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Preface

This book was begun when two of the authors decided that their

collaboration on their introductory probability book was both pro-

ductive and fun. We cast about to find some other project on which

we could continue this collaboration. At the same time, all three

of the authors were working on Chance News, which is an ongoing

website containing reviews of news and journal articles pertaining to

probability and statistics in the real world. It was decided that we

should try to write a book in which we would take some of our favorite

articles in Chance News and revise and expand them.

The result is not exactly what was originally planned. Instead

of having many short chapters on a variety of subjects, the present

book consists of four chapters in which we go into some depth on the

covered topics. In fact, it is this depth that we think makes this book

different than other books that cover applications of probability and

statistics to the real world.

In the first two chapters, we use some ideas from calculus. Much

of the more technical mathematics has been placed in appendices so

as not to break the flow of the chapters. We think that even if a

reader has not studied calculus, he or she will be able to read and

understand most of the material in these chapters. In particular, one

vii

                

                                                                                                               



viii Preface

can gain much insight in these chapters from the numerous graphs

found therein.

Our first chapter concerns the idea of streaks. Many participants

in and observers of sports believe that individuals and teams can

be “hot” or “cold.” For example, a basketball player who has made

many consecutive field goals is frequently described at the time as

having a “hot hand.” It turns out that in many sports, the observed

streaks can be shown to fit a very simple coin-tossing model. In other

words, coins (fair or otherwise) that are flipped repeatedly exhibit

the same kinds of streaks, with the same distributions of lengths of

these streaks as those observed in sports. The reader will note that

we are not saying that such streaks do not exist, but rather that it is

not necessary to posit a model that is any more sophisticated than a

simple coin-tossing model to explain these streaks.

The second chapter introduces the reader to some aspects of the

U.S. stock market. This is an area in which a vast amount of research

has been conducted. We explain how the important class of proba-

bility distributions known as power laws can help in understanding

the movements of stock prices.

The third chapter is concerned with lotteries. We take the reader

through the calculations that are necessary to understand the prob-

abilities of winning various prizes in a typical lottery. We use the

Powerball lottery as an example. We also consider the effects that

income tax, present value, and possible sharing of the prize have on

the value of a lottery jackpot.

The last chapter contains a short history of fingerprinting and

discusses some of the problems with the use of fingerprints in fighting

crime. These problems are still extant and defy easy solutions.

We think that almost all of the material in this book is accessible

to those who have had one semester of calculus (some of the mate-

rial in the appendices requires some knowledge of power series) and

much of it is accessible to all interested readers. We hope that the
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material in this book is used to supplement the material in a standard

probability or statistics course at the undergraduate level.

We thank Dartmouth, Middlebury, and Swarthmore Colleges for

their financial support of this endeavor. We also thank Mike Saitas

and Peter Sykes, of the American Mathematical Society, for their

editing and design help. Finally, we especially thank Sergei Gelfand,

of the American Mathematical Society, for his support and patience.

                

                                                                                                               



Chapter 1

Streaks

1. Introduction

Most people who watch or participate in sports think that hot and

cold streaks occur. Such streaks may be at the individual or the

team level and may occur in the course of one contest or over many

consecutive contests. As we will see in the next section, there are

different probability models that might explain such observations.

Statistics can be used to help us decide which model does the best

job of describing (and therefore predicting) the observations.

As an example of a streak, suppose that a professional basketball

player has a lifetime free throw percentage of 85%. We assume that

over the course of her career, this probability has remained roughly

the same. Now suppose that over the course of several games, she

makes 20 free throws in a row. Even though she shoots free throws

quite well, most sports fans would say that she is “hot.” Most fans

would also say that because she is hot, the probability of making

her next free throw is higher than her career free throw percentage.

Some fans might say that she is “due” for a miss. The most basic

question we look at in this chapter is whether the data show that in

such situations, a significant number of players make the next shot

(or get a hit in baseball, etc.) with a higher probability than might

1

                                     

                

                                                                                                               



2 1. Streaks

be expected, given the players’ lifetime (or season) percentages. In

other words, is the player streaky? One can also ask whether the

opposite is true, namely that many players make the next shot with

a lower probability than might be expected. We might call such

behavior “anti-streaky.” Both types of behavior are examples of non-

independence between consecutive trials.

An argument in favor of dependence might run something like

this. Suppose that the player’s shot attempts are modeled by a se-

quence of Bernoulli trials, i.e. on each shot, she has an 85% chance of

making the shot, and this percentage is not affected by the outcomes

of her previous shot attempts. In this model, the probability that

she makes 20 shots in a row, starting at a particular shot attempt,

is (.85)20, which is approximately .0388. This is a highly improbable

event under the assumption of independence, so this model does not

do a good job of explaining the observation.

An argument in favor of the Bernoulli trials model might run

as follows. In a sequence of outcomes, a run is a set of consecutive

outcomes of the same type that is not contained in any larger such

set. So, for example, in the sequence

TTFFFTTTTF ,

the three F ’s in positions three through five form a run of length

three, but two F ’s in positions three and four do not form a run.

It can be shown that in a sequence of 200 independent trials, where

the probability of a success on a given trial is .85, the average length

of the longest run of successes is about 24.0. (We will discuss this

calculation a little later in this chapter.) Since many players shoot

200 or more free throws in a given season, it is not surprising that

this player has a success run of 20. We will say more below about the

length of the longest run in this model.

There are several probability models that might be used to detect

streaky behavior. We will consider two of these models in this chapter.

The first uses Markov chains. For a thorough introduction to the idea

of a Markov chain, the reader should consult [19]. A Markov chain

                

                                                                                                               



1. Introduction 3

consists of a set of states, and for each pair of states (including the

pairs where the states are the same) there is a certain probability of

moving from the first state to the second state.

In the case at hand, there are only two states, success and failure.

We define p1 to be the probability that a success follows a success (i.e.

that the chain moves from the success state to the success state) and

we define p2 to be the probability that a success follows a failure (i.e.

that the chain moves from the failure state to the success state). If

p1 > p2, then one might expect to see streaky behavior in the model.

If p1 = p2, the model is the same as the Bernoulli model. If p1 < p2,

then one might expect to see “anti-streaky” behavior in the model.

For example, suppose that in the basketball example given above,

the player has a 95% chance of making a free throw if she has made

the previous free throw. It is possible to show that in order for her

overall success rate to be 85%, the probability that she makes a free

throw after missing a free throw is 28.3%. It should be clear that in

this model, once she makes a free throw, she will usually make quite a

few more before she misses, and once she misses, she may miss several

in a row. In fact, in this model, once she has made a free throw, the

number of successful free throws until her first miss is a geometric

random variable, and has expected value 19, so including the first

free throw that she made, she will have streaks of made free throws of

average length 20. In the Bernoulli trials model, the average length

of her streaks will be only 6.7. Since these two average lengths are so

different, the data should allow us to say which model is closer to the

truth.

A second possible meaning of streakiness, which we call block-

Bernoulli, refers to the possibility that in a long sequence of inde-

pendent trials, the probability of success varies in some way. For ex-

ample, there may be blocks of consecutive trials, perhaps of varying

lengths, such that in each block, the success probability is constant,

but the success probabilities in different blocks might be unequal. As

an example, suppose the basketball player has a season free throw

percentage of 85%, and assume, in addition, that during the season,

                

                                                                                                               



4 1. Streaks

there are some blocks of consecutive free throws of length between

20 and 40 in which her probability of success is 95%. This means

there must be other blocks in which her success probability is less

than 95%. If we compute the observed proportion of successes over

all blocks of length 30, say, we should see under these assumptions a

wide variation in these proportions. The question we need to answer

is how much wider this variation will be than in the Bernoulli model

with constant probability of success. The greater the difference be-

tween the two variation sizes, the easier it will be to say which model

fits the data better.

It is natural to look at success and failure runs under the various

models described above, since the ideas of runs and streakiness are

closely related. We will describe some statistical tests that have been

used in attempts to decide which model most accurately reflects the

data. We will then look at data from various sports and the financial

markets.

Exercise.

1. Would you be more likely to say that the basketball player

in the example given above was “hot” if she made 20 free

throws in a row during one game, rather than over a stretch

of several games?

2. Models for Repeated Trials

The simplest probability model for a sequence of repeated trials is

the Bernoulli trials model. In this model, each trial is assumed to be

independent of all of the others, and the probability of a success on

any given trial is a constant, usually denoted by p. This means, in

particular, that the probability of a success following one success, or

even ten successes, is unchanged; it equals p. It is this last statement

that causes many people to doubt that this model can explain what

actually happens in sports. However, as we shall see in the next

section, even in this model, there are hot and cold streaks. The

                

                                                                                                               



2. Models for Repeated Trials 5

question is whether the numbers and durations of hot and cold streaks

observed in real data exceed the predicted numbers under this model.

This model is a simple one, so one can certainly give reasons why

it should not be expected to apply very well in certain situations.

For example, in a set of consecutive at-bats in baseball, a batter will

face a variety of different pitchers, in a variety of game situations,

and at different times of the day. It is reasonable to assert that some

of these variables will affect the probability that the batter gets a

hit. Some baseball models have been proposed that have many such

situational, or explanatory, variables. In other situations, such as

free throw shooting in basketball, or horseshoes, the conditions that

prevail in any given trial probably do not change very much.

Another relatively simple model is the Markov chain model, de-

scribed above. It is, of course, possible to define similar, but more

complicated, models where the probability of success on a given trial

depends upon the outcomes in the preceding k trials, where k is some

integer greater than 1. In the case of baseball, some statisticians

have considered such models for various values of k, and have also

assumed that the dependence weakens with the distance between the

trials under consideration.

Another model, which has been used to study tennis, is called

the odds model. Under this model, the probability p(0,0) that player

A wins the first set in a match against player B might depend upon

their rankings, if they are professionals, or on their past head-to-head

history. If the set score is (i, j) (meaning that player A has won i sets

and player B has won j sets), the probability that player A wins the

next set is denoted by p(i,j). In the particular model we will consider,

odds, instead of probabilities, are used. The odds Oij that player A

wins a set, if the set score is (i, j), is defined by the equation

Oij = ki−jO00 ,

where k is a parameter that is estimated from the data. If k > 1, then

this means that a player does better as the set score becomes more

and more favorable to him; in other words, he has “momentum.” The

                

                                                                                                               



6 1. Streaks

relatively simple form of the above equation is the reason that odds,

and not probabilities, are used in this model. The corresponding

equation involving probabilities is more complicated.

Finally, models have been proposed that add in “random effects”

to one of the above models, i.e. at each trial, or possibly after a set

of trials of a given length, a random real number is added to the

probability of success.

3. Runs in Repeated Trials

Suppose we have an experiment that has several possible outcomes,

and we repeat the experiment many times. For example, we might

roll a die and record the face that comes up. Suppose the sequence

of rolls is

1, 4, 4, 3, 5, 6, 2, 2, 2, 3, 3, 5, 6, 5, 6, 1, 1, 2, 2 .

We define a run to be a consecutive set of trials with the same outcome

that is not contained in any longer such set. So, in the sequence

above, there is one run of length 3, namely the subsequence of three

consecutive 2’s, and there are four runs of length 2.

If we wish to compare various models of repeated trials, with each

trial having two possible outcomes, we might look at the length of the

longest success run (or failure run), or the number of runs. Here it

makes little difference whether one looks at the number of success

runs or the total number of runs, since the second is within one of

being twice the first in any sequence. One might also look at the av-

erage length of the success runs. When considering whether a process

is Markovian, one might look at the observed success probabilities fol-

lowing successes and failures (or perhaps following sequences of con-

secutive successes or failures). When considering the block-Bernoulli

model, one might compute observed values of the probability of suc-

cess over blocks of consecutive trials.

In order to use statistical tests on any of the above parameters,

one needs to compute or simulate the sampling distributions of the

statistics under the models being considered. For example, suppose

                

                                                                                                               



3. Runs in Repeated Trials 7

that we have a set of data that consists of many strings of 0’s and

1’s, with each string being of length around 500. For each string, we

can determine the length of the longest run of 1’s. At this point, we

could compare the observations with the theoretical distribution of

the longest success run in a Bernoulli trial, where the parameters are

n = 500 and p equaling the observed probability of a 1 in the strings.

This comparison between the data and the theoretical distribution

would yield, for each string, a p-value. The reader will recall that

if we are testing a hypothesis, the p-value of an observation is the

probability, assuming the hypothesis is true, that we would observe a

result that is at least as extreme as the actual observation.

For example, suppose that in a sequence of 500 0’s and 1’s, we

observe 245 0’s and 255 1’s, and we observe that the longest run of

1’s is of length 11. One can show that if n = 500 and p = .51, then

about 86% of the time, the longest success run of 1’s in a Bernoulli

trials sequence with these parameters is between 5 and 10, inclusive.

Thus, the p-value of this observation is about .14, which means that

we might be somewhat skeptical that the model does a good job of

explaining the data.

Exercises.

1. (Classroom exercise). Split the class into two groups. Each

student in the first group should flip a coin 200 times, record-

ing the sequence of results. Each student in the other half

should write down sequences of length 200 that they think

look like typical sequences of coin flips. There are two re-

lated questions that one can consider here. First, can a

person “make up” a sequence of flips that looks as if it came

from actual coin flips? Second, can we use probability to dis-

tinguish, in many cases, between the sequences that come

from actual experiments and those that are made up? The

next two exercises give some insights on the latter question;

we will have more to say about this later in the chapter.

                

                                                                                                               



8 1. Streaks

2. Suppose that we have a Bernoulli trials process in which the

probability of a success equals p. If there are n trials, what

is the expected number of runs? Hint: In any outcome se-

quence, the number of runs is equal to one more than the

number of two consecutive unequal trials. For example, if

the outcome sequence is SFFFSSFSSS, then there are

four pairs of consecutive unequal trials (these pairs corre-

spond to the trials numbered (1, 2), (4, 5), (6, 7), and (7, 8)).

There are five runs in this sequence. If we let Xi be a ran-

dom variable which equals 1 if the outcomes of trials i and

i+ 1 are different, then the number of runs R is given by

R = 1 +
n−1∑
i=1

Xi .

Thus, to find the expected value of R, it suffices to find the

expected value of the right-hand sum; this equals

1 +
n−1∑
i=1

E(Xi) .

This can be used to help distinguish between actual and

made-up coin toss sequences.

3. Suppose that we have a Bernoulli trials process in which the

probability of success equals p. Let us call a sequence of k

consecutive successes a k-string of successes. Note that this

differs from a run in that a k-string of successes might be

part of a longer string of successes, while a run of successes of

length k is not part of any longer run. If there are n trials,

and k is a positive integer, what is the expected number

of k-strings of successes? Hint: For each i between 1 and

n − k + 1, let Yi be the random variable which is 1 if the

tosses numbered between i and i + k − 1 are all successes,

and is 0 otherwise. Then the expected number of k-strings

                

                                                                                                               



4. Statistical Tests on Repeated Trials 9

of successes equals

n−k+1∑
i=1

E(Yi) .

It is easy to compute the value of E(Yi).

4. Statistical Tests on Repeated Trials

We now proceed to describe the distributions for the statistics that

were mentioned above. We begin by recalling that if we let p1 = p2

in the Markov chain model, we obtain the Bernoulli model. If we

are trying to test whether there is evidence of streakiness in a set

of data, we might set the null hypothesis to be the statement that

p1 = p2, and the alternative hypothesis to be the statement that

p1 > p2, since this statement is one definition of streakiness. If we

are testing whether the Bernoulli trials model fits the data, without

any prejudice towards streakiness as an alternative, we might set the

alternative hypothesis to p1 �= p2.

The distribution for the number of runs in the Markov chain

model is derived in the appendix of this chapter. Plots of both distri-

butions for the case n = 50, p = .2, p1 = .3, and p2 = .175 are shown

in Figures 1 and 2. The reason for the choices of p1 and p2 is that if

p1 = .3, then in order to make the long-range percentage of successes

equal .2, as it is in the first model, we must choose p2 = .175.

The most obvious characteristic of these two plots is the up and

down fluctuation in probabilities between an odd and an even number

of runs. This difference is easily explained. If p = .2, as it is in the

first plot, then in a sequence of 50 trials, it is much more likely that

the first and last trials are both failures than it is that any of the

other three possibilities of success and failure occur. If the first and

last trials are the same, there must be an odd number of streaks in

the sequence.

By comparing these two figures, one can see that the distribution

for the Bernoulli model is centered slightly to the right of the center

                

                                                                                                               



10 1. Streaks

of the Markov chain model. One can see why this is the case. In the

second model, a success is more likely to be followed by a success than

in the first model. Similarly, a failure is more likely to be followed

by failure in the second model than in the first. These statements

make it reasonable to infer that in the second model, there will, on

average, be fewer changes from success to failure, or vice versa, in

successive trials, than there will be in the first model. This leads

to the conclusion that on average, there will be fewer streaks in the

second model than in the first model (and, as we will discuss below,

the lengths of the streaks in the second model will be, on average,

longer than in the first model).

This observation means that one might count the runs in a data

set and use an interval of the form [1, a] as the rejection region and

the interval [a+1,∞) as the acceptance region. One can also compute

a p-value of a data set under the Bernoulli model.

Another parameter that we will consider is the length of the

longest success run. The distribution of this parameter in the case

of Bernoulli trials was computed by Schilling [37]. This paper con-

tains many interesting results concerning runs. We will content our-

selves here with the following result from this paper. (See Exercise 2

for more on the distribution of the longest run of successes.) In a

Bernoulli trials process with parameters n and p, we let X denote the

length of the longest observed run of successes. Also, let q = 1 − p

and let γ denote Euler’s constant (the value of this constant is about

.577). Then we have

E(X) =
(log nq) + γ

log(1/p)
− 1

2
+ r1(n) + ε1(n) ,

where for p ∈ [.1, 1] and all n, |r1(n)| < .005, and ε1(n) → 0 as

n → ∞. Thus, for example, if a baseball player’s batting average is

.300 in a given season, and he has 600 at-bats during that season, the

above equation says that the expected value of the longest sequence

of consecutive hits by this player is about

log(600 · .7) + γ

log(1/.3)
− 1

2
≈ 4.996 .

                

                                                                                                               



4. Statistical Tests on Repeated Trials 11

If the player’s batting average is .400, then the expected length of the

longest run of consecutive hits is 6.554.

In the appendix, we derive the corresponding distribution for the

Markov chain model. In Figure 3 we show the distribution of the

longest run in both the Bernoulli trials model and the Markov chain

model, using the parameters n = 100, p = .5, p1 = .7, and p2 = .3.

The Markov chain distribution is the one shown with the larger dots.

The means of the two distributions for these values of the parameters

are 5.99 and 9.57. Again, one can test the hypothesis that p1 = p2
against the hypothesis that p1 > p2, using this parameter.

In [2], Albright used a χ2-test to test for dependence of consecu-

tive at-bats for baseball players; we now give a general description of

this test. Given a sequence of 0’s and 1’s, define n to be the length

of the sequence, n0 to be the number of 0’s in the sequence, n1 the

number of 1’s, and nij to be the number of pairs of consecutive of

terms in the sequence with the first equal to i and the second equal

to j. Then the statistic

χ2 =
n(n00n11 − n10n01)

2

n2
0n

2
1

is, under the assumption that the sequence has been generated by a

Bernoulli trials process, approximately χ2-distributed with 1 degree

of freedom. So, to apply this test, we compute the value of χ2 and

see if the value exceeds the critical value of the χ2-distribution at a

given level of significance, or we report the p-value corresponding to

the observed value.

When trying to decide whether p �= p1 another parameter that is

useful is the number of success doubletons (hereafter called double-

tons), i.e. pairs of consecutive successes. If we let d̂ denote the number

of doubletons in a sequence of length n, then Exercise 1 shows that

d̂ is within one of np̂p̂1, where p̂ and p̂1 are the observed values of p

and p1. Thus, using the number of doubletons to study a sequence is

very similar to using the value of the parameter p1.

                

                                                                                                               



12 1. Streaks
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Figure 1. Distribution of number of runs in the Bernoulli model
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Figure 2. Distribution of the number of runs in the Markov model

                

                                                                                                               



4. Statistical Tests on Repeated Trials 13
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Figure 3. Distributions of longest success run for Markov and
Bernoulli models

In the appendix, we explain why the number of doubletons is

asymptotically normally distributed in the Bernoulli trials model and

give expressions for the asymptotic mean and standard deviation. We

now go through an example to show how we can use this distribution.

We assume that the sequence is of length n, and that the observed

value of p (which we will take as the value of p) is .3. In Figure 4,

we show the normal distributions corresponding to values of p1 = .3

(the Bernoulli case) and p1 = .4; the first of these is on the left. The

vertical line in the graph marks the right-hand endpoint of a 95%

confidence interval. The horizontal coordinate of this line is 57.7.

Although this distribution and the next one are discrete, we have

drawn them as continuous to make it easier to see the vertical line.

In this case, we are testing the hypothesis that p1 = .3 (the null

hypothesis) against the alternative hypothesis p1 = .4. If we have an

observed sequence of length 500, we count the number of doubletons.

If the null hypothesis were true, the number of doubletons would be

greater than 57.7 only 5% of the time. Thus, if the observed number
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of doubletons is greater than 57.7, we reject the null hypothesis at

the 5% level of significance.

When one is carrying out a test of a hypothesis, there are two

types of errors that can occur. A type I error occurs when the null

hypothesis is rejected, even though it is true. The probability of a

type I error is typically denoted by α. We see that in the present

case, α = .05. A type II error occurs if the null hypothesis is not

rejected, even though it is false. The probability of such an error is

denoted by β. In order to estimate β, one needs an alternative value

of the parameter being estimated. In the present case, if we take this

alternative value to be p1 = .4, then one can calculate that β = .404.

It is possible to visualize both α and β. In Figure 4, α is the area

under the left-hand curve to the right of the vertical line and β is the

area under the right-hand curve to the left of the vertical line.

The power of a hypothesis test is defined to be 1 − β; it is the

probability that the null hypothesis will be rejected at the α level of

significance when the alternative hypothesis is true. In this case, the

power is .596. The higher the power of a test, the more confident we

are that we would be able to detect a real departure from the null

hypothesis. If we change the value of n to 2000 and graph the same

distributions again, we obtain Figure 5. In this case, the power of the

test is .964.

The reader will recall that in Section 1 we defined a block-Bernoulli

process as a way to model sequences of successes and failures having

success probabilities that change over time. For example, over the

course of a baseball season, a batter might have periods in which he

has different probabilities of getting a hit.

We will take as our model one that consists of blocks (intervals)

of consecutive trials, such that in each block, the individual trials

are mutually independent and the success probability is constant. Of

course, for such a model to be interesting, the lengths of the blocks in

which the success probability is constant must be fairly long. Other-

wise one could not hope to differentiate this process from a Bernoulli
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Figure 4. Number of Doubletons for n = 500, p = .3 and
either p1 = .3 or p1 = .4
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Figure 5. Number of Doubletons for n = 2000, p = .3 and
either p1 = .3 or p1 = .4
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process. For example, suppose that we define a process that, for each

block of size 1, has a success probability that is picked uniformly at

random from the interval [0, 1]. This process will be completely indis-

tinguishable from a sequence of coin flips of a fair coin. The reason

for this is that on each trial, the probability that the coin will come

up heads is exactly 1/2, by symmetry considerations.

We will assume that the lengths of the blocks vary uniformly

between a and b, and the success probabilities on these blocks vary

uniformly between pmin and pmax. It is possible to imagine other as-

sumptions one might make; for example, perhaps the success probabil-

ities are more likely to be near the middle of the interval [pmin, pmax]

than near the end.

What statistic might we use to distinguish block-Bernoulli trials

processes from Bernoulli ones? One fairly obvious parameter can be

obtained in the following way. Suppose we think that the blocks in a

block-Bernoulli trials process are of average length 40. In a sequence

of length n, generated by this process, there will be n − 39 blocks

of length 40. (These blocks are allowed to overlap; they must start

between position 1 and position n− 39.) For each of these blocks, we

compute the observed probability of success by dividing the number

of successes in the block by 40, the length of the block. We then

take the difference between the maximum and minimum observed

probabilities. We will call this statistic the windowed difference of

the sequence.

In the Bernoulli trials model, if the success probability is p,

then the observed success probability in a block of length m is, for

moderate-sized m, approximately normally distributed with mean p

and variance p (1− p)/m. If we have a sequence of length n, we wish

to know the distribution of the difference between the maximum and

minimum observed success probabilities over all blocks of length m.

We do not know whether an exact expression for this distribution

has been calculated by other authors. However, it can certainly be

simulated. In Figures 6 and 7, we show simulations of the success
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Figure 6. Running success probabilities for block-Bernoulli model

probabilities for blocks of length 40 in both a block-Bernoulli and

a Bernoulli trials sequence. In both simulations, n = 200. In the

Bernoulli case, p = .3, and in the block-Bernoulli case, we let a = 30,

b = 50, pmin = .25, and pmax = .35. In the sequence corresponding

to Figure 6, the block sizes are 38, 40, 38, 39, and 30, and the success

probabilities in these blocks are .250, .293, .279, .319, and .288.

The reader will notice that the two figures look similar in the

amount of variation in the success probabilities. This similarity should

make the reader wonder whether the statistic described above, the

difference between the maximum and minimum success probabilities

over the blocks, does a very good job of distinguishing between the

two models.

One way to answer this question is to compute the power of a

test. In the present case, we let the null hypothesis be the statement

that the success probability is constant over the entire sequence, i.e.

that our process is a Bernoulli process. We will take n = 500 and

p = .3. The alternative hypothesis deals with the block-Bernoulli

process. Here we assume that a = 30 and b = 50, although one
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Figure 7. Running success probabilities for Bernoulli model

can certainly imagine varying these values. The specific parameter

whose value we will let vary is pmax, the maximum allowable success

probability. We then let pmin = 2p− pmax, so that p is the midpoint

of the interval [pmin, pmax]. Note that if we let pmax = .3, then the

block-Bernoulli process reduces to the Bernoulli process.

We now wish to find a critical region, at the 5% level of signifi-

cance, for our hypothesis test. To do this, we simulate the Bernoulli

process 1000 times, and determine a value, called the critical value,

below which we find 95% of the values of the windowed difference. In

Figure 8, we show a histogram of the values of the windowed differ-

ence for the Bernoulli process. The critical value is .425, so the region

[.425, 1] is the critical region, meaning that if we obtain a value of the

parameter that exceeds .425, we reject the null hypothesis.

In Figure 9, we show the corresponding histogram for the block-

Bernoulli process for the parameter value pmax = .4. It can be seen

that the values in this case are slightly larger than in the Bernoulli

case, but the two distributions overlap quite a bit. The power of this

test for the specific value of pmax = .4 is one minus the probability
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Figure 8. Simulated values of windowed difference for
Bernoulli process

that we will fail to reject the null hypothesis when, in fact, the al-

ternative hypothesis is true. In this case, this means that we want

to estimate the probability that the windowed difference falls in the

interval [0, .425] for the block-Bernoulli process. Our simulation gives

us a value of .84 for this probability, so the power of this test is .16,

which isn’t very good. One way to increase the power is to increase

the size of n, but this may or may not be feasible, depending upon

how we come upon the data.

Suppose the null hypothesis is of the form “p = p0” for some

parameter p, and the alternative hypothesis is of the form “p > p0.”

If we observe a test statistic with value p̂, then the p-value of the test

is the probability, given the null hypothesis is true, that we would

obtain a value of the test statistic at least as large as the p̂ that we

observed.

On the other hand, suppose that the alternative hypothesis is of

the form “p �= p0.” In this case the p-value is the probability, given

the null hypothesis is true, that we would obtain a value of the test
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Figure 9. Simulated values of windowed difference for block-
Bernoulli process

statistic whose distance from the hypothesized value is at least as

large as the distance |p̂− p0| that we observed.

For a given hypothesis, the smaller the p-value, the less faith we

have in the model as an explanation of the observed data. On the

other hand, if we have many data sets that are supposedly explained

by a certain model, then some of the data sets will probably have

small p-values, even if the model is correct. To see why this is true,

consider the following simple experiment. We have a coin, and we are

testing the hypothesis that it is a fair coin, i.e. that the probability

of a head coming up when we flip the coin is .5. Suppose the coin

is fair. Suppose we perform 100 tests in each of which the coin is

flipped 500 times. Then about 5% of the tests will report a p-value

of less than .05. The reason for this is that the observed value p̂

has a certain known distribution, because the null hypothesis is true,

and we are using this distribution to calculate the p-values of the

observations. Since the observations are distributed according to this

known distribution, about 5% of them will have p-values less than .05

(just as about 45% of them, say, will have p-values less than .45).
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Another way of looking at this situation is as follows: If we have a

large number of observations under a single model, and the p-values of

these observations are fairly uniformly distributed across the interval

[0, 1], then the model is doing a good job of fitting the data. Of course

this does not mean that the model is the only one that fits the data

well or that it the “correct” one. One should consider other factors,

such as the simplicity (or lack thereof) of the various models under

consideration, before deciding which model one likes best.

4.1. Selection Bias. If one calculates a statistic from observed data,

and the value is seen to be closer to its expected value under one

model than under a second model, one is tempted to state that the

first model does a better job of explaining the observation than does

the second model. However, if one selects only those observations for

which the parameter is closer to the expected value in the first model

than in the second model, then one is guilty of selection bias.

It is also, in general, the case that if one considers more parame-

ters in creating a model, the model may fit the observed data better

than the original, simpler model. For example, since the Markov

model subsumes the Bernoulli model, if one includes p1 and p2 as pa-

rameters, thereby considering the Markov model, this model will do

a better job of fitting a sequence of 0’s and 1’s than will the Bernoulli

model. The trade-off is that the Markov model is more complicated

than the Bernoulli model. If the Bernoulli model does a good job of

describing the observations, then its simplicity should be an argument

against its rejection.

Exercises.

1. Suppose that we have a sequence of successes and failures of

length n. Define p̂ to be the observed proportion of successes

and define p̂1 to be the observed proportion of successes

(excluding the last entry in the sequence, if it is a success)

that are followed by another success. Define d̂ to be the

observed number of consecutive pairs of entries that are both
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successes (i.e. the number of doubletons). Show that if the

last entry in the sequence is a failure, then

d̂ = np̂p̂1 ,

while if the last entry is a success, then

d̂ = (np̂− 1)p̂1 .

Thus, in either case, d̂ is within one of np̂p̂1.

2. In Schilling [37], an approximation is given for the distribu-

tion of the length of the longest success run in a Bernoulli

trials process with parameters n and p (as usual, n denotes

the number of trials and p is the probability of success in

any one trial). A more precise description of the behavior

of this quantity as n gets large is described in a paper by

Gordon, Schilling, and Waterman [17]. Here is the approx-

imation. We assume that 0 < p < 1, and we set q = 1 − p.

We define

Fp(x) = e−(px) .

If we let Rn denote the random variable whose value is the

length of the longest success run in a sequence of n coin

tosses, then we have

P (Rn = x) ≈ Fp

(
x+ 1− log(nq)

log(1/p)

)
− Fp

(
x− log(nq)

log(1/p)

)
.

Even for moderate-sized values of n, this approximation is

fairly accurate. In the table below, we show the exact values

and the approximation, for n = 100 and p = 1/3.
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x Exact Probability Approximation

0 0 0

1 0.0001 0.0006

2 0.0692 0.0841

3 0.3654 0.3544

4 0.3297 0.3210

5 0.1515 0.1525

6 0.0556 0.0574

7 0.0190 0.0199

8 0.0063 0.0067

9 0.0021 0.0023

10 0.0002 0.0003

(a) Show that the above approximation can be written as

P (Rn = x) ≈ e−px+1nq − e−pxnq .

(b) Use the expression in part a) to show the following.

Given n, p, and x, the value of P (Rn = x) is approxi-

mately the same as the value of P (Rn/p = x+1). This

statement can be interpreted as follows, using p = 1/2

to make the interpretation easier to understand. In a

sequence of n flips of a fair coin, the probability that

the longest run of heads equals a certain value x is ap-

proximately the same as the probability, in a sequence

of 2n flips of a fair coin, that the longest run of heads

equals x+1. Thus, every time we double the number of

coin flips, for a fair coin, the distribution for the longest

run of heads moves one to the right on the x-axis.

3. In the text, we asserted that if a block Bernoulli process is

created in which the blocks are of length 1 and the success

probabilities for the blocks are chosen uniformly in [0, 1],

then this process is identical to the Bernoulli trials process

with success probability 1/2. Explain why this assertion is

true.
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5. Data from Various Sports

5.1. Baseball. In baseball, the sequence of hits and outs recorded

by a batter in consecutive at-bats is a candidate for study. A plate

appearance that results in a walk (or the batter being hit by a pitch,

or a sacrifice bunt) is not counted as an at-bat, because in those cases,

it is thought that the batter has not been given a chance to hit a well-

pitched ball. We remind the reader that even if one uses a Bernoulli

trials approach to model such sequences, one should admit that this is

only a first approximation to what is actually occurring on the field;

presumably the batter’s chance of success in a given at-bat is affected

by who is pitching, whether the game is being played during the day

or at night, how many runners are on base, and many other factors.

However, it is still of interest to test the Bernoulli trials model to see

how well it fits the data.

We will now apply the various tests described above to our data

set. This data set consists of all players who played in the major

leagues between 1978 and 1992. We obtained this data from the web-

site www.retrosheet.org. We greatly appreciate their labor in creating

the files of raw data that we used.

The first test we will apply is the chi-squared test of Albright,

described above. For each player and for each season in which that

player had at least 150 at-bats, we computed the chi-squared value

of his sequence of hits and outs, and then computed the p-value

of this chi-squared value. If there is no overall departure from the

Bernoulli trials model, we would expect to see the p-values uniformly

distributed across the interval [0, 1]. The point here is that even

though one might find some seasons for some players for which the

p-value is less than some prescribed level of significance, say the 5%

level, we should not reject the hypothesis that the Bernoulli trials

model fits the data well unless we observe many more than 5% of the

p-values below .05.

There were 4786 player-seasons in our data set with the at-bat

cutoff of 150. Figure 10 shows a histogram of the p-values associated
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Figure 10. p-Values for Albright’s chi-squared test in baseball

with the chi-squared values for these player-seasons. Since the inter-

val [0, 1] has been partitioned into 20 subintervals, uniformity would

imply that about 5% of the values occur in each sub-interval. It can

be seen that the p-values are essentially uniform across the unit inter-

val. In particular, there is no apparent excess of small p-values that

would correspond to large values of the chi-squared parameter (and

therefore to either streaky or anti-streaky behavior).

Another pair of statistics to look at is the pair (p̂1, p̂2); these

are the observed probabilities of a hit after a hit and after an out,

respectively. Under the assumption of Bernoulli trials, it can be shown

that p̂1 − p̂2 is approximately normally distributed with a mean and

a variance that depend on n and p. (We have shown this in the

appendix.) In fact, the mean is 0 and the variance is

n+ 3np− 1− 5p

qn2
.

We can test to see if the hits-outs sequences of baseball players fit the

Bernoulli model by looking at the values of p̂1−p̂2. It should be noted

that the n and p values change as we move from player to player, so
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we will aggregate the values in the following way. We partition the

interval [0, 750] into 15 subintervals of length 50, and we partition the

interval [0, .400] into 16 subintervals of length .025. Given a pair of

subintervals, one of each type, we take all player-seasons in which the

number of at-bats is in the first subinterval and the batting average

(the value of p) is in the second interval. So, for example, the pair

[400, 450] and [.300, .325] consists of all player-seasons in which the

player had between 400 and 450 at-bats and a batting average of

between .300 and .325. To avoid duplications, the subintervals do

not contain their left-hand endpoint. The reason for this partitioning

scheme is so that we have enough data for certain values of n and p

to be able to say something meaningful.

Of the 240 possible pairs of subintervals, 22 of them have data

sets of size at least 100. There were 3188 player-seasons in these data

sets (which is more than two-thirds of the data). For each of these

data sets, we calculated the average value of p̂1 − p̂2. (Recall that in

the Bernoulli model, the mean of p̂1 − p̂2 is 0.) The variance of the

average value of p̂1− p̂2 is the variance of p̂1− p̂2 divided by the square

of the size of the data set. Since p̂1 − p̂2 is approximately normal,

so is the average value of p̂1 − p̂2. So one way to see how well the

data fits the Bernoulli model is to compute, for each data set, the

z-value of the average value of p̂1 − p̂2; a z-value that is less than -2

or larger than 2 is significant at the 5% level. The z-value is obtained

by dividing the observed value of the average of p̂1 − p̂2 in the data

set by the standard deviation of the average value of p̂1 − p̂2.

The results are shown in Figure 11. Of the 22 z-values, one is of

absolute value greater than 2 (which is about what one would expect

if one were to choose 22 random values from a normal distribution).

We turn next to the length of the longest success run (i.e. the

longest run of hits). For each player-season in our data, we can com-

pute the length of the longest success run. However, in the Bernoulli

model, the distribution of this length depends upon both n, the length

of the sequence (in this case, the number of at-bats), and p, the prob-

ability of a success in an individual trial (in this case, the batting
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Figure 11. z-Values for the Average of p̂1 − p̂2

average). The Markov model depends upon n, p, and also on p1, the

probability of a success following a success. We would like to be able

to display the aggregate data against the predictions made by both

models.

In the case of the Bernoulli model, we can proceed in several ways.

Our first method of comparison will be carried out as follows. For each

of the 4786 player-seasons with at least 150 at-bats, we will simulate

a season using Bernoulli trials with the same number of at-bats and

batting average as the actual season. Then we will observe the longest

run of successes in each of these simulated seasons. Finally, we will

compare the distribution of the lengths of the longest run of successes

in the simulated seasons with the corresponding distribution in the

actual data.

When we carry this procedure out, we obtain the results shown

in Figure 12. The horizontal coordinate represents the length of the

longest success run in each player-season, and the vertical coordinate

represents the observed frequencies. The dots correspond to the simu-

lated data and the horizontal lines correspond to the actual data. The
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Figure 12. Distributions of simulated and actual longest suc-
cess runs

fit between the simulated and actual data is quite good. In addition,

the reader will recall Figure 3, which shows that in the Markov model,

if p1 > p, then the distribution of the longest success run is shifted to

the right from the corresponding distribution in the Bernoulli model.

The aggregate data does not show any such shift.

Another way to compare the Bernoulli model with the data is to

proceed as we did above with the distribution of p̂1 − p̂2. We will

group the data using pairs of subintervals, so that the numbers of

at-bats and the batting averages are close to equal across the group.

Then, for each group, we will compute the distribution of the longest

success run and compare it with the theoretical distribution. This

comparison will be carried out using a chi-square test. For each of

the 22 groups we used above (those containing at least 100 player-

seasons) we will report a p-value for the chi-square value.

In Figure 13, we show the results of the above calculations. For

each of the 22 groups of data containing at least 100 player-seasons,

the observed and theoretical average length of the longest success

run; the theoretical average is obtained by using, for each group, the
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Figure 13. Observed vs. theoretical longest success run lengths

average number of at-bats and the average success probability. As can

be seen, the fit is very good; the relative error is never greater than

6%, and only twice is it as large as 4%. For each of the 22 data sets,

we also compute the chi-squared value of the comparison between

the theoretical and observed distributions and then compute the p-

values corresponding to these chi-squared values. Figure 14 shows

the 22 p-values, sorted by size. If there were a perfect fit between the

theoretical and observed distributions, one would see the points lying

close to a diagonal line from the bottom left-hand corner to the top

right-hand corner. This figure shows that the Bernoulli model does a

fairly good job of fitting the data.

It has been suggested that there might be a qualitative difference

between success runs and failure runs. The thought was that while

success runs are limited in length by the skill of the batter, failure

runs might, in some cases, continue longer than predicted because

the hitter will spiral downwards psychologically during a slump. We
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Figure 14. p-Values for chi-squared comparison of longest
success run data

ran the above tests again on the same 22 groups, this time looking

at the longest failure runs. The p-values, corresponding to those in

Figure 14, are shown in Figure 15. It can be seen that once again,

the fit is very good.

Another aspect of baseball that has been taken to provide evi-

dence in favor of streakiness is the idea of a hitting streak. A hitting

streak by a player is a set of consecutive games played by the player

in which he gets at least one hit in each game. In order to qualify

as a hitting streak, the games must all occur in a single season. The

longest hitting streak that has ever occurred in the major leagues

lasted 56 games; it happened in 1941, and the player who accom-

plished this streak was Joe DiMaggio. Much has been written about

this streak (see, for example, [4], [18], and [27]). The question that

we wish to consider is whether the fact that this streak occurred pro-

vides evidence against the Bernoulli trials model.
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Figure 15. p-Values for chi-squared comparison of longest
failure run data.

If a hitter has a fixed number of at-bats in each game, then it

is fairly easy to calculate the probability that he will hit safely in n

consecutive games, assuming the Bernoulli model. For example, if a

hitter has a .340 batting average, and has four at-bats in each game,

then, under the Bernoulli model, the probability that he gets at least

one hit in a given game is

1− (.660)4 = .8103 .

Thus, in a given set of 56 consecutive games, the probability that the

hitter gets at least one hit in each game is

(.8103)56 = .00000766 .

This sounds like a very unlikely event, but we’re not really asking

the right question. A slightly better question might be the following:

Given that a hitter plays in 154 games in a season, and has a season

batting average of .340, what is the probability that he bats safely

for at least 56 consecutive games? (We use 154 for the length of a
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Figure 16. Probability of a hitting streak of at least 56 games

season, since almost all of the player seasons with batting averages

of at least .340 occurred before the seasons were lengthened to 162

games.) Once again, under the Bernoulli model, we can answer this

question rather easily. Putting this question in terms of ideas that we

have already introduced, this question is equivalent to asking what is

the probability, in a Bernoulli trials sequence of length 154, and with

success probability .8103, that the longest success run is at least of

length 56. The question, in a form similar to this one, was considered

in [38]. The answer, in this case, is .0003.

Of course, there have been many batters who have had season

batting averages much higher than .340, and it is clear that as the

batting average climbs, so does the probability of having a long hitting

streak. Figure 16 shows the probability of a hitting streak of at least

56 games in a 154-game season as a function of the season batting

average. This figure shows that the season batting average has a large

effect on the probability of a long hitting streak. Figure 17 shows a

histogram of player seasons since 1901 for which the batting average

was at least .340.
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Figure 17. Number of player seasons with a given batting average

We still are not asking quite the right question. There are two

changes that we should make. First, we do not want to know the

probability that a given hitter will have a long hitting streak; rather,

we want to know the probability that at least one entry in a set of

player seasons will contain a long hitting streak. We will take this

set of hitters to correspond to all hitters since 1901 who batted at

least .340 in a season and had at least 300 at-bats. (There were 430

such seasons.) We are arbitrarily disregarding hitters whose batting

averages are below .340. (By doing so, we will underestimate the

probability we are considering.)

The second change that should be made concerns the variability

of the number of at-bats belonging to an individual player over a set

of games. It should be clear that if a batter averages four at-bats per

game, but the number of at-bats varies widely over a set of games,

then it is less likely that he will have a long hitting streak. As a sim-

ple example to help show this, consider a batter with a .340 batting

average under the following two scenarios: first, he gets exactly four
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at-bats in each of 10 consecutive games, and second, he gets, alterna-

tively, two and six at-bats in 10 consecutive games. In the first case,

the probability that he gets at least one hit in each game is(
1− (.660)4

)10
= .12196 .

In the second case, the probability is(
1− (.660)2

)5(
1− (.660)6

)5
= .03721 .

So, here is the question that we want to try to answer: Suppose

we restrict our attention to those player-seasons in which the player

batted at least .340 (we will call this set our good-hitter data set), and

suppose we take into account the typical variation between games of

the number of at-bats of a player in a game. What is the probability,

under the Bernoulli trials model, that at least one of the players would

have a hitting streak of at least 56 games?

This is too complicated a question to hope for a theoretical an-

swer, but we can simulate the seasons of these hitters, using the ob-

served batting averages and numbers of games and at-bats. Here is

how the simulation is carried out. We begin by finding an estimate

for the standard deviation in the sequence of numbers of at-bats in

a game, over a typical player season. We can use our original data

set from the years 1978 to 1992 to obtain this estimate. We restrict

our attention to those players who batted at least .300 for the season

and who had at least 300 at-bats. There were 369 player seasons that

satisfied these requirements. For each such season, we found the se-

quence of numbers of at-bats in all games started by the player. The

reason for this restriction is that the players in our good-hitter data

set started almost every game in which they played. For each of these

369 seasons, we compute the standard deviation of the sequence of

at-bats. Then we compute the average of these standard deviations.

When we do this, we obtain a value of .8523.

For each player-season in our good-hitter data set, we will produce

a sequence of at-bats per game for the number of games in which

the player participated that season. The terms of this sequence will
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Figure 18. Simulated longest hitting streak data

be drawn from a normal distribution with mean equal to the average

number of at-bats by the player during that season, and with standard

deviation equal to .8523. The terms will be rounded to the nearest

integer, so that they represent numbers of at-bats (which must be

integers). If an integer in the sequence is less than or equal to 0,

we throw it out. The reason for this is that a hitting streak is not

considered to be interrupted if a player appears in a game but does

not record any official at-bats.

Since we are operating under the assumption of Bernoulli trials,

we use the player’s season batting average to simulate his season with

the above simulated at-bat sequence. We then record the longest

hitting streak in the season. We do this for each player, and record

the longest hitting streak among all of the player seasons. To estimate

the probability that someone would have a hitting streak of at least

56 games, we carry out the above procedure many times and observe

the fraction of those trials that lead to at least one such streak.

The results of the simulation are shown in Figure 18. The above

procedure was carried out 1000 times. In the simulated data, the
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Figure 19. Moving average number of .340+ player seasons

length of the longest hitting streak ranged from 33 to 85, and 126

times the length was at least 56 games. This simulation shows that the

probability, under the Bernoulli trials model, that we would observe a

hitting streak of at least 56 games in length is about 1/8 (≈ 126/1000)

and thus a streak like Joe DiMaggio’s would not be unusual under this

model. The simulation also shows that viewed in this way, DiMaggio’s

feat is probably not the most amazing feat in all of sports, or even in

baseball.

One can consider another question that is usually raised when

DiMaggio’s streak is discussed; that is the question of whether any-

one will ever break his record. Predicting the future is a dangerous

business, but one can use the above simulations, together with known

data, to say something of interest. Of the 430 player seasons in which

the player batted at least .340, about three-quarters of them occurred

in the period 1901-1950. Thus, the rate at which .340-plus seasons

occur has changed dramatically over the years. Figure 19 shows the

moving average of the number of .340-plus player seasons, averaged

over ten-year windows. Currently, the average number of such player
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seasons is about 4 per year. Thus we assume that there will be about

4 such player seasons in each year in the future. We have seen that

in 430 such player seasons, the probability is about 1/8 that someone

will have a 56-game hitting streak. Thus, we should expect to see one

in the next 3440 (= 8× 430) such player seasons, which translates to

860 years. Putting it another way, it seems very unlikely that we will

see such a streak in any of our lifetimes. Viewed from this perspective,

DiMaggio’s streak seems much more impressive than before.

There is another way to estimate how long it might be until the

record is broken. It was stated above that the probability is .0003

that a .350 hitter will have a hitting streak of at least 56 games in

a season. If there are about 4 such seasons per year in the future,

we would expect to see such a streak, assuming the Bernoulli trials

model, every 1/(.0003× 4) = 833 years.

The above argument does not take into account the incredible

pressure that will surely be felt by any player who approaches the

record. Joe DiMaggio must have felt pressure as well during the

streak, but once he had broken the existing record of 44 consecutive

games, the pressure probably abated quite a bit. Thus, any player

who threatens DiMaggio’s record will feel pressure for quite a bit

longer than DiMaggio did. Of course, those who believe that Bernoulli

trials are a good model for hitting in baseball might argue that the

pressure under which a player finds himself in such a situation is

irrelevant.

We performed the above simulation in 2005. In 2008, a similar

simulation was carried out by S. Arbesman and S. Strogatz, and a

summary of their simulation was published in the New York Times [3].

Quite a few readers wrote to the Times on this subject after the article

was published. We will discuss a few of their responses below. In the

Arbesman-Strogatz simulation, the authors found that in 42% of their

simulated baseball histories, the longest hitting streak was at least 56

games in length. We note that this estimate is quite different than

ours, but the difference is easily explained. The first difference is

that in their simulation, they considered the period from 1871 to the
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present. We used data from 1901 to the present. More than half of

the longest streaks in their simulation occurred before 1901, and it

is likely than an even higher percentage of those streaks that were

longer than 56 games occurred in that era. The second difference is

that in their simulation, they did not take into account, as we did,

the variation in the number of at-bats that occur in a given player’s

record. In 2009, D. Rockoff and P. Yates [36] carried out a similar

simulation in which they took into account this variation (so their

simulation was very much like ours). They reported the probability

of seeing at least one hitting streak of at least 56 games as 2.5%.

Many readers responded to the Arbesman-Strogatz article. One

reader said “Numbers, no matter how statistically significant, do not

measure DNA or individual eye/hand coordination.” This was an ar-

gument against using statistics to model hitting in baseball. However,

one could also argue that eye/hand coordination is expressed by an

individual batter’s batting average, so in fact statistics do give some

information about an individual’s abilities. The question that we are

considering is how well a simple Bernoulli trials model fits the data

in the real world.

Another reader asked about the design of the experiment. For

example, were the abilities of the pitchers whom the batters faced

varied over time? Were injuries and fatigue simulated as well? These

are interesting questions. Our response is that one can always think of

ways to make probability models more realistic. However, making a

model more realistic almost always makes it more complicated as well.

If a simple coin-tossing model fits a data set very well, and a more

complicated model fits the data better, then the statistician must

give up some simplicity to obtain greater accuracy. Each of these two

approaches has some virtue. In this chapter, we show that even a very

simple coin-tossing model fits the data very well in many instances.

The fact that in such a model streaks can occur should help convince

the reader that it may not be necessary to turn to more complicated

models to explain the streaks observed in real data.
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Figure 20. Actual and theoretical longest winning streak lengths

We now turn to team statistics; we seek to answer the question of

whether teams exhibit streaky behavior. One way to check this is to

recall that if a process has a positive autocorrelation (meaning that

the probability of a success in a given trial increases if the previous

trial is a success), then the lengths of the longest streaks will, on

average, be longer than in the Bernoulli trials model. This will be

true of both winning and losing streaks.

There are 390 team seasons in our data set. For each of these

seasons, we computed the lengths of the longest winning and losing

streaks. Then we grouped the team seasons by rounding the win-

ning percentages to the nearest multiple of .01. (So, for example, a

winning percentage of .564 is rounded to .56.) For each group, we cal-

culated the average lengths of the longest winning and losing streaks.

Figures 20 and 21 show these average lengths, as well as the theo-

retical average lengths in the Bernoulli trials model. (The theoretical

lengths are shown as a solid curve.) We note that the fit between the

actual and the theoretical longest streak lengths is very good, except

perhaps at the ends of the graphs. But even at the ends, there is
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Figure 21. Actual and theoretical longest losing streak lengths

no bias. In addition, the large deviations at the ends should not be

too surprising when one notes that the group sizes are so small. Of

the 390 team seasons in the data set, only 9 have rounded winning

percentages that lie outside of the interval [.36, .64].

In the book Curve Ball [1], the authors, Jim Albert and Jay

Bennett, study the question of team streakiness, in the sense of the

block-Bernoulli process. Specifically, their model of streaky behavior

is as follows: A hypothetical season is split into nine non-overlapping

blocks of 18 games each (so in our notation, a = b = 18). Three

winning percentages are computed, denoted by pC, pav, and pH (for

cold, average, and hot). The percentage pav is the team’s season

winning percentage. The percentages pC and pH are defined to be .1

less than and more than pav, respectively. So this is somewhat like

our pmin and pmax, except that in their model, the block winning

percentages are not uniformly chosen in the interval [pC, pH]; rather,

there are only three possible block winning percentages. Finally, each

of these three block winning percentages is assigned randomly to three
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Figure 22. Block winning percentages for a streaky team

of the nine 18-game blocks. Figure 22 shows an example of the block

winning percentages for a team whose season percentage is .55.

A team whose win-loss sequence arises from the above block-

Bernoulli process will be said to be streaky, while one whose win-loss

sequence arises from a Bernoulli process will be called consistent. Of

course, we do not expect all teams to behave in one of these two ways;

we need a parameter that can be estimated and that does a good job

of distinguishing between these two models. As we said above, our

windowed difference statistic does not distinguish very well between

the two models we posited.

Albert and Bennett define their parameter, called Black, as fol-

lows. Given a team’s win-loss sequence for a season, they compute

the windowed winning percentages for all blocks of 12 games. (So in

a 162-game season, there are 151 such blocks, starting at games 1 to

151.) They plot these percentages, along with a horizontal line whose

y-value is the season winning percentage. An example of this plot

is shown in Figure 23; the team is the 1984 Baltimore Orioles. The
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Figure 23. Windowed winning percentage for 1984 Baltimore Orioles

parameter Black is easy to describe in terms of this figure; it is the

area of the black region.

It is clear that if a team is consistent, then Black will be very

small, while if a team is streaky, Black will probably be large. Thus,

this parameter might be able to distinguish between the block-Bernoulli

and the Bernoulli models. To decide which model fits a given team

better, Albert and Bennett compute the winning percentage of the

team. Then they obtain, by simulation, the distribution of the pa-

rameter Black under both models. The actual value of Black for the

team is computed and compared with the two distributions. For each

distribution, a p-value is reported. If the first p-value of the observa-

tion is larger than the second p-value, then they claim that the first

model fits the team’s performance better than the second model.

In fact, they go further and use the ratio of the p-values as the

odds that the team is consistent (or streaky). For example, if the p-

values for a given team, under the consistent and streaky models, are

.08 and .30, respectively, then they say that the probability that the
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team is streaky is .79 (= .30/(.08 + .30)). This language corresponds

to a Bayesian approach for comparing the two models.

We will proceed in a different direction with the parameter Black.

We are trying to determine whether the Bernoulli model does a good

job of fitting the win-loss sequences in our data set. For each of the

390 teams in this data set, we can calculate a p-value for the observed

value of Black, under the null hypothesis of the Bernoulli model. For

each team, we use the winning percentage of that team, rounded to

the nearest .01, to compute a simulated distribution for Black. If there

are more streaky teams than can be explained well by the Bernoulli

model, we should see more small p-values than expected, i.e. the set

of p-values should not be uniformly distributed across the interval

[0, 1]. (The reason that the p-values of streaky teams are small is

because the parameter Black is very large for such teams, and large

values of Black correspond to small p-values.) Figure 24 shows this

set of p-values. The set has been sorted. If the set were perfectly

uniformly distributed across [0, 1], the graph would be the straight

line shown in the figure. One sees that the set of p-values is very

close to uniform, and in addition, there are certainly no more small

p-values than expected under the Bernoulli model. In fact, we see

that there are slightly more teams with large p-values than might be

expected. Since large p-values correspond to small values of Black,

this indicates that the number of very consistent teams is slightly

more than expected.

                

                                                                                                               



44 1. Streaks

0 100 200 300
Team number

0

0.2

0.4

0.6

0.8

1
p
�
v
a
l
u
e

Figure 24. p-values for the Black parameter

Exercises.

1. The major league record for the number of consecutive hits

by a batter (over several games) is 12, by Walt Dropo in

1952. How can we decide how surprising this record is? One

way is to proceed as follows. First, we should understand

how a hitter’s batting average affects the probability that

his longest streak of hits is at least 12.

(a) Using the approximation in Exercise 4.2, find the prob-

ability of a batter with a lifetime batting average of .300

achieving a streak of at least 12 hits in a row. Assume

the number of at-bats in the hitter’s career is 5000. Do

the same calculation for batters with lifetime batting

averages of .325 and .350. (You should obtain the val-

ues .0019, .0047, and .0109.) This shows that a .350

hitter is five times as likely to have such a streak as

a .300 hitter. Of course, there are many more of the

latter than the former in major league history.
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(b) Now suppose we restrict our attention to the 430 player

seasons, mentioned above (and shown in Figure 17) in

which the player’s batting average was at least .340 and

he had at least 300 at-bats. The average of all of the

batters during these seasons was .358. If we assume

the average number of at-bats was 450, then we can

think of this set of seasons as one sequence of Bernoulli

trials, with n = 450 ·430 = 193500 and p = .350. Using

the approximation in Exercise 4.2, show that in this

sequence of Bernoulli trials, the probability that the

longest success run is at least 12 is about 0.423. This

shows that this record is not very surprising. (What

is more surprising is that Dropo’s batting average in

1952, when he set this record, was .279.)

2. On five different occasions, there have been home runs hit

by four consecutive batters. Is this predicted by a runs

calculation? To answer this question, use the following ap-

proximate data. Since 1900, there have been approximately

170000 games, with an average of about 80 plate appear-

ances per game. In 2006, the probability of a home run in a

plate appearance was .02857. These data come from the ar-

ticle by Cleary [8]. This last probability is probably greater

than the corresponding probability for the period from 1900

to 2010; we will consider various alternative values below.

Using the approximation in Exercise 4.2, find the prob-

abilities of a run of 3, 4, 5, and 6 home runs in

170000× 80 = 13600000

plate appearances. Use values for p of .02857, .025, and .020.

After computing these approximations, are you surprised

that there have been four home runs hit in succession on at

least one occasion? Are you surprised there have never been

five home runs hit in succession?

                

                                                                                                               



46 1. Streaks

3. Can you describe a win-loss sequence for a baseball team

that you would say exhibits streakiness, yet for which the

parameter Black is very small?

4. Suppose that a .300 hitter averages four at-bats over a six-

game stretch. Using the arithmetic-geometric inequality,

prove that the probability he has at least one hit in each

of the six games is maximized in the case that he has ex-

actly four at-bats in each game.

5.2. Basketball. The most widely referenced article on streaks in

sports is undoubtedly the paper by Gilovich, Vallone, and Tver-

sky [16]. This article examines whether or not there is auto-correlation

in the shooting sequences of basketball players. The authors surveyed

fans, collected data from games at both the professional and college

level, and carried out a set of experiments with amateur subjects. We

will give some of their most intriguing findings here.

In a survey of more than 100 basketball fans, recruited from the

student bodies of Cornell and Stanford, 91% believed that a player

was more likely to make his next shot if he had made the last two

or three shots than if he had missed the last two or three shots. In

addition, 68% said the same thing when asked about free throws. The

fans were then asked to consider a hypothetical basketball player who

has a field goal percentage of 50% (i.e. he makes about one-half of his

shots). They were asked to estimate the player’s field goal percentage

for those shots that occur after he has made a shot, and for those

shots that occur after he has missed a shot. (These numbers are our

p1 and p2.) The average value of their estimate for p1 was .61, and

for p2 it was .42. In addition, the former estimate was greater than

the latter estimate for all of the fans in the survey.

The authors compared these estimates with data obtained from

48 games involving the Philadelphia 76ers in the 1980-81 season. The

data consisted of the sequences of hits and misses for all of the field

goal attempts for all of the players on the 76ers. Among the more

interesting observations is the fact that for eight of the nine major
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players on the team, the probability that they made a shot was higher

after a miss than after a hit. For these players, the weighted mean

of their field goal percentages (the average of their probabilities of

making a field goal, weighted by the number of attempts) was .52.

The weighted mean of their field goal percentages after a miss and a

hit were .54 and .51, respectively.

In their paper, the authors performed other statistical tests, in-

cluding a runs test, a test of stationarity, and a test for stability of

shooting percentage across games. None of these tests provided any

strong evidence for rejecting the Bernoulli model.

They also looked at free throw data from the Boston Celtics teams

in the 1980-81 and 1981-82 seasons and again found no evidence of

streakiness. Finally, they recruited members of the Cornell basketball

teams (both men and women) to take part in a controlled shooting

experiment. Each participant was asked to take 100 shots from a

distance at which their accuracy was roughly 50%. They were paid

money, where the amount was based both on how accurately they

shot and how accurately they predicted their next shot. Once again,

there was no evidence suggesting the existence of streakiness.

We now turn to another aspect of basketball in which there is

some evidence that fans think there is streakiness. In much of the

world, money is bet on almost all aspects of sports. In the United

States, for example, one can bet on professional basketball in several

ways. One of the most popular ways proceeds as follows. Professional

odds-makers (called bookies) set a point spread before the beginning

of a game. For example, if the Lakers are playing the Spurs, the

bookies may say that the Spurs are favored by 5.5 points. A bettor

can bet on either team; if he bets on the Lakers, he is given 5.5 points,

meaning that if the Lakers win the game, or if they lose by 5 points

or fewer, then the bettor wins. Conversely, if he bets on the Spurs,

then the bettor wins only if the Spurs win by at least 6 points.

The bookies take 10% (called a vigorish, or vig) of the winning

bets and all of the losing bets. In many cases, the bookies do not
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set the point spread at their prediction for the game. The bookies’

objective is to have an equal amount of money bet on both teams.

To see why they want this, suppose first that $10,000 is bet on each

team. Then the bookies make $1,000, regardless of which team beats

the spread. However, if $15,000 is bet on the Lakers and $5,000 is bet

on the Spurs and the Lakers beat the spread, then the bookies must

pay out $13,500 and only take in $5,000, so they lose $8,500.

In a paper that appeared in 1989 [5], Colin Camerer showed that

the bettors believed in streaky behavior in the NBA (the professional

basketball league in the United States). Camerer collected data on

all games played in three seasons of the NBA (from 1983 to 1986).

His data set consists of the scores of all of the games and the point

spreads set by a popular bookie in Las Vegas.

At the beginning of every game (except for the first game played

by a team in a season), each team has a winning streak or a losing

streak. Each game is put into a subset depending upon the lengths

of these two streaks. For example, if the first team has a three-game

winning streak and the second team has a two-game losing streak,

then the game is put into the (+3,−2) subset. The longer of the two

streaks determines which of the two teams is the “first” team; if the

streaks are of equal length, then a coin flip determines which team is

the first team. Thus, each game appears in exactly one subset. For

each subset, the fraction of those games in which the first team beat

the spread was calculated.

This fraction is very important for the following reason. Camerer’s

data show, for example, that the subsets of the form (+4, k), with

1 ≤ k ≤ 4, have a combined fraction of .46. This means that 46%

of the teams with four-game winning streaks who played teams with

winning streaks of length at most four managed to beat the spread.

This can be taken as evidence that the bettors (and hence the bookies)

overvalued the teams with four-game winning streaks. The question

of whether such a fraction is significant can be answered using stan-

dard statistical methods. We will now show how this is done using

the above data.
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There were 159 games in the subsets that we are dealing with.

Suppose that we assume the probability that the first team will beat

the spread is .5. What is the probability that in 159 trials, the first

team will actually beat the spread 46% of the time or less, or equiv-

alently, in at most 73 games? The answer is about .17, which a

statistician would not regard as significant.

The data can be pooled by considering all of the subsets (j, k)

with j positive (and j ≥ |k|). There were 1208 games of this type,

and the first team beat the spread 47.9% of the time. We can once

again ask the question: If a fair coin is flipped 1208 times, what is the

probability that we would see no more than 579 (= .479×1208) heads?

We can calculate this exactly, using a computer, or we can find an

accurate approximation, by recalling that the number of heads NH is

a binomially distributed random variable with mean equal to 604 (=

1208× .5) and standard deviation equal to 17.38 (=
√
1208× .5× .5).

Thus, the expression

NH − 604

17.38

has, approximately, a standard normal distribution. The value of

this expression in the present case is -1.44. The probability that a

standard normal distribution takes on a value of -1.44 or less is about

.0749, which is thus the p-value of the observation. This observation

is therefore significant at the 10% level, but not at the 5% level.

If one instead takes all of the subsets of the form (j, k) with j ≥ 3

and j ≥ |k|, there are 698 games, and the first team beat the spread

in 318 of these games. This represents 45.6% of the games. What is

the p-value of this observation? It turns out to be about .0095, which

is a very small p-value.

One can also look at the corresponding pooled data for teams

with losing streaks. There were 1140 games in the subsets of the

form (j, k), with j ≤ −1 and |j| ≥ |k|, and the first team beat the

spread in 597 of these games, or 52.4% of the time. The p-value of

this observation is .055. If we restrict our attention to those subsets

for which j ≤ −3 and |j| ≥ |k|, there were 643 games, and the first
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team beat the spread in 340 of these games, or 52.9% of the time.

The p-value of this observation is .0721.

There are two more collections of subsets that are worth men-

tioning. The first is the collection of subsets of the form (j, k), with

j negative and k positive (and |j| ≥ |k|). If one does not believe

in the predictive value of streaks, then one would think that in this

case bettors would undervalue the first team’s chances of beating the

spread, since the first team is on a losing streak and the second team

is on a winning streak. Thus, the first team should beat the spread

more than half the time. There were 670 games in this collection of

subsets, and the first team beat the spread in 356 of these games,

or 53.1% of the time, leading to a p-value of .0526. Interestingly, in

the corresponding collection, in which the first team is on a winning

streak and the second team is on a losing streak of equal or smaller

length, the first team beat the spread in 358 games, which is 50.1%

of the time. The p-value of this observation is, of course, .5.

Although only one of the six p-values reported above is less than

.05, five of them are rather small, and thus there is some evidence that

the bettors are overvaluing teams with winning streaks and under-

valuing those with losing streaks.

If the astute bettor realizes that the average bettor is overvaluing

teams with long winning streaks and undervaluing teams with long

losing streaks, can he or she make money on this information? In

Exercise 1, the reader is asked to show that if there is a 10% vig,

then the bettor needs to win 52.4% of the time (assuming he is bet-

ting constant amounts) to break even. A few of the pooled subsets

mentioned above had winning percentages that were at least 2.4%

away from 50% in one direction or the other, meaning that had one

made bets, in the correct direction, on all of the games in that pooled

subset, one could have made money. Unfortunately, if one tests the

hypothesis that the winning percentage in any of the pooled subsets

is at least 52.4%, one finds that none of the results are significant at

the 5% level.
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The results for the 2003-04 season are qualitatively different than

those found by Camerer. Through the All-Star break (February 15,

2004), teams having a winning streak, playing teams with equal or

shorter streaks, beat the spread in 193 out of 370 games, or 52.2% of

the games. Teams having a losing streak, playing teams with equal or

shorter streaks, beat the spread in 179 out of 375 games, or 47.7% of

the games. Thus, betting on teams with winning streaks, and betting

against teams with losing streaks, would have resulted in a winning

percentage of 52.2%. Note that this is the opposite of what happened

in Camerer’s data. Does the reader think that this change will persist,

and if so, is it because the bettors have gotten smarter (i.e. have they

incorporated the fact that streaks are over-rated into their betting

practices)?

Exercise.

1. Show that if there is a 10% vig, and a bettor makes bets of

a constant size, then the bettor needs to win 52.6% of the

time to break even.

5.3. Horseshoes. The game of horseshoes differs in many ways from

the games of baseball and basketball. In studying streakiness, some

of these differences make it easier to decide whether the results in

horseshoes diverge from those that would be predicted under the as-

sumptions of the Bernoulli trials model.

In the game of horseshoes, two contestants face each other in a

match. A match consists of an indefinite number of innings. In each

inning, one player pitches two shoes, and then the other player pitches

two shoes. The shoes are pitched at a stake that is 37 feet from the

pitching area. If the shoe encircles the stake, it is called a ringer.

A nonringer that is within 6 inches of the stake is called a “shoe in

count.” The former is worth three points and the latter is worth one

point. If one player throws j ringers, and the other player throws k

ringers, where j ≥ k and j ≥ 1, then the first player gets 3(j − k)

points, and in this case, shoes in count do not count. If neither player
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throws a ringer, then the closest shoe in count is worth one point for

the player who threw it. If that player threw two shoes in count that

are closer than either of his opponent’s shoes, that player gets two

points. The first player to score 40 points or more is the winner of

the match.

Unlike the game situations of baseball and basketball, the game

situation of horseshoes does not affect a player’s strategy. In addition,

horseshoe players typically throw many times in a relatively short

time period, and are attempting to do the same thing every time

they throw.

Gary Smith has analyzed the data from the 2000 and 2001 Horse-

shoe World Championships (see [39]). He was particularly interested

in whether the data exhibit streakiness. In the cited article, Smith

concentrated on doubles (i.e. two ringers thrown by one player in one

inning) and non-doubles (i.e. everything else). At the championship

level, players throw doubles about half the time. We show some of

the data from this paper in Table 1.

Group After 1 Nondouble After 1 Double

Men 2000 .480 .514

Women 2000 .501 .544

Men 2001 .505 .587

Women 2001 .516 .573

Table 1. Frequency of doubles following non-doubles or doubles

Each line of the table represents 16 players. It can be seen that

the players were more likely to throw a double following a double

than following a non-double. The table gives the average frequencies

over sets of players. A breakdown of the data shows that of the

64 players, 25 of the men and 26 of the women were more likely to

throw a double following a double than following a non-double. (We

will refer to this situation as positive auto-correlation, as before.)

That this is evidence of streakiness can be seen as follows. If players
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were not affected by their throws in the preceding inning, then about

half of them would have positive auto-correlation. Continuing under

the assumption of independence between innings, we see that the

probability of observing as many as 51 of the 64 players with positive

auto-correlation is the same as the probability that if a fair coin is

flipped 64 times, it comes up heads at least 51 times. This probability

is approximately .0000009.

At the championship level, the players’ probabilities of throwing

a double in any given inning is so high that using either the length

of the longest run of doubles or the number of runs of doubles and

non-doubles cannot be used to reject the null hypothesis of Bernoulli

trials at the 5% level. For example, one of the players in the 2000

championships pitched 13 doubles in 14 innings. This means that

there were either two or three runs of either type. But under the null

hypothesis of Bernoulli trials, there is a probability of 2/14 ≈ .143 of

two runs, since this happens if and only if the failure occurs in the

first or last inning. So in this case, even if there are two runs, the

p-value is much larger than .05.

Smith gets around this problem by calculating, under the null

hypothesis, the expected number of runs by a given player in a given

game and then tabulating the number of games in which the actual

number of runs was above or below the expected number. Fewer

runs than expected means that the data exhibits streakiness. Table 2

shows the number of games with fewer or more runs than expected for

each championship, together with the p-values for the observations,

under the null hypothesis.

Group Fewer Runs More Runs p-value

Men 2000 129 107 0.0857

Women 2000 136 103 0.0191

Men 2001 137 98 0.0065

Women 2001 138 99 0.0067

Table 2. Number of games with fewer or more runs than expected
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For each group in the data, the p-values are calculated by using

the null hypothesis to compute the distribution of the number of

runs and then computing the probability, using this distribution, of

observing an outcome as extreme as the actual outcome. The small

sizes of the p-values show that the null hypothesis should be rejected,

i.e. there is streakiness in championship-level horseshoes.

5.4. Tennis. The game of tennis is interesting in probability theory

because it provides an example of a nested set of Markov chains. The

reader will recall that, roughly speaking, a Markov chain is a process

in which there is a set of states and a transition matrix whose entries

give the probabilities of moving from any state to any other state in

one step. The chain can either be started in a specific state or it can

be started with a certain initial distribution among the states. We

will describe the various Markov chains that make up a tennis match

and then give some results about tennis that follow from elementary

Markov chain theory. We will then look at whether or not tennis is

streaky at the professional level.

A tennis match is divided into sets; in most cases, the first person

to win two sets is the winner of the match. (There are a few profes-

sional tournaments in which the winner is the first person to win three

sets.) The set scores in an on-going tennis match can be thought of

as labels in a Markov chain. The possible scores, from the point of

view of one player, are 0-0 (at the beginning of the match), 1-0, 0-1,

1-1, 2-0, 2-1, 1-2, and 0-2. The last four of these states are said to be

absorbing states, because once the match enters one of these states,

it never leaves the state. The other four states are called transient

states, because the match does not end in any of those states. (A

Markov chain is said to be an absorbing chain if it contains at least

one absorbing state and it is possible to go, in one or more steps, from

every state to some absorbing state. In an absorbing Markov chain,

a state is called transient if it is not an absorbing state.)
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Suppose that player A has probability p of winning a set against

player B. Then, for example, the probability that the Markov chain

will move from state 0-1 to state 1-1 is p, while the probability that

it will move from state 1-1 to state 1-2 is 1− p. The reader can check

that if the above states are numbered from 1 to 8 and we denote by

pij the probability of moving from state i to state j in one step, then

the transition matrix P = (pij) is given by

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0-0 1-0 0-1 1-1 2-0 2-1 1-2 0-2

0-0 0 p 1− p 0 0 0 0 0

1-0 0 0 0 1− p p 0 0 0

0-1 0 0 0 p 0 0 0 1− p

1-1 0 0 0 0 0 p 1− p 0

2-0 0 0 0 0 1 0 0 0

2-1 0 0 0 0 0 1 0 0

1-2 0 0 0 0 0 0 1 0

0-2 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It turns out that we will want to split most of the above states

into two states in our final model, because it is thought that the serve

in tennis has a large effect on who wins a given game; thus, it will

be important for us to record who is serving at the beginning of each

set. We will discuss this in more detail below.

Each set in tennis consists of a number of games. The first player

to win six games, if his or her opponent has won at most four games,

wins the set. If the score is 6-5, the set continues until it is either

7-5, in which case the player with seven games wins, or it is 6-6, in
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which case a tie-breaker is played. Whoever wins the tiebreaker wins

the set. Thus a set can be modeled by an absorbing Markov chain.

Both a regular game and a tie-breaker are themselves absorbing

Markov chains. In a game, the first person to win at least four points

and be at least two points ahead wins the game. In a tie-breaker, the

first person to win at least seven points and be at least two points

ahead wins the tie-breaker.

At the professional level, the person who is serving a point has a

much greater than even chance of winning the point. Thus, we need

to take account of the serve. In each non-tie-break game, one person

serves all of the points. The service rotation in a tie-break is more

complicated; one player starts the tie-break by serving one point, and

then the players take turns serving two consecutive points.

We show, in Figure 25, the probability that a player wins a game

that he is serving, if he has a probability ppoint of winning any given

point. This graph shows that if ppoint = .6, then the player will win

the game with probability .74, and if ppoint = .8, then the player will

win the game with probability .98.

Now suppose that two players are playing a best-of-three set

match in which the first player has a probability of ppoint of win-

ning any given point (so in this case, we are assuming that the serve

does not affect the outcome of the point). In Figure 26, we show

the probability of the first player winning the match, as a function of

ppoint. Note that even if ppoint = .51, the probability that the first

player wins the match is .748.

How are such probabilities determined? We will briefly describe

the calculations that are needed, and the theorems on which these

calculations are based. For more examples, and for proofs of the

theorems, the reader is referred to [19].

If P is the transition matrix of an absorbing Markov chain, then

we can relabel the states so that the first set of states are the transient

ones and the last set of states are the absorbing ones. If we do so,

the matrix P assumes the following canonical form:
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P =

⎛
⎜⎝

TR. ABS.

TR. Q R

ABS. 0 I

⎞
⎟⎠

The four expressions Q, R, 0, and I are rectangular submatrices

of P. If there are t transient states and r absorbing states, then

I, for example, is an r-by-r matrix. The reason that it is denoted

by I is that it is an identity matrix, since the probability of moving

from one absorbing state to a different absorbing state is 0, while the

probability of remaining in an absorbing state is 1.

If P denotes the transition matrix for the set scores in tennis

(which was given above), then the matrices Q and R are as follows:

Q =

⎛
⎜⎜⎜⎝

0-0 1-0 0-1 1-1

0-1 0 p 1− p 0

1-0 0 0 0 1− p

0-1 0 0 0 p

1-1 0 0 0 0

⎞
⎟⎟⎟⎠ ,

R =

⎛
⎜⎜⎜⎝

2-0 2-1 1-2 0-2

0-0 0 0 0 0

1-0 p 0 0 0

0-1 0 0 0 1− p

1-1 0 p 1− p 0

⎞
⎟⎟⎟⎠ .

Let P be the transition matrix, in canonical form, for an absorb-

ing Markov chain. The matrix N, defined by the equation

N = (I−Q)−1 ,

is called the fundamental matrix for the chain. The following theorem

shows one reason that N is useful.
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Figure 25. Game-winning vs. point-winning probabilities in tennis
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Figure 26. Match-winning vs. point-winning probabilities in tennis
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Theorem 1. Let bij be the probability that an absorbing chain will

be absorbed in the j’th absorbing state if it starts in the i’th transient

state. Let B be the matrix with entries bij. Then B is an t-by-r

matrix, and

B = NR ,

where N is the fundamental matrix and R is as in the canonical form.

As an example of how this theorem is used, suppose that the

first player has probability p = .6 of winning a given set against his

opponent. Then

Q =

⎛
⎜⎜⎝
0 .6 .4 0

0 0 0 .4

0 0 0 .6

0 0 0 0

⎞
⎟⎟⎠ ,

so one can calculate that

N =

⎛
⎜⎜⎝
1 .6 .4 .48

0 1 0 .4

0 0 1 .6

0 0 0 1

⎞
⎟⎟⎠ .

Thus, the matrix B = NR is given by

B =

⎛
⎜⎜⎜⎝

2-0 2-1 1-2 0-2

0-0 .36 .288 .192 .16

1-0 .6 .24 .16 0

0-1 0 .36 .24 .4

1-1 0 .6 .4 0

⎞
⎟⎟⎟⎠ .

The first row of this matrix is of particular interest, since it con-

tains the probabilities of ending in each of the absorbing states, if the

chain starts in the state 0-0 (i.e. the match starts with no score). We

see that with the given value of p, the probability that the first player

wins both of the first two sets is .36 and the probability that he wins

the match is .36 + .288 = .648.

There are 43 states in the Markov chain representing a set of

tennis. There are four absorbing states, with two corresponding to a

win by the first player and two to a win by the second player. The
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Figure 27. Set-winning probabilities for players of equal abilities

reason that we need two winning states for each player is that we need

to keep track of who serves first in the subsequent set (if there is one).

The transition probabilities are found by using the graph shown in

Figure 25; for example, if the first player is serving, the game score is

2-1, and he has a probability of .6 of winning a given point, then the

game score will become 3-1 with probability .74.

Once again, we are interested in the probability that the player

who serves first wins the set. This time, there are two parameters,

namely the probabilities that each of the players wins a given point

when they are serving. We denote these two parameters by p1 and

p2. If we let p1 = p2, then Figure 27 shows the probability that the

first player wins the set as a function of p1.

There is nothing very remarkable about this graph. Suppose

instead that p1 = p2+ .1, i.e. the first player is somewhat better than

the second player. In this case, Figure 28 shows the probability that

the first player wins the set as a function of p1 (given that the first

player serves the first game). If, for example, p1 = .55 and p2 = .45,

then the probability that the first player wins the set is .81.
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Figure 28. Set-winning probabilities for players of unequal abilities

Finally, suppose that two players play a best-of-three set match.

The Markov chain corresponding to this situation has 11 states, be-

cause we must keep track of who begins serving each set. Suppose

that the first player has probability ppoint of winning a given point

on his serve, and his opponent has probability ppoint − .1 of winning

a given point on his serve. Figure 29 shows the probability that the

first player will win the match as a function of ppoint. Note that even

though there is a dip in the graph, the probability that the first player

wins the match is always at least .9, even though the probability that

he wins a given point is only slightly greater than his opponent’s

probability.

What kind of streakiness, if any, is evident in professional tennis?

The above models show that even with slight differences in the play-

ers’ abilities, many of the matches are likely to be one-sided. One can

turn this around and say that the fact that there are so many close

matches among the top professional tennis players means that these

players must be very close in ability.
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Figure 29. Match-winning probabilities for players of un-
equal abilities

In [22], Jackson and Mosurski describe two models, and some

variations on these models, that deal with match scores in tennis.

They were interested in the apparent overabundance of “heavy de-

feats” in tennis matches, i.e. best-of-three matches in which the loser

does not win a set, or best-of-five matches in which the loser wins 0

or 1 sets.

One can model the sequence of sets in a tennis match in several

ways. The simplest model is a Bernoulli trials model, in which a given

player has the same probability p of winning each set. In Exercise 1,

we ask the reader to determine the distribution of match scores under

this assumption. In order to see if this model does a good job of

explaining the data, we need to have some way of estimating p, since

we certainly do not assume, even among professional tennis players,

that p = .5.

A reasonable way to proceed is to use the rankings of the players

to estimate p. Tennis rankings of professional players are determined

by the players’ performance in the previous twelve months. These
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rankings are updated each week. They are not perfect because, for

example, if a very good player is injured and doesn’t play for a while,

his ranking can change by quite a bit, even though once he has re-

covered, he is presumably as good as he was before the injury.

We have obtained data from the website www.stevegtennis.com.

We very much appreciate the work that was done to create the raw

data files that we used. Our data set consists of all men’s singles

matches on the professional tour between 2000 and 2002.

There are at least two ways to use player rankings to estimate

p. One idea is to fit the observed probabilities to the difference of

the two players’ ranks. A plot of the observed probabilities for the

first sets in men’s singles matches in 2002 versus the difference in the

ranks of the two players is shown in Figure 30. We show only the

results of matches where the rank difference was at most 300, since

there are comparatively few matches for each difference larger than

this. There are 3925 matches in the resulting data set. This figure

also shows a best fit line. The reader can see that the fit is not very

good; in fact, the correlation coefficient is .0298.

Jackson and Mosurski adopt a different strategy for estimating

p. Denote by r and s the two players’ ranks and assume that r ≤ s.

They then define O(r, s) to be the odds (not the probability) that

the better player wins the first set. The reason that they define these

odds in terms of the first set, rather than the match, is that they are

concerned about the outcomes of sets affecting the outcomes of later

sets in the same match. If we are considering a model in which the

sets are considered to be independent events, then we can use O(r, s)

as the odds that the better player wins any given set in the match.

However, we must be careful with our use of O(r, s) if we are not

assuming the sets are independent.

Jackson and Mosurski next state the following assumed form for

O(r, s):

O(r, s) = (ratio of ranks)α =

(
s

r

)α

.
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Figure 30. Observed winning probabilities vs. rank difference
in 2002

As a function of log(ratio), this is a line through the origin with slope

α. The parameter α is to be determined by the data. The above

relation is equivalent to the relation

log(O(r, s)) = log(odds of success) = α log(s/r) .

This is a line through the origin with slope α.

We carry out this regression for all matches in the years 2000

through 2002 in which the ratio of the ranks of the players is at

most 7.4. (This is a completely arbitrary cut-off; it is about e2.)

There were 12608 matches in this data set. We obtain a value of

α = .480 and a correlation coefficient of .363. Figure 31 shows the

observed probability of winning the match versus the ratio of the

ranks, together with the graph of the function (ratio)α.

Now that we have a way to estimate the probability that a given

player will win the first set against a certain opponent, we can pro-

ceed in several directions. First, we can explain and test the model

of Jackson and Mosurski, which they call the odds model. Second,
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Figure 31. Observed winning probabilities vs. rank ratio in
2000-2002

we can test for independence among the sets in professional tennis

matches.

In the odds model, it is assumed that the odds the better player

will win a given set depend upon the set score of the match. We

let Oij denote the odds that the better will player will win the next

set if the set score is i (for the better player) to j. The discussion

above gives us an estimate for O00. (We are now suppressing the

dependence on r and s.) The model asserts that each time a player

wins a set, the odds for the next set change (in one direction or the

other) by a factor of k, where k is to be determined by the data. So,

for example, if the better player wins the first set, then the odds that

he wins the second set equal kO00. In general, we have

Oij = ki−jO00 .

Using our estimate for O00, and taking logarithms, we have

log(Oij) = α log(s/r) + (i− j) log(k) .
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Note that if we take k = 1, then we have a model in which the sets

are assumed to be independent.

The above equation can be used, along with the data, to estimate

α and k. The procedure we now describe results in the maximum

likelihood estimates for α and k. In a nutshell, a maximum likelihood

estimate for a set of parameters for a family of distributions is the set

of values for those parameters that leads to the highest probability,

among all distributions in the family, that the actual data set would

occur. As an example of this idea, suppose that we flip a coin 20

times and observe 12 heads. We wish to find the maximum likelihood

estimate for p, the probability of a head on a single toss. We certainly

hope that this estimate is 12/20. Let us see if this is the case. For

each p between 0 and 1, we compute the probability that if a coin has

probability p of coming up heads, it will come up heads 12 times in

20 tosses. This probability is(
20

12

)
p12(1− p)8 .

We wish to maximize this expression over all p. If we denote this

expression by f(p), then we have

f ′(p) =

(
20

12

)(
12p11(1− p)8 − 8p12(1− p)7

)
.

Setting this equal to 0 and solving for p, we obtain

p =
12

20
,

as we hoped. (It is easy to check that this value of p corresponds to a

maximum value of f(p).) To reiterate, this means that the probability

that we would actually obtain 12 heads in 20 tosses is largest if p =

12/20.

In the case of set scores in tennis, we treat each match as an

independent event and use the relationship given above among the

odds that the better player wins a given set, α, and k, to compute

the probability that we would obtain the actual data set. Since the

matches are assumed to be independent, this probability is the prod-

uct of the probability that each match in the data set occurs, given

                

                                                                                                               



5. Data from Various Sports 67

values of α and k. This calculation is easy to carry out with a com-

puter. The number of completed best-of-three set matches in our data

set is 12608. The maximum likelihood estimates for the parameters

are

α = .37

and

k = 1.78 .

Note that this value of α is quite a bit different than the one we

obtained using just the first sets of the matches.

Now that we have estimated α and k, we can proceed, as in

Jackson and Mosurski [22], to see how well the model fits the observed

distribution of set scores in our data. We do this by simulating the

matches many times on a computer, using the actual pairs of rankings

in each match in our data set. When we did this 100 times, the

distribution of match results was

{5271.77, 1196.99, 881.01, 941.8, 1317.93, 2998.5} ,

where the i’th number in the above list is the average number of

matches in which the outcomes of the sets are given by the i’th ele-

ment in the following list:

{(1, 1), (1, 0, 1), (1, 0, 0), (0, 1, 0), (0, 1, 1), (0, 0)} .

(In these outcomes, a 1 in the j’th entry means the better player won

the j’th set.) This simulation should give us a reasonable approxima-

tion to the theoretical distribution.

We also carry out the above calculation under the assumption of

independence of sets. To do this, we simply assume that the odds,

O00, of the better player winning the first set continue to hold for all

subsequent sets in this match. This corresponds to setting k = 1 in

the odds model. However, we need to re-estimate α, since our earlier

maximum likelihood estimate of α was found simultaneously with our

maximum likelihood estimate of k. When we do this, we obtain a new

estimate: α = .41. Using this value, a simulation gives the following
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distribution for match results:

{4459.56, 1742.79, 1235.17, 1241.94, 1746.56, 2181.98} .

The graph in Figure 32 compares these two simulated distributions

with the actual distribution of the matches in our data:

{5453, 1157, 993, 813, 1338, 2854} .

The simulation from the odds model gives a good fit to the actual
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Figure 32. Simulated and actual distribution of match outcomes

data and is clearly superior to the independent sets model. We see

that, consistent with the findings of the article [22], the independent

set model underestimates the proportion of “heavy defeats”; these

correspond to the set outcomes (1, 1) and (0, 0).

Before turning to the best-of-five set data, we digress slightly to

suggest another way to estimate α and k, which involves minimizing

the chi-squared goodness-of-fit statistic for the model. Recall that

if we let Obsi denote the i’th count in the observed distribution of
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match results, and Expi be the expected count under the model, then

the chi-squared statistic is given by

6∑
i=1

(Obsi − Expi)
2

Expi
.

Under the null hypothesis that the model is correct, this statistic

should have an approximate chi-squared distribution with 6 − 1 = 5

degrees of freedom. See [19] for examples of of goodness-of-fit tests.

We note that it would not be advisable to use this test in the present

context because the number of observations is so large. In such cases,

the chi-squared test will detect even very small departures from a

hypothesized model. (In fact, it would reject both the odds model

and the independence model here.)

However, the chi-square statistic can still be used as a basis for

estimation. Regarding the statistic as a function of α and k, we

seek values for these parameters that minimize the statistic. This

method is due to Karl Pearson, who was the originator of chi-squared

procedures. Carrying out the minimization with our data leads to

the values α = .41 and k = 1.75, which are very close to our earlier

maximum likelihood estimates.

Moving on, we repeated the maximum likelihood analysis for all

of the best-of-five set matches played between 2000 and 2002. There

were 1571 completed best-of-five set matches in the data set. The

maximum likelihood estimates for α and k are .31 and 1.51. Noting

that there are 20 possible outcomes in a best-of-five set match, we

found that the chi-squared statistic for the odds model was 17.54.

When we attempt to fit the independent set model to the data, we

found a maximum likelihood estimate for α of .36 and a chi-squared

statistic of 235.2. Thus we see again that the odds model does a much

better job fitting the data than the independent set model.

There is another way to help us decide whether professional tennis

matches are streaky. Consider a best-of-three set match. If each

player has won one set in the match, then we might think that each

of them is equally likely to win the third, and deciding, set. Of
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the 12608 completed best-of-three set matches in our data set, 4301

required three sets to complete. Of these 4301 matches, 2331 matches

were won by the player who won the second set. Thus, among the

matches that took three sets to complete, if a player won the second

set, the probability that he won the third set is .542. If the sets were

independent, we might think that this probability should be close

to .5. Since the actual probability is greater than .5, one could say

that the player who won the second set has “momentum” or is “on a

streak.” Before concluding that this is evidence of streaky behavior,

we should consider the relative abilities of the players involved in the

matches. It is possible that the reason that the winner of the second

set does so well in the third set is because he is the better player.

If we simulate a distribution of set scores, using the value of

α = .480 (obtained earlier by fitting the odds model to just the first

sets in the matches in the data), we obtain the following (the average

of 20 simulations, using the same sets of opponents as in the actual

data set):

{4676.65, 1740.05, 1187.75, 1180.4, 1746.85, 2076.3} .

In this simulated distribution, there are 5855 matches that took three

sets to complete. In these matches, there were 2935 (which is almost

exactly one-half of 5855) in which the player who won the second set

won the third. Thus, we can discount any effect due to the relative

ranks of the players.

It is also the case that this percentage does not change very much

if we vary α. For α = .3, .31, . . . , .5, the percentage stays between .497

and .505. Thus, we may assume that in this model, the player who

won the second set has about a 50% chance of winning the third set.

How likely is it that in as many as 2331 matches out of 4301, the

player who wins the second set wins the third set as well, given our

assumption about independence of sets? This is essentially the same

question as asking how likely a fair coin, if tossed 4301 times, will

come up heads at least 2331 times. The number of heads in a long

sequence of coin flips is approximately normal. If the coin is fair, and
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the number of tosses is n, then the mean is n/2 and the standard

deviation is
√
n/2. The standardized value corresponding to 2331 is

2331− n/2√
n/2

= 5.505 .

The probability that a standard normal random variable takes on a

value greater than 5.505 is less than 2 × 10−8. Thus, we can claim

that the data exhibits streakiness.

Exercise.

1. Assume that two players are playing a best-of-three set ten-

nis match and the first player has probability p of winning

each set (i.e. the sets are independent trials). Find the dis-

tribution of the four possible match outcomes: 2-0, 2-1, 1-2,

and 0-2.

6. Runs in the Stock Market

It is accepted that over the long run, most stocks go up in price.

Thus, one way to model the price of a stock is to imagine that there

is a line, with positive slope, that represents the long-term trend

of the stock and then consider the stock’s variation about this line.

It is typically the case that instead of using the daily prices of the

stock, one uses the logarithms of these prices. When logarithms are

used, a straight trend line corresponds to the stock price changing

by a constant percentage each day. (This is explained more fully in

Chapter 2.) The slope of the trend line can be found by either fitting

a straight line to the log price data or simply by using the starting

and ending points of the data as anchor points for the line. In either

case, the slope cannot be found unless one knows the data.

As might be imagined, an incredible amount of effort has been di-

rected to the problem of modeling stock prices. In Chapter 2, we will

focus on what is known about the distribution of the residual move-

ments (those that remain after the trend line has been subtracted from

the data) of stock prices. In this section, we will consider whether
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the stock market exhibits streaky behavior (or perhaps other forms

of non-randomness).

One obvious way in which stock prices could be streaky concerns

their daily up-and-down motions. Most stocks have more up days

than down days, so one might model them with coins whose success

probabilities are greater than .5. Using the data, one can compute

the observed success probability and then count the number of success

(or failure) streaks of a given length, or of any length. Then one can

compare these observed values with the theoretical values.

Our data set consists of daily prices, over a period of 14 years, of

439 of the stocks that make up the S&P 500 list. These prices have

been adjusted to take into account dividends and stock splits. For this

reason, many of the stock prices are very low near the beginning of

the data set and hence are subject to rounding errors. We typically

get around this problem by using only the part of the data set in

which a stock’s price is above some cutoff value. Also, we throw out

all days for a given stock on which the stock price was unchanged.

Suppose that we want to compare the expected and the observed

number of pairs of consecutive days in which a given stock’s price

went up on both days. If we have n data points, then we can define

the random variable Xi to equal 1 if the i’th and (i + 1)’st price

changes are both positive, and 0 otherwise. Under the assumption

that the signs of the daily price changes are independent events, the

probability that Xi = 1 is just p2, where p is the observed long-range

probability of success for that stock. Thus, it is easy to calculate

the expected number of up-up pairs. There are n − 1 daily changes

(since there are n data points), so there are n − 2 random variables

Xi, each with the same distribution. Thus, the expected number of

up-up pairs is just

(n− 2)p2 .

Unfortunately, the Xi’s are not mutually independent. For example,

if X6 = 1 and X8 = 1, then it is not possible for X7 to equal 0.

Nonetheless, the Xi’s are m-independent, for m = 2. The sequence
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{Xi} is m-independent if it is possible to partition the sequence into

m subsets such that the random variables in each subset are mutually

independent. In this case, we can use the partition {X1, X3, . . .} and

{X2, X4, . . .}. If a sequence of random variables is m-independent,

then it satisfies a modified version of the Central Limit Theorem (see

[7]). (The modification comes in how the variance of the sum of the

random variables is calculated.)

Using this modified version of the Central Limit Theorem, we

can transform the sum X1 +X2 + . . .+Xn−2 into a random variable

that is approximately standard normal. (This is done in the usual

way; we subtract the mean and divide by the standard deviation.)

This gives us, for each stock, a z-value, i.e. a value of a standard

normal distribution that represents how far above or below the mean

the observed number of up-up pairs is. This approach works for any

other pattern, such as down-down, or up-down-up, etc.

If stocks are streaky, then the z-values for up-up pairs (and for

down-down pairs) should be significantly greater than 0. The same

thing should be true for up-up-up triples. For each of several different

patterns, we calculated the set of z-values for all 439 stocks in our

data set. We used 1 as our cutoff value, meaning that for each stock,

we used only those log prices after the last time the log price failed to

exceed 1. The average number of log prices per stock that this gives

us is 3861, or almost 15 years’ worth of data.

At this point, we have 439 z-values. If these were drawn from a

standard normal distribution, the distribution of their average would

have mean 0 and standard deviation 1/
√
439 ≈ .0477. Table 3 shows,

for various patterns (up-up is denoted by UU, for example), the av-

erage z-value over our set of stocks. For each pattern, the distance of

the average from 0, in units of standard deviation, and the percentage

of stocks whose z-value is positive, are given. If the price movements

are independent, then one would expect about half of the z-values to

be positive.

We see that these stocks, in general, are anti-streaky. The numbers

of UU and DD streaks are not significantly less than what would be
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Pattern Average z-Value Standard Deviation Units Percent Positive

UU -0.017 -0.35 49.7

DD -0.016 -0.34 50.1

UD 0.066 1.37 50.8

DU 0.079 1.65 51.0

UUU -0.192 -4.03 43.3

UUUU -0.335 -7.02 37.6

UUUUU -0.461 -9.67 33.0

DDD -0.280 -5.86 39.6

DDDD -0.485 -10.16 35.3

DDDDD -0.621 -13.02 27.6

Table 3. z-Values for various patterns in daily price changes

Pattern Average z-Value Standard Deviation Units Percent Positive

UU -0.452 -9.46 18.0

DD -0.520 -10.90 17.5

UD 1.070 22.42 81.1

DU 1.064 22.30 81.5

UUU -0.587 -12.29 19.6

UUUU -0.577 -12.09 21.9

DDD -0.606 -12.70 21.0

DDDD -0.579 -12.14 21.9

Table 4. z-Values for various patterns in weekly price changes

expected, but the numbers of streaks of length three, four, and five

of both types are significantly smaller than expected.

Table 4 shows the results of similar calculations involving weekly

prices. Specifically, the closing price at the end of the first day of each

week of trading was used. Once again, our set of stocks show strong

evidence of being anti-streaky.
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Pattern Average z-Value Standard Deviation Units Percent Positive

UU -0.010 -0.21 50.1

DD -0.074 1.56 51.7

UD 0.005 0.10 51.0

DU 0.002 0.04 51.0

UUU -0.035 -0.74 44.9

UUUU -0.020 -0.41 46.2

DDD 0.064 1.34 50.8

DDDD -0.060 -1.26 43.7

Table 5. Simulated z-values for various patterns in weekly
price changes

The results in these tables should be compared with simulated

data from the model in which weekly changes for a given stock are

mutually independent events. For each stock in our set, we used the

observed probabilities of a positive and a negative weekly change in

the stock price to create a simulated set of stock prices. Then, using

the same algorithms as were used above, we calculated the average

z-values for various patterns over our set of stocks. The results are

shown in Table 5.

The simulated data from this model is much different than the actual

data. This supports the observation that both daily and weekly stock

prices are anti-streaky.

In their book [29], Andrew Lo and Craig MacKinlay discuss a

parameter they call the variance ratio. Here is a description of this

concept. Suppose that {Xi}ni=0 is a sequence of n logarithms of a

stock’s price. The time increment between successive values might be

days, or weeks, or even something as small as minutes. The log price

increments are the values {Xi+1 − Xi}n−1
i=0 . A central question that

concerns this sequence of log price increments is whether it can be
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modeled well by a process in which the increments are assumed to be

mutually independent.

Lo and MacKinlay begin by fixing a stock and a sequence of log

prices {Xi}ni=0 for that stock. All prices have been adjusted for splits

and dividends, and we assume in what follows that the time increment

is a week. Next, they calculate the estimator

μ̂ =
1

n

n−1∑
i=0

(
Xi+1 −Xi

)
,

which is an estimate of the average change per week in the logarithm

of the stock price. This expression can be simplified to

μ̂ =
1

n

(
Xn −X0

)
.

Next, they calculate the estimator

σ̂2 =
1

n

n−1∑
i=0

(
Xi+1 −Xi − μ̂

)2
,

which is an estimator of the variance of the weekly change in the

logarithm of the stock price. If we assume for the moment that n is

even, we could instead look at the estimator

1

n/2

n/2−1∑
i=0

(
X2i+2 −X2i − 2μ̂

)2
,

which is an estimator of the variance of the increments in even-

numbered observations. Under the assumption that the increments

are independent, the variance of the differences

{X2i+2 −X2i}

is twice the variance σ2 of the differences

{Xi+1 −Xi} .

This provides a way to test whether the assumption of independent

increments in stock prices is a reasonable one. One can compute both

estimators for a given stock and see how close the ratio is to two.
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Lo and MacKinlay slightly change the second variance estimator

above, by dividing by two. So let us define

σ̂2
2 =

1

n

n/2−1∑
i=0

(
X2i+2 −X2i − 2μ̂

)2
.

Under the assumption of independent increments, the theoretical

value of σ2
2 (for which σ̂2

2 is an estimator) equals the value of σ2.

Thus, still under this assumption, the ratio of the estimators should

be close to 1. Of course, one can, for any integer q > 1, define the

estimator σ̂q
2 in the same way. Once again, under the assumption of

independent increments, σ2
q = σ2.

Lo and MacKinlay modify the above set-up in one additional way.

Instead of using non-overlapping time increments in the definition of

σ̂q
2, they use all of the time increments of length q, obtaining the

following definition (note that we no longer need to assume that q

divides n):

σ̂q
2 =

1

q(n− q + 1)

(n−q+1)∑
i=0

(
Xi+q−1 −Xi − qμ̂)2 .

The test statistic for the variance ratio is denoted by Mr(q) (the

subscript refers to the fact that we are dealing with a ratio), and is

defined by

Mr(q) =
σ̂q

2

σ̂2
− 1 .

We have seen that under the assumption of independent increments,

this statistic should typically be close to 0. In order for it to be a useful

statistic in testing this assumption, we need to know something about

how this statistic is distributed. Lo and MacKinlay show that for large

n, the statistic
√
nqMr(q) is approximately normally distributed with

mean 0 and variance
2(2q − 1)(q − 1)

3q
.

(In fact, to be strictly accurate, they make one further modification

to ensure that the individual variance estimators are unbiased. We
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will ignore this modification, as the above asymptotic statement does

not change when this modification is made.)

Lo and MacKinlay calculated the variance ratio for both indi-

vidual stocks and for various sets of stocks on the New York and

American stock exchanges. Their data consisted of weekly prices for

625 stocks from 1962 to 1985 (1216 weeks). For the values q = 2, 4, 8,

and 16, their observed values of Mr(q) for the set of all stocks in

their data set were .30, .64, .94, and 1.05 respectively. These were all

statistically different from 0 at the 5% level of significance.

They also computed the average variance ratio for the individual

stocks. For the above values of q, these average variance ratios were

−.03,−.06,−.08, and −.11. These observed values were not statisti-

cally different from 0 at the 5% level of significance. It is interesting

that these observed values are all of opposite sign from those corre-

sponding to the set of all stocks.

It is possible to describe a situation in which the variance ratio

statistic of a stock (for q = 2, say) would be negative. Suppose that

over blocks of two consecutive weeks, there were more up-down and

down-up pairs than expected. This might mean that the average net

change in the stock’s price over two-week periods might be somewhat

less than twice the average net change over one-week periods, and the

same might be true of the average variance.

The above is admittedly only speculation. We carried out two

sets of calculations with our stocks to see if any of this speculation

is correct. First, we calculated the variance ratios for our stocks, for

the values of q listed above. The average variance ratios were -.060,

-.103, -.135, and -.159.

Our second set of calculations consisted of simulating our stocks

by using a two-state Markov chain, in which the transition matrix

entries are obtained from the observed probabilities for the four pos-

sible pairs up-up, up-down, down-up, and down-down. (These were

discussed above.) For each of the above q, we simulated each of our

stocks ten times, and computed the average variance ratio. Then we
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computed the average, over all of the stocks, of these averages. The

values obtained were -.088, -.125, -.142, and -.153. Furthermore, of

the 439 stocks, the numbers whose average simulated variance ratio

had the same sign as the actual variance ratio, for q = 2, 4, 8, and

16, were 386, 384, 373, and 358. So the Markov chain model behaves

similarly, in terms of the variance ratio, to the actual stock prices.

7. Appendix

In this section, we will show how one can use generating functions to

derive the theoretical distributions of several parameters of interest

in this chapter. We will begin by deriving the distribution of the total

number of runs of successes and failures in a sequence of n Bernoulli

trials with probability of success p. (Although we do not claim any

credit for the derivation of this distribution, we do not know of a

reference in the literature. In Mood [31], the author derives a similar

distribution in the case that the number of successes is known.) An

example of this distribution, with n = 50 and p = .2, is shown in

Figure 1.

One sees two roughly normal-shaped distributions. The reason

for this is that the probability that the number of runs is even does

not equal the probability that the number of runs is odd (except if

p = 1/2). In fact, the number of runs is even if and only if the

first trial and the last trial disagree, which happens with probability

2p(1 − p). Thus, the sum of the distribution values corresponding

to even-valued outcomes equals this value, and the odd distribution

values sum to 1 minus this value. We will derive this distribution

using a method that will generalize to the distribution of the number

of success runs (i.e. the number of runs in the first state) of a Markov

chain with two states. The distribution for Markov chains was first

derived by Zaharov and Sarmanov [45].

If we denote by rn,k the probability of k runs in n trials (this

number also depends upon p), then we will show that the generating
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function

r(x, y, p) =
∞∑

n=1

n∑
k=1

rn,kx
nyk

equals

xy(1 + 2px(−1 + y)− 2p2x(−1 + y))

1− x+ (−1 + p)px2(−1 + y2)
.

To derive this expression, we start by defining f(n, p, k, S) to be the

probability that in a sequence of n Bernoulli trials with success prob-

ability p, there are exactly k runs and the sequence ends in a success.

The quantity f(n, p, k, F ) is defined similarly. Next, we define

G(x, y) =
∞∑
i=1

i∑
j=1

f(i, p, j, S)xiyj

and

H(x, y) =
∞∑
i=1

i∑
j=1

f(i, p, j, F )xiyj .

How are the coefficients related to one another? If a sequence of

length at least two ends in a success, and it has k runs, and we chop

off the last term in the sequence, we obtain a sequence of length n−1

that still has k runs and ends in a success or it has k − 1 runs and

ends in a failure. Thus, for n ≥ 2, we have

f(n, p, k, S) = f(n− 1, p, k, S)p+ f(n− 1, p, k − 1, F )q .

Similarly, we have, for n ≥ 2,

f(n, p, k, F ) = f(n− 1, p, k, F )q + f(n− 1, p, k − 1, S)p .

These recursions do not hold when n = 1, because f is not defined if

the first parameter is 0. When n = 1, we have

f(1, p, 1, S) = p

and

f(1, p, 1, F ) = q .

Using the recursions and initial conditions given above, we can write

G(x, y) = pxyH(x, y) + pxG(x, y) + pxy
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and

H(x, y) = qxyG(x, y) + qxH(x, y) + qxy .

One can solve these equations for G(x, y) and H(x, y), obtaining

G(x, y) =
pxy(1− qx+ qxy)

1− x+ pqx2(1− y2)

and

H(x, y) =
qxy(1− px+ pxy)

1− x+ pqx2(1− y2)
.

Finally, note that

r(n, k) = f(n, p, k, S) + f(n, p, k, F ) ,

so

r(x, y, p) = G(x, y) +H(x, y) =
xy(1− 2pqx(1− y))

1− x+ pqx2(1− y2)
,

giving us the required expression for r(x, y, p).

The above expression for the generating function r(x, y, p) allows

one to write an exact expression for rn,k. The expression for r(x, y, p)

is of the form

xy
A+Bx

1 +Dx+ Ex2

where the capital letters represent expressions that do not involve x.

Using the algebraic method of partial fractions (usually first learned

in calculus to help integrate rational functions), one can write this

expression as

xy

(
F

1− Ix
+

J

1−Kx

)
.

The two summands can be rewritten, using geometric series, to obtain

xy(F + FIx+ FI2x2 + . . .+ J + JKx+ JK2x2 + . . .) .

We want the coefficient of xnyk in this expression. The coefficient of

xn is

y(FIn−1 + JKn−1) .

This is a series involving y but not x. We want the coefficient of

yk in this series. The answer, which is obtained after some gruesome

                

                                                                                                               



82 1. Streaks

algebra (best performed by a computer algebra package) is as follows.

If p �= 1/2 and k is odd, then

rn,k =
1

2n−1

[
(1− 4pq)

(k−1)/2∑
v=0

[(
−1/2

v

)
(1− 4pq)−1/2

(
4pq

1− 4pq

)v

∗
( n−1∑

u=1
u odd

(
n− 1

u

)(
u/2

(k − 1− 2v)/2

)
(1− 4pq)u/2

∗
(

4pq

1− 4pq

)(k−1−2v)/2)]
+

n−1∑
u=0

u even

(
n− 1

u

)(
u/2

(k − 1)/2

)

∗(1− 4pq)u/2
(

4pq

1− 4pq

)(k−1)/2
]
,

while if p �= 1/2 and k is even, then

rn,k =
1

2n−1
(4pq)

(k−2)/2∑
v=0

[(
−1/2

v

)
(1− 4pq)−1/2

(
4pq

1− 4pq

)v

∗
(

n−1∑
u=1

u odd

(
n− 1

u

)(
u/2

(k − 2− 2v)/2

)
(1− 4pq)u/2

∗
(

4pq

1− 4pq

)(k−2−2v)/2
)]

.

If p = 1/2, the expression for rn,k is much simpler (see Exercise 3).

These expressions were used to generate Figure 1.

We can use the expression for r(x, y, p) to calculate the mean (and

variance) of the distribution. We recall that for fixed n, the mean of

the distribution {rn,k} equals

n∑
k=1

krn,k .

The value of this sum can be obtained from the generating function

r(x, y, p) by using calculus. If we compute the partial of r(x, y, p)
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with respect to y, and then set y = 1, we obtain the expression
∞∑

n=1

n∑
k=1

krn,kx
n ,

which can be written as
∞∑

n=1

xn
n∑

k=1

krn,k .

Thus the mean of the distribution for sequences of length n is just

the coefficient of xn in the above expression. The point is that we do

not need to use the formulas for rn,k to calculate the mean. Rather,

we use the closed-form expression for r(x, y, p), and apply the ideas

above to this expression.

If we perform these calculations, we obtain the expression

x

1− x
+

2pqx3

(1− x)2
+

2pqx2

1− x
.

Using the facts that

1

1− x
= 1 + x+ x2 + . . .

and
1

(1− x)2
= 1 + 2x+ 3x2 + . . . ,

in a suitable interval containing the origin, we can expand each of the

three summands above as series; they are, respectively,

x+ x2 + x3 + . . . ,

2pq(x3 + 2x4 + 3x5 + . . .) ,

and

2pq(x2 + x3 + x4 + . . .) .

Now we can easily write down the coefficient of xn; it is

1 + 2pq(n− 2) + 2pq = 1 + 2pq(n− 1) ,

if n ≥ 2.

There is an easy way to check this. In fact, the calculation below

is an easier way to find the mean in this case, but the above method

can be used to find other moments (including the variance) and the
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calculation below does not generalize. Let Xi, for 1 ≤ i ≤ n − 1,

denote the random variable that is 1 if the i’th and (i+1)’st outcomes

disagree. Then the average number of runs is just

n−1∑
i=1

Xi ,

so

μ =
n−1∑
i=1

E(Xi) .

But for each i, the probability that Xi = 1 is just 2pq, so for each i,

E(Xi) = 2pq ,

so the average number of runs is just

= 1 + 2p(1− p)(n− 1) .

In the Markov chain model, the situation is more complicated(!).

We will not go into the details here, but rather give an outline of how

to proceed. We write

fS,S(n, k)

for the probability that a sequence of n trials begins and ends with

a success and has k runs. The quantities fS,F , fF,S and fF,F are

defined similarly. We define the generating function

GS,S(x, y) =
∞∑

n=1

∞∑
k=1

fS,S(n, k)x
nyk ;

the functions GS,F , GF,S , and GF,F are defined in a similar manner.

One can show that

GS,S(x, y) = p2xyGS,F (x, y) + p1xGS,S(x, y) + xy ,

GS,F (x, y) = (1− p1)xtGS,S(x, y) + (1− p2)xGS,F (x, y) ,

GF,S(x, y) = p2xyGF,F (x, y) + p1xGS,F (x, y) ,

GF,F (x, y) = (1− p1)xyGS,F (x, y) + (1− p2)xGF,F (x, y) + xy .

Note that two of these equations are homogeneous (there are no

summands on the right-hand sides that do not involve the functions

G∗,∗). Thus, for example, using the second equation above, it is easy
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to find GS,F once we have found GS,S . In addition, by switching the

roles of success and failure, one sees that it is easy to find GF,F once

we know GS,S (and GF,S once we know GS,F ).

Thus, we need to find only the coefficients fS,S(n, k), in a manner

similar to the one used to obtain the results for Bernoulli trials. One

can show that

GS,S(x, y) =
xy

1− (p2(1− p1)x2y2)/(1− (1− p2)x)− p1x
.

Note that since the sequences corresponding to GS,S(x, y) begin and

end with a success, the only positive probabilities are those corre-

sponding to odd k. If k is odd, then

fS,S(n, k) =
1

2n−1

[
−(1−p1−p2)

� (n−2)
2 �∑

j=0

(
n− 1

2j + 1

)
(1+p1−p2)

n−1−(2j+1)

∗
(

j∑
i= k−1

2

(
j

i

)
(1 + p1 − p2)

2(j−i)(−4)i(−(1− p1)p2)
(k−1)/2

∗(p1(1−p2))
i−(k−1)/2

(
i

(k − 1)/2

))
+

�n−1
2 �∑

j=0

(
n− 1

2j

)
(1+p1−p2)

n−1−2j

∗
(

j∑
i= k−1

2

(
j

i

)
(1 + p1 − p2)

2(j−i)(−4)i(−(1− p1)p2)
(k−1)/2

∗(p1(1− p2))
i−(k−1)/2

(
i

(k − 1)/2

))]
.

One can use the recursions relating GS,S(x, y) and GS,F (x, y) given

above to obtain the following formula for fS,F (n, k):

fS,F (n, k) = (1− p1)
n−1∑
l=0

(1− p2)
lfS,S(n− l − 1, k − 1) .

These formulas are useful in plotting the distributions (depending

upon whether the first trial is a success or a failure) of the number of

runs. In Figure 2 a plot of the distribution for n = 50, p1 = .3, and

p2 = .1, where the first trial is a success.
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We note that the fixed probability vector of the transition matrix

in the Markov chain model equals(
p2

1− p1 + p2
,

1− p1
1− p1 + p2

)
.

This means that the long-term proportion of successes equals

p2
1− p1 + p2

.

Note that in this model, we have three quantities that can be esti-

mated from the data, namely p1, p2, and the long-term proportion of

successes (which we will call p), but there is a relation among them.

We have no idea how a statistician would deal with this, since it is

unlikely that the observed values satisfy the relation.

In order to create a distribution for the Markov chain model, we

will weight the distributions corresponding to starting with a success

or a failure by p and (1− p). The resulting generating function is

p
(
GS,S(x, y) +GS,F (x, y)

)
+ (1− p)

(
GF,S(x, y) +GF,F (x, y)

)
.

If we do this, the expected number of runs equals

nΩ1 + pΩ2 + (1− p)Ω4 + (pΩ3 + (1− p)Ω5)(p1 − p2)
n−1 ,

where

Ω1 =
2p2(1− p1)

1− p1 + p2
,

Ω2 =
2− 4p1 + 2p21 − p2 + 3p1p2 − 2p21p2 − p22 + 2p1p

2
2

(1− p1 + p2)2
,

Ω3 =
−1 + 2p1 − p21 + p2 − p1p2

(1− p1 + p2)2
,

Ω4 =
1− 2p1 + p21 − p2 + 3p1p2 − 2p21p2 + 2p1p

2
2

(1− p1 + p2)2
,

Ω5 =
p2(1− p1 − p2)

(1− p1 + p2)2
.

Thus, the expected number of runs is asymptotic to

nΩ1 +Ω4 .
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If one lets p1 = p2, so that the Bernoulli model is obtained, one can

check that the result agrees with the one already obtained.

The two graphs show what one might expect, namely that the

expected number of runs in the Markov model is less than in the

Bernoulli trials model. It is easy to show this; one need only show

that if p1 > p2, then

Ω1 < 2p(1− p) .

Next, it might be nice to show that the runs distribution corre-

sponding to GS,S(x, y) is asymptotically normal. One might need to

do this to discuss the power of the test that compares the two models.

We also might try writing approximation algorithms for the cal-

culation of these probabilities, since the probabilities fall off rapidly

and it is time-consuming to calculate the sums using the exact ex-

pressions.

The distribution of the length of the longest success run in the

Markov chain model can be calculated using recursions. We define

A(n, x, k, p1, p2) to be the probability that a Markov sequence, begin-

ning with a success, has no success run exceeding x in length, and

ends with k successes, for 0 ≤ k ≤ x. This function satisfies the fol-

lowing equations. First, if n = 1, then the function is 1 if k = 1 and

0 otherwise. If n > 1, then if k > 1,

A(n, x, k, p1, p2) = A(n− 1, x, k − 1, p1, p2)p1 ,

since a sequence of length n that ends in k successes is obtained from

one of length n− 1 that ends in k− 1 successes by adding one success

to the end, and this happens with probability p1, since k > 1. If

n > 1 and k = 1, then

A(n, x, 1, p1, p2) = A(n− 1, x, 0, p1, p2)p2 ,

since in this case we are adding a success to the end of a sequence

whose last state was the failure state. Finally, if n > 1 and k = 0,
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then

A(n, x, 0, p1, p2) =

( x∑
j=1

A(n− 1, x, j, p1, p2)(1− p1)

)

+A(n− 1, x, 0, p1, p2)(1− p2) ,

since in this case either there were j successes immediately preceding

the last trial, which was a failure, for some j between 1 and x, or else

the penultimate trial was also a failure.

These equations allow one to compute the values of the function

A. To obtain the desired distribution, namely the set of probabilities

that a Markov sequence, beginning with a success, has longest success

run exactly equal to x, we compute the quantity

x∑
k=0

A(n, x, k, p1, p2)−
x−1∑
k=0

A(n, x− 1, k, p1, p2) .

This adds the weights of all of the sequences with longest success run

at most x and subtracts from this the weights of all of the sequences

with longest success run at most x− 1.

7.1. Doubletons. We now turn to the question of the distribution

of d, the number of doubletons (i.e. consecutive pairs of successes in

a sequence of trials). The reason for our interest in this quantity

is because, as was stated in Exercise 4.1, the number d is closely

related to p1, the probability of a success following a success, and p1
is of interest when studying autocorrelation. We will first consider

asymptotic behavior of the distribution of the number of doubletons,

in both the Bernoulli trials model and the Markov model, and then

we will derive a recursion for the exact distribution in the Bernoulli

case.

Since the Bernoulli trials model is a special case of the Markov

model, we will work with the Markov model. In this model, the

probabilities that a success follows a success or a failure are defined

to be, respectively, p1 and p2.

We are interested in the distribution of d for large values of n,

the length of the sequence. It turns out that if n is large, it does
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not matter very much in which state the Markov chain started (i.e.

whether the first trial resulted in a success or a failure). We have

stated above that the long-term fraction of the time that the chain is

in state 1 is equal to

p2
1− p1 + p2

.

Note that if p1 = p2 (i.e. we are in the Bernoulli model) then this

expression reduces to p2 (= p1).

We can find the distribution of the number of doubletons in a

sequence of length n generated by the Markov process by considering

the related Markov chain that consists of four states: SS, SF, FS, and

FF. The first state, SS, means that the first two trials in the original

sequence are both successes. It is straightforward to determine the

transition probabilities for this new Markov chain. For example, if the

chain is in state SS, it stays in state SS or moves to state SF depending

upon whether the next trial in the original chain is a success or a

failure. Thus,these two transitions occur with probability p1 and

moves to state SF with probability 1− p1.

In the new Markov chain, we wish to know the distribution of

the number of times Y
(n)
SS that the chain is in state SS in the first n

trials. Of course, this distribution depends upon the starting state (or

starting distribution), but it turns out that the limiting distribution

is independent of the starting state. The Central Limit Theorem for

Markov Chains (see [24], p. 89) states that Y
(n)
SS is asymptotically

normally distributed, with a mean and standard deviation that are

straightforward to calculate. Examples of how the mean and standard

deviation are calculated are given in [24]. In the present case, the

asymptotic value of the mean and standard deviation are

np1p2
1− p1 + p2

and

np1p2(p
2
1(−1 + p2) + (1 + p2)

2 − p1p2(3 + p2))

(1− p1 + p2)3
.
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Now suppose that we have a process that presents us with a se-

quence of successes and failures and suppose that the observed prob-

ability of a success is .3. We assume that p = .3, and we wish to test

the hypothesis that p1 = .3 against the alternative hypothesis that

p1 > .3. To carry out this test, using the number of doubletons as a

parameter, we first choose an acceptance region around the value np2

in which 95% of the values will fall. (Remember, in the case that the

null hypothesis is true, then p1 = p2 = p, and we are dealing with

Bernoulli trials.) Since Y
(n)
SS is asymptotically normal, it is easy to

pick this acceptance region. It is an interval of the form [0, c], because

the form of the alternative hypothesis is a one-way inequality. The

number c is np2 plus 1.65 times the standard deviation of Y
(n)
SS . We

obtain the value of

c = n(.3)2 + 1.65
√
.1197n .

This leads us to the distributions shown in Figures 4 and 5.

We now give an outline of the method used to find the exact

distribution of the number of doubletons in the Bernoulli model, with

parameters n and p. We define r(n, k, p) and s(n, k, p) to be the

probabilities of exactly k doubleton successes in n trials, with success

probability p, and with the sequence ending in a failure or a success,

respectively. Then the following recursions hold:

r(n, k, p) = q ∗ r(n− 1, k, p) + q ∗ s(n− 1, k, p) ,

s(n, k, p) = p ∗ r(n− 1, k, p) + p ∗ s(n− 1, k − 1, p) .

The first of these equations says that sequences of length n with

exactly k doubletons and which end in a failure arise from sequences

of length n − 1 with exactly k doubletons by adding a failure to the

end. The second equation says that sequences of length n with exactly

k doubletons and which end in a success arise by adding a success to

the end of either a sequence of length n−1 with exactly k doubletons,

ending in a failure, or to the end of a sequence of length n − 1 with

exactly k − 1 doubletons, ending in a success.
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Next, define

R(p, x, y) =
∞∑

n=1

n−1∑
k=0

r(n, k, p)xnyk

and

S(p, x, y) =
∞∑

n=1

n−1∑
k=0

s(n, k, p)xnyk .

The distribution of the number of doubletons in sequences of length

n is given by the set of values

{r(n, k, p) + s(n, k, p)} .

The above recursions, together with attention to initial condi-

tions, give rise to the following functional equations:

R(p, x, y) = qx

(
R(p, x, y) + S(p, x, y)

)
+ qx

and

S(p, x, y) = px

(
R(p, x, y) + S(p, x, y)

)
+ px .

These equations can be solved for R(p, x, y) and S(p, x, y):

R(p, x, y) = −1 +
1− pxy

1− qx− pqx2 − pxy + pqx2y

and

S(p, x, y) =
px

1− qx− pqx2 − pxy + pqx2y
,

where q = 1− p.

We can write

1 +R(p, x, y) =
A

1− γ1x
+

B

1− γ2x
,

for suitable choices of constants A, B, γ1, and γ2. The right-hand

side can be expanded to yield

(A+B) + (Aγ1 +Bγ2)x+ (Aγ2
1 +Bγ2

2)x
2 + . . . ,

allowing us to determine the coefficient of xn. A similar method

allows us to deal with S(p, x, y).

If we let

Δ = q2 − 2pq(−2 + y) + p2y2 ,

                

                                                                                                               



92 1. Streaks

then one can show, after some work, that the coefficient of xn in the

power series for R(p, x, y) equals

1

2n

(
(q−py)

�n/2�∑
j=0

(
n

2j + 1

)
(q+py)n−2j+1Δj+

�n/2�∑
t=0

(q+py)n−2tΔt

)
,

and the coefficient of xn in the power series for S(p, x, y) equals

p

2n−1

�n/2�∑
j=0

(
n

2j + 1

)
(q + py)n−2j−1Δj .

To obtain r(n, k, p) and s(n, k, p) from these expressions, we need

to find the coefficients of yk in the above expressions. Writing Δj
l for

the coefficient of yl in Δj , one can show that

Δj
l =

l∑
h=0

(
j

h

)
pl(−1)l(q − 2

√
−pq)j−h(q + 2

√
−pq)j−l+h .

Using this abbreviation, one can then show that

r(n, k, p) =

1

2n

(
q

�n/2�∑
j=0

(
n

2j + 1

) k∑
l=0

Δj
l

(
n− 2j − 1

k − l

)
pk−lqn−2j−1−(k−l)

−p

�n/2�∑
j=0

(
n

2j + 1

) k−1∑
l=0

Δj
l

(
n− 2j − 1

k − 1− l

)
pk−1−lqn−2j−1−(k−1−l)

+

�n/2�∑
j=0

(
n

2j

) k∑
l=0

Δj
l

(
n− 2j

k − l

)
pk−lqn−2j−(k−l)

)
,

and

s(n, k, p) =

p

2n−1

�n/2�∑
j=0

(
n

2j + 1

) k∑
l=0

Δj
l

(
n− 2j − 1

k − l

)
pk−lqn−2j−1−(k−l) .

As before, we can use the closed-form expressions for R(p, x, y)

and S(p, x, y) to find the mean and variance of the distribution of

the number of doubletons. If we compare these expressions with the
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asymptotic ones obtained above for the Markov case, we can partially

check the accuracy of our calculations. If we write

F (p, x, y) = R(p, x, y) + S(p, x, y) ,

then the mean of the distribution of doubletons is obtained by differ-

entiating F (p, x, y) with respect to y, setting y = 1, and asking for

the coefficient of xn. To see why this works, note first that since

F (p, x, y) =
∞∑

n=1

n∑
k=0

(r(n, k, p) + s(n, k, p))xnyk ,

if we differentiate F (p, x, y) with respect to y, we obtain

∂

∂y
F (p, x, y) =

∞∑
n=1

n∑
k=1

k(r(n, k, p) + s(n, k, p))xnyk−1 .

If we set y = 1 and consider the coefficient of xn, we find that it

equals
n∑

k=1

k(r(n, k, p) + s(n, k, p)) ,

which is clearly the mean of the distribution. In the present case, we

find the value of the mean to equal (n − 1)p2, which can be checked

as being asymptotically equal to the expression we obtained for the

asymptotic value of the mean in the Markov case (with p1 = p2 = p).

A similar, but more complicated, calculation leads to the variance

of the distribution of doubletons; we obtain the expression

p2q(n+ 3np− 1− 5p) .

One can check that this is asymptotic to the expression obtained for

the asymptotic value of the variance in the Markov case.

We would like to show that the random variable that counts the

number of doubletons in the Bernoulli trials case is asymptotically

normal. If this were true, then we could use the above values for the

mean and standard deviation to give a precise asymptotic description

of the distribution of the number of doubletons. It is typically the

case that one tries to use the Central Limit Theorem to show that

a given sequence of distributions is asymptotically normal. In order
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to use the Central Limit Theorem, one must write the terms of the

sequence as sums of mutually independent random variables.

In the present situation, if we consider sequences of n Bernoulli

trials, and we let Xi denote the random variable that is 1 if the i’th

and i+1’st trials are successes, then the number of doubletons in the

first n trials is

X1 +X2 + . . .+Xn−1 .

Unfortunately, the Xi’s are not mutually independent. For example,

if Xi−1 = Xi+1 = 1, then Xi must be 1 as well. Nevertheless, it is

possible to salvage the situation, because the Xi’s are “independent

enough.” More precisely, the sequence {Xi} is m-independent, i.e. it

is possible to find an m (in this case, m = 2) such that the sequence

can be partitioned into m subsets such that the random variables in

each subset are mutually independent. In this case, we can take the

sets {X1, X3, X5, . . .} and {X2, X4, X6, . . .}. If some other conditions

(which we will not state here) are satisfied, then the sequence satisfies

the Central Limit Theorem, i.e. the sum Sn = X1 +X2 + . . .+Xn is

asymptotically normal. In the present case, all of the necessary con-

ditions are satisfied, so the distribution of the number of doubletons

is asymptotically normal.

Exercises.

1. Let hS(n, k) denote the probability that in the Markov model,

a sequence of n trials begins with a success and has exactly

k success runs. Explain how one can write hS(n, k) in terms

of fS,S(n, i) and fS,F (n, j) for appropriate choices of i and

j.

2. Define the function F (r1, r2) by

F (r1, r2) =

⎧⎨
⎩

2 if r1 = r2
1 if |r1 − r2| = 1

0 otherwise.

Suppose that we have a sequence of n1 successes and n−n1

failures in a Bernoulli trials process with parameters n and
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p. Suppose, in addition, that there are r1 success runs and

r2 failure runs.

(a) Show that if r1 ≥ 1, then there are
(
n1−1
r1−1

)
ways to split

the n1 successes into runs.

(b) Using the fact that runs of successes and failures must

alternate in a sequence, show that if r1 ≥ 1 and r2 ≥ 1,

then the number of sequences of the given type equals(
n1 − 1

r1 − 1

)(
n− n1 − 1

r2 − 1

)
F (r1, r2) .

(c) Show that any two sequences of length n with n1 suc-

cesses are equally likely.

(d) Show that the probability that a Bernoulli trials se-

quence of length n has exactly r1 ≥ 1 success runs and

r2 ≥ 1 failure runs, given that it has n1 successes and

n− n1 failures, equals

Pn1(r1, r2) =

(
n1−1
r1−1

)(
n−n1−1
r2−1

)
F (r1, r2)(

n
n1

) .

(e) Determine the corresponding formula if either r1 = 0

or r2 = 0.

(f) If E and F are events in a sample space, then

P (E ∩ F ) = P (E |F )P (F ) .

In the space of all Bernoulli sequences of length n, let E

denote the event that the number of success runs equals

r1 and the number of failure runs equals r2, and let F

denote the event that the number of successes equals

n1 and the number of failures equals n− n1. Parts (d)

and (e) calculate P (E |F ). Find P (F ) and use this to

find a formula for P (E ∩ F ).

(g) By summing over the appropriate set of n1’s, find a

summation that gives the probability that a Bernoulli

sequence of length n has exactly r1 success runs. (This

is the form of the expression for this distribution in

[31].)
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(h) Write a summation that gives the probability that a

Bernoulli sequence of length n has exactly r runs of

both types (i.e. the total number of runs is r).

3. Prove that if p = 1/2, then

rn,k =

(
n− 1

k − 1

)
1

2n−1
,

where, as above, rn,k denotes the probability of exactly k

runs in a sequence of n coin tosses, where the probability of

success on one toss equals p.

                

                                                                                                               



Chapter 2

Modeling the Stock
Market

1. Stock Prices

Stock markets occupy a central position in modern finance. Hundreds

of millions of people worldwide have money invested in them. Many

economists, mathematicians, and statisticians find them to be a fasci-

nating object of study. In this chapter, we will introduce the reader to

some interesting and much-studied questions concerning stock mar-

kets.

Stock in a company represents partial ownership of that company.

Companies issue shares of stock to raise money to run the company.

Many companies are privately held, meaning that all of the stock

in that company is owned by a small group of people (perhaps the

managers of the company or the founding family of the company).

However, most of the large companies in the world are publicly held,

meaning that shares of their stock are traded in stock markets.

In a stock market, certain people are willing to sell shares in a

given company, while other people are willing to buy shares in that

company. The entities that buy and sell stock can also be mutual

funds and pension funds. If a seller and a buyer agree on the price of

97

                                     

                

                                                                                                               



98 2. Modeling the Stock Market

a share, that share changes hands, and a small commission is paid to

the broker who effects the trade.

The central question of importance to most investors when selling

or buying stock is whether the price of a share of that stock will move

up or down (in the next day, the next month, or the next year). The

time period (or horizon) in this question depends upon both the buyer

and the seller. For example, if the buyer is investing for his or her

retirement, the horizon may be as long as thirty years. At the other

extreme, there are certain types of investors, known as day traders,

whose horizons can, for some transactions, be as short as a minute.

Clearly, answering this central question is equivalent to predicting

the future, which for most human endeavors, is difficult or impossible.

But a smart investor knows this, and instead attempts to make pre-

dictions that, it is hoped, will usually be close to the actual outcome.

The words “usually” and “close to” in the preceding sentence signal

the entrance of probability and statistics into the prediction process.

Over a given time period, the discrete return of a stock is the

ratio of the stock prices at the end and the beginning of the time

period, decreased by one. So, for example, if the price of a stock at

the beginning of a given year is $10, and its price at the beginning of

the next year is $12, then its discrete return for that year is .2, or 20%.

Predicting the future of a stock’s price is equivalent to predicting the

future discrete returns of that stock.

Discrete returns can clearly be positive or negative. If one wants

to model the possible discrete returns using a probability distribu-

tion, then the range of this distribution must therefore include both

positive and negative numbers. Clearly, it makes no sense to have

a discrete return of less than −1, since this would correspond to a

negative ending price. The value −1 for a discrete return means that

the stock price fell 100%, i.e. its ending price is 0.

For reasons explained shortly, geometric returns, rather than dis-

crete returns, are typically used. The geometric return of a stock

over a given time period is the (natural) logarithm of the ratio of the

                

                                                                                                               



1. Stock Prices 99

stock’s prices at the end and the beginning of the time period. So,

if a stock’s price is $10 at the beginning of a year and $12 at the

beginning of the next year, then its geometric return over that year

is

log

(
12

10

)
≈ .182 ,

or 18.2%. Note that this is close to, but not equal to, the discrete

return of 20%. For most stocks and short durations, the two are

usually close. The reason for this is that if we let d and g denote

the discrete and geometric return and we assume that d is small (say

between −20% and 20%), then

g = log(1 + d) = d− d2

2
+

d3

3
− . . . ,

and the summands after the first one are very small in comparison

with the first one.

If one uses a certain probability distribution (such as the normal

distribution) to model the geometric returns of a stock, then large

negative values of the distribution no longer lead to meaningless re-

sults. For example, suppose that the geometric return over a certain

time period is predicted to be −3. If the prices of the stock at the

beginning and the end of the time period are P0 and P1, then we have

−3 = log

(
P1

P0

)
,

which is equivalent to the statement

P1 = e−3P0 ,

or

P1 ≈ .0498P0 .

Thus, under this prediction, the stock would lose about 95% of its

value in the given time period.

Another reason geometric returns are used is that they behave

better mathematically than do discrete returns. Suppose, for exam-

ple, that we are modeling the price of a stock over two consecutive

time periods. If the stock prices at the three endpoints of these two
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time periods are P0, P1, and P2, then the geometric returns over the

two time periods are

g0,1 = log

(
P1

P0

)

and

g1,2 = log

(
P2

P1

)
.

Note that the return over the combined time period is

g0,2 = log

(
P2

P0

)
= g0,1 + g1,2 ,

i.e. the geometric returns simply add over consecutive time periods.

The corresponding statement does not hold for discrete returns. For

example, a 10% discrete return over each of two consecutive time

periods does not produce a 20% discrete return over the combination

of the time periods. In this example, if a stock were initially priced

at $10, then after one year it would be worth $11 and after two years

it would be worth $12.10, leading to a two-year discrete return of .21,

or 21%.

Next, suppose that we are trying to model the exchange rate

between two currencies, say between the dollar and the euro. Let

the number of euros per dollar at the beginning a time period i be

denoted by ai. Then the geometric changes in this quantity are

log

(
a2
a1

)
, log

(
a3
a2

)
, . . . .

Viewed from the other perspective, the geometric changes in the num-

ber of dollars per euro are

log

(
1/a2
1/a1

)
, log

(
1/a3
1/a2

)
, . . . ,

which are seen to be the negatives of the geometric changes of the

ai’s. Thus, the distributions of these two series are simply related.

What happens if we use discrete changes instead? Suppose, for

example, that a1 = .7 and a2 = .75 (so one dollar is worth .7 euros at
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the beginning of the first time period and .75 euros at the beginning

of the next time period). Then the discrete change is

.75

.7
− 1 ≈ .0714 .

The corresponding numbers of dollars per euro are 1.429 and 1.333,

so the discrete change is

1.333

1.429
− 1 ≈ −.0672 .

Although geometric returns are thus nicer mathematically than

discrete returns, it is easy to translate each to the other. In other

words, there is nothing that precludes using either quantity in a

model. In the rest of this chapter, we will use the word “return”

to mean “geometric return,” unless expressly stated otherwise.

We have not yet mentioned stock dividends. Many companies

issue dividends, which are payments made every so often to the owners

of the shares of the companies’ stocks. Typically, these dividends can

be taken as cash or can be reinvested in additional shares of stock. For

example, suppose that a certain stock is worth $10 at the beginning

of the year. Suppose that at the end of the year, the company issues

a 43-cent dividend for each share. Finally, suppose that the stock is

worth $11 at the beginning of the next year. If the share owner takes

the dividend in cash, then he has made $0.43 in cash and has also

made $1.00 in gain on the price of a share. This last gain is sometimes

said to be unrealized, in that the share owner does not have this $1.00

in cash unless he sells the share (realizes the gain). If instead the

share owner reinvests the dividend, he would receive an additional

.039 (= 0.43/11.00) shares of stock. In either case, at the beginning

of the next year, he would have some combination of stock and cash

worth $11.43, so his geometric return would be

log

(
11.43

10.00

)
≈ 0.1337 .

In what follows, we assume that all dividends are reinvested.
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In this chapter, we are primarily interested in changes in the

prices of stocks over short time intervals, such as days or weeks. Sup-

pose that a stock’s closing price on a certain day is $10.00 and its

closing price at the end of the next day is $10.20. Then the return

on that day is 2.0%. However, if the company issued a dividend on

that day of 30 cents per share, then one might argue that the return

on that day is 5.0% (since this share has increased the wealth of its

owner by 50 cents on that day). However, the dividend is not the

result of any trading in a market; rather, it is set by the company’s

management. Thus, if we are interested in the distribution of daily

returns for this stock, it makes more sense (to us, anyway) to ignore

all dividends and simply use the closing prices to compute the returns.

This is what we shall do in what follows.

Finally, it is occasionally the case that a company will split its

shares. For example, it might split each share into three shares (each

worth one-third of the original share’s value). This has no effect on

the return. To see why, assume for example that a share in a certain

company is worth $30 at the beginning of the day and suppose that

the value of the share increases by 1% on that day. If the share splits

into three shares, then each are worth $10.10 at the end of the day,

and since each of the three shares was worth $10 at the beginning of

the day, there was a 1% return that day for each share. Because of

this, we disregard stock splits.

There are other types of monetary quantities, such as stock index

prices and mutual fund prices, that are of interest in finance. A stock

index is a number that is a weighted average of the stock prices in a

certain set of stocks.

For example, the S&P 500 Index uses the stock prices for a set

of 500 stocks. The weights are affected by dividends and stock splits,

among other things. For example, if we start with equal weights

for all of the stocks, we can imagine the average represents 1/500 of

the total value of a portfolio consisting of one stock in each of the

500 represented companies. However, over the years, the different

stocks pay out different dividends, and if, as we are assuming, these
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dividends are reinvested, then in order for the average to continue to

represent 1/500 of the total value of the portfolio, the weights must

change. Similarly, if a stock splits 2 shares for 1, then the price is

halved, but there are now two shares of this stock in our portfolio, so

the weight for this stock should double.

A mutual fund consists of a portfolio of stocks that are bought

by an investment company, using money from investors. Over time,

the portfolio represented by a given mutual fund changes. In addi-

tion, the various stocks in the fund sometimes pay dividends, which

must, by law, be distributed to the investors. (These investors may

choose to reinvest these dividends with the mutual fund, but taxes

must typically be paid on these dividends whether or not they are

reinvested.) Since so much money is invested in mutual funds today,

much attention is paid to the prices of these funds.

2. Variations in the Price of a Stock

The first attempt to model stock market returns is generally consid-

ered to have occurred in a doctoral thesis of a French mathematics

student named Louis Bachelier. His work concerned bond prices in

the Paris exchange in the late 1800’s. It had been noticed earlier that

the price variations of a stock (or a bond) are, on average, larger over

long time intervals than over short time intervals. Bachelier noted

that the same idea occurs in certain types of random walks. We will

illustrate this with the simplest random walk, a sequence of flips of a

fair coin.

Suppose we flip a fair coin repeatedly, assigning a value of +1 for

a head and −1 for a tail, and we keep track of the total value (which

equals, at any time, the number of heads minus the number of tails).

The name “random walk” refers to a physical model of this sequence

of coin flips. We imagine a person on a road, who walks one step

to the right or left, corresponding to a flip of heads or tails. If the

person starts at a mark of 0 on the road, his position after n steps is

the same as the total value of the first n coin flips.
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The distribution of ending positions of the random walker after

n steps is well known (and is undoubtedly known to the reader). It

is closely related to the binomial distribution with parameters n and

p = 1/2. An example when n = 3 will make this relationship clear.

The binomial distribution gives the probability of obtaining exactly

h heads in n tosses, if the probability of a given toss coming up heads

is p. This probability equals

b(h;n, p) =

(
n

h

)
ph(1− p)n−h .

If there are h heads in n tosses, then there are n−h tails, so the value

of the coin tossing sequence as originally defined equals h− (n−h) =

2h−n. Thus, the value of the coin tossing sequence is a linear function

of the number of heads.

The reader will recall that the variance for the binomial distribu-

tion is np(1−p). The variance of the value of the coin tossing sequence

is simply four times this amount, since the value equals 2h− n, dou-

bling the quantity h multiplies its variance by four and subtracting

n from 2h has no effect on the variance. Thus, since the variance is

a constant multiple of n, we see that if one coin toss game is twice

as long as another, the variance of the first is twice the variance of

the second (since the value of n for the first game is twice the value

of n for the second game). This last statement sounds much like the

observed behavior of stock prices (at least in France in the 1800’s).

Of course, the price of a given stock or bond does not move up

or down by one amount only. So in order to model stock prices, it is

necessary to make the coin-tossing game more complicated. This is a

central issue in mathematical modeling. On the one hand, one wants

to create a model that is simple enough so that there is some chance

one can mathematically analyze it. On the other hand, one wants the

model to be of sufficient accuracy to be of some use in understanding

the process that is being modeled.

Bachelier assumed that the returns in the price of a given bond,

in a given time interval, are normally distributed. In other words, if
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the price of a bond at the beginning of day 1 is p0, then the price of

the bond at the end of day 1 is p0 + a1, where a1 is an arithmetic

return that is normally distributed with a certain mean and variance.

Although Bachelier used arithmetic returns, modern treatments of

stock prices use geometric returns, for the reasons discussed above.

Bachelier also made the assumption that the returns in the price

of a given bond in non-overlapping time intervals were independent.

This corresponds to the situation in the coin-flipping game, in that

the flips are independent events.

Next, Bachelier posited, as in the coin-flipping game (and as had

been observed in the stock and bond markets), that the variance of the

returns increased as the length of the time intervals increased. One

can accomplish this in such a model by assuming that the variance

is proportional to the length of the time interval. Thus, for example,

the variances for the returns for time intervals of lengths one and two

days are in the ratio of one to two.

Finally, one can assume that the means of the distributions that

represent the returns are zero or non-zero. In the former case, the

prices of the bonds will tend to fluctuate around a fixed number (as

does the value of the coin-flip game). In the latter case, if the mean of

the distribution that represents one-day returns is μ, then the mean of

the distribution that represents k-day returns is kμ. In this case, the

prices of the bonds will tend to fluctuate about the line y = μt, where

t measures the number of days from the beginning of the process. In

this latter case, the number μ is sometimes called the drift, because

it causes the prices to drift away from their starting value.

The model described above is quite complicated, and it is not

even clear whether one can rigorously devise a process that satisfies

the properties given. In fact, this process is called Brownian motion,

and it was rediscovered slightly after Bachelier by Albert Einstein.

Neither Bachelier nor Einstein gave a rigorous demonstration of the

existence of such a process; such a demonstration was given later by

Norbert Wiener. The name of this process comes from the botanist
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Robert Brown, who observed erratic motion of a pollen grain in a drop

of water under a microscope. This motion is due to water molecules

hitting the grain. This explanation was first given by Einstein. Fig-

ure 1 shows an approximation of a sample Brownian motion path on

the interval [0, 1].

0.2 0.4 0.6 0.8 1.0

�0.4

�0.2

0.2

0.4

0.6
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Figure 1. A sample Brownian motion path

In the next three sections, we will turn our attention to the two

major assumptions made in the above model, namely the normality

of the returns in a given time interval and the independence of returns

corresponding to non-overlapping time intervals.

3. The Normal Distribution and Power Laws

In many probabilistic models of the real world, the normal distribu-

tion is used. In some cases, use of this distribution can be justified

because of the Central Limit Theorem. Roughly speaking, this the-

orem says that if a sequence of independent experiments is carried

out, and all of the experiments have the same numerical distribution,

then the average of the resulting values will be approximately nor-

mally distributed. (We should add that for this theorem to apply, it

is necessary that the numerical distribution of the individual exper-

iments has a finite mean and a finite variance.) For example, if one
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add as well). Thus, the normal distribution is a natural distribution

to use when attempting to model returns of stock prices.

The reader will recall that in any attempt to model real-world

phenomena, there is usually a trade-off between simplicity and ac-

curacy. The Brownian motion process is already quite complicated,

and if one uses a set of distributions that are not as mathematically

nice as the normal distribution in this process, the resulting process is

still more difficult to handle. Nevertheless, after positing this model,

one should check to see how well the model agrees with the data and

whether there might be another process that fits the data better. One

of the uses of statistics is exactly this checking procedure; there are

many ways to quantify how well a given theoretical distribution fits

a set of data.

In the early 1960’s Benoit Mandelbrot, a mathematician work-

ing at IBM, was studying the distribution of income in a society. A

Harvard economist, Hendrik S. Houthakker, had been studying the

time series of cotton prices for several years, trying to make it fit the

Bachelier model. Mandelbrot was invited to give a talk at Harvard on

his work. While in Houthakker’s office, he noticed a diagram on the

blackboard that reminded him of the topic of his talk. Of course, the

diagram referred to cotton prices, not income distribution. Mandel-

brot was intrigued by the apparent similarity of the two distributions,

which led to his study of these prices (and many other price sets as

well).

Mandelbrot found a distribution that fit the geometric returns,

derived from the cotton price data, much more closely than did the

normal distribution. This distribution is called a power law. The

density function of a power law is approximately of the form

f(t) = C1|t|−k ,

for t �= 0, where k > 0 and C1 is a positive normalizing constant.

One can see from this expression that as |t| gets large, the density

function gets small. This is also true of the normal density functions.

The most important difference between the two classes of densities is
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the rate at which they go to 0 as |t| gets large. This difference will

be studied in more depth below.

Elementary calculus shows that it is not possible for this function

to be suitably normalized so that the area underneath its graph and

above the real axis will equal one. If 0 < k ≤ 1, then the area below

the graph of f(t) and above the interval [1,∞) will be infinite, and if

k ≥ 1, then the area below the graph of f(t) and above the interval

(0, 1] will be infinite.

The way around this problem is to realize that such distributions

are useful because they fit the part of the data set that is not close to

0, i.e. the tails of the data set. So, when using a power law to describe

a data set, it is to be understood that in a certain interval containing

0, the formula for f(t) will be modified. We will typically not care

very much about such distributions near the origin; as a result, we

will assume in what follows that k ≥ 1. In fact, in applications in

finance, the values of k that fit the data are all much greater than 1.

In the appendix, we have defined a set of power laws which we will

use in what follows.

To understand the most salient difference between the normal

distribution and a power law distribution, we consider the probability,

for each distribution, that a value greater than a certain fixed positive

quantity x is obtained. More precisely, suppose that N and L are

values of experiments that are distributed according to the normal

distribution and a power law distribution, respectively. We will use

the standard normal density function φ to represent N and the above

density function f to represent L. We want to compare the quantities

P (N ≥ x)

and

P (L ≥ x) .
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These are right-tail probabilities. To obtain such quantities from a

density function, one integrates the density function over the appro-

priate interval. Thus, these two quantities equal∫ ∞

x

φ(t) dt

and ∫ ∞

x

f(t) dt .

To those readers for whom this idea is unfamiliar, we will say that we

will shortly return to the non-calculus realm.

The expression for φ(t) is given by the formula

φ(t) =
1√
2π

e−t2/2 .

One cannot write an antiderivative of this function in terms of ele-

mentary functions, so one cannot use the Fundamental Theorem of

Calculus directly to find the required probability. Instead, we proceed

as follows. Using integration by parts, with the settings

u =
1

t

and

dv = te−t2/2 dt ,

we obtain the equation∫ ∞

x

e−t2/2 dt =

[
−1

t
e−t2/2

]∞
x

−
∫ ∞

x

1

t2
e−t2/2 dt .

The first summand on the right-hand side equals

1

x
e−x2/2 ,

and if we compare the integral on the right-hand side with the one

on the left-hand side, we see that the integrand of the right-hand

integral is always less than 1/x2 times the integrand of the left-hand

integral. Thus, the value of the right-hand integral is less than 1/x2
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times the value of the left-hand integral. Since we are interested in

the left-hand integral for large values of x, we can say that∫ ∞

x

e−t2/2 dt ∼ 1

x
e−x2/2 ,

where the ∼ sign means that the two quantities are asymptotically

equal, as x gets large. (Two functions of x are said to be asymptoti-

cally equal as x gets large if their ratio approaches 1 as x goes to ∞.)

So, we have

(1) P (N ≥ x) ∼ C2

x
e−x2/2 ,

where C2 = 1/
√
2π.

The tail probability for the power law is easier to calculate. We

have

P (L ≥ x) =

∫ ∞

x

C1|t|−k dt

=

[
− C1

k − 1
t−k+1

]∞
x

=
C1

k − 1
x−(k−1) .

If we replace C1/(k− 1) by a constant C3, and we let α = k− 1, then

we see that we have

(2) P (L ≥ x) = C3x
−α .

We are now finished with the calculus, so various readers can

exhale. The salient difference between the normal distribution and

the power law distribution is described in Equations 1 and 2. We

will spend some time explaining this difference, because it is at the

heart of some of Mandelbrot’s work (and much subsequent research

as well).

Suppose, for example, we are looking at daily returns of a cer-

tain stock over a period of ten years. This set will contain about

2500 observations. Now let’s suppose that, using certain units, these

observations are described well by a standard normal distribution.
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What fractions of these observations will be larger than x = 1, 2, 3, 4

and 5? Using Equation 1, we see that the answers are

.24, .027, .0015, .000033, .00000030 .

(To show that this equation provides a good approximation to the

actual values, we note that the actual values are

.15, .023, .0013, .000032, .00000029 .)

Since the standard deviation of the standard normal distribution is

one, we can interpret the above calculations as saying, for example,

that the probability of observing a value at least 3 standard deviations

above 0 (i.e. x ≥ 3) is about .0015. In a data set of 2500 observations,

this corresponds to about four observations.

Now let’s assume that the data set is described well by a power

law with α = 2. For power laws, we don’t know the value of C3,

but this doesn’t affect the main idea being discussed here, as we shall

see. Suppose, for example, that C3 = .1. Then the fractions of

observations that will be larger than x = 1, 2, 3, 4 and 5 are

.10, .025, .011, .006, .0040 .

Thus, in a data set of 2500 observations, we would expect to see

about 28 (= .011 ∗ 2500) observations that are greater than 3. The

reader should object here that this might not be accurate, since we

arbitrarily picked a value for C3. This is indeed correct; a different

value of C3 would lead to a different expected number of observations.

However, the value of C3 does not affect the truth of the following

statement. In a power law distribution, with α = 2, if one doubles

the value of x, one multiplies the upper tail probability by 1/4. This

can be seen by considering Equation 2. We have

P (L ≥ x) = C3x
−2

and

P (L ≥ 2x) = C3(2x)
−2 ,

and it is easily seen that the second probability is one-quarter of the

first probability, irrespective of the value of C3.
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Figure 3. Tail probabilities of the normal and power law distributions

The situation is completely different for tails of the normal dis-

tribution. For example, if one compares the normal tail probabilities

for x = 2 and x = 4 (computed above), one sees that the values are

P (N ≥ 2) = .023 and P (N ≥ 4) = .000032 .

Thus, the second probability is about 1/70 of the first probability.

If one compares the values for x = 3 and x = 6, one finds that the

second probability is about 1/1,400,000 of the first probability.

Another way to understand the difference between the sizes of

the tails of the normal distribution and a power law is by considering

a graph. Figure 3 shows the two expressions P (N ≥ x) and P (L ≥ x)

as functions of x, where we have chosen α = 2 and C3 = 1/10 for

the power law. One sees that the normal distribution tail goes to 0

much more rapidly than does the power law tail. Analytically, we are

claiming that the ratio of the expression in Equation 1 to the expres-

sion in Equation 2 goes to 0 as x goes to ∞, for any positive constants

C2, C3, and α. This can be shown using elementary calculus.

The expression “fat tails,” which occurs frequently in the study

of stock prices, refers to the tail of a distribution where the tail falls
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off to 0 as a constant power of x (as in the case of a power law) as

opposed to an exponential rate in x (as is the case of the normal

distribution).

We note that although we have used the standard normal distri-

bution and a specific power law in the above exposition, nothing of

consequence changes if we instead take a general normal distribution

or a power law with a different value of α.

4. Distribution of Returns

We now turn to the question of how to determine if a normal distribu-

tion or a power law distribution describes the sequence of geometric

returns of a stock (or another financial instrument). We note that

at this stage, we are not concerned with the order in which the re-

turns occur in time; rather, we are only interested in their overall

distribution.

Before considering any actual data sets, we consider how such

data sets would look if they were governed by a normal distribution

or a power law. In the last section, we saw that if A denotes a random

observation in the data set, then the quantity P (A ≥ x), as a func-

tion of x, looks much different under the two classes of distributions.

Suppose, for example, that the distribution is fit well by a power law

with constants C3 and α. We do not assume that these constants are

known to us yet. If we graph the values of P (A ≥ x) for different

values of x, they should look like one of the graphs in Figure 3. But

both of the graphs in this figure are curves, and it might be difficult

to determine which type of distribution does a better job of fitting

the tail probabilities.

A way around this problem is to proceed as follows. Let g(x) =

P (A ≥ x) be the theoretical tail probability. Then we know from

Equation 2 that

g(x) = C3x
−α .

If we take logarithms of both sides of this equation, we obtain

(3) log g(x) = logC3 − α log x .

                

                                                                                                               



4. Distribution of Returns 115

This says that the logarithm of tail probability function is a linear

function of the logarithm of the input x. Thus, if we graph the values

of the tail probabilities versus x on log-log paper, or graph log g(x)

versus log x on a standard pair of axes, the result should look like a

straight line with slope −α.

Next, suppose that the geometric returns, represented by the ran-

dom variable A, obey a normal distribution with mean μ and standard

deviation σ. Once again the values of these parameters are unknown

to us. If we let

N =
A− μ

σ
,

then N obeys the standard normal distribution. Hence,

g(x) = P (A ≥ x)

= P

(
N ≥ x− μ

σ

)
,

and using Equation 1, we find that

g(x) ∼ σ

(x− μ)
√
2π

e−(x−μ)2/(2σ2) .

Although this is a somewhat ghastly equation, we merely want to take

the logarithms of both sides to see how much the resulting equation

differs from Equation 3. We obtain the equation

log g(x) ∼ logC4 − log(x− μ)− (x− μ)2

2σ2
.

In this case, one sees that the logarithm of the tail probability is

definitely not a linear function of the logarithm of x.

We can illustrate the above idea of distinguishing between normal

distributions and power law distributions by simulating some data

from these two types of distributions. In the appendix, we have given

one method of generating data according to a power law. The two

key parameters are α, described above, and a, which is the value of

x above which Equation 2 for the upper tail probability is supposed

to hold. It also holds below −a. Actually, we construct a symmetric

density, so a similar equation holds for x below −a. A graph of a
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Figure 4. Simulation of a power law with α = 2.1 and a = 1

power law density, with α = 2 and a = 1, is shown in the appendix

in Figure 27.

Figure 4 shows the result of simulating 100,000 values from a

power law distribution with α = 2.1 and a = 1, together with the

appropriately scaled density function. As expected, the simulated

results closely match the density function.

Next, we count, for various positive values of x (we are dealing

with the right tail for the moment), the fraction of simulated values

that equal or exceed x. These fractions should be close to the theo-

retical tail probability g(x) = C3x
−α discussed above. Following the

discussion concerning Equation 3, we have plotted the logarithm of

these fractions versus the logarithm of x in Figure 5.

It can be seen that in the range log x ≥ 0, which corresponds to

x ≥ 1, the region in which the power law part of the density function

is operational, the graph is virtually straight. (The strange shape of

the graph to the right of log x = 2.8 is due to the fact that only 34

values of the 100,000 in the data set lie in this region.)

We will now repeat the above exposition for an experiment whose

values, denoted by N , are distributed according to the standard nor-

mal distribution. Figure 6 shows a histogram of 100,000 simulated
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Figure 5. Log of tail probability versus log of input for power law
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Figure 6. Simulation of the standard normal distribution

data points, together with a scaled version of the standard normal

density function. As before, we count, for various positive values of

x, the fraction of values of the experiment that exceed x. We have

plotted the logarithm of these fractions versus the logarithm of x in

Figure 7.

A comparison of Figures 5 and 7 shows a significant difference in

the shapes of the curves, and corroborates what was said above about
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Figure 7. Log of tail probability versus log of input for nor-
mal distribution

the relationship between the logarithm of the tail probability and the

logarithm of x for each of the two types of distributions.

In Figure 8, we show the graph of the logarithm of the tail prob-

ability versus the logarithm of x for the absolute values of the daily

geometric returns for General Electric stock, between January 1, 1962

and May 22, 2009. (WE are fitting a symmetric density to the data,

so the effect of taking absolute values is to combine the data from

both the lower and upper tails to fit a value for the power law ex-

ponent α.) The number of returns in this data set is 11930. To ce-

ment the reader’s understanding of this graph, we consider the point

(−3.96,−1.77), which lies on the graph. These two numbers are loga-

rithms of .019 and .170. Thus, the fact that the point is on the graph

means that the fraction of absolute returns exceeding .019 is .170.

Next, we note that on the interval [−4,−2.2], the graph is almost a

straight line, as is the case with power laws. Both of the endpoint val-

ues−4 and−2.2 are arbitrary, and if we choose different endpoints, we

will obtain different estimates for α. In such graphs, the right-hand

edge of the plot will be somewhat ragged. There is a good reason

for this; in the present case, for example, the point (−2.20,−6.90)

is about where we would claim that the graph becomes ragged. But
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Figure 8. Logarithm of tail probabilities for returns of Gen-
eral Electric stock

e−6.90 is about .00101, which means that the points on this graph

with first coordinates exceeding −2.20 correspond to only .101% of

the points in the data set (in fact, exactly 12 returns). These 12

returns are certainly important (they are the largest 12 in absolute

value), but there are so few of them that it shouldn’t be surprising

that they don’t fit a power law distribution very well. To put it an-

other way, if we added one more large return to our data set, the

right-hand edge of the above plot might look quite different.

We can fit a straight line to this part of the graph corresponding

to the horizontal interval [−4,−2.2]; the negative of the slope of this

line is our estimate for α. This best-fit line is shown in Figure 8. In

this case, we obtain a value of α = 3.02. In Section 6, we consider

the question of whether or not the value of α changes over time for a

given stock.

Carrying out the same calculations for IBM stock results in the

graph shown in Figure 9. Again we use the horizontal interval

[−4,−2.2]. We obtain a value of α = 2.97. The best-fit line is shown

in the figure.
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Figure 9. Logarithm of tail probabilities for returns of IBM stock

We will now attempt to fit the two types of distributions under

discussion to the returns of the Dow Jones Industrial Average for the

period between October 1, 1928, and March 17, 2009. A graph of the

value of this average at the end of each day in this period is shown

in Figure 10. The set of daily returns for this period is of size 20202.

The largest positive return is .1427, and the largest negative return

is −.2563. These returns occurred on March 3, 1933 and October

16, 1987. Of these returns, all but 12 are between −.10 and .10, and

all but 139 are between −.05 and .05. A histogram of this data set,

for the interval [−.05, .05], is shown in Figure 11. We next plot the

logarithms of the observed tail probabilities versus the logarithm of

the input x, for the set of positive returns and the set of negative

returns. The graphs are shown in Figures 12 and 13. The reader

will certainly agree that both of these graphs look much more like

Figure 5 than Figure 7.

In Figure 14, we have graphed the logarithms of the tail prob-

abilities versus the logarithm of the input x for the set of absolute

values of the returns that do not exceed .10. We have also shown a
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Figure 10. The Dow Jones from October 1, 1928 to March
17, 2009

�0.04 �0.02 0 0.02 0.04

500

1000

1500

2000

Figure 11. Daily returns of the Dow Jones in the interval [−.05, .05]

best-fit line to this set of points. The slope of the line, which is the

negative of the estimate for α, is −2.75552.
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Figure 12. Log of tail probability versus log of input for pos-
itive returns of the Dow Jones
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Figure 13. Log of tail probability versus log of input for neg-
ative returns of the Dow Jones

The best-fit line shown in Figure 14 corresponds to the tail prob-

ability function

g(x) =
(
1.33577 ∗ 10−6

)
∗ x−2.75552 .
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Figure 14. Log of tail probability versus log of input for abso-
lute value of returns of the Dow Jones, together with a best-fit
line

One can use this function to see how many large changes one would

expect to see, under this power law model, in a set of 20202 days. For

example, if we let x = .1, we find that

g(.1) = .000761 ,

which means in 20202 days, we would expect to see about 15 returns

whose absolute values exceed .1. In fact, there were 12 such returns.

Similarly, if we let x = .05, we would expect to see about 104 returns

whose absolute values exceed .05; in fact, there were 131. Finally,

what is the expected number of returns whose absolute value exceeds

.256 (the largest absolute value among all returns)? This expected

number is 1.15.

The point of these calculations is not that the model is accurate

enough to predict the number of returns exceeding any bound with

great accuracy, but rather that under this model, very large returns

are not highly improbable. We shall see below that this statement is

not true when we try to model the returns using a normal distribution.
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Figure 15. Fitting a power law with parameters α = 2.64 and
a = .0111 to the positive returns of the Dow Jones Industrial

Average

It is worth noting that the estimated values for α for positive and

negative returns are somewhat different. For positive returns, the

best-fit line derived from Figure 12 yields a value of α = 2.64, while for

negative returns, we obtain a value of α = 2.91. To see how well one

of our power law distributions fits the data, we return to Figure 12,

and note that the “linear” portion of the data begins for values of the

return very close to the origin. At the origin in this figure, we find

that log x = −4.5, which is equivalent to the statement x = .0111.

So, we will choose α = 2.64 and a = .0111 as our parameters in the

power law density f(t) described in the appendix. Figure 15 shows

the power law density using these parameters and the histogram of

positive returns. We note that if we change the value of a to a = .012,

the resulting power law, shown in Figure 16, seems to fit the data

better.

Now let’s try to fit a normal distribution to the Dow Jones re-

turns. If we use all of the data, we find that the mean is 0.000169685
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Figure 16. Fitting a power law with parameters α = 2.64 and
a = .012 to the positive returns of the Dow Jones Industrial

Average

and the standard deviation is 0.0116385. This leads to a normal dis-

tribution with these parameters; a scaled graph of this normal density

function is shown in Figure 17, along with a histogram of the returns,

in the interval [−.04, .04]. The reason that the normal density func-

tion in this graph appears wider than the histogram is that there are

large returns (outside the interval shown) that inflate standard devi-

ation. For example, if we truncate the data to the interval [−.04, .04],

we find that the standard deviation drops to .00946. Of course, we

shouldn’t use this value, since we have thrown away 251 data points

(which, in some sense, are the most interesting points in the set) in

order to calculate this value. If we superimpose the resulting normal

density on the graph in Figure 17, we obtain Figure 18. Note that

neither of these graphs can be said to fit the data very closely.

Now, let’s estimate the expected number of large returns we

should see in 20202 trading days, using the normal distribution model.

We use the value σ = 0.0116385, computed above, for the standard

deviation. In terms of σ, the computed value of the mean is only
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Figure 17. Fitting a normal distribution to the returns of
the Dow Jones Industrial Average
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Figure 18. Fitting a normal distribution to truncated returns
of the Dow Jones Industrial Average

                

                                                                                                               



4. Distribution of Returns 127

.028σ, i.e. it is a very small fraction of the standard deviation. Hence,

we will not be committing a big error if, for ease of calculation, we

set the mean equal to 0. In fact, setting the mean to 0 corresponds

to the situation involving power laws, where we assumed the density

is symmetric about 0.

Using these parameter values, how many times should we see a

return whose absolute value exceeds .1? We see that .1 = 8.59σ, so we

are asking for the probability that a normally distributed experiment

takes on a value that is farther than 8.59σ from the mean. The

probability of this is 8.7 × 10−18, meaning that we should expect a

return of this magnitude once every 4.4 × 1014 years. (The reader

will recall that there were 12 such returns in the last 80 years.) If

we perform a similar calculation for returns whose absolute value

exceed .05, we find that the normal distribution model predicts that

in 20202 trading days, there should be about 0.35 returns of this size;

this should be compared with the actual number of 131.

We have now seen that power laws do a much better job than

normal distributions do, in some cases, of modeling the distribution

of returns of certain stocks and the Dow Jones Industrial Average.

But we have also seen that if we use power laws instead of normal

distributions to model returns, there will be a much higher probability

of large values. In finance, it is of great importance to understand the

risks of various investments. Many measures have been proposed to

quantify risk in this area. One measure, called value at risk, or VAR,

can be described as follows. One begins by choosing a time interval,

say 10 days, and a probability, say .99. Then one computes, using a

model of returns on the investment, an interval J = [a,∞) having the

property that with probability .99, the value of the investment at the

end of the time period will be inside the interval J . The number VAR

is the difference between the value of the investment at the beginning

of the time interval and the left-hand endpoint of J . In other words,

it is an estimate, under the given model, of the largest amount by

which the investment’s value could decrease in 10 days, in 99 cases

out of 100.
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The larger the value of VAR is, the riskier the investment is said

to be. If one uses normal distributions to model stock prices, then

for a given time interval and probability, the interval J will tend to

be much smaller than the interval one would obtain by using power

laws to model the prices. Thus, if one uses normal distributions, one

will tend to drastically underestimate the risk associated with these

stocks. Risk underestimates of this type have been cited as one of the

causes of the stock market crash in 2008. See, for example, the news

article [32].

The reader will recall that Mandelbrot first saw a connection be-

tween financial prices and power laws after looking at cotton prices.

Figure 19 shows the logarithm of the tail probability versus the loga-

rithm of the input for absolute values of the monthly changes in cotton

prices from January 1784 to January 2009. These prices come from

the Global Financial Data database. If we use the value of a = .091,

which corresponds to the value of −2.4 on the horizontal axis in this

figure, we obtain a value of α = 2.64. The line corresponding to this

power law is also shown in the figure. In Figure 20, we have plotted

the logarithms of the tail probabilities for the changes in butter prices

from January 1, 1890 to the present. It is not clear that a power law

fits this graph very well.

5. Independence of Returns

In the last section, we studied the distribution of the geometric returns

and price changes of various financial instruments. But a collection of

such returns is more than just a set of numbers. We know the order

in which these numbers occurred. Experiments in which the order

of the outcomes is studied are called time series. It is frequently the

case that some very interesting questions can be asked concerning the

order of outcomes of an experiment. This is certainly the case when

dealing with financial data.

As an example of this situation, we return to our coin-tossing

game. We flip a fair coin n times and record each flip. If we simply
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Figure 19. Log of tail probability versus log of input for ab-
solute value of cotton price changes, together with a best-fit
line
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Figure 20. Log of tail probability versus log of input for ab-
solute value of monthly butter price changes
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ask for the distribution of the number of heads that occur, the answer

is the well-known binomial distribution with parameters n and 1/2.

Suppose that we define an equalization to mean that at a certain

time, the numbers of heads and tails thrown up to that time are equal.

We are now considering a concept that depends on the order in which

the heads and tails occur. One can ask for the distribution of the

number of equalizations in n tosses. There are some very interesting

statements one can make concerning this distribution. For example, if

we double the number of tosses in the experiment, we do not double

the average number of equalizations; instead, this average number

increases by a factor of about
√
2. As another example, it can be

shown that in a sequence of n tosses, the last equalization is just as

likely to occur in the first half of the sequence as in the last half.

These examples show that by considering the order in which a set of

outcomes occurs, a richer theory can be developed. For much more

on this subject, the reader is urged to consult the first volume [12] of

William Feller’s masterpiece on probability theory.

The reader will recall that one of the early models proposed for

sequences of stock prices was Brownian motion (or perhaps a discrete

analogue thereof). In this model, the successive changes in a stock’s

price are mutually independent, and obey the normal distribution,

with some mean and variance. In the previous section, we saw that

in the real world, the geometric returns in many cases are not mod-

eled well by a normal distribution. However, it is still possible that

by suitably modifying this model, one can obtain a model that fits

the data fairly well, at least in some cases. Models in which the

changes are identically distributed and the set of changes is mutually

independent are traditionally called random walks.

The intuitive meanings of these properties are as follows. We

imagine a process that produces a value Xt for each non-negative

integer t. One can think of these values as the logarithms of the

price of a stock. The sequence of changes for this process is just the

sequence

X1 −X0, X2 −X1, . . . .
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In the case of a stock, this is the sequence of geometric returns. For

such a process to have changes that are identically distributed means

that if we consider many such sequences, coming from this process,

then the distributions of Xs+1 − Xs and Xt+1 − Xt are the same

for any s and t. If, for example, the changes in a stock’s price on

Mondays tended to be larger than the changes on Fridays, then we

would not be able to model the price sequence of this stock with a

random walk.

A process has mutually independent changes if the knowledge of

a finite set of changes does not give any information about any of

the changes that are not in the set. Suppose, for example, that for

a certain stock, two successive changes of size at least .01 are never

followed by a third change of at least this size. In this case, we would

not be able to model the stock’s price sequence with a random walk.

There is some evidence that in the case of stocks, the successive

changes may not be identically distributed. In other words, it seems

that the variance of a stock’s returns may change over time. One

can guess that models in which the distribution of the increments is

allowed to change over time are more complicated to analyze than are

random walks. So for now, we will concentrate our attention on the

identically distributed case.

We now turn to the question of whether it is roughly true for

returns of stocks that the set of changes is mutually independent.

The idea of the variance ratio was introduced in Chapter 1; we will

remind the reader here of the idea. Suppose that the logarithm of the

price of a stock at the end of day t is denoted by Xt. We see that

Xt+2 −Xt = (Xt+2 −Xt+1) + (Xt+1 −Xt) .

Under the assumption of mutual independence of the changes, the

variance of the left-hand expression is the sum of the variances of

the right-hand summands. Thus, the variance of the two-day changes

should be twice the variance of the one-day changes. By the same

reasoning, if the changes are mutually independent, then the variance

of k-day changes should equal k times the variance of one day changes.
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This idea has been used by several authors in the following way.

One chooses a value of k and then computes the ratio of the variance

of the k-day changes to k times the variance of the one-day changes.

This statistic is called a variance ratio. We saw above that under the

assumption of mutual independence of the changes, this ratio should

be about one, for all values of k.

We are now at a typical point in a statistical test of hypothesis.

In this case, the hypothesis being tested is mutual independence of

the geometric returns of a stock. If the hypothesis is true, then the

statistic being computed will have a particular distribution. This dis-

tribution may or may not be possible to calculate analytically, but one

can usually use simulation to get good estimates of the distribution.

It is important to have such values, because one tests the hypothesis

for a given data set by computing the statistic for the data set. If the

computed value of the statistic is very far from the mean of the dis-

tribution of the statistic, this is taken as evidence that the hypothesis

is not satisfied by the data. If the distribution of the test statistic

cannot be calculated theoretically, one can usually use simulation to

obtain good estimates of this distribution.

We illustrate this with an example. Suppose that we have ob-

served that the geometric returns of a certain stock are distributed

according to a power law with α = 2.5 and a = .01. We wish to test

the hypothesis that the returns are mutually independent. We begin

by choosing a value of k; we’ll choose k = 2. Next, we simulate the

variance ratio for many simulated sequences of returns distributed

according to this power law. These sequences are constructed so that

they obey the hypothesis. In our simulation, the length of each se-

quence is taken to be 1000. We calculate the variance ratio for 10000

sequences and plot the values in Figure 21.

One uses this figure in the following way. We calculate the vari-

ance ratio for our stock data. Recall that the data for this stock was

used to estimate α and a. Suppose that the variance ratio equals

1.08. One notes that this is quite far from the mean of the simulated

distribution, which equals 0.999. In fact, only 108 of the 10000 data
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Figure 21. Simulated variance ratio distribution, with k = 2,
for a power law with α = 2.5 and a = .01

values, or about 1%, are as far or farther from the mean, in either

direction, than the variance ratio of our stock. In other words, the

return sequence for the stock is unlike “most” of the sequences that

are governed by this power law and obey the assumption of mutual

independence of individual returns. This result is taken as evidence

that the assumption does not hold for this sequence of returns for this

stock.

To understand this idea better, suppose that we generate a se-

quence of 1000 returns using the above power law, but instead of

assuming mutual independence, we create the sequence by using the

additional rule that with probability p, each return has the same sign

as its predecessor. If p = 1/2, then since the power law distribution

is symmetric about 0, this is the same as assuming that the returns

are mutually independent. But if p = 2/3, say, then one might expect

that the variance ratio is not close to 1. In fact, if p > 1/2, one can

see that pairs of consecutive returns are more likely to be of the same

sign than if p = 1/2. This means that there is less cancellation in

the two-day returns, leading to a variance that is more than twice as
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large as the one-day variance. Thus, the variance ratio is likely to be

greater than 1.

In Figure 22, we show the results of the following simulation. For

each value of p of the form j/10, for j an integer between 0 and 10,

we created ten sequences of 1000 returns using this value of p and

using a power law with α = 2.5 and a = .01. For each sequence, we

calculated the variance ratio and computed the average of these ten

ratios. The average is what is shown in the figure on the vertical axis.

As expected, we see that if p is substantially different than 1/2,

the variance ratio is not close to 1. Recalling from Figure 21 that

almost all of the variance ratios for sequences with mutually inde-

pendent entries satisfying the given power law are in the interval

[.93, 1.07], we see that it would be easy to reject the hypothesis of

independence for the sequences in our simulation for which p �= 1/2.

(There is an exception to this statement that can be seen in the fig-

ure. When p = 1, the variance ratio is just about 1. Can the reader

supply an intuitive argument as to why this should be the case?)

The point of this simulation is not to show that one can discern

non-randomness in the sign sequence of a set of returns using the

variance ratio; this can be discerned in easier ways. Rather, we are

simply showing that sometimes, if the returns are not independent,

the variance ratio of the sequence will provide evidence that this is

the case.

In Poterba and Summers [35], applications of the variance ratio

are given for testing independence of returns in various settings. We

will briefly summarize some of their results here. The authors created

two portfolios of stocks, called value-weighted and equal-weighted.

The time interval under consideration was the period from 1926 to

1985. At the beginning of this time interval, an equal dollar value

of each stock on the New York Stock exchange was put into the first

portfolio. Similarly, an equal number of shares of each stock was put

into the second portfolio. They computed variance ratios for various

pairs of time interval lengths, as we did above.

                

                                                                                                               



5. Independence of Returns 135

0.2 0.4 0.6 0.8 1.0

0.8

1.0

1.2

1.4

Figure 22. Average variance ratios for various values of p for
the simulation described in the text

When they computed the variance ratio for eight-year returns

versus one-year returns, they found it to be .509 for the first portfolio

and .290 for the second portfolio. These values are quite far from the

value of 1 that obtains under the assumption of mutual independence

of returns. Comparing these values to the distributions of the variance

ratio (obtained by simulation, as we did above) allowed them to reject

the hypothesis of mutual independence of returns at the .08 level for

the first portfolio and the .005 level for the second portfolio. Among

their other results, they also computed the variance ratio for both

portfolios for one-year returns versus one-month returns. For both

portfolios, they found that the variance ratio was about 1.27.

These results suggest that there is much less variation in the

price of a stock over an eight-year period than would be suggested by

looking at the average variation of that stock over a one-year period.

However, the opposite statement seems to be true for one-month ver-

sus one-year periods; the variance over a 12-month period tends to be

greater than 12 times the variance over a one-month period. The au-

thors state that the stocks “revert to the mean,” by which they mean
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that a stock that grows, for a period of a year, more rapidly than

does the market, will tend to have slower growth than the market for

some time afterwards.

6. Is the Power Law Exponent Intrinsic?

In Section 4, we gave some examples showing that the geometric

returns of the stock prices of certain companies appear to obey a

power law. This information is useful in understanding the variability

in a given company’s stock price. We recall that the smaller the value

of α in a power law, the more likely it is that there will be large values

in a process that is governed by the power law. Thus one can see that

the smaller the value of α is, the more volatile the stock prices are. So

one might think that a good estimate of α for a given stock is useful

information to have.

There is a possible problem with this idea, and it can illustrated

by considering an example. We use as our data set the geometric

returns for IBM stock between January 2, 1962 and May 20, 2009.

There are 11925 returns in this time period. If we split this time

period in half, and for each half, plot the log of the tail probabilities

versus the log of the input (as we have done numerous times above),

we obtain the plots shown in Figure 23. Both plots have been put in

this figure. The steeper-sloping set of points corresponds to the first

time period.

The two values of α that correspond to these two time periods are

different; the estimates are α = 3.07 and α = 2.90. The estimate for α

when the entire data set is used is α = 2.97. There are two possibilities

that one might consider at this point. First, it is possible that there is

an ‘intrinsic’ value of α for IBM stock, and the variations we see above

are simply natural variations that can arise when one takes different

samples from a distribution. (For example, if one takes samples of

a certain size from a given normal distribution, and calculates their

means, these means will vary.) Second, it might be the case that over

time, the value of α changes for IBM stock. In this case, unless we can
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Figure 23. Log of tail probability versus log of input for re-
turns of IBM for the first and second halves of the time period
1-2-62 through 5-20-09

understand how it changes, our will be of little use in understanding

how IBM stock might behave in the future.

To investigate whether the first of the above possibilities is rea-

sonable, we carried out the following simulation. We created 1000

samples from a power law distribution with α = 3.14 and a = .02.

Each sample contained 5900 values, as did each of the two IBM data

sets corresponding to the two time periods described above. For each

of these 1000 samples, we estimated the value of α. The results are

shown in Figure 24.

One sees from this histogram that the observed values of α for

the actual returns of IBM stock over the two time periods described

above (these values are α = 3.07 and α = 2.90) are not unusual values

at all. In other words, these values do not, by themselves, discredit

the hypothesis that α does not change over time for a particular stock.

In Figure 25, we graph the estimated values of α for consecutive

blocks of IBM stock prices of length 6000, where each block is offset
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Figure 24. Estimated values of α for samples taken from a
power law with α = 2.97
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Figure 25. Estimated values of α for blocks of consecutive
prices of IBM stock

from the previous block by ten days. Figure 26 shows the results of

the same calculation applied to General Electric stock over the same
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Figure 26. Estimated values of α for blocks of consecutive
prices of General Electric stock

time period. The abrupt jumps in the graphs are probably artifacts

of the algorithm we use to estimate the values of α for the blocks.

Even if we ignore the jumps, these two figures show a clear downward

trend in the sequences of estimates of α, suggesting that the value

does in fact change over time.

7. Appendix

We begin with a brief description of the power law distributions that

were used in the simulations in this chapter. We recall that a power

law has a density function that is roughly of the form

f(t) = C1|t|−k ,

where t is assumed to be not too close to the origin. Below, we will

define f for values of t near the origin. The parameter of greatest

interest in such a power law is the number α, defined to equal k − 1.

If L represents a quantity that is governed by this power law, then
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we saw above that for large positive x,

(4) P (L ≥ x) = C3x
−α

for some positive constant α. Since f(t) is symmetric with respect to

the origin, a similar equation holds for P (L ≤ x) where x is large and

negative.

There are various other parameters in our distributions which we

now define. The number a is the bound above which Equation 4

holds. The constant C3 in Equation 4 must be chosen so that the

area under f(t) and above the interval [a,∞) is less than 1/2 (since

by symmetry, the area above the interval (−∞,−a] will be the same

as this area). In fact, we wish to make f(t) unimodal. This is not

a requirement of a power law, but it is a reasonable assumption to

make about a density that models stock price changes. If this is so,

then f(t) decreases on the interval [0, a], so the area under f(t) and

above [0, a] must be at least af(a).

Finally, it would be nice to be able to simulate, using a computer,

the quantity L. One method for accomplishing this involves invert-

ing the cumulative distribution function corresponding to the density

f(t). If we write

F (x) =

∫ x

−∞
f(t) dt ,

then

F (x) = P (L ≤ x) .

This quantity is always between 0 and 1. Also, F is an increasing

function on the real line. Hence it has an inverse function G i.e. G is

a function from [0, 1] to the real line such that for all r ∈ [0, 1], we

have

F (G(r)) = r .

Suppose that r is uniformly chosen (say, by a computer) in the in-

terval [0, 1]. We let L be given by G(r). To see that L is distributed

according to the density function f(t), it suffices to show that for ev-

ery real value of x, the fraction of simulated values of L not exceeding

x equals F (x).
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So let x be a fixed real number. Let r be the real number in [0, 1]

with the property that G(r) = x. If r′ < r, then G(r′) < x, and vice

versa. So the fraction of the simulated values of L not exceeding x

equals the fraction of randomly chosen real numbers r′ not exceeding

r. This equals r, since the real numbers are chosen uniformly in [0, 1].

But we know that G(r) = x and F (G(r)) = r, so we see that this

fraction equals F (x), as desired.

In the domain [a,∞), we have

F (x) = P (L ≤ x)

= 1− P (L ≥ x)

= 1− C3x
−α ,

and this last expression is easily inverted. If we make f(t) linear on

[0, a], say

f(t) = C4 − C5t ,

then for x ∈ [0, a), we have

F (x) =

∫ x

−∞
f(t) dt

=
1

2
+

∫ x

0

f(t) dt

=
1

2
+ C4x− 1

2
C5x

2 ,

and this expression is also easy to invert.

One (arbitrary) choice of parameters, given that we have already

chosen α and a, is as follows:

C3 =
aα

4(1 + α)
,

C4 =
2 + 3α

4a(1 + α)
,

C5 =
1

2a2
.
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For example, if we choose α = 2 and a = 1, then the graph of the

resulting density function f(t) is as in Figure 27.
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Figure 27. A power law density with α = 2 and a = 1

We created these power law densities for use in illustrating some

of the ideas in the modeling of stock prices. However, these densities

are not the ones that are typically used. Ours are simpler than the

ones in use and are adequate for our purposes. We will now give

a brief explanation of the densities that are used in more advanced

treatments.

Recall that the model of Bachelier used normal distributions to

model arithmetic returns and assumed mutual independence of re-

turns in non-overlapping time intervals. We saw above that instead

of the normal distribution, power laws should be used to model the

returns. We have also seen that the assumption of independence may

not be justified. The second of these statements was demonstrated

somewhat later (in the 1980’s) than the first (first discussed by Man-

delbrot in the early 1960’s).
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Because of this time difference, models were created that mim-

icked Brownian motion in one way, namely that non-overlapping in-

crements were independent, but used power laws instead of normal

distributions. A crucial property enjoyed by the family of normal

distributions is the property of stability. A set of distributions is said

to be stable if, when we have two independent experiments whose

outcomes are governed by distributions from the set, then the distri-

bution of the sum of the outcomes is also in the set. It can easily

be shown by induction that in a stable family, the sum of any finite

number of outcomes from independent experiments is distributed ac-

cording to a member of the stable family.

In terms of geometric returns, if the distribution of daily returns,

say, is a member of a stable family, and if we assume that the daily

returns are mutually independent then, for example, the distribution

of weekly returns will also be a member of the same stable family.

This is a pleasing property for a set of distributions to possess, and

it seems to be at least approximately true for geometric returns of

stocks. In other words, the observed distributions of weekly returns

look similar to those of daily returns.

We can easily perform a simulation of the sum of two indepen-

dent experiments, each distributed according to a power law. In our

simulation, we chose α = 2.5 and a = .5. We constructed two lists of

outcomes, each with 100,000 entries. Then we added the correspond-

ing entries together and computed the tail probabilities. The results

are shown in Figure 28. If we throw out the leftmost seven points in

the figure and fit a line to the remaining points, we find the line has

slope −2.48, leading to a value of α = 2.48 for the sum of the two

experiments.

Given two independent experiments whose outcomes obey two

(possibly different) distributions, it is typically quite difficult to find

the distribution of their sum. This distribution is called the convo-

lution of the distributions of the two summands. The most common

way to proceed is to use Fourier transforms, a method that is beyond

the scope of this book. Nevertheless, we will explain the basic idea
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Figure 28. Log of tail probability versus log of input for the
sum of two experiments each distributed according to a power
law with α = 2.5 and a = .5

here, since it helps in gaining a bit of understanding of the set of

power law distributions that are commonly used.

If f1(t) and f2(t) denote the density functions of the two indepen-

dent experiments, and if f3(t) denotes the density function of their

sum, then it is fairly easy to show that

(5) f3(t) =

∫ ∞

−∞
f1(s)f2(t− s) ds .

However, evaluating this integral is typically quite hard, or even im-

possible, by direct methods. (We will briefly discuss below the case

when f1 and f2 are chosen to be two of our power law distributions.)

The Fourier transform (or characteristic function) of a density func-

tion f(t) is another function f∗(w) with the following very helpful

property:

f∗
3 (w) = f∗

1 (w)f
∗
2 (w) .
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In words, the Fourier transform of the density function of the sum

of two independent experiments is the product of the Fourier trans-

forms of the density functions of the summands. It is much easier to

compute this product than it is to compute the above integral.

Of course, very little is free in life, and this situation is no excep-

tion. One has replaced the calculation of the above integral by the

calculation of two Fourier transforms (one for each summand). Fur-

thermore, after the product of the two transforms has been computed,

one must determine the density function whose transform equals this

product. In some cases, this last step is easy, since the product of

the transforms is recognizable as the transform of some known den-

sity. This would typically be true when one is dealing with stable

sets of distributions. In other cases, one computes the inverse Fourier

transform of the product, thereby obtaining the required density.

The power law densities that are in use have relatively benign

Fourier transforms (see McCulloch [30]), and it is relatively easy to

show that the product of two such transforms, under suitable con-

ditions concerning their parameters, is another function of the same

form, thereby showing that the set of such densities forms a stable

set. However, these densities all have values of α not exceeding two.

The reason for this is if one sets α to a value larger than two in the

defining formula, then the resulting function is not a density function;

its integral over the positive reals exceeds one. This is somewhat trou-

blesome, as we have seen above that the returns of some stocks seem

to obey a power law with α near three.

It is a (hard) exercise to apply Equation 5 directly to the case

when f1 and f2 are taken to be two of our power law density functions.

Since we are interested in summing the returns of two successive time

periods for the same stock, it makes sense to choose the same values of

α and a for both density functions. One quickly finds that the integral

in Equation 5 is intractable unless α is an integer. If one tries the value

α = 3, it is possible to show that for large |t|, the convolution density

f3(t) is asymptotic to ct−4, where c = (3/32)a3. This shows that the

sum of two independent experiments, each distributed according to
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one of our power laws with α = 3, is also distributed (for large |t|)
according to a power law with the same value of α.

To those readers with knowledge of the Central Limit Theorem,

the last statement might seem to contradict this theorem. Suppose

that we say that an experiment is of class 3 if it is distributed ac-

cording to a power law with α = 3. Then the contradiction appears

to stem from the fact that if the sum of two independent class 3 ex-

periments is of class 3, then by induction, any finite sum of mutually

independent class 3 experiments is also of class 3. But since the den-

sity of a class 3 experiment possesses a variance, the Central Limit

Theorem implies that the normalized sum of mutually independent

class 3 experiments approaches a standard normal.

This apparent contradiction can be resolved by noting that the

power law property is asymptotic in terms of the input, i.e. if X is a

random variable that is of class 3, then

P (X ≥ x) ∼ Cx−α ,

for some constant C. This condition says nothing about what happens

for small values of |x|. In fact, the reader will recall that our power law

densities do not behave according to a power law for small |x|. The

sum of many class 3 experiments will behave like a normal density

over a large x-interval. In fact, this interval will increase in size as the

number of summands increases. Nevertheless, this result means that

one should be very wary of using the normal distribution to model

n-day stock price changes, even for moderate values of n.

The following theorem shows that the above statement concerning

power laws of class 3 actually holds for power laws of any class (see

[13], p. 278). In fact, one can say something even in the case where

the summands are power laws of different classes (see [10]). Here is

a statement of the result.

Let X be a real-valued random variable. We say that the right

tail of X is asymptotic to f(x) if

lim
x→∞

P (X > x)

f(x)
= 1 .
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A similar definition holds for left tails. For example, the Cauchy dis-

tribution with density 1/(π(1+x2)) has right and left tails asymptotic

to 1/(πx). Then the following holds.

Theorem 2. Let X and Y be independent random variables with right

tails asymptotic to c/xα and d/xβ, where 0 < α ≤ β and c, d > 0. If

α = β then X + Y has right tail asymptotic to (c + d)/xα. If α < β

then X + Y has right tail asymptotic to c/xα.

                

                                                                                                               



Chapter 3

Lotteries

1. Rules of the Powerball Lottery

Lotteries are discussed frequently in the news. They are the most pop-

ular form of gambling and an increasingly important way for states to

obtain revenue. In this chapter, we will use the Powerball lottery to

illustrate some of the statistical ideas associated with lotteries. Our

calculations are based on the rules in that were in effect for the Feb-

ruary 18, 2006 drawing, whose $365,000,000 jackpot is still the largest

jackpot in the history of Powerball. This example will feature promi-

nently throughout the chapter. We provide some further discussion

on the evolution of the game below.

The Powerball Lottery is a multi-state lottery, a format which

is gaining popularity because of the potential for large prizes. It

is currently available in 42 states, Washington, D.C., and the U.S.

Virgin Islands. It is run by the Multi-State Lottery Association, and

we shall use information from the Powerball homepage. We found

their “Frequently Asked Questions,” (hereafter abbreviated FAQ) to

be particularly useful. These are compiled by Charles Strutt, the

executive director of the association.

A Powerball lottery ticket costs $1. For each ticket you are asked

to mark your choice of numbers in two boxes displayed as shown in

149
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Figure 1. Picking your numbers

Table 1. You are asked to select five numbers from the top box and one

from the bottom box. The latter number is called the “Powerball.” If

you check EP (Easy Pick) at the top of either box, the computer will

make the selections for you. You also must select “cash” or “annuity”

to determine how the jackpot will be paid should you win. Finally,

there is another option called the “Power Play.” In what follows, we

will refer to a particular selection of five plus one numbers as a “pick.”

The Powerball Lottery was started in 1992. In the history of this

lottery, there have been at least five versions. Before November 2,

1997, there were 45 numbers in the top box and 45 in the bottom

box. On that date, these numbers were changed to 49 and 42, respec-

tively. They were changed again on October 9, 2002 to 53 and 42,

respectively. On August 28, 2005, they were changed to 55 and 42.
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You Match You Win Win Probability

5 white balls and the red ball JACKPOT 1/146,107,962

5 white balls but not the red ball $200,000 1/3,563,609

4 white balls and the red ball $10,000 1/584,432

4 white balls but not the red ball $100 1/14,254

3 white balls and the red ball $100 1/11,927

3 white balls but not the red ball $7 1/291

2 white balls and the red ball $7 1/745

1 white ball and the red ball $4 1/127

0 white balls and the red ball $3 1/69

Table 1. Possible prizes and their probabilities

On January 7, 2009, they were changed to 59 and 39. Unless stated

otherwise, the calculations below will refer to the 2005 version. The

interested reader can easily modify the calculations in this chapter to

take into account any subsequent changes in the lottery.

EveryWednesday and Saturday night at 10:59 P.M. Eastern Time,

lottery officials draw five white balls out of a drum with 55 balls and

one red ball from a drum with 42 red balls. Players win prizes when

the numbers on their ticket match some or all of the numbers drawn.

The order in which the numbers are drawn does not matter. There

are 9 different prizes. In Table 1 we give the possible prizes and their

probabilities. We show how to calculate the probabilities in the next

section.

The jackpot starts at $15,000,000 and increases based on sales

each time there is no winner. Each time a new record jackpot is

reached, there is enormous media attention. Beginning in 2002, a

new rule was added to control the growth of jackpots by spreading

the prize money. Specifically, once a new record is reached, sub-

sequent unsuccessful drawings will increase the jackpot by at most

$25,000,000. The remaining funds are added to a Bonus Prize Pool.

When someone wins the record jackpot, the Bonus pool is divided
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among the winners of the second prize (for matching 5 white balls

but not the red ball), in addition to the usual $200,000.

For other prizes, the player wins the amount described above,

unless she selected the Power Play option (which costs an additional

$1 dollar per ticket). With the Power Play feature, all prize amounts

except the jackpot are multiplied by either 2, 3, 4, or 5. This multi-

plier is the same for all players in a given lottery and is determined

by spinning a Power Play wheel at the time the other balls are drawn.

The wheel has sixteen equally likely slots, with four occurrences each

of the multipliers 2, 3, 4, and 5.

If the player wins the jackpot, he or she must share it equally with

all other players (if there are any) who have also won the jackpot. A

few other comments concerning the jackpot are in order. First, the

winning players have 60 days after they have won to declare whether

they want a lump sum payment or a series of 30 graduated annuity

payments. The first payment is made immediately and the others

are made at the end of each subsequent year. The lump sum is the

present value of the annuity, which is typically only about 50% of the

announced value of the jackpot.

2. Calculating the Probabilities of Winning

The first question we ask is: how are the probabilities of the prizes

determined? In what follows, we will calculate various probabilities

assuming the player has bought one ticket. This is a counting problem

that requires that you understand one simple counting rule: if you

can do one task in n ways and, for each of these, another task in m

ways, the number of ways the two tasks can be done is mn. A simple

tree diagram makes this principle very clear.

When you watch the numbers being drawn on television, you see

that, as the five winning white balls come out of the drum, they are

lined up in a row. The first ball could be any one of 55. For each

of these possibilities the next ball could be any of 54, etc. Hence the

number of possibilities for the way the five white balls can come out
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in the order drawn is

55 · 54 · 53 · 52 · 51 = 417,451,320 .

But to win a prize, the order of these 5 white balls does not count.

Thus, for a particular set of 5 balls all possible orders are considered

the same. Again by our counting principle, there are 5 ·4 ·3 ·2 ·1 = 120

possible orders. So, in the above count of the number of possibilities,

each one has been counted 120 times. Thus, the number of possible

sets of 5 white balls not counting order is

417,451,320

120
= 3,478,761 .

This is the familiar problem of choosing a set of 5 objects out of

55, and we denote the answer by C(55, 5). Such numbers are called

binomial coefficients. The general formula for these numbers is the

following:

C(n, k) =
(n) · (n− 1) · . . . · (n− k + 1)

(k) · (k − 1) · . . . · (1) .

This number equals the number of possible sets of k objects chosen

from a set of n objects, where the order of the chosen objects in the

set is disregarded. The derivation of the above formula follows the

same line of argument as the one given above.

Applying this formula to the example above gives

C(55, 5) =

(
55

5

)
=

(55) · (54) · . . . · (51)
(5) · (4) · . . . · (1) = 3,478,761 .

Now for each pick of five white numbers there are 42 possibilities for

the red Powerball, so the total number of ways a set of six numbers

can be chosen is

42 · C(55, 5) = 146,107,962 .

We will need this number often and denote it by b (for big).

The lottery officials go to great pains to make sure that all b pos-

sibilities are equally likely. So, a player has one chance in 146,107,962
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of winning the jackpot. However, the player will have to share the

prize with anyone else who has picked the same set of numbers.

We note that on the Powerball website, the column corresponding

to the last column in Table 1 is labeled “odds.” The numbers in the

column are in fact probabilities, not odds. The media prefers to use

odds, and textbooks prefer to use probability or chance. Because

the probabilities are small, there is not much difference between odds

and probabilities. However, this is a good excuse to get the difference

between the two concepts straightened out.

Suppose we are dealing with a chance situation in which there

are f favorable outcomes and u unfavorable outcomes. Suppose in

addition that all of the outcomes are equally likely. Then the prob-

ability of a favorable outcome is f/(f + u), i.e. it is the fraction of

all of the possible outcomes that are favorable. Odds are quoted in

two different ways. The odds in favor of a favorable outcome are f

to u, and the odds against a favorable outcome are u to f . Thus the

chance of winning the jackpot is 1 in 146,107,962, whereas the odds

are 1 to 146,107,961 in favor, or 146,107,961 to 1 against.

To win the second prize ($200,000 plus a possible share of any

bonus), the player must get the 5 white numbers correct but miss the

red Powerball number. How many ways can this be accomplished?

There is only one way to get the set of five white numbers, but the

player’s Powerball pick can be any of the 41 numbers different from

the red number that was drawn. Thus, the chance of winning second

prize is 41 in 146,107,962; rounded to the nearest integer this is 1 in

3,563,609.

When there were 45 white balls and 45 red balls, the ticket listed

the chances of getting only the red ball as 1 in 84. This often seemed

wrong to players who have had elementary probability, as the follow-

ing exchange from the Powerball FAQ1 illustrates:

1From the Multi-State Lottery Association website at http://www.musl.com/
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COULD YOUR ODDS BE WRONG?

I have a simple question. You list the odds of

matching only the powerball as one in 84 on the

powerball “9 Ways to Win” page. From my un-

derstanding of statistics (I could be wrong, but I

got an A), the odds of selecting one number out of

a group is simply one over the number of choices.

Since there are not 84 choices for the powerball,

may I assume the balls are somehow “fixed” so

that some are more common than others? Other-

wise, the listed odds are somehow defying the laws

of statistics. I am really very eager to hear your

explanation, so please return my message. Thank

you.

Susan G., via the Internet.

This is one of the most common questions we

get about the statistics of the game. If you could

play only the red Powerball, then your odds of

matching it would indeed be 1 in 45. But to win

the $1 prize for matching the red Powerball alone,

you must do just that: match the red Powerball

ALONE.When you bet a dollar and play the game,

you might match one white ball and the red Power-

ball. You might match three white balls and the

red Powerball. To determine the probability of

matching the red Powerball alone, you have to fac-

tor in the chances of matching one or more of the

white balls too.

Charles Strutt

To win this last prize you must choose your six numbers so that

only the Powerball number is correct. In the old version of the Power-

ball lottery this would be done as follows: there are 45 · C(45, 5) =

54,979,155 ways to choose your six numbers. But here your first 5
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Number of Ways Match

n(1) = 1 all six balls

n(2) = 41 5 white balls but not the red ball

n(3) = C(5, 4) · C(50, 1) 4 white balls and the red ball

n(4) = n(3) · 41 4 white balls but not the red ball

n(5) = C(5, 3) · C(50, 2) 3 white balls and the red ball

n(6) = n(5) · 41 3 white balls but not the red ball

n(7) = C(5, 2) · C(50, 3) 2 white balls and the red ball

n(8) = C(5, 1) · C(50, 4) 1 white ball and the red ball

n(9) = C(50, 5) only the red ball

Table 2. Number of ways that a particular prize can be won

numbers must come from the 40 numbers not drawn by the lottery.

This can happen in C(40, 5) = 658,008 ways. Now there is only one

way to match the Powerball number, so overall you have 658,008

chances out of 54,979,155 to win this prize. This reduces to 1 chance

in 83.55, or about 1 chance in 84, in agreement with the official lottery

pronouncement.

The same kind of reasoning carries over to the present version of

the game. To find the chance of winning any one of the prizes we need

only count the number of ways to win the prize and divide this by

the total number of possible picks b. Let n(i) be the number of ways

to win the ith prize. Then the values of n(i) are shown in Table 2.

Dividing these numbers by b, we obtain the chance of winning the

corresponding prizes given in Table 1. Adding all the of n(i) values

gives a total of 3,991,302 ways to win something. Thus we get an

overall chance of winning of 3,991,302/b = 0.1732, which is about 1

in 36.61.

In a textbook, we would be apt to give the results of Table 1 in the

form shown in Table 3. As noted earlier, rounding the reciprocals of

these probabilities to the nearest integer gives the numbers reported

as “odds” on the lottery ticket.
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You Match You Win Win Probability

5 white balls and the red ball JACKPOT 0.0000000068

5 white balls but not the red ball $200,000 0.0000002806

4 white balls and the red ball $10,000 0.0000017111

4 white balls but not the red ball $100 0.0000701536

3 white balls and the red ball $100 0.0000838421

3 white balls but not the red ball $7 0.0034375266

2 white balls and the red ball $7 0.0013414738

1 white ball and the red ball $4 0.0078811585

0 white balls and the red ball $3 0.0145013316

Table 3. The probabilities of winning

Exercise.

1. Which of the two methods for presenting the chances of win-

ning, Table 1 or Table 2, do you think is better understood

by the general public? Which do you prefer?

3. What is Your Expected Winning for a $1
Ticket?

The value of a gambling game is usually expressed in terms of the

player’s expected, or average, winning. If there are n prizes and p(i)

is the probability of winning the ith prize w(i), then your expected

winning is:

E = w(1) · p(1) + w(2) · p(2) + ...+ w(n) · p(n) .

As a simple example to illustrate the above formula, consider the

following game. A fair coin is tossed twice. The number of dollars

won in one play of this game is defined to be the square of the number

of heads that appear. Thus, the possible payoffs are 0, 1, and 4 dollars.

The expected winning is the average amount won per play. We can

estimate this average amount by imagining that we have played the

game 100 times. We would expect to obtain the 1 dollar payoff about
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50 times, because if we toss a coin twice, one head will appear about

half of the time. Similarly, we would expect to obtain the 4 dollar

payoff about 25 times, because two heads occur about one quarter of

the time in this game. Thus, we would expect our total payoff in 100

plays to be about $150. Therefore, we estimate the average winning

to be $1.50. The above formula for the expected winning gives

E = 0 · 1
4
+ 1 · 1

2
+ 4 · 1

4
= 1.5 ,

in agreement with our estimate.

We will first discuss the case when the Power Play option is not

chosen and the bonus mechanism is not active (that is, we have not

exceeded the record jackpot by more than $25,000,000). Later, we

will summarize the corresponding case when this option is chosen.

For all prizes, except the jackpot, the value of the prize is known.

However, since the size of the jackpot differs significantly from draw-

ing to drawing, we will want to find the expected winning for different

jackpot sizes. In the 508 drawings from the beginning of the lottery

on April 22, 1992 through March 1, 1997 the jackpot was won 75

times. It was shared with one other winner 11 times. During this

period the jackpot prize ranged from $2,000,000 to $314,900,000.

If x is the amount of the jackpot and p(i) the probability of

winning the ith prize, the expected winning is:

E = x · p(1) + 200,000 · p(2) + 10,000 · p(3) + 100 · p(4)
+100 · p(5) + 7 · p(6) + 7 · p(7) + 4 · p(8) + 3 · p(9)

=
x

b
+ 0.197 ,(6)

where b = 146,107,962. The last expression above says that the ex-

pected value of a ticket has two components, the amount attributable

to the jackpot, and the amount attributable to all of the other prizes.

As we will soon see, the amount won by a jackpot winner is affected

by many things. The second component is not changed by any of

these things except for a possible bonus for the second prize.

We start, therefore, in the simplest case by assuming that hitting

the jackpot gives the player the full amount, ignoring taxes and the
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x = Jackpot (in millions of dollars) E = Expected winnings (in dollars)

20 0.334

40 0.471

60 0.608

80 0.745

100 0.882

120 1.018

140 1.155

160 1.292

180 1.429

200 1.566

220 1.703

240 1.840

260 1.977

280 2.114

300 2.250

320 2.387

340 2.524

360 2.661

380 2.798

400 2.935

Table 4. Expected winnings for different size jackpots

possibility of sharing the prize. Table 4 shows the expected winning

E for various values of the jackpot.

A game is said to be favorable if the expected winning is greater

than the cost of playing. Here we compare the expected winning with

the $1 cost of buying a ticket. Looking at Table 3, we see that the

lottery appears to be a favorable game as soon as x gets up to $100

million.

The jackpot for the Powerball lottery for February 8, 2006 built

up to $365 million, as hordes of players lined up at ticket outlets for a
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shot at what had become the largest prize for any lottery in history.

At first glance, it certainly looks as if this was a favorable bet!

However, the reader will recall that the winner must choose,

within 60 days of winning the jackpot, whether to take a lump sum

payment of cash or to take an annuity. In fact, the Powerball web-

site regularly updates the value of the jackpot for each choice. For

example, a few months after the record, the website was showing the

estimated jackpot for the May 24, 2006 drawing as $20 million, with

a cash value of $8.9 million.

The $20 million here corresponds to the $365 million from the

record lottery, and is the number that the media likes to hype. But

note that this corresponds to the annuity amount to be paid out over

time, not the immediate cash value. You are not going to get this

money tomorrow; in fact the lottery doesn’t even have it on hand!

This is explained further in an earlier excerpt from the FAQ:

When we advertise a prize of $100 million paid

over 29 years (30 payments), we actually have less

than $50 million in cash. When someone wins the

jackpot and wants cash, we give them all of the

cash in the jackpot prize pool. If the winner wants

the annuity, we invest the $50 million in cash to

fund the annuity payments. The winner gets the

cash plus the interest earned. When you see an

estimated jackpot annuity prize, we are guessing

both what the sales will be and what the market’s

bond prices will be. The annuity jackpot amount

and the cash jackpot amount that we announce are

always estimates.

The cash option on the record $365 million jackpot was $177.3 million.

(The ratio of the cash option to the jackpot size depends upon current

interest rates. It is usually about 1/2.) From Table 3, we see that a

$1 ticket still looks like a favorable bet, with expected value of about

$1.40. We have been assuming that the player has elected the lump
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sum cash payment, and treating the annuity as equivalent in present

value terms. You may want to think harder about this. An article2

in the Star Tribune discusses the question of lump sum or annuity.

The article is based on an interview with Linda Crouse, a financial

planner and certified public accountant in Portland, Oregon. (Note

that this article was based on an earlier version of the lottery.) From

this article we read:

Crouse ran numbers to help determine whether it’s

better to take a windfall in payments over time—

an annuity—or in a lump sum.

Crouse used the Powerball jackpot as an ex-

ample to determine which pays off in the long run:

the ticket that pays the winner $104.3 million now

or pays $7.7 million annually for 25 years. (Both

are before taxes.)

The annuity represents a 5.4 percent return.

That sounds easy to beat if you take the lump sum

and invest it—until you consider the huge negative

effect of paying all the taxes up front instead of

over 25 years. Figure 45 percent of the payout—

$46.9 million—goes to state and federal taxes right

off the bat. If you invest the remaining $57.4 mil-

lion and receive an average return of 8 percent,

you still can’t beat the annuity. After all taxes are

paid, you receive $4,235,000 annually for the an-

nuity vs. $3,991,000 for the lump sum you invested

at 8 percent.

Beyond about a 9 percent return, you start to

beat the annuity.

Of course, one should consider the fact that the annuity is a guaran-

teed payment while your investments are subject to the volatility of

the way you invest your money.

2Julie Trip, Star Tribune, June 7, 1998, Metro Section, p. 1D
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Well, at least with the lump sum above, we convinced ourselves

that we had a favorable game. Alas, there is another rub. We have

been implicitly assuming that if we hold the lucky numbers, we will

get the whole prize! But if other ticket holders have selected the

same numbers, the jackpot will be split. This will be a particularly

important factor when large number of tickets are sold. As the jackpot

grows, an increasing number of tickets are sold. For example, for the

February 8, 2006 Powerball lottery, about 175.3 million tickets were

sold.

The chance of having to share the jackpot depends upon several

factors. First, it depends upon the number of tickets sold. Second,

it depends upon whether the numbers are all roughly equally likely

to be chosen. In the Easy Pick method, the numbers are chosen by

the computer, and we can therefore assume that they are all equally

likely. We are told that about 70% of tickets sold in a typical lottery

are chosen by the Easy Pick method. Probably this percentage is even

larger when the jackpot is large since people tend to buy a number of

tickets and would be more likely to use the Easy Pick method when

they do this.

The remaining tickets have numbers that are chosen by the ticket

buyers. Figure 7 (displayed later in this chapter) shows that the

numbers are not chosen with equal probabilities by the buyers. In a

given winning set of numbers, some of them will be more likely than

others to have been chosen by these buyers. For the reasons stated

above, we expect that this will have little effect on the number of

jackpot winners.

Because the effect of the non-Easy Pick tickets is small, we will use

n = 175,300,000 as the number of tickets sold. We will assume that

they were all chosen by the Easy Pick method. The probability that

a particular ticket is the winning ticket is 1/146,107,962. The proba-

bility of k winners can be obtained from a binomial distribution with

p = 1/146,107,962 and n = 175,300,000. The expected number of
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k P (k winners)

0 .3013

1 .3614

2 .2168

3 .0867

4 .1600

5 .0062

6 .0012

7 .0002

Table 5. Poisson probabilities for numbers of jackpot winners

winning tickets is

np =
175,300,000

146,107,962
= 1.20 .

Since p is small and n is large we can use the Poisson approximation

to the binomial distribution:

P (k winners) = e−mmk

k!
,

where m = 1.20 is the mean of the binomial distribution that we are

approximating. The results of these calculations are shown in Table 5.

From this table we find that the conditional probability that there is

only one winner, given that there is at least one winner, is .517. Thus

the probability that the winner has to share the prize is .483.

Recall that the cash value of the February 6 jackpot was

$177,300,000. Letting s(k) denote the probabilities in Table 5, we see

that s(k)/(1− s(0)) is the probability that a winning ticket gets frac-

tion 1/k of the jackpot. We can now find the expected amount that a

winning player will end up with, by summing the values (177,300,000/k)∗
s(k)/(1 − s(0)). Carrying out this calculation we find that the ex-

pected cash value of the record jackpot is $128,600,000. Using this

number for x in Equation 6 for the expected value of a ticket gives

$1.077.
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This still sounds like a favorable bet. Unfortunately, the gov-

ernment isn’t about to let a lucky winner just walk off with a lump

sum without paying taxes. Since 2003 the top marginal federal tax

bracket rate has been 35%, so this percentage must be withheld in

federal tax. In fact, the situation is even worse than this, since some

states take out additional money to cover state tax! Here in New

Hampshire (at this writing at least!), there is no state income tax.

Thus, if we win the jackpot, we are left with 65% of our expected

winning of $128,585,771, obtaining $83,580,751. Thus the expected

value of a ticket, after taxes, is (.65)($1.078) = $.700.

What happens if the player chooses the Power Play option (de-

scribed in Section 1)? The multiplier is equally likely to be 2, 3, 4,

or 5, so the expected multiplier is 3.5. In this case, the second com-

ponent of the expected value formula gets multiplied by 3.5, so the

expression for the expected value of the ticket changes to

E =
x

b
+ 0.690 ,

where x is still $128,585,771, since the Power Play option does not

multiply the jackpot. The other award values have been changed by

multiplying by the expected value of the multiplier.

The expected value of the ticket is now $1.57, which leaves $1.02

after taxes. Alas, we recall that we paid an extra $1 for this option,

so this is a $2 bet. Thus the expected return per dollar is only $0.51.

Perhaps we have now explained the famous quote:

“The lottery: A tax on people who flunked math.”

– Monique Lloyd

Exercise.

1. Suppose that someone buys two lottery tickets and fills them

out with the same six numbers. How does this affect his

expected value?
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Figure 2. Powerball sales vs. jackpot size

4. Does a Ticket’s Expected Value Ever Exceed
$1?

We saw above that even in the record jackpot drawing of February

18, 2006, the expected value of a ticket was significantly less than

$1. We now consider whether, for certain jackpot sizes, the expected

value of a ticket ever exceeds $1. To do this, we need to be able to

estimate the number of tickets sold as a function of the jackpot size.

This has been done for the Powerball lottery by Emily Oster in her

senior thesis at Harvard.3 Figure 2 shows the data for the Powerball

lottery from 1992 to 2000.

Oster used a log-linear fit to arrive at the following equation. In

this equation, s denotes the number of tickets sold, in millions, and

p denotes the announced size of the jackpot, in millions, for a given

drawing:

log(s) = 15.558 + .016p ,

3Emily Oster, “Dreaming Big: Why Do People Play the Powerball?”, Harvard
University, March 2002.
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Figure 3. Log-linear fit of Powerball sales vs. jackpot size

or equivalently,

s = (5,712,000)(1.016)p .

Thus, for example, if we let p equal 100, then the predicted value of

s is approximately s = 28,829,000. Figure 3 shows this log-linear fit.

It is interesting to compare Figure 2 with the corresponding data

from the United Kingdom lottery, shown in Figure 4. In the latter

figure, the association between size of the jackpot and the number of

tickets sold seems much weaker. In part, however, this is attributable

to the high ticket sales that accompany unusually large Powerball

jackpots. Indeed, the idea of the Powerball format was to create such

exciting opportunities.

There is no reason to think that the above equation will be accu-

rate for announced jackpot sizes larger than about $300,000,000, since

there are no data for jackpots larger than this size. In fact, if the an-

nounced jackpot size were $500,000,000, say, then the above formula

predicts that the number of tickets sold would be more than 17 billion,

or more than 54 tickets for each person in the United States. This is
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Figure 4. United Kingdom sales vs. jackpot size

clearly unreasonable. Thus, in what follows, we will initially assume

that the announced jackpot size is no larger than $300,000,000.

We can now proceed as we did in the previous section. Given

an announced jackpot size j, we can estimate, using Oster’s equation

above, the number of tickets that will be sold. Then, using the Poisson

distribution, we can calculate the expected pre-tax value of a jackpot-

winning ticket. Here we assume that the cash value of the jackpot

is one-half of the announced jackpot size. This is actually slightly

generous. Next, we add 19.7 cents to this value; this represents the

contribution to the ticket’s expected value by the prizes other than

the jackpot. Finally, we multiply the result by 0.65, obtaining the

after-tax expected value of the ticket. Figure 5 shows the after-tax

expected value of a ticket, as a function of the announced jackpot

size. Note that the expected after-tax value never exceeds 48 cents.

As we said above, we cannot extrapolate our estimate of the num-

ber of tickets sold past $300,000,000 with any assurance of accuracy.

Suppose that we assume the number of tickets sold has a certain

maximum value t, no matter how large the announced jackpot size is.
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Figure 5. Expected after-tax value of a ticket vs. announced
jackpot size

Given t, how large must the announced jackpot size be so that the

expected after-tax value of a ticket will exceed $1?

This question is easy to answer, using the same methods as we

used above. Note that for fixed t, the expected number of jackpot

winners is constant, so the expected after-tax value increases linearly

in the announced jackpot size. If t = 200,000,000, then the expected

after-tax value of a ticket equals $1 if the announced jackpot size is

$567,000,000; if t = 500,000,000, the corresponding announced jack-

pot size is $1,019,000,000. These examples have jackpot sizes that

far exceed any Powerball jackpot that has ever occurred. Thus it is

safe to say that under almost no conceivable circumstance would the

after-tax value of a ticket exceed $1.

5. What Kind of Numbers Do Lottery Buyers
Choose?

We have suggested that we might at least be able to avoid sharing

the jackpot with people who choose their own numbers if we choose

                

                                                                                                               



5. What Kind of Numbers Do Lottery Buyers Choose? 169

0 10 20 30 40
Ball Number

1200

1400

1600

1800

2000

2200

2400
F
r
e
q
u
e
n
c
y

Figure 6. Frequencies of numbers chosen by computer

our own cleverly. It is well known that people who choose their own

numbers do not choose randomly. They use their child’s birthday,

their “lucky” numbers, arithmetic progressions such as 2-4-6-8-10-12,

numbers from sports, etc.

To see what players actually do, we obtained the numbers chosen

by players in the Powerball Lottery in one state on May 3, 1996.

Recall that at this time the game was played by selecting five of 45

white balls and one of 45 red balls. On this day, 17,001 of the picks

were chosen by the buyers, and 56,496 were chosen by the computer

(Easy Pick). Thus only about 23% of the picks were chosen by the

buyers.

We first compare the distribution of the individual numbers from

the picks chosen by the computer and those chosen by the buyers.

To make the two sets the same size, we use only the first 17,001

picks produced by the Easy Pick method. Each pick contributed 6

numbers, so in both cases we have 102,006 numbers between 1 and 45.

Figure 6 is a plot of the number of times each of the numbers from 1

to 45 occurred for the picks chosen by the computer. There does not
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Figure 7. Frequencies of numbers chosen by players

seem to be very much variation, but it is worth checking how much

variation we would expect if the numbers were, in fact, randomly

chosen. If they were randomly chosen, the numbers of occurrences of

a particular number, say 17, would have a binomial distribution with

n = 102,006 and p = 1/45. Such a distribution has mean np and

standard deviation
√
npq, where q = 1− p. This gives values for the

mean and standard deviation of 2267 and 47.

It is hard to tell the actual differences from the graph, so we

looked at the actual data. We found that, for all but two numbers,

the results were within two standard deviations of the mean. For the

other 2 numbers the results were within 3 standard deviations of the

mean. Thus the picks chosen by the computer do not appear to be

inconsistent with the random model. A chi-square test would show

how to proceed with a formal test of this hypothesis.

We look next at the picks chosen by the players. Recall that we

have the same number 17,001 of picks, so we again have 85,005 in-

dividual numbers. The observed frequencies are plotted in Figure 7.

You don’t have to do any fancy tests to see that these are not ran-
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Number Probability Number Probability Number Probability

37 0.010 29 0.10 1 0.16

38 0.011 28 0.10 22 0.16

43 0.012 31 0.10 13 0.16

45 0.012 18 0.12 23 0.17

39 0.012 30 0.13 6 0.18

44 0.012 19 0.13 2 0.19

41 0.013 27 0.13 10 0.19

36 0.013 24 0.14 4 0.19

42 0.014 14 0.14 8 0.030

34 0.014 26 0.14 12 0.030

40 0.015 16 0.14 11 0.030

32 0.015 17 0.14 3 0.033

35 0.016 21 0.15 5 0.033

33 0.018 15 0.15 9 0.033

20 0.019 25 0.16 7 0.036

Table 6. Observed probabilities for numbers chosen by players

domly chosen numbers. The most popular number 7 was chosen 3,176

times, which would be 19 standard deviations above the mean if the

numbers were randomly chosen!

It is often observed that people use birthdays to choose their

numbers. If they did, we would expect numbers from 1 to 12 to

be most likely to be picked since such numbers can occur both in the

month and the day. The next most likely numbers to be picked would

be those from 13 to 31 where the remaining days of the months could

occur. The least likely numbers would then be those from 32 to 45

where the year of the birthday could occur but only for those at least

61 years old (at this writing). Note that this is indeed what appears

to be happening.

Finally, we look at the winning numbers to see if they could be

considered to be randomly chosen. Recall that the lottery officials

try to ensure that they are. Here we have many fewer numbers so we
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Figure 8. Winning number frequencies

expect more variation even if they are randomly chosen. Since there

were 508 drawings in the period we are considering, we have 6 ·508 =

3048 numbers. Now, if the numbers are randomly chosen, the number

of times a particular numbers occurs has a binomial distribution with

n = 3048 and p = 1/45. Such a distribution has a mean of 67.7

and standard deviation 8.14. The biggest deviations from the mean

are about 2 standard deviations so this looks consistent with the

hypothesis that the numbers were randomly chosen. Again, we could

check this with a chi-square test.

Exercises.

1. We have seen that the numbers picked by the players fall into

three sets, with the property that numbers in the same set

are approximately equally likely to be chosen, but numbers

in different sets are not equally likely to be chosen. Let us

denote the three sets by

S1 = {1, 2, . . . , 12} ,
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S2 = {13, 14, . . . , 31} ,

S3 = {32, 33, . . . , 45} .
The collection of all sets of five unequal numbers, between

1 and 45, written in increasing order, serves as the sample

space of all possible choices by the players. The numbers in

S1, S2, and S3 occur with average frequencies .0306, .134,

and .0134, respectively. Using these frequencies, show that

if a chosen set of numbers has all of its numbers in S1, then it

occurs with probability 2.7×10−8, while if all of its numbers

are in S3, then it occurs with probability 4.3× 10−10. How

does this affect the expected value of these two tickets, i.e.

is there a difference between the expected values of tickets

of the above two types?

2. Using the above data from the December 25, 2002 lottery,

we saw that the expected value of one lottery ticket, after

taxes, is $.607. Suppose someone buys two tickets and puts

the same numbers on both tickets. What is the expected

value of each ticket?

6. Finding Patterns

Recall that players choose their first five numbers to match the white

balls separately from their choice of the Powerball number to match

the red ball. Thus, if we are looking for patterns in the way people

choose their numbers, it is best to consider the first five numbers by

themselves. We recall that our data set consists of two sets of picks

of size 17,001; the first set contains picks chosen by the Easy Pick

method, and the second set contains picks chosen by the players. For

the Easy Picks, we found that 136 of these were represented twice

and 2 were represented 3 times.

To see if we should have expected to find 3 picks the same, we use

the solution of the birthday problem, which is a well-known problem

in probability. The most basic form of this problem asks for the

probability that at least two people among a set of k people will
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share a birthday. Part of the reason that this problem is interesting

stems from the fact that if one asks how many people are needed in a

room in order to have a favorable bet that at least two of these people

have the same birthday, then the surprising answer is that only 23

people are needed.

In our case, we are asking a more difficult question: Given 17,001

choices from a set of size C(45, 5) = 1,221,759 (this is the number

of possible choices of five numbers from 45 numbers), what is the

probability that at least three of the choices are equal? So, instead of

366 possible birthdays, there are now 1,221,759 possible birthdays. It

can be calculated that in this case, the probability of finding three or

more choices the same is about .42. A formula for this calculation can

be found at Wolfram MathWorld4. One can also calculate that there

is only a probability of .002 of finding 4 or more the same birthday.

Thus we should not be surprised at finding 3 picks the same and

should not expect to find 4 the same. Again, the computer picks

seem to conform to random choices.

We look next at the 17,001 picks of 5 numbers chosen by the

lottery players. We found 966 sets of numbers that were represented

more than once (compared to 138 for the Easy Pick numbers). The

largest number of times a particular set of numbers was chosen was

24. This occurred for the pick 02-14-18-21-39. Looking at the order

in which the picks were given to us, we noticed that these occurred

consecutively in blocks of 5, with the blocks themselves close together.

The ticket on which you mark your numbers allows room for 5 sets of

numbers. We concluded that one player had made 24 picks all with

the same five numbers for the white balls. He at least chose different

Powerball numbers. The same explanation applied to the next most

popular pick 08-12-24-25-27, which occurred 16 times.

The third most popular set 03-13-23-33-43 was picked by 13 peo-

ple and was more typical of the patterns that people chose. In this

4MathWorld, “Birthday Problem”, http://mathworld.wolfram.com/
BirthdayProblem.html
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version of Powerball, the numbers were arranged on the ticket as

shown below:

Pick 5 EP

01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45

Note that the pick 03-13-23-33-43 is an arithmetic progression ob-

tained by going down a diagonal starting with 03. Similarly, the set

of numbers 01-11-21-31-41, which was chosen 10 times, corresponds

to going down a diagonal starting with 01 and the set 06-15-24-33-42,

chosen 9 times, corresponds to going down a column starting with 06.

The most interesting pattern noticed was 01-09-23-37-45, occurring 8

times, which results from choosing the corner points and the middle

point. Since we do not expect repetitions of 4 or more to occur by

chance, we looked at all those that occurred 4 or more times. We

could explain all but three such sets of 5 numbers. These were:

01-03-09-30-34 (occurred 5 times, always with Powerball number 40)

05-06-16-18-23 (occurred 4 times, always with Powerball number 31)

02-05-20-26-43 (occurred 4 times, with different Powerball numbers) .

Here are two letters that appeared in The Times (London) related

to the problem of people choosing popular numbers. The letters fol-

lowed an article in The Times stating that the inaugural drawing of

the new British Lottery had five times the number of winners ex-

pected, including seven people who had to share the jackpot. They

blamed this on the fact that the six winning numbers 03-05-14-22-30-

44 had five numbers under 31 and most people chose low numbers. In

this lottery, you choose 6 numbers between 1 and 49 and have to get

them all correct to win the jackpot. If you get three numbers correct

you win £10. The amount you win for any other prize depends on

the number of other people who win this prize.
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Here is the first letter.

The Times, 24 November 1994, letters to the edi-

tor.

Slim pickings in National Lottery

From Mr. George Coggan

Sir, With random choices, the odds against there

being seven or more jackpot winners in the Na-

tional Lottery when only 44 million tickets have

been sold are 23-1. This suggests that those who

predicted that low numbers would be popular were

right as the slightly disproportionate number of

single digits (3 and 5 came up) would combine to

produce more winners than would be produced by

entirely random selections.

Mildly interesting, one might think, but then

one suddenly realizes that there is a lurking danger

that the rules create the possibility that when (as

will happen sooner or later) three single digit num-

bers come up the prize fund may not be enough to

cover the Pounds 10 guaranteed minimum prize,

never mind a jackpot. I estimate that if the num-

ber 7 had come up instead of say 44 the prize fund

in this first lottery would have been about Pounds

5 million short of the guarantee. What then panic?

Yours sincerely,

GEORGE COGGAN,

14 Cavendish Crescent North,

The Park, Nottingham.

Here is the response.

The Times, 29 November 1994, letters to the edi-

tor.

No need to fear a lottery shortfall

From the Director General of the National Lottery
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Sir, Mr. George Coggan (letter, November 24)

raises concerns about the National Lottery Prize

Fund’s ability to pay winners when “popular” num-

bers are selected in the weekly draw.

We are aware that players do not choose num-

bers randomly but use birthdays, sequences or other

lucky numbers. This causes the number of winners

to deviate each week from the number predicted by

statistical theory. Experience from other lotter-

ies shows that the number of winners of the lower

prizes can vary by up to 30 per cent from the the-

oretical expectation.

In the first National Lottery game there were

many more Pounds 10 prize-winners than theory

predicted. It is just as likely that future draws

will produce fewer than expected winners and, be-

cause each higher prize pool is shared between the

winners, prize values will rise accordingly.

Mr. Coggan suggests a pessimistic scenario in

which the cost of paying the fixed Pounds 10 prizes

to those who choose three correct numbers exceeds

the prize fund. Best advice, and observations from

other lotteries around the world, is that, even after

allowing for the concentration on “popular” num-

bers, the chances of this happening are extremely

remote.

Your readers will be reassured to know, how-

ever, that I have not relied totally upon statistics

or evidence from other lotteries. Camelot’s license

to operate the National Lottery also requires them

to provide substantial additional funds by way of

deposit in trust and by guarantee to protect the
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interests of the prize-winners in unexpected cir-

cumstances.

Yours faithfully,

PETER A. DAVIS

Director General, National Lottery

PO Box 4465

London SW1Y 5XL

Of course, it is interesting to look at this problem for the Power-

ball lottery. We noted that, in our sample of 17,001 sets of five num-

bers where players picked their own numbers, there were particular

sets of five numbers for the white balls that were chosen as many as

10 times. For example the set of numbers 01-11-21-31-41 obtained by

going down a diagonal starting at 1 in the box where you mark your

numbers was chosen 10 times in our sample of 17,001.

For the July 29, 1998 drawing there were 210,800,000 tickets sold.

If we assume that about 30% of the players pick their own numbers,

then using the above example, it is possible that the there exists a

set of white numbers that was picked by

.3(210,800,000)

1,700
= 37,200

players. For the prize schedule in force at that time, a player who

picked all five white numbers won $100,000. If the lottery officials had

the bad luck to also choose this set of five numbers this would have

cost them 3.72 billion dollars! The new boxes are not as symmetric as

the old ones to which our data applied. This may help them with this

potential problem. It is also the case that the lottery computer is very

unlikely to choose any particular set of numbers. However, the lottery

is protected in still another way. In the fine print that describes the

lottery, it is stated that if there are too many awards won, the officials

reserve the right to divide a certain amount of money among the prize

winners, just like what is done with the jackpot. This last event has

never happened in the history of the Powerball lottery.
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Figure 9. Waiting times between jackpots

7. How Often is the Jackpot Won?

The size of the jackpot changes from one drawing to the next. If, on

a given drawing, no one chooses the winning numbers, the jackpot is

increased several million dollars for the next drawing. When there is

a winner, the next jackpot goes back to the minimum amount, which

currently is 15 million dollars. The size of the increase when there is

no winner depends upon the number of tickets sold for the previous

drawing. We investigate the size of the jackpots through the years of

the original rules.

According to the data from Emily Oster, the jackpots from the

beginning of the Powerball lottery on April 22, 1992 until March 1,

1997, ranged from $2 million to $111,240,463. The jackpot was won

in 75 of these 805 drawings. Eleven of these times there were two

winners and never more than two winners. The total of all these

jackpots was $2,206,159,204 with an average of $29,415,456. The

average number of drawings between jackpots being won was 6.72 or,
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Millions of Probability

tickets sold no one wins

10 .834

20 .695

30 .579

40 .483

50 .403

60 .336

70 .280

Table 7. Probability no one wins the jackpot

since there are two drawing a week, about 3 weeks. The distribution

of times between jackpots is shown in Figure 9.

It is interesting to ask what kind of a probability model would be

appropriate to describe the time between winning the jackpot. The

probability of the jackpot being won depends upon the number of

tickets sold. (Actually, it depends upon the number of different picks

chosen.) If the same number of tickets were sold for each drawing then

the appropriate model would be: toss a coin with probability p for

heads until the first time heads turns up where 1/p is the average time

between heads. Unfortunately, it is not at all reasonable to assume

the same number of tickets will be sold. Here is what the Powerball

FAQ says about this.

For a $10 million jackpot draw we sell about $11

million. For a $20 million jackpot we sell about

$13 million. With a $100 million jackpot we sell

$50 to $70 million for the draw (depending on time

of year and other factors).

Let’s assume that, for a particular jackpot, n tickets are sold.

Then the probability that a particular person does not win the jackpot

is (a− 1)/a, where, for the old version of the game,

a = 45 · C(45, 5) = 54,979,155 .
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The probability that none of the tickets sold wins the jackpot is(
a− 1

a

)n

.

Table 7 contains these probabilities for some different values of the

number of tickets sold.

Exercise.

1. In Figure 9, the mode 6 seems rather over-represented. Can

you think of any explanation for this, or is it just chance?

8. Other Lotteries Pose New Questions

There are many other interesting questions that can be explored

about lotteries. The questions that one asks depend, to some ex-

tent, on the nature of the lottery. For example, in September 1996

the Multi-State lottery introduced a new lottery called Daily Mil-

lions, where the amount of the jackpot is always $1 million and, if

you win, you don’t have to share it with another person who also

has the same winning pick. Actually, if there are more than 10 such

winners they share a $10 million prize. An article appeared in the

Star Tribune shortly after this lottery was introduced5. The article

began as follows:

The lottery wizards said it wasn’t supposed to work

this way.

Nearly five months after the Daily Millions lot-

tery began, none of the 34 million tickets sold has

won the $1 million jackpot. The probability of

such a long losing streak is 1 in 38.

The drought has lasted so long, “We even have

solid believers in statistics questioning the wisdom

of numbers,” quipped Charles Strutt, executive

director of the Multi-State Lottery Association,

which runs Daily Millions and Powerball.

5Doyle, Pat, “Daily Millions Beats Odds: No One Wins—5-Month Losing Streak
Puzzles Even Statisticians”, Star Tribune, Minneapolis, 7 Feb. 1997, p. 1B.
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They’re not the only ones.

At the East Grand Forks, Minn., Holiday store,

“People are starting to get a little disgusted with

it,” said cashier Steve Nelson. The store has been

among the top sellers of Powerball tickets, but sales

of Daily Millions tickets have declined.

The article states that the ticket sales in the first week of the lottery

were $2.75 million, but five months later, they had declined to $1.23

million.

The day after the above article appeared, the Daily Millions lot-

tery had its first winner.

9. Using Lottery Stories to Discuss Coincidences

James Hanley6 has discussed how stories about lottery winners pro-

vide good examples to discuss the meaning of apparent coincidences.

Here is his first example7.

Lottery officials say that there is 1 chance in 100

million that the same four-digit lottery numbers

would be drawn in Massachusetts and New Hamp-

shire on the same night. That’s just what hap-

pened Tuesday.

The number 8092 came up, paying $5,482 in

Massachusetts and $4,500 in New Hampshire. “There

is a 1-in-10,000 chance of any four digit number be-

ing drawn at any given time,” Massachusetts Lot-

tery Commission official David Ellis said. “But

the odds of it happening with two states at any

one time are just fantastic,” he said.

What is the probability that the same four-digit lottery number

would be drawn in Massachusetts and New Hampshire on the same

6Hanley, James A. “Jumping to Coincidences”, American Statistician, Vol 46,
No. 3, pp. 197-201.

7“Same Number 2-State Winner”, Montreal Gazette, September 10, 1981.
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night? What is the probability that some two such lotteries have the

same two numbers during a given period of time? Is this different

from a reporter noticing that the number that turned up in the lot-

tery in New Hampshire on Wednesday happened also to occur in the

Massachusetts lottery on Saturday?

Here is another of Hanley’s examples8.

Defying odds in the realm of the preposterous—1

in 17 million—a women who won $3.9 million in

the New Jersey state lottery last October has hit

the jackpot again and yesterday laid claim to an

addition $1.5 million prize...

She was the first two time million-dollar win-

ner in the history of New Jersey’s lottery, state

officials said. They added that they had never be-

fore heard of a person winning two million-dollar

prizes in any of the nation’s 22 state lotteries.

For aficionados of miraculous odds, the num-

bers were mind boggling: In winning her first prize

last Oct. 24, Mrs. Adams was up against odds of 1

in 3.2 million. The odds of winning last Monday,

when numbers were drawn in a somewhat modified

game, were 1 in 5.2 million.

And after due consultation with a professor

of statistics at Rutgers University, lottery officials

concluded that the odds of winning the top lot-

tery prize twice in a lifetime were 1 in about 17.3

trillion—that is, 17,300,000,000,000.

Exercise.

1. Does it matter that she played the lottery many times, often

buying more than one ticket? Again, are we talking about

8“Odds-Defying Jersey Woman Hits Lottery Jackpot 2nd Time”, New York
Times, February 14, 1986.
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this happening somewhere, sometime? Should we ever be-

lieve that something with these odds has happened?

10. Lottery Systems

Richard Paulson9 observes that claims made about systems for im-

proving your chances at lotteries illustrate important statistical con-

cepts. For example, people claim that it is possible to predict future

winners by analyzing the historical data of winning numbers. Indeed,

lottery sites encourage this by making this historical data available.

Sometimes the argument is simply that, when a particular number

has not turned up as often as would be expected, then this num-

ber is more likely to come up in the future. This is often called the

“gambler’s fallacy” and all too many people believe it. The fact that

it is not true is the basis for many beautiful applications of chance

processes called martingales.

Paulson remarks that he particularly enjoys discussing the fol-

lowing system. Consider, the six winning numbers in the Powerball

Lottery. If they occur randomly their sum should be approximately

normally distributed with mean 6(1+45)/2 = 138 and standard devi-

ation approximately 32. Thus, sets of six numbers whose sum is more

than 64 away from the mean 138 are not likely to occur as winning

sets and should be avoided. It is better to pick six numbers whose

sum is near 138. We leave the reader to ponder this last system.

One of our teachers, the well-known probabilist Joseph Doob, was

often asked for a system to use when playing roulette. His advice ran

as follows. Play red once. Then wait until there have been two blacks

and play red again. Then wait until there have been three blacks and

play red again. Continue in this manner. You will enjoy playing and

not lose too much.

9Paulson, Richard A. “Using Lottery Games to Illustrate Statistical Concepts and
Abuses”, American Statistician, Vol. 45, No. 3, pp. 202-204.
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11. Lottery Stories from Chance News

As remarked earlier, lotteries often make the news, so we now in-

clude some commentaries from Chance News. We traditionally start

Chance News with a quotation. Here is a sample of lottery quotes.

“To be born an Englishman is to win first prize in

the lottery of life?” Cecil Rhodes

A Lottery is a Taxation, Upon all the Fools in Creation;

And Heav’n be prais’d, It is easily rais’d,

Credulity’s always in Fashion:

For, Folly’s a Fund, Will never lose Ground,

While Fools are so rife in the Nation.

Henry Fielding’s play The Lottery, a farce (1724)

Here is a better known and simpler version of this idea.

Lotteries are a tax on stupidity.

This is often attributed to Voltaire, but we have not been able to

find a reference.

Lotteries have also been the subject of Forsooths in our Chance News.

Here is one of these.

In theory, if you were to buy 50 tickets and your

neighbor bought one, neither of you would have a

better or worse chance of winning. We like to say

it only takes one ticket to win.

Brian Rockey, Nebraska Lottery Spokesman.

Omaha World-Herald, February 18, 2005

Here are some stories from Chance News:

Math professor shares $15 million lotto jackpot.

Denver Post, 9 April 1996, B3

Peter G. Chronis
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Math professor Celestino Mendez was discussing expected value

in his class at Metropolitan State College and remarked that, in a

lottery, the expected winning increases when the jackpot gets higher.

He told his students that they ought to buy a ticket in the current

Colorado Lottery because the expected winning was positive (14 cents

when you buy a $1 ticket). Professor Mendez thought he should put

his money where his mouth is, and so, on the way home, he stopped

and bought ten tickets. One of these had the lucky numbers, and he

shared the $15 million prize with one other winner.

Is your ticket a winner? Odds are, it’s not.

Valley News 29 July 1998, A2

Sarah M. Earle

At the time of the record 50-million-dollar Powerball jackpot, most

newspapers felt that they had to help the public think about what

the 1-in-80 million chance of winning the jackpot really means. We

got a call for help with this from a local newspaper, the Valley News.

We gave two suggestions for thinking about these odds. The first was

suggested by Fred Hoppe: if you toss a coin 26 times your chance of

getting all heads is greater than your chance of winning the Powerball

jackpot.

The second we learned from Arnold Barnett in his “Chance Lec-

ture: Risk in Everyday Life.” 10 Arnold discussed how to help people

understand the chance of being killed on an airplane flight. He esti-

mated that if you go on a randomly chosen airplane flight you have

a 1-in-7 million chance of being killed. He said his first attempt to

explain these odds was to you had a three times greater chance of

winning the Massachusetts lottery. He said most people think they

will win the lottery, so this “juxtaposition of people’s greatest hope

with their worst fear” did not work.

After some experimentation, he found more success saying that

if they took a randomly selected airplane flight every single day, on

10http://www.dartmouth.edu/˜chance/ChanceLecture/AudioVideo.html#Videos98.
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average it would take 19,000 years to experience a fatal accident.

They were happy with this since they said they weren’t going to live

this long. By the same logic, you would expect to have to buy a

lottery ticket twice a week for 1.4 million years in order to experience

a jackpot.

An article11 in the New York Times reports unexpected winnings

in the Powerball lottery of March 30, 2005 which lottery officials

thought might be fraudulent but which had a much simpler expla-

nation. At the time of this article, for the Powerball lottery, players

chose five numbers from 1 to 52 and an additional powerpoint number

chosen from 1 to 42. On the March 30, 2005 drawing of the Power-

ball lottery, 110 players made a $1 bet, choosing as their five numbers

22,28,32,33,39 and as their Powerball number 40. The lottery chose

the same five basic numbers but chose 42 for the Powerball number.

It turns out that 89 of these winners did not choose the Power Play

and so each won $100,000; the other 21 players chose the Power Play

and, the multiplier was 5, so these winners won $500,000. Thus the

lottery paid out $19.4 million to these winners.

Powerball officials stated that, considering the number of tickets

sold in the 29 states, they expected 4 or 5 winners. The article quotes

Chuck Strutt, executive director of the Multi-State Lottery Associa-

tion as saying: “Panic began at 11:30 P.M. March 30 when I got a

call from a worried staff member. We didn’t sleep a lot that night. Is

there someone trying to cheat the system?”

The lottery authorities tried a number of theories about how peo-

ple choose their numbers. For example, many players pick their num-

bers following a geometric design on the ticket. Nothing worked. But

then the first three winners said that they had obtained the numbers

from a fortune cookie.

With this lead, they just had to find the fortune cookie maker who

had the winning numbers. They found that many different brands of

fortune cookies come from the same Long Island City factory owned

11Jennifer Lee, “Who needs Giacomo? Bet on the fortune cookie”, New York
Times, May 11, 2005, p. 1.
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byWonton Food. This company turns out four million fortune cookies

a day, which are delivered to dealers over the entire country. When

shown the numbers, Derrick Wong, of Wonton Food, verified that they

had used them. The numbers for the fortune cookies were chosen from

a bowl but the company plans to switch to having them chosen by a

computer and Derrick plans to start playing the lottery.

We turn to a letter12 to the editor of the New York Times, from

John P. Rash. Rash starts his letter with:

Your July 13 Week in Review article on lottery

advertising repeats stereotypes about lottery play-

ers being poor and uneducated and swept up into

gambling addictions. No doubt many are. But

Gov. George E. Pataki’s statement that “It has

always bothered me to hold up the prospect of in-

stant riches” could also be recast as, “I want to

take away the only prospect poor people have of

getting out of their rut.”

Rash goes on to say that before lotteries, there were other ways

to improve your life, but now graduate education is expensive and

required for many of the better jobs. He explains his experience

playing the lottery and concludes with the remark:

Yes, I have lost more than I’ve won. But in the

tedious world I inhabit along with so many other

New Yorkers, I’ve bought a fantasy. If I ever win

the Jackpot, I’ll wave to you from Sutton Place.

Our next article supports Rash’s argument. An article13 in the

Los Angeles Times concerns the winners of the record jackpot of $365

million on October 22, 2005. The author writes:

On Wednesday morning in Lincoln, Neb., after

four days of speculation about who had won the

12John P. Rash, “Seen from a rut, the lottery is essential”, New York Times,
July 16, 1996.

13Meghan Daum, “Who’s the idiot now?”, Los Angeles Times, Feb. 25, 2005.
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biggest jackpot in Powerball history, eight employ-

ees of a ConAgra ham processing plant came for-

ward and identified themselves as the winners of

the $365 million purse. As lottery stories go, this

is about as heartwarming as it gets. Two of the

winners are immigrants from Vietnam and one is

a political refugee from the Republic of Congo—

and all worked the second and third shifts, some

clocking as many as 70 hours a week. There is

probably no jobsite as gruesome as a meatpacking

house. If anyone deserves an express ticket to a

new life, it’s these folks.

12. Lottery Questions from John Haigh

The questions below were asked by John Haigh in a commentary that

appeared in January 2003 in the RSS News. You can learn the rules

for the UK Lottery at the National Lottery homepage.14 Haigh has

also written an expository piece entitled “The UK National Lottery

- a guide for beginners.”15 A collection of data on the UK Lottery,

including volume of tickets sales (this is not available for Powerball)

can be found at Richard Lloyd’s website.16

In order to try to answer these questions, the reader should un-

derstand how the UK Lottery works. Before March 1996, there was

one drawing per week, and since that time, there have been two draw-

ings per week. Each drawing consists of picking seven numbers out of

the set of integers between 1 and 49. The first six of these numbers

form the set of “main” numbers for that drawing, and the seventh

number is called the “bonus” number. Winning the jackpot prize

requires getting all six main numbers. (The bonus number is used

to determine some of the other prize amounts.) To answer questions

1, 4, 6, and 7, one needs to know that we are considering a set of

14http://www.national-lottery.co.uk/player/p/home/home.do
15http://plus.maths.org/issue29/features/haigh/index.html
16http://lottery.merseyworld.com/
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721 drawings, most of which occurred after March 1996. To answer

questions 5, 6, and 7, one needs to understand more about the dis-

tribution of tickets sold. Since March 1996 (i.e. for most of the time

interval covering the data), the Saturday sales averaged roughly 40

million and Wednesday sales averaged roughly half of that.

Here are Haigh’s questions (answers are given beginning on page

225):

1. How often would you expect the most frequent and the least fre-

quent main numbers to arise? (The mean and variance of the fre-

quency of any one integer should be about 88.3 and 77.5.)

2. How many draws should be needed until each number has arisen

at least once as a bonus number?

3. How many draws should be needed until we achieve a complete

collection of main numbers? How many draws until we achieve a

complete collection of pairs of main numbers?

4. What is your guess for the length of the maximum run to date?

A run is a consecutive set of drawings with the property that a given

number appears in each set of main numbers.

5. Over the set of 721 weekly draws, guess the frequency of no jackpot

winners.

6. Guess the modal number of jackpot winners (i.e. the most common

number of jackpot winners in a drawing).

7. Guess the smallest number n for which there has not yet been

exactly n jackpot winners.

                

                                                                                                               



Chapter 4

Fingerprints

1. Introduction

On January 7, 2002, in the case U.S. v. Llera Plaza, Louis H. Pollack,

a federal judge in the United States District Court in Philadelphia,

barred any expert testimony on fingerprinting that asserted that a

particular print gathered at the scene of a crime is or is not the

print of a particular person. As might be imagined, this decision was

met with much interest, since it seemed to call into question whether

fingerprinting can be used to help prove the guilt or innocence of an

accused person.

In this chapter, we will consider the ways in which fingerprints

have been used by society and show how the current quandary was

reached. We will also consider what probability and statistics have

to say about certain questions concerning fingerprints.

2. History of Fingerprinting

It seems that the first use of fingerprints in human society was to

give evidence of authenticity to certain documents in seventh-century

China, although it is possible that they were used even earlier than
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this. Fingerprints were used in a similar way in Japan, Tibet, and In-

dia. In Simon Cole’s excellent book on the history of fingerprinting,

the Persian historian Rashid-eddin is quoted as having declared in

1303 that “Experience shows that no two individuals have fingers ex-

actly alike.”1 This statement is one with which the reader is no doubt

familiar. A little thought will show that unless all the fingerprints in

the world are observed, it is impossible to verify this statement. Thus,

one might turn to a probability model to help understand how likely

it is that this statement is true. We will consider such models below.

In the Western world, fingerprints were not discussed in any writ-

ten work until 1685, when an illustration of the papillary ridges of a

thumb was placed in an anatomy book written by the Dutch scientist

Govard Bidloo. A century later, the statement that fingerprints are

unique appeared in a book by the German anatomist J. C. A. Mayer.

In 1857, a group of Indian conscripts rebelled against the British.

After this rebellion had been put down, the British government de-

cided that it needed stricter law enforcement in its colonies. William

Herschel, the grandson of the discoverer of the planet Uranus, was the

chief administrator of a district in Bengal. Herschel noted that the

unrest in his district had given rise to a great amount of perjury and

fraud. For example, it was believed that many people were imperson-

ating deceased officers to collect their pensions. Such impersonation

was hard to prove, since there was no method that could be used to

decide whether a person was who he or she claimed to be.

In 1858, Herschel asked a road contractor for a handprint, to deter

the contractor from trying to contest, at a later date, the authenticity

of a certain contract. A few years subsequent to this, Herschel began

using fingerprints. It is interesting to note that in India, as in China,

the first use of fingerprints was in civil, not criminal, identification.

At about the same time, the British were increasingly concerned

about crime in India. One of the main problems was to determine

1Cole, Simon A., Suspect Identities: A History of Fingerprinting and Criminal
Identification, Harvard University Press, Cambridge, MA, 2001, pp. 60-61.
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whether a person arrested and tried for a crime was a habitual of-

fender. Of course, to determine this required that some method be

used to identify people who had been convicted of crimes. Presum-

ably, a list would be created by the authorities, and if a person was

arrested, this list would be consulted to determine whether the per-

son in question had prior convictions. In order for such a method to

be useful, it would have to possess two properties. First, there would

have to be a way to store, in written form, enough information about

a person so as to uniquely identify that person. Second, the list con-

taining this information would have to be in a form that would allow

quick and accurate searches.

Although, in hindsight, it might seem obvious that one should

use fingerprints to help with the formation of such a list, this method

was not the first to be used. Instead, a system based on anthropom-

etry was developed. Anthropometry is the study and measurement

of the size and proportions of the human body. It was naturally

thought that once adulthood is reached, the lengths of bones do not

change. In the 1880s Alphonse Bertillon, a French police official, de-

veloped a system in which eleven different measurements were taken

and recorded. In addition to these measurements, a detailed physical

description, including information on such things as eyes, ears, hair

color, general demeanor, and many other attributes, was recorded.

Finally, descriptions of any “peculiar marks” were recorded. This

system was called Bertillonage and was widely used in Europe, India,

and the United States, as well as other locations, for several decades.

One of the main problems encountered in the use of Bertillonage

was inconsistency in measurement. The “operators,” as the measur-

ers were called, were well trained, and many measurements of each

person were taken. Nonetheless, if a criminal suspect was measured

in custody, and the suspect’s measurements were already in the list,

the two sets of measurements might vary enough so that no match

would be made.

Another problem was the amount of time required to search the

list of known offenders, in order to determine whether a person in
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custody had been arrested before. In some places in India, the lists

grew to contain many thousands of records. Although these records

were certainly stored in a logical way, the variations in measurements

made it necessary to look at many records that were “near” the place

that the searched-for record should be.

The chief problem at that time with the use of fingerprints for

identification was that no good classification system had been devel-

oped. In this regard, fingerprints were not thought to be as useful

as Bertillonage, since the latter method did involve numerical records

that could be sorted. In the 1880s, Henry Faulds, a British physician

who was serving in a Tokyo hospital at the time, devised a method

for classifying fingerprints. This method consisted of identifying each

major type of print (like those shown in Figure 1) with a certain writ-

ten syllable, followed by other syllables representing different features

in the print. Once a set of syllables for a given print was determined,

the set was added to a alphabetical list of stored sets of syllables

representing other prints.

Faulds wrote to Charles Darwin about his ideas, and Darwin

forwarded them to his cousin, Francis Galton. Galton was one of the

giants among British scientists in the late 19th century. His interests

included meteorology, statistics, psychology, genetics, and geography.

Early in his adulthood, he spent two years exploring southwest Africa.

He is known as the first modern-day proponent of eugenics; in fact,

this word is due to Galton.

Galton became interested in fingerprints for several reasons. He

was interested in the heritability of certain traits, and one such trait

that could easily be tested were fingerprint patterns. He was con-

cerned with ethnology, and sought to compare the various races. One

question that he considered in this vein was whether the proportions

of the various types of fingerprints differed among the races. He also

tried to determine whether any other traits were related to finger-

prints. Finally, he understood the value that such a system would

have in helping the police and the courts identify recidivists.
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To carry out such research, it was necessary for Galton to have

access to many fingerprints. By the early 1890s, he had amassed a

collection of thousands of prints. This collection contained prints from

people belonging to many different ethnic groups. He also collected

fingerprints from certain types of people, such as criminals. He was

able to show that fingerprints are partially controlled by heredity. For

example, it was found that a peculiarity in a pattern in a fingerprint

of a parent might pass to the same finger of a child, or, with less

probability, to another finger of that child. Nonetheless, it must be

stated that his work in this area did not lead to any discoveries of

great import.

One of Galton’s most fundamental contributions to the study of

fingerprints consisted of his publishing of material, much of which was

due to William Herschel, that fully established the fact that finger-

print patterns persist over the lifetime of an individual. Of at least

equal importance was his development of a method to classify fin-

gerprints. An important attribute of his method was that it allowed

fingerprint records to be quickly searched to determine if a given fin-

gerprint were present.

Very shortly thereafter, a committee consisting of various high of-

ficials in British law enforcement was formed to compare Bertillonage

and the Galton fingerprint method. The goal was to decide which

method to adopt. Although Bertillonage was in use in continental

Europe, India, and elsewhere, it had not yet been used in Britain.

The committee also considered whether it might be still better to use

both methods at once.

In their deliberations, the committee noted that the Galton fin-

gerprint method is a much easier process than the one that is used

by Bertillonage operators. In addition, a fingerprint, if it is properly

taken (i.e. if the resulting impression is legible), is a true and accu-

rate rendition of the patterns on the finger. Both of these statements

lead to the conclusion that Galton’s method is more accurate than

Bertillonage.
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Given these remarks, it might seem strange that the committee

did not recommend that fingerprints be the method of choice. How-

ever, there was still some concern about the accuracy of the classifica-

tion method used by Galton. It was recommended that identification

be made by fingerprints, with indexing by Bertillonage. The commit-

tee did foresee that the problems with fingerprint indexing could be

overcome, and that in this case, the fingerprint method might be the

sole system in use.

Galton continued to work on his method of classification, and

in 1895, he published a system that greatly improved his previous

attempts. Edward Henry, a magistrate of a district in India, worked

on and modified Galton’s classification method between 1898 and

1900. This modification was adopted by Scotland Yard. Regarding

credit for the method, a letter from Sir George Darwin to the London

Times had this to say: “Sir Edward Henry undoubtedly deserves great

credit in recognising the merits of the system and in organising its use

in a practical manner in India, the Cape and England, but it would

seem that the yet greater credit is due to Mr. Francis Galton.”2

In 1902, Galton published a letter entitled “Finger-Print Evi-

dence” in the journal Nature, in which he discusses a pair of enlarged

photographs, sent to him by Scotland Yard, of fingerprints. The first

photograph came from the scene of a burglary, and the second came

from the fingerprint files at Scotland Yard. Galton discusses how the

use of his system allows the prosecution to explain the similarities in

the two prints. The question of accuracy in matching prints obtained

from a crime scene with those in a database is one that is still being

considered today. Before turning to this question, we will describe

Galton’s method.

Galton begins by noting that in the center of most fingerprints

there is a “core,” which consists of patterns that he calls loops and

whorls. (See Figure 1.) If no such core exists, the pattern is said to

be an arch. Next, he defines a delta as the region where the parallel

2George Darwin, quoted in Karl Pearson, “Life, Letters, and Labors of Francis
Galton,” Cambridge University Press.
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Figure 1. Four types of fingerprints. (A modified version of
this figure appeared in E. Keogh, “An Overview of the Science
of Fingerprints”, Anil Aggrawal’s Internet Journal of Forensic
Medicine and Toxicology, 2001, vol. 2, no. 1 (January-June

2001).)

ridges begin to diverge to form the core. Loops have one delta, and

whorls have two. These deltas serve as axes of reference for the rest

of the classification. By tracing the ridges as they leave the delta(s)

and cross the core, and keeping track of certain aspects such as the

direction in which the loops open up, one can partition fingerprints

into ten classes. We will not describe these ten classes in detail here,

as the specifics are not important in what follows. Since each finger

would be in one of the ten classes, there are 1010 possible sets of ten

classes. Even though the ten classes do not occur with equal frequency

among all recorded fingerprints, this first level of classification already

serves to distinguish between most pairs of people.

Of the ten classes, only two correspond to loops, as opposed to

arches and whorls. However, about half of all observed fingerprints

are loops, which suggests that the scheme is not yet precise enough.

Galton was aware of this and added two other types of information to

the process. The first involved using the axes of reference arising from

the deltas to count ridges in certain directions. The second involved

the counting and classification of what he termed “minutiae.” This

term refers to places in the print where a ridge bifurcates or ends.

The idea of minutiae is still in use today, although the minutiae are

now sometimes referred to as “Galton points” or “points.”
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There are many different types of points, and the places that they

occur in a given fingerprint seems to be somewhat random. In addi-

tion, a typical fingerprint has many such points. These observations

imply that if one can accurately write down where the points occur

and which types of points occur, then one has a very powerful way

to distinguish two fingerprints. The method is even more powerful

when it is used to compare sets of ten fingerprints from two people.

3. Models of Fingerprints

We shall investigate some probabilistic models for fingerprints that

incorporate the idea of points. The two most basic questions that

one might use such models to help answer are as follows. First, in a

given model, what is the probability that no two fingerprints, among

all people who are now alive, are exactly alike? Second, suppose

that we have a partial fingerprint, such as one that might have been

recovered from a crime scene. Such partial prints are called latent

prints. What is the probability that this latent print exactly matches

more than one fingerprint, among all fingerprints in the world? The

reason that we are interested in whether the latent print matches more

than one fingerprint is that it clearly matches one print, namely the

one belonging to the person who left the latent print. It is typically

the case that the latent print, if it is to be of any use, will identify a

suspect, i.e. someone who has a fingerprint that matches the latent

print. It is obviously of great interest in a court of law as to how

likely it is that someone other than the suspect has a fingerprint that

matches the latent print. We will see that this second question is

of central importance in the discussions going on today about the

accuracy of fingerprinting as a crimefighting tool.

Galton seems to have been the first person to consider a proba-

bilistic model that might shed some light on the answer to the first

question. He began by imagining a fingerprint as a random set of

ridges, with roughly 24 ridge intervals across the finger and 36 ridge

intervals along the finger. Next, he imagined covering up an n by n

ridge interval square on a fingerprint and attempting to recreate the
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ridge pattern in the area that was covered. Galton maintained that if

n were small, say at most 4, then most of the time, the pattern could

be recreated by using the information in the rest of the fingerprint.

However, if n were 6, he found that he was wrong more often than

right when he carried out this experiment.

He then let n = 5 and claimed that he would be right about

one-half of the time in reconstructing the fingerprint. This led him to

consider the fingerprint as consisting of a set of non-overlapping n by

n squares, which he considered to be independent random variables.

In Pearson’s account, Galton used n = 6, although his argument is

more understandable had he used n = 5. Galton claimed that any

of the reconstructions, both the correct and incorrect ones, might

have occurred in nature, so each random variable has two possible

values, given the way that the ridges leave and enter the square, and

given how many ridges leave and enter. Pearson says that Galton

“proceeds to give a rough approximation to two other chances, which

he considers to be involved: the first concerns guessing correctly the

general course of the ridges adjacent to each square and the second

of guessing rightly the number of ridges that enter and issue from the

square.”3 Finally, Galton multiplies all of these probabilities together,

under the assumption of independence, and arrives at the number 1

out of 64 billion. At the time, there were about 16 billion fingerprints

in the world. (Galton claims that the odds are roughly 39 to 1 against

any particular fingerprint occurring anywhere in the world. It seems

to us that the odds should be 3 to 1 against.)

We will soon see other models of fingerprints that arrive at much

different answers. However, it should be remembered that we are

trying to estimate the probability that no two fingerprints, among

all people who are now alive, are exactly alike. Suppose, as Galton

did, that there are 16 billion fingerprints among the people of the

world, and there are 64 billion possible fingerprints. Does the reader

think that these assumptions make it very likely or very unlikely

that there are two fingerprints that are the same? To answer this

3Pearson, ibid., p. 182.
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question, we can proceed as follows. Consider an urn with 64 billion

labeled balls in it. We choose, one at a time, 16 billion balls from

the urn, replacing the balls after each choice. We are asking for the

probability that we never choose the same ball more than once. This is

the celebrated birthday problem, in a world where there are 64 billion

days in a year and 16 billion people. The birthday problem asks what

is the probability that at least two people share a birthday. The

complementary probability, i.e. the probability that no two people

share a birthday, is(
1− 0

n

)(
1− 1

n

)(
1− 2

n

)
. . .

(
1− k − 1

n

)
,

where n = 64 billion and k = 16 billion. This can be seen by con-

sidering the people one at a time. If 6 people, say, have already been

considered and if they all have different birthdays, then the probabil-

ity that the seventh person has a birthday that is different than all

of the first 6 people equals (
1− 6

n

)
.

(One way to obtain a rough upper bound on this product is to use

the inequality

1− x < e−x ,

which is valid for x > 0.) For the values given by Galton, the product

is less than
1

10109
.

This means that in Galton’s model, with his estimates, it is extremely

likely that there are two fingerprints that are the same.

In fact, to our knowledge, no two fingerprints from different peo-

ple have ever been found that are identical. Of course, it is not the

case that all fingerprints on Earth have been recorded or compared,

but the FBI has a database with more than 10 million fingerprints in

it, and we presume that no two fingerprints in it are exactly the same.

(It must be said that it is not clear to us that all pairs of fingerprints
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in this database have actually been compared. In addition, one won-

ders whether the FBI, if it found a pair of identical fingerprints, would

announce this to the world.) In any case, if we use Galton’s estimate

for the number of possible fingerprints and let k = 10 million, the

probability that no two are alike is still very small; it is less than

1

10339
.

We can turn the above question around and ask the following

question. Suppose that there are 60 billion fingerprints in the world,

and suppose that we imagine they are chosen from a set of n pos-

sible fingerprints. How large would n have to be in order that the

probability that all of the chosen fingerprints are different exceeds

.999? An approximate answer to this question is that it would suffice

for n to be at least 1025. Although this is quite a bit larger than

Galton’s estimate, there have been other, more sophisticated models

of fingerprints, some of which we will now describe, have come up

with estimates for n that are much larger than 1025. Thus, if these

models are at all accurate, it is extremely unlikely that there exist

two fingerprints in the world that are exactly alike.

In 1933, T. Roxburgh described a model for fingerprint classifi-

cation that is much more intricate than Galton’s model. This model,

and many others, are described and compared in an article in the

Journal of Forensic Sciences, written by D. A. Stoney and J. I. Thorn-

ton.4 In Roxburgh’s model, a vertical ray is drawn upwards from the

center of the fingerprint. This idea must be accurately defined, but

for our purposes, we can take it to mean the center of the loop or

whorl or the top of the arch. This ray is defined to be 0 degrees. An-

other ray, with endpoint at the center, is revolved clockwise from the

first ray. As this ray passes over minutiae, the types of the minutiae

are recorded, along with the ridge numbers on which the minutiae lie.

If a fingerprint has R concentric ridges, n minutiae, and there are T

4Stoney, D. A. and J. I. Thornton, “A Critical Analysis of Quantitative Finger-
print Individuality Models”, Journal of Forensic Sciences, vol. 31, no. 4 (1986), pp.
1187-1216.
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minutia types, then the number of possible patterns equals

(RT )n ,

since as the second ray revolves clockwise, the next minutia encoun-

tered could be on any of the R ridges and be of any of the T minutia

types. Roxburgh also introduces a factor of P that corresponds to

the number of different overall patterns and core types that might be

encountered. Thus, he estimates the number of possible fingerprints

to be

P (RT )n .

He takes P = 1000, R = 10, T = 4, and n = 35; this last value is

Galton’s estimate for the typical number of minutia in a fingerprint.

If we calculate the above expression with these values, we obtain the

number

1.18× 1059 .

Roxburgh modified the above expression for the number of possi-

ble fingerprints to attempt to account for ambiguities between various

types of minutiae. For example, it is possible that a fork in a ridge

might be seen as a ridge ending, depending upon whether the ridges

in question meet each other or not. Roxburgh suggested using a num-

ber Q which would vary depending upon the quality of the fingerprint

under examination. The value of Q ranges from 1.5 to 3, with the

smaller value corresponding to a higher quality fingerprint. For each

minutia, Roxburgh replaced the factor RT by the factor RT/Q. This

leads to the expression

P ((RT )/Q)n

as an estimate for the number of discernable types of fingerprints,

assuming their quality corresponds to a particular value of Q. Note

that even if Q = 3, so that RT/Q = 1.33R, the number of discernable

types of fingerprints in this model is

2.16× 1042 .
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Figure 2. Examples of latent and rolled prints

Stoney and Thornton note that although this is a very interesting, so-

phisticated model, it has been “totally ignored by the forensic science

community.”5

4. Latent Fingerprints

According to a government expert who testified at a recent trial, the

average size of a latent fingerprint fragment is about one-fifth the size

of a full fingerprint. Since a typical fingerprint contains between 75

and 175 minutiae6, this means that a typical latent print has between

15 and 35 minutiae, assuming that minutiae are roughly evenly dis-

tributed across the print. In addition, the latent print recovered from

a crime scene is frequently of poor quality, which tends to increase

the likelihood of mistaking the types of minutiae being observed.

In a criminal case, the latent print is compared with a high quality

print taken from the hand of the accused or from a database of fin-

gerprints. Figure 2 shows a latent print and the corresponding rolled

print to which the latent print was matched. Figure 3 shows another

5ibid., p. 1192.
6“An Analysis of Standards in Fingerprint Identification 1,” Federal Bureau of

Investigation Department of Justice Law Enforcement Bulletin, vol. 1 (June 1972).
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Figure 3. Minutiae matches

pair of prints, one latent and one rolled, from the same case. The

figure also shows the claimed matching minutiae in the two prints.

The person making the comparison states that there is a match

if he or she believes that there are a sufficient number of common

minutiae, both in type and location, in the two prints. There have

been many criminal cases in which an identification was made with

fewer than fifteen matching minutiae7. There is no general agreement

among various law enforcement agencies or among various countries

on the number of matching minutiae that must exist in order for a

match to be declared. In fact, according to Robert Epstein8, “many

examiners ... including those at the FBI, currently believe that there

7see footnote 25 in Epstein, Robert, “Fingerprints Meet Daubert: The Myth of
Fingerprint ‘Science’ is Revealed,” Southern California Law Review, vol. 75 (2002),
pp. 605-658.

8ibid., p. 610.
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should be no minimum standard whatsoever and that the determina-

tion of whether there is a sufficient basis for an identification should

be left to the subjective judgment of the individual examiner.” It is

quite understandable that a law enforcement agency might object to

constraints on its ability to claim matches between fingerprints, as

this could only serve to decrease the number of matches obtained.

In some countries, fingerprint matches can be declared with as

few as eight minutiae matches. However, there are examples of fin-

gerprints from different people that have seven matching minutiae.

In a California bank robbery trial, U.S. v. Parks, in 1991, the prose-

cution introduced evidence that showed that the suspect’s fingerprint

and the latent print had ten points. The trial judge, Spencer Letts,

asked the prosecution expert what the minimum standard was for

points in order to declare a match. The expert announced that the

minimum was eight. Judge Letts had seen fingerprint evidence en-

tered in other trials. He said “If you only have ten points, you’re

comfortable with eight; if you have twelve, you’re comfortable with

ten; if you have fifty, you’re comfortable with twenty.”9 Later in the

same trial, the following exchange occurred between Judge Letts and

another prosecution fingerprint expert:

The Witness: The thing you have there is that

each department has their own goals or their own

rules as far as the number of points being a make

[an identification]. ...that number really just varies

from department to department.

The Court: I don’t think I’m ever going to use fin-

gerprint testimony again; that simply won’t do...

The Witness: That just may be one of the prob-

lems of the field, but I think if there was [a] survey

taken, you would probably get a different num-

ber from every department that has a fingerprint

9Cole, op. cit., p. 272.
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section as to their lowest number of points for a

comparison and make.

The Court: That’s the most incredible thing I’ve

ever heard of. 10

According to Simon Cole, no scientific study has been carried out to

estimate the probability of two different prints sharing a given num-

ber of minutiae. David Stoney and John Thornton claim that none

of the fingerprint models proposed during the past century “even ap-

proaches theoretical accuracy ..., and none has been subjected to em-

pirical validations.”11 In fact, latent print examiners are prohibited

by their primary professional association, the International Associa-

tion for Identification (IAI), from offering opinions of identification

using probabilistic terminology. A resolution, passed by the IAI at

one of its meetings, states that “any member, officer, or certified la-

tent print examiner who provides oral or written reports, or gives

testimony of possible, probable, or likely friction ridge identification

shall be deemed to be engaged in [unbecoming] conduct... and charges

may be brought.”12

In 1993, the Supreme Court rendered a decision in the case

Daubert v. Merrell Dow Pharmaceuticals, Inc.13 The Court described

certain factors that courts needed to consider when deciding whether

to admit expert testimony. In this decision, the Court concentrated on

scientific expert testimony; it considered the issue of expert testimony

of a non-scientific nature in the caseKumho Tire Co. v. Carmichael 14,

a few years later. In the first decision, the Court interpreted the Fed-

eral Rule of Evidence 702, which defines the term “expert witness”

and states when such witnesses are allowed, as requiring trial judges

to determine whether the opinion of an expert witness lacks suffi-

cient reliability, and if so, to exclude this testimony. The Daubert

decision listed five factors that could be considered when determining

10ibid., pp. 272-273.
11Stoney and Thornton, op. cit., p. 1187.
12Epstein, op. cit., p. 611, footnote 32.
13509 U.S. 579 (1993).
14526 U.S. 137 (1999).
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whether scientific expert testimony should be retained or excluded.

These factors are as follows:

1. “A preliminary assessment of whether the rea-

soning or methodology underlying the testimony

is scientifically valid and of whether that reason-

ing or methodology properly can be applied to the

facts in issue.”15

2. “The court ordinarily should consider the known

or potential rate of error... .”16

3. The court should consider “the existence and

maintenance of standards controlling the tech-

nique’s operation... .”17

4. “‘General acceptance’ can ... have a bearing

on the inquiry. A reliability assessment does not

require, although it does permit, explicit identifi-

cation of a relevant scientific community and an

express determination of a particular degree of ac-

ceptance within that community.”18

5. “A pertinent consideration is whether the the-

ory or technique has been subjected to peer review

and publication... .”19

In the Kumho case, the Court held that a trial court’s obligation to

decide whether to admit expert testimony applies to all experts, not

just scientific experts. The Court also held that the factors listed

above may be used by a court in assessing nonscientific expert testi-

mony.

In the case (U.S. v. Llera Plaza) mentioned at the beginning of

the chapter, the presiding judge, Louis Pollack, applied the Daubert

criteria to the fingerprint identification process, as he was instructed

15509 U.S. 579 (1993), note 593.
16ibid., note 594.
17ibid.
18ibid., quoted from U.S. v. Downing, 753 F.2d 1224, 1238 (3d Cir. 1985).
19ibid., note 593.
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to do by the Kumho case. In particular, he discussed the problem

with the current process employed by the FBI (and other law en-

forcement agencies), which is called the ACE-V system. This name

is an acronym that stands for analysis, comparison, evaluation, and

verification. Judge Pollack ruled that the third part of this process,

in which a fingerprint expert states his or her opinion that the latent

print and the comparison print (either a rolled print from a suspect

or a print from a database) either match or do not match, did not

measure up to several of the Daubert criteria.

With regard to the first criterion, the government (the plaintiff

in the case) argued that the method of fingerprint matching had been

tested empirically over a period of 100 years. It also argued that in any

particular case, the method can be tested through the testimony of a

fingerprint expert other than the one whose testimony is being heard.

The judge rejected this argument, saying that neither of these actions

could be considered as scientific tests of the method. He further noted

that in the second case, the strength of the second examiner’s “test”

of a claimed match is diluted by the fact that in many cases, the

second examiner has been advised of the first examiner’s claims in

advance.

On the point of testing, it is interesting to note that in 2000, the

National Institute of Justice (NIJ), which is an arm of the Department

of Justice, had solicited proposals for research projects to study the

reliability of fingerprinting. This solicitation was mentioned by the

judge in his ruling and was also taken as evidence by the defense that

the government did not know whether fingerprinting was reliable.

The second Daubert criterion concerns the “known or poten-

tial rate of error” of the method. In their arguments before the

court, the government contended that there were two types of error—

methodology error and practitioner error. One of the government’s

witnesses, when asked to explain methodology error, stated that “an

error rate is a wispy thing like smoke, it changes over time...”20 The

20U.S. v. Llera Plaza, January 7, 2002, at 47.
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judge said that “the full import of [this] testimony is not easy to

grasp.” He summarizes this testimony as saying that if a method, to-

gether with its limitations, has been defined, then there is no method-

ology error. All of the error is practitioner error. The other govern-

ment witness, Stephen Meagher, a supervisory fingerprint specialist

with the FBI, also testified that if the scientific method is followed,

then the methodology error rate will be zero, i.e. all of the error is

practitioner error. We will have more to say about practitioner error

below.

Judge Pollack also found problems concerning the third Daubert

criterion, which deals with standards controlling a technique’s oper-

ation. There are three types of standards discussed in the judge’s

ruling. The first is whether there is a minimum number of Galton

points that must be matched before an overall match is declared.

In the ACE-V process, no minimum number is prescribed, and in

fact, in some jurisdictions, there is no minimum. The second type

of standard concerns the evaluation of whether a match exists. The

government and defense witnesses agreed that this decision is subjec-

tive. The judge concluded that “it is difficult to see how fingerprint

identification—the matching of a latent print to a known fingerprint—

is controlled by any clearly describable set of standards to which most

examiners subscribe.”21 Finally, there is the issue of the qualifications

of examiners. There are no mandatory qualification standards that

must be attained in order for someone to become a fingerprint exam-

iner; nor are there any uniform certification processes.

Regarding the fourth Daubert criterion, the judge had this to say:

General acceptance by the fingerprint examiner

community does not ... meet the standard... .

First, there is the difficulty that fingerprint exam-

iners, while respected professionals, do not consti-

tute a ‘scientific community’ in the Daubert

sense... . Second, the Court cautioned in Kumho

21ibid. at 58.
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Tire that general acceptance does not help show

that an expert’s testimony is reliable where the dis-

cipline itself lacks reliability. The failure of finger-

print identifications fully to satisfy the first three

Daubert factors militates against heavy reliance on

the general acceptance factor. Thus, while finger-

print examinations conducted under the general

ACE-V rubric are generally accepted as reliable

by fingerprint examiners, this by itself cannot sus-

tain the government’s burden in making the case

for the admissibility of fingerprint testimony under

Federal Rule of Evidence 702.22

The conclusion of the judge’s ruling was as follows:

For the foregoing reasons:

A. This court will take judicial notice of the unique-

ness and permanence of fingerprints.

B. The parties will be able to present expert finger-

print testimony (1) describing how any latent and

rolled prints at issue in this case were obtained,

(2) identifying, and placing before the jury, such

fingerprints and any necessary magnifications, and

(3) pointing out any observed similarities and dif-

ferences between a particular latent print and a

particular rolled print alleged by the government

to be attributable to the same persons. But the

parties will not be permitted to present testimony

expressing an opinion of an expert witness that a

particular latent print matches, or does not match,

the rolled print of a particular person and hence is,

or is not, the fingerprint of that person.23

22ibid. at 61.
23ibid. at 69.

                

                                                                                                               



4. Latent Fingerprints 211

The government asked for a reconsideration of this ruling. Not sur-

prisingly, it felt that its effectiveness in both the trial at hand and in

future trials would be seriously compromised if witnesses were not al-

lowed to express an opinion on whether or not a latent print matches

a rolled print. The government asked to be allowed to submit ev-

idence that would show the accuracy of FBI fingerprint examiners.

The defendants argued that the judge should decline to reconsider his

ruling, and Judge Pollack stated that their argument was solid: “Nei-

ther of the circumstances conventionally justifying reconsideration—

new, or hitherto unavailable facts or new controlling law—was present

here.”24 Nonetheless, the judge decided to grant a reconsideration

hearing, arguing that the record on which he made his previous rul-

ing was testimony presented two years earlier in another courtroom.

“It seemed prudent to hear such live witnesses as the government

wished to present, together with any rebuttal witnesses the defense

would elect to present.”25

At this point in our narrative, it makes sense to consider the vari-

ous attempts to measure error rates in the field of fingerprint analysis.

Lyn and Ralph Haber, who are consultants at a private company in

California and also adjuncts at the University of California at Santa

Cruz, have obtained and analyzed relevant data from many sources.26

These data include both results on crime laboratories and individual

practitioners. We will summarize some of their findings here.

The American Society of Crime Laboratory Directors (ASCLD) is

an organization that provides leadership in the management of foren-

sic science. It is in their interest to evaluate and improve the quality

of operations of crime laboratories. In 1977, the ASCLD began devel-

oping an accreditation program for crime laboratories. By 1999, 182

labs had been accredited. One requirement for a lab to be accredited

24U.S. v. Llera Plaza, March 13, 2002, at 11.
25ibid.
26Haber, Lynn, and Ralph Norman Haber, “Error Rates for Human Latent Fin-

gerprint Examiners,” in Advances in Automatic Fingerprint Recognition, Nalini K.
Ratha, ed., New York, Springer-Verlag, 2003.
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is that the examiners working in the lab must pass an externally ad-

ministered proficiency test. We note that since it is the lab, and not

the individual examiners, that is being tested, these proficiency tests

are taken by all of the examiners as a group in a given lab.

Beginning in 1983, the ASCLD began administering such a test

in the area of fingerprint identification. The test, which is given

each year to all labs requesting accreditation, consists of pictures of

12 or more latent prints and a set of ten-print (rolled print) cards.

The set of latent prints contains a range of quality and is supposed

to be representative of what is actually seen in practice. For each

latent print, the lab was asked to decide whether it is “scorable,” i.e.

whether it is of sufficient quality to attempt to match it with a rolled

print. If it is judged to be scorable, then the lab is asked to decide

whether or not it matches one of the prints on the ten-print cards.

There are “correct” answers for each latent print on the test, i.e. the

ASCLD has decided, in each case, whether or not a latent print is

scorable, and if so, whether or not it matches any of the rolled prints.

The Habers report on results from 1983 to 1991. During this

time, the number of labs that took the exam increased from 24 to 88;

many labs took the tests more than once. A new test was constructed

each year. Assuming that in many cases the labs have more than

one fingerprint expert, this means that hundreds of these experts

participated in the test at least once during this period.

Each lab returned one answer for each question. There are four

types of errors that can be made on each question of each test. A

scorable print can be ruled unscorable or vice versa. If a print is

correctly judged to be scorable, it can be erroneously matched to a

rolled print, or it can fail to be matched at all, even though a match

exists. Of these four types of errors, the second and third are more

serious than the others, assuming that we take the point of view that

erroneous evidence against an innocent person should be strenuously

guarded against.
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The percentage of answers with errors of each of the four types

were 8%, 2%, 2%, and 8%, respectively. What should we make of

these error rates? We see that the more serious types of errors had

lower rates, but we must remember that these answers are consensus

answers of the experts in a given lab. For purposes of illustration,

suppose that there are two experts in a given lab and they agree on

an answer that turns out to be incorrect. Presumably they consulted

each other on their answers, so we cannot multiply their individual

error rates to obtain their group error rate, since their answers were

not independent events. However, we can certainly suppose that if a

lab error rate is 2%, say, then the individual error rate of at least one

of the experts at the lab who took the test is at least 2%.

In 1994, the ASCLD asked the IAI for assistance in creating and

reviewing future tests. The IAI asked a company called Collaborative

Testing Services (CTS) to design and administer these tests. The

format of these tests is similar to the earlier ones, but all of the latent

prints are scorable, so there are only two possible types of errors for

each question. In addition, individual fingerprint examiners who wish

to do so may take the exam by themselves. The Habers report on the

error rates for the examinations given from 1995 through 2001. Of

the 1685 tests that were graded by CTS, 95 of them, or more than

5%, had at least one erroneous identification, and 502 of the tests, or

more than 29%, had at least one missed identification.

Since 1995, the FBI has administered its own examinations to

all of its fingerprint examiners. These examinations are similar in

nature to the ones described above, but there are a few differences

worthy of note. These differences were described in Judge Pollack’s

reconsideration ruling, in the testimony of Allan Bayle, a fingerprint

examiner for 25 years at Scotland Yard.27

Mr. Bayle had reviewed copies of the internal FBI

proficiency tests before taking the stand. He found

the latent prints utilized in those tests to be, on

27U.S. v. Llera Plaza, March 13, 2002, at 24.
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the whole, markedly unrepresentative of the latent

prints that would be lifted at a crime scene. In gen-

eral, Mr. Bayle found the test latent prints to be

far clearer than the prints an examiner would rou-

tinely deal with. The prints were too clear—they

were, according to Mr. Bayle, lacking in the “back-

ground noise” and “distortion” one would expect

in latent prints that were not identifiable; accord-

ing to Mr. Bayle, at a typical crime scene only

about ten per cent of the lifted latent prints will

turn out to be matched. In Mr. Bayle’s view the

paucity of non-identifiable prints: “makes the test

too easy. It’s not testing their ability. It doesn’t

test their expertise. I mean I’ve set these tests to

trainees and advanced technicians. And if I gave

my experts these tests, they’d fall about laughing.”

Approximately 60 FBI fingerprint examiners took the FBI test

each year in the period from 1995 to 2001. On these tests, virtually

all of the latent prints had matches among the rolled prints. Since

many of the examiners took the tests most or all of these years, it

is reasonable to suppose that they knew this fact, and hence would

hardly ever claim that a latent print had no match. The results of

these tests are as follows: there were no erroneous matches, and only

three cases where an examiner claimed there was no match when there

was one. Thus, the error rates for the two types of error were 0% and

1%.

It seems clear that the error rates of the crime labs for the various

types of error are small, but not negligible, and the FBI’s rates are

suspect for the reasons given above. Given that in many criminal

cases fingerprint evidence forms a crucial part of the prosecution’s

case, it is reasonable to ask whether the above data, were it to be

submitted to a jury, would make it difficult for the jury to find the

defendant guilty “beyond a reasonable doubt,” which is the standard

that must be met in such cases.
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The question of what this last phrase means is a fascinating one,

and the answers show how hard it is to use probabilistic language

in the legal world. The U.S. Supreme Court recently weighed in on

this issue, and the majority opinion is thorough in its attempt to

explicate the history of the usage of this phrase. The Court agreed

to review two cases involving instructions given to juries by judges.

Standard instructions to juries state that “guilt beyond a reasonable

doubt” means that the jurors need to be convinced “to a moral cer-

tainty” of the defendant’s guilt. In one case, “California defended the

use of the moral-certainty language as a “commonsense and natural”

phrase that conveys an “extraordinarily high degree of certainty.”28 In

the second case, a judge in Nebraska “included not only the moral-

certainty language but also a definition of reasonable doubt as ‘an

actual and substantial doubt.’ The jurors were instructed that ‘you

may find an accused guilty upon the strong probabilities of the case,

provided such probabilities are strong enough to exclude any doubt of

his guilt that is reasonable.’”29 The Supreme Court upheld both sets

of instructions. The decision regarding the first set was unanimous,

while in the second case, two justices dissented, noting that “the jury

was likely to have interpreted the phrase ‘substantial doubt’ to mean

that ‘a large as opposed to a merely reasonable doubt is required to

acquit a defendant.’”30

The Court went on to note that the meaning of the phrase “moral

certainty” has changed over time. In the mid-19th century, the phrase

generally meant a high degree of certainty, whereas today, some dic-

tionaries define the phrase to mean “based on strong likelihood or firm

conviction, rather than on the actual evidence.”31 Although the Court

upheld both sets of instructions, the majority opinion stated that the

Court did not condone the use of the phrase “moral certainty.”

28Linda Greenhouse, “High Court Warns About Test for Reasonable Doubt,” New
York Times, March 22, 1994.

29ibid.
30ibid.
31American Heritage Dictionary of the English Language, 1992.
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In a concurring opinion, Justice Ruth Bader Ginsburg noted that

some Federal appellate circuit courts have instructed trial judges not

to provide any definition of the phrase “beyond a reasonable doubt.”

Justice Ginsburg said that it would be advisable to construct a better

definition than the one used in the instructions in the cases under re-

view. She cited one suggested in 1987 by the Federal Judicial Center,

a research arm of the Federal judiciary. Making no reference to moral

certainty, that definition says in part, “Proof beyond a reasonable

doubt is proof that leaves you firmly convinced of the defendant’s

guilt.”32

It may very well be the case that after wading through the above

verbiage, the reader has no clearer an idea (and perhaps even has a

less clear idea) than before of what the phrase “beyond a reasonable

doubt” means. However, juries are given this phrase as part of their

instructions, and in the case of fingerprint evidence, they deserve to

be educated about error rates involved. We leave it to the reader to

ponder whether evidence produced by a technique whose error rate

seems to be at least 2% is strong enough to be beyond a reasonable

doubt.

On March 13, 2002, Judge Pollack filed his second decision in

the Llera Plaza case. The judge’s ruling was a partial reversal of

the original one. His ruling allowed FBI fingerprint examiners to

state in court whether there is a match between a latent and a rolled

print, but nothing was said in the ruling about examiners not in the

employ of the FBI. The judge’s mind was changed primarily because

of the testimony of Mr. Bayle who, ironically, was a witness for the

defense. Although, as noted above and in the judge’s decision, there

are shortcomings in the FBI’s proficiency testing of its examiners, the

judge was convinced by the facts that the ACE-V system used by the

FBI is essentially the same as the system used in Great Britain and

that Mr. Bayle believes in this system without reservation.

32Greenhouse, loc. cit.
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As an interesting footnote to this case, after Judge Pollack an-

nounced his second ruling, the NIJ cancelled its original solicitation,

described above, and replaced it by a “General Forensic Research and

Development” solicitation. In the guidelines for this proposal under

“what will not be funded,” we find the phrase “proposals to evaluate,

validate, or implement existing forensic technologies.” This is a some-

what strange way to respond to the judge’s worries about whether the

method has been adequately tested in a scientific manner.

5. The 50K Study

At the beginning of Section 3, we stated that in order to decide

whether fingerprints are useful in forensics, it is of central impor-

tance to be able to estimate how likely it is that a latent print will

be incorrectly matched to a rolled print. In 1999, the FBI asked the

Lockheed Martin Company to carry out a study of fingerprints. In

a pre-trial hearing in the case U.S. v. Mitchell 33, Stephen Meagher,

whom we have introduced earlier, explained why he commissioned the

study. The primary reason for carrying out this study, he said, was to

use the FBI database of over 34 million sets of 10 rolled prints to see

how well the automatic fingerprint recognition computer programs

distinguished between prints of different fingers. The results of the

study could also be used, he reasoned, to strengthen the claim that

no two fingerprints are alike. Thus, this study was not originally con-

ceived as a test of the accuracy of matching latent and rolled prints.

Nonetheless, as we shall see, this study touched on this second issue.

Together with Bruce Budlowe, a statistician who works for the

FBI, Meagher came up with the following design for the experiment.

The overall idea was to compare every pair of rolled prints in the

database, to see if the computer algorithms could distinguish among

different prints with high accuracy. It was decided that carrying this

33U.S. v. Mitchell, July 7, 1999.
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out for the whole database was not reasonable (about 5.8×1016 com-

parisons would be required), so they instead chose 50,000 rolled fin-

gerprints from the FBI’s master file. These prints were not chosen at

random; rather, they were the first 50,000 that were of the pattern

“left loop” from white males. It was decided to restrict the finger-

prints in this way because according to Meagher, race and gender

have some effect on the size and types of fingerprints. By restrict-

ing in this way, the resulting set of fingerprints are probably more

homogeneous than a set of randomly chosen fingerprints would be,

thereby making it harder to distinguish between pairs from the set.

If the study could show that each pair could be distinguished, then

the result is more impressive than a similar result accomplished using

a set of randomly chosen prints.

At this point, Meagher turned the problem of design over to the

Lockheed group, where the design and implementation of the study

were carried out by Donald Zeisig, an applied mathematician and

software designer, and James O’Sullivan, a statistician. Much of what

follows comes from testimony that Zeisig gave at the pre-trial hearing

in U.S. v. Mitchell.

Two experiments with this data were performed. The first began

by using two different software programs that each generated a mea-

sure of similarity between two fingerprints based on their minutiae

patterns. A third program was used to merge these two measures. A

paper by David Kaye34 delved into various difficulties presented by

this study. Information about this study was also provided by the

fascinating transcripts of the pre-trial hearing mentioned above35.

We follow Kaye in denoting the measure of similarity between

fingerprints fi and fj by x(fi, fj). Each of the fingerprints was com-

pared with itself, and the function x was normalized. Although this

normalization is not explicitly defined in either the court testimony

or the Lockheed summary of the test, we will proceed as best we

34Kaye, David, ”Questioning a Courtroom Proof of the Uniqueness of Finger-
prints”, International Statistical Review, vol. 71, no. 3 (2003), pp. 521-533.

35Daubert Hearing Transcripts, at www.clpex.com/Mitchell.htm
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can. It seems that the values of x(fi, fj) were all multiplied by a

constant, so that x(fi, fi) ≤ 1 for all i, and there is an i such that

x(fi, fi) = 1. One would expect that a measure of similarity would be

symmetric, i.e. that x(fi, fj) = x(fj , fi), but this is never mentioned

in the report, and in fact there is evidence that this is not true for

this measure.

The value of x(fi, fj) is then computed for all 2.5× 109 ordered

pairs of fingerprints. If this measure of similarity is of any value, it

should be very small for all pairs of non-identical fingerprints and

large (i.e. close to 1) for all pairs of identical fingerprints.

Next, for each rolled print fi, the 500 largest values of x(fi, fj) are

recorded. One of these values, namely when j = i, will presumably be

very close to 1, but the other 499 values will probably be very close

to 0. At this point, the Lockheed group calculated the mean and

standard deviation of this set of 500 values (for each fixed value of i).

Presumably, the mean and the standard deviation are both positive

and very close to 0 (since all but one of the values is very small and

positive).

Next, Zeisig and O’Sullivan assume that the distribution, for each

i, is normal, with the calculated mean and standard deviation. No

reason is given for making this assumption, and we shall see that it

gives rise to some amazing probabilities. Under this assumption, one

can change the values of x(fi, fj) into values of a standard normal

distribution by subtracting the mean and dividing by the standard

deviation. The Lockheed group calls these normalized values Z scores.

The reader can see that if this is done for a typical set of 500 values of

x(fi, fj), with i fixed, one should obtain 499 Z scores that are fairly

close to 0 and one Z score, corresponding to x(fi, fi), that is quite

large.

It is then pointed out that if one takes 500 independent values

from the standard normal distribution, the expected value of the

largest value obtained should be about 3. This value is easy to esti-

mate by simulation; we simulated 50,000 repetitions of the maximum

                

                                                                                                               



220 4. Fingerprints

of 500 independent standard normal values, and found the mean of

the maximum values to be 3.04. Thus, Zeisig and O’Sullivan would be

worried if any of the non-mate Z scores (i.e. Z scores corresponding

to pairs (fi, fj) with i �= j) were much greater than 3. In fact, except

for three cases, which will be discussed below, all of the non-mate Z

scores were less than 1.83. This fact casts much doubt on whether

the distribution in question is normal.

The three non-mate Z scores that were larger than 1.83 corre-

sponded to the (i, j)-pairs (48541, 48543), (48543, 48541), and

(18372, 18373). The scores in these cases were 6.98, 6.95, and 3.41.

When Zeisig and O’Sullivan found these high Z values, they discov-

ered that in all three cases, the pairs were different rolled prints of

the same finger. In other words, the sample of 50,000 fingerprints

were from at most 49,998 different people. It is interesting to note

that the ordered pair (18373, 18372) must have had a Z score of less

than 1.83, even though the pair corresponds to two prints of the same

finger. We’ll have more to say about this below. This shows that it

is possible for two different prints of the same finger to generate a Z

score which is in the same range as a score generated by two prints

of different fingers.

Now things get murky. The smallest Z score of any fingerprint

paired with itself was stated to be 21.7. This high value is to be

expected; the reader will recall that for any fingerprint fi, the 500

values correspond to 499 small Z scores and one very large Z score.

However, the conclusion drawn from this statement is far from clear.

If one calculates the probability that a standard normal random vari-

able will take on a value greater than 21.0, one obtains a value of less

than 10−97. The Lockheed group states its conclusion as follows36:

“The probability of a non-mate rolled fingerprint being identical to

any particular fingerprint is less than 10−97.”

David Kaye points out that the real question is not whether a

computer program can detect copies of photographs of rolled prints,

36Kaye, op. cit. , p. 530
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as is done in this study when a rolled print is compared with itself.

Rather, it is whether such a program can, for each finger in the world,

put all rolled prints of that finger in one category and make sure that

no rolled prints from any other finger fall into that same category.

Kaye notes that although there were so few repeated fingers in the

study that one cannot determine the answer to this question with any

great degree of certainty, one of the three pairs noted above, of dif-

ferent rolled prints of the same finger, produced a Z score that would

occur about once in every 3000 comparisons, assuming the compar-

isons generate scores that are normally distributed. This means that

if one were to make millions of comparisons between pairs of rolled

prints of different fingers, one would find thousands of Z scores as high

as the one corresponding to the pair (18372, 18373). This would put

the computer programmer in a difficult situation. To satisfy Kaye,

the program would have to be assigned a number Z∗ with the prop-

erty that if a Z score were generated that was above this value, the

program would state that the prints were of the same finger, while

if the generated Z score were below this value, the program would

state that the two prints were of different fingers. But we can see

that there can be no such Z∗ value that will always be right. If

Z∗ > 3.41 (the value corresponding to the pair (18372, 18373)) then

the program would declare that the thousands of the pairs of prints

of different fingers mentioned above are in fact prints of the same

finger. If Z∗ < 3.41, then the program would declare that the pair

(18372, 18373) are prints of different fingers.

As we noted above, the pair (18373, 18372) was not flagged as

having a large Z score. The reason for this is that when the three non-

mate pairings mentioned above were flagged, it was not yet known

that they corresponded to the same fingers. However, one does won-

der whether the Lockheed group looked at the Z score of this pair,

once the reversed pair was discovered to have a high Z score. In

any event, the Z score of this pair is not given in the summary of

the experiments. Robert Epstein, an attorney for the defense in U.S.
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v. Mitchell, noticed this fact as well and asked Donald Zeisig, dur-

ing cross-examination, what the Z score of this pair was. It turns

out that the Z score was 1.79. This makes things still worse for the

matching algorithm.

First, there were other non-mate pairs with larger Z scores. Sec-

ond, one might expect that the Z score of a pair would be roughly the

same in either order (although it isn’t clear that this should be so).

In any event, a Z score of 1.79 does not correspond to an extremely

unlikely event; thus, the algorithm might fail, with some not-so-small

probability, to detect an identification between two fingerprints (or

else might, with some not-so-small probability, make false identifica-

tions). In fact Epstein, in his cross-examination, noted that the pair

(12640, 21111) had the Z values 1.83 and 1.47 (depending upon the

order), even though it was later discovered that both of this prints

were of the same finger. When asked by Epstein, Zeisig agreed that

there could possibly have been other pairs of different prints of the

same finger (which must have had low Z values, since they were not

flagged).

The second experiment that the Lockheed group performed was

an attempt to find out how well their computer algorithms dealt with

latent fingerprints. To that end, a set of “pseudo” latent fingerprints

was made up, by taking the central 21.7% of each of the 50,000 rolled

prints in the original data set. This percentage was arrived at by

taking the average size of 300 latent prints from crime scenes versus

the size of the corresponding rolled prints.

At this point, the experiment was carried out in essentially the

same way as the first experiment. Each pseudo latent li was compared

with all 50,000 rolled prints, and a score y(li, fj) was determined. For

each latent li, the largest 500 values of y(li, fj) were used to construct

Z scores. As before, the Z score corresponding to the pair (li, fi) was

expected to be the largest of these by far. Any non-mate Z scores

that were high were a cause for concern.
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The two pairs (48541, 48543) and (18372, 18373) did give high Z

scores, but it was already known at this point that these pairs corre-

sponded to different rolled images of the same finger. There were three

other pairs whose Z scores were above 3.6. One pair, (21852, 21853)

gave a Z score of 3.64. The latent and the rolled prints were of fin-

gers 7 and 8 of the same person. Further examination of this pair

determined that part of finger 8 had intruded into the box containing

the rolled print of finger 7. The computer algorithm had found this

intrusion, when the pseudo latent for finger 8 was compared with the

rolled print of finger 7. This is a somewhat impressive achievement.

One other pair, (12640, 21111), generated large Z scores in both

orders. At the time the summary was written, it had not yet been

determined whether these two prints were of the same finger. The

Lockheed group compared all 20 fingerprints (taken from the two

sets of 10 rolled prints corresponding to this pair) with each other.

Not surprisingly, the largest scores were generated by prints being

compared with themselves. The second highest score for each print

was generated when that print was compared with the corresponding

print in the other set of 10 rolled prints, and these second-highest

scores were quite a bit higher than any of the remaining scores. This

is certainly strong evidence that the two sets of 10 rolled prints cor-

responded to the same person.

The second experiment does not get at one of the central issues

concerning latent prints, namely how the quality of the latent print

affects the ability of the fingerprint examiner (or a computer algo-

rithm) to match this latent print with a rolled one. Figures 2 and

3 show that latent prints do not look much like the central 21.7%

of a rolled print. Yet it is just these types of comparisons that are

used as evidence in court. It would be interesting to conduct a third

experiment with the Lockheed data set, in which care was taken to

create a more realistic set of latent prints.
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Exercise.

1. By the middle of the 20th century, the FBI had compiled a

set of more than 10 million fingerprints. Suppose that there

are n fingerprint patterns among all of the people on Earth.

Thus, n is some number that does not exceed 10 times the

number of people on Earth, and it equals this value if and

only if no two fingerprints are exactly alike.

(a) Suppose that all n fingerprint patterns are equally

likely. Estimate the number f(n) of random finger-

prints that must be observed in order that the proba-

bility that two of the same pattern are observed exceeds

.5. Hint: To do this using a computer, try different val-

ues of n and guess an approximate relationship between

n and f(n).

(b) Under the supposition in part a), given that f(n) = 10

million, estimate n. Note that it is possible to show

that if not all n fingerprint patterns are assumed to be

equally likely, then the value of f(n) decreases.

(c) Suppose that n < 60 billion (so that at least two fin-

gerprints are alike). Estimate f(n).

(d) Suppose that n = 30 billion, so that, on the average,

every pattern appears twice among the people who are

presently alive. Using a computer, choose 10 million

patterns at random, thereby simulating the set com-

piled by the FBI. Was any pattern chosen more than

once? Repeat this process many times, keeping track

of whether or not at least one pattern is chosen twice.

What percentage of the time was at least one pattern

chosen at least twice?

(e) Do the above calculations convince you that no finger-

print pattern appears more than once among the people

who are alive today?

                

                                                                                                               



Answers to
John Haigh’s
Lottery Questions

1. In 721 drawings, there are 4326 (= 721 · 6) main numbers. Thus,

the average number of times a given number occurs as a main number

is 88.3 (= 4326/49). To estimate the spread of the frequencies of the

various numbers, we can use a normal approximation. The proba-

bility that a given number appears as a winning number in a given

drawing is 6/49. If we call the occurrence of this number a success

and its non-occurrence a failure, then we have a Bernoulli trials pro-

cess, with n = 721, p = 6/49, and q = 43/49. The variance of this

process is npq ≈ 77.5 (so the standard deviation is about 8.8). The

frequencies of the various numbers can therefore be approximated by

a normal distribution with mean 88.3 and variance 77.5. For a normal

distribution, the probability that a given observation lies at least two

standard deviations from the mean is .0456, and the corresponding

probability for three standard deviations is .0026. Since there are 49

numbers, we see that the expected number of the frequencies lying

more than two standard deviations from the mean is 2.23 (= 49·.0456)
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while the corresponding expected number for three standard devia-

tions is 0.13 (= 49 · .0026). Thus we should not be surprised to see a

frequency lying slightly more than two standard deviations from the

mean. Thus, we might estimate that the highest and lowest frequen-

cies are around 106 and 70. The actual answers for this set of draws

are 113 and 70.

2. This is an example of the coupon collector’s problem. A description

of this problem can be found in Grinstead and Snell [19] in Exercise

3.2.34. One finds that to make the probability at least 1/2 of getting

each number at least once as the bonus number, one needs to have

about n log n + n log 2, where n = 49, drawings. This yields the

estimate 225. In the actual set of 721 drawings, a complete set of

bonus numbers was achieved in the first 262 drawings.

3. If we write the sets of main numbers in a sequence, we can imagine

that this sequence is a sequence of independent draws. This isn’t

quite right, because in our sequence, it is not possible, for example,

that the first and fifth numbers are equal, since they both occur in

the first set of main numbers. In the answer to problem 2, we saw

that we would expect to need around 225 draws of numbers between 1

and 49 to get, with probability 1/2, each of them at least once. Thus,

we would expect that it would take about 37.5 (= 225/6) drawings

to get each number at least once as a main number. In the actual

sequence of drawings, all numbers appeared at least once in the first

26 drawings.

There are 1176 (= 49 ·48/2) pairs among the 49 numbers. In each

drawing, 15 (= 6 · 5/2) pairs of main numbers are drawn. Using the

approximation in the answer to problem 2, and ignoring dependence

of pairs within a single draw, we see that we would expect to have

to draw about 9129 pairs to get each of the 1176 pairs at least once.

Since 15 pairs are drawn in each drawing, we would expect to get

all of the pairs in about 609 (= 9129/15) drawings. In the actual

sequence, it took 591 drawings.
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4. For any fixed number between 1 and 49, the probability that it

is a main number in any given draw is 6/49. If we use the formula

stated in Chapter 1, Section 4 for the expected length of the longest

success run, we find, by setting n = 721 and p = 6/49, that this

expected length is about 2.85. But this isn’t really what we want to

estimate. We want the expected length of the longest success run for

all 49 numbers. We would expect this to be somewhat longer than

the expected length of the longest success run for a given number.

Although it might be possible to calculate the distribution of

the longest success run for 49 numbers, a better way to proceed is to

simulate the distribution. We simulated a sequence of 721 draws 1000

times. We found that the longest success run equaled four for 403 of

the 1000 simulations and equaled five for 480 of the 1000 simulations.

It was longer than five 117 times. In the actual data, there was one

number that occurred in five consecutive draws.

John Haigh gave us the following analysis of this question. In

any drawing after the first one, consider any one of the six numbers

drawn. It will begin a streak of length k if (a) it was not drawn in the

previous drawing, and (b) it is also drawn in the next k−1 drawings.

As there are six main numbers, the chance that one of them begins a

streak of length at least n is (very slightly less than)

(6)

(
43

49

)(
6

49

)k−1

.

So the mean number of streaks of length at least k is n times the

above number, where n is the number of drawings. When n = 721,

this expression equals 0.85 when k = 5 and 0.10 when k = 6. This

means that we should not be surprised to see a streak of length five

but we should be surprised to see a streak of length six.

5. The number of possible sets of main numbers is

(
49

6

)
= 13983816 .
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Thus, the probability of winning the jackpot with one ticket is the

reciprocal of this number. To estimate the probability of no winners

in a given drawing, we can use the Poisson approximation to the

binomial distribution. However, we have seen that the number of

tickets sold for a given drawing varies quite a bit. This affects the

probability of having no winners. For example, if the number of

tickets sold for a given drawing is 27.7 million (the average number

for the Wednesday drawings), then we use the Poisson distribution

with

λ =
27700000

13983816
= 1.98 .

In this case, the probability of having no winners is about

e−1.98 = 0.138 .

If the number of tickets sold is 57.5 million (the average number for

the Saturday drawings), then we use

λ =
57500000

13983816
= 4.11 .

In this case, the probability of having no winners is about

e−4.11 = 0.016 .

Of the 721 drawings in our data set, 303 occurred on Wednesday and

418 occurred on Saturday. So, we would expect about (303)(0.138) =

42 of these drawings would have no winners, and about (418)(0.016) =

7 of the Saturday drawings would have no winners. In fact, there were

no winners in 107 of the 721 drawings.

6. Once again, we consider the Wednesday and Saturday drawings

separately. In the Wednesday drawings, we would expect there to be

about
27700000

13983816
≈ 1.98

winners. In the Saturday drawings, we would expect there to be

about
57500000

13983816
≈ 4.11
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winners. Haigh says the most common number of winners in the 721

draws was two, with 150 occurrences. He says there was one winner

149 times.

7. Again we consider the Wednesday and Saturday drawings sepa-

rately. For the Wednesday drawings, using the Poisson approxima-

tion to the binomial distribution, the expected number of drawings

(in 303) with exactly 7 winners is 0.99, and the corresponding num-

ber with exactly 8 winners is 0.25. For the Saturday drawings, the

expected number of drawings with exactly 11 winners is 0.97 and the

corresponding number with exactly 12 winners is 0.33. Thus, using

only the average number of tickets sold, we might guess that the an-

swer to this question is close to n = 12. In fact, the answer is n = 17.
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This book explores four real-world topics through the lens of 
probability theory. It can be used to supplement a standard text 
in probability or statistics. Most elementary textbooks present the 
basic theory and then illustrate the ideas with some neatly pack-
aged examples. Here the authors assume that the reader has seen, 
or is learning, the basic theory from another book and concentrate 
in some depth on the following topics: streaks, the stock market, 
lotteries, and fi ngerprints. This extended format allows the authors 
to present multiple approaches to problems and to pursue prom-
ising side discussions in ways that would not be possible in a book 
constrained to cover a fi xed set of topics.

To keep the main narrative accessible, the authors have placed the 
more technical mathematical details in appendices. The appendices 
can be understood by someone who has taken one or two semesters 
of calculus.
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