
STUDENT MATHEMAT ICAL L IBRARY
Volume 61

The Game of
Cops and Robbers
on Graphs

Anthony Bonato

Richard J. Nowakowski

The Game of
Cops and Robbers
on Graphs

The Game of
Cops and Robbers
on Graphs

Anthony Bonato
Richard J. Nowakowski

STUDENT MATHEMAT ICAL L IBRARY
Volume 61

American Mathematical Society
Providence, Rhode Island

Editorial Board

Gerald B. Folland
Robin Forman

Brad G. Osgood (Chair)
John Stillwell

2010 Mathematics Subject Classification. Primary 05C57, 91A43, 05C75,
05C80, 05C63, 05C85.

For additional information and updates on this book, visit
www.ams.org/bookpages/stml-61

Library of Congress Cataloging-in-Publication Data

Bonato, Anthony, 1971–
The game of cops and robbers on graphs / Anthony Bonato, Richard J.

Nowakowski.
p. cm. — (Student mathematical library ; v. 61)

Includes bibliographical references and index.
ISBN 978-0-8218-5347-4 (alk. paper)
1. Graph theory. 2. Random graphs. 3. Graph algorithms. I. Nowakowski,

Richard J. II. Title.

QA166.B667 2011
511′.5—dc22

2011014177

Copying and reprinting. Individual readers of this publication, and nonprofit
libraries acting for them, are permitted to make fair use of the material, such as to
copy a chapter for use in teaching or research. Permission is granted to quote brief
passages from this publication in reviews, provided the customary acknowledgment of
the source is given.

Republication, systematic copying, or multiple reproduction of any material in this
publication is permitted only under license from the American Mathematical Society.
Requests for such permission should be addressed to the Acquisitions Department,
American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-
2294 USA. Requests can also be made by e-mail to reprint-permission@ams.org.

c© 2011 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights

except those granted to the United States Government.
Printed in the United States of America.

©∞ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.

Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 16 15 14 13 12 11

Dedicated to the memory of

Paolo Giovanni Bonato and Marian Jozef Nowakowski

Contents

List of Figures xi

Preface xv

Chapter 1. Introduction 1

§1.1. The Game 1

§1.2. Interlude on Notation 5

§1.3. Lower Bounds 10

§1.4. Upper Bounds 16

§1.5. Cops, Robbers, and Retracts 20

Exercises 23

Chapter 2. Characterizations 29

§2.1. Introduction 29

§2.2. Characterizing Cop-win Graphs 30

§2.3. Characterizing Graphs with Higher Cop Number 39

Exercises 48

Chapter 3. Meyniel’s Conjecture 53

§3.1. Introduction 53

§3.2. An Improved Upper Bound for the Cop Number 56

§3.3. How Close to
√
n? 62

vii

viii Contents

§3.4. Meyniel’s Conjecture in Graph Classes 66

Exercises 73

Chapter 4. Graph Products and Classes 79

§4.1. Introduction 79

§4.2. Cop Numbers and Corners in Products 83

§4.3. Covering by Cop-win Graphs 86

§4.4. Genus of a Graph 92

§4.5. Outerplanar Graphs 95

§4.6. Planar Graphs 98

Exercises 105

Chapter 5. Algorithms 109

§5.1. Introduction 109

§5.2. Background on Complexity 112

§5.3. Polynomial Time with k Fixed 119

§5.4. NP-hard with k Not Fixed 124

§5.5. Open Problems 127

Exercises 128

Chapter 6. Random Graphs 133

§6.1. Introduction 133

§6.2. Constant p and log n Many Cops 136

§6.3. Variable p and Bounds 139

§6.4. The Zig-Zag Theorem 149

§6.5. Cops and Robbers in the Web Graph 153

Exercises 162

Chapter 7. Infinite Graphs 165

§7.1. Introduction 165

§7.2. Introducing the Infinite Random Graph 167

§7.3. Cop Density 172

§7.4. Infinite Chordal Graphs 178

Contents ix

§7.5. Vertex-transitive Cop-win Graphs 182

Exercises 187

Chapter 8. Variants of Cops and Robbers 191

§8.1. Imperfect Information 192

§8.2. Traps 199

§8.3. Tandem-win 203

§8.4. Playing on Different Edge Sets 205

§8.5. Distance k Cops and Robbers 209

§8.6. Capture Time 215

Exercises 219

Chapter 9. Good Guys Versus Bad Guys 221

§9.1. Introduction 221

§9.2. Firefighter 223

§9.3. Seepage 230

§9.4. Graph Searching 233

§9.5. Helicopter Cops and Robbers and Marshals 237

§9.6. Cleaning 239

§9.7. Combinatorial Games 252

Exercises 256

Bibliography 259

Index 273

List of Figures

1.1 A maze and its corresponding graph. 2

1.2 A labeled 5-cycle. 4

1.3 The Hasse diagram of an order. 9

1.4 A rayless tree. 11

1.5 The Petersen graph. 12

1.6 Three cops suffice on the Petersen graph. 12

1.7 The Fano plane. 14

1.8 An isometric path, depicted in bold. 17

1.9 The sets Di and their images on the path. Note that

D0 = {v0}. 17

1.10 The Hoffman-Singleton graph. 19

1.11 A retraction u→ v. 21

2.1 A cop-win graph with corner u. 31

2.2 The second-to-last move of the cop. 31

2.3 A cop-win ordering of a cop-win graph. 33

2.4 The robber and his shadow F3(R) = f2 ◦ f1(R). 34

2.5 The categorical product P3 × C4. 40

xi

xii List of Figures

3.1 Henri Meyniel in Aussois, France, in the 1980s. Photo

courtesy of Geňa Hahn. 54

3.2 An example of an mdc, represented by the thicker lines.

The grey lines form the path P. 57

3.3 Cops doubling up at the end of the isometric path. 58

3.4 The set S equals the white vertices, while N1
H [S] equals

the white and black vertices, and the set N2
H [S] equals the

white, black, and grey vertices. 59

3.5 A complete binary tree in which all edges are subdivided

once. 61

3.6 The projective plane of order 3. 64

3.7 The Fano plane and its incidence graph. Lines are

represented by triples. 64

3.8 A cop is distance at most 2 from the neighbors of R. 68

3.9 The graph G, its 2-core H and 3-core J. 69

3.10 The Heawood graph. 74

3.11 A graph with strong isometric dimension 2. 76

4.1 Graph products with both factors equaling P3. 82

4.2 An ordering of graph products. 83

4.3 The three-claw. 89

4.4 A planar graph and its faces. The outer face is f1. 94

4.5 The induced subgraphs Gi in an outerplanar graph with

cut vertices. 97

4.6 The graph on the left is a cop-win non-outerplanar graph,

while the graph on the right is non-outerplanar with cop

number 2. 98

4.7 Warning: Graph distance may be different than Euclidean

distance. 100

4.8 A unique vertex vi adjacent to Y. 102

4.9 At least two vertices of P1 adjacent to vertices in Y. 102

4.10 The path P in containing a vertex of Y. 103

List of Figures xiii

4.11 The path P3 in Y. 104

5.1 A Sudoku puzzle. 109

5.2 A Hamilton cycle in the dodecahedron. 111

5.3 The hypercube Q4 is Eulerian. 111

5.4 Inclusion among complexity classes, assuming P �=NP. 117

5.5 The graph G(Φ), where Φ = (x ∨ y ∨ ¬z)∧ (¬x ∨ ¬y ∨ ¬z).118
5.6 The graph H(m, 3, r). The induced subgraph H1,3 is

shaded. 125

5.7 A split graph with C = K4 and I = K4. 128

6.1 The (1, k)-e.c. property. 138

6.2 The graph of f, so far. 141

6.3 Bounds on the graph of f. 144

6.4 A perfect matching (represented by bold edges) in the

cube. 145

6.5 The zig-zag-shaped graph of the cop number of G(n, p). 150

6.6 Surrounding the robber. 151

6.7 The log-log plot of the degree distribution of a power law

graph. 155

7.1 Finitely many cops can always be evaded on a ray. 165

7.2 The connected vertex-transitive graphs of order 7. 166

7.3 The e.c. property. 168

7.4 A cycle with a chord. 178

7.5 A chordal graph. 179

7.6 The first three rows of the rooted tree B∗. 180

7.7 The graph C5 •K3. There are all edges present between

neighboring K3’s on the 5-cycle. 180

8.1 The cop has no information on the position of the robber. 193

8.2 Two alarms at a and b. 194

8.3 A tree with some placements of two photo-radar units. 196

xiv List of Figures

8.4 A tree T with pr(T) = kT = 2. 197

8.5 The tree M. 200

8.6 A legal move of tandem-cops. 203

8.7 A tandem-win graph with no o-dominated vertex. 204

8.8 The graph K2
4 . 211

8.9 The functions fk, for k = 0, 1, and 2, with the darker lines

representing smaller values of k. 214

8.10 The cop-win graph G(4) with a unique corner. 217

8.11 The graph H(11). 217

9.1 Firefighter played on a tree over two rounds, with white

vertices burning and grey vertices protected. 223

9.2 A fire wall in the infinite Cartesian grid. The grey vertices

are protected, while white are burning. 228

9.3 Seepage on a volcano overlooking a lake. The white vertex

is the source where the contamination begins. 231

9.4 Seepage on a truncated Cartesian product of paths. 232

9.5 Two instances of graph searching. 235

9.6 The tree T requires two searchers, while T ′ requires three

searchers. 236

9.7 A tree decomposition of G. 238

9.8 Cleaning a graph twice in succession. 240

9.9 An irredundant configuration for P7 using B(P7) = 6

brooms. 248

9.10 Parallel cleaning a triangle. 249

9.11 In the upper edge-weighting, the robot cleans the graph

after 10 steps, while 30 steps are needed in the lower

edge-weighting. 251

Preface

You are reading a book about a game. More specifically, the game

Cops and Robbers, which is played on a graph. Cops and Robbers,

in the form we study it, was first introduced in the early 1980s, and

a robust body of work on the topic has been growing steadily ever

since. At its core, it is a game played with a set of cops (controlled by

one player) trying to capture the robber (controlled by the opposing

player). The cops and the robber are restricted to vertices, and they

move each round to neighboring vertices. The smallest number of

cops needed to capture the robber is the cop number. Such a simple-

sounding game leads to quite a complex theory, as you will learn.

A formal introduction to the game and the cop number is given in

Chapter 1. Despite the fact that the game is nearly three decades

old, the last five years however, have seen an explosive growth in

research in the field. Some newer work settles some old problems,

while novel approaches, both probabilistic, structural, and algorith-

mic, have emerged on this classic game on graphs.

We present a book which surveys all of the major developments

(both historical and recent) on the topic of Cops and Robbers. As the

moniker “Cops and Robbers” represents a class of games with varying

rules, we emphasize that we primarily study the game where the cops

and robber have perfect information, may only move to neighboring

vertices, and move at unit speed (a player can only move at distance

xv

xvi Preface

at most one at any step of the game). There is a large and growing

literature on variants of the Cops and Robbers game, where there is

some notion of “good guys” versus “bad guys”. For example, there

are versions where there is imperfect information, players can occupy

edges or only a subset of vertices, move at faster speeds, or the cops

are trying to stop or contain a fire, disease, or contaminant spreading

in a graph.

Although these games are not our main focus, we do discuss some

variants in Chapters 8 and 9. There are a number of reasons why we

wrote this book. One of our goals was to bring together all the most

important results, problems, and conjectures in one place to serve as

a reference. Hence, this book will be both invaluable to researchers in

the field and their students, and a one-stop shop for the major results

in the field. We also wanted the book to be self-contained and read-

able to an advanced undergraduate or beginner graduate student; on

the other hand, there are enough advanced topics to either intrigue

the seasoned mathematician or theoretical computer scientist. The

book is designed to be used either in a course or for independent

reading and study. The only prerequisites would be a first course in

graph theory, though some mathematical maturity and some back-

ground on sets, probability, and algorithms would be helpful. One of

our principal goals is to showcase the beauty of the topic, with the ul-

timate aim of preserving it for the next generations of graph theorists

and computer scientists. We also showcase the most challenging open

problems in the field. For example, Meyniel’s conjecture on upper

bounds for the cop number (see Chapter 3) is a deep problem which

deserves to be better known.

We now give a summary of the chapters. Chapter 1 supplies all

the requisite motivation, notation, basic results, and examples for

what comes later. We give a lower bound of Aigner and Fromme on

the cop number in terms of girth and minimum degree, and we give

the asymptotic upper bound on the cop number supplied by Frankl.

Along the way, we discuss guarding isometric paths, and retracts and

their critical connections to the game. In Chapter 2 we consider some

Preface xvii

new and old characterizations of k-cop-win graphs. We describe in de-

tail the classic characterization of Nowakowski and Winkler and Quil-

liot of finite cop-win graphs. This beautiful characterization reduces

the problem to the existence of a certain ordering of the vertices, a

so-called cop-win ordering. It also leads to a strategy for catching the

robber called the cop-win strategy. We survey the recent characteri-

zation of graphs with cop number k > 1 by Clarke and MacGillivray.

This characterization uses, among other things, properties of graph

products. Chapter 3 is all about Meyniel’s conjecture, which con-

cerns an upper bound on the cop number in connected graphs. We

give some recent upper bounds and discuss the state-of-the-art on the

conjecture. We present a recent proof of the conjecture in the special

case of graphs of diameter at most 2. Chapter 4 focuses on the game

in graph classes and graph products. We consider bounds for the

cop number and related parameters for various products, such as the

Cartesian, strong, categorical, and lexicographic products. A proof

of the fact that the cop number of planar graphs is at most three is

given, and graphs with higher genus are also discussed.

In Chapter 5, we consider algorithmic results on computing the

cop number. After an introduction to the rudiments of complexity

theory and graph algorithms, we prove that the problem of computing

whether the cop number is at most k is in polynomial time, if k is

fixed. If k is not fixed, we sketch the proof of the recent result that

the problem is NP-hard. In Chapter 6 we investigate the cop number

in random graphs. We present results for the cop number of the

binomial random graph G(n, p), when p is constant, and also consider

recent work in case p = p(n) is a function of n. We culminate with

the beautiful Zig-Zag Theorem of �Luczak and Pra�lat, which reveals a

surprising, literal twist to the behaviour of the cop number in random

graphs. We finish with a study of the cop number in models for the

web graph and other complex networks. In Chapter 7 we study the

game of Cops and Robbers played in infinite graphs. Infinite graphs

often exhibit unusual properties not seen in the finite case; the cop

number in the infinite case is no exception to this. We introduce the

cop density of a countable graph and show that the cop density of

the infinite random graph can be any real number in [0, 1]. We survey

xviii Preface

the results of Hahn, Sauer, and Woodrow on infinite chordal cop-

win graphs. We finish the chapter with a discussion of paradoxically

large families of infinite vertex-transitive cop-win graphs. Chapters 8

and 9 consider variants of the game, and are more like surveys when

compared with previous chapters. In Chapter 8, we consider the effect

of changing the rules of Cops and Robbers. In particular, we consider

imperfect information where the robber is partially invisible, and the

inclusion of traps, alarms, and photo radar. We consider tandem-cops

where cops must always be sufficiently close to each other during the

course of the game. In addition, we consider a version of Cops and

Robbers where the cops can capture the robber from some prescribed

distance (akin to shooting the robber), and we investigate the length

of time it takes for the cops to win assuming optimal play. At the

heart of all the games we consider, there is the notion of a set of

good guys trying to stop, contain, or capture a bad guy. Chapter 9

deals with several of these kinds of games, including firefighting, edge

searching, Helicopter Cops and Robbers, graph cleaning, and robot

vacuum. We conclude with a brief section on combinatorial games.

We think the book would make a solid second or topics course

in graph theory. An ambitious (likely two-term) course would cover

all nine chapters. For a one-term course, we suggest three options:

generalist and specialist courses, along with an experiential option. A

generalist course would cover each of the first four chapters and two

of the remaining ones. Such a course would give a solid grounding

in the field and supply some flexibility at the end, depending on the

tastes of the instructor and audience. A specialist course would cover

the first two chapters, one of Chapters 3 or 4, and three of the last five

chapters. This option would appeal to those would like to learn one

of the more advanced topics (such as algorithms, random or infinite

graphs) in greater detail. Finally, an experiential course would cover

Chapters 1, 2, 4, 8, and 9. The emphasis in such a course would be

on projects, filling in omitted proofs (Chapters 4, 8, and 9 contain

surveys with proofs omitted), coming up with new examples, and

developing new variants of Cops and Robbers. This last option would

be especially useful in the setting of a summer research project (such

as one sponsored by an NSERC USRA or NSF REU).

Preface xix

To both aid and challenge the reader, there are over 200 exercises

in the book, with many worked examples throughout. Open problems

are cited in the exercises and elsewhere. We will maintain a website

http://www.math.ryerson.ca/~abonato/copsandrobbers.html

which will contain resources such as errata and lists of open problems.

Hopefully, it will also contain their eventual solutions!

There are many people to thank. We thank Christine Aikenhead,

Rebecca Keeping, Margaret-Ellen Messinger, Jennifer Wright Sharp,

and Changping Wang for carefully proofreading drafts of the book.

Graeme Kemkes, in particular, deserves heartfelt thanks for his very

thorough proofreading of early drafts. Any errors or omissions, how-

ever, remain the sole responsibilities of the authors! We thank Ina

Mette and the wonderful staff at the AMS for their support of this

work. A warm thank you to our families, Douglas, Fran, Anna Maria,

Paulo, Lisa, Mary, and Marian without whose support writing this

book would have been impossible. The authors wish to especially

thank the constant and loving support of their fathers, Paulo Gio-

vanni Bonato and Marian Jozef Nowakowski, both of whom died just

before the completion of this work.

Chapter 1

Introduction

1.1. The Game

We all grew up playing games. Some of us are lucky enough to play

them while working. Such is the case with Cops and Robbers: it is

at once a game you can play for fun on a piece of paper with some

spare coins and a deep mathematical research topic containing hard

conjectures and problems. The purpose of this chapter is a kind of

mezze: readers will gain the requisite notation and background to

tackle the harder topics in later chapters, and also gain some insight

into the heart of the game.

To set the stage, do you remember the video game Pac-Man? If

you are not a member of the video game generation, then let us recall

how it is played. You, Pac-Man, are stuck in a maze. You can move

up and down, and across, but not through walls. Unfortunately, there

are some attackers in the form of ghosts who are trying to capture

you. They do this by touching you, or by occupying your position

in the maze. Your goal is to eat dots set throughout the maze while

avoiding capture. We do not care as much about the dot eating. In

some sense, the real goal is to move about the maze unfettered by the

ghosts. This is fairly easy with one ghost, but the more ghosts, the

greater chance you have of being captured sooner. You can see all

1

2 1. Introduction

Figure 1.1. A maze and its corresponding graph.

the players loose in the maze and remember all the moves of ghosts

(and they can see you).

We may think of the maze as a set of discrete cells, each joined

to one above, below, or beside it, assuming there is no wall blocking

your way. To help visualize this, see Figure 1.1. For more on this

approach in artificial intelligence and so-called moving target search,

see [120, 121, 122, 159]. (In moving target search, octile connected

maps which allow diagonal moves are often studied. In this case, a

cell becomes a clique of order 4.) Analyzing the movements of players

in Pac-Man then becomes a problem about certain kinds of graphs.

We focus on a particular view that deviates from the original game

somewhat: how many ghosts are needed to ensure they can always

capture you, by some strategy? Some mazes require more ghosts,

some fewer. For example, think of a very simple maze consisting of a

rectangle. One ghost would eternally chase you to no avail, but two

can corner you. The game of Cops and Robbers is—in some sense—a

1.1. The Game 3

discretized version of Pac-Man, and the cop number corresponds to

the minimum number of ghosts needed to capture you. You are the

intruder, or robber, and the cops are the ghosts.

To be more precise, Cops and Robbers (or, as it is sometimes

called, Cops and Robber) is a game played on a reflexive graph; that

is, the vertices each have at least one loop. Multiple edges are allowed

but make no difference to the game play, so we always assume there

is exactly one edge between adjacent vertices. There are two players

consisting of a set of cops and a single robber. The game is played

over a countable sequence of discrete time-steps or rounds, with the

cops going first in round 0. The cops and robber occupy vertices; for

simplicity, we often identify the player by the vertex they occupy. We

refer to the set of cops as C and the robber as R. The rules of the

game are straightforward: when a player is ready to move in a round,

they must move to a neighboring vertex. Because of the loops, players

can pass or remain on their own vertex. This may or may not be a

wise strategy for the robber, depending on the graph. Note that if

we play on irreflexive graphs, then we still allow passes. Also observe

that any subset of C may move in a given round.

The cops win if after some finite number of rounds, one of them

can occupy the same vertex as the robber (in a reflexive graph, this is

equivalent to the cop landing on the robber). This is called a capture.

The robber wins if he (usually the cops are considered female and the

robber male) can evade capture indefinitely. A winning strategy for

the cops is a set of rules that, if followed, result in a win for the cops.

A winning strategy for the robber is defined analogously. Cops and

Robbers is often called a vertex-pursuit game on graphs, for reasons

that should now be apparent to the reader.

As an elementary but instructive example, consider the game

played on a 5-cycle C5. We label the vertices 1, 2, 3, 4, and 5, as in

Figure 1.2, and place a cop on vertex 1. If the robber chooses 1, then

that would be suicide, and choosing vertex 2 or 5 would result in

his losing in round 1. The robber chooses 3 and can evade capture in

round 1. It is straightforward to see the robber has a winning strategy

(just move to i ± 1 (mod 5) in order to maintain distance two from

the cop).

4 1. Introduction

Figure 1.2. A labeled 5-cycle.

Two cops are enough, however, to win. If a second cop occupies

3, then the robber will be caught in round 0 or 1, depending on his

initial move. Cycles of size 4 or larger are similar with respect to

the game (note that cycles correspond to discretized versions of the

simplified rectangular maze we discussed above), because two cops

are necessary and sufficient to guarantee a win for the cops.

If we place a cop at each vertex, then the cops are guaranteed to

win. Therefore, the minimum number of cops required to win in a

graph G is a well-defined positive integer (or infinite cardinal) called

the cop number (or copnumber) of the graph G. We write c(G) for

the cop number of a graph G. If c(G) = k, then we say G is k-cop-

win. In the special case k = 1, we say G is cop-win (or copwin). A

graph with c(G) > 1 is sometimes called robber-win (since one cannot

capture the robber).

The game of Cops and Robbers was first considered by Quilliot

[169] in his doctoral thesis, and was independently considered by

Nowakowski and Winkler [167]. Although [169] predates [167], the

latter reference is sometimes referred to as the starting point of the

literature on the topic. The authors of [167] were told about the

game by G. Gabor. Both [169] and [167] refer only to one cop.

The introduction of the cop number came in 1984 with Aigner and

Fromme [2]. Many papers have now been written on the cop number

of graphs since these three early works; see the surveys [7] and [103].

For example, at least a dozen theses (at the master’s and doctoral

1.2. Interlude on Notation 5

level) have been written on the topic; see [14], [51], [52], [79], [97],

[113], [124], [158], [163], [169], [170], [181], [186], and [190].

As an introduction to the topic of Cops and Robbers, we be-

gin this chapter by first covering some notation and definitions from

graph theory in Section 1.2. The more advanced reader can skip this,

although a casual perusal may eliminate any confusion with notation

when reading later sections and chapters. We discuss some examples

of cop number in Section 1.3, and include the elementary but help-

ful Theorem 1.3 which provides a lower bound on the cop number

in terms of the minimum degree for graphs without small cycles. In

Section 1.4 we prove Frankl’s upper bound for the cop number; see

Theorem 1.6. Along the way, we will show that one cop can guard an

isometric path. We finish with a discussion of retracts in Section 1.5,

which play a critical role in the structure of cop-win graphs.

1.2. Interlude on Notation

As we stated in the Preface, we assume (although it is not essential)

that the reader has some background in graph theory, such as a first

course on the topic. Two good references on the topic are [68] and

[197]. However, as an aid to the reader, we summarize at least some

of the notation used as well as some of the requisite background here.

As such, the present section is short and may be safely skipped by

more advanced readers.

We will use the following notation throughout. The set of natural

numbers (which contains 0) is written N, while the rationals and reals

are denoted by Q and R, respectively. The cardinality of N is ℵ0, while
the cardinality of R is 2ℵ0 . If n > 0 is a natural number, then define

[n] = {1, . . . n}.

The Cartesian product of two sets A and B is written A × B. The

difference of two sets A and B is written A\B.

As we will present a number of asymptotic results, we give some

corresponding notation. Let f and g be functions whose domain is

6 1. Introduction

some fixed subset of R. We write f ∈ O(g) if

lim sup
x→∞

f(x)

g(x)

exists and is finite. We will abuse notation and write f = O(g). This

is equivalent to saying that there is a constant c > 0 (not depending

on x) and an integer N such that for x > N, f(x) ≤ cg(x).

We write f = Ω(g) if g = O(f), and f = Θ(g) if f = O(g) and

f = Ω(g). If limx→∞

∣∣∣ f(x)g(x)

∣∣∣ = 0, then f = o(g) (or g = ω(f)). So if

f = o(1), then f tends to 0. We write f ∼ g if

lim
x→∞

∣∣∣∣f(x)g(x)

∣∣∣∣ = 1.

If x is a real number, then 1 + x ≤ ex. We will sometimes write

ex as exp(x), especially if x is a complicated expression. We write

log x for the logarithm in base e (other bases will be made explicit).

If 4 ≤ m ≤ n are non-negative integers, then

(1.1)

(
n

m

)
≤ nm

2m
≤ nm.

For a graph G, we often write G = (V (G), E(G)), or if G is clear

from context, G = (V,E). The set E may be empty. Elements of V (G)

are vertices, and elements of E(G) are edges. Vertices are sometimes

referred to as nodes. We write uv for an edge {u, v}, and say that u

and v are joined or adjacent (we use both terms interchangeably); we

say that u is incident with v, and that u and v are endpoints of uv.

All the graphs we consider are reflexive unless otherwise stated.

The cardinality |V (G)| is the order of G, while |E(G)| is its size.
Given a vertex u, define its neighbor set N(u) to be the set of vertices

joined and not equal to u (also called neighbors of u). The closed

neighbor set of u, written N [u], is the set N(u)∪{u}. We write G � S
(or as either 〈S〉G or G[S]) for the subgraph of G induced by the set

of vertices S; that is, the graph with vertices in the set S, with two

vertices joined if and only if they are joined in G. If S is a set of

vertices, then G−S is the subgraph induced by V (G)\S; if S = {x},
then we write this as G− x. If H is an induced subgraph of G, then

we sometimes write G−H for G− V (H).

1.2. Interlude on Notation 7

The degree of a vertex is the cardinal |N(u)|, and is written

degG(u) or simply deg(u). A graph is k-regular if each vertex has

degree k. A path is a sequence of vertices such that each vertex is

joined to the next vertex in the sequence; the length of a path is the

number of its edges. A path of order n is written Pn. A graph is

connected if there is a path between any two vertices. The relation

of being connected by a path is an equivalence relation on V, and

the equivalence classes are the connected components of G. A graph

which is not connected is called disconnected ; a connected component

consisting of a single vertex is called an isolated vertex. A cut vertex

is one whose deletion results in a disconnected graph. A vertex joined

to all other vertices is called universal. A vertex of degree 1 will be

called an end-vertex.

A homomorphism f from G to H is a function f : V (G)→ V (H)

which preserves edges ; that is, if xy ∈ E(G), then f(x)f(y) ∈ E(H).

We abuse notation and simply write f : G → H. An embedding

from G to H is an injective homomorphism f : G → H with the

property that xy ∈ E(G) if and only if f(x)f(y) ∈ E(H). We will

write G ≤ H if there is some embedding of G into H and say that G

embeds in H. An isomorphism is a bijective embedding; if there is an

isomorphism between two graphs, then we say they are isomorphic.

We write G ∼= H if G and H are isomorphic. The relation ∼= is

an equivalence relation on the class of all graphs, whose equivalence

classes are isomorphism types or isotypes. We will always identify

a graph with its isomorphism type. An automorphism of G is an

isomorphism from G to itself. A graph is vertex-transitive G if for all

pairs of vertices u and v of G, there is an automorphism f of G, so

that f(u) = v. Note that every vertex-transitive graph is k-regular

for some integer k > 0.

The distance between u and v, written dG(u, v) (or just d(u, v)),

is either the length of a shortest path connecting u and v (and 0

if u = v) or ∞ otherwise. Note that d(u, v) turns each graph into a

metric space. The diameter of a connected graph G, written diam(G),

is the supremum of all distances between distinct pairs of vertices. If

the graph is disconnected, then diam(G) is ∞.

8 1. Introduction

The complement of G, written G, has vertices V (G) with two

distinct vertices joined if and only if they are not joined in G. A

complete graph of order n or n-clique has all edges present and is

written Kn. A set of vertices S is independent if 〈S〉G contains no

edges. A co-clique of order n is Kn. The graph of order n with no

edges is Kn.

A wheel of order n, written Wn, consists of a cycle Cn along with

one universal vertex. A hypercube of dimension n, written Qn, has

vertices elements of {0, 1}n with two vertices joined if they differ in

exactly one coordinate.

The chromatic number of G, written χ(G), is the minimum car-

dinal n with the property that V (G) may be partitioned into n many

independent sets; that is, the minimum n so that G has proper n-

coloring. If χ(G) = 2, then G is bipartite. A complete bipartite graph

has all possible edges present between the two colors, and is written

Km,n, where m and n are the orders of the vertex classes. A star is a

graph K1,n, for some positive integer n.

In a graph G, a set S of vertices is a dominating set if every vertex

not in S has a neighbor in S. The domination number of G, written

γ(G), is the minimum cardinality of a dominating set. Since placing

a cop on each element of a dominating set ensures a win for the cops

in at most two rounds, we have that c(G) ≤ γ(G).

Although our primary focus is on undirected graphs, we may

sometimes assign orientations to edges. A directed graph or digraph

is defined identically as a graph, except that E(G) consists of ordered

pairs of vertices. As with graphs, we assume our directed graphs are

reflexive. The edges are then called directed edges or arcs (u, v), where

u is the head and v is the tail. The vertex v is an out-neighbor of u,

while u is an in-neighbor of v. The in-degree of u, written deg−(u)

is the number of vertices v such that (v, u) are directed edges; the

out-degree deg+(u) is defined dually. Subgraphs, induced subgraphs,

and isomorphisms are defined analogously to graphs.

A digraph is oriented if it is antisymmetric: if (u, v) is a directed

edge, then (v, u) is not a directed edge. An orientation of a graph

is an assignment of directions to the edges resulting in an oriented

graph. A tournament is an orientation of a clique.

1.2. Interlude on Notation 9

An order (or partially ordered set or poset) is an oriented digraph

that is transitive: whenever (u, v) and (v, w) are arcs, then so is (u,w).

We write u ≤ v if (u, v) is an arc in an order. We say that v covers u

if u ≤ v, u �= v, and there is no x such that u ≤ x ≤ v. A vertex u is

minimal if v ≤ u implies that v = u; maximal elements are defined

dually. Orders are often represented by Hasse diagrams, which are

drawings in the plane (although edge crossings are allowed) so that

u is below and adjacent to v if v covers u. Note that reflexive and

transitive arcs are not shown in Hasse diagrams. See Figure 1.3.

Figure 1.3. The Hasse diagram of an order.

A directed path is a path with all directed edges pointing in one

direction (so all vertices internal to the path have in- and out-degree

equaling one). A directed cycle is a cycle with all arcs directed in the

same direction. A digraph is strongly connected if there is a directed

path connecting every pair of vertices. A weakly connected digraph

has its underlying undirected graph (with no orientations on edges)

connected. A digraph is acyclic if it contains no directed cycle.

The cop number of directed graphs is defined in the analogous

way to the undirected case. The only difference, of course, is that the

players can only move following the orientation of a directed edge.

A version of Cops and Robbers played on orders will be explored in

Exercise 27.

10 1. Introduction

1.3. Lower Bounds

When graph theorists see a new graph parameter, they usually first

attempt to compute it for the most common graphs such as cycles,

paths, and cliques. The following lemma—whose proof is left as an

exercise—does just that.

Lemma 1.1. (1) For n > 0 an integer we have that

c(Pn) = c(Wn) = c(Kn) = 1,

and for n ≥ 4,

c(Cn) = 2.

(2) If G is the disjoint union of G1 and G2 written G1 + G2,

then

c(G1 +G2) = c(G1) + c(G2).

In particular,

c(Kn) = n.

Owing to Lemma 1.1 (2), we usually restrict our attention to

connected graphs. For example, one cop is needed for each isolated

vertex, since the robber can occupy one and pass indefinitely. Trees,

which are connected and contain no cycles, are a favourite graph class.

An infinite one-way path (that is, the vertices of the path are just the

non-negative integers, with i joined to i + 1 for all i ∈ N) is called a

ray, and a graph with no ray is called rayless.

Lemma 1.2. (1) A finite tree is cop-win.

(2) The cop number of an infinite tree is either 1 or infinite. It

is 1 exactly when the tree is rayless.

Proof. For item (1), we use the fact that each finite tree contains an

end-vertex (finite trees always contain at least two end-vertices; see

Exercise 4a). Place the cop on an arbitrary vertex. The strategy of

the cop is to move towards the robber on the unique path connect-

ing the cop and robber. Note that with this strategy, d(C,R) never

increases. A simple induction establishes that this is possible in any

connected graph (roughly put, the robber can never “move around”

the cop). However, after some number of rounds (bounded above by

1.3. Lower Bounds 11

diam(T)), the robber will move to an end-vertex. After that round,

d(C,R) decreases by one since there is a unique path connecting R

and C. Repeating this argument after at most diam(T) − 1 many

rounds results in d(R,C) = 0, and the cop wins.

A tree of any order with no ray has an end-vertex (see Exercise 9).

Now, in a rayless tree, apply the same winning strategy as the one

used by the cop in a finite tree. If the tree has a ray and only a finite

number of cops are at play, then the robber can always stay a distance

of at least one away from any cop. Hence, no winning strategy exists

for the cops, and the robber wins. �

End-vertices play a critical role in the proof of Lemma 1.2 (1).

They are the simplest examples of corners : vertices x with the prop-

erty that there is some vertex y such that N [x] ⊆ N [y]. Corners play

a major role in characterizing finite cop-win graphs. See Section 1.5

and Chapter 2 for more discussion.

See Figure 1.4 for an example illustrating Lemma 1.2 (2). This

tree is formed by attaching a path of each finite length to a root

vertex. The rayless tree in Figure 1.4 has an unusual and vaguely

morbid property: the robber in round 0, by choosing which branch to

occupy, decides how long he wants to live! Infinite graphs demonstrate

many pathological properties, as demonstrated by this example. They

therefore deserve special attention and form the focus of Chapter 7.

We therefore make the following assumption for the remainder of this

Figure 1.4. A rayless tree.

12 1. Introduction

Figure 1.5. The Petersen graph.

chapter and all chapters except Chapter 7: All graphs we consider

are finite.

One of the most famous graphs is the Petersen graph P ; see

Figure 1.5. The reader may verify that c(P) ≤ 3, by placing cops at

the bottom two vertices of the outer 5-cycle and the vertex at the top

of the middle 5-cycle; see Figure 1.6.

Figure 1.6. Three cops suffice on the Petersen graph.

Direct checking shows that c(P) > 1, but to establish c(P) > 2

directly requires some case analysis. Instead, we employ the following

elementary but useful theorem of Aigner and Fromme [2]. The girth

of a graph is the length of minimum order cycle. The minimum degree

of G is written δ(G), while the maximum degree is denoted by Δ(G).

Theorem 1.3 ([2]). If G has girth at least 5, then c(G) ≥ δ(G).

1.3. Lower Bounds 13

Proof. Suppose that δ(G) = d and that d − 1 many cops play the

game. Most of the proof goes into showing that the robber survives

round 1! For this, we must show that there is a vertex of G not joined

to a vertex of the set of cops C. Otherwise, C is a dominating set,

and we derive a contradiction.

Let u be a vertex outside of C. Suppose that u is joined to x > 0

many vertices in C, and y many vertices not in C. Let X be the

vertices in C joined to u, and let Y be the set of vertices not in C

joined to u. Note that x + y ≥ d. As C is a dominating set by our

assumption, each vertex of Y is joined to some vertex of C. As there

are neither three nor four cycles, no vertex of Y is joined to a vertex

of X, and no two distinct vertices in Y share a common neighbor in

C. Hence, each vertex of Y is joined to a unique vertex of C \ X.

Hence,

d− 1 = |C| ≥ x+ y ≥ d,

which is a contradiction. Hence, some vertex is not joined to C, and

the robber chooses that vertex in round 0.

Now suppose we are in round t ≥ 0, and the robber has arranged

things so he occupies a vertex ut with the following property.

(Ct): The vertex ut is not joined to any vertex in C.

In particular, the robber is safe in round t. If (Ct) holds for all t ≥ 0

and ut exists, then the robber’s winning strategy is to keep moving

to the vertices ut. We prove that (Ct) holds for all t by induction.

For the base step, condition (Ct) holds for t = 0 by the discussion in

the previous paragraph. Suppose it holds for t− 1, and so the robber

is on a vertex ut−1 of G at time t not joined to a cop. As the girth

is at least 5, each cop is joined to at most one neighbor of ut−1. As

ut−1 has degree at least d, the robber simply moves to a vertex ut

not joined to any vertex in C. �

Theorem 1.3 implies that c(P) ≥ 3, and hence, c(P) = 3. Frankl

[89] proved the following theorem generalizing Theorem 1.3 (which is

the case t = 1).

Theorem 1.4 ([2]). For a fixed integer t ≥ 1, if G has girth at least

8t− 3 and δ(G) > d, then c(G) > δ(G)t.

14 1. Introduction

We may use Theorem 1.3 to show that the cop number can be

larger than any given integer, a fact not obvious a priori. A graph

class C consists of a set of graphs closed under isomorphism. For

example, the class of all graphs, bipartite graphs, or triangle-free

graphs are graph classes. A graph class C is cop-unbounded if

{c(G) : G ∈ C}

is unbounded; otherwise, it is cop-bounded.

Theorem 1.5. The class of bipartite graphs is cop-unbounded.

Proof. We consider a family of bipartite graphs derived from projec-

tive planes which will be important in Chapter 3. A projective plane

consists of a set of points and lines satisfying the following axioms.

(1) There is exactly one line incident with every pair of distinct

points.

(2) There is exactly one point incident with every pair of distinct

lines.

(3) There are four points such that no line is incident with more

than two of them.

See Figure 1.7 for the projective plane with seven points, called

the Fano plane.

It can be shown (see [39], for example) that a projective plane

has q2 + q + 1 points, q + 1 many points on a line, and q + 1 lines

Figure 1.7. The Fano plane.

1.3. Lower Bounds 15

through a point. The order of the plane is q. Projective planes of

order q are known to exist for q a prime power, and a deep conjecture

is that these are the only possible orders.

We define a bipartite graph G(P) for a given projective plane P.

One vertex class consists of points of P, and the other vertex class

consists of lines. Vertices of different vertex classes are joined if they

are incident. Note that G(P) is q+1 regular, and it is not hard to see

that G(P) has girth 6. By Theorem 1.3 we have that c(G(P)) ≥ q+1.

We leave it as an exercise that c(G(P)) ≤ q + 1 (this fact was first

proved in [175]). Since there are infinitely many prime numbers, the

proof of the theorem follows. �

Projective planes are one instance of an incidence structure (that

is, a set of points P and a set of lines L, and a binary incidence

relation, which is just a subset of P × L). The construction in the

proof of Theorem 1.5 will be further elaborated on in Chapter 3.

Aigner and Fromme [2] proved that the cop number of a planar

graph is at most three and hence, the class of planar graphs is cop-

bounded. Schroeder [185] generalized this in another direction by

proving that graphs with genus g have cop number bounded by � 3g2 �+
3. For a fixed graph H, Andreae [10] generalized the result on planar

graphs in another direction by proving that the cop number of a

K5-minor-free graph (or K3,3-minor-free graph) is at most 3 (recall

that planar graphs are exactly those that are K5-minor-free and K3,3-

minor-free). Andreae [11] also proved that for any graph H the class

of H-minor-free graphs is cop-bounded. Joret et al. [125] proved that

a class of graphs defined by omitting a fixed graph H as an induced

subgraph is cop-bounded if and only if each component ofH is a path.

If we consider the class of graphs omitting H as only a subgraph, then

the class is cop-bounded if and only if every connected component of

H is a tree with at most three leaves. An interesting and more open-

ended research problem would be to classify the cop-bounded classes

of graphs.

16 1. Introduction

1.4. Upper Bounds

Not many good upper bounds on the cop number are known. For

example, we have that c(G) ≤ γ(G), but these parameters can be

arbitrarily far apart. For example, c(Pn) = 1, while γ(Pn) = �n3 �.
We now consider the problem of how large the cop number is as a

function of n the number of vertices. There is a small but growing

set of results on this topic, which will be considered in more detail in

Chapter 3. Recall that we only consider connected graphs (otherwise,

the upper bound is n). For many years, the best known upper bound

was the one proved by Frankl, which shows that c(G) = o(n).

Theorem 1.6 ([89]). If G is a graph of order n, then

c(G) ≤ O

(
n
log log n

log n

)
.

One of the goals of this section is to prove Theorem 1.6; we will

learn a few new things along the way. Currently, the best known

upper bound is due to Lu, Peng [141], which is

c(G) = O

(
n

2(1−o(1))
√

log2 n

)
.

The conjectured ceiling of the cop number is O(n1/2). This is

Meyniel’s conjecture, and is one of the deepest problems on the cop

number. Owing to its importance, we devote all of Chapter 3 to

Meyniel’s conjecture.

For a fixed integer k ≥ 1, an induced subgraph H of G is k-

guardable if, after finitely many moves, k cops can move only in the

vertices of H in such a way that if the robber moves into H at round

t, then he will be captured at round t + 1. For example, a clique

or a closed neighbor set in a graph are 1-guardable, and G is γ(G)-

guardable.

A path P in G is isometric if for all vertices u and v of P,

dP (u, v) = dG(u, v).

See Figure 1.8 for an example.

The following theorem of Aigner and Fromme on guarding iso-

metric paths has found a number of applications.

1.4. Upper Bounds 17

Figure 1.8. An isometric path, depicted in bold.

Theorem 1.7 ([2]). An isometric path is 1-guardable.

We may whimsically call an isometric path a beat : one cop can

patrol the path effectively and ensure no robber can ever escape it

without being captured.

Proof of Theorem 1.7. Let P = {v0, v1, . . . , vk} be an isometric

path in a graph G, and let

Di = {x ∈ V (G) : d(x, v0) = i}.
Since P is an isometric path, it follows that vi ∈ Di for i = 0, 1, . . . , k.

See Figure 1.9.

The cop, restricted to P , plays as if the robber is on vj when

the robber is on some vertex of Dj , j = 0, 1, . . . , k − 1, and on vk
when j ≥ k. We will call this the robber’s image. If the robber is in

Dj , then he can only move to vertices of Dj−1, Dj and Dj+1, so his

image can only move from vj to vj−1, or vj+1, or remain at vj . Start

the cop on v0. As far as she and the image are concerned, they are

Figure 1.9. The sets Di and their images on the path. Note
that D0 = {v0}.

18 1. Introduction

playing the game on a path, and in this game the cop wins. After

the image has been caught, the actual robber can still move in G, but

the robber’s image moves to an adjacent vertex on P or is stationary.

The cop now moves to recapture the image. Suppose that the robber

tries to enter P after his image has been caught. Before his move

onto P , he is in Aj for some j. If j < k, then his image is on vj
and so is the cop. The robber can only move to one of vj−1, vj or

vj+1. Whichever vertex he chooses, the cop will capture him on the

next move. If j ≥ k, then the image is on vk and so is the cop. The

robber’s only possible moves are to vk or vk−1 and the cop captures

him on the next move. �

Our proof of Frankl’s upper bound (inspired by the discussion

of Lu and Peng [141]) makes use of the Moore bound, which is an

important inequality involving the order n of graph, its maximum

degree Δ, and its diameter. For simplicity, we will write diam(G) =

D. Note that if Δ = 2, then it is an exercise that n ≤ 2D + 1 (see

Exercise 7).

Theorem 1.8. Let G be a graph of order n, with maximum degree

Δ > 2 and diameter D. Then

n ≤ 1 +

D−1∑
i=0

Δ(Δ− 1)i(1.2)

= 1 +Δ

(
(Δ− 1)D − 1

Δ− 2

)
.

Proof. For a fixed vertex u, and an integer 1 ≤ i ≤ D, defineNi(u) to

be the set of vertices of distance i to u. (In particular, N1(u) = N(u).)

It is evident that
D⋃
i=1

Ni(u) = V (G) \ {u}.

To finish the proof, we bound the cardinality of Ni(u).

The vertex u contributes one to |
⋃D

i=1 Ni(u)|, and N1(u) con-

tributes at most Δ. A straightforward induction shows that for

2 ≤ i ≤ D, Ni(u) contributes at most Δ(Δ− 1)i−1 to |Ni(u)|. �

1.4. Upper Bounds 19

Figure 1.10. The Hoffman-Singleton graph.

The right-hand side of (1.2) is called the Moore bound and is

named after Edward F. Moore. A graph whose order is equal to the

Moore bound is called a Moore graph. The 5-cycle is a Moore graph

for D = 2, while the Petersen graph is a Moore graph for D = 3. The

Hoffman-Singleton graph is 7-regular, has D = 2, and girth 5; see

Figure 1.10. Hoffman and Singleton [115] proved that Moore graphs

exist for D = 2 and Δ = 2, 3, 7 and possibly for 57, and they proved

that C7 is the unique Moore graph with D = 3. Darnell [66] proved

there are no other Moore graphs for D,Δ ≥ 3, so D = 2, Δ = 57 is

the only open case! For more on the Moore bound and graphs, see

the survey [156].

Proof of Theorem 1.6. Each closed neighbor set of a vertex u of

maximum degree Δ is 1-guardable. By Theorem 1.7, an isometric

path of length D is also 1-guardable. Asymptotically, the Moore

bound becomes

n = O(ΔD).

By the Moore bound, both Δ and D cannot be less than

O

(
log n

log log n

)
,

20 1. Introduction

(see Exercise 20). In particular, there is a subset X consisting of

either a closed neighbor set or an isometric path of order at least

log n

log log n

in G. Delete X to form the graph G′′. Although graph G′′ may be

disconnected, the robber is confined to a connected component G′ of

this graph. The cops then move to G′. Then

(1.3) c(G) ≤ c(G′) + 1,

since X is 1-guardable. Let c(n) be the maximum of the cop numbers

over connected graphs of order n. Now proceed by induction on n

using (1.3) to derive that

c(n) ≤ c
(n
2

)
+

n/2
logn

log logn

= O

(
n
log log n

log n

)
,

where the equality follows by a straightforward induction. �

The greedy approach used above in the proof of Frankl’s theo-

rem will come up when we consider other upper bounds of c(G) in

Chapter 3.

1.5. Cops, Robbers, and Retracts

We close the chapter with a discussion of retracts, which play a vital

role in understanding the game. Let H be an induced subgraph of

G formed by deleting one vertex. We say that H is a retract of G

if there is a homomorphism f from G onto H so that f(x) = x for

x ∈ V (H); that is, f is the identity on H. The map f is called a

retraction (or 1-point retraction or fold). Distances between pairs

of vertices do not increase in the image (see Exercise 10). From the

perspective of graph homomorphisms, retractions are idempotents

(that is, satisfying f2 = f) in the endomorphism monoid of G. For

example, the subgraph formed by deleting an end-vertex is a retract.

1.5. Cops, Robbers, and Retracts 21

Figure 1.11. A retraction u → v.

If u is a corner (that is, there is some vertex v such that N [u] ⊆ N [v]),

then the mapping

f(x) =

{
v if x = u,

x else,

is a retraction (recall that our graphs are reflexive, so edges may map

to a single vertex). In this case, we write u→ v. See Figure 1.11.

Retracts play an important role in characterizing cop-win graphs.

The next theorem, due to Berarducci and Intrigila [16], shows that

the cop number of a retract never increases.

Theorem 1.9 ([16]). If H is a retract of G, then c(H) ≤ c(G).

Theorem 1.9 fails if H is not a retract. For example, let G be

a wheel Wn with n ≥ 4 and universal vertex x, and let H be the

subgraph isomorphic to Cn formed by deleting x.

Proof of Theorem 1.9. Suppose that k cops have a winning strat-

egy in G, and let f : G→ H be a retraction. We consider two parallel

Cops and Robbers games: one played in G and one in H. The game

in H may be considered as being played in G, since H is an induced

subgraph of G. The strategy in G may not be sufficient alone to cap-

ture the robber in H (for example, the robber may need to leave H

to be captured in G).

We therefore consider the following shadow strategy, which will

come up several times in Chapter 2. Let the cops in G play as usual.

In H, the cops play as the images of the cops in G. For simplicity,

22 1. Introduction

we label the images of the cops as f(C). That is, if a cop C moves

from vertex u to v, then a cop f(C) moves from f(u) to f(v). These

moves are possible as f is a homomorphism. We think of the f(C) as

shadowing the movements of the cops in H.

We claim the shadow strategy is a winning one for f(C). Let the

cops play in G with R restricted to H. Now suppose the cops are

about to win in G. It must be that R and each of its neighbors v in

H (as well as its neighbors in G−H) are joined to some cop. But then

the edge RC becomes Rf(C) under the retraction, and vC becomes

vf(C). Therefore, N [R] ⊆ N [f(C)] in H, and the robber loses in the

game played in H in the next round. Hence, c(H) ≤ k, and the proof

follows. �

We therefore have the following corollary.

Corollary 1.10. If G is cop-win, then so is each retract of G.

Corollary 1.10 hints at a recursive structure to cop-win graphs,

as we will see in Chapter 2. If G is cop-win and has a retraction other

than the identity map, then the retract is again cop-win. We now

apply this idea repeatedly until we are left with an edge (or single

vertex). Corollary 1.10 also gives us a simple sufficient condition for

a graph to be robber-win. For example, if a graph retracts to a cycle,

then it is robber-win.

In the following theorem and exercises, we now refer to more gen-

eral retractions (with corresponding retracts which are their images)

which are a a composition of a set of (1-point) retractions we have

considered so far. (Indeed, retractions usually refer to these more

general kind of mappings.) The following theorem gives us an upper

bound for the cop number of a graph using retracts.

Theorem 1.11. [16] If H is a retract of G, then

c(G) ≤ max{c(H), c(G−H) + 1}.

Proof. Define m + 1 = max{c(H), c(G − H) + 1}. Let f : G → H

be a retraction. We describe a winning strategy for m+ 1 cops in G.

First, as m + 1 ≥ c(H), the cops play by using the cops’ strategy in

H and capture the robber’s image f(R) in H. These moves are moves

Exercises 23

in G as f is a homomorphism. Now if the robber is in H, R = f(R)

and the cops win.

Otherwise, the robber is in G−H and the cops do the following.

One cop protectsH by occupying in all rounds the image f(R). Hence,

H becomes 1-guardable, and so the robber must remain in G−H to

survive. As c(G − H) cops can win in any connected component of

G−H, the proof follows. �

If P is an isometric path with vertices {u0, u1, . . . , un}, then it

is straightforward to show that the following map f : G → P is a

retraction:

(1.4) f(v) =

{
ui if d(v, u0) = i and i ≤ n,

un otherwise.

We note that f describes the moves of one cop used to guard an

isometric path as in proof of Theorem 1.7.

Exercises

1. Prove the following facts about binomial coefficients, where n is

a positive integer and 0 ≤ i ≤ n.

(a)
n∑

i=0

(
n
i

)
= 2n.

(b) 4n

2n ≤
(
2n
n

)
.

(c) The inequalities in (1.1).

2. Prove Lemma 1.1.

3. [167] Show that a cop-win regular graph is a clique.

4. (a) Prove that each finite tree with at least two vertices has at

least two end-vertices.

(b) A graph is chordal if each of its cycles of four or more ver-

tices has a chord : an edge joining two vertices that are not

adjacent in the cycle. A simplicial vertex has its neighbor

set a clique. Prove that a chordal graph has at least two

simplicial vertices.

24 1. Introduction

(c) Prove that the deletion of a simplicial vertex from a chordal

graph results in another chordal graph.

5. Find the cop number of the following graphs.

(a) The cube Q3.

(b) The following graph.

(c) The dodecahedron depicted below.

Exercises 25

6. (a) Prove that the Petersen graph is vertex- and edge-transitive.

(b) Consider the graph G formed from the dodecahedron, whose

vertex set consists of the pairs of vertices {x, y}, where we

have that d(x, y) = 5, and pairs are adjacent if and only if

there is a perfect matching between them. Show that G is

isomorphic to the Petersen graph.

7. Derive the Moore bound in the case the maximum degree is 2:

n ≤ 2D + 1.

8. Find a graph with girth 4 with c(G) < δ(G).

9. Prove that a tree (infinite or otherwise) either contains a ray or

an end-vertex.

10. Prove that for all x, y ∈ V (G), if f : G→ H is a homomorphism,

then dG(x, y) ≥ dH(f(x), f(y)).

11. A vertex in a digraph is a source if it has in-degree 0. Show that

every tournament with a source is cop-win.

12. For each positive integer k, give examples of weakly connected

digraphs with cop number k.

13. [164] In the active version of Cops and Robbers, at least one

cop and the robber must move on their respective turns. Our

definition of Cops and Robbers and the active version coincide

on reflexive graphs, but differ on irreflexive ones. Define c′(G) to

be the cop number in the active version of the game. Prove that

for an irreflexive graph G,

c(G)− 1 ≤ c′(G) ≤ c(G).

14. [34] Make the following slight change to the rules of Cops and

Robbers: To capture the robber, the cop must move along an

edge to the vertex holding the robber. If there are loops at each

vertex, then this is identical to the original game. If there are no

loops, then this is the active version of the previous exercise. Let

G be a graph with loops at some (but possibly not all) vertices.

Show that G is cop-win if and only if G is dismantlable.

15. Show that the bipartite graph G(P) using projective planes from

the proof of Theorem 1.5 satisfies c(G(P)) ≤ q + 1.

26 1. Introduction

16. [56] Suppose G is a graph with an induced cycle of length at least

4, where at least one vertex of the cycle has degree 2. Then prove

that G is not cop-win.

17. Assume that one cop and the robber play optimally on a tree T ;

that is, the cop is trying to catch the robber in the minimum

number of rounds possible, and the robber is trying to maximize

the number of rounds. Show that the cop captures the robber in

at most
⌊
|V (G)|

2

⌋
rounds.

18. [56] Show that if G is cop-win, then the subdivision of any edge

in a cycle yields a graph with cop number two. (Hint : Use Exer-

cise 16.)

19. Let G have Δ ≤ 3 and suppose any two adjacent edges are con-

tained in a cycle of length at most 5. Then c(G) ≤ 3.

20. Show that in a graph G, both Δ and D cannot be less than

(1 + o(1))
log n

log log n
.

21. Show that if H is a retract of G, then H is an isometric subgraph

of G; that is, for all x, y in V (H),

dH(x, y) = dG(x, y).

22. [16] Fix k > 0 an integer. Prove that if H is a retract of G and

c(G−H) ≤ k, then c(H) ≤ k if and only if c(G) ≤ k.

23. For each infinite cardinal κ, give examples of 2κ many non-iso-

morphic graphs with cop number κ.

24. Define the isometric path number or precinct number of G, writ-

ten p(G), as the minimum number of isometric paths (or beats)

needed to cover G. Note that c(G) ≤ p(G).

(a) Prove that

p(G) ≥
⌈

n

diam(G) + 1

⌉
.

(b) If G is a tree with L leaves, then prove that

p(G) =

⌈
L

2

⌉
.

(Hint : Use induction on the number of vertices of G.)

Exercises 27

25. (a) [16] Show that subdividing all edges of a graph an even

number of times does not decrease the cop number.

(b) For a fixed integer k > 2, show that the class of all graphs

with girth at least k is cop-unbounded.

26. The Hoffman-Singleton graphH is the unique Moore graph which

is 7-regular. See Figure 1.10. Determine the cop number of H.

27. In this exercise, we consider Cops and Robbers played on finite

orders. This version of the game was introduced in Hill’s doctoral

thesis [113]. For an order G, the cops are initially placed on

minimal vertices, with the robber placed on a maximal vertex. A

cop on u can move to v with u ≤ v provided there is no x such

that u ≤ x ≤ v. A move of the robber is defined dually. The

cops win as in the usual game, and the robber wins if he reaches

a minimal vertex or there is no cop below him. The cop number

of G, written c(G), is defined in the usual fashion.

(a) Show that cop number of the order in Figure 1.3 is two.

(b) [113] Vertices u and v are incomparable if neither u ≤ v nor

v ≤ u. Suppose that G is an order with the property that

all maximal paths connecting a minimal and maximal vertex

have the same length. Prove that c(G) is at most the max-

imum cardinality of a set of incomparable vertices. (Hint :

Apply Dilworth’s theorem (see [69] or Theorem 8.4.33 of

[197]).)

(c) The Boolean lattice of order n, written B(n), has vertices

subsets of [n], with u ≤ v if u is a subset of v. The order in

Figure 1.3 is B(3). Calculate c(B(n)), where 2 ≤ n ≤ 4.

(d) [113] Show that if n = 2m is even, then

2m ≤ c(B(n)) ≤
(
n

m

)
.

Chapter 2

Characterizations

2.1. Introduction

Some graph classes have beautiful characterizations. For example,

bipartite graphs are those with no odd cycles as induced subgraphs,

Eulerian graphs are those with each degree even, and trees are con-

nected graphs with size one less than their order. Such characteriza-

tions, when available, are highly prized: they give us insight into the

structure graphs in the class and can help enormously when prob-

ing their structural and algorithmic properties. Proving characteri-

zations for some classes may take many years or be highly nontrivial

(or both). A famous example of this is the recent characterization of

perfect graphs; see [48].

Since their introduction, the structure of cop-win graphs has been

well understood. Nowakowski and Winkler [167] and, independently,

Quilliot [169] introduced a kind of ordering of the vertex set—now

called a cop-win or elimination ordering—which completely charac-

terizes such graphs. As we will demonstrate in Section 2.2, cop-win

graphs in the finite case are exactly the dismantlable ones; that is,

graphs resulting in a single vertex after a finite number of deletions of

corners (see Chapter 1). As such, cop-win graphs have a certain linear

or tree-like structure which makes them at once simple to recognize

and simple to analyze.

29

30 2. Characterizations

For over 25 years, a characterization of graphs with cop num-

ber two or higher has remained elusive. Despite this fact, as proved

by [16], [100], and [105], the k-cop-win graphs can be recognized

by polynomial time algorithms; see Chapter 5. Although this gave

an algorithmic characterization of such graphs, it did not immedi-

ately imply an explicit structural characterization. We therefore had

a somewhat strange situation: for instance, there were polynomial

time algorithms to recognize 2-cop-win graphs, but no explicit char-

acterization of them. In 2009, Clarke and MacGillivray [57] found an

explicit structural characterization of k-cop-win graphs for all k > 1.

The characterization exploits a linear structure, not of the graph, but

of a certain power of the graph (where powers are taken with respect

to categorical products). The characterization is appealing as it gen-

eralizes that of cop-win graphs. We present a full discussion with

proofs of this exciting new direction in the study of k-cop-win graphs

in Section 2.3.

2.2. Characterizing Cop-win Graphs

The game of Cops and Robbers historically first considered only the

case of one cop, and that is our focus in the present section. Recall

from Chapter 1 that a graph G is cop-win (or copwin) if one cop

has a winning strategy to capture the robber. That is, c(G) = 1.

For example, a tree is cop-win (see Lemma 1.2), as is a clique. As

we will see below, the cop-win case possesses a beautiful structural

characterization, which remains one of the crown jewels of the field.

Consider the following graph, which is cop-win but less evidently

so; see Figure 2.1. The reader should take a few minutes to consider

a winning strategy for the cops played on this graph. Vertex u has a

special property: if the robber moved here and if the cop moved to

vertex v, then she can anticipate all the moves of R and win in the

next round. Such a vertex is called a corner (or a trap, pitfall, or

irreducible). More precisely, a vertex u is a corner if there is some

vertex v such that N [u] ⊆ N [v]. The vertex v is said to cover u. We

write u→ v, and say that v dominates (or covers) u.

2.2. Characterizing Cop-win Graphs 31

u

v

Figure 2.1. A cop-win graph with corner u.

As noted in Chapter 1, if u→ v, then the mapping f : G→ G−u

defined by

f(x) =

{
v if x = u,

x else

is a retraction (sometimes called a 1-point retraction or fold). By

Theorem 1.9, the graph G− u is once again cop-win.

Corners are clearly useless for the robber. But cop-win graphs

always contain corners!

Lemma 2.1 ([167]). If G is a cop-win graph, then G contains at

least one corner.

Proof. Consider the second to last move of the cop. The robber

could pass, so C must be joined to R. Or the robber could move

to a neighboring vertex, so C is joined to each neighbor of R. See

Figure 2.2. Hence, R→ C. �

R C

Figure 2.2. The second-to-last move of the cop.

32 2. Characterizations

A graph is dismantlable if some sequence of deleting corners re-

sults in the graph K1. For example, each tree is dismantlable: delete

end-vertices repeatedly (a tree always has at least two end-vertices)

until a single vertex remains. The same approach holds with chordal

graphs, which always contains at least two simplicial vertices (that

is, vertices whose neighbor sets are cliques). No chordless cycle is

dismantlable, as the reader can check directly.

With the help of retracts, we can now prove the following impor-

tant theorem.

Theorem 2.2 ([167]). If G is cop-win, then G is dismantlable.

Proof. The proof follows by induction on the order of G. The base

case is trivial as G ∼= K1. By Lemma 2.1, each cop-win graph contains

a corner u dominated by some vertex v. Now form G − u, and note

as above that G − u is a retract of G. By Theorem 1.9, G − u is

cop-win. As G − u is dismantlable by the induction hypothesis, the

proof follows. �

The perhaps surprising fact is the converse of Theorem 2.2 is true.

The main theorem of this section is the following, which serves to char-

acterize the cop-win graphs. The theorem was proved by Nowakowski

and Winkler [167] and, independently, by Quilliot [169] in his doc-

toral thesis.

Theorem 2.3 ([167]). A graph is cop-win if and only if it is dis-

mantlable.

Proof. The forward direction is just Theorem 2.2. We next suppose

that G is dismantlable. We use induction on the order of G to show

G is cop-win. There is nothing to prove in the base case, as G ∼= K1.

Now suppose that G is dismantlable of order n + 1, where n ≥ 1 is

fixed. Then G contains some corner u, with u→ v for some vertex v,

so that G− u is dismantlable.

By the induction hypothesis, G − u is cop-win as it has order

n. We use this fact to show that G is cop-win. We use the shadow

strategy from the proof of Theorem 1.9 in Chapter 1. In particular,

the cop plays in G − u using his winning strategy on there, but so

2.2. Characterizing Cop-win Graphs 33

that whenever R moves to u, then C moves as though R moves to

v. This is possible as u → v. We think of the vertices of G − u as

images under the retraction f which maps u to v and fixes all other

vertices. Now C eventually captures the image of the robber f(R)

with his winning strategy on G − u. Now either R = f(R) in which

case the robber is captured, or R is on u with C on v. But then in

the latter case, the cop wins in the next round. �

Cop-win (or sometimes called dismantlable) graphs have a re-

cursive structure, which can be made explicit in the following sense.

Observe that a graph is dismantlable if we can label the vertices by

positive integers [n] in such a way that for each i < n, the vertex

i is a corner in the subgraph induced by {i, i + 1, . . . , n}. We call

this ordering of V (G) a cop-win ordering. See Figure 2.3 for a graph

with vertices labeled by a cop-win ordering. Cop-win orderings are

sometimes called elimination orderings, as we delete the vertices from

lower to higher index until only vertex n remains. Cop-win orderings

are usually not unique. The reader should produce at least one more

cop-win ordering of the graph in Figure 2.3.

Cop-win orderings suggest a kind of linear structure to cop-win

graphs; it roughly suggests that by “sweeping” from largest index

vertex to smallest in the ordering, we may capture the robber. This

intuition is made precise by the following winning strategy for the

cops—first made explicit by Clarke and Nowakowski [59]—in a cop-

win graph exploiting the cop-win ordering.

1

23

4

5

Figure 2.3. A cop-win ordering of a cop-win graph.

34 2. Characterizations

Cop-win (or No-backtrack) Strategy ([59]). Assume that [n] is

a cop-win ordering of G, and for 1 ≤ i ≤ n define

Gi = G � {n, n− 1, . . . , i}.

Note that G1 = G and Gn is just the vertex n. For each 1 ≤ i ≤ n−1,

let fi : Gi → Gi+1 be the retraction map from Gi to Gi+1 mapping i

onto a vertex that covers i in Gi. Define F1 to be the identity mapping

on G : F1(x) = x for all x ∈ V (G). For 2 ≤ i ≤ n define

Fi = fi−1 ◦ · · · ◦ f2 ◦ f1.

In other words, the Fi is the mapping formed by iteratively retracting

corners 1, 2, . . . , i − 1. As the fi are homomorphisms, so are the Fi

(recall that all our graphs are reflexive). Further, for all i, as the fi
are retractions, Fi(x) and Fi+1(x) are either equal or joined. If the

robber is on vertex x in G, then we think of Fi(x) as the robber’s

shadow on Gi; see Figure 2.4.

With this terminology in hand, we now describe the Cop-win

Strategy. The cop begins on Gn (the vertex n), which is the shadow

of the robber’s position under Fn (note that everything in G maps to

n under Fn). Suppose that the robber is on u and the cop is occupying

the shadow of the robber in Gi equaling Fi(u). If the robber moves

to v, then the cop moves onto the image Fi−1(v) of R in the larger

graph Gi−1.

Figure 2.4. The robber and his shadow F3(R) = f2 ◦ f1(R).

2.2. Characterizing Cop-win Graphs 35

Theorem 2.4 ([59]). The Cop-win Strategy results in a capture for

the cop in at most n moves.

Proof. The proof follows by induction on n, with the base case being

trivial. Suppose now that for some i ≤ n, the cop has captured Fi(u),

where u is the present position of the robber, and it is the robber’s

turn to move. Suppose the robber moves to v. We must show that

Fi(u) is joined or equal to Fi−1(v), showing that the cop can move to

capture the image of R in Gi−1.

If Fi(u) = Fi−1(u), then Fi−1(v) is joined or equal to Fi(u). In

the other case, we must have that Fi(u) is joined and not equal to

Fi−1(u). But then Fi−1(u) is the corner removed from Gi−1 to obtain

Gi, from which it follows that

N [Fi−1(u)] ⊆ N [Fi(u)],

and so Fi−1(v) is joined or equal to Fi(u). In each step of the in-

duction, the robber’s image may be caught with one move. Hence,

the robber’s actual position will coincide with his image in at most n

moves of the cop. �

Theorem 2.4 reveals two important features of cop-win graphs.

First, under the assumption that the cop is trying to minimize the

number of rounds needed to win, the cop never needs more than n

moves to win. This is not obvious a priori. Further, when playing the

Cop-win Strategy, the robber can never get “behind” the cop, in the

following sense. If the cop is occupying Fi(R), and the robber moves

to Gi−1, then he is immediately captured by the cop. This follows

since Fi is the identity on Gi. For this reason, the Cop-win Strategy

is also called the No-backtrack Strategy.

The Cop-win Strategy may not be the fastest strategy for the cop,

in general. For example, consider a path Pn with n vertices labeled

from left to right by 1, 2, . . . , n. Consider the cop-win ordering simply

1, 2, . . . , n. Using the Cop-win Strategy, the cop requires n− 1 moves

to catch the robber (whose best move is to start at 1 and simply

pass in each round). However, it is evident that the cop can win on

Pn in at most
⌊
n
2

⌋
moves by occupying a vertex in the centre of the

path. (A similar strategy optimizes play for a robber on a tree.) See

36 2. Characterizations

Chapter 8 for more on estimates on the number of rounds needed for

cop-win graphs when both players play optimal strategies (that is, the

cop is trying to make the game as short as possible, while the robber

is avoiding capture as long as possible).

Theorem 2.5. In a cop-win graph G of order n ≥ 5, the cop can

capture the robber in at most n− 3 rounds.

Proof. The proof is by induction on n, with the case for n = 5 fol-

lowing by checking all the cop-win graphs with five vertices. Suppose

that the conclusion holds for all graphs of order n ≥ 5, and let G have

n + 1 vertices. Hence, G contains a corner u dominated by v and,

since G− u is a retract of G, it is cop-win.

By the induction hypothesis, the cop can capture the robber in

G − u in at most n − 3 rounds. The cop plays her winning strategy

on G−u, and captures the shadow of R. So if R is on u, then C plays

as if he were on v. After n − 3 rounds, the robber is caught, or R is

on u and C is on v. Hence, the robber is caught in at most (n+1)−3

moves in G. �

In [97] and [98], the bound of n−3 in Theorem 2.5 was improved

to n − 4 for graphs with order at least 7, and shown to be best pos-

sible. Further, all graphs which realize the “capture time” n − 4 are

characterized in [98]. See Section 8.6 of Chapter 8 for more on the

capture time parameter.

It is important to note that the dismantling characterization of

Theorem 2.3 fails badly for infinite graphs. For example, a ray is

dismantlable (if we allow infinitely many vertex deletions), but fails

to be cop-win. There is a characterization of cop-win graphs of any

order (finite or infinite) that we include here, owing to [167]. It will

be important in Section 2.3 when we discuss the characterization of

k-cop-win graphs, where k > 1. For that reason, we urge the reader

to study it carefully before reading that section. Although it appears

more opaque on first viewing than the characterization using cop-win

orderings, after some reflection it is quite natural.

We define a relation � on vertices.The relation is defined recur-

sively on ordinals, with x ≤0 x for all vertices u (in other words, ≤0

2.2. Characterizing Cop-win Graphs 37

is just the diagonal or equality relation on V (G)). We will make our

definitions so that u ≤α v will mean that when a robber is on vertex

u, a cop is on vertex v, and it is the robber’s turn to move, the robber

will lose in at most α rounds. For an ordinal α, define u ≤α v if and

only if for each a ∈ N [u] there exists a b ∈ N [v] such that a ≤β b

for some β < α. Let ρ be the least ordinal such that ≤ρ=≤ρ+1 and

define �=≤ρ.

Note that if ρ < α, then the relation ≤ρ is a subset of ≤α. As

such relations are bounded above in cardinality, the ordinal ρ exists.

More precisely,

(2.1) ρ ≤ |V (G)|(|V (G)| − 1)

if G is finite, and

(2.2) ρ ≤ |V (G)|

in the infinite case by elementary set theory. In particular, ρ is finite

if |V (G)| is finite. As we will see in the proof of Theorem 2.6, an

intuitive view of ρ is that it is equal to the maximum number of

rounds needed for the cop to capture the robber (assuming she is

playing optimally; that is, minimizing the number of rounds in the

game). As an exercise (see Exercise 18), the reader should verify that

�α is a quasi-order (that is, a reflexive and transitive relation) for

each ordinal α. A binary relation on a set X is trivial if it equals the

Cartesian product of X with itself, X ×X.

Theorem 2.6 ([167]). A graph G is cop-win if and only if the relation

� on V (G) is trivial.

Proof. For the forward direction, we prove the contrapositive and

assume that for some x0 and y0 in V (G), y0 � x0. As G is con-

nected, assume without loss of generality that the cop begins at x0

and the robber begins at y0. If a graph is cop-win, then the cop may

choose any vertex to begin the game, at the cost of a finite number

of additional moves. By the definition of �, the robber can move to

y1 ∈ N [y0] such that for all x ∈ N [x0], y1 � x. If no such y1 exists,

then y0 ≤ρ+1 x0. By induction, the robber guarantees that for all i

there is a vertex yi+1 ∈ N [yi] such that for all x ∈ N [xi], yi+1 � x.

38 2. Characterizations

In particular, there is always a vertex joined to R and not to the cop,

ensuring the robber can escape capture for one more round.

For the reverse direction, suppose that the relation � is trivial.

We show that G is cop-win. In the first round, the cop chooses an

arbitrary vertex x0. Say that R chooses y1. As y1 ≤ x0, there is some

x1 ∈ N [x0] and some ρ1 < ρ satisfying y1 ≤ρ1
x1. Suppose that after

the ith move the cop is at xi and the robber is at yi so that yi ≤ρi
xi.

When the robber moves to some yi+1 in N [yi], the cop moves to xi+1

in N [xi] with the property that for some ρi+1 < ρi,

yi+1 ≤ρi+1
xi+1.

As the ordinals are well-ordered, they do not contain infinite descend-

ing chains. Therefore, we must have that ρi = 0 for some finite index

i. But then xi = yi (as ≤0 is just the equality relation) and the cop

has captured the robber. �

As pointed out in [167], a winning strategy for the cop is implicit

in the proof of the reverse direction of Theorem 2.6. In round 0, the

cop moves to an arbitrary vertex x0. In all later rounds, the cop moves

so that his position and that of the robber belong to a sequence of

relations indexed by a strictly decreasing sequence of ordinals: when

the robber moves to u, the cop moves to a vertex v ∈ N [y] such that

u ≤β v for some β < ρ.

While the characterization in Theorem 2.6 is useful for an algo-

rithmic perspective on finite cop-win graphs, it is less revealing of the

structure of infinite cop-win graphs. Infinite cop-win graphs have a

much more complex structure, as illustrated in Chapter 7. A graph

G is vertex-transitive if for each pair of vertices x and y there is an

automorphism of G mapping x to y. The Petersen graph, cliques,

and cycles are all vertex-transitive. As an indicator of the complexity

of infinite cop-win graphs, we show in Theorem 7.15 that for each

infinite cardinal κ, there are families of 2κ-many non-isomorphic cop-

win graphs that are vertex-transitive. In contrast, in the finite case,

a vertex-transitive cop-win graph must be a clique!

We mention in passing that there is a small literature [88, 106]

on Cops and Robbers on Cayley graphs, which are a special class of

vertex-transitive graphs. We do not survey those results here.

2.3. Characterizing Graphs with Higher Cop Number 39

2.3. Characterizing Graphs with Higher Cop
Number

Although k-cop-win graphs for k > 1 were defined over 25 years

ago by Aigner and Fromme [2], a structural characterization of such

graphs has remained elusive. In 2009, Clarke and MacGillivray [57]

announced that such a characterization does indeed exist. In fact,

they gave both a relational and elimination-ordering characterization

akin to the relational characterization of Theorem 2.6 and cop-win

orderings, respectively. We present both characterizations here with

full proofs. As their approach relies heavily on graph products, we

begin with a brief interlude on categorical and strong products of

graphs.

2.3.1. The Categorical and Strong Product of Graphs. Graph

products are a powerful tool in graph theory and are concerned with

taking two (or more) graphs and generating new ones. Products often

lead to more complex graphs, and yet they are good instruments for

probing the structure of graphs. While several graph products can be

defined, in this subsection we focus on two particular products: the

categorical and strong products. See the book [119] for a thorough

discussion of these and other graph products. The definitions of both

products coincide in the case of reflexive graphs, which is the case for

our discussion in this book. More details on Cops and Robbers played

on graph products will be discussed in Chapter 4. We discuss both

products separately, since Cops and Robbers is sometimes played on

irreflexive graphs.

Let G and H be graphs. The categorical (or direct) product of

graphs G and H, written G×H, has vertex set V (G)×V (H). Vertices

(a, b) and (c, d) are joined if ac ∈ E(G) and bd ∈ E(H).Note that if we

consider the product of irreflexive graphs, then K2 ×K2
∼= K2 +K2,

which justifies the notation of the product; see Figure 2.5 for an

example. Note that the categorical product is commutative, up to

isomorphism:

G×H ∼= H ×G.

The graphs G and H are called factors of the product. The categor-

ical product may be naturally generalized to the product of a finite

40 2. Characterizations

× =

Figure 2.5. The categorical product P3 × C4.

number of graphs (Gi : 1 ≤ i ≤ n) by induction, written

G1 ×G2 × · · · ×Gn

or
∏n

i=1 Gi, with vertex set V (G1) × V (G2) × · · · × V (Gn), and n-

tuples are joined if they are joined in each factor. In particular, the

projection maps

πj :

n∏
j=1

Gj → Gj

defined by πj(u1, u2, . . . , un) = uj are homomorphisms. We leave it

as an exercise (see Exercise 11) to show that the categorical product

is associative:

(G×H)× J ∼= G× (H × J).

The categorical product of two connected irreflexive graphs need not

be connected, as illustrated by K2 × K2. In fact, if G and H are

irreflexive, then G×H is connected if and only if both G and H are

connected and at least one of them is non-bipartite (see Exercise 12).

The strong product of G and H, written G � H, has vertex set

V (G) × V (H). Vertices (a, b) and (c, d) are joined if a = c and bd ∈
E(H), or ac ∈ E(G) and b = d, or ac ∈ E(G) and bd ∈ E(H). In other

words, each coordinate is either joined or equal in each factor. Note

that for reflexive graphs, G�H = G×H. Observe that K2�K2
∼= K4

which justifies the notation for the product. Like the categorical

product, the strong product is commutative. However, K1 acts as a

unit :

K1 �G ∼= G�K1
∼= G.

2.3. Characterizing Graphs with Higher Cop Number 41

Projections are defined analogously as in the categorical product, and

are also homomorphisms if all the factors are reflexive.

The strong product may be generalized to the product of a finite

number of graphs (Gi : 1 ≤ i ≤ n) in the natural way, written

G1 �G2 � · · ·�Gn

or �n
i=1Gi, with vertex set V (G1)×V (G2)×· · ·×V (Gn), and n-tuples

joined if they are joined or equal in each factor. The strong product

is associative (Exercise 11).

To further illustrate these two products, we give bounds on their

cop numbers. Both Theorem 2.7 and 2.8 were first proved in [164].

We give some notation which will help the discussion. For a fixed

x ∈ V (H), define G.{x} to be the subgraph of either product induced

by {(y, x) : y ∈ V (G)}. The graph {y}.H is defined analogously. Note

that in the case where G and H are irreflexive, then G.{x} ∼= G and

{y}.H ∼= H in the strong product, while both subgraphs are co-cliques

in the categorical product. For simplicity, in both cases, we refer to

G.{x} and {y}.H as copies of G and H, respectively. Sometimes

G.{x} and {y}.H are called G- or H-layers, respectively.

A player moves on G if the projection onto H is constant; mov-

ing on H is defined analogously. The cops capture a projection of

(u, v) onto G (respectively, onto H) if they capture (u, x) for some

x ∈ V (H) (respectively, (x, v) for some x ∈ V (G)). A cop shadows

the robber on G (respectively, on H) if after each round the cop’s

projection onto G (respectively H) equals the robber’s projection.

Theorem 2.7 ([164]). Let G and H be connected, non-bipartite ir-

reflexive graphs (so G×H is connected), with c(H) ≥ c(G).

(1) If G and H are both cop-win, then

c(G×H) ≤ 3.

(2) If c(H) > 1, then

c(G×H) ≤ 2c(G) + c(H)− 1.

Proof. For item (1), let two cops, say C1 and C2, each capture the

projection of the robber onto G with one cop capturing G.{x} and

the other on G.{y} with x joined to y in H. To accomplish this, we

42 2. Characterizations

start by placing the cops on (v, x) and (v, y) for some vertex v in

G. As we are working in the categorical product, a cop’s move must

either change both coordinates or neither coordinate. The cops each

use the winning strategy for G in the first coordinate. When the

strategy calls for a pass, they also pass in the second coordinate.

When the strategy calls for a move, they also move in the second

coordinate, sliding between x and y. Next, these two cops will use

the winning strategy for H, all the while shadowing the robber in G.

To accomplish this, if the robber passes, then they must also pass in

order to maintain their shadowing. Thus, the third cop’s role is to

keep the robber moving (that is, the robber cannot pass indefinitely).

It is clear that one cop can accomplish this task. When the robber

moves, the cops shadow the robber in the first coordinate and use

C1’s winning strategy for H in the second coordinate. If the strategy

calls for a move, then C1 makes this move with C2 trailing behind

at distance one. If the strategy calls for a pass, then they must still

make some move, so in this case C1 and C2 simply swap places and

exchange roles. Using this strategy, eventually the robber is captured.

For item (2), let

n = 2c(G) + c(H)− 1.

As in item (1), let the n-many cops play in two joined copies of H, say

{x}.H and {y}.H, with xy ∈ E(G). Suppose that the robber occupies

(a, b). Let a set P = {C1, C2, . . . , C2c(G)} of cops each capture b. In

more detail, we build the set P by adding one cop at a time. First,

c(H) cops use their winning strategy to capture the robber. Any one

cop that captures the robber is added to P. The process is repeated

with any remaining set of c(H) cops, which gives us a second cop for

P. We repeat this process until |P | = 2c(G). Each Ci in P shadows

the robber on H. Let one of the remaining c(H)−1 cops, say Ck, force

the robber to move. Since G has an odd cycle and owing to Ck, the

cops in P move so that c(G)-many of them occupy {x}.H and c(G)-

many of them occupy {y}.H. (The role of the joined vertices x and y

is analogous to the situation in the proof of item Theorem 2.7 (1).)

For each cop Ci on {x}.H, match them with a cop C ′
i on {y}.H.

In other words, if Ci moves from (x, u) to (y, v), then C ′
i moves to

(x, v). Define Ux to be the set of cops in P occupying {x}.H, and Uy

2.3. Characterizing Graphs with Higher Cop Number 43

to be the set of cops in P occupying {y}.H. The cops in Ux and Uy

shadow the robber on H which prevents the robber from entering the

same copy of H as the cops in P.

Now the cops in Ux play their winning strategy in G if the robber

moves (recall that Ck forces the robber to eventually move!). When

the strategy calls for a cop Ci to move, her partner C ′
i follows, trailing

at distance one. When the strategy calls for Ci to pass, Ci and C ′
i

exchange places and swap names. Hence, the robber must either

eventually move to a copy of H joined to one containing a cop Ci in

Ux (and so is captured by Ci) or to a copy of H containing a cop

Ci ∈ Ux (so the robber is then captured by C ′
i ∈ Uy). �

We now discuss the cop number of the strong product.

Theorem 2.8. (1) [167] A strong product of cop-win graphs is

cop-win.

(2) [164] Let G and H be graphs with c(G) ≥ 2 or c(H) ≥ 2.

Then

c(G�H) ≤ c(G) + c(H)− 1.

(3) [27] If k is a positive integer, c(G) = k > 1, and H is

cop-win, then

c(G�H) = k.

Proof. For item (1), the projections of the cops capture the robber

in each projection, and then shadow the robber in each factor. After

a finite number of rounds, each projection of the robber is captured,

and the proof of item (1) follows.

For item (2), without loss of generality, suppose that c(H) ≥ 2.

Let a set

X = {C1, C2, . . . , Cc(H)}
of cops capture the projection of the robber onto G. The reader should

verify that c(G) + c(H) − 1 cops are sufficient for this. The cops in

X then shadow the robber on G and in parallel, play their winning

strategy on H.

For item (3), note that the upper bound follows by item (2). For

the lower bound, suppose that j(< k) cops can win on G�H. If C is

44 2. Characterizations

a cop on vertex (x, z), then write C ′ for its projection onto the vertex

(x, y) in G.{y}. The strategy of R is to remain in G.{y} and to use

his strategy in G to avoid capture by C ′: whenever a cop moves to

(x, z), the robber moves as if the cop were on (x, y). As c(G) = k, the

robber can always avoid capture by the cops’ projection in G.{y}. If
the cops can win in G�H with the proposed robber’s strategy, then

consider the second-to-last move of the cops. Then N [R] is contained

in the union of the sets N [C] for the cops C. Hence, N [R]∩V (G.{y})
is contained in the union of the sets N [C ′], and so we derive the

contradiction that the cops win in G.{y} in the next round. �

A class of graphs C is called a variety if it is closed under strong

products and taking retracts. That is, if G,H ∈ C, then G�H ∈ C,
and if H ≤ G is a retract of G ∈ C, then H ∈ C. Theorem 2.8 (1) and

Theorem 1.9 establish that the class of cop-win graphs is a variety, a

fact first noted in [167].

2.3.2. A Relational Characterization of k-cop-win Graphs.

We now give a characterization of k-cop-win graphs from [57], which

is closely related to the relational characterization of cop-win graphs

from [167] presented above as Theorem 2.6. Throughout the re-

mainder of the chapter, we fix a positive integer k and a connected,

reflexive, finite graph G. The characterization makes essential use of

the categorical product of graphs. We can view the movements of

many cops as the movement of a sole cop in a large enough power

of the graph. To be more precise, if all the factors in a categorical

product of k graphs are equal to a graph G, then we refer to the

product as the kth power of G, and write Gk. Let P = P (G) = Gk.

We identify vertices of P with positions of k cops in G; the definition

of the product simulates the moves of k cops in G. In particular, if k

cops Ci, 1 ≤ i ≤ k, move from positions ui to vi, where vi ∈ N [ui],

then (v1, . . . , vk) ∈ N [(u1, . . . , uk)] in Gk. We suppress the subscripts

in the neighbor set notation in this and the next section, as they are

clear from context and would just serve to complicate matters (hence,

opting for N [u] over say NG[u]).

For i ∈ N, the relation ≤i on V (G)×V (P) is defined as follows by

induction on i. For x ∈ V (G) and p ∈ V (P), x ≤0 p if in position p,

2.3. Characterizing Graphs with Higher Cop Number 45

at least one of the k cops is occupying x. For i > 0, x ≤i p if and only

if for each u ∈ N [x] there exists a v ∈ N [p] such that u ≤j v for some

j < i. Just as in the cop-win case, the relations ≤i are non-decreasing

sets in i, and hence, as G and P are finite, there is an integer M such

that ≤M=≤M+1 and set �=≤M . Although the notation � in this

case clashes with the one for cop-win graphs, we use it here to avoid

introducing more notational baggage.

Theorem 2.9 ([57]). The graph G is k-cop-win if and only if there

exists p ∈ V (P) such that x � p for every x ∈ V (G).

The proof of Theorem 2.9 closely follows that of Theorem 2.6.

Before we prove Theorem 2.9, we define a bipartite graph B = B(G)

with red vertices P and blue vertices G. A blue x is joined to a red y

if x � y. Theorem 2.9 therefore says that some red vertex is joined to

all the blue vertices. By Theorem 2.9 there exists red vertex p and a

least integer i ≥ 0 such that x ≤i p for all blue x. Each neighbor q of

p satisfies x ≤i+1 q. As G is connected and finite, we have that each

red vertex is joined to each blue vertex. Hence, we have the following.

Corollary 2.10 ([57]). A graph G is k-cop-win if and only if the

graph B(G) is complete bipartite.

Proof of Theorem 2.9. For the forward direction, we prove the

contrapositive. Suppose that for all p ∈ P, x � p for some x ∈ V (G).

The vertex x must have a neighbor y such that y � q for all q ∈ N [p].

In particular, at neither p nor q do the cops capture the robber.

If the cops start in position p, then the robber chooses x such that

x � p. If the cops move to q, then as in the previous paragraph, the

robber moves to a vertex y such that y � q. In this way, by induction,

the robber can indefinitely avoid capture.

For the reverse direction, we prove by induction on i that if x ≤i p

for i ≤M, then the cops occupying p can capture the robber located

on x in at most i moves. As the result holds for all x in V (G), the

proof of the direction will follow.

The base case is trivial, because one of the cops occupies x. Now

suppose it holds for a fixed i < M, and consider the case x ≤i+1 p. If

the robber moves from x to y, then the cops move to some q such that

46 2. Characterizations

y ≤i q. Using the induction hypothesis, the robber can be captured

from y in at most i moves, and so he can be captured from x in at

most i+ 1 moves. �

2.3.3. An Elimination-ordering Characterization of k-cop-

win Graphs. As we discussed in Section 2.2, cop-win graphs are

characterized by a cop-win ordering. In particular, in a cop-win or-

dering, corners may be successively deleted from lower to higher in-

dex terminating with a single vertex. We consider an analogue of this

elimination-ordering for k-cop-win graphs, once again due to Clarke

and MacGillivray [57]. In the case k = 1, the vertex ordering reduces

to a cop-win ordering.

The elimination-ordering now takes place in P ×G. We “process”

(or, in the terminology of [57], “paint”) vertices of P ×G as follows,

using the relations ≤i. At step i = 0, all vertices (p, x), where x is

in one of the k components of p, are labeled as processed. For i > 0,

label any unprocessed (p, x) as processed if it is joined to a processed

vertex in the P -layer P.{y}, for every y ∈ N [x].

The vertices (p, x) processed in step i or earlier are exactly those

with x ≤i p. By Theorem 2.9, the graph G is k-cop-win if and only

if some G-layer {p}.G has each vertex processed. By Corollary 2.10,

this is in turn equivalent to each vertex of P ×G being processed.

We now make the sequence by which vertices are processed more

explicit. A vertex (p, x) is called removable with respect to

S ⊆ V (P ×G)

if one of the following properties is satisfied.

(1) In position p, at least one of the cops is located at x.

(2) N [(p, x)] ∩ S ∩ P.{y} is non-empty for every y ∈ N [x].

A k-cop-win ordering is a sequence

S = ((pi, xi) : 1 ≤ i ≤ t ≤ |V (P ×G)|)
such that for all 1 ≤ i ≤ t, the vertex (pi, xi) is removable with respect

to ((pj , xj) : j < i), and (pt, x) ∈ S for all x ∈ V (G).

Theorem 2.11 ([57]). A graph G is k-cop-win if and only if it has

a k-cop-win ordering.

2.3. Characterizing Graphs with Higher Cop Number 47

Before we prove Theorem 2.11, we show that a 1-cop-win ordering

S of G × G gives rise to a cop-win ordering (the converse is left as

Exercise 23). (Note that if k = 1, then P = G.) Let (x1, v1) be the

first pair in S with x1 distinct from v1. By definition, N [v1] ⊆ N [x1].

Define S1 to be the sequence from S formed by first deleting all pairs

(u, v1), where u ∈ V (G), then replacing each pair (v1, y) where y ∈
V (G) by (x1, y), and then finally deleting the second instance of all

repeated pairs. As N [v1] ⊆ N [x1], if (v1, y) is removable, then so is

(x1, y). It follows that S1 is a 1-cop-win ordering of G − v1. If we

repeat this argument n − 1 many times, then we obtain an ordering

v1, v2 . . . , vn−1, with vn chosen to be a vertex of G not belonging to

this sequence. By construction, this is a cop-win ordering of G.

Proof of Theorem 2.11. If G is k-cop-win, then by Theorem 2.9

and the definition of �, listing all vertices in ≤0, then those vertices in

≤1, and so on, stopping once (pt, x) appears, is a k-cop-win ordering.

Now suppose we are given a k-cop-win ordering. We prove by

induction on u that the cops in pi can capture the robber at xi in at

most i moves. This holds for i = 1 since (p1, x1) is removable with

respect to the empty set. In particular, one of the cops in position p1
is located at x1.

Now suppose the condition holds for a fixed i < t, and consider

(pi+1, xi+1). Then in position pi+1 either one of the cops is at xi+1

(in which case the robber is captured) or

N [(pi+1, xi+1)] ∩ S ∩ P.{y}
is non-empty for every y ∈ N [xi+1]. In the latter case, as (pi+1, xi+1)

is removable with respect to ((pj , xj) : j < i+1), for all y ∈ N [xi+1],

there is some q ∈ N [pi+1] such that

(q, y) ∈ {(pj , xj) : j < i+ 1}.
The proof now follows by induction. �

We view Theorem 2.11 as a higher-dimensional analogue of the

dismantlability characterization of cop-win graphs. In particular, the

dismantling occurs in a suitable power of the graph G. Note that both

the relation � and the k-cop-win ordering can be computed in poly-

nomial time, with complexity O(nf(k)), where f(k) is a polynomial

48 2. Characterizations

in k. See Chapter 5 for more on the complexity of Cops and Robbers.

Despite this fact, it is much more challenging to apply Theorem 2.11

directly (that is, without computer aid), even to determine if a graph

is 2-cop-win. For example, to determine a 2-cop-win ordering of C4,

one builds a power graph (C4)
3
and processes the vertices there. It

is much easier to determine that c(C4) = 2 by hand than finding an

elimination-ordering of a graph with 64 vertices! (See Exercise 24).

Nevertheless, Theorem 2.11 represents a breakthrough in the theory

of k-cop-win graphs where k > 1, and will likely have an impact for

many years to come.

Exercises

1. Find a cop-win ordering of the following graph:

2. Find infinitely many examples of cop-win graphs with exactly one

corner.

3. Give an example of an infinite cop-win graph G where for each

positive integer k, the robber can arrange to play onG and survive

for at least k moves.

4. (a) Prove that a chordal graph (see Exercise 4 in Chapter 1) is

cop-win.

(b) Show that a chordal graph has a perfect elimination ordering ;

that is, an ordering of the vertices such that, for each vertex

u, u and the neighbors of u that occur later than u in the

ordering form a clique.

(c) Show that a perfect elimination ordering of a chordal graph

is a cop-win ordering.

Exercises 49

5. [98] A bridge is an edge whose deletion increases the number of

connected components. Prove that if G is a cop-win graph, then

each edge uv of G is either a bridge or there is a vertex w ∈ V (G)

joined to both u and v. In particular, in a cop-win graph without

bridges (a so-called bridgeless graph), each edge of G belongs to

some K3.

6. A graph is bridged if it contains no isometric cycles of length

greater than 3.

(a) Show that each chordal graph is bridged, but not all bridged

graphs are chordal.

(b) [12, 46] Prove that a bridged graph is cop-win.

7. Suppose that G has an induced cycle with length at least 4, and

at least one vertex of the cycle has degree at least 2. Show that

G is not cop-win. (Hint : For a contradiction, assume that G has

a cop-win ordering.)

8. Verify inequalities (2.1) and (2.2).

9. For each of i = 1, 2, and 3, give infinitely many examples of

planar graphs G with c(G) = i.

10. [52] A graph G with c(G) ≤ 2 is tandem-win if, under the restric-

tion that the cops stay a distance of at most one apart during play,

the cops have a winning strategy.

(a) Prove that tandem-win graphs are cop-win.

(b) Show that tandem-win graphs are closed under taking re-

tracts.

(c) A vertex v is nearly irreducible (or o-dominated ; see Chap-

ter 8) if there if there exists a vertex y �= v such that

N(v) ⊆ N [y]. Prove that if v is nearly irreducible, then

G is tandem-win if and only if G− v is tandem-win.

(d) Find an example of a tandem-win graph with no nearly ir-

reducible vertices.

11. Prove that both the categorical and strong products are associa-

tive.

12. Show that G ×H is connected if and only if both G and H are

connected and at least one of them is non-bipartite.

50 2. Characterizations

13. For graphsG andH, let Hom(G,H) be the set of homomorphisms

between G and H. We turn Hom(H,G) into a graph by setting

vertices to be homomorphisms, and fg is an edge if f(u) = g(u)

for all u in G, except for possibly one vertex of G. Note that this

is the empty graph if there is no homomorphism from G to H.

For simplicity, we assume Hom(H,G) �= ∅.

(a) Determine the graph Hom(K1,3,K3).

(b) Show that |Hom(G,Kn)| is the number of proper n-colorings

of G.

(c) Prove that |Hom(Kn, G)| is n! times the number of n-cliques

in G.

(d) [34] Show that G is dismantlable if and only if the graph

Hom(H,G) is connected, for each graph G.

(e) [140] Let G and H be finite graphs. Prove that if

|Hom(J,G)| = |Hom(J,H)|

for all finite graphs J, then G ∼= H. (Hint : Show that the

number of injective homomorphisms from J to G equals the

number of injective homomorphisms from J to H.)

14. Graphs G and H are homeomorphic if they can be obtained from

a graph J by subdividing edges. For example, any two cycles are

homeomorphic.

(a) Find a 2-cop-win graph homeomorphic with the Petersen

graph.

(b) [16] Prove that a connected graph is homeomorphic to a

graph with cop number at most two.

15. Find examples of irreflexive cop-win graphs G andH, where c(G×
H) is one, two, or three.

16. The Cartesian product of G and H, written G�H, has vertex set

V (G) × V (H). Vertices (a, b) and (c, d) are joined if a = c and

bd ∈ E(H), or ac ∈ E(G) and b = d.

(a) Justify the notation G�H by considering K2�K2.

(b) [192] Prove that

c(G�H) ≤ c(G) + c(H).

(c) [144] Prove that the cop number of the Cartesian product

of n trees is at most
⌈
n+1
2

⌉
.

Exercises 51

17. [164] Let G be the strong product of n cycles, each of length at

least 5. Prove that c(G) ≤ n+ 1.

18. Prove that ≤α is a quasi-order (that is, a reflexive and transitive

relation) for each ordinal α.

19. In a cop-win graph, the cop plays optimally if she catches the

robber in the least number of rounds. The robber plays optimally

if he is caught in the maximum number of rounds.

(a) Describe an optimal play of both the cop and robber on a

tree.

(b) Assuming both players play optimally, show that for a posi-

tive integer k, y ≤k x but not y ≤k−1 x if and only if when

the cop is at x and the robber is at y with the robber to

move, the cop captures the robber in exactly k moves.

20. Let G be a graph with a corner v. Show that G is k-cop-win if

and only if G− v is k-cop-win.

21. [34] A graph is stiff if it does not contain any corners.

(a) Show that a regular graph with at least three vertices is stiff.

(b) Show that each graph G contains a unique isomorphism type

of stiff subgraph H for which G retracts to H by a sequence

of 1-point retractions. The subgraph H is called the stiff-

core.

(c) Find the stiff core of the Petersen graph, and of the dodec-

ahedron.

22. Let G be a cop-win graph with vertices [n], and consider a se-

quence S of retractions i → j, for i ∈ [n] and some j < i. Define

the cop-win spanning tree T (relative to S) so that V (T) = V (G)

and ij ∈ E(T) if and only if i → j in S. Clarke [52] first intro-

duced cop-win spanning trees.

(a) Justify that in fact T is a tree.

(b) Find all the cop-win spanning trees for the cop-win graph

shown in Exercise 1.

23. Show that if G has a cop-win ordering, then G×G has a 1-cop-win

ordering. (Hint : Use a cop-win spanning tree.)

24. Using a computer or directly, find a 2-cop-win ordering of (C4)
3 .

Chapter 3

Meyniel’s Conjecture

3.1. Introduction

Every mathematician loves a good conjecture. All robust fields of

graph theory or mathematics need at least one easy to state but

tough to solve problem. Such problems should spur sufficient interest

and debate, leading to new ideas and techniques. We think of the

impact of Hilbert’s 23 problems—posed in 1900—on modern math-

ematics; see [201]. One hundred years later, the Clay Foundation

posted seven Millennium prize problems [62]; the solution of any one

problem comes with the prize of one million dollars!

Meyniel’s conjecture is fulfilling the role of an elegant but chal-

lenging problem on the game of Cops and Robbers. Recall that we

consider connected graphs only. Meyniel’s conjecture states that if

G is a graph of order n, then

(3.1) c(G) = O(
√
n).

In other words, for n sufficiently large there is a constant d > 0 such

that

c(G) ≤ d
√
n.

We will refer to (3.1) as the Meyniel bound. The conjecture was

mentioned in Frankl’s paper [89] as a personal communication to him

by Henri Meyniel in 1985 (see page 301 of [89] and reference [8] in that

53

54 3. Meyniel’s Conjecture

paper). Despite this somewhat cryptic reference, Meyniel’s conjecture

stands out as one of the deepest (if not the deepest) problems on the

cop number. See Figure 3.1 for the only photograph we could find of

Meyniel.

Figure 3.1. Henri Meyniel in Aussois, France, in the 1980s.
Photo courtesy of Geňa Hahn.

For n a positive integer, let c(n) be the maximum value of c(G),

where G is of order n. For example, c(1) = c(2) = c(3) = 1, while

c(4) = c(5) = 2. Note that c(n) is a non-decreasing function. (See

Exercise 1b). We can rephrase Meyniel’s conjecture more compactly

as

c(n) = O(
√
n).

At the heart of Meyniel’s conjecture, of course, is finding good

upper bounds for the cop number. As demonstrated in the proof of

Theorem 1.5, for a projective plane with q2 + q + 1 many points,

the bipartite graph G(P) has cop number equaling q + 1. Hence, if

the conjecture is true, then the bound is asymptotically tight. As a

3.1. Introduction 55

first step towards proving Meyniel’s conjecture, Frankl [89] proved

that c(n) = o(n). More precisely, he proved (see Theorem 1.6 of

Chapter 1) that

(3.2) c(n) ≤ (1 + o(1))n
log log n

log n
.

There is a large gap in the bound of the conjecture and (3.2). Over 20

years passed, and the conjecture received relatively little attention.

It is we think, deserving of more attention, and so it is the focus of

this chapter.

Chinifooroshan [47] in 2008 improved (3.2) by showing that

(3.3) c(n) = O

(
n

log n

)
.

The best known upper bound at the time of writing this book is due

to Lu and Peng [141], who proved using the probabilistic method

that

(3.4) c(n) = O

(
n

2(1−o(1))
√

log2 n

)
.

The same bound was achieved a little time later and independently

by Scott and Sudakov [187], and Frieze et al. [90]. The bound (3.4)

is still far from the Meyniel bound, especially for large n. Ignoring

constants, if n is a billion, then the Meyniel bound states that fewer

than 32, 000 cops are needed to capture the robber, while (3.4) re-

quires over 42 million.

To further highlight how far we are from proving the conjecture,

even the so-called soft Meyniel’s conjecture is open, which states that

for a fixed constant c > 0,

c(n) = O(n1−c).

At a glance, the soft Meyniel’s conjecture is a much weaker one than

the original one. Nevertheless, solving the soft conjecture would rep-

resent a significant breakthrough. Even establishing that, say,

c(n) = O(n0.99999999)

remains wide open!

In Section 3.2 we prove in Theorem 3.1 the bound (3.3), whose

proof uses the notion of guarding subgraphs. The reader will recall

56 3. Meyniel’s Conjecture

from Chapter 1 that (3.2) was proved using isometric paths and the

Moore bound. The main idea of the proof of Theorem 3.1 is to gen-

eralize guarding paths with one cop to guarding certain trees with at

most five cops. We discuss families of graphs realizing the tightness

of the Meyniel bound (3.1) in Section 3.3. In Section 3.4, we prove

the conjecture in the special case of diameter 2 graphs; see Theo-

rem 3.10. We close with some discussion and problems surrounding

the conjecture.

3.2. An Improved Upper Bound for the Cop
Number

For many years, Frankl’s bound (3.2) was the best known upper

bound on the cop number. The bound given in the following the-

orem was proved by Chinifooroshan in 2008.

Theorem 3.1 ([47]).

(3.5) c(n) = O

(
n

log n

)
.

The bound (3.5), therefore, represents the first important step

forward in proving Meyniel’s conjecture in over 25 years. The key to

proving (3.3) comes from the notion of guarding an induced subgraph

introduced in Chapter 1 and which we recall here. For a fixed integer

k ≥ 1, an induced subgraph H of G is k-guardable if, after finitely

many moves, k cops can move only in the vertices of H in such a way

that if the robber moves into H at round t, then he will be captured

in round t+ 1.

The idea is that with some work, the cop can arrange things so

that as soon as the robber enters his turf, the robber is captured. An

easy example of a 1-guardable subgraph is a clique; an isometric path

is 1-guardable (see Theorem 1.7). We now consider a special class of

trees which require a few more cops to effectively guard. A minimum

distance caterpillar (or mdc) is an induced subgraph H of G with the

following properties.

(1) The graph H is a tree.

3.2. An Improved Upper Bound for the Cop Number 57

Figure 3.2. An example of an mdc, represented by the
thicker lines. The grey lines form the path P.

(2) There is a path P in H that is dominating : that is, for each

vertex u of H not in P, there is a vertex v of P joined to u.

Figure 3.2 gives an example of a minimum distance caterpillar.

Frankl’s proof of (3.2) relies heavily on the fact that isometric paths

are 1-guardable. The strategy of the proof of Theorem 3.1 rests on

first proving that mdc’s are 5-guardable. We then show that small

order mdc’s always exist in graphs (where “small order” means order

log n), and then we use the greedy approach to bound the cop number.

Mdc’s are “sticky” analogues of isometric paths, and require just

a few more cops to guard.

Theorem 3.2 ([47]). An mdc is 5-guardable.

Proof. Let H be an mdc, and with an isometric path P, which has

vertices {1, 2, . . . , k}. Since isometric paths are 1-guardable (see The-

orem 1.7), the path P is 1-guardable. We station a cop C0 there on a

permanent beat: her role is just to capture the robber in round t+ 1

if he enters P in round t.

We now see how the four additional cops can guard the rest of

H. The cop C0 divides P into vertices of behind her (that is, of lower

index) and in front of her (higher index). We now place two cops

directly in front of C0 and two cops directly behind her. That is, if

C0 occupies i, then C−2 moves to i−2, C−1 moves to i−1, C1 moves

to i+1, and C2 moves to vertex i+2. If any of these values are below

1 or above n, then the cops just double-up on vertices (for example,

58 3. Meyniel’s Conjecture

Figure 3.3. Cops doubling up at the end of the isometric path.

if C0 is on 2, then C−2 and C−1 both occupy 1). See Figure 3.3. It is

evident that after finitely many rounds, the cops can arrange to move

in this fashion.

To show that H is 5-guardable, we consider cases. If the robber

moves onto P in round t, then he will be caught in round t+ 1. Now

suppose that the robber moves onto v in round t, where v is not in

P. By hypothesis, there is a vertex u of P joined to v. We must have

that C0 is on u−2, u−1, u, u+1, or u+2 in round t. Otherwise, the

robber can move onto u in round t + 1, and not be caught in round

t+ 2. Owing to the location of the cops Ci, where −2,−1 ≤ i ≤ 1, 2,

one of the cops must be on u at round t, and so can capture the

robber in round t+ 1. �

We now show that mdc’s of sufficiently large order always exist

in G.

Theorem 3.3 ([47]). If G has order n, then there is an mdc in G of

order at least log n.

The proof of Theorem 3.1 follows with the aid of Lemma 3.4, which

finds isometric paths with large neighborhoods.

We use Theorems 3.2 and 3.3 together with Lemma 3.4 to obtain

5-guardable subgraphs with large neighborhoods. We actually prove

the following more general fact, which is used in the proof of Theo-

rem 3.1 in the case d = 1. For a set S of vertices in a subgraph H and

d a positive integer, let Nd
H [S] be the set of vertices of distance d or

less in H from a vertex of S; see Figure 3.4 for an example. A rooted

tree is one with a specified vertex called the root. A root-to-leaf path

in a rooted tree consists of a path with endpoints at the root and an

end-vertex (or leaf).

3.2. An Improved Upper Bound for the Cop Number 59

Figure 3.4. The set S equals the white vertices, while N1
H [S]

equals the white and black vertices, and the set N2
H [S] equals

the white, black, and grey vertices.

Lemma 3.4 ([47]). For integers n, d ≥ 1 with d ≤ n and any rooted

n-vertex tree T , T has a root-to-leaf path P such that∣∣Nd
T [P]

∣∣ ≥ d log(1 + n
d)

1 + log d
.

Proof. Let τ (n, d) be the largest number such that any rooted n-

vertex tree T has a root-to-leaf path P such that

|Nd
T [P]| ≥ τ (n, d).

We use induction on n to prove that

τ (n, d) ≥ d

1 + log d
log
(
1 +

n

d

)
.

As for the base case, it is straightforward to see that for all 1 ≤ n ≤ 2d,

τ (n, d) = n ≥ d

1 + log d
log
(
1 +

n

d

)
.

We assume that the hypothesis is true for all integers up to n ≥
2d, and we prove that

τ (n+ 1, d) ≥ d

1 + log d
log

(
1 +

n+ 1

d

)
.

Now, let T be an (n+1)-vertex tree in which all root-to-leaf paths P

satisfy |Nd
T [P]| ≤ τ (n+ 1, d), let r be the root of T , let Bi be the set

of vertices of distance at most i from r, and define bi = |Bi|. We can

60 3. Meyniel’s Conjecture

assume that bd − bd−1 > 0, otherwise, if bd = bd−1, all the vertices of

T are at distance at most d− 1 of r, and thus,

τ (n+ 1, d) ≥ |Nd
T [r]| = n+ 1 ≥ d

1 + log d
log

(
1 +

n+ 1

d

)
.

Since any path of length d − 1 has d vertices, bd−1 ≥ d. Let v ∈
Bd \Bd−1 be the vertex that maximized the number of vertices in Tv,

the subtree of T rooted at v. It is immediate that

|V (Tv)| ≥
n+ 1− bd−1

bd − bd−1
.

Therefore, there is a path Pv in Tv from v to an end-vertex such that

|Nd
Tv
[Pv]| ≥ τ

(
n+ 1− bd−1

bd − bd−1
, d

)
.

Let Pr,v denote the path from r to v in T from which v is removed.

By joining Pr,v and Pv we obtain a root-to-leaf path P in T , and have

that

τ (n+ 1, d) ≥
∣∣Nd

T [P]
∣∣

≥ τ

(
n+ 1− bd−1

bd − bd−1
, d

)
+ bd − 1

≥ τ

(
n+ 1− d

bd − d
, d

)
+ bd − 1

≥
d log

(
1− 1

bd−d+
n+1

d(bd−d)

)
1+log d + bd − 1

=
d log

⎛
⎜⎝
(
1− 1

bd−d

)
(2d)

bd−1
d +

(2d)

bd−1
d

bd−d
n+1
d

⎞
⎟⎠

1+log d

≥
d log

(
1 + n+1

d

)
1 + log d

. �

The lower bound of
d log(1+n

d)

1+log d is not necessarily tight; however,

it cannot be larger than 2d log(1 + n
d) by considering the complete

binary tree in which all the edges are subdivided d − 1 times; see

Figure 3.5.

We now prove the main result of this section.

3.2. An Improved Upper Bound for the Cop Number 61

Figure 3.5. A complete binary tree in which all edges are
subdivided once.

Proof of Theorem 3.1. Fix a graph G of order n. By Theorem 3.3

we may find an mdc H in G of order at least log n. By Theorem 3.2

H is 5-guardable. We now use the greedy approach exploited in The-

orem 1.6. Station five cops on H to guard it. Delete H, and consider

the connected component of G − H with the largest cop number,

which we call G′. Then

(3.6) c(G) ≤ c(G′) + 5.

Now proceed by induction using (3.6) to derive that

(3.7) c(n) ≤ c
(n
2

)
+ 5

n/2

log n
.

Hence, by induction and (3.7), we derive the desired bound

c(G) = O

(
n

log n

)
. �

The use of mdc’s in the proof of Theorem 3.1 and isometric paths

in Frankl’s proof of (3.2) points to the use of finding larger order k-

guardable subgraphs, where k is a constant. As noted in Chapter 1,

isometric paths are retracts in reflexive graphs: the cops stay on

the image of the robber under the retraction. If the robber moves

to the subgraph, then the cop captures the robber on his image or

shadow there. One could imagine exploiting larger retracts in graphs

as an approach to proving Meyniel’s conjecture. Unfortunately, this

will not substantially improve upper bounds on the cop number for

general graphs. A recent result from [19] puts a poly-logarithmic

upper bound on the order of retracts in some graphs. The proof

relies on the probabilistic method.

62 3. Meyniel’s Conjecture

Theorem 3.5. For all integers n > 0, there is a graph of order n

whose largest retract is of order O(log8 n).

An improvement exists to the bound (3.5) in Theorem 3.1. The

following theorem was proved by Lu and Peng [141] in 2009. For a

vertex u, the set Ni(u) is the set of vertices of distance i to u.

Theorem 3.6 ([141]). Fix an integer n > 0, and let G have order n.

(1) For a fixed k < n, define

Mk = min
v∈V (G)

|N2k−1(v)|.

(In particular, M1 = δ.) Then

c(G) ≤ 8k

(
log n

Mk

)1/k

n.

(2) If diam(G) ≤ 2k−1, then

c(G) ≤ 8kn1−1/k log1/k n.

(3) The function c(n) satisfies

(3.8) c(n) = O

(
n

2(1−o(1))
√

log2 n

)
.

The bound O
(

n

2(1−o(1))
√

log2 n

)
in (3.8) is currently the best upper

bound for general graphs that is known, but it is still far from proving

Meyniel’s conjecture or even the soft version of the conjecture. The

proof of Theorem 3.6 (which is omitted) uses the greedy approach

as in the proofs of Theorems 1.6 and 3.1, as well as the probabilistic

method, which represents a new and interesting approach to proving

the conjecture.

3.3. How Close to
√
n?

Meyniel’s conjecture states that the cop number is at most approxi-

mately
√
n. Examples are known (and will be discussed immediately

below) which have cop number very close to
√
n. However, the ques-

tion remains how close the cop number can approach
√
n from below.

3.3. How Close to
√
n? 63

For graphs with large cop number, we turn to incidence graphs.

An incidence structure consists of a set P of points and a set L of lines

along with an incidence relation consisting of ordered pairs of points

and lines. Given an incidence structure S, we define its incidence

graph G(S) to be the bipartite graph whose vertices consist of the

points (one color) and lines (the second color) with a point joined to

a line if it is incident with it in S. Incidence structures (and graphs) are

quite general, but we restrict our attention to partial linear spaces,

where any pair of points (lines) is incident with at most one line

(point). It is an exercise that the incidence graph of a partial linear

space is diameter at least 3 with girth at least 6.

Projective planes are some of the most well-studied examples of

incidence structures. Recall from Chapter 1 that a projective plane

consists of a set of points and lines satisfying the following axioms:

(1) There is exactly one line incident with every pair of distinct

points.

(2) There is exactly one point incident with every pair of distinct

lines.

(3) There are four points such that no line is incident with more

than two of them.

Hence, projective planes are particular partial linear spaces; con-

dition three rules out certain degenerate cases where all points are on

a single line or all lines are on a single point. We are interested in

finite projective planes, which always have q2 + q+1 points for some

integer q > 0 (called the order of the plane). Figure 3.6 depicts the

projective plane of order 3 with 13 points.

We recall the projective plane graphs from the proof of Theo-

rem 1.5 in Chapter 1. For a given projective plane P , define G(P)

to be the bipartite graph with red vertices the points of P, and the

blue vertices represent the lines. Vertices of different colors are joined

if they are incident. We call this the incidence graph of P ; see Fig-

ure 3.7 for G(P) where P is the Fano plane (that is, the projective

plane of order 2). It is an exercise that the incidence graph of the

Fano plane is isomorphic to the Heawood graph (see Exercise 6a in

this chapter).

64 3. Meyniel’s Conjecture

Figure 3.6. The projective plane of order 3.

We showed in Theorem 1.5 and Exercise 15 of Chapter 1 that if

P has order q, then c(G(P)) = q + 1. However, the orders of G(P)

depend on the orders of projective planes. The only orders where

projective planes are known to exist are prime powers; indeed, this

is a deep conjecture in finite geometry (see [39]). A large computer

search ruled out the existence of such a plane of order q = 10; see

[133]. For example, it is not even known if there is a projective plane

of order q = 12.

What about integers which are not prime powers? A family of

graphs (Gn : n ≥ 1) is Meyniel extremal if Gn has order n and for

sufficiently large n, there is a constant d such that c(Gn) ≥ d
√
n.

Figure 3.7. The Fano plane and its incidence graph. Lines
are represented by triples.

3.3. How Close to
√
n? 65

We now give examples of Meyniel extremal classes. We use

the following famous so-called Bertrand’s postulate, first proved by

Cheybshev in 1850, on the existence of primes in intervals. (An ele-

mentary proof was given by Erdős at the age of 19; see [72].)

Theorem 3.7 ([45]). For all integers x > 1, there is a prime in the

interval (x, 2x).

The number of primes between x and 2x is about x/ log x, which

follows by the famous prime number theorem (for more background

on this and other properties of primes, see, for example [65]).

The following theorem uses projective planes to give a Meyniel

extremal family of graphs.

Theorem 3.8 ([175]). There is a family of graphs Hn of order n

which is Meyniel extremal.

Proof. Consider n ≥ 72. Let q be a prime power such that

2(q2 + q + 1) ≤ n.

If 2(q2+q+1) = n, then we are done by considering the graphs G(P).

Otherwise, assume that 2(q2 + q + 1) < n. Let Gq be a graph G(P)

of order 2(q2 + q + 1).

Form Hn by adding a path of length n − 2(q2 + q + 1) to Gq.

Hence, Hn has order n. It is straightforward to see that

c(Hn) = c(Gq) = q + 1.

If there are fewer than q + 1 cops, then the robber stays in Gq and

never ventures on the newly attached path. In this way, he can avoid

capture. Therefore, c(Hn) = q + 1.

Now by Theorem 3.7 choose a prime q in the interval(⌊√
n

8
− 1

⌋
, 2

⌊√
n

8
− 1

⌋)
,

and consider a graph Gq of order 2(q2 + q + 1). By the choice of n,

the left-hand side of the interval is at least one. Then√
n

8
≤ c(Hn) ≤

√
n

2
,

and the result follows. �

66 3. Meyniel’s Conjecture

In particular, we have that

(3.9) c(n) ≥
√

n

8

for n ≥ 72. Using more number theory, we can make the bound (3.9)

even tighter for large values of n.

Theorem 3.9 ([175]). For sufficiently large integers x, there is a

prime in (x− x0.525, x).

Using this theorem and the technique in the proof of Theorem 3.8,

we have that for sufficiently large n,

(3.10) c(n) ≥
√

n

2
− n0.2625.

We do not know if (3.10) is the best possible lower bound for c(n),

and it would be interesting to find out.

3.4. Meyniel’s Conjecture in Graph Classes

There are a myriad of graph classes, some of which we have already

discussed. Formally, a graph class is a set of graphs closed under

taking isomorphism. This is quite a broad definition. Planar graphs,

graphs with bounded diameter, graphs with a given chromatic num-

ber, perfect graphs, and asteroidal triple-free graphs are all examples

of graph classes. For a good reference on graph classes, see [33].

While Meyniel’s conjecture is unresolved for general graphs, we

may attempt to solve it in certain graph classes. In some cases, the

extra structure available in a class of graphs can bound the cop num-

ber from above more easily. For example, Aigner and Fromme [2]

proved that c(G) ≤ 3 if G is planar. For a fixed graph H, Andreae

[10] generalized this result by proving that the cop number of a K5-

minor-free graph (or K3,3-minor-free graph) is at most 3 (recall that

planar graphs are exactly those which are K5-minor-free and K3,3-

minor-free). Andreae [11] also proved that for any graph H the cop

number of the class of H-minor-free graphs is bounded by a constant.

We consider in this section a recent proof by Lu and Peng [141]

that the Meyniel bound holds in the class of graphs with diameter

2. The proof uses the notion of guarding a subgraph described in

3.4. Meyniel’s Conjecture in Graph Classes 67

Chapter 1, but it also uses a randomized argument. An advantage of

randomized methods is their ability to prove some object exists with-

out actually explicitly constructing it. The probabilistic method—

championed by Erdős and Rényi—is a central tool in combinatorics

and a number of other disciplines. See the text of Alon and Spencer

[6] for a thorough survey of the method. Also see Chapter 6, which

is devoted to Cops and Robbers played on random graphs.

Our main theorem of the section is the following, which estab-

lishes that Meyniel’s conjecture is true for the class of graphs of di-

ameter 2.

Theorem 3.10 ([141]). If G is a graph on n vertices with diameter

2, then

(3.11) c(G) ≤ 2
√
n− 1.

The same bound (3.11) was also shown in [141] in the case when G is

bipartite and of diameter at most 3. Our main tool in proving Theo-

rem 3.10 is the following lemma from [141]. For a positive integer k,

a graph H is called k-degenerate if every subgraph of H has a vertex

with degree at most k. For example, a clique of order at most k + 1

is k-degenerate, as well as a star K1,k.

Lemma 3.11 ([141]). Suppose that G has diameter 2. Consider a

k-degenerate subgraph H of G, and assume that the movements of the

robber are restricted to the edges of H. Then k cops can win in this

modified game.

Proof. The proof proceeds by induction on the order of H. If we

have that |V (H)| ≤ k, then we place at least one cop on each vertex

of H and the proof follows. Now suppose the conclusion holds for a

k-degenerate graph of order m, where m ≥ k is fixed. We consider H

of order m+ 1.

Let v be a vertex of degree at most k in H. Each connected

component of H − v is k-degenerate. If the robber moves only in a

single connected component of H − v, then the inductive hypothesis

applies, and the robber may be captured by k cops. Hence, after some

number of rounds, the robber is forced onto the vertex v.

68 3. Meyniel’s Conjecture

Suppose that the cops are on the vertices

x1, x2, . . . , xk

(not necessarily all distinct), and list the neighbors of v in H as

y1, y2, . . . , yj ,

where j ≤ k. If one of the cops is on the vertex yi, then the robber

immediately loses. Otherwise, each cop is distance at most 2 from

the neighbors of v; see Figure 3.8. In the next round, each cop moves

along such a path so the cops are adjacent or equal to each vertex yi.

No matter what the robber does (that is, either passes, or moves to

some yi), he will be caught in at most two rounds. �

Lemma 3.11 also holds for other classes of graphs, such as bipar-

tite graphs of diameter 3; see [141] and Exercise 12.

The idea of the proof of Theorem 3.10 is to divide the graph into

a (k − 1)-degenerate subgraph (which is guarded by (k − 1)-many

cops) and a subgraph with a random number of cops. We use the

probabilistic method to bound the random number of cops, thereby

proving the upper bound (3.11).

A (discrete) random variable X on a probability space S is a

function X : S → R. The expectation (also called the mean, average,

or first moment) of a random variable X, written E(X), is defined by

E(X) =
∑
s∈S

X(s)P({s}).

y

y

y

R=v C=xi

Figure 3.8. A cop is distance at most 2 from the neighbors of R.

3.4. Meyniel’s Conjecture in Graph Classes 69

A basic but useful fact in the probabilistic method (especially when

applied to graphs), is that there is an element in the probability space

for which

(3.12) X ≤ E(X).

The elementary bound (3.12) plays a crucial role in the proof of The-

orem 3.10. Another useful tool in the proof of Theorem 3.10 is the

notion of a k-core. For a given positive integer k, the k-core is the

(unique) maximum subgraph with minimum degree k; see Figure 3.9

for the 2- and 3-cores of a graph. Note that the k-core is empty if

Δ ≤ k− 1. To find the k-core, we can just successively delete vertices

with degree less than k; the remaining subgraph is the k-core (see

Exercise 17b).

Proof of Theorem 3.10. Fix ε > 0 a constant, and a positive inte-

ger k that will be explicitly specified later. Define

p =
ε

k + 1
,

and note that p ∈ (0, 1) for suitable choice of ε.

Define G0 = G, and let H0 be the k-core of G0. We place a cop

on a vertex of H0 independently with probability p. Note that the

number of cops on H0 is a random variable, whose expected value is

p|V (H0)| ≤ pn.

Delete the vertices occupied by these cops and their neighbors, result-

ing in the graph G1. Assuming Gi was defined, let Hi be the k-core

Figure 3.9. The graph G, its 2-core H and 3-core J.

70 3. Meyniel’s Conjecture

of Gi. Add cops to the vertices of Hi independently with probability

p, and delete the vertices with cops and their neighbors to form Gi+1.

Continue with this process until either Hi or Gi are empty.

Let H be the induced subgraph of G on

V (H) =
⋃
i≥0

V (Gi) \ V (Hi).

By construction, each vertex of G−H either contains a cop or is

adjacent to one. Hence, for the robber to survive, he must move along

edges of H. Further, it is straightforward to see that H is (k − 1)-

degenerate.

By Lemma 3.11, (k − 1)-many cops can guard H, while the re-

maining cops control G −H. This represents a winning strategy for

the cops. Therefore, to bound the cop number of G from above, we

need to estimate the number of cops in G−H. However, the number

of cops there is a random variable!

For each i ≥ 0, the expected number of cops in Hi is

pE (|V (Hi)|) .

For a vertex v in Hi, the probability that v is not deleted when

Gi+1 is formed is equal to

(1− p)1+degHi
(v) ≤ (1− p)k+1

≤ exp(−p(k + 1)),

using the inequality that 1− x ≤ e−x for real x.

Therefore,

E (|V (Hi)|) ≤ E (|V (Gi)|)
≤ exp(−p(k + 1))E (|V (Hi)|)
≤ exp(−p(i+ 1)(k + 1))E (|V (H0)|)
≤ exp(−p(i+ 1)(k + 1))n,

where the third inequality follows by induction.

Let X be the number of cops needed in the above winning strat-

egy. We have that

(3.13) E (X) ≤ k − 1 +
∑
i≥0

exp(−pi(k + 1))np.

3.4. Meyniel’s Conjecture in Graph Classes 71

By (3.12), there is some random instance of a placement of cops

such that X ≤ E (X). Because c(G) ≤ X and (3.13) we have that

c(G) ≤ k − 1 +
∑
i≥0

exp(−p(i+ 1)(k + 1))np

= k − 1 +
np

1− exp(−p(k + 1))

= k − 1 +
ε

1− e−ε

n

k + 1
,(3.14)

by properties of geometric series and the choice of p.

Now define

f(x) =
x

1− e−x
.

In particular, by (3.14) we have that

(3.15) c(G) ≤ k − 1 + f(ε)
n

k + 1
.

Now choose k =
⌈√

f(ε)n
⌉
− 1 to minimize the value of (3.15).

Then

c(G) ≤
⌈√

f(ε)n
⌉
− 2 + f(ε)

n⌈√
f(ε)n

⌉
≤ 2

√
f(ε)n− 1.(3.16)

It is not hard to see that as ε→ 0, f(ε)→ 1. As ε was arbitrary,

we have from (3.16) that

c(G) ≤ 2
√
n− 1,

as desired. �

The incidence graphs of projective planes are bipartite of diam-

eter 3, and so show that the bound (3.11) is asymptotically tight in

that class. However, we do not know of an infinite family of graphs

of diameter 2 whose cop number is c
√
n, where c is a constant.

Meyniel’s conjecture remains open for most other graph classes.

It would be interesting to verify it in classes where the chromatic

number is bounded by some constant k.

The only Meyniel extremal class of graphs we are aware of are

based on the projective plane graphs G(P) or closely related incidence

72 3. Meyniel’s Conjecture

structures, such as affine planes. Are there others? See Exercise 16.

Perhaps if we replace the plane P by more exotic incidence structure

or combinatorial design, we will find another Meyniel extremal class.

It is also open to improve the lower bound (3.10) on the function c(n)

given by

c(n) ≥
√

n

2
− n0.2625.

Another fascinating topic is the analogue of Meyniel’s conjecture

in digraphs. Directed graphs are unusual, in that we have no struc-

tural characterization for cop-win digraphs akin to cop-win orderings

(although an algorithmic characterization is given in [105]). There

is a notion of corner for digraph, and every cop-win digraph has a

corner, but the corresponding retract may fail. For the conjecture

to be sensible, we should restrict our attention to strongly connected

graphs (otherwise, a digraph can have cop number n − 1 even if the

underlying graph is connected; see Exercise 3). Recent work by Frieze

et al. [90] using expansion properties shows that the cop number of

a connected digraph of order n is O(n(log log n)2/ log n). Can we do

better? In other words, does the Meyniel bound hold for strongly

connected digraphs? What are the Meyniel extremal digraphs (if

any)?

For tournaments, Meyniel’s bound fails. A set D is dominating

in a tournament, if for each vertex x not in D, there is a vertex y in D

with (y, x) a directed edge. The domination number of a tournament

G, written γ(G), is the minimum cardinality of a dominating set. We

note the following theorem, attributed by Moon to Erdős (see p. 28

of [160]). As c(G) ≤ γ(G), we have a logarithmic upper bound on

the cop number of tournaments.

Theorem 3.12 ([160]). If G is a tournament on n vertices, then

γ(G) ≤ �log2 n�.

Proof. As the average out-degree of G is (n− 1)/2, some vertex has

out-degree at least (n−1)/2.Deleting this vertex and its out-neighbors

and applying a recursion completes the proof. �

Chapter 6 is concerned with the cop number of random graphs.

Meyniel’s conjecture has been proven for random graphs G(n, p). Let

Exercises 73

p = p(n) be a function of n with range in [0, 1]. The probability space

G(n, p) = (Ω,F ,P) of random graphs is defined so that Ω is the set

of all graphs with vertex set [n], F is the family of all subsets of Ω,

and for every G ∈ Ω,

P(G) = p|E(G)|(1− p)(
n
2)−|E(G)| .

The space G(n, p) can be viewed as a result of
(
n
2

)
independent coin

flips, one for each pair of vertices {x,y}, with the probability that

x and y are joined equaling p. We will abuse notation and consider

G(n, p) as a graph, and so write c(G(n, p)) (note that the cop number

is a random variable on the probability space G(n, p)). We say that

an event holds asymptotically almost surely (a.a.s.) if it holds with

probability tending to 1 as n→∞.

In 2009, Bollobás, Kun, and Leader proved the following result

in [19], which essentially proves Meyniel’s bound in random graphs

G(n, p) (up to a multiplicative logarithmic factor) for a wide range of

p = p(n); see Theorem 6.11. In particular, it is proven in [19] that if

p = p(n) ≥ 2.1 log n/n,

then a.a.s.

(3.17) c(G(n, p)) = O(
√
n log n).

Recent work by Pra�lat and Wormald [179] removes the log n factor in

(3.17) and hence, proves the Meyniel bound for random graphs (and

also for random regular graphs). Based on this result, it would be

natural to assume that the cop number of G(n, p) is close to
√
n for

np = nα+o(1), where 0 < α < 1/2. We will see that this is far from

the case in Chapter 6.

Exercises

1. (a) Show that limn→∞ c(n) =∞.

(b) Prove that the function c(n) is non-decreasing; that is, for

all n ≥ 1,

c(n) ≤ c(n+ 1).

74 3. Meyniel’s Conjecture

2. The function c(n) can be extended to infinite cardinals. For a

cardinal κ, define

c(n) = sup{c(G) : G has order κ}.

Show that for all infinite cardinals κ, c(κ) = κ.

3. Give examples of digraphs of order n whose underlying graph is

connected, with the property that their cop number is n− 1.

4. (a) Prove that for a positive integer k, subdividing each edge of

a graph increases the cop number by at most one.

(b) Give an example of a graph where subdividing each edge

results in the cop number remaining unchanged, and another

where the cop number increases by exactly one.

5. [125] Show that if the cop number of a graph obtained by subdi-

viding the edges of Kn is at most O(
√
n), then Meyniel’s conjec-

ture holds.

6. (a) Show that the incidence graph of the Fano plane is isomor-

phic to the Heawood graph in Figure 3.10.

(b) Prove that the Heawood graph is a 6-cage: a cubic graph

with girth 6 with the smallest possible order.

Figure 3.10. The Heawood graph.

7. Prove that for n > 0,

c(Qn) =

⌈
n+ 1

2

⌉
.

Exercises 75

8. [175] Let P be a projective plane of order q. Show that

c(G(P)) ≤ q + 1.

Hence, the cop number of this graph equals q + 1.

9. Show that the incidence graph of a partial linear space has diam-

eter at least 3 and girth at least 6.

10. A 2-(v, k, 1) design is a partial linear space with v points, where

all lines (called blocks) have order k, and each pair of points is in

a unique block.

(a) Show that there are v(v−1)
v(k−1) many blocks in a 2-(v, k, 1) design

and each point is on v−1
k−1 blocks.

(b) A Steiner triple system is a 2-(v, 3, 1) design. For example,

the Fano plane is a Steiner triple system. Show that a Steiner

triple system must have order v ≡ 1, 3 (mod 6).

(c) Prove that the cop number of the incidence graph of a 2-

(v, k, 1) design is k.

11. Prove Bertrand’s postulate for all x ≤ 4000 without using a com-

puter.

12. [141] Show that the conclusion of Lemma 3.11 holds for bipartite

graphs of diameter 3.

13. [113] Let G and H be graphs both containing given k-cliques

u1, u2, . . . , uk

and

v1, v2, . . . , vk,

respectively. Define a clique sum of G and H, written G⊕H, to

be the graph formed by identifying ui with vi, where 1 ≤ i ≤ k.

Note that clique sums are not unique, but depend on the given

cliques in G and H.

(a) Prove that

max{c(G), c(H)} ≤ c(G⊕H).

(b) Show that

c(G⊕H) ≤ max{c(G), c(H)}+ 1.

76 3. Meyniel’s Conjecture

14. The strong isometric dimension of a graph G, which is denoted

by idim(G), is defined to be the least number k such that there

is a set of k paths Q1, Q2, . . . , Qk with G an isometric subgraph

of the strong product

�k
i=1Qi.

For example, the graph in Figure 3.11 has strong isometric di-

mension 2.

(a) Find idim(C4) and idim(K5).

(b) [80] Prove that if idim(G) ≤ 2, then c(G) ≤ 2. Much less is

known in the case idim(G) = 3. In [80], it was shown that if

idim(G) = 3, then c(G) ≤ diam(G) + 3.

Figure 3.11. A graph with strong isometric dimension 2.

15. [15] Define mk to be the minimum order of a connected graph G

satisfying c(G) ≥ k. It was shown in [15] that m1 = 1, m2 = 4,

and m3 = 10.

(a) Prove that mk = O(k2). (Hint : Use incidence graphs of

projective planes and Bertrand’s postulate.)

(b) Show that Meyniel’s conjecture is equivalent to the property

that

mk = Ω(k2).

16. Let A and B be two Meyniel extremal classes of graphs. Define

A×B to be the class of graphs G×H, where G ∈ A and H ∈ B
and the orders of G and H are the same. Prove that A × B is

Meyniel extremal.

Exercises 77

17. Suppose that δ ≤ k, where k is a non-negative integer.

(a) Show that k-core of a graph is unique up to isomorphism.

(b) Show that if we can just successively delete vertices with

degree less than k, then the remaining subgraph is the k-

core.

18. Use the probabilistic method (or otherwise) to show that for all

positive integers k, there is a graph whose cop number is at least

k.

19. Repeat the previous exercise, but working with tournaments ra-

ther than graphs. (Hint : First consider what is meant by a ran-

dom tournament. Then show that a random tournament satisfies

a certain adjacency property.)

20. [111] A graph G is an absolute retract if it is a retract of any

graph H containing G as an isometric subgraph.

(a) Show that every absolute retract is dismantlable.

(b) Prove that a (reflexive) path is an absolute retract.

(c) Show that the class of absolute retracts is the smallest variety

containing all reflexive paths.

21. [111] Let C be a class of graphs. The variety generated by C,
written V (C), is the smallest variety of graphs containing C. Show
that the class of all absolute retracts equals the variety generated

by paths.

22. (a) [70] Fix p ∈ (0, 1) a constant. Prove that for every ε > 0,

a.a.s. every set of cardinality at least

(1 + ε) log 1
1−p

n

is a dominating set in G(n, p).

(b) [28] Show that a.a.s.

c(G(n, p)) = Θ(log n).

23. Compute c(n) for small values of n. For example, it would be

interesting to know the exact value of c(n), for n ≤ 20.

Chapter 4

Graph Products and
Classes

4.1. Introduction

Our approach so far to the cop number has been fairly general. We

now focus on the cop number for specific constructions and in certain

specified classes of graphs. One of the most popular graph classes

in the 20th century were planar graphs: graphs that can be drawn

without edge crossings. A beautiful early result was that of Aigner

and Fromme in [2] proving that the cop number of a planar graph

is at most 3; see Theorem 4.25. One of our main goals is to prove

this theorem. Along the way, we will consider outerplanar graphs

(Theorem 4.23) and graphs of higher genus. We first begin with a

discussion of graph products and their cop numbers, which we began

to discuss in Chapter 2. As before, all the graphs we consider are

connected unless otherwise stated.

Graph products give us interesting ways of forming new graphs

from old. The book [119] is a good reference on the subject. We

introduced three graph products in Chapter 2: the Cartesian, cate-

gorical, and strong products. These are not the only products that

have been considered. We digress a little to introduce the other prod-

ucts in a systematic way. We use ⊗ as the symbol for an arbitrary

product, where the vertices of the product graph G ⊗H will always

79

80 4. Graph Products and Classes

be

{(a, x) : a ∈ V (G), x ∈ V (H)},

and whether two vertices in the product are adjacent depends solely

on the adjacency relations in the factors. Hence, we can represent

a product graph by a 3 × 3 matrix, called the edge matrix. The

rows (columns) are labeled by E which denotes adjacency of distinct

vertices of the first (second) factor, N for non-adjacency, and Δ for

the case where there is a loop from the vertex to itself. An E in the

matrix indicates there is an edge between the vertices of the product,

an N non-adjacency, and in the case where the relationship in both

factors is Δ then the two vertices are the same and so the entry is Δ.

Here is an incomplete edge matrix:

⎛⎝
E Δ N

E − − −
Δ − Δ −
N − − −

⎞⎠.

Since the rows and columns will always be labeled in this fashion, we

drop the labels in the sequel.

Edge matrices were introduced by Imrich and Izbicki [118]. They

showed that out of the 256 possible products there are 20 associative

products, but only 10 of these depend on the edge structure of both

factors (that is, these products do not have all E’s or all N ’s in the

first and third rows or in the first and third columns). Further, eight

of these are commutative (see Harary and Wilcox [107]).

Since a graph can be defined in terms of non-edges, there is the

notion of a complementary product. Specifically, the complementary

product ⊗c to a product ⊗ is given by

G⊗c H = (G⊗H).

The symbols used to denote products are based mainly on those found

in [162]. Some of these products are known by other names (for more

details, see [164]). The table below contains the notation and edge

matrices of these 10 associative products, and examples can be found

in Figure 4.1.

4.1. Introduction 81

Product Notation Edge Matrix

Categorical G×H

⎛⎝E N N

N Δ N

N N N

⎞⎠
Co-Categorical G×c H

⎛⎝E E E

E Δ E

E E N

⎞⎠
Cartesian G�H

⎛⎝N E N

E Δ N

N N N

⎞⎠
Co-Cartesian G�cH

⎛⎝E E E

E Δ N

E N E

⎞⎠
Strong G�H

⎛⎝E E N

E Δ N

N N N

⎞⎠
Disjunction G ∨H

⎛⎝E E E

E Δ N

E N N

⎞⎠
Equivalence G ≡ H

⎛⎝E E N

E Δ N

N N E

⎞⎠
Symmetric Difference G�H

⎛⎝N E E

E Δ N

E N N

⎞⎠
Lexicographic G •H

⎛⎝E E E

E Δ N

N N N

⎞⎠

The only two products which are not commutative are self-com-

plementary. They are the lexicographic product and the co-lexico-

graphic product, whose edge matrix is the transpose of that of the

lexicographic product. We do not consider this latter product explic-

itly, since all details can be derived from the results of the lexico-

graphic product. See Figure 4.1 for examples of the product P3⊗P3.

82 4. Graph Products and Classes

Categorical Cartesian Strong

Lexicographic Co-Lexicographic Disjunction

Symmetric Difference Equivalence

Figure 4.1. Graph products with both factors equaling P3.

All 256 products can be ordered by inclusion; that is, ⊕ ≤ ⊗ if for

each pair of graphs G and H, E(G⊕H) ⊆ E(G⊗H). The suborder

for the products of interest for us is shown in Figure 4.2.

We emphasize that in this chapter, the graphs G we consider are

finite and have at least two vertices. The latter assumption is made

so as to avoid listing many exceptions in our results.

We first recall some earlier definitions and present some elemen-

tary results that can be found in [166]. We write a � b if a is either

equal or adjacent to b, a ∼ b if a is adjacent to but not equal to b, and

a �∼ b if a is neither adjacent nor equal to b. For ease of notation, we

4.2. Cop Numbers and Corners in Products 83

Co-Cartesian Co-categorical

Disjunctive

Equivalence

Co-lexicographic

Strong Lexicographic
Symmetric Difference

Categorical Cartesian

Figure 4.2. An ordering of graph products.

use (ax) to denote a vertex in the product G ⊗H, where a ∈ V (G)

and x ∈ V (H).

4.2. Cop Numbers and Corners in Products

What about the cop numbers of products of graphs? This was first

considered in the following theorem of Tošić [192] for Cartesian prod-

ucts.

Theorem 4.1 ([192]). For graphs G and H,

c(G�H) ≤ c(G) + c(H).

More generally, for graphs G1, G2, . . . , Gk, we have that

c(�k
i=1Gi) ≤

k∑
i=1

c(Gi).

Maamoun and Meyniel [144] found the cop number of the Carte-

sian product of trees.

84 4. Graph Products and Classes

Theorem 4.2 ([144]). If T1, T2, . . . , Tk are trees, then

c(�k
i=1Ti) = �(k + 1)/2�.

The examination of Cartesian products continued with Neufeld

in [163], who considered products of cycles and trees in the following

theorem.

Theorem 4.3 ([163]). If C1, C2, . . . , Ck are cycles each with length

of at least 4, then

c(�k
i=1Ci) = k + 1.

He also proved the following.

Theorem 4.4 ([163]). If G = �k
i=1Ci and H = �j

i=1Ti, where

C1, C2, . . . , Ck

are cycles each with length of at least 4, and T1, T2, . . . , Tj are trees,

then

c(G�H) = c(G) + c(H)− 1 = k + �(j + 1)/2�.

Another product which has received attention in this area is the

strong product. We saw that the strong product of two cop-win

graphs is cop-win. Neufeld and Nowakowski found the following gen-

eralized result for the strong product of graphs with arbitrary cop

numbers (see Theorem 2.8 parts (1) and (2)).

Theorem 4.5 ([164]). For graphs G and H,

c(G�H) ≤ c(G) + c(H)− 1.

Now, what about the seven other products that were introduced

earlier? At present, these have received relatively little attention!

Even before attempting to estimate their cop numbers, do these prod-

ucts preserve corners? More explicitly, let G and H be graphs and

a ∈ V (G), x ∈ V (H) be corners. For what graph products ⊗ is it

true that (ax) is a corner? Let us break that down even further. The

corner a has a vertex va �= a such that N [a] ⊆ N [va]. We will call va
a corner-dominating vertex for a or a cord. (Intuitively, va cordons

or ropes off the corner. We also say that va covers a.) Similarly, the

corner x has a cord vx �= x such that N [x] ⊆ N [vx]. When is (vavx) a

4.2. Cop Numbers and Corners in Products 85

cord for (ax)? First of all, (vavx) must be adjacent to (ax), therefore,

the 3 × 3 matrix, which defines the product, must have an E in the

(E,E) cell. This eliminates the Cartesian and symmetric difference

products.

(1) Suppose (E,E) = E; that is, if b ∼ a and y ∼ x, then

(by) ∼ (ax). If c ∼ a, then (cvx) ∼ (ax), therefore we must

have (vavx) ∼ (cvx) and hence (E,Δ) = E. Similarly, we

also have (Δ, E) = E.

(2) Suppose (E,Δ) = E; that is, if b ∼ a, then (bx) ∼ (ax).

This forces (bx) ∼ (vavx); that is, (E,E) = E.

(3) Suppose (N,Δ) = E; that is, b �∼ a implies (bx) ∼ (ax). But

then since b could be either adjacent or non-adjacent to va,

we must have (vavx) ∼ (bx) which forces (N,E) = E and

(E,E) = E. Now by (1), this forces (E,Δ) = E = (Δ, E).

Similarly, (N,Δ) = E forces (E,N) = (E,E) = (E,Δ) =

(Δ, E) = E.

(4) Suppose (E,N) = E; that is, if b ∼ a and y �∼ x, then

(by) ∼ (ax). This forces (vavx) ∼ (by) and therefore, that

(E,E) = E. Similarly, (N,E) = E forces (E,E) = E and

consequently (E,Δ) = E = (Δ, E).

(5) Suppose (N,N) = E; that is, if b �∼ a and y �∼ x, then

(by) ∼ (ax). Since b and y might or might not be adjacent to

va and vx, respectively, we must have (E,N) = (N,E) = E.

Also, we must have (E,E) = E and consequently (E,Δ) =

E = (Δ, E).

Summing up, by (1) to (5) above, the product of corners re-

mains a corner just if ⊗ is the strong, lexicographic, co-Cartesian,

co-categorical, or disjunctive product. Of course, corners remaining

corners does not guarantee that the G⊗H will be cop-win since after

the removal of a corner in G⊗H the remaining graph is no longer a

product of graphs. The more general question in this direction is the

following. Characterize the graphs G and H and products such that

G⊗H is cop-win. This problem is wide open and we leave the reader

to generate conjectures and results.

86 4. Graph Products and Classes

4.3. Covering by Cop-win Graphs

One approach to bounding the cop number of a graph G is to find

induced subgraphs Gi, i = 1, 2, . . . , k such that V (G) =
⋃k

i=1 V (Gi)

such that each Gi is both a cop-win graph and a retract of G. We

will call our special cover a retract-cover. Given a retract-cover, we

need only put one cop on each subgraph. Eventually, the cop in each

subgraph captures the shadow of the robber, and since the robber

must be in one of the subgraphs he is caught. This is the idea of

the precinct or beat number (see Theorem 1.7 and Exercise 22 in

Section 1.6). It is taking us too far away from the focus of the book

to include the proofs of these so we present them in an abbreviated

fashion. Throughout this section, ⊗ will represent a product and

Gn
⊗ =

n⊗
i=1

G;

that is, the product of G with itself n times.

4.3.1. Isometric Paths. Covering with paths seems relatively easy

but generally gives a very high bound. Clarke [52] obtained many

results. Recall from Chapter 1, Exercise 22, that the isometric path

number (or precinct number) of G, written p(G), is the minimum

number of isometric paths (or beats) needed to cover G. Let |V (G)| =
v and define

ρ(G,⊗) = lim
n→∞

p(Gn
⊗)

vn
,

provided the limit exists. It is not certain that the limit exists for the

lexicographic or categorical products, although she conjectures that

the limit does exist in those cases. For the other products, Clarke

was able to either determine ρ(G,⊗) exactly or show that

p(Gn+1
⊗) < vp(Gn

⊗),

thereby proving the limit exists.

In [79], Fitzpatrick gave the following lower bound.

Theorem 4.6 ([79]). If G is a graph of order n, then

ρ(G,⊗) ≥ 1

diam(Gn
⊗) + 1

.

4.3. Covering by Cop-win Graphs 87

Clarke [52] found the following bounds. For the purposes of this

table, we will assume that the graphs have at least two vertices each

and are not complete graphs. The results may be different if any one

of these conditions is not met. In addition, we set |V (G)| = n.

⊗ diam(G⊗H) ρ(G,⊗)
� = diam(G) + diam(H) unknown

× ≥ max{diam(G), diam(H)} ≤ 2p(G)
n

≤ 2diam(G) if H = G ≥ 1
2diam(G)+1 if χ(G) ≥ 3

� = max{diam(G), diam(H)} = 1
diam(G)+1

� ≤ 2 = 1/3

• = diam(G) unknown

≡ ≤ 2 if γ(G) = γ(H) = 1 = 1/3 if diam(G) = 2

≤ 3 if both γ(G), γ(H) > 1 = 1/4 otherwise

≤ max{diam(G), diam(H)}
∨ ≤ 2 = 1/3

�c ≤ 2 = 1/3

×c ≤ 2 = 1/2

We now include a few brief comments about some of the inter-

esting cases.

Cartesian Product. Under this product, the first set of graphs that

come to mind are the hypercubes, Qn = (K2)
n
�. Fitzpatrick et al. [81]

showed that

2n

n+ 1
≤ p(Qn) ≤

3 · 2n−1

n+ 1
,

and that if n = 2m − 1, then the lower inequality is the exact value.

They think that the upper bound is far from best possible. Using this

result, Clarke shows the following.

Theorem 4.7 ([52]). For a graph G with a perfect matching, we have

that ρ(G,�) = 0.

An open problem is to improve the upper bound for p(Qn). An-

other open problem is to determine if for all graphs G, whether

ρ(G,�) = 0.

88 4. Graph Products and Classes

Categorical Product. For a graph G, let m be the size of a maximum

matching in G; that is, a set of pairwise disjoint edges, which is the

largest size of all such sets of edges.

Lemma 4.8 ([52]). Let G be a graph with n > 1 vertices. Then

p(G×G) ≤ p(G)(2n− 2m).

Theorem 4.9 ([52]). If G is a graph with n vertices, then ρ(G,×) <
2p(G)

n .

Clarke also gives the following examples:

1

2n+ 1
≤ ρ(Pn,×) ≤

2

n+ 1
,

1

3
≤ ρ(K2n,×) ≤ 1,

and
1

2n+ 1
≤ ρ(C2n+1,×) ≤

4

2n+ 1
.

An open problem is to find the exact values for any of these families

of graphs.

Strong Product. In this case, we have the following result.

Theorem 4.10 ([52]). For G a graph,

ρ(G,�) =
1

diam(G) + 1
.

The lemma required to prove this is the following.

Lemma 4.11 ([52]). Let G be a graph of order n with an isometric

path cover that consists of m(G) > 0 paths of length diam(G) and k

isolated vertices. Then we have that

ρ(G,⊗) ≥ m(G)

n− k
.

Symmetric Difference. Suppose G is a complete graph on n vertices.

Clarke [52] showed that

1/3 ≤ ρ(G,�) ≤ 1/2.

She also showed that

p(Gk+1
�)

nk+1
≤ p(Gk

�)
nk

,

4.3. Covering by Cop-win Graphs 89

which proves that ρ(G,�) exists. This leaves us with the unsolved

problem of finding ρ(Kn).

Lexicographic Product. There is a fractional version of the covering

by isometric paths which we discuss now. Given a graph G, let P be

the set of isometric paths in G. Define R≥0 to be the set of all non-

negative real numbers. Let w : P → R≥0 be a function that assigns to

each path in P a non-negative weight subject to the constraint that

for every vertex in G, the sum of the weights of all the isometric paths

that contain it is at least one. Call such a weighting w a fractional

cover and let Ww =
∑

P∈P w(P). Let

pf = min{Ww : w is a fractional cover}.

Note that the original problem of covering by isometric paths is

equivalent to only allowing weights of 0 and 1. The fractional cover

problem is the so-called LP relaxation of the 0 − 1 problem so that

pf (G) ≤ p(G) (for more background on this terminology and frac-

tional graph theory, see [184]). For example, a three-claw G = K1,3

(see Figure 4.3) has p(G) = 2 but pf (G) = 3/2.

Figure 4.3. The three-claw.

Theorem 4.12 ([52]). If G is a graph on n vertices, then

ρ(G, •) ≤ pf (G)

n
.

As a consequence of Theorem 4.12, Clarke shows that ρ(G, •) ≤ 3
8 ,

assuming that ρ(G, •) exists.

90 4. Graph Products and Classes

4.3.2. Cliques. A clique is always a retract and is a cop-win sub-

graph, so a clique cover would be a retract-cover. The minimum

number of cliques needed to cover G is denoted θ(G). Unfortunately,

finding the least number of cliques in a clique cover is anNP-complete

problem (for background on NP-complete problems, we direct the

reader to Chapter 5). For example, a clique cover of a Cn would give

a upper bound of n/2 for the cop number whereas it only takes two

isometric paths to cover the cycle. The strong product of Pn with

itself is cop-win but there is no clique bigger than K4 in this product,

and the longest isometric path has n vertices so the upper bounds are

n2/4 and n, respectively.

The hypercube Qn never has any cliques bigger than K2, so that

in the product θ(Qn) grows large. Does this happen in the other

products? As in the previous section, with G being a graph on n

vertices, let us introduce a new normalized parameter

ρ′(G,⊗) = lim
k→∞

θ(Gk
⊗)

nk
.

Unfortunately, this turns out to be almost useless since if ⊗ is any-

thing other than the Cartesian, categorical, or symmetric difference

product, then ρ′(G,⊗) = 0. This follows since for all but these three

products, Kn ⊗Km = Kmn.

It should be noted that θ(G) = χ(G). At the time of writing,

there were over 200 articles found in MathSciNet when “product”

and “chromatic number” were used as search terms and restricted to

MSC Primary “05”. We leave it to the reader to survey this extensive

literature.

4.3.3. Domination Considerations. The minimum number of

cop-win graphs required to form a retract-cover of the vertices of

a graph G is called the cop-cover number of G and will be denoted

cc(G). This was called the cop-win number in [52] but the name

could be confused with the cop number.

The domination number, written γ(G), can be re-interpreted in

terms of retract-covers, with the subgraphs being the closed neigh-

borhoods of a set of vertices. Immediately, we have that

c(G) ≤ cc(G) ≤ min{γ(G), p(G), θ(G)}.

4.3. Covering by Cop-win Graphs 91

For products, most of the results below are taken from [52], and

are probably far from the best possible. A starting point is the fol-

lowing result.

Theorem 4.13 ([166]). If ⊗ is greater or equal the strong product

in the partial order, and if A and B are dominating sets in G and H,

respectively, then A×B is a dominating set of G⊗H.

As an immediate corollary we have the following.

Corollary 4.14 ([166]). If ⊗ is greater or equal the strong product

in the partial order, then

cc(G⊗H) ≤ γ(G)γ(H).

This leaves the categorical, Cartesian, and symmetric difference

products. Indeed, a hard open problem is the famous Vizing’s Con-

jecture:

γ(G�H) ≥ γ(G)γ(H);

see [110, 195].

Strong Product. Since the strong product of two cop-win graphs is

cop-win, an almost trivial result is that

cc(�k
i=1Gi) ≤

k∏
i=1

cc(Gi).

Lexicographic Product. A little thought gives the following result.

Theorem 4.15 ([52]). If G is cop-win and H = K1,n, then G •H is

cop-win.

This can be used to then prove the following.

Theorem 4.16 ([52]). If G and H are graphs, then

cc(G •H) < cc(G)γ(H).

A special subset is useful for the next products; we find sets A

and B such that A×B dominates G⊗H.

92 4. Graph Products and Classes

Categorical Product. A total dominating set T has the property that

every vertex in G is adjacent to a vertex in T , including vertices of

T . The minimum cardinality of such sets is denoted by γt(G). Note

that a total dominating set is dominating, so γ(G) ≤ γt(G). However,

dominating sets need not be total dominating.

Theorem 4.17 ([52]). Let G and H be graphs. Then

cc(G×H) ≤ γt(G)γt(H).

Equivalence Product. Given a graph G, let

u(G) = min{|A| : for all v ∈ V (G), A �⊆ N [v]}.
For any graph of diameter 3 or more, we have that u(G) = 2.

Theorem 4.18 ([52]). Let G be a graph with γ(G) > 1. Then

cc(G ≡ G) ≤ u(G)2.

Moreover, if diam(G) ≥ 3, then cc(G ≡ G) ≤ 4.

Symmetric Difference. Let γ′(G) be the smallest cardinality of a set

of vertices that dominate both G and Gc.

Theorem 4.19 ([52]). Let G and H be graphs. Then

cc(G�H) ≤ min{γ(G)γ′(H), γ′(G)γ(H)}.

Theorem 4.20 ([52]). Let G and H be graphs. Then

cc(G�H) ≤ min{γt(G)γt(H
c), γt(G

c)γt(H)}.

Co-Cartesian. The special set A in this case is an independent set of

cardinality 2.

Theorem 4.21 ([52]). Let G be a graph. Then cc(G�cG) ≤ 4.

4.4. Genus of a Graph

We now consider graphs living in a specified class. We focus on graphs

defined on surfaces.

One of the main intuitive approaches in a winning strategy for the

cops is for the cops to continually reduce the space that the robber

has to move. We now make this more formal. Guarded vertices are

4.4. Genus of a Graph 93

those that if a robber moved through he would be captured by a cop.

The set of guarded vertices of G is its cops’ territory. In the proofs

below, we will be conservative and define a boundary that the cops

control similar to a cop guarding an isometric path in Theorem 1.7,

with the cop territory on one side and the robber on the other. There

could be other vertices that the cops could prevent the robber getting

to but in the upcoming proofs the boundary is moved incrementally.

If H is the cop territory, then the robber territory is the set of vertices

in the component of G − H containing the robber. The unguarded

territory is the set of vertices not in the cop territory. Hence, the

robber territory is a subset of the unguarded territory, and may be a

proper subset.

In many arguments it turns out that we only need to know where

the robber cannot be and expand that region. Any argument that

uses this approach is stronger than we actually need since the cops

do not require perfect information. Suppose we are in a pursuit game

on a graph G where the following properties are satisfied.

(1) The cops on their turn can move along edges.

(2) The robber slides along an edge or passes on his turn.

(3) The cops will capture the robber if a cop and robber occupy

the same vertex at any time.

(4) Some oracle tells them where the shadow of the robber is on

a subgraph.

Apart from (4), this is reminiscent of searching, sweeping, or decon-

taminating a graph; see [7] and Chapter 9. In those cases though, the

intruder (or chemical or biological contamination) is infinitely fast.

The proofs for the cop numbers of outerplanar and planar graphs

require only this amount of information.

Most surfaces mathematicians work with are the sphere, the

doughnut (a sphere with a hole), the pretzel (a sphere with two holes),

and so on. Another way of thinking about these is to think of the

sphere and add handles. The genus of a graph G is the smallest k

such that G can be drawn on a sphere with k handles so that distinct

edges do not intersect except at common vertices.

94 4. Graph Products and Classes

Figure 4.4. A planar graph and its faces. The outer face is f1.

The planar case (that is, graphs with genus 0) is always used for

intuition for surfaces with higher genus, one reason being that locally

all the surfaces seem planar. Given an embedding of a planar graph,

a face is a maximal region X with the property that for all u, v ∈ X,

u and v can be joined by a curve which does not touch an edge of

the embedding. Every planar graph includes an infinite or outer face,

which surrounds the graph. See Figure 4.4. One famous result is

Euler’s Planar Polytope Formula which we will translate in graph

terms.

Theorem 4.22. For a fixed planar embedding of a graph G

v − e+ f = 2,

where v = |V (G)|, e = |E(G)|, and f is the number of faces in the

embedding.

The proof of Theorem 4.22 is rather easy: start with a spanning

tree, then notice that

v − e+ f = v − (v − 1) + 1 = 2.

Any edge that is now added leaves v alone, increases e by one and

splits a face in two so that f is increased by one.

For genus k surfaces, the formula can be generalized to the Euler-

Poincaré formula:

v − e+ f = 2− 2k.

4.5. Outerplanar Graphs 95

One can imagine a similar proof except one has to determine what the

subgraph equivalent to a spanning tree might be. As we shall see, a

similar case occurs for Cops and Robbers. Theorem 1.7, which states

that an isometric path is 1-guardable, will be extended in Corollary

4.26, to guarding a cycle which is the boundary of a planar region.

In the plane, the robber must then be inside or outside of the cycle.

Going to higher genus, again, what is the analogue of the cycle?

4.5. Outerplanar Graphs

Before we tackle the cop number of planar graphs, we consider the

simpler outerplanar case. A graph G is outerplanar if it has an em-

bedding in the plane with the following properties.

(1) Every vertex lies on a circle.

(2) Every edge of G either joins two consecutive vertices around

the circle or is a chord across the circle.

(3) If two chords intersect, then they do so at a vertex.

Often the edges are drawn on the “outside” of the circle of vertices

but it is equivalent to have them on the inside. We will label the

vertices clockwise around the circle v0, v1, . . . , vn−1.

Nancy Clarke proved the next result in her doctoral thesis.

Theorem 4.23 ([52]). If G be an outerplanar graph, then c(G) ≤ 2.

Since a cycle is an outerplanar graph, not all outerplanar graphs

are cop-win, so we need an algorithm to show that two cops suffice.

We note that if G is maximal outerplanar (that is, has the maximum

number of edges so no new circle edge or chord can be added), then

the G is cop-win; see Exercise 22 in this chapter.

Proof of Theorem 4.23. Assume first that G has no cut vertices.

Suppose that for a given i that vi is not adjacent to vi+1. We can

renumber the subscripts so that i = 0. Since G is connected and

the degree of v0 is at least two, then let vj be the vertex of least

index which is adjacent to v0. The edge v0vj prevents any vertex in

{v1, v2, . . . , vj−1} from being adjacent to any vertex of

{vj+1, vj+2, . . . , vn−1},

96 4. Graph Products and Classes

and no vertex of {v1, v2, . . . , vj−1} is adjacent to v0. Therefore, vj is

a cut vertex, which is a contradiction. Hence, we may assume that

for all i, vi is adjacent to both vi−1 and vi+1, with subscripts taken

modulo n.

If the embedding contains no chords, then it is a cycle and two

cops suffice to capture the robber. Let a0, a1, . . . , ak be the vertices

of degree at least 3 in order around the circle. Note that vertices on

the cycle between ai and ai+1 are of degree 2 and so the path between

ai and ai+1 is well defined.

Place the cops C1 and C2 on the vertex v0. If v0 has degree 2, then

it is on a path between a0 and ak (renumbering the ai if necessary);

if it has degree 3 or more, then renumber so that a0 = v0. In either

case, we can move C1 to a0 and C2 to ak so that the robber is not on

the path between these two vertices.

We now assume more generally that C1 and C2 are on ai and

aj for some i < j, respectively, and that the robber is not on and

cannot move to any vertex in {vp, vp+1, . . . , v0, . . . , vq}, where vp = aj
and vq = ai. That is, every path from the robber to a vertex in

{vp, vp+1, . . . , v0, . . . , vq} passes through ai or aj . Such an area is the

cop territory. The idea of the proof now is to show that the cops can

increase the cop territory, so that it is eventually all of G and the

cops win.

Suppose ai has a chord to a vertex in the robber territory. Let

ar be a vertex adjacent to ai which is closest to aj . If the robber is

on the arc of the circle from ai to ar, then he cannot move off that

arc if C1 on ai does not move. Therefore, C2 can be moved to ar and

the cop territory has increased. If the robber is between aj and ar,

then C1 moves from ai to ar again increasing the cop territory. A

similar analysis holds for aj . Hence, the only case to consider is when

neither ai nor aj have an interior edge to the robber territory. In this

case, the only paths to the cop territory from the robber are the ones

along the cycle incident to ai and aj . That is, every path from the

robber to the cop territory passes through ai+1 or aj . Hence, moving

C1 along the path from ai to ai+1 does not allow the robber to move

into the cop territory, and the cop territory has increased. We will

refer to this as the no-cut-vertex strategy.

4.5. Outerplanar Graphs 97

Now suppose that G has at least one cut vertex. Let

B(G) = {G1, G2, . . . , Gm}
be the set of maximal induced subgraphs of G such that each Gi itself

has no cut vertices. Note that each Gi will contain a vertex which is

a cut vertex of G, and each Gi has at least two vertices. For example,

see Figure 4.5.

Figure 4.5. The induced subgraphs Gi in an outerplanar
graph with cut vertices.

We can retract G onto Gi, for any i, by the mapping described as

follows. Let x ∈ V (Gi) and x be a cut vertex of G. All vertices of G

that are disconnected from Gi by the deletion of x are mapped to x.

Vertices of Gi are mapped to themselves. (Consider G3 in Figure 4.5.

Vertices of G1 and G2 are mapped to a and those of G4 and G5 are

mapped to b.) Let Ĝi denote this retract. Since Gi is a subgraph of

an outerplanar graph, Ĝi is also outerplanar. Fix an embedding for

each Gi.

Choose some Gi and place the two cops on two vertices in Gi as

in the case with no cut vertices. We now use the shadow strategy on

Ĝi. Employing the strategy of the case with no cut vertices, the cops

will capture the robber’s image on Ĝi. Since |V (Gi)| ≥ 2, at least

one more vertex and one more element of B(G) is added to the cop

98 4. Graph Products and Classes

territory. If the robber is actually on Gi, then he has been caught. If

not, then the cops have captured the robber’s shadow on a vertex x

whose deletion separates Gi from the Gk where the robber presently

resides. This cut vertex also lies in some Gj that either contains

the robber (that is, j = k) or contains a cut vertex y �= x whose

deletion separates Gj from Gk (and j is unique). Fix an outerplanar

embedding of Ĝj . The cops now execute the no-cut-vertex strategy on

Ĝj . Hence, the cops eliminate the subgraphs in B(G), and eventually

they capture the robber (rather than just his image). �

We note that the elements of B(G) are called blocks, and the

decomposition of G into the Gi gives a tree of orderm (the vertices are

blocks, and blocks are adjacent if they share a cut vertex). A similar

approach to bounding the cop number of a general (non-outerplanar)

graph was given in [113]; see also Exercise 26. We also observe that

the converse of Theorem 4.23 does not hold in general, as Figure 4.6

demonstrates.

Figure 4.6. The graph on the left is a cop-win non-
outerplanar graph, while the graph on the right is non-
outerplanar with cop number 2.

4.6. Planar Graphs

Planar graphs have inspired some of the deepest results in graph

theory, most notably the Four Color Theorem (which states that every

planar graph has chromatic number at most 4; see [13] and [183]). A

graph is planar if it can be drawn in R2 without any two of its edges

crossing. For example, a cycle is planar, and so is K4. The graph K5

is not planar (see Exercise 21b); nor is K3,3. As Kuratowski proved

in [130], K5 and K3,3 are, in a certain sense, the only obstructions

4.6. Planar Graphs 99

to being non-planar. We subdivide an edge uv by replacing it by a

two-path uxv, where x is a new vertex of degree 2. A subdivision of

a graph results by subdividing some subset of its edges.

Theorem 4.24 ([130]). A graph is planar if and only if it does not

contain a subgraph which is a subdivision of K5 or K3,3.

At first glance, there is no reason to believe that a fixed constant

number of cops can guard every planar graph. However, Aigner and

Fromme [2] showed in fact that planar graphs require no more than

three cops (and that some actually require three). The proof of this

fact, as we will see below, is much more involved than in the outer-

planar case. At the time of writing, no one has characterized which

planar graphs are cop-win, or those which require two cops and which

require three. As we proved in Theorem 4.23, outerplanar graphs re-

quire no more than two (and some require two). From Chapter 3

Exercise 13, all graphs of strong isometric dimension 2 require no

more than two cops, but there such graphs that are planar but not

outerplanar.

To be clear, we make the distinction between a planar graph and

a plane graph, which is an actual planar embedding of a planar graph.

Theorem 4.25 ([2]). If G is a planar graph, then c(G) ≤ 3.

The very first step in the proof is fraught with danger if your

intuition is not primed correctly. “Choose two vertices of maximum

distance from each other, and let P be a shortest path joining them.”

Clearly, this path partitions the rest of the graph into at least two

connected components. That would be false as Figure 4.7 shows.

One has to be careful about the assumptions one has when the terms

“shortest path” and “planar” are used in the same sentence.

Our proof of Theorem 4.25 follows closely the proof given by

Alspach, Li, and Yang [9]. From Theorem 1.7 we know that an iso-

metric path is 1-guardable. The extension to a special cycle forms

the basis of the proof of Theorem 4.25.

Corollary 4.26 ([2]). Let v, w be distinct vertices of a graph G. Let

P1 and P2 be two internally disjoint paths from v to w, let P1 be

100 4. Graph Products and Classes

a

b

Figure 4.7. Warning: Graph distance may be different than
Euclidean distance.

isometric in G, and let P2 be isometric in G− (V (P1)\{v, w}). Then
P1 ∪ P2 is 2-guardable in G.

Proof. By Theorem 1.7, we may move one cop named C1 to guard

P1. Similarly, in G− (V (P1) \ {v, w}) we may move the second cop,

named C2, to guard P2. In G the only possible way for the robber to

enter P2 without being captured by C2 is to move through P1; but

then the robber will have been captured by C1. �

Before we prove Theorem 4.25, we will need some terminology.

Let X be a cycle in a planar graph G, and let u be a vertex of G−X.

The cycle X partitions the plane into two regions: A1 containing u

and A2 which does not. Let V1 denote the vertices contained in A1,

called the inside of X with respect to u, and V2 those in A2 which

we call the outside of X with respect to u. The subgraph induced

by V (X) ∪ V1 is named the internal subgraph determined by X, and

written int(X). The subgraph induced by V (X) ∪ V2 is named the

external subgraph determined by X, and written ext(X).We note that

the only way for the robber to pass from the inside to the outside (or

vice versa), is to pass through a vertex of the cycle X.

Proof of Theorem 4.25. We proceed by showing that with a finite

number of moves, the cops can increase the cop territory. Hence, the

robber territory eventually is reduced to the empty set, and so the

robber is captured. There are three cases that arise, and in each case,

H is the unguarded territory.

4.6. Planar Graphs 101

(I) Some cop is guarding a shortest path P of a subgraph H

of G, and any path from the robber to the cop territory is

through a vertex of P.

(II) Two cops guard P1 ∪ P2, where P1 and P2 are internally

disjoint paths joining the same two vertices, and any path

from the robber to the cop territory is through a vertex of

P1 ∪ P2. The subgraph H is either the internal or external

region of the cycle P1 ∪ P2 (whichever region contains the

robber).

(III) Some cop is on a cut vertex v of a subgraph H of G, and

any path from the robber to the cop territory is through v.

In some cases we give explicit proofs about the robber’s access to

the cop territory. We leave it as an exercise for the reader to fill in

the details in the other cases (see Exercise 23).

We may assume G is not complete. Let C1, C2, and C3 be the

three cops. Choose two vertices of maximum distance from each other,

and let P be a shortest path joining them. We first move C1 to guard

P . Thus, after a finite number of moves, we are in case (I) with

H = G. In particular, one of the three cases has arisen! So the initial

strategy of the cops is to first enforce case (I). We then show that this

case leads to one of the three cases, but with larger cop territory. We

then show that the analogous situation happens when we are in case

(II) or case (III), which will complete the proof. (More precisely, we

proceed by induction on the order of the cop territory.)

Suppose we are in an instance of case (I). Hence, there is a sub-

graph H, and there is a cop guarding a shortest path in H given

by

P = P1 = v1v2 · · · vk,
with k ≥ 2. Without loss of generality, let C1 be the cop guarding

P1, thus, forcing the robber to remain in a component of H − P .

Let Y denote the component of H containing the robber. If there

is a unique vi ∈ P1 adjacent to some vertex of Y , then vi is a cut

vertex of H. We can move C1 to vi. Since C1 is closer to vi than the

robber, the robber cannot escape from Y. Hence, we are in case (III)

(and not case (I)). We then move C2 to vi preventing the robber from

102 4. Graph Products and Classes

Figure 4.8. A unique vertex vi adjacent to Y.

leaving Y and freeing the other two cops to move; see Figure 4.8.

Now suppose vi and vj , i < j, have neighbors in Y such that if vr is

another vertex of P1 with neighbors in Y , then i < r < j. Let u1 be

a neighbor of vi in Y , and let u2 be a neighbor of vj in Y. Let P2 be a

shortest path in Y from u1 to u2; see Figure 4.9. Move C2 to guard P2

in Y, and note that C1 still guards the subpath P ′ connecting vi to vj
in P1. The robber is either in the internal or external region bounded

by the cycle formed by P ′ ∪ P2 ∪ {viu1, vju2}; in both cases, we are

in case (II). The cop territory has become larger even if u1 = u2.

Now suppose we are in case (II). Without loss of generality, we

may assume the robber is located in int(X), where X = P1 ∪P2, and

the subgraph ext(X) is guarded. Now H is the subgraph induced by

G on V (int(X)) \V (X). The robber territory is in a component Y of

H containing the robber.

Y

vj

Figure 4.9. At least two vertices of P1 adjacent to vertices in Y.

4.6. Planar Graphs 103

If there is only one vertex u of X with a neighbor in Y , then u is

a cut vertex of int(X). We move the free cop to u putting us in case

(III) (and not case (II)).

Suppose that both P1 and P2 have exactly one vertex each, v1
and v2, respectively, with neighbors in Y , so that we are not in the

preceding subcase of a cut vertex. Consider the subgraph K, where

V (K) = V (Y) ∪ {v1, v2}, and

E(K) = E(Y) ∪ {viu : u ∈ V (Y), viu ∈ E(G) and i = 1, 2}.

Let P be a shortest path from v1 to v2 in K. Since v1 and v2 are

not adjacent in K, then we have that P includes a vertex of Y. See

Figure 4.10. Now move the free cop to guard P. If the robber tries

to reach v1 or v2, then he will be captured. The cop territory has

increased and we are in case (I).

We now consider the case that one of the paths has two or more

vertices with neighbors in Y . Without loss of generality, we assume

v1, v2 ∈ V (P1) have neighbors in Y, and any other vertices of P1

with neighbors in Y lie in the subpath Q of P1 connecting v1 and

v2. Analogous to the previous case (with the subgraph K), let P3

be a shortest path from v1 to v2 in Y containing a vertex of Y. Let

v1 be joined to u1 ∈ V (Y) on P3, and v2 be joined to u2 ∈ V (Y)

on P3; see Figure 4.11. Move the free cop so that P3 is guarded in

Y . If the robber is located in the region bounded by V (P3)∪ V (Q)∪
{v1u1, v2u2}, then the cop who was guarding P2 can move to guard

Q. We now are in case (II) with the cop who was guarding P1 free to

move.

Figure 4.10. The path P in containing a vertex of Y.

104 4. Graph Products and Classes

Figure 4.11. The path P3 in Y.

If the robber is not in the region bounded by P3∪Q∪{v1u1, v2u2},
then he is in the region bounded by P2, P3, and the subpaths of P1

obtained by removing Q. The cop C2 guards P3 − {v1, v2} and now

also P3, since no path in Y is shorter. Define P ′ to be P3 along with

P1 minus Q. Thus, we are in case (II) with the paths P2 and P ′. The

cop who was guarding P1 is now free to move. In the last two cases

above, the cop territory has increased after reaching the new case.

We have now shown that from case (II) we can reduce to one of the

three cases with smaller robber territory.

Finally, suppose we are in case (III). Once this case is settled, the

proof of the theorem will follow. Let Y be the component of H − v

containing the robber. Let u be a vertex of Y which is the largest

distance to v (inside Y). Let P be the shortest path from u to v in

Y. Now move a free cop to guard P. Note that the robber can never

get back into the already guarded territory. With Y = H, we are in

case (I), and the cop territory has increased. �

The bound in Theorem 4.25 is sharp; we leave it to the reader to

show that the dodecahedron needs three cops (see Chapter 1, Exer-

cise 4c).

4.6.1. Graphs of Higher Genus. Less is known about the cop

number of graphs with positive genus. As such, our survey of such

graphs is brief. The main conjecture in this area is due to Schroeder.

In [185], Schroeder conjectured that if G is a graph of genus g, then

c(G) ≤ g + 3. Quilliot [171] had shown the following.

Exercises 105

Theorem 4.27 ([171]). If G is a graph of genus g, then c(G) ≤
2g + 3.

In the same paper as the conjecture, Schroeder shows the follow-

ing.

Theorem 4.28 ([185]). If G is a graph of genus g, then

c(G) ≤
⌊
3g

2

⌋
+ 3.

A technique that he uses in [185] is to partition the embedded

graph into planar subregions bounded by two paths and two curves.

This is called a planar trap. Using Theorem 4.25 he shows that four

cops are enough to guard the region. One approach would be to

partition the graph into the appropriate regions. This is a bad use of

resources since cops remain in a planar trap when they could be free

to help in other regions. Schroeder generalized the idea of a planar-

trap to now include holes so that cops can be reused. Along the way,

he shows the following theorem.

Theorem 4.29 ([185]). If G is a graph that can be embedded on a

torus, then c(G) ≤ 4.

Exercises

1. For each of the associative products ⊗ described in the introduc-

tion of this chapter, draw the graph K2 ⊗K2.

2. Draw the products P3�cP3 and P3 ≡ P3 by drawing their non-

edges.

3. Show that max{c(G), c(H)} ≤ c(G�H).

4. Suppose G and H are cop-win graphs with dismantling sequences

(a1, a2, . . . , am) and (x1, x2, . . . , xn), respectively. For each of ⊗
being the strong, lexicographic, co-lexicographic, co-categorical,

or disjunctive products, prove or disprove that either (or both)

((a1x1), (a2x1), . . . , (amx1), (a1x2), . . . , (amxn))

106 4. Graph Products and Classes

and

((a1x1), (a1x2), . . . , (a1xn), (a2x1), . . . , (amxn))

is a dismantling sequence.

5. Give an example showing that the bound in Theorem 4.5 is sharp.

6. A graph is prime with respect to a given graph product if it

cannot be represented as the product of two nontrivial graphs.

(a) Show that every graph has a prime factor decomposition

with respect to the Cartesian product.

(b) Show that the factorization in (a) is not unique if the graphs

are disconnected.

7. [164] Let G be the Cartesian product of two finite trees. Prove

that if the robber cannot stay indefinitely on one vertex of G,

then one cop can win on G.

8. Let Kn and Km be complete graphs. For which products ⊗ is

Kn ⊗Km cop-win?

9. Let P and Q be paths. For which products ⊗ is P ⊗Q cop-win?

10. Prove Theorem 4.6.

11. Let G be a connected graph with n vertices. For each ordered

pair of vertices (a, b), a �= b, let

Pab = {u0, u1, . . . , ukb
},

where a = u0 and b = ukb
, be a shortest path from a to b, and

let fab be the retraction map fab(x) = ui, if d(x, a) = i < d(a, b)

and fab(x) = ukb
, if d(x, a) ≥ d(a, b). For ease of referencing,

order all the ordered pairs and rename the paths and associated

paths as Pi and fi, respectively. Let H = �n(n−1)
i=i Pi. Show that

F (G)→ H, defined by

F (x) = (f1(x), f2(x), . . . , fn(n−1)(x)),

is an embedding of G in H.

12. Let G be a connected graph. Suppose G has a homomorphism

f with the property that d(x, f(x)) ≥ 2 . Show that G is not a

cop-win graph.

13. For a graph G and integer n > 1, show that Kn is a retract of

G×Kn if and only if n ≤ ω(G).

Exercises 107

14. Prove Theorem 4.7.

15. Prove Theorem 4.9 by first proving Lemma 4.8, then extending

it to higher powers.

16. (a) Determine cc(P), where P is the Petersen graph.

(b) For each integer k > 0, give examples of graphs Gk satisfying

cc(Gk)− c(Gk) ≥ k.

(c) For each integer k > 0, give examples of graphs Gk satisfying

θ(Gk)− c(Gk) ≥ k.

17. Prove Theorem 4.10 using Lemma 4.11.

18. (a) Give an example of a dominating set in graph which is not

a total dominating set.

(b) For each integer k > 0, give examples of graphs Gk satisfying

γt(Gk)− γ(Gk) = k.

(c) Prove that γt(G) ≤ 2γ(G), and γt(G) ≤ n−Δ(G) + 1.

(d) Determine γt(Cn) and γt(Pn).

19. Prove Theorem 4.13.

20. [164] If the C(i), where 1 ≤ i ≤ n, are cycles of length at least 5,

then show that

c(�n
i=1C(i)) ≤ n+ 1.

21. (a) If G is a planar graph, then show that

|E(G)| ≤ 3|V (G)| − 6.

(b) Prove that K5 is not planar. (Hint : Use part (a).)

(a) If G is a planar graph with no triangles, then show that

|E(G)| ≤ 2|V (G)| − 4.

(b) Prove that K3,3 is not planar.

22. Show that a maximal outerplanar graph is cop-win.

23. In the proof of Theorem 4.25 show that in all cases the robber

cannot enter the cop territory without getting caught.

24. A graph that can be embedded in the torus is called toroidal.

(a) Show that K7 is toroidal.

(b) Show that the Petersen graph is toroidal.

25. (a) Find an infinite family of cop-win non-outerplanar

graphs.

108 4. Graph Products and Classes

(b) Find an infinite family of non-outerplanar graphs with cop

number 2.

26. [113] Recall the set of blocks B(G) defined in the proof of The-

orem 4.23 (note that B(G) is well defined for any graphs, even

those which are not outerplanar). Show that

max
Gi∈B(G)

{c(Gi)} ≤ c(G) ≤ max
Gi∈B(G)

{c(Gi)}+ 1.

27. [113] A cut set S is a set of vertices whose deletion disconnects the

graph. Let G be a graph and S a cut set of G, with G1, G2, . . . , Gk

the components of G− S. Prove that

c(G) ≤ max{c(G1), c(G2), . . . , c(Gk)}+ γ(S).

28. [191] A graph is series-parallel if it has no subgraph isomorphic

to a subdivision of K4. Hence, every outerplanar graph is series-

parallel. Prove that every series-parallel graph has cop number

at most 2.

Chapter 5

Algorithms

5.1. Introduction

Solving a Sudoku puzzle can be challenging. Sudoku is played over

a 9 × 9 grid, divided into nine smaller 3 × 3 grids called regions.

Some cells already have numbers in them, and all numbers are from

1 to 9. Each row, column, and region must completed so that they

are permutations of 1 to 9. For an example, see Figure 5.1. From

the point of view of graph theory, this is equivalent to the proper

18

4

9

5

2

92

4

8 3

1

9 5

7

1

8

Figure 5.1. A Sudoku puzzle.

109

110 5. Algorithms

9-coloring of a graph with 81 vertices (one per cell), with two vertices

joined if they are in the same row, column, or region. Analogous

difficulty comes from solving a large jigsaw puzzle.

However, if you view a solved Sudoku or jigsaw puzzle, you can

quickly check the solution with relative ease. In Sudoku, just scan

each row, column, and region to determine if the solution is legal.

In a jigsaw puzzle, if the final picture is not right, you know almost

right away. Everyone agrees that usually checking whether a proposed

solution is correct is easier than solving. These examples illustrate a

famous dichotomy in theoretical computer science and mathematics

between problems in the complexity classes NP and those in P. Non-

deterministic polynomial time (or NP) problems are ones where you

can easily verify an answer to be correct. In contrast, polynomial

time (or P) problems are those where finding the answer is easy or

fast. Precise definitions for NP and P will be given in Section 5.2.

Algorithms are pervasive in graph theory. One of the many useful

features of finite graphs is that we can design algorithms to compute

some of their properties and parameters. Of course, many properties

have no polynomial time algorithm to check them (or at least none are

thought to exist). No one, for example, would consider an algorithm

realistic if it took longer than the expected life-span of the universe to

terminate. For example, consider the problem of determining whether

there is a Hamilton cycle in a given graph; that is, a cycle containing

all vertices. You have lists available of all the vertices and edges, and

must say either YES or NO (or 1 or 0, ON or OFF, or some other

notation for truth and falsity). If given a cycle, then a quick check to

determine if all the vertices are in C determines if it is Hamiltonian.

See Figure 5.2. There are n! permutations of a vertex-set of order

n, so checking all of them is impractical, even for relatively small

n. As we will discuss in Section 5.2, this is a famous example of an

NP-complete problem. In other words, no one is likely ever to find

an efficient solution. The same is true for checking whether a graph

is 3-colorable (or 9-colorable, as is the case in Sudoku), or has an

independent set or clique with a specified cardinality.

In contrast to finding Hamilton cycles, consider an Eulerian graph;

that is, one where there is a circuit spanning each edge exactly once.

5.1. Introduction 111

Figure 5.2. A Hamilton cycle in the dodecahedron.

See Figure 5.3. A graph is Eulerian if and only if each vertex is of even

degree (see Exercise 1). Checking degrees of vertices is fast, so there

is an efficient algorithm for determining whether a graph is Eulerian.

We say this property is checkable in polynomial time. The same is

true for checking whether a graph is bipartite or connected. Each of

these are tractable problems with efficient algorithms.

What about algorithms for recognizing k-cop-win graphs? Fairly

little work has been done on this problem, with the exceptions of

[16], [22], [85], [100], and [105]. First, consider the case k = 1; that

is, recognizing cop-win graphs. As discussed in Chapter 2, cop-win

graphs have a pleasant structure in the form of cop-win ordering.

It is quite simple to check if a given vertex is a corner: just check

its neighbors against the neighbors of all the other vertices. For large

Figure 5.3. The hypercube Q4 is Eulerian.

112 5. Algorithms

graphs this can be lengthy to do by hand, but a computer can perform

this comparison fairly quickly. Once you find a corner, try to find

another. If there are no corners, then you know the graph is robber-

win. Proceeding recursively, you can determine whether there is a

cop-win ordering, and hence, whether the graph is cop-win. This is

the algorithm for deciding cop-win graphs, and it runs in polynomial

time (finding a corner runs in polynomial time, and we need to find

at most n corners). Hence, deciding whether a graph is cop-win is in

P.

The surprising thing is that if we ask whether c(G) ≤ k for a

fixed integer k > 1, the answer can be found in polynomial time.

If you read Chapter 2, then perhaps this is less surprising owing to

the elimination ordering for k-cop-win graphs recently introduced in

[57]. See Section 5.3 and Theorem 5.1. Theorem 5.1 was known fairly

early on, and the proof of it was published first in [16]. We present a

different approach, inspired by the strong products used in Chapter 2.

In the preceding paragraphs, we take k as fixed and not part of

the input. But what if you do not fix k? Despite Theorem 5.1, it was

recently shown in [85] that if k is not fixed and part of the input,

then the problem of determining if c(G) ≤ k is NP-hard. NP-hard

problems are the most difficult problems in NP, so this is bad news

for computing the cop number of a graph. The authors of [85] use

a reduction to the well-known NP-hard domination problem. See

Theorem 5.5.

We do not assume that the reader has much or any background

in algorithms. For this reason, our next section is devoted to giving

an overview of P, NP, reductions, and algorithms in graphs.

5.2. Background on Complexity

The purpose of this section is to give an introduction to graph algo-

rithms and their complexity. It can be skipped by those versed in the

topic, although we set out notation that will be used throughout the

chapter. All of the algorithms we consider (unless otherwise stated)

focus on graphs or graph decision problems. That is, the input is a

(typically undirected, simple, and always finite) graph G, where we

5.2. Background on Complexity 113

are given some data structure representing G. Sometimes we include

a positive integer k as an additional input. For us, as elsewhere in this

book, G is connected. We could represent G by an adjacency matrix

or adjacency list. If G is order n, then the adjacency matrix of G

has (i, j) entry equaling 1 if i and j are joined, and 0 otherwise. An

adjacency list is consists of n lists, one for each vertex v, so that the

list of v enumerates all the neighbors of v. For example, the adjacency

matrix of the 4-cycle C4 is

⎛⎜⎜⎝
0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

⎞⎟⎟⎠ ,

and has the adjacency list

1: 2, 4

2: 1, 3

3: 2, 4

4: 1, 3.

In practical implementations of algorithms, the choice of data

structure is extremely important. In theory, we do not care as much

about which data structure is used to represent the graph, so long as

the graph is completely and efficiently represented. We are also less

interested in the encoding of the algorithm; it could be pseudocode

(see Algorithm 1 below) or simply a set of instructions written in

prose.

An algorithm is a method or procedure for solving a problem. It

is purely deterministic: at any stage during an algorithm, the method

tells you exactly what you need to do to get to the next stage. Al-

gorithms are encoded by a finite set of instructions which dictate

what happens at any step in the computation. All the algorithms

we consider terminate, and are executed in a finite number of steps.

Problems solved by an algorithm are decidable; otherwise, they are

undecidable. We only consider decidable problems here; see Exer-

cise 20.

114 5. Algorithms

The output of an algorithm deciding a graph decision problem is

simply YES or NO. For example, the following is a graph decision

problem.

EULERIAN: Is G Eulerian?

As discussed in the introduction of this chapter, there is a fast algo-

rithm for solving this problem, based simply on checking degrees of

vertices (recall again that G is connected). To make “fast” precise,

we define the time complexity (or just complexity) of a graph decision

problem (or just problem) to be the minimum worst-case running

time over all possible algorithms solving the problem as a function

of the length of the input. (There is an analogous notion of space

complexity, which we will not define.) Here running time (or cost) is

defined as the number of steps needed for the algorithm to conclude

either yes or no, and the length of the input is usually taken to be the

number of vertices, which we take as n a positive integer. The actual

unit of time taken for a given step is irrelevant; we simply treat it as

an indivisible discrete unit of time. For a function f : N+→N+, we

say a problem has complexity f if the time complexity of a problem

with length of input n equals f(n).

A problem is solvable in polynomial time if its complexity is

O(nm), for some integer m ≥ 0. A polynomial time algorithm is de-

fined in an analogous way. The set of all problems solvable in polyno-

mial time is denoted by P. Hence, checking if a graph is Eulerian is in

P. It is not hard to show that checking whether a graph is bipartite

is in P (see Exercise 2a). The class P can be more precisely defined

as decision problems recognized by a deterministic Turing machine in

polynomial time. We do not pursue this more formal approach, but

the reader is directed to [116] and [138] for further reading.

The Cobham-Edmond or extended Church-Gödel thesis states

that the feasible graph decision problems are exactly those which

are in P; see [116] and [138]. In particular, if a particular problem is

not in P, then the thesis implies there is no “fast” algorithm to solve

it. Much of our intuition and experience agrees with the thesis, which

is widely accepted by experts in complexity theory. Of course, an al-

gorithm with running time O(n200), while polynomial, is impractical

5.2. Background on Complexity 115

even for small n; constants hidden in the “big Oh” notation may also

make the running time too long for practical purposes.

NP (or non-deterministic polynomial) is the set of decision prob-

lems such that if the answer is YES, then there is a certificate (or ar-

gument or proof) of this fact that can be checked in polynomial time.

The certificate has length a polynomial sized function of the input.

Every YES input to the problem has at least one certificate (possibly

many), and each NO input has none. Intuitively, NP is the set of

decision problems where we can verify a YES answer quickly if we are

given a certificate. So the Sudoku and jigsaw puzzle analogies in the

introduction of this chapter capture the essence of NP: you can tell

quickly if a proposed solution (the solution is the certificate in either

case) is correct. But as those who tried the Sudoku puzzle above can

attest, it could take a long time to find a solution! An alternative

definition of NP consists of those decision problems decided by a

non-deterministic Turing machine; see [116] and [138]. We omit this

more formal definition in favour of the one with certificates, which is

an equivalent and often more useful formulation.

The class NP is large. For example, following problem is in NP.

HAMILTONIAN: Is G Hamiltonian?

The certificate here is simply a Hamilton cycle. We can quickly verify

that the proposed solution is an actual Hamilton cycle. Each of the

following problems is in NP, and we leave it to Exercise 9 to find the

certificates. (Note that k is specified in the input and it is not fixed.)

CLIQUE: Given an integer k ≥ 2, is there a k-clique in G?

3-COLORING: Is G 3-colorable?

DOMINATION: Given an integer k ≥ 2, is it true that γ(G) ≤ k?

INDEPENDENT SET: Given an integer k ≥ 2, is there a k-co-

clique in G?

Both P and NP are examples of complexity classes. How these

classes fit together or overlap is not well understood. It is evident that

116 5. Algorithms

P⊆ NP, since a certificate of a problem in P is a polynomial time

algorithm used to solve the problem. One of the deepest current open

problems in mathematics and computer science is whether P=NP.

Most experts think the answer is no, but no one has yet proven that

there is a problem in NP that is not in P. The P versus NP problem

is one of the Clay Millennium Prize problems, whose solution comes

with a million dollar prize. However, the authors think there are

easier ways to earn a million dollars!

A problem isNP-hard if a polynomial-time algorithm for it would

imply a polynomial-time algorithm for every problem in NP. Hence,

if an NP-hard problem were in P, then P=NP. So it is unlikely that

any NP-hard problem is in P! NP-hard problems are at least as hard

as any problem in NP.

An NP-complete problem is one which is NP-hard and in NP.

Each of the five problems listed above are NP-hard and in NP, and

so are NP-complete. The Halting problem, written HALTING, asks if

given a program and an input, whether the program will eventually

halt on that input. The Halting problem is NP-hard but not in NP

(see [193] and Exercise 20). Unless P=NP, the classes of P and NP-

complete problems are disjoint. Again, most experts think that no

NP-complete problem is in P, but there is no proof of this fact yet.

See Figure 5.4 for a depiction of generally accepted relations between

these complexity classes.

The method to prove that a problem is NP-hard is to use a

suitable reduction. A reduction from problem X to Y is a polynomial

time algorithmA which transforms inputs ofX to equivalent inputs of

Y . Hence, given an input G to problem X, the algorithm A produces

an input A(G) to problem Y , such that G is a YES input of X if

and only if A(G) is a YES input of Y . We write X ≤ Y if there is

reduction from X to Y. If we reduce X to Y , then we are establishing

that roughly X is no harder than Y . Hence, if Y is P, then so is X.

If X is NP-hard, then so is Y . Using the already mentioned pool

of NP-hard problems, we can use this as a tool to show that the

problem is NP-hard.

5.2. Background on Complexity 117

Figure 5.4. Inclusion among complexity classes, assuming P �=NP.

k-COP NUMBER: Given a positive integer k, for the input (G, k)

is c(G) ≤ k?

See Theorem 5.5. In contrast, as shown in Theorem 5.1. the following

problem is in P:

k-FIXED COP NUMBER: Given a fixed positive integer k, for the

input G is c(G) ≤ k?

The main difference between the two problems is that in k-COP NUM-

BER the integer k may be a function of n, and so it grows with n. In

k-FIXED COP NUMBER, k is fixed and not part of the input, and so

it is independent of n.

Reductions often require ingenuity. The first reductions were in-

troduced by Cook and Levin. A Boolean formula is a logical ex-

pression over Boolean variables (that can take values in {0, 1}) with
connectives ∨,∧, and ¬. A variable and its negation are literals. A dis-

junction of literals is a clause. Without loss of generality, we assume

that Boolean formulas are in conjunctive normal form consisting of

the conjunction of clauses. For example,

(x ∨ y ∨ ¬z) ∧ (x ∨ y) ∧ (¬x ∨ z)

118 5. Algorithms

Figure 5.5. The graph G(Φ), where Φ = (x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ ¬z).

is a Boolean formula. Let SAT denote the set of all satisfiable Boolean

formulas (namely those formulas for which there is a Boolean assign-

ment to the variables which gives it the value 1). In his pioneering pa-

per from 1971, Cook introduced NP-complete problems and showed

that SAT is NP-complete [64]. (Finding the first NP-complete prob-

lem was a crucial step in finding others; thousands of NP-complete

problems are now known!) Levin [137] independently defined NP-

complete problems and showed that a variant of SAT is NP-complete.

Karp [126] showed that 21 central problems (including proper color-

ing) areNP-complete, igniting a firestorm of interest in the topic. We

note that the specialization 3-SAT, where each clause in a Boolean

expression contains exactly three literals, is also NP-complete; see

Exercise 16.

From this, one can derive that many graph problems such as

3-COLORING and HAMILTONIAN are NP-complete. Reductions in

graph algorithms usually use some kind of gadget or auxiliary graph

construction. As an easy example, CLIQUE can be reduced to INDE-

PENDENT SET by taking the complement of the input graph. For a

less trivial example, we can reduce 3-SAT to INDEPENDENT SET by

the following reduction. For a given Boolean formula Φ with clauses

X1, X2, . . . , Xk,

we form a graph G(Φ) such that there is a k-independent set in G(Φ)

if and only Φ is satisfiable. To accomplish this, for each clause Xi,

construct a 3-clique and associate each vertex with a unique literal in

Xi. Two vertices are joined in different triangles if the literals they

correspond to are negations of each other. See Figure 5.5.

5.3. Polynomial Time with k Fixed 119

If Φ is satisfiable, then given any truth assignment satisfying Φ,

we can find an independent set in G(Φ) by choosing for each clause a

vertex corresponding to a literal that is satisfied. The converse (that

there is an independent set in G(Φ) of cardinality k implies that Φ is

satisfiable) is left as Exercise 10.

There is much more background on P and NP than the sketch

given here. For an excellent overview of the classes P and NP, see

the books [94], [138], and [172], and the survey [198].

We introduce another complexity class which contains NP, and

will be useful in our discussion of algorithmic properties of the cop

number. EXPTIME (short for exponential time), is the set of deci-

sion problems of complexity O(2p(n)). It is known that

P⊆NP⊆EXPTIME

(see [172]). To see the latter inclusion, note that each NP problem

can be solved in exponential time by a brute force search for the cer-

tificate. It is generally believed that NP�EXPTIME. We note in

passing (see [172]) that P�EXPTIME. A problem is EXPTIME-

complete if it is in EXPTIME and every problem in EXPTIME

reduces to it (that is, it is at least as hard as any problem in EXP-

TIME). An algorithm runs in sub-exponential time if it has complex-

ity 2o(n). A well-known sub-exponential algorithm is for the following

problem:

ISOMORPHISM: Given graphs G and H, is it the case that G ∼=
H?

The ISOMORPHISM problem is known to run in time 2O(
√
n logn)

[143], and is one of the few NP problems not known to be either in

P or NP-complete.

5.3. Polynomial Time with k Fixed

Our main goal is to show that there is a polynomial-time algorithm

that can determine whether c(G) ≤ k assuming that k is fixed (that

is, not a function of |V (G)|). Define the following decision problem.

120 5. Algorithms

k-FIXED COP NUMBER: Given a fixed positive integer k, for the

input G is c(G) ≤ k?

We prove the following theorem.

Theorem 5.1. The problem FIXED COP NUMBER is in P.

Theorem 5.1 first appeared in [16], and was later reproved in [105].

Another proof of the result follows implicitly from the characteriza-

tions given in [57] (see Theorem 2.11 of Chapter 2).

The approach we take to proving Theorem 5.1 comes from [22],

and relies on characterizing the game via strong products, in a way

not dissimilar to the methods of Chapter 2, or that used implicitly

in [105]. However, the methods of [105] using strong products of

graphs is different from ours. Given a graph G, recall that the kth

strong power of G, written Gk
�, is the strong product of G with itself

k times. That is, vertices are k-sequences of vertices of G, and two

sequences are joined if they are joined or equal in each coordinate.

As in Chapter 2, we identify the positions of k-many cops in G with

a single vertex in Gk
�. The definition of the strong power allows us to

simulate movements of the cops in G by movements of a single cop

in Gk
�.

See [119] for additional background on strong products of graphs.

For a set X, define 2X to be the set of subsets of X. For S ⊆ V (G),

define NG[S] to be the union of the closed neighbor sets of vertices in

S.

Theorem 5.2 ([22]). Suppose k ≥ 1 is an integer. Then c(G) > k if

and only if there is a mapping f : V (Gk
�)→ 2V (G) with the following

properties.

(1) For every u ∈ V (Gk
�),

∅ �= f(u) ⊆ V (G) \NG[u].

(2) For every uv ∈ E(Gk
�),

f(u) ⊆ NG[f(v)].

Proof. Let k cops play on G. If R has a winning strategy (that is,

c(G) > k), then for u ∈ V (Gk
�) define f(u) to be the set of all vertices

5.3. Polynomial Time with k Fixed 121

r ∈ V (G) such that if the cops start from the initial position u, then

robber can start from r and win the game.

For the proof of item (1), since R has a winning strategy, f(u) is

non-empty for every u ∈ V (Gk
�). To show that f(u) ⊆ V (G) \NG[u],

assume r is in f(u). Then r cannot be in NG[u]; otherwise, C can

capture the robber, which contradicts the fact that R can win the

game starting from this position.

To prove item (2), let uv be an edge in E(Gk
�) and fix z ∈ f(u).

The robber can win if the cops are in u and the robber is in z. Since

uv ∈ E(Gk
�), C can move the cops from u to v. Since R has a winning

strategy, R must be able to move the robber from z to a vertex z′

that is adjacent or equal to z. Therefore, z′ ∈ f(v). Since every

vertex z of f(u) is either in f(v) or has a neighbor z′ in f(v), we have

f(u) ⊆ NG[f(v)].

For the reverse direction, assume now that a mapping f exists

with properties (1) and (2). We show that R has a strategy to avoid

capture. Let u(0) ∈ V (Gk
�) be the positions of the k cops in round 0;

that is, u
(0)
i ∈ V (G) is the position of the ith cop, for all 1 ≤ i ≤ k. In

round 0, the robber R moves to an arbitrary vertex in f(u(0)). This is

possible, because the first property of f demands that f(u(0)) �= ∅. In
round 1 the cops cannot capture the robber since by the first property

of f , the vertices of f(u(0)) have distance at least two from any cop

in u(0).

We argue that for all t ≥ 0 the robber can move safely to f(u(t))

in round t, where u(t) is the position of the k cops in round t. Suppose

this claim is true for t ≤ m. We prove that the claim is true for m+1.

In each round a cop can move to an adjacent vertex, so

u(m)u(m+1) ∈ E(Gk
�).

Therefore, by the second property of f , f(u(m)) ⊆ NG[f(u
(m+1))].

Hence, the robber at f(u(m)) can move to a vertex in f(u(m+1)) in

round m+ 1 and avoid capture. �

We now consider a polynomial-time algorithm for determining

whether c(G) ≤ k based on Theorem 5.2. We express this argument

in pseudocode, which is a compact way of summarizing the steps in

122 5. Algorithms

the algorithm. It also gives us an easy way to reference the lines of

the algorithm when analyzing the running time.

Algorithm 1 Check k-cop number

Require: G = (V,E), k ≥ 1

1: initialize f(u) to V (G) \NG[u], for all u ∈ V (Gk
�)

2: repeat

3: for all uv ∈ E(Gk
�) do

4: f(u)← f(u) ∩NG[f(v)]

5: f(v)← f(v) ∩NG[f(u)]

6: end for

7: until the value of f is unchanged

8: if there exists u ∈ V (Gk
�) such that f(u) = ∅ then

9: return c(G) ≤ k

10: else

11: return c(G) > k

12: end if

For those less familiar with pseudocode, we give a high-level de-

scription of Algorithm 1. By Algorithm 1 we want to find a function

f that has both properties of Theorem 5.2. Initially we set f(u) to

the largest possible set; that is,

f(u) = V (G)\NG[u].

The set f(u) cannot be any larger set because of the first property

of Theorem 5.2. The main idea is that we change the value of f(u)

from S to S′ only if we have a proof that the elements of S\S′ cannot

be in f(u). In other words, at each step, we have a proof that if any

function, say g(u), satisfies Theorem 5.2, then g(u) ⊆ f(u) (this is

trivially true after the initialization). A proof that an element is not

in f(u) can be the following: if x is not in NG[f(v)] and uv is an edge,

then, according to the second property of Theorem 5.2, x cannot be

in f(u). Thus, we keep removing elements like x from f(u) until there

is no such element. Then c(G) > k if and only if the final value of f

satisfies both properties of Theorem 5.2.

The following theorem gives Theorem 5.1 as a corollary.

Theorem 5.3 ([22]). Algorithm 1 runs in time O(n3k+3).

5.3. Polynomial Time with k Fixed 123

Proof. We may determine if there exists a mapping f with prop-

erties stated in Theorem 5.2 using Algorithm 1. It is clear that if

the algorithm terminates, it will answer correctly; either it finds a

function f with properties stated in Theorem 5.2, or no such f ex-

ists because nothing from f(u) will be removed unless it is necessary.

In other words, for any mapping f ′ with properties stated in Theo-

rem 5.2, we will have f ′(u) ⊆ f(u) for all u ∈ V (Gk
�), where f is

the mapping found by Algorithm 1. Hence, if f(u) = ∅ for some u,

there is no mapping with the stated properties. The running time of

Algorithm 1 is at most O(n3k+3), since the repeat loop in lines 2–7

iterates at most O(nk+1) times (lines 2–7 form the bottleneck here).

To see this, in each iteration except the last one, the cardinality of

f(u) will be decreased for at least one u. Hence, in each iteration, we

are checking all the edges of the Gk
� (lines 3–6). For each edge, we are

computing intersections (which has complexity O(n)) and neighbor-

hoods (of complexity O(n2)). Therefore, in each iteration the running

time is

|E(Gk
�)|O(n+ n2) = O(n2k)O(n2).

= O(n2k+2).

It follows that the total running time is

O(nk+1)O(n2k+2) = O(n3k+3). �

Algorithm 1 can be modified to run in a more efficient way in time

O(n2k+3). See Exercise 3. As our main goal is proving Theorem 5.1,

we omit a discussion of this algorithm (see [22]). Note that the al-

gorithm in [105] for answering c(G) ≤ k also runs in time O(n2k+3)

(although this was only implicit in [105]).

As noted in [85], Theorem 5.1 helps show that computing the cop

number is sub-exponential time. Define

k-COP NUMBER: Given a positive integer k, for the input (G, k)

is c(G) ≤ k?

Recall that in this problem, k is not fixed and may be function

of n.

124 5. Algorithms

Theorem 5.4 ([85]). The problem COP NUMBER is solvable in sub-

exponential time.

As remarked in [85], Theorem 5.4 is interesting, as many NP-

hard problems are believed not to be solvable in sub-exponential time.

5.4. NP-hard with k Not Fixed

We sketch the proof from [85] that computing the cop number is

NP-hard. (See also [84].) Recall the following decision problem from

Section 5.2.

k-COP NUMBER: Given a positive integer k, for the input (G, k)

is c(G) ≤ k?

Note that k may be a function of n. For example, this question

decides whether c(G) ≤ �c√n�, where c > 0 is a constant. As we

know from Meyniel’s conjecture from Chapter 3, this is a much harder

problem than determining whether say, a graph is 2-cop-win. We

prove the following theorem.

Theorem 5.5 ([85]). The problem k-COP NUMBER is NP-hard.

Theorem 5.5 does not say that k-COP NUMBER is in NP; that

is an open problem! See Section 5.5 below. The approach we take

to proving Theorem 5.5 is to use a reduction from the following NP-

complete problem:

DOMINATION: Given an integer k ≥ 2, is it true that γ(G) ≤ k?

We first describe a certain family of bipartite graphs. This family

is critical for the reduction, and any particular graph in the family can

be constructed in polynomial time. For positive integers n, m, and r,

define a bipartite graph H(m,n, r) with size rmn2. The vertex classes

are X and Y, so that |X| = |Y | = nm. The set X is partitioned into

sets U1, U2, . . . , Un, and Y is partitioned into sets W1,W2, . . . ,Wn,

where |Ui| = |Wi| = m for all i. Define Hi,j to be the subgraph of

H(m,n, r) induced by Ui ∪Wj , and let degi,j(u) be the degree of the

vertex u in Hi,j . See Figure 5.6.

5.4. NP-hard with k Not Fixed 125

U

U

U

W

W

W

X Y

Figure 5.6. The graph H(m, 3, r). The induced subgraph
H1,3 is shaded.

We omit the proof of the following theorem—whose proof is con-

tained in [85]. We do mention that H(m,n, r) is the output of an

algorithm with polynomial complexity in m,n, and r.

Theorem 5.6 ([85]). If

m ≥ 2n(r + 1)
(n(r + 1)− 1)6 − 1

(n(r + 1)− 1)2 − 1
,

then H(n,m, r) can be constructed with the following properties.

(1) There is an algorithm which, given a set X ∪ Y as in the

definition of H(m,n, r) with no edges, constructs H(m,n, r)

in time O(rmn2) on X ∪ Y .

(2) For all u ∈ V (Hi,j) and all i and j,

r − 1 ≤ degi,j(u) ≤ r + 1.

(3) For all vertices u,

deg(u) ≤ n(r + 1).

(4) The girth of H(m,n, r) is at least 6.

Proof of Theorem 5.5. Let G be a graph with n vertices, labeled

as {v1, . . . , vn}. Let r = k + 2, and define

m =

⌈
2n(r + 1)

(n(r + 1)− 1)6 − 1

(n(r + 1)− 1)2 − 1

⌉
.

126 5. Algorithms

For each vi add 2m vertices, and make these new vertices joined

to all the neighbors of vi in G and to vi itself. Half of these new

2m vertices form the set Ui, while the other half form the set Wi.

Apply Theorem 5.6 (1) to construct in polynomial time in k and n,

the bipartite graph H(m,n, r) on X ∪ Y, where

X =

n⋃
i=1

Ui and Y =

n⋃
i=1

Wi.

We denote the resulting graph (constructed in polynomial time in n

and k) by G′.

We claim that γ(G) ≤ k if and only if c(G′) ≤ k. Once this claim

is established, the reduction from DOMINATION follows, as does the

proof of the theorem.

Now suppose that S is a dominating set of cardinality at most k

in G. It is straightforward to see that if we place the cops on S in G′,

then the robber is captured in the first round.

Next assume that γ(G) > k. We show that c(G′) > k.

If we play with k cops in round 0, then the robber has a safe

position (that is, a vertex not joined to a cop) vi in G (as γ(G) >

k; note that we consider G to be an induced subgraph of G′). By

Theorem 5.6 (2), the cops are joined or equal to at most kn(r + 1)

vertices in Ui. Since |Ui| = m, we have that

m =

⌈
2n(r + 1)

(n(r + 1)− 1)6 − 1

(n(r + 1)− 1)2 − 1

⌉
> kn(r + 1).

Therefore, there is a safe vertex ui ∈ Ui for the robber. Let

R = ui in round 0. We proceed by induction on the number of

rounds, assuming for an induction hypothesis that R = u ∈ X ∪ Y in

round t ≥ 0 and is safe from the cops. Without loss of generality, we

assume that u ∈ X by symmetry.

The induction step has a proof reminiscent of the proof of The-

orem 1.3 from Chapter 1. If in round t + 1 the R is not joined to

a cop, then the robber passes. Otherwise, the robber proceeds as

follows. As in the base case, there is a vertex vj not in N [C]. By

Theorem 5.6 (2) the vertex u has at least r − 1 = k + 1 neighbors in

Wj . By Theorem 5.6 (4), the girth of H(m,n, r) is at least 6. Hence,

5.5. Open Problems 127

any given cop is joined to at most one neighbor of u. As there are

only k cops, at least one of these neighbors z is not in N [C]. The

robber moves to z and is safe for another round. �

5.5. Open Problems

Our algorithmic knowledge of the COP NUMBER problem is some-

what limited. We do not even know if the problem is in NP! The

deepest conjecture on the algorithmic properties of cop number is due

to Goldstein and Reingold [100].

Conjecture: The problem COP NUMBER is EXPTIME-complete.

Goldstein and Reingold [100] proved that the version of the Cops

and Robbers game on directed graphs is EXPTIME-complete. They

also proved that the version of the game on undirected graphs when

the cops and the robber are given their initial positions is also EXP-

TIME-complete. We do not include the proofs of these results (which

relies on a reduction to the so-called Alternating Boolean Formula

(or ABF) decision problem, which is EXPTIME-complete), as they

would lead us too far afield. If this conjecture is true, then COP

NUMBER is not in NP unless NP=EXPTIME. However, the com-

mon wisdom is that NP is a proper subset of EXPTIME, and so it

is unlikely that COP NUMBER is in NP. Hence, a weaker conjecture

than the above is to show the following.

Conjecture: The problem COP NUMBER is not NP-complete.

A graph G is a split graph if V (G) can be partitioned into sets

C and I, such that C is a clique, and I is an independent set. See

Figure 5.7. Some algorithmic problems which areNP-hard on general

graphs are in P for split graphs. In particular, the independence

number and treewidth of a split graph can be computed in linear

time (see [33]). However, it was proved in [85] that COP NUMBER

remains NP-hard when restricted to split graphs. They also proved

that the problem is in P for interval graphs, which are the intersection

graphs of intervals on the real line. Many other graph classes were

studied with the property thatNP-hard problems become polynomial

time solvable; see [33]. It would be interesting to investigate the

complexity of computing the cop number in those classes.

128 5. Algorithms

Figure 5.7. A split graph with C = K4 and I = K4.

Approximation algorithms are an important part of complexity

theory; see Vazirani [194]. Approximation algorithms compute near-

optimal solutions. An algorithm has approximation ratio of f(n), if

for any input of cardinality n, the cost C ′ of its solution is within a

multiplicative factor f(n) of the cost C of an optimal solution. More

precisely,

max

{
C

C ′ ,
C ′

C

}
≤ f(n).

A f(n)-approximation algorithm has approximation ratio f(n). All

the algorithms given in this chapter are optimal, and so are simply

1-approximation algorithms. It was proved in [85] that there is a

constant c > 0 such that there is no polynomial time algorithm to

approximate c(G) within a multiplicative factor c logn, unless P =

NP. A problem posed in [85] is whether for some ε > 0 there is an

n1−ε-approximation algorithm for the COP NUMBER problem.

Exercises

1. Prove that a graph is Eulerian if and only if each vertex is even

degree.

2. (a) Show that the problem of deciding whether a graph is bipar-

tite is in P.

Exercises 129

(b) Repeat part (a), but for deciding whether a graph is con-

nected.

3. [22] Devise an algorithm which runs in time O(n2k+3) solving the

problem FIXED COP NUMBER.

4. Cops and Robbers is defined analogously on directed graphs. Con-

sider a decision problem where the input is a finite directed graph.

By modifying the proof of Theorem 5.1, show that the problem

FIXED COP NUMBER for digraphs is in P.

5. [105] For a digraph G and k a positive integer, define the k-game

digraph of G, written Γk(G), by first forming the disjoint union

of G and Gk
� (note that strong products are defined analogously

for directed graphs). Now add two vertices u and v. Add directed

edges from u to each vertex in G and Gk
�; add directed edges

from v to G and from each vertex of Gk
� pointing to v. For each

vertex x = (x1, . . . , xk) of G
k
�, add directed edges from x to each

outneighbor of xi in G, for 1 ≤ i ≤ k.

(a) Draw the graph Γ2(C4), and explain why it is cop-win.

(b) Prove that G is k-cop-win if and only if the digraph Γk(G)

is cop-win.

(c) Use (b) to devise a polynomial time algorithm that decides

the problem FIXED COP NUMBER.

6. (a) Prove that a planar graph has a vertex of degree at most 6.

(b) Use (a) to give a polynomial time algorithm which gives a

proper 6-coloring of a planar graph.

7. An edge-labeled graph is one whose edges are assigned positive

integer weights. A minimum spanning tree (or MST) in an edge-

labeled graph is a spanning tree whose sum of edge labels is as

small as possible (there may be more than one). Find a polyno-

mial time algorithm which produces an MST in an edge-labeled

graph. (Hint : Use a greedy algorithm.)

8. Prove that the reduction relation ≤ is transitive: if A ≤ B and

B ≤ C, then A ≤ C.

9. Find certificates to show that each of the following problems is

in NP. Note that k is a fixed positive integer and is part of the

input.

130 5. Algorithms

CLIQUE: Given an integer k ≥ 2, is there a k-clique in G?

3-COLORING: Is G 3-colorable?

DOMINATION: Given an integer k ≥ 2, is it true that γ(G) ≤
k?

INDEPENDENT SET: Given an integer k ≥ 2, is there a k-

co-clique in G?

10. Show that if there is an independent set in the G(Φ) of cardinality

k, then the Boolean formula Φ is satisfiable.

11. A vertex cover of a graph is a set of vertices that touches every

edge in the graph. The problem VERTEX COVER problem is,

given a positive integer k, to decide whether there exists a ver-

tex cover of cardinality at most k in a given graph. Show that

VERTEX COVER is NP-complete. (Hint : Reduce from INDE-

PENDENT SET.)

12. In the MAXCUT problem, given a positive integer k, we must

decide whether there is a subset of vertices S such that there

are at least k edges that have one endpoint in S and the other

endpoint in V \S. Prove that MAXCUT is NP-complete.

13. Show that the greedy algorithm is a 2-approximation algorithm

for MAXCUT.

14. Give an O(n2) algorithm for deciding if a graph is cop-win.

15. Prove that deciding whether a given planar graph is 3-colorable

is NP-complete.

16. Show that SAT≤ 3-SAT.

17. The complement of a decision problem is the decision problem

resulting from reversing the YES and NO answers. The com-

plexity class coNP is defined to be the set of problems whose

complement is in NP.

(a) Show that P⊆NP∩ coNP. Problems in NP∩ coNP are

said to have a good characterization; see, for example, [142].

It is widely thought that P=NP∩ coNP.

(b) Show that the problem of whether a graph is cop-win has a

good characterization.

Exercises 131

18. (For those readers with some programming background.) Imple-

ment Algorithm 1 for small values of k, such as k = 1, 2, 3.

19. [83] Prove that a graph is split if and only if no induced subgraph

is a cycle on four or five vertices, or a pair of disjoint edges.

20. A decision problem is undecidable if there is no algorithm that

solves the problem.

(a) Prove that there are uncountably many undecidable decision

problems.

(b) [193] The Halting Problem, written HALTING, has as input

the description of a program, and decides whether or not the

program halts. Show that HALTING is undecidable.

21. [85] Prove Theorem 5.4. (Hint : Use Theorems 5.3 and 3.6.)

Chapter 6

Random Graphs

6.1. Introduction

Randomness is a fundamental property in both mathematics and na-

ture. The probabilistic method—championed by Erdős and Rényi

in their pioneering work on the subject in the 1960s (see [73], [74],

and [75])—remains one of the most powerful tools in graph theory.

Random graphs play an important role both as displaying asymptotic

and typical properties of graphs, and as a beautiful theory in their

own right. See the books [6, 18, 123], or Chapter 3 of [21] for more

discussion on random graphs. We saw one application of the proba-

bilistic method in Chapter 3 in the proof of Meyniel’s conjecture for

diameter 2 graphs (see Theorem 3.10). In this chapter, our approach

is different: we choose a graph at random by randomly drawing edges,

independently and with given probability, then play the game there.

Results about the cop number then become fuzzy: the cop number

is a random variable over a probability space, and theorems aim to

estimate this variable. Graph theoretic problems in random graphs

often reduce them to analytic ones. The good news for those without

extensive probabilistic background is that we need only a few basic

properties on the expected value (such as its linearity and Markov’s

inequality) to accomplish the estimates.

133

134 6. Random Graphs

The edge probabilities p in random graphs are often taken as

varying with the order of the graph. We focus on cases for edge

probabilities of random graphs, going from less to more complex ar-

guments. In Section 6.2 we consider the simplest case when p is a

constant, independent of n. In Section 6.3 we discuss results for vari-

able p = p(n), and for both sparse and dense random graphs. The

most interesting and definitive result on the cop number of a random

graph is the recent striking and surprising Zig-Zag Theorem of �Luczak

and Pra�lat [142]. We present the Zig-Zag Theorem and a discussion

of its proof in Section 6.4. We finish with a discussion of the cop

number of random graphs in models of the web graph.

6.1.1. Probabilistic Tools and Random Graphs. Readers with

little or no experience with random graphs should be relieved to hear

that all that is required is elementary probability theory (usually

taught in a first undergraduate course on the topic), and some cal-

culus. Readers wishing a detailed background on discrete probability

theory should consult [102].

Random variables and expectation were introduced in Chapter 3.

For example, familiar graph parameters, such as size, chromatic num-

ber, and cop number, become random variables in random graphs.

Expectation has the following elementary but useful property, which

follows from the definitions.

Theorem 6.1 (Linearity of expectation). Suppose that X, Y, and

Xi, where 1 ≤ i ≤ n, are random variables defined on a probability

space. Let ci, where 1 ≤ i ≤ n, be real numbers. Then

E

(
n∑

i=1

ciXi

)
=

n∑
i=1

ciE (Xi) .

A basic but very useful inequality on random variables is the

following.

Theorem 6.2 (Markov’s inequality). Let X ≥ 0 be a random variable

on a probability space with sample space S. If c is a positive real

number, then

P(X ≥ c) ≤ E(X)

c
.

6.1. Introduction 135

Proof. The proof follows by the following inequalities:

E(X) =
∑
s∈S

P({s})X(s)

≥
∑
s∈S,

X(s)≥c

P({s})X(s)

≥
∑
s∈S,

X(s)≥c

P({s})c

= cP(X ≥ c). �

A binomial random variable X with parameters n and p, written

X ∈ Bi(n, p), satisfies

P(X = i) =

(
n

i

)
pi(1− p)n−i,

where P(A) stands for the probability of the event A. As a simple but

illustrative example, if we toss a fair coin n times and X counts the

number of heads, then X ∈ Bi(n, 12) and the probability of obtaining

i heads equals

P(X = i) =

(
n

i

)(
1

2

)n

.

If X is a Bi(n, p), then E(X) = np.

For a binomial random variable, the probability of deviating from

the mean exponentially tends to 0 the larger the distance from the

expectation. This is made precise by the following set of inequali-

ties, called the Chernoff bound. For a proof, see Theorem 2.1 and

Corollary 2.3 of [123].

Theorem 6.3. Let X be a binomial random variable X ∈ Bi(n, p)

with E (X) = np. If ε ≤ 3/2, then

P (|X − E (X) | ≥ εE (X)) ≤ 2 exp

(
−1

3
ε2E (X)

)
.

We now give a formal definition of random graphs. Define a

probability space on graphs of a given order n ≥ 1 as follows. Fix

a vertex set V consisting of n distinct elements, usually taken as

[n] = {1, 2, . . . , n}, and fix p ∈ [0, 1]. Define the space of random

136 6. Random Graphs

graphs of order n with edge probability p, written G(n, p) with sample

space equaling the set of all 2(
n
2) (labeled) graphs with vertex set V,

and

P(G) = p|e(G)|(1− p)(
n
2)−|e(G)|.

Informally, we may view G(n, p) as the space of graphs with vertex

set V , so that two distinct vertices are joined independently with

probability p. Even more informally: toss a (biased) coin to determine

the edges of your graph. Hence, V does not change, but the number of

edges is not fixed: it varies according to a binomial distribution with

expectation
(
n
2

)
p. Despite the fact that G(n, p) is a space of graphs,

we will abuse language and call it the random graph of order n with

edge probability p. An alternative and equivalent definition of G(n, p)

using product spaces may be found in Exercise 9.

We consider the cases when p is fixed, and when it is a function

of n. Graph parameters, such as the cop number, become random

variables in G(n, p). For notational ease, ifX is a parameter of graphs,

we will write X(G(n, p)). Hence, we will refer to the cop number of

G(n, p) simply by c(G(n, p)).

We say that an event holds asymptotically almost surely (or a.a.s.

for short) if it holds with probability tending to 1 as n → ∞. For

example, if p is constant, then a.a.s. G(n, p) is diameter 2 and not

planar. (See Exercise 2.)

6.2. Constant p and log n Many Cops

An elementary upper bound for the cop number is

(6.1) c(G) ≤ γ(G),

where γ(G) is the domination number of G. In general graphs, the

inequality (6.1) is far from tight (consider a path, for example). In

random graphs G(n, p) with constant p, we will see that both the cop

number and domination number equal Θ(logn).

The domination number of G(n, p) was first studied in Dreyer’s

doctoral thesis [70]. The following result of [70] gave asymptotic

bounds for the domination number of a finite random graph with p a

6.2. Constant p and log n Many Cops 137

fixed constant. For p ∈ (0, 1) or p = p(n) = o(1), define

Ln = log 1
1−p

n.

Theorem 6.4. Let 0 < p < 1 be fixed and q = 1
1−p . For every real

ε > 0, a.a.s.

(1− ε)Ln ≤ γ(G(n, p)) ≤ (1 + ε)Ln.

In particular,

γ(G(n, p)) = Θ(log n).

We note that the domination number for random graphs in the

more general context when p is a function of n was studied in [196].

They proved that a.a.s. γ(G(n, p)) equals one of two values:

�Ln− L
(
(Ln)(logn)

)
+ 1�

or

�Ln− L
(
(Ln)(logn)

)
+ 2�.

The cop number of G(n, p) was studied in [28] for constant p,

where the following result was proved.

Theorem 6.5. Let 0 < p < 1 be fixed. For every real ε > 0, a.a.s.

(6.2) (1− ε)Ln ≤ c(G(n, p)) ≤ (1 + ε)Ln.

In particular,

c(G(n, p)) = Θ(log n).

If we consider the case p = 1/2, then G(n, p) corresponds to the

case of uniformly choosing a labeled graph of order n from the space

of all such graphs. Hence, Theorem 6.5 may be interpreted as say-

ing “most” finite graphs of order n have cop number approximately

log n. In other words, the cop number of most graphs is fairly small,

and is much smaller than Meyniel’s bound O(
√
n). One view of The-

orem 6.5 supplies some evidence that Meyniel’s conjecture is in fact

true (although we already know it holds for diameter 2 graphs by

Theorem 3.10, and a.a.s. G(n, p) is diameter 2).

The upper bound in (6.2) follows from Theorem 6.4. The proof

of Theorem 6.5 thus follows by establishing the lower bound for the

cop number of G(n, p). For this, we use an adjacency property. For

138 6. Random Graphs

Figure 6.1. The (1, k)-e.c. property.

a positive integer k, a graph is (1, k)-existentially closed (or (1, k)-

e.c.) if for each k-element subset S of vertices of G and vertex u

distinct from S, there is a vertex z /∈ S not joined to any vertex in

S and joined to u. See Figure 6.1. Note that a (1, k)-e.c. graph has

minimum degree at least k + 1.

Proof of Theorem 6.5. If G is (1, k)-e.c., then c(G) > k. To see

this, in a given round suppose that there are k cops C. The robber

uses the (1, k)-e.c. to find a neighboring vertex z not joined or equal

to a vertex in C. The vertex acts as an “escape route” for the robber,

who can evade capture for one more round.

Let 0 < ε < 1 be fixed, and let

k = �(1− ε)Ln�.

Define c = log(1
1−p), and d by

d =
1− ε

c
.

Then c, d > 0 and 0 < cd < 1. The probability that G is not (1, k)-e.c.

is at most

nk+1(1− p(1− p)k)n−k−1

= exp(log(nk+1(1− p(1− p)k)n−k−1))

≤ exp
(
(d logn+ 1) log(n) + (n− d log n− 1) log

(
1− p

ncd

))
= o(1),

6.3. Variable p and Bounds 139

where the last line follows since log
(
1− p

ncd

)
< 0 for all n. Hence,

a.a.s.

c(G) ≥ (1− ε)Ln. �

As we will see in the next section, c(G(n, p)) actually concentrates

on Ln: that is,
c(G(n, p)) = (1 + o(1))Ln.

6.3. Variable p and Bounds

The more difficult problem of determining the cop number of G(n, p),

where p = p(n) is a function of n, was left open in [28]. We now

consider the works of [19] and [31] on the cop number of G(n, p(n))

when p(n) is a function of n. Throughout this section, we will abuse

notation and refer to p rather than p(n).

6.3.1. Dense Random Graphs. We now consider the cop num-

ber of dense random graphs, with average degree pn at least
√
n.

The main results of this subsection are summarized in the following

theorem, proved in [31].

Theorem 6.6 ([31]). (1) Suppose that p ≥ p0 where p0 is the

smallest p for which

p2/40 ≥
log
(
(log2 n)/p

)
log n

holds. Then a.a.s.

Ln− L
(
(p−1Ln)(logn)

)
≤ c(G(n, p)) ≤ Ln− L

(
(Ln)(logn)

)
+ 2.

(2) If (2 logn)/
√
n ≤ p = o(1) and ω(n) is any function tending

to infinity, then a.a.s.

Ln− L
(
(p−1Ln)(logn)

)
≤ c(G(n, p)) ≤ Ln+ L(ω(n)).

An example of a suitable p in item (1) of the theorem would be

p = (log n)
−1/4

. By Theorem 6.6, we have the following corollary

which gives a concentration result for the cop number. In particular,

for a wide range of p, the cop number of G(n, p) concentrates on just

the one value Ln.

140 6. Random Graphs

Corollary 6.7 ([31]). If p = n−o(1) and p < 1, then a.a.s.

c(G(n, p)) = (1 + o(1))Ln.

In Section 6.2 above, we established bounds in Theorem 6.5 for

the cop number of G(n, p) when p is constant. From Theorem 6.6 (1)

it follows that if p is a constant, then we have the concentration result

that

c(G(n, p)) = Ln− 2L log n+Θ(1) = (1 + o(1))Ln.

We supply an important corollary of Theorem 6.6, which is the

first step closer towards the Zig-Zag Theorem (see Theorem 6.16).

Corollary 6.8 ([31]). If d = np = nα+o(1), where 1/2 < α ≤ 1, then

a.a.s.

c(G(n, p)) = Θ(log n/p) = n1−α+o(1).

To better understand Corollary 6.8, we define a function f :

(0, 1)→ R by

f(x) =
log c(G(n, nx−1))

log n
,

where c(G(n, nx−1)) is the median of the cop number for G(n, p).

Hence, the graph of f is the log-log plot of the median of the cop

number of G(n, p). Note that for a real number x ∈ (0, 1), the ex-

pected degree of G(n, nx−1) is

pn = nnx−1 = nx.

The reader should take a moment and verify that the following

straight line with negative slope, which plots the function f, depicts

the conclusion of Corollary 6.8. See Figure 6.2. Note that Meyniel’s

conjecture for random graphs would suggest that the graph of f never

goes above the line y = 1/2. The remainder of the graph plotted in

Figure 6.2 will be more closely examined in the next subsection and

in Section 6.4.

Proof of Theorem 6.6. We consider the upper bounds in each of

items (1) and (2). The upper bound in (1) is implied by the following

result proved in [196].

6.3. Variable p and Bounds 141

Figure 6.2. The graph of f, so far.

Theorem 6.9. Suppose that p ≥ p0(n), where p0 is the smallest p

for which

p2/40 ≥
log
(
(log2 n)/p

)
log n

holds. Then a.a.s.

�Ln−L
(
(Ln)(logn)

)
�+1 ≤ γ(G(n, p)) ≤ �Ln−L

(
(Ln)(logn)

)
�+2.

For the upper bound in item (2), the proof follows by the following

claim.

Claim 1. If p = o(1) and ω(n) is any function tending to infinity

with n, then a.a.s.

γ(G(n, p)) ≤ �Ln+ L(ω(n))� .

To prove Claim 1, we note that since p = o(1) we have that

(6.3) Ln =
log n

− log(1− p)
= (1 + o(1))

logn

p
.

Let

k = �Ln+ L(ω(n))� .
If k > n, then the claim is trivial, so we assume k ≤ n. Then the

probability that γ(G(n, p)) ≤ k is bounded from below by the prob-

ability that any fixed set of k vertices is a dominating set. But the

142 6. Random Graphs

latter probability is equal to

(
1− (1− p)k

)n−k ≥ 1− (n− k)(1− p)k

≥ 1− n(1− p)k

≥ 1− n(1− p)Ln+L(ω(n))

= 1− 1

ω(n)

= 1− o(1) .

We now consider the lower bounds in items (1) and (2). Both

lower bounds in Theorem 6.6 will follow once we prove the following

claim.

Claim 2. If p > (2 logn)/
√
n and

(6.4) k =
⌊
Ln− L

(
(p−1Ln)(logn)

)⌋
,

then a.a.s. G ∈ G(n, p) is (1, k)-e.c.

To prove Claim 2, assume that p = o(1). Then

k = Ln− L
(
(1 + o(1))

log2 n

p2

)
= Ln− 2L

(
(1 + o(1))

log n

p

)
.

Fix a k-subset S of vertices and a vertex u not in S. Since edges are

chosen independently, the probability that no suitable vertex can be

found for this particular S and u is

(6.5) (1− p(1− p)k)n−k−1.

Let X be the random variable counting the number of S and u

for which no suitable x can be found. By (6.5) and the linearity of

6.3. Variable p and Bounds 143

expectation we have that

E(X) =

(
n

k

)
(n− k)

(
1− p(1− p)k

)n−k−1

≤ nk+1

(
1− (Ln)(logn)

n

)n(1−(Ln)/n)

= nk+1 exp (−(Ln)(logn)(1− (Ln)/n)) (1 + o(1))

= nk+1 exp
(
−(Ln− (Ln)2/n)(logn)(1 + o(1))

)
≤ nk+1 exp

(
−
(
k +

2 log log n

p
− 2 log2 n

p2n

)
(logn)(1 + o(1))

)
= nk+1 exp

(
−
(
k +

2 log log n

p

)
(log n)(1 + o(1))

)
= exp

(
(k + 1) log n−

(
k +

2 log log n

p

)
(log n)(1 + o(1))

)
= o(1),

where the second inequality follows by (6.3). The proof now follows

by Markov’s inequality (Theorem 6.2). �

Pra�lat [175] considered the case when the cop number of a ran-

dom graph is constant.

Theorem 6.10 ([175]). Fix k a positive integer. Let

p = p(n) = 1−
(
k log n+ an

n

) 1
k

.

Then the following items hold.

(1) If an → −∞, then a.a.s. c(G(n, p)) ≤ k.

(2) If an → a ∈ R, then the probability that c(G(n, p)) = k tends

to

1− exp(−e−a/k!),

and c(G(n, p)) = k + 1, otherwise.

(3) If an →∞, then a.a.s. c(G(n, p)) ≥ k + 1.

One byproduct of Theorem 6.10 (2) is that for each integer k > 0,

there exists a graph with cop number exactly k. Note that the proof

of Theorem 6.10 (2) is non-constructive.

144 6. Random Graphs

Figure 6.3. Bounds on the graph of f.

6.3.2. Sparse Random Graphs. Recent work by Bollobás, Kun,

and Leader [19] establishes the following bounds on the cop number

in the sparse case, when the expected degree is np = O(n1/2).

Theorem 6.11. If p(n) ≥ 2.1 log n/n, then a.a.s.

(6.6)
1

(np)2
n

1
2

log log(np)−9
log log(np) ≤ c(G(n, p)) ≤ 160000

√
n log n .

In particular, Theorem 6.11 proves Meyniel’s conjecture for ran-

dom graphs, up to a logarithmic factor of n from the upper bound

in (6.6). We now know a bit more about the function f from the

previous subsection. See Figure 6.3.

What does the rest of the graph of f look like? The surprising

answer is in the next section. Read onwards! We sketch a proof of

the upper bound of Theorem 6.11.

Lemma 6.12. Let p ∈ (0, 1), and let k and n be integers such that

k ≤ pn. Then the following holds:

k∑
i=0

(
n

i

)
pi(1− p)n−i ≤ exp

(
− (k − pn)2

2pn

)
.

For a vertex x and integer r ≥ 0, define Nr(x) to be the set of

vertices of distance at most r from x. To establish an upper bound

6.3. Variable p and Bounds 145

Figure 6.4. A perfect matching (represented by bold edges)
in the cube.

for the cop number, we use the strategy of surrounding the robber.

In other words, if for some r, each vertex of Nr(R) is joined to a

unique cop, then the robber cannot leave Nr(R). This amounts to an

application of the following famous Hall’s theorem (see [68] or [197]).

We note that another application of this theorem will be used in the

next section in the proof of the upper bound of the Zig-Zag Theorem;

see Theorem 6.16. A matching in a graph is a set of edges no two of

which share an endpoint, and a matching is perfect if it is a spanning

subgraph. See Figure 6.4.

For a set S of vertices, define

N(S) =
⋃
x∈S

N(x).

Theorem 6.13. In a bipartite graph with colors B1 and B2, if for

all S ⊆ B1 the condition

(6.7) |S| ≤ |N(S)|

is satisfied, then G contains a matching of size |B1|.

We make precise the notion of surrounding the robber in the

following lemma. Define

Nr+1(S) =
⋃
x∈S

Nr+1(x).

146 6. Random Graphs

Lemma 6.14. Let T be a set of vertices in a graph G of order n. If

for each vertex x of G there is an integer r such that for all S ⊆ Nr(x)

|S| ≤ |T ∩Nr+1(S)|,

then c(G) ≤ |T |.

Proof. To prove the lemma, we need to give a winning strategy with

|T | cops. Place the cops on T in round 0. By Theorem 6.13 for every

u ∈ Nr(R) we may assign a distinct cop in Nr+1(R). The cops then

move to their assigned vertices in at most r+ 1 moves. But then the

robber is “surrounded”: the robber cannot leave Nr(R) in r rounds,

and so is eventually captured there. �

The following expansion-type lemma (whose proof is omitted)

follows from Lemma 6.14.

Lemma 6.15. Let c > 0 be an integer. If there is an integer r > 0

such that for every x ∈ V (G) and S ⊆ Nr(x), then the following

inequality holds:

10|S| logn ≤ c

n
|Nr+1(S)|,

then c ≥ c(G).

Proof of Theorem 6.11. As we mentioned above, we only sketch

the proof of the upper bound of (6.6). In fact, we prove the following

slightly stronger statement, which implies the upper bound of (6.6).

For ε ∈ (0, 1) and p > 2(1 + ε) log n/n, a.a.s.

c(G(n, p)) < max

{
1

ε
, 160000

}√
n log n.

Fix S a set of vertices. Then

E(|N1(S)|) = |S|+ (n− |S|)(1− (1− p)|S|)).

By Lemma 6.12, for every S we have that

P
(
||N1(S)| − E(|N1(S)||) ≤

√
2 log n(1 +

ε

2
)(pn+ 1)|S|

)
≤ P

(
||N1(S)| − E(|N1(S)||) ≤

4− ε

4
(pn+ 1)

√
|S|
)

6.3. Variable p and Bounds 147

is at least 1−n− 2+ε
2 |S|. Hence, we may assume that these events occur

for all S.

Let

(6.8) r =

⌊
log(1000

√
n)

log(pn+ 2)

⌋
.

If |S| ≥ (pn+ 1)2, then |N1(S)| ≤ (pn+ 2)|S|. Further, for S of any

size,

|N1(S)| ≤ (pn+ 1)|S|+ (pn+ 1)
√
|S|

≤ 2(pn+ 2)|S|.

By induction on k, we have that

|Nk(S)| ≤ 4(pn+ 2)k,

from which it follows that

|Nr(x)| ≤ 4000
√
n.

We have that

E(N(T)) > n(1− exp(−p|T |))

for all T. If

(6.9) p|T |(log n+ 1) < 1,

then

E(N1(T)) >

(
1− 1

log n

)
pn|T |.

Condition (6.9) holds for T = Nk(S) if S ⊆ Nr(x) for some vertex x

and k ≤ r − 2. Note that for n large, if p|S|(logn+ 1) ≤ 1, then

|N1(S)| ≥
ε

5
pn|S|.

Further, if |N1(S)|p(logn+ 1) < 1, then for n large

|N2(S)| ≥
ε

6
p2n2|S|.

If 3 ≤ k ≤ r − 2, then

(6.10) |Nk+1(S)| ≥
(
1− 1

log n

)
(pn− 1)|Nk(S)|.

148 6. Random Graphs

By using (6.10) for k = 2, 3, . . . , r − 2, we have that

|Nr−1(S)| ≥ ε

6

(
1− 1

log n

)r−1(
pn− 1

pn+ 2

)r−1

(pn+ 2)r−1|S|

= (1 + o(1))
ε

6
(pn+ 2)r−1|S|.

Now,

|Nr(S)| ≥ n(1− exp(−p|Nr−1(S)|)).

For large n, the right-hand side is at least n/4 if p|Nr(S)| > 1/2, or

else at least

(2− 2 exp(−1/2))pn|Nr−1(S)| > 1/2(pn+ 2)|Nr(S)|.

It follows that

|Nr(S)| ≥ max{n/4, 1/2(pn+ 2)|Nr−1(S)|}.

In a similar fashion, we have for large n that

|Nr+1(S)| ≥ max {n/4, 1/4(pn+ 2)|Nr(S)|}

≥ max
{
n/4,

ε

96
(1 + o(1))(pn+ 2)r+1|S|

}
≥ max

{
n/4,

ε

100
(1 + o(1))(pn+ 2)r+1|S|

}
≥ max

{
n/4, 10ε(1 + o(1))

√
n|S|

}
,

where the last inequality follows by the choice of r in (6.8). The proof

now follows by Lemma 6.15:

c(G) < 10n log n max
x∈V,

S⊆Nr(x)

|S|
|Nr+1(S)|

≤ 10n log nmax

{
1

10ε
√
n
,
4000

√
n

n/4

}
= max

{
1

ε
, 160000

}√
n log n,

as desired. �

6.4. The Zig-Zag Theorem 149

6.4. The Zig-Zag Theorem

Based on the results of Section 6.3 it would be natural to assume that

the cop number of G(n, p) is close to
√
n also for np = nα+o(1), where

0 < α < 1/2. The so-called Zig-Zag Theorem of �Luczak and Pra�lat

[142] demonstrates that the actual behaviour of c(G(n, p)) is much

more complicated.

Theorem 6.16. Let 0 < α < 1, and d = d(n) = np = nα+o(1).

(1) If 1
2j+1 < α < 1

2j for some j ≥ 1, then a.a.s.

c(G(n, p)) = Θ(dj) .

(2) If 1
2j < α < 1

2j−1 for some j ≥ 1, then a.a.s.

Ω
(n

dj

)
= c(G(n, p)) = O

(
n log n

dj

)
.

With Theorem 6.16 available, for the final time, we come back to

the plot of the function f : (0, 1)→ R defined by

f(x) =
log c(G(n, nx−1))

log n
,

where c(G(n, nx−1)) is the median of the cop number for G(n, p). See

Figure 6.5, which justifies the theorem’s moniker. In particular,

f(x) =

{
αj if 1

2j+1 ≤ α < 1
2j for some j ≥ 1,

1− αj if 1
2j ≤ α < 1

2j−1 for some j ≥ 1.

A few things become more transparent when studying Figure 6.5.

First, there are infinitely many values of x (such as x = 1/2, 1/4, 1/6,

and so on) where c(G(n, p)) = Θ(
√
n). Second, the cop number is far

from being a monotonic function of p: it exhibits increasing oscillation

as x tends to 0. Last but not least, it gives an independent verification

of the Meyniel bound for G(n, p) random graphs, up to a log factor.

As the proof of the lower bound for the cop number in Theo-

rem 6.16 is more technical, we only give the proof of the upper bound.

Nevertheless, for completeness, we now give a high level overview of

the proof of the lower bound. For the lower bound, we show that re-

gardless of how the cops move, the robber can move keeping all cops

150 6. Random Graphs

Figure 6.5. The zig-zag-shaped graph of the cop number of G(n, p).

within distance at least one. Moreover, the robber is able to main-

tain the property that only a small fraction of all neighbors within

distance i (where i ≥ 1) are occupied by a cop. This is enough to set

up an inductive proof which ensures that a.a.s. the robber can move

indefinitely without capture.

The upper bound for c(G(n, p)) in Theorem 6.16 follows from the

following theorem from [142].

Theorem 6.17. Let j ≥ 1, and d = d(n) = np.

(1) If n1/(2j+1) ≤ d ≤ n1/(2j) and γ = �n logn/d2j+1�, then

a.a.s.

c(G(n, p)) = O
(
djγ
)
.

(2) If n1/(2j+2) ≤ d ≤ n1/(2j+1), then a.a.s.

c(G(n, p)) = O
(n log n

dj+1

)
.

In order to derive the upper bound for c(G(n, p)) in Theorem 6.16,

the cops use the following strategy. First, distribute the cops uni-

formly at random. (The number of cops that are required depends

on the parameter p.) We show that regardless of the first move of

the robber, the cops can move toward the robber so that eventually

the robber is surrounded, and is captured after another few moves.

6.4. The Zig-Zag Theorem 151

As in the proof of Lemma 6.14, the proof here heavily relies on Hall’s

bipartite matching theorem, which is Theorem 6.13.

We need the following lemma, whose proof is left as an exercise

(see Exercise 7).

Lemma 6.18. Let 0 < α < 1, and d = d(n) = np = nα+o(1). Then

a.a.s. for every 1 ≤ i ≤ 1/(2α) and vertices v1, v2, . . . , vk we have

that ∣∣∣∣∣∣
k⋃

j=1

Ni+1(vj)

∣∣∣∣∣∣ ≥ 0.5min{k(0.1d)i+1, n}.

Proof of Theorem 6.17. We only sketch the proof of (1) as the

proof of item (2) is similar. We play with

βn = 5000(10d)jγ

many cops, and show they a.a.s. have a winning strategy in G(n, p).

Suppose that to each vertex u of Nj(R)\Nj−1(R) we can assign a

unique cop in Nj+1(u). Then the cops can move to these vertices u,

and so after at most j+1 rounds, the robber is surrounded in Nj(R).

See Figure 6.6. Then the robber is eventually captured there.

Figure 6.6. Surrounding the robber.

To be able to assign a cop as in the previous paragraph a.a.s., we

apply Hall’s theorem. Fix a vertex v and S ⊆ Nj(v)\Nj−1(v) with

|S| = k. Let

k0 = max{k : (0.1d)j+1k < n}.

152 6. Random Graphs

By Lemma 6.18, if k ≤ k0, then the number of cops occupying⋃
u∈S

Ni+1(u)

is bounded below by the Bernoulli random variable B(M,β) (that

is, the random variable takes on values 1 or 0 with probabilities β

or 1 − β, respectively) where M ≥ 0.1(0.1d)j+1k. In particular, the

expectation of B(M,β) is just Mβ, and

Mβ ≥ 50k log n.

By the Chernoff bound (see Theorem 6.3), it follows that the

probability that there are fewer than k cops in
⋃

u∈S Nj+1(u) is less

than exp(−4k log n). Now, since

k0∑
k=1

(
|Nj(v)|

k

)
exp(−4k log n) ≤

n∑
k=1

nk exp(−4k log n)

= O(n−2)

with probability 1−O(n−2), condition (6.7) is satisfied for all sets of

cardinality at most k0.

If k0 ≤ k ≤ |Nj(v)| ≤ 2dj , then the Chernoff bound implies that

the number of cops in
⋃

u∈S Nj+1(u) is at least

1

4
nβ ≥ 50dj > |Nj(v)|

with probability at least 1− exp(−4dj). As

|Nj(v)|∑
k=k0+1

(
|Nj(v)|

k

)
exp(−4dj) ≤ 2dj22d

j

exp(−4dj)

= O(n−2),

condition (6.7) is satisfied with probability 1 − O(n−2) in the case

R = v. In a similar fashion, a.a.s. there is a perfect matching between

Ni+1(R)\Ni(R) and Ni(R)\Ni−1(R) for all 1 ≤ i ≤ j. In particular,

the cops can a.a.s. continue to surround the robber and capture him

in j moves. �

6.5. Cops and Robbers in the Web Graph 153

More work on the cop number of random graphs remains to be

done. The behaviour of the cop number is still unknown for sparse

graphs (close to the connectivity threshold) or for the giant compo-

nent of G(n, p) below this threshold. It would be interesting also to

determine the cop number of random regular graphs.

One approach is to consider properties of almost all k-cop-win

graphs; that is, considering properties of randomly chosen k-cop-win

graphs (with the uniform distribution). For this, it is equivalent to

work in the probability space G(n, 1/2). Let cop-win be the event in

G(n, 1/2) that the graph is cop-win, and let universal be the event

that there is a universal vertex. If a graph has a universal vertex w,

then it is cop-win; in a certain sense, graphs with universal vertices are

the simplest cop-win graphs. The probability that a random graph is

cop-win can be estimated as follows:

P(cop-win) ≥ P(universal) = n2−n+1 −O(n22−2n+3)

= (1 + o(1))n2−n+1.

A recent surprising result of [29] shows this lower bound is in fact the

correct asymptotic value for P(cop-win).

Theorem 6.19 ([29]). In G(n, 1/2), we have that

P(cop-win) = (1 + o(1))n2−n+1.

Hence, almost all cop-win graphs contain a universal vertex. This

is not obvious on first glance!

Corollary 6.20 ([29]).

P(universal | cop-win) = 1− o(1).

For k > 1, it is conjectured in [29] that almost all k-cop-win

graphs in fact have a dominating set of cardinality k.

6.5. Cops and Robbers in the Web Graph

Real-world complex networks are active topics of investigation by

both mathematicians and empiricists alike. Perhaps the most famous

example of such a network is the web graph, where vertices correspond

to web pages and edges correspond to hyperlinks. The web graph has

154 6. Random Graphs

over one trillion vertices, with many billions of pages being added

each day. Complex networks range from on-line social networks such

as the friendship graph in Facebook, to the protein-protein interaction

networks in living cells. For more discussion on complex networks,

see the books [21] and [49].

One of the most important and well-studied properties observed

in the web graph and complex networks are power-law degree distri-

butions. Given an undirected graph G and a non-negative integer k,

we define Nk,G by

Nk,G = |{x ∈ V (G) : degG(x) = k}|.

The degree distribution of G is the sequence (Nk,G : 0 ≤ k ≤ t), where

t is the order of G. We say that the degree distribution of G follows

a power law if for degrees k > 0,

(6.11)
Nk,G

t
∼ k−β ,

for a fixed real constant β > 1 called the exponent. If G possesses

a power law degree distribution, then we simply say G is a power

law graph. If we take logarithms on both sides of (6.11), then the

relationship is expressed as

log(Nk,G) ∼ log(t)− β log(k).

Hence, in the log-log plot, we obtain a straight line with slope −β.
See Figure 6.7.

Based on their crawl of the domain of Notre Dame University, Al-

bert, Barabási, and Jeong [4] claimed that the web graph exhibited a

power law in-degree distribution, with β = 2.1. An independent crawl

corroborating the findings of [4] was reported from IBM researchers

[129], which considered 40 million web pages from 1997 data. The

exponent of β = 2.1 was further corroborated by a larger crawl of

the entire web (including 200 million web pages) reported in Broder

et al. [35]. Power laws are now known to be pervasive in a variety

of real-world networks such as on-line social networks such as the

friendship graphs in Facebook, LinkedIn, and Twitter (see [25]), and

in biological networks such as protein-protein interaction networks

(see Chapter 2 of [21]).

6.5. Cops and Robbers in the Web Graph 155

Figure 6.7. The log-log plot of the degree distribution of a
power law graph.

We now consider a model for the web graph proposed by Chung

and Lu; see [49]. Let

w = (w1, . . . , wn)

be a sequence of n real non-negative real numbers. We define a ran-

dom graph model, written G(w), whose vertices are integers in [n].

Each potential edge between i and j is chosen independently with

probability pij = wiwjρ, where

ρ =
1∑n

i=1 wi
.

We will always assume that

max
i

w2
i <

n∑
i=1

wi,

which implies that pij ∈ [0, 1) (see Exercise 11). The model G(w)

is referred to as random graphs with given expected degree sequence

156 6. Random Graphs

w. Observe that G(n, p) may be viewed as a special case of G(w) by

taking w to be equal to the constant n-sequence

(pn, pn, . . . , pn).

Given β > 2, d > 0, and a function M = M(n) = o(
√
n) (with M

tending to infinity with n), we consider the random graph with given

expected degrees wi > 0, where

(6.12) wi = ci−
1

β−1

for i satisfying i0 ≤ i < n+ i0. The term c depends on β and d, and

i0 depends also on M ; namely,

(6.13) c =

(
β − 2

β − 1

)
dn

1
β−1 , i0 = n

(
d

M

(
β − 2

β − 1

))β−1

.

As shown in [49], a.a.s. random graphs with the expected degrees

satisfying (6.12) and (6.13) follow a power law degree distribution

with exponent β, average degree (1 + o(1))d, and maximum degree

(1 + o(1))M . So-called random power law graphs are an important

example of an off-line web graph model; see [21, 49] for more details.

One of the main results of this section, proved in [31], is that the

cop number of random power law graphs is a.a.s. Θ(n). Hence, these

results are suggestive that in power law graphs, on average a large

number of cops are needed to secure the network.

Theorem 6.21 ([31]). For a random power law graph G(w) with

exponent β > 2 and average degree d, a.a.s. the following hold.

(1) If X is the random variable denoting the number of isolated

vertices in G(w), then

c(G(w)) ≥ X

= (1 + o(1))n

∫ 1

0

exp

(
−dβ − 2

β − 1
x−1/(β−1)

)
dx.

(2) For a ∈ (0, 1), define

f(a) = a+

∫ 1

a

exp

(
−dβ − 2

β − 1
a(β−2)/(β−1)x−1/(β−1)

)
dx.

Then

c(G(w)) ≤ (1 + o(1))n min
0<a<1

f(a).

6.5. Cops and Robbers in the Web Graph 157

See Exercise 12 for more on the integrals in Theorem 6.21. While

Theorem 6.21 suggests a large number of cops are needed to secure

complex networks against intruders, by item (1) it is the abundance

of isolated vertices that makes the cop number equal to Θ(n). To

overcome the issue with isolated vertices, we consider restricting the

movements of the cops and robber to the subgraph induced by suffi-

ciently high degree vertices.

Fix β ∈ (2, 3). Define the dense-core of a graph G, written Ĝ,

as the subgraph induced by the set of vertices of degree at least

n1/ log logn. Random power law graphs with β ∈ (2, 3) are referred

to as octopus graphs in [49], since the dense-core has low diameter

O(log log n), while the overall diameter isO(logn). Since the expected

degree of vertex i in G(w) is

wi =
β − 2

β − 1
dn1/(β−1)i−1/(β−1),

vertices with expected degree at least n1/ log log n have labels at most

iN =

(
β − 2

β − 1
d

)β−1

n1−(β−1)/ log logn .

The order of the dense-core is written N . By the Chernoff bound,

N = (1 + o(1))iN − i0 = (1 + o(1))iN = Θ(n1−(β−1)/ log logn) ,

provided that logM � (logn)/ log log n. Thus,

(6.14) n = N1+(β−1)/ log logN+Θ(1)/ log2 logN .

We consider the cop number of the dense-core of random power

law graphs. As vertices in the dense-core informally represent the hubs

of the network, you might think that the cop number of the dense-

core is of smaller order than the dense-core itself. This intuition is

made precise by the following theorem, which provides a sublinear

upper bound for the cop number of the dense-core.

Theorem 6.22 ([31]). For a random power law graph G(w) with

power law exponent β ∈ (2, 3) a.a.s.

c(Ĝ(w)) ≤ N1−(1+o(1))(β−1)(3−β)/(β−2) log log n

= o(N).

158 6. Random Graphs

Proof of Theorem 6.21. For the lower bound, we exploit the fact

that the cop number is bounded from below by the number of isolated

vertices: one cop is needed per isolated vertex. In general power law

graphs, there may exist an abundance of isolated vertices, even as

much as Θ(n) many. We show that this is the case for random power

law graphs.

The probability that the vertex i for i0 ≤ i < n+ i0 (that is, the

vertex i corresponds to the expected degree wi) is isolated is equal to

pi =
∏
j,j �=i

(1− wiwjρ)

=
∏
j,j �=i

exp (−wiwjρ(1 + o(1)))

= exp

⎛⎝−wiρ
∑
j,j �=i

wj(1 + o(1))

⎞⎠
= exp (−wi(1 + o(1))) .(6.15)

Let Xi be the indicator random variable for the event that the vertex

i is isolated. Then

P(Xi = 1) = 1− P(Xi = 0) = pi

for i0 ≤ i < n+ i0.

Let X be the number of isolated vertices in G(w). As

X =
∑

i0≤i<n+i0

Xi,

it follows from (6.15) that the expected value of X is∑
i0≤i<n+i0

pi = (1 + o(1))n

∫ 1

0

exp
(
−c(xn)−1/(β−1)

)
dx

= (1 + o(1))n

∫ 1

0

exp

(
−dβ − 2

β − 1
x−1/(β−1)

)
dx .

By Theorem 6.3, the number of isolated vertices in G(w) is a.a.s.

equal to

X = (1 + o(1))n

∫ 1

0

exp

(
−dβ − 2

β − 1
x−1/(β−1)

)
dx.

6.5. Cops and Robbers in the Web Graph 159

Hence, item (1) of Theorem 6.21 follows.

For the proof of the upper bound in item (2) of Theorem 6.21,

we give a bound on the domination number. Fix a constant a ∈ (0, 1)

and consider the set A ⊆ V of the first �an� − i0 + 1 = (1 + o(1))an

vertices; that is,

A = {i0, i0 + 1, . . . , �an�}.
Let B ⊆ V \A denote the set of vertices that do not have a neighbor

in A. Then D = A∪B is a dominating set of G, and we estimate the

cardinality of D.

Consider the vertex i, where an < i < n + i0. Since i0 = o(n),

there is b ∈ (0, 1] such that i = (1 + o(1))bn. The probability that i

does not have a neighbor in A is equal to

qi =
∏
j∈A

(1− wiwjρ)

= exp

⎛⎝−(1 + o(1))wiρ
∑

j<an−i0

wj

⎞⎠
= exp

(
−(1 + o(1))c(bn)−1/(β−1)(dn)−1n

∫ a

0

c(xn)−1/(β−1)dx

)
= exp

(
−(1 + o(1))d

(β − 2

β − 1

)2
b−1/(β−1)

∫ a

0

x−1/(β−1)dx

)
= exp

(
−(1 + o(1))d

β − 2

β − 1
b−1/(β−1)a(β−2)/(β−1)

)
.

Define

I(a) =

∫ 1

a

exp

(
−dβ − 2

β − 1
a(β−2)/(β−1)x−1/(β−1)

)
dx.

Thus, using Chernoff’s bound (Theorem 6.3), we obtain that a.a.s.

|B| = (1 + o(1))nI(a),

and that a.a.s.

|D| = |A ∪B|
= (1 + o(1))n(a+ I(a)).

As this holds for every a ∈ (0, 1), the proof of item (2) follows. �

160 6. Random Graphs

Proof of Theorem 6.22. We give an upper bound for c(Ĝ(w)) by

using a dominating set. The probability that there is an edge between

two given vertices in the dense-core is at least

pmin = w2
iN (1+o(1))ρ

= (n2/ log log n/dn)(1 + o(1))

= (N (3−β)/ log logN+Θ(1)/ log2 logn)/N(6.16)

= (N (1+o(1))(3−β)/ log logN)/N .

Hence, Ĝ(w) contains a random graph G(N, pmin). Let ω(N) be any

function tending to infinity with N . Thus, using Claim 1 in the proof

of Theorem 6.9, any set of cardinality

kN =
⌈
log1/(1−pmin) N + log1/(1−pmin) ω(N)

⌉
= (1 + o(1))

logN

pmin

=
N logN

N (1+o(1))(3−β)/ log logN

= N exp (−(1 + o(1))(3− β)(logN)/ log logN + log logN)

= N exp (−(1 + o(1))(3− β)(logN)/ log logN)

= N/N (1+o(1))(3−β)/ log logN

= o(N)

is a dominating set a.a.s. As this holds for any set of cardinality

kN , we obtain a smaller dominating set by considering only vertices

with the largest expected degree. Consider the subset of vertices

U = {i0, i0 + 1, . . . , k} of the first k − i0 + 1 vertices, k � i0. Then

k∑
i=i0

ωi = c

∫ k

i0

i−1/(β−1)di+O(1) = (1 + o(1))c
β − 1

β − 2
k(β−2)/(β−1).

6.5. Cops and Robbers in the Web Graph 161

Hence, the probability that vertex i does not have a neighbor in U is

equal to

q(i) =
k∏

j=i0

(1− ωiωjρ)

= exp

⎛⎝−(1 + o(1))ωiρ

k∑
j=i0

ωj

⎞⎠
= exp

(
−(1 + o(1))

β − 2

β − 1
dn(3−β)/(β−1)i−1/(β−1)k(β−2)/(β−1)

)
.

It is straightforward to see that for all vertices i in the dense-core,

q(i) ≤ q
(
iN (1 + o(1))

)
= exp

(
−(1 + o(1))n(2−β)/(β−1)+1/ log lognk(β−2)/(β−1)

)
.

Therefore, in order to make the right-hand side of the latter equation

equal to o(n−1), it is enough to take

k = n1−(β−1)/(β−2) log log n log2(β−1)/(β−2) n

= n1−(1+o(1))(β−1)/(β−2) log logn

= N1−(1+o(1))(β−1)(3−β)/(β−2) log log n.

Now, the expected number of vertices that are not dominated by U is

o(1), and the assertion follows from Markov’s inequality. The upper

bound now follows. �

An interesting open problem is to determine the asymptotic value

of the cop number of the dense-core of random power law graphs. In

[31], it was shown that

c(Ĝ(w)) ≥ N (1+o(1))(3−β)/ log logN ,

and so the bounds we have are not tight. Of course, many other mod-

els for the web graph and complex networks have been introduced,

such as the preferential attachment and copying models. See Chap-

ter 4 of [21], and [49] for an overview of such models. An intriguing

direction of research would be estimating the cop number in models

for complex networks.

162 6. Random Graphs

Exercises

1. Prove Theorem 6.1.

2. Prove the following properties hold a.a.s. in G(n, p), where p is a

constant.

(a) For a fixed integerm > 0, them-e.c. property : for all disjoint

sets of vertices A and B with |A ∪ B| = m (one of A or B

may be empty), there is a vertex z not in A∪B such that z

is joined to each vertex of A and to no vertex of B.

(b) Diameter 2.

(c) Non-planar.

(d) Contains a complete graph of order logn/ log(1/p).

(e) The degree of each vertex is pn+O(
√
pn log n).

(f) All independent sets have less than n1/3 vertices.

3. Define the probability space G(N, p) to be graphs with vertex set

of positive integers, and each distinct pair of integers is joined in-

dependently with probability p. We will call this space the infinite

random graph. Determine the cop number of G(N, p).

4. For a random variable X, define its variance by

Var(X) = E(X2)− E(X)2.

(a) Derive Chebyshev’s inequality : if c > 0 is a real number,

then

P(|X − E(X)| ≥ c) ≤ Var(X)/c2.

(b) (The second moment method) Show that if

Var(X) = o(E(X)2),

then a.a.s. X > 0.

(c) Prove that if 1/(np) = o(1), then a.a.s. G(n, p) contains a

triangle. (Hint : Use the second moment method.)

5. Show that if X ∈ Bi(n, p), then E(X) = np and

Var(X) = np(1− p).

6. For each integer k > 0, give explicit examples of (1, k)-e.c. graphs.

7. [142] Prove Lemma 6.18.

Exercises 163

8. (a) Prove Hall’s theorem, Theorem 6.13. (Hint : Prove the con-

trapositive.)

(b) Show that a d-regular bipartite graph contains a perfect

matching.

9. This exercise establishes an alternative, formal definition to

G(n, p). Given a finite set of probability spaces

{(Si,Fi,Pi) : 1 ≤ i ≤ m},

we may form the product space (S,F ,P) with sample space∏m
i=1 Si, events

∏m
i=1 Fi, and for an event A =

∏m
i=1 Ai,

P(A) =

m∏
i=1

Pi(Ai).

(a) Prove that the product space is a probability space.

(b) Fix n a positive integer, p ∈ [0, 1], and i ∈ [n]2. Let Si =

{0i, 1i} and Pi({1i}) = p and Pi({0i}) = 1 − p. Verify that

for a fixed i this gives rise to a probability space (Si,Fi,Pi).

The corresponding product space over all i ∈ [n]2, written

G(n, p), is called a random graph with n vertices and edge

probability p.

(c) For i ∈ [n]2, define Ei to be the event consisting of the set

of s ∈ S whose ith coordinate is 1i. Prove that the events

{Ei : i ∈ [n]2} are mutually independent, and P(Ei) = p.

We may therefore identify the probability space G(n, p) with

graphs whose vertex set is [n], and whose edges are chosen

independently with probability p.

10. Let 0 < d < 1 and p = d/n. Prove that c(G(n, p)) = Θ(n).

11. Verify that if maxi w
2
i <

∑n
i=1 wi in G(w), then pij ∈ [0, 1).

12. Show that∫ 1

0

exp

(
−dβ − 2

β − 1
x−1/(β−1)

)
dx

= (d(β − 2))β−1(β − 1)2−βΓ

(
1− β, d

β − 2

β − 1

)
,

where Γ (·, ·) is the incomplete gamma function.

164 6. Random Graphs

13. The Iterated Local Transitivity (ILT) model has found application

in the study of on-line social networks; see [25]. The ILT model

deterministically generates finite, simple, undirected graphs (Gt :

t ≥ 0). The only parameter of the model is the initial graph G0,

which is a fixed finite graph. Assume that for a fixed t ≥ 0, the

graph Gt has been constructed. To form Gt+1, for each vertex

x ∈ V (Gt), add its clone x′, such that x′ is joined to x and all of

its neighbors at time t.

(a) Find exact formulas for |V (Gt)| and |E(Gt)| for t > 0.

(b) Show that for all t ≥ 0, γ(Gt) = γ(G0).

(c) Show that for all t ≥ 0, c(Gt) = c(G0).

14. Using the probabilistic method, show that a graph G of order n

contains a dominating set with cardinality at most

n

(
1 + log(δ + 1)

δ + 1

)
.

15. [175] For a fixed positive integer k, let

p < 1−
(
(k + 1) logn+ log log n

n

) 1
k

.

Show that a.a.s. c(G(n, p)) > k. (Hint : Derive that a.a.s. G(n, p)

is (1, k)-e.c.)

16. The random tournament of order n with edge probability p ∈
(0, 1), written T (n, p), has vertices [n], and if 1 ≤ i < j ≤ n an arc

(i, j) is chosen independently with probability p; otherwise, the

(j, i) is chosen (with probability 1−p). Determine the asymptotic

value of c(T (n, p)), for p a constant.

17. For positive integers m and n, and p ∈ (0, 1), define the random

bipartite graph G(m,n, p) to have m+n vertices partitioned into

an m-set and n-set, so each pair u and v of different colors is

joined independently with probability p.

Determine the asymptotic value of c(G(m,n, p)), for p a con-

stant.

Chapter 7

Infinite Graphs

7.1. Introduction

Infinite graphs exhibit properties often quite different than finite ones.

In this regard, the cop number is no exception. For example, the

ray (that is, the one-way infinite path) has infinite cop number: one

robber can always stay ahead of finitely many cops. See Figure 7.1.

Infinite trees—unlike their finite counterparts—need not be cop-win.

Figure 7.1. Finitely many cops can always be evaded on a ray.

Perhaps not surprisingly, less work has been done on infinite cop-

win graphs. We survey that work in this chapter. Along the way, we

will see that basic questions about the cop number of infinite graphs

remain mostly unanswered. For instance, what can be said about

cop-win infinite graphs? Can we characterize graphs with infinite cop

number? What are sufficient conditions that force an infinite cop

number? How are vertex-transitive k-cop-win graphs behaved?

One of the most influential infinite graphs is the infinite random

graph, written R. (Usually, the infinite random graph is written R,

165

166 7. Infinite Graphs

which conflicts with our notation for the robber. For this reason, we

use the notation R.) While the cop number of R is simple to calculate

(it is countably infinite), consideration of R and its limit structure

gives rise to the notion of cop density. We introduce R in Section 7.2,

and cop density in Section 7.3. Two results from [28] stand out here:

The first is that the cop density of R (and more generally, any graph

satisfying a certain adjacency property) can be any real number in

[0, 1]; see Theorem 7.9. The second is the unexpected connection

between cop density of any graph and spanning subgraphs of R; see

Theorem 7.11.

Finite chordal graphs are cop-win, owing to their simplicial ver-

tices. However, as proven in Section 7.4, there are examples of infinite

chordal diameter 2 graphs which are robber-win. The results in this

section originate from the paper of [104].

We finish with a discussion of vertex-transitive cop-win graphs.

Recall that a graph G is vertex-transitive if for all pairs of vertices

u and v of G, there is an automorphism f of G, so that f(u) =

v. Roughly, any two vertices behave the same in vertex-transitive

graphs. See Figure 7.2 for the isomorphism types of vertex-transitive

connected graphs of order 7. Once again, things break down in the

infinite case. Finite vertex-transitive cop-win graphs are cliques, as

observed first in [167] (see Exercise 3 in Chapter 1). Based on work

in [27], we show that for all infinite cardinals κ, there are 2κ-many

non-isomorphic cop-win vertex-transitive graphs. To put this into

perspective, there are 2κ-many isotypes of graphs of order κ.

Figure 7.2. The connected vertex-transitive graphs of order 7.

7.2. Introducing the Infinite Random Graph 167

As an ending to this introduction, we note that for infinite bipar-

tite cop-win graphs, we can say quite a bit. As a warm-up, we prove

the following theorem characterizing bipartite cop-win graphs in all

cardinalities.

Theorem 7.1. For a graph G, the following are equivalent.

(1) The graph G is a cop-win tree.

(2) The graph G is a rayless tree.

(3) The graph G is cop-win and bipartite.

Proof. It is evident that a tree containing a ray has infinite cop

number, and a rayless tree is cop-win. So we show only that items

(1) and (3) are equivalent, with the direction (1) implying (3) being

trivial. For direction (3) implying (1) suppose that G is cop-win and

bipartite. Deleting an end-vertex leaves another cop-win and bipartite

graph. We may therefore sequentially delete end-vertices (possibly

requiring a transfinite sequence of such deletions), resulting in another

cop-win and bipartite graph G′ with no end-vertices. Now consider

the second-to-last move of the cop before the robber is captured. We

have that R is a corner, so N [R] ⊆ N [C]. If the vertex R has a

neighbor x �= C, then C is joined to x, resulting in a triangle. Hence,

R is only joined to C and so is an end-vertex. But G′ has no end-

vertices, which is a contradiction. Hence G′ is empty, and G is a

tree. �

7.2. Introducing the Infinite Random Graph

Something interesting happens to G(n, p) random graphs when you

allow a (countably) infinite set of vertices. Define the probability

space G(N, p) to be graphs with vertex set of non-negative integers,

and each distinct pair of integers is joined independently with proba-

bility p. We will call this space the infinite random graph or the Rado

graph, after Richard Rado who wrote an important paper [180] on

its properties. Erdős and Rényi [75] discovered the following beau-

tiful theorem about the infinite random graph, which demonstrates

once again the radical difference often evident when we move from

the finite to infinite.

168 7. Infinite Graphs

Theorem 7.2. With probability 1, the graph G(N, p) is unique up to

isomorphism.

The proof of Theorem 7.2 relies on what is called the back-and-

forth method, introduced by Cantor in his proof that the rationals

are the unique isomorphism type of countable linear order which is

dense with no endpoints [42]. We first show that G(N, p) satisfies a

certain adjacency property with probability 1. Define a graph to be

existentially closed or e.c. if for all finite disjoint sets of vertices A

and B (one of which may be empty), there is a vertex z joined to all

of A and to no vertex of B. We say that z is correctly joined to A and

B. See Figure 7.3 for a visualization of the e.c. property.

Figure 7.3. The e.c. property.

Theorem 7.3. With probability 1, G(N, p) is e.c.

Proof. Consider disjoint sets of vertices A and B in G with |A| = i

and |B| = j. For a given z /∈ A ∪ B, the probability that z is not

correctly joined to A and B is

1− pi(1− p)j .

The probability that no vertex of G is correctly joined to A and B is

therefore

lim
n→∞

(
1− pi(1− p)j

)n−(i+j)
= 0.

The proof follows as there are only countably many choices of A and

B, and the countable union of probability 0 events has probability

0. �

7.2. Introducing the Infinite Random Graph 169

In passing, we note that it is not difficult to show that an e.c.

graph has diameter 2, with each vertex of infinite degree. The follow-

ing theorem, along with Theorem 7.3, proves Theorem 7.2.

Theorem 7.4. If G and H are e.c. graphs, then G ∼= H.

Proof. We define a chain of partial isomorphisms fn between in-

duced subgraphs of G and H, so that the limit of the chain F is an

isomorphism of G with H. The mappings fn are defined inductively.

Let

V (G) = {xi : i ∈ N} and V (H) = {yj : j ∈ N}.
Define the mapping f0 to be the isomorphism from 〈x0〉G to 〈y0〉H .

For an induction hypothesis, suppose that ft is defined for some

t ≥ 0, and is an isomorphism. If t is even, then suppose that ft
has domain containing {x0, . . . , xt}, and if t is odd, ft has range

containing {y0, . . . , yt}.
We consider cases depending on whether t is even or odd. If t

is even, then we “go forward”. Let x be the vertex of least index

not in the domain of ft. By the induction hypothesis, the vertex

x /∈ {x0, . . . , xt} and so it could be xt+1. We now define a mapping

ft+1 whose domain is the domain of ft and x (which ensures that

xt+1 is in the domain of ft+1). Suppose that the neighbors of x in the

domain of ft consist of the finite set S.

In H, by the e.c. property there is a vertex y joined to ft(S) and

to no other vertex of the finite range of ft. Define ft+1 to be the

mapping extending ft mapping x to y. It is straightforward to see

that ft+1 preserves adjacencies and non-adjacencies by the choice of

y. Further, it is a bijection with the desired range.

If t is odd, then we “go back” by a similar, and so omitted argu-

ment as going forward.

For all integers t ≥ 1, we have that

(1) If t is even, then {x0, . . . , xt} is in the domain of ft;

(2) If t is odd, then {y0, . . . , yt} is in the range of ft;

(3) ft+1 extends ft;

(4) ft is an isomorphism.

170 7. Infinite Graphs

Define the mapping F : G→ H by

F =
⋃
t∈N

ft;

more explicitly, F (x) = fi(xi). Then F is well defined by item (3),

and is an isomorphism by (1), (2), and (4). �

What is this seemingly mysterious isomorphism type R? How do

we construct it deterministically? Define a graph R∗ as follows. Let

R0 be a K1. Assume that for a non-negative integer t ≥ 0, the graph

Rt is defined and finite. To form Rt+1, the idea is to add all possible

“extensions” of Rt by one vertex. Hence, for each subset S ⊆ V (Rt)

(possibly empty) add a vertex zS joined only to the vertices of S. The

sets {V (Rt) : t ∈ N} and {E(Rt) : t ∈ N} are well-ordered sets or

chains, so we can define

V (R∗) =
⋃
t∈N

V (Rt), E(R∗) =
⋃
t∈N

E(Rt).

We write limt→∞ Rt = R∗, and say that R∗ is the limit of the chain

(Rt : t ∈ N). Limits are powerful tools for proving results about

infinite graphs. The graph R∗ is e.c., and so is isomorphic to R by

Theorems 7.3 and 7.4. To see this, choose Rt large enough to contain

both A and B. A vertex correctly joined to A and B may be found

in Rt+1.

Although R∗ is an explicit construction of R, the infinite random

graph also arises naturally from the following arithmetic construction,

given first by Rado [180] . Define a graph G with vertices N. A vertex

m is joined to n if 2m occurs in the (unique) base 2 expansion of n, or

if 2n is in the base 2 expansion of m. Using an elementary argument

(see Exercise 6), G is e.c., and so is isomorphic to R.

Other representations of R exist, a few of which are outlined in

the exercises (see Exercises 5 and 6). The graph R has a myriad of

other interesting properties. For example, the following result follows

by a variation of back-and-forth.

Theorem 7.5. The graph R is universal: all countable graphs embed

in R.

7.2. Introducing the Infinite Random Graph 171

Proof. Let G be a fixed countable graph, and let

V (G) = {xi : i ∈ N}.

We name the subgraph induced by {xi : 0 ≤ i ≤ t} as Gt. Hence,

G = limt→∞ Gt. We embed each Gt into R by induction, so each

embedding extends the previous. To accomplish this, we go “forth”

only. More precisely, let f0 : G0 → R be any fixed embedding.

Suppose that for an integer t ≥ 0, there is an embedding ft : Gt → R
extending f0. The vertex xt+1 is joined to some set S of vertices in

Gt. By the e.c. property, there is a vertex z of R joined only to ft(S)

in Gt. Define the mapping ft+1 : Gt+1 → R by extending ft so that

xt+1 is mapped onto z. The map ft+1 is an embedding by the choice

of z. The mapping F = limt→∞ ft is an embedding of G into R. �

A graph G is homogeneous if each partial isomorphism between

finite induced subgraphs extends to an automorphism of G. For exam-

ple, each clique is homogeneous, as is the 5-cycle (while not even the

6-cycle is homogeneous). We may view homogeneity as the strongest

form of symmetry a graph can possess; for example, a homogeneous

graph is both vertex- and arc-transitive.

The graph R is homogeneous by a back-and-forth argument (see

Exercise 10a). We mention in passing that the homogeneous count-

able graphs have been completely classified. The classification of finite

homogeneous graphs was completed independently by Sheehan [189],

Gardiner [92], and Gol’fland and Klin [99].

Theorem 7.6. A finite homogeneous graph is isomorphic to a dis-

joint union of complete graphs, a complete multipartite graph, C5, or

the graph K3�K3.

For an integer n ≥ 3, the Henson graph Hn is the unique iso-

morphism type of countably infinite Kn-free graph satisfying the fol-

lowing adjacency property: for each (Kn−1)-free induced subgraph S,

there is a vertex joined to S. By back-and-forth arguments, the graph

Hn is universal for all Kn-free graphs, and is homogeneous. These

graphs were first discovered and studied by Henson [112]. Lach-

lan and Woodrow [132] classified the countably infinite homogeneous

graphs.

172 7. Infinite Graphs

Theorem 7.7 ([132]). The countably infinite homogeneous graphs

are, up to isomorphism, the following.

(1) The graphs αKβ (α disjoint copies of complete graphs of

order β), where α and β are cardinals with the property that

α+ β = ℵ0.
(2) The complements of graphs of (1).

(3) The Henson graphs Hn, n ≥ 3.

(4) The complements of graphs of (3).

(5) The graph R.

7.3. Cop Density

The cop number of R is infinite; that is, R is infinite-cop-win. To see

this, note that if the cops occupy a set B of vertices, with the robber

at a vertex A, a vertex z in R correctly joined to A and B supplies an

“escape route” for the robber. This sketch will be made more precise

in Theorem 7.8, where we generalize this result to the uncountable

class of so-called strongly 1-e.c. graphs.

Owing to our approach in this section, we make the following

proviso:

All graphs in this section are countable.

When dealing with countable graphs, we exploit the fact that they are

limits of chains of finite graphs. So we can often exploit properties of

finite graphs (which tend to be better understood) to study countable

graphs, supplying us a fair amount of control which may be lacking

in higher cardinalities. To analyze the cop number of infinite graphs,

we consider the cop density of a finite graph first introduced in [28].

In 2006, Geňa Hahn suggested the notion of cop density to the first

author. Define

Dc(G) =
c(G)

|V (G)| .

Note that Dc(G) is a rational number in [0, 1]. The closer Dc is to

one, the denser the cops are in the graph. We extend the definition of

Dc to infinite graphs by considering limits of chains of finite graphs.

7.3. Cop Density 173

In this way, the cop density for infinite graphs is a real number in

[0, 1].

Every countable graph G is the limit of a chain of finite graphs,

and there are infinitely many distinct chains with limit G. Suppose

that G = limn→∞ Gn, where C = (Gn : n ∈ N) is a fixed chain of

induced subgraphs of G. We say that C is a full chain for G. Define

D(G, C) = lim
n→∞

Dc(Gn),

if the limit exists (and then it is a real number in [0, 1]). This is the

cop density of G relative to C; if C is clear from context, we refer to

this as the cop density of G. We will only consider graphs and chains

where this limit exists. Indeed, if the cop number of G is infinite,

then for some chain the cop density equals 1 (see Theorem 7.8 (2)

and Theorem 7.11). The upper cop density of G, written UD(G), is

defined as

sup{D(G, C) : C is a full chain for G}.

Note that UD(G) does not depend on the chain, and is a parameter

of G.

We illustrate these parameters with some examples. If G is a ray,

then we may take C to be (Pn : n ∈ N). As c(Pn) = 1, we have that

D(G, C) = 0. Let G be the disjoint union of infinitely many 4-cycles

{C(i)
4 : i ∈ N}, and let Gn be the disjoint union of the first n C

(i)
4 . If

C = (Gn : n ∈ N), then D(G, C) = 1
2 . If G is an infinite clique, then

UD(G) = 0, while UD(H) = 1 if H is an infinite co-clique.

If we insist that all the elements of the chain C are connected, then
the situation for cop density changes radically. By Frankl’s bound,

c(G) = o(|V (G)|) (see Theorem 1.6), it follows that

D(G, C) = 0.

We consider the following weakening of the e.c. property. For

a positive integer n, a graph G is strongly n-e.c. if for all disjoint

finite sets of vertices A and B from G with |A| ≤ n, there is a vertex

z correctly joined to A and B. The following result, proved in [28],

finds connections between infinite-cop-win graphs and the strongly 0-

and 1-e.c. properties.

174 7. Infinite Graphs

Theorem 7.8 ([28]). (1) If G is strongly 1-e.c., then c(G) is

infinite.

(2) If c(G) is infinite, then G satisfies the strongly 0-e.c. prop-

erty. In particular, G is a spanning subgraph of R.

Proof. (1) Given only finitely many cops in G, we describe a winning

strategy for the robber. By the strongly 0-e.c. property (which follows

from the strongly 1-e.c. property), R may choose a vertex not joined

to a vertex of C. Suppose after the cops’ nth move, where n ≥ 0

is fixed, the robber has not been captured. By the strongly 1-e.c.

property, there is a vertex the robber can move to that is not joined

to the vertices occupied by the cops.

(2) The robber has a winning strategy if there are only finitely

many cops. Hence, no matter what finite set of vertices S the cops first

choose to occupy, the robber can evade capture. It follows that there

is a vertex x /∈ S that is not joined to any vertex of S. The second

statement of (2) follows from the well-known fact that a strongly 0-e.c.

graph is a spanning subgraph of R (see Exercise 9). �

We now prove the main theorem of this section that if G is

strongly 1-e.c., then the cop density of G may be any real number in

[0, 1]. This property applies, therefore, to a large number of graphs:

for each n ≥ 0, there are 2ℵ0 many non-isomorphic countable graphs

that are strongly n-e.c. but not strongly (n+1)-e.c.; see Theorem 4.1

of [24].

Theorem 7.9 ([28]). If G is strongly 1-e.c., then for all r ∈ [0, 1],

there is a chain C in G such that D(G, C) = r.

Proof. Let (pn : n ∈ N) be a sequence of rationals in [0, 1] such that

limn→∞ pn = r, with p0 = 1. For example, if r has a decimal expan-

sion 0.r1r2r3 · · · , then we can choose pi = 0.r1r2 · · · ri. We construct

a chain C = (Gn : n ∈ N) in G such that G = limn→∞ Gn, and with

the property that Dc(Gn) = pn. Enumerate V (G) as {xn : n ∈ N}.
We proceed inductively on n. For n = 0, let G0 be the subgraph

induced by x0. Then

c(G0)

|V (G0)|
= 1 = p0.

7.3. Cop Density 175

Fix n ≥ 1, suppose the induction hypothesis holds for all k ≤ n,

and let pn+1 = a
b , where a, b are positive integers. Further suppose

for an inductive hypothesis that {x0, . . . , xn} ⊆ V (Gn). Without loss

of generality, as r ∈ [0, 1] we may assume a < b, and gcd(a, b) = 1.

We add vertices to Gn in stages. Define G′
n+1 to be the graph

induced by V (Gn) ∪ {xn+1}. Suppose that c(G′
n+1) = a′ and also

that |V (G′
n+1)| = b′. If a′

b′ = a
b , then let Gn+1 = G′

n+1. Otherwise,

we add some new vertices to adjust the density Dc(G
′
n+1).

Each time an isolated vertex is added to a graph, the cop number

increases by one. Adding an end-vertex to a graph does not change the

cop number. We may assume that a′

b′ < a
b by adding an appropriate

number of end-vertices. In this way, b′ will become larger, while a′

will remain unchanged.

We may add an arbitrary finite number of isolated vertices and

end-vertices to G′
n+1 by the strongly 1-e.c. property. We add x iso-

lated vertices and y end-vertices to G′
n+1 to form Gn+1 so that

Dc(Gn+1) =
c(Gn+1)

|V (Gn+1)|
=

a

b
.

This is possible if we can solve the equation

a

b
=

a′ + x

b′ + x+ y
,

which is equivalent to

(7.1) (b− a)x− ay = ab′ − a′b.

Note that ab′ − a′b > 0, since otherwise, ab′ ≤ a′b which is con-

trary to hypothesis. Hence, we obtain a linear Diophantine equation

cx+ dy = e,

where c = b − a > 0, d = −a < 0, and e = ab′ − a′b > 0. As

gcd(b − a,−a) = gcd(a, b) = 1, (7.1) has infinitely many solutions.

The general integer solution of (7.1) is

(7.2) x = x0 − at, y = y0 − (b− a)t,

where (x0, y0) is a particular fixed solution, and t is an integer. (For

example, we may take (x0, y0) = (−a′, a′− b′).) As the coefficients of

t in (7.2) are both negative, we may choose an appropriate t < 0 to

176 7. Infinite Graphs

ensure an integer solution of (7.1) (x, y) with x, y ≥ 0. This completes

the induction step in constructing Gn+1.

As {x0, . . . , xn} ⊆ V (Gn) for all n ∈ N, we have that C =(Gn :

n ∈ N) is a full chain for G. Further,

D(G, C)= lim
n→∞

pn = r. �

As the infinite random graph R is e.c. (and so is strongly 1-e.c.)

we have the following corollary.

Corollary 7.10 ([28]). For all r ∈ [0, 1], there is a chain C in R
such that D(R, C) = r.

Our next result completely characterizes the upper cop density

of a graph G: UD(G) takes on one of the two values 0 or 1, and

equals 1 exactly when G is strongly 0-e.c. This fact, proven in [28], is

somewhat unexpected. Even more unexpected is the connection with

cop density and the infinite random graph.

Theorem 7.11 ([28]). The following are equivalent.

(1) UD(G) = 1.

(2) UD(G) > 0.

(3) G is strongly 0-e.c.

(4) G is a spanning subgraph of R.

Proof. Since (1) implies (2) is immediate, and (3) being equivalent

to (4) is Exercise 9, we prove that (2) implies (3) and (3) implies (1).

For (2) implies (3), suppose for the contrapositive that G is not

strongly 0-e.c. Then there is some finite set S of vertices of G with

the property that each vertex not in S is joined to some vertex of S;

in other words, S is a finite dominating set for G. Let

C =(Gn : n ∈ N)

be a fixed full chain of finite graphs in G, and suppose that n0 is the

least integer n where S ⊆ V (Gn). Fix t ≥ n0. Then c(Gt) ≤ |S|,
since S is a dominating set for G and hence, Gt. Thus,

Dc(G) ≤ |S|
|V (Gt)|

= o(1).

7.3. Cop Density 177

Hence, UD(G) = 0.

For (3) implies (1), enumerate V (G) as {xi : i ∈ N}. Fix a count-

able sequence of real numbers εn ∈ (0, 1), such that limn→∞ εn = 1

and ε0 = 1. It is sufficient to inductively construct a full chain

C =(Gn : n ∈ N)

of finite induced subgraphs in G satisfying the following conditions

for all n ∈ N:

(a) xn ∈ V (Gn);

(b) c(Gn)
|V (Gn)| ≥ εn.

If items (a) and (b) hold, then

UD(G) ≥ lim
n→∞

Dc(Gn) ≥ lim
n→∞

εn = 1,

and so UD(G) = 1.

Let G0 be the subgraph induced by {x0}. Then G0 satisfies items

(a) and (b) above. Suppose Gn has been constructed. Add xn+1 to

Gn (if it is not already there) to form the induced subgraph G′
n+1. If

c(G′
n+1)

|V (G′
n+1)|

≥ εn+1, then let Gn+1 = G′
n+1. Otherwise, suppose that

c(G′
n+1)

|V (G′
n+1)|

=
p

q
< εn+1.

By the strongly 0-e.c. property of G, we may add k isolated vertices

to G′
n+1 to form Gn+1, where k is a positive integer that is to be

determined. Then
c(Gn+1)

|V (Gn+1)|
=

p+ k

q + k
.

We choose k so that p+k
q+k ≥ εn+1, which holds so long as

k ≥ εn+1q − p

1− εn+1
. �

The following corollary gives a necessary condition for G to have

infinite cop number, and follows directly by Theorems 7.8 and 7.11.

Corollary 7.12 ([28]). If c(G) is infinite, then UD(G) = 1.

178 7. Infinite Graphs

The converse of Corollary 7.12, however, is false in a strong sense.

For each real number r ∈ [0, 1], there is a graphG(r) with c(G(r)) = 1,

so that for some full chain C in G(r), D(G(r), C) = r. See Exercise 12.

7.4. Infinite Chordal Graphs

As another instance in which results from finite graphs do not trans-

late to infinite ones, we consider chordal graphs. Let Cn be a cycle in

G, with n ≥ 4. A chord of Cn is an edge in G between two vertices in

Cn which are not adjacent in Cn. Roughly, a chord acts as a short-cut

across the cycle. See Figure 7.4. The graph G is chordal if each cycle

of length at least 4 has a chord. See Figure 7.5. Chordal graphs are

sometimes called triangulated graphs, for obvious reasons. A vertex of

G is simplicial if its neighborhood induces a complete graph. Every

finite chordal graph contains at least two simplicial vertices, and the

deletion of a simplicial vertex leaves a chordal graph; see Exercise 4 in

Chapter 1. As a simplicial vertex is a corner, we derive that a finite

chordal graph is dismantlable and thus, is cop-win.

However, an infinite tree containing a ray is chordal but not cop-

win. Such trees have infinite diameter. Inspired by a question of

Martin Farber which asked if infinite chordal graphs (more generally,

bridged graphs) of finite diameter are cop-win, it was shown in [104]

that there exist infinite chordal graphs of diameter 2 that are not cop-

win. How paradoxical! The difficulty lies in finding examples with

finite diameter.

Figure 7.4. A cycle with a chord.

7.4. Infinite Chordal Graphs 179

Figure 7.5. A chordal graph.

Theorem 7.13 ([104]). For each infinite cardinal κ, there exist

chordal, robber-win graphs of order κ with diameter 2.

To prove Theorem 7.13, we consider a graph built from words or

strings over a binary alphabet. Define our alphabet to be B = {1, 2}
(any two element set would do), and let Bn be the set of words of

length n with letters in B; that is, elements of Bn are strings

b1b2 · · · bn,

where the bi are either 1 or 2. Let B∗ be the set of all words over B,

with empty word ε. For words u, v, we write uv for the concatenation

of u and v. We define an order on B∗ by u ≤ v if u is an initial

segment of v. Hence,

1121 ≤ 1121112 and 22 ≤ 2212221.

This is just the standard lexicographic order over words. Observe

that 1 and 2 are incomparable. Note that (B∗,≤) forms an ordered

tree with root ε. See Figure 7.6.

We make this ordered tree into a graph G∗ in the following way.

To form the vertices of G∗, for each word u, replace each vertex of B∗

by a copy of B∗ ×B∗ called Bu. We identify vertices of G∗ as triples

x = (u, v, w), where u, v, and w are words over B. Define π1(x) = v

and π2(x) = w. Transform each Bu into a complete graph, and add an

edge between each vertex of Bu and each vertex of Buk, where k ∈ B.

To finish the description of the edge set of G∗, add the following set

180 7. Infinite Graphs

Figure 7.6. The first three rows of the rooted tree B∗.

of edges:

X = {xy : x ∈ Bu, y ∈ Bv, v = ukz, for some k ∈ B,

z ∈ B∗\{ε}, and z ≤ πk(x)}.

We use the following lemma whose proof is left as an exercise

(see Exercise 15). From Chapter 4, recall the lexicographic product

of graphs G and H, written G •H. One way to think of G •H is by

replacing each vertex of G by a copy of H. Edges in each copy of H

remain unchanged, and if vertices of G are joined, then there are all

edges between corresponding copies of H. See Figure 7.7.

Figure 7.7. The graph C5 •K3. There are all edges present
between neighboring K3’s on the 5-cycle.

Lemma 7.14 ([104]). If G is chordal, robber-win, and diameter 2,

then so is G •K, where K is a clique.

7.4. Infinite Chordal Graphs 181

We now prove the main theorem of this section.

Proof of Theorem 7.13. We first consider the case when κ is

countably infinite. We show that G∗ has all the desired properties.

We first show that G∗ is of diameter 2. Fix non-joined vertices x ∈ Bu

and y ∈ Bv. In particular, u �= v. Let w be the longest common initial

segment of u and v. If w = u (the case when w = v is similar), then

v = ukz, for k ∈ B and z ∈ B∗. Since x and y are not joined, we

have that z is not empty. But then x and y are joined to (u, z, z).

Otherwise, w �= u, v and without loss of generality,

u = w1i, v = w2j

for words w, i and j. If i and j are both empty, then u and v have as a

common neighbor any vertex in Bw. Otherwise, they are both joined

to (w, i, j).

We next show that G∗ is robber-win. Otherwise, one cop wins;

without loss of generality (see Exercise 16) we can assume that the

cop’s initial position is in Bε. Suppose that the robber is in Bu which

is distance 2 from C. We prove that the robber can maintain distance

2 from the cop after each of his moves (and thus, has a winning

strategy). It is enough to show that if z ∈ Bv is joined to R, then

there is a neighbor w of R of distance 2 to z. This is straightforward

if u = v, so we consider the cases that u �= v and either u ≤ v or

v ≤ u. If u ≤ v, then v = uks, where k ∈ B and s is some word. But

then any vertex w in Bu(3−k) is joined to R but not z. Now if v ≤ u

and u = vks. Note that st � πk(z) for some t ∈ B. Hence, any vertex

w of But has the desired property.

We finish the proof by showing that G∗ is chordal. We define the

following relation (u, v, w) ∼ (u′, v′, w′) if u and u′ are comparable;

that is, u ≤ u′ or u′ ≤ u. Note that edges in G∗ only occur between

comparable copies of Bu and Bu′ . Suppose that

Cn = x0x1 · · ·xn−1

is a cycle in G∗ with xi = (ui, vi, wi), and n ≥ 4. Without loss of

generality, assume that u0 is the minimum of the xi with respect to

≤. If ui = u0 for all i, then Cn is within the clique Bu0
, and so Cn has

a chord. Hence, assume that there is a vertex xi with ui > u0. We

182 7. Infinite Graphs

say that an edge xixi+1 (working (mod n)) of Cn is up if ui ≤ ui+1

and down if ui+1 ≤ ui. It is possible for an edge to be both up and

down if ui = ui+1.

The cycle Cn must contain an up edge xixi+1 followed by a down

edge xi+1xi+2. We show that xixi+2 is a chord, which finishes the

proof that G∗ is chordal. We could have that ui = ui+1 or ui+1 =

ui+2, but in either case xixi+2 is an edge. Hence, there are k, k′ ∈ B

and s, s′ ∈ B∗ such that

uiks = ui+1 = ui+2k
′s′.

It follows that xi ∼ xi+2. Suppose that ui ≤ ui+2 (the other case

ui+2 ≤ ui is similar and so omitted). If ui+2 = ui or ui+2 = ui+1k,

then xixi+2 is an edge of G∗. The only remaining case is that ui+2 =

uikt, where t ∈ B∗ is a non-empty word, and s = tt′. But then

xixi+1 ∈ X, and tt′ ≤ πk(xi). Hence, t ≤ πk(xi) and xixi+2 is an

edge (from those in X).

We now generalize our examples to any infinite cardinality κ.

Define Gκ
∼= G∗ •Kκ. Then

|V (Gκ)| = κ|V (G∗)| = κ,

as |V (G∗)| ≤ κ. By Lemma 7.14, the graph Gκ has diameter 2, is

chordal, and is robber-win. �

7.5. Vertex-transitive Cop-win Graphs

As we have seen from Theorem 7.13, the cop number of infinite graphs

behaves rather differently than in the finite case. Vertex-transitive

cop-win finite graphs are cliques. (See Exercise 3 in Chapter 1.)

However, this fails badly in the infinite case, which is the focus of

this section.

A class of graphs is large if for each infinite cardinal κ there are 2κ

many non-isomorphic graphs of order κ in the class. In other words,

a large class contains as many as possible non-isomorphic graphs of

each infinite cardinality. For example, the classes of all graphs, all

trees, and all k-chromatic graphs for k finite are large. Recall that a

graph G is vertex-transitive if for each pair of vertices x and y there

is an automorphism of G mapping x to y. For example, each clique

7.5. Vertex-transitive Cop-win Graphs 183

is vertex-transitive, as is a hypercube. We describe the result of [27]

showing that for any integer k > 0 there are large families of k-cop-

win graphs that are vertex-transitive. This result reinforces the divide

between the theories of cop number of finite and infinite graphs.

Theorem 7.15 ([27]). The class of cop-win, vertex-transitive graphs

with the property that the cop can win in two moves is large.

Before we prove Theorem 7.15, we recall some properties of the

strong product of a set of graphs over a possibly infinite index set.

Let I be an index set. The strong product of a set {Gi : i ∈ I} of

graphs is the graph �i∈IGi defined by

V (�i∈IGi) = {f : I →
⋃
i∈I

V (Gi) : f(i) ∈ V (Gi) for all i ∈ I},

E(�i∈IGi) = {fg : f �= g and for all i ∈ I,

f(i) = g(i) or f(i)g(i) ∈ E(Gi)}.

For background on strong products, we refer the reader to [119].

Strong products exhibit unusual properties if there are infinitely many

factors. An elementary but instructive example is the following. The

graph

G = �i≥1Pi

is not connected even though each factor is. To see this, label the

vertex set of each Pi by [i]. Then the vertex f of G with f(i) = 1

for all i ≥ 1, is in a different connected component than the vertex g,

where g(i) = i for all i ≥ 1.

An issue with the last example was that it contained vertices

which differed in infinitely many coordinates. We now consider con-

nected components of strong products. In particular, we allow ver-

tices to differ in only finitely many coordinates. Fix a vertex f ∈
V (�i∈IGi) and define the weak strong product of {Gi : i ∈ I} with

base f as the subgraph �I
fGi of �i∈IGi induced by the set of all

g ∈ V (�i∈IGi) such that {i ∈ I : g(i) �= f(i)} is finite. The graph

�I
fGi is connected if each factor is, and if |I| ≤ κ and |V (Gi)| ≤ κ

for each i ∈ I, then |V (�I
fGi)| ≤ κ (see Exercise 19b). For i ∈ I, the

projection mapping πi : �I
fGi → Gi is defined by πi(g) = g(i).

184 7. Infinite Graphs

When all the factors are isomorphic to some fixed graph G, we

refer to a power of G. Let {Gi : i ∈ I} be a set of isomorphic copies

of G. Denote by �IG the strong product �i∈IGi. If f ∈ V (�IG) is

fixed, denote by GI
f the weak strong product �I

fG with base f . One

particular power of a graph is of special interest as it allows us to

construct vertex-transitive graphs out of non-transitive ones. Let κ

be a cardinal, and let H be a graph of order κ. Let I = κ × V (H),

and define f : I → V (H) by f(β, v) = v. The power HI
f of H with

base f will be called the canonical power of H and will be denoted

by HH .

Since automorphisms of the factors applied coordinate-wise yield

an automorphism of the product, it follows that the weak strong prod-

uct of vertex-transitive graphs is vertex-transitive (see Exercise 4).

However, the following technical lemma from [27] demonstrates the

paradoxical property that if there are infinitely many factors, the weak

strong product may be vertex-transitive even if none of the factors

are!

Lemma 7.16 ([27]). If H is an infinite graph, then the canonical

power of HH is vertex-transitive.

Proof. We prove that for all g ∈ V (HH) there is an automorphism

ψg of HH which maps f to g. The lemma follows from this claim.

Fix g ∈ V (HH). Without loss of generality, we may assume

that g �= f as in that case ψ is the identity map. The families

{g−1(v)}v∈V (H) and {f−1(v)}v∈V (H) partition I and

|g−1(v)| = |f−1(v)| = κ,

since g and f differ in at most finitely many values. It follows that

for each v ∈ V (H) there exists a bijection φv : g−1(v) −→ f−1(v).

Using the maps φv, we define a map φ : I −→ I by

φ(β, v) = φg(β,v)(β, v).

Then φ is a bijection since for each (β, v), φg(β,v) is a bijection, and

the sets g−1(v) for v ∈ V (H) partition I. Observe that g(β, v) =

f(φ(β, v)).

We now define ψg as follows. For a vertex h ∈ V (HH), set

ψg(h) = ĥ with ĥ(β, v) = h(φ(β, v)). We claim first that ψg is a

7.5. Vertex-transitive Cop-win Graphs 185

bijection. To see this, note that if h �= h′, then h(β, v) �= h′(β, v) for

some (β, v) ∈ I. Hence,

ĥ(φ−1(β, v)) = h(β, v) �= h′(β, v) = ĥ′(φ−1(β, v)).

Also note that for any h, if h′ is defined by h′(β, v) = h(φ−1(β, v))

then ψg(h
′) = h.

As ψg(f) = g, the claim of the lemma follows once we verify that

ψg preserves adjacencies and non-adjacencies. Let h, h′ ∈ V (HH).

We have that hh′ ∈ E(HH) if and only for any (β, v) ∈ I, either

h(β, v) = h′(β, v), or the two images of (β, v) are adjacent in H.

Since φ is a permutation of I, and by definition of ψ, this happens if

and only if h(φ(β, v)) and h′(φ(β, v)) are either identical or adjacent

for every (β, v) ∈ I. In particular, hh′ ∈ E(HH) if and only if

ĥĥ′ ∈ E(HH). �

With Lemma 7.16 in hand, we now turn to the proof of the main

theorem of this section.

Proof of Theorem 7.15. For each infinite cardinal κ there are 2κ

many non-isomorphic trees of order κ (see Exercise 20a). Fix a tree

T of order κ, and let T̂ be the graph formed by adding a universal

vertex u to T . The canonical power T̂ T̂ of T̂ has order κ and is

vertex-transitive by Lemma 7.16.

A single cop may win on T̂ T̂ as follows. The cop C will initially

occupy the base vertex c0 = f and the robber R some vertex r0.

For all but finitely many indices (β, v) ∈ I, we have that r0(β, v) =

c0(β, v). We define the next position c1 of the cop coordinate-wise: if

c0(β, v) is joined or equal to r0(β, v), let c1(β, v) = c0(β, v), otherwise,

let c1(β, v) = u. When the robber moves from r0 to r1, we have

c1(β, v) joined or equal to r1(β, v) for every (β, v) ∈ I, so the cop

captures the robber by moving to c2 = r1. Note that we have shown

that cop captures the robber in at most two moves.

All that is left to show is that if T and T ′ are not isomorphic,

then T̂ T̂ and T̂ ′T̂
′
are not isomorphic. We examine maximal cliques

in the canonical powers; the trick is to build an auxiliary graph from

cliques. Note first that the maximal cliques in T̂ T̂ are simply products

of triangles in every factor (the clique number of each factor is three,

186 7. Infinite Graphs

after all). Formally, if K is a maximal clique in T̂ T̂ , then for every

(β, v) ∈ I, there exist two adjacent vertices s(β,v), t(β,v) of T such that

K = {g ∈ V (T̂ T̂) : g(β, v) ∈ {u, s(β,v), t(β,v)} for all (β, v) ∈ I}.

Therefore, if P = K∩K ′ is a maximal proper intersection of maximal

cliques in T̂ T̂ , there exists an index (β0, v0) ∈ I and a vertex s0 of T

such that

P =

{
g ∈ V (T̂ T̂) : g(β, v) ∈

{
{u, s0} if (β, v) = (β0, v0)

{u, s(β,v), t(β,v)} otherwise

}}
.

Let V(T) be the set of all maximal proper intersections of maxi-

mal cliques in T̂ T̂ . We construct an auxiliary graph H(T) with vertex

set V(T) by putting an edge between two cliques P,Q ∈ V(T) if P ∪Q
is a maximal clique of T̂ T̂ . By the above characterization, H(T) con-

sists of disjoint copies of T , one for each index (β0, v0) in I. Thus, if

T � T ′, then H(T) � H(T ′). �

Theorem 7.15 generalizes to the case for k ≥ 2 with a little more

help from graph products. As the reader is no doubt aware, unique

factorization into primes is a fundamental property of the integers (it

is indeed often referred to as the Fundamental Theorem of Arith-

metic). There is a well-developed literature on analogous unique

factorization-type theorems for graph products (where graphs play

the role of integers, and ordinary products of integers are graph prod-

ucts). For some isomorphic products, the factors are isomorphic up

to reordering. In particular, we employ the following unique factor-

ization theorem for Cartesian products; see Theorem B.9 of [119].

Theorem 7.17 ([119]). Suppose that A, B, and C are graphs,with

A finite and connected. If

A�B ∼= A� C,

then B ∼= C.

Corollary 7.18 ([27]). For k > 1 a positive integer, the class of

vertex-transitive k-cop-win graphs is large.

Proof. Let H(k) be the Cartesian product of k − 1 cycles of length

4. Then H(k) is a vertex-transitive graph, as C4 is. By Theorem 4.3,

Exercises 187

we have that c(H(k)) = k. Now let

J(T) = H(k)� T̂ T̂ ,

where T̂ T̂ are the cop-win graphs from the proof of Theorem 7.15.

Then the infinite graph J(T) has order κ. As both factors H(k) and

are T̂ T̂ vertex-transitive, so is J(T). By Theorem 2.8 (3) we have that

c(J(T)) = k. By Theorem 7.17 if T̂ T̂ � T̂ ′T̂
′

, then J(T) � J(T ′).

The proof now follows by Theorem 7.15. �

What about classes with bounded chromatic number? The large

classes described in Theorem 7.15 and Corollary 7.18 have infinite

clique number and hence, infinite chromatic number. An open prob-

lem is to find large classes of cop-win graphs whose members are

k-chromatic, where k ≥ 2 is an integer.

Exercises

As a reminder, all graphs throughout are connected.

1. Give examples of countably infinite graphs whose cop number is

any fixed finite k > 0.

2. Give an example of an infinite graph with girth at least 5 whose

cop number is strictly smaller than its minimum degree.

3. For each infinite cardinal κ, give an example of a graph whose

cop number is κ.

4. Prove that if each graph in {Gi : i ∈ I} is vertex-transitive, then

so is any weak strong product �I
fGi.

5. Let the vertices of G be the set of primes P1 congruent to 1

(mod 4). The set P1 is infinite by Dirichlet’s Theorem on primes

in arithmetic progressions. Two distinct primes p and q in P1 are

joined if p is a square (mod q) or q is a square (mod p). Show

that G ∼= R. (Hint : Use the Chinese Remainder Theorem and

Dirichlet’s theorem on the arithmetic progression of primes.)

188 7. Infinite Graphs

6. Define a graph G with vertices N. A vertex m is joined to n if

2m occurs in the (unique) base 2 expansion of n, or if 2n is in the

base 2 expansion of m. Show that G ∼= R.

7. A graph G satisfies the pigeonhole property (P) if whenever the

vertices of G are colored red and blue (with each vertex receiving

exactly one color), then the subgraph induced by some one color

is isomorphic to G.

(a) Prove that R satisfies (P).
(b) [40] Prove that the countable graphs satisfying (P) are K1,

Kℵ0
, Kℵ0

, and R. Hence, R is the unique isotype of 1-e.c.

graph with (P).
8. (a) Show that a strongly 1-e.c. graph has no vertex of finite

degree.

(b) Show that a strongly 2-e.c. graph is of diameter 2.

9. By adapting a back-and-forth argument, show that a graph is

strongly 0-e.c. if and only if G is a spanning subgraph of R.

10. (a) Prove that R is homogeneous.

(b) Prove that R is the unique isomorphism type of homoge-

neous and universal graph.

(c) Determine the cop number for all countable homogeneous

graphs.

11. (a) Prove that the Henson graphs Hn are homogeneous and uni-

versal for all n ≥ 3.

(b) Find the cop number and upper density of the graphs Hn.

(c) Determine the cop number for all countable homogeneous

graphs listed in Theorem 7.7.

(d) Find the possible cop densities of each countable homoge-

neous graph.

12. [28] Show that the converse of Theorem 7.12 is false by showing

that for each real number r ∈ [0, 1], there is a graph G(r) with

c(G(r)) = 1, so that for some full chain C in G(r), D(G(r), C) = r.

13. Find an infinite family of infinite-cop-win graphs that are not

strongly 1-e.c.

14. Find an infinite family of strongly 0-e.c. graphs that are cop-win.

Exercises 189

15. Prove Lemma 7.14: if G is chordal, robber-win, and diameter 2,

then so is the lexicographic product G •K, where K is a clique.

16. [104] Using notation from Section 7.4, for each x ∈ B∗, define

fx : V (G∗)→ V (G∗) by

fx((u, v, w)) = (xu, v, w).

Prove that fx is an isomorphism of G∗ with the subgraph induced

by
⋃

x≤u Bu.

17. Show that if G contains an isometric ray, then G is robber-win.

18. Characterize the cop-win graphs which do not contain a triangle.

(Hint : Show they are trees.)

19. (a) Show that the graph �I
fGi is connected if each factor is.

(b) If |I| ≤ κ and |V (Gi)| ≤ κ for each i ∈ I, then prove that

|V (�I
fGi)| ≤ κ.

20. (a) Prove that for each infinite cardinal κ there are 2κ-many

non-isomorphic trees of order κ.

(b) Repeat part (a), but for rayless (and hence, cop-win) trees.

21. [44] A graph G is constructible if there is a well-order ≤ on V (G)

such that every vertex x which is not the smallest element of

(V (G),≤) is dominated by some vertex y �= x in the subgraph

induced by {z ∈ V (G) : z ≤ x}.
(a) Show that if G is finite, then a graph is dismantlable if and

only if it is constructible.

(b) Show that the double ray (that is, the graph with vertices

Z and edges i(i + 1), where i ∈ Z) is constructible, but not

dismantlable.

(c) Show that the ray is constructible but not dismantlable.

22. [44] A graph is weakly-cop-win if the cop wins either if he really

catches the robber or if he forces him to run straight ahead, that

is, move endlessly by visiting each vertex at most once, except

possibly finitely many of them at the beginning of the game.

(a) Prove that a finite weakly-cop-win graph is cop-win.

(b) Explain why a tree (of any cardinality) is weakly-cop-win.

In particular, not all weakly-cop-win graphs are cop-win.

(c) Show that a chordal graph is weakly-cop-win.

Chapter 8

Variants of Cops and
Robbers

Having surveyed the major results on the classical Cops and Robbers

game, we now investigate what happens when the rules or mode of

game play are modified. Cops and Robbers with the usual rules is by

far the best understood of the variants that have been studied. The

loss of some or all loops has been dealt with in [34]; see also Exer-

cises 13 and 14. Even then, as we have seen, many problems (such

as Meyniel’s conjecture) surround the cop number, and graphs with

cop number greater than 1 are not well understood. Nevertheless,

Cops and Robbers is less realistic than a game where say the robber

is partially invisible, or when the cops can catch the robber at some

distance away (say using a gun or taser). In this chapter, we consider

what happens when we relax or strengthen the rules of Cops and

Robbers. One of the main assumptions in the original game is that

both the cops and robber can see each other at all times. A natural

variant is therefore, when there is imperfect information about the

position of the robber. In Section 8.1 below, we suppose the robber

is partially invisible, but he in turn can see the positions of the cops.

The cops may then employ a variety of tools which give some partial

information about the robber’s position or movements. For example,

the cop could lay traps which impede or capture the robber; see Sec-

tion 8.2. Other possibilities would be photo-radar or alarms which

191

192 8. Variants of Cops and Robbers

sound when the robber moves on a vertex or edge. For another twist,

in Section 8.3 we play with pairs of cops who must stay sufficiently

close to each other to make a move (in particular, they must be ad-

jacent to each other in all rounds). We introduce the tandem-win

graphs, where such a movement-restricted pair of cops have a win-

ning strategy. We consider the situation where the cops and robber

play on different sets of edges in Section 8.4.

Another class of variants allows the cops greater power. In dis-

tance k Cops and Robbers, the cops can shoot the robber at some

prescribed distance k away; see Section 8.5. As a final variant, we

measure not the number of cops, but the actual time it takes for

cops to capture the robber. Imagine that the cops have an important

schedule (such as a tip-off to an imminent theft or attack) and must

catch the robber in some prescribed time. This gives rise to the no-

tion of capture time, which measures the minimum number of rounds

needed for the cops to win, assuming optimal play (that is, the robber

is avoiding capture as long as is possible); see Section 8.6.

As Theorem 2.3 demonstrated, the structure of cop-win graphs

is well understood. Most of the variants have one aspect in common:

characterizing graphs where one cop can win in the variant is decid-

edly harder, if indeed it has been accomplished, than in the original

game.

8.1. Imperfect Information

In real life it would be unusual for the cops to have perfect information

about the robber’s whereabouts at all times. On television shows, in

movies and in real life, technology in the way of door alarms, mo-

tion detectors and video cameras give partial information about the

robber’s whereabouts. But when the robber moves into the “blind”

spots of whatever security system is in place, the cops have to in-

fer the robber’s possible movements. A successful game, Scotland

Yard c©, is based on the premise that cops can only see the robber’s

position every several moves, while in the meantime he can skulk in

the shadows unseen. Clarke and several coauthors [54, 58, 59, 161]

have looked at the use of “technology” and how it affects the cop num-

ber when the underlying graph is cop-win. (See also [50, 53]). As

8.1. Imperfect Information 193

one can imagine, a door alarm going off only tells the cops where the

robber is. A camera at an intersection, backed up by face recognition

software, would not only give the position but also the direction the

robber went. The underlying structure in all of the proofs, so far, has

been the use of cop-win spanning trees. We recall a definition from

Chapter 2, Exercise 28 (also [51]). Let G be a cop-win graph with

vertices [n], and consider a sequence S of retractions i→ j, for i ∈ [n]

and some j < i. We need to change this to a directed spanning tree.

Define the directed cop-win spanning tree (relative to S), written T,

so that V (T) = V (G) and there is a directed edge from i to j if and

only if i→ j in S. Since the graph is labeled, the number of cop-win

orderings can be large. There are n! possible ordering of the vertices

in a given cop-win ordering; when a vertex, say v, is chosen to be

retracted there could be as many as deg(v) choices for the target.

A (not too useful) upper bound to the number of directed cop-win

spanning trees is then

n!

⎛⎝ ∏
v∈V (G)

deg(v)

⎞⎠ .

Unless G is a complete graph, not all n! vertex sequences will be cop-

win orderings, and when a vertex is retracted, not all of its neighbors

will be available as the target of the 1-point retraction.

Suppose the cop starts at t in Figure 8.1 and that she has no

information about the robber’s position. If he moves to vertex a,

then he still has to move to b to ensure that the robber is not there.

When he moves back to t he knows that the robber is not in the ab

arm; but when he moves down the cd arm and reaches d, the robber

Figure 8.1. The cop has no information on the position of the robber.

194 8. Variants of Cops and Robbers

could have moved to t. By the time the cop reaches t he no longer

knows that the robber is not in the ab arm. Technology can give

information that helps the cop. An alarm indicates when a vertex

has been entered. Even if there were an alarm on t, it would not give

the cop any information as to which arm currently hosts the robber.

However, if the alarm were on vertex a, the situation is different. The

cop checks out the ab arm then moves to c, d, c, and then t. If the

alarm had sounded and the robber did not have enough time to move

past t, then he would be caught on t; therefore, if he is still at large he

must be on the ab arm. If the alarm did not sound, then the robber

must be on the ef arm.

In Figure 8.2, one alarm at a no longer helps the cop. If the alarm

sounds when the cop is at y, by the time the cop reaches t the robber

could be on either of the other two arms. Two alarms, one on a and

one on e, would suffice although a better placement would be on a

and b. This would give information about the direction the robber is

traveling.

Apart from alarms which can be on edges or on vertices, other

devices that are used include closed-circuit television or CCTv placed

on a vertex, which indicates not only that the robber has entered a

vertex but also when he leaves and in which direction; photo-radar,

which is a camera on an edge that indicates when the robber traverses

the edge and in which direction; and a road-block, sometimes called

a trap, which could be on an edge or at a vertex—the robber is not

Figure 8.2. Two alarms at a and b.

8.1. Imperfect Information 195

allowed to pass through a road-block but the cops can. Other pos-

sibilities can be imagined: for example, certain edges are doors that

are locked and the cop has the key but the robber has to spend one

move “picking” the lock.

In both Figures 8.1 and 8.2, a photo-radar unit on ab acts the

same as the two alarms on a and b. A road-block at t would trap the

robber in one arm. A CCTv at t would also suffice. The cop checks

each arm in turn and knows immediately if the robber switches arms,

at this point the cop abandons the systematic search and goes down

the arm the robber is on.

There is clearly a hierarchy of these tools: for example, equivalent

pieces of technology are often better on a vertex than on an edge, and

CCTv is better than photo-radar. More information is always better

than less, and photo-radar is better than an alarm on the same edge.

It is not clear, however, where the traps fit in. For instance, is it more

effective to have a camera than a trap?

A typical proof with these additional devices comes in two parts.

First, the cops employ a strategy that either captures the robber or

causes him to move onto a vertex or an edge which has the appropriate

technology. Second, once the robber’s position is identified, a “cop-

win”-like strategy is used in which the cop moves toward the robber

limiting his manoeuvring room.

We consider photo-radar in some detail. We will survey the re-

sults for the other technologies but omit the details. Let G be a cop-

win graph and let pr(G) be the least number of photo-radar units

required so that there is some arrangement which allows a single cop

to capture the robber.

Theorem 8.1 ([58]). For all positive integers n > 0, there exists a

tree T such that pr(T) > n.

Proof. A tree (as in Figure 8.1) rooted at a vertex with n+ 3 arms

each of length 2 suffices. �

An edge is free if it has no photo-radar. A path P is said to be

free if every edge of P is free. Let T be a tree. Let Ta be the tree T

rooted at vertex a. An a-branch of Ta is a path of T with a as one

196 8. Variants of Cops and Robbers

a

b e

c f h

d g i

a

b e

c f h

d g i

a

b e

c f h

d g i

A CB

Figure 8.3. A tree with some placements of two photo-radar units.

end-vertex. Define k(Ta) as the minimum number of edges having

photo-radar such that there is an arrangement of the units in which

the free edges form free paths and each maximal free path is on an

a-branch.

The arrangement of photo-radar units (represented by the thick

edges) in Figure 8.3 A has a maximal free-path fehi which is not

contained within an a-branch. The arrangement in Figure 8.3 B has

the maximal free path baefg which is not contained within an a-

branch either. Each of the free paths in Figure 8.3 C are all contained

in an a-branch.

Define T ′ = T \ {v ∈ V (T) : v is an end-vertex}, and set

kT = min{k(T ′
a) : a ∈ V (T)}.

See Figure 8.4.

Theorem 8.2 ([58]). If T is a tree, then pr(T) ≤ kT .

Proof. We only sketch the proof. A free path together with adjacent

leaves will be called a free area. The algorithm to capture the robber

has two parts. Root the tree T at the vertex v attaining the minimum

in the definition of kT .

8.1. Imperfect Information 197

Figure 8.4. A tree T with pr(T) = kT = 2.

Part 1 of the Algorithm: Forcing the robber to reveal his position.

The cop carries out a depth first search of T ′
a starting at v with two

provisos: (1) when he comes to a vertex x joined to a end-vertex,

he visits any leaves adjacent to x before moving on; (2) when he has

a choice of which edge to move down (that is, away from the root)

he chooses a free edge before choosing an edge with a unit. The cop

always enters a free path at the end closest to the root (never in the

middle by the placement of the units) and exits at the other without

leaving the free path, except possibly, for leaves. When on a free

path, the still undetected robber can never move past the cop even

if the cop is inspecting leaves. Thus from the moment a free area,

say F , has been searched, the cop knows that the only way a robber

could be on F is if he has used an edge with a photo-radar unit. If

the robber stays on a free area, then he will be caught since every free

area is searched. If he does move off, then he will be detected by a

photo-radar unit and the cop will always know the free area in which

the robber is located.

Part 2 of the Algorithm: The robber has been detected. Once

the location (that is, the free area) of the robber is known, the cop

moves up the tree until he is on a vertex which lies above the free

area on which the robber is currently located. This free area could

change as the cop moves, but the cop will know which free area the

robber occupies and the cop can always move back to v if necessary.

Assuming that the robber is not caught in this repositioning, the

cop then starts down the v-branch that contains the robber until she

enters the same free area as the robber. The robber can move to a

different free area but this move will be detected by the photo-radar

units and the cop will always move so as to be above the robber.

198 8. Variants of Cops and Robbers

Again, the robber cannot move up past the cop. By moving down

the free path and visiting adjacent leaves, the cop now eliminates

the free areas reducing the area that the robber can occupy until the

robber is eventually captured. �

How do we translate this algorithm to a general cop-win graph

G? Fix a cop-win spanning tree, say Tv, of G, and put a photo-radar

unit on every edge of E(G) \E(Tv). Consider Tv and put k(T ′
v) units

on Tv (so that the free edges form free paths and each maximal free

path is on an v-branch). The argument for Theorem 8.2 would seem

to generalize except for one problem: the robber can change arms on

the Tv tree. The cop will know this because all non-tree edges have

units, but even if the cop is above the robber on one arm, can the

robber move so as to leave the cop with no move that puts him above

the robber? And even if there is such a move, can the robber move

around in a cycle forcing the cop to move on a “higher” cycle, thereby

avoiding capture forever? The answer to both is no.

Define the parameter

KG = minT ′
v
{k(Tv) : Tv is a cop-win spanning tree with root v}.

Theorem 8.3 ([58]). If G is a cop-win graph with |V (G)| = n, then

pr(G) ≤ |E(G)| − (n− 1) +KG.

This can be proven by induction by taking a cop-win spanning

tree and removing an end-vertex (see Exercise 3). However, [58]

takes a more direct approach. Even though the cop-win spanning

tree concept had been around for a while, nowhere in the literature,

before [58], had anyone considered the other edges of the graph. More

specifically, if x ∼ y but are on different branches of the cop-win

spanning tree, then we consider what other edges are forced. A cop-

win spanning tree from a specific cop-win ordering has another partial

order on the vertices: x � y if y is eventually retracted onto x, and

x ≺ y if x �= y.

Lemma 8.4 ([58]). Let G be a cop-win graph with cop-win spanning

tree Tv, and let B and C be two v-branches of Tv. If there exist

vertices x ∈ B and y ∈ C, x � y, then for all p ! x there exists q ! y

such that p � q.

8.2. Traps 199

Let B and C be two v-branches of a cop-win spanning tree Tv.

Suppose b ∈ B and b is adjacent to some vertices of C. Let c ∈ C to

be the lowest (furthest away from v) vertex in C that is adjacent to

b and write b→ c. In the strategy given in [58], the cop will usually

take the edge bc if the cop is on b and the robber, below him on

B, moves to the C. The main lemma used to prove that the robber

cannot force a cycle around the arms of a cop-win spanning tree is

the following.

Lemma 8.5 ([58]). Let G be a cop-win graph with cop-win spanning

tree Tv, and let B and C be two v-branches of Tv. If p, x ∈ B and

q, y ∈ C with x ≺ p, x ∼ y and p→ q, then either y ≺ q or y ∼ p.

In other words, suppose that each of the following items hold.

(1) Vertices x and p are on the branch B with x higher than p.

(2) Vertices y and q are on the branch C. where q is the lowest

vertex on C that is adjacent to p.

(3) Vertex x is adjacent to y.

Then Lemma 8.5 tells us that either q is lower than y or p is adjacent

to y.

8.2. Traps

Traps can either capture or impede the robber’s progress. Either way,

the authors improve the “power” of the cops. With sufficient traps,

of any description, a graph is cop-win (see Exercise 5). Surprisingly,

little is known about using traps. Only two papers [59, 161] (the

latter one unpublished) on traps exist at the time of writing.

We mention in passing that in [56], the authors consider graphs

in which deleting any edge changes the cop number from two to one or

vice-versa. That could be considered as placing a trap that captures

both cops and robber so they both avoid it. There are graphs where

the cop number can increase after deleting an edge (any tree, for

example).

In the unpublished paper [161] by Musson and Tang, their con-

straints are that the cop has visibility 1; that is, he can see if the

200 8. Variants of Cops and Robbers

Figure 8.5. The tree M.

robber is on any adjacent vertex. Once a road block is placed, the

robber cannot use that edge, but the cop can. The main question

is of course, given a graph G what is the minimum number of road

blocks? This number they call rb(G). Their main results are for trees.

Let M be the tree in Figure 8.5.

Theorem 8.6 ([161]). If T is a tree which has no subtree isomorphic

to M, then rb(T) = 0. In general, if T contains k disjoint copies of

M, then rb(T) ≥ k. Moreover, rb(T) = 1 if and only if all subgraphs

of T isomorphic to M have at least one edge in common.

Like the photo-radar problem, they conjecture that for an arbi-

trary graph G, a good and frequently best approach is to find the

spanning tree T with fewest copies of M , put road blocks on all the

edges of G− T , plus the necessary ones for T . As evidence they give

the following result.

Theorem 8.7 ([161]). If G is a triangle-free graph with n vertices

and m edges, then

rb(G) = m− n+ 1.

Further, if G contains a spanning tree which is does not contain M

as an induced subgraph, then

rb(G) = m− n+ 1.

8.2. Traps 201

They also show the following.

Theorem 8.8 ([161]). If H is a connected induced isometric sub-

graph of G, then

rb(H) ≤ rb(G).

In [59], there is perfect information and the traps are placed on

vertices but are moveable (something akin to tire deflation devices,

informally known as spike strips). To place a trap, the cop has to

visit the vertex to deploy it, and to move it he has to pick it up and

then place it.

If the cops have a winning strategy on a graph G with n cops

and m traps, then G is referred to as (n,m)-win. Note that a cop-

win graph is (1, 0)-win. A cycle of length at least 4 is (2, 0)-win, but

it is also (1, 1)-win. We observe that the complete bipartite graph

Kn+2,n+2 is (2, 0)-win but not (1, n)-win (see Exercise 6).

Surprisingly, retracts are important.

Theorem 8.9 ([59]). If H is a retract of G and G is (m,n)-win,

then H is (p, q)-win, for some p ≤ m and q ≤ n.

There is a result corresponding to that of Theorem 1.11 from [16].

Theorem 8.10 ([59]). Let H be a retract of G with H (n0, 0)-win,

and let G−H be (n2,m2)-win. Then G is (n1,m1)-win, where m1 ≤
m2 and n1 ≤ max{n0, n2 + 1}.

A linear layout of a graph G is simply an ordering of the vertices.

(Usually when a concept is defined using a linear layout, one thinks

of placing them in a row on a page, and then the concept involves a

property of the drawing of the graph. Although a cop-win ordering is

an ordering of the vertices, it is not referred to as a linear layout since

no property of the actual drawing is used.) Let L = {v1, v2, . . . , vn}
be a linear layout of G, and set

Li = |{j : j ≤ i and for some k > i, vj ∼ vk}|.

Intuitively, having placed the vertices in a horizontal line from left to

right and drawn the edges, Li is the number of vertices to the left of

202 8. Variants of Cops and Robbers

vi which have neighbors to the right of vi. Let L̂ = maxi{Li}. The

vertex separation number of G is

vs(G) = min{L̂ : L is a linear layout of G}.

This is also known as the pathwidth of G. The vertex separation num-

ber is a (usually bad) upper bound for the cop number and has more

relevance for searching a graph with hidden intruders; see Section 9.4.

However, it appears to be relevant in this context.

Theorem 8.11 ([59]). A graph G is (1, vs(G) + 1)-win. Moreover,

if G is (n,m)-win but not (n− 1,m)-win or (n,m− 1)-win, then

n+m ≤ vs(G) + 2.

In an attempt to characterize (1, 1)-win graphs, we mention a set

of vertices called handles. A handle is something like a corner but

the definition is more technical, and not easy to recognize since it

involves many cop-win orderings. We refer the interested reader to

the paper [59] for the actual definition. A result of the following form

is false, but may be close to the truth: “A graph G can be reduced to

a cop-win graph by corner and handle retractions if and only if G is

(1, 1)-win.” Here are the corresponding results for handles.

Theorem 8.12 ([59]). (1) Let G be a graph, and let H be a

handle in G. If the robber is forced to move onto H, then

the cop will win.

(2) Let G be a graph which can be reduced to a single vertex by

corner and handle retractions. If there is such a sequence of

retractions in which no vertex is retracted to any vertex in

a handle, then G is (1, 1)-win.

Note that (1, 1)-win graphs are a subset of the 2-cop-win graphs,

since the second cop can be left in lieu of the trap. They are also a

superset of the graphs that require one road-block. In [56], the au-

thors consider graphs that are 2-cop-win, edge-critical graphs (that is

remove any edge and the remaining graph is cop-win). The (1, 1)-win

graphs would also contain such graphs. We finish with two interesting

open problems on (n,m)-win graphs.

8.3. Tandem-win 203

(1) Is there a structural characterization of (1, 1)-win graphs?

(2) Given a graph G, what is the minimum p such that G is

(n, p− n)-win?

8.3. Tandem-win

As a small step toward finding a characterization of graphs with cop

number 2, Clarke and Nowakowski [61] introduced the concept of

tandem-cops. The intuitive idea is that two cops “patrol” together—

they stay within close proximity of each other. Graph theoretically,

the two cops must always be on the same or adjacent vertices at the

end of each move. As an example, if a 4-cycle with vertices 1, 2, 3, 4

has one cop on 1 and the other on 2, then they can move to 4 and

3, respectively. A graph is tandem-win if one pair of tandem-cops

suffices to capture the robber. A cop-win graph is also a tandem-

win graph, but since C4 is also tandem-win, the class of tandem-win

graphs strictly contains cop-win graphs; see Figure 8.6.

For cop-win graphs, corners are all-important. A vertex v is o-

dominated (or nearly irreducible; see Exercise 10 in Chapter 2) if

there exists a vertex y �= v such that N(v) ⊆ N [y]. An o-dominated

vertex looks like a corner but without the requirement that v ∼ y.

In characterizing cop-win graphs, instead of Theorem 2.3, one could

write the following.

Theorem 8.13. Let v be a corner of G. Then G is cop-win if and

only if G− v is cop-win.

Figure 8.6. A legal move of tandem-cops.

204 8. Variants of Cops and Robbers

Figure 8.7. A tandem-win graph with no o-dominated vertex.

In [61], there is a theorem very similar to Theorem 8.13.

Theorem 8.14 ([61]). Let v be o-dominated in a graph G. Then G

is tandem-win if and only if G− v is tandem-win.

The characterization for cop-win graphs is completed by applying

Lemma 2.1, which states that a cop-win graph has a corner. Unfor-

tunately, there is no equivalent statement for tandem-win graphs.

Figure 8.7 is a tandem-win graph but has no o-dominated vertex (see

Exercise 9).

The results for products are not dissimilar from those for the

usual Cops and Robbers game (see Chapter 4), and can be proved

relatively quickly given those results. For a graph G, let t(G) be the

least number of tandem-cops needed to capture the robber. For the

Cartesian product there is nothing surprising.

Theorem 8.15 ([61]). Let G and H be graphs.

(1) If G is cop-win and H is a tree, then t(G�H) = 1.

(2) t(G�H) ≤ t(G) + t(H).

For the strong product the upper and lower bounds are quite

different.

8.4. Playing on Different Edge Sets 205

Theorem 8.16 ([61]). Let G and H be graphs.

(1) If G is cop-win and H is tandem-win, then t(G�H) = 1.

(2) If for a family of graphs (Gi : 1 ≤ i ≤ n) we have that

t(Gi) = 1, then t(�n
i=1Gi) ≤ 2n−1. Moreover,

t((C4)
2n
�) > n.

We leave the proofs as exercises, but sketch the proof of the lower

bound in Theorem 8.16 (2). Suppose n tandems of cops choose their

vertices. The robber then chooses a vertex such that on the ith factor

of the product, the robber’s projection is two away from the projection

of the ith cop. In one move, no cop can capture the robber on all the

projections, and thus, not on (C4)
2n
� . Thereafter, the robber moves

to maintain these distances. We mention the following open problem:

What are the proper bounds for Theorem 8.16 (2)?

For the categorical product even less is known. We showed in

Chapter 4 that the cop number of the categorical product of two cop-

win graphs is at most three, and also that if G andH are non-bipartite

graphs with c(H) ≥ c(G) and c(H) ≥ 2, then

c(G×H) ≤ 2c(G) + c(H)− 1.

In [60], it is shown that two tandem-cops suffice and are necessary

on the categorical product of certain tandem-win graphs.

A graph G has a special tandem-win decomposition by o-domin-

ated vertices if there is a set of 1-point retractions that reduce the

graph to a single vertex in which all leaves are retracted (as o-domin-

ated vertices) before any other vertices, and then the o-dominated

vertices are retracted.

Theorem 8.17 ([61]). Let G and H be triangle-free tandem-win

graphs, each having at least one cycle. If G and H have special

tandem-win decompositions, then t(G×H) = 2.

8.4. Playing on Different Edge Sets

On a whimsical note, the nature of the cops and the robber is dia-

metrically opposite, so why not have them play on different sets of

edges? The natural situation is for the cops to have one set of edges

206 8. Variants of Cops and Robbers

and the robber to have the complementary set. Precisely, for a graph

G the cops move on E(G) while the robber moves on E(G). Alan Hill

[113] called this variant complementary Cops and Robbers, and for

a graph G the least number of cops required to catch the robber is

denoted by CC(G). An intriguing result for this parameter is that it

is within one of the domination number.

Theorem 8.18 ([113]). If G is a graph, then

γ(G)− 1 ≤ CC(G) ≤ γ(G).

The upper bound is trivial, and the lower bound is also straight-

forward; see Exercise 12. It is NP-complete to determine the mini-

mum domination number of a graph, and we observe that the same

can be said for the parameter CC(G).

Corollary 8.19. For an arbitrary graph G, it is NP-complete to

determine CC(G).

Proof. If CC(G) could be determined in polynomial time, then one

only has to test all subsets of V (G) of size CC(G) and CC(G)+ 1 to

determine γ(G). �

The graph G, which consists of two copies of with K1,n with one

end-vertex in each copy identified, has γ(G) = 2 and CC(G) = 2.

Further, γ(Km,n) = 2, but CC(Km,n) = 1; see Exercise 13. As

a special case, it is straightforward to show that CC(Cn) = k for

n = 3k − 1, 3k or 3k + 1.

Hill has one further result on the structure of graphs needing k

cops.

Lemma 8.20 ([113]). If CC(G) = k, then G has a set of k + 1

vertices at least two of which are adjacent, that dominate the graph.

Proof. Consider the final round of play. The robber must be on a

vertex which is adjacent to a cop; moreover, all vertices not adjacent

to the robber must be adjacent to a vertex occupied by a cop. Thus,

the robber’s and the k cops’ positions form a dominating set of size

k + 1, with two of the vertices being adjacent. �

8.4. Playing on Different Edge Sets 207

In many situations, the structure of the lexicographic product of

two graphs G and H allows for more efficient use of “resources”. In

particular, the fractional (that is, LP relaxation) version of a graph

problem can be phrased in terms of the lexicographic product of G

with itself. Hill asked whether there exist graphs G and H such that

CC(G •H) < CC(G). As evidence, he proves the following.

Theorem 8.21 ([113]). If G and H are connected graphs with CC(G)

at least two, then CC(G •H) ≤ 2CC(G).

A different approach to playing on different edge sets was taken by

Neufeld and Nowakowski [165]. They considered the case where the

vertex set of the graph was the Cartesian product of the vertex sets of

G and H, and the available edges for the cops came from one product

whereas the robber edges came from a different product. To this

end, let XY (G⊗H) denote the number of cops required to capture a

robber when the cops are restricted to the edges of the product graph

X and the robber to those in the product graph Y . For a sequence of

graphs (Gi : 1 ≤ i ≤ n) they defined XY (
⊗n

i=1 Gi) in the analogous

manner. They focused on the edges from the categorical, Cartesian

and strong products. Let S be the edges of the Cartesian product

(Straight edges), S be the edges of the strong product minus the

edges of the Cartesian product, O be the edges of the categorical

product (Oblique edges), and O be the edges of the strong product

minus the edges of the categorical product. Note that in the product

of two graphs, the edges of the strong product is the union of the

edges in the Cartesian and categorical products, but that is not true

for products of three or more graphs. In general, S ⊆ O and O ⊆ S

so that we have the following inequalities:

SS(

n⊗
i=1

Gi) ≥ SO(

n⊗
i=1

Gi) ≥ OO(

n⊗
i=1

Gi)

and

SS(

n⊗
i=1

Gi) ≤ OS(

n⊗
i=1

Gi) ≤ OO(

n⊗
i=1

Gi).

The growth of the number of edges is exponential in the case of the

strong and the categorical but only linear for the Cartesian. For

example, if G is r-regular, then in the kth power of G, the degree of

208 8. Variants of Cops and Robbers

each vertex is rk in the Cartesian product, (r+ 1)k − 1 in the strong

product, and is rk in the categorical.

Often the strategy given is a combination of catching the projec-

tion in one graph and using a strategy borrowed from graph searching

(see Section 9.4). Take a linear layout that realizes the vertex sepa-

ration number, the vs(G) cops occupy a consecutive string of vertices

in the layout, and the free cop moves so as to occupy the next vertex,

thereby freeing up the cop occupying the first vertex in the string.

(This is akin to “rolling a prime” in Backgammon.) In this context,

if the vertex separation appears in the upper bound, then it would

appear that the robber has a great advantage using this set of edges.

Define β(G) = |V (G)| − β(G), where β(G) is the independence

number of G (that is, the cardinality of a largest independent set in

G). For the parameter SO(G⊗H), the cop has a linear increase in

the available edges but the robber has the quadratic increase so one

would expect that the robber has the advantage.

Theorem 8.22 ([165]). If G and H are connected graphs, then

SO(G⊗H) is bounded above by

min{c(H) + vs(G), c(G) + vs(H), c(H) + β(G)− 1, c(G) + β(H)− 1}.

Further,

SO(G⊗H) ≥ max{c(G), c(H)}.

Note that β(G) − 1 is usually greater than vs(G) but not for

complete graphs. In fact,

SO(Km ⊗Kn) = min{m,n} − 1

(see Exercise 14).

When the edge sets are reversed, the cops should have the ad-

vantage. Indeed only the graph with the larger cop number need be

considered.

Theorem 8.23 ([165]). Let G and H be finite connected graphs both

with at least two vertices.

(1) If c(G) = c(H) = 1, then OS(G⊗H) = 2.

(2) If c(G) ≥ c(H) ≥ 1, then c(G) ≤ OS(G⊗H) ≤ c(G) + 1.

8.5. Distance k Cops and Robbers 209

In the product of at least three graphs, if the robber is restricted

to just the Cartesian edges, then the situation is better for the cops.

Theorem 8.24 ([165]). If c(Gi) ≥ c(Gi−1) for i = 2, 3, . . . , n, then

the following items hold.

(1) If c(Gn) = 1, then SS(
⊗n

i=1 Gi) ≤ 2 for n = 2, 3 and

SS(
⊗n

i=1 Gi) = 1, otherwise.

(2) If c(Gn) > 1, then SS(
⊗n

i=1 Gi) = c(Gn) for n ≥ 3.

When the situation is reversed the cops have a harder time. We

use the notation XY (Gn) for XY (
⊗n

i=1 Gi) where Gi = G for all i.

Theorem 8.25 ([165]). Let δ = δ(G) and v = |V (G)|. Then

(δ + 1)n − nδ

nδ + 1
≤ SS(Gn) ≤ (c(G) + vs(G))vn−2.

The edges sets O and O both grow exponentially with the nu-

merical advantage to the player on the O set. It is surprising that the

cops do not have a better advantage in the OO case.

Theorem 8.26 ([165]). If G is a graph, then for n > 1 we have the

following.

(1) OO(Gn) ≤ (c(G)− 1)(n− 1) + min{vs(G) + 1, β(G)}.
(2) OO(Gn) ≥ (c(G)− 2)(n− 1).

With the edge sets reversed, the robber again has a definite ad-

vantage.

Theorem 8.27 ([165]). Let G be a finite graph, δ = δ(G) ≥ 2 and

c(G) ≥ 2. Then for n > 2 we have the following.

(1)
(
1 + 1

δ

)n − 1 ≤ OO(Gn) ≤ 2n−1c(G).

(2) If the girth of G is at least 5, then OO(Gn) ≥ 2n−1.

8.5. Distance k Cops and Robbers

We consider a variation of Cops and Robbers where a cop need not

occupy the vertex of the robber to capture him, but must only “see” or

“shoot” the robber from some prescribed distance away. For analogies

210 8. Variants of Cops and Robbers

from computer gaming, consider first-person shooter games where

weapons hit targets at some prescribed distance (so-called “hitscan”).

More precisely, fix a non-negative integer parameter k. The game of

distance k Cops and Robbers is played in a way analogous to Cops and

Robbers, except that the cops win if a cop is within distance at most k

from the robber. If k = 0, then distance k Cops and Robbers reduces

to the classical Cops and Robbers game studied in the first seven

chapters of this book. The minimum number of cops possessing a

winning strategy in G playing distance k Cops and Robbers is denoted

by ck(G).

Observe that c0(G) is just the usual cop number c(G), and for all

k and j with k < j, cj(G) ≤ ck(G). For a basic example illustrating

that something new comes about by considering k > 0, note that

c0(C4) = 2, while ck(C4) = 1 for all k ≥ 1.

Distance k Cops and Robbers and the parameters ck were intro-

duced in [23] as a generalization of the classic game. We highlight

some of the main findings from that work and finish with some new

work characterizing graphs satisfying c1(G) = 1 in [43].

First, we consider bounds on ck. As an extension of Theorem 3.1,

there is an analogous upper bound on ck(n). Let ck(n) be the maxi-

mum value of ck(G), where G is a graph of order n.

Theorem 8.28 ([23]). For integers n > 0 and k ≥ 0 (where k can

be a function of n)

ck(n) = O

⎛⎝ n log(k + 2)

(k + 1) log
(

2n
k+1

)
⎞⎠ .

As a generalization of Meyniel’s conjecture (discussed in Chapter

3, at length), it is conjectured that for all k ≥ 1

(8.1) ck(n) = Θ

((n
k

)1/2)
.

Given a graph G and a positive integer �, form G(
) by replac-

ing each edge of G by a path with � edges. For example, K
(2)
4 is

illustrated in Figure 8.8. For simplicity, we identify vertices of G

8.5. Distance k Cops and Robbers 211

Figure 8.8. The graph K2
4 .

with corresponding vertices in G(
); in particular, V (G) ⊆ V (G(
)).

Vertices of G(
) that are not in G are called internal vertices.

The usual cop number and the parameters ck are related as per

the following lemma.

Lemma 8.29 ([23]). For any graph G and any integer k ≥ 0,

c(G) ≤ ck(G
(2k+1)) ≤ c(G) + 1.

Lemma 8.29 sets up a relationship between c(G) and ck(G). We

note that either of the two values bounding ck(G
(2k+1)) in the lemma

may be realized. For example, c1(K
(3)
3) = 2 with c(K3) = 1, while

c(G) = ck(G
(2k+1)) if G is a tree.

Proof of Lemma 8.29. Joret et al. [125] proved that

c(G(2k+1)) ≤ c(G) + 1.

Since ck(G
(2k+1)) ≤ c(G(2k+1)), it remains to prove that c(G) ≤

ck(G
(2k+1)).

Let c = c(G)− 1. The robber R has a winning strategy in Cops

and Robbers played on G if there are only c cops. We will show that

R has a winning strategy in distance k Cops and Robbers played on

G(2k+1) if there are only c cops.

For each internal vertex x ∈ V (G(2k+1)), there is exactly one

vertex in V (G) whose distance from x is at most k; name this vertex

212 8. Variants of Cops and Robbers

xk. Define a function f from the vertices of G(2k+1) to vertices of

G that is the identity on V (G), so that if x is internal vertex, then

f(x) = xk. The robber R simulates the winning strategy for Cops

and Robbers played on G in distance k Cops and Robbers played

on G(2k+1) by using the function f , and will play in a way that the

robber will always be in V (G) in rounds

2k, 4k + 1, . . . , 2ik + i− 1, . . .

for all i ≥ 1.

In round 0, C puts c cops in v1, v2, . . . , vc. In round 0, R assumes

that the cops are at f(v1), f(v2), . . . , f(vc) and puts the robber in

a vertex r ∈ V (G) pretending that the game is being played in G.

Since the robber would not be captured in G, neither of f(vi)’s are

adjacent to r in G, and hence, vi’s are of distance at least 3k + 2

from r in G(2k+1). Therefore, the cops cannot capture the robber in

rounds 0 ≤ t ≤ 2k + 1, if the robber stays at r in rounds 0 ≤ t ≤ 2k.

Let v′1, v
′
2, . . . , v

′
c be the positions of cops in round 2k + 1. In

2k + 1 rounds, for each 1 ≤ i ≤ c, we will have either f(vi) = f(v′i)

or f(vi) is adjacent to f(v′i) in G. Thus, R can assume that the cops

have moved from f(v1), f(v2), . . . , f(vc) to f(v′1), f(v
′
2), . . . , f(v

′
c) in

G in one round. Let r′ be the vertex to which the robber would move

to if the game was being played in G. The strategy of R in G(2k+1) is

to move the robber from r to r′ in the next 2k + 1 rounds. The cops

cannot capture the robber in the next 2k + 1 rounds and, in round

4k+2, the robber can decide the next 2k+1 rounds. The rest follows

by induction. �

Lemma 8.29 gives us a tool for transfering lower bounds on c(n)

to lower bounds on ck(n).

Theorem 8.30 ([23]). For all k ≥ 1 and n ≥ 1 integers, we have

that

ck(n) ≥
(n
k

)1/2+o(1)

.

Proof. Consider a random graph G = G(n, p) with average degree

np = 3 log n. Then a.a.s. G is connected, and by Theorem 6.11,

8.5. Distance k Cops and Robbers 213

c(G) = n1/2+o(1) a.a.s. Now by Lemma 8.29 a.a.s. we have that

ck(G
(2k+1)) ≥ c(G) = n1/2+o(1).

Since a.a.s. N = |V (G(2k+1))| = Θ(k|E(G)|) = kn1+o(1), the proof

follows since a.a.s.

ck(G
(2k+1)) ≥

(
N

k

)1/2+o(1)

. �

Giving the cops a longer reach, as in distance k Cops and Robbers,

does not change the complexity of the underlying game. Using strong

products, it was shown in [23] that computing if ck(G) ≤ s for a fixed

s is in P.

Theorem 8.31 ([23]). The problem of computing if ck(G) ≤ s for a

fixed s has complexity O(n2s+3).

Note that the bound in Theorem 8.31 is independent of k. A result

of Fomin et al. [85] states that there is a constant c > 0 such that

there is no polynomial-time algorithm to approximate c(G) within

ratio c log n, unless P=NP. Combining this fact with Lemma 8.29

gives the following corollary.

Corollary 8.32 ([23]). For any integer k ≥ 0, computing ck(G) is

NP-hard.

Proof. Assume that there is an integer k and a polynomial-time al-

gorithm A such that A(G) = ck(G), for all graphs G. Let B be a

polynomial-time algorithm such that B(G) = G(2k+1), for all graphs

G. By Lemma 8.29, it follows that the composition of the algorithms

A and B is a polynomial-time 2-approximation algorithm for com-

puting c(G). �

We may consider the parameters ck in random graphs. For a

fixed integer k ≥ 0, function fk : (0, 1)→ R defined as

fk(x) =
log ck(G(n, nx−1))

log n
,

where ck(G(n, p)) denotes the median value of the distance k cop

number for G(n, p). Recall the Zig-Zag Theorem (Theorem 6.16),

214 8. Variants of Cops and Robbers

Figure 8.9. The functions fk, for k = 0, 1, and 2, with the

darker lines representing smaller values of k.

which described the behaviour of f0. Generalizing to k > 0, we ac-

tually find infinitely many zig-zags for all k ≥ 0, as described in the

following theorem; see Figure 8.9 for the functions fk in the cases

k = 0, 1, 2.

Theorem 8.33 ([23]). Let k ≥ 0, 0 < α < 1, and d = d(n) = np =

nα+o(1).

(1) If 1
2j+1+k < α < 1

2j+k for some j ≥ 1, then a.a.s.

ck(G(n, p)) = Θ(dj) .

(2) If 1
2j+k < α < 1

2j−1+k for some j ≥ 1, then a.a.s.

Ω
(n

dj+k

)
= ck(G(n, p)) = O

(
n logn

dj+k

)
.

No structural characterization of graphs G satisfying ck(G) = 1,

where k ≥ 1 is a fixed integer, is known. This appears to be a difficult

problem, where very little is known except in special cases. In the

case when G is bipartite and k = 1, a characterization was reported

in [43]. A bipartite graph G is almost-dismantlable if its vertices can

be ordered v1, . . . , vn so that vn−1vn is an edge of G, and for each vi
where i < n, there exists a vertex y = vj with j > i (necessarily not

8.6. Capture Time 215

adjacent to vi) such that

N [vi] ∩ {vi+1, . . . , vn}) ⊆ N [y].

Theorem 8.34 ([43]). If G is bipartite, then c1(G) = 1 if and only

if G is almost-dismantlable.

8.6. Capture Time

A recent variation on the cop number is to consider not how many

cops are needed to capture the robber, but rather how long it takes

them to capture the robber. To be more precise, the length of a

game is the number of rounds it takes (not including the initial or

0th round) to capture the robber. Equivalently, the length of the

game equals the number of rounds needed for the cop to capture

the robber (the degenerate case is the game played on K1 which has

length 0). We say that a play of the game with c(G) cops is optimal

if its length is the minimum over all possible games played by the

cops, assuming the robber is trying to evade capture for as long as

possible. There may be many optimal plays possible (for example, on

P4, the cop may start on either vertex of the center), but the length

of an optimal game is an invariant of G. In a graph with c(G) = k, we

denote this invariant captk(G), which we call the k-capture time of G.

In the case k = 1, which will be our focus, we just write capt(G). The

capture time parameters may be viewed as temporal counterparts to

the cop number, and were introduced in [26]. Time is a well-measured

resource in graph algorithms (see Chapter 5), which inspired this

approach to the Cops and Robbers game. We note in passing that in

the recent work [86], a variant of Cops and Robbers is studied where

every cop can make at most a fixed number of steps to capture the

robber.

We recall the following upper bound from Chapter 2 (stated with

our new notation).

Theorem 8.35. If G is cop-win of order n ≥ 5, then capt(G) ≤ n−3.

By considering small order cop-win graphs, the bound in Theo-

rem 8.35 was improved to capt(G) ≤ n − 4 for n ≥ 7 in [97]. As we

will see below, the bound of n− 4 is optimal.

216 8. Variants of Cops and Robbers

In many cop-win graphs such as trees, the cop can win in much

fewer than n − 4 moves. Two corners a and b in a cop-win graph G

are separate if neither is dominated only by the other. For example,

two distinct end-vertices in a tree are separate corners. We say that

a graph G is 2-dismantlable if it is cop-win, has two separate corners

a and b, and G− {a, b} either has two separate corners or has fewer

than seven vertices. Observe that deleting two corners from a large

enough 2-dismantlable graph leaves an induced subgraph which is a

2-dismantlable, cop-win graph. Each chordal graph is 2-dismantlable

as chordal graphs contain at least two simplicial vertices. However,

the 4-wheel is 2-dismantlable but not chordal.

As the next theorem demonstrates, the 2-dismantlable graphs

have capture time about one half of their order.

Theorem 8.36 ([26]). If G is 2-dismantlable of order n, then

capt(G) ≤
⌊n
2

⌋
.

Proof. The proof is by induction on n. We leave the verification of

the theorem for n ≤ 6 as an exercise. Let a and b be two separate

corners in a 2-dismantlable graph of order n ≥ 7, covered by a′ and

b′, respectively. Let H be the induced subgraph formed by deleting

a and b. As H is 2-dismantlable, there is an optimal game on H of

length at most
⌊
n−2
2

⌋
. The cop plays this optimal game in H, and

for x ∈ {a, b}, whenever R is on x, then C plays as if he were on x′.

After at most
⌊
n−2
2

⌋
moves, either the robber is caught on H, or R is

on x and C is on x′. But then C can win in one more move, and so

this strategy uses at most
⌊
n−2
2

⌋
+ 1 =

⌊
n
2

⌋
moves. �

Unfortunately, not every cop-win graph is 2-dismantlable. There

are even graphs with a unique corner! For an integer n ≥ 4, define

G(n) by adjoining two vertices x and y joined to each vertex of a

path P with n vertices. Add a vertex z that is joined to y and the

endpoints of P . Then G(n) is cop-win but z is the unique corner of

G(n); see Figure 8.10 for G(4).

Using the graph G(4), we construct an infinite family of graphs

of order n with maximum capture time n − 4. For n ≥ 7, the graph

H(n) has vertices 1, . . . , n, where 1, 2, 3, 4, 5, 6, 7 induce G(4) (so that

8.6. Capture Time 217

Figure 8.10. The cop-win graph G(4) with a unique corner.

x = 5, y = 3, z = 7, and the remaining vertices on the path joined to

x and y are (from left to right) 6, 2, 1, 4). For i > 7, the vertex i is

joined to j < i if j equals one of i− 4, i− 3, and i− 1. We name the

vertices 7, 8, . . . , n special ; see Figure 8.11 for H(11).

The following theorem was proved in [26].

Theorem 8.37 ([26]). For a fixed integer n ≥ 7, the graphs H(n)

have the following properties.

(1) The graph H(n) is planar.

(2) The graph H(n) is cop-win and has a unique corner.

(3) capt(H(n)) = n− 4.

Proof. We leave items (1) and (2) as an exercise (see Exercise 19).

For item (3), we present a strategy S for the cop to win which always

12

3

4

5

6

7

8

9

10

11

Figure 8.11. The graph H(11).

218 8. Variants of Cops and Robbers

results in a game of length at most n− 4. First note that each vertex

5 ≤ x ≤ n− 4 has neighbors {x− 4, x− 3, x− 1, x+ 1, x+ 3, x+ 4}.
Thus, the cop and robber may move to vertices with index 1, 3 or 4

more or less than their current index.

The strategy S has three parts, with the third part repeated

until the robber is captured (which we will demonstrate eventually

happens).

(S1) In the 0th round, place the cop on vertex 1.

(S2) After the robber places himself on i > 1 in the 0th round,

in the first round move the cop to j ∈ V (G(4)) with j ∈
{2, 3, 4, 5} so that i ≡ j (mod 4)).

(S3) Repeat the following steps until the robber is eventually

caught.

(a) If robber moves from i to i + k, then the cop moves

from j to j + k, where k = 1, 3, or 4.

(b) If robber moves from i to i − 1, then the cop moves

from j to j + 3.

(c) If robber moves from i to i − 3, then the cop moves

from j to j + 1.

(d) If robber moves from i to i − 4, then the cop moves

from j to j + 4.

Let the cop play with S, and let cop(t) and robber(t) be the

positions of the cop and robber at round t in this game. Note that

for all t ≥ 0, cop(t+ 1) > cop(t). We prove by induction that for all

t ≥ 1,

(8.2) cop(t) ≡ robber(t− 1) (mod 4)).

The base case of (8.2) follows by (S1) and (S2). Suppose (8.2)

holds for a fixed t ≥ 1. Suppose that cop(t) = j, with robber(t−1) = i.

At time t, the robber moves to i+m, where m ∈ {−4,−3,−1, 1, 3, 4}.
Then the cop moves at round t + 1 to j + m′ for some m′ as

instructed by (S3). It is straightforward to check that i + m ≡ j +

m′ (mod 4) holds for all possible moves of the robber. Hence, the

induction step follows.

Exercises 219

It follows that the difference of the indices of the cop and robber

is kept 0 (mod 4), and when the robber goes to a higher or lower

index, the difference is monotonically decreasing. Over time the cop

gets closer to the robber. For all rounds except for the last one where

the robber is captured, cop(t) < robber(t). To complete the proof, we

note that the robber can survive n−4 moves in H(n) no matter what

the cop does (see [26]). �

There are many more examples of graphs non-isomorphic toH(n)

with capture time n − 4. An exponential family of such graphs was

found in [98], and cop-win graphs with maximum capture time n− 4

were characterized. See also [97].

Computing the capture time is a tractable problem. By the re-

sults of [105], if m is a fixed positive integer, then the problem of de-

termining whether captk(G) ≤ m is in P. For a non-negative integer

t, define ct to be the minimum number of cops needed to capture the

robber in at most t rounds. Note that c0(G) = n and c1(G) = γ(G).

In [26], it was shown that the problem of determining if ct(G) ≤ k

for a non-negative integer k is NP-complete.

The parameters captk(G) for k > 2 are not well understood, and

a number of questions remain. For example, what are good bounds

for these parameters if k > 1? How do they behave on graph prod-

ucts? Can we classify the k-cop-win graphs whose capture time is

maximum?

Exercises

1. Find all directed cop-win spanning trees in C4 with a chord.

2. Show that the number of directed cop-win spanning trees of Kn

is n!(n− 1)!

3. Prove Theorem 8.3 by induction.

4. Show how Lemma 8.5 prevents the robber from going indefinitely

around in a cycle.

220 8. Variants of Cops and Robbers

5. Suppose the cop has traps which cause the robber to lose a turn

whenever he enters one.

(a) Show that placing a trap on each vertex suffices to capture

the robber if the cops have perfect information.

(b) Prove that placing a trap on each vertex suffices to capture

the robber even if the cops have no information about the

robber’s whereabouts.

6. Prove that Kn+2,n+2 is (2, 0)-win but not (1, n)-win.

7. Prove the first part of Theorem 8.6: if T is a tree and it has no

subtree isomorphic to M, then rb(T) = 0.

8. (a) Show that for a graph G, c(G) ≤ vs(G).

(b) Find infinitely many graphs such that c(G) = vs(G).

9. Show that the graph in Figure 8.7 is tandem-win but has no o-

dominated vertices.

10. Prove Theorem 8.15.

11. Prove Theorem 8.16 (1).

12. Prove the lower bound in 8.18.

13. Let G be the graph formed from two copies of with K1,n one end-

vertex in each copy being identified. Show CC(G) = 2. Further,

prove that CC(Km,n) = 1

14. Prove that SO(Km ⊗Kn) = min{m,n} − 1.

15. Derive that if k ≥ diam(G)− 1, then ck(G) = 1.

16. Prove that for all k ≥ 1, ck(G) ≤ ck−1(G).

17. Show that all graphs of order at most 6 have capture time at most

three.

18. [97] Prove that the maximum capture time of a graph of order 7

is three.

19. Prove items (1) and (2) of Theorem 8.37.

20. [26] Prove that the robber can survive n− 4 moves in H(n).

21. [26] Derive a formula for capt2(Cn), where n ≥ 4. (Hint : Consider

cases modulo 4.)

Chapter 9

Good Guys Versus
Bad Guys

9.1. Introduction

From westerns to police dramas to comic book capers, there are good

guys and bad guys. At the heart of all the games we consider in this

book, there is a notion of a set of good guys (agents, cops, Greens,

etc.) trying to stop, contain, or capture, a bad guy (intruder, robber,

Sludge, etc.). We note that unlike the variants studied in Chapter 8,

the players in most of the games in this chapter all have perfect in-

formation (except for edge searching, Helicopter Cops and Robbers,

and Marshals).

The Cops and Robbers game uses the metaphor of catching a

bad guy by some set of good guys, where both players have the same,

finite speed. The metaphor can be modified in many ways, some of

which were explored in Chapter 8. One way is to vary the speeds or

the methods of moving of one or both players. The games Seepage

(discussed in Section 9.3) and Helicopter Cops and Robbers (discussed

in Section 9.5) fall in this category. For example, in Seepage, an

intruder begins at the source of a directed acyclic graph and tries

to reach a sink without being blocked by his opponent. To help

summarize the games we consider (and some we do not!) we include

a table with reference to their speed and information. The vertical

221

222 9. Good Guys Versus Bad Guys

labels refer to the speed of the good guys, while the horizontal ones

refer to the speed of the bad guys. There are four kinds of movement

we consider. There is slow or restricted movement, and medium or

average movement. For example, in Cops and Robbers, the cops

and robber move at medium speed. For fast movement, the player

can move more quickly than in the usual Cops and Robbers game.

In helicopter or teleporting movement, the player can move from a

given vertex to any other in the graph (regardless of whether they

are connected by a path). A game that is underlined gives one or

both players imperfect information. For more on eternal security

(also called defending the Roman empire), see [182].

Seepage

The reader will note that some cells of the table are blank. We invite

you to consider new good guys versus bad guys games which could fit

into these blank cells. What would their rules be? What parameters

would you associate to such games, and what bounds on these can

you find?

Another variant is to change the nature of the bad guy from in-

telligent to non-sentient. A good example of this is Firefighter, where

the fire spreads aimlessly to all neighboring vertices; see Section 9.2.

We could also change the nature of how the good guys win. For

instance, instead of catching an intruder, we must instead clean a

contaminated network as in cleaning in Section 9.6, robot vacuum in

Section 9.6.3, or edge searching in Section 9.4. As we will see, these

are not all the studied variations, nor are they mutually exclusive.

9.2. Firefighter 223

We close the chapter in Section 9.7 with a brief discussion of com-

binatorial games, and discuss the well-studied Angel and Devil game

introduced by Conway [63].

9.2. Firefighter

The Firefighter Problem—introduced by Hartnell in 1995 at the 25th

Manitoba Conference on Combinatorial Mathematics and Computing

[108]—presents a simplified deterministic model of the spread of fire,

diseases, and computer viruses. In Firefighter, vertices are either

burning or not. There is one firefighter who is attempting to control

the fire. Once a vertex is occupied by the firefighter, it can never

burn in any subsequent round and is called saved or protected. The

fire begins at some vertex in the first round, and the firefighter chooses

some vertex to save. The firefighter can visit any non-burning vertex

in a given round (for example, he can jump between two non-joined

vertices from one round to the next), but he cannot protect a vertex

on fire. The fire acts without intelligence and spreads to all non-

protected neighbors. Once a vertex has been protected, its state

cannot change; that is, it can never be on fire. The process stops

when the fire can no longer spread.

Firefighter may be viewed as another variant of Cops and Rob-

bers, although it is only a one-person game, with only the firefighter

using any strategy. See Figure 9.1 for an example of Firefighter played

on a tree (see also [109]). With the firefighter’s choice of moves, the

fire burns only two vertices (other moves will lead to more burned

vertices).

Figure 9.1. Firefighter played on a tree over two rounds, with
white vertices burning and grey vertices protected.

224 9. Good Guys Versus Bad Guys

Consider two extreme examples: a clique and a path. In a clique,

the firefighter can save at most one vertex. In a path, suppose the

fire breaks out at an end-vertex x. The firefighter saves the unique

neighbor of x, and so saves the rest of the vertices. If a fire breaks

out at a vertex of degree 2 y, then the firefighter saves one neighbor

of y. The fire spreads to its unsaved neighbor where it is contained

by the firefighter in the next round.

One goal of Firefighter may be to save the maximum possible

number of vertices; see the survey [76] for a discussion of various

desired outcomes of the game. For a graph G with vertex v, define

sn(G, v) to be the maximum number of vertices in G the firefighter

can save if the fire breaks out at v. For example, sn(Kn, v) = 1,

sn(Cn, v) = n− 2, while

(9.1) sn(Pn, x) =

{
n− 1 if x is an end-vertex,

n− 2 else.

If a fire breaks out in a hypercube, then the following theorem

shows that the maximum number of saved vertices equals its dimen-

sion.

Theorem 9.1 ([145]). For n ≥ 1 and all vertices v, sn(Qn, v) = n.

Proof. As Qn is vertex-transitive, without loss of generality, we let

the fire break out at v equaling the constant sequence of all zeros. The

proof is by induction on the number of rounds t, with the inductive

hypothesis that all vertices with at most t ones are either saved or

burned. The proof of the theorem follows, since the firefighter can

save at most t vertices in t rounds. The base case is immediate, and

we consider the (t+ 1)th round. A vertex with (t+ 1)-many ones

is joined to exactly t + 1 vertices with t ones, as there (t+ 1)-many

coordinates that can change from a one to a zero. By the induction

hypothesis, at most t vertices with t ones are saved, so at least one

such vertex x is burning. Hence, a non-saved vertex in round t + 1

with (t+ 1)-many ones will burn if it is not saved in that round. �

Before continuing, it is important to point out that determining

the number of vertices saved in Firefighter is a difficult computational

problem. Consider the following graph decision problem.

9.2. Firefighter 225

FIREFIGHTER: Given a graph G and vertex v, is sn(G, v) ≥ k?

That is, is there a finite sequence u1, u2, . . . , ut of vertices of G such

that if the fire breaks out at v, then each of the following items hold?

(1) Vertex ui is neither burning nor saved in round i.

(2) At round t no non-saved vertex is adjacent to a burning

vertex.

(3) At least k vertices are saved at the end of round t.

The problem FIREFIGHTER is in NP, since given a sequence

u1, u2, . . . , ut

of vertices, we can quickly check whether it meets items 1, 2, and 3

above. Finbow et al. [77] proved the following.

Theorem 9.2 ([77]). FIREFIGHTER is NP-complete in trees with

maximum degree 3 with the fire starting at a vertex of degree at most

2.

Our main focus is on the expected percentage of vertices saved

if the fire breaks out at a random vertex (where “random” means

relative to the uniform distribution). For a graph G of order n, define

the surviving rate of G, written ρ(G), by

ρ(G) =
1

n2

∑
v∈V (G)

sn(G, v).

For example, since sn(Kn, v) = 1 for all vertices v, we have that

ρ(Kn) = 1
n . The surviving rate was introduced by Cai and Wang,

and studied in [37]. The following lemma is left as an exercise.

Lemma 9.3. (1) For all graphs G of order n,

1

n
≤ ρ(G) < 1.

(2) For paths, we have that

ρ(Pn) = 1− 2

n
+

2

n2
.

226 9. Good Guys Versus Bad Guys

We do not know the exact surviving rate for many graph families,

even for Cartesian grids. It was proved in [36] that

5

8
−O

(
1

n2

)
≤ ρ(Pn�Pn) ≤

37

48
−O

(
1

n

)
.

It is even an open problem to determine the maximum number of

vertices saved for a fire starting in the centre of the grid; for example,

if the vertices on the grid are labeled (i, j) with 1 ≤ i, j ≤ n, it is

conjectured that

sn
(
Pn�Pn,

⌈
n
2

⌉
,
(⌈

n
2

⌉))
n2

=
1

4
+ o(1).

It is conjectured that the actual value of ρ(Pn�Pn) is 5
8 − O

(
1
n2

)
,

although this remains open at the time of writing. Consider the

following strategy, first given in [157], assuming the vertices of the

grid are labeled (r, c), where 1 ≤ r, c,≤ n. When the fire breaks out

at (r, c), 1 ≤ r ≤ c ≤ n, the firefighter saves the following vertices in

order:

(r + 1, c), (r + 1, c+ 1), (r + 2, c− 1), (r + 2, c+ 2),

(r + 3, c− 2), (r + 3, c+ 3), . . . , (r + c, 1),

(r + c, 2c), (r + c, 2c+ 1), . . . , (r + c, n).

It is an exercise to show that using this strategy,

n(n− r)− (c− 1)(n− c)

vertices are saved. It is conjectured that this is the optimal strategy

for grids. This has been shown if r = 1, 2 (see [145]). We also note

that Moeller and Wang [157] conjectured that for all vertices v

lim
n→∞

sn(Pn�Pn�Pn, v)

n3
= 0,

and this was proven by Develin and Hartke [67].

For trees we have the following result.

Lemma 9.4 ([145]). In an optimum strategy for the firefighter on a

tree, the firefighter saves a vertex adjacent to the burning vertices in

each round.

9.2. Firefighter 227

Proof. Suppose that the firefighter saves a vertex u not adjacent to

the burning vertices. As trees have unique paths connecting vertices,

the strategy which protects a closer vertex of the path connecting u

to a burning vertex saves more vertices. �

Recent work of Cai et al. [38] establishes an asymptotically tight

bound on the surviving rate of trees.

Theorem 9.5 ([38]). For a tree T, ρ(T) ≥ 1 − Θ
(

logn
n

)
. For the

complete ternary tree (that is, every vertex is degree 1 or 3), we have

equality.

We note that the lower bound in Theorem 9.5 was generalized in Cai

et al. [38] to outerplanar graphs. For sparse graphs, it is apparent

that survival rates should be relatively large. Finbow, Wang, and

Wang [78] showed that any graph G with n ≥ 2 vertices and size at

most
(
4
3 − ε

)
n has the property that ρ(G) ≥ 6

5ε, where 0 < ε < 5
24 is

fixed. In [178], this was improved to show that graphs with size at

most
(
15
11 − ε

)
n have surviving rate ρ(G) ≥ 1

60ε, where 0 < ε < 1
2 is

fixed. Moreover, a construction of a random graph has been proposed

to show that no further improvement is possible; that is, 15
11 is the

threshold.

We mention some results on firefighting in infinite grids. The

firefighters can protect vertices to create fire walls : barriers through

which the fire cannot escape. A fire is said to be contained if it is

surrounded by fire walls and can no longer spread. See Figure 9.2.

For grids, it is interesting how many firefighters are needed to

contain the fire; label this fG. For Cartesian grids, fG = 2 (see

[82, 157]), while in strong grids (that is, the strong product of two

infinite paths) fG = 4; see [150]. The triangular grid (also called the

isometric grid) is formed by tiling the plane regularly with equilateral

triangles. It was shown in [82, 149] that fG = 3. An open problem

from [148] is whether one firefighter can contain a fire on the infinite

hexagonal grid (that is, a tiling by equilateral hexagons).

9.2.1. Fighting intelligent fires. We consider a variant of fire-

fighting, called k-Firefighter for a fixed positive integer k, where at

each time-step, the fire chooses at most k edges to burn. This game is

228 9. Good Guys Versus Bad Guys

Figure 9.2. A fire wall in the infinite Cartesian grid. The
grey vertices are protected, while white are burning.

referred to as the k-Firefighter, and it was first studied in [30]. Note

that the fire now acts intelligently, unlike in Firefighter. Hence, we

have a two-player game which is even more akin to Cops and Rob-

bers. We note that the game of k-Firefighter was first suggested as a

direction for future investigation in [67]. For the rest of the section,

k is a fixed positive integer.

Assuming optimal play, for a vertex v in G, define snk(G, v) to be

the number of vertices that can be saved if a fire breaks out at v in

the game of k-Firefighter. For a finite graph G, define its k-surviving

rate to be

ρk(G) =
1

n2

∑
u∈V (G)

snk(G, u).

For example, for a clique Kn,

ρk(Kn) =
�(n− 1)/(k + 1)�

n
≥ 1

k + 1

(
1− 1

n

)
,

9.2. Firefighter 229

which is approximately 1
k+1 for n large. For a path,

ρk(Pn) = ρ(Pn) = 1− 2

n
+

2

n2
.

As adding edges does not increase the k-surviving rate, it follows

that cliques have the smallest surviving rates. Hence, for a graph

with n vertices we have that

(9.2) ρk(G) ≥ �(n− 1)/(k + 1)�
n

≥ 1

k + 1

(
1− 1

n

)
.

We note the following upper bound for the k-surviving rate of a con-

nected graph as a function of k and its order, whose proof is left as

an exercise.

Theorem 9.6 ([30]). For a connected graph G on n vertices,

ρk(G) ≤ 1− 2

n
+

1

n2
+

1

n2

⌈n− 1

k + 1

⌉
(9.3)

≤ 1− 1

n

(
2− 1

k + 1

)
+O

(1

n2

)
.

Note that the bound in (9.3) is sharp as equality holds for a star

on n vertices.

We now consider k-Firefighter played on random d-regular graphs

with the uniform probability distribution. The probability space on

d-regular graphs is denoted by Gn,d. Recall from Chapter 6 that an

event holds asymptotically almost surely or a.a.s. in Gn,d if it holds

with probability tending to one for n → ∞ with d ≥ 2 fixed, with

the proviso that n is even if d is odd. For more on random regular

graphs, see the survey [199].

One might expect, for example, that a typical cubic graph can be

well protected, especially in the case where k is small. However, as we

will see in Theorem 9.7, random regular graphs are flammable, in the

sense that the fire can a.a.s. burn a sizeable proportion of the graph.

We now present an asymptotic upper bound for the k-surviving rate

of random d-regular graphs for all values of d and k.

Theorem 9.7 ([30]). Let d ≥ 3, k ≥ 1, and fix ε > 0. Let

λ = 2
√
d− 1 + ε.

230 9. Good Guys Versus Bad Guys

Then, for G ∈ Gn,d we obtain that a.a.s.

(9.4)

ρk(G) ≤ (1 + o(1))

k + 1

(
1 +

λ

d

(√
k +

d

d− λ

))
=

(1 +O(d−1/2))

k + 1
.

By (9.2) and (9.4), we have that ρ(G, k) → 1
k+1 as d → ∞. Hence,

for large values of d, a.a.s. random d-regular graphs have, in a certain

sense, the smallest possible k-surviving rate.

9.3. Seepage

Like Intelligent Firefighting and Cops and Robbers, Seepage has in-

telligent opponents. Unlike Firefighting but like Cops and Robbers,

the game of Seepage has a definite goal rather than a score. This

good guy versus bad guy game was introduced in [55]. The motivat-

ing example was the 1973 eruption of the Eldfell volcano in Iceland.

In order to protect the harbour, the inhabitants poured water on the

lava in order to solidify it and thus, halt its progress. The mathemat-

ical model has two opponents, Sludge and Greens, a directed acyclic

graph (or dag) with one source (that is, the top of the volcano) and

many sinks (representing the lake). To simplify the diagrams, we

omit orientations of directed edges, and assume all edges point from

higher vertices to lower ones. See Figure 9.3. The players take turns,

with the Sludge going first by contaminating the top vertex (source).

On subsequent moves the Sludge contaminates a non-protected ver-

tex that is adjacent (that is, downhill) to a contaminated vertex. The

Greens, on their turn, choose some non-protected, non-contaminated

vertex to protect. Once protected or contaminated, a vertex stays in

that state to the end of the game. The Sludge wins if some sink is

contaminated; the Greens win if they erect a cutset of vertices which

separates the contaminated vertices from the sinks. The name “seep-

age” is used because unlike firefighting, the rate of contamination is

slow.

Unless otherwise specified, we only consider games in which there

is one Green; that is, only one vertex can be protected on each turn

of the Greens. A green-win dag is one in which the Greens can win;

9.3. Seepage 231

Figure 9.3. Seepage on a volcano overlooking a lake. The
white vertex is the source where the contamination begins.

otherwise, it is a sludge-win dag. The dag in Figure 9.4 is sludge-win;

see Exercise 8.

In a sludge-win graph, an efficient Sludge strategy pollutes only

the vertices of a directed path, and we say Sludge wins efficiently.

The following result is proven in [55].

Theorem 9.8 ([55]). If G is a sludge-win dag, then Sludge has an

efficient strategy.

The following basic question deserves our attention.

Question: Characterize the green-win dags.

We do not know the full answer to this problem. We note that

in [55] only green-win trees were characterized. Let T be a directed

tree with root x, v a vertex of T, and Tv the subtree rooted at v; that

is, the subtree downhill from v. Recall that the out-degree of a vertex

v, written d+(v), is the number of edges emanating from v (that is,

going downhill).

We are led to a characterization of green-win trees analogous to

the cop-win characterization of Theorem 2.3.

232 9. Good Guys Versus Bad Guys

Figure 9.4. Seepage on a truncated Cartesian product of paths.

Lemma 9.9 ([55]). If T is a tree with no vertex v where d+(v) = 1,

then T is sludge-win.

Theorem 9.10 ([55]). If v ∈ V (T) and d+(v) = 1, then T − Tv is

green-win if and only if T is green-win.

In particular, if T is green-win, then there exists a vertex v with

d+(v) = 1; moreover, deleting this v and all the vertices downhill from

it leaves a green-win tree. Part of the proof involves showing that,

unlike in Figure 9.3, a good move for the greens is to always move

just below a contaminated vertex. All the proofs can be extended to

characterizing trees which are green-win when the greens can protect

k vertices on each move.

The rest of [55] considers dags which are truncated Cartesian

products, as in Figure 9.3. Let Pn be the directed path (0, 1, . . . , n).

We consider the Cartesian product of copies of Pn rooted at the vertex

(0, 0, . . . , 0). (The Cartesian product of dags is defined in an analogous

9.4. Graph Searching 233

way to the undirected case.) For a fixed d > 0, let (G, d) be the

Cartesian product of the paths Pn which only includes the vertices

at distance d or less from the root. For a dag G, let gr(G) be the

least positive integer r, so that if Green may protect r vertices of G

on each move, the Green has a winning strategy in the Seepage game.

One surprising result is the following.

Theorem 9.11 ([55]). For d ≥ 3, we have that

gr(P 3
n , d) ≤ 2.

The following result gives an upper bound for paths.

Theorem 9.12 ([55]). For positive d,

gr(P k
n , d) ≤ min

1≤j≤k
{max{j, gr(P j

n, d− (k − j)n)}}.

In particular, we have the following.

Corollary 9.13 ([55]). If d ≥ (k − j)n+ 1, then gr(P k
n , d) ≤ j.

A specific case is considered in the next theorem.

Theorem 9.14 ([55]). If n > 8 and d > 8, then (P 3
n , d) is green-win.

These results suggest the following open problem.

Question: For what d, k, and n is gr(P k
n , d) = 1?

9.4. Graph Searching

T.D. Parsons was approached by a group of spelunkers who had a

problem: How would you search for a person lost, and possibly in-

jured, in a network of caves? He wrote two papers on this topic [173,

174], and introduced the field of graph searching. The original model

had issues of how long it took to search individual edges and that

the lost person or intruder could hide along an edge; also, another

feature was that the intruder was infinitely fast. Another interpreta-

tion that came later, is that a network could be contaminated by a

noxious chemical or virulent biological agent. The issue of dawdling

or stopping along an edge becomes irrelevant. If a cleaned edge were

re-exposed to the agent, then it and all the other cleaned edges to

234 9. Good Guys Versus Bad Guys

which it was connected would have to be considered as recontami-

nated, giving credence to the “infinitely fast” aspect. The subject of

graph searching has a large literature. In 2004 Alspach [7] gave a brief

survey, and in 2008 Fomin and Thilikos [87] compiled a bibliography

with 172 entries.

There are two basic problems: only the vertices must be searched,

or only the edges. In the former one, we may think of the edges as

doors and the vertices as rooms; in the second the edges are corri-

dors. The basic models may have the searchers moving in one of two

ways: moving from vertex-to-vertex along an edge or jumping (or

teleporting) immediately from one vertex to any other vertex. Other

constraints may be placed on the searchers. A vertex or an edge

can be searched in different ways: traversing the edge or visiting the

vertex, being adjacent, or being incident to the vertex the searcher

occupies. In all cases, once cleaned, an edge stays clean unless there is

a searcher-free path from one of its endpoints to a contaminated edge

or vertex. In Figure 9.5, the searchers traverse edges. In Figure 9.5 A,

the single searcher on a cannot clean the horizontal edge without re-

contaminating the whole network. In Figure 9.5 B, two searchers can

clean the two contaminated edges incident with a but that is as far

as they can go without recontaminating the network. Because of the

original motivating example and the methods used, graphs are not

restricted to being simple but may have loops or multiple edges.

In any model of graph searching, the most fundamental question

is: What is the least number of searchers needed to clean the graph?

If G is a finite graph, then placing a searcher on every vertex, and

possibly one more to clean all of the edges, suffices to clean the graph.

Hence, it is evident that the number of required searchers is finite.

Suppose the edges of G must be cleaned. In the earlier liter-

ature, this was referred to as sweeping a graph but the term has

been replaced by edge searching. Let s(G) denote the fewest number

of searchers required if the edges must be traversed to be cleaned,

usually called the edge search number ; ls(G) if an edge can only be

cleaned by having searchers at either end of the edge (“l” for laser or

line-of-sight); and xs(G) if both methods are employed. Alspach [7]

shows the following.

9.4. Graph Searching 235

Figure 9.5. Two instances of graph searching.

Theorem 9.15. If G is a graph, then the following inequalities hold:

(1) s(G)− 1 ≤ ls(G) ≤ s(G) + 1.

(2) s(G)− 1 ≤ xs(G) ≤ s(G).

(3) ls(G)− 1 ≤ xs(G) ≤ ls(G).

It was an early conjecture that a graph can be edge-searched

with the minimum number of searchers without allowing any edges

to be recontaminated. Lapaugh [135] showed this is true and changed

the status of the problem from being NP-hard to NP-complete. “No

recontamination” also allows the idea of employing strategies that

at the end of each move have reduced the contaminated area, often

called the intruder territory. We introduced this back in Section 4.4

in planar graphs where it was called the robber territory.

Recall that the vertex separation number, or pathwidth, of a graph,

vs(G) was introduced in Chapter 8. Ellis et al. [71] showed that

vs(G) ≤ s(G) ≤ vs(G) + 2.

It follows that for any positive integer k there is a tree which requires

at least k searchers to clean it; this is in direct contrast to all finite

236 9. Good Guys Versus Bad Guys

T T ′

v

Figure 9.6. The tree T requires two searchers, while T ′ re-

quires three searchers.

trees being cop-win. There is a nice recursive construction to give

such a tree for each k.

Theorem 9.16 ([173]). Let T1, T2, and T3 be vertex-disjoint trees

each having at least one edge, and let vi be a vertex of degree one in

Ti, i = 1, 2, 3. Let T ′ be the tree obtained by identifying the vertices

v1, v2, v3 as a single vertex v. If s(Ti) = k, with i = 1, 2, 3, then

s(T) = k + 1.

Figure 9.6 shows the construction of a tree requiring three searchers.

We remark also that Megiddo et al. [147] showed that the edge search

number of a tree can be computed in linear time, but that in general,

determining whether s(G) ≤ k for a given k is NP-complete. In the

same paper, it is shown that if G has no cut vertices, then s(G) ≤ 3 if

and only if G is a member of a class of outerplanar graphs, and there

is a linear time algorithm recognizing such graphs.

Alspach et al. [8] give lower bounds for the edge search number.

Recall that for a graph G, δ(G) is the minimum degree of G, and

ω(G) is the size of the largest clique.

Theorem 9.17 ([8]). If G is a connected graph, then the following

inequalities hold.

(1) If s(G) ≥ δ(G) and δ(G) ≥ 3, then s(G) ≥ δ(G) + 1.

(2) If ω(G) ≥ 4, then s(G) ≥ ω(G).

(3) If H is a minor of G, then s(G) ≥ s(H).

9.5. Helicopter Cops and Robbers and Marshals 237

Other variants have the searchers constrained in some way. For

example the cleaned area has to be a connected subgraph. The issue

of minimizing the “cost” of the searchers has also been considered.

9.5. Helicopter Cops and Robbers and Marshals

The vertex separation number, introduced in Chapter 8, was shown

to be a searching parameter in the last section. By varying the rules

of the game, other useful graph parameters can be defined. The main

and next concept after vertex separation number or pathwidth to be

shown to be equivalent to a searching game was treewidth in [188].

In a tree decomposition, each vertex of the graph is represented

by a subtree, such that vertices are adjacent only when the corre-

sponding subtrees intersect. Formally, given a graph G = (V,E), a

tree decomposition is a pair (X,T), where X = {X1, . . . , Xn} is a

family of subsets of V , and T is a tree whose vertices are the subsets

Xi, satisfying the following three properties:

(1) V =
⋃n

i=1 Xi. That is, each graph vertex is associated with

at least one tree vertex.

(2) For every edge (v, w) in the graph, there is a subset Xi that

contains both v and w. That is, vertices are adjacent in

G only when the corresponding subtrees have a vertex in

common.

(3) If Xi, Xj , and Xk are vertices and Xk is on the path from

Xi to Xj , then Xi ∩Xj ⊆ Xk.

The width of a tree decomposition is the size of its largest set

Xi minus one. The treewidth of a graph G, written tw(G), is the

minimum width among all possible tree decompositions of G. In

Figure 9.7 we have that |X1| = |X3| = 3, |X4| = 2 and |X2| = 4 so

the treewidth of G is at most 4− 1 = 3.

The rules for Helicopter Cops and Robbers are as follows: the cops

choose vertices, the robber then chooses a vertex; the positions of both

players are known to each other. The moves are almost simultaneous:

the cops announce which ones will move and are “transported by

helicopter” to the new positions; that is, they are not on the graph

238 9. Good Guys Versus Bad Guys

g

g

f

f

f

d

d

d

e

e

e

G

a

a

b

b

b

b

c

c

Figure 9.7. A tree decomposition of G.

for a period of time. Note that a cop can move to any vertex, not only

its neighbors. During this time, the robber can move from his present

position to any vertex that is reachable by a path that does not go

through a vertex occupied by a cop still on the graph. In particular,

this also means that he could remain on the same vertex. The game

is over if a cop occupies the same vertex as the robber. Seymour and

Thomas [188] gave a characterization of treewidth in terms of this

game.

Theorem 9.18 ([188]). A graph G has treewidth at most k if k + 1

cops can capture the robber in Helicopter Cops and Robbers.

9.6. Cleaning 239

The width and other definitions become technical so we do not go

into detail in this abbreviated survey. A more powerful cop has been

defined, a marshal, who occupies a subset of vertices or hyperedges

which are defined as part of a hypergraph. Adler [1] considers the

game of Marshals and a visible robber; in [117], the robber is invisible

to the marshals but is inert : he only moves if a marshal will land on

the same vertex.

9.6. Cleaning

In the cleaning model, imagine a network of water pipes that peri-

odically have to be cleaned, by brushes, of a contaminant that re-

generates, say algae or bio-film, but the contaminant grows in a time

comparable with the time needed to clean the network. The regrowth

is slowed if during the cleaning process, the cleaned edges are not

exposed to water from “dirty” pipes. The cleaning model was sug-

gested by the real-life situation of cleaning zebra mussels from the

water pipes in a nuclear power plant on the Great Lakes [114, 128],

and was first presented at the 2005 East Coast Combinatorics Con-

ference by the second author of this book. Since then several papers

have appeared; see [5, 95, 96, 151, 153, 154, 168]. A related clean-

ing model called the robot vacuum, will be dealt with in Section 9.6.3.

When the cleaning process is completed, the contamination will come

back and the network recleaned. This repetition is an integral part of

the problem statement unlike other good and bad guy games. More-

over, in a real-life situation it would be efficient if the brushes did not

have to reposition themselves, but could start the next cleaning cycle

from their final position from the previous cycle, so this is also added

to the problem specification.

The cleaning is accomplished by brushes assigned to some ver-

tices. Vertices are either dirty or clean. An edge is dirty if both its

endpoints are dirty. Initially, all vertices and edges are dirty. A vertex

is primed if it has at least as many brushes as incident dirty edges.

When a primed vertex is fired, it sends a brush down each dirty edge

which is then added to the brushes at each of the adjacent vertices.

Once a brush has traversed an edge, that edge has been cleaned. A

graph G has been cleaned once every edge of G has been cleaned.

240 9. Good Guys Versus Bad Guys

c e

ec
d

ec
d

e
d

e
d

b

ec
d

b

d

b

b

b

a

c
d

b a

a

c

b a

a

a

Figure 9.8. Cleaning a graph twice in succession.

Since a clean edge never takes part in the cleaning process again, we

may as well delete it. Figure 9.8 illustrates the cleaning of a graph

with two brushes, not once but twice.

At any stage during the cleaning, there may be more than one

primed vertex, and here the model splits into two cases. In sequential

cleaning, any primed vertex is chosen to fire, and if after firing there

are still other primed vertices, one of them is chosen to fire, and so

on. In parallel cleaning all primed vertices fire at the same time. Let

a good configuration be a placement of brushes on a graph G that,

after successively firing primed vertices, will clean G.

The main questions for both sequential and parallel are the fol-

lowing:

9.6. Cleaning 241

(1) What good configurations will result in a final configuration

that will also be a good configuration for the original graph?

(2) Among such configurations, which has the fewest number of

brushes?

We will always assume the that the original graph is connected.

It then follows that if a vertex becomes isolated, then it will have at

least one brush.

9.6.1. Sequential Cleaning. The element of choice in the defini-

tion of Sequential Cleaning might be worrying, but fortunately, the

choice is irrelevant. Before getting into the details, we need to be able

to describe the inner workings of the cleaning process. Given a graph

G, let bi(x) be the number of brushes on vertex x at time i, where

b0(x) is the number of brushes initially assigned to x. Let di(x) be

the number of dirty edges incident with x at time i. A sequence of

vertices, a1, a2, . . . , ap in graph G is a cleaning sequence if a1 through

ap can be cleaned in that order and that, after ap, no other vertex has

enough brushes to be cleaned. A cleaning process is an initial place-

ment of brushes together with a cleaning sequence. More formally, a

cleaning process starts with a configuration of brushes

ω(G) = {b0(x) : x ∈ V (G)}

and is a sequence of vertices a1, a2, . . . , ap such that ai is primed in

V (G)\{a1, a2, . . . , ai−1} and is the next vertex to be fired. Note that

(1) bi+1(x) = bi(x) and di+1(x) = di(x) if x has already been

fired or x �∈ N [ai];

(2) bi+1(x) = bi(x) + 1 and di+1(x) = di(x) − 1 if x ∈ N(ai);

and

(3) bi+1(x) = bi(x)− di(x) and di+1(x) = 0 if x = ai.

A cleaning process depends upon the graph and initial placement of

brushes, but it will cause no confusion if we drop these and denote

the process by ω.

When a cleaning sequence, say ω, is being considered and needs to

be specified, we will insert it as a superscript as in bωi (x) and dωi (x).

242 9. Good Guys Versus Bad Guys

A good configuration, is one such that there is a cleaning sequence

that returns an empty set of dirty edges.

The brush number of G, written b(G), is the minimum number

of brushes needed to clean G. Similarly, bω(G) is defined as the

minimum number of brushes needed to clean G using the cleaning

sequence ω. It is evident that for every cleaning sequence ω, bω(G) ≥
b(G) and

b(G) = min
ω

bω(G).

(The last relation can be used as an alternative definition of b(G).) In

general, it is difficult to compute b(G) (it is in factNP-complete [96]),

but bω(G) can be easily computed. To see this, choose a sequence

(a1, a2, . . . , an), of the vertices and regard it as a linear layout, start-

ing with a1 on the left. After a1, a2, . . . , ai−1 have been fired, then

in order to fire ai, b0(ai) needs to make up the discrepancy between

the number of edges to ai+1, ai+2, . . . , an (the number of dirty edges

at ai at time i) and the number of brushes it has received from

a1, a2, . . . , ai−1. Let l(v) and r(v) be the number of edges going to the

left and to the right, respectively, from v in the linear layout. Then

we have that

(9.5) b0(v) = max{r(v)− l(v), 0}.
For a given linear layout ω, this gives

(9.6) bω(G) =
∑

v∈V (G)

max{r(v)− l(v), 0}.

This is not the way it is defined in [153], but it is an equivalent formu-

lation and it makes the connection clear to the “imbalance problem”

which is about to be introduced.

In [153], the first paper on the subject, the authors first eliminate

the “choices” in the cleaning sequence.

Theorem 9.19 ([153]). Given a graph G and the initial configuration

of brushes b0, the cleaning algorithm returns a unique final set of dirty

vertices.

Proof. Let α = (a1, a2, . . . , ap) and ω = (w1, w2, . . . , wq) be two

cleaning sequences with initial configuration b0; that is, in both cases,

the ith vertex is primed after the first i−1 have been fired. We assume

9.6. Cleaning 243

that in both cases, at the end there are no further primed but unfired

vertices. Note that it is enough to prove that

{a1, a2, . . . , ap} = {w1, w2, . . . , wq}.

Suppose that there is a vertex in ω which is not in α. Let wi,

1 ≤ i ≤ q, be the first such vertex. Consider now the configura-

tion at the final step p of α and ω at step i − 1. In ω at step i,

bωi (wi) ≥ dωi (wi). Since α contains vertices w1, w2, . . . , wi−1, then

by the time α has finished, wi has received brushes from the same

subset of w1, w2, . . . , wi−1 as it did in ω and possibly more. Also, for

the same reasons, the number of adjacent dirty edges, dαp (wi) is no

greater than dωi (wi). In summary,

dαp (wi) ≤ dωi (wi) ≤ bωi (wi) ≤ bαp (wi),

but this is a contradiction since wi is primed in α but unfired. A

symmetric argument can be used to show that ω contains all vertices

of α. �

In [153], it is shown that the requirement that the final con-

figuration be a good configuration for the next cleaning process is

automatic, and that a cleaning sequence is the reverse of the original.

Theorem 9.20 ([153]). Given an initial configuration b0, suppose G

can be cleaned yielding the final configuration bn, where n = |V (G)|.
Then, with the initial configuration b′0 = bn, G can be cleaned yielding

the final configuration b′n = b0.

The original problem called for the edges to be cleaned. By insist-

ing that the vertices also be cleaned, even if all the incident edges have

been cleaned by incoming brushes, it easy to show that the reverse

sequence works. If the sequence had stopped when the edges had

been cleaned, then it would be difficult to identify the new cleaning

sequence.

Consider the following graph decision problem.

CLEAN: Given a graph G and an integer k ≥ 0, is b(G) ≤ k?

In [96], they give the following hardness result.

244 9. Good Guys Versus Bad Guys

Theorem 9.21 ([96]). CLEAN is NP-complete and remains NP-

complete for bipartite graphs of maximum degree 6, planar graphs of

maximum degree 4, and 5-regular graphs.

Given a graph G = (V,E) and a linear layout π = (a1, a2, . . . , an)

of G, the imbalance of a vertex v ∈ V with respect to π is φπ(v) =

|r(v)− l(v)| , and the total imbalance Imbπ(G) of an ordering is the

sum of the imbalance of each vertex: Imbπ(G) =
∑

v∈V φπ(v). Let

Imb(G) denote the minimum total imbalance taken over all possible

linear layouts. A vertex v is said to be imbalanced in a linear layout

π if Imbπ(v) > 0.

Consider the following graph decision problem.

BALANCED VERTEX ORDERING: Given an integer k ≥ 0, does

the graph G have a vertex-ordering with total imbalance at most k?

It is known that the BALANCED VERTEX ORDERING is NP-

complete; see [127]. By tying the two problems together, the hardness

result for CLEAN follows.

Theorem 9.22 ([96]). For a graph G and a vertex-ordering π of G,

Imbπ(G) = 2bπ(G).

Proof. By the definition of Imbπ, φπ, bπ, and equations (9.5) and

(9.6), we have that

Imbπ(G) =
∑

v∈V (G)

φπ(v)

=
∑

v∈V (G)

∣∣|N+
π (v)| − |N−

π (v)|
∣∣

=
∑

v∈V (G)

max{|N+
π (v)| − |N−

π (v)|, 0}

+
∑

v∈V (G)

max{|N−
π (v)| − |N+

π (v)|, 0}

=
∑

v∈V (G)

b0(v) +
∑
v∈V

bn(v)

= 2bπ(G). �

9.6. Cleaning 245

Since the CLEAN is NP-complete, an important issue is bounds.

Given any good configuration of brushes, a brush path is the set of

edges that a particular brush takes during the cleaning sequence. It is

easy to see that every odd vertex has a brush either at the beginning

or the end of the sequence. Let do(G) be the number of vertices of

odd degree in G.

Theorem 9.23 ([153]). For a graph G, b(G) ≥ do(G)
2 .

In practice, the most useful lower bound appears to be given by

the Boundary Edge Theorem, stated below. Intuitively, given a graph

G, let S be an induced subgraph. If the vertices of S are cleaned first,

then each edges between S and G− S is cleaned by a different brush

since no brush that leaves S can re-enter.

Theorem 9.24 (Boundary Edge Theorem, [153]). Let G be a graph,

and let

(9.7) bk = min
S⊆V,|S|=k

{∑
v∈S

deg(v)− 2|E(G[S])|
}
.

Then b(G) ≥ bk.

Proof. Let {a1, a2, . . . , an} be a linear layout that realizes b(G), and

let S = {a1, a2, . . . , ak}. Then equation (9.7) gives

b(G) =

n∑
i=1

max{r(ai)− l(ai), 0}

≥
k∑

i=1

max{r(ai)− l(ai), 0}.

For any vertex v in a linear layout, deg(v) = r(v) + l(v); thus,

r(ai)− l(ai) = deg(ai)− 2l(ai).

In this linear layout, each edge of G[S] appears exactly once as a

left edge of some ai, i = 1, . . . , k; hence,
∑k

i=1 l(ai) = |E(G[S])|.

246 9. Good Guys Versus Bad Guys

Therefore, we have that

b(G) ≥
k∑

i=1

(r(ai)− l(ai))

=

k∑
i=1

(degG(ai)− 2l(ai))

=

(
k∑

i=1

degG(ai)

)
− 2|E(G[S])| ≥ bk. �

This bound may be a little difficult to calculate but this result

does give an easier-to-calculate lower bound.

Corollary 9.25 ([153]). For a graph G with girth g ≤ ∞,

b(G) ≥ (δ(G)− 2)g.

Upper bounds are harder to find. Alon, Pra�lat, and Wormald

[5] have an upper bound, slightly better than that in [151], which is

derived by exploiting random permutations.

Theorem 9.26 ([5]). If G is a graph with v vertices and e edges,

then

b(G) ≤ e

2
+

v

4
− 1

4

⎛⎜⎜⎝ ∑
v∈V (G),

deg(v) is odd

1

deg(v) + 1

⎞⎟⎟⎠ .

For Cartesian products, there is a known reasonable upper bound.

Theorem 9.27 ([153]). If G and H are graphs, then

b(G�H) ≤ |V (H)|b(G) + |V (G)|b(H).

However, the proof is based on cleaning one copy of, say G, at

a time. The paper contains an example where this approach is not

optimal for the product.

The brush numbers for some familiar families of graphs are known

or have good approximations, as summarized in the following theo-

rem. Recall that do(G) is the number of odd-degree vertices.

9.6. Cleaning 247

Theorem 9.28 ([153]). (1) For any tree T , b(T) =
d0(T)

2
.

(2) If n is even, then b(Kn) =
n2

4
; otherwise, b(Kn) =

n2 − 1

4
.

(3) For the complete multipartite graph G with m color classes

each of cardinality n, we have that

b(G) =
m2n2

4
+O(mn2).

(4) For some constants c1, c2, we have that

c12
n ≤ b(Qn) ≤ c22

n.

(5) For m,n > 1, b(Pm�Pn) = m+ n− 2.

Cleaning processes involve deletion of vertices (and the deletion

of incident edges). On random regular graphs, they are ideally set up

to use the differential equation method; see [200]. Randomly cleaning

a d-regular graph (that is, choose a random linear order) means that

initially, many vertices of degree d will be cleaned first. For example,

if d = 2 or d = 3, then there will be a second phase where vertices of

lower degree are now primed and can be cleaned automatically (see

[154]). An issue is the number of connected components that the

graph possesses. The analysis becomes more complicated for larger

d. The algorithm is called degree-greedy because the vertex being

cleaned is chosen from those with the lowest degree.

Theorem 9.29 ([5]). (1) The brush number of a random d-

regular graph is a.a.s.

n

4
(d+ o(d)).

(2) If ud is the total number of brushes needed to clean the ran-

dom d-regular graph using the degree-greedy algorithm, then

lim
d→∞

ud

dn
=

1

4
.

In particular, for large d, the degree-greedy algorithm a.a.s.

achieves the optimal number of brushes up to a lower order

term.

248 9. Good Guys Versus Bad Guys

Figure 9.9. An irredundant configuration for P7 using
B(P7) = 6 brooms.

Cleaning with brushes is a minimization problem. In [153], the

maximization version is introduced under the heading cleaning with

brooms. Brooms are big brushes, but we will still refer to them as

brushes! A configuration is irredundant if there is a linear layout

that has every broom cleaning at least one edge. In Figure 9.9 if

we use the linear layout (a, c, d, b, e, f, g), then every brush gets used

once. The broom number of a graph G, denoted B(G), is the largest

number of brushes in an irredundant good configuration. Since each

brush cleans at least one edge, we have that B(G) ≤ |E(G)|.
Theorem 9.30 ([155]). For a graph G, B(G) = |E(G)| if and only

if G is bipartite.

Theorem 9.26 is based on an argument about averages so it is of

no surprise that it also provides a lower bound for B(G).

Theorem 9.31 ([155]). If G is a graph with v vertices and e edges,

then

B(G) ≥ e

2
+

v − 1

4
− 1

4

⎛⎜⎜⎝ ∑
v∈V (G),

deg(v) is even

1

deg(v) + 1

⎞⎟⎟⎠ .

An intriguing result is the following.

Theorem 9.32 ([155]). Fix any integer n ≥ 1. Then for each

k = 0, 1, . . . , �n2/4�, there exist graphs G and G′ on n vertices with

B(G) = b(G′) = k. No other value can be obtained.

Just like brushes, the broom cleaning problem on random regular

graphs is approachable by similar methods used for the brush number.

Theorem 9.33 ([176]). For fixed large d, the broom number of a

random d-regular graph on n vertices is a.a.s. n
4 (d+Θ(

√
d)).

9.6. Cleaning 249

Figure 9.10. Parallel cleaning a triangle.

9.6.2. Parallel Cleaning. Parallel cleaning, introduced in [95], is

more complicated than ordinary cleaning. For example, in Figure 9.10

two brushes at a are enough to clean the graph, but at the second

step both b and c are primed and so both fire, swapping brushes.

The final configuration is not a good configuration! It is possible for

a good configuration to cause the graph to be cleaned once, twice,

even thrice but no more. An immediate question (to which is there is

no known answer) is the following: For a graph G, how many times

must a good configuration clean G for the cleaning process to go on

forever?

Gaspers et al. [95] differentiate between the parallel brush num-

ber, written bp(G), the least number of brushes required to clean

G with parallel cleaning, and the continual parallel brush number,

written cbp(G), the least number of brushes required so that G is

continually cleaned. In [153], it was shown that

b(G) = bp(G).

250 9. Good Guys Versus Bad Guys

One can focus on the number of steps required to clean G. If

the contaminant grows quickly enough, then every edge may have

to be cleaned at every stage. This implies that in the initial and

final configurations, each edge must be incident with a primed vertex.

The continual parallel one-step brush number, written cbp1(G), is the

minimum number of brushes required to clean every edge on each

firing.

Theorem 9.34 ([95]). If G is a graph, then the following equalities

hold:

cbp1(G) =

{
|E(G)| if G is bipartite,

2|E(G)| otherwise.

For cbp(G), very little else is known apart from its values on some

classes of graphs.

Theorem 9.35 ([95]). (1) For n ≥ 2,

cbp(Cn) =

⎧⎪⎪⎨⎪⎪⎩
2 if n is even,

3 if n = 3,

4 otherwise.

(2) For any tree T , cbp(T) = b(T) = bp(T).

(3) For all integers m,n > 0, cbp(Km,n) = �mn/2�.
(4) For Kn,

5/16n2 +O(n) ≤ cbp(Kn) ≤ 4/9n2 +O(n).

The proof of item (2) for trees requires the following result.

Lemma 9.36 ([95]). Consider a parallel cleaning sequence cleaning

a tree T using b(T) = bp(T) brushes. The set of vertices cleaned at

each time-step is an independent set.

There are many unanswered questions for parallel cleaning; one

goal is to find good upper and lower bounds. The authors of [95]

highlight some problems which should be feasible. For instance, if G

is bipartite, then can the difference between cbp(G) and b(G) be arbi-

trarily large? Another problem is to find the exact value of cbp(Kn).

9.6. Cleaning 251

9.6.3. Robot Vacuums. In this model, introduced by Messinger

and Nowakowski in [152], the contamination does re-occur but at a

pace much slower than the time needed to clean the graph. Graphs in

this section are allowed both loops and multiple edges. In this case,

one could imagine a large building with many corridors. A robot

cleans these corridors in a greedy fashion, so that the next corridor

cleaned is always the dirtiest to which it is adjacent. (There could

be a sensor at each end of the corridor which indicates the time it

was last cleaned, thereby relieving the robot from making any real

decisions.) Initially, the edges of the graph will be assigned different

weights indicating the last time each was cleaned. The robot’s initial

position is any given vertex. We will also assume that each edge

takes the same (unit) amount of time to clean. Weights are taken

as negative integers, with the initial weights for the graph G being

−1,−2, . . . ,−|E(G)|. See Figure 9.11 for two different weightings on

the same graph. We leave the reader to show (Exercise 22) that for

a connected graph, one robot will eventually clean the graph.

There is a remarkable amount of “self-stabilization” in the robot

vacuum process. Let S(G) be the maximum number of steps needed

for the robot to clean every edge once. Let T (G) be the time needed

for all the edges to be cleaned the first time. The first time the graph

Figure 9.11. In the upper edge-weighting, the robot cleans
the graph after 10 steps, while 30 steps are needed in the lower
edge-weighting.

252 9. Good Guys Versus Bad Guys

is cleaned, the robot spends much time wandering around but after

that it becomes rather efficient. An Eulerian (semi-Eulerian) graph

is one which contains a closed (not necessarily closed) walk in which

all the edges are distinct, and which visits each edge exactly once.

As is well known, a connected graph is Eulerian if and only if every

vertex has even degree, while semi-Eulerian graphs are precisely those

with at most two vertices of odd degree. (See Exercise 23.)

Theorem 9.37 ([152]). If G is an Eulerian graph, then after the first

time every edge has been cleaned (that is, after time T (G)) we have

that S(G) = |E(G)|, and the initial and final locations of the robot

are the same. If G is a semi-Eulerian graph, then S(G) = |E(G)|,
and the initial and final locations are the two vertices of odd degree.

How large can T (G) be? Li and Vetta [139] give an example

that takes exponential time. The cover time, written c(G), of a con-

nected graph G is the maximum number of steps, over all initial edge

weightings w and all possible starting vertices s, until each edge has

been visited. Let Ce be the worst-case cover time over all graphs

containing exactly e edges.

Theorem 9.38 ([139]). There exists a constant d > 0 such that, for

all e,

Ce ≥ �d(3/2)e/5 − 1/2�.
Moreover, Ce ≤ 3e/3+1 − 3.

If the graph is not Eulerian, then [152] settles the question of

what the path of the robot becomes for a few cases, but nothing is

known in the general case. In [139], the case of several robots is

introduced. The “self-stabilization” seen in robot vacuum is also a

feature of so-called ant algorithms (such as the well-known Langton’s

ant, which is capable of simulating a universal Turing machine; see

[91] and [134]). The Eulerian results of [152] are reminiscent of those

in [202] but the lead-in times are different.

9.7. Combinatorial Games

We have mentioned many games in this book, and it is worthwhile

mentioning that there is a field of study called combinatorial game

9.7. Combinatorial Games 253

theory. In this subject, there are two players who move alternately,

there are no chance devices, and there is perfect information (both

players know the state of play at all times). Winning Ways [17] (all

four volumes) is the source of the theory in general. Lessons in Play

[3] gives an introduction to the theory when the games are finite and

the last person to move wins the game. We will take a closer look

at the game of Angel and Devil that has some aspects in common

with Cops and Robbers. We will first discuss some of the previously

mentioned games in the framework of combinatorial games. Most of

this is speculative since this had not been the thrust of the research

done on these topics.

9.7.1. Cops and Robbers. This game is not necessarily finite and

positions can repeat so this is technically a loopy game, although if

the cops can win, letting the game go on indefinitely seems a waste

of time. Adding an incentive for the cops to finish the game might be

needed. Also, if the cops can win, then the robber cannot be allowed

to make the last move. The rules can easily be amended so as to not

allow the robber to move onto a vertex occupied by a cop. Hill [113]

considers not allowing a cop or the robber to revisit a vertex. Small

examples indicate that a good strategy is to force your opponent into

a smaller subgraph than the one you are in and just run him out of

moves without having to capture or avoid him. None of the other

cops or marshals and robber variants have been considered in this

light.

9.7.2. Seepage. In this case, we impose the condition that the game

is over when the lake is contaminated or when the Greens have con-

structed a cutset between the contaminated vertices and the lake.

This is an all-small game (either both players can move or neither

can), and a measure, atomic weight, that approximates the game the-

oretic value, can give information about the game. Specifically, if the

atomic weight is a positive integer k, then the Greens can let the

Sludge have at least k − 1 moves before they have to respond, and

then only one Green need move! If k is a negative integer, then to

win, the Greens need to protect between |k|−2 and |k|+1 vertices on

the next move, and then only one vertex per turn after that to win.

254 9. Good Guys Versus Bad Guys

Fortunately (or unfortunately?), the atomic weight does not have to

be an integer, and as the situation becomes more complicated so does

the atomic weight.

9.7.3. Intelligent Firefighting. For a finite graph the game ends

in a finite number of moves but the goals are not well defined enough

to know who has won. Nonetheless, a score can be defined: −1 for

each vertex that the fire consumes, and +1 for each vertex that fire-

fighters have saved. The game Go is another scoring game. In the

very end of the end-game, each player expects to get one point. The

analysis becomes simplified if each player is forced to pay a point

(taxed or cooled by one) on each move. Such an approach is possible

for Intelligent Firefighting, except we tax the firefighters by one and

the fire by k.

9.7.4. Cleaning. This is not naturally a game, but more of a puzzle.

It can be turned into a game by allowing the two players to put a

brush anywhere, and when a vertex is primed it then fires. The player

who causes the graph to be cleaned wins. P. Pra�lat and P. Gordino-

wicz [101] prove that the second player wins on all complete graphs

except K1.

9.7.5. The Angel and Devil. The Angel and the Devil play their

game on an infinite chessboard, with one square for each ordered pair

of integers (x, y). On his turn, the Devil may eat any square of the

board whatsoever; this square is then no longer available to the Angel.

The Angel, of power d, can move to any uneaten square (X,Y) that

is at most d moves away from its present position (x, y); that is, to

any (X,Y) where |X − x| ≤ d and |Y − y| ≤ d. The Devil wins if

he can strand the Angel; that is, surround him by a moat of eaten

squares of width at least d. The Angel wins just if he can continue to

move forever. The main question here is: For which d can the Devil

win?

The problem was introduced in [17] volume 3, page 643, and in

[63], Conway asked whether an Angel of some power can defeat the

Devil. In the same paper. Conway explores some strategies that the

Angel might try: potential functions that are sensitive to locally eaten

9.7. Combinatorial Games 255

squares, potential functions that are sensitive to distant eaten squares,

always increase the y-coordinate, never decrease the y-coordinate, or

always increase x + y. He shows that in all cases and for any d, the

Devil will catch the Angel.

In the last five years, a number of breakthroughs have occurred.

Kutz [131] showed that in three dimensions, an Angel of power 13

can escape. In the same year, and independently, Bollobás and Leader

[20] also showed the same result, with d = 20, 000, but the arguments

could be tightened to reduce that value.

In 2006 Bowditch [32] proved that with d = 4, the Angel has a

computable winning strategy. And again in the same year, Mathe

[146] proved the same with d = 2.

9.7.6. Hex and Maker- games. Hex is played on a n × n board

where the cells are hexagons. Two opposite sides are colored red

and the other two white. One player places red tokens the other

white and they attempt to build a (connected) path between the

two boundaries of their color. This was originally invented by Piet

Hein, and independently but later by John Nash. They both proved

that the game cannot end in a tie and there is a first player winning

strategy. See [41] for a brief but informative history. The game was

introduced to a wide audience by Gardner [93]. Hex is an example of

a Maker-Maker game—both players want to make a specific subgraph

(or other object). Maker-Breaker is a related set of games where one

player wants to make a specific subgraph (or object) and the other

wants to prevent this. For example, Seepage, which is related to the

Shannon Switching game [136], is a Maker-Breaker game.

256 9. Good Guys Versus Bad Guys

Exercises

1. Verify the formula (9.1).

2. Give infinitely many examples of graphs where the optimum strat-

egy for the firefighter is to protect vertices which are non-adjacent

to burning vertices.

3. Prove Lemma 9.3.

4. Prove that two firefighters are enough to contain a fire breaking

out in the infinite hexagonal grid.

5. [149] The infinite triangular grid T is formed by tiling the plane

regularly with equilateral triangles. Prove that if a finite number

k > 0 of fires break out anywhere in T , then three firefighters

suffice to contain the fire.

6. [148] The infinite strong half grid S is defined as the first and

fourth quadrants of the strong grid. Show that two firefighters

cannot contain a fire breaking out in S.

7. Prove Theorem 9.6.

8. In Figure 9.4, the source is contaminated and there is only one

Green. Who wins when the Greens move first? When the Sludge

moves first?

9. [55] Derive an O(n2) algorithm that determines if a rooted di-

rected tree is green-win.

10. [55] Prove Theorem 9.10.

11. (a) Derive that ρk(Kn) =
�(n−1)/(k+1)�

n .

(b) Show that ρk(Pn) = ρ(Pn) = 1− 2
n + 2

n2 .

12. (a) Prove that if H is a subgraph of G, then tw(H) ≤ tw(G).

(b) Use Theorem 9.18 to prove that the n×n Cartesian grid has

treewidth n.

13. Prove Theorem 9.23.

14. Prove items (1), (2), and (3) of Theorem 9.28.

15. Let H be an induced subgraph of G. Show that b(G) ≥ b(H).

Exercises 257

16. (a) Verify directly (that is, without Theorem 9.30) that

B(P7) = 6.

(b) Generalize (a) to show directly that B(Pn) = n− 1.

17. Prove that if H is a subgraph of G, then B(H) ≤ B(G).

18. [155] Prove that B(G) = b(p) if and only if G is a disjoint union

of cliques.

19. Prove Theorem 9.34 in the case that G is bipartite.

20. Prove Theorem 9.35 (1).

21. Verify that it takes 10 (and 30) time-steps to clean the upper

(and lower) weightings (respectively) of the graph in Figure 9.11

using the robot vacuum.

22. If G is a finite connected graph, then show that the robot vacuum

will eventually clean every edge of G.

23. (a) Prove that a connected graph G is Eulerian if and only if

every vertex of G has even degree.

(b) Prove that a connected graph G is semi-Eulerian if and only

if there are at most two vertices of G with odd degree.

Bibliography

[1] I. Adler, Marshals, monotone Marshals, and hypertree-width, Journal
of Graph Theory 47 (2004) 275–296.

[2] M. Aigner, M. Fromme, A game of cops and robbers, Discrete Applied
Mathematics 8 (1984) 1–11.

[3] M.H. Albert, R.J. Nowakowski, D. Wolfe, Lessons in Play, A K Pe-
ters, Ltd., 2007.

[4] R. Albert, H. Jeong, A. Barabási, Diameter of the world-wide web,
Nature 401 (1999) 130.

[5] N. Alon, P. Pra�lat, N. Wormald, Cleaning regular graphs with
brushes, SIAM Journal on Discrete Mathematics 23 (2008/09) 233–
250.

[6] N. Alon, J. Spencer, The Probabilistic Method, Wiley, New York,
2000.

[7] B. Alspach, Sweeping and searching in graphs: a brief survey, Matem-
atiche 59 (2006) 5–37.

[8] B. Alspach, D. Dyer, D. Hanson, B. Yang, Lower bounds on edge
searching, ESCAPE 2007, B. Chen, M. Paterson, G. Zhang (Eds.),
4614 (2007) 516–527.

[9] B. Alspach, X. Li, B. Yang, Searching graphs and directed graphs,
preprint.

[10] T. Andreae, Note on a pursuit game played on graphs, Discrete Ap-
plied Mathematics 9 (1984) 111–115.

[11] T. Andreae, On a pursuit game played on graphs for which a minor
is excluded, Journal of Combinatorial Theory, Series B 41 (1986)
37–47.

259

260 Bibliography

[12] R.P. Anstee, M. Farber, On bridged graphs and cop-win graphs, Jour-
nal of Combinatorial Theory, Series B 44 (1988) 22–28.

[13] K. Appel, W. Haken, J. Koch, Every planar map is four colorable,
Illinois Journal of Mathematics 21 (1977) 439-567.

[14] W. Baird, Cops, Robbers, and Graphs, M.Sc. Thesis, Ryerson Uni-
versity, 2011.

[15] W. Baird, A. Bonato, Meyniel’s conjecture on the cop number: a
survey, Preprint 2011.

[16] A. Berarducci, B. Intrigila, On the cop number of a graph, Advances
in Applied Mathematics 14 (1993) 389–403.

[17] E.R. Berlekamp, J.H. Conway, R.K. Guy, Winning ways for your
mathematical plays, Volumes 1, 2, 3, and 4, Second Editions, A K
Peters, Ltd., 2001–2004.

[18] B. Bollobás, Random graphs, Second edition, Cambridge Studies in
Advanced Mathematics, 73, Cambridge University Press, Cambridge,
2001.

[19] B. Bollobás, G. Kun, I. Leader, Cops and robbers in a random graph,
Preprint 2011.

[20] B. Bollobás, I. Leader, The Angel and the Devil in three dimensions,
Journal of Combinatorial Theory, Series A 113 (2006) 176–184.

[21] A. Bonato, A Course on the Web Graph, Graduate Studies in Math-
ematics, American Mathematical Society, Providence, Rhode Island,
2008.

[22] A. Bonato, E. Chiniforooshan, Pursuit and evasion from a distance:
algorithms and bounds, In: Proceedings of Workshop on Analytic
Algorithms and Combinatorics (ANALCO’09), 2009.

[23] A. Bonato, E. Chiniforooshan, P. Pra�lat, Cops and Robbers from a
distance, Theoretical Computer Science 411 (2010) 3834–3844.

[24] A. Bonato, D. Delić, On a problem of Cameron’s on inexhaustible
graphs, Combinatorica 24 (2004) 35–51.

[25] A. Bonato, N. Hadi, P. Horn, P. Pra�lat, C. Wang, Models of on-line
social networks, Internet Mathematics 6 (2011) 285–313.

[26] A. Bonato, G. Hahn, P.A. Golovach, J. Kratochv́ıl, The capture time
of a graph, Discrete Mathematics 309 (2009) 5588–5595.

[27] A. Bonato, G. Hahn, C. Tardif, Large classes of infinite k-cop-win
graphs, Journal of Graph Theory 65 (2010) 334–242.

[28] A. Bonato, G. Hahn, C. Wang, The cop density of a graph, Contri-
butions to Discrete Mathematics 2 (2007) 133–144.

[29] A. Bonato, G. Kemkes, P. Pra�lat, Almost all cop-win graphs contain
a universal vertex, Preprint 2011.

Bibliography 261

[30] A. Bonato, M.E. Messinger, P. Pra�lat, Fighting intelligent fires in
graphs, Preprint 2011.

[31] A. Bonato, P. Pra�lat, C. Wang, Pursuit-evasion in models of complex
networks, Internet Mathematics 4 (2009) 419–436.

[32] B.H. Bowditch, The Angel Game in the plane, Combinatorics, Prob-
ability and Computing, 16 (2007) 345–362.

[33] A. Brandstädt, V.B. Le, J.P. Spinrad, Graph Classes: A Sur-
vey, SIAM Monographs on Discrete Mathematics and Applications,
Philadelphia, 1999.

[34] G. Brightwell, P. Winkler, Gibbs measures and dismantlable graphs,
Journal of Combinatorial Theory, Series B 78 (2000) 141–169.

[35] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R.
Stata, A. Tomkins, J. Wiener, Graph structure in the web, Computer
Networks 33 (2000) 309–320.

[36] L. Cai, W. Wang, The safety factor of square grids, preprint.

[37] L. Cai, W. Wang, The surviving rate of a graph, SIAM Journal of
Discrete Mathematics, 23 (2009) 1814–1826.

[38] L. Cai, Y. Cheng, E. Verbin, Y. Zhou, Surviving rates of trees and
outerplanar graphs for the Firefighter problem, SIAM Journal on
Discrete Mathematics 24 (2010) 1322–1335.

[39] P.J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cam-
bridge University Press, Cambridge, 1995.

[40] P.J. Cameron, The random graph, In: The Mathematics of Paul
Erdős, II, Algorithms and Combinatorics, 14, Springer, Berlin, 1997,
pp. 333–351.

[41] G. Campbell, On optimal play in the game of Hex, INTEGERS 4
(2004) #G2, 23pp.

[42] G. Cantor, Beiträge zur begründung der transfiniten mengenlehre,
Mathematische Annalen 49 (1897) 207–246.

[43] J. Chalopin, V. Chepoi, N. Nisse, Y. Vaxés, Cop and robber games
when the robber can hide and ride, Technical Report, INRIA-
RR7178, Sophia Antipolis, France, Jan. 2010.

[44] M. Chastand, F. Laviolette, N. Polat, On constructible graphs, infi-
nite bridged graphs and weakly cop-win graphs, Discrete Mathemat-
ics 224 (2000) 61–78.

[45] P. Chebyshev, Mémoire sur les nombres premiers, Mém. Acad. Sci.
St. Pétersbourg 7 (1850) 17–33.

[46] V. Chepoi, Bridged graphs are cop-win graphs: an algorithmic proof,
Journal of Combinatorial Theory, Series B 69 (1997) 97–100.

262 Bibliography

[47] E. Chiniforooshan, A better bound for the cop number of general
graphs, Journal of Graph Theory 58 (2008) 45–48.

[48] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong
perfect graph theorem, Annals of Mathematics 164 (2006) 51–229.

[49] F.R.K. Chung, L. Lu, Complex graphs and networks, American Math-
ematical Society, Providence RI, 2006.

[50] N.E. Clarke, A witness version of the Cops and Robber game, ac-
cepted to Discrete Mathematics.

[51] N.E. Clarke, The effects of replacing cops and searchers with technol-
ogy, M.Sc. Thesis, Dalhousie University, 1999.

[52] N.E. Clarke, Constrained Cops and Robber, Ph.D. Thesis, Dalhousie
University, 2002.

[53] N.E. Clarke, A game of Cops and Robber played with partial infor-
mation, Congressus Numerantium 166 (2004) 145–159.

[54] N.E. Clarke, E.L. Connon, Cops, Robber, and alarms, Ars Combina-
toria 81 (2006) 283–296.

[55] N.E. Clarke, S. Finbow, S.L. Fitzpatrick, M.E. Messinger, R.J.
Nowakowski, Seepage in directed acyclic graphs, Australasian Jour-
nal of Combinatorics 43 (2009) 91–102.

[56] N.E. Clarke, S.L. Fitzpatrick, A. Hill, R.J. Nowakowski, Edge critical
Cops and Robber, accepted to Discrete Mathematics.

[57] N.E. Clarke, G. MacGillivray, Characterizations of k-copwin graphs,
Preprint 2011.

[58] N.E. Clarke, R.J. Nowakowski, Cops, Robber and photo radar, Ars
Combinatoria 56 (2000), 97–103.

[59] N.E. Clarke, R.J. Nowakowski, Cops, robber, and traps, Utilitas
Mathematica 60 (2001) 91–98.

[60] N.E. Clarke, R.J. Nowakowski, A tandem version of the Cops and
Robber game played on products of graphs, Discussiones Mathemat-
icae Graph Theory 25 (2005) 241–249.

[61] N.E. Clarke, R.J. Nowakowski, Tandem-win graphs, Discrete Math-
ematics 299 (2005) 56–64.

[62] Clay Mathematics Institute Millenium Prize Problems. Accessed
March 31, 2011. http://www.claymath.org/millennium/

[63] J.H. Conway, The angel problem, Games of No Chance,
R.J. Nowakowski editor, Cambridge University Press, 1996, pp. 3–
12.

[64] S. Cook, The complexity of theorem proving procedures, In: Proceed-
ings of the Third Annual ACM Symposium on Theory of Computing,
1971.

Bibliography 263

[65] R. Crandall, C. Pomerance, Prime Numbers: A Computational Per-
spective, 2nd ed. Springer-Verlag, New York, 2005.

[66] R.M. Damerell, On Moore graphs, Proceedings of the Cambridge
Philosophical Society 74 (1973) 227–236.

[67] M. Devlin, S. Hartke, Fire containment in grids of dimension three
and higher, Discrete Applied Mathematics 155 (2007) 2257–2268.

[68] R. Diestel, Graph theory, Springer-Verlag, New York, 2000.

[69] R.P. Dilworth, A decomposition theorem for partially ordered sets,
Annals of Mathematics 51 (1950) 161–166.

[70] P.A. Dreyer, Applications and variations of domination in graphs,
Ph.D. Dissertation, Department of Mathematics, Rutgers University,
2000.

[71] J.A. Ellis, I.H. Sudborough, J.S. Turner, The vertex separation and
search number of a graph, Information and Computation 113 (1994)
50–79.

[72] P. Erdős, Beweis eines Satzes von Tschebyschef, Acta Sci. Math.
(Szeged) 5 (1930-32) 194–198.

[73] P. Erdős, A. Rényi, On random graphs I, Publicationes Mathematicae
Debrecen 6 (1959) 290–297.

[74] P. Erdős, A. Rényi, On the evolution of random graphs, Publ. Math.
Inst. Hungar. Acad. Sci. 5 (1960) 17–61.

[75] P. Erdős, A. Rényi, Asymmetric graphs, Acta Mathematica
Academiae Scientiarum Hungaricae 14 (1963) 295–315.

[76] S. Finbow, G. MacGillivray, The Firefighter problem: a survey of
results, directions and questions, Australasian Journal of Combina-
torics 43 (2009) 57–77.

[77] S. Finbow, A.D. King, G. MacGillivray, R. Rizzi, The Firefighter
problem for graphs of maximum degree three, Discrete Mathematics
307 (2007) 2094–2105.

[78] S. Finbow, P. Wang, W. Wang, On the surviving rate of a graph,
preprint.

[79] S.L. Fitzpatrick, Aspects of domination and dynamic domination,
Ph.D. Thesis, Dalhousie University, 1997.

[80] S.L. Fitzpatrick, R.J. Nowakowski, Copnumber of graphs with strong
isometric dimension two, Ars Combinatoria 59 (2001) 65–73.

[81] S.L. Fitzpatrick, R.J. Nowakowski, D. Holton, I. Caines, Covering hy-
percubes by isometric paths, Discrete Mathematics 240 (2001) 253–
260.

[82] P. Fogarty, Catching the fire on grids, M.Sc. Thesis (2003), Depart-
ment of Mathematics, University of Vermont.

264 Bibliography

[83] S. Foldes, P.L. Hammer, Split graphs, In: Proceedings of the 8th
South-Eastern Conference on Combinatorics, Graph Theory and
Computing, 1977.

[84] F.V. Fomin, P. Goldvach, J. Kratochv́ıl, On tractability of the Cops
and Robbers game. In: Fifth IFIP International Conference On The-
oretical Computer Science- TCS 2008, IFIP 20th World Computer
Congress, TC 1, Foundations of Computer Science, 2008.

[85] F.V. Fomin, P.A. Golovach, J. Kratochv́ıl, N. Nisse, Pursuing fast
robber in graphs, Theoretical Computer Science 411 (2010) 1167–
1181.

[86] F.V. Fomin, P.A. Golovach, D. Lokshtanov, Cops and Robber game
without recharging, In: Proceedings of 12th Scandinavian Symposium
and Workshops on Algorithm Theory (SWAT 2010), 2010.

[87] F.V. Fomin, D.M. Thilikos, An annotated bibliography on guaranteed
graph searching, Theoretical Computer Science 399 (2008) 236–245.

[88] P. Frankl, On a pursuit game on Cayley graphs, Combinatorica 7
(1987) 67–70.

[89] P. Frankl, Cops and robbers in graphs with large girth and Cayley
graphs, Discrete Applied Mathematics 17 (1987) 301–305.

[90] A. Frieze, M. Krivelevich, P. Loh, Variations on Cops and Robbers,
accepted to Journal of Graph Theory.

[91] A. Gajardo, A. Moreira, E. Goles, Complexity of Langton’s ant, Dis-
crete Applied Mathematics 117 (2002) 41–50.

[92] A. Gardiner, Homogeneous graphs, Journal of Combinatorial Theory,
Series B 20 (1976) 94–102.

[93] M. Gardner, Hexaflexagons and Other Mathematical Diversions, Uni-
versity of Chicago Press, Chicago, 1988.

[94] M. Garey, D. Johnson, Computers and Intractability, A Guide to the
Theory of NP-Completeness, Freemann, San Francisco, 1979.

[95] S. Gaspers, M.E. Messinger, R.J. Nowakowski, P. Pra�lat, Parallel
cleaning of a network with brushes, Discrete Applied Mathematics
158 (2010) 467–478.

[96] S. Gaspers, M.E. Messinger, R.J. Nowakowski, P. Pra�lat, Clean the
graph before you draw it! Information Processing Letters 109 (2009)
463–467.

[97] T. Gavenčiak, Games on graphs, Master’s thesis, Department of Ap-
plied Mathematics, Charles University, Prague, 2007.

[98] T. Gavenčiak, Cop-win graphs with maximal capture-time, Stu-
dentská vědecká a odbornáčinnost (SVOC), 2008.

Bibliography 265

[99] Y. Gol’fand, M. Klin, On k-homogeneous graphs, Algorithmic Studies
in Combinatorics, Work Collect., Moskva (1978) 76–85.

[100] A.S. Goldstein, E.M. Reingold, The complexity of pursuit on a graph,
Theoretical Computer Science 143 (1995) 93–112.

[101] P. Gordinowicz, P. Pra�lat, personal communication.

[102] G.R. Grimmett, D.R. Stirzaker, Probability and Random Processes,
3rd Edition, Oxford University Press, 2001.

[103] G. Hahn, Cops, robbers and graphs, Tatra Mountain Mathematical
Publications 36 (2007) 163–176.

[104] G. Hahn, F. Laviolette, N. Sauer, R.E. Woodrow, On cop-win graphs,
Discrete Mathematics 258 (2002) 27–41.

[105] G. Hahn, G. MacGillivray, A characterization of k-cop-win graphs
and digraphs, Discrete Mathematics 306 (2006) 2492–2497.

[106] Y.O. Hamidoune, On a pursuit game on Cayley digraphs, European
Journal of Combinatorics 8 (1987) 289–295.

[107] F. Harary, G.W. Wilcox, Boolean operations on graphs, Mathematica
Scandinavica 20 (1967) 41–51.

[108] B. Hartnell, Firefighter! An application of domination. Presentation
at the 25th Manitoba Conference on Combinatorial Mathematics and
Computing, University of Manitoba, Winnipeg, Canada, 1995.

[109] B. Hartnell, Q. Li, Firefighting on trees: How bad is the greedy algo-
rithm?, In: Proceedings of the Thirty-first Southeastern International
Conference on Combinatorics, Graph Theory and Computing, 2000.

[110] B. Hartnell, D. Rall, On Vizing’s Conjecture, Congressus Numeran-
tium 82 (1991) 87–96.

[111] P. Hell, I. Rival, Absolute retracts and varieties of reflexive graphs,
Canadian Journal of Mathematics 39 (1987) 544–567.

[112] C.W. Henson, A family of countable homogeneous graphs, Pacific
Journal of Mathematics 38 (1971) 69–83.

[113] A. Hill, Cops and Robbers: Theme and Variations, Ph.D. Thesis,
Dalhousie University, 2008.

[114] B. Hobbs, J. Kahabka, Underwater Cleaning Technique Used for
Removal of Zebra Mussels at the Fitzpatrick Nuclear Power Plant,
In: Proceedings of The Fifth International Zebra Mussel and Other
Aquatic Nuisance Organisms Conference, The Sea Grant Nonindige-
nous Species Site. 1995.

[115] A.J. Hoffman, R.R. Singleton, On Moore graphs with diameter 2 and
3, IBM Journal of Research and Development 4 (1960) 497–504.

266 Bibliography

[116] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata
Theory, Languages, and Computation, 3rd Edition, Addison-Wesley,
2006.

[117] P. Hunter, S. Kreutzer, Digraph measures: Kelly decompositions,
games, and orderings, Theoretical Computer Science 399 (2008) 206–
219.

[118] W. Imrich, H. Izbicki, Associative Products of Graphs, Monatshefte
fur Mathematik 80 (1975) 277–281.

[119] W. Imrich, S. Klavzar, Product graphs, Structure and Recognition,
Wiley-Interscience Series in Discrete Mathematics and Optimization.
Wiley-Interscience, New York, 2000.

[120] A. Isaza, J. Lu, V. Bulitko, R. Greiner, A cover-based approach to
multi-agent moving target pursuit, In: Proceedings of The 4th Confer-
ence on Artificial Intelligence and Interactive Digital Entertainment,
2008.

[121] V. Isler, S. Kannan, S. Khanna, Randomized Pursuit-Evasion with
Local Visibility, SIAM Journal on Discrete Mathematics 1 (2006)
26–41.

[122] V. Isler, S. Kannan, S. Khanna, Randomized Pursuit-Evasion in a
Polygonal Environment, IEEE Transactions on Robotics 21 (2005)
864–875.

[123] S. Janson, T. �Luczak, A. Ruciński, Random Graphs, Wiley, New
York, 2000.

[124] D.V. Jeliazkova, Aspects of the Cops and Robber Game played with
incomplete information, M.Sc. Thesis, Acadia University, 2006.

[125] G. Joret, M. Kamiński, D.O. Theis, The cops and robber game on
graphs with forbidden (induced) subgraphs, Contributions to Discrete
Mathematics 5 (2010) 40–51.

[126] R.M. Karp, Reducibility among combinatorial problems, In: Com-
plexity of Computer Computations, Raymond E. Miller and James
W. Thatcher (editors), New York: Plenum, pp. 85–103, 1972.

[127] J. Kára, K. Kratochv́ıl, D. Wood, On the complexity of the balanced
vertex ordering problem, Discrete Mathematics and Theoretical Com-
puter Science 9 (2007) 193–202.

[128] S. R. Kotler, E.C. Mallen, K.M. Tammus, Robotic Removal of
Zebra Mussel Accumulations in a Nuclear Power Plant Screen-
house, Proceedings of the Fifth International Zebra Mussel and Other
Aquatic Nuisance Organisms Conference, The Sea Grant Nonindige-
nous Species Site, 1995.

Bibliography 267

[129] R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins, Trawling
the web for emerging cyber-communities, In: Proceedings of the 8th
WWW Conference, 1999.

[130] K. Kuratowski, Sur le problème des courbes gauches en topologie,
Fundamenta Mathematicae 15 (1930) 271–283.

[131] M. Kutz, Conway’s angel in three dimensions, Theoretical Computer
Science 349 (2005) 443–451.

[132] A.H. Lachlan, R.E. Woodrow, Countable ultrahomogeneous undi-
rected graphs, Transaction of the American Mathematical Society
262 (1980) 51–94.

[133] C.W.H. Lam, The search for a finite projective plane of order 10,
American Mathematical Monthly 98 (1991) 305–318.

[134] C.G. Langton, Studying artificial life with cellular automata, Physica
D: Nonlinear Phenomena 22 (1986) 120–149.

[135] A.S. LaPaugh, Recontamination does not help to search a graph,
Journal of the Association for Computing Machinery 40 (1993) 224–
245.

[136] A. Lehman, A solution to the Shannon switching game, SIAM Jour-
nal on Applied Mathemtics 12 (1964) 687–725.

[137] L. Levin, Universal search problems, Problems of Information Trans-
mission 9 (1973) 265–266. (Russian)

[138] H. Lewis, C.H. Papadimitriou, Elements of the Theory of Computa-
tion, 2nd Edition, Prentice Hall, Upper Saddle River, NJ, 1997.

[139] Z. Li, A. Vetta, Bounds on the cleaning times of robot vacuums,
Operations Research Letters 38 (2010) 69–71.

[140] L. Lovász, Operations with structures, Acta Mathematica Hungarica
18 (1967) 321–328.

[141] L. Lu, X. Peng, On Meyniel’s conjecture of the cop number, Preprint
2011.

[142] T. �Luczak, P. Pra�lat, Chasing robbers on random graphs: Zig-Zag
theorem, Random Structures and Algorithms 37 (2010) 516–524.

[143] E.M. Luks, L. Babai, Canonical labeling of graphs, In: Proceedings of
the 15th ACM Symposium on Theory of Computing, 1983.

[144] M. Maamoun, H. Meyniel, On a game of policemen and robber, Dis-
crete Applied Mathematics 17 (1987) 307–309.

[145] G. MacGillivray, P. Wang, On the Firefighter problem, Journal of
Combinatorial Mathematics and Combinatorial Computing 47 (2003)
83-96.

[146] A. Mathe, The Angel of power 2 wins, Combinatorics, Probability
and Computing 16 (2007) 363–374.

268 Bibliography

[147] N. Megiddo, S.L. Hakimi, M.R. Garey, D.S. Johnson, C.H. Papadim-
itriou, The complexity of searching a graph, Journal of the Associa-
tion for Computing Machinery 35 (1988) 18–44.

[148] M.E. Messinger, Firefighting on Infinite Grids, M.Sc. Thesis, Depart-
ment of Mathematics and Statistics, Dalhousie University, 2004.

[149] M.E. Messinger, Firefighting on the triangular grid, Journal of Com-
binatorial Mathematics and Combinatorial Computing 63 (2007) 37–
45.

[150] M.E. Messinger, Firefighting on the strong grid, Preprint 2011.

[151] M.E. Messinger, Methods of Decontaminating a Network, PhD. The-
sis, Department of Mathematics and Statistics, Dalhousie University,
2008.

[152] M.E. Messinger, R.J. Nowakowski, The robot cleans up, Journal of
Combinatorial Optimization 18 (2009) 350–361.

[153] M.E. Messinger, R.J. Nowakowski, P. Pra�lat, Cleaning a network
with brushes, Theoretical Computer Science 399 (2008) 191–205.

[154] M.E. Messinger, R.J. Nowakowski, P. Pra�lat, N. Wormald, Cleaning
random regular graphs with brushes using a degree-greedy algorithm,
In: Proceedings of the 4th Workshop on Combinatorial and Algorith-
mic Aspects of Networking (CAAN 2007), 2007.

[155] M.E. Messinger, R.J. Nowakowski, P. Pra�lat, Cleaning with brooms,
Graphs and Combinatorics 27 (2011) 251–267.

[156] M. Miller, J. Sirán, Moore graphs and beyond: A survey of the de-
gree/diameter problem, Electronic Journal of Combinatorics DS14,
2005.

[157] S.A. Moeller, P. Wang, Fire control on graphs, Journal of Combina-
torial Mathematics and Combinatorial Computing 41 (2002) 19–34.

[158] C. Moldenhauer, Game tree search algorithms for the game of Cops
and Robber, M.Sc. Thesis, University of Edmonton, 2009.

[159] C. Moldenhauer, N. Sturtevant, Evaluating strategies for running
from the cops, In: Proceedings of IJCAI, 2009.

[160] J.W. Moon, Topics on Tournaments, Holt, Rinehart and Winston,
New York, 1968.

[161] M. Musson, A. Tang, Cops and Robber with road blocks, Preprint
2011.

[162] J. Nešetřil, V. Rödl, Products of graphs and their applications, Graph
Theory, �Lagów 1981, Lecture Notes in Mathematics 1018, Springer,
Berlin, pp 151–160, 1983.

[163] S. Neufeld, The game of Cops and Robber, M.Sc. Thesis, Dalhousie
University, 1990.

Bibliography 269

[164] S. Neufeld, R.J. Nowakowski, A game of cops and robbers played on
products of graphs, Discrete Mathematics 186 (1998) 253–268.

[165] S. Neufeld, R.J. Nowakowski, A vertex-to-vertex pursuit game played
with disjoint sets of edges, Finite and infinite combinatorics in sets
and logic (Banff, AB, 1991), Kluwer Acad. Publ., 1993, 411, 299–312

[166] R.J. Nowakowski, D.F. Rall, Associative graph products and their in-
dependence, domination and coloring numbers, Discussiones Math-
ematicae Graph Theory 16 (1996) 53–79.

[167] R.J. Nowakowski, P. Winkler, Vertex-to-vertex pursuit in a graph,
Discrete Mathematics 43 (1983) 235–239.

[168] P. Pra�lat, Cleaning random graphs with brushes, Australasian Jour-
nal of Combinatorics 43 (2009) 237–251.

[169] A. Quilliot, Jeux et pointes fixes sur les graphes, Thèse de 3ème cycle,
Université de Paris VI, 1978, 131–145.

[170] A. Quilliot, Problèmes de jeux, de point Fixe, de connectivité et de
represésentation sur des graphes, des ensembles ordonnés et des hy-
pergraphes, Thèse d’Etat, Université de Paris VI, 1983, 131–145.

[171] A. Quilliot, A short note about pursuit games played on a graph with
a given genus, Journal of Combinatorial Theory, Series B 38 (1985)
89–92.

[172] C.H. Papadimitriou, Computational Complexity, Addison-Wesley,
1994.

[173] T.D. Parsons, Pursuit-evasion in a graph, Theory and applications
of graphs (Proc. Internat. Conf., Western Mich. Univ., Kalamazoo,
Mich., 1976), Springer, 1978, 426-441. Lecture Notes in Mathematics,
Vol. 642.

[174] T.D. Parsons, The search number of a connected graph, Proceed-
ings of the Ninth Southeastern Conference on Combinatorics, Graph
Theory, and Computing, (Florida Atlantic Univ., Boca Raton, Fla.,
1978), Utilitas Mathematics (1978) 549–554.

[175] P. Pra�lat, When does a random graph have constant cop number?,
Australasian Journal of Combinatorics 46 (2010) 285–296.

[176] P. Pra�lat, Cleaning random d-regular graphs with brooms, accepted
to Graphs and Combinatorics.

[177] P. Pra�lat, Cleaning random graphs with brushes, Australasian Jour-
nal of Combinatorics 43 (2009) 237–251.

[178] P. Pra�lat, Graphs with average degree smaller than 30/11 are burning
slowly, Preprint 2011.

[179] P. Pra�lat, N. Wormald, Meyniel’s conjecture holds in random graphs,
Preprint 2011.

270 Bibliography

[180] R. Rado, Universal graphs and universal functions, Acta Arithmetica
9 (1964) 331–340.

[181] T. Ramanampanoharana, Jeu de poursuite sur des modèles du web
et généralisations, Masters thesis, Université de Montréal, 2004.

[182] C.S. ReVelle, K.E. Rosing, Defendens imperium romanum: a classical
problem in military strategy, American Mathematical Monthly 107
(2000) 585–594.

[183] N. Robertson, D.P. Sanders, P. Seymour, R. Thomas, The four-color
theorem, Journal of Combinatorial Theory, Series B 70 (1997) 2–44.

[184] E.R. Scheinerman, D.H. Ullman, Fractional graph theory, Wiley-
Interscience, New York, 1997.

[185] B.S.W. Schroeder, The copnumber of a graph is bounded by
� 3
2
genus(G)�+3, Categorical Perspectives, Trends Math., Birkhäuser,

Boston, MA, 2001, 243–263.

[186] A. Scott, On the parameterized complexity of finding short winning
strategies in combinatorial games, Ph.D. Thesis, University of Victo-
ria, 2010.

[187] A. Scott, B. Sudakov, A new bound for the cops and robbers problem,
Preprint 2011.

[188] P.D Seymour, R. Thomas, Graph searching and a min-max theorem
for tree-width, Journal of Combinatorial Theory Series B 58 (1993)
22–33.

[189] J. Sheehan, Smoothly embeddable subgraphs, Journal of the London
Mathematical Society 9 (1974) 212–218.

[190] A. Tang, Zero-visibility Cops and Robber, M.Sc. Thesis, Dalhousie
University, 2004.

[191] D.O. Theis, The cops and robber game on series-parallel graphs, ac-
cepted to Graphs and Combinatorics.

[192] R. Toš́ıc, On cops and robber game, Studia Scientiarum Mathemati-
carum Hungarica 23 (1988) 225–229.

[193] A. Turing, On computable numbers, with an application to the
Entscheidungsproblem, Proceedings of the London Mathematical So-
ciety 42 (1936) 230–265.

[194] V.V. Vazirani Approximation Algorithms, Springer-Verlag, Berlin,
2001.

[195] V.G. Vizing, The cartesian product of graphs, Vyčisl. Sistemy 9
(1963) 30–43.

[196] B. Wieland, A.P. Godbole, On the domination number of a random
graph, The Electronic Journal of Combinatorics 8 (2001), #R37.

Bibliography 271

[197] D.B. West, Introduction to Graph Theory, 2nd edition, Prentice Hall,
2001.

[198] A. Wigderson, P, NP and Mathematics—a computational complexity
perspective, In: Proceedings of the ICM’06, 2007.

[199] N.C. Wormald, Models of random regular graphs, Surveys in Com-
binatorics, J.D. Lamb and D.A. Preece, eds. London Mathematical
Society Lecture Note Series, vol. 276, pp. 239–298, Cambridge Uni-
versity Press, Cambridge, 1999.

[200] N.C. Wormald, The differential equation method for random graph
processes and greedy algorithms, Lectures on Approximation and
Randomized Algorithms, PWN, 1999, 73–155.

[201] B. Yandell, The Honors Class: Hilbert’s Problems and Their Solvers,
A. K. Peters Ltd, Nantick, MA, 2003.

[202] V. Yanovski, I.A. Wagner, A.M. Bruckstein, A distributed ant al-
gorithm for efficiently patrolling a network, Algorithmica 37 (2003)
165–186.

Index

A\B, 5

A×B, 5

b(G), 242

B(G), 248

c(G), 4

capt(G), 215

cbp1(G), 250

cbp(G), 250

cc(G), 90

CC(G), 206

Cn, 8

c(n), 54

ck(G), 210

dG(u, v), 7

diam(G), 7

ext(X), 100

f = O(g), 6

f = Ω(g), 6

f = o(g), 6

f ∼ g, 6

G, 8

G�H, 81

G �H, 40, 81

G •H, 81

G ∼= H, 7

G ≡ H, 81

G�H, 81

G�cH, 81

G×H, 39, 81

G×c H, 81

G ∨H, 81

G(n, p), 136

Hom(G,H), 50

Imb(G), 244

int(X), 100

Kn, 8

ls(G), 234

[n], 5

N, 5
p(G), 86

Pn, 7

pr(G), 195

Qn, 8

rb(G), 200

s(G), 234

t(G), 204

tw(G), 237

vs(G), 202

Wn, 8

xs(G), 234

Δ(G), 12

χ(G), 8

δ(G), 12

γ(G), 8

, 37

ρ(G), 225

ρ(G,⊗), 86

ρk(G), 228

θ(G), 90

273

274 Index

alarm, 194

Angel and Devil, 253

approximation algorithm, 128, 130,
213

asymptotically almost surely
(a.a.s.), 73, 77, 136, 137,
139–144, 150, 156–158, 160,
162, 164, 212–214, 229, 247,
249

automorphism, 7, 38, 166, 171, 183,
184

back-and-forth, 168, 170, 171, 188

Bertrand’s postulate, 65, 75, 76

Boolean formula, 117

bridge, 49

broom number, 248

brooms, 248

brush number, 242

brush path, 245

brushes, 239

capture time, 36

capture time, 215, 216, 220

CCTv, 194

certificate, 115

Chebyshev’s inequality, 162

Chernoff bound, 135

cleaning, 239

parallel, 240, 249

sequential, 240

cleaning process, 241

clique sum, 75

closed neighbor set, 6

combinatorial game theory, 253

complementary Cops and Robbers,
206

cop density, 172–174, 176

cop number, 4, 50, 54, 56, 57, 61,
62, 66, 70–75, 77, 79, 83, 86,
90, 95, 104, 108, 112, 119, 124,
127, 128, 133, 136, 137, 139,
140, 143, 145, 149, 153, 157,
158, 162, 165, 167, 172, 175,
178, 182, 187, 188, 191, 202,
205, 208, 210, 211, 213, 215

cop territory, 96, 98, 101, 104

cop-cover number, 90

cop-win, 22, 23, 25, 26, 30, 32, 36,
37, 84, 86, 90, 91, 105, 111,
130, 153, 165–167, 178, 182,
189, 192, 198, 199, 201, 203,
216, 217

cop-win ordering, 33

cop-win spanning tree, 51

directed, 193

Cop-win Strategy, 34, 35

Cops and Robbers, 3

capture, 3

pass, 3

winning strategy, 3

cops’ territory, 93

corner, 11, 21, 30, 31, 33, 35, 48,
84, 85, 111, 167, 178, 202, 203,
216, 217

degree, 7

degree distribution, 154, 156

directed acyclic graph (dag), 230

directed cycle, 9

directed graph, 8, 72, 129

acyclic, 9

oriented, 8

strongly connected, 9

tournament, 8

weakly connected, 9

directed path, 9

distance, 7

distance k Cops and Robbers, 210

domination number, 8, 72, 90, 136,
137, 159, 206

double ray, 189

edge searching, 234

edges, 6

embedding, 7

existentially closed (e.c.), 168–170

EXPTIME, 119

EXPTIME-complete, 119

face, 94

factors, 39

fire walls, 227

Firefighter, 223, 224

fractional cover, 89

free path, 195

Index 275

good configuration, 240, 242

graph, 6
(1, k)-e.c., 138

(n,m)-win, 201

2-dismantlable, 216

k-guardable, 16, 56

almost-dismantlable, 214

bipartite, 8

bridged, 49

chordal, 23, 48, 178

chromatic number, 8

clique, 8

co-clique, 8

complement, 8

connected, 7

constructible, 189

cop-win, 4

dense-core, 157

diameter, 7

dismantlable, 31–33, 36, 50, 77,
178, 189

dodecahedron, 24

Eulerian, 252

genus, 93

green-win, 230

Henson, 171, 188

Hoffman-Singleton, 19, 27

homogeneous, 171, 188

hypercube, 8, 87, 90, 111, 183,
224

independent, 8

infinite-cop-win, 172

interval, 128

limits, 170

maximal outerplanar, 95

Moore graph, 19
order, 6

orientation, 8

outerplanar, 95

planar, 98

power law, 154

rayless, 10, 167

regular, 7

robber-win, 4

semi-Eulerian, 252

sludge-win, 231

split, 127

star, 8

stiff, 51
strong isometric dimension, 76

tandem-win, 49, 203, 205

toroidal, 108

universal, 171

vertex-transitive, 7, 166, 183

weakly-cop-win, 189
wheel, 8

graph class, 14, 66

cop-bounded, 14

cop-unbounded, 14, 27

variety, 44

graph decision problem, 112
Greens, 230

Hall’s theorem, 145, 151, 163

Hex, 255

homeomorphic, 50

homomorphism, 7

in-degree, 8

infinite random graph, 162, 166,
167, 170, 176

irredundant configuration, 248

isometric path, 16

isometric path number, 26, 86
isomorphism, 7

Iterated Local Transitivity (ILT)
model, 164

linear layout, 201, 242, 248

Maker-Breaker game, 255
Maker-Maker game, 255

Markov’s inequality, 134, 143, 161

Marshals, 239

matching, 145

perfect, 145

maximum matching, 88
Meyniel bound, 53

Meyniel’s conjecture, 16, 53, 124,
133, 137, 191, 210

minimum distance caterpillar, 56

Moore bound, 19

neighbor set, 6
nodes, 6

NP, 115, 213, 225

NP-complete, 116, 219, 242, 244

276 Index

NP-hard, 116

order, 9

out-degree, 8

P, 114, 213, 219

perfect elimination ordering, 48
photo-radar, 194
pigeonhole property, 188

planar trap, 105
polynomial time algorithm, 114
product

Cartesian, 81, 83, 87, 204

Cartesian product, 50, 83, 106,
187, 204, 207, 208

categorical, 39, 81, 88, 92, 205
co-Cartesian, 81, 92

co-categorical, 81
disjunction, 81
equivalence, 81, 88, 92
lexicographic, 81, 91

strong, 40, 81, 84, 88, 91, 183
symmetric difference, 81, 92

projection maps, 40
projective plane, 14, 54, 63, 64, 71,

75

incidence graph, 63
order, 15

random graph, 134, 136, 143, 153,
163, 212

random power law graphs, 156
random regular graphs, 153, 229,

247, 248

random tournament, 164
random variable, 68

Bernoulli, 152

binomial, 135
expectation, 68
variance, 162

ray, 10, 11, 25, 36, 165, 167, 173,
178, 189

reduction, 116, 124
retract, 20–22, 26, 32, 36, 44, 62,

72, 77, 86, 90, 107, 201
retract-cover, 86

retraction, 20, 31
road-block, 194
robber territory, 93, 104, 235

robot vacuum, 251
rooted tree, 58

Seepage, 230
shadow strategy, 21, 32
Sludge, 230
soft Meyniel’s conjecture, 55
special tandem-win decomposition,

205
strongly n-e.c., 173
sub-exponential time, 119, 124
surviving rate, 225

tandem-cops, 203

The Angel and Devil, 254
trap, 194, 199
tree decomposition, 237
treewidth, 237, 238

undecidable, 113, 131

vertex, 6
burning, 223
cord, 84
corner-dominating, 84
cut, 7
end-vertex, 7, 10, 11, 20, 25, 58,

60, 167, 175, 196–198, 206,

220, 224
imbalance, 244
internal, 211
isolated, 7, 10, 88, 156–158, 175,

241
nearly irreducible, 49, 203
o-dominated, 49, 203
primed, 239
protected, 223
removable, 46
simplicial, 23, 31, 166, 178, 216
universal, 7

vertex separation number, 202, 235

weak strong product, 183
web graph, 134, 153, 154, 156, 161

Zig-Zag Theorem, 149, 213

AMS on the Web
www.ams.orgSTML/61

For additional information
and updates on this book, visit

www.ams.org/bookpages/stml-61

This book is the fi rst and only one
of its kind on the topic of Cops and
Robbers games, and more generally,

on the fi eld of vertex pursuit games on graphs. The book is written in a lively and
highly readable fashion, which should appeal to both senior undergraduates and experts
in the fi eld (and everyone in between). One of the main goals of the book is to bring
together the key results in the fi eld; as such, it presents structural, probabilistic, and
algorithmic results on Cops and Robbers games. Several recent and new results are
discussed, along with a comprehensive set of references. The book is suitable for self-
study or as a textbook, owing in part to the over 200 exercises. The reader will gain
insight into all the main directions of research in the fi eld and will be exposed to a
number of open problems.

Ph
ot

o
co

ur
te

sy
 o

f
F.

 N
ow

ak
ow

sk
i

Ph
ot

o
co

ur
te

sy
 o

f
D

ou
gl

as
 H

am
ly

n

	Cover
	Title page
	Contents
	List of figures
	Preface
	Introduction
	Characterizations
	Meyniel’s conjecture
	Graph products and classes
	Algorithms
	Random graphs
	Infinite graphs
	Variants of Cops and Robbers
	Good guys versus bad guys
	Bibliography
	Index
	Back Cover

