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Foreword: MASS and
REU at Penn State
University

This book is part of a collection published jointly by the American

Mathematical Society and the MASS (Mathematics Advanced Study

Semesters) program as a part of the Student Mathematical Library

series. The books in the collection are based on lecture notes for

advanced undergraduate topics courses taught at the MASS and/or

Penn State summer REU (Research Experiences for Undergraduates).

Each book presents a self-contained exposition of a non-standard

mathematical topic, often related to current research areas, which

is accessible to undergraduate students familiar with an equivalent of

two years of standard college mathematics, and is suitable as a text

for an upper division undergraduate course.

Started in 1996, MASS is a semester-long program for advanced

undergraduate students from across the USA. The program’s curricu-

lum amounts to sixteen credit hours. It includes three core courses

from the general areas of algebra/number theory, geometry/topology,

and analysis/dynamical systems, custom designed every year; an in-

terdisciplinary seminar; and a special colloquium. In addition, ev-

ery participant completes three research projects, one for each core

course. The participants are fully immersed into mathematics, and

xi
                

                                                                                                               



xii Foreword: MASS and REU at Penn State University

this, as well as intensive interaction among the students, usually leads

to a dramatic increase in their mathematical enthusiasm and achieve-

ment. The program is unique for its kind in the United States.

The summer mathematical REU program is formally independent

of MASS, but there is a significant interaction between the two: about

half of the REU participants stay for the MASS semester in the fall.

This makes it possible to offer research projects that require more

than seven weeks (the length of the REU program) for completion.

The summer program includes the MASS Fest, a two- to three-day

conference at the end of the REU at which the participants present

their research and that also serves as a MASS alumni reunion. A non-

standard feature of the Penn State REU is that, along with research

projects, the participants are taught one or two intense topics courses.

Detailed information about the MASS and REU programs at

Penn State can be found on the website www.math.psu.edu/mass.

                

                                                                                                               



Preface

This book emerged from the course in fractal geometry and dynamical

systems, with emphasis on chaotic dynamics, that I taught in the

fall semester of 2008 as part of the MASS program at Penn State

University.

Both fractal geometry and dynamical systems have a long history

of development that is associated with many great names: Poincaré,

Kolmogorov, Smale (in dynamical systems), and Cantor, Hausdorff,

Besicovitch (in fractal geometry), to name a few. These two areas in-

teract with each other since many dynamical systems (even some very

simple ones) often produce fractal sets that are a source of irregular

“chaotic” motions in the system.

A unifying factor for merging dynamical systems with fractal ge-

ometry is self-similarity. On the one hand, self-similarity, along with

complicated geometric structure, is a crucial feature of fractal sets.

On the other hand, it is related to various symmetries in dynamical

systems (e.g., rescaling of time or space). This is extremely impor-

tant in applications, as symmetry is an attribute of many physical

laws which govern the processes described by dynamical systems.

Numerous examples of scaling and self-similarity resulting in ap-

pearance of fractals and chaotic motions are explored in the fasci-

nating book by Schroeder [Sch91]. Motivated in part by this book,

I designed and taught a course—for a group of undergraduate and

xiii
                

                                                                                                               



xiv Preface

graduate students majoring in various areas of science—whose goal

was to describe the necessary mathematical tools to study many of

the examples in Schroeder’s book. An expanded and modified version

of this previous course has become the course for MASS students that

I mentioned above.

This book is aimed at undergraduate students, and requires only

standard knowledge in analysis and differential equations, but the

topics covered do not fall into the traditional undergraduate curricu-

lum and may be demanding. To help the reader cope with this, we

give formal definitions of notions that are not part of the standard

undergraduate curriculum (e.g., of topology, metric space and mea-

sure) and we briefly discuss them. Furthermore, many crucial new

concepts are introduced through examples so that the reader can get

some motivation for their necessity as well as some intuition of their

meaning and role.

The focus of the book is on ideas rather then on complicated

techniques. Consequently, the proofs of some statements, which re-

quire rather technical arguments, are restricted to some particular

cases that, while allowing for simpler methods, still capture all the

essential elements of the general case. Moreover, to help the reader

get a broader view of the subject, we included some results whose

proofs go far beyond the scope of the book. Naturally, these proofs

are omitted.

Currently, there are some textbooks for undergraduate students

that introduce the reader to the dynamical system theory (see for

example, [Dev92] and [HK03]) and to fractal geometry (see for ex-

ample, [Fal03]), but none of them presents a systematic study of their

interplay and connections to the theory of chaos. This book is meant

to cover this gap.

Chapter 1 of this book starts with a discussion of the principal

threefold cord of dynamics, fractals, and chaos. Here our core example

is introduced—a one-dimensional linear Markov map whose biggest

invariant set is a fractal and whose “typical” trajectories are chaotic.

Although this map is governed by a very simple rule, it exhibits all the

principal features of dynamics that are important for our purposes.

                

                                                                                                               



Preface xv

After being immersed into the interplay between dynamics and

fractal geometry, the reader is invited to a more systematic study of

dimension theory and its connections to dynamical systems, which are

presented in Chapters 2, 3, and 4. Here the reader finds, among other

things, rigorous definitions of various dimensions and descriptions of

their basic properties; various methods for computing dimensions of

sets, most importantly of Cantor sets; and relations between dimen-

sion and some other characteristics of dynamics.

Chapters 5 through 9 are dedicated to two “real-life” examples

of dynamical systems—the FitzHugh–Nagumo model and the Lorenz

model, where the former describes the propagation of a signal through

the axon of a neuron cell and the latter models the behavior of fluid

between two plates heated to different temperatures. While the un-

derlying mechanism in the FitzHugh–Nagumo model is a map of the

plane, the Lorenz model is a system of differential equations in three-

dimensional space. This allows the reader to observe various phenom-

ena naturally arising in dynamical systems with discrete time (maps)

as well as with continuous time (flows).

An important feature of these two examples is that each system

depends on some parameters (of which one is naturally selected to

be the leading parameter) so that the behavior of the system varies

(bifurcates) when the leading parameter changes. Thus, the reader

becomes familiar in a somewhat natural way with various types of

behavior emerging when the parameter changes, including homoclinic

orbits, Smale’s horseshoes, and “strange” (or “chaotic”) attractors.

Let me say a few words on how the book was writen. My coau-

thor, Vaughn Climenhaga (who at the time of writing the book was a

fourth-year graduate student) was the TA for the MASS course that

I taught. He was responsible for taking and writing up notes. He did

this amazingly fast (usually within one or two days after the lecture)

so that the students could have them in “real time”. The notes, em-

bellished with many interesting details, examples, and some stories

that he added on his own, were so professionally written that, with

few exceptions, I had to do only some minor editing before they were

posted on the web. These notes have become the ground material

for the book. Turning them into the book required adding some new

                

                                                                                                               



xvi Preface

material, restructuring, and editing. Vaughn’s participation in this

process was at least an equal share, but he also produced all the pic-

tures, the TeX source of the book, etc. I do not think that without

him this book would have ever been written.

Yakov Pesin

                

                                                                                                               



Chapter 1

Basic Concepts and
Examples

Lecture 1

a. A threefold cord: fractals, dynamics, and chaos. The word

“fractal” is one which has wriggled its way into the popular conscious-

ness over the past few decades, to the point where a Google search for

“fractal” yields over 12 million results (at the time of this writing),

more than six times as many as a search for the rather more funda-

mental mathematical notion of “isomorphism”. With a few clicks of

a mouse and without any need to enter the jargon-ridden world of

academic publications, one may find websites devoted to fractals for

kids, a blog featuring the fractal of the day, photo galleries of fractals

occurring in nature, online stores selling posters brightly emblazoned

with computer-generated images of fractals, . . . the list goes on.

Faced with this jungle of information, we may rightly ask, echo-

ing Paul Gauguin, “What are fractals? Where do they come from?

Where do we go with them?”

The answers to the second and third questions, at least as far

as we are concerned, will have to do with the other two strands of

the threefold cord holding this book together—namely, dynamical

1

                                     

                

                                                                                                               



2 1. Basic Concepts and Examples

Figure 1.1. Self-similarity as observed in a tree in winter.

systems and chaos.1 As an initial, näıve formulation, we may say that

in most cases where a dynamical system exhibits chaotic behaviour,

this behaviour is associated with the presence of a fractal. For our

purposes, fractals will come from particular dynamical systems, and

will lead us to an understanding of certain aspects of chaos.

But all in good time. We must begin by addressing the first

question, “What are fractals?”

b. Fractals: intricate geometry and self-similarity. Consider

an oak tree in the dead of winter,2 viewed from a good distance away,

as in the first panel of Figure 1.1. Its trunk rises from the ground

to the point where it bifurcates into two large boughs; each of these

boughs leads away from the centre of the tree and eventually sends

off smaller branches of its own. Walking closer to the tree, one sees

that these branches in turn send off still smaller branches, which were

not visible from further away, and more careful inspection reveals a

similar branching structure all the way down to the level of tiny twigs

only an inch or two long. The various scales are shown in the second

and third panels of Figure 1.1.

The key points to observe are as follows. First, the tree has a

complicated and intricate shape, which is not well captured by more

familiar geometric objects, such as lines, circles, polygons, and so

on. Second, we see the same sort of shape on all scales: whether we

view the tree from fifty yards away or from fifty inches, we will see a

1Chaos theory has also entered the popular imagination in its own right recently,
thanks in part to its mention in movies such as Jurassic Park.

2One may also consider the tree in summer, of course, but the leaves get in the
way of easy observation.

                

                                                                                                               



Lecture 1 3

Figure 1.2. A fractal coastline (photograph courtesy of
NASA Earth Observatory).

branching structure in which the largest branch (or trunk) in our field

of view splits into smaller branches, which then divide themselves, and

so on. This self-similarity is one of the key characteristics of fractals.

The previous paragraph described a qualitative self-similarity in

the structure of the tree; in fact, the self-similarity is quantitative as

well. Let us denote the diameter of a particular branch by d, and

consider the point where it splits into two branches, whose diameters

we denote d1 and d2. Taking into account that the amount of wa-

ter passing through the branch at any given time is proportional to

the area of the cross-section of the branch, we find, to a very good

approximation, that

(1.1) d2 = d21 + d22,

whatever size branch we started with.

We might imagine a tree where the sizes of the branches are

related not by (1.1) but by the more general equation

dα = dα1 + dα2 ,

where the exponent α may be different from 2. Indeed, if we con-

sider the bronchial tree, the network of passageways leading into the

lungs, then we find a similar qualitative picture3—the tree branches

recursively across a wide range of scales—but this time the exponent

is closer to α = 3. The idea that an exponent such as α can help us

to distinguish between qualitatively similar fractals is an important

one, which we will take up in more detail later.

Another striking example of a natural fractal may be seen by

looking at a high-resolution satellite image (or detailed map) of a

3This and other examples are described in [Sch91].
                

                                                                                                               



4 1. Basic Concepts and Examples

coastline, as in Figure 1.2, which shows a portion of the northwest

coast of Australia. The boundary between land and sea does not fol-

low a nice, simple path, but rather twists and turns back and forth;

each bay and peninsula is adorned with still smaller bays and penin-

sulas, and given a map of an unfamiliar coast, we would be hard

pressed to identify the scale at which the map was printed if we were

not told what it was.

The two threads connecting the objects in these examples are

their complicated geometry and some sort of self-similarity. Recall

that two geometric figures (for example, two triangles) are similar if

one can be obtained from the other by a combination of rigid motions

and rescaling. A fractal exhibits a sort of similarity with itself; if

we rescale a part of the image to the size of the whole, we obtain

something that looks nearly the same as the original.

We now make these notions more precise. Simple geometric

shapes, such as circles, triangles, squares, etc., have boundaries which

are smooth curves, or are at least piecewise smooth. That is to say,

if we write the boundary parametrically as

r(t) = (x(t), y(t)),

then for the shapes we are familiar with, x and y are piecewise differ-

entiable functions from R to R, so that the tangent vector r′(t) exists

for all but a few isolated values of t. By contrast, we will see that

a fractal “curve”, such as a coastline, is continuous everywhere but

differentiable nowhere.

As an example of this initially rather unsightly behaviour, we

consider the von Koch curve, defined as follows. Taking the interval

[0, 1], remove the middle third (1/3, 2/3), and replace it with the

other two sides of the equilateral triangle for which it is the base.

One obtains the piecewise linear curve at the top of Figure 1.3; this

is the basic pattern from which we will build our fractal.

Observe that the second curve in Figure 1.3 consists of four copies

of the first, each of which has been scaled to 1/3 its original size and

then used to replace one of the four line segments in the original

pattern. The new curve contains 16 line segments, each of length

1/9. Replacing each of these segments with an appropriately scaled
                

                                                                                                               



Lecture 1 5

Figure 1.3. The first few steps in the construction of the von
Koch curve.

copy of the basic pattern, we obtain the third curve in the figure, and

so on.

Each step in this construction—each curve in Figure 1.3—is piece-

wise linear. We may consider their parametrisations f1, f2, f3, . . . ,

each of which is a piecewise linear map from [0, 1] to R2. It is not

too difficult to show that the sequence {fn}∞n=1 converges uniformly,

and hence the limit f : [0, 1] → R2 exists and is continuous. The von

Koch curve is the image of this function f , the end of the limiting

process whose first few steps are shown.

Although each of the functions fn is piecewise linear, their limit

f is not differentiable anywhere, and hence the von Koch curve, de-

spite being continuous, does not admit a tangent vector at any point.

This is a manifestation of the complicated and intricate geometry we

referred to earlier; since the self-similarity of the curve is evident from

the construction, we may justifiably call this object a fractal.
                

                                                                                                               



6 1. Basic Concepts and Examples

Figure 1.4. A fractal island.

It is natural to characterise a curve by its length, and so we may

ask how long the von Koch curve is. One may easily verify that the

nth step in the iterative procedure leading to the von Koch curve is

a piecewise linear curve containing 4n line segments, each of length

(1/3)n. At this stage of the iteration, then, the entire curve has

length (4/3)n; but this quantity grows without bound as n goes to

infinity! The only conclusion we can reach is that the von Koch curve

has infinite length, despite being contained in a bounded region of

the plane. This sort of behaviour is in fact quite common for fractal

curves.

Indeed, consider the iterative procedure illustrated in Figure 1.4,

wherein each side of the square is replaced with the zig-zag shown,

which comprises four line segments of length slightly greater than

1/4. Each of these segments is then replaced with an appropriately

scaled version of the zig-zag pattern, and so on; the first few steps

of the iteration are shown. Note that at each step, we add exactly

as much area as we remove, and so the area of each “island” is equal

to 1. However, a similar calculation to the one above shows that the

limiting fractal island has a coastline of infinite length, despite having

unit area.

These last two examples show that the usual ways of characteris-

ing and measuring geometric objects—length, area, volume, etc.—are

insufficient to deal with fractals. Both the von Koch curve and the

coastline of the fractal island have infinite length, but zero area, and
                

                                                                                                               



Lecture 1 7

similar results may be obtained for fractal curves constructed begin-

ning from different generators; thus, we will need new tools in order

to study them properly. First, though, we briefly turn our attention

to dynamical systems, the second strand of the threefold cord.

c. Dynamics: things that move (or don’t). In some sense, any-

thing that moves is a dynamical system (and for that matter, so is

everything that doesn’t move). Somewhat more helpfully, we may

consider any set X with a map f taking X to itself; that is, f assigns

to each x ∈ X an element f(x) ∈ X. If we think of each point in

X as specifying a particular configuration of some system, then f is

merely an encoding of the rule by which the system evolves from one

state to the next. Some states evolve to other states under the action

of f , while others may be fixed; if every point x is fixed, then f is

the identity map, and nothing moves. But this is, of course, a rather

trivial case.

We refer to the point f(x) as the image of x under the action

of f . The essential feature of a dynamical system is that each image

f(x) is also an element of X, and thus lies in the domain of f ; that is,

the map f takes X into itself, and so we can iterate it. Having found

the image of a point x, we can then take the image of f(x) in turn,

which will be denoted f2(x) = f(f(x)). Continuing the iteration, we

obtain f3(x) = f(f2(x)), and in general, fn+1(x) = f(fn(x)).

In light of the key role iterative processes played in our earlier

examples of fractals, the reader may feel justified in suspecting that

the presence of an iterative process in this description of a dynamical

system has something to do with the promised connection between

the two; we will see later that this is often the case.

The sequence of points x, f(x), f2(x), . . . is referred to as the

trajectory (or orbit) of x. If we think of each iteration of the map f

as specifying how the system evolves from one time step to the next,

then it makes sense to think of the number of iterations n as the

amount of time which has elapsed, and the trajectory is simply a list

of the states through which the system passes as time goes on. This

describes what is known as a discrete-time dynamical system. One

may also consider continuous-time dynamical systems, in which the
                

                                                                                                               



8 1. Basic Concepts and Examples

time variable may take any real value, but we will defer discussion of

these systems until Chapter 9.

In and of themselves, sets are rather bland objects (with apologies

to the reader specialising in set theory), and so we usually consider

dynamical systems defined on sets X which possess some additional

structure. In particular, if we hope to have anything to do with

fractals, which are geometric objects, the set X should possess some

geometric structure, and so Euclidean space is a natural place to

begin.

Three familiar classes of maps on the plane R2 are rotation around

a point x by an angle θ, translation by a vector v, and reflection in

a line �. Together with the set of glide reflections, these are all the

rigid motions of the plane, and may all be iterated and interpreted as

dynamical systems.

Each of these maps can be written in the form x �→ Ax + v,

where A is a 2 × 2 matrix with the property that ‖Ax‖ = ‖x‖ for

every x ∈ R2. Thus each of these maps preserves distances, and

so d(fn(x), fn(y)) = d(x, y) for all n. However, we do not need

to restrict ourselves to isometries; any matrix A =
(
a b
c d

)
defines a

dynamical system on R2 by

f : R2 → R2,(
x1

x2

)
�→
(
a b

c d

)(
x1

x2

)
.

The properties of this dynamical system are largely governed by the

eigenvalues of A. If both eigenvalues lie inside the unit circle (|λ| < 1),

then every trajectory converges to 0 (see Appendix); if both eigenval-

ues lie outside the unit circle (|λ| > 1), then every trajectory diverges

to ∞ (except the one starting at the origin). If A has one eigenvalue

outside the unit circle and one inside, the situation is more subtle; we

will return to this case in Lecture 22(b).

The determinant of A also has ramifications for the properties of

the dynamical system defined by A. For example, if the determinant

is equal to 1, then f is area-preserving ; that is, the image f(A) =

{f(x) | x ∈ A} of a domain A ⊂ R2 has the same area as A itself.

Consequently, every image fn(A) has the same area as A.
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A1 A2

x

f(x)

f 2(x)

f 3(x)

Figure 1.5. Coding a trajectory of f .

We may also consider non-linear maps from the plane to itself;

in fact, most of the interesting examples are of this sort. So for now,

let f : R2 → R2 be any continuous map of the plane into itself. Let

A ⊂ R2 be some domain—perhaps a disc, perhaps something rather

more complicated—and suppose that the image of each point in A is

itself in A. Thus A is mapped into itself by the action of f , and so we

can write f : A → A. It follows that for any point x ∈ A, the entire

trajectory of x lies within A.

In principle, if we have precise knowledge of the map f and the

initial point x, then we can precisely compute each point fn(x) in

the trajectory of x. There is no randomness in the action of f ; it

is entirely deterministic, and given sufficient patience and computing

power, we can predict the future. Or so it seems. . . .

Suppose we divide A into two subdomains A1 and A2 in such

a way that every point x ∈ A lies in exactly one of the two. Now

instead of describing the trajectory of a point x by giving the precise

location of each iterate fn(x), we may instead “blur our vision” and

only record whether it lies in A1 or A2. In this way we assign to a

point x a sequence of 1’s and 2’s, known as a coding of x (really, of

the trajectory of x). For example, the trajectory shown in Figure 1.5

has a coding which begins with the symbols 1221. . . .

It is natural to ask if we can go in the other direction: Given

a sequence of 1’s and 2’s, can we find a point x whose trajectory is

coded by that sequence? If we can, is it unique, or might there be

several such points?

The answer to these questions is somewhat involved, and depends

heavily on the particular system f and on the choice of partition
                

                                                                                                               



10 1. Basic Concepts and Examples

{A1, A2}. We will see that in many interesting cases, the answer to

both questions is yes.

Suppose for the moment, then, that we have such a correspon-

dence between trajectories of our dynamical system and sequences of

1’s and 2’s. Imagine taking a coin and flipping it repeatedly. After

each flip, write down the number 1 if the coin comes up heads and the

number 2 if it comes up tails. In this manner we obtain a sequence of

1’s and 2’s which is entirely random, and which codes the trajectory

of some point x.

This brings us to a rather jarring conclusion: the trajectory of

this point x will appear to hop at random between A1 and A2, just

as the outcome of the coin toss hops at random between heads and

tails. In other words, even if we know which partition element (A1

or A2) the points x, f(x), . . . , fn(x) lie in, we cannot say for sure

whether fn+1(x) will lie in A1 or A2; the best we can do is to give

the probabilities of these two events. But we said earlier that f is

wholly deterministic, with no randomness whatsoever; where, then,

does this random-looking behaviour come from?

We will eventually resolve this paradox, but first we need to make

the concepts involved more precise. For the time being, we merely ob-

serve that this initially unpalatable coexistence of deterministic and

random behaviour is at the heart of the theory of chaos; indeed, it was

to describe such situations that James Yorke first coined the some-

what controversial term “deterministic chaos”. We will see in due

course how such behaviour arises from dynamical systems associated

with fractal sets.

Lecture 2

a. Dynamical systems: terminology and notation. Let us slow

down now and take a more leisurely look at some of the concepts

that will be foundational to our discussion of dynamical systems be-

fore moving on to consider some apparently simple, but ultimately

extremely challenging and enlightening, examples.

We begin with the d-dimensional Euclidean space Rd, that is, the

collection of d-tuples of real numbers. As our dynamical system, we
                

                                                                                                               



Lecture 2 11

may consider any map f which takes one element of Rd and gives us

back another.

It may happen that f is not defined on all of Rd but only on some

domain D ⊂ Rd. For instance, the rule that lets us go from x to f(x)

may only make sense when x is a vector of length no greater than R;

in this case, the domain of definition is the ball of radius R centred

at the origin.

We say that f(x) is the image of x, and we also say that x is a

preimage of f(x). The choice of article is important; while the map f

must send x to a unique point f(x), it is quite possible that there is

some point y �= x with f(y) = f(x), in which case y is also a preimage

of f(x).

We will also speak of the image of a set: if A ⊂ D lies within the

domain of definition, then the image of A is

f(A) = {f(x) | x ∈ A}.

Of particular importance is the image of the domain D; this image

f(D) is also known as the range of f .

If the range of f lies inside the domain of definition, then D is

mapped into itself by f , and we can apply f again, and again, and

again, ad infinitum, without ever leaving D. Thus, we may consider

not only f , but the map obtained by applying f twice. We denote

this by f2 and write f2(x) = (f ◦ f)(x) = f(f(x)). Similarly, we may

consider f3, f4, and in general fn, defined as

fn = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

.

The ability to iterate f means that we are in fact considering a

whole family of maps fn : D → D. It is immediate from the definition

that

(1.2) fn+m = fn ◦ fm = fm ◦ fn

whenever m and n are non-negative integers. This is the so-called

semi-group property, which allows us to translate questions about the

behaviour of iterates of f to questions about the action of a particular
                

                                                                                                               



12 1. Basic Concepts and Examples

semi-group4 (in this case, the natural numbers N) on the domain D,

leading to a more algebraic approach which is sometimes useful.

The sequence of points x, f(x), f2(x), . . . is called the trajectory

(or orbit) of x. The number n of iterations plays the role of time: the

near future corresponds to small values of n, the far future to large

values. It may at first seem somewhat unnatural to think of time

as moving in discrete increments, instead of a steady stream as we

are accustomed to. However, in practical terms, any measurement

we may wish to make can only be carried out at discrete times; any

two observations will be separated by a small interval, which may

be vanishingly short or mind-numbingly long, but which nevertheless

has the effect that our data is always collected with respect to a set

of discrete time steps.

Exercise 1.1. Describe the behaviour of the trajectories of the fol-

lowing maps on R:

(a) f(x) = |2x− 1|.
(b) g(x) = |x− 2|.

A set A for which f(A) = A is called f -invariant (or simply

invariant). If the domain D is invariant, then every point x ∈ D has

at least one preimage. If in addition the map f is one-to-one—if there

are no two points which have the same image—then this preimage is

unique, and we denote it by f−1(x). We say that f is invertible, and

its inverse is the map f−1 : D → D. Iterating this inverse gives us the

points f−2(x), f−3(x), and so on, which are the images of x under

the maps

f−n = f−1 ◦ f−1 ◦ · · · ◦ f−1︸ ︷︷ ︸
n times

.

Thus for invertible maps, the trajectory is defined not just for non-

negative values of n, but over the entire set of integers, and is a

doubly infinite sequence of points in X. Furthermore, the group

property (1.2) holds for any integers m and n, whether positive or

negative.5

4We must speak of semi-groups rather than groups because we have so far defined
the iterates fn only for non-negative values of n.

5And we have a true group action, rather than the action of a semi-group.
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If the map f is not one-to-one (which is the case for many im-

portant systems), different initial conditions may eventually wind up

following the same trajectory, and we cannot run time backwards;

the past determines the future, but the future does not necessarily

determine the past, since different initial conditions may lead to the

same outcome.

Even in this time-irreversible case, we still may (and often do)

consider preimages of points—and also of sets. Given a map f (which

may or may not be invertible) on a domain D and a set A ⊂ D, the

preimage of A is defined as

(1.3) f−1(A) = {x ∈ D | f(x) ∈ A},

which consists of all the points whose images lie in A. Note that

although there may be several preimages of a point, the preimage of

a set is uniquely defined.6

b. Population models and the logistic map.

b.1. A rather unrealistic population model. Consider a population of

duck-billed platypi (or bacteria, or whatever species you fancy), whose

size will be represented by a variable x. Given the size of the popu-

lation at the present time, we want to predict the size of next year’s

population (or perhaps the next hour’s, in the case of bacteria). So if

there are x platypi this year, there will be f(x) next year, where f is a

suitable function which models the change in the platypus population

from year to year. Of course, since we cannot have a negative number

of platypi, we must restrict x to lie in the interval [0,∞), which will

be the domain of definition for f .

What form should f take? As a first (simplistic) approximation,

we may suppose that the platypi reproduce at a constant rate, and so

if there are x of them this year, there will be rx next year, where r > 1

is a real number, and r−1 represents the proportion of newborns each

year.

We would like to understand what the trajectories of the system

look like for various possible starting populations. To this end, we

6Of course, if we think of a point x as a set {x} with only one element, then its

preimage f−1({x}) as defined in (1.3) is unique as a set.
                

                                                                                                               



14 1. Basic Concepts and Examples

f(x)

x
(x0, 0)

(x0, x1) (x1, x1)

(x1, x2) (x2, x2)

(x2, x3) (x3, x3)

(x3, x4) (x4, x4)

Figure 1.6. Cobweb diagram for a simple population model.

use a cobweb diagram,7 as in Figure 1.6, which shows the graph of f .

If x0 is the initial value of x, then the next point in the trajectory is

f(x0), which we denote by x1. We may find this value by following

the vertical line through (x0, 0), which intersects the graph of f at

the point (x0, f(x0)) = (x0, x1). Following the horizontal line through

this point until it intersects the bisectrix y = x, we reach the point

(x1, x1), and now our x-coordinate is x1 = f(x0), the next point in

the trajectory after x0.

In order to find the next point in the trajectory after x1, we

repeat this process: first follow the vertical line through (x1, x1) to

its intersection with the graph of f , the point (x1, f(x1)) = (x1, x2),

and then move horizontally to (x2, x2).

In general, we write xn = fn(x0) for the points of the trajectory,

and we see that one obtains xn from xn−1 by moving vertically to

the graph and then horizontally to the bisectrix. This gives a sim-

ple graphical procedure that allows us to investigate the qualitative

properties of the trajectory of x0.

In this case, we see that for any initial population size x0 �= 0,

the population size grows without bound; we say that the trajectory

7Also known as a Verhulst diagram, after the Belgian mathematician Pierre
Verhulst.
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f(x)

x
(x0, 0)

(x0, x1)(x1, x1)

(x1, x2)(x2, x2)

(x2, x3)(x3, x3)

(x3, x4)(x4, x4)

Figure 1.7. A dying population.

goes to infinity. The case x0 = 0 is different, reflecting the fact that

if there are no platypi to begin with, then no new ones will be born:

nothing begets nothing. We say that 0 is a fixed point for the map f .

Algebraically, a fixed point is a point x such that f(x) = x, and

for any such point we see that the trajectory never moves. Graphi-

cally, fixed points may be described as the points where the graph of

f intersects the bisectrix y = x.

An important feature of this particular fixed point is that it is

unstable; even a very small population x0 will eventually grow to

be arbitrarily large. Fixed points with this property, for which the

trajectories of nearby points are driven away, are also called repelling.

b.2. A model which could be realistic. Of course, as everyone knows,

platypi are not immortal. Alles Fleisch es ist wir Gras, and our model

needs to take into account the population reduction caused by death

by disease, predation, out-of-season platypus hunting, etc. This will

have the effect of changing the value of the parameter r, reducing it

by counteracting the increase in population provided by the year’s

births. If it reduces it to the point where r < 1, then the graph of f

is as shown in Figure 1.7, and the cobweb diagram clearly illustrates

the fate of the platypus colony.

In this case, 0 is still a fixed point, but it is now stable; a value

of x0 near 0 will lead to a trajectory which converges to 0. Fixed
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f(x)

x

Figure 1.8. The logistic map with r = 2.8.

points with this property, for which the trajectories of nearby points

are drawn to the fixed point, are also called attracting.

Note that from the mathematical point of view, there is a simple

relationship between the case r > 1 and the case r < 1—they are

inverses. Indeed, if we write fr : x �→ rx, then it is easy to see that

f−1
r = f1/r. One also sees that the slope of the graph at the fixed

point 0 determines whether that fixed point is attracting or repelling,

and that an attracting fixed point for f is a repelling fixed point for

f−1, and vice versa.

b.3. An innocent-looking model. As any biologist or ecologist will no

doubt protest quite vigorously, the preceding models are so simplistic

as to be entirely unrealistic. Among other weaknesses, they fail to

take into account the fact that resources are limited, and whatever

river our platypi find themselves in can only support a finite popula-

tion size before starvation or overcrowding leads to disaster.

To address this shortcoming, we introduce a new term into our

equation. Suppose environmental factors determine some maximum

population P , which corresponds, for instance, to the amount of food

(or some other resource) available. Then the population cannot grow

beyond P ; furthermore, if the population reaches P , all the food

will be eaten and the platypi will starve, sending the next year’s
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population to 0. We model this situation with the formula x �→
rx(P − x). In order to keep the equations as simple as possible,

though, we consider the quantity x̃ = x/P , which stands for the

proportion of the maximum population P , and so lies between 0 and

1. Then we have

f̃(x̃) = f(x̃P ) = rx̃P (P − x̃P ) = r̃x̃(1− x̃),

where we write r̃ = rP 2. For simplicity of notation we will from now

on drop the tilde and simply write the dynamical system in question

as

(1.4)
f : [0, 1] → [0, 1],

x �→ rx(1− x),

where r is a parameter encoding information about the system, such

as reproduction rate, mortality rate, etc. The map in (1.4) is known

as the logistic map, and its graph for the value r = 2.8 is shown in

Figure 1.8, along with a typical trajectory.8

Unlike the example x �→ rx examined earlier, the logistic map

displays a startling intricacy when we begin to track the behaviour

of typical trajectories for various values of the parameter r. Indeed,

the amount of literature on the logistic map is such that one could

easily devote an entire year’s course to the subject without exhausting

the corpus of present knowledge, and the logistic map (along with its

relatives) is still an area of active research.

Leaving behind for the time being any biological interpretations

of the model, let us focus on its mathematical structure. It turns out

that the map f is equivalent to the map g : y �→ y2+c in the following

sense: given a fixed value of the parameter r, we can find a value of

c ∈ R, an interval I ⊂ R, and a change of coordinates h : [0, 1] → I

such that g ◦ h = h ◦ f . That is, the following diagram commutes:

(1.5)

[0, 1]
f−−−−→ [0, 1]⏐⏐
h ⏐⏐
h

I
g−−−−→ I

8This map was proposed in a seminal paper by the biologist Robert May as a
discrete-time demographic model similar to the logistic differential equation created
by Pierre Verhulst.
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g(y)

y

Figure 1.9. Trajectories escaping to infinity.

By “commutes”, we mean that we may follow a point in [0, 1] by first

applying f and then using h to pass to a point in I, or by first passing

to a point in I via h, and then applying g, and we will reach the same

point whichever way we go.

An invertible map such as h which intertwines the dynamics of

two systems in this manner is called a conjugacy, and the two maps f

and g are said to be conjugate.9 Using the conjugacy h, any question

we have about the dynamics of the map f can be translated into a

question about the dynamics of g.

Exercise 1.2. Find an explicit change of coordinates which demon-

strates the conjugacy in (1.5). Which values of c correspond to values

of r that could occur in the model?

For large enough values of c, the graph of g lies entirely above

the bisectrix, and every trajectory escapes to infinity, as shown in

Figure 1.9. The parabola moves down as c decreases, and eventually,

for some critical value of c, becomes tangent to the bisectrix, as shown

in Figure 1.10.

The point of tangency p is a fixed point for g. As is evident from

the cobweb diagram, trajectories which start a little bit to the left of

p are attracted to it, while trajectories which start just to the right

are repelled and go to infinity. Thus in this case we have a fixed point

which is neutral : it is neither an attractor nor a repeller.

9In fact, since the change of coordinates h can be chosen to be continuous, we
will eventually speak of a topological conjugacy.
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g(y)

y

Figure 1.10. A fixed point which is neither attracting nor repelling.

Moving the initial point further to the left, one sees that for large

enough negative values of x0, the next point in the trajectory leaps

to the right of p and then the trajectory goes to infinity. The point

of transition between the two sorts of behaviour is x0 = −p, which

leads to x1 = g(x0) = p, and so the trajectory becomes trapped on

the fixed point p.

Thus we have completely classified the asymptotic behaviour of

trajectories for this particular map; points in [−p, p] are attracted to

the fixed point p, while all other points go to +∞ under repeated

iterations.

As we will see, the picture becomes vastly more complicated than

this if we continue to decrease the parameter c.

Exercise 1.3. Describe all trajectories of the map g generated by

the function g(y) = y2 + c for all the values of c ≥ 0.

Lecture 3

a. A linear map with chaotic behaviour and the middle-third

Cantor set. Aside from being quite unrealistic, the linear population

model in the previous lecture did not display any chaotic behaviour

in the sense of Lecture 1; we cannot find a reasonable partition of the

phase space for which most trajectories have a coding which appears

random. This is actually a feature of any linear map; the theory of

Jordan normal form, which is one of the most important results in

basic linear algebra, offers a complete classification of linear maps in
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g(y)

y

Figure 1.11. Chaotic behaviour in the logistic map for c = −1.85.

Rd and describes all the possible behaviours, none of which display

any real complexity.

By contrast, the logistic map g : y �→ y2 + c displays a variety

of complex behaviours as we consider different parameter values, a

quality which makes it eminently worthy of further study. In the

previous lecture, we described its behaviour for large values of c and

took a very brief look at how that behaviour becomes more intricate

as c decreases. In fact, for most values of c near −2, the logistic map

exhibits fully chaotic behaviour, in the sense discussed in Lecture 1;

a typical trajectory for the value c = −1.85 is shown in Figure 1.11.

We will have more to say about the logistic map later on, in

Chapter 6. For the time being, we remark that a good deal of its

complex behaviour can be attributed to its non-linearity. That same

non-linearity, though, makes the map far more difficult to study; lin-

ear models are simply more tractable than non-linear ones. For this

reason, we will first spend some time studying a piecewise linear map

which displays chaotic behaviour. This map will be easier to study

because of its linearity, but the fact that it is only piecewise linear,

rather than fully linear, will still permit the existence of the chaotic

behaviour we wish to understand.
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x0

1
f(x)

I1 I2

Figure 1.12. A piecewise linear map with chaotic behaviour.

Consider the map f shown in Figure 1.12, which is defined linearly

on each of the intervals I1 = [0, 1/3] and I2 = [2/3, 1] so that the

image of both intervals is f(I1) = f(I2) = [0, 1]. Thus the domain

of definition of f is D = I1 ∪ I2, and the range is [0, 1]. Notice that

the range does not lie inside the domain of definition; I1 ∪ I2 is not

mapped into itself by f , and so f is not defined at every point in the

range. The cobweb diagram in the figure shows one iteration in the

trajectory of the point 1/6, whose image lies outside the domain of

definition, and hence cannot be iterated further.

If we cannot iterate the map f , then we cannot study the dynam-

ics, and so we must determine which points admit a second iteration.

That is, what is the domain on which the map f2 = f ◦ f is defined?

In order for f2(x0) to be defined, both x0 and f(x0) must lie in

the domain of f ; that is, we must have

x0 ∈ D ∩ f−1(D) = {x | x ∈ D and f(x) ∈ D}.

This is shown graphically in Figure 1.13, a sort of inverse cobweb

diagram. Placing the domain D along the vertical axis, we find its

preimage f−1(D) by first following each horizontal line through D to

all of the points where it intersects the graph of f and then moving

vertically from these intersection points to the x-axis. We see that

the domain on which f2 is defined consists of four closed intervals,
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f(x)

x

I1

I2

I11 I12 I21 I22

Figure 1.13. Finding the preimage f−1(D).

each of length 1/9. Writing these as

I11 =

[
0,

1

9

]
, I21 =

[
2

3
,
7

9

]
, I12 =

[
2

9
,
1

3

]
, I22 =

[
8

9
, 1

]
,

we see that f(I11) = f(I21) = I1, that f(I12) = f(I22) = I2, and

that f2(I11) = f2(I12) = f2(I21) = f2(I22) = [0, 1]. Observe that the

intervals Iw1w2
(where the indices w1 and w2 are either 1 or 2) may

be defined in terms of the action of f as follows:

(1.6) Iw1w2
= Iw1

∩ f−1(Iw2
).

We obtained the domain of f by removing the (open) middle

third from the interval [0, 1], leaving two closed intervals of length 1/3.

From these, we obtained the domain of f2 by removing the (open)

middle third of each, leaving four closed intervals of length 1/9. The

graph of f2 is shown in Figure 1.14. In this picture we already see

the beginnings of self-similarity, and the same reasoning shows that

the domain of f3 will likewise consist of eight closed intervals, each

of length 1/27.

In general, an inductive argument shows that the domain of fn

consists of 2n closed intervals, each of length 3−n. Following (1.6),

we may denote these by

(1.7) Iw1w2...wn
= Iw1

∩ f−1(Iw2
) ∩ · · · ∩ f−(n−1)(Iwn

),
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0

1
f 2(x)

0 1

x

Figure 1.14. The second iterate of f .

where each wk is either 1 or 2. Observe that for a fixed value of n,

any two such intervals are disjoint; that is,

Iv1...vn ∩ Iw1...wn
= ∅

whenever (v1, . . . , vn) �= (w1, . . . , wn). Increasing n by one, we see

from the construction that

f−n(D) ∩ Iw1...wn
= Iw1...wn1 ∪ Iw1...wn2.

Thus the domain of definition of the nth iterate fn may be written

Dn = f−(n−1)(D) =
⋃

w1...wn

Iw1...wn
,

where the union is taken over all n-tuples with values in {1, 2}. Let-
ting n run to infinity, we see that the domain on which every iterate

fn is defined is

(1.8) C =
⋂
n≥1

( ⋃
w1...wn

Iw1...wn

)
,

which is the standard middle-third Cantor set. As far as the dynamics

of the map f are concerned, the key property of C is that it is a

repeller ; that is, there exists a neighbourhood V of C (in this case

the interval [0, 1]) such that C consists of precisely those points whose

orbits remain in V :

C =
⋃
n≥1

f−n(V ).
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Equivalently, we see that C is the largest invariant set in [0, 1].

In the first place, it is genuinely invariant, unlike the approximations

Dn, for which we have f(Dn) = Dn+1 � Dn; for the Cantor set itself,

we have f(C) = C. Furthermore, if A ⊂ D is any invariant set,

f(A) = A, then we must have A ⊂ C.

Thus if we wish to study the dynamics of f , the “proper” domain

to consider is the Cantor set C. To get a first idea of how the dynamics

of f : C → C behave, consider two distinct points x, y ∈ C which are

very close together, so that d(x, y) is very small. How far apart are

their images? It is not too hard to see that we have

d(f(x), f(y)) = 3d(x, y),

so that the distance between x and y is increased by a factor of 3.

For higher iterates fn, we have

d(fn(x), fn(y)) = 3nd(x, y),

provided that the trajectories have stayed close up until that point; in

particular, this will be true if fk(x) and fk(y) lie in the same interval

I1 or I2 for each 1 ≤ k < n.

The significance of this result is that small errors are magnified:

if x represents the true state of the system but we instead measure it

as y due to a very small experimental error, then the trajectory we

predict will diverge exponentially quickly from the true trajectory.

In this case, the notion of instability, which we introduced earlier

for fixed points, applies to every trajectory of the system; whatever

trajectory we look at, nearby trajectories will be repelled at an ex-

ponential rate. This phenomenon represents a property known as

sensitive dependence on initial conditions, which is a weak form of

chaotic behaviour.10

b. The Cantor set and symbolic dynamics. When Georg Can-

tor first conceived his eponymous set, he was hoping to settle the

continuum hypothesis by constructing a subset of the interval whose

cardinality lay strictly between that of the integers and that of the

10Although trajectories of the linear map x �→ rx (for r > 1) also diverge at an
exponential rate, they do so by escaping to infinity. One of the key features which makes
the present behaviour chaotic is that this divergence happens while the trajectories
remain bounded.

                

                                                                                                               



Lecture 3 25

real line. As we shall see, this turned out not to be the case; neverthe-

less, the Cantor set has become an object of fundamental importance

to a number of different areas in mathematics, both in dynamics and

elsewhere, although we shall be most concerned with the dynamical

applications.

We start with an innocent-looking question. How big is the Can-

tor set? Of course, we need a notion of “bigness”, and so we may first

try to compute the “length” of the Cantor set. To this end, observe

that at the first iteration, D1 comprises two intervals of length 1/3,

and so has total length 2/3. At the next iteration, four intervals of

length 1/9 give D2 a total length of 4/9. In general, Dn is a union of

intervals with total length (2/3)n. Since this goes to 0 as n → ∞, we

must consider the “length” of C to be 0. Alternately, we may look at

the lengths of the intervals which are removed at each step and see

that they sum to 1.

From a probabilistic point of view, this means that if we choose

a point in the interval [0, 1] at random, the probability of picking a

point on the Cantor set is precisely zero. It would seem that length

is not the proper way to measure how big C is.

Since C is not “big enough” to have positive length, we may try

measuring it in a different way, by counting the number of points it

contains. We immediately see that it has infinitely many points, and

so we next ask whether it is countable or uncountable. To answer this

question, we observe, as Cantor did, that each point x ∈ C uniquely

determines a sequence w1, w2, . . . , where each wk is either 1 or 2, by

the rule

x ∈ Iw1
∩ Iw1w2

∩ · · · ∩ Iw1...wn
∩ · · · ,

where all we are doing is asking which interval Iw1...wn
contains x at

each step n of the iteration. This defines a map from C to the space

of symbolic sequences

Σ+
2 = {1, 2}N = {(wk)

∞
k=1 | wk = 1 or 2 for every k ≥ 1}.

Furthermore, the correspondence is bijective; given any sequence w ∈
Σ+

2 , the intersection

N⋂
n=1

Iw1...wn
= Iw1...wN

                

                                                                                                               



26 1. Basic Concepts and Examples

is an interval whose length goes to 0 as N → ∞, and so the inter-

section
⋂∞

n=1 Iw1...wn
consists of precisely one point. It follows that

the sequence w1, w2, . . . comes from exactly one point x, and we have

demonstrated that the following coding map is a bijection:

h : Σ+
2 → C,

w = (w1, w2, . . . ) �→
⋂
n≥1

Iw1...wn
.

Exercise 1.4. Using binary expansions of real numbers, show that

Σ+
2 has the same cardinality as [0, 1], and hence that the Cantor set

C does as well.11

In fact, the coding map h does more than just establish a bijection

between Σ+
2 and C, which only shows that the two are the same from

a set-theoretic point of view. The correspondence runs deeper than

that, to an equivalence between the dynamics of the two sets as well.

Of course, at this point we have not put any dynamics on the

set Σ+
2 , and so we must define a map σ : Σ+

2 → Σ+
2 in order for the

previous claim to make any sense. Recalling the definition of the sets

Iw1...wn
in (1.7), we see that the coding of a point w = (wn)n∈N ∈ Σ+

2

can be written

h(w) =
∞⋂

n=1

f−(n−1)(Iwn
) = Iw1

∩ f−1(Iw2
) ∩ f−2(Iw3

) ∩ · · · ,

and so

(1.9)
f(h(w)) = Iw2

∩ f−1(Iw3
) ∩ f−2(Iw4

) ∩ · · ·
= h(w′)

where we write w′ = (w2, w3, . . . ), and use the fact that f(Iw1
) =

[0, 1], and also that f(f−1(X)) = X for any set X in the range of f .12

The map which takes w to w′ is particularly simple: all we have to

11We will see later that cardinality is a zero-dimensional measure, and so this
result says that C is somehow “bigger than zero-dimensional”. Similarly, length is
a one-dimensional measure, and the earlier result regarding the “length” of C means
that C is “smaller than one-dimensional”. We will formulate these statements more
precisely when we discuss Hausdorff dimension in Lecture 7.

12Note that the similar-looking statement f−1(f(X)) = X is not true in general.
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do is drop the first symbol, w1, and shift all the others one position

to the left. This is the shift map

σ : Σ+
2 → Σ+

2 ,

(w1, w2, w3, . . . ) �→ (w2, w3, w4, . . . ),

with which (1.9) can be written in the form

(1.10) f ◦ h = h ◦ σ.

Thus we have shown that the following diagram commutes (as we did

earlier in (1.5)):

(1.11)

Σ+
2

σ−−−−→ Σ+
2⏐⏐
h ⏐⏐
h

C
f−−−−→ C

Hence the coding map h is a conjugacy between the shift σ and the

map f , which allows us to draw conclusions about the dynamics of f

based on analogous results for the dynamics of σ.

For example, we may ask how many periodic points of a given

order f has; that is, how many solutions there are to the equation

fm(x) = x for a fixed integer m. Two obvious periodic points are 0

and 1, which are fixed by f and are thus immediately periodic. It

is not so obvious what happens for larger values of m, but we may

obtain the answer relatively easily by passing to the symbolic setting.

Here we see that any fixed point must have w2 = w1, and similarly

wn+1 = wn for every n. Thus the only fixed points are (1, 1, 1, . . . ) and

(2, 2, 2, . . . ), which correspond to 0 and 1, respectively. For m = 2,

the equation σ2(w) = w tells us that we may choose w1 and w2 to be

either 1 or 2, but that after that we must have

wn =

{
w1 n odd,

w2 n even.

Thus there are four points with σ2(ω) = ω; in addition to the two

mentioned above, we have (1, 2, 1, 2, . . . ) and (2, 1, 2, 1, . . . ).

In general, any sequence w which repeats after m digits will sat-

isfy fm(w) = w, and since there are 2m such sequences, we have 2m
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periodic points of period m.13 Passing to C via the conjugacy given

by h, we see that f also has 2m periodic points of period m, and so

the set of periodic points is countably infinite.

Exercise 1.5. Argue directly from the definition of f that the set of

periodic points is countably infinite. Can you obtain a result on the

number of periodic points with a given period without using symbolic

dynamics?

Lecture 4

a. Some point-set topology. In this lecture, we pause to recall

some of the basic definitions of point-set topology, metric spaces, and

Lebesgue measure. These will be needed for our subsequent discus-

sions of Cantor sets, symbolic space, and dimension theory.

We begin with a (rather hasty) sketch of the basic topological

definitions without reference to a metric.

Definition 1.1. Let X be a set and T a collection of subsets of X

such that:

(1) ∅, X ∈ T .

(2) If U, V ∈ T , then U ∩ V ∈ T .

(3) If {Uα} ⊂ T , then
⋃

α Uα ∈ T , where the union may be taken

over any collection of sets in T , countable or not.

Then the pair (X, T ) is a topological space, and T is the topology on

X. The sets in T are referred to as open sets ; given a point x ∈ X,

an open set containing x is a neighbourhood of x. Similarly, an open

set containing E ⊂ X is a neighbourhood of E.

One of the most familiar topological spaces is R, where a set U

is open if and only if it can be written as a countable union of open

intervals,

(1.12) U =

∞⋃
n=1

(an, bn).

13Of course, some of these will also be periodic points of lower order. We must
do a little more work if we are to count points with primitive period m.
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It can easily be checked that the collection T of such sets satisfies

the three properties given above. In fact, this definition codifies these

three properties as the only axioms which need to be satisfied in

order for topological concepts such as convergence, compactness, and

continuity to be used. Once we know which sets are open, all these

concepts are in play, wherever our underlying space came from.

A sequence xn ∈ X converges to x ∈ X if for every neighbourhood

U of x, there exists N such that x ∈ U for all n ≥ N .

A set E ⊂ X is compact if every open cover of E has a finite

subcover; that is, given an arbitrary collection of open sets whose

union contains E, there exists a finite subcollection whose union al-

ready contains E. In many cases (but not all), this is equivalent to

the requirement that any sequence xn ∈ E contains a subsequence

which converges to a point in E. For sets in Rd, it is also equivalent

to the requirement that E be closed (see below) and bounded.

If X and Y are two topological spaces, a map f : X → Y is

continuous if given any open set U ⊂ Y , the preimage f−1(U) =

{x ∈ x | f(x) ∈ U} is open in X. A bijection f (that is, a one-to-one

map whose range is all of Y ) such that both f and f−1 are continuous

is called a homeomorphism; this is the natural equivalence relation in

the category of topological spaces.

In order to give all these topological definitions, it also suffices

to know which sets are closed ; we say that A ⊂ X is closed if its

complement X \ A is open. There are various equivalent definitions

of closed sets. For example, x ∈ X is an accumulation point forA ⊂ X

if every neighbourhood of x contains a point in A other than x itself

(which may or may not be in A). Then the closure of A, denoted

A, is the set A together with all its accumulation points, and A is

closed if and only if A = A; the closure A may also be characterised

as the smallest closed set which contains A. The dual notion to the

closure is the interior of a set A, characterised as the largest open set

contained in A; equivalently,

intA = X \
(
X \A

)
= {x ∈ A | U ⊂ A for some open U � x}.

In what follows, one of our fundamental examples of a topological

space will be the middle-third Cantor set C ⊂ R. The topology T on
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R given in (1.12) determines a topology T ′ on the Cantor set C ⊂ R
(indeed, on any subset of R) as follows: a set U ⊂ C is open (lies in

T ′) if and only if there exists V ∈ T such that U = V ∩ C.

With this induced topology, the Cantor set has several important

topological properties, which we now describe.

Given a topological space X, a set A ⊂ X is disconnected if

there exist disjoint open sets U, V ⊂ X such that A ⊂ U ∪ V , and

is connected if no such U, V exist. If for any x, y ∈ A, there exist

disjoint open sets U, V such that x ∈ U , y ∈ V , and A ⊂ U ∪ V , we

say that A is totally disconnected.

Finally, a set A ⊂ X is perfect if every point x ∈ A is an accu-

mulation point for A.

Exercise 1.6. Show that the middle-third Cantor set is compact,

perfect, and totally disconnected.

It is in many cases important to have a notion of when a set is

somehow “large” in a topological sense. When can a set A ⊂ X be

said to contain “most” of X, from a topological point of view? One

possibility is as follows: we say that A is dense if A = X, or dense in

E ⊂ X if A = E.

Exercise 1.7. Show that the set of rational points in [0,1] is dense.

Exercise 1.8. Show that a set A ⊂ X is dense in X if and only if it

intersects every open set U ⊂ X. Show that the set of endpoints of

removed intervals in the middle-third Cantor set is a dense subset of

the Cantor set.

Since open sets are guaranteed to contain certain parts of X (a

neighbourhood of x, for any x in the set), being open is in some sense

a “large” property. Thus a set which is both open and dense is very

large, topologically speaking. This motivates the following definition:

a set A ⊂ X is residual if it is the intersection of a countable number

of open and dense sets. If a property holds on a residual set of points,

then it may be thought of as holding on very nearly all of X; such a

property is said to be true generically.
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These notions of topological size are qualitative rather than quan-

titative; thus, they are not terribly useful for much of the more de-

tailed work we eventually wish to carry out. We have no way to say

that a particular neighbourhood of x is “small”, or to compare neigh-

bourhoods of different points. Consequently, many concepts from

calculus and real analysis cannot be stated in the context of a general

topological space; we can go a long way and obtain many analytic

results using only topological methods, but we cannot do everything.

The definition of a topological space is general enough to permit some

behaviour which is rather pathological from the point of view of the

standard topology on R.

b. Metric spaces. A particular class of topological spaces, which

are in some sense better behaved and do not exhibit as much patho-

logical behaviour, consists of those spaces whose topology is induced

by a metric; that is, a distance function d : X×X → [0,∞) such that

the following hold for all x, y, z ∈ X:

(1) d(x, y) ≥ 0, with equality if and only if x = y.

(2) d(x, y) = d(y, x).

(3) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

For example, the usual distance function

(1.13) d(x, y) = |x− y|

on R makes the real line a metric space.

Given a space X with a metric d, we may consider the set of all

points which lie within a fixed distance r > 0 of a point x ∈ X:

B(x, r) = {y ∈ X | d(x, y) < r}.

This is the open ball of radius r centred at x. We say that a set U ⊂ X

is open if for every x ∈ U there exists r > 0 such that B(x, r) ⊂ U ;

that is, if a sufficiently small ball around x is contained in U for every

x ∈ U .

If U1 and U2 are open sets, it is easy to verify that their union U1∪
U2 is open as well; indeed, this holds for the union of any collection

of open sets, no matter how large. One may also check that the

intersection U1∩U2 is open as well, and that this property carries over
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to finite intersections U1∩· · ·∩Un, but not to infinite intersections, as

the example Un = (−1/n, 1/n) ⊂ R illustrates. Upon the observation

that the empty set and X are both open, we see that the collection

of open sets as just defined satisfies the properties of a topology as

given at the beginning of the lecture.

Exercise 1.9. Show that the metric (1.13) on R induces the topology

in which the open sets are given by (1.12).

Given any set E ⊂ X, we may consider the r-neighbourhood of

E, defined as ⋃
x∈E

B(x, r).

This is just the set of all points in X which lie within a distance r of

some point in E, and is in some sense a “fattening” of the set E. For

example, if E is the ball B(0, a) ⊂ Rd, then the r-neighbourhood of E

is just the larger ball B(0, a+r). If E is a set with a more complicated

geometry, such as the Cantor set, then its r-neighbourhoods will in

some sense have a simpler geometric structure than E itself.

For metric spaces, we may formulate an equivalent definition of

closed sets: a set E is closed if for every sequence (xn)n∈N ⊂ E which

converges to some point x ∈ X, we have in fact x ∈ E. This is often

expressed as the statement that E contains its limit points.

From this last statement, or from the definition, it follows that

arbitrary intersections of closed sets are closed, as are finite unions of

closed sets. Infinite unions of closed sets may not be closed—consider

En = [1/n, 1].

In the context of metric spaces, the definition of a continuous

map (and hence of a homeomorphism) can be phrased in a slightly

more familiar way.

Exercise 1.10. Given two metric spaces (X, d) and (Y, ρ), show that

f : X → Y is continuous if and only if for all x ∈ X and ε > 0 there

exists δ > 0 such that ρ(f(x), f(y)) < ε whenever y ∈ X is such that

d(x, y) < δ.

The natural equivalence relation on the class of metric spaces is

isometric equivalence; two metric spaces (X, d) and (Y, ρ) are iso-

metrically equivalent if there exists a bijection f : X → Y such that
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Figure 1.15. Vacationing in France.

ρ(f(x), f(y)) = d(x, y) for all x, y ∈ X. However, since metric spaces

also carry a natural topological structure, it is often of interest to un-

derstand when two metric spaces are equivalent as topological spaces,

rather than as metric spaces.

Exercise 1.11. Show that if X is any metric space and E ⊂ X

is non-empty, compact, perfect, and totally disconnected, then E is

homeomorphic to the middle-third Cantor set.

It is also of interest to understand how different metrics can in-

duce entirely different topologies. To illustrate the various exotic

topologies that can be induced by unconventional metrics, let X be

the unit disc in R2, and introduce a metric d by the formula

(1.14) d(x,y) =

{
‖x− y‖ if x is a scalar multiple of y,

‖x‖+ ‖y‖ otherwise,

where ‖·‖ denotes the usual norm on R2, ‖x‖ =
√
x2
1 + x2

2. This is not

quite so unnatural an example to consider as it may appear. Suppose

you are on holiday in France (see Figure 1.15), and wish to take the

high-speed train (the TGV) from Marseille (on the Mediterranean)

to Nantes (near the Atlantic). Because there is no direct TGV line
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between the two cities, you must go via Paris (which is, of course, the

origin in this example), and so as far as your travels are concerned,

the distance from Marseille to Nantes is found by adding together the

distance from Marseille to Paris (‖x‖) and the distance from Paris to

Nantes (‖y‖).
On the other hand, if you wish to go from Marseille to Lyon, then

there is no need to go all the way to Paris first, since the two cities

lie on the same branch of the rail system, and so the distance is given

by the usual formula (‖x− y‖).
The new metric induces a rather different topology on the disc

than the one we are used to. For example, given any x �= 0 in the

disc, the interval

((1− ε)x, (1 + ε)x) = {rx | 1− ε < r < 1 + ε}

is open for every ε > 0, although these sets were neither open nor

closed in the usual topology.

A striking distinction between the two spaces is given by the

notion of separability : a topological space is separable if it has a

countable dense subset. With the usual metric, the disc is a separable

metric space (consider points with rational coordinates), but in this

new metric, there is no countable dense subset, and so the space is

not separable.

c. Lebesgue measure. Each of the Cantor sets we have studied

so far inherits a metric, and thus a topology, from the real line, as

indeed does every subset of R. Topological notions provide one, very

coarse, way of classifying subsets of R, while metric notions provide

another, somewhat more discriminating, tool. Another tool, which

in some ways is coarser and in other ways more precise, is Lebesgue

measure, which generalises the notion of “length” to sets which are

not intervals.

We will write Leb(Z) for the Lebesgue measure of a set Z ⊂ R;
if Z is an interval [a, b], then the Lebesgue measure of Z is just the

length of the interval,

(1.15) Leb([a, b]) = b− a.
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Endpoints do not contribute to the Lebesgue measure of an interval;

(1.15) also applies to intervals of the form (a, b), (a, b], and [a, b).

If I1 and I2 are two intervals, they may either overlap or be

disjoint. If they overlap, then their union is again an interval, and so

Leb(I1 ∪ I2) is given by (1.15). If they are disjoint, we define

Leb(I1 ∪ I2) = Leb(I1) + Leb(I2).

In fact, we define Lebesgue measure this way for any set Z which is

a union of countably many disjoint intervals:

(1.16) Leb

(⋃
i

Ii

)
=
∑
i

Leb(Ii).

Each partial sum over finitely many disjoint intervals is less than 1,

and so the infinite sum converges.

In order to generalise (1.16) to sets which are not countable unions

of intervals, we cover them with such unions. Since any particular

union may cover more than just the set we are interested in, we define

the Lebesgue measure of a set Z ⊂ R as the greatest lower bound over

all such covers:

(1.17)

Leb(Z) = inf

{∑
i

Leb(Ii)
∣∣∣ {Ii} is a cover of Z by open intervals

}
.

In fact, when we give a less superficial treatment of measure the-

ory in Chapter 3, we will see that what we have just defined is actually

an outer measure, unless we require Z to be a measurable set. For

the time being, though, this rough idea will serve us well as motiva-

tion for other definitions and discussions, and we will return to the

technical details in due course.

Before moving on, we note that we may now make more precise

our statement in Lecture 3 that the “length” of the Cantor set is zero.

As Lebesgue measure is the generalisation of length, we ought to say

that the Cantor set has Lebesgue measure zero, or Leb(C) = 0.

Exercise 1.12. Let Z ⊂ R be countable, and show that Leb(Z) = 0.

In particular, the set of rational numbers has Lebesgue measure zero.
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g0 g1 g2 g3 g4

Figure 1.16. Building the devil’s staircase.

Exercise 1.13. Define a sequence of functions gn : [0, 1] → [0, 1] as

follows (see Figure 1.16):

(1) gn(0) = 0, gn(1) = 1.

(2) gn has constant slope 3n on the intervals Iw1...wn
(the compo-

nent intervals of the nth step in the iterative construction of the

middle-third Cantor set).

(3) gn has slope 0 on [0, 1] \
(⋃

w1...wn
Iw1...wn

)
(the intervals which

are removed from the middle-third Cantor set before step n).

By taking the limit as n → ∞, obtain a non-decreasing continuous

function g : [0, 1] → [0, 1] such that g(0) = 0 and g(1) = 1. Give an

explicit description of a set Z ⊂ [0, 1] such that g is differentiable at

every x ∈ Z with g′(x) = 0, and [0, 1] \Z has Lebesgue measure zero.

The function g constructed in Exercise 1.13 is known as the devil’s

staircase (or sometimes as the Cantor function) and is rather patho-

logical when compared with the sorts of functions one usually encoun-

ters in introductory calculus and analysis. It is non-increasing every-

where except on the middle-third Cantor set, which has Lebesgue

measure zero, and it is continuous everywhere on the unit interval;

nevertheless, it increases in value as we go from one end of the interval

to the other.

One might be forgiven for thinking that a function with such

strange behaviour could not arise in any natural setting and could

only be the result of a deliberate construction, as in Exercise 1.13.

One would, however, be mistaken, as the following exercise shows.

Exercise 1.14. Define two affine maps f1 and f2 from R to itself by

f1(x) = 3x, f2(x) = 3(x− 1) + 1.
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Thus f1 and f2 are linear expansions by a factor of 3 around the points

x = 0 and x = 1, respectively. Given an initial condition x0 ∈ [0, 1],

construct a sequence x1, x2, . . . as follows:

(1) Select one of the two maps f1 or f2 with equal probability (by

flipping a coin, for example).

(2) If fi was selected, let x1 = fi(x0).

(3) Return to step (1) and select a map fj at random (independently

of which map was chosen at first); let x2 = fj(x1).

(4) By successive random choices and iterations, construct x3, x4, . . . .

Let P (x) be the probability that a sequence constructed in the above

fashion starting at x0 = x escapes to infinity; xn → +∞. Show that

P : [0, 1] → [0, 1] is the Cantor function constructed in Exercise 1.13.

Lecture 5

a. The topological structure of symbolic space and the Can-

tor set. Having seen that h respects the dynamics of f and σ, it is

natural to ask what other aspects of the sets C and Σ+
2 are preserved

by the conjugacy. We saw in the previous lecture that the Cantor set

C inherits a metric, and hence a topology, from the real line. If we

define a metric on Σ+
2 , then we will have a topology there too, and we

may ask whether h takes convergent sequences in Σ+
2 to convergent

sequences in C, and vice versa. This will expand the range of ques-

tions about the dynamics of f which can be answered by looking at

the symbolic case to include questions of a topological nature—that

is, questions involving convergence.

To this end, fix a real number a > 1, and given two sequences

v, w ∈ Σ+
2 , define the distance between them by

(1.18) da(v, w) =
∑
k≥1

|vk − wk|
aj

.

Note that since each numerator |vk − wk| is either 0 or 1, this series

converges absolutely. We may easily verify that d = da satisfies the

axioms of a metric from the previous lecture, each of which follows

immediately from its counterpart for the usual distance on R.
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Exercise 1.15. Define two different distance functions d′ and d′′ on

Σ+
2 by

d′(s, t) =
1

t(v, w) + 1
,

d′′(s, t) = e−t(v,w),

where t(v, w) is the minimum value of the index k for which vk �= wk,

and d′(w,w) = d′′(w,w) = 0. Show that d′ and d′′ are metrics, and

that they define the same topology as d.

Exercise 1.16. Consider the symbolic dynamical system (Σ+
2 , σ).

Fix a number ε > 0 and a point w ∈ Σ+
2 . Show that there exists

N > 0 such that for any n ≥ N one can find a point v ∈ Σ+
2 for

which d(v, w) ≤ ε and da(σ
n(v), σn(w)) = 1.

What are the open and closed sets in the symbolic space Σ+
2 ? We

defined a metric (1.18) on Σ+
2 , and so all the usual topological notions

make sense, but what do the open and closed sets actually look like?

For the sake of this discussion, assume that a > 2, and consider

the ball B(w, r) centred at a point w ∈ Σ+
2 with radius r = 1/a > 0.

How do we tell if another point v ∈ Σ+
2 is in B(v, r)? The distance

between the two points is given by (1.18), and we see immediately

that if v1 �= w1, the first term alone means that the sum is ≥ 1/a.

Conversely, if v1 = w1, then the first term in the sum vanishes, and

the distance is at most
∞∑
k=2

(
1

a

)k

=
1

a

1

a− 1
<

1

a
,

where the last inequality uses the fact that a > 2. Thus we see that

B(w, r) = {v ∈ Σ+
2 | v1 = w1}.

There are exactly two possibilities for w1, and so there are exactly

two possible sets of this form:

C1 = {v = (1, v2, v3, . . . )},
C2 = {v = (2, v2, v3, . . . )}.

We refer to C1 and C2 as cylinders of length 1; each contains all

sequences in Σ+
2 for which the first term matches a particular spec-

ification. If we demand that the first n terms follow a particular
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itinerary, we obtain a cylinder of length n:

(1.19) Cw1...wn
= {v ∈ Σ+

2 | vj = wj for every 1 ≤ j ≤ n}.

Following the above argument, we see that these are exactly the balls

of radius 1/an, provided a > 2. There is a one-to-one correspondence

between cylinders of length n and n-tuples with entries in {1, 2}.
If we take 1 < a ≤ 2, then in order to contain an entire n-cylinder,

a ball must have radius greater than

1

an+1
+

1

an+2
+ · · · = 1

an(a− 1)
≥ 1

an
,

and so it will also contain sequences from other n-cylinders. Thus

cylinders are no longer balls; however, the topology turns out to be

the same, thanks to the following result.

Proposition 1.2. Cylinders are open.

Proof. Given a cylinder Cw1...wn
and a point w ∈ Cw1...wn

, we may

choose any r < 1/an, and then we see, as above, that d(v, w) ≥ r

unless all the terms with k ≤ n vanish; that is, unless vk = wk

for all 1 ≤ k ≤ n. Thus d(v, w) < r implies v ∈ Cw1...wn
, and so

B(w, r) ⊂ Cw1...wn
. �

That’s not the end of the story, though. . .

Proposition 1.3. Cylinders are closed.

Proof. Let Cw1...wn
be a cylinder in Σ+

2 , and suppose (wm)m∈N ⊂
Cw1...wn

is a sequence which converges to v ∈ Σ+
2 as m → ∞. Then

d(wm, v) → 0, and in particular, each term in the sum (1.18) must

go to 0. Thus limm→∞ wm
k = vk for every k ≥ 1, and since wm

k = wk

for every 1 ≤ k ≤ n and all m, we have vk = wk for 1 ≤ k ≤ n, and

so v ∈ Cw1...wn
. It follows that Cw1...wn

is closed. �

Thus cylinders are both open and closed, a somewhat unfamiliar

phenomenon if our only experience is with the topology of R. The

feature of the topology of Σ+
2 which permits this behaviour is the fact

that the cylinders of a given length are all disjoint, and their union

is the whole space: we say that they partition Σ+
2 . This gives an

alternate proof of Proposition 1.3, once Proposition 1.2 is known; the
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0

1
f(x)

0 1

x
I1 I2

Figure 1.17. Another piecewise linear map with chaotic behaviour.

complement of an n-cylinder Cw1...wn
is a union of 2n−1 n-cylinders,

each of which is open, and hence Cw1...wn
is closed.

Furthermore, for any two points v, w ∈ Σ+
2 , we can find a cylinder

which contains v but not w; since this cylinder is both open and

closed, this implies that Σ+
2 is totally disconnected. It is not hard

to show that it is also compact and perfect, and hence by the result

of Exercise 1.11, it is homeomorphic to the middle-third Cantor set

C. Indeed, we have already encountered the map which exhibits this

equivalence.

Proposition 1.4. The coding map h : Σ+
2 → C is a homeomorphism.

Proof. Recall that h is a bijection, and is defined by the inclusion

x ∈ Iw1
∩ Iw1w2

∩ · · · ,
and so we see that h(Cw1...wn

) = Iw1...wn
for every cylinder in Σ+

2 .

Since the sets Iw1...wn
are all closed in C (being closed intervals), we

have shown that h and h−1 both take closed sets to closed sets, which

suffices to show that h is a homeomorphism. �

We saw earlier that the coding map respects the dynamics of the

two systems f : C → C and σ : Σ+
2 → Σ+

2 , and Proposition 1.4 shows

that it respects topology as well. A map such as h, which is both

a homeomorphism and a conjugacy, is called a topological conjugacy,

and the two maps σ and f are called topologically conjugate. Thus

from either a dynamical or topological point of view, we may as well
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f(x)

x

I1

I2

I11 I12 I21I22

Figure 1.18. The domain of definition of f2.

study whichever is better suited to the problem at hand, knowing

that our results will be valid for the other as well.

b. What the coding map doesn’t do. Despite the fact that the

map f and the shift σ are topologically conjugate, the two systems are

not equivalent in every aspect; Σ+
2 does not capture quite everything

there is to know about the Cantor set C. To convince ourselves of this,

let us consider a more general class of dynamical systems defined in

the interval. Fix two disjoint closed intervals I1, I2 ⊂ [0, 1], and define

a piecewise linear map f : I1 ∪ I2 → [0, 1] as shown in Figure 1.17, so

that f(I1) = f(I2) = [0, 1] (note that for our purposes, each branch

of f may be either increasing or decreasing).

If we try to iterate f more than once, we run into the same

problem as before; some points in I1 or I2 have images which do not

lie in either interval, and so cannot be iterated again. This leads us

down exactly the same path as in Lecture 3; the domain of definition

of f2 is a union of four intervals, as shown in Figure 1.18, and so on for

f3, f4, . . . . The only difference in this case is that the intervals may be

of varying lengths, but the combinatorial and topological structure is

identical to that in the previous analysis, and we again get a Cantor

set (rather than the middle-third Cantor set), for which we have a

coding map and symbolic dynamics just as before.

Thus we see that Σ+
2 models not just the dynamics of our original

map on the middle-third Cantor set, but the dynamics of any map
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defined in this fashion (note that the original definition is just a special

case of this one, with I1 = [0, 1/3] and I2 = [2/3, 1]). Indeed, all these

maps (and Cantor sets) have the same dynamical and topological

structure; however, Σ+
2 does not capture certain metric properties of

the system, which vary depending on the choice of I1 and I2.

c. Geometry of Cantor sets. We turn our attention now to the

geometric aspects of the construction in the previous section; that is,

those which are not captured by Σ+
2 . The Cantor set C is defined

by the same formula (1.8) as the middle-third Cantor set; the only

difference is that while in that case the basic intervals Iw1...wn
had

length 3−n and were of the form [a/3n, (a + 1)/3n], now they may

have variable lengths and locations.

How long are the basic intervals Iw1...wn
? Beginning with n = 1,

let λ1 and λ2 denote the lengths of I1 and I2, respectively. Then

writing |I| for the length of the interval I, we have |Ii| = λi for

i = 1, 2.

For n = 2, we examine the four intervals shown in Figure 1.14

and recall that the ratio |f(Ii1i2)|/|Ii1i2 | is given by the slope of f in

Ii1i2 , which the comments above show to be 1/λi1 . Thus the intervals

Ii1i2 have lengths given by

|I11| = λ2
1, |I21| = λ2λ1, |I12| = λ1λ2, |I22| = λ2

2,

where we use the fact that f(Ii1i2) = Ii2 .

This generalises immediately to a formula for all values of n:

(1.20) |Iw1...wn
| = λi1 · · ·λin .

Now that we know how long the basic intervals Iw1...wn
ought

to be, we can try to carry out the construction of the set C (or one

like it) without reference to the dynamics of f . To this end, consider

the following geometric construction (which is a particular case of the

Moran constructions we will introduce and study in Lecture 10):

(1) Begin by choosing two disjoint closed intervals I1, I2 ⊂ [0, 1] and

two ratio coefficients λ1, λ2 > 0 with λ1 + λ2 < 1.
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(2) Put two disjoint closed intervals at arbitrary locations inside I1,

whose lengths are λ1|I1| and λ2|I1|; denote these by I11 and I12,

respectively.

(3) Construct I21, I22 ⊂ I2 in a similar manner.

(4) Repeat steps (2) and (3) within each of the intervals Iw1w2
to

construct eight disjoint closed intervals Iw1w2w3
; iterate this pro-

cedure to produce intervals Iw1...wn
with length given by

(1.21) |Iw1...wn
| = |Iw1

|
(

n∏
k=2

λwk

)
.

(5) Construct a Cantor set C as the limit of this iterative procedure,

just as in (1.8).

We will call C a geometrically constructed Cantor set on the

line. The primary difference between C and the dynamically de-

fined Cantor sets we saw before is that in the initial dynamical pro-

cedure, the position of the intervals Iw1...wn
was determined by the

dynamics, whereas here they are free to be placed anywhere within

Iw1...wn−1
, provided they are disjoint. We can construct a coding map

h : Σ+
2 → C exactly as we did before, by considering the intersection⋂

n≥1 Iw1...wn
, and we get the following diagram:

Σ+
2

σ−−−−→ Σ+
2⏐⏐
h ⏐⏐
h

C C

The lack of any dynamics on C ⊂ [0, 1] means that the diagram does

not close as it did in the case discussed in Lecture 3. We can, however,

define a map f : C → C so that the diagram closes and commutes by

simply taking f = h ◦ σ ◦ h−1.

We have much less information about this artifically constructed

map f than we had before, when we began with f and used it to

construct C. All we can say in this case is that f is continuous, since

each of σ, h, and h−1 is, and that it has all the dynamical properties

of the shift map σ which we discussed before, such as a dense set of

periodic orbits.
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0
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f(x)

0 1

x
I1 I2 I3 I4

Figure 1.19. A piecewise linear map with four branches.

Exercise 1.17. Let C be a geometrically constructed Cantor set

on the line. Show that the coding map h : Σ+
2 → C is a Hölder

function (see Appendix). Can this function be Lipschitz? Is the map

f = h ◦ σ ◦ h−1 Hölder continuous?

The geometric construction outlined above may just as well be

carried out with more than two intervals. If we begin with disjoint

intervals I1, . . . , Ik ⊂ [0, 1] and ratio coefficients λ1, . . . , λk > 0 with

Σiλi < 1, then we may build Iw1...wn
as before, with length given

by (1.20), and define a Cantor set C by (1.8).

As in the case k = 2, a particular case of this construction is given

by a dynamically defined Cantor set obtained as the maximal invari-

ant set (the repeller) of a piecewise linear map with k branches, as

shown in Figure 1.19. The purely geometric procedure just described

is more general, since it “forgets” about the map f and allows the

intervals Iw1...wn
to be placed arbitrarily within Iw1...wn−1

(as long as

they are disjoint).

The geometric construction also generalises the dynamical def-

inition by allowing the lengths of the initial basic intervals Ij to

be arbitrary, provided subsequent basic intervals have lengths given

by (1.21). For a dynamically defined Cantor set, we must have

|Ij | = λj ; the lengths of the initial basic intervals are equal to the

ratio coefficients.
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We can find a coding map for a geometrically constructed (or

dynamically defined) Cantor set with k > 2, but the presence of

more intervals at each step means that the alphabet for the symbolic

space is larger—{1, . . . , k} instead of {1, 2}, where k is the number of

branches of the map or the number of basic intervals at the first step.

Writing

Σ+
k = {1, . . . , k}N = {w = (w1, w2, . . . ) | wj ∈ {1, . . . , k}},

the coding map h : Σ+
k → C is defined as before and is again a home-

omorphism. If we obtained C as the repeller for a map f , then h

respects the dynamics of f ; if we obtained C via a purely geometric

construction, we may again place some dynamics on C by the formula

f = h ◦ σ ◦ h−1.

These examples illustrate the use of dynamical systems and geo-

metric constructions as tools to study each other, which will be a

prominent theme of this book. Many dynamical systems can be bet-

ter understood by examining the appropriate geometric construction,

and similarly, many geometric constructions are best viewed as arising

from a particular dynamical system.

At this point, however, we have not yet developed the proper tools

to study the geometric properties of the various Cantor sets we have

encountered. Each has the power of the continuum (that is, it can be

put into a bijective correspondence with the set of real numbers) and

yet has zero length, in a sense which is made precise by the notion of

Lebesgue measure. If we wish to use these sets as a tool to study the

associated maps, we must somehow characterise the sets themselves,

but we do not yet have the means to do so.

As before, different Cantor sets have the same coding, and so

some structure is certainly lost in passing to the symbolic point of

view. In the end, the fact that we cannot completely restore the set

C from knowledge of Σ+
k will not cause us to lose much sleep because

the crucial dynamical information is preserved. We will see rather

more complicated examples which are modeled by these same sym-

bolic dynamics, which turn out to contain the essence of the chaotic

behaviour.
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Figure 1.20. A general Cantor-like construction in R
2.

Lecture 6

a. More general constructions.

a.1. Higher dimensions. Before examining possible ways of charac-

terising Cantor sets, let us stretch our legs a bit and examine some of

the other creatures in the zoo. So far we have been planted firmly in

front of the cage labeled “one-dimensional constructions”, but there

is no reason why we could not consider examples in higher dimensions

as well.

To this end, let D1, . . . , Dk be disjoint closed discs contained in

the unit disc in R2; the case k = 3 is illustrated in Figure 1.20. Choose

ratio coefficients λ1, . . . , λk, and carry out an iterative procedure as

before; within the disc Dw1
, place disjoint discs Dw1w2

whose diam-

eters are λw2
diam(Dw1

), and so on. Taking the union over all discs

corresponding to words of length n, and then taking the intersection

over all n ≥ 1, we obtain a Cantor set as before, in (1.8).

Of course, there is nothing special about discs, or about two di-

mensions, in this construction. The same procedure goes through for

any domain in R2, or indeed in any Rd, and the end result will always

be homeomorphic to Σ+
k . Thus we see that all these various Can-

tor sets have the same topology, despite our feeling that they must

be somehow different geometrically. This reinforces our earlier point

that Σ+
k carries no information about the geometry of the Cantor sets

it models.

Exercise 1.18. Show that Σ+
k and Σ+

m are homeomorphic for any

k,m ≥ 2, and construct an explicit homeomorphism between them.

(Note that this homeomorphism does not respect the dynamics of the

shift.)
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Figure 1.21. Constructing the Sierpiński gasket.

a.2. Connected examples. A similar construction, which has a little

more built-in regularity, may be carried out by dividing an equilat-

eral triangle into four smaller triangles, each similar to the first and

congruent to each other, removing the middle triangle, and then it-

erating the procedure on the remaining three. The first few steps of

the process are shown in Figure 1.21.

The fractal set C obtained as the limit of this procedure is known

as the Sierpiński gasket.14 It may also be constructed via the follow-

ing algorithm, which Manfred Schroeder playfully dubs “Sir Pinski’s

game” [Sch91]. Given a point x inside the equilateral triangle, we

define f(x) by first finding the nearest vertex of the triangle to x,

and then doubling the distance from x to that vertex, as shown in

Figure 1.22. Repeating the process takes us to the point f2(x), and

so on, until we leave the triangle, at which point the trajectory will go

off to infinity. The game, then, is to choose an initial point x whose

trajectory remains in the triangle for as long as possible.

The reader may verify that the winning points, whose trajectory

never leaves the triangle, are precisely the points in the Sierpiński

gasket. The map f is of the same sort as we encountered earlier,

when we looked at piecewise linear maps on the interval; in this case,

f is a piecewise affine map on the plane, and the Sierpiński gasket is

the maximal invariant set, the repeller, for f .

We can produce a coding map h : Σ+
3 → C by labeling the trian-

gles at each step of the iteration with the appropriate sequence of 1’s,

2’s, and 3’s, and associating to each infinite sequence in Σ+
3 the corre-

sponding infinite intersection of nested triangles, which is just a single

point. As in the one-dimensional case, the coding map completes the

commutative diagram (1.11), replacing Σ+
2 with Σ+

3 .

14Or as the Sierpiński triangle or Sierpiński sieve; there is also a Sierpiński
carpet, whose construction is similar but non-equivalent.
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Figure 1.22. Sir Pinski’s game.

The careful reader will by this point be howling in protest that

the map f is not well defined everywhere. Indeed it is not; what are

we to do with the points in C which are equidistant from two vertices

of the triangle? f is supposed to double the distance from the nearest

vertex, but what if that vertex is not unique? There are only three

points in C which encounter this problem, but there are six more

which are mapped into one of those three, and in general, there are

3n points in C for which fn is not uniquely defined.

This technicality arises since the domains on which f is defined

are not disjoint, which had been a requirement for all our construc-

tions up to this point. Consequently, the Sierpiński gasket is quite

different topologically from the Cantor sets we have studied thus far;

it is connected, while they were totally disconnected. Furthermore,

the dynamics are different, since the coding map is not one-to-one on

the whole space.

One encounters a similar difficulty when dealing with decimal

representations of the real numbers. Such representations are not

unique for certain numbers, namely those whose decimal expansion

terminates. Both here and in the Sierpiński gasket, the trouble occurs

on a countable set of points; we will later see that from the point of

view of dimension theory (with which we will be primarily concerned),

countable sets can be treated as negligible.

We will come back to this detail later when we discuss Moran

constructions in Lecture 10. For the time being, we choose to ig-

nore this seemingly troublesome quirk of the Sierpiński gasket, and

divert prying eyes elsewhere by bedazzling the reader with a higher-

dimensional version of the same thing. Instead of a triangle, begin

with a tetrahedron in R3, decompose it into five congruent tetrahedra,
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Figure 1.23. A non-linear interval map.

and remove the middle one. Iterating this procedure, one obtains a

fractal sometimes known as the Sierpiński sponge.

a.3. Non-conformal constructions. We obtain another related con-

struction by modifying the two-dimensional construction shown in

Figure 1.20. Rather than shrinking the discs equally in all directions,

we could contract by a factor of λ in one direction and µ in another,

so that the building blocks at successive iterations are increasingly ec-

centric ellipses. The topological characterisation in terms of Σ+
k still

goes through, but the geometry is patently different from what came

before. The construction in Figure 1.20 was conformal—all directions

were treated equally—by taking λ �= µ, we obtain a non-conformal

construction, whose geometry is quite different (see Figure 7.5).

a.4. Non-linear constructions. All our examples up to this point have

been linear; the building blocks at any given step of the construction

are just scaled-down copies of those at the previous step. This will

not always be the case in the examples of interest; most of the truly

interesting phenomena in the real world, after all, are not particu-

larly linear. Thus we may return to the one-dimensional setting and

consider the sort of map f : I1 ∪ I2 → [0, 1] shown in Figure 1.23,

which maps both I1 and I2 homeomorphically but not necessarily

linearly onto [0, 1]. Such a map is called a one-dimensional full-

branched Markov map.15 If f is piecewise continuously differentiable,

with |f ′(x)| ≥ a > 1, where a is fixed, then it is called expanding.

15We say full-branched to distinguish it from the case examined later in Lec-
ture 15 and shown in Figure 3.3, where the branches of the map may not extend the
entire length of [0, 1].
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Nearly everything from our previous discussion of piecewise lin-

ear maps goes through in the case where f is an expanding one-

dimensional full-branched Markov map. We can follow a Cantor con-

struction to obtain a repeller C for f , which is a maximal invari-

ant set and is homeomorphic to symbolic space via the coding map

h : Σ+
2 → C. This coding map also conjugates the dynamics of σ and

f . The only thing that fails is the formula (1.20) for the lengths of

the intervals Iw1...wn
; a new formula can be found, but it is rather

more complicated.

Exercise 1.19. Let Λ be the middle-third Cantor set and let C be the

repeller for a one-dimensional (not necessarily linear) full-branched

Markov map f : I1 ∪ I2 → [0, 1]. Show that there exists a one-to-one

continuous map h from Λ onto C, and that h is a homeomorphism if

and only if I1 and I2 are disjoint.

Exercise 1.20. Let Λ be the Sierpinski gasket and let C be the

repeller for a one-dimensional (not necessarily linear) full-branched

Markov map f : I1 ∪ I2 ∪ I3 → [0, 1] where the subintervals I1, I2 and

I3 are disjoint. Show that there exists a continuous map h from C

onto Λ which is one-to-one at all but countably many points.

b. Making sense of it all. Up to this point, we have been be-

having like Adam, merely wandering around the Garden and naming

all the animals; now we must become Linnaeus, and make some at-

tempt at classifying the fractal fauna we find around us. For the

various fractal sets we have described are in fact different from each

other geometrically, but our usual measuring sticks are not properly

equipped to distinguish them. Every example we have encountered is

uncountable, and so cardinality alone is insufficient.

Topological tools also fail to properly analyse the exhibits in the

zoo. While some sets are connected (such as the Sierpiński gasket)

and others are totally disconnected (such as the various Cantor sets),

this classification is too crude to distinguish between the repellers

associated with different full-branched Markov maps, or between the

gaskets generated from different triangles, or between fractal curves

built from different generators.
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We might try to analyse various fractals with the notion of length,

or more properly, Lebesgue measure; however, we found that the Can-

tor sets all have length zero, and it turns out that the fractal curves

(the von Koch curve, the fractal coastlines) have infinite length. Try-

ing a two-dimensional notion of size, one finds that these curves have

zero area, and so no help is forthcoming from length, area, volume,

and so on. We seem to be at an impasse.

The way out of our predicament is provided by the idea of fractal

dimension, a notion which is at once tremendously important and

frustratingly elusive. Its importance will become apparent when we

see how readily it lets us make sense of the thicket of examples we

have presented thus far; its elusiveness is due to the fact that, put

starkly, it is not defined!

Let us explain this last statement. The concept of fractal di-

mension was discussed from a “practical” point of view by Benoit

Mandelbrot in his landmark 1982 book The Fractal Geometry of Na-

ture [Man82]. In that work, he examined a wide variety of examples

and described certain numbers which are associated to the scaling

properties of the systems in these examples and which may reason-

ably be referred to as fractal dimension; moreover, he demonstrated

that unlike our usual idea of dimension, these numbers need not be

integers.

Mandelbrot’s book, though, is primarily concerned with exhibit-

ing the utility of fractals as tools in various scientific contexts, rather

than with mathematical minutiae. Thus while this book was instru-

mental in making fractals an important part of science, where they

have proved their worth in a dazzlingly wide variety of scientific mod-

els (to say nothing of the fractal artwork which has sprung up in the

decades following Mandelbrot’s work), it does not contain a single

unifying definition of just what exactly the fractal dimension of a set

actually is.

In fact, the notion of dimension that we will use to characterise

fractal sets predates Mandelbrot by over half a century; one impor-

tant definition is due to Felix Hausdorff in 1919.16 Now referred to as

16Although we should point out that Constantin Carathéodory introduced a
somewhat more general notion even earlier, in 1914.
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the Hausdorff dimension, it is one of the fundamental geometric char-

acteristics of a set, and we will see that it lets us distinguish between

the various Cantor sets we have met.

We will also see that the Hausdorff dimension is rather difficult to

compute; partly because of this, there are dozens of alternative defi-

nitions of fractal dimension, some of which are often more tractable.

In particular, we will be concerned with the notions of upper box di-

mension and lower box dimension, which are also candidates for the

title of “fractal dimension”.17 The situation is made quite messy by

the fact that these various dimensional quantities may not coincide;

indeed, we will see concrete examples for which they are different.

One of our primary goals, then, will be to clarify the relations be-

tween the various notions of fractal dimension. These quantities are

fundamental characteristics of many dynamical systems, giving a geo-

metrical characterisation of chaotic behaviour, and so it is important

to understand how they fit together. Mercifully, we will see that in

many important cases, all the reasonable definitions of fractal dimen-

sion lead to the same value, and the mess cleans itself up; however,

the variety of dimensional notions goes some way towards explaining

Mandelbrot’s omission of a mathematically rigorous definition.

17There are many other dimensional quantities, such as correlation dimension and
information dimension, which are considered in more advanced studies of the subject.

                

                                                                                                               



Chapter 2

Fundamentals of
Dimension Theory

Lecture 7

a. Definition of Hausdorff dimension. In this lecture, we define

the notion of Hausdorff dimension for a set Z ⊂ Rd. This definition

requires some work to set up, and so we first take some time to go

through the necessary preliminaries.

Given a set Z ⊂ Rd, we consider a collection U = {Ui} of open

sets in Rd which cover Z; that is, for which
⋃

i Ui ⊃ Z.

Such a collection is known as an open cover ; we will usually simply

refer to a cover, with the implicit assumption that every element of

the cover is an open set. The picture to keep in mind is a collection of

open balls (whose radii may vary), although more general open sets

are allowed. We denote the diameter of a set Ui by

diamUi = sup{d(x, y) | x, y ∈ Ui}

and the diameter of a cover by

diamU = sup
Ui∈U

diamUi.

Fix ε > 0. If diamU ≤ ε, that is, if every Ui ∈ U has diamUi ≤ ε,

then we say that U is an ε-cover.

53
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We will only consider covers with at most countably many ele-

ments. The reason for this is that we will use the cover U to “measure”

the set Z, by assigning each element of the cover a certain (positive)

weight, and then summing these weights over all elements of the cover.

Since an uncountable collection of positive numbers cannot have a fi-

nite sum, we must take U to be countable.

Denote by D(Z, ε) the collection of all countable ε-covers of Z.

In what follows, we consider a fixed α ≥ 0, ε > 0, and U ∈ D(Z, ε).

We define (somewhat arbitrarily, it may seem) a “potential” for the

entire cover U by the formula

(2.1)
∑
i

(diamUi)
α.

The reader may justifiably feel that we have just pulled a rabbit from

a hat without any explanation of where it came from;1 that will come

in due course. For the time being, observe merely that (2.1) gives

us a way of assigning a number, sometimes called the “potential”, to

any ε-cover U .
Now we want to use this number to characterise the set Z, to

measure how “big” it is, in some sense. The difficulty is that Z admits

many open covers, each of which has a different potential, and it is

not immediately clear which one to use. Which of the many possible

numbers obtained from (2.1) properly measures Z?

By adding unnecessary extra sets to our cover, we can make the

quantity in (2.1) arbitrarily large; thus it seems that large values of

the potential are somehow to be disregarded, and we should look for

the cover which minimises (2.1). Since such an optimal cover may not

exist (the minimum may not be achieved!), we consider the greatest

lower bound of such quantities, and write

(2.2) m(Z, α, ε) = inf
D(Z,ε)

∑
i

(diamUi)
α.

Note the similarity in form between this equation and the definition

of Lebesgue measure in (1.17).

1Indeed, the reader who does not feel this has either seen these definitions before,
or is not paying enough attention. Wake up!
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Now we have a function m which depends on the set Z and the

parameters α and ε. Observe that given ε1 > ε2 > 0, any ε2-cover

is also an ε1-cover. Thus the set of covers over which the infimum

in (2.2) is taken for ε2 is a subset of the set of covers for ε1, and it is

then immediate that

m(Z, α, ε2) ≥ m(Z, α, ε1).

This shows that m(Z, α, ε) is monotonic as a function of ε, and hence

the limit

(2.3) m(Z, α) = lim
ε→0

m(Z, α, ε)

exists, although it may be ∞, and indeed often is, as we shall see.

Fixing a particular value of α ≥ 0, we have a set function m(·, α).
This is a real-valued function defined on the space of all subsets of

Rd, which assigns to a subset Z ⊂ Rd the value m(Z, α) defined as

above. The next proposition summarises its basic properties.

Proposition 2.1. The set function m(·, α) : Z �→ m(Z, α) satisfies

the following properties.

(1) Normalisation: m(∅, α) = 0 for all α > 0, where ∅ is the empty

set.

(2) Monotonicity: m(Z1, α) ≤ m(Z2, α) whenever Z1 ⊂ Z2.

(3) Countable subadditivity: Given any finite or countable collection

of subsets Zj, we have

(2.4) m

⎛
⎝⋃

j

Zj , α

⎞
⎠ ≤

∑
j

m(Zj , α).

Proof. (1) follows immediately upon observing that any open set, of

any diameter, covers the empty set.

(2) uses the same idea as in the proof of monotonicity ofm(Z, α, ·);
an ε-cover of Z2 is an ε-cover of Z1, and hence the infimum in

m(Z2, α, ε) is being taken over a smaller set.

(3) is slightly more involved, and requires the following lemma.
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Lemma 2.2. Fix Z ⊂ R2 and α ≥ 0 such that m(Z, α) < ∞. For

every δ > 0 and ε > 0, there exists an open ε-cover U = {Ui} of Z

such that |m(Z, α)−
∑

i(diamUi)
α| ≤ δ.

Proof. Follows immediately from the definitions of limit and infi-

mum. �

To prove (2.4) using this lemma, we first observe that if any of

the values m(Zj , α) is infinite, then their sum is infinite, and the

inequality is trivial. Thus we assume they are all finite; fixing δ > 0

and writing Z =
⋃

j Zj , we may apply the lemma to each Zj to obtain

ε-covers Uj = {Uji} (for arbitrarily small ε > 0) such that∣∣∣∣∣m(Zj , α)−
∑
i

(diamUji)
α

∣∣∣∣∣ ≤ δ

2j
.

We see that U =
⋃

j Uj is an open cover of Z, and since each of the

Uji has diameter ≤ ε, it is actually an ε-cover. Thus

m(Z, α, ε) ≤
∑
i,j

(diamUji)
α =
∑
j

(∑
i

(diamUji)
α

)

≤
∑
j

(
m(Zj , α) +

δ

2j

)
=
∑
j

m(Zj , α) + δ.

This holds for all δ > 0 and for all ε > 0; hence (2.4) holds. �

So far the parameter α has been listed among the dramatis per-

sonae, but has done little more than linger at the edge of the stage,

constant and unchanging. Its appearance on centre stage will finally

bring us to the definition of Hausdorff dimension.

To that end, let us consider m(Z, ·) : [0,+∞) → [0,+∞] as a

function of α. As they say, a picture is worth a thousand words, and

so we try to draw its graph.

There are three possibilities for the value of m(Z, α) at any given

α: it may be 0, it may be ∞, or it may be finite. The former two

are not particularly interesting; after all, our main grievance with the

ideas of cardinality, length, area, etc. as tools for classifying fractals

was that they always returned answers which were either 0 or ∞.
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≈

m(Z, α)

α

∞

αC

Figure 2.1. The graph of m(Z, ·).

The third possibility, that 0 < m(Z, α) < ∞ for a particular value

of α, turns out to have rather drastic consequences, as we see in the

following two propositions.

Proposition 2.3. If α ≥ 0 is such that m(Z, α) < ∞, then m(Z, β) =

0 for every β > α.

Proof. A straightforward computation shows that

m(Z, β, ε) = inf
U

∑
i

(diamUi)
β

= inf
U

∑
i

(diamUi)
β−α(diamUi)

α

≤ inf
U

∑
i

εβ−α(diamUi)
α

= εβ−αm(Z, α, ε),

and since β−α > 0, we have εβ−α → 0. Since m(Z, α, ε) ≤ m(Z, α) <

∞, this implies that

m(Z, β) = lim
ε→0

m(Z, β, ε) = 0. �

As an immediate consequence of this proposition, we have the

following dual statement:

Proposition 2.4. If α ≥ 0 is such that m(Z, α) > 0, then m(Z, β) =

∞ for every β < α.
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It follows from these propositions that the graph of m(Z, ·) is as
shown in Figure 2.1; below some critical value αC , the function takes

infinite values, and for α > αC , we have m(Z, α) = 0. Thus the

function m(Z, ·) is entirely determined by the location of αC and the

value of m(Z, αC); the latter may lie anywhere in [0,∞], while the

former may take any value in [0,∞). Just which values they take, of

course, depends on the set Z; this is the whole point.

We are now in a position to complete our definition. The Haus-

dorff dimension of a set Z, denoted dimH Z, is the critical value αC

at which the function m(Z, ·) passes from ∞ to 0. Thus, we have

dimH Z = sup{α ∈ [0,∞) | m(Z, α) = ∞}
= inf{α ∈ [0,∞) | m(Z, α) = 0}.

So we have the definition! But in what sense is this the “dimen-

sion” of the set Z? Does it agree with our usual intuitive understand-

ing of dimension? What properties does it have? How do we actually

compute it for specific examples? What does it have to do with frac-

tals? Where in the world does the function m(Z, α, ε) come from?

We will address these questions in the next lecture and see that they

do in fact have satisfactory answers.

b. Hausdorff dimension of the middle-third Cantor set. Be-

fore we get too far ahead of ourselves, though, we take some time to

illustrate the definition of Hausdorff dimension by computing it for

the middle-third Cantor set C. We start with the observation that

the set function m(Z, α) has nice scaling properties under certain

geometric transformations.

Definition 2.5. A map f : Rd → Rd is a similarity transformation if

there exists a real number λ > 0, called the scaling factor, such that

d(f(x), f(y)) = λd(x,y)

for every x,y ∈ Rd. We say that two sets are similar if one is the

image of the other under a similarity transformation.

All similarity transformations are linear maps; a general similarity

transformation of Rd can be written as the composition of a suitable

isometry with the map x �→ λx.
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Exercise 2.1. Given a set Z ⊂ Rd and a real number λ > 0, let Z ′

be a set that is similar to Z, with scaling factor λ. Show that

(2.5) m(Z ′, α) = λαm(Z, α).

The middle-third Cantor set is the disjoint union of two scaled-

down copies of itself: C = C1 ∪ C2, where both C1 = I1 ∩ C and

C2 = I2 ∩ C are similar to C with scaling factor 1/3. It follows

from (2.5) that

m(I1, α) = m(I2, α) =

(
1

3

)α

m(C,α).

Using the subadditivity property (2.4), this gives

(2.6) m(C,α) ≤ m(I1, α) +m(I2, α) =
2

3α
m(C,α).

Exercise 2.2. Using the fact that I1 and I2 are disjoint and separated

by a positive distance, show that equality holds in (2.6).

As a consequence of Exercise 2.2, we see that

(2.7) m(C,α) = 2(3−α)m(C,α).

Assuming that 0 < m(C,α) < ∞ for some value of α, we conclude

that 3α = 2, and hence α = log 2/ log 3.

If we knew that the set function m(C, ·) always passed through

a finite value on its voyage from ∞ to 0—that is, if we knew that

0 < m(C, dimH C) < ∞—then the above argument would imply that

dimH C = log 2/ log 3. However, for some sets Z it may happen that

m(Z, α) is equal to either 0 or ∞ for every α ≥ 0, and never takes

a finite value. Fortunately, this turns out not to be the case for the

middle-third Cantor set.

Proposition 2.6. Let C be the middle-third Cantor set, and α =

log 2/ log 3. Then m(C,α) = 1.

Sketch of proof. By covering C with the basic intervals Iw1...wn
, it

is not hard to show that m(C,α, ε) ≤ 1 for every ε > 0. To prove

the reverse inequality, one must show that
∑

i(diamUi)
α ≥ 1 for

every open cover U . In the case where every element of U is a basic

interval, this turns out not to be that hard. However, one must deal
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U1

U2

U3

I1 I2

I11 I12 I21 I22

Figure 2.2. An open cover of the middle-third Cantor set.

with covers such as the one shown in Figure 2.2, where U1 and U3

each reduce to a single basic interval, while U2 is more problematic.

The full proof of this is somewhat subtle (although not prohibitively

difficult), and so we defer a more rigorous treatment of the matter

until the proof of Moran’s theorem in Lecture 10. �

Proposition 2.6 shows that in this case, our heuristic arguments

do in fact give the correct value for the Hausdorff dimension, so that

the Hausdorff dimension of the middle-third Cantor set is log 2/ log 3.

Exercise 2.3. Use the heuristic arguments given in this section to

guess the Hausdorff dimension of the Sierpiński gasket and the von

Koch curve. Note that without computing the value of m(Z, α) or

giving some further argument, this does not yet constitute a proof

that the Hausdorff dimension is what you think it is.

c. Alternative definitions of Hausdorff dimension. The defini-

tion of Hausdorff dimension in the previous lecture involves arbitrary

open covers; however, we might consider using a different class of sets

as the elements of our covers. Thus we now show that it suffices to

consider covers by open balls B(x, r) with r ≤ ε.

To this end, given Z ⊂ Rd, let B(Z, ε) denote the collection of all

countable sets

{(xi, ri)} ⊂ Z × (0, ε)

with the property that

Z ⊂
⋃
i

B(xi, ri),
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and define a function mB by

(2.8) mB(Z, α, ε) = inf
B(Z,ε)

∑
i

rαi ,

where α ≥ 0 and ε > 0. As before, mB is monotonic in ε, and we

write mB(Z, α) = limε→0 mB(Z, α, ε).

Proposition 2.7. Given a set Z ⊂ Rd, we have

dimH Z = inf{α ≥ 0 | mB(Z, α) = 0}
= sup{α ≥ 0 | mB(Z, α) = ∞}.

Proof. Observe that any cover of Z by balls of radius less than ε is

a 2ε-cover by open sets, and hence B(Z, ε) ⊂ D(Z, 2ε). Thus

mB(Z, α, ε) = inf
B(Z,ε)

∑
i

rαi = 2−α inf
B(Z,ε)

∑
i

(diamB(x, ri))
α

≥ 2−α inf
D(Z,ε)

∑
i

(diamUi)
α = 2−αm(Z, α, 2ε),

since the infimum can only decrease if we consider a larger collection

of covers.

Furthermore, given an arbitrary open cover U ∈ D(Z, ε), we may

take one point xi from each Ui, and set ri = diamUi, to obtain an

open cover U ′ ∈ B(Z, ε), since Ui ⊂ B(xi, ri) for each i. It follows

that

m(Z, α, ε) = inf
D(Z,ε)

∑
i

(diamUi)
α

≥ inf
B(Z,ε)

∑
i

rαi = mB(Z, α, ε).

Combining these inequalities, we obtain

2−αm(Z, α, 2ε) ≤ mB(Z, α, ε) ≤ m(Z, α, ε),

and taking the limit as ε → 0 yields

2αmB(Z, α) ≤ m(Z, α) ≤ mB(Z, α).

Thus the critical value αC is the same for both m and mB. �
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Remark. In fact, one can go rather further than this. Let F be

any collection of subsets of Rd such that for every ε > 0, there exists

a cover of Rd by elements of F with diameter < ε. Then we may

define mF (Z, α, ε) as in (2.2) by taking the infimum over all ε-covers

of Z whose elements are in F , and carry out the entire definition as

before, obtaining the same critical value αC . Thus we are free to use

arbitrary sets when computing Hausdorff dimension, if we so desire.

Observe that although our entire discussion has been in the con-

text of Euclidean space Rd, the definition of Hausdorff dimension

works just as well when Z lies in an arbitrary separable metric space

X. This is true whether we use covers by open sets, covers by open

balls, or covers by some other collection F of subsets ofX. To simplify

the exposition, we will develop the properties of Hausdorff dimen-

sion (and other dimensional quantities) under the assumption that

Z ⊂ RD; however, all of this can also be done in the more general

setting.

Exercise 2.4. Use the heuristic arguments given in this lecture to

guess the Hausdorff dimension of symbolic space (Σ+
k , da), where k ≥

2 and a > 2.

Lecture 8

a. Properties of Hausdorff dimension. Now that we have a def-

inition (or two) of Hausdorff dimension and have seen what’s under

the hood and how it works for a rather simple example, let’s take

this new notion out for a test drive and see how it behaves. Some

important properties of Hausdorff dimension can be deduced from the

corresponding properties of the set function m(·, α) given in Proposi-

tion 2.1:

Proposition 2.8. The Hausdorff dimension has the following basic

properties.

(1) Normalisation: dimH ∅ = 0.

(2) Monotonicity: dimH Z1 ≤ dimH Z2 whenever Z1 ⊂ Z2.

(3) Countable stability: dimH

(⋃
j Zj

)
= supj dimH Zj, where {Zj}

is any countable collection of subsets of Rd.
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Proof. (1) and (2) are direct consequences of the corresponding prop-

erties in Proposition 2.1. To see countable stability, we write Z =⋃
j Zj , and first observe that since Zj ⊂ Z for all j, monotonicity

implies dimH Zj ≤ dimH Z, and hence supj dimH Zj ≤ dimH Z. Fur-

thermore, if α > supj dimH Zj , then α > dimH Zj for all j, and

hence m(Zj , α) = 0 for all j. Thus m(Z) = 0, which implies that

dimH Z ≤ α for all α > supj dimH Zj , and we are done. �

A singleton set Z = {x} has m(Z, α, ε) = 0 for all α > 0, ε > 0,

and so applying the third property above, we obtain

Corollary 2.9. If Z is countable, then dimH Z = 0.

Thus the set of rational numbers has Hausdorff dimension zero,

despite being dense in the interval, and hence fairly “large” in the

topological sense.

So points have zero Hausdorff dimension, which we would expect.

What about lines and planes? Do they have the “correct” Hausdorff

dimension? Before answering this question, we state two lemmas

which codify a common technique for giving upper and lower bounds

on the Hausdorff dimension.

Lemma 2.10. To show that dimH Z ≤ α, it suffices to exhibit C > 0

such that for all ε > 0, there exists an ε-cover U = {Ui} with∑
i(diamUi)

α ≤ C.

Proof. The given condition guarantees that m(Z, α, ε) ≤ C for all

ε > 0; hence m(Z, α) < ∞, and the result follows. �

Lemma 2.11. To show that dimH Z ≥ α, it suffices to exhibit C > 0

and ε > 0 such that
∑

i(diamUi)
α ≥ C for all ε-covers U = {Ui}.

Proof. The given condition guarantees that m(Z, α, ε) ≥ C for some

ε > 0, hence m(Z, α) > 0, and the result follows. �

In general, upper bounds on the Hausdorff dimension are usually

easier to obtain than lower bounds. The reason for this is that in

order to apply Lemma 2.10, we only needed to construct a family

of arbitrarily fine “good” covers with uniformly bounded potentials,

whereas in order to get a lower bound by applying Lemma 2.11, we
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need to deal with every ε-cover for some sufficiently small ε. We

will wrestle with this in the proof of the following proposition, which

applies Lemmas 2.10 and 2.11 to the case of the real line.

Proposition 2.12. dimH R = 1.

Proof. Let Z = [0, 1] be the unit interval in R. By part (3) of

Proposition 2.8, it suffices to show that dimH Z = 1. We do this

by using Lemma 2.10 to show that dimH Z ≤ 1, and then using

Lemma 2.11 to show that dimH Z ≥ 1.

To satisfy the condition of Lemma 2.10, we consider ε > 0 and

choose an integer n such that 1/n ≤ ε. Consider the open intervals(
i
3n ,

i+1
3n

)
for i = 0, . . . , 3n− 1; these cover every point of [0, 1] except

the endpoints i/3n. If we extend each interval to include the two

beside it, then we get the intervals Ui =
(
i−1
3n , i+2

3n

)
, each of which

has length 1/n ≤ ε, and so U = {Ui} is an ε-cover of Z. It has 3n

elements, and so we see that∑
i

(diamUi) = 3n · 1
n
= 3.

Thus Lemma 2.10 applies with C = 3 and α = 1, and we have

dimH Z ≤ 1.

The other inequality is rather harder, for the reason explained

above. Indeed, we cannot apply Lemma 2.11 directly to our present

problem with α = 1, but we can reach the same result by showing

that the lemma applies for every α < 1. Indeed, then we will have

dimH Z ≥ α for all α < 1, which of course implies that dimH Z ≥ 1,

as desired.

To that end, fix α < 1. We wish to find ε > 0 such that∑
i(diamUi)

α > 1 for every ε-cover U of [0, 1]. For any such U ,
we have∑

i

(diamUi)
α =
∑
i

(diamUi)(diamUi)
α−1 ≥

(∑
i

diamUi

)
εα−1.

It is not hard to see that since the sets Ui cover [0, 1], we must have∑
i diamUi ≥ 1. Indeed, if we write ai = inf Ui and bi = supUi, then

we have Ui ⊂ (ai, bi), with diamUi = bi − ai (where we take [0, bi)

and (aj , 1] in the cases ai = 0, bj = 1), and so the argument reduces
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to the case where each Ui is an interval.2 By compactness of [0, 1],

we may find i1, . . . , in such that ai1 = 0, bin = 1, and aik+1
< bik for

k = 1, 2, . . . , n− 1; it follows that

(2.9)

∑
i

diamUi =
∑
i

(bi − ai) ≥
n∑

k=1

(bik − aik)

>

(
n−1∑
k=1

aik+1
− aik

)
+ bin − ain = bin − ai1 = 1.

Thus
∑

i(diamUi)
α ≥ εα−1. Since α < 1, we have εα−1 > 1 for

sufficiently small ε > 0. Then Lemma 2.11 applies, showing that

dimH Z ≥ α. Since α < 1 is arbitrary, we have dimH Z ≥ 1, which

completes the proof. �

This result shows that Hausdorff dimension gives the result we

would expect for a line. A similar argument shows that this is also

true for the plane, and indeed for any Rd; the key step is (2.9), which

will need to be replaced by the inequality
∑

i(diamUi)
n ≥ 1.

Proposition 2.13. dimH Rd = d.

Sketch of proof in the case d = 2. As before, it is enough to con-

sider the unit square [0, 1]2, and it is relatively straightforward to

show that dimH [0, 1]2 ≤ 2 by producing a suitable family of covers.

To give the other inequality, we fix an arbitrary ε-cover U = {Ui},
and let δ > 0 be the Lebesgue number for U ; that is, δ is such that

any set with diameter ≤ δ is contained in some Ui (the existence of

such a positive δ is a consequence of the compactness of [0, 1]2). Then

choosing m ∈ N such that
√
2/m < δ, we consider the sets

Rj,k =

[
j

m
,
j + 1

m

]
×
[
k

m
,
k + 1

m

]
for 0 ≤ j, k ≤ m− 1. Each of these sets has diameter < δ, and hence

is contained in some Ui; thus if we let ai be the number of sets Rj,k

2More generally, we may observe that each Ui is a finite or countable union of
intervals, by letting Ii(x) denote the largest open interval containing x which is a subset
of Ui, and verifying that Ii(x) and Ii(y) either coincide or are disjoint. There are at
most countably many different Ii(x) since each contains a distinct rational number.
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contained in Ui, we have
∑

i ai ≥ m2. However, the number of sets

Rj,k covered by a single Ui cannot exceed (diamUi/(1/m))2, and so

m2 ≤
∑
i

ai ≤
∑
i

m2(diamUi)
2;

it follows that
∑

i(diamUi)
2 ≥ 1 for every ε-cover U , and hence

dimH [0, 1]2 ≥ 2. �

In fact, this argument actually shows that if Z ⊂ Rd is any open

set (indeed, any set with non-empty interior), then dimH Z = d; this

boils down to the fact that open sets have positive Lebesgue mea-

sure. . . but we are getting ahead of ourselves. For the time being, we

content ourselves with reiterating that by Propositions 2.12 and 2.13,

Hausdorff dimension agrees with our usual definition of dimension for

lines, planes, and so on.3

But what is our usual definition of dimension? Of course we

know that the d-dimensional Euclidean space Rd has, or ought to

have, dimension d, but why? What is it about this space that makes

it d-dimensional?

b. Topological dimension. Let X be a topological space, and con-

sider an open cover U of X. Fix a point x ∈ X, and count the

number of elements of the cover which contain x; we call this the

multiplicity of U at x, and denote it by M(U , x). The quantity

M(U) = supx M(U , x) is called the multiplicity of U .
As with our earlier definition of m(Z, α, ε) via covers, we can

make M(U) as large as we like (even infinite) by choosing a cover

with “too many” elements. To deal with this, we need the following

definition.

Definition 2.14. Let U and V be open covers of X; V is a refinement

of U if every V ∈ V is contained in some U ∈ U .

Passing to a refinement allows us to discard unnecessary sets from

the cover and also to “clean up” areas where more sets than necessary

3We will also consider an alternate approach based on the fact that R
d is the

direct product of n copies of R, once we establish something about how dimension
behaves under taking direct products.
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Figure 2.3. A cover of R2 with multiplicity 3.

cover a single point. We want to choose a refinement V of U for which

M(V) is minimal. Thus we define

M(X) = sup
U

(
inf{M(V) | V is a refinement of U}

)
and investigate how this quantity is connected to the dimension of X

in the case whenX = Rd, where we know what the dimension ought to

be. (We must take the supremum over all covers to eliminate certain

trivial examples, such as the cover U = {X}, for which M(U) = 1.)

In the case d = 1, we are just covering the line, and given any

open cover U , it is easy to construct a refinement V with M(V) = 2,

as in the proof of Proposition 2.12, by passing to a minimal subcover

(note that subcovers are refinements, although the converse is not true

in general). Since we must have intersections between the elements of

the cover (otherwise R would be disconnected), we see thatM(R) = 2.

In the plane, any open cover admits a refinement which has mul-

tiplicity 3, resembling the one shown in Figure 2.3, and it is not too

hard to show that this is optimal, so M(R2) = 3. Similarly, we have

M(Rd) = d+1, which connects M(Rd) to the dimension of Rd. Since

all that is required for the definition of M is a topological space, we

may make the following definition.

Definition 2.15. The topological dimension (or Lebesgue covering

dimension) of a topological space X is the quantity M(X)−1; that is,

the dimension is one less than the maximal multiplicity of an optimal

refinement.
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The discussion at the beginning of this lecture shows that Haus-

dorff dimension and topological dimension agree when it comes to the

Euclidean spaces Rd; is this always the case? Have we just given two

rather different definitions of the same quantity?

Lecture 9

a. Comparison of Hausdorff and topological dimension. One

difference in the two dimensions we have defined is immediately ap-

parent; the topological dimension is always an integer, while the Haus-

dorff dimension has no a priori reason to take integer values. Indeed,

it can take any non-negative real value (see Exercise 2.20).

Another difference becomes apparent if we look at what notions

are used in the definitions; the topological dimension can be defined

for any topological space, whether or not it has a metric, while the

Hausdorff dimension requires a metric for its definition. If we need to

explicitly indicate the metric being used, we will write the Hausdorff

dimension of Z with respect to the metric d as dimd
H Z.

This distinction becomes important when we observe that a sin-

gle topological space can be equipped with multiple metrics. For

example, the usual metric on Rd is given by Pythagoras’ formula

(2.10) d(x, y) =

√∑
i

(xi − yi)2,

but other metrics may be introduced by the formulae

ρ(x, y) =
∑
i

|xi − yi|,(2.11)

σ(x, y) = max
i

|xi − yi|,(2.12)

and it is not hard to check that these metrics all induce the same

topology on Rd (see Exercise 2.5). In particular, they all lead to the

same topological dimension; do they all lead to the same Hausdorff

dimension? To answer this question, we need some new definitions,

giving three senses in which two metrics d1 and d2 on Rd (or more

generally, on any metric space X) may be said to be “the same”.

Definition 2.16. d1 and d2 are equivalent (denoted d1 ∼ d2) if the

identity map Id: (X, d1) → (X, d2) is a homeomorphism; that is, if for
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every x ∈ X and every ε > 0 there exists δ > 0 such that d1(x, y) ≤ δ

implies d2(x, y) ≤ ε, and d2(x, y) ≤ δ implies d1(x, y) ≤ ε.

d1 and d2 are uniformly equivalent if the identity map and its

inverse are both uniformly continuous; that is, if for every ε > 0

there exists δ > 0 (independent of x, y) such that the implications in

the previous paragraph hold.

d1 and d2 are strongly equivalent if there exists C > 0 such that

for all x, y, we have

C−1d2(x, y) ≤ d1(x, y) ≤ Cd2(x, y).

The statement that d1 and d2 are equivalent may be rephrased

as the statement that every d1-ball contains a d2-ball, and vice versa.

In particular, since an open set U is one which contains a sufficiently

small ball around every point in U , we see that the metrics d1 and d2
define precisely the same collection of open sets; that is, they define

the same topology.

Exercise 2.5. Show that d, ρ, and σ as defined above on Rd are all

strongly equivalent.

Strong equivalence implies uniform equivalence, which in turn

implies equivalence, but neither of the reverse implications holds in

general. Thus two metrics may induce the same topology (that is,

be equivalent) but fail to be strongly equivalent, and so the metric

carries rather more information about the space than the topology

does.

Exercise 2.6. Construct a separable metric on Rd, which is

(a) not equivalent to the standard metric on Rd;

(b) equivalent to the standard metric on Rd, but not strongly equiv-

alent.

We now return to the question of where the dimensional infor-

mation resides: Is it carried by the topology itself? Or does it rely

on the extra information which is carried by the metric?

To address this matter, we consider a superficially different ques-

tion, which is actually quite related. Given two metric spaces (X, d)
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and (X ′, d′) and a continuous map f : X → X ′, what is the relation-

ship between dimH Z and dimH f(Z)?

In general, there may be no relationship. If f : Rd → Rd is pro-

jection to a subspace, then the Hausdorff dimension can decrease

under the action of f . On the other hand, the von Koch curve is a

homeomorphic image of the unit interval but has Hausdorff dimen-

sion strictly greater than 1, as we will see later, and so the Hausdorff

dimension can also increase under the action of f .

If f is Lipschitz, however, the story is different.

Proposition 2.17. If f : Rd → Rd is Lipschitz, then dimH f(Z) ≤
dimH Z for every Z ⊂ Rd.

Proof. Let L > 0 be such that d(f(x), f(y)) ≤ Ld(x, y). Then if

U = {Ui} is any ε-cover of Z, we have diam f(Ui) ≤ L diamUi, and

so f(U) = {f(Ui)} is an Lε-cover of f(Z), for which∑
i

(diam f(Ui))
α ≤ Lα

∑
i

(diamUi)
α.

It follows that m(f(Z), α, Lε) ≤ Lαm(Z, α, ε), whence m(f(Z), α) ≤
Lαm(Z, α). Thus if m(Z, α) is finite, so is m(f(Z), α), which implies

that dimH f(Z) ≤ dimH Z. �

Exercise 2.7. Let f : R → R be a C1 function (see Appendix). Show

that dimH f(Z) ≤ dimH Z for any (not necessarily bounded) set Z.

A bijection f such that both f and f−1 are Lipschitz is called bi-

Lipschitz. It follows from Proposition 2.17 that dimH f(Z) = dimH Z

whenever f is bi-Lipschitz; this fact actually goes some way towards

answering our earlier question regarding the dependence of Hausdorff

dimension on the metric, as follows.

If f : X → Y is a bijection and ρ is a metric on Y , then the

formula ρf (x, y) = ρ(f(x), f(y)) defines a metric ρf on X.

Exercise 2.8. Show that dim
ρf

H Z = dimρ
H f(Z).

It follows from Exercise 2.8 and the remarks above that if (X, d)

and (Y, ρ) are two metric spaces and f : X → Y is bi-Lipschitz, then

dim
ρf

H Z = dimd
H Z.
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If X = Y as sets, then d and ρ are two different metrics on the same

space; they are strongly equivalent if and only if the identity map f

is bi-Lipschitz. Furthermore, in this case ρf = ρ, and so we see that

Hausdorff dimension is preserved by strong equivalence.

The result of the following exercise shows that this is not neces-

sarily the case if the metrics merely induce the same topology.

Exercise 2.9. Compute the Hausdorff dimension of Rd with respect

to the metrics you constructed in Exercise 2.6. If the metric from

part (b)—which is equivalent to the standard metric, but not strongly

equivalent—does not give Rd a different Hausdorff dimension, then

find another equivalent metric which changes the Hausdorff dimen-

sion.

b. Metrics and topologies. So far, all our examples of topological

spaces have been metric spaces as well. One may rightly ask, then,

if every example arises this way; given a topological space (X, T ),

can we always find a metric d on X such that the sets in T are

precisely those sets which are unions of d-balls? Such a space is called

metrisable, and so we may ask, are all topological spaces metrisable?

It turns out that the answer is “no”: Some topologies do not

come from metrics. But which ones? Given a particular topology,

how can we tell whether or not it comes from a metric? To answer

this question, we examine properties of metric spaces which do not

follow from the axioms of a topological space.

Exercise 2.10. Let (X, d) be a metric space, and fix x ∈ X. Show

that the set {x} is closed.

Exercise 2.11. Let (X, d) be a metric space, and fix x, y ∈ X. Show

that there exist disjoint open sets U, V ⊂ X such that x ∈ U and

y ∈ V ; that is, metric spaces are Hausdorff.

Exercise 2.12. Let (X, d) be a metric space, and let A,B ⊂ X be

disjoint closed sets. Show that there exist disjoint open sets U, V ⊂ X

such that A ⊂ U and B ⊂ V ; that is, metric spaces are normal.

These three properties are examples of separation axioms, which

more or less describe what sort of sets (single points, closed sets, etc.)
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can be separated by open sets in the manner described above. None of

the separation axioms follow from the axioms of a topological space.

Indeed, if we consider the trivial topology T = {∅, X} on any set

X with more than one element, then the first two properties above

fail (the third holds vacuously); hence the trivial topology is non-

metrisable. Other examples of non-metrisable topologies are not hard

to come by. For example, given a set X with at least three elements,

take two arbitrary sets A,B ⊂ X, and consider the smallest topology

with respect to which both A and B are open:

T = {∅, A,B,A ∩B,A ∪B,X}.

(Note that A∩B may coincide with ∅, and A∪B may coincide with

X.) This topology does not have any of the three properties above,

and hence is non-metrisable.

On the other hand, if a topological space is both normal and

Hausdorff (the latter implies that points are closed), then this is al-

most enough to make it metrisable.

In order to state what more is needed, we first observe that in

any metrisable topology (X, T ), an open set can always be written

as a union of balls B(x, r). Thus although there are many open sets

which are not of the form B(x, r), the collection of balls is sufficient

to generate the topology. More generally, any collection of open sets

B ⊂ T with the property that any element of T can be written as a

union of elements of B is known as a base (or basis) of the topology.4

In fact, there are many cases in which the topology can be gen-

erated by an even smaller collection of open sets. In the familiar case

of Rd, we may consider the collection of all balls of rational radius

centred at points with rational coordinates; this forms a countable

base for the topology. A topological space with a countable base is

called second-countable, and one sees immediately that every separa-

ble metric space is second-countable.5

4Equivalently, a base may be characterised by the requirement that every open
set contain a member of the base.

5Given the choice of terminology, the reader may justifiably suspect that there is
a notion of first-countable space; indeed there is (though we shall not use it), and it
refers to a similar local property of the space.
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This flurry of definitions allows us to state (without proof) one

of the most important results in basic point set topology, which gives

a nearly complete answer to the question of which topological spaces

are metrisable.

Theorem 2.18 (Urysohn’s metrisation theorem). If X is a second-

countable, normal, Hausdorff topological space, then X is metrisable.

Actually, slightly stronger versions of this theorem are available,

but this will be enough for our purposes. In a nutshell, the moral of

the story is that all topological spaces are metrisable, except for rather

weird cases with which we will not concern ourselves.

So we are interested in topological spaces whose topologies come

from some metric. But which metric do we use? As we saw in Exam-

ple 2.5, the three metrics in (2.10)–(2.12) all lead to the same topology

on Rd, and in general, a single topology on a space X may be induced

by many different, but equivalent, metrics.

With this in mind, we return to our discussion of the topological

and Hausdorff dimensions of a set Z ⊂ Rd endowed with a metric ρ.

We continue to write d for the standard metric given by (2.10).

The relationship between the two notions of dimension is given

by the following deep theorem due to Hausdorff; this pearl of dimen-

sion theory was the motivation for his introduction of the notion of

Hausdorff dimension.

Theorem 2.19 (Hausdorff’s theorem). Given a set Z ⊂ Rd, the

topological dimension dimZ and the Hausdorff dimensions dimρ
H Z

are related by the following variational principle:

(2.13) dimZ = inf
ρ∼d

dimρ
H Z.

That is, the topological dimension of Z is the infimum of the possible

Hausdorff dimensions, taken over all metrics ρ which are equivalent

to the standard metric d.

Proof. See [Hau18]. �

In fact, we will eventually see an even better result than this in

Theorem 2.34.
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c. Topology and dimension. Even though the Hausdorff dimen-

sion depends on the metric, we can occasionally use it to deduce some

purely topological information.

Theorem 2.20. If Z ⊂ R and dimH Z < 1, then Z is totally discon-

nected.

Proof. Comparing (1.17) and (2.2), we see that Leb(Z) = m(Z, 1),

and so the Hausdorff function m(·, 1) is just Lebesgue measure. In

particular, we see that if a set Z has Hausdorff dimension strictly less

than 1, then Z admits interval covers of arbitrarily small total length,

hence Leb(Z) = 0.

To show that Z is totally disconnected, we consider arbitrary

points x, y ∈ Z, and produce two disjoint open sets U, V ⊂ Z such

that x ∈ U , y ∈ V , and U ∪ V = Z. To this end, define a function

f : Z → R+ by f(z) = d(x, z); that is, f measures the distance from

x to z.

Clearly, f is a Lipschitz function, and so Proposition 2.17 gives

the bound

dimH f(Z) ≤ dimH Z < 1,

and it follows from our earlier remarks that Leb(f(Z)) = 0. But this

implies that R \ f(Z) is dense; indeed, if it were not dense, then f(Z)

would contain an interval, and hence have positive Lebesgue measure.

Thus we may find r ∈ R \ f(Z) such that 0 < r < f(y), and we

define two open sets by

U = f−1([0, r)) = {z ∈ Z | d(x, z) < r},
V = f−1((r,∞)) = {z ∈ Z | d(x, z) > r}.

Obviously, U and V are disjoint; furthermore, since r /∈ f(Z), there is

no point z ∈ Z with d(x, z) = r, and hence U ∪V = Z. Finally, x ∈ U

and y ∈ V , so x and y do not lie in the same connected component

of Z. Since x and y were arbitrary, the desired result follows. �

Exercise 2.13. Show that any topological space X with topological

dimension 0 is totally disconnected, provided it satisfies the property

in Exercise 2.10. Use this fact to derive Theorem 2.20 as a corollary

of Hausdorff’s Theorem (which is much deeper).
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Exercise 2.14. Show that the converse of Exercise 2.13 fails in gen-

eral by giving an example of a totally disconnected topological space

with topological dimension ≥ 1. Finally, show that the converse does

hold for a compact metric space X: if X is totally disconnected, then

it has topological dimension 0.

Lecture 10

a. Hausdorff dimension of Cantor sets. We return now to the

various Cantor sets we constructed in Chapter 1, and address the

problem of computing their Hausdorff dimensions. We first give a

brief discussion of dynamically defined Cantor sets which have a very

regular self-similarity (but we do not prove anything); in the next

section, we consider more general geometrically constructed Cantor

sets and prove a general result on their Hausdorff dimension.

Let f be a piecewise linear one-dimensional full-branched Markov

map, and λ1, . . . , λk the lengths of the basic intervals I1, . . . , Ik. Let

C be the maximal invariant set (the repeller) for f . We assume that

there exists t ≥ 0 such that 0 < m(C, t) < ∞.

Define sets C1, . . . , Ck by Cj = C ∩ Ij ; each of the sets Cj is

similar to C, with scaling factor λj , and it follows from Exercise 2.1

that

m(Cj , t) = λt
j m(C, t).

The result of Exercise 2.2 still holds in this case, and so

m(C, t) =
k∑

j=1

m(Cj , t) =
k∑

j=1

λt
j m(C, t).

By the assumption that 0 < m(C, t) < ∞, we must have

(2.14)

k∑
j=1

λt
j = 1.

We stress that just as with the middle-third Cantor set, this argument

does not prove anything in and of itself; all it does is suggest that the

solution of (2.14) is a good candidate for dimH C. In order to prove

that t is actually the Hausdorff dimension, we will show that m(C, t)

is in fact positive and finite.
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b. Moran’s Theorem. The argument in the previous section used

the fact that C is a union of sets to which it is geometrically similar.

For an arbitrary geometrically constructed Cantor set on the line, this

is not usually the case; the freedom to place basic intervals at different

locations at each step can very easily destroy the strict self-similarity

that the above argument requires.

Indeed, the construction described in Lecture 5(c) is quite a gen-

eral one. We may begin with any number k ≥ 2 of basic intervals, we

may choose as ratio coefficients any positive numbers λ1, . . . , λk whose

sum is less than 1, and we may place the basic intervals Iw1···wn+1
any-

where we like within the basic interval Iw1...wn
from the previous step,

provided they are disjoint and have lengths given by (1.21). How do

these choices affect the Hausdorff dimension dimH C? Does it matter

where we put the intervals? Is the dependence on the ratio coefficients

λj still given by (2.14)?

These questions were first asked by Abram Besicovitch, one of

the founders of the dimension theory of fractals; he posed them to

his students in a seminar he organised at Cambridge upon his arrival

there from Russia in 1927. One of those students, Patrick Moran,

proved the rather remarkable result that (2.14) applies in general,

regardless of the spacing of the basic intervals.

Theorem 2.21 (Moran’s theorem). If C is a geometrically con-

structed Cantor set on the line with ratio coefficients λ1, . . . , λk, then

its Hausdorff dimension dimH C is the unique value of t which satis-

fies (2.14).

Proof. First we must verify that (2.14) does in fact have a unique

solution. The function defined by the left-hand side is continuous,

takes the value k ≥ 2 at t = 0, and is equal to
∑

j λj < 1 at t = 1;

hence by the Intermediate Value Theorem, there exists some t ∈
(0, 1) such that the function is equal to 1. Furthermore, a simple

computation of the derivative shows that it is negative, hence the

function is strictly decreasing, and so the solution t is unique.

From now on, t shall denote the unique value for which (2.14)

holds. As in the proof of Proposition 2.12, there are two parts to the

argument; first we show that dimH C ≤ t, then that dimH C ≥ t.
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We begin by obtaining the upper bound, which uses Lemma 2.10.

So for every ε > 0, we must find a “good” ε-cover, for which the

quantity
∑

i(diamUi)
t is bounded independently of ε.

We claim that the cover by basic intervals at an appropriate step

n of the iteration is the desired one. Writing λmax = max{λ1, . . . , λk},
we see that

|Iw1...wn
| = |Iw1

|

⎛
⎝ n∏

j=2

λwj

⎞
⎠ ≤ |Iw1

|λmax
n−1 ≤ λmax

n−1,

and so if we fix n such that λmax
n−1 < ε, we may consider the ε-cover

U = {Iw1...wn
| 1 ≤ wj ≤ k for every 1 ≤ j ≤ n}.

It follows that

m(C, t, ε) ≤
∑

(w1,...,wn)

|Iw1...wn
|t

=
∑

(w1,...,wn−1)

|Iw1···wn−11|t + · · ·+ |Iw1···wn−1k|t

=
∑

(w1,...,wn−1)

|Iw1···wn−1
|t(λt

1 + · · ·+ λt
k)

=
∑

(w1,...,wn−1)

|Iw1···wn−1
|t = · · · =

∑
w1

|Iw1
|t,

but this last quantity is a constant, independent of ε, so Lemma 2.10

applies: m(C, t) ≤
∑

i |Ii|t < ∞, therefore dimH C ≤ t.

As usual, the proof that dimH C ≥ t is harder. We want to apply

Lemma 2.11 by showing that for a sufficiently small ε > 0, every

ε-cover has

(2.15)
∑
i

(diamUi)
t ≥ K > 0,

where K is a constant chosen independently of the cover. The plan of

attack is first to establish (2.15) for ε-covers by basic intervals (which

may occur at different depths of the construction), and then to use

this bound to obtain a bound for all ε-covers.

The case of covers by basic intervals is dealt with in the following

lemma.
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Lemma 2.22. There exists a constant K, chosen independently of

any cover, such that if U = {Ui} is any cover of C such that each Ui

is a basic interval, then (2.15) holds.

Proof. Consider the constant

(2.16) K =
k∑

j=1

|Ij |t,

and let U be any cover of C by basic intervals. Because C is compact,

U has a finite subcover; it suffices to establish (2.15) for this finite

subcover, and so without loss of generality we may assume that U is

finite. Indeed, we can (and do) take U to be minimal in the sense

that no proper subcollection of U covers C.

Given a basic interval Iw1...wn
, we refer to n as the depth of the

interval in the construction. Different elements of U may lie at dif-

ferent depths of the construction; however, because U is finite, there

exists some n such that the depth of each basic interval in U is at

most n.

Let Iw1...wn
be a basic interval of maximal depth in U . Since U is

minimal, it does not contain the basic interval Iw1···wn−1
(otherwise

we could eliminate Iw1...wn
and obtain a proper subcover). It follows

that each of the basic intervals Iw1···wn−1j for j = 1, . . . , k is contained

in U .
Thus the sum in (2.15) contains the partial sum

|Iw1···wn−11|t + · · ·+ |Iw1···wn−1k|t.

By the formula (1.20) for the lengths of the basic intervals and the

definition of t, this is equal to

(|Iw1···wn−1
|λ1)

t + · · ·+ (|Iw1···wn−1
|λk)

t

= |Iw1···wn−1
|t(λt

1 + · · ·+ λt
k) = |Iw1···wn−1

|t,

and it follows that the sum in (2.15) is not changed if we replace all

the basic intervals of depth n by the corresponding intervals of depth

n− 1. The result follows by induction. �
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We now show that the case of an arbitrary ε-cover can be reduced

to the case of a cover by basic intervals, and find a uniform lower

bound K ′ in terms of K =
∑

j |Ij |t.
To this end, for each r > 0, we consider the collection V(r) of

basic intervals Iw1...wn
whose lengths satisfy

(2.17) rλmin ≤ |Iw1...wn
| ≤ r

λmin
,

where λmin = min{λ1, . . . , λk} < 1. Now given x ∈ C, let w ∈ Σ+
k be

the symbolic sequence corresponding to x, so that

{x} =
⋂
n≥1

Iw1...wn
.

The lengths |Iw1...wn
| of the basic intervals are related by the inequal-

ities

λmin|Iw1...wn−1
| ≤ |Iw1...wn

| ≤ λmax|Iw1...wn−1
|;

consequently, the number of values of n for which |Iw1...wn
| lies be-

tween rλmin and r/λmin is at least 1 and at most

M = 2 log λmin/ log λmax.

This is exactly the number of elements of V(r) which contain x; hence

V(r) is a cover of C with multiplicity bounded by M (which is inde-

pendent of r).

Lemma 2.23. Let U ⊂ R, and write r = diamU . Then U intersects

at most M ′ = 2M/λmin elements of V(r).

Proof. Let a = inf U , so U ⊂ [a, a+ r], and choose points a = x0 <

· · · < xm = b ∈ U such that xj+1 − xj < rλmin, and m ≤ 1/λmin.

Then if V ∈ V(r) intersects U non-trivially, it must intersect one of

the xj , since diamV ≥ rλmin. Because the multiplicity of V(r) is

bounded by M , each of the xj can be contained in at most M such

sets V , and it follows that the total number of elements of V(r) which
intersect U is bounded above by M(m+ 1) ≤ 2Mm ≤ 2M/λmin. �

The exact value of the constant M ′ in the lemma is unimportant;

what matters is that it is independent of r.

Now let U be any ε-cover of C; for each Ui, write ri = diamUi,

and let Ui,1, . . . Ui,m(i) be the basic intervals in V(ri) which intersect
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Ui. It follows from the above remarks that m(i) ≤ M ′; furthermore,

we see from (2.17) that

diamUi,j ≤
diamUi

λmin
,

whence we obtain the bound

m(i)∑
j=1

(diamUi,j)
t ≤ M ′

λmin
t (diamUi)

t.

Summing over all the elements of U yields

∑
i

(diamUi)
t ≥
(
λmin

t

M ′

)∑
i

m(i)∑
j=1

(diamUi,j)
t,

and since {Ui,j} is a cover of C by basic intervals, we may apply

Lemma 2.22 to obtain∑
i

(diamUi)
t ≥
(
λmin

t

M ′

) k∑
j=1

|Ij |t > 0,

which completes the proof. �

Exercise 2.15. Given numbers λi > 0 such that
∑k

i=1 λi < 1, show

that the function

P (t) = log

(
k∑

i=1

λt
i

)

is real analytic, decreasing and convex for t ∈ R. Find a condition on

λ1, . . . , λk that guarantees that P (t) is strictly convex. Describe the

asymptotic behaviour of P (t) as t → ±∞.

Exercise 2.16. Given a number α ∈ [0, 1], construct a subset Z ⊂
[0, 1] whose Hausdorff dimension is α.

Exercise 2.17. Construct an uncountable subset of the unit interval

[0, 1] whose Hausdorff dimension is zero.

c. Moran constructions. Moran’s theorem applies not only to ge-

ometrically constructed Cantor sets on the line, but to the general

class of constructions described below, an example of which is shown

in Figure 1.20.
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Definition 2.24. A Moran construction is a geometric construction

that defines a limiting set C ⊂ Rd as follows:

(1) Begin with k > 1 basic sets ∆1, . . . ,∆k ⊂ Rd, each of which is

the closure of its interior, and ratio coefficients λi > 0 such that∑k
i=1 λi < 1.

(2) Via an iterative procedure, construct disjoint basic sets ∆w1...wn

such that ∆w1...wn
is similar to ∆w1···wn−1

, with scaling factor

given by the ratio coefficient λwn
; that is, ∆w1...wn−1

is the image

of ∆w1...wn
under a similarity transformation with scaling factor

λwn
.

(3) Place the basic sets ∆w1...wn
in the appropriate sets ∆w1...wn−1

in any position such that they are disjoint.

(4) Define C as the limiting set C =
⋂

n≥1

⋃
w1...wn

∆w1...wn
.

Just as is the case for geometrically constructed Cantor sets on

the line, the Hausdorff dimension of a Moran construction is given by

Moran’s formula (2.14). The proof in the higher dimensional setting

(d ≥ 2) is more or less a carbon copy of the one just given, but the

reader is strongly encouraged to work through the details, as this

argument is easily the most intricate we have come across so far.

Remark. This result also holds in some cases where the requirement

that the basic sets ∆w1...wn
are disjoint is replaced with the weaker

assumption that their interiors are disjoint. Sierpiński gaskets are

good examples of this situation.

Moran’s theorem also extends to a slightly more general class of

constructions in a different way. In the definition above, the basic

sets at the first step of the construction can be chosen arbitrarily,

together with their diameters, provided the basic sets at subsequent

steps are homothetic images with the appropriate ratio coefficients. In

fact, since it is the asymptotic behaviour which determines Hausdorff

dimension, the same result holds if the shapes and sizes of basic sets

are chosen completely arbitrarily for any finite number of steps, after

which the similarity rules and ratio coefficients take over.
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Exercise 2.18. Use Moran’s theorem to verify the values you guessed

in Exercise 2.3 for the Hausdorff dimension of the Sierpiński gasket

and the von Koch curve.

Exercise 2.19. Compute the Hausdorff dimension of the subset E ⊂
[0, 1] whose decimal expansions do not contain the digit 5.

Exercise 2.20. Given α ∈ [0,∞], find a compact metric space X

and a set Z ⊂ X such that dimH Z = α.

d. Dynamical constructions and iterated function systems.

Moran constructions are not the only way to obtain a fractal set.

Although a dynamically defined Cantor set on the line is the result

of a Moran construction if the corresponding map is piecewise linear,

a repeller for a non-linear map cannot generally be obtained from a

Moran construction, and so is not dealt with at all by Theorem 2.21.

To study such sets, we will need to introduce techniques from measure

theory, which we will do in the next chapter.

In the meantime, we observe that even without introducing non-

linearity into the picture, things become more subtle when we work in

higher dimensions. So instead of a map f which is defined piecewise

on a number of intervals Ij ⊂ [0, 1], and which maps each one linearly

onto the entire unit interval, we consider a map f which is defined

piecewise on a number of rectangles Rj ⊂ R = [0, 1]2, and which

maps each one linearly onto the entire unit square R.

Rather than attempting to understand f by drawing its graph

and using a cobweb diagram, which would require four dimensions

(one more than the average human being can reliably visualise), we

look at the process by which the repeller of f is constructed. If we

write fj for the restriction of the map f to the rectangle Rj , then fj is

a homeomorphism from Rj to R, which expands distances; thus Rj is

the image of R under the inverse map f−1
j , which contracts distances.

Following the same idea as in Lecture 3, write Rw1...wn
for the

set of all points x ∈ R such that f i−1(x) ∈ Rwi
for all 1 ≤ i ≤ n.

Writing gj = f−1
j for the inverse maps, we have the following analogue

of (1.7):

(2.18) Rw1...wn
= gwn

◦ gwn−1
◦ · · · ◦ gw2

◦ gw1
(R).
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Figure 2.4. An iterated function system with overlapping images.

If f is expanding (d(f(x), f(y)) > d(x, y) for every x, y), then each

gj is contracting (d(gj(x), gj(y)) < d(x, y)), and so the collection of

maps {g1, . . . , gk} is an example of the following general object.

Definition 2.25. An iterated function system (IFS) is a finite col-

lection of continuous contracting one-to-one maps gj : R → R, where

R ⊂ Rd is closed. Defining basic sets Rw1...wn
by (2.18), the limiting

set of the iterated function system {g1, . . . , gk} is

C =
⋂
n≥1

⋃
(w1,...,wn)

Rw1...wn
.

Exercise 2.21. Obtain the middle-third Cantor set, the Sierpiński

gasket, and the von Koch curve as limiting sets of iterated function

systems.

By placing various hypotheses on the maps gj , we can restrict to

smaller classes of iterated functions systems, about which more can be
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Figure 2.5. The Barnsley fern.

proved. For example, if R is compact and the maps gj are contracting

similarity transformations whose images are disjoint (gi(R)∩gj(R) =

∅ for i �= j), then the limiting set C can once again be obtained via a

Moran construction. The ratio coefficients of the construction are the

scaling factors of the maps gj , and we may compute the Hausdorff

dimension of C using Moran’s theorem.

If we drop the assumption of conformality, however, and merely

require the maps gj to be linear and contracting, then we no longer

have a Moran construction (see Figure 2.6), and new tools are required

to compute the Hausdorff dimension.

As long as the images gj(R) are disjoint, the limiting set of the

iterated function system may be found as the repeller of a piecewise

defined Markov map with domain R1∪· · ·∪Rk; if the images overlap,

then we are in new territory. We will not discuss this case further,

beyond giving one striking example. The first panel of Figure 2.4

shows an iterated function scheme with four linear contractions g1,

g2, g3, and g4; the remaining three panels show the unions of the

images gwn
◦ · · · ◦ gw1

(R) taken over all sequences (w1, . . . , wn), for

n = 2, n = 4, and n = 6.

The limiting set C of this particular IFS is called the Barnsley

fern. A stochastically-generated approximation to C is shown in Fig-

ure 2.5; this example illustrates the capability of fractal constructions

to produce strikingly realistic images.
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Lecture 11

a. Box dimension: another way of measuring dimension. In

the definition of the Hausdorff function m(Z, α), we considered covers

whose sets have diameter less than or equal to ε; within a particular

cover, we might find sets on many different scales, some of which

could have diameter much smaller than ε.

An alternate approach is to restrict our attention to covers by sets

on the same (small) scale; thus we denote by D′(Z, ε) the collection

of all countable open covers U of Z such that diamU = ε for every

U ∈ U . We then define a set function

(2.19) r(Z, α, ε) = inf
D′(Z,ε)

∑
i

(diamUi)
α.

This differs from the definition (2.2) of m(Z, α, ε) in only a single

symbol; ≤ is replaced by = in the definition of the collection of covers.

Nevertheless, the effect of this change is quite drastic; in the first

place, the argument that m(Z, α, ε) depends monotonically on ε does

not apply to r(Z, α, ε), since the collections of admissible covers for

two different values of ε are disjoint!

As a result of this change, we have no a priori guarantee that the

limit of r(Z, α, ε) as ε → 0 exists; indeed, there are many examples

for which it does not. To deal with this difficulty, we need the concept

of upper and lower limits.

Definition 2.26. Given a sequence (xn) ⊂ R, recall that a point

x ∈ R is an accumulation point of (xn) if there exists a subsequence

(xnk
) which converges to x. The lower limit of (xn) is

lim
n→∞

xn = inf{x | x is an accumulation point of (xn)},

and the upper limit is

lim
n→∞

xn = sup{x | x is an accumulation point of (xn)}.

The lower and upper limits are sometimes denoted by lim inf and

lim sup, respectively, and one may hear the terms infimum (supre-

mum) limit, or possibly limit inferior (superior).
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Example 2.27. Define two sequences by xn = 1/n and yn = 1−1/n,

and interweave them:

z2n−1 = xn, z2n = yn.

Then the sequence (zn) does not converge, but it has subsequences

which do. The set of accumulation points of (zn) is {0, 1}, and so

lim
n→∞

zn = 0, lim
n→∞

zn = 1.

Exercise 2.22. Show that the lower and upper limits may equiva-

lently be defined by

lim
n→∞

xn = lim
n→∞

(
inf
m≥n

xm

)
,

lim
n→∞

xn = lim
n→∞

(
sup
m≥n

xm

)
.

Furthermore, show that x = limn xn if and only if both of the follow-

ing conditions hold:

(1) For every ε > 0, there exists N such that xn ≥ x − ε for every

n ≥ N .

(2) There exists a subsequence (xnk
) of (xn) which converges to x.

Similarly, show that x = limn xn if and only if:

(1) For every ε > 0, there exists N such that xn ≤ x + ε for every

n ≥ N .

(2) There exists a subsequence (xnk
) of (xn) which converges to x.

An immediate consequence of the definition is that limxn =

limxn if and only if lim xn itself exists, in which case it is equal

to the common value and is the only accumulation point.

We have given the definition of the lower and upper limits for

a discrete index (n), but it goes through equally well in the case

of a continuous index (such as ε). Thus returning to the function

r(Z, α, ε), where Z ⊂ Rd, α ≥ 0, and ε > 0, we define

r(Z, α) = lim
ε→0

r(Z, α, ε),

r(Z, α) = lim
ε→0

r(Z, α, ε).

                

                                                                                                               



Lecture 11 87

We have the following partial analogue of Proposition 2.1:

Proposition 2.28. The set functions r(·, α) and r(·, α) satisfy the

following properties.

(1) Normalisation: r(∅, α) = r(∅, α) = 0 for all α > 0.

(2) Monotonicity: r(Z1, α) ≤ r(Z2, α) and r(Z1, α) ≤ r(Z2, α) when-

ever Z1 ⊂ Z2.

Proof. Follows immediately from the definitions. �

Conspicuously absent from Proposition 2.28 is the subadditivity

property which held for m(·, α). The proof of that property relied

on the construction of an ε-cover as a union of covers of arbitrarily

small diameter; because the definition of r(Z, α, ε) does not allow us

to use sets of diameter less than ε, the proof does not go through here.

While we will see in the next lecture that r(Z, α, ε) is subadditive for

finite collections, no such result holds for countable collections, or for

r(Z, α, ε). The consequences of this will become apparent shortly.

As functions of α, both r(Z, α) and r(Z, α) have similar properties

to m(Z, α); there are critical values αC and αC below which the value

of the function is ∞, and above which it is 0. Just as the critical

value of m(Z, α) determines the Hausdorff dimension of Z, the critical

values of r and r are also dimensional quantities, known as the lower

box dimension and upper box dimension, respectively,6 and denoted

dimBZ and dimBZ. As with αC , we have

dimBZ = αC = inf{α > 0 | r(Z, α) = 0}
= sup{α > 0 | r(Z, α) = ∞},

dimBZ = αC = inf{α > 0 | r(Z, α) = 0}
= sup{α > 0 | r(Z, α) = ∞}.

Exercise 2.23. Compute the lower and upper box dimensions of the

following sets:

(a) A =
{
0, 1, 1

2 ,
1
3 ,

1
4 , . . .

}
.

(b) B =
{
0, 1, 14 ,

1
9 ,

1
16 , . . .

}
.

6In the literature, one may also find the box dimensions referred to as box counting
dimensions, entropy dimensions, or capacities.
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b. Properties of box dimension. As an immediate consequence

of Proposition 2.28, we have the following analogue of Proposition 2.8:

Proposition 2.29. The upper and lower box dimensions have the

following basic properties.

(1) Normalisation: dimB∅ = dimB∅ = 0.

(2) Monotonicity: dimBZ1 ≤ dimBZ2 and dimBZ1 ≤ dimBZ2 when-

ever Z1 ⊂ Z2.

(3) If {Zi} is any countable collection of subsets of Rd, then

dimB

(⋃
Zi

)
≥ sup

i
(dimBZi) ,

dimB

(⋃
Zi

)
≥ sup

i

(
dimBZi

)
.

Property (3) follows immediately from property (2), and is weaker

than its analogue in Proposition 2.8 because of the failure of count-

able subadditivity for the lower and upper box dimensions; in Exam-

ple 2.36, we will see that the inequality may become strict.

First, though, let us address the definition (2.19) of r(Z, α, ε),

which played a key role in the description of the lower and upper

box dimensions. Since we restrict our attention to covers in which

every set has diameter ε, every term in the sum
∑

i(diamUi)
α is the

same! It seems rather silly, then, to continue writing it as a sum, and

indeed (2.19) is equivalent to

r(Z, α, ε) = inf
D′(Z,ε)

εαN(U),

where N(U) denotes the number of elements in the cover U . Thus we
write

N(Z, ε) = inf
D′(Z,ε)

N(U)

for the minimal number of elements in a cover of Z by open sets of

diameter ε and obtain

(2.20) r(Z, α, ε) = εαN(Z, ε).

Observe that N(Z, ε) is finite if the set Z is bounded, and that there

may exist different covers U with N(U) = N(Z, ε), so that there is

not necessarily a unique optimal cover.
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Exercise 2.24. Show that the lower and upper box dimensions may

be characterised by

dimBZ = αC = lim
ε→0

logN(Z, ε)

log(1/ε)
,(2.21)

dimBZ = αC = lim
ε→0

logN(Z, ε)

log(1/ε)
.(2.22)

Exercise 2.25. Show that the lower and upper box dimensions of a

set Z ⊂ Rd can also be computed as

dimBZ = lim
ε→0

logL(Z, ε)

− log ε
, dimBZ = lim

ε→0

logL(Z, ε)

− log ε
,

where L(Z, ε) is largest number of disjoint balls of radius ε centred

at points in Z.

Exercise 2.26. Given Z ⊂ Rd, consider sequences nk → ∞ and

εk → 0. Assume that for every k the set Z can be covered by nk balls

of radius εk. Show that

dimBZ ≤ lim
k→∞

log nk

− log εk
.

If in addition, there exists 0 < c < 1 such that εk+1 ≥ cεk for all k,

then show that

dimBZ ≤ lim
k→∞

log nk

− log εk
.

Proposition 2.7 showed that defining m(Z, α, ε) in terms of open

balls rather than open sets does not change the critical value αC , and

hence leads to an equivalent definition of the Hausdorff dimension.

The same is true for the lower and upper box dimensions, and the

proof goes through verbatim; hence we may also use NB(Z, ε), the

smallest cardinality of a cover of Z by balls of radius ε, in (2.21)

and (2.22).

Because N(Z, ε) and NB(Z, ε) must be finite in order for the

definition of lower and upper box dimension to make any sense, we

restrict our attention to bounded subsets of Rd. Furthermore, we need

only consider compact subsets Z, thanks to the following fact.

Proposition 2.30. The box dimension (lower or upper) of a set Z

is the same as the box dimension (lower or upper) of its closure.
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Proof. Recall that the closure Z of a set Z ⊂ Rd is just the union

of Z and its accumulation points. If {B(xi, ε/2)} covers Z, then

{B(xi, ε)} covers Z, and so

NB(Z, 2ε) ≤ NB(Z, ε) ≤ NB(Z, ε),

from which (2.21) and (2.22) show that dimBZ = dimBZ, and also

dimBZ = dimBZ. �

As a consequence of Proposition 2.30, it suffices to consider sub-

sets of Rd which are both closed and bounded, hence compact.

As before, we want to understand how the box dimensions behave

under continuous maps or changes of metric. The most important

result is the following analogue of Proposition 2.17.

Proposition 2.31. If f : Rd → Rd is Lipschitz, then dimBf(Z) ≤
dimBZ and dimBf(Z) ≤ dimBZ for every compact Z ⊂ Rd.

Proof. If U = {Ui} is a cover of Z by open sets of diameter ε,

then diam f(Ui) ≤ L diamUi, where L is a Lipschitz constant for f .

By “fattening up” the sets f(Ui) by an appropriate amount, we can

turn f(U) = {f(Ui)} into an open cover of f(Z) by sets of diameter

precisely Lε; it follows that N(f(Z), Lε) ≤ N(Z, ε), and so

logN(f(Z), Lε)

logL+ log(1/Lε)
≤ logN(Z, ε)

log(1/ε)
.

Taking lower and upper limits as ε → 0 gives the result. �

It follows that if f is bi-Lipschitz, then Z and f(Z) have the same

box dimensions. In particular, the lower and upper box dimensions

do not change if we pass to a strongly equivalent metric.

Finally, we remark that as with the Hausdorff dimension, the box

dimensions may be defined in any separable metric space, not just Rd.

Lecture 12

a. Relationships between the various dimensions. Let us ex-

amine the relationship between the Hausdorff dimension and the two

box dimensions. It follows immediately from the definitions that

m(Z, α) ≤ r(Z, α) ≤ r(Z, α)
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for any Z ⊂ Rd and α > 0, and thus we have the relations

(2.23) dimH Z ≤ dimBZ ≤ dimBZ.

Exercise 2.27. Show that dimB[0, 1] = dimB[0, 1] = 1.

One of our goals will be to establish conditions on Z under which

the quantities in (2.23) all coincide. When this occurs, we may refer

to the common value as the fractal dimension without fear of ambi-

guity. We will see that the three quantities agree for a wide range of

examples, including some rather complicated sets. We will also see

relatively simple examples of sets Z for which the inequalities in (2.23)

become strict. The challenge is to develop some criteria which may

let us know what sort of behaviour to expect for a particular Z.

For a very important family of sets, those resulting from Moran

constructions, all three quantities coincide.

Theorem 2.32. Let C be the limit set of a Moran construction. Then

dimH C = dimBC = dimBC.

Proof. Thanks to (2.23), it suffices to show that dimBC ≤ dimH C.

By Moran’s theorem (Theorem 2.21), dimH C is the unique solution

of (2.14), and so we show that dimBC ≤ t, where
∑

i λ
t
i = 1.

Thus we want to show that r(C, t) < ∞ by bounding r(C, t, ε)

from above; this is accomplished by producing a suitable cover of C

by open sets of diameter ε, as follows. Given x ∈ C, let n(x) be the

unique integer such that

|Iw1...wn(x)−1
| ≥ ε > |Iw1...wn(x)

|;
the existence of n(x) is guaranteed by the fact that |Iw1...wn

| → 0

as n → ∞. Thus for each x we may choose an open interval U(x)

of length ε which contains Iw1...wn(x)
. Because C is compact, it can

be covered by a finite collection of basic intervals {Iw1...wn(xi)
}Ni=1.

Without loss of generality, we may take this collection to be disjoint;

then for the open cover U = {U(xi)}Ni=1, we have

(2.24)

∑
i

(diamU(xi))
t ≤ 1

λmin
t

∑
i

|Iw1...wn(xi)
|t

=
1

λmin
t

(
|I1|t + · · ·+ |Ik|t

)
,
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µ

λ

µ2

λ2

Figure 2.6. A Cantor construction in R
2 which is not Moran.

where the last equality follows by the same calculation as in the proof

of Theorem 2.21.

WritingK for the last expression in (2.24), we see that r(C, t, ε) ≤
K for every ε > 0; since K does not depend on ε, this gives r(C, t) ≤
K < ∞. This implies that dimBC ≤ t = dimH C, and the desired

result follows. �

Exercise 2.28. Let I1, I2, and I3 be three disjoint subintervals of

[0, 1], and let f : I1 ∪ I2 ∪ I3 → [0, 1] be the corresponding one-

dimensional linear full-branched Markov map. Compute the Haus-

dorff and box dimensions of the repeller for f .

Exercise 2.29. Compute the Hausdorff dimension and lower and

upper box dimensions of the Cantor set obtained via the following

geometric construction in R2:

Starting with the unit square in R2, choose two disjoint rectangles

with sides λ and µ (where 0 < λ < 1
2 < µ < 1), which are spaced one

exactly above the other. At the next step of the construction inside

each of these rectangles choose two disjoint rectangles with sides λ2

and µ2, which are spaced one exactly above the other. Continue in

the same fashion (see Figure 2.6).

It is possible to extend the result of Theorem 2.32 to certain other

examples, as the following exercise shows.

Exercise 2.30. Let C be the middle-third Cantor set and let C ′ be

obtained from C by adding a single point inside each complementary
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interval. Show that

dimH C ′ = dimBC
′ = dimBC

′ = dimH C.

The competing ideas of dimension do not always agree, however;

using Proposition 2.30, we can give an example of a set for which the

inequality in (2.23) becomes strict.

Example 2.33. Let Z = Q∩[0, 1] be the set of all rational numbers in

the unit interval. Then Z is countable, which implies that dimH Z = 0

by Corollary 2.9. However, Z is dense in [0, 1], and so

dimBZ = dimB[0, 1],

dimBZ = dimB[0, 1].

By Exercise 2.27, this implies that dimBZ = dimBZ = 1.

There are many other examples of sets for which the Hausdorff

and box dimensions do not agree, and for which in addition the two

box dimensions do not agree. Indeed, the coincidence of all three

quantities is somehow a special case, which usually occurs only if the

set Z arises from a geometric construction or a dynamical system.

Before giving further negative results in the form of counterexam-

ples, we give one more positive result, one more relationship between

the different sorts of dimensions which always holds. For general sub-

sets Z ⊂ Rd, even though the inequalities in (2.23) may become strict,

it is still possible to prove the following (rather deep) theorem, due

to Lev Pontryagin and Lev Shnirel’man [PS32], which is a stronger

version of Hausdorff’s theorem (Theorem 2.19). As with the Haus-

dorff dimension, the lower and upper box dimensions depend on the

choice of metric; it follows from Proposition 2.31 that passing to a

strongly equivalent metric preserves these dimensions, but they may

change if the new metric is merely equivalent.

Theorem 2.34 (Pontryagin–Shnirel’man theorem). Given a set Z ⊂
Rd, the topological dimension dimZ and the lower box dimensions

dimρ
BZ are related by the following variational principle:

(2.25) dimZ = inf
ρ∼d

dimρ
BZ.
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That is, the topological dimension is the infimum of the possible lower

box dimensions, taken over all metrics ρ which are equivalent to the

standard metric d.

No analogue of this result holds for the upper box dimension, and

so this theorem is in some sense the best result possible. Pontryagin

and Shnirel’man were the first to introduce the concept of lower box

dimension, which they called the metric order, a piece of terminology

which has fallen by the wayside. Perhaps because no such result holds

for the upper box dimension, they did not consider that quantity.

b. A counterexample. We now construct an example which shows

that the three different dimensional quantities may all take different

values for relatively simple subsets of [0, 1].

Theorem 2.35. Given any 0 < α ≤ β < 1, there exists a count-

able closed set A ⊂ [0, 1] such that dimH A = 0, dimBA = α, and

dimBA = β.

Proof. Consider the sequence an = e−n → 0. We will construct a

set A ⊂ [0, 1] as an increasing sequence beginning at 0; the first few

terms will be separated by a gap of length a1, the next few by a gap

of length a2, and so on. That is, the set A will be the sequence

(2.26)

{
0, a1, 2a1, . . . , b1a1,

b1a1 + a2, b1a1 + 2a2, . . . , b1a1 + b2a2,

...(
n∑

k=1

bkak

)
+ an+1, . . . ,

(
n∑

k=1

bkak

)
+ bn+1an+1,

(
n+1∑
k=1

bkak

)
+ an+2, . . .

}

together with its limit point, where (bn) is a sequence of non-negative

integers which we will choose so as to obtain the desired result for the

lower and upper box dimensions. We write the endpoints between
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sequences of differently spaced points as

Tn =
n∑

k=1

bkak,

and see that limn→∞ Tn = T , the limit point of A.

The fact that dimH A = 0 follows immediately from the fact that

A is countable, and so it remains to choose (bn) so as to guarantee

dimBA = α and dimBA = β. The key properties of our sequence (bn)

will be as follows:

(1) (bn) tends to infinity monotonically as n → ∞.

(2)
∑∞

n=1 anbn < 1.

(3) The exponential growth rate of the partial sums Sn =
∑n

k=1 bk
is given by

lim
n→∞

1

n
logSn = α, lim

n→∞

1

n
log Sn = β.

(4) The “tail” [Tn, T ] of the set A is not too long: there exists a

constant C such that

T − Tn

anSn
≤ C

for all n.

The summability property (2) guarantees that A is bounded. The

significance of the partial sums Sn is that they let us estimate N(ε),

the cardinality of an optimal cover by open sets of diameter ε. Indeed,

given ε > 0, we choose n = n(ε) such that

e−(n+1) < ε ≤ e−n,

and observe that since the first Sn points in the sequence defining A

are all separated by a distance of at least e−n, we must haveN(A, ε) ≥
Sn.

Furthermore, the number of intervals of length ε required to cover

the entire interval [Tn, T ] is at most

T − Tn

e−(n+1)
=

1

e

T − Tn

an
≤ C

e
Sn,
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n

eαn

eβn

bn

n1 n2 n3

Figure 2.7. Building a sequence (bn).

using property (4). This shows that N(A, ε) ≤ (1 + C/e)Sn, and

hence
logSn

n+ 1
≤ logN(A, ε)

log(1/ε)
≤ log(1 + C/ε) + logSn

n
.

The result for the lower and upper box dimensions then follows imme-

diately from property (3); thus it remains only to produce a sequence

with these properties. To this end, we follow a four-step recursive

procedure, illustrated in Figure 2.7. At first, bn is just the integer

part of eαn, and so Sn also grows at the same rate as eαn. It follows

that the quantity (logSn)/n converges to α as n grows, and so we

may choose n1 such that

(2.27)

∣∣∣∣ 1n1
logSn1

− α

∣∣∣∣ < 1

2
.

Now we would like to let bn follow the function eβn for a while,

to approximate the desired upper limit, but if we jump directly to

the graph of eβn at n1, we will find that the sequence we eventually

produce fails property (4), and so we must be slightly more careful.

Thus for n > n1, we let bn grow exponentially, with bn+1 = Mbn for

some fixed eβ < M < e, until it reaches the upper function at n2, at

which point we have bn follow eβn until

(2.28)

∣∣∣∣ 1n3
logSn3

− β

∣∣∣∣ < 1

2
.

                

                                                                                                               



Lecture 12 97

Finally, for n > n3, we leave bn constant until it is once again equal

to eαn at n4 (which is somewhere off the right edge of the graph in

Figure 2.7). Then we iterate all four steps of this procedure, replacing

the bound 1/2 in (2.27) and (2.28) with (1/2)k at the kth iteration.

We must now verify that the sequence (bn) so constructed has

properties (1)–(4). Monotonicity and divergence to ∞ are immediate

from the definition (see also Figure 2.7), which establishes (1).

To see (2), observe that bn ≤ eβn and an = e−n, hence

∞∑
n=1

anbn ≤
∞∑

n=1

e(β−1)n =
eβ−1

1− eβ−1
< ∞,

where we use the fact that β < 1 and hence eβ−1 < 1.

For (3), we need the estimates (2.27) and (2.28), or rather, their

generalisations for large k. The first of these gives∣∣∣∣ 1

n4k+1
logSn4k+1

− α

∣∣∣∣ <
(
1

2

)k+1

,

and hence

lim
n→∞

1

n
log Sn ≤ lim

k→∞

1

n4k+1
logSn4k+1

= α.

Furthermore, we have

Sn =

n∑
k=1

bk ≥
n∑

k=1

eαn =
eα(n+1) − 1

eα − 1
,

and so

logSn ≥ log(eα(n+1) − 1)− log(eα − 1),

which gives

1

n
logSn ≥ 1

n
log(eα(n+1) − 1)− 1

n
log(eα − 1) → α.

This establishes the first half of (3), and the second half is proved

similarly.

Finally, using the fact that Sn ≥ bn and bn+1/bn ≤ M , we have

T − Tn

anSn
≤

∞∑
k=n+1

e−kbk
e−nbn

≤
∞∑

k=n+1

(
M

e

)k−n

=
∞∑
k=1

(
M

e

)k

< ∞,
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where the sum converges to some finite constant C by our choice of

M . Thus property (4) holds as well.

Having shown that the sequence {bn} satisfies the properties

(1)–(4), it follows from the previous discussion that the set A given

in (2.26) has the dimensions claimed. �

In some sense, this is the simplest possible counterexample to

equality in (2.23); any simpler set is just finite, and then all three

quantities are immediately 0.

Note that Theorem 2.35 does not provide a set A with dimH A =

0, 0 < dimBA < 1, and dimBA = 1; this case, which requires a

different construction, is left as an exercise for the reader.

Exercise 2.31. Find the Hausdorff and box dimensions of the fol-

lowing sets in R2:

(a) {( 1
2p ,

1
2q ) | p, q ∈ N}.

(b) {( 1
p2 ,

1
q2 ) | p, q ∈ N}.

(c) {( 1n ,
1
2n

) | n ∈ N}.

c. Stability and subadditivity. An important property of the di-

mensional quantities we have seen so far is their behaviour under tak-

ing countable unions. We saw in Proposition 2.8 that dimH (
⋃

i Zi) =

supi dimH Zi, while the best that Proposition 2.29 could offer for the

lower and upper box dimensions was an inequality. Indeed, the ex-

ample of the rational numbers in the unit interval showed that the

box dimensions can increase when we take a countable union; taking

Zi to be singleton sets which exhaust Q ∩ [0, 1], we saw that

dimB

(⋃
i

Zi

)
= 1 > 0 = sup

i
dimBZi,

dimB

(⋃
i

Zi

)
= 1 > 0 = sup

i
dimBZi.

The reason for the discrepancy between the two sorts of dimen-

sions is the fact that whilem(Z, α) is countably subadditive (Property

(3) in Proposition 2.1), neither r(Z, α) nor r(Z, α) has this property.

The best we can hope for in this case is finite subadditivity:
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Exercise 2.32. Show that for any finite collection of sets {Zi}ki=1 in

Rd and any α ≥ 0, we have

(2.29) r

(
k⋃

i=1

Zi

)
≤

k∑
i=1

r(Zi, α),

and that consequently

(2.30) dimB

(
k⋃

i=1

Zi

)
= max

{
dimBZi | i = 1, . . . , k

}
.

Even this weakened property only holds for the upper box di-

mension; for the set function r(Z, α) associated to the lower box di-

mension, we have no subadditivity property at all, as the following

example shows.

Example 2.36. Fixing 0 < α < β < 1, we may use the construction

in the proof of Theorem 2.35 to find Z1 ⊂ [0, 1] and Z2 ⊂ [2, 3]

such that dimH Z1 = dimH Z2 = 0, dimBZ1 = dimBZ2 = α, and

dimBZ1 = dimBZ2 = β. We wish to modify the construction slightly

to ensure that dimB(Z1 ∪ Z2) > α.

The key idea in the construction was for bn to follow first one

exponential curve and then the other, transferring at the appropriate

indices ni. In our present case, we wish to start b1n (the sequence

defining Z1) on the lower exponential curve, and b2n (defining Z2) on

the upper curve; furthermore, we define a single sequence ni of indices

for both b1n and b2n by requiring that the estimates on S1
ni

and S2
ni

are

both within the range given by (2.27) and (2.28).

Defining Z1 and Z2 in this way, we see that if ε > 0 is such that

(logN(Z1, ε))/(− log ε) is near α, then (logN(Z2, ε))/(− log ε) will be

near β, and vice versa. Since N(Z1 ∪Z2, ε) ≥ N(Z1, ε) +N(Z2, ε), it

can then be shown that (logN(Z1∪Z2, ε))/(− log ε) is bounded away

from α, and hence dimBZ1 ∪ Z2 > α = dimBZ1 = dimBZ2.

This is the second case we have seen in which the lower and up-

per box dimensions behave in fundamentally different ways. The first

was the Pontryagin–Shnirel’man theorem for the lower box dimen-

sion, which had no analogue for the upper box dimension. These

two episodes illustrate the fact that the three different dimensional
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quantities—Hausdorff dimension, lower box dimension, and upper

box dimension—are all qualitatively distinct and operate according

to different rules. And this is not yet the whole story; there are other

“dimensions” waiting in the wings. All the quantities we have dis-

cussed so far have been global quantities, which depend on the entire

set or space we are interested in. Eventually, in Chapter 4, we will in-

troduce dimensional quantities of a local nature, which may vary from

point to point within the object we are studying. We will also intro-

duce dimensional quantities which characterise not only the spatial

structure of a set, but the time evolution of a dynamical system.

                

                                                                                                               



Chapter 3

Measures: Definitions
and Examples

Lecture 13

a. A little bit of measure theory. As we have seen, computing

the Hausdorff dimension of a set can be very difficult, even if the set

is geometrically quite regular, as was the case for the Cantor sets we

have considered so far. For sets whose self-similarity is not quite so

regular, the situation becomes even worse; for example, consider the

non-linear map shown in Figure 1.23. This map generates a repelling

Cantor set C through the same construction that we carried out for

the linear map in Figure 1.12, and we may ask what the Hausdorff

dimension of C is. Thus we must study a Cantor construction in

which the ratio coefficients are no longer constant but may change

at each step of the iteration. This occurs because the map is no

longer linear, and so how much contraction (in the construction) or

expansion (in the map) occurs at each step now depends on which

point we consider, not just on which interval it is in.

How does the Hausdorff dimension respond to this change in the

construction? The problems which arise at this stage are much more

difficult than those we encountered in proving Theorem 2.21, and we

will need new tools to deal with them.

101
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A key idea will be to somehow sidestep the fact that ratio coef-

ficients may vary by studying “asymptotic ratio coefficients” which

give the average rate of contraction over a large number of steps of

the construction. If this average rate converges, we can still hope to

say something; however, at some point it will become necessary to

distinguish between “bad” points of C, which we want to ignore be-

cause the average rate does not converge, and “good” points, which

we can deal with, and we will need to show that there are in some

sense “more” of the latter.

In order to make all this precise, we need to expand our toolkit

to include the idea of a measure. Without further ado, then, we have

the following definition.

Definition 3.1. Let X be any set (which will be called our space),

and let A be a collection of subsets of X. A is called an algebra if

(1) ∅, X ∈ A.

(2) X \A ∈ A whenever A ∈ A.

(3) A1 ∪ A2 ∈ A whenever A1, A2 ∈ A.

Property (3) immediately implies that A is closed under finite unions:⋃n
i=1 Ai ∈ A whenever A1, . . . , An ∈ A. If in addition A is closed

under countable unions, that is, if

(4)
⋃∞

n=1 Ai ∈ A whenever An ∈ A for every n ∈ N,

then A is a σ-algebra. We will refer to the elements of A asmeasurable

sets. A set function m : A → [0,∞], which assigns to each measurable

set a non-negative number (or possibly ∞), is a measure if it satisfies

the following properties.

(1) m(∅) = 0.

(2) Monotonicity: m(A1) ≤ m(A2) whenever A1 ⊂ A2 and both are

measurable.

(3) Countable additivity: m(
⋃

i) =
∑

i m(Ai) whenever {Ai} ⊂ A is

a countable collection of disjoint measurable sets.

Property (3) is sometimes referred to as σ-additivity. The triple

(X,A,m) is known as a measure space.
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A finite measure µ (that is, one for which µ(X) < ∞) may be

referred to as a mass distribution, since we may think of it as describ-

ing how a specific amount of mass is distributed over a space. If the

measure is normalised so that µ(X) = 1, we often call µ a probability

measure, since in this case subsets of X may be thought of as events

in a probabilistic process.

Before moving on to meatier applications, we give a few very basic

examples of measure spaces.

Example 3.2. Let X be any set, and let A = {∅, X}. Then A is a

σ-algebra, and we may define a measure m by setting m(∅) = 0 and

assigning an arbitrary value to m(X). This, of course, is a completely

trivial example.

Example 3.3. Let X be any set, and let A = 2X be the power set of

X; that is, the collection of all subsets of X. A is again a σ-algebra

(in fact, it is the largest possible σ-algebra on X), and we may define

a measure ν by

ν(A) =

{
card(A) A finite,

∞ otherwise.

So if A is a finite set, ν counts the number of points in A; otherwise,

it gives ∞. This is known as the counting measure on X.

Example 3.4. Let X and A be as in the previous example, and fix

x ∈ X. Define a measure δx by

δx(A) =

{
1 x ∈ A,

0 x /∈ A.

Thus δx simply measures whether or not A contains the point x. This

is known as the point measure sitting on x.

A measure gives us several things. First and foremost, it allows

us to quantify the size of subsets of X, to say which are large and

which are small. For the counting measure ν, a set is large according

to how many points it contains, while for the point measure δx, a set

is large if and only if it contains the point x, regardless of how many

other points it contains.
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Consequently, given a function ϕ : X → R, a measure µ assigns

weights to the parts of X on which ϕ takes various values, and hence

allows us to meaningfully speak of the average value of ϕ via the pro-

cess of Lebesgue integration, a detailed description of which is beyond

the scope of this book.

Because a given space X may carry many different measures, this

average value depends on the measure µ (the method of averaging)

as well as the function ϕ (the thing which is averaged). For example,

the average value of ϕ with respect to the point measure δx is just

ϕ(x), since the measure gives no weight to the value of the function

elsewhere.

This second interpretation is the beginning of the functional an-

alytic approach to measure theory, which views measures in terms of

their interaction with functions, as sets of weights to be used for av-

eraging. The first interpretation, in terms of sets, is more important

for our purposes; of particular importance is the fact that a given

measure µ tells us which sets may be disregarded as being negligible

as far as µ is concerned.

Definition 3.5. Given a measure space (X,A, µ), a set E ∈ A is a

null set for µ if µ(E) = 0. Given some property P which may be true

or false at each point of X, we say that P is true almost everywhere

with respect to µ (or more concisely, µ-a.e.) if the set of points on

which it fails is a null set for µ.

The idea that a property may be true almost everywhere, without

necessarily being true everywhere, is one of the most important tools

in measure theory; as we will see, many of the properties in which

we are interested fall into this category. It turns out that if we are

interested in measure-theoretic properties, then we are not giving up

too much by letting the property fail on a null set; since null sets

have zero measure, what happens on them is unimportant from a

measure-theoretic point of view.

For the counting measure ν, the only null set is the empty set;

hence a property holds ν-a.e. if and only if it holds everywhere. In

contrast, the point measure δx has many more null sets; indeed, every

set which does not contain x is a null set for δx. Thus a property holds
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δx-a.e. if and only if it holds at the single point x, whether or not it

holds anywhere else; this is because if it holds at x, then the set of

all points y at which it fails is contained in X \ {x}, and hence is a

null set, and vice versa.

To illustrate this contrast, consider two functions ψ, ϕ : X → R.
These functions are equal ν-almost everywhere if and only if they are

in fact equal everywhere, but they are equal δx-almost everywhere if

and only if ψ(x) = ϕ(x), which is a very different condition.

The notion of “almost everywhere” for the counting measure and

for point measures is quite straightforward (albeit very different be-

tween the two examples). We will see a more sophisticated incar-

nation of this notion in the next section, when we discuss Lebesgue

measure.

b. Lebesgue measure and outer measures. We now introduce

a more complicated example of a measure space—Lebesgue measure

on Rd, which we first mentioned in the proof of Theorem 2.20. In

the case d = 1, which we will consider first, this generalises the idea

of “length” to apply to a broader class of sets than merely intervals.

For d = 2, it generalises area; for d = 3, it generalises volume; and

for d ≥ 4, it generalises d-dimensional volume.

The full construction of Lebesgue measure is one of the primary

parts of measure theory, and a complete treatment of all the details

requires most of a graduate-level course, so our discussion here will

necessarily be somewhat abbreviated, and we will omit proofs.1

In order to construct a measure space (X,A,m), we must do two

things. First, we must produce a σ-algebra A, in which we would like

to include as many sets as possible, to make our measure as useful

as possible. Second, we must figure out how to define a set function

m which satisfies the three properties of a measure. In particular,

it is far from clear how to guarantee that whatever function m we

construct is σ-additive, especially if the collection A of sets for which

this must be checked is very large.

1The interested reader is referred to Measure Theory by Paul Halmos [Hal78],
or Real Analysis by H. L. Royden [Roy88], for a complete exposition.
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There is a standard procedure in measure theory, developed by

Carathéodory, which deals with both these challenges at once; for this

we need the notion of outer measure.

Definition 3.6. A set function m∗ : 2X → [0,∞] is an outer measure

if it satisfies

(1) m∗(∅) = 0.

(2) m∗(A1) ≤ m∗(A2) whenever A1 ⊂ A2.

(3) m∗ (
⋃

i Ai) ≤
∑

i m
∗(Ai) for any countable collection of sets Ai.

The first two properties are exactly those which we required for

a measure; however, the third property of a measure, countable ad-

divity, has been replaced here with the weaker property of countable

subadditivity. In that regard, the notion of outer measure is weaker

than the notion of measure; however, we require the outer measure

to be defined for every subset of X.

In fact, we have already seen an example of an outer measure; the

three properties above are exactly what we proved in Proposition 2.1

for the set function m(·, α). Thus Proposition 2.1 may be rephrased

as the statement that m(·, α) is an outer measure on Rd; from now on,

we will write it as mH(·, α) so as to stress the origin of this particular

outer measure, and to avoid confusion with our notation m for a

measure.

Once we have an outer measure, there is a canonical way to pro-

duce both a σ-algebra A and a measure m. The key step is the

following definition.

Definition 3.7. Given an outer measure m∗ : 2X → [0,∞], we say

that E ⊂ X is measurable if for every A ⊂ X, we have

(3.1) m∗(A) = m∗(A ∩ E) +m∗(A ∩ (X \ E)).

As we need to gain σ-additivity in order to have a measure, this is

a reasonable definition to make; after all, (3.1) is just a very particular

case of finite additivity. Indeed, it turns out to be enough; this justifies

our reuse of the word “measurable”, which we earlier reserved for

elements of the σ-algebra on which a measure is defined.
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Theorem 3.8. Let A be the collection of measurable subsets of X for

an outer measure m∗, and let m be the restriction of m∗ to A; that

is, m(A) = m∗(A) for A ∈ A. Then

(1) A is a σ-algebra.

(2) m is a measure.

The procedure of passing from an outer measure to a measure

and a σ-algebra of measurable sets is a completely general one, which

works for any (X,m∗).

Restricting our attention now to the case X = R, we follow the

above recipe by first defining an outer measure on R as follows:

(3.2) m∗(A) = inf

{∑
k

�(Ik)
∣∣∣ ⋃

k

Ik ⊃ A, Ik ∈ C for all k

}
,

where C is the class of all open intervals and � : C → [0,∞] is the set

function �(I) = diam(I) (which we denoted earlier by |I|). This is

a particular example of a Carathéodory construction, an important

procedure for building an outer measure, and hence a measure, using

a set function on some family of subsets of X; we will examine this

procedure in more detail in the next lecture.

Observe that (3.2) is very reminiscent of (2.3), which defined

mH(A, 1). The only difference between the two is that the latter

requires that we consider covers whose diameter becomes arbitrarily

small, whereas m∗ is not concerned with the size of the elements of

the cover. In fact, this makes no difference to the actual value of the

set function.

Proposition 3.9. m∗(A) = mH(A, 1) for every A ⊂ R.

Proof. It follows from the definitions that m∗(A) ≤ mH(A, 1, ε) for

every ε > 0, since the infimum in the latter is taken over a smaller

collection of covers, and hence m∗(A) ≤ mH(A, 1).

To prove the reverse inequality, fix γ > 0, and observe that if

mH(A, 1) < ∞, then there exists ε > 0 such that

mH(A, 1) ≤ mH(A, 1, ε) + γ,
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and that there exists a cover {Ik} of A by open intervals such that

m∗(A) ≥
∑
k

�(Ik)− γ.

If the interval Ik has length greater than ε, we can cover it with

intervals Jk,i of length less than ε in such a way that∑
i

�(Jk,i) ≤ �(Ik) +
γ

2k
.

It follows that

m∗(A) ≥
∑
k,i

�(Jk,i)− 2γ ≥ mH(A, 1, ε)− 2γ ≥ mH(A, 1)− 3γ,

and since γ > 0 was arbitrary, the result follows. The casemH(A, 1) =

∞ is similar. �

Corollary 3.10. m∗ is an outer measure.

It follows that m∗ defines a σ-algebra A ⊂ 2R and a measure

Leb: A → [0,∞]; this is one-dimensional Lebesgue measure. One

may check that every interval I (whether open, closed, or neither) is

Lebesgue measurable and that m(I) = �(I), so that m really is an

extension of length.

Indeed, most of the sets we usually encounter are measurable; A
contains all open sets, all closed sets, and all countable sets, along

with a great deal more. Thus the limit set of any Moran construction

is measurable, being closed.

Exercise 3.1. Show that any set E ⊂ R with dimH E < 1 has

Lebesgue measure zero, and deduce that Lebesgue-a.e. real number

is irrational.

Using Theorem 2.21 and Exercise 3.1, we see that limit sets of

Moran constructions have Lebesgue measure zero. If we construct

the limit set as the repeller of a map f , this means that Lebesgue-a.e.

point x has a trajectory which eventually leaves the domain of f .

Lebesgue measure can be defined not just on the real line, but

on any Rd. Simply replace the open intervals in the above procedure

by open balls, and the length function � with d-dimensional volume.

One may once again prove that m∗(A) = mH(A, d), although the
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argument is slightly more difficult. It then follows that m∗ is an

outer measure, and the resulting measure is d-dimensional Lebesgue

measure, which agrees with the usual idea of d-dimensional volume

for familar geometric shapes such as balls and cubes.

c. Hausdorff measures. The fact that mH(·, α) is an outer mea-

sure is not restricted to integer values of α, but holds for any α > 0.

We call this the Hausdorff outer measure, and the measure it induces

is called Hausdorff measure. In this manner, we obtain quite a large

collection of measures sitting on Rd; in fact, a one-parameter family

of them, indexed by α.

Consider the middle-third Cantor set C ⊂ [0, 1]. What is its

Hausdorff measure? We know from the definition of Hausdorff di-

mension that

(3.3) mH(C,α) =

{
∞ if α < dimH C,

0 if α > dimH C;

the result Leb(C) = mH(C, 1) = 0 is just a particular case of this

more general fact. It follows from Moran’s equation (2.14) that the

critical value is αC = log 2/ log 3.

Exercise 3.2. Complete the proof of Proposition 2.6 by proving that

mH(C,αC) = 1.

The result of Exercise 3.2 is valid for any limit set of a Moran con-

struction. The key fact is the relationship (2.14) between the ratio

coefficients, which lets us move between different levels of the con-

struction without changing the potential of a cover by basic intervals.

Like Goldilocks, we find that other values of α are either too big or

too small for mH(C,α) to measure C properly, thanks to (3.3), but

that αC is “just right”. For this particular choice of α, we get a Haus-

dorff measure which sees the size of the Cantor set as non-zero and

finite, and which will be of great utility to us later on.

In the meantime, one final property of the Hausdorff measures is

worth noting. Both the Hausdorff measures and the outer measures

they are induced from are translation invariant ; that is, mH(A,α) =

mH(A + v, α) for every A ⊂ Rd, v ∈ Rd, and α > 0, where A + v

is the image of A under a translation by the vector v. In particular,
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this is true for Lebesgue measure. Note that for example, the point

measure δx defined in the previous lecture is not translation invariant.

Lecture 14

a. Choosing a “good” outer measure. The Carathéodory con-

struction of an outer measure described in (3.2) is actually quite a

common one. In the construction of the Lebesgue measure, we took

C to be the class of open intervals and � to be the length function

�((a, b)) = b−a. What would happen if we chose a different set func-

tion �? We can still define m∗, determine which sets are measurable,

and obtain a set function m—but will it be a measure?

We examine the possible outcomes by considering three candidate

set functions on C:

�1((a, b)) = eb−a,

�2((a, b)) = (b− a)2,

�3((a, b)) =
√
b− a.

The proof that the function m∗ defined in (3.2) is monotonic and

σ-subadditive does not rely on the particular form of �, and so these

properties hold whatever set function we begin with. However, in

order to have m∗(∅) = 0, we must be able to find sets U ∈ C for

which �(U) is arbitrarily small; or if ∅ ∈ C (which it is in this case,

since (a, a) = ∅), we must have �(∅) = 0. Hence if we take �1 as our

set function, m∗ will not be an outer measure.

Thus we must demand that either �(U) take arbitrarily small

values on C or �(∅) = 0; both �2 and �3 satisfy this requirement. It

follows that these set functions will define outer measures m∗
2 and m∗

3,

respectively.

Exercise 3.3. Show that m∗
2(A) = 0 for every A ⊂ R; in particular,

show that every subset of X is measurable, but m∗
2(A) �= �(A) for

A ∈ C.

Given that the whole point of introducing an outer measure using

� was to extend the definition of � beyond the elements of C, the result
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of Exercise 3.3 is rather undesirable; m∗
2 does not agree with � on the

class C of intervals!

To avoid this behaviour, we consider only set functions � such

that the outer measure they induce agrees with � on the members of

C. It is not difficult to show that �3 has this property; however, there

is now another problem. In order for the result of the Carathéodory

construction to be a genuine extension of the initial set function,

the σ-algebra of measurable sets should contain the collection C of

intervals, but this is not the case for �3. Indeed, given a < c < b, one

immediately sees that

m∗
3((a, b)) =

√
b− a �=

√
c− a+

√
b− c = m∗

3((a, c]) +m∗
3((c, b)),

and so intervals are non-measurable!

The upshot of all this is that if we want the measure induced by

� to be “sensible”—that is, if we want it to agree with � on intervals,

and if we want intervals to be measurable—then we must choose �

more carefully. The following turns out to suffice: expand C to include

all intervals, whether open, closed, or half-closed and half-open, and

require that � be countably additive on C. That is, if I1, I2, . . . are

disjoint intervals such that
⋃

i Ii = I is also an interval, then

�(I) =
∑
i

�(Ii).

It may be shown (although we do not do so) that if � has this property,

then it induces an outer measure m∗, and hence a measure m on a

σ-algebra A, such that C ⊂ A and m(I) = �(I) for all I ∈ C.
However, the requirement that � be countably additive is a very

restrictive condition; indeed, if we include the further requirement

that � be translation invariant, the only possibility for � is a constant

multiple of the length function, leading to Lebesgue measure or a

scalar multiple thereof.

b. Bernoulli measures on symbolic space. We now move to an-

other context and discuss measures on the symbolic space Σ+
k . As

before, we follow the Carathéodory approach; first we define a set

function � on a collection C of relatively simple sets, then we use �
                

                                                                                                               



112 3. Measures: Definitions and Examples

to define an outer measure m∗ and a measure m as in the previous

section. But what should our set C be?

In the previous section, we considered the set of intervals in R;
these sets arise naturally from the metric structure of R as the balls

of various radii. The analogous sets in Σ+
k are the cylinder sets, and

indeed we can define a measure m on Σ+
k by specifying a countably

additive set function � on the collection C of cylinders given by (1.19).

To define a countably additive set function � on cylinders, we first

choose non-negative numbers p1, . . . , pk ≥ 0 with the property that

p1 + · · ·+ pk = 1. Then we let � be given by

(3.4) m∗(Cw1...wn
) = pw1

pw2
· · · pwn

.

Example 3.11. If k = 2, the condition on the numbers pi reduces

to p1 + p2 = 1, and we often write p = p1, q = p2 = 1− p. Then

(3.5) m∗(Cw1...wn
) = pan(w)qn−an(w),

where an(w) is the number of times the symbol 1 appears in the

sequence w1, . . . , wn.

If we repeatedly toss a weighted coin such that the probability of

heads appearing on any given toss is p, and the probability of tails is

q, then �(Cw1...wn
) is the probability that the first n tosses give the

result w1, . . . , wn, where wj = 1 denotes heads and wj = 2 denotes

tails.

Now we want to build a measure m on Σ+
k from the set function

�. In light of the discussion in the previous section, we hope to obtain

a measure for which cylinders are measurable, and which agrees with

the set function on cylinders. As a first step, we show that m∗ is

additive on the class of cylinders; that is, if C1, . . . , Cn are cylinders

whose union C1 ∪ · · · ∪ Cn is also a cylinder, then

(3.6) �(C1 ∪ · · · ∪ Cn) = �(C1) + · · ·+ �(Cn).

This in turn follows from the formula

(3.7) �(Cw1...wn
) = �(Cw1...wn1) + · · ·+ �(Cw1...wnk),

which is a direct consequence of (3.4). The proof that (3.7) im-

plies (3.6) is exactly the same argument that we used in the proof of

Moran’s theorem, with p1, . . . , pk taking the place of λt
1, . . . , λ

t
k.
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The set function � : C → R defines an outer measure m∗ on Σ+
k

as in (3.2), which in turn defines a σ-algebra A and a measure m by

Theorem 3.8. Using the additivity of �, it can be shown (although we

do not do so), that the considerations discussed at the beginning of

this lecture are satisfied: cylinders are measurable and m agrees with

� on cylinders.

The measure m which is built from the set function � in (3.4) is

called a Bernoulli measure. In fact, there are many such measures,

since we may choose any positive parameters p1, . . . , pk which sum to

1. Such a set of parameters is called a probability vector, and we will

often write p = (p1, . . . , pk).

Bernoulli measures all have the following interesting property:

Proposition 3.12. Let m be a Bernoulli measure on Σ+
k , and let

Cw1...wn
be any n-cylinder. Then

(3.8) m(σ−1(Cw1...wn
)) = m(Cw1...wn

).

Proof. Recall that the preimage of the cylinder Cw1...wn
is

σ−1(Cw1...wn
) = {w ∈ Σ+

k | σ(w) ∈ Cw1...wn
}

= C1w1...wn
∪ · · · ∪ Ckw1...wn

.

Then it follows from (3.4) that

m(σ−1(Cw1...wn
)) = p1m(Cw1...wn

) + · · ·+ pkm(Cw1...wn
)

= (p1 + · · ·+ pk)m(Cw1...wn
)

= m(Cw1...wn
). �

It follows from Proposition 3.12 that m(σ−1E) = m(E) for any

measurable set E ⊂ Σ+
k . We say that m is invariant with respect to

σ; we may also call such a measure shift-invariant.

c. Measures on Cantor sets. Let C be a Cantor set with cod-

ing map h : Σ+
k → C, and recall the conjugacy between the shift σ

and the map f : C → C, which is illustrated in the commutative dia-

gram (1.11). We may use this conjugacy to transfer a measure m on

Σ+
k to a measure µ on C, as follows.
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The measurable subsets of C will be precisely those sets A whose

preimages h−1(A) are measurable; we may define the measure of such

sets as

(3.9) µ(A) = m(h−1(A)).

After having built one finite measure on C, the Hausdorff measure

mH(·, t), we now have a whole family of finite measures on C which

come from the Bernoulli measures on Σ+
k . The Hausdorff measure

corresponds to the particular choice pi = λt
i; all the other measures

are new.

All of these measures are f -invariant; this follows since

µ(f−1(A)) = m(h−1f−1(A)) = m(σ−1h−1(A)) = m(h−1(A)) = µ(A).

Thus we have one class of f -invariant measures on the Cantor

set—the Bernoulli measures. We could consider many other classes

of measures as well; the point measures are an easy set of examples.

However, as we are interested in studying the dynamics of f , only

the invariant measures are really important, and a point measure δx
is only invariant if x is a fixed point for f . A more interesting set

of examples comes from tampering a little more with the imaginary

coins (or dice) we used to define Bernoulli measure, and allowing them

to have some memory. . . .

d. Markov measures. The coin flips described in Example 3.11 are

independent events, as the outcome of a given flip does not depend

on the outcomes which came before it. But what if this was not the

case? What if the process had some sort of memory, so that the future

could depend on the past?

Example 3.13. Suppose that, as in Example 3.11, we toss a coin

repeatedly and record wj = 1 for heads and wj = 2 for tails. We

use a fair coin; however, we tamper with the procedure a little bit,

as follows. If, immediately after we record a result, we flip the coin

and get a result which is the same as what we just wrote down, then

we flip the coin again and do not record that result (let’s say we just

don’t like getting the same thing twice in a row). In this case, we

record whatever happens on the second toss, regardless of whether it

agrees or disagrees with the previous result.
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What effect does this have on the probabilities? If wn = 1, so that

the last result was heads, then only way that we will record wn+1 = 1,

another heads, is if we actually flip heads twice in a row, and the coin

is stubborn enough to override our bias towards change. Thus wn+1

will be 1 with probability 1/4, and 2 with probability 3/4. If, on

the other hand, wn = 2, then the probabilities are reversed. The

system remembers what happened just before, and this affects the

probabilities.

A process such as this, which exhibits finite memory is known

as a Markov process. Just as a sequence of independent events (a

Bernoulli process) is modeled by a Bernoulli measure, a Markov pro-

cess is modeled by a Markov measure on Σ+
k . To construct such a

measure, we fix a probability vector π = (π1, . . . , πk) and a k×k sto-

chastic matrix ; that is, a matrix P = (pij) with non-negative entries

such that for every i,

(3.10)
k∑

j=1

pij = 1.

We also require that the probability vector π be stationary ; that is,

that πP = π, so that π is a left eigenvector of P with eigenvalue 1.

In terms of the entries, this amounts to

(3.11)

k∑
j=1

πipij = πj

for every i = 1, . . . , k.

Now we construct an additive set function on cylinders by

(3.12) �(Cw1...wn
) = πw1

pw1w2
pw2w3

· · · pwn−1wn
,

and follow the usual Carathéodory construction to obtain a measure

m on Σ+
k . This is the Markov measure associated to the probability

vector π and the stochastic matrix P .

Exercise 3.4. Use the property (3.10) of a stochastic matrix P to

show that the set function defined in (3.12) is additive on cylinders.

Exercise 3.5. Show that the Markov measure generated by π and

P is shift-invariant.
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1

2

3

p11 p23 p32

p33

p12

p21

p22

p31

p13

Figure 3.1. A Markov measure on Σ+
3 .

One interpretation of (3.12) is as follows. Consider a process

which may give any one of k results at a given time n ∈ N, and write

wn for the result observed. Then each sequence w ∈ Σ+
k represents

a particular instance of the process, in which the results w1, w2, . . .

were observed. As was the case with Bernoulli measures, the Markov

measure m(Cw1...wn
) of a cylinder gives the probability that the first

n results are w1, . . . , wn.

Alternatively, we may think of wn as representing the state of a

system at time n. An element πi of the probability vector gives the

probability of beginning in state i, or indeed of being in state i at

an arbitrary time (if we have no other information), and an entry pij
of the stochastic matrix P gives the probability of going from state

i to state j at any given time step; that is, it gives the conditional

probability of being in state j at time n + 1, given that the state at

time n is i.

We may represent this graphically, as shown in Figure 3.1 for the

case k = 3. The vertices of the graph represent the states of the

system, and to the edge from vertex i to vertex j is associated a tran-

sition probability pij . The condition that the matrix P be stochastic
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may be rephrased as the condition that the outgoing transition prob-

abilities from any given vertex sum to 1; that is, if we are at vertex i

now, then at the next time step, we will be somewhere. We may be

at vertex i again (with probability pii), but we will not simply vanish

from the graph.

In this interpretation, the symbolic space Σ+
k may be thought

of as the set of all possible paths along edges of the graph, and the

measure of a cylinder Cw1...wn
is the probability that a randomly

chosen itinerary on the graph begins with w1, . . . , wn.

Now what happens if one of the transition probabilities is 0? If

pij = 0, then the probability of going from vertex i to vertex j is

0, and so we may as well erase this edge from the graph. What

does this do to the set of all possible paths, which was in one-to-one

correspondence with symbolic space Σ+
k ?

We will address this question in the next lecture, after introducing

another definition from measure theory.

Lecture 15

a. The support of a measure. Fix a point x ∈ Rd, and consider

the point measure δx on Rd defined in Exercise 3.4. If E ⊂ Rd does

not contain x, then as far as the measure is concerned, the points in E

may be neglected without losing anything important, since δx(E) = 0.

Thus from the measure theoretic point of view, the measure space

(Rd, δx) is the same as the measure space ({x}, δx), since the only

difference between the two is a set of zero measure (the complement

of {x}).
In the same vein, given any topological space X and a measure m

on X, there is a canonical way to decompose X into two parts, one of

which may be discarded, since it has measure zero with respect to m,

and the other of which carries all the information about the measure,

without betraying the topology of X. The latter set is called the

support of m, and is the smallest closed set of full measure:

(3.13) suppm = {x ∈ X | m(E) > 0 for any E � x, E open}.
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The measure m sits on the support suppm in the following sense: an

open set has positive measure if it intersects the support non-trivially

and zero measure otherwise.

Example 3.14. Consider Lebesgue measure Leb on the unit interval

[0, 1]. Given a < b, we have Leb((a, b)) = b − a > 0, so open inter-

vals have positive measure. Since open sets are countable unions of

open intervals, we see that all open sets have positive measure, hence

suppLeb = [0, 1].

Example 3.15. For the point measure δx, an open set has positive

measure if and only if it contains x. Thus supp δx = {x}.

Example 3.16. Let X be the symbolic space Σ+
k . If m is the

Bernoulli measure given by a probability vector with positive entries,

we see from (3.4) that cylinders have positive measure; since any open

set is a union of cylinders, it follows that the support of m is the entire

space Σ+
k .

Similarly, if m is a Markov measure for which all entries of both

the probability vector and the stochastic matrix are positive, then

all cylinders have positive measure by (3.12), and we again have

suppm = Σ+
k .

Exercise 3.6. Let m be the Bernoulli measure on Σ+
3 given by

weights (p1, p2, p3), and suppose that p1 = 0. Describe suppm.

Returning to our question from the previous section, we may ask

what suppm looks like if m is a Markov measure for which one or

more of the entries pij are equal to 0. In this case, we see that the

measure of a cylinder Cw1...wn
is positive precisely when all the entries

pwjwj+1
are positive for j = 1, . . . , n − 1. In particular, if any of the

entries in the stochastic matrix vanish, then some cylinders have zero

measure. Since cylinders are open, this means that the support of m

is not the whole space Σ+
k .

To describe suppm for an arbitrary Markov measure m, we intro-

duce a k×k matrix whose entries are either 0 or 1, which keeps track

of which entries of P vanish; define a transition matrix A = (aij) by

aij =

{
0 pij = 0,

1 pij > 0.
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A is primitive if there exists n such that every entry of An is posi-

tive; for technical reasons, we will only consider primitive transition

matrices.

The transition matrix A records which transitions wj → wj+1

have a non-zero probability of occurring. We say that a sequence

w ∈ Σ+
k is admissible if awjwj+1

= 1 for all j; that is, if we only follow

edges in the graph which carry a non-zero probability.

Exercise 3.7. Using the fact that A is primitive, show that for every

m ≥ n and i, i′ = 1, . . . , k, there exists an admissible word w with

w1 = i and wm+1 = i′.

Note that a cylinder has positive measure precisely when it is

defined by an admissible sequence, and so we consider the set of

admissible sequences

(3.14) Σ+
A = {w ∈ Σ+

k | awjwj+1
= 1 for all j ∈ N}.

If E ⊂ Σ+
k is open and intersects Σ+

A non-trivially, there exists

a cylinder Cw1...wn
⊂ E ∩ Σ+

A, and we see that m(Cw1...wn
) > 0

since pwjwj+1
> 0 for all j = 1, . . . , n − 1; it follows that m(E) ≥

m(Cw1...wn
) > 0, and thus suppm = Σ+

A.

In Lecture 14(c), we saw how to use the coding map h to go from

a measure m on symbolic space Σ+
k to a measure µ = m ◦ h−1 on a

Cantor set C ⊂ [0, 1]. If m is a Markov measure whose support is not

the whole space, then some cylinders in Σ+
k have zero measure; hence

their images, which are open sets in C, have zero measure as well.

In particular, we have suppµ � C. We obtain suppµ by removing

from C precisely those points whose codings are not admissible. Thus

at each step of the construction we remove any basic interval which

would introduce an inadmissible coding. The result of this Markov

construction is another Cantor set, which we will denote CA.

Example 3.17. Let C be a Cantor set modelled on Σ+
2 , and consider

a Markov measure µ on C for which p11 = 0 and for which no other

entries of P or π vanish. Then the associated transition matrix is

A = ( 0 1
1 1 ), and the corresponding Markov construction is shown in

Figure 3.2. At the second step, I11 is erased, since every x ∈ I11 has

a coding which begins with 1, 1, . . . , and hence is not admissible, so
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I1 I2

I11 I12 I21 I22

I121 I122 I211 I212 I221 I222

Figure 3.2. A Markov construction.

x /∈ suppµ. Similarly, I211 must be erased at the third step, and I1211
and I2211 are taken away at the fourth.

This gives us another class of constructions to consider: Given

a Markov measure µ, we would like to characterise CA = suppµ by

determining its Hausdorff dimension. Because we have deleted basic

intervals at each step of the construction, we can no longer apply

Moran’s theorem, and the question becomes much more complicated.

We will need a new set of tools, which will be developed in the next

chapter.

b. Subshifts of finite type: One-dimensional Markov maps.

A priori, the Markov constructions described in the previous section

seem rather artificial and contrived; it may not be obvious just why

such constructions would be important or where they would appear.

In fact, they are tremendously important in dynamics; as a very

simple example, consider a piecewise linear map of the interval [0, 1]

of the sort shown in Figure 3.3.

This map generalises the sort of map we saw in Figure 1.17; in

both cases, we begin with disjoint intervals I1, . . . , Ik and define a

map f : I1 ∪ · · · ∪ Ik → [0, 1]. Before, we demanded that f map each

interval Ii homeomorphically to the entire interval [0, 1], whereas now

we demand rather less.

Definition 3.18. A one-dimensional Markov map is a map f : I1 ∪
· · · ∪ Ik → [0, 1], where the Ij are disjoint intervals in [0, 1], which

satisfies the following two conditions.
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0

1
f(x)

0 1

x
I1 I2

Figure 3.3. A map which is modelled by a subshift.

(1) The restriction of f to each Ii is a homeomorphism onto its image.

(2) Each image f(Ii) contains every Ij it intersects; that is, if i, j are

such that f(Ii) ∩ Ij �= ∅, then Ij ⊂ f(Ii).

As before, we may consider the set of points whose trajectories

remain within the domain of definition of f , and obtain a repelling

Cantor set CA, where the transition matrix A is given by

(3.15) aij =

{
1 if f(Ii) ∩ Ij �= ∅,
0 if f(Ii) ∩ Ij = ∅.

We also have a coding map which conjugates f : CA → CA to a

symbolic model. In this case, however, the symbolic model is not

the entire space Σ+
k , but rather a subset Σ+

A. For the map shown in

Figure 3.3, we see that points in I2 can be mapped to either I1 or

I2, but points in I1 can only be mapped to I2. Thus the transition

matrix is A = ( 0 1
1 1 ).

It is obvious that if w ∈ Σ+
A is an admissible sequence, then its

image σ(w) under the shift will be admissible as well. Thus σ(Σ+
A) ⊂

Σ+
A, and so Σ+

A is invariant under the action of σ. We may consider

the restriction of the shift σ to the domain Σ+
A, which is called a

subshift of finite type; for the sake of clarity, the shift σ : Σ+
k → Σ+

k is

often referred to as the full shift.

Subshifts of finite type form a very important class of models in

dynamics, whose applications stretch far beyond the simple interval

maps we have mentioned so far. Together with the Markov measures
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sitting on them, they provide a powerful tool with which to study

questions in dimension theory and to examine the stochastic prop-

erties of certain broad classes of dynamical systems, which are much

more general than the one-dimensional Markov maps we have studied

so far.

                

                                                                                                               



Chapter 4

Measures and
Dimensions

Lecture 16

a. The Uniform Mass Distribution Principle: Using mea-

sures to determine dimension. Now that we have added a little

bit of measure theory to our toolkit, we return to the problem of com-

puting the Hausdorff dimension of a repeller C for an arbitrary one-

dimensional Markov map f , which may not be linear or full-branched.

Thanks to Moran’s theorem, we already understand the case where

f is linear and full-branched. Because this is the simplest case, we

will return to it frequently in order to illustrate the techniques we

develop, but these techniques are applicable in more general settings.

We begin with the following theorem, which shows that the exis-

tence of finite measures with particular scaling properties has conse-

quences for the Hausdorff dimension of sets with positive measure.

Theorem 4.1 (Uniform Mass Distribution Principle). Suppose that

µ is a finite measure on Rd and that there exist α,K, δ > 0 such that

for every ball with radius r ≤ δ, we have

(4.1) µ(B(x, r)) ≤ Krα.

Then if E ⊂ Rd is measurable and µ(E) > 0, we have dimH E ≥ α.
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Proof. For any 0 < ε < δ and any cover U = {Ui} of E by balls of

diameter less than ε, we have

∑
i

(diamUi)
α ≥
∑
i

µ(Ui)

K
≥ µ (

⋃
i Ui)

K
≥ µ(E)

K
> 0,

and hence mH(Z, α) ≥ µ(E)/K > 0, so dimH E ≥ α. �

Theorem 4.1 gives a lower bound for the Hausdorff dimension,

which is typically the more difficult bound to obtain. Indeed, finding

a measure µ which satisfies the hypothesis of the theorem can be quite

hard (or even impossible), and so we will soon want to weaken the

assumption on µ. First, though, we consider the particular case of

a Moran construction in [0, 1] with ratio coefficients λ1, . . . , λk > 0,∑
i λi < 1, and describe a measure µ for which the Uniform Mass

Distribution Principle may be applied.

As we showed in the proof of Moran’s theorem, if V(r) denotes

the collection of basic intervals whose diameter is between rλmin and

r/λmin, then each ball of radius r intersects at most M ′ elements

of V(r), where the constant M ′ is independent of r. In particular,

B(x, r) can be covered by at most M ′ elements of V(r).
We shall show that (4.1) holds for basic intervals with α = t,

where t is the root of Moran’s equation (2.14). Then for each element

I of V(r), we will have µ(I) ≤ K(diam I)α ≤ K ′rα, where K ′ =

K/λmin
α, and hence µ(B(x, r)) ≤ M ′K ′rα.

Now for a Bernoulli measure µ given by a probability vector

(p1, . . . , pk), we have

µ(Iw1...wn
) = pw1

· · · pwn
,

(diam Iw1...wn
)t = λt

w1
· · ·λt

wn

(
|Iw1

|t/λt
w1

)
.

Thus in order to have µ(Iw1...wn
)/(diam Iw1...wn

)t bounded by a con-

stant independent of (w1, . . . , wn), we take pi = λt
i. This defines a

Bernoulli measure µ which satisfies (4.1), and so the Uniform Mass

Distribution Principle gives the lower bound dimH C ≥ t, since the

set C has measure µ(C) = 1 > 0.
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Of course in this case we already knew the answer, but this il-

lustrates the principle of using measures to obtain bounds on dimen-

sional quantities which might otherwise be difficult to gain informa-

tion about. Certainly the calculations in the proof of Theorem 4.1

are simpler than those involved in computing the potential associ-

ated to a cover by basic intervals, and then showing that we can

move between various levels of the construction without changing the

potential. Furthermore, the present argument shows that any sub-

set of C which is given positive measure by the Bernoulli measure µ

must have Hausdorff dimension equal to α, which we could not have

deduced directly from Moran’s theorem.

Exercise 4.1. Let C be the middle-third Cantor set, and compute

the Hausdorff dimensions of the following sets:

(a) The “Cantor tartan” E = {(x, y) ∈ R2 | either x ∈ C or y ∈ C}.
(b) The set F = {(x, y) ∈ R2 | x ∈ C and 0 ≤ y ≤ x2}.

b. Pointwise dimension and the Non-uniform Mass Distri-

bution Principle. Not every set in which we may be interested is

so obliging as to admit a measure satisfying the conditions of the

Uniform Mass Distribution Principle. That result applies to certain

Bernoulli measures on limit sets of Moran constructions, and also to

Lebesgue measure on Rd; however, further progress beyond these two

rather restrictive cases requires us to introduce a weaker condition on

the measure, which still gives us information about the dimension of

certain sets.

In the statement of Theorem 4.1, the constants α,K, δ appearing

in (4.1) were to be independent of both scale and position; that is,

they could not depend on either the centre x or the radius r of the ball

U = B(x, r). We now consider a slightly more general condition, in

which the constants are still independent of r but may vary between

different locations in Rd, i.e., may depend on x.

Definition 4.2. The pointwise dimension of µ at x is the limit

(4.2) dµ(x) = lim
r→0

log µ(B(x, r))

log r
,

if the limit exists.
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Of course, the limit may not exist at every point x, and so the

pointwise dimension may not be defined for all x ∈ Rd; furthermore,

even when it does exist, it may vary from one point to another.

We emphasise that the pointwise dimension is a property of the

measure µ, rather than of any particular set. This is in contrast to

previous dimensional quantities we have seen, which were all proper-

ties of sets. Furthermore, it is a local property rather than a global

one, being defined in terms of neighbourhoods of a single point.

The existence of the pointwise dimension at a point x leads to

the following estimates. For every ε > 0, there exists δ > 0 such that

for every 0 < r < δ,

dµ(x)− ε ≤ log µ(B(x, r))

log r
≤ dµ(x) + ε.

Since r < 1, the function t �→ rt is decreasing in t, and so

rdµ(x)−ε ≥ µ(B(x, r)) ≥ rdµ(x)+ε,

which gives us bounds reminiscent of (4.1). However, the scale δ for

which this estimate holds may vary from point to point, and dµ(x)

itself may also vary and may not exist everywhere. Despite this, we

will eventually see that the pointwise dimension provides a useful tool

for gaining information about the dimension of a set by considering

an appropriate measure.

Example 4.3. Consider a piecewise linear map f : I1 ∪ I2 → [0, 1]

as in Figure 1.12, where |I1| = |I2| = λ < 1/2. The repeller of f

is a Cantor set C modelled on Σ+
2 , and both ratio coefficients in the

construction of C are equal to λ.

Letm be a Bernoulli measure on Σ+
2 with probability vector (p, q),

where p, q > 0, p + q = 1, and let µ be the corresponding Bernoulli

measure on C. Given x ∈ C, what is the pointwise dimension dµ(x)?

Say x = h(w); the pointwise dimension is determined by the

measure of the balls B(x, r) centred at x, and for appropriate values

of r, these are just the basic intervals Iw1...wn
. We have |Iw1...wn

| =
λn, and so log r = n logλ (up to some bounded difference which

will vanish in the limit). Furthermore, µ(Iw1...wn
) = pan(w)qn−an(w),

where an(w) is the number of times the symbol 1 appears in the string

(w1, . . . , wn).
                

                                                                                                               



Lecture 16 127

In the simplest case, we have p = q = 1/2, and so µ(Iw1...wn
) =

(1/2)n. Thus the pointwise dimension is given by

(4.3) dµ(x) = lim
n→∞

log(µ(Iw1...wn
))

n logλ
=

log 2

− log λ
= dimH C.

Observe that in the example above, the Cantor set C is just the

support of the measure µ. This suggests some connection between

the pointwise dimension of a measure and the Hausdorff dimension

of its support. However, the relationship is not always this simple.

For most choices of p and q, the pointwise dimension does not exist

everywhere, and does not always equal dimH C where it does exist.

Indeed, consider the points x = h(1, 1, 1, . . . ) and y = h(2, 2, 2, . . . ) in

C. An easy calculation shows that dµ(x) = log p/ log λ and dµ(y) =

log q/ log λ; thus the pointwise dimension at x does not equal the

pointwise dimension at y except in the special case p = q = 1/2.

The true relationship between the pointwise dimension of a mea-

sure and the Hausdorff dimension of its support is somewhat more

subtle. Not only may the pointwise dimension vary from point to

point, but there may be points at which the limit in (4.2) does not

even exist; thus we consider instead the lower and upper limits, which

always exist. These are referred to as the lower and upper pointwise

dimensions of the measure µ at the point x:

dµ(x) = lim
r→0

log µ(B(x, r))

log r
,

dµ(x) = lim
r→0

log µ(B(x, r))

log r
.

We have dµ(x) ≤ dµ(x) for any measure µ and any point x; the

two coincide if and only if the limit in (4.2) exists, in which case their

common value is the pointwise dimension.

The following result generalises Theorem 4.1:

Theorem 4.4 (Non-uniform Mass Distribution Principle). Suppose

that µ is a finite measure on Rd, that E ⊂ Rd has positive measure

(µ(E) > 0), and that there exists α > 0 such that

(4.4) dµ(x) ≥ α

for µ-almost every x ∈ E. Then dimH E ≥ α.
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Proof. Given ε > 0, we show that mH(E,α− ε) > 0, as follows. For

almost every point x ∈ E, we have

α ≤ dµ(x) = lim
r→0

log µ(B(x, r))

log r
,

and so there exists δ > 0 such that for all 0 < r < δ,

α− ε ≤ log µ(B(x, r))

log r
,

which leads to the inequality

(4.5) rα−ε ≥ µ(B(x, r)).

We would like to argue that by picking δ small enough, we can

use (4.5) to proceed exactly as in the proof of Theorem 4.1; however,

since δ may depend on x, we must be slightly more careful.

Given n ∈ N, let En be the set of points x ∈ E such that (4.5)

holds for all 0 < r < 1/n. Because (4.4) holds for almost every x ∈ C,

we have µ
(⋃

n≥1 En

)
= 1, and so there exists n such that µ(En) > 0.

It suffices to show that mH(E,α − ε) ≥ mH(En, α − ε) > 0.

Indeed, for any open cover {B(xi, ri)} of En by balls of radius ri ≤ δn,

we have∑
i

diam(B(xi, ri))
α−ε = 2α−ε

∑
i

rα−ε
i ≥ 2α−ε

∑
i

µ(B(xi, ri))

≥ 2α−εµ

(⋃
i

B(xi, ri)

)
≥ 2α−εµ(En).

It follows that mH(En, α − ε) ≥ 2α−εµ(En) > 0, and so dimH En ≥
α − ε. By the monotonicity property of Hausdorff dimension, this

implies that dimH E ≥ α − ε, and since ε > 0 is arbitrary, we have

dimH E ≥ α. �

Lecture 17

a. Variable pointwise dimension. We must emphasise the cru-

cial fact that the Non-uniform Mass Distribution Principle does not

require the bound (4.4) to hold at points x which lie outside of E

(the set we are interested in), but only at points in E (even then,

only at µ-almost every point, and it even suffices to have it only on
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a set of positive µ-measure). This is vital to applications, because

the pointwise dimension of a measure typically varies from point to

point, and so we may well be interested in cases in which the bound

fails on a fairly large set outside of E.

To illustrate this phenomenon, let us return to the setting of

Example 4.3, a Cantor repeller C in the interval for a piecewise linear

map f as in Figure 1.12, where the two basic intervals I1 and I2
have equal length λ. Consider the Bernoulli measure µ on C which is

generated by the probability vector (p, q), so that µ(I1) = p, µ(I2) =

q. We want to compute the pointwise dimension of µ at a point x ∈ C,

and relate this to the Hausdorff dimension of C, which as we already

know from Moran’s theorem, is dimH C = − log 2/ log λ.

To begin with, recall that we have a one-to-one correspondence

between elements of the Cantor set C and elements of the symbolic

space Σ+
2 , and so we consider the sequence w = h−1(x) which gives

the coding of the point x.

In order to compute the ratio in (4.2), we may replace B(x, r) with

Iw1...wn
, the basic interval containing x, and r with |Iw1...wn

| = λn,

since the error term between the two ratios vanishes in the limit.

From the definition of a Bernoulli measure, we have µ(Iw1...wn
) =

pan(w)qn−an(w), where an(w) is the number of times the symbol 1

appears in the sequence w1, . . . , wn.

Proceeding näıvely and ignoring any questions regarding exis-

tence of limits, we see that

(4.6)

dµ(x) = lim
n→∞

log µ(Iw1...wn
)

log |Iw1...wn
| = lim

n→∞

log(pan(w)qn−an(w))

log λn

= lim
n→∞

an(w) log p+ (n− an(w)) log q

n log λ

=

(
limn→∞

an(w)
n

)
log p+

(
1− limn→∞

an(w)
n

)
log q

log λ
.

Thus everything hinges on the value (and existence) of the limit

(4.7) α(x) = lim
n→∞

an(h
−1(x))

n
.
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The ratio an(w)/n is simply the proportion of ones in the first n

entries of w, and so the limit (if it exists) is the asymptotic frequency

of ones. But what is this value, and when does it exist?

Consider first the simple case p = q = 1/2. Then we may think

of µ as giving the probabilities of particular sequences of outcomes of

a random process, where at each step, we have an equal probability

of choosing a 1 or a 2 for the sequence, as if we were flipping a fair

coin. Intuitively, we expect such a process to yield an approximately

equal number of ones and twos in the long run, and so we expect to

see the ratio an(w)/n converge to 1/2 as n goes to infinity.

Of course, we can construct particular sequences for which this is

not the case; for w = (1, 1, 1, . . . ), we have an(w) = n for all n, and so

α(h(w)) = 1. Similarly, w = (2, 2, 2, . . . ) gives a limiting value of 0,

and in fact, given any α0 ∈ [0, 1], it is not hard to construct an x ∈ C

for which α(x) = α0; there are also many points for which the limit

does not exist. So we can only expect the limit to be equal to 1/2 for

certain “good” points x, which we hope are in some way typical. But

typical in what sense?

Let G be the set of “good” points, and B be the set of “bad”

points; that is, G = {x ∈ C | α(x) = 1/2} and B = C \ G. We just

saw that B is non-empty; indeed, it is dense in C. To see this, consider

a point x ∈ C with periodic coding (w1, w2, . . . , wN , w1, w2, . . . ); then

w has an asymptotic frequency of ones which is equal to aN (w)/N .

For most such points, this is not equal to 1/2, and such points are

dense in C. Thus topologically, B is fairly large.

From a measure-theoretic point of view, however, B is negligible;

one can show (see Proposition 4.5 below) that α(x) exists and is equal

to 1/2 µ-almost everywhere, and so B is a null set.

Now we can complete the calculation in (4.6) for the case p =

q = 1/2 to obtain

dµ(x) =
log 2

− log λ

for µ-almost every x ∈ C. In and of itself, this is not very helpful;

after all, we already saw in (4.3) that this is true for every x ∈ C and

that the common value is dimH C. However, that result did not give

us any information on dµ(x) for other values of p and q, while (4.6)
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does, using the following result, which corresponds to the strong law

of large numbers from probability theory.

Proposition 4.5. Let µ be the Bernoulli measure on C with proba-

bility vector (p1, p2). Then for µ-a.e. x,

α(x) = lim
n→∞

an(h
−1(x))

n
= p1.

Proof. For each ε > 0 and n ∈ N, consider the set

Zε,n =

{
x ∈ C

∣∣∣ ∣∣∣∣an(h−1(x))

n
− p1

∣∣∣∣ ≥ ε

}
.

The set B of “bad” points in C is the set of all points x for which

an(h
−1(x))/n �→ p1; thus x ∈ C is in B if and only if there exists

ε > 0 such that for every N ∈ N, there exists n ≥ N such that

x ∈ Zε,n. That is,

B =
⋃
ε>0

⋂
N∈N

⋃
n≥N

Zε,n.

We want to show that the set of “bad” points is a null set, that is,

µ(B) = 0. To this end, we first estimate the measure of Zε,n.

Zε,n consists of all the points x = h(w) for which∣∣∣∣an(w)n
− p1

∣∣∣∣ ≥ ε.

Since this inequality depends only on the first n symbols in w, we

observe that if x = h(w) ∈ Zε,n, then Iw1...wn
⊂ Zε,n. Let Wε,n

denote the set of all n-tuples w1 . . . wn such that Iw1...wn
⊂ Zε,n.

Then we have the following computation:

µ(Zε,n) =
∑

w1...wn∈Wε,n

µ(Iw1...wn
)

=
∑

w1...wn∈Wε,n

pw1
· · · pwn

≤ 1

ε2

∑
w1...wn∈Wε,n

(
an(w)

n
− p1

)2

pw1
· · · pwn

≤ 1

n2ε2

∑
w1...wn

(an(w)− np1)
2pw1

· · · pwn
,
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where the final sum is taken over all n-tuples w1 . . . wn, and where for

each n-tuple we choose an arbitrary w ∈ Iw1...wn
to evaluate an(w).

Observe that because an only depends on the first n symbols in w, it

does not matter which w we choose.

We proceed by expanding the square to get

(an(w)− np1)
2 = an(w)

2 − 2np1an(w) + n2p21

= A1(w) +A2(w) + A3(w),

where A1(w) = an(w)
2, A2(w) = −2np1an(w), and A3(w) = n2p21.

Thus the inequality becomes

µ(Zε,n) ≤
1

n2ε2

∑
w1...wn

(A1(w) +A2(w) +A3(w))pw1
· · · pwn

,

and it remains to evaluate the sums Si =
∑

w1...wn
Ai(w)pw1

· · · pwn

for i = 1, 2, 3. We compute each of these separately. The third is the

easiest:

S3 =
∑

w1...wn

n2p21pw1
· · · pwn

= n2p21,

using the fact that p1 + p2 = 1. To compute S1 and S2, we write

δ(wj) = 1 if wj = 1 and δ(wj) = 0 otherwise, and observe that

an(w) = δ(w1) + · · ·+ δ(wn). Thus

S2 =
∑

w1...wn

−2np1an(w)pw1
· · · pwn

= −2np1
∑

w1...wn

n∑
j=1

δ(wj)pw1
· · · pwn

= −2np1

n∑
j=1

∑
wj

δ(wj)pw1

= −2n2p21.

Finally, we have δ(wj)
2 = δ(wj), and so

an(w)
2 =

⎛
⎝ n∑

j=1

δ(wj)

⎞
⎠+

⎛
⎝∑

i 	=j

δ(wi)δ(wj)

⎞
⎠ .
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It follows that

S1 =
∑

w1...wn

an(w)
2pw1

· · · pwn

=
∑

w1...wn

⎡
⎣
⎛
⎝ n∑

j=1

δ(wj)

⎞
⎠+

⎛
⎝∑

i 	=j

δ(wi)δ(wj)

⎞
⎠
⎤
⎦ pw1

· · · pwn

=

⎛
⎝ n∑

j=1

∑
wj

δ(wj)

⎞
⎠+

⎛
⎝∑

i 	=j

∑
wiwj

δ(wi)δ(wj)pwi
pwj

⎞
⎠

= np1 + n(n− 1)p21.

Putting it all together, we have

(4.8)

µ(Zε,n) ≤
1

n2ε2
(S1 + S2 + S3)

=
1

n2ε2
(
np1 + n(n− 1)p21 − 2n2p21 + n2p21

)
=

p1 − p21
nε2

.

We now use this estimate to show that µ(B) = 0. Näıvely, we may

try to estimate µ
(⋃

n≥N Zε,n

)
by summing the estimate (4.8) over

all n ≥ N ; however, this sum diverges, and so this is of no use to us.

The way forward is to observe that since the ratio an(w)/n cannot

vary too quickly as n changes, the sets Zε,n for nearby values of n

may be compared to each other by allowing ε to vary slightly. Indeed,

given x ∈ Z2ε,n, one of the two following inequalities holds (here

w = h−1(x)):

(4.9)
an(w) ≥ p1n+ 2εn,

an(w) ≤ p1n− 2εn.

Now given n ≤ m ≤ (1 + ε)n, we have

an(w) ≤ am(w) ≤ an(w) + εn.

Taking ε > 0 small enough so that 1 > p1 + ε, the first inequality

in (4.9) implies

am(w) ≥ an(w) > p1n+ (p1 + ε)εn+ εn ≥ p1m+ εm,
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and provided p1 − ε > 0, the second implies

am(w) ≤ an(w) + εn ≤ (p1 − ε)n ≤ (p1 − ε)m.

Taking this all together, we see that

Z2ε,n ⊂ Zε,m

for every n ≤ m ≤ (1 + ε)n. Thus⋃
n≥N

Z2ε,n ⊂
⋃
k≥0

Zε,nk
,

where nk = �(1 + ε)kN�, and using (4.8), we see that

µ

⎛
⎝ ⋃

n≥N

Z2ε,n

⎞
⎠ ≤

∞∑
k=0

µ(Zε,nk
)

≤ p1 − p21
Nε2

∞∑
k=0

(1 + ε)−k ≤ p1 − p21
Nε2

1 + ε

ε
.

It follows that

µ

⎛
⎝ ⋂

N∈N

⋃
n≥N

Z2ε,n

⎞
⎠ = 0

for every ε > 0, which implies µ(B) = 0, and we are done. �

The result of Proposition 4.5 reveals the following important

property of Bernoulli measures.

Definition 4.6. Given a dynamical system f : X → X, an invariant

measure µ is said to be ergodic if any invariant subset E ⊂ X is either

a null set (µ(E) = 0) or a set of full measure (µ(X \ E) = 0).

Ergodic measures are irreducible in the sense that they do not

recognise any non-trivial invariant subsets of X. Furthermore, they

are building blocks for all invariant measures: if a measure µ is not

ergodic, the space can be decomposed into two invariant subsets each

of positive measure (and thus non-negligible). If the restriction of µ

to these subsets is not ergodic, we can further decompose them; con-

tinuing with this process (which can take uncountably many steps!),

we obtain the decomposition of µ into ergodic components.
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A crucial property that distinguishes ergodic measures from non-

ergodic ones is the following: given a measurable set A ⊂ X (which

may or may not be invariant), we have for a.e. point x (which may

or may not lie in A) that the trajectory originating at x visits A with

an asymptotic frequency equal to the measure of A. More precisely,

for a.e. x the following limit exists:

lim
n→∞

N(x,A, n)

n
= µ(A),

where N(x,A, n) is the number of integers 0 ≤ k < n for which

fk(x) ∈ A.

This property is actually equivalent to ergodicity (a fact which we

do not prove). Proposition 4.5 establishes this property for Bernoulli

measures in the case where A is a basic set Ij , and can in fact be used

to establish it for arbitrary measurable sets; thus Bernoulli measures

are ergodic.

b. Hausdorff dimension of exact dimensional measures. We

write µp for the Bernoulli measure on Σ+
2 with probability vector

(p, 1− p). Applying Proposition 4.5 to (4.6), we see that

(4.10) dµp
(x) =

p log p+ (1− p) log(1− p)

log λ

for µp-almost every x ∈ C. Thus the pointwise dimension dµp
(x)

exists and is constant µp-a.e.

Definition 4.7. Let µ be a finite measure on Rd. If there exists

α ∈ R such that dµ(x) = α for µ-a.e. x ∈ Rd, we say that µ is

exact dimensional. We refer to the constant value α as the Hausdorff

dimension of the measure, and write dimH µ = α.

It follows from Theorem 4.4 that if µ is an exact dimensional

measure and Z ⊂ Rd is such that µ(Z) = 1, then dimH Z ≥ dimH µ.

Thus if we rewrite (4.10) for a Bernoulli measure µp on C as

(4.11) dimH µp =
p log p+ (1− p) log(1− p)

log λ
,

we obtain the lower bound dimH C ≥ dimH µp. This bound is tight

in the following sense: one can check that the quantity dimH µp takes
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its maximum value when p = q = 1/2, and that in this case we have

dimH C = dimH µp.

Thus the Bernoulli measure µ1/2 corresponding to p = q = 1/2

differs from the other Bernoulli measures µp for p �= q in two ways:

(1) The pointwise dimension dµ1/2
(x) exists and is constant every-

where on C, not just almost everywhere.

(2) The Hausdorff dimension of µ1/2 is equal to the Hausdorff dimen-

sion of C. Such a measure, whose Hausdorff dimension is equal

to the Hausdorff dimension of the space, is called a measure of

maximal dimension.

These two facts are related, as a consequence of the following

result, which mirrors the Non-uniform Mass Distribution Principle,

but gives an upper bound for the Hausdorff dimension of a set.

Theorem 4.8. Suppose µ is a finite measure on Rd, and that there

exists α > 0 such that

(4.12) dµ(x) ≤ α

for every x ∈ Z ⊂ Rd. Then dimH Z ≤ α.

Proof. We show that mB(Z, α
′) < ∞ for every α′ > α; thus for

every such α′, we must exhibit C > 0 such that for every ε > 0, there

exists an ε-cover {B(xi, ri)} with
∑

i r
α′

i ≤ C.

We require the following geometric lemma (which we do not

prove):

Lemma 4.9 (Besicovitch covering lemma). Consider Euclidean space

Rd. There exists a constant K, depending only on the dimension d,

such that for every set Z ⊂ Rd and every open cover of Z of the

form U = {B(x, r(x)) | x ∈ Z}, where r : Z → (0,∞) is an arbitrary

function, there exists a countable subcover U ′ = {B(xi, r(xi) | i ∈ N}
with multiplicity bounded by K (that is, every point of Z is contained

in at most K elements of U ′).

Given α′ > α and ε > 0, we use Lemma 4.9 to obtain a “good”

cover of Z, as follows. For every x ∈ Z, we have

lim
r→0

log µ(B(x, r))

log r
< α′,
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and thus there exists 0 < r(x) < ε such that logµ(B(x, r(x)))/ log r <

α′, or equivalently,

µ(B(x, r(x))) > r(x)α
′
.

Now by Lemma 4.9, there exists a cover U ′ = {B(xi, r(xi))} with

multiplicity bounded by K, and hence∑
i

r(xi)
α′

<
∑
i

µ(B(xi, r(xi))) ≤ Kµ(Rd) < ∞.

The bound only depends on n and µ, thus since ε > 0 and α′ > α

were arbitrary, we have the desired result. �

Corollary 4.10. If µ is a finite measure on Rd, and Z ⊂ Rd is such

that µ(Z) > 0 and dµ(x) = α for all x ∈ Z, then dimH Z = α.

Using Theorems 4.4 and 4.8, it is possible in certain cases to use

information about the pointwise dimension of certain measures to not

only estimate the Hausdorff dimension of a given set, but to compute

it precisely. We have just seen that this is the case for a repeller

of a one-dimensional full-branched Markov map with constant slope.

Eventually, we will address the case where the slope may vary and

where the map may not be full-branched.

Remark. Our definition of dimH µ differs from the usual one. The

usual approach is to define the Hausdorff dimension of a measure by

dimH µ = inf{dimH Z | µ(Z) = 1},
and then show that if µ is exact dimensional, then dµ(x) = dimH µ

at µ-a.e. x. Thus for exact dimensional measures (the only context in

which our definition applies), our definition agrees with the usual one:

one inequality is a consequence of the Non-uniform Mass Distribution

Principle, which immediately implies dimH µ ≤ inf{dimH Z | µ(Z) =

1}, and the other follows from Theorem 4.8, since we may take Z =

{x | dµ(x) = dimH µ} and obtain µ(Z) = 1, dimH Z = dimH µ.

c. Pointwise dimension of Hausdorff measures. Since we now

have all the tools in place, we digress briefly to give a result on the

pointwise dimension of the Hausdorff measures mH(·, α), which we

will need in Chapter 6 when we consider the Hausdorff dimension of

direct products of sets.
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Proposition 4.11. Let α ≥ 0, and suppose that Z ⊂ Rd is such that

0 < mH(Z, α) < ∞. Define a measure µ by µ(E) = mH(E ∩ Z, α).

Then we have dµ(x) = α for µ-a.e. x ∈ Z.

Proof. Consider the two sets

Z− = {x ∈ Z | dµ(x) < α},
Z+ = {x ∈ Z | dµ(x) > α};

we will show that µ(Z−) = µ(Z+) = 0. To this end, let Z−
n = {x ∈

Z | dµ(x) ≤ α − 1/n}, and observe that Z− =
⋃

n Z
−
n . Since µ

is a finite measure, we may apply Theorem 4.8 to Z−
n and obtain

dimH Z−
n ≤ α − 1/n < α. It follows that µ(Z−

n ) = mH(Z−
n , α) = 0.

Taking the union over all n ∈ N and using countable subadditivity,

we see that

µ(Z−) ≤
∑
n

µ(Z−
n ) = 0.

Similarly, let Z+
n = {x ∈ Z | dµ(x) ≥ α + 1/n}, so that Z+ =⋃

n Z
+
n . If µ(Z+

n ) ≥ 0, then the Non-uniform Mass Distribution Prin-

ciple gives

dimH Z+
n ≥ α+

1

n
> α = dimH Z,

a contradiction since Z+
n ⊂ Z. It follows that µ(Z+

n ) = 0 for every

n, and so µ(Z+) = 0. This completes the proof, since Z− and Z+

contain all points x such that dµ(x) �= α. �

Remark. Proposition 4.11 gives a partial converse to Corollary 4.10

by showing the existence of a measure µ supported on Z with dµ(x) =

dimH Z almost everywhere, under the assumption that the Haus-

dorff measure of Z is positive and finite. In fact, the assumption

that mH(Z, α) is finite can be dropped: given Z and α such that

mH(Z, α) = ∞, one may show that there exists Z ′ ⊂ Z such that

0 < mH(Z ′, α) < ∞, although we do not prove this here (see [Fal03]).

Lecture 18

a. Local entropy. In the previous lecture, we studied the dimen-

sional properties of various measures on the symbolic space Σ+
k and

a Cantor repeller C, with the goal of gaining information about the
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geometry of C. This analysis was carried out in terms of the cylinder

sets Cw1...wn
⊂ Σ+

k and their counterparts, the basic sets Iw1...wn
,

which appeared because they are the sets B(x, r) in the definition of

pointwise dimension.

However, the cylinder sets have a dual characterisation, and this

static definition (which makes no mention of the dynamics of either σ

or f) is only one side of their identity. If we fix x, then as r decreases,

the cylinder set corresponding toB(x, r) becomes smaller and smaller;

we pass from Cw1
to Cw1w2

to Cw1w2w3
, and so on. Recall that n is

the number of iterations it takes before the image of Cw1...wn
is the

whole space:

σn(Cw1...wn
) = Σ+

k .

Thus we may characterise the cylinder set Cw1...wn
as the set of all

points which follow the orbit of w (to within a small error term) for

the first n− 1 iterates:

Cw1...wn
= {v ∈ Σ+

k | da(σj(v), σj(w)) < 1/a for all 0 ≤ j < n},

where we use the metric da from (1.18), with a > 2. With this char-

acterisation, refining the cylinder sets involves increasing the length

of time n for which we require the orbits to be close, rather than

decreasing the radius r in B(x, r).

Thus instead of refining statically, in space, we are now refining

dynamically, in time. It also makes sense to involve the dynamics

of this system, which we did not do in the previous lecture, because

the most important measures we have introduced so far, the Bernoulli

and Markov measures on Σ+
k and C, are dynamically significant; they

are invariant under the relevant dynamics, whether those are given

by the shift σ or a one-dimensional Markov map f .

Keeping in mind the paradigm of dealing with time rather than

space, the preceding considerations may be profitably generalised to

the context of an arbitrary map f acting on a metric space (X, d).

Definition 4.12. Given x ∈ X, n ∈ N, and δ > 0, the Bowen ball

centred at x of radius δ and order n is the set

(4.13) Bf (x, n, δ) = {y ∈ X | d(f j(x), f j(y)) < δ for all 0 ≤ j ≤ n}.
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If the map f is chaotic (whichever precise definition we care to

use), we expect small errors to get magnified by repeated iteration of

f , and hence a point y ∈ B(x, δ) \ {x} should have an orbit which

is eventually ejected from B(f j(x), δ). Consequently, we expect the

Bowen balls Bf (x, n, δ) to get smaller and smaller as n increases;

this dynamic refinement parallels the static refinement that occurs

for B(x, r) as r decreases.

If X is symbolic space, then the Bowen balls Bσ(x, n, δ) coincide

with the regular balls B(x, r) (for appropriate values of n, δ, and r),

as the cylinder sets play both roles. However, the two concepts are

usually distinct. All the dimensional quantities we have defined so

far—dµ(x), dimH µ, and dimH Z (along with the box dimensions)—

have been defined using the balls B(x, r). Each of these dimensional

quantities can also be defined using the Bowen balls Bf (x, n, δ), and

in general we obtain new information, with a different interpretation,

by doing so.

We begin with the pointwise dimension dµ(x), which measured

the exponential rate of decay of µ(B(x, r)), and was heuristically de-

fined as the quantity for which

µ(B(x, r)) ≈ rdµ(x).

If µ is the Bernoulli measure given by (1/2, 1/2) on the symbolic space

Σ+
2 , then the Bowen balls are cylinder sets, and we have, for δ = 1/a,

µ(Bσ(w, n, δ)) = µ(Cw1...wn+1
) = 2−(n+1).

We want to write this in terms of n (the quantity which varies as

we refine dynamically) and a scaling parameter, without reference to

anything else that depends on the map, the measure, or the point.

Thus we observe that

2−(n+1) ≈ e−n log 2,

and in general, we search for a scaling parameter α such that

µ(Bf (x, n, δ)) ≈ e−nα.

Definition 4.13. The local entropy of the map f and the measure µ

at the point x is

hµ,f (x) = lim
δ→0

lim
n→∞

− 1

n
log µ(Bf (x, n, δ)),
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if the limit exists.

Swapping B(x, r) forBf (x, n, δ), and declaring the “radius” of the

latter to be e−n, this is very nearly a carbon copy of the definition of

pointwise dimension.

Example 4.14. Let µ be a Bernoulli measure on Σ+
k with probability

vector p = (p1, . . . , pk). Given δ > 0, let N ∈ N be the unique N

such that a−N ≤ δ < a−(N−1); thus for every w ∈ Σ+
k and n ∈ N,

Bσ(w, n, δ) = Cw1...wN+n
.

It follows that

µ(Bσ(w, n, δ)) = µ(Cw1...wN+n
) = p

a1
N+n(w)

1 · · · pa
k
N+n(w)

k ,

where aim(w) denotes the number of times the symbol i appears in

the itinerary w1, . . . , wm. Then

− 1

n
log µ(Bσ(w, n, δ)) = −

k∑
i=1

aiN+n(w)

n
log pi,

and using the result of Proposition 4.5 (which holds for all k, not just

k = 2), we have

(4.14)

hµ,f (w) = lim
δ→0

lim
n→∞

−
k∑

i=1

aiN+n(w)

N + n

N + n

n
log pi

= −
k∑

i=1

pi log pi

for µ-a.e. w ∈ Σ+
k .

Thanks to Proposition 4.15 below, which shows that local entropy

is an invariant of topological conjugacy, the same result holds if µ is

a Bernoulli measure on a Cantor repeller C which is modelled on Σ+
k .

In both cases, we observe that if the entries of p are not all equal,

then there will be points w at which the local entropy takes some

other value, just as was the case for pointwise dimension.

Proposition 4.15. Let (X, d) and (Y, ρ) be compact metric spaces,

let f : X → X and g : Y → Y be continuous maps, and let φ : X → Y

be a homeomorphism such that g ◦ φ = φ ◦ f . Let µ be a g-invariant
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measure on Y , and let µ∗ be the f -invariant measure on X given by

µ∗(E) = µ(φ(E)). Then the local entropies are related by

(4.15) hµ∗,f (x) = hµ,g(φ(x)).

Proof. Because X is compact, the continuous map φ : X → Y is

actually uniformly continuous. Thus for every ε > 0, there exists

δ = δ(ε) > 0 such that d(x, x′) < δ implies d(φ(x), φ(x′)) < ε. This

may be restated as the following inclusion, which holds for all x ∈ X:

φ(B(x, δ)) ⊂ B(φ(x), ε).

This inclusion holds at x, f(x), f2(x), etc., and so the Bowen balls

are related by

φ(Bf (x, n, δ)) ⊂ Bg(φ(x), n, ε)

for every n ∈ N. In particular, this implies that

µ∗(Bf (x, n, δ)) ≤ µ(Bg(φ(x), nε)),

which gives

lim
n→∞

− 1

n
log µ∗(Bf (x, n, δ)) ≥ lim

n→∞
− 1

n
log µ(Bg(φ(x), n, ε)).

Since δ → 0 as ε → 0, taking the limit as ε → 0 gives

hµ∗,f (x) ≥ hµ,g(φ(x)).

The proof of the other inequality is similar. �

Remark. In order to prove the analogous result to Proposition 4.15

for the pointwise dimensions of µ∗ and µ, we would need the homeo-

morphism φ to be bi-Lipschitz. Here that assumption is replaced by

the statement that φ conjugates the dynamics of f and g.

b. Kolmogorov–Sinai entropy. Although the local entropy may

vary from point to point and may fail to exist at some points, there

are many important cases in which it exists and is constant almost

everywhere, as in Example 4.14. This happens whenever the measure

µ is ergodic, and we refer to the constant value as the entropy of the

measure µ under the transformation f , and denote it by h(µ, f). This

is the analogue of dimH µ; we obtain the dimension of the measure

by doing our refining in space, while we obtain the entropy by doing

our refining in time.
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Remark. The entropy h(µ, f) was first introduced by Andrei Kol-

mogorov in 1958 and in a somewhat more general form by Yakov Sinai

in 1959; it is often called the Kolmogorov–Sinai entropy, although the

terms metric entropy and measure theoretic entropy are also used.

It is one of the most important characteristics in dynamics, and our

discussion of it in this book does little more than scratch the surface.

As with the Hausdorff dimension of a measure, our definition

of h(µ, f) as the almost everywhere value of a locally defined quan-

tity is not the standard one, although it agrees with the standard

definition in every case where our definition applies. There is a trade-

off here: we have chosen to highlight the dimensional nature of the

entropy at the cost of obscuring its significance as a measure of infor-

mation, which echoes its origins in information theory. We content

ourselves here with saying that heuristically, the entropy h(µ, f) may

be thought of as the average rate at which information is gained as a

typical trajectory of the system is observed.1

Recalling the result of Example 4.14, we may now rewrite (4.11)

as the statement that for a Bernoulli measure µ on a Cantor set

C which is the maximal invariant set for a piecewise linear one-

dimensional full-branched Markov map with slope 1/λ, the dimension

and entropy are related by

(4.16) dimH µ =
h(µ, f)

− log λ
.

This was proved in the particular case where the number of branches

is k = 2, but the same computations show that it holds for any value

of k; for general k, the Kolmogorov–Sinai entropy of the Bernoulli

measure with probability vector p is given by (4.14) as h(µ, f) =

−
∑k

i=1 pi log pi.

c. Topological entropy. So far, we have examined two new dimen-

sional quantities obtained by replacing statically defined balls B(x, r)

with dynamically defined balls Bf (x, n, δ) in our earlier definitions.

Both of these characterise a measure µ: at a local level, we have the

1The standard definition of entropy may be found in Peter Walters’ book An
Introduction to Ergodic Theory [Wal75]; an overview of the history of entropy in
its various guises is given in Anatole Katok’s survey paper Fifty years of entropy in
dynamics [Kat07].
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pointwise dimension dµ(x) and the local entropy hµ,f (x), while at a

global level, we have the Hausdorff dimension (of a measure) dimH µ

and the Kolmogorov–Sinai entropy h(µ, f).

Along similar lines, we now outline the definition of topological

entropy, a dynamically defined quantity analogous to the Hausdorff

dimension of a set. The reader is urged to compare each step with the

corresponding step in the definition of Hausdorff dimension to get a

feel for the general procedure; once again, we stress that if we call e−n

the “radius” of the Bowen ball Bf (x, n, δ), then the two definitions

are nearly word-for-word identical.

Definition 4.16. Fix a separable metric space X, a continuous map

f : X → X, and a set Z ⊂ X. For every N ∈ N and δ > 0, denote by

P(Z,N, δ) the collection of all countable covers of Z by Bowen balls

Bf (x, n, δ) for which x ∈ Z and n ≥ N . Given α ≥ 0, define a set

function mh(Z, α, δ) by

mh(Z, α, δ) = lim
N→∞

inf
P(Z,N,δ)

∑
i

e−niα.

It may be shown that mh(Z, ·, δ) has a jump-like graph with the

form shown in Figure 2.1 for mH(Z, ·); thus we consider the critical

parameter value

htop(Z, f, δ) = sup{α ≥ 0 | mh(Z, α, δ) = ∞}
= inf{α ≥ 0 | mh(Z, α, δ) = 0},

and define the topological entropy of the map f on the set Z by

htop(Z, f) = lim
δ→0

htop(Z, f, δ),

where one can show that the limit exists.

Remark. Once again, we are obliged to point out that this is not

the usual way of defining the topological entropy. The more common

definition actually mirrors the definition of box dimension: writing

Nf (Z, n, δ) for the minimal number of Bowen balls Bf (x, n, δ) it takes

to cover Z, one defines

htop(Z, f) = lim
δ→0

lim
n→∞

1

n
logNf (Z, n, δ).
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This characterises the topological entropy as the growth rate (with

respect to n) of the number of Bowen balls of order exactly n it takes

to cover Z. The same quantity is also often expressed, in terms rem-

iniscent of Exercise 2.25, as the growth rate of the maximal number

of disjoint Bowen balls centred in Z, or equivalently, the number of

orbit segments of length n which can be distinguished at a given finite

scale.

In the case where Z is compact and f -invariant, our definition

agrees with the more common one; however they can (and do) dif-

fer when Z is non-compact and/or non-invariant. In this case, the

definition we have given is often the more appropriate tool, just as

Hausdorff dimension is often a better tool than box dimension when

the quantities differ.

Exercise 4.2. Let σ : Σ+
k → Σ+

k be the full shift on k symbols, and

show that htop(Σ
+
k , σ) = log k.

It can be shown that the topological entropy is an invariant of

topological conjugacy; that is, if two maps are conjugated by a homeo-

morphism, then they have the same topological entropy (recall we saw

a similar result for the local entropy). Thus if C is a repeller for a one-

dimensional full-branched Markov map f , we have htop(C, f) = log k.

In the particular case where f has constant slope 1/λ, we obtain the

following relationship between Hausdorff dimension and topological

entropy, paralleling (4.16):

(4.17) dimH C =
htop(C, f)

− log λ
.

In the previous lecture, we obtained the left-hand side of (4.17)

by maximising dimH µ over all Bernoulli measures. Comparing (4.16)

and (4.17), we see that we can also get htop(C, f) by maximising

h(µ, f) over all Bernoulli measures.

In fact, the analogies between dimension and entropy run very

deep. There are analogues of Theorems 4.4 and 4.8 available for

topological entropy, which relate it to local entropy, and hence to

Kolmogorov–Sinai entropy. The proofs are similar to the proofs in

the case of dimension; as we are not particularly concerned with
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these results here, we omit the details, referring the interested reader

to [Pes98] for a full exposition of these matters.

Let us mention, however, that the idea of obtaining htop(C, f)

by maximising h(µ, f) in fact works quite generally, thanks to the

following variational principle (which we do not prove).

Theorem 4.17. Let X be a compact metric space and f : X → X a

continuous map. Then

(4.18) htop(X, f) = sup{h(µ, f) | µ is ergodic and f -invariant}.

We will not make use of this result in its full generality; how-

ever, we will refer to one specific case beyond the example of the full

shift mentioned above. If X is a subshift of finite type or a Markov

construction modelled on such a subshift, then it turns out that the

supremum in (4.18) can be taken over all Markov measures µ sup-

ported on X (like Bernoulli measures, Markov measures are ergodic,

provided their associated transition matrix is primitive). We will soon

see how to compute the entropy for such measures, and this will give

us a tool with which to compute the topological entropy of a subshift.

Exercise 4.3. A measure µ which achieves the supremum in (4.18) is

called a measure of maximal entropy. Show that the measure of max-

imal entropy for the full shift on k symbols is the Bernoulli measure

with probability vector
(
1
k , . . . ,

1
k

)
.

Lecture 19

a. Entropy of Markov measures. We now return to the Markov

constructions introduced in Lecture 15 and use our recently developed

tools to gain more knowledge about the Hausdorff dimension of the

resulting Cantor sets.

Let f be a one-dimensional Markov map, as in Figure 3.2, and

suppose for the time being that f is piecewise linear, with f ′(x) = 1/λ

everywhere in the domain of f . Then f determines a k× k transition

matrix A and a repelling Cantor set CA, and the dynamics of f on

CA are modelled by the subshift of finite type Σ+
A comprising all

admissible sequences with respect to A.
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In order to estimate dimH CA using the Non-uniform Mass Dis-

tribution Principle, we need a measure µ which gives positive weight

to CA.

Exercise 4.4. Show that if there exist i, j such that aij = 0, then

µ(CA) = 0 for every Bernoulli measure µ.

Exercise 4.5. Let µ be a Markov measure on Σ+
k with stationary

probability vector π = (πi) and stochastic matrix P = (pij), and let

A be an arbitrary k × k transition matrix. Show that if there exist

i, j such that pij > 0 and aij = 0, then µ(CA) = 0.

As a consequence of the previous two exercises, we must consider

Markov measures supported on CA in order to gain any information

about dimH CA. We begin by working in symbolic space.

Let µ be a Markov measure on Σ+
k with stationary probability

vector π = (πi) and stochastic matrix P = (pij). Then as in Exam-

ple 4.14, we have

Bσ(w, n, δ) = Cw1...wN+n
,

where a−N ≤ δ < a−(N−1), and hence

µ(Bσ(w, n, δ)) = πw1
pw1w2

· · · pwN+n−1wN+n

= πw1

k∏
i=1

k∏
j=1

p
ai,j
N+n(w)

ij ,

where ai,jm (w) denotes the number of indices m′ < m such that wm′ =

i and wm′+1 = j. Taking logarithms yields

1

n
log µ(Bσ(w, n, δ)) =

πw1

n
+

k∑
i=1

k∑
j=1

ai,jN+n(w)

n
log pij .

A similar result to that in Proposition 4.5 shows that if the transition

matrix A associated to the stochastic matrix P is primitive, then for

µ-a.e. sequence w ∈ Σ+
k , we have

(4.19) lim
m→∞

ai,jm (w)

m
= πipij ,

and hence for such sequences w, the local entropy of µ is

hµ,σ(w) = −
k∑

i=1

πi

k∑
j=1

pij log pij .
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Since this holds µ-a.e., we also have

(4.20) h(µ, σ) = −
k∑

i=1

πi

k∑
j=1

pij log pij .

Exercise 4.6. Show that if f is a piecewise linear one-dimensional

Markov map with constant expansion |f ′(x)| = 1/λ, then the point-

wise dimension and the local entropy exist at precisely the same

points, and they are related by

dµ(x) =
hµ,f (x)

− log λ
.

Example 4.18. Consider a Markov map as in Exercise 4.6 for which

the transition matrix A is ( 0 1
1 1 ), as in Example 3.17. If P is the

stochastic matrix for a Markov measure supported on CA, then since

p11 = 0 and the entries in each row of P must sum to 1, we have

p12 = 1; thus the stochastic matrix has the form Pa =
(
0 1
a 1−a

)
,

where a = p21 ∈ [0, 1]. If we interpret the entries of P as giving

the probability of a transition from one state to another, then the

fact that p11 vanishes means that every time we are in state 1, we

must immediately return to state 2 at the next time step, with zero

probability of remaining in state 1.

Given a ∈ [0, 1], we wish to construct a Markov measure with

stochastic matrix Pa. Thus we need a stationary probability vector

π = (p, q). After some straightforward calculations (which the reader

is encouraged to carry out), the requirement that πPa = π forces us

to take

π = πa =

(
1

1 + a
,

a

1 + a

)
.

Now we denote by µa the Markov measure with probability vector

πa and stochastic matrix Pa. Thus we have a one-parameter family

of Markov measures µa for which µa(CA) = 1. The entropy of these

measures is given by

h(µa, f) = −π1(p11 log p11 + p12 log p12)

− π2(p21 log p21 + p22 log p22)

= − 1

1 + a
(a log a+ (1− a) log(1− a)).
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Thus, by Exercise 4.6, the pointwise dimension is equal µa-almost

everywhere to

φ(a) =
a log a+ (1− a) log(1− a)

(1 + a) logλ
,

so dimH µa = φ(a). As before, Theorem 4.4 implies that dimH CA ≥
φ(a) for all a ∈ [0, 1], and so we want to maximise φ in order to

find the best bound, which will hopefully give us the exact value of

dimH CA.

By solving φ′(a) = 0 for the critical value of a, we find that φ

achieves its maximum at a = a0 = (3−
√
5)/2, and hence

(4.21) dimH CA ≥ φ(a0) =
log(1 +

√
5)− log 2

− log λ
.

A further computation (which we also omit) shows that dµa0
(x) =

dimH µa0
at every point x ∈ CA, and thus by Theorem 4.8, we have

equality in (4.21). Thus µa0
, in addition to being the measure of

maximal entropy, is also the measure of maximal dimension.

Exercise 4.7. Consider the limiting set CA for the Markov geomet-

ric construction which starts from three disjoint intervals I1, I2, I3 ⊂
[0, 1], and which has ratio coefficients λ1 = λ2 = λ3 = λ with

0 < λ < 1
3 and transition matrix

A =

⎛
⎝0 1 0

1 1 0

0 0 1

⎞
⎠ .

Use the technique described above to compute the Hausdorff dimen-

sion of CA. (Note that A is not primitive.)

b. Hausdorff dimension of Markov constructions. We now de-

scribe a procedure for computing the measure of maximal entropy for

an arbitrary subshift of finite type Σ+
A. Using the relationship between

dimension and entropy given by Exercise 4.6, we will then be able to

determine the Hausdorff dimension of certain Markov constructions.

Let A be a k × k matrix of zeros and ones, and Σ+
A the associ-

ated subshift of finite type. Let χ be the largest positive eigenvalue2

2We use χ rather than the more common notation λ so as to avoid confusion with
our use of λ to denote a ratio coefficient.
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of A, and fix a left eigenvector (u1, . . . , uk) and a right eigenvector

(v1, . . . , vk) for χ, both with positive entries, and normalised so that∑k
i=1 uivi = 1. Let µ be the Markov measure with probability vector

πi = uivi

and stochastic matrix

pij =
aij
λ

vj
vi
;

thus the weight which µ assigns each cylinder is given by

µ(Cw1...wn
) = χ−nuw1

vwn
,

provided w is admissible. µ is called the Parry measure for the sub-

shift Σ+
A.

Since cylinders coincide with Bowen balls, we may proceed as in

Example 4.14, and compute the local entropy as follows:

hµ,σ(w) = lim
n→∞

− 1

n
log µ(Cw1...wn

)

= lim
n→∞

− 1

n
(−n logχ+ log uw1

+ log vwn
)

= logχ.

This holds for every w ∈ Σ+
A. Thus, the analogues of Theorems 4.4

and 4.8 for entropies together imply that htop(Σ
+
A) = logχ. The

Parry measure µ is a measure of maximal entropy for Σ+
A; in fact, one

can show that it is the unique measure of maximal entropy.

Exercise 4.8. Find the Parry measure for the subshift in Exam-

ple 4.18, and compare the results of this section with the results we

obtained there.

The procedure described above allows us to compute a measure

of maximal entropy for a subshift. Given a one-dimensional piecewise

linear Markov map f with constant slope, and an invariant measure µ

for f , Exercise 4.6 tells us that the pointwise dimension of the Parry

measure exists and is constant everywhere, hence the Parry measure is

the measure of maximal dimension as well, and we have the following

theorem:

Theorem 4.19. Let f be a piecewise linear Markov map of the inter-

val (which may not be full-branched) with |f ′(x)| = λ−1 everywhere f
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is defined. Let A be the transition matrix associated to f and CA the

limiting Cantor set of the associated Markov construction. Let χ be

the largest positive eigenvalue of the matrix A. Then

(4.22) dimH CA =
logχ

− log λ
.

Thus we have successfully computed the Hausdorff dimension of

a Cantor set defined by a Markov construction when the rate of ex-

pansion is constant. This procedure does not, however, tell us what

to do when the rate of expansion |f ′(x)| is no longer constant. . . .

Lecture 20

a. Lyapunov exponents. Throughout the previous two lectures,

we dealt only with examples where |f ′(x)| = 1/λ was constant on the

domain of f ; this had the effect that Bowen balls Bf (x, n, δ) were

really just usual balls B(x, δλ−n), and consequently each dimension

was related to the corresponding entropy by a factor of − log λ =

log |f ′(x)|.
If we allow |f ′(x)| to vary from point to point, either by consid-

ering a linear map where the branches of f have different slopes or by

letting f be non-linear, then things are more complicated. Because

the various entropies—hµ,f (x), h(µ, f), and htop(Z, f)—are invariant

under topological conjugacy, the results of the previous two lectures

still tell us everything we want to know about them.

However, the various dimensions—dµ(x), dimH µ, and dimH Z—

are defined not in terms of the dynamics of f , but in terms of the

metric structure of X. Thus, if we wish to gain information about

them via the dynamics of f (that is, via the entropies), as we did in

the previous lecture, we must figure out what is to replace the factor

of log |f ′(x)|, which is no longer constant.

Our initial goal will be to compare Bf (x, n, δ) and B(x, r), and

to use this to compare hµ,f (x) and dµ(x) for a given measure µ. To

this end, consider a continuously differentiable map f : E → R, where
E ⊂ R is the domain of definition of f , and let x, y ∈ E be two points

which are close together. We want to compare their trajectories, to

see how the distance between fn(x) and fn(y) varies with n.
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Taking the Taylor expansion of f around x gives

f(y) = f(x) + f ′(x)(y − x) + o(y − x),

and so the distance between f(x) and f(y) is given by

d(f(x), f(y)) = |f(x)− f(y)| ≈ |f ′(x)| d(x, y),

where the error term is on the order of (d(x, y))2. Thus the distance

between the trajectories is multiplied by a factor of approximately

|f ′(x)| when we pass from x and y to their images under f .

Passing to the second iterates, we have

d(f2(x), f2(y)) = d(f(f(x)), f(f(y)))

≈ |f ′(f(x))| d(f(x), f(y))
≈ |f ′(f(x))f ′(x)| d(x, y),

and in general, after n iterations the estimate is

(4.23) d(fn(x), fn(y)) ≈
(

n−1∏
i=0

|f ′(f i(x))|
)
d(x, y).

The size of the error term in (4.23) depends on the distance be-

tween fn−1(x) and fn−1(y); if the trajectories become far enough

apart, the error term becomes large, and the estimate is no longer

valid. However, the closer together we choose x and y to be, the

longer it takes for this to happen, and so we can make the estimate

valid for as long as we like by choosing x and y close enough together.

We are interested, then, in the behaviour of the quantity dn(x) =∏n−1
i=0 |f ′(f i(x))|, which gives the amount of expansion in a neigh-

bourhood of x after n iterations. In the case when f is piecewise

linear as in Figure 1.17, the derivative f ′ takes two values:

(4.24) f ′(x) =

{
λ−1
1 x ∈ I1,

λ−1
2 x ∈ I2.

Thus the rate of growth of dn(x) depends on whether the iterates

f i(x) are in I1 or in I2. We would like to have some information

on this rate of growth by finding some real number λ for which the

product asymptotically behaves like eλn. This is made precise by the

following definition.
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Definition 4.20. The Lyapunov exponent of the map f at the point

x is

(4.25) λf (x) = lim
n→∞

1

n
log

(
n−1∏
i=0

|f ′(f i(x))|
)
,

if the limit exists.

Remark. The Lyapunov exponent tells us how quickly the distance

between two nearby points grows under repeated iterations of f . It

may be thought of as the asymptotic rate of expansion of the map or,

alternately, as the asymptotic rate of growth of a small error term. It

was introduced by Aleksandr Lyapunov in 1892 to study the stability

of solutions of differential equations [Lya92].

Proposition 4.21. Let f : I1 ∪ I2 → [0, 1] be piecewise linear, as in

Figure 1.17, with |I1| = λ1 and |I2| = λ2, and let µ be a Bernoulli

measure on C with probability vector (p, q). Then the Lyapunov expo-

nent exists µ-almost everywhere, and λf (x) = −(p logλ1 + q log λ2).

Proof. The basic interval Iw1...wn
consists of precisely those points

x for which f j−1(x) ∈ Iij for each j = 1, . . . , n. Thus for x ∈ Iw1...wn
,

(4.26) dn(x) =

n−1∏
i=0

|f ′(f i(x))| =
n∏

j=1

λ−1
ij

= λ
−an(w)
1 λ

−(n−an(w))
2 ,

where an(w) is the number of times the symbol 1 appears in the first n

terms w1, w2, . . . , wn. Recalling that an(w)/n → p for µ-almost every

point x (Proposition 4.5), we may compute the Lyapunov exponent

λ(x) for such points:

λ(x) = lim
n→∞

1

n
log dn(x)

= lim
n→∞

1

n
log
(
λ
−an(x)
1 λ

−(n−an(x))
2

)
= lim

n→∞
−
(
an(x)

n
log λ1 +

n− an(x)

n
log λ2

)
= −(p logλ1 + (1− p) logλ2). �

Definition 4.22. Given an ergodic measure µ, the Lyapunov ex-

ponent λf (x) exists and is constant µ-a.e.; we refer to the almost
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everywhere value as the Lyapunov exponent of µ, and denote it by

λ(µ, f).

We can also compute the pointwise dimension of a Bernoulli mea-

sure in the context of Proposition 4.21. The length of the basic in-

terval Iw1...wn
depends on an(w), and so in the calculation of the

pointwise dimension dµ(x), the denominator in (4.6) must be replaced

by

(4.27)
log |Iw1...wn

| = log
(
λ
an(w)
1 λ

n−an(w)
2

)
= an(w) logλ1 + (n− an(w)) logλ2.

Using the result of Proposition 4.5, we have, for almost every x ∈ C,

dµ(x) =
p log p+ q log q

p logλ1 + q log λ2
;

we can rewrite this as

(4.28) dimH µ =
h(µ, f)

λ(µ, f)
.

Remark. In fact, one can prove for a large class of one-dimensional

maps (not just linear Markov maps) that some version of the following

relationship holds:

Bf (x, n, δ) ≈ B
(
x, δe−nλf (x)

)
.

This allows us to relate the pointwise dimension, local entropy, and

Lyapunov exponent by the following pointwise analogue of (4.28):

dµ(x) =
hµ,f (x)

λf (x)
.

This relationship has (4.28) as a corollary.

Now let f be a one-dimensional non-linear full-branched expand-

ing Markov map, and let C be the maximal repelling Cantor set for

f . Then the ratio coefficients change at each step in the construction

of C, and so Moran’s theorem is of no use to us in determining the

Hausdorff dimension of C. However, (4.28) still holds in this case,

and so by the Non-uniform Mass Distribution Principle, we have

(4.29) dimH C ≥ h(µ, f)

λ(µ, f)
.
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φ(p)

0 1

p

(p0, φ(p0)) = (λt
1, t)

Figure 4.1. Hausdorff dimension of the Bernoulli measures µp.

That is, the Hausdorff dimension of the Cantor set is bounded be-

low by the ratio of the entropy and the Lyapunov exponent for any

Bernoulli measure µ; in fact, this holds for any ergodic measure.

Since this ratio depends on the particular choice of measure, what

we really have is a whole family of lower bounds on dimH C; it is nat-

ural to ask if one can find an invariant measure µ for which equality

is achieved, and the ratio between the entropy and the Lyapunov ex-

ponent gives exactly the Hausdorff dimension. In fact, this measure

of maximal dimension can be shown to exist for any expanding one-

dimensional Markov map (i.e., a one-dimensional Markov map for

which |f ′(x)| > 1 for every x), even in the non-linear case. This gives

a general technique for finding the Hausdorff dimension of a dynami-

cally defined Cantor set on the line, which more or less accomplishes

the original task we set out to perform.

b. Fractals within fractals. To illustrate the general procedure,

let us return to the particular case of a piecewise linear full-branched

one-dimensional Markov map f on two intervals (whose lengths λ1

and λ2 may differ), and go hunting for a measure of maximal dimen-

sion, for which the pointwise dimension is constant everywhere, and

the lower bound (4.29) on dimH C actually gives equality.

We begin our search with the family of Bernoulli measures. Once

again, write µp for the Bernoulli measure with probability vector
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(p, 1− p), and define a function φ : [0, 1] → R by

φ(p) = dimH µp =
h(µp, f)

λ(µp, f)
=

p log p+ (1− p) log(1− p)

p log λ1 + (1− p) logλ2
;

the graph of a typical φ is shown in Figure 4.1. It follows from (4.28)

and (4.29) that dimH C ≥ φ(p) for all p ∈ [0, 1]. In order to find the

best bound, one solves for the critical point p0 at which φ′(p0) = 0

and the function φ achieves its maximum.

Exercise 4.9. Show that the function φ achieves its maximum at

the point p0 = λt
1, where t is the unique solution of Moran’s equation

λt
1 + λt

2 = 1, and that φ(p0) = t.

The result of Exercise 4.9 shows that the bound dimH C ≥ φ(p0)

is optimal, since we have

dimH C = t = φ(p0) = sup
p∈[0,1]

φ(p).

The probability vector associated to the Bernoulli measure µp0
is

(p0, 1− p0) = (λt
1, λ

t
2), and in addition to being the measure of max-

imal dimension, µp0
turns out to be the Hausdorff measure mH(·, t).

Let us step back a moment to take stock of all this, and survey

the picture we have just painted. We begin with a Cantor set C,

whose structure we hope to understand by examining various invari-

ant measures for the map f . The Lebesgue measure of C is 0, so the

measures which we use are very different from Lebesgue measure; to

use the language of measure theory, they are singular, since they give

positive measure to sets of Lebesgue measure zero. To each p ∈ [0, 1]

we can associate a Bernoulli measure µp; upon discarding from C a

null set for µp, we are left with a set Cp ⊂ C of full measure—that

is, µp(Cp) = 1—on which the pointwise dimension dµp
(x) is constant

and equal to hµp
(f)/λµp

(f).

The fact that pointwise dimension exists and is constant every-

where on Cp means that the measure of a small ball whose centre is

in Cp scales as

(4.30) µp(B(x, r)) ≈ rdµp = rφ(p).

Thus µp exhibits a sort of measure-theoretic self-similarity on Cp,

which is an analogue of the geometric self-similarity possessed by
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certain very regular fractals, such as the middle-third Cantor set and

the Sierpiński gasket, where the geometric structure appears the same

at every scale. Such geometric regularity is not present in the Cantor

sets generated by non-linear expanding maps, but (4.30) displays the

measure-theoretic regularity of µp across all scales.

One may also recall the relationship between existence of the

pointwise dimension at x and the convergence of the ratio an(w)/n,

which measures the relative amount of time the orbit of x spends in

I1. While this ratio approaches many different limits depending on x

(and sometimes fails to converge at all), the limit exists and is equal

to p for every x ∈ Cp. Thus Cp also has a very regular structure

in terms of how the trajectories of points in Cp apportion their time

between I1 and I2.

These are some of the ways in which the set Cp is a better fractal

set than C itself, since all the points in Cp have more or less the

same “average” behaviour. For a given Bernoulli measure µp, Cp is

the set of all points which are “typical” with respect to µp, and so

Cp depends on the choice of p. In fact, if λ1 �= λ2, then one can

show that these sets are pairwise disjoint; Cp ∩ Cp′ = ∅ for p �= p′.

Thus {Cp | 0 ≤ p ≤ 1} gives a whole family of “fractals within

fractals”, illustrating the deeply complicated multifractal structure of

the Cantor set C. If we let C ′ be the set containing all points of C

which do not lie in any of the sets Cp, then we can write the following

multifractal decomposition of C:

C =

⎛
⎝ ⋃

p∈[0,1]

Cp

⎞
⎠ ∪ C ′.

Each Cp is f -invariant and supports the measure µp in the sense that

µp(Cp) = 1. This is the beginning of what is known as multifractal

analysis of dynamical systems, in which the function φ(p), which is

known as the dimension spectrum for pointwise dimensions,3 plays an

important role.

3In fact, the dimension spectrum as obtained from φ(p) by an affine change of
coordinates, but the two functions carry the same information.

                

                                                                                                               



                

                                                                                                               



Chapter 5

Discrete-Time Systems:
The FitzHugh–Nagumo
Model

Lecture 21

a. The FitzHugh–Nagumo model for neurons. And now, as

they say, for something completely different. Setting aside for the time

being our discussion of Cantor sets, measures, entropy, dimension,

and all such manner of things, we turn our attention to a model from

biology, which attempts to describe the propagation of an impulse

through a neuron, and which seems to have absolutely nothing to do

with the subject matter at hand.

In the course of our examination of this model, we will study the

dynamics of a two-dimensional map and discover various mechanisms

which lead to chaotic behavior and which are associated with the

presence of fractal sets with a complicated geometric structure, such

as hyperbolic attractors, horseshoes, and homoclinic tangles. We will

study and compute some dimensional characteristics of these fractal

sets using the machinery developed in the previous chapters, and we

will see how they relate to the dynamics of the map. In fact, we will

deal not just with a single two-dimensional map, but with a family of

such maps, depending on a parameter, and we will see some dramatic
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SomaDendrites
Axon

Figure 5.1. A schematic diagram of a neuron.

changes (bifurcations) in the dynamics of the map as the parameter

varies.

First, though, we introduce the model, and thus we must speak

biologically for a spell.

The (functional) structure of a neuron is shown in Figure 5.1.

The neuron receives signals along its dendrites, of which it may have

up to several hundred, and after processing these signals in the soma,

it sends a single output along its axon.

An axon can be thought of as a tube whose boundary is selec-

tively permeable to various ions. This permeability is mediated via

a multitude of ion channels, each of which may be either open or

closed; when open, each channel permits one species of ion (the most

important being sodium and potassium) to pass from one side of the

boundary to the other, altering the relative concentrations of each

type of ion between the interior of the axon and the external environ-

ment. If these concentrations differ, then there is a voltage difference

across the boundary of the tube, between the interior and exterior.

This voltage difference (called the action potential or sometimes

the transmembrane potential) can vary in time; it affects the opening

and closing of ion channels, and hence the rate at which charge flows

across the boundary, which feeds back to influence the voltage differ-

ence itself. The voltage difference at one location on the axon also

affects the time evolution of the voltage difference at nearby locations;

in this manner, the action potential can propagate along the length

of the axon, which is how signals are transmitted from one neuron to

another.
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In order to understand the propagation of an impulse through a

neuron, we want a model which describes two things:

(1) The time evolution of the action potential at a given site on the

axon, without regard to its value elsewhere.

(2) Diffusion of the action potential down the length of the axon,

and the consequent propagation of an electrical signal from one

neuron to another.

A näıve approach would be to directly apply the fundamental laws

of physics which govern the interaction and motion of single particles

(i.e., molecules), and to keep track of absolutely everything that goes

on in the neuron. This is readily seen to be a preposterous line of

attack due to the sheer scale of the system, which has many levels of

structure lying between the macroscopic description we are interested

in and the microscopic level of elementary particles at which the fun-

damental laws apply. With billions upon billions of ions moving in

each axon, it is foolhardy to try to track each individual particle.

Having ruled out the bottom-up approach, we resort to a top-

down phenomenological approach; that is, we use our knowledge about

the functional structure of the system in conjunction with empirical

observations to build a model which is consistent with the fundamen-

tal theory, but is not directly derived from it.

Perhaps the simplest model that captures some of the essential

qualitative features of the propagation of an impulse along an axon

is the FitzHugh–Nagumo model. This model was first suggested by

Richard FitzHugh in 1961, and it was investigated by means of electric

circuits in the following year by Jin-Ichi Nagumo. It is a simplified

version of the Hodgkin–Huxley model, which describes in a more de-

tailed manner the activation and deactivation dynamics of a spiking

neuron, and the concomitant propagation of an action potential along

the axon.

Before describing the FitzHugh–Nagumo model itself, we offer

some loose heuristics for the form of the equations. For now, we

write u(t) for the action potential at a particular site on the axon,

that is, the difference in voltage between the inside and outside of the

tube. We will introduce spatial dependence at a later point.
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An important model for a quantity which varies more or less

periodically (which the action potential is observed to do in certain

cases) but which may decay as time passes is the damped harmonic

oscillator

(5.1) ü+ ζu̇+ cu = 0,

where ζ is a constant that determines the degree to which oscillations

are damped and tend to die out. Although this model is far too

simplistic to describe the behaviour of a neuron, it gives us a place

to start. As with any higher-order ordinary differential equation, we

can write (5.1) as a system of first-order ODEs; if we introduce an

auxiliary variable v, defined by v̇ = cu, then (5.1) implies that

v̇ = −ü− ζu̇,

and hence v = −u̇ − ζu. Thus (5.1) is equivalent to the first-order

system

u̇ = −ζu− v,

v̇ = cu.

Allowing the damping coefficient to vary as a function of u leads to

various non-linearly damped oscillators; one of the first of these to

be studied was the van der Pol oscillator, introduced by the Dutch

physicist Balthasar van der Pol in 1920 to model certain electrical

circuits:

(5.2) ü+ ζ(u2 − 1)u̇+ cu = 0.

Using the same auxiliary variable as before, we integrate

v̇ = cu = −ü+ ζ(u̇− u2u̇)

to obtain v = −u̇+ ζ(u− u3/3), and thus we can write (5.2) as

(5.3)
u̇ = ζ

(
u− u3

3

)
− v,

v̇ = cu.

Based on the system (5.3) for the van der Pol oscillator, Richard

FitzHugh devised the following Bonhoeffer–van der Pol model for the
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behaviour of an action potential u(t) in a neuron, taking into account

the presence of an external stimulus I(t):

(5.4)
u̇ = u− u3

3
− v + I,

v̇ = cu− γ − dv.

Here γ, c, and d are fixed parameters which must be determined

empirically.

It is worth noting the particular structure of the system (5.4).

The derivative v̇ depends linearly on u and v, while the derivative u̇

depends linearly on v and the external term I, and depends on itself

via a cubic polynomial. This qualitative structure is the key to the

behaviour of solutions of (5.4), and so the following abstract form is

often of interest:
u̇ = ag(u)− bv + I,

v̇ = cu− dv.

Here g is a cubic polynomial, I is the external signal, and the positive

parameters a, b, c, and d depend on physical properties of the system.

Finally, we can add a spatial dimension to the system. Model the

axon as lying on the positive x-axis, and let u(x, t) denote the action

potential at a distance x from the soma and a time t. As before, v(x, t)

is an auxiliary recovery variable (whose physical interpretation has to

do with the concentration of various ions). Adding a diffusion term

to allow the signal to propagate and choosing as our cubic polynomial

g(u) = −u(u− θ)(u− 1), where 0 < θ < 1, we obtain the FitzHugh–

Nagumo model:

(5.5)

∂u

∂t
= −au(u− θ)(u− 1)− bv + I + κ

∂2u

∂x2
,

∂v

∂t
= cu− dv.

Since the effect of diffusion is small relative to the other processes at

work, κ is of higher order than the other parameters.

The system of equations (5.5) is used to simulate the propagation

of signals (in the form of traveling waves) in various excitable media,

such as heart tissue or nerve fibre. The success of this system in the

biological sciences is partly due to the fact that some properties of
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the model are analytically tractable, so that computer simulations

need not be used in all cases. However, a full reconstruction of the

global behaviour of solutions of (5.5) is too complicated to be done

analytically, and so we must turn to numerical computations in order

to fully understand the system.

b. Numerical investigations: From continuous to discrete.

Having introduced the FitzHugh–Nagumo model (5.5) for the time

evolution of an action potential along an axon, we would now like to

understand how the solutions of (5.5) behave. Ideally, they ought to

reflect the empirically observed behaviour of real neurons.

Because the system of partial differential equations in (5.5) does

not admit a closed-form analytic solution (or at least, no such solu-

tion has been found), we must resort to numerical analysis to study

it. Thus we turn the problem over to a computer; but what will the

computer do? It will approximate the solution by discretising the

problem: by replacing the various derivatives in (5.5) with their dis-

crete analogues, one obtains a map which can be iterated. So let’s

follow along with the general scheme the computer will use. . . .

Fixing some small value of ∆ > 0, the derivative ∂u/∂t is ap-

proximately equal to

u(x, t+∆)− u(x, t)

∆
,

and similarly for ∂v/∂t. The second derivative ∂2u/∂x2 is approxi-

mately equal to

u(x+∆, t)− 2u(x, t) + u(x−∆, t)

∆2
,

and so the system (5.5) is approximated by

u(x, t+∆)− u(x, t)

∆
= −au(x, t)(u(x, t)− θ)(u(x, t)− 1)− bv(x, t)

+ κ
u(x+∆, t)− 2u(x, t) + u(x−∆, t)

∆2
,

v(x, t+∆)− v(x, t)

∆
= −dv(x, t) + cu(x, t).
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If we write uk(n) = u(k∆, n∆) for the value of u at position k∆ and

time n∆, and similarly for v, then this becomes

uk(n+ 1) = uk(n)− a∆uk(n)(uk(n)− θ)(uk(n)− 1)− b∆vk(n)

+ κ
uk+1(n)− 2uk(n) + uk−1(n)

∆
,

vk(n+ 1) = vk(n)− d∆vk(n) + c∆uk(n).

Writing g(u(n)) for the diffusion term, we have

(5.6)

uk(n+ 1) = uk(n)−Auk(n)(uk(n)− θ)(uk(n)− 1)

− αvk(n) + κg(u(n)),

vk(n+ 1) = βuk(n) + γvk(n),

where α = b∆, β = c∆, γ = 1− d∆, and A = a∆. For our purposes

we shall assume that α and β are small, θ is near 1/2, and γ is

near 1. These parameters control the linear terms in the system;

the non-linear part of the system, which is responsible for most of

the interesting behaviour, is controlled by the parameter A, which

is referred to as the leading parameter. Different values of A reflect

different physical properties of the system being studied, and may lead

to different qualititative behaviours of the model; thus a question of

interest to us is how the behaviour of solutions of (5.6) changes as A

varies.

The discrete system (5.6) is called a coupled map lattice (CML).

The name comes about as follows:

(1) We only deal with the values of u and v on a discrete set within the

original (continuous) domain; in the original FitzHugh–Nagumo

model, both u and v take two real arguments, and so their domain

is R×R (one dimension for space, one for time), while in (5.6), we

are only interested in their values on a lattice ∆Z×∆Z ⊂ R×R.

(2) At any given time step, the value of u and v at each site k is

primarily determined by the value of u and v at that same site at

the previous time step, via the local map f : R2 → R2 given by

f(u, v) = (f1(u, v), f2(u, v)), where

(5.7)
f1(u, v) = u−Au(u− θ)(u− 1)− αv,

f2(u, v) = βu+ γv.
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(3) The local maps at each site are coupled together by interactions

such as κg(u), which allow the value of u at a site k to be affected

by the value at nearby sites (we could also consider diffusion in v,

but do not in this particular model). This interaction is typically

small compared to the magnitude of the local map, but cannot

be neglected when studying the global dynamics as different sites

can have large effects on each other over time.

Coupled map lattices were first introduced by the Japanese scien-

tist Kunihiko Kaneko and are in many ways easier to study than the

PDEs from which they are often derived. The process of iterating the

system (5.6) is quite straightforward, and by so doing, we obtain val-

ues uk(n) and vk(n) which “ought” to lie near the values u(k∆, n∆)

and v(k∆, n∆) in the solution of the system of PDEs (5.5).

There will, of course, be some small error term due to the approx-

imations we have made. We would be quite happy if this error term

remained small and negligible, but the fact of the matter is that for

many of the parameter values in which we are interested, this error

term increases relatively quickly, so that the asymptotic behaviour of

solutions of the two systems may be quite different. In particular,

the behaviour of the discrete system (which the computer calculates)

is not necessarily a reliable guide to the behaviour of the continuous

system.

One response to this difficulty is to use a more sophisticated nu-

merical method. The approach described above to derive a CML

from the corresponding PDE is known as Euler’s method, and is very

simplistic; other, more advanced methods are possible, which yield

better approximations. However, these are still approximations, and

over time, some accumulation of the error term is unavoidable; in-

deed, different approximation techniques may lead to solutions whose

qualitative properties are quite different. Thus it is not clear just how

one is to examine the asymptotic behaviour of the FitzHugh–Nagumo

model using numerical methods.

At this point, we recall that what we are really interested in

studying is the physical phenomenon itself; thus the important ques-

tion is not how well the discrete model approximates the continuous

model, but how well it approximates the physical propagation of an
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impulse through a neuron. Rather than comparing the solutions of

the CML (5.6) to the solutions of the PDE (5.5), we can compare

them directly to the observed data. If they turn out to approximate

the real system as well as or better than the solutions of the PDE

do, then we may simply consider the discrete model, rather than the

continuous one.

The biological literature is divided over whether or not this is

the case; both the discrete and the continuous FitzHugh–Nagumo

models have their advocates, and in fact, which of the two models is

a better approximation to the real system depends on which values

of the parameters we are interested in. For our part, we will examine

the coupled map lattice (5.6), as it is more tractable and will be seen

to be of interest from a purely mathematical point of view as well.

Despite the ease with which the CML can be used in computer

simulations (being given as a system of recursive equations), it can

actually be very difficult to describe its qualitative global behaviour,

due to the interaction between the various sites. An analysis of this

problem (which is well beyond the scope of this book) reveals that

the global behaviour is to a great degree determined by the local

map (5.7), particularly if the local map is chaotic, and so it is to this

map that we will now turn our attention.

Lecture 22

a. Studying the local map. We now begin to examine the dynam-

ics of the local map (5.7) for the coupled map lattice associated to the

FitzHugh–Nagumo model. We will fix the parameters α, β, γ, and

θ, and allow the leading parameter A to vary; thus we are actually

studying a family of maps, one for each value of A.

This is a fairly common situation; real-world systems do depend

on parameters and thus are modeled not by a single map f but a

family of maps fA. In general, the analysis proceeds in two steps.

Step one. For a particular value of the parameter A, give a quali-

tative description of the global geometric picture of trajectories of fA.
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To do so, we should determine the asymptotic behaviour of a “ran-

domly” chosen orbit, by determining which of the following fn
A(x)

does as n → ∞:

(a) Converge to a fixed point.

(b) Converge to a periodic orbit.

(c) Fluctuate chaotically.

It is also of interest to understand in what manner this asymptotic

behaviour is reached; do typical trajectories immediately begin to

converge to a fixed point? Do they fluctuate periodically or chaot-

ically for some finite amount of time before converging? Finally, it

is possible that different sorts of behaviour coexist; maybe half the

trajectories converge to a fixed point, and the other half fluctuate

chaotically.

Step two. Describe how this global picture changes when the

parameter A varies. Usually when A increases slightly, the qualitative

behaviour of trajectories stays more or less the same, with dramatic

changes occurring only at some particular (usually isolated) values of

the parameter A, called bifurcation values (we will give a more formal

definition in Chapter 6).

In the course of understanding the global behaviour of trajecto-

ries and how it changes with the leading parameter for the FitzHugh–

Nagumo model, we will develop a number of tools which allow us to

gain some insight as to which of the three types of behaviour domi-

nates for an arbitrary map. Thus certain parts of our discussion will

be relevant far beyond the particular context of this single model.

Finding the fixed points of a map f : Rd → Rd amounts to solving

the equation f(x) = x. For the map (5.7), this leads to the following

equations for the two coordinates:

u = u−Au(u− θ)(u− 1)− αv,

v = βu+ γv.

From the second of these, we obtain

(5.8) v =
βu

1− γ
,
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and then the first becomes

Au(u− θ)(u− 1) +
αβ

1− γ
u = 0.

Thus we have a fixed point at the origin, where u = v = 0, and any

other fixed point must satisfy

A(u− θ)(u− 1) +
αβ

1− γ
= 0.

Solving this quadratic equation yields

(5.9) u =
1

2

(
θ + 1±

√
(θ − 1)2 − 4αβ

A(1− γ)

)
.

The discriminant is non-negative if and only if

A ≥ A0 =
4αβ

(1− γ)(1− θ)2
,

and so we see that for 0 < A < A0, the origin is the only fixed point

of f . For A = A0, there is exactly one more fixed point, and for

A > A0, there are two more, given by (5.9) and (5.8); we will denote

these by p1 and p2.

Thus A0 marks the boundary between two qualitatively different

sorts of behaviour. Imagine a tuning knob which controls the param-

eter A; if we begin with the knob turned so that 0 < A < A0, then the

system has only one fixed point, and this general structure persists

for a little while as we turn the knob and increase A. However, when

we turn the knob far enough that A reaches A0, the system undergoes

a bifurcation, and two new fixed points appear.

b. Stability of fixed points for general maps. Having found the

fixed points of a map f , the next step is to determine their stability—

whether they attract or repel nearby trajectories, and how that be-

haviour depends on the value of the parameter A. The tool that we

use for this purpose is the Jacobian derivative, which at each point

x ∈ R2 is a linear map Df(x) : R2 → R2 given by the matrix

(5.10) Df(x) =

(
∂f1
∂x1

(x) ∂f1
∂x2

(x)

∂f2
∂x1

(x) ∂f2
∂x2

(x)

)
.
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xf(x)

f 2(x)

(a)
x

f(x)

(b)

x
f(x)

(c)

Figure 5.2. Trajectories near an attracting fixed point.

This linear map describes the behaviour of f in a neighbourhood of

a fixed point. Specifically, we recall the following result from the

calculus of several variables:1

Proposition 5.1. Let f : R2 → R2 be continuously differentiable in

a neighbourhood of p0. Then we have

(5.11) f(x) = f(p0) +Df(p0)(x− p0) + r(x− p0),

where r is an error term such that

(5.12) lim
y→0

‖r(y)‖
‖y‖ = 0.

Heuristically, this says that in a small neighbourhood of p0, f

behaves like a linear map, with an error term that is small relative

to x− p0. (The condition (5.12) is often written as r(y) = o(y).) In

particular, if p0 is a fixed point, then the action of f near p0 is close

to the action of the linear map given by the matrix Df(p0).

Thus we briefly recall the possible qualitative behaviours for a

linear map A : R2 → R2. Let λ and µ be the eigenvalues of A, with

|λ| ≤ |µ|. Assuming neither λ or µ lies on the unit circle, there are

three possibilities for the behaviour of trajectories vis-à-vis the fixed

point 0.

(1) |λ| ≤ |µ| < 1: All trajectories of A converge to 0, making it

an attracting fixed point f , also called a node. The manner in

which trajectories converge depends on λ and µ. If λ and µ

1For simplicity of exposition, we state all results in the two-dimensional case;
higher-dimensional analogues are available.
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xf(x)

f 2(x)

Figure 5.3. Trajectories near a hyperbolic fixed point.

are complex, then trajectories move along a logarithmic spiral, as

shown in Figure 5.2(a); if λ and µ are real, then trajectories move

along the curves shown in Figure 5.2(b) (if A is diagonalisable)

or in Figure 5.2(c) (if A is similar to
(
λ 1
0 λ

)
).

(2) |λ| < 1 < |µ|: 0 is a hyperbolic fixed point, also called a saddle,

shown in Figure 5.3. From one direction (the stable direction,

horizontal in the figure), which corresponds to the eigenline for λ,

trajectories approach 0 as n → +∞, while from another direction

(the unstable direction, vertical in the figure), corresponding to

the eigenline for µ, the backwards trajectories approach 0 as n →
−∞. All other trajectories follow hyperbola-like paths, at first

moving closer to 0, and then moving away.

(3) 1 < |λ| ≤ |µ|: All trajectories of A move away from 0, making it

a repelling fixed point. Trajectories move along one of the curves

in Figure 5.2, but in the opposite direction.

Remark. We stress that the trajectories of A are discrete collections

of points which lie on the curves in Figures 5.2 and 5.3, rather than the

curves themselves. Thus these curves are not themselves trajectories,

but rather paths along which trajectories “jump” discretely.

Exercise 5.1. Let f be the linear map on R2 given by f(x1, x2) =

(2x1 + x2, x1 + x2). Determine the stability of the fixed point 0, and

draw the different types of curves along which trajectories of f move.

We do not consider linear maps with eigenvalues lying on the unit

circle, because in this case the error term in Proposition 5.1 can affect
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the asymptotic behaviour of trajectories of f near p0, and thus the

stability of the fixed point may not be entirely determined by Df(p0).

However, the condition that Df(p0) have an eigenvalue λ with

|λ| = 1 is a very restrictive one, and it is “typically” the case that

Df(p0) has no eigenvalues lying on the unit circle. In this case,

our somewhat vague statement that the behaviour of f near p0 is

determined by the matrix Df(p0) may be made precise, as follows.

Theorem 5.2 (Hartman–Grobman theorem). Let f : R2 → R2 be

continuously differentiable in a neighbourhood of a fixed point p0, and

suppose that |λ| �= 1 for all eigenvalues λ of Df(p0). Then there exist

open sets U � p0 and V � 0 and a homeomorphism h : f(U) → V

such that h(p0) = 0 and for every x ∈ U we have

f(x) = h−1 ◦Df(p0) ◦ h(x).

Proof. See [HK03]. �

The following two corollaries of Theorem 5.2 give us tools for

determining when a fixed point p0 is stable or unstable.

Corollary 5.3. Suppose that f : R2 → R2 is continuously differen-

tiable in a neighbourhood of some fixed point p0 and that |λ| < 1

for both eigenvalues λ of Df(p0). Then p0 is stable: there ex-

ists ε > 0 such that for all x ∈ R2 with d(x,p0) < ε, we have

limk→∞ fk(x) = p0; that is, the orbit of x is attracted to the fixed

point p0.

Corollary 5.4. Suppose that f : R2 → R2 is continuously differen-

tiable in a neighbourhood of some fixed point p0 and that |λ| > 1 for

both eigenvalues λ of Df(p0). Then p0 is unstable: there exists ε > 0

such that for all x ∈ R2 with d(x,p0) < ε, we have d(fk(x),p0) > ε

for some k > 0; that is, the orbit of x is repelled from the fixed point

p0.

Thus in order to determine if a fixed point is stable or unstable,

we merely check whether or not the eigenvalues of Df(p0) are either

all inside or all outside the unit circle.2 If this is the case—if all the

2It is possible for p0 to be stable or unstable even if some or all of the eigenvalues
lie on the unit circle, but this case is harder to analyse and depends on the higher
derivatives of f .
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eigenvalues lie on the same side of the unit circle—then the trajecto-

ries of f near p0 lie along the curves shown in Figure 5.2, with axes

aligned in the eigendirections of Df(p0).

The third alternative is that Df(p0) has one eigenvalue inside the

unit circle and one outside, in which case we use the corresponding

terminology from the linear case and say that p0 is a hyperbolic fixed

point, or saddle. We write λs and λu for the eigenvalues of Df(p0),

with |λs| < 1 < |λu|, and denote the corresponding eigenvectors by

vs and vu.

Now there is one direction in which Df(p0) is contracting (the

stable direction, parallel to vs), and one direction in which Df(p0)
−1

is contracting (the unstable direction, parallel to vu).3 The lines in

these directions are invariant under the action of Df(p0), and if we

consider their preimages under the conjugating homeomorphism h

from Theorem 5.2, we obtain differentiable4 curves γs, γu : (−ε, ε) →
R2 such that:

(1) γs(0) = γu(0) = p.

(2) The tangent vectors γ̇s(0) and γ̇u(0) are parallel to vs and vu,

respectively.

(3) Given t ∈ (−ε, ε) and points xs = γs(t), xu = γu(t), we have

fk(xs) → p0 and f−k(xu) → p0 as k → ∞.

The curves W s
ε = {γs(t) | −ε < t < ε} and Wu

ε = {γu(t) | −ε <

t < ε} are called the local stable and unstable curves, respectively.

The properties just stated show that W s
ε and Wu

ε pass through p0 in

directions parallel to the stable and unstable eigenvectors vs and vu,

and that trajectories on W s
ε are attracted to p0, while trajectories on

Wu
ε are repelled (more precisely, attracted in backward time).

Because Df(p0)
−1 is contracting along vu, we have f−1(Wu

ε ) ⊂
Wu

ε ; consequently, Wu
ε ⊂ f(Wu

ε ). Indeed, we may iterate f any

number of times and obtain longer and longer curves fk(Wu
ε ) such

that

W s
ε ⊂ f(W s

ε ) ⊂ · · · ⊂ fk(W s
ε ) ⊂ · · · .

3Note that the condition that Df(p0)
−1 be contracting is a more stringent one

than the condition that Df(p0) be expanding; see Appendix.
4Despite the fact that the conjugacy h is only continuous in general, those curves

are indeed differentiable.
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Exercise 5.2. Let f : R2 → R2 be invertible. For each k ∈ N,
show that fk(Wu

ε ) is a curve through p0, tangent to vu, such that

f−k(x) → p0 for every x ∈ fk(Wu
ε ).

Each of the curves fk(Wu
ε ) is a local unstable curve in its own

right, with similar properties to Wu
ε by Exercise 5.2. Taking their

union, we obtain the global unstable curve Wu =
⋃

k≥0 f
k(Wu

ε ), which

has the following purely topological characterisation:

(5.13) Wu =

{
x ∈ R2

∣∣∣ lim
k→∞

f−k(x) = p0

}
.

The global stable curve can be constructed in the same way and

characterised as the set of points whose forward trajectories approach

p0.

Remark. The existence of stable and unstable curves through a hy-

perbolic fixed point is actually a special case of the Hadamard–Perron

theorem, which holds in a more general setting. This result is one of

the key tools in the proof of the Hartman–Grobman theorem (despite

the fact that here we have given the interpretation of the stable and

unstable curves in terms of that theorem).

Exercise 5.3. Find all the fixed points of each of the following maps

of the plane, and determine the type of their stability (stable, unsta-

ble, or saddle). For each saddle point p, determine the direction of

the local stable and unstable curves by finding their tangent vectors

at p.

(a) f(x, y) = (2x+ y2, 2x+ 3y),

(b) f(x, y) = (x2 − 5x+ y, x2),

(c) f(x, y) =
(
sin
(
π
3x
)
, y
2

)
.

Exercise 5.4. Consider the map f of the plane given by

f(x, y) = (x2 + y2 − 2a2, x+ y).

Find all the fixed points of the map and determine the type of their

stability depending on the value of the parameter a. Give a geometric

description of the system; that is, describe the asymptotic behaviour

of trajectories beginning in various regions of R2.
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Lecture 23

a. Stability of fixed points for the FitzHugh–Nagumo model.

We now return our attention to the local map (5.7) for the FitzHugh–

Nagumo coupled map lattice and use the techniques of the previous

lecture to examine the stability of the fixed point 0 and of the two

new fixed points p1 and p2. For this particular map f , the Jacobian

derivative is

(5.14) Df(u, v) =

(
1−Aθ + 2A(1 + θ)u− 3Au2 −α

β γ

)
;

the eigenvalues of this matrix at the fixed points will tell us the sta-

bility of those fixed points (as long as none of them lie on the unit

circle). However, finding an explicit expression for these eigenvalues

involves a rather complicated computation, which we would prefer to

avoid.

Thus we use a slightly less direct approach; recall that the eigen-

values of a matrix are the roots of its characteristic polynomial, and

so they depend continuously on the coefficients of that polynomial.

Those coefficients in turn depend continuously on the entries of the

matrix (being sums of products of those entries), and so the eigenval-

ues depend continuously on the entries of Df .

In particular, given ε > 0, there exists δ such that for α, β < δ,

the eigenvalues of Df are within ε of the eigenvalues of the diagonal

matrix

(5.15) T = T (u, v) =

(
1−Aθ + 2A(1 + θ)u− 3Au2 0

0 γ

)
.

Since T is diagonal, we can read off its eigenvalues directly. One

eigenvalue is γ, which is between 0 and 1 for the parameters we con-

sider; thus there is always at least one stable (contracting) direction.

The other eigenvalue depends on parameters and the fixed point, and

so we consider these points separately.

For all values of A, the map f has a fixed point at the origin,

and at this point, the second eigenvalue of T is 1 − Aθ. We have

|1 − Aθ| < 1 if and only if 0 < A < 2/θ, and since λ and µ are close

to 1−Aθ and γ, there exists A1 near 2/θ such that the behaviour of

f near the origin is as follows:
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(1) For 0 < A < A1, both eigenvalues of Df(0) lie inside the unit

circle; hence the origin is an attracting fixed point.

(2) For A > A1, one eigenvalue of Df(0) lies inside the unit circle

(near γ), and the other lies outside the unit circle (near 1−Aθ);

hence the origin is a hyperbolic fixed point (a saddle).

One can show that A1 > A0, and hence by the time A reaches A1,

there are two more fixed points to keep track of, p1 and p2.

To determine the behaviour of f near the fixed points p1 and p2,

we first need to determine their location. Notice that the fixed points

of f all lie on the line with equation (5.8); indeed, this line consists

of precisely those points (u, v) for which f2(u, v) = v. Similarly, the

fixed points all lie on the cubic polynomial with equation

v = −A

α
u(u− θ)(u− 1);

this curve contains precisely those points for which f1(u, v) = u. Thus

the fixed points of f are the points where this curve intersects the

line (5.8), as shown in Figure 5.4.

Because β is small, this line is nearly horizontal, and so these

points of intersection are very near the points where the graph of

the cubic polynomial intersects the x-axis, which occurs at u = 0,

u = θ, and u = 1. Thus p1 and p2 are approximately (θ, 0) and

u2

0 1
u1

θ

Figure 5.4. Finding the fixed points of f .
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(1, 0), respectively; we could also have seen this by looking at the

form (5.9) takes when α and β vanish.

Now we can use the approximation (5.15) for Df to estimate the

eigenvalues of Df(p1) and Df(p2). At (u, v) = (θ, 0), the matrix

T in (5.15) has λ1 = γ as one eigenvalue (as always), and the other

eigenvalue is

λ2 = 1−Aθ + 2A(1 + θ)θ − 3Aθ2 = 1 +Aθ −Aθ2.

Because 0 < θ < 1, we have λ2 = 1 + Aθ(1 − θ) > 1, and since

λ1 = γ < 1 and Df(p1) ≈ T (p1), we see that p1 is a hyperbolic fixed

point for every value of the parameter A, with one stable and one

unstable direction.

The situation is different at p2, where the second eigenvalue of T

is

λ2 = 1−Aθ + 2A(1 + θ)− 3A = 1 +Aθ −A,

with |λ2| < 1 if and only if 0 < A < 2/(1− θ). In particular, there is

a critical value A′
1 ≈ 2/(1− θ) such that for A0 < A < A′

1, the fixed

point p2 is attracting, while for A > A′
1, it is a saddle.

b. Periodic points. The ultimate goal of all the analysis in which

we are presently embroiled is to understand the dynamics of f by

classifying the possible trajectories, and to describe how the dynam-

ics change as A varies. By knowing the fixed points of f and their

stability, we gain information about the local behaviour of the system;

that is, how trajectories behave near the fixed points.

0
p1 p2

Figure 5.5. Orbits of f for A0 < A < min{A1, A′
1}.
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In general, it may be rather difficult to use this information to

piece together a global picture which describes how trajectories be-

have everywhere. For the time being, we omit the details of this

particular jigsaw puzzle, and simply assert that for the map f in the

parameter ranges we consider, there are two sorts of trajectories: un-

bounded trajectories, which diverge to ∞, and bounded trajectories,

which converge to a fixed point (or possibly, as we will soon see, to a

periodic orbit).

Thus for parameter values A0 < A < min{A1, A
′
1}, we have

three fixed points: p1 is a saddle, while 0 and p2 are stable. The

bounded trajectories of f are as shown in Figure 5.5, and fall into

one of three classes, based on which of the three fixed points they

approach. The set of points whose trajectory approaches p1 is the

stable curve through p1 and separates trajectories that approach 0

from trajectories that approach p2; for this reason, it is also called a

separatrix. If a bounded trajectory begins to the left of the separatrix,

it approaches 0; if it begins to the right, it approaches p2.

As A increases, the behaviour of the trajectories changes. For

some value A = Ã1 < A1, the eigenvalue λ2 ≈ 1 − Aθ is equal to

0. This eigenvalue governs the behaviour of points which lie just to

the left or right of 0; when it is positive, for A < Ã1, points to the

left remain on the left, and points to the right remain on the right.

For A > Ã1, on the other hand, we have λ2 < 0, and so points

lying just to the left of 0 are mapped to points lying just to the

right, and vice versa; in some sense, the orientation of the fixed point

reverses at Ã1. A similar reversal happens at p2 at the parameter

value Ã′
1 ≈ 1/(1− θ).

Increasing A still further, we eventually reach either A1 or A′
1.

Note that whether A1 < A′
1 or A′

1 < A1 dependes on the values of

the parameters θ, α, β, and γ; for the sake of concreteness, we will

assume that A1 < A′
1, so that 0 changes behaviour before p2 does.

As A approaches A1 from below, the eigenvalue λ2 approaches −1

from above. As long as the eigenvalue is greater than −1, the image

f(x) is closer to 0 than x itself is, and so fn(x) → 0; however, the

rate of convergence becomes slower and slower as λ2 approaches −1.

Finally, when λ2 < −1, nearby points (in the horizontal direction)
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are mapped further away by f , and the fixed point 0 is now a saddle,

with one stable and one unstable direction.

This change in behaviour means that the current picture is in-

complete. For values of A slightly larger than A1, some trajectories

leave 0 slowly in a more or less horizontal direction, alternating be-

tween the left and right sides of the fixed point. Where do they go?

They cannot immediately approach the next fixed point, p1, since it

is also a saddle which is repelling in the horizontal direction.

What is missing? We have found all the fixed points, which rep-

resent the simplest possible orbits. The next simplest type of orbit is

a periodic orbit, for which the trajectory returns to the initial point

after some finite number of iterations.

In the present case, such an orbit appears around the fixed point

0 when the stability changes at A1; for A > A1, there exist two points

q1 and q2 (which depend on A) such that f(q1) = q2 and f(q2) = q1.

This orbit is the missing piece of the puzzle; trajectories which are

repelled from 0 are attracted to the nearby periodic orbit of period

2.

Are all nearby orbits so attracted? How do we determine the

stability of a periodic orbit? We use the fact that both q1 and q2

are mapped to themselves by f2, which is a manifestation of the

general fact that periodic points of f with period n correspond to

fixed points of fn. The stability of the periodic orbit for f is given by

the stability of the fixed point for fn, which in this case is determined

by the eigenvalues of Df2(qi). One may easily see that it does not

matter whether we compute the Jacobian at q1 or at q2, since by the

chain rule,

Df2(q1) = Df(f(q1))Df(q1)

= Df(q2)Df(q1)

= (Df(q1))
−1Df(q1)Df(q2)Df(q1)

= Df(q1)
−1Df2(q2)Df(q1);

it follows that Df2(q1) and Df2(q2) are similar matrices, and hence

have the same eigenvalues.
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Exercise 5.5. Find all periodic points of period 2 of the map

f(x, y) =

(
x2 − 3

8
y2, 2x

)
,

and determine the type of their stability (stable, unstable, or saddle).

In order to compute, or even estimate, the eigenvalues ofDf2(qi),

we would first need to find the points q1 and q2, which involves solving

the equation f2(u, v) = (u, v). Even with the approximation α = β =

0, this leads to a polynomial of degree nine, which is algebraically

intractable.

Numerical evidence (for the two-dimensional system), along with

some geometric reasoning (which we give later for its one-dimensional

approximation), indicates that the eigenvalue of Df2(qi) correspond-

ing to the horizontal direction is slightly smaller than 1 when A is

just larger than A1. Thus when it appears, the period-2 orbit is at-

tracting, and every trajectory of the map f approaches one of the

three fixed points or the period-2 orbit.

Definition 5.5. A dynamical system f : Rd → Rd is called Morse–

Smale if it has finitely many periodic orbits, each of which is either

attracting, repelling, or a saddle, such that given any initial condition

x, the trajectory {fn(x)} approaches one of these orbits.

For all the values of A we have examined so far, the local map (5.7)

for the FitzHugh–Nagumo CML is a Morse–Smale system. This be-

haviour continues for some time as we increase A; as A increases

further past A1, the eigenvalue corresponding to the horizontal di-

rection decreases, and the orbit becomes more strongly attracting.

When A increases to the point Ã2 where the eigenvalue passes 0 and

becomes negative, the orientation of trajectories near the period-2

orbit changes, just as happened at Ã1 for the fixed point 0.

Beyond Ã2, the rate at which nearby trajectories converge to the

period-2 orbit decreases, until at some value A = A2, one of the

eigenvalues of Df2(qi) passes −1; at this point, the orbit ceases to be

attracting and becomes hyperbolic. The map f2, for which q1 and q2

are fixed points, behaves just like f did, and it spawns an attracting

period-2 orbit near each of the newly unstable fixed points. Together,
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these two orbits form an attracting period-4 orbit for the original map

f , which has two points near each of q1 and q2. Thus the system has

gained a new periodic orbit but is still Morse–Smale.

This behaviour continues; the period-4 orbit eventually becomes

unstable, at which point a period-8 orbit is born, and so on. In fact,

there exists a sequence of parameter values A1 < A2 < A3 < · · · such
that for An−1 < A < An, f has a stable orbit of period 2n in the

region to the left of the stable curve through p1, and unstable orbits

of period 2k for all 0 ≤ k ≤ n.

Meanwhile, the same story is unfolding to the right of the sep-

aratrix through p1; at A′
1 the fixed point p2 spawns an attracting

period-2 orbit, and we have a sequence A′
1 < A′

2 < A′
3 < · · · such

that for A′
n−1 < A < A′

n, f has a stable orbit of period 2n in the re-

gion to the right of the stable curve through p1, and unstable orbits

of period 2k for all 0 ≤ k ≤ n.

Numerical analysis shows that the bifurcation values An (and

A′
n as well) get closer and closer together as n grows and, in fact,

converge to some value A∞, at which we have orbits of period 2n

for any natural number n. In particular, there are infinitely many

coexisting periodic orbits, which marks a fundamental change in the

behaviour of f , as the system is no longer Morse–Smale.

The fact that the local map (5.7) is Morse–Smale for parameters

in the range 0 < A < A∞ means that in that regime, the behaviour of

the system is in some sense relatively simple and easy to understand.

For A ≥ A∞, the behaviour is much more intricate, as suggested by

the above remarks.

Lecture 24

a. Beyond period-doubling: Down the rabbit hole. In the pre-

vious lecture, we described the sequence of period-doubling bifurca-

tions through which the local map (5.7) for the FitzHugh–Nagumo

CML passes as A increases. In fact, we saw that there are two such

sequences, one corresponding to the fixed point 0, for which the re-

sulting periodic orbits lie to the left of the stable curve through p1,
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and one corresponding to p2, for which the periodic orbits lie to the

right of that curve.

In order to visualise these concurrent period-doubling cascades,

and also to get a sense of what lies beyond them, for A > A∞,

we turn to the bifurcation diagram of f (sometimes called the orbit

diagram). This is a numerically computed graphical device, presented

in Figure 5.6, which shows the asymptotic behaviour of the map f

across a range of values of the leading parameter A, given fixed values

of the other parameters.

The horizontal axis of the diagram represents the parameter A,

and the vertical axis represents the first coordinate u of the phase

space R2; a vertical cross-section of the diagram is the projection of

the attracting part of phase space onto the u-axis. The diagram is

generated as follows:

(1) Fix a value of A and an initial condition (u, v), which should lie

near the origin so that its orbit is bounded and to the left of the

separatrix through p1; then compute the iterates fn(u, v).

(2) Ignore the first few iterates to give the transient part of the orbit

time to die away;5 in the case A < A∞, for example, this gives

the orbit time to converge to a periodic orbit.

(3) Writing the subsequent iterations as (un, vn), plot the points

(A, un) on the diagram.6

(4) Choose a new value of A and repeat the whole procedure until

enough points have been filled in to give a sense of the structure

of the bottom half of the bifurcation diagram.

(5) Repeat the above procedure in its entirety, this time choosing

initial conditions to the right of the separatrix through p1; this

generates the top half of Figure 5.6.

We see in Figure 5.6 that for A < A1, the points which are plotted

are all quite close to the fixed point; for A1 < A < A2, they are close

5“First few” may mean several dozen, several hundred, or several thousand, de-
pending on how refined a picture is desired and on how quickly the system converges
(or is believed to converge) to its asymptotic behaviour.

6Again, how many of these points are plotted is in some sense a judgment call.
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Figure 5.6. The bifurcation diagram for the local map (5.7)
of the FitzHugh–Nagumo model with θ = .51, α = .01, β =
.02, and γ = .8, as A varies from 3 to 7.
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to the period-2 orbit, and so on. This reflects the fact that the long-

term behaviour of any trajectory follows one of the periodic orbits,

which is true for any Morse–Smale system.

For A ≥ A∞, the situation is quite different. There are values

of A for which the trajectory of a randomly chosen point is dense in

a Cantor set (that is, a set homeomorphic to the usual middle-third

Cantor set) or even an entire interval, and the map becomes chaotic.

However, there are also windows of stability; the most noticeable of

these are the two period-3 windows which occur near A = 5.7 and

A = 6 in Figure 5.6. In these parameter ranges, we suddenly return

from the chaos which seems to prevail past A∞ to a more orderly

regime; every orbit that we observe is attracted to a cycle of period 3,

and the system seems relatively simple once again (although as we will

see later, it is not Morse–Smale). There are windows of stability with

other orders as well, scattered throughout the bifurcation diagram.

These moments of stability are transitory. Consider a window

containing a stable periodic orbit of period n; as A increases, this

attracting orbit becomes repelling and spawns an attracting periodic

cycle of length 2n. This too becomes repelling in its turn, shedding

an attracting cycle of length 4n, then 8n, and so on; the whole period-

doubling cascade is repeated, but over a much smaller range of the

parameter A than in its original incarnation.

This reappearance of the period-doubling cascade suggests a sort

of self-similarity of the bifurcation diagram, and indeed this diagram

is self-similar in an asymptotic sense. We mention just one striking

manifestation of this self-similarity. Recall that An −An−1 gives the

length of the parameter interval for which the periodic orbit of length

2n is attracting. From the bifurcation diagram, we see that this length

goes to zero, and in fact it decreases exponentially in n; thus we write

κ = lim
n→∞

1

n
log(An −An−1).

Writing δ = eκ, we have An − An−1 ≈ Cδn for some constant C.

In and of itself, this would not be cause for any special excitement.

However, we can do the same calculation for the period-doubling cas-

cade A′
1 < A′

2 < A′
3 < · · · , or for the period-doubling cascade in any
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of the windows of stability, and the truly striking result is that we get

the same value of δ in every case!

Even that remarkable congruence is not the end of the story.

There are in fact many one-parameter families of maps which lead to

similar bifurcation diagrams, with period-doubling cascades, windows

of stability, and so on (we will study one such family, the logistic map,

in Chapter 6). Under relatively mild conditions on the family of maps,

we find the same old tale in each period-doubling cascade; the rate of

decay of the lengths An − An−1 exists, and what is more, it is equal

to δ.

The number δ is known as Feigenbaum’s constant, after Mitchell

Feigenbaum, who was the first to discover this example of quantitative

universality.

b. Becoming one-dimensional. Despite the various heuristic jus-

tifications which have been offered, our analysis of the FitzHugh–

Nagumo model, and in particular the bifurcation diagram in Fig-

ure 5.6, is based primarily on numerical evidence. Many of our claims

have been based on the fact that f is a small perturbation of the map

f̃(u, v) = (u−Au(u− θ)(u− 1), γv)

and the conviction that since 0 < γ < 1—and hence the v-coordinate

goes to 0 under repeated iteration of this map—the essential be-

haviour is (or ought to be) given by the one-dimensional map g(x) =

x−Ax(x− θ)(x− 1).

Exercise 5.6. Describe the behavior of all trajectories of the map

F : R2 → R2 given by F (x, y) = (x2 + c, y/2) for c ≥ 0.

Many of the claims we have made so far regarding the struc-

ture of the bifurcation diagram of f have been proved for such one-

dimensional maps such as the map g on which f is based. However,

very little of that theory has been rigorously extended to the two-

dimensional case. While most of the results are believed to carry

over, that belief is based on numerical evidence and computer exper-

iments rather than rigorous proofs.

Because the one-dimensional case is easier to deal with, we restrict

our attention for the next little while to that setting, and consider
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continuous maps g : R → R. In this context, a number of rigorous

results can be proved regarding the orbit structure of the map g,

beginning with the following exercise.

Exercise 5.7. Let g : R → R be continuous, and suppose that a < b

are such that g([a, b]) ⊃ [a, b]. Show that g has a fixed point in [a, b].

Exercise 5.8. We might attempt to generalise the result of Exer-

cise 5.7 to higher dimensions by claiming that if X ⊂ Rd is a closed

set and G : X → Rd is a continuous map such that G(X) ⊃ X, then

G has a fixed point in X. Show that this claim is false by giving a

counterexample.

Definition 5.6. If I and J are intervals in R such that g(I) ⊃ J , we

say that I g-covers J .

Exercise 5.7 shows that any interval which g-covers itself contains

a fixed point; as a corollary, we see that any interval which gn-covers

itself contains a periodic point whose period divides n. This gives us

a tool for finding periodic orbits, which we use to prove the following

result.

Proposition 5.7. If a continuous map g : R → R has a period-3

orbit, then it has periodic points of all orders.

Proof. Let g : R → R be continuous, and let x0 = g(x2), x1 = g(x0),

and x2 = g(x1) be the three points in a period-3 orbit. By changing

the indices if necessary, we can assume that x0 < min(x1, x2), and

there are now two possibilities:

x0 < x1 < x2 or x0 < x2 < x1.

We prove the theorem in the case x0 < x1 < x2; the proof in the

other case is similar.

Let I1 = [x0, x1] and I2 = [x1, x2]. It follows immediately from

the Intermediate Value Theorem that

(5.16) g(I1) ⊃ [g(x0), g(x1)] = [x1, x2] = I2,

and also that

(5.17) g(I2) ⊃ [g(x2), g(x1)] = [x0, x2] = I1 ∪ I2.
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Given n ≥ 1, we find a periodic orbit of period n as follows.

If n = 1, then we are after a fixed point of g, whose existence is

guaranteed by the result of Exercise 5.7 applied to I2.

An easy induction argument shows that gn(I1) ⊃ I2 for all n ≥ 1,

and hence gn(I1) ⊃ I1 for all n ≥ 2. Then the result of Exercise 5.7

applied to I1 and gn shows that gn has a fixed point x in I1, which is

almost enough to complete the proof. However, we want to prove the

slightly stronger statement that n is the smallest period of x; that is,

that gk(x) �= x for 1 ≤ k ≤ n − 1. For this, we need the following

lemma.

Lemma 5.8. If h : R → R is continuous and [a′, b′] h-covers [a, b],

then there exists a subinterval [a′′, b′′] ⊂ [a′, b′] such that h([a′′, b′′]) =

[a, b].

Proof. Let E = {x ∈ [a, b] | h(x) ≤ a} and F = {x ∈ [a, b] | h(x) ≥
b}, and consider a1 = supE, a2 = supF . Without loss of generality,

suppose that a1 < a2 (the proof in the other direction is similar).

Then let a′′ = a1, b
′′ = inf F ∩ [a1, b

′], and the result follows. �

From the lemma and (5.16)–(5.17), it follows that there exist

intervals I12 ⊂ I1 and I21, I22 ⊂ I2 such that g(Iij) = Ij . Contin-

uing, we find nested sequences of basic intervals Iw1...wn
such that

g(Iw1...wn
) = Iw2...wn

. Because the length of these intervals may not

go to zero as n → ∞, we cannot carry out the full Cantor-like con-

struction and obtain a conjugacy with the subshift Σ+
A, A = ( 0 1

1 1 );

however, we can observe that for the particular sequence w1 = 1,

w2 = w3 = · · · = wn = 2, we have gn(Iw1...wn
) = I1 ∪ I2 ⊃ Iw1...wn

,

and so there exists x ∈ Iw1...wn
such that gn(x) = x. Because

gk(x) ∈ I2 for all 1 ≤ k ≤ n − 1, n must be the minimal period

of x. �

A similar argument to the one used in the proof of Proposition 5.7

allows us to construct points with arbitrary itineraries, that is, trajec-

tories which enter I1 and I2 in any conceivable pattern. This is one of

the hallmarks of chaotic behaviour, and indeed, when Proposition 5.7

was first proved by Tien-Yien Li and James Yorke in 1975, the title

of their paper was “Period Three Implies Chaos”.
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Unbeknownst to Li and Yorke, a rather more general result than

Proposition 5.7 had been proved eleven years earlier, in 1964, by

the Ukranian mathematician Aleksandr Sharkovsky. However, being

behind the Iron Curtain, Sharkovsky had little access to the West, and

so his result was not widely publicised until Sharkovsky and Yorke

met in East Berlin shortly after the publication of Li and Yorke’s

paper.7

Sharkovsky’s theorem places surprising restrictions on the com-

binations of periodic orbits which can exist in a given system, using

the following non-standard ordering on the set of positive integers N:
given two integers m and n, we say that m precedes n (or equiva-

lently, that n follows m), and write m ≺ n, if m appears before n in

the following list:

3, 5, 7, 9, . . .

2 · 3, 2 · 5, 2 · 7, 2 · 9, . . .

22 · 3, 22 · 5, 22 · 7, 22 · 9, . . .

23 · 3, 23 · 5, 23 · 7, 23 · 9, . . .

· · ·
. . . , 2n, 2n−1, . . . , 22, 2, 1.

Theorem 5.9 (Sharkovsky’s theorem). If a continuous map g : R →
R has a periodic orbit of period m, then it also has a periodic orbit of

period n for every n which follows m in the above ordering; that is,

every m ≺ n.

Proof. See [HK03]. �

The proof of Theorem 5.9 runs along much the same lines as

the proof of Proposition 5.7, although the combinatorics are more

intricate. The key ingredient in the proof is the Intermediate Value

Theorem, which explains why it is crucial that the domain of g be R.
Indeed, if X = {z ∈ C | |z| = 1} is the unit circle, and g : X → X is

the map g(z) = e2πi/nz, then every periodic point of g has period n,

7The historical development of chaos theory, including this episode, is described
in [Gle87].
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in sharp contrast to the situation described in Sharkovsky’s theorem;

this example also shows that the theorem fails in higher dimensions.

In R, however, the theorem gives a great deal of information about

the periodic orbit structure of a continuous map g. For example, if g

has a periodic point of period 2n, then it must have periodic points of

period 2k for every 0 ≤ k ≤ n, which is reminiscent of the behaviour

we saw in the period-doubling cascade earlier. Similarly, if g has a

periodic point whose period is not a power of two, then it must have

periodic points of period 2n for every n. In particular, we have the

following corollary, which applies to any Morse–Smale system on the

line:

Corollary 5.10. If a continuous map g : R → R has only finitely

many periodic points, then they all have a period which is a power of

two.

Sharkovsky’s theorem leads us to suspect that even within the

windows of stability in the bifurcation diagram in Figure 5.6, there

are some very complicated dynamics going on. However, because it

only applies to one-dimensional maps, we will in the next chapter turn

our attention to such maps. In particular, we will study the family

of logistic maps, where we discover a similar bifurcation diagram,

complete with period-doubling cascades, windows of stability, and in

the end, chaos.

                

                                                                                                               



                

                                                                                                               



Chapter 6

The Bifurcation
Diagram for the Logistic
Map

Lecture 25

a. Bifurcations of the logistic map. We return now to the logistic

map, or rather the family of logistic maps, which was first introduced

in Lecture 2; for a given parameter c ∈ R, the map is

fc(x) = x2 + c.

We have already seen that for c > 1/4, all trajectories of fc go to

+∞; we focus on what happens as c decreases. In particular, we make

precise the notion of bifurcation, which we have already discussed, and

examine the types of bifurcations which occur in the logistic family.

Recall that two continuous maps f : X → X and g : Y → Y are

topologically conjugate if there exists a homeomorphism φ : Y → X

such that f ◦ φ = φ ◦ g. For example, the maps fc : x �→ x2 + c and

gλ : y �→ λy(1 − y) are topologically conjugated by the homeomor-

phism φ : y �→ λ
2 (1− 2y), where c and λ are related by 4c = λ(2− λ)

in the appropriate parameter ranges (see Exercise 1.2).

It is often useful to think of the conjugating homeomorphism φ

as a change of coordinates, under which f and g display the same

191
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dynamics, just as two similar matrices A and B have the same action

under a suitable change of basis. Thus we say that two topologically

conjugate maps have the same qualitative behaviour.

Exercise 6.1. Show that fc and fc′ are topologically conjugate for

any c, c′ > 1/4.

There are many cases in which changing the value of the parame-

ter slightly does not change the qualitative behaviour of the map; for

example, Exercise 6.1 shows that the logistic maps fc with c > 1/4

are all topologically conjugate. Thus although the precise quantita-

tive behaviour varies with the parameter c, the qualitative behaviour

is unchanged.

A bifurcation occurs when an arbitrarily small change in the value

of the parameter does change the qualitative behaviour of the map:

Definition 6.1. A one-parameter family of maps Fc : X → X has

a bifurcation at c0 if for all ε > 0, there exists a parameter value

c ∈ (c0−ε, c0+ε) for which Fc and Fc0 are not topologically conjugate.

Exercise 6.2. Let Fc : X → X be a one-parameter family of con-

tinuous maps on a topological space X, and write B ⊂ R for the set

of bifurcation values, that is, the set of values c0 at which Fc has a

bifurcation. Show that B is closed.

It is easy to see that the periodic orbit structure of a map is an

invariant of topological conjugacy; that is, two topologically conjugate

maps f and g must have the same numbers of fixed points, points of

period 2, period 3, etc. Thus a change in this orbit structure, such

as the appearance of any new periodic orbits, immediately heralds a

bifurcation in the system. Similarly, because stability is determined

by where trajectories converge, a change in the type of stability of a

periodic orbit also indicates a bifurcation.

For the logistic family fc, the first bifurcation occurs at c = 1/4;

for c > 1/4 there are no fixed points, while for c = 1/4 there is one,

and for c < 1/4 there are two, given by

p1 =
1−

√
1− 4c

2
, p2 =

1 +
√
1− 4c

2
.
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The stability of these fixed points is determined by the absolute value

of the derivative, and we see that

f ′
c(p1) = 1−

√
1− 4c, f ′

c(p2) = 1 +
√
1− 4c.

Thus p2 is unstable for all values of c, while p1 is stable for a little

while after the bifurcation at c = 1/4. As long as this state of affairs

persists, any trajectory which begins in the interior of the interval

I = [−p2, p2] converges to p1, the two trajectories which begin at the

endpoints converge to p2, and any trajectory which begins outside of

I diverges to +∞.

So how long does this state of affairs persist? Observe that f ′
c(p1)

decreases as c decreases and also that f ′
c(p1) = −1 when c = −3/4.

Thus for −3/4 < c < 1/4, all trajectories in (−p2, p2) converge to

p1, but for c < −3/4, both fixed points are unstable. This implies

that a bifurcation occurs at −3/4, since the stability of p1 changes;

to determine the behaviour of trajectories for c < −3/4, we look for

periodic orbits, since there are no new fixed points.

Recall that a period-2 orbit of fc corresponds to a fixed point of

f2
c , and so we want to solve the equation

f2
c (x) = (x2 + c)2 + c = x;

that is, we want to find the roots of

x4 + 2cx2 − x+ c2 + c = 0.

This is made rather easier to solve by the observation that we already

know two of the roots; the fixed points p1 and p2 of the original map

fc. In fact, the polynomial fc(x) − x divides f2
c (x)− x, since a root

of the former is obviously a root of the latter. Dividing, we obtain

x4 + 2cx2 − x+ c2 + c

x2 − x+ c
= x2 + x+ 1 + c = 0,

which has solutions

q1 = −1

2
−
√
−3

4
− c, q2 = −1

2
+

√
−3

4
− c.

These are real numbers if and only if c ≤ −3/4; in other words, fc
has a period-2 orbit on the real line if and only if the fixed point p1
is unstable! One may easily verify that fc(q1) = q2 and fc(q2) = q1,

and that p1 lies between q1 and q2.
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The stability of this period-2 orbit is given by the derivative of

the map f2
c for which it is a fixed point; using the chain rule, we

observe that

(f2
c )

′(q1) = f ′
c(q2)f

′
c(q1)

= (−1 +
√
−3− 4c)(−1−

√
−3− 4c)

= 1− (−3− 4c)

= 4 + 4c.

When the period-2 orbit is born, at c = −3/4, we have (f2
c )

′(q1) = 1,

and this quantity decreases as c decreases, becoming equal to −1

when c = −5/4. Thus for −5/4 < c < −3/4, the period-2 orbit is

stable, and it is possible to show that every trajectory which begins in

(−p2, p2) asymptotically approaches the period-2 orbit, in the sense

that f2n(x) → qi for either i = 1 or i = 2.

This pattern of behaviour continues as c decreases further, with

successive periodic orbits of length 2n becoming unstable and spawn-

ing stable orbits of length 2n+1, which become unstable in their turn,

and so on ad infinitum. However, the algebraic approach we have been

following becomes increasingly messy, as we must deal with polyno-

mials of higher and higher degree.

b. Classifying bifurcations. Consider the parameter values c0 =

1/4 and c1 = −3/4. At both of these values, the periodic orbit

structure of the logistic map fc changes, and so a bifurcation occurs;

however, the bifurcations are of different sorts. As c decreases through

c0, we go from having no fixed points to having two, one stable and

one unstable. At c1, on the other hand, there is a preexisting fixed

point, which persists through the bifurcation; the change is in the

stability of that fixed point and in the appearance of an attracting

period-2 orbit.

These two types of bifurcations are common enough to merit their

own names: the bifurcation at c0 is an example of a tangent bifur-

cation (sometimes called a saddle-node or fold bifurcation), and the

bifurcation at c1 is an example of a period-doubling bifurcation (some-

times called a flip bifurcation). The following definitions make these
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c = c0 − ε c = c0 c = c0 + ε

Figure 6.1. A tangent bifurcation.

notions precise; in what follows, Fc : R → R is any one-parameter

family of continuous maps of the real line.

Definition 6.2. Fc has a tangent (or saddle-node, or fold) bifurcation

at c0 if there exists an open interval I ⊂ R such that for sufficiently

small values of ε > 0,

(1) Fc0−ε has no fixed points in I;

(2) Fc0 has one fixed point in I, which is neutral; and

(3) Fc0+ε has two fixed points in I, one attracting and one repelling.

The conditions in the above definition imply that the fixed points

appear as c increases through c0. We also say that Fc has a tangent

bifurcation at c0 if the fixed points appear as c decreases, that is, if

the above conditions hold with c0 − ε and c0 + ε interchanged.

A typical picture for a tangent bifurcation is shown in Figure 6.1.

Note that at the value c = c0, the graph of Fc is tangent to the

bisectrix y = x, hence the name.

A tangent bifurcation is a local bifurcation, insofar as its defini-

tion only involves the behaviour of the map on a small interval I, and

centres on the appearance at the critical parameter value c0 of a fixed

point. Indeed, suppose a one-parameter family of maps undergoes

a tangent bifurcation at a map f = Fc0 . Then we have f ′(p) = 1,

as already mentioned; thus the bifurcation occurs precisely at the

point where the linearisation of the map around a fixed point has an

eigenvalue on the unit circle.
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c = c1 − ε c = c1 c = c1 + ε

Figure 6.2. A period-doubling bifurcation.

In fact, this condition is necessary in order for a bifurcation

involving a fixed point to occur. Consider an arbitrary differen-

tiable map f : R → R, and suppose that f has a fixed point p with

|f ′(p)| �= 1. Then a small enough perturbation f̃ of f will have exactly

one fixed point p̃ near p, with f̃ ′(p̃) ≈ f ′(p), and so no bifurcation

occurs at f . Thus a local bifurcation can only occur when f has a

fixed point p with f ′(p) = ±1 (or in the higher-dimensional setting,

when an eigenvalue of Df(p) crosses the unit circle).

The case f ′(p) = 1 leads to the tangent bifurcation just described;

when f ′(p) = −1, which occurs at c1 for the logistic map, we have

the following sort of bifurcation.

Definition 6.3. Fc has a period-doubling (or flip) bifurcation at c1
if there exists an open interval I ⊂ R that contains exactly one fixed

point pc of Fc for values of c near c1, and which is such that for

sufficiently small values of ε > 0,

(1) pc1−ε is attracting, and Fc1−ε has no other periodic points in I;

(2) pc1 is neutral, and Fc1 has no other periodic points in I; and

(3) pc1+ε is repelling, and Fc1+ε has a unique attracting period-2

orbit {q1ε , q2ε} such that limε→0 q
i
ε = pc1 for i = 1, 2.

The above definition describes the process by which a stable fixed

point becomes unstable and sheds a stable orbit of period 2 as c

increases through c1. As before, we also call c1 a period-doubling

bifurcation point if this happens as c decreases through c1 (which is

the case with the logistic map). We also allow the case in which a

repelling fixed point becomes stable and sheds an unstable period-2

orbit.
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q1
ε

q2
ε

pc pc pc

c = c1 − ε c = c1 c = c1 + ε

Figure 6.3. A pitchfork bifurcation in the second iterate.

Finally, we will be flexible enough with the terminology to say

that Fc has a period-doubling bifurcation at c1 if its nth iterate Fn
c

satisfies the above criteria for some n, that is, if some periodic orbit

of Fc with length n changes stability at c1 and sheds a new periodic

orbit of length 2n with the original stability properties.

A typical picture for a period-doubling bifurcation is presented in

Figure 6.2, which shows the fixed point becoming unstable as F ′
c(p)

passes through −1. Figure 6.3 shows how the dynamics of F 2
c change;

as c passes through c1, the fixed point of F 2
c changes stability and

spawns two new attracting fixed points. We say that the second

iterate F 2
c has a pitchfork bifurcation at c1.

Exercise 6.3. Describe the type of bifurcation at the given value of

the parameter for the following maps:

(a) fλ(x) = λx+ x2 + 1/4 for λ = 0 or λ = 2;

(b) gµ(x) = µx(1 + x2) for µ = 1;

(c) hγ(x) = γ sin x for γ = −1 or γ = 1.

Exercise 6.4. Consider the family Fc(x) = cx − x3 of maps. Show

that 0 is a fixed point for all Fc, and determine the values of c for

which 0 is attracting and for which it is repelling. Show that a period-

doubling bifurcation occurs at c = −1.

Exercise 6.5. Let T : R → R be the map on the line generated by

the function y = ax3, a > 0. Find all fixed points and determine the

type of their stability. Describe the behaviour of all trajectories of

the map.
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Figure 6.4. The bifurcation diagram for the family of logistic maps.

Lecture 26

a. The period-doubling cascade. Figure 6.4 shows the bifurca-

tion diagram for the family of logistic maps fc : x �→ x2+c; comparing

this with the bifurcation diagram for the FitzHugh–Nagumo model

in Figure 5.6, we see many of the same qualitative features—period-

doubling cascades, windows of stability, etc.

In the previous lecture, we examined two sorts of bifurcations;

the tangent bifurcation at c0 = 1/4, where two fixed points are born,

one stable and one unstable, and the period-doubling bifurcation at

c1 = −3/4, where the stable fixed point becomes unstable and an

attracting period-2 orbit appears. Figure 6.4 shows further period-

doubling bifurcations at c2 > c3 > c4 > · · · ; for c ∈ (cn+1, cn), the

map fc has an attracting periodic orbit of length 2n, and repelling

periodic orbits of length 2k for 0 ≤ k < n.

It is apparent from the diagram that the distance between suc-

cessive bifurcations shrinks as n grows; indeed, it is possible to show

that

lim
n→∞

cn − cn−1

cn+1 − cn
= δ ≈ 4.669 · · · ;

that is, the exponential rate of decay of this distance is Feigenbaum’s

constant (recall the discussion of the FitzHugh–Nagumo model in

Lecture 24).
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f(x)

x

f 2(x)

x

q−q

f 3(x)

x

Figure 6.5. The map f = f−2 and its iterates.

Because cn−cn−1 decreases exponentially, the sequence {cn} con-

verges to a limit c∞, the Feigenbaum parameter. This parameter lies

at the end of the period-doubling cascade, and so fc∞ has periodic

points of order 2n for every natural number n. In particular, it is

no longer Morse–Smale, and the same continues to be true of fc for

c < c∞.

What do the dynamics of these non-Morse–Smale maps look like?

How do we describe the structure of the bifurcation diagram in the

regime c ≤ c∞? These maps are difficult to analyse, and we begin

by jumping ahead a little way to examine what happens for c ≤ −2,

before returning to study the truly intricate part of the picture.

b. Chaos at the end of the bifurcation diagram. Consider the

parameter value c = −2, which is the smallest value of c shown in

Figure 6.4. For simplicity of notation, in this section we write f for

the map f−2 : x �→ x2−2. Observe that f has fixed points at p1 = −1

and p2 = 2. Furthermore, if |x| > 2, then fn(x) → +∞ as n → ∞,

and so the only interesting trajectories are those which remain within

the interval [−2, 2].

One may easily check (either by computing minimum and max-

imum values, or by looking at Figure 6.5) that the interval [−2, 2]

is invariant for the map f . Furthermore, f is monotonic on each

of the intervals [−2, 0] and [0, 2]; in fact, it maps each of these in-

tervals homeomorphically to the entire interval [−2, 2]. Hence f is

a one-dimensional full-branched Markov map, whose action may be

thought of as a combination of stretching and folding; the interval
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h(z)

z

Figure 6.6. The tent map h : [0, 1] → [0, 1].

[−2, 2] is first stretched out, and then folded in half, so that each

half of the original interval has been stretched out to cover the whole

thing.

Upon iterating the map f , we see that if J is either of the intervals

whose image under f covers [−2, 2] once (that is, f : J → [−2, 2] is a

homeomorphism), then the image of J covers [−2, 2] twice under the

action of f2. In particular, as shown in Figure 6.5, there are points

−q < 0 < q such that each of the intervals I1 = [−2,−q], I2 = [−q, 0],

I3 = [0, q], and I4 = [q, 2] has f2(Ij) = [−2, 2], and f2 is a bijection

from each Ij to [−2, 2]. A similar observation holds for f3, where

we have eight intervals, and for higher iterates fn, where we have 2n

intervals which are mapped homeomorphically onto [−2, 2].

It follows from Exercise 5.7 that the map fn has at least 2n

fixed points, and examination of the graph of fn shows that this

number is exact. Thus for every n ≥ 1, the map f has 2n periodic

points of period n (of course, some of these are also periodic points

of period k for some k < n). This is a far cry from the limited

number of periodic orbits found in the Morse–Smale case. Indeed, the

exponential growth rate of the number of period n orbits is somehow

indicative of the chaotic behaviour of the map; this growth rate is in

many cases related to the topological entropy of the map f , which we

introduced in Lecture 18.

Before leaving the parameter value c = −2, we observe that by

some felicitious alignment of the stars (really, by virtue of the fact
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that it is a one-dimensional full-branched Markov map), the map f

can be put into a rather simpler form—indeed, a piecewise linear

form—via a clever change of coordinates. First, as a special case of

the observation at the beginning of Lecture 25, f is conjugated to the

map g : y �→ 4y(1−y) from [0, 1] to itself by the change of coordinates

φ : [0, 1] → [−2, 2],

y �→ 2− 4y.

Then, using the further change of coordinates

ψ : [0, 1] → [0, 1],

z �→ sin2
(πz

2

)
,

the following diagram commutes:

(6.1)

[0, 1]
h−−−−→ [0, 1]⏐⏐
ψ ⏐⏐
ψ

[0, 1]
g−−−−→ [0, 1]⏐⏐
φ ⏐⏐
φ

[−2, 2]
f−−−−→ [−2, 2]

Here h : [0, 1] → [0, 1] is the tent map defined by

(6.2) h(z) =

{
2z 0 ≤ z ≤ 1/2,

2(1− z) 1/2 ≤ z ≤ 1,

whose graph is shown in Figure 6.6. To see that the top half of (6.1)

commutes, observe that

g(ψ(z)) = 4 sin2
(πz

2

)(
1− sin2

(πz
2

))
= 4 sin2

(πz
2

)
cos2
(πz

2

)
=
(
2 sin

πz

2
cos

πz

2

)2
= sin2 πz,

while for 0 ≤ z ≤ 1/2,

ψ(h(z)) = sin2
π · 2z
2

= sin2 πz,

and for 1/2 ≤ z ≤ 1,

ψ(h(z)) = sin2(π − πz) = sin2 πz.
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I1 I2

Figure 6.7. Trajectories escaping to infinity for c < −2.

This conjugacy allows us to answer certain questions about the

non-linear map f by first answering them for the piecewise linear map

h, in which context they are often more tractable. In fact, we can go

one step further and use the Markov property of h to define a coding

map ϕ : Σ+
2 → [0, 1] such that h ◦ ϕ = ϕ ◦ σ; the difference between

this case and the situation we are used to is that the coding map is no

longer a homeomorphism, since it fails to be one-to-one for sequences

which terminate in an infinite string of ones or twos. This is because

the basic intervals on which h is defined—[0, 1/2] and [1/2, 1]—are

not disjoint, but share an endpoint, and is the same phenomenon we

observed with the Sierpiński gasket. As was the case there, it only

affects countably many points, and thus does not affect any questions

concerning Hausdorff dimension.

Exercise 6.6. Give a complete analysis of orbits for the transforma-

tion F : R → R given by F (x) = x4 − 4x2 + 2.

c. The centre cannot hold: escape to infinity. In the previous

section, we were able to give a relatively thorough analysis of the

logistic map f = fc in the case c = −2. How much of this goes

through for other values of c?

For any value of c < 1/4, there are two fixed points p1 < p2, and

only the interval [−p2, p2] is of interest, since any trajectory which

leaves this interval diverges to infinity, as in Figure 6.7.
                

                                                                                                               



Lecture 26 203

I12 I11 I21 I22

I1

I2

Figure 6.8. Finding an invariant set for a map with escape.

For −2 ≤ c < 1/4, the interval [−p2, p2] is invariant; any trajec-

tory which begins there stays there, and so we only need to exclude

trajectories which begin outside the interval of interest. To see if this

behaviour continues for c < −2, we must examine fc(0) = c, since

this is the minimal value assumed by fc, and indeed, fc([−p2, p2]) ⊂
[−p2, p2] if and only if fc(0) = c ≥ −p2.

We compare these values by observing that c is the constant term

in the fixed point equation fc(x) − x = x2 − x + c = 0, which is a

quadratic polynomial, and hence it is the product of the roots of

that polynomial, which are p1 and p2. Similarly, the sum of the

roots is determined by the linear coefficient: p1 + p2 = 1, whence

c = p2(1 − p2). It follows that [−p2, p2] is invariant if and only if

p2(1− p2) ≥ −p2, that is, if and only if p2(2− p2) ≥ 0.

The fixed point p2 is always positive, and so the interval is invari-

ant for p2 ≤ 2, while for p2 > 2, some points in [−p2, p2] have images

outside that interval, and thus have a trajectory which escapes to in-

finity. This happens precisely when c < −2; in this parameter range,

we have the picture shown in Figure 6.7, where any point not in the

intervals I1 or I2 is mapped outside of [−p2, p2] by fc.

This should start to sound familiar by now; we have a map from

an interval to itself, but we can only start at points whose images

remain in the interval. The intervals I1 and I2 contain those points

x for which fc(x) ∈ [−p2, p2]; Figure 6.8 shows the construction of
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four intervals Iij containing all points x for which f2
c (x) ∈ [−p2, p2].

Indeed, fc is a one-dimensional full-branched Markov map, and the set

of points with a bounded trajectory is precisely the repelling Cantor

set for fc.

Even though the map fc is non-linear, it is not hard to show that

the Hausdorff dimension of this repelling Cantor set is less than 1; in

particular, the Cantor set has Lebesgue measure zero. This means

that Lebesgue-a.e. point x ∈ R has a trajectory which diverges to ∞;

consequently, the bifurcation diagram is invisible for c < −2 because

the algorithm described in Lecture 24 only lets us see the asymptotic

behaviour of randomly chosen bounded trajectories.

Lecture 27

a. Finding the relevant part of phase space: ω-limit sets.

In our investigations of the logistic map fc for various values of the

parameter c, we have found that some parts of the phase space R
are more interesting than others, in the sense that they capture the

essential long-term behaviour of fc. For example, when c > c∞,

almost every trajectory tends to the stable periodic orbit, and so the

points in that orbit are the most important part of phase space for fc.

When c = −2, the points in the interval [−2, 2] are important, but

those outside it are not so interesting because their iterates tend to

infinity. Finally, when c < −2, there is a Cantor set C which contains

all the points whose orbits remain bounded, and hence captures all

the interesting behaviour of fc.

How do we formalise these ideas? How can we define what makes

some sets capture interesting aspects of the dynamics, while others

are somehow negligible? What properties should these “interesting”

sets have?

The first important property is invariance; we want to consider

a set E ⊂ R which is mapped into itself by f , so that no trajectories

escape from E; otherwise E does not contain the long-term behaviour

of all the trajectories which begin in E.

Secondly, we want E to be minimal in some sense. For fc with

c > c∞, the interval [−p2, p2] is certainly mapped into itself by fc,
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but it is too big: given an initial condition x ∈ [−p2, p2], there are

many open sets in [−p2, p2] which the trajectory of x never reaches

and which are therefore of no importance in describing the long-term

behaviour of that trajectory. In particular, we would like the orbit of

some well-chosen point x to be dense in E.

These considerations motivate the following definition.

Definition 6.4. LetX be a metric space and f : X → X a continuous

map. Given x ∈ X, the ω-limit set of x is

ω(x) =
∞⋂

N=0

∞⋃
n=N

{fn(x)}.

To put this in words rather than symbols, a point y ∈ X is in

the ω-limit set of x if and only if y is in the closure of the forward

trajectory1 of every iterate of x, that is, if and only if there exists a

sequence of natural numbers nk → ∞ such that limk→∞ fnk(x) = y.

Example 6.5. If x is a periodic point with fp(x) = x, then ω(x) =

{x, f(x), . . . , fp−1(x)}. Similarly, if x approaches a periodic orbit—

that is, if there exists y = fp(y) such that limn→∞ fnp(x) = y—then

ω(x) = {y, f(y), . . . , fp−1(y)}.

Exercise 6.7. Consider the map f : C → C given by f(z) = e2πiαz,

where α is an irrational real number; f is the map which rotates the

complex plane by 2πα around the origin. Show that for every z0 ∈ C,

ω(z0) = {z ∈ C | |z| = |z0|}.

Exercise 6.8. Consider the shift σ : Σ+
2 → Σ+

2 , and show that there

exists a sequence x = (x1, x2, . . . ) ∈ Σ+
2 such that ω(x) = Σ+

2 ; in

particular, x has a dense orbit.

Recall the construction of the bifurcation diagram in Lecture 24.

The procedure described there is similar to the definition just given

of ω-limit set; indeed, what is plotted by the bifurcation diagram

is an approximation to the ω-limit set of a random point for each

parameter value c.

1The forward trajectory of x, also called the positive semi-trajectory, is the set
of all iterates fn(x) for which n ≥ 0.
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Figure 6.9. The bifurcation diagram in the period-3 window.

Does it matter which point we choose? Of course, if we choose

an unstable periodic point x, then ω(x) will not capture the same

information as ω(y), where y is not on the periodic orbit. In general,

then, ω(x) and ω(y) may differ for x �= y.

It turns out, though, that in many important situations, almost

every point x (with respect to Lebesgue measure) has the same ω-

limit set; that is, there exists a set E ⊂ R of Lebesgue measure

zero such that ω(x) = ω(y) for all x, y /∈ E. For example, in the

family of logistic maps, almost every initial condition x has ω-limit

set equal to the unique stable periodic orbit when c > c∞, and for

c = −2, it is possible to show that almost every initial condition x

has ω(x) = [−2, 2].

b. Windows of stability in the bifurcation diagram. Let us re-

turn to the bifurcation diagram shown in Figure 6.4 and finally turn

our attention to the truly interesting part of the picture, the param-

eter values −2 ≤ c ≤ c∞. Within this range, we find a number of

windows of stability, intervals for c within which the map fc suddenly

has a stable periodic orbit once again, to which almost every point is

attracted.

The largest and most conspicuous of these windows of stability

is the period-3 window between c ≈ −1.791 and c ≈ −1.748, which
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is shown in Figure 6.9. Notice that while the period-3 orbit is stable

at the beginning of this window (on the right), it eventually becomes

unstable and gives birth to a stable period-6 orbit, and the whole

period-doubling cascade occurs here just as it did for c > c∞, leading

to another occurrence of Feigenbaum’s constant δ.

Because the map has a period-3 orbit in this range of parameters,

we can apply Proposition 5.7. This result shows that despite the

long-term stability of orbits in the period-3 window, the system is

not Morse–Smale, because there are infinitely many periodic orbits.

In fact, we observe what is known as transient chaos in this pa-

rameter regime; the trajectory of a randomly chosen point x may

follow an unstable periodic orbit for quite some time before being

repelled, at which time it may follow some other unstable orbit for a

spell, and so on and so forth, perhaps taking a very long time to actu-

ally settle down to the stable periodic orbit. Thus the trajectory we

observe may initially appear chaotic by spending a long while wan-

dering through the intricately intertwined tangle of periodic orbits

before it becomes regular.

c. Chaos outside the windows of stability. We see a similar

picture to the one described above when we look at the windows

of stability corresponding to periodic orbits of other lengths. Firstly,

Sharkovsky’s theorem implies the existence of infinitely many periodic

orbits and prescribes which lengths must appear. Secondly, the stable

periodic orbit undergoes a period-doubling cascade as c decreases and

eventually moves out of the window of stability.

Let S be the set of parameter values c for which the map fc has

a stable periodic orbit; S is the union of all the windows of stability.

It is natural to ask how big S is; do typical parameter values c lie

inside a window of stability or somewhere else?

If we perturb f in such a way that both f and f ′ vary contin-

uously, then fixed points and periodic points also vary continuously,

as does the value of f ′ at such points. Windows of stability are char-

acterised by the existence of stable periodic orbits, which are charac-

terised by the conditions fn(p) = p and |(fn)′(p)| < 1. Since p and
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(fn)′(p) vary continuously with the parameter c, a small perturba-

tion of c will not destroy these conditions, and thus each window of

stability is open.

This shows that S is open; it can also be shown that S is dense

in [−2, 1/4] (although the proof is rather hard). So in some sense, the

set S is quite large; indeed, topologically speaking, it is as large as

can be.

However, there are other sorts of behaviour possible for the logis-

tic map fc. It turns out that these are epitomised by the two cases

c = −2 and c = c∞. In the first case, the ω-limit set ω(x) contains an

interval (and in particular, has Hausdorff dimension equal to 1) for

almost every x. In the second case, we find that ω(x) is a Cantor set

for almost every x (and hence has Hausdorff dimension less than 1).

Denote by A the set of all parameter values for which the former

behaviour is observed—for which ω(x) contains an interval for a.e. x.

How big is the set A? We have already said that S is open and dense,

and obviously A ∩ S = ∅; thus A is a nowhere dense set. However, a

celebrated result due to Michael Jakobson shows that A has positive

Lebesgue measure, and so there is a non-negligible set of parameter

values for which the trajectory of a randomly chosen point fills out

an interval, and the map fc is chaotic (see Figure 1.11).

                

                                                                                                               



Chapter 7

Chaotic Attractors and
Persistent Chaos

Lecture 28

a. Trapping regions. The gap between what has been proved re-

garding the family of logistic maps and what is believed to be true

based on numerical results remains substantial; it becomes even wider

when we consider the local map (5.7) for the FitzHugh–Nagumo

model.

Despite the lack of rigorous results, the empirical evidence over-

whelmingly suggests that what was proved in very restricted cir-

cumstances (one-dimensional quadratic maps in a limited parameter

range) holds much more generally, as is suggested, for example, by

the bifurcation diagram in Figure 5.6. We see a period-doubling cas-

cade leading to the onset of chaos at A∞, beyond which there are

windows of stability surrounded by maps with chaotic behaviour (al-

though as mentioned at the end of the previous chapter, even within

these windows of stability the map exhibits transient chaos).

Throughout all this, the map f : R2 → R2 has three fixed points,

0, p1, and p2, two of which began life as stable fixed points, and

then lost their stability at the bifurcation values A1 and A′
1. During

the period-doubling cascade, all trajectories wind up approaching a

209

                                     

                

                                                                                                               



210 7. Chaotic Attractors and Persistent Chaos

0

p1

p2

q1 q2

q3 q4

f(q1)

f(q2)

f(q3)

f(q4)

R

f(R)

Figure 7.1. A trapping region for the FitzHugh–Nagumo map.

stable periodic orbit of length 2n; after the onset of chaos, however,

there are no stable periodic orbits to approach, except in the windows

of stability. So where do the orbits go?

Even if trajectories of f are not asymptotically stable or periodic,

it may happen that they are confined within some bounded region.

This is certainly the case if there is some bounded region R ⊂ R2 for

which f(R) ⊂ R, since then the forward trajectory of any point in

R remains in R. The following definition codifies this idea, adding a

small topological requirement.

Definition 7.1. An open set R is a trapping region for the map f if

R is compact and f(R) ⊂ R.

We will explore the dynamical consequences of the existence of

a trapping region after first proving that such a region exists for the

FitzHugh–Nagumo map with certain values of A.

Proposition 7.2 (Orendovici–Pesin). Fix parameters 0 < γ < 1

and β > 0. There exists an open rectangle R = (a, b) × (c, d) ⊂ R2

and A′ > 0 such that for α > 0 sufficiently small, θ sufficiently near

1/2, and 0 < A < A′, the rectangle R is a trapping region for the local

map (5.7) for the FitzHugh–Nagumo model. Furthermore, R contains

the three fixed points 0, p1, and p2.

Proof. (See [OP00] and [PY04].) We will guarantee containment

of the fixed points by taking a < 0 < 1 < b and appropriate values of

c and d.
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Let q1 = (a, d), q2 = (b, d), q3 = (a, c), and q4 = (b, c) be the

four corners of R, as in Figure 7.1. In order for R to be a trapping

region, f(q2) must lie below the line v = d and f(q3) must lie above

the line v = c. That is, we require that

βb+ γd < d, βa+ γc > c,

or equivalently,

d >
βb

1− γ
, c <

βa

1− γ
.

Thus q2 must lie above the line v = βu/(1−γ) and q3 must lie below

it; observe that this is the line which passes through the three fixed

points 0, p1, and p2, and hence for a < 0 < 1 < b all three fixed

points lie in R.

In order to guarantee that R is a trapping region, it remains to

show that the images of both the top and bottom edges of R are

themselves in R. If we write k(t) = t − At(t − θ)(t − 1), then these

images are as follows:

{(k(u)− αd, βu+ γd) | a ≤ u ≤ b},
{(k(u)− αc, βu+ γc) | a ≤ u ≤ b}.

That the v-coordinate will lie between c and d follows from the lin-

earity of the v-component of the map and the fact that the corners qi

are mapped into R. Thus we require only the following inequalities

for every u ∈ [a, b]:

(7.1) a < k(u)− αd < k(u)− αc < b.

The idea now is to prove these in the unperturbed case where α = 0

and θ = 1/2, and then to use a continuity argument to extend the

result to small values of α and values of θ near 1/2. In the unperturbed

case, (7.1) amounts to choosing a and b such that

a < k(t1) < k(t2) < b,(7.2)

a < k(b),(7.3)

k(a) < b,(7.4)

where t1 and t2 are the unique local minimum and local maximum,

respectively, of the cubic polynomial k. We see immediately from the

form of k(t) that k(t1) decreases as A increases and k(t2) increases
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as A increases; a little computation shows that for A = 8 we have

k(t1) ≈ −.207 and k(t2) ≈ 1.207. Thus taking a = −.21 and b = 1.21,

we see that (7.2) is satisfied for 0 < A < 8.

Now the inequality k(a) < b may be written as

a−Aa(a− θ)(a− 1) < b,

or equivalently,

A <
a− b

a(a− θ)(a− 1)
≈ 7.98,

where the computation is for the particular case θ = 1/2. Similarly,

k(b) < a is equivalent to

A <
b− a

b(b− θ)(b− 1)
≈ 7.98.

Thus taking A′ = 7.5 to give ourselves a bit of room to play with, we

see that (7.2)–(7.4) all hold for every 0 < A < A′, with θ = 1/2 and

β = 0, and hence R is a trapping region for these particular parameter

values.

Finally, note that all the inequalities which guarantee that R is a

trapping region involve only continuous functions of the parameters;

in particular, they all hold for values of θ sufficiently close to 1/2 and

values of β > 0 sufficiently small. �

b. Attractors. What are the dynamical implications of the exis-

tence of a trapping region? First, we observe that a trajectory which

enters a trapping region will never leave it—hence the name. Fur-

thermore, the property f(R) ⊂ R is inherited by the images of R,

thanks to the following exercise.1

Exercise 7.1. Given a continuous map f and an arbitrary domain

R such that R is compact, show that f(R) = f(R).

Using the result of the exercise, we see that

f2(R) = f(f(R)) = f(f(R)) ⊂ f(R).

Continuing in this way, we obtain a nested sequence of compact sets

R ⊃ f(R) ⊃ f2(R) ⊃ · · · ⊃ fn(R) ⊃ fn+1(R) ⊃ · · · .

1Observe that f(R) may not be open (see Figure 7.1) and hence may not be a
trapping region in its own right.
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We may “take the limit” of this sequence by taking the intersection

of all these sets, and we obtain

(7.5) Λ =
⋂
n≥0

fn(R).

The intersection Λ is called an attractor for the map f .

Theorem 7.3. Let R be a trapping region for a continuous map

f , and define an attractor Λ by (7.5). Then Λ has the following

properties:

(1) Λ is compact and non-empty.

(2) Λ is f -invariant: f(Λ) = Λ.

(3) Λ is the largest f -invariant subset of R; that is, Z ⊂ Λ for every

f -invariant set Z ⊂ R.

(4) Λ attracts every orbit of f which enters R: ω(x) ⊂ Λ for every

x ∈ R.

(5) Λ contains all the fixed points and periodic points of f in R.

Proof.

(1) Λ is the intersection of nested compact sets, and hence is compact

and non-empty.

(2) Since f(R) ⊂ R, we have

f(Λ) = f

⎛
⎝⋂

n≥0

fn(R)

⎞
⎠ =

⋂
n≥0

f(fn(R)) =
⋂
n≥1

fn(R) = Λ.

(3) If Z ⊂ R is f -invariant (f(Z) = Z), then for every n ∈ N we have

Z = fn(Z) ⊂ fn(R), and hence Z ⊂ Λ.

(4) The set ω(x) is f -invariant, so by Property (3), ω(x) ⊂ Λ.

(5) If p ∈ R is a fixed point, then {p} is f -invariant, so Property

(3) applies. Similarly, if fk(p) = p, then {p, f(p), . . . , fk−1(p)} is

f -invariant. �

Exercise 7.2. Let R be an open domain such that f(R) ⊂ R. Show

that Theorem 7.3 remains true in this case.
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0

p1

p2

A = 6.1

0

p1

p2

A = 6.4

Figure 7.2. The attractor for the FitzHugh–Nagumo map
with α = .01, β = .02, θ = .51, γ = .2, and varying A.

0

p1

p2

A = 6.7

0

p1

p2

A = 7.5

Figure 7.3. Changes in the attractor as A increases.

We return now to the specific example of the FitzHugh–Nagumo

system, for which Proposition 7.2 guarantees the existence of a trap-

ping region R and, hence, an attractor Λ. Figure 7.2 shows a nu-

merically computed approximation to the attractor for two different

parameters of A, drawn by plotting long orbit segments to approxi-

mate ω(x). Notice that for certain values of A, corresponding to the

gap in the bottom half of Figure 5.6, the attractor lies entirely in the

top right quadrant of the trapping region.

As A continues to increase, the attractor “grows”, as shown in

Figure 7.3, to occupy more and more2 of the trapping region R; here

one also sees the “grainy” structure which is inevitably associated

with the orbit-plotting method of producing such images. The human

eye, on viewing Figure 7.3, immediately wants to connect the dots and

view Λ as a union of curves, rather than simply a collection of points.

2One may legitimately ask, though, in just what sense it becomes larger, beyond
the obvious statement that its diameter increases. Throughout all of this, the Lebesgue
measure of Λ is zero; thus a useful quantification of the attractor’s size ought to involve
some dimensional quantity.
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Indeed, this is exactly what one ought to do. For the values of A

where the attractor shown in Figures 7.2 and 7.3 appears, all three

fixed points are hyperbolic; that is, they have one expanding and one

contracting direction. We saw in Lecture 22 that for each such fixed

point p there exists a local unstable curve Wu
ε through p which is

tangent to the unstable eigenvector. This curve is expanding in the

sense that the image f(Wu
ε ) is a curve which contains Wu

ε .

Taking the union of the curves fn(Wu
ε ), we obtain, as we did be-

fore, the global unstable curveWu, which is f -invariant and contained

in R; by Theorem 7.3, this implies that W ⊂ Λ.

In fact, it is conjectured (and widely believed) that for an appro-

priate range of the parameters, Wu is dense in Λ for the FitzHugh–

Nagumo system; however, this remains an open problem.

Lecture 29

a. The Smale–Williams solenoid. From the discussion in the pre-

vious lecture, it is apparent that the FitzHugh–Nagumo model is very

rich in intricate and interesting behaviour, but is also quite difficult

to analyse. We thus turn our attention to simpler model examples,

which exhibit a similar richness of behaviour but are rather more

tractable.

Our first such example is a map from the solid torus to itself.

Abstractly, the solid torus is

P = D2 × S1,

the direct product of a disc and a circle. Writing the disc as

D2 = {(x, y) ∈ R2 | x2 + y2 ≤ 1},

and the circle as S1 = R/2πZ, we may use coordinates (x, y, θ) on

P ; x and y give the coordinates on the disc, and θ is the angular

coordinate on the circle.

We may visualise P via its embedding in R3 as the standard torus

of revolution together with the region it encloses:

ρ(P ) =

{
(x, y, z) ∈ R3

∣∣∣ (√x2 + y2 − 2
)2

+ z2 ≤ 1

}
;
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Figure 7.4. A map from the solid torus to itself.

here ρ : D2 × S1 → R3 is the map given by

ρ(x, y, θ) = ((2 + x) cos θ, (2 + x) sin θ, y).

Fixing parameters r ∈ (0, 1) and α, β ∈ (0,min{r, 1 − r}), we

define a map f : P → P by

(7.6) f(x, y, θ) = (αx+ r cos θ, βy + r sin θ, 2θ).

The images of P under the first two iterates f and f2 are shown in

Figure 7.4. The action of f on P may be described as follows:

(1) Take the torus and slice it along a disc so that it becomes a tube.

(2) Squeeze this tube so that its cross-sections are no longer circles

of radius 1, but ellipses with axes of length α and β.

(3) Stretch the tube along its axis until it is twice its original length.

(4) Wrap the resulting longer, skinnier tube twice around the z-axis

within the original solid torus.

(5) Glue the ends of the tube together.

We see that f(P ) ⊂ intP , and so we may repeat the procedure in

the previous section, obtaining an attractor by taking the intersection

of all images of P :

(7.7) Λ =
⋂
n≥0

fn(P ).

The attractor Λ is known as the Smale–Williams solenoid ; in order

to investigate the structure of Λ, we look at a vertical cross-section of

the solid torus P = D2 × S1 by fixing the angular coordinate θ and

considering the disc D2 × {θ}.
From Figure 7.4, it is clear that the image f(P ), which is a long

skinny tube wrapped twice around the z-axis, intersects this disc in
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D1

D2

D12

D11
D21

D22

Figure 7.5. A cross-section of the Smale–Williams solenoid.

two ellipses D1 and D2, whose axes have length α and β (see Fig-

ure 7.5). The second image f2(P ) is an even longer and skinnier tube

which is wrapped four times around the z-axis, and intersects the

disc in four ellipses D11, D12, D21, and D22, whose axes have lengths

α2 and β2.

Continuing in this manner, we see that fn(P ) ∩ (D2 × {θ}) is

the union of 2n ellipses Dw1...wn
whose axes have lengths αn and βn.

By now the reader should not be too shocked to discover that this

is yet another example of a Cantor-like construction;3 the basic sets

at each step are the ellipses just mentioned, and the cross-section

C = Λ ∩ (D2 × {θ}) is a Cantor set obtained as the intersection of

the basic sets at all levels.

Exercise 7.3. Consider the cross-section θ = 0 of the solid torus P ,

and describe the location of the centres of the ellipses Dw1...wn
.

Each basic set is the intersection of a tube with the disc D2×{θ};
as n increases, the diameters of the tubes decrease exponentially, and

so upon passing to the limit set C, we see that each point in C is

contained in precisely one curve which meets D2 × {θ} transversely

(indeed, orthogonally). Thus in a neighbourhood of each cross-section

(a slice out of the torus), the attractor is the direct product C×(−ε, ε).

However, this product structure is only local; if we follow one of these

curves all the way around the torus, we will in general return to a

different point of C than the one we left (see Figure 7.6).

3Indeed, one could obtain the exact construction shown in Figure 1.20 by modify-
ing f so that f(P ) wraps around the z-axis three times, and allowing α = β to depend
on θ.
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Figure 7.6. Following an unstable curve once around the torus.

The local product structure of the attractor Λ has more than

just a geometric significance; it also helps us describe the dynamics

of the map f . Through each point p = (x, y, θ) ∈ Λ, we have a disc

W s = D2 × {θ} and a curve Wu
ε = {(x, y)} × (−ε, ε), as shown in

Figure 7.6. The former is contracting while the latter is repelling, as

follows: given q ∈ W s, we have

d(f(p), f(q)) ≤ max{α, β}d(p,q),

while for q′ ∈ Wu
ε , the orbits are driven further apart:

d(f(p), f(q′)) = 2d(p,q′).

Thus every point looks like a saddle; it has two stable directions

(forming the disc) and one unstable direction (the curve). Notice,

however, that since p may not be fixed, the reference to which or

from which the orbit {fn(q)} is attracted or repelled is not the point

p itself, but the trajectory of p.

b. Uniform hyperbolicity. The behaviour exhibited by the Smale–

Williams solenoid Λ, wherein hyperbolic behaviour exists at every

point, not just fixed points, is an important enough and widespread

enough phenomenon to warrant the following general definition.

Definition 7.4. Let U ⊂ Rd be open, and let f : U → f(U) be

C1 with C1 inverse (see Appendix). A compact f -invariant set Λ ⊂
U is called hyperbolic if for every x ∈ Λ, there exists a direct sum

decomposition Rd = Es(x) ⊕ Eu(x) such that the subspaces Es(x)

and Eu(x) have the following properties:
                

                                                                                                               



Lecture 29 219

(1) Uniform contraction/expansion: There exist λ ∈ (0, 1) and C >

0, independent of x, such that for every n ≥ 0, vs ∈ Es(x), and

vu ∈ Eu(x), we have

‖Dfn(x)vs‖ ≤ Cλn‖vs‖,
‖Df−n(x)vu‖ ≤ Cλn‖vu‖.

(2) Invariance of stable and unstable subspaces: For every x ∈ Λ, we

have Df(x)Es(x) = Es(f(x)) and Df(x)Eu(x) = Eu(f(x)).

(3) There exists an open neighborhood U of Λ such that

Λ =
⋂
n∈Z

fn(U).

Roughly speaking, this definition says that the hyperbolicity we

previously observed at hyperbolic fixed points can be found at every

point of Λ. (Indeed, if Λ = {p} is a single fixed point, then the

definition reduces to the definition of a hyperbolic fixed point.)

The first condition states that the map is contracting in the di-

rection of Es and expanding in the direction of Eu (since contraction

along backward orbits corresponds to expansion along forward or-

bits). The second condition accounts for the fact that although most

points x ∈ Λ are not fixed, the directions in which expansion and

contraction occur should still be consistent along an orbit.

The third condition means that Λ is locally maximal—that is,

if Z ⊂ U is an invariant set, then Z ⊂ Λ. Traditionally, the defi-

nition of hyperbolic sets includes only the first two conditions, but

many principal results (for example, Theorem 7.7 below) require the

third condition as well, and so we will only consider locally maximal

hyperbolic sets.

The hyperbolicity just described represents a fundamentally new

type of behaviour compared with the Morse–Smale systems we found

for the logistic map in the period-doubling cascade, where we observed

hyperbolic behaviour only at a finite number of fixed points. Here,

by contrast, the hyperbolicity is ubiquitous.

Definition 7.5. A hyperbolic set Λ is a hyperbolic attractor if there

exists an open set U ⊃ Λ such that Λ =
⋂

n≥0 f
n(U). The open set⋃

n≥0 f
−n(U) is the basin of attraction for Λ.

                

                                                                                                               



220 7. Chaotic Attractors and Persistent Chaos

Figure 7.7. The north-south map.

The Smale–Williams solenoid is an important example of a hy-

perbolic attractor; the basin of attraction in this case is the entire

solid torus.

Exercise 7.4. The ”north-south” map f of the unit sphere is defined

so that trajectories move in the directions shown in Figure 7.7, from

the north pole (which is a repelling fixed point) to the south pole

(which is an attracting fixed point). Find the largest hyperbolic set

and the attractor for f . Describe the basin of attraction.

What does the pervasive hyperbolicity just described mean for

the dynamics of f? If p and q are two points in Λ which do not

lie on the same stable disc W s or unstable curve Wu
ε , then repeated

iteration by f will decrease the distance between fn(p) and fn(q)

in the stable direction (corresponding to the coordinates x and y)

but will increase it in the unstable direction (corresponding to θ). In

particular, the trajectory of q is repelled from the trajectory of p.

So almost every pair of trajectories moves apart under the ac-

tion of f ; however, Λ is bounded, so they cannot move too far apart.

Indeed, the definition of a hyperbolic set is given in terms of local

properties (expanding and contracting subspaces for the linear map

Df(x)), and so it ceases to give any information about the relation-

ship of the two trajectories once they are no longer close. After they

separate, a similar line of reasoning shows that the trajectory of q

is constantly being repelled from whatever trajectories it finds itself

near at any given time, and eventually is repelled back towards the
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x

n

Figure 7.8. The x-coordinates of a trajectory as a chaotic signal.

trajectory of p; at this point it is once again repelled from the trajec-

tory of p, and the whole cycle repeats itself.

This behaviour, this unending dispersal and return, is charac-

teristic of hyperbolic dynamics. If we plot the x-coordinate of the

trajectory of a point p ∈ Λ as a function of n, we see a chaotic sig-

nal, without periodicity or pattern, as shown in Figure 7.8. Various

quantitative properties of this signal and of the dispersal and return

of orbits of f are related to the dimensional quantities we have stud-

ied. For example, the rate at which nearby trajectories are repelled

is given by the Lyapunov exponent of the map, which relates the en-

tropy and the dimension. Furthermore, the statistical properties of

recurrence (the times at which the trajectory beginning at p returns

to a neighbourhood of p), and of the correlations between measure-

ments of a chaotic signal at different times, turn out to be related to

various dimensional quantities of the hyperbolic set, and also to the

multifractal analysis mentioned at the end of Chapter 4.

c. Symbolic dynamics. Another fundamental manifestation of the

chaotic nature of the map f : Λ → Λ is its connection to symbolic

dynamics. In Lecture 15 we saw that one-dimensional expanding

Markov maps can be modeled by one-sided subshifts of finite type;

this correspondence put at our disposal all the machinery of symbolic

dynamics, allowing us to investigate the original map in terms of

entropy, invariant measures, and so on.

These expanding maps had the characteristics of uniformly hy-

perbolic behaviour but were non-invertible; hence the one-sided shift
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spaces were good models for their dynamics. It turns out that if we

use a two-sided shift space, on which the shift map is invertible, then a

similar correspondence is possible for invertible uniformly hyperbolic

maps.

Definition 7.6. Given k ∈ N, the two-sided symbolic space on k

symbols is the space

Σk = {1, . . . , k}Z

= {w = (wj)
∞
j=−∞ | wj ∈ {1, . . . , k} for every j ∈ Z},

where it is convenient to write members of Σk in the form

w = (. . . , w−2, w−1|w0|w1, w2, . . . )

in order to highlight which entry of the sequence is the “centre” (this

was not necessary in the one-sided case because the sequence had a

beginning). The full two-sided shift on k symbols is Σk together with

the shift map

σ : Σk → Σk,

(. . . , w−2, w−1|w0|w1, w2, . . . ) �→ (. . . , w−1, w0|w1|w2, w3, . . . ).

As in the one-sided case, we may fix a > 1 and define a metric on Σk

by

da(w,w
′) =

∑
j∈Z

|wj − w′
j |

a|j|
.

This metric once again induces a topology in which the open sets are

unions of cylinders;4 the latter take the form

Cw−n...w−1|w0|w1...wn
= {w′ ∈ Σk | w′

j = wj for all − n ≤ j ≤ n}.

More generally, we may consider cylinders of the form

Cwa...wb
= {w′ ∈ Σk | w′

j = wj for all a ≤ j ≤ b},

where a ≤ b ∈ Z are arbitrary.

4As in the one-sided case, cylinders may not actually be open balls for small
values of a. In this case, we need to take a > 3 to guarantee that B(w, a−n) =
Cw−n...w−1|w0|w1...wn .
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For the one-sided shift, every sequence has k preimages, because

the shift “forgets” the first element of the sequence. The fundamental

novelty of the two-sided shift is that nothing is forgotten; all the

elements of the sequence remain, with a shifted reference point, and

so the map is invertible. This makes the two-sided shift well suited

for modeling invertible maps, such as the Smale–Williams solenoid,

while the one-sided shift is well suited for modeling non-invertible

maps, such as one-dimensional Markov maps.

The idea, then, is to partition Λ into disjoint sets Λ1, . . . ,Λk,

and to code trajectories of f by recording which partition element

the iterate fn(x) lands in. (This is exactly what was done for one-

dimensional Markov maps, using the forward trajectory with n ≥ 0.)

Thus to a trajectory {fn(x)} we associate the sequence

w = (. . . , w−2, w−1|w0|w1, w2, . . . ) ∈ Σk,

where wj is such that f j(x) ∈ Λwj
for each j ∈ Z. Conversely, we may

begin with a sequence w ∈ Σk and look for a point whose trajectory

is given by w; the set of all such points is

(7.8)
⋂
j∈Z

f−j(Λwj
).

What sequences in Σk do we obtain as codings of trajectories in

Λ? The answer depends on which partition we choose; for example,

if i, j ∈ {1, . . . , k} are such that f(Λi) ∩ Λj = ∅, then no sequence w

which contains the symbol i followed by the symbol j can correspond

to a trajectory in Λ; these sequences are not admissible.

In general, it is not possible to find a partition such that all se-

quences are admissible, just as we found for one-dimensional Markov

maps, where not every map could be modeled by the full shift. How-

ever, there is the following remarkable result: for a uniformly hy-

perbolic map, it is possible to find sets {Λ1, . . . ,Λk} (with disjoint

interiors) such that for the k×k transition matrix A given as in (3.15)

by

(7.9) aij =

{
0 f(Λi) ∩ Λj = ∅,
1 f(Λi) ∩ Λj �= ∅,
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the admissible sequences are precisely those which lie in

ΣA = {w ∈ Σk | awjwj+1
= 1 for every j ∈ Z}.

This is made precise by the following theorem, which relates the map

f : Λ → Λ to the two-sided subshift σ : ΣA → ΣA, and which is the

fundamental vehicle for most of what is known about dynamics on

uniformly hyperbolic sets.

Theorem 7.7. Let Λ be a hyperbolic set for f . Then there exists a

cover of Λ by sets Λ1, . . . ,Λk ⊂ Λ with disjoint interiors such that

for the k × k transition matrix A given by (7.9) and the coding map

h : ΣA → Λ given by (7.8), the following hold:

(1) h is continuous, onto, and one-to-one on a residual set.5

(2) The following diagram commutes:

(7.10)

ΣA
σ−−−−→ ΣA⏐⏐
h ⏐⏐
h

Λ
f−−−−→ Λ

Proof. See [KH95] or [BS02]. �

This correspondence between hyperbolic sets and subshifts of fi-

nite type provides a bridge via which key symbolic results can be

transported to the hyperbolic regime. In this manner, symbolic dy-

namics can be used to establish many properties of hyperbolic maps

which are characteristic of chaos (see Lecture 31(c)).

Lecture 30

a. Dimension of direct products. Having discussed some of the

qualitative properties of hyperbolic attractors, such as the Smale–

Williams solenoid Λ, and the implications of these properties for the

dynamics of f , we turn our attention to quantitative questions. In

particular, since Λ has a fractal structure, we ask the natural question:

what is the Hausdorff dimension of Λ?

5Recall that a set is residual if it is a countable intersection of open dense sets, and
hence comprises “almost everything” in a topological sense. In this case, the residual
set in question is the union

⋃
n∈Z

fn(B), where B is the union of the boundaries of

the sets Λi.
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Locally, Λ is a direct product of a Cantor set and an interval;

since we know the Hausdorff dimension for both of these sets, we

would like to have a general expression for dimH(A×B) in terms of

dimH A and dimH B.

Intuitively, we expect dimension to be additive with respect to

direct products; after all, the direct product of Rd and Rp is Rd+p,

and so it seems natural to conjecture that in general,

(7.11) dimH(A×B) = dimH A+ dimH B.

Remark. When A and B are subsets of the Euclidean spaces Rd and

Rp, their direct product A × B lies in Rd+p, and hence inherits the

Euclidean metric. From an abstract point of view, when A and B are

arbitrary metric spaces, there are a number of natural metrics that

one might use. Chief among these are the following: here x, x′ ∈ A

and y, y′ ∈ B, and dA and dB are the metrics onA and B, respectively.

d1((x, y), (x
′, y′)) = dA(x, x

′) + dB(y, y
′),

d2((x, y), (x
′, y′)) =

√
dA(x, x′)2 + dB(y, y′)2,

d∞((x, y), (x′, y′)) = max{dA(x, x′), dB(y, y
′)}.

The standard metric that we obtain in the Euclidean case is d2; how-

ever, if we endow Euclidean space with the alternate metric (2.11),

we obtain d1, and similarly (2.12) leads to d∞. As in Exercise 2.5, the

three metrics d1, d2, and d∞ are strongly equivalent, and hence any

of the three may be used for computations of Hausdorff dimension.

Exercise 7.5. Using the product measures mH(·, α)×mH(·, β), show
that for any two sets A and B,

(7.12) dimH(A×B) ≥ dimH A+ dimH B.

Exercise 7.5 establishes one half of (7.11). However, the reverse

inequality is not true in general; a counterexample to this effect was

first produced by Besicovitch.6

Example 7.8. We produce two sets A,B ⊂ [0, 1] which both have

Hausdorff dimension equal to 0, but are large enough that

A+B = {x+ y | x ∈ A, y ∈ B} ⊃ [0, 1].

6The example we give here is slightly less general than the one given in [BM45],
but it follows the same idea.
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Since the map f : R2 → R given by f(x, y) = x+ y is Lipschitz, this

will imply that

dimH(A×B) ≥ dimH f(A×B) = dimH(A+B) ≥ dimH [0, 1] = 1.

To construct A and B, we first fix an increasing sequence of pos-

itive integers nk, which is to satisfy a certain growth condition to be

defined below. We write x = 0.x1x2x3 · · · for the binary expansion of

x ∈ [0, 1]; if x is a dyadic rational, so that its binary expansion termi-

nates in an infinite string of zeros or ones, we choose the expansion

which ends in zeros. Now define sets Zk ⊂ [0, 1] as follows:

Zk = {x ∈ [0, 1] | xi = 0 for all nk < i ≤ nk+1}.

Finally, define A and B by

A = Z1 ∩ Z3 ∩ Z5 ∩ · · · ,
B = Z2 ∩ Z4 ∩ Z6 ∩ · · · .

That is, if we think of the sequence {nk} as partitioning N into a

sequence of intervals (nk, nk+1], then A is the set of numbers whose

binary digits xi are zero whenever i lies in an odd interval; similarly,

numbers in B have binary expansions which vanish on the even in-

tervals.

It is immediately apparent that any w ∈ [0, 1] may be written as

w = x + y where x ∈ A and y ∈ B; simply take x and y to be the

numbers whose binary expansions are given by

xi =

{
0 i ∈ (n2k−1, n2k],

1 i ∈ (n2k, n2k+1],
yi =

{
1 i ∈ (n2k−1, n2k],

0 i ∈ (n2k, n2k+1].

Thus we need only choose nk such that dimH A = dimH B = 0.

Observe that for odd values of k, the set Z1 ∩Z3 ∩ · · · ∩Zk is a union

of 2mk intervals of length 2−nk , where

mk = (n2 − n1) + (n4 − n3) + · · ·+ (nk−1 − nk−2).

Since A ⊂ Z1 ∩ Z3 ∩ · · · ∩ Zk for every odd k, we thus have a family

of covers of A by intervals of length 2−nk , whence

dimH A ≤ dimBA ≤ lim
k→∞

log 2mk

− log 2−nk
= lim

k→∞

mk

nk
.
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Since mk only depends on n1, . . . , nk−1 and not on nk itself, we may

choose nk to be increasing rapidly enough that this last quantity

tends to 0, and hence dimH A = 0. Similar considerations give us

dimH B = 0, and hence we have strict inequality in (7.12).

Besicovitch also proved that (7.11) does hold under an additional

assumption on the sets involved.

Theorem 7.9. If A is such that dimH A = dimBA = dimBA, then

equality holds in (7.11) for any B.

Proof. This is a consequence of Exercise 7.5 and the following general

inequality, which holds for arbitrary A and B:

(7.13) dimH(A×B) ≤ dimBA+ dimH B.

To prove (7.13), we fix s > dimBA and t > dimH B; thus

lim
ε→0

logN(A, ε)

− log ε
< s,

lim
ε→0

mH(B, t, ε) = 0.

In particular, there exists ε0 > 0 such that for all 0 < ε < ε0,

N(A, ε) < ε−s,(7.14)

mH(B, t, ε) < 1.(7.15)

Now by (7.15) there exists an ε-cover {Ui | i ∈ N} of B such that∑
i(diamUi)

t < 1. For each i, (7.14) guarantees the existence of a

cover {Ui,j | 1 ≤ j ≤ N(A, diamUi)} of A such that diamUi,j =

diamUi for all j. Using the metric d∞ on the direct product A× B,

we see that

diam(Ui,j × Ui) = max{diamUi,j , diamUi} = diamUi < ε,
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and hence

mH(A×B, s+ t, ε) ≤
∑
i,j

diam(Ui,j × Ui)
s+t =

∑
i,j

(diamUi)
s+t

=
∑
i

N(A, diamUi)(diamUi)
s+t

<
∑
i

(diamUi)
−s(diamUi)

s+t

=
∑
i

(diamUi)
t < 1.

Taking the limit as ε → 0, we see that mH(A × B, s + t) < ∞, and

hence dimH(A×B) ≤ s+ t. Since s > dimBA and t > dimH B were

arbitrary, this establishes (7.13). �

Exercise 7.6. Let C1 and C2 be the limit sets of two Moran construc-

tions on the line. Show that dimH(C1 × C2) = dimH C1 + dimH C2.

b. Quantifying the attractor. Returning to the Smale–Williams

solenoid Λ, we write

Λ(θ, ε) = Λ ∩ (D2 × (θ − ε, θ + ε))

for the ε-wedge of the attractor around angle θ. Since Λ can be

written as a finite union of such wedges, we can compute dimH Λ by

computing dimH Λ(θ, ε).

Writing C = Λ ∩ (D2 × {θ}) for a cross-section of the attractor,

we recall that Λ(θ, ε) is homeomorphic to C × (−ε, ε). In fact, the

homeomorphism can be chosen to be bi-Lipschitz, and so

dimH Λ(θ, ε) = dimH(C × (−ε, ε)).

Theorem 7.9 only requires coincidence of the Hausdorff and box di-

mensions for one of the two sets A and B. Since these quantities

coincide for the interval (−ε, ε), we have

dimH Λ(θ, ε) = (dimH C) + 1,

and since dimH C does not depend on θ or ε,

(7.16) dimH Λ = (dimH C) + 1.
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Of course, we still need to compute dimH C. In the simplest case

where α = β, the construction of C is exactly of the sort dealt with

by Moran’s theorem, and we have

dimH C =
log 2

− logα
.

Thus we get

(7.17) dimH Λ = 1 +
log 2

− logα
= log 2

(
1

log 2
+

1

− logα

)
;

this is reminiscent of (4.17), which related Hausdorff dimension and

topological entropy for a one-dimensional Markov map with constant

slope. Indeed, one may show that the topological entropy of the

Smale–Williams solenoid is htop(Λ, f) = log 2, and that the measure

of maximal entropy is the product of the (1/2, 1/2)-Bernoulli measure

on W s and Lebesgue measure on Wu
ε .

In (4.17), the scaling factor relating the Hausdorff dimension and

the topological entropy was the reciprocal of the Lyapunov expo-

nent. In (7.17), this factor is the somewhat odd-looking expression

(1/ log 2)− (1/ logα). What are we to make of this?

c. Lyapunov exponents in multiple dimensions. When f is a

one-dimensional map, the definition of the Lyapunov exponent is rel-

atively simple: at a given point x, the Lyapunov exponent λf (x) is

the asymptotic rate of expansion along the orbit of x (provided the

limit exists). For maps in more than one dimension, the situation is

somewhat more complicated, as f may have different rates of expan-

sion in different directions. Indeed, from the definition of a hyperbolic

set Λ we see that along the orbit of any point x ∈ Λ, there are some

directions in which f is expanding (corresponding to a positive Lya-

punov exponent) and some in which f is contracting (corresponding

to a negative Lyapunov exponent).

Thus in general, the Lyapunov exponent depends not only on the

point x but also on the direction v in which expansion is measured.

Definition 7.10. Let U ⊂ Rd be the domain of an invertible differ-

entiable map f : U → U . Given a point x ∈ U and a vector v ∈ Rd,

the forward Lyapunov exponent of f at the point x in the direction
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of v is

λ+
f (x,v) = lim

k→∞

1

k
log ‖Dfk(x)v‖,

and the backward Lyapunov exponent is

λ−
f (x,v) = lim

k→∞

1

k
log ‖Df−k(x)v‖,

provided the limits exist. If λ+
f (x,v) = −λ−

f (x,v), then we call this

value the Lyapunov exponent of f at the point x in the direction of

v, and denote it by λf (x,v).

Example 7.11. Let f : R2 → R2 be the linear map defined by the

matrix
(
α 0
0 β

)
, where 0 < α < 1 < β. Then the trajectories of f are

as shown in Figure 5.3, and there are three possibilities for λ(0,v):

(1) v lies along the x-axis. In this case, λ+
f (0,v) = −λ−

f (0,v) =

logα < 0, so the Lyapunov exponent exists and is negative.

(2) v lies along the y-axis. In this case, λ+
f (0,v) = −λ−

f (0,v) =

log β > 0, so the Lyapunov exponent exists and is positive.

(3) v does not lie along either axis. In this case, λ+
f (0,v) = log β,

as the forward trajectory is repelled vertically, and λ−
f (0,v) =

− logα, as the backward trajectory is repelled horizontally. Thus

the Lyapunov exponent does not exist.

As Example 7.11 shows, the directions in which the Lyapunov ex-

ponents of a linear map exist are the eigenspaces of the map; in such a

direction, the Lyapunov exponent is the logarithm of the correspond-

ing eigenvalue. By finding a basis for Rd consisting of generalised

eigenvectors, we can decompose Rd as the direct sum of subspaces

along which the Lyapunov exponents exist. Such subspaces are called

Lyapunov subspaces, and are the generalisation of eigenspaces to non-

linear maps.

Exercise 7.7. Compute the Lyapunov exponent of the linear map

from R2 to itself given by the rotation matrix

Rθ =

(
cos θ − sin θ

sin θ cos θ

)
.

Exercise 7.8. Compute the Lyapunov exponents of the north-south

map of the unit sphere (see Exercise 7.4), where the rate of expansion
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around the north pole is α > 1, and the rate of contraction around

the south pole is β < 1.

Returning to the Smale–Williams solenoid f : Λ → Λ, we see

that f has two Lyapunov subspaces at any given point. The first

subspace is tangent to the local unstable curve Wu
ε ; any vector in

this direction is expanded by a factor of 2 under the action of f , and

so the corresponding Lyapunov exponent is log 2 > 0. The second

subspace is orthogonal to the first, and contains the stable disc W s;

any vector in this subspace is contracted by a factor of α under the

action of f , and so the corresponding Lyapunov exponent is logα < 0.

Now we may interpret the ratio in (7.17) in terms of Lyapunov

exponents; it is the sum of the reciprocals of the absolute values of

the Lyapunov exponents in the expanding and contracting directions.

d. The non-conformal case. So far, we have studied the quantita-

tive properties of the map f given in (7.6) only in the case α = β. In

this case, the map is conformal : every stable direction has the same

rate of contraction, and every unstable direction has the same rate of

expansion.

For α �= β, we are in the non-conformal case, which is much more

difficult. Because the basic sets in Figure 7.5 are no longer similar to

the basic sets at previous steps, we cannot use Moran’s theorem. This

case was studied by the German mathematician Hans Bothe, who

considered a more general class of maps f , in which the functions cos θ

and sin θ in (7.6) are replaced by arbitrary periodic functions z1(θ)

and z2(θ), which changes the geometry of how the image f(P ) wraps

around the z-axis. Bothe obtained a general formula for the Hausdorff

dimension of the attractor for “typical” functions z1 and z2, but it

was not until 1997 that the Hungarian mathematician Károly Simon

proved that sin and cos belong to this “typical” class [Sim97]. He

established that for the Smale–Williams solenoid Λ with β < α < 1/8,

we have7

dimH Λ = 1 +
log 2

− logα
= log 2

(
1

log 2
+

1

− logα

)
.

7This was later extended to include all α < 1/2 by Jörg Schmeling.
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Somewhat surpisingly, the smaller value β, which corresponds to a

direction of faster contraction, does not affect the Hausdorff dimen-

sion of the attractor! Thus only one of the two negative Lyapunov

exponents plays a role in this particular situation.

e. The attractor for the FitzHugh–Nagumo map. Returning

to the local map (5.7) for the FitzHugh–Nagumo model, we recall

that for a particular range of values of A, the map f has a trapping

region R, as shown in Figure 7.1. This ensures the existence of an

attractor Λ ⊂ R as in (7.5), and it is natural to ask what features Λ

shares with the Smale–Williams solenoid, since both are attractors.

We saw that the Smale–Williams solenoid is hyperbolic, and

hence Theorem 7.7 applies, allowing us to use all the tools of symbolic

dynamics to study the solenoid and obtain many properties which are

characteristic of hyperbolicity and chaotic behaviour, such as density

of periodic points.

The attractor Λ for the FitzHugh–Nagumo system is more diffi-

cult to study, because it is not a hyperbolic set; there are no uniformly

contracting and expanding subspaces which satisfy the definition of

hyperbolicity. However, this does not preclude the possibility that

there may exist two Lyapunov subspaces at “typical” points x ∈ Λ,

which are given by vectors vs and vu such that the map f is asymptot-

ically contracting in the direction given by vs and asymptotically ex-

panding in the direction given by vu; that is, λ(x,vs) < 0 < λ(x,vu).

Computer simulations strongly suggest that this is in fact the

case, but no rigorous proofs are available.

                

                                                                                                               



Chapter 8

Horseshoes and
Intermittent Chaos

Lecture 31

a. The Smale horseshoe: A trapping region that isn’t. Let R

be the trapping region for the FitzHugh–Nagumo map (5.7) which is

given in Proposition 7.2. Figure 8.1 shows how the set f(R) changes

as A increases. The “arms” of the image become longer and longer,

until when A is large enough, f(R) is no longer contained in R, as in

the third picture. Thus R is no longer a trapping region; since we have

no information on the behaviour of trajectories outside the region R,

we can no longer completely describe the dynamics of the map in

terms of what happens within R. However, we can still describe the

trajectories which remain in R, and so we may consider the set of all

points x such that fk(x) ∈ R for all k.

Figure 8.1. Escape from the trapping region.
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β

α

Figure 8.2. A horseshoe.

β

αR1 R2

f(R1)

f(R2)

Figure 8.3. Points with two iterates.

Rather than try to describe this set for the FitzHugh–Nagumo

map, which leads to rather complicated geometric considerations,

we begin by considering a model case in which the picture is much

cleaner. Consider a map f in R2 which acts on the square R =

[0, 1]× [0, 1] as shown in Figure 8.2; first the square is squeezed in the

vertical direction by a factor of α < 1/2 and stretched in the horizon-

tal direction by a factor of β > 2, then it is bent and positioned so

that f(R) ∩ R consists of two rectangles, each of width 1 and height

α.

Notice that significant portions of the square R are mapped to

the area outside R; this is reminiscent of the one-dimensional Markov

maps we have studied, including the logistic map for c < −2, under

which some points could only be iterated a few times because their

trajectories were carried outside the domain of definition of the map.

For these maps, we found that Lebesgue-a.e. point can only be iter-

ated finitely many times before escaping from the domain of definition

and that the set of points which can be iterated infinitely often is a

repelling Cantor set.

This motivates us to ask the same question for the horseshoe map

f shown in Figure 8.2; which points in R can be iterated infinitely

often? That is, what is the largest set of points whose trajectories

remain in R for all time?
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β

α

f(R11) f(R12)

f(R22)f(R21)

R11

R12

R22

R21

Figure 8.4. Points with three iterates.

Figure 8.3 duplicates Figure 8.2 but highlights the parts of R

whose image lies in R; in particular, we see that the set of points

for which f can be iterated at least twice is the union of the two

rectangles R1 and R2, each of which has height 1 and width β−1.

So for which points can f be iterated three times? In order to

have f2(x) ∈ R, we must have f(x) ∈ R1 ∪R2; Figure 8.4 shows the

set of points whose image lands in R1 or R2. Observe that

f−1(R1) = R11 ∪R21,

f−1(R2) = R12 ∪R22,

and that Rw1w2
⊂ Rw1

for all w1, w2 ∈ {1, 2}. Continuing this pro-

cess, we see that the set of points for which f can be iterated n times

is the union of 2n rectangles Rw1...wn
, each of width β−n and height

1, which are characterised by

(8.1) Rw1...wn
= Rw1

∩ f−1(Rw2
) ∩ · · · ∩ f−(n−1)(Rwn

).

Letting n go to infinity, we see that the non-escaping set is

(8.2) Γ+ = {x ∈ R2 | fn(x) ∈ R for all n ≥ 0} = Cβ−1 × [0, 1],

where Cβ−1 ⊂ [0, 1] is a Cantor set with both ratio coefficients equal

to β−1; in particular, this implies that

dimH Γ+ =
(
dimH Cβ−1

)
+ 1 =

log 2

log β
+ 1.

The story so far has largely been a retelling of a familiar tale which

we have already seen play out for one-dimensional Markov maps.

There is a twist in the plot, however: unlike those maps, the horseshoe

map f is one-to-one and, hence, invertible on its image. Consequently,
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S1

S2

S11

S12

S21

S22

Figure 8.5. Points with two backwards iterates.

we are interested in points for which both the forward and backward

trajectories remain in R. That is, we are also interested in

Γ− = {x ∈ R2 | fn(x) ∈ R ∀n ≤ 0}.

Since f(R) does not cover the entire square R, we see that the

only points in R with any preimages at all are those which lie in f(R1)

or f(R2) (see Figure 8.3). Write Si = f(Ri); then the set of points

in R with one backwards iterate is the union of the two rectangles S1

and S2, each of which has width 1 and height α.

The set of points with two backwards iterates is

f(f(R) ∩R) ∩R = f(S1 ∪ S2) ∩R = S11 ∪ S12 ∪ S22 ∪ S21,

as shown in Figure 8.5, where Sw1w2
= Sw1

∩ f(Sw2
) = f2(Rw2w1

).

Continuing, we obtain rectangles Sw1...wn
of width 1 and height αn

characterised by

(8.3) Sw1...wn
= Sw1

∩ f(Sw2
) ∩ · · · ∩ f (n−1)(Swn

) = fn(Rwn...w1
).

We see that

Γ− = [0, 1]× Cα,

where Cα ⊂ [0, 1] is a Cantor set with both ratio coefficients equal to

α; hence

dimH Γ− = 1 +
log 2

− logα
.
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Now we can describe the set of points for which all forward and

backward iterates remain in R:

Γ = {x ∈ R2 | fn(x) ∈ R for all n ∈ Z }
= Γ+ ∩ Γ−

= (Cβ−1 × [0, 1]) ∩ ([0, 1]× Cα)

= Cβ−1 × Cα.

The set Γ is known as the Smale horseshoe, and has many impor-

tant dynamical properties; chief among these is the fact that it is a

hyperbolic set, with all the attendant consequences of that fact.

Remark. Some of the motivation for the Smale horseshoe came from

the van der Pol equation mentioned in Chapter 5, which was studied

by Norman Levinson in the 1940s. He later brought the dynamical

behaviour of that system to the attention of Stephen Smale, who in

1961 extracted the salient geometric details to produce the horseshoe

map f , which captures many of the essential features of a large family

of “chaotic” maps, as we will later see.

b. Hausdorff dimension of the horseshoe. Using Moran’s the-

orem and Theorem 7.9, we can compute the Hausdorff dimension of

the Smale horseshoe:

(8.4)

dimH Γ = dimH Cβ−1 + dimH Cα

= log 2

(
1

log β
+

1

− logα

)
.

Exercise 8.1. Show that the Smale horseshoe Γ is the limit set of

a geometric construction in the square R. Describe the basic sets of

this construction, and explain why Moran’s formula (2.14) cannot be

applied in general to compute the Hausdorff dimension of Γ directly.

Find the particular case when it can be applied, and show that in

that case the answer given by (2.14) agrees with (8.4).

In light of our previous experience, we expect the terms in (8.4)

to include the topological entropy and the Lyapunov exponents of f .

Indeed, just as we found for the Smale–Williams solenoid, we

have htop(Γ, f) = log 2, and the measure of maximal entropy is the

product of the (1/2, 1/2)-Bernoulli measures on each of Cβ−1 and Cα.
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For the Lyapunov exponents, we observe that at every point x ∈
Γ, we have Df(x) = ±

(
β 0
0 α

)
, and so the Lyapunov exponents are

logα in the vertical (contracting) direction, and log β in the horizontal

(expanding) direction.

Thus we see that (8.4) has the same form as (7.17); this suggests

that some underlying process is at work here, relating the various

quantities of dimension, entropy, and Lyapunov exponent. We give an

informal explanation of this relationship. The first step is to observe

that both these equations relate the global quantities and both have

local versions; for example, (8.4) is completely analogous to the local

equation

(8.5) dµ(x) = hµ,f (x)

(
1

λu
f (x)

+
1

−λs
f (x)

)
,

where λu
f (x) and λs

f (x) are the positive and negative Lyapunov ex-

ponents, respectively, of the map f at the point x, and µ is any

f -invariant measure.

We saw an equation almost exactly like this earlier, in (4.28). The

difference is that now the map f is invertible; consequently, if we use

the definition of Bowen balls in (4.13), the Bowen balls Bf (x, n, δ) will

not converge to the point x as n → ∞, but rather to the local stable

curve through x. In order to have convergence to a single point, we

must consider two-sided Bowen balls,

Bf (x,m, n, δ) = {y ∈ Γ | d(f j(x), f j(y)) < δ for all m ≤ j ≤ n},

where typically we will takem < 0 < n. Then if we choosem < 0 < n,

δ > 0, and ε > 0 such that

ε ≈ δe−nλu
f (x) ≈ δe−mλs

f (x),

we find that

B(x, ε) ≈ Bf (x,m, n, δ),

and (8.5) follows upon taking logarithms and limits, since for an in-

vertible map f , the local entropy is

hµ,f (x) = lim
n−m→∞

1

n−m
log µ(Bf (x,m, n, δ)).
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What we have given is only a bare-bones sketch of the argument, and

the reader is strongly encouraged to work through the details of the

computation.

c. Symbolic dynamics on the Smale horseshoe. Because Γ is

a hyperbolic set, Theorem 7.7 guarantees the utility of symbolic dy-

namics to describe the map f : Γ → Γ. In fact, we can make the

correspondence explicit.

Recall that the set of points in R whose image is also in R is

R1 ∪ R2, where R1 and R2 are the rectangles shown in Figure 8.3.

It follows that Γ ⊂ R1 ∪ R2, and so given a point x ∈ Γ, we have

fn(x) ∈ R1 ∪ R2 for all n. Define a sequence w+ ∈ Σ+
2 such that

fn(x) ∈ Rwn
for all n ≥ 0; in this manner we can associate to each

point x ∈ Γ a sequence in the symbolic space Σ+
2 .

Observing further that f (n−1)(f(x)) = fn(x) ∈ Rwn+1
, we see

that the point f(x) is coded by the sequence

σ(ω+) = (w1, w2, w3, . . . ),

and it looks like we are well on our way to establishing a topological

conjugacy between the map f : Γ → Γ and the shift σ : Σ+
2 → Σ+

2 .

Once again, however, there is a twist in the plot. If we follow the

recipe from our previous encounters with symbolic dynamics, then

the sequence w+ should determine the point x uniquely as the only

point in the infinite intersection

W s(w+) = Rw0
∩Rw0w1

∩ · · · ∩Rw0...wn
∩ · · · .

However, each rectangle Rw0...wn
has width β−(n+1) and height 1 (see

Figures 8.3 and 8.4); this means that the intersection W s(w+) is a

vertical line, rather than a single point! Indeed, any point on the

vertical line W s(x) = W s(w+) passing through x has a forward tra-

jectory which is coded by the same sequence w+ (and so this vertical

line is the local stable curve through x).

We see, then, that the coding of the forward trajectory is not

enough to determine x uniquely. We also need to code the backward

trajectory {f−n(x)}∞n=0; thus we define a sequence

w− = (w−1, w−2, . . . )
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such that fn(x) ∈ Rwn
for all n ≤ −1. Once again, w− does not

determine x uniquely; we have

Wu(w−) = Sw−1
∩ Sw−1w−2

∩ · · · ∩ Sw−1···w−n
∩ · · · ,

where each rectangle Sw−1...w−n
has width 1 and height αn, and so

the intersection Wu(x) = Wu(w−) is the horizontal line through x

(the local unstable curve).

Although neither the forward itinerary w+ nor the backward

itinerary w− of x is by itself enough to determine x uniquely, the

combination of the two does suffice. Indeed, the vertical line W s(x)

and the horizontal line Wu(x) meet in a single point, x itself. Thus

we can define a coding map

h : Σ2 → Γ,

w = (w−, w+) �→ Wu(w−) ∩W s(w+),

where (w−, w+) denotes the concatenation

(w−, w+) = (. . . , w−2, w−1|w0|w1, w2, . . . ).

Thus x = h(w) is the unique point in Γ for which fn(x) ∈ Rwn
for

all n ∈ Z.

Proposition 8.1. The coding map h : Σ2 → Γ is a homeomorphism.

Proof. h is a bijection, and x = h(w) is defined by the fact that for

every n, we have the inclusion x ∈ Rw0w1...wn
∩Sw−1...w−n

. It follows

that h(Cw−n...w−1|w0|w1...wn
) = Rw0w1...wn

∩ Sw−1...w−n
. This implies

that h and h−1 both map closed sets to closed sets, and hence h is a

homeomorphism. �

Applying the shift map σ : Σ2 → Σ2 to a sequence w shifts the

“centre” to the right by one:

σ(. . . , w−2, w−1|w0|w1, w2, . . . ) = (. . . , w−2, w−1|w0|w1, w2, . . . ).

Thus it is transparent from the construction of the coding map h that

the following diagram commutes:

(8.6)

Σ2
σ−−−−→ Σ2⏐⏐
h ⏐⏐
h

Γ
f−−−−→ Γ
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As mentioned above, the horizontal lines Wu(x) and the vertical

lines W s(x) have a dynamical meaning. f contracts each vertical line

uniformly by a factor of α, and so given y ∈ W s(x), we have

d(fn(x), fn(y)) = αnd(x,y)
n→+∞−−−−−→ 0.

Thus W s(x) is the local stable curve through x for the map f . Simi-

larly, observe that f−1 contracts horizontal lines uniformly by a factor

of β, and so for y ∈ Wu(x), we have

d(f−n(x), f−n(y)) = β−nd(x,y)
n→+∞−−−−−→ 0.

Thus Wu(x) is the local stable curve through x for the map f−1, and

the local unstable curve through x for the map f .

We see from all this that the dynamics of the symbolic space

encode the hyperbolic structure of the horseshoe map; the stable

curve for f through a point x consists of those points whose for-

ward itineraries eventually agree with the forward itinerary of x, as

given by the sequence w+, and the unstable curve is given similarly,

as those points whose backwards itineraries eventually agree with w−.

Exercise 8.2. Using the fact that f : Γ → Γ is conjugate to σ : Σ2 →
Σ2, show that f has 2n points of period n (that is, fixed points of fn)

lying in Γ, for all n ≥ 1.

Exercise 8.3. Show that the Smale horseshoe contains a point whose

orbit is everywhere dense in the horseshoe.

Lecture 32

a. Variations on a theme: Other horseshoes.

a.1. Non-linear horseshoes. As was the case with the one-dimensional

Markov maps we discussed earlier, the symbolic approach does not

capture all the quantitative geometric information about the horse-

shoe Γ. In the first place, neither Σ2 nor the map σ depends on

the value of the parameters α and β, while varying these quantities

certainly changes the set Γ, and in particular, changes its Hausdorff

dimension. This parallels the situation for one-dimensional Markov
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Figure 8.6. A non-linear horseshoe.

maps, where the conjugacy with the one-sided shift carries no in-

formation about the ratio coefficients λi (in the linear case) or the

Lyapunov exponents λf (x) (in the non-linear case).

Furthermore, we can still carry out the whole procedure if we

perturb the map slightly, obtaining a non-linear map f such as the

one in Figure 8.6. The set of points which can be iterated once is

the union of two “rectangles” with curved sides; the set of points

with two forward iterates is the union of four such regions, and so

on. Passing to the limit by taking an intersection over all n, the set

of points whose forward trajectories remain in the domain of f is a

family of more or less vertical curves; each horizontal cross-section of

this family is a Cantor set.

Similarly, the set of points with infinitely many backwards iterates

is a family of relatively horizontal curves; each vertical cross-section

of this family is a Cantor set. Taking the intersection of the two fami-

lies, the set of points with whose forwards and backwards trajectories

remain in the domain of f for all time is a non-linear horseshoe which

is homeomorphic to the direct product of two Cantor sets C+ × C−

and which is still modeled by Σ2.

This persistence of qualitative behaviour under a small perturba-

tion of the map f , known as structural stability, is characteristic of

uniformly hyperbolic maps such as the Smale–Williams solenoid and

the Smale horseshoe. We observed a similar phenomenon in Chap-

ter 6, in the fact that windows of stability for the logistic map are

open; the essence of structural stability is that a family of systems
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cannot have a bifurcation at a parameter value for which the map is

uniformly hyperbolic.

a.2. Hausdorff dimension of non-linear horseshoes. If Γ is a non-

linear horseshoe, then we cannot determine dimH Γ as we did for lin-

ear horseshoes, by adding together dimH C+ and dimH C−, because

the homeomorphism between Γ and the direct product C+ × C− is

not in general bi-Lipschitz. (Furthermore, the cross-sections C+ and

C− may vary depending on which cross-section we choose, and we do

not have any a priori guarantee that the Hausdorff dimension is the

same for each cross-section.)

Nevertheless, the fact that the map f : Γ → Γ is modeled by

the two-sided shift σ : Σ2 → Σ2 still gives us some tools with which

to work. For example, the Non-uniform Mass Distribution Princi-

ple allows us to get information about dimH Γ by examining various

measures on Γ, while the conjugacy with the symbolic system gives us

many measures with which to work, since any shift-invariant measure

on Σ2 determines an f -invariant measure on Γ.

For example, on any horseshoe, whether linear or non-linear, we

have Bernoulli measures and Markov measures, defined much as in

the one-sided case. A probability vector (p1, p2) defines a Bernoulli

measure µ on Σ2 by

µ(Cwa...wb
) = pwa

pwa+1
· · · pwb

;

a stochastic matrix P = (pij) together with a stationary probability

vector π defines a Markov measure m on Σ2 by

m(Cwa...wb
) = pwa

pwawa+1
pwa+1wa+2

· · · pwb−1
pwb

.

As in the one-sided case, the support of a Markov measure is the

subshift of finite type

ΣA = {w ∈ Σ2 | awjwj+1
= 1 for all j ∈ Z},

where A is the 2× 2 transition matrix given by

aij =

{
0 pij = 0,

1 pij > 0.
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ΣA is shift-invariant, and so ΓA = h(ΣA) ⊂ Γ is f -invariant; thus

the horseshoe contains all manner of intricate fractals which are pre-

served by the dynamics of f . Once we have some information about

the pointwise dimension of measures supported on these sets, we can

investigate their Hausdorff dimension using the Non-uniform Mass

Distribution Principle.

Just as in the one-sided case, the local entropy of a Bernoulli

measure is given by (4.14), and that of a Markov measure is given

by (4.20). Furthermore, if µ is an ergodic measure on Γ (in particular,

if µ is a Bernoulli measure or a Markov measure with primitive tran-

sition matrix), then the Lyapunov exponents λu
f (x) and λs

f (x) exist

and are constant µ-a.e.1 Denoting the constant values by λu(µ, f)

and λs(µ, f), the relationship (8.5) from the previous lecture can be

written in terms of the global dimensional quantities for measures:

(8.7) dimH µ = h(µ, f)

(
1

λu(µ, f)
+

1

−λs(µ, f)

)
.

By the Non-uniform Mass Distribution Principle, we may ob-

tain a (hopefully tight) lower bound for dimH ΓA by maximising the

quantity on the right-hand side of (8.7) over all Markov measures

supported on ΓA. In the case where f is linear (such as the Smale

horseshoe), the Lyapunov exponents λu
f (x) and λs

f (x) are constant

everywhere, not just almost everywhere, and so the measure of max-

imal dimension coincides with the measure of maximal entropy.

When f is non-linear, the situation is more complicated, and

with the exception of certain atypical cases, no measure of maximal

dimension exists (there is a measure which has maximal dimension

in the stable direction, and another which has maximal dimension in

the unstable direction, but they do not typically coincide).

a.3. Horseshoes with more branches. Finally, we can consider the

horseshoe-like map g : R → R2 which acts on the square R as shown

in Figure 8.7. Arguing as we did for f , one finds that the set Γ of

non-escaping points is homeomorphic to Σ3 = {1, 2, 3}Z, and so the

restriction of f to Γ is conjugate to the full shift on three symbols.

1This is a consequence of the seminal Multiplicative Ergodic Theorem, due to
Oseledets. The corresponding statement for one-dimensional maps is a special case of
the classical Pointwise Ergodic Theorem, due to Birkhoff.
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Figure 8.7. A horseshoe with three branches.

If α and β are the contraction and expansion ratios in the vertical

and horizontal directions, respectively, then Γ is the direct product of

Cantor sets in the interval with ratio coefficients α and β−1, and so

dimH Γ =
log 3

− logα
+

log 3

log β
= log 3

(
1

− logα
+

1

log β

)
.

This has the same form as (8.4), giving Hausdorff dimension in terms

of entropy and Lyapunov exponents; here the topological entropy

of the map is log 3. In general, we could consider a horseshoe-like

map with k branches, and would find the same formula, with entropy

log k. This again reflects the fact that entropy somehow measures

the complexity of the system. For these maps, the system is entirely

linear on the invariant horseshoe; thus all the complexity comes from

how many times that set is folded back into itself by the map, and

the dimension is proportional to the entropy.

b. Intermittent chaos vs. persistent chaos. If we choose a “typ-

ical”2 point x = (x1, x2) in the Smale horseshoe Γ and observe its

trajectory fn(x) = (x
(n)
1 , x

(n)
2 ) by plotting either x

(n)
1 or x

(n)
2 as a

function of n, we see a chaotic signal which persists as n → ∞, with-

out ever settling down into periodic behaviour.

However, even though the Smale horseshoe Γ is the largest f -

invariant set in the square R, it has zero Lebesgue measure, and so if

we simply choose a point from the square R “at random”, it will lie

outside of Γ with probability 1. In particular, after some number of

2Here “typical” means that if µ is any invariant measure on Γ whose support is
not a periodic orbit, then the property stated holds for µ-a.e. x.
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iterations, the trajectory will leave the square; as long as it remains

in the square, it appears chaotic, but once it leaves R, all bets are off,

and some other pattern of behaviour will take over from the dynamics

of the horseshoe.

This is reminiscent of the situation described in Lecture 27, where

we considered the family of logistic maps in a window of stability. In

that case, a typical trajectory appears chaotic for some finite period

of time, during which it follows various unstable periodic orbits, but

eventually settles down to a stable periodic orbit. We referred to

this behaviour as transient chaos, indicating that although a typical

trajectory does behave chaotically, it also eventually leaves the chaotic

part of phase space and settles down to a regular pattern of behaviour.

In the present case, we have not defined the horseshoe map f

outside of R, and so we cannot say just what a typical trajectory

will do once it leaves the rectangle. Indeed, that behaviour is highly

contingent upon how f is extended to R2. For some extensions, a

typical trajectory does just what the trajectories for the logistic map

do—it leaves the rectangle of the horseshoe and bids farewell to its

wandering ways, approaching a stable fixed point. This is once again

a manifestation of transient chaos.

For other extensions, a typical trajectory leaves the rectangle of

the Smale horseshoe, but does not approach a stable fixed point;

rather, it enters the rectangle of some other horseshoe of the map f ,

elsewhere in the plane, and once again displays chaotic behaviour for

a while. Eventually, it leaves the rectangle containing that horseshoe,

and the whole scenario repeats itself; it may well be that the tra-

jectory stumbles somewhat drunkenly from horseshoe to horseshoe,

never persisting in one chaotic regime for very long, but never set-

tling down either. In this case, we have what is called intermittent

chaos ; although the chaotic behaviour never goes away entirely, as

the trajectory always finds a neighbourhood of another horseshoe in

which to sojourn, there may be long stretches of regular behaviour in

between these chaotic intervals.

Thus beyond the basic distinction between regular behaviour and

chaotic behaviour, we find that there are various sorts of chaotic be-

haviour that we may observe in the wild. To begin with, there is
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persistent chaos, where a randomly chosen trajectory lies in the basin

of attraction of a chaotic attractor, from which it never escapes. Cer-

tain quantitative features of this chaotic behaviour are related to the

dimensional properties of the attractor; since the orbit remains near

the same attractor, these quantitative features (which we will not

discuss) remain the same for all time.

Then there is intermittent chaos, in which a typical trajectory

moves from horseshoe to horseshoe; the quantitative features men-

tioned above are related to the dimensional properties of the horse-

shoe which the trajectory is following at any given time, and so they

vary when the orbit changes chaotic regimes, whether it moves to

another horseshoe and remains intermittent or to a chaotic attractor

and becomes persistent.

Finally, there is transient chaos, in which chaotic behaviour even-

tually gives way to regular behaviour. In practice, our knowledge of

a system comes from empirically observed or numerically computed

trajectories, and so we can only know a finite segment of the trajec-

tory. Consequently, we may not know the true asymptotic behaviour,

which renders the above distinction between transient and intermit-

tent chaos largely a matter of semantics. For this reason, the term

“intermittent chaos” is often used to refer to any sort of chaotic sys-

tem whose trajectories move into and out of various chaotic regimes,

whether they go from horseshoes to horseshoes, horseshoes to attrac-

tors, or horseshoes to fixed points.

c. Homoclinic orbits and horseshoes. The presence of a horse-

shoe leads to intermittent chaos; but what leads to the presence of

a horseshoe? Can we find some condition on a map f which will

guarantee that it acts as a horseshoe map on some subset R of phase

space?

To motivate the answer, let us first consider the Smale horseshoe

itself, the maximal invariant set Γ for the map f : R → R2 shown in

Figure 8.2. As we saw in (8.6), the map f : Γ → Γ is topologically

conjugate to the full shift σ : Σ2 → Σ2. This implies that it has two

fixed points, corresponding to the sequences w1 = (. . . 1|1|1 . . . ) and
w2 = (. . . 2|2|2 . . . ).
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x

(a)

x

y

(b)

Figure 8.8. Finding a homoclinic orbit in a horseshoe.

p0
x

f(x)

f 2(x)

p1

p2

Figure 8.9. A homoclinic orbit with no transversality.

Write x = h(w1), and recall that the (local) stable and unstable

curves at x are the vertical and horizontal lines, respectively, passing

through x, shown in Figure 8.8(a). Because the global stable and

unstable curves are invariant under the action of f (being defined

in terms of asymptotic behaviour of trajectories), the unstable curve

contains the entire image of the horizontal line through x, which is

the sideways “U”-shaped curve shown in Figure 8.8(b).

In particular, the point y lies on both the stable and unstable

curves of x. Thus the trajectory of y approaches x along the stable

curve as n → ∞, and along the unstable curve as n → −∞; such

an orbit, which is asymptotic to the same fixed point in both the

forwards and backwards directions, is known as a homoclinic orbit.

We see from this argument that if f has a horseshoe, then it also has

a homoclinic orbit.3

3This establishes the existence of a homoclinic orbit for both fixed points of f .
In fact, every periodic point also has intersecting stable and unstable curves, and the
points of intersection lie on homoclinic orbits. Since periodic points are dense in the
horseshoe, we see that homoclinic orbits are really quite ubiquitous.
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x

y

(a)

x

y

f(y)

(b)

x

y

f(y)
f 2(y)

(c)

Figure 8.10. Consequences of a transverse homoclinic point.

Remark. An important feature of the homoclinic point y in Fig-

ure 8.8 is that the stable and unstable curves intersect transversally.

A different sort of homoclinic orbit arises in the system depicted in

Figure 8.9, where p0 is a hyperbolic fixed point whose stable and

unstable curves coincide. We will be concerned primarily with trans-

verse homoclinic intersections, where the stable and unstable curves

are distinct and cross each other at a non-zero angle.

This relationship between horseshoes and homoclinic orbits might

remain a mere curiosity, were it not for the fact that the implication

actually runs both ways, as we shall now see. Setting aside the partic-

ular form of the map defining the Smale horseshoe, let us consider an

arbitrary map f with a transverse homoclinic point y for a hyperbolic

fixed point x, as shown in Figure 8.10(a).

The unstable curve is invariant, and so it also passes through

f(y), which lies on the stable curve between y and x; as Figure 8.10(b)

shows, this forces the unstable curve to fold back on itself. A similar

argument applies to f2(y), as Figure 8.10(c) shows, and indeed to

any fn(y); thus the unstable curve folds back on itself infinitely often

and is stretched further and further between successive intersections

with the unstable curve. Not only that, but the stable curve is left

invariant by the action of f−1 and must pass through all the points

fn(y) for n < 0, so it folds back on itself infinitely often as well. The

resulting picture is known as a homoclinic tangle; part of a typical

homoclinic tangle is shown in Figure 8.11, which captures no more

than the very beginning of the complexity of the entire situation.
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x

Figure 8.11. A homoclinic tangle.

Observe that the picture in Figure 8.10 is somewhat idealised,

and that the intersections between the stable and unstable curves

may not be orthogonal initially; however, as n → ±∞, the angle of

intersection at fn(y) goes to π/2. In particular, this implies that

the angle of intersection between the stable and unstable curves is

uniformly bounded away from 0, so that the transversality we have

at y is in fact uniform across all points of intersection.

One sees immediately from Figure 8.11 that the geometric stuc-

ture of the stable and unstable curves, and hence of the orbits of

the system, is fantastically complicated; Henri Poincaré, who first

discovered this picture in 1889 in conjunction with his work on the

three-body problem, remarked,4

When we try to represent the figure formed by

these two curves and their infinitely many intersec-

tions, each corresponding to a doubly asymptotic

solution, these intersections form a type of trellis,

tissue, or grid with infinitely fine mesh. Neither

of the two curves must ever cut across itself again,

but it must bend back upon itself in a very com-

plex manner in order to cut across all of the meshes

in the grid an infinite number of times.

One must be struck by the complexity of this

shape, which I do not even attempt to illustrate.

4As quoted in [KH95].
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Nothing can give us a better idea of the compli-

cation of the three-body problem, and in general

of all problems of dynamics for which there is no

uniform integral.

What Poincaré missed is that the homoclinic tangle actually con-

tains a horseshoe: this fundamental result is due to Smale (for a proof,

see [HK03] or [KH95]).

Theorem 8.2. Given a transverse homoclinic intersection for a hy-

perbolic fixed point x, one can find a rectangle R containing x and an

integer n such that fn acts on R in a manner similar to the canonical

horseshoe map; in particular, there exists a Cantor set Γ ⊂ R which

is closed and invariant, which is a hyperbolic set for fn, and on which

the action of fn is conjugate to a shift.5

Recalling our previous discussion of horseshoes and intermittent

chaos, we conclude that the existence of a transversely homoclinic

point implies the existence of a horseshoe, which in turn implies the

presence of intermittent chaos. On the face of it, this is quite a

powerful result given the simplicity of the assumption!

5In fact, Γ is the closure of the set of intersections of the stable and unstable
curves at x.

                

                                                                                                               



                

                                                                                                               



Chapter 9

Continuous-Time
Systems: The Lorenz
Model

Lecture 33

a. Continuous-time systems: Basic concepts. With the excep-

tion of a brief discussion in Chapter 5 of the differential equations for

the FitzHugh–Nagumo model, all the systems we have studied up to

this point have been given in terms of a map from some domain to

itself. Such systems are known as discrete-time systems, since “time”

moves in discrete increments, corresponding to how many times the

map has been iterated. In this final chapter, we will focus our at-

tention on continuous-time systems, which are specified by ordinary

differential equations (ODEs) rather than maps. Before examining

the connections between the discrete and continuous-time cases, we

will point out a striking difference between the two: for discrete-time

systems, we were able to produce chaotic behaviour in maps of any

dimension, while we will see that continuous-time systems cannot be

chaotic in fewer than three dimensions.

We begin by recalling some of the basic notions regarding dif-

ferential equations. By adding auxiliary variables if necessary, the

system of ODEs specifying a continuous-time system may be written

253
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as a single first-order ODE for a vector-valued function x. That is,

we consider functions x : (a, b) → Ω ⊂ Rd which solve the equation

(9.1) ẋ(t) = F(x(t)),

where F : Ω → Rd is the function defining the ODE on the domain1

Ω ⊂ Rd. For the remainder of this lecture, we consider the case d = 2;

if we write x = (x1, x2) and F(x) = (F1(x), F2(x)), then (9.1) may

be written coordinate-wise as the system of differential equations

(9.2)
ẋ1(t) = F1(x1(t), x2(t)),

ẋ2(t) = F2(x1(t), x2(t)).

Together with an initial condition x(t0) = x0 at time t0, the equa-

tions (9.2) (or (9.1)) define an initial value problem which we are

interested in solving.

If the function F is continuously differentiable—that is, if all the

partial derivatives ∂Fi

∂xj
exist and are continuous on all of Ω—then the

Fundamental Theorem on Existence and Uniqueness from the theory

of ODEs (see [Liu03]) implies that given an initial condition x0 ∈ Ω

and a time t0, there exists ε = ε(x) > 0 such that the system has a

unique solution on some interval t0 − ε < t < t0 + ε.

By gluing together the solutions on these small intervals, the

solution may be extended to some maximal interval a < t < b; the

endpoints a and b are either infinite or the points at which x(t) reaches

the boundary of Ω. If Ω is unbounded, then it is possible for a solution

x(t) to reach infinity in finite time; this phenomenon can be avoided

by requiring, for example, that

(9.3) sup {‖DF(x)‖ | x ∈ Ω} < ∞.

a.1. ODEs as geometric objects. The ODE (9.1) can also be given a

geometric interpretation. The vector F(x) specifies a direction and

length; placing this vector so that it originates at the point x, we

obtain a vector field in the plane. Solutions of the ODE (9.1) cor-

respond to integral curves of the vector field—that is, curves whose

tangent vector at each point is exactly the element of the vector field

at that point, as shown in Figure 9.1.

1To be precise, we take our domain Ω to be homeomorphic to an open ball in R
d.
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Figure 9.1. Some integral curves for a vector field.

Interpreting an ODE in terms of its associated vector field can be

of great utility in answering certain global questions regarding fixed

points, as results from index theory, etc. can be brought into play.

a.2. ODEs as dynamical objects. The integral curves γ : (a, b) → R2

which represent solutions of the ODE admit various parametrisations,

as do all curves; however, the requirement that the tangent vector

γ̇(t) have the same length as the vector F(γ(t)) fixes a unique natural

parametrisation. Writing γx for the unique curve with γx(0) = x and

γ̇(t) = F(γ(t)), we see that γx(t) is the point in R2 which the system

with initial condition x reaches after a time t has elapsed. The map

ϕt : x → γx(t) is called the time-t map of the system.

This defines a one-parameter family of maps ϕt : Ω(t) → Ω, where

Ω(t) consists of the points x ∈ Ω such that γx(τ ) remains in Ω for

0 ≤ τ ≤ t. If Ω = R2 and ‖DF(x)‖ is bounded as in (9.3), then ϕt is

defined on all of R2 for every t.

Exercise 9.1. Show that the maps ϕt depend smoothly on t. In

particular, show that

dϕt(x)

dt

∣∣∣
t=0

= F(x)

for every x ∈ Ω.

Each of these maps corresponds to evolving the system forward

(or backward) by the appropriate amount of time, and they are related

to each other by the group property

(9.4) ϕt+s = ϕt ◦ ϕs = ϕs ◦ ϕt;

that is, ϕt+s(x) = ϕt(ϕs(x)) = ϕs(ϕt(x)) for all x ∈ R2 and t, s ∈ R.
                

                                                                                                               



256 9. Continuous-Time Systems: The Lorenz Model

Definition 9.1. A flow on Rd is a one-parameter family of one-to-one

differentiable maps ϕt : Rd → Rd such that

(1) ϕ0(x) = x for all x ∈ Rd.

(2) The group property (9.4) holds for all s, t ∈ R.

(3) The function ϕ(t,x) = ϕt(x) is differentiable in t for all x ∈ Ω.

Flows provide the third way of looking at continuous-time sys-

tems; the three descriptions of such a system in terms of an ODE,

a vector field, and a flow are all equivalent, and which one is most

suitable depends on the circumstances.

The relationship between discrete-time and continuous-time sys-

tems is clearest when we consider the latter in terms of flows. If we

restrict our attention to integer values of s and t, then (9.4) reduces

to (1.2), which reflects the fact that for a fixed value of t, say t = 1,

the time-t map of a continuous-time system defines a discrete-time

system.

b. Fixed points of continuous-time systems. To describe the

trajectories of the solutions to an ODE, we begin (as always), by

finding the fixed points. In the dynamical language of the flow ϕt,

these are the points x such that ϕt(x) = x for all t ∈ R; in the

geometric language of vector fields, these are the points at which the

vector field vanishes; and in the language of ODEs, these are the zeros

of the function F, the points at which F(x) = 0, or in terms of the

coordinate functions,

(9.5) F1(x1, x2) = F2(x1, x2) = 0.

Suppose for the present that (9.5) has only finitely many solutions

x(1), . . . ,x(n). Then near the fixed point x(i), Proposition 5.1 gives

(9.6) F(x) = F(x(i)) +DF(x(i))(x− x(i)) + r(x),

where r(x) is an error term of order o(‖x − x(i)‖). Because x(i) is

fixed, the ODE (9.1) becomes

ẋ(t) = F(x(t)) = DF(x(i))(x(t)− x(i)) + r(x(t)),

and using coordinates v = x− x(i), we have

v̇(t) = DF(x(i))v(t) + o(‖v‖).
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(a) (b) (c)

Figure 9.2. Trajectories near an attracting fixed point.

Since the perturbation from the linear map is small in a neighbour-

hood of a fixed point x(i), we may hope to describe the solutions

of (9.1) near x(i)—and in particular, determine the stability of x(i)—

by first describing the solutions of the linear system

v̇(t) = DF(x(i))v(t),

which depend on the real part of the eigenvalues of DF(x(i)). In two

dimensions, there are only three non-degenerate possibilities:

(1) Both eigenvalues have negative real part. Then the trajectories

v(t) are the curves shown in one of the three phase portraits in

Figure 5.2. If the eigenvalues have a non-zero imaginary part,

x(i) is called an attracting focus and the trajectories are those

shown in Figure 9.2(a). If the eigenvalues lie on the real line, x(i)

is called an attracting node and the trajectories are the curves

shown in Figure 9.2(b) or (c).

(2) Both eigenvalues have positive real part. Then the trajectories

are the same curves as in the previous case, but move in the

opposite direction, away from the fixed point instead of towards

it. In this case the fixed point is either a repelling focus or a

repelling node.

(3) The eigenvalues are real, and have different signs (one eigenvalue

is negative and the other positive). In this case the trajectories

follow the curves shown in Figure 9.3, and the fixed point is called

a saddle. The attracting and repelling directions (horizontal and

vertical in the picture) correspond to the eigenvectors ofDF(x(i)).
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Figure 9.3. Trajectories near a saddle.

Remark. In the discrete-time case, we were at pains to point out

that the curves in Figures 9.2 and 9.3 are not themselves trajectories

of the system; in the continuous-time case, by contrast, these curves

are trajectories. This changes the topological nature of things, and

will have ramifications later on.

The three possibilities above correspond directly to the three pos-

sible behaviours of a fixed point for a discrete-time system which we

discussed in Lecture 22. However, the criteria here differ from the cri-

teria in that case, where it was the absolute value of the eigenvalues

which determined the stability.

To see why this is, observe that the stability of x(i) for the

continuous-time flow ϕt coincides with the stability of x(i) for the

discrete-time system given by the time-1 map ϕ1. Now the eigen-

values of Dϕ1(x
(i)) are of the form eλ, where λ is an eigenvalue of

DF(x(i)), and we observe that eλ lies on the unit circle if and only if

λ lies on the imaginary axis.

Thus the criteria are different from the discrete-time case, but

the general idea remains the same; the stability of a fixed point for

the non-linear system can be found in terms of the eigenvalues of its

linearisation.

We note, though, that there are also various degenerate cases

which may occur. For example, if both eigenvalues are purely imagi-

nary, then the trajectories of the linear system are concentric circles

around the fixed point, as shown in Figure 9.4. In this case, the non-

linear effects may (or may not) qualitatively change the behaviour of
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Figure 9.4. Trajectories around a centre.

the system in an arbitrarily small neighbourhood of the origin, and

so we gain no information about the stability of the fixed point.

Exercise 9.2. Consider the following system of differential equations:

ẋ = ax(1− x− by), ẏ = ay(1− y − bx).

For an arbitrary value of the parameters a and b, find the fixed points,

and determine the type of their stability.

Lecture 34

a. The pendulum. One of the standard examples of a non-linear

differential equation is the pendulum, a massless rod with one end

fixed and a point mass at the other end. We let θ denote the angle by

which the rod is displaced from the vertical, as shown in Figure 9.5(a).

Neglecting air resistance and other dissipative effects, the to-

tal energy of the pendulum is conserved. This quantity is given by
1
2mv2+mgh, where m is the amount of mass at the end of the pendu-

lum, v is the velocity of that mass, g is gravity, and h is the vertical

displacement of the mass relative to the pivot point. Writing L for

the length of the pendulum, we have v = Lθ̇ and h = −L cos θ, so the

total energy is

(9.7) E(θ, θ̇) =
1

2
mL2(θ̇)2 −mgL cos θ.

Because this quantity is constant in time, we may differentiate with

respect to t and obtain

0 = mL2θ̇θ̈ +mgLθ̇ sin θ.
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x2

x1

θ

(a) (b)

−π π

Figure 9.5. A pendulum.

Writing a = g/L, we see that the equation governing the motion of

the pendulum is

(9.8) θ̈ + a sin θ = 0.

We require two initial conditions, θ and θ̇, in order to specify a

particular solution of (9.8). Thus the phase space of the pendulum

is two-dimensional; if we write x1 = θ and x2 = θ̇, then (9.8) may be

rewritten as

(9.9)
ẋ1 = x2,

ẋ2 = −a sinx1,

or even more succinctly, in a single equation as ẋ = F(x), where

F(x1, x2) = (x2,−a sinx1), which allows us to use the language of

the previous lecture.

The fixed points of (9.9) occur at (kπ, 0) for k ∈ Z; however, since
adding 2π to x1 does not change the physical state of the system,

there are actually only two fixed points. One of these corresponds to

a pendulum hanging motionless, pointing straight down (when k is

even); the other corresponds to a pendulum balancing on its pivot,

pointing straight up (when k is odd).

Intuitively, we feel that the first of these is “stable” while the

second is “unstable”; we may attempt to confirm and clarify this

intuition by linearising around the fixed points. Upon doing so, we

discover that at x = (0, 0), both eigenvalues of DF(x) are purely
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imaginary, and so the linearised system is a rotation, while at x =

(π, 0), one eigenvalue is positive and one is negative, and so (π, 0) is

a saddle for the linearised system.

From our earlier discussion, it follows that (π, 0) is a saddle for the

non-linear system as well. This reflects our intuition that it should be

“unstable”, since a randomly chosen nearby trajectory will eventually

be repelled; while there are trajectories which approach (π, 0), they

have zero Lebesgue measure.

At the origin, the eigenvalues have zero real part, and so we are

in a degenerate case where the behaviour of the non-linear system

is not determined by the linear part. However, we can use the fact

that we know a conserved quantity for the system—the total energy.

Rewriting (9.7) as

E(x1, x2) =
1

2
mL2(x2

2 − 2a cosx1)

shows that the trajectories of the pendulum move along level curves

of x2
2 − 2a cosx1. Near the origin, these are the closed trajectories

shown in Figure 9.5(b), and so the origin is stable in the sense that

nearby trajectories remain nearby, although they do not approach 0,

just as with the trajectories in Figure 9.4.

What is the physical interpretation of the various trajectories in

Figure 9.5(b)? Note that every trajectory intersects the vertical axis,

which corresponds to the configuration where the pendulum is pointed

straight down. The height at which the trajectory intersects the axis

corresponds to the speed with which the pendulum is moving when

it reaches this position.

If this speed is relatively small, then the pendulum will rise a litle

ways, eventually reach a maximum height (equivalently, a maximum

angle of displacement), and then fall again, passing back through the

line x1 = 0 with the same speed it initially had, but in the other

direction, and so on; this corresponds to the closed nearly elliptical

orbits around the origin in Figure 9.5(b). After some finite time T ,

the system is back where it started, and so for these trajectories we

have x(t+ T ) = x(t) for all t ∈ R: these are periodic orbits.

If we start the pendulum off with a greater initial speed, then it

will reach a greater height before reversing direction; it will also take
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longer to reach its maximum angle, and so the period T increases.

At some critical initial speed, the maximum angle will be equal to π;

that is, the pendulum has enough energy that gravity will not pull it

back before it reaches the top.2

In fact, if the pendulum reaches the top in finite time, then it will

have some momentum left over (even if only a very small amount),

which will be enough to carry it over the top and into another com-

plete rotation, so that it eventually reaches the bottom again, at

which point it has exactly the same speed it began with. Thus there

is some T such that x(t+T ) = x(t)+(2π, 0) for all t ∈ R; these orbits
are not periodic from the point of view of the system in the plane,

but since adding 2π to x1 does not change the physical system, they

still represent periodic behaviour of the pendulum itself.3

What happens, though, if the pendulum has exactly enough en-

ergy to reach the top; enough that gravity will not stop it short,

but not enough that it will have any momentum left over? Then it

will move more and more slowly as time goes on, but will never stop

(in which case it would reverse direction) or reach the top (in which

case it would have some momentum left and would keep going). In a

manner of speaking, it reaches the top, but in infinite time.

There are two trajectories in Figure 9.5(b) which correspond to

this situation; one runs from (−π, 0) to (π, 0), passing through a

point on the positive x2-axis, while the other runs from (π, 0) to

(−π, 0), passing through a point on the negative x2-axis. Each of

these trajectories is the unstable curve for one fixed point, and the

stable curve for the other. Although both of these have finite length

as curves in R2, as trajectories it takes a solution of (9.9) an infinite

amount of time to move the entire length of either one.

Trajectories such as these, which both originate and terminate in

a fixed point, are known as homoclinic (if they begin and end in the

same fixed point) or heteroclinic (if they begin and end in different

fixed points). We have seen homoclinic orbits before, but the situation

2Many of us have tried to accomplish this on a swing set as a child.
3A more satisfactory model takes the phase space to be not R

2, but the cylinder;
that is, R

2 wrapped up so that the x1-axis becomes a circle. If we take R
2 as the

phase space, then the x1-coordinate of high-energy trajectories tracks the number of
revolutions the pendulum has undergone.
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is different now, due to the fact that the orbit is a curve, rather than

just a collection of points. In two dimensions, such orbits often act

as separatrices between regions of different qualitative behaviour; in

this case, the two heteroclinic4 trajectories just described separate

the orbits which “oscillate” (as we usually expect a pendulum to do)

from the orbits which “spin”.

b. Two-dimensional systems. We now turn our attention to gen-

eral two-dimensional continuous-time systems. As with discrete-time

systems, a useful first step in analysing any given system is to find its

fixed points and periodic orbits, and then classify them by stability.

We have already discussed the stability of fixed points, so we now

consider periodic orbits.

In a discrete-time system, a periodic orbit is just a finite collection

of points, and it could have any of the stabilities available to a fixed

point; stable, unstable, saddle, etc. In contrast, a periodic orbit of a

continuous-time system is a closed curve, and so has higher dimension

than a periodic orbit for a map. This seemingly innocuous distinc-

tion is largely responsible for the absence of chaos in two-dimensional

continuous-time systems, as we shall now see.

Proposition 9.2. Let γ : R → R2 be a periodic solution of (9.1), and

suppose that γ is isolated; that is, there exists some open neighbour-

hood U ⊂ R2 containing the curve γ such that U contains no other

periodic orbits. Then either γ is stable and attracts every nearby tra-

jectory, or it is unstable and repels every nearby trajectory.

Proof. Fix a curve η which intersects the curve γ transversally (see

Figure 9.6). Then we define a map Tη : η → η as follows: each point

x ∈ η defines a unique solution of (9.1), which remains near γ, and

so eventually intersects η again; Tη is defined to be the first point

at which this intersection occurs. The curve η is called a Poincaré

section, and Tη is the Poincaré map for η.

Now suppose that Tη(x) is closer to γ than x is. We iterate

the Poincaré map by continuing the solution curve through Tη(x);

this curve lies closer to γ than the solution curve through x does.

4If we take the cylinder as our phase space, then the fixed points (−π, 0) and
(π, 0) coincide, and these are homoclinic trajectories.
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η

γ

x Tη(x)

Figure 9.6. The Poincaré section for a transversal curve η.

In particular, T 2
η (x) lies closer to γ than Tη(x) does. This follows

because solutions of (9.1) are unique, and so no two solution curves

can cross each other; thus the second curve (starting at Tη(x)) cannot

cross the first curve (starting at x) and escape. This is the piece of

the argument which makes explicit use of the fact that we are working

in two dimensions.

Observe that fixed points of the Poincaré map correspond to pe-

riodic solutions of the ODE; thus because γ is an isolated periodic

orbit, the map Tη has no fixed points except the intersection of γ and

η. Since the trajectory of x under the Poincaré map moves monoton-

ically along η, it must converge to a fixed point of Tη, which shows

that the solution curve beginning at x approaches the periodic orbit

γ. Similarly, any trajectory beginning close enough to γ approaches

γ, and so the periodic orbit is stable.

A similar argument applies if Tη(x) is further away from γ than

x is, in which case γ is unstable. These are the only two options,

which proves the result. �

One consequence of Proposition 9.2 is that a periodic orbit for a

two-dimensional continuous-time system cannot be a “saddle”, and

so the menagerie of possible local behaviours is tamer than it was for

discrete-time systems.

There are a number of results of a more global character available

for general two-dimensional continuous-time systems.
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Proposition 9.3. If γ is a periodic solution of (9.1), then the region

enclosed by γ contains a fixed point of the system.

Sketch of proof. One shows that this region is homeomorphic to a

disc (this is the Schoenflies Theorem, a stronger version of the Jordan

Curve Theorem), and then applies the Brouwer Fixed Point Theorem

to the time-1 map. �
Proposition 9.4. Suppose that F : Ω → R2 is such that

(9.10)
∂F1

∂x1
+

∂F2

∂x2
�= 0

for every x = (x1, x2) ∈ Ω. Then Ω contains no periodic solutions of

the ODE (9.1).

Proof. Suppose γ is a periodic orbit in Ω, with γ(t + T ) = γ(t) for

all t, and let Ω′ ⊂ Ω be the region enclosed by γ, so that γ = ∂Ω.

Suppose γ goes around Ω′ counter-clockwise (the proof in the other

case is similar). Then applying Stokes’ Theorem, we have∫∫
Ω′

∂F1

∂x1
+

∂F2

∂x2
dx1 dx2

=

∫
γ

F1 dx2 − F2 dx1

=

∫ T

0

F1(x(t))ẋ2(t)− F2(x(t))ẋ1(t) dt

=

∫ T

0

F1(x(t))F2(x(t))− F2(x(t))F1(x(t)) dt

= 0.

However, since the original integrand is continuous and non-vanishing

on Ω′, it must be either positive everywhere or negative everywhere,

and hence the integral cannot be zero. This contradiction implies

that no periodic orbits exist in Ω. �
Exercise 9.3. Consider the following system of differential equations:

ẋ = 2x+ y + x2, ẏ = −6x− 2xy.

Find the fixed points, determine the type of their stability, and con-

struct the phase portrait. Show that the system has no periodic

solutions.
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In order to state the general result regarding the absence of chaos

in two dimensions, we adapt the notion of an ω-limit set to the

continuous-time case.

Definition 9.5. If γ : R → R2 is a trajectory in R2 with γ(0) = x,

then the ω-limit set of x is

ω(x) = {p ∈ R2 | p = lim
n→∞

x(tn) for some sequence tn → ∞}.

The α-limit set α(x) is defined similarly, but with the requirement

that tn → −∞ instead.

Exercise 9.4. Show that each ω-limit set ω(x) is closed and ϕt-

invariant for all t, and that the same is true of the set Ω =
⋃

x∈R2 ω(x)

of all points in R2 which lie in some ω-limit set.

Exercise 9.5. For the system of differential equations in Exercise 9.3,

describe the ω-limit set of every point in R2.

A complete description of the possible ω-limit sets for flows in

R2 is given by the following theorem, whose proof may be found

in [Liu03].

Theorem 9.6 (Poincaré–Bendixson). If γ is a bounded trajectory of

a flow ϕt with initial condition γ(0) = x, then one of the following

occurs:

(1) ω(x) is a union of fixed points and heteroclinic (or homoclinic)

orbits.

(2) γ is a periodic orbit.

(3) ω(x) is a periodic orbit to which γ converges.

Remark. The latter two behaviours are quite easy to understand,

and we have already seen examples of these. Regarding the first pos-

sibility, that ω(x) is a union of fixed points and hetero- or homoclinic

orbits, we observe that in addition to the simple case where the trajec-

tory of x approaches a fixed point p, and hence ω(x) = {p}, we may

consider, for example, a continuous-time version of the figure-eight

map in Figure 8.9: given a point x near the repelling fixed point p2,

the ω-limit set of x is the fixed point p0 together with the homoclinic

orbit surrounding p2. It is not difficult to construct similar examples
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for which ω(x) comprises an arbitrary number of fixed points and

heteroclinic orbits.

The Poincaré–Bendixson theorem rules out the existence of chaos

for two-dimensional flows by completely describing all the possible

asymptotic behaviours, all of which are quite regular. Thus in order

to observe chaos in a continuous-time system, we must look to higher

dimensions.

Lecture 35

a. The Lorenz equations. For flows in R3, we do not have the

proper topological context to make the theorems in the previous lec-

ture work; in particular, a periodic orbit γ does not need to be the

boundary of a ϕt-invariant region homeomorphic to a disc. Thus

life can be much more interesting in higher dimensions. To illustrate

this fact, we study a particular system of ODEs in R3, the Lorenz

equations :

(9.11)

ẋ = −σx+ σy,

ẏ = rx− y − xz,

ż = xy − bz.

Here r (called the Reynolds number) is the leading parameter, while

σ and b will be fixed at σ = 10 and b = 8/3. In the next lecture, we

will examine the behaviour of solutions of (9.11) as r ranges from 0

to some number R > 25.

But first, a little history. The equations (9.11) were first intro-

duced in 1963 by Edward Lorenz, a meteorologist at M.I.T. who was

studying the motion of the atmosphere. To a good approximation,

the atmosphere is governed by the Navier–Stokes equations of fluid

motion; however, these are enormously difficult to solve, and even an

approximate numeric solution requires a powerful computer.

Four years earlier, Lorenz had begun using one of the more pow-

erful computers available at that time5 to simulate the motion of the

atmosphere. More precisely, he considered a layer of fluid between

two horizontal plates, where the lower plate is heated and the upper

5Sixty computations a second!
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one is cooled. If the difference in temperature ∆T between the plates

is small, then heat will flow by conduction from the bottom plate to

the top plate while the fluid remains motionless, and this is a stable

equilibrium configuration.

As ∆T increases, this equilibrium configuration becomes unsta-

ble, and a small disturbance is enough to cause convection cells to

form in the fluid—these rotating vortices carry warm fluid from the

bottom plate to the top plate and cooler fluid back down. As ∆T

increases even further, these convection cells become unstable, and

the fluid flow eventually becomes turbulent—that is, chaotic.

Initially, Lorenz considered a system of twelve equations in twelve

variables which were obtained as Fourier coefficients of the functions

in the Navier–Stokes equations; upon being given the initial condi-

tions, the computer would calculate the (approximate) trajectory of

the system. One day, Lorenz wanted to take a closer look at a part

of the previous day’s simulation, and so he entered as the initial con-

dition the output from midway through the calculated trajectory. To

his surprise, the results of this simulation, which should have matched

the previous results perfectly, instead diverged quite quickly!

Lorenz soon realised what the problem was: the computer stored

all initial data and intermediate calculations to an accuracy of six

digits, but only printed out the first three digits. Thus when Lorenz

entered the previous day’s results, he unknowingly introduced a small

error term, on the order of 10−4. Rather than dying away or even

remaining small as the system evolved in time, this error term grew

exponentially, until it became large enough to make the two trajec-

tories appear completely unrelated.

After further investigation, Lorenz was able to replace the system

of twelve ODEs with the system (9.11) of three ODEs which now bears

his name. Although this system does not capture all the details of

the original system, it displays the same qualitative behaviour. The

leading parameter r plays the role of ∆T ; for small values of r, as we

will see, trajectories of the system are quite simple. However, when

r becomes sufficiently large, (9.11) displays one of the hallmarks of

chaos, sensitive dependence on initial conditions at every point; that
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is, any two nearby trajectories eventually diverge exponentially, as

described above.

b. Beyond the linear mindset. At the time Lorenz began his

work, the prevailing opinion among physicists and mathematicians

was that a chaotic signal, such as the one Lorenz observed in the

solution of (9.11), could only be the result of a random noise from

the external environment of the system.

Lorenz’s examination of the system (9.11) demonstrated that a

chaotic signal could be produced by a completely deterministic pro-

cess, but because he published his results in the Journal of Atmo-

spheric Science, it took some time for the mainstream of the mathe-

matics and physics communities to become aware of them. However,

the word eventually spread, and the new phenomenon of determin-

istic chaos has become an integral part of our understanding of the

natural world.

c. Examining the Lorenz system. To begin our analysis of the

system (9.11), we first find the fixed points at which ẋ = ẏ = ż = 0

and determine their stability via the Jacobian matrixDF. It is helpful

to observe that the system is invariant under the reflection in the z-

axis given by

x �→ −x, y �→ −y, z �→ z,

and so solutions away from this axis come in symmetric pairs. In

particular, any fixed point (x, y, z) with x �= 0 or y �= 0 has a twin

(−x,−y,−z) on the other side of the z-axis.

For σ, b �= 0, the fixed point conditions ẋ = 0 and ż = 0 imply

that y = x and z = x2/b. Then the condition ẏ = 0 may be written

rx− x− x3

b
= 0;

hence the system always has a fixed point at 0, and any other fixed

point must satisfy

x2

b
= r − 1.
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Figure 9.7. The fixed points for the Lorenz system when r−1
is small.

Therefore, for 0 < r < 1, the only fixed point is the origin. At r = 1,

a pitchfork bifurcation occurs, and two more fixed points appear:

p1 =
(√

b(r − 1),
√
b(r − 1), r − 1

)
,

p2 =
(
−
√
b(r − 1),−

√
b(r − 1), r − 1

)
.

To check the stability of these fixed points, we find the eigenvalues

of the Jacobian matrix

DF(x) =

⎛
⎝ −σ σ 0

r − z −1 −x

y x −b

⎞
⎠ .

At the origin, we have x = y = z = 0, and so

DF(0) =

⎛
⎝−σ σ 0

r −1 0

0 0 −b

⎞
⎠

has −b as one eigenvalue, and the other two eigenvalues are the roots

of

λ2 + (σ + 1)λ+ σ(1− r) = 0,

which is the characteristic polynomial of the 2 × 2 matrix in the

upper-left corner of DF(0). The constant negative eigenvalue −b

with eigenvector (0, 0, 1) indicates that the vertical direction is always

contracting at the origin.

For 0 < r < 1, the other two eigenvalues are also negative, and the

origin is an attracting fixed point; for r > 1, one of these eigenvalues
                

                                                                                                               



Lecture 35 271

Figure 9.8. Changes in the behaviour of orbits as r increases.

is negative and the other is positive, and so the origin is a hyperbolic

fixed point with two contracting directions and one expanding direc-

tion. Trajectories moving along the latter direction are attracted to

one of the two fixed points p1 and p2, which exist precisely when

r > 1; this is the situation shown in Figure 9.7.

In this parameter range, almost every trajectory is attracted to

either p1 or p2; the basins of attraction of these two fixed points are

separated by a surface through 0 which contains the z-axis, and which

comprises all points whose trajectories approach 0. This is the stable

separatrix through the origin; the long-term behaviour of a trajectory

is determined by which side of the stable separatrix it lies on.

So far, all the computations have been relatively easy. Things are

about to become rather more complicated, and as our purpose here

is to give the flavour of the dynamics rather than to offer rigorous

proofs, we will from now on merely quote the relevant results. A

more complete exposition may be found, for example, in [Spa82].

For values of r > 1 close to 1, all the eigenvalues of DF(p1) and

DF(p2) are real and negative; as r increases, two of the eigenvalues

become complex. p1 and p2 remain stable, and in particular, still

attract the trajectory along the unstable curve from the origin, but

now trajectories approach these fixed points along the spirals shown

in Figure 9.8.
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Figure 9.9. Weaker attraction and larger spirals as r in-
creases still further.

As r increases still further, the spirals enlarge, and the trajectory

along the unstable curve from the origin takes longer and longer to

approach p1 or p2, as shown in Figure 9.9.

Through all of this, the system defined by (9.11) is Morse–Smale;

all trajectories which begin on the stable separatrix (the “sheet”

through the origin) approach 0, and all other trajectories approach

either p1 or p2, depending on which side of the stable separatrix they

begin on.

As r increases, the description of the system increasingly relies on

numerical computations, and rigorous analytic results are no longer

available. The use of computer simulations to carry out a detailed

study of the Lorenz system began with the work of Oscar Lanford

and shows that at some critical value r = r0 ≈ 13.926, things change.

For r < r0, the two halves of the unstable curve from the origin are

heteroclinic orbits which approach 0 as t → −∞ and p1 or p2 as

t → ∞. As r approaches r0, the spirals widen and these trajectories

come closer and closer to the stable separatrix, shown as a vertical

plane in Figure 9.9.

For values of r close to (but still less than) r0, the trajectories

along the unstable curve come close to the stable separatrix but are

eventually attracted to one of the two fixed points p1 and p2. When
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Figure 9.10. Appearance of homoclinic orbits at r = r0 ≈ 13.926.

r reaches r0, this changes, and the trajectories become homoclinic;

rather than spiraling in to p1 or p2, they are actually contained in

the stable separatrix (which twists and turns accordingly) and ap-

proach the origin from a more or less vertical direction, as shown in

Figure 9.10. Trajectories “inside” these homoclinic loops still spiral

in to the fixed points p1 and p2.

For r > r0, a completely new picture emerges. After circling one

fixed point, the trajectories along the unstable curve from the origin

return past the stable separatrix6 and approach the other fixed point,

as shown in Figure 9.11. The fixed points p1 and p2 are still stable,

but now an unstable periodic orbit appears around each one—γ1 and

γ2 in the figure. Trajectories “inside” γ1 spiral in towards p1, while

trajectories “outside” γ1 pass the separatrix and approach p2; the

unstable periodic orbit γ2 plays a similar role vis-à-vis p2.

Although this simplified picture suggests that the system may

be Morse–Smale at this point, things are actually rather more com-

plicated than that. We will see in the next lecture that there is a

horseshoe hidden in this picture and that, as a result, the system is

6Without intersecting it, which suggests that the geometry of the stable surface is
quite complicated, as indeed it is, twisting and turning to avoid intersecting either itself
or the unstable curves. The reader is encouraged to search the internet for animations
of the stable manifold (in this case, it is a surface), which can convey the geometric
complexity rather better than we are able to here.
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Figure 9.11. A change in behaviour when r > r0.

no longer Morse–Smale (since it has infinitely many periodic points)

and in fact exhibits intermittent chaos.

Lecture 36

a. Passing to a Poincaré map. The method described in the pre-

vious chapter for finding a horseshoe via a transversal homoclinic

intersection does not work in the continuous-time case, where the

stable and unstable manifolds cannot intersect transversally due to

the uniqueness of solutions through a given point. While there is no

universal mechanism for constructing a horseshoe in continuous-time

systems, there are certain techniques which work in particular cases;

thus we continue to examine the Lorenz system and demonstrate the

existence of a horseshoe for some values of r > r0.

More precisely, we will demonstrate the existence of a horseshoe

for a certain Poincaré map of the Lorenz system; thus we begin with a

few general words about Poincaré maps. As described in Lecture 34,

the procedure for constructing such a map, which works for both

continuous- and discrete-time systems, is as follows.

(1) Given a map f : X → X or a flow ϕt : X → X, fix a subset E ⊂
X, called the inducing domain (in the discrete-time case) or the

Poincaré section (in the continuous-time case). As a general rule,

in the discrete-time case E is taken to be a set of positive measure
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(with respect to some invariant measure), while in the continuous-

time case E is taken to be a curve, surface, etc. through which a

typical trajectory eventually passes.7

(2) For each x ∈ E, define a first return time by

τE(x) =

{
min{n ∈ N | fn(x) ∈ E} discrete-time,

inf{t ∈ (0,∞) | ϕt(x) ∈ E} continuous-time.

(3) If τE(x) < ∞, define the Poincaré map at x by

TE(x) =

{
fτE(x) discrete-time,

ϕτE(x) continuous-time.

Note that the Poincaré map TE depends on our choice of the

section E. If we choose a smaller section F ⊂ E, then it may well

happen that for some x ∈ F , the first return to E does not lie in

F ; we may have TE(x) /∈ F . In this case τF (x) > τE(x), if indeed

the orbit ever returns to F at all, and it is certainly the case that

TF �= TE . Thus if we wish to prove things by examining a Poincaré

map, the section E ought to be chosen rather carefully.

We now carry out this selection for the Lorenz system, remark-

ing before we do so that the existence of a section E for which the

Poincaré map has the properties described below is a matter of de-

tailed numerical analysis which lies beyond our ambitions at present.

Observe that the fixed points p1 and p2 both lie in the plane

z = r−1; we pass from a three-dimensional flow to a two-dimensional

map by choosing a section of this plane as shown in Figure 9.12:

E ⊂ {(x, y, z) ∈ R3 | z = r − 1}.

Then we define the Poincaré map T = TE as described above.

Since the domain of T is two-dimensional, the map T is in some

ways simpler than the flow ϕt; however, because not all trajectories

which begin in E necessarily return to E, the return map T may not

be defined on all of E. In particular, it may not be a continuous map

on all of E; this is the price we pay for the simplification.

7More generally, the Poincaré section is usually an embedded submanifold of
codimension one.
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Figure 9.12. Defining the Poincaré section on E.

We immediately encounter this difficulty when we consider points

in the intersection of E with the stable separatrix. These are both

two-dimensional surfaces, and so their intersection is a curve �, which

is depicted schematically in Figure 9.12 as a line.8 If x is any point on

�, then the trajectory ϕt(x) approaches 0, and never crosses E again,

so T (x) is undefined.

Consider then a point x ∈ E which lies just to one side of �; the

trajectory ϕt(x) will follow the stable separatrix towards the origin

for some time before diverging and following the unstable curve out

towards the edge of its range, eventually passing outside the edge of

E, and then intersecting E again on the other side of �, as shown in

Figure 9.12.

As x approaches �, the trajectory of x approaches the unstable

curve through the origin, which is a heteroclinic trajectory, and it

follows that T (x) approaches p2. Thus any continuous extension of

T to the line � must have T (x) = p2 for all x ∈ �; however, an

identical argument requires T (x) = p1. Thus the Poincaré map has

8For simplicity of representation, Figure 9.12 depicts the stable separatrix as a
plane, rather than the convoluted surface that it really is.
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A

B

C

D




p1

p2 


T (B)

T (D)

T (C)

T (A)p1

p2

Figure 9.13. A horseshoe-like structure in the Poincaré section.

no continuous extension to the line �, even though such an extension

exists if we approach the line from only one side or the other.

b. Horseshoes in the Lorenz system. Despite the complications

mentioned in the previous section, James Kaplan and James Yorke

were able to demonstrate the existence of a horseshoe-like structure

for the map T . They showed that for certain regions A,B,C,D ⊂ E

(carefully chosen with the help of a computer), the map acts as shown

in Figure 9.13. To see this, we begin by considering the set of points

whose trajectories remain in R = A ∪ B ∪ C ∪D; Figure 9.14 shows

the topological structure of the part of the map which is significant

for our purposes. The four darker trapezoids RA, RB , RC , and RD

make up f(R) ∩ R, the set of points in R with one preimage in R;

these preimages are shown in Figure 9.15, where the union of the four

rectangles is the set of points in R with one forward image in R.9

Taking the intersection of the four sets in Figure 9.15 with the

four sets in Figure 9.14, we obtain eight trapezoids, whose union is

the set of points in R with one forwards and one backwards image

still in R. If we write, for example,

RA|C|D = T (A) ∩ C ∩ T−1(D)

for the set of all points lying in C whose first iterate is in D and

which are the image of some point in A, then the set of points with

9This figure is schematic rather than quantitatively correct; it captures the topo-
logical behaviour which is observed in numerical simulations, even though the true
regions do not have linear edges.
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A

B

C

D

p1

p2

T (A) T (C)

T (B) T (D)

RB RD

RCRA

Figure 9.14. Points with one preimage.

one forwards and backwards image in R is⋃
(w−1|w0|w1)

Rw−1|w0|w1
,

where the wj range over the alphabet {A,B,C,D}. Similarly, the set

of points with two forwards and backwards iterates is⋃
(w−2w−1|w0|w1w2)

Rw−2w−1|w0|w1w2
,

and we may once again write the set of all points whose entire tra-

jectories remain in R as

Γ =
⋂
n≥1

⋃
(i−n...i−1.i0i1...in)

Ri−n...i−1.i0i1...in .

The invariant set Γ has many of the features of the Smale horse-

shoe. Topologically, both are totally disconnected maximal invariant

sets for the relevant map; the careful reader will observe, however,

that the set Γ we consider here is not closed due to the presence of

the line of discontinuity �. We may carry out the geometric con-

struction described above to obtain a closed Cantor-like set, but this

line, along with all its (countably many) preimages under T , must
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A

B

C

D

T−1(RA)

T−1(RB)

T−1(RC)

T−1(RD)

Figure 9.15. Points with one forward image.

be removed from that set to obtain Γ. Thus in what follows we only

consider those points whose trajectory never falls on �.

Dynamically, we have for Γ, just as we had for the Smale horse-

shoe, a stable and an unstable direction through each point x ∈ Γ (in

fact, through each point in R); this may be seen as follows. Each of the

regions A, B, C, and D is contracted horizontally and expanded ver-

tically by the Poincaré map T , and so there exist two curves through

x, one stable and one unstable, with the following properties.

(1) If y and z lie on the stable curve of some point x, then their

orbits are asymptotic in positive time:

lim
n→+∞

d(Tn(y), Tn(z)) = 0.

(2) If y and z lie on the unstable curve of some point x, then their

orbits are asymptotic in negative time:

lim
n→−∞

d(Tn(y), Tn(z)) = 0.

(3) The tangent vectors to the stable and unstable curves at x lie

close to the horizontal and vertical directions, respectively.

As always, the hyperbolic structure given by the existence of sta-

ble and unstable directions leads to chaos in one of its incarnations.

This can be seen more explicitly by considering the symbolic dynam-

ics associated to the map T ; encoding a trajectory by its itinerary

through the regions A,B,C, and D, we have a correspondence be-

tween points in Γ and sequences in the symbolic space

Σ4 = {A,B,C,D}Z.
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As usual, the dynamics of T are modeled by the dynamics of the shift

σ : Σ4 → Σ4. However, not all sequences in Σ4 correspond to points

in Γ; for example, we see from Figure 9.14 that T (A) ⊂ C ∪D, and

so every time a point in Γ has an itinerary which includes the symbol

A, it must be followed by either C or D. Thus what we have here is

actually a Markov shift, a subshift of finite type with the following

transition matrix: ⎛
⎜⎜⎝
0 0 1 1

1 1 0 0

0 0 1 1

1 1 0 0

⎞
⎟⎟⎠ .

The map T : Γ → Γ is topologically conjugate to this subshift of finite

type,10 and so all admissible itineraries for the subshift are encodings

of trajectories of T .

This implies that T has a great many trajectories that appear

random. However, because Γ is a horseshoe and has zero Lebesgue

measure, the set of such trajectories is invisible from the point of view

of the original system, since with probability 1, an arbitrarily chosen

point will lie outside the horseshoe, and hence will eventually leave

the region R in which chaotic behaviour is observed. Thus the chaos

implied by the hyperbolic structure in this case is intermittent, just

as with the Smale horseshoe; this sort of chaos is visible and occurs

for a set of initial conditions with positive measure. With non-zero

probability, a randomly chosen trajectory will appear chaotic for some

period of time before leaving R and becoming more regular.

Finally, we may return to the Lorenz system itself by drawing the

trajectories in R3 which connect each x ∈ Γ to its image T (x); the

resulting set is a filled-in horseshoe, which locally is homeomorphic

to the direct product of R and Γ. This filled-in horseshoe plays the

same role for the flow of the Lorenz system as Γ does for the Poincaré

section; trajectories which venture near the filled-in horseshoe follow

apparently chaotic trajectories for some finite period of time before

wandering away and settling down, and so the Lorenz system displays

intermittent chaos.

10Or rather, to this subshift with certain trajectories removed, corresponding to
the line � and its preimages.
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Lecture 37

a. The Lorenz attractor. The scenario illustrated in Figures 9.13

and 9.14 occurs for a broad range of parameter values. The precise

locations of the regions A, B, C, and D depend on the value of the

leading parameter r, but the same topological outcome is observed,

and the system has a horseshoe, leading to intermittent chaos.

At some value r1 ≈ 24.05, everything changes. As r increases

beyond this value, the region R = A∪B∪C∪D becomes large enough

to contain the fixed points p1 and p2, and indeed, to contain its own

image T (R); it becomes a trapping region. Taking the intersection

of all the images of R, we obtain an attractor Λ for the map T . The

dynamics of T : Λ → Λ are chaotic, and because Λ attracts nearby

trajectories, this chaotic behaviour is observed for a set of initial

conditions of positive measure, in contrast to the case in the previous

lecture, and we now have persistent chaos.

In fact, we must be slightly more careful, since T is not defined

on the line � and so, strictly speaking, R is not a trapping region in

the original sense. However, we do have

T (R \ �) ⊂ R,

and so we may define a nested sequence of sets Rn by R0 = R,

Rn+1 = T (Rn \ �); we have

R0 ⊃ R1 ⊃ R2 ⊃ · · · ,

and the attractor is given by

(9.12) Λ =
⋂
n≥1

Rn.

Connecting each point x ∈ Λ to its image T (x) by the correspond-

ing trajectory in R3 gives an attractor for the Lorenz system itself;

this was the object discovered by Lorenz, who originally studied the

parameter value r = 28.

b. The geometric Lorenz attractor. Although the Poincaré map

T is, conceptually speaking, a relatively simple object, any attempts

to do actual calculations with it are quickly stymied by the fact that

we do not have a convenient formula for T , but must rather integrate
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(−1,−1)

(1, 1)

(−1, A)

(1,−A)

(2B − 1,−1)

(1 − 2B, 1)

Figure 9.16. The geometric Lorenz map.

the original system for some variable period of time before obtaining

T (x), and so the map T is actually quite cumbersome to work with.

In order to bypass this difficulty, one approach is to study the

geometric Lorenz map, which shares (or appears to share) many topo-

logical properties with the original Poincaré map, but which is given

by an explicit set of formulae and thus is more amenable to con-

crete analysis. Although the exact structure of the Poincaré map T

depends on the parameters r, σ, and b, there is a certain range of

parameters within which the qualitative structure of the map can be

shown to be well approximated by the geometric Lorenz map, which

takes the square R = [−1, 1]× [−1, 1] into itself as follows:11

(9.13) T (x, y) = ((−B|y|ν0 +Bx sgn y|y|ν + 1) sgn y,

((1 +A)|y|ν0 −A) sgn y),

where sgn y = y/|y| denotes the sign of y, and the parameters lie in

the following ranges:

1

2
< A ≤ 1, 0 < B ≤ 1

2
, ν > 1,

1

1 +A
< ν0 < 1.

Figure 9.16 shows the image of R under the action of T . Several

features are immediately apparent. The two corners (−1,−1) and

(1, 1) are fixed by T , and since the y-coordinate of T (x, y) does not

11See [Pes92] for a more detailed discussion of the geometric Lorenz map and
attractor.
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x

R1 R2

Figure 9.17. Constructing the geometric Lorenz attractor.

depend on x, T maps horizontal lines into horizontal lines. In par-

ticular, the lines y = 1 and y = −1 are mapped into themselves as

follows:

T (x, 1) = (1−B +Bx, 1),

T (x,−1) = (B − 1 +Bx,−1).

The map T is continuous everywhere except along the x-axis; the

continuation of the map from the lower half of the square would take

the entire x-axis to the point (−1, A), while the continuation from the

upper half would take it to (1,−A). Furthermore, T is differentiable

at every point (x, y) with x �= 0 and y �= 0, but the derivative of f

goes to infinity as the point approaches the y-axis.

Since 0 < B ≤ 1/2, the map is contracting in the horizontal di-

rection; since A > 1/2, it is expanding in the vertical direction, and so

exhibits the same sort of hyperbolic structure at every point which we

have already seen in the Smale–Williams solenoid, the Smale horse-

shoe, and so on. In both those cases, we found a maximal invariant

set for the map on which the dynamics appear chaotic, and the same

is true here. This set is referred to as the geometric Lorenz attractor,

and because T (R \ �) ⊂ R, where � is the x-axis, we may construct Λ

explicitly as in (9.12).

Figure 9.17 shows the first two steps in the construction of Λ.

R1 = T (R \ �) is the union of two triangles with curved sides; the

image of R1 \ � comprises one triangle (lighter in the picture) and one
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biangle (skinnier and darker) inside each of these, for a total of four

regions, whose union is R2.

One might expect, then, that R3 would be the union of eight

regions, with one triangle and three biangles in each half of R1, that

R4 will have one triangle and seven biangles in each half of R1, and

so on, always forming two “fans” with hinges at (1,−A) and (−1, A).

Indeed, this is the general structure of the attractor, but things are

not quite so cut-and-dried. Consider the biangle with one vertex at

the point x in Figure 9.17. The bottom half of this biangle will be

mapped to a biangle in the left half of R1 with one vertex at (−1, A),

while the top half will be mapped to a biangle in the right half with

one vertex at (1,−A) and the other at T (x), and so R3 will have one

triangle and seven biangles, as expected.

However, because the map is expanding in the vertical direction,

the point T (x) will lie somewhere below x and may actually lie below

�; if this is the case, then we have a biangle which does not split into

two upon passing from R3 to R4, and so in general, Rn may not have

2n − 2 biangles, as näıve reasoning would suggest.

Another way of analysing the structure of Λ is to consider its

cross-section on a horizontal line �a = {(x, y) | y = a}. We see from

Figures 9.16 and 9.17 that R0 ∩ �a is the entire interval [−1, 1], while

R1 ∩ �a is the union of two disjoint closed subintervals, and R2 ∩ �a is

the union of one, three, or four disjoint closed subintervals, depending

on the value of a. Thus for each fixed a, the cross-section Λ∩�a is the

result of a Cantor-like construction from which certain basic intervals

have been deleted, corresponding to those steps in which one of the

“fingers” of the fan does not cross �a (at the present step) or did not

cross � (at the previous step).

Ideally, we would like to have a rule that determines which basic

intervals are deleted and which remain. For example, such a construc-

tion could conceivably be the result of a Markov rule with a particular

transition matrix. However, it turns out that there is no simple rule

in the present case. We may gain some perspective on this fact by

considering a one-dimensional factor of the geometric Lorenz map;

since T maps horizontal lines to horizontal lines, we can factor out
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f(y)

y

Figure 9.18. A one-dimensional factor of the geometric
Lorenz map.

the x-coordinate and consider the one-dimensional map

(9.14)
f : [−1, 1] → [−1, 1],

y �→ ((1 +A)|y|ν0 −A) sgn y,

whose graph is shown in Figure 9.18. This map is reminiscent of

the piecewise continuous interval maps we have already discussed at

length. However, this is not a Markov map, because the image of an

interval of continuity is not a union of such intervals; f([−1, 0)) con-

tains part, but not all, of (0, 1]. Thus while we can pass to symbolic

dynamics via the partition {[−1, 0), (0, 1]} and obtain a topological

conjugacy between f : [−1, 1] → [−1, 1] and the shift σ on some in-

variant subset Q ⊂ Σ+
2 , the invariant subset Q will have a quite com-

plicated topological structure which may not be given by any Markov

rule.

c. Dimension of the geometric Lorenz attractor. The geomet-

ric Lorenz attractor Λ can be viewed as the limit set of a geometric

construction in the square R. Although this construction is of a Can-

tor type, it is a far cry from the Cantor-like constructions we have

seen in the previous chapters. In particular, computing the Hausdorff

dimension of Λ is a daunting task.
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Observe that for every x ∈ Λ there is a smooth curve Wu(x)

passing through x which lies in Λ. This is an unstable curve at x,

and it is the intersection of all basic sets of the construction which

contain x. Since Λ contains curves, we conclude that dimH Λ ≥ 1.

One can also use the Non-uniform Mass Distribution Principle

to obtain a better lower bound for the dimension. Indeed, if µ is a

T -invariant measure supported on the attractor Λ, then dimH Λ ≥
dimH µ and one can use (8.7) to compute dimH µ.

Using this approach, it is possible to show that dimH Λ is strictly

bigger than 1. To do this, one can consider the one-dimensional map

f associated to T given in (9.14), take an invariant measure ν for f ,

and then extend (or lift) it to obtain an invariant measure µ on Λ.

However, finding the actual value of dimH Λ is quite difficult.

d. Back to the Lorenz attractor, and beyond. As was already

mentioned, connecting the points of the attractor for the Poincaré

section of the Lorenz equations with the corresponding trajectories

yields an attractor for the Lorenz system itself (although it was not

until 1999 that the existence of this attractor was rigorously proved

by Warwick Tucker). Figure 9.19 shows the attractor, viewed from

several different angles; these images, first created by Oscar Lanford,

have become iconic for chaos theory both because of their historic

significance and because of the mathematical concepts they embody.

Despite the seminal role that it played in the study of chaos, in-

terest in the Lorenz system began to wane in the 1980s, for a number

of reasons. For example, given the origins of the model, the question

Figure 9.19. The Lorenz attractor in R
3.
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of its relevance naturally arises. How well do these equations approx-

imate what actually occurs at the onset of turbulence? The Lorenz

system (9.11) was obtained by restricting our attention to three par-

ticular terms in a more complicated system. If we add some of the

other terms back into the model, do we still see the same sort of

behaviour?

As it happens, the particular choice of x, y, and z in (9.11)

was somewhat serendipitous. Studies of various other approximations

to the Navier–Stokes equations failed to observe chaotic behaviour,

which cast doubt on the relationship between (9.11) and the actual

physical phenomenon. Nevertheless, the Lorenz system was the first

example of deterministic chaos, and as such was tremendously impor-

tant in its own right, whatever its relationship to a physical system.

Since Lorenz’s original work, many other examples of determin-

istic chaos have been studied, and the mechanisms which produce it

are now better understood. A typical chaotic system contains either

a horseshoe (resulting from a homoclinic point) or an attractor (re-

sulting from a trapping region); each of these is a fractal which is

invariant under the action of the system, which is internally unstable

(hence the chaotic behaviour), and which has zero volume (Lebesgue

measure). Despite this last point, both horseshoes and attractors are

observable via their effect on nearby trajectories; in the former case,

this effect lasts for a finite period of time, producing intermittent

chaos, while in the latter, the effect persists for all time, as nearby

trajectories approach the attractor.

Depending on the context, one may see the Lorenz attractor and

its many relatives referred to as “strange attractors”, emphasising

their fractal geometry, or as “chaotic attractors”, emphasising the

unpredictable nature of the observed dynamics, or as “hyperbolic at-

tractors”, emphasising the underlying dynamical instability of the

attractor at each point. This final moniker has the advantage of giv-

ing pride of place to the force which drives both the fractal structure

and the apparent randomness displayed by the attractor; namely, the

presence at every point on the attractor of both stable and unstable

directions, so that a saddle-like structure is ubiquitous. This is nec-

essary because a trajectory with only stable directions will attract

                

                                                                                                               



288 9. Continuous-Time Systems: The Lorenz Model

nearby trajectories, and hence cannot display chaotic behaviour. At

the same time, a trajectory with only unstable directions will repel

all nearby trajectories, and hence cannot be tightly intertwined with

other such trajectories. This precludes the complicated geometric

structure we observe in fractal sets.

Furthermore, the understanding of hyperbolicity as the driving

impulse behind chaos makes it clear that in many cases, topolog-

ical and geometrical considerations alone are enough to describe a

chaotic system, without the need for an explicit formula; this greatly

extends the theory’s generality. For example, the geometric Lorenz

map (9.13) can be generalised in a number of ways, such as choosing a

line of discontinuity which is no longer horizontal; the resulting attrac-

tor is known as a Belykh attractor, after the Russian radiophysicist

Vladimir Belykh, who first discovered it in his study of certain non-

linear electrical circuits—a far cry from the study of the atmosphere

which motivated the original system!

Indeed, the real significance of Lorenz’s work lies far beyond its

contribution to atmospheric science in the fact that it helped fling

open the doors to whole new areas of mathematics, which have since

found applications across the entire spectrum of scientific research.

In the process, many strands of topology, geometry, and dynamics

have been woven into a single fabric. The fractal sets first introduced

by Cantor and studied by Besicovitch to answer questions in classical

set and function theory were conscripted by Smale to serve a key

role in a particular type of dynamical system. Eventually, through

the work of Mandelbrot, Lorenz, and others, it became apparent that

far from being pathologies with limited interest (and that only for

mathematicians), these “fractals” in fact lie at the heart of many

important phenomena in the natural world and still hold many deep

mysteries which we have yet to understand.
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Lipschitz, Hölder, and other regularities

One of the fundamental ideas in analysis is the notion of a continuous

function. Given two topological spaces X and Y , we denote the space

of all continuous functions from X to Y by C0(X,Y ), and say that a

member of this space is of class C0.

Within the class of continuous functions C0(Rp,Rd), we have a

further subclass of continuously differentiable functions—functions

for which all the first partial derivatives exist and are continuous.

We denote the space of such functions by C1(Rp,Rd), and say that a

member of this space is of class C1.

C1 functions have nicer properties than functions which are merely

C0; however, there are also fewer of them, and so they are in some

sense harder to come by. This trade-off is symptomatic of the whole

notion of regularity of functions: there are many nested classes of

functions, each more regular than the last, and hence having more

properties for us to use, while at the same time comprising fewer

functions, which are hence harder to come by.

For example, given r ∈ N, we say that a function is of class Cr

if all its partial derivatives up to order r exist and are continuous.

Thus we have the following sequence of function spaces (for brevity
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of notation, we omit the domain and range):

C0 ⊃ C1 ⊃ C2 ⊃ · · · ⊃ Cr ⊃ Cr+1 ⊃ · · · ⊃ C∞.

Here C∞ =
⋂

r Cr is the class of functions for which all partial deriva-

tives of all orders exist and are continuous; such functions are often

called smooth.1

Beyond C∞ lie the analytic functions, those functions f for which

the Taylor series of f at an arbitrary point p converges to f in a

neighbourhood of p. Such functions are also said to be of class Cω.

There are also various regularity classes which lie in between the

ones just mentioned. For example, given compact metric spaces (X, d)

and (Y, ρ), a function f : X → Y is called a Hölder function (or Hölder

continuous) if there exist L > 0 and 0 < α ≤ 1 such that for all

x, y ∈ X, we have

ρ(f(x), f(y)) ≤ Ld(x, y)α.

For 0 < α < 1, we denote the class of Hölder functions by Cα(X,Y ).

The case α = 1 is somewhat special; a Hölder function with α = 1 is

called a Lipschitz function; we denote the class of Lipschitz functions

by Lip(X,Y ).

The classes of Hölder and Lipschitz functions lie between C0 and

C1, as the following exercises show.

Exercise A.1. Given [a, b] ⊂ R, show that a Hölder continuous func-

tion on [a, b] is uniformly continuous and that a C1 function on [a, b]

is Lipschitz.

Exercise A.2. Give an example of a Lipschitz function on [a, b] which

is not differentiable and of a Hölder function on [a, b] which is not

Lipschitz.

If a Cr function has partial derivatives of order r which are all

Hölder continuous with exponent α, we say that it is of class Cr+α.

Thus we have the following hierarchy of regularity:

C0 ⊃ Cα ⊃ Lip ⊃ C1 ⊃ C1+α ⊃ C2 ⊃ · · · ⊃ C∞ ⊃ Cω.

1However, one may also see the term smooth function used to refer to functions
of lower regularity.
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Exercise A.3. If f, g are Lipschitz functions, then so are f + g and

f · g (the product of f and g). Is this statement true if f and g are

Hölder functions?

Exercise A.4. Suppose that f : [a, b] → R satisfies a Hölder condi-

tion with exponent α > 1. Show that f is a constant.

Vector spaces and linear maps

Given a real vector space V , a norm on V is a function ‖ · ‖ : V → R
such that for every v, w ∈ V and λ ∈ R,

(1) ‖v‖ ≥ 0, with equality if and only if v = 0;

(2) ‖λv‖ = |λ|‖v‖;
(3) ‖v + w‖ ≤ ‖v‖+ ‖w‖.

The most familiar example is Euclidean space Rd with the norm

(A.1) ‖v‖ =
√
v21 + · · ·+ v2d.

However, there are many other norms which we could put on Rd. For

example, we could let (v1, . . . vd) be the coordinates of v in some other

basis, besides the usual orthonormal one, and then define a norm

by (A.1). Or we could give different weights to different directions by

fixing real numbers c1, . . . , cd > 0 and taking

(A.2) ‖v‖ =
√

c1v21 + · · ·+ cdv2d.

The following exercise shows that whatever norm we choose on Rd, it

cannot be too different from the usual Euclidean one.

Exercise A.5. Let ‖ · ‖1 and ‖ · ‖2 be two norms on the finite-

dimensional vector space Rd. Show that there exist constantsm,M >

0 such that for every v ∈ Rd, we have

m‖v‖1 ≤ ‖v‖2 ≤ M‖v‖1.

Two such norms are said to be equivalent.

A vector space V is said to be the direct sum of two subspaces A

and B if every vector v ∈ V has a unique decomposition as v = v1+v2,

where v1 ∈ A and v2 ∈ B, and we write V = A⊕B. If T : V → V is
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a linear map which leaves A and B invariant, then the action of T on

V can be decomposed into the action of T on each of the subspaces

A and B.

Given a linear map T : Rd → Rd, there exists a direct sum decom-

position Rd = A1 ⊕ · · · ⊕ Ak called the Jordan decomposition, which

has the property that each of the subspaces Ak (which are called

generalised eigenspaces) is invariant under the action of T , and that

denoting the restriction of T to Ak by Tk, the action of Tk on Ak has

a particularly simple form, as follows. There exists a basis for Ak in

which the matrix representing the map Tk is either of the form⎛
⎜⎜⎜⎜⎜⎝

λ 1 0 · · · 0 0

0 λ 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · λ 1

0 0 0 · · · 0 λ

⎞
⎟⎟⎟⎟⎟⎠

where λ ∈ R is the eigenvalue corresponding to Ak, or of the form⎛
⎜⎜⎜⎜⎜⎝

rRθ Id 0 · · · 0 0

0 rRθ Id · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · rRθ Id

0 0 0 · · · 0 rRθ

⎞
⎟⎟⎟⎟⎟⎠

where r > 0, Id is the 2 × 2 identity matrix, and Rθ is the rotation

matrix

Rθ =

(
cos θ − sin θ

sin θ cos θ

)
.

The latter form corresponds to complex pairs of eigenvalues λ and λ̄,

with λ = reiθ.

Given a linear operator T : Rd → Rd, the norm of T is

‖T‖ = sup{‖Tv‖ | ‖v‖ = 1};

this quantity of course depends on which norm we consider on Rd.

Using the Jordan decomposition, we see that ‖T‖ is the maximum of

the quantities ‖Tk‖, and that each of these quantities is at least as

large as |λk|, where λk is the eigenvalue corresponding to Ak. Thus

‖T‖ is at least as large as the largest eigenvalue of T .
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The reverse inequality does not always hold. Consider the map

T : R2 → R2 given by the matrix ( λ 1
0 λ ) for some λ ∈ R. The vector

v = (0, 1) has ‖v‖ = 1 in the usual Euclidean norm, but

‖Tv‖ = ‖(1, λ)‖ =
√
1 + λ2 > |λ|.

Thus ‖T‖ ≥ ‖Tv‖ > |λ|, and we see that the norm of the linear

operator may be strictly greater than the largest eigenvalue. However,

all is not lost.

Exercise A.6. With T as above, consider the norm on R2 given

by (A.2) with c1 = δ and c2 = 1, and show that

‖T‖ =
√
δ + λ2,

which can be made arbitrarily close to |λ| by taking δ > 0 arbitrarily

small.

A similar procedure can be used on each Jordan block Tk : Ak →
Ak to define a norm on Ak with respect to which ‖Tk‖ ≤ |λk|+ δ; the

direct sum of these norms gives a norm on Rd with respect to which

‖T‖ is within δ of the largest eigenvalue. Thus we have the following

result.

Proposition A.1. Let T : Rd → Rd be a linear map, and let λ be

the eigenvalue of T with maximum absolute value. Given any δ > 0,

there exists a norm on Rd with respect to which

|λ| ≤ ‖T‖ ≤ |λ|+ δ.

Upon iterating the map T , Proposition A.1 shows that

‖T jv‖ ≤ (|λ|+ δ)j‖v‖
for every j ≥ 0. Furthermore, by the result of Exercise (A.5), for any

norm on Rd, including the standard one, there exists a constant C

such that

‖T jv‖ ≤ C(|λ|+ δ)j‖v‖
for every j ≥ 0. This result is the key to the relationship between

eigenvalues and contraction properties which plays such a prominent

role in dynamics.

                

                                                                                                               



                

                                                                                                               



Hints to selected
exercises

1.1. Find the fixed points of the map. Look for periodic points with

short periods.

1.2. Try a linear coordinate change h(x) = ax + b, and solve the

equation g(h(x)) = h(f(x)) to find appropriate values of the coeffi-

cients a and b. Bear in mind that the value of the parameter c will

depend on the value of r.

1.5. Draw the graphs of f , f2, etc.

1.6. Use the fact that the intersection of compact sets is compact,

along with the symbolic representation of points in C.

1.11. Use the fact that E is totally disconnected and compact to

show that given any x �= y ∈ E, there exist compact disjoint open

sets U � x and V � y such that E = U ∪V . Obtain a correspondence

between such sets and cylinder sets in Σ+
2 , and pass to a correspon-

dence between points in E and elements of Σ+
2 (and hence with the

middle-third Cantor set). Then show that this correspondence is a

homeomorphism.

1.12. Find a cover of Z by open intervals whose total length is

arbitrarily small.
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1.14. Once the trajectory of x leaves the unit interval [0, 1], it will

inevitably go to either −∞ or +∞. Thus points in the middle third

of this interval, which will leave the interval after one iteration, have

a 50-50 chance of going either way. Argue inductively.

1.15. Show that every da-open ball contains a d′-open ball, and vice

versa. Argue similarly for d′′.

1.16. The diameter of the cylinders Cw1...wn
goes to 0 as n → ∞.

1.17. Whether the coding map is Hölder (or Lipschitz) will depend

on the parameter a in the metric da. Whether the inverse coding map

h−1 is Hölder will depend on the positioning of the basic intervals.

1.18. The abstract result follows from Exercise 1.11. To construct

an explicit homeomorphism, it may be easier to first find a homeo-

morphism from Σ+
k to Σ+

2 .

2.1. Given an ε-cover U of Z, we may obtain a λε-cover of Z ′ by

scaling each element of U by λ.

2.2. Since I1 and I2 are separated by a gap of length 1/3, every

ε-cover of C can be decomposed into the disjoint union of an ε-cover

of I1 and an ε-cover of I2, for every 0 < ε < 1/3.

2.7. Decompose R into countably many intervals such that f is Lip-

schitz on each.

2.12. Use the distance function d(x,E) = inf{d(x, y) | y ∈ E}, where
E ⊂ X is arbitrary, and observe that if E is closed and x /∈ E, then

d(x,E) > 0. Use this to define the desired neighbourhoods of A and

B as unions of balls around each point in A and B.

2.13. Given x �= y ∈ X, consider the cover of X whose elements are

X\{x} and X\{y}, and apply the definition of topological dimension.

2.14. Consider the rational (or irrational) numbers. For the positive

implication, given an arbitrary open cover, use compactness to pass

to a finite subcover, and then use the totally disconnected property

to obtain a refinement with multiplicity 1.

2.17. Construct a subset which is contained in Cantor sets with

arbitrarily small ratio coefficients.

2.19. Obtain the set as the limit of a Moran construction with nine

basic intervals at the first step, not just two.
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2.23. Given ε > 0, divide A (or B) into two parts; one part where the

points are sparse enough that each requires its own set of diameter ε

to cover it, and another part where the points are dense enough that

we may as well cover the entire interval containing that part.

2.25. Relate L(Z, ε) to N(Z, ε) and N(Z, 2ε).

2.29. Moran’s theorem does not apply directly since the scaling is

different in different directions. Obtain the limiting Cantor set as the

result of a different construction to which the theorem does apply.

3.1. Use Proposition 3.9 and the definition of Hausdorff dimension.

3.2. The hard part is showing that
∑

k |Ik|αC ≥ 1 whenever {Ik}k
is a cover of C by open intervals. Figure 2.2 shows a cover with two

sorts of sets, “good” (which cover a single basic interval) and “bad”

(which cover bits and pieces of multiple basic intervals). First show

that the inequality holds if every interval Ik is “good”. Then deal

with “bad” intervals as follows. If I is an interval in [0, 1] and G is

the largest gap from the Cantor construction which is contained in I,

then we may write I = L ∪ G ∪ R, where L and R are the pieces of

I which lie to the left and right of G. Prove that |I|α ≥ |L|α + |R|α;
this may be used to reduce to the case where all intervals are “good”.

3.5. First show that µ(σ−1(Cw1...wn
)) = µ(Cw1...wn

) for an arbitrary

cylinder Cw1...wn
.

3.7. An is the transition matrix for the map σn.

4.1. Decompose the Cantor tartan as the union of two direct prod-

ucts, so that the problem reduces to finding dimH C × [0, 1]. Then

the upper bounds can be obtained by exhibiting a “good” family of

covers. For the lower bounds, construct an appropriate measure on

C × [0, 1] and use the Uniform Mass Distribution Principle.

4.2. The Bowen balls in symbolic space are just cylinders, so covering

Σ+
k with Bowen balls is the same as covering it with cylinders, which

is reminiscent of the proof of Moran’s theorem.

4.3. Use the variational principle and the result of Exercise 4.2 in

conjunction with (4.14).

4.4. Given two symbols i and j, let An be the set of sequences

w ∈ Σ+
k for which the symbol sequence i, j does not appear in the

first n symbols. Show that µ(An) → 0 as n → ∞.
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4.6. Relate the balls B(x, r) and the Bowen balls Bf (x, n, δ) to the

basic sets Iw1...wn
.

5.6. The x- and y-components of the map act independently, so de-

scribe the action of each of the components of the map independently

of the other.

5.7. Use the Intermediate Value Theorem.

5.8. Let X be the unit square, and map X to R2 so that the left-most

third of X covers the right half of X, the right-most third covers the

left half, and the middle is taken to somewhere outside of X.

6.1. Consider two sequences xn = fn
c (0) and x′

n = fn
c′(0), and define

fundamental domains by In = [xn, xn+1] and I ′n = [x′
n, x

′
n+1] for n ≥

0. Define a homeomorphism φ : R → R piecewise on each fundamental

domain; φ can be taken to be linear on I0, with φ(I0) = I ′0, and then

the requirement that φ ◦ fc = fc′ ◦ φ determines φ on each of I1, I2,

etc., via an inductive procedure. Extend φ to negative numbers by

symmetry.

6.2. Use the definition of bifurcation value to show that if there is no

bifurcation at c, then there is no bifurcation in a neighbourhood of c.

6.3. Draw the graphs, use the cobweb diagrams, find the fixed points

and periodic points of period two, and determine their stability.

6.6. The given map can be rewritten as (x2 − 2)2 − 2.

6.7. Given θ ∈ R, let gθ : z �→ e2πiθz be rotation by θ. Use the fact

that α is irrational to show that for suitable values of n, fn = gθ for

arbitrarily small values of θ. Since the orbit of z0 under f contains the

orbit of z0 under fn = gθ, it suffices to show that given an arbitrary

open arc on the circle {z ∈ C | |z| = |z0|}, a value of θ can be chosen

such that the latter orbit enters the given open arc.

6.8. Recall that open sets are unions of cylinders, so it suffices to

find a sequence w whose orbit enters every cylinder.

7.5. Estimate the pointwise dimension of the product measure in

terms of the pointwise dimension of the Hausdorff measures on A

and B, and then use Proposition 4.11 and the Non-uniform Mass

Distribution Principle.

8.3. Use symbolic dynamics and the result of Exercise 6.8.

                

                                                                                                               



Suggested Reading

There are many books which cover topics in fractal geometry and/or

dynamical systems (although few which consider their interaction in

much detail). We mention a few titles which ought to be accessible

to the reader of the present volume, as well as some more advanced

works which are suitable for further in-depth study of the material.

Finally, we mention some background references for basic material,

and some popular, less technical, accounts of the subject. Complete

references may be found in the bibliography.

Concurrent reading

An introduction to dimension theory, with many aspects of modern

fractal geometry, may be found in

[Fal03] Kenneth Falconer. Fractal Geometry: Mathematical Foundations
and Applications. John Wiley & Sons, Inc., Hoboken, NJ, 2003.

The book includes a more detailed discussion of the Hausdorff mea-

sure of various sets than we have given here, as well as some elements

of the multifractal analysis which we do not consider here.

On the dynamical side of things, a very accessible treatment of

the basic concepts in dynamics is given in

299
                

                                                                                                               



300 Suggested Reading

[Dev92] Robert Devaney. A First Course in Chaotic Dynamical Systems:
Theory and Experiment. Addison-Wesley Publishing Company,
Reading, MA, 1992.

Here the discussion focuses on some of the topological aspects of one-

dimensional dynamics (with emphasis on bifurcation theory) as well

as complex dynamics (that is, dynamical systems in which the vari-

ables are complex numbers, rather than real numbers), which we have

not had space to consider here.

The reader with an interest in a more complete theoretical devel-

opment of the topics in dynamical systems introduced here is encour-

aged to have a look at

[HK03] Boris Hasselblatt and Anatole Katok. A First Course in Dynam-
ics: With a Panorama of Recent Developments. Cambridge Uni-
versity Press, New York, 2003.

Applications of dynamical systems to various areas of science are

presented, along with the basic theory, in

[Str01] Steven Strogatz.Nonlinear Dynamics and Chaos. Westview Press,
Boulder, CO, 2001.

A good account of the theory of chaos, with many examples of chaotic

dynamical systems, can be found in

[ASY97] Kathleen T. Alligood, Tim D. Sauer, and James A. Yorke. Chaos:
An Introduction to Dynamical Systems. Springer-Verlag, New
York, 1997.

Further reading

A more advanced treatment of the rich and variegated connections

between fractal geometry and dynamical systems, including the core

results in multifractal analysis of dynamics, may be found in

[Pes98] Yakov Pesin. Dimension Theory in Dynamical Systems: Con-
temporary Views and Applications. University of Chicago Press,
Chicago, IL, 1998.

A concise introduction to dynamical systems, written at the grad-

uate level, is

[BS02] Michael Brin and Garrett Stuck. Introduction to Dynamical Sys-
tems. Cambridge University Press, Cambridge, 2002.
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For the reader seeking a more encyclopedic treatment, the most com-

prehensive reference and text in dynamical systems available at the

present time is

[KH95] Anatole Katok and Boris Hasselblatt. Introduction to the Mod-
ern Theory of Dynamical Systems. Cambridge University Press,
Cambridge, 1995.

Our discussion of invariant measures and entropy is only the tip

of the iceberg in the theory of measure-preserving transformations.

A more complete discussion is given in

[Wal75] Peter Walters. An Introduction to Ergodic Theory. Springer-
Verlag, New York–Berlin, 1975.

This includes, among other things, the traditional introduction of

Kolmogorov–Sinai entropy, and a proof of the variational principle.

For a discussion of entropy in its various guises, the reader is referred

to

[Kat07] Anatole Katok. Fifty years of entropy in dynamics: 1958–2007.
J. Mod. Dyn., 1(4):545–596, 2007.

We have also only scratched the surface of bifurcation theory. A

more complete account of that theory, along with many other topics,

may be found in

[GH83] John Guckenheimer and Philip Holmes. Nonlinear Oscillations,
Dynamical Systems, and Bifurcations of Vector Fields. Springer-
Verlag, New York, 1983.

The FitzHugh–Nagumo model is just one of many important

models in mathematical biology which may profitably be studied us-

ing techniques from dynamical systems. A good overview of the field

is

[Mur93] J. D. Murray. Mathematical Biology. Springer-Verlag, Berlin, sec-
ond, corrected edition, 1993.

The Lorenz equations discussed in Chapter 9 carry within them

a much richer panoply of behaviours than we have had occasion to

unveil. A more complete story is told in

[Spa82] Colin Sparrow. The Lorenz Equations: Bifurcations, Chaos, and
Strange Attractors. Springer-Verlag, New York–Berlin, 1982.
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Background reading

The basic concepts of point set topology, which we introduced briefly

in Lecture 4, along with a more complete exposition of Lebesgue

measure (and a host of other basic results and techniques) may be

found in either of the following:

[Roy88] Halsey L. Royden. Real Analysis. Prentice-Hall, Englewood Cliffs,
NJ, third edition, 1988.

[Rud87] Walter Rudin. Real and Complex Analysis. McGraw-Hill Book
Co., New York, third edition, 1987.

Our discussions of measure theory (in Chapter 3), Jordan normal

form and other concepts of linear algebra (in the Appendix), and the

basic theory of ordinary differential equations (in Chapter 9) are all

rather brief. Full details and proofs may be found in

[Hal78] Paul R. Halmos. Measure Theory. Springer-Verlag, New York,
1978.

[HK71] Kenneth Hoffman and Ray Kunze. Linear Algebra. Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1971.

[Liu03] James Liu. A First Course in the Qualitative Theory of Differen-
tial Equations. Prentice-Hall, Inc., Upper Saddle River, NJ, 2003.

Popular references

There are also a number of books which touch on various subjects

covered in this book at a less technical level, and which are targeted at

a broader audience, either within the scientific community or beyond

it. One such book, which helped to motivate the course in which the

present work had its genesis, is

[Sch91] Manfred Schroeder. Fractals, Chaos, Power Laws: Minutes from
an Infinite Paradise. W. H. Freeman and Company, New York,
1991.

This requires some mathematics to follow, but covers an impressively

broad range of topics, and is accessible to scientists from other fields.

For historical impact, it is hard to surpass

[Man82] Benoit Mandelbrot. The Fractal Geometry of Nature. W. H. Free-
man and Company, New York, 1982.
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This requires a background similar to that required by Schroeder’s

book.

Finally, a very readable account of the historical development of

chaos theory is given in

[Gle87] James Gleick. Chaos: Making a New Science. Penguin Books,
New York, 1987.

This book can be appreciated by specialists and laypersons alike.
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Bf (x, n, δ), 139

B(x, r), 31

C0, 289

C1, 289

Cα, 290

c∞, 198

Cr, 290

Cw1...wn , 39

d(·, ·), 31
d1, 225

d2, 225

da, 37

δx, 103

Df , 169

diam(Z), 53

dimBZ, 87

dimH Z, 58

dimd
H Z, 68

dimH µ, 135

d∞, 225

dµ(x), 125

D(Z, ε), 54

Γ+, 235

Γ−, 236

h(µ, f), 142

hµ,f (x), 140

htop(Z, f), 144

|I|, 42
Iw1...wn , 22

λs,u
f (x), 238

λf (x), 153

λf (x,v), 230

λ(µ, f), 153

λs,u(µ, f), 244

Leb(Z), 34

lim xn, 85

lim xn, 85

m(Z,α), 55

m(Z,α, ε), 54

mB(Z,α, ε), 61

mH (Z,α), 106

mh(Z,α, δ), 144

µ, 102

µp, 135

Nf (Z,n, δ), 144

N(U), 88

N(Z, ε), 88

o(·), 170
ω(x), 205

ϕt, 255

π, 115

Rw1...wn , 235

r(Z,α), 86

r(Z,α), 86
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r(Z,α, ε), 85

σ, 27

Σ+
2 , 25

ΣA, 224, 243

Σ+
A, 119

Σk, 222

Σ+
k , 45

suppm, 117

Sw1...wn , 236

Tη , 263

U , 53

W s,u, 174

W s,u
ε , 173

accumulation point, 29, 85

action potential, 160

Adam, 50

admissible, 119, 224

algebra, 102, 107

almost everywhere, 104

α-limit set, 266

alphabet, 45

analytic, 290

attracting, see stable

attractor, 213, 232

Belykh, 288

chaotic, 247, 287

geometric Lorenz, 283

hyperbolic, 219, 224, 287

Lorenz, 281

strange, 287

Australia, 4

auxiliary variable, 162, 253

axon, 160

ball, 31

Barnsley fern, 84

base, 72

basic interval, 42

basic set, 81

basin of attraction, 219

basis, 72

Belykh, Vladimir, 288

Besicovitch covering lemma, 136

Besicovitch, Abram, 76, 225, 227,
288

bi-Lipschitz, 70, 90, 228

bifurcation, 168, 192

period-doubling, 178, 194

pitchfork, 197

tangent, 194

bifurcation diagram, 182, 183, 198,
205

Birkhoff, George, 244

bisectrix, 14, 195

Bonhoeffer–van der Pol model, 162

Bothe, Hans, 231

Bowen ball, 139, 144, 238

box dimension, see dimension

Brahms, Johannes, 15

Brouwer Fixed Point Theorem, 265

Cantor function, 36, 37

Cantor set, 41, 101, 121, 234

geometrically constructed, 43, 76

middle-third, 23, 36, 58, 83, 109

topology of, 29, 33, 40

Cantor tartan, 125

Cantor, Georg, 24, 288

Carathéodory construction, 107,
110

Carathéodory, Constantin, 51, 106

change of coordinates, see
conjugacy

chaos, 2, 20, 24, 167, 224, 267, 288

deterministic, 10, 269

intermittent, 246, 251, 280

persistent, 247

transient, 207, 246

closed set, 29

closure, 29, 89

CML, see coupled map lattice

coastline, 4

cobweb diagram, 13, 21

coding, 9, 26, 40, 47, 201, 239

commuting diagram, 17, 27, 201,
224, 240

compact, 29

conformal, 49, 231

conjugacy, 18, 27

topological, 40, 191

connected, 30, 48

continuous, 29, 32, 289

contracting, 83

convection, 268

coordinate change, see conjugacy
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coupled map lattice, 165

cover, 53, 64

cylinder, 38, 112, 222

damped harmonic oscillator, 162

dendrite, 160

dense, 30

devil’s staircase, see Cantor
function

diameter, 53

diffusion, 163

dimension

box, 52, 87

and metric, 93

of Moran construction, 91

various characterisations, 89

fractal, 51, 52, 91

Hausdorff, 52, 58, 101

and metric, 68, 73

of a measure, 135, 137

of Cantor set, 75, 76, 155

of direct product, 225

of geometric Lorenz attractor,

285

of line, 64

of Markov construction, 150

of middle-third Cantor set, 58

of Moran construction, 81

of non-linear horseshoe, 243

of plane, 65

of Sierpiński gasket, 60, 81

of Smale horseshoe, 237

of solenoid, 228

of symbolic space, 62

of von Koch curve, 60, 81

properties, 62

pointwise, 125, 127, 154, 238

of a Bernoulli measure, 129

of Hausdorff measure, 137

topological, 67

direct sum, 291

disconnected, 30

domain, 11, 21

duck-billed platypus, 13

dynamical system, 7, 10, 93

continuous-time, 8, 253

two-dimensional, 263

discrete-time, 7, 12

eigenvalue, 8, 170, 175, 230, 258,
292

entropy
Kolmogorov–Sinai, 142
local, 140, 154, 238

topological, 143, 229, 237, 245
equivalent, 68, 291
ergodic, 134, 146, 244
Euler’s method, 166

exact dimensional, 135
external stimulus, 163

Feigenbaum parameter, 198
Feigenbaum’s constant, 185
Feigenbaum, Mitchell, 185

first return time, 275
FitzHugh, Richard, 161, 162
FitzHugh–Nagumo model, 161,

163, 167, 175, 209, 232, 233
fixed point, 15, 168, 256, 264

hyperbolic, see saddle
stability, 169, 257, 269

flip bifurcation, see
period-doubling bifurcation

flow, 256
focus, 257
fold bifurcation, see tangent

bifurcation
fractal, 1, 3, 5, 288

fractal dimension, see dimension
France, 33
full shift, 121

g-cover, 186
Gauguin, Paul, 1

generalised eigenspace, 292
generic, 30
geometric construction, 42, 46, 93,

217
geometric Lorenz map, 281

group property, 12, 255

Hadamard–Perron theorem, 174

Hartman–Grobman theorem, 172
Hausdorff dimension, see dimension
Hausdorff measure, see measure

Hausdorff space, 71
Hausdorff’s theorem, 73
Hausdorff, Felix, 51
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heteroclinic orbit, 262, 272, 276
Hodgkin–Huxley model, 161

Hölder, 290
homeomorphism, 29

homoclinic orbit, 248, 262, 266

homoclinic tangle, 249
horseshoe

filled-in, 280
in homoclinic tangle, 251

in Lorenz model, 277

non-linear, 241
Smale, 237, 247

hyperbolic set, 218, 224

IFS, see iterated function system

image, 7, 11

inducing domain, 274
information theory, 143

initial value problem, 254
integral curve, 254

interior, 29, 66, 81

intermittent chaos, see chaos
invariant, 12, 24

measure, 113, 146
ion channel, 160

isometry, 8, 32

iterated function system, 83

Jacobian, 169

Jakobson, Michael, 208
Jordan Curve Theorem, 265

Jordan decomposition, 292

Jordan normal form, 19

Kaneko, Kunihiko, 166

Kaplan, James, 277

Katok, Anatole, 143
Koch curve, see von Koch curve

Kolmogorov, Andrei, 143
Kolmogorov–Sinai entropy, see

entropy

Lanford, Oscar, 286

law of large numbers, 131
leading parameter, 165, 167, 267

Lebesgue covering dimension, see
topological dimension

Lebesgue integration, 104
length, 6, 34, 51, 105

of the Cantor set, 25

Levinson, Norman, 237

Li, Tien-Yien, 187

linear map, 8, 230

Linnaeus, Carl, 50

Lipschitz, 70, 90, 226, 290

local entropy, see entropy

local map, 165, 167, 175

locally maximal, 219

logistic map, 17, 20, 191

Lorenz model, 267, 286

Lorenz, Edward, 267, 288

lower limit, 85

Lyapunov exponent, 153, 154, 229,
237, 238, 244

of a measure, 153, 244

Lyapunov subspace, 230

Lyapunov, Aleksandr, 153

Mandelbrot, Benoit, 51, 288

Markov construction, 119, 150

Markov map, 120, 199, 204

expanding, 49

full-branched, 49

Markov process, 115

Markov shift, see subshift of finite
type

mass distribution, 103

Mass Distribution Principle

Non-uniform, 127

Uniform, 123

May, Robert, 17

measurable set, 35, 102, 106

measure, 102, 107

Bernoulli, 113, 243

entropy, 141, 143

Hausdorff dimension, 135

pointwise dimension, 129

counting, 103

Hausdorff, 109, 137, 156

of middle-third Cantor set, 58

invariant, 113

Lebesgue, 34, 105

Markov, 115, 119, 243

entropy, 147

of maximal dimension, 136, 149,
155, 244
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of maximal entropy, 146, 149,
229

outer, 35, 106, 107
Parry, 150
point, 103, 117

probability, 103
measure space, 102
measure theoretic entropy, see

Kolmogorov–Sinai entropy

metric entropy, see
Kolmogorov–Sinai entropy

metric space, 31
symbolic space as, 37, 222

metrisable, 71

Moran construction, 81, 91
Moran’s theorem, 76
Moran, Patrick, 76

Morse–Smale, 180, 184, 189
multifractal analysis, 157, 221
Multiplicative Ergodic Theorem,

244
multiplicity, 66

Nagumo, Jin-Ichi, 161

Navier–Stokes equations, 267, 287
neighbourhood, 28, 32
neuron, 160
node, 170, 257

norm, 291
normal space, 71
north-south map, 220

null set, 104

ODE, see ordinary differential
equation

ω-limit set, 205, 266
one-dimensional map, 185, 285
one-dimensional Markov map, see

Markov map

one-to-one, 12, 29, 48
open set, 28, 53, 66
orbit, see trajectory

orbit diagram, see bifurcation
diagram

ordinary differential equation, 162,
254

Oseledets, Valery, 244

partial differential equation, 166

partition, 39
PDE, see partial differential

equation
pendulum, 259
perfect set, 30

period-3 window, 206
period-doubling bifurcation, see

bifurcation
period-doubling cascade, 184, 198,

207

periodic orbit, 261, 266
isolated, 263

periodic point, 27, 177, 186, 188,
192, 205

stability, 179

persistent chaos, see chaos
pitchfork bifurcation, see

bifurcation
Poincaré map, 263, 275

Poincaré section, 263, 274
Poincaré, Henri, 250
Poincaré–Bendixson Theorem, 266
pointwise dimension, see dimension

Pointwise Ergodic Theorem, 244
Pontryagin, Lev, 93
Pontryagin–Shnirel’man theorem,

93

population model, 13
preimage, 11, 13, 21
primitive, 119
probability vector, 113

stationary, 115

quantitative universality, 185

range, 11, 29

ratio coefficient, 42, 101
refinement, 66
regularity, 289

repeller, 23, 121, 234
repelling, see unstable
residual, 30, 224
Reynolds number, 267

saddle, 171, 173, 249, 257, 261

saddle-node bifurcation, see
tangent bifurcation

scaling factor, 58
Schmeling, Jörg, 231
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Schoenflies Theorem, 265

Schroeder, Manfred, 47

second-countable, 72

self-similarity, 3, 59, 75, 101, 156,
184

semi-group property, 11

sensitive dependence on initial
conditions, 269

separable, 34

separation axiom, 71

separatrix, 178, 182, 272

set function, 55

Sharkovsky’s theorem, 188

Sharkovsky, Aleksandr, 187

shift map, 27

two-sided, 222

Shnirel’man, Lev, 93

Sierpiński gasket, 47, 60, 81, 83

similarity transformation, 58

Simon, Károly, 231

Sinai, Yakov, 143

Smale, Stephen, 237, 251, 288

Smale–Williams solenoid, 216, 228,
231

smooth, 290

solenoid, see Smale–Williams
solenoid

solid torus, 215

soma, 160

stable, 15, 171, 172, 257

curve, 173, 178, 239

disc, 218, 220, 231

surface, 272, 276

stochastic matrix, 115

Stokes’ Theorem, 265

strongly equivalent, 69, 71, 90

structural stability, 242

subadditivity, 55, 59, 87, 98, 106

subshift of finite type, 121, 224,

243, 280

measure of maximal entropy, 149

support, 117

of a Markov measure, 119, 243

symbolic space, 25, 45, 62, 111, 239

metric on, 37

two-sided, 222

tangent bifurcation, see bifurcation

Taylor expansion, 152, 170, 256
tent map, 201
time-t map, 255, 265
topological conjugacy, see

conjugacy
topological dimension, see

dimension
topological entropy, see entropy
topological space, 28
totally disconnected, 30, 40, 48, 74
trajectory, 7, 12, 14

forwards, 205
transient chaos, see chaos
transition matrix, 118, 121, 223,

280
transition probability, 116
transmembrane potential, see

action potential
transverse homoclinic intersection,

249
implies a horseshoe, 251

trapping region, 210, 233

tree
bronchial, 3
oak, 2

triangle inequality, 31
Tucker, Warwick, 286

uniformly equivalent, 69
unstable, 15, 171, 172, 257

curve, 173, 215, 218, 231, 240
upper limit, 85
Urysohn’s metrisation theorem, 73

van der Pol oscillator, 162, 237
van der Pol, Balthasar, 162
variational principle, 146

vector field, 254
vector space, 291
Verhulst diagram, see cobweb

diagram
Verhulst, Pierre, 14
von Koch curve, 4, 60, 70, 81, 83

Walters, Peter, 143
window of stability, 184, 189, 198,

206

Yorke, James, 10, 187, 277
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