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§4. The Szemerédi-Trotter incidence theorem 38

Exercises 42

Chapter 5. The n4/5 theory 45

§1. The Euclidean case: Straight line bisectors 45

§2. Convexity and potatoes 51
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Foreword

There are several goals for this book. As the title indicates, we cer-

tainly hope to familiarize you with some of the major results in the

study of the Erdős distance problem. This goal should be easily at-

tainable for most experienced mathematicians. However, if you are

not an experienced mathematician, we hope to guide you through

many advanced mathematical concepts along the way.

The book is based on the notes that were written for the summer

program on the problem, held at the University of Missouri, August

1–5, 2005. This was the second year of the program, and our plan

continued to be an introduction for motivated high school students

to accessible concepts of higher mathematics.

This book is designed to be enjoyed by readers at different levels

of mathematical experience. Keep in mind that some of the notes

and remarks are directed at graduate students and professionals in

the field. So, if you are relatively inexperienced, and a particular

comment or observation uses terminology1 that you are not familiar

with, you may want to skip past it or look up the definitions later.

On the other hand, if you are a more experienced mathematician, feel

free to skim the introductory portions to glean the necessary notation,

and move on to the more specific subject matter.

1One example of this is the mention of curvature in the first section of the
Introduction.
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x Foreword

Our book is heavily problem oriented. Most of the learning is

meant to be done by working through the exercises. Many of these

exercises are recently published results by mathematicians working in

the area. In several places, steps are intentionally left out of proofs

and, in the process of working on the exercises, the reader is then

asked to fill them in. On a number of occasions, solutions to exercises

are used in the book in an essential way. Sometimes the exercises are

left till the end of the chapter, but a few times, we intersperse them

throughout the chapter to illustrate concepts or to get the reader’s

hands dirty, so the ideas really sink in right at that point in the

exposition. Also, some exercises are much more complicated than

others, and will probably require several hours of concentrated effort

for even an advanced student. So please do not get discouraged. Hav-

ing said that, let us add that you should not rely solely on exercises

in these notes. Create your own problems and questions! Modify the

lemmas and theorems below, and, whenever possible, improve them!

Mathematics is a highly personal experience, and you will find true

fulfillment only when you make the concepts in these notes your own

in some way. Read this book with a pad of paper handy to really

explore these ideas as they come along. Good luck!
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Introduction

Many theorems in mathematics say, in one way or another, that it

is very difficult to arrange mathematical objects in such a way that

they do not exhibit some interesting structure. The objects in the

Erdős distance problem are points, and the structure we are curious

about involves distances between points. We can loosely formulate the

main question of this book as follows: How many distinct distances

are determined by a finite set of points?

1. A sketch of our problem

In the case that there is only one point, we have but one distance,

zero. It might seem odd to count zero as a distance, but it will make

things easier later on if we just assume that it is. In the case of two

points, our job is pretty easy again. We have the distance between the

two points, and again, zero. However, if we consider the case of three

points in the plane, it begins to get interesting. Three points arranged

as the vertices of an equilateral triangle are the same distance from

one another, so there is only one nonzero distance, making two total.

If they are the vertices of an isosceles triangle, we have one distance

repeated, leaving three distinct distances total. Of course, there are

any number of ways for three points to determine four distances.

These phenomena increase in complexity and frequency as we consider

more and more points. In fact, there is no configuration of four points

1

                                     

                

                                                                                                               



2 Introduction

in the plane that has only one nonzero distance present. It stands to

reason that as we add more points, we will add more distances. To

explore this problem, we fix a dimension to work in, d, and then

investigate the asymptotic behavior which depends on the number of

points, n, or how things happen as n grows large, past a million, past

a billion, and so on. Since we are considering large n, we will not be

concerned with the exact number of distinct distances, but with how

many distinct distances there are in comparison to n.

In full generality, the Erdős distance problem asks for the min-

imum number of distances determined by n points in d-dimensional

space, Rd, where the minimum is taken over all the sets P containing

n elements. For this to be interesting, we will assume that d ≥ 2.

In the case d = 1, it is easy to see that the number of distances

determined by the set of n points is at least n, and this bound is

achieved, for example, by the set {0, 1, . . . , n− 1}. When x is a point

in d-dimensional space, we write its coordinates as (x1, x2, . . . , xd).

Define2

Δ(P ) := {|p− p′| : p, p′ ∈ P},

where

|x| :=
√
x2
1 + · · ·+ x2

d,

the standard Euclidean distance.

Using this notation, we want to know the smallest possible size

of Δ(P ) over all the sets P of a given fixed size. Let us consider some

simple examples that involve many points. Let

P = {(0, 0), (1, 0), . . . , (n− 1, 0)}.

Then Δ(P ) = {0, 1, 2, . . . , n − 1}. This simple example shows

that there is a set of n points that only determines exactly n distinct

distances.

In general, we can construct a set of n points in R
d, d ≥ 2, that

determine approximately n
2
d distances when d ≥ 3 and approximately

2Here, the colon next to the equals sign indicates that we are defining something.
The colon inside the braces can be read as “such that”. Here we are defining Δ(P ) to
be the set of distances, |p − p′| such that p and p′ are elements of P .

                

                                                                                                               



2. Some notation 3

n√
log(n)

distances when d = 2. This is achieved by taking all the

points in the cube of side-length n
1
d , with sides parallel to the axes,

having integer coordinates. It is not difficult to see that the number

of distances determined by this set is � n
2
d in every dimension. See

Exercise 0.3 below. A bit of number theory is required for the lower

bound and to establish the logarithmic loss in two dimensions. See

[12] and the references contained therein.

These kinds of explorations are nowhere near to being fully under-

stood, but much is known, and we will come very close to the cutting

edge of this beautiful area of study in this book. One of the great

things about this theory is that it can be developed largely from the

ground up. That is, this problem in particular can be studied without

much of background. So if you are curious as to what mathematical

research is like, reading through this book can provide you with a

glimpse. You can actively watch the theory grow from its infancy

through some of the most recent discoveries in the field. Along the

way, you will be introduced to many of the elementary techniques

in any serious mathematician’s toolkit. If you are already familiar

with research mathematics, and desire more justification for serious

exploration of this particular area, we have included sketches of some

consequences of the study of this problem in the final chapter of this

book. More precisely, we show how the Erdős distance problem and

the Erdős integer distance principle can be used to demonstrate that

a set of mutually orthogonal exponentials on a smooth symmetric

convex surface in R
d with everywhere non-vanishing curvature must

be very small. This provides a connection between a set of problems

in classical analysis and the main theme of this book. This is just

one of many connections between the Erdős distance problems and

other areas of mathematics. An interested reader is encouraged to

consult a beautiful article by Nets Katz and Terry Tao ([27]) and the

references contained therein. See also [16].

2. Some notation

If you are not familiar with some of the mathematical notation used

in this book, the following should serve as a quick reference.
                

                                                                                                               



4 Introduction

As above, if x is a vector, |x| =
√
x2
1 + · · ·+ x2

d will denote its

(Euclidean) length, or distance from the origin. Of course, if y is also

a vector, |x− y| will denote the distance between x and y.

If A is a set, we can indicate the elements in the set as A :=

{a1, a2, . . . , an}. We can designate the size of the set as |A|, or some-

times as #A. Union and intersection are denoted as usual, with ∪
and ∩, respectively. If B is another set, we use A \ B to mean all of

the elements in A that are not in B. We write the Cartesian product

of A and B as A×B. It is defined as the set of all pairs of elements,

(a, b), where a ∈ A, and b ∈ B.

Consider two sets, A := {2, 4, 6, 8} and B := {1, 2, 3, 4, 5, 6}. Then
A∪B = {1, 2, 3, 4, 5, 6, 8} and A∩B = {2, 4, 6}. Also, we write that 1

is an element of B like this: 1 ∈ B. Of course, 1 is not an element of A,

so we write 1 /∈ A. If we have another set C := {4, 8}, and we notice

that every element of C is an element of A, we say that C is a subset

of A, which is written C ⊂ A. We can see that there are elements in

A which are not in C. We can describe these as A \ C = {2, 6}.
These operations can be indexed. Suppose that A1, A2, . . . , Am

are m sets. We can write an indexed union or intersection as follows:
m⋃
i=1

Ai = A1 ∪A2 ∪ · · · ∪ Am,

m⋂
i=1

Ai = A1 ∩A2 ∩ · · · ∩ Am.

Similarly, if we have a sequence of numbers, a1, a2, . . . , am, we

can compute their indexed sum as follows:

m∑
i=1

ai = a1 + a2 + · · ·+ am.

If the context is clear, this may be abbreviated as
∑
i

ai.

We use the binomial coefficient
(
n
k

)
, which means

n!

k!(n− k)!
,

                

                                                                                                               



Exercises 5

which is the number of ways to choose k objects from n.

Here, and throughout the book, X � Y means that as X and Y

grow large, typically as a function of some parameter, say N , there

exists a positive constant C, which does not depend on N , such that

X ≤ CY . This is also sometimes written X = O(Y ), and is read

X is big “O” of Y , or on the order of Y . Furthermore, X ≈ Y

means that X � Y and Y � X. We take this notational game a step

further and write X � Y if for every ε > 0 there exists Cε > 0 such

that X ≤ CεN
εY . For example, N log100(N) � N . This notation is

not only more convenient, but it also emphasizes the fact that these

constants do not affect our results asymptotically.

Naturally, as the the theory develops, we will use more symbols

and shorthand, but these will all be introduced as they arise. Also,

when we define anything new, we will italicize the new term.

Now we state the Erdős distance conjecture formally, with the

notation used in this book.

Erdős distance conjecture: Let P be a subset of Rd, d ≥ 2, such

that #P = n. Then

#Δ(P ) � n if d = 2,

and

#Δ(P ) � n
2
d if d ≥ 3.

Exercises

Exercise 0.1. Suppose there are p pigeons, each huddled in one of h

holes, with p > h. Explain why there must be at least one hole with

at least p
h pigeons in it. This is known as the pigeonhole principle.

Exercise 0.2. Determine the minimum number of distances deter-

mined by n points in the plane for n = 3, 4, and 5. How do things

change for points in three-dimensional space?

Exercise 0.3. Let P = Z
d ∩ [0, n

1
d ]

d
, where n is a dth power of

an integer. Then Δ(P ) = {|p| : p ∈ P} (why?) and #Δ(P ) =

#{|p|2 : p ∈ P}. Consider the set of numbers p21 + p22 + · · · + p2d,

p = (p1, . . . , pd) ∈ P . All these numbers are integers no less than 0
                

                                                                                                               



6 Introduction

and no greater than dn
2
d . Now check that

#Δ(P ) ≤ dn
2
d + 1

follows from this observation.

Exercise 0.4. Define Δl1(Rd)(P ) = {|p1 − p′1| + · · · + |pd − p′d| :

p, p′ ∈ P}. Prove that the Erdős distance conjecture is false if Δ(P )

is replaced by Δl1(Rd)(P ). What should the conjecture say in this

context? Consider the case d = 2 first.

Exercise 0.5. Let K be a convex, centrally symmetric subset of R2,

contained in the disk of radius 2 centered at the origin and containing

the disk of radius 1 centered at the origin. Convex means that if x

and y are points in K, then the line segment connecting x and y is

contained entirely inside K. Centrally symmetric means that if x is

in K, then −x is also in K.

Let t = ||x||K denote the number such that x is contained in

tK, but is not contained in (t− ε)K for any ε > 0. Define ΔK(P ) =

{||p− p′||K : p, p′ ∈ P}. If the boundary ofK contains a line segment,

prove that one can construct a set, P , with #P = n, such that

#ΔK(P ) � n
1
d . This is called the Minkowski functional of K.

                

                                                                                                               



Chapter 1

The
√
n theory

1. Erdős’ original argument

How does one prove that any set, P , of size n determines many dis-

tances? Let us start in two dimensions. We will begin by giving

two proofs of the following theorem. The first proof was originally

published by Erdős in 1946.

Theorem 1.1 (Erdős [12]). Suppose that d = 2 and #P = n. Then

#Δ(P ) � n
1
2 .

1st proof. Choose a point, p0, and draw circles around it that each

contain at least one point of P . Continue drawing circles around p0
until all the points in P lie on a circle of some radius centered at

p0. We will refer to this procedure as covering the points of P by

circles centered at p0. We can think of each circle as a level set, or

a set of points that have the same value for some function. In this

case, the function is the distance from the point p0. Suppose that we

have drawn t circles. This means that we can be assured that there

are at least t different distances between points in P and p0. If t is

greater than n
1
2 , then we are already doing very well. But what if

t happens to be small? Note that at least one of the t circles must

contain at least n/t points,1 by the pigeonhole principle. Draw the

1Actually, this would be n−1
t points, but since n−1

t ≈ n
t , we will continue with

the simpler notation. This may seem annoying, but it is done intentionally to keep the
most important information at the forefront.

7

                                     

                

                                                                                                               



8 1. The
√
n theory

Figure 1.1. Circles about p0 and the East-West line.

East-West line though the center of that circle. Then at least n/2t are

contained in either the Northern or Southern hemisphere. Without

loss of generality,2 suppose that there are n/2t points in the Northern

hemisphere.

Fix the East-most point and draw segments from that point to

all the other points of P in the Northern hemisphere. The lengths

of these segments are all different, so at least n/2t distances are thus

determined. This proves that

(1.1) #Δ(P ) ≥ max{t, n/2t}.

There are several ways to proceed here. One way is to “guess”

the answer. Since we already took care of the case where t ≥ √
n, we

2As in many proofs, we are asserting something “without loss of generality”,
which is often abbreviated WLOG. What this typically means is that we can simplify
the notation of the proof to get to the point, and we let the reader fill in the trivial
details later. In this instance, it means that we can deal with the case that most of
the points are in the Northern hemisphere. If they were in the Southern hemisphere,
the proof would not change much, we would just restate it, word for word, but say
Southern instead of Northern from this point onward.

                

                                                                                                               



2. Higher dimensions 9

Figure 1.2. Circles about p1 and p2 that cover P .

can assume that t <
√
n. Then n/2t >

√
n/2, so either way,

(1.2) #Δ(P ) �
√
n.

A slightly less “sneaky” approach is to use the fact that

max{X,Y } ≥
√
XY (why?).

This transforms (1.1) into (1.2). �

2nd proof. Take any two points p1 and p2 from P . Draw in the

circles about p1 and p2 such that each family of circles covers the

remaining n − 2 points of P . Suppose that there are t circles about

p1 and s circles about p2. Since all of the points of P are in the

intersections of these two families of circles, we have that n− 2 ≤ 2st

(why?). Therefore, either s � √
n or t � √

n, and we are done. �

2. Higher dimensions

What about higher dimensions? We try the same approach. Choose

a point in P and draw all spheres that contain at least one point of

P . As before, let t denote the number of these spheres. If t is large

enough, we are done. If not, then one of the spheres contains at least

n/t points. Unfortunately, if d > 2, we cannot run the simple-minded

argument that worked in two dimensions. Or can we? Notice that if
                

                                                                                                               



10 1. The
√
n theory

we are working in R
d, the surface of each sphere is (d−1)-dimensional,

whatever that means. This suggests the following approach, which

uses induction. If you are unfamiliar with proofs by induction, Ap-

pendix C has a brief explanation of this concept.

Let Sk denote the k-dimensional sphere. So S1 is the circle, S2

would be a hollow spherical shell, like a basketball, and so on.

Proposition 1.2 (Induction Hypothesis). Let P ′ be a subset of Rk,

k ≥ 2, or a subset of Sk, k ≥ 1. Suppose that #P ′ = n′. Then

#Δ(P ′) � (n′)
1
k .

In the case of R
2, the induction hypothesis holds by Theorem

1.1. Similarly, we have verified the statement for S1 in the proof of

Theorem 1.1, when we noticed that if there were a number of points

on one of the circles, then they must determine about that many

distinct distances. We are now ready to complete the argument for

higher dimensions. When we follow this reasoning in dimension d,

we end up with t (d − 1)-spheres, one of which must have at least

n/t points on it as in the d = 2 proof. By induction, these points

determine �
(
n
t

) 1
d−1 distances. It follows that

#Δ(P ) � max

{
t,
(n
t

) 1
d−1

}
.

We now use the fact that

max{X,Y } ≥ (XY d−1)
1
d (why?),

which implies that

(1.3) #Δ(P ) � n
1
d .

We have just proved the following result.

Theorem 1.3. Let P be a subset of Rd, d ≥ 2, such that #P = n.

Then #Δ(P ) � n
1
d .

Most of our focus will be on the the problem in the plane; however,

there has been a fair amount of work done in higher dimensions. In [4],

a bound of n77/141−ε, for any ε > 0, is achieved for three dimensions.

In [47], a general lower bound of n2/d−2/(d(d+1)) is attained for d ≥ 4,

improving the earlier work in [46].
                

                                                                                                               



3. Arbitrary metrics 11

3. Arbitrary metrics

Although we have been mostly thinking about the standard Euclidean

metric so far, it is possible to consider other metrics. For example,

what if you were walking from the corner of one city block to the

corner of another, say a street corner three blocks north and four

blocks east? It is most likely that you could not just take a direct

route along the straight line connecting the two corners. There are

probably buildings in the way. You would probably do something

like walk north for three blocks, and then walk east for four blocks.

Even though, by the Pythagorean theorem, the “distance” between

the two street corners seemed to be about five blocks, you end up

walking seven blocks. This is one way of thinking about the l1 metric

mentioned in Exerceise 0.4. It is sometimes referred to as the taxicab

or Manhattan metric.

We now present a formal definition of a general metric.

Definition 1.1. We call a function, d(x, y), on a set, S, a metric

if it returns a real number for any two elements of S satisfying the

following for all distinct x, y, z ∈ S:

(i) d(x, x) = 0;

(ii) d(x, y) > 0;

(iii) d(x, y) = d(y, x) (symmetry);

(iv) d(x, z) ≥ d(x, y) + d(y, z) (triangle inequality).

Dropping the symmetry assumption from the definition gives us

a similar object called an asymmetric metric. Many of the arguments

to follow do not depend heavily on the symmetry of the metric. When

you are comfortable with the general ideas in this book, see how many

can still yield non-trivial results with asymmetric metrics.

We will explore this further in Chapter 5, but until then, just use

your imagination as to what kinds of restrictions we will need for the

proof ideas to go through.

It is customary to think of the distance from one point to another

as the length of the straight line connecting the two points. However,

as our cursory exploration of the taxicab metric suggests, this does
                

                                                                                                               



12 1. The
√
n theory

Figure 1.3. The grid represents an overhead view of a city.
If you are located at a, you will have to walk two blocks to b,
or three blocks to c. The dashed lines represent three dilates
of the l1 circle.

not shed much light on how different metrics behave with respect

to one another. One way to get a feel for a metric’s behavior is by

looking at its “spheres”. If you fix one point, x, and consider the

locus, or graphical representation, of points that are a given distance

from x, using the standard Euclidean distance, you will get a sphere.

Of course, a sphere in the plane is a circle. What would such a “circle”

look like in the l1 metric? As you can see in Figure 1.3, the circles

look like diamonds, or squares that have been rotated 45 degrees.

Now, this all depends on the circles or spheres of each respective

metric looking the same throughout the space they are drawn in. For

example, if you were to measure the length of a stick in El Paso,

and then measure the length of the same stick in Chicago, you would

expect the length to be the same. This property is called homogeneity.

In the arguments above, not all of the properties of the standard

Euclidean circle were utilized. Exercises 1.6 and 1.7 accentuate some
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of the critical similarities and differences between arbitrary metrics

and the Euclidean metric.

At this point, we could spend a long time introducing and devel-

oping many different types of metrics, but instead, we want you to

discover on your own what types of objects can be viewed as metrics,

and in what sense. As you read through this book, other types of

metrics and metric-like objects will naturally come along. In mathe-

matics, it is rare that a definition magically descends from the sky and

dares us to explore its uses. Typically, various scenarios give rise to

sensible constraints on a useful object, which are then compiled into

a definition sometime after the subject has been investigated a little.

For this book in particular, we feel that it is far more instructive to

watch the theory grow by necessity than to introduce a laundry list

of definitions and then draw conclusions. If you can come up with

some of your own variations on the examples given in Exercise 1.8,

you will get more out of this book.

Exercises

Exercise 1.1. Prove that the minimum of max{t, n/2t} is in fact√
n. In other words, show that Erdős’ method of proof cannot do

better than #Δ(P ) � √
n.

Exercise 1.2. Calculate the constants from the two different proofs

of Theorem 1.1. In other words, find the smallest constant C in each

proof such that #Δ(P ) ≥ C
√
n. Which proof gives a stronger result?

Exercise 1.3. Attempt to extend Theorem 1.1 to the l1 metric de-

fined in Exercise 0.4. Does either of the proofs work verbatim for this

metric? If not, can either of the proofs be modified to obtain a result?

Exercise 1.4. We outline an alternate proof of Theorem 1.1. Let

Mn denote the matrix constructed as follows. Fix t ∈ Δ(P ) and

let the entry app′ = 1 if |p − p′| = t, and 0 otherwise. Observe

that for a fixed pair (p′, p′′), p′ 
= p′′, app′ · app′′ = 1 for at most one

value of p (why?). Use this along with the Cauchy-Schwarz inequality

(detailed in Chapter 3.) to prove that
∑

p,p′∈P app′ � n
3
2 . Conclude

that for any t ∈ Δ(P ), #{(p, p′) : |p − p′| = t} � n
3
2 . Deduce that

#Δ(P ) � √
n. Can you make this idea run in higher dimensions?
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Exercise 1.5. In the proofs of Theorems 1.1 and 1.3, we only used

spheres centered at a single point. Is there any mileage to be gained

by considering, in some way, two points? Try it.

Exercise 1.6. Let K be a polygon in the plane. Let #P = n. Let

ΔK(P ) = {||p− p′||K : p, p′ ∈ P}. Prove that #ΔK(P ) � √
n. What

about other convex K?

Exercise 1.7. Why do the K in Exercise 1.6 have to be convex?

Exercise 1.8. Consider the following metric-like objects. Assume

that they all map R
2 × R

2 → R, or that they take two points in the

plane as input and give one number as output. Determine which are

genuine metrics, and which are not. Could one sensibly ask questions

like the Erdős distance problem of these objects? If x = (x1, x2) and

y = (y1, y2), then

(1) F (x, y) = |x|+ |y|;
(2) D(x, y) = x1x2 + y1y2;

(3) Φ(x, y) = |x−y|
|x+y|+1 .

The first object is sometimes referred to as the French Railroad.

The second is the standard dot product of x and y.

Exercise 1.9. Consider x, y, and z ∈ R
n. Suppose x 
= y. If there is

a function, d : Rn → R, where d(x, y) 
= d(x − z, y − z), can d be a

metric? In this example, d could be described as inhomogeneous.

Exercise 1.10. We have been considering how many different dis-

tances are determined by a point set. Another question is to ask

how often a single distance can occur. This is referred to as the unit

distance problem. Why do we only need to consider unit3 distances?

Consider R
4, and call the coordinate axes x, y, z, and w. Arrange n

2

points in a circle of radius
√
2
2 in the plane determined by the x and y

axes, centered at the origin. Then arrange n
2 points in another circle

of radius
√
2
2 in the plane determined by the z and w axes. How often

does the unit distance occur? This is called a Lenz construction.

3Here, unit distance means a distance equal to one.
                

                                                                                                               



Chapter 2

The n2/3 theory

1. The Erdős integer distance principle

Erdős’ ingenious argument, described in the previous chapter, re-

lies on spheres centered at a single point. It stands to reason that

one might gain something out of considering spheres “centered” at

two points. This point of view was introduced by Leo Moser in the

early 1950s. Before presenting Moser’s argument, we will describe the

Erdős integer distance principle, where an idea similar to Moser’s is

already present, albeit in a different form and context.

Theorem 2.1 (Erdős integer distance principle, [13]). Let A be an

infinite subset of R
d, d ≥ 2. Suppose that Δ(A) ⊆ Z. Then A is

contained in a line.

We will prove this result by way of contradiction.1 To prove the

Erdős integer distance principle, consider the possibility that A is

not contained in a line. Suppose that d = 2. Let a, a′, a′′ denote

three points of A that are not collinear, or not lying on the same

line. Let b be any other point of A. By assumption, |a − b| and
|a′ − b| are both integers, which means that |a − b| − |a′ − b| is also

1This means that we will begin by assuming that our assertion is false, and use
this to reason our way into a contradiction, or a situation that cannot happen. Since
the assumption that our assertion was not true yields faulty results, we conclude that
our assertion must have been true after all. This phrase is sometimes abbreviated,
“BWOC”.

15

                                     

                

                                                                                                               



16 2. The n2/3 theory

an integer. This means that there is a collection of hyperbolas with

focal points at a and a′, such that each point in A is on a hyperbola

in the collection. (See Appendix A for a thorough description of basic

theory of hyperbolas in the plane.) How many such hyperbolas are

there? Well, suppose that |a − a′| = k, which, by assumption, is an

integer. By the triangle inequality, ||a − b| − |a′ − b|| ≤ |a − a′| = k.

It follows that there are only k + 1 different hyperbolas with focal

points at a and a′. Similarly, all of the points of A are contained in

l + 1 hyperbolas with focal points at a′ and a′′. Any hyperbola with

focal points at a and a′ and a hyperbola with focal points at a′ and

a′′ intersect at at most 4 points (see the Exercise in Appendix A). If

we let l be |a′ − a′′|, it follows that the number of points in A cannot

exceed 16(k+1)(l+1), which is a contradiction since A is assumed to

be infinite. This proves the two-dimensional case of the Erdős integer

distance principle. The argument for higher dimensions is outlined in

Exercise 2.5 below.

The following beautiful extension of the Erdős integer distance

principle was proved by Jozsef Solymosi [44].

Theorem 2.2. Suppose that P is a subset of R2, such that Δ(P ) ⊂ Z

and #P = n. Suppose further that P is contained in a disk of radius

R. Then R � n.

The proof of Solymosi’s theorem is outlined in Exercise 2.3, and

in Exercise 2.4 we ask you to verify that Theorem 2.2 would follow

immediately from the Erdős distance conjecture.

2. Moser’s construction

We are now ready to introduce Moser’s idea. You will probably no-

tice that this proof is intentionally written in a highly symbolic, set-

notational style. There are several reasons for this. It is important to

see how little this argument has to do with many of the specific geo-

metric qualities of circles. Since it is written so abstractly, it should

be easier to pick out the key features of the geometry that are neces-

sary for such an argument, so that you can generalize it on your own.

Exercise 2.8 is one way to explore that. Also, the sooner you learn to

cope with multiple definitions and indices flying around, the better.
                

                                                                                                               



2. Moser’s construction 17

Math is not read left to right, top to bottom. You will probably have

to re-read portions of this argument again and again until it all sinks

in. Finally, this particular approach will set the reader up nicely for

the types of ideas employed in the next chapter.

The main idea of this proof is similar to the proof of Theorem 1.1

in that we will break the set of points up into smaller subsets. Then,

either there will be many of these subsets, or one of the subsets will

have many points. Start by choosing points X and Y in P such that

|X − Y | is the smallest distance between any pair of points in P .

Let O be the midpoint of the segment XY . Half of the points of

P are either above or below the line connecting X and Y . Call this

set of points P ′. Assume without loss of generality that at least half

the points are above the line. Draw annuli centered at O of thickness

|X − Y | until all the points of P ′ are covered.

Keep only one third of the annuli in such a way that at least one

third of the points of P ′ are contained, and such that if a particular

annulus is kept, the next two consecutive annuli are discarded. (Prove

that this can be done and try to figure out why we are doing this as

you read the rest of the argument!) Call the resulting set of points

P ′′.

Our next step will be to consider what happens inside of each

of the annuli that we kept. Notice that distances from X and Y to

points in one annulus cannot occur in another of the annuli we kept.

So we can count the distinct distances that we find in each annulus,

since they cannot be present in any of the other annuli we consider.

Let Aj denote the points of P ′′ in the jth annulus. Call the

number of points in the jth annulus nj . If every point gave different

distances to X and Y , we would be quite happy. Since that might

not be the case, suppose that there are k numbers such that

{|p−X| : p ∈ Aj} ∪ {|p− Y | : p ∈ Aj} = {d1, d2, . . . , dk}.

So we are counting k distinct distances to both X and Y from

points in the jth annulus. From now on, let us concern ourselves only

with the jth annulus. We will count the number of distinct distances

in it, and then sum over all annuli later.
                

                                                                                                               



18 2. The n2/3 theory

Figure 2.1. Annuli centered at O, the midpoint of X and Y
of thickness |X − Y |.

Let

Al = {p ∈ Aj : |p−X| = dl}

and

Bi = {p ∈ Aj : |p− Y | = di}.

These are the sets of points in the jth annulus that lie on a circle

of a given radius from X or Y .

By construction,

Al =
⋃
i

(Al ∩Bi) ,

since points of distance dl from X are of some distance or another

from Y . If we look at all distances to X in the jth annulus, it follows
                

                                                                                                               



2. Moser’s construction 19

that ⋃
l

Al =
⋃
i,l

(Al ∩Bi) .

Now,

#
⋃
l

Al = nj ,

while

(2.1) #
⋃
i,l

(Al ∩Bi) ≤ k2 max
i,l

#(Al ∩Bi) .

Recall that Al and Bi are contained in circles of approximately

the same radius centered at different points, so maxi,l #(Al∩Bi) ≤ 1.

Plugging this into equation (2.1), we see that

k ≥ √
nj .

Since this type of reasoning will hold for any annulus, we can be

sure that there are at least
√
nj distinct distances in the jth annulus.

Recall that distances contributed by points in one annulus cannot

be contributed by points in another, so we can sum up the distinct

distances contributed by different annuli to get a lower bound for the

total number of distinct distances, as follows:

(2.2) #Δ(P ) ≥ #Δ(P ′′) ≥
∑
j

√
nj .

We have

n

6
≤
∑
j

nj =
∑
j

√
nj ·

√
nj ≤

√
nmax ·

∑
j

√
nj ≤

√
nmax#Δ(P ),

where

nmax = max
j

nj ,

which is the largest value of all of the nj ’s. Observe that by the proof

of Theorem 1.1,

#Δ(P ) ≥ #Δ(P ′′) ≥ nmax.

By (2.2),

#Δ(P ) ≥ n

6
√
nmax

.

                

                                                                                                               



20 2. The n2/3 theory

It follows that

(#Δ(P ))2 ·#Δ(P ) ≥ nmax · n2

36nmax
=

n2

36
,

which implies that

#Δ(P ) ≥ n
2
3

(36)
1
3

,

and we have just proved the following theorem.

Theorem 2.3 (Moser [36]). Let d = 2 and suppose that #P = n.

Then #Δ(P ) � n
2
3 .

Exercises

Exercise 2.1. Outline the proof of Erdős integer distance principle

in higher dimensions.

Exercise 2.2. Prove that for every set of n points in the plane with

diameter Δ and with at most n/2 collinear points, there exist two

pairs of points A,B and C,D such that each of the distances AB and

CD is less than 6Δ/n1/2. Hint: Show that there are fewer than n/2

points that are not within 6Δ/n1/2 of other points.

Exercise 2.3. Deduce Theorem 2.2 from the previous exercise by

using ideas from the proof of the Erdős integer distance principle.

Exercise 2.4. Deduce Theorem 2.2 from the Erdős distance conjec-

ture.

Exercise 2.5. Why did we eliminate 2/3 of the annuli in the proof

above? Where did we use this in the proof?

Exercise 2.6. What does Moser’s method yield in higher dimen-

sions? Can you apply the two-dimensional result along with the in-

duction argument used to prove Theorem 1.3 instead? Which ap-

proach yields better exponents?

Exercise 2.7. Let A be an infinite subset of Rd, d ≥ 2, with the

following property. We assume that |a− a′| ≥ 1
100 for all a 
= a′ ∈ A.

We also assume that for every m ∈ Z
d, [0, 1]d + m contains exactly
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one point of A. Let Aq = [0, q]
d ∩ A. What kind of bound can you

obtain for Δ(Aq) using Moser’s idea? Why is this bound better than

the one we obtained above?

Take this a step further. Instead of using two points as in Moser’s

argument, use d points. How should these points be arranged? What

effect are we trying to achieve? Can you obtain a better exponent

this way?

Exercise 2.8. What happens if you try Moser’s construction on the

l1 metric? What crucial difference keeps it from yielding greater ex-

ponents with this plan of attack? Can you imagine some reasonable

conditions on metrics such that they would gain in Moser’s construc-

tion over n
1
2 ?

                

                                                                                                               



Chapter 3

The Cauchy-Schwarz
inequality

1. Proof of the Cauchy-Schwarz inequality

Here, we shall follow a procedure often considered nasty, but the one

we hope to convince you to appreciate. We shall work backwards,

discovering concepts as we go along, instead of stating them ahead of

time. Let a and b denote two real numbers. Then

(3.1) (a− b)
2 ≥ 0.

This statement is so vacuous, you are probably wondering why

we are telling you this. Nevertheless, expand the left hand side of

(3.1). We get

a2 − 2ab+ b2 ≥ 0,

which implies that

(3.2) ab ≤ a2 + b2

2
.

Now consider two sums,

An =
n∑

k=1

ak = a1 + · · ·+ an, Bn =
n∑

k=1

bk = b1 + · · ·+ bn,

23

                                     

                

                                                                                                               



24 3. The Cauchy-Schwarz inequality

where a1, . . . , an and b1, . . . , bn are real numbers. Also assume that

not all of the ai’s or bj ’s are zero. Let

Xn =

(
n∑

k=1

a2k

)1/2

and Yn =

(
n∑

k=1

b2k

)1/2

.

Our goal is to take advantage of (3.2). Let us take a look at

n∑
k=1

akbk = XnYn

n∑
k=1

ak
Xn

· bk
Yn

≤ XnYn

n∑
k=1

[
1

2

(
ak
Xn

)2

+
1

2

(
bk
Yn

)2
]
.

(3.3)

Exercise 3.1. Explain why
∑n

k=1(ak + bk) =
∑n

k=1 ak +
∑n

k=1 bk.

Exercise 3.2. Explain why if C is a constant, then
∑n

k=1 Cak =

C
∑n

k=1 ak.

Exercise 3.3. Explain, using complete English sentences, how (3.3)

follows from (3.2). This is a valuable exercise. Taking the time to

describe something using complete sentences not only solidifies un-

derstanding, it can expose gaps in reasoning, which were hidden in

symbol manipulations which merely appear to be correct.

We now use (3.2) and (3.1) to rewrite (3.3) in the form

XnYn
1

2

1

X2
n

∑
k=1

a2k +XnYn
1

2

1

Y 2
n

n∑
k=1

b2k

= XnYn
1

2

1

X2
n

X2
n +XnYn

1

2

1

Y 2
n

Y 2
n

=
1

2
XnYn +

1

2
XnYn = XnYn.

Putting everything together, we have shown that

(3.4)

n∑
k=1

akbk ≤
(

n∑
k=1

a2k

) 1
2
(

n∑
k=1

b2k

) 1
2

.

This is known as the Cauchy-Schwarz inequality.
                

                                                                                                               



2. Application: Projections 25

Exercise 3.4. (This exercise is quite difficult if you do not know

calculus.) Let 1 < p < ∞ and define the exponent p′ by the equation
1
p + 1

p′ = 1. Then

(3.5)

n∑
k=1

akbk ≤
(

n∑
k=1

|ak|p
)1/p( n∑

k=1

|bk|p
′

)1/p′

.

Observe that (3.5) reduces to (3.4) if p = 2. Hint: Prove that

ab ≤ ap

p + bp
′

p′ and proceed as in the case p = 2. One way to prove this

inequality is to set ap = ex and bp
′
= ey. (Why are we allowed to do

that?) Let 1
p = t and observe that 0 ≤ t ≤ 1. We are then reduced

to showing that for any real-valued x, y and t ∈ [0, 1], etx+(1−t)y ≤
tex + (1 − t)ey. This is exactly what it means for a function to be

convex. Let f(t) = etx+(1−t)y and g(t) = tex + (1 − t)ey. Observe

that f(0) = g(0) = ey and f(1) = g(1) = ex. Can you complete the

argument?

2. Application: Projections

Let us now try to see what the Cauchy-Schwarz (C-S) inequality is

good for. Let Sn be a finite set of n points in R
3 = {(x1, x2, x3) :

xj is a real number}, the three-dimensional Euclidean space. Let x =

(x1, x2, x3) ∈ R
3 and define

π1(x) = (x2, x3), π2(x) = (x1, x3), and π3(x) = (x1, x2).

These are called projections. If we consider a point p in three

dimensions, then π1(p) is like the “shadow” of p on the “wall” repre-

sented by the yz-plane. The question we ask is the following. What

can we say about the size of π1(Sn), π2(Sn), and π3(Sn)? Before we

do anything remotely complicated, let us make up some silly looking

examples and see what we can learn from them.

Let Sn = {(0, 0, k) : k integer, k = 0, 1, . . . , n − 1}. This set

clearly has n elements. What is π3(Sn) in this case? It is precisely

the set {(0, 0)}, a set consisting of one element. However, π2(Sn) and

π1(Sn) are both {(0, k) : k = 0, 1, . . . , n − 1}, sets consisting of n

elements. In summary, one of the projections is really small and the

others are as large as they can be.
                

                                                                                                               



26 3. The Cauchy-Schwarz inequality

Let us be a bit more even handed. Let Sn = {(k, l, 0) : k, l inte-
gers, 1 ≤ k ≤ √

n, 1 ≤ l ≤ √
n}, where √

n is an integer. As before,

#Sn = n. What do projections look like? Well, Sn is already in the

(x1, x2)-plane, so π3(Sn) = {(k, l) : k, l integers, 1 ≤ k ≤ √
n, 1 ≤

l ≤
√
n}. It follows that #π3(Sn) = n. On the other hand, π2(Sn) =

{(k, 0) : k integer, 1 ≤ k ≤
√
n}, and π1(Sn) = {(l, 0) : l integer, 1 ≤

l ≤
√
n}, both containing

√
n elements. Again we see that it is

difficult for all of the projections to be small.

Think about our examples given so far, from a geometric point

of view. The first example is “one-dimensional” since the points all

lie on a line. The second example is “two-dimensional” since the

points lie on a plane. Now we build a truly “three-dimensional” ex-

ample with as much symmetry as possible. Let Sn = {(k, l,m) :

k, l,m integers, 1 ≤ k, l,m ≤ n
1
3 }, where n

1
3 is an integer. Again,

#Sn = n, as required. This time the projections all look the same.

We have π1(Sn) = {(l,m) : l,m integers, 1 ≤ l,m ≤ n
1
3 }, a set of

size n
2
3 , and the same is true of #π2(Sn) and #π3(Sn).

Let us summarize what happened. In the case that all the pro-

jections have the same size, each projection has n
2
3 elements. We will

see in a moment that for any Sn, one of the projections must of size

at least n
2
3 . Here and later in this book, we will see that the Cauchy-

Schwarz inequality is very usefull in showing that the “symmetric”

case is “optimal”, whatever that means in a given instance.

To start our investigation, we need the following basic definition.

Let S be any set. Define χS(x) = 1 if x ∈ S and 0 otherwise.

Exercise 3.5. Let Sn be as above, and x = (x1, x2, x3). Then

χSn
(x) ≤ χπ1(Sn)(x2, x3)χπ2(Sn)(x1, x3)χπ3(Sn)(x1, x2).

With Exercise 3.5 in tow, we write

n = #Sn =
∑
x

χSn
(x)

≤
∑
x

χπ1(Sn)(x2, x3)χπ2(Sn)(x1, x3)χπ3(Sn)(x1, x2)

=
∑
x1,x2

χπ3(Sn)(x1, x2)
∑
x3

χπ1(Sn)(x2, x3)χπ2(Sn)(x1, x3)

                

                                                                                                               



2. Application: Projections 27

≤
(∑

x1,x2

χ2
π3(Sn)

(x1, x2)

) 1
2

×

⎛
⎝∑

x1,x2

(∑
x3

χπ1(Sn)(x2, x3)χπ2(Sn)(x1, x3)

)2
⎞
⎠

1
2

= I × II.

Now,

I =

(∑
x1,x2

χ2
π3(Sn)

(x1, x2)

) 1
2

=

(∑
x1,x2

χπ3(Sn)(x1, x2)

) 1
2

= (#π3(Sn))
1
2 .

On the other hand,

II2 =
∑
x1,x2

(∑
x3

χπ1(Sn)(x2, x3)χπ2(Sn)(x1, x3)

)2

=
∑
x1,x2

∑
x3

∑
x′
3

χπ1(Sn)(x2, x3)χπ2(Sn)(x1, x3)χπ1(Sn)(x2, x
′
3)

× χπ2(Sn)(x1, x
′
3)

≤
∑
x1,x2

∑
x3

∑
x′
3

χπ1(Sn)(x2, x3)χπ2(Sn)(x1, x
′
3)

=
∑
x2,x3

χπ1(Sn)(x2, x3)
∑
x1,x′

3

χπ2(Sn)(x1, x
′
3)

= #π1(Sn) ·#π2(Sn).

Putting everything together, we have shown that

(3.6) #Sn ≤
√
#π1(Sn)

√
#π2(Sn)

√
#π3(Sn).

Exercise 3.6. Verify each step above. Where was the C-S inequality

used? Why does χ2
πj(Sn)

(x) = χπj(Sn)(x)?

The product of three positive numbers certainly does not exceed

the largest of these numbers raised to the power of three. It follows
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from this and (3.6) that

n = #Sn ≤ max
j=1,2,3

(#π1(Sn))
3
2 .

We conclude by raising both sides to the power of 2
3 that

# max
j=1,2,3

πj(Sn) ≥ n
2
3 ,

as claimed.

Exercise 3.7. Let Ω be a convex set in R
3. This means that for any

pair of points x, y ∈ Ω, the line segment connecting x and y is entirely

contained in Ω. Prove that vol(Ω) ≤
√
area(π1(Ω)) ·

√
area(π2(Ω)) ·√

area(π3(Ω)).

If you cannot prove this exactly, can you at least prove, using

(3.6) and its proof, that maxj=1,2,3 area(πj(Ω)) ≥ (vol(Ω))
2
3 ? This

would say that a convex object of large volume has at least one large

coordinate shadow. Using politically incorrect language this can be

restated as saying that if a hippopotamus is overweight, there must

be a way to place a mirror to make this obvious . . .

Exercise 3.8. (Project question.) Generalize (3.6). What does this

mean, you ask . . . Replace three dimensions by d dimensions. Re-

place projections onto two-dimensional coordinate planes by projec-

tions onto k-dimensional coordinate planes, with 1 ≤ k ≤ d − 1.

Finally, replace the right hand side of (3.6) by what it should be . . .

                

                                                                                                               



Chapter 4

Graph theory and
incidences

In this chapter, we give you a taste of some very useful ideas, which

we will use heavily throughout the rest of the book. We start off

with some basic results from graph theory, and illustrate their use

in incidence theory. Both areas will be the backbone of many of the

results to follow.

1. Basic graph theory

Graph theory is a wide but powerful subject. In this section, we

give only the basics necessary to understand the content of the book.

However, once you get comfortable with the ideas presented here, a

little digging through the literature will lead you toward many rich

and rewarding techniques.

A graph is a set of elements called vertices and a set of (unordered)

pairs of vertices called edges. Vertices are normally represented by a

set of points, and edges are represented by curves that connect pairs

of points. In many applications, edges are defined by two distinct ver-

tices, and a given pair of vertices is either connected or not, so either

there is a single edge connecting them or there is not. Graphs of this

type are called simple. Sometimes, however, it is useful to consider

multigraphs, or graphs where a pair of vertices may be connected by

29
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Figure 4.1. A is not connected. B is connected but not com-
plete. C is both connected and complete.

more than one edge. Some arguments in this book hinge on control-

ling the number of edges connecting a given pair of vertices, or its

edge multiplicity.

Oftentimes, graphs are visualized as in Figure 4.1. Such a repre-

sentation is called a drawing of a graph. Typically, there are many

drawings of the same graph. Figure 4.2 has two drawings of the graph

G.

A list of vertices, in which each vertex is connected to the vertices

listed before and after it by an edge, is called a path. If every vertex

can be reached from every other vertex by a path, we call the graph

connected. This is not to be confused with complete graphs, where

every vertex is connected to every other vertex directly. Figure 4.1

illustrates these properties. In the graph A, notice that although the

arc which represents the edge between a and b and the arc which

represents the edge between c and d cross in the drawing, there is no

edge connecting a or d to any of the other vertices. Also, although

it is not strictly necessary at this point, we will define edges to only

occur between distinct vertices. This is merely a technicality, but it

will simplify our calculations without any loss in generality for our

needs.

The beginnings of graph theory were often concerned with planar

graphs, or graphs whose drawings have edges represented by arcs

which need not cross. It is possible that a particular graph has been

drawn in a way that two edges cross, but it could be redrawn in such

a way which retains all of the vertex connections, without any edges
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Figure 4.2. Two different drawings of the same graph G, and
one drawing of the Peteresen Graph, P .

crossing. As usual, since we took the time to define planar, it seems

as though there must be some graphs that are non-planar. If a graph

is non-planar, then regardless of how we draw it, in order to preserve

all of the connections between vertices, there must be some edges

that cross each other. In order to get a feel for this, you should try to

redraw P from Figure 4.2 without any crossings. What is the smallest

number of crossings you can get? We define the crossing number of a

graph, G, to be the minimum number of crossings that any redrawing

of G has. We denote the crossing number of a graph, G, by cr(G).

In order to get a hold of the crossing number of a graph, which

is invariant under redrawings, we need to consider some of the other

invariant properties of planar graphs. The first concept is that of

a face. A face is any region bounded by edges. The graph G in

Figure 4.2 has two faces. One face is the region contained by the

edges connecting the following pairs of vertices: (b, c), (c, e), (e, d),

and (d, b). The other face is the rest of the plane, or the outside of the

previous face. By definition, there is always such a face outside of the

graph. Now we can present some relationships that will always hold

in a simple, planar graph. The following is called Euler’s formula.

Proposition 4.1. Given a simple, connected, planar graph, G, with

n vertices, e edges, and f faces,

n− e+ f = 2.
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Figure 4.3. These are two pictures of the same graph, before
and after drawing noses on the edges. It does not matter which
side gets the nose, just that there is a way to tell one side from
the other.

Proof. One can easily derive this by induction on edges. Given any

graph with one edge, we have two vertices and one face. If we wish to

add another edge, we have to add another vertex, or we can connect

to an existing vertex. If we connect to an existing vertex, we will

generate another face. �

Proposition 4.2. Given a simple, planar graph, G, with f faces and

e edges,

3f ≤ 2e.

Proof. To see this, go through all of your edges and draw a nose on

one side as shown in Figure 4.3. This will allow us to differentiate

between two sides of an edge. If we count the number of total sides

present in our graph, we will get 2e, as each edge has two sides. Now

count how many sides are present on each face. Each face requires at

least three sides. So there are more than 3f sides of edges. �

Combining Propositions 4.1 and 4.2 yields the following useful

Corollary.

Corollary 4.3. Given any simple, planar graph, G, with n vertices

and e > 2 edges,

(4.1) e ≤ 3n− 6.

Now we can get to the crux of our search, which is a simple

reinterperetation of Corollary 4.3. Although the quantity “crossing

number of G” does not immediately jump out of the inequality, it is
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hidden in the assumptions of the graph. In the above setting, G is

planar, and therefore has no crossings. So if we have a non-planar

graph, G0, we know that the inequality will not hold. Suppose we

look at a drawing of G0 with the minimum number of crossings, and

delete an edge that contributes at least one crossing. Now, we may

not know where such an edge is in our graph, but we do know that

if we delete any edge, our number of edges will decrease by one. Call

the resultant graph G1, and then check to see if it is planar yet. How

do we check if our graph is planar? See if it satisfies (4.1). Recall,

this criterion depends only on the number of edges and vertices, so

redrawing the graph will have no effect on the outcome. Using this

method, we can remove edges until the graph is planar and then use

Corollary 4.3. If we keep track of the number of edges that we have

removed, we can have some idea how many crossings were present in

the original graph, G0. Notice that removing an edge can cause us to

get rid of more than one crossing, so we will only have a lower bound

on the number of crossings. This is made precise in the following

theorem.

Theorem 4.4. Given a simple graph, G, with n vertices and e edges,

the crossing number is bounded below by:

(4.2) cr(G) ≥ e− 3n+ 6.

This relationship will give us a handle on the number of crossings

in a graph without having to look too closely at the structure of the

graph, which will prove to be quite useful.

2. Crossing numbers

The next theorem is one of the most important tools in the book.

We will use elementary probability theory alongside the basic graph-

theoretic results to prove it. You should make sure that no part of

the proof is lost, as these ideas are very close to the center of this

whole subject.

Theorem 4.5. Let G be a simple graph with n vertices and e edges.

If e ≥ 4n, then

cr(G) � e3

n2
.
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To start, let us suppose we are given some graph G. By Theorem

4.4 in the previous section,

cr(G) ≥ e− 3n.

Choose a random subgraph, H, of G, by keeping each vertex with

probability p, a number to be chosen later. What we mean here is

that given all possible subgraphs of our graph, we can arrive at one

subgraph in particular by keeping some of the vertices in the original

graph, where each vertex is independently kept or thrown out.

Suppose that, independently, each of our vertices is chosen with

some probability p. If we want to just consider the chosen vertices and

their connections, we can consider a subgraph. It consists of vertices

of the original graph corresponding only to the chosen vertices. If

only one of the associated vertices of some edge has been chosen, it

will not be present in the subgraph, as an edge needs two vertices

to make sense as we have defined them thus far. So, if one of these

unfortunate edges that was considered in our original graph, but not

in this particular subgraph, is removed, any crossings it contributed

to the first graph will certainly not be present in our subgraph, no

matter how it is redrawn.

As Figure 4.4 indicates, none of the edges associated with an

unchosen vertex are in the random subgraph. So we will lose an edge

if either vertex associated with that edge is not chosen. Further, note

that losing edges means that we may lose crossings.

Now, when we talk about the expected number of vertices, we

mean that if we chose one of the possible subgraphs at random, we

can expect some number of vertices. So the expected number of

vertices in a random subgraph, with vertices chosen with probability

p, will be np. Expected value is detailed in Appendix B.

So we have a handle on the expected number of vertices, but

how many edges will remain? Well, we know that we have e edges

to begin with, and each edge is kept in the subgraph only if both of

its vertices are kept. What is the probability that an edge present

in the original graph will be present in the subgraph? It will be the

probability that both of its vertices are chosen. Since the vertices are

chosen independently, each with probability p, the probability a given
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Figure 4.4. Suppose that the circled vertices from the top
drawing of the graph were selected for a particular random
subgraph. The middle shows the selected subgraph normally,
with the doomed edges and vertices drawn as dotted lines.
The bottom is a drawing of the selected subgraph.

edge will be chosen is p2. So the expected number of edges in our

subgraph will be ep2.

We have only to figure out how many crossings we can expect,

and then we can get to work cranking through the inequalities. Take

note of how much reasoning must take place before you get to push

symbols around. This just reinforces the point that the symbols are

merely tools for, and not the whole of, mathematics. Since a crossing

requires two edges that share no vertices, and each edge requires two
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distinct points, each crossing needs four points. It follows that the

expected number of crossings of H inside the drawing of G in which

the number of crossings equals the crossing number is exactly p4cr(G).

Thus the expected value of the crossing number of H does not exceed

this value. So, in sum,

E(vertices in H) = np,

E(edges in H) = ep2, and

E(cr(H)) ≤ cr(G)p4,(4.3)

where E denotes the expected value.

By (4.3), Theorem 4.4 and linearity1 of expectation,

cr(G)p4 ≥ ep2 − 3np.

Recall the strange condition in the statement of the theorem,

e > 4n. This is used to ensure that 4n
e < 1, so it can be a probability.

So, choosing p = 4n/e, as we may, since e > 4n, we obtain the

conclusion of Theorem 4.5.

It might seem odd to make deductive assertions using probabilis-

tic ideas, but remember that we are not claiming that something is

“highly likely” or that it will “probably happen”. We are making

very careful statements that merely depend upon the calculated like-

lihoods of certain events. So do not worry, we are leaving nothing to

chance!2

We will now set graph theory aside for a little while, and introduce

a closely related area, incidence theory. As you read through the

next section, try to anticipate how we will apply graph theory to this

setting, and then see how your ideas line up with the methods we

describe. Remember, the more you put into this, the more stand to

gain.

3. Incidence matrices and Cauchy-Schwarz

Let P be a finite set of n points in R
2, and let L be a finite set of m

lines. Define an incidence of P and L to be a pair (p, l) ∈ P×L : p ∈ l.

1This is not always an immediately obvious fact; see Appendix B.
2This is not to be confused with the probabilistic method, see [3].

                

                                                                                                               



3. Incidence matrices and Cauchy-Schwarz 37

Figure 4.5. An example of four lines, five points, and nine incidences.

Let IP,L denote the total number of incidences between P and L.

More precisely,

IP,L = #{(p, l) ∈ P × L : p ∈ l}.

The following figure has some points that lie on more than one

line, as well as some lines incident to more than one point.

We already proved something about IP,L in Exercise 1.4, did we

not? Let us think about it for a moment. Let δlp = 1 if p ∈ l, and 0

otherwise. Then, by the Cauchy-Schwarz inequality,

IP,L =
∑
l

∑
p

δlp =
∑
l

∑
p

(δlp · 1)

≤

⎛
⎝∑

l

∣∣∣∣∣
∑
p

δlp

∣∣∣∣∣
2
⎞
⎠

1
2(∑

l

12

) 1
2

=
√
m

⎛
⎝∑

l

(∑
p

δlp

)⎛
⎝∑

p′

δlp′

⎞
⎠
⎞
⎠

1
2

.

Notice that when we squared the second sum in p, we wrote it as the

product of a sum in p and the same sum in p′. Our next step will be
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to separate the case p = p′ from the case p 
= p′. This is a standard

way of analyzing squared sums. Continuing,

IP,L ≤
√
m

⎛
⎝∑

l

∑
p

δ2lp +
∑
l

∑
p�=p′

δlpδlp′

⎞
⎠

1
2

≤
√
m

⎛
⎝mn+

∑
l

∑
p�=p′

δlpδlp′

⎞
⎠

1
2

.

Now, for each (p, p′) ∈ P × P , p 
= p′, there is at most one l

such that δlpδlp′ 
= 0. This is because δlp = 1 means that p ∈ l, and

δlp′ = 1 means that p′ ∈ l. Since two points uniquely determine a

line, the expression δlpδlp′ cannot be equal to one for any other l. It

follows that∑
l

∑
p�=p′

δlpδlp′ ≤ #{(p, p′) ∈ P × P : p 
= p′} = n(n− 1).

Now it can be shown that the following theorem holds. You will

explore the details in Exercise 4.1.

Theorem 4.6. Let P be a set of n points in the plane, and let L be

a set of m lines. Then IP,L � m
√
n+ n

√
m.

4. The Szemerédi-Trotter incidence theorem

As pretty as this result is, it turns out that we can do better. The fol-

lowing improvement on Theorem 4.6 is due to Szemerédi and Trotter

[53].

Theorem 4.7. Let P be a set of n points in the plane, and let L be

a set of m lines. Then IP,L � n+m+ (nm)
2
3 .

We now prove Theorem 4.7 using Theorem 4.5. In order to use

Theorem 4.5, we construct the following graph. Let the points of P

be the vertices of G, and let the line segments connecting points of P

on the lines L be the edges. This construction is commonly known as

the incidence graph. This exemplifies a technique that is extremely

helpful in mathematics. We have a collection of objects that we want

to know something about, so we model them in a setting where we
                

                                                                                                               



4. The Szemerédi-Trotter incidence theorem 39

Figure 4.6. The same points and lines as before, but with
their incidence graph drawn in as well.

can make some useful statements. Then we translate those statements

back into our original setting, and if we constructed our model well,

we might learn something new.

First, we need to show that

(4.4) e = IP,L −m.

To see this, notice that each line will contribute as many edges as

incidences minus one. For example, a line with ten points on it needs

only nine edges to connect all the points on that line by edges. So

we lose one edge for the same reason every time we draw edges on a

given line. So the number of edges must be the number of incidences

minus the number of lines, as claimed in (4.4).

There are two possibilities. If e < 4n, then

(4.5) IP,L < m+ 4n,

which handles that case. If e ≥ 4n, then Theorem 4.5 kicks in, and

we have

(4.6) cr(G) � e3

n2
=

(IP,L −m)3

n2
.
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On the other hand, a crossing arises when two edges intersect at

a point that is not in the set P , and therefore, not a vertex. Lines can

only intersect each other once. There are m lines, which means that

in total, lines can intersect each other at most (m2 ) ≈ m2 times. Since

edges are drawn along lines, edges certainly need not cross, except

possibly when their related lines intersect. Therefore,

cr(G) ≤ m2.

If we compare the upper and lower bounds on the crossing number

of our graph, we get

(IP,L −m)
3

n2
� cr(G) ≤ m2.

This gives us another possible upper bound on IP,L:

(4.7) IP,L � (nm)
2
3 +m.

Combining (4.5) and (4.7), we obtain the conclusion of Theorem

4.7. The reason we can just add them is that even if one or the other

dominates, surely their sum will dominate both.

At this point, make sure that you understand the construction of

the graph G above. The specific kind of construction employed is a

big part of this book. This theorem’s original proof was much more

complicated. However, once it is viewed in a graph-theoretic setting,

it is quite simple.

One of the most misused words in mathematics is “sharp”. Nev-

ertheless, we are about to use it ourselves. We will show that Theorem

4.7 is sharp in the sense that for any positive integers n and m, we

can construct a set P of n points and a set L of m lines such that

(4.8) IP,L ≈ n+m+ (nm)
2
3 .

We shall construct an example in the case n = m, but we abso-

lutely insist that you work out the general case in one of the exercises

below. Let

P = {(i, j) : 0 ≤ i ≤ k − 1; 0 ≤ j ≤ 4k2 − 1}.

Let L be the set consisting of lines given by equations y = ax+ b,

0 ≤ a ≤ 2k− 1, 0 ≤ b ≤ 2k2 − 1. Thus, we have n lines and n points.
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Moreover, for x ∈ [0, k),

ax+ b < ak + b < 4k2,

and it follows that for each i = 0, 1, . . . , k, each line of L contains a

point of P with x-coordinate equal to i. It follows that

IP,L ≥ k ·#L =
1

4
n

4
3 .

Although Theorem 4.5 is quite powerful itself, if we explore what

it says a little bit more, we can come up with a much stronger result,

that will help us push beyond n
2
3 .

Theorem 4.8. Given a multigraph G with n vertices, e edges, and a

maximum edge multiplicity of m, and e > 5mv,

cr(G) � e3

mn2
.

This can be proven by repeatedly using probabilistic arguments

similar to those used in the proof of Theorem 4.5. We will give you

a sketch of the proof to follow in Exercise 4.8, but before this can

make any sense, you must be absolutely clear and confident with the

techniques we used there.

We will lean heavily on Theorem 4.8 for many results in this book.

To quickly illustrate its power, here is a useful variant of the classical

Szemerédi-Trotter theorem (Theorem 4.7).

Theorem 4.9. Given n points and l curves in the plane, where no

more than m of the curves go through any pair of points, and any

two curves intersect one another at most c0 times, for some finite

constant, c0, then the following upper bounds on I(n, l), the number

of point-curve incidences, and Lk, the number of curves with more

than k points on them, hold:

(1) Lk � mn2

k3 + mn
k ;

(2) I(n, l) � m
1
3 (nl)

2
3 + nm+ l.

You will prove this result in Exercise 4.9. If you are interested in

knowing how some of the constants involved in the above bounds are

computed, see [39] and [41].
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Exercises

Exercise 4.1. Complete the details of the proof of Theorem 4.6.

Exercise 4.2. Restate, in your own words, why (4.3) is given as an

inequality, and not an equality.

Exercise 4.3. For each n and m, construct a set P of n points and a

set L of m lines such that (4.8) holds. Use the argument in the case

n = m above as the basis of your construction.

Exercise 4.4. Let P be a set of n points in the plane. Let L be a

set of m curves. Let αpp′ denote the number of curves in L that pass

through p and p′. Let βll′ denote the number of points of P that are

contained in both l and l′. Use the proof of Theorem 4.6 to show that

(4.9) IP,L ≤ n
√
m

⎛
⎝∑

p�=p′

αpp′

⎞
⎠

1
2

+m
√
n

⎛
⎝∑

l �=l′

βll′

⎞
⎠

1
2

.

Exercise 4.5. Show that the estimate, I(n) ≤ Cn
3
2 , we just obtained

for points and lines in the plane is best possible for points and lines

in F
2
q . Hint: Take all the points in F

2
q as your point set and take all

the lines in F
2
q as your line set. If you are not familiar with vector

spaces over finite fields, come back to this after reading Chapter 8.

Exercise 4.6. Show that the number of incidences between n points

and n two-dimensional planes in R
3 can be n2. Suppose that we

further insist that the intersection of any three planes in our collection

contains at most one point. Prove that the number of incidences is

≤ Cn
5
3 .

More generally, prove that if we have n points and n (d − 1)-

dimensional planes in R
d, then the number of incidences can be n2.

Show that the number of incidences is ≤ Cn2− 1
d if we further insist

that any d planes from our collection intersect at at most one point.

Exercise 4.7. Prove that n points and n spheres of the same radius in

R
d, d ≥ 4, can have n2 incidences. Use the techniques of this chapter

to show that when d = 2, the number of incidences is ≤ Cn
3
2 . What

can you say about the case d = 3?
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Exercise 4.8. Prove Theorem 4.8. First, delete edges independently

with probability 1 − 1
k and then delete all the remaining multiple

edges—call this resulting graph G′. Calculate the probability pe that

a fixed edge e remains in G′. Now compare the expected number of

edges and crossings in G′ with the number in the original graph and

use Theorem 4.5. Finally, use Jensen’s inequality, which is detailed

in Appendix C, with f(x) = xa, which says that E[xa] ≥ (E[x])a for

a ≥ 1.

Exercise 4.9. Prove Theorem 4.9. Use the modified crossing num-

ber theorem, Theorem 4.8, and follow the proof idea of the classical

Szemerédi-Trotter theorem, Theorem 4.7.

Exercise 4.10. Is Theorem 4.9 always stronger than the one in Ex-

ercise 4.4? Give explicit examples to support your belief.

                

                                                                                                               



Chapter 5

The n4/5 theory

In this chapter, we will use the graph theory which already con-

tributed to our journey in the previous chapter by improving the

Erdős exponent from 2/3 to 4/5. The new key feature here is the use

of bisectors. We shall take advantage of the fact that the centers of

circles passing through a given pair of points lie on their bisector line.

1. The Euclidean case: Straight line bisectors

Suppose that a set, P , of n points determined t distinct distances.

Draw a circle centered at each point of P containing at least one

other point of P . By assumption, we have at most t circles around

each point, and thus the total number of circles is bounded above by

nt. By construction, these circles have n(n − 1) incidences with the

points of P . The idea now is to estimate the number of incidences

from above in terms of n and t and then derive the lower bound for t.

Delete all circles with at most two points on them. This elimi-

nates at most 2nt incidences, and since we may safely assume that

t is much smaller than n, the number of incidences of the remaining

circles and the points of P is still � n2. Form a graph whose vertices

are points of P and edges are circular arcs between the points. This

graph G has ≈ n vertices, ≈ n2 edges, and the number of crossings is

� (nt)2.

45

                                     

                

                                                                                                               



46 5. The n4/5 theory

Figure 5.1. Edges along arcs of circles contributed by a
point, p, with one of its circles deleted.

Suppose for a moment that we can use Theorem 4.5. Then

e3

n2
� cr(G) � (nt)2,

and since e ≈ n2, it would follow that

n4 � n2t2,

which would imply the Erdős distance conjecture. Unfortunately, life

is harder than that, since Theorem 4.5 only applies if there is at most

one edge connecting any pair of vertices. In our case, we may assume

that there are at most 2t edges connecting any pair of vertices. (Why?

See Exercise 5.1 below.) Applying Theorem 4.8 we see that

e3

tn2
� cr(G) � n2t2,

which implies that

t � n
2
3 ,

                

                                                                                                               



1. The Euclidean case: Straight line bisectors 47

Figure 5.2. The bisector of p1 and p2 has four points on
it. The arcs of the circles centered at those four points could
contribute as many as four edges between p1 and p2.

Moser’s bound from Chapter 2. All of this for n
2
3 ?! We must be able

to do better than that! How can we improve the estiamate? One way

is to study edges of high multiplicity separately.

We try to take advantage of the following phenomenon. Let

p, p′ ∈ P . The centers of all of the circles that pass through p and p′

are located on the bisector, lpp′ , of the points p and p′ in P .1

Let k be an integer to be determined later, and consider all of the

bisectors with at least k points on them. How many such bisectors are

there? Recall that the Szemerédi-Trotter incidence bound (Theorem

4.7) says that the number of incidences between n points and m lines

1The bisector of p and p′ is the set of points that are equidistant to p and p′.
Formally, lpp′ = {z ∈ R

2 : |z − p| = |z − p′|}. In the Euclidean metric, this turns out

to be the line perpendicular to the line segment pp′ through its midpoint. For more
general metrics see Exercise 5.2.
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is � (n + m + (nm)
2
3 ). Let mk denote the number of lines with at

least k points. Then the number of incidences is at least kmk. It

follows that

kmk � n+mk + (nmk)
2
3 ,

and we conclude that

(5.1) mk � n

k
+

n2

k3
.

Consider the following lemma, which we will prove later.

Lemma 5.1. The number of incidences of lines with at least k points

is � n2

k2 + ctn log n.

This implies that bisectors with at least k points on them have

(5.2) � n log n+
n2

k2

incidences with the points of P .

Let Pk denote the set of pairs, (p, p′), of P connected by at least

k edges. Let Ek denote the set of edges connecting those pairs. Each

edge in Ek connecting a pair, (p, p′), corresponds to exactly one inci-

dence of lpp′ with a point, p′′, in P . However, an incidence of such a

p′′ with some lpp′ corresponds to at most 2t edges in Ek, since there

are at most t circles centered at p′′. It follows that

#Ek � tn logn+
tn2

k2
.

Note that we are almost certainly overcounting Ek here, since we

are removing all possible edges corresponding to incidences—not just

those that contribute to high multiplicity. This will ensure that we

do not remove too many edges to have an effective estimate.

Now, if we choose k = c
√
t, for an appropriate constant c, then

#Ek ≤ n2

2
.

If we now erase all the edges of Ek, there are still more than n2

2

edges remaining. Applying Theorem 4.8 once again, we see that

e3

kn2
≤ cr(G) ≤ n2t2.
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Since k ≈
√
t and e ≈ n2, it follows that

t � n
4
5 .

Pending the proof of Lemma 5.1, we have just proved the follow-

ing theorem of Szśekely [52].

Theorem 5.2 (Székely [52]). Let P be a set of n points in the plane.

Then

#Δ(P ) � n
4
5 .

Now we prove Lemma 5.1.

Proof. First, notice that the number of lines incident to 2i points is

at most c n2

23i , provided that i is an integer such that 2i ≤
√
n. This

is because if there were more, the total number of such lines would

exceed the bound from Theorem 4.7, part (a). You will work out the

details for this in Exercise 5.4.

This takes care of the lines incident to fewer than
√
n points.

Since a line with fewer than
√
n points can contribute no more than

k incidences, we get fewer than n2

k2 incidences from these lines. If a

given line is incident to more than
√
n points, the Szemerédi-Trotter

theorem will no longer help. This case is even easier though, in light

of a simple inclusion-exclusion2 argument in [51]. Since lines can

intersect each other at most once, by definition, we are guaranteed

that there can only be so many lines incident to a relatively large

number of points. After recognizing this, there are merely a few

simple things to count, and we are done.

To nail down the inclusion-exclusion argument, let l ≥
√
2n. La-

bel the lines incident to more than l points by calling each of them Ai,

where i is an index. Let |Ai| denote the number of points incident to

that line. Let Nl be the number of lines with between l and 2l points,

where l ≥ 4
√
n. For the lemma to hold, we need Nl ≤ 4n

l . So, given

l ≥ √
n, suppose that Nl ≥ 2n

l , and arrive at a contradiction:

n = |E| ≥

∣∣∣∣∣∣
⋃

l≤|Ai|≤2l

|Ai|

∣∣∣∣∣∣
≥

Nl∑
i=1

∣∣∣∣∣∣
Ai \

⎛
⎝

i−1⋃
j=1

Aj

⎞
⎠
∣∣∣∣∣∣
,

2Inclusion-exclusion refers to statements such as the following: |A ∪ B| = |A| +
|B| − |A ∩ B|.
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upon possibly reordering the Ai’s to put those considered in the union

first. This sum is clearly greater than or equal to

Nl∑
i=1

max(0,m− i) ≥
4n
l∑

i=1

max(0,m− i) ≥

√
n∑

i=1

max(0, 4
√
n− i)

≥
√
n(4

√
n−

√
n) ≥ 3n.

So we have a contradiction, implying that Nl ≤ 4n
l .

Now, to get the total number of incidences, Ai, we sum over all

of them. However, when doing so, we group lines by which powers of

two are directly greater than and less than the number of points on

each line:
∑

i:|Ai|≥|
√
n

2|Ai| ≤
∑

i:2j≤i≤2j+1

2j+12N2j ≤
∑

i:2j≤i≤2j+1

2j+12
4n

2j

≤ 4n
∑

√
n≤2i≤n

1 ≤ 4n logn.

This completes the proof of Lemma 5.1. �

Another important idea is illustrated in the previous proof. When

seeking to bound something like this, it is useful to consider different

cases. Above, we had different bounds for lines with “many” and

“few” points. (Exercises 5.3 and 5.4 illustrate how the lines with

many and few points are bounded differently.) We found a balance,

and we gained over either estimate by using both. This is of course

hidden in the fact that the upper bound in Theorem 4.7 has all of the

possible dominating terms summed together, so it handles all cases

simultaneously. One could just as easily state the theorem as follows:

Theorem 5.3. Let P be a set of n points in the plane, and let L be

a set of m lines. Then at least one of the following is true:

(1) IP,L � n,

(2) IP,L � m, or

(3) IP,L � (nm)
2
3 .

We heavily exploit the fact that we can address the different

bounds separately, and that is how we gain over the n
2
3 bound we

achieved first.
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2. Convexity and potatoes

Throughout the book so far, we have asked you to pause after some

of the main arguments and think about what aspects of the standard

Euclidean metric were really necessary to apply the techniques that

made things work. In this section we take only a slight diversion from

that general scheme by introducing a new class of metrics that does

not contain the standard Euclidean metric. In this case, it will be

necessary to work a little harder and build on the ideas already pre-

sented, rather than directly explore possible relaxations to previous

assumptions.

The metrics we introduce here are called potato metrics. The

classification of such metrics is that they are strictly convex, which

we will describe below, and all pairs of their bisectors can intersect in

at most c0 points, for some constant c0. As mentioned in Chapter 1,

these need not be symmetric.

What does it mean that a metric is strictly convex? One way

of visualizing a strictly convex metric is to pick a point and draw

a “circle” around it, corresponding to all the points of some fixed

distance from that point. If these points form a strictly convex shape,

then we will call our metric strictly convex. Basically, strictly convex

excludes flat sides, whereas merely convex would allow for such flat

sides. A more precise definition of convexity is that for any two points

in a set, any convex combination of those two points is in the set as

well. A convex combination of two elements, a and b, is λ1a + λ2b,

where λ1 and λ2 are positive real numbers, and λ1 + λ2 = 1. In a

strictly convex set, any convex combination of points cannot lie on

the boundary or outermost points of the set.

What is an example of a metric which is strictly convex but not

circular? What if you were in a canoe, floating down a river. You

could measure the “distance” between two points as the time it takes

to get from one to another in your canoe. It will probably take less

time to flow with the current of the river than against it, so all of

the points that you can reach in ten seconds that are more or less

downstream from your boat are probably farther away from your

current position than the points that you could reach in ten seconds

that are relatively upstream from where you are right now.
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Figure 5.3. The circle centered at a is from the standard
Euclidean metric. The circle centered at b is a strictly convex
metric, which could be thought of as from a canoe metric. The
circle centered at c is from a convex, but not strictly convex
metric, and the locus of points centered at d cannot be the
circle of any metric, as they do not form a convex shape.

If you look at Figure 5.3, you should get a pretty good idea of

what is strictly convex and what is not. Now we address the issue of

bisectors. In the Euclidean case, bisectors of points were just straight

lines that ran through the midpoint of two points, and were per-

pendicular to the line through the two points. However, if we have

two (or more) pairs of points, where the lines through each point

pair are parallel, and the midpoints of each point pair all lie on the

same line perpendicular to the parallel lines, we will have the same

bisector for each point pair! This means that there are clearly more

than constantly many intersections between different bisectors. So

the standard Euclidean metric is not a potato metric.

Since we are dealing with convexity so directly here, it is a good

time to introduce the notion of convex hull. Suppose you have a set

V ⊂ R
d that is not necessarily convex. The convex hull of V would be

the set of all convex combinations of elements in V . You can think of

this as “filling in the gaps” of a non-convex set to construct a convex
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Figure 5.4. The first picture is a non-convex set, V , as illus-
trated by the fact that c = 1

2
a+ 1

2
b, a convex combination of

two points, a, b ∈ V , is not in V . The second picture illus-
trates how we find the convex hull, and the third picture is
the convex hull of V . The last picture shows that the point c,
from before, is indeed contained in V .

set. This is an extremely important notion in mathematics. We do

not use it much in this particular book, but if you continue to study

mathematics, you will find that it pops up all over the place!

Notice that convex sets obviously contain their interiors. A circle

is just a closed curve in the plane, but a disk contains all of the points

inside of that closed curve. Be careful of the distinction between

convex sets and the convex curves that form their boundaries. In

order to make this more precise, we will introduce the symbols ∂

and ◦. This is illustrated in Figure 5.5. If we have a set S, let the

outermost points be called the boundary and denoted ∂S. All of the

points contained properly inside of the boundary and not containing

the boundary will be denoted S◦. Much, much more can be said

about topology and the theory of open and closed sets, but we make

no attempt to address that here. Suffice it to say that we will just

borrow some notation.

                

                                                                                                               



54 5. The n4/5 theory

Figure 5.5. The first picture is a set J , which could also be
called (∂J)◦, the interior of the boundary of J . The second
picture is the boundary of J , denoted ∂J . The third is J ∪∂J .

Now that we have the general concepts of convex hull, boundary,

and interior, we can present the following lemma, which will also serve

to illustrate another way in which strictly convex metrics exhibit their

ability to behave well. This lemma may seem a bit unusual at first,

but it will become quite handy when we try to deal with any strictly

convex metrics, and in the section to come, potato metrics. If we are

considering the metric K, we will call all distances with respect to

this metric K-distances, and similarly, refer to K-circles.

Lemma 5.4. Given a strictly convex metric, K, two K-circles,

CK(x, r) and CK(y, s), can intersect in at most two points, when

x 
= y and r 
= s, where x and y are points in the plane, and r and s

are the radii of the corresponding K-cricles centered at x and y.

Proof. Without loss of generality, we will assume that the second

K-circle has radius 1 and is centered at the origin, or that y = (0, 0),

and s = 1. This is perfectly acceptable, because once we have a result

in that case, we are free to translate3 and dilate any other situation

into this one. We will call the radius 1 K-circle centered at the origin

SK . The other one will be called αSK + p for appropriate α > 0 and

p. You will do an example of finding such α and p in Exercise 5.8.

We will continue this proof by way of contradiction. Suppose that

a, b, and c are three distinct points that lie on both K-circles. We can

assume that they are not collinear, as this would immediately violate

3If you are unfamiliar with it, the notion of translation is explored in and around
Proposition 10.1. The context there is in vector spaces over finite fields, but the proof

reads nearly identically for R
d with a few obvious modifications.
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Figure 5.6. Here is a picture of Sk intersecting with the
translated and dilated αSk + p. Note that the points a and
b lie on both circles, and in some sense, a′ and b′ lie on Sk,
whereas a and b lie on αSk + p.

our strict convexity assumption. We know that a, b, c ∈ SK ; this also

means that a′, b′, c′ ∈ SK , where a′ = α−1(a − p), b′ = α−1(b − p),

and c′ = α−1(c − p). Call DK the set of points on and inside SK ,

(so SK is the boundary of DK , ∂DK , and DK is the interior of SK ,

S◦
K). Let T and T ′ denote the triangles abc and a′b′c′, respectively.

Call D′
K the convex hull of T ∪ T ′. Since a, b, c, a′, b′, and c′ are all

in DK , and DK is convex, D′
K ⊂ DK . Since they all lie on SK , they

must also all lie on S′
K = ∂D′

K .

Observe that S′
K consists of some number of edges of the trian-

gles T , T ′ and at most two additional line segments. You will work

these details out in Exercise 5.7. We will handle two seperate cases.

Suppose for now that for each triangle, at most one of the pair of

congruent edges is in S′
K (e.g., either ab or a′b′ is in S′

K , but not

both). The boundary of S′
K consists of as many as but no more than

five line segments. So it can have no more than five vertices.4 If all

six of the aforementioned points were on S′
K , then at least three of

them must be collinear.

Now, if the three collinear points are distinct, then, since they

were all on SK , that means that SK contains a line segment. This

violates the strict convexity condition of our metric, so the three

collinear points cannot be distinct. That means that, again, without

loss of generality, either a = a′ or a = b′. We say “without loss of

4Here, by vertices we refer to the corners of a shape, not the vertices of a graph.
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Figure 5.7. These are some of the possibile ways a = a′ and
a = b′ could occur.

generality” here because if it were actually the case that c = c′, we

could simply rename the points so that c was a and continue the proof

precisely as written. The same would hold if b = b′.

If a = a′, then α 
= 1, which means that a, b, and b′ are distinct

and collinear. If a = b′, then a, a′, and b are distinct and collinear.

Either way, we argue as in the last paragraph to get a contradiciton.

Now, recall our earlier assumption that for each triangle, at most

one of the pair of congruent edges is in S′
K . If that was not actually

the case, then we have a scenario where, without loss of generality,

the segments ab and a′b′ are contained in S′
K . Again, this means that

there are at least three distinct collinear points in S′
K , which violates

our strict convexity assumption.

So, we have exhausted all possible cases of three points on the

intersection of three or more points in CK(x, r) and CK(y, s), and

rigorously shown the result. �

3. Székely’s method for potato metrics

This section is quite dense. We include it here because it is basically

the same argument as above, but with some significant modifications.

This serves to illustrate how you can take the ideas used to prove one

fact and change them to suit a particular need. These modifications

get quite involved, and if you start to lose sight of the goal, feel free

to start the next chapter and come back to this section later.
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We presented Székely’s method above, which gave us n
4
5 for the

Euclidean metric. We will now set out to get a lower bound on the

size of distance sets of potato metrics. In the proof to follow, as in

many such proofs, when we wish to show something about all objects

in a particular class, we will pick an arbitrary member of that class,

and show that the desired result holds. Then we know it is true for

any element in that class. With this in mind, we fix an arbitrary

potato metric, K, and proceed.

The basic idea behind this argument is the same as behind the

proof of Theorem 5.2. We draw K-circles about each point, such that

they cover all of the points of the set. Let n and t be defined as in the

proof of Theorem 5.2. Again, we will delete all circles with strictly

fewer than three points on them. We can get away with this for the

same reasons that we got away with it last time. We will construct

the same kind of multigraph, G, using the points as vertices, and the

arcs of the K-circles connecting consecutive points as edges. Since

the number of K-circles around any given point can be no more than

t, there are about n2 edges in our graph.

So far, everything is the same, but when we try to get upper and

lower bounds for the crossing number with Theorem 4.8, we have a

problem. Since the bisectors of potato metrics are not necessarily

straight lines, we do not, a priori, have a good upper bound on the

maximum edge multiplicity.

We know that if there are k edges connecting two vertices, then

there must be k points on the bisector of the pair of points corre-

sponding to the pair of vertices connected by so many edges. So we

will eventually use Theorem 4.9 to get good bounds on edge multi-

plicity, as before. In order to use that result, though, we will need to

know how many bisectors can go through a pair of points.

So let us start by constructing a new multigraph, H, with the

same vertices as G, but whose edges are arcs of the (n2 ) different

bisectors. However, in this graph, we will actually make a small

adjustment to the edges. If a bisector is incident to a point that does

not contribute any edges to G, we will modify the corresponding edge

in H by drawing it in such a way as to circumvent the point, but not
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Figure 5.8. If the point p does not contribute edges to G
that pass through the K-bisector shown, it is unnecesary to
consider it in H. The figure on the left shows two edges,
connecting a to p, and p to b. The figure on the right shows
only one edge, connecting a and b.

disturb the edge crossings in any way. This is illustrated in Figure

5.8. We can do this, as points are infintesimally small, so we can make

corrections to the edges that are smaller than any distance between

any point and any K-bisector.

Also, we know that the bisectors are distinct because any two

bisectors can intersect only finitely many times, by definition of the

potato metric. Of course we will not consider the arcs that go out

past all of the points to infinity. Keep in mind that we are doing this

to get a handle on the maximum edge multiplicity, m, of H.

Proposition 5.5. If K is a potato metric, then m, the maximum

number of edges between any pair of vertices in H, the graph of K-

bisectors determined by a set of n points, is at most 2t, where t is the

maximum number of K-circles around any point.

Assuming the proposition for now, we can appeal to Theorem 4.9

and get that the number of bisectors in H that contain at least k

points is bounded above by tn2

k3 as long as k � √
n. Similarly, the

number of bisectors containing at least k points is bounded above by
tn
k when k � √

n. So, as before, if we remove all edges of multiplicity

greater than k, the most edges we will lose will be bounded above by
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the following sum, which is indexed by i:

∑
{i:k<2i�√

n}

tn2

23i︸︷︷︸
bisectors

2i︸︷︷︸
arcs

+
∑

{i:
√
n�2i�n}

tn

2i︸︷︷︸
bisectors

2i︸︷︷︸
arcs

� tn2

k2
+ tn log2 n.

Again, we can let k ≈
√
t, and still retain about n2 edges after

deleting edges with multiplicity greater than k. Now when we apply

Theorem 4.8, we have the same upper and lower bounds as before:

n6

t
1
2n2

� e3

kn2
� cr(G) � n2t2.

After doing the arithmetic, we get

t � n
4
5 .

This means that we have shown the following theorem, pending proof

of Proposition 5.5.

Theorem 5.6. Let P be a set of n points in the plane. Suppose

the metric used to measure distance is a potato metric; that is, it is

strictly convex, and all pairs of bisectors can intersect each other in

at most c0 points, where c0 is some constant. Then

#Δ(P ) � n
4
5 .

In order to prove Proposition 5.5 about H, that is, the assertion

that m ≤ 2t, we need to look at the way that K-circles intersect. Now

the lemma in the previous section does not look strange! Indeed, we

need Lemma 5.4 to start us off. We will use it to prove the following

lemma, which will be the final step before we can set off proving

Proposition 5.5. The following proofs will most likely require several

readings for all of the ideas to become apparent. These are highly

technical arguments, so do not worry if something seems unclear the

first time through.

Lemma 5.7. Suppose CK(x, r) and CK(y, s) intersect in two points.

Let xo and xe be the points on CK(y, s) with the largest and small-

est K-distances to y, respectively. Then the intersections will lie on

different sides of the line l that passes through xo and xe.
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Figure 5.9. This is one possible depiction of CK(x, r) and
CK(y, s) intersecting in exactly two points.

Proof. We can assume x 
= y, as in this case, there are no intersec-

tions unless r = s, in which case there are infinitely many intersec-

tions. So either way, that case violates our assumption of only two

intersections.

We will first notice that by definition of xo, it is unique. We know

it is unique because it is the intersection of CK(x, r) and l, which is a

single point. Let A+ denote the arc above xo and xe, and A− denote

the arc below. Since xo is unique, there is at least one intersection,

on each of A+ and A−, close to xo. So for every s′′ strictly between

‖y − xo‖ and ‖y − xe‖, there is exactly one intersection with A+

and A−, because if there were more than two intersections, it would

violate the strict convexity assumption by Lemma 5.4. Of course,

there is once again only one unique intersection between CK(x, r)

and CK(y, ‖y − xe‖), which, by definition occurs at xe. �

Finally, we can prove Proposition 5.5. You should go back and

reread the construction of the graph H for this proof to make sense.

Consider theK-circles CK(x, ri) and CK(y, sj). By the criterion given

for an edge to hit a point corresponding to the K-bisector it lies on,
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Figure 5.10. Here, we show only a fixed radius, ri, for the
K-circle centered at x.

we need arcs from aij to bij that are edges on both CK(x, ri) and

CK(y, sj). We aim to show that this can happen at most 2t times,

by showing that only two of the t possible pairs satisfy the requisite

conditions to have an edge in H hit x.

Now, if the arc between aij and bij corresponds to an edge in G,

it contains either xo or xe. Without loss of generality, we assume that

it contains xo. This means that any other arc between aij′ and bij′

for j′ < j cannot be in G, as it would split the edge connecting aij
and bij . There is a similar argument for xo and j′ > j.

So, each circle about x can contribute at most 2 edges in H, and

there are no more than t circles about x. Therefore, our maximum

edge multiplicity in H is 2t, as claimed.

Exercises

Exercise 5.1. Explain why there can be at most 2t edges connecting

two vertices in the graph G from the proof of Theorem 5.2. Think

about where the edges come from, and derive a contradiction if there

are more than 2t edges connecting two vertices.
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Exercise 5.2. Consider the l1 metric defined in Exercise 0.4. Try

to figure out what bisectors look like for this metric. Look at the

following point pairs first: (1, 0) and (−1, 0), then try (0, 0) and (1, 2),

and finally examine (1, 1) and (−1,−1). Why was the last example

so different?

Exercise 5.3. Show explicitly why there can be no more than cn
2

k3

lines with more than k points on them when k � √
n, where c is some

constant which does not depend on n or k.

Exercise 5.4. After doing Exercise 5.3, what can you say about lines

with more than k points on them when k � √
n? It is important to

understand how these bounds are different, and what the plus signs

in the right hand side of Theorem 4.7 mean.

Exercise 5.5. Show that any convex set is its own convex hull.

Exercise 5.6. Suppose V is any set with a concavity, that is, a convex

combination, c, of two points in V that is not itself in V . Show that

the convex hull of V is not strictly convex. Hint : You might want

to distinguish points on the boundary of sets from points not on the

boundary of sets.

Exercise 5.7. Convince yourself that if a, b, c, x ∈ R
2, α > 0 ∈ R,

a′ = α(a+ x), b′ = α(b+ x), and c′ = α(c+ x), then for the triangles

T = abc and T ′ = a′b′c′, the convex hull of T ∪ T ′ is a polygon with

at most five edges or a line segment. Hint: Notice that at most one

of the segments ab or a′b′ can be on the boundary of the convex hull.

Exercise 5.8. Use the statement that we showed precisely in Lemma

5.4 (the “WLOG” statement, for y = (0, 0) and s = 1) to show that

for a strictly convex metric K, the following K-circles can intersect

at most twice: CK((0, 2), 2) and CK((2, 0), 2).

Note that we do not specify the metric, K, as we do not need to.

You will have to pick one of the circles to translate to the ori-

gin, and then translate both accordingly. Do this with a change of

variables. If you let y = (2, 0)− (2, 0) = (0, 0), then you will have to

let x = (0, 2) − (2, 0) = (−2, 2), where the subtraction here denotes

a vector or coordinatewise subtraction. Then you will have to do

something similar to get the associated K-radius of the K-circle
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centered at y to be 1. Just as a heads up, it is not so simple as

just dividing both radii by two. Why?

Exercise 5.9. In the proof of Theorem 5.6, we needed an estimate for

the maximum edge multiplicity of the graph, H, consisting of points

in the plane and potato metric bisectors. Lemma 5.5 provides a sharp

bound, but without going through all of that, prove that m � t2 using

the following two facts. The term K-radius refers to the K-distance

of a point on a K-circle from the center of the K-circle.

1) Given two points, x and y, we know how many K-circles can

maximally be centered at each of them.

2) It takes two points on circles of the sameK-radius to determine

a bisector.

Exercise 5.10. Show that the intersection of two convex sets is con-

vex. Hint : All you need to do is write down the definition of convexity

and the definition of intersection.

                

                                                                                                               



Chapter 6

The n6/7 theory

In this chapter, we present the beautiful Solymosi-Tóth argument,

which will get us up to n6/7 and open the door to further important

developments that we sketch in the next chapter. We start out with

the following beautiful observation due to József Beck [5]. The proof

we give is from [45].

1. The setup

Lemma 6.1. Let P be a collection of n points in the plane. Then

one of the following holds:

(1) There exists a line containing ≈ n points of P .

(2) There exist ≈ n2 different lines each containing at least two

points of P .

Proof. Let Lu,v be the number of pairs of points of P which deter-

mine a line that goes through at least u, but at most v points of

P . From (5.1) and basic counting arguments we know that Lu,v �
n2v2

u3 + nv2

u (see Exercise 6.3). Fix a constant C, and consider LC,N/C .

Then

LC,N/C ≤
�log(N)∑

i=0

LC2i,C2i+1 =

�log(N)∑
i=0

O

(
4N2

C2i
+ 4CN2i

)

= O

(
N2

C

�log(N)∑
i=0

2−i +NC

�log(N)∑
i=0

2i

)
= O

(
N2

C

)
.

65

                                     

                

                                                                                                               



66 6. The n6/7 theory

In other words, for some Co > 0 we have LC,N/C ≤ Co

(
N2/C

)
.

Thus for the appropriate choice of C, at least half of the pairs of points

determine a line through fewer than C, or at least N/C points. And

consequently, at least a fourth of the pairs go through fewer than C

points, or a fourth go through at least N/C points. In either case we

are done. �

Consider a set, P , of n points and let L denote the set of lines

passing through at least two points of P . If all the points lie on one

line, then there are obviously more than n6/7 distinct distances. If

not, an averaging argument (see Exercise 6.1) applied to Lemma 6.1

implies that there exists an absolute constant, co, such that at least

con points of P are incident to at least con lines of L. Then let B be

the set of such points, and take some arbitrary point a ∈ B.

Draw in the lines through a that go through points of P . There

must be at least con such lines. Choose one point other than a on

each of these lines and draw in the circles around a that hit those

chosen points (deleting those incident to fewer than 3 points). On

each of these circles, break the points in triples, possibly deleting as

many as 2 from each. We still have � n points left by our hypotheses.

(Check!)

Let k be an number which will be chosen later. We call a triple

“bad” if all three bisectors of its points go through at least k points.

If a line is incident to k or more points, we will say that it is k-rich.

We call the initial point a from B “bad” if at least half of its triples

are bad. We would like to choose k such that at least half the points

of B are bad. Clearly, the smaller k is the “easier” it is to get k-rich

lines and thus more bad points. However, it will become clear that

we would like k as large as possible. You will show in Exercise 6.2

that we may take k = c2n
2

t2 .

Then, if we can get the following upper and lower bounds on the

number of incidences, I(Lk, P ), of k-rich lines and bad points, we will

be done:

n2/t2/3 � I(Lk, P ) � t4/n2.

Finding an upper bound on I(Lk, P ) is straightforward. We sim-

ply apply (5.1) to find a bound on the number of k-rich lines, and
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Figure 6.1. The point a is in B. Suppose we chose p1, then
p2 and p3 could not be chosen for a to contribute to the circles.
The circle containing p4 will be deleted. The points p5, p6, and
p7 form a triple. The point pairs (p6, p7) and (p8, p9) share a
bisector with three points on it.

then use Theorem 4.6 to get that I(Lk, P ) � n2/k2. Obtaining a

lower bound on the quantity I(Lk, p) in terms of n and t is somewhat

harder. The following lemma is the key to the whole proof.

2. Arithmetic enters the picture

Lemma 6.2. Let T be a set of N triples, (ai, bi, ci), of distinct real

numbers such that ai < bi < ci for i = 1, . . . , N , and ci < ai+1 for all

but at most t−1 of the i. Let W = {ai+bi
2 , ai+ci

2 , bi+ci
2 : i = 1, . . . , N}.

Then |W | � N
t2/3

.

Proof. Let the range of a triple, (a, b, c) ∈ T , be defined as the

interval [a, c]. By assumption, the sequence (a1, b1, c1, a2, b2, c2, . . . ,

aN , bN , cN ) can be partitioned into at most t contiguous monotone

increasing subsequences. Partition the real axis into N/(2t) open
                

                                                                                                               



68 6. The n6/7 theory

intervals so that each interval fully contains the ranges of t triples.

These intervals are constructed from left to right. Let x denote the

right endpoint of the rightmost interval constructed so far. Discard

at most t triples whose ranges contain x, and move to the right until

you reach a point y that lies to the right of exactly t new ranges. We

add (x, y) as a new open interval, and continue in this manner until

all triples are processed.

Let s be one of the open intervals defined in the previous para-

graph. Let

S :=
⋃

j:{aj ,bj ,cj}∈s

{
aj + bj

2
,
aj + cj

2
,
bj + cj

2

}
.

Each triple in T whose range is fully contained in s contributes three

elements to W ∩S, and no two triples of T contribute the same triple

of the form (
aj + bj

2
,
aj + cj

2
,
bj + cj

2

)

to W ∩ S. For every three elements in W that were contributed by

elements in s, there is exactly one unique triple. Since there are
(
|W∩S|

3

)
≈ |W ∩ S|3

ways to choose unique triples, |W ∩ S|3 � t, the number of triples in

the interval. It follows that |W ∩S| � t
1
3 , since otherwise the number

of distinct triples of its elements would be smaller than t. If s′ is

another interval, with corresponding set S′ contributing elements to

W , notice that S∩S′ = ∅. Since the number of intervals, processed like

s, is N/(2t), the conclusion of the lemma follows by the multiplication

principle. �

For each point, p 
= a, in a bad triple, map p to the orientation of

the ray −→ap. By construction, we can set up a correspondence between

W and k-rich lines. Therefore the number of k-rich lines incident to

a is � n/t2/3. Since a was an arbitrary element of B, we get that

I(Lk, P ) � n2/t2/3.

Recall that Exercise 6.2 shows that if we take k = c2n
2

t2 , then half

of the points of P are “bad”. Now we just write everything that we
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know together on one line:

t4

n2
≈ n2

k2
� I(Lk, P ) � n2

t
2
3

.

A little bit of pencil pushing shows that this implies the desired

bound. See [43] for the details and some more specific hints on some

of the exercises.

Theorem 6.3 (Solymosi-Tóth [43]). Let P be a set of n points in

the plane. Then

#Δ(P ) � n
6
7 .

Exercises

Exercise 6.1. Write up the details of the averaging argument which

tells us that “many” points go through “many” lines of L. Hint:

Recall that, as before, we may assume that t = o(n).

Exercise 6.2. Work out the details showing that we may take k =
c2n

2

t2 and at least con/2 points of B will still be bad. Do this by

constructing a multigraph, G, out of the points that are part of the

triples as in the proof of Theorem 5.2. Find a way to draw g good

edges for each point, where g is the number of good points. Next,

apply the result of Theorem 4.8. Be sure to take into account the

possiblity that e < 5mv.

Exercise 6.3. Check that (5.1) and basic counting arguments give

us that Lu,v � n2v2

u3 + nv2

u .

Exercise 6.4. Find the constants C and Co in the proof of Theorem

6.1, and write up the details of why we are done in the case where at

least a fourth of the pairs go through at least N/C points of P .
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Beyond n6/7

If you recall, the gain made from n
2
3 to n

4
5 came from considering the

bisectors that were incident to many points. These bisectors came, of

course, from pairs of points. Then, the gain from n
4
5 to n

6
7 came when

we considered bisectors associated with triples of points. As you may

imagine, more improvements have come from creatively considering

quadruples of points, etc. Following this line of reasoning leads to

many interesting questions and ideas. This chapter will outline some

of these, and hopefully convince you to keep exploring.

1. Sums and entries

We now introduce some new notation for the types of statements that

we will be concerning ourselves with here. If k is a positive integer, we

informally refer to α as the strength of the statement SE(k, α). We

now turn our attention to defining these notions in a precise manner.

Definition 7.1. Consider an M × k matrix, A, with distinct entries.

For now, we will assume that the entries are real numbers. Let S be

the set of all pairwise sums of entries of A in the same row. That is,

S := {aij + ail : j 
= l}.

Define SE(k, α) to be the assertion that

M � #(S)α.
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The search for values of k and α that make the statement SE(k, α)

true is called the sums and entries problem.

Exercise 7.1. Explain, in your own words, how the statement

SE(3, 3) is equivalent to Lemma 6.2.

Exercise 7.2. Trace through the reasoning in the previous chap-

ter and show that if we replace portion involving Lemma 6.2 with a

statement SE(k0, α0), then we are guaranteed to have n
4

5− 1
α0 distinct

distances. Hint: Show that in the Erdős distance problem setting,

SE(k0, α0) implies that there are more than n

t
1− 1

α0

different sums.

2. Tardos’ elementary argument

Now that we have established a relationship between the Erdős dis-

tance problem and the sums and entries problem, by way of the pre-

vious two exercises, we will use ideas in the latter to improve results

in the former. The following comes from [54].

Theorem 7.1. Given an M × 5 matrix, A, with distinct entries, let

S be the set of all pairwise sums of entries of A in the same row.

That is,

S := {aij + ail : j 
= l}.
Then M � #(S)

11
4 . In other words, SE(5, 114 ) holds.

Proof. Let the size of S be n. We will call a number x a heavy

number, with weight 1
4 , if it can be written as a difference of two

elements of S in at least n
1
4 different ways. This can also be called the

number of representations of a number x. Notice that the differences

between entries on the same row can be expressed as differences of

sums, since ail − aim = (ail + aij)− (aim + aij).

We will similarly define a heavy row to be a row with a pair of

entries whose difference is heavy. If a given row has no such pair of

entries, we will call it a light row. We will show that both the number

of heavy rows and the number of light rows can be bounded above by

n
11
4 . Notice that this is very similar to the ideas behind the proofs of

Theorem 1.1 and the high multiplicity edge deletion part of the proof

of Theorem 5.2.
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Since there are only n2 total representations of numbers as dif-

ferences of elements of S, we can be assured that there are at most

n
7
4 heavy numbers. Now, if we focus our attention on heavy rows, we

can see that each heavy row has some entry ail such that ail − aim
is a heavy number, and ail + aim is in S. If we average these two

numbers, we get ail back. That is,

(ail − aim) + (ail + aim)

2
= ail.

There can be no more than a constant multiple of n averages for each

heavy number, so in total, there are no more than n
11
4 of these types

of averages. Since we know that entries in our matrix A are distinct,

we can have no more than n
11
4 heavy rows.

We will now attempt to bound the number of light rows. Define

the number slm(i) to be the sum of the lth and mth entries in the ith

row, that is,

slm(i) = ail + aim.

Clearly, every such slm(i) ∈ S. Notice that there are no more

than n2 possible values for the pair (s12(i), s13(i)), where i indexes

only light rows.

Since

s12(i)− s13(i) = ai2 − ai3 = s24(i)− s34(i),

and there are at most n
1
4 ways to represent s12(i) and s13(i), there

are only n
9
4 possibe values of the quadruple

(s12(i), s13(i), s24(i), s34(i)).

If you iterate this argument two more times, by checking the

existing quadruples against pairs (s25(i), s35(i)), you will get that

again, only n
1
4 different such pairs are possible. So there are no more

than n
10
4 different sextuples of the form

(s12(i), s13(i), s24(i), s34(i), s25(i), s35(i)).

If you continue again in this manner, you will get that there are

at most n
11
4 different octuples of the form

(s12(i), s13(i), s24(i), s34(i), s25(i), s35(i), s15(i), s45(i)).
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At last, we notice that

2ai2 = s24(i) + s25(i)− s45(i).

This means that for each light row, the entry ai2 is completely

determined by each possible octuple. So, since there are no more than

n
11
4 distinct octuples, there can be no more than n

11
4 distinct light

rows. This completes the proof of the theorem. �

If we apply this new value of α = 11
4 as indicated in Exercise

7.2, we will get the following result, which slightly outdoes Theorem

6.3. Notice that this still requires the construction at the start of the

previous chapter, but with pentuples instead of triples.

Theorem 7.2 (Tardos [54]). Let P be a set of n points in the plane.

Then

#Δ(P ) � n
44
51 .

Exercise 7.3. Describe how the idea behind rich bisectors is similar

to the idea behind heavy numbers. In what ways are these ideas

different? This is a very important point.

Exercise 7.4. Why did we stop at octuples? This exercise is meant

to be difficult, and we do not provide you with a hint.

3. Katz-Tardos method

We have just shown SE(5, 114 ), but even with k = 5, this estimate is

not optimal. Nets Katz and Gábor Tardos were able to raise the bar

and show that SE(5, 197 ) is also true. Here we will only indicate the

main ideas of the argument to keep from getting too bogged down

with details. Throughout the exposition, we will allow the reader to

complete the details via the included exercises. We will show that for

any ε > 0, however small, SE(5, 197 + ε) holds.

Exercise 7.5. Show that SE(k, α + ε) implies SE(k, α). The fact

that the matrices take real values has very little to do with what is

really going on here. Try replacing the real number entries by vectors

and see that SE(k, α) is still true for the same pairs of k and α as for

the setting that we have studied so far. If we consider two matrices, A
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and B, which satisfy the hypotheses, then their tensor productmatrix,

C, will also satisfy these hypotheses:

cil,jm = aij · blm.

After verifying this, compare the resulting exponents.

We will try to show that SE(5, α) is true, for every α > 19
7 . First,

we need to consider heavy numbers of weight 3−α. That is, numbers

which can be represented as a difference of elements in S in more

than n3−α ways. This will give us the desired number of heavy rows,

as before. Again, we will present an argument showing an identical

bound for light rows.

The main new idea here is that we will now begin considering

phenomena involving pairs of light rows, as opposed to just one light

row at a time. We want to consider the pairs of rows, (i, i′), such that

s12(i) = s12(i
′), s23(i) = s23(i

′), s34(i) = s34(i
′), s45(i) = s45(i

′).

We will call V the set of such pairs of light rows. The goal here

is to get a handle on how large V can be. Since there are n2 choices

for (s12(i), s23(i)), and the rows in question are light, there are n8−2α

choices for quadruples of the form

(s12(i), s23(i), s34(i), s45(i)).

Exercise 7.6. Use the Cauchy-Schwarz inequality to show that #V

≥ n4α−8. Hint: The quantity #V is a sum of squares, and the inequal-

ity is sharp if each choice of quadruples (s12(i), s23(i), s34(i), s45(i))

occurs for equally many light rows i.

Now, if the pair (i, i′) is in V , then we are guaranteed that

ai1 − ai3 = ai′1 − ai′3,

and

ai3 − ai5 = ai′3 − ai′5.

Now we define a function ν on V as

(7.1) ν(i, i′) = s13(i) + s35(i
′).

We can also observe that

(7.2) ν(i, i′) = s13(i
′) + s35(i)
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and

(7.3) ν(i, i′) = 2ai3 + s15(i
′).

These three equivalences of ν(i, i′) will take us through to our

conclusion.

Exercise 7.7. Show that the numbers s15(i
′) and ν(i, i′) uniquely

specify the pair (i, i′). Hint: Using (7.3), we can uniquely determine

ai3, which, in turn, uniquely specifies i. If we use the definition of V

and the fact that we know s15(i), we can find i′ the same way.

Using Exercise 7.7, we know that there are n elements of V on

which ν = ν0. We know two methods of finding different elements of

V with the same value of ν. One way is to find different pairs (i, i′)

with the same values of s13(i) and s35(i
′), and the other way is to

find such pairs with the same values of s13(i
′) and s35(i).

Now we offer a heuristic argument, which you will clean up using

Exercise 7.9. Since there are N4α−8 elements of V and n2 possible

values of the function

B(i, i′) = (s13(i), s35(i
′)),

the typical level set1 of B should have about n4α−10 elements. Simi-

larly, define the function

C(i, i′) = (s13(i
′), s35(i)).

For each element in some level set of B, list all the elements of

V that are in the same level set of C. That is, pick some value of

the function B, and find all the pairs that give that value. For each

such pair, find all the other pairs that are in the first pair’s level set

of C. Listing pairs in this way will give n8α−20 elements total. Of

course, this will be overcounting, as we have listed each element as

many times as the size of the joint level set of the function (B,C),

which will be the set of pairs which return equivalent values for both

B and C.

1A level set in this sense is a set of pairs of light rows, (i, i′), such that B(i, i′)
is equal across all pairs in the level set. You can think of it as the set of “points” that
all have some value of B.
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Exercise 7.8. Show that specifying B(i, i′), C(i, i′), and i specifies

i′.

So the size of the joint level set of B and C should be the same as

the number of light rows, i, with s13(i) and s35(i). Since there are n
α

rows, if all of the joint level sets of (s13(i), s35(i)) are equally sized,

the level sets should have size nα−2. Thus, we should be able to find

a level set of ν that has size n7α−18. However, Exercise 7.7 tells us

that no level set of ν can have size greater than n. So by comparing

upper and lower bounds on the size of any level set, we conclude that

α < 19
7 .

Exercise 7.9. Let f be a function from a finite set X to the interval

[1, N ]. Show that there are a subset, Y ⊂ X, and a number ρ ∈ [1, N ]

for which

|Y | ≥ |X|
logN

,

and for every y ∈ Y ,

ρ ≤ f(y) ≤ 2ρ.

This is called the dyadic pigeonhole principle, and we have already

used it in proving Theorem 5.2. Do you remember where?

Exercise 7.10. Apply Exercise 7.9 repeatedly, and then use Exercise

7.5 to complete a rigorous proof of the main result of this section,

SE(5, 197 ), and as before, show that it proves Theorem 7.3.

Theorem 7.3 (Katz-Tardos [28]). Let P be a set of n points in the

plane. Then

#Δ(P ) � n
19
22 .

To sum up what we have accomplished so far, 6
7 ≈ .857142, 44

51 ≈
.862745, and 19

22 ≈ .863636. The world record as of this writing is

also due to Katz and Tardos, 48−14e
55−16e ≈ .864137. The next section will

introduce an example by Imre Ruzsa, in [42], which seems to limit

the possible development of approaches of this style.

4. Ruzsa’s construction

Although the sums and entries problem has borne much fruit, it ap-

pears as though it has a distinct upper bound to just how close it can
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get us to the full Erdős conjecture. As Exercise 7.2 indicates, if we

could show that there was some sequence of values of k for which αk

approached 1, we would have a positive solution to the Erdős distance

problem. However, the following construction makes it look as though

this train of reasoning will derail before solving the whole problem.

We will start by writing down a long list of vectors whose entries

are 1 or −1 and whose pairwise dot products are small negative num-

bers. More precisely, we will construct k vectors and show that the

values of αk associated with each k will approach 2, which would lead

us to believe that there is a limit of 8
9 , which is about .8888 . . . , for

the Erdős exponent, if we continue down this path.

Let k be even and define the vectors a1, . . . , ak to be of dimension

m =

(
k
k
2

)
.

We identify coordinates with subsets of {1, . . . , k} of size k
2 . If D

is such a subset, then the Dth component of ai will be written as aiD,

and will be equal to 1 if i ∈ D, and −1 otherwise. Now we appeal to

the fact that given two distinct elements of {1, . . . , k}, and a random

subset, D, of size k
2 , the probability that both elements are in D is a

little less than 1
4 , as is the probability that both elements are not in

D.

Exercise 7.11. With a1, . . . , ak and m as above, show that if i and

j are distinct, then the dot product of ai and aj , denoted ai · aj , is
−m
k−1 .

Exercise 7.12. If k is odd, construct vectors a1, . . . , ak of 1’s and

−1’s, of dimension m, such that for any distinct i and j, ai ·aj is −m
k .

Hint: Think of what happened in the previous exercise.

After constructing vectors as in the previous two exercises, we

will construct counterexamples to show the claim that SE(k, α) must

be false for some values of α. We will work with even k, but the case

of odd k is treated similarly.

Construct an n× k matrix, A, of vectors of dimension N , with

n =

(
N

m

)
,
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where m is the dimension of the vectors we constructed before, and

N is chosen to be as large as we want. Let e1, . . . , eN stand for the

canonical basis for anN -dimensional vector space, or the set of vectors

where each ej has a zero in each coordinate, except for a 1 in the jth

coordinate. We will identify rows of the matrix we are constructing

with choices t1 < · · · < tm of m coordinates in our N -dimensional

vector space. We will let the entries of A be the images of the aj ’s

that we constructed earlier, but in the m coordinate positions that

we have chosen. That is, if we call σ our list of t1 < · · · < tm, then

Aσj =
m∑
l=1

ajletl .

All of the entries of A are distinct, as the row determines the posi-

tions of the nonzero entries of the vector, and the column determines

what the entries are. The sums are vectors whose nonzero entries are

either 2 or −2, and have a relatively small number of such entries, per

our dot product condition. In fact, they will have exactly m′ nonzero

entries, where

m′ =
(k − 2)m

2(k − 1)
.

We will choose N to be so large as to ignore constants which

depend on m. The number of sums will be bounded by

2m
′
(
N

m′

)
≈ Nm′

,

but the number of rows is on the order of Nm, which shows that

SE(k, α) cannot be true if α is greater than k−2
2k−1 , which approaches

2 as k grows large.

Exercise 7.13. Get an analogous result for odd values of k.

This marks the end of the first part of the book. From now on,

the flavor of the text will change slightly. The difficulty will increase

a little, and the settings will vary even more drastically. We will start

exploring other types of problems that are inspired by or related to the

study of the main Erdős distance problem. This is quite important

to see, as regardless of the inherent beauty of any problem, without

some context or relevance, it lacks its luster. In continuing through
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the next few chapters, you should also try to pick up on how these

problems are related. Try to find salient features that are present

in some or all of the different settings. This way, you can see how

mathematicians use ideas from the study of one problem in the study

of another.

                

                                                                                                               



Chapter 8

Information theory

In this chapter, we introduce a few ideas of information theory. The

theory is beautiful in its own right, but our chief motivation is, of

course, its relationship with the Erdős distance problem. The main

thrust will be to elucidate the information-theoretic interpretation

of the sums and entries problem, which, as we have seen, is related

directly to the Erdős distance problem.

1. What is this information of which you speak?

Information theory is a branch of probability theory, which concerns

itself largely with the study of random variables. One way of thinking

about random variables is that they are a model for our knowledge of

the universe. We might not know the precise outcome of a particular

event, say exactly where a ball will land if we throw it straight up in

the air, but if we throw it and observe where it lands, we will have a

clearer idea about where it may land for subsequent tosses. Informa-

tion theory studies this very phenomenon, the amount of information

learned by collapsing a random variable, or performing an experiment

and observing the outcome.

If A is a random variable with possible outcomes a1, . . . , am and

associated probabilities p1, . . . , pm, respectively, then we can define
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the amount of information as the entropy, H(A), associated with the

random variable A by

H(A) = −
m∑
i=1

pi log2 pi.

Although this definition might look puzzling at first, try to think

about H(A) as some quantity of information. We will now offer sev-

eral explanations of where this comes from, to hopefully clear up the

intuition before we use it. Throughout the text, we will assume that

the logarithms are taken with base 2, unless otherwise stated.

Computers operate on bits of information, which are typically

thought of as 1’s and 0’s. We can think of these bits as the amount

of information needed to distinguish between two possibilities which

are equally likely. Clearly we can distinguish between 2m equally

likely events with m bits. This should somewhat justify the need

for about − log p bits of information to distinguish among 1
p equally

likely events.1 If all of our considered events were equally likely, then

our definition of H(A) would be relatively secure. However, not every

event is equally likely, so we have some explaining to do.

Exercise 8.1. What probability would you assign to the event that

the world ends today? How suprised would you be if you found out,

through some reliable channel, that the world was not ending today?

How suprised would you be if you found out, with just as much reli-

ability, that it was ending today?

Try to think of − log p as the amount of suprise if an event with

probability p actually occurs. If this still seems murky, you are not

alone. For this reason, we have two more alternate explanations. One

is from a mathematical point of view, available in [29], and the other

is from physics, [26]. We will summarize their explanations below.

The mathematical explanation assumes that each probability is

a rational number with denominator n. Collapsing the random vari-

able, A, is part of a two step process. First, we need to observe which

outcome has occurred. Assume that it is aj . Next we need to choose

1In this instance, the log has base 2.
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between npj of the possible equally likely outcomes that are part of

the event aj . (Why are there npj equally likely outcomes correspond-

ing to aj again?) Now, the total information gained by choosing from

among n equally likely outcomes is log n. So the expected information

gained by performing the second task is

m∑
j=1

pj log(npj).

The leftover information is then H(A).

The explanation from physics assumes that the experiment can be

performed independently many times. So we repeat the experiment

N times, for some large N . We will expect aj to have about pjN

outcomes which correspond to the event aj . The number of ways to

arrange these outcomes is

N !

(p1N !) · · · (pmN !)
.

Since all possible orderings are equally likely, we get

NH(A) = log

(
N !

(p1N !) · · · (pmN !)

)
.

If we appeal to Stirling’s formula, which says that log(N !) =

N logN −N +L, where L ≈ logN , we get the formula for H(A) that

we gave earlier.

Exercise 8.2. Explain the connections between these heuristic ex-

planations.

2. More information never hurts

Oftentimes, when teaching a calculus class, we have found that stu-

dents want us to work homework problems more than teach them

general theory of calculus. We try to convince the students that the

homework problems should be easier if the students pay attention to

the theoretical portions of the lectures in the first place. In other
                

                                                                                                               



84 8. Information theory

words, the basic idea we want to address here is that more informa-

tion never hurts. We will exploit the fact that the function x log x is

convex when x is positive.

Proposition 8.1. The information, H(A), is maximized when each

pj =
1
m .

Proof. Recall the definition of H(A),

H(A) = −
m∑
i=1

pi log pi.

If we let f(x) = x log x, we can write this as

H(A) = −
m∑
i=1

f(pi) = −m
m∑
i=1

1

m
f(pi).

If we now appeal to Jensen’s inequality, with 1
m taken as the proba-

bility distribution, we get

H(A) ≤ −mf

(
m∑
i=1

1

m
pi

)
= −mf

(
1

m

)
= logm,

as promised. �

This is all well and good, but what happens when there are two

random variables? We will keep A as before, and let B be a new

random variable with possible outcomes b1, . . . , bm, with associated

probabilities q1, . . . , qn, respectively. Suppose that A represents our

theoretical knowledge of calculus, and B represents our ability to

solve particular homework problems. Our goal is to show that no

more information is required in resolving B if we have resolved A or

if we have not.

Let (A,B) stand for the random variable which is the joint out-

come of A and B. Whether or not A and B are independent, we

can still consider their joint outcomes. This has the possible out-

comes (ai, bj). For example, if we flipped a coin and rolled a die, the

joint outcomes could be listed as heads or tails, followed by a number

between one and six. In general, we will define the entropy of this

random variable to be the joint entropy of A and B, and write it

H(A,B).
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Now, if we fix an index i, the probabilities of each of the bj
occurring as well will form a probability distribution. That is to say,

if we know a particular value of aj is the outcome of A, then we might

gain more information on the outcome of B. These will be referred

to as the probabilities of bj conditional2 on ai, and written as

P(B = bj |A = ai) = rij .

To formulate this carefully, we can assign each possible joint out-

come, (ai, bj), the corresponding probability, pirij , and if we consider

a fixed outcome for A, say, ai0 , the corresponding conditional proba-

bilities, ri0j , will form a probability distribution.

Given the setting above, we now introduce Bayes’ law,

m∑
i=1

pirij = qj ,

which will be instrumental in the proof of the following theorem.

Theorem 8.2. H(A,B) ≤ H(A) +H(B).

We can sum up the above statement as, “Extra information does

not hurt.” If I roll two dice and look at only one of them, it does not

hurt my chances of guessing the other one.

Exercise 8.3. In this context, we say that the random variables A

and B are independent if rij = qj for all i. Verify that in this case,

we have the equality

H(A,B) = H(A) +H(B).

Proof. We have

H(A,B) = −
m∑
i=1

m∑
j=1

pirij(log pi + log rij)

= H(A)−
m∑
i=1

m∑
j=1

pirij log rij .

2Conditional probabilities are explained in Appendix B.
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We will define the second term in the right hand side as H(B|A), the

entropy of B conditional on A. So, to prove the statement, we need

only show that H(B|A) ≤ H(B). This statement, in our situation,

can be translated as, “Homework problems are no harder, and are

probably easier, if you know theory.” Continuing, in terms of f , where

f(x) = x log(x), and using Jensen’s inequality followed by Bayes’ law,

we obtain

H(B|A) = −
m∑
i=1

m∑
j=1

pif(rij)

≤ −
m∑
j=1

f(pirij) = −
m∑
j=1

f(qj) = H(B). �

Basically, H(B|A) is the expected information of B conditioned

on a random value of A, that is,

H(B|A) =
m∑
i=1

piH(B|A = ai).

The point is that the conditional information H(B|A) is not really

the information of any random variable in particular, but it is a linear

combination of the informations of random variables.

We say that a random variable X determines a random variable

Z if the outcome of X determines the outcome of Z.

Exercise 8.4. Show that if the random variable X determines the

random variable Z, then

H(Z) ≤ H(X).

Exercise 8.5. Explain in words why

H(A) ≤ H(A,B).

Exercise 8.6. Show that if the random variable X determines the

random variable Z, then

H(X,Z) = H(X).

Hint: Write out the definitions and think about what the various

probabilities will be if one random variable determines another.

We now introduce the submodularity principle.
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Theorem 8.3. Let A,B,X, and Y be random variables such that

each of X and Y determine B, and that X and Y jointly determine

A. Then

H(A) +H(B) ≤ H(X) +H(Y ).

Proof. Recalling the definition of conditional information, Exercise

8.6, and the fact that X and Y determine B, if we subtract 2H(B)

from each side of the claim, we get

(8.1) H(A)−H(B) ≤ H(X|B) +H(Y |B).

If we think about what Exercise 8.5 told us, we see that equation

(8.1) will be true if we can show the following:

H(A|B) ≤ H(X|B) +H(Y |B),

which is what we will prove.

Since X and Y jointly determine A, we can use Exercise 8.4 to see

that H(A) ≤ H(X,Y ), and moreover, that H(A|B) ≤ H((X,Y )|B),

because even if we restrict ourselves to a particular outcome of B, say

bj0 , the corresponding outcomes ofX and Y will still jointly determine

A. So now we are reduced to showing that

H((X,Y )|B) ≤ H(X|B) +H(Y |B).

If we employ Theorem 8.2 for each outcome, then we get

H((X,Y )|B = bi) ≤ H(X|B = bi) +H(Y |B = bi),

and we need only take expected values on both sides to finish. �

Exercise 8.7. As an example of the above situation, suppose you

roll a red die and a blue die. Let X be the number on the red die

plus twice the number on the blue die. Let Y be the number on the

red die. Now, let A be a1 if the two dice show the same number,

and a2 if they show different numbers. Finally, let B be b1 when the

sum is odd, and b2 when the sum is even. Now, go through and show

that X and Y jointly determine A, and that they each individually

determine B.

Exercise 8.8. Give a necessary and sufficient condition for Theorem

8.3 to be sharp. Hint: Think about how this resembles the Cauchy-

Schwarz inequality, and what the sharp case was there.
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3. Application to the sums and entries problem

After all of that development of information theory, we will sketch out

the ideas used to make improvements to the sums and entries problem,

and subsequently, to the Erdős distance problem. The full arguments

are available in [28] and [54], and after you finish this portion of the

book, you will be equipped to tackle them in full detail.

First, we will formulate the sums and entries question as an

information-theoretic question. Let A be an N × s3 matrix with

distinct entries. We define S(A), as before, to be the set of sums of

entries of A which are in the same row. We are looking for lower

bounds on M = #S(A) of the form N ≤ Mα, which we can rewrite

as

logN ≤ αM.

We will view this as an inequality between quantities of informa-

tion. Let R be a random variable whose value is an s-tuple4 of entries

corresponding to s entries from a row of the matrix A. So there are

N possible values for R. Let Ri be the entry in the ith column. Each

outcome for R, or row, can occur with probability 1
N . We will define

a class of functions on R, the patterns pUV , with U and V as subsets

of {1, . . . , s}. We will define pUV (R) to be the set consisting of all the

sums, Ri +Rj with i ∈ U and j ∈ V , and all the differences Ri −Rj

for either i, j ∈ U or i, j ∈ V . So pUV (R) is also a random variable,

and we denote by Hp(U, V ) the information

Hp(U, V ) = H(pUV (R)).

Exercise 8.9. As an example, suppose s = 4, U = {1, 2}, V = {2, 3},
and R = {2, 3, 5, 7}. Then pUV (R) would be the set {2 + 3, 2 + 5,

3 + 3, 3 + 5, 2− 3, 3− 2, 3− 5, 5− 3} = {5, 7, 6, 8,−1, 1,−2, 2}. Now,

find pVW if W = {1, 2, 4}.

Certain facts involving the Hp(U, V )’s follow immediately from

the basic principles of information theory:

(i) Hp(U, V ) = Hp(V, U).

3The matrix will have N rows and s columns.
4An “s-tuple of entries” would be a pair of entries if s is 2, or a triple of entries

if s is 3, etc.
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(ii) Hp(U, V ) ≤ Hp(U
′, V ′) if U ⊂ U ′ and V ⊂ V ′.

(iii) Hp(U, V ) = 0 if U is empty and #V = 1.

(iv) Hp(U, V ) ≤ log |S(A)| if U 
= V and #U = #V = 1.

(v) Hp(U, V ) = logN if U ∩ V is not empty and #(U ∪ V ) > 1.

(vi) Hp(U ∪ U ′, V ∪ V ′) + Hp(U ∩ U ′, V ∩ V ′) ≤ Hp(U, V ) +

Hp(U
′, V ′) if (U ∩ U ′) ∪ (V ∩ V ′) is not empty.

Exercise 8.10. Prove statements (i)–(vi). Hint: (iv) uses random

variables with uniform distributions that have the largest possible

information, (v) uses the fact that entries are distinct, and (vi) uses

the submodularity principle.

Now, the set {1, . . . , s} has 2s subsets, which might seem like a

lot. We would like to summarize these prior statements by averaging

them somehow. For i, j ≥ 0 and 1 ≤ i + j ≤ s, we will define the

normalized information average, Hi,j , by

Hi,j = 1− 1(
s
i

)(
s−i
j

)
logN

∑
U,V

H(U, V ),

where the sum is over disjoint subsets U and V , for which there are

clearly
(
s
i

)(
s−i
j

)
choices. We then get the following:

(vii) Hi,j = Hj,i.

(viii) Hi,j ≤ Hi+1,j if i+ j ≤ s− 1.

(ix) H0,1 = 1.

(x) H1,1 ≥ 1− log#S(A)
logN .

(xi) Hi−1,j +Hi+1,j ≥ 2Hi,j if i ≥ 1 and 2 ≤ i+ j ≤ s− 1.

(xii) Hi,j ≥ Hi+1,j +Hi,j+1 if i+ j ≤ s− 1.

Exercise 8.11. Prove (vii)–(xii) using (i)–(vi).

Hopefully that was not too hard. Now we are ready to say some-

thing nontrivial about the sums and entries problem. Actually, using

just these facts, (vii)–(xii), it is possible to use linear programming5

5Linear programming typically refers to a set of linear constraints or inequalities,
under which some quantity is to be maximiezed or minimized. A very simple example
in the plane would be to find the largest value of y subject to the constraints y ≤ 2x
and y ≤ 10 − 3x.
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to find bounds for H1,1, which gives SE(k, αk) with αk approaching

e, the base of the natural logarithm.

Exercise 8.12. Prove that SE(5, 114 ) is true using only the facts

(vii)–(xii). Then get a smaller α value with k = 7.

We can deduce one more fact, which is very similar to the argu-

ment given for the validity of the statement SE(5, 195 ):

(xiii) 5H1,1 −H2,1 + 2H3,0 ≤ 3.

Exercise 8.13. Prove the lucky inequality, (xiii). Hint: This is an

adaptation of the proof of SE(5, 197 ). Consider pairs of rows, (R, T )

such that pU∅(R) = pU∅(T ) with U = {i, j, k}, a set of three elements,

and assign the pairs (R, T ) the following non-uniform probability dis-

tribution. Select R uniformly, and select T uniformly among those

rows that satisfy our conditions with the given R. The advantage here

is that H((R, T )) = 2H(R)−H(pU∅(R)) because we are in the sharp

case of the submodularity principle. Then consider the function

ν((R, T )) = Ri +Rk +2Tj = Ri +Rj + Tj + Tk = Rk +Rj + Tj + Ti.

Use these three equalities and the submodularity principle to ob-

tain the desired result.

If you add this to your bag of tricks and sprinkle in a bit of linear

programming, you can show that SE(k, αk) is true for αk approaching
24−7e
10−3e . You can then plug this value in for α0 in Exercise 7.2 to obtain

the exponent of Katz and Tardos, which is about .864137.

                

                                                                                                               



Chapter 9

Dot products

The title of this book advertises distances, and now you are reading

about dot products. Why? Well, up to this point, you have seen

the basic arguments that lead toward increasing lower bounds on the

number of distinct distances determined by a large number of points

in the plane. Now, the reason this chapter is here is not just so you

can see how many distinct dot products are determined by a set of

points in the plane. The main goal here is to illustrate how you can

apply similar techniques in different settings. As you read through

this chapter, try to pick out which key features of both problems

would lead you to approach this problem as the distance problem.

1. Transferring ideas

Given any x, y ∈ R
2, we write their dot product as x ·y. If x = (x1, x2)

and y = (y1, y2),

x · y = x1y1 + x2y2.

There are other useful ways to think of the dot product, but this one

will suffice for the arguments to follow.

Now, if we are given a set, P , of n points in the plane, define

Π(P ) to be the set of all distinct dot products determined by these

points. As before, how many distinct dot products can we be sure to

find? Before you go any further, try some simple examples of point
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sets the way we did when we first started studying distinct distances.

Following similar ideas, attempt to work out how you could treat this

question as the distance question. Specifically, what are the “circles”

here?

Well, when we looked at distances determined by a single point, x,

we noticed that distinct distances lay on distinct circles, all centered

at x. So all the points of a given distance to x lie on the same circle.

In this setting, given a point, x, what do all of the points that have

the same dot product with x lie on? In Exercise 9.1, you will show

that they all lie on lines perpendicular to l, the line between x and the

origin. We call a line radial if it passes through the origin. So the line

l mentioned before could be described as the radial line through x.

Now we are ready to apply ideas similar to those we used in

Chapter 1, where we achieved
√
n distinct distances. Recall that

when we were given a set, P , of n points, we could pick a point in

particular, x, and draw circles around it that covered the rest of the

points. We found that either there were
√
n circles around x, or there

was a circle around x with
√
n points on it. How could we do this for

dot products?

First, pick a point out of P . Of course, we will call it x. Now,

we know that the points whose dot products with x are equal all lie

on parallel lines. So let us count them. Suppose it takes t parallel

lines to cover our point set P . Now, if t � √
n, we will have at least√

n distinct dot products with x. What if t is significantly less than√
n? By the pigeonhole principle, we know that one of the lines, l,

will have at least n
t points on it. Since we decided that t <

√
n, we

can be assured that n
t >

√
n. So we now have a line with

√
n points

on it. Pick some point on l that does not lie on the line through both

x and the origin, and call it y. Now, notice that covering the other

points on l with another set of parallel lines, each perpendicular to

the line between y and the origin, gives us
√
n populated lines. Recall

that each of these lines represents a different dot product with y. So

either x or y will determine at least
√
n distinct dot products. We

have just shown the following theorem to be true.

Theorem 9.1. Let P be a set of n points in the plane. Then

#Π(P ) � n
1
2 .
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Figure 9.1. Drawing parallel lines that are perpendicular to
the radial line through the upper two points.

Be sure to go back through the first proof of
√
n for distances and

the proof above for dot products and look for the subtle differences

between the two.

2. Székely’s method

If you look back to Chapter 5, and the ideas contained therein, you

might be able to guess where this section is going. The last proof idea

was followed with very little change, and it gave us identical results.

Here we will see how to cope with differences between settings, and

what results from that.

If we are given a set, P , of n points, the first thing we will do

is construct a graph, G, similar to the one in the proof of Theorem

5.2. So, define the vertex set to be the point set P . Now we have

to decide how to construct edges. In Székely’s original argument,

edges were drawn between points along circles. These circles were, of

course, centered at points in our set. As before, which object in the

dot product setting behaves similarly to circles? That would be the

parallel lines perpendicular to the radial lines of points in our set. So

after drawing these parallel lines, perpendicular to the radial line of

each point, for each point, we will draw edges between consecutive

points along these lines.
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Figure 9.2. Consider the leftmost radial line. We draw par-
allel lines, each of which is perpendicular to the leftmost radial
line, which cover the points. The curved arcs represent edges
drawn between consecutive points on these parallel lines.

Now, suppose that there are several points r1, r2, . . . along a par-

ticular radial line; these points will all define the same set of parallel

lines.

First, we will draw edges connecting consecutive points on these

parallel lines because they each have the same dot product with r1.

Now, when we try to draw edges between consecutive points along

these parallel lines, because they each have the same dot product

with r2, we have to connect the same pairs of points as before. As we

process each of the points on the radial line, we will have to draw an

edge between the same pairs of consecutive points as before. So we

will have multiple edges between pairs of points along those lines.

Let t be defined as in the last proof. Now construct G by letting

the points in P act as vertices. For each point, x, in P , draw an edge

between pairs of consecutive points along the parallel lines which are

perpendicuar to the radial line through x. Since we cover our point

set with about n edges for each point in P , there must be about n2

edges in G. So e ≈ n2. (We would already win if it took less than

about n2 edges to cover our point set. Why?)
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If we consider a fixed radial line, l, the vertices of consecutive

points along all of the parallel lines perpendicular to l will be con-

nected by as many edges as there are points on l. We recall from the

proof of Theorem 9.1 that there can be no more than t points along

any line and much less on a radial line. So no pair of vertices can be

connected by more than t edges. Thus, in our graph, the maximum

edge multiplicity will be t.

We can apply the modified crossing number theorem, Theorem

4.8, to get:
n6

tn2
� e3

mv2
� cr(G).

Now we just need an upper bound for the crossing number. Note

that a crossing between edges can only occur if a line perpendicular to

one point’s radial line crosses a line perpendicular to another point’s

radial line. Since each point has fewer than t such associated parallel

lines, each pair of points can contribute at most t2 crossings. There

are about n2 different pairs of points so the total number of crossings

is definitely less than n2t2. So we can certainly bound the crossing

number above by n2t2. Putting the upper and lower bounds for the

crossing number together:

n6

tn2
� cr(G) � n2t2.

So now we have shown the following theorem:

Theorem 9.2. Let P be a set of n points in the plane. Then

#Π(P ) � n
2
3 .

As of the time of this writing, this is the best known lower bound

on #Π(P ) for general point sets, P . So we followed the idea in the

proof for n
4
5 for distances, but we ended up with n

2
3 . What was

different? Of course, we never tried to lower the edge multiplicity.

What happens if we try to? You will explore that in Exercise 9.4.

3. Special cases

In general, we had trouble reducing edge multiplicity. However, we

can find some special classes of sets where we can do better than in
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the general case. Here we illustrate the idea of using techniques that

could have limitations in some bad cases, and eliminate those cases.

Below is an odd looking theorem. It has a strange and seemingly

artificial condition about the number of points along a line through

the origin. Soon enough though, we will see how we can use a theorem

like this to prove some interesting corollaries.

Theorem 9.3. Let #P = n. Also, let P have no more than nx points

on any line through the origin. Then #Π(P ) � n1− x
2 .

Proof. Recall that in the graph-theoretic proof of the dot product

set result, we get

n6

mn2
� e3

mv2
� cr(G) � n2t2.

Now, since no line through the origin has more than nx points on

it, no edge multiplicity is higher than nx. So we can run the same

argument with m = nx, and get

t � n1−x
2 ,

as claimed. �

Suppose that you have two sets of real numbers, A and B. In the

case that our point set P can be expressed as a Cartesian product1

A× B, we can gain over Theorem 9.2.

Corollary 9.4. Let P = A×B, where A,B ⊂ R, and #P = n. Let

min(#A,#B) = nx. Then #Π(P ) � n1− x
2 .

Cartesian product sets come up quite often in practice, but this is

not the only kind of set that will obey the line condition in Theorem

9.3. There are plenty of times where we want to deal with sets that

are sufficiently spread out in some sense. We introduce here a formal

way to define a point set that is sufficiently spread out.

Definition 9.1. We say that a set of size n is well-distributed if it

has exactly one point inside each square of an n
1
2 by n

1
2 lattice, where

each square has side length C. The constant C can be any specified

positive constant. For example, if n = 100 and C = 1, then we could

1Cartesian products are explained in the Introduction.
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Figure 9.3. Example of a well-distributed set with n = 9.

break up a square of area 100 into 100 unit squares, each of which

contains exactly one point.

Corollary 9.5. Let P be well-distributed, and #P = n. Then

#Π(P ) � n
3
4 .

Proof. Any line that passes through the set P may pass through no

more than 2n
1
2 squares. Thus, no line through the origin can pass

through more than cn
1
2 points. So by Theorem 9.3,

#Π(P ) � n1− 1
2 ·

1
2 � n

3
4 . �

The next definition is quite involved. It might help to think of a

picture inside of a picture inside of a picture . . .

Definition 9.2. We say that a set of size n is 2-iterated well-distribut-

ed if it is comprised of n
1
2 translated well-distributed subsets, where

each subset has constant C, and the subsets are each contained in

one square of an n
1
4 by n

1
4 lattice of squares which have side length

max(C2, C−2). Similarly, a set is r-iterated well-distributed if it is

comprised of n
1
r translated (r − 1)-iterated well-distributed subsets,

where each subset has constant max(Cr, C−r), and the subsets are

each contained in one square of an n
1
2r by n

1
2r lattice of squares with

side length max(Cr, C−r).

Note that, by the above definitions, well-distributed is the same

as 1-iterated well-distributed.
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Figure 9.4. Example of a 2-iterated well-distributed set.

Corollary 9.6. Let #P = n, and let P be r-iterated well-distributed,

where r ≤ log(n). Then

#Π(P ) � n
3
4 .

Proof. As in the proof of Corollary 9.5, the maximum number of

large squares any line can pass through is at most cn
1
2r . Then, in

each square, the maximum number of subsquares any line can pass

through is at most cn
1
2r . This continues for r stages of iterations, so

the total number of points any line can pass through is certainly at

most cn
1
2 . �

Even though these conditions are more natural looking, they still

might not be quite what we need. Sometimes we will have to deal

with a set that is, in some sense, almost in one of these classes. What

do we mean by “almost” here? For example, if we have a set of n

points, R, which is similar to a well-distributed set, but it has as

many as ten points in each box. We can pick one point from each

box, and call that point set R′. Now R′ will be well-distributed, and

it satisfies the conditions of Theorem 9.5. Since

Π(R′) ⊂ Π(R),

we can use this theorem to get the same exponent for R.
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Exercises

Exercise 9.1. Show that given s ∈ R and a point x = (x1, x2) ∈
R

2\{0}, all the points y = (y1, y2) ∈ R
2 that satisfy the equation

x · y = s lie on the line:

y2 =
s

x2
− x1

x2
y1.

What are the points that have constant dot product with the origin?

Can any point have a nonzero dot product with the origin?

Exercise 9.2. In the proof of Theorem 9.1, why couldn’t y lie on the

line between x and the origin?

Exercise 9.3. Write a proof of Theorem 9.1 using the ideas in the

second proof of Theorem 1.1.

Exercise 9.4. Emulate the edge counting scheme as in the proof of

Theorem 5.2. What goes wrong?

Exercise 9.5. Prove Corollary 9.4.

Exercise 9.6. Given a large finite set, A, of real numbers, we define

the set AA + AA to be {ab + cd}, where a, b, c, d ∈ A. How big

can you guarantee the set AA + AA to be? This is actually the

context in which this problem was initially posed. Questions like

these naturally arise in the study of additive number theory; see [37].

The subject matter contained in this chapter then developed after it

became apparent that it could be analyzed like the Erdős distance

problem. Hint: Consider the Cartesian product setting.

Exercise 9.7. For every dot product, s ∈ Π(E), find all of the pairs

of points, x, y ∈ E, such that x · y = s. Draw the line through y

which is perpendicular to the radial line that is incident to x. How

many distinct lines can there be for a given s? Count incidences of

these lines and points in E to get a bound for how often a given dot

product can occur. What kind of exponent can you get this way?

Why?

Exercise 9.8. The dot product problem is related to another prob-

lem called the sums and products problem. The sums and products

problem asks, given a set, A, of n numbers what is the greatest lower
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bound we can guarantee for the larger of #(AA) and #(A+A)? Typ-

ically, if one is small the other is large. The conjecture by Erdős and

Szemerédi is that one of them must have size at least n2−ε, for any

ε > 0. As of this writing, the world record for a lower bound is n4/3−ε,

for any ε > 0, by Solymosi, in [48]. However, there is an elementary

argument, due to Elekes, [11], which yields a lower bound of n5/4.

Many results, similar to Corollary 9.4 follow by the same types of

reasoning, such as those presented in [3]. Let A = {a1, a2, . . . , an}.
Prove Elekes’ result by constructing a set of points which is a Carte-

sian product of the sets A+A and AA. Now use the Szemerédi-Trotter

incidence theorem (Theorem 4.7 on the set of lines li,j(x) = ai(x−aj)

and the points of the Cartesian product.

                

                                                                                                               



Chapter 10

Vector spaces over finite
fields

Now we introduce the very basics of finite fields, to illustrate another

way that the main ideas that have already been presented can be

extended to study other types of problems. The structure of fields

used in this book is only the tip of the iceberg. Starting with a for-

mal definition of a field would be quite cumbersome, so it is probably

more natural to think of a field as a system that works like numbers

with identities, division, and commutative addition and multiplica-

tion. Some examples of fields are the real numbers and the complex

numbers. In this chapter and the next, i denotes the square root of

−1.

Exercise 10.1. Just from the cursory definition of a field given in

the above paragraph, why are the integers not a field? Hint : The

set of nonnegative integers are not a field because they do not have

additive inverses. Even if we consider all the integers, what is still

missing?

1. Finite fields

In this book, we are focusing on finite fields. The order of a finite

field is the number of elements in it. So the real and complex numbers

could not be finite fields, as they have infinite size. An example of

101
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a finite field would be what we call F5, which has order 5. You can

think of it as the integers 0 through 4, where you treat the numbers

like a clock. That is to say, if you add 3 and 4, you get 2. That is

because 3 + 4 = 7, and 7 − 5 = 2. The algorithm is as follows: add

or multiply as usual, and if you get a number not between 0 and 4,

add or subtract multiples of 5 until you are between 0 and 4. (This

phenomenon is often written as 3 + 4 ≡ 2, or 3+4 is congruent to 2

modulo or mod 5.)

One slightly counterintuitive thing about Z5 is that, in some

sense, −1 is a square. To see this, note that 4 behaves like −1,

in that it is the element that represents 0− 1. Then we recall that 4

is a perfect square, namely 22. So we can think of 2 as
√
−1.

Exercise 10.2. Show by hand that Z7 has no
√
−1.

We call two special elements of our field identities. There is the

multiplicative identity, which is usually denoted 1, just as in the more

commonplace fields. This is because anything times 1 is itself again.

Then the additive identity is usually written as 0, for similar reasons.

We are also guaranteed inverses. Of course, 0 is its own additive

inverse. The multiplicative inverse of an element, a, is the element, b,

such that a ·b = 1 in the field. Additive inverses are defined similarly.

Note that 0 cannot have a multiplicative inverse. If we want to discuss

the set of nonzero elements of a given finite field of order q, that is,

the set of elements with multiplicative inverses, we often denote it F∗
q .

A curious thing that might pique your attention is the restriction

to finite fields involving prime numbers. It might seem odd that,

in a highly geometric book, primality could matter at all; however,

in order for some of the fundamental properties of fields to hold, we

need their orders to be powers of primes. In fact, given a prime power,

there exists a unique field of that order. However, in this chapter, we

simplify things by dealing with fields of prime order, or where the

power of the prime is just one. To illustrate why finite fields must

have this restriction, try the following exercises.

Exercise 10.3. Show that the integers 1, 2, . . . , 10 each have a mul-

tiplicative inverse modulo 11. For example, 3 · 4 = 12 = 1 + 11. This
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means that 3 · 4 ≡ 1. So 3 has the multiplicative inverse 4, and 4 has

the multiplicative inverse 3, modulo 11.

Exercise 10.4. Find a nonzero integer that does not have a multi-

plicative inverse modulo 12.

There are plenty of different ways to think of finite fields and an

abundance of rich theory that goes deep and far in many different

directions. However, for the purposes of this book, the basic ideas

presented here are probably enough. For completeness’ sake only, we

include a formal definition of a field:

Definition 10.1. A field F = (F,+, ·) is a set, F , with two unique

special elements, 0 and 1, and two functions that satisfy the following

conditions:

+: F × F → F.

· : F × F → F.

(i) +(x, y) = +(y, x) for all x, y ∈ F.

(ii) ·(x, y) = ·(y, x) for all x, y ∈ F.

(iii) +(x, 0) = x for all x ∈ F.

(iv) ·(x, 1) = x for all x ∈ F\{0}.
(v) ·(x, 0) = 0 for all x ∈ F.

(vi) For all x ∈ F, there exists a unique y ∈ F such that +(x, y) =

0.

(vii) For all x ∈ F\{0}, there exists a unique y ∈ F such that

·(x, y) = 1.

(viii) +(x,+(y, z)) = +(+(x, y), z) for all x, y, z ∈ F.

(ix) ·(x, ·(y, z)) = ·(·(x, y), z) for all x, y, z ∈ F.

(x) ·(x,+(y, z)) = +(·(x, y), ·(x, z)) for all x, y, z ∈ F.

2. Vector spaces

Now that you have an idea of what a finite field is, we will turn

our attention to vector spaces. This term is basically just a fancy

way of indicating that we are using the ideas behind the Cartesian

coordinate system, but on something other than real numbers. In
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Figure 10.1. On the left is one way of visualizing F
2
7. On the

right, the larger points represent the line through the origin

generated by the element (2, 1).

general, vector spaces can be applied over many things. In this book,

we are dealing with vector spaces over finite fields. That means that

we have a Cartesian coordinate system, but on a finite set. Figure

10.1 is a popular representation.

On the surface, this looks just like any other grid. However, this

grid has the property that if you walk off of the top, you end up on

the bottom. The same is true from left to right. At first it might

just seem to behave like any number of popular video games from the

eighties, but this little detail ends up providing plenty of arithmetic

pitfalls of its own!

How could you model “walking” through this grid? What would

a line look like here? In the plane, one way to specify a line is with

a point and a slope. So we will try to find the most sensible way to

specify a line in the finite fields setting by a point and a slope. Define

the line lx, in F
2
q , which passes through the origin, as follows:

lx := {p ∈ F
2
q : p = tx,where t ∈ Fq}.

Exercise 10.5. In F
2
7, which points belong to the line through the

element (2, 2) with slope (1, 3)?

Obviously, we have introduced this topic because it should have

something to do with the Erdős distance problem. Now, since we

cannot be sure that the square root is defined for every element, the

standard Euclidean distance will not work. If we think about what

kinds of features of metrics would be most necessary for the finite
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Figure 10.2. Here we consider three pairs of points in F
2
17.

The lower left pair is (0, 0) and (3, 2). The second pair, (14, 6)

and (0, 8), appears to be split. The upper pair is (5, 12) and

(8, 10).

field setting, we might recall the concept of homogeneity, introduced

in Chapter 1. We said that if we measured a stick in one location,

then took it somewhere else and measured it again, we would want

to get the same measurement. In vector spaces over finite fields, this

means that if two points form a given configuration with respect to

one another, and we move that configuration somewhere else in the

space or rotate it somehow, then the “distance” between the two

points remain the same. Another way of saying this is that we want

our notion of distance to behave well under rigid motions, that is,

rotations and translations.

Figure 10.2 illustrates how the first pair of points is translated and

rotated to form the second and third point pairs. The first becomes

the second upon translating it to the right by 14 elements and up by

6 elements. The first becomes the third upon translating it to the

right by 5 elements and up by twelve, and rotating 60◦ clockwise.

We want to make very clear that the object we will introduce and

loosely call “distance” is not actually a metric in the strict sense. You
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will verify this in Exercise 10.6. This is not really an issue though, as

a finite field is not ordered.1

Now, if the theory of finite fields is new to you, you might be

wondering why finite fields are not ordered. This is because they

“wrap around”. So any intuitive notion of greater than or less than

would break down when you add one to the largest element. Again,

this is all restricted to the case where the finite field is of prime order.

Things would get really messy if we tried to impose an ordering on

other finite fields.

The generally accepted notion of distance in a vector space over

a finite field looks quite similar to the Euclidean metric elsewhere,

without the square root. If x and y are two points in F
2
q , we define

their distance as follows:

‖x− y‖ = (x1 − y1)
2 + (x2 − y2)

2.

Of course, this generalizes to d dimensions in F
d
q as follows:

‖x− y‖ =
d∑

j=0

(xj − yj)
2.

Exercise 10.6. Show that the notion of distance in finite fields is

not a metric as in Definition 1.1.

Now, we have made quite a fuss about this object behaving well

under translations and rotations. Translations are relatively easy to

imagine, but rotations are a bit more complicated to describe. Going

into all the details of what kinds of objects are analogous to rotations

would take too long and would steer us off course. We would have to

deal with the special orthogonal group on a vector space over a finite

field. So, in Proposition 10.1, we will just show that this distance is

invariant under translations, and if you are really interested, you can

go through Exercise 10.8 to see an example of a rotation in a vector

space over a finite field, and verify that the distance is preserved.

Proposition 10.1. The generally accepted notion of distance in a

vector space over a finite field is invariant under translations.

1The order of a finite field refers to the number of elements in it. The concept of
ordering is completely different. It refers to a notion of comparison, much like “≤”.
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Proof. Given two points x and y in F
d
q and a translation, T , also in

F
d
q , we need to show that ‖x− y‖ = ‖x′ − y′‖, where x′ = x+ T and

y′ = y + T . Let x have the coordinates (x1, x2, . . . , xd), and denote

the coordinates for x′, y, y′, and T similarly:

‖x− y‖ =
d∑

j=0

(xj − yj)
2

=

d∑
j=0

(xj + Tj − Tj − yj)
2

=

d∑
j=0

((xj + Tj)− (yj + Tj))
2

=
d∑

j=0

(x′
j − y′j)

2

= ‖x′ − y′‖. �

Exercise 10.7. Recall the point pairs in F
2
17 depicted in Figure 10.2.

The lower left pair is (0, 0) and (3, 2), the second pair is (14, 6) and

(0, 8), and the upper pair is (5, 12) and (8, 10). Show that for each

pair, the two points have a distance of 13 from one another. Hint :

Use the proof of Proposition 10.1.

Now we will introduce the notion of sphere or circle for vector

spaces over finite fields. In the vector space over the reals, Rd, we

define a circle as all the points that are a particular distance from a

given point. We will do the same here. Let Sj denote the sphere of

radius j ∈ Fq centered at the origin in F
d
q :

Sj = {x ∈ F
d
q : ‖x‖ = j}.

You can similarly define the sphere of radius j centered at a point

y by {x ∈ F
d
q : ‖x − y‖ = j}. Since this definition is quite abstract,

we have Figure 10.3 to show what a circle of radius 2, centered at the

origin, looks like in F
2
19.

We know that rotations around a point, p, take points on a circle

of a given radius, centered at p, to points on the same circle. Now,
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Figure 10.3. This is one way of visualizing the circle of radius
2, centered at the origin, in F

2
19.

as promised, an example of a rotation in a vector space over a finite

field.

Exercise 10.8. Consider F2
17 and the 2× 2 matrix

R =

(
3 −3

3 3

)
.

Now, consider the point a = (0, 2). Treat this point as a non-

square matrix and use matrix multiplication to check that

Ra =

(
3 −3

3 3

)(
0

2

)
=

(
−6

6

)
.

Now check that the distance to the origin is unchanged. By that

we mean show that

‖(0, 2)‖ = ‖(−6, 6)‖.
This means that both a and Ra are on the circle of radius 4 in F

2
17,

so R makes sense as a rotation.
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Exercise 10.9. Which points lie on the circle of “radius” 2, centered

at the origin in F
2
5?

3. Exponential sums in finite fields

The Fourier transform is an important part of any mathematician’s

toolkit. It is very powerful, and can be used in many different ways.

Here, we confine ourselves to the finite field setting. Although it

is often introduced on the real numbers first, we believe that the

fundamental ideas behind it make just as much sense here, if not

more.

Before we get to a formal definition of the Fourier transform, we

will gently introduce some surrounding ideas, to make the transition

of reasoning easier.

The Fourier transform will involve sums of exponentials. One

basic exponential sum is the sum of the kth roots of unity. Recall

that the kth roots of unity can be written as

e
2πi·0

k = 1, e
2πi
k , e

2πi·2
k , . . . , e

2πi(k−1)
k ,

which are complex numbers.

What happens when we sum all of the roots of unity of a given

order? We will have

(10.1)
k−1∑
j=0

e
2πij
k = 0.

Exercise 10.10. Prove this assertion by multiplying both sides of

the equation by an appropriate exponential.

Note that the following is also true (and verified in the same way),

for integers a which are not multiples of k:

(10.2)
k−1∑
j=0

e
2πija

k = 0.

This is because we can take a kth root of unity, e
2πia

k , and rotate

it a fraction, ja
k , of the way around the unit circle by multiplying it

by itself j times. The fact that this sums to zero is an example of
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Figure 10.4. The points represent the eighth roots of unity

in the complex plane. You can verify that 1+i√
2

= e
2πi·1

8 ,

i = e
2πi·2

8 , and so on.

a property called orthogonality.2 You can see this by doing the next

exercise. Now, in this section, we will only show orthogonality in one

dimension, but soon enough, we will employ orthogonality in more

dimensions. It will follow for the same logical reasons.

Exercise 10.11. Show explicitly by hand that (10.2) holds for k = 7

and a = 2. Notice what happens to each term.

Exercise 10.12. Show explicitly by hand that the following sum over

two dimensions, represented by j and j′, is zero for nonzero elements

a, and is q2 if a = 0:
k−1∑

j,j′=0

e
2πi(j+j′)a

k .

2You may have heard of orthogonal vectors before. That is, vectors whose dot
product is zero. What we refer to here is quite similar. The name comes from vectors
that form a matrix representing the discrete Fourier transform, and are mutually or-
thogonal with respect to something called a complex inner product. The dot product
we introduced before is a special case of a complex inner product.
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Hint : Try separating the sum as follows:

k−1∑
j=0

k−1∑
j′=0

e
2πija

k e
2πij′a

k =
k−1∑
j=0

⎛
⎝e

2πija
k

⎛
⎝

k−1∑
j′=0

e
2πij′a

k

⎞
⎠
⎞
⎠ .

Then use orthogonality in each sum separately.

That was not so bad. Now, we will turn up the heat a little

bit and consider a different sort of sum. We first need to consider a

special kind of function called an additive character. This function

takes elements in whichever field we are considering and maps them

into roots of unity in the unit circle in the complex plane. We can

define an additive character, χ, in the following way:

χ : Fq → C.

χ(a) = e
2πia

q , a ∈ Fq.

It is called an additive character because it obeys the following

rule:

χ(a+ b) = χ(a)χ(b).

Notice what happens if a = 0, χ(0) = e
2πi·0

q = 1.

If we consider a finite field of odd prime order and treat a nonzero

element, a, as an integer modulo q, we can rewrite (10.2) in terms of

our additive character:

(10.3)

k−1∑
j=0

χ(ja) =

k−1∑
j=0

e
2πija

k = 0.

However, if a = 0, χ(ja) = 1 for every j. So in that case, (10.3)

will look like this:

(10.4)
k−1∑
j=0

χ(j0) =
k−1∑
j=0

e
2πij(0)

k =
k−1∑
j=0

1 = q.

This turns out to be extraordinarily useful when we try to count

things. Since we have just defined lines and circles, we will use this

new device to count how many points are on a line or in a circle. Of

course, those objects exist in vector spaces over finite fields, so we

will have to find a way to make our additive character make sense in
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higher dimensions. Since our additive character only takes elements

of the one-dimensional finite field as input, we will need to find a way

to bring elements in the vector space to our finite field. Keep that in

mind as you carefully examine the following expression. Below, y is

some fixed vector in F
d
q , and · denotes the usual dot product:

(10.5) q−1
∑
x∈Fd

q

∑
t∈Fq

χ(t(x · y))

Now, at first blush, this might not scream about counting the

number of points in a line, but hopefully it will eventually. Of course,

it is more complicated than (10.4), but that is the heart of it. We

will offer two different explanations of this expression. Please read

through both of them very carefully. Sometimes all it takes is another

viewpoint, and everything becomes clear. Also, for the next little

while, do not worry about computing these sums, just worry about

interpreting their meanings.

As you can see, when (x ·y) is nonzero, the sum over t is 0, so the

whole inner sum becomes zero. So we only need to consider the terms

where (x · y) is zero. If (x · y) = 0 though, then the sum over t is q,

as in (10.4). This means that for each point that is perpendicular to

the vector y, the sum over t returns q. This explains the factor of q−1

out front. It scales the sum so that each element in the hyperplane

returns a 1 and not a q. So we get that y is a normal vector to a

(d − 1)-dimensional hyperplane, and our sum counts the number of

points in it.

If the first explanation was not enough, the following explanation

is more like an assembly line, or a computer program. Figure 10.5

shows how each of the main components of our “counting machine”

fit together. We view part A as testing each x against the given y.

Part B yields a different result depending on what part A spat out.

Then part C sums the outputs of part B to yield zero if x is not

perpendicular to y, and q if it is. Part D does this for every x ∈ F
d
q .

Of course you still have to scale when all is said and done.

To ensure that this makes sense, we will show you how to count

something else. As you may have guessed, we will also have to make

sense of circles and spheres. We will show you how to count the
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A: outputs a nonzero element of the field if x is not  
 perpendicular to y, or 0 if x is.
B: outputs a root of unity, or 1 if its input is 0.
C: outputs either a 0 if it got all roots of unity, 
 otherwise outputs 1+1+...+1 = q.
D: outputs number of elements in hyperplane times q.

Figure 10.5. The heart of (10.5). Each part of the sum can
be viewed as a box in the machine. Each box starts with input
and gives output to the next box. The end output must be
scaled by q−1 to be accurate, but the main ideas are here.

number of elements in a circle, but you will count the number of

elements in a (d− 1)-dimensional sphere in Exercise 10.13.

Recall the ideas behind (10.5). If we forget about the fact that

we were counting elements in a hyperplane, and just think about

how we counted elements in some special set, the reasoning would go

as follows. We summed over the vector space to ask each element

whether or not it belonged to our set. Then for each element in this

big sum, we ran our additive character sum, which returned a 0 if

the element was not in our set, and a q if it was, and then we scaled

everything by q−1 to return 1 for each element in our set.

The next expression will use similar ideas to count the number of

elements on a circle of radius r in F
2
q :

(10.6) q−1
∑
x∈F2

q

∑
t∈Fq

χ(t(x2
1 + x2

2 − r)).
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Notice that the basic setup for (10.6) is the same as it was for

(10.5), but in the additive character, we have a different expression.

Think about which elements in F
2
q will give χ an argument or input

of 0:

x2
1 + x2

2 − r = 0,

x2
1 + x2

2 = r,

‖x‖ = r.

So χ will get a zero input only when x is on the circle of radius r

centered at the origin. How would you modify (10.6) to count the

number of elements on a circle of radius r centered at a point y ∈ F
d
q?

The most natural way would look something like

(10.7) q−1
∑
x∈F2

q

∑
t∈Fq

χ(t((x1 − y1)
2 + (x2 − y2)

2 − r)).

As with (10.6), χ only gets in zeros when ‖x− y‖ = r, or when x

is on a circle of radius r from y.

Exercise 10.13. Use the tools that you have learned with the hyper-

plane counting sum in d dimensions, (10.5), and the circle counting

sums in 2 dimensions, (10.6), and (10.7), to construct a sum that

counts the number of elements on a (d − 1)-dimensional sphere in d

dimensions, centered at some y ∈ F
d
q . Again, note that we do not

expect you to compute these sums yet.

We just have one last thing before we move on to the next section,

and it is simpler than the previous things. Think of it as a cooldown.

If we specify a subset E ⊂ F
d
q , then we can count the number of

elements in the subset by using a special function called the indicator

function or characteristic function of E. We will denote this function

E(x). It takes the value 1 if x ∈ E and 0 if x /∈ E. Consider the

following sum:
∑
x∈Fd

q

E(x).
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It will run through every element in F
d
q and add a 1 if the element

is in the set, and add nothing if not. So, we can be assured that
∑
x∈Fd

q

E(x) = #E,

by definition. Now that you are acquainted with characteristic func-

tions and counting of the number of elements in a particular object,

we will make things just a bit more complex by throwing in “weights”

for the elements. Although this is a mildly misleading analogy as it

stands, the following section will reveal its purpose. We will consider

(10.6) again, but this time, instead of counting each point once, we

will count different points different numbers of times. Suppose we

wanted to know how many points of the circle are in a particular

subset E ⊂ F
d
q . Well, we could multiply each term in the sum by the

characteristic function of E, and then only add one when the element

under consideration is both in E and in the circle. The end result

would look like this:

(10.8) q−1
∑
x∈F2

q

⎛
⎝E(x)

∑
t∈Fq

χ(t(x2
1 + x2

2 − r))

⎞
⎠ .

So far we have only weighted our terms by 1 or 0. In the next

section, we will weight each term by an arbitraty function defined on

F
d
q .

4. The Fourier transform

Now that you have the basic idea of counting things with exponential

sums, we will introduce the Fourier transform.3 It is one of the most

important and fundamental tools in mathematics. If you plan to do

mathematics, chances are that you will end up using this quite often.

Definition 10.2. Let f be a function on F
d
q . For m ∈ F

d
q , let

f̂(m) = q−d
∑
x∈Fd

q

e−
2πi
q x·mf(x) = q−d

∑
x∈Fd

q

χ(−x ·m)f(x).

3This is often referred to as the discrete Fourier transform, as it deals with
discretely valued functions defined only at discrete points.
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The minus sign in the definition is there for reasons that we will

not get into in this book, but the rest should appear somewhat fa-

miliar. Now in the Fourier transform, we do not have the luxury

of separating the sum into an element picking sum and an element

testing sum, or parts C and D of our machine in Figure 10.5, respec-

tively. This makes it difficult to get a clean “physical” interpretation

of this particular device. However, hopefully it does not appear too

intimidating after dealing with the simpler exponential sums.

Now, to further acquaint you with the Fourier transform, we will

guide you through a basic calculation. This will give you a feel for the

kinds of computations that lie ahead. The first is called the Fourier

inversion. If you know the Fourier transform of a function everywhere,

you can construct the original function using this method:

f(x) =
∑
m∈F

q
d

e
2πi
q x·mf̂(m).(10.9)

To see this, start with the definition of the Fourier transform and

work backwards:

∑
m∈F

q
d

e
2πi
q x·mf̂(m) =

∑
m∈F

q
d

e
2πi
q x·m

⎛
⎝q−d

∑
y∈Fd

q

e−
2πi
q y·mf(y)

⎞
⎠ ,

by the definition of the Fourier transform of f at each y. Furthermore,

∑
m∈F

q
d

e
2πi
q x·m

⎛
⎝q−d

∑
y∈Fd

q

e−
2πi
q y·mf(y)

⎞
⎠

= q−d
∑
m∈F

q
d

e
2πi
q x·m

⎛
⎝∑

y∈Fd
q

e−
2πi
q y·mf(y)

⎞
⎠ ,

by factoring out q−d, and

q−d
∑
m∈F

q
d

e
2πi
q x·m

⎛
⎝∑

y∈Fd
q

e−
2πi
q y·mf(y)

⎞
⎠

= q−d
∑
m∈F

q
d

⎛
⎝∑

y∈Fd
q

e
2πi
q x·me−

2πi
q y·mf(y)

⎞
⎠ ,
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by moving the exponential into the sum. Now we obtain

q−d
∑
m∈F

q
d

⎛
⎝∑

y∈Fd
q

e
2πi
q x·me−

2πi
q y·mf(y)

⎞
⎠

= q−d
∑
m∈F

q
d

⎛
⎝∑

y∈Fd
q

e
2πi
q (x−y)·mf(y)

⎞
⎠ ,

by adding the exponents, and

q−d
∑
m∈F

q
d

⎛
⎝∑

y∈Fd
q

e
2πi
q (x−y)·mf(y)

⎞
⎠

= q−d
∑
y∈F

q
d

⎛
⎝∑

m∈Fd
q

e
2πi
q (x−y)·mf(y)

⎞
⎠ ,

by switching the order of summation, which is fine as everything is

finite here. Due to orthogonality, this sum is only nonzero when

x = y, at which point it returns the value of f(y), which is of course

f(x), qd times. So,

q−d
∑
y∈F

q
d

⎛
⎝∑

m∈Fd
q

e
2πi
q (x−y)·mf(y)

⎞
⎠ = q−d(qdf(x)) = f(x),

as promised. Now, we chose to write this calculation out slowly and

step-by-step so you could soak up every bit of reasoning employed.

Please make sure that no steps are mysterious, as all of these ideas

will be taken for granted in the next chapter.

Before we continue, we will recall a few basic concepts in com-

plex space. As is usually the case, we will let z denote the complex

conjugate of z. So if

z = x+ yi = reiθ,

then its complex conjugate will be written as

z = x− yi = re−iθ.
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When a modulus is taken in complex space, we can think of it as

|z|2 = zz. Now we are ready to introduce the Plancherel formula:

(10.10)
∑
m∈Fd

q

|f̂(m)|
2
= q−d

∑
x∈Fd

q

|f(x)|2.

The proof of the Plancherel formula is also an elementary calcu-

lation. We will leave it as an exercise.

Exercise 10.14. Prove the Plancherel formula, (10.10), by writing

the modulus as a product of f(x)f(x), and use the proof of the Fourier

inversion formula.

Now, for the purposes of simplifying the exposition, we mainly

dealt with finite fields of odd prime order. Most of the theory easily

extends to more general finite fields. Do not be afraid to explore!

Try to guess how things will extend to other finite fields. As always,

the more personal you make your investigations, the more sense this

material will make to you.

                

                                                                                                               



Chapter 11

Distances in vector
spaces over finite fields

In this chapter, we are going to study the Erdős distance problem in

vector spaces over finite fields. Even though we defined everything

necessary in the previous chapter, we will repeat some definitions just

to make them stick a little better and to reduce the initial amount of

page flipping, so that you can keep track of what is really going on.

1. The setup

Again, let Fq denote a finite field with q elements. For the sake of

clarity, we confine our attention to the case where q is a prime number.

We also assume, for the sake of computational simplicity, that −1 is

not a square in Fq in the sense that there does not exist s ∈ Fq such

that s2 = −1. Actually, if q ≡ 1 (mod 4), −1 is a square in Fq, and

if q ≡ 3 (mod 4), −1 is not a square in Fq. Let F
d
q , d ≥ 2, denote

the d-dimensional vector space over Fq. What form does the Erdős

distance problem take in this setting? Given E ⊂ F
d
q , let

Δ(E) = {‖x− y‖ : x, y ∈ E},

where we define distance as before,

‖x− y‖ = (x1 − y1)
2
+ (x2 − y2)

2
+ · · ·+ (xd − yd)

2
.
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It is tempting to conjecture, as before, that

#Δ(E) � (#E)
2
d .

Unfortunately, this is just not true! Observe that if E = F
d
q , then

#E = qd, whereas #Δ(E) = q. It follows that, in general, the best

estimate we can expect is

#Δ(E) � (#E)
1
d .

At least in two dimensions, this estimate is fairly easy to achieve

(see Exercise 6.1 below), so is this the end of the story? Fortunately,

the answer is no. In [6], the following result is proved.

Theorem 11.1. Let E ⊂ F
2
q such that #E = q2−ε. Then there exists

δ = δ(ε) such that

(11.1) #Δ(E) � (#E)
1
2+δ

.

The proof of this result is beyond the scope of this book. The

goal of this chapter is to prove a non-trivial version of (11.1) and

to clarify the nature of the exponents. We shall prove the following

result, which is from [21].

Theorem 11.2. Let E ⊂ F
d
q , d ≥ 2, such that #E � q

d+1
2 . Then

(11.2) #Δ(E) � q.

The exponent d+1
2 is sharp in the following sense: for every ε > 0,

there exists a set, E, of size approximately q
d+1
2 −ε for which the size

of the distance set E is � q1−δ, where δ is a function of ε. This

argument is presented in [22].

To prove Theorem 11.2, consider

#{(x, y) ∈ E × E : ‖x− y‖ = j}

for some j ∈ Fq, j 
= 0. Again, let E(x) denote the characteristic

function of E, the function which equals 1 if x ∈ E and 0 otherwise.

Also, Sj(x) will denote the characteristic function of the sphere {x ∈
F
d
q : ‖x‖ = j} as before. Remember that since the “distance” is

defined differently, a sphere in a vector space over a finite field will
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probably not superficially resemble a sphere in Euclidean space. We

have

(11.3) #{(x, y) ∈ E×E : ‖x− y‖2 = j} =
∑

x,y∈Fd
q

E(x)E(y)Sj(x−y).

In order to proceed, we remind the definition of the Fourier trans-

form in this setting.

If f is a function on F
d
q and m ∈ F

d
q , let its Fourier transform be

f̂(m) = q−d
∑
x∈Fd

q

e−
2πi
q x·mf(x).

We will need to recall a few basic facts from the last chapter.

First, recall the technique of Fourier inversion:

f(x) =
∑
m∈F

q
d

e
2πi
q x·mf̂(m).

Next, recall the Plancherel formula:
∑
m∈Fd

q

|f̂(m)|
2
= q−d

∑
x∈Fd

q

|f(x)|2.

It follows that the right hand side of (11.3) equals

∑
x,y,m∈Fd

q

E(x)E(y)e
2πi
q (x−y)·mŜj(m) = q2d

∑
m∈Fd

q

|Ê(m)|
2
Ŝj(m).

(11.4)

Now you have most of the tools necessary to explore the Erdős

distance problem in vector spaces over finite fields. Good luck!

2. The argument

This is the last section of the main part of the book, and as such, is

much denser in content, and therefore more likely to be difficult. We

hope that you have enjoyed the book thus far, and see this as a kind

of parting gift. If it does not all sink in immediately, do not worry.

This section is intended to give you something to work on for a long

time to come.
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Lemma 11.3. With the notation above, if j 
= 0, then

|Ŝj(m)| � q−
d+1
2 ,

and

#Sj ≈ qd−1.

Assume Lemma 11.3 for a moment. The right hand side of (11.4)

equals

q2d|Ê(0, . . . , 0)|
2
Ŝj(0, . . . , 0) + q2d

∑
m �=(0,...,0)

|Ê(m)|
2
Ŝj(m) = I + II.

The first term is the same sum as above, but in the special case

that m = (0, 0, . . . , 0). Henceforth, we call it I. The sum over m 
=
(0, 0, . . . , 0) is called II. Now,

I = q2dq−2d(#E)2q−d#Sj ≈ (#E)2q−1.

Because I is a positive real number, |II| will be less than the right

hand side of (11.4). Now appeal to Lemma 11.3 and the Plancherel

formula to see that

|II| � q2d
∑
m∈Fd

q

∣∣∣Ê(m)
∣∣∣
2 ∣∣∣Ŝj(m)

∣∣∣

� q2dq−
d+1
2

∑
m∈Fd

q

|Ê(m)|
2
= q

d−1
2 #E.

Since ∑
j

#{(x, y) ∈ E × E : ‖x− y‖ = j} = (#E)2,

it follows that

#Δ(E) � min

{
q,

#E

q
d−1
2

}
,

as desired. In order to prove Lemma 11.3, we need the following

preliminary result about Gauss sums.

Lemma 11.4. Let G(m, k) =
∑

x∈Fd
q
e

2πi(x·m−k|x|2)
q . Then if k 
= 0,

G(m, k) = e
2πi|m|2

4kq gd(k),(11.5)

g(k) = ±i
√
q,(11.6)
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and, consequently,

(11.7) gd(k) = (±i)
d · q d

2 ,

where g(k) is the “standard” Gauss sum

g(k) =
∑

xj∈Fq

e
2πikx2

j
q .

To prove Lemma 11.4, we write

∑
xj∈Fq

e
2πi(mjxj−kx2

j )

q = e
2πim2

j
4kq

∑
xj∈Fq

e−
2πik(xj−mj/2k)2

q ,

just by comlpleting the square. Be sure to check that this works!

After that, to see the next step, just notice that summing over all

elements in a field or all elements in a field in a different order is the

same. This is illustrated in Exercise 11.1, right after the proof. This

means that

e
2πim2

j
4kq

∑
xj∈Fq

e−
2πik(xj−mj/2k)2

q = e
2πim2

j
4kq g(k),

and the identity (11.5) follows.

Exercise 11.1. Show that the following equality holds when m and

k are some elements in Fq:
∑
x∈Fq

e−
2πik(x−m/2k)2

q =
∑
y∈Fq

e−
2πiky2

q .

Think of it as a change of variables. Since the sum is still taken over

all elements, it is the same sum!

We now prove (11.6) and (11.7). Indeed,

|g(k)|2 =
∑

u,v∈Fq

e
2πik(u2−v2)

q

=
∑
t∈Fq

e
2πikt

q n(t),

where

n(t) = #{(u, v) ∈ Fq × Fq : u2 − v2 = t}.

Lemma 11.5. We have n(0) = 2q − 1, and n(t) = q − 1 if t 
= 0.
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Write u2 − v2 = (u− v)(u+ v). Since u− v and u+ v determine

u and v uniquely, it suffices to count the number of solutions of the

equation u′v′ = t, t 
= 0. There are q − 1 choices for u′, say, and v′ is

completely determined. The result follows.

We conclude that

|g(k)|2 = q + (q − 1)
∑
t∈Fq

e
2πikt

q = q.

Suppose that −1 is not a square in Fq. It follows that

g(k) + g(k) =
∑
t∈Fq

e
2πikt

q + e−
2πikt

q

runs over each of the elements of Fq exactly twice and thus equals

0. It follows that g(k) is purely imaginary. When −1 is a not square

in Fq, then ±i is simply replaced by a different constant. See, for

example, [32]. This completes the proof of Lemma 11.4.

We now prove Lemma 11.3. Keep a lookout for the “counting

machine” that we introduced in the previous chapter:

Ŝr(m) = q−d
∑

{x∈Fd
q :|x|2=r}

e−
2πix·m

q

= q−d
∑
x∈Fd

q

q−1
∑
j∈Fq

e
2πij(|x|2−r)

q e−
2πix·m

q

= q−d−1
∑
j∈F∗

q

e−
2πijr

q

∑
x∈Fd

q

e
2πij|x|2

q e−
2πix·m

q

= q−d−1
∑
j∈F∗

q

e−
2πijr

q G(−m,−j)

= q−d−1
∑
j∈F∗

q

e−
2πijr

q (±i)dq
d
2 e−

2πi|m|2
4j

= q−
d
2 q−1(±i)d

∑
j∈F∗

q

e−
2πi
q (jr+ |m|2

4j ).

This reduces the proof of Lemma 11.3 to the following Kloosterman

sum estimate due to André Weil [55]. We do not give a proof here,

but we encourage the reader to look one up! See, for example, [25]

or [34] for an elementary and self-contained proof.
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Lemma 11.6. If q is a prime, then∣∣∣∣∣∣
∑
j∈F∗

q

e−
2πi
q (jr+j−1r′)

∣∣∣∣∣∣
� √

q

for any r, r′ ∈ Fq.

We now prove that #Sr ≈ qd−1. Using the material above,
∑
x∈Fd

q

|Ŝr(x)|
2
= q−dq−2

∑
x∈Fd

q

∑
u,v∈F∗

q

e
2πi
q (r(u−v)+|x|2(u−1−v−1))

= q−d−2
∑

{(u,v)∈F∗
q×F∗

q :u �=v}
e

2πi(u−v)r
q q

d
2 + q−2

∑
u∈F∗

q

1

= O(q−1).

It follows that

#Sr =
∑
y∈Fd

q

S2
r (x) = qd

∑
x∈Fd

q

|Ŝr(x)|
2
= O(qd−1),

as desired.

We really hope that this book made you think a little bit, and

that you will consider exploring this subject matter deeper. We also

encourage you to reread sections of the book to see if, after some time,

you can get even more out of them. Thanks for reading!

                

                                                                                                               



Chapter 12

Applications of the
Erdős distance problem

The question often posed to us is: “Why should anyone who is not an

active Erdős follower care about the Erdős distance problem?” The

purpose of this chapter is to answer this question without getting too

deeply into the politics of how different areas of mathematics relate

to each other. We do this by giving two analytic examples designed

to illustrate connections between the Erdős distance problem and

some interesting problems in classical analysis and geometric measure

theory. These examples were the ones that originally convinced the

second listed author to study the Erdős distance problem about a

decade ago.

This chapter assumes knowledge of basic mathematical analy-

sis. The readers who are not familiar with the terminology and the

background are encouraged to explore the theories alluded to in the

following text.

A widely known mathematical fact is that the unit cube [0, 1]
d
,

or a torus Td, depending on how one wants to look at it, possesses an

orthogonal basis of exponentials. More precisely, the collection

{e2πix·m : m ∈ Z
d}

is an orthogonal basis for L2([0, 1]
d
). An interesting and much studied

question is to determine which domains in R
d also possess orthogonal

127

                                     

                

                                                                                                               



128 12. Applications of the Erdős distance problem

bases of exponentials. More precisely, the problem is to determine,

given a domain Ω, whether there exists a set A ⊂ R
d such that

(12.1) {e2πix·a : a ∈ A}

is an orthogonal basis for L2(Ω).

An interested reader can take a look at [16] and the references

therein for a description of this remarkable problem and its variants.

Here we focus on a particular instance of this question, namely the

question of whether the ball Bd = {x ∈ R
d : x2

1 + · · · + x2
d ≤ 1}

possesses an orthogonal basis of exponentials if d ≥ 2. This question

was raised by Fuglede in 1974, who showed that it does not, in the

case d = 2, using a fairly complicated analytic argument. In 1999,

Nets Katz, Steen Pedersen, and the second listed author resolved this

problem completely in [18], in all dimensions, by reducing it to the

Erdős distance problem. We now give an outline of this argument.

Assume, for the sake of contradiction, that L2(Bd) possesses an

orthogonal basis of exponentials. This means that there exists A ⊂ R
d

such that (12.1) holds. Orthogonality means that

(12.2)

∫

Bd

e2πix·(a−a′)dx = 0

if a 
= a′ ∈ A. It follows by continuity that A is separated in the sense

that there exists c > 0 such that |a− a′| ≥ c > 0 for all a 
= a′ ∈ A.

With a bit more work, one can show that A is well distributed in

the sense that there exists C > c > 0 such that every cube of side-

length C contains at least one point of A. This is a straightforward

analytic argument, worked out completely in [16], made even easier

by the fact that the Fourier transform of the characteristic function

of the ball has good decay properties at infinity by the method of

stationary phase. See, for example, [50] and the references therein.

We now invoke (12.2) and the definition of a Bessel function (see,

for example, [50]) to see that

(12.3) 0 =

∫

Bd

e2πix·(a−a′)dx = C|a− a′|−
d
2 J d

2
(2π|a− a′|),

where Jz is the Bessel function of order z. It is well known (see, for

example, [50]) that zeros of Bessel functions are uniformly separated.
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Combining all these observations, we see that if we choose a cube QR

of side length R, very large, in R
d, then it contains ≈ Rd points of

A. By (12.3) it follows that the number of distinct distances between

the elements of A ∩QR is at most C ′R for some C ′ > 0.

In summary, we have shown that if L2(Bd) has an orthogonal

basis of exponentials, then there exists a set S ⊂ R
d with ≈ Rd

points, such that

#Δ(S) ≤ C ′R.

As the reader will see, it is not difficult to show, using the methods

of this book, that such sets do not exist. It is conjectured that if

#S ≈ Rd, then #Δ(S) � R2. While this is not known, it is fairly

simple to show that #Δ(S) � R1+ε for some ε > 0. Thus we have

seen that a fairly simple application of the Erdős distance problem

techniques resolve a problem in classical analysis that was open for

many years.

Our second example illustrates an application of the Erdős inte-

ger distance principle, discussed in detail in Chapter 2, in a similar

context.

Theorem 12.1 (Erdős integer distance principle). Let E ⊂ R
d such

that E is infinite and Δ(E) ⊂ Z. Then E is a subset of a line.

A refinement of this principle was used by Misha Rudnev and the

second author to prove the following result in [20].

Theorem 12.2. Let K ⊂ R
d, d ≥ 2, be a convex body, symmet-

ric about the origin, with a smooth boundary and everywhere non-

vanishing curvature. Let A ⊂ R
d such that the set

{e2πix·a : a ∈ A}
is orthogonal to K in the sense that∫

K

e2πix·(a−a′)dx = 0 whenever a 
= a′ ∈ A.

Then the following hold:

• If d 
= 1 (mod 4), then A is finite.

• If d ≡ 1 (mod 4) and A is infinite, then A is a subset of a

line.
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An outline of the proof is the following. Using the method of

stationary phase, we see that

(12.4) K̂(ξ) = C|ξ|−
d+1
2 cos

(
2π

(
ρ∗(ξ)− d− 1

8

))
+O(|ξ|−

d+3
2 ),

where

K = {x ∈ R
d : ρ(x) ≤ 1},

with K̂(ξ) representing the Fourier transform of the characteristic

function of the body K, ρ denoting the Minkowski functional of K,

and ρ∗ being the dual functional defined by

ρ∗(ξ) = sup
x∈K

x · ξ.

Let A be as in the statement of the theorem above. Define the

ρ-distance set via

Δρ(A) = {ρ∗(a− a′) : a, a′ ∈ A}.

Formula (12.4) combined with the orthogonality hypothesis does

not quite tell us that Δρ(A) ⊂ Z, but it does tell us that Δρ(A) is

asymptotically close to shifted integers, which, one can show, is good

enough to deduce the conclusion of the classical Erdős integer distance

principle, from which the conclusion of Theorem 12.1 follows.

                

                                                                                                               



Appendix A

Hyperbolas in the plane

We will not exhaust the theory of hyperbolas here, but we will illus-

trate a few basic concepts so that the portion of the text concerning

them can make sense. Fixing two points F1 and F2 in the plane and

a positive real number a ≤ |F1 − F2|, a hyperbola is defined by the

set

(A.1) HF1,F2,a = {P ∈ R
d : ||P − F1| − |P − F2|| = 2a},

where | · | denotes the standard Euclidean metric.

If this is confusing, another way to think of hyperbolas is as the

locus of points satisfying a certain equation. Recall that one way to

write the equation of a general circle or ellipse is:

(
x− h

a

)2

+

(
y − k

b

)2

= r2.

An analogous equation for general hyperbolas is

(
x− h

a

)2

−
(
y − k

b

)2

= r2.

There are plenty of other ways to characterize hyperbolas, but

this should suffice for now. Notice that if the parameters defining a

hyperbola take certain values, it could actually be a single line! We

call such uninteresting hyperbolas degenerate. We will not discuss

them further here.
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132 A. Hyperbolas in the plane

Figure A.1. This is a Cartesian plane with a single hyperbola
drawn on it. The dashed lines depict the asymptotes of the
hyperbola. Unlike some other conic sections, this one often
has two parts.

Figure A.1 shows a typical hyperbola, centered at the origin.

Many hyperbolas, when viewed on a large enough scale, appear to be,

but are not, a pair of intersecting lines. The lines that the extremities

of the hyperbolas appear to behave like are called asymptotes. They

are shown in Figure A.1 as dashed lines.

Now, the main reason that we introduced hyperbolas was to prove

the Erdős integer distance principle. The property of hyperbolas that

we needed was that they do not intersect each other much, given some

reasonable constraints. Figure A.2 shows an example of two distinct,

non-degenerate hyperbolas that intersect each other four times. In

the next exercise, you will show that this is as many times as any

pair of distinct, non-degenerate hyperbolas can intersect.

Exercise A.1. Let d = 2. Suppose that segments F1F2 and F ′
1F

′
2

are not parallel. Show that

#(HF1,F2,a ∩HF ′
1,F

′
2,a

′) ≤ 4.
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Figure A.2. This is a Cartesian plane with two hyperbolas
drawn on it. This time, one hyperbola is merely drawn in
normally, and the other hyperbola is drawn in with dashed
lines. This is to show which half goes with which other half of
each hyperbola.

                

                                                                                                               



Appendix B

Basic probability theory

This title is much too grand. We will make no effort to review prob-

ability theory in any sort of generality. Instead, we shall treat a very

special case—the coin flipping experiment. The purpose of this style

of presentation is to make the probabilistic argument in the book

accessible to anyone, even if they have absolutely no background in

probability.

Everyone knows that when you flip a coin, you have a “fifty-fifty”

chance of getting heads or tails. This is because there is one outcome

that corresponds to heads, and two possible outcomes total. So we

can quantify this by saying that the probability of the coin landing

heads up is 1
2 , or .5. We will write this like

P(heads) = .5.

Any number between 0 and 1 can be a probability, but numbers

outside of that range cannot. The probability of a given event, where

each of the individual outcomes is equally likely, can be computed as

number of possible outcomes corresponding to the given event

number of total possible outcomes
,

which is 1
2 in the case of a coin landing heads up, since there is

one possibility of the coin landing heads up and two equally likely

possibilities total. A random variable is a variable that can take

certain values with some corresponding probabilities. In this case, the
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136 B. Basic probability theory

random variable will be the outcome of the flip. It can take the value

“heads” with probability 1
2 and “tails” with the same probability. Of

course, the sum of all the probabilities of all of the possible outcomes

will be 1, as it is in our special case.

Since flipping a single coin is not all that interesting, we will now

consider flipping several coins. The first thing to notice is that the

outcome of one coin flip does not affect the outcome of another. We

say that these events are independent of one another. An obvious

contrast to this is the example of pulling cards of a given suit out of

a deck of cards. In this setting, it is easy to find examples of events

which are not independent. The probability of pulling a single heart

out of a standard deck of playing cards is 13
52 = 1

4 . However, if we

drew a heart out on our first try, and did not return it to the deck,

as soon as we try to pull another heart out, the probability of getting

a heart becomes 12
51 . This is because there is one fewer heart card in

the deck. Of course, it is a different story altogether if the first card

we pulled out was not a heart to begin with . . .

As you can see, the independence of the coin flips will consider-

ably simplify the calculations of various probabilistic quantities. Now

we can turn our attention to our primary object of study: expecta-

tion. Since the individual events are independent, it does not matter

in which order they occur, or if they happen simultaneously. So we

can consider many coin flips at once and see what happens.

If you flip a coin ten times, how many times do you expect to

get heads? You can probably assume that your coin will land heads

up five times, or half of the time. This is because you have 10 ×
P(heads) = 10× .5 = 5.

What we have just done is computed the expected value of the

number of heads. If our events are independent, the expected value

of the number of a particular type of event occurring is the number

of trials (in this case coin flips) times the probability of the given

outcome at each trial (in this case, the probability of heads at each

flip).

To formalize this, if we flip the coin n times, the basic formula is

E(heads) = n · P(heads).
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In some situations, a given event could have several outcomes

associated with it. For example, if we were flipping a coin three

times, and our event was that we got two or more heads, then we

would have to account for each of the three possible outcomes with

two heads, plus the one possible outcome of all three heads.

To deal with more general situations, we add up the probability

of each event, times the value of each event. To show an example of

this, suppose you are given the chance to play a particular kind of

lottery. There are two ways to win. You have a five percent chance

of winning ten dollars, and a one percent chance of winning twenty

dollars. So how much do you expect to win each time you play? The

answer is

.05 · 10 + .01 · 20 = .70.

So you can expect to win seventy cents each time. Now, we

can go on to speculate how much you should be willing to pay for

such a game, but that is not what we are looking for today. In our

applications, we will assume that every event occurs with the same

probability. For an example of this sort, suppose that there are n

marbles on the floor, and you pick each one up with probability p:

p · 1 + p · 1 + · · ·+ p · 1︸ ︷︷ ︸
n times

.

Then you can expect to pick up about npmarbles total. Keep this

example in mind as you read through the sections where expectation

is used.

So, as you can see, expectation can be viewed as a kind of average.

We use precise mathematical language to express ideas such as, “If

you flip a coin ten times, you can expect to get five heads on average.”

When dealing with large sets, it is often useful to be able to make

statements about the behaviors of elements in your set on average.

Another nice feature of expectation is that it is linear, which is

illustrated in Exercise B.2. That is to say, the expected behavior of

several events is the sum of the expected behavior of the individual

events. So when we consider several types of conditions, we can take

expected values at any time it is convenient. This point is illustrated

in Chapter 4.
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Another important concept to keep in mind is that of conditional

probability. Suppose you roll two dice, but only look at one of them.

The possible outcomes of the sum of the two dice will depend on

the number that comes up on the die that you can see. Suppose

the die that you look at shows a two; then the probability of the

sum being ten becomes zero. However, the probability that the sum

is say, less than six, is two-thirds. So, the probability of a certain

event occurring, in this case, a particular sum of two dice, can change

according to some given information, such as the number on the die

that we look at. This was key in Chapter 8.

Exercise B.1. Suppose that you have two black pens and one blue

pen, and you choose one pen at random each time that you sit down

to work on mathematics. If you intend to sit down and work six times

this week, what is the expected number of times you will choose the

blue pen?

Exercise B.2. Using the definition above, show that if you flip a

coin twenty times, the expected number of heads is the same as the

expected number of heads in fourteen coin flips, plus the expected

number of heads in six coin flips.

Exercise B.3. Suppose you roll two dice and look at only one of

them. What is the probability that the sum of the two dice is less

than six, given that one of the dice is three or less?

                

                                                                                                               



Appendix C

Jensen’s inequality

As we did with the Cauchy-Schwarz inequality, we will prove a form

of this inequality from the ground up, just by looking at seemingly

innocuous facts and drawing some interesting and useful conclusions.

We will also illustrate the concept of induction. We start by defining

what it means for a function to be convex. We call a function, f ,

convex if

(C.1) f (θ1x1 + θ2x2) ≤ θ1f (x1) + θ2f (x2) ,

where θ1 and θ2 are positive, and θ1 + θ2 = 1.

We call this convex because the graph of such a function will look

like the underside of a convex body. If we know that f is convex, then

for any appropriate θ1 and θ2, we can be assured that (C.1) holds.

Since it holds for two pairs of x’s and θ’s, we could try to show

that it holds for three pairs of x’s and θ’s, then four, and so on.

However, at some point, we would have to stop, as our lives are only

so long! To address this, there is a process called induction, by which

we can derive statements for as many pairs of x’s and θ’s as we wish.

In general, if you have a statement that you want to show is true

for any number, you start by showing that it holds for some small

value of n. This is called the base case. Then you assume that it

holds for some arbitrary value of n and try to show that this implies

that the statement is true for n + 1. Since you have shown that it
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140 C. Jensen’s inequality

is true for the base case, and that one implies the next, you know

that it is true for the next case after the base case, and the case after

that, etc. This is not the only way that induction works, but it is the

simplest and most often employed.

In our scenario, the base case will be n = 2. Consider (C.1) to be

our desired statement for two pairs. Since we have already shown our

statement to be true for n = 2, we can proceed by trying to show that

validity for n implies validity for n + 1. So assume that something

like (C.1) holds for n numbers, x1, x2, . . . , xn, where the sum of the

θi is 1:

(C.2) f

(
n∑

i=1

θixi

)
≤

n∑
i=1

θif (xi).

Then we will use this to show that it holds for n + 1 numbers. Our

final goal will be to show that

f

(
n+1∑
i=1

θixi

)
≤

n+1∑
i=1

θif (xi).

The idea is to write the left hand side for n + 1 numbers, and

use (C.1) and (C.2) to get an appropriate right hand side. So, if we

want to get something that has two terms in the argument, or input,

of the function, like (C.1), we should separate the sum somehow.

We also want to use (C.2), so we should have a sum of n numbers

somewhere. Keeping these goals in mind, one logical approach would

be the following:

f

(
n+1∑
i=1

θixi

)
= f

(
θ1x1 +

n+1∑
i=2

θixi

)
.

Now, we have two terms inside the argument of our function.

However, we still do not quite have them in the form we want, as the

second term does not have a “θ”-like factor in front of it. So we will

put one in. We need a number such that adding it to θ1 will give us

1. So we need the factor (1 − θ1). Now, we are not allowed to just

throw it in front of the sum, but we can multiply and divide by it.
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This will yield

f

(
θ1x1 +

n+1∑
i=2

θixi

)
= f

(
θ1x1 + (1− θ1)

n+1∑
i=2

θi
(1− θ1)

xi

)
.

If we view the sum as one big number, call it x′
2, and the (1− θ1) as

the factor in front of it, θ′2, then we can use the convexity of f :

f (θ1x1 + θ′2x
′
2) ≤ θ1f (x1) + θ′2f (x′

2) .

Substitute everything back in, and we have

θ1f (x1) + (1− θ1) f

(
n+1∑
i=2

θi
(1− θ1)

xi

)
.

We are almost done! Now we have to deal with the sum of the

remaining n numbers. We want to employ the n number inequality

to the sum term. The sum of the remaining θi’s is (1 − θ1). So the

sum of the last n of the θi
1−θ1

’s is 1. This means that we can use (C.2)

on the latter sum:

θ1f (x1) + (1− θ1) f

(
n+1∑
i=2

θi
(1− θ1)

xi

)

≤ θ1f (x1) + (1− θ1)
n+1∑
i=2

θi
(1− θ1)

f (xi).

We have just shown one form of Jensen’s inequality.

Theorem C.1. Given a convex function f and a sequence of n pos-

itive numbers, {xi}ni=1, we have

f

(∑n
i=1 xi

n

)
≤
∑n

i=1 f (xi)

n
.

Exercise C.1. Use induction to show that

1 + 2 + · · ·+ n =
n(n+ 1)

2
.

Show that it is true for n = 1, then assume that it is true for n and

show that then it is true for n+ 1.

Exercise C.2. Find the conditions that allow us to interpret Jensen’s

inequality as

f (E(x)) ≤ E (f(x)) .
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[13] P. Erdős, Integral distances, Bull. Amer. Math. Soc. 51 (1945).

[14] J. S. Garibaldi, A lower bound for the Erdős distance problem for con-
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[51] L. Székely Inclusion-exclusion formulae without higher terms, Ars
Combinatoria 23B (1987), 7–20.
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Cauchy-Schwarz inequality, 24

centrally symmetric, 6

characteristic function, 114

collinear, 15

complex conjugate, 117

congruent, 102

convex, 28

body, 6

combination, 51

function, 25, 139

hull, 52

strictly, 51

covering, 7

crossing number, 31

degenerate hyperbola, 131

discrete Fourier transform, 115

dot product, 91

drawing of a graph, 30

edge, 29

entropy, 82

joint, 84

expected value, 136

linearity, 137

face, 31

field, 103

Fourier inversion, 116

Fourier transform, 115

French Railroad, 14

graph, 29

complete, 30

connected, 30

planar, 30

simple, 29

heavy

number, 72

row, 72

homogeneity, 12
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additive, 102

multiplicative, 102
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incidence, 36
inclusion-exclusion, 49
independent, 136
indicator function, 114
induction, 139
inhomogeneous, 14
inverses, 102

additive, 102
multiplicative, 102

Lenz construction, 14
level set, 7
light row, 72
linear programming, 89
locus, 12

Manhattan metric, 11
metric, 11
Minkowski functional, 6
mod, modulo, 102
multigraph, 29
multiplicity, 30

order, 101
ordering, 106
orthogonality, 110

path, 30

pigeonhole principle, 5
dyadic, 77

potato metric, 51
probability, 135

conditional, 138
projections, 25

radial, 92
random variable, 135

collapsing, 81
determination, 86

representations, 72

strength, 71
subgraph, 34
submodularity principle, 86

sums and entries problem, 72

taxicab metric, 11
tensor product, 75
translate, 54

unit distance, 14
unit distance problem, 14

vertex, 29

weight, 72
well-distributed, 96
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The Erdős problem 
asks, What is the 
smallest possible 
number of distinct 
distances between 
points of a large 
fi nite subset of the 
Euclidean space in dimensions two and higher? The main goal 
of this book is to introduce the reader to the techniques, ideas, 
and consequences related to the Erdős problem. The authors 
introduce these concepts in a concrete and elementary way that 
allows a wide audience—from motivated high school students 
interested in mathematics to graduate students specializing in 
combinatorics and geometry—to absorb the content and appre-
ciate its far-reaching implications. In the process, the reader is 
familiarized with a wide range of techniques from several areas 
of mathematics and can appreciate the power of the resulting 
symbiosis.

The book is heavily problem oriented, following the authors’ 
fi rm belief that most of the learning in mathematics is done 
by working through the exercises. Many of these problems are 
recently published results by mathematicians working in the 
area. The order of the exercises is designed both to reinforce the 
material presented in the text and, equally importantly, to entice 
the reader to leave all worldly concerns behind and launch head 
fi rst into the multifaceted and rewarding world of Erdős combi-
natorics.
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