. Since S is infinite, for any y0 there is some

i ∈ S such that F (ti) − 1 > y0. This gives (∃z < ti)¬θ(x0, y0, z) and

hence (∀y)(∃z)¬θ(x0, y, z), contrary to assumption.

For the converse, now let M be a model of BΠ0
1. Let c ∈ M

and F be a function from M to {0, . . . , c − 1}. Suppose no x < c is

the image under F of infinitely many elements of M , or, in symbols,

that (∀x < c)(∃y)(∀z)(z > y → F (z) �= x). By BΠ0
1, (∃v)(∀x <

c)(∃y < v)(∀z)(z > y → F (z) �= x). In fact, (∃v)(∀x < c)(∀z)(z >

v → F (z) �= x). If v0 is such a v, we have (∀x < c)F (v0 + 1) �= x,

contradicting the choice of F . Therefore it must be the case that

(∃x < c)(∀y)(∃z)(z > y & F (z) = x). Letting x0 be such an x,

{t : F (t) = x0} is the desired infinite set. �

For more easy to state combinatorial principles that fall below or

to the side of WKL0, see the papers by Cholak, Jockusch, and Slaman

[13] and Hirschfeldt and Shore [39].

Appendix A

Mathematical Asides

In this appendix, I’ve included a few proofs and other tidbits that

aren’t really part of computability theory but have been referenced

in the text.

A.1. The Greek Alphabet

As you progress through mathematics you’ll learn much of the Greek

alphabet by osmosis, but here is a list for reference.

alpha A α nu N ν

beta B β xi Ξ ξ

gamma Γ γ omicron O o

delta Δ δ pi Π π

epsilon E ε or ε rho P ρ

zeta Z ζ sigma Σ σ

eta H η tau T τ

theta Θ θ upsilon Υ υ

iota I ι phi Φ ϕ or φ

kappa K κ chi X χ

lambda Λ λ psi Ψ ψ

mu M μ omega Ω ω

189

190 A. Mathematical Asides

A.2. Summations

When defining the pairing function we needed to sum from 1 to x+y.

There is a clever way to find a closed form for the sum 1+2+ . . .+n.

Write out the terms twice, in two directions:

1 + 2 + . . . + (n− 1) + n

n + (n− 1) + . . . + 2 + 1

Adding downward, we see n copies of n + 1 added together. As this

is twice the desired sum, we find

n∑
i=1

i =
n(n+ 1)

2
.

Related, though not relevant to this material, is the way one

proves the sum of the geometric series with terms ari, i ≥ 0, is a
1−r

whenever |r| < 1. We take the partial sum, stopping at some i = n,

and we subtract from it its product with r.

a + ar + ar2 + . . . + arn

− (ar + ar2 + . . . + arn + arn+1)

Letting sn be the nth partial sum of the series, we get sn − rsn =

a− arn+1, or sn = (a− arn+1)/(1− r). The sum of any series is the

limit of its partial sums, so we see that

∞∑
i=0

ari = lim
n→∞

a − arn+1

1 − r
=

a

1 − r
lim
n→∞

(1− rn+1),

and the rightmost limit is 1 whenever |r| < 1.

A.3. Cantor’s Cardinality Proofs

Cantor had two beautifully simple diagonal proofs to show that the

rational numbers are no more numerous than the natural numbers,

but the real numbers are strictly more numerous. The ideas of these

proofs are used for some of the most fundamental results in com-

putability theory, such as the proof that the halting problem is non-

computable. This section recaps some material from earlier in the

book in order to be self-contained.

A.3. Cantor’s Cardinality Proofs 191

First we show that Q has the same cardinality as N. Take the grid

of all pairs of natural numbers, i.e., all integer-coordinate points in the

first quadrant of the Cartesian plane. The pair (n,m) represents the

rational number n/m; all positive rational numbers are representable

as fractions of natural numbers. We may count these with the natural

numbers if we go along diagonals of slope −1. Note that it does not

work to try to go row by row or column by column, as you will never

finish the first one; you must dovetail the rows and columns, doing a

bit from the first, then a bit from the second and some more from the

first, then a bit from the third, more from the second, yet more from

the first, and so on. To count exactly the rationals, start by labeling

0 with 0, then proceed along the diagonals, skipping (n,m) if n/m

reduces to a rational we’ve already counted, and otherwise counting

it twice to account for the negation of n/m.

Cantor’s proof that R is strictly bigger than N is necessarily more

subtle, as constructing a bijection with N (which is exactly what

counting with the natural numbers accomplishes) is generally more

straightforward than demonstrating that no such bijection exists.

In fact, we will show even just the interval from 0 to 1 is larger

than N. Suppose for a contradiction that we have a bijection between

[0, 1] and N. List the elements of [0, 1] out as infinite repeating deci-

mals (using all-0 tails if needed) in the order given by the bijection:

.65479362895 . . .

.00032797584 . . .

.35271900000 . . .

.00000000063 . . .

.98989898989 . . .

...

Now construct a new number d ∈ [0, 1] decimal-by-decimal using the

numbers on the list. If the nth decimal place of the nth number on the

list is k, then the nth decimal place of d will be k + 1, or 0 if k = 9.

In our example above, d would begin .71310. While d is clearly a

number between 0 and 1, it does not appear on the list, because it

differs from every number x on the list in at least one decimal place:

the one corresponding to x’s position on the list.

192 A. Mathematical Asides

For an interesting twist on this, look up Richard’s Paradox, due

to French mathematician Jules Richard. Its resolution is more akin

to Theorem 3.5.1 than Cantor’s proof above is.

Cantor also proved that for any set A, |A| < |P(A)|. For finite

sets, this is clear, because if |A| = n, then |P(A)| = 2n. For infinite

sets, however, it is not immediate. Sets can “seem bigger” and not be,

such as the rationals compared to the naturals. The proof is diagonal

in nature and not too different from the proof that the reals are more

numerous than the rationals.

To begin, let A be N. It is clear that P(N) is at least as large as

N, since it contains {n} for every n ∈ N, giving a natural injection. If

N and P(N) are bijective, then the elements of P(N) may be listed out

in order, according to the natural number with which the bijection

associates them. We construct a subset X of N that cannot be on the

list, using the membership of n in the nth set on the list to determine

whether n is in X. To wit: put n in X if and only if n is not in the

nth set on the list.

Since the only elements we put in X are elements of N, X ∈ P(N)

and so X must be on the list; suppose it is entry m. However, then

m ∈ X ⇔ m /∈ X, a contradiction. As before, the conclusion is that

such a list is impossible: P(N) is strictly larger than N.

To extend this proof to sets other than N, note that the fact that

a bijection between N and P(N) gives a list is irrelevant. For any

set A and an injection f : A → P(A), we can define X ⊆ A by

letting a ∈ X ⇔ a /∈ f(a). If X is the image of some â, then that

â ∈ X ⇔ â /∈ X, as before.

Bibliography

[1] Wilhelm Ackermann, Zum Hilbertschen Aufbau der reellen Zahlen, Math. Ann.
99 (1928), no. 1, 118–133 (German).

[2] Klaus Ambos-Spies, Carl G. Jockusch Jr., Richard A. Shore, and Robert I. Soare,
An algebraic decomposition of the recursively enumerable degrees and the coin-
cidence of several degree classes with the promptly simple degrees, Trans. Amer.
Math. Soc. 281 (1984), no. 1, 109–128.

[3] Klaus Ambos-Spies, Bjørn Kjos-Hanssen, Steffen Lempp, and Theodore A. Sla-
man, Comparing DNR and WWKL, J. Symbolic Logic 69 (2004), no. 4, 1089–
1104.

[4] Klaus Ambos-Spies and Antońın Kučera, Randomness in computability theory,
Computability Theory and its Applications (Boulder, CO, 1999), 2000, pp. 1–14.

[5] M. M. Arslanov, Some generalizations of a fixed-point theorem, Izv. Vyssh.
Uchebn. Zaved. Mat. 5 (1981), 9–16 (Russian).

[6] M. M. Arslanov, R. F. Nadyrov, and V. D. Solov′ev, A criterion for the complete-
ness of recursively enumerable sets, and some generalizations of a fixed point
theorem, Izv. Vysš. Učebn. Zaved. Matematika 4 (179) (1977), 3–7 (Russian).

[7] C. J. Ash and J. Knight, Computable Structures and the Hyperarithmetical Hi-
erarchy, Studies in Logic and the Foundations of Mathematics, vol. 144, North-
Holland Publishing Co., Amsterdam, 2000.

[8] Jon Barwise (ed.), Handbook of mathematical logic, with the cooperation of H. J.
Keisler, K. Kunen, Y. N. Moschovakis and A. S. Troelstra, Studies in Logic and the
Foundations of Mathematics, Vol. 90, North-Holland Publishing Co., Amsterdam,
1977.

[9] Charles H. Bennett and Martin Gardner, The random number Omega bids fair to
hold the mysteries of the universe, Scientific American 241 (1979), no. 5, 20–34.

[10] George S. Boolos, John P. Burgess, and Richard C. Jeffrey, Computability and
Logic, 4th ed., Cambridge University Press, Cambridge, 2002.

[11] Gregory J. Chaitin, Information-theoretic characterizations of recursive infinite
strings, Theoret. Comput. Sci. 2 (1976), no. 1, 45–48.

[12] G. J. Chaitin, Incompleteness theorems for random reals, Adv. in Appl. Math.
8 (1987), no. 2, 119–146.

193

194 Bibliography

[13] Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman, On the strength of
Ramsey’s theorem for pairs, J. Symbolic Logic 66 (2001), no. 1, 1–55.

[14] Alonzo Church, An Unsolvable Problem of Elementary Number Theory, Amer.
J. Math. 58 (1936), no. 2, 345–363. Reprinted in [18].

[15] , A note on the Entscheidungsproblem, J. Symbolic Logic 1 (1936), no. 1,
40–41. Correction in J. Symbolic Logic 1 No. 3 (1936), 101–102. Reprinted in [18].

[16] Robert L. Constable, Harry B. Hunt, and Sartaj Sahni, On the computational
complexity of scheme equivalence, Technical Report 74–201, Department of Com-
puter Science, Cornell University, Ithaca, NY, 1974.

[17] Nigel Cutland, Computability: An introduction to recursive function theory,
Cambridge University Press, Cambridge, 1980.

[18] Martin Davis (ed.), The Undecidable: Basic papers on undecidable propositions,
unsolvable problems and computable functions, Raven Press, Hewlett, N.Y., 1965.

[19] Martin Davis, Hilbert’s tenth problem is unsolvable, Amer. Math. Monthly 80
(1973), 233–269.

[20] , Why Gödel didn’t have Church’s thesis, Inform. and Control 54 (1982),
no. 1-2, 3–24.

[21] , American logic in the 1920s, Bull. Symbolic Logic 1 (1995), no. 3, 273–
278.

[22] Rodney G. Downey and Denis R. Hirschfeldt, Algorithmic Randomness and Com-
plexity, Theory and Applications of Computability, Springer, New York, 2010.

[23] Bruno Durand and Alexander Zvonkin, Kolmogorov complexity, Kolmogorov’s
Heritage in Mathematics, 2007, pp. 281–299.

[24] A. Ehrenfeucht, J. Karhumäki, and G. Rozenberg, The (generalized) Post cor-
respondence problem with lists consisting of two words is decidable, Theoret.
Comput. Sci. 21 (1982), no. 2, 119–144.

[25] Herbert B. Enderton, A Mathematical Introduction to Logic, 2nd ed., Har-
court/Academic Press, Burlington, MA, 2001.

[26] Yu. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel, and V. W. Marek
(eds.), Handbook of Recursive Mathematics. Vol. 1: Recursive Model Theory,
Studies in Logic and the Foundations of Mathematics, vol. 138, North-Holland,
Amsterdam, 1998.

[27] Richard M. Friedberg, Two recursively enumerable sets of incomparable degrees
of unsolvability (solution of Post’s problem, 1944), Proc. Nat. Acad. Sci. U.S.A.
43 (1957), 236–238.

[28] , Three theorems on recursive enumeration. I. Decomposition. II. Max-
imal set. III. Enumeration without duplication, J. Symb. Logic 23 (1958), 309–
316.

[29] Péter Gács, Every sequence is reducible to a random one, Inform. and Control
70 (1986), no. 2-3, 186–192.

[30] Kurt Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I, Monatsh. Math. Phys. 38 (1931), no. 1, 173–198 (German).
An English translation appears in [18].

[31] S. S. Gončarov, The number of nonautoequivalent constructivizations, Algebra
Logika 16 (1977), no. 3, 257–282, 377 (Russian); English transl., Algebra Logic
16 (1977), no. 3, 169–185.

[32] , The problem of the number of nonautoequivalent constructivizations,
Algebra Logika 19 (1980), no. 6, 621–639, 745 (Russian); English transl., Algebra
Logic 19 (1980), no. 6, 404–414.

[33] S. S. Gončarov and V. D. Dzgoev, Autostability of models, Algebra Logika 19
(1980), no. 1, 45–58, 132 (Russian); English transl., Algebra Logic 19 (1980),
no. 1, 28–37.

Bibliography 195

[34] Eitan Gurari, An Introduction to the Theory of Computation, Computer Sci-
ence Press, 1989. Available at http://www.cse.ohio-state.edu/~gurari/theory-bk/
theory-bk.html.

[35] Petr Hájek and Pavel Pudlák, Metamathematics of First-Order Arithmetic, Per-
spectives in Mathematical Logic, Springer-Verlag, Berlin, 1993.

[36] Valentina S. Harizanov, Computability-theoretic complexity of countable struc-
tures, Bull. Symbolic Logic 8 (2002), no. 4, 457–477.

[37] David Hilbert, Mathematical problems, Bull. Amer. Math. Soc. 8 (1902), no. 10,
437–479.

[38] Denis R. Hirschfeldt, André Nies, and Frank Stephan, Using random sets as or-
acles, J. Lond. Math. Soc. (2) 75 (2007), no. 3, 610–622.

[39] Denis R. Hirschfeldt and Richard A. Shore, Combinatorial principles weaker than
Ramsey’s theorem for pairs, J. Symbolic Logic 72 (2007), no. 1, 171–206.

[40] Jeffry Lynn Hirst, Combinatorics in Subsystems of Second Order Arithmetic,
Ph.D. Thesis, The Pennsylvania State University, 1987.

[41] John E. Hopcroft, Turing Machines, Scientific American 250 (1984), no. 5, 86–98.

[42] C. G. Jockusch Jr., M. Lerman, R. I. Soare, and R. M. Solovay, Recursively enu-
merable sets modulo iterated jumps and extensions of Arslanov’s completeness
criterion, J. Symbolic Logic 54 (1989), no. 4, 1288–1323.

[43] Carl G. Jockusch Jr. and Robert I. Soare, Π0
1 classes and degrees of theories,

Trans. Amer. Math. Soc. 173 (1972), 33–56.

[44] S. C. Kleene, General recursive functions of natural numbers, Math. Ann. 112
(1936), no. 1, 727–742. Reprinted in [18].

[45] Peter M. Kogge, The Architecture of Symbolic Computers, McGraw-Hill Series
in Supercomputing and Parallel Processing, McGraw-Hill, 1990.

[46] A. N. Kolmogorov, On tables of random numbers, Sankhyā Ser. A 25 (1963),
369–376.

[47] , Three approaches to the definition of the concept “quantity of informa-
tion”, Problemy Peredači Informacii 1 (1965), no. vyp. 1, 3–11 (Russian); English
transl., Probl. Inf. Transm. 1 (1965), 1–7.

[48] Julia F. Knight, Degrees coded in jumps of orderings, J. Symbolic Logic 51
(1986), no. 4, 1034–1042.

[49] Leon G. Kraft, A Device for Quantizing, Grouping, and Coding Amplitude Mod-
ulated Pulses, Electrical Engineering Master’s Thesis, MIT, Cambridge, MA, 1949.

[50] Shira Kritchman and Ran Raz, The surprise examination paradox and the second
incompleteness theorem, Notices Amer. Math. Soc. 57 (2010), no. 11, 1454–1458.

[51] Antońın Kučera, Measure, Π0
1-classes and complete extensions of PA, Recursion

Theory Week (Oberwolfach, 1984), 1985, pp. 245–259.

[52] Antońın Kučera and Sebastiaan A. Terwijn, Lowness for the class of random
sets, J. Symbolic Logic 64 (1999), no. 4, 1396–1402.

[53] A. H. Lachlan, Lower bounds for pairs of recursively enumerable degrees, Proc.
London Math. Soc. (3) 16 (1966), 537–569.

[54] Steffen Lempp, Manuel Lerman, and Reed Solomon, Embedding finite lattices
into the computably enumerable degrees—a status survey, Logic Colloquium ’02,
2006, pp. 206–229.

[55] L. A. Levin, Laws on the conservation (zero increase) of information, and ques-
tions on the foundations of probability theory, Problemy Peredači Informacii 10
(1974), no. 3, 30–35 (Russian); English transl., Probl. Inf. Transm. 10 (1974),
206–210.

196 Bibliography

[56] Ming Li and Paul Vitányi, An Introduction to Kolmogorov Complexity and its
Applications, 2nd ed., Graduate Texts in Computer Science, Springer-Verlag, New
York, 1997.

[57] Peter Linz, An Introduction to Formal Languages and Automata, 2nd ed., Jones
and Bartlett Publishers, 1997.

[58] Wolfgang Maass, Recursively enumerable generic sets, J. Symbolic Logic 47
(1982), no. 4, 809–823 (1983).

[59] A. Markoff, On the impossibility of certain algorithms in the theory of associa-
tive systems, C. R. (Doklady) Acad. Sci. URSS (N.S.) 55 (1947), 583–586.

[60] Donald A. Martin, Classes of recursively enumerable sets and degrees of unsolv-
ability, Z. Math. Logik Grundlagen Math. 12 (1966), 295–310.

[61] Yu. V. Matijasevič, On recursive unsolvability of Hilbert’s tenth problem, Logic,
Methodology and Philosophy of Science, IV (Proc. Fourth Internat. Congr.,
Bucharest, 1971), 1973, pp. 89–110.

[62] Yuri Matiyasevich and Géraud Sénizergues, Decision problems for semi-Thue
systems with a few rules, 11th Annual IEEE Symposium on Logic in Computer
Science (New Brunswick, NJ, 1996), 1996, pp. 523–531.

[63] Russell Miller, The Δ0
2-spectrum of a linear order, J. Symbolic Logic 66 (2001),

no. 2, 470–486.

[64] A. A. Mučnik, On the unsolvability of the problem of reducibility in the theory
of algorithms, Dokl. Akad. Nauk SSSR (N.S.) 108 (1956), 194–197 (Russian).

[65] Roman Murawski, Recursive Functions and Metamathematics: Problems of
Completeness and Decidability, Gödel’s Theorems, Synthese Library, vol. 286,
Kluwer Academic Publishers Group, Dordrecht, 1999.

[66] André Nies, Lowness properties and randomness, Adv. Math. 197 (2005), no. 1,
274–305.

[67] , Computability and Randomness, Oxford Logic Guides, vol. 51, Oxford
University Press, Oxford, 2009.

[68] Piergiorgio Odifreddi, Classical Recursion Theory: The theory of functions and
sets of natural numbers, with a foreword by G. E. Sacks, Studies in Logic and the
Foundations of Mathematics, vol. 125, North-Holland Publishing Co., Amsterdam,
1989.

[69] Rózsa Péter, Über den Zusammenhang der verschiedenen Begriffe der rekursiven
Funktion, Math. Ann. 110 (1935), no. 1, 612–632 (German).

[70] , Konstruktion nichtrekursiver Funktionen, Math. Ann. 111 (1935), no. 1,
42–60 (German).

[71] Emil L. Post, Finite combinatory processes. Formulation I, J. Symbolic Logic 1
(1936), no. 3, 103–105. Reprinted in [18].

[72] , Recursively enumerable sets of positive integers and their decision prob-
lems, Bull. Amer. Math. Soc. 50 (1944), 284–316. Reprinted in [18].

[73] , A variant of a recursively unsolvable problem, Bull. Amer. Math. Soc.
52 (1946), 264–268.

[74] , Recursive unsolvability of a problem of Thue, J. Symbolic Logic 12
(1947), 1–11.

[75] Hartley Rogers Jr., Theory of Recursive Functions and Effective Computability,
2nd ed., MIT Press, Cambridge, MA, 1987.

[76] C.-P. Schnorr, A unified approach to the definition of random sequences, Math.
Systems Theory 5 (1971), 246–258.

[77] J. C. Shepherdson and H. E. Sturgis, Computability of recursive functions, J.
Assoc. Comput. Mach. 10 (1963), 217–255.

Bibliography 197

[78] J. R. Shoenfield, On degrees of unsolvability, Ann. of Math. (2) 69 (1959), 644–
653.

[79] Richard A. Shore, Nowhere simple sets and the lattice of recursively enumerable
sets, J. Symbolic Logic 43 (1978), no. 2, 322–330.

[80] Stephen G. Simpson, Subsystems of Second Order Arithmetic, Perspectives in
Mathematical Logic, Springer-Verlag, Berlin, 1999.

[81] Douglas Smith, Maurice Eggen, and Richard St. Andre, A Transition to Advanced
Mathematics, 3rd ed., Brooks/Cole Publishing Company, Wadsworth, Inc., 1990.

[82] Robert I. Soare, Recursively Enumerable Sets and Degrees: A Study of Com-
putable Functions and Computably Generated Sets, Perspectives in Mathemati-
cal Logic, Springer-Verlag, Berlin, 1987.

[83] Robert Solovay, Draft of paper (or series of papers) on Chaitin’s work, May,
2004. Unpublished notes.

[84] S. Tennenbaum, Non-Archimedean models for arithmetic, Notices Amer. Math.
Soc. 6 (1959), 270.

[85] A. M. Turing, On computable numbers, with an application to the Entschei-
dungsproblem, Proc. Lond. Math. Soc. (2) 42 (1937), 230–265. A correction ap-
pears in Proc. Lond. Math. Soc. (2), 43 (1937), 544–546. Both reprinted in [18].

[86] Jean van Heijenoort, From Frege to Gödel: A Source Book in Mathematical
Logic, 1879–1931, Harvard University Press, Cambridge, Mass., 1967.

[87] Sérgio B. Volchan, What is a random sequence?, Amer. Math. Monthly 109
(2002), no. 1, 46–63.

[88] Judson Chambers Webb, Mechanism, Mentalism, and Metamathematics: An es-
say on finitism, Synthese Library, vol. 137, D. Reidel Publishing Co., Dordrecht,
1980.

[89] Alfred North Whitehead and Bertrand Russell, Principia Mathematica, Vol. 1–3,
Cambridge University Press, 1910–1913. Second edition, strongly edited, 1927.

[90] D. Zambella, On sequences with simple initial segments, University of Amster-
dam ILLC technical report ML-1990-05, 1990.

[91] A. K. Zvonkin and L. A. Levin, The complexity of finite objects and the basing
of the concepts of information and randomness on the theory of algorithms,
Uspehi Mat. Nauk 25 (1970), no. 6(156), 85–127 (Russian).

Index

∅′, 129, see also halting set

1-randomness, 159

1-reduction, 133

Ackermann function, 53

alphabet, 87

and, logical, 9

antecedent, 10

antisymmetry, 22

arithmetic

Peano, 173, 175, 183

Robinson, 104, 173

second-order, 178

standard model, 104, 173

arithmetic transfinite recursion, 183

arithmetical

completeness, 133

comprehension axiom, 183

hierarchy, 131

arity, 103, 170

Arslanov completeness criterion,
143

associativity, 33

automorphism, 30

of a lattice, 147

axiom of a production system, 88

axiomatizable, 163

base case, 31

Berry’s paradox, 163

bijection, 30

binary sequence, 43, 157

binary string, 43, 157

bit-flip, 46

Boolean algebra, 147

bounding, 186

BΠ0
n, 186

BΣ0
n, 186

c.e., see computably enumerable

capping, 150, 153

cardinality, 20, 25, 191

Cartesian product, 16

Chaitin’s Ω, 165

characteristic function, 43

Church-Turing thesis, 65

closure operator, 33

co-c.e., 102

code, 56

of a Turing machine, 59

codomain, 29

cofinite, 106

coinfinite, 106

complement, 17

completeness theorem, 103, 172

composition, 51

via indices, 80

comprehension, 179

arithmetical, 183

Π1
1, 184

199

200 Index

recursive, 179

computable

function, 65

set, 96

computable model theory, 174

computably (in)separable sets, 101,
136, 175

computably categorical, 176

computably enumerable set, 97

relativized, 129

conjunction, 9

consequent, 10

contradiction, 10

countable, 20

countably infinite, 20

cupping, 150, 153

low, 151

De Morgan’s Laws

for predicate logic, 10

for sets, 19

decidable, 85

definability, 147, 150

degree, see Turing degree

degree invariance, 154

diagonalization, 63, 105, 190

diagonally non-recursive, 185

disjoint, 16

disjoint union, 101

disjunction, 10

domain

of a function, 29

of quantification, 13

domination, 64

dovetailing, 96

E, 146, 153
E∗, 146
effective, 97

effective countability, 56, 62

embedding, 150

enumeration of Turing machines, 60

equality

for partial functions, 42

for sets, 15, 19

equivalence class, 25

equivalence relation, 25

equivalence, logical, 11

finite difference, 114, 145
first-order theory, 173

fixed-point theorem, 81
function

Ackermann, 53

characteristic, 43
computable, 65

equality, 42
pairing, 57

partial, 42

partial recursive, 54
primitive recursive, 50

Gödel’s incompleteness, 105, 145,
163, 178

graph
general mathematical, 33

of a function, 29, 100, 113
of a relation, 24, 27

greatest lower bound, 28

halting probability, 165
halting set, 78, 99, 114, 128, 129,

133

relativized, 129

high set, 154

implication, logical, 10

incompleteness theorem, 105, 145,
163, 178

independent sentence, 104
index, 60

index set, 82, 86, 135

induction, 179
on N, 31

on recursively defined sets, 35
inductive step, 31

injection, 29

injury, 116, 121
internal state, 44

interpretation, 103, 170
intersection, 16, 18

interval, 158

invariance, 147
for degrees, 154

isomorphism, 29

join, 101, 127, 128, 130, 146
jump, 129

Index 201

omega, 130

K, 78, see also halting set

K(σ), 159

K-trivial, 169
KC Theorem, 161

Kolmogorov complexity

plain, 167

prefix-free, 159

Kraft inequality, 160, 166

lambda calculus, 69

language, 103, 170

lattice, 146

complemented, 146
distributive, 146

embedding, 150

nondistributive, 152

least upper bound, 28

left-c.e. set, 125, 166

limit lemma, 139
limit, discrete, 41, 140

linear order, 27, 176

low basis theorem, 183

low for random, 169

low set, 130, 140

noncomputable, 142
lower bound, 28

maximal set, 154

measure, 158
meet, 128, 146

model, 103, 170, 180

modular arithmetic, 26

modulus, 140

lemma, 140

μ, 55

negation, 10, 15

nondeterministic Turing machine,
68

nonstandard model, 104, 174, 175
nonuniformity, see uniformity

not, 10

Ω, 165
or, logical, 10

oracle, 109

finite, 111

notation, 111
oracle Turing machine, 109
orbit, 147
overspill, 175

padding lemma, 60
pairing function, 57
parameter, 180

parametrization, 79
partial computable functions, 65
partial function, 42

argument for allowing, 55, 62

partial order, 27
partition, 26
Peano arithmetic, 173, 175

in reverse math, 183
permutation, 30
ϕe, 60
Π1

1 comprehension axiom, 184

pigeonhole principle, 186
plain Kolmogorov complexity, 167
poset, 27
Post correspondence system, 91

Post’s problem, 115, 120
Post’s theorem, 134
power set, 16, 192
predicate, 13

prefix-free
Kolmogorov complexity, 159
Turing machine, 158

primitive recursion, 51

priority, 116, 117, 121
product, Cartesian, 16
production, 87

normal, 88
semi-Thue, 88

projection, 51

quantifiers, 13
alternation of, 131
collapsing like, 133

quotient structure, 25, see also
Turing degree, E∗

randomness, 155, 159
and Turing degree, 165

for finite strings, 159
relative, 168

range, 29

202 Index

read/write head, 44

recursion theorem, 81

with parameters, 142

recursive, 96

recursive comprehension axiom,
179

recursive definition

of a function, 35

of a set, 33

reduction property, 100

reflexivity, 22

relation, 21

relative randomness, 168

relativization, 128

requirement, 106, 117

injury, 116

priority, 116

satisfaction, 107

restriction, 112, 157

reverse mathematics, 177

Rice’s theorem, 82

Robinson arithmetic, 104, 173

nonstandard model, 174

s-m-n theorem, 79, 82, 84

relativized, 128

satisfaction, 107

second-order arithmetic, 178

second-order theory, 173, 178

semantics, 103, 172

semi-Thue system, 88, 92

sentence, 13

sequence, 43, 157

set, 15

arithmetical, 131

bi-immune, 124

computable, 96

computably enumerable, 97

creative, 145

d.c.e., 125

high, 154

left-c.e., 125, 166

low, 130, 140

maximal, 154

productive, 145

simple, 106, see also simple set

simple set, 106, 117, 146, 164

effectively, 145

incomplete, 120, 142

nowhere, 153

promptly, 151

solvable, 85

soundness theorem, 103, 172

splitting theorem, 153

stage bounding

notation, 96, 100, 111

use of, 111, 118, 121, 136

standard model, 104, 173

string, 43, 157

structure, 170

computably categorical, 176

subset, 16

successor, 51

surjection, 30

symmetric difference, 114, 136, 144,
145

symmetry, 22

syntax, 103, 172

tape, 44

tautology, 10

theorem of a production system, 88

theory, 170

first-order, 173

second-order, 173, 178

total computable functions, 65

total order, 27

transitive closure, 27

transitivity, 22, 147

truth table, 12

tuple, 16

Turing completeness, 114

Turing degree, 127, 149

and randomness, 165

c.e., 128, 149

Turing equivalence, 112

Turing jump, 129

Turing machine, 44

busy beaver, 78

code of, 59

enumeration of, 60

index of, 60

nondeterministic, 68

nonstandard, 67

oracle, 109

prefix-free, 158

Index 203

universal, 62
Turing reduction, 112

unbounded search, 54
uncountable, 21
undecidable problem, see

unsolvable problem
uniformity, 3, 61, 80, 85, 86, 97,

101, 104, 108, 110, 112, 128,
130, 177

main discussion of, 3, 61, 86, 97,
108, 110

union, 16, 18
universal Turing machine, 62
universe, 16

of a model, 170
unlimited register machine, 73
unsolvable problem, 85

halting problem, 78, see also
halting set

in behavior of Turing machines,
77, 78, 86

index sets, 82, 87
solutions to Post correspondence

systems, 92
word problem for groups, 90
word problem for semi-Thue

systems, 89
word problem for Thue systems,

90
upper bound, 27
use, 111

of divergent computations, 111

We, 100
weak jump, 114, 143

relativized, 130

weak König’s lemma, 181, 182
weak weak König’s lemma, 185
without loss of generality, 39
witness, 118
word, 87
word problem

for groups, 90
for semi-Thue systems, 89

Selected Titles in This Series

62 Rebecca Weber, Computability Theory, 2012

61 Anthony Bonato and Richard J. Nowakowski, The Game of Cops
and Robbers on Graphs, 2011

60 Richard Evan Schwartz, Mostly Surfaces, 2011

59 Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex
Schwendner, Dmitry Vaintrob, and Elena Yudovina, Introduction to
Representation Theory, 2011

58 Álvaro Lozano-Robledo, Elliptic Curves, Modular Forms, and Their
L-functions, 2011

57 Charles M. Grinstead, William P. Peterson, and J. Laurie Snell,
Probability Tales, 2011

56 Julia Garibaldi, Alex Iosevich, and Steven Senger, The Erdős
Distance Problem, 2011

55 Gregory F. Lawler, Random Walk and the Heat Equation, 2010

54 Alex Kasman, Glimpses of Soliton Theory, 2010

53 Jǐŕı Matoušek, Thirty-three Miniatures, 2010

52 Yakov Pesin and Vaughn Climenhaga, Lectures on Fractal Geometry
and Dynamical Systems, 2009

51 Richard S. Palais and Robert A. Palais, Differential Equations,
Mechanics, and Computation, 2009

50 Mike Mesterton-Gibbons, A Primer on the Calculus of Variations and
Optimal Control Theory, 2009

49 Francis Bonahon, Low-Dimensional Geometry, 2009

48 John Franks, A (Terse) Introduction to Lebesgue Integration, 2009

47 L. D. Faddeev and O. A. Yakubovskĭi, Lectures on Quantum
Mechanics for Mathematics Students, 2009

46 Anatole Katok and Vaughn Climenhaga, Lectures on Surfaces, 2008

45 Harold M. Edwards, Higher Arithmetic, 2008

44 Yitzhak Katznelson and Yonatan R. Katznelson, A (Terse)
Introduction to Linear Algebra, 2008

43 Ilka Agricola and Thomas Friedrich, Elementary Geometry, 2008

42 C. E. Silva, Invitation to Ergodic Theory, 2008

41 Gary L. Mullen and Carl Mummert, Finite Fields and Applications,
2007

40 Deguang Han, Keri Kornelson, David Larson, and Eric Weber,
Frames for Undergraduates, 2007

39 Alex Iosevich, A View from the Top, 2007

38 B. Fristedt, N. Jain, and N. Krylov, Filtering and Prediction: A
Primer, 2007

37 Svetlana Katok, p-adic Analysis Compared with Real, 2007

36 Mara D. Neusel, Invariant Theory, 2007

SELECTED TITLES IN THIS SERIES

35 Jörg Bewersdorff, Galois Theory for Beginners, 2006

34 Bruce C. Berndt, Number Theory in the Spirit of Ramanujan, 2006

33 Rekha R. Thomas, Lectures in Geometric Combinatorics, 2006

32 Sheldon Katz, Enumerative Geometry and String Theory, 2006

31 John McCleary, A First Course in Topology, 2006

30 Serge Tabachnikov, Geometry and Billiards, 2005

29 Kristopher Tapp, Matrix Groups for Undergraduates, 2005

28 Emmanuel Lesigne, Heads or Tails, 2005

27 Reinhard Illner, C. Sean Bohun, Samantha McCollum, and Thea
van Roode, Mathematical Modelling, 2005

26 Steven J. Cox, Robin Forman, Frank Jones, Barbara Lee Keyfitz,
Frank Morgan, and Michael WolfSix Themes on Variation, 2004

25 S. V. Duzhin and B. D. Chebotarevsky, Transformation Groups for
Beginners, 2004

24 Bruce M. Landman and Aaron Robertson, Ramsey Theory on the
Integers, 2004

23 S. K. Lando, Lectures on Generating Functions, 2003

22 Andreas Arvanitoyeorgos, An Introduction to Lie Groups and the
Geometry of Homogeneous Spaces, 2003

21 W. J. Kaczor and M. T. Nowak, Problems in Mathematical Analysis
III, 2003

20 Klaus Hulek, Elementary Algebraic Geometry, 2003

19 A. Shen and N. K. Vereshchagin, Computable Functions, 2003

18 V. V. Yaschenko, Editor, Cryptography: An Introduction, 2002

17 A. Shen and N. K. Vereshchagin, Basic Set Theory, 2002

16 Wolfgang Kühnel, Differential Geometry, 2002

15 Gerd Fischer, Plane Algebraic Curves, 2001

14 V. A. Vassiliev, Introduction to Topology, 2001

13 Frederick J. Almgren, Jr., Plateau’s Problem, 2001

12 W. J. Kaczor and M. T. Nowak, Problems in Mathematical Analysis
II, 2001

11 Mike Mesterton-Gibbons, An Introduction to Game-Theoretic
Modelling, 2001

10 John Oprea, The Mathematics of Soap Films: Explorations with Maple�,
2000

9 David E. Blair, Inversion Theory and Conformal Mapping, 2000

For a complete list of titles in this series, visit the
AMS Bookstore at www.ams.org/bookstore/.

AMS on the Web
www.ams.orgSTML/62

For additional information
and updates on this book, visit

www.ams.org/bookpages/stml-62

What can we compute—even with unlimited resources? Is everything within reach?
Or are computations necessarily drastically limited, not just in practice, but theoreti-
cally? These questions are at the heart of computability theory.

The goal of this book is to give the reader a fi rm grounding in the fundamentals of
computability theory and an overview of currently active areas of research, such as
reverse mathematics and algorithmic randomness. Turing machines and partial recur-
sive functions are explored in detail, and vital tools and concepts including coding,
uniformity, and diagonalization are described explicitly. From there the material
continues with universal machines, the halting problem, parametrization and the
recursion theorem, and thence to computability for sets, enumerability, and Turing
reduction and degrees. A few more advanced topics round out the book before the
chapter on areas of research. The text is designed to be self-contained, with an entire
chapter of preliminary material including relations, recursion, induction, and logical
and set notation and operators. That background, along with ample explanation, exam-
ples, exercises, and suggestions for further reading, make this book ideal for independent
study or courses with few prerequisites.

	Cover
	Title page
	Contents
	Introduction
	Background
	Defining computability
	Working with computable functions
	Computing and enumerating sets
	Turing reduction and Post’s problem
	Two hierarchies of sets
	Further tools and results
	Areas of research
	Mathematical asides
	Bibliography
	Index
	Back Cover

