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Preface

Some years ago I started gathering nice applications of linear algebra,

and here is the resulting collection. The applications belong mostly

to the main fields of my mathematical interests—combinatorics, ge-

ometry, and computer science. Most of them are mathematical, in

proving theorems, and some include clever ways of computing things,

i.e., algorithms. The appearance of linear-algebraic methods is often

unexpected.

At some point I started to call the items in the collection “minia-

tures”. Then I decided that in order to qualify for a miniature, a com-

plete exposition of a result, with background and everything, should

not exceed four typeset pages (A4 format). This rule is absolutely

arbitrary, as rules often are, but it has some rational core—namely,

this extent can usually be covered conveniently in a 90-minute lec-

ture, the standard length at the universities where I happened to

teach. Then, of course, there are some exceptions to the rule, such as

six-page miniatures that I just couldn’t bring myself to omit.

The collection could obviously be extended indefinitely, but I

thought thirty-three was a nice enough number and a good point

to stop.

The exposition is intended mainly for lecturers (I’ve taught al-

most all of the pieces on various occasions) and also for students

interested in nice mathematical ideas even when they require some

v

                

                                                                                                               



vi Preface

thinking. The material is hopefully class-ready, where all details left

to the reader should indeed be devil-free.

I assume a background in basic linear algebra, a bit of familiarity

with polynomials, and some graph-theoretical and geometric termi-

nology. The sections have varying levels of difficulty, and generally

I have ordered them from what I personally regard as the most ac-

cessible to the more demanding.

I wanted each section to be essentially self-contained. With a

good undergraduate background you can as well start reading at Sec-

tion 24. This is kind of opposite to a typical mathematical textbook,

where material is developed gradually, and if one wants to make sense

of something on page 123, one usually has to understand the previous

122 pages, or with luck, some suitable 38 pages.

Of course, the anti-textbook structure leads to some boring rep-

etitions and, perhaps more seriously, it puts a limit on the degree of

achievable sophistication. On the other hand, I believe there are ad-

vantages as well: I gave up reading several textbooks well before page

123, after I realized that between the usually short reading sessions

I couldn’t remember the key definitions (people with small children

will know what I’m talking about).

After several sections the reader may spot certain common pat-

terns in the presented proofs, which could be discussed at great

length, but I have decided to leave out any general accounts on linear-

algebraic methods.

Nothing in this text is original, and some of the examples are

rather

cases, other books of mine). Several general reference books are listed

below. I’ve also added references to the original sources where I could

find them. However, I’ve kept the historical notes at a minimum,

and I’ve put only a limited effort into tracing the origins of the ideas

(apologies to authors whose work is quoted badly or not at all—please

let me know about such cases).

I would also appreciate learning about mistakes and hearing sug-

gestions of how to improve the exposition.

fewwell known and appear in many publications (including, in a

                

                                                                                                               



Preface

Further reading. An excellent textbook is

L. Babai and P. Frankl, Linear Algebra Methods

in Combinatorics (Preliminary version 2), Depart-

ment of Computer Science, The University of Chi-

cago, 1992.

Unfortunately, it has never been published officially. It can be ob-

tained, with some effort, as lecture notes of the University of Chicago.

It contains several of the topics discussed here, a lot of other material

in a similar spirit, and a very nice exposition of some parts of linear

algebra.

Algebraic graph theory is treated, e.g., in the books

N. Biggs, Algebraic Graph Theory, 2nd edition,

Cambridge University Press, Cambridge, 1993

and

C. Godsil and G. Royle, Algebraic Graph Theory,

Springer, New York, NY, 2001.

Probabilistic algorithms in the spirit of Sections 11 and 24 are well

explained in the book

R. Motwani and P. Raghavan, Randomized Algo-

rithms, Cambridge University Press, Cambridge,

1995.

Acknowledgments. For valuable comments on preliminary versions

of this booklet, I would like to thank Otfried Cheong, Esther Ezra,

Nati Linial, Jana Maxová, Helena Nyklová, Yoshio Okamoto, Pavel

Paták, Oleg Pikhurko, and Zuzana Safernová, as well as all other peo-

ple whom I may have forgotten to include in this list. Thanks also to

David Wilson for permission to use his picture of a random lozenge

tiling in Miniature 22, and to Jennifer Wright Sharp for careful copy-

editing. Finally, I’m grateful to many people at the Department of

Applied Mathematics of the Charles University in Prague and at the

Institute of Theoretical Computer Science of the ETH Zurich for ex-

cellent working environments.
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Notation

Most of the notation is defined in each section where it is used. Here

are several general items that may not be completely unified in the

literature.

The integers are denoted by Z, the rationals by Q, the reals by

R, and Fq stands for the q-element finite field.

The transpose of a matrix A is written as AT . The elements

of that matrix are denoted by aij , and similarly for all other Latin

letters. Vectors are typeset in boldface: v,x,y, and so on. If x is a

vector in Kn, where K is some field, xi stands for the ith component,

so x = (x1, x2, . . . , xn).

We write 〈x,y〉 for the standard scalar (or inner) product of vec-

tors x,y ∈ Kn: 〈x,y〉 = x1y + x2y2 + · · · + xnyn. We also interpret

such x,y as n×1 (single-column) matrices, and thus 〈x,y〉 could also

be written as xT y. Further, for x ∈ Rn, ‖x‖ = 〈x,x〉1/2 is the Eu-

clidean norm (length) of the vector x.

Graphs are simple and undirected unless stated otherwise; i.e., a

graph G is regarded as a pair (V, E), where V is the vertex set and

E is the edge set, which is a set of unordered pairs of elements of V .

For a graph G, we sometimes write V (G) for the vertex set and E(G)

for the edge set.

xi

                

                                                                                                               



x Notation

Some conventions. When an important notion is defined in the

text, it appears in boldface, which should help in looking it up.

Less important terms, or general mathematical notions that are only

reminded, are marked in italics.

In the index, mathematical notation involving a specific letter,

such as Sn for the symmetric group or E(G) for the edge set of a

graph, is listed at

Only notation composed of special symbols or Greek letters

the beginning of the index.

section.letter’scorrespondingtheofbeginningthe

appears

at

                

                                                                                                               



Miniature 1

Fibonacci Numbers,
Quickly

The Fibonacci numbers F0, F1, F2, . . . are defined by the relations

F0 = 0, F1 = 1, and Fn+2 = Fn+1 + Fn for n = 0, 1, 2, . . .. Obviously,

Fn can be calculated using roughly n arithmetic operations.

By the following trick we can compute it faster, using only about

log n arithmetic operations. We set up the 2×2 matrix

M :=

(
1 1

1 0

)
.

Then (
Fn+2

Fn+1

)
= M

(
Fn+1

Fn

)
,

and therefore, (
Fn+1

Fn

)
= Mn

(
1

0

)

(we use the associativity of matrix multiplication).

For n = 2k, we can compute Mn by repeated squaring, with k

multiplications of 2×2 matrices. For n arbitrary, we write n in binary

as n = 2k1 +2k2 + · · ·+2kt , k1 < k2 < · · · < kt, and then we calculate

the power Mn as Mn = M2k1

M2k2 · · ·M2kt
. This needs at most

2kt ≤ 2 log2 n multiplications of 2×2 matrices.

1

                                     

                

                                                                                                               



2 1. Fibonacci Numbers, Quickly

Remarks. A similar trick can be used for any sequence (y0, y1, y2, . . .)

defined by a recurrence yn+k = ak−1yn+k−1 + · · ·+a0yn, where k and

a0, a1, . . . , ak−1 are constants.

If we want to compute the Fibonacci numbers by this method,

we have to be careful, since the Fn grow very fast. From a formula

in Miniature 2 below, one can see that the number of decimal digits

of Fn is of order n. Thus, we must use multiple precision arithmetic,

and so the arithmetic operations will be relatively slow.

Sources. This trick is well known, but so far I haven’t encountered
any reference to its origin.

                

                                                                                                               



Miniature 2

Fibonacci Numbers, the
Formula

We derive a formula for the nth Fibonacci number Fn (where F0 = 0,

F1 = 1, and Fn+2 = Fn+1 + Fn for n = 0, 1, 2, . . .). Let us consider

the vector space of all infinite sequences x = (x0, x1, x2, . . .) of real

numbers (with coordinate-wise addition and multiplication by real

numbers). In this space we define a subspace W of all sequences x

satisfying the equation xn+2 = xn+1 + xn for all n = 0, 1, . . .. Each

choice of the first two members x0 and x1 uniquely determines a se-

quence from W, and therefore, dim(W ) = 2. (In more detail, the two

sequences beginning with (0, 1, 1, 2, 3, . . .) and with (1, 0, 1, 1, 2 . . .)

constitute a basis of W.)

Now we find another basis of W : two sequences whose terms

are defined by a simple formula. Here we need an “inspiration”: we

should look for sequences u ∈ W of the form un = τn for a suitable

real number τ .

Finding the right values of τ leads to the quadratic equation τ2 =

τ + 1, which has two distinct roots

τ1 =
1 +

√
5

2
and τ2 =

1−
√

5

2
.

The sequences u := (τ0
1 , τ1

1 , τ2
1 , . . .) and v := (τ0

2 , τ1
2 , τ2

2 , . . .) both

belong to W , and it is easy to verify that they are linearly independent

3

                                     

                

                                                                                                               



4 2. Fibonacci Numbers, the Formula

(this can be checked by considering the first two terms). Hence they

form a basis of W .

We express the sequence F := (F0, F1, . . .) of the Fibonacci num-

bers in this basis: F = αu + βv. The coefficients α, β are calculated

by considering the first two terms of the sequences; that is, we need

to solve the linear system ατ0
1 + βτ0

2 = F0, ατ1
1 + βτ1

2 = F1.

The resulting formula is

Fn =
1√
5

[(
1 +

√
5

2

)n

−
(

1−
√

5

2

)n]
.

It is amazing that this formula full of irrationals yields an integer for

every n.

A similar technique works for other recurrences in the form yn+k =

ak−1yn+k−1 + · · ·+a0yn, but additional complications appear in some

cases. For example, for yn+2 = 2yn+1− yn, one has to find a different

kind of basis, which we will not do here.

Sources. The above formula for Fn is sometimes called Binet’s
formula, but it was known to Daniel Bernoulli, Euler, and de Moivre
in the 18th century before Binet’s work.

A more natural way of deriving the formula is by using generating
functions, but doing this properly and from scratch takes more work.

                

                                                                                                               



Miniature 3

The Clubs of Oddtown

There are n citizens living in Oddtown. Their main occupation was

forming various clubs, which at some point started threatening the

very survival of the city. In order to limit the number of clubs, the

city council decreed the following innocent-looking rules:

• Each club has to have an odd number of members.

• Every two clubs must have an even number of members in

common.

Theorem. Under these rules, it is impossible to form more clubs

than n, the number of citizens.

Proof. Let us call the citizens 1, 2, . . . , n and the clubs C1, C2, . . . , Cm.

We define an m× n matrix A by

aij =

{
1 if j ∈ Ci,

0 otherwise.

(Thus, rows correspond to clubs and columns to citizens.)

Let us consider the matrix A over the two-element field F2. Clear-

ly, the rank of A is at most n.

Next, we look at the product AAT . This is an m × m matrix

whose entry at position (i, k) equals
∑n

j=1 aijakj , and so it counts

the number of citizens in Ci ∩Ck. More precisely, since we now work

over F2, the entry is 1 if |Ci∩Ck| is odd, and it is 0 for |Ci∩Ck| even.

5

                                     

                

                                                                                                               



6 3. The Clubs of Oddtown

Therefore, the rules of the city council imply that AAT = Im,

where Im denotes the identity matrix. So the rank of AAT is at least

m. Since the rank of a matrix product is no larger that the minimum

of the ranks of the factors,1 we have rank(A) ≥ m as well, and so

m ≤ n. The theorem is proved. �

Sources. This is the opening example in the book of Babai and
Frankl cited in the Preface. I am not sure if it appears earlier in this
“pure form”, but certainly it is a special case of other results, such as
the Frankl–Wilson inequality (see Miniature 17).

1Proof sketch: If C = AB is a product of two matrices, then every row of C is
a linear combination of the rows of B, and so the row space of C is contained in the
row space of B. The rank of a matrix is the dimension of its row space, and hence
rank(C) ≤ rank(B). For the inequality rank(C) ≤ rank(A) we can argue similarly
using the column spaces.

                

                                                                                                               



Miniature 4

Same-Size Intersections

Theorem (Generalized Fisher inequality). If C1, C2, . . . , Cm are dis-

tinct and nonempty subsets of an n-element set such that all the in-

tersections Ci ∩ Cj, i 
= j, have the same size, then n ≥ m.

This result and the proof are similar to those in Miniature 3.

Proof. Let t denote the common size of all the intersections Ci∩Cj ,

i 
= j.

First we need to deal separately with the situation where one of

the Ci, say C1, has size t. Then t ≥ 1, and C1 is contained in every

other Cj . Thus Ci ∩ Cj = C1 for all i, j ≥ 2, i 
= j. Then the sets

Ci \ C1, i ≥ 2, are all disjoint and nonempty, and so their number is

at most n − |C1| ≤ n − 1. So together with C1 there are at most n

sets.

Now we assume that di := |Ci| > t for all i. As in Miniature 3,

we set up the m× n matrix A with

aij =

{
1 if j ∈ Ci,

0 otherwise.

Now we consider A as a matrix with real entries, and we let B :=

AAT . Then

7

                                     

                

                                                                                                               



8 4. Same-Size Intersections

B =

⎛
⎜⎜⎜⎝

d1 t t . . . t

t d2 t . . . t
...

...
...

...
...

t t t . . . dm

⎞
⎟⎟⎟⎠ ,

where t ≥ 0, and d1, d2, . . . , dm > t. It remains to verify that B is

nonsingular; then we will have m = rank(B) ≤ rank(A) ≤ n and we

will be done.

The nonsingularity of B can be checked in a pedestrian way, by

bringing B to a triangular form by a suitably organized Gaussian

elimination.

Here is another way. We will show that B is positive definite;

that is, B is symmetric and xT Bx > 0 for all nonzero x ∈ Rm.

We can write B = tJn + D, where Jn is the all 1s matrix and D

is the diagonal matrix with d1 − t, d2 − t, . . . , dn − t on the diagonal.

Let x be an arbitrary nonzero vector in Rn. Clearly, D is positive

definite, since xT Dx =
∑n

i=1(di−t)x2
i > 0. For Jn, we have xT Jnx =∑n

i,j=1 xixj =
(∑n

i=1 xi

)2 ≥ 0, so Jn is positive semidefinite. Finally,

xT Bx = xT (tJn + D)x = txT Jnx + xT Dx > 0, an instance of a

general fact that the sum of a positive definite matrix and a positive

semidefinite one is positive definite.

So B is positive definite. It remains to see (or know) that all

positive definite matrices are nonsingular. To see this, we observe

that if Bx = 0, then xT Bx = xT 0 = 0, and hence x = 0. �

Sources. A somewhat special case of the inequality comes from

R.A. Fisher, An examination of the different possible solu-
tions of a problem in incomplete blocks, Ann. Eugenics 10

(1940), 52–75.

A linear-algebraic proof of a “uniform” version of Fisher’s inequality
is due to

R.C. Bose, A note on Fisher’s inequality for balanced in-
complete block designs, Ann. Math. Statistics 20,4 (1949),
619–620.

                

                                                                                                               



4. Same-Size Intersections 9

K.N. Majumdar, On some theorems in combinatorics relat-
ing to incomplete block designs, Ann. Math. Statistics 24

(1953), 377–389.

It was rediscovered in

J. R. Isbell, An inequality for incidence matrices, Proc. Amer.
Math. Soc. 10 (1959), 216–218.

The nonuniform version as above was noted in

                

                                                                                                               



Miniature 5

Error-Correcting Codes

We want to transmit (or write and read) some data, say a string v of

0s and 1s. The transmission channel is not completely reliable, and

so some errors may occur—some 0s may be received as 1s and vice

versa. We assume that the probability of error is small, and that the

probability of k errors in the message is substantially smaller than

the probability of k − 1 or fewer errors.

The main idea of error-correcting codes is to send, instead of the

original message v, a somewhat longer message w. This longer string

w is constructed so that we can correct a small number of errors

incurred in the transmission.

Today error-correcting codes are used in many kinds of devices,

ranging from CD players to spacecraft, and the construction of error-

correcting codes constitutes an extensive area of research. Here we

introduce the basic definitions and we present an elegant construction

of an error-correcting code based on linear algebra.

Let us consider the following specific problem: We want to send

arbitrary 4-bit strings v of the form abcd, where a, b, c, d ∈ {0, 1}. We

assume that the probability of two or more errors in the transmission

is negligible, but a single error occurs with a nonnegligible probability,

and we would like to correct it.

11

                                     

                

                                                                                                               



12 5. Error-Correcting Codes

One way of correcting a single error is to triple every bit and

send w = aaabbbcccddd (12 bits). For example, instead of v = 1011,

we send w = 111000111111. If, say, 110000111111 is received at the

other end of the channel, we know that there was an error in the third

bit and the correct string was 111000111111 (unless, of course, there

were two or more errors after all).

That is a rather wasteful way of coding. We will see that one can

correct an error in any single bit using a code that transforms a 4-bit

message into a 7-bit string. So the message is expanded not three

times, but only by 75%.

Example: The Hamming code. This is probably the first known

nontrivial error-correcting code, and it was discovered in the 1950s.

Instead of a given 4-bit string v = abcd, we send the 7-bit string

w = abcdefg, where e := a+ b+ c (addition modulo 2), f := a+ b+d

and g := a+ c+d. For example, for v = 1011, we have w = 1011001.

This encoding also allows us to correct any single-bit error, as we will

prove using linear algebra.

Before we get to that, we introduce some general definitions from

coding theory.

Let S be a finite set, called the alphabet; for example, we can

have S = {0, 1} or S = {a, b, c, . . . , z}. We write Sn = {w =

a1a2 . . . an : a1, . . . , an ∈ S} for the set of all possible words of length

n (here a word means any arbitrary finite sequence of letters of the

alphabet).

Definition. A code of length n over an alphabet S is an arbitrary

subset C ⊆ Sn.

For example, for the Hamming code, we have S = {0, 1}, n = 7,

and C is the set of all 7-bit words that can arise by the encoding proce-

dure described above from all the 24 = 16 possible 4-bit words. That

is, C = {0000000, 0001011, 0010101, 0011110, 0100110, 0101101,

0110011, 0111000, 1000111, 1001100, 1010010, 1011001, 1100001,

1101010, 1110100, 1111111}.

                

                                                                                                               



5. Error-Correcting Codes 13

The essential property of this code is that every two of its words

differ in at least three bits. We could check this directly, but labori-

ously, by comparing every pair of words in C. Soon we will prove it

differently and almost effortlessly.

We introduce the following terminology:

• The Hamming distance of two words u,v ∈ Sn is

d(u,v) := |{i : ui 
= vi, i = 1, 2, . . . , n}|,
where ui is the ith letter of the word u. It means that we

can get v by making d(u,v) “errors” in u.

• A code C corrects t errors if for every u ∈ Sn there is at

most one v ∈ C with d(u,v) ≤ t.

• The minimum distance of a code C is defined as d(C) :=

min{d(u,v) : u,v ∈ C,u 
= v}.
It is easy to check that the last two notions are related as follows:

A code C corrects t errors if and only if d(C) ≥ 2t + 1. So for

showing that the Hamming code corrects one error we need to prove

that d(C) ≥ 3.

Encoding and decoding. The above definition of a code may look

strange, since in everyday usage, a “code” refers to a method of en-

coding messages. Indeed, in order to actually use a code C as in the

above definition, we also need an injective mapping c : Σk → C, where

Σ is the alphabet of the original message and k is its length (or the

length of a block used for transmission).

For a given message v ∈ Σk, we compute the word w = c(v) ∈ C

and we send it. Then, having received a word w′ ∈ Sn, we find a word

w′′ ∈ C minimizing d(w′,w′′), and we calculate v′ = c−1(w′′) ∈ Σk

for this w′′. If at most t errors occurred during the transmission and

C corrects t errors, then w′′ = w, and thus v′ = v. In other words,

we recover the original message.

One of the main problems of coding theory is to find, for given

S, t, and n, a code C of length n over the alphabet S with d(C) ≥ t

and with as many words as possible (since the larger |C| is, the more

information can be transmitted).

                

                                                                                                               



14 5. Error-Correcting Codes

We also need to compare the quality of codes with different

|S|, t, n. Such things are studied by Shannon’s information theory,

which we will not pursue here.

When constructing a code, other aspects besides its size also need

to be taken into account, e.g., the speed of encoding and decoding.

Linear codes. Linear codes are codes of a special type, and the

Hamming code is one of them. In this case, the alphabet S is a finite

field (the most important example is S = F2), and thus Sn is a vector

space over S. Every linear subspace of Sn is called a linear code.

Observation. For every linear code C, we have

d(C) = min{d(0,w) : w ∈ C,w 
= 0}.

�

A linear code need not be given as a list of words. Linear algebra

offers us two basic ways of specifying a linear subspace. Here is the

first one.

(1) By a basis. We can specify C by a generator matrix G,

which is a k×n matrix, k := dim(C), whose rows are vectors

of some basis of C.

A generator matrix is very useful for encoding. When we need to

transmit a vector v ∈ Sk, we send the vector w := GT v ∈ C.

We can always get a generator matrix in the form G = (Ik |A),

where Ik denotes the k × k identity matrix, by choosing a suitable

basis of C. Then the vector w agrees with v on the first k coordinates.

It means that the encoding procedure adds n−k extra symbols to the

original message. (These are sometimes called parity check bits , which

makes sense for the case S = F2—each such bit is a linear combination

of some of the bits in the original message, and thus it “checks the

parity” of these bits.) It is important to realize that the transmission

channel makes no distinction between the original message and the

parity check bits; errors can occur anywhere including the parity check

bits.

                

                                                                                                               



5. Error-Correcting Codes 15

The Hamming code is a linear code of length 7 over F2 and with

a generator matrix

G =

⎛
⎜⎜⎝

1 0 0 0 1 1 1

0 1 0 0 1 1 0

0 0 1 0 1 0 1

0 0 0 1 0 1 1

⎞
⎟⎟⎠ .

Here is another way of specifying a linear code.

(2) By linear equations. A linear code C can also be given as

the set of all solutions of a system of linear equations of the

form Pw = 0, where P is called a parity check matrix of

the code C.

This way of presenting C is particularly useful for decoding, as

we will see. If the generator matrix of C is G = (Ik |A), then it is

easy to check that P := (−AT | In−k) is a parity check matrix of C.

The generalized Hamming code. The Hamming code has a parity

check matrix

P =

⎛
⎝ 1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

⎞
⎠ .

The columns are exactly all possible nonzero vectors from F3
2. This

construction can be generalized: we choose a parameter � ≥ 2 and

define a generalized Hamming code as the linear code over F2 of

length n := 2� − 1 with a parity check matrix P whose columns are

all nonzero vectors from F�
2.

Proposition. The generalized Hamming code C has d(C) = 3, and

thus it corrects one error.

Proof. For showing that d(C) ≥ 3, it suffices to verify that every

nonzero w ∈ C has at least three nonzero entries. We thus need that

no w ∈ Fn
2 with one or two 1s satisfies Pw = 0. For w with one 1

it would mean that P has a zero column, and for w with two 1s we

would get an equality between two columns of P . Thus none of these

possibilities occur. �

                

                                                                                                               



16 5. Error-Correcting Codes

Let us remark that the (generalized) Hamming code is optimal

in the following sense: there exists no code C ⊆ F2�−1
2 with d(C) ≥ 3

and with more words than the generalized Hamming code. We leave

the proof as a (nontrivial) exercise.

Decoding a generalized Hamming code. We send a vector w

of the generalized Hamming code and receive w′. If at most one

error has occurred, we have w′ = w, or w′ = w + ei for some i ∈
{1, 2, . . . , n}, where ei has 1 at position i and 0s elsewhere.

Looking at the product Pw′, for w′ = w we have Pw′ = 0, while

for w′ = w + ei we get Pw′ = Pw + Pei = Pei, which is the ith

column of the matrix P . Hence, assuming that there was at most one

error, we can immediately tell whether an error has occurred, and if

it has, we can identify the position of the incorrect letter.

Sources. R.W. Hamming, Error detecting and error correcting
codes, Bell System Tech. J. 29 (1950), 147–160.

As was mentioned above, error-correcting codes form a major area
with numerous textbooks. A good starting point, although not to all
tastes, can be

M. Sudan, Coding theory: Tutorial & survey, in Proc. 42nd
Annual Symposium on Foundations of Computer Science
(FOCS), 2001, 36–53, http://people.csail.mit.edu/

madhu/papers/focs01-tut.ps.

                

                                                                                                               



Miniature 6

Odd Distances

Theorem. There are no four points in the plane such that the dis-

tance between each pair is an odd integer.

Proof. Let us suppose for contradiction that there exist four points

with all the distances odd. We can assume that one of the points is

0, and we call the three remaining ones a,b, c. Then ‖a‖, ‖b‖, ‖c‖,
‖a − b‖, ‖b − c‖, and ‖c − a‖ are odd integers, where ‖x‖ is the

Euclidean length of a vector x.

We observe that if m is an odd integer, then m2 ≡ 1 (mod 8) (here

≡ denotes congruence; x ≡ y (mod k) means that k divides x − y).

Hence the squares of all the considered distances are congruent to 1

modulo 8.

Next, we use the cosine theorem, asserting that every two vectors

x,y ∈ Rn satisfy ‖x−y‖2 = ‖x‖2 + ‖y‖2− 2〈x,y〉. Applying it with

x = a and y = b, we get 2〈a,b〉 = ‖a‖2+‖b‖2−‖a−b‖2 ≡ 1 (mod 8),

and the same holds for 2〈a, c〉 and 2〈b, c〉.
Let B be the matrix

⎛
⎝ 〈a,a〉 〈a,b〉 〈a, c〉
〈b,a〉 〈b,b〉 〈b, c〉
〈c,a〉 〈c,b〉 〈c, c〉

⎞
⎠ .

17

                                     

                

                                                                                                               



18 6. Odd Distances

Then 2B is congruent to the matrix

R :=

⎛
⎝ 2 1 1

1 2 1

1 1 2

⎞
⎠

modulo 8.

We calculate that det(R) = 4, and thus det(2B) ≡ 4 (mod 8).

(To see this, we consider the expansion of both determinants in 3!

terms according to the definition, and we note that the corresponding

terms for det(2B) and for det(R) are congruent modulo 8.) Thus

det(2B) 
= 0, and so det(B) 
= 0. Hence, rank(B) = 3.

On the other hand, B = AT A, where

A =

(
a1 b1 c1

a2 b2 c2

)
.

We have rank(A) ≤ 2 and, as is well known, the rank of a product of

matrices is no larger than the minimum of the ranks of the factors (see

Miniature 3). Thus, rank(B) ≤ 2, and this contradiction concludes

the proof. �

Sources. The result is from

R.L. Graham, B. L. Rothschild, and E. G. Straus, Are there
n + 2 points in En with pairwise odd integral distances?,
Amer. Math. Monthly 81 (1974), 21–25.

I have heard the proof above from Moshe Rosenfeld.

                

                                                                                                               



Miniature 7

Are These Distances
Euclidean?

Can we find three points p,q, r in the plane whose mutual Euclidean

distances are all 1s? Of course we can—the vertices of an equilateral

triangle.

Can we find p,q, r with ‖p−q‖ = ‖q− r‖ = 1 and ‖p− r‖ = 3?

No, since the direct path from p to r cannot be longer than the path

via q; these distances violate the triangle inequality, which in the

Euclidean case tells us that

‖p− r‖ ≤ ‖p− q‖+ ‖q− r‖

for every three points p,q, r (in any Euclidean space).

It turns out that the triangle inequality is the only obstacle for

three points: Whenever nonnegative real numbers x, y, z satisfy x ≤
y + z, y ≤ x + z, and z ≤ x + y, then there are p,q, r ∈ R2 such that

‖p − q‖ = x, ‖q − r‖ = y, and ‖p − r‖ = z. These are well-known

conditions for the existence of a triangle with given side lengths.

What about prescribing distances for four points? We need to

look for points in R3; that is, we ask for a tetrahedron with given side

lengths. Here the triangle inequality is a necessary, but not sufficient

condition. For example, if we require the distances as indicated in

the picture,

19

                                     

                

                                                                                                               



20 7. Are These Distances Euclidean?

p q

rs

2

2

2

2

3
3

then there is no violation of a triangle inequality, yet there are no cor-

responding p,q, r, s ∈ R3. Geometrically, if we construct the triangle

pqr, then the spheres around p,q, r that would have to contain s

have no common intersection:

q

r p

2 2

3

This is a rather ad-hoc argument. Linear algebra provides a very

elegant characterization of the systems of numbers that can appear

as Euclidean distances, using the notion of a positive semidefinite

matrix .1 The characterization works for any number of points; if

there are n + 1 points, we want them to live in Rn. The formulation

becomes more convenient to state if we number the desired points

starting from 0.

1We recall that a real matrix M is positive semidefinite if it is a symmetric

n × n matrix (for some n) and xT Mx ≥ 0 for all x ∈ R
n.

                

                                                                                                               



7. Are These Distances Euclidean? 21

Theorem. Let mij, i, j = 0, 1, . . . , n, be nonnegative real numbers

with mij = mji for all i, j and mii = 0 for all i. Then points

p0,p1, . . . ,pn ∈ Rn with ‖pi − pj‖ = mij for all i, j exist if and

only if the n× n matrix G with

gij =
1

2

(
m2

0i + m2
0j −m2

ij

)
is positive semidefinite.

Let us note that the triangle inequality does not appear explicitly

in the theorem—it is hidden in the condition of positive semidefinite-

ness (you may want to check this for the case n = 2).

The proof of the theorem relies on the following characterization

of positive semidefinite matrices.

Fact. A real symmetric n×n matrix A is positive semidefinite if and

only if there exists an n× n real matrix X such that A = XT X.

Reminder of a proof. If A = XT X , then for every x ∈ Rn we have

xT Ax = (Xx)T (Xx) = ‖Xx‖2 ≥ 0, and so A is positive semidefinite.

Conversely, every real symmetric square matrix A is diagonal-

izable, i.e., it can be written as A = T−1DT for a nonsingular n×n

matrix T and a diagonal matrix D (with the eigenvalues of A on the

diagonal). Moreover, an inductive proof of this fact even yields T

orthogonal, i.e., such that T−1 = T T and thus A = T T DT . Then

we can set X := RT , where R =
√

D is the diagonal matrix hav-

ing the square roots of the eigenvalues of A on the diagonal; here we

use the fact that A, being positive semidefinite, has all eigenvalues

nonnegative.

It turns out that one can even require X to be upper triangular,

and in such case one speaks about a Cholesky factorization of A. �

Proof of the theorem. First we check necessity. Thus, we need to

show that if p0, . . . ,pn are given points in Rn and mij := ‖pi − pj‖,
then G as in the theorem is positive semidefinite.

For this, we need the cosine theorem, which tells us that ‖x −
y‖2 = ‖x‖2 + ‖y‖2 − 2〈x,y〉 for any two vectors x,y ∈ Rn. Thus, if
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we define xi := pi − p0, i = 1, 2, . . . , n, we get that

〈xi,xj〉 =
1

2
(‖xi‖2 + ‖xj‖2 − ‖xi − xj‖2) = gij .

So G is the Gram matrix of the vectors xi, we can write G = XT X ,

and hence G is positive semidefinite.

Conversely, if G is positive semidefinite, we can decompose it as

G = XT X for some n × n real matrix X . Then we let pi ∈ Rn be

the ith column of X for i = 1, 2, . . . , n, while p0 := 0. Reversing

the above calculation, we arrive at ‖pi − pj‖ = mij , and the proof is

finished. �

The theorem solves the existence of n + 1 points in Rn with pre-

scribed distances. Here n is the largest dimension one may ever need

for n + 1 points. One can also ask when the desired n + 1 points can

live in Rd with some given d, say d = 2. An extension of the above

argument shows that the answer is positive if and only if G = XT X

for some matrix X of rank at most d.

Source. I. J. Schoenberg: Remarks to Maurice Fréchet’s
article “Sur la definition axiomatique d’une classe d’espace
distances vectoriellement applicable sur l’espace de Hilbert”,
Ann. of Math. (2) 36 (1935), 724–732.

                

                                                                                                               



Miniature 8

Packing Complete
Bipartite Graphs

We want to decompose the edge set of a complete graph, say K6, into

edge sets of complete bipartite subgraphs and use as few subgraphs

as possible. We recall that a graph G is complete bipartite if its

vertex set V (G) can be partitioned into two disjoint subsets A, B so

that E(G) = {{a, b} : a ∈ A, b ∈ B}. Such A and B are called the

color classes of G.

Here is one such decomposition, using five complete bipartite sub-

graphs:

= + +

+ +

There are several other possible decompositions with five complete

bipartite subgraphs, and in general, it is not hard to find a decompo-

sition of Kn using n − 1 complete bipartite subgraphs. But can one

do better?

23

                                     

                

                                                                                                               



24 8. Packing Complete Bipartite Graphs

This problem was motivated by a question in telecommunications.

We present a neat linear-algebraic proof of the following.

Theorem. If the set E(Kn), i.e., the set of the edges of a complete

graph on n vertices, is expressed as a disjoint union of edge sets of m

complete bipartite graphs, then m ≥ n− 1.

Proof. Suppose that complete bipartite graphs H1, H2, . . . , Hm dis-

jointly cover all edges of Kn. Let Xk and Yk be the color classes of

Hk. (The set V (Hk) = Xk ∪ Yk is not necessarily all of V (Kn).)

We assign an n × n matrix Ak to each graph Hk. The entry of

Ak in the ith row and jth column is

a
(k)
ij =

{
1 if i ∈ Xk and j ∈ Yk,

0 otherwise.

We claim that each of the matrices Ak has rank 1. This is because

all the nonzero rows of Ak are equal to the same vector, namely, the

vector with 1s at positions whose indices belong to Yk and with 0s

elsewhere.

Let us now consider the matrix A = A1 + A2 + · · · + Am. The

rank of a sum of two matrices is never larger than the sum of their

ranks (why?), and thus the rank of A is at most m. It is enough to

prove that this rank is also at least n− 1.

Each edge {i, j} belongs to exactly one of the graphs Hk, and

hence for each i 
= j, we have either aij = 1 and aji = 0, or aij = 0

and aji = 1, where aij is the entry of the matrix A at position (i, j).

We also have aii = 0. From this we get A + AT = Jn − In, where

In is the identity matrix and Jn denotes the n× n matrix having 1s

everywhere.

For contradiction, let us assume that rank(A) ≤ n − 2. Let us

add the vector 1 ∈ Rn (with all components equal to 1) to A as an

extra row. The resulting (n + 1)× n matrix has rank at most n− 1,

and hence there exists a nontrivial linear combination of its columns

equal to 0. In other words, there exists a (column) vector x ∈ Rn,

x 
= 0, such that Ax = 0 and 1T x = 0.

                

                                                                                                               



8. Packing Complete Bipartite Graphs 25

From the last equality we get Jnx = 0. We calculate

xT
(
A + AT

)
x = xT (Jn − In)x = xT (Jnx)− xT (Inx)

= 0− xT x = −
n∑

i=1

x2
i < 0.

On the other hand, we have

xT
(
AT + A

)
x =

(
xT AT

)
x + xT (Ax) = 0T x + xT 0 = 0,

and this is a contradiction. �

Sources. The result is due to

R. L. Graham and H.O. Pollak, On the addressing problem
for loop switching, Bell System Tech. J. 50 (1971), 2495–
2519.

The proof is essentially that of

H. Tverberg, On the decomposition of Kn into complete bi-
partite graphs, J. Graph Theory 6,4 (1982), 493–494.

                

                                                                                                               



Miniature 9

Equiangular Lines

What is the largest number of lines in R3 such that the angle between

every two of them is the same?

Everybody knows that in R3 there cannot be more than three

mutually orthogonal lines, but the situation for angles other than 90

degrees is more complicated. For example, the six longest diagonals

of the regular icosahedron (connecting pairs of opposite vertices) are

equiangular:

27

                                     

                

                                                                                                               



28 9. Equiangular Lines

As we will prove, this is the largest number one can get.

Theorem. The largest number of equiangular lines in R3 is 6, and

in general, there cannot be more that
(
d+1
2

)
equiangular lines in Rd.

Proof. Let us consider a configuration of n lines, where each pair

has the same angle ϑ ∈ (0, π
2 ]. Let vi be a unit vector in the direction

of the ith line (we choose one of the two possible orientations of vi

arbitrarily). The condition of equal angles is equivalent to

|〈vi,vj〉| = cos ϑ, for all i 
= j.

Let us regard vi as a column vector, or a d×1 matrix. Then vT
i vj

is the scalar product 〈vi,vj〉, or more precisely, the 1×1 matrix whose

only entry is 〈vi,vj〉. On the other hand, viv
T
j is a d×d matrix.

We show that the matrices viv
T
i , i = 1, 2, . . . , n, are linearly

independent. Since they are the elements of the vector space of all

real symmetric d×d matrices, and the dimension of this space is
(
d+1
2

)
,

we get n ≤ (
d+1
2

)
, just as we wanted.

To check linear independence, we consider a linear combination

n∑
i=1

aiviv
T
i = 0,

where a1, a2, . . . , an are some coefficients. We multiply both sides of

this equality by vT
j from the left and by vj from the right. Using the

associativity of matrix multiplication, we obtain

0 =

n∑
i=1

aiv
T
j (viv

T
i )vj =

n∑
i=1

ai〈vi,vj〉2 = aj +
∑
i�=j

ai cos2 ϑ

for all i, j. In other words, we have deduced that Ma = 0, where

a = (a1, . . . , an) and M = (1 − cos2 ϑ)In + (cos2 ϑ)Jn. Here In is

the identity matrix and Jn is the matrix of all 1s. It is easy to check

that the matrix M is nonsingular (using cos ϑ 
= 1); for example, as

in Miniature 4, we can show that M is positive definite. Therefore,

a = 0, the matrices viv
T
i are linearly independent, and the theorem

is proved. �

                

                                                                                                               



9. Equiangular Lines 29

Remark. While the upper bound of this theorem is tight for d = 3,

for some larger values of d it can be improved by other methods. The

best possible value is not known in general. The best known lower

bound (from the year 2000) is 2
9 (d + 1)2, holding for all numbers d of

the form 3 · 22t−1 − 1, where t is a natural number.

Sources. The theorem is stated in

P.W.H. Lehmmens and J. J. Seidel, Equiangular lines, J. of
Algebra 24 (1973), 494–512.

and attributed to Gerzon (private communication). The best upper
bound mentioned above is from

D. de Caen, Large equiangular sets of lines in Euclidean
space, Electr. J. Comb. 7 (2000), R55.

                

                                                                                                               



Miniature 10

Where is the Triangle?

Does a given graph contain a triangle, i.e., three vertices u, v, w,

every two of them connected by an edge? This question is not entirely

easy to answer for graphs with many vertices and edges. For example,

where is a triangle in this graph?

An obvious algorithm for finding a triangle inspects every triple

of vertices, and thus it needs roughly n3 operations for an n-vertex

graph (there are
(
n
3

)
triples to look at, and

(
n
3

)
is approximately n3/6

for large n). Is there a significantly faster method?

There is, but surprisingly, the only known approach for breaking

the n3 barrier is algebraic, based on fast matrix multiplication.

31

                                     

                

                                                                                                               



32 10. Where is the Triangle?

To explain it, we assume for notational convenience that the ver-

tex set of the given graph G is {1, 2, . . . , n}, and we define the adja-

cency matrix of G as the n×n matrix A with

aij =

{
1 if i 
= j and {i, j} ∈ E(G),

0 otherwise.

The algorithm proceeds as follows.

1. Compute the matrix B := A2.

2. For each pair (i, j) of indices with 1 ≤ i < j ≤ n, check if

both aij 
= 0 and bij 
= 0.

3. If at least one pair (i, j) satisfies this condition, then re-

port that G contains a triangle. Otherwise, report that G

contains no triangle.

For clarifying why this algorithm works, we first need to under-

stand the meaning of the matrix B = A2. By the definition of matrix

multiplication we have bij =
∑n

k=1 aikakj , and

aikakj =

{
1 if the vertex k is adjacent to both i and j,

0 otherwise.

So bij counts the number of common neighbors of i and j.

Finding a triangle is equivalent to finding two adjacent vertices

i, j with a common neighbor k. The adjacency of i and j translates

to aij 
= 0, and the existence of a common neighbor is equivalent to

bij 
= 0. Hence the algorithm gives a correct answer.

How fast? Steps 2 and 3 of the algorithm can clearly be executed

in time O(n2). The most time-consuming step is computing A2 in

Step 1. If we perform the matrix multiplication according to the

definition, we need about n3 arithmetic operations and thus we save

nothing compared to the naive method of inspecting all triples of

vertices.

However, ingenious algorithms are known that multiply n × n

matrices asymptotically faster. The oldest one, due to Strassen, needs

roughly n2.807 arithmetic operations. It is based on a simple but very

clever trick—if you haven’t seen it, it is worth looking it up.
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The exponent of matrix multiplication is defined as the infi-

mum of numbers ω for which there exists an algorithm that multiplies

two square matrices using O(nω) operations. Its value is unknown

(the common belief is that it equals 2); the current best upper bound

is roughly 2.376. Hence existence of a triangle can be detected in time

O(n2.376), which is a considerable asymptotic improvement over the

naive O(n3) algorithm.

Many computational problems are known where fast matrix mul-

tiplication brings asymptotic speedup. Finding triangles is among

the simplest of them, and later on, we will meet several other, more

sophisticated algorithms of this kind.

Remarks. The described method for finding triangles is the fastest

known for dense graphs, i.e., graphs that have relatively many edges

compared to the number of vertices. Another nice algorithm, which

we will not discuss here, can detect a triangle in time O(m2ω/(ω+1)),

where m is the number of edges.

One can try to use similar methods for detecting subgraphs other

than the triangle; there is an extensive literature concerning this prob-

lem. For example, a cycle of length four can be detected in time

O(n2), much faster than the best algorithm known for detecting a

triangle!

Sources. A. Itai and M. Rodeh, Finding a minimum circuit
in a graph, SIAM J. Comput., 7,4 (1978), 413–423.

Among the numerous papers dealing with fast detection of a fixed
subgraph in a given graph, we mention

T. Kloks, D. Kratsch, and H. Müller, Finding and counting
small induced subgraphs efficiently, Inform. Process. Lett.
74,3–4 (2000), 115–121,

which can be used as a starting point for further explorations of the
topic.

The first “fast” matrix multiplication algorithm is due to

V. Strassen, Gaussian elimination is not optimal, Numer.
Math. 13 (1969), 354–356.
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The asymptotically fastest known matrix multiplication algorithm is
from

D. Coppersmith and S. Winograd, Matrix multiplication via
arithmetic progressions, J. Symbolic Computation 9 (1990),
251–280.

An interesting new method, which provides similarly fast algorithms
in a different way, appeared in

H. Cohn, R. Kleinberg, B. Szegedy, and C. Umans, Group-
theoretic algorithms for matrix multiplication, in Proc. 46th
Annual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), 2005, 379–388.

                

                                                                                                               



Miniature 11

Checking Matrix
Multiplication

Multiplying two n × n matrices is a very important operation. A

straightforward algorithm requires about n3 arithmetic operations,

but as was mentioned in Miniature 10, ingenious algorithms have

been discovered that are much faster asymptotically. The current

record is an O(n2.376) algorithm. However, the constant of propor-

tionality is so astronomically large that the algorithm is interesting

only theoretically. Indeed, matrices for which it would prevail over

the straightforward algorithm cannot fit into any existing or future

computer.

But progress cannot be stopped and soon a software company

may start selling a program called MATRIX WIZARD that, sup-

posedly, multiplies matrices really fast. Since wrong results could be

disastrous, we would like to have a simple checking program appended

to MATRIX WIZARD that would always check whether the resulting

matrix C is really the product of the input matrices A and B.

Of course, a checking program that actually multiplies A and B

and compares the result with C makes little sense, since we do not

know how to multiply matrices as fast as MATRIX WIZARD. But

it turns out that if we allow for some slight probability of error in

35

                                     

                

                                                                                                               



36 11. Checking Matrix Multiplication

the checking, there is a very simple and efficient checker for matrix

multiplication.

For concreteness, we will consider matrices consisting of ratio-

nal numbers, although everything works without change for matrices

over any field. The checking algorithm receives n×n matrices A, B, C

as the input. Using a random number generator, it picks a random

n-component vector x of 0s and 1s. More precisely, each vector in

{0, 1}n appears with the same probability, equal to 2−n. The algo-

rithm computes the products Cx (using O(n2) operations) and ABx

(again with O(n2) operations; the right parenthesizing is, of course,

A(Bx)). If the results agree, the algorithm answers YES; otherwise,

NO.

If C = AB, the algorithm always answers YES, which is correct.

But if C 
= AB, it can answer both YES and NO. We claim that the

wrong answer YES has probability at most 1
2 , and thus the algorithm

detects a wrong matrix multiplication with probability at least 1
2 .

Let us set D := C − AB. It suffices to show that if D is any

nonzero n × n matrix and x ∈ {0, 1}n is random, then the vector

y := Dx is zero with probability at most 1
2 .

Assuming D 
= 0, we fix some indices k and � with dk� 
= 0. We

derive that then the probability of yk = 0 is at most 1
2 .

We have

yk = dk1x1 + dk2x2 + · · ·+ dknxn = dk�x� + S,

where

S =
∑

j=1,2,...,n
j �=�

dkjxj .

Imagine that we choose the values of the entries of x according to

successive coin tosses and that the toss deciding the value of x� is

made as the last one (since the tosses are independent it does not

matter). Before this last toss, the quantity S is already fixed, because

it does not depend on x�. After the last toss, we either leave S

unchanged (if x� = 0) or add the nonzero number dk� to it (if x� = 1).

In at least one of these two cases, we must obtain a nonzero number,

and so Dx 
= 0 has probability at least 1
2

as claimed.
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The described checking algorithm is fast but not very reliable: It

may fail to detect an error with probability as high as 1
2 . But if we

repeat it, say, fifty times for a single input A, B, C, it fails to detect

an error with probability at most 2−50 < 10−15, and this probability

is totally negligible for practical purposes.

Remark. The idea of probabilistic checking of computations, which

we have presented here in a simple form, turned out to be very fruitful.

The so called PCP theorem from the theory of computational com-

plexity shows that for any effectively solvable computational prob-

lem, it is possible to check the solution probabilistically in a very

short time. A slow personal computer can, in principle, check the

work of the most powerful supercomputers. Furthermore, surprising

connections of these results to approximation algorithms have been

discovered.

Sources. R. Freivalds, Probabilistic machines can use less
running time, in Information Processing 77, IFIP Congr.
Ser. 7, North-Holland, Amsterdam, 1977, 839–842.

For an introduction to PCP and computational complexity see, e.g.,

O. Goldreich, Computational complexity: A conceptual per-
spective, Cambridge University Press, Cambridge, 2008.

                

                                                                                                               



Miniature 12

Tiling a Rectangle by
Squares

Theorem. A rectangle R with side lengths 1 and x, where x is ir-

rational, cannot be tiled by finitely many squares (so that the squares

have disjoint interiors and cover all of R).

Proof. For contradiction, let us assume that a tiling exists, consisting

of squares Q1, Q2, . . . , Qn, and let si be the side length of Qi.

We need to consider the set R of all real numbers as a vector

space over the field Q of rationals. This is a rather strange, infinite-

dimensional vector space, but a very useful one. We will need the

following easy fact: If α is a real number, then 1 and α are linearly

independent in the considered vector space if and only if α is irra-

tional.

Let V ⊆ R be the linear subspace generated by the numbers 1,

x, and s1, s2, . . . , sn. In other words, V is the set of all rational linear

combinations of these numbers.

We define a linear mapping f : V → R such that f(1) = 1 and

f(x) = −1 (and otherwise arbitrarily). This is possible, because

1 and x are linearly independent over Q. Indeed, there is a basis

(b1, b2, . . . , bk) of V with b1 = 1 and b2 = x, and we can set, e.g.,

f(b1) = 1, f(b2) = −1, f(b3) = · · · = f(bk) = 0, and extend f

linearly on V .
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For each rectangle A with edges a and b, where a, b ∈ V , we define

a number v(A) := f(a)f(b).

We claim that if the 1 × x rectangle R is tiled by the squares

Q1, Q2, . . . , Qn, then v(R) =
∑n

i=1 v(Qi). This leads to a contra-

diction, since v(R) = f(1)f(x) = −1, while v(Qi) = f(si)
2 ≥ 0 for

all i.

To check the claim just made, we extend the edges of all squares

Qi of the hypothetical tiling across the whole of R, as is indicated in

the picture:

This partitions R into small rectangles, and using the linearity of f ,

it is easy to see that v(R) equals to the sum of v(B) over all these

small rectangles B. Similarly v(Qi) equals the sum of v(B) over all

the small rectangles lying inside Qi. Thus, v(R) =
∑n

i=1 v(Qi). �

Remark. It turns out that a rectangle can be tiled by squares if and

only if the ratio of its sides is rational. Various other theorems about

the impossibility of tilings can be proved by similar methods. For

example, it is impossible to dissect a cube into finitely many convex

pieces that can be rearranged so that they tile a regular tetrahedron.

Sources. The theorem is a special case of a result from

M. Dehn, ÜberZerlegung von Rechtecken in Rechtecke, Math.
Ann. 57,3 (1903), 314–332.

Unfortunately, so far I have not found the source of the above proof.
Another very beautiful proof follows from a remarkable connection of
square tilings to planar electrical networks:

R. L. Brooks, C. A.B. Smith, A.H. Stone, and W.T. Tutte,
The dissection of rectangles into squares, Duke Math. J. 7

(1940), 312–340.

                

                                                                                                               



Miniature 13

Three Petersens Are
Not Enough

The famous Petersen graph

has 10 vertices of degree 3. The complete graph K10 has 10 vertices

of degree 9. Yet it is not possible to cover all edges of K10 by three

copies of the Petersen graph.

Theorem. There are no three subgraphs of K10, each isomorphic to

the Petersen graph, that together cover all edges of K10.

The theorem can obviously be proved by an extensive case analy-

sis. The following elegant proof is a little sample of spectral graph

theory, which is a part of graph theory dealing with eigenvalues of

the adjacency matrix of a graph.
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Proof. We recall that the adjacency matrix of a graph G on the

vertex set {1, 2, . . . , n} is the n×n matrix A with

aij =

{
1 if i 
= j and {i, j} ∈ E(G),

0 otherwise.

For example, the adjacency matrix of K10 is J10−I10, where Jn stands

for the n×n matrix of all 1s and In denotes the identity matrix.

By the eigenvalues of G we mean the eigenvalues of the adja-

cency matrix of G. Since the adjacency matrix is real and symmetric,

it has n real eigenvalues (counted with multiplicity). An eigenvalue

of multiplicity k has a corresponding eigenspace of dimension k.

We recall that two graphs G = (V, E) and G′ = (V ′, E′) are

isomorphic if there exists a bijection f : V → V ′ such that for every

two distinct vertices u, v ∈ V , we have {u, v} ∈ E if and only if

{f(u), f(v)} ∈ E′. Informally, G and G′ are isomorphic if G′ can be

obtained from G by renaming vertices.

It is easy to see that the adjacency matrices of two isomorphic

graphs have the same eigenvalues, and also the same dimensions of

the corresponding eigenspaces.

We will need the following facts.

Lemma. The Petersen graph has eigenvalue 1 with multiplicity 5,

while −3 is not an eigenvalue.

A dumb proof. Let A be the adjacency matrix. To verify that 1 is

an eigenvalue with multiplicity 5, it suffices to check that the matrix

A − I10 has a 5-dimensional kernel, which can be done by Gaussian

elimination. For −3 one just checks that A+3I10 is nonsingular. The

eigenvalues can also be computed by one of many available algorithms.

�

A smarter proof (sketch). One can use properties of the Petersen

graph to find the eigenvalues in an elegant way. Namely, as is ex-

plained in Miniature 14 below, the Petersen graph is a Moore graph

and its adjacency matrix A satisfies A2 +A = J10 +2I10. By a simple

linear algebra it follows that each eigenvalue λ either equals 3, the

degree of all vertices of the Petersen graph, or satisfies λ2 + λ = 2.

Hence the possible eigenvalues are 3, −2, and 1, and with some extra
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care, we can also find their multiplicities by this approach—see the

proof of the main theorem in Miniature 14 for details. �

Proof of the theorem. Let us assume that the edges of K10 are

covered by subgraphs P , Q and R, each of them isomorphic to the

Petersen graph. If AP is the adjacency matrix of P , and similarly for

AQ and AR, then AP + AQ + AR = J10 − I10.

Since P is isomorphic to the Petersen graph, the eigenspace of

AP belonging to the eigenvalue 1 has dimension 5 according to the

lemma; in other words, AP − I10 has a 5-dimensional kernel.

Moreover, AP − I10 has exactly three 1s and one −1 in every

column. So if we sum up all the equations of the system (AP−I10)x =

0, we get 2x1 + 2x2 + · · ·+ 2x10 = 0. This means that the kernel of

AP − I10 is contained in the 9-dimensional orthogonal complement of

the vector 1 = (1, 1, . . . , 1).

The same is true for the kernel of AQ− I10, and therefore, for di-

mensional reasons, the two kernels have a common nonzero vector w,

with 1Tw = 0. We calculate

ARw = (J10 − I10 −AP −AQ)w

= J10w− I10w − (AP − I10)w − (AQ − I10)w − 2I10w

= 0−w− 0− 0− 2w = −3w.

So −3 should be an eigenvalue of AR, but, by the above lemma, it is

not—a contradiction. �

Source. O.P. Lossers and A. J. Schwenk, Solution of advanced
problem 6434, Am. Math. Monthly 94 (1987), 885–887.

                

                                                                                                               



Miniature 14

Petersen,
Hoffman–Singleton,
and Maybe 57

This is a classical piece from the 1960s, reproduced many times, but

still one of the most beautiful applications of graph eigenvalues I’ve

seen. Moreover, the proof nicely illustrates the general flavor of alge-

braic nonexistence proofs for various “highly regular” structures.

Let G be a graph of girth g ≥ 4 and minimum degree r ≥ 3,

where the girth of G is the length of its shortest cycle, and minimum

degree r means that every vertex has at least r neighbors. It is not

obvious that such graphs exist for all r and g, but it is known that

they do.

Let n(r, g) denote the smallest possible number of vertices of such

a G. The determination of this quantity, at least approximately, be-

longs to the most fascinating problems in graph theory, whose solution

would probably have numerous interesting consequences.

A lower bound. A lower bound for n(r, g) is obtained by a sim-

ple “branching” argument (linear algebra comes later). First let us

assume that g = 2k + 1 is odd.

Let G be a graph of girth g and minimum degree r. Let us fix a

vertex u in G and consider two paths of length k in G starting at u.
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For some time they may run together, then they branch off, and they

never meet again past the branching point—otherwise, they would

close a cycle of length at most 2k. Thus, G has a subgraph as in the

following picture:

u
r successors

r − 1 successors

(the picture is for r = 4 and k = 2). It is a tree T of height k, with

branching degree r at the root and r − 1 at the other inner vertices.

(In G, we may have additional edges connecting some of the leaves at

the topmost level, and of course, G may have more vertices than T .)

It is easy to count that the number of vertices of T equals

(1) 1 + r + r(r − 1) + r(r − 1)2 + · · ·+ r(r − 1)k−1,

and this is the promised lower bound for n(r, 2k + 1). For g = 2k

even, a similar but slightly more complicated argument, which we

omit here, yields the lower bound

(2) 1 + r + r(r − 1) + · · ·+ r(r − 1)k−2 + (r − 1)k−1

for n(r, 2k).

Upper bounds. For large r and g, the state of knowledge about

n(r, g) is unsatisfactory. The best known upper bounds are roughly

the 3
2 -th power of the lower bounds (1), (2), and so there is uncertainty

already in the exponent.

Still, (1), (2) remain essentially the best known lower bounds

for n(r, g), and considerable attention has been paid to graphs for

which these bounds are attained, since they are highly regular and

usually have many remarkable properties. For historical reasons they

are called Moore graphs for odd g and generalized polygons1 for

even g.

1In some sources, though, the term Moore graph is used for both the odd-girth
and even-girth cases.
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Moore graphs. Here we will consider only Moore graphs (for infor-

mation on generalized polygons and the known exact values of n(r, g),

we refer, e.g., to G. Royle’s web page http://people.csse.uwa.edu.

au/gordon/cages/). Explicitly, a Moore graph is a graph of girth

2k+1, minimum degree r, and with 1+r+r(r−1)+ · · ·+r(r−1)k−1

vertices.

To avoid trivial cases, we assume r ≥ 3 and k ≥ 2. We also note

that every vertex in a Moore graph must have degree exactly r, for

if there were a vertex of larger degree, we could take it as u in the

lower bound argument and show that the number of vertices exceeds

1 + r + r(r − 1) + · · ·+ r(r − 1)k−1.

The question of whether a Moore graph exists for given k and r

can be cast as a kind of “connecting puzzle”. The vertex set must

coincide with the vertex set of the tree T in the lower-bound argu-

ment, and the additional edges besides those of T may connect only

the leaves of T . Thus, we draw T , add r − 1 “paws” to each leaf,

and then we want to connect the paws by edges so that no cycle

shorter than 2k + 1 arises. The picture below illustrates this for girth

2k + 1 = 5 and r = 3.

In this case the puzzle has a solution depicted on the right. The

solution, which can be shown to be unique up to isomorphism, is the

famous Petersen graph, whose more usual picture was shown in

Miniature 13.

The only other known Moore graph has 50 vertices, girth 5, and

degree r = 7. It is obtained by gluing together many copies of the

Petersen graph in a highly symmetric fashion, and it is called the

Hoffman–Singleton graph. Surprisingly, it is known that this very

short list exhausts all Moore graphs, with a single possible exception:
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the existence of a Moore graph of girth 5 and degree 57 has been

neither proved nor disproved.

Here we give the proof that Moore graphs of girth 5 cannot have

degree other than 3, 7, 57. The nonexistence of Moore graphs of higher

girth is proved by somewhat similar methods.

Theorem. If a graph G of girth 5 with minimum degree r ≥ 3 and

with n = 1 + r + (r − 1)r = r2 + 1 vertices exists, then r ∈ {3, 7, 57}.

We begin the proof of the theorem by a graph-theoretic argument,

which is a simple consequence of the argument used above for deriving

(1), specialized to k = 2.

Lemma. If G is a graph as in the theorem, then every two nonadja-

cent vertices have exactly one common neighbor.

Proof. If u, v are two arbitrary nonadjacent vertices, we let u play

the u in the argument leading to (1). The tree T has height 2 in our

case, and so v is necessarily a leaf of T , and there is a unique path of

length 2 connecting it with u. �

Proof of the theorem. We recall the notion of adjacency matrix

A of G, already used in Miniatures 10 and 13. Assuming that the

vertex set of G is {1, 2, . . . , n}, A is the n×n matrix with entries

given by

aij =

{
1 for i 
= j and {i, j} ∈ E(G),

0 otherwise.

The key step in the proof is to consider B := A2. As was already

mentioned in Miniature 10, from the definition of matrix multiplica-

tion, one can easily see that bij is the number of vertices adjacent to

both of i and j. So for i 
= j, bij is the number of common neighbors

of i and j, while bii is simply the degree of i.

Specializing these general facts to a G as in the theorem, we

obtain

(3) bij =

⎧⎨
⎩

r for i = j,

0 for i 
= j and {i, j} ∈ E(G),

1 for i 
= j and {i, j} 
∈ E(G).
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Indeed, the first case states that all degrees are r, the second one that

two adjacent vertices in G have no common neighbor (since G has

girth 5 and thus contains no triangles), and the third case restates

the assertion of the lemma that every two nonadjacent vertices have

exactly one common neighbor.

Next, we rewrite (3) in a matrix form:

(4) A2 = rIn + Jn − In −A,

where In is the identity matrix and Jn is the matrix of all 1s.

Now we enter the business of graph eigenvalues. The usual open-

ing move in this area is to recall the following from linear algebra. Ev-

ery symmetric real n×n matrix A has n mutually orthogonal eigenvec-

tors v1,v2, . . . ,vn, and the corresponding eigenvalues λ1, λ2, . . . , λn

are all real (and not necessarily distinct).

If A is the adjacency matrix of a graph with all degrees r, then

A1 = r1, with 1 standing for the vector of all 1s. Hence r is an

eigenvalue with eigenvector 1, and we can thus assume λ1 = r, v1 = 1.

Then by the orthogonality of the eigenvectors, for all i 
= 1 we have

1T vi = 0, and thus also Jnvi = 0.

Armed with these facts, let us see what happens if we multiply

(4) by some vi, i 
= 1, from the right. The left-hand side becomes

A2vi = Aλivi = λ2
i vi, while the right-hand side yields rvi−vi−λivi.

Both sides are scalar multiples of the nonzero vector vi, and so the

scalar multipliers must be the same, which leads to

λ2
i + λi − (r − 1) = 0.

Thus, each λi, i 
= 1, equals one of the roots ρ1, ρ2 of the quadratic

equation λ2 + λ− (r − 1) = 0, which gives

ρ1 = (−1−
√

D)/2, ρ2 = (−1 +
√

D)/2, where D := 4r − 3.

Hence A has only three distinct eigenvalues: r, ρ1, and ρ2. Let us

suppose that ρ1 occurs m1 times among the λi and ρ2 occurs m2

times; since r occurs once, we have m1 + m2 = n− 1.

The last linear algebra fact we need is that the sum of all eigen-

values of A equals its trace, i.e., the sum of all diagonal elements,
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which in our case is 0. Hence

(5) r + m1ρ1 + m2ρ2 = 0.

The rest of the proof is pure calculation plus a simple divisibility

consideration (a bit of number theory if we wanted to sound fancy).

After substituting in (5) for ρ1 and ρ2, multiplying by 2, and using

m1 + m2 = n− 1 = r2 (the last equality is one of the assumptions of

the theorem), we arrive at

(6) (m1 −m2)
√

D = r2 − 2r.

If D is not a square of a natural number, then
√

D is irrational, and

(6) can hold only if m1 = m2. But then r2 − 2r = 0, which cannot

happen for r ≥ 3. Therefore,
√

D is an integer, and so we have

D = 4r − 3 = s2 for a natural number s. Expressing r = (s2 + 3)/4,

substituting into (6), and simplifying leads to

s4 − 2s2 − 16(m1 −m2)s = s
(
s3 − 2s− 16(m1 −m2)

)
= 15.

Hence s divides 15, and so s ∈ {1, 3, 5, 15}. Thus, r ∈ {1, 3, 7, 57},
and the theorem is proved. �

Source. A. J. Hoffman and R.R. Singleton, On Moore graphs
with diameters 2 and 3, IBM J. Res. Develop. 4 (1960),
497–504.
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Only Two Distances

What is the largest number of points in the plane such that every

two of them have the same distance? If we have at least three, they

must form the vertices of an equilateral triangle, and there is no way

of adding a fourth point.

How many points in the plane can we have if we allow the dis-

tances to attain two different values? We can easily find a 4-point

configuration with only two distances, for example, the vertices of a

square. A bit of thinking reveals even a 5-point configuration:

But how can one prove that there are no larger configurations?

We can ask a similar question in a higher dimension, that is, in

the space Rd, d ≥ 3: What is the maximum number n = n(d) such

that there are n points in Rd with only two distances? The following

elegant method gives a rather good upper bound for n(d), even though

the result for the plane is not really breathtaking (we get an upper

bound of 9 instead of the correct number 5).
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Theorem. n(d) ≤ 1
2 (d2 + 5d + 4).

Proof. Let p1,p2, . . . ,pn be points in Rd. Let ‖pi − pj‖ be the

Euclidean distance of pi from pj . We have

‖pi − pj‖2 = (pi1 − pj1)2 + (pi2 − pj2)2 + · · ·+ (pid − pjd)2,

where pij is the jth coordinate of the point pi. We suppose that

‖pi − pj‖ ∈ {a, b} for every i 
= j.

With each point pi we associate a carefully chosen function

fi : Rd → R,

defined by

fi(x) :=
(‖x− pi‖2 − a2

) (‖x− pi‖2 − b2
)
,

where x = (x1, x2, . . . , xd) ∈ Rd.

The key property of these functions is

(7) fi(pj) =

{
0 for i 
= j,

a2b2 
= 0 for i = j,

which follows immediately from the two-distance assumption.

Let us consider the vector space of all real functions Rd → R, and

the linear subspace V spanned by the functions f1, f2, . . . , fn. First,

we claim that f1, f2, . . . , fn are linearly independent. Let us assume

that a linear combination f = α1f1 + α2f2 + · · · + αnfn equals 0;

i.e., it is the zero function Rd → R. In particular, it is 0 at each pi.

According to (7) we get 0 = f(pi) = αia
2b2, and therefore, αi = 0

for every i. Thus dim V = n.

Now we want to find a (preferably small) system G of functions

Rd → R, not necessarily belonging to V , that generates V ; that is,

every f ∈ V is a linear combination of functions in G. Then we will

have the bound |G| ≥ dim V = n.

Each of the fi is a polynomial in the variables x1, x2, . . . , xd of

degree at most 4, and so it is a linear combination of monomials in

x1, x2, . . . , xd of degree at most 4. It is easy to count that there are(
d+4
4

)
such monomials (the counting is shown in Miniature 25), and

this gives a generating system G with |G| =
(
d+4
4

)
.
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Next, proceeding more carefully, we will find a still smaller G.

We express ‖x − pi‖2 =
∑d

j=1(xj − pij)2 = X −∑d
j=1 2xjpij + Pi,

where X :=
∑d

j=1 x2
j and Pi :=

∑d
j=1 p2

ij . Then we have

fi(x) =
(
‖x− pi‖2 − a2

) (
‖x− pi‖2 − b2

)
=

(
X −

d∑
j=1

2xjpij + Ai

)(
X −

d∑
j=1

2xjpij + Bi

)
,

where Ai := Pi − a2 and Bi := Pi − b2. By another rearrangement

we get

fi(x) = X2 − 4X
d∑

j=1

pijxj +

( d∑
j=1

2pijxj

)2

+ (Ai + Bi)

(
X −

d∑
j=1

2pijxj

)
+ AiBi.

From this we can see that each fi is a linear combination of functions

in the following system G:

X2,

xjX, j = 1, 2, . . . , d,

x2
j , j = 1, 2, . . . , d,

xixj , 1 ≤ i < j ≤ d,

xj , j = 1, 2, . . . , d, and

1.

(Let us remark that X itself is a linear combination of the x2
j .) We

have |G| = 1 + d + d +
(
d
2

)
+ d + 1 = 1

2 (d2 + 5d + 4), and so n ≤
1
2 (d2 + 5d + 4). The theorem is proved. �

Remark. The upper bound in the theorem can be improved to
(
d+2
2

)
by additional tricks, which we do not consider here.

The following example shows that n(d) ≥ 1
2 (d2+d), and thus that

the quadratic term in the upper bound is optimal. To construct the

example, we start with the
(

d
2

)
points in {0, 1}d that have exactly

two 1s. This is a two-distance set, and it lies in the hyperplane∑d
i=1 xi = 2. Thus we can place it in Rd−1 as well, and that gives

the claimed lower bound n(d) ≥
(
d+1
2

)
= 1

2
(d2 + d).
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Sources. D.G. Larman, C.A. Rogers, and J. J. Seidel, On
two-distance sets in Euclidean space, Bull. London Math.
Soc. 9,3 (1977), 261–267.

According to Babai and Frankl, a similar trick first appears in

T. H. Koornwinder, A note on the absolute bound for sys-
tems of lines, Indag. Math. 38,2 (1976), 152–153.

The improved upper bound of
`

d+2

2

´
is due to

A. Blokhuis, A new upper bound for the cardinality of 2-
distance sets in Euclidean space, Ann. Discrete Math. 20

(1984), 65–66.
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Covering a Cube Minus
One Vertex

We consider the set {0, 1}d ⊂ Rd of the vertices of the d-dimensional

unit cube, and we want to cover all of these vertices except for one,

say 0 = (0, 0, . . . , 0), by hyperplanes. (We recall that a hyperplane

in Rd is a set of the form {x ∈ Rd : a1x1 + · · ·+ adxd = b} for some

coefficients a1, . . . , ad, b ∈ R with at least one ai nonzero.)

Of course, we can cover all the vertices using only two hyper-

planes, say {x1 = 0} and {x1 = 1}, but the problem becomes in-

teresting if none of the covering hyperplanes may contain the point

0. What is the smallest possible number of hyperplanes under these

conditions?

One easily finds (at least) two different ways of covering with d

hyperplanes. We can use the hyperplanes {xi = 1}, i = 1, 2, . . . , d, or

the hyperplanes {x1 + x2 + · · ·+ xd = k}, k = 1, 2, . . . , d. As we will

see, d is the smallest possible number.

Theorem. Let h1, . . . , hm be hyperplanes in Rd not passing through

0 that cover all points of {0, 1}d except for 0. Then m ≥ d.

Proof. Let hi be defined by the equation ai1x1+ai2x2+· · ·+aidxd =

bi. Since hi does not contain 0, we have bi 
= 0, and so we may (and

will) assume that bi = 1 for all i.
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We consider the following, cleverly chosen, polynomial

f(x1, x2, . . . , xd) =

m∏
i=1

(
1−

d∑
j=1

aijxj

)
−

d∏
j=1

(1− xj).

It is constructed so that f(x) = 0 for all x = (x1, . . . , xd) ∈ {0, 1}d.

(To check this, one needs to distinguish the cases x = 0 and x 
= 0,

and to use the assumptions of the theorem.)

For contradiction, let us suppose that m < d. Then the degree of

f is d, and the only monomial of degree d with a nonzero coefficient

is ±x1x2 · · ·xd.

Now we consider the vector space V of all real functions on the

set {0, 1}d. Every polynomial p in the variables x1, . . . , xd defines an

element of V , namely, the function obtained by evaluating p at the

points of {0, 1}d. In particular, the polynomial f introduced above

yields the element 0 ∈ V , i.e., the zero function on {0, 1}d. This

means that the monomial x1x2 · · ·xd, again regarded as an element

of V , is a linear combination of monomials of lower degrees. We will

show that this is impossible.

First we observe that the polynomial x2
i and the polynomial xi

define the same element of V (because 02 = 0 and 12 = 1). Therefore,

every polynomial is equivalent to a linear combination of multilinear

monomials of the form xI =
∏

i∈I xi, where I ⊆ {1, 2, . . . , d}. So it

suffices to prove that these xI are linearly independent in V .

To this end, we consider a linear combination

(8)
∑

I⊆{1,2,...,d}
αIxI = 0

(the right-hand side is the zero function on {0, 1}d). Let us assume

that there is some nonzero αI . Let us take a minimal I with αI 
= 0—

minimal in the sense that αJ = 0 for every proper subset J ⊂ I. We

substitute xi = 1 for i ∈ I and xi = 0 for i 
∈ I into (8). Then we get

αI = 0, a contradiction. �

Source. N. Alon and Z. Füredi, Covering the cube by affine
hyperplanes, European J. Combin. 14,2 (1993), 79–83.

                

                                                                                                               



Miniature 17

Medium-Size
Intersection Is Hard To
Avoid

An extensive branch of combinatorics, the extremal set theory, inves-

tigates problems of the following kind. Suppose that F is a system

of subsets of an n-element set, and suppose that a certain simply

described configuration of sets does not occur in F . What is the

maximum possible number of sets in F?

Here is a short list of famous examples:

• The Sperner lemma (one of the Sperner lemmas, that is):

If there are no two distinct sets A, B ∈ F with A ⊂ B, then

|F| ≤ (
n

�n/2	
)
.

• The Erdős–Ko–Rado theorem: If k ≤ n/2, each A ∈ F
has exactly k elements, and A∩B 
= ∅ for every two A, B ∈
F , then |F| ≤

(
n−1
k−1

)
.

• The Oddtown theorem from Miniature 3: If each A ∈ F has

an odd number of elements and |A∩B| is even for every two

distinct A, B ∈ F , then |F| ≤ n.

Such a list of theorems could be extended over many pages, and linear

algebra methods constitute one of the main tools for proving them.
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Here we present a strong and perhaps surprising result of this

kind. It has a beautiful geometric application, which we explain in

Miniature 18 below.

Theorem. Let p be a prime number, and let F be a system of (2p−1)-

element subsets of an n-element set X such that no two sets in F
intersect in precisely p − 1 elements. Then the number of sets in F
is at most

|F| ≤
(

n

0

)
+

(
n

1

)
+ · · ·+

(
n

p− 1

)
.

There are
(

n
2p−1

)
subsets of an n-element set altogether. The

theorem tells us that if we forbid one single intersection size, namely

p− 1, we can have only much fewer sets. The following is a possible

quantification of “much fewer”.

Corollary. Let F be as in the theorem with n = 4p. Then(
4p

2p−1

)
|F| ≥ 1.1n.

Proof of the corollary. First of all,
(

n
k−1

)
= k

n−k

(
n
k

)
, and so for

n ≥ 4k we have
(

n
k−1

) ≤ 1
3

(
n
k

)
. So(

4p

p− 1

)
+

(
4p

p− 2

)
+· · ·+

(
4p

0

)
≤
(

4p

p

)(
1

3
+

1

32
+

1

33
+· · ·

)
≤ 1

2

(
4p

p

)
.

Then (
4p

2p−1

)
|F| ≥ 2 ·

(
4p

2p−1

)
(
4p
p

) = 2 · (3p)(3p− 1) · · · (2p + 2)

(2p− 1)(2p− 2) · · · (p + 1)

≥ 2

(
3

2

)p−1

>

(
3

2

)p

> 1.1n.

(There are many other ways of doing this kind of calculation, and

one can use well-known estimates such as (n/k)k ≤ (
n
k

) ≤ (en/k)k or

Stirling’s formula, but we did not want to assume those here.) �

Proof of the theorem. The proof combines tricks we have already

met in Miniatures 15 and 16.
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To each set A ∈ F we assign two things:

• A vector cA ∈ {0, 1}n. This is simply the characteris-

tic vector of A, whose ith component is 1 if i ∈ A and 0

otherwise.

• A function fA : {0, 1}n → Fp, given by

fA(x) :=

p−2∏
s=0

((∑
i∈A

xi

)
− s

)
.

All the arithmetic operations in the definition of fA are in the finite

field Fp, i.e., modulo p (and thus 0 and 1 are also treated as elements

of Fp). For example, for p = 3, n = 8, and A = {2, 3, 4, 6, 8}, we have

cA = (0, 1, 1, 1, 0, 1, 0, 1) and fA(x) = (x2 + x3 + x4 + x6 + x8)(x2 +

x3 + x4 + x6 + x8 − 1).

Here are the key properties of the functions fA.

(i) fA(cA) 
= 0 for all A ∈ F .

(ii) fA(cB) = 0 for all A, B ∈ F , A 
= B.

Indeed, we have fA(cB) =
∏p−2

s=0(|A∩B|−s) (mod p), and this product

is nonzero exactly if |A ∩ B| ≡ p − 1 (mod p).1 For A = B we

have |A ∩ A| = 2p − 1 ≡ p − 1 (mod p), and so fA(cA) 
= 0. For

A 
= B we have |A ∩ B| ≤ 2p − 2 and |A ∩ B| 
= p − 1 by the

“omitted intersection” assumption, thus |A∩B| 
≡ p−1 (mod p), and

consequently fA(cB) = 0.

We consider the set of all functions from {0, 1}n to Fp as a vector

space over Fp in the usual way, and we let VF be the subspace spanned

in it by the functions fA, A ∈ F .

First we check that the fA’s are linearly independent, and hence

dim(VF ) = |F|. This follows from properties (i) and (ii) above by a

standard argument. Assuming
∑

A∈F αAfA = 0 for some coefficients

αA ∈ Fp, we substitute cB into the left-hand side. All terms fA(cB)

with A 
= B vanish, and we are left with αBfB(cB) = 0, which yields

αB = 0 in view of fB(cB) 
= 0. Since B was arbitrary, the fA are

linearly independent as claimed.

1We recall that the notation x ≡ y (mod p) means that x − y is divisible by p.
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We proceed to bound dim(VF ) from above. In our concrete

example above, we had fA(x) = (x2 + x3 + x4 + x6 + x8)(x2 +

x3 + x4 + x6 + x8 − 1), and multiplying out the parentheses we get

fA(x) = −x2 +x2
2−x3 + 2x2x3 +x2

3−x4 + 2x2x4 + 2x3x4 +x2
4−x6 +

2x2x6 +2x3x6 +2x4x6 +x2
6−x8 +2x2x8 +2x3x8 +2x4x8 +2x6x8 +x2

8.

In general, each fA is a polynomial in x1, x2, . . . , xn of degree at most

p− 1, and hence it is a linear combination of monomials of the form

xi1
1 xi2

2 · · ·xin
n , i1 + i2 + · · ·+ in ≤ p− 1.

We can still get rid of the monomials with some exponent ij larger

than 1, because x2
j and xj represent the same function {0, 1}n → Fp

(we substitute only 0s and 1s for the variables). So it suffices to count

the monomials with ij ∈ {0, 1}, and their number is the same as the

number of all subsets of {1, 2, . . . , n} of size at most p − 1. Thus

dim(VF ) ≤ (
n
0

)
+
(
n
1

)
+ · · ·+ (

n
p−1

)
, and the theorem follows. �

Sources. The theorem is a special case of the Frankl–Wilson
inequality from

P. Frankl and R.M. Wilson, Intersection theorems with geo-
metric consequences, Combinatorica 1,4 (1981), 357–368.

The proof follows

N. Alon, L. Babai, and H. Suzuki, Multilinear polynomials
and Frankl–Ray-Chaudhuri–Wilson type intersection theo-
rems, J. Combin. Theory Ser. A 58,2 (1991), 165–180.

More general “omitted intersection” theorems were proved by different
methods in

P. Frankl and V. Rödl, Forbidden intersections, Trans.Amer.
Math. Soc. 300,1 (1987), 259–286.

                

                                                                                                               



Miniature 18

On the Difficulty of
Reducing the Diameter

Exceptionally in this collection, the next result relies on a theorem

proved earlier, in Miniature 17.

The diameter of a set X ⊆ Rd is defined as

diam(X) := sup{‖x− y‖ : x,y ∈ X},

where ‖x − y‖ stands for the Euclidean distance of x and y. If X

is finite, or more generally, closed and bounded, the supremum is

always attained and we can simply say that the diameter is the largest

distance among two points of X .

The question. The following was asked by Karol Borsuk in 1933:

Can every set X ⊂ Rd of finite diameter be parti-

tioned into d+1 subsets X1, X2, . . . , Xd+1 so that

each Xi has diameter strictly smaller than X?

Let us call a partition of a set X ⊂ Rd into subsets X1, X2, . . . , Xk

with diam(Xi) < diam(X) for all i a diameter-reducing partition

of X into k parts.

It is easily seen that there are sets in Rd with no diameter-

reducing partition into d parts. For example, let X consist of d + 1

points, every two with distance 1 (in other words, the vertex set of
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62 18. On the Difficulty of Reducing the Diameter

a regular d-dimensional simplex—an explicit construction of such a

set is sketched in Miniature 30). If we partition X into d parts, one

of the parts contains at least two points and thus it has diameter 1,

same as X . In his 1933 paper Borsuk proved, among others, that the

d-dimensional ball has a diameter-reducing partition into d + 1 parts

(this is easy) but it has none into d parts (this is not).

Up until 1993, it was widely believed that every X ⊂ Rd of

finite diameter should have a diameter-reducing partition into d + 1

parts, and people started calling this statement Borsuk’s conjecture

(although Borsuk did not express such belief in his paper).

Borsuk’s question was often reformulated with the additional as-

sumption that X is convex. It is easy to see that this involves no loss

of generality, since the diameter of a set is the same as the diameter

of its convex hull.

Several partial results supporting (so-called) Borsuk’s conjecture

were proved over the years. It was proved for arbitrary sets X in

dimensions 2 and 3, for all smooth convex sets in all dimensions (where

smooth, roughly speaking, means “no sharp corners or edges”), and

for some other special classes of convex sets.

The answer. As the reader might have already guessed or known,

Borsuk’s question has eventually been answered negatively. Let us

begin with preliminary considerations, which are not really necessary

for the proof but may be helpful for understanding it.

The first thing to understand is that the additional assumption

of convexity, which seemingly simplifies the problem, happens to be

a smoke-screen: the essence of Borsuk’s question lies in finite sets.

A useful class of finite sets is obtained from finite set systems.

For a system F of subsets of {1, 2, . . . , n}, let XF ⊂ Rn be the set of

all characteristic vectors of sets in F ; that is, XF := {cA : A ∈ F},
where the ith component of cA is 1 if i ∈ A and 0 otherwise.

We will translate the result of Miniature 17 into the language of

characteristic vectors and distances. We recall the corollary of the

theorem in that miniature: If p is a prime, n = 4p, and F is a system

of (2p− 1)-element subsets of {1, 2, . . . , n} such that |A ∩B| 
= p− 1

for every A, B ∈ F , then
(

n
2p−1

)
/|F| ≥ 1.1n.
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Let A be the system of all (2p−1)-element subsets of {1, 2, . . . , n}
(so |A| =

(
n

2p−1

)
). The statement in the previous paragraph implies

the following:

(9)

If we partition the sets in A into fewer than 1.1n

classes, then at least one of the classes contains two

sets with intersection of size exactly p−1.

We observe that since all sets in A have the same size, the Eu-

clidean distance of two characteristic vectors cA, cB ∈ XA is deter-

mined by the size of the intersection |A ∩B|. Indeed, ‖cA − cB‖2 =

|A \ B| + |B \ A| = |A| + |B| − 2|A ∩ B| = 2(2p− 1) − 2|A ∩ B|. In

particular, if |A ∩ B| = p − 1, then ‖cA − cB‖ =
√

2p. So whenever

the point set XA is partitioned into fewer than 1.1n subsets, one of

the subsets contains two points cA, cB with distance
√

2p.

This already sounds similar to Borsuk’s question: It tells us that

we cannot get rid of the distance
√

2p by partitioning XA into fewer

than exponentially many parts. The only problem is that
√

2p is not

the diameter of XA but rather some smaller distance. We thus want

to transform XA into another set so that the pairs with distance
√

2p

in XA become pairs realizing the diameter of the new set. Such a

transformation is possible, but it raises the dimension: the resulting

point set, which we denote by QA, lies in dimension n2.

This ends the preliminary discussion. We now proceed with a

statement of the result and the actual proof.

Theorem. For every prime p there exists a point set in Rn2

, n = 4p,

that has no diameter-reducing partition into fewer than 1.1n parts.

Consequently, the answer to Borsuk’s question is no.

Proof. First we need to recall the notion of tensor product1 of

vectors x ∈ Rm, y ∈ Rn. It is denoted by x⊗ y, and it is the vector

in Rmn whose components are all the products xiyj, i = 1, 2, . . . , m,

j = 1, 2, . . . , n. (Sometimes it is useful to think of x⊗y as the m×n

matrix xyT .)

1In linear algebra, the tensor product is defined more generally, for arbitrary two
vector spaces. The definition given here can be regarded as the “standard” tensor
product.
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We will need the following identity involving the scalar product

and the tensor product: For all x,y ∈ Rn,

(10) 〈x ⊗ x,y ⊗ y〉 = 〈x,y〉2,
as is very easy to check.

Now we begin with the construction of the point set in the the-

orem. We recall that A consists of all (2p − 1)-element subsets of

{1, 2, . . . , 4p}. For A ∈ A, let uA ∈ {−1, 1}n be the signed char-

acteristic vector of A whose ith component is +1 if i ∈ A and −1

otherwise. We set qA := uA ⊗ uA ∈ Rn2

, and the point set in the

theorem is QA := {qA : A ∈ A}.
First we verify that for A, B ∈ A with |A ∩B| = s,

(11) 〈uA,uB〉 = 4(s− p + 1).

This can be checked using the following diagram.

{1, 2, . . . , 4p}

2p−1−s

A B

4p− 2(2p− 1) + s = s + 2

2p−1−s s

Here components in (A \ B) ∪ (B \ A) (gray) contribute −1 to the

scalar product, and the remaining ones (white) contribute +1.

From (11) we see that 〈uA,uB〉 = 0 if and only if |A∩B| = p−1.

For the Euclidean distances in QA we have, using (10),

‖qA − qB‖2 = 〈qA,qA〉+ 〈qB ,qB〉 − 2〈qA,qB〉
= 〈uA,uA〉2 + 〈uB,uB〉2 − 2〈uA,uB〉2.

Now 〈uA,uA〉2 +〈uB,uB〉2 is a number independent of A and B, and

〈uA,uB〉2 is a nonnegative number that is 0 if and only if |A ∩B| =

p− 1. Thus, the maximum possible distance of qA and qB , equal to

diam(QA), is attained exactly for |A∩B| = p−1. So, by (9), QA has
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no diameter-reducing partition into fewer than 1.1n parts, just as the

theorem claims.

Finally, if we choose p sufficiently large so that 1.1n > n2 +1, and

put d := n2, we have a point set in Rd that has no diameter-reducing

partition into d + 1 parts. �

What is the smallest dimension d for which Borsuk’s question has

a negative answer? Using only the statement of the theorem above,

we get an upper bound of almost 104. Some improvement can be

achieved by doing the calculations more precisely. At the time of

this writing, the best upper bound is d = 298, and its proof involves

additional ideas. It may still be quite far from the smallest possible

value.

Sources. Borsuk’s question was stated in

K. Borsuk, Drei Sätze über die n-dimensionale euklidische
Sphäre, Fundamenta Mathematicae 20 (1933), 177–190.

The counterexample is from

J. Kahn and G. Kalai, A counterexample to Borsuk’s con-
jecture, Bull. Amer. Math. Soc. 29 (1993), 60–62.

The 298-dimensional counterexample is from

A. Hinrichs and C. Richter, New sets with large Borsuk num-
bers, Disc. Math. 270 (2003), 137–147.

                

                                                                                                               



Miniature 19

The End of the Small
Coins

An internet shop was processing m orders, each of them asking for

various products. Suddenly, all coins with values below 1 euro were

taken out of circulation, and all prices had to be rounded, up or down,

to whole euros.

How can the shop round the prices so that the total price of each

order is not affected by much? This rounding problem and similar

questions are studied in discrepancy theory. Here we present a nice

theorem with a linear-algebraic proof.

Theorem. If at most t pieces of each product have been ordered in

total, and if no order asks for more than one piece of each product,

then it is possible to round the prices so that the total price of each

order changes by no more than t euros.

We note that if each order contains at most s items, it is trivial

to round the item prices so that the total price of the item changes by

at most s euros. So the theorem becomes interesting when the orders

have many items but t is not too large.

A mathematical formulation of the problem. Let us call the

products 1, 2, . . . , n, and let cj be the price of the jth product. We

can assume that each cj ∈ (0, 1) (because only the rounding plays a
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68 19. The End of the Small Coins

role in the problem). No order contains more than one product of each

kind, and so we can represent the ith order as a set Si ⊆ {1, 2, . . . , n},
i = 1, 2, . . . , m. The theorem now asserts that if no j is in more than

t sets, then there are numbers z1, z2, . . . , zn ∈ {0, 1} such that∣∣∣∣∑
j∈Si

cj −
∑
j∈Si

zj

∣∣∣∣ ≤ t, for every i = 1, 2, . . . , m.

Proof. For every index j ∈ {1, 2, . . . , n}, we introduce a real variable

xj ∈ [0, 1], with initial value cj . This variable will change during the

proof and at the end, each xj will have the value 0 or 1, which we

will then use for zj .

In each step, some of the variables xj are already fixed, while the

others are “floating”. At the beginning, all the xj are floating. The

fixed xj have values 0 or 1, and they will not change any more. The

values of the floating variables are from the interval (0, 1). In each

step, at least one floating variable becomes fixed.

Let us call a set Si dangerous if it contains more than t indices j

for which xj is still floating; the other sets are safe. We will keep the

following condition satisfied:

(12)
∑
j∈Si

xj =
∑
j∈Si

cj for all dangerous Si.

Let F be a set of indices of all floating variables, and let us consider

(12) as a system of linear equations with the floating variables as

unknowns (while the values of the fixed variables are regarded as

constants). This system surely has a solution—the current values

of the floating variables. Since we assume that all floating variables

lie in the interval (0, 1), this solution is an interior point of the |F |-
dimensional cube [0, 1]|F |. We need to prove that there is a solution

at the boundary of this cube as well, i.e., such that at least one of the

variables attains value 0 or 1.

The crucial observation is that there are always fewer dangerous

sets than floating variables, since every dangerous set needs more than

t floating variables, while each floating variable contributes to at most

t dangerous sets. Thus, the considered system of equations has fewer

equations than unknowns, and so the solution space has dimension

at least 1. Hence there is a straight line (a one-dimensional affine
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subspace) passing through the considered solution such that all points

of this line are solutions, too. This line intersects the boundary of the

cube at some point y. We use the coordinates of y as the values of the

floating variables in the next step. But all the floating variables xj

for which the corresponding value of y is 0 or 1 become fixed.

We repeat the procedure described until all variables become

fixed. We claim that if we take the final value of xj for zj , j =

1, 2, . . . , n, then

∣∣∣∑j∈Si
cj −

∑
j∈Si

zj

∣∣∣ ≤ t for every i = 1, 2, . . . , m

as we wanted.

To see this, let us consider a set Si. At the moment when it ceased

to be dangerous, we still had
∑

j∈Si
cj −

∑
j∈Si

xj = 0 according to

(12), and Si contained the indices of at most t floating variables. The

value of each of these floating variables has not changed by more than

1 in the rest of the process (it could have been 0.001 and later be fixed

to 1). This finishes the proof. �

Source. J. Beck and T. Fiala, “Integer making” theorems,
Discr. Appl. Math 3 (1981), 1–8.

                

                                                                                                               



Miniature 20

Walking in the Yard

A mathematically inclined prison guard forces a prisoner to take a

walk under the following strict instructions. The prisoner receives a

finite set M of vectors, each of length at most 10m. He must start

the walk in the center of a circular prison yard of radius 20m, then

move by some vector v1 ∈ M , then by some other vector v2 ∈ M ,

etc., using each vector in M exactly once. The vectors in M sum up

to 0, so the prisoner will again finish in the center. However, he must

not cross the boundary of the yard at any time during the walk (if he

does, the guard will start shooting without warning).

the set M a wrong order a correct order

The following theorem shows that a safe walk is possible for every

finite M , and it also works for yards that are d-dimensional balls.

Theorem. Let M be an arbitrary set of n vectors in Rd such that

‖v‖ ≤ 1 for every v ∈ M , where the norm ‖v‖ of v is the usual
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Euclidean length, and
∑

v∈M v = 0. Then it is possible to arrange

all vectors of M into a sequence (v1,v2, . . . ,vn) in such a way that

‖v1 + v2 + · · ·+ vk‖ ≤ d for every k = 1, 2, . . . , n.

In the example in the picture, the vectors can even be arranged so

that the path lies within a circle of radius 1, but for an arbitrary set of

vectors, radius 1 may be impossible (find an example). For the plane,

the smallest possible radius of the yard is known:
√

5/2 ≈ 1.118. For

a general dimension d, the best lower bound known so far is of order√
d, while the theorem provides the best upper bound, i.e., d. Closing

the gap between these bounds remains a fascinating open problem.

The proof below actually yields a more general statement, for an

arbitrary (not necessarily circular) yard: Let B ⊂ Rd be a bounded

convex set containing the origin, and let M be a set of n vectors with

v ∈ B for every v ∈ M and with
∑

v∈M v = 0. Then there is an

ordering (v1,v2, . . . ,vn) of the vectors from M such that v1 + v2 +

· · ·+ vk ∈ dB for all k = 1, 2, . . . , n, where dB = {dx : x ∈ B}.
In this more general setting, the constant d cannot be improved.

To see this for d = 2, we take B as an equilateral triangle centered at

the origin.

We start the proof of the theorem with a simple general lemma

(which was also implicitly used in Miniature 19).

Lemma. Let Ax = b be a system of m linear equations in n ≥ m

unknowns, and let us suppose that it has a solution x0 ∈ [0, 1]n. Then

there is a solution x̃ ∈ [0, 1]n in which at least n−m components are

0s or 1s.

Proof. We proceed by induction on n − m. For n = m, there is

nothing to prove, so let n > m. Then the solution space has dimension

at least 1, and so it contains a line passing through x0. This line

intersects the boundary of the cube [0, 1]n; let y be an intersection

point. Thus, yi ∈ {0, 1} for some index i.

Let us set up a new linear system with n − 1 unknowns that is

obtained from Ax = b by fixing the value of xi to yi. This new system

satisfies the assumption of the lemma (a solution lying in [0, 1]n−1 is

obtained from y by deleting yi), and so, by the inductive assumption,
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it has a solution with at least n−m− 1 components equal to 0 or 1.

Together with yi this gives a solution of the original system with n−m

or more 0s and 1s. �

Proof of the theorem. The rough idea is this: The set M is “very

good” because its vectors sum to 0, and thus the sum has norm 0. We

introduce a weaker notion of a “good” set of vectors. The definition is

chosen so that if K is a good set, then the sum of all of its vectors has

norm at most d. Moreover—and this is the heart of the proof—we

will show that every good set K of k > d vectors has a good subset

of k− 1 vectors. This will allow us to find the desired ordering of the

vectors of M by induction.

Here is the definition: A set K = {w1,w2, . . . ,wk} of k ≥ d

vectors in Rd, each of length at most 1, is called good if there exist

coefficients α1, . . . , αk satisfying

αi ∈ [0, 1], i = 1, 2, . . . , k,

α1w1 + α2w2 + · · ·+ αkwk = 0,(13)

α1 + α2 + · · ·+ αk = k − d.(14)

We note that if the right-hand side of (14) were k instead of k − d,

then all the αi would have to be 1 and thus (13) would simply mean∑k
i=1 wi = 0. But since

∑n
i=1 αi is k − d, most of the αi must be

close to 1, but there is some freedom left.

First let us check that if K = {w1,w2, . . . ,wk} is good, then

‖w1 + w2 + · · ·+ wk‖ ≤ d. Indeed, we have∥∥∥∥
k∑

i=1

wi

∥∥∥∥ =

∥∥∥∥
k∑

i=1

wi −
k∑

i=1

αiwi

∥∥∥∥
≤

k∑
i=1

‖(1− αi)wi‖ =

k∑
i=1

(1− αi)‖wi‖

≤
k∑

i=1

(1 − αi) = d.

Next, we have the crucial claim.

Claim. If K = {w1,w2, . . . ,wk} is a good set of k > d vectors, then

there is some i such that K \ {wi} is a good set of k − 1 vectors.
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Proof of the claim. We consider the following system of linear

equations for unknowns x1, . . . , xk:

x1w1 + x2w2 + · · ·+ xkwk = 0,(15)

x1 + x2 + · · ·+ xk = k − d− 1.(16)

Here (15) is an equality of two d-dimensional vectors, and thus it ac-

tually represents d equations. The last equation (16) is like condition

(14), except that the right-hand side is k−d−1; this is a preparation

for showing that a suitable subset of k − 1 vectors in K is good.

The above system has d+1 equations for k unknowns. If α1, . . . , αk

are the coefficients witnessing that K is good, then by setting xi :=
k−d−1

k−d αi we obtain a solution of (15),(16) lying in [0, 1]k.

Thus, by the lemma, there is also a solution x̃ ∈ [0, 1]k with at

least k − d − 1 components equal to 0 or 1. We want to see that at

least one component of x̃ has to be 0. Indeed, if all the k − d − 1

components guaranteed by the lemma happen to be 1, then all of the

remaining d + 1 components must be 0, since all components add up

to k − d− 1 by (16).

Now it is easy to check that for any index i with x̃i = 0, the set

K \{wi} is good. Indeed, the remaining components of x̃ can be used

in the role of the αi in the definition of a good set. This proves the

claim.

The proof of the theorem is finished easily by induction. We start

with the set Mn := M , which is obviously good. Using the claim, we

find a vector in Mn whose removal produces a good set. We call

this vector vn, and we let Mn−1 := Mn \ {vn}. Similarly, having

constructed the good set Mk, we find a vector vk ∈ Mk such that

Mk−1 := Mk \ {vk} is good, and so on, all the way down to Md.

We are left with the set Md of d vectors, and we number these

arbitrarily v1, . . . ,vd. For k ≤ d we obviously have ‖v1 + · · ·+vk‖ ≤
k ≤ d, and for k > d the norm of the sum of all vectors in Mk is at

most d since Mk is a good set. The theorem is proved. �

Sources. The theorem is sometimes called the Steinitz lemma
since Steinitz gave a first complete proof of a weaker version in 1913,
following an incomplete proof of Lévy from 1905. The above proof is
from
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V. S. Grinberg and S.V. Sevastyanov, The value of the Stei-
nitz constant (in Russian), Funk. Anal. Prilozh. 14 (1980),
56–57.

For background and several results of a similar nature see

I. Bárány, On the power of linear dependencies, in Gy.O.H.
Katona, M. Grötschel editors, Building bridges, Springer,
Berlin 2008, 31–46.

                

                                                                                                               



Miniature 21

Counting Spanning
Trees

A spanning tree of a graph G is a connected subgraph of G that has

the same vertex set as G and contains no cycles. The next picture

shows a 5-vertex graph with one of the possible spanning trees marked

in thick lines.

1

2

3 4

5

What is the number κ(G) of spanning trees of a given graph G? Here

is the answer:

Theorem (Matrix-tree theorem). Let G be a graph on the vertex set

{1, 2, . . . , n}, and let L be the Laplace matrix of G, i.e., the n× n

matrix whose entry �ij is given by

�ij :=

⎧⎨
⎩

deg(i) if i = j,

−1 if {i, j} ∈ E(G),

0 otherwise,
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where deg(i) is the number of neighbors (degree) of the vertex i in G.

Let L− be the (n − 1) × (n − 1) matrix obtained by deleting the last

row and last column of L. Then

κ(G) = det(L−).

For example, for the G in the picture we have

L =

⎛
⎜⎜⎜⎜⎝

3 −1 −1 0 −1

−1 3 −1 −1 0

−1 −1 4 −1 −1

0 −1 −1 3 −1

−1 0 −1 −1 3

⎞
⎟⎟⎟⎟⎠, L− =

⎛
⎜⎜⎝

3 −1 −1 0

−1 3 −1 −1

−1 −1 4 −1

0 −1 −1 3

⎞
⎟⎟⎠,

and det(L−) = 45. (Can you check the number of spanning trees

directly?)

I still remember my amazement when I saw the matrix-tree theo-

rem for the first time. I believe it remains one of the most impressive

uses of determinants. It is rather well known, but the forthcoming

proof, hopefully, is not among those presented most often and, more-

over, it resembles the proof of the Gessel–Viennot lemma, which is a

powerful general tool in enumeration.

Proof. We begin with the usual expansion of det(L−) according to

the definition of a determinant as a sum over all permutations of

{1, 2, . . . , n− 1}:

(17) det(L−) =
∑

π

sgn(π)

n−1∏
i=1

�i,π(i).

Here sgn(π) is the sign of the permutation π, which can be defined

as (−1)t, where t is an integer such that one can obtain π from the

identity permutation by t transpositions.

We now write each diagonal entry �ii of L− in (17) as a sum of

1s, e.g., instead of 3 we write (1 + 1 + 1). Then we multiply out the

parentheses, so that each of the products in (17) is further expanded

as a sum of products, where the factors in the products are only 1s and

−1s. Let us call the resulting sum the superexpansion of det(L−).

Graphically, each nonzero term in the superexpansion is obtained

by selecting one 1 or −1 in each row and in each column of L−. One
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of such selections is marked by circling the selected items:⎛
⎜⎜⎜⎜⎝

1 + 1 + 1 ©−1 −1 0

−1 1 + 1 + 1 ©−1 −1

©−1 −1 1 + 1 + 1 + 1 −1

0 −1 −1 1 +©1 + 1

⎞
⎟⎟⎟⎟⎠ .

The sign of such a term is (−1)m sgn(π), where m is the number of

−1 factors and π is the corresponding permutation. In the example,

m = 3 and π = (2, 3, 1, 4), with sign +1, so the term contributes a −1

to the superexpansion.

Next, we associate a combinatorial object with each term in the

superexpansion. The object is a directed graph (or digraph for short)

on the vertex set {1, 2, . . . , n}, and moreover, each directed edge is

either positive or negative. The rules for creating this signed digraph

are as follows:

• If there is a circled−1 in row i and column j, make a negative

directed edge from i to j.

• If the kth “1” in the diagonal entry �ii is circled, make a

positive directed edge from i to the kth smallest neighbor of

i in G (the vertices of G are numbered, so we can talk about

the kth smallest neighbor).

For the term shown by the circles above, we thus obtain the following

signed digraph (negative edges are shown in black and positive edges

in white).

1

2

3

4

5

− −

− +

Let D denote the set of all signed digraphs D obtained in this

way from the terms of the superexpansion. It is easy to see that each

D ∈ D comes from exactly one term of the superexpansion. Thus, we
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can talk about sgn(D), meaning the sign of the corresponding term,

and write πD for the associated permutation.

We divide D into three parts as follows:

• T , the D ∈ D with no directed cycle.

• D+, the D ∈ D with sgn(D) = +1 and at least one directed

cycle.

• D−, the D ∈ D with sgn(D) = −1 and at least one directed

cycle.

Here is a plan for the rest of the proof. We will show that all

D ∈ T , the “acyclic objects”, have positive signs, and they are in

one-to-one correspondence with the spanning trees of G; thus they

count what we want. Then, by constructing a suitable bijection, we

will prove that |D+| = |D−|—so the “cyclic objects” cancel out. We

then have det(L−) =
∑

D∈D sgn(D) = |T | + |D+| − |D−| = |T | and

the theorem follows.

To realize this plan, we first collect several easy properties of the

signed digraphs in D.

(i) If i → j is a directed edge, then {i, j} is an edge of G.

(Clear.)

(ii) Every vertex, with the exception of n, has exactly one out-

going edge, while n has no outgoing edge. (Obvious.)

(iii) All incoming edges of n are positive. (Since L− has only

n− 1 rows and columns.)

(iv) No vertex has more than one negative incoming edge. (This

is because two negative incoming edges j → i and k → i

would mean two circled entries �ji and �ki in the ith column.)

(v) If a vertex i has a negative incoming edge, then the outgoing

edge is also negative. (Indeed, a negative incoming edge j →
i means that the off-diagonal entry �ji is circled, and hence

none of the 1s in the diagonal entry �ii may be circled—

which would be the only way of getting a positive outgoing

edge from i.)

Claim A. These properties characterize D. That is, if D is a signed

digraph satisfying (i)–(v), then D ∈ D.
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Proof. Given D, we determine the circled entry in each row i, 1 ≤
i ≤ n − 1, of L−. We look at the single outgoing edge i → j. If it

is positive, we circle the appropriate 1 in �ii, and if it is negative, we

circle �ij . We cannot have two circled entries in a single column, since

they would correspond to the situations excluded in (iv) or (v). �

Next, we use (i)–(v) to describe the structure of D.

Claim B. Each D ∈ D has the following structure (illustrated below).

n

(a) The vertex set is partitioned into one or more subsets V1,

V2,. . . ,Vk corresponding to the components of D, with no

edges connecting different Vi. If V1 is the subset containing

the vertex n, then the subgraph on V1 is a tree with all edges

directed toward n. The subgraph on every other Vi contains

a single directed cycle of length at least 2, and a tree (pos-

sibly empty) attached to each vertex of the cycle, with edges

directed toward the cycle.

(b) The edges not belonging to the directed cycles are all positive,

and in each directed cycle either all edges are positive or all

edges are negative.

(c) Conversely, each possible D with this structure and satisfy-

ing (i) above belongs to D.

Sketch of a proof. Part (a), describing the structure of the digraph,

is a straightforward consequence of (ii) (a single outgoing edge for

every vertex except for n), and we leave it as an exercise. (If we added

a directed loop to n, then every vertex has exactly one outgoing edge,
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and we get a so-called functional digraph, for which the structure as

in (a) is well known.)

Concerning (b), if we start at a negative edge and walk on, con-

dition (v) implies that we are going to encounter only negative edges.

Thus, we cannot reach n, since its incoming edges are positive, and

so at some point we start walking around a negative cycle. Finally, a

negative edge cannot enter such a negative cycle from outside by (iv).

As for (c), if D has the structure as described in (a) and (b), the

conditions (ii)–(iv) are obviously satisfied and Claim A applies. This

proves Claim B. �

The first item in our plan of the proof is now very easy to com-

plete.

Corollary. All D ∈ T have a positive sign and they are in one-to-one

correspondence with the spanning trees of G.

Proof. If D ∈ D has no directed cycles, then D is a tree with posi-

tive edges directed toward the vertex n. Moreover, πD is the identity

permutation since all the circled elements in the term corresponding

to D lie on the diagonal of L−. Thus sgn(D) = +1, and if we forget

the orientations of the edges, we arrive at a spanning tree of D. Con-

versely, given a spanning tree of G, we can orient its edges toward n,

and we obtain a D ∈ T . �

It remains to deal with the “cyclic objects”. For D ∈ D+ ∪ D−,

let the smallest cycle be the directed cycle that contains the vertex

with the smallest number (among all vertices in cycles). Let D be

obtained from D by changing the signs of all edges in the smallest

cycle.

Obviously D = D, and for D ∈ D we have D ∈ D as well, as

can be seen using Claim B. The following claim then shows that the

mapping sending D to D is a bijection between D+ and D−, which

is all that we need to finish the proof of the theorem.

Claim C. sgn(D) = − sgn(D).

Proof. We have sgn(D) = sgn(πD)(−1)m, where m is the number of

negative edges of D and πD is the associated permutation.
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Let i1, i2, . . . , is be the vertices of the smallest cycle of D, num-

bered so that the directed edges of the cycle are i1 → i2, i2 → i3,. . . ,

is−1 → is, is → i1.

In one of D and D, the smallest cycle is positive; say in D (if it

is positive in D, the argument is similar). Positive edges correspond

to entries on the diagonal of L−, and thus the ij are fixed points

of the permutation πD, i.e., πD(ij) = ij , j = 1, 2, . . . , s. In D, the

smallest cycle is negative, and so for πD we have πD(i1) = i2,. . . ,

πD(is−1) = is, πD(is) = i1, which means that i1, i2, . . . , is form a

cycle of the permutation πD. Otherwise, πD and πD coincide.

Now it is easy to check that πD can be converted to πD by s− 1

transpositions (which “cancel” the cycle (i1, i2, . . . , is)). Since each

transposition changes the sign of a permutation, we have sgn(πD) =

(−1)s−1 sgn(πD), and so

sgn(D) = sgn(πD)(−1)m+s = (−1)s−1 sgn(πD)(−1)m+s = − sgn(D).

Claim C, and thus also the theorem, are proved. �

Sources. The theorem is usually attributed to

G. Kirchhoff, Über die Auflösung der Gleichungen, auf wel-
che man bei der Untersuchung der linearen Verteilung gal-
vanischer Ströme geführt wird, Ann. Phys. Chem. 72

(1847), 497–508,

while

J. J. Sylvester, On the change of systems of independent
variables, Quart. J. Pure Appl. Math. 1 (1857), 42–56

is regarded as the first complete proof.

The above proof mostly follows

A.T. Benjamin and N.T. Cameron, Counting on determi-
nants, Amer. Math. Monthly 112 (2005), 481–492.

Benjamin and Cameron attribute the proof to

S. Chaiken, A Combinatorial proof of the all-minors matrix
tree theorem, SIAM J. Alg. Disc. Methods 3 (1982), 319–
329,

but it may not be easy to find it there, since the paper deals with a
more general setting.
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In How Many Ways Can
a Man Tile a Board?

The answer, my friend, is a determinant,1 at least in many cases of

interest.

There are 12988816 tilings of the 8× 8 chessboard by 2× 1 rect-

angles (dominoes). Here is one of them:

How can they all be counted?

As the next picture shows, domino tilings of a chessboard are in

one-to-one correspondence with perfect matchings2 in the under-

lying square grid graph:

1With apologies to Mr. Dylan.
2A perfect matching in a graph G is a subset M ⊆ E(G) of the edge set such that

each vertex of G is contained in exactly one edge of M .
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Another popular kind of tilings are lozenge tilings (or rhombic

tilings). Here the board is made of equilateral triangles, and the tiles

are the three rhombi obtained by gluing two adjacent triangles:

As the right picture illustrates, these tilings correspond to perfect

matchings in honeycomb graphs.

We will explain how one can express the number of perfect match-

ings in these graphs, and many others, by a determinant. First we

need to introduce some notions.

The bipartite adjacency matrix and Kasteleyn signings. We

recall that a graph G is bipartite if its vertices can be divided into

two classes {u1, u2, . . . , un} and {v1, v2, . . . , vm} so that the edges go

only between the two classes, never within the same class.

We may assume that m = n, i.e., the classes have the same size,

for otherwise, G has no perfect matching.

We define the bipartite adjacency matrix of such G as the

n× n matrix B given by

bij :=

{
1 if {ui, vj} ∈ E(G),

0 otherwise.

Let Sn denote the set of all permutations of the set {1, 2, . . . , n}.
Every perfect matching M in G corresponds to a unique permutation

                

                                                                                                               



22. In How Many Ways Can a Man Tile a Board? 87

π ∈ Sn, where π(i) is defined as the index j such that the edge {ui, vj}
lies in M . Here is an example:

u1 u2 u3 u4 u5

v1 v2 v3 v4 v5

π(1) = 3, π(2) = 1, π(3) = 4, π(4) = 2, π(5) = 5.M

In the other direction, when does G have a perfect matching cor-

responding to a given permutation π ∈ Sn? Exactly if b1,π(1) =

b2,π(2) = · · · = bn,π(n) = 1. Therefore, the number of perfect match-

ings in G equals ∑
π∈Sn

b1,π(1)b2,π2
· · · bn,π(n).

This expression is called the permanent of the matrix B and

denoted by per(B). The permanent makes sense for arbitrary square

matrices, but here we stick to bipartite adjacency matrices, i.e., ma-

trices made of 0s and 1s.

The above formula for the permanent looks very similar to the

definition of the determinant; the determinant has “only” the extra

factor sgn(π) in front of each term. But the difference is actually a

crucial one: The permanent lacks the various pleasant properties of

the determinant, and while the determinant can be computed reason-

ably fast even for large matrices, the permanent is computationally

hard, even for matrices consisting only of 0s and 1s.3

Here is the key idea of this section. Couldn’t we cancel out the

effect of the factor sgn(π) by changing the signs of some carefully

selected subset of the bij , thereby turning the permanent of B into

the determinant of some other matrix? As we will see, for many

graphs this can be done. Let us introduce a definition capturing this

idea more formally.

We let a signing of G be an arbitrary assignment of signs to the

edges of G, i.e., a mapping σ : E(G) → {−1, +1}, and we define a

3In technical terms, computing the permanent of a 0-1 matrix, which is equivalent
to computing the number of perfect matchings in a bipartite graph, is #P-complete.
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matrix Bσ, which is a “signed version” of B, by

bσ
ij :=

{
σ(ui, vj) if {ui, vj} ∈ E(G),

0 otherwise.

We call σ a Kasteleyn signing for G if

| det(Bσ)| = per(B).

Not all bipartite graphs have a Kasteleyn signing; for example,

the complete bipartite graph K3,3 does not have one, as a diligent and

energetic reader can check. But it turns out that all planar4 bipartite

graphs do.

In order to focus on the essence and avoid some technicalities,

we will deal only with 2-connected graphs, which means that every

edge is contained in at least one cycle (which holds for the square

grids and for the honeycomb graphs). As is not difficult to see, and

as is well known, in a planar drawing of a 2-connected graph G, the

boundary of every face forms a cycle in G.

Theorem. Every 2-connected planar bipartite graph G has a Kaste-

leyn signing, which can be found efficiently.5 Consequently, the num-

ber of perfect matchings in such a graph can be computed in polynomial

time.

For the grid graphs derived from the tiling examples above, Kaste-

leyn signings happen to be very simple. Here is one for the square

grid graph:

edges with sign −1

edges with sign +1

4We recall that a graph is planar if it can be drawn in the plane without edge
crossings.

5The proof will obviously give a polynomial-time algorithm, but with some more
work one can obtain even a linear-time algorithm.
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For the hexagonal grid we can even give all edges the sign +1. Both

of these facts will immediately follow from Lemma B below.

The restriction to 2-connected graphs in the theorem can easily be

removed with a little more work. The restriction to bipartite graphs

is also not essential. It makes the presentation slightly simpler, but

an analogous theory can be developed for the nonbipartite case along

similar lines—the interested readers will find this in the literature.

On the other hand, the assumption of planarity is more sub-

stantial: The method certainly breaks down for a general nonplanar

graph, and as was mentioned above, counting the number of perfect

matchings in a general graph is computationally hard. The class of

graphs where this approach works, the so-called Pfaffian graphs, is

somewhat wider than all planar graphs, but not easy to describe, and

most applications deal with planar graphs anyway.

Properly signed cycles. As a first step toward the proof, we give

a sufficient condition for a signing to be Kasteleyn. It may look

mysterious at first glance, but in the proof we will see where it comes

from.

Let C be a cycle in a bipartite graph G. Then C has an even

length, which we write as 2�. Let σ be a signing of G, and let nC be

the number of negative edges (i.e., edges with sign −1) in C. Then

we call C properly signed with respect to σ if nC ≡ �− 1 (mod 2).

In other words, a properly signed cycle of length 4, 8, 12, . . . contains

an odd number of negative edges, while a properly signed cycles of

length 6, 10, 14, . . . contains an even number of negative edges.

Further let us say that a cycle C is evenly placed if the graph

obtained from G by deleting all vertices of C (and the adjacent edges)

has a perfect matching.

Lemma A. Suppose that σ is a signing of a bipartite graph G (no

planarity assumed here) such that every evenly placed cycle in G is

properly signed. Then σ is a Kasteleyn signing for G.

Proof. This is straightforward. Let the signing σ as in the lemma be

fixed, and let M be a perfect matching in G, corresponding to a per-

mutation π. We define the sign of M as the sign of the corresponding
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term in det(Bσ); explicitly,

sgn(M) := sgn(π)bσ
1,π(1)b

σ
2,π(2) · · · bσ

n,π(n) = sgn(π)
∏

e∈M

σ(e).

It is easy to see that σ is a Kasteleyn signing if (and only if) all perfect

matchings in G have the same sign.

Let M and M ′ be two perfect matchings in G, with the corre-

sponding permutations π and π′. Then

sgn(M) sgn(M ′) = sgn(π) sgn(π′)
(∏

e∈M

σ(e)

)( ∏
e∈M ′

σ(e)

)

= sgn(π) sgn(π′)
∏

e∈M�M ′

σ(e),

where � denotes the symmetric difference.

The symmetric difference M�M ′ is a disjoint union of evenly

placed cycles, as the picture below illustrates.

M M ′ M�M ′

C1
C2

Let these cycles be C1, C2, . . . , Ck, and let the length of Ci be 2�i.

Since Ci is evenly placed, it must be properly signed by the assump-

tion in the lemma, and so we have
∏

e∈Ci
σ(e) = (−1)�i−1. Thus∏

e∈M�M ′ σ(e) = (−1)t with t := �1 − 1 + �2 − 1 + · · ·+ �k − 1.

It remains to check that π can be converted to π′ by t transposi-

tions (then, by the properties of the sign of a permutation, we have

sgn(π) = (−1)t sgn(π′), and thus sgn(M) = sgn(M ′) as needed).

This can be done one cycle Ci at a time. As the next picture

illustrates for a cycle of length 2�i = 8, by modifying π with a suitable

transposition we can “cancel” two edges of the cycle and pass to a

cycle of length 2�i − 2 (black edges belong to M , gray edges to M ′,
and the dotted edge in the right drawing now belongs to both M

and M ′).
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→

transpose these values in π

Continuing in this way for �i − 1 steps, we cancel Ci, and we can

proceed with the next cycle. Lemma A is proved. �

The rest of the proof of the theorem is simple graph theory. First

we show that for graphs as in the theorem, it is sufficient to check the

condition in Lemma A only for special cycles, namely, face boundaries.

Clearly, it is enough to deal with connected graphs.

Lemma B. Let G be a planar bipartite graph that is both connected

and 2-connected, and let us fix a planar drawing of G. If σ is a signing

of G such that the boundary cycle of every inner face in the drawing

is properly signed, then σ is a Kasteleyn signing.

Proof of Lemma B. Let C be an evenly placed cycle in G; we need

to prove that it is properly signed.

Let the length of C be 2�. Let F1, . . . , Fk be the inner faces

enclosed in C in the drawing, and let Ci be the boundary cycle of Fi,

of length 2�i. Let H be the subgraph of G obtained by deleting all

vertices and edges drawn outside C; in other words, H is the union

of the Ci.

F1
F2

F3
F4

F5

F6

C

H
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We want to see how the parity of � is related to the parities of

the �i. To this end, we need to do some counting. The number of

vertices of H is r + 2�, where r is the number of vertices lying in the

interior of C. Every edge of H belongs to exactly two cycles among

C, C1, . . . , Ck, and so the number of edges of H equals �+�1 + · · ·+�k.

Finally, the drawing of H has k + 1 faces: F1, . . . , Fk and the outer

one.

Now we apply Euler’s formula, which tells us that for every

drawing of a connected planar graph, the number of vertices plus the

number of faces equals the number of edges plus 2. Thus

(18) r + 2� + k + 1 = � + �1 + · · ·+ �k + 2.

Next, we use the assumption that C is evenly placed. Since the

graph obtained by deleting C from G has a perfect matching, the

number r of vertices inside C must be even. Therefore, from (18) we

get

(19) �− 1 ≡ �1 + · · ·+ �k − k (mod 2).

Let nC be the number of negative edges in C, and similarly for

nCi
. The sum nC + nC1

+ · · · + nCk
is even because it counts every

negative edge twice, and so

(20) nC ≡ nC1
+ · · ·+ nCk

(mod 2).

Finally, we have nCi
≡ �i−1 (mod 2) since the Ci are properly signed.

Combining this with (19) and (20) gives nC ≡ �− 1 (mod 2). Hence

C is properly signed. Lemma B now follows from Lemma A. �

Proof of the theorem. Given a connected, 2-connected, planar, bi-

partite G, we fix some planar drawing, and we want to construct a

signing as in Lemma B, with the boundary of every inner face properly

signed.

First we start deleting edges from G, as the next picture illus-

trates.
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F1

F2

e1

G1 = G G2

e2

F3

G3

e3

G6

. . .

We set G1 := G, and Gi+1 is obtained from Gi by deleting an edge ei

that separates an inner face Fi from the outer (unbounded) face (in

the current drawing). The procedure finishes with some Gk that has

no such edge. Then the drawing of Gk has only the outer face.

Now we choose the signs of the edges of Gk arbitrarily, and we

extend this to a signing of G by going backward, choosing the signs for

ek−1, ek−2, . . . , e1 in this order. When we consider ei, it is contained

in the boundary of the single inner face Fi in the drawing of Gi, so

we can set σ(ei) so that the boundary of Fi is properly signed. The

theorem is proved. �

From the determinant formula one can obtain, with some effort,

the following amazing formula for the number of domino tilings of an

m×n chessboard:

[
m∏

k=1

n∏
�=1

(
2 cos

πk

m + 1
+ 2i cos

π�

n + 1

)]1/2

,

where i is the imaginary unit. But the determinants can be used not

only for counting, but also for generating a random perfect matching

(chosen uniformly among all possible perfect matchings), and for an-

alyzing its typical properties. Such results are relevant for questions

in theoretical physics.

Here is a quick illustration of an interesting phenomenon for ran-

dom tilings. The next picture shows a random lozenge tiling of a large

hexagon.
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The three types of tiles are painted black, white, and gray. One

can see that, while the tiling looks “chaotic” in the central circle, the

regions outside this circle are “frozen”, i.e., tiled by rhombi of a single

type. (This is a typical property of a random tiling—definitely not all

tilings look like this.) This is called the “arctic circle” phenomenon.

Depending on the board’s shape, various complicated curves may

play the role of the arctic circle. In some cases, there are no frozen

regions at all, e.g., for domino tilings of rectangular chessboards—

these look chaotic everywhere. The determinant formula provides a

crucial starting point for analyzing such phenomena.

Sources. Counting perfect matchings is considered in several areas:
mathematicians often talk about tilings, computer scientists about per-
fect matchings, and physicists about the dimer model (which is a highly
simplified but still interesting model in solid-state physics). The idea
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of counting perfect matchings in a square grid via determinants was
invented in the dimer context, in

P.W. Kasteleyn, The statistics of dimers on a lattice I. The
number of dimer arrangements on a quadratic lattice, Phys-
ica 27 (1961), 1209–1225

and independently in

H.N.V. Temperley and M.E. Fisher, Dimer problem in sta-
tistical mechanics—An exact result, Philos. Magazine 6

(1961), 1061–1063.

The material covered in this section is just the beginning of amazing
theories going in several directions. As starting points one can use,
e.g.,

R. Kenyon, The planar dimer model with boundary: A sur-
vey, Directions in Mathematical Quasicrystals, CRM Mono-
graph Ser. 13, Amer. Math. Soc., Providence, R.I., 2000,
pp. 307–328

(discussing tilings, dimers, the arctic circle, random surfaces, and such)
and

R. Thomas, A survey of Pfaffian orientations of graphs, in
International Congress of Mathematicians. Vol. III, Eur.
Math. Soc., Zürich, 2006, pp. 963–984

(with graph-theoretic and algorithmic aspects of Pfaffian graphs).

                

                                                                                                               



Miniature 23

More Bricks—More
Walls?

One of the classical topics in enumeration are integer partitions.

For example, there are five partitions of the number 4:

4 = 1 + 1 + 1 + 1 + 1,

4 = 2 + 1 + 1,

4 = 2 + 2,

4 = 3 + 1,

4 = 4.

The order of the addends in a partition does not matter, and it is

customary to write them in a nonincreasing order as we did above.

A partition of an integer k is often represented graphically by its

Ferrers diagram, which one can think of as a nondecreasing wall

built of k bricks. For example, the following Ferrers diagram

corresponds to 16 = 5 + 3 + 3 + 2 + 1 + 1 + 1.
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How can we determine or estimate p(k), the number of partitions

of k? This is a surprisingly difficult enumeration problem, ultimately

solved by a formula of Hardy and Ramanujan. The asymptotics of

p(k) is p(k) ∼ 1
4k

√
3
eπ
√

2k/3, where f(k) ∼ g(k) means limk→∞
f(k)
g(k)

=

1.

Here we consider another matter, the number pw,h(k) of parti-

tions of k with at most w addends, none of them exceeding h. In

other words, pw,h(k) is the number of ways to build a nonincreasing

wall out of k bricks inside a box of width w and height h:

w = 8

h = 4

Here is the main result of this section.

Theorem. For every w ≥ 1 and h ≥ 1, we have

pw,h(0) ≤ pw,h(1) ≤ · · · ≤ pw,h

(�wh
2 �

)
and

pw,h

(
�wh

2 �
)
≥ pw,h

(
�wh

2 �+ 1
)
≥ · · · ≥ pw,h(wh− 1) ≥ pw,h(wh).

That is, pw,h(k) as a function of k is nondecreasing for k ≤ wh
2

and

nonincreasing for k ≥ wh
2 .

So the first half of the theorem tells us that with more bricks we

can build more (or rather, at least as many) walls. This goes on until

half of the box is filled with bricks; after that, we already have too

little space and the number of possible walls starts decreasing.

Actually, once we know that pw,h(k) is nondecreasing for k ≤
wh
2 , then it must be nonincreasing for k ≥ wh

2 , because pw,h(k) =

pw,h(wh−k), as can be seen using the following bijection transforming

walls with k bricks into walls with wh− k bricks.
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→
bricks↔nonbricks

→
turn by 180 degrees

The theorem is one of the results that look intuitively obvious but

are surprisingly hard to prove. The great Cayley used this as a fact

requiring no proof in his 1856 memoir, but not until about twenty

years later did Sylvester discover the first proof.

One would naturally expect such a combinatorial problem to have

a combinatorial solution, perhaps simply an injective map assigning

to every wall of k bricks a wall of k+1 bricks (for k+1 ≤ wh
2 ). But to

my knowledge, nobody has managed to discover a proof of this kind,

and estimating pw,h(k) or expressing it by a formula does not seem

to lead to the goal either.

Earlier proofs of the theorem used relatively heavy mathematical

tools, essentially representations of Lie algebras. The proof shown

here is a result of several simplifications of the original ideas, and it

uses “only” matrix-rank arguments.

Functions, or sequences, that are first nondecreasing and then,

from some point on, nonincreasing, are called unimodal (and so are

functions that begin as nonincreasing and continue as nondecreasing).

There are many important results and conjectures in various areas of

mathematics asserting that certain quantities form a unimodal se-

quence, and the proof below contains tools of general applicability.

Preliminary considerations. Let us write n := wh for the area of

the box, and let us fix a numbering of the n squares in the box by

the numbers 1, 2, . . . , n.

To prove the theorem, we will show that pw,h(k) ≤ pw,h(�) for

0 ≤ k < � ≤ n
2 .

The first step is to view a wall in the box as an equivalence class.

Namely, we start with an arbitrary set of k bricks filling some k

squares in the box, and then we tidy them up into a nonincreasing

wall:
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First we push down the bricks in each column, and then we rearrange

the columns into a nonincreasing order.

Let us call two k-element subsets K, K ′ ⊆ {1, 2, . . . , n}, under-

stood as sets of k squares in the box, wall-equivalent if they lead to

the same nonincreasing wall. This indeed defines an equivalence on

the set K of all k-element subsets of {1, 2, . . . , n}. Let the equivalence

classes be K1,K2, . . . ,Kr, where r := pw,h(k).

Let us phrase the definition of the wall-equivalence differently, in

a way that will be more convenient latter. Let π be a permutation of

the n squares in the box; let us say that π does not break columns

if it corresponds to first permuting the squares in each column arbi-

trarily, and then permuting the columns. It is easily seen that two

subsets K, K ′ ∈ K are wall-equivalent exactly if K ′ = π(K) for some

permutation that does not break columns.1

Next, let L be the set of all �-element subsets of {1, 2, . . . , n},
and let it be divided similarly into s := pw,h(�) classes L1, . . . ,Ls

according to wall-equivalence. The goal is to prove that r ≤ s.

1In more mature mathematical language, the permutations that do not break
columns form a permutation group acting on K, and the classes of the wall-equivalence
are the orbits of this action. Some things in the sequel could (should?) also be phrased
in the language of actions of permutation groups, but I decided to avoid this terminol-
ogy with the hope of deterring slightly fewer students.
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Let us consider the bipartite graph G with vertex set K ∪ L and

with edges corresponding to inclusion; i.e., a k-element set K ∈ K
is connected to an �-element set L ∈ L by an edge if K ⊆ L. A

small-scale illustration with w = 2, h = 3, k = 2, and � = 3 follows.

K1 K2

L1 L2

Claim. For every i and j, all L ∈ Lj have the same number dij of

neighbors in Ki.

Proof. Let L, L′ ∈ Lj , and let us fix some permutation π that does

not break columns and such that L′ = π(L). For K ∈ Ki, we

have π(K) ∈ Ki as well (by the alternative description of the wall-

equivalence), and it is easily seen that K �→ π(K) defines a bijection

between the neighbors of L lying in Ki and the neighbors of L′ lying

in Ki. �

Let us now pass to a more general setting for a while. Let U, V be

disjoint finite sets, let (U1, . . . , Ur, V1, . . . , Vs) be a partition of U ∪V

with U = U1 ∪ · · · ∪ Ur and V = V1 ∪ · · · ∪ Vs, where the Ui and Vj

are all nonempty, and let G be a bipartite graph on the vertex set

U ∪V (with all edges going between U and V ). We call the partition

(U1, . . . , Ur, V1, . . . , Vs) V -degree homogeneous with respect to G

if the condition as in the claim holds, i.e., all vertices in Vj have the

same number dij of neighbors in Ui, for all i and j. In such a case,

we call the matrix D = (dij)r
i=1

s
j=1 the V -degree matrix of the

partition (with respect to G).

In the setting introduced earlier, we have a bipartite graph with a

V -degree homogeneous partition, and we would like to conclude that

r, the number of the U -pieces, cannot be larger than s, the number of
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V -pieces. The next lemma gives a sufficient condition, which we will

then be able to verify for our particular G. The condition essentially

says that V is at least as large as U for a “linear-algebraic reason”.

To formulate the lemma, we set up a |U | × |V | matrix B (the bi-

partite adjacency matrix of G), with rows indexed by the vertices

in U and columns indexed by the vertices in V , whose entries buv are

given by

buv :=

{
1 if {u, v} ∈ E(G),

0 otherwise.

Lemma. Let G be a bipartite graph as above, let (U1, U2, . . . , Ur,

V1, V2, . . . , Vs) be a V -degree homogeneous partition of its vertices, let

B be a bipartite adjacency matrix of G, and let us suppose that the

rows of B are linearly independent. Then r ≤ s.

Proof. This powerful statement is quite easy to prove. We will show

that the r×s V -degree matrix D has linearly independent rows, which

means that it cannot have fewer columns than rows, and thus r ≤ s

indeed.

Let B[Ui, Vj ] denote the submatrix of B consisting of the entries

buv with u ∈ Ui and v ∈ Vj ; schematically

B[U1, V1] B[U1, V2]U1

U2

U3 B[U3, V4]

V1 V2 V3 V4

B =

The V -degree homogeneity condition translates to the matrix

language as follows: the sum of each of the columns of B[Ui, Vj ]

equals dij .

For a vector x ∈ Rr, let x̃ ∈ R|U| be the vector indexed by the

vertices in U obtained by replicating |Ui|-times the component xi;

that is, x̃u = xi for all u ∈ Ui, i = 1, 2, . . . , r.
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For this x̃, we consider the product x̃T B. Its vth component

equals
∑

u∈U x̃ubuv =
∑r

i=1 xi

∑
u∈Ui

buv =
∑r

i=1 xidij = (xT D)j .

Hence xT D = 0 implies x̃T B = 0.

Let us assume for contradiction that the rows of D are linearly

dependent; that is, there is a nonzero x ∈ Rr with xT D = 0. Then

x̃ 
= 0 but, as we have just seen, x̃T B = 0. This contradicts the linear

independence of the rows of B assumed in the lemma and concludes

the proof. �

Proof of the theorem. We return to the particular bipartite graph

G introduced above, with vertex set K ∪ L and with the L-degree

homogeneous partition (K1, . . . ,Kr,L1, . . . ,Ls) according to the wall-

equivalence. For applying the lemma, it remains to show that the rows

of the corresponding matrix B are linearly independent.

This result, known as Gottlieb’s theorem,2 has proved useful

in several other applications as well. Explicitly, it tells us that for

0 ≤ k < � ≤ n
2
, the zero-one matrix B with rows indexed by K

(all k-subsets of {1, 2, . . . , n}), columns indexed by L (all �-subsets),

and the nonzero entries corresponding to containment, has linearly

independent rows.

Several proofs are known; here we present one resembling the

proof of the lemma above.

Proof of Gottlieb’s theorem. For contradiction, we assume that

yT B = 0 for some nonzero vector y. The components of y are indexed

by k-element sets; let us fix some K0 ∈ K with yK0

= 0.

Next, we partition both K and L into k + 1 classes according to

the size of the intersection with K0 (this partition has nothing to do

with the partition of K and L considered earlier—we just re-use the

same letters):

Ki := {K ∈ K : |K ∩K0| = i}, i = 0, 1, . . . , k,

Lj := {L ∈ L : |L ∩K0| = j}, j = 0, 1, . . . , k.

Every Ki and every Lj is nonempty—here we use the assumption

k < � ≤ n
2 (if, for example, we had k + � > n, we would get L0 = ∅,

2This is not the only theorem associated with Gottlieb’s name, however.
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since there would not be enough room for an �-element set disjoint

from K0).

Here, for a change, we will need that this partition is K-degree

homogeneous (with respect to the same bipartite graph as above, with

edges representing inclusion). That is, every K ∈ Ki has the same

number dij of neighbors in Lj . More explicitly, dij is the number of

ways of extending a k-element set K with |K∩K0| = i to an �-element

L ⊃ K with |L ∩K0| = j; this number is clearly independent of the

specific choice of K. (We could compute dij explicitly, but we do not

need it.)

By this description, we have dij = 0 for i > j, and thus the

K-degree matrix D is upper triangular. Moreover, dii 
= 0 for all

i = 0, 1, . . . , k, and so D is nonsingular.

Using the vector y, we are going to exhibit a nonzero x = (x0,

x1, . . . , xk) with xT D = 0, which will be a contradiction. A suitable

x is obtained by summing the components of y over the classes Ki:

xi :=
∑

K∈Ki

yK .

We have x 
= 0, since the class Kk contains only K0, and so xk =

yK0

= 0.

For every j we calculate

0 =
∑

L∈Lj

(yT B)L =
∑

L∈Lj

∑
K∈K

yKbKL =
∑
K∈K

yK

∑
L∈Lj

bKL

=

k∑
i=0

∑
K∈Ki

yKdij =

k∑
i=0

xidij = (xT D)j .

Hence xT D = 0, and this is the promised contradiction to the non-

singularity of D. Gottlieb’s theorem, as well as our main theorem,

are proved. �

Another example. For readers familiar with the notion of graph

isomorphism (see Miniature 13), the following might be a rewarding

exercise in applying the method shown above: prove that if gn(k)

stands for the number of nonisomorphic graphs with n vertices and k

edges, then the sequence gn(0), gn(1), . . . , gn(
(
n
2

)
) is unimodal.
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Sources. As was mentioned above, the theorem was implicitly
assumed without proof in

A. Cayley, A second memoir on quantics, Phil. Trans. Roy.
Soc. 146 (1856), 101–126.

The word “quantic” in the title means, in today’s terminology, a homo-
geneous multivariate polynomial, and Cayley was interested in quantics
that are invariant under the action of linear transformations. The first
proof of the theorem was obtained in

J. J. Sylvester, Proof of the hitherto undemonstrated fun-
damental theorem of invariants, Philos. Mag. 5 (1878),
178–188.

A substantially more elementary proof than the previous ones, phrased
in terms of group representations, was obtained in

R.P. Stanley, Some aspects of groups acting on finite posets,
J. Combinatorial Theory Ser. A 32 (1982), 132–161.

Our presentation is based on that of Babai and Frankl in their textbook
cited in the introduction.

Gottlieb’s theorem was first proved in

D.H. Gottlieb, A certain class of incidence matrices, Proc.
Amer. Math. Soc 17 (1966), 1233–1237.

The proof presented above rephrases an argument from

C. D. Godsil, Tools from linear algebra, Chapter 31 of Hand-
book of Combinatorics (M. Grötschel, and L. Lovász, edi-
tors), North-Holland, Amsterdam, 1995, pp. 1705–1748.

For an introduction to integer partitions, see

G. Andrews and K. Eriksson, Integer partitions, Cambridge
University Press, Cambridge 2004,

(this is a very accessible source), or Wilf’s lecture notes at http://

www.math.upenn.edu/~wilf/PIMS/PIMSLectures.pdf.
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Perfect Matchings and
Determinants

A matching in a graph G is a set of edges F ⊆ E(G) such that no

vertex of G is incident to more than one edge of F .

A perfect matching is a matching covering all vertices. The reader

may want to find a perfect matching in the graph in the picture.

In Miniature 22, we counted perfect matchings in certain graphs

via determinants. Here we will employ determinants in a simple algo-

rithm for testing whether a given graph has a perfect matching. The

basic approach is similar to the approach to testing matrix multipli-

cation from Miniature 11. We consider only the bipartite case, which

is simpler.

Consider a bipartite graph G. Its vertices are divided into two

classes {u1, u2, . . . , un} and {v1, v2, . . . , vn} and the edges go only

between the two classes, never within one class. Both of the classes

107
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have the same size, for otherwise, the graph has no perfect matching.

Let m stand for the number of edges of G.

Let Sn be the set of all permutations of the set {1, 2, . . . , n}.
Every perfect matching of G uniquely corresponds to a permutation

π ∈ Sn. We can describe it in the form {{u1, vπ(1)}, {u2, vπ(2)}, . . .,
{un, vπ(n)}}.

We express the existence of a perfect matching by a determinant,

but not of an ordinary matrix of numbers, but rather of a matrix

whose entries are variables. We introduce a variable xij for every

edge {ui, vj} ∈ E(G) (so we have m variables altogether), and we

define an n× n matrix A by

aij :=

{
xij if {ui, vj} ∈ E(G),

0 otherwise.

The determinant of A is a polynomial in the m variables xij . By the

definition of a determinant, we get

det(A) =
∑

π∈Sn

sgn(π) · a1,π(1)a2,π(2) · · · an,π(n)

=
∑

π describes a perfect
matching of G

sgn(π) · x1,π(1)x2,π(2) · · ·xn,π(n).

Lemma. The polynomial det(A) is identically zero if and only if G

has no perfect matching.

Proof. The formula above makes it clear that if G has no perfect

matching, then det(A) is the zero polynomial.

To show the converse, we fix a permutation π that defines a per-

fect matching, and we substitute for the variables in det(A) as follows:

xi,π(i) := 1 for every i = 1, 2, . . . , n, and all the remaining xij are 0.

We have sgn(π) · x1,π(1)x2,π(2) · · ·xn,π(n) = ±1 for this π.

For every other permutation σ 
= π there is an i with σ(i) 
= π(i),

thus xi,σ(i) = 0, and therefore, all other terms in the expansion of

det(A) are 0. For this choice of the xij we thus have det(A) = ±1. �

Now we would like to test whether the polynomial det(A) is the

zero polynomial. We cannot afford to compute it explicitly as a poly-

nomial, since it has the same number of terms as the number of perfect
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matchings of G and that can be exponentially many. But if we substi-

tute any specific numbers for the variables xij , we can easily calculate

the determinant, e.g., by Gaussian elimination. So we can imagine

that det(A) is available to us through a black box, from which we can

obtain the value of the polynomial at any specified point.

For an arbitrary function given by a black box, we can never be

sure that it is identically 0 unless we check its values at all points.

But a polynomial has a wonderful property: Either it equals 0 ev-

erywhere or almost nowhere. The following theorem expresses this

quantitatively.

Theorem (The Schwartz–Zippel theorem1). Let K be an arbitrary

field, and let S be a finite subset of K. Then for every nonzero

polynomial p(x1, . . . , xm) of degree d in m variables and with coef-

ficients from K, the number of m-tuples (r1, r2, . . . , rm) ∈ Sm with

p(r1, r2, . . . , rm) = 0 is at most d|S|m−1. In other words, if r1, r2,. . . ,

rm ∈ S are chosen independently and uniformly at random, then the

probability of p(r1, r2, . . . , rm) = 0 is at most d
|S| .

Before we prove this theorem, we get back to bipartite matchings.

Let us assume that G has a perfect matching and thus det(A) is a

nonzero polynomial of degree n. The Schwartz–Zippel theorem shows

that if we calculate det(A) for values of the variables xij chosen inde-

pendently at random from S := {1, 2, . . . , 2n}, then the probability

of getting 0 is at most 1
2 .

But in order to decide whether the determinant is 0 for a given

substitution, we have to compute it exactly. In such a computation,

we may encounter huge numbers, with about n digits, and then arith-

metic operations would become quite expensive.

It is better to work with a finite field. The simplest way is to

choose a prime number p, 2n ≤ p < 4n (by a theorem from number

theory called Bertrand’s postulate, such a number always exists and

it can be found sufficiently quickly) and operate in the finite field Fp

of integers modulo p. Then the arithmetic operations are fast (if we

prepare a table of inverse elements in advance).

1This Schwartz is really spelled with “t”, unlike the one from the Cauchy–Schwarz
inequality.
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Using Gaussian elimination for computing the determinant, we

get a probabilistic algorithm for testing the existence of a bipartite

matching in a given graph running in O(n3) time. It fails with a

probability at most 1
2 . As usual, the probability of the failure can be

reduced to 2−k by repeating the algorithm k times.

The determinant can also be computed by the algorithms for fast

matrix multiplication (mentioned in Miniature 10), and in this way

we obtain the asymptotically fastest known algorithm for testing the

existence of a perfect bipartite matching, with running time O(n2.376).

But we should honestly admit that a deterministic algorithm is

known that always finds a maximum matching in O(n2.5) time. This

algorithm is much faster in practice. Moreover, the algorithm dis-

cussed above can decide whether a perfect matching exists, but it

does not find one (however, there are more complicated variants that

can also find the matching). On the other hand, this algorithm can

be implemented very efficiently on a parallel computer, and no other

known approach yields comparably fast parallel algorithms.

Proof of the Schwartz–Zippel theorem. We proceed by induc-

tion on m. The univariate case is clear, since there are at most d

roots of p(x1) by a well-known theorem of algebra. (That theorem is

proved by induction on d: If p(α) = 0, then we can divide p(x) by

x− α and reduce the degree.)

Let m > 1. Let us suppose that x1 occurs in at least one term

of p(x1, . . . , xn) with a nonzero coefficient (if not, we rename the

variables). Let us write p(x1, . . . , xm) as a polynomial in x1 with

coefficients being polynomials in x2, . . . , xn:

p(x1, x2, . . . , xm) =

k∑
i=0

xi
1pi(x2, . . . , xm),

where k is the maximum exponent of x1 in p(x1, . . . , xn).

We divide the m-tuples (r1, . . . , rm) with p(r1, . . . , rm) = 0 into

two classes. The first class, called R1, consists of the m-tuples with

pk(r2, . . . , rm) = 0. Since the polynomial pk(x2, . . . , xm) is not iden-

tically zero and has degree at most d − k, the number of choices for
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(r2, . . . , rm) is at most (d−k)|S|m−2 by the induction hypothesis, and

so |R1| ≤ (d− k)|S|m−1.

The second class R2 are the remaining m-tuples, that is, those

with p(r1, r2, . . . , rm) = 0 but pk(r2, . . . , rm) 
= 0. Here we count

as follows: r2 through rm can be chosen in at most |S|m−1 ways,

and if r2, . . . , rm are fixed with pk(r2, . . . , rm) 
= 0, then r1 must be

a root of the univariate polynomial q(x1) = p(x1, r2, . . . , rm). This

polynomial has degree (exactly) k, and hence it has at most k roots.

Thus the second class has at most k|S|m−1 m-tuples, which gives

d|S|m−1 altogether, finishing the induction step and the proof of the

Schwartz–Zippel theorem. �

Sources. The idea of the algorithm for testing perfect matchings
via determinants is from

J. Edmonds, Systems of distinct representatives and linear
algebra, J. Res. Nat. Bur. Standards Sect. B 71B (1967),
241–245.

There are numerous papers on algebraic matching algorithms; a recent
one is

N. J. A. Harvey, Algebraic algorithms for matching and ma-
troid problems, Proc. 47th IEEE Symposium on Founda-
tions of Computer Science (FOCS), 2006, 531–542.

The Schwartz–Zippel theorem (or lemma) appeared in

J. Schwartz, Fast probabilistic algorithms for verification of
polynomial identities, J. ACM 27 (1980), 701–717

and in

R. Zippel, Probabilistic algorithms for sparse polynomials,
Proc. International Symposium on Symbolic and Algebraic
Computation, vol. 72 of Lecture Notes in Computer Science,
Springer, Berlin, 1979, 216–226.
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Turning a Ladder Over
a Finite Field

We want to turn around a ladder of length 10m inside a garden (with-

out lifting it). What is the smallest area of a garden in which this is

possible? For example, here is a garden that, area-wise, looks quite

economical (the ladder is drawn as a white segment):

This question is commonly called the Kakeya needle problem;

Kakeya phrased it with rotating a needle but, while I’ve never seen

any reason for trying to rotate a needle, I did have some quite memo-

rable experiences with turning a long and heavy ladder, so I will stick

to this alternative formulation.

113
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One of the fairly counterintuitive results in mathematics, discov-

ered by Besicovitch in the 1920s, is that there are gardens of arbitrarily

small area that still allow the ladder to be rotated. Let me sketch

the beautiful construction, although it is not directly related to the

topic of this book.

A necessary condition for turning a unit-length ladder inside a set

X is that X contains a unit-length segment of every direction. An X

satisfying this latter, weaker condition is called a Kakeya set; unlike

the ladder problem, this definition has an obvious generalization to

higher dimensions. We begin by constructing a planar Kakeya set of

arbitrarily small area (actually, one can get a zero-measure Kakeya

set with some more effort).

Let us consider a triangle T of height 1 with base on the x-axis,

let k ≥ 2 be an integer, and let h ∈ [0, 1). The k-thinning of T

at height h means subdividing the base of T into k equal segments,

slicing T into k triangles T1, . . . , Tk with these segments as bases, and

translating each of T2, . . . , Tk left so that it exactly overlaps with T1

at height h. The next picture shows a 3-thinning.

0

h

1
T1

T2

T T3

More generally, k-thinning a collection of triangles at height h means

k-thinning each of them separately, so from N triangles we obtain kN

triangles.

We will construct a small-area set in the plane that contains seg-

ments of all directions with slope at least 1 in absolute value (more

vertical than horizontal); to get a Kakeya set, we need to add another

copy rotated by 90 degrees.

We choose a large integer m; the area of the resulting set will

be bounded by O( 1
m

). We start with the triangle with top angle 90
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degrees, perform m-thinning at height 1
m , then at height 2

m , and so

on, up until height m−1
m . Here is an example with m = 3:

Let Bm denote the union of the resulting set of mm thin triangles.

It is not hard to see that the total length of the intersection of Bm

with the horizontal line at height i
m , i = 1, 2, . . . , m − 1, is at most

1
m . Showing that the length of the intersection at all other heights is

also of order 1
m is more demanding. We refer to the literature cited

at the end of this miniature for a full proof (an ambitious reader may

also want to work it out).

How can we use Bm to turn the ladder? We need to enlarge it

so that the ladder can move from one thin triangle to the next. For

that, we add “translation corridors” of the following kind to Bm:

The dark gray triangles are from Bi, and the lighter gray corridor can

be used to transport the ladder between the two marked positions. If

we are willing to walk with the ladder far enough, then the translation

corridors add an arbitrarily small area.
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Kakeya’s conjecture. We have seen that a Kakeya set in the plane

can be small—of measure zero. The Cartesian product of a zero-

measure planar Kakeya set with an (n− 2)-dimensional ball yields a

zero-measure Kakeya sets in Rn, for all n ≥ 3. However, a statement

known as Kakeya’s conjecture asserts that Kakeya sets cannot be too

small. Namely, a Kakeya set K in Rn should have Hausdorff dimen-

sion n (for readers not familiar with Hausdorff dimension: roughly

speaking, this means that it is not possible to cover K with sets of

small diameter much more economically than the n-dimensional cube,

say).

While the Kakeya needle problem has a somewhat recreational

flavor, Kakeya’s conjecture is regarded as a fundamental mathemati-

cal question, mainly in harmonic analysis, and it is related to several

other serious problems. Although many partial results have been

achieved, by the effort of many great mathematicians, the conjecture

still seems far from solution (it has been proved only for n = 2).

Kakeya for finite fields. Recently, however, an analogue of Ka-

keya’s conjecture, with the field R replaced by a finite field F, has

been settled by a short algebraic argument (after previous, weaker

results involving much more complicated mathematics). A set K in

the vector space Fn is a Kakeya set if it contains a “line” in every

possible “direction”; that is, for every nonzero u ∈ Fn there is a ∈ Fn

such that a + tu belongs to K for all t ∈ F.

Theorem (Kakeya’s conjecture for finite fields). Let F be a q-element

field. Then any Kakeya set K in Fn has at least
(
q+n−1

n

)
elements.

For n fixed and q large,
(

q+n−1
n

)
behaves roughly like qn/n!, so

a Kakeya set occupies at least about 1
n! of the whole space. Hence,

unlike in the real case, a Kakeya set over a finite field occupies a

substantial part of the “n-dimensional volume” of the whole space.

The binomial coefficient enters through the following easy lemma.

Lemma. Let a1,a2, . . . ,aN be points in Fn, where N <
(
d+n

n

)
. Then

there exists a nonzero polynomial p(x1, x2, . . . , xn) of degree at most

d such that p(ai) = 0 for all i.
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Proof. A general polynomial of degree at most d in variables x1, x2,

. . . , xn can be written as p(x) =
∑

α1+···+αn≤d cα1,...,αn
xα1

1 · · ·xαn
n ,

where the sum is over all n-tuples of nonnegative integers (α1, . . . , αn)

summing to at most d, and the cα1,...,αn
∈ F are coefficients.

We claim that the number of the n-tuples (α1, . . . , αn) as above is(
d+n

n

)
. Indeed, we can think of choosing (α1, . . . , αn) as distributing

d identical balls into n + 1 numbered boxes (the last box is for the

d − α1 − · · · − αn “unused” balls). A simple way of seeing that the

number of distribution is as claimed is to place the d balls in a row,

and then insert n separators among them defining the groups:

So among n + d positions for balls and separators, we choose the n

positions that will be occupied by separators, and the count follows.

A requirement of the form p(a) = 0 translates to a homogeneous

linear equation with the cα1,...,αn
as unknowns. Since N <

(
n+d

d

)
,

we have fewer equations than unknowns, and such a homogeneous

system always has a nonzero solution. So there is a polynomial with

at least one nonzero coefficient. �

Proof of the theorem. We proceed by contradiction, assuming

|K| <
(
q+n−1

n

)
. Then by the lemma, there is a nonzero polynomial p

of degree d ≤ q − 1 vanishing at all points of K.

Let us consider some nonzero u ∈ Fn. Since K is a Kakeya

set, there is a ∈ Fn with a + tu ∈ K for all t ∈ F. Let us define

f(t) := p(a + tu). This is a polynomial in the single variable t of

degree at most d. It vanishes for all the q possible values of t, and

since a univariate polynomial of degree d over a field has at most d

roots, it follows that f(t) is the zero polynomial. In particular, the

coefficient of td in f(t) is 0.

Now let us see what the meaning is of this coefficient in terms of

the original polynomial p: It equals p(u), where p is the homogeneous

part of p, i.e., the polynomial obtained from p by omitting all mono-

mials of degree strictly smaller than d. Clearly, p is also a nonzero

polynomial, for otherwise, the degree of p would be smaller than d.

Hence p(u) = 0, and since u was arbitrary, p is 0 on all of Fn.

But this contradicts the Schwartz–Zippel theorem from Miniature 24,
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which implies that a nonzero polynomial of degree d can vanish on at

most dqn−1 ≤ (q− 1)qn < |Fn| points of Fn. The resulting contradic-

tion proves the theorem. �

Sources. Zero-measure Kakeya sets were constructed in

A. Besicovitch, Sur deux questions d’integrabilite des fonc-
tions, J. Soc. Phys. Math. 2 (1919), 105–123.

After hearing about Kakeya’s needle problem, Besicovitch solved it by
modifying his method, in

A. Besicovitch, On Kakeya’s problem and a similar one,
Math. Zeitschrift 27 (1928), 312–320.

There are several simplifications of Besicovitch’s original construction
(e.g., by Perron and by Schoenberg). A formal proof that the con-
struction shown in the text really works can be found in

T. H. Wolff, Recent work connected with the Kakeya problem,
in H. Rossi (ed.), Prospects in Mathematics, Amer. Math.
Soc., Providence, R.I., 1999, pp. 129–162.

That paper also contains an introduction to Kakeya’s conjecture and
some related results and questions. A different version of the construc-
tion, also with a rather different proof, is reviewed in

A. S. Besicovitch, The Kakeya problem, Amer. Math. Monthly
70 (1963), 697–706.

The proof of the Kakeya conjecture for finite fields is from

Z. Dvir, On the size of Kakeya sets in finite fields, J. Amer.
Math. Soc. 22 (2009), 1093–1097.

(the presentation includes a simple improvement of Dvir’s original
lower bound, noticed independently by Alon and by Tao).
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Counting Compositions

We consider the following algorithmic problem: P is a given set of

permutations of the set {1, 2, . . . , n}, and we would like to compute

the cardinality of the set P ◦P := {σ◦τ : σ, τ ∈ P} of all compositions

of pairs of permutations from P .

We recall that a permutation of {1, 2, . . . , n} is a bijective map-

ping σ : {1, 2, . . . , n} → {1, 2, . . . , n}. For instance, with n = 4, we

may have σ(1) = 3, σ(2) = 2, σ(3) = 4, and σ(4) = 1. It is custom-

ary to write a permutation by listing its values in a row; i.e., for our

example, we write σ = (3, 2, 4, 1). In this way, as an array indexed by

{1, 2, . . . , n}, a permutation can also be stored in a computer.

Permutations are composed as mappings: In order to obtain the

composition ρ := σ ◦ τ of two permutations σ and τ , we first apply τ

and then σ, i.e., ρ(i) = σ(τ(i)). For example, for σ as above and τ =

(2, 3, 4, 1), we have σ ◦ τ = (2, 4, 1, 3), while τ ◦σ = (4, 3, 1, 2) 
= σ ◦ τ .

Using the array representation of permutations, the composition can

be computed in O(n) time.

As an aside, we recall that the set of all permutations of {1, . . . , n}
equipped with the operation of composition forms a group, called the

symmetric group and denoted by Sn. This is an important object

in group theory, both in itself and also because every finite group can

be represented as a subgroup of some Sn. The problem of computing
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|P ◦ P | efficiently is a natural basic question in computational group

theory.

How large can P ◦ P be? One extreme case is when P forms

a subgroup of Sn, and in particular, σ ◦ τ ∈ P for all σ, τ ∈ P—

then |P ◦ P | = |P |. The other extreme is that the compositions are

all distinct, i.e., σ1 ◦ τ1 
= σ2 ◦ τ2 whenever σ1, σ2, τ1, τ2 ∈ P and

(σ1, τ1) 
= (σ2, τ2)—then |P ◦ P | = |P |2.

A straightforward way of computing |P ◦ P | is to compute the

composition σ ◦ τ for every σ, τ ∈ P , obtaining a list of |P |2 per-

mutations, in O(|P |2n) time. On this list, some permutations may

occur several times. A standard algorithmic approach to counting the

number of distinct permutations on such a list is to sort the list lexi-

cographically, and then remove multiplicities by a single pass through

the sorted list. With some ingenuity, the sorting can also be done in

O(|P |2n) time; we will not elaborate on the details since our goal is

to discuss another algorithm.

It is not easy to come up with an asymptotically faster algorithm

(to appreciate this, of course, the reader may want to try for a while).

Yet, by combining tools we have already met in some of the previous

miniatures, we can do better, at least if we are willing to tolerate

some (negligibly small) probability of error.

To develop the faster algorithm, we first relate the composi-

tion of permutations to a scalar product of certain vectors. Let

x1, x2, . . . , xn and y1, y2, . . . , yn be variables. For a permutation σ,

we define the vector x(σ) := (xσ(1), xσ(2), . . . , xσ(n)); e.g., for σ =

(3, 2, 4, 1), we have x(σ) = (x3, x2, x4, x1). Similarly we set y(σ) :=

(yσ(1), . . . , yσ(n)).

Next, we recall that τ−1 denotes the inverse of the permuta-

tion τ , i.e., the unique permutation such that τ−1(τ(i)) = i for all i.

For τ = (2, 3, 4, 1) as above, τ−1 = (4, 1, 2, 3).

Now we look at the scalar product

x(σ)T y(τ−1) = xσ(1)yτ−1(1) + · · ·+ xσ(n)yτ−1(n);

this is a polynomial (of degree 2) in the variables x1, . . . , xn, y1, . . . , yn.

All nonzero coefficients of this polynomial are 1s; for definiteness, let
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us interpret them as integers. For our concrete σ and τ we have

x(σ)T y(τ−1) = x3y4 + x2y1 + x4y2 + x1y3.

The polynomial x(σ)T y(τ−1) as above contains exactly one term

with y1, exactly one term with y2, etc. (since τ−1 is a permutation).

What is the term with y1? We can write it as xσ(k)yτ−1(k), where k is

the index with τ−1(k) = 1; that is, k = τ(1). Therefore, the term

with y1 is xσ(τ(1))y1, and similarly, the term with yi is xσ(τ(i))yi. So,

setting ρ := σ ◦ τ , we can rewrite

x(σ)T y(τ−1) =

n∑
i=1

xρ(i)yi.

This shows that the polynomial x(σ)T y(τ−1) encodes the composition

σ ◦ τ , in the following sense.

Observation. Let σ1, σ2, τ1, τ2 be permutations of {1, 2, . . . , n}. Then

x(σ1)T y(τ−1
1 ) and x(σ2)T y(τ−1

2 ) are equal (as polynomials) if and

only if σ1 ◦ τ1 = σ2 ◦ τ2. �

Let P = {σ1, σ2, . . . , σm} be a set of permutations as in our orig-

inal problem. Let X be the n ×m matrix whose jth column is the

vector x(σj), j = 1, 2, . . . , m, and let Y be the n × m matrix with

y(σ−1
j ) as the jth column. Then the matrix product XT Y has the

polynomial x(σi)
T y(σ−1

j ) at position (i, j). In view of the observation

above, the cardinality of the set P ◦ P equals the number of distinct

entries of XT Y .

It may not be clear why this strange-looking reformulation should

be any easier algorithmically than the original problem of computing

|P ◦ P |. However, the Schwartz–Zippel theorem from Miniature 24

and fast matrix multiplication come to our aid.

Let s := 4m4 (later we will see why it is chosen this way), and

let S := {1, 2, . . . , s}. Our algorithm for computing |P ◦ P | is going

to work as follows:

(1) Choose integers a1, a2, . . . , an and b1, b2, . . . , bn at random;

each ai and each bi are chosen from S uniformly at random,

and all of these choices are independent.

(2) Set up a matrix A, obtained from X by substituting the

integer ai for the variable xi, i = 1, 2, . . . , n. Similarly, B is
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obtained from Y by replacing each yi by bi, i = 1, 2, . . . , n.

Compute the product C := AT B.

(3) Compute the number of distinct entries of C (by sorting),

and output it as the answer.

Lemma. The output of this algorithm is never larger than |P ◦ P |,
and with probability at least 1

2 it equals |P ◦ P |.

Proof. If two entries of XT Y are equal polynomials, then they also

yield equal entries in AT B, and thus the number of distinct entries

of AT B is never larger than |P ◦ P |.
Next, suppose that the entries at positions (i1, j1) and (i2, j2) of

XT Y are distinct polynomials. Then their difference is a nonzero

polynomial p of degree 2. The Schwartz–Zippel theorem tells us that

by substituting independent random elements of S for the variables

into p, we obtain 0 with probability at most 2/|S| = 1/(2m4).

Hence every two given distinct entries of XTY become equal in

AT B with probability at most 1/(2m4). Now XT Y is an m × m

matrix, and thus it definitely cannot have more than m4 pairs of

distinct entries. The probability that any pair of distinct entries of

XT Y becomes equal in AT B is no more than m4/(2m4) = 1
2 . So with

probability at least 1
2 , the number of distinct entries in AT B and in

XT Y are the same, and this proves the lemma. �

The lemma shows that the algorithm works correctly with proba-

bility at least 1
2
. If we run the algorithm k times and take the largest

of the answers, the probability that we do not get |P ◦ P | is at most

2−k.

How fast can the algorithm be implemented? For simplicity, let

us consider only the case m = n, i.e., n permutations of n numbers.

We recall that the straightforward algorithm we outlined first needs

time of order n3.

In the randomized algorithm we have just described, the most

time-consuming step is the computation of the matrix product AT B.

For m = n, A and B are square matrices whose entries are integers

no larger than s = 4n4, and as we mentioned in Miniature 10, such
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matrices can in theory be multiplied in time O(n2.376). This is a

considerable asymptotic gain compared to O(n3).

Source. R. Yuster, Efficient algorithms on sets of permu-
tations, dominance, and real-weighted APSP, Proc. 20th
Annual ACM-SIAM Symposium on Discrete Algorithms,
SIAM, 2009, pp. 950–957.
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Is It Associative?

In mathematics, one often deals with sets equipped with one or sev-

eral binary operations. Familiar examples include groups, fields, and

rings.

Let us now consider a completely arbitrary binary operation

� on a set X . Formally, � is an arbitrary mapping X × X → X .

Less formally, every two elements x, y ∈ X are assigned some element

z ∈ X , and this z is denoted by x � y. Algebraists sometimes study

binary operations at this level of generality; a set X together with a

completely arbitrary binary operation is called a groupoid.

One of the most basic properties of binary operations is associa-

tivity; the operation � is associative if (x � y) � z = x � (y � z)

holds for all x, y, z ∈ X . Practically all binary operations in everyday

mathematics are associative; multiplication of the Cayley octonions

is a honorable exception proving the rule. Once a groupoid is proved

to be associative, its social status is immediately upgraded, and it has

the right to be addressed as a semigroup.

Here we investigate an algorithmic problem, which might be use-

ful to an algebraist studying finite groupoids and semigroups: Is a

given binary operation � on a finite set X associative?

We assume that X has n elements and that � is given by a table

with rows and columns indexed by X , where the entry in row x and
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column y stores the element x � y. For X = {♥,♦,♠,♣}, such a

table may look as follows:

� ♥ ♦ ♠ ♣
♥ ♥ ♥ ♥ ♥
♦ ♥ ♦ ♠ ♣
♠ ♥ ♠ ♥ ♠
♣ ♥ ♣ ♥ ♦

Let us call a triple (x, y, z) ∈ X3 associative if (x � y) � z =

x�(y�z) holds, and nonassociative otherwise. An obvious method

of checking the associativity of � is to test each triple (x, y, z) ∈ X3.

For each triple (x, y, z), we need two lookups in the table to find

(x� y)� z and two more lookups to compute x� (y� z). Hence the

running time of this straightforward algorithm is of order n3.

We will present an ingenious algorithm with much better running

time.

Theorem. There is a probabilistic algorithm that accepts a binary

operation � on an n-element set given by a table, runs for time at

most O(n2), and outputs one of the answers YES or NO. If � is

associative, then the answer is always YES. If � is not associative,

then the answer can be either YES or NO, but YES is output with

probability at most 1
2 .

The probability of an incorrect answer can be made arbitrarily

small by repeating the algorithm sufficiently many times, similar to

the algorithm in Miniature 11.

An obvious randomized algorithm for associativity testing would

be to repeatedly pick a random triple (x, y, z) ∈ X3 and to test its

associativity. But the catch is that the nonassociativity need not

manifest itself on many triples. For example, the operation speci-

fied in the above table has only two nonassociative triples, namely

(♣,♣,♠) and (♣,♠,♣), while there are 43 = 64 triples altogether.

Actually, it is not hard to construct an example of an operation on

an n-element set with a single nonassociative triple for every n ≥ 3.

In such case, even if we test n2 random triples, the chance of detect-

ing nonassociativity is only 1
n

, very far from the constant 1
2

in the

theorem.
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The heart of the better algorithm from the theorem is the fol-

lowing mathematical construction. First we fix a suitable field K.

We want it to have at least 6 elements, and it is also convenient to

assume that the addition and multiplication in K can be done in con-

stant time. Thus, we can take the 7-element field for K (with some

care, though, we could also implement the algorithm with K = R or

with many other fields).

We consider the vector space KX , whose vectors are n-tuples of

numbers from K indexed by the elements of X .

We let e : X → KX be the following mapping: For every x ∈ X ,

e(x) is the vector in KX that has 1 at the position corresponding to

x and 0s elsewhere. Thus e defines a bijective correspondence of X

with the standard basis of KX .

We now come to the key part of the construction: We define a

binary operation � on KX . Informally, it is a linear extension of � to

KX . Two arbitrary vectors u,v ∈ KX can be written in the standard

basis as

u =
∑
x∈X

αxe(x), v =
∑
y∈X

βye(y),

where the coefficients αx and βy are elements of K, uniquely deter-

mined by u and v. To determine u � v, we first “multiply out” the

parentheses:

u � v =

(∑
x∈X

αxe(x)

)
�

(∑
y∈X

βye(y)

)
=

∑
x,y∈X

αxβy(e(x) � e(y)).

Then we replace each e(x) � e(y) with e(x� y), obtaining

(21) u � v =
∑

x,y∈X

αxβye(x� y).

The right-hand side is a linear combination of basis vectors, thus a

well-defined vector of KX , and we take it as the definition of u � v.

Of course, one could define � by stating only (21), but the above

calculation shows how one arrives at this definition starting from the

idea that � should be a linear extension of �.

It is easy to check that if � is associative, then � is associative

as well (we leave this to the reader). On the other hand, if (a, b, c)
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is a nonassociative triple for �, then (e(a), e(b), e(c)) is clearly a

nonassociative triple for �.

However, the key feature of this construction is that there are

many more nonassociative triples for �: Even if � has a single nonas-

sociative triple, � has very many, and we are quite likely to hit one

by a random test, as we will see.

Now we are ready to describe the algorithm for associativity test-

ing. Let us fix a 6-element set S ⊂ K.

(1) For every x ∈ X , choose elements αx, βx, γx ∈ S uniformly

at random, all of these choices independent.

(2) Let us set u :=
∑

x∈X αxe(x), v :=
∑

y∈X βye(y), and w :=∑
z∈X γze(z).

(3) Compute the vectors (u � v) � w and u � (v � w). If they

are equal, answer YES; otherwise, answer NO.

Given two arbitrary vectors u,v ∈ KX , the vector u � v can be

computed, following the definition (21), using O(n2) lookups in the

table of the operation � and O(n2) operations in the field K. If we

assume that each operation in K takes constant time, it is clear that

the algorithm can be executed in time O(n2).

Since � is associative for an associative �, it is also clear that

algorithm always answers YES for an associative operation. For es-

tablishing the theorem, it is now sufficient to prove the following

claim.

Claim. If � is not associative and u,v,w are chosen randomly as

in the algorithm, then (u � v) � w 
= u � (v � w) with probability at

least 1
2 .

Proof. Let us fix a nonassociative triple (a, b, c) ∈ X3. Let us con-

sider the random choice of the αx, βy, γz ∈ S in the algorithm, and

let us imagine that αa, βb, and γc are chosen last, after all of the

other αx, βy, γz have already been fixed. We will actually show that

if we fix all αx, βy, γz, x 
= a, y 
= b, z 
= c to completely arbitrary

values and then choose αa, βb, and γc at random, the probability of

(u � v) � w 
= u � (v � w) is at least 1
2
.
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To this end, we show that with probability at least 1
2 , these vec-

tors differ in the component indexed by the element r := (a� b)� c,

i.e., ((u � v) � w)r 
= (u � (v � w))r . To emphasize that we treat

αa, βb, and γc as (random) variables, while all the other αx, βy, γz

are considered constant, we write f(αa, βb, γc) := ((u � v) � w)r,

g(αa, βb, γc) := (u � (v � w))r .

Using the definition of �, we obtain

f(αa, βb, γc) =
∑

x,y,z∈X,(x�y)�z=r

αxβyγz.

Thus, f(αa, βb, γc) is a polynomial in αa, βb, γc of degree at most 3.

Since (a� b)� c = r, the monomial αaβbγc appears with coefficient 1

(and thus the degree equals 3).

Similarly, we have

g(αa, βb, γc) =
∑

x,y,z∈X,x�(y�z)=r

αxβyγz .

But now a � (b � c) 
= r since (a, b, c) is a nonassociative triple, and

thus the coefficient of αaβbγc in g(αa, βb, γc) is 0.

Now we can use the services of our reliable ally, the Schwartz–

Zippel theorem from Miniature 24: The difference f(αa, βb, γc) −
g(αa, βb, γc) is a nonzero polynomial of degree 3, and so the prob-

ability that substituting independent random elements of S for the

variables αa, βb, γc yields value 0 is at most 3/|S| = 1
2 . Hence, for

random αa, βb, γc we have f(αa, βb, γc) 
= g(αa, βb, γc) with probabil-

ity at least 1
2 . This finishes the proof of the claim and also of the

theorem. �

Source. S. Rajagopalan and L. Schulman, Verification of
Identities, SIAM J. Computing 29,4 (2000), 1155–1163.
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The Secret Agent and
the Umbrella

A secret government agent in a desert training camp of a terrorist

group has very limited possibilities of sending messages. He has five

scarves: red, beige, green, blue, and purple, and he wears one of them

with his uniform every day. The analysts at the headquarters then

determine the color of his scarf from a satellite photography.

But since the scarves are not really clean, it turned out that cer-

tain pairs of colors cannot be distinguished reliably. The possibilities

of confusion are shown in the next picture:

red green

bluepurple

beige

For example, one cannot reliably tell purple from blue nor from red,

but there is no danger of confusing purple with beige or green.

131
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In order to transmit reliably, the agent can, for example, use

only the blue and red scarves, and thereby send one of two possible

messages every day—one bit in the computer science language. He

can communicate one of 2k possible messages in k days.

Among every three scarves there are some two that can be con-

fused, and so it may seem that there is no chance to send more than

one bit per day. But there is a better way! In two successive days,

the agent can send one of five messages, e.g., as follows:

the first day the second day

message 1 red red

message 2 beige green

message 3 green purple

message 4 blue beige

message 5 purple blue

Indeed, there is no chance of mistaking any of these two-day combi-

nations for another, as the reader can easily check. So the agent can

transmit one of 5k/2 =
√

5
k

possible messages in k days (for k even),

and the efficiency per day has increased from 2 to
√

5.

Can the efficiency be increased further using three-day or ten-

day combinations, say? This is a difficult mathematical problem.

The answer is no, and the following masterpiece is the only known

proof.

First we formulate the problem in mathematical terms (and gen-

eralize it). We consider some alphabet S; in our case S consists of

the five possible colors of the scarf. Some pairs of symbols of S can be

confused (in other words, are interchangeable), and this is expressed

by a graph G = (S, E), where the interchangeable pairs of symbols

of S are connected by edges. For the situation with five scarves, the

graph is drawn in the picture on the preceding page, and it is a cycle

of length 5, i.e., C5.

Let us consider two messages of length k: a message a1a2 · · · ak

and a message b1b2 · · · bk. In the terminology of coding theory, these

are the words of length k over the alphabet S; see Miniature 5. These

messages are interchangeable if and only if ai is interchangeable with

bi (meaning that ai = bi or {ai, bi} ∈ E) for every i = 1, 2, . . . , k.
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Let αk(G) be the maximum size of a set of messages of length k

with no interchangeable pair. In particular, α1(G) is the maximum

size of an independent set in G, i.e., a subset of vertices in which

no pair is connected by an edge. This quantity is usually denoted by

α(G). For our example, we have α1(C5) = α(C5) = 2. Our table

proves that α2(C5) ≥ 5, and actually equality holds—the inequality

α2(C5) ≤ 5 is a very special case of the result we are about to prove.

The Shannon capacity of a graph G is defined as follows:

Θ(G) := sup
{

αk(G)1/k : k = 1, 2, . . .
}

.

It represents the maximum possible efficiency of message transmission

per symbol. For a sufficiently large k, the agent can send one from

approximately Θ(C5)k possible messages in k days, and not more.

We prove the following:

Theorem. Θ(C5) =
√

5.

First we observe that αk(G) can be expressed as the maximum

size of an independent set of a suitable graph. The vertex set of

this graph is Sk, meaning that the vertices are all possible messages

(words) of the length k, and two vertices a1a2 · · ·ak and b1b2 · · · bk

are connected by an edge if they are interchangeable. We denote this

graph by Gk, and we call it the strong product of k copies of G.

The strong product H ·H ′ of two arbitrary graphs H and H ′ is

defined as follows:

V (H ·H ′) = V (H)× V (H ′),

E(H ·H ′) = {{(u, u′), (v, v′)} : (u = v or {u, v} ∈ E(H))

and at the same time

(u′ = v′ or {u′, v′} ∈ E(H ′))}.
For bounding Θ(C5), we thus need to bound above the maximum size

of an independent set in each of the graphs Ck
5 .

We are going to establish two general results relating independent

sets in graphs to certain systems of vectors. Let H = (V, E) be an

arbitrary graph. An orthogonal representation of H is a mapping

ρ : V → Rn, for some n, that assigns a unit vector ρ(v) to every vertex

v ∈ V (H) (i.e., ‖ρ(v)‖ = 1), such that the following holds:
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If two distinct vertices u, v are not connected by an

edge, then the corresponding vectors are orthogonal.

In symbols, {u, v} 
∈ E implies 〈ρ(u), ρ(v)〉 = 0.

(We use 〈., .〉 for the standard scalar product in Rn.)

To prove our main theorem, we will need an interesting orthogo-

nal representation ρLU of the graph C5 in R3, the “Lovász umbrella”.

Let us imagine a folded umbrella with five ribs, of unit length, whose

tube is the vector e1 = (1, 0, 0). Now we slowly open the umbrella

until all pairs of nonneighboring ribs become orthogonal:

e1

At this moment, the ribs define unit vectors v1,v2, . . . ,v5. By as-

signing the vector vi to the ith vertex of the graph C5, we get an

orthogonal representation ρLU. A simple calculation yields the open-

ing angle of the umbrella: we obtain 〈vi, e1〉 = 5−1/4, which we will

soon need.

Every orthogonal representation of a graph G provides an upper

bound on α(G):

Lemma A. If H is a graph and ρ is an orthogonal representation of

H, then α(H) ≤ ϑ(H, ρ), where

ϑ(H, ρ) := max
v∈V (H)

1

〈ρ(v), e1〉2
.

Proof. Producing an orthogonal representation ρ with ϑ(H, ρ) min-

imum has the following geometric meaning: We want to pack all the
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unit vectors ρ(v) into a spherical cap centered at e1 and with the

smallest possible radius.

The vectors resist such a packing since pairs corresponding to

nonedges must be orthogonal. In particular, the vectors correspond-

ing to an independent set in H form an orthonormal system, and for

such a system the minimum cap radius can be calculated exactly.

For a formal proof we need to know that for an arbitrary orthonor-

mal system of vectors (v1,v2, . . . ,vm) in some Rn and an arbitrary

vector u, we have
m∑

i=1

〈vi,u〉2 ≤ ‖u‖2.

Indeed, the given system (v1,v2, . . . ,vm) can be extended to an or-

thonormal basis (v1,v2, . . . ,vn) of Rn, by adding n−m other suitable

vectors (vm+1,vm+2, . . . ,vn). The ith coordinate of u with respect

to this basis is 〈vi,u〉, and we have ‖u‖2 =
∑n

i=1〈vi,u〉2 by the

Pythagorean theorem. The required inequality is obtained by omit-

ting the last n−m terms on the right-hand side.

Now if I ⊆ V (H) is an independent set in H , then, as noted

above, the vectors ρ(v) with v ∈ I form an orthonormal system, and

so ∑
v∈I

〈ρ(v), e1〉2 ≤ ‖e1‖2 = 1.

Hence there exists v∈I with 〈ρ(v), e1〉2≤ 1
|I| , and thus ϑ(H, ρ) ≥|I|.

�

The lemma together with the Lovász umbrella gives

α(C5) ≤ ϑ(C5, ρLU) =
√

5.

This is not (yet) an earth-shattering result, since everyone knows that

α(C5) = 2. We need to complement this with the following lemma,

showing that orthogonal representations behave well with respect to

the strong product.

Lemma B. Let H1, H2 be graphs, and let ρi be an orthogonal rep-

resentation of Hi, i = 1, 2. Then there is an orthogonal represen-

tation ρ of the strong product H1 · H2 such that ϑ(H1 · H2, ρ) =

ϑ(H1, ρ1) · ϑ(H2, ρ2).
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Applying Lemma B inductively to the strong product of k copies

of C5, we obtain

α(Ck
5 ) ≤ ϑ(C5, ρLU)k =

√
5

k
,

which proves that Θ(C5) ≤
√

5 and thus yields the theorem.

Proof of Lemma B. We recall the operation of the tensor prod-

uct, already used in Miniature 18. The tensor product of two vectors

x ∈ Rm and y ∈ Rn is a vector in Rmn, denoted by x ⊗ y, with

coordinates corresponding to all products xiyj for i = 1, 2, . . . , m and

j = 1, 2, . . . , n. For example, for x = (x1, x2, x3) and y = (y1, y2), we

have

x⊗ y = (x1y1, x2y1, x3y1, x1y2, x2y2, x3y2) ∈ R6.

We need the following fact, whose routine proof is left to the

reader:

(22) 〈x⊗ y,x′ ⊗ y′〉 = 〈x,x′〉 · 〈y,y′〉
for arbitrary x,x′ ∈ Rm, y,y′ ∈ Rn.

Now we can define an orthogonal representation ρ of the strong

product H1 · H2 as in the lemma. The vertices of H1 · H2 are pairs

(v1, v2), v1 ∈ H1, v2 ∈ H2. We put

ρ((v1, v2)) := ρ1(v1)⊗ ρ2(v2).

Using (22) we can easily verify that ρ is an orthogonal representation

of H1 ·H2, and the equality ϑ(H1 ·H2, ρ) = ϑ(H1, ρ1)·ϑ(H2, ρ2) follows

as well. This completes the proof of Lemma B. �

Remarks. The quantity

ϑ(G) = inf{ϑ(G, ρ) : ρ an orthogonal representation of G}
is called the Lovász theta function of the graph G. As we have

seen, it gives an upper bound for α(G), the independence number of

the graph. It is not hard to prove that it also provides a lower bound

on the chromatic number of the complement of the graph G, or

in other words, the minimum number of complete subgraphs needed

to cover G. Computing the independence number or the chromatic

number of a given graph is algorithmically hard (NP-complete), but
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surprisingly, ϑ(G) can be computed in polynomial time (more pre-

cisely, approximated with arbitrary required precision). Because of

this and several other remarkable properties, the theta function is

very important.

The Shannon capacity of a graph is a much harder nut to crack.No

algorithm at all, polynomial or not, is known for computing or ap-

proximating it. And we need not go far for an unsolved case—Θ(C7)

is not known! If the agent had seven scarves, nobody can tell him the

best way of transmitting.

Source. L. Lovász, On the Shannon capacity of a graph, IEEE
Trans. Inform. Th. IT-25 (1979), 1–7.
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Shannon Capacity
of the Union:
A Tale of Two Fields

Here we continue with the topic of Miniature 28: the Shannon capac-

ity of a graph. However, for convenience, we will repeat the relevant

definitions. Reading the beginning of Miniature 28 may still be useful

for understanding the motivation of the Shannon capacity.

We first recall that if G is a graph, then α(G) denotes the max-

imum possible size of an independent set in G, that is, of a set

I ⊆ V (G) such that no two vertices of I are connected by an edge

in G. The strong product H · H ′ of graphs H and H ′ has ver-

tex set V (H) × V (H ′), and two vertices in this vertex set, which we

can write as (u, u′) and (v, v′), are connected by an edge if u = v or

{u, v} ∈ E(H), and at the same time, u′ = v′ or {u′, v′} ∈ E(H ′).

The Shannon capacity of a graph G is denoted by Θ(G) and

defined by

Θ(G) := sup
{
α(Gk)1/k : k = 1, 2, . . .

}
,

where Gk stands for the strong product of k copies of G.

The Shannon capacity is quite important in coding theory and

graph theorists have been studying it with great interest for a long

139
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time, but it remains one of the most mysterious graph parameters.

The aim of this section is to prove a surprising result concerning the

behavior of the Shannon capacity with respect to the operation of

disjoint union of graphs.

Informally, the disjoint union of graphs G and H , denoted by

G + H , is the graph obtained by putting G and H “side by side”.

A formal definition of the disjoint union is easy if the vertex sets

V (G) and V (H) are disjoint; then we can simply set V (G + H) :=

V (G) ∪ V (H) and E(G + H) := E(G) ∪ E(H). However, in general

G and H may happen to have some vertices in common, or their

vertex sets may even coincide. Then we first have to construct an

isomorphic copy H ′ of H such that V (G) ∩ V (H ′) = ∅, and then we

put

V (G + H) := V (G) ∪ V (H ′), E(G + H) := E(G) ∪ E(H ′).

(In this way the graph G + H is defined only up to isomorphism, but

this is just fine for our purposes.)

It is a nice and not entirely trivial exercise, which we do not even

urge the reader to undertake, to prove that

(23) Θ(G + H) ≥ Θ(G) + Θ(H)

for every two graphs G and H .

In the coding-theoretic interpretation from Miniature 28, Θ(G)

is the number of distinguishable messages “per symbol” that can be

sent using (arbitrarily long) messages composed of symbols from the

alphabet V (G), and similarly for Θ(H). Then the inequality (23) tells

us that if no symbol from the alphabet V (G) can ever be confused

with a symbol from V (H), and if we are allowed to send messages

composed of symbols from V (G) and from V (H), then the number

of distinguishable messages per symbol is at least Θ(G) + Θ(H). The

reader will probably agree that this sounds quite plausible, if not

intuitively obvious.

However, it may seem equally plausible, or intuitively obvious,

that (23) should always hold with equality (and this was conjectured

by Shannon). But it has turned out to be false, and this is the result

we have announced above as surprising.
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Theorem. There exist graphs G and H such that Θ(G+H) > Θ(G)+

Θ(H).

For the proof, we will introduce two tools: the first will be used

for bounding Θ(G + H) from below, and the second for bounding

Θ(G) and Θ(H) from above. The first tool is the following simple

lemma.

Lemma. Let G be a graph on m vertices, and let G denote the com-

plement of G, i.e., the graph on the vertex set V (G) in which two dis-

tinct vertices u, v are adjacent exactly if they are not adjacent in G.

Then

Θ(G + G) ≥
√

2m.

Proof of the lemma. By the definition of the Shannon capacity, it

suffices to find an independent set of size 2m in the strong product

(G + G)2.

Let v1, v2, . . . , vm be the vertices of G and let v′1, v
′
2, . . . , v

′
m be

the vertices of the isomorphic copy of G used in forming the dis-

joint union G + G. We set I := {(v1, v
′
1), (v2, v

′
2), . . . , (vm, v′m)} ∪

{(v′1, v1), (v′2, v2), . . . , (v′m, vm)}. Then I is independent in (G + G)2.

Indeed, (vi, v
′
i) is not adjacent to (v′j , vj) since vi and v′j are nonadja-

cent in G + G, and (vi, v
′
i) and (vj , v

′
j), i 
= j, are not adjacent since

either vi and vj are not adjacent in G or v′i and v′j are not adjacent

in (the isomorphic copy of) G. The lemma is proved. �

Functional representations. The second tool, which will be used

for bounding Θ(.) from above, is algebraic. Let K be a field (such

as R, Q, or F2), and let G = (V, E) be a graph. A functional

representation F of G over K consists of the following:

• A ground set X (an arbitrary set, not necessarily related to

G or K in any way),

• an element cv ∈ X for every vertex v ∈ V , and

• a function fv : X → K for every vertex v ∈ V .

These objects have to satisfy

(i) fv(cv) 
= 0 for every v ∈ V , and
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(ii) if u, v are distinct and nonadjacent vertices of G, then fu(cv) =

0. (If u and v are adjacent, then fu(cv) can be anything.)

We write F = (X, (cv, fv)v∈V ). (An orthogonal representation of G,

as defined in Miniature 28, can also be interpreted as a functional

representation of G in a natural way, as the reader may want to

check.)

The dimension dimF of a functional representation F is the

dimension of the subspace generated by all the functions fv, v ∈ V ,

in the vector space KX of all functions X → K. (As usual, the

functions are added pointwise, (f +g)(x) = f(x)+g(x), and similarly

for multiplication by elements of K.)

Proposition. If G has a functional representation of dimension d

over some field K, then Θ(G) ≤ d.

The proof of this proposition follows immediately from the defi-

nition of the Shannon capacity and the next two claims.

Claim A. If G has a functional representation F = (X, (cv, fv)v∈V )

over some field K, then α(G) ≤ dimF .

Claim B. Suppose that a graph G = (V, E) has a functional repre-

sentation F over some field K and that G′ = (V ′, E′) has a func-

tional representation F ′ over the same K. Then the strong product

G · G′ has a functional representation over K of dimension at most

(dimF)(dimF ′).

Proof of Claim A. It suffices to show that whenever I ⊆ V (G) is

an independent set, the functions fv, v ∈ I, are linearly independent.

This is done in a fairly standard way. We suppose that

(24)
∑
v∈I

tvfv = 0

for some scalars tv, v ∈ I (the 0 on the right-hand side is the function

assigning 0 to every x ∈ X). We fix u ∈ V and evaluate the left-hand

side of (24) at cu. Since no two distinct u, v ∈ I are connected by an

edge, we have fv(cu) = 0 for v 
= u, and we obtain
∑

v∈I αvfv(cu) =

αufu(cu). Since fu(cu) 
= 0, we have tu = 0, and since u was arbitrary,

the fv are linearly independent as claimed. �
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Proof of Claim B. We are going to define a functional represen-

tation G of G · G′ in a quite natural way (it can be regarded as a

tensor product of F and F ′). Let F = (X, (cv, fv)v∈V ) and F ′ =

(X ′, (c′v′ , f ′
v′)v′∈V ′). The ground set of G is X×X ′. A vertex of G ·G′

has the form (v, v′) ∈ V ×V ′, and we complete the definition of G by

setting

c(v,v′) = (cv, c′v′) ∈ X ×X ′ f(v,v′) := fv ⊗ f ′
v′ ,

where fv ⊗ f ′
v′ stands for the function X ×X ′ → K defined by fv ⊗

f ′
v′(x, x′) := fv(x)f ′

v′ (x′). It is straightforward to check that this G
indeed satisfies the axioms (i) and (ii) of a functional representation

(and we leave it to the reader).

It remains to verify dimG ≤ (dimF)(dimF ′), which is equally

straightforward: If all the fv are linear combinations of some basis

functions b1, . . . , bd, and the f ′
v′ are linear combinations of b′1, . . . , b

′
d′,

then it is almost obvious that each fv ⊗ f ′
v′ is a linear combination of

functions of the form bi ⊗ b′j , i = 1, 2, . . . , d, j = 1, 2, . . . , d′. (It can

be checked that dimG actually equals (dimF)(dimF ′).) �

Proof of the theorem. It remains to exhibit suitable graphs G and

H and apply the tools above. Several constructions are known, and

some of them show that Θ(G + H) can actually be much larger than

Θ(G) + Θ(H). Here, for simplicity, we present only a single very

concrete construction, for which Θ(G+H) is only “somewhat larger”

than Θ(G) + Θ(H).

We let s be an integer parameter; later on we will calculate that

for proving the theorem it suffices to set s = 16. The vertices of G

are all 3-element subsets of the set {1, 2, . . . , s}, and two such vertices

A and B are connected by an edge of G if |A∩B| = 1. (Graphs of this

kind, where the vertices are sets and the edges are defined based on

the cardinality of the intersection, serve as very interesting examples

for many graph-theoretic questions.)

The graph H is the complement G of G.

First of all, G has
(

s
3

)
vertices, and so Θ(G + G) ≥

√
2
(

s
3

)
by the

lemma.
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Now we define suitable functional representations. For G, we

use the field F2, and we let the ground set X be Fs
2, so that its ele-

ments are s-component vectors of 0s and 1s. For a vertex (3-element

set) A ∈ V (H), we let cA be the characteristic vector of A; that is,

(cA)i = 1 for i ∈ A and (cA)i = 0 for i 
∈ A. Finally, the func-

tion fA : Fs
2 → F2 is given by fA(x) =

∑
i∈A xi (addition in F2, i.e.,

modulo 2).

To see that this is indeed a functional representation of G, we

observe that fA(cB) equals |A∩B| modulo 2. In particular, fA(cA) =

1 
= 0. Now if A 
= B are not adjacent in G, then |A ∩ B| can be 2

or 0, and so fA(cB) = 0 in this case.

The dimension of this functional representation is at most s, since

each fA is a linear combination of the coordinate functions x �→ xi.

Therefore, Θ(G) ≤ s.

For G we use a very similar functional representation, but over

a different field, say R (or any other field of characteristic distinct

from 2). Namely, we let X ′ := Rs, c′A is again the characteristic vector

of A (interpreted as a real vector this time), and we set f ′
A(x) :=(∑

i∈A xi

) − 1. Now f ′
A(c′B) = |A ∩ B| − 1, and so f ′

A(c′A) = 2 
=
0, while for A 
= B nonadjacent in G, we have |A ∩ B| = 1 and

f ′
A(c′B) = 0, as needed. The dimension is at most s + 1 this time (in

addition to the coordinate functions x �→ xi we also need the constant

function −1 in the basis), and so Θ(G) ≤ s + 1.

The proof of the theorem is finished by choosing s sufficiently

large so that

√
2
(

s
3

)
> 2s+1. A numerical calculation shows that the

smallest suitable s is 16. Then the graphs G and G have 560 vertices

each. �

Remark. It is interesting to compare the functional representations

treated here with the orthogonal representations discussed in Minia-

ture 28. These notions, and the proofs that they both yield upper

bounds for Θ(G), are basically similar. However, functional represen-

tations can yield only bounds that are integers, and thus they cannot

establish, e.g., that Θ(C5) ≤
√

5. On the other hand, orthogonal

representations do not appear suitable for the proof in the present
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section, since the use of two different fields in it is essential, as we will

illustrate next.

Indeed, reasoning similar to that in the proof of the lemma shows

that α(G ·G) ≥ m for every m-vertex graph G. Thus, if F is a func-

tional representation of G and F ′ is a functional representation of G

over the same field, we have (dimF)(dimF ′) ≥ m by Claims A and B.

Consequently, dimF+dimF ′ ≥ 2
√

m (by the inequality between the

arithmetic and geometric means), and thus functional representations

over the same field can never give an upper bound for Θ(G) + Θ(G)

smaller than
√

2m, which is what the lemma yields for Θ(G + G).

Source. N. Alon, The Shannon capacity of a union, Combina-
torica 18 (1998), 301–310.

Our presentation achieves a weaker result and is slightly simpler.
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Equilateral Sets

An equilateral set in Rd is a set of points p1,p2, . . . ,pn such that

all pairs pi,pj of distinct points have the same distance.

Intentionally, we have not said what distance we mean. This

will play a key role in this section. If one considers the most usual

Euclidean distance, then it is not too hard to prove that an equilateral

set in Rd can have d + 1 points but no more.

As an aside, let us sketch the classical proof that there cannot be

more than d + 1 points; it proceeds in a way very similar to Minia-

ture 6: Let the points be p1 through pn+1, translate them so that

pn+1 = 0, rescale so that the interpoint distances are 1, and set up

the matrix (the Gram matrix) G with gij = 〈pi,pj〉 (scalar product).

Using the equilaterality condition, one calculates that G = 1
2 (In+Jn),

where In is the identity matrix and Jn is the all 1s matrix, and thus

rank(G) = n. On the other hand, we have G = PT P , where P is

the d × n matrix with the vector pi as the ith column, and thus

rank(G) ≤ d, which gives n ≤ d.

(And, by the way, how do we prove rigorously that a (d+1)-point

equilateral set is possible? We can take, e.g., the vectors e1, e2, . . . , ed

of the standard basis plus the point (−t,−t, . . . ,−t) for a suitable

t > 0—even if we are too lazy to calculate the right t, it is easy to see

its existence by a continuity argument.)

147
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Other kinds of distance. Equilateral sets become much more puz-

zling if one considers other notions of distance in Rd.

First, as a cautionary tale, let us consider the �∞ (“el infinity”)

distance, where the distance of two points x,y ∈ Rd is defined as

‖x− y‖∞ = max{|xi − yi| : i = 1, 2, . . . , d}. Then the “cube” {0, 1}d

is an equilateral set with as many as 2d points! (Which turns out to

be the largest possible example in Rd with the �∞ distance, but this

is not the story we want to narrate here.)

The distance we really want to focus on here is the �1 distance,

given by

‖x− y‖1 = |x1 − y1|+ |x2 − y2|+ · · ·+ |xd − yd|.

Then the following is an example of an equilateral set with 2d points:

{e1,−e1, e2,−e2, . . . , ed,−ed}. A widely believed conjecture states

that this is as many as one can ever get, but until about 2001, no

upper bound better than 2d − 1 (exponential!) was known.

We will present an ingenious proof of a polynomial upper bound,

O(d4). The proof of the current best bound, O(d log d), uses a number

of additional ideas and it is considerably more technical.

Theorem. For every d ≥ 1, no equilateral set in Rd with the �1

distance has more than 100d4 points.

The forthcoming proof has an interesting twist: In order to es-

tablish a bound on exactly equilateral sets for the “unpleasant” �1

distance, we use sets that are approximately equilateral for the “pleas-

ant” Euclidean distance. Here is a tool for such a passage.

Lemma (On approximate embedding). For every two natural num-

bers d, q there exists a mapping fd,q : [0, 1]d → Rdq such that for every

x,y ∈ [0, 1]d

‖x− y‖1 − 2d
q ≤ 1

q ‖fd,q(x)− fd,q(y)‖2 ≤ ‖x− y‖1 + 2d
q .

Let us stress that we take squared Euclidean distances in the

target space. If we wanted instead that the �1 distance ‖x − y‖1 be

reasonably close to the Euclidean distance of the images for all x,y,

the task becomes impossible.
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Our proof of the lemma is somewhat simple minded. By more

sophisticated methods one can reduce the dimension of the target

space considerably (which yields an improvement of the d4 bound in

the theorem).

Proof of the lemma. First we consider the case d = 1. For x ∈
[0, 1], we define f1,q(x) as the q-component zero/one vector start-

ing with a segment of �qx� ones, followed by q − �qx� zeros. Then

‖f1,q(x) − f1,q(y)‖2 is the number of position where one of f1,q(x),

f1,q(y) has 1 and the other 0, and thus it equals

∣∣∣�qx� − �qy�∣∣∣. This

differs from q|x − y| by at most 2, and we are done with the d = 1

case.

For larger d, fd,1(x) is defined as the dq-component vector ob-

tained by concatenating f1,q(x1), f1,q(x2),. . . , f1,q(xd). The error

bound is obvious using the one-dimensional case. �

Approximately equilateral sets. If we start with an equilateral

set in Rd with the �1 distance, the above lemma (with properly cho-

sen parameters) gives us an approximately equilateral set in some

higher-dimensional Euclidean space. We will now show that such ap-

proximately equilateral sets cannot be too large; this is where linear

algebra enters the stage. The proof relies on the following result of

independent interest.

Rank Lemma. Let A be a real symmetric n×n matrix, not equal to

the zero matrix. Then

rank(A) ≥
(∑n

i=1 aii

)2∑n
i,j=1 a2

ij

.

Proof. Linear algebra teaches us that A as in the lemma has n real

eigenvalues λ1, λ2, . . . , λn. If rank(A) = r, then exactly r of the λi

are nonzero; we may suppose that λi 
= 0 for 1 ≤ i ≤ r, while λi = 0

for i > r.

Let us write down the Cauchy–Schwarz inequality (
∑r

i=1 xiyi)
2 ≤

(
∑r

i=1 x2
i )(

∑r
i=1 y2

i ) for xi = λi, yi = 1. We obtain (
∑r

i=1 λi)
2 ≤

r
∑r

i=1 λ2
i . Dividing by

∑r
i=1 λ2

i yields the following inequality for
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the rank in terms of eigenvalues:

(25) rank(A) ≥
(∑n

i=1 λi

)2∑n
i=1 λ2

i

.

(We have extended the summation all the way to n, since λr+1 through

λn are 0s.)

The last inequality can be converted to the inequality in the Rank

Lemma in three easy steps: First, the sum of all eigenvalues of A

equals the trace of A, i.e.
∑n

i=1 λi =
∑n

i=1 aii (a standard linear

algebra fact). This takes care of the numerator in (25). Second, the

eigenvalues of A2 are λ2
1, . . . , λ

2
n, as one can recall or immediately

check, and thus
∑n

i=1 λ2
i = trace(A2). Third, trace(A2) =

∑n
i,j=1 a2

ij ,

as one easily calculates. This brings the denominator into the desired

form. �

Corollary. Let A be a symmetric n × n matrix with aii = 1, i =

1, 2, . . . , n, and |aij | ≤ 1/
√

n for all i 
= j. Then rank(A) ≥ n
2
. �

Proposition (On approximately equilateral sets). Let p1,p2, . . . ,pn∈
Rd be points such that for every i 
= j we have

1− 1√
n
≤ ‖pi − pj‖2 ≤ 1 +

1√
n

.

Then n ≤ 2(d + 2). (Note that, for technical convenience, we bound

the squared Euclidean distances.)

Proof. Let A be the n×n matrix with aij = 1 − ‖pi − pj‖2. The

assumptions of the proposition immediately give that A meets the

assumptions of the above corollary, and thus rank(A) ≥ n
2

.

It remains to bound rank(A) from above in terms of d. Here we

proceed as in Miniature 15. For i = 1, 2, . . . , n let fi : Rd → R be

the function defined by fi(x) = 1− ‖x− pi‖2; so the ith row of A is(
fi(p1), fi(p2), . . . , fi(pn)

)
.

We rewrite fi(x) = 1−‖x‖2−‖pi‖2+2(pi1x1+pi2x2+· · ·+pidxd),

where pik is the kth coordinate of pi. Then it becomes clear that each

fi is a linear combination of the following d+2 functions: the constant

function 1, the function x �→ ‖x‖2, and the “coordinate functions”

x �→ xk, k = 1, 2, . . . , d. Hence the vector space generated by the fi
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has dimension at most d+2, and so has the column space of A. Thus

rank(A) ≤ d + 2, and the proposition is proved. �

Proof of the theorem. For contradiction, let us assume that there

exists an equilateral set in Rd with the �1 distance that has at least

100d4 points. After possibly discarding some points, we may assume

that it has exactly n := 100d4 points.

We rescale the set so that the interpoint distances become 1
2 , and

we translate it so that one of the points is (1
2
, 1

2
, . . . , 1

2
). Then the set

is fully contained in [0, 1]d.

We use the lemma on approximate embedding with q := 40d3.

Applying the mapping fd,q to our set, we obtain an n-point set in

Rdq, for which the squared Euclidean distance of every two points

is between q
2 − 2d and q

2 + 2d. After rescaling by
√

2/q, we get

an approximately equilateral set with squared Euclidean interpoint

distances between 1 − 4d
q and 1 + 4d

q . We have 4d
q = 1

10d2 = 1√
n

,

and thus the proposition on approximately equilateral sets applies

and shows that n ≤ 2(dq + 2). But this is a contradiction, since

n = 100d4, while 2(dq + 2) = 2(40d4 + 2) < 100d4. The theorem is

proved. �

Source. N. Alon and P. Pudlák, Equilateral sets in lnp , Geo-
metric and Functional Analysis 13 (2003), 467–482.

Our presentation via an approximate embedding is slightly different.
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Cutting Cheaply Using
Eigenvectors

In many practical applications, we are given a large graph G and we

want to cut off a piece of the vertex set by removing as few edges as

possible. For a large piece we can afford to remove more edges than

for a small one, as the next picture schematically indicates.

We can imagine that removing an edge costs one unit, and we want

to cut off some vertices, at most half of all vertices, at the smallest

possible price per vertex.

This problem is closely related to the divide and conquer para-

digm in algorithm design. For example, in areas like computer graph-

ics, computer-aided design, or medical image processing, we may have

a two-dimensional surface represented by a triangular mesh:

153
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For various computations we often need to divide a large mesh into

smaller parts that are interconnected as little as possible.

Or more abstractly, the vertices of the graph G may correspond

to some objects, edges may express dependences or interactions, and

again we would like to partition the problem into smaller subproblems

with few mutual interactions.

Sparsest cut. Let us state the problem more formally. Let G be a

given graph with vertex set V , |V | = n, and edge set E. Let us call a

partition of V into two subsets A and V \A, with both A and V \A

nonempty, a cut, and let E(A, V \A) stand for the set of all edges in

G connecting a vertex of A to a vertex of V \A.

The “price per vertex” for cutting of A, alluded to above, can be

defined as Φ(A, V \ A) := |E(A, V \ A)|/|A|, assuming |A| ≤ n
2

. We

will work with a different but closely related quantity: We define the

density of the cut (A, V \A) as

φ(A, V \A) := n · |E(A, V \A)|
|A| · |V \A|

(this is n times the ratio of the number of edges connecting A and

V \ A in G and in the complete graph on V ). Since |A| · |V \ A|
is between 1

2n|A| and n|A| (again with |A| ≤ n
2 ), we always have

Φ(A, V \A) ≤ φ(A, V \A) ≤ 2Φ(A, V \A). So it does not make much

of a difference if we look for a cut minimizing Φ or one minimizing φ,

and we will stick to the latter.

Thus, let φG denote the smallest possible density of a cut in G.

We would like to compute a sparsest cut, i.e., a cut of density φG.
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This problem is known to be computationally difficult (NP-com-

plete), and various approximation algorithms have been proposed for

it. One such algorithm, or rather a class of algorithms, called spectral

partitioning, is based on eigenvectors of a certain matrix associated

with the graph. It is widely and successfully used in practice, and

thanks to modern methods for computing eigenvalues, it is also quite

fast even for large graphs.

Before we proceed with formulating the algorithm, a remark is

in order. In some applications, a sparsest cut is not really what we

are interested in—we want a sparse cut that is also approximately

balanced, i.e., it cuts off at least 1
3 of all vertices (say). To this end,

we can use a sparsest cut algorithm iteratively: We cut off pieces,

possibly small ones, repeatedly until we have accumulated at least
1
3 of all vertices. It can be shown that with a good sparsest cut

algorithm this strategy leads to a good approximately balanced cut.

We will not elaborate on the details, since this would distract us from

the main topic.

Now we can begin with preparations for the algorithm.

The Laplace matrix. For notational convenience let us assume that

the vertices of G are numbered 1, 2, . . . , n. We define the Laplace

matrix L of G (also used in Miniature 21) as the n×n matrix with

entries �ij given by

�ij :=

⎧⎨
⎩

deg(i) if i = j,

−1 if {i, j} ∈ E(G),

0 otherwise,

where deg(i) is the number of neighbors (degree) of i in G.

We will need the following identity: For every x ∈ Rn,

(26) xT Lx =
∑

{i,j}∈E

(xi − xj)2.

Indeed, we have

xT Lx =

n∑
i,j=1

�ijxixj =

n∑
i=1

deg(i)x2
i − 2

∑
{i,j}∈E

xixj ,

the right-hand side simplifies to
∑

{i,j}∈E(xi−xj)2, and so (26) holds.
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The right-hand side of (26) is always nonnegative, and thus L is

positive semidefinite. So it has n nonnegative real eigenvalues, which

we write in nondecreasing order as μ1 ≤ μ2 ≤ · · · ≤ μn.

Since the row sums of L are all 0, we have L1 = 0 (where 1 is the

vector of all 1s), and thus μ1 = 0 is an eigenvalue with eigenvector 1.

The key role in the forthcoming algorithm, as well as in many other

graph problems, is played by the second eigenvalue μ2 (sometimes

called the Fiedler value of G).

Spectral partitioning. The algorithm for finding a sparse cut works

as follows.

(1) Given a graph G, compute an eigenvector u belonging to

the second smallest eigenvalue μ2 of the Laplace matrix.

(2) Sort the components of u in descending order. Let π be a

permutation such that uπ(1) ≥ uπ(2) ≥ · · · ≥ uπ(n).

(3) Set Ak := {π(1), π(2), . . . , π(k)}. Among the cuts (Ak, V \
Ak), k = 1, 2, . . . , n−1, output one with the smallest density.

Theorem. The following hold for every graph G:

(i) φG ≥ μ2.

(ii) The algorithm always finds a cut of density at most

4
√

dmaxμ2,

where dmax is the maximum vertex degree in G. In particu-

lar, φG ≤ 4
√

dmaxμ2.

Remarks. This theorem is a fundamental result, whose significance

goes far beyond the spectral partitioning algorithm. For instance, it

is a crucial ingredient in constructions of expander graphs.1

The constant 4 in (ii) can be improved by doing the proof more

carefully. There can be a large gap between the upper bound for φG in

(i) and the lower bound in (ii), but both of the bounds are essentially

tight in general. That is, for some graphs the lower bound is more or

less the truth, while for others the upper bound is attained.

1Part (ii) is often called the Cheeger–Alon–Milman inequality, where Cheeger’s
inequality is an analogous “continuous” result in the geometry of Riemannian
manifolds.
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For planar graphs of degree bounded by a constant, such as the

cat mesh depicted above, it is known that μ2 = O( 1
n ) (a proof is

beyond the scope of this text), and thus the spectral partitioning

algorithm always finds a cut of density O(n−1/2). This density is the

smallest possible, up to a constant factor, for many planar graphs

(e.g., consider the n×n square grid). Similar results are known for

several other graph classes.

Proof of part (i) of the theorem. Let us say that a vector x ∈
Rn is nonconstant if it is not a multiple of 1.

For a nonconstant x ∈ Rn let us put

Q(x) := n ·
∑

{i,j}∈E(xi − xj)2∑
1≤i<j≤n(xi − xj)2

.

First let (A, V \A) be a cut in G and let cA be the characteristic

vector of A (with the ith component 1 for i ∈ A and 0 otherwise).

Then Q(cA) is exactly the density of (A, V \ A), and so φG is the

minimum of Q(x) over all nonconstant vectors x ∈ {0, 1}n.

Next, we will show that μ2 is the minimum of Q(x) over a larger

set of vectors, namely,

(27) μ2 = min{Q(x) : x ∈ Rn nonconstant}
(computer scientists would say that μ2 is a relaxation of φG). This,

of course, implies φG ≥ μ2.

Since Q(x) = Q(x + t1) for all t ∈ R, we can change (27) to

μ2 = min{Q(x) : x ∈ Rn \ {0}, 〈x,1〉 = 0}.

Claim. For x orthogonal to 1, the denominator of Q(x) equals n‖x‖2.

Proof of the claim. The denominator of Q(x) is the sum of

(xi−xj)2 over all edges of the complete graph on {1, 2, . . . , n}, whose

Laplace matrix is nIn− Jn. The identity (26) for the Laplace matrix

then tells us that
∑

1≤i<j≤n(xi − xj)2 = xT (nIn − Jn)x = n‖x‖2,

since Jnx = 0 by the assumption. The claim is proved. �

Thus, we can further rewrite (27) to

(28) μ2 = min
{
xT Lx : ‖x‖ = 1, 〈1,x〉 = 0

}
.
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But this is (a special case of) a standard result in linear algebra,

the variational characterization of eigenvalues (or the Courant–Fisher

theorem). It is also easy to check: we write x in an orthonormal basis

of eigenvectors of L, and expand xT Lx; we leave this to the reader.

We just remark that the proof also shows that the minimum in (28) is

attained by an eigenvector of L belonging to μ2, which will be useful

in the sequel. This concludes the proof of part (i) of the theorem. �

One of the main steps in the proof of part (ii) is the next lemma.

Lemma. Let Ak = {1, 2, . . . , k}, and let α be a real number such that

each of the cuts (Ak, V \Ak), k = 1, 2, . . . , n, has density at least α.

Let z ∈ Rn be any vector with z1 ≥ z2 ≥ · · · ≥ zn. Then

(29)
∑

{i,j}∈E,i<j

(zi − zj) ≥ α

n

∑
1≤i<j≤n

(zi − zj).

Proof. In the left-hand side of (29) we rewrite each zi − zj as

(zi − zi+1) + (zi+1 − zi+2) + · · ·+ (zj−1 − zj).

How many times does the term zk− zk+1 occur in the resulting sum?

The answer is the number of edges {i, j} ∈ E such that i ≤ k < j,

i.e., |E(Ak, V \Ak)|. Thus

∑
{i,j}∈E,i<j

(zi − zj) =

n−1∑
k=1

(zk − zk+1) · |E(Ak, V \Ak)|.

Exactly the same kind of calculation shows that
∑

1≤i<j≤n(zi−zj) =∑n−1
k=1 (zk − zk+1)|Ak| · |V \ Ak|. The lemma follows by using the

density assumption |E(Ak, V \Ak)| ≥ α
n |Ak| · |V \Ak| for all k. �

Proof of part (ii) of the theorem. To simplify notation, we as-

sume from now on that the vertices of G have been renumbered so

that u1 ≥ u2 ≥ · · · ≥ un, where u is the eigenvector in the algorithm

(then π(i) = i for all i).

Let α be the density of the cut returned by the algorithm; we

want to prove α ≤ 4
√

dmaxμ2. In the proof of part (i) we showed
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μ2 = Q(u) =
(∑

{i,j}∈E(ui − uj)2
)
/‖u‖2, and so it suffices to prove

(30) α‖u‖ ≤ 4

(
dmax

∑
{i,j}∈E

(ui − uj)2
)1/2

.

We will obtain this inequality from the lemma above with a suit-

able z, z1 ≥ z2 ≥ · · · ≥ zn. Choosing the right z is perhaps the

trickiest part of the proof; it may look like magic but the calculations

below will show why it makes sense.

First we set v := u − u�n/2�1. That is, we shift all coordinates

so that vi ≥ 0 for i ≤ n/2 and vi ≤ 0 for i > n/2. For later use, we

record that ‖v‖ ≥ ‖u‖ (because u is orthogonal to 1).

Let us now assume that
∑

i:1≤i≤n/2 v2
i ≥

∑
i:n/2<i≤n v2

i ; if it is

not the case, we start the whole proof with −u instead of u (which

obviously does not influence the outcome of the algorithm).

Next, we define w by wi := max(vi, 0); thus, w consists of the

first half of v and then 0s. By the assumption made in the preceding

paragraph, we have ‖w‖2 ≥ 1
2‖v‖2 ≥ 1

2‖u‖2.

Now, finally, we define z by zi := w2
i , and we substitute it into

the inequality of the lemma (and swap the sides for convenience):

(31)
α

n

∑
1≤i<j≤n

(w2
i − w2

j ) ≤
∑

{i,j}∈E

(w2
i − w2

j ).

We will estimate both sides and finally arrive at (30).

First we deal with the right-hand side of (31). Factoring w2
i −

w2
j = (wi − wj)(wi + wj) and using the Cauchy–Schwarz inequality∑n
i=1 aibi ≤

(∑n
i=1 a2

i

)1/2(∑n
i=1 b2

i

)1/2
with ai = wi−wj , bi = wi+wj

yields

∑
{i,j}∈E

(w2
i − w2

j ) ≤
( ∑

{i,j}∈E

(wi − wj)2
) 1

2

( ∑
{i,j}∈E

(wi + wj)2
) 1

2

≤
( ∑

{i,j}∈E

(vi − vj)2
) 1

2

( ∑
{i,j}∈E

2(w2
i + w2

j )

) 1

2

≤
( ∑

{i,j}∈E

(ui − uj)2
) 1

2√
2dmax ‖w‖.
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It remains to deal with the left-hand side of (31), which is quite

simple:

∑
1≤i<j≤n

(w2
i − w2

j ) ≥
∑

1≤i≤n/2

∑
n/2<j≤n

(w2
i − w2

j )

=
∑

1≤i≤n/2

∑
n/2<j≤n

w2
i

≥ n

2
‖w‖2 ≥ n

4
‖u‖2.

Putting this together with (31) and the previous estimate for its right-

hand side, we arrive at (30) and finish the proof of part (ii) of the

theorem. �

Sources. The continuous analog of the theorem is due to

J. Cheeger, A lower bound for the smallest eigenvalue of
the Laplacian, in Problems in analysis (Papers dedicated to
Salomon Bochner, 1969), Princeton Univ. Press, Princeton,
NJ, 1970, 195–199.

The discrete version was proved in

N. Alon and V.D. Milman, λ1, isoperimetric inequalities for
graphs, and superconcentrators, J. Combin. Theory Ser. B
38,1 (1985), 73–88,

and

N. Alon, Eigenvalues and expanders, Combinatorica 6,2

(1986), 83–96

and independently in

J. Dodziuk, Difference equations, isoperimetric inequality
and transience of certain random walks, Trans. Amer. Math.
Soc. 284,2 (1984), 787–794.

A somewhat different version of the proof of part (ii) of the theorem
can be found, e.g., in the wonderful survey

S. Hoory, N. Linial, and A. Wigderson, Expander graphs
and their applications, Bull. Amer. Math. Soc. (N.S.) 43,4

(2006), 439–561.

It is shorter, but to me it looks even slightly more “magical” than the
proof above. A still different and interesting approach, regarding the
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proof as an analysis of a certain randomized algorithm, was provided
in

L. Trevisan, Max cut and the smallest eigenvalue, preprint,
http://arxiv.org/abs/0806.1978, 2008.

The result concerning the second eigenvalue of planar graphs is from

D.A. Spielman and S.-H. Teng, Spectral partitioning works:
planar graphs and finite element meshes, Linear Algebra
Appl. 421,2–3 (2007), 284–305.

A generalization and a new proof was given in

P. Biswal, J. R. Lee, and S. Rao, Eigenvalue bounds, spectral
partitioning, and metrical deformations via flows, in Proc.
49th Annual IEEE Symposium on Foundations of Computer
Science, 2008, 751–760.

Approximation algorithms for the sparsest cut form an active research
area.

                

                                                                                                               



Miniature 32

Rotating the Cube

First we state two beautiful geometric theorems. Since we need them

only for motivation, we will not discuss the proofs, which involve

methods of algebraic topology. Let Sn−1 = {x ∈ Rn : ‖x‖ = 1} stand

for the unit sphere in Rn, where ‖x‖ =
√

x2
1 + x2

2 + · · ·+ x2
n denotes

the Euclidean norm. Thus, for example, S2 is the usual 2-dimensional

unit sphere in the 3-dimensional space.

(T1) For every continuous function f : S2 → R there exist three

mutually orthogonal unit vectors p1,p2,p3 with f(p1) =

f(p2) = f(p3).

(T2) Let α ∈ (0, 2], and let f : Sn−1 → Rn−1 be an arbitrary

continuous mapping. Then there are two points p,q ∈ Sn

whose Euclidean distance is exactly α and such that f(p) =

f(q). In popular terms, at any given moment there are two

places on the Earth’s surface that are exactly 1234km apart

and have the same temperature and the same barometric

pressure.

Theorem (T2) probably motivated Bronis�law Knaster to pose the

following question in 1947:

Knaster’s question. Is it true that for every continuous mapping

f : Sn−1 → Rm, where n− 1 ≥ m ≥ 1, and every set K of n−m + 1
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164 32. Rotating the Cube

points on Sn−1 there exists a rotation ρ of Rn around the origin such

that all points of the rotated set ρK have the same value of f?

It is easily seen that a positive answer to Knaster’s question for all

m, n would contain both (T1) and (T2) as special cases. In particular,

the second theorem deals exactly with the case m = n−1 of Knaster’s

question.

Somewhat disappointingly, though, the claim in Knaster’s ques-

tion does not hold for all n, m, as was discovered in the 1980s. Ac-

tually, it almost never holds: by now counterexamples are known for

every n and m such that n− 1 > m ≥ 2, and also for m = 1 and all

n sufficiently large.1

Here we discuss a counterexample for the last of these cases,

namely, m = 1 (with some suitable large n). It was found only in

2003, after almost all of the other cases had been settled.

Theorem. There exist an integer n, a continuous function f : Sn−1→
R, and an n-point set K ⊂ Sn−1 such that for every rotation ρ of Rn

around 0, the function f attains at least two distinct values on ρK.

The function f in the proof is very simple, namely, f(x) =

‖x‖∞ := max{|x1|, |x2|, . . . , |xn|}. The sophistication is in construct-

ing K and proving the required property.

Some geometric intuition, not really necessary. The maximum

value of f on Sn−1 is obviously 1, attained at the points ±e1, . . . ,±en.

With a little more effort one finds that the minimum of f on Sn−1

equals n−1/2, attained at points of the form (±n−1/2,±n−1/2, . . .,

±n−1/2).

Let us now consider the function f(x) = ‖x‖∞ on all of Rn. Then

the set {x ∈ Rn : ‖x‖∞ = 1} is the surface of the unit cube [−1, 1]n,

and more generally, the level set {x ∈ Rn : ‖x‖∞ = t} is the surface

of the scaled cube [−t, t]n. Thus, if K is a point set on Sn−1, finding

a rotation ρ such that f is constant on ρK can be reformulated as

follows: Find a scaling factor t and a rotation of the scaled cube

1This does not kill the question, though: It remains to understand for which sets
K the claim does hold. This question is very interesting and very far from solved.

                

                                                                                                               



32. Rotating the Cube 165

[−t, t]n such that all points of K lie on the surface of the rotated and

scaled cube.

In the proof of the theorem, K is chosen as the disjoint union

of two sets K1 and K2. These are constructed in such a way that if

K1 should lie on the surface of a rotated and scaled cube, then the

scaling factor t has to be large (which means, geometrically, that the

points of K1 must be placed far from the corners of the cube), while

for K2 the scaling factor has to be small (the points of K2 must be

close to the corners). Hence it is impossible for both K1 and K2 to

lie on the surface of the same scaled and rotated cube.

Preliminaries. In the theorem we deal with a point set K in the

(n−1)-dimensional unit sphere and with rotated copies ρK. In the

proof it will be more convenient to work with a set K living in the

unit sphere Sd−1 of a suitable lower dimension. Then, instead of

rotations, we consider isometries ϕ : Rd → Rn, that is, linear maps

such that ‖ϕ(x)‖ = ‖x‖ for all x ∈ Rd. If ϕ0 is one such isometry,

then K := ϕ0(K) is a point set in Sn−1, and the sets ϕ(K) for all

other isometries ϕ : Rd → Rn are exactly all rotated copies of K (and

their mirror reflections—but for the purposes of the proof we can

ignore the mirror reflections).
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We need one more definition. Let X ⊆ Rn be a set and let δ > 0

be a real number. A set N ⊆ X is called δ-dense in X if for every

x ∈ X there exists y ∈ N such that ‖x− y‖ ≤ δ.

Lemma K1. (i) Let ϕ : Rd → Rn be an isometry. Then there

exists x ∈ Sd−1 such that ‖ϕ(x)‖∞ ≥
√

d/n.

(ii) Let, moreover, K1 ⊂ Sd−1 be a 1
2 -dense set in Sd−1. Then

there exists p ∈ K1 with ‖ϕ(p)‖∞ ≥ 1
2

√
d/n.

Proof. We begin with part (i). Let A be the matrix of the isometry

ϕ with respect to the standard bases; i.e., the ith column of A is the

vector ϕ(ei) ∈ Rn, i = 1, 2, . . . , d. Since ϕ preserves the Euclidean

norm, the columns of A are unit vectors in Rn, and thus

(32)

n∑
i=1

d∑
j=1

a2
ij = d.

Let ai ∈ Rd denote the ith row of A. For x ∈ Rd, the ith

coordinate of ϕ(x) is the scalar product 〈ai,x〉, and thus ‖ϕ(x)‖∞ =

max{|〈ai,x〉| : i = 1, 2, . . . , n}.
Now (32) tells us that

∑n
i=1 ‖ai‖2 = d, and thus there is an i0

with ‖ai0‖ ≥
√

d/n. Setting x := ai0/‖ai0‖, we have ‖ϕ(x)‖∞ ≥
〈ai0 ,x〉 = ‖ai0‖ ≥

√
d/n, which finishes the proof of part (i).

We proceed with part (ii), which is the result that we will actually

use later on. The proof is somewhat more clever than one might

perhaps expect at first sight.

In the setting of (ii), we let M := sup{‖ϕ(x)‖∞ : x ∈ Sd−1}, and

let x0 ∈ Sd−1 be a point where M is attained.2 By part (i) we have

M ≥
√

d/n.

Since K1 is 1
2 -dense, we can choose a point p ∈ K1 with ‖x0 −

p‖ ≤ 1
2
. If, by chance, p = x0, we are done, and so we may assume

p 
= x0 and let v := (x0 − p)/‖x0 − p‖ ∈ Sd−1 be the unit vector

in direction x0 − p. Then ‖ϕ(v)‖∞ ≤ M by the choice of M , and

thus ‖ϕ(x0 − p)‖∞ ≤ 1
2M . Then, using the triangle inequality for

2The supremum is attained because Sd−1 is compact. Readers not familiar
enough with compactness may as well consider x0 such that ‖ϕ(x0)‖∞ ≥ 0.99M ,
say, which clearly exists. Then the constants in the proof need a minor adjustment.
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the ‖.‖∞ norm, we have

‖ϕ(p)‖∞ ≥ ‖ϕ(x0)‖∞−‖ϕ(x0 −p)‖∞ ≥ M − 1
2
M = 1

2
M ≥ 1

2

√
n/d.

This proves part (ii). �

Lemma K2. Let K2 be a set of m distinct points of the unit circle

S1 ⊂ R2. If t is a number such that there exists an isometry ϕ : R2 →
Rn with ‖ϕ(p)‖∞ = t for all p ∈ K2, then t ≤

√
8/m.

Proof. We begin in the same way as in the proof of Lemma K1, this

time setting d = 2: A is the matrix of ϕ and ai ∈ R2 is its ith row. By

(32) we have
∑n

i=1 ‖ai‖2 = 2. We are going to bound the left-hand

side from below in terms of m and t.

Since the ith coordinate of ϕ(p) equals 〈ai,p〉, the condition

‖ϕ(p)‖∞ = t for all p ∈ K2 can be reformulated as follows:

(C1) For every p ∈ K2, there exists an i = i(p) with |〈ai,p〉| = t.

(C2) For all p ∈ K2 and all i, we have |〈ai,p〉| ≤ t.

From (C1) we can infer that

(33) if i = i(p) for some p ∈ K2, then ‖ai‖ ≥ t.

Indeed, p is a unit vector, so |〈y,p〉| ≤ ‖y‖ for all y, and thus

|〈ai,p〉| = t implies ‖ai‖ ≥ t.

It remains to show that there are many distinct i with i = i(p)

for some p ∈ K2. To this end, we observe that any given i can serve

as i(p) for at most four distinct points p. This can be seen from the

following geometric picture:

〈ai,x〉 = t

x1

x2

〈ai,x〉 = −t

p

                

                                                                                                               



168 32. Rotating the Cube

The condition i = i(p) means that the point p lies on one of the

lines {x ∈ R2 : 〈ai,x〉 = t} and {x ∈ R2 : 〈ai,x〉 = −t}, and (C2)

implies that all points of K2 lie within the parallel strip between

these two lines. In this situation, the boundary of such a parallel

strip can contain at most four points of K2 (actually, at most two

points provided that K2 is chosen in a suitably general position).

Consequently, there are at least m/4 distinct vectors of Euclidean

norm at least t among the ai, and so
∑n

i=1 ‖ai‖2 ≥ t2m/4. Since we

already know that the left-hand side equals 2, we arrive at the claim

of Lemma K2. �

Two ways of making δ-dense sets. The last missing ingredient

for the proof of the theorem is a way of making a 1
2 -dense set K1 in

Sd−1, as in Lemma K1(ii), that is not too large. More precisely, it

will be enough to know that for every d ≥ 1 such a K1 exists of size

at most g(d), for an arbitrary function g.

This is a well-known geometric result. One somewhat sloppy but

quick way of proving it starts by observing that the integer grid Zd

is
√

d-dense in Rd (actually 1
2

√
d-dense). If we rescale it by 1/(4

√
d)

and intersect it with the cube [−1, 1]d, we have a 1
4 -dense set N0 in

that cube, of size at most (8
√

d+ 1)d. Finally, for every point x ∈ N0

that has distance at most 1
4 to Sd−1, we choose a point y ∈ Sd−1 at

most 1
4

apart from x, and we let N ⊂ Sd−1 consist of all these y. It

is easily checked that N is 1
2 -dense in Sd−1. This yields g(d) of order

dO(d).

Another proof, the standard “textbook” one, uses a greedy algo-

rithm and a volume argument. We place the first point p1 to Sd−1

arbitrarily, and having already chosen p1, . . . ,pi−1, we place pi to

Sd−1 so that it has distance at least 1
2 from p1, . . . ,pi−1. This pro-

cess finishes as soon as we can no longer place the next point, i.e.,

the resulting set is 1
2 -dense. To estimate the number m of points pro-

duced in this way, we observe that the balls of radius 1
4

around the pi

are all disjoint and contained in the ball of radius 5
4

around 0. Thus,

the total volume of the small balls is at most the volume of the large

ball, and this gives m ≤ 5d, a better estimate than for the grid-based

argument.
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Proof of the theorem. We choose an even n ≥ 2g(100), we let K1

be a 1
2 -dense set in S99 of size at most n

2 , and K2 is a set of n
2 points

in S1. We let K := K1 ∪ K2, where K1, K2 ⊂ Sn−1 are isometric

images of K1 and K2, respectively.

Lemma K1(ii) shows that for every rotation ρ there is a point

p ∈ ρK1 with ‖p‖∞ ≥ 1
2

√
100/n > 4n−1/2. On the other hand,

if ρ is a rotation such that ‖p‖∞ equals the same number t for all

p ∈ ρK2, then t ≤
√

16/n = 4n−1/2 by Lemma K2. This proves that

K = K1∪K2 cannot be rotated so that all of its points have the same

‖.‖∞ norm. �

Sources. B. S. Kashin and S. J. Szarek, The Knaster problem
and the geometry of high-dimensional cubes, C. R. Acad.
Sci. Paris, Ser. I 336 (2003), 931–936.

Theorem (T2) is a generalization of the well-known Borsuk–Ulam the-
orem due to

H. Hopf, A generalization of well-known mapping and cov-
ering theorems (in German), Portugaliae Math. 4 (1944),
129–139.

Theorem (T1) is from

S. Kakutani, A proof that there exists a circumscribing cube
around any convex set in R3, Ann.

741.

It is a special case of a theorem of Yamabe and Yubojo, which states
that if m = 1 and K is a configuration of n mutually orthogonal vectors
in Sn−1, then Knaster’s question has a positive answer.

of 3 194 ,Math. 4(2) 2)(
739–
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Set Pairs and Exterior
Products

We prove yet another theorem about intersection properties of sets.

Theorem. Let A1, A2, . . . , An be k-element sets, let B1, B2, . . . , Bn

be �-element sets, and let

(i) Ai ∩Bi = ∅ for all i = 1, 2, . . . , n, while

(ii) Ai ∩Bj 
= ∅ for all i, j with 1 ≤ i < j ≤ n.

Then n ≤ (
k+�

k

)
.

It is easy to understand where
(
k+�

k

)
comes from: Let X :=

{1, 2, . . . , k + �}, let A1, A2, . . . , An be a list of all k-element sub-

sets of X , and let us set Bi := X \ Ai for every i. Then the Ai and

Bi meet the conditions of the theorem and n =
(
k+�

k

)
.

The perhaps surprising thing is that we cannot produce more

sets satisfying (i) and (ii) even if we use a much larger ground set

(note that the theorem does not put any restrictions on the number

of elements in the union of the Ai and Bi; it only limits their size and

intersection pattern).

The above theorem and similar ones have been used in the proofs

of numerous interesting results in graph and hypergraph theory, com-

binatorial geometry, and theoretical computer science; one even speaks
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of the set-pair method. We will not discuss these applications here,

though. The theorem is included mainly because of the proof method,

where we briefly meet a remarkable mathematical object, the exterior

algebra of a vector space.

The theorem is known in the literature as the skew Bollobás

theorem. Bollobás originally proved a weaker (nonskew) version,

where condition (ii) is strengthened to

(ii′) Ai ∩Bj 
= ∅ for all i, j = 1, 2, . . . , n, i 
= j.

That version has a short probabilistic (or, if you prefer, double-

counting) proof. However, for the skew version only linear-algebraic

proofs are known. One of them uses the polynomial method (which

we encountered in various forms in Miniatures 15, 16, 17), and an-

other one, shown next, is a simple instance of a different and powerful

method.

We begin with a simple claim asserting the existence of arbitrarily

many vectors “in general position”.

Claim. For every d ≥1 and every m ≥1, there exist vectors v1,v2, . . . ,

vm ∈ Rd such that every d or fewer among them are linearly inde-

pendent.

Proof. We fix m distinct and nonzero real numbers t1, t2, . . . , tm ar-

bitrarily and set vi := (ti, t
2
i , . . . , t

d
i ) (these are points on the so-called

moment curve in Rd).

Since this construction is symmetric, it suffices to check linear

independence of v1,v2, . . . ,vd (we assume m ≥ d, for otherwise, the

result is trivial). So let
∑d

j=1 αjvj = 0. This means
∑d

j=1 αjt
j
i = 0

for all i, i.e., t1, . . . , td are roots of the polynomial p(x) := αdx
d +

αd−1x
d−1 + · · ·+α1x. But 0 is another root, so we have d+1 distinct

roots altogether, and since p(x) has degree at most d, it cannot have

d + 1 distinct roots unless it is the zero polynomial. So α1 = α2 =

· · · = αd = 0.

Alternatively, one can prove the linear independence of the vi us-

ing the Vandermonde determinant (usually computed in introductory

courses of linear algebra).
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Yet another proof follows easily by induction if one believes that

Rd is not the union of finitely many (d − 1)-dimensional linear sub-

spaces. (But proving this rigorously is probably as complicated as

the proof above.) �

On permutations and signs. We recall that the sign of a per-

mutation π : {1, 2, . . . , d} → {1, 2, . . . , d} can be defined as sgn(π) =

(−1)inv(π), where inv(π) = |{(i, j) : 1 ≤ i < j ≤ d and π(i) > π(j)}|
is the number of inversions of π.

Let d be a fixed integer, and let s = (s1, s2, . . . , sk) be a sequence

of integers from {1, 2, . . . , d} We define the sign of s analogously as

sgn(s) :=

{
(−1)inv(s) if all terms in s are distinct,

0 otherwise,

where inv(s) = |{(i, j) : 1 ≤ i < j ≤ k and si > sj}|.
If we regard a permutation π as the sequence (π(1), . . . , π(d)),

then both definitions of the sign agree, of course.

The exterior algebra of a finite-dimensional vector space. In

1844 Hermann Grassmann, a high-school teacher in Stettin (a city

in Prussia at that time, then in Germany, and nowadays in Poland

spelled Szczecin), published a book proposing a new algebraic founda-

tion for geometry. He developed foundations of linear algebra more or

less as we know it today, and went on to introduce an “exterior prod-

uct” of vectors, providing a unified and coordinate-free treatment of

lengths, areas, and volumes. His revolutionary mathematical discov-

eries were not appreciated during his lifetime (he became famous as a

linguist), but later on, they were completed and partially redeveloped

by others. They belong among the fundamental concepts of modern

mathematics with many applications, e.g., in differential geometry,

algebraic geometry, and physics.

Here we will build the exterior algebra (also called the Grass-

mann algebra) of a finite-dimensional space in a minimalistic way

(which is not the most conceptual one), checking only the properties

we need for the proof of the above theorem.

.
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Proposition. Let V be a d-dimensional vector space.1 Then there is

a countable sequence W0, W1, W2, . . . of vector spaces (among which

only W0, . . . , Wd really matter) and a binary operation ∧ (“exterior

product” or “wedge product”) on W0∪W1∪W2∪· · · with the following

properties:

(EA1) dim Wk =
(

d
k

)
. In particular, W1 is isomorphic to V , while

Wk = {0} for k > d.

(EA2) If u ∈ Wk and v ∈W�, then u ∧ v ∈ Wk+�.

(EA3) The exterior product is associative, i.e., (u ∧ v) ∧ w =

u ∧ (v ∧w).

(EA4) The exterior product is bilinear, i.e., (αu + βv) ∧ w =

α(u∧w)+β(v∧w) and u∧(αv+βw) = α(u∧v)+β(u∧w).

(EA5) The exterior product reflects linear dependence in the follow-

ing way: for any v1,v2, . . . ,vd ∈ W1, we have v1∧v2∧· · ·∧
vd = 0 if and only if v1,v2, . . . ,vd are linearly dependent.

Proof. Let Fk denote the set of all k-element subsets of {1, 2, . . . , k}.
For each k = 0, 1, . . . , d, we fix a

(
d
k

)
-dimensional vector space Wk,

with Wi∩Wj = ∅ whenever i 
= j. For each k, we fix an arbitrary basis

of Wk (which has
(

d
k

)
vectors), and we call its vectors bK1

, bK2
, . . .,

where K1, K2, . . . , K(d

k)
are the sets in Fk enumerated in some fixed

order. In other words, we put the basis in a bijective correspondence

with Fk, and bK is the basis vector corresponding to K ∈ Fk. So bK

is just a name for a vector in the basis, which will be more convenient

notationally than the usual indexing of a basis by integers 1, 2, . . .. We

set, trivially, Wd+1 = Wd+2 = · · · = {0}.
We first define the exterior product on the basis vectors. Let

K, L ⊆ {1, 2, . . . , d}, where s1 < s2 < · · · < sk are the elements

of K in increasing order and t1 < · · · < t� are the elements of L in

increasing order. Then we set

bK ∧ bL :=

{
sgn((s1, s2, . . . , sk, t1, t2, . . . , t�))bK∪L if k + � ≤ d,

0 ∈Wk+� if k + � > d.

We note that, in particular, for K ∩ L 
= ∅ we have bK ∧ bL = 0,

since then the sequence (s1, s2, . . . , sk, t1, t2, . . . , t�) has a repeated

1Over any field, but we will use only the real case.
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term and thus its sign is 0. The signs are a bit tricky, but they are

crucial for the good behavior of the exterior product with respect to

linear independence, i.e., (EA5).

We extend ∧ to all vectors bilinearly: If u ∈ Wk and v ∈ W�,

we write them in the appropriate bases as u =
∑

K∈Fk
αKbK , v =∑

L∈F�
βLbL, and we put

u ∧w :=
∑

K∈Fk,L∈F�

αKβL(bK ∧ bL).

Now (EA1), (EA2), and (EA4) (bilinearity) are clear.

As for the associativity (EA3), it suffices to check it for basis

vectors, i.e., to verify

(34) (bK ∧ bL) ∧ bM = bK ∧ (bL ∧ bM )

for all K, L, M . The interesting case is when K, L, M are pairwise

disjoint and |K|+ |L|+ |M | ≤ d. Then, obviously, both sides of (34)

are ±bK∪L∪M , and it suffices to check that the signs match.

To this end, we let s1 < · · · < sk be the elements of K in

increasing order, and similarly for t1 < · · · < t� and L and for

z1 < · · · < zm and M . By counting the inversions of the appro-

priate sequences, we find that (bK ∧ bL) ∧ bM = (−1)NbK∪L∪M ,

where N = inv((s1, . . . , sk, t1, . . . , t�))+inv((s1, . . . , sk, z1, . . . , zm))+

inv((t1, . . . , t�, z1, . . . , zm)), and the right-hand side of (34) comes out

the same.

Next, if K, L, M are not pairwise disjoint or k + � + m > d, it

is easily checked that both sides of (34) are 0 ∈ Wk+�+m. Finally,

having checked (34), it is routine to verify associativity in general—

one just writes out the three participating vectors in the respective

bases, expands both sides using bilinearity, and uses (34).

It remains to prove (EA5), which is the most interesting part

where, finally, the choice of the sign turns from a hassle into a blessing.

Let v1, . . . ,vd ∈ W1 be arbitrary, and let us write them in the

basis b{1}, . . . ,b{d} of W1 as

vi =

d∑
j=1

aijb{j}.
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Then, using bilinearity and associativity, we have

v1∧v2∧· · ·∧vd =

n∑
j1,j2,...,jd=1

a1j1a2j2 · · · adjd
b{j1}∧b{j2}∧· · ·∧b{jd}.

By the definition of the exterior product of basis vectors, all terms on

the right-hand side where some two ji coincide are 0. What remains

is a sum over all d-tuples of distinct ji’s, in other words, over all

permutations of {1, 2, . . . , d}:
v1∧· · ·∧vd =

∑
π

a1π(1)a2π(2) · · · adπ(d)b{π(1)}∧b{π(2)}∧· · ·∧b{π(d)}.

By considerations very similar to those in checking the associativity,

we find that b{π(1)} ∧b{π(2)}∧ · · · ∧b{π(d)} = sgn(π)b{1,2,...,d}. Then

the last sum transforms into det(A)b{1,2,...,d}, which is 0 exactly if

the vi are linearly dependent. The proposition is proved. �

With just a little more effort, (EA5) can be extended to any

number of vectors; i.e., v1, . . .vn ∈W1 are linearly dependent exactly

if their exterior product is 0 (we will not need this, but not mentioning

it seems inappropriate).

Proof of the theorem. Let d := k + �, and let us consider the ex-

terior algebra of Rd with the vector spaces W0, W1, . . . and the opera-

tion ∧ as in the proposition. Let us assume, without loss of generality,

that A1 ∪ · · · ∪ An ∪ B1 ∪ · · · ∪ Bn = {1, 2, . . . , m} for some integer

m, and let us fix m vectors v1, . . .vm ∈ W1
∼= Rd in general position

according to the claim above (every d or fewer of them are linearly

independent). Note that m may be considerably larger than d.

Let A ⊆ {1, 2, . . . , m} be an arbitrary subset, and let us write its

elements in increasing order as i1 < i2 < · · · < ir, where r = |A|.
Then we define

wA := vi1 ∧ vi2 ∧ · · · ∧ vir
.

Thus, wA ∈ Wr.

For A, B ⊆ {1, 2, . . . , m} with |A| + |B| = d, (EA3) and (EA5)

yield

wA ∧wB =

{±wA∪B 
= 0 for A ∩B = ∅,
0 for A ∩B 
= ∅.
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We claim that the n vectors wA1
,wA2

, . . . ,wAn
∈Wk are linearly

independent. This will prove the theorem, since dim(Wk) =
(

d
k

)
=(

k+�
k

)
.

So let
∑n

i=1 αiwAi
= 0. Assuming that, for some j, we already

know that αi = 0 for all i > j (for j = n this is a void assumption),

we show that αj = 0 as well. To this end, we consider the exterior

product 0 ∧wBj
= 0, and we rewrite it as

0 ∧wBj
=

( n∑
i=1

αiwAi

)
∧wBj

=

n∑
i=1

αi(wAi
∧wBj

) = αj(wAj
∧wBj

),

since wAi
∧wBj

= 0 for i < j (using Ai ∩ Bj 
= ∅), αi = 0 for i > j

by the inductive assumption, and wAi
∧wBi


= 0 since Ai ∩Bi = ∅.
Thus, αj = 0, and the theorem is proved. �

The geometry of the exterior product at a glance. Some low-

dimensional instances of the exterior product correspond to familiar

concepts. First let d = 2 and let us identify W1 with Rd so that

(b{1},b{2}) corresponds to the standard orthonormal basis (e1, e2).

Then it can be shown that u ∧ v = ±a · e1 ∧ e2, where a is the area

of the parallelogram spanned by u and v:

u

v

In R3, again making a similar identification of W1 with R3, it

turns out that u ∧ v is closely related to the cross product of u and

v (often used in physics), and u ∧ v ∧w = ±a · e1 ∧ e2 ∧ e3, where

a is the volume of the parallelepiped spanned by u,v, and w. The

latter, of course, is an instance of a general rule; in Rd, the volume

of the parallelepiped spanned by v1, . . . ,vd ∈ Rd is | det(A)|, where

A is the matrix with the vi as columns, and we have already verified

that v1 ∧ · · · ∧ vd = det(A) · e1 ∧ · · · ∧ ed.

These are only the first indications that the exterior algebra has

a very rich geometric meaning. Generally, one can think of v1 ∧ · · · ∧
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vk ∈ Wk as representing, uniquely up to a scalar multiple, the k-

dimensional subspace of Rd spanned by v1, . . . ,vk. However, by far

not all vectors in Wk correspond to k-dimensional subspaces in this

way; Wk can be thought of as a “closure” that completes the set of

all k-dimensional subspaces into a vector space.

Sources. Bollobás’ theorem was proved in

B. Bollobás, On generalized graphs, Acta Math. Acad. Sci.
Hung. 16 (1965), 447–452.

The first use of exterior algebra in combinatorics is due to Lovász:

L. Lovász, Flats in matroids and geometric graphs, in Com-
binatorial Surveys (Proc. Sixth British Combinatorial Conf.,
Royal Holloway Coll., Egham, 1977), Academic Press, Lon-
don, 1977, 45–86.

This paper contains a version of the Bollobás theorem for vector sub-
spaces, and the proof implies the skew Bollobás theorem easily. But
explicitly that theorem seems to appear first in

P. Frankl, An extremal problem for two families of sets, Eu-
ropean J. Combin. 3,2 (1982), 125–127,

where it is proved via symmetric tensor products (while the exterior
product can be interpreted as an antisymmetric tensor product). The
method with exterior products was also discovered independently by
Kalai and used with great success in the study of convex polytopes
and geometrically defined simplicial complexes:

G. Kalai, Intersection patterns of convex sets, Israel J. Math.
48 (1984), 161–174.

Applications of the set-pair method are surveyed in two papers of Tuza,
among which the second one

Zs. Tuza, Applications of the set-pair method in extremal
problems, II, in Combinatorics, Paul Erdős is eighty, Vol. 2,
J. Bolyai Math. Soc., Budapest, 1996, 459–490

has a somewhat wider scope.
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≡ (congruence), 18

‖ · ‖ (Euclidean norm), xi

‖ · ‖1 (�1 norm), 148

‖ · ‖∞ (�∞ norm), 164

〈·, ·〉 (standard scalar product), xi

AT (transposed matrix), xi

u ∧ v (exterior product), 174

G (graph complement), 141

G · H (strong product), 133

α(G) (independence number), 133

ϑ(G) (Lovász theta function), 136

Θ(G) (Shannon capacity), 133

adjacency matrix, 32, 42, 48

bipartite, 86, 102

algebra

exterior, 173

Grassmann, 173

algorithm, probabilistic, 35, 36,
110, 121, 126

alphabet, 12

arctic circle, 94

associativity, 125

Bertrand’s postulate, 109

binary operation, 125

Binet’s formula, 4

bipartite adjacency matrix, 86, 102

bipartite graph, 86, 101, 107

bits, parity check, 14

Borsuk’s conjecture, 62

Borsuk’s question, 61

capacity, Shannon, 133, 139

Cauchy–Schwarz inequality, 149,
159

characteristic vector, 59, 62

checking matrix multiplication, 35

checking, probabilistic, 107, 126

Cheeger–Alon–Milman inequality,
156

Cholesky factorization, 21

chromatic number, 136

code, 12

error-correcting, 11

generalized Hamming, 15

Hamming, 12

linear, 14

color class, 23

complement (of a graph), 141

complete bipartite graph, 23

congruence, 17

conjecture

Borsuk’s, 62

Kakeya’s, 116

corrects t errors, 13

cosine theorem, 17, 21

covering, 55

of edges of Kn, 41

cube, 55
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curve, moment, 172

cut, 154

sparsest, 154

cycle

evenly placed, 89
properly signed, 89

decoding, 13

degree, 78

minimum, 45

δ-dense set, 166
density, 154

determinant, 18, 77, 85, 107, 176

Vandermonde, 172

diagonalizable matrix, 21

diagram, Ferrers, 97
diameter, 61

diameter-reducing partition, 61

digraph, 79

functional, 82
dimension, 142

Hausdorff, 116

dimer model, 94

directed graph, 79

discrepancy theory, 67
disjoint union (of graphs), 140

distance

Euclidean, 19

Hamming, 13

�1, 148
minimum (of a code), 13

odd, 17

only two, 51

divide and conquer, 153

E(G), xi
eigenvalue, 149

eigenvalue (of a graph), 41, 45, 49

eigenvector, 155

encoding, 13

equiangular lines, 27
equilateral set, 147

Erdős–Ko–Rado theorem, 57

error-correcting code, 11

Euclidean distance, 19

Euclidean norm, xi
Euler’s formula, 92

evenly placed cycle, 89

exponent of matrix multiplication,
33

exterior algebra, 173

exterior product, 171, 174

extremal set theory, 171

Fq, xi

factorization, Cholesky, 21

fast matrix multiplication, 33, 35,
110, 121

Ferrers diagram, 97
Fibonacci number, 1, 3

Fiedler value, 156

finite field, xi, 59, 116

Fisher inequality, generalized, 7

formula
Binet’s, 4

Euler’s, 92

Frankl–Wilson inequality, 60

function, Lovász theta, 136

functional digraph, 82
functional representation, 141

general position, 172

generalized Fisher inequality, 7
generalized Hamming code, 15

generalized polygon, 46

generator matrix (of a code), 14

girth, 45

Gottlieb’s theorem, 103
Gram matrix, 22, 147

graph, xi

bipartite, 86, 101, 107

complete bipartite, 23

directed, 79
Hoffman–Singleton, 47

honeycomb, 86

Moore, 46

Petersen, 41, 47

Pfaffian, 89
planar, 88

square grid, 85

2-connected, 88

graph isomorphism, 42, 104

Grassmann algebra, 173

group
action, 100

symmetric, 86, 119
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groupoid, 125

Hamming code, 12
Hamming distance, 13
Hausdorff dimension, 116
Hoffman–Singleton graph, 47
honeycomb graph, 86
hyperplane, 55

In, 24
icosahedron, regular, 27
independence number (of a graph),

133
independent set, 133
inequality

Cauchy–Schwarz, 149, 159
Cheeger–Alon–Milman, 156
Frankl–Wilson, 60
generalized Fisher, 7
triangle, 19

integer partition, 97
inversion, 173

isometry, 165
isomorphism, graph, 42, 104

Jn, 24

Kn (complete graph), 24
Kakeya needle problem, 113
Kakeya set, 114
Kakeya’s conjecture, 116
Kasteleyn signing, 88
Knaster’s question, 163

�1 distance, 148
Laplace matrix, 77, 155
lemma

rank, 149
Sperner, 57
Steinitz, 74

linear code, 14
Lovász theta function, 136
Lovász umbrella, 134
lozenge tiling, 86

matching, 107
perfect, 85, 107

random, 93
matrix

adjacency, 32, 42, 48

adjacency, bipartite, 86, 102
diagonalizable, 21

generator (of a code), 14
Gram, 22, 147
Laplace, 77, 155
multiplication

checking, 35
fast, 33, 35, 110, 121

orthogonal, 21

parity check, 15
positive semidefinite, 20, 156

matrix-tree theorem, 77
minimum degree, 45
minimum distance (of a code), 13
model, dimer, 94
moment curve, 172
Moore graphs, 46

norm
Euclidean, xi

�1, 148
�∞, 164

number
chromatic, 136
Fibonacci, 1, 3

odd distances, 17
Oddtown, 5
operation, binary, 125
orthogonal matrix, 21
orthogonal representation, 133

parity check bits, 14
parity check matrix, 15
partition

diameter-reducing, 61
integer, 97

partitioning, spectral, 155
PCP theorem, 37
perfect matching, 85, 107

random, 93
permanent, 87
permutation, 119

Petersen graph, 41, 47
Pfaffian graph, 89
planar graph, 88
polygon, generalized, 46
polynomial, 52, 60, 108, 116, 129,

172
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polynomials, vector space, 52, 56
positive definite matrix, 8

positive semidefinite matrix, 20,
156

postulate, Bertrand’s, 109
probabilistic algorithm, 35, 36, 110,

121, 126
probabilistic checking, 37, 107, 126
problem, Kakeya needle, 113
product

exterior, 171, 174

standard scalar, xi
strong, 133, 139
tensor, 63, 136, 143
wedge, 174

properly signed cycle, 89

question
Borsuk’s, 61
Knaster’s, 163

random perfect matching, 93
rank, 5, 8, 24, 99, 147
rank lemma, 149
recurrence, 2

representation
functional, 141
orthogonal, 133

rhombic tiling, 86

Sn, 163
Sn, 86, 119
scalar product, standard, xi
Schwartz–Zippel theorem, 109

application, 117, 121, 129
semigroup, 125

set
δ-dense, 166
equilateral, 147
independent, 133
Kakeya, 114

set-pair method, 171, 178
Shannon capacity, 133, 139
sign (of a permutation), 78, 173

signing, Kasteleyn, 88
skew Bollobás theorem, 172
spanning tree, 77
sparsest cut, 154
spectral partitioning, 155

Sperner lemma, 57
square grid graph, 85
Steinitz lemma, 74
Strassen algorithm, 32
strong product, 133, 139
symmetric group, 86, 119

tensor product, 63, 136, 143
theorem

cosine, 17, 21
Erdős–Ko–Rado, 57
Gottlieb’s, 103
matrix-tree, 77
PCP, 37
Schwartz–Zippel, 109

application, 117, 121, 129
skew Bollobás, 172

theta function, Lovász, 136
thinning, 114
tiling

lozenge, 86
of a board, 85
of a rectangle, 39
rhombic, 86

trace, 49, 150
tree, spanning, 77
triangle, 31
triangle inequality, 19
2-connected graph, 88

umbrella, Lovász, 134
unimodal, 99

V (G), xi
value, Fiedler, 156
Vandermonde determinant, 172
vector, characteristic, 59, 62
vector space of polynomials, 52, 56

wall-equivalence, 100
wedge product, 174
word, 12
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