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Foreword

This set of lectures forms a gentle introduction to both the classical

theory of the calculus of variations and the more modern develop-

ments of optimal control theory from the perspective of an applied

mathematician. It focuses on understanding concepts and how to ap-

ply them, as opposed to rigorous proofs of existence and uniqueness

theorems; and so it serves as a prelude to more advanced texts in

much the same way that calculus serves as a prelude to real anal-

ysis. The prerequisites are correspondingly modest: the standard

calculus sequence, a first course on ordinary differential equations,

some facility with a mathematical software package, such as Maple,

Mathematica� (which I used to draw all of the figures in this book)

or MATLAB—nowadays, almost invariably implied by the first two

prerequisites—and that intangible quantity, a degree of mathemati-

cal maturity. Here at Florida State University, the senior-level course

from which this book emerged requires either a first course on par-

tial differential equations—through which most students qualify—or

a course on analysis or advanced calculus, and either counts as suffi-

cient evidence of mathematical maturity. These few prerequisites are

an adequate basis on which to build a sound working knowledge of

the subject. To be sure, there ultimately arise issues that cannot be

addressed without the tools of functional analysis; but these are in-

tentionally beyond the scope of this book, though touched on briefly

ix

                

                                                                                                               



x Foreword

towards the end. Thus, on the one hand, it is by no means necessary

for a reader of this book to have been exposed to real analysis; and

yet, on the other hand, such prior exposure cannot help but increase

the book’s accessibility.

Students taking a first course on this topic typically have diverse

backgrounds among engineering, mathematics and the natural or so-

cial sciences. The range of potential applications is correspondingly

broad: the calculus of variations and optimal control theory have

been widely used in numerous ways in, e.g., biology [27, 35, 58],1

criminology [18], economics [10, 26], engineering [3, 49], finance [9],

management science [12, 57], and physics [45, 63] from a variety

of perspectives, so that the needs of students are too extensive to

be universally accommodated. Yet one can still identify a solid core

of material to serve as a foundation for future graduate studies, re-

gardless of academic discipline, or whether those studies are applied

or theoretical. It is this core of material that I seek to expound

as lucidly as possible, and in such a way that the book is suitable

not only as an undergraduate text, but also for self-study. In other

words, this book is primarily a mathematics text, albeit one aimed

across disciplines. Nevertheless, I incorporate applications—cancer

chemotherapy in Lecture 20, navigational control in Lecture 22 and

renewable resource harvesting in Lecture 24—to round out the themes

developed in the earlier lectures.

Arnold Arthurs introduced me to the calculus of variations in

1973-74, and these lectures are based on numerous sources consulted

at various times over the 35 years that have since elapsed; sometimes

with regard to teaching at FSU; sometimes with regard to my own re-

search contributions to the literature on optimal control theory; and

only recently with regard to this book. It is hard now to judge the

relative extents to which I have relied on various authors. Neverthe-

less, I have relied most heavily on—in alphabetical order—Akhiezer

[1], Bryson & Ho [8], Clark [10], Clegg [11], Gelfand & Fomin [16],

Hadley & Kemp [19], Hestenes [20], Hocking [22], Lee & Markus

[33], Leitmann [34], Pars [47], Pinch [50] and Pontryagin et al. [51];

and other authors are cited in the bibliography. I am grateful to all

of them, and to each in a measure proportional to my indebtedness.

1Bold numbers in square brackets denote references in the bibliography (p. 245).

                

                                                                                                               



Foreword xi

To most of the lectures I have added exercises. Quite a few are

mine; but most are drawn or adapted from the cited references for

their aptitude to reinforce the topic of the lecture. At this level of

discourse, various canonical exercises are pervasive in the pedagogi-

cal literature and can be found in multiple sources with only minor

variation: if these old standards are not de rigueur, then they are at

least very hard to improve on. I have therefore included a significant

number of them, and further problems, if necessary, may be found

among the references (as indicated by endnotes). Only solutions or

hints for selected exercises appear at the end of the book, but more

complete solutions are available from the author.2

Finally, a word or two about notation. Just as modelling compels

tradeoffs among generality, precision and realism [36], so pedagogy

compels tradeoffs among generality, rigor and transparency; and cen-

tral to those tradeoffs is use of notation. At least two issues arise. The

first is the subjectivity of signal-to-noise ratio. One person’s oasis of

terminological correctness may be another person’s sea of impenetra-

ble clutter; and in any event, strict adherence to unimpeachably cor-

rect notation entails encumbrances that often merely obscure. The

second, and related, issue is that diversity is intrinsically valuable

[46]. In the vast ecosystem of mathematical and scientific literature,

polymorphisms of notation survive and prosper because, as in nature,

each variant has its advantages and disadvantages, and none is uni-

versally adaptive. Aware of both issues, I use a mix of notation that

suppresses assumed information when its relevance is not immediate,

thus striving at all times to emphasize clarity over rigor.

2To any instructor or bona fide independent user. For contact details, see
http://www.ams.org/bookpages/stml-50/index.html.
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Lecture 1

The Brachistochrone

Although the roots of the calculus of variations can be traced to much

earlier times, the birth date of the subject is widely considered to be

June of 1696.1 That is when John Bernoulli posed the celebrated

problem of the brachistochrone or curve of quickest descent, i.e., to

determine the shape of a smooth wire on which a frictionless bead

slides between two fixed points in the shortest possible time.

x
0 0.5 1

y

0

0.5

1

Figure 1.1. A frictionless bead on a wire.

For the sake of definiteness, let us suppose that the points in

question have coordinates (0, 1) and (1, 0), and that the bead slides

1See, e.g., Bliss [5, pp. 12-13 and 174-179] or Hildebrandt & Tromba [21, pp. 26-
27 and 120-123], although Goldstine [17, p. vii] prefers the earlier date of 1662 when
Fermat applied his principle of least time to light ray refraction.

1

                                     

                

                                                                                                               



2 1. The Brachistochrone

along the curve with equation

(1.1) y = y(x).

Note that it will frequently be convenient to use the same symbol—

here y—to denote both a univariate function and the ordinate of its

graph, because the correct interpretation will be obvious from context.

Needless to say, the endpoints must lie on the curve, and so

(1.2) y(0) = 1, y(1) = 0.

Let the bead have velocity

(1.3) v =
ds

dt
τ =

dx

dt
i+

dy

dt
j =

dx

dt

{
i+

dy

dx
j
}
,

where s denotes arc length, t denotes time and i, j and τ are unit

vectors in the (rightward) horizontal, (upward) vertical and tangential

directions, respectively, so that the particle’s speed is

(1.4) v = |v| =
ds

dt
=

√(dx
dt

)2
+
(dy
dt

)2
=

√
1 +

(dy
dx

)2 dx

dt

implying

(1.5) ds =
√
1 + (y′)2 dx,

where y′ denotes dy
dx .

2 Let the particle start at (0, 1) at time 0 and

reach (1, 0) at time tf after travelling distance sf along the curve.

Then its transit time is

(1.6)

tf∫
0

dt =

sf∫
0

ds

v
=

1∫
0

√
1 + (y′)2

v
dx.

If g is the acceleration due to gravity and the bead has mass m, then

its kinetic energy is 1
2mv2, its potential energy is mgy and—because

there is no friction—the sum of the kinetic and potential energies must

be a constant. Because the sum was 1
2m02+mg · 1 = mg initially, we

have 1
2mv2 +mgy = mg or

(1.7) v =
√

2g(1− y),

2As remarked above, the symbol y′ may denote either a derivative, i.e., a function,
or the value, say y′(x), that this function assigns to an arbitrary element—here x—of
its domain. The correct interpretation is obvious from context; e.g., y′ in (1.8)-(1.9)
denotes the assigned value, for otherwise the integral would not be well defined.

                

                                                                                                               



1. The Brachistochrone 3

which reduces (1.6) to

(1.8)
1√
2g

1∫
0

√
1 + (y′)2√
1− y

dx.

Clearly, changing the curve on which the bead slides down will change

the value of the above integral, which is therefore a function of y: it

is a function of a function, or a functional for short. Whenever we

wish to emphasize that a functional J depends on y, we will denote

it by J [y], as in

(1.9) J [y] =

1∫
0

√
1 +

(
y′
)2

1− y
dx.

At other times, however, we may prefer to emphasize that the func-

tional depends on the curve y = y(x), i.e., on the graph of y, which

we denote by Γ; in that case, we will denote the functional by J [Γ].

At other times still, we may have no particular emphasis in mind, in

which case, we will write the functional as plain old J . For example,

if Γ is a straight line, then

(1.10) y(x) = 1− x,

and (1.9) yields

(1.11) J =

1∫
0

{1 + (−1)2}1
2

√
x

dx = 2
√
2

1∫
0

d

dx
{x 1

2 } dx = 2
√
2

or approximately 2.82843; whereas if Γ is a quarter of the circle of

radius 1 with center (1, 1), then

(1.12) y(x) = 1−
√

2x− x2

and

(1.13) J =

1∫
0

1

(2x− x2)
3
4

dx ≈ 2.62206

on using numerical methods.3

3E.g., the Mathematica command NIntegrate[(2x-xˆ2)ˆ(-3/4),{x,0,1}].

                

                                                                                                               



4 1. The Brachistochrone

Here two remarks are in order. First, multiplication by a constant

of a quantity to be optimized has no effect on the optimizer.4 So, from

(1.8) and (1.9), the brachistochrone problem is equivalent to that of

finding y to minimize J [y]. Second, from (1.11) and (1.13), the bead

travels faster down a circular arc than down a straight line: whatever

the optimal curve is, it is not a straight line. But is there a curve

that yields an even lower transit time than the circle?

One way to explore this question is to consider a one-parameter

family of trial curves satisfying (1.2), e.g., the family defined by

(1.14) y = yε(x) = 1− xε

for ε > 0. Note the contrast with (1.1). Now each different trial

function yε is distinguished by its value of ε; y is used only to denote

the ordinate of its graph, as illustrated by Figure 1.2(a). When (1.14)

is substituted into (1.9), J becomes a function of ε: we obtain

J(ε) = J [yε] =

1∫
0

{
1 + {y′ε(x)}2

}1
2√

1− yε(x)
dx

=

1∫
0

x− ε
2 {1 + ε2x2ε−2}1

2 dx

(1.15)

after simplification. This integral cannot be evaluated analytically

(except when ε = 1), but is readily evaluated by numerical means

with the help of a software package such as Maple, Mathematica� or

MATLAB. Because, from Figure 1.2(a), the curve is too steep initially

when ε is very small, is too close to the line when ε is close to 1 and

bends the wrong way for ε > 1, let us consider only values between,

say, ε = 0.2 and ε = 0.8. A table of such values is

ε 0.2 0.3 0.4 0.5 0.6 0.7 0.8

J(ε) 2.690 2.634 2.602 2.587 2.589 2.608 2.647

and the graph of J over this domain is plotted in Figure 1.2(b).

We see that J(ε) achieves a minimum at ε = ε∗ ≈ 0.539726 with

4For example, the polynomials x(2x − 1) and 3x(2x − 1) both have minimizer
x = 1

4 , although in the first case the minimum is − 1
8 and in the second case the

minimum is − 3
8 .

                

                                                                                                               



1. The Brachistochrone 5

Ε � 1

Ε � 0.5

Ε � 0.25

Ε � 2

Ε � 0

Ε � �

Ε � 3

Ε � 0.1

x
0 0.5 1

y

0

0.5

1

�a�

Ε
Ε�0.2 0.4 0.6 0.8

J

J� Ε��

2.6

2.65

2.7

�b�

Figure 1.2. (a) A class of trial functions. (b) J = J(ε) on [0.2, 0.8].

J(ε∗) ≈ 2.58598. Comparing with (1.13), we find that y = yε∗(x)

yields a lower transit time than the circular arc.

But that doesn’t make y = yε∗(x) the solution of the brachis-

tochrone problem, because the true minimizing function may not

belong to the family defined by (1.14). If y = y∗(x) is the true

minimizing curve, then all we have shown is that

(1.16) J [y∗] ≤ J(ε∗) ≈ 2.58598.

In other words, we have found an upper bound for the true minimum.

It turns out, in fact, that the true minimizer is a cycloid defined

parametrically by

(1.17) x =
θ + sin(θ) cos(θ) + 1

2π

cos2(θ1)
, y = 1−

{
cos(θ)

cos(θ1)

}2

for − 1
2π ≤ θ ≤ θ1, where θ1 ≈ −0.364791 is the larger of the only two

roots of the equation

(1.18) θ1 + sin(θ1) cos(θ1) +
1
2π = cos2(θ1)

and J [y∗] ≈ 2.5819045; see Lecture 4, especially (4.26)-(4.27). We

compare y∗ with yε∗ in Figure 1.3. Both curves are initially vertical;

however, the cycloid is steeper (has a more negative slope) than the

                

                                                                                                               



6 1. The Brachistochrone

2.828
2.622
2.586
2.582

x
0 0.5 1

y

0

0.5

1

Figure 1.3. Values achieved (top right) for J [y] by a straight
line, a quarter-circle, the best trial function and a cycloid.

graph of the best trial function for values of x between about 0.02

and 0.55, and it slopes more gently elsewhere.

But how could we have known that the cycloid is the curve

that minimizes transit time—in other words, that the cycloid is the

brachistochrone? At this stage, we couldn’t have: we need the calcu-

lus of variations, which was first developed to solve this problem. We

will start to develop it ourselves in Lecture 2.

Exercises 1

1. Rotating a curve between (0, 1) and (1, 2) about the x-axis gen-

erates a surface of revolution. Obtain an upper bound on the

minimum value S∗ of its surface area by using the trial-function

method (and a software package for numerical integration).

2. Obtain an upper bound on the minimum value J∗ of

J [y] =

1∫
0

y2y′
2
dx

subject to y(0) = 0 and y(1) = 1 by using the trial functions

y = yε(x) = xε with ε > 1
4 .

                

                                                                                                               



Lecture 2

The Fundamental
Problem. Extremals

The solutions of the brachistochrone problem (Lecture 1) and the

minimal surface area problem (Exercise 1.1) are both special cases of

the answer to the following more general question: among all curves

Γ defined by y = y(x) between two points (a, α) and (b, β), which one

minimizes

(2.1) J =

b∫
a

F (x, y, y′) dx

when J is evaluated along the curve, i.e., when (x, y) ∈ Γ? Note that

(x, y) ∈ Γ implies in particular that

(2.2) y(a) = α, y(b) = β.

To answer this question we must suitably restrict the class of

curves to which Γ belongs. In Lecture 1 (with a = 0 = β, α =

1 = b), we considered only curves of the form y = 1 − xε, but this

was a too restrictive class, because it failed to yield the solution to

the brachistochrone problem. So we must consider a more inclusive

class; indeed, we would like it to be as inclusive as possible. On

the one hand, for the sake of J ’s existence, Γ must be the graph

of a sufficiently (piecewise) differentiable function with domain [a, b].

On the other hand, it would not make sense in practice to allow for

7

                                     

                

                                                                                                               



8 2. The Fundamental Problem. Extremals

breaks in a curve: a bead cannot slide down a discontinuous wire. So

our dilemma appears to resolve itself. In any event, we shall assume

henceforward that Γ is the graph of a function y that is at least

piecewise-smooth—i.e., at the very least, y is a continuous function

whose derivative y′ exists and is continuous, except possibly at a

finite number of points where it jumps by a finite amount. It will

be convenient to have a shorthand for the class of all such functions

defined on [a, b], and so we denote it by D1. Moreover, we call y

admissible if, in addition to belonging to D1, it satisfies the boundary

conditions (2.2).

It will also be convenient to have corresponding shorthands for

two subclasses of D1. Accordingly, let C1 denote the class of all

continuously differentiable—or smooth—functions defined on [a, b],

and let C2 denote the class of all smooth functions defined on [a, b]

that are also continuously twice differentiable. Thus, by construction,

C2 ⊂ C1 ⊂ D1. Suppose, for example, that a < 0 < b and

(2.3) y(x) =

{
0 if a ≤ x ≤ 0

x2 if 0 < x ≤ b

so that

(2.4) y′(x) =

{
0 if a < x < 0

2x if 0 < x < b,
y′′(x) =

{
0 if a < x < 0

2 if 0 < x < b.

Then y /∈ C2 because—using c− and c+ to denote left-hand and

right-hand limits, respectively, at x = c—we have y′′(0−) = 0 but

y′′(0+) = 2; however, y ∈ C1 because y′ is continuous (even at x =

0). Likewise, because y = y′(x) has a corner at x = 0, we have

y′ /∈ C1; however, y′ ∈ D1, again because y′ is continuous. Thus,

as illustrated by (2.4), our functions are at least twice differentiable

almost everywhere on [a, b]. If there exists even a single c ∈ (a, b) at

which y′(c−) �= y′(c+), however, then y /∈ C1; and if y ∈ C1 but there

exists even a single c ∈ (a, b) at which y′′(c−) �= y′′(c+), then y /∈ C2.

We also make assumptions about the differentiability of F (x, y, z)

on an appropriate subset of three-dimensional space. In this regard,

we simply assume the existence of continuous partial derivatives with

respect to all three arguments of as high an order as is necessary to

develop our theory.

                

                                                                                                               



2. The Fundamental Problem. Extremals 9

We begin by seeking necessary conditions for the admissible curve

Γ0 defined by y = φ(x) with

(2.5) φ(a) = α, φ(b) = β

to minimize the functional J [y].1 That is, we assume the existence

of a minimizing function, call it φ, and then ask what properties φ

must inevitably have by virtue of being the minimizer. We take our

cue from Lecture 1, where in special cases we were able to find an

upper bound on the minimum value of J by noting that it must at

least be lower than the lowest value given by any particular family of

trial functions. The more inclusive the family, the tighter that upper

bound; and if the family is sufficiently inclusive, then it may even

yield the minimizer itself. Let us therefore consider the family of trial

curves defined by

(2.6) y = yε(x) = φ(x) + εη(x),

where ε may be either positive or negative and η is an arbitrary ad-

missible function, i.e., we require only η ∈ D1 and

(2.7) η(a) = 0 = η(b).

Where necessary, we will use Γε to denote the curve with equation

(2.6). Note that this is consistent with using Γ0 to denote the mini-

mizing curve y = φ(x).

A few remarks are in order before proceeding. First, because η

is piecewise-smooth, it is also bounded, and so yε is close to φ when

ε is small. We can therefore think of the difference between yε and φ

as a small variation—whence the name, calculus of variations.2 Note

that |ε| cannot be too large, purely as a practical matter. Suppose,

for example, that Γε represents a wire down which a bead must slide,

and that y = 0 is a hard surface. Then limitations on the magnitude

of |ε| are apparent from Figure 2.1.

Second, it is clear from (2.5)-(2.7) that yε(a) = α and yε(b) = β,

which is convenient because a trial function is useless unless it at least

1As a practical matter, the superscript ∗ used in Lecture 1 is a superb general
notation for an optimal quantity, and the superscript ′ is a superb general notation for
differentiation with respect to argument. If you use them both at once, however, then
the derivative of y∗ is represented by y∗′, which is apt to be rather cumbersome. We
prefer to avoid cumbersome notation if we can help it. Accordingly, here we use φ in
place of y∗ as our notation for the minimizer.

2Strictly speaking, εη(x) is a so-called weak variation, as discussed in Lecture 9.

                

                                                                                                               



10 2. The Fundamental Problem. Extremals

x
a b

Η

0

Possible Η � Η�x�

x
a b

Η

0

Possible Η � Η�x�

Ε � 0.1

Ε � 0.1

Ε � 0.2

Ε � 0.2

MINIMIZINGCURVE �0
x

a b

y

0

Α

Β

�Ε: y � Φ�x� � Ε Η�x�

Figure 2.1. Admissible variations.

satisfies the requisite boundary conditions. Even though η ∈ D1 and

y ∈ D1 satisfy different boundary conditions, these boundary condi-

tions are consistent, and so we refer to either function as admissible.

Third, by assumption, ε = 0 designates the minimizing function; i.e.,

(2.8) J [y] =

b∫
a

F (x, y, y′) dx

satisfies

(2.9) J [φ] = J [y0] ≤ J [yε]

for all η. Fourth, as soon as a particular η is chosen (from among the

plenitude that the arbitrariness of η affords), J [yε] becomes a function

of ε alone. We can therefore rewrite (2.9) as

(2.10) J(0) ≤ J(ε),
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where, on substituting from (2.6) into (2.8),

(2.11) J(ε) = J [yε] =

b∫
a

F
(
x, φ(x) + εη(x), φ′(x) + εη′(x)

)
dx.

Recall that ε may be either positive or negative, and that J(0) ≤
J(ε) from (2.10). Thus J is an ordinary univariate function with an

interior minimum at ε = 0. It follows at once from the ordinary

calculus that

(2.12) J ′(0) = 0.

But η is an arbitrary admissible function. So for all such functions,

(2.12) must hold.

Let us now proceed to infer the properties that φ must have. If

we write

(2.13) y = φ(x) + εη(x)

for the second argument of F above and

(2.14) ω = φ′(x) + εη′(x)

for the third argument, then in place of (2.11) we have

(2.15) J(ε) =

b∫
a

F (x, y, ω) dx

and, by the chain rule,

J ′(ε) =

b∫
a

∂

∂ε
F (x, y, ω) dx =

b∫
a

{
∂F

∂y

∂y

∂ε
+

∂F

∂ω

∂ω

∂ε

}
dx

=

b∫
a

{
∂F

∂y
η(x) +

∂F

∂ω
η′(x)

}
dx

(2.16)
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on using (2.13)-(2.14). Hence,

J ′(0) =

b∫
a

{
∂F

∂y

∣∣∣∣
ε=0

η(x) +
∂F

∂ω

∣∣∣∣
ε=0

η′(x)

}
dx

=

b∫
a

{
Fy(x, φ(x), φ

′(x)) η(x) + Fy′(x, φ(x), φ′(x)) η′(x)
}
dx(2.17)

=

b∫
a

η(x)Fφ dx +

b∫
a

η′(x)Fφ′ dx

using standard or subscript notation for partial derivatives inter-

changeably with the following convenient shorthands:

(2.18)
Fφ or ∂F

∂φ for Fy(x, φ(x), φ
′(x)),

Fφ′ or ∂F
∂φ′ for Fy′(x, φ(x), φ′(x)).

We haven’t yet assumed that φ has a continuous second deriv-

ative because it is ultimately unnecessary; now, however, it will be

convenient to assume y ∈ C2 temporarily—we relax this unnecessary

assumption in Lecture 5. Then we can integrate the second term of

(2.17) by parts to obtain

b∫
a

η′(x)
∂F

∂φ′ dx = η(x)
∂F

∂φ′

∣∣∣∣
b

a

−
b∫

a

η(x)
d

dx

{
∂F

∂φ′

}
dx.

The first term on the right-hand side of this equation is identically

zero, by (2.7). Hence, substituting back into (2.17) and combining

the integrals,

(2.19) J ′(0) =

b∫
a

η(x)

(
∂F

∂φ
− d

dx

{
∂F

∂φ′

})
dx.

But this expression is equal to zero for any admissible η. The only way

for that to happen—as intuition strongly suggests, and as is proven

in Appendix 2—is for the expression in big round brackets to equal

zero. Hence the minimizing function φ must satisfy

(2.20)
∂F

∂φ
− d

dx

{
∂F

∂φ′

}
= 0

                

                                                                                                               



2. The Fundamental Problem. Extremals 13

together with the boundary conditions (2.5).

Nowadays, the equation

(2.21)
∂F

∂y
− d

dx

{
∂F

∂y′

}
= 0

is usually known as the Euler-Lagrange equation, and we will follow

convention.3 It is a second-order ordinary differential equation, which

is seen most readily by using the chain rule to obtain

d

dx

{∂F

∂y′

}
=

∂2F

∂y′∂x
+

∂2F

∂y′∂y
· y′ +

∂2F

∂y′2
· y′′

and substituting back into (2.20). But it looks neater if we use sub-

script notation for partial differentiation. Then the equation takes

the form

(2.22) Fy′y′ y′′ = Fy − Fy′y y
′ − Fy′x

Because it is second-order, in the absence of any boundary conditions

it has a two-parameter family of solutions. Any one of these solutions

is known as an extremal. That is, an extremal is any y ∈ C2 that

satisfies the Euler-Lagrange equation.4

A remark is in order before we proceed to illustrate. An extremal

is clearly a candidate for the minimizer of J . Then why not call it a

minimal? The answer is that if y were instead to maximize J , then

it would have to minimize −J ; and so, from (2.1), (2.20) would have

to be satisfied with −F in place of F . But replacing F by −F has

no effect on the equation. So any y ∈ C2 that extremizes J , regard-

less of whether it maximizes or minimizes J , of necessity satisfies the

Euler-Lagrange equation. In effect, maximization problems are so

easily converted to minimization problems that minimization is the

only kind of extremization we need bother to consider.5 We empha-

size, however, that an extremal’s extremality does not make it an

extremizer—only a potential one, as will become clear in Lecture 3.

3However, it is really Euler’s equation. First discovered by him in 1744, it was
called Lagrange’s equation by Hilbert even though Lagrange himself attributed it to
Euler; see Bolza [6, p. 22].

4In restricting extremals to C2, we adopt the classical definition; see, e.g., Pars
[47, p. 29]. Note that some more recent writers, e.g., Leitmann [34], allow extremals

in D1 ∩C2 (where C2 and D1 are defined on Page 8 and C2 is the complement of C2).
5For illustration, see Lectures 13 (p. 104), 15 (p. 119), 19 (p. 160), 22 (p. 190),

and 24 (p. 205).
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Now for an illustration of a family of extremals. Let us suppose

that the curve Γ is rotated about the x-axis to yield an open surface

of revolution with surface area 2πJ [y] where

(2.23) J [y] =

b∫
a

y ds =

b∫
a

y
√
1 + (y′)2 dx

from (1.5). Then, comparing with (2.8), we see that

(2.24) F (x, y, y′) = y
√

1 + (y′)2

is independent of x, so that the last term of (2.22) is identically zero.

Furthermore,

(2.25) Fy =
√

1 + (y′)2

and

(2.26) Fy′ =
y y′√

1 + (y′)2

imply

(2.27) Fy′y =
y′√

1 + (y′)2

and

(2.28) Fy′y′ =
y

{1 + (y′)2}3/2 .

Substituting into (2.22) and simplifying, we reduce the Euler-Lagrange

equation to

(2.29) y y′′ = 1 + (y′)2.

Thus,

(2.30)
d

dx

{
y√

1 + (y′)2

}
=

y′{1 + (y′)2 − yy′′}
{1 + (y′)2}3/2 = 0

by the quotient rule and (2.29). It follows at once that

(2.31)
y√

1 + (y′)2
= B,

where B is a constant, and hence that y′ =
√
y2 −B2/B or

(2.32)
dx

dy
=

B√
y2 −B2

=⇒ x = B arccosh
( y

B

)
−A,
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where A is another constant. So every member of the two-parameter

family of continuously twice differentiable functions with equation

(2.33) y = y(x) = B cosh
(x+A

B

)
is a solution of the Euler-Lagrange equation, and hence an extremal.

Only for specific values of A and B, however, is this extremal admis-

sible; see Exercises 2.1-2.3.

Finally, a remark about notation. Until now, we have always

used x for the independent variable, y for the dependent variable and

a prime to denote differentiation with respect to argument; thus y′

means dy
dx . When time is the independent variable, however, it is

traditional to denote it by t and to use an overdot for differentiation

with respect to that argument; moreover, the use of t for time frees

up x for use as the dependent variable. Then ẋ means dx
dt , and the

fundamental problem can be recast as that of minimizing

(2.34) J =

t1∫
t0

F (t, x, ẋ) dt

subject to x = x0 when t = t0 and x = x1 when t = t1 or

(2.35) x(t0) = x0, x(t1) = x1.

The Euler-Lagrange equation would then be written as

(2.36)
∂F

∂x
− d

dt

{
∂F

∂ẋ

}
= 0.

Nothing has changed, however—except for the notation. See Exer-

cises 2.5-2.8.

Appendix 2: The Fundamental Lemma

The following result is often called the Fundamental Lemma of the

Calculus of Variations, e.g., by Bolza [6, p. 20].

Lemma 2.1. If the function M is continuous on [a, b] and if

(2.37)

∫ b

a

M(x) η(x) dx = 0
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for any function η that is smooth (continuously differentiable) on [a, b]

and satisfies η(a) = 0 = η(b), then M is identically zero, i.e., M(x) =

0 for all x ∈ [a, b].

Proof. The proof is by contradiction. Suppose that the statement

“M(x) = 0 for all x ∈ [a, b]” is false. Then there exists at least one

point, say θ ∈ [a, b], for which M(θ) �= 0. But M is continuous.

Therefore, M must remain nonzero and of constant sign throughout

a subinterval of [a, b] containing θ. For the sake of definiteness, sup-

pose that the sign is positive. Then there exists (ξ0, ξ1) ⊂ [a, b] with

ξ0 < θ < ξ1 such that M(x) > 0 for all x ∈ (ξ0, ξ1). Consider the

nonnegative function η defined by

(2.38) η(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if a ≤ x ≤ ξ0

(x− ξ0)
2(ξ1 − x)2 if ξ0 < x < ξ1

0 if ξ1 ≤ x ≤ b.

This function is readily verified to be smooth on [a, b] and to satisfy

(2.7). Moreover, because M(x) > 0 for all x ∈ (ξ0, ξ1), (2.38) implies

(2.39)

∫ b

a

M(x)η(x) dx =

∫ ξ1

ξ0

M(x)η(x) dx > 0,

which contradicts (2.37). We cannot avoid this contradiction by sup-

posing that M is instead negative on (ξ0, ξ1), for that merely reverses

the inequality in (2.39). Hence M must be identically zero. �

Note. The continuity of M(x) = ∂F
∂φ − d

dx

{
∂F
∂φ′

}
in (2.19) follows di-

rectly from our assumption that φ has a continuous second derivative.

But if we assume that φ ∈ C2, then, for consistency, we should also

assume that η ∈ C2: φ (= y0) belongs to the class of functions de-

fined by (2.6). Hence, to deduce (2.20) from (2.19) we strictly require

a slight variant of Lemma 2.1, namely, the following.

Lemma 2.2. If the function M is continuous on [a, b] and if

(2.40)

∫ b

a

M(x) η(x) dx = 0

for any function η that is continuously twice differentiable on [a, b]

and satisfies η(a) = 0 = η(b), then M is identically zero; i.e., M(x) =

0 for all x ∈ [a, b].
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Proof. Essentially the only change from the proof above is to replace

(2.38) by

(2.41) η(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if a ≤ x ≤ ξ0

(x− ξ0)
3(ξ1 − x)3 if ξ0 < x < ξ1

0 if ξ1 ≤ x ≤ b,

which is readily verified to be continuously twice differentiable on

[a, b]. �

Exercises 2

1. Confirm your result from Exercise 1.1 by finding the extremal

that satisfies the boundary conditions for the minimum surface

area problem with (a, α) = (0, 1) and (b, β) = (1, 2).

2. Show that there are two admissible extremals for the minimum

surface area problem with (a, α) = (0, 2) and (b, β) = (1, 2).

Which of these extremals, if either, is the minimizer?

Hint: You will need to use a software package for numerical

solution of an equation arising from the boundary conditions and

for numerical integration.

3. Show that there is no admissible extremal for the minimum sur-

face area problem with (a, α) = (0, 2) and (b, β) = (e, 2).

4. To confirm your result from Exercise 1.2, find an admissible ex-

tremal for the problem of minimizing

J [y] =

1∫
0

y2y′
2
dx

subject to y(0) = 0 and y(1) = 1.

5. Find an admissible extremal for the problem of minimizing

J [y] =

1∫
0

{y′2 + 2yex} dx

subject to y(0) = 0 and y(1) = 1.

                

                                                                                                               



18 2. The Fundamental Problem. Extremals

6. Find an admissible extremal for the problem of minimizing

J [y] =

1∫
0

{y2 + y′
2
+ 2yex} dx

subject to y(0) = 0 and y(1) = e.

Hint: When solving the Euler-Lagrange equation, look for a

particular integral of the form Cxex, where C is a constant.

7. Find an admissible extremal for the problem of minimizing

J [x] =

π
2∫

0

{x2 + ẋ2 − 2x sin(t)} dt

subject to x(0) = 0 and x
(
π
2

)
= 1.

8. Find an admissible extremal for the problem of minimizing

J [x] =

π
2∫

0

{x2 − ẋ2 − 2x sin(t)} dt

subject to x(0) = 0 and x
(
π
2

)
= 1.

9. A company wishes to minimize the total cost of doubling its pro-

duction rate in a year. Given that manufacturing costs accrue at

the rate Cẋ2 per annum and personnel costs increase or decrease

at the rate αCtẋ per annum, where C is a (fixed) cost parameter,

α is a fixed proportion and x(t) is the production rate at time

t, which is measured in years from the beginning of the year in

question, obtain a candidate for the optimal production rate if

the initial rate is x(0) = p0. Will production always increase?

Endnote. This set of exercises is a good illustration of old standards

(p. xi). In particular, Exercises 2.6-2.8 appear in many books, includ-

ing Akhiezer [1, pp. 46 and 235], Elsgolc [13, pp. 62-63] and Gelfand

& Fomin [16, p. 32], all of which contain further problems of this type.

Exercise 2.9 is adapted from Connors & Teichroew [12, pp. 14-17].

                

                                                                                                               



Lecture 3

The Insufficiency of
Extremality

Here we study examples to illustrate that minimizing a functional is

not quite as simple as merely finding an extremal. There are three

related issues. The first is that even if the extremal is indeed a mini-

mizer, we haven’t actually proven it; the second is that the extremal

might not be a minimizer; and the third is that there may not be an

admissible extremal, i.e., there may be no extremal that satisfies the

boundary conditions. We visit each issue in turn.

To broach the first issue, consider the problem of minimizing

(3.1) J [y] =

2∫
1

x2y′
2
dx

subject to

(3.2) y(1) = 1, y(2) = 1
2

so that

(3.3) F (x, y, y′) = x2y′
2
.

When ∂F
∂y = 0, the Euler-Lagrange equation becomes d

dx

{
∂F
∂y′

}
= 0 or

(3.4)
∂F

∂y′
= constant.

19

                                     

                

                                                                                                               



20 3. The Insufficiency of Extremality

Let the constant in this case be −2A. Then 2x2y′ = −2A, imply-

ing y′ = −Ax−2. Solving for y, we find that every extremal is a

rectangular hyperbola

(3.5) y =
A

x
+B

and that

(3.6) y =
1

x

is the member of this family that satisfies (3.2). Note that it achieves

the value

(3.7) J
[
1
x

]
= 1

2 .

We now have an admissible extremal, that is, a candidate for mini-

mizer. But how can we be sure that a candidate for minimizer is in

actual fact a minimizer?

This is not an easy question to answer, and we will deal with it in

some generality only much later. The point of raising the issue now is

to demonstrate that in some special cases—and this is one of them—

we can use a so-called direct method to verify that our candidate is

indeed a minimizer. To show that (3.6) minimizes (3.1) subject to

(3.2), we must show that J [1/x] ≤ J [1/x+ ε η(x)] or

(3.8) J
[
1
x + ε η(x)

]
− J

[
1
x

]
≥ 0

for all ε and η satisfying

(3.9) η(1) = 0 = η(2).

From (3.2) with y = 1/x+ ε η(x), however, we have

J
[
1
x + ε η(x)

]
− J

[
1
x

]
=

2∫
1

x2
{
− 1

x2
+ ε η′(x)

}2

dx−
2∫

1

x−2 dx

=

2∫
1

x2
{ 1

x4
− 2ε

x2
η′(x) + ε2 η′(x)2

}
dx−

2∫
1

x−2 dx,

                

                                                                                                               



3. The Insufficiency of Extremality 21

which simplifies to

J
[
1
x + ε η(x)

]
− J

[
1
x

]
= −2ε

2∫
1

η′(x) dx+ ε2
2∫

1

x2 η′(x)2 dx

= −2εη(x)
∣∣∣2
1
+ ε2

2∫
1

x2 η′(x)2 dx = ε2
2∫

1

x2 η′(x)2 dx

(3.10)

by (3.9). The above expression is clearly positive for all ε �= 0, η �= 0

because the integrand is then positive. Hence (3.8) must hold.

To broach the second issue, consider the problem of minimizing

(3.11) J [y] =

2∫
1

(1 + y′)2(1− y′)2 dx

subject once more to

(3.12) y(1) = 1, y(2) = 1
2

so that

(3.13) F (x, y, y′) = (1 + y′)2(1− y′)2.

Because ∂F
∂y = 0, (3.4) implies 4y′(y′ + 1)(y′ − 1) = constant, and

solving this cubic for y′ yields y′ = constant. So the extremals are

straight-line segments

(3.14) y = Ax+B,

and the one that satisfies (3.12) is

(3.15) y = 1
2 (3− x),

yielding

(3.16) J [y] = 9
16 = 0.5625

on substitution back into (3.11). Note, more generally, that the ex-

tremals are straight-line segments whenever F depends only on y′.

Nevertheless, 9
16 is not—indeed it is far from—the lowest value

that J [y] can achieve. For example, the quartic curve defined by

(3.17) y = 1
2{7− 13x+ 13x2 − 6x3 + x4},
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Ε
4 2 0 2 4

J

0.51

0.53

0.55

0.57

Figure 3.1. J = J(ε).

which is clearly admissible by virtue of satisfying (3.12), yields the

lower value

(3.18) J [y] = 44857
80080 ≈ 0.5602.

So what has gone wrong? A hint at the answer is provided by the

one-parameter family of trial curves y = yε(x) defined by

(3.19) yε(x) = 1
2 (3− x) + ε (x− 1)2(x− 2)2.

Substitution into (3.11) yields

J(ε) = J [yε] =

2∫
1

{1 + y′ε(x)}2{1− y′ε(x)}2 dx

= 9
16 − 1

105ε
2 + 8

15015 ε
4,

(3.20)

which is plotted in Figure 3.1. We see at once that J has a local

maximum—as opposed to a minimum—at ε = 0. The extremal (3.15)

is not a minimizer because it is really a candidate for maximizer

rather than minimizer: either type of extremizer must satisfy the

Euler-Lagrange equation (as well as the boundary conditions). But

either type must also satisfy an additional necessary condition that

distinguishes the two types; see Lecture 7.

The above example also illustrates a further point, namely, that

the minimizer y = y∗(x) need not belong to the class of functions

presently under consideration. It is already clear from Figure 3.1 that

                

                                                                                                               



3. The Insufficiency of Extremality 23

x
0 1 2

y

0

1

Figure 3.2. Two broken extremals.

J [y∗] ≤ J(ε∗) ≈ 0.5199 where ε∗ ≈ ±2.99. But even 0.5199 is far

above the lowest value J [y] can achieve. So far, we have considered

as admissible only functions belonging to C2. If we broaden the class

to D1, however, then possible candidates for minimizer include both

(3.21) y1 =

{
x if 1 ≤ x ≤ 5

4
5
2 − x if 5

4 < x ≤ 2

and

(3.22) y2 =

{
2− x if 1 ≤ x ≤ 7

4

x− 3
2 if 7

4 < x ≤ 2,

which have discontinuous derivatives

(3.23) y′1 =

{
1 if 1 < x < 5

4

−1 if 5
4 < x < 2

and

(3.24) y′2 =

{
−1 if 1 < x < 7

4

1 if 7
4 < x < 2,

so that y1 has a corner at x = 5
4 and y2 has a corner at x = 7

4 ;

see Figure 3.2. Note that, between their corner and either endpoint,

both y1 and y2 satisfy the Euler-Lagrange equation, a point whose

significance emerges in Lecture 5. Admissible curves with corners

that satisfy the Euler-Lagrange equation on every subdomain where

the curve is smooth are known as broken extremals.1 So y1 and y2
are broken extremals.

1See, e.g., Gelfand & Fomin [16, p. 62]. Note, however, that y itself is not
“broken”—only its derivative is discontinuous.
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Furthermore, it is clear from (3.11) and (3.23)-(3.24) that

(3.25) J [y1] = 0 = J [y2].

Thus, on both y1 and y2, J [y] achieves the value zero—which must

be the minimum value of the functional, because the integrand is

nonnegative.

Finally, to broach the third issue, it is now easy to demonstrate

that there need not be an admissible extremal. All we need do is

change the boundary conditions in our first example from (3.2) to

(3.26) y(−1) = −1, y(1) = 1

and consider instead the problem of minimizing

(3.27) J [y] =

1∫
−1

x2y′
2
dx.

The extremals are still (3.5), but the boundary points (−1,−1) and

(1, 1) are now inevitably on opposite branches of any such rectangular

hyperbola. In fact, they both lie on (3.6); however, this is no longer

the equation of a curve between boundary points (as it was in our first

example). It is therefore inadmissible, by choice—we have decided to

disallow breaks in curves, for which typically there are good physical

reasons. It is worth noting that if we were indeed to allow y itself

to be discontinuous, thus broadening our class of functions to include

those which are piecewise-differentiable but discontinuous, then

(3.28) y =

{
−1 if − 1 ≤ x < 0

1 if 0 < x ≤ 1

would minimize (3.27) subject to (3.26). Nevertheless, in general we

will exclude the possibility that y is discontinuous on purely physical

grounds. Exercise 2.3 provides further illustration that an admissible

extremal need not exist.

Two remarks are in order before concluding. First, our derivation

of the Euler-Lagrange equation in Lecture 2 was predicated on the as-

sumption that y ∈ C2. Thus, when we hypothesize that y∗ minimizes

J [y], strictly speaking, we hypothesize only that J [y∗] ≤ J [y] for all

admissible y ∈ C2. So a question immediately arises: if we allow y to
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vary over a more inclusive class, can we achieve an even lower value

than J [y∗] for J [y]?

For example, we have shown that J [y] defined by (3.1) satisfies

J [y] ≥ 1
2 for all y ∈ C2. Can we make J [y] smaller than 1

2 by allowing

for y ∈ C1∩C2?
2 Can we then make J [y] even smaller by allowing for

y ∈ D1 ∩ C1? The answer is no: (3.10) does not depend in any way

on y ∈ C2 (which implies η ∈ C2). It is valid exactly as it stands for

y ∈ C1, and for y ∈ D1, it requires only that the domain of integration

[1, 2] be split up into subdomains on which η′ is continuous. This

result turns out to be quite general. That is, for J [y] defined by

(2.1), if J [y∗] ≤ J [y] for all y ∈ C2 satisfying (2.2) or for all y ∈ C1

satisfying (2.2), then J [y∗] ≤ J [y] for all y ∈ D1 satisfying (2.2) as

well. We omit a formal proof, which would merely be a distraction;

instead we note that the result holds, in essence, because any function

in D1 can be approximated arbitrarily closely by a function in C1.
3

But if this result is true (and it is), then why do we ever need to resort

to D1 in search of a minimizer? Our second and third examples above

provide an answer: there may exist no minimizer in C2 because any

extremal is either inadmissible or a maximizer.

Second, although we should be well aware of the insufficiency

of extremality, there are numerous problems for which we can be

confident on purely physical grounds that the minimum of a func-

tional must exist: examples include the brachistochrone problem and

the minimum surface area problem. For such problems, if there is

a unique admissible extremal, then it must of necessity be the min-

imizer. Furthermore, if there are two admissible extremals—as in

Exercise 2.2—to determine which is the minimizer, we need only com-

pare the values they achieve.

2Where C1, C2 and D1 are defined on Page 8 and Ci is the complement of Ci.
3See, e.g., Pars [47, pp. 9-10] or Clegg [11, pp. 33-35].
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Appendix 3: The Principle of Least Action

In anticipation of Exercise 3.5, we briefly discuss the principle of least

action. Despite the word “least”, this principle actually states that

the motion of a dynamical system makes the action integral

(3.29) I =

t1∫
t0

Ldt =

t1∫
t0

{K − V } dt

stationary, where K denotes kinetic energy, V denotes potential en-

ergy, t0 and t1 are the initial and final times, respectively, and L =

K−V is called the Lagrangian; however, typically the action achieves

a minimum. Regardless, where does this idea of action come from?

It is a long story,4 and the easiest way to cut to the chase is to con-

sider motion of a particle in one dimension in a conservative force

field. Then Newton’s equation of motion yields mẍ = f = − dV
dx ,

where m is the particle’s mass, f is the force and V = V (x); in other

words, Newton says that mẍ+V ′(x) = 0. Now K = 1
2mẋ2, implying

L = 1
2mẋ2 − V (x) and hence Lẋ = mẋ, Lx = −V ′(x). So

(3.30)
d

dt
{Lẋ} − Lx =

d

dt
{mẋ} − {−V ′(x)} = mẍ+ V ′(x).

It follows at once that d
dt {Lẋ}−Lx = 0, which is the Euler-Lagrange

equation for I.

Exercises 3

1. Show that there is no admissible extremal for the problem of

minimizing

J [y] =

2∫
0

y2(1− y′)2 dx

subject to y(0) = 0 and y(2) = 1. Find by inspection a broken

extremal that minimizes J [y].

4See, e.g., Pars [48, p. 544].
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2. Show that the admissible extremal for

J [y] =

1∫
0

cos2(y′) dx

with y(0) = 0 and y(1) = 1 is not the minimizer over D1.

3. Show that there is an admissible extremal for minimizing

J [y] =

b∫
a

ex
√
1 + (y′)2 dx

with y(a) = α and y(b) = β only if |β − α| < π.

Hint: Note that
∫

A√
e2x−A2

dx = arctan
(√

e2x−A2

A

)
+ constant.

4. Find admissible extremals for the problem of minimizing

(a) J [x] =

2∫
1

t3ẋ2 dt

subject to x(1) = 0, x(2) = 3 and the problem of minimizing

(b) J [x] =

1∫
1
2

ẋ2

t3
dt

subject to x
(
1
2

)
= −1, x(1) = 4. In each case, use a direct

method to confirm that the extremal is the minimizer.

Hint: What is the most efficient way to solve the problem as a

whole?

5. According to the principle of least action,5 the motion of a par-

ticle of mass m falling freely under gravitational acceleration g

minimizes the integral

I =

t1∫
t0

{T − V } dt,

where T denotes the particle’s kinetic energy, V denotes its po-

tential energy and t0, t1 are the initial and final times, respec-

tively. If the particle falls from z = h to z = 0 in time τ and if

5See Appendix 3.
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potential energy is measured from z = 0, then t0 = 0, t1 = τ ,

T = 1
2m(−ż)2 and V = mgz. Thus I = mJ [y], where

J [z] =

τ∫
0

{
1
2 ż

2 − gz
}
dt.

Because multiplication by a constant can have no effect on the

minimizer of a functional, the problem of minimizing I subject

to z(0) = h and z(τ ) = 0 is identical to that of minimizing J

subject to z(0) = h and z(τ ) = 0. Accordingly, find the extremal

that governs the particle’s motion, and use a direct method to

prove that it minimizes J (and hence I).

6. For the problem of minimizing

J [x] =

√
2∫

0

{ẋ2 + 2txẋ+ t2x2} dt

subject to x(0) = 1 and x(
√
2) = 1/e,

(a) Show that φ(t) = e−t2/2 is an admissible extremal.

(b) Use a direct method to confirm that φ is the minimizer.

7. Refine the condition you obtained in Exercise 3 by showing that

there is an admissible extremal for minimizing

J [y] =

b∫
a

ex
√
1 + (y′)2dx

with y(a) = α and y(b) = β only if |β − α| < 1
2π.

Endnote. Exercise 3.4 is effectively the only one of its type, because

the direct method is transparent only when F (t, x, ẋ) has the form

K(t)ẋ2 with K(t) ≥ 0.

                

                                                                                                               



Lecture 4

Important First
Integrals

Although the Euler-Lagrange equation

(4.1)
∂F

∂y
− d

dx

(
∂F

∂y′

)
= 0

for the functional

(4.2) J [y] =

b∫
a

F (x, y, y′) dx

is in general a second-order, nonlinear, ordinary differential equation

or ODE, it always reduces to a first-order ODE in an important special

case. Consider the quantity1

(4.3) H(x, y, ω) = ω
∂F (x, y, ω)

∂ω
− F (x, y, ω),

where

(4.4) ω = y′.

By virtue of being functions of three arguments, each of which is a

function of x, both F and H depend ultimately only on x. By the

1Here H stands for Hamiltonian, as formally introduced in Lecture 17 (p. 140);
see Appendix 17.
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product rule applied to H, we have

(4.5)
dH

dx
=

dω

dx

∂F

∂ω
+ ω

d

dx

(
∂F

∂ω

)
− dF

dx
.

By the chain applied to F = F (x, y, ω), we have

(4.6)
dF

dx
=

∂F

∂x
+

∂F

∂y

dy

dx
+

∂F

∂ω

dω

dx
.

Substituting into (4.5) and using (4.4), we obtain

(4.7)
dH

dx
=

dy

dx

{
d

dx

(
∂F

∂y′

)
− ∂F

∂y

}
− ∂F

∂x
=

dy

dx
· 0− ∂F

∂x
= −∂F

∂x

for any extremal y, by (4.1). So if ∂F/∂x = 0, then (suppressing any

dependence of F or H on the first of the three possible arguments)

the Euler-Lagrange equation reduces to the first-order ODE

(4.8) H(y, y′) = y′
∂F (y, y′)

∂y′
− F (y, y′) = constant.

We have effectively already used this result in Lecture 2. Of course,

when the fundamental problem is recast with t as the independent

variable and x as the dependent variable as on p. 15, (4.8) becomes

(4.9) H(x, ẋ) = ẋFẋ(x, ẋ)− F (x, ẋ) = constant,

where F is now independent of t and, for a little variety, we have used

subscript notation for partial differentiation instead.

Let us now make use of our new first integral to find extremals

for the brachistochrone problem in Lecture 1, for which

(4.10) J [y] =

1∫
0

√
1 +

(
y′
)2

1− y
dx

with

(4.11) y(0) = 1, y(1) = 0.

From (4.8),

(4.12) H(y, y′) = − 1√
(1− y){1 +

(
y′
)2} = constant = − 1√

A
,

implying

(4.13) (1− y){1 +
(
y′
)2} = A.
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The substitution

(4.14) y′ = tan(θ),

where θ is the (negative) angle of elevation of the curve Γ at the point

(x, y), facilitates further integration by converting (4.13) to

(4.15) y = 1−A cos2(θ),

implying

(4.16)
dy

dθ
= 2A cos(θ) sin(θ) = A sin(2θ).

But we also have

(4.17)
dy

dθ
=

dy

dx

dx

dθ
= tan(θ)

dx

dθ
,

implying

(4.18)
dx

dθ
= 2A cos2(θ) = A{1 + cos(2θ)}

and hence

(4.19) x = A{θ + 1
2 sin(2θ)}+B = A{θ + sin(θ) cos(θ)}+B,

where B is another constant. Equations (4.15) and (4.19) are the

parametric equations of a two-parameter family of cycloids.

No extremal is admissible, however, until it has satisfied the

boundary conditions. Let θ0 and θ1 denote the initial and final an-

gles of elevation, respectively. Then, from (4.11), (4.15) and (4.19),

we require

A{θ0 + sin(θ0) cos(θ0)}+B = 0,(4.20)

1−A cos2(θ0) = 1,(4.21)

A{θ1 + sin(θ1) cos(θ1)}+B = 1,(4.22)

1−A cos2(θ1) = 0.(4.23)

It is clear from (4.23) thatA �= 0, and hence from (4.21) that cos(θ0) =

0: the path is initially vertical, with

(4.24) θ0 = − 1
2π.

Now (4.20) implies B = 1
2πA, so that (4.22) and (4.23) together imply

(4.25) θ1 + sin(θ1) cos(θ1) +
1
2π =

1

A
= cos2(θ1).
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Thus the admissible extremal is the curve with parametric equations

(4.26) x =
θ + sin(θ) cos(θ) + 1

2π

cos2(θ1)
, y = 1−

{ cos(θ)

cos(θ1)

}2
where θ1 ≈ −0.116π is the larger of the only two roots of the equation

(4.27) t+ sin(t) cos(t) + 1
2π = cos2(t)

(the other root being θ0). The curve, a cycloid, is the thick solid

curve sketched in Figure 1.3.2 All we know for now, of course, is that

this cycloid is a candidate for minimizer, but by Lecture 13 we will

be able to to prove that it wins the election.3

The case where F does not depend explicitly on x is not the only

one in which the Euler-Lagrange equation reduces to a first-order

ODE (although it is certainly the most important one). As noted in

Lecture 3, the Euler-Lagrange equation also becomes first order when

F does not depend explicitly on y, for then (4.1) reduces to

(4.28)
∂F

∂y′
= constant.

Of course, if the fundamental problem is recast with t as the inde-

pendent variable and x as the dependent variable as on p. 15, then

(4.28) becomes

(4.29)
∂F

∂ẋ
= constant

instead, because F is then independent of x in (2.36).

Suppose, for example, that the curve y = y(x) joining (a, α) to

(b, β) is rotated, not about the x-axis as in Lecture 2, but instead

about the y-axis to yield an open surface of revolution with surface

area 2πJ [y], where now

(4.30) J [y] =

b∫
a

x ds =

b∫
a

x

√
1 +

(
y′
)2

dx.

2Note that x defined by (4.26) is an increasing, and therefore invertible, function
of θ, which makes θ an increasing function of x; hence y, which is a decreasing function
of θ, must also be a decreasing function of x, as indicated by Figure 1.3.

3See Exercise 13.1.
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So F (x, y, y′) = x
√{1 +

(
y′
)2} is independent of y. Now (4.28) yields

xy′/
√{1 +

(
y′
)2} = C, where C is an arbitrary constant, or

(4.31)
dy

dx
=

A√
x2 −A2

with A = ±C. Thus the extremals are given by

(4.32) y = A arccosh(x/A) + B = A ln(x+
√
x2 −A2) + B,

where B is another constant.

Exercises 4

1. Find the length of the cycloidal arc in Figure 1.3 and compare it

to that of the other curves. In particular, is the extremal shorter

or longer than the best trial curve?

2. Find an admissible extremal for the problem of minimizing

J [x] =

1∫
0

ẋ2

x4
dt

with x(0) = 1 and x(1) = 2.

3. Find an admissible extremal for the problem of minimizing

J [x] =

1∫
0

{
1
2 ẋ

2 + xẋ+ x+ ẋ
}
dt

with x(0) = 1 and x(1) = 2.

4. Find an admissible extremal for the problem of minimizing

J [x] =

2∫
1

√
1 + (ẋ)2

x
dt

with x(1) = 0 and x(2) = 1.

Hint: Use the substitution ẋ = tan(θ).

5. Find an admissible extremal for the problem of minimizing

J [x] =

2∫
1

√
1 + (ẋ)2

t
dt

                

                                                                                                               



34 4. Important First Integrals

with x(1) = 0 and x(2) = 1.

6. Find an admissible extremal for the problem of minimizing

J [y] =

4a/
√
3∫

a

x

1 + y′2
dx

with y(a) = 1
2a and y(4a/

√
3) = 1 where a = 4

10−ln(
√
3)

≈ 0.4232.

Hint: Use (4.28) and (4.14) to obtain analogues of (4.20)-(4.23),

and solve numerically.

7. A frictionless bead is projected with speed ν
√
2g along a smooth

wire from the point with coordinates (0, 0) to the point with

coordinates (1, 1), where ν > 1 and g denotes gravitational ac-

celeration, as in Lecture 1. What is the shape of the wire that

transfers the bead in the shortest possible time?

8. Assuming that a minimum J∗ for

J [x] =

2∫
0

√
1 + x2ẋ2 dt

subject to x(0) = 1 and x(2) = 3 exists,

(a) Find an upper bound on J∗ by using a suitable family of

trial functions, as in Lecture 1.

(b) Find both J∗ and the associated minimizer exactly.

9. Assuming that a minimum J∗ for

J [x] =

2∫
0

√
1 +

( ẋ
x

)2
dt

subject to x(0) = 1 and x(2) = 3 exists,

(a) Find an upper bound on J∗ by using a suitable family of

trial functions.

(b) Find both J∗ and the associated minimizer exactly.

Endnote. Further such exercises may be found in Akhiezer [1], Hestenes

[20, p. 65] and Troutman [60, pp. 83 and 183-185].

                

                                                                                                               



Lecture 5

The du Bois-Reymond
Equation

In Chapter 2 we showed that a necessary condition for y = φ(x) to

minimize

(5.1) J [y] =

b∫
a

F (x, y, y′) dx

over all y ∈ D1 subject to

(5.2) y(a) = α, y(b) = β

is that

(5.3)

b∫
a

η(x)Fy (x, φ, φ
′) dx +

b∫
a

η′(x)Fy′(x, φ, φ′) dx = 0

for any η ∈ D1 such that

(5.4) η(a) = 0 = η(b).

We then assumed that η ∈ C2 and deduced that φ must satisfy the

Euler-Lagrange equation. Here we relax the assumption that η ∈ C2

and replace it by η ∈ D1.
1

1Thus either integrand in (5.3) may be discontinuous. It is therefore assumed
that each integral is obtained by first subdividing [a, b] into subdomains on which the
integrand is continuous and then summing integrals over subdomains.

35

                                     

                

                                                                                                               



36 5. The du Bois-Reymond Equation

We first note that Fy(x, φ, φ
′) may be discontinuous at points

where φ′(x) is discontinuous: such corners are now allowed, because

we assume only φ ∈ D1. Between corners, however, Fy(x, φ, φ
′) is

continuous by assumption, and so

(5.5)
d

dx

{
η(x)

x∫
a

Fy(ξ, φ, φ
′) dξ

}

= η′(x)

x∫
a

Fy(ξ, φ, φ
′) dξ + η(x)Fy(x, φ, φ

′),

implying

(5.6) η(x)Fy(x, φ, φ
′)

=
d

dx

{
η(x)

x∫
a

Fy(ξ, φ, φ
′) dξ

}
− η′(x)

x∫
a

Fy(ξ, φ, φ
′) dξ.

Let us now integrate this equation between x = a and x = b. Because

(5.7)

b∫
a

d

dx

{
η(x)

x∫
a

Fy(ξ, φ, φ
′) dξ

}
dx

=

{
η(x)

x∫
a

Fy(ξ, φ, φ
′) dξ

}∣∣∣∣∣
b

a

= 0

by (5.4), we obtain

(5.8)

b∫
a

η(x)Fy(x, φ, φ
′) dx = −

b∫
a

{
η′(x)

x∫
a

Fy(ξ, φ, φ
′) dξ

}
dx.

Substituting back into (5.3), rearranging, and defining

(5.9) M(x) = Fy′(x, φ, φ′) −
x∫

a

Fy(ξ, φ, φ
′) dξ,

we obtain

(5.10)

∫ b

a

M(x) η′(x) dx = 0
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for any η ∈ D1, which places restrictions on the kind of function that

M can be. It is clear that M can be a constant, because the left-hand

side of (5.10) is then identically zero, by (5.4). It turns out, however,

that M can only be a constant; see Appendix 5. Let us denote this

constant by C. Then (5.9) implies that a necessary condition for

φ ∈ D1 to minimize J is that

(5.11) Fy′(x, φ, φ′) =

x∫
a

Fy(ξ, φ, φ
′) dξ + C.

This is the du Bois-Reymond equation.

There are two mutually exclusive possibilities. Either φ ∈ C1 or

φ ∈ D1 ∩ C1. In the first case, where φ′ is continuous, the integrand

on the right-hand side of (5.11) must be continuous (because F has

continuous partial derivatives). We can therefore differentiate (5.11)

with respect to x to obtain

(5.12)
d

dx

{
∂F

∂φ′

}
=

∂F

∂φ

and recover (2.20). Thus φ must satisfy the Euler-Lagrange equation,

regardless of whether φ ∈ C2 or φ ∈ C1 ∩ C2. Consider, for example,

the problem of minimizing

(5.13) J [y] =

1∫
−1

y2(2x− y′)2 dx

subject to

(5.14) y(−1) = 0, y(1) = 1

so that

(5.15) F (x, y, y′) = y2(2x− y′)2.

The minimum value of zero is achieved by

(5.16) y = φ(x) =

{
0 if − 1 ≤ x ≤ 0

x2 if 0 < x ≤ 1,

which satisfies (5.12), because Fφ′ = 2φ2(φ′ − 2x) = 0 and Fφ =

2φ(2x − φ′)2 = 0 on (5.16). Yet φ /∈ C2, as we know from (2.4),
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so φ ∈ C1 ∩ C2. We note in passing that a sufficient condition2 for

φ ∈ C2 is Fφ′φ′ = Fy′y′(x, φ, φ′) �= 0 for all x ∈ (a, b); this condition

is violated by (5.16), which yields Fφ′φ′ = 2φ2 = 0 for all x ∈ (−1, 0).

The second possibility is that φ ∈ D1 ∩ C1: there is at least one

c ∈ (a, b) at which φ′ is discontinuous. For the sake of definiteness,

suppose that the left- and right-hand limits of φ′ at the corner c are

given by

ω1 = φ′(c−) = lim
x→c−

φ′(x),

ω2 = φ′(c+) = lim
x→c+

φ′(x)
(5.17)

with ω1 �= ω2. Now, even though the integrand on the right-hand side

of the du Bois-Reymond equation (5.11) is discontinuous at the cor-

ner c because it jumps from ∂F (c, φ(c), ω1)/∂φ to ∂F (c, φ(c), ω2)/∂φ,

the integral itself is continuous; and of course the constant C is con-

tinuous. Hence the right-hand side of (5.11) must be continous at

c. But the right-hand side is always equal to the left-hand side. We

deduce that the left-hand side must also be continuous, or

(5.18) Fy′(c, φ(c), ω1) = Fy′(c, φ(c), ω2),

which is usually called the first Weierstrass-Erdmann corner condi-

tion.3 Between corners, however, where φ′ is continuous, we can still

differentiate (5.11) with respect to x to obtain (5.12). The upshot is

that any broken extremal must satisfy the Euler-Lagrange equation

except at corners; and at any corner it must satisfy (5.18).

This corner condition can sometimes be used to exclude the pos-

sibility of a broken extremal. For example, in Lecture 3 we discussed

the minimization of

(5.19) J [y] =

2∫
1

x2y′
2
dx

for which F (x, y, y′) = x2y′
2
and ∂F/∂y′ = 2x2y′ so that (5.18)

reduces to

(5.20) 2c2ω1 = 2c2ω2

2See, e.g., Gelfand & Fomin [16, p. 17] or Leitmann [34, p. 18]. The result is a
corollary of what Bliss [5, p. 144] calls Hilbert’s differentiability condition.

3Although some authors regard the corner conditions of Lecture 6 as Erdmann’s
alone; see, e.g., Ewing [14, p. 42] and Wan [62, p. 45].
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or c2(ω1−ω2) = 0. But we cannot have c = 0, because 0 /∈ (1, 2), and

if ω1 = ω2, then φ′ is not discontinuous. We conclude that there does

not exist a broken extremal. More generally, whenever Fy′y′ �= 0 we

know that Fy′ varies monotonically with respect to its third argument

and hence cannot take the same value for two different values of y′,

so that the corner condition (5.18) cannot possibly be satisfied with

ω1 �= ω2.
4 If

(5.21) Fy′y′ > 0 for all (x, y, y′),

then the minimization problem is regular [47, p. 38]. Thus a more fun-

damental reason why there are no broken extremals for F (x, y, y′) =

x2y′
2
is that it yields a regular problem: Fy′y′ = 2x2 > 0 for all

x ∈ [1, 2].

If there can be a broken extremal, however, then (5.18) fails to

yield sufficient information. For example, in Lecture 3 we also dis-

cussed minimizing

(5.22) J [y] =

2∫
1

(1 + y′)2(1− y′)2 dx

subject to y(1) = 1, y(2) = 1
2 . Here F = (1 + y′)2(1 − y′)2 and

Fy′ = 4y′(y′ + 1)(y′ − 1), so that (5.18) becomes

(5.23) 4ω1(ω
2
1 − 1) = 4ω2(ω

2
2 − 1)

or

(5.24) (ω1 − ω2)(ω1
2 + ω1ω2 + ω2

2 − 1) = 0.

Because ω1 = ω2 would make φ smooth, on any broken extremal we

require

(5.25) ω1
2 + ω1ω2 + ω2

2 = 1.

This equation—which is that of an ellipse5—allows ω1 to be different

from ω2 but fails to determine either: we need a second Weierstrass-

Erdmann corner condition, to be derived in Lecture 6.

4For a formal proof, see Leitmann [34, p. 57].
5With center (0, 0) but rotated through angle − 1

4π from the ω1-axis, so that its

major axis has endpoints ±(1,−1) while its minor axis has endpoints ±(1/
√
3, 1/

√
3).

                

                                                                                                               



40 5. The du Bois-Reymond Equation

Appendix 5: Another Fundamental Lemma

Lemma 5.1. If the function M is piecewise-continuous on [a, b] and

(5.26)

∫ b

a

M(x) η′(x) dx = 0

for any η ∈ D1 that satisfies η(a) = 0 = η(b), then M is necessarily

a constant, i.e., M(x) = C for all x ∈ [a, b] where

(5.27) C =
1

b− a

∫ b

a

M(x) dx.

Note. If M(x) is constant on [a, b], then, of necessity, the value of

that constant is the average value of M over the interval in question.

Proof. We follow Bliss [5, p. 21]. If (5.26) holds for any η ∈ D1 such

that η(a) = 0 = η(b), then also

(5.28)

∫ b

a

{M(x)− C} η′(x) dx = 0

for any η ∈ D1 such that η(a) = 0 = η(b) because, after dividing [a, b]

into subdomains on which η′ is continuous and noting that η must be

continuous at the join of any contiguous subdomains, we obtain

(5.29)

∫ b

a

C η′(x) dx = C{η(b)− η(a)}.

So consider the function η̃ defined by

(5.30) η̃(x) =

∫ x

a

M(ξ) dξ − C(x− a).

Because, by Leibniz’s rule, the derivative of an integral with respect to

its upper limit is the value of the integrand at that limit whenever the

integrand is continuous there, we have η̃ ∈ D1 with η̃(a) = 0 = η̃(b):

in essence, integrating a piecewise-continuous function always yields

a piecewise-smooth one. Thus (5.28) must hold with η = η̃. Except

where M is discontinuous, however, we have η̃′(x) = M(x)− C from

(5.30). Hence, substituting into (5.28), we obtain

(5.31)

∫ b

a

{M(x)− C}2 dx = 0,

which can hold only if the integrand is identically zero. �

                

                                                                                                               



Lecture 6

The Corner Conditions

We obtained a first necessary condition for a broken extremal φ ∈ D1

to minimize

(6.1) J [y] =

b∫
a

F (x, y, y′) dx

subject to

(6.2) y(a) = α, y(b) = β

in Lecture 5. To obtain a second corner condition, we must consider

a different class of trial curves from that which has so far served us

so well, namely,

(6.3) y = yε(x) = φ(x) + εη(x).

So let φ have a corner at c ∈ (a, b) and consider

(6.4) yε(x) =

⎧⎪⎪⎨
⎪⎪⎩

φ(x) if a ≤ x ≤ c

φ(c) + ω1(x− c) if c < x ≤ c+ ε

φ(x) + {φ(c)+ω1ε−φ(c+ε)}(b−x)
b−c−ε if c+ ε < x ≤ b,

where 0 ≤ ε < b− c and

(6.5) ω1 = φ′(c−).

41
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y � Φ�x�
y � yΕ�x�

x
a c

c� Ε
b

�a�

y � Φ�x�
y � yΕ�x�

x
a c

c Ε
b

�b�

Figure 6.1. Trial functions for the second corner condition.

Note that yε is continuous at both x = c and x = c + ε and that its

derivative

(6.6) y′ε(x) =

⎧⎪⎪⎨
⎪⎪⎩

φ′(x) if a < x < c

ω1 if c < x < c+ ε

φ′(x)− φ(c)+ω1ε−φ(c+ε)
b−c−ε if c+ ε < x < b

is continuous except at x = c + ε, so that yε ∈ D1. In particular, y′ε
is continuous at x = c because it is obtained by extending φ along its

left-hand tangent at x = c; see Figure 6.1(a). Furthermore, yε satisfies

the boundary conditions (6.2) because φ(a) = α and φ(b) = β; hence

yε is admissible.

By construction, φ = y0, and so J [φ] = J [y0] ≤ J [yε]. As in

Lecture 2, we prefer to rewrite this inequality as J(ε) ≥ J(0) where

(6.7) J(ε) =

b∫
a

F
(
x, yε(x), y

′
ε(x)

)
dx.

Because ε ≥ 0, J has an endpoint minimum at ε = 0. It follows at

once from the ordinary calculus that

(6.8) J ′(0) ≥ 0.
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We proceed along the lines of Lecture 2, first rewriting (6.7) as

the sum of three integrals:

(6.9) J(ε) = J1 + J2(ε) + J3(ε),

where, from (6.4),

(6.10) J1 =

c∫
a

F
(
x, φ(x), φ′(x)

)
dx

is independent of ε,

(6.11) J2(ε) =

c+ε∫
c

F
(
x, yε(x), y

′
ε(x)

)
dx

and

(6.12) J3(ε) =

b∫
c+ε

F
(
x, yε(x), y

′
ε(x)

)
dx.

We use Leibniz’s rule to differentiate J2 and J3, in turn. Because

F
(
x, yε(x), y

′
ε(x)

)
is independent of ε for c < x < c+ ε from (6.4) and

(6.6), differentiating J2 yields only an endpoint contribution:

J ′
2(ε) = F

(
c+ ε, yε(c+ ε), y′ε(c+ ε)

)
· ∂(c+ ε)

∂ε

= F
(
c+ ε, φ(c) + ω1ε, ω1

)
· 1

(6.13)

implying

(6.14) J ′
2(0) = F (c, φ(c), ω1).

Differentiating J3, on the other hand, yields both an endpoint contri-

bution and a contribution from the integrand itself. Using y and ρ as

temporary shorthands for yε and y′ε, respectively, where convenient,

we obtain

J ′
3(ε) = −F

(
c+ ε, yε(c+ ε), y′ε(c+ ε)

)
· ∂(c+ ε)

∂ε

+

b∫
c+ε

∂

∂ε
F (x, y, ρ) dx
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or

(6.15) J ′
3(ε) = −F

(
c+ ε, φ(c) + ω1ε, y

′
ε(c+ ε)

)
· 1

+

b∫
c+ε

{
∂F

∂y

∂y

∂ε
+

∂F

∂ρ

∂ρ

∂ε

}
dx.

Differentiating y = yε(x) and ρ = y′ε(x) with respect to ε for c + ε <

x < b , we obtain from the quotient rule that

∂y

∂ε
=

{(b− c− ε){ω1 − φ′(c+ ε)}+ {φ(c) + ω1ε− φ(c+ ε)}}(b− x)

(b− c− ε)2

and

∂ρ

∂ε
= − (b− c− ε){ω1 − φ′(c+ ε)}+ {φ(c) + ω1ε− φ(c+ ε)}

(b− c− ε)2

implying in the limit as ε → 0+ (i.e., as ε → 0 from above) that

(6.16)
∂y

∂ε

∣∣∣∣
ε=0

=
(ω1 − ω2)(b− x)

b− c
and

∂ρ

∂ε

∣∣∣∣
ε=0

=
ω2 − ω1

b− c
,

where

(6.17) ω2 = φ′(c+).

Substituting into (6.15) in the limit as ε → 0+, we obtain

J ′
3(0) = −F

(
c, φ(c), φ′(c+)

)

+

b∫
c

{
∂F

∂y

∂y

∂ε
+

∂F

∂ρ

∂ρ

∂ε

}∣∣∣∣
ε=0

dx

= −F
(
c, φ(c), ω2

)

+
ω1 − ω2

b− c

b∫
c

{
∂F

∂φ
(b− x)− ∂F

∂φ′

}
dx.

(6.18)
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Using the Euler-Lagrange equation (5.12), we rewrite the above equa-

tion as

J ′
3(0) = −F

(
c, φ(c), ω2

)

+
ω1 − ω2

b− c

b∫
c

{
d

dx

{
∂F

∂φ′

}
(b− x)− ∂F

∂φ′

}
dx

= −F
(
c, φ(c), ω2

)
+

ω1 − ω2

b− c

b∫
c

d

dx

{
∂F

∂φ′ (b− x)

}
dx

= −F
(
c, φ(c), ω2

)
+

ω1 − ω2

b− c

∂F

∂φ′ (b− x)

∣∣∣∣
b

c

= −F
(
c, φ(c), ω2

)
− (ω1 − ω2)Fy′

(
c, φ(c), φ′(c+)

)
.

(6.19)

Combining (6.14) and (6.19) with the derivative of (6.9) in the limit

as ε → 0+ and the first Weierstrass-Erdmann corner condition

Fy′(c, φ(c), ω1) = Fy′(c, φ(c), ω2)

from (5.18), we now obtain

J ′(0) = 0 + J ′
2(0) + J ′

3(0)

= F
(
c, φ(c), ω1

)
− F

(
c, φ(c), ω2

)
− (ω1 − ω2)Fy′

(
c, φ(c), ω2

)
= ω2Fy′

(
c, φ(c), ω2

)
− ω1Fy′

(
c, φ(c), ω2

)
+ F

(
c, φ(c), ω1

)
− F

(
c, φ(c), ω2

)
= ω2Fy′

(
c, φ(c), ω2

)
− ω1Fy′

(
c, φ(c), ω1

)
+ F

(
c, φ(c), ω1

)
− F

(
c, φ(c), ω2

)
= H(c, φ(c), ω2)−H(c, φ(c), ω1),

where the Hamiltonian

(6.20) H(x, y, y′) = y′ Fy′(x, y, y′) − F (x, y, y′)

is already defined by (4.3). Thus (6.8) requires

(6.21) H(c, φ(c), ω2) − H(c, φ(c), ω1) ≥ 0.
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We repeat the above steps using the class of trial functions defined

by

(6.22) yε(x) =

⎧⎪⎪⎨
⎪⎪⎩
φ(x) + {φ(c)−ω2ε−φ(c−ε)}(x−a)

c−a−ε if a ≤ x ≤ c− ε

φ(c)− ω2(c− x) if c− ε < x ≤ c

φ(x) if c < x ≤ b

with derivative

(6.23) y′ε(x) =

⎧⎪⎪⎨
⎪⎪⎩
φ′(x) + φ(c)−ω2ε−φ(c−ε)

c−a−ε if a < x < c− ε

ω2 if c− ε < x < c

φ′(x) if c < x < b,

where 0 ≤ ε < c− a. As before, yε is continuous, and its derivative is

continuous except at x = c−ε, so yε ∈ D1. Again as before, yε satisfies

the boundary conditions (6.2) and is therefore admissible. This time,

however, y′ε is continuous at x = c because it is obtained by extending

φ along its right-hand—as opposed to left-hand—tangent at x = c;

see Figure 6.1(b).

Because ε ≥ 0, J has an endpoint minimum at ε = 0 and so (6.8)

must hold again. In place of (6.9), we have

(6.24) J(ε) = J4(ε) + J5(ε) + J6,

where

(6.25) J4(ε) =

c−ε∫
a

F
(
x, yε(x), y

′
ε(x)

)
dx,

(6.26) J5(ε) =

c∫
c−ε

F
(
x, yε(x), y

′
ε(x)

)
dx,

and

(6.27) J6 =

b∫
c

F
(
x, φ(x), φ′(x)

)
dx
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is independent of ε. We now proceed as before. With only minor

modifications to the above analysis, we readily obtain

J ′
4(0) = −F

(
c, φ(c), φ′(c−)

)
+

ω1 − ω2

c− a

c∫
a

d

dx

{
∂F

∂φ′ (x− a)

}
dx

= −F
(
c, φ(c), ω1

)
+ (ω1 − ω2)Fy′

(
c, φ(c), φ′(c−)

)
,

J ′
5(0) = F (c, φ(c), ω2).

(6.28)

Combining (6.28) with the derivative of (6.24) in the limit as ε →
0+ and again using the first Weierstrass-Erdmann corner condition

Fy′(c, φ(c), ω1) = Fy′(c, φ(c), ω2), we obtain

J ′(0) = J ′
4(0) + J ′

5(0) + 0

= −F
(
c, φ(c), ω1

)
+ (ω1 − ω2)Fy′

(
c, φ(c), ω1

)
+ F

(
c, φ(c), ω2

)
= ω1Fy′

(
c, φ(c), ω1

)
− ω2Fy′

(
c, φ(c), ω1

)
− F

(
c, φ(c), ω1

)
+ F

(
c, φ(c), ω2

)
= ω1Fy′

(
c, φ(c), ω1

)
− ω2Fy′

(
c, φ(c), ω2

)
− F

(
c, φ(c), ω1

)
+ F

(
c, φ(c), ω2

)
= H(c, φ(c), ω1) − H(c, φ(c), ω2)

with H defined by (6.20). Thus (6.8) requires

(6.29) H(c, φ(c), ω1) − H(c, φ(c), ω2) ≥ 0.

Because J [φ] ≤ J [yε] for all possible variations, (6.21) and (6.29) must

hold simultaneously, implying

(6.30) H(c, φ(c), ω1) = H(c, φ(c), ω2).

This is the second Weierstrass-Erdmann corner condition. So, com-

bining our two conditions, at any corner the quantities

Fy′(x, y, y′) and

H(x, y, y′) = y′ Fy′(x, y, y′) − F (x, y, y′)

must both be continuous, even though(6.31)

y′ jumps from ω1 to ω2.
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We are now in a position to complete our analysis of minimizing

(6.32) J [y] =

2∫
1

(1 + y′)2(1− y′)2 dx

subject to y(1) = 1 and y(2) = 1
2 , which we began in Lecture 5.

Because H = y′ Fy′ − F = (y′2 − 1)(3y′2 + 1), the second corner

condition requires

(6.33) (ω1
2 − 1)(3ω1

2 + 1) = (ω2
2 − 1)(3ω2

2 + 1).

We already know from (5.23) that the first corner condition requires

(6.34) 4ω1(ω1
2 − 1) = 4ω2(ω2

2 − 1).

So either

(6.35) ω1
2 = ω2

2 = 1

or ω1
2 and ω2

2 are both different from 1. In the second case, we can

divide (6.33) by (6.34) to obtain

(6.36)
3ω1

2 + 1

ω1
=

3ω2
2 + 1

ω2

or

(6.37) (ω1 − ω2)(3ω1ω2 − 1) = 0

implying ω1ω2 = 1
3 because ω1 �= ω2 at a corner. From (5.25), how-

ever, we already know that (6.34) implies

(6.38) ω1
2 + ω1ω2 + ω2

2 = 1.

Substituting ω1ω2 = 1
3 into this equation yields ω1

2 + ω2
2 = 2

3 im-

plying (ω1 + ω2)
2 = 2

3 + 2
3 = 4

3 and hence ω1 + ω2 = ± 2√
3
, which is

compatible with ω1ω2 = 1
3 only if ω1 = ω2 = ± 1√

3
, and hence would

not yield a corner. Thus (6.35) must hold with ω1 �= ω2, implying

either ω1 = 1 and ω2 = −1 or ω1 = −1 and ω2 = 1.

Two such broken extremals were sketched in Figure 3.2 and are

again shown dashed in Figure 6.2; and these are the only admissible

broken extremals for y(1) = 1 and y(2) = 1
2 when we allow but

precisely one corner—in which case, the broken extremal is said to

be simple. If we allow more than one corner, however, then there are
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x
0 1 2

y

0

1

Figure 6.2. Three broken extremals, two of which are simple.

many other possibilities, of which a three-cornered example is shown

in Figure 6.2.

Exercises 6

1. Use two different methods to show that there are no broken ex-

tremals for the problem of minimizing

J [y] =

b∫
a

{x2 + x y′ + y′
2} dx

subject to y(a) = α and y(b) = β.

2. Use the corner conditions to find an admissible broken extremal

for the problem of minimizing

J [y] =

2∫
0

y2(1− y′)2 dx

subject to y(0) = 0 and y(2) = 1. Verify that your results agree

with those of Exercise 3.1.
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3. Use the corner conditions to find all admissible broken extremals

for the problem of minimizing

J [y] =

b∫
a

{y′2 + y′
3} dx

subject to y(a) = α and y(b) = β.

4. For the problem of minimizing

J [y] =

b∫
a

{y′4 − y′
2} dx

subject to y(a) = α and y(b) = β,

(a) Find a condition that determines when a simple broken ex-

tremal (p. 48) exists.

(b) Assuming the condition holds, find all simple broken ex-

tremals.

5. Show that there is a simple broken extremal for minimizing

J [y] =

1∫
0

{
1− 2 ln(2) + ln

(
1 + 4y′

2)}2
dx

with y(0) = 0 and y(1) = β only if

β ≤ 1

2

√
4− e

e
.

Does this broken extremal achieve a minimum?

Endnote. For further exercises on broken extremals and the corner

conditions, see Gelfand & Fomin [16, p. 65] and Leitmann [34, p. 70].

                

                                                                                                               



Lecture 7

Legendre’s Necessary
Condition

Let us first review the story so far. The curve Γ defined by y = φ(x)

minimizes

(7.1) J [y] =

b∫
a

F (x, y, y′) dx

subject to the boundary conditions

(7.2) y(a) = α, y(b) = β

if

(7.3) J [y] ≥ J [φ]

for all admissible y, i.e., all y ∈ D1 satisfying (7.2). In particular, the

above inequality must hold for all admissible trial curves of the form

(7.4) y = yε(x) = φ(x) + εη(x).

Noting that φ(x) = y0(x), it is convenient to use the notation J(ε)

for J [yε], so that

(7.5) J(ε) =

b∫
a

F
(
x, φ(x) + εη(x), φ′(x) + εη′(x)

)
dx.

51
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It is then necessary that J(ε) ≥ J(0) or

(7.6) J(ε)− J(0) ≥ 0

for all admissible η, i.e., all η ∈ D1 such that

(7.7) η(a) = 0 = η(b).

The left-hand side of (7.6) is often called the total variation—although

strictly the term applies to the quantity

(7.8) ΔJ = J [y] − J [φ],

in terms of which (7.3) becomes ΔJ ≥ 0.

In Lectures 2 and 5 we derived both the Euler-Lagrange equation

and the first Weierstrass-Erdmann corner condition by, in essence,

using the chain rule to determine a general expression for J ′(ε) and

letting ε → 0. Although the general expression for J ′(ε) was conve-

nient at the time, all we really needed was J ′(0). Moreover, although

we always thought of φ + εη as a small variation from φ in deriving

our results, our approach did not directly exploit the smallness of ε.

An approach that does will facilitate further progress.

Accordingly, let h and k be infinitesimally small and recall that

F (x, y, z) is a function of three arguments with continuous partial

derivatives of at least the third order, so that we can expand F in a

double Taylor series with respect to its second and third arguments

to obtain

(7.9) F (x, ŷ + h, ẑ + k) = F (x, ŷ, ẑ) + hFy(x, ŷ, ẑ)

+ kFz(x, ŷ, ẑ) + 1
2

{
Fyy(x, ŷ, ẑ)h

2 + 2Fyz(x, ŷ, ẑ)hk

+ Fzz(x, ŷ, ẑ)k
2
}
+ o(max{h, k}2),

where “little oh” notation1 is used to indicate that

(7.10) lim
δ→0

o(δ)

δ
= 0.

Setting ŷ = φ(x), h = εη(x), ẑ = φ′(x) and k = εη′(x) in (7.9), and

suppressing the dependence of φ and η on x in the right-hand side,

1See, e.g., Mesterton-Gibbons [44, p. 5].
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we obtain, after simplifying,

(7.11) F
(
x, φ(x) + εη(x), φ′(x) + εη′(x)

)
= F (x, φ, φ′)

+ ε
{
η(x)Fy(x, φ, φ

′) + η′(x)Fy(x, φ, φ
′)
}

+ 1
2ε

2
{
η2Fyy(x, φ, φ

′) + 2ηη′Fyy′(x, φ, φ′)

+ η′
2
Fy′y′(x, φ, φ′)

}
+ o(ε2).

Substituting into (7.5) and using Fφφ as a shorthand for Fyy(x, φ, φ
′),

etc., we obtain the ordinary Taylor series expansion2

(7.12) J(ε) = J(0) + εJ ′(0) + 1
2ε

2J ′′(0) + o(ε2),

where

(7.13) J(0) =

b∫
a

F
(
x, φ, φ′) dx,

(7.14) J ′(0) =

b∫
a

{
ηFφ + η′Fφ′

}
dx

and

(7.15) J ′′(0) = 1
2

b∫
a

{
η2Fφφ + 2ηη′Fφφ′ + η′

2
Fφ′φ′

}
dx.

We already know from Lecture 2 that J(ε) ≥ J(0) implies J ′(0) = 0;

indeed (7.14) merely reproduces (2.17). Thus, from (7.12),

(7.16) J(ε)− J(0) = 1
2ε

2

{
J ′′(0) +

o(ε2)

ε2

}
,

which, from (7.10) with δ = ε2, can be nonnegative in the limit as

ε → 0 only if

(7.17) J ′′(0) ≥ 0.

2Thus the total variation is J(ε) − J(0) = εJ′(0) + 1
2 ε

2J′′(0) + o(ε2). The first
term in this expansion is often denoted by δJ and called the first variation; the second
term is often denoted by δ2J and called the second variation; and the total variation
itself is often denoted by ΔJ. Thus, ΔJ = J(ε) − J(0), δJ = εJ′(0), δ2J = 1

2 ε
2J′′(0)

and ΔJ = δJ + δ2J + o(ε2); and necessary conditions for φ to yield a minimum are
that the first variation vanishes while the second variation is nonnegative. See, e.g.,
Bolza [6, p. 16] or Leitmann [34, p. 22].
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But integration by parts and (7.7) imply that

b∫
a

2ηη′Fφφ′ dx = η2Fφφ′

∣∣∣∣
b

a

−
b∫

a

η2
dFφφ′

dx
dx

= −
b∫

a

η2
dFφφ′

dx
dx.

(7.18)

Hence, defining P and Q by

(7.19) P (x) = Fφ′φ′ and Q(x) = Fφφ − dFφφ′

dx
,

we find from (7.15) and (7.17) that

(7.20) J ′′(0) = 1
2

b∫
a

{
Pη′

2
+Qη2

}
dx

must be nonnegative. It is shown in Appendix 7 that this can happen

only if P ≥ 0, in essence, because Pη′
2
dominates Qη2 in determining

the sign of the integrand: Pη′
2
can be much larger in magnitude than

Qη2, but not much smaller. Thus a necessary condition for y = φ(x)

to yield a minimum of (7.1) is that

(7.21) Fφ′φ′ = Fy′y′(x, φ(x), φ′(x)) ≥ 0 for all x ∈ [a, b].

This is known as Legendre’s necessary condition, and it can be used

to distinguish between minimizing and maximizing extremals.3 Of

course, when the fundamental problem is recast with t as the indepen-

dent variable and x as the dependent variable as on p. 15, Legendre’s

necessary condition becomes

(7.22) Fφ̇φ̇ = Fẋẋ(t, φ(t), φ̇(t)) ≥ 0 for all t ∈ [t0, t1]

in place of (7.21).

Suppose, for example, that we had known about Legendre’s con-

dition in Lecture 3, where we discovered in a roundabout way that

3Replacing weak by strict inequality in (7.21) yields a strengthened Legendre
condition; see (8.7).
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the admissible extremal y = φ(x) = 1
2 (3− x) failed to minimize

(7.23) J [y] =

2∫
1

(1 + y′)2(1− y′)2 dx

subject to y(1) = 1 and y(2) = 1
2 ; here F (x, y, y′) = (1+y′)2(1−y′)2,

implying Fy′y′ = 4{3y′2−1}. Then, because Fφ′φ′ = 4{3
(
− 1

2

)2−1} =

−1, we would have seen at once that y = 1
2 (3−x) is not a minimizer:

it fails to satisfy Legendre’s necessary condition.

Appendix 7: Yet Another Lemma

Lemma 7.1. A necessary condition for

(7.24) J ′′(0) = 1
2

b∫
a

{
Pη′

2
+Qη2

}
dx

to be nonnegative for all η ∈ D1 satisfying η(a) = 0 = η(b) is that

P (x) ≥ 0 for all x ∈ [a, b].

Proof. The proof is by contradiction. Suppose the lemma false.

Then, because P is at least piecewise-continuous, there must exist a

subinterval of [a, b]—however short—throughout which P (x) < −K1,

where K1 > 0. Let this subinterval have midpoint c and length 2δ,

so that P (x) < −K1 for c − δ ≤ x ≤ c + δ, where a ≤ c − δ and

c + δ ≤ b. Likewise, because Q is at least piecewise-continuous and

therefore bounded, there must exist K2 > 0 such that Q(x) ≤ K2 for

all x ∈ [a, b]. Now define

(7.25) η̃(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if a ≤ x ≤ c− δ

sin2
(π{x−c}

δ

)
if c− δ < x < c+ δ

0 if c+ δ ≤ x ≤ b.

Then η̃ ∈ D1, η̃(a) = 0 = η̃(b) and, from (7.24),

J ′′(0) =
1

2

c+δ∫
c−δ

{
π2P

δ2
sin2

(
2π{x− c}

δ

)
+Q sin4

(
π{x− c}

δ

)}
dx
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cannot exceed

1

2

c+δ∫
c−δ

{
−π2K1

δ2
sin2

(
2π{x− c}

δ

)
+K2 · 14

}
dx = −π2K1

2δ
+ δK2,

which is negative for sufficiently small δ, contradicting J ′′(0) ≥ 0. �

Exercises 7

1. Show that the brachistochrone problem in Lecture 1 satisfies Le-

gendre’s necessary condition.

2. Is Legendre’s necessary condition satisfied by the admissible ex-

tremal for the problem of minimizing

J [y] =

4a/
√
3∫

a

x

1 + y′2
dx

with y(a) = 1
2a and y(4a/

√
3) = 1 where a = 4

10−ln(
√
3)

≈ 0.4232

(Exercise 4.6)?

3. Does the admissible extremal for the production problem in Lec-

ture 2 (Exercise 2.9) satisfy Legendre’s necessary condition?

4. Is Legendre’s necessary condition satisfied by the admissible ex-

tremal for the problem of minimizing

J [x] =

2∫
0

√
1 + x2ẋ2 dt

subject to x(0) = 1 and x(2) = 3 (Exercise 4.8)? Find Fφ̇φ̇

explicitly.

5. Is Legendre’s necessary condition satisfied by the admissible ex-

tremal for the problem of minimizing

J [x] =

2∫
0

√
1 +

( ẋ
x

)2
dt

subject to x(0) = 1 and x(2) = 3 (Exercise 4.9)? Find Fφ̇φ̇

explicitly.

                

                                                                                                               



Lecture 8

Jacobi’s Necessary
Condition

From Lecture 7—in particular, from (7.15) and (7.17)—we already

know that y = φ(x) can yield a minimum of

(8.1) J [y] =

b∫
a

F (x, y, y′) dx

subject to

(8.2) y(a) = α, y(b) = β

only if

(8.3)

b∫
a

{
η2Fφφ + 2ηη′Fφφ′ + η′

2
Fφ′φ′

}
dx ≥ 0

for all η ∈ D1 such that

(8.4) η(a) = 0 = η(b).

In Lecture 7 we used (8.3) to derive Legendre’s necessary condition.

Here we obtain a further necessary condition by noting that (8.3)
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58 8. Jacobi’s Necessary Condition

requires the new functional defined by

(8.5) I[η] =

b∫
a

f(x, η, η′) dx

with

(8.6) f(x, η, η′) = η2Fφφ + 2ηη′Fφφ′ + η′
2
Fφ′φ′

to satisfy I[η] ≥ 0 for all η ∈ D1 such that (8.4) holds. In other

words, I must have a minimum value of zero.

For the sake of simplicity, we assume that φ has no corners (i.e.,

φ ∈ C1) and that

(8.7) Fφ′φ′ = Fy′y′(x, φ(x), φ′(x)) > 0 for all x ∈ [a, b],

which has come to be known as the strengthened Legendre condition,1

because it strengthens the weak inequality in (7.21). An extremal

that satisfies the strengthened Legendre condition is also said to be

regular.2 Note, however, that (8.7) is a much weaker condition than

(5.21): although a regular problem has no broken extremals, a broken

extremal can be regular. For example, the broken extremals (3.21)

and (3.22) both minimize (3.11) subject to (3.12); although Fφ′φ′ = 8

is positive, the problem is not regular because Fy′y′ = 4{3y′2 − 1} is

negative for |y′| < 1√
3
.

Because (8.7) does not imply φ ∈ C1, we made φ ∈ C1 a separate

assumption. Because the strengthened Legendre condition implies

Fφ′φ′ �= 0 for all x ∈ [a, b], however, it guarantees that φ has a con-

tinuous second derivative, as noted in Lecture 5. Thus, given (8.7),

φ ∈ C1 is superseded by φ ∈ C2.

So far, we have assumed no more smoothness for η than that

η ∈ D1. From (8.6)-(8.7), however, we find that

(8.8) fη′η′ = 2Fφ′φ′

is positive for all (x, η, η′), so that not only does the problem of mini-

mizing I[η] satisfy the strengthened Legendre condition, but also the

problem is regular. There are therefore no broken extremals for I[η],

and η ∈ D1 is superseded by η ∈ C2.

1See, e.g., Gelfand & Fomin [16, p. 104].
2See, e.g., Pars [47, p. 38].
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The Euler-Lagrange equation for I[η] is

(8.9)
∂f

∂η
− d

dx

(
∂f

∂η′

)
= 0,

which, from (8.6), and because

(8.10) P (x) = Fφ′φ′ , Q(x) = Fφφ − dFφφ′

dx

from (7.19), reduces to

(8.11) P (x)η′′ + P ′(x)η′ = Q(x)η

(Exercise 8.1). This linear, homogeneous, second-order ordinary dif-

ferential equation is known as either Jacobi’s equation3 or the acces-

sory equation.4

Both Jacobi’s equation and the endpoint conditions (8.4) are sat-

isfied by η = 0 for all x ∈ [a, b], which clearly achieves for I[η] its

minimum value of zero. But a nonzero solution of Jacobi’s equation

may also achieve the minimum. To be admissible, any such solution

must clearly vanish both at x = a and at x = b. It turns out, however,

that these are the only points on [a, b] at which a nonzero solution

of Jacobi’s equation can vanish: if it were to satisfy η(c) = 0 for

a < c < b, then φ would not be a minimizer of J [y]. This is Jacobi’s

necessary condition.

It is traditional, however, to frame Jacobi’s necessary condition

in terms of the concept of conjugate point. We say that c is conjugate

to a if c > a and there exists a solution of Jacobi’s equation satisfying

η(a) = 0 = η(c) with η(x) �= 0 for all x ∈ (a, c). Thus Jacobi’s neces-

sary condition for an extremal satisfying the strengthened Legendre

condition to minimize J [y] is that no c ∈ (a, b) be conjugate to a.

The proof is by contradiction. Suppose that a conjugate point c

exists. Then, from (8.11), there must exist w ∈ D1 such that

(8.12) w(a) = 0 = w(c)

and

(8.13) P (x)w′′ + P ′(x)w′ = Q(x)w

3See, e.g., Leitmann [34, p. 57].
4See, e.g., Pars [47, p. 54].
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with

(8.14) w(x) �= 0 for all x ∈ (a, c).

Let η̃ be defined by

(8.15) η̃ =

{
w(x) if a ≤ x ≤ c

0 if c < x ≤ b.

For a ≤ x ≤ c we have

f(x, η̃, η̃′) = w2Fφφ + 2ww′Fφφ′ + w′2Fφ′φ′

= w2

{
Q(x) +

dFφφ′

dx

}
+ 2ww′Fφφ′ + w′2P (x)

= w2 Q(x) + w2 dFφφ′

dx
+

d

dx
{w2}Fφφ′ + w′2P (x)

= w2 Q(x) +
d

dx
{w2 Fφφ′}+ w′2P (x)

(8.16)

from (8.6) and (8.10). But (8.13) implies

(8.17) w2Q(x) = w{P (x)w′′ + P ′(x)w′} = w
d

dx
{w′P (x)}.

Substituting into (8.16), we obtain

f(x, η̃, η̃′) =
d

dx
{w2 Fφφ′}+ w

d

dx
{w′P (x)}+ w′2P (x)

=
d

dx
{w2 Fφφ′}+ d

dx
{ww′P (x)}

=
d

dx

(
w{Fφφ′ + w′P (x)}

)
(8.18)

for a ≤ x ≤ c; whereas (8.6) and (8.15) imply f(x, η̃, η̃′) = 0 for

c < x ≤ b. So, from (8.5) and (8.12),

I[η̃] =

c∫
a

f(x, η̃, η̃′) dx +

b∫
c

f(x, η̃, η̃′) dx

=

c∫
a

d

dx

(
w{Fφφ′ + w′P (x)}

)
dx + 0

=
(
w{Fφφ′ + w′P (x)}

)∣∣c
a

= 0,

(8.19)

implying that η̃ achieves the minimum and is therefore an extremal:

thus η̃ ∈ C2 and, from (8.11), P (x)η̃′′+P ′(x)η̃′ = Q(x)η̃. The second
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of these two requirements is guaranteed by (8.13)-(8.15); however,

η̃ ∈ C2 implies η̃ ∈ C1, and thus it also requires that η̃′(c−) = η̃′(c+)

or w′(c) = 0. But Jacobi’s equation is linear and homogeneous, and

so the only solution satisfying both w(c) = 0 and w′(c) = 0 is the

trivial solution: w(x) = 0 for all x ∈ (a, c), which contradicts (8.14).

We conclude that c does not exist.

Consider, for example, the problem of minimizing

(8.20) J [y] =

2∫
0

F (y, y′) dx =

2∫
0

√
y{1 + (y′)2} dx

subject to

(8.21) y(0) = 1, y(2) = 5.

From (4.8), the Euler-Lagrange equation is

H(y, y′) = y′
∂F (y, y′)

∂y′
− F (y, y′)

=
−√

y√
1 + y′2

= constant = −
√
k,

(8.22)

where k is a positive constant.5 As in (4.14), we employ the substi-

tution

(8.23) y′ = tan(θ),

where θ is the angle of elevation of the curve Γ at the point (x, y).

This substitution converts (8.22) to

(8.24a) y = k sec2(θ)

and, by steps analogous to (4.16)-(4.19), yields dx
dθ = 2k sec2(θ) and

hence

(8.24b) x = 2k tan(θ) + l,

where l is another constant. Equations (8.24) are the parametric

equations of the parabola 4ky = (x − l)2 + 4k2. We require this

parabola to pass through (0, 1), and so 4k = l2 + 4k2 or

(8.25) l = ±2
√

k(1− k).

5In Lectures 2-4 we used A and B for constants of integration. We have switched
to k and l in Lecture 8 because it will be convenient to reserve A and B for endpoints
in Lectures 11-12.
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So any potentially admissible extremal belongs to the family of parabo-

las with equation

(8.26) k(y − 1) ±
√
k(1− k) x = 1

4x
2

or

(8.27) x = 2k tan(θ)± 2
√
k(1− k), y = k sec2(θ)

in parametric form. But we also require y(2) = 5; i.e., from (8.26),

4k ± 2
√
k(1− k) = 1 or 20k2−12k+1 = 0, implying k = 1

10 or k = 1
2

and hence l = 3
5 or l = −1. So there are two admissible extremals,

namely,

(8.28) y = φ1(x) = 1− 3x+ 5
2x

2

and

(8.29) y = φ2(x) = 1 + x+ 1
2x

2.

From (8.20), we readily find that

Fy′y′ =

√
y

{1 + (y′)2}3/2 ,(8.30)

Fyy = − 1
4y

−3/2
√
1 + (y′)2,(8.31)

Fyy′ =
y′

2
√
y{1 + (y′)2}

.(8.32)

Hence, from (8.10), and noting that (8.28) implies 1 + φ′
1
2
= 10φ1,

the Jacobi equation coefficients for the first extremal are

(8.33) P1(x) = Fφ′
1φ

′
1

=
1

10
√
10φ1

=
1

5
√
10(5x2 − 6x+ 2)

and

Q1(x) = Fφ1φ1
−

dFφ1φ′
1

dx

= − {φ1φ
′′
1 − 5φ1 + 1}
2
√
10φ1

2 = − 2√
10(5x2 − 6x+ 2)2

.
(8.34)

The resulting Jacobi equation is P1(x)η
′′ + P ′

1(x)η
′ = Q1(x)η or

(8.35) (5x2 − 6x+ 2)η′′ − 2(5x− 3)η′ + 10η = 0.

Note that, because 5x2 − 6x+ 2 = 5
(
x− 3

5

)2
+ 1

5 , we have P1(x) > 0

for all real x, and so the strengthened Legendre condition is satisfied.
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x
0 1 2

Η

1

0

1

2

3

4

Figure 8.1. Solutions of two Jacobi equations.

Because Jacobi’s equation (8.11) is linear and homogeneous, any

constant multiple of a nonzero solution that vanishes where x = a

is likewise a solution, which means that if any nonzero solution has

a conjugate point, then so does every nonzero solution. It therefore

suffices to find any nonzero solution. In other words, no generality is

lost by finding the solution of Jacobi’s equation that satisfies

(8.36) η(a) = 0, n′(a) = 1

(where a = 0 for the problem at hand). If this solution, starting from

zero at x = a, crosses zero again at x = c where c < b, then c is a

conjugate point; otherwise, no conjugate point exists.

Although methods exist for solving Jacobi’s equation analytically,

as discussed in Appendix 8, the most efficient way nowadays to solve

(8.35) subject to η(0) = 0 and n′(0) = 1 is to integrate numerically

with a software package.6 The result is plotted in Figure 8.1 as a

6For example, if we use Mathematica for numerical integration, then suitable
commands for plotting the upper curve in Figure 8.1 are as follows:

eqn02 = (xˆ2 + 2x + 2) y’’[x] - 2(x + 1)y’[x] + 2y[x] == 0;
sol02 = y[x]/.NDSolve[{eqn02, y[0] == 0, y’[0] == 1}, y[x], {x,0,2}];
Plot[sol02, {x,0,2}]
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dashed curve, which indicates that x = 2
3 is a conjugate point. Hence

φ1 is not a minimizer.

Similarly, because (8.29) implies 1 + φ′
2
2 = 2φ2, the Jacobi equa-

tion coefficients for the second extremal are

(8.37) P2(x) = Fφ′
2φ

′
2

=
1

2
√
2φ2

=
1√

2(x2 + 2x+ 2)
> 0

(so that the strengthened Legendre condition is satisfied) and

Q2(x) = Fφ2φ2
−

dFφ2φ′
2

dx

= − {φ2φ
′′
2 − φ2 + 1}
2
√
2φ2

2 = −
√
2

(x2 + 2x+ 2)2

(8.38)

so that the second Jacobi equation is P2(x)η
′′ + P ′

2(x)η
′ = Q2(x)η or

(8.39) (x2 + 2x+ 2)η′′ − 2(x+ 1)η′ + 2η = 0.

The solution subject to η(0) = 0 and n′(0) = 1 is plotted in Figure

8.1 as a solid curve, which never crosses zero again. Therefore, a

conjugate point does not exist, and φ2 satisfies Jacobi’s necessary

condition.

We conclude by noting that Jacobi’s necessary condition is auto-

matically satisfied (given the strengthened Legendre condition) when-

ever F is independent of y. For then Fyy and Fyy′ are both zero, so

that Q(x) = 0 by (8.10) and the Jacobi equation (8.11) reduces to

(8.40)
d

dx
{P (x)η′} = P (x)η′′ + P ′(x)η′ = 0

or

(8.41) P (x)η′ = constant = P (a)η′(a) = P (a)

by (8.36). Thus η′(x) = P (a)/P (x); which, again by (8.36), implies

that

(8.42) η(x) = η(a) +

x∫
a

P (a)

P (ξ)
dξ = P (a)

x∫
a

1

P (ξ)
dξ

is strictly positive for x > a, because P (x) > 0 for all x ∈ [a, b] by

(8.7) and (8.10). Therefore, no conjugate point exists.
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Appendix 8: On Solving Jacobi’s Equation

How could we have known that the conjugate point in Figure 8.1 is

where x = 2
3 , as opposed to x ≈ 0.667? The answer is that Jacobi’s

equation can often also be solved analytically, albeit less efficiently.

For one thing, it is known that if the Euler-Lagrange equation has gen-

eral solution y = Y (x, k, l), where k and l are arbitrary, then two lin-

early independent solutions of Jacobi’s equation are η = Yk(x, k
∗, l∗)

and η = Yl(x, k
∗, l∗), where subscripts k and l denote partial dif-

ferentiation of Y with respect to its second and third arguments,

and k∗ and l∗ are the values of k and l for which Y satisfies the

boundary conditions, i.e., Y (a, k∗, l∗) = α, Y (b, k∗, l∗) = β; see, e.g.,

Leitmann [34, p. 60-64]. For another thing, linearly independent so-

lutions of Jacobi’s equation can sometimes be found by inspection

(and however found, can always be verified by inspection). Either

way, two linearly independent solutions of (8.35) are η = 3− 5x and

η = 1− (3− 5x)2, and the particular linear combination that satisfies

(8.36) is η = x− 3
2x

2, which is the dashed curve plotted in Figure 8.1.

Similarly, two linearly independent solutions of (8.37) are η = −1−x

and η = −2x− x2, and the linear combination that satisfies (8.36) is

η = x+ 1
2x

2, which is the solid curve in Figure 8.1.

Exercises 8

1. Verify (8.11).

2. Is Jacobi’s necessary condition satisfied by the admissible ex-

tremal for

(a) J [y] =

b∫
0

{y′2 − y2} dx

or

(b) J [y] =

b∫
0

{y′2 + y2} dx

subject to y(0) = 0 = y(b), where b > 0?
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3. For ν > 1, show that

J [y] =

b∫
0

{y′2 − ν2y2}e2x dx

fails to satisfy Jacobi’s necessary condition when b > π√
ν2−1

.

4. Is Jacobi’s necessary condition satisfied by the admissible ex-

tremal for the problem of minimizing

J [y] =

4a/
√
3∫

a

x

1 + y′2
dx

with y(a) = 1
2a and y(4a/

√
3) = 1, where a = 4

10−ln(
√
3)

≈ 0.4232

(Exercise 4.6)?

5. For the problem of minimizing

J [y] =

b∫
0

1 + y2

y′2
dx

subject to y(0) = 0 and y(b) = sinh(b), find all b > 0 such that an

admissible extremal satisfies both Legendre’s and Jacobi’s neces-

sary condition.

6. Does the admissible extremal for the production problem in Lec-

ture 2 (Exercise 2.9) satisfy Jacobi’s necessary condition?

7. Is Jacobi’s necessary condition satisfied by the admissible ex-

tremals for the problems of minimizing

(a) J [x] =

2∫
0

√
1 + x2ẋ2 dt,

(b) J [x] =

2∫
0

√
1 +

( ẋ
x

)2
dt

subject to x(0) = 1 and x(2) = 3 (Exercises 4.8-4.9)?

Endnote. For further exercises on Jacobi’s necessary condition, see

Leitmann [34, p. 65].

                

                                                                                                               



Lecture 9

Weak Versus Strong
Variations

It is traditional in the calculus of variations to distinguish between

so-called weak and strong variations, and hence between weak and

strong local minima. Let us define the variation of y (as opposed

to the variation of J , discussed in Lecture 7) to be the difference δy

between the trial function yε and the minimizer φ:

(9.1) δy(x) = yε(x)− φ(x).

Let us also define the variation of y′ to be the difference δy′ between

the respective derivatives:

(9.2) δy′(x) = y′ε(x)− φ′(x) =
dδy

dx
.

Then, for a strong variation, |δy| is small for all x ∈ [a, b] but |δy′|
need not be bounded; whereas, for a weak variation, |δy′| is small

for all x ∈ (a, b), which implies that |δy| is also small.1 Thus weak

variations are a subset of strong variations.

A weak local minimum—or weak minimum, for short—is a min-

imum over all weak variations; a strong local minimum—or strong

1Because δy(a) = 0 =⇒ δy(ξ) =
∫ ξ
a
δy′ dx. So if |δy′| < Kε for all x ∈ (a, b)

then |δy| < (b − a)Kε for all x ∈ [a, b]; equivalently, if η′ is bounded by |η′| < K for
(7.4), then both |δy| < (b − a)Kε and |δy′| < Kε can be made arbitrarily small for
sufficiently small ε.
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minimum, for short—is a minimum over all strong variations; and

a global minimum is a minimum over all variations, regardless of

whether they are large or small—in which case, it doesn’t matter in

the least whether they are small and strong or small and weak. Be-

cause the set of all weak variations is a subset of all strong variations,

which in turn is a subset of all possible variations in D1, every global

minimum is also a strong minimum, and every strong minimum is

also a weak minimum, but not vice versa. In terms of the total varia-

tion defined by (7.8), a weak minimum means that ΔJ ≥ 0 whenever

|δy′| is small; a strong minimum means that ΔJ ≥ 0 whenever |δy| is
small; and a global minimum means that ΔJ ≥ 0, unconditionally.2

The possible significance3 of such distinctions is most readily ap-

preciated by restricting attention to the case where F does not depend

explicitly on x or y, by considering the problem of minimizing

(9.3) J [y] =

b∫
a

F (y′) dx

subject to

(9.4) y(a) = α, y(b) = β.

We already know from Lecture 3 that the extremals of (9.3) are a fam-

ily of straight lines, and so the only admissible extremal is a straight

line from (a, α) to (b, β). But is this extremal a minimizer? To explore

this question, we consider as usual variations of the form

(9.5) y = yε(x) = φ(x) + εη(x),

where now

(9.6) φ(x) = kx+ l

2For example, y = 1/x yields a global minimum of (3.1) subject to (3.2) because
(3.10) holds without restriction on ε or η′.

3Today the distinction between weak and strong variations or minima is more of
historical than of practical importance: if a minimum is weak but not strong, then it
is questionable whether there exists a minimum at all. In fact, as long ago as 1904,
Bolza was already calling any restriction to the weak minimum “indeed a very artificial
one, only suggested and justified by the former inability of the Calculus of Variations
to dispense with it” (Bolza [6, p. 72]). To be quite clear: nobody objects to bounds
on |y′|, for which there will often be good physical reasons; for example, if x denotes
the linear displacement of a vehicle with maximum speed Umax, then we must have
|ẋ| ≤ Umax (as in Exercise 23.3). Rather, the point is that such a constraint is natural,
whereas using the concept of weak variation to restrict |y′| is artificial.

                

                                                                                                               



9. Weak Versus Strong Variations 69

with

(9.7) k =
β − α

b− a
, l =

αb− βa

b− a

and η ∈ D1 satisfies

(9.8) η(a) = 0 = η(b).

Note that δy = εη(x) is a weak variation for small ε (and if ε can be

large, then the variation is no longer small, and so weak versus strong

is no longer an issue).

From (9.3) and (9.5)-(9.6) we obtain

(9.9) J(ε) = J [yε] =

b∫
a

F (k + εη′) dx

implying

(9.10) J ′(ε) =

b∫
a

∂

∂ε
F (k + εη′) dx =

b∫
a

η′ Fy′(k + εη′) dx

and

(9.11) J ′′(ε) =

b∫
a

∂

∂ε
Fy′(k + εη′) dx =

b∫
a

η′
2
Fy′y′(k + εη′) dx.

Thus

(9.12) J ′(0) =

b∫
a

η′ Fy′(k) dx = Fy′(k)

b∫
a

η′ dx = Fy′(k) η(x)|ba = 0

by (9.8) and

(9.13) J ′′(0) =

b∫
a

η′
2
Fy′y′(k) dx = Fy′y′(k)

b∫
a

η′
2
dx

is positive whenever Fy′y′(k) > 0, i.e., whenever Fy′y′ is positive on

the extremal. Thus Fy′y′(k) > 0 guarantees that J(ε) ≥ J(0) for all

variations of type (9.5) for sufficiently small ε. Of course, we already

knew from Legendre’s condition (7.21) that Fy′y′(k) ≥ 0 is necessary.
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Ε
1 0 1

J

1

0

1

Figure 9.1. J = J(ε) in (9.9) with F (y′) = y′2+y′3 for two
admissible variations. The solid curve is for η(x) = x(1 − x),

the dashed curve for η(x) = x sinh(2x− 2).

Consider, for example, the problem of minimizing

(9.14) J [y] =

1∫
0

{y′2 + y′
3} dx

subject to y(0) = 0 and y(1) = 0. Here Fy′y′ = 2(1 + 3y′) and

k = l = 0, so that Fy′y′(k) = 2(1 + 3k) = 2 is positive, implying

J(ε) ≥ J(0) = 0 for all variations of type (9.5) for sufficiently small ε,

as illustrated by Figure 9.1. Nevertheless, the minimum zero is only

a weak local minimum, because (9.5) represents a weak variation. By

contrast, the variation represented by

(9.15) yε(x) =

{
− cot(ε)x if 0 ≤ x < sin2(ε)

tan(ε){x− 1} if sin2(ε) < x ≤ 1,

whose graph is sketched in Figure 9.2(a), is a strong variation because,

although yε becomes arbitrarily close to φ = 0 for all x ∈ [0, 1] for

sufficiently small ε,

(9.16) y′ε(x) =

{
− cot(ε) if 0 < x < sin2(ε)

tan(ε) if sin2(ε) < x < 1

is very different from φ′(x) = 0 on the subdomain (0, sin2(ε)). This

difference increases as ε gets smaller, and y′ε(x) = − cot(ε) → −∞ in
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Figure 9.2. Graphs for (a) the strong variation defined by
(9.15) and (b) J(ε) defined by (9.17).

the limit as ε → 0, so that

J(ε) =

sin2(ε)∫
0

{y′ε
2
+ y′ε

3} dx +

1∫
sin2(ε)

{y′ε
2
+ y′ε

3} dx

=

sin2(ε)∫
0

{cot2(ε)− cot3(ε)} dx

+

1∫
sin2(ε)

{tan2(ε) + tan3(ε)} dx

= {cot2(ε)− cot3(ε)} sin2(ε)
+ {tan2(ε) + tan3(ε)}{1− sin2(ε)}

= cos2(ε)− cos2(ε) cot(ε) + sin2(ε) + sin2(ε) tan(ε)

= 1− cos2(ε) cot(ε) + sin2(ε) tan(ε)

(9.17)

also approaches −∞ in the limit as ε → 0. Thus zero, despite being

a weak local minimum, is not a strong local minimum: as indicated

by Figure 9.2(b), J(ε) < 0 whenever ε < εc where εc ≈ 0.55. Because

zero is not a local minimum, it also fails to be a global minimum—

which we knew already from Figure 9.1, although Figure 9.2(b) yields

the additional information that a global minimum does not exist.

Neither Legendre’s condition nor Jacobi’s condition is sufficiently

powerful to exclude the possibility that φ = 0 minimizes (9.14) sub-

ject to y(0) = 0 and y(1) = 0. We have already noted that Legendre’s
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condition is satisfied, and Jacobi’s equation (8.11) reduces to η′′ = 0,

whose only solution satisfying η(0) = 0 = η(1) is the trivial solution

η = 0: no point conjugate to 0 exists. But neither Legendre’s nor

Jacobi’s necessary condition is designed for strong variations. Ac-

cordingly, in Lecture 10 we turn our attention to one that is.

Before proceeding, however, we note that it is often convenient to

have a special symbol for the derivative of F with respect to its third

argument. We therefore define a function p with three arguments by

(9.18) p(x, y, y′) = Fy′(x, y, y′).

Use of p reduces the Euler-Lagrange equation (2.21) to

(9.19)
dp

dx
=

∂F

∂y

and allows the Weierstrass-Erdmann corner conditions (6.31) to be

expressed more compactly as the continuity of H and p. It also proves

useful in Lectures 11 and 12.

Exercises 9

1. Find an admissible extremal for the problem of minimizing

J [y] =

1∫
0

cos(2y′) dx

subject to y(0) = 0 and y(1) = 1. Does this extremal yield a

weak local minimum? Does the extremal yield a strong local

minimum?

Endnote. For further exercises of this or a similar type, see Elsgolc

[13, p. 126, Problems 11-13].

                

                                                                                                               



Lecture 10

Weierstrass’s Necessary
Condition

From Lecture 9 we know that all known necessary conditions (the

Euler-Lagrange equation, Legendre’s condition and Jacobi’s condi-

tion) for y = 0 to minimize

(10.1) J [y] =

1∫
0

{y′2 + y′
3} dx

subject to y(0) = 0 and y(1) = 0 are satisfied, yet no minimum really

exists: J [0] is a weak local minimum of J , but it is not a strong local

minimum. We must therefore seek a necessary condition that allows

for strong variations.

Because the trial curve

(10.2) y = yε(x) = φ(x) + εη(x)

represents only a weak variation from the curve y = φ(x) that mini-

mizes

(10.3) J [y] =

b∫
a

F (x, y, y′) dx

subject to

(10.4) y = α when x = a, y = β when x = b,
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74 10. Weierstrass’s Necessary Condition

we need a more inclusive class of trial functions. Accordingly, consider

the curve y = y(x, ε) defined by

(10.5) y(x, ε) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ(x) if a ≤ x ≤ c

φ(c) + ω(x− c) if c < x ≤ c+ ε

φ(x) + {φ(c)+ωε−φ(c+ε)}(ξ−x)
ξ−c−ε if c+ ε < x ≤ ξ

φ(x) if ξ < x ≤ b,

where c is not a corner,1 ω may be any real number and

(10.6) 0 ≤ ε < ξ − c < b− c.

We have now made ε an argument of the trial function, as opposed to

a subscripted parameter, to distinguish strong from weak variations.

Observe that y(x, ε) is continuous at x = c, at x = c+ ε and at x = ξ,

and that its derivative

(10.7) yx(x, ε) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ′(x) if a < x < c

ω if c < x < c+ ε

φ′(x)− φ(c)+ωε−φ(c+ε)
ξ−c−ε if c+ ε < x < ξ

φ′(x) if ξ < x < b

with respect to x is continuous except at x = c, at x = c + ε and at

x = ξ. So y(x, ε) ∈ D1; see Figure 10.1. Furthermore, φ(a) = α =⇒
y(a, ε) = α and φ(b) = β =⇒ y(b, ε) = β, so that y = y(x, ε) satisfies

the boundary conditions (10.4). Hence y = y(x, ε) is an admissible

curve. Note that we use a subscript, as opposed to a prime, for

differentiation in (10.7) because y is no longer regarded as a function

of a single argument.

Despite the resemblance of (10.5) to (6.4), in which ε was merely

a subscript, (6.4) represents only a weak variation, because as ε de-

creases the dashed curves in Figure 6.1 collapse onto the solid curves

in such a way that

(10.8) lim
ε→0+

|yε(x)− φ(x)| = 0 = lim
ε→0+

|y′ε(x)− φ′(x)|

for all x ∈ [a, b], whereas (10.5) satisfies only

(10.9) lim
ε→0+

|y(x, ε)− φ(x)| = 0 for all x ∈ [a, b].

1However, φ ∈ D1 and may therefore have corners elsewhere, as illustrated by
Figure 10.1.
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y � Φ�x�

y � y�x, Ε�

a c c� Ε Ξ b
x

Figure 10.1. Trial curve representing a strong variation.

To see that (10.5) indeed satisfies (10.9), we note that the greatest

difference between y = φ(x) and y = y(x, ε) occurs at x = c + ε (see

Figure 10.1), implying

(10.10) 0 ≤ |y(x, ε)− φ(x)| ≤ |φ(c) + ωε− φ(c+ ε)|,

and the right-hand side of the second inequality approaches zero as

ε → 0+. To see that (10.5) fails to satisfy

(10.11) lim
ε→0+

|yx(x, ε)− φ′(x)| = 0

for all x ∈ [a, b], we note that yx(c+, ε) = ω and φ′(c) are independent

of ε, and so (10.11) is false for x = c unless

(10.12) ω = φ′(c).

Only in this special case does (10.5) represent a weak variation.

By construction φ(x) = y(x, 0), and so J [y(x, 0)] ≤ J [y(x, ε)],

which as usual we rewrite as J(ε) ≥ J(0), where

(10.13) J(ε) =

b∫
a

F
(
x, y(x, ε), yx(x, ε)

)
dx.

Because ε ≥ 0 from (10.6), J has an endpoint minimum at ε = 0, so

(10.14) J ′(0) ≥ 0.
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We proceed along the lines of Lecture 6, first rewriting (10.13) as

the sum of four integrals:

(10.15) J(ε) = J1 + J2(ε) + J3(ε) + J4,

where, from (10.5),

(10.16) J1 =

c∫
a

F
(
x, φ(x), φ′(x)

)
dx

and

(10.17) J4 =

b∫
ξ

F
(
x, φ(x), φ′(x)

)
dx

are independent of ε, and we use Leibniz’s rule to differentiate

(10.18) J2(ε) =

c+ε∫
c

F
(
x, y(x, ε), yx(x, ε)

)
dx

and

(10.19) J3(ε) =

ξ∫
c+ε

F
(
x, y(x, ε), yx(x, ε)

)
dx

in turn. From (10.18) we obtain

(10.20) J ′
2(ε) = F

(
c+ ε, y(c+ ε, ε), yx(c+ ε, ε)

)

+

c+ε∫
c

∂

∂ε
F (x, y(x, ε), yx(x, ε)) dx

and taking the limit as ε → 0+ yields

(10.21) J ′
2(0) = F (c, φ(c), ω).

Similarly, from (10.19) and using y and ρ as temporary shorthands

for y(x, ε) and yx(x, ε), respectively, we obtain

(10.22) J ′
3(ε) = −F

(
c+ ε, y(c+ ε, ε), yx(c+ ε, ε)

)

+

ξ∫
c+ε

{
∂F

∂y

∂y

∂ε
+

∂F

∂ρ

∂ρ

∂ε

}
dx.
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Differentiating y = y(x, ε) and ρ = yx(x, ε) with respect to ε for

c+ ε < x < ξ , we obtain from the quotient rule that

∂y

∂ε
=

{(ξ − c− ε){ω − φ′(c+ ε)}+ {φ(c) + ωε− φ(c+ ε)}}(ξ − x)

(ξ − c− ε)2

and

∂ρ

∂ε
= − (ξ − c− ε){ω − φ′(c+ ε)}+ {φ(c) + ωε− φ(c+ ε)}

(ξ − c− ε)2

implying in the limit as ε → 0+ that

(10.23)
∂y

∂ε

∣∣∣∣
ε=0

=
(ω − φ′(c))(ξ − x)

ξ − c
,

∂ρ

∂ε

∣∣∣∣
ε=0

=
φ′(c)− ω

ξ − c
.

Substituting into (10.22) in the limit as ε → 0+, we obtain

J ′
3(0) = −F

(
c, φ(c), φ′(c)

)
+

ξ∫
c

{
∂F

∂y

∂y

∂ε
+

∂F

∂ρ

∂ρ

∂ε

}∣∣∣∣
ε=0

dx

= −F
(
c, φ(c), φ′(c)

)
+

ω − φ′(c)

ξ − c

ξ∫
c

{
∂F

∂φ
(ξ − x)− ∂F

∂φ′

}
dx.

Using the Euler-Lagrange equation (5.12), we recast this equation as

J ′
3(0) = −F

(
c, φ(c), φ′(c)

)

+
ω − φ′(c)

ξ − c

ξ∫
c

{
d

dx

{
∂F

∂φ′

}
(ξ − x)− ∂F

∂φ′

}
dx

= −F
(
c, φ(c), φ′(c)

)
+

ω − φ′(c)

ξ − c

ξ∫
c

d

dx

{
∂F

∂φ′ (ξ − x)

}
dx

= −F
(
c, φ(c), φ′(c)

)
+

ω − φ′(c)

ξ − c

∂F

∂φ′ (ξ − x)

∣∣∣∣
ξ

c

dx

= −F
(
c, φ(c), φ′(c)

)
− (ω − φ′(c))Fy′

(
c, φ(c), φ′(c)

)
.
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Combining with (10.21) and the derivative of (10.15) in the limit as

ε → 0+ now yields

J ′(0) = 0 + J ′
2(0) + J ′

3(0) + 0

= F
(
c, φ(c), ω

)
− F

(
c, φ(c), φ′(c)

)
− (ω − φ′(c))Fy′

(
c, φ(c), φ′(c)

)
= E(c, φ(c), φ′(c), ω),

where we define Weierstrass’s excess function E by

(10.24) E(x, y, y′, ω) = F (x, y, ω)−F (x, y, y′)−(ω−y′)Fy′(x, y, y′)

on an appropriate subset of four-dimensional space. Because c is

any point of [a, b] that is not a corner, on using (10.14) we obtain

Weierstrass’s necessary condition for φ ∈ D1 to be a minimizer of J ,

which is that

(10.25) E(x, φ(x), φ′(x), ω) ≥ 0

for all x ∈ [a, b] for all real ω. If φ has a corner at x = c, then

we interpret (10.25) to mean both E(x, φ(c), φ′(c−), ω) ≥ 0 and

E(x, φ(c), φ′(c+), ω) ≥ 0 for all real ω: these two inequalities fol-

low by continuity, from taking the limits as x → c− and as x → c+

(through points x at which there is no corner).

Here three remarks are in order. First, Weierstrass’s necessary

condition is invariably satisfied when the minimization problem is

regular, i.e., from (5.21), when Fy′y′ > 0 for all (x, y, y′). For, by

Taylor’s theorem with remainder (applied to the third argument of

F ), there exists θ ∈ (0, 1) such that

(10.26) F (x, y, ω) = F (x, y, y′) + (ω − y′)Fy′(x, y, y′)

+ 1
2 (ω − y′)2Fy′y′(x, y, {1− θ}y′ + θω)

and so, from (10.24),

(10.27) E(x, φ(x), φ′(x), ω)

= 1
2 (ω − φ′(x))2Fy′y′(x, φ(x), {1− θ}φ′(x) + θω).

The right-hand side is clearly nonnegative for all real ω when Fy′y′ is

positive.
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Second, Weierstrass’s necessary condition implies Legendre’s. For

if (10.25) holds for any x ∈ [a, b] for all real ω, then (10.27) implies

that

(10.28) Fy′y′(x, φ(x), {1− θ}φ′(x) + θω) ≥ 0

must hold in the limit as ω approaches φ′(x). So Fy′y′(x, φ(x), φ′(x)) ≥
0 for any x ∈ [a, b], which, from (7.21), is Legendre’s necessary con-

dition.

Third, Weierstrass’s necessary condition also implies the second

Weierstrass-Erdmann corner condition (given the first, which follows

from the du Bois-Reymond equation). For if there is a corner at x = c,

then (10.25) must hold as x → c+ for any value of ω, and hence in

particular for ω = φ′(c−) = ω1; the resulting inequality is equivalent

to (6.21). Likewise, (10.25) must hold as x → c− for any value of

ω, and hence in particular for ω = φ′(c+) = ω2; and the resulting

inequality is equivalent to (6.29).

Let us now return in essence to where we began, but consider,

instead of minimizing (10.1) subject to y(0) = 0 and y(1) = 0, the

somewhat more general problem of minimizing

(10.29) J [y] =

b∫
a

{y′2 + y′
3} dx

subject to y(a) = α and y(b) = β. Here F (x, y, y′) = y′
2
+ y′

3
, and

so (10.24) yields

E(x, y, y′, ω) = ω2 + ω3 − {y′2 + y′
3}

− (ω − y′)(2y′ + 3y′
2
)

= (ω − y′)2(1 + ω + 2y′).

(10.30)

We already know from Exercise 6.3 that there are no broken extremals

and from Lecture 9 that the only extremal is a straight line from

(a, α) to (b, β), which therefore has slope k = β−α
b−a ; see, in particular,

(9.6)-(9.7). From (10.25) and (10.30), a necessary condition for this

extremal to be a minimizer is that

(10.31) (ω − k)2(1 + ω + 2k) ≥ 0
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for all real ω—which fails to hold, because the left-hand side of (10.31)

is negative when ω < −2k − 1. In particular, in the case of (10.1), it

is negative when ω < −1.

Exercises 10

1. Use Weierstrass’s necessary condition to confirm the result you

obtained in Exercise 9.1.

2. Given that ν and γ are constants, show that every extremal sat-

isfies Weierstrass’s necessary condition for each of the following

functionals:

(a) J [y] =
b∫
a

{y′2 − y2} dx.

(b) J [y] =
b∫
a

{y′2 − ν2y2}eγx dx.
Hint: What is the most efficient way to solve the problem as a

whole?

3. Show that the brachistochrone problem in Lecture 1 satisfies

Weierstrass’s necessary condition.

4. Is Weierstrass’s necessary condition satisfied by the admissible

extremal for the problem of minimizing

J [y] =

4a/
√
3∫

a

x

1 + y′2
dx

with a = 4
10−ln(

√
3)

≈ 0.4232, y(a) = 1
2a and y(4a/

√
3) = 1

(Exercise 4.6)?

5. Does the admissible extremal for the production problem in

Lecture 2 (Exercise 2.9) satisfy Weierstrass’s necessary condi-

tion?

6. Show directly, i.e., using (10.24)-(10.25), as opposed to (10.27),

that Weierstrass’s necessary condition holds for (a) Exercise 4.8

and (b) Exercise 4.9.

Endnote. Further such exercises may be found in Hestenes [20, p. 65]

and Leitmann [34, p. 53].

                

                                                                                                               



Lecture 11

The Transversality
Conditions

In this lecture, we continue to allow for strong variations, but we no

longer require the curve y = φ(x) that minimizes

(11.1) J [y] =

∫
F (x, y, y′) dx

to have fixed endpoints, although that remains an important special

case; and so here we regard an extremal as admissible if, in lieu of

(2.2), it satisfies appropriate endpoint conditions that we are about

to determine. Accordingly, let us assume that y = φ(x) belongs, as

the curve Γ0, to a one-parameter family of curves Γε with equation

(11.2) y = y(x, ε)

so that

(11.3) φ(x) = y(x, 0)

and

(11.4) y′ = yx(x, ε)

on Γε. As in Lecture 10, we make ε an argument of the trial function

in (11.2) to indicate that we allow for strong variations. Of course,

strong variations include weak variations

(11.5) y = φ(x) + εη(x)
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as a special case. We note that (11.5) is consistent with (11.2)-(11.3),

and for further consistency, we adopt the notation

(11.6) η(x) = yε(x, 0).

We assume that the endpoints of Γε lie on curves ΛA and ΛB

with parametric equations1

(11.7) x = xA(ε), y = yA(ε)

for ΛA and

(11.8) x = xB(ε), y = yB(ε)

for ΛB, so that

(11.9) y(xA(ε), ε) = yA(ε) and y(xB(ε), ε) = yB(ε)

for consistency with (11.2). Because Γ0 has equation y = φ(x), we

also require

(11.10) yA(0) = φ(xA(0)) and yB(0) = φ(xB(0)).

Thus the curve Γε extends from (xA(ε), yA(ε)) or Aε for short to

(xB(ε), yB(ε)) or Bε for short and the minimizer Γ0 has endpoints

(x1(0), y1(0)) and (x2(0), y2(0)), or A0 and B0 for short.

As already noted, we no longer assume that A0 and B0 are pre-

determined. Thus, when we say that the curve Γ0 from A0 on ΛA to

B0 on ΛB is the minimizer of J [y], we claim not only that J [y] cannot

be made smaller than J [φ] by a neighboring curve from A0 to B0—

although we do still make that claim—but also that J [y] cannot be

made smaller by shifting A0 to a neighboring point Aε or by shifting

B0 to a neighboring point Bε. Once Γ0 has been identified, any of

these potential variations can be tried independently of any other: for

example, we can hold the lower endpoint fixed by constraining Aε to

satisfy xA = constant, yA = constant or

(11.11) dxA = 0, dyA = 0

and we can hold the upper endpoint fixed by constraining Bε to satisfy

xB = constant, yB = constant or

(11.12) dxB = 0, dyB = 0.

1Using a single parameter ε to label Γε and parameterize both ΛA and ΛB requires
only that no curve of the family (11.2) intersect ΛA or ΛB tangentially, which we
assume; see Pars [47, p. 97].

                

                                                                                                               



11. The Transversality Conditions 83

Yet in every case, the effect of trying the variation must be to raise—

or at least not lower—the value of J [y] from J [φ]. So, for all such

variations, the value

(11.13) J(ε) = J [y(x, ε)] =

xB(ε)∫
xA(ε)

F (x, y(x, ε), yx(x, ε)) dx

that Γε achieves for (11.1) must have an interior minimum where

ε = 0, because ε may be positive or negative. Hence

(11.14) J ′(0) = 0

for any such variation.

To proceed, we must take the limit as ε → 0 in an expression for

J ′(ε), whose calculation is facilitated by adopting the shorthands

(11.15) F = F (x, y(x, ε), yx(x, ε))

for the integrand in (11.13);

(11.16a) Fy = Fy(x, y(x, ε), yx(x, ε))

and, as suggested by (9.18),

(11.16b) p = Fy′(x, y(x, ε), yx(x, ε))

for the partial derivatives of F with respect to its second and third

arguments;

(11.17) FA(ε) = F (xA(ε), y(xA(ε), ε), yx(xA(ε), ε))

= F (xA(ε), yA(ε), yx(xA(ε), ε))

for the value F achieves at the lower endpoint A of Γε; and

(11.18) FB(ε) = F (xB(ε), y(xB(ε), ε), yx(xB(ε), ε))

= F (xB(ε), yB(ε), yx(xB(ε), ε))

for the value F achieves at the upper endpoint B. As usual, we use

a subscripted y or y′ to denote the partial derivative of F or any of

its partial derivatives with respect to the second or third argument of
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the function concerned. Thus, applying Leibniz’s rule to (11.13), we

obtain

J ′(ε) = FB(ε) x
′
B(ε)− FA(ε) x

′
A(ε) +

xB(ε)∫
xA(ε)

∂F

∂ε
dx

= F
dx

dε

∣∣∣B
A

+

xB(ε)∫
xA(ε)

∂F

∂ε
dx

(11.19)

on using Q|BA as a convenient shorthand for the jump in Q between Aε

and Bε. By the chain rule, however, and suppressing the arguments

of yε and yxε, we have

∂F

∂ε
= Fy yε(x, ε) + Fy′ yxε(x, ε)

= Fy yε + p yxε

= (Fy − px) yε + px yε + p yεx

= (Fy − px) yε +
∂

∂x
{p yε}.

(11.20)

Thus (11.19) becomes

J ′(ε) = F
dx

dε

∣∣∣B
A
+

xB(ε)∫
xA(ε)

{
(Fy − px) yε +

∂

∂x
{p yε}

}
dx

= F
dx

dε

∣∣∣B
A
+

xB(ε)∫
xA(ε)

(Fy − px) yε dx +

xB(ε)∫
xA(ε)

∂

∂x
{p yε} dx

= F
dx

dε

∣∣∣B
A
+

xB(ε)∫
xA(ε)

(Fy − px) yε dx + p yε
∣∣B
A
.

(11.21)

From (11.9), however, we have y(xA(ε), ε) = yA(ε); and differenti-

ating with respect to ε, we obtain

(11.22) yx(xA(ε), ε)
dxA

dε
+ yε(xA(ε), ε) =

dyA
dε

,
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which we can rearrange and write more compactly as

(11.23a) yε =
dyA
dε

− yx
dxA

dε

provided we remember that yx and yε are evaluated at Aε. With a

similar proviso, (11.9) likewise yields

(11.23b) yε =
dyB
dε

− yx
dxB

dε
.

Substituting from (11.23) into (11.21) now yields

J ′(ε) = F
dx

dε

∣∣∣B
A

+

xB(ε)∫
xA(ε)

(Fy − px) yε dx

+ p

(
dy

dε
− yx

dx

dε

)∣∣∣∣
B

A

=

{
(F − pyx)

dx

dε
+ p

dy

dε

}∣∣∣∣
B

A

+

xB(ε)∫
xA(ε)

(Fy − px) yε dx

=

{
F − pyx + p

dy

dx

}
dx

dε

∣∣∣∣
B

A

+

xB(ε)∫
xA(ε)

(Fy − px) yε dx,

(11.24)

where it is understood that yx denotes the slope of Γε at Aε or Bε,

whereas dy
dx is evaluated on ΛA or ΛB . Hence, from (2.18), (11.3) and

(11.6), we obtain

(11.25) J ′(0) =
{
F (x, φ, φ′)− φ′Fφ′ + Fφ′

dy

dx

}dx

dε

∣∣∣∣
B

A

+

xB(0)∫
xA(0)

{
Fφ − dFφ′

dx

}
η(x) dx.

But Γ0 must at least minimize J when the endpoints are fixed, and

so φ must satisfy the Euler-Lagrange equation (2.20). The integral in

(11.25) is therefore identically zero. So, recalling from (6.20) that

(11.26) H(x, y, y′) = y′ Fy′(x, y, y′) − F (x, y, y′),
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we reduce (11.25) to

J ′(0) =

{
Fφ′

dy

dx
−H(x, φ, φ′)

}
dx

dε

∣∣∣∣
B

A

+ 0(11.27)

=

{
Fφ′

dyB
dxB

−H(x, φ, φ′)

}
dxB

dε

−
{
Fφ′

dyA
dxA

−H(x, φ, φ′)

}
dxA

dε
,

where xA, yA, xB and yB are shorthands for xA(0), yA(0), xB(0)

and yB(0), respectively. But dxA, dyA and dxB , dyB can be chosen

independently, and J ′(0) = 0 for all such variations. So

(11.28)

{
Fφ′

dyA
dxA

−H

}
dxA

dε
= 0 =

{
Fφ′

dyB
dxB

−H

}
dxB

dε

or, equivalently but more elegantly,

(11.29) Fφ′ dyA −H dxA = 0 = Fφ′ dyB −H dxB ,

where H is a shorthand for H(x, φ, φ′).

There are now in essence four possibilities for the lower endpoint,

which we denote henceforward by A (as opposed to A0) for short.

The first is that A is fixed: then (11.11) holds, and (11.29) yields no

new information. The second possibility is that A is constrained to

lie on a vertical line x = constant, in which case we say that yA is

free. Then dxA = 0 with dyA �= 0, so that (11.29) implies

(11.30) Fφ′ = 0

at A. The third possibility is that A is constrained to lie on a hori-

zontal line y = constant, in which case we say that xA is free. Then

dyA = 0 with dxA �= 0, so that (11.29) implies

(11.31) H(x, φ, φ′) = 0

at A. The fourth and most general possibility is that dxA and dyA
are both nonzero, in which case (11.29) implies

(11.32) Fφ′
dy

dx
= H(x, φ, φ′)

at A, with dy
dx evaluated on ΛA.

Needless to say, the same four possibilities also exist for the up-

per endpoint, denoted henceforward by B for short. If B is fixed,
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then (11.12) holds and (11.29) yields no new information. If B is

constrained to lie on a vertical line x = constant, then dxB = 0 with

dyB �= 0 and (11.30) holds at B. If B is constrained to lie on a hor-

izontal line y = constant, then dyB = 0 with dxB �= 0 and (11.31)

holds at B. Finally, if dxB and dyB are both nonzero, then (11.32)

holds at B with dy
dx evaluated on ΛB . We will refer to (11.30)-(11.32)

collectively as the transversality conditions.

Consider, for example, the problem of minimizing

(11.33) J [y] =

b∫
0

F (y, y′) dx =

b∫
0

√
1 + y′2

y
dx

with y(0) = 0 and the upper endpoint (b, β) constrained to lie on the

semi-circle

(11.34) (x− 5)2 + y2 = 9, y ≥ 0,

which is ΛB for this problem. From (4.8), the Euler-Lagrange equa-

tion is

(11.35) H = y′
∂F

∂y′
− F =

−1

y
√

1 + y′2
= constant = −1

k
,

where k (> 0) is a constant. As in (4.14), we employ the substitution

(11.36) y′ = tan(θ),

where θ is the angle of elevation of the curve Γ at the point (x, y);

this substitution converts (11.35) to

(11.37a) y = k cos(θ)

and, by steps analogous to (4.16)-(4.19), yields dx
dθ = −k cos(θ) and

(11.37b) x = −k sin(θ) + l,

where l is another constant. Equations (11.37) are the parametric

equations of the circle (x − l)2 + y2 = k2. We require this circle to

pass through the origin in such a way that it is possible for it to

reach the semi-circle (11.34). So l = k is positive, and any potentially

admissible extremal is a circle with equation

(11.38) (x− k)2 + y2 = k2.

That is, the minimizer y = φ(x) belongs to the class of functions

implicitly defined by restricting (11.38) to y ≥ 0.
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Figure 11.1. Satisfying the transversality conditions.

On differentiating (11.34), we discover that

(11.39)
dy

dx
=

5− x

y

on ΛB . Hence, from (11.32), the upper endpoint (b, β) must satisfy

(11.40) Fφ′
5− b

β
= H(x, φ, φ′)

with Fφ′ and H(x, φ, φ′) evaluated on the extremal (11.38) at B.

From (11.33) and (11.35) we obtain

(11.41) Fy′ =
y′

y
√
1 + y′2

=
y′

k
=

k − x

y k

on differentiating (11.38); and (11.35) yields H = −1/k. Thus (11.40)

reduces to

(11.42)
k − b

β k

5− b

β
=

−1

k

or

(11.43) (k − b)(5− b) + β2 = 0.

Of course, B must lie on both the extremal (11.38) and the semi-circle

(11.34), which implies

(11.44) (b− k)2 + β2 = k2 and (b− 5)2 + β2 = 9.

Together, (11.43)-(11.44) are three equations for the unknown con-

stants k, b and β. Successive elimination of β yields bk−5(b+k)+16 =

0 and bk = 5(b − k), from which we readily deduce that k = 8
5 and

hence b = 40
17 , β = 24

17 . The solution is illustrated by Figure 11.1.
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It is no coincidence that, in Figure 11.1, the admissible extremal

(solid curve) intersects the boundary (semi-circle, dashed) orthogo-

nally: it always happens when the functional to be minimized has the

form

(11.45) J [y] =

b∫
a

√
1 + (y′)2 g(x, y) dx

with g(x, y) �= 0. For then (11.32) reduces to

(11.46)
g(x, y)√
1 + y′2

{
φ′(x)

dy

dx
+ 1

}
= 0,

where dy
dx denotes the slope of the boundary and φ′(x) that of the

extremal at their point of intersection; and it follows at once that

φ′(x) dydx = −1, implying that the curves intersect orthogonally.

Exercises 11

1. Verify (11.46).

2. Find any admissible extremal for

J [y] =

b∫
0

(x+ 1)y′
2
dx

with y(0) = 0 and b > 0 when (b, β) must lie on y = 1+ln(x+1).

3. Find any admissible extremal for

J [y] =

1∫
0

{
y′

2
+ yy′ + y′ + 1

2y
}
dx

when

(a) y(0) = 0 but y(1) = β is free.

(b) y(1) = 0 but y(0) = α is free.

(c) Both y(0) = α and y(1) = β are free.

In each case, discuss whether a minimum is achieved.
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4. Find any admissible extremal for

J [y] =

b∫
1

{xy′2 +
√
xy′} dx

with y(1) = 0 and b > 1 when

(a) (b, β) must lie on x = 2 (i.e., β is free).

(b) (b, β) must lie on y = 1 (i.e., b is free).

(c) (b, β) must lie on the line y = x.

5. Find any admissible extremal for

J [y] =

ln(3)∫
a

{e−xy′
2
+ 2ex(y′ + y)} dx

with y(ln(3)) = 1 and a < ln(3) when

(a) (a, α) must lie on x = 0 (i.e., α is free).

(b) (a, α) must lie on y = 2 (i.e., a is free).

(c) (a, α) must lie on y = 0.

(d) (a, α) must lie on the curve ex(y + 1) = 1.

6. Find any admissible extremal for

J [y] =

b∫
0

{ey′
+ y} dx

with y(0) = 0 and b > 0 when

(a) (b, β) must lie on x = 1 (i.e., β is free).

(b) (b, β) must lie on y = 1 (i.e., b is free).

7. Find any admissible extremal for

J [y] =

b∫
0

{xe−y′/x + y′ − y} dx

with y(0) = 0 and b > 0 when

(a) (b, β) must lie on y = −1 (i.e., b is free).

(b) (b, β) must lie on the line x+ y + 1 = 0.

Endnote. For further exercises of this type, see Gelfand & Fomin

[16, pp. 33 and 64] and Pinch [50, pp. 43-46].

                

                                                                                                               



Lecture 12

Hilbert’s Invariant
Integral

A field of extremals is a one-parameter family of extremals that covers

an open region R of the plane in the sense that one, and only one, of

its curves goes through every point of R. Thus a field of extremals

assigns a unique slope to every point of R; therefore, it defines a

function of two variables, which we denote by ρ and call the direction

field of the family. By construction, the slope of the curve going

through (x, y) is

(12.1) y′ = ρ(x, y)

and, using a subscripted y′ to denote differentiation with respect to

the third argument,

(12.2) Fy(x, y, ρ(x, y)) − d

dx
{Fy′(x, y, ρ(x, y))} = 0

identically, because an extremal is a solution of the Euler-Lagrange

equation. When all of the extremals emanate from a single boundary

point (excluded from R, because an open set contains no boundary

points), the field of extremals is sometimes called a central field or

pencil of extremals with the boundary point as pencil point.1

1See, e.g., Clegg [11, p. 69] or Young [65, p. 82]. The open region R is assumed
to be simply connected, i.e., it contains no “holes” that would prevent a closed curve
from being continuously deformed to a single point within R.
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Figure 12.1. Two pencils of extremals through the origin.

To illustrate: consider the problem of minimizing

(12.3) J [y] =

b∫
a

{y′2 + y2} dx

so that

(12.4) F (x, y, y′) = y′
2
+ y2.

The Euler-Lagrange equation is readily found to be y′′ = y, so a

two-parameter family of extremals is

(12.5) y = Y (x, k, l) = k sinh(x) + l cosh(x).

We can reduce this to a one-parameter family by requiring y = 0

when x = 0; then l = 0, so the one-parameter subfamily is

(12.6) y = y(x, k) = k sinh(x).
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Now, by construction, no point on the y-axis has a curve going through

it except for the origin, which every curve goes through. We must

therefore exclude the y-axis from R to satisfy the definition. We are

left with two fields of extremals, one for the open half-plane where

x > 0 and another for the open half-plane where x < 0: each is a

pencil of extremals through the origin, as illustrated by Figure 12.1.

Only a few curves are shown, of course, because the family covers the

entire plane (except for the y-axis).

For the extremal labelled k, the slope y′ is determined by

(12.7) yx(x, k) = k cosh(x),

and then ρ is determined by eliminating k between y = k sinh(x) and

ρ = k cosh(x):

(12.8) ρ(x, y) = y coth(x)

defines the direction field. To verify that (12.2) is satisfied identically,

we note that F = y′2 + y2 =⇒ Fy = 2y, Fy′ = 2y′ =⇒

Fy(x, y, ρ(x, y)) − d

dx
{Fy′(x, y, ρ(x, y))}

= 2y − d

dx
{2y coth(x)}

= 2y − 2y′ coth(x) + 2y cosech2(x)

= 2y − 2ρ(x, y) coth(x) + 2y cosech2(x)

= 2y − 2y coth2(x) + 2y cosech2(x)

= 2y{1− coth2(x) + cosech2(x)} = 0.

Given a field of extremals, let Γ be any curve between (a, α) and

(b, β) lying entirely within the region R that the field of extremals

covers. Then we can define the integral

(12.9) K[Γ] =

b∫
a

{
F (x, y, ρ(x, y))

+
(dy
dx

− ρ(x, y)
)
Fy′(x, y, ρ(x, y))

}
dx,
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where the integrand is evaluated along Γ. On recalling from (6.20)

and (9.18) that H and p are defined by

(12.10) H(x, y, y′) = y′ Fy′(x, y, y′)− F (x, y, y′)

and

(12.11) p(x, y, y′) = Fy′(x, y, y′),

we can rewrite (12.9) as

K[Γ] =

b∫
a

{
−H(x, y, ρ(x, y)) +

dy

dx
p(x, y, ρ(x, y))

}
dx

=

∫
Γ

−H(x, y, ρ(x, y)) dx + p(x, y, ρ(x, y)) dy

=

∫
Γ

u1 dx + u2 dy,

(12.12)

where we adopt the shorthands

(12.13) u1 = −H(x, y, ρ(x, y)), u2 = p(x, y, ρ(x, y)).

Denoting (a, α) and (b, β) by A and B, respectively, for short,

let Γ1 and Γ2 be two different paths from A to B within R, with Γ2

above Γ1 as indicated in Figure 12.2, and let −Γ2 denote Γ2 traversed

in the opposite direction, i.e., from B to A. Then, by Stokes’ theorem

(in the special case also known as Green’s theorem),

K[Γ1]−K[Γ2] =

∫
Γ1

u1 dx+ u2 dy −
∫
Γ2

u1 dx+ u2 dy

=

∫
Γ1

u1 dx+ u2 dy +

∫
−Γ2

u1 dx+ u2 dy

=

∮
Γ1 ∪−Γ2

u · dr =

∫∫
S

(∇× u) · k dS

=

∫∫
S

(
∂u2

∂x
− ∂u1

∂y

)
dx dy,

(12.14)

where u = u1i + u2j, i and j are orthogonal unit vectors in the di-

rections of the x- and y-axes, k = i × j and S is the planar region
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within R that Γ1 ∪ −Γ2 encloses. Using ρ as a shorthand for ρ(x, y),

however, and using a subscripted y′ to denote a partial derivative of p

or F or any partial derivative thereof with respect to that function’s

third argument, we obtain

(12.15)
∂u2

∂x
= px + py′ρx = Fy′x + Fy′y′ρx

from (12.11) and (12.13). From (12.10) and (12.13) with use of the

product and then the chain rule, we obtain

∂u1

∂y
=

∂

∂y

{
F (x, y, ρ) − ρFy′(x, y, ρ)

}
=

∂

∂y

{
F (x, y, ρ)

}
− ∂

∂y

{
ρFy′(x, y, ρ)

}
=

∂

∂y

{
F (x, y, ρ)

}
− ∂ρ

∂y
Fy′(x, y, ρ) − ρ

∂

∂y

{
Fy′(x, y, ρ)

}
=

{
Fy + Fy′ ρy

}
−

{
ρyFy′ + ρ(Fy′y + Fy′y′ ρy)

}
= Fy − ρFy′y − ρFy′y′ ρy,

where in the last two lines we have suppressed the arguments x, y and

ρ. Subtracting the above expression from (12.15) and rearranging,

(12.16)
∂u2

∂x
− ∂u1

∂y
= Fy′x + ρFy′y + Fy′y′ (ρx+ρ ρy) − Fy.

Through every point of R, however, there passes exactly one extremal,

on which (12.1) implies y′ = ρ(x, y). Differentiation with respect to

x by the chain rule yields

(12.17) y′′ = ρx + ρy
dy

dx
= ρx + ρ ρy.

Hence (12.16) becomes

∂u2

∂x
− ∂u1

∂y
= Fy′x + y′ Fy′y + Fy′y′ y′′ − Fy

=
d

dx
{Fy′} − Fy = 0

(12.18)

by the chain rule and (12.2), and so (12.14) reduces toK[Γ1] = K[Γ2].

Thus K[Γ] is path-independent: its value depends only on the end-

points A, B of the curve. We refer to K[Γ] defined by (12.9) as

Hilbert’s invariant integral.
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Figure 12.2. Two different paths for Hilbert’s integral.

To illustrate: consider the problem of minimizing

(12.19) J [y] =

3∫
1

{ 1
2y

′2 + y′y + y′ + y} dx

subject to y(1) = 0 and y(3) = 4. Here F (x, y, y′) = 1
2y

′2+y′y+y′+y

and the Euler-Lagrange equation is y′′ = 1, so a two-parameter family

of extremals is

(12.20) y = Y (x, k, l) = 1
2x

2 + k x+ l.

We reduce this to a one-parameter family by requiring y = 0 when

x = 0; then l = 0, and so the one-parameter sub-family is

(12.21) y = y(x, k) = 1
2x

2 + k x,

which is a family of parabolas whose axes are parallel to the y-axis.

Again we have two pencils of extremals through the origin, but in
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Figure 12.2 we sketch only the field that covers the open half-plane

where x > 0, because this contains both A = (1, 0) and B = (3, 4).

For the extremal labelled k, the slope y′ is

(12.22) yx(x, k) = x+ k,

and eliminating k between this equation and y = 1
2x

2 + k x yields

(12.23) ρ(x, y) =
y

x
+

x

2
.

Because Fy′ = y′+y+1, and using ρ as a shorthand for ρ(x, y), (12.9)

implies that Hilbert’s integral is

K[Γ] =

3∫
1

{
F (x, y, ρ) +

(dy
dx

− ρ
)
Fy′(x, y, ρ)

}
dx

=

3∫
1

{
1
2ρ

2 + ρy + ρ+ y +
(dy
dx

− ρ
)
(ρ+ y + 1)

}
dx

=

3∫
1

{(y
x
+

x

2
+ y + 1

)dy
dx

− 1

2

(y
x
− x

2

)2}
dx

(12.24)

after simplification. On the lower path in Figure 12.2 we have y =

0 =⇒ dy
dx = 0 for 1 ≤ x ≤ 2 and y = 4(x − 2) =⇒ dy

dx = 4 for

2 ≤ x ≤ 3. Hence, from (12.24),

K[Γ1] =

3∫
1

{(y
x
+

x

2
+ y + 1

)dy
dx

− 1

2

(y
x
− x

2

)2}
dx

= − 1
8

2∫
1

x2 dx+

3∫
2

{
−32x−2 − 24 + 20x− 1

8x
2
}
dx

= − 7
24 + 159

8 = 235
12 .

On the upper path in Figure 12.2 we have y = (x − 1)2 =⇒ dy
dx =

2(x− 1) so that

K[Γ2] =

3∫
1

{
− 1

2x
−2 − 1

2 + 2x− 25
8 x2 + 2x3

}
dx = 235

12 = K[Γ1],

confirming the invariance of Hilbert’s integral.
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Figure 12.3. A field of extremals that covers the plane.

There may, of course, be more than one family of extremals that

forms a field for a given minimization problem. For example, we could

have reduced (12.20) to a one-parameter family by choosing k = 0

instead. Then in place of (12.21) we have a family of parabolas

(12.25) y = y(x, l) = 1
2x

2 + l

with a common axis x = 0. In place of (12.22), the slope y′ for the

extremal labelled l becomes yx(x, l) = x; in place of (12.23), we

obtain the simpler direction field

(12.26) ρ(x, y) = x;

and in place of (12.24), Hilbert’s integral becomes

(12.27) K[Γ] =

3∫
1

{(
x+ y + 1

)dy
dx

+ y − 1
2x

2
}
dx
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after simplification. This time the field of extremals covers the entire

plane (i.e., R = �2), although Figure 12.3 depicts only the region

corresponding to Figure 12.2. On the lower path in Figure 12.3 we

have y = 0 =⇒ dy
dx = 0 for 1 ≤ x ≤ 2 and y = 4(x− 2) =⇒ dy

dx = 4 for

2 ≤ x ≤ 3. Hence, from (12.27),

K[Γ1] = − 1
2

2∫
1

x2dx +

3∫
2

{−36 + 24x− 1
2x

2}dx = − 7
6 + 125

6 = 59
3 .

On the upper path in Figure 12.3 we have y = (x − 1)2 =⇒ dy
dx =

2(x− 1) so that

K[Γ2] =

3∫
1

{−3 + 4x− 7
2x

2 + 2x3} dx = 59
3 = K[Γ1]

again confirming the invariance of Hilbert’s integral.

There is, however, an important difference between the two fields

of extremals we have constructed from (12.20): the field (12.25) con-

tains the admissible extremal y = 1
2 (x

2 − 1) for the problem of min-

imizing (12.19) subject to y(1) = 0 and y(3) = 4, whereas the field

(12.21) does not contain it—or, as we prefer to say, the putative min-

imizer is embedded in the l-field but not the k-field. The importance

of this point will emerge in Lecture 13.

Note, however, that if (as will prove convenient in Lecture 13), we

use k or l from the general solution of the Euler-Lagrange equation to

label a curve in a one-parameter family of extremals as Γk or Γl, then

Γ0 ceases to be a useful notation for the admissible extremal. For

example, in the case we have just considered, the admissible extremal

y = 1
2 (x

2−1) corresponds to l = − 1
2 (as opposed to l = 0) in (12.25).

In Lectures 13 and 14, therefore, we will denote the admissible ex-

tremal (and candidate for minimizer) by Γ∗ instead.

Exercises 12

1. Verify that (12.2) is satisfied identically by (12.23) for the prob-

lem of minimizing (12.19).
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2. Verify that (12.2) is satisfied identically by (12.26) for the prob-

lem of minimizing (12.19).

3. Verify that K[Γ3] =
235
12 , where Γ3 denotes a straight line be-

tween A and B in Figure 12.2.

4. For the problem of minimizing

J [y] =

2∫
1

{y′ + x2y′
2} dx

subject to y(1) = 0 and y(2) = 1, obtain a field of extremals

containing the admissible extremal and show that its direction

field satisfies (12.2) identically.

5. For the problem of minimizing

J [y] =

2∫
0

√
1 + y2y′2 dx

subject to y(0) = 1 and y(2) = 3, obtain two fields of extremals

containing the admissible extremal and show that their direc-

tion fields satisfy (12.2) identically.

6. Let Γ1 denote a straight-line segment from (0, 1) to (2, 3); and

let Γ2 denote a join of two straight-line segments, the first from

(0, 1) to (1, 1), the second from (1, 1) to (2, 3). Verify that

K[Γ1] = K[Γ2] for both direction fields in Exercise 12.5 (where

K denotes Hilbert’s invariant integral).

                

                                                                                                               



Lecture 13

The Fundamental
Sufficient Condition

If the curve Γ∗, with equation y = φ(x), lower endpoint (a, α) or A

and upper endpoint (b, β) or B, is a candidate for minimizer of

(13.1) J [y] =

b∫
a

F (x, y, y′) dx

and if Γ∗ is embedded in field of extremals with direction field ρ, then

(12.9), i.e., Hilbert’s invariant integral

K[Γ] =

b∫
a

{
F (x, y, ρ(x, y)) +

(dy
dx

− ρ(x, y)
)
Fy′(x, y, ρ(x, y))

}
dx,

can be used to derive a sufficient condition. Note that we must have

(13.2)
dy

dx
= φ′(x) = ρ(x, φ(x))

on Γ∗ by (12.1). Hence, from above,

K[Γ∗] =

b∫
a

{F (x, φ, ρ(x, φ)) + 0} dx =

b∫
a

{F (x, φ(x), φ′(x)) dx

= J [Γ∗].
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So, for any curve Γ from A to B, we have total variation

(13.3) ΔJ = J [Γ]− J [Γ∗] = J [Γ]−K[Γ∗] = J [Γ]−K[Γ]

because K is path-independent. Here we have written the total varia-

tion, which is a difference between integrals over two different curves,

as a difference between integrals over the same curve. We can there-

fore rewrite it as the integral of a difference between integrands. Using

ρ as a shorthand for ρ(x, y),

ΔJ = J [Γ]−K[Γ]

=

b∫
a

F (x, y, y′) dx−
b∫

a

{
F (x, y, ρ) + (y′ − ρ)Fy′(x, y, ρ)

}
dx

=

b∫
a

{
F (x, y, y′)− F (x, y, ρ)− (y′ − ρ)Fy′(x, y, ρ)

}
dx

=

b∫
a

E(x, y, ρ, ω) dx

from (10.24), where

(13.4) ω = y′

is the slope of Γ at the point (x, y) and E denotes Weierstrass’s excess

function. Now, because Γ is any piecewise-smooth curve from A to

B that lies wholly in R, it is clear that E(x, y, ρ, ω) ≥ 0 is a sufficient

condition for ΔJ ≥ 0. That is:

If Γ∗ is embedded in a field of extremals with direction

field ρ and E(x, y, ρ, ω) ≥ 0 for all feasible ω ∈ �, then
J [y] achieves a strong minimum on Γ∗.

(13.5)

Here four remarks are in order. First, if the field is a pencil, then

A may be—and frequently is—its pencil point, where the slope is not

unique. In other words, Γ∗ is considered to be embedded in R if R

contains every point of Γ∗ with the possible exception of A.

Second, as illustrated by Lecture 12, the admissible extremal Γ∗
does not belong to every field of extremals that can be constructed

from the general family of solutions of the Euler-Lagrange equation,
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which it is convenient to denote by y = Y (x, k, l). Nevertheless, if the

boundary conditions can be satisfied with k = k∗ and l = l∗, then

two one-parameter subfamilies guaranteed to contain Γ∗ are {Γk},
where Γk has equation y = y(x, k) = Y (x, k, l∗) and {Γl}, where Γl

has equation y = y(x, l) = Y (x, k∗, l), and usually at least one is a

suitable field.

Third, by Taylor’s theorem with remainder (applied to the third

argument of F ), there exists θ ∈ (0, 1) such that

(13.6) F (x, y, ω) = F (x, y, ρ) + (ω − ρ)Fy′(x, y, ρ)

+ 1
2 (ω − ρ)2Fy′y′(x, y, {1− θ}ρ+ θω)

implying

(13.7) E(x, y, ρ, ω) = 1
2 (ω − ρ)2Fy′y′(x, y, {1− θ}ρ+ θω).

The right-hand side is clearly nonnegative when Fy′y′ is strictly posi-

tive. Thus, for a regular problem, establishing sufficiency is equivalent

to showing that Γ∗ can be embedded in a field of extremals.

Fourth, typically our task is to show that E(x, y, ρ, ω) ≥ 0 for

all ω ∈ �, but we state our sufficient condition (13.5) in terms of

all feasible ω ∈ � to recognize that the existence of J [y] may place

restrictions on y′. Consider, for example, the problem of extremizing

(13.8)

8∫
1

√
y(1− {y′}2) dx

subject to

(13.9) y(1) = 1, y(8) = 4 and y ≥ 0

for which F (x, y, y′) exists only when

(13.10) −1 ≤ ω ≤ 1

so that any admissible curve between A and B must lie in the (closed)

unshaded pentagon of Figure 13.1. It is clear at once that the func-

tional in (13.8) is nonnegative, and furthermore that the value of zero

is achieved by following the boundary from A to B on either of the two

available paths (or by a variety of paths that cross perpendicularly

from the upper boundary to the lower one). We will therefore turn
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Figure 13.1. Closed pentagon in which Γ is constrained to lie.

our attention instead to the problem of maximizing the functional

(13.8), which is equivalent to that of minimizing

(13.11) J [y] =

8∫
1

{−
√
y(1− {y′}2)} dx

subject to (13.9)-(13.10). On using (4.8), the Euler-Lagrange equa-

tion becomes

(13.12)

√
y

1− {y′}2 =
√
k,

where k is a positive constant. The substitution

(13.13)
dy

dx
= sin(θ)

yields

(13.14) y = k cos2(θ)

implying dy
dθ = −k sin(2θ). Hence dx

dθ = dy
dθ /

dy
dx = −2k cos(θ), so that

(13.15) x = −2k sin(θ) + l,
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where l is another constant. Eliminating θ between (13.14) and

(13.15) reveals that the general solution of the Euler-Lagrange equa-

tion is a parabola with vertex (l, k), focus (l, 0) and equation

(13.16) y = Y (x, k, l) = k − 1

4k
(x− l)2.

From (13.9), the admissible extremal must satisfy both 4k(k − 1) =

(1− l)2 and 4k(k− 4) = (8− l)2, the second of which requires k ≥ 4.

Dividing the second equation by the first, we obtain

k = (3l−10)(l+6)
7(2l−9) =⇒ k − 4 = 3(8−l)2

7(2l−9) =⇒ l ≥ 9
2

and

4k(k − 1) = 12(l−1)2(3l−10)(l+6)
49(2l−9)2 .

Substituting this expression back into the first equation, we obtain

12(3l−10)(l+6) = 49(2l−9)2 or 160l2−1860l+4689 = 0. The root of

this quadratic equation that satisfies l ≥ 9
2 is l∗ = 3(155+7

√
65)/80 ≈

7.9288, and the corresponding value of k is k∗ = 49(5 +
√
65)/160 ≈

4.0003. So Γ∗ is embedded in the field of extremals {Γk} defined by

(13.17) y(x, k) = Y (x, k, l∗) = k − 1

4k
(x− l∗)2

for which

(13.18) yx(x, k) =
l∗ − x

2k
.

This field covers the whole of the plane with the exception of a branch

cut from (l∗,−∞) to (l∗, 0), which is the limit of (13.17) as k → 0;

however, in Figure 13.2 we have sketched it only for the region of

interest.1

On the extremal through the point (x, y) we have

(13.19) k = 1
2{y +

√
(x− l∗)2 + y2}

on solving (13.17) for k. Substituting into (13.18), we find that the

direction field is defined by

(13.20) ρ(x, y) = − x− l∗

y +
√
(x− l∗)2 + y2

1R defined in Lecture 12 may be any open region that contains the pentagon.
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Figure 13.2. Field of extremals covering region in which J [y]
is defined.

and satisfies |ρ| < 1 (because y > 0). For Weierstrass’s excess function

we obtain

(13.21) E(x, y, ρ, ω) =
(ω − ρ)2

√
y√

1− ρ2(1− ρω +
√
1− ρ2

√
1− ω2)

,

which is clearly nonnegative (given (13.10) and |ρ| < 1). We conclude

that J [y] is minimized—and hence that (13.8) is maximized—by

(13.22) φ(x) = y(x, k∗) = Y (x, k∗, l∗) = k∗ − 1

4k∗
(x− l∗)2.

So, on using (13.12) with (13.22), the maximum and minimum values

of (13.8) are

− J [Γ∗] =
1√
k∗

8∫
1

φ(x) dx =

8∫
1

{
1−

( l∗ − x

2k∗

)2}√
k∗ dx

= 7
√
k∗
{
1 − 3l∗2−27l∗+73

12k∗2

}
= 1

3

√
475 + 65

√
65 ≈ 10.536

and zero, respectively.

Γ∗ is also embedded in the one-parameter subfamily {Γl} of the

general solution (13.16), where Γl is defined by

(13.23) y(x, l) = Y (x, k∗, l) = k∗ − 1

4k∗
(x− l)2
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Figure 13.3. Constructing a semi-field with envelope y =
k∗ ≈ 4.0003.

with

(13.24) yx(x, l) =
l − x

2k∗
.

But this family of curves is not a field of extremals, because it covers

the half-plane where y < k∗ twice: through the point (x, y) there are

two extremals if y < k∗, but no extremals if y > k∗. The line y = k∗

separating these half-planes is tangent to every curve in the family,

touching Γl at the point (l, k∗) as illustrated by Figure 13.3(a). A

curve that touches every member of a one-parameter family of curves

is called its envelope; see Appendix 13 and Exercise 13.2.

Two issues now arise: {Γl} is not a field, and it does not cover

the entire plane. Concerning sufficiency, the first issue is dealt with

far more easily than the second, because we can arrange to cover the

half-plane y < k∗ precisely once by discarding the half of each Γl for

which x > l. We thus obtain a field of semi-extremals, or semi-field2

2See, e.g., Pars [47, p. 118].
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Figure 13.4. The semi-field fails to cover the pentagon.

for short. It is clear from Figure 13.3(b) that every (x, y) for which

y ≤ k∗ lies on one, and only one, semi-extremal.

In terms of exploiting Hilbert’s invariant integral to establish suf-

ficiency, there is no difference between a field and a semi-field, except

in the extent of the region R that is covered—to which trial curves are

restricted. Thus, by noting that Γ∗ is embedded in the semi-field, all

we can prove is that J [Γ∗] yields a lower value than J [Γ] for any curve

Γ that fails to enter the unshaded triangle in Figure 13.4. There is

essentially no way out of this bind—other than to embed Γ∗ in {Γk}
instead.

Appendix 13: The Equations of an Envelope

Let {Γc} denote a one-parameter family of curves with equation

(13.25) ψ(x, y, c) = 0,

and let Γc touch its envelope at the point with coordinates (g1(c), g2(c))

so that the parametric equations of the envelope are

(13.26) x = g1(c), y = g2(c).

Then the vector normal to Γc has direction ∂ψ/∂x i+∂ψ/∂y j, where

i and j are unit vectors in the directions of the x- and y-axes, respec-

tively; and the tangent vector to the envelope has direction

g′1(c)i+ g′2(c)j, where a prime denotes differentiation. Because these
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two vectors are perpendicular at the point (g1(c), g2(c)),

(13.27)
∂ψ

∂x
· g′1(c) +

∂ψ

∂y
· g′2(c) = 0.

But (g1(c), g2(c)) must lie on Γc, i.e., ψ(g1(c), g2(c), c) = 0. Differen-

tiating this equation with respect to c, we obtain

(13.28)
∂ψ

∂x
· g′1(c) +

∂ψ

∂y
· g′2(c) +

∂ψ

∂c
= 0,

implying ∂ψ/∂c = 0 at (g1(c), g2(c)). Hence all points on the envelope

must satisfy

(13.29) ψ = 0 =
∂ψ

∂c
.

By eliminating c between these equations, we obtain the equation of

the envelope.

Exercises 13

1. Verify that (4.26) is indeed the solution to the brachistochrone

problem in Lecture 1.

2. Verify that y = k∗ is the envelope of the one-parameter family

{Γl} defined by (13.23).

3. In Lecture 3 we remarked that a candidate for maximizer of

2∫
1

(1 + y′)2(1− y′)2 dx

subject to y(1) = 1 and y(2) = 1
2 is y = φ(x) = 1

2 (3− x). Is φ,

in fact, a maximizer?

4. Find an admissible extremal for the problem of minimizing

J [y] =

1∫
0

y2y′
2
dx

subject to y(0) = 0 and y(1) = 1, and show that it satisfies the

sufficient condition.
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5. Find an admissible extremal for the problem of minimizing

J [y] =

1∫
0

{y2 + y′
2
+ 2ye2x} dx

subject to y(0) = 1
3 and y(1) = 1

3e
2, and show that it satisfies

the sufficient condition.

6. Find an admissible extremal for the problem of minimizing

J [y] =

b∫
0

{y′2 + 2yy′ − 16y2} dx

subject to y(0) = 0 and y(b) = 0 with 0 < b < 1
4π, and show

that it satisfies the sufficient condition. Is there still a minimum

when b > 1
4π?

7. Show that y = 0 not only satisfies both the strengthened Le-

gendre condition and Weierstrass’s necessary condition for the

problem of minimizing

J [y] =

1∫
0

{y′2 − 4yy′
3
+ 2xy′

4} dx

subject to y(0) = 0 and y(1) = 0, but also can be embedded in

a field of extremals, yet fails to furnish a strong local minimum.

Endnote. For further exercises of this or a similar type, see Akhiezer

[1, pp. 89-90 and 237-238] or Elsgolc [13, p. 126].
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Jacobi’s Condition
Revisited

Let us now revisit the problem of minimizing

(14.1) J [y] =

2∫
0

√
y{1 + (y′)2} dx

subject to

(14.2) y(0) = 1, y(2) = 5

already considered in Lecture 8. We already know from (8.24) that

the general solution of the Euler-Lagrange equation is

(14.3) y = Y (x, k, l) =
(x− l)2

4k
+ k

and that there are two admissible extremals, namely, Γ1
∗ with equation

(14.4) y = φ1(x) = Y (x, k1∗, l
1
∗) = 1− 3x+ 5

2x
2

and Γ2
∗ with equation

(14.5) y = φ2(x) = Y (x, k2∗, l
2
∗) = 1 + x+ 1

2x
2,

where

(14.6) k1∗ = 1
10 , l1∗ = 3

5 , k2∗ = 1
2 , l2∗ = −1.
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Figure 14.1. Γ1
∗ = Γ3 and Γ2

∗ = Γ−1 embedded in {Γc}.

But we have since discovered how to embed extremals in a field. Ac-

cordingly, let us construct the pencil of extremals through (0, 1), to

which Γ1
∗ and Γ2

∗ unavoidably belong, by insisting upon y(0) = 1 and

(14.7) x �= 0

for y �= 1 (to exclude points through which y(0) = 1 prevents any

curve from passing). Now (14.3) yields l2

4k+k = 1 or (2k−1)2+l2 = 1.1

This equation is identically satisfied if we set 2k − 1 = cos(2ξ) and

l = sin(2ξ) or

(14.8) k = cos2(ξ), l = sin(2ξ).

So it is most convenient to use neither k nor l but rather

(14.9) c = tan(ξ)

as the parameter of the pencil, with c = 3 for Γ1
∗ and c = −1 for

Γ2
∗ by (14.6)-(14.9). Substituting from (14.8) into (14.3) and using

1Geometrically, (k, l) is now constrained to lie on an ellipse with center
(
1
2 , 0

)

whose minor axis has length 1 and whose major axis has length 2.
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Figure 14.2. Two semi-fields that cover the region R.

(14.9) to simplify, we find that the pencil becomes {Γc}, where Γc has

equation

(14.10) y = 1 − cx+ 1
4 (1 + c2)x2

by Exercise 14.1.

The pencil of extremals has an envelope, which touches Γc at the

point with coordinates

(14.11)
(
2
c ,

1
c2

)
,

and whose equation is readily found to be

(14.12) y = 1
4x

2

(Exercise 14.1). This envelope divides the plane into a lower re-

gion containing no points on any curve of the pencil and two upper

regions—separated, in view of (14.7), by x = 0—that the pencil cov-

ers twice, as illustrated by Figure 14.1. Let us denote the right-hand

upper region by R. Clearly, the pencil fails to constitute a field on

R. Nevertheless, we can construct a semi-field that covers R in two

different ways by the method introduced in Lecture 13. In Figure

14.2(a) the semi-field is constructed by selecting only extremals that

touch the envelope to the right of the y-axis (i.e., curves for which
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c > 0) and discarding the left-hand half of each extremal, i.e., all

points to the left of the contact point (14.11). In Figure 14.2(b) the

semi-field is constructed by instead discarding the right-hand half of

the same set of extremals (i.e., all points to the right of the contact

point) and combining them with the right-hand halves of those ex-

tremals which touch the envelope to the left of the y-axis (i.e., curves

for which c < 0). The corresponding direction fields have equations

(14.13)
dy

dx
= ρ(x, y) =

2y ±
√
4y − x2

x
,

where the positive sign corresponds to Figure 14.2(a) and the negative

sign to Figure 14.2(b); see Exercise 14.2. In either case, the slope of

any point on the envelope coincides with the slope of the particular

extremal making contact at that point; that is, even though R is an

open region and the envelope lies outside it, the slope of any point

on the envelope is still determined by the direction field, as is readily

confirmed by substituting (14.12) into (14.13).

We already know from Lecture 8 that Γ3 is not the minimizer

because it fails to satisfy Jacobi’s condition, but it is instructive to

understand geometrically why this is so. Accordingly, let P be the

point where Γ3 touches the envelope, and let Q be a point on the

envelope to the left of P as indicated in Figure 14.3. Then AP and

AQ are both arcs of an extremal; QP is not an arc of an extremal but,

as already remarked, it satisfies (14.13) at every point. Hence, using

J [QP ] to denote the integral of F (x, y, y′) =
√
y{1 + (y′)2} from Q

to P , we have

(14.14) J [QP ] = K[QP ]

by (12.9), where K denotes Hilbert’s invariant integral. But we also

have

(14.15) J [AQ] = K[AQ]

by (13.2): both AQ and AP are arcs of an extremal. So

(14.16) J [AQ] + J [QP ] = K[AQ] + K[QP ] = K[AP ]

because Hilbert’s integral is path-independent. But AP is an arc of

an extremal, implying that K[AP ] = J [AP ]. So (14.16) implies

(14.17) J [AQ] + J [QP ] = J [AP ]

                

                                                                                                               



14. Jacobi’s Condition Revisited 115

A

B

P

Q

�3

�1

x
0 2 4

y

0

2

4

6

Figure 14.3. A conjugate point P .

and hence that

(14.18) J [Γ3] = J [AP ] + J [PB] = J [AQ] + J [QP ] + J [PB]

implying that if Γ3 achieves the minimum, then the curve AQPB

must achieve it also. However, this is impossible, because the Euler-

Lagrange equation does not hold alongQP (which is not an extremal),

and the Euler-Lagrange equation is the most fundamental of all our

necessary conditions. We conclude that no minimizing arc can touch

the envelope between A and B. A point between A and B at which an

extremal touches the envelope is called a conjugate point (to A), and

so no minimizing arc can have a conjugate point—which is precisely

Jacobi’s condition, now recovered geometrically. It is straightforward

to verify from (14.4) and (14.12) that Γ3 touches the envelope where

x = 2
3 , and that this agrees with the result we obtained in Lecture 8;

see Figure 8.1.
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Figure 14.4. Γ∗ yields a strong but not a global minimum.

Because the problem is regular and Γ−1 is embedded in the field

sketched in Figure 14.2b, we know from (13.5) that Γ−1 yields a strong

minimum for J [Γ]: no other curve lying wholly in R can yield a lower

value than

(14.19) J [Γ−1] =

2∫
0

{φ2(x){1 + φ′
2(x)

2}} 1
2 dx = 16

3

√
2 ≈ 7.5425.

Nevertheless, R is not the whole plane, and a strong (local) minimum

need not be a global minimum: we still cannot rule out the possibility

that a lower value may be reached on a curve that does not lie entirely

in R. To illustrate this point, let us change the endpoints from (0, 1)

and (2, 5) to (0, α) and (2, β) but otherwise proceed as before. Then

in place of (14.10)-(14.12), we have

(14.20) y = α − cx +
1

4α
(1 + c2)x2
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for the equation of the pencil {Γc} through (0, α),

(14.21)
(2α

c
,
α

c2

)
for the point of contact with the envelope and

(14.22) y =
1

4α
x2

for the equation of the envelope itself (Exercise 14.3). Furthermore,

in place of (14.13) we have

(14.23)
dy

dx
= ρ(x, y) =

2y −
√
4αy − x2

x

for the direction field containing the extremal that has no conjugate

point, which we now denote by Γ∗; in place of (14.5) we have

(14.24) y = φ(x) = α − c∗ x +
1

4α
(1 + c∗

2)x2,

where

(14.25) c∗ = α−
√
αβ − 1

for the equation of Γ∗; and in place of (14.19) we have

J [Γ∗] =

2∫
0

√
φ(x){1 + φ′(x)2} dx

= 2

{
1 + c∗

2

3α
+ α− c∗

}√
1 + c∗2

α

(14.26)

for the minimum value over all comparison curves lying wholly within

R. We assume that B lies above the envelope, i.e.,

(14.27) αβ > 1.

Now, consider instead a piecewise-smooth comparison curve Γ

with equation

(14.28) y =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α− x

ε
if 0 ≤ x ≤ εα

0 if εα < x ≤ 2− εβ
x− 2

ε
+ β if 2− εβ < x ≤ 2
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that lies partly outside R, as illustrated by Figure 14.4 (in which R

is unshaded). From (14.1) and (14.28) we obtain

J [Γ] =

2∫
0

√
y{1 + (y′)2} dx

=

√
1 +

1

ε2

{ εα∫
0

√
α− x

ε
dx + 0 +

2∫
2−εβ

√
x− 2

ε
+ β dx

}

= 2
3 ε

{
α
√
α + β

√
β
}√

1 +
1

ε2
,

which yields a lower value than J [Γ∗] for sufficiently small α, β and

ε. Suppose, for example, that α = 1
2 , β = 3 and ε = 1

20 , as in Figure

14.4, so that c∗ = 1
2 (1 −

√
2) ≈ −0.2071 by (14.25). Then, from

(14.26),

(14.29) J [Γ∗] = 1
3 (7 +

√
2)

√
7
2 −

√
2 ≈ 4.05067,

whereas

(14.30) J [Γ] = 1
120

√
401(

√
2 + 12

√
3) ≈ 3.70443.

Exercises 14

1. Verify (14.10)-(14.12).

Hint: Use Appendix 13.

2. Verify that (14.13) defines the direction fields for the fields of

extremals over R in Figure 14.2.

3. Verify (14.20)-(14.22).

                

                                                                                                               



Lecture 15

Isoperimetrical
Problems

The classical—and eponymous—isoperimetrical problem is that of

finding the shape of a given length of string to enclose the largest

possible area. Let us somewhat modify the classical problem by sup-

posing that a piece of string of length L is attached to the points

(a, 0) and (b, 0) and must lie entirely in the region where y > 0, as

illustrated by Figure 15.1; we assume that L > b − a > 0. Then the

classical isoperimetrical problem becomes that of minimizing

(15.1) J [y] = −
b∫

a

y dx

xa b

y

0

Figure 15.1. The classical isoperimetrical problem.
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120 15. Isoperimetrical Problems

(the negative of the shaded area) subject to the boundary conditions

(15.2) y(a) = 0 = y(b)

and the constraint equation

(15.3)

L∫
0

1 ds =

b∫
a

√
1 + (y′)2 dx = L.

We begin, however, with the more general problem of minimizing

(15.4) J [y] =

b∫
a

F (x, y, y′) dx

subject to the boundary conditions

(15.5) y(a) = α, y(b) = β

and the constraint equation

(15.6) I[y] = L,

where

(15.7) I[y] =

b∫
a

G(x, y, y′) dx.

If I has a minimum value m, then we are obliged to assume that

(15.8) L > m.

For if L = m, then the problem is uninteresting; whereas if L < m,

then the problem has no solution. In the case of the classical problem,

for example, we assumed that L > b− a > 0.

As in Lecture 2, we seek a necessary condition for the admissible

curve Γ0 defined by y = φ(x) with

(15.9) φ(a) = α, φ(b) = β

and

(15.10)

b∫
a

G(x, φ(x), φ′(x)) dx = L

to minimize the functional J [y] defined by (15.4). That is, we assume

the existence of the minimizing function φ, and then we ask what
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properties φ must inevitably have by virtue of being the minimizer.

In Lecture 2 we compared J [φ] to J [y] for one-parameter trial curves

of the form yε(x) = φ(x) + εη(x) with η(a) = 0 = η(b) for arbitrary

η ∈ D1. Such a trial function in general fails to satisfy (15.6). In-

stead, therefore, we consider a family of two-parameter trial curves

Γε defined by

(15.11) y = yε(x) = φ(x) + ε1η1(x) + ε2η2(x),

where the subscript ε is now interpreted as a two-dimensional vector of

parameters (ε1, ε2). Both ε1 and ε2 may be either positive or negative,

and η1 and η2 are arbitrary admissible functions, i.e., ηi ∈ D1 with

(15.12) ηi(a) = 0 = ηi(b) for i = 1, 2.

Note that it remains consistent to use Γ0 for the minimizing curve

y = φ(x): we now interpret the subscript 0 as the two-dimensional

zero vector.

By assumption, ε = (0, 0) designates the minimizing function,

i.e.,

(15.13) J [Γ0] ≤ J [Γε]

subject to

(15.14) I[Γε] = L

for all admissible η; note that (15.13) is formally identical to (2.9),

but its interpretation is vectorized. As soon as a particular η1 and

η2 are chosen (from among the plenitude that arbitrariness of η1 and

η2 affords), J [Γε] becomes a standard bivariate function of ε1 and ε2.

We can therefore rewrite (15.13)-(15.14) as

(15.15a) J(0, 0) ≤ J(ε1, ε2)

subject to

(15.15b) I(ε1, ε2) = L,

where, on substituting from (15.11) into (15.4) and (15.7),

(15.16) J(ε1, ε2) =

b∫
a

F
(
x, φ(x) + ε1η1(x) + ε2η2(x), φ

′(x) + ε1η
′
1(x) + ε2η

′
2(x)

)
dx
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and

(15.17) I(ε1, ε2) =

b∫
a

F
(
x, φ(x) + ε1η1(x) + ε2η2(x), φ

′(x) + ε1η
′
1(x) + ε2η

′
2(x)

)
dx.

Because both ε1 and ε2 may be either positive or negative, (15.15) im-

plies that J(ε1, ε2) must have a constrained interior minimum where

ε1 = 0 = ε2. It follows at once from the ordinary calculus of bivariate

functions that provided

(15.18) Iε2(0, 0) �= 0

(where the subscript denotes partial differentiation), there must exist

a Lagrange multiplier λ such that

(15.19) Jε1(0, 0)− λIε1(0, 0) = 0 = Jε2(0, 0)− λIε2(0, 0);

see Appendix 15, in particular (15.33) and (15.40). Virtually identical

calculations to those yielding (2.17) now reveal that

(15.20a) Jεi(0, 0) =

b∫
a

{ηi Fφ + η′i Fφ′} dx

and

(15.20b) Iεi(0, 0) =

b∫
a

{ηi Gφ + η′i Gφ′} dx

for i = 1, 2. From (15.20b) and Lecture 2, (15.18) holds as long as

y = φ(x) does not also extremize I, which we assume. Substituting

from (15.20) into (15.19), we obtain

b∫
a

{η1 Fφ + η′1 Fφ′} dx− λ

b∫
a

{η1 Gφ + η′1 Gφ′} dx = 0,

b∫
a

{η2 Fφ + η′2 Fφ′} dx− λ

b∫
a

{η2 Gφ + η′2 Gφ′} dx = 0,
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and hence

(15.21)

b∫
a

{ηi (Fφ − λGφ) + η′i (Fφ′ − λGφ′)} dx = 0

for i = 1, 2 for arbitrary1 ηi ∈ D1. From Lecture 2, however, (15.21)

is simply the necessary condition for the first variation of

(15.22)

b∫
a

{F (x, y, y′)− λG(x, y, y′)} dx

to vanish for y = φ(x). So a necessary condition for Γ0 to minimize

J [y] subject to I[y] = L and y(a) = α, y(b) = β is that a Lagrange

multiplier λ exists such that y = φ(x) satisfies the Euler-Lagrange

equation, not for F but for

(15.23) Ψ(x, y, y′) = F (x, y, y′) − λG(x, y, y′).

Following Pars [47, pp. 165-167], we will refer to this necessary con-

dition as Euler’s rule.

In particular, for the classical isoperimetrical problem,2 it follows

from (15.1) and (15.3) that

(15.24) Ψ(x, y, y′) = −y − λ
√
1 + (y′)2

is independent of x. So, by (4.8), a first integral of the Euler-Lagrange

equation is

(15.25) y′
∂Ψ

∂y′
−Ψ =

λ√
1 + (y′)2

+ y = constant = l,

say. The usual substitution dy
dx = tan(θ) now reveals that the general

solution of the Euler-Lagrange equation is given by

(15.26) x = λ sin(θ) + k, y = l − λ cos(θ),

where k is another constant; these are the parametric equations of

the circle

(15.27) (x− k)2 + (y − l)2 = λ2

1Except, of course, that we assume (15.18).
2Sometimes called Dido’s problem; see, e.g., Leitmann [34, pp. 30-31].
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with center (k, l) and radius λ. To ensure that y is a function, we

assume that the center does not lie above the x-axis, i.e.,

(15.28) l ≤ 0.

We need three equations to determine the values of the unknown

constants k, l and λ. The first two equations are supplied by (15.2):

substituting into (15.27), we obtain (a−k)2+ l2 = λ2 = (b−k)2+ l2,

implying a− k = ±(b− k) and hence

(15.29) k = 1
2 (a+ b)

(because b > a). So the center of the circle lies on the perpendicular

bisector of the line joining the fixed endpoints of the string, and the

angle subtended by the string at the center is 2 arcsin
(
b−a
2λ

)
. The

third equation is (15.3), which now says that L must be the length

of an arc of a circle of radius λ subtending angle 2 arcsin
(
b−a
2λ

)
at the

center. Therefore

(15.30) 2λ arcsin
(b− a

2λ

)
= L,

which can be confirmed by substituting from (15.26) or (15.27) into

the left-hand side of (15.3) and evaluating the integral. Thus k, l and

λ are determined by (15.29), (15.30) and, in view of (15.28),

(15.31) l = −1
2

√
4λ2 − (b− a)2.

These two equations are somewhat messy to solve. Note, however,

that they do produce the expected semi-circle in the case where L =
1
2 (b− a)π. For then, writing ζ = b−a

2λ (which is positive, because λ is

the radius of the circle), we find that (15.30) reduces to arcsin(ζ) =
1
2πζ, whose only positive solution is ζ = 1. Hence λ = 1

2 (b−a) is half

the distance between the endpoints and l = 0 by (15.31), so that the

center of the circle lies on the x-axis.

Appendix 15: Constrained Optimization

Here we obtain a necessary condition for (x∗, y∗) to be an interior

minimizer of f(x, y), subject to the constraint that

(15.32) g(x, y) = C,
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where f and g are any smooth functions of two variables. Provided

that

(15.33) gy(x
∗, y∗) �= 0,

in the vicinity of (x∗, y∗), we can use the implicit function theorem

to solve (15.32) for y in terms of x yielding, say, y = ψ(x); that is,

y = ψ(x) is defined by

(15.34) g(x, ψ(x)) = C.

Here an ordinary function of a single variable equals a constant; if we

differentiate, then we are bound to get zero. So, by the chain rule,

(15.35)
∂g(x, ψ(x))

∂x
= gx + gy

dψ

dx
= 0.

But y = ψ(x) also makes f(x, y) a function of a single variable, whose

only candidates for minimizer are its critical points. Hence, again by

the chain rule, we require

(15.36)
∂f(x, ψ(x))

∂x
= fx + fy

dψ

dx
= 0.

Note that (15.35) holds everywhere, whereas (15.36) holds only at a

critical point; however, if we are going to minimize f , then at a critical

point is precisely where we need to be. Thus, from (15.35)-(15.36),

(15.37) fx + fy
dψ

dx
= gx + gy

dψ

dx
= 0

for any potential minimizer. Eliminating dψ
dx , we obtain

(15.38) fxgy − gxfy = 0,

where fx, fy, gx and gy are all evaluated at (x∗, y∗). Now

(15.39) λ =
fy
gy

is well defined by (15.33); moreover, fx − λgx = 0 by (15.38), and

fy − λgy = 0 by definition. Therefore, there must exist λ such that

(15.40) fx − λgx = 0 = fy − λgy

or∇f = λ∇g: at any potential minimizer, the gradient of f is parallel

to the gradient of g. The constant of proportionality λ is called a La-

grange multiplier. Note that (15.32) and (15.40) are three equations

for three unknowns, namely, x∗, y∗ and λ. Note also that λ, although
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“constant”, is different for different local extrema; or, if you prefer,

although λ is independent of (x, y), it still depends on (x∗, y∗).

Exercises 15

1. Verify (15.26).

2. Find an admissible extremal for the problem of minimizing

(a) J [y] =

2∫
0

y′
2
dx subject to

2∫
0

y dx = 8

with y(0) = 1, y(2) = 3 and for the problem of minimizing

(b) J [y] =

3∫
1

y′
2
dx subject to

3∫
1

y dx = 2

with y(1) = 2 and y(3) = 4.

3. Find all admissible extremals for the problem of minimizing

J [y] =

1∫
0

{y′2 + x2} dx subject to

1∫
0

y2 dx = 2

with y(0) = 0 = y(1).

4. Rotating a curve between (0, 1) and (1, 2) about the x-axis gen-

erates a surface of revolution. In Exercise 2.1 you found the ex-

tremal for the problem of minimizing the area of this surface, in

the absence of any constraints on the length of the curve. What

is the admissible extremal for minimizing the surface area if the

length of the curve is constrained to be L (>
√
2)? Verify that

the minimum over L agrees with the unconstrained minimum

obtained in Exercise 2.1.

Endnote. Further exercises of this type may be found in Arthurs [2,

pp. 54-55] and Troutman [60, pp. 89 and 140].

                

                                                                                                               



Lecture 16

Optimal Control
Problems

Not every time-minimization problem lends itself to treatment by the

calculus of variations as readily as the brachistrochrone problem. The

calculus of variations requires piecewise-smooth admissible functions;

whereas piecewise-continuous admissible functions arise naturally in

a variety of time-minimization and other control settings, yielding

problems that require the more recent developments of optimal con-

trol theory. Thus an essential difference between the calculus of varia-

tions and optimal control theory is that piecewise-smooth admissible

functions give way to piecewise-continuous admissible controls.

The prototypical optimal control problem in physics is to drive a

particle of mass m along the X-axis in the shortest possible time from

X = a to X = b under an applied force FA whose magnitude cannot

exceedK; this particle is usually assumed to start from rest. Newton’s

equation of motion yields md2X
dt2 = FA, where t denotes time. But if L

is a characteristic length scale (perhaps L = |b−a|), then, because FA

and hence K have the dimensions of mass × acceleration or mass

× length ÷ time
2, the quantity T =

√
mL/K must have the

dimensions of time. So we can make md2X
dt2 = FA dimensionless by

scaling X and t with respect to L and T , respectively; with X̂ = X/L,
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t̂ = t/T we obtain

(16.1)
mL

T 2

d2X̂

dt̂2
= FA or

d2X̂

dt̂2
=

FA

K
.

The equation is now completely dimensionless because the applied

force is scaled with respect to K on the right-hand side. It is conve-

nient to write u = FA/K, so that |FA| ≤ K becomes

(16.2) |u| ≤ 1.

Thus, on dropping the hats, our control problem is to choose u to

minimize the total time

(16.3) J = t1 − t0 =

t1∫
t0

1 dt

it takes a particle governed by

(16.4)
d2X

dt2
= u

and (16.2) to be transferred from its displacement X0 = X(t0) at

the initial time t0 to its displacement X1 = X(t1) at the final time

t1. Both initial and final velocity are usually taken to be zero. Note

that we distinguish initial and final displacements by a superscript,

as opposed to a subscript, for reasons that will shortly be apparent.

Note also that both X and u depend on time t. We write X(t) or

u(t) whenever we wish to stress this dependence, and at other times

it is simply understood.

With a view to later developments, however, it is preferable to

think of the particle as having a vector state x = (x1, x2) consisting

of its displacement x1 = X and its velocity x2 = Ẋ, where an overdot

denotes differentiation with respect to time. Then ẋ1 = Ẋ = x2 and

ẋ2 = Ẍ = u, so that the second-order ordinary differential equation

(16.4) may be rewritten as two first-order ODEs:

(16.5) ẋ1 = x2, ẋ2 = u.

Now our control problem is to choose u to minimize the total time

(16.3) it takes a particle governed by (16.5) and (16.2) to be trans-

ferred from its initial state x0 = (x0
1, x

0
2) to its final state x

1 = (x1
1, x

1
2).

We will refer to this prototype as Problem P.
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A prototypical optimal control problem in economics is to harvest

a fishery or other resource whose stock X(t) grows or decays from its

initial level X(T0) = X0 to its final level X(T1) = X1 according to

(16.6)
1

X

dX

dt
= r

{
1− X

K

}
−QE(t),

where on the left-hand side Ẋ/X is the per capita growth rate of

the stock; and on the right-hand side E denotes harvesting effort (in

terms of, e.g., number of fishing boats), Q denotes the “catchability”

(in essence, the rate at which a unit of effort converts into a unit

of stock reduction), r denotes the maximum per capita growth rate

(approached by an unharvested stock whose level is very low) and K

denotes the “carrying capacity“ (which the stock level cannot exceed,

and to which it eventually asymptotes in the absence of harvesting).

It is usually assumed that a manager desires to control effort satisfying

(16.7) 0 ≤ E(t) ≤ Emax

so as to maximize the “present value” of the resource, i.e., the net

discounted return from it, namely,

(16.8) J [E] =

T1∫
T0

e−Δt
(
p h− cE

)
dt,

where h is the harvest rate, p is the price per unit harvest, c is the

cost per unit time of a unit of effort and Δ is the discount rate.1 By

definition, the harvest rate is the difference between dX
dt in the absence

of and in the presence of harvesting, or h = QEX from (16.6). Hence,

from (16.8),

(16.9) J [E] =

T1∫
T0

e−Δt
(
pQX − c

)
E dt.

We can make this problem dimensionless by scaling time with respect

to r−1, stock level with respect to K (so that carrying capacity is

invariably 1) and effort with respect to Emax, i.e., by defining x =

1See Mesterton-Gibbons [44, pp. 104-107] for an elementary discussion of present
value and discounting.
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X/K, t̂ = r t and u = E/Emax. If we also define dimensionless

parameters δ, θ and q by

(16.10) δ =
Δ

r
, θ =

c

pQK
, q =

QEmax

r
,

then, because the multiplicative constant pQKEmax has no effect on

optimization, the problem becomes—on dropping the hat—that of

finding u ∈ [0, 1] to maximize

(16.11) J [u] =

t1∫
t0

e−δt(x− θ)u dt

subject to

(16.12) ẋ = x(1− x)− q u(t) x

with ti = r Ti and

(16.13) x(ti) = xi

for i = 0, 1. We will refer to this prototype as Problem E.2

Let us attempt to solve Problem E by the calculus of variations.

From (16.12) we obtain qu = 1−x− ẋ/x, which enables us to rewrite

(16.11) as

(16.14) J =
1

q

t1∫
t0

F (t, x, ẋ) dt,

where

(16.15) F (t, x, ẋ) = e−δt(x− θ)

{
1− x− ẋ

x

}
.

Thus Fx = e−δt{1−2x+θ−θẋ/x2}, Fẋ = e−δt{θ/x−1} and d
dt{Fẋ} =

e−δt{δ − δθ/x− θẋ/x2}. So the Euler-Lagrange equation reduces to

(16.16) 1− 2x+ θ = δ

{
1− θ

x

}
or x = x∗, where we define

(16.17) x∗ = 1
4

{
1 + θ − δ +

√
(1 + θ − δ)2 + 8δθ

}
= constant.

2Needless to say, we have hugely oversimplified the biological, economic and tech-
nological issues that surround the problem of optimal harvesting, but a discussion of
them would take us too far afield. For further details, see Clark [10].
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It is clear at once that no extremal satisfies the boundary conditions

(16.13), unless it just so happens to be true that x0 = x∗ = x1;

and that, I’m sure you’ll agree, is exceedingly unlikely. Furthermore,

there is no such thing as a broken extremal when extremals them-

selves are constant functions. Therefore, it appears that no solution

to Problem E exists—within the context of the calculus of variations.

As for Problem P, it is far from clear how one would even go about

attempting to recast it as a calculus-of-variations problem. Yet intu-

ition strongly suggests that both problems have a solution; and, in

fact, both solutions are readily established by ad hoc techniques.

We begin with Problem P. Suppose that the particle is initially to

the right of the origin, i.e., the initial state is x0 = (x0
1, 0) with x0

1 > 0.

Then clearly we must drive it to the left, and it will move away from its

initial location in the shortest time if we apply the maximum possible

acceleration towards the origin, namely, u = −1. On the other hand,

if we keep applying a negative force, then the particle will overshoot

the origin. There must come a time, say t = ts (for switching time),

at which we have to apply a positive force to slow the particle down,

and we will bring it to its final state x1 = (x1
1, x

1
2) = (0, 0) in the

shortest time if we apply the maximum possible acceleration away

from the origin, namely, u = 1. Thus intuition strongly suggests that

the optimal control has the form

(16.18) u =

{
−1 if t0 < t < ts

1 if ts < t < t1,

which is known in the literature as a bang-bang control—always at its

minimum or maximum, never an intermediate value. For simplicity

(and without essential loss of generality), let us assume that t0 = 0.

Then, from (16.5) and (16.18), for 0 < t < ts we have ẋ1 = x2 and

ẋ2 = −1 with x1(0) = x0
1 and x2(0) = 0, so that x1 = x0

1 − 1
2 t

2 and

x2 = −t; and for ts < t < t1 we have ẋ1 = x2 and ẋ2 = 1 with

x1(t1) = 0 and x2(t1) = 0, so that x1 = 1
2 (t− t1)

2 and x2 = t− t1.

Because x1 and x2 must both be continuous at t = ts, we require

x0
1 − 1

2 ts
2 = 1

2 (ts − t1)
2 and −ts = ts − t1 or ts = {x0

1}1/2 and

t1 = 2ts = 2{x0
1}1/2. Then x1(ts) = 1

2x
0
1. It thus appears that the

optimal control is u = −1 for x1 > 1
2x

0
1 but u = 1 for x1 < 1

2x
0
1. A

similar analysis for x0
1 < 0 yields u = 1 for x1 < 1

2x
0
1 but u = −1 for
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x1 > 1
2x

0
1 (and needless to say, if x0

1 = 0, then you are already there).

In other words, it appears that the optimal control for arbitrary x0
1 is

(16.19) u∗ = sgn(x0
1)
{
1
2 | x0

1 | − | x1 |
}

and that the minimum time to transfer the particle to the origin is

t1− t0 = 2{x0
1}1/2 from (16.3). This is indeed the correct solution, as

we shall confirm in due course.

Now for Problem E. We have already remarked that x0 = x∗ = x1

(where x∗ is defined by (16.17)) is exceedingly unlikely. If, however,

x∗ were indeed the initial and terminal stock level, then x = x∗ would

satisfy the boundary conditions and the Euler-Lagrange equation. So

intuition suggests that the optimal solution is to let the stock grow

(naturally) or decay (through maximum harvesting) as rapidly as

possible to reach the stock level x∗ at, say, t = ts, keep the stock

in a steady state x∗ for as long as possible—until, say, t = tc, then

once more let the stock grow or decay as rapidly as possible to reach

its prescribed terminal level at t = t1 (which is the constraint that

determines tc). The control that maintains the steady state is given

by ẋ = d
dt{x∗} = 0 or, on using (16.12), u = (1− x∗)/q = U∗, where

(16.20) U∗ = 1
4q

{
3− θ + δ −

√
(1 + θ − δ)2 + 8δθ

}
.

Thus—again taking t0 = 0, as for Problem P—we conjecture that

(16.21) u∗ =

⎧⎪⎪⎨
⎪⎪⎩
sgn(x0 − x∗) if 0 ≤ t < tc

U∗ if tc ≤ t ≤ ts

sgn(x∗ − x1) if ts < t ≤ t1.

It is straightforward to prove that this is indeed the optimal con-

trol by using a direct method, as in Lecture 3. On using (16.11) and

(16.14)-(16.15), we can write

J [u] =

∫ t1

0

{G(t, x) +H(t, x) ẋ} dt =

∫
Γ

G(x, t) dt+H(x, t) dx,

where

(16.22) G(t, x) = e−δt(x− θ)(1− x), H(t, x) = e−δt{θ/x− 1}

and Γ is the path from (0, x0) to (t1, x
1) in the t-x plane traced

out by the solution of (16.12). A typical such path is represented

by the curve ABEMD in Figure 16.1, where ASCD represents the
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A
B

C

D

E
MS

t
0 ts tc t1

x

0

x0

x�

x1
1

Figure 16.1. Using Green’s theorem to establish that u∗ is
the optimal control. Dots represent an unharvested popula-

tion increasing asymptotically towards its carrying capacity.

optimal trajectory. For the sake of definiteness, we have supposed

that min(x0, x1) > x∗, so that optimal control switches from u = 1 to

u = U∗ at t = ts and from u = U∗ to u = 0 at t = tc, in accordance

with (16.21). The difference in present value between the optimal

trajectory ASCD and the variation ABEMD is

J [u∗]− J [u]

=

∫
ASCD

G(x, t) dt+H(x, t) dx −
∫

ABEMD

G(x, t) dt+H(x, t) dx

=

∮
ASBA

Gdt+H dx −
∮

BEMB

Gdt+H dx +

∮
MCDM

Gdt+H dx

=

∫∫
Σ1

(
Ht −Gx

)
dt dx−

∫∫
Σ2

(
Ht −Gx

)
dt dx+

∫∫
Σ3

(
Ht −Gx

)
dt dx

by Green’s theorem, where Σ1 denotes the lighter shaded region on

the left of Figure 16.1, Σ2 denotes the darker shaded region and Σ3

denotes the lighter shaded region on the right. From (16.22), however,

(16.23) Ht −Gx = e−δt{δ(1− θ/x)− 1− θ + 2x},
which, by (16.16), is always positive when x > x∗ and negative when

x < x∗, because δ(1− θ/x)− 1− θ+2x is an increasing function of x

that vanishes where x = x∗. So, when u �= u∗, the above expression

for J [u∗]−J [u] consists of a positive term minus a negative term plus

a positive term. A variational path is allowed to go back and forth
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across x = x∗ as many times as it likes between S and C, but the ex-

pression for J [u∗]−J [u] remains a sum of positive contributions from

upper shaded regions minus negative contributions from lower ones;

moreover—and this is the crux—because 0 ≤ u ≤ 1, no admissible

variation from ASCD may lie either to the left of AS (which would

require u > 1) or to the right of CD (which would require u < 0).

The above analysis is readily modified to deal with either x0 < x∗ or

x1 < x∗. Therefore, we conclude that J [u∗] > J [u] for all u �= u∗,

and hence that u∗ achieves a proper global maximum.

The most striking feature about the optimal trajectory is that

it corresponds to a discontinuous control. Hence discontinuous func-

tions, which are inadmissible in the calculus of variations, are essential

in the theory of optimal control to guarantee the existence of a so-

lution. Similar remarks apply, of course, to Problem P. So we need

some new general theory, and to that we turn our attention next.

Exercises 16

1. Use a direct method to show that u∗(t) = 5t2 minimizes

J [u] =

1∫
0

u2 dt

subject to ẏ = t u with y(0) = 0 and y(1) = 1.

2. Show that u∗(t) = ln(
√
1 + t)/{1− ln(2)}2 minimizes

J [u] =

1∫
0

u2 dt

subject to ẏ = ln(1 + t) u with y(0) = 0 and y(1) = 1.

3. Suppose that the initial state in problem P is changed from

x0 = (x0
1, 0) with x0

1 > 0 to x0 = (0, x0
2) with x0

2 > 0, but that

the final state is still x1 = (0, 0). Thus a particle at rest at

the origin receives an impulse in the direction of the positive

y-axis and must be returned to rest at the origin in the shortest

possible time. Use ad hoc techniques to discover a candidate

for optimal control.

                

                                                                                                               



Lecture 17

Necessary Conditions
for Optimality

It is convenient at the outset to define index sets

(17.1) N+ = {1, 2, . . . , n}, N = N+ ∪ {0} = {0, 1, 2, . . . , n}

together with subsets U of �m and X of �n. Then a more general

control problem than either of those considered in Lecture 16 is to find

an m-dimensional vector of piecewise-continuous control functions

(17.2) u(t) = (u1(t), u2(t), . . . , um(t)) ∈ U ⊂ �m

to transfer an n-dimensional state vector

(17.3) x(t) = (x1(t), x2(t), . . . , xn(t)) ∈ X ⊂ �n

of piecewise-smooth functions from its initial state

(17.4) x(t0) = x0 = (x0
1, x

0
2, . . . , x

0
n) ∈ X

to its final state

(17.5) x(t1) = x1 = (x1
1, x

1
2, . . . , x

1
n) ∈ X

along a continuous trajectory in X satisfying

(17.6) ẋi = fi(x, u)

135
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for all i ∈ N+ in such a way as to minimize the cost functional

(17.7) J [u] =

t1∫
t0

f0(x, u) dt

where fi is a smooth function of all m + n arguments for every i ∈
N . Where necessary, we denote the vector (f0, f1, . . . , fn) of all such

functions by f . It can be shown that our smoothness assumptions

guarantee the existence of a unique continuous solution of the state

equations (17.6) satisfying x = x0 at t = t0 for any u ∈ U .1 Any such

control that is capable of transferring x from x0 at time t0 to x1 at

time t1 is said to be admissible. Among all such controls, we seek one

that is optimal in the sense of minimizing J . Thus an optimal control

must at least be admissible.

Although t0, x0 and x1 are fixed, in general t1 is unspecified.

There are two possibilities. Either we have the special case of these

more general circumstances in which t1 is, in fact, specified, as in

Problem E; or else, if t1 is not specified—and often it cannot be, e.g.,

in Problem P, where t1 is itself the quantity to be minimized—then

we determine t1 by invoking an appropriate terminality condition.

This terminality condition will turn out to be (17.26) below.2

By analogy with Lecture 2, let us assume the existence of an

optimal control with an associated optimal trajectory, and then ask

what properties the control must now invariably possess by virtue

of being optimal. We ultimately seek results that hold in general

for piecewise-continuous control functions. Nevertheless, whatever

these results are, they must at least apply to smooth and piecewise-

smooth control functions, which are subsets of those we regard as

admissible. So our strategy is as follows. We will first assume that

our control functions are differentiable and then proceed, by analogy

with Lecture 2, to obtain a set of necessary conditions. We will then

re-phrase those necessary conditions in a form that would apply even

to piecewise-continuous control functions. But then our necessary

1See, e.g., Pontryagin et al. [51, p. 12].
2Problem P is the special case of our more general control problem in which

m = 1, n = 2, U = [−1, 1] and X = �2 with f0 = 1, f1 = x2, f2 = u, x0 = (x0
1, 0),

and x1 = (0, 0). Problem E becomes the special case in which m = 1, n = 2, U = [0, 1]

and X = [0,K]× [t0, t1] with f0 = e−δx2 (x1 − θ)u1, f1 = x1(1− x1)− qu1x1, f2 = 1,

x0 = (x0
1, t0), and x1 = (x1

1, t1).
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conditions will merely be a conjecture, and so we will ultimately have

to re-establish them by an entirely different approach.

Accordingly, let u∗ = u∗(t) be the optimal control and let x∗ =

x∗(t) be the associated optimal trajectory. Because u∗ is admissible,

we must of course have

(17.8) x∗(t1) = x1.

Let u∗ be perturbed to another admissible control u(t) = u∗(t) +

δu(t), where ‖δu(t)‖ is infinitesimally small; and let the associated

trajectory be x(t) = x∗(t)+δx(t), where ‖δx(t)‖ is also infinitesimally

small, because x depends continuously on u, through f . That is,

(17.9) xi(t) = x∗
i (t) + δxi(t)

for all i ∈ N+. Because u is also admissible, x must also reach the

target state x1. Because the final time is unspecified, however, there

is absolutely no reason for x to reach the target at the same time t1
as x∗. Rather, it will reach the target at the infinitesimally earlier or

later time t1 + δt, where |δt| is also small. Thus, on using (17.9),

(17.10) xi(t1 + δt) = x∗
i (t1 + δt) + δxi(t1 + δt) = x1

i

for all i ∈ N+. By Taylor’s theorem we have

(17.11) x∗
i (t1 + δt) = x∗

i (t1) + ẋ∗
i (t1) δt+ o(δt),

where o(δt) stands for terms so small that o(δt)/δt → 0 as δt → 0

(p. 52) and

(17.12) δxi(t1 + δt) = δxi(t1) + o(δt)

for all i ∈ N+ (because δxi is already an infinitesimal). Substituting

into (17.10) and using (17.8), we obtain

(17.13) δxi(t1) = −ẋ∗
i (t1) δt+ o(δt)

for all i ∈ N+. Now, from the state equations (17.6) we have ẋi(t) =

fi(x(t), u(t)) for all i ∈ N+ and hence ẋ∗
i (t) = fi(x

∗(t), u∗(t)) in

particular. The right-hand side of the last equation is rather cumber-

some. Let us therefore agree to use the convenient shorthands

(17.14) fi = fi(x
∗(t), u∗(t))

and

(17.15) fi(t1) = fi(x
∗(t1), u

∗(t1)).
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Then (17.13) becomes

(17.16) δxi(t1) = −fi(t1) δt+ o(δt)

and, from (17.7), the concomitant change in J is

ΔJ = J [u]− J [u∗]

=

t1+δt∫
t0

f0(x
∗ + δx, u∗ + δu) dt−

t1∫
t0

f0(x
∗, u∗) dt

=

t1∫
t0

{f0(x∗ + δx, u∗ + δu)− f0(x
∗, u∗)} dt

+

t1+δt∫
t1

f0(x
∗ + δx, u∗ + δu) dt

=

t1∫
t0

{ n∑
i=1

∂f0
∂xi

δxi +
m∑
i=1

∂f0
∂ui

δui

}
dt+ f0(t1) δt+ o(δt),

where the partial derivatives in the integrand are all evaluated on the

optimal trajectory (and δu, δx are not independent, being linked by

the state equations).

Consider now the n auxiliary integrals Λ1, Λ2, . . . , Λn defined by

(17.17) Λi[u] =

t1∫
t0

λi(t){ẋi − fi(x, u)} dt

for i ∈ N+, where λ1, λ2, . . . , λn are arbitrary functions that remain

to be determined. On the one hand, it is clear from (17.6) that all

of these integrals are identically zero. On the other hand, when u∗ is

perturbed to u(t) = u∗(t) + δu(t), the concomitant change in Λi is

ΔΛi = Λi[u]− Λi[u
∗]

=

t1∫
t0

λi(t)

{
−

n∑
k=1

∂fi
∂xk

δxk −
m∑

k=1

∂fi
∂uk

δuk +
d

dt
(δxi)

}
dt+ o(δt)
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by a calculation that parallels the one for ΔJ above. But, integrating

by parts,

t1∫
t0

λi(t)
d

dt
(δxi) dt = λi(t)δxi

∣∣t1
t0
−

t1∫
t0

λ̇i δxi dt

= −λi(t1)fi(t1) δt−
t1∫

t0

λ̇i δxi dt+ o(δt)

by (17.16), and because δxi(t0) = 0 (the initial state of all trajectories

being the same). So

ΔΛi = −
t1∫

t0

λi(t)

{ n∑
k=1

∂fi
∂xk

δxk +
m∑

k=1

∂fi
∂uk

δuk

}
dt

− λi(t1)fi(t1) δt−
t1∫

t0

λ̇i δxi dt+ o(δt)

for i = 1, . . . , n or, equivalently,

ΔΛk = −
t1∫

t0

λk(t)

{ n∑
i=1

∂fk
∂xi

δxi +
m∑
i=1

∂fk
∂ui

δui

}
dt

− λk(t1)fk(t1) δt−
t1∫

t0

λ̇k δxk dt+ o(δt)

for k = 1, . . . , n so that

ΔJ +
n∑

k=1

ΔΛk =
n∑

i=1

t1∫
t0

{
∂f0
∂xi

−
n∑

k=1

λk(t)
∂fk
∂xi

− λ̇i

}
δxi dt

+

m∑
i=1

t1∫
t0

{
∂f0
∂ui

−
n∑

k=1

λk(t)
∂fk
∂ui

}
δui dt

+

{
f0(t1)−

n∑
k=1

λk(t1)fk(t1)

}
δt+ o(δt)

(17.18)
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after rewriting
∑n

k=1

∫ t1
t0

λ̇k δxk dt as
∑n

i=1

∫ t1
t0

λ̇i δxi dt and otherwise

rearranging the order of terms. Let us define the Hamiltonian by

(17.19) H(λ, x, u) =

n∑
k=1

λkfk(x, u)− f0(x, u).

Then (17.18) becomes

ΔJ +
n∑

k=1

ΔΛk = −
n∑

i=1

t1∫
t0

{
∂H

∂xi
+ λ̇i

}
δxi dt

−
m∑
i=1

t1∫
t0

{
∂H

∂ui

}
δui dt−H(t1) δt+ o(δt),

where H(t1) means H(λ(t1), x
∗(t1), u

∗(t1)) by analogy with (17.15),

and all partial derivatives are evaluated on the optimal trajectory—

which means, in effect, that ∂H/∂xi is a known function of t for

all i ∈ N+. But λ1, . . . , λn are arbitrary functions, entirely at our

disposal; therefore, we can choose them to satisfy

(17.20)
∂H

∂xi
+ λ̇i = 0

all i ∈ N+. Usually, these equations are called the co-state equations

(and λ1, . . . , λn are called the co-state variables). Now

(17.21) ΔJ +
n∑

k=1

ΔΛk = −
m∑
i=1

t1∫
t0

{
∂H

∂ui

}
δui dt−H(t1) δt+ o(δt).

But Λk = 0 is constant for all k ∈ N+, and so

(17.22) ΔJ ≥ 0 =⇒ ΔJ +

n∑
k=1

ΔΛk ≥ 0

for all admissible variations, regardless of whether δt or δui is positive

or negative. Hence, from (17.21),

(17.23)

m∑
i=1

t1∫
t0

{
∂H

∂ui

}
δui dt+H(t1) δt+ o(δt) ≤ 0,
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regardless of whether δt or δui is positive or negative. This result can

hold in the limit as δt → 0 only if

(17.24)
m∑
i=1

t1∫
t0

{
∂H

∂ui

}
δui dt+H(t1) δt = 0

for all admissible variations. But δu1, δu2, . . . , δum and δt are inde-

pendent; in particular, we can choose to perturb only the ith com-

ponent of the control vector (δui �= 0, δuk = 0 for k �= i) in such a

way that the perturbed control still transfers the state to x1 at time

t1 (δt = 0). It follows from (17.24) that

(17.25)
∂H

∂ui
= 0

for all i ∈ N+. But now (17.24) reduces to H(t1) δt = 0, even for

perturbed trajectories that reach x1 at a slightly earlier or later time

than t1 (δt �= 0). Hence either δt = 0, if t1 is specified, or

(17.26) H(t1) = 0,

if t1 is not specified. In fact, it turns out that H = 0 for all t ∈ [0, t1]

if t1 is not specified: see p. 142 and the appendix to Lecture 21.

From (17.25), if u∗ minimizes J , then H is extremized with re-

spect to u at every point of an optimal trajectory; and this extremum

turns out to be a maximum.3 But the statement that u∗ achieves

a maximum for H does not require u to be differentiable: it applies

just as well to piecewise-continuous control functions—provided, of

course, that it’s true. We can therefore state the following conjecture

(whose proof we will sketch in Lecture 21):

Pontryagin’s Maximum Principle. Let u = u∗ be an admissible

control. Let x = x∗ be the corresponding trajectory, i.e., solution of

(17.27) ẋi = fi(x, u), i ∈ N

(the state equations) that transfers x from x0 to x1 = x(t1) at the

unspecified time t1. Then, for u∗ to minimize J = x0(t1) defined by

3Strictly speaking, only by convention. That is, by convention, Pontryagin’s
principle is a maximum principle. We could equally well insist upon λ0 ≥ 0 in (ii) on
p. 142 and take λ0 = 1 in (17.32) instead—but that would yield a minimum principle,
in violation of the convention.
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(17.7), there must exist both a nonzero vector λ = (λ0, λ1, λ2, . . . , λn)

satisfying

(17.28) λ̇i = −∂H

∂xi
, i ∈ N

(the co-state equations) and a scalar function

(17.29) H(λ, x, u) =
n∑

k=0

λkfk(x, u)

(the Hamiltonian) such that

(i) For every t ∈ [t0, t1], H attains its maximum with

respect to u at u = u∗(t);

(ii) H(λ, x∗, u∗) = 0 and λ0 ≤ 0 at t = t1, where λ is the

solution of (17.28) for u = u∗;

(iii) Furthermore, H(λ(t), x∗(t), u∗(t)) = constant and

λ0(t) = constant, so that H = 0 and λ0 ≤ 0 at

every point of an optimal trajectory.

Note that the state equations can now be rewritten in the form

(17.30) ẋi =
∂H

∂λi
, i ∈ N.

Here four remarks are in order. First, in stating Pontryagin’s

principle, we augment the state vector to include a zeroth component

(17.31) x0(t) =

t∫
t0

f0(x, u) dt

that measures “cost so far”—the cost at time t along a trajectory, the

initial cost being x0(t0) = 0 and the final cost x0(t1) = J . Second,

because the co-state equations have the form λ̇ = Aλ, where A is

a square matrix, i.e., because the co-state equations are linear and

homogeneous, if λ is a solution, then so is cλ for any nonzero constant

c. Therefore—provided λ0 is nonzero, which we assume4—we can

choose any nonpositive value for λ0 without loss of generality, and it

is conventional to choose

(17.32) λ0 = −1

4But see the footnote on p. 177.
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as already implicit in (17.19). Third, in cases where the final time is

specified, no admissible perturbed trajectory can reach x1 at a slightly

earlier or later time than t1, and so (17.26) no longer holds. Then

(ii)-(iii) become

(ii) λ0 ≤ 0 at t = t1, where λ is the solution of (17.28) for

u = u∗;

(iii) Furthermore, H(λ(t), x∗(t), u∗(t)) = constant and

λ0(t) = constant, so that H = H(λ(t1), x
∗(t1), u

∗(t1))

and λ0 ≤ 0 at every point of an optimal trajectory

instead. Fourth, it is convenient to use the symbol λ both for the

vector (λ0, λ1, λ2, . . . , λn) in �n+1 whose first component is always

−1, and for its last n components (λ1, λ2, . . . , λn), a vector in �n. It is

always obvious from context which meaning is intended—henceforth

invariably the latter, except for part of Lecture 21.

Newly equipped with Pontryagin’s principle, let us now revisit

Problem P. From Lecture 16, we must find the control u ∈ [−1, 1]

that minimizes the time

(17.33) J =

t1∫
0

1 dt

taken to transfer x = {x1, x2} from x(0) = {a, 0} to x(t1) = {0, 0}
according to

(17.34) ẋ1 = x2, ẋ2 = u.

From (17.29), (17.32) and (17.33)-(17.34), the Hamiltonian is

H(λ, x, u) = −f0(x, u) + λ1f1(x, u) + λ2f2(x, u)

= −1 + λ1x2 + λ2u,
(17.35)

which is maximized by u = 1 if λ2 > 0 but by u = −1 if λ2 < 0. In

other words,

(17.36) u∗ = sgn(λ2).

Should we not also consider the possibility that λ2 is identically zero

(denoted by λ2 ≡ 0), i.e., that there exist times tr and ts such that

(17.37) λ2 = 0 for all t ∈ [tr, ts]
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(with tr < ts)? In general, we should.5 Moreover, if (17.37) does hold,

then Pontryagin’s principle yields no information about the optimal

control on [tr, ts], because H is then independent of u over the entire

subdomain: control is said to be singular. For Problem P, however,

we can readily show that the possibility of singular control does not

arise; in other words, control must be “bang-bang” (p. 131). From

(17.28) and (17.35), the co-state equations for λ1 and λ2 are λ̇1 =

−∂H/∂x1 = 0 and λ̇2 = −∂H/∂x2 = −λ1, implying λ1 = K and

λ2 = L − Kt, where K and L are constants. Thus λ2 is linear:

it is either constant or strictly monotonic. The only way to have

λ2 ≡ 0 would be to choose K = 0 = L, but then (17.35) would imply

H = −1, contradicting H = 0. Thus (17.36) is indeed correct, but

only because the final time for Problem P is unspecified. Moreover,

the optimal control is bang-bang only because the state equations are

linear with respect to the control, as illustrated by Exercise 17.2.

Furthermore, because λ2, being linear, has at most one isolated

zero, there is at most one switch of control, either from u∗ = 1 to

u∗ = −1 or from u∗ = −1 to u∗ = 1. Let such a switch occur at time

ts (that is, if K �= 0, then ts = L/K). Then because u∗ is constant

on both [0, ts] and [ts, t1], on either subdomain (17.34) implies that

(17.38)
d

dx1

{
1
2 x2

2
}

= x2
dx2

dx1
= x2

ẋ2

ẋ1
= x2

u∗

x2
= u∗

is constant, and hence that

(17.39) x2
2 = 2u∗x1 + constant.

The optimal trajectory therefore consists of a concatenation of par-

abolic arcs from two different phase-planes.6 We will refer to one of

these phase-planes as the positive x1-x2 phase-plane if u∗ = 1 and

the negative x1-x2 phase-plane if u∗ = −1. From (17.39), the posi-

tive phase-plane is covered by the family of parabolas with equation

x2
2 = 2x1 + constant (Figure 17.1(a)), whereas the negative one is

covered by the family with equation x2
2 = −2x1 + constant (Fig-

ure 17.1(b)). Because ẋ1 has the sign of x2 or, equivalently, because

ẋ2 has the sign of u∗, all trajectories are traversed to the right in

5As Exercise 19.1 will illustrate.
6See Mesterton-Gibbons [44, pp. 46-56] for an elementary discussion of phase-

plane analysis.
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Figure 17.1. Locating the optimal trajectory in the x1-x2

phase plane.

the upper half-plane and to the left in the lower half-plane, crossing

the x1-axis vertically; equivalently, positive trajectories are traversed

upwards, negative trajectories downwards. Let Γ+ denote the only

positive trajectory through the origin, let Γ− denote the only nega-

tive trajectory through the origin and let Γ denote Γ+ ∪ Γ− (Figure

17.1(c)). A few moments’ inspection of Figure 17.1 now reveals that

if x0 lies above Γ, then the only way to reach the origin is to follow the

negative trajectory through x0 until it intersects Γ+ and then follow

Γ+ to the origin; whereas if x0 lies below Γ, then the only way to

reach the origin is to follow the positive trajectory through x0 until it
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intersects Γ− and then follow Γ− to the origin. Thus for any x0 ∈ �2,

there is a unique admissible control that satisfies Pontryagin’s neces-

sary conditions; therefore, this control must be optimal (assuming an

optimal control exists). In other words, the optimal control is

(17.40) u∗ =

{
−1 above Γ and on Γ−

1 below Γ and on Γ+

for any x ∈ �2. The optimal trajectory for Problem P is sketched in

Figure 17.1(d) for both positive and negative a.

A control law like (17.40) or (16.19) is said to be in feedback form

because it is defined as a function of the current state, and therefore

only indirectly as a function of the time: when defined explicitly as

a function of time, the control is said to be open-loop instead. For

example, with x0 = (a, 0), we already know from p. 131 that the

optimal open-loop control is

(17.41) u∗ =

{
− sgn(a) for 0 < t <

√
|a|

sgn(a) for
√
|a| < t < 2

√
|a|.

For Problem P this is, strictly speaking, the only initial condition

we need to consider. As a bonus, however, we have been able to

synthesize the optimal control for any other x0 ∈ �2 as well.

Appendix 17: The Calculus of Variations
Revisited

Recall from Lecture 2 that the fundamental problem of the calculus

of variations is to minimize

(17.42) J =

t1∫
t0

F (t, x, ẋ) dt

subject to x(t0) = α and x(t1) = β. We turn this into an optimal

control problem by writing ẋ = u (thus regarding ẋ as the control),

x = x1 and t = x2 so that n = 2, m = 1, f0(x, u) = F (x2, x1, u), the

state equations are

(17.43) ẋ1 = u, ẋ2 = 1,
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the Hamiltonian is

(17.44) H = −F (x2, x1, u) + λ1 u+ λ2,

and the co-state equations are

(17.45) λ̇1 = − ∂H

∂x1
=

∂F

∂x1
, λ̇2 = − ∂H

∂x2
=

∂F

∂x2
.

Because there are no constraints on u, maximizing H means

(17.46)
∂H

∂u
= −∂F

∂u
+ λ1 = 0

with

(17.47)
∂2H

∂u2
= −∂2F

∂u2
≤ 0.

From (17.43) and (17.45)-(17.46) we now readily deduce that

(17.48)
d

dt

{∂F

∂ẋ

}
=

d

dt

{ ∂F

∂ẋ1

}
=

d

dt

{∂F

∂u

}
= λ̇1 =

∂F

∂x1
=

∂F

∂x
,

the Euler-Lagrange equation. It holds wherever u = ẋ is continuous,

that is, between corners. From (17.47) with u = ẋ we recover

(17.49) Fẋẋ ≥ 0,

which is Legendre’s condition. Because the co-state variables are

continuous even where u is discontinuous, it follows from (17.46) with

u = ẋ that ∂F/∂ẋ must be continuous even where ẋ is discontinuous,

which is the first Weierstrass-Erdmann corner condition. Because H

is constant and therefore continuous, and because λ2 is continuous,

it follows from (17.44) and (17.46) with u = ẋ that

(17.50) H − λ2 = λ1 u− F = uFu − F = ẋFẋ − F

must be continuous even where ẋ is discontinuous, which is the second

Weierstrass-Erdmann corner condition.

Finally, if there is an isoperimetric constraint of the form

(17.51)

t1∫
t0

G(t, x, ẋ) dt = L,

then we convert it to an endpoint condition by supplementing x1 = x

and x2 = t with a third state variable x3 satisfying

(17.52) ẋ3 = G(x2, x1, u)
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with x3(t0) = 0 and x3(t1) = L. The Hamiltonian is now

(17.53) H = −F (x2, x1, u) + λ1 u+ λ2 + λ3G(x2, x1, u).

The co-state equations are

λ̇1 = − ∂H

∂x1
=

∂F

∂x1
− λ3

∂G

∂x1
, λ̇2 = − ∂H

∂x2
=

∂F

∂x2
− λ3

∂G

∂x2
(17.54)

and λ̇3 = −∂H/∂x3 = 0, so that λ3 is a constant. In place of (17.46)

we have

(17.55)
∂H

∂u
= −∂F

∂u
+ λ1 + λ3

∂G

∂u
= 0

or λ1 = Fu − λ3Gu. Substituting into the first co-state equation and

rewriting x1 and u as x and ẋ, respectively, now yields

(17.56)
d

dt
{Fẋ − λ3Gẋ} = Fx − λ3Gx,

which is the Euler-Lagrange equation for Ψ = F − λ3G, in perfect

agreement with Lecture 15. We have thus recovered Euler’s rule.

Exercises 17

1. Use optimal control theory to show that the shortest path be-

tween any two points in a plane is a straight line.

2. The state x of a one-dimensional system is controlled by u ∈
[−1, 1] according to ẋ = αu− βu2 + γx, where 0 < α < 2β and

γ > 0. It is desired to transfer x from x(0) = x0 to x(t1) = 0

in the least amount of time. What are the optimal control and

the associated minimum time if

(a) − 1
4α

2β−1γ−1 < x0 < 0,

(b) 0 < x0 < (α+ β)/γ,

(c) x0 ≤ − 1
4α

2β−1γ−1 or x0 ≥ (α+ β)/γ?

Verify in particular that H is a constant—whose value will be

zero—along any optimal trajectory.

Endnote. When n = 1 or m = 1, it is usually most convenient to

denote the (now scalar) state or control by x or u in place of x1 or

u1, as in Exercise 17.2. For further exercises with a single control and

state variable, see Hocking [22, p. 98] or Pinch [50, p. 82].

                

                                                                                                               



Lecture 18

Time-Optimal Control

An important class of optimal control problems concerns time-optimal

control of a linear system: the state equations are linear in x, and the

cost is the time it takes to transfer x from x0 to its final target, which

we assume to be the origin. Problem P is of this type. A more

general problem with m = 1 and n = 2 is that of finding a piecewise-

continuous scalar u ∈ [−1, 1] to transfer x = (x1, x2) satisfying

ẋ1 = a11x1 + a12x2 + b1u,

ẋ2 = a21x1 + a22x2 + b2u
(18.1a)

or, in matrix notation,

(18.1b) ẋ = Ax+ bu

with x =
[
x1 x2

]T
, A =

[
a11 a12
a21 a22

]
and b =

[
b1 b2

]T
, from x0 to 0

(the two-dimensional zero vector) in such a way as to minimize

(18.2) J =

t1∫
0

1 dt = t1.

For example, a system of type (18.1) would arise (with a11 = 0 = b1
and a12 = 1 = b2) if we modified Problem P to include a damping

force. An even more general problem would have state equations of

the form ẋ = Ax+ Bu, where B is an m ×m matrix, A is an n × n

matrix and u is anm-dimensional control. But our purpose here is not

149
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to deal with the most inclusive case. Rather, it is to explore the range

of possible behavior to develop as much insight as possible without

getting bogged down in tiresome arithmetical details, and for that

purpose (18.1) will suffice. Then from Lecture 17 the Hamiltonian is

(18.3) H = −1 + (a11x1 + a12x2)λ1 + (a21x1 + a22x2)λ2 + σu,

where

(18.4) σ(t) = b1λ1(t) + b2λ2(t)

defines the switching function; and the co-state equations yield

λ̇1 = − ∂H

∂x1
= −a11λ1 − a21λ2,

λ̇2 = − ∂H

∂x2
= −a12λ1 − a22λ2

(18.5a)

or, in matrix notation,

(18.5b) λ̇ = −ATλ

with λ =
[
λ1 λ2

]T
.

To begin with, let us assume that the matrix A in (18.1b) has

two distinct, nonzero real eigenvalues, say r1 and r2.
1 Then AT also

has eigenvalues r1 and r2, implying that the solutions of λ̇ = −ATλ

are linear combinations of er1t and er2t, and hence from (18.4) that

σ is a linear combination of er1t and er2t, say

(18.6) σ(t) = k1e
r1t + k2e

r2t.

It follows that σ can vanish at most once, at time

(18.7) ts =
1

r2 − r1
ln
(
−k1
k2

)
(and only if k1 and k2 have opposite signs). It also now follows directly

from Pontryagin’s principle that

(18.8) u∗(t) = sgn(σ(t))

1We explore cases where the eigenvalues are complex or one eigenvalue is zero
(i.e., det(A) = 0) later and in the exercises. Note that there is no equilibrium point
when det(A) = 0, but in that case one can just proceed ad hoc; see Exercise 18.6.
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Figure 18.1. Phase-planes containing potentially optimal arcs.

is piecewise-constant, with at most one switch of control. Thus, from

(18.1a) and (18.8) the governing equations for a potentially optimal

arc are either

ẋ1 = a11x1 + a12x2 + b1,

ẋ2 = a21x1 + a22x2 + b2
(18.9)

(u∗ = 1) with an equilibrium point P+ at

(18.10) (x1, x2) =
(a12b2 − a22b1

det(A)
,
a21b1 − a11b2

det(A)

)
,

provided that det(A) �= 0; or

ẋ1 = a11x1 + a12x2 − b1,

ẋ2 = a21x1 + a22x2 − b2
(18.11)

(u∗ = −1) with an equilibrium point P− at

(18.12) (x1, x2) =
(a22b1 − a12b2

det(A)
,
a11b2 − a21b1

det(A)

)
,

again if det(A) �= 0. The eigenvalues of A determine the nature of

these equilibrium points and hence the pattern of phase-plane trajec-

tories, which we describe as positive or negative according to whether

they arise as solutions of (18.9) or (18.11), respectively.
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Suppose, for example, that the governing state equations are

ẋ1 = −4x1 + 2x2 + 2u,

ẋ2 = 3x1 − 3x2,
(18.13)

so that a11 = −4, a12 = 2, a21 = 3, a22 = −3, b1 = 2, and b2 = 0.

Then A = [−4 2
3 −3 ] has eigenvalues r1 = −6 and r2 = −1. Hence, using

(18.10) and (18.12), the positive phase-plane has a stable node P+

where x1 = 1 = x2; whereas the negative phase-plane has a stable

node P− where x1 = −1 = x2. These phase-planes of potentially

optimal arcs are sketched in Figure 18.1.2 Only a single positive

trajectory and only a single negative trajectory go through the origin;

the final approach must therefore be along an arc of one or the other.

Let Γ+ denote the arc of the positive trajectory that extends from

infinity to the origin, let Γ− denote the arc of the negative trajectory

that extends from infinity to the origin, and let Γ = Γ+ ∪ Γ−. The

curve Γ, known as the switching curve, is shown dashed in Figure

18.1, and it divides the phase-plane neatly in two. Observe that any

negative trajectory that starts above the curve Γ and passes through a

point to the right of the x2-axis must cross it above the origin. Hence,

any negative trajectory starting above the curve Γ must intersect Γ+;

all such trajectories are attracted to the stable node at P−. Likewise,

any positive trajectory starting below the curve Γ must intersect Γ−;

all such trajectories are attracted to the stable node at P+. A few

moments’ thought now reveals that, for any x0 ∈ �2, there is a unique

trajectory satisfying Pontryagin’s principle that transfers x to the

origin, and that the optimal control must therefore be

(18.14) u∗ =

{
−1 above Γ and on Γ−

1 below Γ and on Γ+.

As remarked on p. 146, this control is in feedback form because it is

defined in terms of the current state (as made explicit by Exercise

18.1). Some optimal trajectories are sketched in Figure 18.2.

Not every linear dynamical system, however, is as controllable

as the one we have just discussed. Suppose, for example, that the

2Note that four of the trajectories attracted to P± form a pair of straight lines on
which the vectors x and ẋ are inevitably aligned. So their directions are determined by

the eigenvectors of A, here [−1 1 ]T and [ 2 3 ]T. It is similar for trajectories emanating

from P± in Figure 18.3, where the eigenvectors are [ 1 1 ]T and [−2 3 ]T.
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governing state equations are changed to

ẋ1 = 4x1 + 2x2 + 2u,

ẋ2 = 3x1 + 3x2,
(18.15)

so that a11 = 4, a12 = 2, a21 = 3, a22 = 3, b1 = 2, and b2 =

0. Then A = [ 4 2
3 3 ] has eigenvalues r1 = 1 and r2 = 6. Hence,

using (18.10) and (18.12), the positive phase-plane has an unstable

node P+ where x1 = −1 and x2 = 1; whereas the negative phase-

plane has an unstable node P− where x1 = 1 and x2 = −1. These

phase-planes of potentially optimal arcs are sketched in Figure 18.3.

Again, only a single positive trajectory and only a single negative

trajectory go through the origin, and as before, we denote them by

Γ+ and Γ−, respectively, with Γ = Γ+ ∪ Γ− shown dashed. But

there is a crucial difference: whereas previously Γ+ and Γ− both

began at infinity, now Γi begins at P i for i = +,−. The upshot

is that negative trajectories no longer all intersect Γ+, and positive

trajectories no longer all intersect Γ−. There is a unique trajectory

satisfying Pontryagin’s principle and transferring x to the origin only

if x0 lies in the shaded region in Figure 18.3, which is bounded above

by the negative trajectory that emanates from the unstable node P−

and passes through P+, and below by the positive trajectory that

emanates from the unstable node P+ and passes through P−. For
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Figure 18.3. Phase-planes containing potentially optimal arcs.

such initial states, the optimal control is again (18.14). But for initial

states in the unshaded region, no optimal control exists.

Why such a big difference between these two systems? In the

absence of a control, the first system has a stable node at the origin

which attracts every trajectory. So the first system is always tend-

ing to the origin, and the effect of controlling it is to speed things

along. By contrast, the natural tendency of the second system is to

send everything rapidly from the origin to infinity. So the effect of

controlling it is to resist its natural tendency. But the controls are

bounded. If the initial point is too far from the origin, then the nat-

ural tendency to go to infinity is already too strong to be resisted

by controls satisfying |u| ≤ 1, and it is impossible to steer x towards

the origin in any amount of time. In other words, no optimal control

exists because no admissible control exists.

In essence, we have now discovered that a linear dynamical sys-

tem with a stable-node equilibrium is controllable from everywhere

in �2, whereas one with an unstable-node equilibrium is controllable

only from a small region containing the origin. What about a system

with a saddle-point equilibrium? Intuition suggests that the region

from which it is controllable should be somehow intermediate between

a small region containing the origin and the whole of �2 because a
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saddle point (with one negative eigenvalue) is a partially stable equi-

librium, intermediate between a stable node (two negative eigenval-

ues) and an unstable node (zero negative eigenvalues). Intuition turns

out to be quite correct: see Exercises 18.2-18.5.

So far we have considered only time-optimal control problems

for which the eigenvalues of the matrix A are real. Then there is

at most a single switch of control. Multiple switches of control are

possible, however, when the eigenvalues of A are complex. Suppose,

for example, that the governing state equations are

ẋ1 = x2,

ẋ2 = −x1 + u,
(18.16)

so that A = [ 0 1
−1 0 ] has eigenvalues ±i, and any u = constant phase-

plane has a center where x1 = u and x2 = 0. Then, from (18.16), the

Hamiltonian is H = −1+λ1x2+λ2(−x1+u) with co-state equations

λ̇1 = λ2 and λ̇2 = −λ1, so that λ̈2 = −λ̇1 = −λ2, implying λ̈2 +λ2 =

0. The general solution of this equation is

(18.17) λ2 = K1 sin(t+ L1),

where K1 and L1 are constants. By Pontryagin’s principle, the opti-

mal control that maximizes H = −1 + λ1x2 − λ2x1 + λ2u is

(18.18) u∗ = sgn(λ2).

Control is still bang-bang, but now, by (18.17), it must switch from

−1 to 1 or from 1 to −1 every π units of time. From (18.16) with

u∗ = 1, the positive trajectories are given by

d

dx1

{
(x1 − 1)2 + x2

2
}

= 2(x1 − 1) + 2x2
dx2

dx1

= 2(x1 − 1) + 2x2
ẋ2

ẋ1
= 2(x1 − 1) + 2x2

{−x1 + 1}
x2

= 0

or (x1−1)2+x2
2 = constant, a family of concentric circles with center

at x = (1, 0), which we denote by P+. From (18.16), we also have

ẍ2 +x2 = 0, implying that x2 = K2 sin(t+L2), where K2 and L2 are

constants. Hence a positive optimal arc must be a semi-circle with

center P+, because control switches every π units of time. Similarly,

the negative trajectories are a family of concentric circles with center

at x = (−1, 0), which we denote by P−, and a negative optimal
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Figure 18.4. Phase-plane of potentially optimal arcs.
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Figure 18.5. Region from which origin can be reached with
at most one switch.

arc must be a semi-circle with center P−. The optimal trajectory

is a concatenation of semi-circles from these two phase-planes, which

are sketched together in Figure 18.4 with the negative trajectories

shown dashed. Note that all semi-circles are traversed in a clockwise

direction, because ẋ1 has the sign of x2 from (18.16).

Let Γ+ denote the lower positive semi-circle of radius 1, and let

Γ− denote the upper negative semi-circle of radius 1; these are the
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Figure 18.6. The switching curve Γ.

only optimal arcs that reach the origin. Now, if x0 just happens to

lie on Γ−, then u∗ = −1 will transfer x to the origin in optimal time

without any further switch. Otherwise, any optimal trajectory reach-

ing the origin under negative control must have switched to Γ− from

a positive semi-circle at, say, Q in Figure 18.5. This positive semi-

circle (shown dashed) has center P+ and diameter QR. Therefore,

as Q varies over Γ−, R must vary over a semi-circle of radius 1 with

center (3, 0) in the lower half-plane. Inspection now reveals that Γ−

can be reached by a positive semi-circle with radius between 1 and

3 if and only if x0 lies in the darker shaded region of Figure 18.5.

Similarly, Γ+ can be reached by a negative semi-circle with radius

between 1 and 3 if and only if x0 lies in the lighter shaded region, and

the above argument readily extends to the whole of �2. The upshot

is that the optimal control in feedback form is

(18.19) u∗ =

{
−1 above Γ and on Γ−

1 below Γ and on Γ+,

where Γ is the concatenation of semi-circular arcs in Figure 18.6.

Although, in this lecture, we have solved only time-optimal con-

trol problems that are linear in both a single control variable and

two state variables, the methods can also be applied to time-optimal

control problems with nonlinear state equations or with m > 1. See

Exercises 18.7-18.8 and Lecture 22.
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Exercises 18

1. Find the equation of the switching curve Γ in Figure 18.1.

Hint: Eliminate t from (18.13) and shift the origin to P± to

obtain a homogeneous ODE for x1 and x2. Use the standard

substitution (see Ince [25, p. 18]) to make it separable.

2. Solve the problem of time-optimal control to the origin for

ẋ1 = 3x1 + 4x2 + u, ẋ2 = −2x1 − 3x2 + u,

where |u| ≤ 1. Show that the system is controllable only from

the interior of the infinite strip whose boundaries are the lines

x1 + x2 ± 2 = 0, and find the equation of the switching curve.

3. Solve the problem of time-optimal control to the origin for

ẋ1 = x1 + 2x2, ẋ2 = 4x1 − x2 + u,

where |u| ≤ 1.

4. Solve the problem of time-optimal control to the origin for

ẋ1 = x1 + 3x2 − 7u, ẋ2 = 3x1 + x2 − 5u,

where |u| ≤ 1.

5. Solve the problem of time-optimal control to the origin for

ẋ1 = −x1 + 3x2 + 2u, ẋ2 = 3x1 − x2 + 2u,

where |u| ≤ 1.

6. Solve the problem of time-optimal control to the origin for

ẋ1 = x2, ẋ2 = −x2 + u,

where |u| ≤ 1.

7. Solve the problem of time-optimal control to the origin for

ẋ1 = ex2 , ẋ2 = u,

where |u| ≤ 1. Identify the region S ⊂ �2 from which the

system is controllable, and find x∗ and t∗1 for x0 ∈ S.

8. Solve the problem of time-optimal control to the origin for

ẋ1 = x2 + u1, ẋ2 = −x1 + u2,

where |ui| ≤ 1 for i = 1, 2.

Endnote. For further such exercises, see Pinch [50, pp. 122-123].

                

                                                                                                               



Lecture 19

A Singular Control
Problem

Optimal control isn’t always bang-bang, even when the control prob-

lem is linear in the control variable; moreover, not every optimal

control problem is autonomous—sometimes time appears explicitly

in the integrand of the cost functional. Both of these issues arise

with Problem E. So here we revisit it, armed with Pontryagin’s prin-

ciple. A discussion of Problem E will serve as a brief introduction to

both nonautonomous and singular control problems.

Accordingly, recall from Lecture 16 that we must find u(t) ∈ [0, 1]

to maximize

(19.1)

T∫
0

e−δt(x− θ)u dt

subject to

(19.2)
dx

dt
= x(1− x)− q u x

with x(0) = a and x(T ) = b. To convert this problem into one

that Pontryagin’s principle covers, we set x1 = x and make time a

state variable by writing x2 = t. Then Problem E becomes that of
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minimizing the negative of (19.1), i.e.,

(19.3) J =

T∫
0

e−δx2(θ − x1)u dt

subject to

(19.4) ẋ1 = x1(1− x1)− q u x1, ẋ2 = 1

with x1(0) = a, x2(0) = 0, x1(T ) = b and x2(T ) = T .

From (19.3)-(19.4) we have f0(x, u) = e−δx2(θ− x1)u, f1(x, u) =

x1(1− x1)− q u x1 and f2(x, u) = 1. So the Hamiltonian is

H = e−δx2(x1 − θ)u+ λ1{x1(1− x1)− q u x1}+ λ2

= λ1x1(1− x1) + λ2 + σu
(19.5)

with switching function

(19.6) σ = e−δx2(x1 − θ)− q λ1 x1

and co-state equations

λ̇1 = − ∂H

∂x1
= −e−δx2 u− λ1(1− 2x1 − q u),

λ̇2 = − ∂H

∂x2
= δe−δx2(x1 − θ)u.

(19.7)

We cannot deduce that σ �≡ 0. But if σ ≡ 0, then Pontryagin’s

principle yields no information about the optimal control. So how do

we proceed?

For the sake of definiteness, suppose that σ ≡ 0 means

(19.8) σ = 0 for all t ∈ [tr, ts].

Then it follows at once that

(19.9) σ̇ = 0

and

(19.10) σ̈ = 0

for all t ∈ (tr, ts) as well. From (19.6) we deduce that

σ̇ = e−δx2 ẋ1 − δẋ2e
−δx2(x1 − θ)− q λ̇1 x1 − q λ1 ẋ1

= e−δx2
{
x1(1− x1)− δ(x1 − θ)

}
− qx1

2λ1

(19.11)
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on using (19.4) and (19.7), and simplifying. But (19.6) and (19.8)

imply that q λ1 x1 ≡ e−δx2(x1 − θ). Substituting into (19.11), we

obtain

(19.12) σ̇ = e−δx2{x1(1− 2x1 + θ)− δ(x1 − θ)}.

Now (19.9) immediately implies that

(19.13) 1− 2x1 + θ = δ

{
1− θ

x1

}
or

(19.14) x1 = X∗ = 1
4

{
1 + θ − δ +

√
(1 + θ − δ)2 + 8δθ

}
because e−δx2 �= 0, in perfect agreement with (16.16)-(16.17). Further

differentiation of (19.12) reveals that

σ̈ = e−δx2
(
{1− 4x1 − δ + θ}ẋ1 − δ{x1(1− 2x1 + θ)− δ(x1 − θ)}

)
= e−δx2{1− 4x1 − δ + θ}ẋ1 = −e−δx2

(
2x1 +

δθ

x1

)
ẋ1

= x1e
−δx2

(
2x1 +

δθ

x1

)
(q u− 1 + x1)

(19.15)

on using (19.13) and (19.4) to simplify further. Because all terms in

the above product are positive except for the last, it now follows from

(19.10) that the optimal singular control is u∗ = (1 − X∗)/q = U∗,

say, where (19.14) implies

(19.16) U∗ = 1
4q

{
3− θ + δ −

√
(1 + θ − δ)2 + 8δθ

}
in perfect agreement with (16.20). Of course, it would have been

easier to deduce the optimal singular control from ẋ∗
1 = 0, as we did in

Lecture 16, but that works only because x1
∗ is constant on a singular

trajectory, a special property of Problem E; whereas (19.8)-(19.10)

will also work for singular trajectories that are time dependent.

The optimal trajectory must now be a concatenation of arcs from

three different phase-planes: the minimum phase-plane (u = 0), the

singular phase-plane (0 < u < 1, in fact u = U∗) and the maximum

phase-plane (u = 1). It isn’t entirely obvious how to arrive at the

optimal control sequence a priori, but we don’t pursue the matter

further here, for two reasons. First, we already know the answer
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from Lecture 16. Second, in Lecture 24 we will study an optimal-

control problem with time-dependent singular trajectories, for which

we are obligated to use (19.8)-(19.10). In that regard, observe that

x2 and λ2 are completely decoupled from the rest of the analysis

because the λ2 term in H makes no contribution to −∂H/∂x1 (and

x2 is decoupled from the outset, x2 = t being the unique solution of

ẋ2 = 1 with x2(0) = 0 or x2(T ) = T ). So we could have solved the

problem by ignoring λ2 and keeping t in place of x2. This property

extends to arbitrary values of n: with xn+1 = t, xn+1 and λn+1 are

completely decoupled from the rest of the analysis because the λn+1

term in H makes no contribution to −∂H/∂xi for any value of i. So

in practice we can use Pontryagin’s principle without making time a

state variable, which is how we proceed in Lecture 24.

Exercises 19

1. The system

ẋ1 = x2, ẋ2 = u

subject to |u| ≤ 1 is to be controlled from x(0) = (0, 1) to

x(t1) = (0, β) in such a way as to minimize

J = 1
2

t1∫
0

{x2
2 − x1

2} dt

for suitable t1. The optimal trajectory is a concatenation of

arcs from three different phase-planes.

(a) Describe each phase-plane.

(b) If it is known that there is no control switch for β = −1,

what must be the optimal control?

(c) If it is known that there is precisely one control switch for

β = −
√
2, what must be the optimal control sequence?

Endnote. Exercise 19.1 is based on McDanell & Powers [40]. For

further singular control exercises, see Bryson & Ho [8, p. 248] and

Knowles [28, pp. 67-68].

                

                                                                                                               



Lecture 20

A Biological Control
Problem

A prototypical optimal control problem in biology is to minimize the

cumulative toxicity of an anti-cancer drug while reducing the number

of tumor cells to a preassigned level. In the absence of treatment,

the tumor is assumed to grow according to Ẋ/X = ln(θ/X), where

X(t) is the size at time t of the tumor, α is a rate constant, and θ,

another constant, is the plateau size, which an untreated tumor would

approach as t → ∞ (note that Ẋ > 0 for 0 < X < θ but Ẋ → 0 as

X → θ). The drug is assumed to reduce growth of the tumor at the

rate k1UX/(k2+U), where U ∈ [0, Umax] is the rate at which the drug

is administered and k1, k2 are constants; thus the proportional rate

of reduction k1U/(k2 + U) increases with U but cannot exceed the

saturation rate k1.
1 Thus, under treatment, tumor growth or decay

is governed by the state equation

(20.1) Ẋ = αX ln
( θ

X

)
− k1UX

k2 + U

with X(0) = X0 > X1 = X(T ), where T is the final time, and X1

is the preassigned final level. We can make (20.1) dimensionless by

scaling time t with respect to α−1, tumor size X with respect to θ

and medication rate U with respect to k2, i.e., by defining x = X/θ,

1Of Michaelis-Menten kinetics; see, e.g., Mesterton-Gibbons [44, pp. 383-389].
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t̂ = α t and u = U/k2. If we also define a new dimensionless variable

(20.2) x = k−1
1 α ln(X/θ),

which is intrinsically negative (because X < θ) but increases or de-

creases with X, then (20.1) becomes dx/dt̂ = −x− u
1+u with x(0) =

x0 = k−1
1 α ln(X0/θ) and x(t̂1) = k−1

1 α ln(X1/θ) by Exercise 20.1.

The cumulative toxicity of the drug can be assumed to be proportional

to the total amount administered, which is
∫ t1
0

U dt = α−1k2
∫ αT

0
u dt̂.

Hence, on doffing t̂’s hat, our problem is to minimize

(20.3) J [u] =

t1∫
0

u dt

subject to x(0) = x0, x(t1) = x1 and

(20.4) ẋ = −x − u

1 + u

with t1 = αT and u ∈ [0, umax], where umax = Umax/k2. We will refer

to this prototype as Problem B.

Because X0 > X1, we must of course have x0 > x1, by (20.2);

however, this is not the only constraint on x1. From, e.g., Exercise

17.2 or Figure 18.3, we are now well aware that an admissible control

need not exist. In this case, it will be impossible to reduce the size of

a tumor from X0 to X1 unless X1 at least exceeds the size to which

the tumor would be reduced from X0 under maximum control. From

Exercise 20.1, the solution of (20.4) with x(0) = x0 and u = umax is

x = xmax(t), where xmax(t) = x0e−t − umax{1− e−t}/(1 + umax). So

the admissibility requirement is that x1 > xmax(t1), or

(20.5) x1 > x0e−t1 − umax(1− e−t1)

1 + umax
,

which requires in particular that x1 > (x0 + 1)e−t1 − 1.

In terms of Lecture 17, f0(x, u) = u and f1(x, u) = −x − u
1+u .

Hence, from (17.29) and (17.32), the Hamiltonian is

(20.6) H(λ, x, u) = λ0f0(x, u) + λ1f1(x, u) = −u− λ1

{
x+ u

1+u

}
,

implying

(20.7)
∂H

∂u
= −1 − λ1

(1 + u)2
,

∂2H

∂u2
=

2λ1

(1 + u)3
.
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From (17.28) the co-state equation is λ̇1 = −∂H/∂x = λ1, implying

λ1(t) = Ket, where K is constant. If K ≥ 0, then λ1 ≥ 0 and Hu < 0,

so that H is maximized by u = 0. Then ẋ > 0 by (20.4), so that the

tumor cannot be reduced. We must therefore have K < 0, so let

K = −γ2, where γ > 0. Now λ1 < 0, Huu < 0, and, from (20.7) and

Exercise 20.1, H is maximized where

(20.8) u = u∗(t) = γet/2 − 1

as long as γet/2 − 1 ∈ [0, umax], which requires

(20.9) 1 ≤ γ ≤ (1 + umax)e
−t1/2.

Then, from (20.4), the optimal trajectory satisfies ẋ∗ = −x∗ − 1 +

e−t/2/γ with solution

(20.10) x∗(t) = −1 + 2
γ e

−t/2 +
(
x0 − 2

γ + 1
)
e−t.

Along this optimal trajectory we have

(20.11) H(λ, x∗, u∗) = (γ − 1)2 + x0γ2

which is constant, in accord with (iii) on p. 143; and x(t1) = x1 yields

(20.12) γ = 2(1−e−t1/2)

(x1+1)et1/2−(x0+1)e−t1/2 .

The extent to which (20.5) and (20.9) are binding depends on

the magnitude of α/k1. Suppose, for the sake of illustration, that

X0/θ = 0.9, umax = 5, t1 = 1 and α/k1 = 0.1. Then, by (20.2), x0 =

0.1 ln(0.9) ≈ −1.05 × 10−2, so that (20.5) requires x1 > −0.5306 or

X1/θ > e−5.306 = 4.96× 10−3 (approximately), certainly satisfied by

X1/θ = 0.1 or x1 ≈ −0.2303. Then (20.9) reduces to 1 ≤ γ ≤ 3.639

and (20.12) yields γ ≈ 1.17, which is consistent. The corresponding

optimal control and trajectory are shown dotted in Figure 20.1.

Now suppose that α/k1 = 1, with X0/θ = 0.9 as before. Thus

x0 = ln(0.9) ≈ −0.1054, so that (20.5) requires x1 > −0.5655 or

X1/θ > e−0.5655 = 0.568. Take X1/θ = 0.575, or x1 ≈ −0.5534.

Then (20.12) yields γ ≈ 4.062, which fails to satisfy (20.9). If we set

(20.13) ts = 2 ln({1 + umax}/γ),

then what happens here is that (20.8) satisfies u ≤ umax only for

t ≤ ts, hence (20.10) is valid only for t ≤ ts. Thereafter, i.e., for
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Figure 20.1. Optimal control and trajectory from (20.8),
(20.10) and (20.14) with X0/θ = 0.9, umax = 5, t1 = 1 and
arbitrary “equilibrium” size θ for α/k1 = 0.1, X1/θ = 0.1

(dotted) and α/k1 = 1, X1/θ = 0.575 (solid).

t ≥ ts, H is maximized by u = umax, and so (20.4) yields

(20.14) x∗(t) = x1et1−t − umax{1− et1−t}/(1 + umax)

(Exercise 20.2). The correct value of γ is now determined from the

continuity of the optimal trajectory at t = ts, i.e., from the require-

ment that x∗(ts−) = x∗(ts+). We obtain γ ≈ 4.152; hence, from

(20.13), ts ≈ 0.78 (Exercise 20.2). The corresponding optimal control

and trajectory are shown solid in Figure 20.1.

The solution to Problem B first appeared in a seminal contri-

bution to optimal control theory for cancer chemotherapy by Swan

and Vincent [59]. It yields the surprising prediction that the opti-

mal dosage should gradually increase as the cancer cells decrease in

number, as illustrated by Figure 20.1. The model has since been

considerably refined: see, e.g., Martin & Teo [37].

Exercises 20

1. Verify (20.4)-(20.5) and (20.8)-(20.12).

2. Verify (20.14), and show that γ ≈ 4.152 and ts ≈ 0.78 for the

solid curves in Figure 20.1.

3. Find the optimal control for Problem B in the case where t1 is

not specified, and rewrite this control in feedback form.

                

                                                                                                               



Lecture 21

Optimal Control to a
General Target

The target to which we transfer x ∈ �n at time t1 need not be a point.

It could instead be an (n − k)-dimensional hypersurface represented

by k equations of the form

(21.1) gi(x) = 0, i = 1, . . . , k,

where k = n corresponds to a point and k = n − 1 to a curve (and

k = 0 makes any point in �n a valid target). Here we modify Pon-

tryagin’s principle to allow for such a target. As a byproduct of our

analysis, we also discover why Pontryagin’s principle holds even when

the controls are piecewise-continuous. The key to this development is

perturbing the optimal control over such a short interval of time that

the resultant perturbation to the optimal trajectory is infinitesimal,

even though the jump in the control itself is finite.

Before proceeding, however, we deal with a couple of essential

preliminaries. First, let ξ1 and ξ2 be any two vectors in �m. Then

αξ1 +(1−α)ξ2 is a convex combination of ξ1 and ξ2 if α ∈ [0, 1], and

Θ is a convex subset of �m if it contains all convex combinations of

any two of its elements, i.e., if any two points in Θ can be joined by

a straight line segment lying entirely within Θ. Thus when m = 3,

for example, any straight line segment is convex, any hemisphere is

convex, and a cone is convex when the angle between its axis and a
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generator does not exceed 1
2π. Second, suppose that a straight line

segment L has but a single point, an endpoint P corresponding to

p ∈ Rm, in common with a convex subset Θ of Rm. Then it is always

possible to divide �m into mutually exclusive halves—a closed half

Hc containing the whole of Θ, and an open half Ho containing all

of L except P—so that Hc ∪ Ho = �m with Hc ∩ Ho = ∅. The

boundary of Hc, which thus bisects �m, is an (m − 1)-dimensional

hyperplane through P , i.e., a set of the form {ξ ∈ �m|n · ξ = n · p}
(for some n ∈ �m). We omit a proof of existence for this separating

hyperplane.1 But the result is self-evident for m = 3, when the

hyperplane is just an ordinary plane; see Figure 21.1.

Now, in Lecture 17 we increased the dimension of the state space

from n to n+ 1 by adding to the state vector a zeroth component

(21.2) x0(t) =

t∫
t0

f0(x, u) dt

that measures the cost so far, i.e., the cost at time t along a trajectory,

with initial cost x0(t0) = 0 and final cost x0(t1) = J . In effect we

introduced a cost axis. It is helpful to think of this cost axis as

pointing (perpendicularly) away from �n in the vertical direction.

Because it is hard to visualize spaces of dimension greater than three,

our intuition will be guided by the (important) special case in which

n = 2. The original state space is then �2, which we visualize as a

horizontal plane with axes Ox1 and Ox2, and the augmented state

space is then �3, which we visualize by adding a vertical axis Ox0

to represent cost. But we use three dimensions only as a guide to

intuition—our results have general validity.

A trajectory in �n is now the horizontal projection of a trajectory

in �n+1 and intersects it at the initial point, say I, because zero cost

is associated with the hyperplane x0 = 0. The cost x0(t1) = J is

the vertical distance between x in �n and x in �n+1. Let T denote

a generic point x1 in the target for the original state space, let A

denote the corresponding target point in the augmented state space,

let T ∗ denote the optimal target point in �n and let A∗ denote the

corresponding point in �n+1. In Figure 21.2, TZ and T ∗Z∗ represent

1It follows from a theorem in convex analysis. See, e.g., Rockafellar [54].
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Figure 21.1. (a)-(c) Separating hyperplanes for m = 3.
These diagrams are sections through the axis of symmetry

of an axially symmetric convex subset of R3. Note that a sep-
arating hyperplane may or may not be unique. (d) Θ is not

convex, and no separating hyperplane exists.

vertical lines through T and T ∗, respectively, perpendicular to the

original state space and parallel to the Ox0-axis.

In the augmented state space, the optimal trajectory ends at

A∗ on T ∗Z∗ at distance T ∗A∗ = x0(t1
∗) = J∗ from the hyperplane

x0 = 0. Any other admissible trajectory ends at A on TZ (for some

T ) at distance TA = x0(t1) = J from x0 = 0. The distance T ∗A∗ =

x0(t1
∗) = J∗ is the minimum value of the cost. So every nonoptimal

trajectory must land on TZ above A∗, i.e., TA must exceed T ∗A∗,

for otherwise it would achieve a cost no greater than x0(t1
∗). In

particular, x(t1) cannot lie on the interior of the line segment T ∗A∗.

To obtain a nonoptimal trajectory, let us perturb the control from

u∗ to v over a very short interval (τ − ε, τ ) on which u∗ is continuous.

Thus 0 < ε < τ < t1 with very small |ε|, although ||u∗ − v|| may be

large, and u∗ may be discontinuous at t = τ . What is the effect on the

optimal trajectory of this perturbation? If x0, x∗(τ − ε), x∗(τ) and

x∗(t1) are represented by the points I, P , Q∗ and A∗, respectively, in
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x1

x2

x0

A�
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Figure 21.2. The augmented state space. T denotes a point
in the target (which, e.g., could be a line or a circle in �2).

A

A�

I

P

Q

Q�

Figure 21.3. Perturbing the optimal trajectory: here u = u∗

along IPQ∗A∗ or QA, but u = v along PQ.

the augmented state space, and if x denotes the perturbed trajectory,

then x = x∗ for 0 ≤ t ≤ τ−ε, but Q∗ shifts to the pointQ representing

x(τ ), and A∗ shifts to the point A representing x(t1), in such a way

that the arc QA lies infinitesimally close to the arc Q∗A∗ as suggested

by Figure 21.3. Let the (vector) difference between these arcs at time

t be ξ(t). That is, let

(21.3) ξi(t) = xi(t)− x∗
i (t)

for i ∈ N for τ ≤ t ≤ t1; in Figure 21.3, the thin line Q∗Q represents

ξ(τ ), and the thin line A∗A represents ξ(t1). For τ < t < t1, the

optimal trajectory must of course satisfy

(21.4)
dx∗

i

dt
= fi(x

∗, u∗)
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for i ∈ N . By Taylor’s theorem (to first order in ε, which suffices for

our purpose), the perturbed trajectory must satisfy

dx∗
i

dt
+

dξi
dt

=
d{x∗

i + ξi}
dt

=
dxi

dt
= fi(x, u)

= fi(x
∗ + ξ, u∗) = fi(x

∗, u∗) +
n∑

k=0

∂fi
∂xk

ξk

(21.5)

(where the partial derivatives are evaluated on the optimal trajectory)

for i ∈ N because control is the same for both trajectories, although

the initial state is different. Subtracting (21.4) from (21.5) yields

(21.6a)
dξi
dt

=

n∑
k=0

∂fi
∂xk

ξk

for i ∈ N or, in matrix-vector form,

(21.6b) ξ̇ = A(t)ξ,

where the entry in row i and column j of A is defined by

(21.7) aij(t) =
∂fi
∂xj

(and evaluated on the optimal trajectory).

Initial conditions for this set of n + 1 linear, homogeneous, non-

autonomous differential equations come from integrating the state

equations over the interval [τ − ε, τ ]. We have both

(21.8) x∗(τ ) = x∗(τ−ε)+

τ∫
τ−ε

f(x∗, u∗) dt ≈ x∗(τ−ε)+εf(x∗, u∗)

for the optimal trajectory (i.e., along PQ∗ in Figure 21.3) and

(21.9) x(τ ) = x∗(τ−ε)+

τ∫
τ−ε

f(x∗+ξ, v) dt ≈ x∗(τ−ε)+εf(x∗, v)

for the perturbed trajectory (i.e., along PQ in Figure 21.3). We find

by subtraction that

(21.10) ξ(τ ) = ε{f(x∗, v)− f(x∗, u∗)}

(to first order in ε), where the limit as t → τ− is used to evaluate

(21.10) if u∗ is discontinuous at t = τ .
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We have shown that the final state of our perturbed trajectory is

(21.11) x(t1) = x∗(t1) + ξ(t1),

where ξ(t1) is determined by solving (21.6) subject to the initial con-

ditions (21.10). But there is nothing special about this particular

perturbation. We obtain a different perturbation by changing the

value of v or τ , and in every case (21.11) determines a different per-

turbation ξ(t1) to the optimal end-state x∗(t1) = x1. Because the

equation for ξ is linear, the effects of all possible perturbations can

be superimposed to yield a set of all possible final perturbations, and

we denote this subset of �n+1 by Θ. Because any convex combina-

tion of perturbations is also a possible perturbation, Θ turns out to

be a convex set—although we omit a formal proof.2 We call Θ the

perturbation cone.3

Now, on p. 169 we made the important point that x(t1) cannot lie

on the interior of the line segment T ∗A∗ in Figure 21.2. As a result,

the vector perturbation ξ(t1) does not point downwards, which means

that A∗ is the only point that the line segment T ∗A∗ and Θ have in

common. Then, because Θ is convex, there must exist a separating

hyperplane Π through A∗ that divides �n+1 into mutually exclusive

halves, one containing all of Θ, one containing the line segment T ∗A∗

(except for A∗ itself). Let n be the normal to Π that points away

from Θ. Then

(21.12) n · ξ(t1) ≤ 0,

because the vector ξ(t1) points into Θ while the vector n points out;

and the first component of n is negative, because Θ and the line

segment A∗T ∗ in Figure 21.2 are on opposite sides of Π.4

2See, e.g., Pontryagin et al. [51, pp. 93-94].
3Here we follow Hocking [22, p. 137]: Pontryagin et al. [51, p. 94] call Θ the cone

of attainability.
4To be quite precise: ordinarily n0 is negative, because ordinarily ξ(t1) does not

point downwards. But in principle it can (for somewhat the same reason that although
no point below (0, 1) can ever be reached by a bead on the brachistochrone in Figure 1.3,
initially the bead heads downwards), so that n0 = 0 is possible. A detailed discussion of
this “abnormal” case would take us too far afield—especially since it arises in practice
only extremely rarely, and even then appears to have no consequence. Nevertheless,
we elaborate a little, from a practical standpoint, in a footnote on p. 177. For further
discussion see §9.5 of Hocking [22, pp. 143-144].
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On using (21.6a) and the co-state equations (17.28), we obtain

d

dt
{λ · ξ} =

d

dt

{ n∑
i=0

λi ξi

}
=

n∑
i=0

dλi

dt
ξi +

n∑
i=0

λi
dξi
dt

= −
n∑

i=0

∂

∂xi

{ n∑
k=0

λkfk

}
ξi +

n∑
i=0

λi

n∑
k=0

∂fi
∂xk

ξk

= −
n∑

k=0

∂

∂xk

{ n∑
i=0

λifi

}
ξk +

n∑
i=0

λi

n∑
k=0

∂fi
∂xk

ξk

= −
n∑

k=0

n∑
i=0

λi
∂fi
∂xk

ξk +

n∑
i=0

n∑
k=0

λi
∂fi
∂xk

ξk = 0,

(21.13)

implying that λ · ξ is invariant. Now recall that λ was initially intro-

duced as a vector of completely arbitrary piecewise-smooth functions:

although it has since been required to satisfy the co-state equations,

boundary conditions remain unspecified. We are therefore free to in-

sist that λ(t1) be parallel to n, implying λ(t1) · ξ(t1) ≤ 0 by (21.12).

Combining with (21.13), we have

(21.14) λ(t) · ξ(t) ≤ 0

for all t ∈ [τ, t1]. In particular, λ(τ ) · ξ(τ ) ≤ 0. Hence, from (21.10),

we obtain λ(τ ) · {f(x∗, v)− f(x∗, u∗)} ≤ 0 or

(21.15) λ(τ ) · f(x∗, v) ≤ λ(τ ) · f(x∗, u∗)

because ε > 0. That is,

(21.16)

n∑
i=0

λi(τ ) fi(x
∗, v) ≤

n∑
i=0

λi(τ ) fi(x
∗, u∗)

or

(21.17) H(λ(τ ), x∗(τ ), v(τ )) ≤ H(λ(τ ), x∗(τ ), u∗(τ ))

by the definition in (17.29). But τ ∈ (0, t1) is arbitrary. So u∗ must

maximize H at every point of an optimal trajectory. Furthermore,

because the first component of n is negative, λ0(t1) is also negative—

implying, by the first co-state equation λ̇0 = −∂H/∂x0 = 0, that

λ0 is a negative constant.5 We have thus established (albeit non-

rigorously) the first two parts of Pontryagin’s principle. We leave the

5Ordinarily. See the previous footnote.
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third to Appendix 21, because our goal in this lecture is primarily to

obtain some new transversality conditions, namely, (21.18), (21.19)

and, most generally, (21.31).

Accordingly—with the special case of (21.1) in which the original

target is a planar curve (n = 2, k = 1) as a guide to intuition—

let ΔΩ contain all points (x∗
0, x

t) ∈ �n+1, where x∗
0 is the optimal

cost and xt belongs to the original target in �n, i.e., gi(x
t) = 0 for

i = 1, . . . , k; let Ω consist of all points (x0, x
t) ∈ �n+1 such that

0 ≤ x0 < x∗
0; and let A∗ be the optimal endpoint. Then A∗ belongs

to ΔΩ, and a separating hyperplane Π goes through A∗ and beneath

the perturbation cone Θ at A∗. No point of Ω lies in Θ, because

the target cannot be reached with x0 < x∗
0 (or x∗

0 would not be the

optimal cost). Now suppose that a tangent to ΔΩ at A∗ fails to lie

entirely in Π. Then Π intersects Ω, and so points of Ω will lie in Θ—

contradicting the optimality of A∗, because x0 < x∗
0 at every point

of Ω. We conclude that any tangent to ΔΩ at A∗ must lie in Π and

hence be normal to n. But n is parallel to λ(t1). So λ(t1) is normal

to ΔΩ. Equivalently, λ(t1) is linearly dependent on the normals to

the surfaces defining the target, i.e., there exist constants c1, . . . , ck
such that

(21.18) λ(t1) =
k∑

i=1

ci ∇gi(x
1).

These are our transversality conditions—at least for the time being.

An important special case is that in which the first m components of

the final state x1 are fixed while the last n −m components remain

unspecified. Then we have gi(x) = xi−x1
i for i = 1, . . . ,m and hence

λ(t1) = c1∇g1 + . . . + cm∇gm = c1e1 + . . . + cmem where ei is the

unit vector in the direction of Oxi. Hence

(21.19) λi(t1) = 0 for i = m+ 1, . . . , n.

Nevertheless, it is possible for total cost to depend not only on

the path to the target, but also on the final state itself. That is, total

cost may have the more general form

(21.20) J = G(x1) +

t1∫
t0

f0(x, u) dt,

                

                                                                                                               



21. Optimal Control to a General Target 175

where G is defined on �n. To allow for this possibility, we change the

zeroth state equation from ẋ0 = f0 with x0(t0) = 0 to

(21.21) ẋ0 = f0 +

n∑
i=1

∂G

∂xi
ẋi

with x0(t0) = G(x0) so that

x0(t1) = x0(t0) +

t1∫
t0

ẋ0 dt

= G(x0) +

t1∫
t0

f0(x, u) dt +

t1∫
t0

G(x)

dt
dt = J

(21.22)

as before.

Using ζ in place of λ for the modified co-state vector, we can now

proceed in the usual way. The modified Hamiltonian becomes

H(ζ, x, u) = ζ0

{
f0 +

n∑
i=1

∂G

∂xi
fi

}
+

n∑
i=1

ζi fi

= ζ0f0 +

n∑
i=1

{
ζ0

∂G

∂xi
+ ζi

}
fi,

(21.23)

the co-state equations become

ζ̇i = −∂H

∂xi
= − ∂

∂xi

(
ζ0f0 +

n∑
k=1

{
ζ0

∂G

∂xk
+ ζk

}
fk

)

= −
(
ζ0

∂f0
∂xi

+

n∑
k=1

{
ζ0

∂2G

∂xk∂xi
+ 0

}
fk

+

n∑
k=1

{
ζ0

∂G

∂xk
+ ζk

}
∂fk
∂xi

)
(21.24)

(on changing the summation index and using the product rule) and

the transversality conditions become

(21.25) ζ(t1) =
k∑

i=1

ci ∇gi(x
1).
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We define an adjusted co-state vector λ according to

(21.26) λ0 = ζ0 = −1, λi = ζi + ζ0
∂G

∂xi

for i ∈ N+. Then, from (21.23), the Hamiltonian takes on the familiar

form

(21.27) H(ζ, x, u) = λ0f0 +

n∑
i=1

λifi = λ · f = H(λ, x, u)

and, on using the state equations ẋk = fk in conjunction with the

chain rule, (21.24) simplifies to

ζ̇i = −
(
ζ0

∂f0
∂xi

+

n∑
k=1

λk
∂fk
∂xi

+ ζ0

n∑
k=1

∂2G

∂xk∂xi
fk

)

= − ∂

∂xi

(
ζ0f0 +

n∑
k=1

λkfk

)
− ζ0

n∑
k=1

∂

∂xk

{
∂G

∂xi

}
ẋk

= − ∂H

∂xi
− ζ0

d

dt

{
∂G

∂xi

}
.

(21.28)

But (21.26) implies

(21.29) λ̇i = ζ̇i + ζ0
d

dt

{
∂G

∂xi

}

for i ∈ N+. Hence, combining (21.28) and (21.29), the co-state equa-

tions have the familiar form

(21.30) λ̇0 = 0, λ̇i = −∂H

∂xi

for i ∈ N+. Also (21.26) implies λi(t1) = ζi(t1)− ∂G
∂xi

∣∣
t=t1

for i ∈ N+

so that the transversality conditions assume the modified form

(21.31) λ(t1) = −∇G(x1) +

k∑
i=1

ci ∇gi(x
1)

on using (21.25) and vectorizing. The upshot is that problems with a

terminal cost can be solved without changing either the state or the

co-state equations. Furthermore, because (21.31) reduces to (21.18)

when G = 0, we may regard (21.31) as the standard statement of our

new transversality conditions.
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Suppose, for example, that the system

(21.32) ẋ1 = x2, ẋ2 = u

studied in Lecture 17 is controlled so as to transfer x = {x1, x2} in

minimum time not to (0, 0), but instead to any point on the circle

of radius 1 with center (0, 0); we assume that x0 = x(t0) lies outside

this circle (except in Exercise 21.2). Then k = 1 in (21.1), and the

target is defined by

(21.33) g1(x) = x1
2 + x2

2 − 1 = 0.

From (21.31) with G = 0, we obtain

λ(t1) = c1 ∇g1(x
1) = 2c1{x1(t1)i+ x2(t1)j}

or λ1(t1) = 2c1x1(t1), λ2(t1) = 2c1x2(t1) so that

(21.34) x2(t1)λ1(t1)− x1(t1)λ2(t1) = 0.

Because x1 must lie on the circle x1
2 + x2

2 = 1, let us write

(21.35) x1 = x(t1) = (cos(θ), sin(θ)).

Then (21.34) becomes

(21.36) λ2(t1) = λ1(t1) tan(θ).

From Lecture 17 (pp. 143-144) we already know that the Hamilton-

ian6 is

(21.37) H = −1 + λ1x2 + λ2u

with co-state variables λ1(t) = K and λ2(t) = L − Kt, implying

at most one switch of control; and that potentially optimal arcs have

equation (17.39), as illustrated by Figure 17.1. If K > 0, then λ1 > 0,

6To be quite precise: H = λ0 + λ1x2 + λ2u by (17.29), with λ0 = −1 following
from (17.32). As remarked on p. 142, however, no generality is lost by choosing λ0 = −1
only if it is known that λ0 = 0. So, strictly speaking, there are two cases, namely, λ0 =
−1, which is called the normal case, and λ0 = 0, which is called the abnormal case;
see, e.g., Vincent & Grantham [61, p. 474]. The assumption λ0 = 0 is standard in the
pedagogical literature; but the abnormal case, even if exceptionally rare and “somewhat
pathological” (Clark [10, p. 110]) from an economic standpoint, is not so rare that
it never arises. Here, for example, H(λ, x∗, u∗) = λ0 + K{sin(θ) + u∗ tan(θ)} =
λ0 + K{sin(θ) ± tan(θ)}, so that H = 0 cannot be satisfied with λ0 = 0 for θ = 0 or
θ = π, in which case we set λ0 = 0. Because f0 = 1 is constant, however, the term λ0f0
has no effect on the maximization of the Hamiltonian: it would not matter whether
we included it or not, so it does not matter whether we choose λ0 = 0 or λ0 = −1
unless we insist on knowing values for K and L—which are otherwise of no significance,
because qualitative information about λ1 and λ2 suffices to solve the problem.

In practice, one always assumes λ0 = −1 in the first instance, and only in the
exceptionally rare cases where that doesn’t work out does one then consider λ0 = 0.
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and λ2 is either always negative for t > 0 (when L ≤ 0) or (when

L > 0) changes sign from positive to negative at t = L
K ; whereas if

K < 0, then λ1 < 0, and λ2 is either always positive for t > 0 (when

L ≥ 0) or (when L < 0) changes sign from negative to positive at

t = L
K . Either way, if λ1 and λ2 have the same sign at t = t1, then

there cannot have been a switch of control; whereas if they have the

opposite sign, then, if the trajectory arrives from sufficiently far away,

there must have been a switch of control at

(21.38) ts =
L

K
=

λ2(t1) +Kt1
K

=
λ2(t1)

λ1(t1)
+ t1 = tan(θ) + t1

by (21.36). From (21.36), however, the signs of λ1 and λ2 are the same

whenever tan(θ) is positive, i.e., whenever x1 lies within the first or

third quadrant. Thus, from Figure 17.1, u∗ = −1 on any optimal

trajectory that reaches the target where 0 < θ < 1
2π, and u∗ = 1 on

any optimal trajectory that reaches the target where π < θ < 3
2π. On

the other hand, for 1
2π < θ < π, control must switch from u∗ = 1 to

u∗ = −1. Let the switch point be (xs
1, x

s
2) = x(ts). Then, integrating

(21.32) from t = ts to t = t1 (with u = −1) yields (Exercise 21.1)

xs
1 = cos(θ)− (t1 − ts) sin(θ)− 1

2 (t1 − ts)
2,

xs
2 = sin(θ)− ts + t1

(21.39)

on using (21.35). But t1 − ts = − tan(θ) by (21.38). Hence

(21.40) xs
1 = sec(θ)− 1

2 tan
2(θ), xs

2 = sin(θ)− tan(θ).

These are the parametric equations of a switching curve. Likewise,

for 3
2π < θ < 2π, control must switch from u∗ = −1 to u∗ = 1.

Integrating (21.32) from t = ts to t = t1 (now with u = 1) yields

xs
1 = cos(θ)− (t1 − ts) sin(θ) +

1
2 (t1 − ts)

2,

xs
2 = sin(θ) + ts − t1

(21.41)

in place of (21.39), and hence

(21.42) xs
1 = sec(θ) + 1

2 tan
2(θ), xs

2 = sin(θ) + tan(θ)

in place of (21.40). These are the parametric equations of another

switching curve. Both switching curves are shown in Figure 21.4:

above them is the lighter shaded region where u∗ = −1 is optimal; be-

low them is the darker region where u∗ = 1 is optimal. Some optimal
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Figure 21.4. Some optimal trajectories for time-optimal con-
trol subject to (21.32) from outside the white disk to its bound-

ary (21.33). Note that the switching curve is not a trajectory.

trajectories are also sketched. Strictly, we have assumed sin(2θ) �= 0.

For θ = 0 or θ = π, however, we have λ2(t1) = 0 from (21.36) so that

λ2(t) = K(t1 − t), precluding a switch, and for θ = 1
2π or θ = 3

2π we

have K = 0 with λ2(t) = L, again precluding a switch.

We conclude by verifying that our new transversality conditions

at least yield the old ones (from Lecture 11) in the special case where

we minimize

(21.43) J =

t1∫
t0

F (t, x, ẋ) dt

with x(t0) = α subject to the constraint that (t1, β) = (t1, x(t1)) lies

on some given curve, say x = ψ(t). As in the appendix to Lecture 17,

we write ẋ = u, x = x1 and t = x2 so that f0(x, u) = F (x2, x1, u) and

the state equations are

(21.44) ẋ1 = u, ẋ2 = 1

with Hamiltonian

(21.45) H = −F (x2, x1, u) + λ1 u+ λ2.

The constraint x− ψ(t) = 0 becomes

(21.46) g1(x) = x1 − ψ(x2) = 0
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so that ∇g1 = i− ψ′(x2)j. Thus the transversality condition λ(t1) =

c1∇g1 implies λ1(t1) = c1 and λ2(t1) = −c1ψ
′(x2) or

(21.47) λ2(t1) + λ1(t1)ψ
′(x2) = 0.

Also, H(t1) = 0 implies −F + λ1(t1)u + λ2(t1) = 0, where F and u

are evaluated at t1. Eliminating λ2 between this equation and (21.47)

yields

(21.48) λ1(t1)ψ
′(x2) = λ1(t1)u− F.

Because there are no constraints on u, maximizing H means Hu =

−Fu + λ1 = 0 or λ1 = Fu as in Lecture 17. Substituting into (21.48)

and rewriting in terms of the original variables now produces

(21.49) Fẋ ψ̇ = ẋFẋ − F

at the final time, in perfect agreement with (11.32).

Appendix 21: The Invariance of the Hamiltonian

The invariance of H is readily established where u is both differ-

entiable and unrestricted. For then, on using (17.25), (17.28) and

(17.30), we have

dH

dt
=

m∑
i=1

∂H

∂ui

dui

dt
+

n∑
i=0

∂H

∂xi

dxi

dt
+

n∑
i=0

∂H

∂λi

dλi

dt

=

m∑
i=1

0 · dui

dt
+

n∑
i=0

∂H

∂xi

∂H

∂λi
+

n∑
i=0

∂H

∂λi

{
−∂H

∂xi

}
= 0.

(21.50)

To establish the result more generally, define

(21.51) p(t, s) = H(λ(t), x∗(t), u∗(s)).

Then the value of H on the optimal trajectory at time t is p(t, t) =

H(λ(t), x∗(t), u∗(t)), and we wish to show that p(t, t) = 0.

The essence of the argument is as follows. If t is not a switching

time, then u∗ is both continuous and differentiable and so it follows

from (21.50) and (21.51) with s = t that d{p(t, t)}/dt = 0. Hence

p(t, t) is constant between switches. From the maximum principle,

we have

(21.52) p(t, t) ≥ p(t, s)
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or, equivalently,

(21.53) p(s, s) ≥ p(s, t)

for arbitrary times s and t during the interval [0, t1]: u
∗(s) represents

a perturbation to the optimal control at time t in (21.52), and u∗(t)

represents a perturbation to the optimal control at time s in (21.53).

Moreover, because H is differentiable with respect to its first two

arguments, there must exist positive ε1 and ε2 both tending to zero

as |t− s| → 0 such that

(21.54) |p(s, t)− p(t, t)| < ε1

or, equivalently,

(21.55) |p(t, s)− p(s, s)| < ε2.

From (21.53) and (21.54) we have p(s, t) − p(s, s) ≤ 0 and p(t, t) −
p(s, t) < ε1, implying (through addition) that p(t, t) − p(s, s) < ε1;

and from (21.52) and (21.55) we have p(t, t)−p(t, s) ≥ 0 and p(t, s)−
p(s, s) > −ε2, implying (again through addition) that p(t, t)−p(s, s) >

−ε2; in other words,

(21.56) −ε2 < p(t, t)− p(s, s) < ε1.

Hence p(t, t) is a continuous function of t even where u is discon-

tinuous. Because we already know that p(t, t) is constant between

switches, we deduce that p(t, t) is constant on [0, t1]. But p(t1, t1) = 0

from (17.26). Hence p(t, t) = 0, as required.

Exercises 21

1. Verify (21.39)-(21.42).

2. What is the time-optimal control for transferring x = {x1, x2}
subject to (21.32) to the circle of radius 1 with center (0, 0)

when x0 lies inside the circle?

3. What is the time-optimal control for transferring x = {x1, x2}
subject to (18.16) to the circle of radius 1 with center (0, 0)

when x0 lies outside the circle?

4. Solve the problem of time-optimal control to x1 = x2 for

(a) ẋ1 = x2, ẋ2 = −x1 + u,
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(b) ẋ1 = x2, ẋ2 = u,

where |u| ≤ 1.

5. Solve the problem of time-optimal control to x2 = 0, x1 ≥ 0 for

(a) ẋ1 = x2, ẋ2 = −x1 + u,

(b) ẋ1 = x2, ẋ2 = u,

where |u| ≤ 1.

6. Solve the problem of time-optimal control to x2 = 0, |x1| ≤ 1
2

for

(a) ẋ1 = x2, ẋ2 = −x1 + u,

(b) ẋ1 = x2, ẋ2 = u,

where |u| ≤ 1.

7. The system with state equations

ẋ1 = x2, ẋ2 = −x1 + u

with x(0) = (a, 0), where a �= 0, is to be controlled in such a

way as to minimize the cost functional

J = 1
2γ{x1(π)

2 + x2(π)
2}+ 1

2

π∫
0

u2 dt.

There are no explicit restrictions on u. Find the optimal control

u∗ and the corresponding optimal trajectory x∗, final position

x∗(π) and minimum cost J∗. Discuss the limit as γ → ∞.

8. A system with state equations

ẋ1 = x2, ẋ2 = x3, ẋ3 = u1

has cost functional

J =

t1∫
0

{θ + 1
2u1

2} dt,

where θ > 0. If the initial state is x0 = (a, b, c) with c > 0

and the target is the x1-x2 plane, show that the optimal cost

is J∗ = c
√
2θ. Determine both the terminal time and the final

state of the system.

Endnote. For further exercises, see Leitmann [34, p. 206], Lebedev

& Cloud [32, pp. 115-116] and Pinch [50, pp. 147-148].

                

                                                                                                               



Lecture 22

Navigational Control
Problems

Optimal control theory has been extensively applied to problems of

vehicular navigation both within and between planets.1 One of the

simplest such problems, called Zermelo’s problem,2 is that of steering

a boat at constant speed through a variable current to a given desti-

nation in the least amount of time. In practice, of course, the speed

cannot be entirely constant; but one could suppose, for example, that

the boat leaves the current to enter a harbor before slowing down to

dock, as suggested by Figure 22.1.

In this and the following lecture, it will be convenient to use x

and y in place of x1 and x2 for the state variables and α in place of

u for the control, freeing up u for use as a component of the current.

Accordingly, let x(t) and y(t) denote the boat’s horizontal coordinates

at time t, with Ox pointing east and Oy pointing north; let the boat

be steered at an angle α, measured anti-clockwise from Ox; and let W

be its constant speed, relative to the water. Then its velocity relative

to the water is W = W cos(α)i +W sin(α)j. Let the current, which

varies with location but not with time, be q = u(x, y)i + v(x, y)j.

Then, relative to dry land, the boat has velocity ẋ i + ẏ j = W+ q,

1For elementary examples involving spacecraft see, e.g., Bryson & Ho [8, pp. 66-68
and 143-146] and Hocking [22, pp. 151-154].

2See, e.g., Bryson & Ho [8, p. 77].
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x
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y

h

0

�a�

x
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y

h

0
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Figure 22.1. Optimal trajectories for Zermelo’s problem
with l = 1

2
h on (a) open water with a shoreline and (b) a

river. For (a), the trajectories correspond, from right to left,
to W = U , W = 1.25U and W = 3U in (22.17) and (22.19);

for (b), W = 1.5U .

so that the state equations are

(22.1) ẋ = W cos(α) + u(x, y), ẏ = W sin(α) + v(x, y).

Because we seek the minimum transit time, the cost functional is

(18.2); and so—using notation that suppresses the dependence of u

and v on x and y—the Hamiltonian is

(22.2) H = −1 + λ1{W cos(α) + u}+ λ2{W sin(α) + v}

with

(22.3) Hα = W{λ2 cos(α)− λ1 sin(α)},

Hαα = −W{λ1 cos(α) + λ2 sin(α)} and co-state equations

(22.4) λ̇1 = −λ1ux − λ2vx, λ̇2 = −λ1uy − λ2vy.

Thus (provided λ1 �= 0, which we can verify later), H is maximized

by

(22.5) tan(α) =
λ2

λ1

with Hαα = −Wλ1 sec(α) < 0. Keep in mind that α is the boat’s

heading relative to the water. If ψ is its heading relative to the land,
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then α and ψ are related by3

(22.6) tan(ψ) =
dy

dx
=

ẏ

ẋ
=

W sin(α) + v

W cos(α) + u

on using (22.1). In this lecture we assume that α is unconstrained.

Although, in practice, we require 0 ≤ α ≤ π for the problems we

are about to discuss, if the optimal control turns out to satisfy these

bounds regardless—as it will—then no harm is done by ignoring them

at the outset.

Suppose, for example, that the current is parallel to the shoreline

and increases in strength linearly with distance from dry land. For

the sake of definiteness, we set

(22.7) u = −Uy

h
, v = 0

for y ≤ 0 and suppose that the boat must be steered to the origin

from the point (l,−h) in open water where the current has velocity

U i, as indicated by Figure 22.1(a). Then the state equations become

(22.8) ẋ = W cos(α)− Uy

h
, ẏ = W sin(α),

and the co-state equations become

(22.9) λ̇1 = 0, λ̇2 = λ1U/h,

implying

(22.10) λ1 = K, λ2 = U(Kt+ L)/h,

where K and L are constants. Moreover, it follows from (22.5) that

(22.11) H = −1 +K
{
W sec(α) + u

}
on the optimal trajectory. But H is constant, i.e., Ḣ = 0. So (22.7)

and (22.11) imply W sec(α) tan(α)α̇−Uẏ/h = 0 or, on using (22.8),

(22.12a) α̇ =
U

h
cos2(α).

Alternatively, (22.12a) follows from using (22.10) with (22.5) to obtain

(22.12b) tan(α) =
U

h

(
t+

L

K

)
3In Lectures 4 (p. 31), 8 (p. 61) and 11 (p. 87), we used θ for the same angle; but

θ is the polar angle in Chaplygin’s problem (pp. 190-193), so here we use ψ instead.
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and then differentiating. Either way, α increases with time on the

optimal trajectory; and, defining optimal initial and final headings

(relative to the water) by

(22.13) α∗
0 = α(0), α∗

1 = α(t∗1),

we deduce from (22.12) that the minimum time satisfies

(22.14) t∗1 =
h

U
{tan(α∗

1)− tan(α∗
0)}

(Exercise 22.1). But α∗
0 and α∗

1 remain to be determined.

Because t1 is unspecified, (17.26) must hold on the optimal tra-

jectory; and because y(t1) = 0, (22.11) implies

(22.15) WK = cos(α(t1)).

From (22.8) and (22.12a),

(22.16)
dy

dα
=

ẏ

α̇
=

hW

U

sin(α)

cos2(α)
,

implying y = hW sec(α)/U + constant. But y(t1) = 0, and so

(22.17)
y

h
=

W

U
{sec(α)− sec(α(t1))}.

Substitution into (22.8) yields

(22.18) ẋ = W{sec(α(t1))− sin(α) tan(α)},
implying dx/dα = hW{sec(α(t1)) sec2(α) − sec(α) tan2(α)}/U ; and

integrating to satisfy x(t1) = 0, we obtain

(22.19)
x

h
=

W

2U

{
sec(α(t1)){tan(α)− tan(α(t1))}

+ tan(α){sec(α(t1))− sec(α)}

+ ln

(
sec(α) + tan(α)

sec(α(t1)) + tan(α(t1))

)}
.

From (22.17) and (22.19) with x(0) = l and y(0) = −h, we now obtain

(22.20)
l

h
=

W

2U

{
sec(α∗

1){tan(α∗
0)− tan(α∗

1)}

+ tan(α∗
0){sec(α∗

1)− sec(α∗
0)}

+ ln

(
sec(α∗

0) + tan(α∗
0)

sec(α∗
1) + tan(α∗

1)

)}
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and

(22.21) W{sec(α∗
1)− sec(α∗

0)} = U,

on using (22.13).

For given values of W/U and l/h, (22.20)-(22.21) can be solved

numerically4 to yield both the initial heading α∗
0 and the final heading

α∗
1. For example, with l = 1

2h as in Figure 22.1 and W = U , we

obtain α∗
0 ≈ 0.6653π, α∗

1 ≈ 0.9448π. Hence K = cos(α∗
1)/W ≈

−0.985/W from (22.15); Hα∗α∗ = −WK sec(α∗
1) = −1 < 0; L =

hU−1W−1 sin(α∗
0) ≈ 0.8682hU−1W−1 from (22.12b); t∗1 ≈ 1.574h/U

from (22.14); and, again from (22.12b), the optimal control is

α∗(t) = π + tan−1
(
U
h t+ tan(α∗

0)
)

≈ 3.142 + tan−1
(
U
h t− 1.75

)
,

(22.22)

although the feedback control law

(22.23) α∗(y) = sec−1
{
sec(α∗

1) +
Uy

Wh

}
that derives from (22.17) is more useful, because it supplies the opti-

mal heading at a given distance from land. Note that α∗ is relative to

the water: because the current pushes the boat to the right, headings

are lower relative to the land except at y = 0 (where u = 0), although

the difference is smaller at higher boat speeds—see Exercise 22.2.

Now, in solving our version of Zermelo’s problem for open water,

we integrated three nonlinear, first-order, ordinary differential equa-

tions for x, y and α, namely, (22.8) and (22.12a), analytically. Yet

our solution, as determined by (22.17), (22.19) and (22.22) or (22.23),

was ultimately numerical because, e.g., we cannot apply (22.23) until

we know α∗
1, and we had to resort to numerical methods to determine

α∗
0 and α∗

1. So, it could be argued, one might as well have used nu-

merical methods to solve the differential equations to begin with; and

4If we use Mathematica, then suitable commands are as follows:
equ1 := (Sec[alpha1] (Tan[alpha0] - Tan[alpha1]) +

Tan[alpha0] (Sec[alpha1] - Sec[alpha0]) +
Log[(Sec[alpha0] + Tan[alpha0])/(Sec[alpha1] + Tan[alpha1])])/2;

lOverh = 1/2;
WOverU = 1;
equ2 := WOverU (Sec[alpha1] - Sec[alpha0]);
sol = FindRoot[{equ1 == lOverh/WOverU, equ2 == 1},

{alpha0, 2Pi/3, 2Pi/3+0.01}, {alpha1, Pi, Pi-0.01}]

                

                                                                                                               



188 22. Navigational Control Problems

if that argument applies to a linearly varying current, then it applies

with even greater force to one that varies nonlinearly.

Suppose, for example, that our boat is not in open water but

instead must cross a river of width h—whose current is strongest

in the middle—to reach a point upstream on the opposite bank, as

indicated by Figure 22.1(b). For the sake of definiteness, we set

(22.24) u = −4Uy

h

(
1 +

y

h

)
, v = 0

for y ≤ 0 (so that u = 0 on either bank and the maximum current U

is at y = − 1
2h). Then the state equations (22.1) become

(22.25) ẋ = W cos(α)− 4Uy

h

(
1 +

y

h

)
, ẏ = W sin(α).

The co-state equations (22.4) become λ̇1 = 0 or λ1 = K = constant

(as before) and hλ̇2 = 4λ1U(1+2y/h), so that λ2 is no longer a linear

function of time. But (22.5) and (22.11) still hold along the optimal

trajectory, and so Ḣ = 0 yields

(22.26) α̇ =
4U

h

(
1 +

2y

h

)
cos2(α)

in place of (22.12a); see Exercise 22.3. Note that the optimal heading

relative to the water now decreases until the boat reaches the middle

of the river at y = − 1
2h, and then increases.

To solve our equations for x, y and α numerically, we make the

time and state variables dimensionless (α is dimensionless already) as

(22.27) τ =
Ut

h
, ξ =

x

l
, η =

y

h
,

so that the boat arrives at dimensionless time τ1 = Ut1/h; x(0) = l

and y(0) = −h become ξ(0) = 1 and η(0) = −1. Then (22.25)-(22.26)

and their initial conditions reduce to

dξ

dτ
=

h

l

{W

U
cos(α)− 4η(1 + η)

}
, ξ(0) = 1(22.28a)

dη

dτ
=

W

U
sin(α), η(0) = −1(22.28b)

dα

dτ
= 4(1 + 2η) cos2(α), α(0) = α0(22.28c)

for 0 ≤ τ ≤ τ1, where α0 and τ1 are unspecified. For given ξ(0),

η(0) and α(0), (22.28) uniquely determine ξ(τ ), η(τ ) and α(τ ) for all

                

                                                                                                               



22. Navigational Control Problems 189

Τ
0 1

Α�

0.5Π

Π

Figure 22.2. Optimal heading relative to water (solid) and

land (dashed) for Zermelo’s problem on a river with l = 1
2
h,

W = 1.5U . The optimal trajectory is shown in Figure 22.1.

τ ∈ [0, τ1]. Because α0 and τ1 are unspecified, we are free to vary

them until they satisfy

(22.29) ξ(τ1) = 0 = η(τ1).

In effect, (22.29) is a pair of nonlinear equations for the unknowns α0

and τ1, the dependence of ξ(τ1) and η(τ1) on α0 being suppressed by

the notation. Let α∗
0 and τ∗1 denote the solution of these equations.

Then α∗
0 is the optimal initial heading, α(τ∗1 ) is the optimal final

heading and t∗1 = hτ∗1 /U is the minimum time of transfer.

For given values ofW/U and l/h, numerical integration of (22.28)

yields not only α∗
0 and τ∗1 , but also ξ(τ ), η(τ ) and α(τ ) for all τ ∈

[0, τ1]. For example, with l = 1
2h as in Figure 22.1 and W = 1.5U

we obtain5 α∗
0 ≈ 0.9296π, τ∗1 ≈ 1.01 implying t∗1 ≈ 1.01h/U and

α∗
1 = α(t∗1) ≈ 0.9296π. The optimal control, denoted α∗(τ), is plotted

against dimensionless time in Figure 22.2 as a solid curve, with the

heading relative to land shown as a dashed line—although, again, the

associated feedback control law

(22.30) α∗(y) = sec−1
{
sec(α∗

1) +
4Uy

Wh

(
1 +

y

h

)}
from Exercise 22.3 is more useful. For completeness we note that

λ1(t) = K = cos(α∗
1)/W ≈ −0.9756/W from (22.15), with λ2(t) =

K tan(α∗(Ut/h)) now following from (22.5) and (22.27).

5If we use Mathematica, then suitable commands are as follows:
hOverl = 2; WOverU = 1.5;
eqs[a0 , t1 ?NumericQ] := Module[{},

sol = NDSolve[{x’[t] == hOverl (WOverU Cos[a[t]] - 4 y[t] (1 + y[t])),
y’[t] == WOverU Sin[a[t]], a’[t] == 4 (1 + 2 y[t]) Cos[a[t]]ˆ2,
x[0] == 1, y[0] == -1, a[0] == a0}, {x, y, a}, {t, 0, t1}];

Flatten[{x[t1] /.sol, y[t1] /.sol}]];
result = FindRoot[eqs[a0, t1], {a0, Pi, Pi-0.05}, {t1, 0.5, 0.51}];
a0star = a0/.result
tau1star = t1/.result
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A related navigational control problem, called Chaplygin’s prob-

lem,6 is to identify the horizontal closed curve around which an air-

plane must fly at constant speed through a constant wind of lower

speed to enclose the greatest area in a given amount of time. Recy-

cling some of our earlier notation, let x(t) and y(t) denote the plane’s

horizontal coordinates at time t, with Ox parallel to the wind, and Oy

perpendicular to it; let the plane be steered at an angle α, measured

anti-clockwise from Ox; let W be the constant speed of the plane,

relative to the air; and let w be the wind speed. Then the plane’s

velocity relative to the air is W = W cos(α)i+W sin(α)j; the wind’s

velocity relative to the (flat) ground is w = wi; and, relative to the

ground, the plane has velocity ẋ i + ẏ j = W+w, so that

(22.31) ẋ = W cos(α) + w, ẏ = W sin(α)

with w < W . Note that, although we have now fixed the directions

of the axes of the coordinate system, its origin O is still arbitrary.

Let the plane begin at time t = 0 and, after flying anti-clockwise

(when viewed from above), return to its starting point at t = T , where

T is fixed. Accordingly, if r and θ are its polar coordinates relative

to the still undetermined origin O, we will assume that

(22.32) α > θ,

where 0 ≤ θ ≤ 2π (but α may exceed 2π, although the difference

between such a value and 2π would be the plane’s heading in practice).

The area7 enclosed by the airplane’s flight is 1
2

∫ T

0
{xẏ − yẋ} dt; and

the cost functional is its negative, i.e., on using (22.31),

(22.33) J = − 1
2

T∫
0

(xW sin(α)− y{W cos(α) + w}) dt.

In terms of Lecture 17, f0 = − 1
2 (xW sin(α) − y{W cos(α) + w}),

f1 = W cos(α) + w and f2 = W sin(α). Hence, from (17.28)-(17.29)

and (17.32), the Hamiltonian is

(22.34) H = (λ1 − 1
2y){W cos(α) + w}+ (λ2 +

1
2x)W sin(α)

6See Akhiezer [1, p. 206].
7See, e.g., Maxwell [38, p. 128].
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after simplification, with

(22.35) Hα = W ({λ2 +
1
2x} cos(α)− {λ1 − 1

2y} sin(α)),

Hαα = −W ({λ2 +
1
2x} sin(α) + {λ1 − 1

2y} cos(α)) and co-state equa-

tions

(22.36) λ̇1 = −Hx = − 1
2W sin(α), λ̇2 = −Hy = 1

2{W cos(α)+w}.

Thus H is maximized by

(22.37) {λ2 +
1
2x} cos(α)− {λ1 − 1

2y} sin(α) = 0

with

(22.38) Hαα = −W{λ1 − 1
2y} sec(α) < 0.

It follows at once from (22.31) and (22.36) that

(22.39)
d

dt
(λ1 +

1
2y) = 0 =

d

dt
(λ2 − 1

2x)

and hence that λ1 +
1
2y = b and λ2 − 1

2x = −a, where a and b are

constants. So (22.37) becomes

(22.40) (x− a) cos(α) + (y − b) sin(α) = 0.

Let us now choose (a, b) for our origin of coordinates, relative to which

the plane’s polar coordinates r and θ satisfy

(22.41) x = a+ r cos(θ), y = b+ r sin(θ).

Now (22.40) yields r cos(θ) cos(α)+ r sin(θ) sin(α) = r cos(α− θ) = 0,

from which (22.32) implies

(22.42) α = θ + 1
2π.

Differentiating (22.41) with respect to time yields

(22.43) ẋ = ṙ cos(θ)− r sin(θ)θ̇, ẏ = ṙ sin(θ) + r cos(θ)θ̇.

Eliminating θ̇, the radial component of velocity is ṙ = ẋ cos(θ) +

ẏ sin(θ). Hence, from (22.31) and (22.42), ṙ = (W cos(α)+w) cos(θ)+

W sin(α) sin(θ) = w cos(θ) + W cos(α − θ) = w cos(α − 1
2π) + 0 =

w sin(α) = w
W ẏ, or

(22.44)
d

dt

(
r − w

W
y
)

= 0.
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Let us define

(22.45) e =
w

W
,

where e < 1 by assumption. Then, from (22.41) and (22.44), we infer

that r − e(b + r sin(θ)) = r(1 − e sin(θ)) − eb is constant, and hence

that r(1 − e sin(θ)) is constant. Whatever the value of this constant

is, it must be positive, because r > 0 and |e sin(θ)| ≤ |e| < 1; we are

therefore free to write the constant as μ(1− e2), where μ > 0. Thus

(22.46) r =
μ(1− e2)

1− e sin(θ)
.

This is the (polar) equation of an ellipse with eccentricity e and major

axis of length 2μ, oriented perpendicularly to the wind, with the origin

of coordinates at one of its foci;8 see Exercise 22.5 and Figure 22.3,

in which the distance OF between foci is 2μe. This ellipse is usually

regarded as the solution to Chaplygin’s problem.9

Nevertheless, to fly this course, a pilot would need to apply

the control law (22.42)—always steer perpendicularly to the radial

vector—and hence to know the location of the foci. If the pilot starts

flying parallel to the wind to be positioned at the base of the el-

lipse, then the primary focus is at distance μ(1 − e), where e is

known. Hence knowing O requires knowing μ, which must be in-

ferred from the flight time T . Eliminating ṙ from (22.43) and using

(22.31) and (22.42), the transverse component of velocity is rθ̇ =

ẏ cos(θ) − ẋ sin(θ) = W sin(α) cos(θ) − W cos(α) sin(θ) − w sin(θ) =

W sin(α− θ)− w sin(θ) = W{1− e sin(θ)}. Thus, from (22.46),

(22.47) W
dt

dθ
= Wθ̇−1 =

r

1− e sin(θ)
=

μ(1− e2)

{1− e sin(θ)}2 ,

implying

(22.48) WT =

2π∫
0

μ(1− e2)

{1− e sin(θ)}2 dθ =
2πμ√
1− e2

(Exercise 22.6). So, if the flight time is T , then the pilot must fly

along an ellipse whose major axis has length WT
√
1− (w/W )2/π, a

8See, e.g., Howison & Ray [23, p. 153].
9But for a deeper analysis, see Rimrott & Szczygielski [53].
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Θ

Α

w

W

Ψ

O

F
P

y

x

Figure 22.3. The solution to Chaplygin’s problem. The op-
timal trajectory is an ellipse of eccentricity e = w

W
with foci

at F and at O, which is also the origin of coordinates. Here P

denotes the plane’s position; θ is the polar angle; OP = r; W
and α = θ + 1

2
π are the plane’s velocity and heading relative

to the air; w is the wind velocity; and

ψ = π + tan−1
(

cos(θ)
e−sin(θ)

)

is the plane’s true heading, obtained by using tan(ψ) = dy
dx

=

ẏ/ẋ in conjunction with (22.31) and (22.42). The defining
property of this ellipse is that OP +PF is constant and equal

to the length of its major axis.

known quantity; and the optimal enclosed area will be

(22.49) 1
2

T∫
0

r2θ̇ dt = 1
2

2π∫
0

r2 dθ =
1

4π
W 2T 2

(
1−

{
w
W

}2)3
2

(Exercise 22.7).
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Exercises 22

1. Verify (22.14).

2. Verify that the boat’s initial heading relative to dry land is

precisely half of that relative to water when W = U in Figure

22.1(a). What if W = 3U?

3. Verify (22.26) and (22.30).

4. (a) What is wrong with the solution according to pp. 185-187

of Zermelo’s problem for open water when W = 0.6U?

(b) What is wrong with the solution according to pp. 188-189

of Zermelo’s problem for a river when W = 0.8U?

5. Verify that (22.46) is the polar equation of the ellipse in Figure

22.3, whose defining property is that OP + PF = 2μ.

6. Use the result that, on (0, π) or on (π, 2π),

Ψ(θ) = e cos(θ)
(1−e2){e sin(θ)−1} − 2

(1−e2)3/2
tan−1

(
e−tan( 1

2 θ)√
1−e2

)
is an anti-derivative of {1− e sin(θ)}−2 to verify (22.48).

Hint: Why is Ψ(θ) not an anti-derivative of {1 − e sin(θ)}−2

on (0, 2π)? How must Ψ be modified?

7. Verify (22.49).

8. Suppose that a boat with constant speedW must cross the open

water in Figure 22.1(a) through the current defined by (22.7)

as quickly as possible from the point (l,−h) to any point on the

shoreline. What are the optimal heading and trajectory? How

long does the crossing take?

9. Suppose that a boat with constant speed W must cross the

river in Figure 22.1(b) through the current defined by (22.24)

as quickly as possible from the point (l,−h) to any point on the

opposite bank. What is the optimal solution?

10. A circular island of radius 1 has its center at the origin and is

surrounded by open water with a current defined by

q = 1
6U(x2 + y2 − 1){yi− xj}.

Where would a boat reach the island from the point (2, 0), where

|q| = U , at constant speed W in the least amount of time?

Endnote. For further time-optimal navigational control problems,

see Bryson & Ho [8, pp. 82-86].

                

                                                                                                               



Lecture 23

State Variable
Restrictions

In Lecture 22 we considered two versions of Zermelo’s problem, one

for open water with a shoreline at y = 0 and one for a river with banks

at y = 0 and y = −h, respectively. We supposed in the first case that

water occupies y ≤ 0 with dry land where y > 0, and in the second

case that water occupies −h ≤ y ≤ 0 with dry land everywhere else.

But in Lecture 22 we did not allow the speed of the current to be

high, relative to that of the boat. What happens if it is?

In this regard, it helps to consider an equivalent formulation of

these problems, which is to allow water throughout the x-y plane,

but to bar the boat from entering y > 0 in either case, and from

entering y < −h as well in the second. In effect, the water contains

imaginary barriers, which the boat must not cross. Now, as you

discovered in Exercise 22.4, what happens when the speed of the boat

is sufficiently low, relative to the maximum speed of the current, is

that the “optimal” solution according to Lecture 22 not only fails to

satisfy 0 ≤ α ≤ π—the heading eventually exceeds π—but also goes

partly through a forbidden region, as indicated by Figure 23.1. That

means the solution isn’t really optimal at all! It also means that we

need some new theory to keep our state vector in bounds.

First note, however, that this reprobate solution makes perfect

sense mathematically because, according to (22.7), the current must

195
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W � U

W � 0.6U

x
0 l

y

h

0

�a�

W � 1.5U

W � 0.8U

x
0 l

y

h

0

�b�

Figure 23.1. An optimal and a pseudo-optimal trajectory
for Zermelo’s problem with l = 1

2
h on (a) open water with a

shoreline and (b) a river. Dashed lines denote the boundary
of a forbidden region.

change direction at y = 0: hence, for y > 0, it is helping to speed the

boat towards its destination. But the solution does not make sense

physically, because there is really no water at all where y > 0. We

will find it convenient to call this solution pseudo-optimal. We should

expect it to yield a lower minimum time than the true solution, and

this expectation will duly be confirmed (p. 199).

For the sake of simplicity, in developing our new theory, we tem-

porarily revert to the notation of Lectures 17 and 21, and we deal

only with the case where x = (x1, x2, . . . , xn) ∈ �n is constrained to

lie within a subset S ⊂ �n defined by a single inequality,

(23.1) χ(x) ≤ 0.

If the unrestricted optimal trajectory, say x∗
U , just happens to satisfy

χ(x∗
U (t)) ≤ 0 for all t ∈ [0, t1], then, of course, the optimal solution

subject to (23.1) is also x∗
U . Otherwise, the optimal trajectory x∗

consists of a concatenation of arcs that either lie in the interior of S

and satisfy χ(x∗) < 0, or else lie on the boundary of S and satisfy

χ(x∗) = 0. Differentiating χ(x(t)) = 0 with respect to t yields

(23.2) ∇χ(x) · ẋ = 0.

That is, when following the boundary of S, the state must move

tangentially to S (in a direction that is perpendicular to its nor-

mal). Thus the effect of (23.1) may be incorporated by adding a term

q∇χ(x) · f to the unrestricted Hamiltonian −f0 + λ · f to obtain the
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modified Hamiltonian

(23.3) H = −f0 + λ · f + q∇χ(x) · f = −f0 + {λ+ q∇χ(x)} · f,

where q = 0 if χ(x) < 0 but q is otherwise an arbitrary function of

time. If x lies on the boundary of S, then, because ẋ = f (by the

state equations), (23.2) implies ∇χ(x) · f = 0. So the extra term

always vanishes. Therefore, we apply the maximum principle to the

modified Hamiltonian (23.3) and write down the state equations in

the usual way. To maintain a constant value for H along the optimal

trajectory, however, we must insist that λ + q∇χ is continuous at

points where x either joins or leaves the boundary of S.

For Zermelo’s problem, we use x for x1 and y for x2 to be con-

sistent with Lecture 22. So, for the open water in Figure 23.1(a),

S = {(x, y) ∈ �2|y ≤ 0} and χ = y, implying

(23.4) λ+ q∇χ = λ1i+ (λ2 + q)j.

The optimal trajectory is now a concatenation of two arcs, with a

switch from the interior to the boundary ofS at some time ts ∈ (0, t1).

The state equations are

(23.5) ẋ = W cos(α)− Uy/h, ẏ = W sin(α)

from (22.8), and so the modified Hamiltonian is

(23.6) H = −1 + λ1{W cos(α)− Uy/h}+ (λ2 + q)W sin(α),

by (23.3)-(23.4), with λ̇1 = 0 and λ̇2 = λ1U/h as before.

For y < 0, i.e., in the interior of S, q = 0 with (22.5) and (22.11)

still holding: λ2 = λ1 tan(α) and H = −1 + K{W sec(α) − Uy/h}
on the optimal trajectory. On the boundary of S, however, y =

0 =⇒ ẏ = 0 =⇒ W sin(α) = 0 =⇒ α = π. It follows that H =

−1 + λ1{W cos(π) − 0} + (λ2 + q)W sin(π) = −1 − λ1W . Because

H = 0 on the optimal trajectory, the solution of λ̇1 = 0 for t ∈ (ts, t1)

is λ1(t) = constant = −1/W . The solution of λ̇1 = 0 for t ∈ (0, ts) is

λ1(t) = constant = K. But λ+ q∇χ is continuous, implying

(23.7) λ1(t)
∣∣ts+
ts− = 0 = {λ2(t) + q(t)}

∣∣ts+
ts−

from (23.4); in particular, λ1(ts−) = λ1(ts+), and so λ1(t) must be

the same constant K = −1/W for all t ∈ [0, t1]. But H = 0 on

the optimal trajectory for all t ∈ [0, ts], including at t = 0 where
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y = −h. Hence, if α∗
0 denotes the optimal initial heading, we have

−1 +K{W sec(α∗
0) + U} = 0, implying

(23.8) α∗
0 = sec−1

(
−1− U

W

)
.

Using αs to denote the heading α(ts−) as the shoreline is approached,

we can integrate (22.12a), or dt/dα = h sec2(α)/U , to obtain

(23.9) t = h
U {tan(α)− tan(α∗

0)}
for α ≤ αs, or t ≤ ts. In particular, ts = h{tan(αs) − tan(α∗

0)}/U .

Integrating dy/dα = ẏ/α̇ = hW sec(α) tan(α)/U yields

(23.10) y = h
(
W
U {sec(α)− sec(α∗

0)} − 1
)

= hW
U {sec(α) + 1}

for α < αs, or y < 0, on using (23.8). But y → 0 as t → ts− and

hence as α → αs. So sec(αs) = −1, implying αs = π: the arcs join

smoothly at t = ts, where

(23.11) ts = − h
U tan(α∗

0) = h
UW

√
U(U + 2W ).

From (23.5) and (23.10) we obtain ẋ = −{1 + sin(α) tan(α)}W ,

hence dx/dα = −hW{sec2(α) + sec(α) tan2(α)}/U , which yields

(23.12) x = l +
hW

2U

{
2{tan(α∗

0)− tan(α)} + tan(α∗
0) sec(α

∗
0)

− tan(α) sec(α) + ln

(
sec(α) + tan(α)

sec(α∗
0) + tan(α∗

0)

)}
.

In particular, setting α = αs = π and using (23.8), the boat reaches

the shoreline a distance

(23.13) xs = l − 1
2

{
(1 + 2W

U )
1
2

(
1− U

W

)
+ W

U ln
(
1 + U

W +
{

U
W

(
2 + U

W

)} 1
2
)}

h

from its destination. But along y = 0, we have ẋ = W cos(π) − 0 =

−W or x = W (t1 − t), implying t1 − ts = xs/W . Adding to (23.11),

we discover that the minimum time is

(23.14) t1 = xs

W + h
UW

√
U(U + 2W )

= l
W + h

2W

(
1+ 2W

U

)1
2
(
1+ U

W

)
− h

2U ln
(
1+ U

W +
{

U
W

(
2+ U

W

)}1
2
)
.

For t < ts, λ2 = λ1 tan(α) and q(t) = 0, so λ2(ts−) = − 1
W tan(αs)

= − 1
W tan(π) = 0 and q(ts−) = 0. For t > ts, on the other hand,
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Figure 23.2. Optimal and pseudo-optimal trajectories for
Zermelo’s problem with l = 1

2
h and (a) W = 0.6U on open

water with a shoreline (b) W = 0.8U on a river. Dashed lines
denote the boundary of a forbidden region.

λ̇2 = −W−1h−1U , implying λ2(t) = −W−1h−1Ut + L, where L is a

constant. From (23.6) we haveHα = −λ1W sin(α)+(λ2+q)W cos(α).

For α = π to maximize H for α ∈ [0, π], we require Hα ≥ 0 for α = π,

hence λ2 + q ≤ 0. We therefore choose λ2 + q = 0 or q(t) = −λ2(t) =

W−1h−1Ut−L, so that λ2(ts−)+q(ts−) = 0 = λ2(ts+)+q(ts+), and

(23.7) is totally satisfied. The constant L is arbitrary: we could, for

example, choose L = W−1h−1Uts to make q and λ2 both continuous

on [0, t1]. Note, however, that provided λ + q∇χ is continuous, it is

neither necessary nor always possible to make λ and q continuous at

every switching point; see Exercise 23.3.

For illustration, let us suppose that W = 0.6U and correct the

pseudo-optimal trajectory shown (solid) in Figure 23.1(a) and (dashed)

in Figure 23.2(a). Here (23.8) yields α∗
0 ≈ 0.6351π, (23.11) yields

ts ≈ 2.213h/U , (23.13) yields xs ≈ 1.007l and (23.14) yields t1 ≈
3.311h/U . The corresponding optimal trajectory is shown (solid)

in Figure 23.2(a). For the pseudo-optimal trajectory we have α∗
0 ≈

0.6147π, α∗
1 ≈ 1.173π and hence t∗1 ≈ 3.26h/U from (22.14): the

minimum time is unphysically shorter, because the pseudo-optimal

solution exploits a pseudo-current in the forbidden region.

Let us now attend to the river crossing in Figure 23.1(b). Here

S = {(x, y) ∈ �2| − h ≤ y ≤ 0}, so there are two constraints on y in

the first instance. To apply our theory, we reduce them to a single

constraint χ ≤ 0 by defining

(23.15) χ = y(y + h)
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so that

(23.16) λ+ q∇χ = λ1i+ (λ2 + q{2y + h})j.
The optimal trajectory is now a concatenation of up to three arcs,

with a switch from the boundary y = −h to the interior of S at some

time tr ∈ [0, t1], and a switch back to the boundary y = 0 at some

ts ∈ [0, t1] where 0 ≤ tr < ts ≤ t1. We denote the initial and final

headings on the interior arc by

(23.17) αr = α(tr+), αs = α(ts−)

and the switch points themselves by (xr,−h) = (x(tr),−h) and (xs, 0)

= (x(ts), 0). The state equations are now

(23.18) ẋ = W cos(α)− 4Uy

h

(
1 +

y

h

)
, ẏ = W sin(α)

from (22.25), and so the modified Hamiltonian is

(23.19) H = −1 + λ1

{
W cos(α)− 4Uy

h

(
1 +

y

h

)}
+ (λ2 + q{2y + h})W sin(α)

by (23.3) and (23.16). The co-state equations are λ̇1 = 0 and

(23.20) λ̇2 =
4λ1U

h

(
1 +

2y

h

)
− 2qW sin(α).

For −h < y < 0, i.e., in the interior of S, q = 0 and (22.5) and (22.11)

still hold; so, on using (22.24), we still obtain λ2 = λ1 tan(α), and

(23.21) H = −1 +K
{
W sec(α)− 4U y

h

(
1 + y

h

)}
on the optimal trajectory. On the boundary at y = −h or y = 0,

however, ẏ = 0 =⇒ W sin(α) = 0 =⇒ α = π; and soH = −1−λ1W =

0, implying λ1(t) = −1/W for t ∈ (0, tr) and t ∈ (ts, t1). The solution

of λ̇1 = 0 for t ∈ (tr, ts) is λ1(t) = K. Because λ+q∇χ is continuous,

(23.22) λ1(t)
∣∣ti+
ti−

= 0 = {λ2(t) + q(t){2y(t) + h}}
∣∣ti+
ti−

for i = r, s by (23.16); in particular, λ1(tr−) = λ1(tr+), λ1(ts−) =

λ1(ts+). We again infer that λ1(t) = −1/W for all t ∈ [0, t1].

For t ∈ (tr, ts), we have H = 0 with q = 0. Hence from (23.21)

in the limits as t → tr+, y → −h and t → ts−, y → 0 we obtain

−1+KW sec(αr) = 0 = −1+KW sec(αs) or sec(αr) = −1 = sec(αs),

by (23.21). So αr = π = αs. Here we have some crucial information
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about our interior arc. To see what else happens along it, we make

time dimensionless, analogously to (22.27) but after shifting the origin

of time from t = 0 to t = tr; i.e., we define

(23.23) τ =
U(t− tr)

h
, ξ =

x

l
, η =

y

h

so that τ = 0 corresponds to t = tr and τ = τs to t = hτs/U + tr.

Then in place of (22.28) we obtain

dξ

dτ
=

h

l

{W

U
cos(α)− 4η(1 + η)

}
, ξ(0) = ξr(23.24a)

dη

dτ
=

W

U
sin(α), η(0) = −1(23.24b)

dα

dτ
= 4(1 + 2η) cos2(α), α(0) = π(23.24c)

with ξr = x(tr)/l. Because these equations imply

(23.25) 4Uη(1 + η) = W{1 + sec(α)}

(Exercise 23.1), if we integrate them numerically from τ = 0 to τ = τs
and vary τs until η(τs) = 0 or (equivalently, by (23.24)-(23.25))

(23.26) η′(τs) = 0

is satisfied, then we also guarantee that αs = π as required. In effect,

and by analogy with (22.29), (23.26) is a nonlinear equation1 for the

unknown τs. Let us denote its solution by τ∗s , and the corresponding

solutions of (23.24b)-(23.24c) by η∗ and α∗, respectively. Then from

(23.23) and (23.24a) we obtain

(23.27) xs−xr = lξ(τ∗s )− lξr = h

τ∗
s∫

0

{W

U
cos(α)−4η(1+η)

}
dτ.

Also, from ẋ = −W on the boundary, we obtain x = l −Wt for 0 ≤
t ≤ tr and x = W (t1 − t) for tr ≤ t ≤ ts; in particular, xr = l −Wtr
and xs = W (t1 − ts). Hence total time on the optimal trajectory is

t∗1 = tr + ts − tr + t1 − ts

=
l − xr

W
+

hτ∗s
U

+
xs

W
=

l

W
+

hτ∗s
U

+
xs − xr

W
,

(23.28)

1With a simple root, which makes it far more amenable to solution by Newton’s
method than η(τs) = 0, which has a double root.
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where xs − xr is determined by (23.27).

We now observe that the time to cross from one bank of the river

to the other, namely, ts − tr = hτ∗s /U , is independent of where the

boat’s trajectory leaves the boundary. Subject to xr ≤ l and xs ≥ 0,

xr is completely arbitrary: for given l
h and W

U , the boat will reach

the opposite bank at the same fixed time after leaving the boundary,

at the same fixed distance xs − xr further downstream. The optimal

solution is therefore not unique. For illustration, we suppose that

W = 0.8U and correct the pseudo-optimal trajectory shown solid in

Figure 23.1(b) and dashed in Figure 23.2(b). Here τ∗s ≈ 1.739 and

(23.27) yields xs−xr ≈ 0.2225l. Four optimal trajectories are plotted,

the two most extreme ones (corresponding to xr = l, xs ≈ 1.2225l and

xr ≈ −1.2225l, xs = 0) together with a couple of intermediates (xr =

0.125l, xs ≈ 0.3475l and xr ≈ 0.675l, xs ≈ 0.8975l). In every case,

from (23.28), the minimum time from start to finish is t∗1 ≈ 2.758h/U .

The corresponding pseudo-optimal minimum time, achieved on the

dotted trajectory, is approximately 2.388h/U . For completeness, we

should also determine q and λ2. But this is a straightforward task by

the method described on p. 198; see Exercise 23.2.

Exercises 23

1. Verify (23.25).

2. Determine q and λ2 for the version of Zermelo’s problem dis-

cussed on pp. 199-202.

3. Solve Problem P (Lecture 16) subject to the additional con-

straint that the speed cannot exceed 1. Assume for simplicity

that x0
1 > 0.

Endnote. For further examples see Hocking [22, pp. 168-171].

                

                                                                                                               



Lecture 24

Optimal Harvesting

How best to harvest interdependent species—in the sense of maximiz-

ing the present value of a stream of future revenues from them—is an

important problem of optimal control in fisheries and wildlife man-

agement. It is also in general an extremely difficult problem, and

so here we consider only an idealized version of it; namely, to find

the optimal policy for combined harvesting of two populations that

interact as ecological competitors (as opposed to, e.g., predator and

prey). Let x(t) and y(t) denote their stock levels at time t; we use

x and y in place of x1 and x2 to reduce the number of subscripts

in our subsequent analysis. Then a reasonable model of the natural

dynamics of our two-species ecosystem, i.e., of its dynamics in the

absence of human predation through harvesting, is1

ẋ = xF (x, y),

ẏ = y G(x, y),
(24.1)

where F and G are linear functions defined by

F (x, y) = r
{
1− x

K

}
− αy,

G(x, y) = s
{
1− y

L

}
− βx,

(24.2)

1See, e.g., Mesterton-Gibbons [44, §1.5 and §4.11].
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204 24. Optimal Harvesting

and r, s, K, L, α and β are positive constants satisfying

(24.3) r > αL, s > βK.

As in Problem E of Lecture 16, r is the maximum per capita growth

rate and K is the carrying capacity of the first population, s and

L are the corresponding parameters for the second population, α or

β measures the extent to which the first or second population is in-

terfered with by the other, and (24.3) implies that such interference

is limited. Subject to this constraint, (24.1) has a unique positive

equilibrium at the point P0 with coordinates (x0, y0), determined by

(24.4) F (x0, y0) = 0 = G(x0, y0).

Thus, in their natural state, the populations co-exist at the equilib-

rium

(24.5) (x0, y0) =

(
Ks(r − αL)

rs− αβKL
,
Lr(s− βK)

rs− αβKL

)

because standard phase-plane analysis2 shows that, subject to (24.1)-

(24.3), the point (x(t), y(t)) is attracted towards P0 from any point

in the x-y plane at which x and y are both positive (Exercise 24.1).

Building on our discussion of Problem E in Lectures 16 and 19,

to introduce harvesting we replace (24.1) by

ẋ(t) = xF (x, y) − q1xu,

ẏ(t) = y G(x, y) − q2yu,
(24.6)

where u(t) denotes the harvesting effort at time t and q1, q2 are the

catchabilities of the two species. If p1, p2 are the prices per unit of

stock for the two species and c is the cost per unit of effort per unit

of time, then

(24.7) R = p1q1ux+ p2q2uy − cu

is the rate at which revenue accrues. Because we stopped using φ to

denote an extremal at the end of Lecture 15, we are free to recycle

this symbol; it is convenient to do so now, by defining

(24.8) φ(x, y) = p1q1x+ p2q2y − c = R/u.

2See, e.g., Mesterton-Gibbons [44, pp. 46-54].
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Then the optimal trajectory in the phase-plane of stock levels is such

that u(t) minimizes

(24.9) J = −
∞∫
0

Re−δt dt = −
∞∫
0

e−δtφ(x, y)u dt,

i.e., the negative of the present value of the stream of revenues over

the interval 0 ≤ t < ∞, subject to

x(0) = ξ1, y(0) = ξ2,(24.10)

x(∞) = x, y(∞) = y,(24.11)

and

(24.12) 0 ≤ u(t) ≤ umax,

where δ is the discount rate, umax is the maximum possible harvesting

effort and (x, y) is the long-run steady state of (24.6) that (x(t), y(t))

is required to approach.

Phase-plane analysis shows that if u = E is a constant—such that

E ≤ umax, because (24.12) must always hold—then trajectories with

ξ1 > 0, ξ2 > 0 in (24.10) are all attracted to a unique equilibrium

denoted by PE. From Exercise 24.2, if 0 < E < Ec, where

(24.13) Ec =

{
r(s−βK)
rq2−βKq1

if rq2 > sq1
s(r−αL)
sq1−αLq2

if rq2 < sq1

is the critical level of sustained effort that will drive one species to

extinction, then PE has coordinates

(24.14a) (x(E), y(E)) =
(
x0 − K(sq1−αLq2)E

rs−αβKL , y0 − L(rq2−βKq1)E
rs−αβKL

)
with (x0, y0) defined by (24.5). But if Ec < E < max(r/q1, s/q2),

then

(24.14b) (x(E), y(E)) =

{(
K
{
1− q1E

r

}
, 0
)

if rq2 > sq1(
0, L

{
1− q2E

s

})
if rq2 < sq1.

The attractor PE lies on the straight line ζ = 0, where

(24.15) ζ(x, y) = q2F (x, y)− q1G(x, y).

As E increases from 0 to Ec, PE slides along ζ = 0 from P0 to PEc
on

the phase-plane boundary xy = 0, and as E further increases from Ec

to max(r/q1, s/q2), PE slides along that boundary from PEc
to (0, 0).
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If E does become large enough to place PE on the boundary (requiring

Ec ≤ umax), then species x or species y is first extinguished according

to whether r/q1 or s/q2 is lower. The first extinguished species is said

to have the lower biotechnical productivity ; see Clark [10].

To illustrate these remarks, in Figure 24.1 the line ζ = 0 is drawn

for r
αL = 4 , s

βK = 5 (so that x0 ≈ 0.79K, y0 ≈ 0.84L) and for three

different values of the biotechnical productivity ratio

(24.16) ν =
rq2
sq1

,

namely, ν = 0.4 (for which species x is first extinguished by a suffi-

cient increase of E) and ν = 1.2 , ν = 2.8 (for which species y is first

extinguished, because ν > 1). The effect of increasing ν is to rotate

the line ζ = 0 anti-clockwise about P0. The above remarks are further

illustrated by Figure 24.3, whereX(umax) = 0 because s/q2 > umax >

r/q1, and by Figure 24.4, where (X(umax), Y (umax)) = (0, 0) because

umax exceeds both r/q1 and s/q2. Note, however, that although ex-

tinction of both species may be feasible, it need not be optimal, as we

shall demonstrate.

We assume for simplicity that c is small enough to satisfy

(24.17) c < min(p1q1K, p2q2L)

so that the resource would be profitable to harvest in its natural state

(and hence would not remain there). In other words, φ(x0, y0) > 0,

where φ is defined by (24.8); see Exercise 24.3. We also assume that

(24.18) umax ≥ E∞,

where E∞ is the least constant level of effort that, if sustained in-

definitely, would dissipate all of the revenue: it is feasible, albeit

nonoptimal, to dissipate the resource. E∞ is defined implicitly by

(24.19) φ(X(E∞), Y (E∞)) = 0

and explicitly by

(24.20) E∞ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{
(1− θ1)

r
q1

if θ1 < ν−1
ν−βK/s

Ep if θ1 > ν−1
ν−βK/s

if ν > 1

{
(1− θ2)

s
q2

if θ2 < 1−ν
1−αLν/r

Ep if θ2 > 1−ν
1−αLν/r

if ν < 1,
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Figure 24.1. Equilibria in the singular phase-plane for
(24.36). The straight lines have equation ζ = 0, defined by

(24.15), for various values of the biotechnical productivity ra-
tio ν, and they intersect at P0, defined by (24.5). The dashed
curve represents ψ = 0 defined by Table 24.1, which is inde-

pendent of ν. The large dots represent boundary equilibria,
which always exist; the small dot represents an interior equi-
librium, which exists if ν is sufficiently close to 1.

where it proves convenient to define

(24.21) Ep =
(rs− αβKL)φ(x0, y0)

p1q1K(sq1 − αLq2) + p2q2L(rq2 − βKq1)

and

(24.22) θ1 =
c

p1q1K
, θ2 =

c

p2q2L
,

so that (24.17) is equivalent to max(θ1, θ2) < 1; see Exercise 24.4.

In terms of Lecture 17, we have x1 = x and x2 = y with f0 =

−e−δtφu, f1 = F − q1u and f2 = G− q2u from (24.6)-(24.9); and so,

from (17.29) and (17.32), the Hamiltonian is

(24.23) H = e−δtφu+ λ1x(F − q1u) + λ2y(G− q2u)

with co-state equations

(24.24) λ̇1 = −∂H

∂x
, λ̇2 = −∂H

∂y
.
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It is convenient to define

(24.25) w1(t) = λ1xe
δt, w2(t) = λ2ye

δt

and

(24.26) η(t) = e−δt(φ− q1w1 − q2w2).

Then, because λ1 and λ2 are continuous, η is also continuous, and

(24.23)-(24.24) become

(24.27) H = ηu+ e−δt(Fw1 +Gw2)

and

ẇ1 = (δ − xFx)w1 − xGxw2 − xφxu,(24.28a)

ẇ2 = −yFyw1 + (δ − yGy)w2 − yφyu,(24.28b)

where x or y in a subscript position denotes partial differentiation.

The optimal harvesting effort umust maximizeH for every t ∈ [0,∞);

because H depends linearly on u, it is implicitly defined by

(24.29) u =

⎧⎪⎪⎨
⎪⎪⎩
0 if η(t) < 0

us(t) if η(t) ≡ 0

umax if η(t) > 0,

where us(t) is such as to make η(t) vanish identically. Arcs on which

u = us are called singular, in keeping with Lecture 19.

Our problem now is to transform (24.29) into an explicit control

law. From (24.1), (24.2), (24.26) and (24.28) we obtain

η̇(t) = e−δt{k(x, y)w1 + l(x, y)w2 −m(x, y)},(24.30)

η̈(t) = e−δt{A(x, y, w1, w2)u(t)−B(x, y, w1, w2)}(24.31)

(Exercise 24.5), where k, l, m, A, and B are defined by Table 24.1

and the dependence on t of x, y, w1 and w2 is suppressed by the

notation. Now, if η(t) vanishes identically over a finite interval of

time, then also η̇(t) ≡ 0 ≡ η̈(t). Using (24.26) and (24.30) to solve

the pair of equations η(t) = 0 = η̇(t) yields the explicit expressions

w1 = W1(x, y) and w2 = W2(x, y), where W1, W2 are defined by
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Table 24.1. Functions needed to define us(x, y) and (xe, ye)

k(x, y) = q1xFx + q2yFy

l(x, y) = q1xGx + q2yGy

m(x, y) = δφ− xFφx − yGφy

Δ(x, y) = q1l − q2k
Δ(x, y)W1(x, y) = lφ− q2m
Δ(x, y)W2(x, y) = q1m− kφ
A(x, y, w1, w2) = q1xmx + q2ymy − xkφx − ylφy

− (q1xkx + q2yky)w1 − (q1xlx + q2yly)w2

B(x, y, w1, w2) = (xkFx + ylFy)w1 + (xkGx + ylGy)w2 − δm
+ xF (mx − kxw1 − lxw2)

+ yG(my − kyw1 − lyw2)
Q1(x, y) = mx − kxW1 − lxW2 − xFxφx − yGxφy

Q2(x, y) = my − kyW1 − lyW2 − xFyφx − yGyφy

ψ(x, y) = xF (δ − yGy)φx + yG(δ − xFx)φy

+ xy(φxGFy + φyFGx)
− {(δ − xFx)(δ − yGy)− xyFyGx}φ

ζ(x, y) = q2F − q1G

Table 24.1. Then, because also η̈(t) ≡ 0 on singular arcs, (24.31)

yields the feedback control law

(24.32) u = us(x, y) =
b(x, y)

a(x, y)
=

xFQ1 + yGQ2 + ψ

q1xQ1 + q2yQ2

for any circumstances in which 0 < u < umax; here Q1, Q2 and

ψ are defined by Table 24.1, a(x, y) = A(x, y,W1(x, y),W2(x, y)),

b(x, y) = B(x, y,W1(x, y),W2(x, y)) and the dependence on x and

y of F , G and functions defined by Table 24.1 is suppressed by the

notation used on the right-hand sides of (24.32) and Table 24.1.3

Candidates for optimal trajectory in the rectangle where 0 ≤ x ≤
K and 0 ≤ y ≤ L can now be constructed by piecing together arcs

from three phase-planes, one corresponding to each line of (24.29).

3Assuming no (isolated) points where a and b vanish together, it can be shown
that both must be positive along any singular arc, because an additional necessary
condition is the generalized Legendre-Clebsch condition

∂

∂u

d2

dt2
∂H

∂u
≥ 0

(which is second order, like Jacobi’s condition); see Bell & Jacobson [4]. Applied to
(24.27) for any singular arc, this condition yields ∂{η̈}/∂u ≥ 0 and hence a ≥ 0, by
(24.31). Because a cannot vanish unless b vanishes too (or u would cease to be finite
and so violate 0 < u < umax), we conclude that a (and hence also b) must be positive
along any singular arc. This observation is pertinent to (24.44) below.
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In view of (24.18), equilibria in the u = 0 and u = umax phase-planes

yield zero or negative revenue. So any candidate for the optimal

steady state (x, y) must be an equilibrium point in the singular phase-

plane, for which, by (24.6), the governing equations are

(24.33) ẋ(t) = f(x, y), ẏ(t) = g(x, y),

where f and g are defined by

f(x, y) = x{F (x, y) − q1us(x, y)},
g(x, y) = y{G(x, y) − q2us(x, y)},

(24.34)

and us is defined by (24.32). It follows that F (x, y) − q1us(x, y) =

0 = G(x, y)− q2us(x, y); and hence, from (24.32), that

(24.35) ψ(x, y) = 0,

where ψ is defined by Table 24.1 (Exercise 24.6). That is, (x, y) must

lie on the curve with equation ψ(x, y) = 0. To illustrate, the curve

ψ = 0 is drawn in Figure 24.1 for the values

p1q1K

c
= 2.75,

r

δ
= 1.6,

αL

δ
= 0.4,

p2q2L

c
= 2.25,

s

δ
= 1.25,

βK

δ
= 0.25,

(24.36)

which satisfy (24.3) and (24.17). We will describe the region where

ψ < 0 as above the curve, and that where ψ > 0 as below it. Thus,

the equilibrium P0 is always above the curve because, by Table 24.1

and (24.4), ψ(x0, y0) = −{(δ+rx0/K)(δ+sy0/L)−αβx0y0}φ(x0, y0),

and this expression is negative by (24.3) and (24.17); likewise, (0, 0) is

always below the curve because ψ(0, 0) = −δ2φ(0, 0) = δ2c is positive

by Table 24.1 and (24.8). Note that the curve ψ = 0 is completely

determined by the six dimensionless parameters p1q1K/c, p2q2L/c,

r/δ, s/δ, αL/δ, and βK/δ; in particular, it is independent of ν.

The nature of any equilibrium point (x̃, ỹ) of dynamical system

(24.33) is determined by the eigenvalues of the Jacobian matrix

(24.37) A =

[
a11 a12
a21 a22

]
=

[
∂f
∂x (x̃, ỹ)

∂f
∂y (x̃, ỹ)

∂g
∂x (x̃, ỹ)

∂g
∂y (x̃, ỹ)

]
,

and hence by the roots of the quadratic equation

(24.38) r2 − (a11 + a22)r + a11a22 − a12a21 = 0
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(see Mesterton-Gibbons [44, pp. 54-56]). There is always a bound-

ary equilibrium at (x1, 0), where x1 is the only positive root of the

quadratic equation ψ(x, 0) = 0. The corresponding eigenvalues are

(24.39) r1 = δ, r2 = −ζ(x1, 0)

q1

(Exercise 24.7). So this equilibrium is a saddle point or an unsta-

ble node according to whether ζ(x1, 0) is positive or negative, i.e.,

whether (x1, 0) lies to the left or right of the line ζ = 0 in Figure

24.1.4 There is also always a boundary equilibrium at (0, y1), where

y1 is the only positive root of the quadratic equation ψ(0, y) = 0. The

corresponding eigenvalues are

(24.40) r1 =
ζ(0, y1)

q1
, r2 = δ.

So this equilibrium is an unstable node or a saddle point according

to whether ζ(0, y1) is positive or negative, i.e., whether (0, y1) lies to

the left or right of ζ = 0. To illustrate, in Figure 24.1, x1 = 0.569K

and ζ(x1, 0) ÷ sq1 = 0.431ν − 0.886 (positive for ν > 2.06), whereas

y1 = 0.612L and ζ(0, y1) ÷ sq1 = 0.847ν − 0.388 (negative for ν <

0.458). Thus, for values of ν in Figure 24.1, (x1, 0) is a saddle point if

ν = 2.8 but an unstable node if ν = 0.4, and (0, y1) is a saddle point

if ν = 0.4 but an unstable node if ν = 2.8; whereas both equilibria

are unstable nodes if ν = 1.2.

Any other equilibrium point of (24.33) must be an interior equi-

librium satisfying both F (x, y) = q1us(x, y) and G(x, y) = q2us(x, y),

and hence must lie not only on the curve ψ = 0 but also on the line

ζ = 0 through P0. For example, in Figure 24.1, if ν = 1.2, then there

is an interior equililbrium where x = 0.421K and y = 0.316L. An in-

terior equilibrium exists when the biotechnical productivities are not

too unequal—for example, in Figure 24.1 when ν lies between 0.458

and 2.06, so that neither biotechnical productivity can be much more

than twice the other.

4Note that ζ(0, 0) = q2r − q1s. If ν < 1, then ζ(0, 0) < 0 and the line ζ = 0
crosses the y-axis above the origin, so that (x1, 0) and (0, 0) are both on the negative
side of the line. If ν > 1, then ζ(0, 0) > 0 and the line ζ = 0 crosses the x-axis to the
right of the origin, so that (x1, 0) is on the positive side of the line if it falls to the left
of it, and otherwise, the negative side.
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The linear equation ζ(x, y) = 0 is easily solved for x in terms of y,

but the explicit form of the resulting expression is rather cumbersome,

and we choose to avoid it. Instead we rewrite ζ = 0 as x = x̂(y), so

that ζ(x̂(y), y) = 0, and we define

(24.41) z(y) = ψ(x̂(y), y).

Let (x̃, ỹ) now denote only an interior equilibrium, so that ψ(x̃, ỹ) =

0 = ζ(x̃, ỹ); ỹ is found by solving z(y) = 0, and x̃ = x̂(ỹ) follows.

Then a straightforward, albeit lengthy, calculation shows that the

sum of the eigenvalues of the corresponding Jacobian matrix, i.e., the

sum of the roots of the quadratic equation (24.38), is

(24.42) r1 + r2 = δ

and that their product is given by

(24.43) Ka(x̃, ỹ)r1r2 = xeye(rq2 −Kq1β)z
′(ỹ)

(Exercise 24.8). A comparison of (24.39), (24.40) and (24.42) reveals

that at least one of the eigenvalues is invariably positive; and so (x, y),

in order to be approachable, must be a saddle point.

Because z(y) is cubic in y, in principle there are up to three

interior equilibria. In practice, however, there is rarely more than

one: there is precisely one when ν is sufficiently near 1, and there

is none when ν is either very large or very small.5 For the sake of

simplicity, we assume henceforward that there is at most one interior

equilibrium. Then, by the index theorem of phase-plane analysis,6

there are no limit cycles satisfying x, y > 0 in the singular phase-plane

governed by (24.34), and any interior equilibrium must accordingly

lie on a separatrix linking (x1, 0) to (0, y1).

Let us denote this separatrix by Γ; it is depicted as a solid curve

in Figures 24.2, 24.3(a), 24.4(a) and 24.5(a). The last three figures

indicate that Γ is close to ψ = 0 (dashed). Now, we have already

shown that P0 lies above ψ = 0 (p. 210); and although the curves are

not identical, because they are close we expect that P0 lies above Γ as

well. For any fixed values of the parameters p1q1K/c, p2q2L/c, r/δ,

s/δ, αL/δ, and βK/δ, Γ can be found by numerical integration of the

5Further discussion would take us far too far afield, but the essential point is
that the curvature of ψ = 0 in Figure 24.1 does not, in practice, change sign; see
Mesterton-Gibbons [42, pp. 78-80].

6See, e.g., Brand [7, p. 213].
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Figure 24.2. Some trajectories (dashed) in the (a) u = 0
and (b) u = umax phase-planes for (24.36) with ν = 1.2,
corresponding to Figure 24.4. The dot represents the long-

run steady state (x, y); the dotted line in (b) represents the
revenue-dissipation line φ = 0, with φ defined by (24.8).

equation fdy−gdx = 0, where f and g are defined by (24.34) and the

direction of (dx, dy) at the interior equilibrium is determined by an

eigenvector of the Jacobian.7 The numerical evidence overwhelmingly

confirms that P0 does lie above Γ—which, though not as good as

absolute proof, will suffice for present circumstances. In any event,

we assume henceforward that P0 lies above Γ. We also assume that

Pumax
lies below Γ, and that points (x, y) on Γ satisfy

(24.44) 0 < b(x, y) < umax a(x, y).

Thus we ensure that us(x, y) < umax, in keeping with (24.12). The

truth of our assumptions is readily confirmed by numerical means.

Because P0 lies above Γ and attracts (x(t), y(t)) from any point in

the positive u = 0 phase-plane, zero harvesting drives (x(t), y(t)) to-

wards the separatrix from any point below it, as illustrated by Figure

24.2(a). Likewise, because Pumax
lies below Γ and attracts (x(t), y(t))

from any point in the positive u = umax phase-plane, maximum har-

vesting drives (x(t), y(t)) towards the separatrix from any point above

7Methods for numerical integration of ordinary differential equations arising in
optimal control problems are discussed, e.g., in Chapter 12 of Hocking [22] and Chapter
V of Knowles [28]. Nowadays, however, it is more expedient to use mathematical
software such as the NDSolve command of Mathematica, already mentioned in footnotes
on pp. 63 and 189, which is lucidly described by Ruskeepää [56, Chapter 23].
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it, as illustrated by Figure 24.2(b), in which (24.18) is satisfied by

choosing umax = E∞ so that Pumax
lies on the revenue-dissipation

line φ = 0, shown dotted. It can now be demonstrated that

(24.45) u =

⎧⎪⎪⎨
⎪⎪⎩
0 if (x, y) lies below Γ

us(x, y) if (x, y) lies on Γ

umax if (x, y) lies above Γ

uniquely satisfies our necessary conditions, driving the system to-

wards its long-term equilibrium (x, y) with at most one switch of

control. Observe that, in Figure 24.2(a), there is a u = 0 trajectory

from (0, 0) through (x, y) to P0. If the initial point (ξ1, ξ2) lies on this

curve and below the separatrix, then (x, y) will be driven to (x, y)

in finite time by u = 0; control will then switch to us(x, y), which

will keep (x, y) at (x, y) forever. Likewise, in Figure 24.2(b), there

is a u = umax trajectory through (x, y) to Pumax
. If (ξ1, ξ2) lies on

this curve and above the separatrix, then it will be driven to (x, y) in

finite time by u = umax, and control will then switch to us(x, y). If

(ξ1, ξ2) just happens to lie on Γ, then only singular control is used:

there is no switch. For all other (ξ1, ξ2), (x, y) is reached in infinite

time with a single switch from nonsingular to singular control.

To establish that (24.45) is unique, let us first suppose that (ξ1, ξ2)

lies below Γ on the u = 0 trajectory from (0, 0) to (x, y), so that the

long-term equilibrium is reached in finite time, say at t = ts, when

control switches from u = 0 to u = us(x, y). Then, from (24.31) and

(24.44), we have

(24.46) η̈(ts) = −e−δtsb(x, y) < 0.

Because η and η̇ are continuous and η ≡ 0 on Γ, we must have η(ts) =

0 = η̇(ts). Hence, from (24.46), throughout some interval of time

immediately prior to t = ts, we must have η < 0 on the approach path,

so that Pontryagin’s necessary conditions are satisfied. Furthermore,

control cannot have switched from a different arc for t < ts unless

η has crossed zero. But extensive numerical integrations of (24.1)—

backwards in time from the long-term equilibrium for many different

values of the dimensionless parameters p1q1K/c, p2q2L/c, r/δ, s/δ,

αL/δ, βK/δ, and ν—reveal that η̈ remains negative for all t < ts, so

that η cannot change sign. Similarly, if (ξ1, ξ2) lies above Γ on the
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Figure 24.3. (a) The separatrix Γ (solid) and curve ψ = 0
(dashed) for (24.36). The dot is the long-run steady state

(x, y) = (0, y1) for ν = 0.4. (b) The optimal harvesting policy

for ν = 0.4 and Emax = E∞ with (ξ1, ξ2) = (0.64K, 0.25L),
marked as a dot. Dashed curves are arcs in the u = umax

and singular phase-planes of which the optimal trajectory is
composed; the dotted line is φ = 0, defined by (24.8). Control

switches from u = umax to u = us(x, y) at (0.45K, 0.26L).

u = umax trajectory through (x, y) to Pumax
, then at t = ts, when

control switches from u = umax to u = us(x, y),

(24.47) η̈(ts) = e−δts{umaxa(x, y)− b(x, y)} > 0

by (24.31) and (24.44). Because η(ts) = 0 = η̇(ts) as before, it fol-

lows from (24.46) that, throughout some interval of time immediately

prior to t = ts, we must have η > 0 on the approach path, so that

Pontryagin’s necessary conditions are again satisfied. Furthermore,

control cannot have switched from a different arc for t < ts unless η

has crossed zero. But extensive numerical integrations again reveal

that η̈ remains positive for all t < ts, so that η cannot change sign.

If (ξ1, ξ2) does not lie on a nonsingular trajectory through (x, y),

then the long-term steady state is approachable only along an arc of

the separatrix in the singular phase-plane, and (x, y) → (x, y) along

Γ as t → ∞. Let this final arc of the trajectory from (ξ1, ξ2) to (x, y)

begin at (xs, ys) on Γ at time ts. Then the reasoning above applies

without change to t < ts: on any potentially optimal nonsingular arc,

η can reach zero only on Γ, η < 0 below Γ for u = 0 and η > 0 above
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Γ for u = umax. It follows that (24.45) uniquely satisfies the necessary

conditions, for any positive (ξ1, ξ2). We emphasize that this assertion

is technically a conjecture, because it ultimately relies on numerical

evidence; but given the strength of the evidence, for all practical

purposes the assertion is true. Now, if (24.45) uniquely satisfies the

necessary conditions, and if an optimal control is known to exist, then

that optimal control is guaranteed to be (24.45). So, does an optimal

control exist? The answer is yes, and it can be proven, but the proof

is beyond the scope of this book.8 So we simply accept the result on

faith, and with it the result that (24.45) is optimal—at least for all

practical purposes.

Note that the identity of (x, y)—which need not be an interior

equilibrium, but could instead be either (x1, 0) or (0, y1)—is deter-

mined automatically by (24.45). The resultant possibilities for the

optimal policy are illustrated for various values of ξ1 and ξ2 by Fig-

ures 24.3-24.5, in which (24.18) is satisfied by taking Emax/E∞ = 1.

In Figure 24.3 (where ν = 0.4) or in Figure 24.5 (where ν = 2.8), the

biotechnical productivities r/q1 and s/q2 are so unequal that optimal

harvesting extinguishes the less productive species; whereas in Figure

24.4 (where ν = 1.2) the biotechnical productivities are commensu-

rate enough to preserve both species from extinction. Figures 24.3

and 24.5 reveal that even if two species would coexist in the absence

of harvesting, one species may be driven to extinction by the optimal

policy if it is sufficiently more catchable than the other. Figure 24.4

reveals that, in order to drive the (biotechnically) more productive

species toward equilibrium in the long run, it may be necessary to

drive the less productive species significantly away from equilibrium

in the short run.

The above technique for finding an optimal harvesting policy ap-

plies not only to ecological competitors, but also to other two-species

ecosystems. As discussed more fully in Mesterton-Gibbons [43], it

has been used for independent species, for predator and prey, and for

spatially separated populations of a single species; for example, it has

8See Lee & Markus [33, p. 262, Corollary 2]. Because u is nonnegative, (24.6)
ensures that (x(t), y(t)) can never leave the rectangle in which 0 ≤ x ≤ K, 0 ≤ y ≤ L.
Because of this uniform bound on (x(t), y(t)), the compactness and convexity of the
interval [0, umax] and the existence—as is self-evident from above—of at least one
feasible control, the existence of an optimal control follows.
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Figure 24.4. (a) The separatrix Γ (solid) and curve ψ =
0 (dashed) for (24.36) with long-run steady state (x, y) ≈
(0.42K, 0.32L) when ν = 1.2. (b) The optimal policies for

ν = 1.2 and Emax = E∞ with (ξ1, ξ2) = (0.05K, 0.45L)
and (ξ1, ξ2) = (0.85K, 0.12L). Dashed curves are arcs in the
u = umax and singular phase-planes of which the optimal tra-
jectories are composed; the dotted line is φ = 0. In one case

control switches from u = 0 to u = us(x, y) at (0.09K, 0.59L);
in the other, from u = umax to u = us(x, y) at (0.54K, 0.11L).
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Figure 24.5. The optimal harvesting policy for (24.36) with
(ξ1, ξ2) = (0.24K, 0.15L) when ν = 2.8. (a) The dot marks
the steady state (x, y) = (x1, 0). (b) Control switches from
u = 0 to u = us(x, y) at (0.45K, 0.28L).
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been used to find an optimal trapping strategy for a beaver popu-

lation causing damage to privately held timberland.9 The common

mathematical structure of these various optimal control problems is

that they have two state variables and are linear in a single control

variable. The technique we have developed in this lecture—with some

modification—covers many such problems of interest, and continues

to find application in the literature.

Exercises 24

1. Verify that (x0, y0) is a stable node of dynamical system (24.1)

with x0 and y0 defined by (24.5).

2. Verify (24.14).

3. Show that (24.17) implies φ(x0, y0) > 0 with φ defined by (24.8).

4. Verify (24.20).

5. Verify (24.30)-(24.32).

6. Verify (24.35).

7. Verify (24.39) and (24.40).

8. Verify (24.42) and (24.43) by using mathematical software for

symbolic manipulation.

9The independent-species problem, which Clark [10] and Mesterton-Gibbons [41]
analyzed, is the special case of the above for which α = 0 = β. The related predator-
prey problem, which Mesterton-Gibbons [42] analyzed, corresponds to replacing β > 0
by β < 0, so that the second species becomes a predator on the first; the special case
in which q1 = 0 was analyzed by Ragozin & Brown [52] and by Wilen & Brown [64].
Huffaker et al. [24] analyzed optimal strategies for beaver trapping.

                

                                                                                                               



Afterword

Throughout this book, I have consistently sought to emphasize clarity

over rigor. But trading rigor for clarity exacts a price: I have largely

had to assume throughout that an optimal solution exists.

In principle there are two general methods for establishing opti-

mality. The first is to invoke sufficiency conditions (as in Lecture 13):

if sufficient conditions for optimality are satisfied, then the existence

of an optimal control becomes, in effect, an incidental byproduct of

the analysis. The second method is to demonstrate that all known

necessary conditions for optimality are satisfied by only a finite num-

ber of candidates, whose values of J can be compared directly; then

the control that generates the most extreme value of J , or the unique

such control if there is only one—as in, e.g., Lecture 17 (p. 146)—is

bound to be optimal, provided that an optimal control is known to

exist. In practice, the second method tends to be far more widely

applicable than the first, which greatly increases the importance of

knowing whether an optimal control exists.

In that regard, on the one hand there is no general guarantee, as

discovered in Lecture 3. On the other hand, and as implicitly acknowl-

edged at the end of Lecture 24, optimal controls have been shown to

exist for large classes of problems that arise in practice, including,

in particular, time-optimal control.1 But these results exploit the

1See, e.g., Hocking [22, p. 48] and Lee & Markus [33, p. 127 and Chapter 4].
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more advanced concepts and methods of functional analysis—which

are intentionally just beyond the scope of this book.2

And so I have reached my optimal stopping point.

2Good introductions to functional analysis include Franks [15], Kreyszig [30] and
Kolmogorov & Fomin [29]. Lax [31] is a more advanced and modern text. Rudin
[55] is a classic. Books discussing functional analysis in the context of the calculus of
variations and optimal control theory include Lebedev & Cloud [32], Troutman [60]
and Young [65].

                

                                                                                                               



Solutions or Hints for
Selected Exercises

Lecture 1
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1. The surface area is 2πJ [y], where

J [y] =
1∫
0

y
√{1 +

(
y′
)2} dx.

We need our family of trial functions y = yε(x) to satisfy

yε(0) = 1, yε(1) = 2; and (1.14) suggests yε(x) = 1 + xε. Then

J(ε) =
1∫
0

(1 + xε)
√{1 + ε2x2ε−2} dx,

which is plotted against ε above on the left. We see that J(ε)

achieves a minimum at ε = ε∗ ≈ 1.65739 with J(ε∗) ≈ 2.08127.

Thus S∗ ≤ 2πJ(ε∗) ≈ 13.077. The true minimizer is a cate-

nary defined by y = y∗(x) = sech(C) cosh(C + cosh(C)x),
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222 Solutions or Hints for Selected Exercises

where C ≈ 0.323074 is the sole positive root of the equation

cosh(C + cosh(C)) = 2 cosh(C) and 2πJ [y∗] ≈ 13.0617; see

Exercise 2.1. We compare y = y∗(x) with y = yε∗(x) in the

right-hand diagram on p. 221: y = y∗(x) is the solid curve, and

y = yε∗(x) is the dashed curve—not a bad approximation!

2. Whenever 4ε − 2 > −1 or ε > 1
4 , J(ε) = J [yε] =

∫ 1

0
ε2x4ε−2 dx

converges to ε2/(4ε − 1) with minimum value 1
4 where ε = 1

2 .

Hence J∗ ≤ 1
4 .

Lecture 2

1. Rewrite the equation of the extremal as y = B cosh(x/B + C),

where B and C are arbitrary constants, i.e., replace A/B by C

in (2.33). We require y = 1 when x = 0, or B = 1/ cosh(C).

Hence y = cosh(C + cosh(C)x)/ cosh(C). Requiring that y = 2

when x = 1 determines C. If, e.g., Mathematica is used to

obtain the root, then a suitable command is

c/.FindRoot[Cosh[c+Cosh[c]]==2Cosh[c],{c, 0.5}].

2. Rewrite the extremals in the form y = B cosh(x/B + C) as for

Exercise 2.1. The boundary conditions require 2 = B cosh(C)

and 2 = B cosh(1/B + C), implying cosh(C) = cosh(1/B + C)

because both sides equal 2/B. Because cosh is an even func-

tion taking every value on (1,∞) twice, either C = 1/B +C or

C = −{1/B+C}; but the first is impossible, and so BC = − 1
2 ,

implying both

B cosh
(

1
2B

)
= 2

and cosh(C) + 4C = 0. Plotting the left-hand side of the

first equation against B (opposite, left), we see that the equa-

tion has two roots, say B1 and B2, where B1 ≈ 0.153395 and

B2 ≈ 1.93504 by numerical methods; for example, the Mathe-

matica command

B/.FindRoot[B Cosh[1/(2B)] == 2, {B, Bi}]

will find both roots (with suitable successive initial guesses,

e.g., Bi = 0.1, Bi = 2). The corresponding values of C are

C1 = −1/(2B1) ≈ −3.25956 and C2 = −1/(2B2) ≈ −0.258392

(and satisfy cosh(Ci) + 4Ci = 0 for i = 1, 2). The extremal

y1(x) = B1 cosh(x/B1 + C1)

                

                                                                                                               



Lecture 2 223

is shown as a dashed curve, below on the right, and the extremal

y2(x) = B2 cosh(x/B2 + C2) is shown as a solid curve.

The corresponding values of J may be obtained either an-

alytically or numerically. Proceeding analytically, we obtain

J [yi] =
1
2Bi

{
1 + Bi sinh(1/Bi)

}
for i = 1, 2. If we use Mathe-

matica for numerical integration, then suitable commands are

y[x ,B ]:=B Cosh[x/B-1/(2B)];

dy[x ,B ]:=Sinh[x/B-1/(2B)];

J[B ]:=NIntegrate[y[x,B]Sqrt[1+dy[x,B]ˆ2],{x,0,1}];

{J[B1],J[B2]}.

Either way, we obtain J [y1] ≈ 4.06492 and J [y2] ≈ 1.97869. So

if either extremal is a minimizer, then it must be y2. It can be

shown that y2 is indeed the minimizer; see, e.g., [16, p. 21].

B
0 1 2 3

0

1

2

3

B
0 0.5 1

0

1

2

3. Proceeding as above for Exercise 2.3, in place of B cosh
(

1
2B

)
=

2 we obtain the equation

B cosh
(

e
2B

)
= 2.

The left-hand side of this equation is negative for B < 0, and

so any root must be positive. Because the left-hand side has

second derivative 1
4B

−3e2 cosh
(

e
2B

)
, which is positive, and ap-

proaches infinity both as B → 0 and as B → ∞, it has a unique

global minimum on (0,∞). Using the Mathematica command

FindMinimum[B Cosh[Exp[1]/(2 B)], {B, 1}]

or otherwise, we discover that the least value, reached where

B ≈ 1.13292, is approximately 2.05078 and certainly exceeds

2. Hence the equation has no solution. In this case, the ends

of the curve are so far apart relative to their distance from the

horizontal axis of revolution that the minimum surface area is

achieved by two circular disks of radius 2; see, e.g., [16, p. 21].

4. We obtain F (x, y, y′) = y2y′2 with Fy = 2yy′2 and Fy′ = 2y2y′.

Therefore, the Euler-Lagrange equation d
dx (Fy′) = Fy reduces

                

                                                                                                               



224 Solutions or Hints for Selected Exercises

to 2y{yy′′ + y′
2} = 2y d

dx (yy
′) = 0. Because y = 0 is inadmis-

sible, we must have yy′ = A, where A is a constant. Hence
d
dx (

1
2y

2) = A, so that the extremals are a family of parabolas

with equation y2 = 2Ax+B, where B is another constant. The

boundary conditions imply B = 0 and A = 1
2 , hence y =

√
x.

With regard to Exercise 1.2, this example illustrates that a set

of trial functions will sometimes include an admissible extremal.

5. Here Fy′ = 2y′ and Fy = 2ex. So the Euler-Lagrange equation

is y′′ = ex, implying y = ex + Ax + B along any extremal,

where A and B are constants. The boundary conditions require

1+0+B = 0 and e+A+B = 1. Hence A = 2−e and B = −1,

or y = ex + (2− e)x− 1.

6. From (2.21) with F = y2+y′2+2yex the Euler-Lagrange equa-

tion is 2y + 2ex = d
dx{2y′} or y′′ − y = ex, an inhomogeneous

linear ODE of the second order. The associated homogeneous

ODE y′′−y = 0 has general solution Aex+Be−x, where A and

B are constants. With y = Cxex we have y′′ = (x+2)ex, and so

the inhomogeneous ODE is satisfied if 2C = 1 or C = 1
2 . Thus

1
2xe

x is a particular solution, and y = Aex+Be−x+ 1
2xe

x is the

general solution. The boundary conditions require A + B = 0

and Ae + B/e + 1
2e = e or A = e/{4 sinh(1)} and B = −A =

−e/{4 sinh(1)}. So y = e
e−1/e sinh(x) +

1
2xe

x.

7. x = 1
2{sin(t) + cosech

(
π
2

)
sinh(t)}.

8. x = sin(t)− 1
2 t cos(t).

9. The total cost is CJ [x], where

J [x] =
1∫
0

{ẋ2 + αtẋ} dt.

The Euler-Lagrange equation is 2ẍ+ α = 0. The solution sub-

ject to x(0) = p0, x(1) = 2p0 is x(t) = p0(1 + t) + 1
4αt(1 − t).

Hence production increases throughout the year only if α < 4p0;

otherwise, it increases until t = 1
2 + 2p0

α and then decreases.

Lecture 3

3. The extremals satisfy
exy′√
(1+(y′)2

= A,

where A is the constant in (3.4). Because ω/
√
1 + ω2 ∈ (−1, 1),

                

                                                                                                               



Lecture 3 225

we must have ex > |A|. Thus
dy
dx = A√

e2x−A2
=⇒ y = arctan

(√
e2x−A2

A

)
+B,

where B is another constant. Hence, on rearranging, we have

e2x = A2{1+tan2(y−B)} = A2 sec2(y−B) =⇒ ex cos(y−B) =

constant. Because ex > 0, cos(y −B) cannot change sign.

4. Consider the problem of minimizing

J [x] =
t1∫
t0

K(t)ẋ2 dt

subject to x(t0) = x0 and x(t1) = x1 with K(t) ≥ 0. Here

F (t, x, ẋ) = K(t)ẋ2 does not depend explicitly on x; so, by (3.4),

the Euler-Lagrange equation integrates to Fẋ = 2K(t)ẋ = C,

where C is a constant. Let φ denote the extremal, which there-

fore satisfies 2K(t)φ̇ = C and achieves the value

J [φ] =
t1∫
t0

K(t)φ̇2 dt.

Now, in place of (3.10) we obtain

J [φ+ ε η]− J [φ] =
t1∫
t0

K(t){φ̇(t) + ε η̇}2 dt− J [φ]

=
t1∫
t0

{K(t)φ̇2 + 2εK(t)φ̇η̇ + ε2K(t) η̇2} dt− J [φ]

= εC
t1∫
t0

η̇ dt+ ε2
t1∫
t0

K(t) η̇2 dt,

which is clearly nonnegative for all η ∈ D1 satisfying η(t0) =

0 = η(t1). For (a), we have K(t) = t3, t0 = 1, t1 = 2, x0 = 0,

x1 = 3 and hence φ̇(t) = 1
2Ct−3 or φ(t) = − 1

2Ct−2 + constant,

implying φ(t) = 4(1 − t−2). For (b), we have K(t) = t−3,

t0 = 1
2 , t1 = 1, x0 = −1, x1 = 4 and hence φ̇(t) = 1

2Ct3 or

φ(t) = 1
8Ct4 + constant, implying φ(t) = 4

3 (4t
4 − 1).

5. With F = 1
2 ż

2 − gz implying Fż = ż and Fz = −g, the Euler-

Lagrange equation d{Fż}/dt − Fz = 0 yields z̈ = −g =⇒ ż =

−gt+A =⇒ z = − 1
2gt

2+At+B, where A and B are constants

satisfying − 1
2g · 02 + A · 0 + B = h and − 1

2gT
2 + AT + B = 0

or A = 1
2gT − h/T and B = h. Now, because −g = z̈ by the

Euler-Lagrange equation, we may rewrite

J [z + ε η]− J [z] =
T∫
0

{
1
2 (ż + εη̇)2 − g(z + εη)− 1

2 ż
2 + gz

}
dt
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as
T∫
0

{
1
2ε

2η̇2 + εżη̇ − gεη
}
dt =

T∫
0

{
1
2ε

2η̇2 + εżη̇ + εz̈η
}
dt

=
T∫
0

(
1
2ε

2η̇2 + ε d
dt{żη}

)
dt = 1

2 ε
2

T∫
0

η̇2 dt+ żη
∣∣T
0

which is clearly nonnegative for all η ∈ D1 such that η(0) =

0 = η(T ). Note that H = żFż − F = 1
2 ż

2 + gz = 1
2A

2 + gB =
1
2 ż(0)

2 + gh is indeed a constant.

Lecture 4

1. The cycloidal arc has length
θ1∫

− 1
2π

√(
dx
dθ

)2
+
(
dy
dθ

)2
dθ = sec(θ1){sec(θ1) + tan(θ1)} ≈ 1.474

compared to
√
2 ≈ 1.414 for the straight line, 1

2π ≈ 1.571 for

the quarter-circle and
1∫
0

√{
1 + {y′ε(x)}2

}
dx =

1∫
0

√{1 + (ε∗)2x2ε∗−2} dx ≈ 1.467

(found numerically) for the best trial curve. So the extremal is

slightly longer.

2. x = 2
2−t (on which H = 1

4 ).

3. Note that in this case it is far easier to work with the Euler-

Lagrange equation in the form ẍ = 1 than it is to use H =
1
2 ẋ

2 − x = constant; but either way, the admissible extremal is

x = 1
2 t

2 + 1
2 t+ 1 (on which H = − 7

8 ).

5. Because F (t, x, ẋ) =
√
1 + ẋ2/t does not depend explicitly on x,

the Euler-Lagrange equation integrates to Fẋ = ẋ/(t
√
1 + ẋ2)

= constant = 1/A =⇒ t
√
1 + ẋ2 = Aẋ. Using ẋ = tan(θ)

we obtain t = ±A sin(θ) =⇒ dx
dθ = ẋ dt

dθ = ±Aẋ cos(θ) =

±A sin(θ) =⇒ x = ∓A cos(θ) + B. Hence t2 + (x − B)2 = A2.

The boundary conditions imply B = 2 and A2 = 5. Hence

x = 2 −
√
5− t2. The substitution ẋ = tan(θ) is not essential;

see Gelfand & Fomin [16, pp. 19-20].

6. The admissible extremal is the curve with parametric equations

x = 1
4a sec

3(θ) csc(θ), y = 1
4a
{
ln
(
cot(θ)

)
− 1

2 sec
2(θ)+ 3

4 sec
4(θ)

}
for 1

4π ≤ θ ≤ 1
3π. This curve is sketched opposite, on the left.

7. The curve approaches a straight line in the limit as ν → ∞. The

resulting extremals are shown opposite in the center for three
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different values of ν, namely, ν = 1.05 (lowest curve), ν = 1.25

and ν = 6.25 (highest curve). The time of ascent

ta = 1√
2g

1∫
0

√
1+(y′)2

ν2−y dx

= 1√
2g

θ1∫
θ0

√
1+tan2(θ)
A cos2(θ)

dx
dθ dθ =

√
2A
g (θ1 − θ0)

is plotted against ν on the right.

8. (a) By analogy with (1.14), we choose xε(t) = 1 + 21−εtε. The

associated upper bound is approximately 4.47512.

(b) The minimizing curve is x = φ(t) =
√
4t+ 1 with J∗ =

J [φ] = 2
√
5.

9. (a) With the same trial functions as for Exercise 4.9, the upper

bound is approximately 2.28592.

(b) The minimizing curve is x = φ(t) = (
√
3)t with J∗ = J [φ] =√

4 + {ln(3)}2.
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Lecture 6

1. Because Fy′ = x + 2y′, the first Weierstrass-Erdmann corner

condition implies c + 2ω1 = c + 2ω2 or ω1 = ω2. More funda-

mentally, there are no broken extremals because Fy′y′ = 2 > 0,

and so the problem is regular.

3. There are no broken extremals.

4. (a) (b− a)2 > 2 (β − α)2.

5. Yes.

Lecture 7

1. For any F of the form F (x, y, y′) = g(x, y)
√
1 + y′2, we have

Fy′y′(x, y, y′) = g(x,y)

(1+y′2)
√

1+y′2
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so that Fy′y′(x, φ(x), φ′(x)) ≥ 0 ⇔ g(x, φ(x)) ≥ 0. For the

brachistochrone problem, g(x, y) = 1√
1−y

with y < 1 for x > 0.

So g(x, φ(x)) > 0 for x > 0, with limx→0 g(x, φ(x)) = +∞.

2. Here Fy′y′(x, y, y′) = 2x(3y′
2 − 1)/(1 + y′

2
)
3
is nonnegative

along the extremal if |y′| ≥ 1/
√
3. But from Exercise 4.6 we

have y′ = tan(θ) with 1
4π ≤ θ ≤ 1

3π; so |y′| ≥ 1, implying

Fy′y′(x, y, y′) > 0.

3. Yes. It satisfies the strengthened Legendre condition, because

Fẋẋ = 2C > 0 for all t ∈ [0, 1].

4. Yes.

5. Yes.

Lecture 8

2. (a) Only if b < π. (b) Yes.

4. Yes. Here F is independent of y, and the strengthened Le-

gendre condition holds by Exercise 7.2. Hence (8.42) implies

that Jacobi’s condition is satisfied.

5. Both conditions are satisfied for all b > 0: Jacobi’s equation is

η′′ − 2 tanh(x)η′ = {1− 2 tanh2(x)}η, and the solution subject

to (8.36) is η(x) = x cosh(x).

6. Yes.

7. (a) Yes. Jacobi’s equation is (4t + 1)2η̈ + 4(4t+ 1)η̇ − 4η = 0.

The solution subject to η(0) = 0, η̇(0) = 1 is η(t) = t/
√
4t+ 1.

(Another, linearly independent, solution is (2t+ 1)/
√
4t+ 1.)

(b) Yes. Jacobi’s equation is 4η̈ − 4 ln(3)η̇ + {ln(3)}2η = 0.

The solution subject to η(0) = 0, η̇(0) = 1 is η(t) = t(
√
3)t.

(Another, linearly independent, solution is (
√
3)t.)

Lecture 9

1. In terms of (9.4)-(9.13), k = 1, l = 0 and Fy′y′(k) = −4 cos(2k) =

−4 cos(2) > 0 (because 1
2π < 2 < π), so that y = x achieves

a weak local minimum. To show that y = x fails to achieve a

strong local minimum, consider, e.g., the strong variation

yε(x) =

{
tan(ε)−1
tan(ε)+1 x if 0 ≤ x < cε

{1+tan(ε)}x−2 tan(ε)
1−tan(ε) if cε < x ≤ 1,
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where ε > 0 and cε = sin(ε){cos(ε) + sin(ε)}; the curve con-

sists of the base and altitude of a right-angled triangle whose

hypotenuse is the extremal. It can be shown (e.g., numeri-

cally) that J [yε] < cos(2) for sufficiently small ε; for example,

if ε = 0.2, then J [yε] ≈ −0.70309. The absolute minimum

J [y∗] = −1 is achieved along the broken extremal defined by

y∗(x) =

{
1
2πx if 0 ≤ x < 1

2 + 1
π

1 + 1
2π(1− x) if 1

2 + 1
π < x ≤ 1.

Lecture 10

1. Here

E(x, φ(x), φ′(x), ω) = cos(2ω)− cos(2) + 2(ω − 1) sin(2)

fails to be nonnegative; for example, it is negative if ω ≤ 0.

2. Consider

J [y] =
b∫
a

{y′2 − ν2y2}Q(x) dx,

where Q is positive.

3. For any F of the form F (x, y, y′) = g(x, y)
√
1 + y′2, we have

Fy′(x, y, y′) =
g(x, y) y′√
1 + y′2

,

implying

E(x, y, y′, ω) =
g(x, y)√
1 + y′2

{
√
1 + ω2

√
1 + (y′)2 − (1 + ωy′)}

=
g(x, y)√
1 + y′2

{|u||v| − u·v} =
g(x, y)√
1 + y′2

(|u||v|{1− cos(θ)}),

where i and j are orthogonal unit vectors, and u = i + ωj and

v = i + y′j are inclined at angle θ. For the brachistochrone

problem, g(x, y) = 1√
1−y

with y < 1 except where x = 0, so

g(x, y) is always positive, with limx→0 g(x, y) = +∞. E ≥ 0

now follows from cos(θ) ≤ 1. More fundamentally,

Fy′y′(x, y, y′) =
g(x, y)

(1 + y′2)
√
1 + y′2

> 0

implies a regular problem.

4. No.

5. Yes.

                

                                                                                                               



230 Solutions or Hints for Selected Exercises

Lecture 11

2. Here φ(x) = 2 ln(x+ 1) with (b, β) = (e− 1, 2).

3. (a) Here φ(x) = 1
24x(3x− 13), with minimum J∗ = − 17

64 .

(b) Here φ(x) = 1
8 (x− 1)(x− 6), with minimum J∗ = − 55

192 .

(c) The admissible extremal y = 1
8

(
x2−5x+2

)
does not achieve

a minimum: no minimum exists.

4. F = xy′
2
+

√
xy′ implying Fy′ = 2xy′ +

√
x and Fy = 0. So

the Euler-Lagrange equation is d
dx

{
2xy′ +

√
x
}
= 0, which in-

tegrates to y = 1
2k ln(x)−

√
x+ l, where k and l are constants.

But y(1) = 0; hence l = 1, and y = φ(x) = 1
2k ln(x) −

√
x + 1

with J = 1
4{1− b+ k2 ln(b)} along any admissible extremal.

(a) Here (11.30) yields 2bφ′(b)+
√
b = k = 0 and φ(x) = 1−

√
x

regardless of b; but b = 2 requires β = φ(2) = 1 −
√
2. Note

that J = 1
4{1 − b + k2 ln(b)} is minimized by k = 0 when b is

independent of k.

(b) Here (11.31) yields H(b, φ, φ′) = 1
4 (k/

√
b − 1)2 = 0 or k =√

b and φ(b) = β with β = 1 yields 1
2k ln(b) −

√
b = 0. Thus

k{ln(k) − 1} = 0, implying k = e with b = e2 (b > 1 prevents

k = 0). So φ(x) = 1
2e ln(x)−

√
x+ 1 is an admissible extremal.

Nevertheless, it fails to yield a minimum, because with

φ(b) = 1 or k = 2
√
b/ ln(b) we have J = 1

4{1 − b + 4b/ ln(b)}
and dJ/db = −1

4{1−2/ ln(b)}2, so that J has a stationary point

where b = e2 but decreases on (1,∞).

(c) Here β = b with dy
dx = 1 on ΛB , so that (11.32) and φ(b) =

β yield k = 1
4 (k/

√
b − 1)2 and k = 2(b − 1 +

√
b)/ ln(b) or

4(b− 1+
√
b){b− 1+

√
b− (2b+

√
b) ln(b)}+ b ln(b)2 = 0. Using

a software package, we obtain b ≈ 1.5208, hence k ≈ 8.3678

with J ≈ 7.2082.

5. (a) Here φ(x) = 4− ex, with α = 3 and minimum J∗ = 2.

(b) Here φ(x) = 7−2ex, with a = ln
(
5
2

)
and minimum J∗ = −2.

(c) Here there is no admissible extremal.

(d) Here φ(x) = k(ex − 3) + 1 with left-hand endpoint (a, α),

where a = ln(ξ∗) ≈ −0.8924, α = 1/ξ∗ − 1 ≈ 1.441, k =

(α − 1)/(ξ∗ − 3) ≈ −0.1703, ξ∗ ≈ 0.4097 is the only root of

the quintic equation 2ξ5 − 12ξ4 + 22ξ3 − 8ξ2 + 15ξ − 6 = 0 and

J∗ = 4 + 2ea − {ea − 3}−1{e−a − 2}2 ≈ 4.894.
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6. (a) Here there is no admissible extremal.

(b) Here φ(x) = (x + e) ln
(
1 + x

e

)
with (b + e) ln

(
1 + b

e

)
= 1.

Using a software package, we find that b ≈ 0.8728.

7. F = xe−y′/x + y′ − y implying Fy′ = −e−y′/x + 1 and Fy = −1.

So the Euler-Lagrange equation is d
dx

{
−e−y′/x

}
= −1, which

integrates to e−y′/x = x + k or y′ = −x ln(x + k), where k

(> 0) is a constant, and integration subject to y(0) = 0 yields

y = φ(x) = 1
2 (k

2 − x2) ln(x+ k)− 1
2k

2 ln(k) + 1
4x(x− 2k) with

J = 1
36b{7b2+30kb+12k2−18k+9b}+ 1

6k
2{2k+3(b−1)} ln(k)+

1
6 (b + k){(3 − b)(k − b) − 2k2} ln(b + k) along any admissible

extremal.

(a) From (11.26) and above, H = y′Fy′ −F = −(y′+x)e−y′/x+

y = x(x+k) ln
(
x+k
e

)
+φ(x) along any extremal. SoH(b, φ, φ′) =

b(b + k) ln
(
b+k
e

)
+ β. Here β = −1, and so (11.31) requires

b(b + k) ln( b+k
e ) = 1 or ( b+k

e )b(b+k) = e. This equation and

φ(b) = −1 yield a pair of equations for k and b. Using a software

package, we obtain b ≈ 1.3709 and k ≈ 2.0033 with J ≈ 2.1633.

(b) Here b+ β + 1 = 0 with dy
dx = −1 on ΛB ; and from above,

Fy′ = 1 − k − x = 1 − k − b on ΛB . Hence (11.32) reduces

to (1 − k − b) × (−1) = H(b, φ, φ′) = b(b + k) ln
(
b+k
e

)
+ β or

2b+k = b(b+k) ln
(
b+k
e

)
. For (b, β) to lie on ΛB we also require

b+φ(b)+1 = 0. These two equations determine k and b. Using

a software package, we obtain b ≈ 1.9327 and k ≈ 3.5416 with

β ≈ −2.9327 and J ≈ 7.895.

Lecture 12

1. F (x, y, y′) = 1
2y

′2+y′y+y′+y =⇒ Fy = y′+1, Fy′ = y′+y+1.

So, using ρ as a shorthand for ρ(x, y) in (12.1) and (12.23):

Fy(x, y, ρ(x, y))− d
dx{Fy′(x, y, ρ(x, y))}

= ρ+ 1− d
dx{ρ+ y + 1}

= ρ+ 1− d
dx

{
y
x + x

2 + y + 1
}
= ρ+ 1−

{
y′

x − y
x2 + 1

2 + y′
}

= ρ+ 1−
{

ρ
x − y

x2 + 1
2 + ρ

}
= y

x2 − ρ
x + 1

2 = 0.

2. Using ρ as a shorthand for ρ(x, y) in (12.1) and (12.26):

Fy(x, y, ρ(x, y))− d
dx{Fy′(x, y, ρ(x, y))}

= ρ+ 1− d
dx{ρ+ y + 1}

= ρ+ 1− d
dx

{
x+ y + 1

}
= ρ+ 1− 1− y′ = 0.
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3. y = 2(x− 1) =⇒ dy
dx = 2. So

K[Γ3] =
∫ 3

1

{
−2x−2 − 1 + 6x− 1

8x
2
}
dx = 235

12 .

x
8 4 0 4 8l�

y

8

4

0

4

8

L
2 L� 1.5

J

J�

2.1

Lecture 13

1. From Exercise 10.3 the brachistochrone problem is regular. It

therefore suffices to show that (4.26) can be embedded in a field

of extremals. From (4.15) and (4.19), the general solution of the

Euler-Lagrange equation is

x = k{θ + sin(θ) cos(θ)}+ l, y = 1− k cos2(θ),

where k and l are constants. From (4.20)-(4.27), the admissible

extremal Γ∗ has parametric equations

x = k∗{θ + sin(θ) cos(θ)}+ l∗, y = 1− k∗ cos2(θ)

for − 1
2π ≤ θ ≤ θ1, where θ1 ≈ −0.116π is the larger root of the

equation t+sin(t) cos(t)+ 1
2π = cos2(t); k∗ = sec2(θ1) ≈ 1.1458;

and l∗ = 1
2π sec2(θ1) ≈ 1.7999. To construct a suitable field of

extremals {Γk} from the general solution, we keep l fixed at l∗

while varying k. Let Γk be the curve with parametric equations

x = k{θ + sin(θ) cos(θ)}+ l∗, y = 1− k cos2(θ)

for − 1
2π ≤ θ ≤ 1

2π. For k < 0, Γk is a symmetric arch that ex-

tends from (−1
2kπ, 1) to ( 12kπ, 1) with apex at (l∗, 1 − k), and

Γ−k is its reflection in y = 1. Thus Γk ∪ Γ−k is a closed curve,

and by allowing its label k to vary from 0 to ∞—or, which is

exactly the same thing, allowing k to vary over the whole of �
for Γk—we obtain a family of concentric closed curves, centered
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on (l∗, 1), which covers the entire plane. The left-hand diagram

opposite shows Γ∗ embedded in this field of extremals.

3. No, because Weierstrass’s necessary condition fails to hold.

6. No, because 1
4π is then conjugate to 0.

7. See Hestenes [20, pp. 135-136].

Lecture 14

1. Differentiate (14.10) with respect to x: yx = −c + 1
2 (1 + c2)x.

Solve (14.10) for c: c = {2±
√

4y − x2}/x. Now substitute from

the second equation into the first.

Lecture 15

2. (a) y = 1 + 7x− 3x2. (b) y = 3x2 − 11x+ 10.

3. y = ±2 sin(πx).

4. From Lectures 1 and 2, the constrained problem is to minimize

J [y] =
∫ 1

0
y{1 + (y′)2}1/2 dx

subject to

I[y] =
∫ 1

0
{1 + (y′)2}1/2 dx = L

with y(0) = 1 and y(1) = 2, so that Ψ =
√{1 +

(
y′
)2}(y − λ)

in Euler’s rule. From (4.8),

y′ ∂Ψ
∂y′ −Ψ = λ−y

{1+(y′)2}1/2 = constant = −k.

Proceeding as in Lecture 4, the substitution y′ = tan(θ) yields

y = λ + k sec(θ) and x = k ln
(
sec(θ) + tan(θ)

)
+ l, where l is

another constant. Hence

y = λ+ k cosh
(
x−l
k

)
(on using sec2(θ)− tan2(θ) = 1), so that I[y] = L reduces to

k
{
sinh

(
1−l
k

)
+ sinh

(
l
k

)}
= L

while the boundary conditions require λ + k cosh
(
l
k

)
= 1 and

λ+ k cosh
(
1−l
k

)
= 2. Eliminating λ, we obtain

k
{
cosh

(
1−l
k

)
− cosh

(
l
k

)}
= 1.

Now we have a pair of equations for k and l, readily solved by

numerical means for any given L; and if k∗ and l∗ denote the

solution pair and y∗ the corresponding extremal, then the value

achieved is found to be

J∗ = J [y∗] = λ∗L+ 1
2k

{
1 + k cosh

(
1−2l
k

)
sinh

(
1
k

)}
,
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where λ∗ = 1−k∗ cosh
(
l∗

k∗

)
, from above. For example, if L = 1.5

then k∗ ≈ 0.604, l∗ ≈ 0.0136, λ∗ ≈ 0.395 and J∗ ≈ 2.092. In

the right-hand diagram on p. 232, J∗ is plotted against L for

values of L between
√
2 and 1.5. It achieves a minimum where

L = L∗ ≈ 1.44769 (with k∗ ≈ 0.95, l∗ ≈ −0.307 and λ∗ = 0);

the corresponding value is J∗ ≈ 2.07883, agreeing with the re-

sult obtained in Exercise 2.1.

Lecture 16

1. Consider the more general problem of minimizing J [u] sub-

ject to ẏ = K(t)u with y(0) = 0 and y(1) = 1. Let the

control be perturbed from u∗ to u = u∗ + v in such a way

that the associated trajectory is perturbed from y∗ satisfying

ẏ∗ = K(t)u∗ to y = y∗ + δy satisfying ẏ = K(t)u. Then

y(0) = 0 and y∗(0) = 0 imply δy(0) = y(0)−y∗(0) = 0; likewise,

y(1) = 1 and y∗(1) = 1 imply δy(1) = y(1) − y∗(1) = 0. Also

ẏ = ẏ∗ + d{δy}/dt = K(t)(u∗ + v) =⇒ d{δy}/dt = K(t)v. Now

with u∗ = qK(t), we find that J [u]− J [u∗] becomes
1∫
0

(u∗ + v)2 dt−
1∫
0

u∗2 dt =
1∫
0

v2 dt+ 2
1∫
0

u∗v dt

=
1∫
0

v2 dt+ 2q
1∫
0

K(t)v dt =
1∫
0

v2 dt+ 2q
1∫
0

d{δy}
dt dt

=
1∫
0

v2 dt+ 2qδy
∣∣1
0

=
1∫
0

v2 dt+ 2q × 0 =
1∫
0

v2 dt,

and so J [u] > J [u∗] for all v �= 0. Now we require only y(0) = 0

and y(1) = 1, or K(0) = 0 and

q =

{
1∫
0

{K(τ )}2 dτ
}−1

.

With K(t) = t2 we confirm K(0) = 0 and obtain q = 5.

2. With K(t) = ln(1 + t), we confirm that K(0) = 0 and obtain

q = 1/(2{1− ln(2)}2).

Lecture 17

2. (a) As in the case of (17.33), we have f0(x, u) = 1, but now

with f1(x, u) = αu − βu2 + γx. Hence, on using (17.32),

H(λ, x, u) = λ0f0(x, u) + λ1f1(x, u) = λ1(αu − βu2 + γx) − 1,
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implying Hu = λ1(α − 2βu) and Huu = −2λ1β. From (17.28)

we have λ̇1 = −∂H/∂x = −γλ1, implying λ1(t) = Ke−γt,

where K is constant. If K > 0, then λ1 > 0 and Huu < 0,

so that H is maximized by u = u∗ = α
2β ∈ [−1, 1]. The opti-

mal trajectory therefore satisfies ẋ∗ = αu∗ − β(u∗)2 + γx∗ or

ẋ∗−γx∗ = 1
4α

2β−1, with solution x∗(t) = − 1
4α

2β−1γ−1+Leγt,

where L is constant. Thus H(λ, x∗, u∗) = γKL−1, after simpli-

fication. The three unknowns K, L and t∗1 are now determined

by x(0) = x0, x(t∗1) = 0 and (17.26). We obtain

K = 4β
α2+4βγx0 , L = x0 + α2

4βγ , t∗1 = − 1
γ ln

(
1 + 4βγx0

α2

)
so that K > 0 with t∗1 > 0 requires 0 > x0 > − 1

4α
2β−1γ−1.

Note that t∗1 → ∞ as x0 → − 1
4α

2β−1γ−1.

(b) If K < 0, then λ1 < 0 and Huu > 0, so that H is maxi-

mized by u = u∗ = −1. The optimal trajectory now satisfies

ẋ∗ = −α − β + γx∗, with solution x∗(t) = (α + β)/γ + Leγt.

Proceeding as before, we obtain

K = 1
γx0−α−β , L = x0 − α+β

γ , t∗1 = 1
γ ln

(
α+β

α+β−γx0

)
so that K < 0 with t∗1 > 0 requires 0 < x0 < (α + β)/γ. Note

that t∗1 → ∞ as x0 → (α+ β)/γ.

(c) Because −α−β ≤ αu−βu2 ≤ 1
4α

2β−1 for −1 ≤ u ≤ 1, the

state equation implies −α−β+γx ≤ ẋ ≤ 1
4α

2β−1+γx for all x.

So x cannot be steered to the origin if either x0 ≤ − 1
4α

2β−1γ−1

or x0 ≥ (α+ β)/γ. See the discussion on p. 154.

Lecture 18

1. For the positive phase-plane, we shift the origin from (0, 0)

to P+ by defining ξ1 = x1 − 1, ξ2 = x2 − 1 so that (18.13)

becomes ξ̇1 = −4ξ1 + 2ξ2, ξ̇2 = 3ξ1 − 3ξ2 =⇒ 2dξ2/dξ1 =

3(ξ1 − ξ2)/(ξ2 − 2ξ1). This equation is homogeneous, and can

therefore be solved by substituting ξ1w for ξ2 to obtain
dξ1
ξ1

=
2(w − 2) dw

(1 + w)(3− 2w)
,

which integrates to kξ1
5(1 + w)6 = 2w − 3, where k is a con-

stant. Replacing w by ξ2/ξ1 yields k(ξ1 + ξ2)
6 = 2ξ2 − 3ξ1 or

k(x1 +x2 − 2)6 = 2x2− 3x1 +1. For this curve to pass through
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(0, 0) we require k = 1
64 . Hence Γ+ has equation

(x1 + x2 − 2)6 = 64(2x2 − 3x1 + 1), x1 ≤ 0.

Similarly Γ− has equation

(x1 + x2 + 2)6 = 64(3x1 − 2x2 + 1), x1 ≥ 0.

P�

P

�

x18 4 0 4 8

x2

8

4

0

4

8

u� � 1
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P

��
x18 4 0 4 8

x2

8

4

0

4

8

u� � 1

��

�

P�

P

x18 4 0 4 8

x2

8

4

0

4

8

�a,b�

x12 1 0 1 2

x2

2

1

0

1

2. The positive and negative phase-planes have saddle points at

P+ = (−7, 5) and P− = (7,−5), respectively. The phase-planes

of potentially optimal arcs are sketched above (top, left and

right). The system is controllable only if x0 lies in the open

infinite strip between the lines x1+x2 = ±2; let us denote it by

Σ. Then, for any x0 ∈ Σ, a unique trajectory satisfying Pon-

tryagin’s principle transfers x to the origin; the optimal control

is (18.19), where Γ+ is defined by

(x1 + 7)2 + 3(x1 + 7)(x2 − 5) + 2(x2 − 5)2 + 6 = 0, x2 ≤ 0,

Γ− is defined by

(x1 − 7)2 + 3(x1 − 7)(x2 + 5) + 2(x2 + 5)2 + 6 = 0, x2 ≥ 0
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and Γ = Γ+ ∪ Γ−. Some optimal trajectories are sketched op-

posite (bottom, left).

4. See Pinch [50, pp. 116-119].

5. The positive and negative phase-planes have saddle points at

P+ = (−1,−1) and P− = (1, 1), respectively. The system

is controllable only from starting points on the line segment

joining P+ to the origin, where u∗ = 1; or on the line segment

joining P− to the origin, where u∗ = −1.

6. The positive and negative phase-planes of potentially optimal

arcs are sketched in the diagram below; the optimal control is

(18.19), where Γ = Γ+ ∪ Γ− has equation

x1 = −x2 + sgn(x2) ln(|1 + sgn(x2) x2|).

�

x12 0 2

x2

2

0

2

u� � 1

��
x12 0 2

x2

2

0

2

u� � 1

7. Because ẋ2 has the sign of u∗, positive trajectories ex2 − x1 =

constant are traversed upwards and negative trajectories ex2 +

x1 = constant are traversed downwards, as indicated in the di-

agram opposite (bottom, right). Let the positive and negative

trajectories to the origin be denoted by Γ+ and Γ−, respectively,

with Γ = Γ+ ∪ Γ−; i.e., Γ± is defined by x2 = ln(1± x1). Then

the system is controllable to the origin only from the shaded

region to the left of Γ, i.e., from

S =
{
x ∈ �2|x1 ≤ min(ex2 − 1, 1− ex2)

}
.

For x0 = (a, b) ∈ S, the optimal control is u∗ = 1 below Γ−

and u∗ = −1 on Γ−.

8. See Pontryagin et al. [51, pp. 36-42].
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Lecture 19

1. (a) Two of the phase-planes correspond to Figure 17.1. The

third phase-plane, the singular one, contains concentric circles

(centered at (0, 0) and traversed in the clockwise direction).

(b) u∗ = − sin(t) for 0 ≤ t ≤ π.

(c) With precisely one control switch, it is clear from geometric

considerations that the only admissible control sequences are

u∗ = 1 → u∗ = −1, u∗ = 1 → u∗ = us and u∗ = us →
u∗ = −1. The three possible candidates for optimal trajec-

tory are sketched in the diagram below. For (a), the associated

cost is J =
√
2/15 + 11

√
6/160 − 1

10 ≈ 0.1627. For (b), the

associated cost is J = 1
2{8

√
2 − 11}1/2 + 3

5

(
{4

√
2 − 2}1/2 −

{
√
8 − 1}1/2

)
− 1

10 ≈ 0.5161. For (c), the associated cost is

J = 1
15

√
2 ≈ 0.09428. Hence the optimal control is

u∗(t) =

{
− sin(t) if 0 ≤ t ≤ 1

2π

−1 if 1
2π ≤ t ≤ 1

2π +
√
2.

x12 1 0 1 2

x2

2

1

0

1

2

�a� 1 � 1

x12 1 0 1 2

x2

2

1

0

1

2

�b� 1 � us

x12 1 0 1 2

x2

2

1

0

1

2

�c� us � 1

Lecture 20

2. From (20.10) and (20.13):

x∗(ts−) = 1−umax

1+umax
+
(

γ
1+umax

)2{
x0 − 2

γ + 1
}
.

From (20.13) and (20.14):

x∗(ts+) =
(

γ
1+umax

)2{
x1 + umax

1+umax

}
et1 − umax

1+umax
.

For the chosen parameter values, the continuity requirement

x∗(ts−) = x∗(ts+) yields the quadratic equation

{1− 5
6e+ ln

(
3223e−15e−123−e

)
}γ2 − 2γ + 6 = 0,

whose roots are where γ ≈ 4.152 and γ ≈ 10.81; but the second
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value fails to satisfy 1 + umax > γ. Substituting the first value

into (20.12), we obtain ts ≈ 0.78.

Note, however, that the parameter values were chosen only

to illustrate the theoretical possibility of a switch to boundary

control, and α/k1 = 1 may well be too high: Swan & Vincent

[59, p. 323] suggest that 10−3 < α/k1 < 10−1. Moreover, even

if the value for α/k1 is not too high, umax = 5 may well be too

low, and Swan & Vincent [59] effectively assumed umax → ∞.

3. If t1 is unspecified, then γ is determined by (17.26); hence,

from (20.11), γ = {1 − √{−x0}}−1. Eliminating x0 and γ be-

tween (20.8), (20.10) and (17.26), i.e., between u = γet/2 − 1,

x = −1 + 2
γ e

−t/2 +
(
x0 − 2

γ + 1
)
e−t and (γ − 1)2 + x0γ2 = 0

yields (1 + x)(1 + u)2 − 2(u+ 1) + 1 = 0. So the feedback form

of the optimal control law is

u =
√
−x−x
1+x =

√
−x

1−
√
−x

=
{√

k1

α ln(θ/X) − 1
}−1

on using (20.2).

Lecture 21

u� � 1

u� � 1

a
1 0 1

b

1

0

1

2. For x0 = (a, b), the optimal control is u∗ = 1 above the curve

{2
√
2a− b2 + 2− 2a− 2 + b2}1/2
− {2

√
2− 2a− b2 + 2a− 2 + b2}1/2 = 2b,

which is sketched above, and u∗ = −1 below it.

3. See McCausland [39, pp. 163-164].

4. See the diagrams at the top of p. 240, together with Figure 18.4

for (a) and Figures 17.1 (a)-(b) for (b). The optimal feedback

control is u∗ = −1 in the lighter shaded region and u∗ = 1 in

the darker one.
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P�P

A

B

C

D

x1
2 1 0 1 2

x2

2

1

0

1

2

�a�

A

B

C

D

x1
2 1 0 1 2

x2

2

1

0

1

2

�b�

P�

P

x14 2 0 2 4

x2

4

2

0

2

4

6. (a) Let Γ denote the concatenation of straight line segments of

length 1 and quarter circles of radius 1
2 or 3

2 defined by the thick

solid curve in the diagram immediately above. Then u∗ = −1

above Γ and on quarter circles of radius 3
2 in the upper half-

plane, whereas u∗ = 1 below Γ and on quarter circles of radius
3
2 in the lower half-plane. If x0 lies in the lightest shaded region,

then there is no switch; if x0 lies in the region with intermediate

shading, then there is one switch; if x0 lies in the darkest shaded

region, then there are two switches; and so on.

(b) See Athans & Falb [3, pp. 520-522] with α = 1
2 or Pinch

[50, pp. 220-221] with k = 1
2 .
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7. The optimal control is u∗(t) = γa sin(t)/(1+ 1
2γπ) with x∗

1(t) =

−a cos(t)− 1
2{t cos(t)−sin(t)}γa/{1+ 1

2γπ}, x∗
2(t) = −a sin(t)+

1
2 t sin(t)γa/{1 +

1
2γπ}; x1 = −a/(1 + 1

2γπ) and x2 = 0 at the

end; and the minimum cost is J∗ = γa2/{γπ+2}. Increasing γ

increases the penalty for ending far from the origin, so x(π) →
(0, 0) as γ → ∞.

8. Here t∗1 = c/
√
2θ with

x1(t
∗
1) = a+ bc√

2θ
+ c3

6θ , x2(t
∗
1) = b+ c2

2
√
2θ

and x3(t
∗
1) = 0.

Lecture 22

1. Either integrate dt/dα = h sec2(α)/U between α = α∗
0 and

α = α∗
1 or set t = 0 and t = t∗1 in (22.12b) to eliminate L/K.

2. For W = 3U , we obtain α∗
0 ≈ 0.6745 (numerically), and so the

boat’s optimal initial heading relative to dry land is

ψ∗
0 = π + arctan

( 3 sin(α∗
0)

3 cos(α∗
0)+1

)
≈ π − 0.4311π = 0.5689π

or ψ∗
0 = 8435α∗

0, as indicated by the leftmost dashed curve in

Figure 22.1(a).

3. From (22.11) and (22.24), Ḣ = 0 implies W sec(α) tan(α)α̇ +

u̇ = 0 with u̇ = −4U(1 + 2y/h)ẏ/h. Now combine with (22.25)

to obtain (22.26). Also, from (22.28) we obtain
dη
dα = η̇

α̇ = W sin(α)
4U(1+2η) cos2(α)

or 4U(1 + 2η) dη = w sec(α) tan(α) dα, which integrates to

4U(η + η2) = W sec(α) + constant.

Now use (22.27), setting η = 0 to determine the constant.

4. See Lecture 23, especially Figure 23.1.

5. Applying the cosine rule to the triangle with vertices F , O, P

in Figure 22.3 yields

FP 2 = OF 2 +OP 2 − 2OF ·OP cos( 12π − θ).

So (2μ− r)2 = (2μ−OP )2 = FP 2 = (2μe)2 + r2 − 4μer sin(θ),

which easily simplifies to (22.46).

6. Because the limit of tan( 12θ) jumps from +∞ to −∞ as θ passes

through π, Ψ is discontinuous at θ = π; in fact,

Ψ(π−) = e
1−e2 + π

(1−e2)3/2
, Ψ(π+) = e

1−e2 − π
(1−e2)3/2

.

Because the jump is Ψ(π+) − Ψ(π−) = −2π(1 − e2)−3/2, we

can construct a continuous function by adding 2π(1 − e2)−3/2
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to Ψ(θ) on (π, 2π). In other words,

Ψ̃(θ) =

{
Ψ(θ) if θ < π

Ψ(θ) + 2π(1− e2)−3/2 if θ ≥ π

is an anti-derivative of {1−e sin(θ)}−2 on (0, 2π), and the value

of the integral is μ(1− e2){Ψ̃(2π)− Ψ̃(0)} = 2πμ(1− e2)−1/2.

7. This result follows readily from (22.45)-(22.46) and (22.48).

8. The optimal heading relative to the water is perpendicular to

the river bank (although the true heading is perpendicular to

the river bank only on arrival). The boat’s trajectory is the

parabola x = l + hU
2W (1− y2/h2).

9. Again α(t) = 1
2π for all t ∈ [0, t1], with optimal trajectory

x = l + 2hU
W

(
1− 2

3

{
1 + y

h

})(
1 + y

h

)2
.

The boat arrives perpendicularly, 2hU
3W further downstream.

10. The point of arrival has coordinates
(
cos( 2U

9W ),− sin
(
2U
9W )

)
.

Lecture 23

1. From the last two equations of (23.24),
d
dτ {4Uη(1 + η)−W sec(α)} = 0,

implying 4Uη(1 + η) − W sec(α) = constant. As τ → 0+ we

discover that the constant is 4U(−1)(1 + 1)−W sec(π) = W .

2. For tr < t < ts, we still have λ2 = λ1 tan(α), implying λ2(tr+) =

− tan(αr)/W = 0; likewise, λ2(ts−) = 0. For t < tr, on the

other hand, we have y = −h with α = π and hence λ̇2 =

4W−1h−1U from (23.20), implying λ2(t) = 4W−1h−1Ut + L,

where L is a constant. From (23.19),

Hα = −λ1W sin(α) + (λ2 − qh)W cos(α);

and for α = π to maximize H for α ∈ [0, π], we require Hα ≥ 0

for α = π, hence λ2 − qh ≤ 0. We therefore choose q(t) =

λ2(t)/h = 4W−1h−2Ut + h−1L for 0 ≤ t < tr. Now, be-

cause q(t) = 0 for tr < t < ts, we have q(tr−) = λ2(t)/h =

4W−1h−2Utr+h−1L, λ2(tr−) = 4W−1h−1Utr+L, q(tr+) = 0,

λ2(tr+) = 0 and y(tr±) = −h, so that λ2(t) + q(t){2y(t) + h}
is continuous at t = tr as required by (23.22) with i = r. A

very similar analysis leads to λ2(t) = −4W−1h−1Ut + M and

q(t) = −λ2(t)/h = 4W−1h−2Ut − h−1M for ts < t ≤ t1, so

that λ2(t)+ q(t){2y(t)+h} is continuous at t = ts as well, with
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y(ts±) = 0. The upshot is that (23.22) is totally satisfied. Note

that at least one of q and λ2 is discontinuous at a switching

point, no matter how we choose the arbitrary constants L and

M ; but that is perfectly all right, because (23.22) still holds.

3. From our earlier analysis of Problem P, the state equations are

ẋ1 = x2, ẋ2 = u; the initial and final conditions have the

form x0 = (a, 0), x1 = (0, 0) with a > 0; and the constraint

on u is |u| ≤ 1. But now we also require −1 ≤ x2 ≤ 1, or

χ(x) = x2
2 − 1 ≤ 0; in other words, S is an infinite strip

with upper boundary x2 = 1 and lower boundary x2 = −1.

We already know from Lecture 17 that the optimal trajectory

for the unrestricted problem is to follow the negative parabola

x2
2 = 2(a− x1) from (a, 0) to

(
1
2a,−

√
a
)
and then the positive

parabola x2
2 = 2x1 from

(
1
2a,−

√
a
)
to the origin. The lowest

point of this trajectory is the switching point
(
1
2a,−

√
a
)
, which

must line in S for all a ∈ (0, 1]. So we may assume that a > 1.

From (23.3) with ∇χ = 2x2j the Hamiltonian is

(i) H = −1 + λ1x2 + (λ2 + 2qx2)u

and so the co-state equations are

(ii) λ̇1 = −Hx1
= 0, λ̇2 = −Hx2

= −λ1 − 2qu.

When x lies in the interior of S, we have q = 0 and hence

u∗ = sgn(λ2). When x lies on the boundary of S, however, we

obtain x2 = −1 and hence u = −1̇ = 0. But u is obliged to

maximize H. For consistency, therefore, we require

(iii) λ2 + 2qx2 = 0

in (i). But λ+ q∇χ = (λ1, λ2 + 2qx2) is a continuous quantity.

Therefore, if the optimal trajectory enters the boundary at time

t = τ1 and leaves the boundary at time t = τ2, then we require

(iv) λ2(τ1−) = 0 = λ2(τ2+)

because q = 0 when x lies in the interior of S. It is clear, how-

ever, that u = −1 for 0 < t < τ1 and hence that x2 = −t

from the state equations. So the optimal trajectory reaches the

boundary x2 = −1 at t = 1, i.e., τ1 = 1. For 0 < t < 1 we

also have x1 = a − 1
2 t

2, λ1 = K, λ2 = L − Kt and q = 0,

where K and L are constants. From (i), H = −1 + K(−t) +

(L − Kt)(−1) = −1 − L; and H = 0 implies L = −1. Thus
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λ2(τ1−) = λ2(1−) = L−K = −1−K, and (iv) impliesK = −1.

In sum, u∗(t) = −1, x1(t) = a − 1
2 t

2, x2(t) = −t, λ1(t) = −1,

λ2(t) = t− 1, and q(t) = 0 for t ∈ [0, 1).

For 1 < t < τ2 we have u = 0, x2 = −1, ẋ1 = −1 from the

state equations; λ̇1 = 0, λ̇2 = −λ1 from (ii); and λ2 − 2q = 0

from (iii). Solving ẋ1 = −1 subject to x(1) = a − 1
2 · 12 yields

x1 = a− t+ 1
2 . Solving λ̇1 = 0, λ̇2 = −λ1 subject to continuity

at t = 1 yields λ1 = −1, λ2 = t− 1 as before. So q = 1
2 (t− 1).

In sum, u∗(t) = 0, x1(t) = a − t + 1
2 , x2(t) = −1, λ1(t) = −1,

λ2(t) = t− 1, and q(t) = 1
2 (t− 1) for t ∈ (1, τ2).

For τ2 < t < t1 we have q = 0 (because x has left the

boundary), and so the continuity of λ+ q∇χ = (λ1, λ2 + 2qx2)

at t = τ2 requires λ1(τ2+) = −1 and λ2(τ2+) = 0. Thus solv-

ing the co-state equations λ̇1 = 0, λ̇2 = −λ1 for τ2 < t < t1
yields λ1 = −1 and λ2 = t− τ2. Because λ2 > 0 for t > τ2, we

have u∗ = 1; hence, from x1 = (0, 0) and the state equations,

x2 = t− t1 and x1 = 1
2 (t− t1)

2. From the continuity of x, i.e.,

from x(τ2−) = x(τ2+), we now obtain a− τ2 +
1
2 = 1

2 (τ2 − t1)
2

and −1 = t − τ2 or τ2 = a and t1 = a + 1. In sum, u∗(t) = 1,

x1(t) =
1
2 (t−a−1)2, x2(t) = t−a−1, λ1(t) = −1, λ2(t) = t−a,

and q(t) = 0 for t ∈ (a, a + 1]. Note that λ2 and q are discon-

tinuous at t = a (because a > 1). Note also that, because we

already know from Lecture 17 that the minimum time to the

origin when a ≤ 1 is 2
√
a, we can write

t∗1 =

{
2
√
a if 0 ≤ a ≤ 1

a+ 1 if 1 < a < ∞
for arbitrary a ≥ 0.

Lecture 24

3. From (24.5), φ(x0, y0) becomes

p1q1x0 + p2q2y0 − c = p1q1Ks(r−αL)
rs−αβKL + p2q2Lr(s−βK)

rs−αβKL − c,

and (24.17) ensures that the above quantity exceeds
cs(r−αL)
rs−αβKL + cLr(s−βK)

rs−αβKL − c = (r−αL)(s−βK)c
rs−αβKL

which is positive, by (24.3).
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Index

C1, 8

C2, 8

D1, 8

abnormal case, 172, 177

acceleration

due to gravity, 2, 27, 34

accessory equation, 59

action integral, 26

admissible, 8, 127, 136

admissible control, see control

admissible extremal, see extremal

admissible variation, see variation

augmented state, 142, 168–176

bang-bang control, see control

beaver population, 218

Bernoulli, John, 1

biotechnical productivity, 206, 211,

216

brachistochrone problem, 1, 25,
30–32, 56, 109

branch cut, 105

broken extremal, see extremal

calculus of variations, 1, 9, 127,
131, 134, 146

cancer chemotherapy, 163–166

carrying capacity, 129, 204

catchability, 129, 204

catenary, 221

Chaplygin’s problem, 190–193

circle, 87, 123

co-state

equations, 140, 142, 160

variable, 140

vector, 142

adjusted, 176

modified, 175

cone of attainability, 172

conjugate point, 59–65, 115

constrained optimization, 124–126

control

admissible, 136, 146, 154, 164

bang-bang, 131, 144, 155

feedback, 146, 152, 166, 187, 189,
209

open-loop, 146

optimal, 136–142, 146, 152, 154

existence of, 216, 219

synthesis of, 146, 151–157

piecewise-continuous, 167

singular, 144, 159–162, 208–215

time-optimal, 149–151, 183–189

controllability, 154–155

convex

combination, 167

subset, 167

corner, 8, 23, 36, 41

condition

first, 38, 45, 47, 147
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second, 41–47, 79, 147

Weierstrass-Erdmann, 47, 72,
147

cost

axis, 142, 168

functional, 136

general, 174–176

terminal, 176

cycloid, 5, 6, 32

Dido’s problem, 123

differentiability, 8

dimensionless variables and
parameters, 127–130, 163–164,
188

direct method, 20, 27, 28, 132

direction field, 91

discontinuous control, 134, 167

discount factor or rate, 129, 205

du Bois-Reymond equation, 37

ecosystem

two-species, 203

eigenvalue, 150

complex, 155

of Jacobian matrix, 210

real, 152, 153, 155

ellipse, 39, 112

polar equation of, 192

embedded extremal, see extremal

endpoint minimum, 42, 46

energy, 2, 27

envelope, 107, 113–114

equations of, 108

equilibrium point, 151, 204

node

stable, 152, 154, 155

unstable, 153–155, 211

saddle point, 154–155, 211

Euler’s rule, 123, 148

Euler-Lagrange equation, 13, 26,
29, 37, 59, 72, 85, 123, 147

excess function

Weierstrass’s, 78, 102, 106

existence of optimal control, see
control

extinction, 206, 216

extremal, 13

admissible, 15, 17–18, 20, 24,
31–34
nonunique, 17, 49, 62, 111
unique, 25

broken, 23, 38, 48–50
simple, 48–50

embedded, 99, 102–108
regular, 58

straight-line, 21
extremization, 13

feedback control, see control
field

of extremals, 91, 101–107

of semi-extremals, 107
first integral of the Euler-Lagrange

equation, 30, 32
first variation, see variation

fishery, 129, 203
free

endpoint, 86
terminal time, 136

frictionless bead, 1, 34
functional, 3
functional analysis, ix, 220
fundamental lemma, 15

fundamental problem, 7–17
fundamental sufficient condition,

see sufficient condition

global
maximum, 134

minimum, 68, 116
Green’s theorem, 94, 133
growth rate

per capita

maximum, 129, 204

Hamiltonian, 29, 45, 140, 142, 147,

160, 164
invariance of, 180–181
modified

for state variable restrictions,
197

for terminal cost, 175
Hilbert’s differentiability condition,

38
Hilbert’s invariant integral, see

invariant integral
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hyperbola

rectangular, 20, 24
hyperplane, 168

separating, 168, 172, 174

hypersurface, 167

index set, 135

index theorem, 212

interior minimum, 11, 83

constrained, 122

invariant integral
Hilbert’s, 93–95, 101, 114

isoperimetrical problem, 119–124,
147–148

classical, 119, 123–124

Jacobi’s equation, 59–65

Jacobi’s necessary condition, see
necessary condition

Lagrange multiplier, 123, 125

Lagrangian, 26

least action, principle of, 26, 27

Legendre condition
strengthened, 58, 110

Legendre’s necessary condition, see
necessary condition

Legendre-Clebsch condition

generalized, 209

limit cycle, 212

little oh, 52, 137

Mathematica�, 3, 63, 187, 189,
213, 222, 223

maximization

versus minimization, 13, 22, 54,
104, 119, 160, 190, 205

maximum principle

Pontryagin’s, 141–143, 146, 150,
159, 160, 162, 167

Michaelis-Menten kinetics, 163

minimization

versus maximization, 13, 22, 54

natural dynamics, 203

navigation

boat, 183–189
plane, 189–193

necessary condition

Jacobi’s, 59, 115, 209
Legendre’s, 54, 79, 147
Weierstrass’s, 78, 110

necessary conditions
for optimal control, 135–143

negative phase-plane, 144, 151
Newton’s method

simple versus double root, 201
node, see equilibrium point
nonautonomous control problem,

159, 162

normal case, 177
notation, xi, 15, 72, 99
numerical integration, 188–189,

201, 214–215

ODE, 29
open-loop control, see control

optimal control, see control
optimal control problems, 127
optimal harvesting, 129, 203–218
optimal trajectory, see trajectory

orthogonally, 89

parabola, 61–62, 96, 98, 105, 144
pencil

of extremals, 91–93, 112, 117

point, 91, 102
perturbation cone, 172
phase-plane analysis, 144–146,

151–157, 203–216
piecewise-continuous control, see

control

piecewise-smooth, 8
Pontryagin’s principle, see

maximum principle
positive phase-plane, 144, 151

present value, 129, 205
Problem B, 164, 166
Problem E, 130, 132–134, 136,

159–162, 204
Problem P, 128, 131–132, 136,

143–146, 149, 202
proof by contradiction, 16, 55, 59
pseudo-optimal, 196, 199, 202

regular extremal, see extremal
regular problem, 39, 58, 78, 103,

116
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revenue, 204

river crossing, 188–189, 199–202

saddle point, see equilibrium point

scaling, 127–130, 163–164, 188

second variation, see variation

semi-field, 107, 113

separatrix, 212

simple broken extremal, see
extremal

simply connected, 91

singular control, see control

smooth, 8

state, 128, 135

restricted, 196–197

Stokes’ theorem, 94

strengthened Legendre condition,
see Legendre condition

strong minimum, 67, 73, 110, 116

strong variation, see variation, 81

sufficient condition

fundamental, 102, 219

surface of revolution

minimum area of, 6, 14–15, 17,
25, 32, 126

switching

curve, 152, 157, 178

function, 150, 160

synthesis of optimal control, see
control

target, 137

general, 167–176

Taylor series, 52, 53

Taylor’s theorem, 137, 171

with remainder, 78, 103

terminal cost, see cost

terminality condition, 136, 141

time-optimal control, see control

total variation, see variation

trajectory

optimal, 136–142, 144, 209

nonunique, 202

transversality conditions, 86–87,
174–176, 179–180

trial curve, 4, 9, 41, 51, 73

two-parameter, 121

trial function, 4, 46, 74, 81

tumor growth, 163

variation
admissible, 10–12
first, 53
second, 53
strong, 67, 73–74, 81
total, 52, 53, 102
weak, 9, 67, 73–74, 81

velocity, 2

weak minimum, 67, 73
weak variation, see variation
Weierstrass’s excess function, see

excess function
Weierstrass’s necessary condition,

see necessary condition
Weierstrass-Erdmann conditions,

see corner
wildlife management, 203, 218

Zermelo’s problem, 183–189,
197–202
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The calculus of variations is used to fi nd func-
tions that optimize quantities expressed in 
terms of integrals. Optimal control theory seeks 
to fi nd functions that minimize cost integrals 
for systems described by differential equations.

This book is an introduction to both the clas-
sical theory of the calculus of variations and the 
more modern developments of optimal control 
theory from the perspective of an applied math-
ematician. It focuses on understanding concepts and how to apply 
them. The range of potential applications is broad: the calculus of 
variations and optimal control theory have been widely used in 
numerous ways in biology, criminology, economics, engineering, 
fi nance, management science, and physics. Applications described 
in this book include cancer chemotherapy, navigational control, and 
renewable resource harvesting.

The prerequisites for the book are modest: the standard calculus 
sequence, a fi rst course on ordinary differential equations, and some 
facility with the use of mathematical software. It is suitable for an 
undergraduate or beginning graduate course, or for self study. It 
provides excellent preparation for more advanced books and courses 
on the calculus of variations and optimal control theory.
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