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à la souris et à l’écureuil
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IAS/Park City
Mathematics Institute

The IAS/Park City Mathematics Institute (PCMI) was founded in
1991 as part of the “Regional Geometry Institute” initiative of the
National Science Foundation. In mid-1993 the program found an in-
stitutional home at the Institute for Advanced Study (IAS) in Prince-
ton, New Jersey. The PCMI continues to hold summer programs in
Park City, Utah.

The IAS/Park City Mathematics Institute encourages both re-
search and education in mathematics and fosters interaction between
the two. The three-week summer institute offers programs for re-
searchers and postdoctoral scholars, graduate students, undergradu-
ate students, high school teachers, mathematics education research-
ers, and undergraduate faculty. One of PCMI’s main goals is to make
all of the participants aware of the total spectrum of activities that
occur in mathematics education and research: we wish to involve pro-
fessional mathematicians in education and to bring modern concepts
in mathematics to the attention of educators. To that end the sum-
mer institute features general sessions designed to encourage interac-
tion among the various groups. In-year activities at sites around the
country form an integral part of the High School Teacher Program.
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xii IAS/Park City Mathematics Institute

Each summer a different topic is chosen as the focus of the Re-
search Program and Graduate Summer School. Activities in the Un-
dergraduate Program deal with this topic as well. Lecture notes from
the Graduate Summer School are published each year in the IAS/Park
City Mathematics Series. Course materials from the Undergraduate
Program, such as the current volume, are now being published as
part of the IAS/Park City Mathematical Subseries in the Student
Mathematical Library. We are happy to make available more of the
excellent resources which have been developed as part of the PCMI.

John Polking, Series Editor
April 13, 2009

                

                                                                                                               



Preface

About 30 years ago, the field of 3-dimensional topology was revo-
lutionized by Thurston’s Geometrization Theorem and by the unex-
pected appearance of hyperbolic geometry in purely topological prob-
lems. This book aims at introducing undergraduate students to some
of these striking developments. It grew out of notes prepared by the
author for a three-week course for undergraduates that he taught at
the Park City Mathematical Institute in June–July 2006. It covers
much more material than these lectures, but the written version in-
tends to preserve the overall spirit of the course. The ultimate goal,
attained in the last chapter, is to bring the students to a level where
they can understand the statements of Thurston’s Geometrization
Theorem for knot complements and, more generally, of the general
Geometrization Theorem for 3-dimensional manifolds recently proved
by G. Perelman. Another leading theme is the intrinsic beauty of
some of the mathematical objects involved, not just mathematically
but visually as well.

The first two-thirds of the book are devoted to 2-dimensional
geometry. After a brief discussion of the geometry of the euclidean
plane R2, the hyperbolic plane H2, and the sphere S2, we discuss the
construction of locally homogeneous spaces by gluing the sides of a
polygon. This leads to the investigation of the tessellations that are
associated to such constructions, with a special focus on one of the

xiii
                

                                                                                                               



xiv Preface

most beautiful objects of mathematics, the Farey tessellation of the
hyperbolic plane. At this point, the deformations of the Farey tessel-
lation by shearing lead us to jump to one dimension higher, in order
to allow bending. After a few generalities on the 3-dimensional hy-
perbolic space H3, we consider the crooked tessellations obtained by
bending the Farey tessellation, which naturally leads us to discussing
kleinian groups and quasi-fuchsian groups. Pushing the bending of
the Farey tessellation to the edge of kleinian groups, we reach the fa-
mous example associated to the complement of the figure-eight knot.
At this point, we are ready to explain that this example is a manifes-
tation of a general phenomenon. We state Thurston’s Geometrization
Theorem for knot complements, and illustrate how it has revolution-
ized knot theory in particular through the use of Ford domains. The
book concludes with a discussion of the very recently proved Ge-
ometrization Theorem for 3-dimensional manifolds.

We tried to strike a balance between mathematical intuition and
rigor. Much of the material is unapologetically “picture driven”, as
we intended to share our own enthusiasm for the beauty of some of
the mathematical objects involved. However, we did not want to
sacrifice the other foundation of mathematics, namely, the level of
certainty provided by careful mathematical proofs. One drawback
of this compromise is that the exposition is occasionally interrupted
with a few proofs which are more lengthy than difficult, but can
somewhat break the flow of the discourse. When this occurs, the
reader is encouraged, on a preliminary reading, to first glance at the
executive summary of the argument that is usually present at its

beginning, and then to grab the remote control

1
2

3

4
5

6

7
8

0

9

00 and press the
“fast forward” button until the first occurrence of the closing symbol

1
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3

4
5

6

7
8

0

9

00

. The reader may later need to return to some of the parts that
have thus been zapped through, for the sake of mathematical rigor or
because subsequent parts of the book may refer to specific arguments
or definitions in these sections. For the same reason, the book is not
intended to be read in a linear way. The reader is strongly advised to
generously skip, at first, much of the early material in order to reach
the parts with pretty pictures, such as Chapters 5, 6, 8, 10 or 11, as

                

                                                                                                               



Preface xv

quickly as possible, and then to backtrack when specific definitions
or arguments are needed.

The book also has its idiosyncrasies. From a mathematical point
of view, the main one involves quotients of metric spaces. It is tradi-
tional here to focus only on topological spaces, to introduce the quo-
tient topology by fiat, and then to claim that it accurately describes
the intuitive notion of gluing in cut-and-paste constructions; this is
not always very convincing. A slightly less well-trodden road involves
quotient metric spaces, but only in the case of quotients under dis-
continuous group actions. We decided to follow a different strategy,
by discussing quotient (semi-)metrics very early on and in their full
generality. This approach is, in our view, much more intuitive but
it comes with a price: Some proofs become somewhat technical. On
the one hand, these can serve as a good introduction to the tech-
niques of rigorous proofs in mathematics. On the other hand, the
reader pressed for time can also take advantage of the fast-forward
commands where indicated, and zap through these proofs in a first
reading.

From a purely technical point of view, the text is written in such
a way that, in theory, it does not require much mathematical know-
ledge beyond multivariable calculus. An appendix at the end pro-
vides a “tool kit” summarizing some of the main concepts that will
be needed. In practice, however, the mathematical rigor of many ar-
guments is likely to require a somewhat higher level of mathematical
sophistication. The reader will also notice that the level of difficulty
progressively increases as one proceeds from early to later chapters.
Each chapter ends with a selection of exercises, a few of which can
be somewhat challenging. The idea was to provide material suitable
for an independent study by a dedicated undergraduate student, or
for a topics course. Such a course might cover the main sections of
Chapters 1–7, 9, 12, and whichever parts of the remaining chapters
would be suitable for both the time available and the tastes of the
instructor.

The author is delighted to thank Roger Howe for tricking him into
believing that the PCMI course would not require that much work
(which turned out to be wrong), and Ed Dunne for encouraging him

                

                                                                                                               



xvi Preface

to turn the original lecture notes into a book and for warning him that
the task would be very labor intensive (which turned out to be right).
The general form of the book owes much to the feedback received from
the students and faculty who attended the PCMI lectures, and who
were used as “guinea pigs”; this includes Chris Hiatt, who was the
teaching assistant for the course. Dave Futer provided numerous and
invaluable comments on an earlier draft of the manuscript, Roland
van der Veen contributed a few more, and Jennifer Wright Sharp
polished the final version with her excellent copy-editing. Finally,
the mathematical content of the book was greatly influenced by the
author’s own research in this area of mathematics, which in recent
years was partially supported by Grants 0103511 and 0604866 from
the National Science Foundation.

                

                                                                                                               



Chapter 1

The euclidean plane

We are all very familiar with the geometry of the euclidean plane R2.
We will encounter a new type of 2-dimensional geometry in the next
chapter, that of the hyperbolic plane H2. In this chapter, we first
list a series of well-known properties of the euclidean plane which,
in the next chapter, will enable us to develop the properties of the
hyperbolic plane in very close analogy.

Before proceeding, you are advised to briefly consult the Tool

Kit in the appendix for a succinct review of the basic definitions and
notation concerning set theory, infima and suprema of sets of real
numbers, and complex numbers.

1.1. Euclidean length and distance

The euclidean plane is the set

R2 = {(x, y); x, y ∈ R}

consisting of all ordered pairs (x, y) of real numbers x and y.

If γ is a curve in R2, parametrized by the differentiable vector-
valued function

t �→
(
x(t), y(t)

)
, a � t � b,

1

                                     

                

                                                                                                               



2 1. The euclidean plane

y

x

P

Q

γ

Figure 1.1. The euclidean plane

its euclidean length �euc(γ) is the arc length given by

(1.1) �euc(γ) =
∫ b

a

√
x′(t)2 + y′(t)2 dt.

This length is independent of the parametrization by a well-known
consequence of the chain rule.

It will be convenient to consider piecewise differentiable curves
γ made up of finitely many differentiable curves γ1, γ2, . . . , γn such
that the initial point of each γi+1 is equal to the terminal point of γi.
In other words, such a curve γ is differentiable everywhere except at
finitely many points, corresponding to the endpoints of the γi, where
it is allowed to have a “corner” (but no discontinuity). In this case,
the length �euc(γ) of the piecewise differentiable curve γ is defined as
the sum of the lengths �euc(γi) of its differentiable pieces γi. This
is equivalent to allowing the integrand in (1.1) to be undefined at
finitely many values of t where, however, it has finite left-hand and
right-hand limits.

The euclidean distance deuc(P, Q) between two points P and
Q is the infimum of the lengths of all piecewise differentiable curves
γ going from P to Q, namely

(1.2) deuc(P, Q) = inf {�euc(γ); γ goes from P to Q} .
                

                                                                                                               



1.3. Metric spaces 3

See the Tool Kit in the appendix for basic facts about the infimum
of a set of real numbers. By definition of the infimum, the above
definition means that every piecewise differentiable curve γ going from
P to Q must have length greater than or equal to deuc(P, Q), and that
there are curves whose length is arbitrarily close to deuc(P, Q).

1.2. Shortest curves

It is well known and easily proved (see Exercise 1.2) that the straight
line provides the shortest route between two points.

Proposition 1.1. The distance deuc(P, Q) is equal to the euclidean
length �euc ([P, Q]) of the line segment [P, Q] going from P to Q. In
other words, [P, Q] is the shortest curve going from P to Q. �

In particular, computing the length of a line segment by using
formula (1.1) for arc length (see Exercise 1.1), we obtain the following.

Corollary 1.2. The euclidean distance from P0 = (x0, y0) to P1 =
(x1, y1) is equal to

(1.3) deuc(P0, P1) =
√

(x1 − x0)2 + (y1 − y0)2 �

1.3. Metric spaces

The euclidean plane R2, with its distance function deuc, is a funda-
mental example of a metric space. A metric space is a pair (X, d)
consisting of a set X together with a function d: X × X → R such
that

(1) d(P, Q) � 0 and d(P, P ) = 0 for every P , Q ∈ X;

(2) d(P, Q) = 0 if and only if P = Q;

(3) d(Q, P ) = d(P, Q) for every P , Q ∈ X;

(4) d(P, R) � d(P, Q) + d(Q, R) for every P , Q, R ∈ X.

The fourth condition is the Triangle Inequality . The function d

is called the distance function , the metric function , or just the
metric of the metric space X.

A function d that satisfies only conditions (1), (3) and (4) above
is called a semi-distance function or a semi-metric.

                

                                                                                                               



4 1. The euclidean plane

Elementary and classical properties of euclidean geometry show
that (R2, deuc) is a metric space. In particular, this explains the
terminology for the Triangle Inequality. In fact, (R2, deuc) and its
higher-dimensional analogs are typical examples of metric spaces. See
Exercise 1.3 for a proof that deuc is a distance function which, instead
of prior knowledge about euclidean geometry, uses only the definition
of the euclidean distance by equation (1.2).

The main point of the definition of metric spaces is that the no-
tions about limits and continuity that one encounters in calculus (see
Section T.3 in the Tool Kit) immediately extend to the wider con-
text of a metric space (X, d).

For instance, a sequence of points P1, P2, . . . , Pn, . . . in X con-

verges to the point P∞ if, for every ε > 0, there exists an integer
n0 such that d(Pn, P∞) < ε for every n � n0. This is equivalent to
the property that the sequence

(
d(Pn, P∞)

)
n∈N

converges to 0 as a
sequence of real numbers. The point P∞ is the limit of the sequence
(Pn)n∈N.

Similarly, a function ϕ : X → X ′ from a metric space (X, d)
to a metric space (X ′, d′) is continuous at P0 ∈ X if, for every
number ε > 0, there exists a δ > 0 such that d′

(
ϕ(P ), ϕ(P0)

)
< ε for

every P ∈ X with d(P, P0) < δ. The function is continuous if it is
continuous at every P0 ∈ X.

We will make extensive use of the notion of a ball in a metric
space (X, d). The (open) ball with center P0 ∈ X and radius r > 0
in (X, d) is the subset

Bd(P0, r) = {P ∈ X; d(P, P0) < r}.

The terminology is motivated by the case where X is the 3-dimensional
euclidean space R3, and where d is the euclidean metric deuc defined
by the property that

deuc(P0, P1) =
√

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2

when P0 = (x0, y0, z0) and P1 = (x1, y1, z1). In this case, Bdeuc(P0, r)
is of course a geometric ball of radius r centered at P0, without its
boundary.

                

                                                                                                               



1.4. Isometries 5

When (X, d) is the euclidean plane (R2, deuc), a ball Bdeuc(P0, r)
is an open disk of radius r centered at P0. When (X, d) is the real
line (R, d) with its usual metric d(x, y) = |x, y|, the ball Bdeuc(x0, r)
is just the open interval (x0 − r, x0 + r).

Incidentally, this may be a good spot to remind the reader of
a few definitions which are often confused. In the euclidean plane
R2, the open disk Bdeuc(P0, r) = {P ∈ R2; deuc(P, P0) < r} is not
the same thing as the circle {P ∈ R2; deuc(P, P0) = r} with center
P0 and radius r that bounds it. Similarly, in dimension 3, the open
ball Bdeuc(P0, r) = {P ∈ R3; deuc(P, P0) < r} should not be confused
with the sphere {P ∈ R3; deuc(P, P0) = r} with the same center and
radius.

1.4. Isometries

The euclidean plane has many symmetries. In a metric space, these
are called isometries. An isometry between two metric spaces (X, d)
and (X ′, d′) is a bijection ϕ : X → X ′ which respects distances,
namely, such that

d′
(
ϕ(P ), ϕ(Q)

)
= d(P, Q)

for every P , Q ∈ X.

Recall the statement that ϕ is a bijection means that ϕ is one-to-
one (or injective) and onto (or surjective), so that it has a well-defined
inverse ϕ−1 : X ′ → X. It immediately follows from definitions that
the inverse ϕ−1 of an isometry ϕ is also an isometry.

It is also immediate that an isometry is continuous.

When there exists an isometry ϕ between two metric spaces (X, d)
and (X ′, d′), then these two spaces have exactly the same properties.
Indeed, ϕ can be used to translate any property of (X, d) to the same
property for (X, d′).

We are here interested in the case where (X, d) = (X ′, d′) =
(R2, deuc). Isometries of (R2, deuc) include:

• translations along a vector (x0, y0), defined by

ϕ(x, y) = (x + x0, y + y0);
                

                                                                                                               



6 1. The euclidean plane

• rotations of angle θ around the origin,

ϕ(x, y) = (x cos θ − y sin θ, x sin θ + y cos θ);

• reflections across a line passing through the origin and
making an angle of θ with the x-axis,

ϕ(x, y) = (x cos 2θ + y sin 2θ, x sin 2θ − y cos 2θ);

• more generally, any composition of the above isometries,
namely, any map ϕ of the form

(1.4) ϕ(x, y) = (x cos θ − y sin θ + x0, x sin θ + y cos θ + y0)

or

(1.5) ϕ(x, y) = (x cos 2θ + y sin 2θ + x0, x sin 2θ − y cos 2θ + y0).

For the last item, recall that the composition of two maps
ϕ : X → Y and ψ : Y → Z is the map ψ ◦ ϕ : X → Z defined by
ψ ◦ ϕ(P ) = ψ(ϕ(P )) for every P ∈ X.

The above isometries are better expressed in terms of complex
numbers, identifying the point (x, y) ∈ R2 with the complex number
z = x+iy ∈ C. See Section T.4 in the Tool Kit for a brief summary
of the main properties of complex numbers.

Using Euler’s exponential notation (see Section T.4)

eiθ = cos θ + i sin θ,

the isometries listed in equations (1.4) and (1.5) can then be written
as

ϕ(z) = eiθz + z0

and
ϕ(z) = e2iθz̄ + z0,

where z0 = x0 + iy0 and where z̄ = x − iy is the complex conjugate
of z = x + iy.

Proposition 1.3. If ϕ is an isometry of (R2, deuc) = (C, deuc), then
there exists a point z0 ∈ C and an angle θ ∈ R such that

ϕ(z) = eiθz + z0 or ϕ(z) = e2iθ z̄ + z0

for every z ∈ C.
                

                                                                                                               



Exercises for Chapter 1 7

Proof. See Exercise 2.3 (and compare Theorem 2.11) for a proof of
this well-known result in euclidean geometry. �

A fundamental consequence of the abundance of isometries of the
euclidean plane (R2, deuc) is the homogeneity of this metric space. A
metric space (X, d) is homogeneous if, for any two points P , Q ∈ X,
there exists an isometry ϕ: X → X such that ϕ(P ) = Q. In other
words, a homogeneous metric space looks the same at every point,
since any property of (X, d) involving the point P also holds at any
other point Q, by translating this property through the isometry ϕ

sending P to Q.

Actually, the euclidean plane is not just homogeneous, it is iso-

tropic in the sense that for any two points P1 and P2 ∈ R2, and
for any unit vectors �v1 at P1 and �v2 at P2, there is an isometry ϕ of
(R2, deuc) which sends P1 to P2 and �v1 to �v2. Here we are assuming
the statement that ϕ sends the vector �v1 to the vector �v2 is intuitively
clear; a more precise definition, using the differential DP1ϕ of ϕ at
P1, will be given in Section 2.5.2.

As a consequence of the isotropy property, not only does the
euclidean plane look the same at every point, it also looks the same
in every direction.

Exercises for Chapter 1

Exercise 1.1. Using the expression given in equation (1.1) and a suitable
parametrization of the line segment [P0, P1] going from P0 = (x0, y0) to
P1 = (x1, y1), show that the euclidean length of [P0, P1] is equal to

�euc([P0, P1]) =
p

(x1 − x0)2 + (y1 − y0)2.

Exercise 1.2. The goal of this exercise is to rigorously prove that the line
segment [P, Q] is the shortest curve going from P to Q. Namely, consider
a piecewise differentiable curve γ going from P to Q. We want to show
that the euclidean length �euc(γ) defined by equation (1.1) is greater than
or equal to the length �euc([P, Q]) of the line segment [P, Q].

a. First consider the case where P = (x0, y0) and Q = (x0, y1) sit on the
same vertical line of equation x = x0. Show that the euclidean length
�euc(γ) is greater than or equal to |y1 − y0| = �euc([P, Q]).

b. In the general case, let ϕ: (x, y) �→ (x cos θ− y sin θ, x sin θ + y cos θ) be
a rotation such that ϕ(P ) and ϕ(Q) sit on the same vertical line. Show

                

                                                                                                               



8 1. The euclidean plane

that the curve ϕ(γ), going from ϕ(P ) to ϕ(Q), has the same euclidean
length as γ.

c. Combine parts a and b above to conclude that �euc(γ) � �euc([P, Q]).

Exercise 1.3. Rigorously prove that the euclidean distance function deuc,
as defined by equation (1.2), is a distance function on R2. You may need
to use the result of Exercise 1.2 to show that deuc(P, Q) = 0 only when
P = Q. Note that the proof of the Triangle Inequality (for which you may
find it useful to consult the proof of Lemma 2.1) is greatly simplified by
our use of piecewise differentiable curves in the definition of deuc.

Exercise 1.4. Let (X, d) be a metric space.

a. Show that d(P, Q) − d(P,Q′) � d(Q, Q′) for every P , Q, Q′ ∈ X.

b. Conclude that
˛

˛d(P, Q)−d(P,Q′)
˛

˛ � d(Q, Q′) for every P , Q, Q′ ∈ X.

c. Use the above inequality to show that for every P ∈ X, the function
dP : X → R defined by dP (Q) = d(P, Q) is continuous if we endow the
real line R with the usual metric for which the distance between a and
b ∈ R is equal to the absolute value |a − b|.

Exercise 1.5. Let ϕ: X → X ′ be a map from the metric space (X, d) to
the metric space (X ′, d′). Show that ϕ is continuous at P0 ∈ X if and only
if, for every ε > 0, there exists a δ > 0 such that the image ϕ

`

Bd(P0, δ)) of

the ball Bd(P0, δ) ⊂ X is contained in the ball Bd′
`

ϕ(P0), ε
´

⊂ X ′.

Exercise 1.6 (Product of metric spaces). Let (X, d) and (X ′, d′) be two
metric spaces. On the product X × X ′ = {(x, x′); x ∈ X, x′ ∈ X ′}, define

D: (X × X ′) × (X × X ′) → R

by the property that D
`

(x, x′), (y, y′)
´

= max{d(x, y), d′(x′, y′)} for every

(x, x′), (y, y′) ∈ X × X ′. Show that D is a metric function on X × X ′.

Exercise 1.7. On R2 = R×R, consider the metric function D provided by
Exercise 1.6. Namely, D

`

(x, y), (x′, y′)
´

= max{|x − x′|, |y − y′|} for every

(x, y), (x′, y′) ∈ R2.

a. Show that 1√
2
deuc(P, P ′) � D(P, P ′) � deuc(P, P ′) for every P , P ′ ∈

R2.

b. Let (Pn)n∈N be a sequence in R2. Show that (Pn)n∈N converges to a
point P∞ ∈ R2 for the metric D if and only if it converges to P∞ for
the metric deuc.

c. Let ϕ: R2 → X be a map from R2 to a metric space (X, d). Show that
ϕ is continuous for the metric D on R2 if and only if it is continuous
for the metric deuc.

Exercise 1.8 (Continuity and sequences). Let ϕ: X → X ′ be a map from
the metric space (X, d) to the metric space (X ′, d′).

                

                                                                                                               



Exercises for Chapter 1 9

a. Suppose that ϕ is continuous at P0. Show that if P1, P2, . . . , Pn, . . .
is a sequence which converges to P0 in (X, d), then ϕ(P1), ϕ(P2), . . . ,
ϕ(Pn), . . . is a sequence which converges to ϕ(P0) in (X ′, d′).

b. Suppose that ϕ is not continuous at P0. Construct a number ε > 0
and a sequence P1, P2, . . . , Pn, . . . in X such that d(Pn, P0) < 1

n
and

d
`

ϕ(Pn), ϕ(P0)
´

� ε for every n � 1.

c. Combine parts a and b to show that ϕ is continuous at P0 if and only if,
for every sequence P1, P2, . . . , Pn, . . . converging to P0 in (X, d), the
sequence ϕ(P1), ϕ(P2), . . . , ϕ(Pn), . . . converges to ϕ(P0) in (X ′, d′).

Exercise 1.9. Let d and d′ be two metrics on the same set X. Show that
the identity map IdX : (X, d) → (X, d′) is continuous if and only if every
sequence (Pn)n∈N that converges to some P∞ ∈ X for the metric d also
converges to P∞ for the metric d′. Possible hint: Compare Exercise 1.8.

Exercise 1.10. The euclidean metric of the euclidean plane is an example
of a path metric, where the distance between two points P and Q is the
infimum of the lengths of all curves joining P to Q. In the plane R2, let
U be the U–shaped region enclosed by the polygonal curve with vertices
(0, 0), (0, 2), (1, 2), (1, 1), (2, 1), (2, 2), (3, 2), (3, 0), (0, 0) occurring in this
order. Endow U with the metric dU defined by the property that dU (P, Q)
is the infimum of the euclidean lengths of all piecewise differentiable curves
joining P to Q and completely contained in U .

a. Draw a picture of U .

b. Show that dU (P, Q) � deuc(P, Q) for every P , Q ∈ U .

c. Show that dU is a metric function on U . It may be convenient to use
part b above at some point of the proof.

d. If P0 is the point (0, 2), give a formula for the distance dU (P, P0) as
a function of the coordinates of P = (x, y). This formula will involve
several cases according to where P sits in U .

Exercise 1.11 (Lengths in metric spaces). In an arbitrary metric space
(X, d), the length �d(γ) of a curve γ is defined as

�d(γ)=sup

(

n
X

i=1

d(Pi−1, Pi); P0, P1, . . . , Pn∈γ occur in this order along γ

)

.

In particular, the length may be infinite. For a differentiable curve γ in
the euclidean plane (R2, deuc), we want to show that this length �deuc(γ)
coincides with the euclidean length �euc(γ) given by equation (1.1). For this,
suppose that γ is parametrized by the differentiable function
t �→ γ(t) =

`

x(t), y(t)
´

, a � t � b.

a. Show that �deuc(γ) � �euc(γ).
                

                                                                                                               



10 1. The euclidean plane

b. Cut the interval [a, b] into n intervals [ti−1, ti] of length ∆t = (b−a)/n.
Set Pi = γ(ti) = γ(a + i∆t) for i = 0, 1, . . . , n. Show that

deuc(Pi−1, Pi) �
‚

‚γ′(ti−1)
‚

‚∆t − 1
2
K(∆t)2,

where K = max
a�t�b

‚

‚γ′′(t)
‚

‚ denotes the maximum length of the second

derivative vector γ′′(t) =
`

x′′(t), y′′(t)
´

and where the length ‖(u, v)‖
of a vector (u, v) is defined by the usual formula ‖(u, v)‖ =

√
u2 + v2.

You may need to use the Taylor formula from multivariable calculus,
which says that for every t, h,

γ(t + h) = γ(t) + hγ′(t) + h2R1(t, h),

where the remainder R1(t, h) is such that ‖R1(t, h)‖ � 1
2
K.

c. Use part b above to show that �deuc(γ) � �euc(γ).

d. Combine parts a and c above to conclude that �deuc(γ) = �euc(γ).

Exercise 1.12. Consider the length �D(γ) of a curve γ in a metric space
(X, d) defined as in Exercise 1.11, in the special case where (X, d) = (R2, D)
is the plane R2 = R×R endowed with the product metric D of Exercise 1.6,
defined by the property that D

`

(x, y), (x′, y′)
´

= max{|x− x′|, |y − y′|} for

every (x, y), (x′, y′) ∈ R2.

a. Show that �D(γ) � D(P, Q) for every curve γ going from P to Q.

b. Show that the length �D([P, Q]) of the line segment [P, Q] is equal to
D(P, Q), so that [P, Q] consequently has minimum length among all
curves going from P to Q.

c. Give an example where there is another curve γ going from P to Q
which has minimum length �D(γ) = D(P, Q), and which is not the line
segment [P, Q].

d. If γ is differentiably parametrized by t �→
`

x(t), y(t)
´

, a � t � b, give

a condition on the derivatives x′(t) and y′(t) which is equivalent to
the property that γ has minimum length over all curves going from
P =

`

x(a), y(a)
´

to Q =
`

x(b), y(b)
´

. (The answer depends on the
relative position of P and Q with respect to each other.)

                

                                                                                                               



Chapter 2

The hyperbolic plane

The hyperbolic plane is a metric space which is much less familiar
than the euclidean plane that we discussed in the previous chapter.
We introduce its basic properties, by proceeding in very close analogy
with the euclidean plane.

2.1. The hyperbolic plane

The hyperbolic plane is the metric space consisting of the open
half-plane

H2 = {(x, y) ∈ R2; y > 0} = {z ∈ C; Im(z) > 0}

endowed with a new metric dhyp defined below. Recall that the imag-

inary part Im(z) of a complex number z = x + iy is just the coordi-
nate y, while its real part Re(z) is the coordinate x.

To define the hyperbolic metric dhyp, we first define the hyper-

bolic length of a curve γ parametrized by the differentiable vector-
valued function

t �→
(
x(t), y(t)

)
, a � t � b,

as

(2.1) �hyp(γ) =
∫ b

a

√
x′(t)2 + y′(t)2

y(t)
dt.

11

                                     

                

                                                                                                               



12 2. The hyperbolic plane

Again, an application of the chain rule shows that this hyperbolic
length is independent of the parametrization of γ. The definition
of the hyperbolic length also immediately extends to piecewise dif-
ferentiable curves, by taking the sum of the hyperbolic length of the
differentiable pieces, or by allowing finitely many jump discontinuities
in the integrand of (2.1).

y

x

P

Q

P ′
Q′

γ

H2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Figure 2.1. The hyperbolic plane

The hyperbolic distance between two points P and Q is the
infimum of the hyperbolic lengths of all piecewise differentiable curves
γ going from P to Q, namely

(2.2) dhyp(P, Q) = inf {�hyp(γ); γ goes from P to Q} .

Note the analogy with our definition of the euclidean distance in
Chapter 1.

The hyperbolic distance dhyp is at first somewhat unintuitive.
For instance, we will see in later sections that the hyperbolic distance
between the points P ′ and Q′ indicated in Figure 2.1 is the same as
the hyperbolic distance from P to Q. Also, among the curves joining
P to Q, the one with the shortest hyperbolic length is the circle arc
represented. With practice, we will become more comfortable with
the geometry of the hyperbolic plane and see that it actually shares
many important features with the euclidean plane.

                

                                                                                                               



2.1. The hyperbolic plane 13

But first, let us prove that the hyperbolic distance dhyp is really
a distance function.

Lemma 2.1. The function

dhyp: H2 × H2 → R

defined by (2.2) is a distance function.

Proof. We have to check the four conditions in the definition of a
distance function. The condition dhyp(P, Q) � 0 is immediate, as is
the symmetry condition dhyp(Q, P ) = dhyp(P, Q).

To prove the Triangle Inequality, consider three points P , Q, R ∈
H2. Pick an arbitrary ε > 0. By definition of the hyperbolic distance
as an infimum of hyperbolic lengths, there exists a piecewise differen-
tiable curve γ going from P to Q such that �hyp(γ) < dhyp(P, Q)+ 1

2ε,
and a piecewise differentiable curve γ′ going from Q to R such that
�hyp(γ′) < dhyp(Q, R) + 1

2ε. Chaining together these two curves γ

and γ′, one obtains a piecewise differentiable curve γ′′ joining P to R

whose length is

�hyp(γ′′) = �hyp(γ) + �hyp(γ′) < dhyp(P, Q) + dhyp(Q, R) + ε.

As a consequence,

dhyp(P, R) < dhyp(P, Q) + dhyp(Q, R) + ε.

Since this property holds for every ε > 0, we conclude that dhyp(P, R)
� dhyp(P, Q) + dhyp(Q, R) as required.

Note that our use of piecewise differentiable curves, instead of just
differentiable curves, has greatly simplified this proof of the Triangle
Inequality. (When γ and γ′ are differentiable, the same is usually not
true for γ′′ since it may have a “corner” at the junction of γ and γ′).

The only condition which requires some serious thought is the
fact that dhyp(P, Q) > 0 if P �= Q. Namely, we need to make sure
that we cannot go from P to Q by curves whose hyperbolic lengths
are arbitrarily small.

Consider a piecewise differentiable curve γ going from P to Q,
parametrized by the piecewise differentiable function

t �→
(
x(t), y(t)

)
a � t � b,

                

                                                                                                               



14 2. The hyperbolic plane

with P =
(
x(a), y(a)

)
and Q =

(
x(b), y(b)

)
. We will split the argu-

ment into two cases.

If γ does not go too high, so that y(t) � 2y(a) for every t ∈ [a, b],

�hyp(γ) =
∫ b

a

√
x′(t)2 + y′(t)2

y(t)
dt

�
∫ b

a

√
x′(t)2 + y′(t)2

2y(a)
dt =

1
2y(a)

�euc(γ)

� 1
2y(a)

deuc(P, Q).

Otherwise, γ crosses the horizontal line L of equation y = 2y(a).
Let t0 be the first value of t for which this happens; namely, y(t0) =
2y(a) and y(t) < 2y(a) for every t < t0. Let γ′ denote the part of γ

corresponding to the values of t with a � t � t0. This curve γ′ joins
P to the point

(
x(t0), y(t0)

)
∈ L, so that its euclidean length �euc(γ′)

is greater than or equal to the euclidean distance from P to the line
L, which itself is equal to y(a). Therefore,

�hyp(γ) � �hyp(γ′) =
∫ t0

a

√
x′(t)2 + y′(t)2

y(t)
dt

�
∫ t0

a

√
x′(t)2 + y′(t)2

2y(a)
dt =

1
2y(a)

�euc(γ′)

� 1
2y(a)

y(a) = 1
2 .

In both cases, we found that �hyp(γ) � C for a positive constant

C = min
{

1
2y(a)deuc(P, Q), 1

2

}
> 0,

which depends only on P and Q (remember that y(a) is the y-coor-
dinate of P ). If follows that dhyp(P, Q) � C > 0 cannot be 0 if
P �= Q. �

2.2. Some isometries of the hyperbolic plane

The hyperbolic plane (H2, dhyp) has many symmetries. Actually, we
will see that it is as symmetric as the euclidean plane.

                

                                                                                                               



2.2. Some isometries of the hyperbolic plane 15

2.2.1. Homotheties and horizontal translations. Some of these
isometries are surprising at first. These include the homotheties

defined by ϕ(x, y) = (λx, λx) for some λ > 0. Indeed, if the piecewise
differentiable curve γ is parametrized by

t �→
(
x(t), y(t)

)
, a � t � b,

its image ϕ(γ) under ϕ is parametrized by

t �→
(
λx(t), λy(t)

)
, a � t � b.

Therefore,

�hyp

(
ϕ(γ)

)
=

∫ b

a

√
λ2x′(t)2 + λ2y′(t)2

λy(t)
dt

=
∫ b

a

√
x′(t)2 + y′(t)2

y(t)
dt

= �hyp(γ).

Since ϕ establishes a one-to-one correspondence between curves join-
ing P to Q and curves joining ϕ(P ) to ϕ(Q), it follows from the def-
inition of the hyperbolic metric that dhyp

(
ϕ(P ), ϕ(Q)

)
= dhyp(P, Q)

for every P , Q ∈ H2. This proves that the homothety ϕ is indeed an
isometry of (H2, dhyp).

The horizontal translations defined by ϕ(x, y) = (x + x0, y)
for some x0 ∈ R are more obvious isometries of (H2, dhyp), as is the
reflection ϕ(x, y) = (−x, y) across the y-axis.

2.2.2. The homogeneity property of the hyperbolic plane.
The isometries obtained by composing homotheties and horizontal
translations are enough to prove that the hyperbolic plane is homo-
geneous. Recall that the composition of two maps ϕ: X → X ′ and
ψ: X ′ → X ′′ is the map ψ◦ϕ: X → X ′′ defined by ψ◦ϕ(P ) = ψ

(
ϕ(P )

)
for every P ∈ X. If, in addition, X, X ′ and X ′′ are metric spaces, if
ϕ is an isometry from (X, d) to (X ′, d′) and if ψ is an isometry from
(X ′, d′) to (X ′′, d′′), then ψ ◦ϕ is an isometry from (X, d) to (X ′′, d′′)
since

d′′
(
ψ ◦ ϕ(P ), ψ ◦ ϕ(Q)

)
= d′′

(
ψ(ϕ(P )), ψ(ϕ(Q))

)
= d′

(
ϕ(P ), ϕ(Q)

)
= d(P, Q).

                

                                                                                                               



16 2. The hyperbolic plane

Proposition 2.2. The hyperbolic plane (H2, dhyp) is homogeneous.
Namely, for every P , Q ∈ H2, there exists an isometry ϕ of (H2, dhyp)
such that ϕ(P ) = Q.

Proof. If P = (a, b) and Q = (c, d) ∈ H2, with b, d > 0, the
homothety ϕ of ratio λ = d

b sends P to the point R = (ad
b , d)

with the same y-coordinate d as Q. Then the horizontal transla-
tion ψ(x, y) = (x + c − ad

b , y) sends R to Q. The composition ψ ◦ ϕ

now provides an isometry sending P to Q. �

2.2.3. The standard inversion. We now consider an even less ob-
vious isometry of (H2, dhyp). The standard inversion , or inver-

sion across the unit circle, or inversion for short, is defined
by

ϕ(x, y) =
(

x

x2 + y2
,

y

x2 + y2

)
.

This map is better understood in polar coordinates, as it sends the
point with polar coordinates [r, θ] to the point with polar coordinates
[1r , θ]. See Figure 2.2.

P

ϕ(P )
Q = ϕ(Q)

(0, 0)(−1, 0) (1, 0)

Figure 2.2. The inversion across the unit circle

Lemma 2.3. The inversion across the unit circle is an isometry of
the hyperbolic plane (H2, dhyp).

Proof. If γ is a piecewise differentiable curve parametrized by

t �→
(
x(t), y(t)

)
, a � t � b,

                

                                                                                                               



2.3. Shortest curves in the hyperbolic plane 17

its image ϕ(γ) under the inversion ϕ is parametrized by

t �→
(
x1(t), y1(t)

)
, a � t � b,

with

x1(t) =
x(t)

x(t)2 + y(t)2
and y1(t) =

y(t)
x(t)2 + y(t)2

.

Then

x′
1(t) =

(
y(t)2 − x(t)2

)
x′(t) − 2x(t)y(t)y′(t)(

x(t)2 + y(t)2
)2

and

y′
1(t) =

(
x(t)2 − y(t)2

)
y′(t) − 2x(t)y(t)x′(t)(

x(t)2 + y(t)2
)2

so that after simplifications,

x′
1(t)

2 + y′
1(t)

2 =
x′(t)2 + y′(t)2(
x(t)2 + y(t)2

)2 .

It follows that

�hyp

(
ϕ(γ)

)
=

∫ b

a

√
x′

1(t)2 + y′
1(t)2

y1(t)
dt

=
∫ b

a

√
x′(t)2 + y′(t)2

y(t)
dt

= �hyp(γ).

As before, this shows that the inversion ϕ is an isometry of the hy-
perbolic plane. �

2.3. Shortest curves in the hyperbolic plane

In euclidean geometry, the shortest curve joining two points is the
line segment with these two points as endpoints. We want to identify
the shortest curve between two points in the hyperbolic plane.

We begin with a special case.

Lemma 2.4. If P0 = (x0, y0), P1 = (x0, y1) ∈ H2 are located on
the same vertical line, then the line segment [P0, P1] has the shortest
hyperbolic length among all piecewise differentiable curves going from

                

                                                                                                               



18 2. The hyperbolic plane

P0 to P1. In addition, the hyperbolic length of any other curve joining
P0 to P1 has strictly larger hyperbolic length, and

dhyp(P0, P1) = �hyp

(
[P0, P1]

)
= ln

∣∣∣∣y1

y0

∣∣∣∣ .

L

P1

P0

γ

Figure 2.3. Vertical lines are shortest

Proof. Assuming y0 � y1 without loss of generality, let us first com-
pute the hyperbolic length of [P0, P1]. Parametrize this line segment
by

t �→ (x0, t), y0 � t � y1.

Then,

�hyp

(
[P0, P1]

)
=

∫ y1

y0

√
02 + 12

t
dt = ln

y1

y0
.

Now, consider a piecewise differentiable curve γ going from P0 to
P1, which is parametrized by

t �→
(
x(t), y(t)

)
, a � t � b.

Its hyperbolic length is

�hyp(γ) =
∫ b

a

√
x′(t)2 + y′(t)2

y(t)
dt �

∫ b

a

|y′(t)|
y(t)

dt

�
∫ b

a

y′(t)
y(t)

dt = ln
y(b)
y(a)

= ln
y1

y0
= �hyp

(
[P0, P1]

)
.

                

                                                                                                               



2.3. Shortest curves in the hyperbolic plane 19

In addition, for the first term to be equal to the last one, the above
two inequalities must be equalities. Equality in the first inequality re-
quires that the function x(t) be constant, while equality in the second
one implies that y(t) is weakly increasing. This shows that the curve
γ is equal to the line segment [P0, P1] if �hyp(γ) = �hyp

(
[P0, P1]

)
. �

For future reference, we note the following estimate, which is
proved by the same argument as the second half of the proof of
Lemma 2.4.

Lemma 2.5. For any two points P0 = (x0, y0), P1 = (x1, y1) ∈ H2,

dhyp(P0, P1) �
∣∣∣∣ln y1

y0

∣∣∣∣ . �

In our determination of shortest curves in the hyperbolic plane,
the next step is the following.

Lemma 2.6. For any P , Q ∈ H2 that are not on the same vertical
line, there exists an isometry of the hyperbolic plane (H2, dhyp) such
that ϕ(P ) and ϕ(Q) are on the same vertical line. In addition, the
line segment [ϕ(P ), ϕ(Q)] is the image under ϕ of the unique circle
arc joining P to Q and centered on the x-axis.

Proof. Since P and Q are not on the same vertical line, the perpen-
dicular bisector line of P and Q intersects the x-axis at some point
R. The point R is equidistant from P and Q for the euclidean metric,
so that there is a circle C centered at R and passing through P and
Q. Note that C is the only circle passing through P and Q that is
centered on the x-axis.

The circle C intersects the x-axis in two points. Let ϕ1 be a
horizontal translation sending one of these points to (0, 0). Then
C ′ = ϕ1(C) is a circle passing through the origin and centered at
some point (a, 0).

In particular, the equation of the circle C ′ in polar coordinates is
r = 2a cos θ. Its image under the inversion ϕ2 is the curve with polar

coordinate equation r =
1

2a cos θ
, namely, the vertical line L whose

equation in cartesian coordinates is x =
1
2a

.
                

                                                                                                               



20 2. The hyperbolic plane

P

Q

R

C

C ′

L

(0, 0)(a, 0)( 1
2a , 0)

ϕ2 ◦ ϕ1(P )

ϕ2 ◦ ϕ1(Q)
ϕ1(P )

ϕ1(Q)

Figure 2.4. Circle arcs centered on the x-axis are shortest.

The composition ϕ2 ◦ ϕ1 sends the circle C to the vertical line
L. In particular, it sends the points P and Q to two points on the
vertical line L. Restricting ϕ2 ◦ ϕ1 to points in H2 then provides the
isometry ϕ of (H2, dhyp) that we were looking for. �

Lemma 2.6 can be extended immediately to the case where P and
Q sit on the same vertical line L by interpreting L as a circle of infinite
radius whose center is located at infinity on the x-axis. Indeed, the
vertical line L of equation x = a can be seen as the limit as x tends
to +∞ or to −∞ of the circle of radius |x − a| centered at the point
(x, 0). With this convention, any two P , Q ∈ H2 can be joined by a
unique circle arc centered on the x-axis.

Theorem 2.7. Among all curves joining P to Q in H2, the circle arc
centered on the x-axis (possibly a vertical line segment) is the unique
one that is shortest for the hyperbolic length �hyp.

Proof. If P and Q are on the same vertical line, this is proved by
Lemma 2.4.

Otherwise, Lemma 2.6 provides an isometry ϕ sending P and Q

to two points P ′ and Q′ on the same vertical line L. By Lemma 2.4,
the shortest curve from P ′ to Q′ is the line segment [P ′, Q′]. Since an
isometry sends shortest curves to shortest curves, the shortest curve
from P to Q is the image of the line segment [P ′, Q′] under the inverse
isometry ϕ−1. By the second statement of Lemma 2.6, this image is
the circle arc joining P to Q and centered on the x-axis. �

                

                                                                                                               



2.3. Shortest curves in the hyperbolic plane 21

In a metric space where the distance function is defined by taking
the infimum of the arc lengths of certain curves, such as the euclidean
plane and the hyperbolic plane, there is a technical term for “shortest
curve”. More precisely, a geodesic is a curve γ such that for every
P ∈ γ and for every Q ∈ γ sufficiently close to P , the section of γ

joining P to Q is the shortest curve joining P to Q (for the arc length
considered).

For instance, Proposition 1.1 says that geodesics in the euclidean
plane (R2, deuc) are line segments, whereas Theorem 2.7 shows that
geodesics in the hyperbolic plane (H2, dhyp) are circle arcs centered on
the x-axis. By convention, line segments and circle arcs may include
some, all, or none of their endpoints (in much the same way as an
interval in the number line R may be open, closed or semi-open).

A complete geodesic is a geodesic which cannot be extended to
a larger geodesic. From the above observations, complete geodesics
of the euclidean plane are straight lines. Complete geodesics of the
hyperbolic plane are open semi-circles centered on the x-axis and
delimited by two points of the x-axis (including vertical half-lines
going from a point on the x-axis to infinity).

For future reference, we now prove the following technical result.

Lemma 2.8. Let P0 = (0, y0) and P1 = (0, y1) be two points of the
upper half L = {(0, y); y > 0} ⊂ H2 of the y-axis, with y1 > y0,
and let g be a complete hyperbolic geodesic passing through P0. See
Figure 2.5. Then the following are equivalent:

(1) P0 is the point of g that is closest to P1 for the hyperbolic
distance dhyp;

(2) g is the complete geodesic g0 that is orthogonal to L at P0,
namely, it is the euclidean semi-circle of radius y0 centered
at (0, 0) and joining (y0, 0) to (−y0, 0).

Proof. Lemmas 2.4 and 2.5 show that for every point P = (u, v) on
the geodesic g0,

dhyp(P1, P ) � ln
y1

v
� ln

y1

y0
= dhyp(P1, P0).

                

                                                                                                               



22 2. The hyperbolic plane

0

P1

P

L

g
θ

P0

g0

Figure 2.5

As a consequence, the point P0 is closest to P1 among all points of
g0.

Conversely, if g is another complete hyperbolic geodesic that
passes through P0 and makes an angle of θ �= π

2 with L at P0, we
want to find a point P ∈ g with dhyp(P1, P ) < dhyp(P1, P0).

For P = (u, v) ∈ g, the standard parametrization of the line
segment [P1, P ] gives that its hyperbolic length is equal to

�hyp([P1, P ]) =
∫ 1

0

√
u2 + (v − y1)2

y1 + t(v − y1)
dt

=

√
u2 + (v − y1)2

y1 − v
ln

y1

v
.

We now let the point P = (u, v) vary on the geodesic g near P0.

When u = 0, we have that v = y0 and
dv

du
= cot θ. Differentiating

the above formula then gives that still at u = 0,

d

du
�hyp([P1, P ]) = − 1

y0
cot θ.

In particular, unless θ = π
2 , this derivative is different from 0 and

there exists near P0 = (0, y0) a point P = (u, v) of g such that

dhyp(P1, P ) � �hyp([P1, P ]) < �hyp([P1, P0]) = dhyp([P1, P0]). �
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2.4. All isometries of the hyperbolic plane

So far, we have encountered three types of isometries of the hyper-
bolic plane (H2, dhyp): homotheties, horizontal translations and the
inversion. In this section, we describe all isometries of (H2, dhyp).

It is convenient to use complex numbers. In this framework,

H2 = {z ∈ C; Im(z) > 0},

where the imaginary part Im(z) is the y-coordinate of z = x + iy.

In complex coordinates, a homothety is of the form z �→ λz for a
real number λ > 0, a horizontal translation is of the form z �→ z + x0

with x0 ∈ R, and the inversion is of the form z �→ z
|z|2 = 1

z̄ , where
z̄ = x − iy is the complex conjugate of z = x + iy and where |z| =√

x2 + y2 =
√

zz̄ is its modulus (also called absolute value).

We can obtain more examples of isometries by composition of
isometries of these types. Recall that the composition ψ ◦ ϕ of two
maps ϕ and ψ is defined by ψ ◦ ϕ(P ) = ψ

(
ϕ(P )

)
, and that the

composition of two isometries is an isometry.

Lemma 2.9. All maps of the form

(2.3) z �→ az + b

cz + d
with a, b, c, d ∈ R and ad − bc = 1

or

(2.4) z �→ cz̄ + d

az̄ + b
with a, b, c, d ∈ R and ad − bc = 1

are isometries of the hyperbolic plane (H2, dhyp).

Proof. We will show that every such map is a composition of horizon-
tal translations z �→ z + x0 with x0 ∈ R, of homotheties z �→ λz with
λ > 0, and of inversions z �→ 1

z̄ . Since a composition of isometries is
an isometry, this will prove the result.

When a �= 0, the map of equation (2.4) is the composition of

z �→ z +
b

a
, z �→ 1

z̄
, z �→ 1

a2
z and z �→ z +

c

a
.

In particular, this map is the composition of several isometries of H2

and is therefore an isometry of H2.
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Composing once more with z �→ 1
z̄ , we obtain the map of equa-

tion (2.3), thereby showing that this map is also an isometry of the
hyperbolic plane when a �= 0.

When a = 0, so that c �= 0, the map of equation (2.3) is the
composition of

z �→ cz + b + d

cz + d
,

which is an isometry of H2 by the previous case, and of the horizontal
translation z �→ z − 1. It follows that the map of equation (2.3) is
also an isometry of H2 when a = 0.

Finally, composing with z �→ 1
z̄ shows that the map of equa-

tion (2.4) is an isometry of H2 when a = 0. �

Conversely, we will show that every isometry of the hyperbolic
plane is of one the two types considered in Lemma 2.9. The proof of
this fact hinges on the following property.

Lemma 2.10. Let ϕ be an isometry of the hyperbolic plane (H2, dhyp)
such that ϕ(iy) = iy for every y > 0. Then either ϕ(z) = z for every
z ∈ H2 or ϕ(z) = −z̄ for every z.

Proof. Let L = {iy; y > 0} be the upper half of the y-axis. By
hypothesis, ϕ fixes every point of L.

For every iy ∈ L, let gy be the unique hyperbolic complete geo-
desic that passes through iy and is orthogonal to L. Namely, gy is
the euclidean semi-circle of radius y centered at 0 and contained in
H2. Since ϕ is an isometry and ϕ(iy) = iy, we know that it sends gy

to a complete geodesic g passing through iy. We will use Lemma 2.8
to prove that g = gy.

Indeed, this statement characterizes the geodesic gy by the prop-
erty that for any y1 > y, the point iy is the point of gy that is closest
to iy1. As a consequence, since ϕ is an isometry, ϕ(iy) = iy is the
point of ϕ(gy) = g that is closest to ϕ(iy1) = iy1. Lemma 2.8 then
shows that g = gy, so that ϕ(gy) = gy.

Now, if P = u + iv is a point of gy, its image ϕ(gy) is one of the
two points of gy that are at distance dhyp(P, iy) from iy. One of these
two points is P , the other one is −u + iv by symmetry.
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We conclude that ϕ(u+iv) = u+iv or −u+iv for every u+iv ∈ H2

(since u + iv belongs to some geodesic gy). Since ϕ is an isometry,
it is continous. It follows that either ϕ(u + iv) = u + iv for every
u+iv ∈ H2 or ϕ(u+iv) = −u+iv for every u+iv ∈ H2. This can be
rephrased as either ϕ(z) = z for every z ∈ H2 or ϕ(z) = −z̄ for every
z ∈ H2. �

A minor corollary of Lemma 2.9 is that ϕ(z) =
az + b

cz + d
with a,

b, c, d ∈ R and ad − bc = 1 sends the upper half-space H2 to itself;
this can also be easily checked “by hand”. This map is not defined
at the boundary point z = −d

c . However, if we introduce a point ∞
at infinity of the real line R (without distinguishing between +∞ and
−∞), the same formula defines a map

ϕ: R ∪ {∞} → R ∪ {∞}

by setting ϕ(−d
c ) = ∞ and ϕ(∞) = a

c . This map is specially designed
to be continuous. Indeed,

lim
x→− d

c

ϕ(x) = ∞ and lim
x→∞

ϕ(x) =
a

c

in the “obvious” sense, which is made precise in Section T.3 of the
Tool Kit.

The same applies to a map of the form ϕ(z) =
cz̄ + d

az̄ + b
with a, b,

c, d ∈ R and ad − bc = 1. These extensions are often convenient, as
in the proof of the following statement.

Theorem 2.11. The isometries of the hyperbolic plane (H2, dhyp) are
exactly the maps of the form

ϕ(z) =
az + b

cz + d
with a, b, c, d ∈ R and ad − bc = 1

or

ϕ(z) =
cz̄ + d

az̄ + b
with a, b, c, d ∈ R and ad − bc = 1.

Proof. We already proved in Lemma 2.9 that all maps of these two
types are isometries of the hyperbolic plane.

Conversely, let ϕ be an isometry of H2, and consider again the
positive part L = {iy; y > 0} of the y-axis. Since L is a complete
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geodesic of H2, its image under the isometry ϕ is also a complete ge-
odesic of H2, namely, a euclidean semi-circle bounded by two distinct
points u, v ∈ R∪{∞}. Here u or v will be ∞ exactly when ϕ(L) is a
vertical half-line. In addition, if we orient L from 0 to ∞, we require
without loss of generality that the corresponding orientation of ϕ(L)
goes from u to v.

First, consider the case where u and v are both different from ∞.
The hyperbolic isometry

ψ(z) =
az − au

cz − cv
,

with a and c ∈ R chosen so that ac(u− v) = 1, sends u to 0 and v to
∞. It follows that the composition ψ ◦ ϕ fixes the two points 0 and
∞. As a consequence, the isometry ψ ◦ϕ sends the complete geodesic
L to itself, and respects its orientation. In particular, ψ ◦ ϕ(i) = it
for some t > 0. Replacing a by a/

√
t and c by c

√
t in the definition

of ψ, we can arrange that ψ ◦ϕ(i) = i. Then, ψ ◦ϕ sends each iy ∈ L

to a point of L that is at the same hyperbolic distance from i as iy;
since ψ ◦ ϕ respects the orientation of L, the only possibility is that
ψ ◦ ϕ(iy) = iy for every y > 0.

Applying Lemma 2.10, we conclude that either ψ ◦ ϕ(z) = z for
every z or ψ ◦ ϕ(z) = −z̄ for every z. In the first case,

ϕ(z) = ψ−1(z) =
−cvz + au

−cz + a
,

where the formula for the inverse function ψ−1 is obtained by solving
the equation ψ(z′) = z (compare Exercise 2.10). In the second case,

ϕ(z) = ψ−1(−z̄) =
cvz̄ + au

cz̄ + a
.

In both cases, ϕ(z) is of the type requested.

It remains to consider the cases where u or v is ∞. The argument
is identical, using the isometries

ψ(z) =
−a

cz − cv

with ac = 1 when u = ∞, and

ψ(z) =
az − au

c
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with ac = 1 when v = ∞. �

The isometries of (H2, dhyp) of the form ϕ(z) =
az + b

cz + d
with a, b,

c, d ∈ R and ad − bc = 1 are called linear fractional maps with

real coefficients. Those of the form ϕ(z) =
cz̄ + d

az̄ + b
with a, b, c, d ∈ R

and ad − bc = 1 are antilinear fractional maps .

2.5. Linear and antilinear fractional maps

In this section we establish a few fundamental properties of linear and
antilinear fractional maps. Since later we will need to consider maps
of this type with arbitrary complex (and not just real) coefficients,
we prove these properties in this higher level of generality.

In this context, a linear fractional map is a nonconstant map

ϕ of the form ϕ(z) =
az + b

cz + d
with complex coefficients a, b, c, d ∈

C. Elementary algebra shows that ϕ is nonconstant exactly when
ad − bc �= 0. Dividing all coefficients by one of the two complex
square roots ±

√
ad − bc, we can consequently arrange that ad−bc = 1

without changing the map ϕ. We will systematically require that the
coefficients a, b, c, d ∈ C satisfy this condition ad − bc = 1.

So far, the map ϕ is not defined at z = d
c . However, this can easily

be fixed by introducing a point ∞ at infinity of C. Let the Riemann

sphere be the union Ĉ = C ∪ {∞}. Then a linear fractional ϕ(z) =
az + b

cz + d
with a, b, c, d ∈ C and ad − bc = 1 defines a map ϕ: Ĉ → Ĉ

by setting ϕ(−d
c ) = ∞ and ϕ(∞) = a

c . This map is continuous for
the obvious definition of continuity at infinity because

lim
z→− d

c

ϕ(z) = ∞ and lim
z→∞

ϕ(z) =
a

c
,

where these limits involving infinity are defined exactly as in Sec-
tion T.3 of the Tool Kit, but replacing absolute values of real num-
bers by moduli (= absolute values) of complex numbers.

Similarly, a general antilinear fractional map is a map ϕ :

Ĉ → Ĉ of the form ϕ(z) =
cz̄ + d

az̄ + b
with a, b, c, d ∈ C and ad− bc = 1,

with the convention that ϕ(− b̄
ā ) = ∞ and ϕ(∞) = c

a .
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See Exercise 2.8 for an explanation of why the Riemann sphere
Ĉ = C ∪ {∞} can indeed be considered as a sphere. See also Exer-
cise 2.12 for another interpretation of Ĉ, which sheds a different light
on linear fractional maps.

2.5.1. Some special (anti)linear fractional maps. We already
encountered the homotheties

z �→ λz =
λ

1
2 z + 0

0z + λ− 1
2

with positive real ratio λ > 0. If we allow complex coefficients, we
can also consider the rotations

z �→ eiθz =
ei θ

2 z + 0

0z + e−i θ
2

of angle θ ∈ R around the origin, and the translations

z �→ z + z0 =
z + z0

0z + 1

for arbitrary complex numbers z0 ∈ C.

We also considered the inversion across the unit circle

z �→ z

|z|2 =
1
z̄

=
0z̄ + 1
z̄ + 0

.

Lemma 2.12. Every linear or antilinear fractional map ϕ: Ĉ → Ĉ is
a composition of homotheties, translations, rotations, and inversions
across the unit circle.

Proof. The proof is identical to the purely algebraic argument that
we already used in the proof of Lemma 2.9 for linear and linear frac-
tional maps with real coefficients. �

Actually, there is no reason to prefer the unit circle to any other
circle. If C is the circle of radius R centered at the point z0 ∈ C,
the inversion across the circle C is the antilinear fractional map ϕ

defined by the property that

ϕ(z) − z0 = R2 z − z0

|z − z0|2
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or, equivalently, that

ϕ(z) =
z0
R z̄ + R2−|z0|2

R
1
R z̄ − z̄0

R

.

Namely, ϕ sends z to the point that is on the same ray issued from z0

as z, and it is at the euclidean distance R2/deuc(z, z0) from z0. This
inversion fixes every point of the circle C, and exchanges the inside
and the outside of C.

There is an interesting limit case of inversions as we let the center
and the radius of the circle go to infinity. For given t, t0 and θ0 ∈ R,
set z0 = teiθ0 and R = t − t0. If we let t tend to +∞, the circle C

converges to the line L that passes through the point t0eiθ0 and makes
an angle of θ0 + π

2 with the x-axis. On the other hand, the inversion
ϕ across C converges to the map z �→ −e2iθ0 z̄ + 2t0eiθ0 , which is just
the reflection across the line L.

In this way, if we interpret the line L as a circle of infinite ra-
dius centered at infinity, we can also consider the euclidean reflection
across L as an inversion across this circle. Note that every line L can
be obtained in this way.

2.5.2. Differentials. Recall that if ϕ : U → R2 is a differentiable
function defined on a region U ⊂ R2 by ϕ(x, y) =

(
f(x, y), g(x, y)

)
,

the differential or tangent map of ϕ at a point P0 = (x0, y0) in
the interior of U is the linear map DP0ϕ: R2 → R2 with matrix(

∂f
∂x

(P0) ∂f
∂y

P0)
∂g
∂x (P0) ∂g

∂y (P0)

)
.

Namely,

DP0ϕ(�v) = DP0ϕ(a, b) =
(
a∂f

∂x (P0) + b∂f
∂y (P0), a ∂g

∂x (P0) + b∂g
∂y (P0)

)
for every vector �v = (a, b) ∈ R2.

The differential map DP0ϕ also has the following geometric in-
terpretation.

Lemma 2.13. Let the differentiable map ϕ: U → R2 be defined over
a region U containing the point P0 in its interior. Then, for every
parametrized curve γ in U which passes through P0 and is tangent to
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the vector �v there, its image under ϕ is tangent to the vector DP0ϕ(�v)
at the point ϕ(P0).

ϕP0
ϕ(P0)�v

γ

ϕ(γ)

DP0ϕ(�v)

Figure 2.6. The geometry of the differential map

Proof. Suppose that the map ϕ is given by ϕ(x, y)=
(
f(x, y), g(x, y)

)
,

and that the curve γ is parametrized by t �→
(
x(t), y(t)

)
. If the

point P0 corresponds to t = t0, namely, if P0 =
(
x(t0), y(t0)

)
, then

�v =
(
x′(t0), y′(t0)

)
.

The image of the curve γ under ϕ is parametrized by

t �→ ϕ
(
x(t), y(t)

)
=

(
f
(
x(t), y(t)

)
, g

(
x(t), y(t)

))
.

Applying the chain rule for functions of several variables, its tangent
vector at ϕ(P0) is equal to

d

dt

(
f
(
x(t), y(t)

)
, g

(
x(t), y(t)

))
t=t0

=
( d

dt
f
(
x(t), y(t)

)
t=t0

,
d

dt
g
(
x(t), y(t)

)
t=t0

)
=

(
∂f

∂x
(P0) x′(t0) +

∂f

∂y
(P0) y′(t0),

∂g

∂x
(P0) x′(t0) +

∂g

∂y
(P0) y′(t0)

)
= DP0ϕ(�v). �

An immediate consequence of this geometric interpretation is the
following property.

Corollary 2.14.

DP0(ψ◦ϕ) = (Dϕ(P0)ψ)◦(DP0ϕ). �

The differential maps of linear and antilinear fractional maps have
a particularly nice expression in complex coordinates.
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Proposition 2.15. If the linear fractional map ϕ is defined by ϕ(z) =
az + b

cz + d
where a, b, c, d ∈ C with ad − bc = 1, its differential map

Dz0ϕ: C → C at z0 ∈ C with z0 �= −d
c is such that

Dz0ϕ(v) =
1

(cz0 + d)2
v

for every v ∈ C.

If the antilinear fractional map ψ is defined by ψ(z) =
cz̄ + d

az̄ + b
where a, b, c, d ∈ C with ad−bc = 1, its differential map Dz0ψ: C → C

at z0 ∈ C with z0 �= − b̄
ā is such that

Dz0ψ(v) =
1

(az̄0 + b)2
v̄

for every v ∈ C.

Proof. We will use Lemma 2.13. Given v ∈ C interpreted as a vector,
consider the line segment γ parametrized by t �→ z(t) = z0 + tv. Note
that z(0) = z0 and that z′(0) = v.

Lemma 2.13 then implies that

Dz0ϕ(v) =
d

dt
ϕ
(
z(t)

)
|t=0

= lim
h→0

1
h

(
ϕ
(
z(h)

)
− ϕ

(
z(0)

))
= lim

h→0

1
h

(
az0 + ahv + b

cz0 + chv + d
− az0 + b

cz0 + d

)
= lim

h→0

v

(cz0 + chv + d)(cz0 + d)

=
1

(cz0 + d)2
v,

using the property that ad − bc = 1.

The argument is identical for the antilinear fractional map ψ. �

For future reference, we note that the same computation yields:

Complement 2.16. If ϕ(z) =
az + b

cz + d
where ad−bc is not necessarily

equal to 1, then

Dz0ϕ(v) =
ad − bc

(cz0 + d)2
v. �
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A consequence of Proposition 2.15 is that the differential map
of a linear fractional map is the composition of a homothety with
a rotation, and the differential map of an antilinear fractional map
is the composition of a homothety with a reflection. This has the
following important consequence.

Corollary 2.17. The differential map Dz0ϕ of a linear fractional
map ϕ respects angles and orientation in the sense that for any two
nonzero vectors �v1, �v2 ∈ C, the oriented angle from Dz0ϕ(�v1) to
Dz0ϕ(�v2) is the same as the oriented angle from �v1 to �v2, measur-
ing oriented angles counterclockwise in C.

The differential map Dz0ψ of an antilinear fractional linear map
ψ respects angles and reverses orientation in the sense that for any
two nonzero vectors �v1, �v2 ∈ C, the oriented angle from Dz0ψ(�v1) to
Dz0ψ(�v2) is the opposite of the oriented angle from �v1 to �v2. �

Incidentally, Corollary 2.17 shows that a linear fractional map
cannot coincide with an antilinear fractional map.

2.5.3. (Anti)linear fractional maps and circles. Another fun-
damental property of linear and antilinear fractional maps is that they
send circles to circles. For this, we have to include all lines as circles
of infinite radius centered at infinity. More precisely, let a circle in
the Riemann sphere Ĉ = C∪{∞} be either a euclidean circle in C or
the union L ∪ {∞} of a line L ⊂ C and the point ∞.

Proposition 2.18. A linear or antilinear fractional map ϕ: Ĉ → Ĉ

sends each circle of Ĉ to a circle of Ĉ.

Proof. By Lemma 2.12, ϕ is a composition of homotheties, rotations,
translations and inversions across the unit circle. Since homotheties,
rotations and translations clearly send circles to circles, it suffices to
consider the case where ϕ is the inversion across the unit circle.

It is convenient to use polar coordinates. In polar coordinates r

and θ, the circle C of radius R centered at z0 = r0eiθ0 has equation

r2 − 2r r0 cos(θ − θ0) + r2
0 − R2 = 0.

The inversion ϕ sends the point with polar coordinates [r, θ] to
the point of coordinates [1r , θ]. The image of the circle C under ϕ is
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therefore the curve of equation
1
r2

− 2r0

r
cos(θ − θ0) + r2

0 − R2 = 0.

If |r0| �= R or, equivalently, if the circle C does not contain the
origin 0, simplifying the above equation shows that this curve is the

circle of radius
R

|r2
0 − R2| centered at

z0

r2
0 − R2

.

If |z0| = R, we get the curve of polar equation r =
1

2r0 cos(θ − θ0)
,

which of course is a line.

Finally, we need to consider the case where C is a line. In polar

coordinates, its equation is of the form r =
1

2r0 cos(θ − θ0)
for some

r0 and θ0. Then its image under ϕ has equation r = 2r0 cos(θ − θ0),
and consequently it is a circle passing through the origin. �

2.6. The hyperbolic norm

If �v = (a, b) is a vector in R2, its euclidean magnitude or euclidean

norm is its usual length

‖�v‖euc =
√

a2 + b2.

For instance, if �v is the velocity of a particle moving in the euclidean
plane, ‖�v‖euc describes the speed of this particle.

In the hyperbolic plane, distances are measured differently ac-
cording to where we are in the plane, and consequently so are speeds.
If �v is a vector based at the point z ∈ H2 ⊂ C, its hyperbolic norm

is
‖�v‖hyp =

1
Im(z)

‖�v‖euc .

To justify this definition, let γ be a curve in H2, parametrized by
t �→ z(t), a � t � b. In particular, the tangent vector of γ at the point
z(t) is the derivative z′(t), and must be considered as a vector based
at z(t). Then the euclidean and hyperbolic lengths of γ are given by
the very similar formulas

�euc(γ) =
∫ b

a

‖z′(t)‖euc dt

                

                                                                                                               



34 2. The hyperbolic plane

and

�hyp(γ) =
∫ b

a

‖z′(t)‖hyp dt.

If ϕ is a differentiable map and �v is a vector based at P , its
image DP ϕ(�v) under the differential map is a vector based at ϕ(P ).
Indeed, see the geometric interpretation of the differential DP ϕ given
by Lemma 2.13.

Lemma 2.19. If ϕ is an isometry of (H2, dhyp), then ‖Dz0ϕ(�v)‖hyp =
‖�v‖hyp for every vector �v based at z0 ∈ H2.

Proof. We could go back to basic principles about the metric dhyp,
but it is easier to use a straight computation.

Consider the case where ϕ is a linear fractional ϕ(z) =
az + b

cz + d
with a, b, c, d ∈ R and ad − bc = 1. By Proposition 2.15, if �v is a
vector based at z0 ∈ H2,

‖Dz0ϕ(�v)‖euc =
1

|cz0 + d|2 ‖�v‖euc .

On the other hand,

Im(ϕ(z0)) =
1
2i

(
ϕ(z0) − ϕ(z0)

)
=

1
2i

(
az0 + b

cz0 + d
− az̄0 + b

cz̄0 + d

)
=

1
2i

z0 − z̄0

|cz0 + d|2 =
1

|cz0 + d|2 Im(z0).

Therefore,

‖Dz0ϕ(�v)‖hyp =
1

Im(ϕ(z0))
‖Dz0ϕ(�v)‖euc

=
1

Im(z0)
‖�v‖euc = ‖�v‖hyp .

The argument is essentially identical for an antilinear fractional

map ϕ(z) =
cz̄ + d

az̄ + b
. �

2.6.1. The isotropy property of the hyperbolic plane. We now
show that like the euclidean plane, the hyperbolic plane H2 is iso-
tropic. Recall that this means that not only can we send any point
z1 ∈ H2 to any other point z2 ∈ H2 by an isometry ϕ of (H2, dhyp),
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but we can even arrange that ϕ sends any given direction at z1 to
any arbitrary direction at z2. As a consequence, the hyperbolic plane
looks the same at every point and in every possible direction.

Proposition 2.20. Let �v1 be a vector based at z1 ∈ H2, and let �v2 be
a vector based at z2 ∈ H2 with ‖�v1‖hyp = ‖�v2‖hyp. Then there is an
isometry ϕ of (H2, dhyp) which sends z1 to z2 and whose differential
map Dz1ϕ sends �v1 to �v2.

Proof. Let θ ∈ R be the angle from �v1 to �v2 measured in the usual
euclidean way, namely, after moving �v1 to the point z2 by a euclidean
translation of R2.

There exists c, d ∈ R such that cz1 + d = e−i θ
2 . Indeed, finding

c and d amounts to solving a linear system of two equations. If
z1 = x1 + iy1, one finds c = 1

y1
sin θ

2
and d = cos θ

2
− x1

y1
sin θ

2
, but the

precise value is really irrelevant.

Then one can find (many) a, b ∈ R such that ad − bc = 1. This
is again a simple linear equation problem after observing that c and
d cannot be both equal to 0.

Let ϕ1 be the linear fractional defined by ϕ1(z) = az+b
cz+d . Because

of our choice of a, b, c, d, Proposition 2.15 shows that Dz1ϕ1 is
the complex multiplication by eiθ, namely, the rotation of angle θ.
As a consequence, still comparing angles and directions in the usual
euclidean way, �v3 = Dz1ϕ1(�v1) is parallel to �v2 and points in the same
direction.

Let z3 = ϕ1(z1). Let ϕ2 be an isometry of H2 sending z3 to
z2. As in our proof of the homogeneity of H2 in Proposition 2.2, we
can even arrange that ϕ2 is the composition of a homothety with a
horizontal translation, so that Dz3ϕ2 is a homothety. In particular,
Dz3ϕ2 sends each vector to one which is parallel to it.

Then ϕ = ϕ2 ◦ ϕ1 sends z1 to z2, and its differential Dz1ϕ =
Dz3ϕ2 ◦ Dz1ϕ1 sends �v1 to a vector �v2

′ = Dz1ϕ(�v1) = Dz3ϕ2(�v3),
which is based at z2 and is parallel to �v2.

By Lemma 2.19,

‖�v2
′‖hyp = ‖Dz1ϕ(�v1)‖hyp = ‖�v1‖hyp = ‖�v2‖hyp .
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The vectors �v2 and �v2
′ are based at the same point z2, they are parallel,

they point in the same direction, and they have the same hyperbolic
norm. Consequently, they must be equal.

We therefore have found an isometry ϕ of (H2, dhyp) such that
ϕ(z1) = z2 and Dz1ϕ(�v1) = �v2. �

2.7. The disk model for the hyperbolic plane

We now describe a new model for the hyperbolic plane, namely, an-
other metric space (X, d) which is isometric to (H2, dhyp). This model
is sometimes more convenient for performing computations. Another
side benefit, mathematically less important but not negligible, is that
it often leads to prettier pictures, as we will have the opportunity to
observe in later chapters.

P

Q
γ

B2

Figure 2.7. The disk model for the hyperbolic plane

Let B2 be the open disk of radius 1 centered at 0 in the com-
plex plane C, namely, in the sense of metric spaces introduced in
Section 1.3, the ball Bdeuc

(
(0, 0), 1

)
in the euclidean plane (R2, deuc).

For a vector �v based at the point z ∈ B2, define its B2-norm as

‖�v‖B2 =
2

1 − |z|2 ‖�v‖euc ,

where ‖�v‖euc is the euclidean norm of V . Then, as for the euclidean
and hyperbolic plane, define the B2-length of a piecewise differentiable
curve γ in B2 parametrized by t �→ z(t), a � t � b, as �B2(γ) =
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a
‖z′(t)‖B2 dt. Finally, given two points P , Q ∈ B2, define their

B2-distance dB2(P, Q) as the infimum of the lengths �B2 as γ ranges
over all piecewise differentiable curves going from P to Q.

Let Φ be the fractional linear map defined by Φ(z) =
−z + i

z + i
.

Beware that the coefficients of Φ do not satisfy the usual relation
ad− bc = 1. This could be achieved by dividing all the coefficients by
one of the complex square roots ±

√
−2i, but the resulting expression

would be clumsy and cumbersome.

Proposition 2.21. The linear fractional map Φ(z) =
−z + i

z + i
induces

an isometry from (H2, dhyp) to (B2, dB2).

Proof. Note that |Φ(z)| = 1 when z ∈ R, so that Φ sends R ∪ {∞}
to the unit circle. As a consequence, Φ sends the upper half-plane H2

to either the inside or the outside of the unit circle in C∪{∞}. Since
Φ(i) = 0, we conclude that Φ(H2) is equal to the inside B2 of the unit
circle.

Consider the differential DzΦ : C → C of Φ at z ∈ H2. By
Proposition 2.15 and Complement 2.16,

‖DzΦ(v)‖B2 =
2

1 − |Φ(z)|2 ‖DzΦ(v)‖euc

=
2

1 −
∣∣∣−z+i

z+i

∣∣∣2
∣∣∣∣− 2i

(z + i)2
v

∣∣∣∣
=

4
|z + i|2 − |−z + i|2

|v|

=
4

(z + i)(z̄ − i) − (−z + i)(−z̄ − i)
|v|

=
2

i(z̄ − z)
|v| =

1
Im(z)

|v| = ‖v‖hyp .

From this computation, we conclude that Φ sends a curve γ in
H2 to a curve Φ(γ) in B2 such that �B2

(
Φ(γ)

)
= �hyp(γ).

Taking the infimum of the lengths of such curves, it follows that
dB2(Φ(P ), Φ(Q)) = dhyp(P, Q) for every P , Q ∈ H2. In other words,
Φ defines an isometry from (H2, dhyp) to (B2, dB2). �
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In particular, this proves that dB2 is a metric and not just a semi-
metric (namely that dB2(P, Q) = 0 only when P = Q), which is a
property that we had implicitly assumed so far.

Proposition 2.22. The geodesics of (B2, dB2) are the arcs contained
in euclidean circles that are orthogonal to the circle S1 bounding B2,
including straight lines passing through the origin.

Proof. Since Φ is an isometry from (H2, dhyp) to (B2, dB2), the geo-
desics of (B2, dB2) are just the images under Φ of the geodesics of
(H2, dhyp).

Because linear fractionals send circles to circles (Proposition 2.18)
and respect angles (Corollary 2.17), the result follows immediately
from the fact that geodesics of (H2, dhyp) are exactly circle arcs in
euclidean circles centered on the x-axis or, equivalently, orthogonal
to this x-axis. �

Proposition 2.23. The isometries of (B2, dB2) are exactly the re-
strictions to B2 of all linear and antilinear fractional maps of the
form

ϕ(z) =
αz + β

β̄z + ᾱ
or ϕ(z) =

αz̄ + β

β̄z̄ + ᾱ

with |α|2 − |β|2 = 1.

Proof. Since Φ is an isometry from (H2, dhyp) to (B2, dB2), the isome-
tries of (B2, dB2) are exactly those maps of the form Φ◦ψ◦Φ−1 where
ψ is an isometry of (H2, dhyp).

If ψ is a linear fractional map of the form ψ(z) =
az + b

cz + d
with a,

b, c, d ∈ R and ad − bc = 1, then

Φ ◦ ψ ◦ Φ−1(z) =
(ai − b + c + di)z + (−ai − b − c + di)

(−ai + b + c + di)z + (ai + b − c + di)

is of the form indicated for

α =
1
2
(a + bi − ci + d)

and β =
1
2
(−a + bi + ci + d).
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Conversely, writing α + β = bi + d and α − β = a − ci with a, b, c,

d ∈ R, any map z �→ αz + β

β̄z + ᾱz
with |α|2 − |β|2 = 1 is of the form

Φ ◦ ψ ◦ Φ−1 for some a, b, c, d ∈ R with ad − bc = 1.

The argument is identical for antilinear fractional maps. �

Exercises for Chapter 2

Exercise 2.1. Rigorously prove that a horizontal translation ϕ: H2 → H2,
defined by the propery that ϕ(x, y) = (x + x0, y) for a given x0 ∈ R, is an
isometry of the hyperbolic plane (H2, dhyp).

Exercise 2.2 (An explicit formula for the hyperbolic distance). The goal
of this exercise is to show that the hyperbolic distance dhyp(z, z′) from z
to z′ ∈ H2 ⊂ C is equal to

D(z, z′) = log
|z − z̄′| + |z − z′|
|z − z̄′| − |z − z′| .

a. Show that dhyp(z, z′) = D(z, z′) when z and z′ are on the same vertical
line.

b. Show that D
`

ϕ(z), ϕ(z′)
´

= D(z, z′) for every z, z′ ∈ H2 when ϕ :

H2 → H2 is a horizontal translation, a homothety or the inversion
across the unit circle.

c. Use the proof of Lemma 2.6 to show that dhyp(z, z′) = D(z, z′) for
every z, z′ ∈ H2.

Exercise 2.3. Adapt the proof of Theorem 2.11 to prove that every isom-
etry of the euclidean plane (R2, deuc) is of the form ϕ(z) = z0 + zeiθ or
ϕ(z) = z0 + z̄ei2θ for some z0 ∈ C and θ ∈ R.

Exercise 2.4 (Perpendicular bisector). The perpendicular bisector of
the two distinct points P and Q ∈ H2 is the geodesic bPQ defined as follows.
Let M be the midpoint of the geodesic g joining P to Q. Then bPQ is the
complete geodesic that passes through M and is orthogonal to g.

a. Let ρ be the inversion across the euclidean circle that contains bPQ.
Show that ρ sends the geodesic g to itself and exchanges P and Q.

b. Show that dhyp(P, R) = dhyp(Q, R) for every R ∈ bPQ. Possible hint:
Use part a.

c. Suppose that P and R are on opposite sides of gPQ, in the sense that
the geodesic k joining P to R meets bPQ in a point S. Combine pieces
of k and ρ(k) to construct a piecewise differentiable curve k′ which
goes from Q to R, which has the same hyperbolic length as k, and
which is not geodesic. Conclude that dhyp(Q, R) < dhyp(P, R).
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d. As a converse to part b, show that dhyp(P, R) �= dhyp(Q, R) whenever
R �∈ bPQ. Possible hint: Use part c.

Exercise 2.5 (Orthogonal projection). Let g be a complete geodesic of
H2, and consider a point P ∈ H2.

a. First consider the case where g is a vertical half-line g = {(x0, y) ∈
R2; y > 0}. Show that there exists a unique complete geodesic h
containing P and orthogonally cutting g at some point Q (namely, h
and g meet in Q and form an angle of π

2
there).

b. In the case of a general complete geodesic g, show that there exists a
unique complete geodesic h containing P and orthogonally cutting g
at some point Q. Possible hint: Use Lemma 2.6.

c. Show that Q is the point of g that is closest to P , in the sense that
dhyp(P, Q′) > dhyp(P, Q) for every Q′ ∈ g different from Q. Possible
hint: First consider the case where the geodesic h is equal to a vertical
half-line and where the point P lies above Q on this half-line, then
apply Lemma 2.6.

Exercise 2.6 (Hyperbolic rotation around i). For θ ∈ R, consider the
fractional linear map defined by

ϕ(z) =
z cos θ

2
+ sin θ

2

−z sin θ
2

+ cos θ
2

.

a. Show that ϕ fixes the point i ∈ H2, and that its differential Diϕ at
i is just the rotation of angle θ. Hint: Use Proposition 2.15 to com-
pute Diϕ.

b. For an arbitrary z0 ∈ H2, give a similar formula for the hyperbolic
rotation of angle θ around the point z0, namely, for the isometry ϕ:
H2 → H2 for which ϕ(z0) = z0 and Dz0ϕ is the rotation of angle θ.

Exercise 2.7 (Classification of hyperbolic isometries). Consider an isom-
etry ϕ of the hyperbolic plane (H2, dhyp), defined by the linear fractional
map ϕ(z) = az+b

cz+d
with a, b, c, d ∈ R and ad − bc = 1.

a. Show that if (a + d)2 > 4, ϕ has no fixed point in H2 but fixes exactly
two points of R ∪ {∞}. Conclude that in this case there exists an
isometry ψ of (H2, dhyp) such that ψ ◦ ϕ ◦ ψ−1 is a homothety z �→ λz
with λ > 0. (Hint: Choose ψ so that it sends the fixed points to 0
and ∞). Find a relationship between λ and (a + d)2. A hyperbolic
isometry of this type is said to be loxodromic.

b. Show that if (a + d)2 < 4, ϕ has a unique fixed point in H2. Conclude
that in this case there is an isometry ψ of (H2, dhyp) such that ψ◦ϕ◦ψ−1

is the linear fractional map of Exercise 2.6 for some θ ∈ R. (Hint:
Choose ψ so that it sends the fixed point to i). Find a relationship
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between θ and (a + d)2. A hyperbolic isometry of this type is said to
be elliptic.

c. Show that if (a + d)2 = 4 and if ϕ is not the identity map defined by
ϕ(z) = z, then ϕ has a unique fixed point in R ∪ {∞}. Conclude that
in this case there is an isometry ψ of (H2, dhyp) such that ψ ◦ϕ◦ψ−1 is
the horizontal translation z �→ z + 1. (Hint: Choose ψ so that it sends
the fixed point to ∞). A hyperbolic isometry of this type is said to be
parabolic.

Exercise 2.8 (Stereographic projection). Let S2 be the unit sphere in the
3-dimensional euclidean space R3, consisting of those points (x, y, z) ∈ R3

such that x2 + y2 + z2 = 1. Consider the map ρ: S2 → R2 ∪ {∞} defined
as follows. If (x, y, z) �= (0, 0, 1), then

ρ(x, y, z) =

„

x

1 − z
,

y

1 − z

«

∈ R
2;

otherwise, ρ(0, 0, 1) = ∞.

a. Show that when P = (x, y, z) is not the “North Pole” N = (0, 0, 1), its
image ρ(P ) is just the point where the line NP crosses the xy-plane
in R3.

b. Show that ρ: S2 → R2 ∪ {∞} is continuous at every P0 ∈ S2. When
P0 = N so that ϕ(P0) = ∞, this means that for every large η > 0 there
exists a small δ > 0 such that deuc(ρ(P ), O) > η for every P ∈ S2 with
deuc(P, P0) < δ, where O is the origin in R2. (Compare the calculus
definition of infinite limits, as reviewed in Section T.3 of the Tool

Kit.)

c. Show that the inverse function ρ−1: R2 ∪ {∞} → S2 is continuous at
every Q0 ∈ R2 ∪ {∞}. When Q0 = ∞ so that ρ−1(Q0) = N , this
means that for every small ε > 0, there exists a large η > 0 such that
deuc(ρ

−1(Q), N) < ε for every Q ∈ R2 with deuc(Q, O) > η.

In other words, ρ is a homeomorphism from S2 to R2 ∪ {∞}. (See
Section 5.1 for a definition of homeomorphisms).

Exercise 2.9. Let z0, z1 and z∞ be three distinct points in the Riemann

sphere bC = C∪ {∞}. Show that there exist a unique linear fractional map
ϕ and a unique antilinear fractional map ψ such that ϕ(0) = ψ(0) = z0,
ϕ(1) = ψ(1) = z1 and ϕ(∞) = ψ(∞) = z∞.

Exercise 2.10.

a. Show that the linear fractional map ϕ: bC → bC defined by ϕ(z) = az+b
cz+d

,
with a, b, c, d ∈ C such that ad−bc = 1, is bijective and that its inverse
ϕ−1 is the linear fractional map ϕ−1(z) = dz−b

−cz+a
. Hint: Remember

that ϕ−1(z) is the number u such that ϕ(u) = z.
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b. Give a similar formula for the inverse of the antilinear fractional map
ψ(z) = cz̄+d

az̄+b
with ad − bc = 1.

Exercise 2.11.

a. Show that any linear or antilinear fractional map can be written as the
composition of finitely many inversions across circles.

b. Show that when a linear fractional map is written as the composition
of finitely many inversions across circles, the number of inversions is
even. (Hint: Corollary 2.17.) Similarly, show that when an antilinear
fractional map is written as the composition of finitely many inversions
across circles, the number of inversions is odd.

Exercise 2.12 (Linear fractional maps and projective lines). Let the real
projective line RP1 consist of all 1-dimensional linear subspaces of the
vector space R2. Namely, RP1 is the set of all lines L through the origin
in R2. Since such a line L is determined by its slope s ∈ R ∪ {∞}, this
provides an identification RP1 ∼= R ∪ {∞}.

a. Let ΦA: R2 → R2 be the linear map defined by the matrix A =

„

a b
c d

«

with determinant ad − bc equal to 1. Similarly, consider the linear

fractional map ϕA: R ∪ {∞} → R ∪ {∞} defined by ϕA(s) =
as + b

cs + d
.

Show that ΦA sends the line L ∈ RP1 with slope s ∈ R ∪ {∞} to the
line ΦA(L) with slope ϕA(s).

b. Use part a to show that ϕAA′ = ϕA ◦ ϕA′ , where AA′ denotes the
product of the matrices A and A′.

c. Similarly, consider C2 = C × C as a vector space over the field C,
and let the complex projective line CP1 consist of all 1–dimensional
linear subspaces L ⊂ C2. Such a complex line L is determined by its
complex slope s ∈ C ∪ {∞} defined by the following property. If
L is not the line {0} × C, it intersects {1} × C at the point (1, s); if
L = {0} × C, its complex slope is s = ∞. Let ΦA : C2 → C2 be the

complex linear map defined by the matrix A =

„

a b
c d

«

with complex

entries a, b, c, d ∈ C and with determinant 1. Show that for the above
identification CP1 ∼= C ∪ {∞}, the map CP1 → CP1 induced by ΦA

corresponds to the linear fractional map ϕA : C ∪ {∞} → C ∪ {∞}
defined by ϕA(s) =

as + b

cs + d
.

Exercise 2.13 (Hyperbolic disks). Recall from Section 1.3 that in a metric
space (X, d) the ball of radius r centered at P ∈ X is Bd(P, r) = {Q ∈
X; d(P, Q) < r}.
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a. Let O be the center of the disk model B2 of Section 2.7. Show that the
ball Bd

B2
(O, r) in B2 coincides with the euclidean open disk of radius

tanh r
2

centered at O.

b. Show that every hyperbolic ball Bdhyp(P, r) in the hyperbolic plane

H2 is a euclidean open disk. Possible hint: Use part a, the isometry
Φ : (H2, dhyp) → (B2, dB2) of Proposition 2.21, Proposition 2.2 and
Proposition 2.18.

c. Show that the ball Bdhyp(P, r) centered at P = (x, y) ∈ H2 is the
euclidean open disk with euclidean radius 2y sinh r and with euclidean
center (x, 2y cosh r). Possible hint: Look at the two points where the
boundary of this disk meets the vertical line passing through P .

Exercise 2.14 (Hyperbolic area). If D is a region in H2, define its hyper-
bolic area as

Areahyp(D) =

ZZ

D

1

y2
dx dy.

a. Let ρ: H2 → H2 be the standard inversion. Show that ρ(D) has the
same hyperbolic area as D. Possible hints: Polar coordinates may be
convenient; alternatively, one can use the change of variables formula
for double integrals (see part c).

b. Show that an isometry of H2 sends each region D ⊂ H2 to a region of
the same hyperbolic area.

c. Let Φ be the isometry from (H2, dhyp) to (B2, dB2) provided by Propo-
sition 2.21. Show that for every region D in H2

Areahyp(D) =

ZZ

Φ(D)

1

(1 − x2 − y2)2
dx dy.

It may be convenient to use the change of variables formula for double
integrals, which in this case says that

ZZ

Φ(D)

f(u, v) du dv =

ZZ

D

f
`

Φ(x, y)
´

|det DΦ| dx dy

for every function f: Φ(D) → R, and to borrow computations from the
proof of Proposition 2.21 to evaluate the determinant det DΦ of the
differential map Dϕ.

d. Show that a ball Bdhyp(P, r) of radius r in H2 has hyperbolic area

Areahyp

`

Bdhyp(P, r)
´

= 2π(cosh r − 1) = 4π sinh2 r

2
.

Hint: First consider the case where P = (1, 0) = Φ−1(O), and use
part c and the result of Exercise 2.13a.

Exercise 2.15 (Area of hyperbolic triangles). For every θ with 0 < θ � π
2
,

let Tθ be the (infinite) hyperbolic triangle with vertices i, eiθ = cos θ+i sin θ
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and ∞. Namely, Tθ is the region of H2 bounded below by the euclidean
circle of radius 1 centered at the origin, on the left by the y-axis, and on
the right by the line x = cos θ.

a. Show that the hyperbolic area Areahyp(Tθ), as defined in Exercise 2.14,
is finite.

b. Show that
d

dθ
Areahyp(Tθ) = −1. Conclude that Areahyp(Tθ) =

π

2
− θ.

c. Let T be a finite triangle in the hyperbolic plane, namely, the region
of H2 bounded by the three geodesics joining any two of three distinct
points P , Q, R. Let α, β, γ ∈ [0, π] be the respective angles of T at
its three vertices. Show that

Areahyp(Tθ) = π − α − β − γ.

Hint: Express this area as a linear combination of the hyperbolic areas
of six suitably chosen infinite hyperbolic triangles, each isometric to a
triangle Tθ as in parts a and b.

Exercise 2.16 (Crossratio). The crossratio of four distinct points z1, z2,

z3, z4 ∈ bC = C ∪ {∞} is

K(z1, z2, z3, z4) =
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)
∈ C,

using the straightforward extension by continuity of this formula when one
of the zi is equal to ∞. For instance, K(z1, z2, z3,∞) = z1−z3

z2−z3
. Show that

K
`

ϕ(z1), ϕ(z2), ϕ(z3), ϕ(z4)
´

is equal to K(z1, z2, z3, z4) for every linear

fractional map ϕ: bC → bC, and that it is equal to the complex conjugate

of K(z1, z2, z3, z4) for every antilinear fractional map ϕ: bC → bC. Possible
hint: First check the property for a few simple (anti)linear fractional maps,
and then apply Lemma 2.12.

Exercise 2.17 (Another formula for the hyperbolic distance). Given two
distinct points z1, z2 of the hyperbolic plane H2 = {z ∈ C; Im(z) > 0}, let

x1, x2 ∈ bR = R ∪ {∞} be the two endpoints of the complete geodesic g
passing through z1 and z2, in such a way that x1, z1, z2 and x2 occur in
this order on g. Show that

dhyp(z1, z2) = log
(z1 − x2)(z2 − x1)

(z1 − x1)(z2 − x2)
.

Possible hint: First consider the case where x1 = 0 and x2 = ∞, and then
use the invariance property for the crossratio proved in Exercise 2.16.

Exercise 2.18. Show that a crossratio formula similar to that to Exer-
cise 2.17 holds in the disk model (B2, dB2) of Section 2.7. Hint: Use the
invariance property for the crossratio proved in Exercise 2.16.
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Exercise 2.19 (The projective model for the hyperbolic plane). Let B2 be
the open unit disk of Section 2.7. Consider the map Ψ: B2 → B2 defined
by

Ψ(x, y) = (
2x

1 + x2 + y2
,

2y

1 + x2 + y2
).

a. Show that Ψ is bijective.

b. Show that if g is a complete geodesic of (B2, dB2) which is a circle arc
centered on the x-axis, its image Ψ(g) is the euclidean line segment
with the same endpoints.

c. Let ρθ: B2 → B2 be the euclidean rotation of angle θ around the origin
O. Show that Ψ ◦ ρθ = ρθ ◦ Ψ.

d. Combine parts a and b to show that Ψ sends each complete geodesic
g of (B2, dB2) to the euclidean line segment with the same endpoints.

For a vector �v based at P ∈ B2, define its projective norm ‖�v‖proj =
‖DP Ψ−1(�v)‖B2 . For every piecewise differentiable curve γ in B2 parame-
trized by t �→ γ(t), a � t � b, define its projective length as �proj(γ) =
R b

a
‖γ′(t)‖projdt. Finally, consider the new metric dproj on B2 by the prop-

erty that dproj(P, Q) = dB2
`

Ψ−1(P ), Ψ−1(Q)
´

for every P , Q ∈ B2. In

particular, Ψ is now an isometry from (B2, dB2) to (B2, dproj).

e. Show that for every P , Q ∈ B2, the projective distance dproj(P, Q) is
equal to the infimum of the projective lengths of all piecewise differen-
tiable curves going from P to Q in B2. Show that this infimum is equal
to the projective length of the euclidean line segment from P to Q.

f. Given a vector �v based at P ∈ B2, draw the line L passing through P
and parallel to �v, and let A and B be the two points where it meets
the unit circle S1 bounding B2. Show that

‖�v‖proj =
deuc(A, B)

deuc(A, P )deuc(B, P )
‖�v‖euc.

The computations may be a little easier if one first restricts attention
to the case where P is on the x-axis, and then use part c to deduce
the general case from this one.

g. For any two distinct P , Q ∈ B2, let A, B ∈ S1 be the points where the
line PQ meets the circle S1 in such a way that A, P , Q, B occur in
this order on the line. Combine parts e and f to show that

dproj(P, Q) =
1

2
log

deuc(A, Q)deuc(P, B)

deuc(A, P )deuc(P, Q)
.

(Compare the crossratio formula of Exercise 2.17.)

The metric space (B2, dproj), which is isometric to the hyperbolic plane
(H3, dhyp), is called the projective model or the Cayley-Klein model

                

                                                                                                               



46 2. The hyperbolic plane

for the hyperbolic plane. It is closely related to the geometry of the 3-
dimensional projective plane RP2, defined in close analogy with the pro-
jective line RP1 of Exercise 2.12 and consisting of all lines passing through
the origin in R3. The fact that its geodesics are euclidean line segments
makes this projective model quite attractive for some problems.

                

                                                                                                               



Chapter 3

The 2-dimensional
sphere

The euclidean plane (R2, deuc) and the hyperbolic plane (H2, dhyp)
have the fundamental property that they are both homogeneous and
isotropic. There is another well-known 2-dimensional space which
shares this property, namely, the 2-dimensional sphere in R3.

This is a relatively familiar space but, as will become apparent
in later chapters, its geometry is not as fundamental as hyperbolic
geometry or, to a lesser extent, euclidean geometry. For this reason,
its discussion will be somewhat de-emphasized in this book. We only
need a brief description of this space and of its main properties.

3.1. The 2-dimensional sphere

The 2-dimensional sphere is the set

S2 = {(x, y, z) ∈ R3; x2 + y2 + z2 = 1}

consisting of those points in the 3-dimensional space R3 which are
at euclidean distance 1 from the origin. Namely, S2 is the euclidean
sphere of radius 1 centered at the origin O = (0, 0, 0).

Given two points P , Q ∈ S2, we can consider all piecewise differ-
entiable curves γ that are completely contained in S2 and join P to

47

                                     

                

                                                                                                               



48 3. The 2-dimensional sphere

P

Q

γ

Figure 3.1. The 2-dimensional sphere

Q. The spherical distance from P to Q is defined as the infimum

dsph(P, Q) = {�euc(γ); γ goes from P to Q in S2}

of their usual euclidean arc lengths �euc(γ). Here, as in Chapter 1, the
euclidean arc length of a piecewise differentiable curve γ parametrized
by

t �→
(
x(t), y(t), z(t)

)
, a � t � b,

is given by

�euc(γ) =
∫ b

a

√
x′(t)2 + y′(t)2 + z′(t)2 dt.

The definition immediately shows that this spherical distance
dsph(P, Q) is greater than or equal to the usual euclidean distance
deuc(P, Q) from P to Q in R3. In particular, this proves that
dsph(P, Q) = 0 only when P = Q. By the same arguments as in
Lemma 2.1, dsph also satisfies the Symmetry Condition and the Tri-
angle Inequality. This proves that dsph is really a metric.

3.2. Shortest curves

A great circle in the sphere S2 is the intersection of S2 with a plane
passing through the origin. Equivalently, a great circle is a circle of
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radius 1 contained in S2. A great circle arc is an arc contained in
a great circle.

Elementary geometric considerations show that any two P , Q ∈
S2 can be joined by a great circle arc of length � π. In addition,
this circle arc is unique unless P and Q are antipodal , namely unless
Q = (−x,−y,−z) if P = (x, y, z). When P and Q are antipodal,
there are many great circle arcs of length π going from P to Q.

Theorem 3.1. The geodesics of (S2, dsph) are exactly the great circle
arcs. The shortest curves joining two points P , Q ∈ S2 are exactly
the great circle arcs of length � π going from P to Q.

Proof. We sketch a proof of this result in Exercise 3.1. �

Note that we encounter here a new phenomenon, where a geodesic
is not necessarily the shortest curve joining its endpoints; this happens
for every great circle arc of length > π. Recall that in the definition
of a geodesic γ the part of γ that joins P to Q is required to be the
shortest curve joining P to Q only when Q is sufficiently close to P .

Another new phenomenon is that great circles provide closed

geodesics of S2, namely, geodesics which are closed curves in the
sense that they return to their initial point.

3.3. Isometries

In R3, a rotation ϕ around a line L respects euclidean distances and
arc lengths. If, in addition, the rotation axis L passes through the
origin O, then ϕ sends the sphere S2 to itself. Consequently, any ro-
tation ϕ around a line passing through the origin induces an isometry
of (S2, dsph).

These isometries are sufficient to show that the sphere is homo-
geneous and isotropic, as indicated by the following statement.

Proposition 3.2. Given two points P , Q ∈ S2, a vector �v tangent to
S2 at P , and a vector �w tangent to S2 at Q such that ‖�v‖euc = ‖�w‖euc,
there exists a rotation ϕ around a line passing through the origin O

such that ϕ(P ) = Q and DP ϕ
(
�v
)

= �w.
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Proof. One easily finds a rotation ϕ1 such that ϕ1(P ) = Q, for
instance a rotation whose axis is orthogonal to the lines OP and
OQ. Then, DP ϕ1 (�v) is a vector tangent to S2 at ϕ1(P ) = Q whose
euclidean length is

‖DP ϕ1 (�v)‖euc = ‖�v‖euc = ‖�w‖euc .

As a consequence, there exists a unique rotation ϕ2 around the line
OQ whose differential map DQϕ2 sends DP ϕ1 (�v) to �w. Then the
composition ϕ = ϕ2 ◦ ϕ1 sends P to Q, and its differential DP ϕ =
DQϕ2 ◦ DP ϕ1 sends �v to �w.

By a classical property (see Exercise 3.2), the composition ϕ =
ϕ2◦ϕ1 of two rotations is also a rotation around a line passing through
the origin. �

We already saw that a rotation ϕ around a line L passing through
the origin provides an isometry of S2. If we compose ϕ with the re-
flection across the plane orthogonal to L at O, we obtain a rotation-

reflection .

Note that rotations include the identity map, which is a rota-
tion of angle 0. As a consequence, rotation-reflections also include
reflections across a plane passing through the origin.

Theorem 3.3. The isometries of (S2, dsph) are exactly the above ro-
tations and rotation-reflections.

Proof. This can be proved by an argument which is very close to the
proof of Theorem 2.11. See Exercise 3.4. �

Exercises for Chapter 3

Exercise 3.1 (Geodesics of the sphere S2).

a. Let γ be a piecewise differentiable curve in R3 parametrized by t �→
γ(t), a � t � b. For each t, let ρ(t), θ(t) and ϕ(t) be the spherical
coordinates of γ(t). Show that the euclidean length of γ is equal to

�euc(γ) =

Z b

a

q

ρ′(t)2 + ρ(t)2 sin2ϕ(t) θ′(t)2 + ρ(t)2ϕ′(t)2 dt.

Hint: Remember the formulas expressing rectangular coordinates in
terms of spherical coordinates.
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b. In the sphere S2, let P be the point (0, 0, 1) and let Q be the point
(x, 0, z) with x � 0. Let α be the vertical circle arc going from P to Q
in S2, where the spherical coordinate θ is constantly equal to 0. Show
that any curve γ going from P to Q has euclidean length greater than
or equal to that of α.

c. Show that if P and Q are two points of the sphere S2, the shortest
curves going from P to Q are the great circle arcs of length � π going
from P to Q. Possible hint: Use a suitable isometry of (S2, dsph) to
reduce this to the case of part b.

d. Show that the geodesics of S2 are the great circle arcs.

Exercise 3.2. The main goal of this exercise is to show that in the eu-
clidean space R3 the composition of two rotations whose axes pass through
the origin O = (0, 0, 0) is also a rotation around a line passing through the
origin.

a. In R3, let L be a line contained in a plane Π. Let Π′ be the plane
obtained by rotating Π around L by an angle of 1

2
θ, and let τ and τ ′

be the orthogonal reflections across the planes Π and Π′, respectively.
Show that the composition τ ′ ◦ τ is the rotation of angle θ around L,
and that τ ◦ τ ′ is the rotation of angle −θ around L. Possible hint:
You may find it convenient to consider the restrictions of τ ′ ◦ τ and
τ ◦ τ ′ to each plane Π orthogonal to L.

b. Let L and L′ be two lines passing through the origin O = (0, 0, 0) in
R3, and let ρ and ρ′ be two rotations around L and L′, respectively.
Show that the composition ρ ◦ ρ′ is a rotation around a line passing
through the origin. Possible hint: Consider the plane Π containing L
and L′, and use the two properties of part a.

c. Show that in R3, the composition τ1 ◦τ2 ◦· · ·◦τ2n of an even number of
orthogonal reflections τi across planes passing through O is a rotation
(possibly the identity).

Exercise 3.3. The main goal of this exercise is to show that if τ is an
orthogonal reflection across a plane Π passing through the origin O =
(0, 0, 0) and if ρ is a rotation of angle θ around a line L passing through O,
then the composition τ ◦ ρ is a rotation-reflection. This means that τ ◦ ρ
is also equal to a composition τ ′ ◦ ρ′, where ρ′ is a rotation across a line
L′ passing through O and where τ ′ is the orthogonal reflection across the
plane Π′ orthogonal to L′ at O.

Without loss of generality, we can assume that L is not orthogonal to
Π, since otherwise we are done. Then, the plane Π1 orthogonal to Π and
containing L is uniquely determined. Let Π2 be the image of Π1 under
the rotation of angle − 1

2
θ around L, and let Π3 be the plane orthogonal
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to both Π and Π1 at O. Let τ1 and τ2 be the orthogonal reflections across
the planes Π1 and Π2, respectively.

a. Show that τ ◦ τ1(P ) = −P for every P ∈ Π3 (where −P denotes the
point (−x,−y,−z) when P = (x, y, z)). Drawing a picture might help.

b. Show that τ ◦ τ1 ◦ τ2(P ) = −P for every P in the line L′ = Π2 ∩ Π3.

c. Let τ ′ be the orthogonal reflection across the plane Π′ orthogonal to
L′ at O. Show that ρ′ = τ ′ ◦ τ ◦ τ1 ◦ τ2 is a rotation around the line L′.
Hint: First use the result of Exercise 3.2c to show that ρ′ is a rotation
around some line.

d. Show that τ ◦ ρ = τ ′ ◦ ρ′ = ρ′ ◦ τ ′, so that τ ◦ ρ is a rotation-reflection.
Hint: First use Exercise 3.2a to show that ρ = τ1 ◦ τ2.

e. Show that in R3 the composition τ1◦τ2◦· · ·◦τ2n+1 of an odd number of
orthogonal reflections τi across planes passing through O is a rotation-
reflection. Hint: Use Exercise 3.2c.

Exercise 3.4 (Isometries of the sphere (S2, dsph)).

a. Adapt the proof of Theorem 2.11 to show that every isometry of the
sphere (S2, dsph) is a composition of reflections across planes passing
through the origin O = (0, 0, 0).

b. Show that every isometry of the sphere (S2, dsph) is, either a rotation,
or a rotation-reflection. Hint: Use the conclusions of Exercises 3.2c
and 3.3d.

Exercise 3.5 (Spherical triangles). A spherical triangle is a region T of
the sphere S3 bounded by three geodesics arcs E1, E2, E3 of S2 meeting
only at their endpoints. We also require that the angle of T at each of its
three vertices is less than π, and that T is not reduced to a single point.
Let α, β, and γ be three numbers in the interval (0, π).

a. Suppose that we have found three noncoplanar vectors �u, �v, �w in R3

such that the angle between �u and �v is equal to π − α, the angle
between �u and �w is equal to π − β, and the angle between �v and �w is
equal to π − γ. Let U , V and W be the hemispheres of the sphere S2

consisting of all points P ∈ S2 with
−−→
OP ·�u � 0,

−−→
OP ·�v � 0,

−−→
OP · �w � 0,

respectively. Show that the intersection T = U ∩ V ∩W is a spherical
triangle with angles α, β, γ.

b. Consider �u = (1, 0, 0) and �v = (− cos α, sin α, 0). Show that there
exists a unit vector �w = (a, b, c) with c �= 0 making an angle of π − β
with �u and an angle of π − γ with �v if and only if

cos(α + β) < − cos γ < cos(α − β).
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c. Show that the double inequality of part b is equivalent to the condition
that

max{α − β, β − α} < π − γ < min{α + β, 2π − (α + β)},
which itself is equivalent to the condition that

π < α + β + γ < π + 2min{α, β, γ}.
Hint: Note that −π < α − β < π, 0 < α + β < 2π and 0 < π − γ < π.

d. Combine parts a, b and c to show that if

π < α + β + γ < π + 2min{α, β, γ},
there exists a spherical triangle T ⊂ S2 with respective angles α, β
and γ.

e. Show that if two spherical triangles T and T ′ ⊂ S2 have the same
angles α, β, γ, there exists an isometry ϕ of (S2, dsph) sending T to T ′.
Hint: In part b, there are only two possible unit vectors �w.

Exercise 3.6 (Area of spherical triangles).

a. In the sphere S2, consider two great semi-circles joining the “North
Pole” (0, 0, 1) to the “South Pole” (0, 0,−1), and making an angle of
α with each other at these poles. Show that the surface area of the
digon bounded by these two arcs is equal to 2α. Hint: Use spherical
coordinates or a proportionality argument.

b. Let T be a spherical triangle with angles α, β, γ. Let A, B and C be
the great circles of S2 that contain each of the three edges of T . Show
that these great circles subdivide the sphere S2 into eight spherical
triangles whose angles are all of the form α, β, γ, π−α, π−β or π−γ.

c. Combine parts a and b to show that the area of the triangle T is equal
to α + β + γ − π. Hint: Solve a system of linear equations.

d. Show that necessarily π < α + β + γ < π + 2 min{α, β, γ}. Hint: First
show that 0 < α + β + γ − π < 2α.

                

                                                                                                               



Chapter 4

Gluing constructions

This chapter and the following one are devoted to the construction of
interesting metric spaces which are locally identical to the euclidean
plane, the hyperbolic plane or the sphere, but are globally very dif-
ferent. We start with the intuitive idea of gluing together pieces of
paper, but then go on with the mathematically rigorous construc-
tion of spaces obtained by gluing together the edges of euclidean and
hyperbolic polygons. This chapter is concerned with the theoretical
aspects of the construction, while the next chapter will investigate
various examples.

4.1. Informal examples: the cylinder and the
torus

We first discuss in a very informal way the idea of creating new spaces
by gluing. Precise definitions will be rigorously developed in the next
section.

If one takes a rectangular piece of paper and glues the top side
to the bottom side so as to respect the orientations indicated in Fig-
ure 4.1, it is well known that one gets a cylinder.

This paper cylinder can be deformed to many positions in 3-
dimensional space but they all have the same metric: As long as we
do not stretch the paper, the euclidean arc length of a curve drawn on
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56 4. Gluing constructions

Figure 4.1. Creating a cylinder from a piece of paper

the cylinder remains constant under deformations, and it is actually
equal to the arc length of the corresponding pieces of curve in the
original rectangle.

One can also try, in addition to gluing the top side to the bottom
side, to glue the left side to the right side of the piece of paper.
Namely, after gluing the top and bottom sides together to obtain
a cylinder, we can glue the left boundary curve of the cylinder to
the right one. This is harder to realize physically in 3-dimensional
space without crumpling the paper but if we are willing to use rubber
instead of paper and to stretch the cylinder in order to put its two
sides in contact, one easily sees that this creates a torus, namely, an
inner tube or the surface of a donut. See Figure 4.2.

P

Q

Q1

P2

Q2P3 γ1

γ2

γ3

Figure 4.2. Love story on a torus
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Let us try to understand the geometry of this torus from the
point of view of a little bug crawling over it. For instance, suppose
that in order to meet its lover the bug walks from P to Q along the
curve γ indicated on the right of Figure 4.2. To measure the distance
that it needs to travel, one could consider the euclidean arc length
of γ for a given position of the torus in 3-dimensional space, but this
will depend on the stretching that occurred when moving the torus to
that position. However, if we are interested in prestretching distances,
the natural thing to consider is to decompose the curve γ into pieces
coming from the original piece of paper, and then take the sum of the
lengths of these pieces. For instance, in the situation illustrated on
Figure 4.2, the curve γ comes from three curves γ1, γ2 and γ3 on the
square, in such a way that each γi goes from a point Pi to a point
Qi, and where P = P1, Q1 is glued to P2, Q2 is glued to P3, and
Q3 = Q. The distance traveled by our critter friend, as measured
on the original piece of paper, is then the sum of the euclidean arc
lengths of γ1, γ2 and γ3 on this piece of paper.

In order to introduce some mathematical rigor to this discussion,
let us formalize this construction. We begin with the rectangle

X = [a, b] × [c, d] = {(x, y) ∈ R2; a � x � b, c � y � d}.

Let X̄ be the space obtained from X by doing the gluings indicated.
Some points of X̄ correspond to exactly one point of X (located in
the interior of the rectangle), some points of X̄ correspond to two
points of X (located on opposite sides of the rectangle), and one
point corresponds to four points of X (namely, the corners of the
rectangle). In other words, each point of X̄ is described by a subset
of X of one of the following types:

(1) the 1-element set
{
(x, y)

}
with a < x < b and c < y < d;

(2) the 2-element set
{
(x, c), (x, d)

}
with a < x < b;

(3) the 2-element set
{
(a, y), (b, y)

}
with c < y < d;

(4) the 4-element set
{
(a, c), (a, d), (b, c), (b, d)

}
.

These subsets form a partition of X. This means that every point
of X belongs to exactly one such subset.
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We could define the distance between points of X̄ by taking the
infimum of the lengths of curves joining them, as in the example of our
little bug walking on the torus. The next section develops a definition
that is equivalent to this idea, but is somewhat easier to state and to
use.

4.2. Mathematical definition of gluings and
quotient spaces

4.2.1. Partitions. Let (X, d) be a metric space, and consider a par-
tition X̄ of X. As indicated above, a partition of X is a family X̄ of
subsets A ⊂ X such that each point P ∈ X belongs to one and only
one such subset A.

In particular, every element of the set X̄ is a subset A ⊂ X. We
can therefore consider that the set X̄ is obtained from X by deciding
that for each subset A of the partition all the points in the subset
A now correspond to a single element of X̄. In other words, all the
points of A are now glued together to give a single point in X̄. So
the formalism of partitions is a good way to rigorously describe the
intuitive idea of gluing points of X together. It takes a while to get
used to it though since a point of X̄ is also a subset of X.

The following notation will often be convenient. If P ∈ X is a
point of X, let P̄ ∈ X̄ denote the corresponding point of X̄ after the
gluing. Namely, in the formalism of partitions, P̄ ⊂ X is the element
of the partition X̄ such that P ∈ P̄ .

4.2.2. The quotient semi-metric. We now introduce a distance
function on the set X̄, along the lines of the informal discussion of
the previous section.

If P̄ and Q̄ are two points of X̄ corresponding to P and Q ∈ X,
respectively, a discrete walk w from P̄ to Q̄ is a finite sequence
P = P1, Q1, P2, Q2, P3, . . . , Qn−1, Pn, Qn = Q of points of X

such that Q̄i = P̄i+1 for every i < n. Namely, such a discrete walk
alternates travels in X from Pi to Qi and jumps from Qi to a point
Pi+1 that is glued to Qi. The d-length (or just the length if there is
no ambiguity on the metric d considered) of a discrete walk w is the
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sum of the travel distances

�d(w) =
n∑

i=1

d(Pi, Qi).

This is the exact translation of our informal discussion of the little
bug walking on the torus, except that we are now requiring the bug
to follow a path that is made up of straight line segments in the
rectangle. Namely, the bug should be a grasshopper instead of a
snail. As it follows a discrete walk, it alternates steps where it hops
in X from one point Pi to another point Qi, and steps where it is
beamed-up from Qi to Pi+1 by the gluing process.1

To make the description of a discrete walk w easier to follow, it
is convenient to write P ∼ P ′ when P is glued to P ′, namely, when
P̄ = P̄ ′. (Compare also our discussion of equivalence relations in
Exercise 4.2). Then a discrete walk w from P̄ to Q̄ is of the form
P = P1, Q1 ∼ P2, Q2 ∼ P3, . . . , Qn−1 ∼ Pn, Qn = Q. This makes it
a little easier to remember that the consecutive points Qi, Pi+1 are
glued to each other, while the pairs Pi, Qi correspond to a travel of
length d(Pi, Qi) in X.

We would like to define a distance function d̄ on X̄ by

d̄(P̄ , Q̄) = inf{�d(w); w discrete walk from P̄ to Q̄}
for any two points P̄ , Q̄ ∈ X̄.

Lemma 4.1. The above number d̄(P̄ , Q̄) is independent of the choice
of the points P , Q ∈ X used to represent P̄ , Q̄ ∈ X̄. As a conse-
quence, this defines a function d̄: X̄ × X̄ → R.

In addition, this function d̄ is a semi-distance on X̄, in the sense
that it satisfies the following three conditions:

(1) d̄(P̄ , Q̄) � 0 and d̄(P̄ , P̄ ) = 0 for every P̄ , Q̄ ∈ X̄ (Nonneg-
ativity Condition);

(2) d̄(P̄ , Q̄) = d̄(Q̄, P̄ ) for every P̄ , Q̄ ∈ X̄ (Symmetry Condi-
tion);

(3) d̄(P̄ , R̄) � d̄(P̄ , Q̄) + d̄(Q̄, R̄) for every P̄ , Q̄, R̄ ∈ X̄ (Tri-
angle Inequality).

1The original Park City lectures involved pedagogic sound effects to distinguish
between these two types of moves.
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Proof. To prove the first statement, consider two other points P ′,
Q′ ∈ X such that P̄ ′ = P̄ and Q̄′ = Q̄. We need to show that
d̄(P̄ ′, Q̄′) = d̄(P̄ , Q̄).

If w is a discrete walk P = P1, Q1 ∼ P2, Q2 ∼ P3, . . . , Qn−1 ∼
Pn, Qn = Q from P̄ to Q̄, starting from P and ending at Q, we can
consider another discrete walk w′ of the form P ′ = P0, Q0 ∼ P1,
Q1 ∼ P2, Q2 ∼ P3, . . . , Qn−1 ∼ Pn, Qn ∼ Pn+1, Qn+1 = Q′ by
taking P0 = Q0 = P ′ and Pn+1 = Qn+1 = Q′. This new discrete walk
w′ starts at P ′, ends at Q′, and has the same length �(w′) = �(w) as
w. Taking the infimum over all such discrete walks w, we conclude
that the “distance” d̄(P̄ ′, Q̄′), defined using P ′ and Q′, is less than or
equal to d̄(P̄ , Q̄), defined using P and Q. Exchanging the roles of P ,
Q and P ′, Q′, we similarly obtain that d̄(P̄ , Q̄) � d̄(P̄ ′, Q̄′), so that
d̄(P̄ , Q̄) = d̄(P̄ ′, Q̄′).

This proves that the function d̄: X̄ × X̄ → R is well defined.

The Nonnegativity Condition (1) is immediate.

To prove the Symmetry Condition (2), note that every discrete
walk P = P1, Q1 ∼ P2, Q2 ∼ P3, . . . , Qn−1 ∼ Pn, Qn = Q from P̄ to
Q̄ provides a discrete walk Q = Qn, Pn ∼ Qn−1, Pn−1 ∼ Qn−2, . . . ,
P2 ∼ Q1, P1 = P from Q̄ to P̄ . Since these two discrete walks have
the same length, one immediately concludes that d̄(P̄ , Q̄) = d̄(Q̄, P̄ ).

Finally, for the Triangle Inequality (3), consider a discrete walk
w of the form P = P1, Q1 ∼ P2, Q2 ∼ P3, . . . , Qn−1 ∼ Pn, Qn = Q

going from P̄ to Q̄, and a discrete walk w′ of the form Q = Q′
1,

R1 ∼ Q′
2, . . . , Rm−1 ∼ Q′

m, Rm = R going from Q̄ to R̄. These
two discrete walks can be chained together to give a discrete walk
w′′ of the form P = P1, Q1 ∼ Q2, . . . , Qn−1 ∼ Pn, Qn ∼ Q′

1,
R1 ∼ Q′

2, . . . , Rm−1 ∼ Q′
m, Rm = R going from P̄ to R̄. Since

�d(w′′) = �d(w) + �d(w′), taking the infimum over all such discrete
walks w and w′, we conclude that d̄(P̄ , R̄) � d̄(P̄ , Q̄) + d̄(Q̄, R̄). �

The only missing property for the semi-distance d̄ to be a distance
function is that d̄(P̄ , Q̄) = 0 only when P̄ = Q̄.

If this property holds, we will say that the partition or gluing pro-
cess is proper . The metric space (X̄, d̄) then is the quotient space
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of the metric space (X, d) by the partition. The distance function d̄

is the quotient metric induced by d.

In the case of the torus obtained by gluing the sides of a rectan-
gle, we will prove in Sections 4.3 and 4.4 that the gluing is proper.
The same will hold for many examples that we will consider later
on. However, there also exist partitions which are not proper. See
Exercise 4.1 for an example where each point is glued to at most one
other point.

4.2.3. The quotient map. For future reference, the following ele-
mentary observation will often be convenient.

Let π: X → X̄ be the quotient map defined by π(P ) = P̄ .

Lemma 4.2. For every P , Q ∈ X,

d̄(P̄ , Q̄) � d(P, Q).

As a consequence, the quotient map π: X → X̄ is continuous.

Proof. The inequality is obtained by consideration of the one-step
discrete walk w from P̄ to Q̄ defined by P = P1, Q1 = Q. By
definition of d̄, d̄(P̄ , Q̄) � �(w) = d(P, Q).

The continuity of the quotient map π is an immediate conse-
quence of this inequality. �

4.3. Gluing the edges of a euclidean polygon

This section is devoted to the special case where X̄ is obtained by
gluing together the edges of a polygon X, as in the example of the
torus obtained by gluing together opposite sides of a rectangle.

4.3.1. Polygons and edge gluing data. Let X be a polygon in
the euclidean plane R2. Namely, X is a region of the euclidean plane
whose boundary is decomposed into finitely many line segments, lines
and half-lines E1, E2, . . . , En meeting only at their endpoints. We
also impose that at most two Ei can meet at any given point.

The line segments, lines and half-lines Ei bounding X are the
edges of the polygon X. The points where two edges meet are its
vertices .
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We require in addition that X and the Ei are closed , in the sense
that they contain all the points of R2 that are in their boundary. In
this specific case, this is equivalent to the property that the polygon
X contains all its edges and all its vertices.

However, we allow X to go to infinity, in the sense that it may
be bounded or unbounded in (R2, deuc). A subset of a metric space
is bounded when it is contained in some ball

Bdeuc(P, r) = {Q ∈ X; deuc(P, Q) < r}

with finite radius r < ∞. Using the Triangle Inequality (and changing
the radius r), one easily sees that this property does not depend on
the point P chosen as center of the ball. The subset is unbounded

when it is not bounded.

X1 X2

X3 X4

Figure 4.3. A few bounded euclidean polygons

Figures 4.3 and 4.4 illustrate a few examples of polygons.

In most cases considered, the polygon X will in addition be con-

vex in the sense that, for every P , Q ∈ X the line segment [P, Q]
joining P to Q is contained in X. We endow such a convex polygon
with the restriction dX of the euclidean metric deuc, defined by the
property that dX(P, Q) = deuc(P, Q) for every P , Q ∈ X.

Among the polygons X1, X2, . . . , X7 described in Figures 4.3
and 4.4, X7 is the only one that is not convex.
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X5

X6 X7

Figure 4.4. A few unbounded euclidean polygons

When X is not convex, it is more convenient to consider for P ,
Q ∈ X the infimum dX(P, Q) of the euclidean length �euc(γ) of all
piecewise differentiable curves γ joining P and Q and contained in
X. The fact that the function dX so defined is a metric on X is
immediate, noting that dX(P, Q) � deuc(P, Q). See Exercise 1.10 for
an explicit example.

We will call this distance function dX the euclidean path met-

ric of the polygon X. Note that the path metric dX coincides with
the restriction of the euclidean metric deuc when X is convex. In the
general case, the path metric coincides locally with deuc in the sense
that every P ∈ X is the center of a small ball Bdeuc(P, ε) such that
dX(P, Q) = deuc(P, Q) for every Q ∈ X∩Bdeuc(P, ε) (because the line
segment [P, Q] is contained in X).

We will occasionally allow the polygon X to be made up of several
disjoint pieces, so that there exist points P and Q ∈ X which cannot
be joined by a piecewise differentiable curve γ completely contained
in X. In this case, dX(P, Q) = +∞ by convention. This requires that
we extend the definition of metrics to allow them to take values in
[0, +∞], but the extension is immediate provided we use the obvious
conventions for inequalities and additions involving infinite numbers
(a � ∞ and a + ∞ = ∞ for every a ∈ [0,∞], etc. . . . ).
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A polygon for which this does not happen is said to be con-

nected . Namely, the polygon X is connected if any two points P

and Q ∈ X can be joined by a piecewise differentiable curve γ com-
pletely contained in X. The reader who is already familiar with some
notions of topology will notice that the definition we are using here
is more reminiscent of that of path connectedness; however, the two
definitions are equivalent for polygons.

After these preliminaries about polygons, we now describe how
to glue the edges of a polygon X ⊂ R2 together. For this, we first
group these edges into pairs {E1, E2}, {E3, E4}, . . . , {E2p−1, E2p},
and then for each such pair {E2k−1, E2k} we specify an isometry
ϕ2k−1: E2k−1 → E2k. Here ϕ2k−1 is an isometry for the restrictions
of the metric dX to the edges E2k−1 and E2k, which also coincide
with the restrictions of the euclidean metric deuc to these edges. This
is equivalent to the property that ϕ2k−1 sends each line segment in
the edge E2k−1 to a line segment of the same length in E2k.

Note that in particular, the edges E2k−1 and E2k in a given pair
must have the same length, possibly infinite. In general, the isometry
ϕ2k−1 is then uniquely determined once we know how ϕ2k−1 sends
what orientation of E2k−1 to which orientation of E2k. A convenient
way to describe this information is to draw arrows on E2k−1 and E2k

corresponding to these matching orientations. It is also convenient to
use a different type of arrow for each pair {E2k−1, E2k}, so that the
pairing can be readily identified on the picture. Figures 4.3 and 4.4
offer some examples.

There is one case where this arrow information is not sufficient,
when E2k−1 and E2k are both lines (of infinite length), as in the case
of the infinite strip X5 of Figure 4.4. In this case, ϕ2k−1: E2k−1 → E2k

is only defined up to translation in one of these lines, and we will need
to add extra information to describe ϕ2k−1.

The notation will be somewhat simplified if we introduce the
isometry ϕ2k : E2k → E2k−1 defined as the inverse ϕ2k = ϕ−1

2k−1 of
ϕ2k−1: E2k−1 → E2k. In this way, every edge Ei is glued to an edge
Ei±1 by an isometry ϕi: Ei → Ei±1, where ±1 depends on the parity
of i.
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With this data of isometric edge identifications ϕi : Ei → Ei±1,
we can now describe the gluing of the edges of the polygon X by
specifying a partition X̄ as follows. Recall that if P ∈ X, we denote
by P̄ ∈ X̄ the corresponding element of the partition X̄, consisting
of all the points of X that are glued to P . The gluing is then defined
as follows:

• if P is in the interior of the polygon X, then P is glued to
no other point and P̄ = {P};

• if P is in a edge Ei and is not a vertex, then P̄ consists of
the two points P ∈ Ei and ϕi(P ) ∈ Ei±1;

• if P is a vertex, then P̄ consists of P and of all the vertices
of X of the form ϕik

◦ϕik−1 ◦ · · · ◦ϕi1(P ), where the indices
i1, i2, . . . , ik are such that ϕij−1 ◦ · · · ◦ ϕi1(P ) ∈ Eij

for
every j.

The case of vertices may appear a little complicated at first, but
it becomes much simpler with practice. Indeed, because each vertex
belongs to exactly two edges, there is a simple method for listing
all elements of P̄ for a vertex P . The key observation is that when
considering a vertex ϕik

◦ϕik−1 ◦· · ·◦ϕi1(P ) glued to P , we can always
assume that the range ϕij

(Eij
) of the gluing map ϕij

is different from
the region Eij+1 of ϕij+1 (since otherwise ϕij+1 = ϕ−1

ij
, so that these

two gluing maps cancel out).

This leads to the following algorithm: Start with P1 = P , and let
Ei1 be one of the two edges containing P1. Set P2 = ϕi1(P1), and let
Ei2 be the edge containing P2 that is different from ϕi1(Ei1). Iterating
this process provides a sequence of vertices P1, P2, . . . , Pj , . . . and
edges Ei1 , Ei2 , . . . , Eij

, . . . such that Pj ∈ Eij
, Pj+1 = ϕij

(Pj),
and Eij+1 is the edge containing Pj+1 that is different from ϕij

(Eij
).

Since there are only finitely many vertices, there is an index k for
which Pk+1 = Pj for some j � k. If k is the smallest such index, one
easily checks that Pk+1 = P1, and that P̄ = {P1, P2, . . . , Pk}.

For instance, in the example of the rectangle X1 of Figure 4.3,
the four corners are glued together to form a single point in X̄1. For
the hexagon X4, the vertices of X4 project to two points of X̄4, each
of them corresponding to three vertices of the hexagon. In Figure 4.4,
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the infinite strip X5 has no vertex. The quotient space X̄7 has two
elements associated to vertices of X7, one corresponding to exactly
one vertex and another one consisting of two vertices of X7.

4.3.2. Edge gluings are proper. Let d̄X be the semi-metric on
the quotient space X̄ that is defined by the euclidean path metric dX

of the polygon X ⊂ R2.

Theorem 4.3. If X̄ is obtained from the euclidean polygon X by
gluing together edge pairs by isometries, then the gluing is proper.
Namely, the semi-distance d̄X induced on X̄ by the metric dX of X

is such that d̄X(P̄ , Q̄) > 0 when P̄ �= Q̄.

The proof of Theorem 4.3 is somewhat long and is postponed to
Section 4.4.

4.3.3. Euclidean surfaces. Let us go back to our informal paper
and adhesive tape discussion of the torus X̄, obtained by gluing op-
posite sides of a rectangle X.

If P̄ is the point of the torus that corresponds to the four corners
of the rectangle, it should be intuitively clear (and will be rigorously
proved in Lemma 4.5) that a point Q̄ ∈ X̄ is at distance < ε of P̄ in
X̄ exactly when it corresponds to a point Q ∈ X which is at distance
< ε from one of the corners of the rectangle. As a consequence, for ε

small enough, the ball Bd̄X
(P̄ , ε) is the image in X̄ of four quarter-

disks in X. We know from experience that if we glue together four
paper quarter-disks with (invisible) adhesive tape, we obtain an object
which is undistinguishable from a full disk of the same radius in the
euclidean plane.

The same property will hold at a point P̄ ∈ X̄ that is the image
of a point P ∈ X located on a side of the rectangle, not at a corner.
Then the ball Bd̄(P̄ , ε) is obtained by gluing two half-disks along their
diameters, and again it has the same metric properties as a disk.

As a consequence, if our little bug crawling on the torus X̄ is,
in addition, very near sighted, it will not be able to tell that it is
walking on a torus instead of a plane. This may be compared to the
(hi)story of other well-known animals who thought for a long time
that they were living on a plane, before progressively discovering that
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they were actually inhabiting a surface with the rough shape of a very
large sphere.

When gluing together sectors of paper disks, a crucial property
for the result to look like a full disk in the euclidean plane is that the
angles of these disk sectors should add up to 2π. As is well known
to anybody who has ever made a birthday hat out of cardboard, the
resulting paper construction has a sharp cone point if the sum of
the angles is less than 2π. Similarly, it wrinkles if the angles add
up to more than 2π. Not unexpectedly, we will encounter the same
condition when gluing the edges of a euclidean polygon.

Let us put this informal discussion in a more mathematical frame-
work.

Two metric spaces (X, d) and (X ′, d′) are locally isometric if
for every P ∈ X there exists an isometry between some ball Bd(P, ε)
centered at P and a ball Bd′(P ′, ε) in X ′.

Theorem 4.4. Let (X̄, d̄X) be the quotient metric space obtained
from a euclidean polygon (X, dX) by gluing together pairs of edges
of X by isometries. Suppose that the following additional condition
holds: For every vertex P of X, the angles of X at those vertices P ′

of X which are glued to P add up to 2π. Then (X̄, d̄X) is locally
isometric to the euclidean plane (R2, deuc).

Again, although the general idea is exactly the one suggested
by the above paper-and-adhesive-tape discussion, the proof of The-
orem 4.4 is rather long with several cases to consider. It is given in
the next section.

A metric space (X, d) which is locally isometric to the euclidean
plane (R2, deuc) is a euclidean surface. Equivalently, the metric d

is then a euclidean metric.

4.4. Proofs of Theorems 4.3 and 4.4

This section is devoted to the proofs of Theorems 4.3 and 4.4. These
proofs are not very difficult but are a little long, with many cases
to consider. They may perhaps be skipped on a first reading, which
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gives the reader a first opportunity to use the fast-forward command
of the remote control.
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These are the first really complex proofs that we encounter in
this book. It is important to understand these arguments (and many
more later) at a level which is higher than a simple manipulation of
symbols. With this goal in mind, the reader is strongly encouraged
to read them with a piece of paper and pencil in hand, and to draw
pictures of the geometric situations involved in order to better follow
the explanations.

Throughout this section, X will denote a polygon in the euclidean
space (R2, deuc). We are also given isometries ϕ2k−1 : E2k−1 → E2k

and ϕ2k = ϕ−1
2k−1 : E2k → E2k−1 between the edges E1, . . . , En of

X. Then X̄ is the space obtained from X by performing the corre-
sponding edge gluings, and d̄X is the semi-metric induced on X̄ by
the euclidean path metric dX introduced in the previous section. Re-
call that in the more common case where X is convex, dX is just the
restriction of the euclidean metric deuc to X.

First we need to understand the balls

Bd̄X
(P̄ , ε) = {Q̄ ∈ P̄ ; d̄X(P̄ , Q̄) < ε},

at least for ε sufficiently small.

4.4.1. Small balls in the quotient space (X̄, d̄).

Lemma 4.5. For every P̄ ∈ X̄, there exists an ε0 > 0 such that
for every ε � ε0 and every Q ∈ X, the point Q̄ ∈ X̄ is in the ball
Bd̄X

(P̄ , ε) if and only if there is a P ′ ∈ P̄ such that dX(P ′, Q) < ε.

We can rephrase this in terms of the quotient map π : X → X̄

sending P ∈ X to π(P ) = P̄ ∈ X̄. Lemma 4.5 states that for ε

sufficiently small, the ball Bd̄X
(P̄ , ε) is exactly the union of the images

under π of the balls BdX
(P ′, ε) as P ′ ranges over all points of P̄ .

For a better understanding of the proof, it may be useful to realize
that the ball Bd̄X

(P̄ , ε) can be significantly larger than the union of
the images π

(
BdX

(P ′, ε)
)

when ε is not small. This is illustrated by
Figure 4.5 in the case of the torus. In these pictures, P̄ consists of
the single point P . The shaded areas represent the balls Bd̄X

(P̄ , ε)
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for various values of ε; in each shaded area, the darker area is the
image of the ball BdX

(P, ε) under π.

P P P

Q

Q′

small ε medium ε large ε

Figure 4.5. Balls Bd̄(P̄ , ε) in X̄

Proof of Lemma 4.5. Recall from Lemma 4.2 that d̄X(P̄ , Q̄) �
dX(P ′, Q) for every P ′ ∈ P̄ . Therefore, the “if” part of the state-
ment holds without restriction on ε.

The “only if” part will take more time to prove as we will need
to distinguish cases.

Let P̄ be a point of X̄. For a number ε0 which will be specified
later on in function of P̄ , we consider a point Q ∈ X such that
d̄X(P̄ , Q̄) < ε � ε0. We want to find a point P ′ ∈ P̄ , namely, a point
of X which is glued to P , such that dX(P ′, Q) < ε.

Since d̄X(P̄ , Q̄) < ε, there exists a discrete walk w from P̄ to Q̄

of the form P = P1, Q1 ∼ P2, Q2 ∼ P3, . . . , Qn−1 ∼ Pn, Qn = Q

and whose length is such that �(w) =
∑n

i=1 dX(Pi, Qi) < ε.

We want to prove by induction that for every j � n,

(4.1) there exists P ′ ∈ P̄ such that dX(P ′, Qj) �
j∑

i=1

dX(Pi, Qi) < ε.

We can begin the induction with j = 1, in which case (4.1) is trivial
by taking P ′ = P .

Suppose as an induction hypothesis that (4.1) holds for j. We
want to show that it holds for j + 1.

For this, we will distinguish cases according to the type of the
point P ∈ X. We will also specify ε0 in each case.
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Case 1. P is in the interior of the polygon X.

We first specify the number ε0 needed in this case. We choose
it so that the closed disk of radius ε0 centered at P is completely
contained in the interior of the polygon. Equivalently, every point on
the boundary of the polygon is at distance > ε0 from P .

In this case, P is the only point of P̄ .

By the induction hypothesis (4.1) and by choice of ε0 > ε, the
point Qj is in the interior of the polygon. In particular, it is glued to
no other point so that Pj+1 = Qj . Combining the Triangle Inequality
with the induction hypothesis, we conclude that

dX(P, Qj+1) � dX(P, Qj) + dX(Pj+1, Qj+1) �
j+1∑
i=1

dX(Pi, Qi) < ε.

This proves (4.1) for j + 1.

Case 2. P is on an edge Ei of the polygon and not at a vertex.

In this case, P̄ consists of P and of exactly one other point ϕi(P )
on the edge Ei±1 that is glued to Ei.

Choose ε1 > 0 such that P is at distance > ε1 from the other
edges Ej , with j �= i, of the polygon. Similarly, let ε2 be such that
ϕi(P ) is at distance > ε2 from any edge other than the edge Ei±1

that contains it. Choose ε0 as the smaller of ε1 and ε2.

If Qj = Pj+1, combining the induction hypothesis (4.1) with the
Triangle Inequality gives, as in the case of interior points,

dX(P ′, Qj+1) � dX(P ′, Qj) + dX(Pj+1, Qj+1) �
j+1∑
i=1

dX(Pi, Qi) < ε,

which proves (4.1) for j + 1 in this case.

Otherwise, Qj and Pj+1 are distinct but glued together. Because
dX(P ′, Qj) < ε � ε0 and by choice of ε0, these two points cannot
be vertices of the polygon, so that one of them is in the edge Ei and
the other one is in the edge Ei±1 glued to Ei by the map ϕi. In
particular, Pj+1 = ϕ±1

i (Qj). Set P ′′ = ϕ±1
i (P ′). Note that P ′′ is just

equal to P or to ϕi(P ); in particular it is in P̄ .
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We will use the crucial property that the gluing map ϕi respects
distances. As a consequence, dX(P ′′, Pj+1) = dX(P ′, Qj) so that

dX(P ′′, Qj+1) � dX(P ′′, Pj+1) + dX(Pj+1, Qj+1)

� dX(P ′, Qj) + dX(Pj+1, Qj+1) �
j+1∑
i=1

dX(Pi, Qi) < ε

by the induction hypothesis. Again, this proves (4.1) for j + 1 in this
case.

Case 3. P is a vertex of the polygon.

In this case, P̄ consists of a certain number of vertices P ′ of the
polygon. Pick ε0 such that every point of P̄ is at distance > ε0 from
the edges that do not contain it.

The proof is almost identical to that of Case 2 with only a couple
of minor twists.

If Qj = Pj+1, as in the previous two cases, the combination of
the induction hypothesis (4.1) and the Triangle Inequality shows that
(4.1) holds for j + 1.

If Qj �= Pj+1, we distinguish cases according to whether Qj is
a vertex of X or not. If Qj is a vertex, since dX(P ′, Qj) < ε � ε0

by the induction hypothesis, this vertex must be P ′ by the choice of
ε0. Then, P ′′ = Pj+1 is also in P̄ since it is glued to Qj = P ′, and
therefore we found a P ′′ ∈ P̄ such that

dX(P ′′, Qj+1) = dX(Pj+1, Qj+1) �
j+1∑
i=1

dX(Pi, Qi) < ε

as required.

Otherwise, Qj is not a vertex and is glued to Pj+1 by a gluing
map ϕk : Ek → Ek±1. By choice of ε0, P ′ is contained in the edge
Ek, so that P ′′ = ϕk(P ′) ∈ P̄ is defined. Since the gluing map ϕk

respects distances,

dX(P ′′, Qj+1) � dX(P ′′, Pj+1) + dX(Pj+1, Qj+1)

� dX(P ′, Qj) + dX(Pj+1, Qj+1) �
j+1∑
i=1

dX(Pi, Qi) < ε,

using the fact that the induction hypothesis (4.1) holds for j.
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Therefore, (4.1) now holds for j + 1, as requested.

This completes the proof of (4.1) in all three cases, and for all j.
The case j = n proves Lemma 4.5 since Qn = Q. �

4.4.2. Proof of Theorem 4.3. We now have the tools needed to
prove Theorem 4.3, namely that d̄X(P̄ , Q̄) > 0 whenever P̄ �= Q̄.

Let ε0 be associated to P̄ by Lemma 4.5.

Because X̄ is a partition of X, the fact that P̄ �= Q̄ implies that
these two subsets P̄ and Q̄ of X are disjoint, namely, they have no
point in common. Since these subsets are finite, it follows that there
exists an ε1 > 0 such that every point of P̄ is at distance > ε1 from
every point of Q̄. Set ε = min{ε0, ε1} > 0.

Then d̄X(P̄ , Q̄) � ε. Indeed, Lemma 4.5 would otherwise provide
a point P ′ ∈ P̄ such that dX(P ′, Q) < ε � ε1, thereby contradicting
the definition of ε1. �

4.4.3. Proof of Theorem 4.4. For every point P̄ ∈ X̄, we need to
find an isometry ψ between a small ball Bd̄X

(P̄ , ε) ⊂ X̄ centered at
P̄ and a small ball Bdeuc(P

′, ε) in the euclidean plane R2.

Fix an ε satisfying the conclusions of Lemma 4.5. In addition,
choose ε small enough that each P ′ ∈ P̄ is at a euclidean distance
> 3ε from any edge that does not contain it. In particular, the
balls BdX

(P ′, ε) are pairwise disjoint and are disks, half-disks or disk
sectors in R2, according to the type of P ′ ∈ P̄ . Here, a (euclidean)

disk sector is one of the two pieces of a euclidean disk Bdeuc(P0, r)
in R2 delimited by two half-lines issued from its center P0, as in a
slice of pie.

In addition, the Triangle Inequality shows that the balls BdX
(P ′, ε)

are at a euclidean distance > ε apart, in the sense that deuc(Q′, Q′′) >

ε if Q′ ∈ BdX
(P ′, ε) and Q′′ ∈ BdX

(P ′′, ε) with P ′ �= P ′′ ∈ P̄ .

Lemma 4.5 says that the ball Bd̄X
(P̄ , ε) is obtained by gluing

together the balls BdX
(P ′, ε) in X centered at the points P ′ that are

glued to P . Let
B =

⋃
P ′∈P̄

BdX
(P ′, ε)

denote the union of these balls.
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This subset B ⊂ X comes with two natural metrics. The first
one is the restriction of the metric dX . The second one dB is similarly
defined, but by restricting attention to curves that are contained in
B. Namely, dB(Q, Q′) is the infimum of the euclidean lengths �euc(γ)
of all piecewise differentiable curves γ joining Q to Q′ and contained
in B. In particular, dB(Q, Q′) = ∞ if Q and Q′ are in distinct balls
BdX

(P ′, ε) and BdX
(P ′′, ε) of B.

When Q and Q′ are in the same ball BdX
(P ′, ε) of B, elementary

geometry shows that dB(Q, Q′) = dX(Q, Q′). Indeed, BdX
(P ′, ε) is

a disk, a half-disk or a disk sector. Therefore, the only case which
requires some thought is that of a disk sector of angle > π (since
otherwise dB(Q, Q′) = dX(Q, Q′) = deuc(Q, Q′) by convexity). In
this case, one just needs to check that the shortest curve from Q

to Q′ in the polygon X is either a single line segment completely
contained in BdX

(P ′, ε) or the union of two line segments meeting at
the vertex P ′ in BdX

(P ′, ε); compare Exercise 1.10.

Since the ball Bd̄X
(P̄ , ε) is obtained by performing certain gluings

on B it inherits a quotient semi-metric d̄B. The advantage of d̄B is
that it is entirely defined in terms of B, without reference to the rest
of X.

Lemma 4.6. The metrics d̄X and d̄B coincide on the ball Bd̄X
(P̄ , 1

3ε).

The restriction to the ball of radius 1
3ε is used to rule out the

possibility of a “shortcut” through X̄ making Q̄ and Q̄′ closer in
X̄ than in Bd̄X

(P̄ , ε) = B̄. The left-hand side of Figure 4.5 pro-
vides an example of two such points Q̄ and Q̄′ ∈ Bd̄X

(P̄ , ε) such that
d̄X(Q̄, Q̄′) < d̄B(Q̄, Q̄′).

Proof of Lemma 4.6. By definition of dX and dB , dX(R, R′) �
dB(R, R′) for every R, R′ ∈ B. It immediately follows that
d̄X(Q̄, Q̄′) � d̄B(Q̄, Q̄′) for every Q̄, Q̄′ ∈ Bd̄X

(P̄ , ε). Incidentally,
this shows that d̄B is really a metric and not just a semi-metric.

To prove the reverse inequality, we need to restrict attention to
Q̄, Q̄′ ∈ Bd̄X

(P̄ , 1
3ε). In particular, d̄X(Q̄, Q̄′) < 2

3ε by the Triangle
Inequality.
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Let w be a discrete walk from Q̄ to Q̄′ in X of the form Q = Q1,
Q′

1 ∼ Q2, Q′
2 ∼ Q3, . . . , Q′

n−1 ∼ Qn, Q′
n = Q′, and whose dX -length

�dX
(w) is sufficiently close to d̄X(Q̄, Q̄′) that �dX

(w) < 2
3ε. Then

Q̄′
i = Q̄i+1 in X̄ and, using the fact that the quotient map is distance

nonincreasing (Lemma 4.2),

n∑
i=1

d̄X(Q̄i, Q̄i+1) �
n∑

i=1

dX(Qi, Q
′
i) < 2

3ε.

A repeated use of the Triangle Inequality then shows that

d̄X(P̄ , Q̄i) � d̄X(P̄ , Q̄1) +
i−1∑
j=1

d̄X(Q̄j , Q̄j+1) < 1
3ε + 2

3ε = ε,

so that all Q̄i are in Bd̄X
(P̄ , ε). Since ε satisfies the conclusions of

Lemma 4.5, we conclude that all Qi and Q′
i are in the subset B.

If P ′ �= P ′′ ∈ P̄ , then dX(P ′, P ′′) > 3ε by choice of ε, and the
Triangle Inequality shows that any point of the ball BdX

(P ′, ε) is at
a distance > ε from any point of BdX

(P ′′, ε). Since dX(Qi, Q
′
i) < 1

3ε,
we conclude that Qi and Q′

i are in the same ball BdX
(P ′, ε). In

particular, we observed (right above the statement of Lemma 4.6)
that dB(Qi, Q

′
i) = dX(Qi, Q

′
i).

What this shows is that w is also a discrete walk from Q̄ to Q̄′

in B, whose dB-length �dB
(w) is equal to its dX -length �dX

(w). As a
consequence, d̄B(Q̄, Q̄′) � �dX

(w).

Since this holds for every discrete walk w whose length �dX
(w)

is sufficiently close to d̄X(Q̄, Q̄′), we conclude that d̄B(Q̄, Q̄′) �
d̄X(Q̄, Q̄′).

Because we have already shown that the reverse inequality holds,
this proves that d̄B(Q̄, Q̄′) = d̄X(Q̄, Q̄′) for every Q̄, Q̄′ ∈ Bd̄X

(P̄ , 1
3ε).

�

We are now ready to prove Theorem 4.4. As in the proof of
Lemma 4.5, we will distinguish cases according to the type of the
point P ∈ X corresponding to P̄ ∈ X̄.
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Case 1. P is in the interior of the polygon X.

In particular, P is glued to no other point so that P̄ consists only
of P . Then B = BdX

(P, ε) and, by our choice of ε, the ball BdX
(P, ε)

is completely contained in the interior of X. In particular, the ball
BdX

(P, ε) ⊂ X is the same as the euclidean ball Bdeuc(P, ε) ⊂ R2, an
open disk in the euclidean plane R2. Also, there are no gluings be-
tween distinct points of B = BdX

(P, ε), so that every Q̄ ∈ Bd̄X
(P̄ , ε)

corresponds to exactly one point Q ∈ BdX
(P, ε).

Define ψ: Bd̄X
(P̄ , ε) → Bdeuc(P, ε) by the property that ψ(Q̄) =

Q for every Q̄ ∈ Bd̄X
(P̄ , ε).

The map ψ may not be an isometry over the whole ball, but we
claim that

deuc(ψ(Q̄), ψ(Q̄′)) = d̄X(Q̄, Q̄′)

for every Q̄, Q̄′ ∈ Bd̄X
(P̄ , 1

3ε). Indeed, d̄X(Q̄, Q̄′) = d̄B(Q̄, Q̄′) by
Lemma 4.6. Since there are no gluings in B, one easily sees that
d̄B(Q̄, Q̄′) = dB(Q, Q′) (see Exercise 4.3). Finally, dB(Q, Q′) =
deuc(Q, Q′)=deuc(ψ(Q̄), ψ(Q̄′)) by convexity of the ball B=BdX

(P, ε).

This proves that the restriction of ψ to the ball Bd̄X
(P̄ , 1

3ε)
is an isometry from

(
Bd̄X

(P̄ , 1
3ε), d̄X

)
to the euclidean disk(

Bdeuc(P, 1
3ε), deuc

)
, as requested.

Having completed the analysis in Case 1, we now directly jump
to the most complex case.

Case 2. P is a vertex of the polygon X.

Write P̄ = {P1, P2, . . . , Pk} with P = P1. Namely, P1, P2, . . . ,
Pk are the vertices of X that are glued to P . Lemma 4.5 says that the
ball Bd̄X

(P̄ , ε) in X̄ is the image under the quotient map π: X → X̄

of the union B of the balls BdX
(P1, ε), BdX

(P2, ε), . . . , BdX
(Pk, ε) in

X.

Because of our choice of ε, each of the balls BdX
(Pj , ε) in the

metric space (X, dX) is a disk sector of radius ε in R2, and these disk
sectors are pairwise disjoint. We now need to work harder than in
the previous case to rearrange these disk sectors into a full disk.

Each Pj belongs to exactly two edges Eij
and Ei′j

. As in our
description of vertex gluings at the end of Section 4.3.1, we can choose
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P1

P2

P3

Ei1

Ei3

Ei2

E′
i1

E′
i2

E′
i3

Bdeuc(P
′, ε) = ψ

`

Bd̄X
(P̄ , ε)

´

The polygon X

BdX
(P1, ε)

BdX
(P2, ε)BdX

(P3, ε)

ψ1
`

BdX
(P1, ε)

´

ψ2
`

BdX
(P2, ε)

´

ψ3
`

BdX
(P3, ε)

´

Figure 4.6. Gluing vertices together

the indexings so that for every j with 1 � j � k, the gluing map
ϕij

sends the vertex Pj to Pj+1 and the edge Eij
to Ei′j+1

with the
convention that Pk+1 = P1 and i′k+1 = i′1.

We will construct our isometry ψ: Bd̄X
(P̄ , ε) → Bdeuc(P

′, ε) piece-
wise from suitable isometries ψj of (R2, deuc). For this, we use the
following elementary property, which we list as a lemma for future
reference.

Lemma 4.7. Let ϕ: g → g′ be an isometry between two line segments,
half-lines or full-lines g and g′ in R2. Then, ϕ extends to an isometry
ϕ: R2 → R2 of (R2, deuc).

In addition, if we choose one side of g and another side for g′, we
can arrange that ϕ sends the selected side of g to the one selected for
g′. The isometry ϕ is then uniquely determined by these properties.

�

Lemma 4.7 is an immediate consequence of the classification of
isometries of (R2, deuc) provided by Proposition 1.3.

In particular, for every j, we can extend the gluing map ϕij
:

Eij
→ Ei′j+1

to an isometry ϕij
: R2 → R2 of (R2, deuc) that sends the

polygon X to the side of Ei′j+1
that is opposite X.

To define the ψj , we begin with any isometry ψ1 of (R2, deuc),
and inductively define

ψj+1 = ψj ◦ ϕ−1
ij

= ψ1 ◦ ϕ−1
i1

◦ ϕ−1
i2

◦ · · · ◦ ϕ−1
ij

.
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By induction on j and because Pj+1 = ϕj(Pj), the map ψj sends
the vertex Pj to the same point P ′ = ψ1(P ) for every j. In par-
ticular, the isometry ψj sends the disk sector BdX

(Pj , ε) to a disk
sector of the disk Bdeuc(P

′, ε). Similarly, the image of the edge
Ei′j+1

= ϕij+1(Ej) under ψj+1 is equal to the image of Eij
under

ψj . By definition of the extension of ψij
to an isometry of R2, the

two disk sectors ψj

(
BdX

(Pj , ε)
)

and ψj+1

(
BdX

(Pj+1, ε)
)

sit on oppo-
site sides of ψj(Eij

) = ψj+1(Ei′j+1
). It follows that the disk sectors

ψj

(
BdX

(Pj , ε)
)

all fit side-by-side and in order of increasing j around
their common vertex P ′. See Figure 4.6.

It is now time to use the hypothesis that the internal angles of
the polygon X at the vertices P1, P2, . . . , Pk ∈ P̄ add up to 2π. This
implies that the disk sector ψk+1

(
BdX

(Pk+1, ε)
)

= ψk+1

(
BdX

(P1, ε)
)

is equal to ψ1

(
BdX

(P1, ε)
)
. In particular, the two isometries ψk+1 and

ψ1 of (R2, deuc) send P1 = Pk+1 to the same point P ′, send the edge
Eik+1 = Ei′1

to the same line segment or half-line issued from P ′, and
send a side of Eik+1 = Ei′1

to the same side of ψk+1(Eik+1) = ψ1(Ei′1
).

By the uniqueness part of Lemma 4.7, it follows that ψk+1 = ψ1.

Finally note that when Q ∈ Eij
is glued to Q′ = ϕij

(Q) ∈ Ei′j+1
,

then ψj(Q) = ψj+1(Q′). We can therefore define a map

ψ: Bd̄X
(P̄ , ε) → Bdeuc(P

′, ε)

by the property that ψ(Q̄) is equal to ψj(Q) whenever Q ∈ Bd(Pj , ε).
The above considerations show that ψ is well defined.

We will show that ψ induces an isometry between the correspond-
ing balls of radius 1

3ε.

For this, consider two points Q̄, Q̄′ ∈ Bd̄X
(P̄ , 1

3
ε). By Lemma 4.6

and by the Triangle Inequality, d̄B(Q̄, Q̄′) = d̄X(Q̄, Q̄′) < 2
3ε. Let w

be a discrete walk from Q̄ to Q̄′ in B, of the form Q = Q1, Q′
1 ∼ Q2,

Q′
2 ∼ Q3, . . . , Q′

n−1 ∼ Qn, Q′
n = Q′, and whose dB-length �dB

(w)
is sufficiently close to d̄B(Q̄, Q̄′) that �dB

(w) < 2
3ε. In particular,

each dB(Qi, Q
′
i) is finite, so that Qi and Q′

i belong to the same ball
BdX

(Pji
, ε). As a consequence,

deuc

(
ψ(Q̄i), ψ(Q̄′

i)
)

= deuc

(
ψji

(Qi), ψji
(Q′

i)
)

= deuc(Qi, Q
′
i) � dB(Qi, Q

′
i)
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since each ψji
is a euclidean isometry. Then, by iterating the Triangle

Inequality and using the fact that Q̄′
i = Q̄i+1,

deuc

(
ψ(Q̄), ψ(Q̄)

)
�

n−1∑
i=1

deuc

(
ψ(Q̄i), ψ(Q̄′

i)
)

�
n−1∑
i=1

dB(Qi, Q
′
i) = �dB

(w).

Since this holds for every discrete walk w from Q̄ to Q̄′ in B whose
length is sufficiently close to d̄B(Q̄, Q̄′), we conclude that

(4.2) deuc

(
ψ(Q̄), ψ(Q̄)

)
� d̄B(Q̄, Q̄′).

Conversely, let γ be the oriented line segment from ψ(Q̄) to ψ(Q̄′)
in the disk Bdeuc(P

′, 1
3ε). Recall that Bdeuc(P

′, 1
3ε) is decomposed into

the disk sectors ψj

(
Bd(Pj ,

1
3ε)

)
. Therefore we can split γ into line

segments γ1, γ2, . . . , γn, in this order, such that each γi is contained
in a disk sector ψji

(
Bd(Pji

, 1
3ε)

)
.

In the disk sector Bd(Pji
, 1

3ε) ⊂ X, consider the oriented line
segment γ′

i = ψ−1
ji

(γi) corresponding to γi. If the endpoints of γ′
i

are labelled so that γ′
i goes from Qi to Q′

i, we now have a discrete
walk w from Q̄ to Q̄′ of the form Q = Q1, Q′

1 ∼ Q2, Q′
2 ∼ Q3, . . . ,

Q′
n−1 ∼ Qn, Q′

n = Q′, of dB-length

�dB
(w) =

n∑
i=1

dB(Qi, Q
′
i) =

n∑
i=1

�euc(γ′
i) =

n∑
i=1

�euc(γi)

= �euc(γ) = deuc

(
ψ(Q̄), ψ(Q̄)

)
.

It follows that

(4.3) d̄B(Q̄, Q̄′) � deuc

(
ψ(Q̄), ψ(Q̄)

)
.

Combining the inequalities (4.2) and (4.3), we conclude that

d̄X(Q̄, Q̄′) = d̄B(Q̄, Q̄′) = deuc

(
ψ(Q̄), ψ(Q̄)

)
for every Q̄, Q̄′ ∈ Bd̄X

(P̄ , 1
3ε). In other words, ψ induces an isometry

from the ball
(
Bd̄X

(P̄ , 1
3ε), d̄X

)
to the ball

(
Bdeuc(P

′, 1
3ε), deuc

)
.

This concludes our discussion of Case 2, where P is a vertex of
X. We have one case left to consider.
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Case 3. P is in an edge of the polygon X, but is not a vertex.

The proof is identical to that of Case 2. Actually, it can even be
considered as a special case of Case 2 by viewing P and the point P ′

that is glued to it as vertices of X where the internal angle is equal
to π.

From
page 68
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00

This concludes the proof of Theorem 4.4. �

4.5. Gluing hyperbolic and spherical polygons

Before applying Theorems 4.3 and 4.4 to specific examples, let us look
at the key ingredients of their proof in more detail. For the proof of
Theorem 4.3 (and the proof of Lemma 4.5 before), in addition to
standard properties of metric spaces, we mostly used the fact that
the maps ϕi gluing one edge of the polygon to another preserved
distances. A critical component of the proof of Theorem 4.4 was
Lemma 4.7.

4.5.1. Hyperbolic polygons. All these properties have straight-
forward analogues in the hyperbolic plane (H2, dhyp), provided we
use the appropriate translation. For instance, the euclidean metric
deuc just needs to be replaced by the hyperbolic metric dhyp, eu-
clidean isometries by hyperbolic isometries, line segments and lines
by geodesics, etc. . . . Consequently, our results automatically extend
to the hyperbolic context.

The only point that requires some thought is the following prop-
erty, which replaces Lemma 4.7.

Lemma 4.8. In the hyperbolic plane (H2, dhyp), let ϕ : g → g′ be
an isometry between two geodesics g and g′. Then, ϕ extends to an
isometry ϕ: H2 → H2 of (H2, dhyp).

In addition, if we choose one side of g and another side for g′, we
can arrange that ϕ sends the selected side of g to the one selected for
g′. The isometry ϕ is then uniquely determined by these properties.

Proof. Pick a point P ∈ g and a nonzero vector �v tangent to g at P .
In particular, �v defines an orientation for g, which we can transport
through ϕ to obtain an orientation of g′. At the point P ′ = ϕ(P ) ∈ g,
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let �v ′ be the vector tangent to g′ in the direction of this orientation,
and such that ‖�v ′‖hyp = ‖�v‖hyp. Proposition 2.20, which shows that
(H2, dhyp) is isotropic, provides a hyperbolic isometry ψ : H2 → H2

such that ψ(P ) = P ′ and DP ψ(�v) = �v′. In particular, ψ sends g to
the geodesic which is tangent to DP ψ(�v) = �v ′ at ψ(P ) = P ′, namely,
g′.

The restriction of ψ to the geodesic g is an isometry g → g′

which sends P to the same point P ′ as the isometry ϕ, and sends
the orientation of g to the same orientation as ϕ. It follows that ψ

coincides with ϕ on g. In other words, the isometry ψ : H2 → H2

extends ϕ: g → g′.

If ψ sends the selected side of g to the selected side of g′, we
are done. Otherwise, let ρ be the hyperbolic reflection across g′,
namely, the isometry of (H2, dhyp) induced by the inversion across
the euclidean circle containing g′. Because ρ fixes every point of g′

and exchanges its two sides, the hyperbolic isometry ϕ = ρ ◦ ψ now
has the required properties.

The uniqueness easily follows from Lemma 2.10. �

We are now ready to carry out our automatic translation from
euclidean to hyperbolic geometry.

Let X be a polygon in the hyperbolic plane (H2, dhyp). Namely,
X is a region in H2 whose boundary in H2 is decomposed into finitely
many hyperbolic geodesics E1, E2, . . . , En meeting only at their
endpoints. When we consider X as a subset of R2, its boundary in
R2 may also include finitely many intervals in the real line R bounding
the hyperbolic plane H2 in R2 = C; if this is the case, note that X

will be unbounded for the hyperbolic metric dhyp.

In addition we require that X and the Ei contain all those points
of H2 that are in their boundary. Namely, X and the Ei are closed

in H2, although not necessarily in R2.

The geodesics Ei bounding X are the edges of the polygon X.
The points where two edges meet are its vertices . As in the euclidean
case, we require that only two edges meet at any given vertex.
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Figure 4.7 offers a few examples. In this figure, X1 is a hyper-
bolic octagon, with eight edges and eight vertices; it is bounded for
the hyperbolic metric dhyp. The hyperbolic polygon X2 is an infinite
strip, with two edges and no vertex; it touches the line R along two
disjoint intervals, and is unbounded for the hyperbolic metric dhyp

(although it is bounded for the euclidean metric of R2). The hyper-
bolic quadrilateral X3 is delimited by our edges, has no vertex in H2,
and touches R̂ = R ∪ {∞} along four points, one of which is ∞. We
will meet these three hyperbolic polygons again in Sections 5.2, 5.4.2
and 5.5, respectively.

H2

R

X1

X2

X3

Figure 4.7. A few hyperbolic polygons

For such a hyperbolic polygon X, we can then introduce edge
gluing data by, first, grouping the edges together in pairs {E1, E2},
{E3, E4}, . . . , {E2p−1, E2p} and then, for each such pair {E2k−1, E2k},
by specifying an isometry ϕ2k−1 : E2k−1 → E2k. Here ϕ2k−1 is re-
quired to be an isometry for the hyperbolic distance dhyp.

As in the euclidean case, the edges E2k−1 and E2k in the same pair
must have the same hyperbolic length, possibly infinite. In general,
the isometry ϕ2k−1 is then uniquely determined once we know how
ϕ2k−1 sends an orientation of E2k−1 to an orientation of E2k, and we
will often describe this information by drawing matching arrows on
E2k−1 and E2k. The case where drawing arrows is not sufficient to
specify ϕ2k−1 is when E2k−1 and E2k are complete geodesics of H2,
namely, full euclidean semi-circles centered on the real line.

As in the euclidean case, we endow X with the path metric

dX for which dX(P, Q) is the infimum of the hyperbolic lengths of
all piecewise differentiable curves joining P to Q in X. When X is
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convex , in the sense that the geodesic arc joining any two P , Q ∈ X

is contained in X, the metric dX clearly coincides with the restriction
of the hyperbolic metric dhyp.

Theorem 4.9. If X̄ is obtained from the hyperbolic polygon X by glu-
ing pairs of its edges by isometries, then the gluing is proper. Namely,
the semi-distance d̄X induced on X̄ by the path metric dX of X is such
that d̄X(P̄ , Q̄) > 0 when P̄ �= Q̄.

Proof. The proof is identical to that of Theorem 4.3. Just follow
each step of that proof, using the appropriate translation. �

Theorem 4.10. Let (X̄, d̄X) be the quotient metric space obtained
from a hyperbolic polygon (X, dX) by gluing together pairs of edges
of X by hyperbolic isometries. Suppose that the following additional
condition holds: For every vertex P of X, the angles of X at those
vertices P ′ of X which are glued to P add up to 2π. Then (X̄, d̄) is
locally isometric to the hyperbolic plane (H2, dhyp).

Proof. The proof is identical to that of Theorem 4.4, provided that
we replace Lemma 4.7 by Lemma 4.8. �

A metric space (X, d) which is locally isometric to the hyperbolic
plane (H2, deuc) is a hyperbolic surface. Equivalently, the metric d

is then a hyperbolic metric.

4.5.2. Spherical polygons. The same properties also generalize to
polygons in the sphere (S2, dsph).

A polygon in the sphere (S2, dsph) is a region X of S2 whose
boundary is decomposed into finitely many geodesics E1, E2, . . . ,
En meeting only at their endpoints. These Ei are the edges of the
polygon X, and the points where they meet are its vertices . As
before, we require that X contains all its edges and vertices, and that
every edge contains its endpoints. Also, exactly two edges meet at a
given vertex.

We endow X with the path metric dX for which dX(P, Q) is the
infimum of the euclidean lengths of all piecewise differentiable curves
joining P to Q in X ⊂ S2 ⊂ R3. When X is convex , in the sense that
any two P , Q ∈ X can be joined by a geodesic arc of S2 of length � π
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which is completely contained in X, the metric dX clearly coincides
with the restriction of the spherical metric dsph.

After grouping the edges together in pairs {E1, E2}, {E3, E4},
. . . , {E2p−1, E2p}, the gluing data used consists of isometries ϕ2k−1:
E2k−1 → E2k.

As in the hyperbolic case, the key property is the following ex-
tension of Lemma 4.7.

Lemma 4.11. In the sphere (S2, dsph), let ϕ: g → g′ be an isometry
between two geodesics g and g′. Then ϕ extends to an isometry ϕ :
S2 → S2 of (S2, dsph).

In addition, if we choose one side for g and another side for g′, we
can arrange that ϕ sends the selected side for g to the one selected for
g′. The isometry ϕ is then uniquely determined by these properties.

Proof. Since geodesics of (S2, dsph) are great circle arcs (Theorem
3.1), this is easily proved by elementary arguments in 3-dimensional
euclidean geometry. �

As before, we endow the spherical polygon X with the path metric
dX for which dX(P, Q) is the infimum of the spherical lengths of all
piecewise differentiable curves joining P to Q in X.

Then, by replacing Lemma 4.7 by Lemma 4.11, the proofs of
Theorems 4.3 and 4.4 immediately extend to the spherical context
and give the following two results.

Theorem 4.12. If X̄ is obtained from the spherical polygon X by glu-
ing pairs of its edges by isometries, then the gluing is proper. Namely,
the semi-distance d̄X induced on X̄ by the path metric dX is really a
metric. �

Theorem 4.13. Let (X̄, d̄X) be the quotient metric space obtained
from a spherical polygon (X, dX) by gluing together pairs of edges
of X by hyperbolic isometries. Suppose that the following additional
condition holds: For every vertex P of X, the angles of X at those
vertices P ′ of X which are glued to P add up to 2π. Then (X̄, d̄X) is
locally isometric to the sphere (S2, dsph). �
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As in the euclidean and hyperbolic cases, a metric space (X, d)
which is locally isometric to the sphere (S2, dsph) is a spherical sur-

face. Equivalently, the metric d is then a spherical metric.

Exercises for Chapter 4

Exercise 4.1. Let X be the closed interval [0, 1] in R. Let X̄ be the par-
tition consisting of all the subsets { 1

m2n , m
2n } where m, n ∈ N are integers

such that m is odd and 1 < m < 2n, and of all one-element subsets {P}
where P ∈ [0, 1] is not of the form P = 1

m2n or m
2n as above. Let d̄euc be the

quotient semi-metric induced on X̄ by the usual metric deuc(P, Q) = |P−Q|
of X = [0, 1].

a. Show that for every P ∈ [0, 1] and every ε > 0, there exists Q1, Q2 ∈
[0, 1] such that Q̄1 = Q̄2 in X̄, deuc(0, Q1) < ε, and deuc(P, Q2) < ε.

b. Show that d̄euc(0̄, P̄ ) = 0 for every P̄ ∈ X̄. In particular, the semi-
metric d̄euc is not a metric, and the gluing is not proper.

c. Show that d̄euc(P̄ , Q̄) = 0 for every P̄ , Q̄ ∈ X̄.

Exercise 4.2 (Equivalence relations and partitions). A relation on a set
X is just a subset R of the product X ×Y . One way to think of this is that
R describes a certain property involving two points of X. Namely, P and
Q ∈ X satisfy this property exactly when the pair (P, Q) is an element of R.
To emphasize this interpretation, we write P ∼ Q to say that (P, Q) ∈ R.

An equivalence relation is a relation such that

(i) P ∼ P for every P ∈ X (Reflexivity Property);
(ii) if P ∼ Q, then Q ∼ P (Symmetry Property);
(iii) if P ∼ Q and Q ∼ R, then P ∼ Q (Transitivity Property).

a. Given an equivalence relation, define the equivalence class of P ∈ X
as

P̄ = {Q ∈ X; P ∼ Q}.
Show that as P ranges over all points of X, the family of the equiva-
lence classes P̄ is a partition of X.

b. Conversely, let X̄ be a partition of the set X and, as usual, let P̄ ∈ X̄
denote the subset that contains P ∈ X. Define a relation on X by the
property that P ∼ Q exactly when P and Q belong to the same subset
P̄ = Q̄ of the partition. Show that ∼ is an equivalence relation.

Exercise 4.3 (Trivial gluing). Let (X, d) be a metric space, and consider
the trivial gluing where the partition X̄ consists only of the one-element
subsets P̄ = {P}. In other words, no two distinct elements of X are glued
together in X̄. Let (X̄, d̄) be the resulting quotient semi-metric space.
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Using the definition of the quotient semi-metric d̄ in terms of discrete walks,
rigorously prove that the quotient map π: X → X̄ defined by π(P ) = P̄ is
an isometry from (X, d) to (X̄, d̄).

Exercise 4.4 (Iterated gluings). Let X̄ be a partition of the metric space

(X, d), and let ¯̄X be a partition of the quotient space X̄. Let d̄ be the

semi-metric induced by d on X̄, and let ¯̄d be the semi-metric induced by d̄

on ¯̄X.

a. If P ∈ X, the element ¯̄P = P̄ ∈ ¯̄X is a family of subsets of X, and
we can consider their union Ṗ ⊂ X. Show that the subsets Ṗ form a
partition Ẋ of X.

b. Let ϕ: ¯̄X → Ẋ be the map defined by the property that ϕ( ¯̄P ) = Ṗ for
every P ∈ X. Show that ϕ is bijective.

c. Let w be a discrete walk P = P1, Q1 ∼ P2, . . . , Qn−1 ∼ Pn, Qn = Q
from Ṗ to Q̇ in Ẋ. Show that P̄ = P̄1, Q̄1 ∼ P̄2, . . . , Q̄n−1 ∼ P̄n,

Q̄n = Q̄ forms a discrete walk w̄ from ¯̄P to ¯̄Q in ¯̄X, whose length is
such that �d̄(w̄) � �d(w). (Beware that the same symbol ∼ is used to

refer to gluing with respect to the partition Ẋ in the first case, and

with respect to ¯̄X in the second instance.) Conclude that if ḋ is the

quotient semi-metric induced by d on Ẋ, then ¯̄d
` ¯̄P, ¯̄Q

´

� ḋ
`

Ṗ , Q̇
´

for
every P , Q ∈ X.

d. Given a small ε > 0, let w̄ be a discrete walk P̄ = P̄1, Q̄1 ∼ P̄2, . . . ,

Q̄n−1 ∼ P̄n, Q̄n = Q̄ from ¯̄P to ¯̄Q in ¯̄X whose length is sufficiently

close to ¯̄d
` ¯̄P, ¯̄Q

´

that �d̄(w̄) � ¯̄d
` ¯̄P, ¯̄Q

´

+ ε
2
. Similarly, for every i, choose

a discrete walk wi from P̄i to Q̄i, consisting of Pi = Pi,1, Qi,1 ∼ Pi,2,
. . . , Qi,ki−1 ∼ Pi,ki , Qi,ki = Qi whose length is sufficiently close to
d̄(P̄i, Q̄i) that �d(wi) � d̄(P̄i, Q̄i) + ε

2n
. Show that the wi can be

chained together to form a discrete walk w from Ṗ to Q̇ in Ẋ such

that �d(w) � �d̄(w̄) + ε
2
. Conclude that ḋ(Ṗ , Q̇) � ¯̄d( ¯̄P, ¯̄Q) + ε.

e. Show that ϕ is an isometry from ( ¯̄X, ¯̄d) to (Ẋ, ḋ).

In other words, a two-step gluing construction yields the same quotient
semi-metric space as gluing everything together in one single action.

Exercise 4.5. Let X be the interval [0, 2π] ⊂ R, and let X̄ be the partition
consisting of the two-element subset {0, 2π} and of all the one-element
subsets {P} with P ∈ (0, 2π). Let d̄ be the quotient semi-metric induced
on X̄ by the usual metric d(P, Q) = |Q−P | of X = [0, 2π]. In other words,
(X̄, d̄) is obtained by gluing together the two endpoints of the interval
X = (0, 2π) endowed with the metric d.

Let S1 = {(x, y) ∈ R2; x2 + y2 = 1} be the unit circle in the euclidean
plane, endowed with the metric dS1 for which dS1(P, Q) is the infimum
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of the euclidean arc lengths �euc(γ) of all piecewise differentiable curves γ
going from P to Q in S1. Consider the map ϕ: X = [0, 2π] → S1 defined
by ϕ(t) = (cos t, sin t).

a. Show that if π: X → X̄ denotes the quotient map, there exists a unique
map ϕ̄: X̄ → S1 such that ϕ = ϕ̄ ◦ π. Show that ϕ̄ is bijective.

b. Show that for every discrete walk w from P̄ to Q̄ in X̄, there ex-
ists a piecewise differentiable curve γ going from ϕ(P ) to ϕ(Q) in S1

whose length �euc(γ) is equal to the length �d(w) of w. Conclude that
dS1
`

ϕ̄(P̄ ), ϕ̄(Q̄)
´

� d̄(P̄ , Q̄) for every P̄ , Q̄ ∈ X̄.

c. Conversely, show that for every P , Q ∈ X, there exists a discrete walk
w from P̄ to Q̄ in X̄ involving at most four points of X, whose length
�d(w) is equal to dS1

`

ϕ(P ), ϕ(Q)
´

. (Hint: Consider a shortest curve

from ϕ(P ) to ϕ(Q) in S1.) Conclude that d̄(P̄ , Q̄) � dS1
`

ϕ̄(P̄ ), ϕ̄(Q̄)
´

for every P̄ , Q̄ ∈ X̄.

d. Combine these results to show that ϕ is an isometry from (X̄, d̄) to
(S1, dS1).

Exercise 4.6. In the euclidean plane R2, let D1, D2 and D3 be three
disjoint euclidean disk sectors of radius r and respective angles θ1, θ2 and
θ3 with θ1 + θ2 = θ3 � π. Let X̄ be the quotient space obtained from
X = D1 ∪ D2 by isometrically gluing one edge of D1 to an edge of D2,
sending the vertex of D1 to the vertex of D2. Show that if dX and dD3

are the euclidean path metrics defined as in Section 4.3.1, the quotient
space (X̄, d̄X) is isometric to (D̄3, dD3). Hint: Copy parts of the proof of
Theorem 4.4.

Exercise 4.7 (Euclidean cones). Let D1, D2, . . . , Dn be n disjoint eu-
clidean disk sectors with radius r and with angles θ1, θ2, . . . , θn, respec-
tively, and let Ei and E′

i denote the two edges of Di. Isometrically glue
each edge Ei to E′

i+1, sending the vertex of Di to the vertex of Di+1 and
counting indices modulo n (so that E′

n+1 = E′
1). Show that the resulting

quotient space (X̄, d̄X) depends only on the radius r and on the angle sum
θ =

Pn
i=1 θi. Namely, if D′

1, D′
2, . . . , D′

n′ is another family of n′ disjoint
euclidean disk sectors of the same radius r and with respective angles θ′

1,

θ′
2, . . . , θ′

n′ with
Pn′

i=1 θ′
i =

Pn
i=1 θi, and if these disk sectors are glued

together as above, then the resulting quotient space (X̄ ′, d̄X′) is isometric
to (X̄, d̄X). Hint: Use the results of Exercises 4.4 and 4.6 to reduce the
problem to the case where n = n′ and θi = θ′

i for every i, and to make sure
that the order of the gluings does not matter.

The space (X̄, d̄X) of Exercise 4.7 is a euclidean cone with radius r
and cone angle θ. Figure 4.8 represents a few examples. Note the different
shape according to whether the cone angle θ is less than, equal to, or
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more than 2π. When θ is equal to 2π, the cone is of course isometric to a
euclidean disk.

cone angle < 2π cone angle = 2π cone angle > 2π

Figure 4.8. Three euclidean cones

Exercise 4.8 (Surfaces with cone singularities). Let (X̄, d̄X) be the quo-
tient metric space obtained from a euclidean polygon (X, dX) by isomet-
rically gluing together its edges. Show that for every P̄ ∈ X̄, there exists
a radius r such that the ball Bd̄X

(P̄ , r) is isometric to a euclidean cone,
defined as in Exercise 4.7.

A space (X̄, d̄X) satisfying the conclusions of Exercise 4.8 is a eu-
clidean surface with cone singularities. One can similarly define hy-
perbolic and spherical surfaces with cone singularities.

Exercise 4.9.

a. Let (C, d) be a euclidean cone with center P0, radius r and cone angle
θ as in Exercise 4.7. Show that for every r′ < r, the “circle”

Sd(P0, r
′) = {P ∈ C; d(P, P0) = r′}

is a closed curve, whose length �d

`

Sd(P0, r
′)
´

in the sense of Exer-

cise 1.11 is equal to θr′.

b. Conclude that the angle condition of Theorem 4.4 is necessary for its
conclusion to hold. Namely, if, when isometrically gluing together the
sides of a euclidean polygon X, there is a vertex P such that the angles
of X at those vertices P ′ which are glued to P do not add up to 2π,
then the quotient space (X̄, d̄) is not locally isometric to the euclidean
plane (R2, deuc)

                

                                                                                                               



Chapter 5

Gluing examples

After suffering through the long proofs of Section 4.4, we can now
harvest the fruit of our labors, and apply the technology that we
have built in Chapter 4 to a few examples.

5.1. Some euclidean surfaces

We begin by revisiting, in a more rigorous setting, the example of the
torus that we had informally discussed in Section 4.1.

5.1.1. Euclidean tori from rectangles and parallelograms. Let
X1 be the rectangle [a, b] × [c, d], consisting of those (x, y) ∈ R2

such that a � x � b and c � y � d. Glue the bottom edge
E1 = [a, b] × {c} to the top edge E2 = [a, b] × {d} by the isome-
try ϕ1: [a, b]×{c} → [a, b]×{d} defined by ϕ1(x, c) = (x, d), and glue
the left edge E3 = {a} × [c, d] to the right edge E4 = {b} × [c, d] by
ϕ3 : {a} × [c, d] → {b} × [c, d] defined by ϕ3(a, y) = (b, y). Namely,
we consider the edge gluing that already appeared in Section 4.1 and
which we reproduce in Figure 5.1.

With these edge identifications, the four vertices of the rectangle
are glued together to form a single point P̄ of the quotient space X̄1.
The sum of the angles of X1 at these vertices is

π

2
+

π

2
+

π

2
+

π

2
= 2π.
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90 5. Gluing examples

X1

E1

E2

E3 E4

Figure 5.1. Gluing opposite sides of a rectangle

We can therefore apply Theorems 4.3 and 4.4. Note that X1 is
convex, so that the path metric dX1 coincides with the restriciton of
the euclidean metric deuc of R2. Then Theorems 4.3 and 4.4 show
that the metric space (X̄1, d̄X1) is locally isometric to the euclidean
metric of the euclidean plane (R2, deuc).

This is our first rigorous example of a euclidean surface.

In our informal discussion of this example in Section 4.1, we ex-
plained how X̄1 can be identified to the torus illustrated on the right
of Figure 5.1 if we are willing to stretch the metric. The mathemat-
ically rigorous way to express this property is to use the language of
topology and to say that the space X̄1 is homeomorphic to the torus.

A homeomorphism from a metric space (X, d) to another met-
ric space (X ′, d′) is a bijection ϕ: X → X ′ such that both ϕ and its
inverse ϕ−1 are continuous. (See Section T.1 in the Tool Kit for
the definition of bijections and inverse maps.) The homeomorphism ϕ

can be used as a dictionary between X and X ′ to translate back and
forth every property involving limits and continuity. For instance, a
sequence P1, P2, . . . , Pn, . . . converges to the point P∞ in X if and
only if its image ϕ(P1), ϕ(P2), . . . , ϕ(Pn), . . . converges to ϕ(P∞)
in X ′. As a consequence, if the metric spaces (X, d) and (X ′, d′) are
homeomorphic, in the sense that there exists a homeomorphism
(X, d) → (X ′, d′) , then (X, d) and (X ′, d′) share exactly the same
limit and continuity properties.

An example of a homeomorphism is provided by an isometry from
(X, d) to (X ′, d′). However, a general homeomorphism ϕ: X → X ′

is much more general in the sense that the distance d′
(
ϕ(P ), ϕ(Q)

)
may be very different from d(P, Q). The only requirement is that
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d′
(
ϕ(P ), ϕ(Q)

)
is small exactly when d(P, Q) is small (in a sense

quantified with the appropriate ε and δ).

In general, we will keep our discussion of homeomorphisms at a
very informal level. However, we should perhaps go through at least
one example in detail.

Let the 2-dimensional torus be the surface T2 of the 3-dimen-
sional space R3 obtained by revolving about the z-axis the circle in
the xz-plane that is centered at the point (R, 0, 0) and has radius
r < R, as in the right-hand side of Figure 5.1. We consider T2 as a
metric space by endowing it with the restriction of the 3-dimensional
metric deuc of R3. Different choices of r and R give different subsets
of R3, but these are easily seen to be homeomorphic.

Lemma 5.1. Let (X̄1, d̄X1) be the quotient metric space obtained from
the rectangle X1 = [a, b]×[c, d] by gluing together opposite edges by eu-
clidean translations. Then X̄1 is homeomorphic to the 2-dimensional
torus T2.

Proof. To simplify the notation, we restrict attention to the case of
the square X1 = [−π, π]×[−π, π]. However, the argument straightfor-
wardly extends to general rectangles [a, b]× [c, d] by suitable rescaling
of the variables.

Let ρ: X1 → T2 be the map defined by

ρ(θ, ϕ) =
(
(R + r cos ϕ) cos θ, (R + r cos ϕ) sin θ, r sin ϕ

)
.

Geometrically, ρ(θ, ϕ) is obtained by rotating by an angle of θ around
the z-axis the point (R + r cos ϕ, 0, r sin ϕ) of the circle in the xz-
plane with center (R, 0, 0) and radius r. From this description it is
immediate that ρ(θ, ϕ) = ρ(θ′, ϕ′) exactly when (θ, ϕ) and (θ′, ϕ′) are
glued together to form a single point of X̄1. It follows that ρ induces
a bijection ρ̄: X̄1 → T2 defined by the property that ρ̄(P̄ ) = ρ(P ) for
any P ∈ P̄ .

The map ρ is continuous by the usual calculus arguments. Using
the property that d̄(P̄ , Q̄) � d(P, Q) (Lemma 4.2), it easily follows
that ρ̄ is continuous.
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To prove that the inverse function ρ̄−1 : T2 → X̄1 is continuous
at the point Q0 ∈ T2, we need to distinguish cases according to the
type of the point Q0.

Consider the most complex case, where Q0 = (−R+ r, 0, 0) is the
image under ρ̄ of the point P̄0 ∈ X̄1 corresponding to the four vertices
(±π,±π) of X1. If Q = (x, y, z) ∈ T2 is near Q0, we can explicitly
compute all (θ, ϕ) such that ρ(θ, ϕ) = Q. Indeed, ϕ = π − arcsin z

r if
z > 0, ϕ = −π − arcsin z

r if z < 0, and ϕ = ±π if z = 0. Similarly,
θ = π − arcsin y

R+r cos ϕ if y > 0, θ = −π − arcsin y
R+r cos ϕ if y < 0,

and θ = ±π if y = 0. By continuity of the function arcsin, it follows
that (θ, ϕ) will be arbitrarily close to one of the corners (±π,±π) if
Q = (x, y, z) is sufficiently close to Q0 = (−R + r, 0, 0).

For ε > 0 small enough, Lemma 4.5 shows that the ball Bd̄(P̄0, ε)
is just the image under the quotient map X1 → X̄1 of the four quarter-
disks of radius ε centered at the four vertices (±π,±π) of X1. By the
observations above, there exists a δ > 0 such that whenever Q ∈ T2 is
such that deuc(Q, Q0) < δ, any (θ, ϕ) ∈ X1 with ρ(θ, ϕ) = Q is within
a distance < ε of one of the vertices (±π,±π). Since ρ̄−1(Q) is the
image in X̄1 of any (θ, ϕ) ∈ X1 with ρ(θ, ϕ) = Q, we conclude that
d̄(ρ̄−1(Q), P0) < ε.

Since P0 = ρ̄−1(Q0), this proves that ρ̄−1 is continuous at Q0 =
(−R + r, 0, 0).

The continuity at the other Q0 ∈ T2 is proved by a similar case-
by-case analysis. �

E1

E2

E3 E4X2

Figure 5.2. Gluing opposite sides of a parallelogram

We can consider a variation of this example by replacing the
rectangle by a parallelogram X2 and gluing again opposite sides by
translations. As in the case of the rectangle, the four vertices of
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the parallelogram are glued to a single point. Because the angles
of a euclidean parallelogram add up to 2π, the angle condition of
Theorem 4.4 is satisfied, and we conclude that the quotient metric
space (X̄2, d̄) is a euclidean surface.

The parallelogram X2 can clearly be stretched to assume the
shape of a rectangle in such a way that the gluing data for X2 gets
transposed to the gluing data for X1. See Exercise 5.1. It follows
that the quotient surface X̄2 is again a torus.

5.1.2. Euclidean Klein Bottles. Given a rectangle X3 = [a, b] ×
[c, d], we can also glue its sides together using different gluing maps.
For instance, we can still glue the bottom edge E1 = [a, b]×{c} to the
top edge E2 = [a, b]×{d} by the isometry ϕ1: [a, b]×{c} → [a, b]×{d}
defined by ϕ1(x, c) = (x, d), but glue the left edge E3 = {a} × [c, d]
to the right edge E4 = {b} × [c, d] by ϕ3 : {a} × [c, d] → {b} × [c, d]
defined by ϕ3(a, y) = (b, d− y). Namely, the gluing map flips the left
edge upside down before sending it to the right edge by a translation.

Again, the four vertices of X3 are glued together to form a single
point of the quotient space X̄3. Since the angles of X3 at these four
vertices add up to 2π, the combination of Theorems 4.3 and 4.4 shows
that (X̄3, d̄X3) is locally isometric to the euclidean plane (R2, deuc).

E1

E2

E3 E4X3

Figure 5.3. Another way of gluing opposite sides of a rectangle

To understand the global shape of X̄3, we first glue the bottom
and top sides together, to form a cylinder as in the case of the torus.
We then need to glue the left side of the cylinder to the right side by
a translation followed by a flip. This time, the difficulty of physically
realizing this in 3-dimensional space goes well beyond the need for
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stretching the paper. It can actually be shown to be impossible to re-
alize, in the sense that there is no subset of R3 which is homeomorphic
to X̄3.

The right-hand side of Figure 5.3 offers an approximation, where
the surface crosses itself along a closed curve. Each point of this
self-intersection curve has to be understood as corresponding to two
points of the surface X̄3. Introducing an additional space dimension,
this picture can also be used to represent an object in 4–dimensional
space. This is similar to the way a figure eight in the plane can
be deformed to a curve with no self-intersection in 3-dimensional
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Figure 5.4. A physical Klein bottle
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space, by pushing parts of the figure eight up and down near the
point where it crosses itself. In the same way, the object represented
on the right-hand side of Figure 5.3 can be deformed to a subset of
the 4–dimensional space R4 that is homeomorphic to X̄3.

The surface X̄3 is a Klein bottle.

The Klein bottle was introduced in 1882 by Felix Klein (1849–
1925), as an example of pathological surface. The “bottle” termi-
nology is usually understood to reflect the fact that a Klein bottle
can be obtained from a regular wine bottle by stretching its neck and
connecting it to the base after passing inside of the bottle. Another in-
terpretation (unverified, and not incompatible with the previous one)
claims that it comes from a bad pun, or a bad translation from the
German, in which the Kleinsche Fläche (Klein surface) became the
Kleinsche Flasche (Klein bottle). The latter version probably pro-
vides a better story, whereas the first one makes for better pictures.
This second point is well illustrated by the physical glass model of
Figure 5.4, borrowed from the web site www.kleinbottle.com of the
company Acme Klein Bottle, which offers many Klein bottle-shaped
products for sale.

5.1.3. Gluing opposite sides of a hexagon. Let us now go be-
yond quadrilaterals and consider a hexagon X4 where we glue opposite
edges together, as indicated on Figure 5.5; compare also Figures 4.3
and 4.6. The vertices of X4 project to two points of the quotient space
X̄4, each corresponding to three vertices of X4. More precisely, if we
label the vertices P1, P2, . . . , P6 in this order as one goes around the
hexagon, the odd vertices P1, P3 and P5 are glued together to form
one point of X̄4, and the even vertices P2, P4 and P6 form another
point of X̄4. Consequently, we need the hexagon X4 to satisfy the
following two conditions:

(1) opposite edges have the same length;

(2) the angles of X4 at the odd vertices P1, P3, P5 add up to
2π.

Recall that the sum of the angles of a euclidean hexagon is always
equal to 4π, so that condition (2) is equivalent to the property that
the angles of X4 at its even vertices P2, P4, P6 add up to 2π. A little
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exercise in elementary euclidean geometry shows that in a hexagon
satisfying conditions (1) and (2) above, opposite edges are necessarily
parallel; see Exercise 5.7.

If the hexagon X4 satisfies conditions (1) and (2), we can again
apply Theorems 4.3 and 4.4 to show that the quotient metric space
(X̄4, d̄X4) is a euclidean surface.

P1 P2

P3

P4P5

P6
X4

Figure 5.5. Gluing opposite sides of a hexagon

To understand the global shape of X̄4 up to homeomorphism,
we can consider the diagonals P1P5 and P2P4 of the hexagon X4,
as in Figure 5.5. These two diagonals cut the hexagon into three
pieces, the parallelogram P1P2P4P5 and the two triangles P2P3P4

and P5P6P1. Gluing the edges P1P2 and P4P5 of the parallelogram
P1P2P4P5 provides a cylinder, whose boundary consists of the two
images of the diagonals P1P5 and P2P4. Similarly, gluing the two
triangles P2P3P4 and P5P6P1 together by identifying the edge P2P3

to the edge P5P6 and the edge P3P4 to P6P1 gives another cylinder,
whose boundary again corresponds to the images of the diagonals
P1P5 and P2P4. See the right-hand side of Figure 5.5. This proves
that splitting the quotient space X̄4 along the images of the diagonals
P1P5 and P2P4 gives two cylinders. In particular, X̄4 can be recovered
from these two cylinders by gluing them back together according to
the pattern described on the right of Figure 5.5. It easily follows that
X̄4 is homeomorphic to the torus.

As announced in an earlier disclaimer, this discussion of the con-
struction of a homeomorphism from the quotient space X̄4 to the
torus is somewhat informal. However, with a little reflection, you
should be able to convince yourself that this description could be
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made completely rigorous if needed. The same will apply to other
informal descriptions of homeomorphisms later on.

5.2. The surface of genus 2

We saw in the last section that if we start with a euclidean rectangle
or parallelogram and if we glue opposite edges by a translation, we
obtain a euclidean torus. Similarly, for a euclidean hexagon satisfying
appropriate conditions on its edge lengths and angles, we found out
that gluing opposite edges again yields a euclidean torus.

We can go one step further and glue opposite sides of an octagon
X, as on the left-hand side of Figure 5.6.

X

Figure 5.6. Gluing opposite edges of an octagon

We claim that the quotient space X̄ is homeomorphic to the sur-

face of genus 2 represented on the right of Figure 5.6, namely, a
sphere with 2 handles. (A torus is a sphere with one handle added.)

To see this, one can cut out a smaller octagon from X as indi-
cated in Figure 5.6. This smaller octagon X1 can be seen as a rec-
tangle whose corners have been cut off. Gluing opposite edges of this
rectangle, we see that the image X̄1 in X̄ is just a torus from which
a square (corresponding to the triangles removed from the rectangle)
has been removed. See Figure 5.7.

It remains to consider the four strips forming the complement
X2 of X1 in X. Gluing these four strips together along their short
edges gives a big square minus a smaller square, namely, some kind
of square annulus, as in the left-hand side of Figure 5.8. Flipping
this annulus inside out, as in the middle picture of Figure 5.8, and
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X1

X̄1

Figure 5.7. One half of Figure 5.6

X2

X̄2

Figure 5.8. The other half of Figure 5.6

then gluing the outside sides, we see that the image X̄2 of X2 in the
quotient space X̄ is again a torus minus a square.

Finally, the quotient space X̄ is obtained by gluing the two sur-
faces X̄1 and X̄2 along their boundaries, which gives the surface of
genus 2 of Figure 5.6.

Let us now try to put a euclidean metric on the quotient space
X̄. The eight vertices of the octagon X are glued together to form a
single point of X̄. Consequently, if we want to apply Theorems 4.3
and 4.4, we need to use a euclidean octagon where opposite edges
have the same length, and where the sum of the angles at the vertices
is equal to 2π. Unfortunately, in euclidean geometry, the angles of an
octagon add up to 6π!

Therefore, it seems impossible to put a euclidean metric on X̄.
(It can be proved that this is indeed the case, and that the surface
of genus 2 admits no euclidean metric; see Exercise 5.16). However,
hyperbolic geometry will provide us with a suitable octagon.

The first step is the following.

Lemma 5.2. In the hyperbolic plane H2, there exists a triangle T

with angles π
2 , π

8 and π
8 .
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See Proposition 5.13 and Exercise 5.15 for a more general con-
struction of hyperbolic triangles with prescribed angles.

Proof. We will actually use euclidean geometry to construct this
hyperbolic triangle.

We begin with the hyperbolic geodesic g with endpoints 0 and ∞.
Namely g is the vertical half-line beginning at 0. Then consider the
complete geodesic h that is orthogonal to g at the point i. Namely,
h is a euclidean semi-circle of radius 1 centered at 0. We are looking
for a third geodesic k which makes an angle of π

8 with both g and h.

For every y � 1, let ky be the complete geodesic that passes
through the point iy and makes an angle of π

8 with g. Namely, ky is
a euclidean semi-circle of radius y csc π

8 centered at the point y cot π
8 ,

and consequently meets g as long as
(
sin π

8

)
/

(
1 + cos π

8

)
< y � 1.

See Figure 5.9.

π
8

i

iy

ky

g
h

y cot π
80

αy

Figure 5.9. A hyperbolic triangle with angles π
2
, π

8
and π

8

The angle αy between ky and g at their intersection point depends
continuously on y. It is equal to 3π

8 when y = 1, and approaches 0 as
y tends to

(
sin π

8

)
/

(
1 + cos π

8

)
. Consequently, by the Intermediate

Value Theorem there exists a value of y for which αy = π
8 . By

applying the Cosine Formula to the triangle formed by the intersection
point of g and ky and by the centers of these euclidean semi-circles,
one could actually find an explicit formula for this y, but this is not
necessary.
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For this value of y, the hyperbolic geodesics g, h and ky delimit
the hyperbolic triangle T required. �

Lemma 5.3. In the hyperbolic plane H2, there exists an octagon X

where all edges have the same length and where all angles are equal
to π

4 .

Proof. Let T be the triangle provided by Lemma 5.2. List its vertices
as P0, P1 and P2 in such a way that P0 is the vertex with angle π

2 .

We start with 16 isometric copies T1, T2, . . . , T16 of T . Namely,
the Ti are hyperbolic triangles for which there exists isometries ϕi :
H2 → H2 such that Ti = ϕi(T ).

T16 T1

T15 T2

T14 T3

T13
T4

Figure 5.10. A hyperbolic octagon with all angles equal to π
4

Pick an arbitrary point Q ∈ H2. We can choose the isometries
ϕi so that ϕi(P2) = Q for every i. In addition, using Lemma 4.8, we
can arrange that:

(1) if i is even, ϕi and ϕi−1 send the edge P0P2 to the same
geodesic, so that Ti and Ti−1 have this edge ϕi(P0P2) =
ϕi−1(P0P2) in common;

(2) if i > 1 is odd, ϕi and ϕi−1 send the edge P1P2 to the same
geodesic, so that Ti and Ti−1 have this edge ϕi(P1P2) =
ϕi−1(P1P2) in common;

(3) for every i > 1, the triangles Ti and Ti−1 sit on opposite
sides of their common edge.
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Since 16π
8 = 2π, the Ti fit nicely together around the point Q,

and the last edge of T16 comes back to match the first edge of T1. In
particular, ϕ16(P1P2) = ϕ1(P1P2). See Figure 5.10.

When i is even, the two geodesic arcs ϕi(P0P1) = ϕi−1(P0P1)
meet at ϕi(P0) = ϕi−1(P0) and make an angle of π

2 + π
2 = π at that

point. It follows that the union of these two geodesic arcs forms a
single geodesic arc.

Therefore, the union X of the 16 triangles Ti is an octagon in the
hyperbolic plane H2. Its angles are all equal to 2π

8 = π
4 . Its edges all

have the same length, namely, twice the length of the edge P0P1 of
the original triangle T . �

The symmetries of this hyperbolic octagon are more apparent in
Figure 5.11, which represents its image in the disk model for H2, intro-
duced in Section 2.7, if we arrange that the center Q of X corresponds
to the center O of B2.

Figure 5.11. The hyperbolic octagon of Figure 5.10 in the
disk model

Let X be the hyperbolic octagon provided by Lemma 5.3, and let
X̄ be the quotient space obtained by gluing together opposite sides
of X, as in Figure 5.6. Then Theorems 4.9 and 4.10 assert that the
metric dX induces a quotient metric d̄X on this quotient space X, and
that the metric space (X̄, d̄X) is locally isometric to the hyperbolic
plane.
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In particular, we have constructed a hyperbolic surface (X̄, d̄X)
which is homeomorphic to the surface of genus 2.

5.3. The projective plane

We now construct a spherical surface, which is different from the
sphere S2.

Let X be a hemisphere in S2. To turn X into a polygon, pick two
antipodal points P1 and P2 = −P1 on the great circle C delimiting
X, which will be the vertices of the polygon. These two vertices split
C into two edges E1 and E2. We now have a spherical polygon X,
which we endow with the path metric dX . Note that X is convex, so
that dX is just the restriction of the spherical metric dsph.

Now, glue E1 to E2 by the antipode map ϕ1 : E1 → E2 defined
by ϕ1(P ) = −P . This gluing data defines a quotient space (X̄, d̄X).

The polygon X and its gluing data are represented in Figure 5.12.

P1

P2E1

E2

X

Figure 5.12. The projective plane

The angles of X at P1 and P2 are both equal to π, and conse-
quently add up to 2π. Therefore, we can apply Theorems 4.12 and
4.13, and show that the quotient space (X̄, d̄X) is locally isometric
to the sphere (S2, dsph). This quotient space (X̄, d̄X) is called the
projective plane.

In Exercise 5.10, we show that the projective plane can also be
interpreted as the space of lines passing through the origin in the
3-dimensional space R3.
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5.4. The cylinder and the Möbius strip

We now consider unbounded polygons and the surfaces obtained by
gluing their edges together.

The simplest case is that of an infinite strip where the two edges
are glued together which provides a cylinder or a Möbius strip. These
examples may appear somewhat trivial at first, but they already dis-
play many features that we will encounter in more complicated sur-
faces.

X1 X̄1

γ0

γt

E1 E2

Figure 5.13. A euclidean cylinder

5.4.1. Euclidean cylinders and Möbius strips. We can begin
with an infinite strip X1 in the euclidean plane R2, bounded by two
parallel lines E1 and E2. Orient E1 and E2 in the same direction, and
glue them by an isometry ϕ1: E1 → E2 respecting these orientations.
Because there are no vertices on E1 and E2, this is a situation where
the gluing map ϕ1 is not uniquely determined by these properties.
Indeed, there are many possible choices for ϕ1, all differing from each
other by composition with a translation of R2 parallel to E1 and E2.

Pick any such gluing map ϕ1: E1 → E2, and consider the corre-
sponding quotient space (X̄1, d̄X1). Since X1 has no vertex, the angle
hypothesis of Theorem 4.4 is automatically satisfied. Therefore, The-
orems 4.3 and 4.4 show that (X̄1, d̄X1) is a euclidean surface.
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This euclidean surface is easily seen to be homeomorphic to the
cylinder.

For another vertical strip X2 in R2 bounded by parallel lines E1

and E2, we can orient E1 and E2 so that they now point in opposite
directions and choose a gluing map ϕ : E1 → E2 respecting these
orientations. Again, there are many different choices for this gluing
map, differing by composition with translations parallel to E1 and
E2.

For each choice of such a gluing map ϕ1, another application of
Theorems 4.3 and 4.4 shows that the corresponding quotient space
(X̄2, d̄X2) is a euclidean surface.

The topology of the quotient space (X̄2, d̄X2) is now very different.
Indeed, this space is homeomorphic to the famous Möbius strip.

X1 X̄1

Figure 5.14. A euclidean Möbius strip

The Möbius strip is named after August Möbius (1790–1868),
who conceived of this nonorientable surface in 1858 while working
on geometric properties of polyhedra. He never published this work,
which was only discovered after his death. Credit for the discovery
of the Möbius strip should probably go to Johann Benedict Listing
(1808–1882) instead, who independently described the Möbius strip
in 1858. Incidentally, Listing made another important contribution
to the themes of this monograph. He coined the word “topology”
(or Topologie in the German original) in an 1836 letter, and the first
printed occurrence of this term appears in his book Vorstudien zur
Topologie, published in 1847.
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5.4.2. Hyperbolic cylinders. We can make completely analogous
constructions in hyperbolic geometry by replacing the euclidean strip
with a strip X3 in the hyperbolic plane H2, bounded by two disjoint
complete geodesics E1 and E2. However, there are essentially two
different shapes for such an infinite strip in H2.

E1

E2
θ

X3

−1 −a 0 a 1 γθ

γ0

X̄3

Figure 5.15. A hyperbolic cylinder

First, the endpoints of E1 and E2 on R∪{∞} may all be distinct.
By an easy algebraic exercise with linear fractional maps, there exists
an isometry of H2 sending E1 to the complete geodesic with endpoints
±1 and sending E2 to the complete geodesic with endpoints ±a, for
some a < 1. Consequently, we can assume, without loss of generality,
that E1 goes from −1 to +1 and that E2 goes from −a to +a.

To glue E1 to E2 we need an isometry ϕ1 sending E1 to E2.
Among such isometries of H2, the simplest one is the homothety de-
fined by ϕ1(z) = az. Choose this specific isometry as a gluing map,
and let (X̄3, d̄X3) be the corresponding quotient metric space. The
combination of Theorems 4.9 and 4.10 shows that (X̄3, d̄X3) is locally
isometric to the hyperbolic plane (H2, dhyp); namely, it is a hyperbolic
surface. We are now in the situation of Figure 5.15.

This surface is easily shown to be homeomorphic to the cylin-
der. However, its geometry is very different from that of a euclidean
cylinder.
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Indeed, in the euclidean case, assume that X1 is the vertical
strip {(x, y) ∈ R2; 0 � x � a} and that we glue E1 = {(x, y) ∈
R2; x = 0} to E2 = {(x, y) ∈ R2; x = a} by the horizontal translation
ϕ1: (x, y) �→ (x + a, y). (See Exercise 7.9 in Chapter 7 for an analysis
of the other possible gluing maps, which shows that the general case
is essentially equivalent to the one considered here.) The quotient
space (X̄1, d̄X1) can then be decomposed as a union of closed curves
γt where, for each t, γt is the image in X̄1 of the horizontal line seg-
ment {(x, y) ∈ R2; 0 � t � a, y = t}. These closed curves all have
length a, and the set of points at distance δ from the central curve γ0

consists exactly of the two curves γδ ∪ γ−δ. In particular, the curves
γt show that the “width” of the euclidean cylinder X̄1 is the same at
every point.

In the hyperbolic case, where X3 is the strip in H2 delimited by
the geodesics E1 and E2 going from −1 to +1 and from −a to +a,
respectively, we glued E1 to E2 by the homothety ϕ1(z) = az. For
every θ with −π

2 < θ < π
2 , we now have a closed curve γθ in the

quotient space X̄3, which is the image of the euclidean line segment
consisting of all z = rei( π

2 −θ) with a � r � 1.

The closed curve γ0 is geodesic because, for each P̄ ∈ γ0, there
exists an isometry between a small ball Bd̄hyp

(P̄ , ε) and a ball of
radius ε in (H2, dhyp) sending γ0 ∩ Bd̄hyp

(P̄ , ε) to a geodesic arc of
H2. The only point P̄ where this requires a little checking is when
P̄ corresponds to the two points i and ai ∈ X3, in which case the
local isometry provided by the proof of Theorem 4.10 is easily seen
to satisfy this property. The curves γθ with θ �= 0 are never geodesic.

A few rather immediate computations of hyperbolic lengths show
the following:

(1) The curve γθ has hyperbolic length
∫ a

1

1
r cos θ

dr=log a sec θ.

(2) Every point z = rei( π
2 −θ) of γθ is at distance∫ |θ|

0

r

r cos t
dt = log(sec θ + tan |θ|) from the curve γ0.

Compare Exercise 2.5 for the proof of (2).
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Therefore, for every δ > 0, the set of points of X̄3 that
are at distance δ from γ0 consists of the two curves γ±θ with
log(sec θ + tan |θ|) = δ. By elementary trigonometry, this is equiv-
alent to the property that sec θ = cosh δ. Therefore, by (1) above,
the length of each of these two curves is equal to log a cosh δ. In
particular, the width of the cylinder grows exponentially with the
distance δ from γ0, so that γ0 forms some kind of “narrow waist” for
the hyperbolic cylinder X̄3.

The picture on the right-hand side of Figure 5.15 attempts to
convey a sense of this exponential growth. This picture is necessarily
imperfect. Indeed, as one goes toward one of the ends of the hy-
perbolic cylinder, its width grows faster than that of any surface of
revolution in the 3-dimensional euclidean space R3.

0 1

∞

X4

γt

X̄4

Figure 5.16. Another hyperbolic cylinder

In the hyperbolic plane H2, there is another type of infinite strip
bounded by two complete geodesics E1 and E2 which occurs when
E1 and E2 have one endpoint in common in R ∪ {∞}. Applying an
isometry of H2, we can assume without loss of generality that this
common point is ∞, namely that E1 and E2 are both vertical half-
lines. By a horizontal translation followed by a homothety, we can
even arrange that E1 is the vertical half-line with endpoints 0 and
∞, while E2 goes from 1 to ∞. These two geodesics now delimit the
strip X4 = {z ∈ H2; 0 � Re(z) � 1} in H2.
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To glue the edges E1 and E2 together, the simplest gluing map
ϕ1 : E1 → E2 is the horizontal translation defined by ϕ1(z) = z +
1. Let (X̄4, d̄hyp) be the quotient space obtained by performing this
gluing operation on X4. This quotient space is a hyperbolic surface
by Theorems 4.9 and 4.10, and is easily seen to be homeomorphic to
the cylinder. We should note that our choice of the gluing map ϕ1 is
critical here. Indeed, we will see in Section 6.7.1 that other choices
lead to hyperbolic cylinders with very different geometric properties.

For every t ∈ R, let γt be the closed curve in the quotient space
X̄4 that is the image of the horizontal line segment consisting of those
z ∈ X4 such that Im(z) = et. By definition of the hyperbolic metric,
it is immediate that γt has hyperbolic length e−t. Also, every point of
γt is at hyperbolic distance |t| from the central curve γ0. Therefore,
the width of X̄4 grows exponentially toward one end of the cylinder
and decreases exponentially toward the other end.

Again, the right-hand side of Figure 5.16 attempts to illustrate
this behavior. As in the case of X̄3, this picture is necessarily imper-
fect for the end with exponential growth. Surprisingly enough, the
end with exponential decay can be exactly represented as a surface
of revolution in the 3-dimensional space R3.

More precisely, let X+
4 denote the upper part of X4 consisting of

those z ∈ X4 such that Im(z) � 1
2π , and let X̄+

4 be its image in X̄4.

In the xy-plane, consider the tractrix parametrized by

t �−→ (t − tanh t, sech t), 0 � t < ∞,

and let the pseudosphere S be the surface of revolution in R3 ob-
tained by revolving the tractrix about the x-axis. This surface is
represented in Figure 5.17.

Endow the pseudosphere S with the metric dS defined by the
property that for every P , Q ∈ S, dS(P, Q) is the infimum of the
euclidean lengths �euc(γ) of all piecewise differentiable curves γ con-
tained in S and joining P to Q.

As usual, we endow X+
4 with the metric dX+

4
for which the dis-

tance between two points is the infimum of the hyperbolic lengths
of all curves in X+

4 joining these two points. Because hyperbolic
geodesics are euclidean semi-circles, it is relatively immediate that
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X+
4 is convex, so that this metric dX+

4
actually coincides with the re-

striction of the hyperbolic distance. However, it is convenient to keep
a distinct notation because of (minor) subtleties with quotient met-
rics; compare Lemma 5.8. Let d̄X+

4
be the quotient metric induced

by dX+
4

on the quotient space X̄+
4 .

Proposition 5.4. The metric space (X̄+
4 , d̄X+

4
) is isometric to the

surface (S, dS).

Proof. The proof will take several steps, in part because of the def-
inition of the quotient metric. It may perhaps be skipped on a first
reading. However, you should at least have a glance atLemma 5.5,

1
2

3

4
5

6

7
8

0

9

00

To
page 114

which contains the key geometric idea of the proof.

Let ρ: X+
4 → S be the map which to z ∈ X+

4 associates the point
ρ(z) = (u, v, w) with

u = log
(
2π Im(z) +

√
4π2Im(z)2 − 1

)
−

√
4π2Im(z)2 − 1

2π Im(z)
,

v =
1

2π Im(z)
cos (2π Re(z)) ,

w =
1

2π Im(z)
sin (2π Re(z)) .

Geometrically, ρ(z) is better understood by setting

t = arccosh(2π Im(z)) = log
(
2π Im(z) +

√
4π2Im(z)2 − 1

)
.

Then ρ(z) =
(
t − tanh t, sech t cos

(
2π Re(z)

)
, sech t sin

(
2π Re(z)

))
is

obtained by rotating the point of the tractrix corresponding to the
parameter t by an angle of 2π Re(z) about the x-axis.

In particular, two points z, z′ ∈ X+
4 have the same image under

ρ if and only if z′ − z is an integer, namely, if and only if z and z′

are glued together to form a single point of the quotient space X̄+
4 .

As a consequence, ρ induces an injective map ρ̄: X̄+
4 → S defined by

the property that ρ̄(P̄ ) is equal to ρ(P ) for every P̄ ∈ X̄+
4 and any

element P ∈ P̄ , namely, for any point P ∈ X+
4 that corresponds to

P̄ in the quotient space X̄+
4 .

The map ρ is surjective by definition of the pseudosphere S. It
follows that ρ̄: X̄+

4 → S is surjective and is therefore bijective.
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x

y

z

Figure 5.17. The pseudosphere

We will prove that ρ̄ is an isometry from (X̄+
4 , d̄X+

4
) to (S, dS).

The key step is the following computation.

Lemma 5.5. The map ρ sends every curve γ in the half-strip X+
4 to

a curve in the surface S whose euclidean length �euc(ρ(γ)) is equal to
the hyperbolic length �hyp(γ) of γ.

Proof. Let us compute the differential map Dzρ. Remember that
Dzρ sends the vector �v = (a, b) to

Dzρ(�v) =
(

∂u
∂x

a + ∂u
∂y

b, ∂v
∂x

a + ∂v
∂y

b, ∂w
∂x

a + ∂w
∂y

b
)

if we write z = x + iy.

With t = arccosh(2πy) as before, we find that ∂u
∂x

= 0, ∂u
∂y

=
2π sech t tanh t, ∂v

∂x = −2π sech t sin (2πx), ∂v
∂x = 2π sech2 t cos (2πx),

∂w
∂x = 2π sech t cos (2πx), and ∂v

∂x = 2π sech2 t sin (2πx).

After simplifications,

‖Dzρ(�v)‖euc = 2π sech t ‖�v‖euc =
1
y
‖�v‖euc = ‖�v‖hyp .
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If γ is a curve parametrized by s �→ z(s), s1 � s � s2, its image
ρ(γ) is parametrized by s �→ ρ

(
z(s)

)
, s1 � s � s2. Therefore,

�euc

(
ϕ(γ)

)
=

∫ s2

s1

‖(ρ ◦ z)′(s)‖euc ds =
∫ s2

s1

∥∥Dz(s)

(
z′(s)

)∥∥
euc

ds

=
∫ s2

s1

‖z′(s)‖hyp ds = �hyp(γ). �

Lemma 5.6.
dS

(
ρ̄(P̄ ), ρ̄(Q̄)

)
� d̄X+

4

(
P̄ , Q̄

)
for every P̄ , Q̄ ∈ X̄+

4 .

Proof. Let the points P = P1, Q1 ∼ P2, . . . , Qn−1 ∼ Pn, Qn = Q

form a discrete walk w from P̄ to Q̄. The length of the discrete walk
w is �(w) =

∑n
i=1 dX+

4
(Pi, Qi).

By convexity of X+
4 , there is a geodesic arc γi joining Pi to Qi

whose hyperbolic length is equal to dX+
4

(Pi, Qi). Lemma 5.5 shows
that the image γ′

i = ρ(γi) is a curve joining ρ(Pi) to ρ(Qi) = ρ(Pi+1)
in S whose euclidean length is equal to the hyperbolic length of γi.
Chaining together these γ′

i provides a curve γ′ joining ρ(P ) = ρ̄(P̄ )
to ρ(Q) = ρ̄(Q̄) in S. Its euclidean length is

�euc(γ′) =
n∑

i=1

�euc(γ′
i) =

n∑
i=1

�hyp(γi) =
n∑

i=1

dX+
4

(Pi, Qi) = �(w).

By definition of the metric dS , this shows that dS

(
ρ̄(P̄ ), ρ̄(Q̄)

)
� �(w).

Since this holds for every discrete walk w from P̄ to Q̄, we conclude
that dS

(
ρ̄(P̄ ), ρ̄(Q̄)

)
� d̄X+

4

(
P̄ , Q̄

)
. �

Lemma 5.7.
d̄X+

4

(
P̄ , Q̄

)
� dS

(
ρ̄(P̄ ), ρ̄(Q̄)

)
for every P̄ , Q̄ ∈ X̄+

4 .

Proof. For a given ε > 0, there exists a piecewise differentiable curve
γ going from ρ̄(P̄ ) to ρ̄(Q̄) in S whose length is sufficiently close to
dS

(
ρ̄(P̄ ), ρ̄(Q̄)

)
that

dS

(
ρ̄(P̄ ), ρ̄(Q̄)

)
� �euc(γ) � dS

(
ρ̄(P̄ ), ρ̄(Q̄)

)
+ ε.

We want to decompose γ into pieces coming from X+
4 . For this, we

use the following estimate.
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In the surface S, consider the tractrix T parametrized by t �→
(t − tanh t, sech t, 0). If α is a curve in S whose endpoints P ′ and Q′

are both in T , and if β is the portion of T going from P ′ to Q′, we
claim that �euc(β) � �euc(α).

To see this, parametrize α by s �→
(
x(s), y(s), z(s)

)
, a � s � b,

with ⎧⎪⎨⎪⎩
x(s) = t(s) − tanh t(s)

y(s) = sech t(s) cos θ(s)

z(s) = sech t(s) sin θ(s)

for some functions s �→ t(s) and s �→ θ(s). The curve β has a similar
parametrization, where θ(s) is a constant equal to 0. An immediate
computation then yields

�euc(α) =
∫ b

a

√
x′(s)2 + y′(s)2 + z′(s)2 ds

=
∫ b

a

√
t′(s)2 tanh2 t(s) + θ′(s)2 sech2 t(s) ds

�
∫ b

a

t′(s) tanh t(s) ds = �euc(β).

As a consequence, we can arrange that the intersection of γ with
T consists of a single curve contained in T , possibly empty or reduced
to a single point. Indeed, if P ′ and Q′ are the first and last points
where γ meets T , we can replace the part α of γ going from P ′ to Q′

by the part β of T joining P ′ to Q′ without increasing its length.

We are now ready to conclude. The key observation is that T

is also the image under ρ̄ of the “suture” of X̄+
4 consisting of those

points which correspond to two points of X+
4 (located on the vertical

part of the boundary of the half-strip X+
4 ).

If γ is disjoint from T , then γ is the image under ρ of a curve
γ′ contained in X+

4 and going from a point P to a point Q. By
Lemma 5.5, the hyperbolic length of γ′ is equal to the euclidean length
of γ. It follows that

d̄X+
4

(P̄ , Q̄) � dX+
4

(P, Q) � �hyp(γ′) = �euc(γ) � dS

(
ρ̄(P̄ ), ρ̄(Q̄)

)
+ ε.

If γ meets the tractrix T , we can split it into a first piece γ1 going
from ρ̄(P̄ ) to a point of T , a second curve γ2 contained in T (possibly
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reduced to a single point), and a third piece γ3 going from T to the
point ρ̄(Q̄). Then γ1, γ2 and γ3 are the respective images under ρ of
curves γ′

1, γ′
2 and γ′

3 in X+
4 . There are two possible choices for γ′

2, one
in each of the two vertical sides of X+

4 , and we just pick one of them.
We have observed that two points of X+

4 have the same image under
ρ if and only if they are glued together in the quotient space X̄+

4 .
Consequently, if Pi and Qi denote the initial and terminal points of
each γi, we have that P ∼ P1, Q1 ∼ P2, Q2 ∼ P3 and Q3 ∼ Q. In
particular, the Pi and Qi form a discrete walk w from P̄ to Q̄ whose
length is

�d
X

+
4

(w) =
3∑

i=1

dX+
4

(Pi, Qi) �
3∑

i=1

�hyp(γ′
i) =

3∑
i=1

�euc(γi) = �euc(γ)

since the euclidean length of γi is equal to the hyperbolic length of γ′
i

by Lemma 5.5. Therefore,

d̄X+
4

(P̄ , Q̄) � dX+
4

(P, Q) � �d
X

+
4

(w) � �euc(γ) � dS

(
ρ̄(P̄ ), ρ̄(Q̄)

)
+ ε.

We have now proved that d̄X+
4

(P̄ , Q̄) � dS

(
ρ̄(P̄ ), ρ̄(Q̄)

)
+ ε in

both cases, and this for every ε > 0. Therefore, d̄X+
4

(P̄ , Q̄) �
dS

(
ρ̄(P̄ ), ρ̄(Q̄)

)
as requested. �

The combination of Lemmas 5.6 and 5.7 shows that dS

(
ρ̄(P̄ ),ρ̄(Q̄)

)
= d̄X+

4
(P̄ , Q̄) for every P̄ , Q̄ ∈ X̄+

4 , namely that ρ̄ is an isometry
from (X̄+

4 , d̄X+
4

) to (S, dS). This completes the proof of Proposi-
tion 5.4. �

We conclude our discussion of Proposition 5.4 by addressing a
little subtlety. By convexity of X4 and X+

4 , dX+
4

(P, Q) = dX4
(P, Q) =

dhyp(P, Q) for every P and Q ∈ X+
4 . However, in the quotient space

X̄+
4 , there might conceivably be a difference between the quotient

metric d̄X+
4

and the restriction of the quotient metric d̄X4
of X̄4.

Indeed, the definition of the quotient metric d̄X4
involves discrete

walks valued in X4, whereas d̄X+
4

is defined using discrete walks that
are constrained to X+

4 . Compare our discussion of Lemma 5.12 in
the next section.
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In the specific case under consideration, it turns out that we do
not need to worry about this distinction:

Lemma 5.8. On the subspace X̄+
4 of X̄4, the two metrics d̄X+

4
and

d̄X4
coincide.

Proof. Because X+
4 is contained in X4 and because the metrics dX4

and dX+
4

coincide on X+
4 , every discrete walk w valued in X+

4 is also
valued in X4, and the two lengths �d

X
+
4

(w) and �d
X

+
4

(w) coincide. It

follows that d̄X4
(P̄ , Q̄) � d̄X+

4
(P̄ , Q̄) for every P̄ , Q̄ ∈ X̄+

4 .

Conversely, let P = P1, Q1 ∼ P2, . . . , Qn−1 ∼ Pn, Qn = Q be
a discrete walk w valued in X4 where P and Q both belong to the
upper half-strip X+

4 . For each Pi, let P ′
i be equal to Pi if Pi is in X+

4 ,
and otherwise let P ′

i = Re(Pi) + 1
2π i be the point of the boundary of

X+
4 that sits right above Pi. Similarly, define Q′

i to be Qi if Q ∈ X+
4

and Re(Qi) + 1
2π i if Q �∈ X+

4 .

We claim that dhyp(P ′
i , Q

′
i) � dhyp(Pi, Qi). Indeed, if γ is a curve

joining Pi to Qi in X4, let γ′ be obtained from γ by replacing each
piece that lies below the line of equation Im(z) = 1

2π with the line
segment that sits on the line right above that piece. From the defi-
nition of hyperbolic length, it is immediate that �hyp(γ′) � �hyp(γ).
Considering all such curves γ and γ′, it follows that dhyp(P ′

i , Q
′
i) �

dhyp(Pi, Qi).

Since P ′
1 = P1 and P ′

n = Pn, we now have a discrete walk P = P ′
1,

Q′
1 ∼ P ′

2, . . . , Q′
n−1 ∼ P ′

n, Q′
n = Q which is valued in X+

4 . Since
dhyp(P ′

i , Q
′
i) � dhyp(Pi, Qi), this new walk w′ has length �d

X
+
4

(w′) �
�d

X4
(w). As a consequence, �d

X4
(w) � d̄X+

4
(P̄ , Q̄).

Considering all such walks w, we conclude that d̄X+
4

(P̄ , Q̄) �
d̄X4

(P̄ , Q̄). Therefore, d̄X+
4

(P̄ , Q̄) = d̄X4
(P̄ , Q̄) for every P̄ , Q̄ ∈

From
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5.5. The once-punctured torus

The once-punctured torus is obtained by removing one point from
the torus. To explain the terminology, think of what happens to the
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inner tube of a tire as one drives over a nail. If we describe the torus
as a square with opposite edges glued together, we can assume that
the point removed is the point corresponding to the four vertices of
the square.

This surface of course admits a euclidean metric by restriction of
a euclidean metric on the torus. However, we will see in Chapter 6
that such a metric is not complete (see the definition in Section 6.2),
and that complete metrics are more desirable. Our goal is to construct
a hyperbolic metric on the once-punctured torus, which we will later
on prove to be complete.

This example will turn out to be very important. In particular,
it will accompany much of our discussion in Chapters 8, 10 and 11.

Consider the hyperbolic polygon X described in Figure 5.18.
Namely, X is the region in the hyperbolic plane H2 bounded by the
four complete geodesics E1, E2, E3 and E4 where E1 joins −1 to ∞,
E2 joins 0 to 1, E3 joins 1 to ∞, and E4 joins 0 to −1.

∞

0

X

−1 1

E1

E2

E3

E4

Figure 5.18. A hyperbolic square

As such, X is a “quadrilateral” except that its vertices are in
R∪ {∞}, namely, at infinity of H2. As a subset of H2, X is therefore
a quadrilateral with its four vertices removed.

In a hyperbolic polygon of this type where the vertices are at
infinity of H2 in R∪ {∞} (and consequently are not really vertices of

                

                                                                                                               



116 5. Gluing examples

the polygon in H2), we say that the vertices are ideal . If the vertices
of the polygon are all ideal, and if the polygon touches R∪ {∞} only
at these vertices, we say that it is an ideal polygon .

With this terminology, X is now an ideal quadrilateral in H2. It
is even an ideal square, in the sense that it has all the symmetries of
a square; see Exercise 5.13.

Glue together opposite edges of X, while respecting the orienta-
tions indicated in Figure 5.18. Because these geodesics do not have
any endpoints in H2, this is a situation where there are many possi-
ble isometric gluings. In particular, the gluing data is not completely
determined by the picture. Consequently, we need to be more specific.

To glue the edge E1 to E2, we need a hyperbolic isometry ϕ1

sending −1 to 0, and ∞ to 1. The simplest one is the linear fractional
map

ϕ1(z) =
z + 1
z + 2

.

Similarly, we can glue E3 to E4 by the hyperbolic isometry

ϕ3(z) =
z − 1

−z + 2
.

As usual, define ϕ2 = ϕ−1
1 and ϕ4 = ϕ−1

3 .

Let (X̄, d̄X) be the quotient metric space obtained from (X, dX)
by performing these edge gluings. Note that X is convex so that the
metric dX is just the restriction of the hyperbolic metric dhyp.

Since X has no vertices in H2, there is nothing to be checked and
Theorem 4.10 shows that (X̄, d̄X) is a hyperbolic surface. From the
description of X as a quadrilateral with its vertices removed, we see
that X̄ is (homeomorphic to) a once-punctured torus.

We want to better understand the metric d̄X near the puncture.

For a > 1, consider the horizontal line La of equation Im(z) = a.

By Proposition 2.18, linear fractional maps send circles to circles
in Ĉ = C ∪ {∞}. Consequently, ϕ1 sends La ∪ {∞} to a circle C1

passing through ϕ1(∞) = 1. Since ϕ1 also sends the half-plane H2 to
itself, this circle must be tangent to the real line at 1. The circle C1

also contains the image ϕ1(−2+ai) = 1+ 1
a i of the point −2+ai ∈ La.
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It follows that C1 is the euclidean circle of radius 1
2a centered at 1+ 1

2a i,
and ϕ1(La) = C1 − {1}.

Similarly, ϕ3(La) is contained in a circle C−1 tangent to the real
line at ϕ3(∞) = −1 and containing ϕ3(2 + ai) = −1 + 1

a i. Namely,
C−1 is the circle of radius 1

2a centered at −1 + 1
2a i, and ϕ3(La) =

C−1 − {−1}.
The map ϕ1 also sends −1 to 0. Consequently, it sends the circle

C−1 to a circle C0 tangent to the real line at ϕ1(−1) = 0 and passing
through ϕ1 ◦ ϕ3(3 + ai) = 1

a i (since ϕ3(3 + ai) ∈ ϕ3(La) ⊂ C−1).
Namely, C0 is the circle of radius 1

2a centered at 1
2a i.

Finally, ϕ3 sends C1 to a circle C ′
0 tangent to the real line at

ϕ3(1) = 0 and passing through ϕ3 ◦ϕ1(−3 + ai) = 1
a
i. It follows that

this circle C ′
0 = ϕ3(C1) is exactly equal to the circle C0 = ϕ1(C−1).

Let U∞ be the set of points of X that are on or above the line
La, and let U0, U1 and U−1 consist of the points of X that are on or
inside the circles C0, C1 and C−1, respectively. In addition, because
a > 1, the Ui are disjoint. See Figure 5.19.

What the above discussion shows is that when P belongs to some
of these Ui and is glued to some P ′ ∈ X, then P ′ must be in some
other Uj . See Figure 5.19.

0−1−2 1 2 4

U∞ = V∞V1 V−1 V0

La

= = =

ϕ2(U1) ϕ4(U−1) ϕ4 ◦ ϕ2(U0)

U0U−1 U1

Figure 5.19
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Let U denote the union U∞ ∪ U0 ∪ U1 ∪ U−1 in X, and let Ū be
its image in the quotient X̄. Namely, Ū is obtained from U by gluing
its eight sides though the restrictions of the maps ϕ1, ϕ2 = ϕ−1

1 , ϕ3

and ϕ4 = ϕ−1
3 .

Consider on U the metric dU defined by the property that dU (P, Q)
is the infimum of the hyperbolic length of all curves joining P to Q

in U . In particular, dU (P, Q) = ∞ when P and Q are in different Ui,
since they cannot be joined by any curve that is completely contained
in U .

Each Ui is convex. This is fairly clear for the vertical half-strip
U∞, since every hyperbolic geodesic is a circle arc centered on the x-
axis. The property is slightly less obvious for the other Ui but follows
from the fact, proved below, that Ui is isometric to a vertical half-strip
Vi. A consequence of this convexity is that dU (P, Q) = dhyp(P, Q)
when P and Q are in the same Ui.

The metric dU induces a quotient semi-metric d̄U on the quotient
space Ū .

We begin by showing that the metric space (Ū , d̄U ) is isometric
to a space that we have already encountered. Let Sa be the surface
of revolution obtained by revolving about the x-axis the portion of
the pseudosphere parametrized by

t �→ (t − tanh t, sech t), arccosh aπ
3 � t < ∞.

Equivalently, Sa consists of those points (x, y, z) of the pseudosphere

S such that x � log
(

aπ
3

+
√

a2π2

9
− 1

)
−

√
1 − 9

a2π2 .

As in Proposition 5.4, endow Sa with the metric dSa
defined by

the property that dSa
(P, Q) is equal to the infimum of the euclidean

lengths of all curves joining P to Q in Sa.

Proposition 5.9. The metric space (Ū , d̄U ) is isometric to the space
(Sa, dSa

).

Proof. The proof is very similar to that of Proposition 5.4, except

1
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8

0

9

00

To
page 121

that we now have to glue four vertical half-strips instead of a single
one.
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x

y

z

Figure 5.20. The portion Sa of the pseudosphere

In the hyperbolic plane H2, consider the subsets V∞ = U∞,
V−1 = ϕ2(U−1) = ϕ−1

1 (U−1), V1 = ϕ4(U1) = ϕ−1
3 (U1) and V0 =

ϕ4 ◦ ϕ2(U0) = ϕ−1
3 ◦ ϕ−1

1 (U0).

Remember that V∞ = U∞ is the vertical half-strip delimited by
the horizontal line La = {z; Im(z) = a} and by the vertical lines of
equation Re(z) = ±1.

We already observed that ϕ1 sends the line La to the circle C1.
It also sends the points ∞, −2 and −1 to 1, ∞ and 0, respectively.
Since U1 is delimited by C1 and by the geodesics joining 1 to ∞ and 1
to 0, it follows that V1 = ϕ−1

1 (U1) is delimited by La and by the two
geodesics joining −1 to ∞ and −2 to ∞. These hyperbolic geodesics
are also the vertical lines of equations Re(z) = −2 and Re(z) = −1,
so that V1 is a vertical half-strip.

Similarly, since ϕ2(La) = C−1, V−1 = ϕ−1
2 (U−1) is the vertical

half-strip delimited by La and by the two vertical lines of equations
Re(z) = 1 and Re(z) = 2.

Finally, because C0 = ϕ1(C−1) = ϕ1 ◦ ϕ3(La), the same type of
arguments show that V0 = ϕ−1

3 ◦ ϕ−1
1 (U0) is delimited by La and by

the vertical half-lines of equations Re(z) = 2 and Re(z) = 4.

This situation is illustrated in Figure 5.19.

Let V be the vertical half-strip union of V1, V∞, V−1 and V0. Let
V̄ be the quotient space obtained from V by gluing its left-hand side
{z ∈ V ; Re(z) = −2} to its right-hand side {z ∈ V ; Re(z) = 4} by
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the horizontal translation ϕ: z �→ z + 6. Since V is convex, endow it
with the restriction dV of the hyperbolic metric dhyp, and let d̄V be
the quotient metric induced by dV on V̄ .

We now split the argument into two steps.

Lemma 5.10. The quotient space (V̄ , d̄V ) is isometric to the subset
(Sa, dSa

) of the pseudosphere.

Proof. This is essentially Proposition 5.4.

Indeed, let V ′ = {z ∈ H2; 0 � Re(z) � 1, Im(z) � a
6}. Let V̄ ′

be the quotient space obtained from V ′ by gluing its left-hand side
{z ∈ V ; Re(z) = 0} to its right-hand side {z ∈ V ; Re(z) = 1} by the
horizontal translation ϕ′: z �→ z + 1. Endow V ′ with the restriction
dV ′ of the hyperbolic metric dhyp, and endow V̄ ′ with the induced
quotient metric d̄V ′ .

The hyperbolic isometry ψ : z �→ 1
6z + 1

3 sends V to V ′, and it
sends the gluing map ϕ of V to the gluing map ϕ′ of V ′. Consequently,
ψ induces an isometry ψ̄ from (V̄ , d̄V ) to (V̄ ′, d̄V ′).

Note that V ′ is a subset of the half-strip X+
4 considered in Propo-

sition 5.4, so that V̄ ⊂ X̄. The surface Sa is exactly the image of V̄ ′

under the isometry ρ̄ constructed in the proof of Proposition 5.4.
Therefore, ρ̄ restricts to an isometry from (V̄ ′, d̄V ′) to (Sa, dSa

).

The composition ρ̄ ◦ ψ̄ consequently provides an isometry from
(V̄ , d̄V ) to (Sa, dSa

). �

Lemma 5.11. The quotient spaces (Ū , d̄U ) and (V̄ , d̄V ) are isomet-
ric.

Proof. Let ψ : U → V be the map defined by the property that
ψ coincides with ϕ2 = ϕ−1

1 on U1, with ϕ4 = ϕ−1
3 on U−1, with

ϕ4 ◦ ϕ2 = ϕ−1
3 ◦ ϕ−1

1 on U0, and with the identity map on U∞.

A case-by-case inspection of the eight sides of U that are glued
together shows that P , Q ∈ U are glued together in Ū if and only
if ψ(P ) and ψ(Q) are glued together in V̄ . For instance, if P is in
the intersection of U1 with the vertical line of equation Re(z) = 1,
it is glued to the point Q = ϕ3(P ) contained in the intersection
of U0 with the geodesic joining 0 to −1. Then ψ(P ) = ϕ2(P ) and
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ψ(Q) = ϕ4◦ϕ2(Q) differ by the map ϕ4◦ϕ2◦ϕ3◦ϕ−1
2 . A computation

shows that ϕ4 ◦ ϕ2 ◦ ϕ3 ◦ ϕ−1
2 (z) = z + 6, so that ψ(P ) and ψ(Q) are

indeed glued together in V̄ . The other cases are similar, and actually
easier since no gluing in V̄ is needed.

It follows that ψ induces a map ψ̄ : Ū → V̄ , defined by the
property that ψ̄(P̄ ) is equal to the point of V̄ corresponding to ψ(P ) ∈
V , for an arbitrary point P ∈ U corresponding to P̄ ∈ Ū . Let us show
that ψ̄ is an isometry.

If P = P1, Q1 ∼ P2, . . . , Qn−1 ∼ Pn, Qn = Q is a discrete
walk w from P̄ to Q̄ in Ū , then ψ(P ) = ψ(P1), ψ(Q1) ∼ ψ(P2),
. . . , ψ(Qn−1) ∼ ψ(Pn), ψ(Qn) = ψ(Q) is a discrete walk from ψ̄(P̄ )
to ψ̄(Q̄) in V̄ , which has the same length as w. It follows that
d̄V (ψ̄(P̄ ), ψ̄(Q̄)) � d̄U (P̄ , Q̄) for every P̄ , Q̄ ∈ Ū .

Conversely, let ψ(P ) = P ′
1, Q′

1 ∼ P ′
2, . . . , Q′

n−1 ∼ P ′
n, Q′

n =
ψ(Q) be a discrete walk w′ from ψ̄(P̄ ) to ψ̄(Q̄) in V̄ . Consider the
decomposition of V into the four vertical half-strips ψ(U1), ψ(U∞),
ψ(U−1), ψ(U0). If P ′

i and Q′
i are not in the same half-strip ψ(Uj),

draw the geodesic g joining P ′
i to Q′

i, consider the points R1, . . . ,
Rk (with k � 3) where g meets the vertical lines Re(z) = −1, 1, 2
separating these half-strips, and replace the part Q′

i−1 ∼ P ′
i , Q′

i ∼
P ′

i+1 of the walk w′ by Q′
i−1 ∼ P ′

i , R1 = R1, . . . , Rk = Rk, Q′
i ∼

P ′
i+1. By performing finitely many such modifications we can arrange,

without changing the length of w′, that any two consecutive P ′
i , Q′

i

belong to the same half-strip ψ(Uj). As a consequence, there exists
Pi, Qi ∈ Uj such that ψ(Pi) = P ′

i , ψ(Qi) = Q′
i, and dU (Pi, Qi) =

dhyp(Pi, Qi) = dhyp(P ′
i , Q

′
i). Then P = P1, Q1 ∼ P2, . . . , Qn−1 ∼ Pn,

Qn = Q is a discrete walk from P̄ to Q̄ in Ū , whose length is equal
to the length of w′. This proves that d̄U (P̄ , Q̄) � d̄V (ψ̄(P̄ ), ψ̄(Q̄)) for
every P̄ , Q̄ ∈ Ū .

This completes the proof that ψ̄: (Ū , d̄U ) → (V̄ , d̄V ) is an isome-
try. �

The combination of Lemmas 5.10 and 5.11 completes the proof
of Proposition 5.9. �
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a is very close to 1, the images P̄ and Q̄ ∈ Ū corresponding to
P = ai and Q = 1

a i are very close with respect to the metric d̄X ,
since d̄X(P̄ , Q̄) � dX(P, Q) = log a2, but they are quite far from
each other with respect to the metric d̄U since there clearly is a ball
Bdhyp(P, ε) which contains no point that is glued to another one, so
that any discrete walk from P̄ to Q̄ in Ū has length � ε in Ū .

Lemma 5.12. If a is chosen large enough that a log a > 3
2 , the met-

rics d̄X and d̄U coincide on Ū .

Proof. Because every discrete walk valued in U is also valued in

1
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To
page 125

X, and because dX(Pi, Qi) � dU (Pi, Qi) for every Pi, Qi ∈ U , it is
immediate that d̄U (P̄ , Q̄) � d̄X(P̄ , Q̄) for every P̄ , Q̄ ∈ Ū .

To prove the reverse inequality, pick another number a′ > 1 suf-
ficiently close to 1 that log a′ < log a − 3

2a , and ε > 0 small enough
that ε < log a

a′ − 3
2a . Let U ′ and Ū ′ be associated to a′ in the same

way as U and Ū were associated to a. Because a′ < a, the portion
Sa′ of the pseudosphere S contains Sa.

Let P̄ , Q̄ ∈ Ū , and let P = P1, Q1 ∼ P2, . . . , Qn−1 ∼ Pn,
Qn = Q be a discrete walk w from P̄ to Q̄ in X̄, whose dX length
is such that �dX

(w) � d̄X(P̄ , Q̄) + ε. Without loss of generality, we
can assume that whenever the hyperbolic geodesic γi joining Pi to Qi

meets one of the circles C0, C1, C−1 and La delimiting U in X, it does
so only at its endpoints Pi, Qi; indeed, if this property does not hold,
we can just add to the discrete walk w the intersection points of γi

with these circles, which will not change the dX -length of w. Adding
a few more points if necessary, we can arrange that the same property
holds for the circles C ′

0, C ′
1, C ′

−1 and La′ similarly associated to a′.

We will show that because of our choice of a′ and ε, the discrete
walk w stays in U ′. Namely, all the Pi and Qi as well as the geodesic
arcs γi joining them, are contained in U ′.

Indeed, suppose that the property does not hold. Let i1 be the
smallest index for which γi1 �⊂ U and let i2 be the largest index for
which γi2 �⊂ U . By the condition that we imposed on the geodesics γi,
the points Pi1 and Qi2 are both contained in the union of the circles
C0, C1, C−1 and La. Similarly, let i′1 be the smallest index for which
γi′1

�⊂ U ′ and let i′2 be the largest index for which γi′2
�⊂ U ′, so that
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Pi′1
and Qi′2

belong to the union of the circles C ′
0, C ′

1, C ′
−1 and La′ .

Note that i1 < i′1 < i′2 < i2.

In the quotient space Ū ′, the geodesics γi with i1 � i � i′1 project
to a continuous curve γ joining P̄i1 to Q̄i′1

in Ū ′. Consider the isometry
ϕ : (Ū ′, d̄U ′) → (Sa′ , dSa′ ) provided by Proposition 5.9. Then ϕ(γ)
is a piecewise differentiable curve joining ϕ(P̄i1) to ϕ(Q̄i′1

) in Sa′ .
Note that because Pi1 and Qi′1

are in the boundary of U and U ′,
respectively, ϕ(P̄i1) and ϕ(Q̄i′1

) respectively belong to the circles ∂Sa

and ∂Sa′ delimiting Sa and Sa′ in the pseudosphere S. We then
use an estimate which already appeared in the proof of Lemma 5.7.
Parametrize the curve ϕ(γ) by

s �→ (t(s)−tanh t(s), sech t(s) cos θ(s), sech t(s) sin θ(s)), 0 � s � 1,

for some functions s �→ t(s) and s �→ θ(s), so that ϕ(P̄i1) ∈ ∂Sa

and ϕ(Q̄i′1
) ∈ ∂Sa′ correspond to s = 1 and s = 0, respectively. In

particular, t(0) = arccosh a′π
3 and t(1) = arccosh aπ

3 by definition of
Sa and Sa′ . Then,

i′1∑
i=i1

dX(Pi, Qi) =
i′1∑

i=i1

�hyp(γi) = �euc(γ)

=
∫ 1

0

√
x′(s)2 + y′(s)2 + z′(s)2 ds

=
∫ 1

0

√
t′(s)2 tanh2 t(s) + θ′(s)2 sech2 t(s) ds

�
∫ 1

0

t′(s) tanh t(s) ds

= log cosh t(1) − log cosh t(0) = log
a

a′ .

Similarly,
i2∑

i=i′2

dX(Pi, Qi) � log
a

a′ . As a consequence,

d̄X(P̄ , Q̄) � �dX
(w) − ε =

n∑
i=1

dX(Pi, Qi) − ε

�
i1−1∑
i=1

dX(Pi, Qi) + 2 log
a

a′ +
n∑

i=i2+1

dX(Pi, Qi) − ε.
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On the other hand, the boundary circle ∂Sa has length 6
a . Con-

sequently, it is possible to join the two points ϕ(P̄i1) and ϕ(Q̄i2) by
a curve of euclidean length � 3

a in Sa so that

d̄U (P̄i1 , Q̄i2) = d̄Sa

(
ϕ(P̄i1), ϕ(Q̄i2)

)
� 3

a
.

It follows that there is a discrete walk Pi1 = P ′
1, Q′

1 ∼ P ′
2, . . . , P ′

n′−1 ∼
P ′

n′ , Q′
n′ = Qi2 of length � 3

a + ε. Chaining this discrete walk with
the beginning and the end of w, we obtain a discrete walk P = P1,
Q1 ∼ P2, . . . Qi1−1 ∼ Pi1 , Pi1 = P ′

1, Q′
1 ∼ P ′

2, . . . , P ′
n′−1 ∼ P ′

n′ ,
Q′

n′ = Qi2 , Qi2 ∼ Pi2+1, . . . , Qn−1 ∼ Pn, Qn = Q from P̄ to Q̄ in X̄.
Therefore,

d̄X(P̄ , Q̄) �
i1−1∑
i=1

dX(Pi, Qi) +
3
a

+ ε +
n∑

i=i2+1

dX(Pi, Qi)

Combining this with our earlier estimate for d̄X(P̄ , Q̄), we con-
clude that 2 log a

a′ − ε � 3
a + ε, which is impossible by our choices of

a, a′ and ε.

This contradiction shows that our initial hypothesis was false.
Namely, the geodesics γi are all in U ′. In particular, the Pi and Qi

form a discrete walk from P̄ to Q̄ in Ū ′, so that

d̄U ′(P̄ , Q̄) �
n∑

i=1

dU ′(Pi, Qi) =
n∑

i=1

�hyp(γi) = �dX
(w) � d̄X(P̄ , Q̄) + ε.

Since this holds for every ε that is small enough, we conclude that
d̄U ′(P̄ , Q̄) � d̄X(P̄ , Q̄).

Finally, the two metrics d̄U and d̄U ′ coincide on Ū . This can
be seen by applying the proof of Lemma 5.8 to the space (V̄ , d̄V )
of Lemma 5.11, and to (V̄ ′, d̄V ′) similarly associated to a′. One can
also show that the metrics dSa

and dSa′ coincide on Sa by a simple
estimate of euclidean lengths of curves.

Therefore, d̄U (P̄ , Q̄) � d̄U ′(P̄ , Q̄) � d̄X(P̄ , Q̄) for every P̄ , Q̄ ∈
Ū . Since we had already proved the reverse inequality, this shows
that the metrics d̄U and d̄X coincide on Ū . �

In Lemma 5.12, the condition that a log a > 3
2 is not quite sharp.

With a better hyperbolic distance estimate to improve the inequality
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d̄U (P̄i1 , Q̄i2) � 3
a , one can show that the conclusions of Lemma 5.12

still hold for a � 2.This second estimate is sharp, in the sense that
From
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Lemma 5.12 fails for a < 2.

5.6. Triangular pillowcases

We conclude with an example where the angle condition of Theo-
rems 4.4, 4.10 or 4.13 fails, so that we obtain surfaces with cone
singularities, as in Exercise 4.8.

Proposition 5.13. Let α, β and γ be three numbers in the interval
(0, π). Then:

(1) if α + β + γ = π, there exists a triangle T of area 1 in the
euclidean plane (R2, deuc) whose angles are equal to α, β

and γ;

(2) if α + β + γ < π, there exists a triangle T in the hyperbolic
plane (H2, dhyp) whose angles are equal to α, β and γ;

(3) if π < α+β + γ < π +2 min{α, β, γ}, there exists a triangle
T in the sphere (S2, dsph) whose angles are equal to α, β and
γ.

In addition, in each case, the triangle T is unique up to isometry of
(R2, deuc), (H2, dhyp) of (S2, dsph), respectively.

Proof. The euclidean case is well known. See Exercises 5.15 and 3.5
for a proof in the hyperbolic and spherical cases. �

See also Exercises 2.15 and 3.6 for a proof that the conditions of
Proposition 5.13 are necessary.

Given α, β and γ ∈ (0, π), let T be the euclidean, hyperbolic or
spherical triangle provided by Proposition 5.13.

Choose an isometry ϕ of (R2, deuc), (H2, dhyp) or (S2, dsph), ac-
cording to the case, such that ϕ(T ) is disjoint from T . The exis-
tence of ϕ is immediate in the euclidean and hyperbolic case. For
the spherical case, we observe that the proof of Proposition 5.13(3)
in Exercise 3.5 shows that T is always contained in the interior of a
hemisphere. Then, we can use for ϕ the reflection across the great
circle delimiting this hemisphere.
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Let X be the union of T and ϕ(T ). We can consider X as a
nonconnected polygon, whose edges are the three sides E1, E3, E5 of
T and the corresponding three sides E2 = ϕ(E1), E4 = ϕ(E3) and
E6 = ϕ(E5) of ϕ(T ). We can then glue these edges by the gluing
maps ϕ1 : E1 → E2, ϕ3 : E3 → E4, ϕ5 : E5 → E6 defined by the
restrictions of ϕ to the edges indicated.

By Theorems 4.3, 4.9 or 4.12, this gluing data provides a quo-
tient metric space (X̄, d̄X). This metric space is locally isometric
to (R2, deuc), (H2, dhyp) or (S2, dsph) everywhere, except at the three
points that are the images of the vertices under the quotient map.
The metric has cone singularities at these three points, with respec-
tive cone angles 2α, 2β, 2γ < 2π, in the sense of Exercise 4.8.

Note that X̄ is obtained by gluing two triangles T and ϕ(T ) along
their edges. In the euclidean case, this is the familiar construction of a
pillowcase obtained by sewing together two triangular pieces of cloth.
Figure 5.21 attempts to describe the geometry of X̄ in all cases.

α + β + γ < πα + β + γ = π α + β + γ > π

Figure 5.21. Triangular pillowcases

Exercises for Chapter 5

Exercise 5.1. We want to rigorously prove that the metric spaces (X̄1, d̄X1)
and (X̄2, d̄X2) of Section 5.1.1 are homeomorphic. Without loss of general-
ity, we can assume that the lower left corners of the rectangle X1 and the
parallelogram X2 are both equal to the origin (0, 0) ∈ R2.

a. Show that there is a unique linear map R2 → R2 that sends the bottom
edge of X1 to the bottom edge of X2, and the left edge of X1 to the left
edge of X2. Show that this linear map restricts to a homeomorphism
ϕ: X1 → X2.

b. Show that two points P and Q ∈ X1 are glued together to form a single
point of X̄1 if and only if their images ϕ(P ) and ϕ(Q) are glued together
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in X2. Conclude that ϕ: X1 → X2 induces a map ϕ̄: X̄1 → X̄2, defined

by the property that ϕ̄(P̄ ) = ϕ(P ) for every P̄ ∈ X̄1.

c. Show that ϕ̄: X̄1 → X̄2 is a homeomorphism.

Exercise 5.2. Let X̄ be the torus obtained by gluing opposite sides of
a euclidean parallelogram X. Let ϕ: X → X be the rotation of angle π
around the center of the parallelogram, namely, around the point where the
two diagonals meet. Show that there exists a unique isometry ϕ̄: X̄ → X̄ of

the quotient metric space (X̄, d̄X) such that ϕ̄(P̄ ) = ϕ(P ) for every P̄ ∈ X̄.

Exercise 5.3. Let (X̄, d̄X) be the torus obtained by gluing opposite edges
of a euclidean rectangle X = [a, b] × [c, d] ⊂ R2 by translations, where X
is endowed with the euclidean metric dX = deuc. Recall that a geodesic
of (X̄, d̄X) is a curve γ in X̄ such that for every P̄ ∈ γ and every Q̄ ∈ γ
sufficiently close to P̄ , there is a piece of γ joining P̄ to Q̄ which is the
shortest curve going from P̄ to Q̄; here the length of a curve in (X̄, d̄X) is
defined as in Exercise 1.11.

a. Let γ be a curve in X̄ and let π : X → X̄ denote the quotient map.
Show that if γ is geodesic in (X̄, d̄X), then its preimage p−1(γ) consists
of parallel line segments in the rectangle X. You may need to use the
main result of Exercise 1.11, which says that the length of a curve in the
metric space (R2, deuc) coincides with its usual euclidean length �euc.

b. Consider the case where X is the square X1 = [0, 1] × [0, 1]. Show
that every closed geodesic curve in X̄1 has length � 1. Possible hint:
Consider the projection of the preimage p−1(γ) ⊂ X1 ⊂ R2 to each of
the coordinate axes.

c. Consider the case where X is the square X1 = [0, 1
2
]× [0, 2]. Show that

(X̄, d̄X) contains a closed geodesic of length 1
2
.

d. Conclude that the euclidean tori (X̄1, d̄X1) and (X̄2, d̄X2) are not iso-
metric.

Exercise 5.4. Let (X̄, d̄X) be the torus obtained by gluing together op-
posite sides of the square X = [0, 1] × [0, 1]. Let π : X → X̄ denote the
quotient map.

a. Given a ∈ [0, 1], let ϕa : X → X be the (discontinuous) function
defined by the property that ϕa(x, y) = (x + a, y) if 0 � x � 1− a and
ϕa(x, y) = (x+a− 1, y) if 1−a < x � 1. Show that ϕa induces a map
ϕ̄a: X̄ → X̄, uniquely determined by the property that ϕ̄a ◦π = π ◦ϕa.

b. Show that if w is a discrete walk P = P1, Q1 ∼ P2, . . . , Qn−1 ∼ Pn,
Qn = Q is a discrete walk from P̄ to Q̄ in X̄, there exists a discrete
walk w′ from ϕ̄a(P̄ ) to ϕ̄a(Q̄) which has the same dX -length �dX (w′) =
�dX (w) as w. Hint: When Pi and Qi are on opposite sides of the line
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x = 1−a, add to w the point where the line segment [PiQi] meets this
line.

c. Use part b to show that d̄X

`

ϕ̄a(P̄ ), ϕ̄a(Q̄)
´

� d̄X(P̄ , Q̄) for every P̄

Q̄ ∈ X̄. Then show that ϕ̄ is an isometry of (X̄, d̄X).

d. Use the above construction to show that the metric space (X̄, d̄X)
is homogeneous, namely that, for every P̄ , Q̄ ∈ X̄, there exists an
isometry of (X̄, d̄X) which sends P̄ to Q̄.

e. More generally, let Y be a parallelogram in R2 and let (Ȳ , d̄Y ) be
the quotient metric space obtained by gluing opposite sides of Y by
translations as in Section 5.1.1. Show that (Ȳ , d̄Y ) is homogeneous.

Exercise 5.5. Let (X̄, d̄X) be the Klein bottle obtained by gluing together
the sides of the square X = [0, 1] × [0, 1] as in Section 5.1. Let π: X → X̄
denote the quotient map.

a. Recall that a geodesic of (X̄, d̄X) is a curve γ in X̄ such that for every
P̄ ∈ γ and every Q̄ ∈ γ sufficiently close to P̄ , there is a piece of γ
joining P̄ to Q̄ which is the shortest curve going from P̄ to Q̄, where
the length of a curve in (X̄, d̄X) is defined as in Exercise 1.11. Show
that the image γ1 = π

`

[0, 1] × {0}
´

is a closed geodesic of length 1,
and that there exists at least one closed geodesic of length 2 which is
disjoint from γ1. Show that γ2 = π

`

[0, 1]×{ 1
2
}
´

satisfies the same two
properties, namely, it is a closed geodesic of length 1 which is disjoint
from a closed geodesic of length 2.

b. Show that γ1 and γ2 are the only two closed geodesics in X̄ satisfying
the properties of part a. Hint: For a closed geodesic γ in X̄ note, as
in Exercise 5.3, that the preimage π−1(γ) must consist of parallel line
segments in the square X.

c. Conclude that the Klein bottle X̄ is not homogeneous.

Exercise 5.6. In the euclidean plane, let X1 be the square with vertices
(0, 0), (1, 0), (0, 1), (1, 1); let X2 be the parallelogram with vertices (0, 0),
(1, 1), (0, 1) and (1, 2); and let X3 be the parallelogram with vertices (0, 0),
(1, 1), (1, 2) and (2, 3). Let X̄1, X̄2 and X̄3 be the euclidean tori obtained by
gluing opposite sides of these parallelograms. Show that the euclidean tori
X̄1, X̄2 and X̄3 are all isometric. Hint: Show that each of these euclidean
tori is obtained by gluing the sides of two suitably chosen triangles. (You
may need to use the result of Exercise 4.4 to justify the fact that the order
of the gluings does not matter.)

Exercise 5.7. Given a euclidean hexagon X, index its vertices as P1, P2,
. . . , P6 in this order as one goes around the hexagon. Suppose that opposite
edges have the same length, and that the sum of the angles of X at its odd
vertices P1, P3 and P5 is equal to 2π. Use elementary euclidean geometry
to show that opposite edges of X are parallel.
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Exercise 5.8. A surface is nonorientable if it contains a subset home-
omorphic to the Möbius strip. For instance, the Klein bottle is a nonori-
entable euclidean surface. Construct a nonorientable hyperbolic surface.

Exercise 5.9. The surface of genus g is the immediate generalization of
the case g = 2 and consists of a sphere with g handles added. Construct a
hyperbolic surface of genus g for g = 3, 4 and then for any g � 2. Possible
hint: Glue opposite sides of a hyperbolic polygon with suitably chosen
angles; Proposition 5.13 may be convenient to construct this polygon.

Exercise 5.10 (The projective plane). Let X be the spherical polygon of
Section 5.3, with the gluing data indicated there, and let (X̄, d̄X) be the
corresponding quotient space. Let RP2 be the set of lines passing through
the origin O in R3. For any two L, L′ ∈ RP2, let θ(L, L′) ∈ [0, π

2
] be the

angle between these two lines in R3.

a. Show that θ defines a metric on RP2.

b. Consider the map ϕ: X → RP2 which to P ∈ X associates the line
OP . Show that ϕ induces a bijection ϕ̄: X̄ → RP1.

c. Show that this bijection ϕ̄ is an isometry between the metric spaces
(X̄, d̄X) and (RP2, θ).

d. Show that the metric space (RP2, θ) (and consequently (X̄, d̄X) as well)
is homogeneous.

Exercise 5.11. Let (X̄, d̄X) be the projective plane of Section 5.3 (or
Exercise 5.10 above). Show that for every great circle C of S2, the image of
X ∩ C under the quotient map π: X → X̄ is a closed geodesic of length π.
Conclude that the spherical surface (X̄, d̄X) is not isometric to the sphere
(S2, dsph).

Exercise 5.12. Let (X̄, d̄X) be the projective plane constructed in Sec-
tion 5.3, by gluing onto itself the boundary of a hemisphere X ⊂ S2. Let
P0 be the center of this hemisphere, namely, the unique point such that
X = Bdsph(P0,

π
2
). Show that X̄ − P̄0 is homeomorphic to the Möbius strip

of Section 5.4.

Exercise 5.13. Show that the “hyperbolic square” of Figure 5.18 really
has the symmetries of a square, in the sense that there exists an isometry
of H2 which sends 0 to 1, 1 to ∞, ∞ to −1 and −1 to 0.

Exercise 5.14. Let X be the hyperbolic polygon of Figure 5.18, namely,
the infinite square in H2 with vertices at infinity 0, 1, ∞ and −1. We
will glue its edges in a different way from the construction of Section 5.5.

Namely, we glue the edge 1∞ to the edge 01 by the map z �→ 1

−z + 2
, and

the edge (−1)∞ to the edge 0(−1) by z �→ 1

−z − 2
. Let (X̄, d̄X) be the

quotient metric space provided by this gluing construction.
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a. Show that (X̄, d̄X) is locally isometric to (H2, dhyp).

b. Show that X̄ can be decomposed as X̄ = X̄0 ∪ Ū1 ∪ Ū2 ∪ Ū3 where
each (Ūi, d̄X) is isometric to a subset (Sa, dSa) of the pseudosphere as
in Proposiiton 5.9, and where X̄0 is the image of a bounded subset
X0 ⊂ X under the quotient map X → X̄. Hint: Adapt the analysis of
Section 5.5.

c. Show that (X̄, d̄X) is homeomorphic to the complement of three points
in the sphere S2.

Exercise 5.15 (Hyperbolic triangles). Let α, β and γ be three positive
numbers with α+β+γ < π. We want to show that there exists a hyperbolic
triangle in H2 whose angles are equal to α, β and γ, and that this triangle is
unique up to isometry of H2. For this, we just adapt the proof of Lemma 5.2.

Let g be the complete hyperbolic geodesic of H2 with endpoints 0 and
∞. Let h be the complete hyperbolic geodesic passing through the point
i and such that the angle from g to h at i, measured counterclockwise, is
equal to +β. For y < 1, let ky be the complete geodesic passing through
iy and such that the counterclockwise angle from g to ky at iy is equal to
−γ. Compare Figure 5.9.

a. Show that the set of those y < 1 for which ky meets h is an interval
(y0, 1).

b. When y is in the above interval (y0, 1), let αy be the counterclockwise
angle from h to ky at their intersection point. Show that

lim
y→1−

αy = π − β − γ and lim
y→y+

0

αy = 0.

Conclude that there exists a value y ∈ (y0, 1) for which αy = α.

c. Show that the above y ∈ (y0, 1) with αy = α is unique.

d. Let T and T ′ be two hyperbolic triangles with the same angles α, β and
γ. Show that there is an isometry ϕ of the hyperbolic plane (H2, dhyp)
such that ϕ(T ) = T ′. Hint: For g and h as above, apply suitable
hyperbolic isometries to send T and T ′ to triangles with one edge in g
and another edge in h, and use part c.

Exercise 5.16 (The Gauss-Bonnet formula). Let X be a bounded polygon
in R2, H2 or S2 consisting of finitely many disjoint convex polygons X1,
X2, . . . , Xm. Let X̄ be obtained by gluing together pairs of edges of X.
As usual we assume that for every vertex P of X, the angles of X at
the vertices that are glued to P add up to 2π, so that X̄ is a euclidean,
hyperbolic or spherical surface.

The quotient space X̄ is now decomposed into m images of the convex
polygons Xi, n images of the 2n edges of X, and p points images of the
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vertices of X. The Euler characteristic of X̄ is the integer

χ(X̄) = m − n + p.

A deep result, which we cannot prove here, asserts that the Euler charac-
teristic χ(X̄) is independent of the way the space X̄ is obtained by gluing
edges of a polygon in the sense that if two such surfaces X̄ and X̄ ′ are
homeomorphic, they have the same Euler characteristic χ(X̄) = χ(X̄ ′).
See, for instance, [Massey, Chap. IX, §4] or [Hatcher2, §2.2]

a. Compute the Euler characteristic of the torus, the Klein bottle, the
surface of genus 2, and the projective plane.

b. Show that for each of the convex polygons Xi,
ni
X

j=1

θj = (ni − 2)π + KArea(Xi),

where: Xi has ni vertices, and θ1, θ2, . . . , θni are the angles of Xi at
these vertices; if Xi ⊂ R2 is a euclidean polygon, Area(Xi) denotes its
usual area and K = 0; if Xi ⊂ H2 is a hyperbolic polygon, Area(Xi)
denotes its hyperbolic area Areahyp(Xi) as defined in Exercise 2.14, and
K = −1; if Xi ⊂ S2 is a spherical polygon, Area(Xi) denotes its surface
area in S2 and K = +1. Hint: Use the convexity of Xi to decompose
it into (ni − 2) triangles, and apply the results of Exercises 2.15 and
3.6 to these triangles.

c. Use part b to show that

2πχ(X̄) = KArea(X).

In particular, if a surface X̄ is obtained by gluing together the sides of
a euclidean, hyperbolic, or spherical polygon X as above, its Euler charac-
teristic χ(X̄) must be zero, negative or positive, respectively. The equation
of part c is a special case of a more general statement known as the Gauss-
Bonnet formula .

                

                                                                                                               



Chapter 6

Tessellations

We are all very familiar with the tiling of a kitchen floor. The floor
is divided into polygons (the tiles) with disjoint interiors. When only
one type of tile is used, any two such polygons are isometric in the
sense that there is an isometry of the euclidean plane sending the first
polygons to the second one.

The standard patterns used to tile a kitchen floor can usually be
extended to provide a tiling of the whole euclidean plane. In this case,
there is a more highfalutin word for tiling, namely “tessellation”. In
this chapter, we will see how the edge gluings of euclidean or hyper-
bolic polygons that we considered in Chapters 4 and 5 can be used to
obtain interesting tessellations of the euclidean plane, the hyperbolic
plane or the sphere.

6.1. Tessellations

We first give a formal definition of tessellations.

A tessellation of the euclidean plane, the hyperbolic plane or
the sphere is a family of tiles Xn, n ∈ N, such that

(1) each tile Xm is a connected polygon in the euclidean plane,
the hyperbolic plane or the sphere;

(2) any two Xm, Xn are isometric;
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(3) the Xm cover the whole euclidean plane, hyperbolic plane or
sphere, in the sense that their union is equal to this space;

(4) the intersection of any two distinct Xm, Xn consists only of
vertices and edges of Xm, which are also vertices and edges
of Xn;

(5) (Local Finiteness) for every point P in the plane, there exists
an ε such that the ball of radius ε centered at P meets only
finitely many tiles Xn.

Figure 6.1 provides an example of a tessellation of the euclidean
plane by isometric hexagons.

Figure 6.1. A tessellation of the euclidean plane (R2, deuc) by hexagons

Exactly like a kitchen can be tiled with tiles with different shapes,
one can slightly extend the definition of a tessellation to allow several
types of tiles. Namely, condition (2) can be relaxed by asking only
that every tile Xn is isometric to one of finitely many model polygons
T1, T2, . . . , Tp. We will restrict our discussion to the original defini-
tion, but will later indicate how to extend the arguments to this more
general context.

6.2. Complete metric spaces

In Section 6.3, we will use edge gluings of polygons to construct tes-
sellations of the euclidean plane, the hyperbolic plane or the sphere.
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This construction will use a new ingredient, the completeness of a
metric space.

In a metric space (X, d), define the length of a sequence P1, P2,
. . . , Pn, . . . as the infinite sum

∑∞
n=1 d(Pn, Pn+1). This length may

be finite or infinite.

The metric space (X, d) is complete if every sequence of points
P1, P2, . . . , Pn, . . . in X whose length is finite converges to some
P∞ ∈ X.

In another mathematics course you may have encountered a dif-
ferent definition of complete metric spaces involving Cauchy sequences.
Exercise 6.1 shows that the two definitions are equivalent. The above
formulation has the advantage of being more geometric because of its
analogy with the length of a discrete walk. Intuitively, a metric space
(X, d) is complete if one cannot escape from it by walking a finite
distance. Indeed, a finite length walk is the same as a finite length
sequence, and such a sequence (Pn)n∈N must converge to some point
P∞ ∈ X if the space is complete.

In Section 6.4, we will establish several general properties which
can be used to prove that a metric space is complete. However, we
first see how this property is relevant for constructing tessellations of
the euclidean and hyperbolic planes.

6.3. From gluing polygon edges to tessellations

Let X be a polygon in the euclidean plane (R2, deuc), in the hyperbolic
plane (H2, dhyp), or in the sphere (S2, dsph) with edges E1, E2, . . . ,
E2p. As in Chapter 4, group these edges into pairs {E2k−1, E2k} and
specify isometries ϕ2k−1 : E2k−1 → E2k and ϕ2k = ϕ−1

2k−1 : E2k →
E2k−1. As in Sections 4.4 and 4.5, extend each ϕi to an isometry of
the euclidean plane, the hyperbolic plane or the sphere in such a way
that ϕi(X) is on the side of the edge ϕi(Ei) that is opposite to X.

Let Γ consist of all isometries ϕ of (R2, deuc), (H2, dhyp) or (S2, dsph)
that can be written as a composition

ϕ = ϕil
◦ ϕil−1 ◦ · · · ◦ ϕi1
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of finitely many such gluing maps. By convention this includes the
identity map, which can be written as a composition of 0 gluing maps.

We will refer to Γ as the tiling group associated to the polygon
X and to the edge gluing isometries ϕi: Ei → Ei±1. This is our first
encounter with a transformation group, a notion which will be further
investigated in Chapter 7.

As usual, endow X with the metric dX for which dX(P, Q) is the
infimum of the euclidean, hyperbolic or spherical length of all curves
joining P to Q in X. Let (X̄, d̄X) be the quotient metric space of
(X, dX) defined by the above gluing data.

Theorem 6.1 (Tessellation Theorem). Let X be a euclidean, hyper-
bolic or spherical connected polygon with gluing data as above. In
addition, suppose that for each vertex of X, the angles of X at all
vertices that are glued to P add up to 2π

n for some integer n > 0
depending on the vertex; in particular, by Theorems 4.4 or 4.10, the
quotient space (X̄, d̄X) is a euclidean, hyperbolic or spherical sur-
face with cone singularities. Finally, assume that the quotient space
(X̄, d̄X) is complete.

Then, as ϕ ranges over all elements of the tiling group Γ, the
family of polygons ϕ(X) forms a tessellation of the euclidean plane,
the hyperbolic plane or the sphere.

The proof will take a while.

By construction, the tiles ϕ(X) are all isometric. Therefore, the
issue is to show that they cover the whole plane and that they have
disjoint interiors.

1
2

3

4
5

6

7
8

0

9

00

To
page 146

Our strategy will be that of the tile-layer, beginning at X and
progressively setting one tile after the other. In this approach, there
are two potential snags that need to be ruled out. The first one is
that the tiles ϕ(X) might not necessarily cover the whole plane. The
second one is that, as we are progressively laying the tiles beginning
at X, two distinct tiles might end up overlapping as in the tile-layer’s
nightmare of Figure 6.2 (well known to weekend do-it-yourselfers, in-
cluding the author). Ruling out these potential problems will use the
completeness of (X̄, d̄) in a crucial way; see in particular Lemma 6.4.
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Figure 6.2. The tile-layer’s nightmare

Before we proceed, it is convenient to establish some terminology.
If the points P and Q of the boundary of X are glued together, then,
by definition of the gluing process, Q = ϕil

◦ϕil−1 ◦ · · · ◦ϕi1(P ) where
the ϕij

are restricted by the condition that ϕij−1 ◦· · ·◦ϕi1(P ) belongs
to Eij

for every j � l. In this situation, we observed in the proof of
Theorem 4.4 that the tiles ϕ−1

i1
◦ϕ−1

i2
◦ · · · ◦ϕ−1

ij
(X) fit nicely side-by-

side around the point P . We will say that these tiles are adjacent to
X at the point P .

More precisely, a tile ϕ(X) is adjacent to X at P if there exists a
sequence of gluing maps ϕi1 , ϕi2 , . . . , ϕil

such that ϕij−1 ◦· · ·◦ϕi1(P )
belongs to Eij

for every j � l (including the fact that P ∈ Ei1) and

ϕ = ϕ−1
i1

◦ ϕ−1
i2

◦ · · · ◦ ϕ−1
il

.

Note that ϕ is an element of the tiling group Γ, since each ϕ−1
ij

is
equal to some gluing map ϕij±1. However, the condition that ϕij−1 ◦
· · · ◦ ϕi1(P ) belongs to Eij

is quite restrictive, so that not every tile
ψ(X) with ψ ∈ Γ is adjacent to X.

By convention, we allow the family of gluing maps ϕij
to be

empty, in which case ϕ is the identity map. In particular, the tile X

is always adjacent to itself at P

More generally, we will say that the tiles ϕ(X) and ψ(X) are
adjacent at the point P ∈ ϕ(X)∩ψ(X) if ψ−1 ◦ϕ(X) is adjacent to
X at ψ−1(P ), in the above sense.

Lemma 6.2. There are only finitely many tiles ϕ(X) that are adja-
cent to X at the point P .
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Proof. If P is in the interior of X, then X is the only tile adjacent to
X at P . If P is in an edge Ei but is not a vertex, then Ei is the only
edge containing P and ϕi(Ei) = Ei±1 is the only edge containing the
unique point ϕi(P ) that is glued to P ; it follows that X and ϕ−1

i (X)
are the only tiles adjacent to X at P .

Consequently, we only need to focus on the case where P is a
vertex. In this case, the proof will use in a critical way the hypothesis
that the angles of X at P and at all the points that are glued to P

add up to an angle sum of the form 2π
n , for some integer n > 0. When

n = 1, so that the angle sum is equal to 2π, the result is a property
that we have already encountered in the proof of Theorem 4.4. The
general argument is just a mild extension of this case.

As in the end of Section 4.3.1 when considering a sequence of glu-
ing maps ϕi1 , ϕi2 , . . . , ϕij

, . . . such that Pj = ϕij−1◦· · ·◦ϕi1(P ) ∈ Eij

for every j � l, we can always require that the edge Eij
is differ-

ent from the image ϕij−1(Eij−1), since otherwise ϕij−1 and ϕij
are

the inverse of each other and cancel out in the composition. As a
consequence, the sequence of indices i1, i2, . . . , ij , . . . is uniquely
determined once we have chosen an edge Ei1 containing P = P1, by
induction and because ij is the unique index for which the edge Eij

contains Pij
= ϕij−1 ◦ · · · ◦ ϕi1(P ) and is not ϕij−1(Eij−1).

Consider the sequence of gluing maps ϕi1 , ϕi2 , . . . , ϕij
, . . . as

above, associated to the choice of the edge Ei1 containing P . As in
the end of Section 4.3.1, the sequence of points Pj eventually returns
to P = P1 after visiting all the points of P̄ , and there exists a number
k � 1 such that Pj+k = Pj and ij+k = ij for every j. In particular,
the set of points that are glued to P is P̄ = {P1, P2, . . . , Pk}.

As in the proof of Theorem 4.4, choose ε small enough that each
ball BdX

(Pj , ε) in X is a disk sector for each j = 1, 2, . . . , k. For
every j � 1, consider the euclidean, hyperbolic or spherical isometry
ψj = ϕ−1

i1
◦ ϕ−1

i2
◦ · · · ◦ ϕ−1

ij−1
(with the convention that ψ1 is the

identity map). Still as in the proof of Theorem 4.4, the disk sectors
ψj

(
BdX

(Pj , ε)
)

fit side-by-side around the vertex P = P1. However,
as we return to Pk+1 = P1, the disk sector ψk+1

(
BdX

(P1, ε)
)

is not
equal to BdX

(P1, ε) any more and is instead obtained by rotating this
disk sector around P1 by an angle of 2π

n .
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If we keep going, ψ2k+1

(
BdX

(P1, ε)
)

is obtained by rotating
BdX

(P1, ε) by an angle of 22π
n , ψ3k+1

(
BdX

(P1, ε)
)

by an angle of 32π
n ,

etc. . . , so that eventually we reach ψnk+1

(
BdX

(P1, ε)
)

= BdX
(P1, ε).

The isometry ψnk+1 fixes the point P1 and the two geodesics delim-
iting the disk sector BdX

(P1, ε). It follows that ψnk+1 is the identity.
(Use, for instance, Lemma 2.6 to prove this in the hyperbolic case).

As a consequence, ψj+nk = ψj for every j � 1, and there are only
finitely many (in fact exactly nk) tiles ψj(X).

Similarly if, instead of Ei1 , we had selected the other edge Ei′1

adjacent to P , the resulting family of gluing maps ϕi′1
, ϕi′2

, . . . , ϕi′
j′

,

. . . and maps ψ′
j′ = ϕ−1

i′1
◦ ϕ−1

i′2
◦ · · · ◦ ϕ−1

i′
j′−1

is such that ψ′
j′+nk = ψ′

j′

for every j′ � 1. So this other choice also gives only finitely many
tiles ϕ′

j′(X) adjacent to X at P .

Since Ei1 and Ei′1
are the only edges containing the vertex P , this

proves that there are only finitely many tiles adjacent to X at P . �

We can make Lemma 6.2 a little more precise. When P is a vertex
of X and with the notation of the above proof, note that Ei′1

is the
edge containing P = P1 = Pk+1 that is different from Ei1 = Ek+1.
Therefore, Ei′1

is the image of the gluing map ϕik
: Eik

→ ϕik
(Eik

) =
Ei′1

. As a consequence, ϕi′1
is the inverse of ϕik

. Similarly, Ei′2
is

the edge containing ϕi′1
(P ) = ϕ−1

ik
(Pk+1) = Pk that is different from

ϕi′1
(Ei1) = Eik

so that the gluing map ϕi′2
is equal to the inverse of

ϕik−1 . Iterating this argument, we conclude that ϕi′
j′

= ϕ−1
ik−j′+1

for
every j′ with 1 � j′ � k.

Using the property that ij+k = ij and i′j′+k = i′j′ for every j,
j′ � 1, one concludes that ϕi′

j′
= ϕ−1

ink−j′+1
for every j′ with 1 � j′ �

nk. As a consequence,

ψ′
j′ = ϕ−1

i′1
◦ ϕ−1

i′2
◦ · · · ◦ ϕ−1

i′
j′−1

= ϕink
◦ ϕink−1 ◦ · · · ◦ ϕink−j′+2

= ϕ−1
i1

◦ ϕ−1
i2

◦ · · · ◦ ϕ−1
ink−j′+1

= ψnk−j′+2
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for every j′ with 1 � j′ � nk, since ϕ−1
i1

◦ϕ−1
i2

◦· · ·◦ϕ−1
ink

= ψnk+1 = ψ1

is the identity map.

The point of this is that we do not need to consider the tiles
ψ′

j′(X), since they were already included among the tiles ψj(X).

In particular, this proves the following.

Complement 6.3. Under the hypotheses of Theorem 6.1, for every
point P ∈ X, there is a small ε such that the tiles ϕ(X) that are
adjacent to X at P decompose the disk Bd(P, ε) ⊂ R2, H2 or S2

into finitely many euclidean or hyperbolic disk sectors Bd(P, ε) with
disjoint interiors, where d = deuc, dhyp or dsph according to whether
X is a euclidean, hyperbolic or spherical polygon. �

We can rephrase Complement 6.3 by saying that the tiles ϕ(X)
that are adjacent to X at P fit nicely side-by-side near P . However, at
this point, we have no guarantee that they do not overlap away from
P . This is particularly conceivable if X has a funny shape instead of
being convex as in most pictures that we have seen so far. We will
need the full force of all the hypotheses of Theorem 6.1 to rule out
this possibility. Similarly, it will turn out that the adjacent tiles are
the only ones meeting X, which is far from obvious at this point.

6.3.1. Hyperbolic tilings. After these preliminary observations,
we now begin the proof of Theorem 6.1. Having to systematically
write “the euclidean plane, the hyperbolic plane or the sphere” be-
comes clumsy after a while. Consequently, we will restrict our atten-
tion to the less familiar case, for practice, and assume that the plane
considered is the hyperbolic plane (H2, dhyp). All the arguments will
almost automatically extend to the euclidean and spherical context.
See Sections 6.3.2 and 6.3.3.

Our first goal is to show that every P ∈ H2 is covered by a tile
ϕ(X) with ϕ ∈ Γ. For this, pick a base point P0 in the interior of X,
consider another point P ∈ H2, and let g be the hyperbolic geodesic
joining P0 to P . We will progressively set tiles over the geodesic g.

Look at the first point P1 where g leaves X. At P1, g enters one
of the finitely many tiles that are adjacent to X at P1. Let ψ1(X)
be this tile. Then let P2 be the first point where g leaves ψ1(X) and
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enters a tile ψ2(X). Repeating this process, one inductively defines
a sequence of points Pn ∈ g and of tiles ψn(X) such that g leaves
ψn−1(X) at Pn to enter ψn(X), and ψn(X) is adjacent to ψn−1(X)
at Pn. See Figure 6.3.

Note that the tile ψn(S) is not always uniquely determined. This
happens when, right after passing Pn, the geodesic g follows an edge
separating two of the tiles that are adjacent to ψn1(X) at Pn.

This process will terminate when the geodesic g enters a tile
ψn(X) and never leaves it, namely, when the point P is in the tile
ψn(X) as requested.

P0

P

P ′

P1
P2

P3

P4
P5

X ψ1(X)

ψ2(X)

ψ3(X)

Figure 6.3. Laying tiles over a geodesic

Lemma 6.4. The above tiling process must terminate after finitely
many steps.

Proof. The hypothesis that the quotient space (X̄, d̄X) is complete
is here crucial.

Suppose that the tiling process continues forever and provides an
infinite sequence of points Pn and tiles ψn(X).

By construction, Pn is in both the tiles ψn(X) and ψn−1(X).
The two points ψ−1

n (Pn) and ψ−1
n−1(Pn) ∈ X are glued together and

consequently project to the same point P̄n in the quotient space X̄.

Because the quotient map X → X̄ is distance nonincreasing by
Lemma 4.2,

d̄X(P̄n, P̄n+1) � dX

(
ψ−1

n (Pn), ψ−1
n (Pn+1)

)
.

In addition, the two points Pn and Pn+1 are joined in ψn(X) by a
geodesic curve contained in the geodesic g. Therefore,

dX

(
ψ−1

n (Pn), ψ−1
n (Pn+1)

)
= dhyp

(
ψ−1

n (Pn), ψ−1
n (Pn+1)

)
,
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which is also equal to dhyp(Pn, Pn+1) since ψn is a hyperbolic isometry.
As a consequence, d̄X(P̄n, P̄n+1) � dhyp(Pn, Pn+1).

The sequence (P̄n)n∈N has length
∞∑

n=1

d̄X(P̄n, P̄n+1) �
∞∑

n=1

dhyp(Pn, Pn+1) � �hyp(g) < ∞

and therefore converges to some P̄∞ ∈ X̄ in the complete metric space
(X̄, d̄X).

Let P 1
∞, P 2

∞, . . . , P k
∞ ∈ X be the points of P̄∞, namely, the

points of the polygon X that are glued together to form the point
P̄∞ in the quotient space X̄. By Lemma 4.5, for ε > 0 sufficiently
small, the ball Bd̄X

(P̄∞, ε) in X̄ is exactly the image of the union of
all the balls BdX

(P j
∞, ε) in X. In addition, the balls BdX

(P j
∞, ε) are

disjoint for ε sufficiently small.

Fix such an ε. Since (P̄n)n∈N converges to P̄∞, there exists
an n0 such that d̄X(P̄n, P̄∞) < ε/2 for every n � n0. By conver-
gence of the sum

∑∞
n=1 dhyp(Pn, Pn+1), we can also choose n0 so that

dhyp(Pn, Pn+1) < ε/2 for every n � n0.

Since d̄(P̄n, P̄∞) < ε/2, the point ψ−1
n (Pn) ∈ X must be in some

ball Bd(P jn
∞ , ε/2) by another application of Lemma 4.5. Using the

property that

dX(ψ−1
n (Pn), ψ−1

n (Pn+1)) = dhyp(Pn, Pn+1) < ε/2,

we observe that ψ−1
n (Pn+1) is at distance < ε from P jn

∞ in X. The
gluing map ψ−1

n+1 ◦ψn, which sends ψ−1
n (Pn+1) ∈ X to ψ−1

n+1(Pn+1) ∈
X, must therefore send P jn

∞ to some point P ∈ P̄∞ and which is at
distance < ε from ψ−1

n+1(Pn+1). By choice of ε, P
jn+1
∞ is the only

such P ∈ P̄∞, so that ψn(P jn
∞ ) = ψn+1(P

jn+1
∞ ). In particular, the

tiles ψn(X) and ψn+1(X) are also adjacent at the point ψn(P jn
∞ ) =

ψn+1(P
jn+1
∞ ).

If we set P∞ = ψn0(P
jn0∞ ), this proves that ψn(P jn

∞ ) = P∞ for
every n � n0 and that the tiles ψn(X) are all adjacent to ψn0(X) at
P∞. In particular, there are only finitely many such tiles.

By construction, either there is an edge E of the tile ψn(X) such
that Pn is the unique intersection point of E with the geodesic g, or
g coincides with an edge E′ of ψn(X) for a while and Pn is one of
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the vertices of ψn(X). Since there are only finitely many tiles ψn(X)
that are adjacent to ψn0(X) at P∞ and since each has only finitely
many edges and vertices, we conclude that there are only finitely
many points Pn on g.

But this contradicts our original assumption. Therefore, the tiling
process of the geodesic g must terminate after finitely many steps. �

An immediate corollary of Lemma 6.4 is that every point P ∈ H2

is contained in at least one tile.

More precisely, if ψn(X) is the last tile needed to cover the geo-
desic g joining P0 to P as in Lemma 6.4, we will say that a tile ϕ(X)
is a canonical tile for the point P (with respect to the base point
P0) if it is adjacent to ψn(X) at P . In particular, if P is contained
in the interior of ψn(X), then ψn(X) is the only canonical tile for
P . (This requires a little thought when g follows an edge separating
two tiles, in which case there are several possibilities for the tiles X,
ψ1(X), ψ2(X), . . . , ψn(X) covering g.)

Lemma 6.5. For every P ∈ H2, there exists an ε > 0 such that for
every P ′ ∈ Bdhyp(P, ε) ⊂ H2 the canonical tiles for P ′ are exactly the
canonical tiles for P that contain P ′.

Proof. Let us use the notation of the proof of Lemma 6.4. In par-
ticular, let ψn(X) be the last tile in the covering process, namely, the
one containing the endpoint P of the geodesic g.

Let T be the finite collection of tiles consisting of X, of all the
tiles ψi(X) and, in addition, of any tile that is adjacent to some ψi(X)
at Pi.

A case-by-case analysis shows that for every Q in the geodesic g

there is a small ball Bdhyp(P, ε) in H2 which is contained in the union
of the tiles Y ∈ T. Indeed, there are three types of such points Q ∈ g:
those in the interior of some tile ψi(X), the points Pi, and the points
where g follows an edge of ψi(X).

As one slightly moves the point P to a nearby point P ′, the
geodesic g moves to the geodesic g′ joining P0 to P ′ which stays very
close to g. If we investigate what happens near the points Pi, we see
that the tiling process of g′ will only involve tiles of T, and that the
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final tile will be adjacent to ψn(X) at P . The result easily follows.
See Figure 6.3. �

Lemma 6.6. Let P and Q be in the interior of the same tile ϕ(X).
If ϕ(X) is canonical for P , it is also canonical for Q. In addition,
ϕ(X) is the only canonical tile for P and Q.

Proof. This is a relatively simple consequence of Lemma 6.5.

Because of our assumption that X is connected, there is a curve
in ϕ(X), parametrized by t �→ z(t), a � t � b, and joining P = z(a)
to Q = z(b). After pushing it in the interior of ϕ(X), we can even
assume that this curve is completely contained in this interior. We
can then consider

t0 = sup{t; ϕ(X) is a canonical tile for z(t)}.

By definition of t0, there are points z(t) arbitrarily close to z(t0)
such that the tile ϕ(X) is canonical for z(t). By Lemma 6.5, it follows
that ϕ(X) is canonical for z(t0). Because z(t0) is in the interior of
ϕ(X), this tile is the only canonical tile for z(t0) by definition of
canonicity. Another application of Lemma 6.5 then shows that ϕ(X)
is canonical for z(t) for every t sufficiently close to t0. If t0 was less
than b, this would contradict the definition of t0 as a supremum.
Therefore, t0 = b, and ϕ(X) is canonical for z(t0) = z(b) = Q, as
requested.

Since P and Q are in the interior of ϕ(X), no other tile can be
canonical for them. �

Lemma 6.7. Every tile ϕ(X) is canonical for some P in its interior.

Proof. Let us first prove that if ϕ(X) is canonical for some P in
its interior, then for every gluing map ϕi the tile ϕ ◦ ϕi(X) is also
canonical for some P ′ in its own interior. Later, we will show how
this proves Lemma 6.7.

The tiles ϕ(X) and ϕ◦ϕi(X) meet along the edge ϕ◦ϕi(Ei). Let
Q be a point of this edge, not a vertex.

Let P ′′ be a point of the interior of ϕ(X) that is close to Q. By
Lemma 6.6, ϕ(X) is the unique canonical tile for P ′′. Choosing P ′′

sufficiently close to Q and applying Lemma 6.5, we conclude that
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ϕ(X) is also canonical for Q. Therefore, every tile that is canonical
for Q is adjacent to ϕ(X) at Q, namely, it is either ϕ(X) or ϕ◦ϕi(X).

If P ′ is a point of the interior of ϕ◦ϕi(X) that is sufficiently close
to Q, Lemma 6.5 again shows that each canonical tile for P ′ will be
either ϕ(X) or ϕ ◦ ϕi(X). This canonical tile cannot be ϕ(X) since
P ′ is not in ϕ(X). Therefore, ϕ ◦ ϕi(X) is canonical for P ′.

This concludes the proof that if ϕ(X) is canonical for some P in
its interior, then ϕ◦ϕi(X) is canonical for some P ′ in its interior. By
definition of Γ, every ϕ ∈ Γ is obtained from the identity by succes-
sive multiplication on the right by gluing maps ϕi. By an induction
starting with the fact that X is canonical for P0, it follows that every
tile ϕ(X) is canonical for some P ∈ H2. �

Proof of Theorem 6.1. Putting all these steps together, we can
now conclude the proof of Theorem 6.1, namely that the tiles ϕ(X)
with ϕ ∈ Γ form a tessellation of the hyperbolic plane H2. We have
to check that:

(1) each tile ϕ(X) is a polygon, and any two tiles ϕ(X) and
ϕ′(X) are isometric;

(2) the plane H2 is equal to the union of the tiles ϕ(X);

(3) any two distinct tiles ϕ(X) and ϕ′(X) have disjoint interiors;

(4) every point P is the center of a ball Bdhyp(P, ε) which meets
only finitely many tiles ϕ(X).

The first condition is trivial.

Lemma 6.4 shows that every point P ∈ H2 is contained in a tile
ϕ(X). This proves (2).

If the interiors of the tiles ϕ(X) and ϕ′(X) contain the same point
P , the combinations of Lemmas 6.6 and 6.7 show that ϕ(X) and
ϕ′(X) each are the unique canonical tile for P . Therefore, ϕ(X) =
ϕ′(X). This proves (3).

Finally, a point P ∈ H2 has only finitely many canonical tiles,
and there exists a ball Bdhyp(P, ε) contained in the union of these
canonical tiles. No other tile ϕ(X) can meet this ball; indeed, its
interior would otherwise meet the interior of one of the canonical tiles
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of P , contradicting (3). Therefore, the ball Bdhyp(P, ε) meets only
finitely many tiles, namely, the tiles that are canonical for P . �

6.3.2. Euclidean tilings. The proof of Theorem 6.1 in the eu-
clidean setup is identical to that for the hyperbolic plane.

6.3.3. Spherical tilings. When X is a polygon in the sphere S2,
the only difference is that the shortest geodesic g from P0 to P may
not be unique. We need to prove that the set of canonical tiles for P

is independent of the choice of this geodesic g. Several such shortest
geodesics exist only when P is the antipodal point −P0 of P0. In this
case, any two geodesics g and g′ connecting P0 to P = −P0 are great
semi-circles and can be moved from one to the other by a rotation
about the line OP0. We then have to check that the set of canonical
tiles for P does not change as one rotates from g to g′, which is easily
done by the arguments used in the proofs of Lemmas 6.5 and 6.6.
Once this is proved, the rest of the proof of Theorem 6.1 is identical.
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6.3.4. Slight generalizations. We briefly indicate two ways in
which the hypotheses of Theorem 6.1 can be somewhat relaxed.

Self-gluing of edges. So far, the edges of the polygon X were paired
by gluing maps ϕi: Ei → Eji

with ij = i±1 and ϕji
= ϕ−1

i . However,
we never used the fact that these two edges Ei and Eij

were distinct.
As a consequence, we can allow the possibility that ji = i. In this
case, because we still need that ϕi = ϕji

= ϕ−1
i , the isometry ϕi of

Ei must be the identity or a flip reflecting Ei across its midpoint.

The case where ϕi is a flip can actually be reduced to the previous
setup, by converting the midpoint of Ei into a new vertex and splitting
Ei into two new edges.

Beware that when ϕi : Ei → Ei is the identity, the isometric
extension ϕi to all of R2, H2 or S2 occurring in the tiling group will
be the reflection across the complete geodesic containing Ei because
it must send X to the opposite side of Ei.

The statement and proof of Theorem 6.1 immediately extends to
this context.
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Allowing nonconnected polygons. We can also relax the hypothesis
that X is connected and allow it to be the union of finitely many
disjoint connected polygons X1, X2, . . . , Xp. Then, the tiling pro-
cess will provide a tessellation where each tile is isometric to one of
the model tiles X1, X2, . . . , Xp. This again follows the intuition of
practical tile setting.

More precisely, we just need to take into account some additional
information, namely, which of these connected polygons Xi contains
each edge Ei. We then introduce the tiling groupoid Γ consisting
of all isometries of the form

ϕ = ϕil
◦ ϕil−1 ◦ · · · ◦ ϕi1 ,

where, for each k = 1, 2, . . . , l − 1, the edge Eik
is in the same

connected polygon Xi as the edge ϕik−1(Eik−1) that is glued to Eik−1

by ϕik−1 . The need for the barbaric terminology “groupoid” arises
from the fact that Γ is not a group in the sense that we will encounter
in Chapter 7; indeed, the composition of two elements of Γ is not
always in Γ.

The tiles of the tessellation are then all the tiles of the form ϕ(Xi),
where ϕ ∈ Γ is decomposed as ϕ = ϕil

◦ϕil−1 ◦ · · · ◦ϕi1 as above and
where Xi is the connected polygon of X that contains the starting
edge Ei1 .

The fact that these tiles form a tessellation is proved by exactly
the same arguments as Theorem 6.1.

6.4. Completeness and compactness properties

Theorem 6.1, and in particular Lemma 6.4, points to the importance
of the completeness property for our geometric endeavors. We will
need a few criteria to guarantee that a space is complete. This section
is devoted to results of this type.

6.4.1. The euclidean and hyperbolic plane are complete.

Theorem 6.8. The euclidean plane (R2, deuc) is complete.

Proof. This is an immediate consequence of the following deep prop-
erty of real numbers.
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Fact 6.9. The real line R, endowed with the usual metric d(x, y) =
|x − y|, is complete. �

We refer to any of the many textbooks on real analysis for a proof
of Fact 6.9, which requires a deep understanding of the definition of
real numbers. Historically, real numbers were introduced precisely
for this property to hold true. (Of course, it took many centuries to
state the property in this way).

To prove that (R2, deuc) is complete, consider a sequence of points
P1, P2, . . . , Pn, . . . in R2 with finite length

∑∞
n=1 deuc(Pn, Pn+1) <

∞. We want to show that the sequence (Pn)n∈N converges to some
point P∞ ∈ R2.

If Pn = (xn, yn), note that

deuc(Pn, Pn+1) � |xn+1 − xn| = d(xn, xn+1)

by equation (1.3). As a consequence, the sequence of real numbers
x1, x2, . . . , xn, . . . has length

∞∑
n=1

d(xn, xn+1) �
∞∑

n=1

deuc(Pn, Pn+1) < ∞.

By completeness of (R, d) (Fact 6.9), it follows that the sequence
(xn)n∈N converges to some number x∞ in R.

The same argument shows that the sequence (yn)n∈N converges
to some number y∞.

Now, consider the point P∞ = (x∞, y∞) in R2. For every ε > 0,
by definition of the convergence of sequences, there exists a number
n1 such that |xn − x∞| < ε√

2
for every n � n1, and there exists

another number n2 such that |yn − y∞| < ε√
2

for every n � n2. If n0

is the larger of n1 and n2, we conclude that

deuc(Pn, P∞) =
√

(xn − x∞)2 + (yn − y∞)2 �
√

ε2

2
+ ε2

2
= ε

for every n � n0.

This proves that the sequence (Pn)n∈N converges to the point
P∞ in (R2, deuc), and completes the proof that this metric space is
complete. �
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We now use the completeness of the euclidean plane to prove that
the hyperbolic plane is also complete. This is one more property that
these two spaces have in common.

Theorem 6.10. The hyperbolic plane (H2, dhyp) is a complete metric
space.

Proof. Let P1, P2, . . . , Pn, . . . be a sequence of points in H2 with
finite length

L =
∞∑

n=1

dhyp(Pn, Pn+1) < ∞.

We need to show that the sequence
(
Pn

)
n∈N

converges to some P∞
for the hyperbolic metric dhyp.

Let γn be the hyperbolic geodesic arc joining Pn to Pn+1. Iterated
uses of the Triangle Inequality give that for every P ∈ γn,

dhyp(P, P1) �
n−1∑
k=1

dhyp(Pk, Pk+1) + d(Pn, P )

�
n−1∑
k=1

dhyp(Pk, Pk+1) + d(Pn, Pn+1) � L.

The estimate provided by Lemma 2.5 shows that dhyp(P, P1) �
∣∣ ln y

y1

∣∣
if P = (x, y) and P1 = (x1, y1). Combining these two inequalities, we
conclude that

y1e−L < y < y1eL

for every P = (x, y) ∈ γn. To ease the notation, set c1 = y1e−L and
c2 = y1eL so that the y-coordinate of P is between c1 and c2 for every
P ∈ γn.

Comparing the formulas for the euclidean and hyperbolic lengths
�euc and �hyp, we conclude that

dhyp(Pn, Pn+1) = �hyp(γn) � 1
c2

�euc(γn) =
1
c2

deuc(Pn, Pn+1).

In particular, the sum
∑∞

n=1 deuc(Pn, Pn+1) is finite. Since (R2, deuc)
is complete (Theorem 6.8), we conclude that Pn converges to some
point P∞ ∈ R2 for the metric deuc.
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We showed that the y-coordinate yn of Pn is such that yn > c1

for every n. It follows that the y-coordinate of the limit P∞ is also
� c1 > 0, so that P∞ is in the upper half-space H2. Comparing the
hyperbolic and euclidean lengths of the line segment [Pn, P∞] also
gives

dhyp(Pn, P∞) � �hyp([Pn, P∞]) � 1
c1

�euc([Pn, P∞]) =
1
c1

deuc(Pn, P∞).

Therefore, since the sequence
(
Pn

)
n∈N

converges to P∞ for the eu-
clidean metric deuc, it also converges to P∞ for the hyperbolic metric
dhyp. �

6.4.2. Compactness properties. For metric spaces, the notion of
completeness is closely related to another property, namely, compact-
ness.

This compactness property is based on subsequences. Given a
sequence of points P1, P2, . . . , Pn, . . . in a space X, any increasing
sequence of integers n1 < n2 < · · · < nk < · · · provides a new
sequence Pn1 , Pn2 , . . . , Pnk

, . . . in X. This new sequence (Pnk
)k∈N

is a subsequence of the original sequence (Pn)n∈N. In other words,
one goes from a sequence to a subsequence by forgetting elements of
the original sequence, while keeping infinitely many of them so that
they still form a sequence.

A metric space (X, d) is compact if every sequence (Pn)n∈N in
X admits a converging subsequence, namely, a subsequence (Pnk

)k∈N

such that

lim
k→∞

Pnk
= P∞

for some P∞ ∈ X.

The connection between compactness and completeness is pro-
vided by the following result.

Proposition 6.11. Every compact metric space (X, d) is complete.

Proof. Let P1, P2, . . . , Pn, . . . be a sequence with finite length∑∞
n=1 d(Pn, Pn+1) < ∞. We want to show that the sequence (Pn)n∈N

converges.
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By compactness, it admits a converging subsequence
(
Pnk

)
k∈N

such that
lim

k→∞
Pnk

= P∞.

For an arbitrary ε > 0, there exists a number k0 such that
d(Pnk

, P∞) < ε
2 for every k � k0 by definition of the limit of a

sequence.

Similarly, by convergence of the series
∑∞

i=1 d(Pi, Pi+1), there
exists a number n0 such that

∑∞
i=n d(Pi, Pi+1) < ε

2 for every n � n0.
As a consequence, the Triangle Inequality shows that

d(Pn, Pn′) �
n′−1∑
i=n

d(Pi, Pi+1) �
∞∑

i=n

d(Pi, Pi+1) < ε
2

for every n, n′ � n0 with n � n′.

Then, for every n � max{n0, nk0} after picking any k such that
nk � n, we conclude that

d(Pn, P∞) � d(Pn, Pnk
) + d(Pnk

, P∞) < ε
2 + ε

2 = ε.

Therefore, for every ε > 0, we found an n′
0 = max{n0, nk0} such

that d(Pn, P∞) < ε for every n � n′
0. This proves that the sequence

(Pn)n∈N converges to P∞. �

The advantage of compactness over completeness is that it is often
easier to check. For instance, the following criterion is particularly
useful.

Proposition 6.12. Let ϕ : X → X ′ be a continuous map from a
metric space (X, d) to a metric space (X ′, d′). If, in addition, X is
compact, then its image ϕ(X) ⊂ X ′ is compact for the restriction of
the metric d′.

Proof. Let P ′
1, P ′

2, . . . , P ′
n, . . . be a sequence in ϕ(X) ⊂ X ′. By

definition of the image, each P ′
n is the image of some Pn ∈ X under

ϕ, namely, P ′
n = ϕ(Pn).

Since X is compact, there is a subsequence Pn1 , Pn2 , . . . , Pnk
,

. . . of the sequence
(
Pn

)
n∈N

which converges to some point P∞ ∈ X.
By continuity of ϕ, P ′

nk
= ϕ(Pnk

) converges to ϕ(P∞) ∈ ϕ(X) as k

tends to ∞.
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Therefore, for every sequence
(
P ′

n

)
n∈N

in ϕ(X), we can find a
subsequence

(
P ′

nk

)
k∈N

which converges in ϕ(X). This proves that
ϕ(X) is compact. �

6.4.3. Compactness properties in the euclidean plane, the
hyperbolic plane and the sphere. A subset Y of a metric space
(X, d) is bounded if, for an arbitrary point P0 ∈ X, there exists a
number K such that d(P, P0) � K for every P ∈ Y . This is equiv-
alent to the property that Y is contained in a large ball Bd(P0, K).
Using the Triangle Inequality, one easily verifies that this property is
independent of the choice of the point P0.

A subset Y of the metric space (X, d) determines three types of
points in X. The interior points P are those for which there exists
an ε > 0 such that the ball Bd(P, ε) is completely contained in Y . An
exterior point is a point P ∈ X such that for some ε > 0, the ball
Bd(P, ε) is disjoint from Y . A boundary point is a point P ∈ X

which is neither interior nor exterior, namely, such that every ball
Bd(P, ε) centered at P contains points that are in Y and points that
are not in Y .

A subset Y of the metric space (X, d) is closed if it contains all
its boundary points.

Theorem 6.13. Every closed bounded subset of the euclidean plane
(R2, deuc) is compact.

Proof. Again, the key ingredient is a deep property of real numbers,
whose proof can be found in most textbooks on real analysis.

Fact 6.14. In the real line R endowed with the usual metric d(x, y) =
|x − y|, every closed interval [a, b] is compact. �

Let X be a closed bounded subset of R2. To show that X is
compact, consider a sequence (Pn)n∈N of points Pn = (xn, yn) ∈ X.

Because X is bounded, there is a closed interval [a, b] ∈ R which
contains all the xn. Therefore, by Fact 6.14, there is a subsequence
(xnk

)k∈N which converges to some number x∞ ∈ [a, b].

Turning our attention to the y-coordinates, the boundedness of Y

again implies that the ynk
are all contained in some interval [c, d]. We
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can therefore extract from the subsequence
(
ynk

)
k∈N

a subsequence(
ynki

)
i∈N

which converges to some y∞ ∈ [c, d].

Note that the sequence
(
Pnki

)
i∈N

is a subsequence of (Pn)n∈N.
We now have

lim
i→∞

xnki
= x∞ and lim

i→∞
ynki

= y∞.

The argument concluding the proof of Theorem 6.8 can again be used
to show that the subsequence

(
Pnki

)
i∈N

converges to P∞ = (x∞, y∞).

The point P∞ cannot be an exterior point of X since there are
points Pnki

that are arbitrarily close to it. Therefore, P∞ is either an
interior point or a boundary point of X. Since X is closed, it follows
that P∞ is in X. Therefore, every sequence

(
Pn

)
n∈N

in X admits
a subsequence which converges to some point P∞ ∈ X. Namely,
(X, deuc) is compact. �

Theorem 6.15. Every closed bounded subset of the hyperbolic plane
(H2, dhyp) is compact.

Proof. Let X be a bounded subset of the hyperbolic plane (H2, dhyp).
In particular, the subset X is contained in a large ball Bdhyp(P0, K).

Let (Pn)n∈N be a sequence in X, and write Pn = (xn, yn). Since
dhyp(Pn, P0) < K, the same argument as in the proof of Theorem 6.10
shows that c1 < yn < c2 with c1 = y0e−K and c2 = y0eK , and that

deuc(Pn, P0) < c2 dhyp(Pn, P0) < c2K.

In particular, the sequence
(
Pn

)
n∈N

is contained in a large euclidean
ball Bdeuc(P0, c2K). Applying Theorem 6.13 to the closed ball with
the same radius and the same center, there consequently exists a
subsequence

(
Pnk

)
k∈N

which converges to some point P∞ = (x∞, y∞)
in (R2, deuc).

Since ynk
> c1 for every k, the coordinate y∞ is greater than or

equal to c1 > 0, so that P∞ belongs to the hyperbolic plane H2.

Borrowing another argument from the proof of Theorem 6.10,

dhyp(Pn, P∞) � 1
c1

deuc(Pn, P∞)

for every n. It follows that Pnk
also converges to P∞ for the hyperbolic

metric dhyp, as k tends to ∞.
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Since X is closed, it again follows that P∞ is an element of X.

This proves that every sequence in X has a converging subse-
quence. In other words, (X, dhyp) is compact. �

For subsets of the sphere S2, the boundedness hypothesis is irrel-
evant since dsph(P, Q) � π for every P , Q ∈ S2.

Theorem 6.16. Every closed bounded subset of the sphere (S2, dsph)
is compact.

Proof. Let X be a closed subset of S2, and let (Pn)n∈N be a se-
quence in X. By the immediate generalization of Theorem 6.13 to
three dimensions, the sphere S2 is compact for the restriction of the
3-dimensional euclidean metric deuc. Therefore, there exists a sub-
sequence

(
Pnk

)
k∈N

converging to some P∞ ∈ S2 for the euclidean
metric deuc.

By an elementary euclidean geometry argument comparing the
length of a circle arc to the length of its chord, the euclidean and
spherical distances are related by the property that

dsph(Pnk
, P∞) = 2 arcsin

deuc(Pnk
, P∞)

2
.

It follows that dsph(Pnk
, P∞) converges to 0 as k tends to ∞, namely

that the subsequence
(
Pnk

)
k∈N

converges to P∞ in (S2, dsph). �

6.4.4. A few convenient properties. For future reference, we
mention here several easy properties which will be convenient in the
future.

Lemma 6.17. In a metric space (X, d), let (Pn)n∈N be a sequence
with finite length. If there exists a subsequence

(
Pnk

)
k∈N

which con-
verges to some point P∞, then the whole sequence converges to P∞.

Proof. This property was the main step in the proof of Proposi-
tion 6.11. �

Lemma 6.18. The length of a sequence (Pn)n∈N is greater than or
equal to the length of any of its subsequences

(
Pnk

)
k∈N

.
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Proof. By an iterated use of the Triangle Inequality,

d(Pnk
, Pnk+1) �

nk+1−1∑
n=nk

d(Pn, Pn+1).

It follows that
∞∑

k=1

d(Pnk
, Pnk+1) �

∞∑
n=1

d(Pn, Pn+1). �

Lemma 6.19. Suppose that the metric space (X, d) splits as the
union X = X1 ∪ X2 of two subsets X1 and X2. If, for the restric-
tions of the metric d, the two metric spaces (X1, d) and (X2, d) are
complete, then (X, d) is complete.

Proof. Let (Pn)n∈N be a sequence with finite length
∞∑

n=1

d(Pn, Pn+1) < ∞.

We want to show that this sequence converges to some P∞ ∈ X.

At least one of X1 and X2 must contain Pn for infinitely many
n ∈ N. Without loss of generality, let us assume that this is X1.
Consequently, we have a subsequence

(
Pnk

)
k∈N

which is completely
contained in X1.

This subsequence has finite length by Lemma 6.18. Since (X1, d)
is complete, this implies that

(
Pnk

)
k∈N

converges to some limit P∞ ∈
X1. By Lemma 6.17, it follows that the whole sequence (Pn)n∈N

converges to P∞ ∈ X. �

6.5. Tessellations by bounded polygons

We now apply the results of the previous sections to construct various
examples of tessellations of the euclidean plane, the hyperbolic plane
or the sphere.

The simplest examples come from bounded polygons. Indeed,
because of our convention that a polygon X contains all of its edges,
it is always closed in (R2, deuc), (H2, dhyp) or (S2, dsph). If, in addition,
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the polygon X is bounded, it is therefore compact by Theorems 6.13,
6.15 or 6.16. Recall that a spherical polygon is always bounded.

If (X̄, d̄X) is the quotient metric space obtained by gluing to-
gether the edges of X, recall from Lemma 4.2 that the quotient map
X → X̄ is continuous. It follows that (X̄, d̄X) is compact by Propo-
sition 6.12, and therefore complete by Proposition 6.11. This proves:

Proposition 6.20. Let X be a bounded polygon in the euclidean space
(R2, deuc), the hyperbolic plane (H2, dhyp) or the sphere (S2, dsph).
Then, if we glue together the edges of X, the resulting quotient metric
space (X̄, d̄X) is compact, and therefore complete. �

In particular, we can now apply Theorem 6.1 to several of the
examples that we considered in Chapter 5.

6.5.1. Tessellations of the euclidean plane. Let us look at the
euclidean polygon gluings that we examined in Section 5.1. All these
polygons were bounded so that we can apply Proposition 6.20 and
Theorem 6.1 to create tessellations of the euclidean plane.

Figure 6.4. A tessellation of the euclidean plane by squares

First, we considered the case where X is a square, and where we
glue opposite sides by translations. In this case, the tiling group Γ
consists entirely of translations, and the corresponding tessellation of
the euclidean plane by squares is illustrated in Figure 6.4.

If we consider the same square, but glue its sides with a twist to
obtain a Klein bottle, the tessellation of the euclidean plane associated
to this polygon gluing is the same as for the torus. The difference here
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is that the tiling group Γ is different. In addition to translations, it
contains glide reflections, namely, compositions of a reflection with a
nontrivial translation parallel to the axis of the reflection.

Figure 6.5. A tessellation of the euclidean plane by parallelograms

We also considered the case where X is a parallelogram, and
where opposite sides are glued by translations. Since the parallelo-
gram is bounded, this provides a tessellation of the euclidean plane
by parallelograms. The tiling group Γ in this case again consists en-
tirely of translations, and a tessellation of this type is illustrated in
Figure 6.5.

A different, and perhaps more interesting, tessellation of the plane
by parallelograms is associated to the gluing of edges of the parallel-
ogram that give the Klein bottle. See Exercise 6.4.

Finally, we saw that the torus can also be obtained by gluing
opposite sides of a hexagon. This leads to the tessellation of the eu-
clidean plane by hexagons that we already encountered in Figure 6.1.

6.5.2. Tessellations of the hyperbolic plane by bounded poly-
gons. Let us now switch to hyperbolic polygons. The hyperbolic
octagon of Section 5.2 is bounded in the hyperbolic plane. The hy-
perbolic surface of genus 2 that we obtain by gluing opposite edges of
this octagon consequently gives rise to a tessellation of the hyperbolic
plane H2. This tessellation is represented in Figure 6.6.

The tiles of this tessellation may look very different from each
other, but they are actually all isometric by isometries of the hyper-
bolic plane. Some of these isometries are a little more apparent in
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Figure 6.6. A tessellation of the hyperbolic plane by octagons

Figure 6.7. A tessellation of the disk model by hyperbolic octagons

Figure 6.7, which represents the image of the same tessellation in
the disk model B2 for the hyperbolic plane. Note the nice rotational
symmetry. Compare Figure 5.11.

More hyperbolic rotational symmetries of the tessellation are re-
vealed if one transports it by an isometry of the disk model that
sends to the euclidean center of the disk any of the points where eight
octagons meet. See Figure 6.8.
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Figure 6.8. Another view of the tessellation of the disk model
by hyperbolic octagons

Figure 6.9. A tessellation of the euclidean plane R2 by tri-
angles of angles π

2
, π

3
, π

6

6.5.3. Tessellations by triangles.

Theorem 6.21. For any three integers a, b, c � 2,

(1) if π
a + π

b + π
c = π, there exists a tessellation of the euclidean

plane R2 by euclidean triangles of angles π
a , π

b , π
c ;
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Figure 6.10. A tessellation of the disk model B2 of the hy-
perbolic plane by triangles of angles π

2
, π

3
, π

7

(2) if π
a + π

b + π
c < π, there exists a tessellation of the hyperbolic

plane H2 by hyperbolic triangles of angles π
a , π

b , π
c ;

(3) if π
a + π

b + π
c > π, there exists a tessellation of the sphere S2

by spherical triangles of angles π
a , π

b , π
c .

Proof. Proposition 5.13 provides a triangle X with the angles in-
dicated. As gluing data, let us take for each edge the self-gluing
of Section 6.3.4 so that the tiling group Γ is generated by the re-
flections across the complete geodesics containing each side of the
triangle. Since the triangle X is bounded, Theorem 6.1 (generalized
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as in Section 6.3.4) and Proposition 6.20 then provide the requested
tessellations. �

Figure 6.11. A tessellation of the sphere S2 by triangles of
angles π

2
, π

3
, π

5

Examples of these tessellations are illustrated in Figures 6.9, 6.10
and 6.11.

Note that the spherical case can only occur for {a, b, c} = {2, 2, c},
{2, 3, 3}, {2, 3, 4} or {2, 3, 5}, with c � 2 arbitrary in the first case.
The euclidean case arises only when {a, b, c} = {2, 3, 6}, {2, 4, 4} or
{3, 3, 3}.

6.6. Tessellations by unbounded polygons

The punctured torus discussed in Section 5.5 offers an interesting
challenge because it is less obviously complete.

Let X be the hyperbolic square of Figure 5.18. Consider U =
U∞ ∪ U1 ∪ U0 ∪ U−1 as in Section 5.5, and let Y be the union of the
complement X − U and of all its boundary points. Let Ū and Ȳ be
their respective images in the quotient space (X̄, d̄X).

The subset Y is closed and bounded in the hyperbolic plane H2.
If follows that Y is compact by Theorem 6.15, and therefore that Ȳ

is also compact by Proposition 6.12. As a consequence, (Ȳ , d̄X) is
complete by Proposition 6.11.
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In Proposition 5.9 and Lemma 5.12 we showed that (Ū , d̄X) is
isometric to the portion (Sa, dSa

) of the pseudosphere S in R3. Let
us show that (Sa, dSa

) is complete.

Let P1, P2, . . . , Pn, . . . be a sequence of finite length in (Sa, dSa
).

Recall that the distance dSa
(P, Q) is defined as the infimum of the eu-

clidean lengths of all curves joining P to Q and contained in Sa; it fol-
lows that deuc(P, Q) � dSa

(P, Q) for every P , Q ∈ Sa. In particular,
the sequence (Pn)n∈N has finite length in (R3, deuc), and consequently
it converges to some point P∞ in the complete space (R3, deuc) (by
the immediate generalization of Theorem 6.8 to three dimensions).
Since the surface Sa is defined by finitely many equations and weak
inequalities involving continuous functions, the limit P∞ is in Sa,
and one easily checks that the sequence (Pn)n∈N converges to P∞ in
(Sa, dSa

).

This proves that (Sa, dSa
) is complete; therefore, so is the isomet-

ric metric space (Ū , d̄).

The space (X̄, d̄) is the union of the two subsets Ȳ and Ū , each
of which is complete for the metric d̄. Lemma 6.19 shows that this
implies that (X̄, d̄) is complete. We will see another proof that (X̄, d̄)
is complete in Theorem 6.25.

As before, an application of Theorem 6.1 provides a tessellation
of the hyperbolic plane by tiles isometric to the hyperbolic square X.
This tessellation is illustrated in Figure 6.12.

∞

−3 −2 −1 0 1 2 3− 5
2

− 3
2

− 1
2

1
2

3
2

5
2

Figure 6.12. A tessellation of the hyperbolic plane coming
from the once-punctured torus
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6.7. Incomplete hyperbolic surfaces

We now look at a few examples where the quotient space (X̄, d̄X) is
incomplete.

6.7.1. Incomplete hyperbolic cylinders. Let us revisit the ex-
ample of Figure 5.16. Namely, X is the vertical strip delimited in the
upper half-space H2 by the two vertical half-lines E1 and E2 of the
respective equations Re(z) = 0 and Re(z) = 1, and we glue the two
sides by an isometry ϕ1: E1 → E2. As usual, extend ϕ1 to an isome-
try of H2 that sends X to the side of E2 opposite X. An elementary
algebraic computation shows that ϕ1 is of the form ϕ1(z) = az + 1
for a real number a > 0.

Since we only have two edges, the tiling group Γ consists of all
possible compositions of ϕ1 and ϕ2 = ϕ−1

1 . As a consequence, every
element of the tiling group is of the form ϕn

1 = ϕ1 ◦ ϕ1 ◦ · · · ◦ ϕ1 or
ϕ−n

1 = ϕn
2 = ϕ−1

1 ◦ϕ−1
1 ◦ · · ·◦ϕ−1

1 , where n � 0 is the number of maps
occurring in the composition.

In Section 5.4.2, we considered the case where a = 1. In this
case, an immediate computation shows that all elements of the tiling
group Γ are horizontal translations of the form ϕn

1 (z) = z + n with
n ∈ Z. In particular, each tile ϕ(X) is a vertical strip of the form
{z ∈ H2; n � Im(z) � n + 1}, and it is immediate that these tiles
form a tessellation of the hyperbolic plane. As in the case of the
punctured torus that we just examined in Section 6.6, the quotient
space (X̄, d̄X) is complete.

The situation is completely different when a �= 1. In this case,
the tiles ϕn

1 (z) are still vertical strips, delimited by the vertical half-
lines Im(z) = an and Im(z) = an+1, where an = ϕn

1 (0). However, by
induction on n, we see that for every n � 0

ϕn
1 (z) = anz + an−1 + an−2 + · · · + a + 1 = anz +

1 − an

1 − a
,

while

ϕ−n
1 (z) = a−nz − a−n − a−(n−1) − · · · − a−2 − a−1

= a−nz − a−1 1 − a−n

1 − a−1
= a−nz +

1 − a−n

1 − a
.
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As a consequence, an = ϕn
1 (0) =

1 − an

1 − a
for every n ∈ Z.

∞

a−2 a−1 0 1 a2 a3 a4 a∞

Figure 6.13. A partial tessellation coming from an incom-
plete hyperbolic cylinder

Consider the case where a < 1. Then an converges to a∞ = 1
1−a

as n tends to +∞ and, more importantly, an < a∞ for every n ∈
Z. This implies that for every element ϕn

1 of the tiling group, the
corresponding tile ϕn

1 (X) stays to the left of the vertical half-line of
equation Re(z) = a∞. In particular, the tiles ϕn

1 (X) cannot cover the
whole hyperbolic plane H2. The case where a = 0.75 is represented
in Figure 6.13.

A symmetric phenomenon occurs when a > 1, in which case the
tiles ϕn

1 (X) are all to the right of the vertical half-line of equation
Im(z) = a∞, where a∞ = 1

1−a = limn→−∞ an. Again, this prevents
the tiles from covering the whole plane H2.

If we combine these observations with Theorem 6.1, we conclude
that the quotient metric space (X̄, d̄X) is not complete if a �= 1. The
accumulation of the tiles along the line Im(z) = a∞ explains why the
proof of Lemma 6.4 fails in this case.

This abstract argument showing that (X̄, d̄X) is incomplete is
fine mathematically, but it will be more gratifying to exhibit a finite-
length sequence (P̄n)n∈N in (X̄, d̄X) that does not converge. We re-
strict our attention to the case where a < 1. Set Pn = ia−n for every
integer n � 1. Note that Pn is glued to the point Qn = 1 + ia−n+1,
and that the points Pn and Qn+1 can be joined by a horizontal line
segment whose hyperbolic length is equal to an. Therefore, the length
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of the sequence (P̄n)n∈N is
∞∑

n=1

d̄X(P̄n, P̄n+1) =
∞∑

n=1

d̄X(P̄n, Q̄n+1) �
∞∑

n=1

an < ∞,

where the geometric series converges since a < 1.

We claim that this finite length sequence (P̄n)n∈N cannot converge
to any point P̄∞ in (X̄, d̄X). Indeed, the proof of Theorem 4.10 shows
that there is a small ball Bd̄X

(P̄∞, ε) such that the set of points
P ∈ E1 ∪ E2 projecting to some P̄ ∈ Bd̄X

(P̄∞, ε) under the quotient
map is either empty if P̄∞ corresponds to a point P∞ in the interior of
X or two geodesic arcs of hyperbolic length 2ε when P̄∞ corresponds
to a point P∞ ∈ E1 glued to another point Q∞ ∈ E2. In the first
case, Bd̄X

(P̄∞, ε) does not contain any P̄n. In the second case, each of
the two geodesic arcs can contain at most finitely many points Pn and
Qn, since Pn and Qn converge to ∞ as n tends to ∞. In both cases,
this shows that Bd̄X

(P̄∞, ε) contains no P̄n with n large enough, so
that (P̄n)n∈N cannot converge to any P̄∞ ∈ X̄.

0 1 a∞

Y
H

Ē

Figure 6.14. The incomplete cylinder of Figure 6.13

It is interesting to understand a little better the geometry of
(X̄, d̄X). Again, we focus our attention on the case where a < 1. The
case where a > 1 is similar.

In this case where a < 1, the tiles ϕn
1 (X), with n ∈ Z, tessellate

the open quadrant H consisting of those z ∈ H2 with Re(z) < a∞ =
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1
1−a . On H, consider the partition H̄ consisting of the subsets of H of
the form {ϕn

1 (P ); n ∈ Z} with P ∈ H. Since ϕ1 is the gluing map used
to glue the two edges of X together, there is a natural map ϕ: X̄ → H̄,
uniquely determined by the property that it associates P̄ ∈ H̄ to
P̄ ∈ X̄ for every P ∈ X. Because the ϕn

1 (X) tessellate H, one easily
sees that H is bijective. Anticipating results from Chapter 7, we will
prove in Theorem 7.12 that ψ is actually an isometry from (X̄, d̄X)
to (H̄, d̄H).

It turns out that there is another natural way to tessellate the
quadrant H. Let Y be the quarter annulus delimited in H by the two
euclidean quarter circles C1 and C2 centered at a∞ = 1

1−a and passing
through the points 0 and 1, respectively. Note that ϕ1(z) = az + 1
can also be written as ϕ1(z) = a(z − a∞) + a∞, so that ϕ1 sends
the larger quarter circle to the smaller one. It easily follows that the
ϕn

1 (Y ) also tessellate H. By the same argument as above, (H̄, d̄H)
is therefore isometric to the quotient space (Ȳ , d̄Y ) obtained from
(Y, dY ) by gluing together its sides C1 and C2 by ϕ1.

As a consequence, the two metric spaces (X̄, d̄X) and (Ȳ , d̄Y ) are
isometric.

It turns out that we have already encountered the quotient space
(Ȳ , d̄Y ) in Section 5.4.2. More precisely, it corresponds to one half of
the hyperbolic cylinder X̄3 of Figure 5.15 because Y is one half of the
hyperbolic strip X3. Comparing the left-hand side of Figure 5.15 to
the left-hand side of Figure 6.14, we conclude that (Ȳ , d̄Y ) is isometric
to any one of the two halves of the hyperbolic annulus X̄3 delimited
by the waist γ0. The correspondence is rigorously described by the
hyperbolic isometry ϕ(z) = a∞z+a∞, and is illustrated by the right-
hand sides of Figures 5.15 and 6.14. In particular, the open annulus
(Ȳ , d̄Y ) has one end that flares out with exponential growth, while
the other one gets very close to the closed curve γ0.

It is interesting to consider the image Ē of the edges E1 and
E2 of X under the isometric correspondence between (X̄, d̄X) and
(Ȳ , d̄Y ). By careful inspection of Figure 6.14, one easily sees that
this image Ē consists of an infinite curve which, in one direction,
goes to infinity in the end of Ȳ with exponential growth whereas,
in the other direction, it spirals around the closed curve γ0. This is
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illustrated on the right-hand side of Figure 6.14. A more detailed
description of this construction can also be found in [Weeks4, §2].

6.7.2. Incomplete punctured tori. We can similarly deform the
hyperbolic once-punctured torus of Section 5.5. We keep the same
polygon X, namely, in this case the hyperbolic square delimited by
the complete geodesics E1, E2, E3, E4, where E1 goes from −1 to ∞,
E2 from 0 to 1, E3 from 1 to ∞ and E4 from 0 to −1.

To glue E1 to E2, we need a hyperbolic isometry ϕ1 sending −1
to 0, ∞ to 1, and X to the side of E2 opposite X. These isometries
are the linear fractional maps of the form

ϕ1(z) =
z + 1
z + a

with a > 1. Similarly, the E3 is glued to E4 by a map of the form

ϕ3(z) =
z − 1

−z + b

with b > 1. In Section 5.5, we considered the case where a = b = 2,
but we now consider the general case.

As in Section 5.5, chop off little pieces U−1, U0, U1 and U∞
near the four corners −1, 0, 1 and ∞ of the square X, in such a
way that the intersections Ui ∩ Ej are glued together by the gluing
maps ϕj . However, in this general case, we cannot always arrange
that the Ui are delimited by euclidean circles tangent to R as in
Section 5.5. To construct the Ui, first select P1 and Q1 ∈ E1 with
Im(P1) > Im(Q1), P3 and Q3 ∈ E3 with Im(P3) > Im(Q3), and set
P2 = ϕ1(P1), Q2 = ϕ1(Q1), P4 = ϕ3(P3) and Q4 = ϕ3(Q3). Then
pick disjoint curves γ−1, γ0, γ1, γ∞ in X connecting Q1 to P4, Q4 to
Q2, P2 to Q3, and P3 to P1, respectively. Finally, define Ui as the
portion of X that is delimited by γi and is adjacent to the corner i.

As in Section 5.5, define V∞ = U∞, V1 = ϕ2(U1), V−1 = ϕ4(U−1)
and V0 = ϕ4 ◦ ϕ2(U0), and let U = U−1 ∪ U0 ∪ U1 ∪ U∞ and V =
V−1 ∪ V0 ∪ V1 ∪ V∞. As before, V and the subsets Vi are vertical
half-strips delimited on the sides by vertical lines, and from below
by curves that are the images of the curves γi. See Figure 6.15, and
compare Figure 5.19 in Section 5.5.
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0−1 1

U∞ = V∞

V1

V0

=

=

ϕ2(U1)

ϕ4◦ϕ2(U0)

V−1

U0
U−1

U1

Figure 6.15. An incomplete punctured torus

The left side of V is glued to its right side by the map

ϕ4 ◦ ϕ2 ◦ ϕ3 ◦ ϕ1(z) =
(

b − 1
a − 1

)2

z +
(ab − 1)(a + b − 2)

(a − 1)2

which, in general, is not a horizontal translation any more (unless
a = b). So we are essentially in the same situation as for the
incomplete cylinder of Section 6.7.1, and, when a �= b, the tiles
(ϕ4 ◦ ϕ2 ◦ ϕ3 ◦ ϕ1)n(X) accumulate along the vertical half-line of
equation Im(z) = a∞, where a∞ = ab−1

b−a is the only real number such
that ϕ4 ◦ ϕ2 ◦ ϕ3 ◦ ϕ1(a∞) = a∞.

Looking a little more closely into the tiling process, we can easily
convince ourselves that the tiles ϕ(X) do not overlap. The simplest
way to see this is to observe that the tiling construction provides a
natural correspondence between the tiles constructed here and the
tiles coming from the complete punctured torus of Section 6.6. In
particular, if an edge of one tiling separates two tiles of the same
tiling, then in the other tiling the corresponding edge separates the
corresponding tiles. Since there is no overlap between the tiles of the
example of Section 6.6, we conclude that there cannot be any overlap
between the tiles in the example of this section either.

This implies that all the tiles stay on the same the side of the
line Im(z) = a∞. More precisely, the tiles ϕ(X) are all disjoint from
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the hyperbolic half-plane1 H = {z ∈ H2; Im(z) � a∞} if a < b, and
H = {z ∈ H2; Im(z) � a∞} if a > b.

10−1 a∞

H

Figure 6.16. The tessellation associated to the incomplete
punctured torus of Figure 6.15

The tessellation (in a case where a < b) is illustrated in Fig-
ure 6.16.

Note that the tiles ϕ(X) are also disjoint from every hyperbolic
half-plane of the form ψ(H), where ψ is an element of the tiling
group Γ. Indeed, if ϕ(X) met ψ(H), then ψ−1 ◦ϕ(X) would meet H;
however, it immediately follows from the definition of the tiling group
that ψ−1 ◦ ϕ is also an element of Γ, contradicting the fact that all
tiles are disjoint from H. Therefore, the tiles are disjoint from all the
hyperbolic half-planes ψ(H) as ψ ranges over all the elements of the
tiling group Γ. Some of these half-planes are visible in Figure 6.16
where they appear as white euclidean half-disks.

6.8. Poincaré’s polygon theorem

Let (X̄, d̄X) be the quotient space obtained by gluing together the
edges of a polygon (X, dX) in the hyperbolic plane. We will provide a
relatively simple criterion to check whether or not the quotient metric
space (X̄, d̄X) is complete.

The fundamental ideas involved have already appeared in our
analysis of the complete example of Section 6.6 and in the incomplete
examples of Section 6.7. The completeness criterion essentially says

1
2

3

4
5

6

7
8

0

9

00

To
page 181

that there is no new phenomenon. For this reason, this section may
be skipped on a first reading.

1Not to be confused with H2, which is a euclidean half-plane but is the whole
hyperbolic plane.
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We already observed in Proposition 6.20 that when X is bounded
the quotient space (X̄, d̄X) is compact and therefore complete. Thus,
the only relevant case here is the one where X is unbounded and, in
particular, when some of its edges are infinite.

Edges E of the polygon X can be of three types. A bounded
edge goes from one vertex of the polygon to another one. A singly

infinite edge goes from a vertex to a point of R∪{∞}, which we will
call a vertex at infinity or an ideal vertex . A doubly infinite

edge joins two points of R ∪ {∞}, which consequently are two ideal
vertices of the polygon.

To simplify the exposition, we will restrict attention to the case
where a vertex at infinity is the endpoint of at most two edges of
X. Note that we had already imposed a similar, and equally natural,
condition for the vertices of X that are in H2.

When we glue the edges Ei and Ei±1, the gluing map ϕi: Ei →
Ei±1 sends each ideal vertex ξ ∈ R ∪ {∞} adjacent to Ei to an ideal
vertex adjacent to Ei±1. In this way, we can extend the gluing of
edges to gluings between the ideal vertices of X, as in the case of
nonideal vertices. An element of the corresponding quotient space
will be an ideal vertex of the quotient space X̄ of X under the
gluing operation. Note that exactly as ideal vertices of the polygon
X are not elements of X, ideal vertices of the quotient space X̄ are
not elements of X̄.

Let ξ̄ = {ξ1, ξ2, . . . , ξk} be an ideal vertex of X̄. Namely, ξ̄ is the
set of ideal vertices of X that are glued to a given ideal vertex ξ. The
gluing maps identifying the ξj can be organized in a nice manner,
as in the case of nonideal vertices in Section 4.3.1, but with a minor
twist because an ideal vertex is allowed to be adjacent to only one
edge of X. We state this as a lemma for future reference.

Lemma 6.22. The indexing of the ideal vertices in ξ̄ = {ξ1, ξ2, . . . , ξk}
can be chosen so that there exists gluing maps ϕij

: Eij
→ Ei′j+1

=
Eij±1, with j = 1, 2, . . . , k − 1, such that

(1) ξj is an endpoint of Eij
, ξj+1 is an endpoint of Ei′j+1

, and
the gluing map ϕij

sends ξj to ξj+1;
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(2) for every j with 1 < j < k − 1, the two edges Eij
and

Ei′j
adjacent to ξj are distinct, so that ϕij

is different from
ϕ−1

ij−1
;

(3) exactly one of the following holds:
(i) either there exists a gluing map ϕik

: Eik
→ Ei′1

such
that Eik

is an edge adjacent to ξk and different from
the range Ei′k

of ϕik−1 , such that Ei′1
is an edge adja-

cent to ξ1 and different from the domain Ei1 of ϕi1 ,
and such that ϕik

sends ξk to ξ1; or
(ii) each of ξ1 and ξk is adjacent to a unique edge of X,

namely, Ei1 and Ei′k
, respectively.

Proof. As in Section 4.3.1, start with any element ξ1 = ξ ∈ ξ̄. Let
Ei1 be one of the � 2 edges containing ξ1. Set ξ2 = ϕi1(ξ1). If
ϕi1(Ei1) is the only edge that is adjacent to ξ2, stop here. Otherwise,
apply the same process to the other edge Ei2 leading to ξ2, define
ξ3 = ϕi2(ξ2), and iterate this construction.

If this process goes on forever, we eventually reach an index k

such that ξk+1 = ξj for some j � k. If k is the smallest such index,
one easily checks that ξk+1 = ξ1 and that we are in the situation of
alternative 3(i).

Otherwise, we reach an index k such that ξk is adjacent to only
one edge, namely, ϕik−1(Eik−1) = Ei′k

. In this case, we restart the
process beginning at ξ1, but going backward. Let Ei′1

be the edge that
is adjacent to ξ1 and is different from Ei′1

(if any). Let Ei0 be the
edge that is glued to Ei′1

by the gluing map ϕi0 : Ei0 → Ei′1
, and set

ξ0 = ϕ−1
i0

(ξ1). If Ei0 is the only edge that is adjacent to ξ0, stop here.
Otherwise, let Ei′0

be the other edge adjacent to ξ0, consider the edge
Ei−1 that is glued to Ei0 by the gluing map ϕi−1 : Ei−1 → Ei′0

, set
ξ−1 = ϕ−1

i−1
(ξ0), and iterate the construction. In this case, the process

must eventually conclude by the discussion of the previous case, and
we reach an index −l � 0 such that ξ−l is adjacent to only one edge
Ei−l

of X. Shifting all indices by l− 1 to make them positive, we are
now in the situation of alternative 3(ii).

In both cases, conditions (1) and (2) are satisfied by construction.
�
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In the case of alternative 3(i), we will say that we have an edge

cycle around the ideal vertex ξ̄ = {ξ1, ξ2, . . . , ξk} of X̄. In this case,
it is convenient to consider the indices j modulo k, namely, in such a
way that j is identified with j+k. This convention has the advantage
that each gluing map ϕij

then goes from Eij
to Ei′j+1

. Note that
the composition ϕik

◦ ϕik−1 ◦ · · · ◦ ϕi2 ◦ ϕi1 sends ξ1 to itself. Our
completeness criterion will be expressed in terms of this composition
of gluing maps, considered for all edge cycles around ideal vertices.

A horocircle or horocycle centered at the point ξ ∈ R∪{∞} is
a curve C−{ξ} in H2 where C is a euclidean circle tangent to R∪{∞}
at ξ (and lying “above” R ∪ {∞}). When ξ = ∞, this means that
C −{ξ} is a horizontal line. Note that any isometry of H2 must send
any horocycle centered at ξ to a horocycle centered at ϕ(ξ), since ϕ

sends a euclidean circle to a euclidean circle. See Exercises 6.10–6.12
for an interpretation of a horocircle as a hyperbolic circle of infinite
radius centered at ξ.

An isometry ϕ of the hyperbolic plane H2 is horocyclic at ξ if it
respects some horocircle centered at ξ. When ξ = ∞, this just means
that ϕ is a horizontal translation z �→ z + b (possibly the identity
map) or a reflection z �→ −z̄ + b across a vertical line.

In particular, a hyperbolic isometry which is horocyclic at ξ re-
spects every horocircle centered at ξ. When ξ = ∞, this immediately
follows from the above observation. In the general case, it suffices
to apply this special case to ψ ◦ ϕ ◦ ψ−1, where ψ is any hyperbolic
isometry sending ξ to ∞, for instance z �→ 1/(z − ξ).

As usual, extend each gluing map ϕi: Ei → Ei±1 to a hyperbolic
isometry ϕi : H2 → H2 that near Ei, sends X to the side of Ei±1

opposite X.

Proposition 6.23. The following two conditions are equivalent:

(1) (Horocircle Condition) At each ideal vertex ξ of X, one can
choose a horocircle Cξ centered at ξ such that whenever the
gluing map ϕi : Ei → Ei±1 sends ξ to another ideal vertex
ξ′, its extension ϕi: H2 → H2 sends Cξ to Cξ′ ;

(2) (Edge Cycle Condition) for every edge cycle around an ideal
vertex ξ̄ = {ξ1, ξ2, . . . , ξk} of X̄ with gluing maps ϕij

: Eij
→
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Ei′j+1
= Eij±1 sending ξj to ξj+1 for j = 1, 2, . . . , k as in

alternative 3(i) of Lemma 6.22 (counting indices modulo k

so that j +k is considered the same as j), the corresponding
composition ϕik

◦ ϕik−1 ◦ · · · ◦ ϕi2 ◦ ϕi1 is horocyclic at ξ1.

Proof. Suppose that the first condition (1) holds. Then, for an edge
cycle around an ideal vertex consisting of gluing maps ϕij

: Eij
→

Ei′j+1
= Eij±1, with j = 1, 2, . . . , k, the composition ϕik

◦ϕik−1 ◦· · ·◦
ϕi2 ◦ ϕi1 sends the ideal vertex ξ1 to itself, and consequently sends
the horocircle Cξ1 to itself. It follows that ϕik

◦ ϕik−1 ◦ · · · ◦ ϕi2 ◦ ϕi1

is horocyclic. This proves that the second condition (2) holds.

Conversely, suppose that the second condition (2) holds. For each
ideal vertex ξ̄ = {ξ1, ξ2, . . . , ξk} of X̄, organize the gluing data as in
Lemma 6.22. Pick an arbitrary horocircle Cξ1 centered at ξ1, and
define

Cξj
= ϕij−1 ◦ ϕij−2 ◦ · · · ◦ ϕi1(Cξ1)

for j � k. Note that ϕij−1 ◦ ϕij−2 ◦ · · · ◦ ϕi1 sends ξ1 to ξj , so that
Cξj

is really a horocircle at ξj .

If we are in the case of alternative 3(ii) of Lemma 6.22, there is
nothing to prove. Otherwise, we have to make sure that the gluing
map ϕik

sends the horocircle Cξk
to Cξ1 . This is where the hypothesis

that ϕik
◦ ϕik−1 ◦ · · · ◦ ϕi2 ◦ ϕi1 is horocylic is needed, since it shows

that
ϕik

(Cξk
) = ϕik

◦ ϕik−1 ◦ · · · ◦ ϕi2 ◦ ϕi1(Cξ1) = Cξ1 .

Performing this construction for every ideal vertex ξ̄ = {ξ1, ξ2, . . . , ξk}
of X̄ provides the conclusions of condition (1). �

Complement 6.24. If the conditions of Proposition 6.23 hold, we
can choose the horocircles Cξ in condition (1) so that they are arbi-
trarily small. (When ξ = ∞, this means that Cξ is a horizontal line
which is arbitrarily high.)

Proof. In the above proof that condition (2) implies condition (1),
we have a degree of freedom in the choice of the initial horocircle Cξ1

for each ideal vertex ξ̄ = {ξ1, ξ2, . . . , ξk} of X̄. In particular, this
horocircle can be chosen small enough that all other horocircles Cξj

are also arbitrarily small. �
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In practice, the Edge Cycle Condition (2) of Proposition 6.23 is
often easier to check than the Horocircle Condition (1). However,
the Horocircle Condition (1) will be better suited for the proof of our
main Theorem 6.25 below.

Exercise 6.14 shows that in the specific case of the composition
map ϕik

◦ϕik−1 ◦ · · · ◦ϕi2 ◦ϕi1 of gluing maps that occurs in the Edge
Cycle Condition (2) of Proposition 6.23, this isometry is horocyclic
if and only if it is parabolic in the sense defined in Exercise 2.7.
However, we will not need this property.

Theorem 6.25 (Poincaré’s Polygon Theorem). Let (X̄, d̄X) be the
quotient space obtained by gluing together the edges of a polygon
(X, dX) in H2, using edge gluing maps ϕi: Ei → Ei±1. The quotient
space (X̄, d̄X) is complete if and only if the (equivalent) conditions of
Proposition 6.23 are satisfied.

We will split the proof of equivalence into two parts.

Proof of the “only if” part of Theorem 6.25. We need to show
that the conditions of Proposition 6.23 hold if (X̄, d̄X) is complete.
We will actually prove the contrapositive of this statement. More pre-
cisely, we will assume that the Edge Cycle Condition (2) of Proposi-
tion 6.23 does not hold, and then show that (X̄, d̄X) is not complete.

By our assumption, there is an edge cycle ξ̄ = {ξ1, ξ2, . . . , ξk},
with data as in alternative 3(i) of Lemma 6.22, such that the compo-
sition

ϕ = ϕik
◦ ϕik−1 ◦ · · · ◦ ϕi2 ◦ ϕi1

is not horocyclic.

Modifying X and all gluing data by a hyperbolic isometry sending
ξ1 to ∞, we can arrange that ξ1 = ∞ without loss of generality. Then
ϕ sends ∞ to ∞, and is consequently of the form ϕ(z) = az + b or
−az̄ + b with a > 0, b ∈ R. The fact that ϕ is not horocyclic is
equivalent to the property that a �= 1.

The argument is essentially the one that we already encountered
in Sections 6.7.1 and 6.7.2. First consider the case where a > 1.

Near each ideal vertex ξj of X, chop off an infinite half-strip
Uj delimited by a curve joining the two edges Eij

and Ei′j
that are
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adjacent to ξi. Then U1, ϕ−1
i1

(U2), ϕ−1
i1

◦ ϕ−1
i2

(U3), . . . , ϕ−1
i1

◦ ϕ−1
i2

◦
· · ·◦ϕ−1

ik−1
(Uk) are vertical half-strips which are adjacent to each other,

and their union forms a vertical half-strip V . In addition, ϕ−1 sends
the vertical side of V that is contained in Ei1 to the other vertical
side of V .

Pick a point P1 ∈ Ei1 so that the horizontal line L1 passing
through P1 lies above the curves delimiting V from below. Let Q2

be the point where this line L1 hits the other vertical side of V . We
already observed that this other vertical side is contained in ϕ−1(Ei1),
so that we can consider the point P2 = ϕ(Q2) ∈ Ei1 . Repeating the
process, we can thus define a sequence of points Pn ∈ Ei1 such that
Pn is the image under ϕ of the point Qn of the other vertical side of
V that is at the same euclidean height as Pn−1.

We now consider the sequence (P̄n)n∈N in the quotient space X̄.

Let y1 be the y-coordinate of P1 (and Q2). By construction,
the y-coordinates of Pn and Qn+1 are both equal to any1, and Pn

and Qn+1 have the same x-coordinate as P1 and Q2, respectively.
Considering the hyperbolic length of the horizontal line segment sn

going from Pn to Qn+1, we conclude that

d̄X(P̄n, P̄n+1) = d̄X(P̄n, Q̄n+1) � dX(Pn, Qn+1)

� �hyp(sn) = a−ny−1
1 �euc(sn) = a−ny−1

1 �euc(s1).

As a consequence, the total length

∞∑
n=1

d̄X(P̄n, P̄n+1) � y−1
1 �euc(s1)

∞∑
n=1

a−n < ∞

of the sequence
(
P̄n

)
n∈N

is finite, since a > 1. However, by the
argument that we used in Section 6.7.1, this sequence cannot converge
to any point of the quotient space X̄. In particular, the metric space
(X̄, d̄X) is not complete.

The argument is very similar when a < 1. This time, we will
choose the points Pn on the vertical side of V that is not contained in
Ei1 . Namely, we start with P1 in that side, consider the point Q2 ∈
Ei1 that is at the same euclidean height as P1, set P2 = ϕ−1(Q2),
and iterate the process. This again gives a sequence (P̄n)n∈N in X̄
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that has finite length (this time because a < 1) but cannot converge
in X̄. Therefore, (X̄, d̄X) is not complete in this case as well. �

Proof of the “if” part of Theorem 6.25. Let us assume that the
Horocircle Condition (1) of Proposition 6.23 holds. We will prove that
the quotient space (X̄, d̄X) is complete.

For this, consider in X̄ a sequence (P̄n)n∈N with finite length. We
want to show that this sequence converges. The problem is that of
course, there is no reason for the corresponding sequence (Pn)n∈N to
have finite length in X.

We will split the proof into four distinct cases, only two of which
involve significant geometric ideas. The first case is relatively easy to
deal with.

Case 1: There exists a hyperbolic ball Bdhyp(P0, r) that contains in-
finitely many Pn.

The Pn that are contained in Bdhyp(P0, r) form a subsequence(
Pnk

)
k∈N

valued in that ball. Since the closed hyperbolic ball B of
center P0 and radius r is compact by Theorem 6.15, this subsequence
itself admits a subsequence

(
Pnkl

)
l∈N

which converges to some point
P∞ ∈ B for the hyperbolic metric dhyp; the point P∞ must be in X

since all polygons are closed. It easily follows that Pnkl
also converges

to P∞ ∈ X for the path metric dX , as l tends to ∞. (Hint: For
every P ∈ X, there exists a small ball Bdhyp(P, ε) in H2 such that
dX(P, Q) = dhyp(P, Q) for every Q ∈ X ∩ Bdhyp(P, ε)).

Since the quotient map X �→ X̄ is continuous by Lemma 4.2, the
(sub)subsequence

(
Pnkl

)
l∈N

converges to P̄∞ in (X̄, d̄X).

Now the sequence (P̄n)n∈N has finite length and admits a sub-
sequence converging to P̄∞ ∈ X̄. The whole sequence consequently
converges to P̄∞ in (X̄, d̄X) by Lemma 6.17.

We now consider the case where the Pn stay away from the edges
of the polygon X.

Case 2: There exists an ε > 0 such that every Pn is at hyperbolic
distance > ε from every edge of X.

                

                                                                                                               



6.8. Poincaré’s polygon theorem 177

In particular, no two distinct points of the ball BdX
(Pn, ε) are

glued together.

Since the total length
∑∞

n=1 d̄X(P̄n, P̄n+1) of the sequence (P̄n)n∈N

is finite, d̄X(P̄n, P̄n+1) tends to 0 as n tends to ∞, and in particular
there exists an n0 such that d̄X(P̄n, P̄n+1) < ε for every n � n0.

Consider a discrete walk w from P̄n to P̄n+1 in X̄, whose length
�dX

(w) is close enough to the infimum d̄X(P̄n, P̄n+1) that �dX
(w) < ε.

Let Pn = Q1, R1 ∼ Q2, . . . , Rk−1 ∼ Qk, Rk = Pn+1 be the steps
of this discrete walk. By induction and using the Triangle Inequality,
the points Qi stay in the ball BdX

(Pn, ε) and are equal to the points
Ri+1, since there is no nontrivial gluing in this ball. Therefore, by
the Triangle Inequality,

dX(Pn, Pn+1) �
k∑

i=1

dX(Qk, Rk) = �dX
(w).

Since this holds for every discrete walk w whose length is sufficiently
close to d̄X(P̄n, P̄n+1), it follows that dX(Pn, Pn+1) � d̄X(P̄n, P̄n+1).
As the reverse inequality always holds by Lemma 4.2, this inequality
is actually an equality, and dX(Pn, Pn+1) = d̄X(P̄n, P̄n+1) for every
n � n0.

In particular, the sequence (Pn)n∈N has finite length in X. Since
(H2, dhyp) is complete, the finite length sequence (Pn)n∈N converges
to some point P∞ ∈ H2. This point P∞ must be in the interior of
X since the Pn stay at distance > ε from its boundary. Since the
quotient map X → X̄ is continuous (Lemma 4.2), it follows that the
sequence (P̄n)n∈N converges to the point P̄∞ in the quotient space
(X̄, d̄X), which concludes the proof in this case.

Next, we consider the case that is completely opposite to Case 2.
This is the crucial case, which will strongly use our hypothesis that
the Horocircle Condition (1) of Proposition 6.23 holds.

Case 3: All the Pn are contained in edges of X.

The Horocircle Condition (1) of Proposition 6.23 asserts that
there exists a horocircle Cξ centered at each ideal vertex ξ such that
whenever the gluing map ϕi : Ei → Ei±1 sends ξ to another ideal
vertex ξ′, its extension ϕi: H2 → H2 sends Cξ to Cξ′ .
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Let Bξ be the “inside” of Cξ in H2. Namely, when ξ �= ∞, Bξ

is the closed euclidean disk bounded by Cξ minus the point ξ. When
ξ = ∞, Bξ is the euclidean half-plane bounded by Cξ from below.
Such a Bξ is called a horodisk centered at ξ.

By Complement 6.24, we can assume without loss of generality
that the horocircles are small enough that they are disjoint from each
other, and that the only edges of X that are met by Bξ are those
which are adjacent to the ideal vertex ξ.

Let B =
⋃

ξ Bξ denote the union of all the Bξ, as ξ ranges over all
ideal vertices of X. There is a convenient function h: B → R defined
as follows. For P ∈ Bξ, let Q be the point of Cξ that is closest to
P ; then h(P ) = dhyp(P, Q). The point Q can be easily constructed
from the property that it is the intersection of Cξ with the complete
geodesic g passing through ξ and P . This property is easily checked
when ξ = ∞, for instance using Lemma 2.5; for the general case, just
transport everything by an isometry of H2 sending ξ to ∞.

The function h is called the Busemann function . See Exer-
cises 6.10, 6.11 and 6.12 for another geometric interpretation of h.
This function has the following two important properties:

(1) if P and Q ∈ B are glued together, then h(P ) = h(Q);

(2) for any two P , Q in the same horodisk Bξ, dhyp(P, Q) �
|h(P ) − h(Q)|.

The first property is an immediate consequence of the fact that
the gluing maps are isometries and send each Cξ to some Cξ′ . The
second property is a consequence of Lemma 2.5 in the case where
ξ = ∞. The general case follows from this special case by modifying
the geometric setup through a hyperbolic isometry sending ξ to ∞.

After bringing up all this machinery, we now return to our se-
quence of points Pn in the edges of X.

Fix an arbitrary ε > 0, whose precise value will not be important.
By the same argument as in Case 2, there is a number n1 such that
d̄X(P̄n, P̄n+1) < ε for every n � n1.

In addition, we can assume that we are not in the situation of
Case 1, since otherwise we are done. This guarantees that there exists

                

                                                                                                               



6.8. Poincaré’s polygon theorem 179

an n0 � n1 such that for every n � n0, the point Pn is sufficiently far
away on the edge E containing it that it belongs to the horodisk Bξn

associated to some ideal vertex ξn, and that it is even at distance > ε

from the point where the edge E meets the horocircle Cξn
delimiting

Bξn
.

For n � n0, consider a discrete walk w from P̄n to P̄n+1 in X̄,
whose length �dX

(w) is close enough to the infimum d̄X(P̄n, P̄n+1)
that �dX

(w) < ε and whose steps are Pn = Q1, R1 ∼ Q2, . . . , Rk−1 ∼
Qk, Rk = Pn+1. We will prove by induction that all the Qi and Ri−1

belong to B =
⋃

ξ Bξ, and that

(6.1) h(Pn) −
i−1∑
j=1

dX(Qj , Rj) � h(Qi) � h(Pn) +
i−1∑
j=1

dX(Qj , Rj).

Of course, the Qi and Ri−1 may jump from one horodisk Bξ to an-
other.

We start the induction with the case where i = 1, in which case
the property trivially holds since Q1 = Pn.

Suppose that the induction hypothesis holds for i. If Qi is in the
horodisk Bξ, the distance from Qi to the horocycle Cξ bounding Bξ

is h(Qi). By the induction hypothesis,

h(Qi) − dX(Qi, Ri) � h(Pn) −
i∑

j=1

dX(Qj , Rj)

� h(Pn) − �dX
(w) > h(Pn) − ε > 0

since �dX
(w) � ε and since Pn is at distance > ε from the horocycle

bounding the horodisk Bξn
that contains it. In particular, the dis-

tance from Qi ∈ Bξ to Ri is less than the distance from Qi to the
boundary horocircle Cξ bounding Bξ. It follows that Ri is also in Bξ.

Since Qi+1 is glued to Ri, and since the gluing maps sendpoints
of B to points of B, we conclude that Qi+1 is also in B.

Also, combining (6.1) with the two fundamental properties of h,

h(Qi+1) = h(Ri) � h(Qi) + dX(Qi, Ri) � h(Pn) +
i∑

j=1

dX(Qj , Rj)
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and

h(Qi+1) = h(Ri) � h(Qi) − dX(Qi, Ri) � h(Pn) −
i∑

j=1

dX(Qj , Rj).

This proves that (6.1) holds for i + 1.

This completes our proof by induction that all Qi and Ri−1 with
1 � i � k belong to B and satisfy (6.1).

One more step in the same proof gives that

h(Pn+1) = h(Rk) � h(Qk) + dX(Qk, Rk) � h(Pn) +
k∑

j=1

dX(Qk, Rk)

and

h(Pn+1) = h(Rk) � h(Qk) − dX(Qk, Rk) � h(Pn) −
k∑

j=1

dX(Qk, Rk),

so that

|h(Pn+1) − h(Pn)| �
k∑

j=1

dX(Qk, Rk) = �dX
(w).

Since this holds for every discrete walk w from P̄n to P̄n+1 whose
length is sufficiently close to the infimum d̄X(P̄n, P̄n+1), we conclude
that

|h(Pn+1) − h(Pn)| � d̄X(P̄n, P̄n+1).

A consequence of this inequality is that the length of the sequence(
h(Pn)

)
n∈N

in R is bounded by the length of the sequence
(
P̄n

)
n∈N

in
X̄, and in particular is finite. Since (R, deuc) is complete (Fact 6.9),
if follows that the sequence

(
h(Pn)

)
n∈N

converges in R. As a conse-
quence, it is bounded by some number M .

However, this shows that for n � n0, the Pn stay at hyperbolic
distance � M from the finitely many points where the edges of X

meet the horocircles Cξ. In particular, these Pn are all contained in a
very large hyperbolic ball. So we are in the situation of Case 1 after
all, which proves that the sequence (P̄n)n∈N converges in X̄.

We are now ready to conclude.
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Case 4: General case.

We will use the three previous cases to extract from (P̄n)n∈N a
converging subsequence and then apply Lemma 6.17.

If we are in the situation of Case 2, namely, if the Pn stay away
from the edges of X, we are done. Consequently, we can assume that
this is not the case.

We then construct by induction a subsequence
(
Pnk

)
k∈N

such
that for every k, there exists a point Qnk

in an edge of X such that
dX(Pnk

, Qnk
) < 2−k. (We could replace 2−k by the kth term of any

convergent series.) Indeed, supposing the first k terms of the subse-
quence have been constructed, the fact that the hypothesis of Case 2
does not hold implies that there exists an index nk+1 > nk such that
Pnk+1 is at distance < 2−(k+1) from the edges of X. This means that
there exists a point Qnk+1 in the boundary of X which is at distance
< 2−(k+1) from Pnk+1 . This inductive process clearly provides the
subsequence

(
Pnk

)
k∈N

and the sequence
(
Qnk

)
k∈N

requested.

We claim that the sequence
(
Qnk

)
k∈N

has finite length. Indeed,

dX(Qnk
, Qnk+1) � d(Qnk

, Pnk
) + dX(Pnk

, Pnk+1) + dX(Pnk+1 , Qnk+1)

� 2−k + dX(Pnk
, Pnk+1) + 2−(k+1)

by the Triangle Inequality, so that

∞∑
k=1

dX(Qnk
, Qnk+1) �

∞∑
k=1

2−k +
∞∑

k=1

dX(Pnk
, Pnk+1) +

∞∑
k=1

2−(k+1)

is finite since the length of
(
Pnk

)
k∈N

is finite.

Therefore, we can apply Case 3 to the sequence
(
Qnk

)
k∈N

. Our
analysis of this case shows that this sequence converges. Since
dX(Pnk

, Qnk
) < 2−k tends to 0 as k tends to ∞, it follows that

the sequence
(
Pnk

)
k∈N

converges to the same limit.

Thus, our original finite length sequence (P̄n)n∈N has a converging
subsequence

(
Pnk

)
k∈N

. It therefore converges by Lemma 6.17.
From
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This concludes the proof of the “if” part of Theorem 6.25, and
therefore completes the proof of this statement. �
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Exercises for Chapter 6

Exercise 6.1. A Cauchy sequence in a metric space (X, d) is a sequence
of points P1, P2, . . . , Pn, . . . in X such that for every ε > 0, there exists a
number n0 such that d(Pn, Pn′) < ε for every n, n′ � n0.

a. Show that a sequence (Pn)n∈N that has finite length is Cauchy.

b. Conversely, let (Pn)n∈N be a Cauchy sequence. Show, by induction on
k, that it contains a subsequence

`

Pnk

´

k∈N
such that d(Pnk , Pnk+1) �

2−k for every k. Show that this subsequence
`

Pnk

´

k∈N
has finite length.

c. Show that if a Cauchy sequence admits a converging subsequence, then
the whole sequence is convergent.

d. Combine the previous steps to show that a metric space (X, d) is com-
plete in the sense of Section 6.2 if and only if every Cauchy sequence
in (X, d) is convergent.

Exercise 6.2. Let (X, d) and (X ′, d′) be two metric spaces for which there
exists a homeomorphism ϕ: X → X ′. Prove, or disprove by a counterex-
ample, each of the following two statements:

a. If (X, d) is compact, then (X ′, d′) is also compact.

b. If (X, d) is complete, then (X ′, d′) is also complete.

Exercise 6.3. Show that a tessellation of the sphere S2 has only finitely
many tiles. Hint: The sphere is compact.

Exercise 6.4. In the euclidean plane, let X be the parallelogram with
vertices (0, 0), (2, 1), (2, 2), (0, 1). Glue the left edge of X to the right
edge by the reflection-translation (x, y) �→ (x + 2,−y + 2), and the bottom
edge to the top edge by the translation (x, y) �→ (x, y + 1); we saw in
Section 5.1 that the corresponding quotient space X̄ is homeomorphic to
the Klein bottle. Draw the tessellation associated by Theorem 6.1 to this
gluing data.

Exercise 6.5. Construct a tessellation of the euclidean or hyperbolic plane
by tiles which are not convex. Extra credit: Find one which is particularly
pretty (solution not unique).

Exercise 6.6. For three integers a, b, c � 2 with 1
a

+ 1
b

+ 1
c

> 1, consider

a tessellation of the sphere S2 by spherical triangles of angles π
a
, π

b
, π

c

as in Theorem 6.21. Show that this tessellation consists of 4abc
ab+bc+ac−abc

triangles. Hint: Use the area formula of Exercise 3.6.

Exercise 6.7.

a. Show that for every euclidean triangle T ⊂ R2, there exists a tessella-
tion of the euclidean plane R2 whose tiles are all isometric to T .
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b. Give an example of a spherical triangle T ⊂ S2 for which there exists
no tessellation of the sphere S2 by triangles isometric to T . Hint: Use
the area formula of Exercise 3.6 or the hint for part c below.

c. Give an example of a hyperbolic triangle T ⊂ H2 for which there exists
no tessellation of the hyperbolic plane H2 by triangles isometric to T .
Hint: Consider the angles of the tiles of the tessellation around one
vertex.

Exercise 6.8. Show that for every integer p, q � 2 with 1
p

+ 1
q

< 1
2
, there

exists a tessellation of the hyperbolic plane H2 by p-gons such that exactly
q of these p-gons meet at each vertex. Possible hint: Use appropriate
triangles.

Exercise 6.9. Let X be a polygon in the euclidean plane R2, and let
(X̄, d̄X) be a quotient space obtained by isometrically gluing its edges to-
gether. Show that (X̄, d̄X) is always complete. Hint: Adapt the proof of
Poincaré’s Polygon Theorem 6.25, noting that Case 3 of this proof becomes
much simpler in the euclidean case.

Exercise 6.10. Fix a point P0 ∈ H2 in the hyperbolic plane and a point
ξ ∈ R∪{∞} at infinity of H2. Show that as Q ∈ H2 tends to ξ in R2∪{∞},
the limit

h(P ) = lim
Q→ξ

dhyp(Q, P ) − dhyp(Q, P0)

exists for every P ∈ H2. Possible hint: Use the explicit formula for the
hyperbolic metric provided by Exercise 2.2.

Exercise 6.11. In Exercise 6.10, consider the case where ξ = ∞. If
P0 = (x0, y0) and P = (x, y), show that h(P ) = log y0

y
.

Exercise 6.12. In Exercise 6.10, show that the set of P ∈ H2 with h(P ) =
0 is exactly the horocircle centered at ξ and passing through P0. Possible
hint: Use Exercise 6.11 and a hyperbolic isometry sending ξ to ∞.

Exercise 6.13. In Figure 6.15, V0 is delimited from below by a straight
line segment with negative slope, whereas U0 = ϕ−1

2 ◦ϕ−1
1 (V0) is delimited

from above by a curve C which appears to be a euclidean circle arc.

a. Show that C is indeed a circle arc contained in a circle passing through
the point 0.

b. This circle appears to be tangent to the x-axis at 0. Is this actually
the case? Explain.

Exercise 6.14. Consider an edge cycle as in condition (2) of Proposi-
tion 6.23, and use the same notation as in that statement.

a. Show that ϕik ◦ϕik−1 ◦ · · · ◦ϕi2 ◦ϕi1 cannot be an antilinear fractional
map and is different from the identity. Possible hint: Look at the way
the tiles ϕ−1

i1
◦ ϕ−1

i2
◦ · · · ◦ ϕ−1

ik−1
◦ ϕ−1

ik
(X) sit side-by-side near ξ1.
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b. Show that ϕik ◦ ϕik−1 ◦ · · · ◦ ϕi2 ◦ ϕi1 is horocyclic if and only if it is
parabolic in the sense of Exercise 2.7.

Exercise 6.15. All the tessellations constructed in this chapter are in-
variant under a transformation group Γ, as defined in Chapter 7. Do an
Internet search for examples of tessellations which are invariant under no
nontrivial transformation group. Suggested key word: Penrose.

                

                                                                                                               



Chapter 7

Group actions and
fundamental domains

The tiling groups we encountered in Chapter 6 are examples of iso-
metric group actions. The current chapter is devoted to definitions
and basic properties of group actions.

7.1. Transformation groups

A transformation group on a set X is a family Γ of bijections
γ: X → X such that

(1) if γ and γ′ are in Γ, their composition γ ◦ γ′ is also in Γ;

(2) the group Γ contains the identity map IdX ;

(3) if γ is in Γ, its inverse map γ−1 is also in Γ.

Recall that the identity map IdX : X → X is defined by the
property that IdX(x) = x for every x ∈ X. Also, the inverse of a
bijection ϕ: X → Y is the map ϕ−1: Y → X such that ϕ−1(y) is the
number x such that ϕ(x) = y. This is equivalent to the properties
that ϕ ◦ ϕ−1 = IdY or ϕ−1 ◦ ϕ = IdX .

A transformation group Γ naturally gives rise to a map Γ×X →
X which to (γ, x) associates γ(x). This map is traditionally defined
as the group action of Γ over X.
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186 7. Group actions and fundamental domains

We are particularly interested in the situation where X is a metric
space (X, d) and where all the elements of Γ are isometries of (X, d).
In this case we say that Γ is a group of isometries of (X, d) or
that Γ acts by isometries on (X, d) or that we have an isometric

action of Γ on (X, d).

It is time for a few examples.

Example 7.1. The trivial group Γ = {IdX}, consisting of the single
bijection IdX , satisfies all three conditions since IdX ◦ IdX = IdX and
Id−1

X = IdX . It is the smallest possible transformation group for X,
and clearly acts by isometries.

Example 7.2. The set Γ of all isometries ϕ: X → X of (X, d) is a
transformation group, obviously acting by isometries. By definition,
this is the isometry group of (X, d). Clearly, it is the largest group
of isometries acting on (X, d).

Example 7.3. In the hyperbolic plane (H2, dhyp), the set of linear
fractional maps z �→ az+b

cz+d with integer coefficients a, b, c, d ∈ Z and
with ad − bc = 1 forms a group of isometries. Indeed, a computation
shows that the composition of two such linear fractionals also has
integer coefficients. The identity map can be written as z �→ z+0

0z+1 ,
and the inverse of z �→ az+b

cz+d is z �→ dz−b
−cz+a .

The set of antilinear fractional maps with integer coefficients is
not a transformation group. Indeed, the composition of two antilinear
fractionals is linear fractional, and not antilinear fractional. Also, the
identity is not antilinear fractional.

Example 7.4. Let ϕ1, ϕ2, . . . , ϕn be a family of bijections of a set
X. Let Γ be the set of all bijections ϕ of X which can be written
as a composition of finitely many ϕi and their inverses. Namely,
Γ is the set of all ϕ of the form ϕ = ϕ±1

i1
◦ ϕ±1

i2
◦ · · · ◦ ϕ±1

ik
where

the indices ij ∈ {1, 2, . . . , n} are not necessarily distinct. Then Γ is
a transformation group. It is actually the smallest transformation
group containing ϕ1, ϕ2, . . . , ϕn. By definition, the transformation
group Γ is then generated by ϕ1, ϕ2, . . . , ϕn.

As a fundamental example, all the tiling groups constructed in
Chapter 6 are transformation groups of the euclidean plane, the hy-
perbolic plane or the sphere, acting by isometries.

                

                                                                                                               



7.2. Group actions and quotient spaces 187

7.2. Group actions and quotient spaces

Let Γ be a group of isometries of the metric space (X, d). We will use
the action of Γ to create a new type of quotient space X̄.

For every P , let P̄ consist of those Q ∈ X which are of the form
Q = γ(P ) for some γ ∈ Γ. This subset P̄ ⊂ X is the orbit of the
point P under the action of Γ. The orbit is also denoted as P̄ = Γ(P ).

Lemma 7.5. As P ranges over all points of X, the orbits P̄ form a
partition of X.

Proof. The proof uses all three conditions in the definition of trans-
formation groups at the beginning of Section 7.1.

Since IdX must be in Γ, the point P = IdX(P ) is an element of
P̄ . Therefore, the sets P̄ cover all of X.

It remains to show that distinct P̄ and Q̄ must be disjoint. For
this, suppose that P̄ and Q̄ share a common point R. We want to
show that P̄ = Q̄. By definition, there exists α, β ∈ Γ such that
R = α(P ) and R = β(Q). As a consequence, Q = β−1 ◦ α(P ).

For every S ∈ Q̄, there exists an element γ ∈ Γ such that S =
γ(Q). Therefore, S = γ ◦β−1 ◦α(P ). The conditions in the definition
of a transformation group imply that γ ◦ β−1 ◦ α is an element of Γ.
Therefore, S is an element of the orbit P̄ . Since this holds for every
S ∈ Q̄, we conclude that Q̄ is contained in P̄ .

Conversely, P̄ is contained in Q̄ by symmetry so that P̄ = Q̄

whenever P̄ and Q̄ intersect. �

Let X̄ be the partition defined by the orbits P̄ . Lemma 4.1 shows
that the metric d induces a quotient semi-metric d̄ on X̄.

When the semi-metric d̄ is a metric, the metric space (X̄, d̄) is
the quotient space of X under the action of Γ, or the orbit space

of the action of Γ on X. It is also denoted by X̄ = X/Γ.

In this situation, the semi-metric d̄ is much simpler than in the
general setting of Chapter 4.

Proposition 7.6. Let the group Γ act by isometries on the metric
space (X, d), and consider the quotient space (X̄, d̄). Then, for every
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P̄ , Q̄ ∈ X̄,

d̄(P̄ , Q̄) = inf{d(P ′, Q′); P ′ ∈ P̄ , Q′ ∈ Q̄}
= inf{d(P, γ(Q)); γ ∈ Γ}.

In other words, the (semi-)distance from P̄ to Q̄ is equal to the
infimum of the distances from points in the orbit of P to points in the
orbit of Q, which is also equal to the infimum of the distances from
the point P itself to points in the orbit of Q.

Proof. Define

d̄′(P̄ , Q̄) = inf{d(P ′, Q′); P ′ ∈ P̄ , Q′ ∈ Q̄}.

We want to show that d̄ = d̄′.

Let us first show that d̄′ satisfies the Triangle Inequality, namely
that d̄′(P̄ , R̄) � d̄′(P̄ , Q̄) + d̄′(Q̄, R̄) for every P̄ , Q̄, R̄ ∈ X̄.

By definition of the infimum there exists, for every ε > 0, points
P ′ ∈ P̄ and Q′ ∈ Q̄ such that

d(P ′, Q′) � d̄′(P̄ , Q̄) + ε.

Similarly, there exists Q′′ ∈ Q̄ and R′′ ∈ R̄ such that

d(Q′′, R′′) � d̄′(Q̄, R̄) + ε.

The fact that both Q′ and Q′′ are in the orbit Q̄ means that there
exists γ′, γ′′ ∈ Γ such that Q′ = γ′(Q) and Q′′ = γ′′(Q). As a
consequence, Q′′ = γ(Q′) for γ = γ′′ ◦ γ′−1 ∈ Γ. Consider the point
R′ = γ−1(R′′), which is also in the orbit R̄ of R. Then,

d̄′(P̄ , R̄) � d(P ′, R′) � d(P ′, Q′) + d(Q′, R′)

� d(P ′, Q′) + d(γ(Q′), γ(R′))

� d(P ′, Q′) + d(Q′′, R′′)

� d̄′(P̄ , Q̄) + d′(Q̄, R̄) + 2ε

using the fact that γ is an isometry of (X, d).

Since this folds for every ε> 0, it follows that d̄′(P̄ , R̄) � d̄′(P̄ , Q̄)+
d̄′(Q̄, R̄). Namely, d̄′ satisfies the Triangle Inequality.

Also, note that the definition of d̄′ immediately implies that
d̄′(P̄ , Q̄) � d(P, Q) for every P , Q ∈ X.
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After these two preliminary observations, we are now ready to
complete the proof. By definition, d̄(P̄ , Q̄) is equal to the infimum of
the lengths �d(w) of all discrete walks w from P to Q, namely, walks
of the form P = P1, Q1 ∼ P2, . . . , Qn−1 ∼ Pn, Qn = Q. Then,

�d(w) =
n∑

i=1

d(Pi, Qi) �
n∑

i=1

d̄′(P̄i, Q̄i) � d̄′(P̄1, Q̄n) = d̄′(P̄ , Q̄)

by repeated use of the Triangle Inequality for d̄′. Since this holds for
every discrete walk w, we conclude that d̄(P̄ , Q̄) � d̄′(P̄ , Q̄).

Conversely, if P ′ ∈ P̄ and Q′ ∈ Q̄, d̄(P̄ , Q̄) = d̄(P̄ ′, Q̄′) �
d(P ′, Q′) by Lemma 4.2. Since d̄′(P̄ , Q̄) is defined as the infimum
of those distances d(P ′, Q′), we conclude that d̄(P̄ , Q̄) � d̄′(P̄ , Q̄).

The combination of the two inequalities shows that

d̄(P̄ , Q̄) = d̄′(P̄ , Q̄) = inf{d(P ′, Q′); P ′ ∈ P̄ , Q′ ∈ Q̄}.

It remains to show that d̄′(P̄ , Q̄) is equal to

d̄′′(P̄ , Q̄) = inf{d(P, Q′); Q′ ∈ Q̄} = inf{d(P, γ(Q)); γ ∈ Γ}.

This is immediate, once we realize the following equalities between
subsets of R

{d(P ′, Q′); P ′ ∈ P̄ , Q′ ∈ Q̄} = {d(α(P ), β(Q)); α, β ∈ Γ}
= {d(P, α−1 ◦ β(Q)); α, β ∈ Γ}
= {d(P, γ(Q)); γ ∈ Γ}

using the fact that every α ∈ Γ is an isometry of (X, d). �

The isometric action of Γ on the metric space (X, d) is discon-

tinuous if, for every P ∈ X, there exists a ball Bd(P, ε) centered at
P such that there are only finitely many γ ∈ Γ with γ(P ) ∈ Bd(P, ε).

Theorem 7.7. If the transformation group Γ acts by isometries and
discontinuously on the metric space (X, d), the semi-metric d̄ induced
on the quotient space X̄ = X/Γ is a metric. In particular, the quotient
space (X̄, d̄) is a metric space.

Proof. We have to show that d̄(P̄ , Q̄) �= 0 whenever P̄ �= Q̄.
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Because the action is by isometries, Proposition 7.6 asserts that
d̄(P̄ , Q̄) is equal to inf{d(P, Q′); Q′ ∈ Q̄}. Since the action is discon-
tinuous, there exists an ε > 0 for which there are only finitely many
γ ∈ Γ such that γ(P ) ∈ Bd(P, ε).

This implies that the ball Bd(P, ε
2 ) can contain only finitely many

points Q′ of the orbit Q̄ of Q. Indeed, if γ(Q) and γ′(Q) ∈ Q̄ are
both in the ball Bd(P, ε

2 ), then

d
(
P, γ′ ◦ γ−1(P )

)
= d

(
γ′−1(P ), γ−1(P )

)
� d

(
γ′−1(P ), Q

)
+ d

(
Q, γ−1(P )

)
� d

(
P, γ′(Q)

)
+ d

(
γ(Q), P

)
< ε

2 + ε
2 = ε,

using the fact that γ and γ′ are both isometries. By discontinuity of
the action, γ′ ◦ γ−1 can take only finitely many values in Γ, so there
can be only finitely many such γ. This proves that the intersection
of the orbit Q̄ with the ball Bd(P, ε

2 ) is a finite set {Q1, Q2, . . . , Qn},
possibly empty.

If the intersection is nonempty, note that no Qi can be equal to
P since P̄ �= Q̄. Therefore,

d̄(P̄ , Q̄) = min{d(P, Q1), d(P, Q2), . . . , d(P, Qn)} > 0

since the numbers d(P, Qi) are all different from 0 and since there are
only finitely many of them.

If Bd(P, ε
2 ) contains no Q′ ∈ Q̄, then d̄(P̄ , Q̄) � ε

2 > 0. Therefore,
d̄(P̄ , Q̄) �= 0 in both cases. �

The stabilizer of the point P ∈ X for the action of Γ on X is
ΓP = {γ ∈ Γ; γ(P ) = P}. The stabilizer ΓP is easily seen to be a
transformation group acting on X.

If the action of Γ on the metric space (X, d) is by isometries, note
that every element of the stabilizer ΓP sends each ball Bd(P, ε) to
itself. In other words, ΓP acts on Bd(P, ε) and we can consider the
quotient space Bd(P, ε)/ΓP with the quotient metric induced by d.

Theorem 7.8. If the transformation group Γ acts by isometries and
discontinuously on the metric space (X, d), then, for every P̄ in the
quotient metric space (X̄, d̄), there exists a ball Bd̄(P̄ , ε) which is
isometric to the quotient space Bd(P, ε)/ΓP .
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Proof. By hypothesis, there exists a ball Bd(P, ε1) which contains
γ(P ) for only finitely many γ ∈ Γ. As a consequence, there exists an
ε > 0 such that d(P, γ(P )) � 5ε for every γ(P ) ∈ P̄ different from P .

Let B̂d(P, ε) denote the quotient space Bd(P, ε)/ΓP , endowed
with the quotient metric d̂ induced by the restriction of d to Bd(P, ε).
Also, let P̂ denote the point of B̂d(P, ε) corresponding to P ∈ Bd(P, ε).

Since ΓP is contained in Γ, any orbit under the action of ΓP is
contained in a unique orbit of Γ. It follows that there is a well-defined
map ϕ: B̂d(P, ε) → Bd̄(P̄ , ε) defined by the property that ϕ(Q̂) = Q̄

for every Q ∈ Bd(P, ε). Note that the point Q̄ ∈ X̄ is indeed in the
ball Bd̄(P̄ , ε) since the quotient map X̄ → X is distance nonincreasing
by Lemma 4.2. We will show that ϕ is an isometry.

Let Q, Q′ ∈ Bd(X, ε). Proposition 7.6 shows that

d̄
(
ϕ(Q̂), ϕ(Q̂′)

)
= d̄(Q̄, Q̄′) = inf{d

(
Q, γ(Q′)

)
, γ ∈ Γ} � d(Q, Q′).

If d
(
Q, γ(Q′)

)
is sufficiently close to the infimum that d

(
Q, γ(Q′)

)
�

d̄(Q̄, Q̄′) + ε, a repeated use of the Triangle Inequality shows that

d
(
P, γ(P )

)
� d(P, Q) + d

(
Q, γ(Q′)

)
+ d

(
γ(Q′), γ(P )

)
� d(P, Q) + d(Q, Q′) + ε + d(Q′, P )

� d(P, Q) + d(Q, P ) + d(P, Q′) + ε + d(Q′, P ) < 5ε.

By choice of ε, this implies that γ(P ) = P . What this proves is that if
d
(
Q, γ(Q′)

)
is very close to the infimum d̄(Q̄, Q̄′), then γ is in ΓP ⊂ Γ.

As a consequence, the two infimums

d̄(Q̄, Q̄′) = inf{d
(
Q, γ(Q′)

)
; γ ∈ Γ}

and
d̂(Q̂, Q̂′) = inf{d

(
Q, γ(Q′)

)
; γ ∈ ΓP }

are equal. This proves that d̄
(
ϕ(Q̂), ϕ(Q̂′)

)
= d̄(Q̄, Q̄′) = d̂(Q̂, Q̂′) for

every Q̂, Q̂′ ∈ B̂d(P, ε).

In particular, ϕ is injective.

If Q̄ is a point of Bd̄(P̄ , ε), then inf{d(P ′, Q′); P ′ ∈ P̄ , Q′ ∈ Q̄} =
d̄(P̄ , Q̄) < ε, so that there exists a Q′ ∈ Q̄ such that d(P, Q′) < ε.
As a consequence, Q̄ = ϕ(Q̂′) is in the image of ϕ. This proves that
ϕ: B̂d(P, ε) → Bd̄(P̄ , ε) is surjective, and concludes the proof that ϕ

is an isometry. �
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The action of Γ on X is free if, for every γ ∈ Γ−{IdX}, γ(P ) �= P

for every P ∈ X. In other words, the action is free if the stabilizer
ΓP of every point P ∈ X is the trivial group {IdX}.

Corollary 7.9. If the transformation group Γ acts by isometries, dis-
continuously, and freely on the metric space (X, d), then the quotient
metric space (X̄, d̄) is locally isometric to (X, d).

Proof. If ΓP = {IdX}, then B̂d(P, ε) is equal to Bd(P, ε), and the
quotient metric d̂ coincides with d (compare Exercise 4.3). Therefore,
Theorem 7.8 shows that every P̄ ∈ X̄ is the center of a ball B̄d̄(P, ε)
which is isometric to a ball Bd(P, ε) in X. �

When (X, d) is the hyperbolic plane (H2, dhyp), Exercises 7.12
and 7.14 discuss the possible types for the quotient space Bd(P, ε)/ΓP

when the stabilizer is nontrivial. It is isometric, either to a hyper-
bolic cone with cone angle 2π

n , or to a hyperbolic disk sector of angle
π
n , for some integer n � 1. By Theorem 7.8, this consequently de-
scribes the local geometry of the quotient of the hyperbolic plane by
a discontinuous isometric group action.

The same results (and proofs) hold without modifications for quo-
tients of the euclidean plane (R2, deuc) or of the sphere (S2, dsph) under
a discontinuous isometric group action.

7.3. Fundamental domains

Let the group Γ act by isometries on the euclidean plane (R2, deuc),
the hyperbolic plane (H2, dhyp) or the sphere (S2, dsph). For simplicity,
write (X, d) = (R2, deuc), (H2, dhyp) or (S2, dsph), according to the
case considered.

A fundamental domain for the action of Γ on X is a connected
polygon ∆ ⊂ X such that as γ ranges over all elements of Γ, the
polygons γ(∆) are all distinct and form a tessellation of X.

The tessellations that we constructed in Chapter 6 provide many
examples of fundamental domains. For instance, Figures 6.4 and
6.5 provide two different fundamental domains for the same group Γ
acting isometrically on the euclidean plane (R2, deuc), and consisting
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of all integral translations (x, y) �→ (x + m, y + n) with m, n ∈ Z; see
Exercise 7.7.

We will see that fundamental domains can be very useful for prov-
ing that an action is discontinuous and for determining the geometry
of the quotient space X/Γ.

7.3.1. Fundamental domains and discontinuity.

Proposition 7.10. If the isometric action of Γon (X, d)=(R2, deuc),
(H2, dhyp) or (S2, dsph) admits a fundamental domain ∆, the action
of Γ is discontinuous.

Proof. Consider P ∈ X. By the Local Finiteness Condition in the
definition of tessellations, there exists an ε > 0 and a finite subset
{γ1, γ2, . . . , γn} ⊂ Γ such that the γi are the only γ ∈ Γ for which
γ(∆) meets the ball Bd(P, ε). Without loss of generality, P is in the
polygon γ1(∆).

If γ ∈ Γ is such that γ(P ) ∈ Bd(P, ε), then γ ◦ γ1(∆) contains
γ(P ), and consequently meets the ball Bd(P, ε). Therefore, γ◦γ1 = γi

and γ = γi ◦ γ−1
1 for some i = 1, 2, . . . , n. It follows that there are

only finitely many such γ ∈ Γ. �

In particular, by Proposition 7.6, there is a well-defined quotient
metric space (X̄, d̄) = (X/Γ, d̄) when Γ admits a fundamental domain
∆. The next section describes this quotient space in terms of edge
gluings of the polygon ∆.

7.3.2. Fundamental domains and quotient spaces. Let ∆ be
a fundamental domain for the isometric action of Γ on (X, d) =
(R2, deuc), (H2, dhyp) or (S2, dsph). Let E1, E2, . . . , En be its edges.
In the tiling of X by the images of ∆ under the elements of Γ, each
edge Ej separates ∆ from some other tile γj(∆) and coincides with
the image γj(Eij

) of an edge Eij
, possibly with Eij

= Ej . Note
that Eij

separates ∆ from γ−1
j (∆), and is equal to γ−1

j (Ej), so that
γji

= γ−1
j . As a consequence, the rule j �→ i defines a bijection of

{1, 2, . . . , n}.
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In this situation, it is more convenient to write j = ji and ϕi =
γji

= γ−1
i . In particular, ϕi is an element of Γ, and sends the edge

Ei to the edge Eji
.

Theorem 7.11. Let ∆ be a fundamental domain for the isometric
action of the group Γ over (X, d) = (R2, deuc), (H2, dhyp) or (S2, dsph).
As above, consider for each edge Ei of ∆ the element ϕi ∈ Γ sending
Ei to some other edge Eji

(possibly equal to Ei). Then the group Γ
is generated by the ϕi.

Proof. Let γ ∈ Γ. Let g be an oriented geodesic arc in (X, d) going
from a point P in the interior of ∆ to a point Q in the interior of
γ(∆).

We claim that g can meet only finitely may vertices and finitely
many edges of the tessellation of X by the images of ∆ under the
elements of Γ. This follows from the fact that as a bounded closed
subset of X = R2, H2 or S2, the geodesic g is compact (see Theo-
rems 6.13, 6.15 or 6.16). If g met infinitely many edges, looking at
the intersection points of g with these edges and extracting a con-
verging subsequence, the limit of that subsequence would contradict
the Local Finiteness Condition in the definition of tessellations.

In particular, g meets only finitely many vertices of the tessel-
lation. By slightly moving g (and its endpoints P and Q), we can
arrange that it actually meets no vertex of the tessellation.

Let ∆, γ1(∆), γ2(∆), . . . , γm−1(∆), γm(∆) = γ(∆) be the tiles of
the tessellation traversed by g, in this order. It is quite possible that
two γk are equal when the fundamental domain ∆ is not convex. Let
Eik

and Ejk
be the edges such that the geodesic g enters the tile γk(∆)

by the edge γk(Eik
) and exits it by the edge γk(Ejk

). In particular,
γk(Eik

) = γk−1(Ejk−1), with the convention that γ0 = IdX .

By construction, ϕik
is the unique element of Γ that sends ∆ to

a tile ϕik
(∆) adjacent to ∆ in such a way that ϕik

(Eik
) coincides

with another edge of ∆. It follows that ϕik
= γ−1

k−1 ◦ γk, namely,
γk = γk−1 ◦ ϕik

.

By induction,

γ = γm = ϕi1 ◦ ϕi2 ◦ · · · ◦ ϕim
.
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Since this holds for every γ ∈ Γ, this proves that Γ is generated by
the ϕi. �

The isometries ϕi, sending an edge Ei of the polygon ∆ to another
edge Eji

, define a gluing data of the type considered in Sections 4.3
and 4.5. However, note that it is quite possible that ji = i, so that
the edge Ei may actually be glued to itself as in Section 6.3.4.

Let (∆̂, d̂∆) be the quotient space obtained from the polygon ∆
by performing the edge gluings specified by the isometries ϕi. Here,
we are using hats ̂ instead of bars ¯ to distinguish objects in (∆̂, d̂∆)
from elements of the other quotient metric space (X̄, d̄) = (X/Γ, d̄),
the quotient of (X, d) by the action of the group Γ. In particular, a
point P ∈ ∆ defines points P̂ ∈ ∆̂ and P̄ ∈ X̄ in each of these two
quotient spaces.

Theorem 7.12. Let the group Γ act by isometries and discontinu-
ously on (X, d) = (R2, deuc), (H2, dhyp) or (S2, dsph), and let ∆ be a
fundamental domain for the action of Γ. Then, for the above defini-
tions, the space (∆̂, d̂∆) obtained by gluing edges of ∆ is isometric to
the quotient space (X/Γ, d̄) of (X, d) by the action of Γ.

Proof. By definition of the gluing process, if two points P and Q ∈ ∆
give the same point P̂ = Q̂ in the quotient space ∆̂, then Q is the
image of P under a composition of gluing maps ϕi (none if P is an
interior point of ∆, exactly one ϕi if P and Q belong to edges but
are not vertices, and possibly several ϕi when P and Q are vertices).
As a consequence, when P and Q define the same point in ∆̂, there
exists an element γ ∈ Γ such that Q = γ(P ), so that P and Q also
define the same element P̄ = Q̄ in X/Γ.

We can therefore define a map ρ: ∆̂ → X/Γ by associating P̄ ∈
X/Γ to P̂ ∈ ∆̂. Indeed, the above observation shows that P̄ ∈ X/Γ
does not depend of the point P that we used to represent P̂ ∈ ∆̂.

To show that ρ is surjective, consider an element P̄ ∈ X/Γ, rep-
resented by P ∈ X. Because the images γ(∆) of the fundamental
domain ∆ under the elements γ of Γ cover all of X, there exists a
point P ′ ∈ ∆ and a group element γ ∈ Γ such that P = γ(P ′). Then,
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P̄ is equal to P̄ ′ in the quotient space X/Γ, which itself is the image
under ρ of the element P̂ ′ ∈ ∆̂. This proves that ρ is surjective.

To prove that ρ is injective, suppose that P , Q ∈ ∆ are such
that ρ(P̂ ) = ρ(Q̂), namely, such that P̄ = Q̄ in X/Γ. This property
means that there exists γ ∈ Γ such that P = γ(Q). In particular,
the two tiles ∆ and γ(∆) meet at P . If P is in interior point of ∆,
this is possible only if γ = IdX , so that P is equal to Q. If P is in
an edge and is not a vertex, then by definition γ is one of the gluing
maps ϕi, so that P and Q = ϕi(P ) define the same point P̂ = Q̂

in ∆̂. Finally, if P is a vertex, let ∆ = γ0(∆), γ1(∆), γ2(∆), . . . ,
γk(∆) = γ(∆) be a sequence of tiles going from ∆ to γ(∆) around
P . There are two possible such sequences, according to the direction
in which one turns around P . By construction, each tile γj(∆) meets
γj+1(∆) along an edge γj+1(Eij

) near P , so that γ−1
j ◦ γj+1 is equal

to the gluing map ϕij
. In particular, the two vertices γ−1

j (P ) and
γ−1

j+1(P ) are glued together by the gluing map ϕij
. As a consequence,

the element P̂ ∈ ∆̂ contains the vertices P = γ−1
0 (P ), γ−1

1 (P ), . . . ,
γ−1

k−1(P ), γ−1
k (P ) = γ−1(P ) = Q of ∆, so that P̂ = Q̂.

In all cases we therefore showed that if two points P and Q ∈ ∆
define the same point P̄ = Q̄ ∈ X/Γ, then they also correspond to
the same point P̂ = Q̂ in the quotient space ∆̂. This proves that ρ is
injective, and therefore bijective.

Since ∆ is a subset of X, every discrete walk w from P̂ to Q̂ ∈ ∆̂ in
∆ is also a discrete walk from P̄ to Q̄ ∈ X/Γ in X, and �d(w) � �d∆(w)
since d(P ′, Q′) � d∆(P ′, Q′) for every P ′, Q′ ∈ ∆. It follows that
d̄(P̄ , Q̄) � d̂∆(P̂ , Q̂).

Conversely, consider P , Q ∈ ∆ ⊂ X. For ε > 0, Proposition 7.6
provides a γ ∈ Γ such that d(P, γ(Q)) < d̄(P̄ , Q̄) + ε. As in the proof
of Theorem 7.11, let g be a geodesic arc going from P to γ(Q) in
X, and meeting the tiles ∆ = γ0(∆), γ1(∆), γ2(∆), . . . , γm−1(∆),
γm(∆) = γ(∆) in this order. This time, g is allowed to cross the
vertices of the tiling.

For every i, let Pi and Qi ∈ ∆ be such that the piece of g crossing
γi(∆) goes from γi(Pi) to γi(Qi). Note that d∆(Pi, Qi) = d(Pi, Qi)
since these two points are joined by a geodesic contained in ∆. Also
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γi+1(Pi+1) = γi(Qi), so that P̄i+1 = Q̄i in X/Γ; it follows that Pi+1

and Qi are glued together in ∆̂ since we just proved that ρ is injec-
tive. Similarly, the last point Qm is glued to Q in ∆̂. Therefore, the
sequence P = P0, Q0 ∼ P1, Q1 ∼ P2, . . . , Qm−1 ∼ Pm, Qm ∼ Q

forms a discrete walk w from P̂ to Q̂ in ∆̂, whose d∆-length is

�d∆(w) =
m∑

i=0

d∆(Pi, Qi) =
m∑

i=0

d(Pi, Qi) =
m∑

i=0

d
(
γi(Pi), γi(Qi)

)
= �(g) = d

(
P, γ(Q)

)
< d̄(P̄ , Q̄) + ε,

where �(g) is the euclidean, hyperbolic or spherical arc length ac-
cording to whether X = R2, H2 or S2. It follows that d̂∆(P̂ , Q̂) <

d̄(P̄ , Q̄) + ε for every ε, and therefore that d̂∆(P̂ , Q̂) � d̄(P̄ , Q̄).

Since we had already proved the reverse inequality, this shows
that d̂∆(P̂ , Q̂) = d̄(P̄ , Q̄) for every P̂ , Q̂ ∈ ∆̂, and completes the
proof that ρ: ∆̂ → X/Γ, which associates P̄ ∈ X/Γ to P̂ ∈ ∆̂, is an
isometry from (∆̂, d̂∆) to (X/Γ, d̄). �

7.4. Dirichlet domains

We now prove a converse to Proposition 7.10 by showing that for any
discontinuous group Γ of isometries of the euclidean plane (R2, deuc),
the hyperbolic plane (H2, dhyp) or the sphere (S2, dsph), there always
exists a fundamental domain for the action of Γ. We will not use this
property until Section 12.4, where a variation of Dirichlet domains,
called Ford domains, will play an important role.
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This converse will hold provided we slightly extend our definition
of polygons in (X, d) = (R2, deuc), (H2, dhyp) or (S2, dsph). Namely,
we will allow a polygon ∆ to have infinitely many edges and vertices,
provided that the families of edges and vertices are locally finite in
the following sense: For every P ∈ ∆, there is a ball Bd(P, ε) centered
at P which meets only finitely many edges and vertices of ∆. Such
a polygon will be called a locally finite polygon to distinguish this
notion from the finite polygons considered so far. By compactness of
S2, one easily sees that a locally finite polygon in the sphere S2 can
have only finitely many edges and vertices, and consequently is finite.
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If the group Γ of isometries of the metric space (X, d) acts dis-
continuously on X, the Dirichlet domain of Γ centered at the point
P0 ∈ X is the subset

∆Γ(P0) = {P ∈ X; d(P, P0) � d(P, γ(P0)) for every γ ∈ Γ}.

In other words, the Dirichlet domain centered at P0 consists of those
points that are at least as close to P0 as to any other points of its
orbit. It is named after Gustav Lejeune Dirichlet (1805–1859), who
introduced a similar construction to study the number-theoretic prop-
erties of quadratic forms with integer coefficients. Dirichlet domains
and their variations are ubiquitous in mathematics, where they arise
under many different names. For instance, if we replace the orbit of
P0 by an arbitrary locally finite subset A ⊂ X, the similarly defined
subset of X is called the Voronoi domain of A centered at P0 ∈ A.
See also the Ford domains that we will consider in Section 12.4.

Theorem 7.13. Let the group Γ act by isometries and discontinu-
ously on (X, d) = (R2, deuc), (H2, dhyp) or (S2, dsph). Then, for every
P0 ∈ X, the Dirichlet domain ∆Γ(P0) is a locally finite polygon and,
as γ ranges over all the elements of the group Γ, the γ

(
∆Γ(P0)

)
form

a tessellation of X.

If, in addition, the point P0 is fixed by no element of Γ except
for the identity, then the Dirichlet domain ∆Γ(P0) is a fundamental
domain for the action of Γ.

We will split the proof of Theorem 7.13 into several lemmas. The
following elementary construction is the key geometric ingredient.

Lemma 7.14. Let P and Q be two distinct points in (X, d) =
(R2, deuc), (H2, dhyp) or (S2, dsph). Then the set of R ∈ X such that
d(P, R) = d(Q, R) is a complete geodesic βPQ of X. In addition, the
set of R ∈ X such that d(P, R) � d(Q, R) is the closed half-space
delimited by βPQ in X and containing P .

Proof. This is immediate by elementary geometry in the euclidean
and spherical case. See Exercise 2.4 for the hyperbolic case. �

By analogy with the euclidean case, the geodesic βPQ is the per-

pendicular bisector of the points P and Q.
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Lemma 7.15. If Γ acts by isometry and discontinuously on (X, d) =
(R2, deuc), (H2, dhyp) or (S2, dsph) then, for every P ∈ X and r > 0,
there are only finitely many γ ∈ Γ such that d

(
P, γ(P0)

)
� r.

Proof. Suppose, in search of a contradiction, that there are infinitely
many elements γ1, γ2, . . . , γn, . . . in Γ such that all γn(P0) belong
to the closed ball B of radius r centered at P , consisting of all Q ∈ X

such that d(P, Q) � r.

One easily checks that B is a closed subset of X. Since it is
clearly bounded, it follows from Theorems 6.13, 6.15 and 6.16 that B

is compact. As a consequence, there exists a subsequence (γnk
)k∈N

such that γnk
(P0) converges to some P∞ ∈ B as k tends to ∞.

This implies that for every ε, there exists a k0 such that
d
(
γnk

(P0), P∞
)

< ε
2 for every k � k0. In particular, for every k � k0,

d
(
P0, γ

−1
nk0

◦ γnk
(P0)

)
= d

(
γnk0

(P0), γnk
(P0)

)
� d

(
γnk0

(P0), P∞
)

+ d
(
P∞, γnk

(P0)
)

< ε
2 + ε

2 = ε.

So, for every ε > 0, we found infinitely many γ ∈ Γ for which γ(P0)
is in the ball Bd(P0, ε), contradicting the fact that the action of Γ is
discontinuous.

This proves that our original assumption was false and therefore
that B contains only finitely many γ(P ). �

Lemma 7.16. The Dirichlet domain ∆Γ(P0) is a locally finite poly-
gon.

Proof. For every γ ∈ Γ, let HP0γ(P0) be the set of points P ∈ X

such that d(P, P0) � d(P, γ(P0)). Lemma 7.14 shows that if γ(P0) �=
P0, HP0γ(P0) is a half-space delimited by the perpendicular bisector
βP0γ(P0) of P0 and γ(P0). If γ(P0) = P0, HP0γ(P0) is of course the
whole space X and we set βP0P0 to be the empty set in this case.

By definition, the Dirichlet domain ∆Γ(P0) is the intersection of
the half-spaces HP0γ(P0) as γ ranges over all elements of Γ. To prove
that ∆Γ(P0) is a locally finite polygon, it consequently suffices to
show that the family of geodesics βP0γ(P0) bounding the HP0γ(P0) is
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locally finite. Namely, for every P ∈ X, we need to find an ε such
that the ball Bd(P, ε) meets only finitely many βP0γ(P0).

Actually, any ε > 0 will do. If βP0γ(P0) ∩ Bd(P, ε) is nonempty,
pick a point Q in this intersection. By the Triangle Inequality, the
point Q is at distance � d(P, P0) + ε from P0. Since Q ∈ βγ , it is
also at the same distance from γ(P0) as from P0. Another applica-
tion of the Triangle Inequality then shows that γ(P0) is at distance
� 2d(P, P0) + 2ε from P0. By Lemma 7.15, this can happen for only
finitely many γ ∈ Γ.

This proves that the family of the perpendicular bisectors βP0γ(P0)

is finite, and therefore that the Dirichlet domain ∆Γ(P ) is a locally
finite polygon. �

Before proving that the images of the Dirichlet domain ∆Γ(P0)
under the elements of Γ tessellate X, let us first observe that each of
these images is also a Dirichlet domain.

Lemma 7.17. For every γ ∈ Γ, γ
(
∆Γ(P0)

)
= ∆Γ

(
γ(P0)

)
.

Proof. The Dirichlet domain ∆Γ

(
γ(P0)

)
consists of those P ∈ X

which are at least as close to γ(P0) as to any other point of the orbit
Γ(γ(P0)) = Γ(P0). Since γ is an isometry of X, this property is
equivalent to the fact that γ−1(P ) is at least as close to P0 as to any
other point of its orbit. Therefore, P is in ∆Γ

(
γ(P0)

)
if and only if

γ−1(P ) is in ∆Γ(P0), namely, if and only if P is in γ
(
∆Γ(P0)

)
. �

Lemma 7.18. As γ ranges over all the elements of Γ, the Dirichlet
domains ∆Γ

(
γ(P0)

)
form a tessellation of X.

Proof. A point P ∈ X belongs to ∆Γ

(
γ(P0)

)
if and only if d

(
P, γ(P0)

)
is equal to

inf{d(P, γ′(P0); γ′ ∈ Γ} = d̄(P̄ , P̄0),

where the equality comes from Proposition 7.6. Lemma 7.15 shows
that there are only finitely many γ′ ∈ Γ such that d

(
P, γ′(P0)

)
<

d̄(P̄ , P̄0) + 1. This has two consequences.

The first one is that there exists at least one γ such that
d
(
P, γ(P0)

)
= d̄(P̄ , P̄0). Indeed, the above observation shows that

it suffices to consider the infimum over finitely many elements, so
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that the infimum is actually a minimum. As a consequence, there
exists γ ∈ Γ such that P ∈ ∆

(
γ(P0)

)
.

The second consequence is that the set of γ ∈ Γ such that P ∈
∆

(
γ(P0)

)
is a finite set {γ1, γ2, . . . , γn}. In particular, P belongs to

only finitely many Dirichlet domains ∆Γ

(
γ(P0)

)
and, near P , these

∆Γ

(
γi(P0)

)
are delimited by the perpendicular bisectors βγi(P0)γj(P0).

These two properties show that the union of the domains
∆Γ

(
γ(P0)

)
is equal to X and that when two distinct ∆Γ

(
γ(P0)

)
and

∆Γ

(
γ′(P0)

)
meet, they meet along edges and/or vertices. Since any

two of these Dirichlet domains are isometric by Lemma 7.17, this
completes the proof. �

The combination of Lemmas 7.17 and 7.18 shows that the im-
ages of the Dirichlet domain ∆Γ(P0) under the action of Γ form a
tessellation of X. This was the main statement of Theorem 7.13.

To prove the second part of this theorem, assume that the stabi-
lizer ΓP0 consists only of the identity map. Then, whenever γ �= γ′,
the two points γ(P0) and γ′(P0) are distinct so that the Dirichlet
domains ∆Γ

(
γ(P0)

)
= γ

(
∆Γ(P0)

)
and ∆Γ

(
γ′(P0)

)
= γ′(∆Γ(P0)

)
are

distinct. This is exactly the additional condition needed to prove that
∆Γ(P0) is a fundamental domain.

This concludes the proof of Theorem 7.13. �

For Theorem 7.13 to provide a (locally finite) fundamental do-
main for the action of Γ, we need to find a point P0 whose stabilizer
ΓP0 consists only of the identity. This of course is automatic when the
action is free. In the general case, almost every P0 ∈ X will have the
required property. Indeed, the analysis of all possible stabilizers in
Exercise 7.12 (suitably extended to the euclidean and spherical con-
texts) shows that every point of X can be approximated by a point
with a trivial stabilizer.

From
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We will let you check that the results of Sections 4.3, 4.4, 4.5, 6.3
and 7.3 on edge gluings of polygons immediately extend from finite
polygons to locally finite polygons ∆ in X = R2 or H2, provided that
we impose the following additional condition.

Finite Gluing Condition. Each point of the polygon ∆ is glued to
only finitely many other points of ∆.
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Exercises for Chapter 7

Exercise 7.1. For every rational number p
q
, let γ p

q
: R → R be the trans-

lation defined by γ p
q
(x) = x + p

q
.

a. Show that the set Γ = {γ p
q
; p

q
∈ Q} of all such rational translations is

a goup of isometries of the metric space (R, deuc).

b. Show that the quotient semi-metric d̄ induced by d = deuc on the
quotient space X̄ = X/Γ is not a metric. Actually, compute d̄(P̄ , Q̄)
for every P̄ , Q̄ ∈ X̄.

Exercise 7.2. This exercise is devoted to a few classical transformation
groups that arise in linear algebra.

a. Let the general linear group GLn(R) consist of all the linear maps
Rn → Rn whose associated matrix M has nonzero determinant
det(M) �= 0. Show that GLn(R) is a transformation group of Rn.
Hint: It may be useful to remember that any n × n-matrix M with
det(M) �= 0 admits an inverse, and that det(MN) = det(M) det(N).

b. Let the special linear group SLn(R) consist of all the linear maps
Rn → Rn whose associated matrix M has determinant det(M) equal
to 1. Show that SLn(R) is a transformation group of Rn.

c. Let the projective space RPn−1 consist of all the lines passing through
the origin in Rn (compare Exercise 2.12). Every ϕ ∈ GLn(R) induces
a map ϕ̄: RPn−1 → RPn−1, which associates to each line L ∈ RPn−1

the line ϕ(L) ∈ RPn−1. Show that as ϕ ranges over all elements of
GLn(R), the corresponding maps ϕ̄ form a transformation group of
RPn−1. This group is called the projective general linear group
and is traditionally denoted by PGLn(R).

d. Let the projective special linear group PSLn(R) consist of all the
maps ϕ̄ : RPn−1 → RPn−1 induced as in part c by linear maps ϕ ∈
SLn(R). Show that PSLn(R) is a transformation group of RPn−1.

Exercise 7.3 (Abstract groups). A group law on a set Γ is a map Γ×Γ →
Γ, denoted by (γ, γ′) �→ γ · γ′ ∈ Γ for every γ, γ′ ∈ Γ, such that:

a. γ · (γ′ · γ′′) = (γ · γ′) · γ′′ for every γ, γ′, γ′ ∈ Γ;

b. there exists an element ι ∈ Γ such that γ · ι = ι · γ = γ for every γ ∈ Γ;

c. for every Γ ∈ Γ, there exists an element γ′ ∈ Γ such that γ · γ′ =
γ′ · γ = ι.

Show that if Γ is a transformation group on a set X, the map Γ×Γ → Γ
defined by (γ, γ′) �→ γ ◦ γ′ is a group law on Γ.

An abstract group is the data of a set Γ and of a group law on Γ.
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Exercise 7.4. Let the group Γ act discontinuously and by isometries on
the metric space (X, d). Show that if X is compact, Γ is necessarily finite.

Exercise 7.5. Let the group Γ act by isometries on (X, d) = (R2, deuc),
(H2, dhyp) or (S2, dsph). Show that if Γ acts discontinuously at some point
P0 ∈ X, in the sense that there exists an ε > 0 such that γ(P ) ∈ Bd(P0, ε)
for only finitely many γ ∈ Γ, then it acts discontinuously at all points
P ∈ X. Possible hint: Borrow ideas from the proof of Lemma 7.15.

Exercise 7.6. Let the group Γ act discontinuously on the complete metric
space (X, d). We want to show that the quotient space (X/Γ, d̄) is complete.
For this, let (P̄n)n∈N be a sequence in this quotient space X̄ = X/Γ with
finite length

P∞
n=1 d̄(P̄n, P̄n+1) < ∞.

a. By induction on n, construct a sequence (P ′
n)n∈N in X such that for

every n, P̄ ′
n = P̄n and d(P ′

n, P ′
n+1) � d̄(P̄n, P̄n+1) + 2−n. Hint: Propo-

sition 7.6.

b. Show that the sequence (P ′
n)n∈N converges to some point P∞ ∈ X.

c. Conclude that (P̄n)n∈N converges to P̄∞ in (X/Γ, d̄).

Exercise 7.7. Let Γ be the group of integral translations of the euclidean
plane (R2, deuc), of the form (x, y) �→ (x + m, y + n) with (m, n) ∈ Z2.

a. Let Y be the parallelogram with vertices (0, 0), (1, 1), (2, 1) and (1, 0),
as in Figure 6.5. Prove that Y is a fundamental domain for the action
of Γ. Possible hint: Glue opposite sides of Y , apply Theorem 6.1, and
check that the corresponding tiling group is equal to Γ.

b. Do the same for the parallelogram whose vertices are (0, 0), (1, 1), (3, 2)
and (2, 1).

Exercise 7.8. Let Γ be the group of isometries of (S2, dsph) consisting of
the identity map IdS2 and of the antipode map γ defined by γ(P ) = −P .

a. Check that Γ is really a transformation group acting discontinuously
on S2.

b. Show that the quotient space (S2/Γ, d̄sph) is isometric to the projective
plane of Section 5.3. Hint: Find a fundamental domain for the action
of Γ and apply Theorem 7.12.

Exercise 7.9. In the euclidean plane, consider the infinite strip Xw =
[0, w] × (−∞, +∞) of width w > 0 and, for t ∈ R, let X̄w,t be the cylinder
obtained from Xw by gluing the left-hand side {0} × (−∞, +∞) to the
right-hand side {w}× (−∞, +∞) by the translation ϕ: {0}× (−∞, +∞) →
{w} × (−∞, +∞) defined by ϕ(0, y) = (w, y + t). Endow X̄w,t with the
quotient metric d̄euc induced by the euclidean metric deuc of Xw.

a. Show that (X̄w,t, d̄euc) is isometric to a quotient space (R2/Γw,t, d̄euc),
where Γw,t is the group of isometries of the euclidean plane (R2, deuc)
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generated by a translation along a certain vector of length
√

w2 + t2.
Hint: Theorems 6.1 and 7.12.

b. Suppose that w2
1 + t21 = w2

2 + t22. Show that the cylinders (X̄w1,t1 , d̄euc)
and (X̄w2,t2 , d̄euc) are isometric. Possible hint: First find a euclidean
isometry ψ: (R2, deuc) → (R2, deuc) such that Γw2,t2 = {ψ◦γ ◦ψ−1; γ ∈
Γw1,t1}, and then use ψ to construct and isometry ψ̄:(R2/Γw1,t1, d̄euc)→
(R2/Γw2,t2 , d̄euc).

c. Show that the cylinders (X̄w1,0, d̄euc) and (X̄w2,0, d̄euc) are not iso-
metric if w1 �= w2. Possible hint: Look at closed geodesics in these
cylinders.

d. Show that the cylinders (X̄w1,t1 , d̄euc) and (X̄w2,t2 , d̄euc) are isometric
if and only if w2

1 + t21 = w2
2 + t22.

Exercise 7.10. Let the group Γ act isometrically and discontinuously on
the metric space (X, d). Let ∆ be the Dirichlet domain of Γ at P . Show
that ∆ is invariant under the stabilizer ΓP of P , namely that γ(∆) = ∆
for every γ ∈ Γ with γ(P ) = P .

Exercise 7.11. For a ∈ R, let Γ be the group of isometries of the euclidean
plane (R2, deuc) generated by the translations ϕ1 : (x, y) �→ (x + 1, y) and
ϕ2: (x, y) �→ (x + a, y + 1). Determine the Dirichlet domain ∆Γa(O) of Γa

centered at the origin O = (0, 0). The answer will depend on a.

Exercise 7.12 (2-dimensional stabilizers). Let Γ act by isometries and
discontinuously on the hyperbolic plane. The goal of the exercise is to
determine the possible types for a stabilizer ΓP . It will be convenient to
use the ball model (B2, dB2). Using a hyperbolic isometry ϕ sending P to O
and replacing Γ by the group {ϕ ◦ γ ◦ ϕ−1; γ ∈ Γ}, we can assume without
loss of generality that P is the euclidean center O of the disk B2.

a. Show that every element of the stabilizer ΓO is the restriction to B2 of
either a euclidean rotation around O or a euclidean reflection across a
line passing through O.

b. Suppose that every element of ΓO is a rotation. Show that there exists
an integer n � 1 so that ΓO consists of the n rotations around O of
angles 2kπ

n
, with k = 0, 1, . . . , n − 1. Hint: Consider an element of

ΓO − {IdH2} whose rotation angle is smallest.

c. Suppose that ΓO contains at least one reflection. Show that there
exists an integer n � 1 and a line L passing through the origin such
that ΓO consists of the n rotations around O of angles 2kπ

n
, with k = 0,

1, . . . , n−1, and the n reflections across the lines obtained by rotating
L around O by angles kπ

n
, with k = 0, 1, . . . , n − 1. Hint: First

consider the elements of ΓO that are rotations.
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Exercise 7.13. Let the group Γ act by isometries and discontinuously
on the hyperbolic plane (H2, dhyp). Let P be a point whose stabilizer ΓP

contains more elements than just the identity map.

a. Show that there is an angle sector A, delimited by two infinite geodesics
issued from P , which is a fundamental domain for the action of ΓP . It
may be convenient to use Exercise 7.12.

b. Let ∆Γ(P ) be the Dirichlet domain of Γ at P . Show that the intersec-
tion A ∩ ∆Γ(P ) is a fundamental domain for the action of Γ.

Exercise 7.14. Let Γ act by isometries and discontinuously on the hyper-
bolic plane (H2, dhyp).

a. Let ΓP be the stabilizer of a point P ∈ H2, and choose an arbitrary ε >
0. Show that the quotient space (Bdhyp(P, ε)/ΓP , d̄hyp) is isometric,

either to a hyperbolic cone of radius ε and cone angle 2π
n

for some
integer n � 1 (as defined in Exercise 4.7 for the euclidean context) or
to a hyperbolic disk sector of radius ε with angle π

n
for some integer

n � 1. Hint: Use Exercises 7.12 and 7.13.

b. Assume, in addition, that every element of Γ is a linear fractional map.
Show that the quotient space (H2/Γ, d̄hyp) is a hyperbolic surface with
cone singularities, as defined in Exercise 4.8. Hint: Use Theorem 7.8.

Exercises 7.12, 7.13 and 7.14 have immediate generalizations to the
euclidean and spherical context.

                

                                                                                                               



Chapter 8

The Farey tessellation
and circle packing

The Farey tessellation and circle packing rank among some of the
most beautiful objects in mathematics. It turns out that they are
closely related to the punctured torus that we encountered in Sec-
tion 5.5, and to the tiling group of the corresponding tessellation
constructed in Section 6.6. Some of the exercises at the end of this
chapter explore additional connections between the Farey tessellation
and various number-theoretic and combinatorial problems.

8.1. The Farey circle packing and tessellation

∞ = 1
0

− 3
1

− 2
1

− 1
1

0
1

1
1

2
1

3
1

− 5
2

− 3
2

− 1
2

1
2

3
2

5
2

1
3

2
3

4
3

5
3

7
3

8
3

Figure 8.1. The Farey circle packing
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For every rational number p
q ∈ Q with p, q coprime and q > 0,

draw in the plane R2 the circle C p
q

of diameter 1
q2 that is tangent

to the x-axis at (p
q , 0) and lies above this axis. These circles C p

q
fit

together to form the pattern illustrated in Figure 8.1.

We can get a better view of this circle pattern by zooming in, as
in Figures 8.2 and 8.3.
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Figure 8.2. Zooming in on the Farey circle packing
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Figure 8.3. Zooming in once more on the Farey circle packing
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By inspection, we can make the following experimental observa-
tions:

• the circles C p
q

have disjoint interiors;

• two circles C p
q

and C p′
q′

are tangent exactly when

pq′ − p′q = ±1;

• three circles C p
q
, C p′

q′
and C p′′

q′′
with p

q < p′′

q′′ < p′

q′ are tangent

to each other exactly when p′′

q′′ is the Farey sum p
q ⊕ p′

q′ of
p
q and p′

q′ , namely, when

p′′

q′′ = p
q ⊕ p′

q′ = p+p′

q+q′ .

The same properties hold if we consider, in addition, the infinite
rational number ∞ = 1

0
= −1

0
and introduce C∞ as the horizontal
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Figure 8.4. The Farey circle packing in the disk model B2
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line of equation y = 1, while the interior of C∞ is defined as the
half-space consisting of those points (x, y) with y > 1.

The family of the circles C p
q

is the Farey circle packing .

Some of the beauty of this collection of circles is also visible in
Figure 8.4, which represents the image of the Farey circle packing
in the disk model B2 for the hyperbolic plane, under the linear frac-
tional map Φ(z) = − z−i

z+i sending the upper half-plane to the disk B2.
The numbers in that picture label some of the images Φ(p

q ) of the
corresponding points p

q ∈ Q.

Quite remarkably, this Farey circle packing is related to the hy-
perbolic punctured torus that we considered in Section 5.5.

We can get a hint at this relationship if we erase the circles C p
q
,

and if we connect the two points (p
q , 0) and (p′

q′ , 0) by a semi-circle
centered on the x-axis exactly when the circles C p

q
and C p′

q′
are tan-

gent. The resulting collection of hyperbolic geodesics is illustrated in
Figure 8.5, which bears a strong analogy with the tessellation of Fig-
ure 6.12 that we associated to our hyperbolic punctured torus. This
connection is made precise in Section 8.2.

Figures 8.6 and 8.7 are obtained by zooming in on this collection
of semi-circles, called the Farey tessellation of the hyperbolic plane.
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Figure 8.5. The Farey tessellation

The Farey circle packing and the Farey tessellation are named af-
ter John Farey (1766–1826), a geologist who experimentally observed
(without proof) the following elementary property. For a fixed num-
ber N > 0, consider all rational numbers p

q with 0 � p � q � N
                

                                                                                                               



8.1. The Farey circle packing and tessellation 211

1
3

1
2

5
16

4
11

3
8

5
13

2
5

5
12

3
7

4
9

5
11

5
14

6
13

7
15

Figure 8.6. Zooming in on the Farey tessellation
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Figure 8.7. Zooming in once more on the Farey tessellation

coprime, and list these numbers by order of increasing size

0 <
1
N

< · · · <
pi−1

qi−1
<

pi

qi
<

pi+1

qi+1
< · · · <

N − 1
N

< 1.

Then, pi+1qi − piqi+1 = 1 for any two consecutive pi

qi
< pi+1

qi+1
, and

pi

qi
= pi−1

qi−1
⊕ pi+1

qi+1
for any three consecutive pi−1

qi−1
< pi

qi
< pi+1

qi+1
. The same

property had actually been discovered, with partial proofs, earlier in
1802 by C. Haros. However, the name of Farey series of order N

became attached to the above sequence when Augustin Cauchy, who
was only aware of Farey’s note [Farey], provided a complete proof of
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these two statements in 1816. A good reference for the Farey series
is [Hardy & Wright].

Of course, Farey did not know anything about hyperbolic geome-
try. The first published account of what we call here the Farey circle
packing is due to Lester R. Ford (1886–1967) [Ford2]. In particular,
these circles are also often called Ford circles .
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Figure 8.8. The Farey tessellation in the disk model for H2

8.2. The Farey tessellation and the
once-punctured torus

Let us go back to the tessellation of the hyperbolic plane H2 dis-
cussed in Section 6.6. We started with the hyperbolic square X with
vertices 0, +1, −1 and ∞ ∈ R ∪ {∞} at infinity of H2. We also con-
sidered the transformation group Γ generated by the transformations
ϕ1(z) = z+1

z+2 and ϕ3(z) = z−1
−z+2 . We then showed that the polygons
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ϕ(X), as ϕ ranges over all the elements of Γ, form a tessellation of
H2.

Let us split the square X along the diagonal 0∞ into the two
triangles T+ and T−, where T+ has vertices 0, +1 and ∞ and T−

has vertices 0, −1 and ∞. Note that the hyperbolic reflection z �→ −z̄

across the vertical half-line 0∞ exchanges T+ and T−, so that these
two triangles are isometric. (Actually, Lemma 8.4 below will show
that any two triangles with vertices at infinity are isometric.)

It follows that the collection of the triangles ϕ(T+) and ϕ(T−),
with ϕ ∈ Γ, forms a tessellation of H2 by ideal triangles. Let T denote
this tessellation.

We will prove that this tessellation is exactly the Farey tessella-
tion, in the sense that its edges are exactly the hyperbolic geodesics
joining p

q to p′

q′ when pq′ − p′q = ±1.

For this it is convenient to consider, as in Example 7.3, the set
PSL2(Z) consisting of all linear fractional maps

ϕ(z) =
az + b

cz + d
,

with a, b, c, d ∈ Z and ad − bc = 1. We already observed in Ex-
ample 7.3 that PSL2(Z) is a transformation group of H2. See Exer-
cises 2.12 and 7.2 for an explanation of the notation.

Since the gluing maps ϕ1 and ϕ3 generating Γ are elements of
PSL2(Z), we conclude that Γ is contained in PSL2(Z).

When we consider a rational number p
q
∈ Q ∪ {∞}, we will use

the convention that p and q are coprime and that q > 0, with the
exception of ∞ = 1

0 = −1
0 . We say that p

q , p′

q′ ∈ Q ∪ {∞} form a
Farey pair if pq′ − p′q = ±1.

Lemma 8.1. If ϕ ∈ PSL2(Z) and if p
q , p′

q′ ∈ Q ∪ {∞} form a Farey

pair, then ϕ(p
q ) and ϕ(p′

q′ ) form a Farey pair.

Proof. Immediate computation. �

Note that the pairs {0,∞}, {1,∞} and {−1,∞} are Farey pairs.
From Lemma 8.1 and the fact that Γ ⊂ PSL2(Z), we conclude that
the endpoints of each edge of the tessellation T form a Farey pair.
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Conversely, let g be a geodesic of H2 whose endpoints form a
Farey pair.

Lemma 8.2. Let g1 and g2 be two distinct geodesics of H2 whose
endpoints each form a Farey pair. Then g1 and g2 are disjoint.

Proof. If the endpoints of g1 are p1
q1

and p′
1

q′
1

and if we choose the
indexing so that p′1q1 − p1q

′
1 = +1, the map ϕ ∈ PSL2(Z) defined by

ϕ(z) = q1z−p1
−q′

1z+p′
1

sends g to the geodesic with endpoints 0 and ∞. Let
p2
q2

and p′
2

q′
2

be the endpoints of ϕ(g2). If g and g′ meet each other,

then ϕ(g′) must meet ϕ(g) so that p2
q2

and p′
2

q′
2

have opposite signs.
But this is incompatible with the fact that by Lemma 8.1, they must
satisfy the Farey relation p2q

′
2 − p′2q2 = ±1. �

Lemma 8.2 shows that a geodesic g whose endpoints form a Farey
pair must be an edge of the tessellation T. Indeed, the tiles of the tes-
sellation T are ideal triangles, and their interiors consequently cannot
contain any complete geodesic. Therefore, g must meet an edge g′ of
T, and must be equal to g′ by Lemma 8.2.

This shows that the edges of the tessellation T are exactly the
complete geodesics of H2 whose endpoints in R ∪ {∞} form a Farey
pair. As a consequence, the tessellation T coincides with the Farey
tessellation. In particular, this proves that the Farey tessellation is
indeed a tessellation, something that we had taken for granted so far.

8.3. Horocircles and the Farey circle packing

If ξ ∈ R ∪ {∞} is a point at infinity of the hyperbolic plane H2,
recall from Section 6.8 that a horocircle centered at ξ is a curve
H = C − {ξ} ⊂ H2 where C is a euclidean circle passing through ξ

and tangent to R. In particular, when ξ = ∞, a horocircle is just a
horizontal line contained in H2.

Note that since linear and antilinear fractional maps send circles
to circles, every isometry of H2 sends horocircle to horocircle.

We had already encountered horocircles when analyzing the punc-
tured torus of Section 5.5. For a given a, we indeed used horocircles
C∞, C−1, C0, C1 centered at ∞, −1, 0, 1, respectively, to cut out
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∞

0−1 1

E1 E3

E4 E2

Figure 8.9. A hyperbolic square with horocircles

pieces U∞, U−1, U0, U1 from the hyperbolic square X. If we take the
value a to be equal to 1 (which was not allowed in Section 5.5), these
horocircles are tangent to each other. See Figure 8.9.

This is the secret behind the Farey circle packing. Indeed, we
observed in Section 5.5 that the gluing maps ϕ1, ϕ2 = ϕ−1

1 , ϕ3, ϕ4 =
ϕ−1

3 respect this set of four horocircles, in the sense that ϕi(Cξ) = Cξ′

whenever ϕi(ξ) = ξ′. Therefore, as we tessellate the hyperbolic plane
H2 by the tiles ϕ(X) with ϕ ∈ Γ, the images of these four horocircles
under the transformations ϕ ∈ Γ form a family of horocircles, all
centered at points p

q ∈ Q ∪ {∞}. Looking at their intersection with
a given tile, it is immediate that two of these horocircles meet only
when they are tangent to each other, and that this happens exactly
when their centers are the ends of an edge of the Farey tessellation
T, namely, when their centers form a Farey pair.

The family of these horocircles, combined with the Farey tessel-
lation T, is illustrated in Figure 8.10 for the upper half-space H2, and
in Figure 8.11 for the disk model B2 for the hyperbolic plane.

To identify this family of horocircles to the Farey circle packing,
it suffices to combine the following lemma with the fact that Γ is
contained in PSL2(Z).

Lemma 8.3. Consider the horocircle C∞ = {z ∈ H2, Im(z) = 1}
centered at ∞. For every ϕ ∈ PSL2(Z) of the form

ϕ(z) =
az + b

cz + d
,
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with a, b, c, d ∈ Z and ad − bc = 1, the image ϕ(C∞) is equal to
C a

c
−{a

c }, where C a
c

is the euclidean circle of diameter 1
c2 tangent to

R at a
c .
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Figure 8.10. The Farey tessellation and circle packing
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Figure 8.11. The Farey circle packing and tessellation in the
disk model B2
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Proof. Since ϕ sends horocircle to horocircle and since it sends ∞ to
a
c , the only issue is to compute the (euclidean) diameter of the circle
C a

c
. This can be easily checked by decomposing ϕ as a composition of

horizontal translations, homotheties and inversions as in Lemma 2.12.
�

8.4. Shearing the Farey tessellation

We now revisit the complete and incomplete punctured tori of Sec-
tions 5.5 and 6.7.2, and their associated tessellations or partial tes-
sellations of the hyperbolic plane.

8.4.1. Revisiting the partial tessellations associated to in-
complete punctured tori. The key property is the following.

Lemma 8.4. Given a triple of distinct points ξ1, ξ2, ξ3 ∈ R ∪ {∞}
and another such triple of distinct points ξ′1, ξ′2, ξ′3 ∈ R ∪ {∞}, there
is a unique isometry ϕ of the hyperbolic plane (H2, dhyp) sending each
ξi to the corresponding ξ′i.

Also, at each ξi, there is a unique horocircle Ci centered at ξi

such that any two Ci and Cj are tangent to each other and meet at a
point of the complete hyperbolic geodesic going from ξi to ξj.

Proof. The first part is a simple algebraic computation, using the
fact that every isometry of the hyperbolic plane is a linear or an-
tilinear fractional map; compare Exercise 2.9. Observe that ϕ is
orientation-preserving, namely, it is linear fractional, precisely when
(ξ1−ξ2)(ξ2−ξ3)(ξ3−ξ1) and (ξ′1−ξ′2)(ξ

′
2−ξ′3)(ξ

′
3−ξ′1) have the same

sign (suitably interpreted when one of these points is equal to ∞).

To prove the second statement, the first part shows that we can
restrict attention to one specific example, such as the case where
the points are 0, 1 and ∞. The result then follows from elementary
geometric considerations. Compare Figure 8.9. �

A consequence of Lemma 8.4 is that every edge of an ideal triangle
has a preferred base point, namely, the point where the two horocircles
centered at its endpoints and singled out by Lemma 8.4 touch each
other.
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The hyperbolic punctured tori constructed in Sections 5.5 and
6.7.2 were obtained from the ideal square X with vertices −1, 0, 1
and ∞ by gluing the edge E1 going from −1 to ∞ to the edge E2

going from 0 to 1 by the map

ϕ1(z) =
z + 1
z + a

,

and by gluing the edge E3 going from 1 to ∞ to the edge E4 going
from 0 to −1 by the map

ϕ3(z) =
z − 1

−z + b
.

In the first case that we considered, in Section 5.5, the constants were
chosen so that a = b = 2 and the construction provided a complete
punctured torus.

Split the square X along its diagonal 0∞, namely, along the ge-
odesic going from 0 to ∞. This gives two ideal triangles, one with
vertices −1, 0, ∞, and another one with vertices 0, 1 and ∞. Apply-
ing Lemma 8.4 to these two triangles now provides a base point on
each of the edges of X, namely, P1 = −1 + i ∈ E1, P2 = 1

2 + i
2 ∈ E2,

P3 = 1 + i ∈ E3 and P4 = −1
2 + i

2 ∈ E4. Compare Figure 8.9.

When a = b = 2, the gluing maps ϕ1: E1 → E2 and ϕ3: E3 → E4

exactly send base point to base point. This is why when we tessel-
late the hyperbolic plane by the images of X under the elements of
the tiling group generated by ϕ1 and ϕ3, the horocircles fit nicely
together, as in Figure 8.10.

However, this is not so in the general case. We now give a geomet-
ric interpretation to the constants a and b occurring in the definition
of ϕ1 and ϕ3. First of all, recall the definition of the other gluing
maps defined by ϕ2 = ϕ−1

1 and ϕ4 = ϕ−1
3 .

In the edge E1 = ϕ2(E2), the base point determined by the horo-
circles of ϕ2(X) is the image ϕ2(P2) = −1+ i(a−1) of the base point
P2 = 1

2 + i
2 . In particular, the hyperbolic distance from this base

point to the base point P1 = −1 + i determined by the horocircles of
X is equal to |log(a − 1)|. More precisely, as seen from the interior
of X, ϕ2(P2) is at signed distance s1 = − log(a − 1) to the left of
P1, where we count the distance as negative when the point is to the
right.
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X

0 1−1
Figure 8.12. Horocircle arcs in the tessellation of Section 6.7.2

Note that this signed distance convention is symmetric. If we
look at the edge E1 = ϕ2(E2) from the interior of ϕ2(X), the base
point P1 marked on E1 = ϕ2(E2) by the horocircles of the “outside”
polygon X is also at signed distance s1 to the left of the base point
determined by the horocircles of ϕ2(X).

Transporting the geometric situation to the edge E2 = ϕ1(E1) by
ϕ1 = ϕ−1

2 , we see that, as seen from the interior of X, the base point
determined by ϕ1(X) is at signed distance s1 to the left of the base
point P2 determined by X.

Similarly, on the edge E3 = ϕ4(E4), the base point ϕ4(P4) deter-
mined by ϕ4(X) is at signed distance s3 = log(b − 1) from the base
point P3 determined by the horocircles of X as seen from the interior
of X. Also, on the edge E4 = ϕ3(E3), the base point ϕ3(P3) is to the
left of the base point P4 as seen from inside X.

Actually, we have the same situation on each edge of the partial
tessellation of the hyperbolic plane associated to the square X and
to the gluing maps ϕ1 and ϕ3. Each such edge E is of the form E =
ϕ(E1) or ϕ(E3) for some element ϕ of the tiling group Γ generated
by ϕ1 and ϕ3, and separates the polygons ϕ(X) from the polygon
ψ(X) associated to another ψ ∈ Γ. As seen from inside ϕ(X), the
base point determined by ψ(X) is at signed distance s1 if E = ϕ(E1),
and at signed distance s3 if E = ϕ(E3), to the left of the base point
determined by ϕ(X). This immediately follows by transporting to
ϕ(X) by ϕ our analysis of the partial tessellation near X.
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This is illustrated in Figure 8.12 in the case where s1 = 0.25
and s3 = −1. Compare this figure to Figures 8.9 and 8.10, and to
Figures 6.12 and 6.16.

In particular, every tile of this partial tessellation Ts1s3 corre-
sponds to a tile of the tessellation T associated to the case where
s1 = s3 = 0 (and corresponding to a complete punctured torus). Ac-
tually, one goes from T to Ts1s3 by progressively sliding all the tiles to
the left along the edges, and by a signed distance of s1 or s3 according
to whether the edge considered is associated to E1 or E3 by the tiling
group. We say that Ts1s3 is obtained by shearing T according to the
shear parameters s1 and s3.

8.4.2. Shearing the Farey tessellation. We can generalize the
above construction by introducing an additional edge, namely, the
diagonal of X formed by the geodesic joining 0 to ∞. This geodesic
splits X into two ideal triangles: the triangle T+ with vertices 0, 1
and ∞; and the triangle T− with vertices −1, 0 and ∞. Given an
additional shear parameter s5, we can then deform X by sliding T−

along E5 by a distance of s5 to the left of T+. Namely, we can replace
T− by its image under the hyperbolic isometry z �→ e−s5z.

∞

T+T−

0−e−s5 1

E1 E3

E4 E2

E5

Figure 8.13

The corresponding new hyperbolic quadrilateral (not a square
any more) is illustrated in Figure 8.13 in the case where s5 = −.25.

Starting with this sheared quadrilateral, we can then construct
a partial tessellation of the hyperbolic plane as before, using shear
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parameters s1 and s3. In practice, one begins by gluing the sides of
the new quadrilateral X using the gluing maps ϕ1 : E1 → E2 and
ϕ3: E3 → E4 defined by

ϕ1(z) =
es5z + 1

es5z + e−s1 + 1

and

ϕ3(z) = e−s5
z − 1

−z + es3 + 1
.

These formulas are easily obtained from the formulas for the original
gluing maps, using the fact that a = e−s1 + 1 and b = es3 + 1.
One can then consider the partial tessellation of the hyperbolic plane
associated to these edge gluings.

Figure 8.14 illustrates the case where s1 = 0.25, s3 = −0.75 and
s5 = −0.25.

T−

T+

0 1−e−s5

Figure 8.14. Shearing the Farey tessellation

Lemma 8.5. The images of X under the tiling group Γ generated by
the gluing maps ϕ1 and ϕ3 is the whole hyperbolic plane H2 exactly
when s1 + s3 + s5 = 0.

Proof. We will use Poincaré’s Polygon Theorem 6.25. The gluing
maps ϕ1 : E1 → E3, ϕ3 : E3 → E4, ϕ2 : E2 → E1 and ϕ4 : E4 → E2

form an edge cycle around the ideal vertex ∞ = {∞, 1, 0,−e−s5}.
This is the only edge cycle in the gluing data.

Theorem 6.25 asserts that the quotient space (X̄, d̄X) is complete
if and only if the composition map ϕ4 ◦ ϕ2 ◦ ϕ3 ◦ ϕ1 is horocyclic at
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∞. Remembering that ϕ2 = ϕ−1
1 and ϕ4 = ϕ−1

3 , an immediate
computation yields

ϕ4 ◦ ϕ2 ◦ ϕ3 ◦ ϕ1(z) = e2s1+2s3+2s5z + 1 + es3 + es3+s1

+ es3+s1+s5 + e2s3+s1+s5 + e2s3+2s1+s5 .

In particular, this map is horocyclic if and only if s1 + s3 + s5 = 0.

If s1 + s3 + s5 = 0, Theorem 6.25 guarantees that the quotient
space (X̄, d̄X) is complete. Then Theorem 6.1 shows that the images
of X under Γ tessellate H2. Note that X has no finite vertex, so that
the completeness of the quotient space is the only hypothesis that we
have to check when applying Theorem 6.1.

Conversely, suppose that the images of X under Γ tessellate H2.
Then, Theorem 7.12 shows that (X̄, d̄X) is isometric to the quotient
(H2/Γ, d̄Γ) of H2 under the action of Γ, and Exercise 7.6 implies
that (H2/Γ, d̄Γ) is complete. The converse part of Theorem 6.25 now
proves that s1 + s3 + s5 must be equal to 0. (We could also have used
the analysis of Section 6.7.2.) �

In Chapter 10, we will generalize this construction by allowing,
in addition to shearing, bending into a third dimension. For this,
we need to consider the 3-dimensional hyperbolic space, which we
introduce in the next chapter.

Exercises for Chapter 8

Exercise 8.1. Rigorously show that if the endpoints of an edge of the

Farey tessellation are p
q
, p′

q′ ∈ Q∪ {∞}, this edge separates two tiles of the

tessellation which are ideal triangles with respective vertices (at infinity) p
q
,

p′

q′ and p′′

q′′ with p′′

q′′ = p
q
⊕ p′

q′ and p′′

q′′ = p
q
⊕−p′

−q′ (abandonning the convention

that all fractions have positive denominator, by keeping numerators and
denominators coprime), where ⊕ denotes the Farey sum.

Exercise 8.2. Consider the hyperbolic square X of Figure 8.9, with ver-
tices −1, 0, 1, ∞. In Section 8.4, we split it along the geodesic 0∞ to
obtain two ideal triangles, and applying Lemma 8.4 to these two triangles
provided us with base points on each of the edges of X. Compute the base
points that one would have obtained if we had instead split X along the
other diagonal of the square, namely, along the hyperbolic geodesic going
from 1 to −1.
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Exercise 8.3 (The Farey Property). For every N > 0, consider all rational
numbers p

q
∈ Q whose denominator is such that 0 < q � N . Since there

are only finitely many such rational numbers between any two consecutive
integers, we can order all these rationals and list them as

· · · <
pi−1
qi−1

< pi
qi

<
pi+1
qi+1

< · · ·

with i ∈ Z, where qi > 0 and pi and qi are coprime. This bi-infinite
sequence is called the Farey series of order N .

a. Show that if p
q

and p′

q′ ∈ Q are such that p′q − pq′ = 1 and q, q′ > 0,

then |q′′| � q + q′ for every p′′

q′′ ∈ Q with p
q

< p′′

q′′ < p′

q′ , and equality

holds only for p′′

q′′ = p+p′

q+q′ . Hint: If p
q

< p′′

q′′ < p+p′

q+q′ , then

1
qq′′ � p′′

q′′ − p
q

< p+p′

q+q′ − p
q

= 1
q(q+q′) .

b. Prove by induction on N that that any two consecutive terms in the
Farey series form a Farey pair, namely that pi+1qi − piqi+1 = 1 for
every i ∈ Z. Hint: Use part a.

c. Show that any three consecutive terms of the Farey series are such

that pi
qi

=
pi−1
qi−1

⊕ pi+1
qi+1

, namely that pi
qi

=
pi−1+pi+1
qi−1+qi+1

for every i ∈ Z

(although pi−1 + pi+1 and qi−1 + qi+1 are not necessarily coprime).

Exercise 8.4 (Pythagorean triples). A Pythagorean triple is a triple
(a, b, c) of three coprime integers a, b, c � 0 such that a2 + b2 = c2. For
instance, (1, 0, 1) and (3, 4, 5) are well-known Pythagorean triples, while
(387, 884, 965) is probably a less familiar one.

a. Let S1 be the circle of radius 1 and center (0, 0) in the plane R2. Show
that the map Ψ: (a, b, c) �→ ( a

c
, b

c
) defines a one-to-one correspondence

between Pythagorean triples (a, b, c) and rational points of S1 located
in the first quadrant, namely, points (x, y) ∈ S1 whose coordinates x,
y are rational and nonnegative.

b. Consider our usual isometry Φ(z) = − z−i
z+i

from the upper half-space

(H2, dhyp) to the disk model (B2, dB2). Show that Φ sends each rational
point p

q
∈ Q ∩ [0, 1] to a rational point of S1 in the first quadrant.

c. Conversely, for (x, y) ∈ S1 with x, y rational and nonnegative, show
that Φ−1(x, y) is a rational number in the interval [0, 1].

As a consequence, the composition Ψ−1◦Φ provides a one-to-one correspon-
dence between rational numbers in the interval [0, 1] and all Pythagorean
triples. For instance, Ψ−1◦Φ( 1

2
)=(3, 4, 5), and Ψ−1◦Φ( 17

26
)=(387, 884, 965).
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T0

0
1

1
1

2
1

3
1

5
2

8
3

13
5

Figure 8.15. Traveling in the Farey tessellation

Exercise 8.5 (Travelling in the Farey tessellation). Consider a Farey tri-

angle T with nonnegative vertices p
q
, p+p′

q+q′ ,
p′

q′ � 0. This triangle can be

connected to the base triangle T0 with vertices 0, 1, ∞ by a sequence of
Farey triangles T0, T1, T2, . . . , Tn−1, Tn = T in such a way that each Ti+1

is adjacent to Ti and that the Ti are all distinct. As one enters Ti from
Ti−1, since we are not allowed to backtrack to Ti−1, there are exactly two
possibilities for Ti+1, which are respectively to the left or to the right of
Ti as seen from Ti−1. The above sequence of Farey triangles T0, T1, T2,
. . . , Tn−1, Tn = T can therefore be described by a sequence of symbols
S1S2 . . . Sn, where each Si is the symbol L if Ti+1 is to the left of Ti, and
Si is the symbol R if it is to the right of Ti. By convention, T0 is consid-
ered to have been entered through the edge 0∞, so that S1 = L if T1 is the
triangle 12∞, and S1 = R if T1 is the triangle 0 1

2
1.

For instance, Figure 8.15 illustrates the case of the triangle T with
vertices 13

5
, 21

8
and 8

3
, associated to the symbol sequence S1S2S3S4S5S6 =

LLRLRL. (The vertex 21
8

is not labeled due to lack of space.)

Finally, consider the matrices λ = ( 1 1
0 1 ) and ρ = ( 1 0

1 1 ), and let the
matrix σ be associated to the symbol sequence S1S2 . . . Sn by the property
that σ = σ1σ2 . . . σn where σi = λ when Si = L and to σi = ρ when
Si = R.

Show that the vertices p
q
, p+p′

q+q′ ,
p′

q′ of T can be directly read from the

matrix σ, by the property that σ =
`

p′ p

q′ q

´

. Hints: Proof by induction on

n. It may also be convenient to consider, as in Exercise 2.12, the linear
fractional map ϕα(z) = az+b

cz+d
associated to the matrix α =

`

a b
c d

´

, and note
that ϕλ sends T0 to the triangle 12∞ and that ϕρ sends T0 to the triangle
0 1

2
1.

Exercise 8.6 (The Farey tessellation and continued fractions). A contin-
ued fraction is an expression of the form
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[a1, a2, . . . , an] =
1

a1 +
1

a2 +
1

· · · +
1

an
.

For instance, [2, 1, 1, 1] = 8
3

and [2, 1, 1, 1, 1] = 13
5

. With the notation of
Exercise 8.5, write the symbol sequence S1S2 . . . Sn as Lm1Rn1Lm2Rn2 . . .
LmkRnk , where Lmi denotes mi � 0 copies of the symbol L, and similarly
Rni denotes ni � 0 copies of R.

Show that
p
q

= [m1, n1, m2, n2, . . . , mk, nk]

and
p′

q′ = [m1, n1, m2, n2, . . . , nk−1, mk],

using the conventions that 1
0

= ∞, 1
∞ = 0 and a+∞ = ∞. Hint: Induction

on k.

Exercise 8.7 (Domino diagrams). In the diagram

(8.1)
1 • → • → • → • → • → • → • 1

↘ ↘ ↗ ↘ ↗ ↘
2 • → • → • → • → • → • → • 2

consider, for i, j ∈ {1, 2}, the paths that jump from bullet to bullet by
following the arrows, and that go from the bullet marked i on the left to
the bullet marked j on the right; let nij be the number of such paths. For
instance one relatively easily sees that among the paths starting from the
bullet marked 2 on the left, three of them end at the bullet marked 1 while
five of them end at the bullet marked 2, so that n21 = 3 and n22 = 5. A
little more perseverance shows that n11 = 8 and n12 = 13.

The above diagram can also be described by chaining together two
types of “dominos”, namely

• → • • → •
↘ and ↗

• → • • → •

If we denote the domino on the left by L and the domino on the right by R,
the above diagram corresponds to the chain LLRLRL. Comparing with the
example discussed in Exercise 8.5, we may find it surprising that n11

n21
= 8

3
,

and n12
n22

= 13
5

. Namely, in the Farey tessellation, the path described by the

same symbol LLRLRL leads to the ideal triangle T with vertices n11
n21

, n12
n22

,

and n11+n12
n21+n22

. We want to show that this is no coincidence.
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Given a symbol sequence S1S2 . . . Sn, where each Si is L or R, consider
the domino diagram obtained by chaining together the dominos L and R
associated to the Si. Let σ be also the matrix associated to S1S2 . . . Sn, as
in Exercise 8.5. We will use the notation of that exercise.

a. Write σ =
` s11 s12

s21 s22

´

and σi =
“

s
(i)
11 s

(i)
12

s
(i)
21 s

(i)
22

”

. Remember that σ =

σ1σ2 . . . σn. Show that

sij =
X

i1,i2,...,in−1∈{1,2}

s
(1)
ii1

s
(2)
i1i2

s
(3)
i2i3

. . . s
(n)
in−1j .

It may be useful to first do a few examples with small n.

b. In our case, σi =
`

1 0
1 1

´

or
`

1 1
0 1

´

according to whether the symbol Si is

L or R. Show that each term s
(1)
ii1

s
(2)
i1i2

s
(3)
i2i3

. . . s
(n)
in−1j is equal to 0 or 1.

c. In the domino diagram associated to S1S2 . . . Sn, label each bullet on
the top row by 2 and each bullet on the lower row by 1. Show that

s
(1)
i0i1

s
(2)
i1i2

s
(3)
i2i3

. . . s
(n)
in−1in

= 1 if and only if there is a path in the domino

diagram where, for each k = 1, 2, . . . , n + 1, the kth bullet is labeled
by ik−1 ∈ {1, 2}.

d. Conclude that sij is equal to the number nij of paths from i to j in
the domino diagram.

e. Let T be the Farey triangle associated to the symbol sequence S1S2 . . .
Sn as in Exercise 8.5. Show that the vertices of T are n11

n21
, n12

n22
and

n11+n12
n21+n22

.
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The 3-dimensional
hyperbolic space

We now jump to one dimension higher, to the 3-dimensional hyper-
bolic space H3. This space is defined in complete analogy with the
hyperbolic plane. Most of the proofs are identical to those that we
already used in dimension 2.

9.1. The hyperbolic space

The 3-dimensional hyperbolic space is the metric space consisting
of the upper half-space

H3 = {(x, y, u) ∈ R3; u > 0},

endowed with the hyperbolic metric dhyp defined below. Here we are
using the letter u for the last coordinate in order to reserve z for the
complex number z = x + iy.

If γ is a piecewise differentiable curve in H3 parametrized by the
vector-valued function

t �→
(
x(t), y(t), u(t)

)
, a � t � b,

its hyperbolic length is

�hyp(γ) =
∫ b

a

√
x′(t)2 + y′(t)2 + u′(t)2

u(t)
dt.

227
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P

Q

γ

x

y

u

Figure 9.1. The hyperbolic space H3

The hyperbolic distance from P to Q ∈ H3 is then defined as

dhyp(P, Q) = inf {�hyp(γ); γ goes from P to Q} .

The proof that (H3, dhyp) is a metric space is identical to the
proof of the same statement for the hyperbolic plane in Lemma 2.1.

As in dimension 2, the hyperbolic norm of a vector �v based at
the point P = (x, y, u) ∈ H3 is defined as

‖�v‖hyp =
1
u
‖�v‖euc

where ‖�v‖euc =
√

a2 + b2 + c2 is the usual euclidean norm of �v =
(a, b, c).

The hyperbolic space admits several “obvious” isometries ϕ :
H3 → H3, which are immediate extensions of their 2-dimensional
counterparts.

These include the horizontal translations defined by

ϕ(x, y, u) = (x + x0, y + y0, u)

for x0, y0 ∈ R, and the homotheties

ϕ(x, y, u) = (λx, λy, λu)

for λ > 0.
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A new, but not very different, type of symmetry consists of the
rotations around the u-axis, defined by

ϕ(x, y, u) = (x cos θ − y sin θ, x sin θ + y cos θ, u)

for θ ∈ R.

Finally, the 3-dimensional analogue of the inversion across the
unit circle is the inversion across the unit sphere. This is the
map ϕ: R3 ∪ {∞} → R3 ∪ {∞} defined by

ϕ(x, y, u) =
(

x

x2 + y2 + u2
,

y

x2 + y2 + u2
,

u

x2 + y2 + u2

)
.

This inversion clearly sends the upper half-space H3 to itself.

Lemma 9.1. If ϕ: H3 → H3 is the inversion across the unit sphere,
and if �v is a vector based at P ∈ H3, then its image DP ϕ(�v) under
the differential of ϕ, which is a vector based at ϕ(P ), is such that

‖DP ϕ(�v)‖hyp = ‖�v‖hyp .

As a consequence, ϕ is an isometry of (H3, dhyp).

Proof. This is an immediate computation, identical to the one used
in the proof of Lemma 2.3 to show that the inversion across the unit
circle is an isometry of the hyperbolic plane. �

Consider the vertical half-plane

H = {(x, 0, u) ∈ R3; u > 0} ⊂ H3.

Replacing the letter u by the letter y, this half-plane has a natural
identification with the hyperbolic plane H2. For this identification,
the 3-dimensional hyperbolic length of a curve in H ⊂ H3 is the same
as the 2-dimensional hyperbolic length of a curve in H2. The same
holds for the hyperbolic norm ‖�v‖hyp of a vector �v tangent to H at
P ∈ H ⊂ H3.

We can therefore identify the hyperbolic plane (H2, dhyp) to the
half-plane H ⊂ H3, endowed with the metric dH for which dH(P, Q)
is the infimum of the hyperbolic lengths of all curves that join P

to Q in H. Theorem 9.4 below, which identifies the shortest curves
joining P to Q in H3, shows that dH is just the restriction to H of
the hyperbolic metric dhyp of H3.
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Theorem 9.2. The hyperbolic space (H3, dhyp) is homogeneous and
isotropic. Namely, for every vector �v at the point P and every �w at Q

with ‖�v‖hyp = ‖�w‖hyp, there exists an isometry ϕ of (H3, dhyp) such
that ϕ(P ) = Q and DP ϕ(�v) = �w.

Proof. Modifying �v, P , �w and Q by suitable horizontal translations
and rotations about the u-axis (which are isometries of H3), we can
assume without loss of generality that P and Q are both in the half-
plane H2 ⊂ H3, and that �v and �w are both tangent to that half-plane.

Then, because the hyperbolic plane H2 is isotropic (Proposi-
tion 2.20), there exists an isometry ϕ : H2 → H2 which sends P

to Q and whose differential map sends �v to �w. This isometry is a
composition of translations along the x-axis, homotheties, and inver-
sions across the unit circle in the plane. Extending the inversions by
inversions across the unit sphere, all of these factors extend to isome-
tries of H3, so that ϕ extends to an isometry ϕ: H3 → H3 which has
the desired properties. �

Theorem 9.3. The hyperbolic space (H3, dhyp) is complete.

Proof. The proof is identical to that of Theorem 6.10. �

9.2. Shortest curves in the hyperbolic space

Theorem 9.4. The shortest curve from P to Q ∈ H3 is the circle arc
joining P to Q that is contained in the vertical circle passing through
P and Q and centered on the xy-plane (possibly a vertical line).

Proof. The proof is identical to the one we used to prove the same
result in dimension 2, namely, Theorem 2.7. Namely, first consider
the case where P and Q lie on the same vertical line as in Lemma 2.4.
Then, for the general case, use a suitable composition of horizontal
translations, homotheties and inversions to send P and Q to the same
vertical line, and then use the previous case. We leave the details as
an exercise. �
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9.3. Isometries of the hyperbolic space

To list all isometries of the hyperbolic space H3, it is convenient to
identify the xy-plane to the complex plane C, in the usual manner.

Lemma 9.5. Every linear or antilinear fractional map of Ĉ = C ∪
{∞} continuously extends to a map ϕ̂ : H3 ∪ Ĉ → H3 ∪ Ĉ whose
restriction to H3 is an isometry of (H3, dhyp).

Proof. By Lemma 2.12, the linear or antilinear map ϕ : Ĉ → Ĉ is
a composition of translations, rotations, homotheties, and inversions
across the unit circle. We observed that all of these factors extend to
continuous transformations of H3∪Ĉ inducing isometries of (H3, dhyp).

�

A priori, the extension ϕ̂ of ϕ provided by the proof of Lemma 9.5
might depend on the choice of the decomposition of ϕ as a composition
of translations, rotations, homotheties, and inversions across the unit
circle. To show that this is not the case, we use a simple geometric
observation.

Lemma 9.6. The inversion across the unit sphere sends any sphere S

centered on the xy-plane to a sphere centered on the xy-plane, possibly
a vertical plane.

Proof. The inversion and the sphere S are both symmetric with
respect to rotations around the line joining the origin O to the cen-
ter of the sphere S. The property consequently follows from the 2-
dimensional fact that the inversion across the unit circle is an isometry
of H2 and therefore sends a circle centered on the x-axis to another
circle centered on the x-axis (possibly a vertical line). �

Lemma 9.7. The extension ϕ̂: H3 → H3 of the linear or antilinear
map ϕ: Ĉ → Ĉ provided by the proof of Lemma 9.5 is independent of
choices.

Proof. If P ∈ H3, arbitrarily pick three spheres S1, S2 and S3 cen-
tered on the xy-plane, passing through P , and sufficiently generic
that P is the only point of the intersection H3 ∩ S1 ∩ S2 ∩ S3. There
are of course many spheres like this.
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The spheres S1, S2, S3 intersect the xy-plane C in three circles
C1, C2, C3. By Proposition 2.18, ϕ sends the circles C1, C2, C3 to
circles C ′

1, C ′
2, C ′

3 in Ĉ. Then there exist unique spheres S′
1, S′

2,
S′

3 centered on the xy-plane which intersect this xy-plane along C ′
1,

C ′
2, C ′

3. By Lemma 9.6 and similar (and obvious) statements for
horizontal translations, rotations about the z-axis and homotheties,
the extension of ϕ̂ must send the sphere S1 to S′

1, S2 to S′
2 and S3

to S′
3. As a consequence, ϕ(P ) is the unique point of the intersection

H3 ∩ S′
1 ∩ S′

2 ∩ S′
3.

In particular, ϕ̂(P ) is independent of the decomposition of ϕ as
a composition of translations, rotations, homotheties, and inversions
that was used in the proof of Lemma 9.5. �

Theorem 9.8. Every linear or antilinear fractional map ϕ : Ĉ →
Ĉ has a unique continuous extension ϕ̂ : H3 ∪ Ĉ → H3 ∪ Ĉ whose
restriction to H3 is an isometry of (H3, dhyp).

Conversely, every isometry of (H3, dhyp) is obtained in this way.

Proof. We just proved the existence of the extension in Lemma 9.5.

Conversely, let ψ be an isometry of (H3, dhyp). We want to find
a linear or antilinear fractional map ϕ whose isometric extension to
H3 coincides with ψ.

Since ψ is an isometry, it sends the oriented geodesic 0∞ to an-
other complete geodesic of H3, going from z1 to z2 ∈ Ĉ. By elemen-
tary algebra, there is a linear fractional map ϕ sending 0 to z1 and
∞ to z2. If ϕ̂ is its isometric extension to H3, the isometry ψ ◦ ϕ̂−1

now sends the oriented geodesic 0∞ to itself.

Replacing ψ by ψ ◦ ϕ̂−1 if necessary, we can therefore assume
that ψ sends the geodesic 0∞ to itself, without loss of generality.
Composing ψ with a homothety if necessary, we can even assume
that it fixes some point of this geodesic. Since ψ is an isometry, it
now fixes every point of the geodesic 0∞.

Let g be a complete geodesic contained in the vertical euclidean
half-plane H2 ⊂ H3 and crossing 0∞ at some point P0. Then, ψ(g) is a
complete geodesic passing through P0. Note that H2 is the union of all
complete geodesics that meet both 0∞ and g−{P0}. Therefore, ψ(H2)
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is the union of all complete geodesics meeting 0∞ and ψ(g)−{ψ(P0)},
and consequently is the vertical euclidean half-plane containing 0∞
and ψ(g). Composing ψ with a rotation around 0∞ if necessary, we
can therefore assume that ψ(H2) = H2.

In particular, ψ now restricts to an isometry of H2. By the classifi-
cation of isometries of (H2, dhyp) in Theorem 2.11, there consequently
exists a linear or antilinear fractional map ϕ, with real coefficients,
whose isometric extension ϕ̂ coincides with ψ on H2. Then, ψ◦ ϕ̂−1 is
a hyperbolic isometry of H3 which fixes every point of H2. The same
argument as in the proof of Lemma 2.10 then shows that ψ ◦ ϕ̂−1 is
either the identity map or the euclidean reflection across H2.

This concludes the proof that every isometry of (H3, dhyp) co-
incides with the isometric extension ϕ̂ of some linear or antilinear
fractional map ϕ.

Lemma 9.7 shows that the extension is unique. �

It is possible to provide explicit formulas for the extension of a
given linear or antilinear fractional map z �→ az+b

cz+d or z �→ cz̄+d
az̄+b to

an isometry of H3. See Excercise 9.2. However, these expressions are
not very illuminating.

In general, we will use the same letter to denote a linear or anti-
linear fractional map ϕ: Ĉ → Ĉ, the associated hyperbolic isometry
ϕ: H3 → H3, and the continuous map ϕ: H3 ∪ Ĉ → H3 ∪ Ĉ made up
of these two maps. We will say that ϕ: H3 → H3 is the isometric

extension of ϕ: Ĉ → Ĉ to an isometry of (H3, dhyp) which, although
stricto sensu mathematically incorrect (since the actual extension is
ϕ: H3 ∪ Ĉ → H3 ∪ Ĉ), is a convenient short-hand terminology.

For future reference, we indicate here the following property.

Lemma 9.9. Let Bdhyp(P0, r) and Bdhyp(P ′
0, r) be two balls with the

same radius r > 0 in (H3, dhyp). Endow each of these two balls with
the restriction of the hyperbolic metric dhyp. Then every isometry
ϕ: Bdhyp(P0, r) → Bdhyp(P ′

0, r) has a unique extension to an isometry
ϕ: H3 → H3.

Proof. We just follow the lines of the proof of Theorem 9.8.
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Transporting everything by an isometry of H3 if necessary, we
can assume without loss of generality that P0 is on the geodesic
0∞. Then, by the arguments used in the proof of Theorem 9.8,
we can progressively compose ϕ with various isometries of (H3, dhyp)
to reduce the problem to the case where ϕ sends P0 to P0, and
then sends the intersection of Bdhyp(P0, r) with 0∞ to itself, and
then sends Bdhyp(P0, r) ∩ H2 to itself, and then fixes every point of
Bdhyp(P0, r) ∩ H2, and then fixes every point of Bdhyp(P0, r).

At this point, the existence of the extension to a global isometry
(namely, the identity map) of H3 is immediate. The uniqueness of the
extension is immediate once we notice that it must send each geodesic
emanating from P0 to itself. �

9.4. Hyperbolic planes and horospheres

9.4.1. Hyperbolic planes. A hyperbolic plane in the hyperbolic
space H3 is the intersection H of H3 with a euclidean sphere centered
on the xy-plane or with a vertical euclidean plane. In particular,
a special case of a hyperbolic plane is that of the hyperbolic plane
H2 ⊂ H3.

Proposition 9.10. Every isometry of (H3, dhyp) sends hyperbolic
plane to hyperbolic plane.

Proof. The property holds for horizontal translations, homotheties,
rotations around vertical axes, and inversions across spheres centered
on the xy-plane (including vertical planes) by Lemma 9.6 and ele-
mentary observations. The result then follows from Theorem 9.8 and
Lemma 2.12, which prove that every isometry is a composition of
transformations of this type. �

Conversely, using an appropriate composition of horizontal trans-
lations and homotheties, one easily checks that every hyperbolic plane
H ⊂ H3 is the image of H2 under an isometry of (H3, dhyp).

9.4.2. Horospheres. A horosphere centered at z ∈ C is the in-
tersection with H3 of a euclidean sphere S which is tangent to the
xy-plane C ⊂ R3 at z, and lies above this xy-plane. A horosphere
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H

S

z

Ĉ

H3

Figure 9.2. A hyperbolic plane H and a horosphere S

centered at the point ∞ is just a horizontal euclidean plane contained
in H3.

Proposition 9.11. Every isometry of (H3, dhyp) sends horosphere to
horosphere.

Proof. As in Lemma 9.6, the inversion across the unit sphere must
send a horosphere to a sphere, which must be tangent to Ĉ since the
inversion respects Ĉ. Therefore, the standard inversion sends horo-
spheres to horospheres. Since the same property clearly holds for hor-
izontal translations, homotheties and rotations around vertical axes,
the result immediately follows from Theorem 9.8 and Lemma 2.12.

�

Exercises for Chapter 9

Exercise 9.1 (Dihedral angles). A (hyperbolic) dihedron is the region D
of H3 which is delimited by two hyperbolic half planes Π1 and Π2 meeting
along a complete geodesic g = Π1∩Π2, where a hyperbolic half-plane is one
of the two regions of a hyperbolic plane delimited by a complete geodesic. If
P is a point of this geodesic g, let ΠP be the unique hyperbolic plane which
is orthogonal to g at P . Then, D ∩ΠP is a angular sector in ΠP delimited
by the two semi-infinite geodesics ΠP ∩ Π1 and ΠP ∩ Π2 issued from P .
Show that the angle of this angular sector D ∩ ΠP at P is independent of
the choice of P ∈ g. Possible hint: Use an isometry of (H3, dhyp) sending g
to the geodesic going from 0 to ∞.

This angle is the dihedral angle of the dihedron D along its edge g.
Dihedral angles will play an important role when we consider hyperbolic
polyhedra in Chapter 10.
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Exercise 9.2 (Explicit formulas for hyperbolic isometries).

a. Show that the extension of the linear fractional map ϕ(z) = az+b
cz+d

, with

ad − bc = 1, to an isometry of H3 ⊂ R3 = C × R is given by

ϕ(z, u) =

„

az + b

cz + d
+

|cu|2
c(cz + d)(|cz + d|2 + |cu|2) ,

u

|cz + d|2 + |cu|2

«

for every z ∈ C and u > 0. Hint: Decompose ϕ as a composition
of horizontal translations, rotations, homotheties and inversions, and
then take the composition of the isometric extensions of these factors.

b. Give a similar formula for the isometric extension of the antilinear
fractional map ϕ(z) = cz̄+d

az̄+b
.

Exercise 9.3 (The ball model for the hyperbolic space). Let

B
3 = {(x, y, u) ∈ R

3; x2 + y2 + u2 < 1}

be the open unit ball in R3. For every piecewise differentiable curve γ in
B3, parametrized by t �→

`

x(t), y(t), u(t)
´

, a � t � b, define its B3-length
as

�B3(γ) = 2

Z b

a

p

x′(t)2 + y′(t)2 + u′(t)2

1 − x(t)2 − y(t)2 − u(t)2
dt.

Finally, let the B3-distance from P to Q ∈ B3 be

dB3(P, Q) = inf{�B3(γ); γ goes from P to Q},

where the infimum is taken over all piecewise differentiable curves going
from P to Q in B3.

a. Let Φ: bR3 → bR3 be the inversion across the euclidean sphere of radius√
2 centered at the point (0, 0,−1). Show that it sends the upper

half-space H3 to B3.

b. Show that the restriction of Φ to H3 defines an isometry from (H3, dhyp)
to (B3, dB3). Possible hint: If �v is a vector based at P ∈ B3, compute
‖DP Φ−1(�v)‖hyp.

c. Let S be a euclidean sphere which orthogonally meets the unit sphere
S2 bounding B3. Show that the inversion ρ across S respects B3, and
restricts to an isometry of (B3, dB3). Possible hint: For Φ as in part a,
it may be easier to prove that Φ−1 ◦ ρ ◦Φ is an isometry of (H3, dhyp).

d. Show that every composition of inversions across euclidean spheres
orthogonal to S2 restricts to an isometry of (B3, dB3). Hint: part c.

e. Conversely, show that every isometry of (B3, dB3) is a composition of
inversions across euclidean spheres which orthogonally meet S2. Hint:
First consider isometries which fix the origin O.
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f. Show that every geodesic of (B3, dB3) is a circle arc contained in a
euclidean circle which orthogonally meets the sphere S2 in two points.
Hint: Use the isometry Φ of part b.

Exercise 9.4. Let S = Sdhyp(P0, r) be a hyperbolic sphere of radius r in

H3, consisting of those P ∈ H3 such that dhyp(P, P0) = r. Endow S with
the metric dS for which dS(P, Q) is the infimum of the hyperbolic lengths
of all piecewise differentiable curves joining P to Q in S. Show that the
metric space (S, dS) is isometric to (S2, (sinh r)dsph) where (sinh r)dsph is
the metric on the standard euclidean sphere S2 obtained by multiplying the
spherical metric dsph by sinh r. Possible hint: It may be useful to consider
the ball model (B3, dB3) of Exercise 9.3, and hyperbolic spheres centered at
the origin O in this ball model.

Exercise 9.5 (The Möbius group). Let the Möbius group M3 be the

group of transformations of bR3 = R3 ∪ {∞} generated by all inversions
across euclidean spheres (including reflections across euclidean planes).
The elements of M3 are Möbius transformations. Show that every
Möbius transformation ϕ ∈ M3 sends every euclidean sphere to a euclidean
sphere (including planes among spheres), and every euclidean circle to a
euclidean circle (including lines among circles). Hint: Compare the proof
of Lemma 9.6, and note that every circle is the intersection of two circles.

Exercise 9.6. Show that if ϕ ∈ M3 is a Möbius transformation and if
�v and �w are vectors based at the same point P ∈ R3, the angle between
the vectors DP ϕ(�c) and DP ϕ(�c) is equal to the angle between �v and �w.
In particular, isometries of (H3, dhyp) are angle-preserving, in this sense.
Hint: First consider the case of inversions.

Exercise 9.7 (A characterization of Möbius transformations). The goal
is to prove the converse of the statement of Exercise 9.5. Let ϕ be a

homeomorphism of bR3 which sends sphere to sphere.

a. Show that there is a Möbius transformation ψ ∈ M3 such that for
the usual identification of R3 with C × R and the standard inclusions
R ⊂ C = C × {0} ⊂ C × R, ψ(0) = ϕ(0), ψ(1) = ϕ(1), ψ(∞) = ϕ(∞),
ψ(R) = ϕ(R), ψ(C) = ϕ(C), ψ(H3) = ϕ(H3), ψ sends each half-plane
of C delimited by R to the same half-plane as ϕ.

b. Set ϕ′ = ϕ ◦ ψ−1. Show that ϕ′ sends sphere to sphere, fixes the
points 0, 1, ∞, and respects C, R, H3 and each of the two half-planes
delimited by R in C.

c. Show that, for any x, y ∈ R, the midpoint m = 1
2
(x + y) is uniquely

determined by the fact that there exists two circles C1, C2 and two
lines L1, L2 in C with the following properties: The points m and x
belong to C1; the points m, y belong to C2; the lines L1, L2 are each
tangent to both of C1 and C2; the three lines L1, L2 and R are disjoint.
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(Draw a picture). Conclude that ϕ′(m) is the midpoint of ϕ′(x) and
ϕ′(y).

d. Use part c to show, by induction on |p|, that ϕ′(p) = p for every integer
p ∈ Z. Then show, by induction on n, that ϕ′( p

2n ) = p
2n for every p ∈ Z

and n ∈ N. Conclude that ϕ′(x) = x for every x ∈ R.

e. Show that ϕ′ sends every circle in C with center in R to another circle
centered on R. Hint: Such a circle C is characterized by the property
that the lines tangent to C at each of the two points of C ∩ R are
disjoint.

f. Use part e to show that ϕ′ fixes every point of C. Hint: Compare the
proof of Lemma 9.7.

g. Show that ϕ′ sends each sphere of R3 centered on C to a sphere centered
on C. Hint: Look at the planes tangent to S at the points of S ∩ C.

h. Use part g to show that ϕ′ is the identity map of bR3. Hint: Compare
the proof of Lemma 9.7.

i. Conclude that every homeomorphism of bR3 which sends sphere to
sphere is a Möbius transformation.

Exercise 9.8. Let ϕ ∈ M3 be a Möbius transformation of bR3 which re-
spects the upper half-space H3. Show that the restriction of ϕ to H3 is an
isometry of (H3, dhyp). Hint: Adapt the steps of Exercise 9.7; more pre-
cisely show that, in part a of that exercise, we can take ψ so that it induces
an isometry of H3, and then follow the steps in parts b–i to conclude that
ϕ = ψ.

Exercise 9.9. Remember that if ϕ is a function of three variables valued
in R3, its jacobian at the point P is the determinant det DP ϕ. Show
that if ϕ : H3 → H3 is the isometric extension of a linear or antilinear

fractional map bC → bC, the jacobian det DP ϕ is positive at every P ∈ H3

for a linear fractional map bC → bC, and it is negative at every P ∈ H3 for an
antilinear fractional map. Hint: First consider an inversion, and remember
that DP (ϕ ◦ ψ) = Dψ(P )ψ ◦ DP ϕ.

In other words, the extension of a linear fractional map to an isometry
of (H3, dhyp) is orientation-preserving , and the isometric extension of
an antilinear fractional map to H3 is orientation-reversing . See our
discussion of 3-dimensional orientation in Section 12.1.1.

Exercise 9.10 (Classification of orientation-preserving isometries of H3).
Let ϕ : H3 → H3 be the isometric extension of a linear fractional map

ϕ: bC → bC. Assume in addition that ϕ is not the identity map.

a. Show that ϕ: bC → bC fixes exactly one or two points of bC.
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b. If ϕ fixes only one point z ∈ bC, let ψ be a hyperbolic isometry sending
z to ∞. Show that ψ ◦ ϕ ◦ ψ−1 is a horizontal translation; in other
words, transporting all points of H3 by ψ replaces ϕ by a horizontal
translation. In this case, ϕ is said to be parabolic.

c. Now consider the case where ϕ fixes two distinct points z1 and z2 of
bC. Let ψ be a hyperbolic isometry sending z1 to 0 and z2 to ∞. Show
that ψ ◦ ϕ ◦ ψ−1 is a homothety-rotation z �→ az with a ∈ C − {0}.
Conclude that ϕ respects the complete hyperbolic geodesic g going
from z1 to z2, and acts on g by a translation of constant hyperbolic
distance | log |a| |. In this case, ϕ is said to be elliptic if it fixes every
point of g (namely, if |a| = 1), and loxodromic otherwise.

d. Show that a parabolic or loxodromic isometry of (H3, dhyp) fixes no
point of H3. Show that the fixed points of an elliptic isometry form a
complete geodesic in H3.

Exercise 9.11 (Classification of orientation-reversing isometries of H3).
Let ϕ: H3 → H3 be the isometric extension of an antilinear fractional map

ϕ: bC → bC. Consider its square ϕ2 = ϕ ◦ ϕ.

a. Show that ϕ2: bC → bC is a linear fractional map, and that ϕ sends each
fixed point of ϕ2 to a fixed point of ϕ2.

b. With the terminology of Exercise 9.10, suppose that ϕ2 is parabolic
and is not the identity. Show that there exists a hyperbolic isometry
ψ such that ψ ◦ ϕ ◦ ψ−1 is the composition of the euclidean reflection
across a vertical euclidean plane with the horizontal translation along
a nonzero vector parallel to that plane. In this case, ϕ is orientation-
reversing parabolic.

c. Suppose that ϕ2 fixes exactly two points z1, z2 ∈ bC, and suppose that
ϕ fixes both z1 and z2 (compare part a). Show that there exists a
hyperbolic isometry ψ such that ψ ◦ ϕ ◦ ψ−1 is the composition of a
homothety with the reflection across a vertical euclidean plane passing
through the point 0. Show that ϕ respects the complete geodesic g go-
ing from z1 to z2, and acts on g by a nontrivial hyperbolic translation.
In this case, ϕ is a orientation-reversing loxodromic.

d. Suppose that ϕ2 fixes exactly two points z1, z2 ∈ bC, and suppose that
ϕ exchanges z1 and z2 (compare part a). Show that there exists a
hyperbolic isometry ψ such that ψ ◦ ϕ ◦ ψ−1 is the composition of the
inversion across a sphere centered at the origin 0 with the rotation
around the vertical line passing through 0 (namely, our u-axis) by
an angle θ which is not an integer multiple of π. In this case, ϕ is
orientation-reversing elliptic.

e. Finally, suppose that ϕ2 is the identity map. Choose an arbitrary
point P0 ∈ H3 which is not fixed by ϕ (which must exist since ϕ is
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not the identity), and let g be a unique complete hyperbolic geodesic
passing through P0 and ϕ(P0). Let ψ be an isometry of H3 sending
g to the vertical half-line going from 0 to ∞. Show that ψ ◦ ϕ ◦ ψ−1

is either the inversion across a euclidean sphere centered at 0 or the
composition of the inversion across a sphere centered at the origin 0
with the rotation of angle π around the vertical line passing through
0. Then ϕ is a hyperbolic reflection in the first case, and it is again
orientation-reversing elliptic in the second case.

f. Show that an orientation-reversing parabolic or loxodromic isometry
of (H3, dhyp) fixes no point of H3, that an orientation-reversing elliptic
isometry fixes exactly one point of H3, and that the fixed points of a
hyperbolic reflection form a hyperbolic plane Π ⊂ H3.

Exercise 9.12 (Hyperbolic volume). If D is a region in the hyperbolic
space H3 = {(x, y, u) ∈ R3; u > 0}, let its hyperbolic volume be defined as

volhyp(D) =

ZZZ

D

1

u3
dx dy du ∈ [0,∞].

Note that this volume may be infinite if D is unbounded in H3.

a. Let ϕ : H3 → H3 be a horizontal translation, a rotation around the
u-axis, a homothety or an inversion across the unit sphere. Show that
volhyp

`

ϕ(D)
´

= volhyp(D). As for the hyperbolic area in Exercise 2.14,
you may need to remember the formula for changes of variables in triple
integrals.

b. Conclude that volhyp

`

ϕ(D)
´

=volhyp(D) for every isometry of (H3, dhyp).

Exercise 9.13 (Hyperbolic volume in the ball model). Let B3 be the ball
model of Exercise 9.3. If D is a region of B3, define its hyperbolic volume as

volB3(D) = volhyp

`

ϕ(D)
´

,

where ϕ: B3 → H3 is an arbitrary isometry from (B3, dB3) to (H3, dhyp).

a. Show that this volume is independent of the choice of the isometry ϕ.
Hint: Exercise 9.12.

b. Show that

volB3(D) =

ZZZ

D

8

(1 − x2 − y2 − z2)3
dx dy dz.

Hint: Remember the change of variable formula for triple integral, and
use a convenient isometry ϕ.

Exercise 9.14. Show that the hyperbolic volume of a hyperbolic ball
Bdhyp(P, r) ⊂ H3 of radius r is equal to π sinh 2r − 2πr. Hint: It might be

convenient to use the ball model B3, and to consider the case where the
ball is centered at the origin O, as in Exercise 2.13a.
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Kleinian groups

This chapter is devoted to kleinian groups, which are certain groups of
isometries of the hyperbolic space H3. We begin with an experimental
investigation, in Section 10.1, of the tiling groups that one obtains by
suitably bending the Farey tessellation into the 3-dimensional hyper-
bolic space H3. The following sections develop the basic definitions
and properties of kleinian groups. We then return to the examples
of Section 10.1 by rigorously proving, at least in some cases, that
the phenomena we had experimentally observed correspond to real
mathematical facts. This includes a few surprising properties, such
as the natural occurrence of continuous curves in the Riemann sphere
Ĉ which are differentiable at very few points.

10.1. Bending the Farey tessellation

10.1.1. Crooked Farey tessellations. In Section 8.4.2, we associ-
ated to real numbers s1, s3, s5 ∈ R with s1 +s3 +s5 = 0 a tessellation
of the hyperbolic plane H2, defined as follows. We started with the
ideal triangle T+ with vertices 0, 1 and ∞, and the hyperbolic trian-
gle T− with vertices −e−s5 , 0 and ∞. We also considered the linear
fractional maps

ϕ1(z) =
es5z + 1

es5z + e−s1 + 1
, ϕ2(z) = ϕ−1

1 (z) = e−s5
−(e−s1 + 1)z + 1

z − 1
,

241
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ϕ3(z) = e−s5
z − 1

−z + es3 + 1
, ϕ4(z) = ϕ−1

3 (z) =
es5(es3 + 1)z + 1

es5z + 1
.

The tessellation then consisted of all triangles of the form ϕ(T+)
or ϕ(T−) as ϕ ranges over all elements of the transformation group
Γ generated by ϕ1 and ϕ3. Recall that Γ consists of all the linear
fractional maps of the form

ϕ = ϕi1 ◦ ϕi2 ◦ · · · ◦ ϕik
,

where each ϕij
is equal to ϕ1, ϕ2, ϕ3 or ϕ4. The standard Farey

tessellation corresponded to the case where s1 = s2 = s3 = 0.

0
1

T+T−

E1

E2

E3

E4

E5

−e−s5 ϕ1(T
−)

ϕ2(T+)

ϕ3(T+)

ϕ4(T−)

Figure 10.1

We now make the key observation that this setup makes sense
even when s1, s3, s5 ∈ C are complex numbers, provided that we
consider ideal triangles in the hyperbolic space H3. See Section T.4
in the Tool Kit for the definition of the complex exponential es

when s ∈ C is a complex number.

Indeed, given complex numbers s1, s3, s5 ∈ C, let T+ and T−

be the ideal triangles in the hyperbolic space H3 with vertices 0, 1,
∞ ∈ Ĉ = C ∪ {∞}, and −e−s5 , 0 and ∞ ∈ Ĉ, respectively. Let E1,
E2, E3, E4, E5 be their edges, where E1 goes from −e−s5 to ∞, E2

from 0 to 1, E3 from 1 to ∞, E4 from 0 to −e−s5 , and E5 from 0 to
∞. See Figure 10.1.
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The linear fractional maps ϕ1(z) = es5z+1
es5z+e−s1+1

and ϕ3(z) =
e−s5 z−1

−z+es3+1 define isometries of the hyperbolic space (H3, dhyp),
which we denote by the same letter. We can then consider the group
Γ of isometries on H3 that is generated by ϕ1, ϕ2, ϕ3 and ϕ4, and the
family T of all ideal triangles ϕ(T±) as ϕ ranges over all elements of
Γ.

Of course, because the triangles ϕ(T±) are 2-dimensional, there is
no way they can cover the whole 3-dimensional space H3. However,
we will see that these triangles still lead to some very interesting
geometric objects. We will call the family T of the triangles ϕ(T±) a
(2-dimensional) crooked Farey tessellation in H3.

−1
0

1
2

3
4

∞

Figure 10.2. Side view of the Farey tessellation

10.1.2. Experimental examples. Let us look at a few examples
before going any further. In the real case, the situation where s1 +
s3 + s5 = 0 was better behaved, as it provided a tessellation of the
whole hyperbolic plane H2. For the same reasons (both mathematical
and aesthetic), we will restrict our attention to complex s1, s3, s5 ∈ C

with s1 +s3 +s5 = 0. In particular, this guarantees that the isometry
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of H3 defined by

ϕ4 ◦ ϕ2 ◦ ϕ3 ◦ ϕ1(z) = e2s1+2s3+2s5z + 1 + es3 + es3+s1

+ es3+s1+s5 + e2s3+s1+s5 + e2s3+2s1+s5

= z + 2 + 2es3 + 2es3+s1

of Γ is a horizontal translation. Note that we already encountered
this element ϕ4 ◦ ϕ2 ◦ ϕ3 ◦ ϕ1 of Γ in Sections 5.5 and 6.7.2, where it
was used to glue together the two sides of the vertical half-strip V .

Since ϕ4 ◦ϕ2 ◦ϕ3 ◦ϕ1 is an element of Γ, the crooked tessellation
T is invariant under this horizontal translation. Indeed, it sends the
triangle ϕ(T±) of T to ϕ4 ◦ ϕ2 ◦ ϕ3 ◦ ϕ1 ◦ ϕ(T±), which is another
triangle of T.

First consider the case where s1 = s3 = s5 = 0. In this situation,
there is no shearing or bending, and we just get the standard Farey
tessellation in the hyperbolic plane H2 ⊂ H3. See Figure 10.2 for a
3-dimensional view.

Figure 10.3. Shearing and bending the Farey tessellation a little

The situation becomes more interesting if we slightly move the si

away from 0. Figure 10.3 represents the case where s1 ≈ −0.19+0.55i,
s3 ≈ 0.15 + 0.42i and s5 = 0.04 − 0.97i. Here, we have rotated the
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picture, so that the translation ϕ4 ◦ϕ2 ◦ϕ3 ◦ϕ1 ∈ Γ, which leaves the
crooked Farey tessellation T invariant, appears to be parallel to the
x-axis in the standard coordinate frame for R3.

Note the bending along the edges going to ∞. The bending along
the other edges is a little harder to see, but results in the wiggly
shape of the crooked tessellation as it approaches the Riemann sphere
Ĉ = C ∪ {∞} bounding the hyperbolic space H3.

Figure 10.4. Shearing and bending the Farey tessellation
much more

Figure 10.4 offers another example where s1 = −0.5 + 1.4i, s3 =
0.3 − 1.4i and s5 = 0.2. Note that there is no bending between T+

and T− because s5 is real. On the other hand, the picture clearly
appears more intricate than Figure 10.3, which is consistent with the
fact that s1 and s3 are “less real” in this case, in the sense that their
imaginary parts are larger.

10.1.3. Footprints. In both Figures 10.3 and 10.4, the ideal trian-
gles of the crooked tessellation appear to draw a relatively complex
curve in the sphere Ĉ = C ∪ {∞} bounding the hyperbolic space H3.
More precisely, let us plot the vertices of all ideal triangles. For the
cases of Figures 10.2, 10.3 and 10.4, these “footprints” of the crooked
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tessellation in Ĉ are represented in Figures 10.5, 10.6 and 10.7, re-
spectively.

Figure 10.5. The vertices of the ideal triangles of Figure 10.2
(a boring straight line)

Figure 10.6. The vertices of the ideal triangles of Figure 10.3

Figure 10.7. The vertices of the ideal triangles of Figure 10.4

One can construct many examples in this way. We cannot help
including one more example in Figure 10.8, corresponding to s1 =
1.831 − 2.16355i, s3 = −s1 and s5 = 0, which is particularly pretty.

The pictures of Figures 10.5–10.8 (and Figure 11.2 in Chapter 11)
were drawn using the wonderful piece of software OPTi, developed
by Masaaki Wada [Wada]. Figures 10.2–10.4 (and many other com-
plex pictures in this book) were drawn using Mathematica R© programs
written by the author.

What is very clearly apparent in Figures 10.5, 10.6 and 10.7 is
that these footprints appear to form a continuous curve, going from
the left-hand side of the picture to the right-hand side, and invariant
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Figure 10.8. Another pretty example

under a horizontal translation. Upon closer inspection, the same ac-
tually holds for Figure 10.8, where the intricacy of the curve is much
more amazing. Except for the straight line of Figure 10.5, these con-
tinuous curves do not appear to have a very well-defined tangent line
at most points.

Experimentally, as one moves the parameters s1, s3 and s5 away
from 0, one observes the following phenomenon. For a while, the
crooked tessellation and the limit set look very similar to the examples
that we have seen so far, except that the pictures are getting more
complex. Then, suddenly, complete chaos occurs: The triangles of
the crooked tessellation are everywhere in the space H3 and in all
directions, and its footprints cover the whole Riemann sphere Ĉ.

10.2. Kleinian groups and their limit sets

The tiling groups Γ of the crooked tessellations of the previous sec-
tion are examples of kleinian groups, and the curves drawn by their
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footprints in Ĉ are the limit sets of these kleinian groups. Let us give
the precise definition of these concepts.

A kleinian group is a group Γ of isometries of the hyperbolic
space (H3, dhyp) whose action on H3 is discontinuous.

Arbitrarily choose a point P0 ∈ H3, and consider all limit points
of its orbit in R3 ∪ {∞}. More precisely, a limit point of the orbit
Γ(P0) is a point P ∈ R3 ∪ {∞} for which there exists a sequence
(γn)n∈N of elements of Γ such that γn(P0) �= P for every n and, more
importantly, such that

P = lim
n→∞

γn(P0)

in R3 ∪ {∞} and for the euclidean metric deuc. This means that

lim
n→∞

deuc(P, γn(P0)) = 0

when P �= ∞, and that

lim
n→∞

deuc(P1, γn(P0)) = +∞

for an arbitrary base point P1 when P = ∞.

The limit set of the kleinian group Γ is the set ΛΓ of all limit
points of the orbit Γ(P0) in R3 ∪ {∞}.

Lemma 10.1. The limit set ΛΓ of a kleinian group Γ is contained in
the Riemann sphere Ĉ = C ∪ {∞} bounding the hyperbolic space H3

and is independent of the point P0 ∈ H3 chosen.

Proof. Clearly, a point P = (x, y, u) ∈ R3 with u < 0 cannot be
a limit point, since all points of the orbit Γ(P0) ⊂ H3 have positive
u-coordinate.

Suppose that a point P = (x, y, u) ∈ H3, with u > 0, is in
the limit set. Then limn→∞ deuc(P, γn(P0)) = 0 for some sequence
(γn)n∈N in Γ with γn(P0) �= P for every n. A simple comparison
of the euclidean and hyperbolic metrics, similar to the one used at
the end of our proof of Theorem 6.10 or to the estimates that we
use below in this proof, shows that limn→∞ dhyp(P, γn(P0)) = 0 as
well. In particular, for every ε, there are infinitely many γn such
that dhyp(P, γn(P0)) < ε, contradicting our hypothesis that Γ acts
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discontinuously on H3 (compare Lemma 7.15). Therefore, no P ∈ H3

can be a limit point of the orbit Γ(P0) either.

The combination of these two arguments shows that the limit set
is contained in the set of (x, y, u) ∈ R3 with u = 0 plus the point ∞,
namely, that the limit set is contained in Ĉ.

To show that ΛΓ is independent of the choice of base point, con-
sider another point P ′

0 ∈ H3. Let ξ = limn→∞ γn(P0) ∈ Ĉ be a point
on the limit set of Γ(P0).

First consider the case where ξ �= ∞, so that ξ = (x, y, 0) ∈
C. Write γn(P0) = (xn, yn, un), dn = deuc

(
ξ, γn(P0)

)
and D =

dhyp(P0, P
′
0) to simplify the notation. Then, for every point P ′ =

(x′, y′, u′) of the hyperbolic geodesic g joining γn(P0) to γn(P ′
0),

log
u′

un
� dhyp

(
γn(P0), P ′) � dhyp

(
γn(P0), γn(P ′

0)
)
= dhyp(P0, P

′
0) = D

by Lemma 2.5, and since γn is a hyperbolic isometry. As a conse-
quence, for every point (x′, y′, u′) of the geodesic g going from γn(P0)
to γn(P ′

0), its third coordinate is such that

u′ � eDun � eDdeuc

(
ξ, γn(P0)

)
= eDdn.

From the formula for the hyperbolic length, we conclude that

deuc

(
γn(P0), γn(P ′

0)
)

� �euc(g) � eDdn �hyp(g)

� eDdn dhyp

(
γn(P0), γn(P ′

0)
)

� eDdn dhyp(P0, P
′
0) = eDdn D.

Since limn→∞ dn = 0, this proves that deuc

(
γn(P0), γn(P ′

0)
)

converges
to 0 as n tends to ∞, so that

lim
n→∞

γn(P ′
0) = lim

n→∞
γn(P0) = ξ

for the metric deuc. As a consequence, ξ is also a limit point of the
orbit Γ(P ′

0).

The argument is similar when ξ = ∞. Then

lim
n→∞

deuc

(
O, γn(P0)

)
= ∞

for the origin O = (0, 0, 0). If the coordinates un admit an upper
bound U , namely, if un � U for every n, then the same argument as
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before shows that

deuc

(
γn(P0), γn(P ′

0)
)

� eDUD,

so that by the Triangle Inequality,

deuc

(
O, γn(P ′

0)
)

� deuc

(
O, γn(P0)

)
− deuc

(
γn(P0), γn(P ′

0)
)

� deuc

(
O, γn(P ′

0)
)
− eDUD

tends to ∞ as n tends to infinity. Otherwise, there is a subse-
quence

(
γnk

)
k∈N

such that limk→∞ unk
= ∞. Then, another ap-

plication of Lemma 2.5 shows that the third coordinate of γnk
(P ′

0) =
(x′

nk
, y′

nk
, u′

nk
) is such that u′

nk
� unk

e−D, so that deuc

(
O, γnk

(P ′
0)

)
�

u′
nk

tends to ∞ as k tends to ∞. Therefore, ∞ is a limit point of the
orbit Γ(P ′

0) in both cases.

This proves that every limit point of Γ(P0) is also a limit point of
Γ(P ′

0). By symmetry, it follows that Γ(P0) and Γ(P ′
0) have the same

limit points, so that ΛΓ does not depend on the choice of the base
point P0 ∈ H3. �

Lemma 10.2. The limit set ΛΓ of a kleinian group Γ is closed in the
Riemann sphere Ĉ, and is invariant under the action of Γ on Ĉ in
the sense that it is respected by every γ ∈ Γ.

Proof. If ξ∞ is the limit of a sequence of points ξn ∈ ΛΓ, then, pick-
ing for each n a point γn(P0) of the orbit of the base point P0 ∈ H3

that is sufficiently close to ξn, we see that ξ∞ is also the limit of a
sequence of points γn(P0) of the orbit Γ(P0). (Exercise: Write a com-
plete proof of this statement with the appropriate ε’s, and distinguish
the cases according to whether ξ = ∞ or not.) As a consequence, ξ∞
is in the limit set ΛΓ. Since this holds for any such converging se-
quence in ΛΓ, this proves that the limit set ΛΓ is closed.

If ξ ∈ ΛΓ and γ ∈ Γ, consider a sequence of points γn(P0) of the
orbit Γ(P0) converging to ξ. Then the points γ ◦ γn(P0) are also in
Γ(P0), and converge to γ(ξ) by continuity of γ. As a consequence,
γ(ξ) is also in the limit set ΛΓ. Since this holds for every ξ ∈ ΛΓ and
γ ∈ Γ, this proves that ΛΓ is invariant under the action of Γ. �
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The following result shows that except in a few degenerate cases,
the limit set ΛΓ is the smallest subset of Ĉ satisfying the conclusions
of Lemma 10.2.
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Proposition 10.3. Let K be a closed subset of the Riemann sphere
Ĉ which is invariant under the action of a kleinian group Γ and which
has at least two points. Then K contains the limit set ΛΓ.

Proof. Since K has at least two points, there exists a complete ge-
odesic g of H3 whose endpoints are in K ⊂ Ĉ. Pick a base point P0

on this geodesic g.

If ξ is a point of the limit set ΛΓ, first consider the case where ξ

is different from ∞. Then, for every ε, the euclidean ball Bdeuc(ξ, ε)
contains an element γ(P0) of the orbit Γ(P0), with γ ∈ Γ. In par-
ticular, the geodesic γ(g) meets this ball Bdeuc(ξ, ε). Because g is
also a euclidean semi-circle orthogonal to R2 in R3, elementary eu-
clidean geometry shows that at least one of the endpoints ξ′ of γ(g)
is contained in Bdeuc(ξ, ε). Note that ξ′ is in the subset K, since the
endpoints of g are in K and since this set is invariant under the ac-
tion of Γ. Therefore, for every ε, we found a point ξ′ ∈ K such that
deuc(ξ, ξ′) < ε. Since K is closed, this shows that ξ belongs to K.

The argument is similar in the case where ξ = ∞. The combina-
tion of both cases proves that every point of Λγ also belongs to K, so
that ΛΓ is contained in K. �

See Exercise 10.1 for an example showing that in Proposition 10.3
the hypothesis that K has at least two elements is necessary.

Proposition 10.4. Suppose that the quotient (H3/Γ, d̄hyp) of the hy-
perbolic space H3 by the kleinian group Γ is compact. Then the limit
set ΛΓ is the whole Riemann sphere Ĉ.

Proof. Pick a base point P0 ∈ H3.

We claim that there is a number D such that d̄hyp(P̄ , P̄0) < D for
every P̄ ∈ H3/Γ. Indeed, we would otherwise be able to construct,
by induction, a sequence (P̄n)n∈N in H3/Γ such that dhyp(P̄n, P̄0) � n

for every n. By the compactness hypothesis on H3/Γ, there exists a
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subsequence
(
P̄nk

)
k∈N

converging to some P̄∞, so that

lim
k→∞

dhyp(P̄nk
, P̄0) = dhyp(P̄∞, P̄0)

(for instance, use the inequality of Exercise 1.4). But this would
contradict the fact that limn→∞ dhyp(P̄nk

, P̄0) = ∞ by construction
of the sequence (P̄n)n∈N. This proves the existence of a constant D

as required.1

By Proposition 7.6, d̄hyp(P̄ , P̄0) is the infimum of the distances
dhyp(P, γ(P0)) as γ ranges over all elements of Γ. Therefore, for every
P ∈ H3, there exists a point γ(P0) of the orbit Γ(P0) such that
d(P, γ(P0)) < D.

Given a point ξ of the sphere at infinity Ĉ which is not ∞, namely,
given ξ ∈ C, apply the above property to any point P ∈ H3 which
is at euclidean distance < ε from ξ. This provides a point γ(P0) ∈
Γ(P0) such that dhyp(P, γ(P0)) < D. The same estimates as in the
proof of Lemma 10.1 then show that deuc(P, γ(P0)) < eDεD, so that
deuc(ξ, γ(P0)) < ε(eDD + 1). Taking ε sufficiently small, we conclude
that there are points of the orbit Γ(P0) which are at arbitrarily small
euclidean distance from ξ. Namely, this shows that ξ ∈ C is in the
limit set ΛΓ of Γ.

For the point ∞, pick a point z ∈ R that is very close to ∞,
namely, very far from O = (0, 0, 0) for the euclidean metric. By the
previous case, the orbit Γ(P0) contains points which are very close
to z, again for the euclidean metric. It follows that there are points
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of Γ(P0) which are arbitrarily close to ∞ for the euclidean metric.
Namely, ∞ is in the limit set ΛΓ. �

10.3. First rigorous example: fuchsian groups

In Chapter 6, our examples of various tessellations of the hyperbolic
plane H2 provided us with many examples of groups acting by isom-
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etry and discontinuously on H2, arising as the tiling groups of these
tessellations (Proposition 7.10 guarantees discontinuity). Let us see
how these also lead to examples of kleinian groups.

1If you have taken a course in analysis or topology, you may recognize here the
proof that every continuous function on a compact space is bounded, as applied to the
function f(P̄ ) = d̄(P̄ , P̄0).
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An isometry ϕ of (H2, dhyp) is determined by its extension to the
circle at infinity R̂ = R ∪ {∞}, which is a linear or antilinear map
ϕ(x) = ax+b

cx+d of cx+d
ax+b with a, b, c, d ∈ R and ad − bc = 1. Replacing

x ∈ R̂ by z ∈ Ĉ = C ∪ {∞} in the above formula yields a linear
or antilinear transformation ϕ : Ĉ → Ĉ defined by ϕ(z) = az+b

cz+d in
the first case, and cz̄+d

az̄+b in the second case. This linear or antilinear
transformation of Ĉ uniquely extends to an isometry ϕ: H3 → H3 of
(H3, dhyp).

Since ϕ: Ĉ → Ĉ respects the circle R̂ ⊂ Ĉ, its extension ϕ: H3 →
H3 respects the hyperbolic plane that is bounded by this circle, which
is

H2 = {(x, u) ∈ R2; u > 0} = {(x, 0, u) ∈ R2; u > 0} ⊂ H3.

The restriction of ϕ : H3 → H3 to H2 then is exactly the original
isometry ϕ: H2 → H2. Indeed, the property is immediate when ϕ is
a homothety, a horizontal translation of an inversion across a circle
centered on Ĉ (in which case the 3-dimensional extension is the inver-
sion across the sphere with the same center and the same radius), and
the general case follows from these special examples since Lemma 2.12
(or, more precisely, the proof of Lemma 2.9) provides a decomposition
of every isometry of H2 as a composition of homotheties, translations
and inversions.

In this way, each isometry ϕ of the hyperbolic plane H2 has a
natural extension to the hyperbolic space H3.

We can give a less algebraic and more geometric description of
this extension in the following way. There is a natural orthogo-

nal projection p : H3 → H2 defined as follows (compare Exer-
cise 2.5). For P ∈ H3, there is a unique complete geodesic g that
passes through P and is orthogonal to H2; then p(P ) is the point
where g meets H2. Elementary geometry shows that in cartesian co-
ordinates, p(P ) = (x, 0,

√
y2 + u2) if P = (x, y, u). This construction

also provides a signed distance function q : H3 → R defined by
q(P ) = ±dhyp(P, p(P )) where ± is the sign of the y-coordinate of
P = (x, y, u). See Figure 10.9.

Lemma 10.5. If ϕ is an isometry of the hyperbolic plane (H2, dhyp),
its extension to an isometry of the hyperbolic space (H3, dhyp) sends
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H3

H2

Ĉ

P

p(P )

Figure 10.9. The orthogonal projection p

the point P ∈ H3 to the point of H3 that is at the same signed dis-
tance q

(
ψ(P )

)
= q(P ) from H2 as P , and that projects to the point

p
(
ψ(P )

)
= ϕ

(
p(P )

)
∈ H2 image of p(P ) under ϕ.

Proof. This immediately follows from the fact that the extension
of ϕ to H3 is an isometry and respects each of the two hyperbolic
half-spaces delimited by H2 in H3. �

Lemma 10.6. Let the group Γ act by isometries and discontinuously
on the hyperbolic plane (H2, dhyp). Extend this action to an isometric
action on the hyperbolic space (H3, dhyp) as above. Then, the action
of Γ on H3 is discontinuous.

Proof. Consider a point P ∈ H3 and its projection p(P ) ∈ H2. By
hypothesis, the action of Γ on H2 is discontinuous at p(P ). This
means that there exists a small radius ε > 0 such that there are only
finitely many γ ∈ Γ for which γ

(
p(P )

)
is in the ball Bdhyp

(
p(P ), ε

)
.

By continuity of the orthogonal projection p : H3 → H2, there
exists an η such that dhyp

(
p(P ), p(Q)

)
< ε whenever dhyp(P, Q) < δ.

In other words, the image of the ball Bdhyp(P, δ) under p is contained
in the ball Bdhyp

(
p(P ), ε

)
.
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If γ(P ) is in the ball Bdhyp(P, δ), then p(γ(P )) is in the ball
Bdhyp

(
p(P ), ε

)
. Lemma 10.5 shows that p

(
γ(P )

)
= γ

(
p(P )

)
. There-

fore, γ(P ) ∈ Bdhyp(P, δ) only when γ
(
p(P )

)
∈ Bdhyp

(
p(P ), ε

)
. By

choice of ε, this occurs only for finitely many γ ∈ Γ.

This proves that the action of Γ is discontinuous at every P ∈
H3. �

By Lemma 10.6, every discontinuous isometric group action on
the hyperbolic plane H2 extends to a group Γ of isometries of H3

whose action is also discontinuous on H3. Namely, this group Γ is
a kleinian group. A kleinian group obtained in this way is called a
fuchsian group.

The limit set ΛΓ of a fuchsian group Γ is clearly contained in the
circle R̂ = R ∪ {∞}. Indeed, if we choose the base point P0 in H2,
its orbit Γ(P0) is completely contained in H2 so that its limit points
must be in R̂.

If the quotient space H2/Γ is compact, Proposition 10.4 (adapted
to one dimension lower) shows that ΛΓ is the whole circle R̂. For
instance, this will occur when Γ is the tiling group of a tessellation
associated to the gluing of edges of a bounded polygon in H2, as in
the hyperbolic examples of Section 6.5.

The following lemma enables us to generalize this to more tiling
groups.

Lemma 10.7. In the hyperbolic plane H2, let X be a polygon with
edge gluing data satisfying the conditions of Theorem 6.1, so that the
images of X under the element of the tiling group Γ generated by the
gluing maps form a tessellation of H2. Suppose in addition that X

touches the circle at infinity R̂ at only finitely many points (possibly
none). Then, if we extend Γ to a fuchsian group, the limit set ΛΓ is
equal to the whole circle R̂.

Proof. Let (X̄, d̄X) be the quotient space obtained by performing
the prescribed gluings on the edges of X. By Theorem 6.25, we can
choose a horocircle Cξ at each ideal vertex ξ of X so that whenever
a gluing map sends ξ to ξ′, it also sends Cξ to Cξ′ . In addition, by
Complement 6.24, these horocircles can be chosen small enough that
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they are disjoint and that the only edges met by Cξ are the two edges
leading to ξ. For each ideal vertex ξ, let Bξ be the horodisk bounded
by the horocircle Cξ.

Then the images of X ∩
⋃

ξ Bξ under all elements of the tiling
group Γ is the union B of a family of (usually infinitely many) disjoint
horodisks in H3. Also, the hypothesis that X touches the circle at
infinity only at the ideal vertices ξ implies that if we clip the Bξ

off X, what is left is bounded in H2. Namely, for an arbitrary base
point P0 ∈ X, the complement X −

⋃
ξ Bξ is contained in a large ball

Bdhyp(P0, D).

The argument is then very similar to that of Proposition 10.4.
Let x ∈ R be a point of the circle at infinity R̂ which is different from
∞. Pick a point P ∈ H2 which is at euclidean distance < ε from
x. If P happens to be in one of the horodisks of B, we can move it
out of B while keeping it at euclidean distance < ε from x (since B

consists of disjoint euclidean disks tangent to R). As a consequence,
we can always choose the point P outside of B. Since the images
of X under the elements of Γ tessellate H2, there exists γ ∈ Γ be
such that P is in the tile γ(X). Then, P is at hyperbolic distance
� D from the point γ(P0) of the orbit Γ(P0) and, as in the proofs
of Lemma 10.1 and Proposition 10.4, at euclidean distance < eDεD

from this point γ(P0). Taking ε sufficiently small, it follows that the
orbit Γ(P0) contains points which are at arbitrarily small euclidean
distance from x. In other words, x ∈ R is contained in the limit set
ΛΓ.

For the point ∞, pick a point x ∈ R which is very close to ∞,
namely, very far from the origin O for the euclidean metric. By the
previous case, there are points of Γ(P0) that are very close to x, again
for the euclidean metric. It follows that there are points of Γ(P0) that
are arbitrarily close to ∞ for the euclidean metric. Namely, ∞ is in
the limit set ΛΓ. �

According to a traditional terminology, a fuchsian group is said
to be of the first type if its limit set is the whole circle at infinity
R̂; otherwise, it is of the second type. Lemma 10.7 and Chapter 5
provide many examples of fuchsian groups of the first type.
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Simple examples of fuchsian groups of the second type include
the following: the group Γ1 generated by the inversion z �→ 1

z̄ , in
which case the limit set ΛΓ1 is empty (Γ1 is finite with only two
elements); the group Γ2 generated by the translation z �→ z + 1, for
which ΛΓ2 consists of the single point ∞; the group Γ3 generated by
the homothety z �→ 2z, for which ΛΓ3 = {0,∞} has two elements. See
Exercise 10.11 for a fuchsian group of the second type whose limit set
is not finite.

Fuchsian groups are convenient examples of kleinian groups, but
not very exciting because of their intrinsically 2-dimensional nature.
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The results of the next section will enable us to construct more inter-
esting examples.

10.4. Poincaré’s Polyhedron Theorem

Poincaré’s Polyhedron Theorem is the natural generalization to three
dimensions of the Tessellation Theorem 6.1 and of Poincaré’s Poly-
gon Theorem 6.25. It will enable us to construct tessellations of the
hyperbolic space H3 by hyperbolic polyhedra, and will provide many
examples of kleinian groups.

10.4.1. Gluing the faces of a hyperbolic polyhedron. We de-
fine polyhedra in the 3-dimensional hyperbolic space H3. In order to
do this, we first need to fix conventions about polygons.

A polygon in H3 is a subset F of a hyperbolic plane Π ⊂ H3

which is delimited in Π by finitely many geodesics called its edges .
Recall that the hyperbolic plane Π is isometric to the standard hyper-
bolic plane H2. Under any such isometry, the polygon contained in Π
then corresponds to a polygon in H2, as defined in Section 4.5.1. As
in the case of H2, we require that edges can only meet at their end-
points, called vertices , and that each vertex is adjacent to exactly
two edges. Some of these edges are allowed to be infinite and lead to
a point of the sphere at infinity C ∪ {∞}; such a point is a vertex

at infinity or an ideal vertex of the polygon. Also, the polygon F

is required to contain all its edges and vertices, so that F is a closed
subset of H3.
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A polyhedron in the hyperbolic space H3 is a region X in H3

delimited by finitely many polygons, called its faces . By convention,
faces can only meet along some of their edges and vertices, and an
edge is adjacent to exactly two faces. As for polygons, we require that
a polygon contains all of its edges and vertices, so that it is a closed
subset of H3.

The edges and vertices of a polyhedron are the edges and ver-
tices of its faces. An ideal vertex or vertex at infinity is a point
of the sphere at infinity Ĉ which touches two distinct faces of the
polyhedron. There ideal vertices can be of two types. The most com-
mon one is that of an ideal vertex of a face, also corresponding to an
endpoint of an infinite edge. However, it is also possible for two faces
F1 and F2 to touch at a point ξ ∈ Ĉ without ξ being the endpoint
of an edge; this happens when F1 and F2 touch Ĉ along two circle
arcs that are tangent to each other at ξ. To avoid unnecessary com-
plications, we assume that the polygon X approaches an ideal vertex
ξ from only one direction, in the sense that there exists a small eu-
clidean ball Bdeuc(ξ, ε) in R3 such that the intersection X∩Bdeuc(ξ, ε)
is connected.

We now introduce face gluing data in complete analogy with
the case of polygons in Sections 4.3 and 4.5. Namely, we group the
faces of the polyhedron X into disjoint pairs {F1, F2}, {F3, F4}, . . . ,
{F2p−1, F2p}. For each such pair {F2k−1, F2k}, we are given an isom-
etry ϕ2k−1: F2k−1 → F2k with respect to the restriction of the hyper-
bolic metric dhyp to these faces, and we define ϕ2k : F2k → F2k−1 to
be the inverse ϕ2k = ϕ−1

2k−1.

Let X̄ be the partition of X defined by the property that for
every P ∈ X the corresponding element P̄ ∈ X̄ containing P consists
of all points Q = ϕik

◦ ϕik−1 ◦ · · · ◦ ϕi1(P ), where the indices i1, i2,
. . . , ik are such that ϕij−1 ◦ · · · ◦ ϕi1(P ) ∈ Fij

for every j.

Endow X with the metric dX defined by the property that
dX(P, Q) is the infimum of the hyperbolic lengths of all piecewise
differentiable curves joining P to Q in X. We can then consider the
quotient semi-metric d̄X on X̄.

The proof of Theorem 4.3 automatically extends to this context
to prove:
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Lemma 10.8. The semi-metric d̄X is a metric, in the sense that
d̄X(P̄ , Q̄) > 0 whenever P̄ �= Q̄. �

10.4.2. Poincaré’s Polyhedron Theorem. We now consider a 3-
dimensional version of the Tessellation Theorem 6.1 and of Poincaré’s
Polygon Theorem 6.25. It is convenient to combine the two results
into a single statement.

Using the homogeneity and isotropy of H3 (Theorem 9.2), Lemma
4.8 immediately extends to the 3-dimensional context, and provides
a unique extension of each gluing map ϕi: Fi → Fi±1 to a hyperbolic
isometry ϕi: H3 → H3 that along Fi, sends X to the side of Fi±1 that
is opposite X.

As before, let the tiling group associated to the above gluing
data be the group Γ of isometries of (H3, dhyp) generated by these
extended gluing maps ϕi: H3 → H3.

As in dimension 2, the images of the polyhedron X under the
elements of Γ form a tessellation of the hyperbolic space H3 if:

(1) as γ ranges over all elements of the tiling group Γ, the tiles
γ(X) cover the whole space H3, in the sense that their union
is equal to H3;

(2) the intersection of any two distinct tiles γ(X) and γ′(X)
consists only of vertices, edges and faces of γ(X), which are
also vertices, edges or faces of γ′(X);

(3) (Local Finiteness) for every point P ∈ H3, there exists a
ball Bdhyp(P, ε) which meets only finitely many tiles γ(X).

If, in addition, distinct γ ∈ Γ give distinct tiles γ(X), the polyhedron
X is a fundamental domain for the action of Γ on H3.

The bending of the boundary of a hyperbolic polyhedron X along
an edge E is measured by its dihedral angle along E, which is defined
as in euclidean geometry. More precisely, for a point P ∈ E which
is not a vertex and for ε > 0 sufficiently small, the hyperbolic plane
Π orthogonal to E at P cuts the intersection X ∩ Bdhyp(P, ε) along
a disk sector of radius ε and of angle θ. The dihedral angle of the
polyhedron X along the edge E is exactly this angle θ. One easily
checks that it does not depend on the point P ∈ E (see Exercise 9.1).
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Theorem 10.9 (Poincaré’s Polyhedron Theorem). For a connected
polyhedron X ⊂ H3 with face gluing data as in Section 10.4.1, suppose
in addition that the following three conditions hold:

(1) (Dihedral Angle Condition) for every edge E of the polyhe-
dron X, the dihedral angles of X along the edges that are
glued to E add up to 2π

nE
for some integer nE � 1 depending

on E;

(2) (Edge Orientation Condition) the edges of the polyhedron X

can be oriented in such a way that whenever a gluing map
ϕi: Fi → Fi±1 sends an edge E to an edge E′, it sends the
orientation of E to the orientation of E′;

(3) (Horosphere Condition) for every ideal vertex ξ of X, we
can select a horosphere Sξ such that whenever the gluing
map ϕi: Fi → Fi±1 sends the ideal vertex to the ideal vertex
ξ′, it also sends Sξ to Sξ′ .

Then, as γ ranges over all the elements of the tiling group Γ generated
by the extended gluing maps ϕi : H3 → H3, the tiles γ(X) form a
tessellation of the hyperbolic space H3.

In addition, the tiling group Γ acts discontinuously on H3, the two
quotient spaces (H3/Γ, d̄hyp) and (X̄, d̄X) are isometric, and these two
metric spaces are complete.

In the Edge Orientation Condition (2), an orientation for the edge
E is the choice of a traveling direction along E, usually indicated by
an arrow. This is easily ensured by adding a few vertices, provided
the Horosphere Condition (3) holds. Indeed, for a semi-infinite edge
E going from a finite vertex P ∈ H3 to an ideal vertex ξ ∈ Ĉ, we
can orient E in the direction from P to ξ. For a finite edge E joining
two finite vertices, we can introduce a new vertex M at its midpoint,
split E accordingly, and orient the resulting two edges E′ and E′′

away from M . For a bi-infinite edge E joining two ideal vertices ξ′

and ξ′′, we can again introduce a new vertex M at the midpoint of
the two points E ∩ Sξ′ and E ∩ Sξ′′ determined by the horospheres
provided by the Horosphere Condition (3), and orient the resulting
two new semi-infinite edges E′ and E′′ away from M . The setup is
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then specially designed so that the gluing maps ϕi: Fi → Fi±1 respect
these new vertices, and also respect the edge orientations so defined.

As in the 2-dimensional case, the Dihedral Angle Condition (1)
and the Horosphere Condition (3) are much more critical. The Edge
Orientation Condition (2) was essentially introduced to simplify the
statement of the Dihedral Angle Condition (1).
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Proof of Theorem 10.9. The proof is essentially identical to the 2-
dimensional case, with only a minor twist indicated in Lemma 10.10
below. Consequently, we only give a sketch of the arguments.

Our proof of Poincaré’s Polygon Theorem 6.25 immediately ex-
tends to the 3-dimensional context to show that because of the Horo-
sphere Condition (3) (to be compared with condition (1) of Proposi-
tion 6.23), the quotient space (X̄, d̄X) is complete.

To prove Theorem 10.9, we follow the strategy of the proof of
the Tessellation Theorem 6.1, by setting one tile after the other. In
particular, a tile ϕ(X) is adjacent to X at P if there exists a sequence
of gluing maps ϕi1 , ϕi2 , . . . , ϕil

such that ϕij−1 ◦ · · · ◦ϕi1(P ) belongs
to the face Fij

for every j � l (including the fact that P ∈ Fi1) and

ϕ = ϕ−1
i1

◦ ϕ−1
i2

◦ · · · ◦ ϕ−1
il

.

More generally, the tiles ϕ(X) and ψ(X) are adjacent at the point
P ∈ ϕ(X) ∩ ψ(X) if ψ−1 ◦ ϕ(X) is adjacent to X at ψ−1(P ) in the
above sense.

The only point that really requires some thought is the following
analogue of Lemma 6.2 and Complement 6.3. We need some termi-
nology. Let a polyhedral ball sector with center P and radius ε in
H3 be a region in the ball Bdhyp(P, ε) delimited on its sides by finitely
many hyperbolic planes passing through the point P ; we allow the
case where the polyhedral ball sector is the whole ball Bdhyp(P, ε).
This is the 3-dimensional analogue of disk sectors, specially designed
so that every point of X is the center of some ball Bdhyp(P, ε) such
that X ∩ Bdhyp(P, ε) is a polyhedral ball sector.
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Lemma 10.10. There are only finitely many tiles ϕ(X) that are
adjacent to X at the point P . In addition, these adjacent tiles decom-
pose a small ball Bdhyp(P, ε) into finitely polyhedral ball sectors with
disjoint interiors.

Proof. First, we observe that there are only finitely many points
P = P1, P2, . . . , Pn of X that are glued to P . This is automatic
when P is an interior point, since it is only glued to itself. Similarly,
a face point , namely, a point of a face which is not contained in
an edge, is only glued to one other point, and a vertex can only
be glued to some of the finitely many vertices. The case of edge

points , namely, points of edges that are not vertices, will require
more thought and critically relies on the Horosphere Condition (3) of
Theorem 10.9.

We claim that no two distinct edge points P ′ and P ′′ of the same
edge E can be glued together. Indeed, if two such points P ′ and P ′′ =
ϕ(P ′) are glued together by the gluing map ϕ = ϕi1 ◦ ϕi2 ◦ · · · ◦ ϕik

,
then ϕ sends the edge E to itself, and respects its orientation by the
Edge Orientation Condition (2). In addition, it must send at least
one point of E to itself: If both endpoints of E are finite vertices,
ϕ must fix these two endpoints since it respects the orientation of
E; if exactly one endpoint of E is a finite vertex, ϕ must clearly fix
this endpoint; finally, when E is a bi-infinite edge joining two ideal
vertices ξ and ξ′, ϕ must fix the intersection points E∩Sξ and E∩Sξ′

determined by the horospheres Sξ and Sξ′ associated to ξ and ξ′ by the
Horosphere Condition (3). As a consequence, the restriction of ϕ to
E is an orientation-preserving isometry fixing at least one point, and
is consequently the identity. But this would contradict our hypothesis
that the edge points P ′ and P ′′ = ϕ(P ′) are distinct.

This proves that the set of points that are glued to an edge point
P can include at most one point of each edge, and is consequently
finite.

Therefore, in all cases, there are only finitely many points P = P1,
P2, . . . , Pn of X that are glued to P .

For ε small enough, the intersection of X with each of the balls
Bdhyp(Pi, ε) is a polyhedral ball sector. Let Sdhyp(Pj , ε) denote the
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hyperbolic sphere consisting of the points that are at distance ε from
Pi, and let Sj be the intersection X∩Sdhyp(Pj , ε). As usual, endow Sj

with the metric dSj
where dSj

(Q, R) is the infimum of the hyperbolic
lengths of all curves joining Q to R in Sj .

If we rescale the metric dSj
by a factor sinh ε, Exercise 9.4 shows

that the metric space (Sj ,
1

sinh εdSj
) is isometric to a polygon in the

sphere (S2, dsph), whose angle at each vertex P is equal to the di-
hedral angle of X along the edge containing P . The restriction of
the gluing maps ϕi to the edges of the Sj then defines isometric glu-
ing data for these spherical polygons. Because of the Dihedral Angle
Condition (1) of Theorem 10.9 and because no two distinct points of
the same edge are glued together, the Tessellation Theorem 6.1 (as
extended to disconnected polygons in Section 6.3.4, and using Propo-
sition 6.20 to guarantee completeness of the quotient space) shows
that this gluing data provides a tessellation of the sphere S2.

In particular, if we start from the polygon S1 ⊂ Sdhyp(P, ε) and
proceed with the tiling procedure using this gluing data, we obtain
a tessellation of the sphere Sdhyp(P, ε). It immediately follows from
definitions that the tiles of this tessellation are exactly the polygons
ϕ(Sj), where ϕ ∈ Γ is such that the polyhedron ϕ(X) is adjacent to
X at P and where ϕ(Pj) = P .

By compactness of S2, this tessellation of Sdhyp(P, ε) has finitely
many tiles (compare Exercise 6.3). Lemma 10.10 now immediately
follows from these observations. �

Substituting Lemma 10.10 for Lemma 6.2 and Complement 6.3,
the proof of Theorem 6.1 now immediately extends to show that the
polyhedra γ(X) with γ ∈ Γ tessellate the hyperbolic space H3. In
other words, X is a fundamental domain for the action of the tiling
group Γ on H3.

Once we have shown that X is a fundamental domain for the
action of Γ, the proofs of Proposition 7.10 and Theorem 7.12 imme-
diately extend to three dimensions to show that the action of Γ is
discontinuous, and that the quotient space (H3/Γ, d̄hyp) is isometric
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to (X̄, d̄X). �

Similarly, we have the following analogue of Theorem 4.10.
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Theorem 10.11. Under the hypotheses of Theorem 10.9, suppose in
addition that:

(1) the Dihedral Angle Condition (1) of Theorem 10.9 is strength-
ened so that for every edge E of X, the sum of the dihedral
angles of X along the edges that are glued to E is equal to
2π;

(2–3) Conditions (2) and (3) are unchanged;

(4) the 3-dimensional extensions ϕi : H3 → H3 of the gluing
maps are orientation-preserving.

Then, the quotient space (X̄, d̄X) is locally isometric to the hyperbolic
space (H3, dhyp).1
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Proof. We will prove that the action of the tiling group Γ is free,
namely, that ϕ(P ) �= P for every P ∈ H3 and every ϕ ∈ Γ different
from the identity.

Suppose, in search of a contradiction, that some ϕ ∈ Γ − {IdH3}
fixes a point P of H3. Then Exercise 9.10 shows that because ϕ is
orientation-preserving by condition (4), it fixes each point of a whole
complete geodesic g of H3.

The geodesic g cannot meet the interior of a tile γ(X), with γ ∈
Γ, of the tessellation provided by Theorem 10.9. Indeed, ϕ would
otherwise send this tile to itself, which is excluded by the fact that
X is a fundamental domain for the action of Γ. Therefore, g contains
an edge E of some tile γ(X).

Replacing ϕ by γ−1 ◦ ϕ ◦ γ (which fixes each point of the edge
γ−1(E) of X) if necessary, we can assume without loss of generality
that γ is the identity. In particular, ϕ now fixes every point of an
edge E of X.

Let X1 = X, X2 = γ2(X), X3 = γ3(X), . . . , Xn = γn(X) be the
tiles sitting around the edge E, and let θi be the dihedral angle of the
polyhedron Xi along this edge E. Then

∑n
i=1 θi = 2π.

By the second half of Theorem 10.9, the inclusion map X → H3

induces an isometry X̄ → H3/Γ. In particular, the fact that this map
is bijective implies that two points P , Q ∈ X are glued together if and
only if there exists an element γ ∈ Γ such that Q = γ(P ). Therefore,
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the edges of X that are glued to E are the edges E, γ−1
2 (E), γ−1

3 (E),
. . . , γ−1

n (E). Note that the dihedral angle of X along the edge γ−1
i (E)

is also equal to θi.

However, there are duplications in this list. Indeed, the tile ϕ(X)
is one of these Xi, so that ϕ = γi and γ−1

i (E) = ϕ−1(E) = E since ϕ

fixes every point of E. Therefore, the sum of the dihedral angles of
X along the edges that are glued to E is strictly less than

∑n
i=1 θi =

2π, contradicting the stronger Dihedral Angle Condition (1) in the
hypotheses of Theorem 10.11.

This proves that the action of Γ on H3 is free. Since this action is
discontinuous by Theorem 10.9, Corollary 7.9 shows that the quotient
space (H3/Γ, d̄hyp) is locally isometric to (H3, dhyp). �

It can actually be shown using Lemma 10.10 that conditions (2–
3) of Theorem 10.9 are not really necessary for Theorem 10.11 to
hold. Similarly, condition (4) of Theorem 10.11 can be significantly
relaxed, but at the expense of making the precise result somewhat
more cumbersome to state.

Exercise 10.8 shows that Theorem 10.11 fails when only its con-
From
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ditions (1–3) are realized, without condition (4) or any similar addi-
tional hypothesis.

10.5. More examples of kleinian groups

We return to the examples of crooked Farey tessellations of Sec-
tion 10.1. We now have the tools to rigorously justify some of our
observations.

10.5.1. Kleinian groups associated to crooked Farey tessel-
lations. We will prove that when the shear-bend parameters s1, s3,
s5 are sufficiently small, the tiling group Γ of the crooked Farey tes-
sellation associated to these parameters act discontinuously on the
hyperbolic space H3. We will restrict our attention to the case where
s5 is real, as the arguments are a little simpler with this condition.

First consider our original punctured torus example of Sections
5.5 and 6.6, corresponding to s1 = s3 = s5 = 0. Then, the square
T+ ∪ T− is a fundamental domain for the action of Γ on H2. If we
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extend the action of Γ on H2 to a fuchsian action on H3, Lemma 10.5
shows that this action is well behaved with respect to the orthogo-
nal projection p : H3 → H2. As a consequence, the preimage X =
p−1(T+ ∪ T−) is a fundamental domain for the action of Γ on H3.

Let us analyze this fundamental domain a little better. As usual,
let E1, E2, E3 and E4 be the edges of the square T+ ∪ T−, where E1

goes from −1 to ∞, E2 from 0 to 1, E3 from 1 to ∞, and E4 from 0 to
−1. Then X is bounded by the preimages Hi = p−1(Ei), and each Hi

is a hyperbolic plane in H3. More precisely, H1 and H3 are vertical
euclidean half-planes, while H2 and H4 are euclidean half-spheres of
radius 1

2 centered at ±1
2 . In addition, when we extend the gluing

maps to hyperbolic isometries ϕi: H3 → H3, ϕ1 sends H1 to H2 and
ϕ3 sends H3 to H4.

We will now create a very similar fundamental domain in the more
general case where s5 is real and where s1 and s3 have an imaginary
part which is not too large (and where, as usual, the relation s1 +
s3 + s5 = 0 is satisfied).

Recall that the tiling group Γ of the corresponding crooked Farey
tessellation is generated by

ϕ1(z) =
es5z + 1

es5z + e−s1 + 1
and ϕ3(z) = e−s5

z − 1
−z + es3 + 1

.

Consider the four circles C1, C2, C3, C4 in Ĉ defined as follows: C3 is
the euclidean line passing through the point 1 and making an angle of
θ = 1

2 (π − Im(s1)) with the x-axis, counting angles counterclockwise;
C1 is the line parallel to C3 passing through −e−s5 ; C2 is the circle
passing through the points 0 and 1 and tangent to the line C3 at 1;
C4 is the circle passing through 0 and −e−s5 and tangent to the line
C1 at −e−s5 . See Figure 10.10.

Lemma 10.12. If s5 is real and if Im(s1) is sufficiently small that
cos(Im(s1)) > e|s5|−1

e|s5|+1
, any two distinct Ci and Cj meet only at 0 or 1

of the points {0, 1,−e−s5 ,∞} and are tangent to each other at their
intersection point when they meet.

In addition, ϕ1 sends C1 to C2, and ϕ3 sends C3 to C4.
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0
1

−e−s5 θ

C1

C2

C3

C4

Figure 10.10. A fundamental group for the tiling group of a
crooked Farey tessellation

Proof. By elementary euclidean geometry, the two circles C2 and C4

have the same tangent line at 0, which makes an angle of π − θ with
the x-axis. Therefore, for the first statement, we only need to check
that the circle C2 is disjoint from the line C1 and that the circle
C4 is disjoint from the line C3. This is equivalent to the property
that the distance between the two lines C1 and C3 is greater than
the diameters of both C2 and C4. Computing these quantities by
elementary trigonometry in Figure 10.10 gives the condition stated.

To prove the second statement, note that the differential of ϕ3

at the point 1 is the complex multiplication by e−s5−s3 , by a com-
putation using Proposition 2.15. It follows that the line tangent to
ϕ3(C3) at 0 = ϕ3(1) makes an angle of θ + Im(−s5 − s3) with the
x-axis. By choice of θ = 1

2
(π− Im(s1)) and because of our hypothesis

that −s5 is real, this angle is equal to π − θ. Since a linear fractional
map sends circle to circle (Proposition 2.18), it follows that ϕ3(C3)
is a circle passing through the points 0 = ϕ3(1) and −e−s5 = ϕ3(∞)
and whose tangent line at 0 makes an angle of π − θ with the x-axis.
There is only one circle with these properties, namely, C4. Therefore,
ϕ3(C3) = C4.

The proof that ϕ1(C1) = C2 follows from very similar considera-
tions. �
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Proposition 10.13. Let Γ be the tiling group of the crooked Farey
tessellation associated to the parameters s1, s3, s5 with s5 real and
cos(Im(s1)) > e|s5|−1

e|s5|+1
(and s1 + s3 + s5 = 0). Then, the action of Γ

on H3 is discontinuous. In particular, Γ is a kleinian group.

Proof. For i = 1, 2, 3, 4, let Hi be the hyperbolic plane in H3 that
touches the sphere at infinity Ĉ along the circle Ci. Let X be the
polyhedron bounded by these four hyperbolic planes. Namely, X

consists of those points in the upper half-space H3 that are between
the euclidean vertical half-planes H1 and H3 and above the euclidean
half-spheres H2 and H4. Note that X is a hyperbolic polyhedron with
four faces H1, H2, H3, H4, with no edge or finite vertex, and with
four ideal vertices 0, 1, ∞, −e−s5 .

By Lemma 10.12, the isometry ϕ1 : H3 → H3 sends H1 to H2.
By considering the image of an additional point, it is also immediate
that it sends X to the side of H3 that is opposite X. Similarly,
ϕ3 : H3 → H3 sends H3 to H4 and sends X to the side of H3 that
is opposite X. Consequently, we are in the situation of Poincaré’s
Polyhedron Theorem 10.9.

The polyhedron X has no edge. Therefore, in order to apply
Theorem 10.9, we only need to check the Horosphere Condition (3)
of that statement at the ideal vertices of X. As in the 2-dimensional
setup of Section 8.4, the hypothesis that s1 + s3 + s5 = 0 will be
critical here.

We need to find horospheres S0, S1, S∞, S−e−s5 centered at 0,
1, ∞, −e−s5 , respectively, such that ϕ1(S∞) = S1, ϕ1(S−e−s5 ) =
S0, ϕ3(S∞) = S−e−s5 and ϕ3(S1) = S0. We could construct these
horospheres “by hand”, but it will be easier to use an argument similar
to that of Proposition 6.23.

Start with an arbitrary horosphere S∞ centered at ∞, namely,
with an arbitrary horizontal euclidean plane. Then set S1 = ϕ1(S∞)
and S−e−s5 = ϕ3(S∞). We will then be done if we can choose S0 to be
simultaneously equal to ϕ3(S1) = ϕ3 ◦ ϕ1(S∞) and to ϕ1(S−e−s5 ) =
ϕ1 ◦ϕ3(S∞), namely, if these two horospheres centered at 0 are equal.
The condition that ϕ3 ◦ ϕ1(S∞) = ϕ1 ◦ ϕ3(S∞) is equivalent to the
property that ϕ−1

3 ◦ ϕ−1
1 ◦ ϕ3 ◦ ϕ1 = ϕ4 ◦ ϕ2 ◦ ϕ3 ◦ ϕ1 respects the
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Figure 10.11. The images of the fundamental domain X◦

under the tiling group Γ◦ of the standard Farey tessellation

Figure 10.12. The images of the fundamental domain X un-
der the tiling group Γ of a crooked Farey tessellation

horosphere S∞. We already computed that because s1 + s3 + s5 = 0,

ϕ4 ◦ ϕ2 ◦ ϕ3 ◦ ϕ1(z) = e2s1+2s3+2s5z + 1 + es3 + es3+s1

+ es3+s1+s5 + e2s3+s1+s5 + e2s3+2s1+s5

= z + 2 + 2es3 + 2es3+s1

is a translation of Ĉ, so that its isometric extension to H3 is a hori-
zontal translation. In particular, this horizontal translation respects
the horizontal plane S∞, thus we are done.
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We can therefore apply Poincaré’s Polyhedron Theorem 10.9, and
conclude that X is a fundamental domain for the action of Γ on H3

and that this action is discontinuous. �

The images of the fundamental domain X under the tiling groups
are illustrated in Figure 10.11 for the standard case where s1 = s3 =
s5 = 0, and in Figure 10.12 for a more general example satisfying the
hypotheses of Proposition 10.13, in this case s1 = −0.5 + 1.4i, s3 =
0.3−1.4i and s5 = 0.2. More precisely, these figures represent in Ĉ the
images of the circles C1, C2, C3, C4 (bounding the hyperbolic planes
H1, H2, H3, H4 delimiting the polyhedron X) under the elements of
the tiling group Γ.

We already encountered in Figures 10.4 and 10.7 the crooked
Farey tessellation corresponding to the kleinian group of Figure 10.12.
When comparing these figures, it is important to remember that Fig-
ures 10.4 and 10.7 have been rotated so as to be invariant by a trans-
lation parallel to the x-axis.

10.5.2. Limit sets. We now consider the limit sets ΛΓ of the kleinian
groups Γ provided by Proposition 10.13.

The set of ideal vertices of the standard Farey triangulation T◦

is the set Q̂ = Q ∪ {∞} of all rational points in the circle at infinity
R̂. Given a crooked Farey tessellation T, we indicated in Section 10.1
that there is a one-to-one correspondence between the faces, edges
and vertices of T and the faces, edges and vertices of the standard
Farey tessellation T◦. In particular, each ideal vertex x ∈ Q̂ of T◦ is
associated to an ideal vertex λ(x) ∈ Ĉ of T.

This correspondence defines a map on the set of all rational points
Q̂ in R̂. We will show that under the hypotheses of Proposition 10.13
(so that the tiling group Γ of T is a kleinian group), it has a continuous
extension to all real numbers.

Proposition 10.14. Let T be the crooked Farey tessellation associ-
ated to parameters s1, s2, s3 such that s5 is real and cos(Im(s1)) >
e|s5|−1
e|s5|+1

(and s1 + s3 + s5 = 0). The above map x �→ λ(x) extends to
a homeomorphism

λ: R̂ → ΛΓ
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between the circle at infinity R̂ and the limit set ΛΓ of the tiling group
Γ of T.

The proof will take a while and is split into several partial steps.
Our strategy is reasonably well illustrated by the comparison of Fig-
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ures 10.11 and 10.12. We will use the family of circles γ(Ci), with
γ ∈ Γ to capture the structure of the limit set, and compare this data
to the data similarly associated to the standard Farey tessellation.

With this strategy in mind, it will be convenient to denote by
Γ◦ the tiling group corresponding to s1 = s3 = s5 = 0, whereas Γ
will denote the tiling group of the crooked Farey tessellation T as-
sociated to arbitrary s1, s3 and s5 with s1 + s3 + s5 = 0, s5 real,
and cos(Im(s1)) > e|s5|−1

e|s5|+1
. Proposition 10.13 guarantees that Γ is

a kleinian group, namely, it acts discontinuously on H3. Remember
from Section 10.1 that there is a natural correspondence between ele-
ments of Γ and elements of Γ◦, and between faces, edges and vertices
of the crooked Farey tessellation T and faces, edges and vertices of
the standard Farey tessellation T◦ of H2 ⊂ H3. Given any object
associated to Γ or T, we will try as much as possible to denote the
corresponding object of Γ◦ or T◦ by adding a superscript ◦.

Let C denote the collection of the circles of Figure 10.12, namely,
the images of C1, C2, C3, C4 under the elements of the tiling group
Γ. Following the above convention, let C◦ denote the correspond-
ing collection of circles in the case where s1 = s3 = s5 = 0, as in
Figure 10.11.

To fix some terminology, let us say that a point is surrounded

by an actual circle C (namely, not a line) if it is located on the inside
of C or on C itself. More generally, a subset of the plane is surrounded
by the circle C if every point in this subset is surrounded by C.

Lemma 10.15. For every ε > 0 and every C ∈ C that is an actual
circle (namely, not a line), there are only finitely many circles C ′ ∈ C

that are surrounded by C and whose euclidean diameter is greater
than ε.

Proof. For each such circle C ′, consider the hyperbolic plane H ′ in
H3 bounded by this circle.
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Pick an arbitrary base point P0 = (x0, y0, u0) ∈ H3 whose projec-
tion x0 + iy0 ∈ C is surrounded by C. We claim that the hyperbolic
distance from P0 to H ′ is uniformly bounded in terms of the euclidean
diameter D of C, of the coordinate u0 and of ε. Indeed, if P is the
apex of the euclidean half-sphere H ′, namely, the point of H ′ with
the largest third coordinate, we can join P to P0 by a curve made up
of a vertical line segment of hyperbolic length � log u0

ε and of a hor-
izontal line segment whose hyperbolic length is � D

u0
. It follows that

the hyperbolic distance from P0 to H ′ is bounded by r = log u0
ε + D

u0
.

By local finiteness of the tessellation of H3 by the polyhedra ϕ(X)
with ϕ ∈ Γ, the closed ball B̄dhyp(P0, r) can only meet finitely many
ϕ(X), and therefore only finitely many such H ′. (Compare the proof
of Lemma 7.15). This concludes the proof. �

We can now describe the image of a point x ∈ R̂ under the map
λ: R̂ → ΛΓ.

If x = ∞, we just set λ(∞) = ∞. Otherwise, let C◦
x be the set of

those circles in C◦ that surround x. Let Cx ⊂ C be associated to C◦
x

by the correspondence between circles in C and circles in C◦.

The circles of C◦ are also the boundaries of the hyperbolic planes
p−1(E), where E ranges over the edges of the tessellation of H2 by
hyperbolic squares constructed in Section 6.6, and associated to our
standard punctured torus. In particular, all these edges E are also
edges of the Farey tessellation. By inspection of the Farey tessellation,
we consequently see two different patterns according to whether x is
rational or not.

If x is irrational, it cannot belong to any circle of C◦
x. Therefore,

the circles of C◦
x are nested together and can be listed as K◦

1 , K◦
2 , . . . ,

K◦
n, . . . in such a way that each K◦

n is surrounded by K◦
n−1.

If x is rational, the elements of C◦
x can be listed into three families.

First there is a common stalk (possibly empty) consisting of finitely
many circles K◦

1 , K◦
2 , . . . , K◦

p which do not contain the point x,
with each K◦

n surrounded by K◦
n−1. Then, C◦

x splits into two infinite
families K◦

p+1, K◦
p+2, . . . , K◦

n, . . . and L◦
p+1, L◦

p+2, . . . , L′◦
n , . . . of

circles which do contain x, with K◦
n to the right of x and L◦

n to the
left; again, each K◦

n is surrounded by K◦
n−1 and L◦

n is surrounded by
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L◦
n−1 for every n � p + 1. In addition, K◦

p surrounds all K◦
n and L◦

n

with n � p + 1.

Let Kn and Ln be the circles of Cx associated to K◦
n and L◦

n,
respectively, by the correspondence between C◦

x and Cx.

Lemma 10.16. If x ∈ R ⊂ ΛΓ◦ , there is a unique point ξ ∈ ΛΓ that
is surrounded by all the circles in Cx.

Proof. Let K1, K2, . . . , Kn, . . . be the circles of Cx defined above.
Apply Lemma 10.15 to construct, by induction, an increasing se-
quence (nk)k∈N such that the diameter of each Knk

is less than 1
2k . If

we pick an arbitrary point ξk surrounded by Knk
, the convergence of

the series
∑∞

k=1
1
2k implies that the sequence (ξk)k∈N has finite length

in C, and therefore converges to some ξ by completeness of C = R2

(Theorem 6.8). Every Kn surrounds ξk for every k large enough that
nk > n, and therefore surrounds ξ by passing to the limit.

By Lemma 10.15, the diameter of Kn tends to 0 as n tends to ∞.
It easily follows that ξ is the only point that is surrounded by all the
Kn.

When x is irrational, this proves that ξ is surrounded by every
circle of Cx. When x is rational we have to worry about the remaining
circles Ln. However, in this case, note that the Kn all surround the
vertex of the crooked Farey tessellation T that corresponds to the
vertex x of the standard Farey tessellation T◦. Therefore, ξ is equal
to this vertex of T, which also belongs to all the Ln. As a consequence,
ξ is surrounded by all circles of Cx when x is rational as well.

To conclude the proof, we need to show that ξ is in the limit set
ΛΓ. Let P0 ∈ X be an arbitrary base point. For every circle Kn ∈ Cx

let Πn be the hyperbolic plane that is bounded by Kn and, among
the tiles of the tessellation of H3 by images of X under elements
γ ∈ Γ, let γn(X) be the tile that is just below Πn. The euclidean
distance deuc(ξ, γn(P0)) is bounded by the euclidean diameter of Kn,
and consequently converges to 0 as n tends to +∞ by Lemma 10.15.
Therefore, ξ = limn→∞ γn(P0) is in the limit set ΛΓ. �

Define λ: R̂ → ΛΓ by the property that λ(∞) = ∞ and that the
image λ(x) of x ∈ R is the point ξ provided by Lemma 10.16. Note
that this is consistent with our earlier definition when x is rational.
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Lemma 10.17. The map λ: R̂ → ΛΓ is continuous.

Proof. We will use the notation of Lemma 10.16 and of its proof.

For x ∈ R irrational, take an arbitrary ε > 0. By Lemma 10.15,
there exists at least one (and in fact infinitely many) n such that the
circle Kn ∈ Cx has diameter < ε. Since x is irrational, it does not
belong to the corresponding circle K◦

n ∈ C◦
x. Therefore, there exists

an η > 0 such that every y ∈ R with deuc(x, y) < η is also surrounded
by K◦

n. The image λ(y) of such a point y is surrounded by Kn by
construction of λ, so that deuc

(
λ(x), λ(y)

)
< ε. Therefore, for every

ε > 0, we found an η > 0 such that deuc

(
λ(x), λ(y)

)
< ε whenever

deuc(x, y) < η. Namely, λ is continuous at x.

The argument is very similar for x rational, except that we have
to also use the circles Ln. For every ε > 0, Lemma 10.15 again
provides an n such that Kn and Ln both have diameter < ε. Now,
there is an η such that every y ∈ R with deuc(x, y) < η is surrounded
by K◦

n if y � x and by L◦
n if y � x. In both cases this guarantees that

deuc

(
λ(x), λ(y)

)
< ε. This proves the continuity at every rational x.

For the continuity at x = ∞, it will be convenient to consider the
translation τ = ϕ4 ◦ ϕ2 ◦ ϕ3 ◦ ϕ1 ∈ Γ, and the corresponding element
τ◦ ∈ Γ◦. We already computed that τ (z) = z + 2 + es3 + 2es3+s1

and that τ◦(z) = z + 6. Note that λ is well behaved with respect
to τ and τ◦, in the sense that λ

(
τ◦(x)

)
= τ

(
λ(x)

)
for every x ∈ R.

If x ∈ R is very close to ∞, then, for the euclidean line C◦
1 ∈ C◦

passing through 1, it is outside of the vertical strip delimited by the
lines (τ◦)n(C◦

1 ) and (τ◦)−n(C◦
1 ) for n > 0 very large; it follows that

λ(x) is outside of the strip delimited by the lines τn(C1) and τ−n(C1)
and is consequently close to ∞. Formalizing this reasoning with the
appropriate quantifiers proves that λ(x) tends to ∞ = λ(∞) as x

tends to ∞. Namely, λ is continuous at ∞. �

We are now ready to complete the proof of Proposition 10.14,
which we restate here as:

Lemma 10.18. The map λ: R̂ → ΛΓ is a homeomorphism.

Proof. We have to show that λ is injective, surjective, and that its
inverse λ−1: ΛΓ → R̂ is continuous.
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If x �= y ∈ R, we can find a circle C◦ ∈ C◦ which surrounds x

but not y. Then, by construction, the corresponding circle C ∈ C

surrounds λ(x) but not λ(y), so that λ(x) �= λ(y). Also, λ(x) �= ∞
when x �= ∞. This proves that λ is injective.

To prove that λ is surjective, consider a point ξ �= ∞ in the limit
set ΛΓ. Pick a base point P0 in the triangle T+ of the crooked Farey
tessellation T. Then for every ε > 0 there exists a γ ∈ Γ such that
deuc(γ(P0), ξ) < ε. We claim that the image of at least one of the
vertices of T+ under γ is at euclidean distance < ε from ξ. Indeed,
the part of H3 that lies outside of the euclidean ball Bdeuc(ξ, ε) is a
hyperbolic half-space bounded by a hyperbolic plane, and is therefore
convex in the hyperbolic sense. It follows that if the three vertices
of an ideal triangle are outside of Bdeuc(ξ, ε), the whole triangle is
outside of that ball. In our case, since the ideal triangle γ(T+) meets
Bdeuc(ξ, ε) in P0, at least one of its vertices must be in Bdeuc(ξ, ε).

As a consequence, for every n, there is a vertex ξn of the crooked
Farey tessellation T with deuc(ξn, ξ) < 1

n . The definition of the map
λ shows that ξn = λ(xn), where xn ∈ Q ∪ {∞} is the vertex of the
standard Farey tessellation T corresponding to ξn. If the sequence
(xn)n∈N is bounded in R, it admits a converging subsequence by The-
orem 6.13; otherwise, one can extract from (xn)n∈N a subsequence
converging to the point ∞ in R̂. Therefore, we can always find a
subsequence (xnk

)k∈N which converges to some x∞ ∈ R̂. Then, ξ is
the limit of ξnk

= λ(xnk
) as k tends to ∞, which is equal to λ(x∞)

by continuity of λ.

For every ξ ∈ Λ−{∞}, we consequently found an x∞ ∈ ΛΓ◦ such
that λ(x∞) = ξ. For ξ = ∞, note that λ(∞) = ∞. This proves that
λ is surjective. In particular, the inverse map λ−1 : ΛΓ → R̂ is now
well defined.

To show that λ−1 is continuous, we use a proof by contradiction.
Suppose that λ−1 is not continuous at ξ ∈ ΛΓ different from ∞. This
means that there exists an ε > 0 such that for every η > 0, there
exists ξ′ ∈ ΛΓ such that deuc(ξ, ξ′) < η but deuc

(
λ−1(ξ), λ−1(ξ′)

)
�

ε. Applying this to each η = 1
n provides a sequence (ξn)n∈N which

converges to ξ but such that the points xn = λ−1(ξn) stay at distance
� ε from x = λ−1(ξ) in R̂. As above, extract a subsequence (xnk

)k∈N
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which converges to some x∞ ∈ R̂. Then, by continuity, λ(x∞) = ξ =
λ(x) but deuc(x, x∞) � ε, contradicting the fact that λ is injective.
Therefore, λ−1 is continuous at every ξ ∈ ΛΓ different from ∞. The
continuity of λ−1 at ∞ is proved by an almost identical argument.
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This concludes the proof that λ is a homeomorphism. �

10.5.3. Nondifferentiability of the limit set. Proposition 10.14
justifies our observation that many of the limit sets of Section 10.1
form a closed continuous curve with no self-intersection points in the
Riemann sphere Ĉ. We also noted that the curves in Section 10.1 do
not appear very differentiable. We now prove that this is indeed the
case, at least under the hypotheses of Proposition 10.14.

A subset Λ of C has a tangent line L at the point ξ ∈ Λ if
for every η > 0 there exists an ε > 0 such that for every ξ′ ∈ Λ ∩
Bdeuc(ξ, ε), the line ξξ′ makes an angle < η with L.

Proposition 10.19. Under the hypotheses of Proposition 10.14, so
that the homeomorphism λ: R̂ → ΛΓ is well defined, suppose in ad-
dition that the parameter s1 is not real. Then, for every irrational
point x ∈ R − Q, the limit set ΛΓ admits no tangent line at λ(x).

Remember that “most” real numbers are irrational, in a sense
which can be made precise in many mathematical ways; for instance,
there are uncountably many irrational numbers but only countably
many rationals. See Exercise 10.12 for a proof that ΛΓ does admit
a tangent line at each point λ(x) with x ∈ Q rational. When s1 is
real, it is immediate from definitions that the limit set ΛΓ is equal to
R̂, and consequently it is everywhere tangent to the real line R (in a
very strong sense!)

Proof. As in the proof of Proposition 10.14, let K1, K2, . . . , Kn,
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. . . be the circles of C that surround λ(x), with each Kn surrounding
the next circle Kn+1. Because x is irrational, λ(x) belongs to no
circle Kn.

We will first consider the simpler case where, for infinitely many
n1, n2, . . . , nk, . . . , the circle Knk+1 is disjoint from Knk

. By defini-
tion of C, the two circles Knk

and Knk+1 bound two faces of some tile
γk(X). In other words, there exists γk ∈ Γ such that γ−1

k (Knk
) and
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γ−1
k (Knk

) are two of the original circles C1, C2, C3, C4. By throwing
away some of the nk (but keeping infinitely many of them), we can
assume that we always get the same two circles, namely, that there
exists i, j ∈ {1, 2, 3, 4} such that γ−1

k (Knk
) = Ci and γ−1

k (Knk
) = Cj

for every k ∈ N. Note that Ci and Cj are disjoint, and consequently
bound two disjoint disks Di and Dj in the Riemann sphere Ĉ. (One
of the two circles is actually a line, in which case the disk it bounds
is a euclidean half-plane).

Suppose that the limit set ΛΓ has a tangent line L at λ(x). Then,
for every η > 0, there exists an ε > 0 such that ΛΓ ∩ Bdeuc(λ(x), ε)
is located between the lines Lη and L−η that make an angle of ±η

with L at λ(x), or more precisely it is contained in the two disk
sectors of angle 2η and radius ε delimited by these two lines L±η. By
Lemma 10.15, the circles Knk

and Knk+1 are contained in the ball
Bdeuc(λ(x), ε) for k large enough. We will use the corresponding γk

to “zoom” over the region near x. Note that γk(Dj) and γ(Ĉ − Di)
are contained in Bdeuc(λ(x), ε).

Consider the two circles J+
η = γ−1

k (Lη) and J−
η = γ−1

k (L−η) in
Ĉ. These two circles have the following properties:

(1) They cross each other in one point γ−1
k

(
λ(x)

)
∈ Dj and one

point γ−1
k (∞) ∈ Di, and make an angle of 2η with each

other at these points. (Remember from Proposition 2.18
and Corollary 2.17 that linear fractional maps send circles
to circles and respect angles).

(2) The part of the limit set ΛΓ that is outside of Di is located
between J+

η and J−
η . More precisely, ΛΓ − Di is contained

in the two “moons” that are delimited by the intersecting
circles J±

η and whose angles at their vertices are equal to
2η.

We now vary η. Take a sequence (ηm)m∈N of positive numbers
converging to 0. For each of these ηm, the corresponding circle J+

ηm

is completely determined by the four distinct points in which it in-
tersects the two disjoint circles Ci and Cj . Replacing (ηm)m∈N by a
subsequence if necessary, we can assume by compactness of the circles
Ci and Cj that these intersection points converge to four points in
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Dj

Cj
Ci

Di

ΛΓ

J+
ηJ−

η

γ−1
k

(λ(x))

Figure 10.13

Ci ∪ Cj . As a consequence, the circle J+
ηm

converges to a circle J+
0

as m tends to ∞; this limit circle J+
0 may be tangent to the circle

Ci or Cj , which will happen exactly when the two intersection points
of J+

ηm
with this circle converge to a single point. Further passing to

a subsequence if necessary, we can similarly assume that in addition,
the circle J−

ηm
converges to a circle J−

0 .

The circles J+
0 and J−

0 have one point in common in Di and
another one in Dj . Indeed, if J+

0 ∩J−
0 ∩Di or J+

0 ∩J−
0 ∩Dj was empty,

the same property would hold for J+
η ∩ J−

η ∩ Di or J+
η ∩ J−

η ∩ Dj by
continuity, contradicting the fact that J+

η and J−
η meet at γ−1

k (∞) ∈
Di and γ−1

k (λ(x)) ∈ Dj . Similarly, because intersection angles vary
continuously, the circles J±

0 make an angle of limm→∞ ηm = 0 at
these two intersection points. These two properties imply that the
circles actually coincide, namely, that J−

0 = J+
0 . (Here it is crucial

that the circles Ci and Cj be disjoint, since otherwise J+
0 and J−

0

could be two distinct circles passing through the point Ci ∩ Cj and
tangent to each other.)

In particular, the two moons delimited by the circles J±
η and

containing ΛΓ−Di limit to the circle J+
0 , so that the part of the limit

set that is outside Di is completely contained in the circle J+
0 .
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However, we saw that the limit set ΛΓ contains all the vertices of
the crooked Farey tessellation T, and so this is clearly impossible if s1

(and s3 = −s1−s5) is not real. For instance, the circle J+
0 must then

contain the vertices 0, 1, ∞ and e−s5 of T, and consequently must be
R̂. However, the vertices ϕi(0), ϕi(1) and ϕi(∞) are all outside of
Di, and cannot be all real by inspection of the formulas for the gluing
maps ϕ1, ϕ2, ϕ3, ϕ4.

This concludes the proof of Proposition 10.19 under the addi-
tional assumption that the circles Kn and Kn+1 ∈ Cx are disjoint for
infinitely many n.

The proof is very similar in the remaining case where the circles
Kn and Kn+1 meet for every n large enough. Here it is convenient
to look at the corresponding data for the standard Farey tessellation.
There the circles K◦

n and K◦
n+1 surround the point x ∈ R̂ and touch

each other at a rational point. This intersection point K◦
n ∩ K◦

n+1

cannot be equal to x since x is irrational, so it will be either to the
right or to the left of x. The intersection point K◦

n ∩ K◦
n+1 cannot

be systematically to the left or systematically to the right for n suffi-
ciently large; indeed the point K◦

n∩K◦
n+1 would then be independent

of n, and Kn would eventually stop surrounding x since its diameter
converges to 0. Therefore, the side changes for infinitely many values
of n. Namely, we can find a sequence (nk)k∈N such that K◦

nk
∩K◦

nk+1

is to the left of x and K◦
nk+1 ∩K◦

nk+2 is to its right, or conversely. A
consequence of this is that Knk

is now disjoint from Knk+2 for every
k ∈ N.

Now, the circles Knk
and Knk+2 bound faces of two adjacent

tiles of the tessellation of H3, which are of the form γk(X) and γk ◦
ϕik

(X) with γk ∈ Γ and ik ∈ {1, 2, 3, 4}. This again means that
there are only finitely many possibilities for the circles γ−1

k (Knk
) and

γ−1
k (Knk+2). Therefore, replacing the subsequence (Knk

)k∈N by a
subsubsequence if necessary, we can assume without loss of generality
that there exists fixed i, j and l ∈ {1, 2, 3, 4} such that γ−1

k (Knk
) =

Ci and γ−1
k (Knk+2) = ϕl(Cj) for every k ∈ N. The argument is
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then identical to that used in the first case, replacing Cj by ϕl(Cj)
everywhere. �
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10.5.4. The parameter space. Our shearing and bending of the
Farey tessellation depends on three complex parameters s1, s3, s5 ∈ C

such that s1 + s3 + s5 = 0. Actually, by inspection of the formulas at
the beginning of this chapter, these depend only on the exponentials
esi . (Remember that by definition of the complex exponential, ez =
ez′

if and only if z − z′ is an integer multiple of 2πi.)

We saw that for some values of these parameters, the tiling group
Γ of the corresponding crooked Farey tessellation acts freely and dis-
continuously on the hyperbolic space H3. We might be interested
in plotting all the values of the parameters for which this happens.
However, even if we take into account the fact that s5 = −s1 − s3,
this leaves us with two free complex parameters es1 and es3 , so that
a crooked Farey tessellation is determined by the point (es1 , es3) ∈
C2 = R4. Most of us are not very comfortable with 4–dimensional
pictures. We can try to decrease the dimension by imposing an ad-
ditional condition. The simplest such condition is that s5 = 0, so
that s3 = −s1. The corresponding set of crooked Farey tessellation
is known as the Earle slice in the set of all crooked Farey tessella-
tions. An element of the Earle slice is completely determined by the
complex number v = es1 ∈ C, since es3 = v−1 and es5 = 1.

Figure 10.14 represents the space of values of v ∈ C for which
the tiling group Γ of the crooked Farey tessellation associated to v

is a kleinian group acting freely on H3. More precisely, it uses a
change a variables and, in the complex plane C, the lighter shaded
and cauliflower-shaped area of Figure 10.14 is the set of values of

u =
2v − 1
2v + 1

=
2es1 − 1
2es1 + 1

for which the tiling group Γ acts discontinuously and freely on H3.
Note that v = es1 is easily recovered from u. This picture was drawn
using the software OPTi .

The large circle in Figure 10.14, which is the circle of radius 1
centered at the origin, encloses the set D of values of u for which the
hypotheses of Proposition 10.13 are satisfied. See Exercise 10.13.

The horizontal line segment corresponds to real values of u, for
which the tiling group Γ is fuchsian. These fuchsian groups are exactly
the tiling groups associated to the complete hyperbolic tori that we
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u1
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u3

Figure 10.14. The Earle slice

considered in Section 6.7.2 (corresponding to the case a = b ∈ (1, +∞)
in the notation of that section).

We have also indicated the values u1 = 1
3 corresponding to the

standard Farey tessellation, and u2 = −1.205 + 0.714i associated to
the example of Figure 10.8. Chapter 11 will be devoted to the tiling
group corresponding to the point u3 = 1 + 2√

3
i, located exactly on

the boundary of the lighter shaded area. The point u2 is near the
boundary, but not quite on it.

In the general case, let Ω ⊂ C2 be the set of values of the param-
eters (es1 , es3) for which the tiling group of the associated crooked
Farey tessellation acts discontinuously and freely on the hyperbolic
space H3. It can be shown that the properties of the limit set ΛΓ

that we proved under the hypotheses of Proposition 10.13 hold for all
parameters (es1 , es3) located in the interior of Ω. More precisely, for
these parameters, the limit set ΛΓ is homeomorphic to the circle, and
has no well-defined tangent line at most points unless the parameters
all real.

For points (es1 , es3) on the boundary of the parameter set Ω,
the tiling group Γ of the corresponding crooked Farey tessellation is
still a kleinian group acting freely and discontinuously on H3, but
its geometry is much more complex. In particular, the limit set is
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not homeomorphic to the circle any more. We will investigate such a
group in Chapter 11.

A result of Yair Minsky [Minsky1] implies that the space Ω is
path-connected, in the sense that any two points can be joined to each
other by a continuous curve contained in Ω. However, Figure 10.14
suggests that its geometry is quite intricate near its boundary. It is
actually much more intricate than what is visible on that picture.
Ken Bromberg recently showed in [Bromberg] that there are points
where Ω is not even locally connected. In particular, at such a point
P ∈ Ω, we can find a radius ε > 0 and points Q, R ∈ Ω which are
arbitrarily close to P and such that any continuous curve from Q to
R in Ω must leave the euclidean ball Bdeuc(P, ε) ⊂ C2 = R4.

P
ic

tu
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s
b
y

D
a
v
id

D
u
m

a
s

Figure 10.15

This is illustrated in Figure 10.15, which represents a different 2-
dimensional cross-section of Ω. Each of the three squares is obtained
by zooming in on a piece of the square immediately to the left. The
little “islands” that converge toward the center P of the right-hand
square can be connected to each other by a continuous curve in Ω
(leaving the cross-section represented and using the additional two
dimensions), but not by a curve which remains within ε of P . The
pictures of Figure 10.15 were created by David Dumas, using his
software Bear [Dumas].

What we observed for crooked Farey tessellations is part of a more
general phenomenon. Any fuchsian group Γ◦ can be deformed to a
family of kleinian groups depending on complex parameters belonging
to a certain domain Ω in Cn, where the dimension n depends on the
topology of the quotient space H2/Γ◦. For any such kleinian group Γ
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corresponding to an interior point of Ω, the limit set ΛΓ is homeomor-
phic to the circle, and admits no tangent line at most points unless the
group Γ is essentially fuchsian and the limit set is a circle in Ĉ. If the
quotient space H2/Γ◦ is compact, for instance for the tiling group Γ◦

of the tessellation of H2 by hyperbolic octagons that we constructed
in Section 6.5.2, the limit set of the deformed kleinian group Γ even
admits no tangent line at any point at all. The kleinian groups corre-
sponding to points on the boundary of Ω are much more complex; it is
only very recently that a reasonable understanding of their geometry
has been reached [Minsky2, Brock & Canary & Minsky].

10.6. Poincaré, Fuchs and Klein

The terminology of kleinian and fuchsian groups is due to Henri
Poincaré (1854–1912), one of the mathematical giants of his time.
Poincaré was led to hyperbolic geometry through an unexpected route.
He was studying the linear differential equation

(10.1) x′′(t) + p(t)x(t) = 0,

where the the function p(t) is given, where the function x(t) is the
unknown, and where, more importantly, all quantities x, p, t are
complex-valued. Compared to the setup usually taught in calculus
or in a differential equations course, the fact that t is complex may
be somewhat surprising, but the basic definitions and properties of
differential equations immediately extend to this complex context.

When investigating a specific family of examples, where p(t) was
a rational function with real coefficients, Poincaré found that the
space of local solutions to (10.1) gave rise to a certain group Γ of
linear fractional maps with real coefficients. Using (and proving) the
Poincaré Polygon Theorem 6.25, he then showed that Γ acts discon-
tinuously on the upper half-space H2. In addition, the construction
provided a preferred homeomorphism f: X → H2/Γ from the domain
X of the given function p(t) to the quotient space H2/Γ. The groups
Γ considered by Poincaré in these examples are very closely related
to the tiling groups associated to complete punctured tori that we
investigated in Sections 5.5, 6.6 and 6.7.2.
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In a subsequent work [Poincaré5], Poincaré started perturbing
equation 10.1 by allowing the coefficients of the rational fraction p(t)
to be complex, although close to real numbers. This process is very
similar to the deformations of the standard Farey tessellation to the
crooked Farey tessellations that we investigated in Sections 10.1 and
10.5. In particular, it yields a group Γ of linear fractional maps with
complex coefficients, now acting on the Riemann sphere Ĉ. Poincaré
proved that these linear fractional maps extend to isometries of the
hyperbolic space H3 and, using (and proving) the Poincaré Polyhe-
dron Theorem 10.9, showed that the action of Γ on H3 is discontin-
uous. He then used this technique to produce a natural homeomor-
phism f: X → Ω/Γ where, again, X is the domain of p(t) and Ω is a
subset of the Riemann sphere Ĉ invariant under the action of Γ. This
subset Ω is not the upper half-plane H2 any more. Rather, the limit
set ΛΓ is homeomorphic to the circle, and Ω is one of two pieces of
the complement Ĉ − ΛΓ. See Exercise 10.4 for a proof that Γ acts
discontinuously on Ĉ − ΛΓ, so that the quotient space Ω/Γ makes
sense.

In the real coefficient case, the homeomorphism f : X → H2/Γ
and its derivatives are essentially equivalent to the data of certain
functions which are well behaved with respect to the action of Γ. In
the papers [Poincaré1, Poincaré3, Poincaré4], Poincaré decided to
call these functions fuchsian functions in honor of Lazarus Fuchs,
whose articles [Fuchs1, Fuchs2] had inspired him. He also gave the
name of fuchsian groups to the groups of isometries of H2 occurring
in this way. Felix Klein then complained that he had already consid-
ered a notion equivalent to these fuchsian functions and groups acting
discontinuously on H2, and consequently deserved more credit than
Fuchs. Poincaré did not change his terminology but, when moving
to the case with complex coefficients (which Klein had never consid-
ered at that time, although he did later on), Poincaré gave the name
of kleinian groups to the discontinuous groups of isometries of H3

occurring in this context. See the note added by Klein, acting as
editor of the journal, to Poincaré’s announcement [Poincaré1] and
Poincaré’s response in [Poincaré2]. The upshot of the story is that
fuchsian groups have almost no connection to Fuchs, and that Klein
had little to do with kleinian groups.
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There is another story about this. The late nineteenth century
was a period of turmoil in mathematics, as the endeavor to set math-
ematics on a solid foundation would sometimes lead to rather unintu-
itive results. This included the emergence of pathological examples,
such as functions which are continuous but nowhere differentiable.
Poincaré had mixed feelings about this trend, and clearly thought
that “real life” mathematical objects should be well behaved. The
following quote from [Poincaré6] (translated by the author) summa-
rizes his thinking rather well.

Logic sometimes generates monsters. The past half
century has seen the emergence of a multitude of
bizarre functions which try to resemble as little
as possible the honest functions which have some
applications. No more continuity, or else continu-
ity but no derivatives, etc. . . Even more, from a
logical point of view, it is these strange functions
which are the most general, and those that one en-
counters without looking for them only appear as a
special case. . . . In the old days, when one invented
a new function, it was with the goal of some prac-
tical application; today, they are invented for the
single purpose of exhibiting flaws in the reasonings
of our fathers, and this is the only thing that one
will ever extract out of them.

Little did he realize that these “monsters” already appeared in a nat-
ural way in his work. For instance, the article [Poincaré5] contains
many examples which are similar to the ones that we considered in
this chapter. Poincaré was aware that in these examples, the partial
tiling of the Riemann sphere that he was constructing would accu-
mulate on a continuous curve ΛΓ, and thought that this curve was
unlikely to be very differentiable. However, it seems that the worst
he envisioned was that this curve might not have second derivatives;
see [Poincaré1, page 559]. It is only the limited computing power
available to him which prevented Poincaré from observing that this
closed curve was nowhere differentiable, namely, it would produce one

                

                                                                                                               



286 10. Kleinian groups

of these pathological curves that he thought would never occur in a
natural way.

Exercises for Chapter 10

Exercise 10.1. Let ϕ be the isometry of H3 whose extension to the Rie-

mann sphere bC is the homothety z �→ 2z, and let Γ = {ϕn; n ∈ Z} be the
transformation group of H3 generated by ϕ.

a. Show that Γ is a kleinian group.

b. Determine the limit set of Γ.

c. Show that there exists a nonempty closed subset K of bC which is in-
variant under Γ but which does not contain the limit set ΛΓ. (Compare
Proposition 10.3.)

Exercise 10.2. Show that the limit set of a kleinian group Γ is nonempty
if and only if Γ is infinite.

Exercise 10.3. Consider a kleinian group Γ which fixes the point ∞ ∈ bC.

a. Show that every element of Γ is the isometric extension of a linear or
antilinear fractional map of the form ϕa,b(z) = az + b or ψa,b(z) =
az̄ + b, with a �= 0.

b. Show that if Γ contains an element γ0 of the form ϕa,b or ψa,b with
|a| �= 1, then it also fixes a point of C in addition to ∞. Hint: For
γ ∈ Γ, consider the elements γ−1 ◦ γ−n

0 ◦ γ ◦ γn
0 ∈ Γ with |n| large, and

remember that Γ acts discontinuously on H3.

c. Conclude that either Γ consists entirely of euclidean isometries of
(R3, deuc) respecting H3 or it respects a unique complete geodesic g
of H3.

Exercise 10.4 (Discontinuity domain). If a group Γ acts on a metric space
(X, d), not necessarily by isometries, the action is discontinuous at P ∈ X
if there exists a ball Bd(P, ε) which meets its images γ(Bd(P, ε)) for only
finitely many γ ∈ Γ. When the action is by isometries, one readily checks
that this definition is equivalent to the one given in Section 7.2.

We want to show that the action of a kleinian group Γ on bC is discon-
tinuous at every point z of the complement C −ΛΓ of the limit set ΛΓ, for
the euclidean metric deuc. Since the limit set is closed, there exists a small
euclidean ball Bdeuc(z, 2ε) which is disjoint from ΛΓ. Suppose, in search
of a contradiction, that there exists an infinite sequence (γn)n∈N such that
γn(Bdeuc(z, ε)) meets Bdeuc(z, ε) for every n ∈ N. By Proposition 9.10,
each γn(Bdeuc(z, ε)) is delimited in R3 by a euclidean sphere centered on
bC; let rn be the euclidean radius of this sphere. Pick a base point P0 ∈ H3

on the euclidean sphere delimiting Bdeuc(z, ε).
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a. Suppose, in addition, that limn→N rn = 0. Show that there exists a
subsequence

`

γnk

´

k∈N
such that

`

γnk (P0)
´

k∈N
converges to some point

z∞ ∈ ΛΓ. Show that necessarily deuc(z, z∞) � ε, which contradicts the
choice of ε.

b. At the other extreme, suppose that the rn are bounded from below,
namely, that there exists r0 > 0 such that rn � r0 for every n ∈ N.
Show that there exists a constant C > 0 such that for every n ∈ N,
there exists a point Pn ∈ γn(Bdeuc(z, ε)) with dhyp(P0, Pn) � C. Show
that there exists a subsequence

`

γnk

´

k∈N
for which

`

γ−1
nk

(P0)
´

k∈N
con-

verges to some point z∞ ∈ ΛΓ. Use this property to show that necessar-
ily deuc(z, z∞) � ε, which contradicts the choice of ε. Hint: Compare
the euclidean and hyperbolic distances from γ−1

n (P0) to γ−1
n (Pn) ∈

Bdeuc(z, ε).

c. Combine parts a and b to reach a contradiction in all cases. Conclude
that the action of Γ at every z ∈ C − ΛΓ is discontinuous.

d. Show that for every z ∈ Λγ ∩ C, the action of Γ is not discontinuous
at z.

A similar argument shows that for the obvious extension of definitions,
the action of Γ is discontinuous at the point ∞ if and only if ∞ is not in

the limit set ΛΓ. For this reason, the complement bC − ΛΓ is called the
discontinuity domain of the kleinian group Γ.

Exercise 10.5. Let p: H3 → H2 be the orthogonal projection constructed
in Section 10.3.

a. Let �v be a vector based at P ∈ H3. Show that its image under the
differential of p is such that ‖DP p(�v)‖euc � ‖�v‖euc and ‖DP p(�v)‖hyp �
‖�v‖hyp cosh d, where d is the hyperbolic distance from P to p(P ).

b. Let γ be a piecewise differentiable curve in H3 which stays at distance
at least D > 0 from H2. Show that �hyp(p(γ)) � �hyp(γ) cosh D.

In particular, when projecting from far away, the hyperbolic orthogonal
projection p : H3 → H2 decreases lengths much more that the euclidean
orthogonal projection R3 → R2.

Exercise 10.6. Let p : H3 → H2 and q : H3 → R be the orthogonal
projection and the signed distance function introduced for Lemma 10.5.
Endow the product H2 × R with the product dhyp × deuc of the hyperbolic
metric dhyp of H2 and of the euclidean metric deuc of R, as defined in
Exercise 1.6.

a. Show that the product function p × q : H3 → H2 × R, defined by
p × q(P ) = (p(P ), q(P )) for every P ∈ H3, is a homeomorphism.
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b. Let Γ be a discontinuous group of isometries of H2, extended to a fuch-
sian group which we also denote by Γ. Endow the quotient spaces H2/Γ
and H3/Γ with the quotient metrics d̄hyp defined by the hyperbolic met-
rics dhyp of H2 and H3 (and denoted by the same symbols). Finally,
endow the product H2/Γ×R with the product metric d̄hyp×deuc. Show
that there is a homeomorphism

p̄ × q: H
3/Γ → H

2/Γ × R

defined by the property that p̄×q(P̄ ) = (p(P ), q(P )) for every P ∈ H3.

Exercise 10.7 (Twisted fuchsian groups). Let Γ be a fuchsian group,
acting on H3, and suppose that we are given a map ρ: Γ → {−1, +1} such
that ρ(γ ◦ γ′) = ρ(γ)ρ(γ′) (namely, if you know what this is, ρ is a group
homomorphism from Γ to the group Z2 = {−1, +1}, where the group law
is defined by multiplication). For every γ ∈ Γ, we define a new isometry γρ

of H3 as follows: If ρ(γ) = 1, then γρ = γ; if ρ(γ) = −1, then γρ = τ ◦ γ,
where τ : H3 → H3 is the euclidean reflection across the vertical half-plane
H2 ⊂ H3. Then consider the set

Γρ = {γρ; γ ∈ Γ}
of all γρ obtained in this way.

a. Show that Γρ is a group of isometries of (H3, dhyp).

b. Show that the action of Γρ on H3 is discontinuous. Hint: Compare
Lemma 10.6.

A kleinian group Γρ obtained in this way is called a twisted fuchsian
group.

c. Show that the limit set of a twisted fuchsian group is contained in
bR ⊂ bC.

d. Let Γ′ be a kleinian group whose limit set is contained in a euclidean
circle and has at least three points. Show that there exists a hyperbolic
isometry ϕ and a twisted fuchsian group Γρ as above such that

Γ′ = {ϕ−1 ◦ γρ ◦ ϕ; γρ ∈ Γρ}.

Hint: Choose ϕ so that it sends the circle C to bR ⊂ bC.

Exercise 10.8. Let X be the hyperbolic half-space

X = {(x, y, u) ∈ R
3; y � 0, u > 0}.

Consider X as a hyperbolic polyhedron by decomposing its boundary into
one vertex P = (0, 0, 1), two edges

E1 = {(x, y, u) ∈ R
3; x = 0, y = 0, u � 1}

and E2 = {(x, y, u) ∈ R
3; x = 0, y = 0, 0 < u � 1},
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and two faces

F1 = {(x, y, u) ∈ R
3; x � 0, y = 0, u > 0}

and F2 = {(x, y, u) ∈ R
3; x � 0, y = 0, u > 0}.

Glue the faces F1 and F2 together by the restriction ϕ1 : F1 → F2 of the
hyperbolic isometry ϕ1: H3 → H3 extending the antilinear fractional map
z �→ − 1

z̄
.

a. Show that hypotheses (1–3) of Theorem 10.11 are satisfied, but that
hypothesis (4) does not hold.

b. For any r > 0, endow the sphere

S = Sd̄hyp
(P̄0, r) = {P̄ ∈ X̄; d̄hyp(P̄ , P̄0) = r}

with the path metric dS , where dS(P̄ , Q̄) is defined as the infimum
of the hyperbolic lengths of all curves joining P̄ to Q̄ in S. Let

1
sinh r

dS be the metric obtained by multiplying dS by the factor 1
sinh r

(compare Exercise 9.4, and the proof of Lemma 10.10). Show that
(Sd̄hyp

(P̄0, r),
1

sinh r
dS) is isometric to the projective plane (RP2, d̄sph)

of Section 5.3.

c. Show that the quotient space (X̄, d̄X) is not locally isometric to
(H3, dhyp). It may be convenient to use the results of Exercise 5.11.

Exercise 10.9. Let T be a crooked Farey tessellation associated to param-
eters s1, s3 and s5 with s1+s3+s5 = 0, and let Γ be the corresponding tiling
group. Consider the hyperbolic isometry defined by the linear fractional
map ρ(z) = −e−s5 1

z
.

a. Show that ρ exchanges the two ideal triangles T+ and T−.

b. Show that ρ ◦ ϕ1 = ϕ−1
1 ◦ ρ, ρ ◦ ϕ−1

1 = ϕ1 ◦ ρ, ρ ◦ ϕ2 = ϕ−1
2 ◦ ρ and

ρ ◦ ϕ−1
2 = ϕ2 ◦ ρ.

c. Conclude that ρ respects the crooked Farey tessellation T and that
when the tiling group Γ acts discontinuously on H3, ρ also respects the
limit set ΛΓ.

d. Let τ = ρ◦ϕ3◦ϕ1. Show that τ is a horizontal translation, whose trans-
lation vector is equal to half the translation vector of the translation
ϕ4 ◦ ϕ2 ◦ ϕ3 ◦ ϕ1.

e. Show that τ respects the crooked Farey tessellation T and, when the
tiling group Γ acts discontinuously, that τ respects the limit set ΛΓ.

Exercise 10.10 (Shear-bend parameters). We want to give a geometric
interpretation of the parameters si ∈ C defining a crooked Farey tessellation
T. Do not let the long definitions intimidate you.

Let T1 and T2 be two adjacent triangles of T, meeting along an edge
E. Orient E to the left as seen from T1. Namely, first orient, in the Farey
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tessellation T◦, the edge E◦ corresponding to E to the left as seen from
the face T ◦

1 corresponding to T1, and then transport this orientation to an
orientation of E. (We need to do this because in dimension 3 the notion
of right and left depends on which way we are standing on the triangle
T1.) Let P1 and P2 be the base points determined on E by the standard
horocircles of T1 and T2, respectively, as defined in Lemma 8.4. The shear
parameter between the triangles T1 and T2 of T is the signed distance
from P1 to P2 in this oriented edge E. Compare the shear parameters of
Section 8.4.

Let θ ∈ [0, 2π) be the angle by which one needs to rotate T2 along E in
order to bring it in the hyperbolic plane containing T1, but on the side of E
opposite T1; here we measure the angles counterclockwise, as one looks in
the direction of the orientation of E. This angle θ is the external dihedral
angle θ between T1 and T2.

Suppose that E is the image of one of the standard edges Ei, with
i ∈ {1, 3, 5}, under an element γ of the tiling group Γ. Show that the shear
parameter t is equal to Im(si), and that the external dihedral angle θ is
equal to Re(si) up to an integer multiple of 2π. Hint: First consider the
case where γ is the identity map.

Exercise 10.11 (Schottky groups). Let B1, B2, B3 and B4 be four eu-
clidean balls in R3, centered on the xy-plane C, and far apart enough from
each other that the corresponding closed balls are disjoint. Let X be the
complement H3 − B1 ∪ B2 ∪ B3 ∪ B4. In particular, X is a hyperbolic
polyhedron in H3 delimited by four disjoint hyperbolic planes Π1, Π2, Π3,
Π4, with no vertex at infinity. Choose isometries ϕ1, ϕ2, ϕ3 and ϕ4 of
(H3, dhyp) such that the following holds: ϕ1 sends Π1 to Π2, and sends X
to the side of Π2 that is opposite X; ϕ2 = ϕ−1

1 ; ϕ3 sends Π3 to Π4, and
sends X to the side of Π4 that is opposite X; and ϕ4 = ϕ−1

2 . Let Γ be the
group generated by ϕ1, ϕ2, ϕ3 and ϕ4.

a. Show that Γ acts discontinuously on H3. Hint: Use Poincaré’s Poly-
hedron Theorem 10.9.

b. Show that every element γ ∈ Γ can be written in a unique way as

γ = ϕi1 ◦ ϕi2 ◦ · · · ◦ ϕin ,

where, for each j, ij is an element of {1, 2, 3, 4} and the set {ij , ij+1}
is different from {1, 2} and {3, 4} (which is a fancy way of saying that
there is no obvious simplification); by convention, n = 0 when γ is the
identity map. Hint: To prove the uniqueness, look at the tiles γ′(X)
that are crossed by an arbitrary geodesic going from a point of X to a
point of γ(X).
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c. Let (in)n∈N be a sequence valued in {1, 2, 3, 4}, such that the set
{in, in+1} is different from {1, 2} and {3, 4} for every n ∈ N. Set

γn = ϕi1 ◦ ϕi2 ◦ · · · ◦ ϕin .

Show that the sequence (γn(P0))n∈N converges in (R3, deuc) to some
point z of the limit set ΛΓ. Hint. Adapt the proof of Lemma 10.16.

d. Show that for every z ∈ ΛΓ, there exists a unique sequence (in)n∈N

such that z = limn→∞ γn(P0), with the setup of part c. In particular,
this proves that there is a one-to-one correspondence between points
of the limit set ΛΓ and sequences (in)n∈N as in part c.

e. Choose a specific example and draw as many of the (euclidean circles
delimiting the) hyperbolic planes ϕ(Πi), with ϕ ∈ Γ and i ∈ {1, 2, 3, 4}
as you can. Similarly sketch the limit set ΛΓ.

Exercise 10.12. Let Γ be one of the kleinian groups considered in Sec-
tion 10.5, associated to a crooked Farey tessellation T whose parameters

s1, s3, s5 satisfy the hypotheses of Proposition 10.13. Let λ: bR → ΛΓ be
the homeomorphism constructed in Proposition 10.14.

a. Show that there is a strip in C, delimited by two parallel lines, which
contains all the limit set ΛΓ (minus ∞, of course).

b. Show that for every rational point p
q
∈ Q, there exists two disjoint open

disks D1 and D2 in C, delimited by two circles tangent to each other

at λ( p
q
), such that ΛΓ is contained in bC−D1 ∪D2. Hint: Consider an

element γ ∈ Γ such that γ(∞) = p
q
, and use part a.

c. Conclude that the limit set ΛΓ admits a tangent line at each λ( p
q
) with

p
q
∈ Q.

Exercise 10.13. Let T be a crooked Farey tessellation associated to pa-
rameters s1, s3 and s5 such that s5 = 0 and s1 + s3 = 0. Let Γ be the
corresponding tiling group, which is contained in the Earle slice of Sec-
tion 10.5.4. Show that these parameters satisfy the conditions of Proposi-

tion 10.13, in the sense that cos(Im(s1)) > 0, if and only if
˛

˛

˛

es1−1
es1+1

˛

˛

˛

< 1.

(Compare with the circle represented in Figure 10.14.)

Exercise 10.14 (Domino diagrams revisited). This is a continuation of
Exercise 8.7. Let T be the crooked Farey tessellation determined by the
parameters s1, s2, s3 ∈ C with s1 + s2 + s3 = 0. Let T be an ideal triangle
of T, associated to the Farey triangle T ◦ in the standard Farey tessellation
T◦. We want to give an explicit formula for the vertices of T . We will
restrict our attention to the case where T ◦ is to the right of 0∞, namely,
where all its vertices are nonnegative.
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Let S1S2 . . . Sn, with each Sk equal to L of R, be the symbol sequence
describing the Farey triangle T ◦ as in Exercise 8.5, and consider the asso-
ciated domino diagram. By construction, each domino is associated to one
of the edges E of the Farey tessellation T◦ that are traversed as one travels
from the triangle 01∞ to the triangle T ◦, as in Exercise 8.5. The edge E is
of the form γ(Ei), where γ is an element of the tiling group Γ0, and where
Ei is one of the standard edges E1 = (−1)∞, E3 = 1∞ and E5 = 0∞. For
such a domino associated to an edge γ(Ei), label its upper right bullet by

esi/2 and its lower right bullet by e−si/2. In particular, the two leftmost
bullets of the domino diagram receive no labels.

For instance, the domino diagram (8.1) of Exercise 8.7 is labelled as
follows.

es3/2 es1/2 es3/2 es1/2 es3/2 es1/2

1 • → • → • → • → • → • → • 1
↘ ↘ ↗ ↘ ↗ ↘

2 • → • → • → • → • → • → • 2
e−s3/2 e−s1/2 e−s3/2 e−s1/2 e−s3/2 e−s1/2

For each path p in the domino diagram, let

w(p) = e±si1/2e±si2/2 · · · e±sin /2

be the product of the labels thus associated to the bullets traversed by p.
Finally, for every i, j ∈ {1, 2}, let

sij =
X

p goes from i to j

w(p).

a. Show that the triangle T of the crooked Farey tessellation T has vertices
s11
s21

, s11+s12
s21+s22

, and s12
s22

.

b. Devise a similar formula when T is associated to a standard Farey
triangle T ◦ which is on the left of 0∞, namely, with all vertices non-
positive.

We are not giving any hint, with the idea that this problem can be turned
into a more challenging research project.

                

                                                                                                               



Chapter 11

The figure-eight knot
complement

This chapter is devoted to the detailed analysis of one more example
of a crooked Farey tessellation whose tiling group is a kleinian group.
We will see that its features are quite different from those that we
encountered in Chapter 10. This example also has an unexpected
connection with the figure-eight knot that one can tie in a piece of
string.

11.1. Another crooked Farey tessellation

Consider the crooked Farey tessellation corresponding to the shear-
bend parameters s1 = 2π

3 i, s3 = −2π
3 i and s5 = 0. Let us call this

crooked tessellation T8, for reasons that we just hinted at.

In this case, the tiling group Γ8 is generated by

ϕ1(z) =
z + 1

z + 1 + e−
2π
3 i

=
z + 1

z + ω−1

and

ϕ3(z) =
z − 1

−z + 1 + e−
2π
3 i

=
z − 1

−z + ω−1
,

if we set ω = e
π
3 i. Note that ω3 = −1, so that ω2 −ω + 1 = ω3+1

ω+1 = 0
and 1 + ω−2 = 1 − ω = −ω2 = ω−1.

293

                                     

                

                                                                                                               



294 11. The figure-eight knot complement

This crooked tessellation is illustrated in Figure 11.1. However,
this picture is necessarily imperfect, because one can only print a
finite number of triangles (and because this finite number is further
limited by the poor programming skills of the author).

Figure 11.1. An approximation of the crooked Farey tessel-
lation T8

Similarly, an approximation of the limit set ΛΓ of Γ, namely, of
the footprints of the crooked tessellation, is represented in Figure 11.2.
Again, the picture cannot be completely accurate, since it includes
only finitely many points.

In the examples of Section 10.1, the imperfections of the figures
were unimportant because they were sufficiently close to the actual
geometric object that the difference was essentially undetectable. In
this case, however, the differences are very noticeable. Indeed, we
will see in Section 11.3 that the limit set ΛΓ is the whole Riemann
sphere Ĉ. In particular, Figure 11.2 should just be a (mathematically
correct albeit aesthetically less pleasing) solid black rectangle.

11.2. Enlarging the group Γ8

One can observe that although mathematically incomplete, Figure
11.2 exhibits some interesting symmetries under translation.
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Figure 11.2. An approximation of the limit set of Γ8

One of them, which is an actual symmetry of the picture, is by
horizontal translation. You should remember that the figure has been
rotated so as to make this symmetry horizontal; in reality, it corre-
sponds to the element ϕ−1

3 ◦ ϕ−1
1 ◦ ϕ3 ◦ ϕ3 which is a translation by

4 − 2ω with, as before ω = e
π
3 i. Since this translation is an element

of the tiling group Γ8, it respects the crooked tessellation T8 in H2,
and consequently respects its “footprints”. As in Exercise 10.9, there
actually is a translation symmetry by half this distance, namely, by
2 − ω.

However, we can also discern in the figure an imperfect symmetry
by a vertical translation. The incompleteness of the computer out-
put prevents this symmetry from being completely accurate on the
picture, although the same incompleteness has the advantage of mak-
ing the symmetry somewhat visible. When rotated back to its actual
position, this symmetry corresponds to the translation τ defined by
τ (z) = z + ω.
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Let Γ̂8 be the transformation group generated by ϕ1, ϕ3 and by
this new translation τ . We will consider Γ̂8 as a group of isometries
of H3.

It turns out that discontinuity is easier to show for the action for
Γ̂8 than for Γ8. Indeed, we will exhibit in the next section a relatively
simple fundamental domain for Γ̂8. It can be proven that Γ8 admits
no fundamental domain with finitely many faces. This is a special
case of a theorem of Al Marden [Marden1], but the proof of this
property is far beyond the scope of this book.

Another direct proof that the actions of Γ8 and Γ̂8 on H3 are
discontinuous is provided by Exercise 11.2.

11.2.1. A fundamental domain for the action of Γ̂8. In the hy-
perbolic space H3, let ∆1 be the tetrahedron with vertices at infinity
0, 1, ∞ and ω = e

π
3 i, and let ∆2 be the tetrahedron with vertices

at infinity 0, 1, ∞ and ω−1 = 1 − ω. The union ∆ of the two ideal
tetrahedra ∆1 and ∆2 is a polyhedron with five ideal vertices, nine
edges and six faces. We want to show that ∆ is a fundamental domain
for the action of Γ̂8 on H3. In particular, this will prove that Γ̂8 acts
discontinuously on H3.

Figure 11.3 offers a top view of ∆1 and ∆2, namely, describes the
vertical projection of these objects from the hyperbolic space H3 to
the plane C. In this projection, an ideal tetrahedron with one vertex
equal to ∞ appears as a euclidean triangle in the plane. Similarly, an
ideal triangle with a vertex at ∞ projects to a line segment, whereas
any other ideal triangle projects to a euclidean triangle.

Note that ∆1 and ∆2 meet along the ideal triangle T+ of the
crooked tessellation T8. Consequently, every time an element ϕ ∈
Γ8 sends T+ to an ideal triangle with one vertex equal to ∞, the
ideal tetrahedra ϕ(∆1) and ϕ(∆2) have one vertex at ∞. Since the
combinatorics of the crooked tessellation T8 is controlled by that of
the standard Farey tessellation T◦, we can find many examples of
such ϕ. Some of these are illustrated in Figure 11.3. To save space,
we have omitted the symbol ◦ when writing a composition of maps;
you should also remember that ϕ2 = ϕ−1

1 and ϕ4 = ϕ−1
3 .
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0 1

−1

ω − 1ω − 2 ω + 1

−ω 3 − ω

ω

1 − ω 2 − ω

∆1

∆2

ϕ2(∆1)

ϕ2(∆2) τ(∆2)

ϕ4ϕ2(∆1)

ϕ3(∆2)

τϕ3(∆2)

Figure 11.3. A fundamental domain for bΓ8

In particular, this analysis enables us to find several elements ϕ

of the extended group Γ̂8 for which ∆ and ϕ(∆) meet along along a
face of ∆. More precisely, consider the elements ψ1 = τ , ψ3 = ϕ4 ◦ϕ2

and ψ5 = τ ◦ ϕ3 of Γ̂8. If [a, b, c] denotes the ideal triangle with ideal
vertices a, b, c ∈ Ĉ, we see that ψ1 sends the face [0, 1 − ω,∞] of ∆
to the face [ω, 1,∞], that ψ3 sends [0, 1, ω] to [∞, 1 − ω, 1], and that
ψ5 sends [0, 1, 1 − ω] to [0, ω,∞].

Proposition 11.1. The group Γ̂8 acts discontinuously and freely on
the hyperbolic space H3, and the ideal polyhedron ∆ is a fundamental
domain for this action.

Proof. We will apply Poincaré’s Polyhedron Theorem 10.9. Glue the
faces of the polyhedron ∆ by the isometries ψi. More precisely, glue
the face F1 = [0, 1 − ω,∞] to F2 = [ω, 1,∞] by ψ1, F3 = [0, 1, ω] to
F4 = [∞, 1 − ω, 1] by ψ3 and F5 = [0, 1, 1 − ω] to F6 = [0, ω,∞] by
ψ5. As usual, set ψ2 = ψ−1

1 , ψ4 = ψ−1
3 and ψ6 = ψ−1

5 .

Let (∆̄, d̄hyp) be the quotient space so obtained.

The edges [0, 1], [∞, 1−ω], [∞, 1] and [0, ω] are glued together to
form an edge of ∆̄, as are the edges [0,∞], [ω,∞], [1, 1−ω] and [ω, 1].
Also, if we orient each of the above edges [a, b] by the direction from
a to b, we see by inspection that these orientations are respected by
the gluing maps ϕi. Therefore, the Edge Orientation Condition (2)
of Theorem 10.9 holds.

The consideration of Figure 11.3 immediately shows that the di-
hedral angles of ∆ along the edges [0,∞], [1,∞], [ω,∞] and [1−ω,∞]
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are 2π
3 , 2π

3 , π
3 , π

3 , respectively. To determine the other dihedral an-
gles, observe that the inversion across the sphere of radius 1 centered
at 0 defines an isometry ρ of H3 that exchanges 0 and ∞, and fixes
each of 1, ω and 1 − ω. It follows that ρ sends ∆ to itself and conse-
quently that for each a = 1, ω or 1−ω, the dihedral angle of ∆ along
the edge [0, a] is equal to the dihedral angle along [∞, a].

From these considerations, it follows that the sum of the dihedral
angles of ∆ along the edges that are glued to [0, 1] is equal to 2π

3 +
π
3 + 2π

3 + π
3 = 2π. Similarly, the dihedral angles along the edges that

are glued to [0,∞] add up to 2π
3 + π

3 + π
3 + 2π

3 = 2π. Therefore,
the Dihedral Angle Condition (1) in the hypotheses of Poincaré’s
Polyhedron Theorem 10.9 is satisfied.

For the Horosphere Condition (3), let S0, S1, Sω and S1−ω be
the horosphere centered at 0, 1, ω and 1 − ω, respectively, that have
euclidean diameter 1, and let S∞ be the horizontal plane of equation
u = 1. Note that for any face [a, b, c] of ∆, the three horospheres Sa,
Sb, Sc are tangent to each other. Therefore, if [a, b, c] is glued to a
face [a′, b′, c′] by a gluing map ϕ, this map ϕ sends Sa, Sb and Sc to
horospheres centered at a′, b′ and c′ and tangent to each other. By
elementary euclidean geometry (compare Lemma 8.4), there are only
three such horospheres, namely, Sa′ , Sb′ and Sc′ . Therefore, if the
gluing map ϕ sends an ideal vertex a of ∆ to ϕ(a), it also sends the
horosphere Sa to Sϕ(a). This shows that the Horosphere Condition (3)
in the hypotheses of Poincaré’s Polyhedron Theorem 10.9 is satisfied.

Poincaré’s Polyhedron Theorem 10.9 then asserts that the group
Γ̂′

8 generated by ψ1, ψ3, ψ5 acts discontinuously on H3 and admits ∆
as a fundamental domain.

Similarly, Theorem 10.11 shows that the action of Γ̂′
8 is free.

It remains to show that Γ̂′
8 = Γ̂8. Every element of Γ̂′

8 can be
expressed as a composition of terms ψ±1

i . Since ψ1 = τ , ψ3 = ϕ4 ◦ϕ2

and ψ5 = τ ◦ϕ3, it can be expressed as a composition of terms τpm1,
ϕ±1

1 and ϕ±1
3 . Therefore, every element of Γ̂′

8 is also an element of
Γ̂8. Conversely, we can manipulate the above equations and find that
τ = ψ1, ϕ3 = ψ−1

1 ◦ ψ5, ϕ1 = ψ−1
3 ◦ ψ−1

5 ◦ ψ1. Therefore, every
element of Γ̂8 can be written as a composition of terms ψ±1

i , and is
consequently an element of Γ̂′

8. This proves that Γ̂′
8 = Γ̂8. �
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Proposition 11.2. The quotient space (H3/Γ̂8, d̄hyp) is locally iso-
metric to the hyperbolic space H3.

Proof. This is an immediate consequence of Theorem 10.11. �

Since Γ8 is contained in Γ̂8, an immediate consequence is the
following statement.

Corollary 11.3. The tiling group Γ8 is a kleinian group, namely,
acts discontinuously on the hyperbolic space H3. �

11.3. Limit sets

We now determine the limit sets of the kleinian groups Γ8 and Γ̂8.

Lemma 11.4. The limit set of the enlarged group Γ̂8 is the whole
Riemann sphere Ĉ.

Proof. The proof is identical to that of Lemma 10.7. The key prop-
erty is that if, for each ideal vertex ξ of ∆, Sξ is the horosphere in-
troduced in the proof of Proposition 11.1 and Bξ is the ball bounded
by Sξ, then X − (B0 ∪ B1 ∪ Bω ∪ B1−ω) is bounded in H3. �

It turns out that the two groups Γ8 and Γ̂8 have the same limit
set. This follows from a relatively simple algebraic fact. We begin
with a definition.

A normal subgroup of a transformation group Γ is a transfor-
mation group Γ′ contained in Γ and such that for every γ ∈ Γ and
γ′ ∈ Γ′, the composition γ ◦ γ′ ◦ γ−1 is also an element of Γ. Normal
subgroups play an important role in algebra because they are well
behaved with respect to quotient spaces; see Exercise 11.1.

In our case, we are more interested in the following property.

Proposition 11.5. If Γ′ is a normal subgroup of the kleinian group
Γ and if the limit set of Γ′ has at least two elements, then the limit
sets ΛΓ and ΛΓ′ coincide.

Proof. The key point in the proof is that ΛΓ′ is invariant under the
action of Γ. To prove this, consider ξ ∈ ΛΓ′ and γ ∈ Γ. Fix a
base point P0 ∈ H3, and consider its orbit Γ′(P0) under the action
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of Γ′. Then there is a sequence of elements γ′
n ∈ Γ′ such that ξ =

limn→∞ γ′
n(P0) in R3 ∪ {∞} for the euclidean metric. Now,

γ(ξ) = lim
n→∞

γ ◦ γ′
n(P0) = lim

n→∞
η′

n(P ′
0)

if we set P ′
0 = γ(P0) and η′

n = γ ◦ γ′
n ◦ γ−1 ∈ Γ′. Since the limit set is

independent of the choice of base point (Lemma 10.1), we conclude
that γ(ξ) is in ΛΓ′ for every ξ ∈ ΛΓ′ and γ ∈ Γ. In other words, the
limit set ΛΓ′ of the normal subgroup Γ′ is invariant under the action
of Γ.

Now, ΛΓ′ is closed in Ĉ by Lemma 10.2, it is invariant under
the action of Γ, and it has at least two points by hypothesis. By
Proposition 10.3, it follows that ΛΓ′ contains ΛΓ. On the other hand,
ΛΓ′ is clearly contained in ΛΓ since Γ′ is contained in Γ. �

We now prove that Γ8 is a normal subgroup of Γ̂8. This will
follow from the following computation.

Lemma 11.6.

τ−1 ◦ ϕ1 ◦ τ = ϕ−1
3 ,(11.1)

τ−1 ◦ ϕ3 ◦ τ = ϕ2
3 ◦ ϕ1 ◦ ϕ3,(11.2)

τ ◦ ϕ1 ◦ τ−1 = ϕ2
1 ◦ ϕ3 ◦ ϕ1,(11.3)

τ ◦ ϕ3 ◦ τ−1 = ϕ−1
1 .(11.4)

Proof. We could use brute force computations of linear fractional
maps but we prefer a more conceptual argument, which in addition
should hint at the way these relations were discovered.

The gluing map ψ1 sends the edge [0,∞] of ∆ to the edge [ω,∞],
which is sent by ψ6 = ψ−1

5 to [1, 1−ω], which is sent by ψ4 = ψ−1
3 to

[ω, 1], which is sent by ψ2 = ψ−1
1 to [0, 1 − ω], which is sent back to

[0,∞] by ψ5.

Therefore, the element ψ5 ◦ ψ−1
1 ◦ ψ−1

3 ◦ ψ−1
5 ◦ ψ1 ∈ Γ̂8 sends the

oriented edge [0,∞] to itself, and in particular must fix the point
S0 ∩ [0,∞] provided by the horosphere S0. Since the action of Γ̂8 is
free by Proposition 11.1, this proves that

ψ5 ◦ ψ−1
1 ◦ ψ−1

3 ◦ ψ−1
5 ◦ ψ1 = IdH3 .
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Substituting ψ1 = τ , ψ3 = ϕ4 ◦ ϕ2 = ϕ−1
3 ◦ ϕ−1

1 and ψ5 = τ ◦ ϕ3, this
gives

τ ◦ ϕ3 ◦ τ−1 ◦ ϕ1 ◦ ϕ3 ◦ ϕ−1
3 ◦ τ−1 ◦ τ = IdH3 ,

and
τ−1 ◦ ϕ1 ◦ τ = ϕ−1

3

after simplification. This proves (11.1).

Considering a similar edge cycle beginning with the edge [0, 1],
the same argument provides the relation

ψ−1
5 ◦ ψ−1

3 ◦ ψ1 ◦ ψ3 = IdH3

and
ϕ−1

3 ◦ τ−1 ◦ ϕ1 ◦ ϕ3 ◦ τ ◦ ϕ−1
3 ◦ ϕ−1

1 = IdH3 ,

which simplifies to

τ−1 ◦ ϕ1 ◦ ϕ3 ◦ τ = ϕ3 ◦ ϕ1 ◦ ϕ3.

Using (11.1) (which we just proved) on the left-hand side of the equa-
tion and simplifying gives

τ−1 ◦ ϕ3 ◦ τ = ϕ2
3 ◦ ϕ1 ◦ ϕ3,

which proves (11.2).

An algebraic manipulation of (11.2) gives

ϕ3 = (τ ◦ ϕ3 ◦ τ−1) ◦ (τ ◦ ϕ3 ◦ τ−1) ◦ (τ ◦ ϕ1 ◦ τ−1) ◦ (τ ◦ ϕ3 ◦ τ−1)

= ϕ−2
1 ◦ (τ ◦ ϕ1 ◦ τ−1) ◦ ϕ−1

1 ,

using (11.1), from which (11.3) easily follows.

Finally, (11.4) is an immediate consequence of (11.1). �

Lemma 11.7. The group Γ8 is a normal subgroup of the enlarged
group Γ̂8.

Proof. We need to show that for every γ ∈ Γ̂8 and every γ′ ∈ Γ8,
the element γ ◦ γ′ ◦ γ−1 ∈ Γ̂8 belongs to the subgroup Γ8.

This is immediate for γ = ϕ±1
1 and γ = ϕ±1

3 , since these elements
belong to Γ8, and for γ = τ±1 by Lemma 11.6 since Γ8 is generated
by ϕ1 and ϕ3. The general result then follows, since every γ ∈ Γ8 can
be written as a composition of terms of the form ϕ±1

1 , ϕ±1
3 or τ±1. �
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The combination of Lemma 11.4, Proposition 11.5, and Lemma
11.7 provides the following result.

Corollary 11.8. The limit set of the kleinian group Γ8 is equal to
the whole Riemann sphere Ĉ. �

As such, the tiling group Γ8 of the crooked tessellation T8 is very
different from the tiling groups Γ of the crooked tessellations that we
analyzed in Section 10.5. Indeed, we had seen that the limit sets of
those tiling groups were homeomorphic to the circle R̂.

Actually, Jim Cannon and Bill Thurston proved a truly amazing
property in [Cannon & Thurston].

For the kleinian groups Γ considered in Section 10.5, we con-
structed a homeomorphism λ : R̂ → ΛΓ between R̂ = R ∪ {∞} and
the limit set ΛΓ of Γ. By continuity, the map λ is uniquely deter-
mined by the property that for every rational point x ∈ Q ∪ {∞}
corresponding to a vertex of the standard Farey tessellation To, its
image λ(x) ∈ Ĉ is the corresponding vertex of the crooked Farey
tessellation T.

In the case of the crooked tessellation T8, we still have a well-
defined map λ: Q∪{∞} → ΛΓ8 , which to each vertex of To associates
the corresponding vertex of T8. Cannon and Thurston prove:

Theorem 11.9 (Cannon-Thurston). The above map λ has a unique
extension λ: R̂ → ΛΓ8 = Ĉ which is both continuous and surjective.

�

In particular, this natural map λ provides a continuous curve
which passes through every point of the Riemann sphere Ĉ. Poincaré
would undoubtedly have been again very surprised to find out that his
theory of kleinian groups would lead to such a mathematical “mon-
ster”.

In contrast to what happened in Section 10.5, the map λ is very
far from being injective.

The proof of Theorem 11.9 is widely beyond the scope of this
text, and can be found in [Cannon & Thurston].
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11.4. The figure-eight knot

The enlarged kleinian group Γ̂8 of the previous section has an unex-
pected connection with the figure-eight knot familiar to sailors and
rock climbers, and represented in Figure 11.4. Here, instead of a long
rope, we should think of the knot as an infinite curve going from ∞
to ∞ in R3.

Figure 11.4. The figure-eight knot in R3 ∪ {∞}

If, in R3 ∪ {∞}, we move the knot away from ∞ and deform it
to make the picture esthetically more pleasing, we obtain the closed
curve K represented in Figure 11.5. We are particularly interested
in the complement X = R̂3 − K of this curve K in R̂3 = R3 ∪ {∞}.
This is why the knot is drawn here as a “hollow” curve, to indicate
that the knot is not really there.

Figure 11.5. The figure-eight knot in R3

Theorem 11.10. The complement X = R̂3 − K of the figure-eight
knot is homeomorphic to the quotient space H3/Γ̂8.

Proof. The proof of Theorem 11.10 will be a typical example of a
“proof by pictures”. This type of argument is standard fare for topol-
ogists, although sometimes regarded with a certain level of perplexity
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(or worse) by mathematicians from other fields. The general justifica-
tion for such a proof is that it would be too time consuming to write
(and read) it with all the details rigorously expounded. The sheer
bulk of these details would even obscure the key ideas underlying the
arguments. Consequently, the basic principle of the exposition of the
proof is to explain these geometric ideas in such a way that, at each
step, you should be able to convince yourself that you could rigorously
write down the complete details if absolutely necessary. Of course,
it takes some experience (and it can be a matter of appreciation) to
decide which details are legitimate to skip and which ones must ab-
solutely be included. However, with practice, one reaches a level of
proficiency that makes this type of proof as mathematically valid as,
say, a long algebraic computation.

Our proof of Theorem 11.10 will be a good introduction to this
type of mathematical reasoning. As a warm-up, you can begin by
trying to figure out a way to make rigorous the statement “let K be
the closed curve in R̂3 represented in Figure 11.5”. Next, you should
convince yourself that one can prove the existence of a homeomor-
phism ϕ: R̂3 → R̂3 sending the closed curve K ⊂ R̂3 of Figure 11.5 to
the closed curve K ′ ⊂ R̂3 of Figure 11.4. For this, first consider the
physical process of moving the string K to K ′ in R̂3; then mentally
define ϕ: R̂3 → R̂3 by the property that this process sends each par-
ticle P ∈ R̂3 of the universe to the particle ϕ(P ) ∈ R̂3; and finally,
convince yourself that this homeomorphism can be mimicked by a
composition of homeomorphisms rigorously defined by explicit equa-
tions, although this exposition would be extraordinarily cumbersome.

We now begin the proof of Theorem 11.10. We will first show that
the complement X = R̂3 −K is homeomorphic to the space obtained
by gluing two polyhedra X+ and X− along their faces. For this, we
first arrange by a homeomorphism of R̂3 that most of the knot K lies
in the xy-plane, except near the crossings, where one strand slightly
rises above the plane while the other strand slightly dips under it.
Roughly speaking, X+ will consist of the part of X that lies above
the xy-plane, while X− will include those points which are below the
plane. At least, this will be true away from the crossings.
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More precisely, we cut X along a certain number of (curved)
faces, which we now describe. Away from the crossings, these faces
just coincide with the xy-plane. Understanding the arrangement of
the faces near a crossing requires a little more thought. Figure 11.6
describes the situation near such a crossing.

We have here four faces meeting along an edge EF , joining a
point E in the upper strand to a point F in the lower strand. The
endpoints E and F belong to the knot K. In particular, they are not
in its complement X, and consequently are not part of the edge EF .

Near the rectangle PQRS drawn in the xy-plane, the first face
coincides with a warped pentagon AEFBQ, where the edges AE and
BF follow the knot and consequently are part of neither X nor the
face. Similarly, the second face is a warped pentagon BFECR with
the edges BF and EC removed, the third face is CEFDS minus the
edges CE and FD, and the last face is DFEAP minus DF and EA.

A

B

C

D

E

F

P Q

RS

Figure 11.6. Splitting the knot complement near a crossing

Having described these four faces, we now need to understand how
they decompose the knot complement X near the rectangle PQRS.
The upper polyhedron X+ of the decomposition touches the edge EF

along two opposite dihedra, one delimited by AEFBQ and BFECR,
and the other delimited by CEFDS and DFEAP . If we separate
X+ along the edge EF , this edge splits into two edges EF ′ and EF ′′,
and X+ can now be deformed to the part of R3 that lies above the
diagram on the left-hand side of Figure 11.7, namely, in the picture,
the part that lies in front of the sheet of paper.

Symmetrically, the lower polyhedron X− touches the edge along
the remaining two dihedra, namely, the one delimited by AEFBQ

and DFEAP , and the other one delimited by BFECR and CEFDS.
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P Q

RS

A

B

C

D
E

F ′ F ′′

P Q

RS

A

B

C

D

E′

E′′
F

Top polyhedron Bottom polyhedron

Figure 11.7

Separating X− along the edge EF yields two new edges E′F and
E′′F . Then X+ can be deformed to the part of R3 that lies below the
diagram on the right-hand side of Figure 11.7, namely, behind the
sheet of paper.

Let the faces of the decomposition be defined in such a way that
they coincide with the xy-plane away from the crossings, and that
they are of the type described above near the crossings. If we split
X = R̂3 − K along these faces, we then obtain two pieces X+ and
X−.

Before we describe these two pieces, it is convenient to introduce
some notation. Let R3

+ = R2 × [0, +∞) consist of those points of R3

that lie on or above the xy-plane R2, and let R3
− = R2 × (−∞, 0]

consist of those points that are located on or below R2. Then define
R̂3

± = R3
± ∪ {∞}, considered as a subset of R̂3 = R3 ∪ {∞}.

As in Figure 11.7, the upper piece X+ can be deformed (and is
consequently homeomorphic) to the complement, in the upper part
R̂3

+ of R̂3, of the four arcs that are indicated as hollow curves on the
left-hand side of Figure 11.8. These four arcs correspond to the trace
of the knot K on the boundary of X+. In this picture, we also use
the standard convention that R3

+ consists of those points of R3 which
lie in front of the sheet of paper. The boundary of X+ is decomposed
into six faces and eight edges as indicated on the left-hand side of
Figure 11.8, with two edges associated to each crossing of the picture
in Figure 11.5.
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F+
1 F+

2

F+
3

F+
4

F+
5

F+
6

F+
1 F+

2

F+
3

F+
4

F+
5

F+
6

Figure 11.8. The top piece X+ of the decomposition of the
figure-eight knot complement

By shrinking each of the missing arcs to a point, X+ can also be
deformed to R̂3

+ minus the four points indicated on the right-hand
side of Figure 11.8. The edges of the decomposition of its boundary
are then as indicated in that picture. To clarify this deformation we
should probably note that it does not provide a homeomorphism of
R3

+, since it crushes each of the four arcs to a single point (and there-
fore is far from being injective). However, it can indeed be chosen
so that it is injective outside of these arcs, and induces a homeomor-
phism between R3

+ minus the four arcs on the left and R3
+ minus the

four points on the right.

F−
1 F−

2

F−
3

F−
4

F−
5

F−
6

F−
1 F−

2

F−
3

F−
4

F−
5

F−
6

Figure 11.9. The bottom piece X− of the decomposition of
the figure-eight knot complement
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Similarly, the lower piece X− can be deformed to the lower half
R3

− of R̂3 minus the four arcs drawn on the left-hand side of Fig-
ure 11.9, or minus the four points indicated on the right-hand side.
In particular, X− now lies behind the sheet of paper in Figure 11.9.
Again, the boundary of X− is decomposed into six faces and eight
edges, as drawn in these pictures.

The right-hand sides of Figures 11.8 and 11.9 begin to make the
X± look like ideal polyhedra, namely, like polyhedra with their ver-
tices deleted. However, X+ and X− each have two faces which are
“digons”, namely, faces with only two edges and two vertices (at infin-
ity). This is clearly not possible for ideal polyhedra in the hyperbolic
space H3, since two hyperbolic geodesics with the same endpoints
at infinity must coincide. Consequently, we need to perform a last
modification on the X±.

Before After

digon
Π Π

Figure 11.10. Collapsing a digon to one edge

The two digons of X+ and the two digons of X− are glued to-
gether to give two digons in the decomposition of X. We will modify
this decomposition by collapsing each of these two digons of X to a
single edge. Under the following collapse, the two polyhedra X± are
transformed into two other polyhedra Y ±.

This process is illustrated by Figure 11.10. We have indicated
the cross section with a plane Π to clarify the picture.

In the collapse of the first digon corresponding to the faces F+
X ⊂

X+ and F−
X ⊂ X−, the edges marked and get combined

to form a single edge in the new decomposition. Similarly, in
                

                                                                                                               



11.4. The figure-eight knot 309

the second digon corresponding to F±
X ⊂ X±, the edges and

are replaced by a single edge .

F+
1 F+

2

F+
3

F+
4

F−
1F−

2

F−
3

F−
4

Figure 11.11. The tetrahedra Y ±

After collapsing these two digons, X+ gets replaced by another
region Y + of R̂3, homeomorphic to R̂3

+ minus the four points indicated
on the left-hand side of Figure 11.11. In addition, Y + inherits from
the nondigon faces of X+ a decomposition of its boundary into four
faces and six edges, as indicated on the left half of Figure 11.11.
Compare Figures 11.8 and 11.11, and remember that R̂3

+ lies in front
of the sheet of paper in these figures.

a
b c

∞

a

b
c

∞

∞

∞

Figure 11.12. Unfolding an ideal tetrahedron

Similarly, after collapsing the digons and flipping the picture over,
X− is replaced by a region Y − homeomorphic to R̂3

+ minus four
points, and with four faces and six edges as indicated on the right-
hand side of Figure 11.11. The flip is used to exchange front and half,
since X− was in the back of the sheet of paper in Figure 11.9.

                

                                                                                                               



310 11. The figure-eight knot complement

With a little more thought, we can convince ourselves that Y +

and Y − are each homeomorphic to an ideal tetrahedron, by a homeo-
morphism sending edges to edges and faces to faces. It may be easier
to go backward to see this, and start with an ideal tetrahedron in
H3 with ideal vertices a, b, c, ∞ ∈ R̂2. Unfolding its faces onto the
xy-plane deforms the ideal tetrahedron to the upper part R̂3

+ of R̂3

minus {a, b, c,∞}, and the four faces then are as indicated in the
right-hand side of Figure 11.12. That picture is then easily deformed
in R̂2 = R2 ∪ {∞} to those of Figure 11.11, after moving the fourth
vertex away from ∞.

The upshot of this discussion is that up to homeomorphism, the
figure-eight knot complement R̂3 − K is obtained from Y + and Y −

by gluing each face F+
i of Y + to the corresponding face F−

i of Y −,
in a manner compatible with the edge identifications represented on
Figure 11.11.

Let us now return to the fundamental domain ∆ for Γ8 that we
considered in Section 11.2.1. This ∆ was the union of the two tetra-
hedra ∆1 = [0, 1, ω,∞] and ∆2 = [0, 1, 1−ω,∞], meeting along their
common face [0, 1,∞]. Namely, we can consider that ∆ is abstractly
obtained from the tetrahedra ∆1 and ∆2 by gluing the face [0, 1,∞]
of ∆1 to the face [0, 1,∞] of ∆2 by the identity map. If we unfold
these tetrahedra as in Figure 11.12, we then obtain the tetrahedra
represented on Figure 11.13, where ∆1 is on the left, ∆2 is on the
right, and both tetrahedra are in front of the sheet of paper.

F2 F6

F3

F7

F1F5

F4

F8

01

ω

∞ 0

1

1−ω

∞

Figure 11.13. Gluing the tetrahedra ∆1 and ∆2.

The gluing data of the faces of ∆ is such that the face F1 =
[0, 1 − ω,∞] of ∆2 is glued to the face F2 = [1, ω,∞] of ∆1 by the
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gluing map ϕ1, the face F3 = [0, 1, ω] of ∆1 is glued to the face
F4 = [1, 1−ω,∞] of ∆2 by ϕ3, the face F5 = [0, 1, 1−ω] of ∆2 is glued
to the face F6 = [−, ω,∞] of ∆1 by ϕ5, and the face F7 = [0, 1,∞] of
∆1 is glued to the face F8 = [0, 1, ω] of ∆2 by the identity map. In
addition, the edges [0, 1], [∞, 1 − ω], [∞, 1], [0, ω] are glued together,
and marked on Figure 11.13 as ; similarly, the edges [0,∞],
[ω,∞], [1, 1 − ω] and [ω, 1] are glued together and marked as .

Comparing Figures 11.11 and 11.13, it is now immediate that the
gluing data are the same.

This shows that the figure-eight knot complement R̂3−K is home-
omorphic to the quotient space ∆̄ obtained by gluing the ideal tetra-
hedra ∆1 and ∆2 according to the gluing maps described in Fig-
ure 11.11.

Theorem 10.9 shows that ∆̄ is homeomorphic to H3/Γ̂8. There-
fore, the quotient space H3/Γ̂8 is homeomorphic to R̂3 − K, which
concludes the proof of Theorem 11.10. �

We can rephrase Theorem 11.10 in a slightly different way. We
say that two metrics d and d′ on the same set X are topologically

equivalent , or induce the same topology , if the identity map
IdX : (X, d) → (X, d′) is a homeomorphism. This is equivalent to
the property that for every sequence (Pn)n∈N in X, the sequence
converges to the point P∞ for the metric d if and only if it converges
for to P∞ for the metric d′; see Exercise 1.9.

In our case, the euclidean metric deuc of R3 does not quite give a
metric on X = R̂3−K, because deuc(P, Q) is undefined when Q = ∞.
We will say that a metric d is topologically equivalent to, or induces
the same topology as, the metric deuc if a sequence (Pn)n∈N in X

converges to the point P∞ (with possibly P∞ = ∞) for the metric d

if and only if it converges to P∞ for the metric deuc.

Theorem 11.11. The complement X = R̂3 − K of the figure-eight
knot admits a metric d which is topologically equivalent to the eu-
clidean metric and which satisfies the following two properties:

(1) (X, d) is complete;

(2) (X, d) is locally isometric to the hyperbolic plane H3.
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Proof. Let ϕ : X → H3/Γ̂8 be the homeomorphism provided by
Theorem 11.10. If d̄hyp is the quotient metric induced on H3/Γ̂8 by the
hyperbolic metric dhyp of H3, define a metric d on X by the property
that d(P, Q) = d̄hyp(ϕ(P ), ϕ(Q)). Namely, d is uniquely determined
by the property that ϕ is an isometry from (X, d) to (H3/Γ̂8, d̄hyp).

The metric d̄hyp is complete by Theorem 10.9, and locally isomet-
ric to (H3, dhyp) by Theorem 10.11. Since ϕ: (X, d) → (H3/Γ̂8, d̄hyp)
is an isometry, the same properties hold for d. �

Theorem 11.10 was discovered and first proved by Bob Riley in
[Riley1]. This property originally appeared to set the figure-eight
knot apart from the other knots until, a few years later, Bill Thurston
showed that this is actually a manifestation of a more general re-
sult. Thurston’s Geometrization Theorem completely revolutionized
3-dimensional topology. The next chapter is devoted to these results.

Exercises for Chapter 11

Exercise 11.1. Let Γ be a transformation group acting on the set X, and
let Γ′ be a normal subgroup of Γ. Let X/Γ′ denote the quotient space of X
under the action of Γ′, and let Γ/Γ′ be the quotient of Γ under the action of
Γ′ by left composition. Namely, γ′(γ) = γ′ ◦ γ for every γ′ ∈ Γ′ and γ ∈ Γ,
and the image of γ ∈ Γ in the quotient space Γ/Γ′ is γ̄ = {γ′ ◦ γ; γ′ ∈ Γ′}.
a. For every γ̄ ∈ Γ/Γ′ and P̄ ∈ X/Γ, consider the element γ̄(P̄ ) ∈ X/Γ′

represented by γ(P ) ∈ X. Show that γ̄(P̄ ) is independent of the choice
of γ ∈ γ̄ and of P ∈ P̄ .

b. Show that as γ̄ ranges over all the elements of Γ/Γ′, the corresponding
maps P̄ �→ γ̄(P̄ ) form a transformation group Θ of X/γ′.

c. Consider the map Γ/Γ′ → Θ which to γ̄ ∈ Γ/Γ′ associates the trans-
formation P̄ �→ γ̄(P̄ ). Show that when X = Γ and when the action of
the group Γ on the set X = Γ is by left multiplication, the above map
Γ/Γ′ → Θ is a bijection, so that Θ has a natural identification with
Γ/Γ′.

Exercise 11.2. For ω = e
π
3 i as usual in this chapter, consider the subset

Z[ω] = {m + nω; m, n ∈ Z} of C, and let PSL2

`

Z[ω]
´

be the set of linear

fractional maps z �→ az+b
cz+d

with a, b, c, d ∈ Z[ω]. Extend each of these

linear fractional maps to an isometry of (H3, dhyp).

a. Show that PSL2

`

Z[ω]
´

is a group of isometries of H3. Hint: Remember

that ω2 = ω + 1.
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Our goal is to show that PSL2

`

Z[ω]
´

acts discontinuously on H3. Assume,

in search of a contradiction, that PSL2

`

Z[ω]
´

does not act discontinuously

at some P0 ∈ H3. Namely assume that for every ε > 0, there are infinitely
many γ ∈ PSL2

`

Z[ω]
´

such that γ(P0) ∈ Bdhyp(P0, ε).

b. Show that there is a sequence (γn)n∈N of distinct elements of the group
PSL2

`

Z[ω]
´

such that limn→∞ γn(P0) = P0 in (H3, dhyp).

c. Show that there exists a subsequence
`

γnk

´

k∈N
such that the sequences

`

γnk (0)
´

k∈N
,
`

γnk (1)
´

k∈N
,
`

γnk (∞)
´

k∈N
converge to points z0, z1,

z∞ ∈ bC, respectively, for the euclidean metric deuc.

d. Show that the limits z0, z1 and z∞ are pairwise distinct. Hint: Con-
sider the complete geodesic g going from 0 to ∞, and the geodesic h
joining the point P1 = (0, 0, 1) ∈ H3 to the point 1 ∈ C; then observe
that the images γnk(P1) must remain at bounded hyperbolic distance
from P0.

e. Show that the coefficients ank , bnk , cnk , dnk ∈ Z[ω] of γnk (z) =
ank

z+bnk
cnk

z+dnk
can be chosen so that they each converge in C as k → ∞.

Hint: If γ(z) = az+b
cz+d

with ad − bc = 1, express a, b, c, d in terms

of γ(0), γ(1) and γ(∞), and note that these coefficients are uniquely
determined up to multiplication by −1.

f. Show that for every R > 0, there are only finitely many a ∈ Z[ω] such
that |a| � R.

g. Conclude that we have reached the contradiction we were looking for.

As a consequence, PSL2

`

Z[ω]
´

acts discontinuously on H3. In particular,

so do the groups Γ8 ⊂ bΓ8 ⊂ PSL2

`

Z[ω]
´

considered earlier in this chapter.

                

                                                                                                               



Chapter 12

Geometrization
theorems in dimension 3

This chapter generalizes to a wider framework the hyperbolic metric
on the figure-eight knot complement that we encountered in Chap-
ter 11. The goal is to show the dramatic impact of techniques of hy-
perbolic geometry on very classical problems in 3-dimensional topol-
ogy. The first half of the discussion is focused on knot theory, where
results are easier to state. After developing the necessary material, we
then consider the general Geometrization Theorem for 3-dimensional
manifolds, whose proof was completed very recently.

The proofs of many results in this chapter require a mathematical
expertise which is much higher than what we have needed so far. We
will not even attempt to explain the ideas behind these arguments.
We will be content with providing the background necessary to un-
derstand the statements and illustrate these with a few applications.

12.1. Knots

Mathematical knot theory aims at analyzing the many different ways
in which a piece of string can be tied into a knot. As for the figure-
eight knot that we already encountered in Section 11.4, it is more
convenient to consider strings where the two ends have been joined
together.

315

                                     

                

                                                                                                               



316 12. Geometrization theorems in dimension 3

Therefore, from a mathematical point of view, a knot in R3 is a
regular simple closed curve K in R3. We need to make all these terms
precise.

The fact that the curve is regular means that K can be param-
etrized by a differentiable function γ : R → R3 such that for each
value t ∈ R of the parameter, the derivative γ′(t) is different from the
zero vector. Recall from multivariable calculus that this hypothesis
guarantees that the curve K has a well-defined tangent line at each
point.

The fact that the curve K is closed means that the above pa-
rametrization can be chosen so that it wraps onto itself, namely, so
that there exists a T > 0 such that γ(t + T ) = γ(t) for every t ∈ R.

Finally, the closed curve K is simple if it does not cross itself,
namely, if γ(t) �= γ(t′) for every t, t′ ∈ [0, T ) with t �= t′.

Given two knots K and K ′ in R3, a problem of interest to sailors
and mathematicians alike is to determine whether it is possible to
deform K to K ′ in R3 in such a way that the knot never crosses
itself throughout the deformation. To express this in a mathematical
way, we want to know if there is a family of homeomorphisms ϕt :
R3 → R3, depending continuously on a parameter t ∈ [0, 1] such
that the following holds: at the beginning, when t = 0, ϕ0 is just the
identity map; at the end, when t = 1, ϕ1 sends the first knot K to the
second one K ′. To see how this is a reasonable model for the physical
process that we are trying to analyze, think about what happens to
each molecule of our world as one moves the string K to the string
K ′; for each value of the time parameter t, define ϕt: R3 → R3 by the
property that the molecule that was at the point P at the beginning
is now at the point ϕt(P ) at time t.

When there is such a family of homeomorphisms ϕt, we will say
that the knots K and K ′ are isotopic. The family of homeomor-
phisms ϕt is an isotopy from K to K ′.

Knot theory is essentially concerned with the problem of classify-
ing all possible knots up to isotopy. Ideally, one would like to have a
complete catalogue of knots so that every possible knot is isotopic to
one and only one entry of the catalogue. See the classic [Ashley] for
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a nonmathematical version of this catalogue; note that knot practi-
tioners also care about additional properties, such as friction, so that
isotopic knots appear several times in that book, under configurations
that have different physical characteristics.

The figure-eight knot of Chapter 11 would be one entry in the
catalogue. Another famous knot is the unknot , represented by a
round circle in the plane R2 ⊂ R3. See Exercise 12.5 for a proof that
the figure-eight knot and the unknot really represent distinct entries
in the catalogue, namely that, in agreement with our own experience
handling strings and ropes, it is not possible to unknot a string tied
as a figure-eight knot.

12.1.1. Isotopy versus isomorphism. When K and K ′ are iso-
topic, we can just focus on the final homeomorphism ϕ1 : R3 → R3,
which sends K to K ′. Note that we can extend ϕ1 to a homeomor-
phism of R̂3 = R3 ∪ {∞} by setting ϕ1(∞) = ∞. We will say that
two knots K and K ′ are isomorphic if there is a homeomorphism
ϕ: R̂3 → R̂3 which sends K to K ′ (but we do not necessarily require
ϕ to send ∞ to ∞).

Clearly, isotopic knots are also isomorphic. However, the property
of being isomorphic appears much weaker than being isotopic, since
we only have to worry about finding one homeomorphism, as opposed
to a whole family. In fact, it is only half as weak, as we will now
explain.

A homeomorphism ϕ of R̂3 can be, either orientation-preser-

ving or orientation-reversing . These properties are difficult to
define for general homeomorphisms, but are easily explained when ϕ

is differentiable at some point P ∈ R3. Recall that if the coordinate
functions of ϕ are ϕ1, ϕ2, ϕ3 (so that ϕ(Q) = (ϕ1(Q), ϕ2(Q), ϕ3(Q)) ∈
R3), the jacobian of ϕ at P is the determinant

JacP (ϕ) =

∣∣∣∣∣∣∣
∂ϕ1
∂x (P ) ∂ϕ2

∂x (P ) ∂ϕ3
∂x (P )

∂ϕ1
∂y (P ) ∂ϕ2

∂y (P ) ∂ϕ3
∂y (P )

∂ϕ1
∂z (P ) ∂ϕ2

∂z (P ) ∂ϕ3
∂z (P )

∣∣∣∣∣∣∣
of the differential map DP ϕ: R3 → R3. If, additionally, JacP (ϕ) �= 0,
then ϕ is orientation-preserving if JacP (ϕ) > 0 and ϕ is orientation-
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reversing if JacP (ϕ) < 0. Compare the 2-dimensional case that
we encountered in Section 2.5.2. Using the branch of mathemat-
ics called algebraic topology, it can be shown that this property is
independent of the point P with JacP (ϕ) �= 0 chosen, and it can
even be defined when no such P exists. See for instance [Hatcher1,
Sect. 2.2], [Massey, Chap. VIII, §2], or any other textbook where the
notion of degree of a continuous map is defined; a homeomorphism is
orientation-preserving exactly when it has degree +1.

Suppose that we are given an isotopy ϕt : R3 → R3, 0 � t � 1,
beginning with the identity map ϕ0 = IdR3 . The identity map is
clearly orientation-preserving. The same algebraic topology tech-
niques used to define the orientation-preserving property show that
the final homeomorphism ϕ1 is also orientation-preserving. As a con-
sequence, if the two knots K and K ′ are isotopic, they are also isomor-
phic by an orientation-preserving homeomorphism. Namely, there ex-
ists an orientation-preserving homeomorphism ϕ: R̂3 → R̂3 such that
ϕ(K) = K ′.

It turns out that by a deep result of topology, the converse is also
true.

Theorem 12.1. The knots K and K ′ are isotopic if and only if they
are isomorphic by an orientation-preserving homeomorphism of R̂3.

�
We will not prove this result. The key to its traditional proof

is a relatively simple construction of J. W. Alexander [Alexander],
known as “Alexander’s trick”. However, this proof is somewhat unsat-
isfactory, because the isotopy that it provides is very badly behaved
at at least one point. This would be considered very unrealistic by
most nonmathematicians, who would require all maps involved to be
differentiable. Fortunately, the result still holds in the differentiable
context but its proof is much more difficult. This differentiable result
is due to Jean Cerf [Cerf], and was later extended by Allen Hatcher
[Hatcher1].

In spite of Theorem 12.1, there is a difference between isotopy
and isomorphism. For instance, the two trefoil knots represented in
Figure 12.1 are isomorphic, since one can send one to the other by
a reflection across a plane. However, it can be shown that there is
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no isotopy moving the left-handed trefoil knot to the right-handed
trefoil. This fact is mathematically quite subtle, and cannot be easily
proved within the framework of this book; see for instance [Rolfsen,
§8.E.14].

Left-handed trefoil Right-handed trefoil

Figure 12.1. The two trefoil knots

Note that the jacobian of a reflection is equal to −1 at every
point, so that the reflection exchanging the two trefoils is orientation-
reversing.

12.2. The Geometrization Theorem for knot
complements

This section is devoted to the statement of Thurston’s Geometrization
Theorem for knot complements. We first begin with a discussion of
the two exceptions of this result, torus and satellite knots.

12.2.1. Torus knots. Among all knots, torus knots are among the
simplest ones to describe. Given a rational number p

q ∈ Q with p,
q ∈ Z coprime, the p

q -torus knot is the knot K formed by a curve
contained in the standard torus T in R3, and which turns q times
around the hole of the torus and p times counterclockwise around its
core C. More precisely, for R > r > 0, thicken the horizontal circle
C of radius R centered at the origin to a tube of width 2r. Then,
on the torus T bounding this tube, the p

q -torus knot K is the curve
parametrized by the map γ: R → R3 defined by

γ(t) =
(
(R + r cos pt) cos qt, (R + r cos pt) sin qt, r sin pt

)
.
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Compare our parametrization of the torus in Section 5.1. It is imme-
diate that up to isotopy, K is independent of the choice of the radii
R and r.

Figure 12.2 describes the −4
5 -torus knot as seen from above in R3.

Namely, it represents the projection of this knot to the xy-plane.

Figure 12.2. The −4
5

-torus knot

We have already encountered the 3
2 - and −3

2 -torus knots. Indeed,
it is relatively immediate that they are respectively isotopic to the
left-handed and right-handed trefoil knots of Figure 12.1. Also, the
p
±1 -torus knot is isotopic to the trivial knot, as is the ±1

q -torus knot.

It can be shown that when |p|, |q|, |p′|, |q′| are all greater than 1,
the p

q -torus knot is not isomorphic to the unknot, and it is isotopic

to the p′

q′ -torus knot if and only if p′

q′ is equal to p
q or to q

p . See for
instance [Rolfsen, §7D.10] for a proof, and compare Exercise 12.1.

12.2.2. Satellite knots. The satellite knot construction is a method
for building complex knots from simpler ones.

Suppose that we are given two objects. The first one is a knot
K in R3. The second one is a nontrivial knot L in the standard solid
torus V . This requires some explanation.

The standard solid torus V is the inside of the standard torus
in R3. Namely, supposing two radii R and r with R > r > 0 are
given, V consists of those points of the form(

(R + ρ cos v) cosu, (R + ρ cos v) sin u, ρ sin v
)
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with 0 � ρ � r and u, v ∈ R. In other words, V consists of those
points which are at distance at most r from the horizontal circle C of
radius R centered at the origin. A nontrivial knot in V is a regular
simple closed curve L in the interior of V such that

(1) L is not isotopic to the central circle C in the solid torus V ;

(2) L is not isotopic in V to a knot L′ which is disjoint from one
of the cross-section disks where the coordinate u is constant
(namely, L is really spread around V ).

The companion K The satellite K ′The solid torus V

L

Figure 12.3. The construction of a satellite knot

Given a knot K in R3 and a nontrivial knot L in the standard
solid torus V , we can then tie V around the knot K, and consider
the image of L. More precisely, choose an injective continuous map
ϕ: V → R3 which sends the central circle C to the knot K. Assume
in addition that ϕ is differentiable and that its jacobian is everywhere
different from 0, so that the image K ′ = ϕ(L) is now a new knot in
R3.

Any knot K ′ obtained in this way is said to be a satellite of the
knot K. Conversely, K is a companion of K ′.

Figure 12.3 offers an example.

A knot admits a unique factorization into companion knots, which
is analogous to the factorization of an integer as a product of prime
numbers. This factorization of knots was initiated by Horst Schubert
[Schubert1, Schubert2] in the 1950s, generalized by Klaus Johann-
son [Johannson], Bus Jaco and Peter Shalen [Jaco & Shalen], and
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finally improved by Larry Siebenmann [Bonahon & Siebenmann,
§2] in the 1970s. This unique factorization essentially reduces the
analysis of knots to studying knots that are not satellites.1

12.2.3. The Geometrization Theorem for knot complements.
We are now ready to state Thurston’s Geometrization Theorem for
knot complements.

Theorem 12.2 (Geometrization Theorem for knot complements).
Let K be a knot in R3. Then exactly one of the following holds.

(1) K is a p
q -torus knot with q � 2;

(2) K is a satellite of a nontrivial knot;

(3) the complement R̂3 − K admits a metric d which is:
(i) complete;
(ii) topologically equivalent to the euclidean metric;
(iii) locally isometric to the hyperbolic metric dhyp of the

hyperbolic space H3.

A knot K which satisfies conclusion (3) of Theorem 12.2 is said
to be hyperbolic.

Theorem 12.2 was proved by Bill Thurston in the late 1970s. It
completely revolutionized the world of knot theory (and 3-dimensional
topology), for reasons we hope to make apparent in the next sections.
This astounding breakthrough was one of the main reasons for which
Thurston was awarded the Fields Medal (the mathematical equiva-
lent of a Nobel Prize) in 1983. A key step in Thurston’s proof was
subsequently simplified by Curt McMullen [McMullen]. This part
of McMullen’s work was, again, one of the major contributions cited
when he himself received the Fields Medal in 1998.

In addition to the announcement [Thurston1], Thurston gave
numerous lectures detailing key steps of the proof of his Geometriza-
tion Theorem. However, he never wrote a complete exposition beyond
several influential preprints which never made it to final publication

1To be completely accurate, one needs to study nonsatellite links, consisting of
finitely many disjoint knots in R3. The analysis of links in R3 is not much more complex
than that of knots.
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(with the exception of [Thurston3]). Details are now available in
[Otal1, Otal2, Kapovich], for instance.

Although stating this as a precise mathematical statement is not
completely clear, it is an experimental fact that a knot randomly
drawn in R3 is neither a torus knot nor a satellite knot. Therefore, in
“most” cases, the Geometrization Theorem 12.2 provides a complete
hyperbolic metric on the knot complement X = R̂3 − K, as in its
conclusion (3).

Theorem 12.2 is an abstract existence theorem, whose proof does
not provide a convenient method for finding the hyperbolic metric
whose existence is asserted. The remarkable piece of software Snap-
Pea, written by Jeff Weeks [Weeks2] and improved over the years
with various collaborators, usually succeeds in describing such a met-
ric. Namely, given a knot K in R3, SnapPea attempts to find a group
Γ acting isometrically, freely and discontinuously on the hyperbolic
space H3, such that the quotient space H3/Γ, endowed with the quo-
tient metric d̄hyp induced by the hyperbolic metric dhyp of H3, is
homeomorphic to X = R̂3 − K by a homeomorphism ϕ: X → H3/Γ.
When it succeeds, the metric d defined on X by the property that
d(P, Q) = d̄hyp

(
ϕ(P ), ϕ(Q)

)
satisfies conclusion (3) of Theorem 12.2.

To find such a group Γ, SnapPea uses a method very similar
to the one that we employed for the figure-eight knot in Chapter 11.
Namely, it decomposes X into finitely many topological ideal tetrahe-
dra, and then tries to identify them with geometric ideal tetrahedra in
H3 in such a way that the corresponding gluing data satisfies the hy-
potheses of Poincaré’s Polyhedron Theorem 10.9. This often requires
changing the original decomposition of X into ideal tetrahedra, which
the program does by (educated) trial and error. See [Weeks4] for a
more detailed description.

In practice and as long as the knot K is not too intricate (so that
one does not encounter issues of computational complexity), Snap-
Pea always finds the hyperbolic metric on X = R̂3 − K that it is
looking for, unless there is no such complete hyperbolic metric be-
cause the knot is a torus knot or a satellite knot. There is a curious
mathematical situation here. The Geometrization Theorem 12.2 has
been rigorously proved, but its abstract proof does not provide any
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method for explicitly finding the hyperbolic metric whose existence
is usually asserted by this statement. Conversely, SnapPea almost
always finds this hyperbolic metric, but at this point in time there
is no rigorous proof that the algorithm used by SnapPea will always
succeed in doing so.

Since it first became available, SnapPea has been a wonderful
tool, widely used by researchers in topology. It is also an equally
wonderful toy, and you are strongly encouraged to play with it and
explore its many features.

We conclude this section with a complement, which sharpens The-
orem 12.2.

Let (X,d) be a metric space which is locally isometric to (H3, dhyp).
In particular, every point of X belongs to a ball Bd(P, r) which is iso-
metric to a ball Bdhyp(P ′, r) in H3. We will say that (X, d) has finite

volume if there exists a sequence of such balls
{
Bd(Pn, rn)

}
n∈N

, each
isometric to a ball Bdhyp(P ′

n, rn) in H3, such that

(1) the set X is the union of all balls Bd(Pn, rn). Namely, every
P ∈ X belongs to some ball Bd(Pn, rn);

(2) if volhyp

(
Bdhyp(P ′

n, rn)
)

= π sinh 2rn − 2πrn denotes the
hyperbolic volume of the ball Bdhyp(P ′

n, rn) in H3 (compare
Exercise 9.14), the series

∞∑
n=1

volhyp

(
Bdhyp(P ′

n, rn)
)

converges.

This definition is somewhat ad hoc, but will suffice for our pur-
poses. See Exercise 12.6 for a more precise definition of the volume
of (X, d).

Complement 12.3. Whenever Theorem 12.2 provides a complete
hyperbolic metric on the complement R̂3 −K of a knot K, this hyper-
bolic metric has finite volume unless K is isotopic to the unknot.

12.3. Mostow’s Rigidity Theorem

What makes the Geometrization Theorem so powerful is that when it
provides a complete metric locally isometric to the hyperbolic space,
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this metric is actually unique. This is a consequence of a fundamen-
tal result which, about 10 years earlier, had been proved by George
Mostow [Mostow1] and later improved by Gopal Prasad [Prasad]
(see also [Mostow2, Benedetti & Petronio] for a proof).

Theorem 12.4 (Mostow’s Rigidity Theorem). Let (X, d) and (X ′, d′)
be two complete metric spaces which are locally isometric to H3 and
which have finite volume. If there exists a homeomorphism between
(X, d) and (X, d′), then there exists an isometry ϕ: (X, d) → (X ′, d′).

�

In the case that is currently of interest to us, where X = R̂3 −K

is the complement of a knot K which is neither a torus knot nor
a satellite, the Geometrization Theorem 12.2 and Complement 12.3
provide a complete finite volume metric d which is locally isometric
to the hyperbolic metric of the hyperbolic space H3. We can then
rephrase Theorem 12.4 as follows.

Theorem 12.5. Let K be a knot in R3 which is neither a torus
knot nor a satellite knot, and let d and d′ be two hyperbolic metrics
on the knot complement X = R̂3 − K as in conclusion (3) of the
Geometrization Theorem 12.2. Namely, these two metrics are locally
isometric to the hyperbolic metric of H3, are complete, have finite
volume, and are topologically equivalent to the euclidean metric. Then
the metric spaces (X, d) and (X, d′) are isometric.

Proof. The identity map IdX defines a homeomorphism between
(X, d) and (X, d′) because d and d′ are both topologically equiva-
lent to the euclidean metric. It then suffices to apply Theorem 12.4
to these two spaces. �

In other words, the hyperbolic metric d provided by Theorem 12.2
is unique up to isometry. As a consequence, given two hyperbolic
knots K and K ′, if we succeed in proving that the corresponding
hyperbolic metrics are not isometric, then we are guaranteed that the
two knots are not isomorphic. Here is a typical application.

Corollary 12.6. Let K and K ′ be two knots for which Theorem 12.2
provides complete hyperbolic metrics d and d′ on X = R̂3 − K and
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X ′ = R̂3 − K ′, respectively. If (X, d) and (X, d′) have different hy-
perbolic volumes (as defined in Exercise 12.6), then the two knots are
not isomorphic. �

In practice, this simple test is remarkably effective.

Mostow’s Rigidity Theorem holds in a much more general frame-
work than the one stated in Theorem 12.5. In particular, for any
dimension n, one can define an n-dimensional hyperbolic space Hn

by a somewhat straightforward extension of the formulas we used for
H2 and H3. Mostow’s Rigidity Theorem 12.5 extends to all dimen-
sions n � 3 by systematically replacing H3 by Hn everywhere.

Surprisingly enough, the same statement is false for n = 2. Actu-
ally, we have already encountered this phenomenon in Section 8.4.2,
when we associated to each triple of shear parameters s1, s3, s5 ∈ R

with s1 + s3 + s5 = 0 a complete hyperbolic metric on the once punc-
tured torus. The area of such a metric is twice the hyperbolic area of
an ideal triangle in H2, namely, it is equal to 2π; in particular, it is
finite. It can be shown that if we slightly change the shear parameters
defining a hyperbolic metric d, the metric d′ associated to the new
shear parameters is not isometric to d.

12.4. Ford domains

A Ford domain is a variation of the Dirichlet domains that we encoun-
tered in Section 7.4. We first introduce some preparatory material.

12.4.1. Hyperbolic metrics and kleinian groups. In Section 7.2,
we saw that if Γ acts by isometries, freely and discontinuously on the
hyperbolic space H3, then the quotient space H3/Γ is locally isomet-
ric to H3. In addition, Exercise 7.6 shows that H3/Γ is complete, so
that H3/Γ is a complete hyperbolic 3-dimensional manifold.

Conversely, every connected complete hyperbolic 3-dimensional
manifold can be obtained in this way, as a quotient of the hyperbolic
space H3 by a kleinian group Γ acting freely. This is a general fact
but, in the case we are interested in, we prefer to state this as a
complement to Theorem 12.2, which will enable us to include a few
properties that will be needed later on.
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As in Exercise 9.10, an isometry of the hyperbolic space H3 is
parabolic if, by definition, it fixes exactly one point of the sphere at
infinity Ĉ. A point ξ ∈ Ĉ is parabolic for a group Γ of isometries of
H3 if ξ is fixed by some parabolic γ ∈ Γ.

Complement 12.7. Whenever Theorem 12.2 and Complement 12.3
provide a finite volume complete hyperbolic metric d on the comple-
ment X = R̂3 − K of a knot K, there exists a group Γ of isometries
of H3 such that

(1) Γ acts freely and discontinuously on H3, and (X, d) is iso-
metric to the quotient space (H3/Γ, d̄hyp);

(2) the set Γ∞ of those γ ∈ Γ with γ(∞) = ∞ is generated
by two horizontal translations γ1 and γ2 along two linearly
independent horizontal vectors �v1 and �v2, respectively; in
particular, ∞ is a parabolic point;

(3) every parabolic point of γ is of the form γ(∞) for some
γ ∈ Γ;

(4) there exists a euclidean half-space

B∞ = {(x, y, u) ∈ H3; u � u0},

defined by some constant u0 > 0, which is disjoint from all
its images γ(B∞) with γ ∈ Γ − Γ∞.

For (3), observe that conversely, every γ(∞) ∈ Ĉ with γ ∈ Γ is
parabolic. In contrast to (4), note that (2) implies that γ(B∞) = B∞
for every γ ∈ Γ∞.

Proposition 12.8. Under the hypotheses of Complement 12.7, let Γ
and Γ′ satisfy the conclusions of this statement. Then there exists an
isometry ϕ of (H3, dhyp) such that

Γ′ = {ϕ ◦ γ ◦ ϕ−1; γ ∈ Γ}.

In addition, one can arrange that ϕ(∞) = ∞.

Proof. This is a relatively simple consequence of Mostow’s Rigidity
Theorem. Indeed, the version given in Theorem 12.5 provides an
isometry ψ: H3/Γ → H3/Γ′ between (H3/Γ, d̄hyp) and (H3/Γ′, d̄hyp).
Start with an arbitrary P0 ∈ H3. Consider its image Q0 = π(P0)
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under the quotient map π : H3 → H3/Γ, the image Q′
0 = ϕ(Q0) ∈

H3/Γ′ of this point Q0 under the isometry ψ, and finally a point
P ′

0 ∈ π′−1(Q′
0) ∈ H3 of the preimage of Q′

0 under the quotient map
π′ : H3 → H3/Γ′, namely, such that π′(P ′

0) = Q′
0. The following

diagram may be useful to keep track of all these maps and points.

P0 ∈ H3 ϕ�−→ P ′
0 ∈ H3

π

�−→ �−→ π′

Q0 ∈ H3/Γ
ψ�−→ Q′

0 ∈ H3/Γ′

By the proof of Theorem 7.8 and Corollary 7.9, the quotient map
π is a local isometry. As a consequence, for ε > 0 sufficiently small,
the restriction π|Bdhyp (P0,ε) : Bdhyp(P0, ε) → Bd̄hyp

(Q0, ε) is an isom-
etry; in particular, it is bijective. Similarly, we can assume that
π′
|Bdhyp (P ′

0,ε): Bdhyp(P ′
0, ε) → Bd̄hyp

(Q′
0, ε) is also an isometry, by tak-

ing ε small enough. Consider the composition

ϕ =
(
π′
|Bdhyp (P ′

0,ε)

)−1◦ ψ ◦ π|Bdhyp (P0,ε): Bdhyp(P0, ε) → Bdhyp(P ′
0, ε).

This map ϕ : Bdhyp(P0, ε) → Bdhyp(P ′
0, ε) is an isometry between

two hyperbolic balls of H3. Therefore, it extends to an isometry
ϕ: H3 → H3 by Lemma 9.9.

Consider an arbitrary γ ∈ Γ. By definition of the quotient map
π : H3 → H3/Γ, π ◦ γ = π. Since π′ ◦ ϕ(P ) = ψ ◦ π(P ) for every
P ∈ Bdhyp(P0, ε) by construction of ϕ, we conclude that

π′ ◦ ϕ ◦ γ(P ) = ψ ◦ π ◦ γ(P ) = ψ ◦ π(P ) = π′ ◦ ϕ(P )

for every P ∈ Bdhyp(P0, ε). In the particular case where P = P0,
this implies that ϕ ◦ γ(P0) and ϕ(P0) are glued together when one
takes the quotient under the action of Γ′, namely, that there exists
an element γ′ ∈ Γ′ such that γ′ ◦ ϕ(P0) = ϕ ◦ γ(P0).

Now, for every P ∈ Bdhyp(P0, ε),

π′ ◦ (γ′)−1 ◦ ϕ ◦ γ(P ) = π′ ◦ ϕ ◦ γ(P ) = π′ ◦ ϕ(P ).

Note that (γ′)−1 ◦ ϕ ◦ γ(P0) = ϕ(P0) = P ′
0 by construction of γ′ so

that (γ′)−1 ◦ ϕ ◦ γ(P ) and ϕ(P ) are both in the ball Bdhyp(P ′
0, ε).

Since the restriction of π′ to this ball is injective, we conclude that
(γ′)−1 ◦ ϕ ◦ γ(P ) = ϕ(P ).
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This proves that the two isometries (γ′)−1◦ϕ◦γ and ϕ of (H3, dhyp)
coincide on the ball Bdhyp(P0, ε). Consequently, they coincide every-
where on H3 by the uniqueness statement in Lemma 9.9. Composing
both of them with γ′ on one side and ϕ−1 on the other side, we
conclude that ϕ ◦ γ ◦ ϕ−1 = γ′ ∈ Γ′.

This proves that {ϕ ◦ γ ◦ ϕ−1; γ ∈ Γ} is contained in Γ′.

Conversely, given γ′ ∈ Γ′, the same argument but replacing ϕ

by ϕ−1 provides an element γ ∈ Γ such that ϕ−1 ◦ γ′ ◦ ϕ = γ or,
equivalently, γ′ = ϕ ◦ γ ◦ ϕ−1. This proves that Γ′ is contained in
{ϕ ◦ γ ◦ϕ−1; γ ∈ Γ}. Since we just proved the reverse inclusion, these
two sets are equal.

We need to prove the last statement of Proposition 12.8, namely
that we can choose the isometry ϕ so that ϕ(∞) = ∞.

For the isometry ϕ that we have constructed so far, we only know
that ϕ−1(∞) is a parabolic point of Γ. Indeed, if γ′ is a parabolic
element of Γ′ fixing ∞, then ϕ−1 ◦ γ′ ◦ ϕ is a parabolic element of Γ
which fixes ϕ−1(∞).

Therefore, since Γ satisfies conclusion (3) of Complement 12.7,
there exists an element γ0 ∈ Γ such that γ0(∞) = ϕ−1(∞). Set
ϕ′ = ϕ ◦ γ0. Note that ϕ′ is an isometry of H3 and sends ∞ to ∞. In
addition

{ϕ′ ◦ γ ◦ (ϕ′)−1; γ ∈ Γ} = {ϕ ◦ γ0 ◦ γ ◦ γ−1
0 ◦ ϕ−1; γ ∈ Γ}

= {ϕ ◦ α ◦ ϕ−1; α ∈ Γ} = Γ′

as required. (To justify the second equality, note that α = γ0 ◦γ ◦γ−1
0

belongs to the group Γ for every γ ∈ Γ and that conversely, every
α ∈ Γ can be written as α = γ0 ◦ γ ◦ γ−1

0 for some γ ∈ Γ.) �

12.4.2. Ford domains. As indicated before, Ford domains are a
variation of the Dirichlet domains of Section 7.4. For this reason, it
may be useful to first repeat the definition of Dirichlet domains. Let
Γ be a group of isometries of the metric space (X, d) whose action is
discontinuous. The Dirichlet domain of Γ at P ∈ X is the subset

∆Γ(P ) = {Q ∈ X; d(P, Q) � d(γ(P ), Q) for every γ ∈ Γ},
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consisting of those points Q ∈ X which are at least as close to P as
to any other point of its orbit Γ(P ).

In Section 7.4, we considered the case where X is the hyperbolic
plane H2 (as well as the euclidean plane, but this is irrelevant here).
In particular, Theorem 7.13 showed that in this case the Dirichlet
domain ∆Γ(P ) is a locally finite polygon in H2 and that, as γ ranges
over all elements of γ, the polygons γ

(
∆Γ(P )

)
form a tessellation of

H2. In addition, the two tiles γ
(
∆Γ(P )

)
and ∆Γ(P ) are distinct if

and only if γ(P ) �= P .

The natural generalization of these results holds when X is the
hyperbolic space H3. Namely, ∆Γ(P ) is then a locally finite polyhe-
dron in H3. To prove this, one just needs to replace Lemma 7.14 by
the statement that for any P , Q ∈ H3, the set of points R that are at
the same hyperbolic distance from P and Q is a hyperbolic plane Π,
while the set of R with dhyp(P, R) � dhyp(Q, R) is a hyperbolic half-
space H delimited by this perpendicular bisector plane Π. The proof
of Theorem 7.13 then immediately generalizes to show that ∆Γ(P )
is a locally finite polyhedron and that the polyhedra γ

(
∆Γ(P )

)
with

γ ∈ Γ form a tessellation of H3. Again, γ
(
∆Γ(P )

)
is distinct from

∆Γ(P ) unless γ(P ) �= P .

For a hyperbolic knot K in R3, let Γ be a kleinian group satisfying
the conclusions of Complement 12.7. In the definition of the Dirichlet
domain ∆Γ(P ), we now replace the point P ∈ H3 by the point ∞.
Namely, we want to consider the set ∆Γ(∞) of those points Q ∈ H3

which are at least as close to ∞ as to any other γ(∞) with γ ∈ Γ.
There is of course a problem here, because a point Q ∈ H3 is at
infinite hyperbolic distance from ∞, and from any γ(∞)! However,
some infinities are larger than others, and it turns out that we can
really make sense of this statement.

For this, let us pursue the same formal reasoning. Since γ ∈ Γ is a
hyperbolic isometry, the distance from Q to γ(∞) should be the same
as the distance from γ−1(Q) to ∞. Therefore, if we neglect the fact
that we are talking about infinite distances, the statement that Q is
closer to ∞ than to γ(∞) should be equivalent to the statement that
∞ is closer to Q than to γ−1(Q). If we remember our discussion of
the Busemann function in Section 6.8 (see also Exercises 6.10–6.11),
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we can now make sense of this property. Indeed, if Q1 = (x1, y1, u1)
and Q2 = (x2, y2, u2) are two points of H3,

lim
P→∞

dhyp(P, Q1) − dhyp(P, Q2) = log
u1

u2
,

where the limit is taken for the euclidean metric in R̂3 = R3 ∪ {∞}.
As a consequence, we can decide that Q1 = (x1, y1, u1) is closer

to ∞ than Q2 = (x2, y2, u2) if u1 > u2. To avoid any ambiguity, we
will use the euclidean terminology and say that in this case, Q1 is
higher than Q2. Similarly, Q1 is at least as high as Q2 if u1 � u2.

This leads us to define the Ford domain of the kleinian group
Γ as

∆Γ(∞) = {Q ∈ H3; Q is at least as high as γ−1(Q) for every γ ∈ Γ}.

We will show that ∆Γ(∞) is a locally finite hyperbolic polyhe-
dron.

Lemma 12.9. Let γ be an isometry of H3 such that γ(∞) �= ∞.
Then the set of those Q ∈ H3 which are at least as high as γ−1(Q) is
a hyperbolic half-space Hγ, bounded by a hyperbolic plane Πγ.

Proof. For u > 0, let Su be the horizontal plane passing through the
point (0, 0, u). In hyperbolic terms, S(u) is a horosphere centered at
∞. By Proposition 9.11, its image γ(Su) is therefore a horosphere
centered at the point γ(∞) ∈ C, namely, a euclidean sphere touching
C at that point.

Su0

γ(Su0)Πγ

γ(∞)

P0

Q

γ−1(Q)

O

Figure 12.4. The proof of Lemma 12.9

When u is near +∞, the euclidean radius of γ(Su) is very small
and the horosphere γ(Su) is disjoint from Su. On the other hand,
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when u is very close to 0, the euclidean radius of γ(Su) is very large
and Su is near the xy-plane, so that the two horospheres γ(Su) and Su

meet each other. (To check these two facts, note that γ(Su) contains
the point γ(0, 0, u), which is on the hyperbolic geodesic g joining
γ(0, 0, 0) to γ(∞).) Therefore, there exists a value u0 > 0 for which
Su0 and γ(Su0) are exactly tangent to each other, at a point P0.

Let Πγ be the hyperbolic plane that passes through P0 and is
orthogonal to the geodesic joining γ(∞) to ∞. Namely, Πγ is the
intersection with H3 of the euclidean sphere centered at γ(∞) and
passing through P0.

Let ρ be the hyperbolic reflection across Πγ , which is also the
restriction to H3 of the inversion across the euclidean sphere centered
at γ(∞) and containing P0. In particular, ρ exchanges ∞ and γ(∞),
and fixes the point P0. It follows that ρ also exchanges the horospheres
Su0 and γ(Su0). In particular, the hyperbolic isometry α = ρ ◦ γ

sends ∞ to ∞, and respects the horosphere Su0 . As a consequence,
α respects every horosphere centered at ∞, and it sends each point
of H3 to a point which is at the same height.

If Q is a point of Πγ , then γ−1(Q) = α−1 ◦ ρ−1(Q) = α−1(Q) is
at the same height as Q by the above observation on α.

If Q is a point of the open hyperbolic half-space delimited by Πγ

and adjacent to ∞, namely, if Q ∈ H3 is located outside of the closed
euclidean ball centered at γ(∞) and containing P0 in its boundary,
then ρ(Q) is lower than Q by elementary geometry. Noting that
ρ−1 = ρ, the same property of α shows that γ−1(Q) = α−1 ◦ ρ−1(Q)
is lower than Q. In other words, Q is higher than γ−1(Q).

Similarly, if Q is in the other open hyperbolic half-space delimited
by Πγ , the same argument shows that Q is lower than γ−1(Q).

This completes the proof of Lemma 12.9. �

By definition, the Ford domain ∆Γ(∞) is equal to the intersection
of all these half-spaces Hγ as γ ranges over all elements of Γ such that
γ(∞) �= ∞. Namely,

∆Γ(∞) =
⋂

γ∈Γ−Γ∞

Hγ
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using in the notation the stabilizer Γ∞ = {γ ∈ Γ; γ(∞) = ∞} of ∞.
To show that this is a locally finite polyhedron, we need the following
fact.

Lemma 12.10. The family of hyperbolic planes {Πγ ; γ ∈ Γ − Γ∞}
defined by Lemma 12.9 is locally finite.

Proof. We need to show that for every P ∈ H3, there exists an ε > 0
such that the ball Bdhyp(P, ε) meets only finitely many Πγ . Actually,
any ε > 0 will do.

Note that we are not saying that there are only finitely many
γ ∈ Γ such that Πγ meets Bdhyp(P, ε). Indeed, if α is an element of
the stabilizer Γ∞ (namely, if α ∈ Γ and α(∞) = ∞), conclusion (2) of
Complement 12.7 shows that α sends every point of H3 to a point at
the same height. It then follows from our definitions that Πγ◦α = Πγ .
In particular, there are infinitely many γ ∈ Γ with the same associated
plane Πγ .

After these preliminary comments, let us begin the proof of
Lemma 12.10. Suppose that the ball Bdhyp(P, ε) meets infinitely
many distinct Πγn

, with n ∈ N. For each n, pick a point Qn ∈
Bdhyp(P, ε) ∩ Πγn

.

By Complement 12.7, the stabilizer Γ∞ of ∞ is generated by two
horizontal translations, with respective translation vectors �v1 and �v2.
In particular, an arbitrary parallelogram P in the plane with sides
respectively parallel to �v1 and �v2 is a fundamental domain for the
action of Γn on the horizontal plane R2. As a consequence, there
exists αn ∈ Γ∞ such that the first two coordinates (xn, yn) of α−1

n ◦
γ−1

n (Qn) = (xn, yn, un) are located in P.

Note that the last coordinate un of α−1
n ◦ γ−1

n (Qn) is also the
last coordinate of γ−1

n (Qn), which is equal to the last coordinate
of Qn since Qn ∈ Πγn

. As a consequence, since dhyp(P, Qn) < ε,
the usual comparison between euclidean and hyperbolic metrics (see
Lemma 2.5) shows that ue−ε < un < ueε, where u is the third coor-
dinate of P = (x, y, u).

It follows that all points α−1
n ◦γ−1

n (Qn) are in the parallelepipedic
box P × [ue−ε, ueε] ⊂ H3 ⊂ R3. By compactness, or by another
explicit comparison between hyperbolic and euclidean metrics, there
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is a large radius R such that this box P × [ue−ε, ueε] is contained in
the ball Bdhyp(P, R). Then,

dhyp

(
P, γn ◦ αn(P )

)
� dhyp(P, Qn) + dhyp

(
Qn, γn ◦ αn(P )

)
� dhyp(P, Qn) + dhyp

(
α−1

n ◦ γ−1
n (Qn), P

)
� ε + R.

Since the action of Γ is discontinuous, Lemma 7.15 shows that
the ball Bdhyp(P, ε + R) contains only finitely many points of the
orbit. In particular, there exists two indices n1 �= n2 such that γn1 ◦
αn1(P ) = γn2 ◦ αn2(P ). Additionally, because the action of Γ is free,
γn1 ◦ αn1 = γn2 ◦ αn2 . However, by the observation that we made at
the beginning of the proof,

Πγn1
= Πγn1◦αn1

= Πγn2◦αn2
= Πγn2

,

contradicting our original assumption that the hyperbolic planes Πγn

are all distinct. �

Proposition 12.11. The Ford domain ∆Γ(∞) is a locally finite poly-
hedron in the hyperbolic space H3.

Proof. We already saw that by definition, ∆Γ(∞) is equal to the
intersection of all the half-spaces Hγ , defined in Lemma 12.9, as γ

ranges over all elements of Γ − Γ∞.

By the local finiteness result of Lemma 12.10, every P ∈ ∆Γ(∞)
is the center of a ball Bdhyp(P, ε) which meets only finitely many of
the hyperbolic planes Πγ bounding the Hγ . Let us write these planes
as Πγ1 , Πγ2 , . . . , Πγn

. As a consequence, the intersection of the ball
Bdhyp(P, ε) with ∆Γ(∞) is also the intersection of Bdhyp(P, ε) with
Πγ1 ∩ · · · ∩ Πγn

. It follows that the boundary of ∆Γ(∞) is the union
of all sets Πγ ∩ ∆Γ(∞) with γ ∈ Γ − Γ∞.

By construction, the set Fγ = Πγ ∩ ∆Γ(∞) is the intersection of
the hyperbolic plane Πγ with all half-spaces Hγ′ with γ′ ∈ Γ − Γ∞.
Since the family of the planes Πγ′ bounding these half-spaces is locally
finite (Lemma 12.10), Fγ is either the empty set, a single point, a
geodesic of H3, or a locally finite polygon in H3.

When Fγ is a polygon, we will say that it is a face of ∆Γ(∞).
From the local picture of the Ford domain ∆Γ(∞) near each of its
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points P , it is immediate that two such faces can only meet along one
edge or one vertex.

This concludes the proof that the Ford domain ∆Γ(∞) is a locally
finite polyhedron. �

Remark 12.12. Here, let us collect a few simple properties of the
Ford domain ∆Γ(∞).

(1) The intersection of ∆Γ(∞) with a vertical line is a half-
line. Indeed, if P = (x, y, u) is in the half-space Hγ of
Lemma 12.9, every point P ′ = (x, y, u′) above it (namely,
with u′ > u) is also in Hγ .

(2) For the vertical projection of R3 to the xy-plane, every face
of ∆Γ(∞) projects to a euclidean polygon in R2.

(3) The Ford domain ∆Γ(∞) is invariant under the stabilizer
Γ∞. Indeed, if P ∈ Hγ and α ∈ Γ∞, a simple algebraic
manipulation shows that α(P ) belongs to Hα◦γ .

(4) A consequence of (2) and (3) above is that the faces of
∆Γ(∞) are polygons with finitely many edges.

Figures 12.6 and 12.8 below provide a few examples of the top
view of Ford domains, namely, of their projections to the xy-plane.
Note the symmetry of these pictures under the action of the stabilizer
Γ∞. This stabilizer acts by translations on the plane, and its action is
represented here by indicating a parallelogram which is a fundamental
domain for the action; in particular, Γ∞ is generated by the two
translations along the sides of the parallelogram.

These pictures were drawn using the software SnapPea [Weeks2].
Indeed, once we are given the kleinian group Γ, the definition of the
Ford domain ∆Γ(∞) makes its computation quite amenable to com-
puter implementation.

These examples are fairly typical, as projections of Ford domains
provide (often quite intricate) tessellations of the euclidean plane R2

by euclidean polygons (usually triangles), which are invariant under
the action of a group acting by translations.
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12.4.3. Uniqueness and examples.

Proposition 12.13. Let K be a knot in R3, to which Theorem 12.2,
Complement 12.7 and Section 12.4.2 associate a kleinian group Γ and
a Ford domain ∆Γ(∞). If Γ′ and ∆Γ′(∞) are similarly associated
to K, then there is an isometry ϕ: H3 → H3 fixing ∞ and sending
∆Γ(∞) to ∆Γ′(∞).

Proof. This is an immediate consequence of Proposition 12.8. �

To apply Proposition 12.13, note that an isometry ϕ of H3 that
fixes ∞ is just the composition of a homothety and of a euclidean
isometry of R3 respecting H3. (Look at the linear or antilinear frac-
tional map induced on Ĉ.) In addition, the possibilities for ϕ are
further limited by the fact that Proposition 12.8 implies that it must
send Γ∞ to Γ′

∞, in the sense that Γ′
∞ = {ϕ ◦ γ ◦ ϕ−1; γ ∈ Γ∞}.

Figure 12.5. Two very similar knots

Because of the wealth of information encoded in them, Proposi-
tion 12.13 makes Ford domains a very powerful tool to prove that two
knots are not isomorphic. For instance, consider the two knots repre-
sented in Figure 12.5. Their respective Ford domains are represented
in Figure 12.6. By inspection, there is no similitude (= composition of
a homothety with a euclidean isometry) of the plane sending the pro-
jection of one of these Ford domains to the other. For instance, some
vertices of the second tessellation are adjacent to 20 edges, whereas
none have this property in the first tessellation. One can also look at
the (finitely many) shapes of the tiles of each tessellation.
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Figure 12.6. The Ford domains of the knots of Figure 12.5

It follows that the knots K and K ′ of Figure 12.5 are not isomor-
phic. These two knots were not completely chosen at random. The
fact that they differ only by an exchange of two twisted parts (the
technical term is “mutation”) make them very hard to distinguish
by the methods of algebraic topology which were standard prior to
the introduction of hyperbolic geometry. This example illustrates the
power of these new hyperbolic techniques.

As an aside, these two knots are still very close from the point
of view of hyperbolic geometry. For instance, the hyperbolic metrics
on their complements have exactly the same volume. It should also
be clear from the parallelograms in each picture of Figure 12.6 (and
it can be rigorously proved) that the stabilizers Γ∞ and Γ∞ coincide
up to isometry of H3. Consequently, one needs the full force of Ford
domains to distinguish these two knots.

As a final example, consider the two knots of Figure 12.7. Snap-
Pea provides the same Ford domain for each of them, as indicated in
Figure 12.8. In particular, we cannot use Ford domains to show that
these two knots are not isomorphic.

There is a good reason for this, because the two knots represented
are actually isotopic. . . ! It took a long time to realize this fact. These
two knots were listed as distinct in the early knot tables established
by Charles Little [Little] in the nineteenth century, and remained so
for over 90 years; see for instance [Rolfsen], where they appear as
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Figure 12.7. Two more knots

Figure 12.8. The Ford domain of the knots of Figure 12.7

the knots numbered 10161 and 10162, respectively. It is only in 1974
that Kenneth Perko, an amateur mathematician, noticed that they
were isotopic [Perko]. See Exercise 12.8.

We are mentioning this example because it illustrates very well
the power of hyperbolic geometric methods in knot theory. Indeed,
the isotopy which took 90 years to discover is now a simple conse-
quence of the computation of Ford domains, provided we use a little
more information than we have indicated so far.

More precisely, the faces of a Ford domain ∆Γ(∞) are paired to-
gether by the same principle that we already encountered for Dirich-
let domains. Namely, using the notation of the proof of Proposi-
tion 12.11, if Fγ is a face of the Ford domain ∆Γ(∞), then Fγ−1 is
another face of ∆Γ(∞) and γ ∈ Γ sends Fγ−1 to Fγ . In particular,
the faces Fγ and Fγ−1 are glued together under the quotient map
H3 → H3/Γ.
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As in the case of Dirichlet domains, we can therefore reconstruct
the quotient space H3/Γ from the following data: the Ford domain
∆Γ(∞); the action of the translation group Γ∞ on ∆Γ(∞); the gluing
data between the faces ∆Γ(∞). Indeed, H3/γ is homeomorphic to the
quotient space obtained by, first, taking the quotient ∆Γ(∞)/Γ∞ and
then gluing the faces of ∆Γ(∞)/Γ∞ (namely, the images of the faces
of ∆Γ(∞) under the quotient map) according to the gluing data.

If we are only interested in reconstructing H3/Γ up to homeomor-
phism as opposed to up to isometry, we do not need to know exactly
the gluing maps Fγ → Fγ−1 , but only their combinatorics.

More precisely, let Γ and Γ′ be two kleinian groups as in Com-
plement 12.7, so that they have well-defined Ford domains ∆γ(∞)
and ∆Γ′(∞). We will say that the Ford domains ∆Γ(∞) and ∆Γ′(∞)
and their gluing data have the same combinatorics if there is a
one-to-one correspondence between the faces, edges and vertices of
∆Γ(∞) and the faces, edges and vertices of ∆Γ′(∞) such that

(1) an edge of ∆Γ(∞) is contained in a given face if and only if
the corresponding edge of ∆Γ′(∞) is contained in the cor-
responding face; similarly, a vertex of ∆Γ(∞) is contained
in a given edge if and only if the corresponding vertex of
∆Γ′(∞) is contained in the corresponding edge of ∆Γ′(∞);

(2) two faces, edges or vertices of ∆Γ(∞) differ by the action
of an element of Γ∞ if and only if the corresponding faces,
edges or vertices of ∆Γ′(∞) differ by the action of an element
of Γ′

∞;

(3) two faces, edges or vertices of ∆Γ(∞) are glued together
if and only if the corresponding faces, edges or vertices of
∆Γ′(∞) are glued together.

SnapPea easily computes the combinatorial data thus associated
to the Ford domain of a hyperbolic knot.

Proposition 12.14. Let K and K ′ be two knots, and let Γ and Γ′ be
two kleinian groups such that H3/Γ and H3/Γ′ are homeomorphic to
R̂3 − K and R̂3 − K ′, respectively, as in Complement 12.7. Suppose
that the Ford domains ∆Γ(∞) and ∆Γ′(∞) and their gluing data are
combinatorially equivalent.
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Then, the knots K and K ′ are isomorphic.

Proof. The definition of combinatorial equivalence is designed so
that when it holds the quotient spaces H3/Γ and H3/Γ′ are home-
omorphic. Therefore, there exists a homeomorphism ϕ : R̂3 − K →
R̂3 −K ′ between the corresponding knot complements. Then, a deep
theorem of Cameron Gordon and John Luecke [Gordon & Luecke]
shows that ϕ can be chosen so that it extends to a homeomorphism
ϕ: S3 → S3, such that ϕ(K) = K ′. This proves that K and K ′ are
isomorphic. �

Ford domains were originally introduced, in the context of the
hyperbolic plane H2, by Lester Ford in 1935 [Ford1]. Bob Riley was
probably the first one to realize that 3-dimensional Ford domains
could be a powerful tool to distinguish knots, and one which was very
amenable to computer implementation [Riley2, Riley3, Riley4]. A
conceptually different description of Ford domains is due to David
Epstein and Bob Penner [Epstein & Penner].

12.5. The general Geometrization Theorem

The Geometrization Theorem 12.2 for knot complements is a special
case of a more general result for 3-dimensional manifolds. To explain
this statement, we need a few definitions about manifolds.

Consider the n-dimensional euclidean space Rn, consisting
of all n-tuples (x1, x2, . . . , xn) with each xi ∈ R. We endow Rn with
the euclidean metric deuc defined by

deuc(P, P ′) =
√∑n

i=1(xi − x′
i)2

when P = (x1, x2, . . . , xn) and P ′ = (x′
1, x

′
2, . . . , x

′
n). This is of course

the natural generalization of the cases where n = 2 and n = 3 that we
have considered so far. When p < n, we identify the space Rp to the
subset of Rn consisting of those points whose last (n− p) coordinates
are all equal to 0.

An n-dimensional manifold is a metric space (X, d) which is
locally homeomorphic to the euclidean space (Rn, deuc). Namely, for
every P ∈ X, there exists a small ball Bd(P, ε) ⊂ X and a homeo-
morphism ϕ: Bd(P, ε) → U between Bd(P, ε) and a subset U of Rn
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which contains a small euclidean ball Bdhyp(ϕ(P ), ε′) ⊂ U centered
at ϕ(P ).

A manifold X is connected if, for every P and Q ∈ X, there
exists a continuous curve γ : [a, b] → X going from P = γ(a) to
Q = γ(b) (where [a, b] is an arbitrary closed interval in R).

Manifolds naturally appear as in the mathematical modelling of
various physical phenomena and, consequently, they occur in many
different branches of mathematics.

12.5.1. Geometrization of surfaces. A surface is the same thing
as a 2-dimensional manifold. In Chapter 5, we constructed various
euclidean, hyperbolic and spherical surfaces, namely, metric spaces lo-
cally isometric to the euclidean plane (R2, deuc), the hyperbolic plane
(H2, dhyp) or the sphere (S2, dsph).

This is part of a more general phenomenon. The following theo-
rem is the culmination of work by a long line of mathematicians in the
nineteenth century; see for instance [Bonahon, §1.1] for a discussion.

Theorem 12.15 (Geometrization Theorem for surfaces). Let (X, d)
be a connected surface. Then X can be endowed with another metric
d′ such that

(1) d′ is topologically equivalent to the original metric d, in the
sense that the identity map IdX provides a homeomorphism
between (X, d) and (X, d′);

(2) the metric space (X, d′) is complete;

(3) (X, d′) is locally isometric to the euclidean plane (R2, deuc),
the hyperbolic plane (H2, dhyp) or the sphere (S2, dsph).

In addition:

(1) when (X, d′) is locally isometric to the sphere, it is homeo-
morphic to the sphere or to the projective plane;

(2) when (X, d′) is locally isometric to the euclidean plane, it is
homeomorphic to the plane, the cylinder, the Möbius strip,
the torus, or the Klein bottle;
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(3) when (X, d′) is locally isometric to the hyperbolic plane, it
is not homeomorphic to the sphere, the projective plane, the
torus, or the Klein bottle. �

In particular, outside of four exceptions, every connected surface
can be endowed with a complete hyperbolic metric. This includes the
relatively nice surfaces that we encountered in Chapter 5, but also
wilder examples such as the surface of infinite genus represented in
Figure 12.9 (also known as the “infinite Loch Ness Monster”), or the
complement of a Cantor set in the plane (if you know what this is).

Figure 12.9. The infinite Loch Ness Monster

As indicated earlier, Mostow’s Rigidity Theorem 12.4 is not valid
in dimension 2, so that this hyperbolic metric is not unique up to
isometry. However, there are still relatively few such metrics. Indeed,
for a given surface (X, d), we can consider the set of all complete eu-
clidean, hyperbolic or spherical metrics d′ as in Theorem 12.15, and
identify two such metrics when they are isometric. There is a way
to turn the corresponding quotient space into a metric space2 called
the moduli space Meuc(X), Mhyp(X) or Msph(X), of euclidean, hy-
perbolic or spherical metrics on the surface X. When X is compact,
or more generally when it is obtained from a compact surface by re-
moving finitely many points, this moduli space is almost a manifold
in the sense that it is locally isometric to the quotient of a manifold
by the action of a finite group of isometries; such an object is called
an orbifold . In particular, it is locally a manifold at most of its
points, but can have singularities similar to the cone singularities of
Exercise 7.14 at those points that are fixed by nontrivial elements of
the finite group.

For instance, when X is homeomorphic to the sphere or to the
projective plane, the moduli space Msph(X) consists of a single point

2with several classical choices possible for the metric
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(and consequently it is a manifold of dimension 0), which is another
way to say that any two spherical metrics on X are isometric.

For euclidean metrics, the moduli space Meuc(X) is a 3-dimen-
sional orbifold when X is homeomorphic to the torus or the Klein
bottle, and is a 1-dimensional orbifold (homeomorphic to a semi-open
interval) when X is a cylinder or a Möbius strip.

When X is obtained by removing p points from the compact ori-
entable surface of genus g, then Mhyp(X) is an orbifold of dimension
3(2g+p−2). The fact that this dimension is finite can be interpreted
as the property that a complete hyperbolic metric on X is essentially
controlled by finitely many parameters (such as the shear parame-
ters of Section 6.7.2) or, as a physicist would say, that there are only
finitely many degrees of freedom in the choice of such a metric. For
infinite surfaces such as the infinite Loch Ness Monster, the moduli
space Mhyp(X) is infinite-dimensional.

12.5.2. Essential surfaces in 3-dimensional manifolds. Let
(S3, dsph) be the 3-dimensional sphere defined by straightforward
generalization of the 2-dimensional sphere (S2, dsph) to three dimen-
sions. Namely,

S3 = {(x1, x2, x3, x4) ∈ R4; x2
1 + x2

2 + x2
3 + x2

4 = 1},

and the spherical distance dsph(P, q) is defined as the infimum of
the euclidean lengths of all piecewise differentiable curves joining P

to Q in S3.

One might optimistically hope that a version of Theorem 12.15
also holds for 3-dimensional manifolds, and that every 3-dimensional
manifold admits a metric which is locally isometric to the euclidean
space (R3, deuc), the hyperbolic space (H3, dhyp) or the 3-dimensional
sphere (S3, dsph). This is not quite the case.

Let X be a 3-dimensional manifold.

A typical example of 3-dimensional manifold is the complement
X = R̂3 − K of a knot K in R3. In that case, Theorem 12.2 as-
serted the existence of a complete hyperbolic metric on X provided
K is neither a satellite nor a torus knot. For a general 3-dimensional
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manifold X, the nonsatellite condition is replaced by a condition on
a certain type of surfaces in X.

A two-sided surface in the 3-dimensional manifold X is a sub-
set S ⊂ X for which there exists a 2-dimensional manifold Y and a
homeomorphism ϕ: Y × (−ε, ε) → U to a subset U ⊂ X such that
ϕ(Y ×{0}) = S. Here, we are endowing the product Y × (−ε, ε) with
the product of the metric of Y and of the euclidean metric of the
interval (−ε, ε), as defined in Exercise 1.6. The same convention will
hold for all products in this section.

One can always find two-sided surfaces in a 3-dimensional man-
ifold X by using relatively trivial constructions. For instance, by
definition of manifolds, X contains a subset U which is homeomor-
phic to an open ball V in R3; the preimages of small euclidean spheres
in V then provide many two-sided spheres in X. If we start from a
simple closed curve K in X, we can also try to thicken it to a small
tube, and then take the boundary of this tube; in most cases, the
boundary of the tube will be a two-sided torus, but it can also be a
two-sided Klein bottle.

Such constructions are clearly too simple for the corresponding
surfaces to have much significance. We will focus attention on sur-
faces which are not obtained in this way. Such surfaces will be called
essential, where this word is defined on a case-by-case basis.

An essential sphere in the 3-dimensional manifold X is a two-
sided surface S which is homeomorphic to the sphere, and which is
contained in no subset B ⊂ X where B is homeomorphic to a ball
in R3.

An essential projective plane in X is simply a two-sided sur-
face which is homeomorphic to the projective plane, with no further
condition.

The definition of an essential torus involves more properties.
Namely, an essential torus in the 3-dimensional manifold X is a
two-sided surface T such that

(1) T is homeomorphic to the torus T2;

(2) T is not contained in a subset B ⊂ X which is homeomor-
phic to a ball in R3;
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(3) T is not the boundary of a solid torus V ⊂ X; namely,
there is no homeomorphism ϕ: S1 ×D2 → V ⊂ X such that
T = ϕ(S1 ×S1), where S1 and D2 denote the unit circle and
the closed unit disk in R2, respectively;

(4) T is not the boundary of a collar W going to infinity in X;
namely, there is no homeomorphism ϕ: T2 × [0,∞) → W ⊂
X such that T = ϕ

(
T2 × {0}

)
and such that ϕ

(
T2 × {t}

)
goes to infinity in X as t tends to +∞, in the sense that

lim
t→+∞

inf
{

d(P0, P ); P ∈ ϕ
(
T2 × {t}

)}
= +∞

for an arbitrary base point P0 ∈ X.

The definition of essential Klein bottles will involve twisted (also
called nonorientable) solid tori. Recall that the circle S1 is homeomor-
phic to the quotient space obtained from the interval [0, 1] by gluing
the point 0 to the point 1 (see Exercise 4.5). As a consequence, the
solid torus S1 × D2 is homeomorphic to the quotient space obtained
from [0, 1]×D2 by gluing each point (0, P ) with P ∈ D2 to the point
(1, P ).

Let the twisted solid torus S1 ×̃D2 be the quotient space ob-
tained from [0, 1]×D2 by gluing each point (0, P ) to (1, P̄ ), where P̄

denotes the complex conjugate of P ∈ D2 ⊂ R2 = C. The bound-

ary Klein bottle of this twisted solid torus is the image S1 ×̃ S1 of
[0, 1] × S1 under the quotient map.

An essential Klein bottle in the 3-dimensional manifold X is
a two-sided surface K such that

(1) K is homeomorphic to the Klein bottle K2;

(2) K is not the boundary of a twisted solid torus V ⊂ X;
namely, there is no homeomorphism ϕ: S1 ×̃D2 → V ⊂ X

such that K = ϕ(S1 ×̃ S1);

(3) K is not the boundary of a collar W going to infinity in X;
namely, there is no homeomorphism ϕ: K2 × [0,∞) → W ⊂
X such that K = ϕ(T2 × {0}) and such that

lim
t→+∞

inf{d(P0, P ); P ∈ ϕ(K2 × {t})} = +∞.
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Proposition 12.16. Let (X, d) be a 3-dimensional manifold. If d

is topologically equivalent to a complete hyperbolic metric d′, then X

contains no essential sphere, projective plane, torus or Klein bottle.
�

See [Scott, Bonahon] for a proof and further references.

12.5.3. Seifert fibrations. Recall that the standard solid torus is
the subset V of R3 consisting of all points of the form(

(R + ρ cos v) cosu, (R + ρ cos v) sin u, ρ sin v
)

with 0 � ρ � r and u, v ∈ R, where the two radii R and r with
R > r > 0 are given. For any rational p

q
∈ Q, we can consider in V

all the torus knots parametrized by

t �→
(
(R + ρ cos qt) cos(pt + t0), (R + ρ cos qt) sin(pt + t0),−ρ sin qt

)
with 0 � ρ � R and t0 ∈ R. When ρ = 0, the corresponding curve
is the core circle of V . When ρ > 0, the corresponding curves are
disjoint p

q -torus knots wrapping around this core.

There is another possible presentation of this partition of the
solid torus. Indeed, we already saw that V is homeomorphic to the
quotient space S1 ×D2 obtained from [0, 1]×D2 by gluing each point
(0, P ) to (1, P ). However, if σ: D2 → D2 denotes the rotation of angle
−2π p

q
, V is also homeomorphic to the other quotient space obtained

from [0, 1]×D2 by gluing each (0, P ) to (1, σ(P )). (To check this, first
use your personal experience with playdough, and then try to build
a more rigorous argument.) Then the partition of [0, 1]×D2 into line
segments [0, 1] × {P} projects to a partition of this second quotient
space into disjoint simple closed curves, which is homeomorphic to
the partition of V by p

q -torus knots as above.

This second presentation immediately extends to the twisted solid
torus W = S1 ×̃D2. Recall that W is the quotient space obtained
from [0, 1] × D2 by gluing (0, P ) to (1, P̄ ), where P is the complex
conjugate image of P ∈ D2 ⊂ R2 = C under the reflection across the
x-axis. Again, the partition of [0, 1]×D2 into line segments [0, 1]×{P}
projects to a partition of W into disjoint simple closed curves. Note
that the curves corresponding to P in the x-axis (so that P̄ = P ) wrap
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once around S1 ×̃D2, but that all other curves wrap twice around this
twisted solid torus.

A Seifert fibration of a 3-dimensional manifold X is a partition
of X into disjoint simple closed curves, called the fibers of the fibra-
tion, which locally looks like the above decompositions of the twisted
and untwisted solid torus. More precisely, for every fiber K, there
is a subset U ⊂ X containing K, a rational number p

q ∈ Q and a
homeomorphism ϕ: U → S1 ×D2 or S1 ×̃D2 between U and the solid
torus S1 × D2 or the twisted solid torus S1 ×̃D2, such that

(1) U is a union of fibers;

(2) ϕ sends K to the core circle of the twisted or untwisted solid
torus;

(3) ϕ sends any other fiber contained in U to a p
q -torus knot

in S1 × D2 or to one of the curves of the decomposition of
S1 ×̃D2, as above.

For most fibers, the solid torus U is untwisted and we can take p
q = 0

1 ;
all other fibers are called exceptional .

A 3-dimensional manifold that admits a Seifert fibration is a
Seifert manifold .

Since a Seifert fibration of X is a partition, it gives rise to a
quotient space X̄. It easily follows from the local description of the
Seifert fibration that this quotient space is a surface with boundary.
To a large extent, X behaves very much like the product X̄ ×S1 of X̄

with the circle S1, and we should think of X as a certain thickening
of the surface X̄.

This intuition is expressed in the early work [Seifert] of Her-
bert Seifert, who classified Seifert fibrations up to homeomorphism
respecting the fibration, in terms of the quotient surface X̄ and of the
local type of the exceptional fibers. A little over thirty years later,
Friedhelm Waldhausen [Waldhausen] and Peter Orlik, Elmar Vogt
and Heiner Zieschang [Orlik, Vogt & Zieschang] showed that the
Seifert fibration of a Seifert manifold is unique up to homeomorphism,
outside of a few well-understood exceptions, so that the classification
of Seifert manifolds up to homeomorphism is equivalent to Seifert’s
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classification up to homeomorphism respecting the fibration. The
main consequence of these results is that Seifert manifolds form a
class of 3-dimensional manifolds which is very well understood.

12.5.4. The general Geometrization Theorem. We are now al-
most ready state the Geometrization Theorem for 3-dimensional man-
ifolds. However, we need a last couple of definitions.

Let Rn
+ denote the closed half-space Rn−1 × [0,∞) ⊂ Rn con-

sisting of those points of the euclidean space Rn whose last coordi-
nate is nonnegative. An n-dimensional manifold-with-boundary

(in one word) is a metric space (X, d) which is locally homeomor-
phic to (Rn

+, deuc). Namely, for every P ∈ X, there exists a small
ball Bd(P, ε) ⊂ X and a homeomorphism ϕ : Bd(P, ε) → U be-
twen Bd(P, ε) and a subset U ⊂ Rn

+ which contains a small ball
Rn

+∩Bdeuc(P, ε′) of the metric space (Rn
+, deuc). The boundary ∂X of

X consists of those P as above which are sent to a point of Rn−1×{0}
by the homeomorphism. Its interior is the complement X − ∂X.

A manifold is said to have finite topological type if it is home-
omorphic to the interior of a compact manifold-with-boundary. For
instance, a compact manifold has finite topological type. The infinite
Loch Ness Monster surface of Figure 12.9 is a typical example of a
manifold of infinite topological type.

Theorem 12.17 (The Geometrization Theorem for 3-dimensional
manifolds). Let (X, d) be a connected 3-dimensional manifold with
finite topological type. Then at least one of the following holds:

(1) X admits a complete hyperbolic metric d′ which is topologi-
cally equivalent to d;

(2) X contains an essential sphere, projective plane, torus, or
Klein bottle;

(3) X is a Seifert manifold. �

In addition, there is relatively little overlap with these three pos-
sibilities. We already saw in Proposition 12.16 that (1) and (2) are
incompatible. With respect to (1) and (3) there are, up to homeomor-
phism, only six exceptional connected Seifert manifolds that admit
complete hyperbolic metrics, such as the interior of the solid torus,
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or the product of the torus T2 with the line R. Similarly, only two
connected Seifert manifolds contain an essential sphere or projective
plane. However, most Seifert manifolds contain many essential tori
or Klein bottles.

Complement 12.18. Under the hypothesis of Theorem 12.17, sup-
pose in addition that X is the union of a compact subset C and of
finitely many subsets homeomorphic to T2 × [0,∞) and K2 × [0,∞),
where T2 and K2 denote the torus and the Klein bottle, respectively.
Then, we can additionally require in conclusion (1) of Theorem 12.17
that the hyperbolic metric d′ has finite volume. �

It then follows from Mostow’s Rigidity Theorem 12.4 that the
hyperbolic metric d′ is unique up to isometry under the hypotheses
and conclusions of Complement 12.18.

Theorem 12.17 may not quite look like the Geometrization The-
orem 12.15 for surfaces because it involves only one geometry, the
hyperbolic geometry. However, Seifert manifolds can be endowed
with other geometric structures , namely, complete metrics which
are locally isometric to some homogeneous model space.

Among homogeneous spaces of dimension 3, we have already
encountered the hyperbolic space (H3, dhyp), the euclidean space
(R3, deuc) and the 3-dimensional sphere (S3, dsph). These three spaces
are also isotropic. However, in dimension 3, there also exist homo-
geneous spaces which are not isotropic, such as the products H2 × R

and S2×R. There also exist twisted versions of these products. Alto-
gether, if we identify two geometric models when they only differ by
rescaling, and if we require each of them to appear for at least one 3-
dimensional manifold with finite volume, there are only eight possible
geometries in dimension 3. This observation is due to Bill Thurston,
and is explained in detail in [Scott, Bonahon], for instance.

It turns out that every Seifert manifold can be endowed with a
geometric structure modeled after one of six of these eight geometries.
Therefore, only essential spheres, projective planes, tori and Klein
bottles can create problems for endowing a 3-dimensional manifold
with a geometric structure.
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It turns out that earlier theories provide a kind of unique fac-
torization of 3-dimensional manifolds of finite topological type into
pieces which either contain no such essential surfaces or can be Seifert
fibered. To some extent, these factorizations are analogous to the
unique factorization of an integer as a product of primes. The first
such factorization is the theory of connected sums initiated by Hel-
muth Kneser [Kneser] and completed by Wolfgang Haken [Haken]
and John Milnor [Milnor] (see also the graduate textbook [Hempel]),
which essentially reduces the analysis of 3-dimensional manifolds to
that of manifolds containing no essential sphere or projective planes.
The second such factorization is provided by the Characteristic Toric
Decomposition, originally suggested by Friedhelm Waldhausen and
fully developed by Klaus Johannson [Johannson] and Bus Jaco and
Peter Shalen [Jaco & Shalen].

Combined with these factorizations, Theorem 12.17 then asserts
that every connected 3-dimensional manifold of finite topological type
has a natural splitting into pieces, each of which admits a geometric
structure. In particular, this explains why this statement is called a
Geometrization Theorem, and not just a Hyperbolization Theorem.

Theorem 12.17 and Complement 12.18 were proved by Bill Thur-
ston in the late 1970s in the case of unbounded manifolds, or for
bounded manifolds which contain essential two-sided surfaces (in a
sense which we will not define here). See [Thurston1], and exposi-
tions of the proof in [Otal1, Otal2, Kapovich]. The Geometrization
Theorem for knot complements that we presented as Theorem 12.2 is
a special case of this result.

The final cases of the proof of Theorem 12.17 were completed
by Grisha Perelman shortly after 2000, following a program started
in the early 1980s by Richard Hamilton. Perelman was offered the
Fields Medal for this work in 2006, but declined the award. Following
a definite pattern in this area of mathematics, the complete details of
the proof have not been written down by Perelman, who only released
a few unpublished preprints [Perelman1, Perelman2, Perelman3].
However, detailed expositions are now beginning to become available
[Chow & Lu & Ni, Chow & al., Cao & Zhu, Kleiner & Lott,
Morgan & Tian1, Morgan & Tian2].
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An important corollary of Theorem 12.17 is that it solves a
century-old problem, the Poincaré Conjecture.

We saw that a manifold X is connected if any two points P ,
Q ∈ X can be joined by a continuous curve γ : [0, 1] → X with
γ(0) = P and γ(1) = Q. The manifold X is simply connected

if, in addition, the space of curves going from P to Q is connected;
namely, if, for any two curves γ0: [0, 1] → X and γ1: [0, 1] → X with
endpoints γ0(0) = γ1(0) = P to γ0(1) = γ1(1) = Q, there exists a
family of curves γs: t �→ γs(t) depending continuously on a parameter
s ∈ [0, 1], all going from γs(0) = P to γs(1) = Q and coinciding with
the original curves γ0 and γ1 when s = 0, 1. The fact that the curves
γs depend continuously on s means that the map H: [0, 1]×[0, 1] → X

defined by H(s, t) = γs(t) is continuous.

Examples of simply connected 3-dimensional manifolds include
the euclidean space R3 and the 3-dimensional sphere

S3 = {(x, y, z, t) ∈ R4; x2 + y2 + z2 + t2 = 1}.

In 1904, Henri Poincaré proposed the following conjecture, which be-
came a theorem 100 years later after many unsuccessful attempts in
the intervening years.

Theorem 12.19 (The Poincaré Conjecture). Every simply connected
bounded 3-dimensional manifold is homeomorphic to the 3-dimen-
sional sphere S3. �

The Poincaré Conjecture comes as a corollary of the Geometriza-
tion Theorem 12.17 by using relatively simple arguments on hyper-
bolic manifolds, by exploiting the Kneser-Haken-Milnor theory of
connected sums to reduce the problem to manifolds without essen-
tial spheres or projective planes, and by applying an earlier result of
Herbert Seifert [Seifert] that S3 is the only simply connected Seifert
manifold.

Exercises for Chapter 12

Exercise 12.1.

a. Show by a series of pictures that the 2
3
-torus knot is isotopic to the

3
2
-torus knot.
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b. More generally, show that the p
q
-torus knot is isotopic to the q

p
-torus

knot for every p
q
∈ Q.

Exercise 12.2. Let K be the figure-eight knot represented in Figure 11.5,
and let K ′ be its mirror image, namely, let K ′ be the image of K under a
reflection across a plane of R3. Show by a series of pictures that K and K ′

are isotopic.

Exercise 12.3. Consider the unknot, formed by the unit circle S1 in R2 ⊂
R3. Show that there exists a kleinian group Γ0, generated by a single
element and acting freely on H3, such that the quotient space H3/Γ is

homeomorphic to the complement bR3 −S1. Possible hints: First show that
bR3 − S1 is homeomorphic to R3 −R×{(0, 0)}, perhaps by using a suitable
Möbius transformation; then consider the map H3 → R3 − R × {(0, 0)}
defined by (x, y, u) �→ (x, u cos y, u sin y).

Exercise 12.4. Let Γ and Γ′ be two groups acting freely and discontinu-
ously on the hyperbolic space H3. Suppose that the corresponding quotient
spaces are homeomorphic by a homeomorphism ϕ: H3/Γ′ → H3/Γ.

a. Let α: [a, b] → H3/Γ be a parametrized continuous curve in (H3/Γ, d̄hyp),
beginning at P̄0 = α(a) with P0 ∈ H3. Show that there exists a pa-
rametrized continuous curve eα: [a, b] → H3 such that eα(a) = P0 and
α = π ◦ eα, where π: H3 → H3/Γ is the quotient map. Hint: Consider
the supremum of the set of those t ∈ [a, b] for which such a map eα can
be defined on [a, t], and remember that π is a local isometry by (the
proof of) Theorem 7.8.

b. Show that in part a, the map eα is unique. Hint: Given another such
map eα′, consider the infimum of those t ∈ [a, b] such that eα′(t) �= eα(t).

c. Suppose that we are now given a family of continuous curves αu :
[a, b] → H3/Γ, depending continuously on a parameter u ∈ [c, d] in the
sense that the map [a, b] × [c, d] → H3/Γ defined by (t, u) �→ αu(t) is
continuous. Assume in addition that αu(a) = P̄0 for every u ∈ [c, d],
and let eαu: [a, b] → H3 be associated to αu as in parts a and b. Show
that the map [a, b]×[c, d] → H3 defined by (t, u) �→ eαu(t) is continuous.
Hint: If the map was not continuous at some (t0, u0), consider the
infimum of those t ∈ [a, b] such that the map (t, u) �→ eαu(t) is not
continuous at (t, u0).

d. Under the hypotheses and conclusions of part c, suppose in addition
that the map u �→ αu(b) ∈ H3/Γ is constant. Show that the map
u �→ eαu(b) ∈ H3 is also constant.

e. Fix two base points P0, P ′
0 ∈ H3 such that ϕ(P̄0) = P̄ ′

0. For P ∈ H3,
choose a continuous curve eα: [a, b] → H3 with eα(a) = P0 and eα(b) = P ,
and lift the curve α′ = ϕ ◦ π ◦ α: [a, b] → H3/Γ′ to a continuous curve
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eα′ : [a, b] → H3 with eα′(a) = P ′
0 as in part a. Use parts a–d to show

that its endpoint P ′ = eα′(b) depends only on P , and not on the choice
of the curve eα. In particular, there is a well-defined map eϕ: H3 → H3

associating to each P ∈ H3 the point eϕ(P ) = P ′ as above.

f. Show that the above map eϕ: H3 → H3 is a homeomorphism.

g. Show that for every γ ∈ Γ, the composition eϕ ◦ γ ◦ eϕ−1 is an element
of Γ′.

h. Show that the map ρ : Γ → Γ′ defined by ρ(γ) = eϕ ◦ γ ◦ eϕ−1 is a
bijection, and that ρ(γ1 ◦ γ2) = ρ(γ1) ◦ ρ(γ2) for every γ1, γ2 ∈ Γ.
(Namely, ρ is a group isomorphism between the groups Γ and Γ′, if
you know what this is.)

Exercise 12.5. Let bΓ8 be the kleinian group of Section 11.2, such that

H3/bΓ8 is homeomorphic to the complement bR3−K of the figure-eight knot,
and let Γ0 be a kleinian group as in Exercise 12.3, generated by a single

element and for which H3/Γ0 is homeomorphic to the complement bR3 − S1

of the unknot.

a. Show that bΓ8 contains elements γ1, γ2 such that γ1 ◦ γ2 �= γ2 ◦ γ1.

b. Show that γ1 ◦ γ2 = γ2 ◦ γ1 for every γ1, γ2 ∈ Γ0.

c. Use part h of Exercise 12.4 to conclude that bR3 − K and bR3 − S1

are not homeomorphic, and therefore that the figure-eight knot is not
isomorphic to the unknot.

Exercise 12.6. Let the kleinian group Γ act freely on H3, so that the
quotient space H3/Γ is locally isometric to H3 by Theorem 7.8. We want
to define the hyperbolic volume of H3/Γ.

a. Let A be a subset of H3/Γ which is contained in a ball Bd̄hyp
(P̄ , ε) ⊂

H3/Γ isometric to a ball of H3 by an isometry ϕ : Bd̄hyp
(P̄ , ε) →

Bdhyp(Q, ε) ⊂ H3. Define the hyperbolic volume volhyp(A) to be the

hyperbolic volume of ϕ(A) ⊂ H3, as introduced in Exercise 9.12. (Here,
we are implicitly assuming that the subset A is sufficiently “nice” that
the triple integral involved in the definition of the hyperbolic volume
of ϕ(A) makes sense; all subsets involved in this exercise will satisfy
this property, so that we do not have to worry about the deeper math-
ematical issues that could arise in the general case.) Show that this
hyperbolic volume volhyp(A) is independent of the choice of the ball
Bd̄hyp

(P̄ , ε) and of the isometry ϕ. Hint: Use Exercise 9.12.

b. Now consider a subset A which is contained in the union of finitely
many balls B1, B2, . . . , Bn in H3/Γ, each of which is isometric to a
ball in H3. For every subset I of {1, 2, . . . , n}, let BI be the subset of
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those P̄ ∈ H3/Γ such that {i; P̄ ∈ Bi} = I. Define

volhyp(A) =
X

I⊂{1,...,n}

volhyp(A ∩ BI),

where each volhyp(A ∩ BI) is defined by part a. Show that volhyp(A)
is independent of the choice of the balls Bi.

c. Fix a base point P0 ∈ H3. Show that for every R > 0, there exists
εR > 0 such that dhyp(P, γ(P )) � εR for every P ∈ Bdhyp(P0, R) and

every γ ∈ Γ−{IdΓ}. Conclude that the ball Bd̄hyp
(P̄0, R) is contained

in the union of finitely many balls B1, B2, . . . , Bn in H3/Γ, each of
which is isometric to a ball in H3.

As a consequence, the hyperbolic volume volhyp

`

Bd̄hyp
(P̄0, R)

´

is well

defined.

d. Show that the limit

volhyp(H3/Γ) = lim
R→+∞

volhyp

`

Bd̄hyp
(P̄0, R)

´

exists (possibly infinite), and is independent of the choice of the base
point P0.

Exercise 12.7.

a. Consider the perpendicular bisector of two points P and Q ∈ H3,
defined as

ΠPQ = {R ∈ H
3; dhyp(R, P ) = dhyp(R, Q)}.

Show that ΠPQ is a hyperbolic plane. Hint: Compare Exercise 2.4.

b. Let γ be an isometry of H3 such that γ(∞) �= ∞, and let (Pn)n∈N be
a sequence in H3 converging to the point ∞ for the euclidean metric.
Show that the perpendicular bisector plane ΠPnγ(Pn) converges to the
hyperbolic plane Πγ defined in Lemma 12.9, in the sense that the
center and radius of ΠPnγ(Pn), considered as a euclidean hemisphere,
converges to the center and radius of Πγ as n tends to infinity.

Exercise 12.8. Show by a series a pictures that the two knots of Fig-
ure 12.7 are indeed isotopic. Tying the knots in shoe laces or another type
of string may (or may not) be helpful.

Exercise 12.9. Let K be the p
q
-torus knot in R3, drawn on a torus T

consisting of those points that are at distance r from a central circle C

of radius R > r. Show that the complement X = bR3 − K of K in bR3 =
R3 ∪ {∞} admits a Seifert fibration where one fiber is the union of the
z-axis and of the point ∞, where another fiber is the central circle C, and
where all other fibers are isotopic to the p

q
-torus knot.
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This appendix, referred to as the Tool Kit in the text, is a quick
list of notation and basic mathematical definitions used in the book.

T.1. Elementary set theory

For us, a set X is a collection of objects called its elements . In
theory, we need to be more careful in the definition of sets in order to
avoid logical inconsistencies. However, these deep and subtle issues
do not arise at the level of the mathematics described in this book.
Consequently, we will be content with the above intuitive definition.

When the object x is an element of the set X, we say that x

belongs to X and we write x ∈ X.

In practice, a set can be described by listing all of its elements
between curly brackets or by describing a property that characterizes
the elements of the set. For instance, the set of all even integers that
are strictly between −3 and 8 is denoted by {−2, 0, 2, 4, 6}, or by

{x; there exists an integer n such that x = 2n and − 3 < x < 8}.

A subset of a set X is a set Y such that every element of Y is
also an element of X. We then write Y ⊂ X.

A particularly useful set is the empty set ∅ = { }, which con-
tains no element.
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A diagonal bar across a symbol indicates that the corresponding
property does not hold. For instance, x �∈ X means that x does not
belong to the set X.

Here is a list of classical sets of numbers, with the notation used
in this book:

N = {1, 2, 3, . . . } is the set of all positive integers; in par-
ticular, 0 is not an element of N, a convention which is not
universal.

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } is the set of all integers.

Q is the set of all rational numbers, namely, of all numbers
that can be written as a quotient p

q where p, q ∈ Z are
integers with q �= 0.

R is the set of all real numbers.

C is the set of all complex numbers. (See Section T.4 later
in this Tool Kit.)

Given two sets X and Y , their intersection X∩Y consists of all
elements that are in both X and Y . Their union X ∪ Y consists of
those objects that are in X or in Y (or in both). The complement

X −Y consists of those elements of X which do not belong to Y . For
instance, if X = {1, 2, 3, 4} and Y = {3, 4, 5}, then

X ∩ Y = {3, 4},
X ∪ Y = {1, 2, 3, 4, 5}

and X − Y = {1, 2}.
Two sets are disjoint when their intersection is empty.

More generally, is X is a set of sets, namely, a set whose elements
are themselves sets, the union of these X ∈ X is the set⋃

X∈X

X = {x; x ∈ X for some X ∈ X}

of those elements x that belong to at least one X ∈ X. Similarly,
their intersection is the set⋂

X∈X

X = {x; x ∈ X for all X ∈ X}

of those elements x that belong to all X ∈ X.
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We can also consider the product of X and Y , which is the set
X × Y consisting of all ordered pairs (x, y) where x ∈ X and y ∈ Y .
More generally, the product X1 × X2 × · · · × Xn of n sets X1, X2,
. . . , Xn consists of all ordered n-tuples (x1, x2, . . . , xn) where each
coordinate xi is an element of Xi.

In particular,

R2 = R × R = {(x, y); x ∈ R, y ∈ R}

is naturally identified to the plane through cartesian coordinates. The
same holds for the 3-dimensional space

R3 = R × R × R = {(x, y, z); x ∈ R, y ∈ R, z ∈ R}.

A map or function ϕ: X → Y is a rule ϕ which to each x ∈ X

associates an element ϕ(x) ∈ Y . We also express this by saying that
the map ϕ is defined by x �→ ϕ(x). Note the slightly different arrow
shape.

When X = Y , there is a special map, called the identity map

IdX : X → X which to x ∈ X associates itself, namely, such that
IdX(x) = x for every x ∈ X.

The composition of two maps ϕ: X → Y and ψ: Y → Z is the
map ψ ◦ ϕ: X → Z defined by the property that ψ ◦ ϕ(x) = ψ

(
ϕ(x)

)
for every x ∈ X. In particular, ϕ = IdY ◦ϕ = ϕ◦IdX for any function
ϕ: X → Y .

The map ϕ is injective or one-to-one if ϕ(x) �= ϕ(x′) for every
x, x′ ∈ X with x �= x′. It is surjective or onto if every y ∈ Y is
the image y = ϕ(x) of some x ∈ X. The map ϕ is bijective if it
is both injective and surjective, namely, if every y ∈ Y is the image
y = ϕ(x) of a unique x ∈ X. In this case, there is a well-defined
inverse map ϕ−1 : Y → X, for which ϕ−1(y) is the unique x ∈ X

such that y = ϕ(x). In particular, ϕ ◦ϕ−1 = IdY and ϕ−1 ◦ϕ = IdX .
When ϕ: X → Y is bijective, we also say that ϕ is a bijection , or
that it defines a one-to-one correspondence between elements of
X and elements of Y .

The image of a subset A ⊂ X under the map ϕ: X → Y is the
subset

ϕ(A) = {y ∈ Y ; y = ϕ(x) for some x ∈ X}
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of Y . The preimage of B ⊂ Y under ϕ: X → Y is the subset

ϕ−1(B) = {x ∈ X; ϕ(x) ∈ B}
of X. Note that the preimage ϕ−1 is defined even when ϕ is not
bijective, in which case the inverse map ϕ−1 may not be defined and
the preimage of a point may be empty or consist of many points.

The map ϕ: X → X preserves or respects a subset A ⊂ X if
ϕ(A) is contained in A. A fixed point for ϕ is an element x ∈ X

such that ϕ(x) = x; equivalently, we then say that ϕ fixes x.

If we have a map ϕ: X → Y and a subset A ⊂ X, the restriction

of ϕ to A is the function ϕ|A: A → X defined by restricting attention
to elements of A, namely, defined by the property that ϕ|A(a) = ϕ(a)
for every a ∈ A.

When the map ϕ: N → X is defined on the set N of all positive
integers, it is called a sequence. In this case, it is customary to
write ϕ(n) = Pn (with the integer n as a subscript) and to denote the
sequence by a list P1, P2, . . . , Pn, . . . , or by (Pn)n∈N for short.

T.2. Maximum, minimum, supremum, and
infimum

If a set A = {x1, x2, . . . , xn} consists of finitely many real numbers,
there is always one of these numbers which is larger than all the other
ones and another one which is smaller than the other ones. These are
the maximum maxA and the minimum min A of A, respectively.

However, the same does not hold for infinite subsets of R. For
instance, the set A = {2n; n ∈ Z} does not have a maximum, because
it contains elements that are arbitrarily large. It has no minimum
either because there is no a ∈ A such that a � 2n for every n ∈ Z.

We can fix this problem by doing two things. First, we introduce
a point ±∞ at each end of the number line R = (−∞, +∞), so as to
get a new set [−∞, +∞] = R ∪ {−∞, +∞}. Then, we will say that
an element M ∈ [−∞, +∞] is a supremum for the subset A ⊂ R if:

(1) a � M for every a ∈ A;

(2) M is the smallest number with this property, in the sense
that there is no M ′ < M such that a � M ′ for every a ∈ A.
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The second condition is equivalent to the property that we can find
elements of A that are arbitrarily close to M .

Similarly, an infimum for A ⊂ R is an element m ∈ [−∞, +∞]
such that

(1) a � m for every a ∈ A;

(2) m is the largest number with this property, in the sense that
there is no m′ > m such that a � m′ for every a ∈ A.

It is a deep result of real analysis that any subset A ⊂ R admits
a unique supremum M = sup A, and a unique infimum m = inf A.
The proof of this statement requires a deep understanding of the na-
ture of real numbers. To a large extent, real numbers were precisely
introduced for this property to hold true, and some people even use
it as an axiom in the construction of real numbers. We refer to any
undergraduate textbook on real analysis for a discussion of this state-
ment.

For instance,

sup{2n; n ∈ Z} = +∞
and inf{2n; n ∈ Z} = 0.

It may happen that supA is an element of A, in which case we
say that the supremum is also a maximum and we write supA =
max A; otherwise, the maximum of A does not exist. Similarly, the
minimum min A of A is equal to inf A if this infimum belongs to
A, and does not exist otherwise. In particular, the maximum and
the minimum are elements of A when they exist. The supremum and
infimum always exist, but are not necessarily in A.

For instance, min{2n; n ∈ N} = 2, but min{2n; n ∈ Z} does not
exist since inf{2n; n ∈ Z} = 0 �∈ {2n; n ∈ Z}.

Be aware of the behavior of suprema and infima under arithmetic
operations. For instance, if we are given two sequences (xn)n∈N and
(yn)n∈N of real numbers, it is relatively easy to check that

sup{xn + yn; n ∈ N} � sup{xn; n ∈ N} + sup{yn; n ∈ N}
and inf{xn + yn; n ∈ N} � inf{xn; n ∈ N} + inf{yn; n ∈ N}.
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However, these inequalities will be strict in most cases. Similarly,

sup{−xn; n ∈ N} = − inf{xn; n ∈ N}
and inf{−xn; n ∈ N} = − sup{xn; n ∈ N}.

Finally, it may be enjoyable to consider the case of the empty set
∅, and to justify the fact that sup ∅ = −∞ and inf ∅ = +∞.

T.3. Limits and continuity. Limits involving
infinity

In Section 1.3, we define limits and continuity in metric spaces by
analogy with the corresponding notions that one encounters in calcu-
lus. It may be useful to review these calculus definitions.

Let f : D → R be a function with domain D ⊂ R. The function
f is continuous at x0 ∈ D if f(x) is arbitrary close to f(x0) when
x ∈ D is sufficiently close x0. This intuitive statement is made rigor-
ous by quantifying the adverbs “arbitrarily” and “sufficiently” with
appropriate numbers ε and δ. In this precise definition of continuity,
the function f is continuous at x0 if, for every ε > 0, there exists
a number δ > 0 such that |f(x) − f(x0)| < ε for every x ∈ D with
|x − x0| < δ. This property is more relevant when ε and δ are both
small, and this is the situation that we should keep in mind to better
understand the meaning of the definition.

We can reinforce the analogy with the metric space definition
given in Section 1.3 by using the notation d(x, y) = |x−y|, namely, by
considering the usual metric d of the real line R. The above definition
can then be rephrased by saying that f is continuous at x0 ∈ D if,
for every ε > 0, there exists a δ > 0 such that d

(
f(x), f(x0)

)
< ε for

every x ∈ D with d(x, x0) < δ.

Also, a sequence of real numbers x1, x2, . . . , xn, . . . converges

to x∞ ∈ R if xn is arbitrarily close to x∞ when the index n is suffi-
ciently large. More precisely, the sequence (xn)n∈N converges to x∞
if, for every ε > 0, there exists an n0 such that |xn − x∞| < ε for
every n � n0. Again, if we replace the statement |xn − x∞| < ε by
d(xn, x∞) < ε, we recognize here the definition of limits in metric
spaces that is given in Section 1.3.
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In calculus, we also encounter infinite limits, and limits as the
variable tends to ±∞. Recall that f(x) has a limit L ∈ R as x tends
to +∞ if, for every ε > 0, there exists a number η > 0 such that
|f(x) − L| < ε for every x with x > η. Similarly, f(x) converges to
L as x tends to −∞ if, for every ε > 0, there exists a number η > 0
such that |f(x) − L| < ε for every x with x < −η. In both cases, the
more relevant situation is that where ε is small and η is large.

In the book, we combine +∞ and −∞ into a single infinity ∞.
Then, by definition, f(x) converges to L as x tends to ∞ if, for
every ε > 0, there exists a number η > 0 such that |f(x)−L| < ε for
every x with |x| > η.

Beware that the symbols ∞ and +∞ represent different math-
ematical objects in these statements. In particular, lim

x→∞
f(x) = L

exactly when the properties that lim
x→+∞

f(x) = L and lim
x→−∞

f(x) = L

both hold.

Similarly, f(x) converges to ∞ as x tends to x0 if, for every
number η > 0, there exists a δ > 0 such that |f(x)| > η for every
x with 0 < |x − x0| < δ. In particular, lim

x→x0
f(x) = ∞ if either

lim
x→x0

f(x) = +∞ or lim
x→x0

f(x) = −∞. However, the converse is not

necessarily true, as illustrated by the fact that lim
x→0

1
x

= ∞ but that

neither lim
x→0

1
x

= +∞ nor lim
x→0

1
x

= −∞ hold.

Immediate generalizations of these limits involving infinity occur
in the book when we consider the Riemann sphere Ĉ = C ∪ {∞} =
R2 ∪ {∞} in Chapter 9, H3 ∪ Ĉ = H3 ∪ C ∪ {∞} in Chapter 9, or
R̂3 = R3 ∪ {∞} in Chapter 11.

T.4. Complex numbers

In the plane R2, we can consider the x-axis R×{0} as a copy of the real
line R, by identifying the point (x, 0) ∈ R×{0} to the number x ∈ R.
If we set i = (0, 1), then every point of the plane can be written as a
linear combination (x, y) = x + iy. When using this notation, we will
consider x + iy as a generalized number, called a complex number .
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It is most likely that you already have some familiarity with complex
numbers, and we will just review a few of their properties.

Complex numbers can be added in the obvious manner

(x + iy) + (x′ + iy′) = (x + x′) + i(y + y′),

and multiplied according to the rule that i2 = −1, namely,

(x + iy)(x′ + iy′) = (xx′ − yy′) + i(x′y + xy′).

These additions and multiplications behave according to the standard
rules of algebra. For instance, given three complex numbers z = x+iy,
z′ = x′ + iy′ and z′′ = x′′ + iy′′, we have that z(z′ + z′′) = zz′ + zz′′

and z(z′z′′) = (zz′)z′′.

For a complex number z = x + iy, the x-coordinate is called the
real part Re(z) = x of z, and the y-coordinate is its imaginary part

Im(z) = y. The complex conjugate of z is the complex number

z̄ = x − iy

and the modulus, or absolute value of z is

|z| =
√

x2 + y2 =
√

zz̄.

In particular,

1
x + iy

=
1
z

=
z̄

zz̄
=

z̄

|z|2 =
x

x2 + y2
− i

y

x2 + y2
.

Also,

zz′ = (xx′ − yy′) − i(xy′ + yx′) = (x − iy)(x′ − iy′) = z̄z̄′

and
|zz′| =

√
zz′z̄z̄′ =

√
zz̄

√
z′z̄′ = |z||z′|

for every z = x + iy and z′ = x′ + iy′ ∈ C.

In the book, we make extensive use of Euler’s exponential no-

tation , where
cos θ + i sin θ = eiθ

for every θ ∈ R. In particular, any complex number z = x + iy can
be written as z = reiθ, where [r, θ] are polar coordinates describing
the same point z as the cartesian coordinates (x, y) in the plane R2.
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There are many ways to justify this exponential notation. For
instance, we can remember the Taylor expansions

sin θ =
∞∑

k=0

(−1)k θ2k+1

(2k + 1)!
= θ − θ3

3!
+

θ5

5!
− θ7

7!
+ · · ·

cos θ =
∞∑

k=0

(−1)k θ2k

(2k)!
= 1 − θ2

2!
+

θ4

4!
− θ6

6!
+ · · ·

eθ =
∞∑

n=0

θn

n!
= 1 + θ +

θ2

2!
+

θ3

3!
+

θ4

4!
+

θ5

5!
+

θ6

6!
+

θ7

7!
+ · · ·

valid for every θ ∈ R. If, symbolically, we replace θ by iθ in the last
equation and remember that i2 = −1,

eiθ = 1 + (iθ) +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+

(iθ)6

6!
+

(iθ)7

7!
+ · · ·

= 1 + iθ − θ2

2!
− i

θ3

3!
+

θ4

4!
+ i

θ5

5!
− θ6

6!
− i

θ7

7!
+ · · ·

=
(
1 − θ2

2!
+

θ4

4!
− θ6

6!
+ . . .

)
+ i

(
θ − θ3

3!
+

θ5

5!
− θ7

7!
+ · · ·

)
= cos θ + i sin θ.

There is actually a way to justify this symbolic manipulation by prov-
ing the absolute convergence of this infinite series of complex numbers.

In the same vein, using the addition formulas for trigonometric
functions,

eiθeiθ′
= (cos θ + i sin θ)(cos θ′ + i sin θ′)

= (cos θ cos θ′ − sin θ sin θ′) + i(cos θ sin θ′ + sin θ cos θ′)

= cos(θ + θ′) + i sin(θ + θ′)

= ei(θ+θ′),

which is again consistent with the exponential notation.

Note the special case

eiπ = −1,

known as Euler’s Formula, which combines two of the most famous
mathematical constants (three if one includes the number 1 among
famous constants).
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More generally, for an arbitrary complex number z = x + iy ∈ C,
we can define

ez = ex+iy = exeiy = ex(cos y + i sin y).

It immediately follows from the above observations that this com-

plex exponential satisfies many of the standard properties of real
exponentials, and in particular that ez+z′

= ezez′
for every z, z′ ∈ C.

                

                                                                                                               



Supplemental
bibliography
and references

In this section, we list the references that were mentioned in the
text, but begin with a bibliography suggesting additional material
for further reading. Some entries appear in both lists.

Supplemental bibliography

This supplemental material is rated with bullets, according to its
difficulty. One bullet • indicates a textbook which is roughly at the
same mathematical level as the present monograph or easier. Two
bullets •• are used for more advanced textbooks, at the graduate
level. Three bullets ••• denote research-level material.

We have included software [Heath, Wada, Weeks2, Weeks3]
that currently is freely available on the Internet, and which the reader
is strongly encouraged to explore. Of course, these electronic refer-
ences are quite likely to become unstable with time. The beautiful
(and mathematically challenging) movie [NotKnot] is also highly
recommended.
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Some of this suggested reading, such as the excellent [Stillwell1]
and [Mumford, Series & Wright], has a significant overlap with
the current text but offers a different emphasis and viewpoint.

More elementary background on hyperbolic geometry can be
found in [Anderson], [Greenberg], [Henle] or [Stillwell1]. Ad-
vanced textbooks include the very influential [Thurston4], as well as
[Benedetti & Petronio], [Marden2], [Maskit], [Ratcliffe],
[Mumford, Series & Wright]. See also [Stillwell2] for easy ac-
cess and an introduction to some historical references.

The topological classification of surfaces, which is not discussed
in this book, is nicely presented in [Massey, Chapter 1].

With respect to the topics discussed towards the end of the book,
[Adams], [Lickorish] and [Livingston] provide nice introductions
to knot theory, and more advanced material can be found in [Rolfsen]
and [Burde & Zieschang]. See also [Flapan] for applications of
knot theory.

A topological approach to 3-dimensional manifolds can be found
in [Hempel], [Jaco] or [Rolfsen]. The book [Weeks1] is a lively in-
troduction to a more geometric approach to 3-dimensional manifolds,
while the articles [Scott] and [Bonahon] survey more advanced top-
ics.

You should also consider learning some topology and algebraic
topology. There are numerous textbooks in these areas, such as
[Armstrong], [Gamelin & Greene], [Hatcher2], [Massey] and
[McCleary].

[Adams]• Colin C. Adams, The knot book. An elementary introduc-
tion to the mathematical theory of knots, American Mathemati-
cal Society, Providence, RI, 2004.

[Anderson]• James W. Anderson, Hyperbolic geometry, Springer
Undergraduate Mathematics Series, Springer-Verlag London
Ltd., London, 1999.

[Armstrong]• M. Anthony Armstrong, Basic Topology, Undergrad-
uate Texts in Mathematics, Springer-Verlag, New York-Berlin,
1983.
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[Benedetti & Petronio]•• Riccardo Benedetti, Carlo Petronio,
Lectures on hyperbolic geometry, Universitext, Springer-Verlag,
Berlin, 1992.

[Bonahon]••• Francis Bonahon,“Geometric structures on 3-mani-
folds”, in: Handbook of geometric topology (R. J. Daverman and
R. B. Sher, eds.), 93-164, North-Holland, Amsterdam, 2002.

[Burde & Zieschang]••• Gerhardt Burde, Heiner Zieschang,
Knots, (Second edition), de Gruyter Studies in Mathematics 5,
Walter de Gruyter GmbH, Berlin, Germany, 2003.

[Flapan]•• Erica Flapan, When topology meets chemistry. A topo-
logical look at molecular chirality, Cambridge University Press,
Cambridge, United Kingdom; Mathematical Association of
America, Washington, DC, 2000.

[Gamelin & Greene]• Theodore W. Gamelin, Robert E. Greene,
Introduction to topology, (Second Edition), Dover Publications,
Mineola, NY, 1999.

[Greenberg]• Marvin J. Greenberg, Euclidean and non-Euclidean
geometries: development and history, W. H. Freeman and Co.,
San Francisco, Calif., 1973.

[Hatcher2]•• Allen E. Hatcher, Algebraic topology, Cambridge Uni-
versity Press, 2001.

[Heath] Daniel J. Heath, Geometry playground, mathematical soft-
ware, freely available at www.plu.edu/~heathdj/java/.

[Hempel]•• John Hempel, 3-Manifolds, Annals of Mathematics
Studies 86, Princeton University Press, Princeton, NJ, 1976.

[Henle]• Michael Henle, Modern geometries. The analytic approach,
Prentice Hall, Inc., Upper Saddle River, NJ, 1997.

[Jaco]•• William Jaco, Lectures on three-manifold topology, CBMS.
Regional Conference Series in Mathematics 43, American Math-
eamtical Society, Providence, RI, 1980.

[Lickorish]•• W. B. Raymond Lickorish, An introduction to knot
theory, Graduate Texts in Mathematics 175, Springer-Verlag,
New York, NY, 1997
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[Livingston]• Charles Livinston, Knot theory, Mathematical Asso-
ciation of America, Washington, DC, 1993.

[Marden2]•• Albert Marden, Outer circles: an introduction to hy-
perbolic 3-manifolds, Cambridge University Press, Cambridge,
United Kingdom, 2007.

[Massey]•• William S. Massey, A basic course in algebraic topology,
Graduate Texts in Mathematics 127, Springer-Verlag, Berlin,
1997.

[Maskit]•• Bernard Maskit, Kleinian groups, Grundlehren der
Mathematischen Wissenschaften 287, Springer-Verlag, Berlin,
1988.

[McCleary]• A first course in topology, Student Mathematical Li-
brary 31, American Mathematical Society, Providence, RI, 2006.

[Mumford, Series & Wright]• David Mumford, Caroline Series,
David Wright, Indra’s pearls. The vision of Felix Klein, Cam-
bridge University Press, New York, 2002.

[NotKnot]• Not Knot, video by the Geometry Center of the Uni-
versity of Minnesota, A.K. Peters Ltd, Wellesley, MA, 1994.

[Ratcliffe]•• John Ratcliffe, Foundations of hyperbolic manifolds,
Graduate Texts in Mathematics 149, Springer-Verlag, New York,
1994.

[Rolfsen]•• Dale Rolfsen, Knots and links, Publish or Perish, Berke-
ley, 1976.

[Scott]••• G. Peter Scott, “The geometries of 3-manifolds”, Bulletin
of the London Mathematical Society 15 (1983), 401–487.

[Stillwell1]• John C. Stillwell, Geometry of surfaces, Universitext,
Springer-Verlag, New York, 1992.

[Stillwell2]•• John C. Stillwell, Sources of hyperbolic geometry, His-
tory of Mathematics 10, American Mathematical Society, Prov-
idence, RI, 1996.

[Thurston4]•• William P. Thurston, Three-dimensional geometry
and topology, Vol. 1 (Edited by Silvio Levy), Princeton Math-
ematical Series 35, Princeton University Press, Princeton, NJ,
1997.
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Journal für die Reine und Angewandte Mathematik 83 (1877),
13-57.
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[Poincaré2] Henri Poincaré, “Sur les fonctions uniformes qui se re-
produisent par des substitutions linéaires (Extrait d’une lettre
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Little, Charles N., 337
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McMullen, Curtis T., 322
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Mostow
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Perelman, Grigory Y., 350

Perko, Kenneth A., 338
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projective

projective line, 42
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356

quotient
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141–143, 187–189

quotient space, 60, 58–61, 187,
187–197
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hyperbolic reflection, 15, 240

regular curve, 316

respect, 358

restriction, 358
                

                                                                                                               



Index 383

Riemann

Riemann sphere, 27, 41,
241–252, 276–279

Riemann, Georg Friedrich
Bernhard (1826–1866), 27

Riley, Robert F. (1935–2000), 312,
340

rotation

euclidean rotation, 6, 49–52
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