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The IAS/Park City Mathematics Institute (PCMI) was founded in

1991 as part of the “Regional Geometry Institute” initiative of the

National Science Foundation. In mid-1993 the program found an in-

stitutional home at the Institute for Advanced Study (IAS) in Prince-

ton, New Jersey. The PCMI continues to hold summer programs in

Park City, Utah.

The IAS/Park City Mathematics Institute encourages both re-

search and education in mathematics and fosters interaction between

the two. The three-week summer institute offers programs for re-

searchers and postdoctoral scholars, graduate students, undergradu-

ate students, high school teachers, mathematics education research-

ers, and undergraduate faculty. One of PCMI’s main goals is to make

all of the participants aware of the total spectrum of activities that

occur in mathematics education and research: we wish to involve pro-

fessional mathematicians in education and to bring modern concepts

in mathematics to the attention of educators. To that end the sum-

mer institute features general sessions designed to encourage interac-

tion among the various groups. In-year activities at sites around the

country form an integral part of the High School Teacher Program.

Each summer a different topic is chosen as the focus of the Re-

search Program and Graduate Summer School. Activities in the Un-

dergraduate Program deal with this topic as well. Lecture notes from

the Graduate Summer School are published each year in the IAS/Park

City Mathematics Series. Course materials from the Undergraduate

Program, such as the current volume, are now being published as
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Preface

“I have attempted to deliver [these lectures] in a

spirit that should be recommended to all students

embarking on the writing of their PH.D. thesis: Imag-

ine that you are explaining your ideas to your former

smart, but ignorant, self, at the beginning of your

studies!”

—Richard P. Feynman

This quote of Dick Feynman expresses well both our goal in writ-

ing this book and the style in which we have tried to present the

material—this is how we would have liked someone to explain things

to us when we were first learning about differential equations and

mechanics.

Richard Palais and Bob Palais
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Introduction

This book is about differential equations—a very big subject! It is

so extensive, in fact, that we could not hope to cover it completely

even in a book many times this size. So we will have to be selective.

In the first place, we will restrict our attention almost entirely to

equations of evolution. That is to say, we will be considering quanti-

ties q that depend on a “time” variable t, and we will be considering

mainly initial value problems. This is the problem of predicting the

value of such a quantity q at a time t1 from its value at some (usu-

ally earlier) “initial” time t0, assuming that we know the “law of

evolution” of q. The latter will always be a “differential equation”

that tells us how to compute the rate at which q is changing from a

knowledge of its current value. While we will concentrate mainly on

the easier case of an ordinary differential equation (ODE), where the

quantity q depends only on the time, we will on occasion consider

the partial differential equation (PDE) case, where q depends also on

other “spatial variables” x as well as the time t and where the partial

derivatives of q with respect to these spatial variables can enter into

the law determining its rate of change with respect to time.

Our principal goal will be to help you develop a good intuition

for equations of evolution and how they can be used to model a large

variety of time-dependent processes—in particular those that arise in

the study of classical mechanics. To this end we will stress various

metaphors that we hope will encourage you to get started thinking

creatively about differential equations and their solutions.

But wait! Just who is this “you” we are addressing? Every text-

book author has in mind at least a rough image of some prototypical

1

                                     

                

                                                                                                               



2 Introduction

student for whom he is writing, and since the assumed background

and abilities of this model student are sure to have an important in-

fluence on how the book gets written, it is only fair that we give you

some idea of our own preconceptions about you.

We are assuming that, at a mimimum, the usual reader of this

book will have completed the equivalent of two years of undergradu-

ate mathematics in a U.S. college or university and, in particular, will

have had a solid introduction to linear algebra and to multi-variable

(aka “advanced”) calculus. But in all honesty, we have in mind some

other hoped-for qualities in our reader, principally that he or she is

accustomed to and enjoys seeing mathematics presented conceptu-

ally and not as a collection of cookbook methods for solving standard

exercises. And finally we hope our readers enjoy working out mathe-

matical details on their own. We will give frequent exercises (usually

with liberal hints) that ask the student to fill in some details of a

proof or derive a corollary.

A related question is how we expect this book to be used. We

would of course be delighted to hear that it has been adopted as the

assigned text for many junior and senior level courses in differential

equations (and perhaps not surprisingly we would be happy using it

ourselves in teaching such a course). But we realize that the book

we have written diverges in many ways from the current “standard

model” of an ODE text, so it is our real hope and expectation that

many students, particularly those of the sort described above, will

find it a challenging but helpful source from which to learn about

ODEs, either on their own or as a supplement to a more standard

assigned text while taking an ODE course.

We should mention here—and explain—a somewhat unusual fea-

ture of our exposition. The book consists of two parts that we will

refer to as “text” and “appendices”. The text is made up of five chap-

ters that together contain about two-thirds of the material, while the

appendices consist of ten shorter mini-chapters. Our aim was to make

the text relatively easy reading by relegating the more difficult and

technical material to the appendices. A reader should be able to get

a quick overview of the subject matter of one or more chapters by

just reading the text and ignoring the references to material in the

                

                                                                                                               



Introduction 3

appendices. Later, when ready to go deeper or to check an omitted

proof, a reading of the relevant appendices should satisfy the reader’s

hunger for more detail.

Finally we would like to discuss “visual aids”—that is, the various

kinds of diagrams and pictures that make it easier for a student to

internalize a complicated mathematical concept upon meeting it for

the first time. Both of the authors have been very actively involved

with the development of software tools for creating such mathemati-

cal visualizations and with investigating techniques for using them to

enhance the teaching and learning of mathematics, and paradoxically

that has made it difficult for us to choose appropriate figures for our

text. Indeed, recent advances in technology, in particular the explo-

sive development of the Internet and in particular of the World Wide

Web, have not only made it easy to provide visual material online,

but moreover the expressiveness possible using the interactive and an-

imated multimedia tools available in the virtual world of the Internet

far surpasses that of the classic static diagrams that have traditionally

been used in printed texts. As a result we at first considered omit-

ting diagrams entirely from this text, but in the end we decided on a

dual approach. We have used traditional diagrams in the text where

we felt that they would be useful, and in addition we have placed a

much richer assortment of visual material online to accompany the

text. Our publisher, the American Mathematical Society, has agreed

to set aside a permanent area on its own website to be devoted to

this book, and throughout the text you will find references to this

area that we will refer to as the “Web Companion”.1 Here, organized

by chapter and section, you will find visualizations that go far be-

yond anything we could hope to put in the pages of a book—static

diagrams, certainly, but in addition Flash animations, Java applets,

QuickTime movies, Mathematica, Matlab, Maple Notebooks, other

interactive learning aids, and also links to other websites that contain

material we believe will help and speed your understanding. And not

only does this approach allow us to make much more sophisticated

visualizations available, but it also will permit us to add new and

improved material as it becomes available.

1Its URL is http://www.ams.org/bookpages/stml-51.

                

                                                                                                               



Chapter 1

Differential Equations
and Their Solutions

1.1. First-Order ODE: Existence and Uniqueness

What does the following sentence mean, and what image should it

cause you to form in your mind?

Let V : Rn × R → Rn be a time-dependent vector

field, and let x(t) be a solution of the differential

equation dx
dt = V (x, t) satisfying the initial condition

x(t0) = x0.

Let us consider a seemingly very different question. Suppose you

know the wind velocity at every point of space and at all instants of

time. A puff of smoke drifts by, and at a certain moment you note the

precise location of a particular smoke particle. Can you then predict

where that particle will be at all future times?

We will see that when this somewhat vague question is trans-

lated appropriately into precise mathematical concepts, it leads to

the above “differential equation”, and that the answer to our predic-

tion question translates to the central existence and uniqueness result

in the theory of differential equations. (The answer, by the way, turns

out to be a qualified “yes”, with several important caveats.)

We interpret “space” to mean the n-dimensional real number

space Rn, so a “point of space” is just an n-tuple x = (x1, . . . , xn) of

real numbers. If you feel more comfortable thinking n = 3, that’s fine

5

                                     

                

                                                                                                               



6 1. Differential Equations and Their Solutions

for the moment, but mathematically it makes no difference, and as we

shall see later, even when working with real-world, three-dimensional

problems, it is often important to make use of higher-dimensional

spaces.

On the other hand, an “instant of time” will always be repre-

sented by a single real number t. (There are mathematical situations

that do require multi-dimensional time, but we shall not meet them

here.) Thus, knowing the wind velocity at every point of space and

at all instants of time means that we have a function V that as-

sociates to each (x, t) in Rn × R a vector V (x, t) in Rn, the wind

velocity at x at time t. We will denote the n components of V (x, t)

by V1(x, t), . . . , Vn(x, t). (We will always assume that V is at least

continuous and usually that it is even continuously differentiable.)

How should we model the path taken by a smoke particle? An

ideal smoke particle is characterized by the fact that it “goes with the

flow”, i.e., it is carried along by the wind. That means that if x(t) =

(x1(t), . . . , xn(t)) is its location at a time t, then its velocity at time

t will be the wind velocity at that point and time, namely V (x(t), t).

But the velocity of the particle at time t is x′(t) = (x′
1(t), . . . , x

′
n(t)),

where primes denote differentiation with respect to t, i.e., x′ = dx
dt =

(dx1

dt , . . . ,
dxn

dt ).

So the path of a smoke particle will be a differentiable curve

x(t) in Rn that satisfies the differential equation x′(t) = V (x(t), t),

or dx
dt = V (x, t). If we write this in components, it reads dxi

dt =

Vi(x1(t), . . . , xn(t), t), for i = 1, . . . , n, and for this reason it is often

called a system of differential equations. Finally, if at a time t0 we

observe that the smoke particle is at the point x0 in Rn, then the

“initial condition” x(t0) = x0 is also satisfied.

The page devoted to Chapter 1 in the Web Companion contains

a QuickTime movie showing the wind field of a time-dependent two-

dimensional system and the path traced out by a “smoke particle”.

Figure 1.1 shows the direction field and a few such solution curves for

an interesting and important one-dimensional ODE called the logistic

equation.

                

                                                                                                               



1.1. First-Order ODE: Existence and Uniqueness 7

Figure 1.1. The logistic equation.

For the logistic equation, the velocity field is given by V (x, t) =

cx(A−x). The vertical x-axis represents the size of some quantity, and

the horizontal axis is the time, t. This equation models the growth

of x in the presence of environmental constraints. The constant A is

called the carrying capacity, and c(A− x) is the “growth rate”. Note

that the growth rate approaches zero as x approaches the carrying

capacity. This equation is discussed in more detail in Section 2.7 on

ecological models.

The combination of a differential equation, dx
dt = V (x, t), and

an initial condition, x(t0) = x0, is called an “initial value problem”

(IVP), so the above informal prediction question for smoke particles

can now be translated into a precise mathematical question: “What

                

                                                                                                               



8 1. Differential Equations and Their Solutions

can we say about the existence and uniqueness of solutions to such

initial value problems?”

We will discuss this central question in detail below, along with

important related questions such as how solutions of an IVP change

as we vary the initial condition and the vector field. In order not to

over-burden the exposition, we will leave many details of proofs to

be worked out by the reader in exercises (with liberal hints). Fully

detailed proofs can be found in the appendices and various references.

First let us make precise the definition of a solution of the above

initial value problem: it is a differentiable map x of some open interval

I containing t0 into Rn such that x(t0) = x0 and x′(t) = V (x(t), t)

for all t in I.

We first consider uniqueness. The vector field V : Rn ×R → Rn

is called continuously differentiable (or C1) if all of its components

Vi(x1, . . . , xn, t) have continuous first partial derivatives with respect

to x1, . . . , xn, t, and more generally V is called Ck if all partial deriva-

tives of order k or less of its components exist and are continuous.

1.1.1. Uniqueness Theorem. Let V : Rn × R → Rn be a

C1 time-dependent vector field on Rn and let x1(t) and x2(t) be

two solutions of the differential equation dx
dt = V (x, t) defined on the

same interval I = (a, b) and satisfying the same initial condition, i.e.,

x1(t0) = x2(t0) for some t0 ∈ I. Then in fact x1(t) = x2(t) for all

t ∈ I.

�Exercise 1–1. Show that continuity of V is not sufficient to guar-

antee uniqueness for an IVP. Hint: The classic example (with n = 1)

is the initial value problem dx
dt =

√
x and x(0) = 0. Show that for

each T > 0, we get a distinct solution x
T
(t) of this IVP by defining

x
T
(t) = 0 for t < T and x

T
(t) = 1

4 (t− T )2 for t ≥ T .

But what about existence?

1.1.2. Local Existence Theorem. Let V : Rn ×R → Rn be a

C1 time-dependent vector field on Rn. Given p0 ∈ Rn and t0 ∈ R,

there is a neighborhood O of p0 and an ε > 0 such that for every p

                

                                                                                                               



1.1. First-Order ODE: Existence and Uniqueness 9

in O there is a solution xp : (t0 − ε, t0 + ε) → Rn of the differential

equation dx
dt = V (x, t) satisfying the initial condition xp(t0) = p.

The proofs of existence and uniqueness have been greatly simpli-

fied over time, but understanding the details still requires nontrivial

effort. Here we will sketch some of the most important ideas and con-

structs that go into the complete proof, but in order not to interrupt

the flow of our exposition, we will defer the details to Appendix B.

But even if you choose not to study these proofs now, we urge you to

do so at some later time. We think you will find that these proofs are

so elegant, and the ideas and constructions that enter into them are

of such interest in their own right, that studying them is well worth

the time and effort it requires.

We begin with a simple but very important reformulation of

the ODE initial value problem x′(s) = V (x(s), s) and x(t0) = x0.

Namely, if we integrate both sides of the first of these equations from

t0 to t, we find that x(t) = x0 +
∫ t

t0
V (x(s), s) ds, and we refer to this

equation as the integral form of the initial value problem. Note that

by substituting t = t0 in the integral form and by differentiating it,

we get back the two original equations, so the integral form and the

ODE form are equivalent. This suggests that we make the following

definition.

1.1.3. Definition. Associated to each time-dependent vector field

V on Rn and x0 ∈ Rn, we define a mapping FV,x0

that transforms a

continuous function x : I → Rn (where I is any interval containing t0)

to another such function FV,x0

(x) : I → Rn defined by FV,x0

(x)(t) =

x0 +
∫ t

t0
V (x(s), s) ds.

�Exercise 1–2. Show that any y of the form FV,x0

(x) satisfies the

initial condition y(t0) = x0, and moreover y is continuously differen-

tiable with derivative y′(t) = V (x(t), t).

Recall that if f is any mapping, then a point in the domain of f such

that f(p) = p is called a fixed point of f . Thus we can rephrase the

integral form of the initial value problem as follows:

                

                                                                                                               



10 1. Differential Equations and Their Solutions

1.1.4. Proposition. A continuous map x : I → Rn is a solution

of the initial value problem x′(t) = V (x(t), t), x(t0) = x0 if and only

if x is a fixed point of FV,x0

.

Now if you have had some experience with fixed-point theorems,

that should make your ears perk up a little. Not only are there some

very general and powerful results for proving existence and uniqueness

of fixed points of maps, but even better, there are nice algorithms for

finding fixed points. One such algorithm is the so-called Method

of Successive Approximations. (If you are familiar with Newton’s

Method for finding roots of equations, you will recognize that as a

special case of successive approximations.) If we have a set X and a

self-mapping f : X → X, then to apply successive approximations,

choose some “initial approximation” x0 in X and then inductively

define a sequence xn+1 = f(xn) of “successive approximations”.

�Exercise 1–3. Suppose that X is a metric space, f is continuous,

and that the sequence xn of “successive approximations” converges

to a limit p. Show that p is a fixed point of f .

But is there really any hope that we can use successive approxi-

mations to find solutions of ODE initial value problems? Let us try

a very simple example. Consider the (time-independent) vector field

V on Rn defined by V (x, t) = x. It is easy to check that the unique

solution with x(0) = x0 is given by x(t) = etx0. Let’s try using suc-

cessive approximations to find a fixed point of FV,x0

. For our initial

approximation we choose the constant function x0(t) = x0, and fol-

lowing the general successive approximation prescription, we define

xn inductively by xn+1 = FV,x0

(xn), i.e., xn+1(t) = x0 +
∫ t

0
xn(s) ds.

�Exercise 1–4. Show by induction that xn(t) = Pn(t)x
0, where

Pn(t) is the polynomial of degree n obtained by truncating the power

series for et (i.e.,
∑n

j=0
1
j! t

j).

That is certainly a hopeful sign, and while one swallow may not make

a spring, it should give us hope that a careful analysis of successive

approximations might lead to a proof of the existence and uniqueness

theorems for an arbitrary vector field V . This is in fact the case, but

                

                                                                                                               



1.1. First-Order ODE: Existence and Uniqueness 11

we will not give further details here. Instead we refer to Appendix B

where you will find a complete proof.

1.1.5. Remark. We give a minor technical point. The argument

in Appendix B only gives a local uniqueness theorem. That is, it

shows that if x1 : (a, b) → Rn and x2 : (a, b) → Rn are two solutions

of the same ODE, then if x1 and x2 agree at a point, then they also

agree in a neighborhood of that point, so that the set of points in

(a, b) where they agree is open. But since solutions are by definition

continuous, the set of points where x1 and x2 agree is also a closed

subset of (a, b), and since intervals are connected, it then follows that

x1 and x2 agree on all of (a, b).

1.1.6. Remark. The existence and uniqueness theorems tell us

that for a given initial condition x0 we can solve our initial value

problem (uniquely) for a short time interval. The next question we

will take up is for just how long we can “follow a smoke particle”. One

important thing to notice is the uniformity of the ε in the existence

theorem—not only do we have a solution for each initial condition,

but moreover given any p0 in Rn, we can find a fixed interval I =

(t0 − ε, t0 + ε) such that a solution with initial condition p exists

on the whole interval I for all initial conditions sufficiently close to

p0. Still, this may be less than what you had hoped and expected.

You may have thought that for each initial condition p in Rn we

should have a solution xp : R → Rn of the differential equation with

xp(t0) = p. But such a global existence theorem is too much to expect.

For example, taking n = 1 again, consider the differential equation
dx
dt = x2 with the initial condition x(0) = x0. An easy calculation

shows that the unique solution is x(t) = x0

1−x0t
. Note that, for each

initial condition x0, this solution “blows up” at time T = 1
x0
, and

by the Uniqueness Theorem, no solution can exist for a time greater

than T .

But, you say, a particle of smoke will never go off to infinity in

a finite amount of time! Perhaps the smoke metaphor isn’t so good

after all. The answer is that a real, physical wind field has bounded

velocity, and it isn’t hard to show that in this case we do indeed have

                

                                                                                                               



12 1. Differential Equations and Their Solutions

global existence. You will even prove something a lot stronger in a

later exercise.

What can be said is that for each initial condition, p, there is

a unique “maximal” solution of the differential equation with that

initial condition. But before discussing this, we are going to make a

simplification and restrict our attention to time-independent vector

fields (which we shall simply call vector fields). That may sound like

a tremendous loss of generality, but in fact it is no loss of generality

at all!

�Exercise 1–5. Let V (x, t) = (V1(x, t), . . . , Vn(x, t)) be a time-

dependent vector field in Rn, and define an associated time inde-

pendent vector field Ṽ in Rn+1 by Ṽ (y) = (V1(y), . . . , Vn(y), 1).

Show that y(t) = (x(t), f(t)) is a solution of the differential equa-

tion dy
dt = Ṽ (y) if and only if f(t) = t + c and x(t) is a solution

of dx
dt = V (x, t + c). Deduce that if y(t) = (x(t), f(t)) solves the

IVP dy
dt

= Ṽ (y), y(t0) = (x0, t0), then x(t) is a solution of the IVP
dx
dt

= V (x, t), x(t0) = x0.

This may look like a swindle. We don’t seem to have done much be-

sides changing the name of the original time variable t to xn+1 and

considering it a space variable; that is, we switched to space-time

notation. But the real change is in making the velocity an (n + 1)-

vector too and setting the last component identically equal to one.

In any case this is a true reduction of the time-dependent case to the

time-independent case, and as we shall see, that is quite important,

since time-independent differential equations have special properties

not shared with time-dependent equations that can be used to sim-

plify their study. Time-independent differential equations are usu-

ally referred to as autonomous , and time-dependent ones as nonau-

tonomous. Here is one of the special properties of autonomous sys-

tems.

1.1.7. Proposition. If x : (a, b) → Rn is any solution of the

autonomous differentiable equation dx
dt = V (x) and t0 ∈ R, then

y : (a+ t0, b+ t0) → Rn defined by y(t) = x(t− t0) is also a solution

of the same equation.
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�Exercise 1–6. Prove the above proposition.

Consequently, when considering the IVP for an autonomous dif-

ferentiable equation, we can assume that t0 = 0. For if x(t) is a

solution with x(0) = p, then x(t−t0) will be a solution with x(t0) = p.

1.1.8. Remark. There is another trick that allows us to reduce

the study of higher-order differential equations to the case of first-

order equations. We will consider this in detail later, but here is a

short preview. Consider the second-order differential equation: d2x
dt2 =

f(x, dx
dt , t). Introduce a new variable v (the velocity) and consider

the following related system of first-order equations: dx
dt

= v and
dv
dt = f(x, v, t). It is pretty obvious there is a close relation between

curves x(t) satisfying x′′(t) = f(x(t), x′(t), t) and pairs of curves x(t),

v(t) satisfying x′(t) = v(t) and v′(t) = f(x(t), v(t), t).

�Exercise 1–7. Define the notion of an initial value problem for

the above second-order differential equation, and write a careful state-

ment of the relation between solutions of this initial value problem

and the initial value problem for the related system of first-order dif-

ferential equations.

We will now look more closely at the uniqueness question for solu-

tions of an initial value problem. The answer is summed up succinctly

in the following result.

1.1.9. Maximal Solution Theorem. Let dx
dt = V (x) be an au-

tonomous differential equation in Rn and p any point of Rn. Among

all solutions x(t) of the equation that satisfy the initial condition

x(0) = p, there is a maximum one, σp, in the sense that any solution

of this IVP is the restriction of σp to some interval containing zero.

�Exercise 1–8. If you know about connectedness, you should be

able to prove this very easily. First, using the local uniqueness the-

orem, show that any two solutions agree on their overlap, and then

define σp to be the union of all solutions.

Henceforth whenever we are considering some autonomous differ-

ential equation, σp will denote this maximal solution curve with initial

                

                                                                                                               



14 1. Differential Equations and Their Solutions

condition p. The interval on which σp is defined will be denoted by

(α(p), ω(p)), where of course α(p) is either −∞ or a negative real

number and ω(p) is either ∞ or a positive real number.

As we have seen, a maximal solution σp need not be defined on

all of R, and it is important to know just how the solution “blows

up” as t approaches a finite endpoint of its interval of definition. A

priori it might seem that the solution could remain in some bounded

region, but it is an important fact that this is impossible—if ω(p) is

finite, then the reason the solution cannot be continued past ω(p) is

simply that it escapes to infinity as t approaches ω(p).

1.1.10. No Bounded Escape Theorem. If ω(p) < ∞, then

lim
t→ω(p)

‖σp(t)‖ = ∞,

and similarly, if α(p) > −∞, then

lim
t→α(p)

‖σp(t)‖ = ∞.

�Exercise 1–9. Prove the No Bounded Escape Theorem. (Hint: If

limt→ω(p) ‖σ(p)‖ �= ∞, then by Bolzano-Weierstrass there would be

a sequence tk converging to ω(p) from below, such that σp(tk) → q.

Then use the local existence theorem around q to show that you could

extend the solution beyond ω(p). Here is where we get to use the fact

that there is a neighborhood O of q such that a solution exists with

any initial condition q′ in O and defined on the whole interval

(−ε, ε). For k sufficiently large, we will have both σp(tk) in O and

tk > ω − ε, which quickly leads to a contradiction.)

Here is another special property of autonomous systems.

�Exercise 1–10. Show that the images of the σp partition Rn into

disjoint smooth curves (the “streamlines” of smoke particles). These

curves are referred to as the orbits of the ODE. (Hint: If x(t) and ξ(t)

are two solutions of the same autonomous ODE and if x(t0) = ξ(t1),

then show that x(t0 + s) = ξ(t1 + s).)
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1.1.11. Definition. A C1 vector field V : Rn → Rn (and also

the autonomous differential equation dx
dt = V (x)) is called complete if

α(p) = −∞ and ω(p) = ∞ for all p in Rn. In this case, for each t ∈ R

we define a map φt : R
n → Rn by φt(p) = σp(t). The mapping t �→ φt

is called the flow generated by the differential equation dx
dt = V (x).

1.1.12. Remark. Using our smoke particle metaphor, the mean-

ing of φt can be explained as follows: if a puff of smoke occupies a

region U at a given time, then t units of time later it will occupy the

region φt(U). Note that φ0 is clearly the identity mapping of Rn.

�Exercise 1–11. Show that the φt satisfy φt1+t2 = φt1φt2 , so that

in particular φ−t = φ−1
t . In other words, the flow generated by a

complete, autonomous vector field is a homomorphism of the additive

group of real numbers into the group of bijective self-mappings of Rn.

In the next section we will see that (t, p) �→ φt(p) is jointly contin-

uous, so that the φt are homeomorphisms of Rn. Later (in Appendix

F) we will also see that if the vector field V is Cr, then (t, p) �→ φt(p)

is also Cr, so that the flow generated by a complete, autonomous,

Cr differential equation dx
dt = V (x) is a homomorphism of R into the

group of Cr diffeomorphisms of Rn. The branch of mathematics that

studies the properties of flows is called dynamical systems theory .

•Example 1–1. Constant Vector Fields. The simplest exam-

ples of autonomous vector fields in Rn are the constant vector fields

V (x) = v, where v is some fixed vector in Rn. The maximal so-

lution curve with initial condition p of dx
dt = v is clearly the linearly

parametrized straight line σp : R → Rn given by σp(t) = p+tv, and it

follows that these vector fields are complete. The corresponding flow

φt is given by φt(p) = p+ tv, so for obvious reasons these are called

constant velocity flows. In words, φt is translation by the vector tv,

and indeed these flows are precisely the one-parameter subgroups of

the group of translations of Rn.

•Example 1–2. Exponential Growth. An important complete

vector field in R is the linear map V (x) = kx. The maximal solution

curves of dx
dt = kx are again easy to write down explicitly, namely

                

                                                                                                               



16 1. Differential Equations and Their Solutions

σp(t) = ektp; i.e., in this case the flow map φt is just multiplication

by ekt.

•Example 1–3. Harmonic Oscillator. If we start from the

Harmonic Oscillator Equation, d2x
dt2 = −x, and use the trick above

to rewrite this second-order equation as a first-order system, we end

up with the linear system in R2: dx
dt = −y, dy

dt = x. In this case

the maximal solution curve σ(x0,y0)(t) can again be given explicitly,

namely σ(x0,y0)(t) = (x0 cos(t)−y0 sin(t), x0 sin(t)+y0 cos(t)), so that

now φt is rotation in the plane through an angle t. It is interesting

to observe that this can be considered a special case of (a slightly

generalized form of) the preceding example. Namely, if we identify

R2 with the complex planeC in the standard way (i.e., a+ib := (a, b))

and write z = (x, y) = x + iy, z0 = (x0, y0) = x0 + iy0, then since

iz = i(x + iy) = −y + ix = (−y, x), we can rewrite the above first-

order system as dz
dt = iz, which has the solution z(t) = eitz0. Of

course, multiplication by eit is just rotation through an angle t.

It is very useful to have conditions on a vector field V that will guar-

antee its completeness.

�Exercise 1–12. Show that ‖σp(t)− p‖ ≤
∫ t

0
‖V (σp(t))‖ dt. Use

this and the No Bounded Escape Theorem to show that dx
dt = V (x)

is complete provided that V is bounded (i.e., supx∈Rn ‖V (x)‖ < ∞).

�Exercise 1–13. A vector field V may be complete even if it is

not bounded, provided that it doesn’t “grow too fast”. Let B(r) =

sup‖x‖<r ‖V (x)‖. Show that if
∫∞
1

dr
B(r) = ∞, then V is complete.

Hint: How long does it take σp(t) to get outside a ball of radius R?

�Exercise 1–14. If a vector field is not complete, then given any

positive ε, there exist points p where either α(p) > −ε or ω(p) < ε.

1.2. Euler’s Method

Only a few rather special initial value problems can be solved in closed

form using standard elementary functions. For the general case it is

                

                                                                                                               



1.2. Euler’s Method 17

necessary to fall back on constructing an approximate solution nu-

merically with the aid of a computer. But what algorithm should

we use to program the computer? A natural first guess is succes-

sive approximations. But while that is a powerful theoretical tool

for studying the general properties of initial value problems (and in

particular for proving existence and uniqueness), it does not lead to

an efficient algorithm for constructing numerical solutions.

In fact there is no one simple answer to the question of what

numerical algorithm to use for solving ODEs, for there is no single

method that is “best” in all situations. While there are integration

routines (such as the popular fourth-order Runge-Kutta integration)

that are fast and accurate when used with many of the equations one

meets, there are many situations that require a more sophisticated

approach. Indeed, this is still an active area of research, and there

are literally dozens of books on the subject. Later, in the chapter on

numerical methods, we will introduce you to many of the subtleties of

this topic, but here we only want to give you a quick first impression

by describing one of the oldest numerical approaches to solving an

initial value problem, the so-called “Euler Method”. While rarely an

optimal choice, it is intuitive, simple, and effective for some purposes.

It is also the prototype for the design and analysis of more sophisti-

cated algorithms. This makes it an excellent place to become familiar

with the basic concepts that enter into the numerical integration of

ODE.

In what follows we will suppose that f(t,y) is a C1 time-depend-

ent vector field on Rd, to in R and yo in Rd. We will denote by

σ(f ,yo, to, t) the solution operator taking this data to the values y(t)

of the maximal solution of the associated initial value problem. By

definition, y(t) is the function defined on a maximal interval I =

[to, to+T∗), with 0 < T∗ ≤ ∞, satisfying the differential equation dy
dt =

f(t,y) and the initial condition y(to) = yo. The goal in the numerical

integration of ODE is to devise effective methods for approximating

such a solution y(t) on an interval I = [to, to + T ] for T < T∗. The

strategy that many methods use is to discretize the interval I using

N + 1 equally spaced gridpoints tn := to + nh, n = 0, . . . , N with

h = T
N so that t0 = to and tN = to + T and then use some algorithm

                

                                                                                                               



18 1. Differential Equations and Their Solutions

to define values y0, . . . ,yN in Rd, in such a way that when N is

large, each yn is close to the corresponding y(tn). The quantity

max0≤n≤N ‖y(tn)− yn‖ is called the global error of the algorithm

on the interval. If the global error converges to zero as N tends to

infinity (for every choice of f satisfying some Lipschitz condition, to,

yo, and T < T∗), then we say that we have a convergent algorithm.

Euler’s Method is a convergent algorithm of this sort.

One common way to construct the algorithm that produces the

values y1, . . . , yN uses a recursion based on a so-called (one-step)

“stepping procedure”. This is a discrete approximate solution opera-

tor, Σ(f ,yn, tn, h), having as inputs

1) a time-dependent vector field f on Rd,

2) a time tn in R,

3) a value yn in Rd corresponding to the initial time, and

4) a “time-step” h in R

and as output a point of Rd that approximates the solution of the

initial value problem y′ = f(t,y), y(ti) = yi at ti + h well when

h is small. (More precisely, the so-called “local truncation error”,

‖σ(f ,y(tn), tn, tn + h)− Σ(f ,y(tn), tn, h)‖, should approach zero at

least superlinearly in the time-step h.) Given such a stepping pro-

cedure, the approximations yn of the y(tn) are defined recursively

by yn+1 = Σ(f ,yn, tn, h). Numerical integration methods that use

discrete approximations of derivatives defining the vector field f to

obtain the operator Σ are referred to as finite difference methods.

1.2.1. Remark. Notice that there will be two sources that con-

tribute to the global error, ‖y(tn)− yn‖. First, at each stage of the

recursion there will be an additional local truncation error added to

what has already accumulated up to that point. Moreover, because

the recursion uses yn rather than y(tn), after the first step there will

be an additional error that includes accumulated local truncation er-

rors, in addition to amplification or attenuation of these errors by the

method. (In practice there is a third source of error, namely machine

round-off error from using floating-point arithmetic. Since these are

                

                                                                                                               



1.3. Stationary Points and Closed Orbits 19

amplified or attenuated in the same manner as truncation errors, we

will often consolidate them and pretend that our computers do precise

real number arithmetic, but there are situations where it is important

to take it into consideration.)

For Euler’s Method the stepping procedure is particularly simple

and natural. It is defined by ΣE(f ,yn, tn, h) := yn + h f(tn,yn).

It is easy to see why this is a good choice. If as above we denote

σ(f ,yn, tn, t) by y(t), then by Taylor’s Theorem,

y(tn + h) =y(tn) + hy′(tn) +O(h2)

=yn + h f(tn,yn) +O(h2)

=ΣE(f ,yn, tn, h) + O(h2),

so that ‖σ(f ,yn, tn, tn + h)− ΣE(f ,yn, tn, h)‖, the local truncation

error for Euler’s Method, does go to zero quadratically in h. When

we partition [to, to + T ] into N equal parts, h = T
N , each step in the

recursion for computing yn will contribute a local truncation error

that is O(h2) = O( 1
N2 ). Since there are N steps in the recursion and

at each step we add O( 1
N2 ) to the error, this suggests that the global

error will be O( 1
N ) and hence will go to zero as N tends to infinity.

However, because of the potential amplification of prior errors, this

is not a complete proof that Euler’s Method is convergent, and we

will put off the details of the rigorous argument until the chapter on

numerical methods.

�Exercise 1–15. Show that Euler’s Method applied to the initial

value problem dy
dt = y with y(0) = 1 gives limN→∞(1 + T

N )N = eT .

For T = 1 and N = 2, show that the global error is indeed greater

than the sum of the two local truncation errors.

1.3. Stationary Points and Closed Orbits

We next describe certain special types of solutions of a differential

equation that play an important role in the description and analysis

of the global behavior of its flow. For generality we will also consider

the case of time-dependent vector fields, but these solutions are really

most important in the study of autonomous equations.
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If a constant map σ : I → Rn, σ(t) = p for all t ∈ I, is a solution

of the equation dx
dt = V (x, t), then V (p, t) = σ′(t) = 0 for all t, and

conversely this implies σ(t) ≡ p is a solution. In particular, in the

autonomous case, the maximal solution σp is a constant map if and

only if V (p) = 0. Such points p are of course called zeros of the time-

independent vector field V , but because of their great importance

they have also been given many more aliases, including critical point,

singularity, stationary point, rest point, equilibrium point, and fixed

point.

A related but more interesting type of solution of dx
dt = V (x, t) is a

so-called closed orbit , also referred to as a periodic solution. To define

these, we start with an arbitrary solution σ defined on the whole real

line. A real number T is called a period of σ if σ(t) = σ(t + T ) for

all t ∈ R, and we will denote by Per(σ) the set of all periods of σ.

Of course 0 is always a period of σ, and one possibility is that it is

the only period, in which case σ is called a nonperiodic orbit. At

the other extreme, σ is a constant solution if and only if every real

number is a period of σ.

What other possibilities are there for Per(σ)? To answer that, let

us look at some obvious properties of the set of periods. First, Per(σ)

is clearly a closed subset of R—this follows from the continuity of σ.

Secondly, if T1 and T2 are both periods of σ, then σ(t+ (T1 − T2)) =

σ((t− T2) + T1) = σ(t− T2) = σ(t− T2 + T2) = σ(t), so we see that

the difference of any two periods is another period. Thus Per(σ) is

a closed subgroup of the group of real numbers under addition. But

the structure of such groups is well known.

1.3.1. Proposition. If Γ is a closed subgroup of R, then either

Γ = R, or Γ = {0}, or else there is a smallest positive element γ in Γ

and Γ consists of all integer multiples of γ.

�Exercise 1–16. Prove this proposition. (Hint: If Γ is nontrivial,

then the set of positive elements of Γ is nonempty and hence has a

greatest lower bound γ which is in Γ since Γ is closed. If γ = 0, show

that Γ is dense in R and hence it is all of R. If γ �= 0, it is the

smallest positive element of Γ. In this case, if n ∈ Γ, then dividing n
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by γ gives n = qγ + r with 0 ≤ r < γ. Show that the remainder, r,

must be zero.)

A solution σ is called periodic if it is nonconstant and has a non-

trivial period, so that by the proposition all its periods are multiples

of a smallest positive period γ, called the prime period of σ.

A real number T is called a period of the time-dependent vector

field V if V (x, t) = V (x, t + T ) for all t ∈ T and x ∈ R. A repeat

of the arguments above show that the set Per(V ) of all periods of V

is again a closed subgroup of R, so again there are three cases: 1)

Per(V ) = R, i.e., V is time-independent, 2) Per(V ) = {0}, i.e., V is

nonperiodic, or 3) there is a smallest positive element T0 of Per(V )

(the prime period of V ) and Per(V ) consists of all integer multiples

of this prime period.

�Exercise 1–17. Show that if T is a period of the time-dependent

vector field V and σ is a solution of dx
dt = V (x, t), then T is also a

period of σ provided there exists a real number t1 such that σ(t1) =

σ(t1 + T ). (Hint: Use the uniqueness theorem.)

Note the following corollary: in the autonomous case, if an orbit

σ “comes back and meets itself”, i.e., if there are two distinct times t1
and t2 such that σ(t1) = σ(t2), then σ is a periodic orbit and t2 − t1
is a period. For this reason, periodic solutions of autonomous ODEs

are also referred to as closed orbits. Another way of stating this same

fact is as follows:

1.3.2. Proposition. Let φt be the flow generated by a complete,

autonomous ODE, dx
dt = V (x). A necessary and sufficient condition

for the maximum solution curve σp with initial condition p to be

periodic with period T is that p be a fixed point of φT .

•Example 1–4. For the harmonic oscillator system in R2: dx
dt =

−y, dy
dt = x, we have seen that the solution with initial condition

(x0, y0) is x(t) = x0 cos(t) − y0 sin(t), y(t) = x0 sin(t) + y0 cos(t).

Clearly the origin is a stationary point, and every other solution is

periodic with the same prime period 2π.
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1.3.3. Remark. The ODEs modeling many physical systems have

periodic orbits, and each such orbit defines a physical “clock” whose

natural unit is the prime period of the orbit. We simply choose a con-

figuration of the system that lies on this periodic orbit and tick off the

successive recurrences of that configuration to “tell time”. The resolu-

tion to which before and after can be distinguished with such a clock is

limited to approximately the prime period of the orbit. There seems

to be no limit to the benefits of ever more precise chronometry—

each time a clock has been constructed with a significantly shorter

period, it has opened up new technological possibilities. Humankind

has always had a 24-hour period clock provided by the rotation of the

earth on its axis, but it was only about four hundred years ago that

reasonably accurate clocks were developed with a period in the 1-

second range. In recent decades the resolution of clocks has increased

dramatically. For example, the fundamental clock period for the com-

puter on which we are writing this text is about 0.4× 10−9 seconds.

The highest resolution (and most accurate) of current clocks is the

cesium vapor atomic clocks used by international standards agencies.

These have a period of about 10−11 seconds (with a drift error of

about 1 second in 300,000 years!). This means that if two events oc-

cur only one hundred billionth of a second apart, one of these clocks

can in principle tell which came first.

1.4. Continuity with Respect to Initial Conditions

We consider next how the maximal solutions σp of a first-order ODE
dx
dt = V (x) depends on the initial condition p. Eventually we will

see that this dependence is as smooth as the vector field V , but as a

first step we will content ourselves with proving just continuity. The

argument rests on a simple but important general principle called

Gronwall’s Inequality.

1.4.1. Gronwall’s Inequality. Let u : [0, T ) → [0,∞) be a

continuous, nonnegative, real-valued function and assume that u(t) ≤
U(t) := C+K

∫ t

0
u(s) ds for certain constants C ≥ 0 andK > 0. Then

u(t) ≤ CeKt.
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�Exercise 1–18. Prove Gronwall’s Inequality.

Hint: Since u ≤ U , it is enough to show that U(t) ≤ CeKt, or

equivalently that e−KtU(t) ≤ C, and since U(0) = C, it will suffice

to show that e−KtU(t) is nonincreasing, i.e., that (e−KtU(t))′ ≤ 0.

Since (e−KtU(t))′ = e−Kt(U ′(t) −KU) and U ′ = Ku, this just says

that Ke−Kt(u− U) ≤ 0.

1.4.2. Theorem on Continuity w.r.t. Initial Conditions.

Let V be a C1 vector field on Rn and let σp(t) denote the maxi-

mal solution curve of dx
dt = V (x) with initial condition p. Then as

q tends to p, σq(t) approaches σp(t), and the convergence is uniform

for t in any bounded interval I on which σp is defined.

Proof. We have seen that σp(t) = p+
∫ t

0
V (σp(s), s) ds, and it follows

that ‖σp(t)− σq(t)‖ ≤ ‖p− q‖ +
∫ t

0
‖V (σp(s), s)− V (σq(s), s)‖ ds.

On the other hand, it is proved in Appendix A that on any bounded

set (and in particular on a bounded neighborhood of σp(I) × I) V

satisfies a Lipschitz condition ‖V (x, t)− V (y, t)‖ ≤ K ‖x− y‖, so

it follows that ‖σp(t)− σq(t)‖ ≤ ‖p− q‖ + K
∫ t

t0
‖σp(s)− σq(s)‖ ds.

It now follows from Gronwall’s Inequality that ‖σp(t)− σq(t)‖ ≤
‖p− q‖ eKt.

1.4.3. Remark. For the differential equation dx
dt = kx, the max-

imal solution is σp(t) = ektp, so ‖σp(t)− σq(t)‖ = ekt ‖p− q‖. Thus

if k is positive, then any two solutions diverge from each other expo-

nentially fast, while if k is negative, all solutions approach the origin

(and hence each other) exponentially fast.

But continuity with respect to initial conditions is not the whole

story.

1.4.4. Theorem on Smoothness w.r.t. Initial Conditions.

Let V be a Cr vector field on Rn, r ≥ 1, and let σp(t) denote the

maximal solution curve of dx
dt = V (x) with initial condition p. Then

the map (p, t) �→ σp(t) is C
r.

The proof of this theorem is one of the most difficult in elementary

ODE theory, and we have deferred it to Appendix F.
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Let V : Rn × Rk → Rn be a smooth function. Then to each

α in Rk we can associate a vector field V (·, α) on Rk, defined by

x �→ V (x, α). For this reason it is customary to consider V as a

“vector field on Rn depending on a parameter α in Rk”. It is often

important to know how solutions of dx
dt = V (x, α) depend on the

parameter α, and this is answered by the following theorem.

1.4.5. Theorem on Smoothness w.r.t. Parameters. Let

V : Rn × Rk → Rn be a Cr map, r > 1, and let σα
p denote the

maximum solution curve of dx
dt = V (x, α) with initial condition p.

Then the map (p, α, t) �→ σα
p (t) is C

r.

�Exercise 1–19. Deduce this from the Theorem on Smoothness

w.r.t. Initial Conditions. Hint: This is another one of those cute

reduction arguments that this subject is full of. The idea is to consider

the vector field Ṽ on Rn × Rk defined by Ṽ (x, α) = (V (x, α), 0)

and to note that its maximal solution with initial condition (p, α) is

t �→ (σα
p (t), α).

You may have noticed an ambiguity inherent in our use of σp to

denote the maximal solution curve with initial condition p of a vector

field V . After all, this maximal solution clearly depends on V as

well as on p, so let us now be more careful and denote it by σV
p . Of

course, this immediately raises the question of just how σV
p depends

on V . If V changes just a little, does it follow that σV
p also does

not change by much? If we return to our smoke particle in the wind

metaphor, then this seems reasonable; if we make a tiny perturbation

of the direction and speed of the wind at every point, it seems that

the path of a smoke particle should not be grossly different. This

intuition is correct, and all that is required to prove it is another

tricky application of Gronwall’s Inequality.

1.4.6. Theorem on the Continuity of σV
p w.r.t. V. Let V be

a C1 time-dependent vector field on Rn and let K be a Lipschitz con-

stant for V , in the sense that ‖V (x, t)− V (y, t)‖ ≤ K ‖x− y‖ for all

x, y, and t. IfW is another C1 time-dependent vector field onRn such

that ‖V (x, t)−W (x, t)‖ ≤ ε for all x and t, then
∥∥σV

p (t)− σW
p (t)

∥∥ ≤
ε
K

(
eKt − 1

)
.
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�Exercise 1–20. Prove the above theorem. Hint: If we define

u(t) =
∥∥σV

p (t)− σW
p (t)

∥∥ + ε
K , then the conclusion may be written

as u(t) ≤ ε
K eKt, which follows from Gronwall’s Inequality provided

we can prove u(t) ≤ ε
K + K

∫ t

0
u(s) ds. To show that, start from

u(t) − ε
K =

∥∥σV
p (t)− σW

p (t)
∥∥ ≤

∫ t

0

∥∥V (σV
p (s))−W (σW

p (s))
∥∥ ds and

use ∥∥V (σV
p (s))−W (σW

p (s))
∥∥ ≤

∥∥V (σV
p (s))− V (σW

p (s))
∥∥

+
∥∥V (σW

p (s))−W (σW
p (s))

∥∥
≤ (Ku(s)− ε) + ε = Ku(s).

1.5. Chaos—Or a Butterfly Spoils Laplace’s Dream

L’état présent du système de la Nature est évidemment une

suite de ce qu’elle était au moment précédent et, si nous

concevons une intelligence qui, pour un instant donné, em-

brasse tous les rapports des êtres de cet Univers, elle pourra

déterminer pour un temps quelconque pris dans le passé ou

dans l’avenir la position respective, les motions et générale-

ment toutes les affections de ces êtres. . .

—Pierre Simon de Laplace, 17731

The so-called “scientific method” is a loosely defined iterative process

of experimentation, induction, and deduction with the goal of deriv-

ing general “laws” for describing various aspects of reality. Prediction

plays a central role in this enterprise. During the period of discovery

and research, comparing experiments against predictions helps elim-

inate erroneous preliminary versions of a theory and conversely can

provide confirming evidence when a theory is correct. And when a

theory finally has been validated, its predictive power can lead to valu-

able new technologies. In the physical sciences, the laws frequently

take the form of differential equations (of just the sort we have been

1The current state of Nature is evidently a consequence of what it was in the
preceding moment, and if we conceive of an intelligence that at a given moment
knows the relations of all things of this Universe, it could then tell the positions,
motions and effects of all of these entities at any past or future time. . .
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considering) that model the time-evolution of various real-world pro-

cesses. So it should not be surprising that the sort of issues that we

have just been discussing have important practical and philosophical

ramifications when it comes to evaluating and interpreting the pre-

dictive power of such laws, and indeed some of the above theorems

were developed for just such reasons.

At first glance, it might appear that theory supports Laplace’s

ringing deterministic manifesto quoted above. But if we examine

matters with more care, it becomes evident that, while making de-

pendable predictions might be possible for a god who could calculate

with infinite precision and who knew the laws with perfect accuracy,

for any lesser beings there are severe problems not only in practice

but even in principle.

First let us look at the positive side of things. In order to make

reliable predictions based on a differential equation dx
dt = V (x), at

least the following two conditions must be satisfied:

1) There should be a unique solution for each initial condition, and

it should be defined for all t ∈ R.

2) This solution should depend continuously on the initial condition

and also on the vector field V .

Initial value problems that satisfy these two conditions are often re-

ferred to as “well-posed” problems.

The importance of the first condition is obvious, and we will not

say more about it. The second is perhaps less obvious, but neverthe-

less equally important. The point is that even if we know the initial

conditions with perfect accuracy (which we usually do not), the finite

precision of machine representation of numbers as well as round-off

and truncation errors in computer algorithms would introduce small

errors. So if arbitrarily small differences in initial conditions resulted

in wildly different solutions, then prediction would be impossible.

Similarly we do not in practice ever know the vector field V per-

fectly. For example, in the problem of predicting the motions of the

planets, it is not just their mutual positions that determine the force

law V , but also the positions of all their moons and of the great mul-

titude of asteroids and comets that inhabit the solar system. If the
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tiny force on Jupiter caused by a small asteroid had a significant ef-

fect on its motion, then predicting the planetary orbits would be an

impossible task.

In the preceding section we saw that complete, C1 vector fields do

give rise to a well-posed initial value problem, so Laplace seems to be

on solid ground. Nevertheless, even though the initial value problems

that arise in real-world applications may be technically well-posed in

the above sense, they often behave as if they were ill-posed. For a class

of examples that turns up frequently—the so-called chaotic systems—

predictability is only an unachievable theoretical ideal. While their

short-term behavior is predictable, on longer time-scales prediction

becomes, for practical purposes, impossible. This may seem para-

doxical at first; if we have an algorithm for predicting accurately for

ten seconds, then should not repeating it with that first prediction

as a new initial condition provide an accurate prediction for twenty

seconds? Unfortunately, a hallmark feature of chaotic systems, called

“sensitive dependence on initial conditions”, defeats this strategy.

Let us consider an initial value problem dx
dt = V (x), x(0) = p0

and see how things go wrong for a chaotic system when we try to

compute σp0
(t) for large t. Suppose that p1 is very close to p0, say

‖p0 − p1‖ < δ, and let us compare σp1
(t) and σp0

(t). Continuity with

respect to initial conditions tells us that for δ small enough σp1
(t) at

least initially will not diverge too far from σp1
(t). In fact, for a chaotic

system, a typical behavior—when p0 is near a so-called “strange

attractor”—is for σp1
(t) to at first “track” σp0

(t) in the sense that

‖σp0
(t)− σp1

(t)‖ initially stays nearly constant or even decreases—so

in particular the motions of σp0
(t) and σp1

(t) are highly correlated.

But then, suddenly, there will be a period during which σp1
(t) starts

to veer off in a different direction, following which ‖σp0
(t)− σp1

(t)‖
will grow exponentially fast for a while. Soon they will be far apart,

and although their distance remains bounded, from that time forward

their motions become completely uncorrelated. If we make δ smaller,

then we can guarantee that σp1
(t) will track σp0

(t) for a longer period,

but (and this is the essence of sensitive dependence on initial condi-

tions) no matter how small we make δ, the veering away and

loss of correlation will always occur. The reason this is relevant
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is that when we try to compute σp0
(t), there will always be some tiny

error in the initial condition, and in addition there will be system-

atic rounding, discretization, and truncation errors in our numerical

integration process, so we are always in essence computing σp1
(t) for

some p1 near p0 rather than computing σp0
(t) itself. The important

thing to remember is that even the most miniscule of deviations will

get enormously amplified after the loss of correlation occurs.

While there is no mathematical proof of the fact, it is generally

believed that the fluid mechanics equations that govern the evolution

of weather are chaotic. The betting is that accurate weather pre-

dictions more than two weeks in advance will never be feasible, no

matter how much computing power we throw at the problem. As the

meteorologist Edward Lorenz once put it, “... the flap of a butterfly’s

wings in Brazil can set off a tornado in Texas.” This metaphor has

caught on, and you will often hear sensitive dependence on initial

conditions referred to as the “butterfly effect”.

In Figure 1.2 we show a representation of the so-called “Lorenz

attractor”. This shows up in an ODE that Lorenz was studying as

a highly over-simplified meteorological model . The Web Companion

has a QuickTime Movie made with 3D-XplorMath that shows the

Lorenz attractor being generated in real time. What is visible from

the movie (and not in the static figure) is how two points of the

orbit that are initially very close will moments later be far apart, on

different “wings” of the attractor. (By the way, the fact that the

Lorenz attractor resembles a butterfly is totally serendipitous!)

Figure 1.2. The Lorenz attractor.
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Another strange attractor, shown in Figure 1.3, appears in an

ODE called the Rikitake Two-Disk Dynamo. Like the Lorenz system,

the Rikitake ODE was invented to model an important real-world

phenomenon, namely the Earth’s geomagnetic field. The flipping back

and forth between attractor “wings” in this case corresponds to the

flipping of the Earth’s North and South Magnetic Poles that has long

been known from the geologic record.

Figure 1.3. The Rikiatke attractor.

Fortunately, even though systems that exhibit sensitive depen-

dence on initial conditions do not permit long-time a priori prediction,

it does not follow that such systems cannot be used to control pro-

cesses that go on over long time periods. For example, when NASA

sends a space-probe to a distant planet, the procedure is to look at

all initial conditions and times that end up at the appropriate point

on the given planet and then among these optimize for some variable

(such as the transit time or payload weight). Of course they are using

the prediction that with this choice of time and initial condition the

probe will end up on the planet, but they realize that this prediction

is only a first approximation. After lift-off, the current position and

velocity of the probe is measured at intervals small enough to assure

only small deviation from the previous predicted values. Then, these

actual position and velocity are compared with the desired values and

a “mid-course correction” is programmed that will bring the actual

values back in line with the desired values. The equations governing
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a space probe are not actually chaotic, but this same sort of control-

lability has also been proved rigorously for certain chaotic systems.

Experiment. Balance a broomstick vertically as best you can and

let it fall. Repeat this many times, each time measuring the angle it

makes with a fixed direction. You will see that the angles are ran-

domly distributed around a circle, suggesting sensitive dependence on

initial conditions (even though this system is not technically chaotic).

Now place the broomstick on your fingertip and try to control it in a

nearly upright position by making rapid slight finger motions—most

people know almost instinctively how to do this. It is also instructive

to note that you can make small rapid back-and-forth motions with

your finger in a pre-planned direction, adding small perturbations as

required to maintain the broomstick in approximate balance. (It is a

fact that this actually serves to stabilize the control problem.)

We hope you have asked yourself an obvious question. If the

weather is too chaotic to predict, can we perhaps nevertheless control

it? After all, if a tiny butterfly can really perturb things enough to

cause a storm a week later, it should not be beyond the power of

humans to sense the effects of this perturbation while it is still small

enough to counteract. (Of course this is not an entirely new idea—

people have been seeding clouds to produce rain for decades. But the

real challenge is to learn enough about how large weather systems

evolve to be able to guide their development effectively with available

amounts of energy.)

�Exercise 1–21. Learn how to control the weather. Hint: It could

easily take you a lifetime to complete this exercise, but if you succeed,

it will have been a life well spent.

1.5.1. Further Notes on Chaos. The study of chaotic systems

is a relatively new field of mathematics, and even the “correct” defi-

nition of chaos is still a matter of some debate. In fact chaos should

probably be thought of more as a “syndrome”—a related collection

of symptoms—than as a precisely defined concept. We have con-

centrated here on one particular symptom of chaotic systems, their

sensitive dependence on initial conditions, but there are others that
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are closely related and equally as important, such as having a pos-

itive “Lyapounov Exponent”, the existence of so-called “strange at-

tractors”, “homoclinic tangles”, and “horseshoe maps”. These latter

concepts are quite technical, and we will not attempt to define or

describe them here (but see the references below).

In recent years chaos theory and the related areas of dynamical

systems and nonlinear science, have been the focus of enormous ex-

citement and enthusiasm, giving rise to a large and still rapidly grow-

ing literature consisting of literally hundreds of books, some technical

and specialized and others directed at the lay public. Two of the best

nontechnical expositions are David Ruelle’s “Chance and Chaos” and

James Gleick’s “Chaos: Making a New Science”. For an excellent

introduction at a more mathematically sophisticated level see the col-

lection of articles in “Chaos and Fractals: The Mathematics Behind

the Computer Graphics”, edited by Robert Devaney and Linda Keen.

Other technical treatment we can recommend are Steven Strogatz’

“Nonlinear Dynamics and Chaos”, Hubbard and West’s “Differential

Equations: A Dynamical Systems Approach”, Robert Devaney’s “A

First Course in Chaotic Dynamical Systems”, and Tom Mullin’s “The

Nature of Chaos”.

1.6. Analytic ODE and Their Solutions

Until now we have worked entirely in the real domain, but we can

equally well consider complex-valued differential equations. Of course

we should be precise about how to interpret this concept, and in

fact there are several different interpretations with different levels of

interest and sophistication. Using the most superficial generalization,

it seems as if there is nothing really new—since we can identify C

with R2, a smooth vector field on Cn is just a smooth vector field on

R2n. But even here there are some advantages in using a complex

approach. Recall the important two-dimensional real linear system
dx
dt

= −y, dy
dt

= x, mentioned earlier, that arises when we reduce the

harmonic oscillator equation d2x
dt2 = −x to a first-order system. We

saw that if we regard R2 as C and write z = x + iy as usual, then

our system becomes dz
dt = iz, so the solution with initial condition
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z0 is evidently z(t) = eitz0, and we recover the usual solution of the

harmonic oscillator by taking the real part of this complex solution.

But if you have had a standard course on complex function theory,

then you can probably guess what the really important generalization

should be. First of all, we should replace the time t by a complex

variable τ , demand that the vector field V that occurs on the right-

hand side of our equation dz
dτ = V (z) is an analytic function of z, and

look for analytic solutions z(τ ).

To simplify the notation, we will consider the case of a single

equation, but everything works equally well for a system of equations
dzi
dτ

= Vi(z1, . . . , zn). We shall also assume that V is an entire function

(i.e., defined and analytic on all of C), but the generalization to the

case that V is only defined in some simply connected region Ω ⊂ C

presents little extra difficulty.

Let us write H(Br,C) for the space of continuous, complex-

valued functions defined on Br (the closed disk of radius r in C)

that are analytic in the interior. Just as in the real case, we can

define the map F = FV,z0 of H(Br,C) into itself by F (ζ)(τ ) = z0 +∫ τ

0
V (ζ(σ)) dσ. Note that by Cauchy’s Theorem the integral is well-

defined, independent of the path joining 0 to τ , and since the indefinite

integral of an analytic function is again analytic, F does indeed map

H(Br,C) to itself. Clearly F (ζ)(0) = z0 and
d
dτ F (ζ)(τ ) = V (ζ(τ )), so

ζ ∈ H(Br,C) satisfies the initial value problem dz
dτ = V (z), z(0) = z0

if and only if it is a fixed point of FV,z0 . The fact that a uniform

limit of a sequence of analytic functions is again analytic implies

that H(Br,C) is a complete metric space in the metric ρ(ζ1, ζ2) =

‖ζ1 − ζ2‖∞ given by the “sup” norm, ‖ζ‖∞ = supτ∈Br
|ζ(τ )|. We

now have all the ingredients required to extend to this new setting

the same Banach Contraction Principle argument used in Appendix

B to prove the existence and uniqueness theorem in the real case. It

follows that given z ∈ C, there is a neighborhood O of z and a posi-

tive ε such that for each z0 ∈ O there is a unique ζz0 ∈ H(Bε,C) that

solves the initial value problem dz
dτ = V (z), z(0) = z0. And the proof

in Appendix F that solutions vary smoothly with the initial condition

generalizes to show that ζz0 is holomorphic in the initial condition z0.
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Now let us consider the case of a real ODE, dx
dt = V (x), but

assume that the vector field V : Rn → Rn is analytic. This means

simply that each component Vi(x1, . . . , xn) is given by a convergent

power series. Then these same power series extend the definition of

V to an analytic map of Cn to itself, and we are back to the situation

above. (In fact, this is just the special case of what we considered

above when the coefficients of the power series are all real.) Of course,

if we consider only the solutions of this “complexified” ODE whose

initial conditions z0 are real and also restrict the time parameter τ

to real values, then we get the solutions of the original real equation.

So what we learn from this excursion to Cn and back is that when

the right-hand side of the ODE dx
dt = V (x) is an analytic function of

x, then the solutions are also analytic functions of the time and the

initial conditions.

This complexification trick is already useful in the simple case

that the vector field V is linear, i.e., when Vi(x) =
∑n

i Aijxj for some

n×n real matrix A. The reason is that the characteristic polynomial

of A, P (λ) = det(A − λI), always factors into linear factors over C,

but not necessarily over R. In particular, if P has distinct roots, then

it is diagonalizable over C and it is trivial to write down the solutions

of the IVP in an eigenbasis. We will explore this in detail in Chapter

2 on linear ODEs.

1.7. Invariance Properties of Flows

In this section we suppose that V is some complete vector field on Rn

and that φt is the flow on Rn that it generates. For many purposes

it is important to know what things are “preserved” (i.e., left fixed

or “invariant”) under a flow.

For example, the function F : Rn → R is said to be invariant

under the flow (or to be a “constant of the motion”) if F ◦φt = F for

all t. Note that this just means that each solution curve σp lies on

the level surface F = F (p) of the function F . (In particular, in case

n = 2, where the level “surfaces” are level curves, the solution curves

will in general be entire connected components of these curves.)
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�Exercise 1–22. Show that a differentiable function F is a con-

stant of the motion if and only if its directional derivative at any

point x in the direction V (x) is zero, i.e.,
∑

k
∂F (x)
∂xk

Vk(x) = 0.

The flow is called isometric (or distance preserving) if for all

points p, q in Rn and all times t, ‖φt(p)− φt(q)‖ = ‖p− q‖, and it is

called volume preserving if for all open sets O of Rn, the volume of

φt(O) equals the volume of O.

Given a linear map B : Rn → Rn, we get a bilinear map B̂ :

Rn ×Rn → R by B̂(u, v) = 〈Bu, v〉, where 〈Bu, v〉 is just the inner

product (or dot product) of Bu and v. We say that the flow preserves

the bilinear form B̂ if B̂((Dφt)x(u), (Dφt)x(v)) = B̂(u, v) for all u, v

in Rn and all x in Rn.

Here, the linear map D(φt)x : Rn → Rn is the differential of φt

at x; i.e., if the components of φt(x) are Φi(x, t), then the matrix of

D(φt)x is just the Jacobian matrix ∂Φi(x,t)
∂xj

. We will denote the de-

terminant of this latter matrix (the Jacobian determinant) by J(x, t).

We note that because φ0(x) = x, ∂Φi(x,0)
∂xj

is the identity matrix, and

it follows that J(x, 0) = 1.

�Exercise 1–23. Since, by definition, t �→ φt(x) is a solution of
dx
dt = V (x), ∂Φi(x,t)

∂t = Vi(φt(x)). Using this, deduce that ∂
∂t

∂Φi(x,t)
∂xj

=
∑

k
∂Vi(φt(x))

∂xk

∂Φk(x,t)
∂xj

and in particular that
(

∂
∂t

)
t=0

∂Φi(x,t)
∂xj

= ∂Vi(x)
∂xj

.

�Exercise 1–24. We define a scalar function div(V ), the diver-

gence of V , by div(V ) :=
∑

i
∂Vi

∂xi
. Using the formula for the derivative

of a determinant, show that
(

∂
∂t

)
t=0

J(x, t) = div(V )(x).

�Exercise 1–25. Now, using the “change of variable formula” for

an n-dimensional integral, you should be able to show that the flow

generated by V is volume preserving if and only if div(V ) is identically

zero. Hint: You will need to use the group property, φt+s = φt ◦ φs.

�Exercise 1–26. Let Bij denote the matrix of the linear map B.

Show that a flow preserves B̂ if and only if
∑

k

(
Bik

∂Vk

∂xj
+ ∂Vk

∂xi
Bkj

)
=

0. Show that the flow is isometric if and only if it preserves Î (i.e.,
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the inner product) and hence if and only if the matrix ∂Vi

∂xj
is every-

where skew-symmetric. Show that isometric flows are also measure

preserving.

�Exercise 1–27. Show that the translation flows generated by con-

stant vector fields are isometric and also that the flow generated by

a linear vector field V (x) = Ax is isometric if and only if A is skew-

adjoint. Conversely show that if V (x) is a vector field generating a

one-parameter group of isometries of Rn, then V (x) = v+Ax, where

v is a point of Rn and A is a skew-adjoint linear map of Rn. Hint:

Show that ∂2Vi

∂xj∂xk
vanishes identically.

                

                                                                                                               



Chapter 2

Linear Differential
Equations

2.1. First-Order Linear ODE

Two differential equations that students usually meet very early in

their mathematical careers are the first-order “equation of exponen-

tial growth”,dxdt = ax, with the explicit solution x(t) = x(0)eat,

and the second-order “equation of simple harmonic motion”, d2x
dt2 =

−ω2x, whose solution can also be written down explicitly: x(t) =

x(0) cos(ωt) + x′(0)
ω sin(ωt). The interest in these two equations goes

well beyond the fact that they have simple and explicit solutions.

Much more important is the fact that they can be used to model suc-

cessfully many real-world situations. Indeed, they are so important

in both pure and applied mathematics that we will devote this and

the next several sections to studying various generalizations of these

equations and their applications to building models of real-world phe-

nomena. Let us start by looking at (and behind) the property that

gives these two equations their special character.

One of the most obvious features common to both of these equa-

tions is that their right-hand sides are linear functions. Now, in many

real-world situations the response of a system to an influence is well

approximated by a linear function of that influence, so granting that

the dynamics of such problems can be described by an ODE, it should

be no surprise that the dynamical equations for such systems are lin-

ear. In particular, if x measures the deviation of some system from

an equilibrium configuration, then there will usually be a restoring

37
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force driving the system back towards equilibrium, the magnitude of

which is linear in x—this is the general formulation of Hooke’s Law

that “stress is proportional to strain”. From a mathematical point

of view, there is nothing mysterious about this—the restoring force

is actually only approximately linear, with the approximation get-

ting better as we approach equilibrium. If we assume only that the

restoring force is a differentiable function of the deviation from equi-

librium, then, since it vanishes at the equilibrium, we see that the

approximate linearity of the force near equilibrium is just a manifes-

tation of Taylor’s Theorem with Remainder. This observation points

to a further reason for why linear equations play such a central role.

Suppose we have a nonlinear differential equation dx
dt = V (x). At an

“equilibrium point” p, i.e., a point where V (p) = 0, define A to be the

differential of V at p. Then for small x, Ax is a good approximation

of V (p+x), so we can hope to approximate solutions of the nonlinear

equation near p with solutions of the linear equation dx
dt = Ax near 0.

In fact this technique of “linearization” is one of the most powerful

tools for analyzing nonlinear differential equations and one that we

shall return to repeatedly.

The most natural generalization of the equation of exponential

growth to an n-dimensional system is an equation of the form dx
dt =

Ax, where now x represents a point ofRn and A : Rn → Rn is a linear

operator, or equivalently an n× n matrix. Such an equation is called

an autonomous, first-order, linear ordinary differential equation.

�Exercise 2–1. The Principle of Superposition. Show that

any linear combination of solutions of such a system is again a solu-

tion, so that if as usual σp denotes the solution of the initial value

problem with initial condition p, then σp1+p2
= σp1

+ σp2
.

When n = 1, A is just a scalar, and we know that σp(t) = etAp,

or in other words, the flow φt generated by the differential equation is

just multiplication by etA. What we shall see below is that for n > 1

we can still make good sense out of etA, and this same formula still

gives the flow.

                

                                                                                                               



2.1. First-Order Linear ODE 39

We saw very early that in one-dimensional space successive ap-

proximations worked particularly well for the linear case, so we will

begin by attempting to repeat that success in higher dimensions.

Denote by C(R,Rn) the continuous maps of R into Rn, and as

earlier let F = FA,x0 be the map of C(R,Rn) to itself defined by

F (x)(t) := x0 +
∫ t

0
A(x(s)) ds. Since A is linear, this can also be

written as F (x)(t) := x0 + A
∫ t

0
x(s) ds. We know that the solution

of the IVP with initial value x0 is just the unique fixed point of F ,

so let’s try to find it by successive approximations starting from the

constant path x0(t) = x0. If we recall that the sequence of successive

approximations, xn, is defined recursively by xn+1 = F (xn), then an

elementary induction gives xn(t) =
∑n

k=0
1
k! (tA)kx0, suggesting that

the solution to the initial value problem should be given by the limit

of this sequence, namely the infinite series
∑∞

k=0
1
k!
(tA)kx0. Now (for

obvious reasons) given a linear operator T acting on Rn, the limit of

the infinite series of operators
∑∞

k=0
1
k!T

k is denoted by eT or exp(T ),

so we can also say that the solution to our IVP should be etAx0.

The convergence properties of the series for eTx follow easily from

the Weierstrass M -test. If we define Mk = 1
k! ‖T‖

k
r, then

∑
Mk

converges to e‖T‖r, and since
∥∥ 1
k!T

kx
∥∥ < Mk when ‖x‖ < r, it follows

that
∑∞

k=0
1
k!T

kx converges absolutely and uniformly to a limit, eTx,

on any bounded subset of Rn.

�Exercise 2–2. Provide the details for the last statement. (Hint:

Since the sequence of partial sums
∑n

k=0Mk converges, it is Cauchy;

i.e., given ε > 0, we can choose N large enough that
∑m+k

m Mk < ε

provided m > N . Now if ‖x‖ < r,
∥∥∥∑m+k

k=0
1
k!T

kx−
∑m

k=0
1
k!T

kx
∥∥∥ <∑m+k

m Mk < ε, proving that the infinite series defining eTx is uni-

formly Cauchy and hence uniformly convergent in ‖x‖ < r.)

Since the partial sums of the series for eTx are linear in x, so is their

limit, so eT is indeed a linear operator on Rn.

Next observe that since a power series in t can be differentiated

term by term, it follows that d
dte

tAx0 = AetAx0; i.e., x(t) = etAx0 is

a solution of the ODE dx
dt = Ax. Finally, substituting zero for t in

                

                                                                                                               



40 2. Linear Differential Equations

the power series gives e0Ax0 = x0. This completes the proof of the

following proposition.

2.1.1. Proposition. If A is a linear operator on Rn, then the

solution of the linear differential equation dx
dt = Ax with initial con-

dition x0 is x(t) = etAx0.

Figure 2.1. A typical solution of a first-order linear ODE in R3.

Note: The dots are placed along the solution at fixed time

intervals. This gives a visual clue to the speed

at which the solution is traversed.

As a by-product of the above discussion we see that a linear

ODE dx
dt = Ax is complete, and the associated flow φt is just etA.

By a general fact about flows it follows that e(s+t)A = esAetA and

e−A = (eA)−1, so exp : A �→ eA is a map of the vector space L(Rn)

of all linear maps of Rn into the group GL(Rn) of invertible elements

of L(Rn) and for each A ∈ L(Rn), t �→ etA is a homomorphism of

the additive group of real numbers into GL(Rn).

                

                                                                                                               



2.1. First-Order Linear ODE 41

�Exercise 2–3. Show more generally that if A and B are commut-

ing linear operators on Rn, then eA+B = eAeB . (Hint: Since A and

B commute, the Binomial Theorem is valid for (A + B)k, and since

the series defining eA+B is absolutely convergent, it is permissible to

rearrange terms in the infinite sum. For a different proof, show that

etAetBx0 satisfies the initial value problem dx
dt = (A+B)x, x(0) = x0,

and use the Uniqueness Theorem.)

At first glance it might seem hopeless to attempt to solve the

linear ODE dx
dt = Ax by computing the power series for etA—if A

is a 10 × 10 matrix, then computing just the first dozen powers of

A will already be pretty time consuming. However, suppose that v

is an eigenvector of A belonging to the eigenvalue λ, i.e., Av = λv.

Then Anv = λnv, so that in this case etAv = etλv! If we combine this

fact with the Principle of Superposition, then we see that we are in

good shape whenever the operator A is diagonalizable. Recall that

this just means that there is a basis of Rn, e1, . . . , en, consisting of

eigenvectors of A, so that Aei = λiei. We can expand an arbitrary

initial condition x0 ∈ Rn in this basis, i.e., x0 =
∑

i aiei, and then

etAx0 =
∑

i aie
tλ1ei is the explicit solution of the initial value problem

(a fact we could have easily verified without introducing the concept

of the exponential of a matrix).

Nothing in this section has depended on the fact that we were

dealing with real rather than complex vectors and matrices. If A :

Cn → Cn is a complex linear map (or a complex n×n matrix), then

the same argument as above shows that the power series for etAz

converges absolutely for all z in Cn (and for all t in C).

If A is initially given as an operator on Rn, it can be useful to

“extend” it to an operator on Cn by a process called complexification.

The inclusion of R in C identifies Rn as a real subspace of Cn, and

Cn is the direct sum (as a real vector space) Cn = Rn ⊕ iRn. If

z = (z1, . . . , zn) ∈ Cn, then we project on these subspaces by taking

the real and imaginary parts of z (i.e., the real vectors x and y whose

components xi and yi are the real and imaginary parts of zi). This

is clearly the unique decomposition of z in the form z = x+ iy with

both x and y in Rn. We extend A to Cn by defining Az = Ax+ iAy,

                

                                                                                                               



42 2. Linear Differential Equations

and it is easy to see that this extended map is complex linear. (Hint:

It is enough to check that Aiz = iAz.)

�Exercise 2–4. Show that if we complexify an operator A on Rn

as above and if a curve z(t) in Cn is a solution of dz
dt = Az, then its

real and imaginary parts are also solutions of this equation.

What is the advantage of complexification? As the following ex-

ample shows, a nondiagonalizable operator A on Rn may become

diagonalizable after complexification, allowing us to solve dz
dt = Az

easily in Cn. Moreover, we can then apply the preceding exercise to

solve the initial value problem in Rn from the solution in Cn.

•Example 2–1. We can write the system dx1

dt = x2,
dx2

dt = −x1

as dx
dt = Ax, where A is the linear operator on R2 that is defined by

A(x1, x2) = (x2,−x1). Since A2 is minus the identity, A has no real

eigenvalues and so is not diagonalizable. But, if we complexify A,

then the vectors e1 = (1, i) and e2 = (1,−i) in C2 satisfy Ae1 = ie1
and Ae2 = −ie2, so they are an eigenbasis for the complexification of

A, and we have diagonalized A in C2. The solution of dz
dt = Az with

initial value e1 = (1, i) is eite1 = (eit, ieit). Taking real parts, we find

that the solution of the initial value problem for dx
dt = Ax with initial

condition (1, 0) is (cos(t),− sin(t)), while taking imaginary parts, we

see that the solution with initial condition (0, 1) is (sin(t), cos(t)).

By the Principle of Superposition the solution σ(a,b)(t) with initial

condition (a, b) is (a cos(t) + b sin(t),−a sin(t) + b cos(t)).

Next we will analyze in more detail the properties of the flow etA

on Cn generated by a linear differential equation dz
dt = Az. We have

seen that this flow is transparent for the case that A is diagonalizable,

but we want to treat the general case, so we will not assume this.

Our approach is based on the following elementary consequence of

the Principle of Superposition.

2.1.2. Reduction Principle. Let Cn be the direct sum of sub-

spaces Vi, each of which is mapped into itself by the operator A, and

let v ∈ Cn and v = v1 + · · · + vk, with vi ∈ Vi. If σp denotes the

solution of dz
dt = Az with initial condition p, then σvi(t) ∈ Vi for all t

and σv(t) = σv1(t) + · · ·+ σvk(t).

                

                                                                                                               



2.1. First-Order Linear ODE 43

�Exercise 2–5. Use the Uniqueness Theorem for solutions of ODE

to show that if σ is a solution of dz
dt = Az and if V is a subspace of

Cn that is mapped into itself by A, then if σ(t0) ∈ V at one instant

t0, it follows that σ(t) ∈ V for all t.

Let λ1, . . . , λk denote the eigenvalues of A— the complex num-

bers λ for which there exists a nonzero vector v in Cn with Av = λv.

Because λ is an eigenvalue of A if and only if (A−λI)v = 0 has a non-

trivial solution, the eigenvalues of A are just the roots of the so-called

characteristic polynomial of A, χA(λ) := det(A − λI). Since we are

working over the complex numbers, polynomials factor into products

of powers of their distinct linear factors, so χA(λ) = Πk
j=1(λ−λj)

mj .

The mj are called the multiplicities of the eigenvalues λj , and their

sum is clearly n, the degree of χA.

A vector v is called a generalized eigenvector of A belonging to

the eigenvalue λ if (A− λ)jv = 0 for some positive integer j. The set

E(A, λ) of all such vectors is called the generalized eigenspace of A

for the eigenvalue λ.

�Exercise 2–6. Let λ be an eigenvalue of A. Show that

(a) E(A, λ) is a linear subspace of Cn,

(b) A maps E(A, λ) into itself, and

(c) N , the restriction of A − λI to E(A, λ), is nilpotent; i.e., some

power of N is zero.

(Hints: Part (a) is easy, and so is part (b) in the special case that

λ = 0. Since E(A, λ) = E(A − λI, 0), it follows from this special

case that E(A, λ) is mapped into itself by A − λI, and (b) follows

easily. Finally, for (c), choose a basis e1, . . . , er for E(A, λ) and let

Nrjej = 0. Show that Nr = 0, where r is the maximum of the rj .)

The analysis of the operator A and of its associated differential

equation dz
dt = Az is greatly simplified by the following important and

basic theorem of linear algebra.

                

                                                                                                               



44 2. Linear Differential Equations

2.1.3. Primary Decomposition Theorem. If A is a linear

operator on a finite-dimensional complex vector space V , then V is

the direct sum of the generalized eigenspaces of A.

The proof of the Primary Decomposition Theorem can be found

in Theorem 1 (Section 1, Chapter 6) on page 331 of [HS].

This result is important for our current project—trying to under-

stand better the IVP for dz
dt = Az—because in combination with the

Reduction Principle it shows that to compute the solution of the IVP

for an arbitrary initial condition, it suffices to find the solution when

the initial conditions belongs to a generalized eigenspace of A. Thus

without loss of generality we will (temporarily) assume that A has a

single eigenvalue λ, so that the generalized eigenspace of A belonging

to the eigenvalue λ is all of Cn.

By an exercise above, the operator N := A − λI is nilpotent,

say Nr = 0. Since all higher powers of N then also vanish, the

power series for etN truncates to a polynomial of degree r− 1: etN =∑r−1
j=0

tj

j!N
j . On the other hand, since the operator λI is diagonal with

all eigenvalues equal to λ, etλI is just multiplication by eλt. Finally

since A = N + λI and since N and λI commute, etA = eλtetN =∑r−1
j=0(e

tλtj) 1
j!
N j , and this is the explicit formula we have been after

for the flow generated by the differential equation dz
dt = Az on the

generalized eigenspace E(A, λ). Note that when A is diagonalizable,

N = 0, or equivalently r = 0, so we get back the fact that in this case

etA is just multiplication by etλ.

The above formula can be made even more explicit if we choose a

basis that puts the nilpotent operator N into Jordan canonical form.

We recall what this means from an operator theoretic perspective.

An s-dimensional linear subspace B is called a Jordan block for the

nilpotent operator N if it has a basis e1, . . . , es, satisfying ej = Nej−1

for j < s, and Nes = 0, and such a basis is called a Jordan basis for

B (with respect to N). The Jordan Canonical Form Theorem (see

Theorem 1 (Section 3, Chapter 6) on page 334 of [HS]) says that if

N is any nilpotent operator on a finite-dimensional complex vector

space V , then V can be written as the direct sum of Jordan blocks,

                

                                                                                                               



2.1. First-Order Linear ODE 45

and putting N into Jordan canonical form means choosing such blocks

and a Jordan basis for each of them.

�Exercise 2–7. Let B be a Jordan block for N and e1, . . . , es a

Jordan basis for B. If A = N + λI, write the solution of the IVP for
dz
dt = Az with initial condition ei as a linear combination of the ej
with explicit coefficients.

There are simple algorithms for putting a matrix in Jordan canon-

ical form, and together with the above exercise this permits us to

give a completely explicit solution of the IVP for any first-order au-

tonomous linear ODE on Cn. If you are ever called upon to actually

carry this out, in practice, there are routines that are built in to pro-

grams such as Matlab to simplify the process for you. Basically, you

only need to input a matrix and an initial condition and the computer

will take it from there.

The formula above for etA on generalized eigenspaces of A leads

to very important asymptotic estimates for the growth of solutions as

t tends to ±∞. These depend on the following well-known fact.

�Exercise 2–8. Let λ = µ+ iν, with µ and ν real, and let k be a

nonnegative integer.

(a) If µ < µ0 < 0, then limt→∞ eλttk = 0. In fact |eλttk| = o(eµ0t) as

t → ∞.

(b) If µ > µ0 > 0, then limt→−∞ eλttk = 0. In fact |eλttk| = o(eµ0t)

as t → −∞.

(Hint: |eλttk| = eµ0t tk

e(µ0−µ)t , and by L’Hôpital’s Rule, applied recur-

sively k times, tk

e(µ0−µ)t → 0.)

For an operator A on Cn, we will denote by EU (A) the direct

sum of the generalized eigenspaces E(A, λ) for eigenvalues λ hav-

ing positive real part and by ES(A) the direct sum of the general-

ized eigenspaces for eigenvalues having negative real part. These are

called, respectively, the unstable subspace and stable subspace of A.

If there are no purely imaginary eigenvalues, so that Cn is the direct

                

                                                                                                               



46 2. Linear Differential Equations

sum of the stable and unstable subspaces, then A is called a hyperbolic

operator . As usual, σp denotes the maximal solution of dz
dt = Az.

2.1.4. Asymptotics Theorem for Linear ODE. Let A be a

linear operator on Cn. If p ∈ ES(A) and q ∈ EU (A) are nonzero

vectors, then

lim
t→∞

‖σp(t)‖ = 0,

lim
t→−∞

‖σp(t)‖ = ∞,

lim
t→−∞

‖σq(t)‖ = 0,

and

lim
t→∞

‖σq(t)‖ = ∞.

More precisely, if we choose ν0 > 0 smaller than the real parts of all

eigenvalues of A having positive real part and choose µ0 < 0 larger

than the real parts of all eigenvalues having negative real part, then

there are positive constants Ci such that ‖σp(t)‖ < C1e
µ0t for t → ∞,

‖σp(t)‖ > C2e
µ0t for t → −∞, ‖σq(t)‖ < C3e

ν0t for t → −∞, and

‖σq(t)‖ > C4e
ν0t for t → ∞.

Proof. Replacing A by −A interchanges ES(A) and EU (A), so it is

enough to prove the inequalities for p, and by the triangle inequality,

we can even assume that p is in an eigenspace E(A, λ), with λ = µ+iν

and µ < µ0 < 0. Then borrowing notation from above,
∥∥etAp∥∥ ≤∑r−1

j=0
1
j!
|etλtj | ‖N‖j ‖p‖, and by part (a) of the above exercise this is

o(eµ0t) for t → ∞, proving the first inequality. For the second, let

s be the highest power of N such that Nsp �= 0, so that
∥∥etAp∥∥ =

|eλtts|
∥∥∥ 1
s!N

sp+ 1
t

1
(s−1)!N

s−1p+ · · ·+ 1
ts p

∥∥∥. For t → −∞, |eλtts| >

eµ0t, and
∥∥∥ 1
s!
Nsp+ 1

t
1

(s−1)!
Ns−1p+ · · ·+ 1

ts
p
∥∥∥ > 1

2s!
‖Nsp‖, so the

second inequality follows also.

�Exercise 2–9. Verify the following fact (used implicitly in the

above proof). If Cn is the direct sum of linear subspaces V1, . . . , Vk,

then there is a positive constant C such that if vi ∈ Vi and v =
∑

i vi,

then ‖v‖ ≥ C
∑

i ‖vi‖. (Hint: The linear map T of
⊕

i Vi to Cn

defined by (v1, . . ., vk) �→ v1 + · · · + vk is invertible, and
∥∥T−1v

∥∥ ≤∥∥T−1
∥∥ ‖v‖.)
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2.1.5. Corollary. If the operator A is hyperbolic, then ES(A)

can be characterized purely topologically, as the set of all z in Cn

for which σz(t) converges to 0 as t → ∞, and similarly EU (A) can

be characterized as the set of all z for which σz(t) converges to 0 as

t → −∞.

Proof. Since A is hyperbolic, we can write z uniquely in the form

z = p+q with p ∈ ES(A) and q ∈ EU (A). Then σz(t) = σp(t)+σq(t),

so by the theorem, σz(t) → 0 as t → ∞ if and only if q = 0, and

similarly σz(t) → 0 as t → −∞ if and only if p = 0.

2.1.6. Definition. Let p be an equilibrium point of an autonomous

first-order (not necessarily linear) differential equation dx
dt = V (x).

We call p a stable equilibrium of this equation if given any neighbor-

hood O of p, there is a smaller neighborhood U of p such that for

any q in U , σq(t) ∈ O for all positive t. If in addition we can choose

U so that σq(t) → p as t → ∞ for all q ∈ U , then we say that p is

asymptotically stable.

2.1.7. Asymptotic Stability Theorem for Linear ODE. The

origin is an asymptotically stable equilibrium of the linear ODE dz
dt =

Az if and only if all of the eigenvalues of A have negative real parts.

In fact, if α > 0 and the real part of every eigenvalue of A is less than

−α, then there is a positive constant C such that
∥∥etA∥∥ < Ce−αt for

all t ≥ 0.

Proof. If A has an eigenvalue with positive real part, then it follows

from the Asymptotics Theorem that the origin cannot even be stable.

Similarly, if A has a purely imaginary eigenvalue iµ and if v is a

corresponding eigenvector, then
∥∥etAv∥∥ =

∥∥eiµtv∥∥ = ‖v‖ for all t, so

again the origin is not asymptotically stable. Conversely, assume all

eigenvalues have real part negative, say less than −α. It follows from

the Asymptotics Theorem that for t sufficiently large, say greater

than T ,
∥∥etA∥∥ < e−αt, so we can take C to be anything larger than 1

and the maximum of eαt
∥∥etA∥∥ for 0 ≤ t ≤ T .
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�Exercise 2–10. Determine under what conditions the origin is

stable but not asymptotically stable.

2.2. Nonautonomous First-Order Linear ODE

The first-order linear ODEs studied in the preceding section were

autonomous, but there are also situations in which one must deal

with time-dependent first-order linear ODEs. Perhaps the simplest

example of such an equation is one of the form dx
dt = a(t)x, where

a is a continuous real-valued function on R, and for an equation of

this form, the solution to the initial value problem is clearly x(t) =

x(t0) exp(
∫ t

t0
a(s) ds). In this section we will consider the natural

generalization of this equation and its solution to Rn. (And in fact

everything we will say works equally well in Cn.)

A continuous map A : R → L(Rn) of R into the space of linear

operators on Rn defines a continuous, time-dependent vector field V A

on Rn: V A(x, t) = A(t)x, and so a nonautonomous linear ODE dx
dt =

A(t)x on Rn. You may be worried that since V A is only continuous

and not C1, our existence and uniqueness results do not apply to

this ODE, but we will now see that the linearity in x more than

compensates for the lack of smoothness in t. The first thing to notice

is that V A satisfies a Lipschitz condition with respect to its x variable:∥∥V A(x1, t)− V A(x2, t)
∥∥ ≤ ‖A(t)‖ ‖x1 − x2‖. So if we define K =

sup|t|≤M ‖A(t)‖, we have the following uniform Lipschitz estimate:

2.2.1. Proposition.
∥∥V A(x1, t)− V A(x2, t)

∥∥ ≤ K ‖x1 − x2‖ for

all x1, x2 ∈ Rn and all t ∈ R with |t| ≤ M .

We shall next see that this estimate is just what we need to prove

that the sequence of successive approximations, defined recursively

by x0(t) = x0 and xk+1(t) = x0+
∫ t

t0
A(s)xk(s) ds, converges globally

to a solution of the initial value problem.

�Exercise 2–11. Prove
∥∥xk+1(t)− xk(t)

∥∥ ≤ (K|t|)k
k! for |t| ≤ M .

(Hint: Use induction and the proposition.)

Then, by the triangle inequality,
∥∥xN+m(t)− xm(t)

∥∥ ≤
∑N+m

k=m
(KM)k

k!

for all t ∈ [−M,M ]. Now the series
∑∞

k=0
(KM)k

k! converges to eKM ,

                

                                                                                                               



2.2. Nonautonomous First-Order Linear ODE 49

so its sequence of partial sums is Cauchy, proving that the sequence

xk is uniformly Cauchy and hence converges to a limit x, uniformly on

every finite interval. But uniform convergence is just what we need to

pass to the limit in the recursive definition of the sequence xk, so we

end up with the fixed point formula x(t) = x0+
∫ t

t0
A(s)x(s) ds, which

of course implies that x solves the initial value problem. The Lip-

schitz condition gives uniqueness too: if x̃ is a second solution, then

x̃(t) = x0 +
∫ t

t0
A(s)x̃(s) ds, so subtracting, taking norms, and using

the Lipschitz condition gives ‖x(t)− x̃(t)‖ ≤
∫ t

t0
K ‖x(s)− x̃(s)‖ ds,

and Gronwall’s Inequality implies ‖x(t)− x̃(t)‖ = 0. This proves

2.2.2. Theorem. Let A be a continuous map of R into the

space L(Rn) of linear operators on Rn. For each t0 in R and p in Rn

there is a unique solution x : R → Rn of the time-dependent ODE
dx
dt = A(t)x satisfying the initial condition x(t0) = p. This solution is

linear in p, so that there is a uniquely determined map ΣA of R×R

into L(Rn) such that x(t) = ΣA(t, t0)p.

2.2.3. Definition. The map ΣA : R × R → L(Rn) is called the

propagator for the ODE dx
dt = A(t)x.

2.2.4. Remark. Nothing in the above requires that A(t) be de-

fined for all t ∈ R. If A is only defined on some interval I, then the

same considerations apply, but of course the propagator function is

then only defined on I × I.

2.2.5. Properties of Propagators. The following properties of

the propagator function ΣA follow directly from its definition (plus

Gronwall’s Inequality for the fifth property).

1) ΣA(t, t) = I.

2) d
dtΣ

A(t, t0) = A(t)ΣA(t, t0).

3) ΣA(t2, t1)Σ
A(t1, t0) = ΣA(t2, t0).

4) ΣA(t1, t2) = ΣA(t2, t1)
−1.

5)
∥∥ΣA(t1, t2)

∥∥ ≤ eK|t1−t2| if ‖A(s)‖ ≤ K for s between t1 and t2.

�Exercise 2–12. Check that these properties always hold.
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2.2.6. Remark. Let’s use Euler’s Method (Section 1.2) to approx-

imate Σ(t, t0)x
0. We take N equal time-steps of length ∆t = (t−t0)

N

and write tk = t0 + k∆t. The Euler approximation is

(I +A(tN )∆t)(I +A(tN−1)∆t) . . . (I +A(t0)∆t)x0.

Since in general the operators A(t) at different times do not com-

mute, it is important to take the product of operators in the “time-

ordered” sense, i.e., the factors (I + A(tk)) must be ordered from

right to left in order of increasing k. Letting N tend to infinity, we

get Σ(t) = limN→∞ ΠN
k=0(I + A(tk)∆t). Notice that this looks a lot

like an integral, with “Riemann products” replacing Riemann sums,

and for this reason Σ(t) is often referred to as a “time-ordered prod-

uct integral”. In the special case that A(t) is a constant matrix A,

we get a familiar looking formula, etA = limN→∞(I + t
NA)N .

2.3. Coupled and Uncoupled Harmonic Operators

The natural generalization of the equation of simple harmonic mo-

tion, d2x
dt2 = −ω2x, to higher dimensions is the equation for n coupled

harmonic oscillators, namely an equation of the form d2x
dt2 = −Kx (or,

in coordinates, d2xi

dt2
= −

∑n
j=1 Kijxj) where now x denotes a point

of Rn and K is a positive definite self-adjoint operator on Rn. Recall

that self-adjointness means that 〈Kx, y〉 = 〈x,Ky〉, or equivalently

that the matrix Kij is symmetric. As we shall see in Appendix G,

it follows that K has an orthonormal basis e1, . . . , en of eigenvectors,

with corresponding eigenvalues λ1, . . . , λn, and saying that K is pos-

itive just means that each eigenvalue λi is a positive real number

ω2
i .

�Exercise 2–13. Show that K has a unique positive, self-adjoint

square root Ω and that Ω is characterized by Ωei = ωiei.

Thus, we can rewrite the coupled harmonic oscillator equation as
d2x
dt2 = −Ω2x, and if we use orthogonal coordinates y1, . . . , yn given by

these eigenvectors ei, then since the matrix for Ω is diagonal in this ba-

sis, the coupled harmonic oscillator equation reduces to an uncoupled

system of n simple harmonic motion equations d2yi

dt2 = −ω2
i yi. We call

these equations “uncoupled” because now the right-hand side of the
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equation for d2yi

dt2 involves only yi and not the other yj , so that solving

the system reduces to solving each one individually without reference

to the others, and we have really reduced the problem of solving a

system of n coupled harmonic oscillators to the already solved initial

value problem for simple harmonic motion. We can summarize this

observation as follows.

2.3.1. Proposition. The solution of the coupled harmonic os-

cillator equation d2x
dt2 = −Ω2x with initial conditions x(0) = x0 and

x′(0) = u0 is x(t) = cos(tΩ)x0 + sin(tΩ)(Ω−1u0). (See Figure 2.2.)

Figure 2.2. Two coupled harmonic oscillators.

�Exercise 2–14. Rederive this proposition by combining the expo-

nential formula for the flow generated by a linear first-order equation

with the general approach to reducing second-order equations to first

order. Hint: Denote elements of Rn ×Rn by a column vector
(
x
v

)
of
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two elements ofRn, and rewrite the harmonic oscillator system onRn

as the equivalent first-order linear system on Rn ×Rn d
dt

(
x
v

)
= A

(
x
v

)
where A is the linear operator on Rn×Rn defined by A

(
x
v

)
=

(
v

−Ω2x

)
.

Show by induction that

A2n

(
x

v

)
=

(
(−1)nΩ2nx

(−1)nΩ2n+1Ω−1v

)

and

A2n+1

(
x

v

)
=

(
(−1)nΩ2n+1Ω−1v

(−1)n+1Ω2n+2x

)
.

You can now easily evaluate exp(tA), and if you recall the power series

for sin and cos, you should have no problem completing the exercise.

We will return several times to the consideration of the coupled

harmonic oscillator equation. It will reappear both as an approxima-

tion for any conservative Newtonian system close to equilibrium and

also as the prototype for a so-called completely integrable Hamilton-

ian system.

2.4. Inhomogeneous Linear Differential Equations

We can also use the explicit solution of the initial value problem

for linear differential equations to solve explicitly an important class

of nonlinear time-dependent equations referred to as inhomogeneous

linear ordinary differential equations. These are equations of the form

dx

dt
= Ax+ g(t),

where as above A : Rn → Rn is a linear operator and g : R → Rn is

an arbitrary smooth function of time.

�Exercise 2–15. For n = 1, an inhomogeneous linear differential

equation has the form dx
dt = ax+ g(t), where a is a real number and

g : R → R is a smooth real-valued function. In this case, show by

direct verification that the solution with initial value x0 is given by

x(t) = eat(x0 +
∫ t

0
e−asg(s) ds).

It does not require much imagination to guess the correct gener-

alization.
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2.4.1. Variation of Parameters Formula. The solution, x(t),

of the inhomogeneous linear differential equation dx
dt = Ax+g(t) with

initial condition x(0) = x0 is given by

x(t) = etAx0 +

∫ t

0

e(t−s)Ag(s) ds.

�Exercise 2–16. Verify the validity of this formula (and see if you

can find the reason behind its strange name).

�Exercise 2–17. Assume that the linear operator A is asymptot-

ically stable, i.e., all of its eigenvalues have negative real part, and

assume that the forcing term g(t) is periodic with period T > 0. Show

that there is a unique point p ∈ Rn for which the solution x(t) with

initial value x(0) = p is periodic with period T . (Hint: x is given

by the above Variation of Parameters Formula, so the condition that

it be periodic of period T is that p = eTAp +
∫ T

0
e(T−s)Ag(s) ds, or

p = (I − eTA)−1
∫ T

0
e(T−s)Ag(s) ds. Why is the operator (I − etA)

invertible?)

�Exercise 2–18. If we start with a nonautonomous linear equation
dx
dt = A(t)x with propagator ΣA(t1, t0) (see Section 2.2), we can again

add a time-dependent “forcing” term, g(t), to get the inhomogeneous

version dx
dt = A(t)x+ g(t). Verify the following generalization of the

Variation of Parameters Formula for this case:

x(t) = ΣA(t, t0)

(
x0 +

∫ t

t0

ΣA(t0, s)g(s) ds

)
.

2.5. Asymptotic Stability of Nonlinear ODE

In addition to the straightforward use of the Variation of Parameters

Formula to solve dx
dt = Ax + g(t) explicitly when the function g is

known, there is another clever application of the formula to obtain

qualitative information about solutions of autonomous nonlinear sys-

tems. This works as follows. Suppose we are given a smooth vector
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field V : Rn → Rn and we have a decomposition of V as V = A+ r,

where A is a linear map and r is a “remainder”. If x(t) is a so-

lution of dx
dt = V (x) with x(0) = x0, then x′(t) = A(x(t)) + g(t),

where g(t) := r(x(t)). It follows from the Variation of Parameters

Formula that x(t) = etAx0 +
∫ t

0
e(t−s)Ar(x(s)) ds, and taking norms,

‖x(t)‖ ≤
∥∥etA∥∥ ∥∥x0

∥∥+
∫ t

0

∥∥e(t−s)A
∥∥ ‖r(x(s))‖ ds.

At first sight this formula seems to lead nowhere, since the un-

known function x(t) also occurs on the right-hand side of the equation.

But as we shall now see, it allows us to use Gronwall’s Inequality to

bootstrap from partial information about a solution x, together with

qualitative information about A and r, to derive more precise infor-

mation concerning x.

Consider a C2 vector field V : Rn → Rn that has an equilib-

rium point (i.e., vanishes) at the origin, 0. (If V has an equilibrium

at some other point p, then we could translate p to 0, so this is no

loss of generality.) We will investigate the behavior of solutions x(t)

with initial condition x(0) = x0 near 0. If A = DV0 is the dif-

ferential of V at 0, then by Taylor’s Theorem, V (x) = Ax + r(x),

where r(x) = ‖x‖R(x), with R(x) a function that is smooth except

at 0 and limx→0 ‖R(x)‖ = 0. Now suppose that 0 is an asymptot-

ically stable equilibrium of the linearized equation dx
dt = Ax. By

the Asymptotic Stability Theorem for Linear ODE, this just means

that all the eigenvalues of A have negative real part. Moreover, if

we choose α > 0 such that the real part of every eigenvalue of A is

less than −α, then we saw that there is a positive constant C such

that
∥∥etA∥∥ < Ce−αt for t ≥ 0. The norm estimate above now im-

plies that ‖x(t)‖ ≤ Ce−αt
∥∥x0

∥∥ + Ce−αt
∫ t

0
eαs ‖x(s)‖ ‖R(x(s))‖ ds.

If we define u(t) := eαt ‖x(t)‖, then we can write this as u(t) ≤
C
∥∥x0

∥∥+ C
∫ t

0
u(s) ‖R(x(s))‖ ds. Can you see where we are headed?

Choose a positive number K less than α, so that κ = K − α is

negative. Then, since limx→0 ‖R(x)‖ = 0, we can choose an ε > 0

so that ‖R(y)‖ < K
C if ‖y‖ < ε. Thus if our solution x(t) satisfies

‖x(t)‖ < ε for all t in some interval I = [0, T ], we will have u(t) ≤
C
∥∥x0

∥∥ + K
∫ t

0
u(s) ds for t ∈ I, and so by Gronwall’s Inequality,

u(t) ≤ C
∥∥x0

∥∥ eKt, i.e., ‖x(t)‖ ≤ C
∥∥x0

∥∥ eκt for all t in I.
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Note that taking t = 0 gives C ≥ 1, so if we choose δ < ε
C ,

then δ < ε. We now assert that if
∥∥x0

∥∥ < δ, then the solution x(t)

with initial condition x(0) = x0 satisfies ‖x(t)‖ < ε for all t > 0,

from which it then follows that ‖x(t)‖ ≤ C
∥∥x0

∥∥ eκt for all t > 0

and hence that x(t) converges to 0 exponentially, and in particular

it follows that 0 is an asymptotically stable equilibrium point of V .

It is easy to prove the assertion. If it were false, then there would

be a first time T that ‖x(t)‖ ≥ ε, so that ‖x(t)‖ ≤ ε for all t in

I = [0, T ]. Thus by the above computation, ‖x(T )‖ ≤ C
∥∥x0

∥∥ eκT .
But C

∥∥x0
∥∥ eκT < CδeκT < εeκT < ε since κ is negative. This implies

that ‖x(T )‖ < ε, a contradiction, and the assertion is proved. We

have now proved the following important theorem:

2.5.1. Asymptotic Stability Theorem for Nonlinear ODE.

Let V be a C2 vector field in Rn. Assume that V (p) = 0, and let

A = DVp. Then p is an asymptotically stable equilibrium point of

the nonlinear equation dx
dt = V (x) provided that the origin is an

asymptotically stable equilibrium point of the linearized ODE dx
dt =

Ax (i.e., if all the eigenvalues of A have negative real parts).

2.6. Forced Harmonic Oscillators

Next let’s look at the important inhomogeneous version of the coupled

harmonic oscillator equation: d2x
dt2 = −Ω2x + g(t). The function g :

R → Rn has the interpretation of a time-dependent (but spatially

constant) force acting on the oscillators, and the equation is usually

referred to as the forced harmonic oscillator equation.

�Exercise 2–19. Show that the solution of the initial value prob-

lem for the forced harmonic oscillator with initial position x0 and

initial velocity u0 is

x(t) = ξ(t) + Ω−1

∫ t

0

sin((t− s)Ω)g(s) ds,

where ξ(t) = cos(tΩ)x0 + sin(tΩ)(Ω−1u0) is the solution of the un-

forced harmonic oscillator with the same initial conditions.
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We can rewrite the solution of the forced harmonic oscillator as

x(t) = ξ(t)+
∫ t

0
G(t− s)g(s) ds, where G(t) = Ω−1 sin(tΩ) (called the

Green’s operator). We can think of ∆(t) =
∫ t

0
G(t− s)g(s) ds as the

deviation from the unforced solution, and it has two interesting phys-

ical interpretations. First it is the solution of the forced oscillator as

seen by an observer moving with the unforced oscillator, and second,

it is the solution of the forced oscillator corresponding to zero initial

position and velocity.

�Exercise 2–20. (Resonance) Consider a one-dimensional forced

harmonic oscillator equation with periodic forcing: d2x
dt2 = −ω2x +

cos(ω0t). Solve this explicitly, treating separately the “resonant”case,

when the forcing frequency ω0 is an integer multiple of the natural

frequency ω. Note that in this case the maximum amplitude of the

oscillations goes to infinity essentially linearly in time, while in the

nonresonant case the motion remains bounded. (Think about pushing

a swing.)

2.7. Exponential Growth and Ecological Models

The linear differential equation dq
dt = kq and its integrated form q(t) =

q(t0)e
k(t−t0) turn up with great regularity as equations purporting to

model the time evolution of real-world systems. While such models

can be very useful within a limited domain, it is not uncommon to

see them extended far beyond the limits of their validity, leading to

nonsensical or paradoxical predictions of extreme exponential growth.

It is important to keep in mind when developing models of evolving

systems that, while death and decay may unfortunately be inevitable,

birth and growth usually are dependent on the availability of limited

resources.

Let us start by recalling briefly the standard reasoning that leads

to models of exponential growth (or decay). Usually q(t) measures

the quantity of some “substance” present at time t, and the dynamic

assumptions are that there are two processes going on simultaneously:

a “birth” or “growth” process that in a small time interval ∆t adds

to an amount Q of the substance an additional amount aQ∆t and a

“death” or “decay” process that in this same time interval subtracts
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an amount bQ∆t. If we imagine the substance as consisting of many

discrete units or “atoms”, then a measures the probability that an

atom will give birth to another atom in unit time and b similarly

measures the probability that it will die in unit time. If we define

k = a − b, then the net effect of both processes is to change Q by

the amount ∆Q = kQ∆t in the time interval ∆t, so that ∆Q
∆t = kQ.

Letting ∆t tend to zero, we arrive at the above differential equation.

Since it is an autonomous equation, we will as usual choose t0 = 0.

Changing the units by which we measure the quantity of the substance

will replace q by some positive multiple Cq, and while this does not

change the equation, it replaces q(0) by Cq(0), so when units are not

important, it is natural to choose them to make q(0) = 1. Similarly,

changing units of time replaces t by a multiplemt, which has the effect

of replacing k by mk, so again if the unit of time is not important,

we could choose it so that k = 1. However we will not use either of

these simplifying normalizations below.

�Exercise 2–21. Let us define an exponential growth law more

abstractly as a continuous function f : R → R+ := (0,∞) having

the property that on any interval [t, t+ δ] it changes by a factor that

depends only on the length, δ, of the interval and not on its location.

If we denote this “growth factor” by g(δ), then in symbols we can

write this defining property as the functional equation f(t + δ) =

f(t)g(δ).

1) Check that t �→ Cekt is an exponential growth law. What is g in

this case?

2) Given that f is an exponential growth law, suppose that f(3) = 5

and f(7) = 20. Find f(5), f(11), f(1), f(0).

�Exercise 2–22. Let f be an exponential growth law as in the

preceding exercise, with growth factor g.

1) Show that g(δ) = f(δ)/f(0).

2) Deduce that g(δ1 + δ2) = g(δ1)g(δ2) and hence that g must have

the form ekt so f(t) = f(0)ekt.
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There is nothing sacrosanct about using e as a base for exponentiation

in an exponential growth law; any other positive number B would do

as well, since ekt = elogeB(k/ logeB)t = (elogeB)(k/ logeB)t = Bκt, where

κ = k
loge B . Since most people have a better feeling for powers of 2

or powers of 10 than for powers of e, there is often merit in using 2

or 10 as a base, and so it is worth remembering that (approximately)

loge2 = 0.6931 and loge10 = 2.3026.

Let us now return to our growth law in its standard form, q(t) =

q(0)ekt. In each time interval of length τ = loge2
|k| , q will be doubled

if k is positive or halved if k is negative, and for this reason τ is

called the doubling-time or half-life, respectively. Let us (somewhat

arbitrarily) define the “critical interval” to be the interval [−T, T ],

where T is 30τ , or approximately 20.8
|k| . Since 230 is approximately a

billion, what we see is that if q(0) represents a “practical” amount

of the substance, then at one end of the critical interval q(t) will be

invisibly small, while at the other end of the critical interval it will

be enormous.

One typical application of an exponential growth law is to model

the decay of a radioactive isotope. It is not difficult to measure the

decay constant k = −b (and hence the half-life) with considerable

precision and to verify that the long term behavior is as predicted.

Another common application is to model biological growth, and it is

here that one must proceed with some care. Just as the decay rates of

radioactive atoms can be measured using a Geiger counter or ioniza-

tion chamber, so the growth rates of yeast, bacteria, algae, etc., can

be measured using test tubes and Petri dishes, and doubling-times

are often on the order of hours or days. Similarly, the growth rate for

the population of some animal species in a more or less limited geo-

graphic area can be estimated by counting and statistical sampling,

and here doubling-times are on the order of months or years.

Now, if these exponential growth models for biological systems

were rigorously true, our test tubes and Petri dishes would quickly

overflow and our laboratory would soon be knee-deep in a mixture

of slime molds, pond scum, and other unpleasant substances. It is

not hard to see where the assumptions for the exponential growth

model have gone wrong. The birth and death rates for, say, yeast are
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not in fact constants, but they depend on environmental variables

such as the temperature and the composition of the medium in which

they grow. If a culture is started off in a fresh medium with ample

nutrients, the growth rate will be optimal and the death rate low.

But if nutrients are not replenished and fermentation products such

as alcohol not removed, then the rate of cell division will gradually

lessen and older cells will starve or be poisoned, so the growth rate k

will gradually decrease. A better equation for modeling the growth of

such systems, one that attempts to take such effects into account, is

the so-called logistic equation, dq
dt = c(Q− q)q. Here Q is a constant

(called the carrying capacity) and the growth rate c(Q− q) decreases

to zero as q approaches this limiting size. The convex exponential

curve is replaced by an “S-curve” that starts out approximately ex-

ponential (when q is small and the growth rate is approximately cQ)

but then has a point of inflection and becomes concave, approaching

Q asymptotically as its limiting value.

Species in nature do not exist in isolation, but rather as compo-

nents of inter-related families of species called eco-systems, and the

birth and death rates of any one species in an eco-system will usually

depend on the population sizes of one or more other species of the

system. If there are n species, with sizes q1(t), . . . , qn(t), the dynam-

ics of the eco-system will be governed by a system of n equations,
dqi
dt = kiqi, with ki = ai − bi, the ai and bi being, respectively, the

growth and death rates of the ith species. For a closed system (i.e.,

one where every species on which a given species depends is part of

the system) the growth and death rates will not depend explicitly on

time, so the governing system of ODEs is autonomous. But since

the rates ki will be functions of the qi, the equations more explicitly

are dqi
dt = ki(q1, . . . , qn)qi, and we see that this system of ODEs is no

longer linear.

A classic example of an eco-system model is the Volterra-Lotka

equations, also known as the predator-prey model. One of its major

virtues is its simplicity; while it is more of a toy model than a realistic

description of biological competition, it is fairly easy to analyze and

yet exhibits many salient features of more detailed models that while

more realistic are also considerably harder to analyze. In this model
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Figure 2.3. The Volterra-Lotka equation.

we assume a closed system consisting of two species, a predator species

(e.g., foxes or cats) with population q1(t) and a prey species (e.g.,

rabbits or mice) with population q2(t). We assume that the prey have

an adequate food supply, so that their birth rate a2 is a constant γ,

and we assume that the predators are at the top of the food chain

so that they have a constant death rate b1 = β. On the other hand

we assume that the prey death rate is proportional to the number of

predators, so b2 = δq1, and that the predator birth rate is proportional

to the food (prey) available to them, so a1 = αq2. Thus k1 = a1−b1 =

(αq2−β) and k2 = a2−b2 = (γ−δq1) and the Volterra-Lotka equations

are
dq1
dt

=(αq2 − β)q1,

dq2
dt

=(γ − δq1)q2.

A particularly clear and careful analysis of the Volterra-Lotka system

and its solutions can be found in [HS]. Here we will only give an ab-

breviated qualitative description. Solutions in the first quadrant (the
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only meaningful region for the model) are all periodic. Starting from

the point on an orbit nearest the origin (where both predator and prey

populations are small), first the prey start increasing approximately

exponentially (since there are few predators eating them), while the

population of predators remains nearly constant since they have little

food (prey). Eventually, when the prey population gets large enough,

the predators start growing rapidly in numbers since they now have

adequate food, and as this happens, since the prey are now getting

eaten in larger numbers, their growth rate slows and eventually be-

comes negative. With their food now decreasing, the growth rate of

the predators also first slows and then becomes negative, and soon

both populations are back to where they started. Figure 2.3 is a pic-

ture of the Volterra-Lotka direction field and several typical orbits.

You perhaps have begun to wonder where Homo sapiens fits into

this picture. We are at the top of the food chain—there are no longer

any saber-toothed tigers out there to eat us. Moreover, the Green

Revolution and modern medical technology have greatly lessened the

toll taken by famine and pestilence. And while serious local conflicts

are as common as ever, we even seem to be making progress in less-

ening the risk of the cataclysmic kind of global war that in earlier

times was responsible for wholesale death. As a result, the day is in

sight when the average death rate for the global human population

will approximate the constant value that is the lower limit set by our

biology. On the other side of the ledger—births—the picture is far

more hazy and only very poorly understood. What is involved is a

highly complex combination of social factors and human psychology

that go into the choices people make that in turn determine total

fertility, i.e., the average number of children a woman will have in

her lifetime. This number varies considerably from one geographic

region to another at a given instant and also can change quite rapidly

in time in a given region. Since the growth rate of Earth’s human

population depends very sensitively on this number, its significant

potential variability and the uncertainty in forecasting it beyond a

few years make almost any long-term prediction demographers come

up with something to be treated with considerable caution.
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That being said, when both sides of the ledger are added up and

averaged over the whole planet, the human population growth rate

has been fairly constant over the past seventy-five years. It grew

slowly until it reached a maximum of about two percent in the mid

1960s (corresponding to a doubling-time of about thirty-five years)

and then dropped somewhat and in recent decades has been hovering

around 1.6 percent. In that period the estimated total world pop-

ulation has gone from 2 billion in 1930 to 4 billion in 1975 and 6

billion in 2000. It is expected to reach 8 billion by 2020—suggesting

a doubling-time of approximately forty-five years.

No one who has considered the matter seriously believes that it

is other than dangerous hubris to think that we humans can avoid

the imperatives of unlimited exponential growth indefinitely, even

with our ability to make continuing technological advances. Order

of magnitude estimates of the basic resources that would be required,

such as fossil fuel and other energy sources, food, water, and sunlight,

suggest that it is highly unlikely that Earth could support even close

to fifty billion people at anything approaching the current level of

consumption in the developed countries.1 But, at the present growth

rate, that is the number of humans who will inhabit our planet in

less than two hundred years. The Four Horsemen are waiting in the

wings, and if we do not ourselves find a more benign way to limit our

population, then well before that time has passed, they will return to

help us do the job.

1For a detailed, illuminating, and very well-written discussion of this matter
see J. E. Cohen’s “How Many People Can the Earth Support?” (W. W. Norton,
1995), especially Chapter 13 and Appendix 3. (But don’t expect easy answers!)

                

                                                                                                               



Chapter 3

Second-Order ODE
and the Calculus
of Variations

3.1. Tangent Vectors and the Tangent Bundle

Let σ : I → Rn be a C1 curve in Rn and suppose that σ(t0) = p and

σ′(t0) = v. Up until this point we have referred to v as either the

velocity or the tangent vector to σ at time t0. From now on we will

make a small but important distinction between these two concepts.

While the distinction is not critical in dealing with first-order ODE,

it will simplify our discussion of second-order ODE. Henceforth we

will refer to v as the velocity of σ at time t0 and define its tangent

vector at time t0 to be the ordered pair σ̇(t0) := (p, v). (If you are

familiar with the distinction that is sometimes made between “free”

and “based” vectors, you will recognize this as a special case of that.)

The set of all tangent vectors (p, v) we get in this way is called

the tangent bundle of Rn, and we will denote it by TRn. Clearly

TRn = Rn×Rn, so you might think that it is a useless complication

to introduce this new symbol, but in fact there is a good reason for

using this kind of redundant notation. As mathematical constructs

get more complex, it is important to have notation that gives visual

clues about what symbols mean. So, in particular, when we want

63

                                     

                

                                                                                                               



64 3. Second-Order ODE and the Calculus of Variations

to emphasize that a pair (p, v) is referring to a tangent vector, it is

better to write (p, v) ∈ TRn rather than (p, v) ∈ Rn ×Rn.

The projection of TRn onto its first factor, taking (p, v) to its

base point p, will be denoted by Π : TRn → Rn, and it is called the

tangent bundle projection. (There is of course another projection,

onto the second factor, but it will play no role in what follows and we

will not give it a name.) The set of all tangent vectors that project

onto a fixed base point p will be denoted by TpR
n. It is called the

tangent space toRn at the point p, and its elements are called tangent

vectors at p. It is clearly an n-dimensional real vector space, and its

dual space, the space of linear maps of TpR
n into R, is called the

cotangent space of Rn at p and is denoted by T∗
pR

n.

Let f be a smooth real-valued function defined in an open set

O of Rn. If p ∈ O and V = (p, v) ∈ TpR
n, recall that V f , the

directional derivative of f at p in the direction v, is defined as V f :=∑n
i=1 vi

∂f
∂xi

(p) (see Appendix C). If as above σ : I → Rn is a smooth

curve and V = σ̇(t0) is its tangent vector at time t0, then by the chain

rule
(

d
dt

)
t=t0

f(σ(t)) = V f . We will follow the customary practice

of using the symbolic differentiation operator
∑n

i=1 vi(
∂

∂xi
)p as an

alternative notation for the tangent vector V . If we fix f , then V �→
V f is a linear functional, dfp, on TpR

n (i.e., an element of T∗
pR

n)

called the differential of f at p.

Note that the function f defined on O gives rise to two associated

functions in Π−1(O). The first is just f ◦ Π, (p, v) �→ f(p), and the

second is df , (p, v) �→ dfp(v). This last remark is the basis of a very

important construction that “promotes” a system of local coordinates

(x1, . . . , xn) for R
n in O (see Appendix D) to a system of local coor-

dinates (q1, . . . , qn, q̇1, . . . , q̇n) for TRn in Π−1(O) called the associ-

ated canonical coordinates for the tangent bundle. Namely, we define

qi := xi ◦ Π and q̇i := dxi. Suppose V1 = (p1, v1) and V2 = (p2, v2)

are in Π−1(O) and that qi(V1) = qi(V2) and q̇i(V1) = q̇i(V2) for all

i = 1, . . . , n. Since the xi are local coordinates in O and xi(p1) =

qi(V1) = qi(V2) = xi(p2), it follows that p1 = p2 = p. It also follows

from the fact that xi is a local coordinate system that the (dxi)p are

a basis for TpR
n; hence (dxi)p(v1) = q̇i(V1) = q̇i(V2) = (dxi)p(v2)

implies v1 = v2. Thus V1 = V2, so (q1, . . . , qn, q̇1, . . . , q̇n) really are
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local coordinates for TRn in Π−1(O). Note that for each p in O,

(q̇1, . . . , q̇n) are actually Cartesian coordinates on TpR
n. We will be

using canonical coordinates almost continuously from now on.

�Exercise 3–1. Check that if (x1, . . . , xn) are the standard coor-

dinates for Rn, then (q1, . . . , qn, q̇1, . . . , q̇n) are the standard coordi-

nates for TRn = R2n.

In Appendix C we define a certain natural vector field R on Rn—

called the radial or Euler vector field—by R(x) := x, and we point out

that it has the same expression in every Cartesian coordinate system

(x1, . . . , xn), namely R =
∑n

i=1 xi
∂

∂xi
. We also recall there Euler’s

famous theorem on homogeneous functions, which states that if f :

Rn → R is C1 and is positively homogeneous of degree k (meaning

f(tx) = tkf(x) for all t > 0 and x �= 0), then Rf =
∑n

i=1 xi
∂f
∂xi

= kf .

We now define a vector field R on TRn, also called the radial or

Euler vector field, by defining it on each tangent space TpR
n to be

the radial vector field on TpR
n. Explicitly, R(p, v) = (0, v). Recalling

that (q̇1, . . . , q̇n) are Cartesian coordinates on TpR
n we have

3.1.1. Proposition. If (q1, . . . , qn, q̇1, . . . , q̇n) are canonical co-

ordinates for TRn in Π−1(O), then the radial vector field R on TRn

has the expression

R =

n∑
i=1

q̇i
∂

∂q̇i

in Π−1(O). Hence if F : TRn → R is a C1 real-valued function that

is positively homogeneous of degree k on each tangent space TpR
n,

then RF =
∑n

i=1 q̇i
∂F
∂q̇i

= kF .

Suppose that σ : I → Rn is a C1 curve. A path σ̃ : I → TRn is

called a lifting of σ if it projects onto σ under Π, i.e., if it is of the form

σ̃(t) = (σ(t), λ(t)) for some C1 map λ : I → Rn. You should think of

a lifting of σ as being a vector field defined along σ. There are many

different possible liftings of σ. For example, the lifting t �→ (σ(t), 0) is

the zero vector field along σ, and t �→ (σ(t), σ′′(t)) is the acceleration

vector field of σ. The tangent vector field σ̇, t �→ (σ(t), σ′(t)) plays an

especially important role, and we shall also refer to it as the canonical
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lifting of σ to the tangent bundle. We note that it takes Ck curves

in Rn (k ≥ 1) to Ck−1 curves in TRn.

Let x1, . . . , xn be local coordinates in O, and assume σ maps

I into O. In these coordinates the curve σ is described by its so-

called parametric representation, xi(t) := xi(σ(t)). Let’s see what

the parametric representation is for the canonical lifting, σ̇(t), with

respect to the canonical coordinates (q1, . . . , qn, q̇1, . . . , q̇n) defined

by the xi. Since Π ◦ σ̇(t) = σ(t), it follows from the definition of the

qi that

qi(σ̇(t)) = xi(Π(σ̇(t))) = xi(t).

On the other hand,

q̇i(σ̇(t)) = dxi(σ′(t)) =
d

dt
xi(σ(t)) =

dxi(t)

dt
.

3.2. Second-Order Differential Equations

We have seen that solving a first-order differential equation in Rn

involves finding a path x(t) in Rn given

1) its initial position and

2) its velocity as a function of its position and the time.

Similarly, solving a second-order differential equation in Rn involves

finding a path x(t) in Rn given

1) its initial position and its initial velocity and

2) its acceleration as a function of its position, its velocity, and the

time.

To make this precise, suppose A : Rn × Rn × R → Rn is a C1

function. A C2 curve x(t) in Rn is said to be a solution of the

second-order differential equation in Rn, d2x
dt2

= A
(
x, dx

dt
, t
)
, if x′′(t) =

A(x(t), x′(t), t) holds for all t in the domain of x. Given such a second-

order differential equation on Rn, the associated initial value problem

(or IVP) is to find a solution x(t) for which both the position x(t0)

and the velocity x′(t0) have some specified values at a particular time

t0.

Fortunately, we do not have to start all over from scratch to de-

velop theory and intuition concerning second-order equations. There
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is an easy trick that we already remarked on in Chapter 1 that effec-

tively reduces the consideration of a second-order differential equa-

tion in Rn to the consideration of a first-order equation in TRn =

Rn ×Rn. Namely, given A : Rn ×Rn ×R → Rn as above, define a

time-dependent vector field V on TRn by V (p, v, t) = (v,A(p, v, t)).

Suppose first that (x(t), v(t)) is a C1 path in TRn. Note that its de-

rivative is just (x′(t), v′(t)), so this path is a solution of the first-order

differential equation d(x,v)
dt = V (x, v, t) if and only if (x′(t), v′(t)) =

V (x(t), v(t), t) = (v(t), A(x(t), v(t), t)), which of course means that

x′(t) = v(t) while v′(t) = A(x(t), v(t), t). But then x′′(t) = v′(t) =

A(x(t), v(t), t), so x(t) is a solution of the second-order equation d2x
dt2 =

A
(
x, dxdt , t

)
. Conversely, if x(t) is a solution of d2x

dt2 = A
(
x, dx

dt , t
)
and

we define v(t) = x′(t), then (x(t), v(t)) is the canonical lifting of x(t)

and is a solution of d(x,v)
dt = V (x, v, t). What we have shown is

3.2.1. Reduction Theorem for Second-Order ODE. The

canonical lifting of C2 curves in Rn to C1 curves on TRn sets up

a bijective correspondence between solutions of the second-order dif-

ferential equation d2x
dt2 = A

(
x, dx

dt , t
)
on Rn and solutions of the first-

order equation d(x,v)
dt = V (x, v, t) on TRn, where V (x(t), v(t), t) =

(v(t), A(x(t), v(t), t)).

�Exercise 3–2. Use this correspondence to formulate and prove

existence, uniqueness, and smoothness theorems for second-order dif-

ferential equations from the corresponding theorems for first-order

differential equations. Extend this to higher-order differential equa-

tions.

According to the Reduction Theorem, a second-order ODE in Rn

is described by some vector field on TRn. But be careful, not every

vector field V on TRn arises in this way.

�Exercise 3–3. Show that a time-dependent vector field V (p, v, t)

on TRn arises as above from some second-order ODE on Rn, d2x
dt2

=

A
(
x, dxdt , t

)
, if and only if Π(V (p, v, t)) = v for all (p, v, t) ∈ TRn×R.
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�Exercise 3–4. Let x1, . . . , xn be local coordinates in some open

set O of Rn and let q1, . . . , qn, q̇1, . . . , q̇n be the associated canon-

ical coordinates in TRn. Suppose that σ : I → O is a smooth

path and xi(t) := xi(σ(t)) its parametric representation, and let

qi(t) := qi(σ̇(t)), q̇i(t) := q̇i(σ̇(t)) be the parametric representa-

tion of the canonical lifting σ̇. Show that σ is a solution of the

second-order ODE d2x
dt2 = A

(
x, dx

dt , t
)
if and only if for all t ∈ I,

dq̇i(t)
dt = Ai(q1(t), . . . , qn(t), q̇1(t), . . . , q̇n(t), t). (Hint: Recall that

qi(t) := xi(t) and q̇i(t) :=
dxi(t)
dt .)

3.2.2. Definition. Let d2x
dt2 = A

(
x, dx

dt

)
be a time-independent

second-order ODE on Rn. A function f : TRn → R is called a

constant of the motion (or a conserved quantity or a first integral)

of this ODE if f is constant along the canonical lifting, σ̇, of every

solution curve σ (equivalently, if whenever x(t) satisfies the ODE,

then f(x(t), x′(t)) is a constant).

�Exercise 3–5. Let V be a vector field in TRn defined by V (p, v)

:= (v,A(p, v)). Show that f : TRn → R is a constant of the motion

of d2x
dt2 = A

(
x, dxdt

)
if and only if the directional derivative, V f , of f

in the direction V , is identically zero.

3.3. The Calculus of Variations

Where do second-order ordinary differential equations come from—or

to phrase this question somewhat differently, what sort of things get

represented mathematically as solutions of second-order ODEs?

Perhaps the first answer that will spring to mind for many peo-

ple is Newton’s Second Law of Motion, “F = ma”, which without

doubt inspired much of the early work on second-order ODE. But as

we shall soon see, important as Newton’s Equations of Motion are,

they are best seen mathematically as a special case of a much more

general class of second-order ODE, called Euler-Lagrange Equations,

and a more satisfying answer to our question will grow out of an

understanding of this family of equations.

Euler-Lagrange Equations arise as a necessary condition for a par-

ticular curve to be a maximum (or minimum) for certain real-valued
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functions on spaces of curves. We will introduce these equations for-

mally in the following section. Here, to help set the stage, we look

at the simplest of all second-order ODE—one that happens to be of

Euler-Lagrange type—namely d2x
dt2 = 0. The solution x(t) with the

initial condition x(0) = p and x′(0) = v is clearly x(t) = p + tv, so

in particular all of its solutions are straight lines parametrized pro-

portionally to arclength. Of course, this is just the special case of

Newton’s Second Law when the force is zero. (Newton considered

this special case to be so important that he called it the First Law of

Motion—every body remains in a state of rest or of uniform motion

in a straight line unless compelled to change that state by forces act-

ing on it.) But from a geometers point of view, what characterizes

a straight line is that it has minimal length among all paths joining

two points (see Appendix E). Thus the simple equation d2x
dt2

= 0 suc-

cinctly encodes the answer to an important optimization question.

This is a typical example of a Calculus of Variations Problem and of

its solution and we will now look at the general theory behind such

problems.

First a little warning: many people find the traditional notation

used in the Calculus of Variations somewhat confusing (and even

bizarre) at first. Once you get used to it, you will probably come to

appreciate its succinctness and expressiveness, but to try to get you

over this initial hurdle, we will start with a careful explanation of this

notation.

To fix the notation, we choose local coordinates x1, . . . , xn in Rn

and let q1, . . . , qn, q̇1, . . . , q̇n denote the associated canonical coordi-

nates for TRn. If F is a function on TRn, we will adopt the usual

abuse of notation and write F (q1, . . . , qn, q̇1, . . . , q̇n) for its coordi-

nate representation with respect to these coordinates, i.e., F (V ) =

F (q1(V ), . . . , qn(V ), q̇1(V ), . . . , q̇n(V )). Moreover, to simplify the no-

tation further, we will usually abbreviate F (q1, . . . , qn, q̇1, . . . , q̇n) to

F (qi, q̇i). Let σ(t) be a path in O and let xi(t) := xi(σ(t)) be its para-

metric representation in these coordinates. We recall that the para-

metric representation of the canonical lifting, σ̇(t), with respect to

these canonical coordinates is given by qi(t) = xi(t) and q̇i(t) =
dxi(t)
dt ,
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so that

F (σ̇(t)) = F

(
xi(t),

dxi(t)

dt

)
.

A Calculus of Variations Problem starts from a smooth real-

valued function L on TRn, usually referred to as the Lagrangian

function. The important thing to understand about the Lagrangian

is how it gets used. Namely, given any smooth path, σ : [a, b] → Rn

as above, we define a smooth real-valued function on [a, b], L(σ̇) :

[a, b] → R, by composing L with the canonical lifting σ̇ of σ, i.e.,

t �→ L(σ̇(t)) = L(qi(t), q̇i(t)). The next step is to associate a single

real number, FL(σ), to the Lagrangian L and the path σ by integrat-

ing L(σ̇) from a to b:

FL(σ) :=

∫ b

a

L(σ̇(t)) dt =
∫ b

a

L(qi(t), q̇i(t)) dt.

This mapping FL from paths σ to real numbers FL(σ) is called the

associated functional defined by the Lagrangian L. (And it is these

functionals that we were referring to in the introduction to this section

when we spoke of “certain real-valued functions on spaces of curves”.)

The main goal of the Calculus of Variations is to find the maxima,

the minima, and the other “extrema” of such functionals, FL, or

rather of the restriction of FL to certain special spaces of curves.

The precise definition of extrema will be given below, but roughly

speaking, they include in addition to maxima and minima, analogues

of points of inflection for functions defined on R and saddle-points

for functions defined on R2.

3.4. The Euler-Lagrange Equations

The so-called Euler-Lagrange Equations associated to a Lagrangian

L is a system of n second-order ordinary differential equations on Rn,

written symbolically as

∂L
∂qi

− d

dt

∂L
∂q̇i

= 0.

At first sight this may look puzzling. In the first place, they look more

like a system of partial differential equations than ordinary differen-

tial equations. How should one interpret these equations as ordinary
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differential equations, and what does it mean to say that a curve

σ(t) = (x1(t), . . . , xn(t))

in Rn satisfies this set of equations?

Since L is a function on TRn, it has coordinate expressions

L(qi, q̇i) with respect to a system of canonical coordinates, and in the

Euler-Lagrange Equations, ∂L
∂qi

and ∂L
∂q̇i

refer to the partial deriva-

tives of these functions of (qi, q̇i) evaluated along the canonical

lifting σ̇ of σ; i.e., after taking the partial derivatives, we substi-

tute qi(t) and q̇i(t) for qi and q̇i, where qi(t) := qi(σ̇(t)) = x(t) and

q̇i(t) := q̇i(σ̇(t)) = dx1(t)
dt . The proper interpretation of d

dt
∂L
∂q̇i

is of

course a simple consequence of this interpretation of ∂L
∂q̇i

, and if we

apply the chain rule, the Euler-Lagrange Equations become

n∑
j=1

(
∂2L

∂q̇i∂q̇j

)
d2xj

dt2
+

n∑
j=1

(
∂2L

∂q̇i∂qj

)
dxj

dt
=

∂L
∂qi

,

where of course ∂2L
∂q̇i∂q̇j

, ∂2L
∂q̇i∂qj

, and ∂L
∂qi

are all to be evaluated at

(qi(t), q̇i(t)) =

(
xi(t),

dxi(t)

dt

)
.

This now looks more like a second-order ODE for the functions

xi(t) defining the path σ. However it is unlike the second-order sys-

tems that we have dealt with up until now, in that the second deriva-

tives
d2xj

dt2 are not given explicitly but rather implicitly, and it is not

immediately clear that we can solve the Euler-Lagrange Equations

uniquely for these second derivatives.

3.4.1. Definition. A Lagrangian L(q, q̇) is called regular or non-

degenerate if the matrix ∂2L
∂q̇i∂q̇j

is invertible for all points (q, q̇) in

TRn. In this case we denote by Mij the matrix-valued function on

TRn which at each point (qi, q̇i) is the inverse matrix of ∂2L
∂q̇i∂q̇j

at

that point.

We will assume that our Lagrangians are nondegenerate in what

follows—this is usually the case for Lagrangians that come up in
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applications. With this assumption, we can now rewrite the Euler-

Lagrange Equations in the standard form for a system of n second-

order ODE for the n functions xk(t) that define the path σ:

d2xk

dt2
=

n∑
i=1

Mki

⎛
⎝ ∂L
∂qi

−
n∑

j=1

(
∂2L

∂q̇i∂qj

)
dxj

dt

⎞
⎠ .

The matrix elements Mki, as well as the partial derivatives of L, are
of course all evaluated at

(qi(t), q̇i(t)) =

(
x(t),

dx1(t)

dt

)
,

so this latter equation has exactly the form of a system of n second-

order ODE for the n functions xi(t) that we have considered previ-

ously.

3.4.2. Definition. A C2 curve σ(t) = (x1(t), . . . , xn(t)) in Rn

is called an extremal for the functional FL if the xi(t) satisfy the

Euler-Lagrange Equations.

As we will see a little later, if σ : [a, b] → Rn is a C2 curve such

that FL assumes its maximum (or a minimum) at σ among all C2

curves with the same parameter interval [a, b] and with the same end-

points σ(a) and σ(b), then σ will be an extremal of FL. Thus the

Euler-Lagrange Equations play the role in the Calculus of Variations

analogous to that played by the equation f ′(x) = 0 in ordinary cal-

culus when one looks for the maxima and minima of a real-valued

function f(x). But they are only necessary conditions for a maxi-

mum or minimum. Just as in the case of ordinary calculus (where one

can have inflection points as well as maxima and minima) although

a maximum or minimum of FL will satisfy the Euler-Lagrange Equa-

tions, there can also be other paths that satisfy the Euler-Lagrange

Equations but are neither maxima nor minima of FL.

By the Reduction Theorem for Second-Order ODE, we can re-

place the above system of n second-order equations for the n func-

tions xi(t) by a system of 2n first-order equations for 2n functions
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qi(t) and q̇i(t):

dqk
dt

=q̇k,

dq̇k
dt

=
n∑

i=1

Mki

⎛
⎝ ∂L
∂qi

−
n∑

j=1

(
∂2L

∂q̇i∂qj

)
q̇j

⎞
⎠ .

Given a solution (qi(t), q̇i(t)) to this first-order system, it follows that

xi(t) = qi(t) will solve the Euler-Lagrange Equations, and so σ(t) =

(x1(t), . . . , xn(t)) will be a extremal of FL.

3.4.3. Proposition. Assume that L : TRn → R is regular and

of class Cr+2, r ≥ 0. Then every extremal of FL is of class at least

Cr.

�Exercise 3–6. Prove this. (Hint: The argument is an almost triv-

ial induction. Can you see why it is referred to as “bootstrapping”?)

3.5. Conservation Laws for Euler-Lagrange Equations

While there are some advantages to transforming the Euler-Lagrange

Equations as above into a more standard looking system of first- or

second-order ODE, as we shall now see, there are also advantages to

working with these equations in their original form, ∂L
∂qi

− d
dt

∂L
∂q̇i

= 0,

or equivalently, d
dt

∂L
∂q̇i

= ∂L
∂qi

.

3.5.1. Definition. If (qi, q̇i) are canonical coordinates in TRn and

L : TRn → R is a Lagrangian function, then for each k = 1, . . . , n

we define a function pk on TRn called the conjugate momentum of

qk by pk := ∂L
∂q̇i

. We call qk an ignorable coordinate with respect

to the Lagrangian function L if L(qi, q̇i) is independent of qk, i.e., if
∂L
∂qk

is identically zero, or equivalently if L(qi, q̇i) is unchanged by the

substitution qk �→ qk + c for every constant c.

It follows directly from this definition that

3.5.2. Proposition. Let L : TRn → R be a Lagrangian function

and let (qi, q̇i) be canonical coordinates in TRn. If qk is an ignor-

able coordinate with respect to the Lagrangian L, then the conjugate
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momentum pk = ∂L
∂q̇i

is a constant of the motion for solutions of the

Euler-Lagrange Equations d
dt

∂L
∂q̇i

= ∂L
∂qi

.

Each Lagrangian function, L : TRn → R, has associated to it an

important related function, called the total energy function for L.

3.5.3. Definition. If L : TRn → R is a Lagrangian function,

we define the associated total energy function EL on TRn by EL :=

RL − L, where RL denotes the radial derivative of L. Equivalently,

in any canonical coordinate system we can define EL :=
∑n

i=1 q̇i
∂L
∂q̇i

−
L =

∑n
i=1 piq̇i − L, where pi is the conjugate momentum of qi.

3.5.4. Remark. By Euler’s theorem on homogeneous functions, if

L is positively homogeneous of degree k on each tangent space TpR
n,

then EL = (k − 1)L. There is an important class of examples from

geometry that we will study later (Riemannian metrics) for which L
is actually a quadratic polynomial on each TpR

n, so that in this case

EL is just L itself.

What makes EL important is that it is always a constant of the

motion for the Euler-Lagrange Equations defined by L.

3.5.5. Conservation of Total Energy Theorem. If L is

any Lagrangian function on TRn, then its associated total energy

function, EL, is a constant of the motion for solutions of the Euler-

Lagrange Equations, ∂L
∂qi

− d
dt

∂L
∂q̇i

= 0, defined by L.

�Exercise 3–7. Prove the Conservation of Total Energy Theorem.

(Hint: Compute

d

dt

(
n∑

i=1

∂L
∂q̇i

q̇i − L
)

using the chain rule and make the appropriate substitutions from the

Euler-Lagrange Equations.)

3.5.6. Remark. The subject of conserved quantities (or constants

of the motion) plays a very important role in the Calculus of Vari-

ations, and we will return to it frequently. In particular we will see

later that there is an intimate connection between conserved quanti-

ties and symmetry properties of the Lagrangians.
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3.6. Two Classic Examples

Before demonstrating that the Euler-Lagrange Equations are in fact

necessary conditions for minima and maxima of FL, we will look in

detail at two example Lagrangians: the Speed , S(p, v) := ‖v‖, and
the Energy Density , E(p, v) := 1

2 ‖v‖
2
. Working a little with these

examples should give you some feeling for how all the above formalism

works out in practice, and moreover both happen to be of considerable

interest in their own right.

Notice that FS(σ) :=
∫ b

a
‖σ′(t)‖ dt is just (by definition) the

length of the curve σ, and we will also denote it by L(σ). Recall

that it is unchanged by reparametrization. FE(σ) := 1
2

∫ b

a
‖σ′(t)‖2 dt

is usually called the energy of the curve σ and we will denote it by

E(σ). These two Lagrangians are clearly very closely related—indeed,

S =
√
2E, and not surprisingly this leads to important relations be-

tween L(σ) and E(σ).

�Exercise 3–8. Show that if σ : [a, b] → Rn is any C1 path, then

L(σ) ≤
√
2(b− a)

√
E(σ), and show that this inequality is an equality

if and only if σ is parametrized proportionally to arclength. (Hint:

Apply the Schwarz inequality to the functions ‖σ′(t)‖ and the con-

stant function 1 on the interval [a, b].)

�Exercise 3–9. Show that of all C1 paths joining two points p

and q in Rn and parametrized by the interval [a, b], the unique one

of minimal energy is the straight line parametrized proportionally to

arclength: σ(t) = p + t−a
b−a (q − p), which has energy E(σ) = ‖p−q‖2

2(b−a) .

(Hint: Use the preceding exercise together with the fact that this σ

minimizes the length of all such paths.)

We next look for the coordinate expressions S(qi, q̇i) and E(qi, q̇i)

associated to these Lagrangians. First consider the case of Cartesian

coordinates x1, . . . , xn associated to an orthonormal basis e1, . . . , en
for Rn. In this case the canonical coordinates (qi, q̇i) of a point V =

(p, v) ∈ TRn are defined by p =
∑n

i=1 qiei and v =
∑n

i=1 q̇iei. Since

the ei are orthonormal, E(qi, q̇i) = E(V ) = 1
2 ‖v‖

2
= 1

2

∑n
i=1 q̇

2
i , and

it follows that S(qi, q̇i) =
(∑n

i=1 q̇
2
i

) 1
2 . Then ∂E

∂qi
= 0, while ∂E

∂q̇i
= q̇i.
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�Exercise 3–10. Use the fact that E is homogeneous of degree 2 to

conclude that the total energy function EE is just E itself, and check

that conservation of total energy in this case just says that solutions

of the Euler-Lagrange Equations are parametrized proportionally to

arclength. On the other hand, use the fact that S is homogeneous

of degree 1 to deduce that the total energy function ES is identi-

cally zero (so that conservation of total energy for solutions of the

Euler-Lagrange Equations associated to the speed provides no useful

information).

Now that we have an explicit formula for E(qi, q̇i), it is easy

to write down the system of Euler-Lagrange Equations for the La-

grangian L = E, and we see that it is just the trivial system d2xi

dt2 = 0

we discussed earlier, and its solutions as expected are straight lines

parametrized proportionally to arclength. Another way to integrate

these Euler-Lagrange Equations is to note that since all the qi are

clearly ignorable coordinates, all the conjugate momenta pi =
∂E
∂q̇i

=

q̇i are constants of the motion, say q̇i = vi, so
dqi
dt = q̇i = vi and hence

xi(t) = qi(t) = qi(0) + tvi. While this is a typical example of how

to employ ignorable coordinates, their true usefulness is masked here

because the Euler-Lagrange Equations are so simple anyway. In more

complex situations they can greatly simplify the integration problem.

In fact, the Euler-Lagrange Equations for the Lagrangian L = S

is a good example of this. The system of second-order ODE now looks

fairly complicated, but again all the qi are ignorable, and now their

conjugate momenta are pi = ∂S
∂q̇i

= q̇i(
∑n

i=1 q̇
2
i )

− 1
2 . Since the q̇i(t)

are just the components of σ′(t), clearly the pi are the components of

the unit vector with the same direction as σ′(t), i.e., the normalized

tangent vector σ′(t)
‖σ′(t)‖ , so the fact that these are constants of the

motion just says that the normalized tangent of the solution σ(t) is

constant—i.e., that the solution curve σ points in a fixed direction

and hence is a straight line.

Now let’s look at the corresponding expressions for polar coor-

dinates (r, θ) in R2, related as usual to the Cartesian coordinates

(x, y) by x = r cos(θ) and y = r sin(θ). It is traditional to denote

the canonical coordinates associated to these polar coordinates by
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r, θ, ṙ, θ̇, rather than the generic q1, q2, q̇1, q̇2, and we will follow this

custom. Suppose a path σ(t) is given parametrically in the polar co-

ordinates by r = r(t) and θ = θ(t). Then its parametric expression in

Cartesian coordinates is x(t) = r(t) cos(θ(t)) and y(t) = r(t) sin(θ(t)).

Now the calculation above gives E(σ̇(t)) = 1
2 (x

′(t)2 + y′(t)2), and an

easy calculation then gives E(σ̇(t)) = r′(t)2 + r(t)2θ′(t)2. On the

other hand, by definition of canonical coordinates, ṙ(t) = r′(t) and

θ̇(t) = θ′(t), and it follows that the coordinate expression for the

energy density in the canonical coordinates associated to polar co-

ordinates is E(r, θ, ṙ, θ̇) = 1
2 (ṙ

2 + r2θ̇2). It follows of course that

S(r, θ, ṙ, θ̇) =
√

ṙ2 + r2θ̇2, a formula that you should be familiar with

from elementary calculus. The Euler-Lagrange Equations for the en-

ergy E in polar coordinates are d
dt

∂E
∂ṙ = ∂E

∂r and d
dt

∂E
∂θ̇

= ∂E
∂θ , i.e.,

d
dt ṙ = rθ̇2 and d

dt (r
2θ̇) = 0.

The second of these equations just expresses the fact that θ is an

ignorable coordinate, so that its conjugate momentum pθ = r2θ̇ is a

constant to the motion. (Since θ is an angular variable, pθ is called

angular momentum.) We already know that conservation of total

energy implies that solution curves are parametrized proportionally

to arclength. Let’s try to show that they are straight lines. A straight

line is a curve satisfying ax + by = 1, or r(a cos θ + b sin θ) = 1 for

some constants a and b, so if we define u = 1
r , then a straight line is

characterized by u = a cos θ+ b sin θ. But these are just the solutions

of the harmonic oscillator equation d2u
dθ2 = −u.

�Exercise 3–11. Show that the Euler-Lagrange Equations d
dt ṙ =

rθ̇2 and d
dt (r

2θ̇) = 0 imply d2u
dθ2 = −u. (Hint: The first equation gives

θ̇ = c
r2 = cu2, so the chain rule says that d

dt = dθ
dt

d
dθ = θ̇ d

dθ = cu2 d
dθ ,

and in particular ṙ = d
dtr = d

dt
1
u = − 1

u2
du
dt = − 1

u2 (cu
2 du
dθ ) = −cdudθ .

Then on the one hand d
dt ṙ = cu2 d

dθ ṙ = −c2u2 d2u
dθ2 , while on the other

hand the second Euler-Lagrange Equation now becomes d
dt ṙ = rθ̇2 =

1
u (cu

2)2 = c2u3, and equating these two expressions for d
dt ṙ gives the

desired result.)

�Exercise 3–12. Another Lagrangian we will consider in detail

later plays a central role in particle dynamics, namely L(q, q̇) =
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K(q̇) − U(q), where K(q̇) = 1
2

∑n
i=1 miq̇

2
i is called the kinetic en-

ergy and U is a smooth function on Rn called the potential energy

function. The m1, . . . ,mn are positive real numbers, called the par-

ticle masses. For this Lagrangian, ∂L
∂qi

= − ∂U
∂qi

, while ∂L
∂q̇i

= miqi, so

the matrix ∂2L
∂q̇i∂q̇j

is diagonal with the constants m1, . . . ,mn on the

diagonal. The Euler-Lagrange Equations reduce to Newton’s Equa-

tions mi
d2xi

dt2 = Fi, provided we identify the force with the negative

gradient of the potential: Fi = − ∂U
∂qi

. Show that for this Lagrangian

the total energy function is the sum of the kinetic energy and the

potential energy: EL(q, q̇) = K(q̇) + U(q). (Hint: The kinetic energy

is homogeneous of degree 2.)

3.7. Derivation of the Euler-Lagrange Equations

We fix a Lagrangian L on TRn and will write simply F for the func-

tional FL. We next specify the domain of F ; namely we define it to

be the vector space C2(I,Rn) of all paths σ : I → Rn, where I is a

closed interval [a, b] and σ has two continuous derivatives on I. Given

σ and h in C2(I,Rn), we call s �→ σ+sh the straight line in C2(I,Rn)

through σ in the direction h, and we callDF (σ, h) = ( d
ds )s=0F (σ+sh)

the directional derivative of F at σ in the direction h. Our next goal

is to find a formula for this. If we write qi(t, s) = σi(t) + shi(t) and

q̇i(t, s) = σ′
i(t) + sh′

i(t), then

F (σ + sh) =

∫ b

a

L(q1(t, s), . . . , qn(t, s), q̇1(t, s), . . . , q̇n(t, s)) dt,

and so differentiating under the integral sign and using the chain rule

gives

DF (σ, h) =

∫ b

a

∑
i

(
∂L
∂qi

hi(t) +
∑
i

∂L
∂q̇i

h′
i(t)

)
dt,

and integrating each term in the second sum by parts gives

3.7.1. The Variational Formula.

DF (σ, h) =

∫ b

a

∑
i

(
∂L
∂qi

− d

dt

(
∂L
∂q̇i

))
hi(t) dt+

∑
i

[
∂L
∂q̇i

hi

]a
b

.
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The following is the key fact in proving E. Noether’s Theorem

on the relation between symmetries of a Lagrangian and constants of

the motion for the Euler-Lagrange Equations.

3.7.2. Corollary. If σ is an extremal of the functional F , then

DF (σ, h) =
∑
i

[
∂L
∂q̇i

hi

]a
b

.

Proof. By definition of an extremal, the Euler-Lagrange Equations

are satisfied; hence the first summand in the variational formula van-

ishes.

3.7.3. Corollary. If DF (σ, h) = 0 for all variations h vanishing

at a and b, then for i = 1, . . . , n,∫ b

a

(
∂L
∂qi

− d

dt

(
∂L
∂q̇i

))
f(t) dt = 0

for all C2 real-valued functions f vanishing at a and b.

Proof. Apply the variational formula to variations h with hi = f

and hj = 0 for j �= i.

�Exercise 3–13. If a ≤ c < d ≤ b, check that the function g

on [a, b] that is zero for a < c and that is defined for x ≥ c by

g(x) =
∫ x

c
(t − c)2( c+d

2
− t)2 dt is C2, is positive on (c, b], and has its

first two derivatives zero at c and c+d
2 . By “reflecting” this function

in c+d
2 and multiplying the resulting function by g, show that you get

a C2 function on [a, b] that is positive on (c, d) and zero elsewhere.

3.7.4. Fundamental Lemma of the Calculus of Variations.

Let F : [a, b] → R be continuous and assume that
∫ b

a
F (x)f(x) dx = 0

for all C2 functions f : [a, b] → R that vanish at a and b. Then F is

identically zero.
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�Exercise 3–14. Prove this. Hint: If not, then F (x) �= 0 for some

x in [a, b], and then by continuity F will have a constant sign on some

subinterval (c, d) of [a, b] containing x.

�Exercise 3–15. Recall again that σ in C2(I,Rn) is an extremal

for the functional F if it satisfies the Euler-Lagrange Equations. You

should now be able to prove the following result in your head.

3.7.5. Theorem. A necessary and sufficient condition for a path

σ in C2(I,Rn) to be an extremal for the functional F = FL is that

DF (σ, h) = 0 for all variations h in C2(I,Rn) that vanish at the

endpoints a and b.

And now we give the result we have been promising for so long.

3.7.6. Theorem. Let σ ∈ C2([a, b],Rn), and suppose that the

functional F assumes a maximum (or minimum) at σ among all paths

with the same endpoints as σ. Then σ is an extremal of F .

Proof. Given any variation h in C2([a, b],Rn) vanishing at a and b,

γ(s) = σ+ sh is a straight line in C2([a, b],Rn) and each γ(s) clearly

has the same endpoints as σ. Since γ(0) = σ, it follows that the

function of s, s �→ F (σ + sh), has a maximum at s = 0, and hence

DF (σ, h) = (
d

ds
)s=0F (σ + sh) = 0,

so by the preceding theorem σ is an extremal of F .

3.8. More General Variations

For s near zero let σs(t) = (xs
1(t), . . . , x

s
n(t)) be a path in C2(I,Rn).

If the xs
i (t) are C2 functions of (t, s), then we call σs a smooth varia-

tion of σ = σ0, and we define δσ in C2(I,Rn) by δσ(t) = ( d
ds )s=0

σs(t).

(Note that for the straight line variation σs = σ + sh, δσ is just h.)

By the equality of cross-derivatives, δσ′(t) = ( d
ds )s=0σ

′
s(t).

3.8.1. Proposition. ( d
ds )s=0F (σs) = DF (σ, δσ).
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Proof. Define qi(t, s) = xs
i (t) and q̇i(t, s) =

dxs
i (t)
dt , so that δσi(t) =

( d
ds )s=0qi(t, s) and δσ′

i(t) = ( d
ds )s=0 q̇i(t, s). Then as before,

F (σs) =

∫ b

a

L(q1(t, s), . . . , qn(t, s), q̇1(t, s), . . . , q̇n(t, s)) dt,

and the proposition follows by a computation similar to that for the

previous variational formula.

3.9. The Theorem of E. Noether

Let φ be a diffeomorphism of Rn. Then φ induces a diffeomorphism

Dφ of TRn, (q, q̇) �→ (φ(q), Dφq(q̇)), where Dφq is the linear map of

Rn whose matrix is the Jacobian matrix of φ at q. The characteristic

property of Dφ is that if γ is any smooth curve in Rn, then (φ◦γ)′ =
Dφ ◦ γ′. (This is a simple consequence of the chain rule.)

We say that φ is a symmetry of a Lagrangian L : TRn → R (or

that φ preserves L) if L ◦ Dφ = L. If V : Rn → Rn is a smooth

vector field on Rn that generates a flow φt, we call V an infinitesimal

symmetry of L if each element φt of the flow is a symmetry of L.
We associate to the vector field V a smooth real-valued func-

tion V̂ on TRn, called the conjugate momentum of V , by V̂ (q, q̇) :=∑
i
∂L
∂q̇i

(q, q̇)Vi(q). In particular if σ is a smooth path in Rn, then

V̂ (σ′(t)) =
∑

i
∂L
∂q̇i

(σ′(t))Vi(σ(t)).

3.9.1. E. Noether’s Principle. If V is an infinitesimal symme-

try of a Lagrangian L, then the conjugate momentum V̂ is a constant

of the motion for the associated Euler-Lagrange Equations; i.e., V̂

is constant along the canonical lifting σ′ of every solution σ of the

Euler-Lagrange Equations.

Proof. Define a variation σs of σ by σs = φs(σ), where φt is the flow

generated by V , so that σ′
s = Dφs(σ

′). Note that since φs(x) is the

solution curve of the vector field V with initial condition x, it follows

that δσ(t) = V (σ(t)). Since V is an infinitesimal symmetry of L, Dφs

preserves L, so L ◦ σ′
s = L(σ′), and hence F (σs) is a constant, and

therefore DF (σ, δσ) = ( d
ds )s=0

F (σs) = 0. Then by Corollary 3.7.2 of
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the Variational Formula and the above formula for V̂ (σ′(t)) it follows

that V̂ (σ′(t)) is constant.

�Exercise 3–16. Given a Lagrangian L : TRn → R, define an

associated Hamiltonian function HL : TRn → R by HL(q, q̇) :=∑
i
∂L
∂q̇i

(q, q̇)q̇i−L(q, q̇), and show that it is constant along the canon-

ical lifting of every solution of the Euler-Lagrange Equations. Hint:

Imitate the proof of Noether’s Principle, but use the variation σs(t) =

σ(t+ s).

3.10. Lagrangians Defining the Same Functionals

A Lagrangian is just a smooth real-valued function on TRn, the tan-

gent bundle of Rn, and an especially simple class of such functions is

the family of differential forms (more precisely, differential 1-forms).

These are smooth functions ω : TRn → Rn that are linear on each

tangent space, TpR
n, or, in other words, having the property that

ω(q, q̇) is linear in q̇ for each choice of q. Clearly the most general such

ω is of the form ω(q, q̇) =
∑n

i=1 ωi(q)q̇i, where the ωi are n smooth

real-valued functions on Rn called the components of the differen-

tial form ω. The associated functional Fω of a differential form ω is

the well-known line integral of elementary analysis: given a smooth

path x : [a, b] → Rn, the line integral of ω along x, denoted by
∫
x
ω,

is defined by
∫ b

a

∑n
i=1 ωi(x(t))

dxi

dt dt, which of course is also just the

definition of Fω(x).

A smooth real-valued function φ on Rn defines a differential form

ω = dφ, its differential, with components ωi =
∂φ
∂xi

. (More intrinsi-

cally, if (p, v) is a tangent vector to Rn at p, then dφ(p, v) is the

directional derivative of φ at p in the direction v.) A differential form

ω is called exact if there exists a smooth function φ with ω = dφ,

so by equality of cross-derivatives the components of an exact form

clearly satisfy the identities ∂ωi

∂xj
=

∂ωj

∂xi
. Any differential form satis-

fying these identities is called a closed form. If ω = dφ is an exact

form and x as above is a smooth path in Rn, then, by the chain rule,

ω(x(t), dxdt ) = d
dtφ(x(t)), so that the line integral

∫
x
ω evaluates to

                

                                                                                                               



3.10. Lagrangians Defining the Same Functionals 83

φ(x(b)) − φ(x(a)). In particular its value depends only on the end-

points of the path x, and we can recover φ from ω by the formula

φ(p) := φ(0)+
∫
x
ω, where x is any path from 0 to p (for example the

straight line path x(t) := tp).

3.10.1. Proposition. For a differential form ω on Rn the follow-

ing are equivalent:

1) ω is exact.

2) ω is closed.

3) The Euler-Lagrange Equations for the Lagrangian L = ω are

satisfied identically (i.e., by all smooth paths), or equivalently

every smooth path is an extremal for the functional Fω.

4) The line integral of ω along a path depends only on the endpoints

of the path.

Proof. As already remarked, the implication 1) =⇒ 2) is trivial. The

Euler-Lagrange Equations for L(q, q̇) :=
∑n

k=1 ωk(q)q̇k are d
dtωi(q) =∑n

k=1
∂ωk

∂qi

dqk
dt , and by the chain rule this is an identity if ω is closed,

so 2) =⇒ 3). Next suppose that σ0 : [a, b] → Rn and σ1 : [a, b] → Rn

are smooth paths with the same endpoints p1, p2 and let σs(t) :=

σ0(t) + s(σ1(t)− σ0(t)) be the straight line in Σ(p1, p2) joining them.

Then ( d
ds )s=s0Fω(σs) = 0 if and only if σs0 is an extremal of Fω, so

that if 3) holds, then d
dsFω(σs) is identically zero and it follows that

Fω(σ0) = Fω(σ1), proving 3) =⇒ 4). Finally, define φ(p) :=
∫
xp

ω

where xp is the straight line x(t) := tp, 0 ≤ t ≤ 1, i.e., φ(p) :=∫ 1

0
ω(tp, p) dt. If 4) holds, then we can evaluate φ(p + sv) by first

integrating ω along xp and then adding the integral of ω along the

straight line γsv from p to p + sv (i.e., γsv(t) = p + tv, 0 ≤ t ≤ s).

Thus 1
s (φ(p+ sv)− φ(p)) = 1

s

∫
γsv

ω = 1
s

∫ s

0
ω(p+ tv, v) dt. Letting s

approach zero gives dφ(p, v) = ω(p, v), so 4) =⇒ 1).

Suppose L(q, q̇) is any Lagrangian such that every smooth path in

Rn is an extremal of FL, i.e., such that the Euler-Lagrange Equations

associated to L are automatically satisfied. Does it follow that L is

necessarily a differential form and hence by the above proposition the
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differential of a function? Not quite, since we can certainly add a

constant to L. But that is all.

3.10.2. Proposition. Let L be a Lagrangian function onTRn for

which the Euler-Lagrange Equations hold identically (or equivalently

for which the functional FL is constant on each of the subspaces

Σ(p1, p2)). Then L has the form dφ+C, where φ is a smooth function

on Rn and C is a constant.

Proof. One direction of the equivalence of the two forms of the hy-

pothesis is trivial and the other is just the implication 3) =⇒ 4)

of the preceding proposition. Given such a Lagrangian L and given

three points q, q̇, q̈ in Rn, let x(t) be a smooth path in Rn, defined

for t near 0, such that x(0) = q, x′(0) = q̇, and x′′(0) = q̈ (e.g.,

x(t) := q + tq̇ + (t2/2)q̈). Since x(t) satisfies the Euler-Lagrange

Equation, at time t = 0 we get the identity

∂L
∂qi

(q, q̇)−
n∑

j=1

∂2L
∂qj∂q̇i

(q, q̇)q̇j =

n∑
j=1

∂2L
∂q̇j∂q̇i

(q, q̇)q̈j . (∗)

Note that since the left-hand side of (∗) does not involve q̈, it follows

that the right-hand side must have the same value for all choices of

the q̈ as it has for q̈ = 0, i.e.,
∑n

j=1
∂2L

∂q̇j∂q̇i
(q, q̇)q̈j = 0. Choosing q̈j = 1

for j = k and q̈j = 0 for j �= k, it follows that ∂2L
∂q̇k∂q̇i

(q, q̇) = 0 for

all k and j, and hence L(q, q̇) =
∑n

k=1 ωk(q)q̇k + C(q). Substituting

this into the left-hand side of (∗) (which recall is identically zero)

gives
∑n

k=1
∂ωk

∂qi
(q)q̇k + ∂C

∂qi
=

∑n
j=1

∂ωi

∂qj
(q)q̇j . If we first take all the

q̇k equal to zero, it follows that ∂C
∂qi

= 0, so C is a constant, and if we

now take q̇� = 1 and q̇j = 0 for j �= 
, we get ∂ω�

∂qi
(q) = ∂ωi

∂q�
(q), so that

ω is a closed form and hence exact.

3.10.3. Corollary. Let L1 and L2 be two Lagrangian functions

on TRn. A neccessary and sufficient condition for the associated

functionals FL1
and FL2

to differ by at most a constant on each of

the spaces Σ(p1, p2) is that L1 and L2 differ by the sum of an exact

form and a constant. In particular, if this condition is satisfied, then
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L1 and L2 give the same Euler-Lagrange Equations and so they have

same extremals.

Proof. Given the proposition, this is immediate from the linearity of

L �→ FL.

Caution! While Lagrangians whose difference is of the form dφ+C

have the same extremals, the converse is not valid; i.e., from the

fact that L1 and L2 have the same extremals, one cannot conclude

that FL1
and FL2

differ by constants on the spaces Σ(p1, p2). For

example, multiplying a Lagrangian by a nonzero constant clearly does

not change its extremals. (This is no more mysterious than the fact

that although two functions from R to R that differ by a constant

have the same critical points, the converse is clearly false.)

When we introduced Lagrangian functions L, we noted that their

essential function was to define the associated functionals FL on the

spaces Σ(p1, p2). It is these functionals, rather than the Lagrangians

themselves, that should be regarded as the primary objects of study in

the Calculus of Variations, and this suggests that we should consider

two Lagrangians functions to be in some sense “the same” if their

associated functionals agree, or differ by at most a constant, on each

Σ(p1, p2).

3.10.4. Definition. Two Lagrangian functions on TRn are called

quasi-equivalent if their difference is of the form dφ + C. If L is a

Lagrangian function onTRn and Φ is a diffeomorphism ofRn, then Φ

is called a quasi-symmetry of L if L◦DΦ is quasi-equivalent to L, i.e.,
if L◦DΦ = L+dφ+C for some smooth real-valued function φ on Rn

and some constant C. If Φs is the smooth flow on Rn generated by a

vector field V , then V is called an infinitesimal quasi-symmetry of L if

there exists a smooth one-parameter family of functions φs : R
n → R

and constants Cs such that L ◦DΦs = L+ dφs + Cs.

3.11. Riemannian Metrics and Geodesics

Recall that if we fix q in Rn, then the set of all (q, q̇) in TRn is

denoted by TqR
n and is called the tangent space to Rn at q. We

are now going to contemplate having a different inner-product (or
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dot-product) on each tangent space. Note that the standard inner

product of two vectors q̇1 = (q̇11 , . . . , q̇
1
n) and q̇2 = (q̇21 , . . . , q̇

2
n) is〈

q̇1, q̇2
〉
=

∑
i q̇

1
i q̇

2
i =

∑
i,j δij q̇

1
i q̇

2
j , where of course δij is the identity

matrix. To define an inner-product in TqR
n, we will use

〈
q̇1, q̇2

〉
q
=∑

i,j gij(q)q̇
1
i q̇

2
j , where gij(q) is a symmetric positive definite matrix

whose entries are smooth functions of q. Positive definite means that

‖q̇‖2q = 〈q̇, q̇〉q is positive unless q̇ is the zero vector. We note that this

clearly implies that the matrix gij(q) is invertible, and we will denote

its inverse by gij(q), so that
∑

k gik(q)g
kj(q) = δij .

We will use this so-called Riemannian metric tensor gij(q) to

define two Lagrangians on TRn. The first is L1(q, q̇) = ‖q̇‖q =√∑
i,j gij(q)q̇iq̇j , and the corresponding functional FL1(σ) is called

the length of σ. The second is L2(q, q̇) = 1
2 ‖q̇‖

2
q = 1

2

∑
i,j gij(q)q̇iq̇j ,

and the corresponding functional FL2(σ) is called the action of σ.

�Exercise 3–17. Show that L2 is nondegenerate. What is the

matrix Mij in this case?

�Exercise 3–18. Derive the Euler-Lagrange Equations for L1 and

L2. Extremals of L1 are called geodesics of the Riemannian metric.

Since the length is easily seen to be independent of parametrization,

the reparametrization of a geodesic is again a geodesic. Show that

extremals of L2 are just geodesics parametrized proportionally to arc-

length.

3.12. A Preview of Classical Mechanics

In this final section of the present chapter we will have a prelimi-

nary look at three important special classes of differential equations,

called, respectively, Newton’s Equations , Lagrange’s Equations, and

Hamilton’s Equations. As we shall see, they are three equivalent ways

of looking at essentially the same mathematics, but each has special

advantages. The analysis of these equations is the core of what is

called Classical Mechanics, a subject of considerable beauty that lies

at an important interface of mathematics and physics. The following

discussion is intended as an introduction to and preview of things to
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come, describing some of the more salient mathematical features of

these equations. In Chapter 4 we will study them in considerably

more detail.

“Newton’s Equations” have already been introduced above. They

are in fact a whole class of second-order differential equations on Rn.

Each member of this class is defined by giving n positive constants

m1,m2, . . . ,mn (called the masses) and a C2 real-valued function

U : Rn → R, called the potential energy function. From U we define

a C1 vector field ∇U , the gradient of U , whose ith component is ∂U
∂xi

,

and the “force” vector field F is defined to be −∇U . Then Newton’s

Equations read force = mass × acceleration, or mi
d2xi

dt2
= − ∂U

∂xi
. As

usual for a second-order system, we can replace Newton’s Equations

by an equivalent system of first-order equations in Rn×Rn. Namely,

using coordinates (x, v) = (x1, . . . , xn, v1, . . . , vn), we get the first-

order system: dxi

dt = vi and mi
dvi
dt = − ∂U

∂xi
.

But it turns out to be more convenient to make a simple lin-

ear change of coordinates from (x, v) = (x1, . . . , xn, v1, . . . , vn) to

(q, p) = (q1, . . . , qn, p1, . . . , pn), where qi = xi and pi = mivi. The

old vi are called velocity (or “tangent bundle”) coordinates, whereas

the new pi are called momenta (or “cotangent bundle”) coordinates,

and the transformation from the coordinates (x, v) to the coordinates

(q, p) is called the Legendre Transformation. (There is no real dif-

ference between the xi and the qi, and it is mainly to conform with

tradition that we have changed names.) In terms of the q’s and p’s,

Newton’s Equations take the form mi
dqi
dt = pi and

dpi

dt = − ∂U
∂qi

.

It will be convenient to define three real-valued functions on

Rn ×Rn: the kinetic energy, K; the Lagrangian, L; and the Hamil-

tonian (or total energy), H. By definition, K(x, v) := 1
2

∑
i miv

2
i , or

K(q, p) :=
∑

i
p2
i

2mi
, and then L and H are, respectively, the difference

L := K − U and the sum H := K + U of the kinetic and potential

energies. (Here we are regarding U as a function on Rn ×Rn that is

independent of its second argument: U(x, v) = U(x).)

In the context of Newton’s Equations, the fact that a certain

function f is a constant of the motion is usually called a conservation

law (and f is called a conserved quantity).
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�Exercise 3–19. Prove by direct computation that the total en-

ergy, H, is a conserved quantity—i.e., that if (q(t), p(t)) is any solu-

tion of Newton’s equations, then the time derivative of H(q(t), p(t))

is identically zero.

Note that the partial derivative of the Lagrangian function with

respect to the ith velocity vi is just the ith momentum pi:
∂L
∂vi

=

∂K
∂vi

= ∂
∂vi

(
1
2

∑
j miv

2
j

)
= mivi = pi. On the other hand, the partial

derivative of L with respect to xi is just the ith component of the

force: ∂L
∂xi

= − ∂U
∂xi

. It follows that we can rewrite Newton’s Equations

in the form d
dt

(
∂L
∂vi

)
− ∂L

∂xi
= 0, which we recognize as the Euler-

Lagrange Equations for the Lagrangian L.
From our study of the Calculus of Variations above, we now see

that this Lagrangian reformulation of Newton’s Equations, which

might otherwise seem unmotivated (and gratuitously complicated)

has a conceptual advantage. Namely, define a real-valued function

A (called the action functional) on the space of C2 paths σ join-

ing two points p and q in Rn by A(σ) = FL(σ) :=
∫ b

a
L(σ̇(t)) dt =∫ b

a
L(qi(t), q̇i(t)) dt. Then Newton’s Equations express a remarkable

and nonobvious fact (“The Principle of Least Action”): the extremals

of A are precisely the solutions of Newton’s Equations. One imme-

diate consequence of this is that by the general Noether Principle,

one-parameter groups of symmetries of the Lagrangian function give

rise to conservation laws.

The Lagrangian formulation also has a more mundane use (one

that we considered above in a special case). Namely, it is often more

convenient in studying a particular example of Newton’s Equations

to use a coordinate system other than Cartesian coordinates. It can

be messy to convert Newton’s Equations to these new coordinates,

and it is often easier to rewrite the Lagrangian function in the new

coordinates. And because Lagrange’s Equations express a fact that is

independent of coordinates, they also must be equivalent to Newton’s

Equations in the new coordinate system.

A classic example of this is the following so-called “Central Force

Problem”. We take n = 2, m1 = m2 = m and consider a potential

                

                                                                                                               



3.12. A Preview of Classical Mechanics 89

U that is a function of the distance from the origin r =
√

x2
1 + x2

2.

This models the dynamics of a particle of mass m in the plane that is

attracted towards the origin with a force −∂U
∂r , and we shall consider

it in more detail later.

What you should notice first is that both the kinetic energy and

the potential energy are invariant under rotation about the origin,

and hence so too are the Lagrangian and the Hamiltonian. For this

reason, it is natural in studying this problem to use polar coordinates

(r, θ) where as usual θ = arctan(x2/x1). We have already looked at

this in the special case that U = 0, and let us now consider the more

general situation of an arbitrary potential U(r).

We recall that x1 = r cos θ and x2 = r sin θ. As previously, we

write (r, θ, ṙ, θ̇) for the corresponding canonical coordinates in the

space R2 × R2 of positions and velocities (i.e., if a curve is given

parametrically in polar coordinates by (r(t), θ(t)), then its canonical

lifting is given parametrically by (r(t), θ(t), ṙ(t), θ̇(t)) where ṙ(t) =
d
dtr(t) and θ̇(t) = d

dtθ(t)). The kinetic energy K is expressed in

Cartesian coordinates by K(x1, x2, v1, v2) = m
2 (v

2
1 + v22) and so in

polar coordinates it is given by K(r, θ, ṙ, θ̇) = m
2 (ṙ

2 + r2θ̇2). Thus, in

polar coordinates, L(r, θ, ṙ, θ̇) = m
2 (ṙ

2 + r2θ̇2) − U(r), so Lagrange’s

Equations become d
dt

(
∂L
∂ṙ

)
− ∂L

∂r = 0 and d
dt

(
∂L
∂θ̇

)
− ∂L

∂θ = 0, i.e.,

d
dt (mṙ) = −U ′(r) and d

dt (mr2θ̇) = 0. As we know, we must adjoin

to these two equations the two further equations dr
dt = ṙ and dθ

dt = θ̇,

so finally, as consequences of Lagrange’s Equations we have md2r
dt2 =

−U ′(r) and r2 dθ
dt = constant.

The quantity mr2 dθ
dt is called the angular momentum, and its

constancy is the law of conservation of angular momentum, also re-

ferred to as “Kepler’s Law of Equal Areas in Equal Times”. We shall

see later that it is a consequence of Noether’s Principle and the fact

that L is invariant under rotation.

�Exercise 3–20. Transform Newton’s Equation from Cartesian to

polar coordinates in the straightforward, pedestrian way.

A function H(q1, . . . , qn, p1, . . . , pn) on Rn ×Rn gives rise to a

system of differential equations dqi
dt = ∂H

∂pi
, dpi

dt = −∂H
∂qi

. Systems that
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arise in this way are called Hamiltonian, and H is called the Hamil-

tonian function for the system. These systems share many remarkable

and characteristic properties, and in particular they have important

invariance properties, a couple of which we will look at now. In fact,

the study of Hamiltonian systems is a subject in and of itself, one

that we will consider in more detail later.

�Exercise 3–21. Show that any system of Hamiltonian differential

equations is volume preserving. (This is called Liouville’s Theorem.)

Show conversely that if dq
dt = V1(q, p) and dp

dt = V2(q, p) is any area-

preserving autonomous system of differential equations in R × R,

then there is a Hamiltonian function H(q, p) such that V1 = ∂H
∂p and

V2 = −∂H
∂q . (This does not generalize to higher dimensions.)

�Exercise 3–22. Check that Newton’s Equations are Hamiltonian

differential equations, with the total energy as the Hamiltonian func-

tion. Show that the Hamiltonian function is always a constant of

the motion for a Hamiltonian system. (Together these facts give still

another proof of the conservation of energy for Newtonian systems.)

                

                                                                                                               



Chapter 4

Newtonian Mechanics

4.1. Introduction

The world we live in is a complex place, and we must expect any

theory that describes it accurately to share that complexity. But

there are three assumptions, satisfied at least approximately in many

important physical systems, that together lead to a considerable sim-

plification in the mathematical description of systems for which they

are valid.

The first of these assumptions is that the system is “isolated”,

or “closed”, meaning that all forces influencing the behavior of the

system are accounted for within the system. The second assumption

is that the system is “nonrelativistic”, meaning that all velocities are

small compared to the speed of light. The third assumption is that

the system is “nonquantum”, meaning that the basic size parameters

of the system are large compared with those of atomic systems (or,

more precisely, that the actions involved are large multiples of the

fundamental Planck unit of action).

These assumptions put us into the realm of “classical” physics,

where dynamical interactions of material bodies are adequately de-

scribed by the famous three laws of motion of Newton’s Principia.

Of course, such systems can still exhibit great complexity, and in

fact even the famous “three body problem”—to describe completely

the motions of three point particles under their mutual gravitational

attraction—is still far from “solved”. Moreover, at least the latter

two of these assumptions are quite sophisticated in nature, and even

explaining them carefully requires some doing. Later we shall see that
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a comparatively unsophisticated fourth assumption—that a system is

“close to equilibrium”—cuts through all the complexity and reduces

a problem to one that is completely analyzable (using an algorithm

called the “method of small vibrations”). This magical assumption,

which in effect linearizes the situation, is far from universally valid—

magic after all only works on special occasions. But when it does

hold, its power is much too valuable to ignore, and we will look at

it in some detail at the end of this chapter, after developing the ba-

sic theory of Newtonian mechanics and illustrating it with several

important examples.

We commence our study of Classical Mechanics with a little his-

tory.1

4.2. Newton’s Laws of Motion

We have already referred several times to “Newton’s Laws of Mo-

tion”. They are a well-recognized milestone in intellectual history

and could even be said to mark the beginning of modern physical

science, so it is worth looking at them in more detail. They were first

published in July of 1686 in a remarkable treatise, usually referred to

as Newton’s Principia,2 and it is not their mere statement that gives

them such importance but rather the manner in which Newton was

able to use them in Principia to develop a mathematically rigorous

theory of particle dynamics.

Let us look first at Newton’s original formulation of his Laws of

Motion:

AXIOMATA SIVE LEGES MOTUS

Lex I. Corpus omne perseverare in statuo suo quiescendi vel mov-

endi uniformiter in directum, nisi quatenus a viribus impres-

sis cogitur statum illum mutare.

1We are grateful to Professor Michael Nauenberg of UCSC for his critical
reading of this section and for correcting several inaccuracies in these historical
remarks.

2The full Latin title is “Philosophiae Naturalis Principia Mathematica”, or
in English, “Mathematical Principles of Natural Philosophy”. This first edition
is commonly referred to as the 1687 edition, since it was not distributed until a
year after it was printed.

                

                                                                                                               



4.2. Newton’s Laws of Motion 93

Lex II. Mutationem motus proportionalem esse vi motrici impressae,

& fieri secundum lineam rectam qua vis illa imprimitur.

Lex III. Actioni contrariam semper & qualem esse reactionem: sive

corporum duorum actiones in se mutuo semper esse quales &

in partes contrarias dirigi.

Even though we are sure you had no difficulty with the Latin, let’s

translate that into English:

AXIOMS CONCERNING LAWS OF MOTION

Law 1. Every body remains in a state of rest or of uniform motion

in a straight line unless compelled to change that state by

forces acting on it.

Law 2. Change of motion is proportional to impressed motive force

and is in the same direction as the impressed force.

Law 3. For every action there is an equal and opposite reaction, or,

the mutual actions of two bodies on each other are always

equal and directed to opposite directions.

The first thing to remark is that, mathematically speaking, there are

only two independent laws here—the First Law is clearly a special

case of the second, obtained by setting the “impressed motive force”

to zero.3

Another point worth mentioning is that the Second Law does not

really say “F = ma”. Newton was developing the calculus at the same

time he was writing the Principia, and no one would have understood

his meaning if he had written the Second Law as we do today. In

fact, if one reads the Principia, it becomes clear that what Newton

intended by the Second Law is something like, “If you strike an object

3However, as we shall see later, the First Law does have physical content
that is independent of and prior to the Second Law: it asserts the existence
of so-called “inertial frames of reference”, and it is only in inertial frames that
the Second Law is valid. Moreover, the First Law also has great historical and
philosophical importance, as we shall explain in more detail at the end of this
section.
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with a hammer, then the change of its momentum is proportional to

the strength with which you hit it and is in the same direction as the

hammer moves.” That is, Newton is thinking about an instantaneous

impulse rather than a force applied continuously over time. So how

did Newton deal with a nonimpulsive force that acted over an interval

of time, changing continuously as it did so? Essentially he worked

out the appropriate differential calculus details each time. That is,

he broke the interval into a large number of small subintervals during

which the force was essentially constant, applied the Second Law to

each subinterval, and then passed to the limit.

The Third Law does not say that the force (or “action”) that

one body exerts on another is directed along the line joining them.

However this is how it usually gets used in the Principia, and so it

is often considered to be part of the Third Law. We will distinguish

between the two versions by referring to them as the weak and strong

forms of Newton’s Third Law.

It is pretty clear that these Laws of Motion by themselves are in-

sufficient to predict how physical objects will move. What is missing

is a specification of what the forces actually are that objects exert

upon each other. However, later in the Principia Newton formulated

another important law of nature, called The Law of Universal Grav-

itation. It states that there is an attractive force between any two

particles of matter whose magnitude is proportional to the product of

their masses and inversely proportional to the square of the distance

separating them. One of the most remarkable achievements of the

Principia was Newton’s derivation of the form of his law of gravita-

tion from the Laws of Motion together with Kepler’s laws of planetary

motion, and we well give an account of how Newton accomplished this

later, after we have developed the necessary machinery.

If one takes Newton’s law of gravitation seriously, it would ap-

pear that a small movement of a massive object on the Earth would

be instantaneously felt as a change in the gravitational force at arbi-

trarily great distances—say on Jupiter. This “action at a distance”

was something that made Newton and many of his contemporaries

quite uncomfortable. Today we know that gravitation does not work

precisely the way that Newton’s law suggests. Instead, gravitation
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is described by a field, and changes in this field propagate with the

speed of light. The force on a test particle is not a direct response to

the many far-off particles that together generate the field, but rather

it is caused by the interaction of the test particle with the gravita-

tional field in its immediate location. To a good approximation, the

gravitational field is described by a potential function that gives New-

ton’s law of gravity, but the detailed reality is more complicated, and

accounting for small errors observed in certain predictions of Newto-

nian gravitation requires the more sophisticated theory of Einstein’s

General Relativity.

Newton’s Laws of Motion themselves are now known to be only

an approximation. In situations where all the velocities involved

are small compared to the speed of light, Newton’s Laws of Motion

are highly accurate, but at very high velocities one needs Einstein’s

more refined theory of Special Relativity. Newton’s Laws of Mo-

tion also break down when dealing with the very small objects of

atomic physics. In this realm the more complex Quantum Mechanics

is needed to give an accurate description of how particles move and

interact.

But even though Newton’s Laws of Motion and his Law of Grav-

itation are not the ultimate description of physical reality, it should

not be forgotten that they give an amazingly accurate description of

the dynamics of massive objects over a vast range of masses, veloci-

ties, and distances. In particular, in the two hundred years following

the publication of Principia, the consequences of Newton’s Laws of

Motion were developed into a mathematical theory of great elegance

and power that among other successes made predictions concerning

the motions of the planets, moons, comets, and asteroids of our own

solar system that were verified with remarkable accuracy. We will

cover some of this theory below.

We will end this mainly historical section with an explanation of

why the First Law of Motion has such great historical and philosophi-

cal importance. We quote Michael Nauenberg (with permission) from

part of a private exchange with him on this subject:

Newton made it clear in the Principia that he credited

Galileo with the Second Law. What should be pointed
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out is that the great breaktrough in dynamics in Galileo

and Newton’s time came about with an understanding of

the First Law. Before then, it was understood that to ini-

tiate motion required an external force, but the idea that

motion could be sustained without an external force seems

to have escaped attention. Even stones and arrows some-

how had to be continuously pushed during their flight by

the surrounding air, according to Aristotles and later com-

mentators, until Galileo finally showed that the air only

slows them down, and in the absence of air friction, they

travelled along a parabolic path. In earlier manuscripts

Newton spoke also of “inertial forces”. Apparently even he

could not free himself completelely from millenia of confu-

sion.

4.3. Newtonian Kinematics

As has become traditional, we will begin our study of the Newtonian

worldview with a discussion of the kinematics of Newtonian physics,

i.e., the mathematical formalism and infrastructure that we will use to

describe motion, and only then will we go on to consider the dynamics ,

that is, the nature of the forces that express the real physical content

of Newton’s theory of motion.

A Newtonian (Dynamical) System (V, F ) consists of an orthog-

onal vector space V , called the configuration space of the system,

together with a vector field F on V , i.e., a smooth map F : V → V ,

called the force law of the system. (By an orthogonal vector space we

just mean a real vector space with a positive definite inner product.)

For the time being V will be finite dimensional and its dimension,

N , is called the number of degrees of freedom of the system (V, F ).

Later we will also consider the infinite-dimensional case. If you want

to think of V as being RN with the usual “dot-product”, that is fine,

but we will write 〈u, v〉 to denote the inner product of two elements

u and v in V and ‖v‖ to denote the “length” of a vector v (defined

by ‖v‖2 = 〈v, v〉).
The reason why we call V configuration space is that the points of

V are supposed to be in bijective correspondence with all the possible
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configurations of some physical system. An important example, and

one that we will return to repeatedly in the sequel, is the description

of a system that consists of n point particles P1, . . . , Pn in R3. If we

denote the location of Pi by xi = (xi
1, x

i
2, x

i
3), then a configuration

of the system S is specified by giving the n vectors xi in R3, or

equivalently by giving the 3n real numbers xi
j . Thus in this case we

can identify V with (R3)n, or equivalently with RN , where N = 3n.

The force law F specifies the dynamics of the system via the

second-order ODE
d2x

dt2
= F (x), (NE)

called “Newton’s Equations of Motion”—or simply “Newton’s Equa-

tions”.4 The reason that there is no “mass” multiplying the left-hand

side is that, to simplify notation, we have already divided it into the

right-hand side—that is, our F does not really represent “force” but

rather “specific force”, or force per unit mass.

4.3.1. Remark. One can more generally consider forces that de-

pend on time and/or velocity as well as on position. For example, in a

nonisolated system, a particle may be acted upon by forces that arise

from its interactions with particles that are not part of the system. If

these external particles are themselves in motion, such external forces

will normally be time-dependent. And there are important physical

systems in which the force depends on the velocity with which a parti-

cle moves as well as on its position. For example, this is so for objects

moving in a viscous medium and also for electrically charged particles

moving in a magnetic field. While we will have occasion to bring in

time-dependent forces, we will not consider any velocity-dependent

force laws.

By definition, a “solution” of (NE) is a twice differentiable curve

σ : I → V defined on some “time” interval I, such that for all t in

I, σ′′(t) = F (σ(t)) (where σ′′ denotes the second derivative of σ).

4By this point you probably will not be too surprised to learn that Newton
never used or even wrote down “Newton’s Equations”. The first person to do so
was probably Leonhard Euler in his 1736 book “Mechanica”. (This was the first
mechanics textbook to be based on differential equations, and so in a sense it is
the progenitor of the book you are reading!)
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Note that if V is RN—or, equivalently, if we choose an orthonormal

basis for V—and if the curve σ(t) is given in components by σ(t) =

(x1(t), . . . , xN (t)), then the condition for σ to be a solution is that

the xi(t) satisfy the second-order system of ODE:

d2xi(t)

dt2
= Fi(x1(t), . . . , xN (t)).

If σ : I → V is a solution of (NE) defined on an interval I containing

0, then we call the pair (σ(0), σ′(0)) ∈ V ×V the initial condition for

this solution. We call x0 = σ(0) the initial position and v0 = σ′(0)

the initial velocity .

The following is an immediate consequence of the general exis-

tence, uniqueness, and smoothness theorems for solutions of ODE

discussed in Chapter 1.

4.3.2. Theorem. Given any initial condition p = (x0, v0) ∈ V ×
V , there is a uniquely determined “maximal” solution σp : (αp, ωp) →
V of (NE) with initial condition p.

We now give more detail:

1) The sense in which σp is maximal is that every solution of (NE)

with initial conditions p is a restriction of σp to some subinterval

of (αp, ωp).

2) The functions α : V × V → (−∞, 0) and ω : V × V → (0,∞) are

semi-continuous in the sense that given p0 = (x0, v0) ∈ V × V

and ε > 0 there is a neighborhood N of p0 in V × V , such that

for p ∈ N , α(p) < α(p0) + ε and ω(p) > ω(p0)− ε.

3) If ω(q) < ∞, then as t approaches ω(q), either ‖σ(t)‖ or ‖σ′(t)‖
approaches infinity. Similarly if α(q) > −∞, then as t approaches

α(q), either ‖σ(t)‖ or ‖σ′(t)‖ approaches infinity.

4) If O = {(q, t) ∈ V ×V ×R | α(q) < t < ω(q)} is the open subset of

V ×V ×R where σq(t) is defined, then the mapping (q, t) �→ σq(t)

of O into V is smooth.

4.3.3. Remark. Sometimes the force field F is undefined or “blows

up” on a closed subset C of V , in which case it is really V \C that is

the configuration space. In this case, the initial position of a solution
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must be taken in V \C, but otherwise the above theorem still holds—

except that in 3) it may happen that as t approaches the endpoints

of the interval (αq, ωq), σ(t) may have a limit point in C.

•Example 4–1. Free Systems. The simplest Newtonian systems

are the “free” systems, i.e., the systems (V, F ) with V arbitrary and

F the identically zero vector field on V . The solutions for this are

clearly the straight lines in V—more precisely, the solution with ini-

tial position x0 and initial velocity v0 is t �→ x0 + tv0. This of course

encapsulates Newton’s First Law of Motion. Note that the time pa-

rameter t is proportional to the arclength measured from the initial

point x0, the proportionality constant being the length of the velocity

vector v0.

�Exercise 4–1. If you know basic Riemannian Geometry, gener-

alize Newton’s Equations so that they make sense for an arbitrary

Riemannian manifold M as the configuration space (and not just a

“flat” one). Clearly, the force F should be a vector field on M—i.e., a

cross-section of the tangent bundle TM , so the problem is how to suit-

ably generalize the concept of acceleration. Here is a hint: in the flat

case, we just saw that the solutions for a free system are the straight

lines, with a parametrization that is proportional to arclength. In the

general case, a solution for a free system on M should be a geodesic

of M parametrized proportionally to arclength, and as you perhaps

know, this is equivalent to setting the covariant derivative of the ve-

locity to zero—which of course suggests that the covariant derivative

of velocity is the correct generalization of acceleration.

4.4. Classical Mechanics as a Physical Theory

Mathematics is a deductive science, physics experimental, but al-

though this distinction is real, it should not be exaggerated. Math-

ematics after all started life as Geometry which, as that name sug-

gests, was based on axioms mirroring real world experience, and even

in branches as pure as number theory, mathematicians have always

carried out numerical “experiments” to suggest appropriate conjec-

tures. Conversely, until the early seventeenth century, physics, then
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called Natural Philosophy, was considered a deductive science5, and

while later experience has taught us that physics must start from

experiments and constantly return to experiments to validate any

new theoretical predictions, in between these visits to the laboratory

physics remains very much a deductive science, its progress dependent

on the discovery and manipulation of abstract theoretical constructs

both to organize the results of prior experiments and to suggest what

to look for at the next stage of experimentation.

While there appears little reason a priori to expect that we should

be able to create simple mathematical models that reflect the real

world with precision, it is a seemingly miraculous fact that we are

nevertheless able to do so. Eugene Wigner referred to this as “the

unreasonable effectiveness of mathematics in the natural sciences” in

a famous paper with that title6 and the name has stuck. Classical

Mechanics was perhaps the first good example of an “effective theory”

in Wigner’s sense, and it remains one of the most striking. It stands

on its own as a beautiful piece of pure mathematics, and yet it is

also a remarkably successful physical theory; for two hundred years

following its inception it passed every experimental test to which it

was subjected, and still today it remains the theory of choice within

its domain of applicability. While we may not be able to explain

why this should be so, in this section we will at least try to explain

just what the precise connection is between the mathematical and the

physical aspects of Classical Mechanics.

For a mathematical theory to serve as a “model” for some part

of physical reality, at least two things must be specified:

i) how to interpret the undefined mathematical abstractions of the

theory in terms of concrete, physically meaningful concepts and

ii) how to determine the numerical quantities that enter into the

mathematical theory by performing specific physical experiments.

We will refer to these as the Interpretation Problem and the Mea-

surement Problem, respectively. Philosophers of science have written

5For a narrative of the heroic life of the man who perhaps did most to intro-

duce the experimental approach into physics, see Dava Sobel’s inspiring “Galileo’s
Daughter”, Walker, 1999.

6Cf. Communications in Pure and Applied Mathematics, vol. 13, 1960.
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whole books on the general theory of this process, but for the case

of interest to us, Classical Mechanics, the solution to both of these

problems can be described in fairly intuitive terms, and we will give

only an informal and abbreviated account, leaving many details to

the imagination of the reader.

The basic undefined abstraction of Classical Mechanics is that of

a particle. Although the word as used today usually connotes some

sort of indivisible object, for purposes of Classical Mechanics all that

is required of a particle is that it be a piece of matter of known mass

that (in the context in which it is considered) can be considered as

being located at a point of space (rather than being a distributed

object). For example, if the problem at hand is to derive the orbits

of the planets about the Sun, then the Earth is usually considered

to be a particle, but if the problem is to describe the rotation of the

Earth on its axis or to compute the precise orbit of, say, a weather

satellite around the Earth, then while the satellite can be treated as

a particle, the Earth cannot.

A somewhat trickier concept is that of an isolated particle, which

is meant to formalize the notion of a particle that is not subject to

any external force. But this is clearly an idealization—since every

particle of matter is the source of a gravitational field that exerts a

force on every other particle in the universe, it would seem that no

real particle could be considered rigorously isolated. What saves the

concept from being vacuous is that if a particle is sufficiently removed

from other matter, the gravitational field in its neighborhood causes

an acceleration that is (very nearly) the same for itself and all nearby

particles, independent of their masses or other properties7. This im-

plies (using a nice metaphor that goes back to Einstein) that if we get

into an elevator and cut the cable, then a particle inside the elevator

will experience no gravitational force8. What about other forces? The

fact is that the only other long-range force besides gravitation that

intervenes in classical mechanical considerations is electromagnetism,

7This is Einstein’s “Principle of Equivalence”.
8Until the elevator hits the bottom of the shaft! If he were writing today,

Einstein would no doubt have used the example of an orbiting space station, where
this phenomenon of weightlessness has become a familiar one seen in countless
TV broadcasts from space.
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so that inside a freely falling laboratory, a particle that is electrically

neutral, magnetically shielded, and not in contact with other matter

can effectively be considered as isolated.

Let us now take up the measurement problem for Classical Me-

chanics. The three basic kinds of measurements that we have to make

are of mass, time, and the positions of particles. The first two are

relatively easy and we consider them first.

Although physics texts caution students—correctly—that mass

and weight are logically distinct concepts that should not be con-

fused, Einstein’s Equivalence Principle implies that for measurement

purposes they are always proportional, so that we can use a simple

pan balance for measuring the mass of small bits of matter.9 For large

conglomerations of matter (such as the Earth) this clearly does not

work, and we must use indirect methods, and later we shall explain

how Cavendish experimentally “weighed the Earth” by measuring

Newton’s gravitational constant G.

As explained earlier, time is measured by choosing a periodic

process and using its primitive period as the unit of time. We have

also seen that there are many possible choices—for example, we can

choose any normal mode of a system near equilibrium, or we can

choose the motion of either one of an isolated pair of gravitating

particles about their center of mass. The miracle is that these various

methods are consistent with each other! In other words, the ratio of

the periods of two different natural cyclic processes remains

constant in time, giving a well-defined conversion factor between

the time units using one process or the other. This is an experimental

fact, and if it were not so, then physics would be a very different

science from the one we know, and Newton’s Laws of Motion would

not model the real world. In what follows we will assume that we have

chosen a clock , meaning a particular choice of cyclic process defining

a unit of time.

9While this approach is legitimate and simplifies the discussion, it is as
Michael Nauenberg remarked, “completely ahistorical”. At the end of this section
we shall comment briefly on how Newton handled (or mishandled) the notion of
mass.
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We will call a system for assigning numerical coordinates to the

positions of particles in space a reference frame, and what we would

like is a choice of reference frame for which particles will obey New-

ton’s Laws of Motion, and in particular the First Law.

4.4.1. Definition. A reference frame is called inertial if the po-

sitions of all isolated particles as measured in the frame are either

stationary in time or else move in straight lines with constant veloc-

ity.

We will assume that the space in which we live is Euclidean10. It

follows that to specify a reference frame what we have to do is

1) choose three orthogonal directions,

2) choose an origin, and

3) describe how to measure distances between two points.

The algorithm for making these choices so as to end up with an in-

ertial frame is the most interesting and nontrivial part of solving the

Measurement Problem for Classical Mechanics. We obviously must

exercise some care. For example, if we were to set up a laboratory

on a rotating merry-go-round, then a reference frame rigidly attached

to the laboratory would certainly not be inertial, since there will be

“fictitious” centrifugal and Coriolis forces resulting from the rotation.

But wait a minute! We are on a rotating merry-go-round, aren’t

we—one that makes a full rotation once in twenty-four hours? And

the fictitious forces due to this rotation are very visible in the Foucault

Pendulum Experiment.

The differential equations governing the motion of the Foucault

pendulum are

d2x

dt2
= −ω2x+ 2Ω

dy

dt
sinφ,

d2y

dt2
= −ω2y + 2Ω

dx

dt
sinφ,

10While we now know that this is not rigorously true, it does follow from
General Relativity Theory that if we keep away from regions like black holes where
there are very strong gravitational fields, then the geometry of space will be well
approximated by Euclidean geometry over appreciable regions.
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Figure 4.1. The Foucault pendulum.

where ω is the angular frequency of the pendulum, Ω is the rotational

frequency of the Earth, and φ is the latitude of the pendulum. The

terms 2Ωdy
dt sinφ and 2Ωdx

dt sinφ are the x and y components of the

so-called Coriolis force—the “fictitious force” referred to above.

�Exercise 4–2. If you are not familiar with the notion of Cori-

olis force, then find out about it by looking it up on Google or in

Wikipedia or in your favorite physics book. Then see if you can de-

rive the above equations for the Foucault pendulum.

So the first problem we face is how to choose a reference frame

that is “nonrotating”. But nonrotating with respect to what? To

find the answer, we only need to look up at the sky on a clear, dark

night. We should choose our three orthogonal directions in space so

that they point in constant directions with respect to the “fixed stars”

(or better, the fixed galaxies). As for the choice of origin, all that is

important is that it be in free fall, as discussed earlier, so that leaves

open only the manner in which we measure distances, and the easiest
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way to do that is to use our clock and see how long it takes light to

make a round trip.

We can now give a succinct prescription for setting up an ideal

laboratory for the study of Classical Mechanics in an inertial refer-

ence frame. Launch a space station using a booster rocket, and after

burnout use gas jets to stabilize the orientation of the station with

respect to the stars. Take the center of mass of the station as the ori-

gin and choose any three orthogonal directions that are fixed relative

to the station as coordinate axes. Measure time with a cesium vapor

clock and measure distances by radar.

Now that we have given precise physical interpretations to all the

undefined notions that occur in the statement of Newton’s Laws of

Motion, their validity becomes a matter open to experimental verifi-

cation, and needless to say, countless experiments have verified their

validity with great precision.

It is clear from the above discussion that there is a lot of inde-

terminacy in the choice of an inertial reference frame. First, we can

translate the origin by any fixed vector x0. Then, we can apply any

orthogonal transformation T to the three directions defining the co-

ordinate axes. And finally, since any particle moving with constant

velocity V relative to a freely falling particle is also in free fall, we

can add a variable translation tV . In other words, if x is an iner-

tial coordinate system, then so is x′ = Tx + tV + x0. The group

of transformations of R3 × R (or “space-time”) that have the form

(x, t) �→ (x′, t) where x′ = Tx+tV +x0 is called the Galilean group, so

we may rephrase this by saying that Galilean transformations carry

inertial frames to inertial frames.11 It is clear that if we apply a

Galilean transformation to the parametric equation x(t) = p + tv

that expresses motion with constant velocity in a straight line, then

we get another such equation, x′(t) = (Tp + x0) + t(Tv + V ), and

it is an easy exercise to show that Galilean transformations are the

only invertible transformations (x, t) �→ (Φ(x, t), t) with this property.

11The fact that the coordinate t is required to remain the same in a Gallilean
transformation is usually expressed by saying that time is considered an “abso-

lute” quantity in Classical Mechanics.
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Thus the Galilean group is the natural maximal symmetry group of

Classical Mechanics.

4.5. Potential Functions and Conservation of Energy

Suppose U : V → R is a smooth real-valued function on V . We

recall that dUp, the differential of U at a point p of V , is the linear

functional on V defined by dUp(v) = (d/dt)t=0U(p+tv)—or in words,

dUp(v) is the directional derivative of U at p in the direction v. Since

V is an orthogonal vector space, any linear functional f on V is given

by taking the inner product with a uniquely determined fixed vector

in V “dual” to f . In particular, the vector dual to dUp is called the

gradient of U at p and is denoted by ∇Up. It is then easily seen that

for any smooth curve γ : [a, b] → V , (d/dt)U(γ(t)) = 〈γ′(t),∇Uγ(t)〉.

�Exercise 4–3. Prove this, and show that, with respect to any or-

thonormal system of coordinates (x1, . . . , xn) for V , the components

of ∇U are ∂U/∂xi.

We shall say that a force field F is “derived from a potential”

if there exists a smooth function U such that F = −∇U , in which

case we call U a potential for F . The reason for the minus sign is

that this way U(p) represents the work required to move the system

from a standard configuration p0 to the configuration p, and it also

represents the energy available in the system to do work. We will

see below that there is a close connection between the existence of a

potential for the force F and Newton’s Third Law of Motion.

If F is derived from a potential, then (NE) has the form

d2x

dt2
= −∇U, (NE′)

so, with respect to an orthonormal coordinate system, a solution sat-

isfies
d2xi(t)

dt2
= − ∂U

∂xi
(x1(t), . . . , xN (t)).

It is clear that if U is a potential for F , then so is U plus a constant,

and it is equally easy to see that any other potential for F is obtained

by adding a constant to U .
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4.5.1. Remark. Since our force field F is really “specific force”,

i.e., force per unit mass, our potential function U represents potential

energy per unit mass.

Which force fields F are derived from a potential? The answer

to this is closely bound up with the notion of work.

If γ : [a, b] → V is any smooth curve in V , then we define the

work done by the force field F along the path γ to be the line in-

tegral
∫
γ
F · ds =

∫ b

a
〈F (γ(t), γ′(t))〉 dt. If we choose an orthonormal

coordinate system in which the curve γ is given parametrically by

γ(t) = (x1(t), . . . , xN (t)), then the line integral defining the work can

be expressed as
∫ b

a

∑
i Fi(x1(t), . . . , xN (t)) x′

i(t) dt. The force field F

is called conservative if the work done along every closed path is zero.

This is easily seen to be equivalent to the work done along any two

paths joining the same endpoints being equal. If U is a potential for F ,

then an easy calculation using the Fundamental Theorem of Calculus

shows that the work done by F along γ is equal to U(γ(a))−U(γ(b)).

�Exercise 4–4. Carry out the details. Conversely, if F is conser-

vative, then choose an arbitrary “basepoint” p0 in V and define a

real-valued function U on V by letting U(p) be the work done by F

along any path joining p0 to p. Show that U is a potential for F .

Thus,

4.5.2. Theorem. A force field is derived from a potential if and

only if it is conservative.

�Exercise 4–5. Suppose that in some orthonormal coordinate sys-

tem (x1, . . . , xN ) for V the field F has components Fi(x1, . . . , xN ).

Show that a necessary and sufficient condition for F to be derived

from a potential is that for all 1 ≤ i, j ≤ N , ∂Fi/∂xj = ∂Fj/∂xi.

4.5.3. Remark. There is an equivalent way to formulate the

above, avoiding any reference to work and using instead the language

of differential forms. (Skip the following if you are not familiar with

forms.) Let ωF denote the one-form on V dual to the vector field

F . With respect to an orthonormal coordinate system xi as above,
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ωF =
∑

i Fi dxi (so the work done by F along γ is
∫
γ
ωF ). Clearly

F is derived from a potential if and only if ωF is an exact form, i.e.,

there exists a smooth function U so that ωF = dU , and of course it is

a standard result that a one-form ω is exact if and only if its integral

around every closed loop is zero. And by the Poincaré Lemma, ωF

is exact if and only if dωF = 0 (or as a physicist might say it, F is

conservative if and only if the curl of F is zero).

If (V, F ) is a Newtonian system and σ : I → V is a solution curve,

then we define two real-valued functions Kσ and Pσ on I, called,

respectively, the kinetic energy and power functions of the solution,

by Kσ(t) = 1
2
‖σ′(t)‖2 and Pσ(t) = 〈F (σ(t)), σ′(t)〉. If the force F

is derived from a potential U : V → R, then the sum of the kinetic

and potential energies along a solution σ defines a third function

Hσ : I → R called the total energy (or Hamiltonian) function of the

solution, i.e., Hσ(t) =
1
2 ‖σ′(t)‖2 + U(σ(t)).

4.5.4. Remark. If the force F is derived from a potential U ,

then it is immediate from the definition of the power function (and

the meaning of the gradient operator) that Pσ is minus the rate of

change of U along the solution σ.

�Exercise 4–6. Show that the power function is the time rate of

change of the kinetic energy.

4.5.5. Energy Conservation Theorem. If (V, F ) is a Newto-

nian system and if F is derived from a potential U , then the total

energy is constant along any solution curve.

Proof. The proof is immediate from the preceding remark and exer-

cise.

4.5.6. Definition. If (V,−∇U) is a Newtonian system, then we

call a point p0 of V an equilibrium point (or simply an equilibrium)

if p0 is a strict local minimum of the potential function U .

4.5.7. Remark. Frequently “equilibrium point” is used as a syn-

onym for critical point—i.e., any point where ∇U vanishes, and what
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we have called an equilibrium point is then referred to as a stable equi-

librium. Physicists often refer to an equilibrium point as a “vacuum

state”.

At any critical point p0 of U , the solution of Newton’s Equations

with initial position p0 and initial velocity zero is the constant curve

σ(t) = p0. But if p0 is an equilibrium point, then something much

stronger is true. Informally, any solution of Newton’s Equations that

starts near enough to p0 with sufficiently small velocity will stay near

p0. To make this precise, we define Br(p0) = {p ∈ V | ‖p− p0‖ ≤ r},
the closed ball of radius r about p0, and we denote its boundary by

Sr(p0) = {p ∈ V | ‖p− p0‖ ≤ r}, the sphere of radius r about p0. If p0
is an equilibrium point, then for r sufficiently small, U(q)−U(p0) > 0

for all q on Sr(p0), and since Sr(p0) is compact, there will be a positive

δ so that U(q)− U(p0) > δ for q in Sr(p0).

4.5.8. Stability Theorem for Equilibria. If p0 is an equilib-

rium point of (V,−∇U), then for any positive r there is a positive ε

such that for all p ∈ Bε(p0) and u ∈ Bε(0) the solution σ of Newton’s

Equations with initial position p and initial velocity u exists for all

time and remains inside Br(p0).

Proof. We can replace r by any smaller positive number, so we can

assume as above that for some positive δ, U(q) − U(p0) > δ for q in

Sr(p0). So to prove that σ(t) stays inside Br(p0), it will suffice to

show that U(σ(t))− U(p0) < δ for all t. By continuity of U , we can

choose ε with ε2 < δ such that for p in Bε(p0), U(p) − U(p0) <
1
2δ.

By energy conservation, U(σ(t)) + 1
2 ‖σ′(t)‖2 = U(p) + 1

2 ‖u‖
2
, or

U(σ(t))− U(p0) = U(p)−U(p0) +
1
2 ‖u‖

2 − 1
2 ‖σ′(t)‖2, and therefore

U(σ(t))− U(p0) <
1
2δ +

1
2ε

2 < δ.

�Exercise 4–7. What is the (one line) proof that these solutions

do in fact exist for all time?

At a critical point p0 of a potential function U , the so-called

Hessian matrix—the symmetric matrixKij =
∂2U

∂xi∂xj
of second partial

derivatives of U—describes the behavior of U to second-order at p0.

The operator K with matrix Kij is called the Hessian operator of
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U at p0 and we recall that if it is positive-definite (i.e., if all of its

eigenvalues are positive, say ω2
1 , . . . , ω

2
n), then p0 is an equilibrium

point, and such an equilibrium is called a nondegenerate minimum

of U . At a nondegenerate minimum, the Hessian operator has a

unique positive definite square root, Ω (namely the operator having

eigenvalues ωi at the ω2
i -eigenvectors of K). In this situation we

have a more refined version of the above stability theorem. To make

the statement simpler, we translate p0 to the origin and assume that

U(0) = 0.

4.5.9. Stability Theorem for Nondegenerate Equilibria.

Assume the origin is a nondegenerate equilibrium point of (V,−∇U)

and that U(0) = 0. Let x(t, x0, u0) denote the solution of Newton’s

Equations with initial position x0 and initial velocity u0. Then for ε

sufficiently small, x(t, εx0, εu0) is defined for all t and there is a pos-

itive constant C such that ‖x(t, εx0, εu0)‖2 ≤ C|ε|2(‖x0‖2 + ‖u0‖2)
and ‖x′(t, εx0, εu0)‖2 ≤ C|ε|2(‖x0‖2 + ‖u0‖2).

�Exercise 4–8. Use the following steps and hints to prove this the-

orem. Note first that by Taylor’s Theorem with Remainder, near the

origin we can write U(x) = 1
2 ‖Ωx‖

2
+‖x‖2 ρ(x) where ρ is continuous

and ρ(0) = 0.

1) Let ωm and ωM denote the smallest and largest eigenvalues of Ω.

Show that near the origin
ω2

m

4 ‖x‖2 < U(x) <
3ω2

M

4 ‖x‖2 . Hint:

On one hand, choosing orthonormal coordinates defined by an

eigenbasis for Ω, it follows that ω2
m ‖x‖2 ≤ ‖Ωx‖2 ≤ ω2

M ‖x‖2,
and on the other hand, near the origin, −ω2

m

4 < ρ(x) <
ω2

M

4 .

2) Show using 1) that if E is the total energy function on V × V ,

defined by E(x, u) = 1
2 ‖u‖

2 + U(x), then for any x0 and u0

the inequality E(εx0, εu0) ≤ Aε2(‖x0‖2 + ‖u0‖2) is satisfied for

some positive A and all sufficiently small ε. Hint: Take A =

min( 12 ,
3ω2

M

4 ).

3) E(x(t, εx0, εu0), x
′(t, εx0, εu0)) = E(εx0, εu0) by conservation of

energy. Since the kinetic energy 1
2 ‖x′(t, εx0, εu0)‖2 is positive,

it follows that the potential energy is less than the total energy,
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so by 2) U(x(t, εx0, εu0)) ≤ Aε2(‖x0‖2 + ‖u0‖2). Now use 1) to

derive ‖x(t, εx0, εu0)‖2 ≤ C|ε|2(‖x0‖2 + ‖u0‖2).
4) Since the potential energy U(x(t, εx0, εu0)) is positive (for small

ε) the kinetic energy 1
2 ‖x′(t, εx0, εu0)‖2 is less than E(εx0, εu0),

and so the inequality ‖x′(t, εx0, εu0)‖2 ≤ C|ε|2(‖x0‖2 + ‖u0‖2)
follows from 2).

4.6. One-Dimensional Systems

For a one-dimensional Newtonian system, we can take V to be R,

and the force law and potential function are then just “real-valued

functions of one real variable”—i.e., exactly the domain of elemen-

tary Calculus. These systems are interesting to analyze for their own

sake, and in addition they play an important rôle in analyzing higher-

dimensional systems.

One-dimensional systems are also very easy to visualize using

a computer. There are many computer programs, such as Maple,

Mathematica, MatLab, and 3D-XplorMath , that make it easy for a

user to enter interactively a second-order ODE and initial conditions

and that will then solve the ODE numerically and display the solution

curve x(t) on the computer screen. (Usually what these programs

display is the parametric curve x = x(t), y = x′(t) in the (x, y)-plane.)

In the Web Companion there is a movie, created in 3D-XplorMath,

for the case of the Pendulum Equation d2x
dt2 = − sin(x) showing the

direction field and a few solution curves. (See Figure 4.2 for a static

version.)

�Exercise 4–9. Show that, in a one-dimensional system, F is al-

ways derived from a potential U . In fact, show that we can take U

to be minus the indefinite integral of F .

A major simplification in the one-dimensional case is that we can

use conservation of energy to reduce Newton’s Equation to a first-

order equation. If x(t) is the solution of Newton’s Equations with

initial position x0 and initial velocity v0, then the total energy for

this solution is E = U(x0) + v20/2. The energy conservation equation

is then 1
2 (

dx
dt )

2 + U(x(t)) = E.
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If we rewrite this as dx
dt =

√
2(E − U(x)), then it follows that we

can find the solution x(t) explicitly in two computable steps—first a

quadrature and then a function inversion. Indeed, the time t as a

function of the position x is given by the definite integral

t(x) =

∫ x

x0

ds√
2(E − U(s))

and we then only have to invert this function.

4.6.1. Remark. Hey, wait a minute! Something must be wrong

with this! For a periodic orbit, the position x(t) takes the same value

for many different values of the time t, so the “function” t(x) is not

single-valued. So how is it that we have derived an explicit formula

for it? Aha!—what happens if U(t) = E? And shouldn’t that square

root have a sign? The velocity isn’t always positive after all.

�Exercise 4–10. We’ll come back to this later for a closer look—

and try to make rigorous sense out of it—but for now see if you can

figure out for yourself what is going on. Try to analyze what happens

in the harmonic oscillator example below (where in fact all of the

solutions are periodic).

We next introduce two important one-dimensional systems. (Ac-

tually, the first one, the harmonic oscillator, was already considered

in Section 2.3.)

•Example 4–2. The One-Dimensional Harmonic Oscillator.

This models a particle of mass m attached to an ideal spring with

spring constant (or Young’s Modulus) k. That is, the spring has an

unstretched length of 0, and when stretched to position x, there is

a restoring force −kx acting on the particle (“Hooke’s Law”). New-

ton’s Equation is d2x
dt2 = −ω2x, where we have set ω =

√
k

m
, and

the potential function is U(x) = 1
2ω

2x2. Notice that the force law is

linear, so that Newton’s Equations are linear differential equations,

and it is therefore easy to solve them explicitly. In fact, the general

solution is x(t) = a cos(ωt) + b sin(ωt), where a and b are arbitrary

constants. In particular, the solution with initial position x0 and ini-

tial velocity v0 is x(t) = x0 cos(ωt) + (v0/ω) sin(ωt). We note that

all solutions are periodic, with the same period 2π
ω = 2π

√
m

k
and
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frequency ω/2π = 1
2π

√
k

m
. (The parameter ω is called the angular

frequency of the oscillator and represents the reciprocal of the time

it takes the “phase” ωt to increase by one radian.)

�Exercise 4–11. Show that the general solution of the harmonic

oscillator can also be expressed in the form x(t) = A cos(ω(t − τ )).

The two parameters A and τ are called the amplitude and phase shift

of the solution. What is their geometric significance?

�Exercise 4–12. Find the general solution for the linear system
d2x
dt2 = ω2x, i.e., Newton’s Equation when the force is again linear,

but repulsive rather than attractive. Why do you think this is less

physically interesting? (Well, perhaps it is interesting—the potential

energy is not bounded below, so this force could do an unlimited

amount of work. Hmm, perhaps one should call that an attractive

force.)

•Example 4–3. The Pendulum. This models the oscillations of

a particle of mass m attached to the end of a weightless, rigid rod of

length L. The other end of the rod is attached to a pivot, and the

rod swings under the influence of gravity. The coordinate x is the

angle that the rod is displaced from the equilibrium configuration—

straight down. The height of the particle above the equilibrium height

is clearly L cos(x), and since the force of gravity is of constant magni-

tude mg and directed downward, the work done to move the particle

from its equilibrium configuration is mgL cos(x) and so the potential

function is U(x) = gL cos(x). (Of course, g is the “acceleration of

gravity”. For a pendulum on the surface of the Earth, if we mea-

sure time in seconds and distance in feet, then g is approximately

32 ft/sec2.) Newton’s Equation is now d2x
dt2 = −gL sin(x). The gen-

eral solution cannot be expressed in terms of elementary functions

(it involves elliptic functions). But if x is close to zero, then cos(x)

is approximately 1
2
x2, so if we displace a pendulum of length L only

slightly from its equilibrium position, then we might expect it to be-

have like a harmonic oscillator whose angular frequency ω is
√
gL. In

particular, we might expect it to swing back and forth with a period

of approximately 2π
√
gL.
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Figure 4.2. The pendulum.

Figure 4.2 shows the direction field and several orbits for the Pendu-

lum Equation, d2x
dt2 = −gL sin(x)—or rather for the equivalent first-

order system dx
dt = ω, dω

dt = −gL sin(x). The horizontal x coordinate

represents the pendulum angle, and the vertical coordinate ω repre-

sents its angular velocity. The closed orbits are those with insufficient

kinetic energy (or initial velocity) to swing “over the top”.

The Web Companion contains instructions for carrying out com-

puter experiments involving the harmonic oscillator and pendulum,

using various programming systems or 3D-XplorMath.

4.6.2. A Universal One-Dimensional Model. It is helpful to

have a good intuitive physical picture in mind when dealing with a

Newtonian system, and another nice feature of one-dimensional sys-

tems is that there is a “universal” method for constructing a physical

model that realizes any abstract potential function U .

                

                                                                                                               



4.6. One-Dimensional Systems 115

Let us start with a smooth curve y = Y (x) in the plane. We

imagine an ideal infinitely thin wire positioned along this curve and

strung with a single bead that slides without friction along the wire

under the action of a constant downward gravitational acceleration

−g. The (specific) force is of course derived from the potential gY (x).

We will assume that for x large and positive, Y tends monotonically

to infinity, and similarly for x large and negative. We will also assume

that at each critical point of Y the second derivative is nonzero, so

that it is either a strict local maximum or a strict local minimum.

�Exercise 4–13. Show that these assumptions imply there can be

only a finite number of critical points of Y . Deduce that for any

real number E, the equation Y (x) = E has only a finite number of

solutions.

We reparametrize our curve by arclength s(x) =
∫ x

0

√
1 + Y ′(x)2,

measured from the point p0 = (0, Y (0)) since it is easier to describe

the motion of the bead in terms of s than of x. If we solve for x

as a function of arclength, we get a relation x = X(s), and we write

U(s) = gY (X(s)) for the potential expressed as a function of s. (Note

that it is still just g times the height of the bead.) If we denote the

position of the bead along the curve at time t by s(t), the velocity

will be v(t) = s′(t). (If we had used x as our parameter, we would

instead have to deal instead with the more complicated expression

x′(t)
√
(1 + Y ′(x(t)))2.) The component of the gravitational force on

the bead in the direction of the wire is just −U ′(s), so Newton’s

Equation of motion for the bead is s′′(t) = −U ′(s(t)).

Now let’s see if we can describe the solution s(t) with some ar-

bitrary initial position s0 and initial velocity v0. Before doing this

rigorously, let’s consider it intuitively in terms of the sliding bead

picture. We place the bead on the wire at s0 and then give it a shove

so that its velocity is v0. Assuming v0 is positive, it will keep trav-

elling to the right until it reaches a position sM where it has gone

so high that all its kinetic energy is converted to potential energy

and its total energy E is equal to U(sM ). At this point it will start

sliding to the left and will continue doing so until it reaches the next
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point, xm, to the left, where U(xm) = E. It will then keep oscillating

periodically between xm and xM .

OK, now let’s try to do this carefully. One possibility is that

s0 is a critical point of U and v0 = 0. Clearly the solution for these

initial conditions is s(t) ≡ s0. (And, conversely, any such “stationary”

solution must be located at a critical point.)

To describe the other less trivial solutions, let’s introduce some

auxiliary quantities. First we define the total energy E of the solution

by E = 1
2v

2
0 + U(s0). There are now two cases to consider. First, if

v20 > 0, then U(s0) < E, and since U tends to +∞ in both directions,

there will (by the preceding exercise) be a first point sm to the left

of s0 where U has the value E and similarly a first point sM to the

right of s0 where U has the value E. On the other hand, if v0 = 0,

(so that U(s0) = E), then s0 cannot be a critical point of U (since

we are assuming that s(t) is not a constant solution). If U ′(s0) < 0,

then we define sm = s0 and define sM to be the next largest solution

of U(x) = E, while if U ′(s0) > 0, then we define sM = s0 and let sm
be the next smallest solution of U(t) = E. Thus, in any case we have

U(sm) = U(sM ) = E, sm < sM , sm ≤ s0 ≤ sM , and U(s) = E has

no solution strictly between sm and sM—i.e., we have bracketed s0
between two successive solutions of U(s) = E.

�Exercise 4–14. Show that the solution s(t) is periodic with period

T =
√
2

∫ sM

sm

ds√
E − U(s)

and that it oscillates between sm and sM .

�Exercise 4–15. Let’s see if we can describe more precisely the

periodic solution that oscillates between two successive roots sm and

sM of U(x) = E. Without loss of generality we can assume that

the solution starts at sm with velocity zero at time 0. Let T be

as in the preceding exercise, and define t : [0, T/2] → R by t(s) =√
2
∫ s

sm
dσ/

√
E − U(σ). Show that this is a one-to-one map of [0, T/2]

onto [sm, sM ], and let s : [sm, sM ] → [0, T/2] denote its inverse.

Extend s to the interval [0, T ] by defining s(T/2 + t) = s(T/2 − t),

and then extend s to a function on the whole real line by making it
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periodic of period T . Show that this is in fact the desired solution.

Carry this out for the harmonic oscillator and (if you are ambitious)

carry it out for the pendulum, expressing the period T as a “complete

elliptic integral” and expressing the general solution in terms of the

Jacobi elliptic function sn.

�Exercise 4–16. Show that in the two previous exercises we have

missed an important special situation! Namely, if either (or both) of

the points xm and xM are critical points of U , show that the integral

that is supposed to represent the semi-period is infinite. Deduce that

in this case, instead of reaching this critical point in finite time, the

solution approaches the critical point asymptotically as t tends to

infinity. (Such a solution is called a “brake orbit”.)

�Exercise 4–17. Show that the sliding bead model really is “uni-

versal”, in the sense that given any smooth function U(s) (satisfy-

ing the above restrictions on Y ), there is a Y (x) for which U(s) =

gY (X(s)).

�Exercise 4–18. Classical Inverse Scattering. In this exercise

we will for simplicity assume that U assumes its minimum value, zero,

at s = 0 and that it is strictly increasing for s > 0. The goal will be to

recover the function U(s) (for s positive) by performing “scattering

experiments”. That is, we imagine that we place the bead on the wire

at x = s = 0 and that for each positive energy, E, we give it a shove

to the right with kinetic energy E. The bead will slide up the wire

until it reaches the point at distance S(E) along the curve where its

potential energy is E and its kinetic energy (and hence its velocity)

is zero. This will take a time T (E) =
√
2
∫ S(E)

0
ds√

E−U(s)
, and the

bead will then turn around and slide back down to the point s = 0

in an equal time, so the time for it to make the round trip is 2T (E)

and is what we experimentally measure. We would like to recover the

potential function U from these measured values T (E), but we will

instead look at the computationally easier problem of recovering the

inverse function, i.e., the value S(E) where U assumes a particular
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value E. Show that in fact

S(E) =

√
2

2π

∫ E

0

T (e) de√
E − e

.

Hint: Evaluate
∫ α

0
T (e) de√

α−e
, using the above integral formula for T (E)

to evaluate T (e), but using u = U(s) rather than s as the variable of

integration. Then interchange the order of the du and de integrations,

and note that
∫ α

e
du√

(α−u)(u−e)
= π. For details, see page 27 of [LL].

4.7. The Third Law and Conservation Principles

We return now to the consideration of n point particles P1, . . . , Pn

in R3. In the Newtonian worldview, every particle Pi exerts a force,

say fij , on each other particle Pj , and fij is a smooth function of

the positions xi and xj of the two particles. Thus (in an isolated

system) the total force fi acting on the particle Pi is just the vector

sum fi =
∑n

j=1 fij (where for convenience we have defined fii = 0).

Thus fi is a smooth function of x1, . . . , xn and Newton’s Second Law

of Motion (“force equals mass times acceleration”) says,

d2xi

dt2
= (1/mi)fi,

where mi denotes the mass of Pi, while the weak form of the Third

Law says fij is skew-symmetric in i and j:

fij = −fji.

We define the linear momentum pi of the particle Pi to be the vector

function of t, mi
dxi

dt (i.e., its mass times its velocity), so Newton’s

Equations become dpi

dt = fi. Hence if we define the total linear mo-

mentum p of the system of n particles to be the vector sum of the

pi, then
dp
dt =

∑n
i=1 fi =

∑n
i=1

∑n
j=1 fij , and by the antisymmetry of

the fij (Newton’s Third Law) it follows that dp
dt = 0, so

4.7.1. The Principle of Conservation of Linear Momentum.

If an isolated system of particles obeys Newton’s Second Law and the

weak form of Newton’s Third Law, then its total linear momentum is

a constant of the motion.
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�Exercise 4–19. Recall that the center of mass of the particles Pi

is the point X of R3 given by X = 1
M

∑
i mix

i (where M =
∑

i mi

is the total mass of the system). Show that an equivalent statement

of conservation of total linear momentum is that the center of mass

moves in a straight line with constant velocity (or remains stationary).

For nonisolated systems of particles we will assume that the total

force fi on the particle Pi is the sum of an internal part f int
i and

an external force fext
i . The internal force is, as above, the sum of

contributions fij from the other particles of the system, while the

external force is some given function of xi and t. The vector sum

fext =
∑

i f
ext
i is called the total external force on the system.

�Exercise 4–20. Show that, for a nonisolated system, the rate of

change of the total linear momentum is equal to the total external

force. Equivalently, X, the center of gravity, satisfies the Newton’s

Equation M d2X
dt2 = fext. (So for certain purposes, we can represent

the system of particles by a fictitious particle of massM located at the

center of mass and moving as if the total external force were acting

on it.)

The vector cross-product of the position vector xi of the particle

Pi and its momentum pi = mi
dxi

dt is called the angular momentum,

ji, of Pi,

ji = mi

(
xi × dxi

dt

)
,

and the vector sum j =
∑

i ji is called the total angular momentum.

Note that dji
dt = mi(x

i × d2xi

dt2 ) (since the cross-product of anything

with itself is zero). Thus by Newton’s Equation, dji
dt = xi × fi. The

quantity xi × fi is called the torque on Pi and we will denote it by

τi, so the above equation says that the rate of change of the angular

momentum of a particle equals the torque on the particle. The sum

τ =
∑

i τi is called the total torque acting on the system and is

the sum of the total internal torque
∑

i

∑
j x

i × fij and the total

external torque
∑

i xi × fext
i . But now suppose that the strong form

of Newton’s Third Law holds, i.e., the direction of fij is along the line
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joining Pi to Pj , i.e., parallel to (xi − xj). Then since xi × fij + xj ×
fji = (xi − xj) × fij = 0, it follows that the total internal torque is

zero, and so the total torque coincides with the total external torque

and in particular is zero for an isolated system. This proves

4.7.2. The Principle of Conservation of Angular Momen-

tum. If an isolated system of particles obeys Newton’s Second Law

and the strong form of Newton’s Third Law, then its total angular

momentum is a constant of the motion. More generally, for a noniso-

lated system the rate of change of angular momentum is equal to the

external torque.

Now let’s try to find conditions under which a system of forces

fij , as above, are conservative and hence derivable from a potential

function. It will be convenient to introduce quantities rij = xi − xj ,

their lengths ρij =
∥∥xi − xj

∥∥, and also their normalizations, the unit

vectors r̂ij =
rij
ρij

.

�Exercise 4–21. Suppose that the force fij(x
i, xj) depends only

on the distance rij =
∥∥xi − xj

∥∥ separating Pi from Pj . Suppose

moreover that fij and fji are “equal in magnitude and opposite in

direction and directed along the line joining Pi and Pj” (the strong

form of Newton’s Third Law of Motion). Show that in this case F is

conservative.

•Example 4–4. The Gravitational n-Body Problem. We re-

turn to the system of n particles in R3, but now we assume that the

force fij has a specific form, namely that its magnitude is Gmimj/r
2
ij

(where G is a positive constant, called the gravitational coupling con-

stant) and that it acts in the direction from Pi to Pj . So, explicitly,

fij =
Gmimj

‖xj − xi‖2
(xj − xi)

‖xj − xi‖
.

We note that this is an example of the sort mentioned earlier, where

the force field blows up on a certain closed subset C which must

therefore be removed from V . In this case the subset C is the so-

called “collision set”, namely the union of the hyperplanes xi = xj .
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�Exercise 4–22. Show that in this example we can take as the

potential

U =
∑
i<j

−Gmimj

‖xj − xi‖
.

4.7.3. Remark. In the Web Companion, we show an animation of

Keplerian motion that contains a graphical proof that Kepler’s Laws

of Motion (in particular the fact that each planetary orbit is an ellipse

with the radius vector sweeping out equal areas in equal times—i.e.,

conservation of angular momentum) imply that the potential energy

of the central force must be inversely proportional to the distance r

from the center and hence that the force is proportional to 1
r2 .

You might wonder what would happen if the force instead of being

proportional to 1
r2 were proportional to 1

re where e is close to 2. One

might guess that the planets would still move in closed orbits that

were very close to ellipses. But, no. While the shape of the orbits

would be quite elliptical locally, they would not close up but would

rather precess around the sun. Figure 4.3 shows the precession for

e = 2.05.

Figure 4.3. Precession.

In actuality, the orbit of each planet does precess. However, this

is not because e is different from 2, but rather it is a consequence of
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the perturbing effects of the attraction of the other planets (plus a

little more due to general relativity).

4.7.4. Definition. An equivalence between two Newtonian sys-

tems (V1,−∇U1) and (V2,−∇U2) is an orthogonal linear transforma-

tion φ : V1 → V2 such that U1 = U2 ◦φ. If an equivalence exists, then

we call the systems equivalent.

�Exercise 4–23. Show that an equivalence between (V1,−∇U1)

and (V2,−∇U2) maps solutions of Newton’s Equations for (V1,−∇U1)

to solutions of Newton’s Equations for (V2,−∇U2).

�Exercise 4–24. Show that (V1,−∇U1) and (V2,−∇U2) are equiv-

alent if and only if there exist orthogonal coordinates for V1 and or-

thogonal coordinates for V2 with respect to which Newton’s Equations

are “the same”.

�Exercise 4–25. Let G be a group of orthogonal transformations

of V . We call G a group of symmetries of the Newtonian system

(V,−∇U) if U is an “invariant” of G, i.e., if U ◦ g = U for all g

in G. Of course G acts on parametrized curves in V by defining

(gσ)(t) = g(σ(t)). Show that the space of solutions of Newton’s

Equations is carried into itself under this action when G is a group

of symmetries.

4.8. Synthesis and Analysis of Newtonian Systems

Given two Newtonian systems (V1, F1) and (V2, F2), we can form the

direct sum V = V1 ⊕ V2 of the two configuration spaces. A curve in

V , σ : I → V , is of course just a pair of curves σ1 : I → V1 and

σ2 : I → V2. Can we find a force law F for V so that σ is a solution

curve for (V, F ) if and only if σi is a solution curve of (Vi, Fi) for

i = 1, 2? Of course we can—clearly F (x1, x2) = (F1(x1), F2(x2)) is

the unique such F and we denote it by F1 ⊕ F2.

If we think of V1 and V2 as parametrizing the possible configura-

tions of two “particles” P1 and P2, respectively, then V parametrizes

a system that is the composite of P1 and P2, and the force law F1⊕F2

just says that the two particles are “noninteracting” or “uncoupled”,
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since the motion of each particle in the composite system is unaffected

by the behavior of the other. If we completely understand the dy-

namics of (V1, F1) and (V2, F2), then we also completely understand

the dynamics of (V, F ).

�Exercise 4–26. If Ui is a potential for Fi for i = 1, 2, define a

function U1 ⊕ U2 on V1 ⊕ V2 by (U1 ⊕ U2)(x1, x2) = U1(x1) + U2(x2)

and show that it is a potential for F1 ⊕ F2.

Now let’s look at things from the other end: instead of synthesiz-

ing a larger system out of two other systems, let us try to analyze a

Newtonian system (V, F ) into smaller “subsystems”. But what should

we mean by a subsystem (V1, F1) of (V, F )? Clearly V1 should be a

linear subspace of V with the induced inner-product.

�Exercise 4–27. Let (V, F ) be a Newtonian system and let V1 be

a linear subspace of V . Show that the following are equivalent:

1) F (v) ∈ V1 for all v ∈ V1; i.e., the restriction of F to V1 is the

vector field F1 : V1 → V1.

2) If σ is any solution curve of (V, F ) such that both the initial

position and initial velocity lie in V1, then the whole solution

curve σ lies in V1.

4.8.1. Definition. If either and hence both of conditions 1) and

2) hold, then we call V1 (or (V1, F1)) a subsystem of (V, F ).

�Exercise 4–28. If U is a potential for F , show that its restriction

U1 to V1 is a potential for F1.

Suppose now that (V, F ) is the orthogonal direct sum of two sub-

systems (V1, F1) and (V2, F2). In general the two subsystems will be

coupled, i.e., F will not equal F1 ⊕ F2, and we define the coupling

force, or interaction force, F12 = F − (F1⊕F2) and think of the force

law F for V as being the sum of two terms: the uncoupled force law

F1 ⊕ F2 and the coupling term F12.

If it should happen that the interaction is zero, i.e., if the two

subsystems are in fact uncoupled, then we have reduced the study of

(V, F ) to the study of the two smaller systems (V1, F1) and (V2, F2).
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If the interaction is not exactly zero, but the subsystems are only

“weakly coupled”, i.e., F12 is in some sense small, then there is an

approach that physicists often use to derive knowledge of the coupled

system from its components. The technique is sometimes referred to

as “turning on the interaction”, or “perturbation theory” (although

the latter term has a more general meaning). It works as follows.

Frequently there is a natural parameter ε in a physical theory (called

the coupling constant) and the interaction force F12 has the form εΦ12.

If we denote by xε(t) the solution of (V, F ) corresponding to some

fixed initial conditions and a particular value of the coupling constant,

then x0(t) will be the known solution of the uncoupled system, and

we can try to find a power series in ε, x0(t) + εξ1(t) + ε2ξ2(t) + · · · ,
that converges to (or is asymptotic to) the actual solution xε(t). In

good situations, where the actual value of the coupling constant is

small, it may be enough for practical purposes to calculate only a few

terms of this perturbation theory expansion, and even knowing just

ξ1 can be very helpful.

Everything we have said about direct sums of two systems goes

over in a completely obvious way to direct sums of any finite number

of systems, and if you have ever wondered how astronomers go about

making precise calculations of the orbits of the planets, it is by using

just such perturbation methods. Initially each planet together with

the sun is considered as a two-body system and the planet’s elliptical

orbit is calculated using the explicit solution of the Kepler problem.

This gives a first approximation for the predicted positions of the

planets—one that is already quite accurate for short periods of time.

In the next approximation, a time-dependent external gravitational

force is calculated for each planet, based on its position and the po-

sitions of all the other planets from the first approximation, and the

orbit of each planet is then re-calculated (numerically) adding this

force to the gravitational attraction of the sun. This process can then

be iterated if still greater accuracy is required.

4.9. Linear Systems and Harmonic Oscillators

As we saw, the one-dimensional harmonic oscillator is a system that

we can solve explicitly, essentially because the force law (and hence
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Newton’s Equation) is linear. That suggests that we investigate linear

force laws in higher dimensions.

Suppose we have a linear Newtonian system (V, F ). Since we can

always choose an orthonormal basis for V , there is no loss of generality

in assuming that V is RN , so F is given by an N ×N matrix of real

numbers, Fij , and Newton’s Equations become

d2xi

dt2
=

N∑
j=1

Fijxj .

The situation simplifies further when the linear force F is derived

from a potential, U .

4.9.1. Theorem. A necessary and sufficient condition for a linear

Newtonian system (V, F ) to be derived from a potential is that F is

a self-adjoint operator on V , and in this case we can take for the

potential U(x) = −1
2 〈Fx, x〉.

Proof. Let’s look at the condition for U to be a potential for F ,

namely − ∂U
∂xi

=
∑

j Fijxj . It follows that
∂2U

∂xi∂xj
= −Fij (so that U is

a quadratic function of the x’s) and by “equality of cross-derivatives”

it follows that the matrix Fij is symmetric, or equivalently that the

linear operator F is self-adjoint. Conversely, if F : V → V is any self-

adjoint operator on an orthogonal vector space, the it is easy to check

that F is derived from the potential function U : V → R defined by

U(x) = − 1
2 〈Fx, x〉 = − 1

2

∑
ij Fijxixj .

For the remainder of this section we assume that (V, F ) is a linear

system derived from a potential. It will be more convenient to make

the primary self-adjoint operator we work with K = −F , the negative

of the force, rather than the force F itself. The potential now becomes

U(x) = 1
2 〈Kx, x〉, and Newton’s Equations are d2x

dt2 = −Kx.

4.9.2. Definition. A linear Newtonian system (V, F ) that is de-

rived from a potential is called a harmonic oscillator system if the

operator K = −F is strictly positive. We choose an orthonormal

basis v1, . . . , vN for V consisting of eigenvectors of K such that the

corresponding sequence of eigenvalues ω2
1 , . . . , ω

2
N is nondecreasing.
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The set of real numbers ωi is called the frequency spectrum of the

system and we call the vi the normal modes of the system.

4.9.3. Theorem. Every N -dimensional harmonic oscillator sys-

tem is the uncoupled direct sum of N one-dimensional harmonic oscil-

lators, namely its normal modes, and two harmonic oscillator systems

are equivalent if and only if they have the same frequency spectrum.

�Exercise 4–29. Prove this.

We can write down explicitly the general solution of the above

harmonic oscillator system, namely x(t) =
∑

i xi(t)vi where xi(t) =∑N
i=1 ai cos(ωit)+bi sin(ωit) and the ai and bi are arbitrary constants.

To get the solution of the initial value problem with x(0) = x0 and

x′(0) = v0, take ai =
〈
x0, vi

〉
and bi =

1
ωi

〈
v0, vi

〉
.

�Exercise 4–30. Let’s assume that we can make “observations”

on a harmonic oscillator system (V, F ) by using certain measuring

devices, Dx. These devices are indexed by elements x of V , and taking

a measurement with Dx when the system is in the configuration v will

give the measurement 〈x, v〉. If we “listen in” on the system with Dx

when its solution is as above and record the results, the signal we

will see is Sx(t) =
∑N

i=1 ai 〈x, vi〉 cos(ωit) + bi 〈x, vi〉 sin(ωit). Now of

course the numbers we would like to learn about are the elements ωi

of the frequency spectrum (after all, they completely determine the

system). Can you think of a way to pull these out from the Sx(t)?

(This is a typical “signal analysis” question.)

4.10. Small Oscillations about Equilibrium

In the introduction to this chapter we promised to show how the

dynamics of a Newtonian system simplifies greatly when the system

is “close to equilibrium”, and we are at last in a position to make

good on this.

We begin with an approximate, intuitive description of what it

means for a Newtonian system to be close to equilibrium and an ex-

planation of why we might expect physical systems to normally be

in such a state. As we have seen, a Newtonian system is described
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by a real-valued function of its configuration—the potential energy

function—and the sum of kinetic and potential energies (the total

energy) remains constant during any dynamical motion of the system

if the system is truly isolated. But real macroscopic systems are

never completely isolated, and when they are not at rest, there will

be external frictional forces that drain energy from the system at a

rate that is essentially proportional to the velocities of its compo-

nents. Now the kinetic energy is positive, so if the potential energy is

bounded below (as is the case for realistic systems), then the veloc-

ities of the system must eventually tend to zero and the system will

asymptotically approach a rest point p. At this rest point the force

acting on the system is zero, and since the force is the gradient of the

potential, p must be a critical point of the potential energy. In fact,

generically p will be a local minimum of the potential function—i.e.,

an “equilibrium point” of the system. (If this paragraph seems too

abstract, then try re-reading it with the following concrete systems

in mind—a marble rolling in a bowl, a swinging pendulum, a weight

vibrating at the end of a spring, and a vibrating guitar string.)

Recall that perhaps the simplest of any nontrivial Newtonian sys-

tem is a one-dimensional harmonic oscillator, and only slightly more

complicated is an N -dimensional harmonic oscillator—for as we saw

in the preceding section, this can be decomposed into a direct sum of

one-dimensional oscillators, its normal modes. Now the remarkable

fact is that when an arbitrary N -dimensional system is perturbed

only slightly from an equilibrium state, not only does it remain close

to that equilibrium, but moreover its motion relative to the equilib-

rium looks very similar to that of a certain N -dimensional harmonic

oscillator relative to the origin, the approximation getting better as

the perturbation from equilibrium gets smaller.

What this means is that we can find local orthonormal coordi-

nates (x1, . . . , xN ) centered at the equilibrium such that the motion is

approximately given in these coordinates by xi(t) = Ai cos(ωi(t−τi)),

where the amplitudes Ai and phase shifts τi depend on the particular

perturbation from equilibrium, but the N angular frequencies ωi are

characteristic of the equilibrium. (They are square roots of the eigen-

values of the Hessian matrix of the potential at the equilibrium.) For
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reasons coming from quantum field theory, physicists refer to an equi-

librium configuration of a system as a “vacuum state”, and they call

the N harmonic oscillators associated to the equilibrium the “normal

modes” associated to the vacuum state.

This approach to describing dynamics near equilibrium is called

the method of small vibrations, and it continues to hold even for

continuum systems that are described by infinite-dimensional config-

uration spaces. A particularly intuitive model is a stretched guitar

string that is plucked gently from its equilibrium state and then al-

lowed to vibrate. In this case the frequencies of the normal modes

are exactly the principal frequency and various overtones of the vi-

brating string, transmitted to our ears as sound by pressure waves in

the surrounding air.

To make our discussion of the method of small vibrations precise,

we must describe carefully the harmonic oscillator that approximates

the nonlinear system near a given equilibrium point and also give a

rigorous definition of the sense in which solutions of this linearized

system approximate the solutions of the nonlinear system.

Recall that if V and W are orthogonal vector spaces and f : V →
W is a differentiable map, then the differential of f at a point p of V is

a linear map Dfp of V to W that maps v to the directional derivative

of f at p in the direction v; that is, Dfp(v) = ( d
dt )t=0f(p+ tv). If we

pick bases for V and W , then the mapping f is described by giving its

components fi(x1, . . . , xN ), and the matrix for Dfp is the Jacobian

matrix ∂fi
∂xj

evaluated at p.

Now suppose that U : V → R is twice differentiable, so that

the vector field ∇U : V → V is differentiable. Then for each p in

V we define a linear map hess(U)p, of V to itself, called the Hes-

sian of U at p, by hess(U)p = D(∇f)p. By what we have just

noted, hess(U)p(u) = ( d
ds )s=0∇Up+sv. But the definition of ∇U gives

〈∇Up+su(u), v〉 = ( d
dt )t=0U(p+su+tv), and putting these together we

get 〈hess(U)p(u), v〉 =
(

∂
∂t

)
t=0

(
∂
∂s

)
s=0

U(p + su+ tv). Now if U has

continuous second partial derivatives, we know that cross-derivatives

are equal, so that 〈hess(U)p(u), v〉 is clearly symmetric in u and v.
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This proves

4.10.1. Proposition. If V is an orthogonal vector space and if

U : V → R is C2, then hess(U)p is self-adjoint for all p in V .

�Exercise 4–31. Give a (slightly) different proof of this proposition

by showing that the matrix of hess(U)p in an orthonormal coordinate

system is just the matrix ∂2U
∂xi∂xj

of second partial derivatives of f at

p in these coordinates, and hence it is symmetric.

Now suppose that (V,−∇U) is a conservative Newtonian system,

and let p0 be a nondegenerate equilibrium point. Without loss of

generality, in what follows, we can assume that p0 is the origin, and

we can also assume that U(0) = 0. Denote the Hessian of U at 0

by K, so by the nondegeneracy assumption, the eigenvalues of K are

positive real numbers ω2
i , and we denote by vi an orthonormal base

of eigenvectors with Kvi = ω2
i vi. We will denote by Ω the positive

square root ofK, defined by Ωvi = ωivi. Then Taylor’s Theorem with

Remainder applied to ∇U gives ∇U(x) = Ω2x + ‖x‖2 R(x), where

R : V → V is continuous and in particular is bounded near the origin.

Newton’s Equation is then d2x
dt2 = −∇U(x) = −Ω2x−‖x‖2 R(x). Near

the origin, the second term will be small compared to the first, and if

we ignore it, then we have just the harmonic oscillator equation d2x
dt2 =

−Ω2x. We will let ξ(t, x0, u0) denote the solution of this harmonic

oscillator equation satisfying the initial conditions ξ(0, x0, u0) = x0

and ξ′(0, x0, u0) = u0, while x(t, x0, u0) will denote the solution of

the full Newton’s Equation d2x
dt2 = −∇U(x) with these same initial

conditions.

Recall that we know the harmonic oscillator solution ξ(t, x0, u0)

explicitly; in fact we saw (see 2.3.1) that ξ(t, x0, u0) = cos(tΩ)x0 +

sin(tΩ)(Ω−1u0). An obvious property of this solution (one that fol-

lows immediately from the linearity of the harmonic oscillator equa-

tion) is that 1
ε ξ(t, εx

0, εu0) = ξ(t, x0, u0). Of course the analogous

identity does not hold for the solution of the nonlinear equation, and

we will call 1
εx(t, εx

0, εu0) the ε-rescaled solution of the nonlinear
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equation. The sense in which solutions ξ of the harmonic oscilla-

tor equation approximate solutions x of the nonlinear equation as we

approach an equilibrium is expressed by the following theorem.

4.10.2. Rescaling Approximation Theorem. The ε-rescaled

solution of the nonlinear equation

d2x

dt2
= −∇U(x) = −Ω2x− ‖x‖2 R(x)

converges, as ε tends zero, to the solution of the harmonic oscilla-

tor equation d2x
dt2 = −Ω2x, with the same initial conditions (x0, u0).

Moreover the convergence is uniform for t, x0, and u0 bounded. In

fact the norm of their difference is bounded by a constant times

ε|t|(‖x0‖2 + ‖u0‖2).

Proof. Define

g(t, x0, u0) = −
∥∥x(t, x0, u0)

∥∥2 R(x(t, x0, u0))

so that x(t, x0, u0) is a solution of the forced harmonic oscillator equa-

tion d2x
dt2 = −Ω2x + g(t). From the Variation of Parameters Formula

for solutions of such equations (see 2.4.1) it follows that the “devia-

tion” ∆(t, x0, u0) := x(t, x0, u0)− ξ(t, x0, u0) is given by the integral∫ t

0
G(t− s)g(s, x0, u0) ds, with G(t) = Ω−1 sin(tΩ). Since ξ is scaling

invariant, 1
εx(t, εx

0, εu0) − ξ(t, x0, u0) = 1
ε∆(t, εx0, εu0), so what re-

mains to be shown is that 1
ε∆(t, εx0, εu0) converges to zero as ε → 0

and that the convergence is uniform for t, x0, and u0 bounded. We

shall see that in fact
∥∥ 1

ε∆(t, εx0, εu0)
∥∥ < Cε|t|(‖x0‖2 + ‖u0‖2) for

some positive constant C. Since G(t) is uniformly bounded, it follows

from the above integral representation for ∆ that it will suffice to

show that∥∥g(t, εx0, εu0)
∥∥ =

∥∥x(t, εx0, εu0)
∥∥2 ∥∥R(x(t, εx0, εu0))

∥∥
is bounded by a constant times ε2(‖x0‖2 + ‖u0‖2), and since R is

bounded near the origin, that in turn will follow if
∥∥x(t, εx0, εu0)

∥∥2 is

bounded by a constant times ε2(‖x0‖2 + ‖u0‖2). But that is just the
essential content of the Stability Theorem for Equilibria (see 4.5.8).
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4.10.3. Remark. Most of the above theorem can be derived more

directly from the differentiability of solutions of ODE with respect

to parameters (see 1.4.5). However it would only follow from that

approach that sup of the difference over a time interval of length T

grows like eKT , rather than CT . The much better bound here is a

direct consequence of conservation of energy.

                

                                                                                                               



Chapter 5

Numerical Methods

5.1. Introduction

In the previous chapters we have developed a theoretical understand-

ing of initial value problems for ODEs. Only rarely can these problems

be solved in closed form, and even when closed-form solutions do ex-

ist, their behavior may still be difficult to understand. To gain greater

insight, solutions are most commonly approximated numerically us-

ing discretization methods. This chapter is intended as a survey of

these methods focusing on how they are designed, implemented, and

analyzed.

Numerical methods are designed to approximate solutions of lo-

cally well-posed initial value problems

y′ = f(t,y), y(to) = yo, y ∈ Rd. (5.1)

Well-posedness means that there exists a unique solution y(t; to,yo)

that satisfies (5.1) on a maximal interval of existence [to, to + T∗),

0 < T∗ ≤ +∞, and that depends continuously on (to,yo) ∈ Rd+1.

We will assume that f(t,y) is continuous in its first argument, t, and

locally uniformly Lipschitz continuous in its second argument, y, i.e.,

||f(t,y1)− f(t,y2)|| ≤ L||y1 − y2||, (5.2)

for some L > 0 and any y1,y2 in a neighborhood of yo. As we

have shown in previous chapters, these assumptions guarantee local

well-posedness.
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Discretization methods employ approximations of (5.1) to con-

struct a discrete set of y-values, yn, n = 0, 1, . . . , in such a man-

ner that yn should approximate y(tn) at a corresponding set of t-

values, tn, called time-steps, as the separation of the time-steps,

hn = tn+1 − tn, tends uniformly to zero. For most purposes, we

will restrict ourselves to hn that do not vary with n and call their

common value h = tn+1 − tn the step-size or discretization param-

eter. Variable step-size methods are also useful, but we will only

discuss them briefly in the context of automatic error control. We

are often interested in the behavior of a discretization method as the

discretization parameter decreases to zero, in which case the meaning

of yn becomes ambiguous. When it is required for clarity in such

situations, we will write yn,h to indicate both the step number and

the step-size and otherwise suppress the explicit dependence on h.

Discretization methods are broadly categorized as explicit or im-

plicit. Briefly, an explicit method obtains the successive values of yn+1

parametrically in terms of given or previously computed quantities

and is represented symbolically in the form

yn+1 = H(f , tn, . . . , tn+1−m,yn, . . . ,yn+1−m).

In contrast, an implicit method defines yn+1 as the solution of an

equation:

G(f , tn+1, . . . , tn+1−m,yn+1, . . . ,yn+1−m) = 0

that cannot in general be put in the explicit form above.

Discretization methods are also characterized by the number m

of previously computed quantities, or steps, that the method uses to

compute each subsequent approximate value of the solution and by

the number of evaluations of the vector field f , or stages, that are

used per time-step. In the next section, we introduce some basic

examples that illustrate the considerations involved in choosing be-

tween explicit or implicit methods, single- or multistep, and one- or

multistage methods, in order to obtain the greatest computational

efficiency in different situations.

All of the r-stage one-step methods we will consider can be writ-

ten in the form that characterizes methods known as Runge-Kutta
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Methods. Given a numerical initial value y0, these methods take the

specific form

yn+1 = yn + h

r∑
i=1

γiy
′
n,i, n = 0, 1, . . . (5.3)

where

y′
n,i = f(tn + αih,yn + h

r∑
j=1

βijy
′
n,j) and αi =

r∑
j=1

βij . (5.3′)

If βij = 0 for j ≥ i, the method is explicit; otherwise it is implicit.

The strategy behind these methods is to obtain better approxima-

tions of y(tn+1) by sampling the vector field f(t,y) at r points near

the solution curve emanating from (tn,yn). Each additional sample

provides cumulatively better estimates of the solution curve, and thus

subsequent samples can also be chosen more usefully. The analyti-

cal initial value is sufficient to initialize a one-step method, and no

storage of previously computed values is required.

All of the m-step one-stage methods we will consider can be writ-

ten in the form that characterizes methods known as linear m-step

methods . Given numerical initial values y0, . . . ,ym−1, these methods

take the specific form

yn+1 =

m−1∑
j=0

ajyn−j + h

m−1∑
j=−1

bjy
′
n−j ,

n = 0, 1, . . . , where y′
j = f(tj ,yj).

(5.4)

If b−1 = 0, the method is explicit; otherwise yn+1 appears on the

right-hand side in the form f(tn+1,yn+1) and the method is implicit.

The strategy behind these methods is to obtain better approxima-

tions of y(tn+1) by using information from m prior approximations

and vector field evaluations, tj ,yj ,f(tj ,yj), j = n, . . . , n − (m − 1)

that have been stored or generated for initialization. In contrast to

multistage methods, only one evaluation of the vector field f defin-

ing the ODE is required per time-step. Discussions of more general

methods that combine both Runge-Kutta and multistep characteris-

tics can be found in [GCW] and other references listed in the Web

Companion.
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Even a discussion of numerical methods must address “theory” as

well as “practice”. First and foremost, one needs to answer the theo-

retical question of whether the values obtained by applying a method

converge to the analytical solution y(to+T ), as the discretization pa-

rameter tends to zero and the number of steps increases in such a way

that the time interval they represent remains fixed. We call a method

convergent if and only if, for any IVP (5.1) satisfying (5.2) and any

T > 0 such that to + T ∈ [to, to + T∗), the values yn,h obtained from

the method satisfy

||y(to + T )− yn,h|| → 0 (5.5)

as n → ∞ and h = T/n. Note that (5.5) implies that yn,h exists

for sufficiently large n, an issue for implicit methods. If a method is

explicit, yn,h is defined for any h > 0 and n > 0. The existence of

yn,h is only an issue for implicit methods since they are defined for

any h > 0 and n > 0 if the method is explicit.

We will analyze both the theoretical convergence and practical

efficiency of a numerical method in terms of two essential concepts,

accuracy and absolute stability. The order of accuracy of a (conver-

gent) method refers to how rapidly errors decrease in the limit as the

step-size tends to zero. We say that such a method converges with

order of accuracy P , or, simply, is a P th-order accurate method, if

and only if there exists a C > 0 depending only on y, its derivatives,

and T , such that

||y(to + T )− yn,h|| ≤ ChP = C

(
T

N

)P

(5.6)

as n → ∞ and no such estimate holds for any greater value of P .

The dependence of C on T can be removed by considering closed

subintervals of the maximal interval of existence. The potential sig-

nificance of accuracy is immediate: if the increase in computational

effort per step required to achieve higher-order accuracy is outweighed

by reducing the number of steps required to obtain an approximation

within a desired tolerance, the overall computation can be performed

more efficiently.
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Different notions of stability for numerical methods refer to its

tendency 1) to dissipate, 2) to not amplify, or 3) to not uncontrollably

amplify perturbations introduced into an approximation. It is well

known that there is conflicting nomenclature for certain numerical

methods. Less well known is the fact that the term used to describe

one of the most essential characteristics of a numerical method, its

absolute stability , is defined by property 1) in some treatments but by

property 2) in others! (See the Web Companion for some examples.)

Both properties rule out unbounded growth of perturbations when

applied to a problem or class of problems using a particular time-step,

so that any systematic amplification is prohibited. Because we wish to

encompass the two main types of well-posed initial value problems,

those modeling oscillation, transport, and waves, along with those

modeling dissipation and diffusion, we shall follow the convention that

says that a method is absolutely stable with respect to a particular

ODE and step-size h if the numerical solution is bounded as tn → ∞.

Specifically, there exists a C > 0 depending only on the initial value

such that

||yn,h|| ≤ C (5.7)

for all n ≥ 0. There are also reputable treatments whose definition of

absolute stability also requires that ||yn,h|| → 0 as tn → ∞.

For the theoretical considerations of convergence, only the much

weaker notion of stability corresponding to property 3) is a necessary

condition. This minimal form of stability is called either 0-stability ,

or just plain stability . A method is 0-stable with respect to a given

problem if, for sufficiently small h, the growth of perturbations intro-

duced in each step, representing errors made in prior approximations,

can be controlled by some (possibly growing and problem-dependent)

function of time. Formally, we say that a method is 0-stable with

respect to a particular ODE (5.1), (5.2) if there exists a step-size

ho > 0 such that for any N making 0 < h = T/N < ho, and all

0 ≤ n ≤ N , the difference between the numerical solution yn,h and

any numerical solution yn,h;δ, defined by the same method with the

same step-size, but with perturbations of magnitude no greater than

δ > 0 introduced initially and added to the resulting, cumulatively
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perturbed values yn+1,h;δ at each subsequent step, satisfies

||yn,h − yn,h;δ|| ≤ C(T )δ. (5.8)

for some positive function of the interval length, C(T ). Calling such

a method ‘not uncontrollably unstable’ might be more appropriate.

We might wonder if all approximation methods that formally approx-

imate (5.1) satisfy this condition. Indeed, the Runge-Kutta Methods

(5.3) are 0-stable by construction. However, we will see examples of

linear multistep methods that arise from approximations that are for-

mally quite accurate but that violate 0-stability. A method that is not

0-stable and thus nonconvergent should only be considered in order

to understand the causes of its failure, never for actual computation.

The facts that 0-stability only involves sufficiently small step-sizes and

that it is associated with absolute stability for the problem y′ = 0, or

equivalently for the step-size h = 0, explain the terminology.

We can now describe how we aim to understand the theoretical

behavior, convergence and higher-order convergence, of these classes

of numerical methods. Various equivalent conditions characterize the

order of accuracy a method will attain if it is also 0-stable. The

simplest example of such a condition is based on applying a method

to the scalar ODE y′ = 1, y(to) = yo (using exact initialization

yj = yo+(tj − to), j = 0, . . . ,m−1, in the multistep case). If the re-

sulting solution is exact at all subsequent time-steps, yn = yo+(tn−to)

for all n > 0, we say that the method is consistent. A fundamental

result is that 0-stability and consistency are not only necessary, but

together they are sufficient for a method to be convergent with or-

der P = 1. Higher-order potential (or formal) accuracy of a linear

multistep method, subject to 0-stability, is equivalent to exactness

on ODEs whose solutions are polynomials of degree ≤ P . For each

successive order, this corresponds to one condition that can either be

expressed as a linear equation in the coefficients in (5.4), in terms of

the asymptotic behavior of a certain polynomial formed from these

coefficients, or in terms of dependence on h of the magnitude of er-

rors the method introduces at each step. And while we have noted

that 0-stability is inherent in the form of Runge-Kutta Methods, the

conditions on their coefficients required for each additional degree of
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accuracy are nonlinear and their number grows exponentially, while

the number of coefficients only grows quadratically with the number

of stages.

Convergence is not a guarantee that a method will perform even

adequately in practice. The error bound that guarantees convergence

and describes its rate includes contributions reflecting both the ac-

curacy and absolute stability of a method. Growth of perturbations

does not prevent high-order convergence, but the growth of pertur-

bations that 0-stability permits can easily dominate these estimates

until the step-size h is far smaller than accuracy considerations alone

would otherwise require, and so render high-order accuracy irrelevant.

For this reason, absolute stability for moderate step-sizes with respect

to the problem at hand is the more practically significant property.

So no matter how high the order of convergence that theory pre-

dicts, we will see that absolute stability analysis is often the deciding

factor in performance. There are two situations in particular where

these phenomena are especially important. One occurs in the case of

multistep methods, whose solutions depend on initial conditions not

present in the analytical problem. Because of this, multistep meth-

ods have more modes of potential amplification of perturbations than

one-step methods. The other occurs in systems whose modes have

widely separated temporal scales and applies to both one-step and

multistep methods. This separation is quantified through a ratio of

magnitudes of eigenvalues of the linearized system. As we shall see,

such modes inevitably appear and are excited when we attempt to

use discretized systems to accurately approximate the behavior of in-

terest in certain important systems of ODE. Such systems are usually

referred to as being stiff in the numerics literature. Absolute stabil-

ity of a method with respect to those peripheral modes and step-size

used ensures that small errors arising in these modes do not amplify

and overwhelm phenomena in modes we wish to and can otherwise

resolve.

In the next section, we will introduce seven basic numerical meth-

ods in order to motivate and illustrate the theory, and the role of

absolute stability in making the theory useful in practice. These
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methods have been chosen as prototypes for multiple reasons. First,

they exemplify a number of the important different features and prop-

erties numerical methods can possess. Second, their derivations are

motivated by approximation techniques that can be generalized to

obtain entire families of methods with useful characteristics. And

third, they are simple enough that their behavior on two important

classes of model problems can be rigorously analyzed and completely

understood.

The first class of model problems is the P th-order accuracy model

problem, MA(P ):

y′ = f(t), y(0) = yo, (MA(P ))

where f(t) is any polynomial of degree ≤ P −1, so that the analytical

solution y(t) is a polynomial of degree P satisfying the initial con-

dition. This class of model problems can be used to understand the

order accuracy of any linear multistep method, and explicit Runge-

Kutta Methods for P ≤ 2. Exact solutions of this model problem

for comparison with numerical solutions are easily obtained by antid-

ifferentiation. For each example method, we will obtain an explicit

formula for the approximations yn that it generates when applied to

(MA(P )) for some appropriate degree P .

The second class of model problems is the absolute stability model

problem, (MS(λ):

y′ = λy, y(0) = 1, (MS(λ))

where we call λ the model parameter . We will eventually allow both

λ and y(t) to be complex, but to begin with, we will take both to

be real scalars. These model problems can be used to understand

the stability properties, of a method, especially absolute stability,

which is why we refer to it as (MS(λ)). For these homogeneous,

first-order, linear, constant coefficient, scalar ODEs, amplification of

perturbations amounts to the same thing as amplification of solutions,

and therefore absolute stability with respect to (MS(λ)), sometimes

called linearized absolute stability, forbids unbounded growth of the

numerical solutions themselves. For Runge-Kutta Methods this is

equivalent to restricting w = λh so that the amplification factor of the

method a(w) = yn+1/yn satisfies |a(w)| ≤ 1. (As noted above, some

authors require |a(w)| < 1.) We call the set {w ∈ C | |a(w)| ≤ 1} the
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region of absolute stability of the method. The set {w ∈ C | |a(w)| <
1} has been called the linearized stability domain, or lsd [IA1, p. 68].

Though it may seem surprising, we will also consider the analytical

solution, yn+1 = eλhyn as a numerical method. We will when we solve

systems of ODEs designed to approximate constant coefficient PDEs,

where it is known as the Fourier, or spectral, method. The spectral

method is often used in conjunction with nonexact methods via a

technique known as splitting. The region of absolute stability of the

analytical solution method is {w ∈ C | Re(w) ≤ 0}. We are primarily

interested in the absolute stability of other methods for these values

of w although nonlinear stabilization can lead us to consider problems

with Re(w) > 0 as well.

The model problems (MS(λ)) are universal, in the sense that

their solutions form a basis for the space of homogeneous solutions of

any diagonalizable systems of first-order constant coefficient ODEs.

Such systems arise upon linearizing more general systems of ODEs

about an equilibrium. They also appear in the spatial discretiza-

tions of PDEs of evolution discussed in Section 5.6. The absolute

stability model problems for negative real λ arise directly from eigen-

function expansions of solutions of the diffusion equations mentioned

above, and for purely imaginary λ in expansions of solutions of wave

equations. The model parameter corresponds to the characteristic ex-

ponent (eigenvalue) of a mode. Our analysis will demonstrate rather

extreme consequences when numerical methods lack absolute stability

with respect to the approximating ODEs and the step-size employed.

We shall invite the reader to implement each example method on

(MS(λ)) and experiment with its behavior for certain combinations

of λ and h. We can use these programs to perform accuracy stud-

ies of each method by fixing λ = −1 while we successively halve h,

keeping Nh = T , and absolute stability studies by fixing h and suc-

cessively doubling λ. To understand our results, we will describe the

amplification factor and region of absolute stability for each method.

The results regarding theoretical convergence can be formulated

quite nicely in terms of the model problems as follows. A method

is 0-stable if and only if it is absolutely stable applied to MS(0), a

condition that is automatically satisfied by Runge-Kutta Methods.
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We say that a numerical method has formal accuracy (or polynomial

accuracy) of order P if it can be applied to every problem in the

class (MA(P )) using exact initial values and the resulting numerical

solution is exact (yn = y(tn) for all time-steps tn, n ≥ 0). Because of

this, a method is consistent if and only if it has polynomial accuracy of

order P ≥ 1. Therefore a method is convergent if and only if it is exact

in the sense above onMA(1) and absolutely stable onMS(0). In terms

of its coefficients, the Runge-Kutta Method (5.3), (5.3′) is consistent

if and only if
∑r

i=1 γi = 1, and the the linear multistep method (5.4)

is consistent if and only if
∑m

j=0 aj = 1 and
∑m

j=−1 bj−
∑m

j=0 jaj = 1.

Each additional degree of polynomial accuracy depends on one

additional algebraic condition on the coefficients. Each degree of for-

mal, polynomial accuracy implies another order of actual accuracy

for 0-stable linear multistep methods. For Runge-Kutta Methods,

beyond second order, this polynomial accuracy of degree P is in-

sufficient to guarantee general accuracy. For P = 3, an additional

condition on the accuracy of a Runge-Kutta Method when applied

to MS(P ) is sufficient to guarantee general P th-order accuracy, but

even this is insufficient for any greater P . For this reason, a more

correct name for the model problems (MA(P )) might be the linear

multistep accuracy model problems, and for P = 1, the consistency

model problem. Further details and discussion of issues pertaining

individually to Runge-Kutta Methods and linear multistep methods

may be found in Appendices H and I, respectively.

Although the model problems MS(0) and MA(0) both refer to

the same ODE, y′ = 0, 0-stability only excludes unbounded growth;

it does not require exactness. Numerical solutions of MS(λ) obtained

from the linear multistep method (5.4) remain bounded as n → ∞ if

and only if the roots of the characteristic polynomial of the method

pw(r) = ρ(r)− wσ(r), where

ρ(r) = rm −
m−1∑
j=0

ajr
m−(j+1), and σ(r) =

m−1∑
j=−1

bjr
m−(j+1)

(5.9)

satisfy the following root condition: All roots are either inside the unit
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circle in the complex plane or on the unit circle and simple. In fact,

one definition of absolute stability for a linear multistep method with

respect to MS(λ) is that the roots of pw(r) satisfy the root condition

when w = λh. Under that definition of absolute stability, 0-stability

is immediately equivalent to absolute stability with respect to MS(0),

and to the fact that ρ(r) satisfies the root condition.

So for methods of the form (5.3), (5.3′), and (5.4) the classes of

model problems MA(P ) and MS(λ) are sufficient to determine the

theoretical issue of convergence, the practical issue of linearized abso-

lute stability, and even higher-order accuracy, except for Runge-Kutta

Methods beyond P = 3. But even for linear multistep methods, we

will discover that attaining high-order accuracy tends to compete with

retaining absolute stability when h is not vanishingly small. Only by

increasing the per-step computational effort, including the number of

evaluations of the vector field required for each time-step can both be

increased independently. In particular, implicit methods that permit

greater accuracy without compromising stability require additional

effort to solve the nonlinear equations that define each step.

In conclusion, many factors must be considered in choosing or

designing an efficient method for a specific problem and its param-

eters. Our understanding of the practical performance of numerical

methods can be guided effectively in terms of the order of accuracy

and absolute stability of a method. These two concepts interact to

determine the step-size required to obtain an approximation within

a specified tolerance, when using a particular method on a particular

ODE. Along with the problem-specific computational effort required

per step, reflecting the number of stages and steps in the method

and the work required to evaluate the vector field, they determine

the relative efficiency of different methods in different situations. It

is important to realize that no method is universally superior to all

others, and the selection of an effective method depends upon care-

ful consideration of features of the problem or class of problems one

wishes to solve and the accuracy of approximation required.
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5.2. Fundamental Examples and Their Behavior

Now we introduce several working examples of numerical methods

for IVPs that are motivated by relatively elementary principles. Then

we will apply them to the model problems we introduced above. We

will focus on how their behavior depends on the nature of the problem

and the step-size. We do not claim that a method that performs well

on such simple problems will necessarily perform well on more chal-

lenging problems. However, methods that perform poorly on simple

problems with certain features will likely not perform well on more

complex problems with similar features.

•Example 5–1. Euler’s Method. The most familiar and elemen-

tary method for approximating solutions of an initial value problem is

Euler’s Method. Euler’s Method approximates the derivative in (5.1)

by a finite difference quotient y′(t) ≈ (y(t + h) − y(t))/h. We shall

usually discretize the independent variable in equal increments:

tn+1 = tn + h, n = 0, 1, . . . , t0 = to. (5.10)

Henceforth we focus on the scalar case, N = 1. Rearranging the

difference quotient gives us the corresponding approximate values of

the dependent variable:

yn+1 = yn + hf(tn, yn), n = 0, 1, . . . , y0 = yo. (5.11)

Euler’s Method is an r-stage Runge-Kutta Method (5.3) with r = 1,

γ1 = 1, and β11 = 0. It is also a linear m-step method (5.4) with

m = 1, a0 = 1, b−1 = 0, and b0 = 1. Since b−1 = 0, it is explicit.

However, it is too simple to capture essential features that occur for

m or r > 1 and that we will find present in our next examples.

Geometrically, Euler’s Method follows the tangent line approx-

imation through the point (tn, yn) for a short time interval, h, and

then computes and follows the tangent line through (tn+1, yn+1), and

so on, as shown in Figure 5.1.

�Exercise 5–1. Write a program that implements Euler’s Method,

the values of f(t, y) coming from a function defined in the program.

Test the results on the model problem (MS(λ)),

y′ = λy, y(0) = 1, t ∈ [0, T ], y, λ ∈ R,
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Figure 5.1. Interpretation of Euler’s Method.

whose analytical solution is y(t) = 1eλt. Use T = 1 and combinations

of λ = ±2l, l = 0, 1, . . . , L, and h = 2−m,m = 0, 1, 2, . . . ,M , L = 5,

M = 5.

The anticipated results for l = 0 (λ = −1) and m = 0, . . . , 4 are

displayed along with the exact solution in Figure 5.2.

Strictly speaking, Euler’s Method generates a sequence of points

in the (t, y)-plane, but we conventionally associate this sequence with

the piecewise-linear curve obtained by joining consecutive points with

line segments. Figure 5.2 shows three of these approximating curves

and illustrates an important distinction involved in analyzing the con-

vergence of these approximations. We call the difference between the

exact solution and an approximate solution at a certain value of to+T

a global error , since it is the cumulative result of local errors intro-

duced in each of N steps of size h = T/N and the propagation of

errors accumulated in earlier steps to later steps. These errors may

either be amplified or attenuated from earlier steps to later steps.
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Figure 5.2. Behavior of Euler’s Method: Accuracy.

Global errors corresponding to N = 1, 2, and 4 are represented by

vertical lines at T = 1. As this implies, a local error does not include

the effect of prior errors but is the difference between one step of an

approximate solution and the exact solution sharing the same initial

value and time interval over that one step. Local errors for one step

of Euler’s Method starting at (0, 1), with N = 1, 2, and 4, are rep-

resented by vertical lines at T = 1, 1/2, and 1/4, respectively. Two

kinds of local errors are discussed and depicted in the final section

of the chapter on convergence analysis. Local truncation errors arise

when a step of a method is initialized using the exact solution values.

Another local error involves local solutions ŷn(t) passing through val-

ues of the numerical solution (tn, yn). In Figure 5.2, h decreases by

factors of 1/2 while the number of steps doubles. The figure indi-

cates that local errors for Euler’s Method are on the order of h2. At

tN = T = 1 it appears that the difference between the approximate

solution and the analytical solution also decreases by a factor of 1/2.
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This suggests that for Euler’s Method, global errors are on the order

of h.

According to the description in the introduction, the near pro-

portionality of errors at y(1) to h1 suggests that Euler’s Method has

order of accuracy 1, or in other words that it is first-order accurate.

To perform an analytical accuracy study of Euler’s Method, we

apply it to the class of accuracy model problems (M2
A) written in the

form

y′ =
d

dt
(c1(t− to) + c2(t− to)

2), y(to) = yo, (5.12)

whose analytical solution is

y(t) = yo + c1(t− to) + c2(t− to)
2. (5.12′)

When Euler’s Method is applied to (5.12), it reduces to yn+1 =

yn + h(c1 + 2c2nh). Using
∑N−1

n=1 2n = N(N − 1), we find that yN =

y0 + c1Nh+ c2h
2(N2 −N). In terms of tn − to,

yN = y0 + c1(tn − to) + c2(tn − to)
2 − c2h(tn − to)

and the global error at time T = Nh satisfies

y(to + T )− yN = (yo − y0) + c2Th.

Setting c2 = 0 shows that Euler’s Method is exact when y(t) is a

polynomial of degree 1. For a polynomial of degree 2, its error at a

fixed T is proportional to the first power of the time-step h. When

we estimate the global error in the general case to prove convergence,

the bound will involve a factor maxt∈[to,to+T ]
y′′(t)

2 that reduces to the

factor of c2 above.

To perform an analytical absolute stability study of Euler’s Meth-

od, we apply it to the class of stability model problems (MS(λ)).

When Euler’s Method is applied to these model problems, it reduces

to yn+1 = (1+w)yn, where we have combined the model parameter λ

and discretization parameter h into a single parameter w = λh. The

exact solution with the same initial condition yn and time interval h

is yne
λh = yn(1 + λh + (λh)2/2 + (λh)3/3! + · · · ). In this context,

one step of Euler’s Method captures the terms of order h1 in the

exact solution correctly, and the remainder is bounded by a multiple
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of h2. Successive iterates of Euler’s Method can be written as yn =

(1+w)nyo. Heuristically, N errors of order h2 accumulate to give an

error of order h. Stability is necessary in order to make this argument

rigorous.

The absolute stability properties of Euler’s Method are illustrated

by results of the exercise for m = 3 (h = 1/8) and λ = −2l, l =

0, . . . , 5, displayed in Figure 5.3. The value of λ appears adjacent

to the corresponding exact and approximate solutions. As λ grows

progressively more negative to λ = −16 where w = −2 and yn =

(1 + w)nyo = (−1)n, the approximate solution does not decay but

simply oscillates. Beyond this value, e.g., λ = −32 so w = −4 and

(1 + w)n = −3n, the oscillations grow exponentially as shown in

Figure 5.4. Note that some of the approximations in the accuracy and

stability figures share the same values of w, e.g., λ = −8, h = 1/8,

and λ = −1, h = 1; the independent variable must still be rescaled in

order to make them correspond exactly. According to the description

in the introduction, it follows from the form of the above solution that

Euler’s Method is absolutely stable with respect to the model problem

when |1 + λh| ≤ 1. We will also be examining the model problem in

the complex plane—that is, we will interpret λ as complex and replace

the real scalar y with its complex equivalent, z. Thus we call {w ∈ C |
|1 +w| ≤ 1}, the closed disc of radius 1 about the point w = −1, the

region of absolute stability for Euler’s Method. The region of absolute

stability of Euler’s Method is depicted in Figure 5.14, together with

the corresponding regions for the remaining example methods after

they too have been analyzed.

In some important applications we will consider later, the in-

stability exhibited by Euler’s Method in Figure 5.4 has unavoidable

negative consequences that can only be resolved by resorting to im-

plicit methods such as those that we will derive below. In other

circumstances, the rate of convergence exhibited by Euler’s Method

in Figure 5.2 is also unsatisfactory, and practical efficiency consid-

erations require methods with higher-order accuracy, obtained from

either multistep or multistage strategies. Along with performance

improvements, each of these modifications brings with it important

implementation considerations that do not appear in Euler’s Method
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Figure 5.3. Behavior of Euler’s Method: Stability.

Figure 5.4. Behavior of Euler’s Method: Instability.

due to its simplicity. We shall see that these considerations provide

both challenges and opportunities.

To obtain the most basic examples of these kinds of methods, we

provide another interpretation of Euler’s Method and then modify it.

In addition to the tangent line and difference quotient interpretations

above, Euler’s Method can be viewed as arising from the left endpoint
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approximation of the integral of y′ over an interval of width h:

y(t+ h)− y(t) =

∫ t+h

t

y′(s) ds ≈ hy′(t). (5.13)

To improve upon Euler’s Method, we can use more symmetric ap-

proximations: ∫ t+h

t

y′(s) ds ≈ hy′(t+
h

2
) (5.14)

and ∫ t+h

t

y′(s) ds ≈ h
y′(t) + y′(t+ h)

2
. (5.15)

Both are exact if y is a polynomial of degree ≤ 2 (see Appendix J).

We expect that the methods known as the midpoint method and

the leapfrog method, both obtained from (5.14) in the form

y(t+ h)− y(t) ≈ hy′(t+
h

2
), (5.16)

and the trapezoidal method, obtained from (5.15) in the form

y(t+ h)− y(t) ≈ h
y′(t) + y′(t+ h)

2
, (5.17)

would lead to more accurate approximations of (5.1) than Euler’s

Method. In the next section we will show rigorously that they do. The

geometric interpretation of these approximations and of the Euler’s

Method approximation, (5.13), are depicted in Figure 5.5.

Figure 5.5. Interpretation of some basic methods.

                

                                                                                                               



5.2. Fundamental Examples and Their Behavior 151

�Exercise 5–2. The mean value theorem guarantees that the dif-

ference quotient (y(t+ h)− y(t))/h is equal to y′(ξ), not at ξ = t or

ξ = t + h, but rather at some point ξ strictly between t and t + h.

Show that for any polynomial p2(t) of degree ≤ 2, (5.14)–(5.17) are

exact, that is,
p2(t+ h)− p2(t)

h
= p′2(t+

h

2
)

and also
p2(t+ h)− p2(t)

h
=

p′2(t) + p′2(t+ h)

2
.

•Example 5–2. The midpoint method. To obtain the midpoint

method from (5.16), we discretize tn as in (5.10) and approximate

y′(t+
h

2
) = f(t+

h

2
, y(t+

h

2
))

using one step of Euler’s Method with time-step h
2 as follows:

yn+ 1
2
= yn + hf(tn, yn),

yn+1 = yn + hf(tn +
h

2
, yn+ 1

2
), n = 0, 1, . . . . (5.18)

The midpoint method is an explicit r-stage Runge-Kutta Method,

with r = 2, γ1 = 0, γ2 = 1, β11 = β12 = β22 = 0, and β21 = 1
2 .

�Exercise 5–3. If we accept the fact that the global error in Eu-

ler’s Method is proportional to h within O(h2), the midpoint method

can be derived using a technique known as extrapolation. Show that

applying this assumption to one Euler step of size h and two steps of

size h
2 tells us

yn+1 = yn + hf(tn, yn) + Ch+O(h2)

and

yn+1 = yn+
h

2
f(tn, yn)+

h

2
f(tn+

h

2
, yn+

h

2
f(tn, yn))+C

h

2
+O(h2).

Then form a combination of these formulas, twice the latter minus

the former, to obtain the midpoint method:

yn+1 ≈ yn + hf(tn +
h

2
, yn +

h

2
f(tn, yn)) +O(h2).
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�Exercise 5–4. Modify the program implementing Euler’s Method

to implement the midpoint method on the model problem (MS(λ)),

using the same parameters, and compare the results.

For our analytical accuracy study of the midpoint method, we

consider the class of initial value problems (M3
A) written in the form

y′ =
d

dt
(c1(t− to) + c2(t− to)

2 + c3(t− to)
3), y(to) = yo, (5.19)

whose exact solution is

y(t) = yo + c1(t− to) + c2(t− to)
2 + c3(t− to)

3. (5.19′)

This is simply the next higher-order analogue of (5.12).

If we apply the midpoint method to (5.19), it reduces to

yn+1 = yn + h

(
c1 + c2(2n+ 1)h+ 3c3

(
(2n+ 1)h

2

)2
)
.

Using
∑N−1

n=0 2n+ 1 = N2 and
∑N−1

n=0 3(2n+ 1)2 = 4N3 −N , we find

yN = y0 + c1Nh+ c2(Nh)2 + c3(Nh)3 − c3h
3N

4
.

From this, we see that the global error at time T = Nh satisfies

y(to + T )− yN = (yo − y0) +
1
4
c3Th

2. The midpoint method is exact

when y(t) is a polynomial of degree 2, and for a polynomial of degree

3, the error at a fixed T is proportional to h2. While formal accuracy

analysis using the model problems (MA(P )) does not in general tell

the whole story regarding accuracy of Runge-Kutta Methods, if P ≤
2, formal order of accuracy P does imply order of accuracy P . We

will discuss these issues in greater detail below and in Appendix H.

In the context of the model problem, with w = λh, the midpoint

method becomes yn+1 = (1 + w + w2/2)yn whose solution is yn =

(1 + w + w2/2)nyo.

Figure 5.6 depicts the results of using the midpoint method with

the same parameters as in Figure 5.3. As h decreases by factors of
1
2
, the number of steps doubles. At tN = T = 1 it now appears that

the difference between the approximate solution and the analytical

solution decreases by a factor of 1/4, suggesting that the midpoint
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Figure 5.6. Behavior of the midpoint method: Accuracy.

method is second-order accurate; i.e., its order of accuracy is 2. The

approximation with j = 5, h = 1/32 is indistinguishable from the

exact solution. We might expect this behavior from the observation

that one step of the midpoint method captures the terms of order

≤ w2 in the exact solution yne
w = yn(1 + w + w2/2 + w3/3! + · · · )

correctly, and the remainder is bounded by a multiple of w3.

In the same fashion, Figure 5.7 corresponds to Figure 5.3, except

the final value of λ has been changed from −16 to −17 to illustrate the

incipient instability similar to that of Euler’s Method when w < −2.

For λ = −16, w = −2, the approximate solution yn = 1n neither

decays nor grows, nor does it oscillate as it did when Euler’s Method

was used. From the solution above, the midpoint method is absolutely

stable with respect to the model problem when |1+λh+(λh)2/2| ≤ 1.

In the complex plane, the region of absolute stability for the midpoint

method is then {w ∈ C | |1 + w + w2/2| ≤ 1}.
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Figure 5.7. Behavior of the midpoint method: Stability.

•Example 5–3. The Leapfrog Method. To obtain the leapfrog

method, we discretize tn as in (5.10), but we double the time interval,

h, and write the midpoint approximation (5.16) in the form

y′(t+ h) ≈ (y(t+ 2h)− y(t))/h

and then discretize it as follows:

yn+1 = yn−1 + 2hf(tn, yn). (5.20)

The leapfrog method is a linear m = 2-step method, with a0 = 0,

a1 = 1, b−1 = −1, b0 = 2, and b1 = 0. It uses slopes evaluated at odd

values of n to advance the values at points at even values of n, and

vice versa, reminiscent of the children’s game of the same name. For

the same reason, there are multiple solutions of the leapfrog method

with the same initial value y0 = yo. This situation suggests a poten-

tial instability present in multistep methods, which must be addressed
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when we analyze them—two values, y0 and y1, are required to ini-

tialize solutions of (5.20) uniquely, but the analytical problem (5.1)

only provides one. Also for this reason, one-step methods are used to

initialize multistep methods.

�Exercise 5–5. Modify the program implementing Euler’s Method

to implement the leapfrog method on the model problem (MS(λ)), us-

ing the same parameters. Initialize y1 1) using the ‘constant method’,

y1 = y0, 2) using one step of Euler’s Method, y1 = y0 + hf(t0, y0),

and 3) using one step of the midpoint method. Compare the results.

Figure 5.8. Behavior of the leapfrog method: Accuracy.

If we apply the leapfrog method to (5.19), it reduces to

yn+1 = yn−1 + 2h(c1 + 2c2nh+ 3c3(nh)
2).
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If N = 2K is even, we use
∑K

k=1 4(2k − 1) = (2K)2 = N2 and∑K
k=1 6(2k − 1)2 = (2K − 1)(2K)(2K + 1) = N3 −N to show that

yN = y0 + c1Nh+ c2(Nh)2 + c3(Nh)3 − c3Nh3.

If N = 2K + 1 is odd, we use
∑K

k=1 4(2k) = (2K + 1)2 − 1 = N2 − 1

and
∑K

k=1 6(2k)
2 = 2K(2K + 1)(2K + 2) = N3 −N to show

yN = y1−(c1h+c2h
2+c3h

3)+c1Nh+c2(Nh)2+c3(Nh)3−c3(N−1)h3.

From this, we see that the global error at time T = Nh satisfies

y(to + T )− yN = (y(0)− y0) +
1

4
c3Th

2

when N is even and

y(to + T )− yN = (y(t1)− y1) + c3(Th
2 − h3)

when N is odd.

Assuming at first that y0 = yo and y1 = y(t1), the leapfrog

method is exact when y(t) is a polynomial of degree 2, and for a

polynomial of degree 3, the error at a fixed T is proportional to h2.

When the initial values are not exact, the formulas illustrate the

dependence of global errors on the values used to initialize linear

multistep methods. If the leapfrog method is initialized with the

constant method, i.e., if we use y1 = yo, then y(t1) − y1 = y(t1) −
y(t0) = y′(ξ)h for some ξ ∈ (t0, t1), the overall error degrades to

O(h) and the effort involved in employing a higher-order method is

wasted. If we use Euler’s Method, y1 = yo + hy′(t0), then y(t1) −
y1 = y(t1)− (y(t0) + hy′(t0)) = y′′(ξ)h

2

2 for some ξ ∈ (t0, t1) has the

same order of magnitude as the largest other term contributing to the

global error. The overall error achieves its maximum potential order

of O(h2). The principle is the same for methods with more steps and

initialization values. We only need to initialize using a method whose

global error has order one less than the method it initializes. Only the

local errors of the initialization method affect the global error of the

overall method, since they are incurred over a fixed number of steps

independent of h. In contrast, to reach a fixed to + T , the number

of steps of the method being initialized is N = Th−1. This factor is

responsible for the different orders of magnitude of global errors, and
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both local and initialization errors. There is no benefit gained from

any additional effort devoted to computing initialization values more

accurately. If we used one step of the midpoint method or Heun’s

Method instead of Euler’s Method to compute y1, improvement in

the accuracy of the solution, if any, would be negligible.

We have implicitly assumed that we can use the analytical initial

value yo to initialize a numerical method. But even for a one-step

method, sometimes initial values themselves are only computed ap-

proximately. If we imagine stopping a computation and then con-

tinuing, the results must be identical to those obtained had we not

stopped in the first place. If we compare several steps of a compu-

tation with the same computation broken into two, the results are

clearly the same. In the latter case, the second part begins with an

inexact value. Fortunately, the new initial error is the order of the

global error of the numerical method, and we have seen that this is

all that is required in order for global errors to continue having the

same order.

When the leapfrog method is applied to the absolute stability

model problem (MS(λ)), it takes the form yn+1 = yn−1 + 2wyn.

This is a linear second-order constant coefficient difference equation

whose general solution is a linear combination, yn = c+y
+
n + c−y

−
n ,

of two basic solutions, y+n = rn+ and y−n = rn−, where r± are roots of

pw(r) = r2−2wr−1, the characteristic polynomial associated with the

leapfrog method. In general, we find that yj = rj is a nonzero solution

of (5.4) if and only if r is a root of the characteristic polynomial of

(5.4),

pw(r) = ρ(r)− wσ(r)

where ρ(r) = rm −
m−1∑
j=0

ajr
m−(j+1) and σ(r) =

m−1∑
j=−1

bjr
m−(j+1).

(5.21)

For any real w the characteristic polynomial of the leapfrog meth-

od has two distinct roots given by the quadratic formula, r± =

w ±
√
w2 + 1. When w > 0, r+ > 1 and −1 < r− < 0, and when

w < 0, 0 < r+ < 1 and r− < −1. (If w = 0, then r± = ±1.)
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Therefore, when λ < 0 and the analytic solution has exponentially de-

creasing magnitude, the leapfrog method applied to the model prob-

lem exhibits unstable exponential growth regardless of how small h

may be, as long as c− �= 0. Since c− = 0 implies yn+1 = r+yn, if

we initialize y1 using one step of Euler’s Method, or either of the

other methods suggested above, we are guaranteed c− �= 0. Using

a binomial expansion, (1 + u)1/2 = 1 + u/2 − u2/8 + · · · , |u| < 1,

r+ = 1+w+w2/2−w4/8+ · · · , |w| < 1; i.e., for small |w|, one step

of the mode r+ of the leapfrog method agrees with the terms of order

≤ w2 in the exact solution yne
w, and the remainder is bounded by a

multiple of w3. When w approaches zero along the negative real axis,

r+ ≈ 1+w has magnitude less than 1. Since r+r− = −1, or using the

expansion above, r− ≈ −1 +w−w2/2, in this situation r− has mag-

nitude greater than 1 and the powers of r− explain the exponentially

growing oscillations observed in solutions of the leapfrog method.

Figure 5.8 shows a series of results using the leapfrog method

with the same parameters as in Figures 5.2 and 5.5—as h decreases

by factors of 1/2, the number of steps N gets doubled. (We start

with l = 2, h = 1/2 since it is a 2-step method.) At tN = T = 1,

the difference between the approximate solution and the analytical

solution decreases by a factor of 1/4, similar to the behavior of the

midpoint method. Along with the accuracy model analysis, this adds

evidence that the leapfrog method is also second-order accurate. The

approximation with j = 5, h = 1/32 is indistinguishable from the

exact solution. Figure 5.9 is a stability study corresponding to to

Figures 5.3 and 5.7, but to capture the behavior with different pa-

rameters, the time-steps h and time intervals T are varied along with

λ. Starting with λ = −1 and h = 1/8 as before, we have extended

the time interval to T = 8 to observe the visible onset of instability.

Each time λ is doubled, we have divided h by four so w = λh is

halved, but this only accelerates the onset of instability, and our time

intervals must shrink so that further amplification does not prevent

us from showing the results on a common graph. From the form of

the solution above, the leapfrog method is only absolutely stable with

respect to the real scalar model problem when w = 0. We will analyze

the situation for complex w when we apply the leapfrog method to a
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2× 2 system below. We will see that the region of absolute stability

for the leapfrog method is the open interval on the imaginary axis,

{w ∈ C | w = bi,−1 < b < +1}, i.e., the set of complex w such that

w = −w̄ and |w| < 1. The endpoints are not included because when

w = ±i, pw(r) = r2 ± 2ir − 1 = (r ± i)2 has a multiple root on the

unit circle, so the general solution of the difference equation has an

algebraically growing mode.

Figure 5.9. Behavior of the leapfrog method: Stability.

•Example 5–4. The trapezoidal method. To obtain the trape-

zoidal method, we define tn as above and discretize (5.15) as follows:

yn+1 = yn + h
f(tn, yn) + f(tn+1, yn+1)

2
, n = 0, 1, . . . . (5.22)

The trapezoidal method is classified as an implicit method because

each step requires solving an equation to obtain yn+1. In contrast,

Euler’s Method is called an explicit method because yn+1 is given

parametrically. We will see that implicit methods can have stability

advantages that make them more efficient in spite of this additional

computational work needed to implement them.
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The trapezoidal method is an implicit linear m-step method with

m = 1, a0 = 1, b0 = 1/2, and b−1 = 1/2. It is also an implicit r-stage

Runge-Kutta Method with r = 2, γ1 = γ2 = 1/2, β11 = β12 = 0, and

β21 = β22 = 1/2. Even though the trapezoidal method is a 2-stage

method, only one new evaluation of f is required per time-step after

the first step. In general, if both y′n and y′n+1 are among the r > 1

evaluations of an r-stage method, the number of new evaluations per

time-step after the first step is r − 1.

�Exercise 5–6. Modify the program implementing Euler’s Method

to implement the trapezoidal method on the model problem (MS(λ)),

using the same parameters. To find yn+1, you may treat (5.22) as a

fixed-point problem yn+1 = g(yn+1) and implement fixed-point it-

eration, y
(k+1)
n+1 = g(y

(k)
n+1). Or you may rewrite (5.22) in the form

F (yn+1) = 0 and apply a root-finding method, e.g., Newton’s Method ,

y
(k+1)
n+1 = y

(k)
n+1 − F ′(y

(k)
n+1)

−1F (y
(k)
n+1). In the case of the model prob-

lem, using the analytical solution is the simplest approach, although

this would not be useful for general ODEs.

If we apply the trapezoidal method to (5.19), it reduces to

yn+1 = yn + h(c1 + c2(2n+ 1)h+ 3c3
(nh)2 + ((n+ 1)h)2

2
).

The right-hand side is close to the right-hand side we obtained when

we applied the midpoint method to (5.19), only less an additional

3c3h
3 1
4 . Modifying the solution appropriately, we find the trapezoidal

method yields

yN = y0 + c1Nh+ c2(Nh)2 + c3(Nh)3 − c3h
3N

2

and the global error at time T = Nh satisfies y(to + T ) − yN =

(yo − y0) +
1
2c3Th

2. The trapezoidal method is exact when y(t) is a

polynomial of degree 2, and for a polynomial of degree 3, the error at

a fixed T is proportional to the second power of the time-step, h2.

When the trapezoidal method is applied to the absolute stability

model problem (MS(λ)), it takes the form

yn+1 = (1 + w/2)(1− w/2)−1yn,
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Figure 5.10. Behavior of the trapezoidal method: Accuracy.

so yn = ((1+w/2)/(1−w/2))nyo. Using a geometric series expansion,

(1−w/2)−1 = 1+(w/2)+(w/2)2+(w/2)3 · · · , |w/2| < 1, so for small

w, one step of the trapezoidal method applied to the model problem,

(1+w/2)(1−w/2)−1 = 1+ (w/2)+ (w/2)2 + · · ·+ (w/2)+ (w/2)2 +

(w/2)3 · · · = 1 + w + w2/2 + w3/4 + · · · , captures the terms of order

≤ w2 in the exact solution yne
w, and the remainder is bounded by a

multiple of w3.

In Figure 5.10, the trapezoidal method is employed with the same

parameters as in Figure 5.3. As usual, each time h decreases by fac-

tors of 1/2, the number N of steps doubles. At tN = T = 1, as with

the midpoint and leapfrog methods, the difference between the ap-

proximate solution and the analytical solution appears to decrease by

a factor of 1/4, suggesting that the order of accuracy for the trape-

zoidal method is also 2. The approximations with j ≥ 4, h ≤ 1/16 are
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indistinguishable from the exact solution. In the same fashion, Figure

5.11 corresponds to Figure 5.4. At increasingly negative values of λ,

we begin to observe the numerical solution becoming oscillatory and

decaying less rapidly, even though the analytical solution continues

to decay monotonically and more rapidly. This should be expected,

since the factor (1 + w/2)(1− w/2)−1 → −1 as w → −∞. From the

form of the solution above, we should expect absolute stability when

|(1+w/2)(1−w/2)−1| ≤ 1, and instability otherwise. Rewriting this

condition as |w− (−2)| < |w−2|, we see that the trapezoidal method

should be absolutely stable for any value of w that is closer to −2 than

to +2. The trapezoidal method is absolutely stable with respect to

the model problem for any w ≤ 0. Below, when we consider the com-

plex scalar model problem, equivalent to the real 2×2 model problem

in the plane, we will see that the region of absolute stability for the

trapezoidal method is the closed left half-plane {w ∈ C | Re(w) ≤ 0}.
A method that is absolutely stable for any complex w whose real

part is negative is known as an A-stable method.

•Example 5–5. The modified trapezoidal method (aka

Heun’s Method and the improved Euler Method). We can

approximate the solution of the nonlinear equation that defines the

trapezoidal method (5.22) quite easily if we approximate the value of

yn+1 on its right-hand side by using one step of Euler’s Method and

solve for yn+1 as follows:

ȳn+1 = yn + hf(tn, yn),

yn+1 = yn + h
f(tn, yn) + f(tn+1, ȳn+1)

2
, n = 0, 1, . . . (5.23)

This is another example of the explicit Runge-Kutta Methods and is

known by many names, including the modified trapezoidal method,

Heun’s Method, and the improved Euler Method. Heun’s Method is

an explicit r-stage Runge-Kutta Method, with r = 2, γ1 = γ2 = 1/2,

β11 = β12 = 0, β21 = 1, and β22 = 0. When Heun’s Method is

applied to the stability model problem (MS(λ)), it coincides with the

midpoint method, and so the results of the exercise will be identical

and their regions of absolute stability are the same. When Heun’s

Method is applied to the accuracy model problem (5.19), it coincides
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Figure 5.11. Behavior of the trapezoidal method: Stability.

with the trapezoidal method and so its formal order of accuracy is

also 2.

We can also view (5.23) as a predictor-corrector method asso-

ciated with the trapezoidal method (5.22). It may be worthwhile

to solve the nonlinear equations associated with an implicit method

using higher-order Newton-Raphson and quasi-Newton algorithms.

These will usually require problem-specific implementations for eval-

uating or approximating and inverting derivatives involving consid-

erable overhead. For universality and simplicity it is often preferable

to take advantage of the natural fixed-point form

yn+1 = g(yn+1;h, yn, . . . , yn+1−m)

of implicit numerical methods. To solve this using fixed-point itera-

tion, we apply an explicit method called the ‘predictor’ to initialize

y
(0)
n+1. For example,

y0n+1 = yn + hf(tn, yn) (5.24)
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is called an Euler predictor step. Then we apply one or more ‘correc-

tor’ steps, i.e., steps of the associated iteration algorithm

y
(k+1)
n+1 = g(y

(k)
n+1;h, yn, . . . , yn+1−m).

For (5.23), each step of

y
(k+1)
n+1 = g(y

(k)
n+1) = yn + h

f(tn, yn) + f(tn+1, y
(k)
n+1)

2
(5.25)

is called a trapezoidal ‘corrector’ step. When (5.24) is followed by one

trapezoidal corrector step, the result is (5.23). So one more name for

Heun’s Method is the Euler predictor-trapezoidal corrector method.

The Lipschitz constant of the fixed-point iteration mapping ap-

proaches the magnitude of the derivative of the iteration function at

the fixed point, |g′(yn+1)|. The iterations obtained from implicit nu-

merical methods depend on the parameter h and have yn as a fixed

point for h = 0. Since |g′(yn+1)| contains a factor of h, g will be a con-

traction on some neighborhood of yn provided h is sufficiently small,

and for any y
(0)
n+1 in this neighborhood, y

(k)
n+1 → yn+1 as k → ∞.

If we denote the ‘local solution’ of the ODE y′ = f(t, y) passing

through (tn, yn) by ŷn(t), a Qth-order accurate predictor produces

an initial approximation whose local error |y(0)n+1 − ŷn(tn+1)| has or-

der of magnitude hQ+1. A P th-order accurate predictor produces a

converged approximation whose local error |y(∞)
n+1 − ŷn(tn+1)| has or-

der of magnitude hP+1. By the triangle inequality, we can estimate

|y(∞)
n+1 − y

(0)
n+1| ≤ Chmin{P+1,Q+1}. Additional factors of h from the

iteration toward y
(∞)
n+1 only decrease the magnitude of the local error

for k ≤ P − Q. For example, the Euler predictor-trapezoidal cor-

rector method attains the full accuracy that would be obtained by

iterating the trapezoidal corrector to convergence. But in problems

where absolute stability is crucial, the difference in performance is

substantial.

The modified trapezoidal method is only absolutely stable if h

is sufficiently small, while the trapezoidal method is absolutely sta-

ble for any h. This additional labor that characterizes the implicit

method makes no difference at all to the order of accuracy, but all
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the difference in the world to absolute stability. The extra effort of

each corrector iteration often pays itself back with interest by further

relaxing the absolute stability restriction on h.

The local errors of a P th-order accurate linear multistep method

have a specific asymptotic form Cŷ
(P+1)
n (tn)h

P+1 that can be deter-

mined from the coefficients of the method. This makes it possible to

use a predictor and corrector of the same order to estimate the error of

both methods efficiently, provided their constants C are distinct. For

example, the leapfrog predictor coupled with one trapezoidal correc-

tor iteration permits efficient error estimation and stabilization, even

though it does not add even one degree of accuracy to the predictor.

In contrast, the difference in local errors of different Runge-Kutta

Methods of the same order P ≥ 2 will in general be different for

different ODEs. This makes it difficult to use such a pair for error

estimation, and methods of different order are used instead. The

Euler predictor-trapezoidal corrector pair serves as a prototype of

Runge-Kutta error estimation. The local error of an order P − 1

predictor is |y(0)n+1 − ŷn(tn+1)| ≈ ChP . The local error of a corrector

of order P is |y(1)n+1 − ŷn(tn+1)| ≈ ChP+1. Therefore, the correction

|yn+1
(1) − yn+1

(0)| is an order hP+1 accurate estimate of the local

error of the lower order method. For an Euler predictor-trapezoidal

corrector pair, this technique estimates the error of the Euler step,

even though we advance using the corrected Heun step. The resulting

estimate is conservative, as one would want it. This approach is

also efficient, since the lower-order method is embedded; i.e., it only

involves evaluations performed by the higher-order method.

•Example 5–6. The Backward Euler Method. Another exam-

ple of an implicit method is the Backward Euler Method,

yn+1 = yn + hf(tn+1, yn+1), n = 0, 1, . . . , (5.26)

that arises by replacing the left endpoint approximation that charac-

terizes Euler’s Method with the right endpoint approximation. The

Backward Euler Method is an implicit linear m-step method with

m = 1, a0 = 1, b−1 = 1, and b0 = 0. It is also an explicit r-stage

Runge-Kutta Method with r = 1, γ1 = 1, and β11 = 1.
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Figure 5.12. Behavior of the Backward Euler Method: Accuracy.

�Exercise 5–7. Modify the program implementing Euler’s Method

to implement the Backward Euler Method on the model problem

(MS(λ)), using the same parameters and using the options described

above for implementing the trapezoidal method.

To understand the accuracy of the Backward Euler Method ana-

lytically, we use the same class of accuracy model problems (M2
A) in

the same form (5.12), (5.12′) that we used to analyze Euler’s Method.

When the Backward Euler Method is applied to (5.12), it takes the

form yn+1 = yn+h(c1+2c2(n+1)h). Using
∑N−1

n=0 2(n+1) = N2+N ,

we find that yN = y0 + c1Nh+ c2h
2(N2 +N), or in terms of tn − to,

yN = y0 + c1(tn − to) + c2(tn − to)
2 + c2h(tn − to). From this, we

see that the global error at time T = Nh satisfies y(to + T ) − yN =

(yo−y0)−c2Th. The method is exact on polynomials of degree 1, and

for a polynomial of degree 2, its error at a fixed T is proportional to

h. In the general case the bound involves a factor maxt∈[to,to+T ]
y′′(t)

2
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that reduces to the factor of c2 above. Note that the errors of Euler’s

Method and the Backward Euler Method have the same magnitude

but opposite signs on these problems. We can show that the leading

order errors in these methods are opposite in general and obtain a

more accurate method by averaging them. In its general form, this

process is known as extrapolation. Extrapolation by averaging Euler’s

Method and the Backward Euler Method is an alternate approach to

deriving the trapezoidal method.

When the Backward Euler Method is applied to the absolute

stability model problems (MS(λ)), it takes the form

yn+1 = (1− w)−1yn

whose solution is yn = (1/(1 − w))nyo. Using a geometric series

expansion, (1 − w)−1 = 1 + w + w2 + · · · , |w| < 1, so for small w,

the Backward Euler Method captures the terms of order ≤ w1 in the

exact solution yne
w, and the remainder is bounded by a multiple of

w2.

In Figure 5.12, the Backward Euler Method is employed with the

same parameters as in Figure 5.3, as h decreases by factors of 1/2, the

number of steps doubles. As with Euler’s Method, at tN = T = 1,

the difference between the approximate solution and the analytical

solution appears to decrease by a factor of 1/2, suggesting that the

Backward Euler Method has the same first-order accuracy as Euler’s

Method.

In the same fashion Figure 5.13 corresponds to Figure 5.4. Un-

like the trapezoidal method, at increasingly negative values of λ, the

Backward Euler Method does not generate oscillations. The factor

(1 − w)−1 → 0+ as w → −∞. From the form of the solution above,

we should expect absolute stability when |(1/(1 − w))| ≤ 1 and in-

stability otherwise. Rewriting this, the region of absolute stability

of the Backward Euler Method is {w ∈ C | |w − 1| ≥ 1}; i.e., the
Backward Euler Method should be absolutely stable for any complex

value of w outside the circle of radius 1 centered at w = 1. Like the

trapezoidal method, the Backward Euler Method is A-stable. Note

that in the right half-plane outside this circle, the Backward Euler
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Figure 5.13. Behavior of the Backward Euler Method: Stability.

Method has decaying solutions where the analytic solution is growing

exponentially, the opposite problem to what we observed previously!

Implicit linear m-step methods with m > 1 can be obtained using

elementary means by simply doubling the discretization parameter of

the trapezoidal and Backward Euler Methods:

yn+1 = yn−1

+ 2h
f(tn−1, yn−1) + f(tn+1, yn+1)

2
, n = 0, 1, . . . . (5.27)

yn+1 = yn−1 + 2hf(tn+1, yn+1), n = 0, 1, . . . . (5.28)

We refer to (5.27) as the 2h trapezoidal method and to (5.28) as the

2h Backward Euler Method. We do not have to repeat the accuracy

studies for these methods since the results are easily obtained from

and are essentially the same as that of their 1-step relatives. Stability

is a different story. The approximations yn with even and odd n are

completely independent, and when these methods are applied to the
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model problem, both now possess an additional mode of the form

−1 + O(λh). Continuing this approach to mh methods only make

things worse. Any method of the form yn+1 = yn+1−m + h(· · · ) will
have m independent modes of the form e2πij/m + O(h) forming a

basis of solutions when it is applied to the model problem, resulting

in additional instability. Less contrived and better behaved examples

of implicit (and explicit) 2-step methods are derived and analyzed in

Appendix I.

•Example 5–7. The y-midpoint method (also known as the

implicit midpoint method). Our final example is another implicit

method that has features of midpoint and trapezoidal methods. We

will call it the y-midpoint method:

yn+1 = yn + hf(tn +
h

2
,
yn + yn+1

2
), n = 0, 1, . . . . (5.29)

We may also write this method in the form

yn+1 = yn + hy′n,1, where y′n,1 = f(tn +
h

2
, yn +

h

2
y′n,1) (5.29′)

that exhibits it as an r-stage Runge-Kutta Method, with r = 1, γ1 =

1, and β11 = 1/2. The form (5.29) shows that when the y-midpoint

method is applied to the stability model problem (MS(λ)), it coincides

with the trapezoidal method and so the results of the exercise will be

identical and their regions of absolute stability the same. When the y-

midpoint method is applied to the accuracy model problem (5.19), it

coincides with the ordinary midpoint method and so its formal order

of accuracy is also 2.

5.3. Summary of Method Behavior on Model Problems

To review what we have seen, all seven example methods satisfy the

condition of 0-stability, because w = 0 is in their regions of absolute

stability. Two of the seven, Euler’s Method and the Backward Euler

Method have formal accuracy of order 1, and the remaining five have

formal accuracy of order 2. Based on just these facts, rigorous theory

will show that they are all convergent and either first- or second-

order accurate, respectively. We summarize the formulas for one step

of each of our example methods, along with their order of accuracy

                

                                                                                                               



170 5. Numerical Methods

and the expressions for amplification factors that we have obtained

from analytical study of the absolute stability model problem in Table

5.1.

The regions of absolute stability obtained by bounding the mag-

nitude of the amplification factors by 1 are depicted in the shaded

regions of Figure 5.14. (The form of the regions for the leapfrog

method and higher-order Runge-Kutta Methods depend on analyses

given below.)

Figure 5.14. Regions of absolute stability for example methods.

The fact that w = 0 is in the region of absolute stability for six of

the methods can be viewed as a simple consequence of the fact that

they are one-step methods (and also Runge-Kutta Methods). For

y′ = 0 or just h = 0, they reduce to yn+1 = yn. For a multistep

method such as the leapfrog method, more analysis was required.

In the introduction, we referred to a condition associated with the

multistep method (5.4) when it is applied to the absolute stability

model problem (MS(λ)). In this situation, (5.4) reduces to a linear,
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homogenous, constant coefficient difference equation. If we set w =

λh and look for solutions of the form yn = rn, we find that r must be

a root of the characteristic polynomial (5.9),

pw(r) = ρ(r)− wσ(r) = rm −
m−1∑
j=0

ajr
m−(j+1) − w(

m−1∑
j=−1

bjr
m−(j+1)).

Roots of pw(r) outside the unit circle guarantee exponential growth

of solutions, and multiple roots on the unit circle guarantee algebraic

growth. By excluding these possibilities, we guarantee that solutions

remain uniformly bounded in terms of the initial values. Short-term

growth is still possible if there are multiple roots inside the unit circle,

or if there is cancellation of linear combinations of basic solutions

at some time-steps. This leads us to formalize the definition of the

stability condition described in the introduction. A polynomial p(r)

satisfies the condition (R) if and only if its complex roots rj satisfy

|rj | < 1 or |rj | = 1 and p′(rj) �= 0. (R)

This condition guarantees that the roots are strictly inside the unit

circle in the complex plane, where they may have nontrivial multi-

plicity, or on its boundary, where they must be simple. Some authors

take the condition (R) for pw(r) as the definition of linearized abso-

lute stability of the method (5.4) for w = λh. The most important

case this is for w = 0, since it determines whether or not a consistent

method is convergent. The Dahlquist root condition, or simply the

root condition, requires that ρ(r) = p0(r) satisfy condition (R). If

the root condition is violated, a linear multistep method cannot be

0-stable, since then solutions can grow exponentially or algebraically

without any dependence on h. By making h sufficiently small, the

amplified solution can be made to correspond to a time interval of

arbitrarily small length T = Nh.

A simple example exhibiting this phenomenon is the explicit two-

step method

yn+1 = −4yn + 5yn−1 + h(4y′n + 2y′n−1).

This method is derived and its formal accuracy shown to be 3 in

Appendix I. Simple induction arguments can be used to show that
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for f(t, y) = 0 and y0 = y1 = yo, we have yn = yo for n ≥ 0, and for

f(t, y) = 1, y0 = yo, y1 = yo + h, we have yn = yo + nh for n ≥ 0,

so the method is consistent. By applying the method to the most

gentle equation possible, y′ = 0, whose Lipschitz constant is L = 0,

we can see that it violates the root condition and is truly unstable.

For this problem, the method reduces to yn+1 = −4yn + 5yn−1. The

solution yn satisfying the initial conditions y0 = y1 = δ remains

constant, yn = δ for all n ≥ 0. The solution zn satisfying the initial

conditions z0 = δ and z1 = −5δ, grows exponentially, zn = (−5)nδ

for n ≥ 0. So even though max{|y0− z0| = 0, |y1− z1|} = 6δ, we have

maxNh≤T {|y0−z0|, . . . , |yN−zN |} = (5N−1)δ. No matter how small

T > 0 is chosen, we can make N arbitrarily large while still satisfying

Nh ≤ T by making h correspondingly small. This shows that we

cannot bound the maximum difference of solutions of this multistep

method by any multiple of the maximum difference of their initial

values, no matter how small the time interval or the step-size h > 0.

This method violates the definition of stability since the numerical

approximation fails to converge to the analytical solution y(t) = 0 as

h → 0 no matter how close the initializing values y0 and y1 are to

zero. Generalizing this example shows that if (5.4) violates the root

condition, it cannot be convergent. Conversely, if the root condition

is satisfied, (5.4) is 0-stable. If, furthermore, (5.4) is formally accurate

of order P ≥ 1, it can be proven that the method is convergent, with

order of accuracy P . The details for Euler’s Method are given in

the final section of the chapter. More generality is beyond the scope

of the current introduction, and we refer the reader to Isaacson and

Keller [IK] where convergence is proven under similar assumptions

for a more general class of methods that includes the linear multistep

methods (5.4).

There are both explicit and implicit examples with arbitrarily

high formal accuracy that lack even this minimal form of stability,

and there are those that possess it. For any n ≥ 1, there is an

implicit method with formal accuracy of order n that generalizes the

Backward Euler Method known as the backward difference formula

method, BDFn. For n = 1, 2, BDFn is A-stable, but for n > 6, BDFn
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is not even 0-stable. For any m ≥ 1, there is an explicit 0-stable m-

step method with formal accuracy of order m known as the Adams-

Bashforth Method, ABm, and an implicit 0-stable m-step method

with formal accuracy of order m + 1 known as the Adams-Moulton

Method, AMm. Each of these families of methods is discussed in

greater detail in Appendix I.

The accuracy model problem alone cannot be used to analyze

the formal accuracy of Runge-Kutta Methods for order of accuracy

greater than two. When the Runge-Kutta Method (5.3) is applied to

an ODE of the form y′ = f(t), it takes the form

yn+1 = yn + h

r∑
i=1

γif(tn + αih)

that only depends on the coefficients αi =
∑

j βij in (5.3′). For the

method to have formal accuracy of order P , all that is required is

that the terms to order P in the Taylor series

y(tn + h) = yn +

∞∑
n=1

fn−1(t)
hn

n!

match the Taylor series of

yn+1 = yn + h
r∑

i=1

γif(t+ αih).

This is equivalent to the conditions
∑

i γiα
p−1
i = 1

p for p = 1, . . . , P .

For explicit Runge-Kutta Methods, these conditions are only equiva-

lent to global accuracy of order P when P ≤ 2.

To see this, consider the model problem y′ = λy. Setting w = λh,

an r = 3-stage method takes the form

yn+1 = yn(1 + (

3∑
i=1

γi)w + (

3∑
i=1

γiαi)w
2 + (γ3β32α2)w

3).

Third-order accuracy on this problem requires the first two formal

second-order accuracy conditions
∑3

i=1 γi = 1,
∑3

i=1 γiαi = 1
2 , plus

a different third-order condition, γ3β32α2 = 1
6 . Thus there are 3-

                

                                                                                                               



5.3. Summary of Behavior on Model Problems 175

stage methods satisfying the third-order formal accuracy condition∑3
i=1 γiα

2
i = 1

3 but for which the third-order terms of the solution

of y′ = λy are not correct. Conversely, there are 3-stage methods

satisfying γ3β32α2 = 1
6 , but not

∑3
i=1 γiα

2
i = 1

3 . They are third-order

accurate on y′ = λy but not exact when applied to cubic polynomials.

The general accuracy conditions for explicit Runge-Kutta Meth-

ods are discussed in Appendix H. We will see that together the two

conditions above are necessary and sufficient for an explicit 3-stage

Runge-Kutta Method to have order of accuracy 3. In fact there

is a two-parameter family of such methods, and we will refer to

any of these methods by the collective abbreviation RK3. Further

conditions not implied by either the accuracy or absolute stabil-

ity model problems are required to guarantee that a Runge-Kutta

Method has fourth-order accuracy. These additional conditions can

still be satisfied by some explicit 4-stage methods. Again, there is a

two-parameter family of such methods, and we will refer to them by

the collective abbreviation RK4. The region of absolute stability of

an RKp method for p ≤ 4 is⎧⎨
⎩w ∈ C |

∣∣∣∣∣∣
p∑

j=0

wj

j!

∣∣∣∣∣∣ ≤ 1

⎫⎬
⎭ .

These regions are depicted in Figure 5.14. For r > 4 however there

are no explicit r-stage methods of order r. A pth order method may or

may not approximate solutions of the absolute stability model prob-

lem to higher order, and an r-stage method may or may not even

approximate these solutions to order r, although coefficients could be

specified so that they do. For 5 ≤ r ≤ 7, the maximum order of

an explicit r-stage Runge-Kutta Method is r − 1, and for r ≥ 8, the

order is bounded by r − 2. Implicit Runge-Kutta Methods are more

computationally intensive to implement, e.g., even for an autonomous

scalar ODE they require the solution of an r × r nonlinear system of

equations for every step. However, they can attain order 2r and at

the same time maintain A-stability. For this reason, they cannot be

dismissed in situations where unconditional stability and high-order

accuracy are both required.
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We have just noted that among explicit Runge-Kutta Methods

requiring no more evaluations per step than their order, the fourth-

order methods have the highest order of accuracy. Because of this

fact, this section would be incomplete if we did not mention a method

that is one of the most well known and that often serves as a default

choice for handling problems not suspected of being stiff.

•Example 5–8. Classical Fourth-Order Runge-Kutta (Clas-

sical RK4). This method is defined by the following choice of pa-

rameters in (5.3): γ1 = 1
6 , γ2 = 2

6 , γ3 = 2
6 , γ4 = 1

6 , β21 = 1
2 , β32 =

1
2 , β43 = 1, and all other βij = 0. Specifically, we successively com-

pute y′n,1 = f(tn, yn), y′n,2 = f(tn + 1
2
h, yn + h 1

2
y′n,1), y′n,3 =

f(tn + 1
2h, yn + h 1

2y
′
n,2), and y′n,4 = f(tn + h, yn + hy′n,3), and then

use them to form

yn+1 = yn + h

(
1

6
y′n,1 +

2

6
y′n,2 +

2

6
y′n,3 +

1

6
y′n,4

)
. (5.30)

Note that the Classical Fourth-Order Runge-Kutta Method reduces to

Simpson’s Rule for numerical quadrature when applied to the simple

ODE y′ = f(t). In Figure 5.15 we compare the results of Classical

RK4, Euler’s Method, and the analytical solution of y′ = −y, y(0) =

1 using N = 4 steps of size h = 1/4 to approximate y(1) = e−1.

Observe that even using this fairly coarse h, the numerical solution

using Classical RK4 is virtually indistinguishable from the analytical

solution over the interval.

There are several other notable RK4 methods, among them Ral-

ston’s Method, Gill’s Method, the 3/8 method, as well as embedded

pairings of fourth- and fifth-order methods, such as the Runge-Kutta-

Fehlberg pair, used for local error estimation and adaptive step-size

control. In the absence of stiffness giving rise to instability in an ODE,

the combination of simplicity, efficiency, and accuracy of fourth-order

Runge-Kutta Methods has been responsible for their popularity as

workhorse methods for numerically approximating solutions of a wide

variety of IVPs ever since they were first introduced.
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Figure 5.15. The Classical Fourth-Order Runge-Kutta Method.

5.4. Paired Methods: Error, Step-Size, Order Control

It is beyond the scope of this chapter to treat variable step-size

methods and computational error estimation in any detail. However

it possible and worthwhile to provide a brief taste of the concepts and

principles involved using the examples we have developed. Global

error estimation must necessarily involve refinement over the entire

interval of computation, [to, to + T ]. This is only done in unusual

circumstances since computing multiple approximate solutions with

decreasing step-sizes would dramatically extend the computational

time. Furthermore, global errors reflect cumulative amplification or

attenuation of local errors, depending on the absolute stability prop-

erties of a method, and stability properties may be better controlled

through choice of method when a problem is stiff, not by adjusting

step-sizes near an absolute stability boundary. Assuming absolute
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stability is taken care of, global errors should accumulate in propor-

tion to the sum of the step-sizes. For this reason we seek to limit the

local errors introduced, not simply per step, but in proportion to the

length of the step itself. Even for methods with first-order accuracy,

the local errors divided by the step-size decrease in proportion to the

step-size.

A sort of local-global error estimation that falls under the broad

heading of extrapolation methods can be implemented by comparing

the result of one step of size h with two steps of size h/2. A more

common strategy is to estimate the local error of a method at each

step of size h by comparing the result with one step of another method

using the same step-size. The companion method should be related

closely to the method whose error is to be estimated. Not only is such

a relationship necessary in order to imply a convenient estimate, it

also means that the methods can share a substantial portion of their

computation, reducing the cost of error estimation. But due to the

different nature of multistep and Runge-Kutta approximations, the

specific relationship most commonly used for each differs.

The local error incurred in computing one step yn+1 of a multistep

method whose global order of accuracy is p has the form

En+1,h = yn+1 − y(tn+1) = Cy(p+1)(tn)h
p+1 +O(hp+2).

In Appendix I we show that C can be found by Taylor expanding

the approximations in the method to sufficiently high order. The

Milne device suggests a comparison method of the same order, which

computes ŷn+1 whose local error has the form

Ên+1,h = ŷn+1 − y(tn+1) = Ĉy(p+1)(tn)h
p+1 +O(hp+2).

The value of Ĉ can also be found and must not equal C. The difference

of the two approximations is equal to the difference of their local

errors, i.e., yn+1 − ŷn+1 = En+1,h − Ên+1,h. This says that as long

as Ĉ �= C and if h is small, the difference of the two approximations

satisfies

yn+1 − ŷn+1 = (C − Ĉ)y(p+1)(tn)h
p+1 +O(hp+2).
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The leading term of the local error of either yn+1 or ŷn+1 may be

easily recovered from this value by multiplying by C
C−Ĉ

or Ĉ
C−Ĉ

, re-

spectively. If the estimated local error satisfies the prescribed bound

by an excessive proportion, it may be advantageous to increase step-

size or reduce the order of the method. If it exceeds a prescribed

bound on local error per step-size, the step-size can be decreased.

The considerable cost of reinitialization for a multistep method is a

deterrent to allowing step-sizes that require reduction and is an im-

portant consideration in the design of methods that automatically

adapt their step-size and order.

The pair of approximations can also be extrapolated to cancel

the leading term of the local error, giving a higher-order local error,

and it is possible to vary the order of a method under appropriate cir-

cumstances. Doing so carelessly risks sacrificing potentially superior

stability properties of one of the lower-order methods. In particu-

lar, a pair of multistep methods of the same order, one of which is

explicit and the other implicit, can serve in dual roles, both for er-

ror estimation via the Milne device and as predictor and corrector.

For instance if we extrapolated away the error of the Backward Euler

Method by averaging with Euler’s Method, we obtain the more ac-

curate but less absolutely stable Heun’s Method. The second-order

accurate leapfrog predictor-trapezoidal corrector method suggested in

the examples section is a more realistic example. Higher-order pairs of

Adams Methods that fit this description are discussed in Appendix I.

The Milne approach cannot be used to estimate local error of

Runge-Kutta Methods for the same reason that the accuracy model

problem only determines the magnitude of local truncation error for

multistep methods and the lowest-order Runge-Kutta Methods. A

pair of Runge-Kutta Methods of the same order p will typically have

leading order local errors that cannot be related as simply as those

of multistep methods. In Appendix H we derive a rapidly prolifer-

ating set of nonlinear conditions on the coefficients of Runge-Kutta

Methods that determine local error behavior. Each condition corre-

sponds to a distinct rooted tree having p + 1 nodes. Because of this

indeterminacy, instead of a companion method of the same order, a
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Runge-Kutta Methods of order p is paired with a method of higher or-

der. Typically this will be a method of order p+1 that employs many

of the same evaluations of the vector field as the lower-order method.

The difference between the lower-order approximation whose local er-

rors have order p + 1 and a higher-order approximation whose local

errors have order p + 2 gives an estimate of order p + 1 on the local

error of the lower-order method. This estimate has the same order of

magnitude that the Milne device yields for a multistep method, but at

the cost of computing a higher order approximation. By sharing the

same evaluations of the vector field f , pairs of embedded methods, e.g.,

the Euler-trapezoidal and Runge-Kutta-Fehlberg pairs mentioned in

the examples, accomplish local error estimation without degrading

the overall performance excessively. Though theoretically we are only

estimating the local error of the lower-order method, it is standard

and obviously preferable to use the higher-order approximation to

advance the solution. This has the additional benefit of making the

local error estimate quite conservative and limits step-size and order

adjustments to when they are truly necessary.

5.5. Behavior of Example Methods on a Model 2 × 2

System

The methods described above have straightforward extensions to

systems of ODEs:

y′ = f(t,y), y(to) = yo, t ∈ [to, to + T ], y ∈ Rd. (5.31)

For example, Euler’s Method for this system is defined by (5.10) along

with

yn+1 = yn + hf(tn,yn), n = 0, 1, . . . , y0 = yo. (5.32)

Not every method for systems arises in this simple manner as Exercise

5–9 will demonstrate.

We generalize the model problem (MS(λ)) to the complex plane

as

z′ = λz, z(0) = 1, t ∈ [0, T ], z, λ ∈ C. (5.33)
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In particular, by setting z = x + yi with λ = a + bi, we obtain the

following model system of ODEs in the plane:(
x

y

)′
=

(
a −b

b a

)(
x

y

)
,

(
x(0)

y(0)

)
=

(
1

0

)
, t ∈ [0, T ]. (5.34)

With λ = 0 + bi, this becomes the harmonic oscillator system,(
x

y

)′
=

(
−by

bx

)
,

(
x(0)

y(0)

)
=

(
1

0

)
, t ∈ [0, T ]. (5.35)

The analytic solution of (5.35) is

(
x(t)

y(t)

)
=

(
cos(bt)

sin(bt)

)
, or in complex

notation, z(t) = 1eibt = cos(bt) + i sin(bt).

�Exercise 5–8. Modify the programs implementing each of the ex-

ample methods (Euler, midpoint, leapfrog, trapezoidal, Heun, Back-

ward Euler, and y-midpoint) on the scalar model problem (MS(λ))

to treat the model problem (5.35) in the plane, with λ = 0 + bi. In

this context, Euler’s Method takes the form(
xn+1

yn+1

)
=

(
xn − bhyn
yn + bhxn

)
,

(
x0

y0

)
=

(
1

0

)
. (5.36)

Use T = 4π and T = 16π, with combinations of b = ±2l, l =

0, 1, . . . , L, and h = T/N with N = 2m, m = 3, . . . , 3 + M , for

L = 5, M = 5.

�Exercise 5–9. Modify Euler’s Method (5.36) for the model prob-

lem in the plane as follows:(
xn+1

yn+1

)
=

(
xn − bhyn

yn + bhxn+1

)
,

(
x0

y0

)
=

(
1

0

)
, (5.37)

using the same parameters as in the previous exercise. This modifica-

tion uses the updated xn+1 instead of xn to compute yn+1 and does

not directly correspond to any scalar method.

We will not illustrate any accuracy studies applying our example

methods to the model problem in the plane, since the results are es-

sentially similar to the scalar case, other than that the scalar error

norm, the absolute value of the difference, is replaced by a vector

norm such as the Euclidean norm of the difference. The order of the
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methods remains the same, and the complex value of the model pa-

rameter only affects multiplicative constants. However, the absolute

stability of a method depends substantially on the location of λh in

the complex plane. Rather than illustrating transitions to instabil-

ity as we have above, we simply illustrate some significant differences

in stability exhibited by our example methods applied to the model

problem in the plane, in order to contrast them with each other and

with their behavior when λ was real.

Figures 5.16 and 5.17 show some representative results of applying

each of the example methods discussed above, as well as the modi-

fication (5.37), to the model problem in the plane, (5.35). In both

figures, λ = 0 + 1i, N = 128. T = 4π in Figure 5.16 and T = 16π in

Figure 5.17, so h = T/N differs by a factor of 4. The explicit one-

step methods, Euler’s Method and the two second-order Runge-Kutta

Methods, midpoint and Heun’s, which agree on the model problem,

all exhibit an exponentially growing instability. In contrast to the

situation when they were applied to the scalar model problem, this

behavior persists no matter how small we choose h. The leapfrog

method, the explicit multistep method that exhibited similar unde-

sirable behavior in the scalar case, is the one that, for sufficiently

small h, behaves nicely in the plane.

It is straightforward to understand the behavior of several of the

methods displayed in these figures simply by modifying earlier anal-

yses to the context of the complex model problem, z′ = λz. If we set

w = λh, one step of each of the single-step methods may be written

in terms of an amplification factor c(w) in the form zn+1 = a(w)zn.

For the explicit first-order Euler’s Method, aE(w) = 1 + w. For the

explicit second-order Runge-Kutta Methods (ERK2), the midpoint

method and Heun’s Method, aERK2(w) = 1+w+w2/2. For the im-

plicit first-order Backward Euler Method, aBE(w) = (1 − w)−1. For

the implicit second-order Runge-Kutta Methods (IRK2), the trape-

zoidal method and the y-midpoint method, aIRK2(w) = (1+w/2)(1−
w/2)−1. When λ = ib, we define ω = bh so w = iω. Then |aE(w)|2 =

1 + ω2 > 1, |aERK2(w)|2 = (1 − ω2/2)2 + ω2 = 1 + ω4/4 > 1, for

any h > 0. These approximations will spiral exponentially outward

to infinity away from the analytic solution, regardless of how small h
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Figure 5.16. Euler, Euler (modified), and leapfrog

methods in the plane.

Figure 5.17. Explicit and implicit RK2 and Backward Euler

Methods in the plane.

is chosen. We use |z1z2| = |z1||z2|, |z−1
1 | = |z1|−1, and |z1| = |z̄1| for

any z1, z2 ∈ C to see that |aBE(w)| = |1 − ibh|−1 = |1 + ibh|−1 =

|aE(w)|−1 < 1 and |aIRK2(w)| = |(1+ibh/2)(1−ibh/2)−1| = 1 for any
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h. The backward Euler approximations spiral exponentially inward

to the origin away from the analytic solution, while the trapezoidal

and y-midpoint solutions will always remain on a circle of constant

radius.

Note that while the Backward Euler Method was qualitatively

correct and the trapezoidal and y-midpoint methods were qualita-

tively incorrect when w was near negative infinity on the real axis,

the roles are reversed when w is purely imaginary. This raises an

important and subtle point. The ability to capture the qualitative

behavior correctly in these regimes is not what matters in practice.

Any of the standard methods can resolve the phenomena in which

we are interested with reasonable values of h. In addition, the mag-

nitudes of other modes, as well as the errors introduced in them by

approximation and computation, tend to be much smaller. Because

of this, the importance of absolute stability is not whether these other

modes are calculated correctly in a qualitative sense, but that they are

not amplified. To illuminate this point, we will conclude this section

with exercises involving systems of two scalar and two planar model

problems. But first, we will analyze the behavior of the remaining

two methods in the figures, the leapfrog method and the modification

(5.37) of Euler’s Method.

The behavior of the leapfrog method in the real scalar case might

have made one wonder if it and other multistep methods have any

useful purpose. In Appendix I we discuss other implicit multistep

methods—such as the Adams-Moulton Methods and backward differ-

ence formulas (BDFs) up to a certain order—that do have good stabil-

ity properties on such problems. There are explicit multistep methods

that behave well on the model problems on which the leapfrog method

performs so poorly, i.e., those with λ real and negative. The leapfrog

method has its place. It is symmetric with respect to time reversal,

and this makes it more appropriate for solving equations with simi-

lar symmetry, as shown in Figure 5.16. When applied to the model

problem in the complex plane, solutions of the leapfrog method are

still linear combinations, zn = c+z
+
n + c−z

−
n , of two basic solutions,
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z+n = rn+ and z−n = rn−, where r± are roots of the characteristic poly-

nomial p(r) = r2 − 2wr − 1 associated with the difference equation.

For general complex w, the roots of p(r) = r2 − 2wr − 1 still sat-

isfy r− = −r−1
+ , so if r+ = u + vi, r− = −(u − vi)/(u2 + v2). The

only case in which neither root has magnitude greater than unity is

when both lie on the unit circle, u2 + v2 = 1; i.e., they are of the

form r+ = e+iθ, r− = −e−iθ, θ ∈ R. With ω = bh as before, since

p(r) = (r − r+)(r − r−), r+ + r− = 2w = 2iω and ω = sin(θ). So if

|ω| > 1, there will be an exponentially growing mode. If ω = ±1, i.e,

w = ±i, then r0 = ±i is a multiple root of the characteristic polyno-

mial: p(r) = r2 − 2w − 1 = (r − r0)
2. In this case, the form of the

general solution of the difference equation becomes yn = c0r
n
0 +c1nr

n
0 ,

and the leapfrog method exhibits algebraic, not exponential, growth.

This is typical of a method whose characteristic polynomial has mul-

tiple roots on the locus of marginal stability, the unit circle.

If |ω| < 1, θ = arcsinω = ω+ω3/6+· · · , and r+ = e+iθ = 1+iω−
ω2/2+iω3/6+ · · · agrees with the analytical solution to order h2, just

as in the real scalar case. Initialization using Euler’s Method agrees

with principal root r+ to first-order in h, so the initial magnitude of

the so-called ‘parasitic solution’, z−, is of order h
2. This contribution

remains small, because the corresponding root, r− = −e−iθ, located

near ei(π−ω) ≈ −1 on the unit circle, also has magnitude exactly

equal to 1. What we observe for the leapfrog method in Figure 5.16

is not exactly a circular orbit, but the superposition of an orbit of

radius O(h2) around the principal orbit of radius 1+O(h). The small

perturbation is nearly reversed as it completes about a one-half turn

of its orbit for each step of the method.

To see why the behavior of modification (5.37) of Euler’s Method

is closer to that of the leapfrog method than Euler’s Method, we write

Euler’s Method (5.36) in 2× 2 matrix form,

un+1 = AEun, where un =

(
xn

yn

)
and AE =

(
1 −ω

ω 1

)
,

and compare the real canonical forms of AE and AME . Since tr(AE)

= 2 and det(AE) = 1 + ω2, the characteristic polynomial of AE is
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r2 − 2r + 1 + ω2. Therefore, AE has conjugate complex eigenval-

ues of magnitude > 1, λ± = 1 ± iω, and corresponding eigenvec-

tors z± =

(
±i

1

)
. Let λR and λI be the real and imaginary parts

of the eigenvalue λ+ and let vR and vI be the real and imaginary

parts of the corresponding eigenvector z+ = vR + ivI , so λR = 1,

λI = ω, vI =

(
1

0

)
, and vR =

(
0

1

)
. Taking the real and imag-

inary parts of AE(vR + ivI) = (λR + iλI)(vR + ivI) shows that

AE(vR) = λRvR−λIvI and AE(vI) = λRvI +λIvR. (Note the cor-

respondence with the cosine and sine addition formulas.) Rearranging

these formulas shows that, with respect to the properly oriented or-

dered basis, vI ,vR, the action of AE is given by

AEvI = λRvI + λIvR

and

AEvR = −λIvI + λRvR,

and so the matrix ofAE with respect to this ordered basis is

(
1 −ω

ω 1

)
.

Next we write the modification in 2 × 2 matrix form un+1 =

AMEun , where

AME =

(
1 0

−ω 1

)−1(
1 −ω

0 1

)
=

(
1 −ω

ω 1− ω2

)
,

and perform the parallel calculations for AME . We find tr(AME) =

2− ω2 and det(AME) = 1, so the characteristic polynomial of AME

is r2 − (2 − ω2)r + 1. For |ω| < 2, AME has conjugate complex

eigenvalues of magnitude 1,

λ± = e±iθ = 1− ω2/2± i
√

ω2 − ω4/4 = cos(θ) + i sin(θ),

and corresponding eigenvectors

z± =

(
ω/2± i

√
1− ω2/4

1

)
.

The real and imaginary parts of the eigenvector z+ are

vR =

(
ω/2

1

)
and vI =

(√
1− ω2/4

0

)
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and the real and imaginary parts of the eigenvalue λ+ are

λR = 1− ω2/2 = cos(θ) and λI =
√
ω2 − ω4/4 = sin(θ).

The matrix for AME with respect to the ordered basis {vI ,vR} is(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
.

In this form, it is apparent that each step of the modified method

(5.37) is similar to a counterclockwise rotation by an angle θ =

arccos(1−ω2/2) with respect to the (nonorthogonal) basis {vI ,vR, },
an O(h) perturbation of the standard basis.

5.6. Stiff Systems and the Method of Lines

In this section we apply example methods to approximate solutions

of sophisticated problems that arise in modern research and applica-

tions. The lessons of the previous sections regarding accuracy and

absolute stability culminate here in helping us to explain the literally

divergent behavior of certain methods.

We begin with a diagonal 2×2 extension of the real scalar model

problem above and then generalized it to a J × J version that arises

in many models in pure and applied mathematics. Let m1 and

m2 be positive integers. The function u(x, t) = a1(t) cos(m1x) +

a2(t) cos(m2x) is a 2π-periodic solution of the heat equation,

∂u

∂t
=

∂2u

∂x2
,

if a1(t) and a2(t) satisfy the diagonal 2× 2 system of ODEs,(
a1
a2

)′
=

(
λ1 0

0 λ2

)(
a1
a2

)
,

(
a1(0)

a2(0)

)
=

(
a1o
a2o

)
, t ∈ [0, T ],

(5.38)

where λ1 = −m2
1 and λ2 = −m2

2.

When m1 = 1, m2 = 10, a1o = 1, a2o = 0.01, we compare the

analytic solution at t = 1, yA =

(
1e−1

0.01e−100

)
, with the numerical

approximations for h = 1/10, N = 10: using Euler’s Method, yE =(
0.1710

0.01(−9)10

)
; using an explicit second-order Runge-Kutta Method,
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yERK2 =

(
0.170510

0.01(41)
10

)
; and using the Backward Euler Method,

yBE =

(
1/1.110

0.01(1/11)10

)
. The relative error in the first mode for yE

and yBE is ≈ 0.05, and for yERK2 it is ≈ 0.002. But it is immediately

clear that in the second mode, both explicit approximations, yE and

yERK2, yield absurd answers with huge absolute and relative errors

for that mode individually and considered as vectors in R2. What

might be less obvious is that though the qualitative nature of the

implicit approximation yBE is correct and the absolute error is small

in both components, the relative error in the second component alone

is still astronomical, on the order of 1033. The point is not that, for

the given step-size, the implicit method does a particularly better

job at approximating the mode with the much faster time scale. The

point is that in spite of doing a terrible job, this error does not disturb

the approximation in the dominant mode. The other methods do as

well or better on that mode, but any advantage is destroyed by their

behavior on the peripheral mode. The result is that the relative error

of yBE , considered as a vector in R2, remains ≈ 0.05. This also

emphasizes that the stiffness of the system, as defined by a ratio of

extreme eigenvalues, is the overriding issue, rather than the absolute

magnitude of an individual eigenvalue. If, for example, the extreme

eigenvalues are λ1 = −10−3, λ2 = −1, the system is still stiff even

though neither mode appears to vary rapidly. But if it is the slower

behavior governed by λ1 that we are interested in, it would make

sense to rescale time so that the eigenvalues in the new variables

would become λ̃1 = −1, λ̃2 = −103 and the significance of absolute

stability again becomes apparent. Conversely, the condition number

of any scalar problem including y′ = −103y is 1, and it is possible

to rescale time so that it becomes y′ = −y in the new variables. For

the same reason, one might suggest that a smaller time-step of size

10−3 would restore the superiority of the second-order method in the

example above.

Perhaps this example is a contrived exception whose modes have

unrealistic decay rates and relative magnitudes that would never be

observed in practice? On the contrary, our next example will demon-

strate that this example is somewhat universal. We now introduce a
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general approach that is used to approximate solutions of PDE ini-

tial value problems. Many important partial differential equations of

pure and applied mathematics are given in the form of a well-posed

initial value problem. Given uo(x) satisfying certain smoothness and

boundary conditions on its spatial domain, there exists a unique so-

lution u(x, t) that satisfies the partial differential equation for t > 0,

approaches uo(x) as t → 0, and depends continuously on uo(x).

The initial value problem for the heat equation (or diffusion equa-

tion) on the unit circle is given by

∂

∂t
u(x, t) = ν

∂2

∂x2
u(x, t), u(x, 0) = uo(x) (5.39)

where ν > 0 is the diffusion coefficient, x ∈ [0, 2π], t ≥ 0, and uo(x)

is a smooth 2π-periodic function, u(j)(0) = u(j)(2π), j = 0, 1, . . . .

Understanding the behavior of solutions of the heat equation and its

relatives is important not only in applied mathematics, but also in

pure areas as diverse as Probability, Geometry, and even Topology

where it has been used in proofs of index theorems and the Poincaré

conjecture. In what follows, we will set ν = 1 and leave the appropri-

ate modifications for general ν to the reader.

The heat equation can be solved analytically using an expansion

in terms of the orthogonal eigenfunction of the symmetric operator
∂2

∂x2 as follows. For uk(x, t) = ûk(t)e
ikx to be a solution of the heat

equation, ûk(t) must satisfy

d

dt
ûk(t) = λkûk(t), λk = −k2. (5.40)

Therefore, we represent the initial value uo(x) as a Fourier series

uo(x) =

∞∑
k=−∞

ûke
ikx, (5.41)

where

ûk =
1

2π

∫ 2π

0

uo(x)e
−ikx dx. (5.41′)

Then for t > 0,

u(x, t) =

∞∑
k=−∞

ûke
λkteikx. (5.42)
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A fundamental method for approximating solutions of a partial

differential equation initial value problem is the method of lines. We

discretize the spatial domain and approximate the values u(xj, t) us-

ing the solution of a corresponding initial value problem for a sys-

tem of ODEs, uj(t). The ODEs are obtained by replacing spatial

derivatives of u at (xj, t) by finite difference approximations of these

derivatives in terms of uj(t), and the initial value uo,j is obtained by

evaluating uo(x) at xj.

For the example of the heat equation on the unit circle above, we

discretize the interval [0, 2π] using J points xj = j∆x, j = 0, . . . , J ,

where the grid-size is ∆x = 2π
J

and uo,j = uo(xj). We approximate

the second spatial derivative of u at xj using the centered second

divided difference formula (see Appendix J). This is obtained by in-

terpolating u(x, t) at xj−1, xj , xj+1 with a polynomial p2(x) of degree

≤ 2 and evaluating

p′′(xj) =
uj+1−uj

∆x − uj−uj−1

∆x

∆x
=

1

∆x2
(uj+1 − 2uj + uj−1),

for j = 1, . . . , J − 2. For j = 0 and j = J − 1, we extend periodically

and use u−1(t) = uJ−1(t) and uJ (t) = u0(t) to keep the system closed.

Therefore, the method of lines approximation has the form

d

dt
uj(t) =

1

∆x2
(uj+1(t)− 2uj(t) + uj−1(t)), uj(0) = uo,j . (5.43)

We also write these equations in matrix form

d

dt
uJ (t) = AJuJ (t), (5.43′)

where AJ is a J × J periodic tridiagonal matrix (i.e., nonzero entries

in the nondiagonal corners reflect the periodicity).

Not only can we solve this system analytically using the same

method of eigenfunction expansion that we used for the continuous

problem, but the orthogonal eigenfunctions of the symmetric differ-

ence operator AJ obtained by discretizing the symmetric differen-

tial operator ∂2

∂x2 are just the discretized eigenfunctions of ∂2

∂x2 ! For

fk,J (t) = ûk(t)e
ikxj to be a solution of

d

dt
fk,J (t) = AJ fk,J (t), (5.44)
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ûk(t) must satisfy

d

dt
ûk(t) = λk,J ûk(t), λk,J =

2(cos(k∆x)− 1)

∆x2
. (5.45)

Therefore, we represent the initial value uo,j = uo(xj) as a finite

discrete Fourier series

uo,j =

J−1∑
k=0

ûk,Je
ikxj (5.46)

where

ûk =
1

J

J−1∑
j=0

uo,je
−ikxj . (5.46′)

Then for t > 0,

uj(t) =

J−1∑
k=0

ûk,Je
λk,J teikxj . (5.47)

The apparent asymmetry between the discrete summation over

nonnegative frequencies k,
∑J−1

k=0 , and the continuous summation

over all integers is illusory, since the exponentials whose arguments

they index are periodic. If k ∈ [J/2, J ], using eiJj∆x = 1, we may

write eikxj = eik
′xj with k′ = −(J − k) in the octave [−J/2, 0].

The frequencies of greatest magnitude that can be represented on

this grid, kmax, depend on whether J is even or odd. If J is even,

there is a single k corresponding to kmax = J/2 = −kmax( mod J),

but if J is odd, kmax = J−1
2 and −kmax are distinct mod J , with

−kmax = kmax + 1 = J − kmax( mod J).

Note that as ∆x → 0, λk,J ≈ −k2 + O(k4∆x2). If J is even,

the minimum (negative) growth rate corresponding to the highest

frequencies satisfies

λ∗
J = min

0≤k≤J−1
λk,J = λkmax

=
−4

(∆x)2
= −4

J2

(2π)2
. (5.48)

If J is odd,

λ∗
J = − 2

(∆x)2
(1 + cos(

∆x

2
)) ≈ −4

(∆x)2
= −4

J2

(2π)2
. (5.48′)

                

                                                                                                               



192 5. Numerical Methods

What’s more, if we approximate the solution of the spatially dis-

cretized system
d

dt
uJ (t) = AJuJ (t)

using a temporally discretized numerical method, the result may be

expressed by simply replacing the factor eλk,J t in the above formula,

i.e., the analytical solution of the (complex) scalar differential equa-

tion describing the evolution of the coefficient of the k-eigenvector
d
dt ûk(t) = λk,J ûk(t), with the approximate solution obtained from

the particular method. For example, if we approximate the solution

using Euler’s Method, un+1,J = un,J + hAJun,J , or, in components,

un+1,j = un,j +
h

∆x2
(un,j+1 − 2un,j + un,j−1), u0,j = uo,j , (5.49)

the result will be

un,j =
J∑

k=−J

ûk,J(1 + λk,Jh)
neikxj . (5.50)

If we approximate the solution using the trapezoidal method,

un+1,J = un,J +
h

2
(AJun,J +AJun+1,J ), (5.51)

or, in components,

un+1,j = un,j +
h

2∆x2
((un,j+1 − 2un,j + un,j−1)

+ (un+1,j+1 − 2un+1,j + un+1,j−1)),

(5.52)

the result will be

un,j =
J∑

k=−J

ûk,J (
1 +

λk,Jh
2

1− λk,Jh
2

)neikxj . (5.53)

In Figure 5.18, the Euler’s Method and trapezoidal method ap-

proximations using J = 64 and h = 0.005 are depicted at t = 2.14,

along with the analytical solution at the same t, and the initial con-

dition uo,j = 1.0 sin(xj), j = 0, . . . , 63. It appears that there are only
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Figure 5.18. Euler’s Method for the heat equation.

three curves because the trapezoidal approximation is indistinguish-

able from the analytical solution.

The explanation of the sawtooth error resulting from Euler’s

Method is contained in (5.49). Since λ∗
J = −4

∆x2 < λk,J < 0, un-

less 1 + h −4
∆x2 > −1, i.e., h < 1

2∆x2, w = λ∗
Jh will be outside

of the region of absolute stability of Euler’s Method. The terms

û±kmax,J (1 + λ∗
Jh)

ne±ikmaxxj in the numerical solution will not only

fail to approximate the corresponding terms û±kmax
e−k2

maxte±ikmaxx

in the analytical solution, they will grow exponentially and render

the approximation useless. For the parameters in Figure 5.18, we

check that 0.5( 2π64 )
2 = 0.0048 . . . and our step-size of 0.005 barely

violates the stability requirement. Observe not only that it is the

highest frequency mode that amplifies (count exactly 32 peaks on the

interval) but also that the errors that are amplified only exist due

to finite precision computer arithmetic! In exact arithmetic, for the

initial data uo(x) = sin(x) the FFT gives ûk,J = 0 for k �= ±1 (and
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û±1,J = ∓0.5i), in which case û±kmax,J (1 + λ∗
Jh)

n = 0 regardless of

|1 + λ∗
Jh| > 1. Even when h < 1

2∆x2 and the highest modes are

stable, they will not be approximated at all well in the sense of rel-

ative error unless h is considerably smaller, as demonstrated in the

two-mode example discussed above. But as we pointed out there, the

modes with highest k are negligible compared to those with lower

k, a consequence of the rapid decay of Fourier coefficients of smooth

functions. These errors do not appreciably affect the relative error of

the overall solution as long as they are not amplified. The restriction

h < 1
2∆x2 is quite severe. If we set h = ∆x and send both to zero, the

jointly discretized system will formally approximate the heat equation

in the limit. But the above analysis demonstrates that the numerical

solutions will blow up faster and faster, becoming worse and worse

approximations of the analytical solution, not better. The solutions

of the approximations are not approximations of the solutions! For

∆x = 0.01, we would require h < 0.00005 and 20,000 steps to reach

T = 1 in order to maintain stability.

In other words, it is impossible to beat the instability with smaller

step-sizes . The highest frequencies m that occur in practice are pro-

portional to the number of grid-points used to approximate spatial

derivatives in the original PDE. The amplitudes of these frequencies

typically decay rapidly with m. This example explains why, when

using an explicit numerical method whose absolute stability region

is bounded, increasing the spatial resolution of an approximation to

a PDE such as the heat equation can actually make the temporal

approximation drastically worse, unless step-sizes are reduced and

computational effort is increased quadratically.

When we replace Euler’s Method with an A-stable method, such

as the trapezoidal method, or the Backward Euler Method, the com-

putational effort per time-step will be increased (especially when the

original equation is nonlinear). But the advantage of unconditional

stability means that only accuracy considerations need to be taken

into account in determining the appropriate step-size. The reduction

in number of steps required to obtain the approximation within a

specified tolerance will always outweigh the increase in effort per step
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in situations like these, and thus we get a sense of why absolute stabil-

ity considerations are paramount when we apply numerical methods

to discretized PDEs.

We cannot proceed without mentioning one of the most significant

numerical methods of the past half-century, the Fast Fourier Trans-

form, or FFT, that simply performs the calculations of (5.46), (5.46′)

in a very efficient manner. If symmetries are ignored, it should re-

quire O(J2) complex multiplications to compute the discrete Fourier

coefficients of the vector u with respect to the orthogonal basis of J

vectors fk ∈ CJ , and the same number again to form the superposi-

tion u(t) = ûk(t)fk. The FFT takes advantage of symmetries of the

matrices FJ and F∗
J built from these basis vectors to reduce recur-

sively the number of multiplications required to O(J log J). In par-

ticular, if J = 2M is a power of 2, we define the J×J discrete Fourier

transform (DFT) matrix FJ by fk,j = e−ikj∆xJ where ∆xJ = 2π/J ,

and we index matrices and vectors naturally, from 0 to J − 1. The

reader should confirm that F∗
JFJ = JI, i.e.,

J−1∑
p=0

ei(m−n)p∆xJ = Jδmn, (5.54)

using geometric summation or the discrete fundamental theorem.

Therefore, we may multiply u by 1
JFJ to form the complex dot prod-

ucts that define the coefficients of

u =
∑
k

ûkfk

with respect to the orthogonal columns fk of F̄. Using this notation,

the forward and inverse discrete Fourier transforms are given in vector

and component form by

û =
1

J
FJu, or ûk =

1

J

J−1∑
j=0

e−ikj∆xJuj , (5.55)

and

u = F∗
J û, or uj =

J−1∑
k=0

ûke
ikj∆xJ . (5.56)
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The FFT is based on the observation that FJ is related to the

matrix for the J/2×J/2 DFT, FJ/2, in the following simple manner.

The matrix consisting of the upper halves of the even columns of FJ

(the first J/2 rows) is simply FJ/2 and the same is true for the lower

halves of the even columns. For j, k = 0, J/2− 1,

fk,2j = e−ik(2j)∆xJ = e−ikj∆xJ/2 (5.57)

and so

fk+J/2,2j = e−i(k+J/2)j∆xJ/2

= e−ikj∆xJ/2e−i(J/2)∆xJ/2 = e−ikj∆xJ/2 .
(5.58)

The corresponding matrices consisting of the odd columns of these

submatrices are just plus or minus a diagonal ‘twiddle-factor’ matrix

times FJ/2, respectively, ±DJ/2FJ/2, where DJ/2 = diag{e−ij∆xJ }.
Again for j, k = 0, J/2− 1,

fk,2j+1 = e−ik(2j+1)∆xJ = e−ik∆xJ e−ikj∆xJ/2 (5.59)

and so
fk+J/2,2j+1 = e−i(k+J/2)∆xJ e−i(k+J/2)j∆xJ/2

= e−ik∆xJ e−i(J/2)∆xJ e−ikj∆xJ/2

= −e−ik∆xJ e−ikj∆xJ/2 .

(5.60)

The pattern at the heart of the FFT is one of two important dis-

coveries in modern applied mathematics named for the superfamily

Papilionidae, the butterfly. In chaotic dynamics, the butterfly rep-

resents the small change in initial conditions to which a system is

sensitive, but here it refers to the crisscross nature of the calculation

expressed by

Fupper
J u = FJ/2ueven +DJ/2FJ/2uodd, (5.61)

Flower
J u = FJ/2ueven −DJ/2FJ/2uodd,

Applying the butterfly formula (5.61) recursively, one transform

of length 2M is reduced to computing two transforms of length 2M−1;

these are reduced to computing four transforms of length 2M−2 until

2M−1 transforms of length two of the form ue + uo, ue − uo are per-

formed. Since it only takes a total of J multiplications to combine
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all 2m transforms of length 2M−m into 2m−1 transforms of length

2M+1−m, the original transform can be computed with fewer than

Jm = J log2(J) complex multiplications!

See the Web Companion for additional details of implementing

this algorithm. Numerous variations on the continuous, discrete, and

fast Fourier transforms and ways to use them have been developed

for different constant coefficient partial differential (and even integro-

differential/pseudodifferential) equations, boundary conditions, num-

bers of dimensions, and the prime or composite nature of the order

J . For excellent overviews, we recommend [BH], [FB], [SG].

Many initial value problems for PDEs can be classified as par-

abolic or hyperbolic. Parabolic equations model diffusive behavior,

and the heat equation is a prototype and canonical form. Hyper-

bolic equations model waves, and there are several prototypes and

canonical forms, including the wave equation on the unit circle

(
∂2

∂t2
− c2

∂2

∂x2
)u(x, t) = 0, u(x, 0) = uo(x), (5.62)

where |c| is the wave speed, x ∈ [0, 2π], t ≥ 0, and uo(x) is a smooth

2π-periodic function, u(j)(0) = u(j)(2π), j = 0, 1, . . . . The operator in

parentheses can be factored and solutions written as the superposition

of solutions of the advection equation

∂

∂t
+ c

∂

∂x
u(x, t) = 0, u(x, 0) = uo(x) (5.63)

with c = ±
√
c2.

The unstable behavior observed in numerical approximations of

the heat equation above is not specific to equations of parabolic type.

We now construct and investigate corresponding examples for wave

equations. Our first example of a wave equation will be dispersive,

not hyperbolic. It has two modes in the complex plane with widely

separated oscillation frequencies and amplitudes. Again we will dis-

cover how methods with advantageous absolute stability properties

can trump methods with higher accuracy.

Let m1 and m2 be positive integers. The real and imaginary parts

of u(x, t) = c1(t)e
im1x + c2(t)e

im2x are 2π-periodic solutions of the
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linearized Korteweg-deVries equation,

∂u

∂t
=

∂3u

∂x3
, (5.64)

if c1(t) and c2(t) satisfy the 2× 2 system of complex ODEs:(
c1
c2

)′
=

(
λ1 0

0 λ2

)(
c1
c2

)
,

(
c1(0)

c2(0)

)
=

(
c1o
c2o

)
, t ∈ [0, T ],

(5.65)

where λ1 = −im3
1 and λ2 = −im3

2. The linearized Korteweg-deVries

equation arises from the Korteweg-deVries equation, or KdV equation,

ut + 6uux + uxxx = 0 by linearizing about the solution u(x, t) = 0

and reversing the sense of time. These equations are prototypical of

dispersive wave phenomena. We will discuss the full KdV equation

in our final example below.

When m1 = 1, m2 = 10, c1o = 1, c2o = 0.001, we compare

the analytic solution at t = 1, zA =

(
1e−1i

0.001e−1000i

)
, with the

numerical approximations for h = 1/100, N = 100 using Euler’s

Method: zE =

(
(1− .01i)100

0.001(1− 10i)100

)
, using an explicit second-order

Runge-Kutta Method, zERK2 =

(
(0.179995− .01i)100

0.001(−49− 10i)
100

)
, and using

the Backward Euler Method zBE =

(
(1 + .01i)

−100

0.001(1 + 10i)
−100

)
. The rel-

ative error in the first mode for zE and zBE is ≈ .005, and for zERK2

it is ≈ 1.15× 10−5. But again both explicit approximations, zE and

zERK2, yield absurd answers in the second mode with huge absolute

and relative errors for that mode individually and considered as vec-

tors in C2. This time, the second component of implicit first-order

approximation zBE has magnitude ≈ 10−103, instead of 10−3 for the

analytical solution. (The trapezoidal method would capture the mag-

nitude but not the phase correctly). But this error does not disturb

the approximation in the dominant mode as it did with the other

methods. Again their accuracy advantage is overwhelmed by their

unstable behavior on this peripheral mode. The result is that the

relative error of zBE , considered as a vector in C2, remains ≈ .005.
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To see the practical relevance of this example more clearly, we

compare the behavior with respect to absolute stability of two spa-

tial discretizations and two temporal discretizations of the first-order

advection, or wave equation

ut + cux = 0, u(x, 0) = uo(x), (5.66)

where subscripts indicate partial derivatives. Along the lines given

by
d

dt
x(t;xo) = c, x(0;xo) = xo, (5.67)

known as the characteristics of the PDE, we find that

d

dt
u(x(t;xo), t) = ux(x(t;xo), t)

dx

dt
(t;xo) + ut(x(t;xo), t)

= (ut + cux)(x(t;xo), t) = 0
(5.68)

so u(x(t;xo), t) = uo(xo). In other words, the solution is constant

along each characteristic, equal to the value uo(xo) of the initial data

at the point xo = x − ct where the characteristic intersects the line

t = 0. This value is shifted spatially at speed c and the analytical

solution of this problem is u(x, t) = uo(x− ct).

If we approximate the spatial derivatives using standard forward

difference quotients, the method of lines approximation takes the form

duj

dt
= −c

(uj+1 − uj)

∆x
. (5.69)

The eigenvalues corresponding to the eigenvectors fk,J = eikxj of the

periodic problem are

λF
k,J = −c

eik∆x − 1

∆x
= − c

∆x
(cos(k∆x)− 1 + i sin(k∆x)) (5.70)

on a circle of radius c
∆x centered at c

∆x and therefore tangent to the

imaginary axis at the origin. This circle lies in the right or left half-

plane depending on whether c is positive or negative, and its radius

is proportional to J .

If Euler’s Method is used to approximate this system temporally,

with un
j approximating uj(tn) (approximating in turn u(xj , tn)), the
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overall approximation takes the form

un+1
j = un

j − c
h

∆x
(un

j+1 − un
j ). (5.71)

Because the region of absolute stability of Euler’s Method is the disc

of radius 1 centered at −1, when forward spatial differencing is used,

absolute stability analysis predicts that Euler’s Method will behave

well if c < 0 and − c
∆xh < 1, i.e., h ≤ −∆x

c , but otherwise exponential

instability will result.

This restriction obtained purely from absolute stability consid-

erations can also be obtained by a completely different perspective.

From the form of (5.71), we can see that regardless of the sign of c,

the value of the numerical solution un
j comes from values un−q

j+p with

0 ≤ p ≤ q, corresponding to the earlier time tn−qh and the interval to

its right, [xj , xj + q∆x]. The value of the analytical solution at (x, t)

comes from the value at (x − cqh, t − qh). If c > 0 and the value of

the analytical solution comes only from the left, there is no possibil-

ity that such an approximation could converge! Even if c < 0, unless

−ch < ∆x, the location of the value on which the analytical solution

depends, (x− cqh, t− qh), is outside the interval [xj , xj + q∆x] from

which the numerical solution is computed. If the constraint we found

using absolute stability analysis is violated, the analytical solution

depends on values to which it has no access through the numerical

method. The fact that absolute stability analysis of eigenvalues gives

the same result as this spatial analysis is compelling evidence of the

intrinsic significance of absolute stability.

The condition

−ch < ∆x (5.72)

is called a CFL condition, named for Richard Courant, Kurt Fried-

richs, and Hans Lewy, the authors of an influential 1928 paper on

finite difference approximations of PDEs, [CFL]. The CFL condition

says that the step-size used in numerical approximation must not

exceed the time required for information traveling on the character-

istics of the PDE to travel between adjacent spatial grid points. If

the step-size is larger, the analytical solution corresponding to that

step depends on data outside of the domain from which the numerical

solution is computed.
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If instead of using forward differences in space, we use centered

differences, the method of lines approximation takes the form

duj

dt
= −c

(uj+1 − uj−1)

2∆x
. (5.73)

The eigenvalues corresponding to the eigenvectors fk,J are

λC
k,J = −c

eik∆x − e−ik∆x

2∆x
=

−ic sin(k∆x)

∆x
. (5.74)

If J is a multiple of 4, these λC
k,J span the interval [− |c|

∆x i,+
|c|
∆x i]

on the imaginary axis whose size is proportional to J , with small

modifications for nonmultiples. If we use Euler’s Method to approx-

imate the resulting system of ODEs, it will not behave well for any

h because the purely imaginary λC
k,J are outside its region of abso-

lute stability. The exponential growth we saw when we used Euler’s

Method to approximate solutions of z′ = iz will be reproduced in

every mode. If we use backward differences, the behavior is simply

reversed in comparison with forward differences, with respect to the

sign of c.

Figure 5.19 (upper) shows the eigenvalues corresponding to for-

ward, backward, and centered difference approximations of AJ = c ∂
∂x

with periodic boundary conditions, using c = −1 and J = 25, 26.

The eigenvalues for the forward difference approximations are given

in (5.70). They lie on circles with radius proportional to J pass-

ing through the origin and otherwise lying in the left half-plane. The

eigenvalues for the corresponding backward difference approximation,

or equivalently with c = +1, are the reflections of these circles across

the y-axis, the circles in the right half-plane. The eigenvalues for the

centered difference approximation are given in (5.74). They are the

averages of the eigenvalues of the forward and backward difference

approximations, and therefore they span intervals on the imaginary

axis with length proportional to J . For J = 26, this corresponds to a

range of ±(2π/64)−1i ≈ ±10.2i as observed in the figure.

Figure 5.19 (lower) shows the eigenvalues corresponding to cen-

tered difference approximations of ∂2

∂x2 and ∂3

∂x3 with periodic bound-

ary conditions, using J = 24, along with the corresponding eigenval-

ues (|J | ≤ 8) of ∂2

∂x2 itself. The eigenvalues of the centered difference

                

                                                                                                               



202 5. Numerical Methods

Figure 5.19. Eigenvalues of forward, backward,

and centered difference operators.

approximations of ∂2

∂x2 are given in (5.45) and span an interval on

the negative real axis with one end at the origin and the other at λ∗
J

given in (5.48). For J = 24, this λ∗
J = −4J2/(2π)2 − 25.9 overlaps

the analytic double eigenvalue λ±5 = −25. The maximum spectral

eigenvalue, λ∗ = −82, is at the far left. The approximation of ∂3

∂x3

and its eigenvalues are discussed below.
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In Figure 5.20, we illustrate the results of applying Euler’s Method

with forward, backward, and centered difference method of lines ap-

proximations of the left-moving wave solution of ut = ux with initial

data uo(x) = 1.0 sin(x), with step-size h = 0.005. The smooth small

amplitude wave in the figure results from forward differencing after

time T = 10π. For this approximation, all of the eigenvalues are

in the left half-plane, and for the step-size employed, they are all

strictly inside the region of absolute stability of Euler’s Method. No

instability is observed in any mode, but the complex amplitude of

the single mode initially present decays at a slow exponential rate.

The jagged wave whose peak is near the ends of the interval results

from backward differencing after little more than a quarter-period,

T = 1.85. For this approximation, all of the eigenvalues are in the

right half-plane, outside the region of absolute stability of Euler’s

Method for this and any step-size. The highest frequency mode is the

most unstable, and round-off errors have already been amplified to

be clearly visible. If the computation were carried any further, these

errors would overwhelm the desired content of the figure and eventu-

ally cause overflow. The incipient jaggedness of the wave whose peak

is near the center of the interval results from centered differencing

after approximately 20 periods, T = 130. For this approximation,

all of the eigenvalues are on the imaginary axis, outside the region of

absolute stability of Euler’s Method for this and any step-size. Due

to the small step-size, however, the most unstable, highest frequency

mode has a relatively slow growth rate, and its growth is only initi-

ated by round-off errors. This explains the longer time required for

the instability to manifest itself.

If, instead of Euler’s Method, we use the leapfrog method to ap-

proximate the system of ODEs obtained from the advection equation

using centered differencing, it will behave well as long as the time-

step satisfies the CFL condition h < ∆x
|c| , regardless of the sign of c,

because its region of absolute stability is the interval (−i,+i). How-

ever, this method behaves poorly when forward or backward spatial

differencing is used, since the λF
k,J are nonimaginary regardless of the

sign of c.
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Figure 5.20. Euler’s Method for the advection equation.

In Figure 5.21, we illustrate the results of applying the leapfrog

method with forward, backward, and centered difference method of

lines approximations of the left-moving wave solution of ut = ux with

initial data uo(x) = 1.0 sin(x), with step-size h = 0.005. The smooth

wave with amplitude 1 in the figure results from centered differenc-

ing after fifty periods, T = 100π. For this approximation, all of

the eigenvalues are on the imaginary axis, and for the step-size em-

ployed, they are all strictly inside the region of absolute stability of

the leapfrog method. No instability is observed in any mode, and the

complex amplitude of the single mode initially present is preserved

exactly. The speed of the wave is not exactly 1, but even after 50 pe-

riods, it has returned very nearly to its original position. The jagged

waves whose peaks are near the ends of the interval result from for-

ward and backward differencing after approximately a quarter-period,

T = 1.75. For these approximation, all of the eigenvalues are in the

left and half-planes, respectively, outside the region of absolute sta-

bility of the leapfrog method for this and any step-size. The highest

frequency mode is the most unstable, and round-off errors have al-

ready amplified to be clearly visible. The wave with slightly higher

amplitude corresponds to backward differencing. If the computation
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Figure 5.21. Leapfrog method for the advection equation.

were carried any further, the instability would cause overflow and

would overwhelm the desired content of the figure.

The central lesson of our development is now summarized in just a

few figures. The vastly superior performance of temporal discretiza-

tion methods with lower-order accuracy over methods with higher-

order accuracy in approximating solutions of the systems of ODEs

shown in Figures 5.18, 5.20, and 5.21 can be completely and sim-

ply understood in terms of the correlation of the absolute stability

regions shown in Figure 5.14 and the location of the eigenvalues of

chosen spatial discretization of the differential operator as shown in

Figure 5.19.

Our concluding example involves a PDE related to the two-mode

example above, just as the heat equation example was related to the

first two-mode example. The Korteweg-DeVries equation, or KdV

equation,
∂u

∂t
+ 6u

∂u

∂x
+

∂3u

∂x3
= 0 (5.75)

describes the nonlinear evolution of waves in a shallow channel. The

initial value problem for the KdV equation on the unit circle is given
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by

∂

∂t
u(x, t) = −6u(x, t)

∂

∂x
u(x, t)− ∂3

∂x3
u(x, t), u(x, 0) = uo(x)

(5.76)

where x ∈ [0, 2π], t ≥ 0, and uo(x) is a smooth 2π-periodic function,

u(j)(0) = u(j)(2π), j = 0, 1, . . . . The KdV equation and its dis-

crete cousin, the Fermi-Pasta-Ulam system, are charter members of a

family of nonlinear PDEs and related lattice models that have many

properties that are quite unusual and notable among such equations.

Like the heat equation, the KdV equation can be solved analytically,

though with a nonlinear ‘inverse scattering transform’ instead of the

linear Fourier transform. After nonlinear interaction, certain pulse-

like solutions called solitons pass through each other with their shape

asymptotically unchanged. Solutions possess an infinite number of

independent integral functionals that are conserved under the evo-

lution. It can be viewed as an infinite-dimensional completely inte-

grable Hamiltonian system, as well as an isospectral flow arising from

a Lax-pair formulation. Solitons are often significant in algebraic and

differential geometry. For example, solitons of the Sine-Gordon equa-

tion correspond to surfaces of constant negative curvature. Geomet-

ric Backlund transformations that generate new surfaces of constant

negative curvature from old ones also generate new solitons from old

ones. See [GBL], [LG] for further background and references on this

beautiful subject.

We will perform a method of lines approximation for the KdV

equation, using centered first and third divided differences. The result

is the periodic pentadiagonal system

duj

dt
= −6uj

(uj+1 − uj−1)

2∆x
− (uj+2 − uj+1 + 2uj − uj−1 + uj−1)

∆x3
,

uj(0) = uo,j .
(5.77)

For j = 0, 1 and j = 2J − 1, 2J , we extend periodically and use

u−2(t) = u2J−1(t) u−1(t) = u2J (t), u2J+1(t) = u0(t), and u2J+2(t) =

u1(t) to keep the system closed.

When the classical explicit fourth-order Runge-Kutta Method is

applied to the resulting system of equations, the time-steps have to be
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tiny to maintain absolute stability; otherwise the computation quickly

yields spurious results and terminates due to overflow as shown in

Figures 5.22 and 5.23. Due to the presence of the nonlinear term, the

explanation for this behavior is not as simple as for the heat equation.

The discussion of operator splitting below provides some justification

for analyzing the linear terms in both the PDE and the approximating

system, individually. When we analyze individually, the reason is

apparent. The eigenvalues of the continuous third derivative operator

are λk = −ik3. The eigenvalues of the discretized operator span an

interval on the imaginary axis [−iλmax(J), iλmax(J)] where λmax(J)

grows like J3. So unless h shrinks like ∆x3, λ∗
Jh will escape the

portion of the region of absolute stability of RK4 on the imaginary

axis, and the exponentially growing sawtooth solutions of the figure

are inevitable. The consequences of instability appear much sooner

in the calculation than they did for the heat equation. As soon as

t > 0, the nonlinearity causes every mode (including the highest) to

become nonzero, for both the PDE and the approximating system of

ODEs.

Figure 5.22. RK4 method for the KdV equation (stable).

If a lower-order but unconditionally stable method such as the

A-stable trapezoidal method (second-order) or the Backward Euler
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Figure 5.23. RK4 method for the KdV equation (unstable).

Method (first-order) is used, the step-size dictated by accuracy is still

far less restrictive than the step-size required for RK4 to be stable.

The additional computation needed to solve nonlinear systems at each

step of the implicit methods is more than rewarded by the far fewer

steps that are needed to obtain a satisfactory approximation.

We conclude this section with a brief description of an elegant

splitting method for approximating solutions of the KdV equation nu-

merically, suggested by Tappert [TF]. Splitting is a technique used to

approximate solutions of an evolution equation governed by a sum of

terms

u′ = A(u) +B(u), u(0) = uo (5.78)

using various combinations of approximate solutions of

v′ = A(v), v(0) = vo and w′ = B(w), w(0) = wo. (5.79)

A formal justification of this when A and B are linear is based on

expanding u(h) ≈ exp((A+B)h)uo, where

exp((A+B)h) ≈ I+ h(A+B) +
h2

2
(A+B)2 +O(h3), (5.80)
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and performing the corresponding expansions on v(h) = exp(A)vo

and w(h) = exp(B)wo:

exp(Ah) ≈ I+ hA+
h2

2
A2 +O(h3), (5.81)

exp(Bh) ≈ I+ hB+
h2

2
B2 +O(h3).

Using these expressions, we find

exp((A+B)h) = exp(Bh) exp(Ah) +O(h2), (5.82)

exp((A+B)h) = exp(Ah/2) exp(Bh) exp(Ah/2) +O(h3).

We denote by Sf ,p,h any pth-order accurate numerical solution op-

erator that advances an approximation of y′ = f(t,y) one time-step

of size h. Then the O(h2) approximation in (5.82) suggests that if we

alternate steps of size h of methods corresponding to the individual

equations (5.79) that are at least first-order accurate, SAo,1,h, SBo,1,h,

we will obtain a first-order accurate method SAo+Bo,1,h for approx-

imating solutions of (5.78). The O(h3) approximation in (5.82),

SAo,2,h/2SBo,2,hSAo,2,h/2, is used to obtain a second-order accurate

method, SAo+Bo,2,h for (5.78). This becomes even more notable when

we observe that as long as no intermediate output is required, multiple

steps can be combined in the form

(SAo,2,h/2SBo,2,hSAo,2,h/2)
n

= SAo,2,h/2(SBo,2,hSAo,2,h)
n−1SBo,2,hSAo,2,h/2.

(5.83)

This says that when the individual methods are at least second-order

accurate, we only need to shift half of the initial step of n steps of

first-order accurate splitting, (SBo,2,hSAo,2,h)
n, to the end of the com-

putation in order to turn it into second-order accurate splitting! In

the numerical methods literature, this second-order splitting method

is commonly known as Strang splitting. One of the earliest and best

known uses of this technique was Strang’s method for approximating

solutions of an advection PDE in two spatial dimensions. Again using

subscripts to indicate partial derivatives, the equation

ut = c1ux + c2uy
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was split into two equations,

vt = c1vx

and

wt = c2wy,

and each was approximated with second-order accurate time-stepping

in one-space dimension. If implicit methods are called for, approxi-

mate solutions of the resulting one-dimensional problems can be com-

puted more efficiently because the the corresponding linear systems

have substantially smaller bandwidth.

For the KdV equation with periodic boundary conditions, Tap-

pert split

ut + 6uux + uxxx = 0

into linear and nonlinear pieces. Except for the minus sign,

wt = −wxxx, w(x, 0) = wo(x),

the linear part is exactly the equation whose two-mode solution we

analyzed above for the effects of absolute stability. Solutions were

efficiently approximated using the spectrally (‘infinite order’) accu-

rate and A-stable Fourier Method, in which the evolution of each

Fourier coefficient is determined from the analytical equation, not

the discretized equation. In other words, we use dŵk

dt = λkŵk where

λk = −(ik)3 from the third derivative operator, not the correspond-

ing λk,J of the third difference operator. So to advance the solution

by one step of size h, we let ŵk(t + h) = ŵk(t)e
−(ik)3t. There are

only two sources of error in the numerical solution. The first is due

to the absence of any terms with |k| > J in the solution. The second

is due to the fact that these missing modes reappear in terms with

|k| ≤ J through aliasing. Aliasing is used to describe the fact that

since eimJ∆x = 1 for any integer m, when such a component is sam-

pled on the grid xj = j∆x, then ŵk+mJe
i(k+mJ)xj = ŵk+mJe

ikxj and

it is treated as a mode in the range |k| ≤ J . For smooth functions of

x, the magnitudes of the coefficients of these terms decay faster than

any power of J , so aliasing effects go to zero rapidly.
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If we ignore the conventional factor of 6 from the KdV equation,

the nonlinear part,

vt = −6vvx, v(x, 0) = vo(x), (5.84)

is known as the inviscid Burgers equation. This equation may be

analyzed in a manner similar to the first-order advection equation

above. Along the curves given by

d

dt
x(t;xo) = 6v(x, t), x(0;xo) = xo, (5.85)

known as the characteristics of the PDE, we find that

d

dt
v(x(t;xo), t) = vx(x(t;xo), t)

dx

dt
(t;xo) + vt(x(t;xo), t)

= (vt + 6vvx)(x(t;xo), t) = 0
(5.86)

so v(x(t;xo), t) = vo(xo). In other words, the solution is constant

along each characteristic, which is therefore a straight line. That con-

stant is equal to the value vo(x0) of the initial data at the point where

the characteristic intersects the line t = 0. This value is shifted spa-

tially at speed 6vo, so that higher points on the graph of v(x, t) travel

faster. The characteristics emanating from any interval on which the

initial data is decreasing inevitably collide for some t > 0. Because

of this, the inviscid Burgers equation is the fundamental elementary

model for the breaking of nonlinear waves and shock formation in

compressible fluids.

Tappert used centered differencing in conservation form,

−6uux = −3(u2)x ≈ −3

2∆x
(u2

j+1 − u2
j−1), (5.87)

to perform a method of lines approximation of this equation, using the

same grid that was used to discretize the linear term. If the resulting

equations are approximated numerically using the leapfrog method,

linearized eigenvalue and absolute stability analyses similar to those

we performed for the heat equation require that the time-step satisfy

a CFL requirement of the form

h ≤ C
∆x

max |6vo(x)|
.
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Although this restriction is not as prohibitive as those we have found

for equations involving higher-order spatial derivatives, in order to ob-

tain unconditional absolute stability, solutions of this system were ap-

proximated using the A-stable and second-order accurate trapezoidal

method. When the trapezoidal method is applied to the method of

lines approximations of PDEs, especially those of diffusion (parabolic)

type, it is known as the Crank-Nicholson Method. Further details on

the split-step pseudospectral method for numerical approximation of

solutions of the KdV equation, including links to an implementation

in the Virtual Math Museum can be found in the Web Companion.

Operator splitting makes it possible to analyze both accuracy and

absolute stability properties term by term, and different splittings

may be used to obtain methods with superior characteristics. For

example, even analytically, we might expect the behavior of solutions

of a nonlinear diffusion equation,

ut = ((m+ u)ux)x − uxxxx, u(x, 0) = uo(x), (5.88)

and its relatives that arise in various applications to be extremely

unstable if the diffusion coefficient m+ u(x) were ever negative. The

fourth-order term does not imply a maximum-minimum principle but

behaves somewhat like the diffusion term in the heat equation, guar-

anteeing local well-posedness regardless of the sign of m + uo. Nu-

merically, in cases involving negative diffusion, splitting (5.88) into

its nonlinear second-order and linear fourth-order terms would in-

vite disaster. But if before we split, we borrow some diffusion from

the higher-order term and lend it to the lower-order nonlinear term,

both of the resulting problems are numerically well-behaved. We split

(5.88) as

vt = ((m+ v + c)vx)x and wt = −cwxx − wxxxx, (5.89)

where c ≥ 0 is adaptively chosen so that m+ u+ c > 0 for all (x, t).

We then solve the individual problems on the interval [0, 2π] with pe-

riodic boundary conditions using the same methods as above. We use

the A-stable second-order Crank-Nicholson Method to approximate

solutions of the nonlinear second-order portion, tamed to become a
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relatively safe forward diffusion equation that obeys a maximum prin-

ciple. We use the spectral method for the constant coefficient linear

portion, and with λk = −k4+ck2, all exponential growth is restricted

to a finite band of frequencies and solved as exactly as possible with

the analytical expression eλkh. This elegant extension of Tappert’s

Method was proposed by Andy Majda for a nonlocal version of (5.89)

arising in vortex dynamics. It led to the discovery of a Fourier-based

method for rigorously proving finite time blowup of solutions of a large

class of evolution equations including (5.89). This work is reported

in [BP], and more recent applications of the method to fourth-order

equations such as (5.89) and the complexified three-dimensional Euler

equations are found in [BB] and [FP].

5.7. Convergence Analysis: Euler’s Method

In this section we will prove that Euler’s Method (5.11) is convergent

for the scalar IVP (5.1). The proof relies on identifying and analyzing

two factors responsible for the growth in error bounds as the number

of steps taken to advance the solution over a fixed time interval is

increased. One, the local truncation error, describes the magnitude

of new local errors being introduced at each step. The other, the am-

plification factor, describes how each step transforms prior errors and

characterizes the stability of the method for a particular equation and

time-step. We will derive a recurrence inequality satisfied by errors,

containing an additive term corresponding to the first effect and a

multiplicative factor corresponding to the second. We will focus on

the scalar case and leave the relatively straightforward generalization

to systems of ODEs to the reader.

Though many treatments begin with this proof, its signficance

may be better understood after observing the behavior of different

examples, especially with regard to these two interacting contribu-

tions to global errors. The reader is encouraged to consider how

the analysis may be generalized to other Runge-Kutta and multistep

methods in order to improve these estimates. Rigorous theory helps

us design methods that are advantageous for certain problems and

explains their failure for other problems and why other methods can

have the opposite behavior. We will briefly survey two alternative
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methods for quantifying the errors introduced at each step, residual

error, used in backward error analysis, and local error (sans ‘trunca-

tion’), used in automatic step-size control.

To begin the proof, we assume that f(t, y) is continuous on [to, to+

b) and satisfies the Lipschitz condition (5.2), so that the existence of

a unique solution y(t) is guaranteed on some maximal subinterval

[to, to + T∗) with 0 < T∗ ≤ b ≤ ∞. Under these conditions, we will

now show that numerical solutions obtained from Euler’s Method

(5.11) converge to solutions of (5.1) with first-order accuracy. It is

possible to analyze convergence by shrinking the step-size h → 0 con-

tinuously, but to do so, we must continuously adjust the times at

which we compare the numerical and analytical solutions. It is more

convenient to keep a time to + T fixed and to restrict the step-size

h to discrete values satisfying Nh = T as we increase the number of

steps N → ∞. In doing so, we must adjust our notation to avoid any

ambiguous meaning of the quantity yj . For example, y4 could mean

yN with N = 4, the fourth step of four, or it could mean yN/2 with

N = 8, the fourth step of eight. We will assume that a specific value

of T has been set, and we will index the intermediate approximations

by both their step number, n, and step-size, h = T/N , in the form

yn,h. Extending this, we define en,h = y(tn)−yn,h, where tn = to+nh

as in (5.10). Thus, eN,h signifies

y(tN )− yN,h = y(to + T )− yN,T/N ,

the global error of approximating y(to + T ) using N steps of Euler’s

Method. We now derive the estimate that shows |eN,h| → 0 as N →
∞.

We begin by defining two local numerical and analytical solutions

and their corresponding errors. The local analytical solution (initial-

ized using the numerical solution) ŷn,h(t) is defined as the analytical

solution of the ODE whose initial value is the point (tn, yn) on the

numerical solution,

ŷ′n,h = f(t, ŷn,h), ŷn,h(tn) = yn. (5.90)

The corresponding local error is the difference between the result of

advancing the numerical solution and the local analytical solution by
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the same time-step, h,

len,h = yn+1 − ŷn,h.

These are the local errors that we have estimated using paired meth-

ods for step-size control. We can relate the change in global errors to

this kind of local error as follows:

en+1,h = y(tn+1)− yn+1,h

= (y(tn+1)− ŷn,h(tn+1)) + (ŷn,h(tn+1)− yn+1,h)

= y(tn+1)− ŷn,h(tn+1) + len,h.

(5.91)

The term y(tn+1)−ŷn,h(tn+1) is the difference at tn+1 of two solutions

of the ODE whose values at tn differ by y(tn) − yn = en,h. This

behavior of this term depends on the stability of the ODE that is to

be solved.

The local numerical solution (initialized using the analytical solu-

tion) ŷn+1,h is the result of one step of the numerical method initial-

ized with the analytical solution through (tn, yn,h). The local trun-

cation error, εn,h, is the difference between the result of advancing

the analytical solution and the local numerical solution by the same

time-step, h, y(tn+1) − ŷn+1,h. The local truncation error measures

by how much the solution of the differential equation fails to satisfy

the numerical method, while the local error measures by how much

the solution of the numerical method fails to satisfy the differential

equation.

We can relate the change in global errors to local truncation error

as follows:

en+1 = y(tn+1)− yn+1,h

= y(tn+1)− ŷn+1,h + ŷn+1,h − yn+1,h

= εn,h + ŷn+1,h − yn+1,h.

(5.92)

The term ŷn+1,h − yn+1,h is the difference at tn+1 of two solutions

of the numerical approximation method whose values at tn differ by

y(tn)−yn,h = en,h. This behavior of this term depends on the stability

of the numerical method as applied to the particular ODE using the

time-step h.
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We will bound the growth of the magnitude of global errors for

Euler’s Method by estimating the stability factor and bounding the

local truncation error. The two types of local solution and local error

are depicted in Figure 5.24. We have used the same example as in

Figure 5.1, i.e., Euler’s Method applied to the IVP y′ = −y, y(0) = 1

with T = 1, N = 3, h = 1/3. A third type of local error, the residual,

measures by how much a certain continuous extension Sn,h(t) of the

discrete numerical approximation over each time-step interval fails to

satisfy the differential equation. The continuous extension for a step

of Euler’s Method is also shown in the figure and will be defined and

analyzed later when we discuss the residual error.

Euler approximation: N=3

�

�

0.2

1.0

0.0 1.0

y(t2)

y(t3)y2, h

e3, h
y2, h(t)

y3, h
le3, h

3, h
ˆ y3, hˆ

S2, h(t)

)
)

Figure 5.24. Local solutions and truncation errors for error analysis.

We proceed with different estimates of the local truncation error,

depending on whether or not additional assumptions on the analyt-

ical solution y(t) are satisfied. Henrici [HP] gives a proof with no

additional assumptions on f beyond continuity in t and Lipschitz

continuity in y. In [GCW], a proof is presented using an additional

assumption that f(t, y) is also Lipschitz in its first argument with
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Lipschitz constant K. In this case, the mean value theorem guaran-

tees
|εn,h| = |y(tn+1)− (y(tn)− hy′(tn))|

≤ Kh2 + Lh2 max
t∈[to,to+T ]

|y′(t)|. (5.93)

Here, for simplicity of exposition, we will assume y ∈ C2[to, to + T ].

In this situation, Taylor’s Theorem with Remainder guarantees that

εn,h = y(tn+1)− (y(tn) + hy′(tn)) =
h2

2
y′′(ξn) (5.94)

for some ξn ∈ [tn, tn+1]. Since we can bound |y′′|
2 ≤ M on [to, to+T ],

we can bound the local truncation error of Euler’s Method by

|εn,h| ≤ Mh2. (5.95)

Substituting y′(tn) = f(tn, y(tn)) in the formula for the change

in global error in terms of local truncation error, we collect terms of

order h to obtain

en+1 = en + h(f(tn, y(tn))− f(tn, yn)) + εn,h. (5.96)

The Lipschitz condition (5.2) allows us to estimate

|f(tn, y(tn))− f(tn, yn)| ≤ L|y(tn)− yn| = L|en|

and the bound on y′′ above shows that

|en+1| ≤ (1 + hL)|en|+Mh2. (5.97)

For any fixed h > 0, (5.97) is a linear constant coefficient inho-

mogeneous first-order difference inequality satisfied by the sequence

en, n = 0, 1, . . . . If we let a = 1 + hL, b = Mh2, and u0 = |e0| and if

un is defined by the corresponding difference equation,

un+1 = aun + b, n = 0, 1, . . . , (5.98)

then |en| ≤ un.

�Exercise 5–10. Use induction to verify that |en| ≤ un, n =

0, 1, . . . .

There are several ways to obtain the closed form solution of (5.98).

If we write out the first few terms concretely, u0, au0 + b, a2u0 +
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b(1 + a), a3u0 + b(1 + a + a2), . . . , we can recognize the expressions

multiplying b as partial sums of a geometric series and replace it with

a familiar formula to get

un = anuo +
b(1− an)

(1− a)
. (5.99)

�Exercise 5–11. Verify (5.99) in three ways. First use (5.98) and

mathematical induction. Second, write (5.99) as the sum un = uH
n +

uP
n , where uH

n = kan is a solution of the corresponding homogeneous

equation and uH
n+1 = b/(1 − a) is the constant particular solution of

(5.98), Finally, obtain (5.99) by finding a ‘summation factor’ by which

we can multiply the difference equation un+1 − aun = b to make the

left-hand side a perfect difference of another sequence. Then apply

the ‘discrete fundamental theorem of calculus’,

fN − f0 =
N−1∑
n=0

(fn+1 − fn),

to solve the resulting equation. This is the discrete analogue of find-

ing an integrating factor by which we can multiply the differential

equation y′ − ay = b to make the left-hand side a perfect derivative.

The discrete and continuous factors are solutions of corresponding

homogeneous equations.

Now we substitute the definitions of a, b, and u0 in (5.99). The

result is

|en| ≤ un = (1 + hL)n|eo|+
Mh2(1− (1 + hL)n)

−hL
.

After further simplification,

|en| ≤ (1 + hL)n|eo|+
Mh((1 + hL)n − 1)

L
. (5.100)

Then to complete our original goal of estimating eN , we use the fact

that for x ≥ −1,

0 ≤ 1 + x ≤ ex, (5.101)

and by induction,

0 ≤ (1 + x)n ≤ enx. (5.102)

                

                                                                                                               



5.7. Convergence Analysis: Euler’s Method 219

Setting x = hL > 0 and Nh = T in (5.102), we get

1 ≤ (1 + hL)N ≤ eLT (5.103)

and finally, (5.100) becomes

|eN,h| ≤ eLT |eo|+ h
M

L
(eLT − 1). (5.104)

We refer to (5.104) as the global error estimate for Euler’s Method.

�Exercise 5–12. Confirm (5.101) using two arguments. First, use

the fact that f(x) = ex is everywhere concave up and therefore is

above its tangent line at x = 0. Alternatively, prove (5.101) by show-

ing that the remainder for the first degree Maclaurin expansion of

f(x) at x = 0 is positive.

Finally, to complete the proof of convergence, we observe that

as long as y0 → yo as N → +∞ and in particular if y0 = yo, then

eo → 0 as N → +∞. Furthermore, for any T ∈ [0, b], we have

h = T/N → 0+, and so using (5.104),

max
0≤T≤b

|eN,h(T )| → 0

uniformly as N → +∞. We conclude that the sequence yN,h obtained

using Euler’s Method (5.11) converges to the analytical solution y(t)

of (5.1) for all t ∈ [to, to + b].

Three quantities, a, b, and uo, contribute to the form (5.99) of

the global error bound (5.104). We now examine how they might

be modified for more rapid convergence. The first-order dependence

of the second term arises from the interaction of a and b. If the

inhomogeneous forcing term b = Mh2 in (5.97) were modified to

become b = Mhp+1, the corresponding term of the estimate (5.104)

would behave like hp.

In Appendix H we will present a method based on rooted trees

that can be used to determine the conditions that must be satisfied by

the r(r+1)/2 coefficients of an explicit r-stage Runge-Kutta Method

in order for the local truncation error to satisfy

|εn,h| ≤ ChP+1. (5.105)
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In Appendix I we will show that a linear multistep method has formal

accuracy of order P if and only if its appropriately defined local trun-

cation error also satisfies (5.105). Other equivalent conditions involve

the coefficients of the methods and the asymptotic behavior of the

characteristic polynomial of the method.

The factor an−1
a−1 = eLT−1

hL that multiplies Mh2 and leads to first-

order convergence bounds the cumulative amplification of all local

truncation errors. We call a the amplification factor of the method,

and it governs the stability of the method. (We might distinguish a

as the local amplification factor and an−1
a−1 as a global amplification

factor, though this is not standard terminology.) The

aun = (1 + hL)en

term in (5.98) arose from estimating

y(tn)− yn + h(f(tn, y(tn))− f(tn, yn)) (5.106)

in (5.96). The amplification factor satisfies a ≥ 1 and the only situa-

tion in which a = 1 is when f is independent of y. Amplification of

errors is due to the separation of different solutions of the numerical

method from each other and does not require or forbid separation

of solutions of the differential equation. The phenomenon is present

whether different integral curves are spreading apart or approaching

each other. The third contribution, the initial error, is reflected in

the global error with its order unchanged.

Together, a bound on the initial error, |e0|, . . . , |em−1| ≤ ChP , a

0-stability bound on the amplification factor, and the bound (5.105)

on the local truncation error are necessary and sufficient to prove

convergence with order of accuracy P . The conditions that determine

the accuracy of Runge-Kutta Methods are somewhat involved, but

the basic stability required for convergence is essentially built into

the definition of these methods. In contrast, the accuracy of linear

multistep methods is settled rather simply by the notion of formal

accuracy, equivalent to a single condition on the coefficients of the

method for each degree of accuracy. It is stability that is more subtle

for these methods. A linear multistep method whose formal accuracy

is P is convergent and has order of accuracy P if and only if the
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method is 0-stable, i.e., the characteristic polynomial of the method

at h = 0, ρ(r), satisfies the root condition (R). A complete proof of

this theorem in even greater generality, but based on the same ideas

used in our proof of convergence for Euler’s Method, is given in [IK].

Depending on the type of numerical method used, the numerical

solution yn can be associated in different ways to a continuous exten-

sion. This is a function Sn,h(t) defined over each interval [tn, tn+1]

that is equal to the numerical solution at the endpoints of the inter-

val. To extend a one-step method such as a Runge-Kutta Method, let

h′ ∈ (0, h) and for t = tn + h′, define Sn,h(t) using the same method

used to obtain yn+1 from yn, only replacing h with h′. Note that the

discretization parameter h and the corresponding discrete numerical

approximation remain fixed. Only in between these values do we use

the distinct continuous independent variable h′ in place of h in the for-

mulas (5.3) that define steps of the underlying Runge-Kutta Method.

To extend a multistep method for t = tn + h′, define Sn,h(t) using

the same interpolation on which the underlying multistep method has

been derived. The values of Sn,h(t) are sometimes known as the dense

output of a method. Using the continuous extension, we can define

the residual,

rn,h(t) = S′
n,h(t)− f(t, Sn,h), (5.107)

using a term from backward error analysis. (By this distinction, the

local truncation error estimates correspond to forward error anal-

ysis.) The residual is another quantity that, like the local error,

measures by how much the numerical solution fails to satisfy the

differential equation on each interval. Because of the continuous na-

ture of its argument, the residual can measure the difference at the

level of derivatives. In the work of Shampine [SLF], as well as that

of Enright [EWH] and Higham [HDJ] who refer to the residual as

the defect, continuous extension and residual estimation bridge the

notions of local and global error. They have developed numerical

schemes with automatic step-size control based on estimates of the

residual using integral norms. Hermann Karcher [KH] has used this

approach along with careful applications of Gronwall’s Inequality to

obtain convergence proofs that are valid in a broader setting due to

weaker differentiability requirements on error norms.
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In its simplest form, residual analysis can be used to provide a

direct derivation of a useful form of the local truncation error esti-

mate, in which the amplification term already appears as a continuous

rather than discrete exponential. In analogy with the discrete error

estimates (5.96), (5.97), we can write

d

dt
(y(t)− Sn,h(t)) =y′(t)− S′

n,h(t) = f(t, y(t))− S′
n,h(t)

=(f(t, y(t))− f(t, Sn,h(t)))

+ (f(t, Sn,h(t))− S′
n,h(t)), (5.108)

so

d

dt
|y(t)− Sn,h(t)|

≤ L|y(t)− Sn,h(t)|+ |f(t, Sn,h(t))− S′
n,h(t)|.

(5.109)

The first term on the right plays a similar role to the stability or

amplification factor in the discrete approach. But in this approach

the inhomogeneous term that measures by how much the approxima-

tion fails to satisfy the differential equation is the residual rather than

the local truncation error. In general, a local truncation estimate of

order hp+1 corresponds to a residual estimate of order hp, since the

former compares approximate solutions and the latter compares their

derivatives. Again we use Euler’s Method as an example since it is

both a Runge-Kutta Method and a multistep method and the re-

spective continuous extensions coincide. The Runge-Kutta approach

extends yn and yn+1 to Sn,h(t) by letting Sn,h(t) = yn+(h′)yn
′, where

yn
′ = f(tn, yn). The multistep approach integrates the constant left

endpoint approximation of y(t), Sn,h(t) = yn +
∫ h′

0
yn

′ ds, yielding

the same result.

Note that Sn,h(t) is continuous with S′
n,h(tn) = yn for all n =

0, 1, . . . , N . Also S′
n,h(t) is piecewise constant:

S′
n,h(t) = yn

′ = f(tn, yn) = f(tn, Sn,h(tn))

on (tn, tn+1). If we define g(t) = f(t, Sn,h(t)), then Sn,h(t) = g(tn)

is the degree zero (constant) polynomial that interpolates g(t) on

[tn, tn + h]. By the standard error of interpolation estimate that in
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this simplest case reduces to the mean value theorem, the magnitude

of the residual satisfies

|f(t, Sn,h(t))− S′
n,h(t)| = |g(t)− g(tn)|

= |g′(ξ)||t− tn| ≤ Ch
(5.110)

where C = max[tn,tn+h] |g′(t)|. If we set e(t) = |y(t) − Sn,h(t)|, we
have e′(t) ≤ Le(t) + Ch so Gronwall’s Inequality tells us

e(t) ≤ e(tn)e
(t−tn)L + C(e(t−tn)L − (1 + (t− tn)L))

≤ e(tn)e
(t−tn)L + C ′((t− tn)L)

2). (5.111)

This may be viewed as a local truncation error estimate for Euler’s

Method, derived without Taylor expansion, blended with an expo-

nential stability estimate over the interval [tn, tn +h]. In the discrete

approach above, the exponential stability estimate only appeared af-

ter iterating the difference inequality.

For Runge-Kutta Methods, residual estimates for the continuous

extension correspond directly to local truncation error estimates of

one order higher, and the stability analysis carries over just as eas-

ily. For multistep methods with more steps, 0-stability and the root

condition govern the instantaneous growth rate of perturbations. To

obtain higher-order residual estimates, we make use of the degree

p−1 interpolation of the derivative of the solution, S′
tn,... ,tn+1−m,h(t).

In Appendix I, these very interpolants are even used to derive many

families of higher-order multistep methods. This allows us to replace

(5.110) with higher-order interpolation error estimates

g(t)− S′
tn,... ,tn+1−p

(t) =
g(p)(ξ)

p!
(t− tn) · · · (t− tn+1−p), (5.112)

and for t ∈ [tn+1−p, tn + h],

|g(t)− S′
tn,... ,tn+1−p

(t)| ≤ max
t∈[tn+1−p,tn+h]

K|g(p)(t)|hp, (5.113)

where K depends only on the number p of intervals of length h in-

volved in the interpolation. The interpolation estimates above are

derived in Appendix J. They are also useful in deriving multistep

methods in Appendix I.
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In either case, once we have e′(t) ≤ Le(t)+Chp with e(t) defined

as above, Gronwall’s Inequality tells us

e(t) ≤ e(tn)e
(t−tn)L + C(e(t−tn)L − Tp((t− tn)L)), (5.114)

where Tp(x) is the Taylor polynomial for ex at x = 0, and so

e(t) ≤ e(tn)e
(t−tn)L + C ′((t− tn)L)

p+1. (5.115)

This single interval estimate can then be iterated just as in the discrete

case to obtain global error estimates of the same order.

Our discussion of numerical methods for initial value problems

has invoked many major topics from numerical analysis, including in-

terpolation, root finding, quadrature, and linear algebra. The reader

will find that pursuing further study of numerical methods will be re-

warded with many more suprising and beautiful connections among

an ever expanding network of mathematical subjects. A brief guide

to recommend further reading appears in the Web Companion.

                

                                                                                                               



Appendix A

Linear Algebra
and Analysis

This short review is not intended as an introduction or tutorial. On

the contrary, it is assumed that the reader is already familiar with

multi-variable calculus, the basic facts concerning metric spaces, and

the elementary theory of finite-dimensional real and complex vector

spaces. The goal of this appendix is rather to clarify just what ma-

terial is assumed, to develop a consistent notation and point of view

towards these subjects for use in the rest of the book, and to for-

mulate some of their concepts and propositions in ways that will be

convenient for applications elsewhere in the text.

A.1. Metric and Normed Spaces

A metric space is just a set X with a distance ρ(x1, x2) defined be-

tween any two of its points x1 and x2. The distance should be a non-

negative real number that is zero if and only if x1 = x2, and it should

be symmetric in x1 and x2. Aside from these obvious properties of

anything we would consider calling a distance function, the only other

property we demand of the function ρ (which is also called the metric

of X) is that the “triangle inequality” hold for any three points x1, x2,

and x3 of X. This just means that ρ(x1, x3) ≤ ρ(x1, x2) + ρ(x2, x3),

and what it says in words is that “things close to the same thing are

close to each other”.

If {xn} is a sequence of points in X, then we say this sequence

converges to a point x in X if limn→∞ ρ(xn, x) = 0. It follows from

the triangle inequality that if the sequence also converges to x′, then
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ρ(x, x′) = 0, so x = x′, i.e., the limit of {xn} is unique if it exists,

and we write limn→∞ xn = x. The sequence {xn} is called a Cauchy

sequence if ρ(xn, xm) converges to zero as both m and n tend to

infinity. It is easy to check that a convergent sequence is Cauchy, but

the reverse need not be true, and if every Cauchy sequence in X does

in fact converge, then we call X a complete metric space.

If X and Y are metric spaces and f : X → Y is a function, then

we call f continuous if and only if f(xn) converges to f(x) whenever

xn converges to x. An equivalent definition is that given any positive

ε and an x in X, there exists a δ > 0 such that if ρX (x, x′) < δ, then

ρ
Y
(f(x), f(x′)) < ε, and if we can choose this δ independent of x,

then we call f uniformly continuous . A positive constant K is called

a Lipschitz constant for f if for all x1, x2 in X, ρ
Y
(f(x1), f(x2)) <

Kρ
X
(x1, x2), and we call f a contraction if it has a Lipschitz constant

K satisfying K < 1. Note that if f has a Lipschitz constant (in

particular, if it is a contraction), then f is automatically uniformly

continuous (take δ = ε/K).

�Exercise A–1. Show that ifK is a Lipschitz constant for f : X →
Y and L is a Lipschitz constant for g : Y → Z, then KL is a Lipschitz

constant for g ◦ f : X → Z.

The classic example of a metric space is R with ρ(x, y) = |x− y|,
and this has an important generalization. Namely, if V is any (real

or complex) vector space, then a nonnegative real-valued function

v �→ ‖v‖ on V is called a norm for V if it shares three basic properties

of the absolute value of a real number, namely i) positve homogeneity,

i.e., ‖αv‖ = |α| ‖v‖ for a scalar α; ii) ‖v‖ = 0 only if v = 0; and iii)

the triangle inequality ‖v1 + v2‖ ≤ ‖v1‖ + ‖v2‖ for all v1, v2 ∈ V .

A vector space V together with a choice of norm for V is called a

normed vector space, and on such a V we get a metric by defining

ρ(v1, v2) = ‖v1 − v2‖. If this makes V a complete metric space, then

the normed space V is called a Banach space. In particular, Rn and

Cn with their usual norms are Banach spaces.

If A is a subset of a metric space X, then the metric for X re-

stricted to A × A defines a metric for A, and the resulting metric

space is called a subspace of X.
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If x is a point of the metric space X and ε > 0, then we denote

{y ∈ X | ρ(x, y) < ε}, the so-called “open ball of radius ε about x

in X”, by Bε(x,X). A subset A of X is a neighborhood of x if it

includes Bε(x,X) for some positive ε, and A is called an open subset

of X if it is a neighborhood of each of its points. On the other hand

A is called a closed subset of X if the limit of any sequence of points

in A is itself in A. It is easily proved that A is closed in X if and only

if its complement in X is open and that f : X → Y is continuous if

and only if the inverse image, f−1(O), of every open subset O of Y

is open in X.

If X is a metric space, then X itself is both open and closed

in X, and hence the same is true of its complement, the empty set.

If there are no other subsets of X that are both open and closed

(or equivalently if X cannot be partitioned into two complementary

nonempty open sets), then X is called a connected space. We say

that a subset A of X is connected if the corresponding subspace is

a connected metric space. There is an important characterization of

the connected subsets of R, namely A ⊆ R is connected if and only

if, it is an interval, i.e., if and only if, whenever it contains two points,

it also contains all points in between.

A subset A of a metric space is called compact if every sequence

in A has a subsequence that converges to a point of A. The Bolzano-

Weierstrass Theorem characterizes the compact subsets of Rn (and

Cn). Namely they are precisely those sets that are both closed and

bounded. (A subset A of a metric space is bounded if and only if the

distances between points of A are bounded above.)

A.2. Inner-Product Spaces

An inner product on a real vector space V is a real-valued function

on V × V , (x, y) �→ 〈x, y〉 having the following three properties:

1) Symmetry: 〈x, y〉 = 〈y, x〉 for all x, y ∈ V .

2) Positive definiteness: 〈x, x〉 ≥ 0, with equality if and only if x = 0.

3) Bilinearity: 〈αx+ βy, z〉 = α 〈x, z〉 + β 〈y, z〉, for all x, y, z ∈ V

and all α, β ∈ R.
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An inner-product space is a pair (V, 〈 , 〉) consisting of a real vector

space V and a choice of inner product for V , but it is customary to

suppress reference to the inner product. The motivating example of

an inner-product space is of course Rn with the usual “dot-product”

〈x, y〉 :=
∑n

i=1 xiyi.

In what follows, V will denote an arbitrary inner-product space,

and we define ‖x‖, the norm of an element x of V , by ‖x‖ :=
√
〈x, x〉.

By bilinearity, if x, y ∈ V and t ∈ R, then ‖tx+ y‖2 is a quadratic
polynomial function of t, namely,

‖tx+ y‖2 = 〈tx+ y, tx+ y〉 = ‖x‖2 t2 + 2 〈x, y〉 t+ ‖y‖2 ,

and note the important special case

‖x+ y‖2 = ‖x‖2 + 2 〈x, y〉+ ‖y‖2 .

Finally, for reasons we shall see a little later, the two vectors x and y

are called orthogonal if 〈x, y〉 = 0, so in this case we have

A.2.1. Pythagorean Identity. If x and y are orthogonal vectors

in an inner product space, then ‖x+ y‖2 = ‖x‖2 + ‖y‖2 .

Recall some basic high-school mathematics concerning a quadratic

polynomial P (t) = at2 + bt + c. (For simplicity, we assume a is

positive.) The discriminant of P (t) is the quantity b2 − 4ac, and it

distinguishes what kind of roots the polynomial has. In fact, the so-

called “quadratic formula” says that the two (possibly complex) roots

of P (t) are (−b±
√
b2 − 4ac )/2a. So there are three cases:

Case 1: b2 − 4ac > 0. Then P (t) has two real roots. Between these

roots P (t) is negative, and outside of the interval between

the roots it is positive.

Case 2: b2 − 4ac = 0. Then P (t) has only the single real root −b/2a,

and elsewhere P (t) > 0.

Case 3: b2−4ac < 0. Then P (t) has no real roots, and P (t) is positive

for all real t.

For the polynomial ‖tx+ y‖2 we see that a = ‖x‖2, c = ‖y‖2, and b =

2 〈x, y〉, so the discriminant is 4(| 〈x, y〉 |2−‖x‖2 ‖y‖2). Case 1 is ruled

out by positive definiteness. In Case 2, we have | 〈x, y〉 | = ‖x‖ ‖y‖,
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so if t is the root of the polynomial, then ‖x+ ty‖ = 0, so x = −ty,

and we see that in this case x and y are linearly dependent. Finally,

in Case 3, | 〈x, y〉 | < ‖x‖ ‖y‖, and since x + ty is never zero, x and

y are linearly independent. This proves one of the most important

inequalities in all of mathematics.

A.2.2. Schwartz Inequality. For all x, y ∈ V , | 〈x, y〉 | ≤
‖x‖ ‖y‖, with equality if and only if x and y are linearly dependent.

�Exercise A–2. Use the Schwartz Inequality to deduce the triangle

inequality:

‖x+ y‖ ≤ ‖x‖+ ‖y‖ .
(Hint: Square both sides.)

This shows that an inner-product space is a normed space.

•Example A–1. Let C([a, b]) denote the vector space of contin-

uous real-valued functions on the interval [a, b]. For f, g ∈ C([a, b])

define 〈f, g〉 =
∫ b

a
f(x)g(x) dx. It is easy to check that this satisfies

our three conditions for an inner product.

In what follows, we assume that V is an inner-product space. If

v ∈ V is a nonzero vector, we define a unit vector e with the same

direction as V by e := v/ ‖v‖. This is called normalizing v, and if v

already has unit length, then we say that v is normalized . We say that

k vectors e1, . . . , ek in V are orthonormal if each ei is normalized and

if the ei are mutually orthogonal. Note that these conditions can be

written succinctly as 〈ei, ej〉 = δij , where δ
i
j is the so-called Kronecker

delta symbol and is defined to be zero if i and j are different and 1 if

they are equal.

�Exercise A–3. Show that if e1, . . . , ek are orthonormal and v is

a linear combination of the ei, say v = α1v1 + · · ·+αkvk, then the αi

are uniquely determined by the formulas αi = 〈v, ei〉. Deduce from

this that orthonormal vectors are automatically linearly independent.

Orthonormal bases are also referred to as frames and they play

an very important role in all explicit computation in inner-product

spaces. Note that if e1, . . . , en is an orthonormal basis for V , then
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every element of V is a linear combination of the ei, so that by the

exercise each v ∈ V has the expansion v =
∑n

i=1 〈v, ei〉 ei.
•Example A–2. The “standard basis” for Rn is δ1, . . . , δn, where

δi = (δ11 , . . . , δ
i
n). It is clearly orthonormal.

Let V be an inner product space and W a linear subspace of V .

We recall that the orthogonal complement of W , denoted by W⊥, is

the set of those v in V that are orthogonal to every w in W .

�Exercise A–4. Show that W⊥ is a linear subspace of V and that

W ∩W⊥ = 0.

If v ∈ V , we will say that a vector w in W is its orthogonal

projection on W if u = v − w is in W⊥.

�Exercise A–5. Show that there can be at most one such w. (Hint:

If w′ is another, so u′ = v− u ∈ W⊥, then u− u′ = w′ −w is in both

W and W⊥.)

A.2.3. Remark. Suppose ω ∈ W . Then since v − ω = (v − w) +

(w − ω) and v − w ∈ W⊥ while (w − ω) ∈ W , it follows from the

Pythagorean identity that ‖v − ω‖2 = ‖v − w‖2 + ‖w − ω‖2. Thus,

‖v − ω‖ is strictly greater than ‖v − w‖ unless ω = w. In other words,

the orthogonal projection of v on w is the unique point of W

that has minimum distance from v.

We call a map P : V → W the orthogonal projection of V onto

W if v − Pv is in W⊥ for all v ∈ V . By the previous exercise this

mapping is uniquely determined if it exists (and we will see below

that it always does exist).

�Exercise A–6. Show that if P : V → W is the orthogonal pro-

jection onto W , then P is a linear map. Show also that if v ∈ W ,

then Pv = v and hence P 2 = P .

�Exercise A–7. Show that if e1, . . . , en is an orthonormal basis

for W and if for each v ∈ V we define Pv :=
∑n

i=1 〈v, ei〉 ei, then P is

orthogonal projection onto W . In particular, orthogonal projection

onto W exists for any subspace W of V that has some orthonormal

basis. Since, as we now will show, any W has an orthonormal basis,

orthogonal projection on a subspace is always defined.
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There is a beautiful algorithm, called the Gram-Schmidt Pro-

cedure, for starting with an arbitrary sequence w1, w2, . . . , wk of

linearly independent vectors in an inner-product space V and manu-

facturing an orthonormal sequence e1, . . . , ek out of them. Moreover

it has the nice property that for all j ≤ k, the sequence e1, . . . , ej
spans the same subspace Wj of V as is spanned by w1, . . . , wj .

In case k = 1 this is easy. To say that w1 is linearly independent

just means that it is nonzero, and we take e1 to be its normalization:

e1 := w1/ ‖w1‖. Surprisingly, this trivial special case is the crucial

first step in an inductive procedure.

In fact, suppose that we have constructed orthonormal vectors

e1, . . . , em (where m < k) and that they span the same subspace Wm

that is spanned by w1, . . . , wm. How can we take the next step and

construct em+1 so that e1, . . . , em+1 is orthonormal and spans the

same subspace as w1, . . . , wm+1?

First note that since the e1, . . . , em are linearly independent and

span Wm, they are an orthonormal basis for Wm, and hence we

can find the orthogonal projection ωm+1 of wm+1 onto Wm using

the formula ωm+1 =
∑m

i=1 〈wm+1, ei〉 ei. Recall that this means

that εm+1 = wm+1 − ωm+1 is orthogonal to Wm, and in particu-

lar to e1, . . . , em. Now εm+1 cannot be zero! Why? Because if

it were, then we would have wm+1 = ωm+1 ∈ Wm, so wm+1 would

be a linear combination of w1, . . . , wm, contradicting the assumption

that w1, . . . , wk are linearly independent. But then we can define

em+1 to be the normalization of εm+1, i.e., em+1 := εm+1/ ‖εm+1‖,
and it follows that em+1 is also orthogonal to e1, . . . , em, so that

e1, . . . , em+1 is orthonormal. Finally, it is immediate from its defini-

tion that em+1 is a linear combination of e1, . . . , em and wm+1 and

hence of w1, . . . , wm+1, completing the induction. Let’s write the first

few steps in the Gram-Schmidt Process explicitly.

(1) e1 := w1/ ‖w1‖ % normalize w1 to get e1.

(2a) ω2 := 〈w2, e1〉 e1 % get projection ω2 of w2 on W1.

(2b) ε2 := w2 −ω2 % subtract ω2 from w2 to get W⊥
1

component ε2 of w2.
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(2c) e2 := ε2/ ‖ε2‖ % and normalize it to get e2.

(3a) ω3 := 〈w3, e1〉 e1 % get projection ω3 of w3 on W2.

+ 〈w3, e2〉 e2
(3b) ε3 := w3 − ω3 % subtract ω3 from w3 to get W⊥

2

component ε3 of w3.

(3c) e3 := ε3/ ‖ε3‖ % and normalize it to get e3.

. . .

If W is a k-dimensional subspace of an n-dimensional inner-

product space V , then we can start with a basis for W and extend

it to a basis for V . If we now apply the Gram-Schmidt Procedure to

this basis, we end up with an orthonormal basis for V with the first

k elements in W and with the remaining n− k in W⊥. This tells us

several things:

• W⊥ has dimension n− k.

• V is the direct sum of W and W⊥. This just means that every

element of V can be written uniquely as the sum w + u where

w ∈ W and u ∈ W⊥.

• (W⊥)⊥ = W .

• If P is the orthogonal projection of V on W and I denotes the

identity map of V , then I − P is orthogonal projection of V on

W⊥.

                

                                                                                                               



Appendix B

The Magic of Iteration

The subject of this appendix is one of our favorites in all of mathe-

matics, and it’s not hard to explain why. As you will see, the basic

theorem, the Banach Contraction Principle, has a simple and elegant

statement and a proof to match. And yet, at the same time, it is

extremely powerful, having as easy consequences two of the most im-

portant foundations of advanced analysis, the Implicit Function The-

orem and the Local Existence and Uniqueness Theorem for systems

of ODE.

But there is another aspect that we find very appealing, and that

is that the basic technique that goes into the contraction principle,

namely iteration of a mapping, leads to remarkably simple and ef-

fective algorithms for solving equations. Indeed what the Banach

Contraction Principle teaches us is that if we have a good algorithm

for evaluating a function f(x), then we can often turn it into an al-

gorithm for inverting f , i.e., for solving f(x) = y!

B.1. The Banach Contraction Principle

In what follows we will assume that X is a metric space and that

f : X → X is a continuous mapping of X to itself. Since f maps X

to itself, we can compose f with itself any number of times, so we

can define f0(x) = x, f1(x) = f(x), f2(x) = f(f(x)), and inductively

fn+1(x) = f(fn(x)). The sequence fn(x) is called the sequence of

iterates of x under f , or the orbit of x under f . By associativity

of composition, fn(fm(x)) = fn+m(x), and by Exercise A-1 of Ap-

pendix A, if K is a Lipschitz constant for f , then Kn is a Lipschitz
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constant for fn. We shall use both of these facts below without fur-

ther mention.

A point x of X is called a fixed point of f if f(x) = x. Notice

that finding a fixed point amounts to solving a special kind of equa-

tion. What may not be obvious is that solving many other types of

equations can often be reduced to solving a fixed-point equation. We

will give other examples later, but here is a typical reduction. As-

sume that V is a vector space and that we want to solve the equation

g(x) = y for some (usually nonlinear) map g : V → V . Define a new

map f : V → V by f(x) = x−g(x)+y. Then clearly x is a fixed point

of f if and only if it solves g(x) = y. This is in fact the trick used

to reduce the Inverse Function Theorem to the Banach Contraction

Principle.

The Banach Contraction Principle is a very general technique for

finding fixed points. First notice the following: if x is a point of

X such that the sequence fn(x) of iterates of x converges to some

point p, then p is a fixed point of f . In fact, by the continuity of f ,

f(p) = f(limn→∞ fn(x)) = limn→∞ f(fn(x)) = limn→∞ fn+1(x) =

p. We will see that if f is a contraction, then for any point x of X

the sequence of iterates of x is in any case a Cauchy sequence, so if

X is complete, then it converges to a fixed point p of f . In fact, we

will see that a contraction can have at most one fixed point p, and so

to locate this p when X is complete, we can start at any point x and

“follow the iterates of x to their limit”. This in essence is the Banach

Contraction Principle. Here are the details.

B.1.1. Fundamental Contraction Inequality. If f : X → X

is a contraction mapping and if K < 1 is a Lipschitz constant for f ,

then for all x1 and x2 in X,

ρ(x1, x2) ≤
1

1−K
(ρ(x1, f(x1)) + ρ(x2, f(x2))).

Proof. The triangle inequality,

ρ(x1, x2) ≤ ρ(x1, f(x1)) + ρ(f(x1), f(x2)) + ρ(f(x2), x2),
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together with ρ(f(x1), f(x2)) ≤ Kρ(x1, x2) gives

ρ(x1, x2)−Kρ(x1, x2) ≤ ρ(x1, f(x1)) + ρ(f(x2), x2).

Since 1−K > 0, the desired inequality follows.

This is a very strange inequality: it says that we can estimate

how far apart any two points x1 and x2 are just from knowing how

far x1 is from its image f(x1) and how far x2 is from its image f(x2).

As a first application we have

B.1.2. Corollary. A contraction can have at most one fixed

point.

Proof. If x1 and x2 are both fixed points, then ρ(x1, f(x1)) and

ρ(x2, f(x2)) are zero, so by the Fundamental Inequality ρ(x1, x2) is

also zero.

B.1.3. Proposition. If f : X → X is a contraction mapping,

then, for any x in X, the sequence fn(x) of iterates of x under f is a

Cauchy sequence.

Proof. Taking x1 = fn(x) and x2 = fm(x) in the Fundamental

Inequality gives

ρ(fn(x), fm(x)) ≤ 1

1−K
(ρ(fn(x), fn(f(x))) + ρ(fm(x), fm(f(x)))).

Since Kn is a Lipschitz constant for fn,

ρ(fn(x), fm(x)) ≤ Kn +Km

1−K
ρ(x, f(x)),

and since 0 ≤ K < 1, Kn → 0, so ρ(fn(x), fm(x)) → 0 as n and m

tend to infinity.

B.1.4. Banach Contraction Principle. If X is a complete

metric space and f : X → X is a contraction mapping, then f has a

unique fixed point p, and for any x in X the sequence fn(x) converges

to p.
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Proof. The proof is immediate from the above.

�Exercise B–1. Use the mean value theorem of differential calcu-

lus to show that if X = [a, b] is a closed interval and f : X → R

is a continuously differentiable real-valued function on X, then the

maximum value of |f ′| is the smallest possible Lipschitz constant for

f . In particular sin(1) (which is less than 1) is a Lipschitz constant

for the cosine function on the interval X = [−1, 1]. Note that for any

x in R the iterates of x under cosine are all in X. Deduce that no

matter where you start, the successive iterates of cosine will always

converge to the same limit. Put your calculator in radian mode, enter

a random real number, and keep hitting the cos button. What do the

iterates converge to?

As the above exercise suggests, if we can reinterpret the solution

of an equation as the fixed point of a contraction mapping, then it

is an easy matter to write an algorithm to find it. Well, almost—

something important is still missing, namely, when should we stop

iterating and take the current value as the “answer”? One possibility

is to just keep iterating until the distance between two successive

iterates is smaller than some predetermined “tolerance” (perhaps the

machine precision). But this seems a little unsatisfactory, and there

is actually a much neater “stopping rule”.

Suppose we are willing to accept an “error” of ε in our solu-

tion; i.e., instead of the actual fixed point p of f we will be happy

with any point p′ of X satisfying ρ(p, p′) < ε. Suppose also that

we start our iteration at some point x in X. It turns out that it

is easy to specify an integer N so that p′ = fN (x) will be a satis-

factory answer. The key, not surprisingly, lies in the Fundamental

Inequality, which we apply now with x1 = fN (x) and x2 = p. It

tells us that ρ(fN (x), p) ≤ 1
1−K ρ(fN (x), fN (f(x))) ≤ KN

1−K ρ(x, f(x)).

Since we want ρ(fN (x), p) ≤ ε, we just have to pick N so large that
KN

1−K ρ(x, f(x)) < ε. Now the quantity d = ρ(x, f(x)) is something

that we can compute after the first iteration and we can then com-

pute how large N has to be by taking the log of the above inequality

and solving for N (remembering that log(K) is negative). We can

express our result as
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B.1.5. Stopping Rule. If d = ρ(x, f(x)) and

N >
log(ε) + log(1−K)− log(d)

log(K)
,

then ρ(fN (x), p) < ε.

From a practical programming point of view, this allows us to

express our iterative algorithm with a “for loop” rather than a “while

loop”, but this inequality has another interesting interpretation. Sup-

pose we take ε = 10−m in our stopping rule inequality. What we see

is that the growth of N with m is a constant plus m/| log(K)|, or in
other words, to get one more decimal digit of precision we have to do

(roughly) 1/| log(K)| more iteration steps. Stated a little differently,

if we need N iterative steps to get m decimal digits of precision, then

we need another N to double the precision to 2m digits.

We say a numerical algorithm has linear convergence if it ex-

hibits this kind of error behavior, and if you did the exercise above

for locating the fixed point of the cosine function, you would have

noticed it was indeed linear. Linear convergence is usually considered

somewhat unsatisfactory. A much better kind of convergence is qua-

dratic, which means that each iteration should (roughly) double the

number of correct decimal digits. Notice that the actual linear rate

of convergence predicted by the above stopping rule is 1/| log(K)|.
So one obvious trick to get better convergence is to see to it that the

best Lipschitz constant for our iterating function f in a neighborhood

of the fixed point p actually approaches zero as the diameter of the

neighborhood goes to zero. If this happens at a fast enough rate, we

may even achieve quadratic convergence, and that is what actually

occurs in “Newton’s Method”, which we study next.

�Exercise B–2. Newton’s Method for finding
√
2 gives the itera-

tion xn+1 = xn/2 + 1/xn. Start with x0 = 1, and carry out a few

steps to see the impressive effects of quadratic convergence.

B.1.6. Remark. Suppose V and W are orthogonal vector spaces,

U is a convex open set in V , and f : U → W is a continuously dif-

ferentiable map. Let’s try to generalize the exercise above to find a
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Lipschitz constant for f . If p is in U , then recall that Dfp, the dif-

ferential of f at p, is a linear map of V to W defined by Dfp(v) =

(d/dt)t=0f(p+ tv), and it then follows that if σ(t) is any smooth path

in U , then d/dtf(σ(t)) = Dfσ(t)(σ
′(t)). If p and q are any two points

of U and if σ(t) = p+t(q−p) is the line joining them, then integrating

the latter derivative from 0 to 1 gives the so-called “finite difference

formula”: f(q)−f(p) =
∫ 1

0
Dfσ(t)(q−p) dt. Now recall that if T is any

linear map of V to W , then its norm ‖T‖ is the smallest nonnegative

real number r so that ‖Tv‖ ≤ r ‖v‖ for all v in V . Since
∥∥∥∫ b

a
g(t) dt

∥∥∥ ≤∫ b

a
‖g(t)‖ dt, ‖f(q)− f(p)‖ ≤ (

∫ 1

0

∥∥Dfσ(t)
∥∥ dt) ‖(q − p)‖, and it fol-

lows that the supremum of ‖Dfp‖ for p in U is a Lipschitz constant

for f . (In fact, it is the smallest one.)

B.2. Newton’s Method

The algorithm called “Newton’s Method” has proved to be an ex-

tremely valuable tool with countless interesting generalizations, but

the first time one sees the basic idea explained, it seems so utterly

obvious that it is hard to be very impressed.

Suppose g : R → R is a continuously differentiable real-valued

function of a real variable and x0 is an “approximate root” of g, in

the sense that there is an actual root p of g close to x0. Newton’s

Method says that to get an even better approximation x1 to p, we

should take the point where the tangent line to the graph of g at x0

meets the x-axis, namely x1 = x0−g(x0)/g
′(x0). Recursively, we can

then define xn+1 = xn − g(xn)/g
′(xn) and get the root p as the limit

of the resulting sequence {xn}.
Typically one illustrates this with some function like g(x) = x2−2

and x0 = 1 (see the exercise above). But the simple picture in this

case hides vast difficulties that could arise in other situations. The

g′(x0) in the denominator is a tip-off that things are not going to

be simple. Even if g′(x0) is different from zero, g′ could still vanish

several times (even infinitely often) between x0 and p. In fact, deter-

mining the exact conditions under which Newton’s Method “works”

is a subject in itself, and generalizations of this problem constitute

an interesting and lively branch of discrete dynamical systems theory.
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We will not go into any of these interesting but complicated questions,

but rather content ourselves with showing that under certain simple

circumstances we can derive the correctness of Newton’s Method from

the Banach Contraction Principle.

It is obvious that the right function f to use in order to make

the Contraction Principle iteration reduce to Newton’s Method is

f(x) = x−g(x)/g′(x) and that a fixed point of this f is indeed a root

of g. On the other hand it is clear that this cannot work if g′(p) = 0,

so we will assume that p is a “simple root” of g, i.e., that g′(p) �= 0.

Given δ > 0, let Nδ(p) = {x ∈ R | |x − p| ≤ δ}. We will show that

if g is C2 and δ is sufficiently small, then f maps X = Nδ(p) into

itself and is a contraction on X. Of course we choose δ so small that

g′ does not vanish on X, so f is well-defined on X. It will suffice to

show that f has a Lipschitz constant K < 1 on X, for then if x ∈ X,

then

|f(x)− p| = |f(x)− f(p)| ≤ K|x− p| < δ,

so f(x) is also in X.

But, by one of the exercises, to prove that K is a Lipschitz bound

for f in X, we only have to show that |f ′(x)| ≤ K in X. Now an easy

calculation shows that f ′(x) = g(x)g′′(x)/g′(x)2. Since g(p) = 0, it

follows that f ′(p) = 0 so, by the evident continuity of f ′, given any

K > 0, |f ′(x)| ≤ K in X if δ is sufficiently small.

The fact that the best Lipschitz bound goes to zero as we ap-

proach the fixed point is a clue that we should have better than linear

convergence with Newton’s Method, but quadratic convergence is not

quite a consequence. Here is the proof of that.

Let C denote the maximum of |f ′′(x)| for x in X. Since f(p) = p

and f ′(p) = 0, Taylor’s Theorem with Remainder gives |f(x) − p| ≤
C|x − p|2. This just says that the error after n + 1 iterations is

essentially the square of the error after n iterations.

Generalizing Newton’s Method to find zeros of a C2 map G :

Rn → Rn is relatively straightforward. Let x0 ∈ Rn be an ap-

proximate zero of G, again in the sense that there is a p close to x

with G(p) = 0. Let’s assume now that DGp, the differential of G

at p, is nonsingular and hence that DGx is nonsingular for x near
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p. The natural analogue of Newton’s Method is to define xn+1 =

xn −DG−1
xn

(G(xn)), or in other words to consider the sequence of it-

erates of the map F : Nδ(p) → Rn given by F (x) = x−DG−1
x (G(x)).

Again it is clear that a fixed point of F is a zero of G, and an argument

analogous to the one-dimensional case shows that for δ sufficiently

small F : Nδ(p) → Nδ(p) is a contraction.

B.3. The Inverse Function Theorem

Let V and W be orthogonal vector spaces and g : V → W a Ck map,

k > 0. Suppose that for some v0 in V the differential Dgv0 of g at

v0 is a linear isomorphism of V with W . Then the Inverse Function

Theorem says that g maps a neighborhood of v0 in V one-to-one onto

a neighborhood U of g(v0) in W and that the inverse map from U

into V is also Ck.

It is easy to reduce to the case that v0 and g(v0) are the respective

origins of V and W , by replacing g by v �→ g(v+ v0)− g(v0). We can

then further reduce to the case that W = V and Dg0 is the identity

mapping I of V by replacing this new g by (Dg0)
−1 ◦ g.

Given y in V , define f = fy : V → V by f(v) = v − g(v) + y.

Note that a solution of the equation g(x) = y is the same thing as a

fixed point of f . We will show that if δ is sufficiently small, then f

restricted to

X = Nδ = {v ∈ V | ‖v‖ ≤ δ}
is a contraction mapping of Nδ to itself provided ‖y‖ < δ/2. By the

Banach Contraction Principle it then follows that g maps Nδ one-to-

one into V and that the image covers the neighborhood of the origin

U = {v ∈ V | ‖v‖ < δ/2}. This proves the Inverse Function Theorem

except for the fact that the inverse mapping of U into V is Ck, which

we will not prove.

The first thing to notice is that since Dg0 = I, Df0 = 0 and

hence, by the continuity of Df , ‖Dfv‖ < 1/2 for v in Nδ provided

δ is sufficiently small. Since Nδ is convex, by a remark above, this

proves that 1/2 is a Lipschitz bound for f in Nδ and in particular

that f restricted to Nδ is a contraction. Thus it only remains to show

that f maps Nδ into itself provided ‖y‖ < δ/2. That is, we must
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show that if ‖x‖ ≤ δ, then also ‖f(x)‖ ≤ δ. But since f(0) = y,

‖f(x)‖ ≤ ‖f(x)− f(0)‖+ ‖f(0)‖

≤ 1

2
‖x‖+ ‖y‖

≤ δ/2 + δ/2 ≤ δ.

�Exercise B–3. The first (and main) step in proving that the in-

verse function h : U → V is Ck is to prove that h is Lipschitz. That is,

we want to find a K > 0 so that given y1 and y2 with ‖yi‖ < δ/2 and

x1 and x2 with ‖xi‖ < δ, if h(yi) = xi, then ‖x1 − x2‖ ≤ K ‖y1 − y2‖.
Prove this with K = 2, using the facts that h(yi) = xi is equivalent

to fyi
(xi) = xi and 1/2 is a Lipschitz constant for h = I − g.

B.4. The Existence and Uniqueness Theorem for ODE

Let V : Rn ×R → Rn be a C1 time-dependent vector field on Rn.

In the following I = [a, b] will be a closed interval that contains t0
and we will denote by C(I,Rn) the vector space of continuous maps

σ : I → Rn and define a distance function on C(I,Rn) by

ρ(σ1, σ2) = max
t∈I

‖σ1(t)− σ2(t)‖ .

It is not hard to show that C(I,Rn) is a complete metric space.

In fact, this just amounts to the theorem that a uniform limit of

continuous functions is continuous.

Define for each v0 in Rn a map F = FV,v0 : C(I,Rn) → C(I,Rn)

by F (σ)(t) := v0 +
∫ t

t0
V (σ(s), s) ds. The Fundamental Theorem of

Calculus gives d
dt (F (σ)(t)) = V (σ(t), t), and clearly F (σ)(t0) = v0. It

follows that if σ is a fixed point of F , then it is a solution of the ODE

σ′(t) = V (σ(t), t) with initial condition v0, and the converse is equally

obvious. Thus it is natural to try to find a solution of this differential

equation with initial condition v0 by starting with the constant path

σ0(t) ≡ v0 and applying successive approximations using the function

F . We will now see that this idea works and leads to the following

result, called the Local Existence and Uniqueness Theorem for C1

ODE.
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B.4.1. Theorem. Let V : Rn×R → Rn be a C1 time-dependent

vector field on Rn, p ∈ Rn, and t0 ∈ R. There are positive constants

ε and δ depending on V , p, and t0 such that if I = [t0 − δ, t0 + δ],

then for each v0 ∈ V with ‖v0 − p‖ < ε the differential equation

σ′(t) = V (σ(t), t) has a unique solution σ : I → Rn with σ(t0) = v0.

Proof. If ε > 0, then, using the technique explained earlier, we can

find a Lipschitz constant M for V restricted to the set of (x, t) ∈
Rn × R such that ‖x− p‖ ≤ 2ε and |t − t0| ≤ ε. Let B be the

maximum value of F (x, t) on this same set, and choose δ > 0 so that

K = Mδ < 1 and Bδ < ε, and define X to be the set of σ in C(I, V )

such that ‖σ(t)− p‖ ≤ 2ε for all |t| ≤ δ. It is easy to see that X is

closed in C(I, V ) and hence a complete metric space. The theorem

will follow from the Banach Contraction Principle if we can show that

for ‖v0‖ < ε, FV,v0 mapsX into itself and hasK as a Lipschitz bound.

If σ ∈ X, then ‖F (σ)(t)− p‖ ≤ ‖v0 − p‖ +
∫ t

0
‖V (σ(s), s)‖ ds ≤

ε + δB ≤ 2ε, so F maps X to itself. And if σ1, σ2 ∈ X, then

‖V (σ1(t), t)− V (σ2(t), t)‖ ≤ M ‖σ1(t)− σ2(t)‖, so

‖F (σ1)(t)− F (σ2)(t)‖ ≤
∫ t

0

‖V (σ1(s), s)− V (σ2(s), s)‖ ds

≤
∫ t

0

M ‖σ1(s)− σ2(s)‖ ds

≤
∫ t

0

Mρ(σ1, σ2) ds

≤ δMρ(σ1, σ2) ≤ Kρ(σ1, σ2)

and it follows that ρ(F (σ1), F (σ2)) ≤ Kρ(σ1, σ2).

                

                                                                                                               



Appendix C

Vector Fields as
Differential Operators

Let V = (p, v) be a point of Rn ×Rn. We are going to regard such a

pair asymmetrically as a “vector v based at the point p”, and as such

we will refer to it as a tangent vector at p. If σ : I → Rn is a C1

curve, then for each t0 in I, we get such a pair, (σ(t0), σ
′(t0)), which

we will denote by σ̇(t0) and call the tangent vector to σ at time t0.

Let C∞(Rn) denote the algebra of smooth real-valued functions on

Rn. If f ∈ C∞(Rn), then the directional derivative of f at p = σ(t0)

in the direction v = σ′(t0) is by definition
(

d
dt

)
t=t0

f(σ(t)), which by

the chain rule is equal to
∑n

i=1 vi
∂f
∂xi

(p). An important consequence

of the latter formula is that the directional derivative depends only

on σ̇(t0) = (p, v) and not on the choice of curve σ. (So we can for

example take σ to be the straight line σ(t) = p+ tv.)

This justifies using V f to denote the directional derivative and

regarding V as a (clearly linear) map V : C∞(Rn) → R. Moreover,

since V xi = vi, this map determines V , and it has become customary

to identify the tangent vector V with this linear map and denote V

alternatively by
∑n

i=1 vi

(
∂

∂xi

)
p
. In particular, taking vi = 1 for i = k

and vi = 0 for i �= k gives the tangent vector at p in the direction of

the xk coordinate curve, which we denote by
(

∂
∂xk

)
p
.

It is an immediate consequence of the product rule of differenti-

ation that the mapping V satisfies the so-called Liebniz Identity:

V (fg) = (V f)g(p) + f(p)(V g).
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Any linear map L : C∞(Rn) → R that satisfies this Leibniz Identity is

called a derivation at p. Note that such an L vanishes on a product fg

if both f and g vanish at p (and hence also on any linear combination

of such products).

�Exercise C–1. Show that if L is a derivation at p, then Lf = 0

for any constant function. (Hint: It is enough to prove this for f ≡ 1

[why?], but then f2 = f .)

�Exercise C–2. Show that if L is a derivation at p, then it is the

directional derivative operator defined by some tangent vector at p.

(Hint: Use Taylor’s Theorem with Integral Remainder to write any

f ∈ C∞(Rn) as

f = f(p) +
n∑

i=1

∂f

∂xi
(p)(xi − pi) +R,

where R is a linear combination of products of functions vanishing at

p.)

Now let O be open in Rn. A vector field in O is a function that

assigns to each p in O a tangent vector at p, (p, V (p)). Usually one

simplifies the notation by dropping the redundant first component,

p, and identifies the vector field with the mapping V : O → Rn. If

f : O → R is a smooth function on O, then V f : O → R is the

function whose value at p is V (p)f , the directional derivative of f at

p in the direction V (p). If both V and f are C∞, then clearly so is

V f , so that we may regard V as a linear operator on the vector space

C∞(O) of smooth real-valued functions on O.

�Exercise C–3. Suppose that V : O → Rn is a C∞ vector field in

O. Show that V : C∞(O) → C∞(O) is a derivation of the algebra

C∞(O), i.e., a linear map satisfying V (fg) = (V f)g + f(V g), and

show also that every derivation of C∞(O) arises in this way.

A vector field V is often identified with (and denoted by) the differ-

ential operator
∑n

i=1 Vi
∂

∂xi
.

There is an important special vector field R inRn called the radial

vector field , or the Euler vector field. As a mapping R : Rn → Rn,
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it is just the identity map, while as a differential operator it is given

by R :=
∑n

i=1 xi
∂

∂xi
. Recall that a function f : Rk → R is said to

be positively homogeneous of degree k if f(tx) = tkf(x) for all t > 0

and x �= 0.

�Exercise C–4. Prove Euler’s Formula
∑n

i=1 xi
∂f
∂xi

= kf for a C1

function f : Rn → R that is positively homogeneous of degree k.
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Coordinate Systems
and Canonical Forms

D.1. Local Coordinates

Let O be an open set in Rn. We say that an n-tuple of smooth real-

valued functions defined in O, (φ1, . . . , φn), forms a local coordinate

system for O if the map φ : p �→ (φ1(p), . . . , φn(p)) is a diffeomor-

phism, that is, if it is a one-to-one map of O onto some other open

set U of Rn and if the inverse map ψ := φ−1 : U → Rn is also

smooth. The relation of ψ to φ is clearly completely symmetrical,

and in particular ψ defines a coordinate system (ψ1, . . . , ψn) in U .

D.1.1. Remark. By the Inverse Function Theorem, the necessary

and sufficient condition for φ to have a smooth inverse in some neigh-

borhood of a point p is that the Dφp is an invertible linear map, or

equivalently that the differentials (dφi)p are linearly independent and

hence a basis for (Rn)∗. In other words, given n smooth real-valued

functions (φ1, . . . , φn) defined near p and having linearly indepen-

dent differentials at p, they always form a coordinate system in some

neighborhood O of p.

The most obvious coordinates are the “standard coordinates”,

φi(p) = pi, with O all of Rn (so φ is just the identity map). If

e1, . . . , en is the standard basis for Rn, then φ1, . . . , φn is just the

dual basis for (Rn)∗. We will usually denote these standard coordi-

nates by (x1, . . . , xn). More generally, given any basis f1, . . . , fn for

Rn, we can let (φ1, . . . , φn) be the corresponding dual basis. Such
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coordinates are called Cartesian. In this case, φ is the linear isomor-

phism of Rn that maps ei to fi. If the fi are orthonormal, then these

are called orthogonal Cartesian coordinates and φ is an orthogonal

transformation.

Why not just always stick with the standard coordinates? One

reason is that once we understand a concept in Rn in terms of ar-

bitrary coordinates, it is easy to make sense of that concept on a

general “differentiable manifold”. But there is another important rea-

son. Namely, it is often possible to simplify the analysis of a problem

considerably by choosing a well-adapted coordinate system. In more

detail, various kinds of geometric and analytic objects have numer-

ical descriptions in terms of a coordinate system. This observation

by Descartes is of course the basis of the powerful “analytic geom-

etry” approach to studying geometric questions. Now, the precise

numerical description of an object is usually highly dependent on the

choice of coordinate system, and it can be more or less complicated

depending on that choice. Frequently, there will be certain special

“adapted” coordinates with respect to which the numerical descrip-

tion of the object has a particularly simple so-called “canonical form”,

and facts that are difficult to deduce from the description with respect

to general coordinates can be obvious from the canonical form.

Here is a well-known simple example. An ellipse in the plane, R2,

is given by an implicit equation of the form ax2+by2+cxy+dx+ey+

f = 0, but if we choose the diffeomorphism that translates the origin

to the center of the ellipse and rotates the coordinate axes to be the

axes of the ellipse, then in the resulting coordinates ξ, η the implicit

equation for the ellipse will have the simpler form α2ξ2 + β2η2 = 1.

Notice that this diffeomorphism is actually a Euclidean motion, so

ξ and η are orthogonal Cartesian coordinates and even the metric

properties of the ellipse are preserved by this change of coordinates.

If that is not important in some context, we could instead use u :=

αξ and v := βη as our coordinates and work with the even simpler

equation u2 + v2 = 1.

This example illustrates the general idea behind choosing coordi-

nates adapted to a particular object Ω in some open set O. Namely,
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you should think intuitively of finding a diffeomorphism φ that moves,

bends, and twists Ω into an object Ωφ in U = φ(O), one that is in

a “canonical configuration” having a particularly simple description

with respect to standard coordinates. While one can apply this tech-

nique to all kinds of geometric and analytic objects, here we will

concentrate on three of the objects of greatest interest to us, namely

real-valued functions, f : O → R; smooth curves, σ : I → O; and

vector fields V defined in O.

First let us consider how to define fφ, σφ, and V φ. For functions

and curves the definition is almost obvious; namely fφ : U → R is

defined by fφ := f ◦φ−1 (so that fφ(φ1(x), . . . φn(x)) = f(x1, . . . , xn)

for all x ∈ O) and σφ : I → U is defined by σφ := φ ◦ σ.
Defining the vector field V φ in U from the vector field V in

O is slightly more tricky. At p in O, V defines a tangent vector,

(p, V (p)), that the differential of φ at p maps to a tangent vector at

q = φ(p), V φ(q) := (q,Dφp(V (p))). Written explicitly in terms of q

(and dropping the first component) gives the somewhat ugly formula

V φ(q) := Dφφ−1(q)V (φ−1(q)), but note that if the diffeomorphism

φ is linear (i.e., if the coordinates (φ1, . . . , φn) are Cartesian), then

Dφp = φ, so the formula simplifies to V φ = φV φ−1.

�Exercise D–1. Recall that the radial (or Euler) vector field R

on Rn is defined by R(x) = x, or equivalently, written as a differen-

tial operator using standard coordinates, R =
∑n

i=1 x
i ∂
∂xi . Show

that if φ is any linear diffeomorphism of Rn, then Rφ = R, or

equivalently, if (y1, . . . , yn) is any Cartesian coordinate system, then

R =
∑n

i=1 yi
∂

∂yi
. That is, the radial vector field has the remakable

property that it “looks the same” in all Cartesian coordinate sys-

tems. Show that any linear vector field L on Rn with this property

must be a constant multiple of the radial field. (Hint: The only linear

transformations that commute with all linear isomorphisms of Rn are

constant multiples of the identity.)

�Exercise D–2. Let f , σ, and V be as above.

a) Show that if σ is a solution curve of V , that is, if σ′(t) = V (σ(t)),

then σφ is a solution of V φ.
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b) Show that if f is a constant of the motion for V (i.e., V f ≡ 0),

then fφ is a constant of the motion for V φ.

A common reason for using a particular coordinate system is

that these coordinates reflect the symmetry properties of a geomet-

rical problem under consideration. While Cartesian coordinates are

good for problems with translational symmetry, they are not well

adapted to problems with rotational symmetry, and the analysis of

such problems can often be simplified by using some sort of polar

coordinates. In R2 we have the standard polar coordinates φ(x, y) =

(r(x, y), θ(x, y)) defined in O = the complement of the negative x-axis

by r :=
√

x2 + y2 and θ := the branch of arctan( yx ) taking values in

−π to π. In this case U is the infinite rectangle (0,∞) × (−π, π)

and the inverse diffeomorphism is given by ψ(r, θ) = (r cos θ, r sin θ).

Similarly, in R3 we can use polar cylindrical coordinates r, θ, z to deal

with problems that are symmetric under rotations about the z-axis or

polar spherical coordinates r, θ, ϕ for problems with symmetry under

all rotations about the origin.

�Exercise D–3. If f(x, y) is a real-valued function, then fφ(r, θ) =

f ◦φ−1(r, θ) = f(r cos θ, r sin θ), so if f is C1, then, by the chain rule,
∂fφ

∂r (r, θ) = ∂f
∂x cos θ+ ∂f

∂y sin θ, and similarly, ∂fφ

∂θ (r, θ) = −∂f
∂xr sin θ+

∂f
∂y r cos θ = −y ∂f

∂x + x∂f
∂y . Generalize this to find formulas for ∂fφ

∂φi
in

terms of the ∂f
∂xi for a general coordinate system φ.

�Exercise D–4. Show that a C1 real-valued function in the plane,

f : R2 → R, is invariant under rotation if and only if y ∂f
∂x = x∂f

∂y .

(Hint: The condition for f to be invariant under rotation is that

fφ(r, θ) should be a function of r only, i.e., ∂fφ

∂θ ≡ 0.)

D.2. Some Canonical Forms

Now let us look at the standard canonical form theorems for functions,

curves, and vector fields.

Recall that if f is a C1 real-valued function defined in some open

set G of Rn, then a point p ∈ G is called a critical point of f if

dfp = 0 and otherwise it is called a regular point of f . If p is a regular
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point, then we can choose a basis �1, . . . , �n of (Rn)∗ with �1 = dfp,

and by the remark at the beginning of this appendix it follows that

(f, �2, . . . , �n) is a coordinate system in some neighborhood O of p.

This proves the following canonical form theorem for smooth real-

valued functions:

D.2.1. Proposition. Let f be a smooth real-valued function

defined in an open set G of Rn and let p ∈ G be a regular point of f .

Then there exists a coordinate system (φ1, . . . , φn) defined in some

neighborhood of p such that fφ = φ1.

Informally speaking, we can say that near any regular point a smooth

function looks linear in a suitable coordinate system.

Next we will see that a straight line is the canonical form for a

smooth curve σ : I → Rn at a regular point, i.e., a point t0 ∈ I such

that σ′(t0) �= 0.

D.2.2. Proposition. If t0 is a regular point of the smooth curve

σ : I → Rn, then there is a diffeomorphism φ of a neighborhood

of σ(t0) into Rn such that σφ(t) = γ(t), where γ : R → Rn is the

straight line t �→ (t, 0, . . . , 0).

Proof. Without loss of generality we can assume that t0 = 0. Also,

since we can anyway translate σ(t0) to the origin and apply a linear

isomorphism mapping σ′(t0) to e1 = (1, 0, . . . , 0), we will assume

that σ(0) = 0 and σ′(0) = e1. Then if we define a map ψ near the

origin of Rn by ψ(x1, . . . , xn) = σ(x1) + (0, x2, . . . , xn), it is clear

that Dψ0 is the identity, so by the inverse mapping theorem, ψ maps

some neighborhood U of the origin diffeomorphically onto another

neighborhood O. By definition, ψ ◦ γ(t) = σ(t), so if φ = ψ−1, then

σφ(t) = φ ◦ σ(t) = γ(t).

Notice a pattern in the canonical form theorems for functions and

curves. If we keep away from “singularities”, then locally a function

or curve looks like the simplest example. This pattern is repeated for

vector fields. Recall that a singularity of a vector field V is a point

p where V (p) = 0, and the simplest vector fields are the constant

vector fields, such as ∂
∂x1 . The canonical form theorem for vector
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fields, often called the “Straightening Theorem”, just says that near

a nonsingular point a smooth vector field looks like a constant vector

field. Let’s try to make this more precise.

D.2.3. Definition. Let V be a vector field defined in an open set

O of Rn, and let φ = (φ1, . . . , φn) be local coordinates in O. We call

φ the flow-box coordinates for V in O if V φ = ∂
∂φ1

.

D.2.4. Remark. Let φ(x, y) = (r(x, y), θ(x, y)) denote polar co-

ordinates in R2. We saw above that if V = x ∂
∂y −y ∂

∂x , then V φ = ∂
∂θ ,

so that polar coordinates are flow-box coordinates for V .

D.2.5. The Straightening Theorem. If V is a smooth vector

field defined in an open set O of Rn and p0∈O is not a singularity of

V , then there exist flow-box coordinates for V in some neighborhood

of p0.

Proof. This is a very strong result; it easily implies both local exis-

tence and uniqueness of solutions and smooth dependence on initial

conditions. And as we shall now see, these conversely quickly give

the Straightening Theorem. Without loss of generality, we can as-

sume that p0 is the origin and V (0) = e1 = (1, 0, . . . , 0). Choose

ε > 0 so that for ‖p‖ < ε there is a unique solution curve of V ,

t �→ σ(t, p), defined for |t| < ε and satisfying σ(0, p) = p. The ex-

istence of ε follows from the local existence and uniqueness theorem

for solutions of ODE (Appendix B). Let U denote the disk of radius

ε in Rn and define ψ : U → Rn by ψ(x) = σ(x1, (0, x2, . . . , xn)). It

follows from smooth dependence on initial conditions (Appendix G)

that ψ is a smooth map.

�Exercise D–5. Complete the proof of the Straightening Theorem

by first showing that Dψ0 is the identity map (so ψ does define a

local coordinate system near the origin) and secondly showing that

V φ = ∂
∂φ1

, where φ := ψ−1. (Hint: Note that σ(0, (0, x2, . . . , xn)) =

(0, x2, . . . , xn), while
∂

∂x1
σ(x1, (0, . . . , 0)) = e1. The fact that Dψ0

is the identity is an easy consequence. Since t �→ σ(t, p) is a solution

curve of V , it follows that V (ψ(x)) = ∂
∂x1

ψ(x), and it follows that

Dψp maps ( ∂
∂x1

)p to V (ψ(p)). Use this to deduce V φ = ∂
∂φ1

.
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D.2.6. Definition. Let V : Rn → Rn be a smooth vector field. If

O is an open set in Rn, then a smooth real-valued function f : O → R

is called a local constant of the motion for V if V f ≡ 0 in O.

Notice that x2, x3, . . . , xn are constants of the motion for the

vector field ∂
∂x1

. Hence,

D.2.7. Corollary of the Straightening Theorem. If V is

a smooth vector field on Rn and p is any nonsingular point of V ,

then there exist n− 1 functionally independent local constants of the

motion for V defined in some neighborhood O of p.

(Functionally independent means that they are part of a coordinate

system.)

D.2.8. CAUTION. There are numerous places in the mathe-

matics and physics literature where one can find a statement to the

effect that every vector field on Rn has n−1 constants of the motion.

What is presumably meant is something like the above corollary, but

it is important to realize that such statements should not be taken

literally—there are examples of vector fields with no global constants

of the motion except constants. A local constant of the motion is

very different from a global one. If V is a vector field in Rn and f

is a local constant of the motion for V , defined in some open set O,

then if σ is a solution of V , f(σ(t)) will be constant on any interval I

such that σ(I) ⊆ O; however it will in general have different constant

values on different such intervals.

                

                                                                                                               



Appendix E

Parametrized Curves
and Arclength

For many purposes, the precise parametrization of a curve σ is not

important, in the sense that some property of the curve that we are

interested in is unchanged if we “reparametrize” the curve. Let us

look at just what reparametrization means. Suppose that t is a C1

function with a strictly positive derivative on a closed interval [α, β].

Then t is strictly monotonic, and hence it maps [α, β] one-to-one

onto some other closed interval [a, b]. Thus if σ : [a, b] → Rn is a

C1 parametrized curve, then σ̃ = σ ◦ t : [α, β] → Rn is another C1

parametrized curve which clearly has the same image as σ and is called

the reparametrization of σ defined by the parameter transformation

t. (If you like, you can think of t as a “variable that parameterizes

the points of the interval [α, β] by points of the interval [a, b]” and

with this interpretation σ and σ̃ become “the same”.) In particular,

given any interval [α, β], we always find an affine map t(τ ) = cτ + k

that maps it onto [a, b], so reparametrization allows us to adjust a

parameter interval as convenient in situations where parametrization

is not relevant.

A reparametrization of σ : [a, b] → R can always be thought of

as arising by starting from a positive, continuous function ρ : [a, b] →
R and letting t be the inverse function of its indefinite integral, τ .

In fact τ (t) :=
∫ t

a
ρ(ξ) dξ is a smooth C1 function with a positive

derivative, so it does indeed map [a, b] one-to-one onto some interval

[α, β], and by the inverse function theorem t := τ−1 : [α, β] → R is

C1 with a positive derivative. A very important special case of this is

reparametrization by arclength. Suppose that σ is nonsingular, i.e.,
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σ′ never vanishes. Define s : [a, b] → R by s(t) :=
∫ t

a
‖σ′(ξ)‖ dξ, and

recall that by definition it gives the arclength along σ from a to t.

This is a smooth map with positive derivative ‖σ′(t)‖ mapping [a, b]

onto [0, L], where L is the length of σ. The inverse function, t(s),

mapping [0, L] to [a, b], gives the point of [a, b] where the arclength

of σ measured from its left endpoint is s, and the curve s �→ σ(t(s))

is a reparametrization of σ called its reparametrization by arclength.

More generally, we say that a curve σ : [a, b] → Rn is parameterized

by arclength if the length of σ between σ(a) and σ(t) is equal to t−a,

and we say that σ is parametrized proportionally to arclength if that

length is proportional to t− a.

�Exercise E–1. Show that the length of a curve is unchanged by

reparametrization. (Hint: This follows from a combination of the

chain rule and the change of variables formula for an integral.)

�Exercise E–2. Show that a curve σ is parametrized proportion-

ally to arclength if and only if ‖σ′(t)‖ is a constant, and it is paramet-

rized by arclength if and only if that constant equals one.

�Exercise E–3. Prove the old saying, “A straight line is the short-

est distance between two points.” That is, if σ : [a, b] → Rn is

a C1 path of length L, then ‖σ(b)− σ(a)‖ ≤ L, with equality if

and only if σ is a straight line from σ(a) to σ(b). (Hint: As we

have just seen, we can assume without loss of generality that σ is

parametrized proportionally to arclength, i.e., that ‖σ′(t)‖ is a con-

stant. Let v := σ(b) − σ(a), so that what we must show is that

‖v‖ ≤ L with equality if and only if σ′ is a constant. If v = 0, i.e., if

σ(b) = σ(a), the result is trivial so we can assume v �= 0 and define

a unit vector e = v
‖v‖ , so that ‖v‖ = 〈v, e〉. Now v =

∫ b

a
σ′(t) dt, and

since e is a constant vector, ‖v‖ = 〈v, e〉 =
∫ b

a
〈σ′(t), e〉 dt. Finally

note that by the Schwarz Inequality, 〈σ′(t), e〉 ≤ ‖σ′(t)‖ and equality

holds for all t if and only if σ′(t) is a multiple of e for each t, and this

multiple must be a constant since ‖σ′(t)‖ is a constant.)

                

                                                                                                               



Appendix F

Smoothness
with Respect
to Initial Conditions

Suppose that V is a C1 vector field on Rn and assume that the

maximal solution σp of dx
dt = V (x) is defined on I = [a, b]. For each

x ∈ Rn, the differential of V at x is a linear map DVx : Rn → Rn,

and it is continuous in x since V is C1. Thus A(t) = DVσp(t) defines a

continuous map A : I → L(Rn). The differential equation dx
dt = A(t)x

is an example of the nonautonomous linear ODEs studied in Section

2.2. It is called the variational equation associated to the solution

σ. By the general theory of such equations developed in Chapter 2,

we know that for each ξ in Rn, the variational equation will have

a unique solution u(t, ξ) defined for t ∈ I and satisfying the initial

condition u(t0, ξ) = ξ. For each t in I, the map ξ �→ u(t, ξ) is a linear

map of Rn to itself that we will denote by δσp(t). What we are going

to see next is that the map (t, p) �→ σp(t) is C
1 and that δσp(t) is the

differential at p of the map q �→ σq(t) of R
n to itself. (Note that the

derivative of σp(t) with respect to t obviously exists and is continuous

since σp(t) satisfies σ
′
p(t) = V (σp(t)).)

�Exercise F–1. Check that if q �→ σq(t) is indeed differentiable

at p, then its differential must in fact be δσp(t). Hint: Calculate the

differential of both sides of the differential equation with respect to p

to see that Dσp(t)(ξ) satisfies the variational equation. On the right

side of the equation use the chain rule and on the left side interchange

the order of differentiation.
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Recall that (by definition of the differential of a mapping) in

order to prove that q �→ σq(t) is differentiable at p and that u(t, ξ) =

δσp(t)(ξ) is its differential at p in the direction ξ, what we need to

show is that if g(t) := ‖(σp+ξ(t)− σp(t))− u(t, ξ)‖, then 1
‖ξ‖g(t) goes

to zero with ‖ξ‖. What we will show is that there are fixed positive

constants C and M such that for any positive ε there exists a δ so

that g(t) < Cε ‖ξ‖ eMt provided ‖ξ‖ < δ, which clearly implies that
1

‖ξ‖g(t) goes to zero with ‖ξ‖, uniformly in t. To prove the latter

estimate, it will suffice by Gronwall’s Inequality to show that g(t) <

Cε ‖ξ‖+M
∫ t

0
g(s) ds.

�Exercise F–2. Derive this integral estimate. Hint: σp+ξ(t) =

p+ξ+
∫ t

0
V (σp+ξ(s)) ds and σp(t) = p+

∫ t

0
V (σp(s)) ds, while u(t, ξ) =

ξ +
∫ t

0
DV

σp(s)
u(s, ξ) ds. Taylor’s Theorem with Remainder gives

V (q + x)− V (q) = DVq(x) + ‖x‖ r(q, x) where ‖r(q, x)‖ goes to zero

with x, uniformly for q in some compact set. Take q = σp(s) and

x = σp+ξ(s)− σp(s) and verify that

g(t) = ‖ξ‖
∫ t

0
ρ(σp(s), σp+ξ(s)− σp(s)) ds+

∫ t

0
DV

σp(s)
g(s) ds.

Now choose M = sups∈I

∥
∥
∥DV

σp(s)

∥
∥
∥ and recall that from the theo-

rem on continuity with respect to initial conditions we know that

‖σp+ξ(s)− σp(s)‖ < ‖ξ‖ eKs. The rest is easy, and we have now

proved the case r = 1 of the following theorem.

F.0.1. Theorem on Smoothness w.r.t. Initial Conditions.

Let V be a Cr vector field on Rn, r ≥ 1, and let σp(t) denote the

maximal solution curve of dx
dt = V (x) with initial condition p. Then

the map (p, t) �→ σp(t) is C
r.

�Exercise F–3. Prove the general case by induction on r. Hint:

As we saw, the first-order partial derivatives are solutions of an ODE

whose right-hand side is of class Cr−1.
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Canonical Form
for Linear Operators

G.1. The Spectral Theorem

If V is an orthogonal vector space, then each element v of V defines

a linear functional fv : V → R, namely u �→ 〈u, v〉, and since fv(u) =

〈u, v〉 is clearly linear in v as well as u, we have a linear map v �→ fv of

V into its dual space V ∗. Moreover the kernel of this map is clearly 0

(since, if v is in the kernel, then ‖v‖2 = 〈v, v〉 = fv(v) = 0), and since

V ∗ has the same dimension as V , it follows by basic linear algebra

that this map is in fact a linear isomorphism of V with V ∗. We say

that v is dual to fv and vice versa.

Now let A : V → V be a linear map, and for each v in V let

A∗v in V be the element dual to the linear functional u �→ 〈Au, v〉;
that is, A∗v is defined by the identity 〈Au, v〉 = 〈u,A∗v〉. It is clear

that v �→ A∗v is linear, and we call this linear map A∗ : V → V the

adjoint of A. If A∗ = A, then we say that A is self-adjoint .

�Exercise G–1. Let L(V, V ) denote the space of linear operators

on V . Show that A �→ A∗ is a linear map of L(V, V ) to itself and that

it is its own inverse (i.e., A∗∗ = A). Show also that (AB)∗ = B∗A∗.

G.1.1. Proposition. Let A be a self-adjoint linear operator on

V and let W be a linear subspace of V . If W is invariant under A,

then so is W⊥.
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Proof. If u ∈ W⊥, we must show that Au is also in W⊥, i.e., that

〈w,Au〉 = 0 for any w ∈ W . Since Aw ∈ W by assumption, 〈w,Au〉 =
〈Aw, u〉 = 0 follows from u ∈ W⊥.

In what follows, A will denote a self-adjoint linear operator on V .

If λ is any scalar, than we denote by Eλ(A) the set of v in V such

that Av = λv. It is clear that Eλ(A) is a linear subspace of V , called

the λ-eigenspace of A. If Eλ(A) is not the 0 subspace of V , then

we call λ an eigenvalue of A, and every nonzero element of Eλ(A) is

called an eigenvector corresponding to the eigenvalue λ.

G.1.2. Proposition. If λ �= µ, then Eλ(A) and Eµ(A) are

orthogonal subspaces of V .

�Exercise G–2. Prove this. (Hint: Let u ∈ Eλ(A) and v ∈ Eµ(A).

You must show 〈u, v〉 = 0. But λ〈u, v〉 = 〈Au, v〉 = 〈u,Av〉 =

µ〈u, v〉.)
Note that it follows that a self-adjoint operator on an N -dimensional

orthogonal vector space can have at most N distinct eigenvalues.

G.1.3. Spectral Theorem for Self-Adjoint Operators. If A

is a self-adjoint operator on an orthogonal vector space V , then V

is the orthogonal direct sum of the eigenspaces Eλ(A) corresponding

to the eigenvalues λ of A. Equivalently, we can find an orthonormal

basis for V consisting of eigenvectors of A.

�Exercise G–3. Prove the equivalence of the two formulations.

We will base the proof of the Spectral Theorem on the following

lemma.

G.1.4. Spectral Lemma. A self-adjoint operator A : V → V

always has at least one eigenvalue unless V = 0.

Here is the proof of the Spectral Theorem. Let W be the direct

sum of the eigenspaces Eλ(A) corresponding to the eigenvalues λ of

A. We must show that W = V , or equivalently that W⊥ = 0. Now

W is clearly invariant under A, so by the first proposition of this

section, so is W⊥. Since the restriction of a self-adjoint operator
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to an invariant subspace is clearly still self-adjoint, by the Spectral

Lemma, if W⊥ �= 0, then there would be an eigenvector of A in W⊥,

contradicting the fact that all eigenvectors of A are in W .

The proof of the Spectral Lemma involves a rather pretty geo-

metric idea. Recall that we have seen that A is derivable from the

potential function U(v) = 1
2 〈Av, v〉, i.e., Av = (∇U)v for all v in V .

So what we must do is find a unit vector v where (∇U)v is propor-

tional to v provided V �= 0, i.e., provided the unit sphere in V is not

empty. In fact, something more general is true.

G.1.5. Lagrange Multiplier Theorem (Special Case). Let

V be an orthogonal vector space and f : V → R a smooth real-valued

function on V . Let v denote a unit vector in V where f assumes its

maximum value on the unit sphere S of V . Then (∇f)v is a scalar

multiple of v.

Proof. The scalar multiples of v are exactly the vectors normal to S

at v, i.e., orthogonal to all vectors tangent to S at v. So we have to

show that if u is tangent to S at v, then (∇f)v is orthogonal to u, i.e.,

that 〈u, (∇f)v〉 = dfv(u) = 0. Choose a smooth curve σ(t) on S with

σ(0) = v and σ′(0) = u (for example, normalize v + tu). Then since

f(σ(t)) has a maximum at t = 0, it follows that (d/dt)t=0f(σ(t)) = 0.

But by definition of df , (d/dt)t=0f(σ(t)) = dfv(u).

G.1.6. Definition. An operator A on an orthogonal vector space

V is positive if it is self-adjoint and if 〈Av, v〉 > 0 for all v �= 0 in V .

�Exercise G–4. Show that a self-adjoint operator is positive if and

only if all of its eigenvalues are positive.

�Exercise G–5. Verify the intuitive fact that a unit vector v is

orthogonal to all vectors tangent to the unit sphere at v. (Hint:

Choose σ as above and differentiate the identity 〈σ(t), σ(t)〉 = 1.)

�Exercise G–6. Show that another equivalent formulation of the

Spectral Theorem is that a linear operator on an orthogonal vector

space is self-adjoint if and only if it has a diagonal matrix in some

orthonormal basis.

                

                                                                                                               



Appendix H

Runge-Kutta Methods

In this appendix we will analyze the conditions on the coefficients of

an explicit Runge-Kutta Method that are necessary and sufficient to

guarantee convergence with accuracy of order P . In particular, we

will establish the connection between these conditions and the set of

rooted trees with no more than P nodes. As a consequence, we will

be able to show that there are r-stage methods of order r for r ≤ 4

but not for r > 4.

We begin by briefly considering more general one-step methods,

yn+1 = F (tn, yn, f, h), for approximating solutions of the scalar ODE

y′ = f(t, y(t)).

The local truncation error at tn is the quantity εn defined by

y(tn+1) := F (tn, y(tn), f, h) + εn.

From our discussion following the convergence analysis of Euler’s

Method in the body of the text, we can show that a 0-stable one-step

method will converge to a solution of the ODE y ∈ CP+1[to, to + T ]

with global order of accuracy P if |εn| ≤ ChP+1 for some C > 0

depending only on maxt∈(to,to+T ) |y(P+1)(t)|.
One approach to constructing methods satisfying such an esti-

mate is to define them using Taylor’s Theorem with Remainder by

letting F (tn, yn, f, h) =
∑P

p=0 y
(p)(tn)/p! h

p be the Taylor polyno-

mial of degree p for y(t) centered at tn and evaluated at tn+1. To

implement this idea, we must be able to express y(k)(tn) in terms

of f and its derivatives evaluated at (tn, yn). The resulting one-step

methods are known as Taylor Methods. Taylor Methods are an option
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if the vector field that defines the ODE is given in a form that can be

differentiated symbolically, which is not always the case.

To demonstrate how this would be carried out, and for later use,

we examine the expressions for the first few derivatives of y in terms

of f and its derivatives. We ignore the differential equation at first

and differentiate g(t) = f(t, y(t)) and use multi-index notation for

mixed partial derivatives,

fk,l = ∂k,lf(t, y) =
∂k+lf

∂tk∂yl
.

In this form, we can distinguish terms arising from differentiating f

from those that arise by differentiating factors of y coming from the

chain rule—terms that we will eventually also write in terms of f .

Because of equality of mixed partial derivatives, these terms exhibit

a binomial pattern,

y′ = f,

y′′ = f1,0 + ff0,1,

y′′′ = [f2,0 + 2ff1,1 + f2f0,2] + [(f1,0 + ff0,1)f0,1].

(H.1)

Even when this procedure is possible, by hand or with automatic

symbolic differentiation, the number of terms required to carry the ex-

pansion to high order can yield diminishing returns with the growing

cost of evaluation.

An alternate approach originally proposed and developed by

Runge and Kutta only requires evaluation of f at arbitrary (t, y) val-

ues to match the terms of Taylor polynomial above to order p. Runge-

Kutta Methods approximate (y(tn+1) − y(tn))/h using a weighted

average of samples of the vector field f(t, y) that defines an ODE.

For the method to be explicit, locations of the samples must be cho-

sen based upon information obtained in previous samples. Because of

this, the general form of an explicit one-stage Runge-Kutta Method is

yn+1 = yn + hγ0f(tn, yn). For the right-hand side to match the first-

order terms of the Taylor expansion above, we must have γ0 = 1. This

tells us that Euler’s Method is the unique explicit one-stage Runge-

Kutta Method that is convergent. No higher-order terms occur when

a one-stage method is used.
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The general form of an explicit two-stage Runge-Kutta Method

is
y′n,1 = f(tn, yn),

y′n,2 = f(tn + β21h, yn + hβ21y
′
n,1),

yn+1 = yn + h(γ1y
′
n,1 + γ2y

′
n,2).

(H.2)

Two of the example methods in the text fit this pattern, the midpoint

method (β12 = 1/2, γ1 = 0, γ2 = 1) and Heun’s Method (β12 =

1, γ1 = γ2 = 1/2). Both solved the second-order accuracy model

problem exactly and also appeared to converge to the solution of the

absolute stability model problem with second-order accuracy.

To estimate the local truncation error of these methods, we per-

form Taylor expansions of the terms of the general explicit 2-stage

Runge-Kutta Methods. Substituting y′n,1 in the definition of y′n,2,

y′n,2 = f(tn + β21h, yn + hβ21f).

Then by Taylor expanding in powers of the perturbations (to first

order to obtain hy′ terms to second order),

y′n,2 = f + β21h(f
1,0 + ff0,1) +O(h2).

When this is inserted in the expression for yn+1, we find

yn+1 = yn + h(γ1 + γ2)f +
h2

2
2γ2β21(f

1,0 + ff0,1) +O(h3).

Comparing this with (H.1), the conditions for this expansion to match

the first two terms of the Taylor series

y(tn+1) = y(tn) + hy′n +
h2

2
y′′n +O(h3)

are
γ1 + γ2 = 1,

2γ2β21 = 1.

We may use γ2 to parametrize a family, γ1 = 1 − γ2, β21 = 1/(2γ2),

of solutions of these equations. It is straightforward to check that the

midpoint method and Heun’s Method satisfy these conditions.
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The parameters of a Runge-Kutta Method are often displayed in

the form of a so-called Butcher tableau:

0

α2 β21

...
...

. . .

αr βr1 · · · βr(r−1)

γ1 γ2 · · · γr

The Butcher tableau for the midpoint method is

0

1
2

1
2

0 1

The modified trapezoidal method is displayed in this format as

0

1 1

1
2

1
2

If we expanded y′n,2 to higher order, we would discover that three

parameters do not provide enough freedom to obtain a method of

order 3. In order to satisfy the two additional h3 conditions appearing

in square brackets in the expression (H.1) for y′′′, another stage is

needed.

The form of an explicit Runge-Kutta Method with r = 3 stages

is
y′n,1 = f(tn, yn),

y′n,2 = f(tn + β21h, yn + hβ21y
′
n,1),

y′n,3 = f(tn + (β31 + β32)h, yn + h(β31y
′
n,1 + β32y

′
n,2)),

yn+1 = yn + h(γ1y
′
n,1 + γ2y

′
n,2 + γ3y

′
n,3).
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The coefficient of h4

4! in the Taylor expansion of y(t + h) in terms of

f and its derivatives is

y(4) = [f3,0 + 3ff2,1 + 3f2f1,2 + f3f0,3]

+ [3(f1,0 + ff0,1)(f1,1 + ff0,2)]

+ [(f2,0 + 2ff1,1 + f2f0,2 + (f1,0 + ff0,1)f0,1)f0,1].

It clearly becomes worthwhile to find a framework to simplify the

development and comparison of the Taylor and Runge-Kutta sides

of these expansions to higher orders. The autonomous scalar case

is exceptional, as can be seen by setting all t-derivatives to zero in

the expressions above. For greater generality, we shift our setting

and notation and now consider an RD vector-valued f(y) and y(t)

that is a solution of y′ = f(y). The nonautonomous case can be put

into this form using the standard device of replacing t by additional

dependent variables yD+1 satisfying y′D+1 = 1. In this setting, the

general r-stage explicit Runge-Kutta Method takes the form

yn+1 = yn + h

r∑

i=1

γiy
′
n,i, (H.3)

where

y′
n,i = f(yn,i), with yn,i = yn + h

i−1∑

j=1

βi,jy
′
n,j . (H.4)

An elegant formalism for organizing, visualizing, and understand-

ing both the Taylor expansion of the solution y(tn+h) and the Runge-

Kutta expansion of yn+1 obtained by Taylor expanding the terms in

(H.3) and (H.4) has been developed and advocated by Butcher [BJ],

following on the work of Gill [GS] and Merson [MRH]. This approach

associates terms in both expansions with rooted trees. To motivate

it, we begin by reviewing the formal Taylor expansion to degree 5 for

a function y(t) : R → Rn satisfying y′ = f(y), where f is a smooth

function from Rn to Rn,

y(t+ h) = y(t) + y′(t)h+ y′′(t)
h2

2!
+ · · ·+ y(k)(t)

hk

k!
+ · · · ,
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and then give the representation of its terms using rooted trees. We

wish to represent the derivatives y(k)(t) in terms of f and its deriva-

tives. Here, in the column on the left, we list successive derivatives

of the function g(t) = f(y(t)) where again at first we ignore the dif-

ferential equation:

g(t) = f(y(t)) = f , y′, 1,

g′(t) = fyy
′, y′′, 1,

g′′(t) = fyyy
′2 + fyy

′′, y′′′, 1 + 1 = 2,

g′′′(t) = fyyyy
′3 + 3fyyy

′y′′ + fyy
′′′, y(4), 1 + 1 + 2 = 4,

g(4)(t)= fyyyyy
′4 + 6fyyyy

′2y′′

+3fyyy
′′y′′

+4fyyy
′y′′′ + fyy

(4), y(5), 1 + 1 + 1 + 2 + 4 = 9.

In the column on the right, we list the correspondence between each

derivative of g and the next higher derivative of y. We also list the

number of terms that each row represents as a sum. The terms of

the sum refer recursively to terms from previous rows that appear

in subsequent rows and the numbers of terms they represent. Recall

that the kth derivative of f with respect to y is a symmetric k-linear

function from (Rn)k → Rn. For k > 1, the symmetry is nontrivial

and decreases the number of its independent coefficients with respect

to a basis from nk+1 accordingly. For example, when k = 2 there are

n(n(n+ 1))/2 independent components.

Next we expand the rows recursively to write the Taylor expan-

sion as a linear combination of elementary differentials. These are

multilinear operator compositions that express y(k) in terms of f and

its derivatives evaluated at t. Since fy...y is an operator with k ar-

guments, we will use a naturally related notation for lists that will

be familiar to those who have encountered the artificial intelligence

programming language LISP. For our purposes, a list begins with an

open parentheses and the first element, the kth partial derivative of f

with respect to y for some k ≥ 0, followed by k sublists, then a close

parentheses. If a sublist has zero sublists, we omit its parentheses,

and we can close all open parentheses with a right square bracket.

(Our convention will be to do so when more than two are open.)
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The internal representation of such a list in a LISP interpreter is

in the form of a rooted tree data structure, the same algebraic struc-

ture that has been used to visualize and organize the terms of Taylor

and Runge-Kutta expansions and their relationship. This suggests

that LISP may be convenient for performing calculations involved in

the derivation and analysis of Runge-Kutta Methods. A rooted tree

is a set of nodes connected by edges oriented away from a distin-

guished node called the root, so it is a connected simple graph that

contains no cycles, i.e., a tree. Graphically, we represent the lists

associated with an elementary differential by a root node labeled by

fy...y (k partial derivatives) attached to k subtrees corresponding to

those sublists. Lists with no sublists are leaves—terminal nodes with

no edges leaving them:

y′(t) = (f) = f ,

y′′(t) = (fy f),

y′′′(t) = (fyy f f) + (fy (fy f)),

y(4)(t) = (fyyy f f f) + 3(fyy(fy f) f) + (fy(fyy f f)) + (fy(fy(fy f ],

y(5)(t) = (fyyyy f f f f) + 6(fyyy(fy f) f f) + 3(fyy(fy f)(fy f))

+ 4(fyy(fyy f f) f) + 4(fyy(fy(fy f)) f) + (fy(fyyy f f f))

+ 3(fy(fyy(fy f) f)) + (fy(fy(fyy f f ] + (fy(fy(fy(fy f ].

We implicitly evaluate f and its derivatives at y(t). We will refer to

the lth term of the kth-order (row) formal Taylor expansion above as

T k
l . Observe that each different term of a particular order arises from

terms of the previous order from the vector-valued Leibniz rule and

chain rule, through the addition of one derivative to each operator

factor (we consider arguments f as preceded by a 0th-order identity

operator) and adding a corresponding argument y′ = f . In terms of

rooted trees, this corresponds to the process of constructing all rooted

trees with k nodes by attaching a new edge and leaf to each node (one

at a time) of each rooted tree with k−1 nodes. The coefficients in the

equations above represent the number of distinct ways each such tree

can be built in this manner. Instead of expanding existing trees with

new leaves, we will see that the new rooted trees that occur at the rth

stage of a Runge-Kutta expansion are built by joining any number of
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trees built at the (r − 1)st stage to a new root node. By considering

the multiplicities of ways the trees are built in both models and the

coefficients that arise from the Runge-Kutta weighting coefficients,

we will obtain the matching conditions that are necessary to achieve

a certain order of accuracy.

Below, we exhibit the rooted trees corresponding to each term

T k
l in the Taylor expansion above, along with their associated coef-

ficients in that expansion. The coefficients in the numerators that

represent multiplicities of the various terms in the expansion can be

interpreted and determined directly in terms of the number of ways

the corresponding trees can be constructed by repeatedly attaching

an edge and leaf to any node of smaller trees, starting from an initial

root node. For example, the factor 3 associated with T 4
2 corresponds

to the fact that it can be obtained by attaching an edge and leaf to

either of the two leaves of T 3
1 or by attaching an edge and leaf to

the root node of T 3
2 . Similarly, the factor 6 associated with T 5

2 cor-

responds to the fact that it can be obtained either by attaching an

edge and leaf to any of the three leaves of T 4
1 or by attaching an edge

and leaf to the root node of T 4
2 that itself has multiplicity 3.

f
fy f

fyy
f

f
fy fy f

T 1
1 : (f), 1

1!
T 2
1 : (fy f), 1

2!
T 3
1 : (fyy f f), 1

3!
T 3
2 : (fy (fy f)), 1

3!

fyyy

f

f

f

fyy
fy f

f

fy fyy
f

f

T 4
1 : (fyyy f f f), 1

4!
T 4
2 : (fyy (fy f) f), 3

4!
T 4
3 : (fy (fyy f f)), 1

4

fy fy fy f

fyyyy

f

f

f

f

fyyy

fy f

f

f

T 4
4 : (fy (fy (fy f ], 1

4!
T 5
1 : (fyyyy f f f f), 1

5!
T 5
2 : (fyyy (fy f) f f), 6

5!

                

                                                                                                               



H. Runge-Kutta Methods 271

fyy

fy f

fy f

fyy
fyy

f

f

f

fyy
fy fy f

f

T 5
3 : (fyy (fy f)(fy f)), 3

5!
T 5
4 : (fyy (fyy f f) f), 4

5!
T 5
5 : (fyy (fy (fy f)) f), 4

5!

fy fyyy

f

f

f

fy fyy
fy f

f

T 5
6 : (fy (fyyy f f f)), 1

5!
T 5
7 : (fy (fyy (fy f) f)), 3

5!

fy fy fyy
f

f
fy fy fy fy f

T 5
8 : (fy (fy (fyy f f ], 1

5!
T 5
9 : (fy (fy (fy (fy f ], 1

5!

Below, we will perform Taylor expansions of the terms in the

Runge-Kutta samples (H.4) for r = 4 stages through order h3. When

we form their weighted sum (H.3), this yields terms up to order h4.

These Runge-Kutta expansions very quickly become horrendous, but

when they are interpreted in terms of rooted trees, another surpris-

ingly simple pattern describing the terms present at each stage and

their coefficients quickly emerges, just as we saw for Taylor expansion

of y(t+h). Before we wade through the formulas, we preview the al-

gebraic and analytical basis for this pattern and its consequences for

determining the order of an r-stage Runge-Kutta Method. In (H.4)

we have used yn,i to denote the arguments of the sample of f that

defines the y′
n,i. The first stage of any explicit Runge-Kutta Method

simply samples the vector field at the current time-step, yn,1 = yn.

Then for any method other than Euler’s Method, another stage sam-

ples f at yn,2 = yn+h(β21y
′
n,1), and we can formally expand f(yn,2)

about yn in a Taylor series of the form
∑∞

l=0(
fy···y
l! (hβ21f)

l). If a

third stage is used, it samples f at yn,3 = yn + h(β31y
′
n,1 + β32y

′
n,2).

Expanding f(yn,3) in powers of h involves substituting the prior ex-

pansion of y′
n,2, combining like terms with y′

n,1 in the perturbation

of yn in the argument (here just f), and then expanding in powers
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of the resulting power series. The lth power of this series results in

terms of the form
fy···y
l! operating on l-fold products of its terms. Any

l terms whose orders in h sum to a particular order contribute to the

overall result at that order, much like the convolution of coefficients

that gives the coefficient of a certain order in a polynomial product.

Any subsequent stage can be expanded in the same manner. The

description of this process in terms of rooted trees is simply that new

trees are built by attaching any number of trees obtained at the prior

stage to a new root node. In the ith stage we expand the evalua-

tion of f at yn,i = y + h(βi1y
′
n,1 + · · ·+ βi(i−1)y

′
n,i−1). To do so, we

first collect like terms in the expansions we have already obtained for

y′
n,1, . . . ,y

′
n,i−1 to obtain a single expansion yn,i = y +

∑
(Tmhm)l.

This simply involves summing the parameters for the current stage

times the corresponding coefficients obtained at the previous stage.

Then the (
fy···y
l! (

∑
Tmhm)l) term of the Taylor expansion of f(yn,i)

is comprised of terms of the form (fy···y Ti1 · · ·Tim). This is repre-

sented as a rooted tree whose root node is attached to the m trees

corresponding to the terms Ti1 , . . . , Tim in the prior stage of the ex-

pansion. Now here is the expansion for r = 4.

y′
n,1 = f(yn) = f ,

y′
n,2 = f(yn + h(β21y

′
n,1)) = f(yn + h(β21f))

= f + (fy (hβ21f))

+ (
fyy
2!

(hβ21f)
2) + (

fyyy
3!

(hβ21f)
3) + · · ·

= f + hβ21(fy f) +
h2

2!
β2
21(fyy f f) +

h3

3!
β3
21 (fyyy f f f) + · · · ,

y′
n,3 = f(yn + h(β31y

′
n,1 + β32y

′
n,2))

= f(yn + h(β31 + β32)f

+ h2β32β21(fy f) +
h3

2!
β32β

2
21(fyy f f) + · · · )
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= f + (fy (h(β31 + β32)f

+ h2β32β21(fy f) +
h3

2!
β32β

2
21(fyy f f) + · · · ))

+ (
fyy
2!

(h(β31 + β32)f + h2β32β21(fy f) + · · · )2)

+ (
fyyy
3!

(h(β31 + β32)f + · · · )3) + · · ·

= f + h(β31 + β32)(fy f) + h2β32β21(fy (fy f))

+
h3

2!
β32β

2
21(fy (fyy f f)) + · · ·

+
h2

2!
(β31 + β32)

2(fyy f f)

+
2h3

2!
(β31 + β32)β32β21(fyy (fy f) f)

+
h3

3!
(β31 + β32)

3(fyyy f f f) + · · · ,

y′
n,4 = f(yn + h(β41y

′
n,1 + β42y

′
n,2 + β43y

′
n,3))

= f(yn+h(β41+β42+β43)f + h2(β42β21 + β43(β31 + β32))(fy f)

+
h3

2!
(2β43β32β21(fy (fy f))

+ (β42β
2
21 + β43(β31 + β32)

2)(fyy f f)) + · · · )
= f + (fy(h(β41+β42+β43)f+h2(β42β21+β43(β31+β32))(fy f)

+
h3

2!
(2β43β32β21(fy (fy f))

+ (β42β
2
21 + β43(β31 + β32)

2)(fyy f f)) + · · · ))

+ (
fyy
2!

(h(β41 + β42 + β43)f

+ h2(β42β21 + β43(β31 + β32))(fy f) + · · · ))2

+ (
fyyy
3!

(h(β41 + β42 + β43)f + · · · ))3 + · · ·
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= f + h(β41 + β42 + β43)(fy f)

+ h2(β42β21 + β43(β31 + β32))(fy (fy f))

+
h3

2!
(2β43β32β21(fy (fy (fy f)))

+ (β42β
2
21 + β43(β31 + β32)

2)(fy (fyy f f) + · · · ))

+
h2

2!
(β41 + β42 + β43)

2(fyy f f)

+
2h3

2!
(β41+β42+β43)(β42β21+β43(β31+β32))(fyy(fy f) f)+ · · ·

+
h3

3!
((β41 + β42 + β43)

3(fyyy f f f) + · · · ).

Below is a summary of the elementary differential terms that ap-

peared in the expansion, according to their order in h. The notation

Ri
l,m identifies the order hi, the order l of the leading derivative of

f , and the index m among such terms. Next to this is the T k
j of the

corresponding term in the Taylor expansion, followed by the equa-

tion of coefficients from the corresponding expansions. Recall the

notation αi =
∑i−1

j=1 βij for expressions that appear repeatedly in the

expansion.

hk,
Elementary RK coefficient
Differential Ri

l,m T k
j = T coefficient

h1(f) R1
1,1 T 1

1 γ1 + γ2 + γ3 + γ4 = 1
1!

h2(fy f) R2
1,1 T 2

1 γ2α2 + γ3α3 + γ4α4 = 1
2!

h3(fyy f f) R2
2,1 T 3

1
1
2!
(γ2α2

2 + γ3α2
3 + γ4α2

4) = 1
3!

h3(fy (fy f)) R3
1,1 T 3

2 γ3β32α2 + γ4(β42α2 + β43α3) = 1
3!

h4(fyyy f f f) R2
3,1 T 4

1
1
3!
(γ2α3

2 + γ3α3
3 + γ4α3

4) = 1
4!

h4(fy (fyy f f)) R3
1,2 T 4

3
1
2!
(γ3β32α2

2 + γ4(β42α2
2 + β43α2

3)) = 1
4!

h4(fyy (fy f) f) R3
2,1 T 4

3 γ3α3β32α2 + γ4α4(β42α2 + β43α3) = 3
4!

h4(fy (fy (fy f ] R4
1,1 T 4

4 γ4β43β32α2 = 1
4!

The rooted trees Ri
l,m corresponding to elementary differentials

up to order k = 4 are shown below in order of their occurrence in

stages i = 1, . . . , 4 of the Runge-Kutta approximation. Within a
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stage, we have listed trees by the order l of the l-fold product that

produces them, i.e., by how many previously existing trees are at-

tached to a new root node in order to construct the tree.

i i · i
·
·

R1
1,1 :

∑
i γi = 1 R2

1,1 :
∑

γiαi =
1
2 R2

2,1 :
∑

γiα
2
i = 1

3

i

·
·
· i j · i j

·
·

R2
3,1 :

∑
i γiα

3
i = 1

3 R3
1,1 :

∑∑
γiβijαj =

1
6 R3

1,2 :
∑∑

γiβijα
2
j = 1

12

i
j ·
·

i j k ·

R3
2,1 :

∑∑
γiαiβijαj =

1
8 R4

1,1 :
∑∑∑

γiβijβjkαk = 1
24

Just as for the first-order Taylor expansion of y(t + h), there is

only one tree at the first stage of the Runge-Kutta expansion, the

tree corresponding to f itself. However, at the second stage, there is

already an infinite family of trees corresponding to the infinite series of

terms (fy···y f · · · f) with l y’s and operands f for l = 0, 1, . . . . So while

the third-order tree corresponding to (fyy f f) appears at the second

stage, the other third-order tree corresponding to (fy (fy f)) does

not. This tree only appears in the first-order term of the expansion

of this series at the third stage when (fy is added in front of existing

terms including (fy f), or in tree form, the tree corresponding to

(fy f) is attached to a new root node. Carrying this further, we

can see that the tree with r nodes having depth r − 1 corresponding

to the elementary differential of the form (fy (fy . . . (fy f ] does not

occur until the rth stage of a Runge-Kutta expansion. Note that the

tree corresponding to (fyy f f), and in fact every tree that occurs at

the second stage, also recurs as the first term in each order at every

subsequent stage.
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Conversely, since every tree with r nodes arises by attaching some

number of trees with strictly fewer nodes to its root, every tree with

r nodes does occur by the rth stage. This shows that r stages are

necessary for a Runge-Kutta expansion to match a Taylor expansion

to order r, because at least one term is missing with fewer stages. It

also shows that all of the terms necessary for matching are present at

the rth stage, but sufficiency depends upon the relation between the

number of parameters, r(r+1)/2, that define an r stage method and

the number of coefficient equations corresponding to the elementary

differential (or rooted tree) up to a given order. In particular, we have

seen that there is one parameter for one-stage methods and one tree

for first-order agreement, and one method, Euler’s Method, satisfies

the matching conditions. There are three parameters for two-stage

methods, and only two trees of order two or less, resulting in a one-

parameter family of explicit two-stage Runge-Kutta Methods of order

two. There are three more parameters for three-stage methods, and

with two more trees at order three with conditions to match, we

reach a two-parameter family of three-stage methods of order three.

With four more parameters for a four-stage method, but also four

additional trees with four nodes, there will again be a two-parameter

family of four-stage methods of order four. But since there are nine

rooted trees having five nodes, two free fourth-stage parameters plus

five new fifth-stage parameters are still deficient by two. Six stages

are required to achieve a fifth-order method.

The conditions for matching the Runge-Kutta and Taylor ex-

pansion terms involving an elementary differential can be obtained

directly from the structure of the corresponding rooted tree. For this

purpose, we relabel the nonleaf nodes with index symbols for summa-

tion. Note that the earlier labeling with y-derivatives of f was helpful

but not actually necessary to recover the elementary differential, and

the same holds here for recovering coefficients. The coefficients devel-

oped in successive stages arose from summing over the β parameters

of the method times corresponding coefficients of previous elementary

differential terms. Therefore, each time we attach an existing node to

a new root node, we contribute a sum of the corresponding β coeffi-

cients to the coefficient corresponding to the resulting tree. Each leaf
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node contributes αi = βij for the stage it represents and therefore

does not need to be indexed. Though the purposes are slightly differ-

ent, the form in which β coefficients appear is the same as that of the

γ coefficients. The β’s are used to construct evaluation points for f ,

y′n,i = f(yn,i), with yn,i = yn+βn,1y
′
n,1+ · · ·+βn,iy

′
n,i−1. When we

have obtained sufficiently many (i.e., r) of these evaluations, the γ’s

are used to obtain yn+1 = yn + γn,1y
′
n,1 + · · ·+ γn,ry

′
n,r. Because of

this, the form of the coefficient formula associated with a particular

tree is the same regardless of the number of stages of the method in

which it appears. In other words, the coefficient formulas and corre-

sponding matching conditions for a four-stage method reduce to those

for a three-stage method simply by eliminating all terms involving co-

efficients whose first index is ≥ 4. If we only retain terms involving

coefficients whose first index is ≤ 2, we recover the two conditions we

found for a two-stage method to be second-order.

The rooted trees corresponding to exactness of the solution of

the polynomial accuracy model problems y′ = (tP )′ are the depth-

one trees with P nodes, R2
P−1,1 = TP

1 , that occur at the second stage.

These are the only rooted trees of order P ≤ 2. Therefore, exactness

on equations whose solutions are polynomials of degree P is necessary

and sufficient for general P th-order accuracy of an explicit Runge-

Kutta Method when P ≤ 2. Even though these trees occur at the

second stage, for P > 2, P stages are required to match the Taylor

coefficient. The rooted trees corresponding to P th-order accuracy for

the absolute stability model problem y′ = λy are the maximal depth

trees with P nodes, RP
1,1 = TP

P , i.e., the trees with one edge leaving

every node except the leaf. For this problem, all derivatives of f(y)

beyond the first are zero. This tree does not occur until the P th stage.

Therefore, P stages are necessary for general P th-order accuracy.

Below the trees representing eight elementary differentials of or-

der ≤ 4, we have collected the factors from the two sides of the match-

ing conditions in the table into one of the form 1/d(T ). Here d(T )

arises as the ratio of the multiplicity of ways the tree can be con-

structed by addition of edges and leaves on the Taylor side and a

combination of lth-order expansion factorials and multinomial coeffi-

cients on the Runge-Kutta side. These factors can also be computed
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directly from their trees using the following simple algorithm. The

density of any leaf, a rooted tree of order one arising from evaluat-

ing f in the first stage, is 1. At every subsequent stage, at which we

attach one or more trees to a new root node, the density of the result-

ing trees is the product of the densities of the trees being attached,

times the order of the resulting tree. For example, the tree R3
2,1 is a

rooted tree with four nodes corresponding to the elementary differ-

ential (fyy (fy f) f). It is first obtained at the i = 3rd stage of the

Runge-Kutta expansion in the l = 2nd-order term of the expansion,

by joining the trees corresponding to (fy f) and f . The former has

density 1 · 2 and the latter has density 1, so since the resulting tree

has order 4, its density is 1 · 2 · 4 = 8.

For r = 4 stages, the eight fourth-order matching conditions are

γ1 + γ2 + γ3 + γ4 = 1, γ2α2 + γ3α3 + γ4α4 = 1
2 ,

γ2α
2
2 + γ3α

2
3 + γ4α

2
4 = 1

3 , γ3β32α2 + γ4(β42α2 + β43α3) =
1
6 ,

γ2α
3
2 + γ3α

3
3 + γ4α

3
4 = 1

4 , γ3β32α
2
2 + γ4(β42α

2
2 + β43α

2
3) =

1
12 ,

γ3α3β32α2

+γ4α4(β42α2 + β43α3) =
1
8 , γ4β43β32α2 = 1

24 .

The recommended procedure for solving the equations is to choose

α2, . . . , αr and then solve the r equations,
∑r

i=1 γiα
k
i , k = 0, . . . , r−

1, for γ1, . . . , γr. Next, solve for the βij that are determined by linear

equations. In this case, the fourth, sixth, and seventh equations above

allow us to solve for β32, β42, and β43. The classical fourth-order

Runge-Kutta Method corresponds to the solution obtained by setting

α2 = α3 = 1
2 , α4 = 1, given in tableau form as

0

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

2
6

2
6

1
6

For the scalar ODE with fy = 0, i.e., y′ = f(t), this method reduces

to the Simpson-parabolic quadrature method.

                

                                                                                                               



H. Runge-Kutta Methods 279

Among the methods satisfying the matching equations of a given

order, optimal methods can be obtained by minimizing local trun-

cation error bounds. A well-known example of this is the two-stage

method of order 2 known as Ralston’s Method, given in tableau form

as

0

3
4

3
4

1
3

2
3

Pairs of closely related Runge-Kutta Methods can be used for au-

tomatic step-size control in the same manner that pairs of multistep

methods are used for error estimation and step-size modification. A

well-known example of this technique is the Runge-Kutta-Fehlberg

pair consisting of a five-stage and six-stage method of orders 4 and 5,

respectively. Further details on these and other topics, including spe-

cial cases for scalar, autonomous, and constant coefficient systems of

equations, methods based on extrapolation, methods to treat second-

and higher-order equations directly, etc., can be found in [BJ].

The region of absolute stability for an explicit r-stage method is

determined by one step of the method applied to the absolute stability

model problem, y′ = λy. For r ≤ 4, we know that the coefficients

can be chosen so that the method has order of accuracy P = 4. In

this case the region of absolute stability is {w ∈ C | |pr(w)| ≤ 1}
where pr(z) =

∑r
k=0 z

k/k!, the truncation to degree r of the exact

exponential series solution of the model problem (Figure 5.14). For

r > 4, we must replace pr by some polynomial of degree ≤ r that

depends on the specifics of the method.

Implicit Runge-Kutta Methods can be employed if larger stability

regions are required. See [IA1] for a discussion of these methods and

their relation to Gauss-Legendre quadrature and collocation methods.

Of particular relevance to the topic of this appendix are several pub-

lications on Runge-Kutta Methods for Hamiltonian systems. Explicit

symplectic Runge-Kutta Methods only exist for general Hamiltoni-

ans that are separable, but the implicit Gauss-Legendre Runge-Kutta

Methods are symplectic and they are optimal for general Hamiltoni-

ans. See [IA2], [SJM], [CS], [HLW], [YH], [CP].

                

                                                                                                               



Appendix I

Multistep Methods

In this appendix, we provide a brief introduction to the derivation

of linear multistep methods and analyze the conditions on the coef-

ficients that are necessary and sufficient to guarantee convergence of

order P .

Among the seven basic examples in Chapter 5, one was a two-step

method, the leapfrog method. Multistep methods potentially obtain

more accurate approximations from fewer costly evaluations of a vec-

tor field if prior evaluations and values of the solution are stored for

later use. With each additional stored value comes the need for an

additional value for initialization not provided by the analytical prob-

lem. Each of these carries an additional degree of potential instability

and adds to the cost of changing the step-size. In spite of this, some

multistep methods have desirable absolute stability properties. We

will also describe some relationships between the accuracy and sta-

bility of these methods.

Recall that we are considering methods for approximating solu-

tions of the IVP

y′ = f(t,y), y(to) = yo, t ∈ [to, to + T ], y ∈ RD, (I.1)

satisfying a Lipschitz condition in some norm on RD,

||f(t,y1)− f(t,y2)|| ≤ L||y1 − y2||. (I.2)

For simplicity of exposition, we will henceforth use notation for the

scalar case, but unless otherwise noted, generalizations to the case

of systems are typically straightforward. In scalar notation, linear

281
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m-step methods take the form

yn+1 =

m−1∑
j=0

ajyn−j + h

m−1∑
j=−1

bjy
′
n−j , (I.3)

for all integers n satisfying 0 ≤ nh ≤ T . Here, t0 = to, tn+1 = tn + h,

y′j = f(tj , yj), and y0, . . . , ym−1 are initial values obtained by com-

panion methods discussed below. When the meaning is unambiguous,

we will leave the dependence of yn on h implicit.

There are several strategies that may be used to obtain fami-

lies of linear m-step methods with higher-order accuracy. The first

such family we will consider is the m-step backward difference for-

mula methods, BDFm. These methods are derived by replacing the

derivative on the left of y′(tn+1) = f(tn+1, y(tn+1)) with the approxi-

mation obtained by differentiating the polynomial pm(t) of degree m

that interpolates y(t) at tn+1, tn, . . . , tn+1−m and then discretizing.

For m = 1, since

p1(t) = y(tn+1) + (t− tn+1)
y(tn+1)− y(tn)

h
,

we discretize

y(tn+1)− y(tn)

h
= f(tn+1, y(tn+1))

and find that BDF1 is the Backward Euler Method,

yn+1 = yn + hf(tn+1, yn+1).

For m = 2, iterative interpolation, described in Appendix J, yields

p2(t) = y(tn+1) + (t− tn+1)[
y(tn+1)− y(tn)

h

+ (t− tn)
y(tn+1)− 2y(tn) + y(tn−1)

2h2
]

and

p′2(tn+1) =
3y(tn+1)− 4y(tn) + y(tn−1)

2h
.

Discretizing, we find that BDF2 is given by

yn+1 =
4

3
yn − 1

3
yn−1 +

2h

3
f(tn+1, yn+1).
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The Adams family of methods arises when we approximate the

integral on the right of y(tn+1)− y(tn) =
∫ tn+1

tn
y′(s) ds with

∫ tn+1

tn

PA·
m (s) ds.

where PA· interpolates y′(s) at a prescribed set of time-steps, and

then discretize. For the explicit Adams-Bashforth Methods, ABm,

PAB
m (s) is the polynomial of degree m that interpolates y′(s) at

tn, . . . , tn+1−m. For the implicit Adams-Moulton Methods, AMm,

PAM
m (s) is the polynomial of degree m+ 1 that interpolates y′(s) at

tn+1, tn, . . . , tn+1−m.

For m = 1, PAB
1 (s) = y′(tn), and we find that AB1 is Euler’s

Method. Moreover,

PAM
1 (s) = y′(tn+1) + (s− tn+1)

y′(tn+1)− y′(tn)

h

and ∫ tn+1

tn

PAM
1 (s) ds = h

y′(tn+1) + y′(tn)

2
,

so we find that AM1 is the trapezoidal method. For m = 2,

PAB
2 (s) = y′(tn) + (s− tn)

y′(tn)− y′(tn−1)

h

and ∫ tn+1

tn

PAB
2 (s) ds = h

3y′(tn)− y′(tn−1)

2
,

so AB2 is given by

yn+1 = yn + h(
3

2
y′n − 1

2
y′n−1).

Again iterative interpolation yields

PAM
2 (s) = y′(tn+1)+(s− tn+1)[

y′(tn+1)− y′(tn)

h

+ (s− tn)
y′(tn+1)− 2y′(tn) + y′(tn−1)

2h2
].

Using ∫ tn+1

tn

(s− tn+1)(s− tn) ds =

∫ h

0

(u2 − uh) du = −h3/6
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reduces this to∫ tn+1

tn

PAM
2 (s) ds = h[

y′(tn+1) + y′(tn)

2

− y′(tn+1)− 2y′(tn) + y′(tn−1)

12
].

Discretizing, we find that AM2 is given by

yn+1 = yn + h(
5

12
y′p +

8

12
y′n − 1

12
y′n−1).

Another strategy for deriving multistep methods obtains the co-

efficients aj , bj as solutions of linear equations that guarantee the

method is formally accurate of order P . These conditions are related

to the order of accuracy of a convergent method by the local trunca-

tion error of the method, εn. This quantity measures by how much

a solution of the differential equation fails to satisfy the difference

equation, in the sense

y(tn+1) =

m−1∑
j=0

ajy(tn−j)

+ h
m−1∑
j=−1

bjy
′(tn−j) + εn, where y′j = f(tj , y(tj)).

(I.4)

In its top row, Table I.1 contains the first few terms of the Taylor

expansion of the left-hand side of (I.4), y(tn+1), about tn, in powers

of h. Below the line, the rows contain the Taylor expansions of the

terms y(tn − jh) and y′(tn − jh) on the right of (I.4), where we have

placed terms of the same order in the same column and set q = m = 1

for compactness of notation.

Algebraic conditions that determine a bound on the order of εn
are obtained by comparing the collective expansions of both sides.

The terms in each column are multiples of hpy
(p)
n . If we form a com-

mon denominator by multiplying the b terms by p/p, the right-hand
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sides of order p ≥ 1 have the form

m−1∑
j=0

1

p!
(−j)pajh

py(p)n +

m−1∑
j=−1

1

p!
p(−j)p−1bjh

py(p)n ,

so to make these terms equal, we must have

m−1∑
j=0

(−j)paj +

m−1∑
j=−1

p(−j)p−1bj = 1. (I.5)

It can be shown using the linearity of the local truncation error

with respect to solutions y(t) and a basis of functions of the form

(t− tn)
k that

εn ≤ ChP+1 (I.6)

if and only if conditions (I.5) are satisfied for each order hp, p =

0, 1, . . . , P . The conditions (I.5) are equivalent to requiring that the

numerical method is exact on polynomials of degree P , assuming that

it is initialized with exact values.

Table I.1: Taylor expansions of y(tn+1)

and terms in multistep methods

yn+1 = yn + y′nh+
1
2y

′′
nh

2 + 1
6y

′′′
n h3+ · · ·

b−1hy
′
n+1 = b−1y

′
nh+ b−1y

′′
nh

2 + 1
2b−1y

′′′
n h3+ · · ·

+ a0yn = a0yn
+ b0hy

′
n = b0y

′
nh

+ a1yn−1 = a1yn − a1y
′
nh+

1
2a1y

′′
nh

2 − 1
6a1y

′′′
n h3+ · · ·

+ b1hy
′
n−1 = b1y

′
nh− b1y

′′
nh

2 + 1
2b1y

′′′
n h3+ · · ·

...
...

...
...

...

+ aqyn−q = aqyn − aqy
′
nqh+

1
2aqy

′′
nq

2h2 − 1
6aqy

′′′
n−qq

3h3+ · · ·
+ bqhy

′
n−q = +bqy

′
nh− bqy

′′
nqh

2 − 1
2bqy

′′′
n−qq

2h3+ · · ·
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We say a method is consistent if conditions (I.5) are satisfied for

p = 0 and p = 1, i.e., if

m−1∑
j=0

aj = 1 and

m−1∑
j=0

−jaj +

m−1∑
j=−1

bj = 1. (I.7)

In this case we know that the method formally approximates the dif-

ferential equation. This guarantees that the approximated equation

is the one that we intended. The more subtle issue of convergence

of a numerical method involves determining whether solutions of the

approximating equation (in this case the multistep method) do in-

deed approximate solutions of the approximated equation as the dis-

cretization parameter tends to zero. The root condition for 0-stability

discussed in Chapter 5 together with consistency are necessary and

sufficient for a multistep method to be convergent. If, in addition,

(I.5) is satisfied for all p ≤ P , then the convergence is with global

order of accuracy P .

Four of our working example methods of Chapter 5 and three ad-

ditional methods discussed above fit into the linear m-step framework

with m ≤ 2. Table I.2 summarizes the nonzero coefficients defining

these methods and identifies the value of P for which the matching

conditions up to order P are satisfied, but not the conditions of order

P + 1. For reference, the conditions for p = 2, 3, and 4 are

m−1∑
j=0

j2aj −
m−1∑
j=−1

2jbj = 1,

−
m−1∑
j=0

j3aj +

m−1∑
j=−1

3j2bj = 1,

and
m−1∑
j=0

j4aj −
m−1∑
j=−1

4j3bj = 1,

respectively.
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Table I.2: Coefficients and order of accuracy

of example multistep methods

Method (P ) Coefficients

Euler (1) a0 = b0 = 1

Backward Euler∗(1) a0 = 1, b−1 = 1

Trapezoidal∗(2) a0 = 1, b−1 = b0 = 1
2

Leapfrog (2) a1 = 1, b0 = 2

BDF2∗(2) a0 = 4
3
, a1 = − 1

3
, b−1 = 2

3

AB2(2) a0 = 1, b0 = 3
2
, b1 = − 1

2

AM2∗(3) a0 = 1, b−1 = 5
12

, b0 = 8
12

, b1 = − 1
12

∗Implicit method

Since explicit linear m-step methods are determined by 2m coef-

ficients and implicit linear m-step methods are determined by 2m+1

coefficients, we can obtain multistep methods not belonging to the

BDF or Adams families by requiring that a method satisfy as many

of the matching conditions of linear equations as possible. The first

2m or 2m + 1 conditions, respectively, form nonsingular systems of

linear equations in those coefficients whose solution maximizes the

order of the local truncation error.

Any linear m-step method with m = 1 that satisfies the consis-

tency conditions a0 = 1 and b−1 + b0 = 1 is among the family of

θ-methods:

yn+1 = yn + h((1− θ)y′n + θy′n+1). (I.8)

This family includes one explicit method, Euler’s Method, for θ =

0. Second-order accuracy requires 2b−1 = 1, corresponding to the

trapezoidal method with θ = 1
2 . Since the order 3 condition 3b−1 = 1

is not satisfied, the maximal order of an implicit method with m =

1 is 2, attained by the trapezoidal method. The θ-method family

also includes the Backward Euler Method (θ = 1). The restriction

θ ∈ [0, 1] is not required for consistency, but since the amplification

factor is

a(w) =
(1 + (1− θ)w)

(1− θw)
,

it is standard to assure greater stability for λ in the left half-plane,
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To obtain an explicit two-step method with local truncation error

of order 4 in this way, we look for a method of the form

yn+1 = a0yn + a1yn−1 + h(b0y
′
n + b1y

′
n−1)

whose coefficients satisfy the four linear conditions a0+a1 = 1, −a1+

b0 + b1 = 1, a1 − 2b1 = 1, −a1 + 3b1 = 1. The method corresponding

to the unique solution of this system is

yn+1 = −4yn + 5yn−1 + h(4y′n + 2y′n−1). (I.9)

We showed in Section 5.3 that (I.9) is not 0-stable. Another method

that is consistent, but not 0-stable, is

yn+1 = 3yn − 2yn−1 − hy′n. (I.9′)

We can confirm the instability by considering the roots of its char-

acteristic polynomial for w = 0, p0(r) = ρ(r) = r2 − 3r + 2 =

(r − 1)(r − 2). Though this method does not satisfy the second-

order accuracy conditions, keeping the same a0 = 3, a1 = −2 and

modifying the derivative coefficients to b0 = 1
2 and b1 = − 3

2 yields a

method that would be second-order accurate were it not for the same

instability.

The connection between the truly unstable behavior of the meth-

od (I.10), yn+1 = 3yn−2yn−1−hy′n, and the roots of its characteristic

polynomial for w = 0, p0(r) = ρ(r) = r2 − 3r + 2 = (r − 1)(r − 2), is

apparent. This also make it clear that we could extend the example to

have higher-order truncation error while retaining the same unstable

behavior by keeping the same a0 = 3, a1 = −2 but modifying the

derivative coefficients to b0 = 1
2
and b1 = − 3

2
.

To obtain an implicit two-step method with local truncation error

of order 5 by solving order conditions, we look for a method of the

form

yn+1 = a0yn + a1yn−1 + h(b−1y
′
n+1 + b0y

′
n + b1y

′
n−1)

whose coefficients satisfy the five linear conditions a0+a1 = 1, −a1+

b−1 + b0 + b1 = 1, a1 + 2b−1 − 2b1 = 1, −a1 + 3b−1 + 3b1 = 1,
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a1+4b−1−4b1 = 1. The method corresponding to the unique solution

of this system is

yn+1 = yn−1 + 2h

(
1

6
y′n+1 +

4

6
y′n +

1

6
y′n−1

)
, (I.10)

known as Milne’s corrector. We can also interpret this as integrating

quadratic interpolation of y′ at tn+1, tn, tn−1 (the Simpson-parabolic

rule) to approximate the integral in

yn+1 − yn−1 =

∫ tn+1

tn−1

y′(s) ds.

Additional families of methods may be obtained using approximations

of the integral in

yn+1 − yn−j =

∫ tn+1

tn−j

y′(s) ds

for larger values of j.

Seeking higher-order accuracy to improve efficiency does not as-

sure convergence. It can actually hinder it by compromising 0-stability.

This is the case even for the implicit methods, i.e., they do not always

have stability properties that are superior to those of explicit meth-

ods. In fact, for m > 6, the backward difference methods, BDFm,

are implicit methods with arbitrarily high formal accuracy, but they

are not even 0-stable.

If a general multistep method is applied to the model problem

y′ = λy and we set w = λh, it takes the form of a homogeneous linear

difference equation

(1− b−1w)yn+1 =

m−1∑
j=0

(aj + bjw)yn−j . (I.11)

We call the polynomial

pw(r) = (1− b−1w)r
m −

m−1∑
j=0

(aj + bjw)r
m−(j+1)
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the characteristic polynomial of the multistep method (I.3). We also

define ρ(r) and σ(r) by pw(r) = ρ(r) + wσ(r), so in particular,

ρ(r) = p0(r) = rm −
m−1∑
j=0

ajr
m−(j+1).

When pw(r) has distinct roots rj(w), j = 0, . . . ,m − 1, the general

solution of (I.11) is a linear combination

yn =
m−1∑
j=0

cjr
n
j . (I.12)

If pw(r) has some multiple roots, we can index any set of them con-

secutively, rj(w) = · · · = rj+s(w), in which case we replace the corre-

sponding terms in (I.12) by terms of the form cj+kn
krnj , k = 0, . . . , s.

As w → 0, the roots of rj(w) approach corresponding roots of

ρ(r). We can use the fact that some root r(w) must approximate ew =

1 + 1w as w → 0 as another derivation of the consistency conditions

(I.7). Since e0 = 1 must be a root of p0, p0(1) = 1 −
∑

j aj = 0,

which is the zeroth-order consistency condition. Treating r(w) as a

curve defined implicitly by the relation P (r, w) = pw(r) = 0 and

differentiate implicitly with respect to w at (r, w) = (1, 0), we obtain

−
m−1∑
j=−1

bj + r′(w)

⎛
⎝m−

m−1∑
j=0

aj(m− (j + 1))

⎞
⎠ = 0.

Employing the zeroth-order consistency condition, factoring m from

the second term, and setting r′(w) = 1 yields the first-order consis-

tency condition of (I.7). This approach can be continued to any order.

Alternatively, we may consider to what degree r = ew is a solution of

the characteristic equation ρ(r) +wσ(r) = 0. The equations (I.5) for

p = 0, . . . , P are equivalent to ρ(ew)+wσ(ew) = O(wP+1) as w → 0.

If we use w = ln(r) to write this in the form ρ(r) + ln(r)σ(r) = 0,

they are also equivalent to

ρ(r) + ln(r)σ(r) = C|r − 1|P+1 +O(|r − 1|P+2), (I.13)
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as r → 1 (so w → 0). It is convenient to expand ln(r) in powers of

u = r − 1 near u = 0, in which case (I.13) becomes

ρ(1 + u) + ln(1 + u)σ(1 + u) = C|u|P+1 +O(|u|P+2).

In terms of the coefficients aj and bj of the numerical method,

and using q = m− 1 as before, this becomes

(1 + u)m − (a0(1 + u)q + · · ·+ aq)− (u− u2

2
+

u3

3
− · · · )

× (b−1(1 + u)m + b0(1 + u)q + · · ·+ bq) = C|u|P+1 +O(|u|P+2).

(I.14)

The condition that the coefficient of the up term on the left-hand

side vanishes is equivalent to the order p matching condition we have

given above.

The competition between accuracy and stability is explained in

part by two results of Dahlquist that describe barriers to the order

of accuracy of multistep methods that satisfy certain stability condi-

tions. The first barrier gives the maximum order of a stable m-step

method. Specifying m− 1 nonprincipal roots of ρ(r) that satisfy the

root condition is equivalent to specifying m− 1 real parameters that

describe some combination of real roots and complex conjugate pairs.

Along with r0 = 1, these determine the real coefficients aj through

ρ(r) = Π(r − rj). Depending on whether the method is explicit or

implicit, this leaves m or m+1 coefficients bj with which to satisfy the

accuracy conditions of order p = 1, . . . , P . If the method is explicit,

one would expect that this is possible through P = m, and through

P = m+ 1 if the method is implicit. We know that these are attain-

able from the examples of AB2 and AM2, stable two-step methods

of order 2 and 3, respectively. In the explicit case, this bound turns

out to be correct in general, and also in the implicit case if m is odd.

However, if m is even, it is possible to satisfy one more additional

equation, i.e., there are stable implicit m-step methods with order

m + 2, but none higher. Milne’s corrector satisfies the root condi-

tion, so it is 0-stable and convergent. But, for arbitrarily small w

the magnitude of the root of pw(r) that approaches −1 as w → 0

can exceed that of the principal root that approaches +1. Because of

this, it lacks a desirable property called relative stability, but it is still
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0-stable and convergent. It is suggestive that this method contains

a form of the Simpson-parabolic integration method, an example of

the Newton-Cotes quadrature methods based on an odd number of

nodes. Due to symmetry, these quadrature methods attain an addi-

tional degree of accuracy over the number of nodes when the number

of nodes is odd.

The second barrier refers to methods that are A-stable, which

means that their region of absolute stability contains the entire left

half-plane, i.e., all w ∈ C such that Re(w) ≤ 0. Dahlquist showed

that any A-stable linear multistep method has order of accuracy less

than or equal to 2. Because of the usefulness of methods with large

regions of absolute stability, considerable effort has gone into finding

higher-order A(α)-stable methods whose regions of absolute stability

contain large wedges symmetric about the negative real axis in the

left half-plane.

The analysis of propagation of errors for linear multistep meth-

ods involves issues arising from multiple initial values and modes of

amplification that are not present in one-step methods. When we

analyzed the error propagation of Euler’s Method, we saw that the

global error is bounded in terms of a sum of contributions arising from

initial error and local truncation error, interacting with the amplifica-

tion associated with the method. The portion of the bound resulting

from the local truncation error has order one less than that of the

local truncation error itself, while the portion resulting from the ini-

tialization error has the same order of the initialization error. The

heuristic explanation is that the number of steps in which truncation

errors are introduced grows in inverse proportion to the step size,

contributing a factor of h−1. Initialization errors may be amplified

by some bounded constant, but they are introduced in a fixed number

of steps that are independent of h. So the global order of accuracy

of one-step and 0-stable linear multistep methods is at most one less

than the order of the local truncation error. But initialization errors

are only introduced in a fixed number of steps that is independent of

h, so their contribution to the global error has the same magnitude as

that of the initialization errors themselves. For the global order to be

as small as possible, the initial values must also be one less than the
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order of the local truncation error; any more accuracy is wasted. For

one step methods, the initial value can be considered exact, since it is

given in the IVP, though even this value may include experimental or

computational errors. But for m-step methods with m > 1, we must

use one-step methods to generate one or more additional values. Once

we have a second initial value, we could also use a two-step method to

generate a third, then a three-step method to generate a fourth, and

so on. No matter how we choose to do this, it is just the order of the

(local truncation) error of the initial values that limits the global error

of the solution. For this reason, it is sufficient to initialize a method

whose local truncation error has order P + 1 using a method whose

local truncation error has order P . For example, the local truncation

error of the leapfrog method has order 3. If y0 = yo, the exact initial

value, and we use Euler’s Method, whose local truncation error has

order 2, to obtain y1 from y0, the resulting method has global order

of accuracy 2. If we use the midpoint method or Heun’s Method,

whose local truncation errors both have order 3, the global order of

accuracy of the resulting methods is still 2, no more accurate than

if we use Euler’s Method to initialize. But if we use a lower-order

approximation, y1 = y0, a method whose local truncation error has

order 1 and is not even consistent, the savings of one evaluation of

f degrades the convergence of all subsequent steps to global order 1.

As another example, the two-step implicit Adams-Moulton Method,

AM2, has local truncation error of order 4. If we initialize it with the

midpoint method or Heun’s Method, we achieve the greatest possible

global order of accuracy, 3. Initializing with RK4 will not improve

this behavior, and initializing with Euler’s Method degrades the or-

der to 2. So the reason for including initial errors in the analysis of

error propagation for one-step methods is clarified when we consider

multistep methods.

When yn+1 is only defined implicitly, the ease with which we can

determine its value from yn (and previous values in the case of a

multistep method) is significant from both practical and theoretical

points of view. In the first place, a solution might not even exist for all

values of h > 0. For a simple one-step method such as the Backward

Euler Method, it can fail to have a solution even for the linear equation
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y′ = λy, y(0) = yo, where it reduces to yn+1(1 − λh) = yn, which

clearly has no solution if λh = 1 and yn �= 0.

When b−1 �= 0, (I.3) can be considered as a family of fixed-point

equations yn+1 = T (yn+1, h) depending on the parameter h. If we let

yn+1
∗ =

m−1∑
j=0

ajyn−j , (I.15)

then yn+1
∗ = T (yn+1

∗, 0). Using the Lipschitz continuity of f with

respect to y and the linearity of T with respect to h, we can show that

for sufficiently small h, T (·, h) is a contraction that maps an interval

I containing yn+1
∗ into itself. By the contraction mapping principle,

for any yn+1
(0) in this interval, the iteration

yn+1
(k+1) = T (yn+1

(k), h) (I.16)

converges linearly to a unique fixed point yn+1, satisfying yn+1 =

T (yn+1, h), with rate

b−1h|
∂f

∂y
(yn+1)| ≤ |b−1hL|. (I.17)

The situation for implicit Runge-Kutta Methods is more involved,

since each step requires the solution of a nonlinear system of equa-

tions, but the same principles can be extended to derive existence,

smooth dependence, and a convergence rate proportional to h, when

h is sufficiently small.

It is a key principle in the design, analysis, and implementation

of predictor-corrector methods that the convergence rate of the fixed-

point iteration (I.16) is proportional to h. If we perform a single step

of an implicit method of order P by iterating (I.16) to convergence,

the resulting yn+1
∞ has a local truncation error that behaves like

|y(tn+1)− yn+1
∞| ≈ ChP+1 as h → 0. If we only iterate (I.16) so far

that |yn+1
(k)−yn+1

∞| ≈ C ′hP+1 as h → 0 as well, then using yn+1
(k)

instead of yn+1
∞ should still result in a method with the same order.

We may do this in a variety of ways, but it is common to initial-

ize the iteration with an explicit method, called a predictor, whose

order is the same or one less than that of the implicit method, P .
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Each iteration of (I.16) is called a corrector step, and if our predic-

tor has global order P − 1, its local truncation error will behave like

|y(tn+1) − yn+1
(0)| ≈ CPh

P . Since this dominates the local trun-

cation error of the corrector, |yn+1
∞ − yn+1

(0)| ≈ CPh
P , it makes

sense to perform one corrector iteration. Due to the h dependence of

the rate of convergence, |yn+1
∞ − yn+1

(1)| ≈ CCh
P+1 and therefore

|y(tn+1)− yn+1
(1)| ≈ C ′

Ch
P+1, and further iterations do not increase

the order of the local truncation error. If a predictor is already as ac-

curate as the implicit method, y(tn+1)− yn+1
(0) ≈ C ′

Ph
P+1, it would

seem pointless to iterate, since one iteration provides no improvement

in overall accuracy. At the opposite extreme, we could even initialize

with the constant method, yn+1 = yn, for which the local truncation

error |y(tn+1)− yn+1
(0)| ≈ y′nh, and perform P corrector iterations.

We now consider two simple concrete examples. The implicit

method we will use in the first example is the Backward Euler Method,

and in the second example we will use the trapezoidal method. We

will analyze both accuracy and stability for the model problem y′ =

λy in order to understand why it makes sense to correct to—or even

beyond—the maximal achievable accuracy of the method. One reason

is improvement in the region of absolute stability. The region of abso-

lute stability of the explicit method corresponding to yn+1 = yn+1
(0)

gets deformed step by step into that of the implicit method corre-

sponding to yn+1 = yn+1
∞. A second reason is that the difference

between yn+1
(0) and yn+1

(1), obtained from a corrector of the same

order, can be used to estimate local errors with very little additional

computation, and this can be used to adjust the step-size automati-

cally and even change on the fly to an appropriate higher- or lower-

order method.

For the purpose of analyzing the local truncation error in both ex-

amples, we let y(tn+1) be the exact solution passing through (tn, yn),

evaluated at tn+1, so y(tn+1) = yne
λh =

∑∞
j=0

(λh)j

j! . The iteration

(I.16) corresponding to the Backward Euler Method is

yn+1
(k+1) = yn + hf(tn+1, yn+1

(k)).

For the model problem f(t, y) = λy, if we initialize the iteration

with yn+1
(0) = yn and perform no iterations, the local truncation
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error behaves like y′(tn)h = λhyn as h → 0. If we iterate once,

yn+1
(1) = (1 + λh)yn, and the result is no different than if we had

applied one step of Euler’s Method, which has local truncation error

y(tn+1) − yn+1
(1) ≈ y′′(tn)

h2

2 = (λh)2

2 yn as h → 0. Another iter-

ation gives yn+1
(2) = (1 + λh + (λh)2)yn, and we may also think

of this as using an Euler’s Method predictor followed by one Back-

ward Euler corrector step. The local truncation error y(tn+1) −
yn+1

(2) ≈ −y′′(tn)
h2

2 = − (λh)2

2 yn. This is to be expected since

after this iteration, yn+1
(2) is an O(h3) approximation of the ap-

proximation yn+1
(∞) = (1 − λh)−1yn =

∑∞
j=0(λh)

j whose terms to

order h2 agree with those of yn+1
(2) above and only agree to order

h with y(tn+1). Therefore, yn+1
(2) shares the same error behavior

as y(tn+1) − yn+1
(∞) ≈ −y′′(tn)

h2

2 = − (λh)2

2 yn as h → 0. Better

approximations of yn+1
(∞) are not better approximations of y(tn+1).

The benefits of these iterations are increased stability and error

estimation. Euler’s Method is never absolutely stable for w = λh

on the imaginary axis, since |1 + w| > 1 for w = ai, a �= 0. The

amplification factor corresponding to yn+1
(2), a(w) = 1 + w + w2,

satisfies |1+w+w2| ≤ 1 for w = ai, a ∈ [−1, 1]. Also, we can subtract

y(tn+1)− yn+1
(2) ≈ −y′′(tn)

h2

2 from yn+1
(2) − yn+1

(1) ≈ y′′(tn)h
2, to

obtain an estimate of the local truncation error in terms of computed

quantities, y(tn+1) − yn+1
(2) ≈ 1

2 (yn+1
(2) − yn+1

(1)) as h → 0. If

this error exceeds a certain bound, we may decide to reduce the step

size, or we can use these quantities once more to increase the order of

our method by canceling the leading terms in their errors (a process

known as extrapolation). In this case, we can define a new predictor

from their mean, yn+1
0 = 1

2 (yn+1
(2) − yn+1

(1)), and expect its local

truncation error to behave as h3 as h → 0. This is indeed the case, as

this is just Heun’s Method. In conjunction with an implicit method

with second-order accuracy, we could then continue the process. For

this reason, we briefly perform a similar analysis of a trapezoidal

corrector.

The iteration (I.16) corresponding to the trapezoidal method is

yn+1
(k+1) = yn +

h

2
(f(tn, yn) + f(tn+1, yn+1

(k))).
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For the model problem f(t, y) = λy, if we initialize the iteration

with yn+1
(0) = yn and perform no iterations, the local truncation

error behaves like y′(tn)h = λhyn as h → 0. If we iterate once,

yn+1
(1) = (1+λh)yn and the result is still no different than if we had

applied one step of Euler’s Method, which has local truncation error

y(tn+1) − yn+1
(1) ≈ y′′(tn)

h2

2 = (λh)2

2 yn as h → 0. But this time,

another iteration gives yn+1
(2) = (1 + λh + (λh)2

2 )yn, and we may

also think of this as using an Euler’s Method predictor followed by

one trapezoidal corrector step, i.e., Heun’s Method. The local trun-

cation error y(tn+1) − yn+1
(2) ≈ −y′′(tn)

h3

6 = (λh)3

6 yn. Beyond the

first iteration, yn+1
(k) attains the same accuracy of yn+1

(∞); better

approximations of yn+1
(∞) are not better approximations of y(tn+1).

The asymptotic form of the third-order local error terms for Heun’s

Method, a Runge-Kutta Method, depends on the problem to which it

is applied. For the model problem, the asymptotic form of the local

error is identical to that of the trapezoidal method, so they cannot

be used together even in this situation for local error estimation with

the Milne device.

For any m > 0, the ABm predictor, AMm − 1 corrector pair

has good stability and convergence properties and does satisfy the

common order requirements of the Milne device.

Using a predictor with one iteration of a corrector is sometimes

denoted PC or PC1, with n corrector iterations, PCn, and correc-

tor iterations to convergence, PC∞. Redefining P̃ = PCn−1 to be

a new predictor turns PCn into P̃C. The evaluations of f(t, y) in

the definition of the method are sometimes denoted as a distinct step

with the letter E, especially when expensive updates can be omitted

and iterations can be usefully performed with prior evaluations. This

is somewhat analogous to using a single Jacobian for multiple iter-

ations of Newton’s Method for the reduction of operations from N3

to N2. When all evaluations are performed, the method is denoted

PE(CE)n, though there are many variations possible. If absolute

stability of the implicit method is essential for the particular problem

at hand, e.g., when an A-stable method is required, more efficient ap-

proaches to computing yn+1 (e.g., Newton or quasi-Newton Methods)

should be implemented for quadratic rather than linear convergence.
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This highlights a perspective that the predictor-corrector idea is not

only about finding the solution of the implicit stepping method—that

may be found by more efficient means. Rather, it is about designing

efficient intermediate explicit methods with enhanced stability and

error estimation properties. The use of two methods of common or-

der that share a substantial portion of their computational effort for

automatic step-size control is not limited to explicit-implicit pairs.

The same idea is used in one-step explicit methods, e.g., the Runge-

Kutta-Fehlberg pair.

We conclude with some general remarks on the theoretical and

practical effects of stability and instability for multistep methods.

The growth of errors in numerical approximations obtained from lin-

ear multistep methods is governed by a difference inequality consisting

of a homogeneous error amplification term correlated with the stabil-

ity properties of the method and an inhomogeneous error-forcing term

correlated with the local truncation error. The contribution from er-

ror amplification is governed by the same recurrence that determines

the stability of the method and in particular by the behavior of the

method on the model problem y′ = λy where λ = L, the Lipschitz

constant for f .

The most fundamental result in the theory of linear multistep

methods is known as Dahlquist’s Equivalence Theorem. This theorem

relates the root condition and convergence as follows. Let (I.3) be a

consistent m-step method applied to the well-posed IVP (I.1), with

initial values y0, . . . , ym−1 approaching yo as h → 0. The method

is convergent if and only if ρ(r) satisfies the root condition. Fur-

thermore, if the local truncation error defined in (I.4) satisfies |εn| ≤
CTh

P+1 and the initial errors ej,h = yj,h − y(tj), j = 0, . . . ,m − 1,

satisfy

max
j=0,... ,m−1

|ej,h| ≤ CIh
P ,

then

max
0≤nh≤T

|yn,h − y(tn)| ≤ CGh
P

as h → 0. In other words, if the local truncation error has order P+1,

the initial error only needs to have order P for the global convergence
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to have order P . A proof that applies to an even more general class

of methods may be found in [IK]. In the much greater generality

of linear finite difference methods for partial differential equations,

the fact that stability and consistency together are both necessary

and sufficient for convergence is the content of the important Lax-

Richtmyer Equivalence Theorem [LR].

There are several other more stringent conditions that have been

developed to distinguish the behavior observed in convergent linear

multistep methods. The strong root condition says that except for

r0, the roots of ρ(r) are all inside the open unit disc, a condition

that, as the name suggests, clearly implies the root condition. By

continuity, for sufficiently small h, the nonprincipal roots rj(w) of

ρ(r) + wσ(r) will also have magnitude less than 1. If the coefficients

of an m-step method with m > 1 satisfy aj = 0 for j < m − 1, so

am−1 = 1 for consistency, it cannot satisfy the strong root condition,

since the roots of ρ(r) = rm − 1 are all of the form rj = e2πj/m, j =

0, . . . ,m − 1. This class includes the leapfrog method and Milne’s

corrector. Even if the strong root condition is not satisfied, we can

require that for sufficiently small h, the parasitic roots of pw(r) have

magnitudes less than or equal to the magnitude of the principal root,

a condition called relative stability. In this case, parasitic roots can

only grow exponentially when the principal root is growing faster

exponentially, making them less of a concern. The term weak stability

is used to describe a method that is stable but not relatively stable.

Since the leapfrog method satisfies the root condition and we have

shown that as h → 0, the parasitic root of the leapfrog method has

magnitude greater than its principal root, the leapfrog method is

weakly stable and demonstrates that the root condition cannot imply

relative stability. However, the continuity argument that shows that

the strong root condition implies the root condition can be used just as

easily to show that the strong root condition implies relative stability.

By the observation above, the consistent two-step method yn+1 =

yn−1 +2hy′n−1 cannot satisfy the strong root condition. But since its

characteristic polynomial is

r2 − (1 + 2w) = (r −
√
1 + 2w)(r +

√
1 + 2w),
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its principal and parasitic roots have the same magnitude and it is

relatively stable. This shows that relative stability is strictly weaker

than the strong root condition.

For Euler’s Method, the Backward Euler Method, and the trape-

zoidal method, ρ(r) = r − 1. Since there are no nonprincipal roots,

they satisfy the strong root condition, the root condition, and the

relative stability condition by default. Both the explicit and the im-

plicit m-step Adams Methods, ABm and AMm, are designed to have

ρ(r) = rm − rm−1 = (r− 1)rm−1, so that all parasitic roots are zero!

These methods satisfy the strong root condition, as nicely as possible.

For BDF2, ρ(r) = r2 − 4
3
r + 1

3
= (r − 1)(r − 1

3
) satisfies the strong

root condition. For higher m, BDFm is designed to have order of

accuracy m if the method is convergent. However, these methods are

only 0-stable for m ≤ 6, so BDFm is not convergent for m ≥ 7.

If we apply Milne’s corrector, the implicit two-step method having

maximal local truncation error, to the model problem y′ = λy, it takes

the form

yn+1 = yn−1 + (
w

3
yn+1 +

4w

3
yn +

w

3
yn−1).

Solutions are linear combinations yn = c+r++c−r− where r± are the

roots of

pw(r) = (1− w/3)r2 − (4w/3)r − (1 + w/3).

By setting u = w/3 and multiplying by 1/(1 − u) = 1 + u + · · · , to
first order in u, these roots satisfy

r2 − 4u(1 + · · · )r − (1 + 2u+ · · · ) = 0

or

r± = 2u±
√
4u2 + 1 + 2u.

Using the binomial expansion (1+2u)1/2 ≈ 1+u+ · · · , to first order

in u, r+ ≈ 1 + 3u and r− ≈ −1 + u. The root ≈ 1 + 3u = 1 + λh

approximates the solution of the model problem y′ = λy. As λh → 0

in a way that u in a neighborhood of the negative real axis near

the origin, the other root ≈ −1 + u has magnitude greater than 1,

showing that Milne’s Method corrector is not relatively stable. Like

the leapfrog method, it satisfies the root condition, so it is stable, but
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only weakly stable. So even a convergent implicit method can have

worse stability properties than a convergent explicit method.

We can summarize the relationship among various types of sta-

bility for multistep methods and their consequences as follows:

strong root condition ⇒ relative stability ⇒ root condition,

absolute stability on MS(0) ⇒ root condition on ρ(r) ⇔ 0-stability,

consistency + root condition ⇔ convergence,

P th-order formal accuracy+root condition ⇔ P th-order convergence.

We conclude by cautioning the reader that many examples in

Chapter 5 show that the behavior of a method is not determined by

either the order of its local truncation error or by the rather loose

bounds provided by 0-stability. 0-stability is certainly important,

helping us to avoid nonconvergent methods, a caveat that cannot be

overemphasized. Convergence and stability are a minimal but im-

portant requirement for a useful method. Along with the order of

accuracy, the actual performance of a method is more closely corre-

lated with its absolute stability with respect to modes present in the

ODE.

�Exercise I–1. Determine the regions of absolute stability for

BDF2, AM2, and AM2. For implicit methods, it may be advanta-

geous to consider the fact that if r �= 0 is a root of ar2 + br + c, then

s = 1
r is a root of cs2 + bs+ a.

                

                                                                                                               



Appendix J

Iterative Interpolation
and Its Error

In this appendix we give a brief review of iterative polynomial inter-

polation and corresponding error estimates used in the development

and analysis of numerical methods for differential equations.

The unique polynomial of degree n,

px0,... ,xn
(x) =

n∑

j=0

ajx
j , (J.1)

that interpolates a function f(x) at n+ 1 points,

px0,... ,xn
(xi) = yi = f(xi), 0 ≤ i ≤ n, (J.2)

can be found by solving simultaneously the (n + 1) × (n + 1) linear

system of equations for the n + 1 unknown coefficients aj given by

(J.2). It can also be found using Lagrange polynomials

px0,... ,xn
(x) =

n∑

i=0

yiLi,x0,... ,xn
(x) (J.3)

where

Li,x0,... ,xn
(x) =

∏

0≤j≤n,j �=i

(x− xj)

(xi − xj)
. (J.4)

Here, we develop px0,... ,xn
(x) inductively, starting from px0

(x) = y0
and letting

px0,... ,xj+1
(x)

= px0,... ,xj
(x) + cj+1(x− x0) · · · (x− xj), j = 0, . . . , n− 1

(J.5)
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(so that each successive term does not disturb the correctness of

the prior interpolation) and defining cj+1 so that px0,... ,xj+1
(xj+1) =

yj+1, i.e.,

cj+1 =
yj+1 − px0,... ,xj

(xj+1)

(xj+1 − x0)
= f [x0, . . . , xj+1]. (J.6)

Comparing (J.6) with (J.3), (J.4) gives an alternate explicit expres-

sion for f [x0, . . . , xn], the leading coefficient of the polynomial of

degree n that interpolates f at x0, . . . , xn:

f [x0, . . . , xn] =
n∑

i=0

f(xi)∏
j �=i(xi − xj)

(J.7)

from which follows the divided difference relation

f [x0, . . . , xn] =
f [x0, . . . , x̂j , . . . xn]− f [x0, . . . , x̂i . . . , xn]

xi − xj
(J.8)

(where ˆ indicates omission).

For our purposes, we want to estimate px0,... ,xn
(t) − f(t), and

to do so, we simply treat t as the next point at which we wish to

interpolate f in (J.5):

px0,... ,xn
(t) + f [x0, . . . , xn, t](t− x0) · · · (t− xn) = f(t)

or

px0,... ,xn
(t)− f(t) = f [x0, . . . , xn, t](t− x0) · · · (t− xn). (J.9)

Finally, we estimate the coefficient f [x0, . . . , xn, t] using several appli-

cations of Rolle’s Theorem. Since px0,... ,xn,t(x)=f(x) or px0,... ,xn,t(x)

− f(x) = 0 at n + 2 points x0, . . . , xn, t, Rolle’s Theorem says that

p′x0,... ,xn,t(x) − f ′(x) = 0 at n + 1 points, one in each open interval

between consecutive distinct points of x0, . . . , xn, t. Repeating this

argument, p′′x0,... ,xn,t
(x)− f ′′(x) = 0 at n points on the intervals be-

tween the points described in the previous stage, and repeating this

n − 1 more times, there is one point ξ in the interior of the minimal

closed interval containing all of the original points x0, . . . , xn, t at

which

p
(n+1)
x0,... ,xn,t(ξ)− f (n+1)(ξ) = 0. (J.10)
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But because f [x0, . . . , xn, t] is the leading coefficient of the polyno-

mial px0,... ,xn,t(x) of degree n + 1 that interpolates f at the n + 2

points x0, . . . , xn, t, if we take n + 1 derivatives, we are left with a

constant, that leading coefficient times (n+ 1)!:

p
(n+1)
x0,... ,xn,t(x) = (n+ 1)!f [x0, . . . , xn, t]. (J.11)

Combining this with (J.10) gives

f [x0, . . . , xn, t] =
f (n+1)(ξ)

(n+ 1)!
(J.12)

where ξ in the interior of the minimal closed interval containing all

of the original points x0, . . . , xn, t, and substituting into (J.9) yields

the basic interpolation error estimate:

px0,... ,xn
(t)− f(t) =

f (n+1)(ξ)

(n+ 1)!
(t− x0) · · · (t− xn). (J.13)

For n = 0 this recovers the mean value theorem

f(t)− f(x0)

t− x0
= f ′(ξ) (J.14)

for some ξ ∈ (x0, t).

Since many multistep methods involve simultaneous interpola-

tion of y and y′ at tn, . . . , tn−m+1, to treat these, we would want

to have the corresponding estimates for osculatory interpolation that

can be obtained by letting pairs of interpolation points coalesce. In

the simplest cases, for two points, this process recovers the tangent

line approximation and estimate

f [x0] + f [x0, x0](x− x0) = f(x0) + f ′(x0)(x− x0).

For four points, it recovers the cubic spline interpolation approx-

imating a function and its derivative at two points.

                

                                                                                                               



Bibliography

[BB] Bernoff, A.J., and Bertozzi, A. L, Singularities in a modified Kura-
moto-Sivashinsky equation describing interface motion for phase
transition, Physica D 85 (1995), 375–404.

[BH] Briggs, W. L., and Henson, V. E., The DFT: An Owner’s Manual
for the Discrete Fourier Transform, SIAM, Philadelphia, PA, 1995.

[BJ] Butcher, J., Numerical Methods for Ordinary Differential Equa-
tions, Second Edition, Wiley, Hoboken, NJ, 2008.

[CP] Cartwright, J. H. E., and Piro, O., The Dynamics of Runge–Kutta
Methods, Int. J. Bifurcation and Chaos 2 (1992), 427–449..

[CS] Channell, P. J., and Scovel, C., Symplectic integration of Hamilton-
ian systems, Nonlinearity 3 (1990), 231.

[CFL] Courant, R., Friedrichs, K., and Lewy, H., On the partial difference
equations of mathematical physics, IBM Journal, March 1967, pp.
215–234, English translation of the 1928 German original, Mathe-
matische Annalen 100 (1928), 32–74.

[DR] Devaney, R., First Course in Chaotic Dynamical System: Theory
and Experiment, Westview Press, Reading, MA, 1992.

[DK] Devaney, R., and Keen, L., Editors, Chaos and Fractals: The Math-
ematics Behind the Computer Graphics, American Mathematical
Society, Providence, RI, 1989.

[EWH] Enright, W. H., Continuous numerical methods for ODEs with de-
fect control, Journal of Computational and Applied Mathematics
125 (2000), n. 1-2, 159–170.

[FB] Fornberg, B., Practical Guide to Pseudospectral Methods, Cam-
bridge University Press, New York, NY, 1996.
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